Incidence Algebras#
- class sage.combinat.posets.incidence_algebras.IncidenceAlgebra(R, P, prefix='I')#
Bases:
sage.combinat.free_module.CombinatorialFreeModule
The incidence algebra of a poset.
Let \(P\) be a poset and \(R\) be a commutative unital associative ring. The incidence algebra \(I_P\) is the algebra of functions \(\alpha \colon P \times P \to R\) such that \(\alpha(x, y) = 0\) if \(x \not\leq y\) where multiplication is given by convolution:
\[(\alpha \ast \beta)(x, y) = \sum_{x \leq k \leq y} \alpha(x, k) \beta(k, y).\]This has a natural basis given by indicator functions for the interval \([a, b]\), i.e. \(X_{a,b}(x,y) = \delta_{ax} \delta_{by}\). The incidence algebra is a unital algebra with the identity given by the Kronecker delta \(\delta(x, y) = \delta_{xy}\). The Möbius function of \(P\) is another element of \(I_p\) whose inverse is the \(\zeta\) function of the poset (so \(\zeta(x, y) = 1\) for every interval \([x, y]\)).
Todo
Implement the incidence coalgebra.
REFERENCES:
- class Element#
Bases:
sage.modules.with_basis.indexed_element.IndexedFreeModuleElement
An element of an incidence algebra.
- is_unit()#
Return if
self
is a unit.EXAMPLES:
sage: P = posets.BooleanLattice(2) sage: I = P.incidence_algebra(QQ) sage: mu = I.moebius() sage: mu.is_unit() True sage: zeta = I.zeta() sage: zeta.is_unit() True sage: x = mu - I.zeta() + I[2,2] sage: x.is_unit() False sage: y = I.moebius() + I.zeta() sage: y.is_unit() True
This depends on the base ring:
sage: I = P.incidence_algebra(ZZ) sage: y = I.moebius() + I.zeta() sage: y.is_unit() False
- to_matrix()#
Return
self
as a matrix.We define a matrix \(M_{xy} = \alpha(x, y)\) for some element \(\alpha \in I_P\) in the incidence algebra \(I_P\) and we order the elements \(x,y \in P\) by some linear extension of \(P\). This defines an algebra (iso)morphism; in particular, multiplication in the incidence algebra goes to matrix multiplication.
EXAMPLES:
sage: P = posets.BooleanLattice(2) sage: I = P.incidence_algebra(QQ) sage: I.moebius().to_matrix() [ 1 -1 -1 1] [ 0 1 0 -1] [ 0 0 1 -1] [ 0 0 0 1] sage: I.zeta().to_matrix() [1 1 1 1] [0 1 0 1] [0 0 1 1] [0 0 0 1]
- delta()#
Return the element \(1\) in
self
(which is the Kronecker delta \(\delta(x, y)\)).EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: I = P.incidence_algebra(QQ) sage: I.one() I[0, 0] + I[1, 1] + I[2, 2] + I[3, 3] + I[4, 4] + I[5, 5] + I[6, 6] + I[7, 7] + I[8, 8] + I[9, 9] + I[10, 10] + I[11, 11] + I[12, 12] + I[13, 13] + I[14, 14] + I[15, 15]
- moebius()#
Return the Möbius function of
self
.EXAMPLES:
sage: P = posets.BooleanLattice(2) sage: I = P.incidence_algebra(QQ) sage: I.moebius() I[0, 0] - I[0, 1] - I[0, 2] + I[0, 3] + I[1, 1] - I[1, 3] + I[2, 2] - I[2, 3] + I[3, 3]
- one()#
Return the element \(1\) in
self
(which is the Kronecker delta \(\delta(x, y)\)).EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: I = P.incidence_algebra(QQ) sage: I.one() I[0, 0] + I[1, 1] + I[2, 2] + I[3, 3] + I[4, 4] + I[5, 5] + I[6, 6] + I[7, 7] + I[8, 8] + I[9, 9] + I[10, 10] + I[11, 11] + I[12, 12] + I[13, 13] + I[14, 14] + I[15, 15]
- poset()#
Return the defining poset of
self
.EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: I = P.incidence_algebra(QQ) sage: I.poset() Finite lattice containing 16 elements sage: I.poset() == P True
- product_on_basis(A, B)#
Return the product of basis elements indexed by
A
andB
.EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: I = P.incidence_algebra(QQ) sage: I.product_on_basis((1, 3), (3, 11)) I[1, 11] sage: I.product_on_basis((1, 3), (2, 2)) 0
- reduced_subalgebra(prefix='R')#
Return the reduced incidence subalgebra.
EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: I = P.incidence_algebra(QQ) sage: I.reduced_subalgebra() Reduced incidence algebra of Finite lattice containing 16 elements over Rational Field
- some_elements()#
Return a list of elements of
self
.EXAMPLES:
sage: P = posets.BooleanLattice(1) sage: I = P.incidence_algebra(QQ) sage: Ielts = I.some_elements(); Ielts # random [2*I[0, 0] + 2*I[0, 1] + 3*I[1, 1], I[0, 0] - I[0, 1] + I[1, 1], I[0, 0] + I[0, 1] + I[1, 1]] sage: [a in I for a in Ielts] [True, True, True]
- zeta()#
Return the \(\zeta\) function in
self
.The \(\zeta\) function on a poset \(P\) is given by
\[\begin{split}\zeta(x, y) = \begin{cases} 1 & x \leq y, \\ 0 & x \not\leq y. \end{cases}\end{split}\]EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: I = P.incidence_algebra(QQ) sage: I.zeta() * I.moebius() == I.one() True
- class sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra(I, prefix='R')#
Bases:
sage.combinat.free_module.CombinatorialFreeModule
The reduced incidence algebra of a poset.
The reduced incidence algebra \(R_P\) is a subalgebra of the incidence algebra \(I_P\) where \(\alpha(x, y) = \alpha(x', y')\) when \([x, y]\) is isomorphic to \([x', y']\) as posets. Thus the delta, Möbius, and zeta functions are all elements of \(R_P\).
- class Element#
Bases:
sage.modules.with_basis.indexed_element.IndexedFreeModuleElement
An element of a reduced incidence algebra.
- is_unit()#
Return if
self
is a unit.EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: R = P.incidence_algebra(QQ).reduced_subalgebra() sage: x = R.an_element() sage: x.is_unit() True
- lift()#
Return the lift of
self
to the ambient space.EXAMPLES:
sage: P = posets.BooleanLattice(2) sage: I = P.incidence_algebra(QQ) sage: R = I.reduced_subalgebra() sage: x = R.an_element(); x 2*R[(0, 0)] + 2*R[(0, 1)] + 3*R[(0, 3)] sage: x.lift() 2*I[0, 0] + 2*I[0, 1] + 2*I[0, 2] + 3*I[0, 3] + 2*I[1, 1] + 2*I[1, 3] + 2*I[2, 2] + 2*I[2, 3] + 2*I[3, 3]
- to_matrix()#
Return
self
as a matrix.EXAMPLES:
sage: P = posets.BooleanLattice(2) sage: R = P.incidence_algebra(QQ).reduced_subalgebra() sage: mu = R.moebius() sage: mu.to_matrix() [ 1 -1 -1 1] [ 0 1 0 -1] [ 0 0 1 -1] [ 0 0 0 1]
- delta()#
Return the Kronecker delta function in
self
.EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: R = P.incidence_algebra(QQ).reduced_subalgebra() sage: R.delta() R[(0, 0)]
- lift()#
Return the lift morphism from
self
to the ambient space.EXAMPLES:
sage: P = posets.BooleanLattice(2) sage: R = P.incidence_algebra(QQ).reduced_subalgebra() sage: R.lift Generic morphism: From: Reduced incidence algebra of Finite lattice containing 4 elements over Rational Field To: Incidence algebra of Finite lattice containing 4 elements over Rational Field sage: R.an_element() - R.one() R[(0, 0)] + 2*R[(0, 1)] + 3*R[(0, 3)] sage: R.lift(R.an_element() - R.one()) I[0, 0] + 2*I[0, 1] + 2*I[0, 2] + 3*I[0, 3] + I[1, 1] + 2*I[1, 3] + I[2, 2] + 2*I[2, 3] + I[3, 3]
- moebius()#
Return the Möbius function of
self
.EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: R = P.incidence_algebra(QQ).reduced_subalgebra() sage: R.moebius() R[(0, 0)] - R[(0, 1)] + R[(0, 3)] - R[(0, 7)] + R[(0, 15)]
- one_basis()#
Return the index of the element \(1\) in
self
.EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: R = P.incidence_algebra(QQ).reduced_subalgebra() sage: R.one_basis() (0, 0)
- poset()#
Return the defining poset of
self
.EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: R = P.incidence_algebra(QQ).reduced_subalgebra() sage: R.poset() Finite lattice containing 16 elements sage: R.poset() == P True
- some_elements()#
Return a list of elements of
self
.EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: R = P.incidence_algebra(QQ).reduced_subalgebra() sage: R.some_elements() [2*R[(0, 0)] + 2*R[(0, 1)] + 3*R[(0, 3)], R[(0, 0)] - R[(0, 1)] + R[(0, 3)] - R[(0, 7)] + R[(0, 15)], R[(0, 0)] + R[(0, 1)] + R[(0, 3)] + R[(0, 7)] + R[(0, 15)]]
- zeta()#
Return the \(\zeta\) function in
self
.The \(\zeta\) function on a poset \(P\) is given by
\[\begin{split}\zeta(x, y) = \begin{cases} 1 & x \leq y, \\ 0 & x \not\leq y. \end{cases}\end{split}\]EXAMPLES:
sage: P = posets.BooleanLattice(4) sage: R = P.incidence_algebra(QQ).reduced_subalgebra() sage: R.zeta() R[(0, 0)] + R[(0, 1)] + R[(0, 3)] + R[(0, 7)] + R[(0, 15)]