Weyl Groups#
REFERENCES:
- Dye
Dyer. Bruhat intervals, polyhedral cones and Kazhdan-Lusztig-Stanley polynomials. Math.Z., 215(2):223-236, 1994.
- JahStu
Jahn and Stump. Bruhat intervals, subword complexes and brick polyhedra for finite Coxeter groups. Preprint, available at arXiv 2103.03715, 2021.
- class sage.categories.weyl_groups.WeylGroups(s=None)#
Bases:
sage.categories.category_singleton.Category_singleton
The category of Weyl groups
See the Wikipedia page of Weyl Groups.
EXAMPLES:
sage: WeylGroups() Category of weyl groups sage: WeylGroups().super_categories() [Category of coxeter groups]
Here are some examples:
sage: WeylGroups().example() # todo: not implemented sage: FiniteWeylGroups().example() The symmetric group on {0, ..., 3} sage: AffineWeylGroups().example() # todo: not implemented sage: WeylGroup(["B", 3]) Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)
This one will eventually be also in this category:
sage: SymmetricGroup(4) Symmetric group of order 4! as a permutation group
- class ElementMethods#
Bases:
object
- bruhat_lower_covers_coroots()#
Return all 2-tuples (
v
, \(\alpha\)) wherev
is covered byself
and \(\alpha\) is the positive coroot such thatself
=v
\(s_\alpha\) where \(s_\alpha\) is the reflection orthogonal to \(\alpha\).ALGORITHM:
See
bruhat_lower_covers()
andbruhat_lower_covers_reflections()
for Coxeter groups.EXAMPLES:
sage: W = WeylGroup(['A',3], prefix="s") sage: w = W.from_reduced_word([3,1,2,1]) sage: w.bruhat_lower_covers_coroots() [(s1*s2*s1, alphacheck[1] + alphacheck[2] + alphacheck[3]), (s3*s2*s1, alphacheck[2]), (s3*s1*s2, alphacheck[1])]
- bruhat_upper_covers_coroots()#
Returns all 2-tuples (
v
, \(\alpha\)) wherev
is coversself
and \(\alpha\) is the positive coroot such thatself
=v
\(s_\alpha\) where \(s_\alpha\) is the reflection orthogonal to \(\alpha\).ALGORITHM:
See
bruhat_upper_covers()
andbruhat_upper_covers_reflections()
for Coxeter groups.EXAMPLES:
sage: W = WeylGroup(['A',4], prefix="s") sage: w = W.from_reduced_word([3,1,2,1]) sage: w.bruhat_upper_covers_coroots() [(s1*s2*s3*s2*s1, alphacheck[3]), (s2*s3*s1*s2*s1, alphacheck[2] + alphacheck[3]), (s3*s4*s1*s2*s1, alphacheck[4]), (s4*s3*s1*s2*s1, alphacheck[1] + alphacheck[2] + alphacheck[3] + alphacheck[4])]
- inversion_arrangement(side='right')#
Return the inversion hyperplane arrangement of
self
.INPUT:
side
–'right'
(default) or'left'
OUTPUT:
A (central) hyperplane arrangement whose hyperplanes correspond to the inversions of
self
given as roots.The
side
parameter determines on which side to compute the inversions.EXAMPLES:
sage: W = WeylGroup(['A',3]) sage: w = W.from_reduced_word([1, 2, 3, 1, 2]) sage: A = w.inversion_arrangement(); A Arrangement of 5 hyperplanes of dimension 3 and rank 3 sage: A.hyperplanes() (Hyperplane 0*a1 + 0*a2 + a3 + 0, Hyperplane 0*a1 + a2 + 0*a3 + 0, Hyperplane 0*a1 + a2 + a3 + 0, Hyperplane a1 + a2 + 0*a3 + 0, Hyperplane a1 + a2 + a3 + 0)
The identity element gives the empty arrangement:
sage: W = WeylGroup(['A',3]) sage: W.one().inversion_arrangement() Empty hyperplane arrangement of dimension 3
- inversions(side='right', inversion_type='reflections')#
Return the set of inversions of
self
.INPUT:
side
– ‘right’ (default) or ‘left’inversion_type
– ‘reflections’ (default), ‘roots’, or ‘coroots’
OUTPUT:
For reflections, the set of reflections r in the Weyl group such that
self
r
<self
. For (co)roots, the set of positive (co)roots that are sent byself
to negative (co)roots; their associated reflections are described above.If
side
is ‘left’, the inverse Weyl group element is used.EXAMPLES:
sage: W = WeylGroup(['C',2], prefix="s") sage: w = W.from_reduced_word([1,2]) sage: w.inversions() [s2, s2*s1*s2] sage: w.inversions(inversion_type = 'reflections') [s2, s2*s1*s2] sage: w.inversions(inversion_type = 'roots') [alpha[2], alpha[1] + alpha[2]] sage: w.inversions(inversion_type = 'coroots') [alphacheck[2], alphacheck[1] + 2*alphacheck[2]] sage: w.inversions(side = 'left') [s1, s1*s2*s1] sage: w.inversions(side = 'left', inversion_type = 'roots') [alpha[1], 2*alpha[1] + alpha[2]] sage: w.inversions(side = 'left', inversion_type = 'coroots') [alphacheck[1], alphacheck[1] + alphacheck[2]]
- is_pieri_factor()#
Returns whether
self
is a Pieri factor, as used for computing Stanley symmetric functions.EXAMPLES:
sage: W = WeylGroup(['A',5,1]) sage: W.from_reduced_word([3,2,5]).is_pieri_factor() True sage: W.from_reduced_word([3,2,4,5]).is_pieri_factor() False sage: W = WeylGroup(['C',4,1]) sage: W.from_reduced_word([0,2,1]).is_pieri_factor() True sage: W.from_reduced_word([0,2,1,0]).is_pieri_factor() False sage: W = WeylGroup(['B',3]) sage: W.from_reduced_word([3,2,3]).is_pieri_factor() False sage: W.from_reduced_word([2,1,2]).is_pieri_factor() True
- left_pieri_factorizations(max_length=None)#
Returns all factorizations of
self
as \(uv\), where \(u\) is a Pieri factor and \(v\) is an element of the Weyl group.EXAMPLES:
If we take \(w = w_0\) the maximal element of a strict parabolic subgroup of type \(A_{n_1} \times \cdots \times A_{n_k}\), then the Pieri factorizations are in correspondence with all Pieri factors, and there are \(\prod 2^{n_i}\) of them:
sage: W = WeylGroup(['A', 4, 1]) sage: W.from_reduced_word([]).left_pieri_factorizations().cardinality() 1 sage: W.from_reduced_word([1]).left_pieri_factorizations().cardinality() 2 sage: W.from_reduced_word([1,2,1]).left_pieri_factorizations().cardinality() 4 sage: W.from_reduced_word([1,2,3,1,2,1]).left_pieri_factorizations().cardinality() 8 sage: W.from_reduced_word([1,3]).left_pieri_factorizations().cardinality() 4 sage: W.from_reduced_word([1,3,4,3]).left_pieri_factorizations().cardinality() 8 sage: W.from_reduced_word([2,1]).left_pieri_factorizations().cardinality() 3 sage: W.from_reduced_word([1,2]).left_pieri_factorizations().cardinality() 2 sage: [W.from_reduced_word([1,2]).left_pieri_factorizations(max_length=i).cardinality() for i in [-1, 0, 1, 2]] [0, 1, 2, 2] sage: W = WeylGroup(['C',4,1]) sage: w = W.from_reduced_word([0,3,2,1,0]) sage: w.left_pieri_factorizations().cardinality() 7 sage: [(u.reduced_word(),v.reduced_word()) for (u,v) in w.left_pieri_factorizations()] [([], [3, 2, 0, 1, 0]), ([0], [3, 2, 1, 0]), ([3], [2, 0, 1, 0]), ([3, 0], [2, 1, 0]), ([3, 2], [0, 1, 0]), ([3, 2, 0], [1, 0]), ([3, 2, 0, 1], [0])] sage: W = WeylGroup(['B',4,1]) sage: W.from_reduced_word([0,2,1,0]).left_pieri_factorizations().cardinality() 6
- quantum_bruhat_successors(index_set=None, roots=False, quantum_only=False)#
Return the successors of
self
in the quantum Bruhat graph on the parabolic quotient of the Weyl group determined by the subset of Dynkin nodesindex_set
.INPUT:
self
– a Weyl group element, which is assumed to be of minimum length in its coset with respect to the parabolic subgroupindex_set
– (default:None
) indicates the set of simple reflections used to generate the parabolic subgroup; the default value indicates that the subgroup is the identityroots
– (default:False
) ifTrue
, returns the list of 2-tuples (w
, \(\alpha\)) wherew
is a successor and \(\alpha\) is the positive root associated with the successor relationquantum_only
– (default:False
) ifTrue
, returns only the quantum successors
EXAMPLES:
sage: W = WeylGroup(['A',3], prefix="s") sage: w = W.from_reduced_word([3,1,2]) sage: w.quantum_bruhat_successors([1], roots = True) [(s3, alpha[2]), (s1*s2*s3*s2, alpha[3]), (s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3])] sage: w.quantum_bruhat_successors([1,3]) [1, s2*s3*s1*s2] sage: w.quantum_bruhat_successors(roots = True) [(s3*s1*s2*s1, alpha[1]), (s3*s1, alpha[2]), (s1*s2*s3*s2, alpha[3]), (s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3])] sage: w.quantum_bruhat_successors() [s3*s1*s2*s1, s3*s1, s1*s2*s3*s2, s2*s3*s1*s2] sage: w.quantum_bruhat_successors(quantum_only = True) [s3*s1] sage: w = W.from_reduced_word([2,3]) sage: w.quantum_bruhat_successors([1,3]) Traceback (most recent call last): ... ValueError: s2*s3 is not of minimum length in its coset of the parabolic subgroup generated by the reflections (1, 3)
- reflection_to_coroot()#
Return the coroot associated with the reflection
self
.EXAMPLES:
sage: W = WeylGroup(['C',2],prefix="s") sage: W.from_reduced_word([1,2,1]).reflection_to_coroot() alphacheck[1] + alphacheck[2] sage: W.from_reduced_word([1,2]).reflection_to_coroot() Traceback (most recent call last): ... ValueError: s1*s2 is not a reflection sage: W.long_element().reflection_to_coroot() Traceback (most recent call last): ... ValueError: s2*s1*s2*s1 is not a reflection
- reflection_to_root()#
Return the root associated with the reflection
self
.EXAMPLES:
sage: W = WeylGroup(['C',2],prefix="s") sage: W.from_reduced_word([1,2,1]).reflection_to_root() 2*alpha[1] + alpha[2] sage: W.from_reduced_word([1,2]).reflection_to_root() Traceback (most recent call last): ... ValueError: s1*s2 is not a reflection sage: W.long_element().reflection_to_root() Traceback (most recent call last): ... ValueError: s2*s1*s2*s1 is not a reflection
- stanley_symmetric_function()#
Return the affine Stanley symmetric function indexed by
self
.INPUT:
self
– an element \(w\) of a Weyl group
Returns the affine Stanley symmetric function indexed by \(w\). Stanley symmetric functions are defined as generating series of the factorizations of \(w\) into Pieri factors and weighted by a statistic on Pieri factors.
See also
EXAMPLES:
sage: W = WeylGroup(['A', 3, 1]) sage: W.from_reduced_word([3,1,2,0,3,1,0]).stanley_symmetric_function() 8*m[1, 1, 1, 1, 1, 1, 1] + 4*m[2, 1, 1, 1, 1, 1] + 2*m[2, 2, 1, 1, 1] + m[2, 2, 2, 1] sage: A = AffinePermutationGroup(['A',3,1]) sage: A.from_reduced_word([3,1,2,0,3,1,0]).stanley_symmetric_function() 8*m[1, 1, 1, 1, 1, 1, 1] + 4*m[2, 1, 1, 1, 1, 1] + 2*m[2, 2, 1, 1, 1] + m[2, 2, 2, 1] sage: W = WeylGroup(['C',3,1]) sage: W.from_reduced_word([0,2,1,0]).stanley_symmetric_function() 32*m[1, 1, 1, 1] + 16*m[2, 1, 1] + 8*m[2, 2] + 4*m[3, 1] sage: W = WeylGroup(['B',3,1]) sage: W.from_reduced_word([3,2,1]).stanley_symmetric_function() 2*m[1, 1, 1] + m[2, 1] + 1/2*m[3] sage: W = WeylGroup(['B',4]) sage: w = W.from_reduced_word([3,2,3,1]) sage: w.stanley_symmetric_function() # long time (6s on sage.math, 2011) 48*m[1, 1, 1, 1] + 24*m[2, 1, 1] + 12*m[2, 2] + 8*m[3, 1] + 2*m[4] sage: A = AffinePermutationGroup(['A',4,1]) sage: a = A([-2,0,1,4,12]) sage: a.stanley_symmetric_function() 6*m[1, 1, 1, 1, 1, 1, 1, 1] + 5*m[2, 1, 1, 1, 1, 1, 1] + 4*m[2, 2, 1, 1, 1, 1] + 3*m[2, 2, 2, 1, 1] + 2*m[2, 2, 2, 2] + 4*m[3, 1, 1, 1, 1, 1] + 3*m[3, 2, 1, 1, 1] + 2*m[3, 2, 2, 1] + 2*m[3, 3, 1, 1] + m[3, 3, 2] + 3*m[4, 1, 1, 1, 1] + 2*m[4, 2, 1, 1] + m[4, 2, 2] + m[4, 3, 1]
One more example (trac ticket #14095):
sage: G = SymmetricGroup(4) sage: w = G.from_reduced_word([3,2,3,1]) sage: w.stanley_symmetric_function() 3*m[1, 1, 1, 1] + 2*m[2, 1, 1] + m[2, 2] + m[3, 1]
REFERENCES:
- stanley_symmetric_function_as_polynomial(max_length=None)#
Returns a multivariate generating function for the number of factorizations of a Weyl group element into Pieri factors of decreasing length, weighted by a statistic on Pieri factors.
See also
INPUT:
self
– an element \(w\) of a Weyl group \(W\)max_length
– a non negative integer or infinity (default: infinity)
Returns the generating series for the Pieri factorizations \(w = u_1 \cdots u_k\), where \(u_i\) is a Pieri factor for all \(i\), \(l(w) = \sum_{i=1}^k l(u_i)\) and
max_length
\(\geq l(u_1) \geq \cdots \geq l(u_k)\).A factorization \(u_1 \cdots u_k\) contributes a monomial of the form \(\prod_i x_{l(u_i)}\), with coefficient given by \(\prod_i 2^{c(u_i)}\), where \(c\) is a type-dependent statistic on Pieri factors, as returned by the method
u[i].stanley_symm_poly_weight()
.EXAMPLES:
sage: W = WeylGroup(['A', 3, 1]) sage: W.from_reduced_word([]).stanley_symmetric_function_as_polynomial() 1 sage: W.from_reduced_word([1]).stanley_symmetric_function_as_polynomial() x1 sage: W.from_reduced_word([1,2]).stanley_symmetric_function_as_polynomial() x1^2 sage: W.from_reduced_word([2,1]).stanley_symmetric_function_as_polynomial() x1^2 + x2 sage: W.from_reduced_word([1,2,1]).stanley_symmetric_function_as_polynomial() 2*x1^3 + x1*x2 sage: W.from_reduced_word([1,2,1,0]).stanley_symmetric_function_as_polynomial() 3*x1^4 + 2*x1^2*x2 + x2^2 + x1*x3 sage: W.from_reduced_word([1,2,3,1,2,1,0]).stanley_symmetric_function_as_polynomial() # long time 22*x1^7 + 11*x1^5*x2 + 5*x1^3*x2^2 + 3*x1^4*x3 + 2*x1*x2^3 + x1^2*x2*x3 sage: W.from_reduced_word([3,1,2,0,3,1,0]).stanley_symmetric_function_as_polynomial() # long time 8*x1^7 + 4*x1^5*x2 + 2*x1^3*x2^2 + x1*x2^3 sage: W = WeylGroup(['C',3,1]) sage: W.from_reduced_word([0,2,1,0]).stanley_symmetric_function_as_polynomial() 32*x1^4 + 16*x1^2*x2 + 8*x2^2 + 4*x1*x3 sage: W = WeylGroup(['B',3,1]) sage: W.from_reduced_word([3,2,1]).stanley_symmetric_function_as_polynomial() 2*x1^3 + x1*x2 + 1/2*x3
Algorithm: Induction on the left Pieri factors. Note that this induction preserves subsets of \(W\) which are stable by taking right factors, and in particular Grassmanian elements.
- Finite#
alias of
sage.categories.finite_weyl_groups.FiniteWeylGroups
- class ParentMethods#
Bases:
object
- bruhat_cone(x, y, side='upper', backend='cdd')#
Return the (upper or lower) Bruhat cone associated to the interval
[x,y]
.To a cover relation \(v \prec w\) in strong Bruhat order you can assign a positive root \(\beta\) given by the unique reflection \(s_\beta\) such that \(s_\beta v = w\).
The upper Bruhat cone of the interval \([x,y]\) is the non-empty, polyhedral cone generated by the roots corresponding to \(x \prec a\) for all atoms \(a\) in the interval. The lower Bruhat cone of the interval \([x,y]\) is the non-empty, polyhedral cone generated by the roots corresponding to \(c \prec y\) for all coatoms \(c\) in the interval.
INPUT:
x
- an element in the group \(W\)y
- an element in the group \(W\)side
(default:'upper'
) – must be one of the following:'upper'
- return the upper Bruhat cone of the interval [x
,y
]'lower'
- return the lower Bruhat cone of the interval [x
,y
]
backend
– string (default:'cdd'
); the backend to use to create the polyhedron
EXAMPLES:
sage: W = WeylGroup(['A',2]) sage: x = W.from_reduced_word([1]) sage: y = W.w0 sage: W.bruhat_cone(x, y) A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 2 rays sage: W = WeylGroup(['E',6]) sage: x = W.one() sage: y = W.w0 sage: W.bruhat_cone(x, y, side='lower') A 6-dimensional polyhedron in QQ^8 defined as the convex hull of 1 vertex and 6 rays
REFERENCES:
- coxeter_matrix()#
Return the Coxeter matrix associated to
self
.EXAMPLES:
sage: G = WeylGroup(['A',3]) sage: G.coxeter_matrix() [1 3 2] [3 1 3] [2 3 1]
- pieri_factors(*args, **keywords)#
Returns the set of Pieri factors in this Weyl group.
For any type, the set of Pieri factors forms a lower ideal in Bruhat order, generated by all the conjugates of some special element of the Weyl group. In type \(A_n\), this special element is \(s_n\cdots s_1\), and the conjugates are obtained by rotating around this reduced word.
These are used to compute Stanley symmetric functions.
See also
EXAMPLES:
sage: W = WeylGroup(['A',5,1]) sage: PF = W.pieri_factors() sage: PF.cardinality() 63 sage: W = WeylGroup(['B',3]) sage: PF = W.pieri_factors() sage: sorted([w.reduced_word() for w in PF]) [[], [1], [1, 2], [1, 2, 1], [1, 2, 3], [1, 2, 3, 1], [1, 2, 3, 2], [1, 2, 3, 2, 1], [2], [2, 1], [2, 3], [2, 3, 1], [2, 3, 2], [2, 3, 2, 1], [3], [3, 1], [3, 1, 2], [3, 1, 2, 1], [3, 2], [3, 2, 1]] sage: W = WeylGroup(['C',4,1]) sage: PF = W.pieri_factors() sage: W.from_reduced_word([3,2,0]) in PF True
- quantum_bruhat_graph(index_set=())#
Return the quantum Bruhat graph of the quotient of the Weyl group by a parabolic subgroup \(W_J\).
INPUT:
index_set
– (default: ()) a tuple \(J\) of nodes of the Dynkin diagram
By default, the value for
index_set
indicates that the subgroup is trivial and the quotient is the full Weyl group.EXAMPLES:
sage: W = WeylGroup(['A',3], prefix="s") sage: g = W.quantum_bruhat_graph((1,3)) sage: g Parabolic Quantum Bruhat Graph of Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space) for nodes (1, 3): Digraph on 6 vertices sage: g.vertices(sort=True) [s2*s3*s1*s2, s3*s1*s2, s1*s2, s3*s2, s2, 1] sage: g.edges(sort=True) [(s2*s3*s1*s2, s2, alpha[2]), (s3*s1*s2, s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3]), (s3*s1*s2, 1, alpha[2]), (s1*s2, s3*s1*s2, alpha[2] + alpha[3]), (s3*s2, s3*s1*s2, alpha[1] + alpha[2]), (s2, s1*s2, alpha[1] + alpha[2]), (s2, s3*s2, alpha[2] + alpha[3]), (1, s2, alpha[2])] sage: W = WeylGroup(['A',3,1], prefix="s") sage: g = W.quantum_bruhat_graph() Traceback (most recent call last): ... ValueError: the Cartan type ['A', 3, 1] is not finite
- additional_structure()#
Return
None
.Indeed, the category of Weyl groups defines no additional structure: Weyl groups are a special class of Coxeter groups.
See also
Todo
Should this category be a
CategoryWithAxiom
?EXAMPLES:
sage: WeylGroups().additional_structure()
- super_categories()#
EXAMPLES:
sage: WeylGroups().super_categories() [Category of coxeter groups]