Finite Complex Reflection Groups#
- class sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups(base_category)#
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom
The category of finite complex reflection groups.
See
ComplexReflectionGroups
for the definition of complex reflection group. In the finite case, most of the information about the group can be recovered from its degrees and codegrees, and to a lesser extent to the explicit realization as subgroup of \(GL(V)\). Hence the most important optional methods to implement are:ComplexReflectionGroups.Finite.ParentMethods.degrees()
,ComplexReflectionGroups.Finite.ParentMethods.codegrees()
,ComplexReflectionGroups.Finite.ElementMethods.to_matrix()
.
Finite complex reflection groups are completely classified. In particular, if the group is irreducible, then it’s uniquely determined by its degrees and codegrees and whether it’s reflection representation is primitive or not (see [LT2009] Chapter 2.1 for the definition of primitive).
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: ComplexReflectionGroups().Finite() Category of finite complex reflection groups sage: ComplexReflectionGroups().Finite().super_categories() [Category of complex reflection groups, Category of finite groups, Category of finite finitely generated semigroups]
An example of a finite reflection group:
sage: W = ComplexReflectionGroups().Finite().example(); W # optional - gap3 Reducible real reflection group of rank 4 and type A2 x B2 sage: W.reflections() # optional - gap3 Finite family {1: (1,8)(2,5)(9,12), 2: (1,5)(2,9)(8,12), 3: (3,10)(4,7)(11,14), 4: (3,6)(4,11)(10,13), 5: (1,9)(2,8)(5,12), 6: (4,14)(6,13)(7,11), 7: (3,13)(6,10)(7,14)}
W
is in the category of complex reflection groups:sage: W in ComplexReflectionGroups().Finite() # optional - gap3 True
- class ElementMethods#
Bases:
object
- character_value()#
Return the value at
self
of the character of the reflection representation given byto_matrix()
.EXAMPLES:
sage: W = ColoredPermutations(1,3); W 1-colored permutations of size 3 sage: [t.character_value() for t in W] [3, 1, 1, 0, 0, 1]
Note that this could be a different (faithful) representation than that given by the corresponding root system:
sage: W = ReflectionGroup((1,1,3)); W # optional - gap3 Irreducible real reflection group of rank 2 and type A2 sage: [t.character_value() for t in W] # optional - gap3 [2, 0, 0, -1, -1, 0] sage: W = ColoredPermutations(2,2); W 2-colored permutations of size 2 sage: [t.character_value() for t in W] [2, 0, 0, -2, 0, 0, 0, 0] sage: W = ColoredPermutations(3,1); W 3-colored permutations of size 1 sage: [t.character_value() for t in W] [1, zeta3, -zeta3 - 1]
- reflection_length(in_unitary_group=False)#
Return the reflection length of
self
.This is the minimal numbers of reflections needed to obtain
self
.INPUT:
in_unitary_group
– (default:False
) ifTrue
, the reflection length is computed in the unitary group which is the dimension of the move space ofself
EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 1, 2, 2] sage: W = ReflectionGroup((2,1,2)) # optional - gap3 sage: sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 1, 1, 2, 2, 2] sage: W = ReflectionGroup((2,2,2)) # optional - gap3 sage: sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 2] sage: W = ReflectionGroup((3,1,2)) # optional - gap3 sage: sorted([t.reflection_length() for t in W]) # optional - gap3 [0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
- to_matrix()#
Return the matrix presentation of
self
acting on a vector space \(V\).EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: [t.to_matrix() for t in W] # optional - gap3 [ [1 0] [ 1 1] [-1 0] [-1 -1] [ 0 1] [ 0 -1] [0 1], [ 0 -1], [ 1 1], [ 1 0], [-1 -1], [-1 0] ] sage: W = ColoredPermutations(1,3) sage: [t.to_matrix() for t in W] [ [1 0 0] [1 0 0] [0 1 0] [0 0 1] [0 1 0] [0 0 1] [0 1 0] [0 0 1] [1 0 0] [1 0 0] [0 0 1] [0 1 0] [0 0 1], [0 1 0], [0 0 1], [0 1 0], [1 0 0], [1 0 0] ]
A different representation is given by the colored permutations:
sage: W = ColoredPermutations(3, 1) sage: [t.to_matrix() for t in W] [[1], [zeta3], [-zeta3 - 1]]
- class Irreducible(base_category)#
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom
- class ParentMethods#
Bases:
object
- absolute_order_ideal(gens=None, in_unitary_group=True, return_lengths=False)#
Return all elements in
self
below given elements in the absolute order ofself
.This order is defined by
\[\omega \leq_R \tau \Leftrightarrow \ell_R(\omega) + \ell_R(\omega^{-1} \tau) = \ell_R(\tau),\]where \(\ell_R\) denotes the reflection length.
This is, if
in_unitary_group
isFalse
, then\[\ell_R(w) = \min\{ \ell: w = r_1\cdots r_\ell, r_i \in R \},\]and otherwise
\[\ell_R(w) = \dim\operatorname{im}(w - 1).\]Note
If
gens
are not given,self
is assumed to be well-generated.INPUT:
gens
– (default:None
) if one or more elements are given, the order ideal in the absolute order generated bygens
is returned. Otherwise, the standard Coxeter element is used as unique maximal element.in_unitary_group
(default:True
) determines the length function used to compute the order. For real groups, both possible orders coincide, and for complex non-real groups, the order in the unitary group is much faster to compute.return_lengths
(default:False
) whether or not to also return the lengths of the elements.
EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: sorted( w.reduced_word() for w in W.absolute_order_ideal() ) # optional - gap3 [[], [1], [1, 2], [1, 2, 1], [2]] sage: sorted( w.reduced_word() for w in W.absolute_order_ideal(W.from_reduced_word([2,1])) ) # optional - gap3 [[], [1], [1, 2, 1], [2], [2, 1]] sage: sorted( w.reduced_word() for w in W.absolute_order_ideal(W.from_reduced_word([2])) ) # optional - gap3 [[], [2]] sage: W = CoxeterGroup(['A', 3]) sage: len(list(W.absolute_order_ideal())) 14 sage: W = CoxeterGroup(['A', 2]) sage: for (w, l) in W.absolute_order_ideal(return_lengths=True): ....: print(w.reduced_word(), l) [1, 2] 2 [1, 2, 1] 1 [2] 1 [1] 1 [] 0
- absolute_poset(in_unitary_group=False)#
Return the poset induced by the absolute order of
self
as a finite lattice.INPUT:
in_unitary_group
– (default:False
) ifFalse
, the relation is given by\sigma \leq \tau
if \(l_R(\sigma) + l_R(\sigma^{-1}\tau) = l_R(\tau)\) IfTrue
, the relation is given by \(\sigma \leq \tau\) if \(\dim(\mathrm{Fix}(\sigma)) + \dim(\mathrm{Fix}(\sigma^{-1}\tau)) = \dim(\mathrm{Fix}(\tau))\)
See also
EXAMPLES:
sage: P = ReflectionGroup((1,1,3)).absolute_poset(); P # optional - gap3 Finite poset containing 6 elements sage: sorted(w.reduced_word() for w in P) # optional - gap3 [[], [1], [1, 2], [1, 2, 1], [2], [2, 1]] sage: W = ReflectionGroup(4); W # optional - gap3 Irreducible complex reflection group of rank 2 and type ST4 sage: W.absolute_poset() # optional - gap3 Finite poset containing 24 elements
- coxeter_number()#
Return the Coxeter number of an irreducible reflection group.
This is defined as \(\frac{N + N^*}{n}\) where \(N\) is the number of reflections, \(N^*\) is the number of reflection hyperplanes, and \(n\) is the rank of
self
.EXAMPLES:
sage: W = ReflectionGroup(31) # optional - gap3 sage: W.coxeter_number() # optional - gap3 30
- elements_below_coxeter_element(c=None)#
Deprecated method.
Superseded by
absolute_order_ideal()
- generalized_noncrossing_partitions(m, c=None, positive=False)#
Return the set of all chains of length
m
in the noncrossing partition lattice ofself
, seenoncrossing_partition_lattice()
.Note
self
is assumed to be well-generated.INPUT:
c
– (default:None
) if an elementc
inself
is given, it is used as the maximal element in the intervalpositive
– (default:False
) ifTrue
, only those generalized noncrossing partitions of full support are returned
EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: sorted([w.reduced_word() for w in chain] # optional - gap3 ....: for chain in W.generalized_noncrossing_partitions(2)) # optional - gap3 [[[], [], [1, 2]], [[], [1], [2]], [[], [1, 2], []], [[], [1, 2, 1], [1]], [[], [2], [1, 2, 1]], [[1], [], [2]], [[1], [2], []], [[1, 2], [], []], [[1, 2, 1], [], [1]], [[1, 2, 1], [1], []], [[2], [], [1, 2, 1]], [[2], [1, 2, 1], []]] sage: sorted([w.reduced_word() for w in chain] # optional - gap3 ....: for chain in W.generalized_noncrossing_partitions(2, positive=True)) # optional - gap3 [[[], [1, 2], []], [[], [1, 2, 1], [1]], [[1], [2], []], [[1, 2], [], []], [[1, 2, 1], [], [1]], [[1, 2, 1], [1], []], [[2], [1, 2, 1], []]]
- noncrossing_partition_lattice(c=None, L=None, in_unitary_group=True)#
Return the interval \([1,c]\) in the absolute order of
self
as a finite lattice.See also
INPUT:
c
– (default:None
) if an elementc
inself
is given, it is used as the maximal element in the intervalL
– (default:None
) if a subsetL
(must be hashable!) ofself
is given, it is used as the underlying set (only cover relations are checked).in_unitary_group
– (default:False
) ifFalse
, the relation is given by \(\sigma \leq \tau\) if \(l_R(\sigma) + l_R(\sigma^{-1}\tau) = l_R(\tau)\); ifTrue
, the relation is given by \(\sigma \leq \tau\) if \(\dim(\mathrm{Fix}(\sigma)) + \dim(\mathrm{Fix}(\sigma^{-1}\tau)) = \dim(\mathrm{Fix}(\tau))\)
Note
If
L
is given, the parameterc
is ignored.EXAMPLES:
sage: W = SymmetricGroup(4) sage: W.noncrossing_partition_lattice() Finite lattice containing 14 elements sage: W = WeylGroup(['G', 2]) sage: W.noncrossing_partition_lattice() Finite lattice containing 8 elements sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: sorted( w.reduced_word() for w in W.noncrossing_partition_lattice() ) # optional - gap3 [[], [1], [1, 2], [1, 2, 1], [2]] sage: sorted( w.reduced_word() for w in W.noncrossing_partition_lattice(W.from_reduced_word([2,1])) ) # optional - gap3 [[], [1], [1, 2, 1], [2], [2, 1]] sage: sorted( w.reduced_word() for w in W.noncrossing_partition_lattice(W.from_reduced_word([2])) ) # optional - gap3 [[], [2]]
- example()#
Return an example of an irreducible complex reflection group.
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: ComplexReflectionGroups().Finite().Irreducible().example() # optional - gap3 Irreducible complex reflection group of rank 3 and type G(4,2,3)
- class ParentMethods#
Bases:
object
- base_change_matrix()#
Return the base change from the standard basis of the vector space of
self
to the basis given by the independent roots ofself
.Todo
For non-well-generated groups there is a conflict with construction of the matrix for an element.
EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: W.base_change_matrix() # optional - gap3 [1 0] [0 1] sage: W = ReflectionGroup(23) # optional - gap3 sage: W.base_change_matrix() # optional - gap3 [1 0 0] [0 1 0] [0 0 1] sage: W = ReflectionGroup((3,1,2)) # optional - gap3 sage: W.base_change_matrix() # optional - gap3 [1 0] [1 1] sage: W = ReflectionGroup((4,2,2)) # optional - gap3 sage: W.base_change_matrix() # optional - gap3 [ 1 0] [E(4) 1]
- cardinality()#
Return the cardinality of
self
.It is given by the product of the degrees of
self
.EXAMPLES:
sage: W = ColoredPermutations(1,3) sage: W.cardinality() 6 sage: W = ColoredPermutations(2,3) sage: W.cardinality() 48 sage: W = ColoredPermutations(4,3) sage: W.cardinality() 384 sage: W = ReflectionGroup((4,2,3)) # optional - gap3 sage: W.cardinality() # optional - gap3 192
- codegrees()#
Return the codegrees of
self
.OUTPUT: a tuple of Sage integers
EXAMPLES:
sage: W = ColoredPermutations(1,4) sage: W.codegrees() (2, 1, 0) sage: W = ColoredPermutations(3,3) sage: W.codegrees() (6, 3, 0) sage: W = ReflectionGroup(31) # optional - gap3 sage: W.codegrees() # optional - gap3 (28, 16, 12, 0)
- degrees()#
Return the degrees of
self
.OUTPUT: a tuple of Sage integers
EXAMPLES:
sage: W = ColoredPermutations(1,4) sage: W.degrees() (2, 3, 4) sage: W = ColoredPermutations(3,3) sage: W.degrees() (3, 6, 9) sage: W = ReflectionGroup(31) # optional - gap3 sage: W.degrees() # optional - gap3 (8, 12, 20, 24)
- is_real()#
Return whether
self
is real.A complex reflection group is real if it is isomorphic to a reflection group in \(GL(V)\) over a real vector space \(V\). Equivalently its character table has real entries.
This implementation uses the following statement: an irreducible complex reflection group is real if and only if \(2\) is a degree of
self
with multiplicity one. Hence, in general we just need to compare the number of occurrences of \(2\) as degree ofself
and the number of irreducible components.EXAMPLES:
sage: W = ColoredPermutations(1,3) sage: W.is_real() True sage: W = ColoredPermutations(4,3) sage: W.is_real() False
Todo
Add an example of non real finite complex reflection group that is generated by order 2 reflections.
- is_well_generated()#
Return whether
self
is well-generated.A finite complex reflection group is well generated if the number of its simple reflections coincides with its rank.
See also
ComplexReflectionGroups.Finite.WellGenerated()
Note
All finite real reflection groups are well generated.
The complex reflection groups of type \(G(r,1,n)\) and of type \(G(r,r,n)\) are well generated.
The complex reflection groups of type \(G(r,p,n)\) with \(1 < p < r\) are not well generated.
The direct product of two well generated finite complex reflection group is still well generated.
EXAMPLES:
sage: W = ColoredPermutations(1,3) sage: W.is_well_generated() True sage: W = ColoredPermutations(4,3) sage: W.is_well_generated() True sage: W = ReflectionGroup((4,2,3)) # optional - gap3 sage: W.is_well_generated() # optional - gap3 False sage: W = ReflectionGroup((4,4,3)) # optional - gap3 sage: W.is_well_generated() # optional - gap3 True
- number_of_reflection_hyperplanes()#
Return the number of reflection hyperplanes of
self
.This is also the number of distinguished reflections. For real groups, this coincides with the number of reflections.
This implementation uses that it is given by the sum of the codegrees of
self
plus its rank.See also
EXAMPLES:
sage: W = ColoredPermutations(1,3) sage: W.number_of_reflection_hyperplanes() 3 sage: W = ColoredPermutations(2,3) sage: W.number_of_reflection_hyperplanes() 9 sage: W = ColoredPermutations(4,3) sage: W.number_of_reflection_hyperplanes() 15 sage: W = ReflectionGroup((4,2,3)) # optional - gap3 sage: W.number_of_reflection_hyperplanes() # optional - gap3 15
- number_of_reflections()#
Return the number of reflections of
self
.For real groups, this coincides with the number of reflection hyperplanes.
This implementation uses that it is given by the sum of the degrees of
self
minus its rank.See also
EXAMPLES:
sage: [SymmetricGroup(i).number_of_reflections() for i in range(int(8))] [0, 0, 1, 3, 6, 10, 15, 21] sage: W = ColoredPermutations(1,3) sage: W.number_of_reflections() 3 sage: W = ColoredPermutations(2,3) sage: W.number_of_reflections() 9 sage: W = ColoredPermutations(4,3) sage: W.number_of_reflections() 21 sage: W = ReflectionGroup((4,2,3)) # optional - gap3 sage: W.number_of_reflections() # optional - gap3 15
- rank()#
Return the rank of
self
.The rank of
self
is the dimension of the smallest faithfull reflection representation ofself
.This default implementation uses that the rank is the number of
degrees()
.See also
ComplexReflectionGroups.rank()
EXAMPLES:
sage: W = ColoredPermutations(1,3) sage: W.rank() 2 sage: W = ColoredPermutations(2,3) sage: W.rank() 3 sage: W = ColoredPermutations(4,3) sage: W.rank() 3 sage: W = ReflectionGroup((4,2,3)) # optional - gap3 sage: W.rank() # optional - gap3 3
- class SubcategoryMethods#
Bases:
object
- WellGenerated()#
Return the full subcategory of well-generated objects of
self
.A finite complex generated group is well generated if it is isomorphic to a subgroup of the general linear group \(GL_n\) generated by \(n\) reflections.
See also
ComplexReflectionGroups.Finite.ParentMethods.is_well_generated()
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: C = ComplexReflectionGroups().Finite().WellGenerated(); C Category of well generated finite complex reflection groups
Here is an example of a finite well-generated complex reflection group:
sage: W = C.example(); W # optional - gap3 Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)
All finite Coxeter groups are well generated:
sage: CoxeterGroups().Finite().is_subcategory(C) True sage: SymmetricGroup(3) in C True
Note
The category of well generated finite complex reflection groups is currently implemented as an axiom. See discussion on trac ticket #11187. This may be a bit of overkill. Still it’s nice to have a full subcategory.
- class WellGenerated(base_category)#
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom
- class Irreducible(base_category)#
Bases:
sage.categories.category_with_axiom.CategoryWithAxiom
The category of finite irreducible well-generated finite complex reflection groups.
- class ParentMethods#
Bases:
object
- catalan_number(positive=False, polynomial=False)#
Return the Catalan number associated to
self
.It is defined by
\[\prod_{i = 1}^n \frac{d_i + h}{d_i},\]where \(d_1, \ldots, d_n\) are the degrees and where \(h\) is the Coxeter number. See [Ar2006] for further information.
INPUT:
positive
– optional boolean (defaultFalse
) ifTrue
, return instead the positive Catalan numberpolynomial
– optional boolean (defaultFalse
) ifTrue
, return instead the \(q\)-analogue as a polynomial in \(q\)
Note
For the symmetric group \(S_n\), it reduces to the Catalan number \(\frac{1}{n+1} \binom{2n}{n}\).
The Catalan numbers for \(G(r,1,n)\) all coincide for \(r > 1\).
EXAMPLES:
sage: [ColoredPermutations(1,n).catalan_number() for n in [3,4,5]] [5, 14, 42] sage: [ColoredPermutations(2,n).catalan_number() for n in [3,4,5]] [20, 70, 252] sage: [ReflectionGroup((2,2,n)).catalan_number() for n in [3,4,5]] # optional - gap3 [14, 50, 182]
- coxeter_number()#
Return the Coxeter number of a well-generated, irreducible reflection group. This is defined to be the order of a regular element in
self
, and is equal to the highest degree ofself
.See also
ComplexReflectionGroups.Finite.Irreducible()
Note
This method overwrites the more general method for complex reflection groups since the expression given here is quicker to compute.
EXAMPLES:
sage: W = ColoredPermutations(1,3) sage: W.coxeter_number() 3 sage: W = ColoredPermutations(4,3) sage: W.coxeter_number() 12 sage: W = ReflectionGroup((4,4,3)) # optional - gap3 sage: W.coxeter_number() # optional - gap3 8
- fuss_catalan_number(m, positive=False, polynomial=False)#
Return the
m
-th Fuss-Catalan number associated toself
.This is defined by
\[\prod_{i = 1}^n \frac{d_i + mh}{d_i},\]where \(d_1, \ldots, d_n\) are the degrees and \(h\) is the Coxeter number.
INPUT:
positive
– optional boolean (defaultFalse
) ifTrue
, return instead the positive Fuss-Catalan numberpolynomial
– optional boolean (defaultFalse
) ifTrue
, return instead the \(q\)-analogue as a polynomial in \(q\)
See [Ar2006] for further information.
Note
For the symmetric group \(S_n\), it reduces to the Fuss-Catalan number \(\frac{1}{mn+1}\binom{(m+1)n}{n}\).
The Fuss-Catalan numbers for \(G(r, 1, n)\) all coincide for \(r > 1\).
EXAMPLES:
sage: W = ColoredPermutations(1,3) sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [5, 12, 22] sage: W = ColoredPermutations(1,4) sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [14, 55, 140] sage: W = ColoredPermutations(1,5) sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [42, 273, 969] sage: W = ColoredPermutations(2,2) sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [6, 15, 28] sage: W = ColoredPermutations(2,3) sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [20, 84, 220] sage: W = ColoredPermutations(2,4) sage: [W.fuss_catalan_number(i) for i in [1,2,3]] [70, 495, 1820]
- number_of_reflections_of_full_support()#
Return the number of reflections with full support.
EXAMPLES:
sage: W = Permutations(4) sage: W.number_of_reflections_of_full_support() 1 sage: W = ColoredPermutations(1,4) sage: W.number_of_reflections_of_full_support() 1 sage: W = CoxeterGroup("B3") sage: W.number_of_reflections_of_full_support() 3 sage: W = ColoredPermutations(3,3) sage: W.number_of_reflections_of_full_support() 3
- rational_catalan_number(p, polynomial=False)#
Return the
p
-th rational Catalan number associated toself
.It is defined by
\[\prod_{i = 1}^n \frac{p + (p(d_i-1)) \mod h)}{d_i},\]where \(d_1, \ldots, d_n\) are the degrees and \(h\) is the Coxeter number. See [STW2016] for this formula.
INPUT:
polynomial
– optional boolean (defaultFalse
) ifTrue
, return instead the \(q\)-analogue as a polynomial in \(q\)
EXAMPLES:
sage: W = ColoredPermutations(1,3) sage: [W.rational_catalan_number(p) for p in [5,7,8]] [7, 12, 15] sage: W = ColoredPermutations(2,2) sage: [W.rational_catalan_number(p) for p in [7,9,11]] [10, 15, 21]
- example()#
Return an example of an irreducible well-generated complex reflection group.
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: ComplexReflectionGroups().Finite().WellGenerated().Irreducible().example() 4-colored permutations of size 3
- class ParentMethods#
Bases:
object
- coxeter_element()#
Return a Coxeter element.
The result is the product of the simple reflections, in some order.
Note
This implementation is shared with well generated complex reflection groups. It would be nicer to put it in some joint super category; however, in the current state of the art, there is none where it is clear that this is the right construction for obtaining a Coxeter element.
In this context, this is an element having a regular eigenvector (a vector not contained in any reflection hyperplane of
self
).EXAMPLES:
sage: CoxeterGroup(['A', 4]).coxeter_element().reduced_word() [1, 2, 3, 4] sage: CoxeterGroup(['B', 4]).coxeter_element().reduced_word() [1, 2, 3, 4] sage: CoxeterGroup(['D', 4]).coxeter_element().reduced_word() [1, 2, 4, 3] sage: CoxeterGroup(['F', 4]).coxeter_element().reduced_word() [1, 2, 3, 4] sage: CoxeterGroup(['E', 8]).coxeter_element().reduced_word() [1, 3, 2, 4, 5, 6, 7, 8] sage: CoxeterGroup(['H', 3]).coxeter_element().reduced_word() [1, 2, 3]
This method is also used for well generated finite complex reflection groups:
sage: W = ReflectionGroup((1,1,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3] sage: W = ReflectionGroup((2,1,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4] sage: W = ReflectionGroup((4,1,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4] sage: W = ReflectionGroup((4,4,4)) # optional - gap3 sage: W.coxeter_element().reduced_word() # optional - gap3 [1, 2, 3, 4]
- coxeter_elements()#
Return the (unique) conjugacy class in
self
containing all Coxeter elements.A Coxeter element is an element that has an eigenvalue \(e^{2\pi i/h}\) where \(h\) is the Coxeter number.
In case of finite Coxeter groups, these are exactly the elements that are conjugate to one (or, equivalently, all) standard Coxeter element, this is, to an element that is the product of the simple generators in some order.
See also
standard_coxeter_elements()
EXAMPLES:
sage: W = ReflectionGroup((1,1,3)) # optional - gap3 sage: sorted(c.reduced_word() for c in W.coxeter_elements()) # optional - gap3 [[1, 2], [2, 1]] sage: W = ReflectionGroup((1,1,4)) # optional - gap3 sage: sorted(c.reduced_word() for c in W.coxeter_elements()) # optional - gap3 [[1, 2, 1, 3, 2], [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 1, 3, 2, 1], [3, 2, 1]]
- is_well_generated()#
Return
True
asself
is well-generated.EXAMPLES:
sage: W = ReflectionGroup((3,1,2)) # optional - gap3 sage: W.is_well_generated() # optional - gap3 True
- standard_coxeter_elements()#
Return all standard Coxeter elements in
self
.This is the set of all elements in self obtained from any product of the simple reflections in
self
.Note
self
is assumed to be well-generated.This works even beyond real reflection groups, but the conjugacy class is not unique and we only obtain one such class.
EXAMPLES:
sage: W = ReflectionGroup(4) # optional - gap3 sage: sorted(W.standard_coxeter_elements()) # optional - gap3 [(1,7,6,12,23,20)(2,8,17,24,9,5)(3,16,10,19,15,21)(4,14,11,22,18,13), (1,10,4,12,21,22)(2,11,19,24,13,3)(5,15,7,17,16,23)(6,18,8,20,14,9)]
- example()#
Return an example of a well-generated complex reflection group.
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: ComplexReflectionGroups().Finite().WellGenerated().example() # optional - gap3 Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)
- example()#
Return an example of a complex reflection group.
EXAMPLES:
sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups sage: ComplexReflectionGroups().Finite().example() # optional - gap3 Reducible real reflection group of rank 4 and type A2 x B2