Verma Modules#

AUTHORS:

  • Travis Scrimshaw (2017-06-30): Initial version

Todo

Implement a sage.categories.pushout.ConstructionFunctor and return as the construction().

class sage.algebras.lie_algebras.verma_module.VermaModule(g, weight, basis_key=None, prefix='f', **kwds)#

Bases: sage.combinat.free_module.CombinatorialFreeModule

A Verma module.

Let \(\lambda\) be a weight and \(\mathfrak{g}\) be a Kac–Moody Lie algebra with a fixed Borel subalgebra \(\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{g}^+\). The Verma module \(M_{\lambda}\) is a \(U(\mathfrak{g})\)-module given by

\[M_{\lambda} := U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} F_{\lambda},\]

where \(F_{\lambda}\) is the \(U(\mathfrak{b})\) module such that \(h \in U(\mathfrak{h})\) acts as multiplication by \(\langle \lambda, h \rangle\) and \(U\mathfrak{g}^+) F_{\lambda} = 0\).

INPUT:

  • g – a Lie algebra

  • weight – a weight

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 3)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(2*La[1] + 3*La[2])
sage: pbw = M.pbw_basis()
sage: E1,E2,F1,F2,H1,H2 = [pbw(g) for g in L.gens()]
sage: v = M.highest_weight_vector()
sage: x = F2^3 * F1 * v
sage: x
f[-alpha[2]]^3*f[-alpha[1]]*v[2*Lambda[1] + 3*Lambda[2]]
sage: F1 * x
f[-alpha[2]]^3*f[-alpha[1]]^2*v[2*Lambda[1] + 3*Lambda[2]]
 + 3*f[-alpha[2]]^2*f[-alpha[1]]*f[-alpha[1] - alpha[2]]*v[2*Lambda[1] + 3*Lambda[2]]
sage: E1 * x
2*f[-alpha[2]]^3*v[2*Lambda[1] + 3*Lambda[2]]
sage: H1 * x
3*f[-alpha[2]]^3*f[-alpha[1]]*v[2*Lambda[1] + 3*Lambda[2]]
sage: H2 * x
-2*f[-alpha[2]]^3*f[-alpha[1]]*v[2*Lambda[1] + 3*Lambda[2]]

REFERENCES:

class Element#

Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

degree_on_basis(m)#

Return the degree (or weight) of the basis element indexed by m.

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 3)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(2*La[1] + 3*La[2])
sage: v = M.highest_weight_vector()
sage: M.degree_on_basis(v.leading_support())
2*Lambda[1] + 3*Lambda[2]

sage: pbw = M.pbw_basis()
sage: G = list(pbw.gens())
sage: f1, f2 = L.f()
sage: x = pbw(f1.bracket(f2)) * pbw(f1) * v
sage: x.degree()
-Lambda[1] + 3*Lambda[2]
gens()#

Return the generators of self as a \(U(\mathfrak{g})\)-module.

EXAMPLES:

sage: L = lie_algebras.sp(QQ, 6)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(La[1] - 3*La[2])
sage: M.gens()
(v[Lambda[1] - 3*Lambda[2]],)
highest_weight()#

Return the highest weight of self.

EXAMPLES:

sage: L = lie_algebras.so(QQ, 7)
sage: La = L.cartan_type().root_system().weight_space().fundamental_weights()
sage: M = L.verma_module(4*La[1] - 3/2*La[2])
sage: M.highest_weight()
4*Lambda[1] - 3/2*Lambda[2]
highest_weight_vector()#

Return the highest weight vector of self.

EXAMPLES:

sage: L = lie_algebras.sp(QQ, 6)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(La[1] - 3*La[2])
sage: M.highest_weight_vector()
v[Lambda[1] - 3*Lambda[2]]
homogeneous_component_basis(d)#

Return a basis for the d-th homogeneous component of self.

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 3)
sage: P = L.cartan_type().root_system().weight_lattice()
sage: La = P.fundamental_weights()
sage: al = P.simple_roots()
sage: mu = 2*La[1] + 3*La[2]
sage: M = L.verma_module(mu)
sage: M.homogeneous_component_basis(mu - al[2])
[f[-alpha[2]]*v[2*Lambda[1] + 3*Lambda[2]]]
sage: M.homogeneous_component_basis(mu - 3*al[2])
[f[-alpha[2]]^3*v[2*Lambda[1] + 3*Lambda[2]]]
sage: M.homogeneous_component_basis(mu - 3*al[2] - 2*al[1])
[f[-alpha[2]]*f[-alpha[1] - alpha[2]]^2*v[2*Lambda[1] + 3*Lambda[2]],
 f[-alpha[2]]^2*f[-alpha[1]]*f[-alpha[1] - alpha[2]]*v[2*Lambda[1] + 3*Lambda[2]],
 f[-alpha[2]]^3*f[-alpha[1]]^2*v[2*Lambda[1] + 3*Lambda[2]]]
sage: M.homogeneous_component_basis(mu - La[1])
Family ()
is_singular()#

Return if self is a singular Verma module.

A Verma module \(M_{\lambda}\) is singular if there does not exist a dominant weight \(\tilde{\lambda}\) that is in the dot orbit of \(\lambda\). We call a Verma module regular otherwise.

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 3)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(La[1] + La[2])
sage: M.is_singular()
False
sage: M = L.verma_module(La[1] - La[2])
sage: M.is_singular()
True
sage: M = L.verma_module(2*La[1] - 10*La[2])
sage: M.is_singular()
False
sage: M = L.verma_module(-2*La[1] - 2*La[2])
sage: M.is_singular()
False
sage: M = L.verma_module(-4*La[1] - La[2])
sage: M.is_singular()
True
lie_algebra()#

Return the underlying Lie algebra of self.

EXAMPLES:

sage: L = lie_algebras.so(QQ, 9)
sage: La = L.cartan_type().root_system().weight_space().fundamental_weights()
sage: M = L.verma_module(La[3] - 1/2*La[1])
sage: M.lie_algebra()
Lie algebra of ['B', 4] in the Chevalley basis
pbw_basis()#

Return the PBW basis of the underlying Lie algebra used to define self.

EXAMPLES:

sage: L = lie_algebras.so(QQ, 8)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(La[2] - 2*La[3])
sage: M.pbw_basis()
Universal enveloping algebra of Lie algebra of ['D', 4] in the Chevalley basis
 in the Poincare-Birkhoff-Witt basis
poincare_birkhoff_witt_basis()#

Return the PBW basis of the underlying Lie algebra used to define self.

EXAMPLES:

sage: L = lie_algebras.so(QQ, 8)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(La[2] - 2*La[3])
sage: M.pbw_basis()
Universal enveloping algebra of Lie algebra of ['D', 4] in the Chevalley basis
 in the Poincare-Birkhoff-Witt basis
class sage.algebras.lie_algebras.verma_module.VermaModuleHomset(X, Y, category=None, base=None, check=True)#

Bases: sage.categories.homset.Homset

The set of morphisms from one Verma module to another considered as \(U(\mathfrak{g})\)-representations.

Let \(M_{w \cdot \lambda}\) and \(M_{w' \cdot \lambda'}\) be Verma modules, \(\cdot\) is the dot action, and \(\lambda + \rho\), \(\lambda' + \rho\) are dominant weights. Then we have

\[\dim \hom(M_{w \cdot \lambda}, M_{w' \cdot \lambda'}) = 1\]

if and only if \(\lambda = \lambda'\) and \(w' \leq w\) in Bruhat order. Otherwise the homset is 0 dimensional.

Element#

alias of VermaModuleMorphism

basis()#

Return a basis of self.

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 3)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(La[1] + La[2])
sage: Mp = L.verma_module(M.highest_weight().dot_action([2]))
sage: H = Hom(Mp, M)
sage: list(H.basis()) == [H.natural_map()]
True

sage: Mp = L.verma_module(La[1] + 2*La[2])
sage: H = Hom(Mp, M)
sage: H.basis()
Family ()
dimension()#

Return the dimension of self (as a vector space over the base ring).

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 3)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(La[1] + La[2])
sage: Mp = L.verma_module(M.highest_weight().dot_action([2]))
sage: H = Hom(Mp, M)
sage: H.dimension()
1

sage: Mp = L.verma_module(La[1] + 2*La[2])
sage: H = Hom(Mp, M)
sage: H.dimension()
0
natural_map()#

Return the “natural map” of self.

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 3)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(La[1] + La[2])
sage: Mp = L.verma_module(M.highest_weight().dot_action([2]))
sage: H = Hom(Mp, M)
sage: H.natural_map()
Verma module morphism:
  From: Verma module with highest weight 3*Lambda[1] - 3*Lambda[2]
         of Lie algebra of ['A', 2] in the Chevalley basis
  To:   Verma module with highest weight Lambda[1] + Lambda[2]
         of Lie algebra of ['A', 2] in the Chevalley basis
  Defn: v[3*Lambda[1] - 3*Lambda[2]] |-->
         f[-alpha[2]]^2*v[Lambda[1] + Lambda[2]]

sage: Mp = L.verma_module(La[1] + 2*La[2])
sage: H = Hom(Mp, M)
sage: H.natural_map()
Verma module morphism:
  From: Verma module with highest weight Lambda[1] + 2*Lambda[2]
         of Lie algebra of ['A', 2] in the Chevalley basis
  To:   Verma module with highest weight Lambda[1] + Lambda[2]
         of Lie algebra of ['A', 2] in the Chevalley basis
  Defn: v[Lambda[1] + 2*Lambda[2]] |--> 0
singular_vector()#

Return the singular vector in the codomain corresponding to the domain’s highest weight element or None if no such element exists.

ALGORITHM:

We essentially follow the algorithm laid out in [deG2005]. We use the \(\mathfrak{sl}_2\) relation on \(M_{s_i \cdot \lambda} \to M_{\lambda}\), where \(\langle \lambda + \delta, \alpha_i^{\vee} \rangle = m > 0\), i.e., the weight \(\lambda\) is \(i\)-dominant with respect to the dot action. From here, we construct the singular vector \(f_i^m v_{\lambda}\). We iterate this until we reach \(\mu\).

EXAMPLES:

sage: L = lie_algebras.sp(QQ, 6)
sage: La = L.cartan_type().root_system().weight_space().fundamental_weights()
sage: la = La[1] - La[3]
sage: mu = la.dot_action([1,2])
sage: M = L.verma_module(la)
sage: Mp = L.verma_module(mu)
sage: H = Hom(Mp, M)
sage: H.singular_vector()
f[-alpha[2]]*f[-alpha[1]]^3*v[Lambda[1] - Lambda[3]]
 + 3*f[-alpha[1]]^2*f[-alpha[1] - alpha[2]]*v[Lambda[1] - Lambda[3]]
sage: L = LieAlgebra(QQ, cartan_type=['F',4])
sage: La = L.cartan_type().root_system().weight_space().fundamental_weights()
sage: la = La[1] + La[2] - La[3]
sage: mu = la.dot_action([1,2,3,2])
sage: M = L.verma_module(la)
sage: Mp = L.verma_module(mu)
sage: H = Hom(Mp, M)
sage: v = H.singular_vector()
sage: pbw = M.pbw_basis()
sage: E = [pbw(e) for e in L.e()]
sage: all(e * v == M.zero() for e in E)
True

When \(w \cdot \lambda \notin \lambda + Q^-\), there does not exist a singular vector:

sage: L = lie_algebras.sl(QQ, 4)
sage: La = L.cartan_type().root_system().weight_space().fundamental_weights()
sage: la = 3/7*La[1] - 1/2*La[3]
sage: mu = la.dot_action([1,2])
sage: M = L.verma_module(la)
sage: Mp = L.verma_module(mu)
sage: H = Hom(Mp, M)
sage: H.singular_vector() is None
True
zero()#

Return the zero morphism of self.

EXAMPLES:

sage: L = lie_algebras.sp(QQ, 6)
sage: La = L.cartan_type().root_system().weight_space().fundamental_weights()
sage: M = L.verma_module(La[1] + 2/3*La[2])
sage: Mp = L.verma_module(La[2] - La[3])
sage: H = Hom(Mp, M)
sage: H.zero()
Verma module morphism:
  From: Verma module with highest weight Lambda[2] - Lambda[3]
         of Lie algebra of ['C', 3] in the Chevalley basis
  To:   Verma module with highest weight Lambda[1] + 2/3*Lambda[2]
         of Lie algebra of ['C', 3] in the Chevalley basis
  Defn: v[Lambda[2] - Lambda[3]] |--> 0
class sage.algebras.lie_algebras.verma_module.VermaModuleMorphism(parent, scalar)#

Bases: sage.categories.morphism.Morphism

A morphism of Verma modules.

is_injective()#

Return if self is injective or not.

A Verma module morphism \(\phi : M \to M'\) is injective if and only if \(\dim \hom(M, M') = 1\) and \(\phi \neq 0\).

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 3)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(La[1] + La[2])
sage: Mp = L.verma_module(M.highest_weight().dot_action([1,2]))
sage: Mpp = L.verma_module(M.highest_weight().dot_action([1,2]) + La[1])
sage: phi = Hom(Mp, M).natural_map()
sage: phi.is_injective()
True
sage: (0 * phi).is_injective()
False
sage: psi = Hom(Mpp, Mp).natural_map()
sage: psi.is_injective()
False
is_surjective()#

Return if self is surjective or not.

A Verma module morphism is surjective if and only if the domain is equal to the codomain and it is not the zero morphism.

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 3)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: M = L.verma_module(La[1] + La[2])
sage: Mp = L.verma_module(M.highest_weight().dot_action([1,2]))
sage: phi = Hom(M, M).natural_map()
sage: phi.is_surjective()
True
sage: (0 * phi).is_surjective()
False
sage: psi = Hom(Mp, M).natural_map()
sage: psi.is_surjective()
False