Continuous Maps Between Topological Manifolds#
ContinuousMap
implements continuous maps from a topological
manifold \(M\) to some topological manifold \(N\) over the same topological
field \(K\) as \(M\).
AUTHORS:
Eric Gourgoulhon, Michal Bejger (2013-2015): initial version
Travis Scrimshaw (2016): review tweaks
REFERENCES:
- class sage.manifolds.continuous_map.ContinuousMap(parent, coord_functions=None, name=None, latex_name=None, is_isomorphism=False, is_identity=False)#
Bases:
sage.categories.morphism.Morphism
Continuous map between two topological manifolds.
This class implements continuous maps of the type
\[\Phi: M \longrightarrow N,\]where \(M\) and \(N\) are topological manifolds over the same topological field \(K\).
Continuous maps are the morphisms of the category of topological manifolds. The set of all continuous maps from \(M\) to \(N\) is therefore the homset between \(M\) and \(N\), which is denoted by \(\mathrm{Hom}(M,N)\).
The class
ContinuousMap
is a Sage element class, whose parent class isTopologicalManifoldHomset
.INPUT:
parent
– homset \(\mathrm{Hom}(M,N)\) to which the continuous map belongscoord_functions
– a dictionary of the coordinate expressions (as lists or tuples of the coordinates of the image expressed in terms of the coordinates of the considered point) with the pairs of charts(chart1, chart2)
as keys (chart1
being a chart on \(M\) andchart2
a chart on \(N\))name
– (default:None
) name given toself
latex_name
– (default:None
) LaTeX symbol to denote the continuous map; ifNone
, the LaTeX symbol is set toname
is_isomorphism
– (default:False
) determines whether the constructed object is a isomorphism (i.e. a homeomorphism); if set toTrue
, then the manifolds \(M\) and \(N\) must have the same dimensionis_identity
– (default:False
) determines whether the constructed object is the identity map; if set toTrue
, then \(N\) must be \(M\) and the entrycoord_functions
is not used
Note
If the information passed by means of the argument
coord_functions
is not sufficient to fully specify the continuous map, further coordinate expressions, in other charts, can be subsequently added by means of the methodadd_expr()
.EXAMPLES:
The standard embedding of the sphere \(S^2\) into \(\RR^3\):
sage: M = Manifold(2, 'S^2', structure='topological') # the 2-dimensional sphere S^2 sage: U = M.open_subset('U') # complement of the North pole sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole sage: V = M.open_subset('V') # complement of the South pole sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole sage: M.declare_union(U,V) # S^2 is the union of U and V sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)), ....: intersection_name='W', ....: restrictions1=x^2+y^2!=0, ....: restrictions2=u^2+v^2!=0) sage: uv_to_xy = xy_to_uv.inverse() sage: N = Manifold(3, 'R^3', latex_name=r'\RR^3', structure='topological') # R^3 sage: c_cart.<X,Y,Z> = N.chart() # Cartesian coordinates on R^3 sage: Phi = M.continuous_map(N, ....: {(c_xy, c_cart): [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)], ....: (c_uv, c_cart): [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^2)]}, ....: name='Phi', latex_name=r'\Phi') sage: Phi Continuous map Phi from the 2-dimensional topological manifold S^2 to the 3-dimensional topological manifold R^3 sage: Phi.parent() Set of Morphisms from 2-dimensional topological manifold S^2 to 3-dimensional topological manifold R^3 in Category of manifolds over Real Field with 53 bits of precision sage: Phi.parent() is Hom(M, N) True sage: type(Phi) <class 'sage.manifolds.manifold_homset.TopologicalManifoldHomset_with_category.element_class'> sage: Phi.display() Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1)) on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
It is possible to create the map using
continuous_map()
with only in a single pair of charts. The argumentcoord_functions
is then a mere list of coordinate expressions (and not a dictionary) and the argumentschart1
andchart2
have to be provided if the charts differ from the default ones on the domain and/or codomain:sage: Phi1 = M.continuous_map(N, [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)], ....: chart1=c_xy, chart2=c_cart, ....: name='Phi', latex_name=r'\Phi')
Since
c_xy
andc_cart
are the default charts on respectivelyM
andN
, they can be omitted, so that the above declaration is equivalent to:sage: Phi1 = M.continuous_map(N, [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)], ....: name='Phi', latex_name=r'\Phi')
With such a declaration, the continuous map
Phi1
is only partially defined on the manifold \(S^2\) as it is known in only one chart:sage: Phi1.display() Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
The definition can be completed by using
add_expr()
:sage: Phi1.add_expr(c_uv, c_cart, [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^2)]) sage: Phi1.display() Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1)) on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
At this stage,
Phi1
andPhi
are fully equivalent:sage: Phi1 == Phi True
The map acts on points:
sage: np = M.point((0,0), chart=c_uv) # the North pole sage: Phi(np) Point on the 3-dimensional topological manifold R^3 sage: Phi(np).coord() # Cartesian coordinates (0, 0, 1) sage: sp = M.point((0,0), chart=c_xy) # the South pole sage: Phi(sp).coord() # Cartesian coordinates (0, 0, -1)
The test suite is passed:
sage: TestSuite(Phi).run() sage: TestSuite(Phi1).run()
Continuous maps can be composed by means of the operator
*
. Let us introduce the map \(\RR^3 \to \RR^2\) corresponding to the projection from the point \((X, Y, Z) = (0, 0, 1)\) onto the equatorial plane \(Z = 0\):sage: P = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological') # R^2 (equatorial plane) sage: cP.<xP, yP> = P.chart() sage: Psi = N.continuous_map(P, (X/(1-Z), Y/(1-Z)), name='Psi', ....: latex_name=r'\Psi') sage: Psi Continuous map Psi from the 3-dimensional topological manifold R^3 to the 2-dimensional topological manifold R^2 sage: Psi.display() Psi: R^3 → R^2 (X, Y, Z) ↦ (xP, yP) = (-X/(Z - 1), -Y/(Z - 1))
Then we compose
Psi
withPhi
, thereby getting a map \(S^2 \to \RR^2\):sage: ster = Psi * Phi ; ster Continuous map from the 2-dimensional topological manifold S^2 to the 2-dimensional topological manifold R^2
Let us test on the South pole (
sp
) thatster
is indeed the composite ofPsi
andPhi
:sage: ster(sp) == Psi(Phi(sp)) True
Actually
ster
is the stereographic projection from the North pole, as its coordinate expression reveals:sage: ster.display() S^2 → R^2 on U: (x, y) ↦ (xP, yP) = (x, y) on V: (u, v) ↦ (xP, yP) = (u/(u^2 + v^2), v/(u^2 + v^2))
If the codomain of a continuous map is 1-dimensional, the map can be defined by a single symbolic expression for each pair of charts and not by a list/tuple with a single element:
sage: N = Manifold(1, 'N', structure='topological') sage: c_N = N.chart('X') sage: Phi = M.continuous_map(N, {(c_xy, c_N): x^2+y^2, ....: (c_uv, c_N): 1/(u^2+v^2)}) sage: Psi = M.continuous_map(N, {(c_xy, c_N): [x^2+y^2], ....: (c_uv, c_N): [1/(u^2+v^2)]}) sage: Phi == Psi True
Next we construct an example of continuous map \(\RR \to \RR^2\):
sage: R = Manifold(1, 'R', structure='topological') # field R sage: T.<t> = R.chart() # canonical chart on R sage: R2 = Manifold(2, 'R^2', structure='topological') # R^2 sage: c_xy.<x,y> = R2.chart() # Cartesian coordinates on R^2 sage: Phi = R.continuous_map(R2, [cos(t), sin(t)], name='Phi'); Phi Continuous map Phi from the 1-dimensional topological manifold R to the 2-dimensional topological manifold R^2 sage: Phi.parent() Set of Morphisms from 1-dimensional topological manifold R to 2-dimensional topological manifold R^2 in Category of manifolds over Real Field with 53 bits of precision sage: Phi.parent() is Hom(R, R2) True sage: Phi.display() Phi: R → R^2 t ↦ (x, y) = (cos(t), sin(t))
An example of homeomorphism between the unit open disk and the Euclidean plane \(\RR^2\):
sage: D = R2.open_subset('D', coord_def={c_xy: x^2+y^2<1}) # the open unit disk sage: Phi = D.homeomorphism(R2, [x/sqrt(1-x^2-y^2), y/sqrt(1-x^2-y^2)], ....: name='Phi', latex_name=r'\Phi') sage: Phi Homeomorphism Phi from the Open subset D of the 2-dimensional topological manifold R^2 to the 2-dimensional topological manifold R^2 sage: Phi.parent() Set of Morphisms from Open subset D of the 2-dimensional topological manifold R^2 to 2-dimensional topological manifold R^2 in Category of manifolds over Real Field with 53 bits of precision sage: Phi.parent() is Hom(D, R2) True sage: Phi.display() Phi: D → R^2 (x, y) ↦ (x, y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))
The image of a point:
sage: p = D.point((1/2,0)) sage: q = Phi(p) ; q Point on the 2-dimensional topological manifold R^2 sage: q.coord() (1/3*sqrt(3), 0)
The inverse homeomorphism is computed by
inverse()
:sage: Phi.inverse() Homeomorphism Phi^(-1) from the 2-dimensional topological manifold R^2 to the Open subset D of the 2-dimensional topological manifold R^2 sage: Phi.inverse().display() Phi^(-1): R^2 → D (x, y) ↦ (x, y) = (x/sqrt(x^2 + y^2 + 1), y/sqrt(x^2 + y^2 + 1))
Equivalently, one may use the notations
^(-1)
or~
to get the inverse:sage: Phi^(-1) is Phi.inverse() True sage: ~Phi is Phi.inverse() True
Check that
~Phi
is indeed the inverse ofPhi
:sage: (~Phi)(q) == p True sage: Phi * ~Phi == R2.identity_map() True sage: ~Phi * Phi == D.identity_map() True
The coordinate expression of the inverse homeomorphism:
sage: (~Phi).display() Phi^(-1): R^2 → D (x, y) ↦ (x, y) = (x/sqrt(x^2 + y^2 + 1), y/sqrt(x^2 + y^2 + 1))
A special case of homeomorphism: the identity map of the open unit disk:
sage: id = D.identity_map() ; id Identity map Id_D of the Open subset D of the 2-dimensional topological manifold R^2 sage: latex(id) \mathrm{Id}_{D} sage: id.parent() Set of Morphisms from Open subset D of the 2-dimensional topological manifold R^2 to Open subset D of the 2-dimensional topological manifold R^2 in Join of Category of subobjects of sets and Category of manifolds over Real Field with 53 bits of precision sage: id.parent() is Hom(D, D) True sage: id is Hom(D,D).one() # the identity element of the monoid Hom(D,D) True
The identity map acting on a point:
sage: id(p) Point on the 2-dimensional topological manifold R^2 sage: id(p) == p True sage: id(p) is p True
The coordinate expression of the identity map:
sage: id.display() Id_D: D → D (x, y) ↦ (x, y)
The identity map is its own inverse:
sage: id^(-1) is id True sage: ~id is id True
- add_expr(chart1, chart2, coord_functions)#
Set a new coordinate representation of
self
.The previous expressions with respect to other charts are kept. To clear them, use
set_expr()
instead.INPUT:
chart1
– chart for the coordinates on the map’s domainchart2
– chart for the coordinates on the map’s codomaincoord_functions
– the coordinate symbolic expression of the map in the above charts: list (or tuple) of the coordinates of the image expressed in terms of the coordinates of the considered point; if the dimension of the arrival manifold is 1, a single coordinate expression can be passed instead of a tuple with a single element
Warning
If the map has already expressions in other charts, it is the user’s responsibility to make sure that the expression to be added is consistent with them.
EXAMPLES:
Polar representation of a planar rotation initially defined in Cartesian coordinates:
sage: M = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological') # the Euclidean plane R^2 sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2 sage: U = M.open_subset('U', coord_def={c_xy: (y!=0, x<0)}) # the complement of the segment y=0 and x>0 sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U sage: c_spher.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # spherical coordinates on U
We construct the links between spherical coordinates and Cartesian ones:
sage: ch_cart_spher = c_cart.transition_map(c_spher, [sqrt(x*x+y*y), atan2(y,x)]) sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph)) Check of the inverse coordinate transformation: x == x *passed* y == y *passed* r == r *passed* ph == arctan2(r*sin(ph), r*cos(ph)) **failed** NB: a failed report can reflect a mere lack of simplification. sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2), ....: name='R') sage: rot.display(c_cart, c_cart) R: U → U (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
If we calculate the expression in terms of spherical coordinates, via the method
display()
, we notice some difficulties inarctan2
simplifications:sage: rot.display(c_spher, c_spher) R: U → U (r, ph) ↦ (r, arctan2(1/2*(sqrt(3)*cos(ph) + sin(ph))*r, -1/2*(sqrt(3)*sin(ph) - cos(ph))*r))
Therefore, we use the method
add_expr()
to set the spherical-coordinate expression by hand:sage: rot.add_expr(c_spher, c_spher, (r, ph+pi/3)) sage: rot.display(c_spher, c_spher) R: U → U (r, ph) ↦ (r, 1/3*pi + ph)
The call to
add_expr()
has not deleted the expression in terms of Cartesian coordinates, as we can check by printing the internal dictionary_coord_expression
, which stores the various internal representations of the continuous map:sage: rot._coord_expression # random (dictionary output) {(Chart (U, (x, y)), Chart (U, (x, y))): Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y) on the Chart (U, (x, y)), (Chart (U, (r, ph)), Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
If, on the contrary, we use
set_expr()
, the expression in Cartesian coordinates is lost:sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3)) sage: rot._coord_expression {(Chart (U, (r, ph)), Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
It is recovered (thanks to the known change of coordinates) by a call to
display()
:sage: rot.display(c_cart, c_cart) R: U → U (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y) sage: rot._coord_expression # random (dictionary output) {(Chart (U, (x, y)), Chart (U, (x, y))): Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y) on the Chart (U, (x, y)), (Chart (U, (r, ph)), Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
The rotation can be applied to a point by means of either coordinate system:
sage: p = M.point((1,2)) # p defined by its Cartesian coord. sage: q = rot(p) # q is computed by means of Cartesian coord. sage: p1 = M.point((sqrt(5), arctan(2)), chart=c_spher) # p1 is defined only in terms of c_spher sage: q1 = rot(p1) # computation by means of spherical coordinates sage: q1 == q True
- add_expression(chart1, chart2, coord_functions)#
Set a new coordinate representation of
self
.The previous expressions with respect to other charts are kept. To clear them, use
set_expr()
instead.INPUT:
chart1
– chart for the coordinates on the map’s domainchart2
– chart for the coordinates on the map’s codomaincoord_functions
– the coordinate symbolic expression of the map in the above charts: list (or tuple) of the coordinates of the image expressed in terms of the coordinates of the considered point; if the dimension of the arrival manifold is 1, a single coordinate expression can be passed instead of a tuple with a single element
Warning
If the map has already expressions in other charts, it is the user’s responsibility to make sure that the expression to be added is consistent with them.
EXAMPLES:
Polar representation of a planar rotation initially defined in Cartesian coordinates:
sage: M = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological') # the Euclidean plane R^2 sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2 sage: U = M.open_subset('U', coord_def={c_xy: (y!=0, x<0)}) # the complement of the segment y=0 and x>0 sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U sage: c_spher.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # spherical coordinates on U
We construct the links between spherical coordinates and Cartesian ones:
sage: ch_cart_spher = c_cart.transition_map(c_spher, [sqrt(x*x+y*y), atan2(y,x)]) sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph)) Check of the inverse coordinate transformation: x == x *passed* y == y *passed* r == r *passed* ph == arctan2(r*sin(ph), r*cos(ph)) **failed** NB: a failed report can reflect a mere lack of simplification. sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2), ....: name='R') sage: rot.display(c_cart, c_cart) R: U → U (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
If we calculate the expression in terms of spherical coordinates, via the method
display()
, we notice some difficulties inarctan2
simplifications:sage: rot.display(c_spher, c_spher) R: U → U (r, ph) ↦ (r, arctan2(1/2*(sqrt(3)*cos(ph) + sin(ph))*r, -1/2*(sqrt(3)*sin(ph) - cos(ph))*r))
Therefore, we use the method
add_expr()
to set the spherical-coordinate expression by hand:sage: rot.add_expr(c_spher, c_spher, (r, ph+pi/3)) sage: rot.display(c_spher, c_spher) R: U → U (r, ph) ↦ (r, 1/3*pi + ph)
The call to
add_expr()
has not deleted the expression in terms of Cartesian coordinates, as we can check by printing the internal dictionary_coord_expression
, which stores the various internal representations of the continuous map:sage: rot._coord_expression # random (dictionary output) {(Chart (U, (x, y)), Chart (U, (x, y))): Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y) on the Chart (U, (x, y)), (Chart (U, (r, ph)), Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
If, on the contrary, we use
set_expr()
, the expression in Cartesian coordinates is lost:sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3)) sage: rot._coord_expression {(Chart (U, (r, ph)), Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
It is recovered (thanks to the known change of coordinates) by a call to
display()
:sage: rot.display(c_cart, c_cart) R: U → U (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y) sage: rot._coord_expression # random (dictionary output) {(Chart (U, (x, y)), Chart (U, (x, y))): Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y) on the Chart (U, (x, y)), (Chart (U, (r, ph)), Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
The rotation can be applied to a point by means of either coordinate system:
sage: p = M.point((1,2)) # p defined by its Cartesian coord. sage: q = rot(p) # q is computed by means of Cartesian coord. sage: p1 = M.point((sqrt(5), arctan(2)), chart=c_spher) # p1 is defined only in terms of c_spher sage: q1 = rot(p1) # computation by means of spherical coordinates sage: q1 == q True
- coord_functions(chart1=None, chart2=None)#
Return the functions of the coordinates representing
self
in a given pair of charts.If these functions are not already known, they are computed from known ones by means of change-of-chart formulas.
INPUT:
chart1
– (default:None
) chart on the domain ofself
; ifNone
, the domain’s default chart is assumedchart2
– (default:None
) chart on the codomain ofself
; ifNone
, the codomain’s default chart is assumed
OUTPUT:
a
MultiCoordFunction
representing the continuous map in the above two charts
EXAMPLES:
Continuous map from a 2-dimensional manifold to a 3-dimensional one:
sage: M = Manifold(2, 'M', structure='topological') sage: N = Manifold(3, 'N', structure='topological') sage: c_uv.<u,v> = M.chart() sage: c_xyz.<x,y,z> = N.chart() sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name='Phi', ....: latex_name=r'\Phi') sage: Phi.display() Phi: M → N (u, v) ↦ (x, y, z) = (u*v, u/v, u + v) sage: Phi.coord_functions(c_uv, c_xyz) Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v)) sage: Phi.coord_functions() # equivalent to above since 'uv' and 'xyz' are default charts Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v)) sage: type(Phi.coord_functions()) <class 'sage.manifolds.chart_func.MultiCoordFunction'>
Coordinate representation in other charts:
sage: c_UV.<U,V> = M.chart() # new chart on M sage: ch_uv_UV = c_uv.transition_map(c_UV, [u-v, u+v]) sage: ch_uv_UV.inverse()(U,V) (1/2*U + 1/2*V, -1/2*U + 1/2*V) sage: c_XYZ.<X,Y,Z> = N.chart() # new chart on N sage: ch_xyz_XYZ = c_xyz.transition_map(c_XYZ, ....: [2*x-3*y+z, y+z-x, -x+2*y-z]) sage: ch_xyz_XYZ.inverse()(X,Y,Z) (3*X + Y + 4*Z, 2*X + Y + 3*Z, X + Y + Z) sage: Phi.coord_functions(c_UV, c_xyz) Coordinate functions (-1/4*U^2 + 1/4*V^2, -(U + V)/(U - V), V) on the Chart (M, (U, V)) sage: Phi.coord_functions(c_uv, c_XYZ) Coordinate functions (((2*u + 1)*v^2 + u*v - 3*u)/v, -((u - 1)*v^2 - u*v - u)/v, -((u + 1)*v^2 + u*v - 2*u)/v) on the Chart (M, (u, v)) sage: Phi.coord_functions(c_UV, c_XYZ) Coordinate functions (-1/2*(U^3 - (U - 2)*V^2 + V^3 - (U^2 + 2*U + 6)*V - 6*U)/(U - V), 1/4*(U^3 - (U + 4)*V^2 + V^3 - (U^2 - 4*U + 4)*V - 4*U)/(U - V), 1/4*(U^3 - (U - 4)*V^2 + V^3 - (U^2 + 4*U + 8)*V - 8*U)/(U - V)) on the Chart (M, (U, V))
Coordinate representation with respect to a subchart in the domain:
sage: A = M.open_subset('A', coord_def={c_uv: u>0}) sage: Phi.coord_functions(c_uv.restrict(A), c_xyz) Coordinate functions (u*v, u/v, u + v) on the Chart (A, (u, v))
Coordinate representation with respect to a superchart in the codomain:
sage: B = N.open_subset('B', coord_def={c_xyz: x<0}) sage: c_xyz_B = c_xyz.restrict(B) sage: Phi1 = M.continuous_map(B, {(c_uv, c_xyz_B): (u*v, u/v, u+v)}) sage: Phi1.coord_functions(c_uv, c_xyz_B) # definition charts Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v)) sage: Phi1.coord_functions(c_uv, c_xyz) # c_xyz = superchart of c_xyz_B Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v))
Coordinate representation with respect to a pair
(subchart, superchart)
:sage: Phi1.coord_functions(c_uv.restrict(A), c_xyz) Coordinate functions (u*v, u/v, u + v) on the Chart (A, (u, v))
Same example with SymPy as the symbolic calculus engine:
sage: M.set_calculus_method('sympy') sage: N.set_calculus_method('sympy') sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name='Phi', ....: latex_name=r'\Phi') sage: Phi.coord_functions(c_uv, c_xyz) Coordinate functions (u*v, u/v, u + v) on the Chart (M, (u, v)) sage: Phi.coord_functions(c_UV, c_xyz) Coordinate functions (-U**2/4 + V**2/4, (-U - V)/(U - V), V) on the Chart (M, (U, V)) sage: Phi.coord_functions(c_UV, c_XYZ) Coordinate functions ((-U**3 + U**2*V + U*V**2 + 2*U*V + 6*U - V**3 - 2*V**2 + 6*V)/(2*(U - V)), (U**3/4 - U**2*V/4 - U*V**2/4 + U*V - U + V**3/4 - V**2 - V)/(U - V), (U**3 - U**2*V - U*V**2 - 4*U*V - 8*U + V**3 + 4*V**2 - 8*V)/(4*(U - V))) on the Chart (M, (U, V))
- disp(chart1=None, chart2=None)#
Display the expression of
self
in one or more pair of charts.If the expression is not known already, it is computed from some expression in other charts by means of change-of-coordinate formulas.
INPUT:
chart1
– (default:None
) chart on the domain ofself
; ifNone
, the display is performed on all the charts on the domain in which the map is known or computable via some change of coordinateschart2
– (default:None
) chart on the codomain ofself
; ifNone
, the display is performed on all the charts on the codomain in which the map is known or computable via some change of coordinates
The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).
EXAMPLES:
A simple reparamentrization:
sage: R.<t> = manifolds.RealLine() sage: I = R.open_interval(0, 2*pi) sage: J = R.open_interval(2*pi, 6*pi) sage: h = J.continuous_map(I, ((t-2*pi)/2,), name='h') sage: h.display() h: (2*pi, 6*pi) → (0, 2*pi) t ↦ t = -pi + 1/2*t sage: latex(h.display()) \begin{array}{llcl} h:& \left(2 \, \pi, 6 \, \pi\right) & \longrightarrow & \left(0, 2 \, \pi\right) \\ & t & \longmapsto & t = -\pi + \frac{1}{2} \, t \end{array}
Standard embedding of the sphere \(S^2\) in \(\RR^3\):
sage: M = Manifold(2, 'S^2', structure='topological') # the 2-dimensional sphere S^2 sage: U = M.open_subset('U') # complement of the North pole sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole sage: V = M.open_subset('V') # complement of the South pole sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole sage: M.declare_union(U,V) # S^2 is the union of U and V sage: N = Manifold(3, 'R^3', latex_name=r'\RR^3', structure='topological') # R^3 sage: c_cart.<X,Y,Z> = N.chart() # Cartesian coordinates on R^3 sage: Phi = M.continuous_map(N, ....: {(c_xy, c_cart): [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)], ....: (c_uv, c_cart): [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^2)]}, ....: name='Phi', latex_name=r'\Phi') sage: Phi.display(c_xy, c_cart) Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1)) sage: Phi.display(c_uv, c_cart) Phi: S^2 → R^3 on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
The LaTeX output of that embedding is:
sage: latex(Phi.display(c_xy, c_cart)) \begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3 \\ \mbox{on}\ U : & \left(x, y\right) & \longmapsto & \left(X, Y, Z\right) = \left(\frac{2 \, x}{x^{2} + y^{2} + 1}, \frac{2 \, y}{x^{2} + y^{2} + 1}, \frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right) \end{array}
If the argument
chart2
is not specified, the display is performed on all the charts on the codomain in which the map is known or computable via some change of coordinates (here only one chart:c_cart
):sage: Phi.display(c_xy) Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
Similarly, if the argument
chart1
is omitted, the display is performed on all the charts on the domain ofPhi
in which the map is known or computable via some change of coordinates:sage: Phi.display(chart2=c_cart) Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1)) on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
If neither
chart1
norchart2
is specified, the display is performed on all the pair of charts in whichPhi
is known or computable via some change of coordinates:sage: Phi.display() Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1)) on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
If a chart covers entirely the map’s domain, the mention “on …” is omitted:
sage: Phi.restrict(U).display() Phi: U → R^3 (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
A shortcut of
display()
isdisp()
:sage: Phi.disp() Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1)) on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
Display when SymPy is the symbolic engine:
sage: M.set_calculus_method('sympy') sage: N.set_calculus_method('sympy') sage: Phi.display(c_xy, c_cart) Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x**2 + y**2 + 1), 2*y/(x**2 + y**2 + 1), (x**2 + y**2 - 1)/(x**2 + y**2 + 1)) sage: latex(Phi.display(c_xy, c_cart)) \begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3 \\ \mbox{on}\ U : & \left(x, y\right) & \longmapsto & \left(X, Y, Z\right) = \left(\frac{2 x}{x^{2} + y^{2} + 1}, \frac{2 y}{x^{2} + y^{2} + 1}, \frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right) \end{array}
- display(chart1=None, chart2=None)#
Display the expression of
self
in one or more pair of charts.If the expression is not known already, it is computed from some expression in other charts by means of change-of-coordinate formulas.
INPUT:
chart1
– (default:None
) chart on the domain ofself
; ifNone
, the display is performed on all the charts on the domain in which the map is known or computable via some change of coordinateschart2
– (default:None
) chart on the codomain ofself
; ifNone
, the display is performed on all the charts on the codomain in which the map is known or computable via some change of coordinates
The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).
EXAMPLES:
A simple reparamentrization:
sage: R.<t> = manifolds.RealLine() sage: I = R.open_interval(0, 2*pi) sage: J = R.open_interval(2*pi, 6*pi) sage: h = J.continuous_map(I, ((t-2*pi)/2,), name='h') sage: h.display() h: (2*pi, 6*pi) → (0, 2*pi) t ↦ t = -pi + 1/2*t sage: latex(h.display()) \begin{array}{llcl} h:& \left(2 \, \pi, 6 \, \pi\right) & \longrightarrow & \left(0, 2 \, \pi\right) \\ & t & \longmapsto & t = -\pi + \frac{1}{2} \, t \end{array}
Standard embedding of the sphere \(S^2\) in \(\RR^3\):
sage: M = Manifold(2, 'S^2', structure='topological') # the 2-dimensional sphere S^2 sage: U = M.open_subset('U') # complement of the North pole sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole sage: V = M.open_subset('V') # complement of the South pole sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole sage: M.declare_union(U,V) # S^2 is the union of U and V sage: N = Manifold(3, 'R^3', latex_name=r'\RR^3', structure='topological') # R^3 sage: c_cart.<X,Y,Z> = N.chart() # Cartesian coordinates on R^3 sage: Phi = M.continuous_map(N, ....: {(c_xy, c_cart): [2*x/(1+x^2+y^2), 2*y/(1+x^2+y^2), (x^2+y^2-1)/(1+x^2+y^2)], ....: (c_uv, c_cart): [2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (1-u^2-v^2)/(1+u^2+v^2)]}, ....: name='Phi', latex_name=r'\Phi') sage: Phi.display(c_xy, c_cart) Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1)) sage: Phi.display(c_uv, c_cart) Phi: S^2 → R^3 on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
The LaTeX output of that embedding is:
sage: latex(Phi.display(c_xy, c_cart)) \begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3 \\ \mbox{on}\ U : & \left(x, y\right) & \longmapsto & \left(X, Y, Z\right) = \left(\frac{2 \, x}{x^{2} + y^{2} + 1}, \frac{2 \, y}{x^{2} + y^{2} + 1}, \frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right) \end{array}
If the argument
chart2
is not specified, the display is performed on all the charts on the codomain in which the map is known or computable via some change of coordinates (here only one chart:c_cart
):sage: Phi.display(c_xy) Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
Similarly, if the argument
chart1
is omitted, the display is performed on all the charts on the domain ofPhi
in which the map is known or computable via some change of coordinates:sage: Phi.display(chart2=c_cart) Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1)) on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
If neither
chart1
norchart2
is specified, the display is performed on all the pair of charts in whichPhi
is known or computable via some change of coordinates:sage: Phi.display() Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1)) on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
If a chart covers entirely the map’s domain, the mention “on …” is omitted:
sage: Phi.restrict(U).display() Phi: U → R^3 (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
A shortcut of
display()
isdisp()
:sage: Phi.disp() Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1)) on V: (u, v) ↦ (X, Y, Z) = (2*u/(u^2 + v^2 + 1), 2*v/(u^2 + v^2 + 1), -(u^2 + v^2 - 1)/(u^2 + v^2 + 1))
Display when SymPy is the symbolic engine:
sage: M.set_calculus_method('sympy') sage: N.set_calculus_method('sympy') sage: Phi.display(c_xy, c_cart) Phi: S^2 → R^3 on U: (x, y) ↦ (X, Y, Z) = (2*x/(x**2 + y**2 + 1), 2*y/(x**2 + y**2 + 1), (x**2 + y**2 - 1)/(x**2 + y**2 + 1)) sage: latex(Phi.display(c_xy, c_cart)) \begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3 \\ \mbox{on}\ U : & \left(x, y\right) & \longmapsto & \left(X, Y, Z\right) = \left(\frac{2 x}{x^{2} + y^{2} + 1}, \frac{2 y}{x^{2} + y^{2} + 1}, \frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right) \end{array}
- expr(chart1=None, chart2=None)#
Return the expression of
self
in terms of specified coordinates.If the expression is not already known, it is computed from some known expression by means of change-of-chart formulas.
INPUT:
chart1
– (default:None
) chart on the map’s domain; ifNone
, the domain’s default chart is assumedchart2
– (default:None
) chart on the map’s codomain; ifNone
, the codomain’s default chart is assumed
OUTPUT:
symbolic expression representing the continuous map in the above two charts
EXAMPLES:
Continuous map from a 2-dimensional manifold to a 3-dimensional one:
sage: M = Manifold(2, 'M', structure='topological') sage: N = Manifold(3, 'N', structure='topological') sage: c_uv.<u,v> = M.chart() sage: c_xyz.<x,y,z> = N.chart() sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name='Phi', ....: latex_name=r'\Phi') sage: Phi.display() Phi: M → N (u, v) ↦ (x, y, z) = (u*v, u/v, u + v) sage: Phi.expr(c_uv, c_xyz) (u*v, u/v, u + v) sage: Phi.expr() # equivalent to above since 'uv' and 'xyz' are default charts (u*v, u/v, u + v) sage: type(Phi.expr()[0]) <class 'sage.symbolic.expression.Expression'>
Expressions in other charts:
sage: c_UV.<U,V> = M.chart() # new chart on M sage: ch_uv_UV = c_uv.transition_map(c_UV, [u-v, u+v]) sage: ch_uv_UV.inverse()(U,V) (1/2*U + 1/2*V, -1/2*U + 1/2*V) sage: c_XYZ.<X,Y,Z> = N.chart() # new chart on N sage: ch_xyz_XYZ = c_xyz.transition_map(c_XYZ, ....: [2*x-3*y+z, y+z-x, -x+2*y-z]) sage: ch_xyz_XYZ.inverse()(X,Y,Z) (3*X + Y + 4*Z, 2*X + Y + 3*Z, X + Y + Z) sage: Phi.expr(c_UV, c_xyz) (-1/4*U^2 + 1/4*V^2, -(U + V)/(U - V), V) sage: Phi.expr(c_uv, c_XYZ) (((2*u + 1)*v^2 + u*v - 3*u)/v, -((u - 1)*v^2 - u*v - u)/v, -((u + 1)*v^2 + u*v - 2*u)/v) sage: Phi.expr(c_UV, c_XYZ) (-1/2*(U^3 - (U - 2)*V^2 + V^3 - (U^2 + 2*U + 6)*V - 6*U)/(U - V), 1/4*(U^3 - (U + 4)*V^2 + V^3 - (U^2 - 4*U + 4)*V - 4*U)/(U - V), 1/4*(U^3 - (U - 4)*V^2 + V^3 - (U^2 + 4*U + 8)*V - 8*U)/(U - V))
A rotation in some Euclidean plane:
sage: M = Manifold(2, 'M', structure='topological') # the plane (minus a segment to have global regular spherical coordinates) sage: c_spher.<r,ph> = M.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # spherical coordinates on the plane sage: rot = M.continuous_map(M, (r, ph+pi/3), name='R') # pi/3 rotation around r=0 sage: rot.expr() (r, 1/3*pi + ph)
Expression of the rotation in terms of Cartesian coordinates:
sage: c_cart.<x,y> = M.chart() # Declaration of Cartesian coordinates sage: ch_spher_cart = c_spher.transition_map(c_cart, ....: [r*cos(ph), r*sin(ph)]) # relation to spherical coordinates sage: ch_spher_cart.set_inverse(sqrt(x^2+y^2), atan2(y,x)) Check of the inverse coordinate transformation: r == r *passed* ph == arctan2(r*sin(ph), r*cos(ph)) **failed** x == x *passed* y == y *passed* NB: a failed report can reflect a mere lack of simplification. sage: rot.expr(c_cart, c_cart) (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
- expression(chart1=None, chart2=None)#
Return the expression of
self
in terms of specified coordinates.If the expression is not already known, it is computed from some known expression by means of change-of-chart formulas.
INPUT:
chart1
– (default:None
) chart on the map’s domain; ifNone
, the domain’s default chart is assumedchart2
– (default:None
) chart on the map’s codomain; ifNone
, the codomain’s default chart is assumed
OUTPUT:
symbolic expression representing the continuous map in the above two charts
EXAMPLES:
Continuous map from a 2-dimensional manifold to a 3-dimensional one:
sage: M = Manifold(2, 'M', structure='topological') sage: N = Manifold(3, 'N', structure='topological') sage: c_uv.<u,v> = M.chart() sage: c_xyz.<x,y,z> = N.chart() sage: Phi = M.continuous_map(N, (u*v, u/v, u+v), name='Phi', ....: latex_name=r'\Phi') sage: Phi.display() Phi: M → N (u, v) ↦ (x, y, z) = (u*v, u/v, u + v) sage: Phi.expr(c_uv, c_xyz) (u*v, u/v, u + v) sage: Phi.expr() # equivalent to above since 'uv' and 'xyz' are default charts (u*v, u/v, u + v) sage: type(Phi.expr()[0]) <class 'sage.symbolic.expression.Expression'>
Expressions in other charts:
sage: c_UV.<U,V> = M.chart() # new chart on M sage: ch_uv_UV = c_uv.transition_map(c_UV, [u-v, u+v]) sage: ch_uv_UV.inverse()(U,V) (1/2*U + 1/2*V, -1/2*U + 1/2*V) sage: c_XYZ.<X,Y,Z> = N.chart() # new chart on N sage: ch_xyz_XYZ = c_xyz.transition_map(c_XYZ, ....: [2*x-3*y+z, y+z-x, -x+2*y-z]) sage: ch_xyz_XYZ.inverse()(X,Y,Z) (3*X + Y + 4*Z, 2*X + Y + 3*Z, X + Y + Z) sage: Phi.expr(c_UV, c_xyz) (-1/4*U^2 + 1/4*V^2, -(U + V)/(U - V), V) sage: Phi.expr(c_uv, c_XYZ) (((2*u + 1)*v^2 + u*v - 3*u)/v, -((u - 1)*v^2 - u*v - u)/v, -((u + 1)*v^2 + u*v - 2*u)/v) sage: Phi.expr(c_UV, c_XYZ) (-1/2*(U^3 - (U - 2)*V^2 + V^3 - (U^2 + 2*U + 6)*V - 6*U)/(U - V), 1/4*(U^3 - (U + 4)*V^2 + V^3 - (U^2 - 4*U + 4)*V - 4*U)/(U - V), 1/4*(U^3 - (U - 4)*V^2 + V^3 - (U^2 + 4*U + 8)*V - 8*U)/(U - V))
A rotation in some Euclidean plane:
sage: M = Manifold(2, 'M', structure='topological') # the plane (minus a segment to have global regular spherical coordinates) sage: c_spher.<r,ph> = M.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # spherical coordinates on the plane sage: rot = M.continuous_map(M, (r, ph+pi/3), name='R') # pi/3 rotation around r=0 sage: rot.expr() (r, 1/3*pi + ph)
Expression of the rotation in terms of Cartesian coordinates:
sage: c_cart.<x,y> = M.chart() # Declaration of Cartesian coordinates sage: ch_spher_cart = c_spher.transition_map(c_cart, ....: [r*cos(ph), r*sin(ph)]) # relation to spherical coordinates sage: ch_spher_cart.set_inverse(sqrt(x^2+y^2), atan2(y,x)) Check of the inverse coordinate transformation: r == r *passed* ph == arctan2(r*sin(ph), r*cos(ph)) **failed** x == x *passed* y == y *passed* NB: a failed report can reflect a mere lack of simplification. sage: rot.expr(c_cart, c_cart) (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
- image(subset=None, inverse=None)#
Return the image of
self
or the image ofsubset
underself
.INPUT:
inverse
– (default:None
) continuous map frommap.codomain()
tomap.domain()
, which once restricted to the image of \(\Phi\) is the inverse of \(\Phi\) onto its image if the latter exists (NB: no check of this is performed)subset
– (default: the domain ofmap
) a subset of the domain ofself
EXAMPLES:
sage: M = Manifold(2, 'M', structure="topological") sage: N = Manifold(1, 'N', ambient=M, structure="topological") sage: CM.<x,y> = M.chart() sage: CN.<u> = N.chart(coord_restrictions=lambda u: [u > -1, u < 1]) sage: Phi = N.continuous_map(M, {(CN,CM): [u, u^2]}, name='Phi') sage: Phi.image() Image of the Continuous map Phi from the 1-dimensional topological submanifold N immersed in the 2-dimensional topological manifold M to the 2-dimensional topological manifold M sage: S = N.subset('S') sage: Phi_S = Phi.image(S); Phi_S Image of the Subset S of the 1-dimensional topological submanifold N immersed in the 2-dimensional topological manifold M under the Continuous map Phi from the 1-dimensional topological submanifold N immersed in the 2-dimensional topological manifold M to the 2-dimensional topological manifold M sage: Phi_S.is_subset(M) True
- inverse()#
Return the inverse of
self
if it is an isomorphism.OUTPUT:
the inverse isomorphism
EXAMPLES:
The inverse of a rotation in the Euclidean plane:
sage: M = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological') sage: c_cart.<x,y> = M.chart()
A pi/3 rotation around the origin:
sage: rot = M.homeomorphism(M, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2), ....: name='R') sage: rot.inverse() Homeomorphism R^(-1) of the 2-dimensional topological manifold R^2 sage: rot.inverse().display() R^(-1): R^2 → R^2 (x, y) ↦ (1/2*sqrt(3)*y + 1/2*x, -1/2*sqrt(3)*x + 1/2*y)
Checking that applying successively the homeomorphism and its inverse results in the identity:
sage: (a, b) = var('a b') sage: p = M.point((a,b)) # a generic point on M sage: q = rot(p) sage: p1 = rot.inverse()(q) sage: p1 == p True
The result is cached:
sage: rot.inverse() is rot.inverse() True
The notations
^(-1)
or~
can also be used for the inverse:sage: rot^(-1) is rot.inverse() True sage: ~rot is rot.inverse() True
An example with multiple charts: the equatorial symmetry on the 2-sphere:
sage: M = Manifold(2, 'M', structure='topological') # the 2-dimensional sphere S^2 sage: U = M.open_subset('U') # complement of the North pole sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole sage: V = M.open_subset('V') # complement of the South pole sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole sage: M.declare_union(U,V) # S^2 is the union of U and V sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)), ....: intersection_name='W', ....: restrictions1=x^2+y^2!=0, ....: restrictions2=u^2+v^2!=0) sage: uv_to_xy = xy_to_uv.inverse() sage: s = M.homeomorphism(M, {(c_xy, c_uv): [x, y], (c_uv, c_xy): [u, v]}, ....: name='s') sage: s.display() s: M → M on U: (x, y) ↦ (u, v) = (x, y) on V: (u, v) ↦ (x, y) = (u, v) sage: si = s.inverse(); si Homeomorphism s^(-1) of the 2-dimensional topological manifold M sage: si.display() s^(-1): M → M on U: (x, y) ↦ (u, v) = (x, y) on V: (u, v) ↦ (x, y) = (u, v)
The equatorial symmetry is of course an involution:
sage: si == s True
- is_identity()#
Check whether
self
is an identity map.EXAMPLES:
Tests on continuous maps of a 2-dimensional manifold:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: M.identity_map().is_identity() # obviously... True sage: Hom(M, M).one().is_identity() # a variant of the obvious True sage: a = M.continuous_map(M, coord_functions={(X,X): (x, y)}) sage: a.is_identity() True sage: a = M.continuous_map(M, coord_functions={(X,X): (x, y+1)}) sage: a.is_identity() False
Of course, if the codomain of the map does not coincide with its domain, the outcome is
False
:sage: N = Manifold(2, 'N', structure='topological') sage: Y.<u,v> = N.chart() sage: a = M.continuous_map(N, {(X,Y): (x, y)}) sage: a.display() M → N (x, y) ↦ (u, v) = (x, y) sage: a.is_identity() False
- preimage(codomain_subset, name=None, latex_name=None)#
Return the preimage of
codomain_subset
underself
.An alias is
pullback()
.INPUT:
codomain_subset
– an instance ofManifoldSubset
name
– string; name (symbol) given to the subsetlatex_name
– (default:None
) string; LaTeX symbol to denote the subset; if none are provided, it is set toname
OUTPUT:
either a
TopologicalManifold
or aManifoldSubsetPullback
EXAMPLES:
sage: R = Manifold(1, 'R', structure='topological') # field R sage: T.<t> = R.chart() # canonical chart on R sage: R2 = Manifold(2, 'R^2', structure='topological') # R^2 sage: c_xy.<x,y> = R2.chart() # Cartesian coordinates on R^2 sage: Phi = R.continuous_map(R2, [cos(t), sin(t)], name='Phi'); Phi Continuous map Phi from the 1-dimensional topological manifold R to the 2-dimensional topological manifold R^2 sage: Q1 = R2.open_subset('Q1', coord_def={c_xy: [x>0, y>0]}); Q1 Open subset Q1 of the 2-dimensional topological manifold R^2 sage: Phi_inv_Q1 = Phi.preimage(Q1); Phi_inv_Q1 Subset Phi_inv_Q1 of the 1-dimensional topological manifold R sage: R.point([pi/4]) in Phi_inv_Q1 True sage: R.point([0]) in Phi_inv_Q1 False sage: R.point([3*pi/4]) in Phi_inv_Q1 False
The identity map is handled specially:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: M.identity_map().preimage(M) 2-dimensional topological manifold M sage: M.identity_map().preimage(M) is M True
Another trivial case:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: D1 = M.open_subset('D1', coord_def={X: x^2+y^2<1}) # the open unit disk sage: D2 = M.open_subset('D2', coord_def={X: x^2+y^2<4}) sage: f = Hom(D1,D2)({(X.restrict(D1), X.restrict(D2)): (2*x, 2*y)}, name='f') sage: f.preimage(D2) Open subset D1 of the 2-dimensional topological manifold M sage: f.preimage(M) Open subset D1 of the 2-dimensional topological manifold M
- pullback(codomain_subset, name=None, latex_name=None)#
Return the preimage of
codomain_subset
underself
.An alias is
pullback()
.INPUT:
codomain_subset
– an instance ofManifoldSubset
name
– string; name (symbol) given to the subsetlatex_name
– (default:None
) string; LaTeX symbol to denote the subset; if none are provided, it is set toname
OUTPUT:
either a
TopologicalManifold
or aManifoldSubsetPullback
EXAMPLES:
sage: R = Manifold(1, 'R', structure='topological') # field R sage: T.<t> = R.chart() # canonical chart on R sage: R2 = Manifold(2, 'R^2', structure='topological') # R^2 sage: c_xy.<x,y> = R2.chart() # Cartesian coordinates on R^2 sage: Phi = R.continuous_map(R2, [cos(t), sin(t)], name='Phi'); Phi Continuous map Phi from the 1-dimensional topological manifold R to the 2-dimensional topological manifold R^2 sage: Q1 = R2.open_subset('Q1', coord_def={c_xy: [x>0, y>0]}); Q1 Open subset Q1 of the 2-dimensional topological manifold R^2 sage: Phi_inv_Q1 = Phi.preimage(Q1); Phi_inv_Q1 Subset Phi_inv_Q1 of the 1-dimensional topological manifold R sage: R.point([pi/4]) in Phi_inv_Q1 True sage: R.point([0]) in Phi_inv_Q1 False sage: R.point([3*pi/4]) in Phi_inv_Q1 False
The identity map is handled specially:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: M.identity_map().preimage(M) 2-dimensional topological manifold M sage: M.identity_map().preimage(M) is M True
Another trivial case:
sage: M = Manifold(2, 'M', structure='topological') sage: X.<x,y> = M.chart() sage: D1 = M.open_subset('D1', coord_def={X: x^2+y^2<1}) # the open unit disk sage: D2 = M.open_subset('D2', coord_def={X: x^2+y^2<4}) sage: f = Hom(D1,D2)({(X.restrict(D1), X.restrict(D2)): (2*x, 2*y)}, name='f') sage: f.preimage(D2) Open subset D1 of the 2-dimensional topological manifold M sage: f.preimage(M) Open subset D1 of the 2-dimensional topological manifold M
- restrict(subdomain, subcodomain=None)#
Restriction of
self
to some open subset of its domain of definition.INPUT:
subdomain
–TopologicalManifold
; an open subset of the domain ofself
subcodomain
– (default:None
) an open subset of the codomain ofself
; ifNone
, the codomain ofself
is assumed
OUTPUT:
a
ContinuousMap
that is the restriction ofself
tosubdomain
EXAMPLES:
Restriction to an annulus of a homeomorphism between the open unit disk and \(\RR^2\):
sage: M = Manifold(2, 'R^2', structure='topological') # R^2 sage: c_xy.<x,y> = M.chart() # Cartesian coord. on R^2 sage: D = M.open_subset('D', coord_def={c_xy: x^2+y^2<1}) # the open unit disk sage: Phi = D.continuous_map(M, [x/sqrt(1-x^2-y^2), y/sqrt(1-x^2-y^2)], ....: name='Phi', latex_name=r'\Phi') sage: Phi.display() Phi: D → R^2 (x, y) ↦ (x, y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1)) sage: c_xy_D = c_xy.restrict(D) sage: U = D.open_subset('U', coord_def={c_xy_D: x^2+y^2>1/2}) # the annulus 1/2 < r < 1 sage: Phi.restrict(U) Continuous map Phi from the Open subset U of the 2-dimensional topological manifold R^2 to the 2-dimensional topological manifold R^2 sage: Phi.restrict(U).parent() Set of Morphisms from Open subset U of the 2-dimensional topological manifold R^2 to 2-dimensional topological manifold R^2 in Category of manifolds over Real Field with 53 bits of precision sage: Phi.domain() Open subset D of the 2-dimensional topological manifold R^2 sage: Phi.restrict(U).domain() Open subset U of the 2-dimensional topological manifold R^2 sage: Phi.restrict(U).display() Phi: U → R^2 (x, y) ↦ (x, y) = (x/sqrt(-x^2 - y^2 + 1), y/sqrt(-x^2 - y^2 + 1))
The result is cached:
sage: Phi.restrict(U) is Phi.restrict(U) True
The restriction of the identity map:
sage: id = D.identity_map() ; id Identity map Id_D of the Open subset D of the 2-dimensional topological manifold R^2 sage: id.restrict(U) Identity map Id_U of the Open subset U of the 2-dimensional topological manifold R^2 sage: id.restrict(U) is U.identity_map() True
The codomain can be restricted (i.e. made tighter):
sage: Phi = D.continuous_map(M, [x/sqrt(1+x^2+y^2), y/sqrt(1+x^2+y^2)]) sage: Phi Continuous map from the Open subset D of the 2-dimensional topological manifold R^2 to the 2-dimensional topological manifold R^2 sage: Phi.restrict(D, subcodomain=D) Continuous map from the Open subset D of the 2-dimensional topological manifold R^2 to itself
- set_expr(chart1, chart2, coord_functions)#
Set a new coordinate representation of
self
.The expressions with respect to other charts are deleted, in order to avoid any inconsistency. To keep them, use
add_expr()
instead.INPUT:
chart1
– chart for the coordinates on the domain ofself
chart2
– chart for the coordinates on the codomain ofself
coord_functions
– the coordinate symbolic expression of the map in the above charts: list (or tuple) of the coordinates of the image expressed in terms of the coordinates of the considered point; if the dimension of the arrival manifold is 1, a single coordinate expression can be passed instead of a tuple with a single element
EXAMPLES:
Polar representation of a planar rotation initially defined in Cartesian coordinates:
sage: M = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological') # the Euclidean plane R^2 sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2 sage: U = M.open_subset('U', coord_def={c_xy: (y!=0, x<0)}) # the complement of the segment y=0 and x>0 sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U sage: c_spher.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # spherical coordinates on U
Links between spherical coordinates and Cartesian ones:
sage: ch_cart_spher = c_cart.transition_map(c_spher, ....: [sqrt(x*x+y*y), atan2(y,x)]) sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph)) Check of the inverse coordinate transformation: x == x *passed* y == y *passed* r == r *passed* ph == arctan2(r*sin(ph), r*cos(ph)) **failed** NB: a failed report can reflect a mere lack of simplification. sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2), ....: name='R') sage: rot.display(c_cart, c_cart) R: U → U (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
Let us use the method
set_expr()
to set the spherical-coordinate expression by hand:sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3)) sage: rot.display(c_spher, c_spher) R: U → U (r, ph) ↦ (r, 1/3*pi + ph)
The expression in Cartesian coordinates has been erased:
sage: rot._coord_expression {(Chart (U, (r, ph)), Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
It is recovered (thanks to the known change of coordinates) by a call to
display()
:sage: rot.display(c_cart, c_cart) R: U → U (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y) sage: rot._coord_expression # random (dictionary output) {(Chart (U, (x, y)), Chart (U, (x, y))): Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y) on the Chart (U, (x, y)), (Chart (U, (r, ph)), Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
- set_expression(chart1, chart2, coord_functions)#
Set a new coordinate representation of
self
.The expressions with respect to other charts are deleted, in order to avoid any inconsistency. To keep them, use
add_expr()
instead.INPUT:
chart1
– chart for the coordinates on the domain ofself
chart2
– chart for the coordinates on the codomain ofself
coord_functions
– the coordinate symbolic expression of the map in the above charts: list (or tuple) of the coordinates of the image expressed in terms of the coordinates of the considered point; if the dimension of the arrival manifold is 1, a single coordinate expression can be passed instead of a tuple with a single element
EXAMPLES:
Polar representation of a planar rotation initially defined in Cartesian coordinates:
sage: M = Manifold(2, 'R^2', latex_name=r'\RR^2', structure='topological') # the Euclidean plane R^2 sage: c_xy.<x,y> = M.chart() # Cartesian coordinate on R^2 sage: U = M.open_subset('U', coord_def={c_xy: (y!=0, x<0)}) # the complement of the segment y=0 and x>0 sage: c_cart = c_xy.restrict(U) # Cartesian coordinates on U sage: c_spher.<r,ph> = U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi') # spherical coordinates on U
Links between spherical coordinates and Cartesian ones:
sage: ch_cart_spher = c_cart.transition_map(c_spher, ....: [sqrt(x*x+y*y), atan2(y,x)]) sage: ch_cart_spher.set_inverse(r*cos(ph), r*sin(ph)) Check of the inverse coordinate transformation: x == x *passed* y == y *passed* r == r *passed* ph == arctan2(r*sin(ph), r*cos(ph)) **failed** NB: a failed report can reflect a mere lack of simplification. sage: rot = U.continuous_map(U, ((x - sqrt(3)*y)/2, (sqrt(3)*x + y)/2), ....: name='R') sage: rot.display(c_cart, c_cart) R: U → U (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y)
Let us use the method
set_expr()
to set the spherical-coordinate expression by hand:sage: rot.set_expr(c_spher, c_spher, (r, ph+pi/3)) sage: rot.display(c_spher, c_spher) R: U → U (r, ph) ↦ (r, 1/3*pi + ph)
The expression in Cartesian coordinates has been erased:
sage: rot._coord_expression {(Chart (U, (r, ph)), Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}
It is recovered (thanks to the known change of coordinates) by a call to
display()
:sage: rot.display(c_cart, c_cart) R: U → U (x, y) ↦ (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y) sage: rot._coord_expression # random (dictionary output) {(Chart (U, (x, y)), Chart (U, (x, y))): Coordinate functions (-1/2*sqrt(3)*y + 1/2*x, 1/2*sqrt(3)*x + 1/2*y) on the Chart (U, (x, y)), (Chart (U, (r, ph)), Chart (U, (r, ph))): Coordinate functions (r, 1/3*pi + ph) on the Chart (U, (r, ph))}