Cubic Hecke Algebras#

We consider the factors of the group algebra of the Artin braid groups such that the images \(s_i\) of the braid generators satisfy a cubic equation:

\[s_i^3 = u s_i^2 - v s_i + w.\]

Here \(u, v, w\) are elements in an arbitrary integral domain and \(i\) is a positive integer less than \(n\), the number of the braid group’s strands. By the analogue to the Iwahori Hecke algebras (see IwahoriHeckeAlgebra), in which the braid generators satisfy a quadratic relation these algebras have been called cubic Hecke algebras. The relations inherited from the braid group are:

\[s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \text{ for } 1 \leq i < n - 1 \mbox{ and } s_i s_j = s_j s_i \text{ for } 1 \leq i < j - 1 < n - 1.\]

The algebra epimorphism from the braid group algebra over the same base ring is realized inside the element constructor of the present class, for example in the case of the 3 strand cubic Hecke algebra:

sage: CHA3 = algebras.CubicHecke(3)
sage: BG3 = CHA3.braid_group()
sage: braid = BG3((1,2,-1,2,2,-1)); braid
c0*c1*c0^-1*c1^2*c0^-1
sage: braid_image = CHA3(braid); braid_image
u*c1*c0^-1*c1 + u*v*c0*c1^-1*c0^-1 + (-u^2)*c0^-1*c1
+ ((u^2*v-v^2)/w)*c0*c1*c0^-1 + ((u^2-v)/w)*c0*c1*c0
+ ((-u^3+u*v)/w)*c0*c1 + (-u*v+w)*c1^-1

If the ring elements \(u, v, w\) (which will be called the cubic equation parameters in the sequel) are taken to be \(u = v = 0, w = 1\) the cubic Hecke algebra specializes to the group algebra of the cubic braid group, which is the factor group of the Artin braid group under setting the generators order to be three. These groups can be obtained by CubicHeckeAlgebra.cubic_braid_group().

It is well known, that these algebras are free of finite rank as long as the number of braid generators is less than six and infinite dimensional else wise. In the former (non trivial) cases they are also known as cyclotomic Hecke algebras corresponding to the complex reflection groups having Shepard-Todd number \(4\), \(25\) and \(32\).

Since the Broué, Malle, Rouquiere conjecture has been proved (for references of these cases see [Mar2012]) there exists a finite free basis of the cubic Hecke algebra which is in bijection to the cubic braid group and compatible with the specialization to the cubic braid group algebra as explained above.

For the algebras corresponding to braid groups of less than five strands such a basis has been calculated by Ivan Marin. This one is used here. In the case of 5 strands such a basis is not available, right now. Instead the elements of the cubic braid group class themselves are used as basis elements. This is also the case when the cubic braid group is infinite, even though it is not known if these elements span all of the cubic Hecke algebra.

Accordingly, be aware that the module embedding of the group algebra of the cubicbraid groups is known to be an isomorphism of free modules only in the cases of less than five strands.

EXAMPLES:

Consider the obstruction b of the triple quadratic algebra from Section 2.6 of [Mar2018]. We verify that the third power of it is a scalar multiple of itself (explicitly 2*w^2 times the Schur element of the three dimensional irreducible representation):

sage: CHA3 = algebras.CubicHecke(3)
sage: c1, c2 = CHA3.gens()
sage: b = c1^2*c2 - c2*c1^2 - c1*c2^2 + c2^2*c1; b
w*c0^-1*c1 + (-w)*c0*c1^-1 + (-w)*c1*c0^-1 + w*c1^-1*c0
sage: b2 = b*b
sage: b3 = b2*b
sage: BR = CHA3.base_ring()
sage: ER = CHA3.extension_ring()
sage: u, v, w = BR.gens()
sage: f =  BR(b3.coefficients()[0]/w)
sage: try:
....:     sh = CHA3.schur_element(CHA3.irred_repr.W3_111)
....: except NotImplementedError:    # for the case GAP3 / CHEVIE not available
....:     sh = ER(f/(2*w^2))
sage: ER(f/(2*w^2)) == sh
True
sage: b3 == f*b
True

Defining the cubic Hecke algebra on 6 strands will need some seconds for initializing. However, you can do calculations inside the infinite algebra as well:

sage: CHA6 = algebras.CubicHecke(6)  # optional - database_cubic_hecke
sage: CHA6.inject_variables()        # optional - database_cubic_hecke
Defining c0, c1, c2, c3, c4
sage: s = c0*c1*c2*c3*c4; s          # optional - database_cubic_hecke
c0*c1*c2*c3*c4
sage: s^2                            # optional - database_cubic_hecke
(c0*c1*c2*c3*c4)^2
sage: t = CHA6.an_element() * c4; t  # optional - database_cubic_hecke
(-w)*c0*c1^-1*c4 + v*c0*c2^-1*c4 + u*c2*c1*c4 + ((-v*w+u)/w)*c4

REFERENCES:

AUTHORS:

  • Sebastian Oehms May 2020: initial version

class sage.algebras.hecke_algebras.cubic_hecke_algebra.CubicHeckeAlgebra(names, cubic_equation_parameters=None, cubic_equation_roots=None)#

Bases: sage.combinat.free_module.CombinatorialFreeModule

Return the Cubic-Hecke algebra with respect to the Artin braid group on \(n\) strands.

This is a quotient of the group algebra of the Artin braid group, such that the images \(s_i\) (\(1 \leq i < n\)) of the braid generators satisfy a cubic equation (see cubic_hecke_algebra for more information, in a session type sage.algebras.hecke_algebras.cubic_hecke_algebra?):

\[s_i^3 = u s_i^2 - v s_i + w.\]

The base ring of this algebra can be specified by giving optional keywords described below. If no keywords are given, the base ring will be a CubicHeckeRingOfDefinition, which is constructed as the polynomial ring in \(u, v, w\) over the integers localized at \(w\). This ring will be called the ring of definition or sometimes for short generic base ring. However note, that in this context the word generic should not remind in a generic point of the corresponding scheme.

In addition to the base ring, another ring containing the roots (\(a\), \(b\) and \(c\)) of the cubic equation will be needed to handle the split irreducible representations. This ring will be called the extension ring. Generically, the extension ring will be a CubicHeckeExtensionRing, which is constructed as the Laurent polynomial ring in \(a, b\) and \(c\) over the integers adjoined with a primitive third root of unity. A special form of this generic extension ring is constructed as a SplittingAlgebra for the roots of the cubic equation and a primitive third root of unity over the ring of definition. This ring will be called the default extension ring.

This class uses a static and a dynamic data library. The first one is defined as instance of CubicHeckeDataBase and contains the complete basis for the algebras with less than 5 strands and various types of representation matrices of the generators. These data have been calculated by Ivan Marin and have been imported from his corresponding web page.

Note that just the data for the cubic Hecke algebras on less than four strands is available in Sage by default. To deal with four strands and more you need to install the optional package database_cubic_hecke by typing

  • sage -i database_cubic_hecke (first time installation) or

  • sage -f database_cubic_hecke (reinstallation) respective

  • sage -i -c database_cubic_hecke (for running all test in concern)

  • sage -f -c database_cubic_hecke

This will add a Python wrapper around Ivan Marin’s data to the Sage library. For more installation hints see the documentation of this wrapper.

Furthermore, representation matrices can be obtained from the CHEVIE package of GAP3 via the GAP3 interface if GAP3 is installed inside Sage. For more information on how to obtain representation matrices to elements of this class, see the documentation of the element class CubicHeckeElement or its method matrix():

algebras.CubicHecke.Element? or algebras.CubicHecke.Element.matrix?

The second library is created as instance of CubicHeckeFileCache and used while working with the class to achieve a better performance. This file cache contains images of braids and representation matrices of basis elements from former calculations. A refresh of the file cache can be done using the reset_filecache().

INPUT:

  • names – string containing the names of the generators as images of the braid group generators

  • cubic_equation_parameters – tuple (u, v, w) of three elements in an integral domain used as coefficients in the cubic equation. If this argument is given the base ring will be set to the common parent of u, v, w. In addition a conversion map from the generic base ring is supplied. This keyword can also be used to change the variable names of the generic base ring (see example 3 below)

  • cubic_equation_roots – tuple (a, b, c) of three elements in an integral domain which stand for the roots of the cubic equation. If this argument is given the extension ring will be set to the common parent of a, b, c. In addition a conversion map from the generic extension ring and the generic base ring is supplied. This keyword can also be used to change the variable names of the generic extension ring (see example 3 below)

EXAMPLES:

Cubic Hecke algebra over the ring of definition:

sage: CHA3 = algebras.CubicHecke('s1, s2'); CHA3
Cubic Hecke algebra on 3 strands over Multivariate Polynomial Ring
  in u, v, w
  over Integer Ring localized at (w,)
  with cubic equation: h^3 - u*h^2 + v*h - w = 0
sage: CHA3.gens()
(s1, s2)
sage: GER = CHA3.extension_ring(generic=True); GER
Multivariate Laurent Polynomial Ring in a, b, c
  over Splitting Algebra of x^2 + x + 1
    with roots [e3, -e3 - 1] over Integer Ring
sage: ER = CHA3.extension_ring(); ER
Splitting Algebra of T^2 + T + 1 with roots [E3, -E3 - 1]
  over Splitting Algebra of h^3 - u*h^2 + v*h - w
    with roots [a, b, -b - a + u]
  over Multivariate Polynomial Ring in u, v, w
  over Integer Ring localized at (w,)

Element construction:

sage: ele = CHA3.an_element(); ele
(-w)*s1*s2^-1 + v*s1 + u*s2 + ((-v*w+u)/w)
sage: ele2 = ele**2; ele2
w^2*(s1^-1*s2)^2 + (-u*w^2)*s1^-1*s2*s1^-1 + (-v*w)*s2*s1^-1*s2
+ (-v*w^2)*s1^-1*s2^-1 + u*w*s1*s2*s1^-1*s2 + (-u*w)*s1^-1*s2*s1
+ (-u*v*w+2*v*w-2*u)*s1*s2^-1 + u*v*w*s2*s1^-1 + u*v*s2*s1 + v^2*w*s1^-1
+ (-u^2*w)*s1*s2*s1^-1 + ((u*v^2*w-2*v^2*w-u*w^2+2*u*v)/w)*s1
+ u*v*s1*s2 + (u^2*w+v^2*w)*s2^-1 + ((u^3*w-2*u*v*w+2*u^2)/w)*s2
+ ((-u^2*v*w^2-v^3*w^2+v^2*w^2-2*u*v*w+u^2)/w^2)
sage: B3 = CHA3.braid_group()
sage: braid = B3((2,-1, 2, 1)); braid
s2*s1^-1*s2*s1
sage: ele3 = CHA3(braid); ele3
s1*s2*s1^-1*s2 + u*s1^-1*s2*s1 + (-v)*s1*s2^-1 + v*s2^-1*s1 + (-u)*s1*s2*s1^-1
sage: ele3t = CHA3((2,-1, 2, 1))
sage: ele3 == ele3t
True
sage: CHA4 = algebras.CubicHecke(4)     # optional database_cubic_hecke
sage: ele4 = CHA4(ele3); ele4           # optional database_cubic_hecke
c0*c1*c0^-1*c1 + u*c0^-1*c1*c0 + (-v)*c0*c1^-1 + v*c1^-1*c0 + (-u)*c0*c1*c0^-1

Cubic Hecke algebra over the ring of definition using different variable names:

sage: algebras.CubicHecke(3, cubic_equation_parameters='u, v, w', cubic_equation_roots='p, q, r')
Cubic Hecke algebra on 3 strands over Multivariate Polynomial Ring
  in u, v, w
  over Integer Ring localized at (w,)
    with cubic equation: h^3 - u*h^2 + v*h - w = 0
sage: _.extension_ring()
Splitting Algebra of T^2 + T + 1 with roots [E3, -E3 - 1]
  over Splitting Algebra of h^3 - u*h^2 + v*h - w
    with roots [p, q, -q - p + u]
  over Multivariate Polynomial Ring in u, v, w
  over Integer Ring localized at (w,)

Cubic Hecke algebra over a special base ring with respect to a special cubic equation:

sage: algebras.CubicHecke('s1, s2', cubic_equation_parameters=(QQ(1),3,1))
Cubic Hecke algebra on 3 strands over Rational Field
  with cubic equation: h^3 - h^2 + 3*h - 1 = 0
sage: CHA3 = _
sage: ER = CHA3.extension_ring(); ER
Number Field in T with defining polynomial T^12 + 4*T^11 + 51*T^10
+ 154*T^9 + 855*T^8 + 1880*T^7 + 5805*T^6 + 8798*T^5 + 15312*T^4
+ 14212*T^3 + 13224*T^2 + 5776*T + 1444
sage: CHA3.cubic_equation_roots()[0]
-4321/1337904*T^11 - 4181/445968*T^10 - 4064/27873*T^9 - 51725/167238*T^8
- 2693189/1337904*T^7 - 1272907/445968*T^6 - 704251/74328*T^5
- 591488/83619*T^4 - 642145/83619*T^3 + 252521/111492*T^2 + 45685/5868*T
+ 55187/17604

sage: F = GF(25,'u')
sage: algebras.CubicHecke('s1, s2', cubic_equation_parameters=(F(1), F.gen(), F(3)))
Cubic Hecke algebra on 3 strands over Finite Field in u of size 5^2
  with cubic equation: h^3 + 4*h^2 + u*h + 2 = 0
sage: CHA3 = _
sage: ER = CHA3.extension_ring(); ER
Finite Field in S of size 5^4
sage: CHA3.cubic_equation_roots()
[2*S^3 + 2*S^2 + 2*S + 1, 2*S^3 + 3*S^2 + 3*S + 2, S^3 + 3]

Cubic Hecke algebra over a special extension ring with respect to special roots of the cubic equation:

sage: UCF = UniversalCyclotomicField()
sage: e3=UCF.gen(3); e5=UCF.gen(5)
sage: algebras.CubicHecke('s1, s2', cubic_equation_roots=(1, e5, e3))
Cubic Hecke algebra on 3 strands over Universal Cyclotomic Field
  with cubic equation:
  h^3 + (-E(15) - E(15)^4 - E(15)^7 + E(15)^8)*h^2 + (-E(15)^2 - E(15)^8
  - E(15)^11 - E(15)^13 - E(15)^14)*h - E(15)^8 = 0
Element#

alias of CubicHeckeElement

algebra_generators()#

Return the algebra generators of self.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: CHA2.algebra_generators()
Finite family {c: c}
base_ring(generic=False)#

Return the base ring of self.

INPUT:

  • generic – boolean (default: False); if True the ring of definition (here often called the generic base ring) is returned

EXAMMPLES:

sage: CHA2 = algebras.CubicHecke(2, cubic_equation_roots=(3, 4, 5))
sage: CHA2.base_ring()
Integer Ring localized at (2, 3, 5)
sage: CHA2.base_ring(generic=True)
Multivariate Polynomial Ring in u, v, w
  over Integer Ring localized at (w,)
braid_group()#

Return the braid group attached to self.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: CHA2.braid_group()
Braid group on 2 strands
braid_group_algebra()#

Return the group algebra of braid group attached to self over the base ring of self.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: CHA2.braid_group_algebra()
Algebra of Braid group on 2 strands
 over Multivariate Polynomial Ring in u, v, w
 over Integer Ring localized at (w,)
characters(irr=None, original=True)#

Return the irreducible characters of self.

By default the values are given in the generic extension ring. Setting the keyword original to False you can obtain the values in the (non generic) extension ring (compare the same keyword for CubicHeckeElement.matrix()).

INPUT:

  • irr – (optional) instance of AbsIrreducibeRep selecting the irreducible representation corresponding to the character; if not given a list of all characters is returned

  • original – (default: True) see description above

OUTPUT:

Function or list of Functions from the element class of self to the (generic or non generic) extension ring depending on the given keyword arguments.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: ch = CHA3.characters()
sage: e = CHA3.an_element()
sage: ch[0](e)
a^2*b + a^2*c + a^2 - b*c + b^-1*c^-1 + a^-1*c^-1 + a^-1*b^-1
sage: _.parent()
Multivariate Laurent Polynomial Ring in a, b, c
  over Splitting Algebra of x^2 + x + 1 with roots [e3, -e3 - 1]
  over Integer Ring
sage: ch_w3_100 = CHA3.characters(irr=CHA3.irred_repr.W3_100)
sage: ch_w3_100(e) == ch[0](e)
True
sage: ch_x = CHA3.characters(original=False)
sage: ch_x[0](e)
(u + v)*a + (-v*w - w^2 + u)/w
sage: _.parent()
Splitting Algebra of T^2 + T + 1 with roots [E3, -E3 - 1]
  over Splitting Algebra of h^3 - u*h^2 + v*h - w
    with roots [a, b, -b - a + u]
  over Multivariate Polynomial Ring in u, v, w
  over Integer Ring localized at (w,)
chevie()#

Return the GAP3-CHEVIE realization of the corresponding cyclotomic Hecke algebra in the finite-dimensional case.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)  # optional gap3
sage: CHA3.chevie()                  # optional gap3
Hecke(G4,[[a,b,c]])
cubic_braid_group()#

Return the cubic braid group attached to self.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: CHA2.cubic_braid_group()
Cubic Braid group on 2 strands
cubic_braid_group_algebra()#

Return the group algebra of cubic braid group attached to self over the base ring of self.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: CHA2.cubic_braid_group_algebra()
Algebra of Cubic Braid group on 2 strands
 over Multivariate Polynomial Ring in u, v, w
 over Integer Ring localized at (w,)
cubic_equation(var='h', as_coefficients=False, generic=False)#

Return the cubic equation attached to self.

INPUT:

  • var – string (default h) setting the indeterminate of the equation

  • as_coefficients – boolean (default: False); if set to True the list of coefficients is returned

  • generic – boolean (default: False); if set to True the cubic equation will be given over the generic base ring

OUTPUT:

A polynomial over the base ring (resp. generic base ring if generic is set to True). In case as_coefficients is set to True a list of them is returned.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2, cubic_equation_roots=(E(3), ~E(3), 1))
sage: CHA2.cubic_equation()
h^3 - 1
sage: CHA2.cubic_equation(generic=True)
h^3 - u*h^2 + v*h - w
sage: CHA2.cubic_equation(as_coefficients=True, generic=True)
[-w, v, -u, 1]
sage: CHA2.cubic_equation(as_coefficients=True)
[-1, 0, 0, 1]
cubic_equation_parameters(generic=False)#

Return the coefficients of the underlying cubic equation.

INPUT:

  • generic – boolean (default: False); if set to True the coefficients are returned as elements of the generic base ring

OUTPUT:

A tripple consisting of the coefficients.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2, cubic_equation_roots=(3, 4, 5))
sage: CHA2.cubic_equation()
h^3 - 12*h^2 + 47*h - 60
sage: CHA2.cubic_equation_parameters()
[12, 47, 60]
sage: CHA2.cubic_equation_parameters(generic=True)
[u, v, w]
cubic_equation_roots(generic=False)#

Return the roots of the underlying cubic equation.

INPUT:

  • generic – boolean (default: False); if set to True the roots are returned as elements of the generic extension ring

OUTPUT:

A triple consisting of the roots.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2, cubic_equation_roots=(3, 4, 5))
sage: CHA2.cubic_equation()
h^3 - 12*h^2 + 47*h - 60
sage: CHA2.cubic_equation_roots()
[3, 4, 5]
sage: CHA2.cubic_equation_roots(generic=True)
[a, b, c]
cubic_hecke_subalgebra(nstrands=None)#

Return a CubicHeckeAlgebra that realizes a sub-algebra of self on the first n_strands strands.

INPUT:

  • nstrands – integer at least 1 and at most strands() giving the number of strands for the subgroup; the default is one strand less than self has

OUTPUT:

An instance of this class realizing the sub-algebra.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3, cubic_equation_roots=(3, 4, 5))
sage: CHA3.cubic_hecke_subalgebra()
Cubic Hecke algebra on 2 strands
  over Integer Ring localized at (2, 3, 5)
    with cubic equation: h^3 - 12*h^2 + 47*h - 60 = 0
cyclotomic_generator(generic=False)#

Return the third root of unity as element of the extension ring.

The only thing where this is needed is in the nine dimensional irreducible representations of the cubic Hecke algebra on four strands (see the examples of CubicHeckeElement.matrix() for instance).

INPUT:

  • generic – boolean (default: False); if True the cyclotomic generator is returned as an element extension ring of definition

EXAMMPLES:

sage: CHA2 = algebras.CubicHecke(2, cubic_equation_roots=(3, 4, 5))
sage: CHA2.cyclotomic_generator()
E3
sage: CHA2.cyclotomic_generator(generic=True)
e3
extension_ring(generic=False)#

Return the extension ring of self.

This is an extension of its base ring containing the roots of the cubic equation.

INPUT:

  • generic – boolean (default: False); if True the extension ring of definition (here often called the generic extension ring) is returned

EXAMMPLES:

sage: CHA2 = algebras.CubicHecke(2, cubic_equation_roots=(3, 4, 5))
sage: CHA2.extension_ring()
Splitting Algebra of T^2 + T + 1 with roots [E3, -E3 - 1]
over Integer Ring localized at (2, 3, 5)
sage: CHA2.extension_ring(generic=True)
Multivariate Laurent Polynomial Ring in a, b, c
over Splitting Algebra of x^2 + x + 1
  with roots [e3, -e3 - 1] over Integer Ring
filecache_section()#

Return the enum to select a section in the file cache.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: list(CHA2.filecache_section())
[<section.matrix_representations: 'matrix_representations'>,
 <section.braid_images: 'braid_images'>,
 <section.basis_extensions: 'basis_extensions'>,
 <section.markov_trace: 'markov_trace'>]
garside_involution(element)#

Return the image of the given element of self under the extension of the Garside involution of braids to self.

This method may be invoked by the revert_garside method of the element class of self, alternatively.

INPUT:

  • element – instance of the element class of self

OUTPUT:

Instance of the element class of self representing the image of element under the extension of the Garside involution to self.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: ele = CHA3.an_element()
sage: ele_gar = CHA3.garside_involution(ele); ele_gar
(-w)*c1*c0^-1 + u*c0 + v*c1 + ((-v*w+u)/w)
sage: ele == CHA3.garside_involution(ele_gar)
True
gen(i)#

The i-th generator of the algebra.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: CHA2.gen(0)
c
gens()#

Return the generators of self.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: CHA2.gens()
(c,)
get_order()#

Return an ordering of the basis of self.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: len(CHA3.get_order())
24
irred_repr#

alias of sage.algebras.hecke_algebras.cubic_hecke_matrix_rep.AbsIrreducibeRep

is_filecache_empty(section=None)#

Return True if the file cache of the given section is empty. If no section is given the answer is given for the complete file cache.

INPUT:

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: CHA2.is_filecache_empty()
False
mirror_image()#

Return a copy of self with the mirrored cubic equation, that is: the cubic equation has the inverse roots to the roots with respect to self.

This is needed since the mirror involution of the braid group does not factor through self (considered as an algebra over the base ring, just considered as \(\ZZ\)-algebra). Therefore, the mirror involution of an element of self belongs to mirror_image.

OUTPUT:

A cubic Hecke algebra over the same base and extension ring, but whose cubic equation is transformed by the mirror involution applied to its coefficients and roots.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: ce = CHA2.cubic_equation(); ce
h^3 - u*h^2 + v*h - w
sage: CHA2m = CHA2.mirror_image()
sage: cem =  CHA2m.cubic_equation(); cem
h^3 + ((-v)/w)*h^2 + u/w*h + (-1)/w
sage: mi = CHA2.base_ring().mirror_involution(); mi
Ring endomorphism of Multivariate Polynomial Ring in u, v, w
                     over Integer Ring localized at (w,)
  Defn: u |--> v/w
        v |--> u/w
        w |--> 1/w
sage: cem == cem.parent()([mi(cf) for cf in ce.coefficients()])
True

Note that both cubic Hecke algebras have the same ring of definition and identical generic cubic equation:

sage: cemg = CHA2m.cubic_equation(generic=True)
sage: CHA2.cubic_equation(generic=True) == cemg
True
sage: CHA2.cubic_equation() == cemg
True
sage: a, b, c = CHA2.cubic_equation_roots()
sage: CHA2m.cubic_equation_roots(generic=True) == [a, b, c]
True
sage: CHA2m.cubic_equation_roots()
[((-1)/(-w))*a^2 + (u/(-w))*a + (-v)/(-w),
 ((1/(-w))*a)*b + (1/(-w))*a^2 + ((-u)/(-w))*a,
 (((-1)/(-w))*a)*b]
sage: ai, bi, ci = _
sage: ai == ~a, bi == ~b, ci == ~c
(True, True, True)
sage: CHA2.extension_ring(generic=True).mirror_involution()
Ring endomorphism of Multivariate Laurent Polynomial Ring in a, b, c
                     over Splitting Algebra of x^2 + x + 1
                       with roots [e3, -e3 - 1] over Integer Ring
  Defn: a |--> a^-1
        b |--> b^-1
        c |--> c^-1
        with map of base ring

The mirror image can not be obtained for specialized cubic Hecke algebras if the specialization does not factor through the mirror involution on the ring if definition:

sage: CHA2s = algebras.CubicHecke(2, cubic_equation_roots=(3, 4, 5))
sage: CHA2s
Cubic Hecke algebra on 2 strands
  over Integer Ring localized at (2, 3, 5)
    with cubic equation: h^3 - 12*h^2 + 47*h - 60 = 0

In the next example it is not clear what the mirror image of 7 should be:

sage: CHA2s.mirror_image()
Traceback (most recent call last):
...
RuntimeError: base ring Integer Ring localized at (2, 3, 5)
does not factor through mirror involution
mirror_isomorphism(element)#

Return the image of the given element of self under the extension of the mirror involution of braids to self. The mirror involution of a braid is given by inverting all generators in the braid word. It does not factor through self over the base ring but it factors through self considered as a \(\ZZ\)-module relative to the mirror automorphism of the generic base ring. Considering self as algebra over its base ring this involution defines an isomorphism of self onto a different cubic Hecke algebra with a different cubic equation. This is defined over a different base (and extension) ring than self. It can be obtained by the method mirror_image or as parent of the output of this method.

This method may be invoked by the CubicHeckeElelemnt.revert_mirror method of the element class of self, alternatively.

INPUT:

  • element – instance of the element class of self

OUTPUT:

Instance of the element class of the mirror image of self representing the image of element under the extension of the braid mirror involution to self.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: ele = CHA3.an_element()
sage: ele_mirr = CHA3.mirror_isomorphism(ele); ele_mirr
-1/w*c0^-1*c1 + u/w*c0^-1 + v/w*c1^-1 + ((v*w-u)/w)
sage: ele_mirr2 = ele.revert_mirror()  # indirect doctest
sage: ele_mirr == ele_mirr2
True
sage: par_mirr = ele_mirr.parent()
sage: par_mirr == CHA3
False
sage: par_mirr == CHA3.mirror_image()
True
sage: ele == par_mirr.mirror_isomorphism(ele_mirr)
True
ngens()#

The number of generators of the algebra.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: CHA2.ngens()
1
one_basis()#

Return the index of the basis element for the identity element in the cubic braid group.

EXAMPLES:

sage: CHA2 = algebras.CubicHecke(2)
sage: CHA2.one_basis()
1
orientation_antiinvolution(element)#

Return the image of the given element of self under the extension of the orientation anti involution of braids to self. The orientation anti involution of a braid is given by reversing the order of generators in the braid word.

This method may be invoked by the revert_orientation method of the element class of self, alternatively.

INPUT:

  • element – instance of the element class of self

OUTPUT:

Instance of the element class of self representing the image of element under the extension of the orientation reversing braid involution to self.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: ele = CHA3.an_element()
sage: ele_ori = CHA3.orientation_antiinvolution(ele); ele_ori
(-w)*c1^-1*c0 + v*c0 + u*c1 + ((-v*w+u)/w)
sage: ele == CHA3.orientation_antiinvolution(ele_ori)
True
product_on_basis(g1, g2)#

Return product on basis elements indexed by g1 and g2.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: g = CHA3.basis().keys().an_element(); g
c0*c1
sage: CHA3.product_on_basis(g, ~g)
1
sage: CHA3.product_on_basis(g, g)
w*c0^-1*c1*c0 + (-v)*c1*c0 + u*c0*c1*c0
repr_type#

alias of sage.algebras.hecke_algebras.cubic_hecke_matrix_rep.RepresentationType

reset_filecache(section=None, commit=True)#

Reset the file cache of the given section resp. the complete file cache if no section is given.

INPUT:

  • section – (default: all sections) an element of enum section that can be selected using filecache_section()

  • commit – boolean (default: True); if set to False the reset is not written to the filesystem

EXAMPLES:

sage: CHA5 = algebras.CubicHecke(5)   # optional - database_cubic_hecke
sage: be = CHA5.filecache_section().basis_extensions # optional - database_cubic_hecke
sage: CHA5.is_filecache_empty(be)     # optional - database_cubic_hecke
False
sage: CHA5.reset_filecache(be)        # optional - database_cubic_hecke
sage: CHA5.is_filecache_empty(be)     # optional - database_cubic_hecke
True
schur_element(item, generic=False)#

Return a single Schur element of self as elements of the extension ring of self.

Note

This method needs GAP3 installed with package CHEVIE.

INPUT:

  • item – an element of AbsIrreducibeRep to give the irreducible representation of self to which the Schur element should be returned

  • generic – boolean (default: False); if True, the element is returned as element of the generic extension ring

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)                 # optional gap3
sage: CHA3.schur_element(CHA3.irred_repr.W3_111)    # optional gap3
(u^3*w + v^3 - 6*u*v*w + 8*w^2)/w^2
schur_elements(generic=False)#

Return the list of Schur elements of self as elements of the extension ring of self.

Note

This method needs GAP3 installed with package CHEVIE.

INPUT:

  • generic – boolean (default: False); if True, the element is returned as element of the generic extension ring

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)       # optional gap3
sage: sch_eles = CHA3.schur_elements()    # optional gap3
sage: sch_eles[6]                         # optional gap3
(u^3*w + v^3 - 6*u*v*w + 8*w^2)/w^2
strands()#

Return the number of strands of the braid group whose group algebra image is self.

EXAMPLES:

sage: CHA4 = algebras.CubicHecke(2)
sage: CHA4.strands()
2
class sage.algebras.hecke_algebras.cubic_hecke_algebra.CubicHeckeElement#

Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element of a CubicHeckeAlgebra.

For more information see CubicHeckeAlgebra.

EXAMPLES:

sage: CHA3s = algebras.CubicHecke('s1, s2'); CHA3s.an_element()
(-w)*s1*s2^-1 + v*s1 + u*s2 + ((-v*w+u)/w)
sage: CHA3.<c1, c2> = algebras.CubicHecke(3)
sage: c1**3*~c2
u*w*c1^-1*c2^-1 + (u^2-v)*c1*c2^-1 + (-u*v+w)*c2^-1
Tietze()#

Return the Tietze presentation of self if self belongs to the basis of its parent and None otherwise.

OUTPUT:

A tuple representing the pre image braid of self if self is a monomial from the basis None else-wise

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: ele = CHA3.an_element(); ele
(-w)*c0*c1^-1 + v*c0 + u*c1 + ((-v*w+u)/w)
sage: ele.Tietze() is None
True
sage: [CHA3(sp).Tietze() for sp in ele.support()]
[(), (1,), (1, -2), (2,)]
braid_group_algebra_pre_image()#

Return a pre image of self in the group algebra of the braid group (with respect to the basis given by Ivan Marin).

OUTPUT:

The pre image of self as instance of the element class of the group algebra of the BraidGroup

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: ele = CHA3.an_element(); ele
(-w)*c0*c1^-1 + v*c0 + u*c1 + ((-v*w+u)/w)
sage: b_ele = ele.braid_group_algebra_pre_image(); b_ele
((-v*w+u)/w) + v*c0 + u*c1 + (-w)*c0*c1^-1
sage: ele in CHA3
True
sage: b_ele in CHA3
False
sage: b_ele in CHA3.braid_group_algebra()
True
cubic_braid_group_algebra_pre_image()#

Return a pre image of self in the group algebra of the cubic braid group.

OUTPUT:

The pre image of self as instance of the element class of the group algebra of the CubicBraidGroup.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: ele = CHA3.an_element(); ele
(-w)*c0*c1^-1 + v*c0 + u*c1 + ((-v*w+u)/w)
sage: cb_ele = ele.cubic_braid_group_algebra_pre_image(); cb_ele
(-w)*c0*c1^-1 + v*c0 + u*c1 + ((-v*w+u)/w)
sage: ele in CHA3
True
sage: cb_ele in CHA3
False
sage: cb_ele in CHA3.cubic_braid_group_algebra()
True
formal_markov_trace(extended=False, field_embedding=False)#

Return a formal expression which can be specialized to Markov traces which factor through the cubic Hecke algebra.

This covers Markov traces corresponding to the

  • HOMFLY-PT polynomial,

  • Kauffman polynomial,

  • Links-Gould polynomial.

These expressions are elements of a sub-module of the module of linear forms on self the base ring of which is an extension of the generic base ring of self by an additional variable s representing the writhe factor. All variables of this base ring extension are invertible.

A Markov trace is a family of class functions \(tr_n\) on the family of braid groups \(B_n\) into some commutative ring \(R\) depending on a unit \(s \in R\) such that for all \(b \in B_n\) the following two conditions are satisfied (see [Kau1991], section 7):

\[\begin{split}\begin{array}{lll} tr_{n+1}(b g_n) & = & s tr_n(b), \\ tr_{n+1}(b g^{-1}_n) & = & s^{-1} tr_n(b). \end{array}\end{split}\]

The unit \(s\) is often called the writhe factor and corresponds to the additional variable mentioned above.

Note

Currently it is not known if all linear forms of this sub-module belong to a Markov trace, i.e. can be extended to the full tower of cubic Hecke algebras. Anyway, at least the four basis elements (U1, U2, U3 and K4) can be reconstructed form the HOMFLY-PT and Kauffman polynomial.

INPUT:

  • extended – boolean (default: False); if set to True the base ring of the Markov trace module is constructed as an extension of generic extension ring of self; per default it is constructed upon the generic base ring

  • field_embedding – boolean (default: False); if set to True the base ring of the module is the smallest field containing the generic extension ring of self; ignored if extended=False

EXAMPLES:

sage: from sage.knots.knotinfo import KnotInfo
sage: CHA2 = algebras.CubicHecke(2)
sage: K3_1 = KnotInfo.K3_1
sage: b3_1 = CHA2(K3_1.braid())
sage: mt3_1 = b3_1.formal_markov_trace(); mt3_1
((u^2*s^2-v*s^2+u*w)/s)*B[U1] + (-u*v+w)*B[U2]
sage: mt3_1.parent()
Free module generated by {U1, U2}
   over Multivariate Polynomial Ring in u, v, w, s
   over Integer Ring localized at (s, w, v, u)

sage: f = b3_1.formal_markov_trace(extended=True); f
(a^2*b*c*s^-1+a*b^2*c*s^-1+a*b*c^2*s^-1+a^2*s+a*b*s+b^2*s+a*c*s+b*c*s+c^2*s)*B[U1]
  + (-a^2*b-a*b^2-a^2*c+(-2)*a*b*c-b^2*c-a*c^2-b*c^2)*B[U2]
sage: f.parent().base_ring()
Multivariate Laurent Polynomial Ring in a, b, c, s
  over Splitting Algebra of x^2 + x + 1 with roots [e3, -e3 - 1]
  over Integer Ring

sage: f = b3_1.formal_markov_trace(extended=True, field_embedding=True); f
((a^2*b*c+a*b^2*c+a*b*c^2+a^2*s^2+a*b*s^2+b^2*s^2+a*c*s^2+b*c*s^2+c^2*s^2)/s)*B[U1]
  + (-a^2*b-a*b^2-a^2*c-2*a*b*c-b^2*c-a*c^2-b*c^2)*B[U2]
sage: f.parent().base_ring()
Fraction Field of Multivariate Polynomial Ring in a, b, c, s
  over Cyclotomic Field of order 3 and degree 2

Obtaining the well known link invariants from it:

sage: MT = mt3_1.base_ring()
sage: sup = mt3_1.support()
sage: u, v, w, s = mt3_1.base_ring().gens()
sage: LK3_1 = mt3_1*s**-3 # since the writhe of K3_1 is 3
sage: f = MT.specialize_homfly()
sage: g = sum(f(LK3_1.coefficient(b)) * b.regular_homfly_polynomial() for b in sup); g
L^-2*M^2 - 2*L^-2 - L^-4
sage: g == K3_1.link().homfly_polynomial()
True

sage: f = MT.specialize_kauffman()
sage: g = sum(f(LK3_1.coefficient(b)) * b.regular_kauffman_polynomial() for b in sup); g
a^-2*z^2 - 2*a^-2 + a^-3*z + a^-4*z^2 - a^-4 + a^-5*z
sage: g == K3_1.kauffman_polynomial()
True

sage: f = MT.specialize_links_gould()
sage: g = sum(f(LK3_1.coefficient(b)) * b.links_gould_polynomial() for b in sup); g
-t0^2*t1 - t0*t1^2 + t0^2 + 2*t0*t1 + t1^2 - t0 - t1 + 1
sage: g == K3_1.link().links_gould_polynomial()
True
matrix(subdivide=False, representation_type=None, original=False)#

Return certain types of matrix representations of self.

The absolutely irreducible representations of the cubic Hecke algebra are constructed using the GAP3 interface and the CHEVIE package if GAP3 and CHEVIE are installed on the system. Furthermore, the representations given on Ivan Marin’s homepage are used:

INPUT:

  • subdivide – boolean (default: False): this boolean is passed to the block_matrix function

  • representation_type – instance of enum RepresentationType; this can be obtained by the attribute CubicHeckeAlgebra.repr_type of self; the following values are possible:

    • RegularLeft – (regular left repr. from the above URL)

    • RegularRight – (regular right repr. from the above URL)

    • SplitIrredChevie – (split irred. repr. via CHEVIE)

    • SplitIrredMarin – (split irred. repr. from the above URL)

    • default: SplitIrredChevie taken if GAP3 and CHEVIE are installed on the system, otherwise the default will be SplitIrredMarin

  • original – boolean (default: False): if set to true the base ring of the matrix will be the generic base_ring resp. generic extension ring (for the split versions) of the parent of self

OUTPUT:

An instance of CubicHeckeMatrixRep, which is inherited from Matrix_generic_dense. In the case of the irreducible representations the matrix is given as a block matrix. Each single irreducible can be obtained as item indexed by the members of the enum AbsIrreducibeRep available via CubicHeckeAlgebra.irred_repr. For details type: CubicHeckeAlgebra.irred_repr?.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: CHA3.inject_variables()
Defining c0, c1
sage: c0m = c0.matrix()
sage: c0m[CHA3.irred_repr.W3_111]
[                      -b - a + u     0    0]
[(-2*a + u)*b - 2*a^2 + 2*u*a - v     b    0]
[                               b     1    a]

using the the representation_type option:

sage: CHA3.<c0, c1> = algebras.CubicHecke(3)     #  optional gap3
sage: chevie = CHA3.repr_type.SplitIrredChevie   #  optional gap3
sage: c0m_ch = c0.matrix(representation_type=chevie) #  optional gap3
sage: c0m_ch[CHA3.irred_repr.W3_011]             #  optional gap3
[         b          0]
[        -b -b - a + u]
sage: c0m[CHA3.irred_repr.W3_011]
[            b             0]
[a^2 - u*a + v    -b - a + u]

using the the original option:

sage: c0mo = c0.matrix(original=True)
sage: c0mo_ch = c0.matrix(representation_type=chevie, original=True) #  optional gap3
sage: c0mo[CHA3.irred_repr.W3_011]
[  b   0]
[b*c   c]
sage: c0mo_ch[CHA3.irred_repr.W3_011]            #  optional gap3
[ b  0]
[-b  c]

specialized matrices:

sage: t = (3,7,11)
sage: CHA4 = algebras.CubicHecke(4, cubic_equation_roots=t)  # optional database_cubic_hecke
sage: e = CHA4.an_element(); e                     # optional database_cubic_hecke
-231*c0*c1^-1 + 131*c0*c2^-1 + 21*c2*c1 - 1440/11
sage: em = e.matrix()                              # optional database_cubic_hecke
sage: em.base_ring()                               # optional database_cubic_hecke
Splitting Algebra of T^2 + T + 1 with roots [E3, -E3 - 1]
   over Integer Ring localized at (3, 7, 11)
sage: em.dimensions()                              # optional database_cubic_hecke
(108, 108)
sage: em_irr24 = em[23]                            # optional database_cubic_hecke
sage: em_irr24.dimensions()                        # optional database_cubic_hecke
(9, 9)
sage: em_irr24[3,2]                                # optional database_cubic_hecke
-131*E3 - 393/7
sage: emg = e.matrix(representation_type=chevie)   # optional gap3 database_cubic_hecke
sage: emg_irr24 = emg[23]                          # optional gap3 database_cubic_hecke
sage: emg_irr24[3,2]                               # optional gap3 database_cubic_hecke
-131*E3 - 393/7
max_len()#

Return the maximum of the length of Tietze expressions among the support of self.

EXAMPLES:

sage: CHA3 = algebras.CubicHecke(3)
sage: ele = CHA3.an_element(); ele
(-w)*c0*c1^-1 + v*c0 + u*c1 + ((-v*w+u)/w)
sage: ele.max_len()
2
revert_garside()#

Return the image of self under the Garside involution.

EXAMPLES:

sage: roots = (E(3), ~E(3), 1)
sage: CHA3.<c1, c2> = algebras.CubicHecke(3, cubic_equation_roots=roots)
sage: e = CHA3.an_element(); e
-c1*c2^-1
sage: _.revert_garside()
-c2*c1^-1
sage: _.revert_garside()
-c1*c2^-1
revert_mirror()#

Return the image of self under the mirror isomorphism.

EXAMPLES:

sage: CHA3.<c1, c2> = algebras.CubicHecke(3)
sage: e = CHA3.an_element()
sage: e.revert_mirror()
-1/w*c0^-1*c1 + u/w*c0^-1 + v/w*c1^-1 + ((v*w-u)/w)
sage: _.revert_mirror() == e
True
revert_orientation()#

Return the image of self under the anti involution reverting the orientation of braids.

EXAMPLES:

sage: CHA3.<c1, c2> = algebras.CubicHecke(3)
sage: e = CHA3.an_element()
sage: e.revert_orientation()
(-w)*c2^-1*c1 + v*c1 + u*c2 + ((-v*w+u)/w)
sage: _.revert_orientation() == e
True