Mixed Differential Forms#
Let \(M\) and \(N\) be differentiable manifolds and \(\varphi : M \longrightarrow N\)
a differentiable map. A mixed differential form along \(\varphi\) is an element
of the graded algebra represented by
MixedFormAlgebra
.
Its homogeneous components consist of differential forms along \(\varphi\). Mixed
forms are useful to represent characteristic classes and perform computations
of such.
AUTHORS:
Michael Jung (2019) : initial version
- class sage.manifolds.differentiable.mixed_form.MixedForm(parent, name=None, latex_name=None)#
Bases:
sage.structure.element.AlgebraElement
,sage.structure.element.ModuleElementWithMutability
An instance of this class is a mixed form along some differentiable map \(\varphi: M \to N\) between two differentiable manifolds \(M\) and \(N\). More precisely, a mixed form \(a\) along \(\varphi: M \to N\) can be considered as a differentiable map
\[a: M \longrightarrow \bigoplus^n_{k=0} T^{(0,k)}N,\]where \(T^{(0,k)}\) denotes the tensor bundle of type \((0,k)\), \(\bigoplus\) the Whitney sum and \(n\) the dimension of \(N\), such that
\[\forall x\in M, \quad a(x) \in \bigoplus^n_{k=0} \Lambda^k\left( T_{\varphi(x)}^* N \right),\]where \(\Lambda^k(T^*_{\varphi(x)} N)\) is the \(k\)-th exterior power of the dual of the tangent space \(T_{\varphi(x)} N\). Thus, a mixed differential form \(a\) consists of homogeneous components \(a_i\), \(i=0,1, \dots, n\), where the \(i\)-th homogeneous component represents a differential form of degree \(i\).
The standard case of a mixed form on \(M\) corresponds to \(M=N\) with \(\varphi = \mathrm{Id}_M\).
INPUT:
parent
– graded algebra of mixed forms represented byMixedFormAlgebra
where the mixed formself
shall belong tocomp
– (default:None
) homogeneous components of the mixed form as a list; if none is provided, the components are set to innocent unnamed differential formsname
– (default:None
) name given to the mixed formlatex_name
– (default:None
) LaTeX symbol to denote the mixed form; if none is provided, the LaTeX symbol is set toname
EXAMPLES:
Initialize a mixed form on a 2-dimensional parallelizable differentiable manifold:
sage: M = Manifold(2, 'M') sage: c_xy.<x,y> = M.chart() sage: e_xy = c_xy.frame() sage: A = M.mixed_form(name='A'); A Mixed differential form A on the 2-dimensional differentiable manifold M sage: A.parent() Graded algebra Omega^*(M) of mixed differential forms on the 2-dimensional differentiable manifold M
The default way to specify the \(i\)-th homogeneous component of a mixed form is by accessing it via
A[i]
or usingset_comp()
:sage: A = M.mixed_form(name='A') sage: A[0].set_expr(x) # scalar field sage: A.set_comp(1)[0] = y*x sage: A.set_comp(2)[0,1] = y^2*x sage: A.display() # display names A = A_0 + A_1 + A_2 sage: A.display_expansion() # display expansion in basis A = x + x*y dx + x*y^2 dx∧dy
Another way to define the homogeneous components is using predefined differential forms:
sage: f = M.scalar_field(x, name='f'); f Scalar field f on the 2-dimensional differentiable manifold M sage: omega = M.diff_form(1, name='omega'); omega 1-form omega on the 2-dimensional differentiable manifold M sage: omega[e_xy,0] = y*x; omega.display() omega = x*y dx sage: eta = M.diff_form(2, name='eta'); eta 2-form eta on the 2-dimensional differentiable manifold M sage: eta[e_xy,0,1] = y^2*x; eta.display() eta = x*y^2 dx∧dy
The components of a mixed form
B
can then be set as follows:sage: B = M.mixed_form(name='B') sage: B[:] = [f, omega, eta]; B.display() # display names B = f + omega + eta sage: B.display_expansion() # display in coordinates B = x + x*y dx + x*y^2 dx∧dy sage: B[0] Scalar field f on the 2-dimensional differentiable manifold M sage: B[1] 1-form omega on the 2-dimensional differentiable manifold M sage: B[2] 2-form eta on the 2-dimensional differentiable manifold M
As we can see, the names are applied. However note that the differential forms are different instances:
sage: f is B[0] False
Alternatively, the components can be determined from scratch:
sage: B = M.mixed_form([f, omega, eta], name='B') sage: B.display() B = f + omega + eta
Mixed forms are elements of an algebra so they can be added, and multiplied via the wedge product:
sage: C = x*A; C Mixed differential form x∧A on the 2-dimensional differentiable manifold M sage: C.display_expansion() x∧A = x^2 + x^2*y dx + x^2*y^2 dx∧dy sage: D = A+C; D Mixed differential form A+x∧A on the 2-dimensional differentiable manifold M sage: D.display_expansion() A+x∧A = x^2 + x + (x^2 + x)*y dx + (x^2 + x)*y^2 dx∧dy sage: E = A*C; E Mixed differential form A∧(x∧A) on the 2-dimensional differentiable manifold M sage: E.display_expansion() A∧(x∧A) = x^3 + 2*x^3*y dx + 2*x^3*y^2 dx∧dy
Coercions are fully implemented:
sage: F = omega*A sage: F.display_expansion() omega∧A = x^2*y dx sage: G = omega+A sage: G.display_expansion() omega+A = x + 2*x*y dx + x*y^2 dx∧dy
Moreover, it is possible to compute the exterior derivative of a mixed form:
sage: dA = A.exterior_derivative(); dA.display() dA = zero + dA_0 + dA_1 sage: dA.display_expansion() dA = dx - x dx∧dy
Initialize a mixed form on a 2-dimensional non-parallelizable differentiable manifold:
sage: M = Manifold(2, 'M') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: transf = c_xy.transition_map(c_uv, (x+y, x-y), ....: intersection_name='W', restrictions1= x>0, ....: restrictions2= u+v>0) sage: inv = transf.inverse() sage: W = U.intersection(V) sage: e_xy = c_xy.frame(); e_uv = c_uv.frame() # define frames sage: A = M.mixed_form(name='A') sage: A[0].set_expr(x, c_xy) sage: A[0].display() A_0: M → ℝ on U: (x, y) ↦ x on W: (u, v) ↦ 1/2*u + 1/2*v sage: A[1][0] = y*x; A[1].display(e_xy) A_1 = x*y dx sage: A[2][e_uv,0,1] = u*v^2; A[2].display(e_uv) A_2 = u*v^2 du∧dv sage: A.add_comp_by_continuation(e_uv, W, c_uv) sage: A.display_expansion(e_uv) A = 1/2*u + 1/2*v + (1/8*u^2 - 1/8*v^2) du + (1/8*u^2 - 1/8*v^2) dv + u*v^2 du∧dv sage: A.add_comp_by_continuation(e_xy, W, c_xy) sage: A.display_expansion(e_xy) A = x + x*y dx + (-2*x^3 + 2*x^2*y + 2*x*y^2 - 2*y^3) dx∧dy
Since zero and one are special elements, their components cannot be changed:
sage: z = M.mixed_form_algebra().zero() sage: z[0] = 1 Traceback (most recent call last): ... ValueError: the components of an immutable element cannot be changed sage: one = M.mixed_form_algebra().one() sage: one[0] = 0 Traceback (most recent call last): ... ValueError: the components of an immutable element cannot be changed
- add_comp_by_continuation(frame, subdomain, chart=None)#
Set components with respect to a vector frame by continuation of the coordinate expression of the components in a subframe.
The continuation is performed by demanding that the components have the same coordinate expression as those on the restriction of the frame to a given subdomain.
INPUT:
frame
– vector frame \(e\) in which the components are to be setsubdomain
– open subset of \(e\)’s domain in which the components are known or can be evaluated from other componentschart
– (default:None
) coordinate chart on \(e\)’s domain in which the extension of the expression of the components is to be performed; ifNone
, the default’s chart of \(e\)’s domain is assumed
EXAMPLES:
Mixed form defined by differential forms with components on different parts of the 2-sphere:
sage: M = Manifold(2, 'M') # the 2-dimensional sphere S^2 sage: U = M.open_subset('U') # complement of the North pole sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole sage: V = M.open_subset('V') # complement of the South pole sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole sage: M.declare_union(U,V) # S^2 is the union of U and V sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)), ....: intersection_name='W', restrictions1= x^2+y^2!=0, ....: restrictions2= u^2+v^2!=0) sage: uv_to_xy = xy_to_uv.inverse() sage: W = U.intersection(V) sage: e_xy = c_xy.frame(); e_uv = c_uv.frame() sage: F = M.mixed_form(name='F') # No predefined components, here sage: F[0] = M.scalar_field(x, name='f') sage: F[1] = M.diff_form(1, {e_xy: [x,0]}, name='omega') sage: F[2].set_name(name='eta') sage: F[2][e_uv,0,1] = u*v sage: F.add_comp_by_continuation(e_uv, W, c_uv) sage: F.add_comp_by_continuation(e_xy, W, c_xy) # Now, F is fully defined sage: F.display_expansion(e_xy) F = x + x dx - x*y/(x^8 + 4*x^6*y^2 + 6*x^4*y^4 + 4*x^2*y^6 + y^8) dx∧dy sage: F.display_expansion(e_uv) F = u/(u^2 + v^2) - (u^3 - u*v^2)/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) du - 2*u^2*v/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) dv + u*v du∧dv
- copy(name=None, latex_name=None)#
Return an exact copy of
self
.Note
The name and names of the components are not copied.
INPUT:
name
– (default:None
) name given to the copylatex_name
– (default:None
) LaTeX symbol to denote the copy; if none is provided, the LaTeX symbol is set toname
EXAMPLES:
Initialize a 2-dimensional manifold and differential forms:
sage: M = Manifold(2, 'M') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: xy_to_uv = c_xy.transition_map(c_uv, (x+y, x-y), ....: intersection_name='W', restrictions1= x>0, ....: restrictions2= u+v>0) sage: uv_to_xy = xy_to_uv.inverse() sage: W = U.intersection(V) sage: e_xy = c_xy.frame(); e_uv = c_uv.frame() sage: f = M.scalar_field(x, name='f', chart=c_xy) sage: f.add_expr_by_continuation(c_uv, W) sage: f.display() f: M → ℝ on U: (x, y) ↦ x on V: (u, v) ↦ 1/2*u + 1/2*v sage: omega = M.diff_form(1, name='omega') sage: omega[e_xy,0] = x sage: omega.add_comp_by_continuation(e_uv, W, c_uv) sage: omega.display() omega = x dx sage: A = M.mixed_form([f, omega, 0], name='A'); A.display() A = f + omega + zero sage: A.display_expansion(e_uv) A = 1/2*u + 1/2*v + (1/4*u + 1/4*v) du + (1/4*u + 1/4*v) dv
An exact copy is made. The copy is an entirely new instance and has a different name, but has the very same values:
sage: B = A.copy(); B.display() (unnamed scalar field) + (unnamed 1-form) + (unnamed 2-form) sage: B.display_expansion(e_uv) 1/2*u + 1/2*v + (1/4*u + 1/4*v) du + (1/4*u + 1/4*v) dv sage: A == B True sage: A is B False
- derivative()#
Compute the exterior derivative of
self
.More precisely, the exterior derivative on \(\Omega^k(M,\varphi)\) is a linear map
\[\mathrm{d}_{k} : \Omega^k(M,\varphi) \to \Omega^{k+1}(M,\varphi),\]where \(\Omega^k(M,\varphi)\) denotes the space of differential forms of degree \(k\) along \(\varphi\) (see
exterior_derivative()
for further information). By linear extension, this induces a map on \(\Omega^*(M,\varphi)\):\[\mathrm{d}: \Omega^*(M,\varphi) \to \Omega^*(M,\varphi).\]OUTPUT:
a
MixedForm
representing the exterior derivative of the mixed form
EXAMPLES:
Exterior derivative of a mixed form on a 3-dimensional manifold:
sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: f = M.scalar_field(z^2, name='f') sage: f.disp() f: M → ℝ (x, y, z) ↦ z^2 sage: a = M.diff_form(2, 'a') sage: a[1,2], a[1,3], a[2,3] = z+y^2, z+x, x^2 sage: a.disp() a = (y^2 + z) dx∧dy + (x + z) dx∧dz + x^2 dy∧dz sage: F = M.mixed_form([f, 0, a, 0], name='F'); F.display() F = f + zero + a + zero sage: dF = F.exterior_derivative() sage: dF.display() dF = zero + df + dzero + da sage: dF = F.exterior_derivative() sage: dF.display_expansion() dF = 2*z dz + (2*x + 1) dx∧dy∧dz
Due to long calculation times, the result is cached:
sage: F.exterior_derivative() is dF True
- disp()#
Display the homogeneous components of the mixed form.
The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).
EXAMPLES:
sage: M = Manifold(2, 'M') sage: f = M.scalar_field(name='f') sage: omega = M.diff_form(1, name='omega') sage: eta = M.diff_form(2, name='eta') sage: F = M.mixed_form([f, omega, eta], name='F'); F Mixed differential form F on the 2-dimensional differentiable manifold M sage: F.display() # display names of homogeneous components F = f + omega + eta
- disp_exp(frame=None, chart=None, from_chart=None)#
Display the expansion in a particular basis and chart of mixed forms.
The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).
INPUT:
frame
– (default:None
) vector frame with respect to which the mixed form is expanded; ifNone
, only the names of the components are displayedchart
– (default:None
) chart with respect to which the components of the mixed form in the selected frame are expressed; ifNone
, the default chart of the vector frame domain is assumed
EXAMPLES:
Display the expansion of a mixed form on a 2-dimensional non-parallelizable differentiable manifold:
sage: M = Manifold(2, 'M') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: transf = c_xy.transition_map(c_uv, (x-y, x+y), ....: intersection_name='W', restrictions1= x>0, ....: restrictions2= u+v>0) sage: inv = transf.inverse() sage: W = U.intersection(V) sage: e_xy = c_xy.frame(); e_uv = c_uv.frame() # define frames sage: omega = M.diff_form(1, name='omega') sage: omega[e_xy,0] = x; omega.display(e_xy) omega = x dx sage: omega.add_comp_by_continuation(e_uv, W, c_uv) # continuation onto M sage: eta = M.diff_form(2, name='eta') sage: eta[e_uv,0,1] = u*v; eta.display(e_uv) eta = u*v du∧dv sage: eta.add_comp_by_continuation(e_xy, W, c_xy) # continuation onto M sage: F = M.mixed_form([0, omega, eta], name='F'); F Mixed differential form F on the 2-dimensional differentiable manifold M sage: F.display() # display names of homogeneous components F = zero + omega + eta sage: F.display_expansion(e_uv) F = (1/4*u + 1/4*v) du + (1/4*u + 1/4*v) dv + u*v du∧dv sage: F.display_expansion(e_xy) F = x dx + (2*x^2 - 2*y^2) dx∧dy
- display()#
Display the homogeneous components of the mixed form.
The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).
EXAMPLES:
sage: M = Manifold(2, 'M') sage: f = M.scalar_field(name='f') sage: omega = M.diff_form(1, name='omega') sage: eta = M.diff_form(2, name='eta') sage: F = M.mixed_form([f, omega, eta], name='F'); F Mixed differential form F on the 2-dimensional differentiable manifold M sage: F.display() # display names of homogeneous components F = f + omega + eta
- display_exp(frame=None, chart=None, from_chart=None)#
Display the expansion in a particular basis and chart of mixed forms.
The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).
INPUT:
frame
– (default:None
) vector frame with respect to which the mixed form is expanded; ifNone
, only the names of the components are displayedchart
– (default:None
) chart with respect to which the components of the mixed form in the selected frame are expressed; ifNone
, the default chart of the vector frame domain is assumed
EXAMPLES:
Display the expansion of a mixed form on a 2-dimensional non-parallelizable differentiable manifold:
sage: M = Manifold(2, 'M') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: transf = c_xy.transition_map(c_uv, (x-y, x+y), ....: intersection_name='W', restrictions1= x>0, ....: restrictions2= u+v>0) sage: inv = transf.inverse() sage: W = U.intersection(V) sage: e_xy = c_xy.frame(); e_uv = c_uv.frame() # define frames sage: omega = M.diff_form(1, name='omega') sage: omega[e_xy,0] = x; omega.display(e_xy) omega = x dx sage: omega.add_comp_by_continuation(e_uv, W, c_uv) # continuation onto M sage: eta = M.diff_form(2, name='eta') sage: eta[e_uv,0,1] = u*v; eta.display(e_uv) eta = u*v du∧dv sage: eta.add_comp_by_continuation(e_xy, W, c_xy) # continuation onto M sage: F = M.mixed_form([0, omega, eta], name='F'); F Mixed differential form F on the 2-dimensional differentiable manifold M sage: F.display() # display names of homogeneous components F = zero + omega + eta sage: F.display_expansion(e_uv) F = (1/4*u + 1/4*v) du + (1/4*u + 1/4*v) dv + u*v du∧dv sage: F.display_expansion(e_xy) F = x dx + (2*x^2 - 2*y^2) dx∧dy
- display_expansion(frame=None, chart=None, from_chart=None)#
Display the expansion in a particular basis and chart of mixed forms.
The output is either text-formatted (console mode) or LaTeX-formatted (notebook mode).
INPUT:
frame
– (default:None
) vector frame with respect to which the mixed form is expanded; ifNone
, only the names of the components are displayedchart
– (default:None
) chart with respect to which the components of the mixed form in the selected frame are expressed; ifNone
, the default chart of the vector frame domain is assumed
EXAMPLES:
Display the expansion of a mixed form on a 2-dimensional non-parallelizable differentiable manifold:
sage: M = Manifold(2, 'M') sage: U = M.open_subset('U') ; V = M.open_subset('V') sage: M.declare_union(U,V) # M is the union of U and V sage: c_xy.<x,y> = U.chart() ; c_uv.<u,v> = V.chart() sage: transf = c_xy.transition_map(c_uv, (x-y, x+y), ....: intersection_name='W', restrictions1= x>0, ....: restrictions2= u+v>0) sage: inv = transf.inverse() sage: W = U.intersection(V) sage: e_xy = c_xy.frame(); e_uv = c_uv.frame() # define frames sage: omega = M.diff_form(1, name='omega') sage: omega[e_xy,0] = x; omega.display(e_xy) omega = x dx sage: omega.add_comp_by_continuation(e_uv, W, c_uv) # continuation onto M sage: eta = M.diff_form(2, name='eta') sage: eta[e_uv,0,1] = u*v; eta.display(e_uv) eta = u*v du∧dv sage: eta.add_comp_by_continuation(e_xy, W, c_xy) # continuation onto M sage: F = M.mixed_form([0, omega, eta], name='F'); F Mixed differential form F on the 2-dimensional differentiable manifold M sage: F.display() # display names of homogeneous components F = zero + omega + eta sage: F.display_expansion(e_uv) F = (1/4*u + 1/4*v) du + (1/4*u + 1/4*v) dv + u*v du∧dv sage: F.display_expansion(e_xy) F = x dx + (2*x^2 - 2*y^2) dx∧dy
- exterior_derivative()#
Compute the exterior derivative of
self
.More precisely, the exterior derivative on \(\Omega^k(M,\varphi)\) is a linear map
\[\mathrm{d}_{k} : \Omega^k(M,\varphi) \to \Omega^{k+1}(M,\varphi),\]where \(\Omega^k(M,\varphi)\) denotes the space of differential forms of degree \(k\) along \(\varphi\) (see
exterior_derivative()
for further information). By linear extension, this induces a map on \(\Omega^*(M,\varphi)\):\[\mathrm{d}: \Omega^*(M,\varphi) \to \Omega^*(M,\varphi).\]OUTPUT:
a
MixedForm
representing the exterior derivative of the mixed form
EXAMPLES:
Exterior derivative of a mixed form on a 3-dimensional manifold:
sage: M = Manifold(3, 'M', start_index=1) sage: c_xyz.<x,y,z> = M.chart() sage: f = M.scalar_field(z^2, name='f') sage: f.disp() f: M → ℝ (x, y, z) ↦ z^2 sage: a = M.diff_form(2, 'a') sage: a[1,2], a[1,3], a[2,3] = z+y^2, z+x, x^2 sage: a.disp() a = (y^2 + z) dx∧dy + (x + z) dx∧dz + x^2 dy∧dz sage: F = M.mixed_form([f, 0, a, 0], name='F'); F.display() F = f + zero + a + zero sage: dF = F.exterior_derivative() sage: dF.display() dF = zero + df + dzero + da sage: dF = F.exterior_derivative() sage: dF.display_expansion() dF = 2*z dz + (2*x + 1) dx∧dy∧dz
Due to long calculation times, the result is cached:
sage: F.exterior_derivative() is dF True
- irange(start=None)#
Single index generator.
INPUT:
start
– (default:None
) initial value \(i_0\) of the index between 0 and \(n\), where \(n\) is the manifold’s dimension; if none is provided, the value 0 is assumed
OUTPUT:
an iterable index, starting from \(i_0\) and ending at \(n\), where \(n\) is the manifold’s dimension
EXAMPLES:
sage: M = Manifold(3, 'M') sage: a = M.mixed_form(name='a') sage: list(a.irange()) [0, 1, 2, 3] sage: list(a.irange(2)) [2, 3]
- restrict(subdomain, dest_map=None)#
Return the restriction of
self
to some subdomain.INPUT:
subdomain
–DifferentiableManifold
; open subset \(U\) of the domain ofself
dest_map
–DiffMap
(default:None
); destination map \(\Psi:\ U \rightarrow V\), where \(V\) is an open subset of the manifold \(N\) where the mixed form takes it values; ifNone
, the restriction of \(\Phi\) to \(U\) is used, \(\Phi\) being the differentiable map \(S \rightarrow M\) associated with the mixed form
OUTPUT:
MixedForm
representing the restriction
EXAMPLES:
Initialize the 2-sphere:
sage: M = Manifold(2, 'M') # the 2-dimensional sphere S^2 sage: U = M.open_subset('U') # complement of the North pole sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole sage: V = M.open_subset('V') # complement of the South pole sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole sage: M.declare_union(U,V) # S^2 is the union of U and V sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)), ....: intersection_name='W', restrictions1= x^2+y^2!=0, ....: restrictions2= u^2+v^2!=0) sage: uv_to_xy = xy_to_uv.inverse() sage: W = U.intersection(V) sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
And predefine some forms:
sage: f = M.scalar_field(x^2, name='f', chart=c_xy) sage: f.add_expr_by_continuation(c_uv, W) sage: omega = M.diff_form(1, name='omega') sage: omega[e_xy,0] = y^2 sage: omega.add_comp_by_continuation(e_uv, W, c_uv) sage: eta = M.diff_form(2, name='eta') sage: eta[e_xy,0,1] = x^2*y^2 sage: eta.add_comp_by_continuation(e_uv, W, c_uv)
Now, a mixed form can be restricted to some subdomain:
sage: F = M.mixed_form([f, omega, eta], name='F') sage: FV = F.restrict(V); FV Mixed differential form F on the Open subset V of the 2-dimensional differentiable manifold M sage: FV[:] [Scalar field f on the Open subset V of the 2-dimensional differentiable manifold M, 1-form omega on the Open subset V of the 2-dimensional differentiable manifold M, 2-form eta on the Open subset V of the 2-dimensional differentiable manifold M] sage: FV.display_expansion(e_uv) F = u^2/(u^4 + 2*u^2*v^2 + v^4) - (u^2*v^2 - v^4)/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 + 4*u^2*v^6 + v^8) du - 2*u*v^3/(u^8 + 4*u^6*v^2 + 6*u^4*v^4 + 4*u^2*v^6 + v^8) dv - u^2*v^2/(u^12 + 6*u^10*v^2 + 15*u^8*v^4 + 20*u^6*v^6 + 15*u^4*v^8 + 6*u^2*v^10 + v^12) du∧dv
- set_comp(i)#
Return the \(i\)-th homogeneous component for assignment.
EXAMPLES:
sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: A = M.mixed_form(name='A') sage: A.set_comp(0).set_expr(x^2) # scalar field sage: A.set_comp(1)[:] = [-y, x] sage: A.set_comp(2)[0,1] = x-y sage: A.display() A = A_0 + A_1 + A_2 sage: A.display_expansion() A = x^2 - y dx + x dy + (x - y) dx∧dy
- set_immutable()#
Set
self
and homogeneous components ofself
immutable.EXAMPLES:
sage: M = Manifold(2, 'M') sage: X.<x,y> = M.chart() sage: f = M.scalar_field(x^2, name='f') sage: A = M.mixed_form([f, 0, 0], name='A') sage: A.set_immutable() sage: A.is_immutable() True sage: A[0].is_immutable() True sage: f.is_immutable() False
- set_name(name=None, latex_name=None, apply_to_comp=True)#
Redefine the string and LaTeX representation of the object.
INPUT:
name
– (default:None
) name given to the mixed formlatex_name
– (default:None
) LaTeX symbol to denote the mixed form; if none is provided, the LaTeX symbol is set toname
apply_to_comp
– (default:True
) ifTrue
all homogeneous components will be renamed accordingly; ifFalse
only the mixed form will be renamed
EXAMPLES:
Rename a mixed form:
sage: M = Manifold(4, 'M') sage: F = M.mixed_form(name='dummy', latex_name=r'\ugly'); F Mixed differential form dummy on the 4-dimensional differentiable manifold M sage: latex(F) \ugly sage: F.set_name(name='F', latex_name=r'\mathcal{F}'); F Mixed differential form F on the 4-dimensional differentiable manifold M sage: latex(F) \mathcal{F}
If not stated otherwise, all homogeneous components are renamed accordingly:
sage: F.display() F = F_0 + F_1 + F_2 + F_3 + F_4
Setting the argument
set_all
toFalse
prevents the renaming in the homogeneous components:sage: F.set_name(name='eta', latex_name=r'\eta', apply_to_comp=False) sage: F.display() eta = F_0 + F_1 + F_2 + F_3 + F_4
To rename a homogeneous component individually, we simply access the homogeneous component and use its
set_name()
method:sage: F[0].set_name(name='g'); F.display() eta = g + F_1 + F_2 + F_3 + F_4
- set_restriction(rst)#
Set a (component-wise) restriction of
self
to some subdomain.INPUT:
rst
–MixedForm
of the same type asself
, defined on a subdomain of the domain ofself
EXAMPLES:
Initialize the 2-sphere:
sage: M = Manifold(2, 'M') # the 2-dimensional sphere S^2 sage: U = M.open_subset('U') # complement of the North pole sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole sage: V = M.open_subset('V') # complement of the South pole sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole sage: M.declare_union(U,V) # S^2 is the union of U and V sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)), ....: intersection_name='W', restrictions1= x^2+y^2!=0, ....: restrictions2= u^2+v^2!=0) sage: uv_to_xy = xy_to_uv.inverse() sage: W = U.intersection(V) sage: e_xy = c_xy.frame(); e_uv = c_uv.frame()
And define some forms on the subset
U
:sage: f = U.scalar_field(x, name='f', chart=c_xy) sage: omega = U.diff_form(1, name='omega') sage: omega[e_xy,0] = y sage: AU = U.mixed_form([f, omega, 0], name='A'); AU Mixed differential form A on the Open subset U of the 2-dimensional differentiable manifold M sage: AU.display_expansion(e_xy) A = x + y dx
A mixed form on
M
can be specified by some mixed form on a subset:sage: A = M.mixed_form(name='A'); A Mixed differential form A on the 2-dimensional differentiable manifold M sage: A.set_restriction(AU) sage: A.display_expansion(e_xy) A = x + y dx sage: A.add_comp_by_continuation(e_uv, W, c_uv) sage: A.display_expansion(e_uv) A = u/(u^2 + v^2) - (u^2*v - v^3)/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) du - 2*u*v^2/(u^6 + 3*u^4*v^2 + 3*u^2*v^4 + v^6) dv sage: A.restrict(U) == AU True
- wedge(other)#
Wedge product on the graded algebra of mixed forms.
More precisely, the wedge product is a bilinear map
\[\wedge: \Omega^k(M,\varphi) \times \Omega^l(M,\varphi) \to \Omega^{k+l}(M,\varphi),\]where \(\Omega^k(M,\varphi)\) denotes the space of differential forms of degree \(k\) along \(\varphi\). By bilinear extension, this induces a map
\[\wedge: \Omega^*(M,\varphi) \times \Omega^*(M,\varphi) \to \Omega^*(M,\varphi) ``\]and equips \(\Omega^*(M,\varphi)\) with a multiplication such that it becomes a graded algebra.
INPUT:
other
– mixed form in the same algebra asself
OUTPUT:
the mixed form resulting from the wedge product of
self
withother
EXAMPLES:
Initialize a mixed form on a 3-dimensional manifold:
sage: M = Manifold(3, 'M') sage: c_xyz.<x,y,z> = M.chart() sage: f = M.scalar_field(x, name='f') sage: f.display() f: M → ℝ (x, y, z) ↦ x sage: g = M.scalar_field(y, name='g') sage: g.display() g: M → ℝ (x, y, z) ↦ y sage: omega = M.diff_form(1, name='omega') sage: omega[0] = x sage: omega.display() omega = x dx sage: eta = M.diff_form(1, name='eta') sage: eta[1] = y sage: eta.display() eta = y dy sage: mu = M.diff_form(2, name='mu') sage: mu[0,2] = z sage: mu.display() mu = z dx∧dz sage: A = M.mixed_form([f, omega, mu, 0], name='A') sage: A.display_expansion() A = x + x dx + z dx∧dz sage: B = M.mixed_form([g, eta, mu, 0], name='B') sage: B.display_expansion() B = y + y dy + z dx∧dz
The wedge product of
A
andB
yields:sage: C = A.wedge(B); C Mixed differential form A∧B on the 3-dimensional differentiable manifold M sage: C.display_expansion() A∧B = x*y + x*y dx + x*y dy + x*y dx∧dy + (x + y)*z dx∧dz - y*z dx∧dy∧dz sage: D = B.wedge(A); D # Don't even try, it's not commutative! Mixed differential form B∧A on the 3-dimensional differentiable manifold M sage: D.display_expansion() # I told you so! B∧A = x*y + x*y dx + x*y dy - x*y dx∧dy + (x + y)*z dx∧dz - y*z dx∧dy∧dz
Alternatively, the multiplication symbol can be used:
sage: A*B Mixed differential form A∧B on the 3-dimensional differentiable manifold M sage: A*B == C True
Yet, the multiplication includes coercions:
sage: E = x*A; E.display_expansion() x∧A = x^2 + x^2 dx + x*z dx∧dz sage: F = A*eta; F.display_expansion() A∧eta = x*y dy + x*y dx∧dy - y*z dx∧dy∧dz