
Discrete Valuations and Discrete
Pseudo-Valuations

Release 9.7

The Sage Development Team

Jul 21, 2024

CONTENTS

1 High-Level Interface 1
1.1 p-adic valuations . 1
1.2 Valuations on Function Fields . 2

2 Low-Level Interface 3
2.1 Mac Lane valuations . 3
2.2 Limit valuations . 4
2.3 Non-classical valuations . 4

3 Mac Lane Approximants 5

4 References 7

5 More Details 9
5.1 Value groups of discrete valuations . 9
5.2 Discrete valuations . 12
5.3 Spaces of valuations . 18
5.4 Trivial valuations . 27
5.5 Gauss valuations on polynomial rings . 30
5.6 Valuations on polynomial rings based on 𝜑-adic expansions . 38
5.7 Inductive valuations on polynomial rings . 40
5.8 Augmented valuations on polynomial rings . 51
5.9 Valuations which are defined as limits of valuations. 69
5.10 Valuations which are implemented through a map to another valuation 74
5.11 Valuations which are scaled versions of another valuation . 78
5.12 Discrete valuations on function fields . 80
5.13 𝑝-adic Valuations on Number Fields and Their Subrings and Completions 89

6 Indices and Tables 99

Python Module Index 101

Index 103

i

ii

CHAPTER

ONE

HIGH-LEVEL INTERFACE

Valuations can be defined conveniently on some Sage rings such as p-adic rings and function fields.

1.1 p-adic valuations

Valuations on number fields can be easily specified if they uniquely extend the valuation of a rational prime:

sage: v = QQ.valuation(2)
sage: v(1024)
10

They are normalized such that the rational prime has valuation 1:

sage: K.<a> = NumberField(x^2 + x + 1)
sage: v = K.valuation(2)
sage: v(1024)
10

If there are multiple valuations over a prime, they can be obtained by extending a valuation from a smaller ring:

sage: K.<a> = NumberField(x^2 + x + 1)
sage: K.valuation(7)
Traceback (most recent call last):
...
ValueError: The valuation Gauss valuation induced by 7-adic valuation does not␣
→˓approximate a unique extension of 7-adic valuation with respect to x^2 + x + 1
sage: w,ww = QQ.valuation(7).extensions(K)
sage: w(a + 3), ww(a + 3)
(1, 0)
sage: w(a + 5), ww(a + 5)
(0, 1)

1

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

1.2 Valuations on Function Fields

Similarly, valuations can be defined on function fields:

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x)
sage: v(1/x)
-1

sage: v = K.valuation(1/x)
sage: v(1/x)
1

On extensions of function fields, valuations can be created by providing a prime on the underlying rational function
field when the extension is unique:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = L.valuation(x)
sage: v(x)
1

Valuations can also be extended from smaller function fields:

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x - 4)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v.extensions(L)
[[(x - 4)-adic valuation, v(y + 2) = 1]-adic valuation,
[(x - 4)-adic valuation, v(y - 2) = 1]-adic valuation]

2 Chapter 1. High-Level Interface

CHAPTER

TWO

LOW-LEVEL INTERFACE

2.1 Mac Lane valuations

Internally, all the above is backed by the algorithms described in [Mac1936I] and [Mac1936II]. Let us consider the
extensions of K.valuation(x - 4) to the field 𝐿 above to outline how this works internally.

First, the valuation on 𝐾 is induced by a valuation on Q[𝑥]. To construct this valuation, we start from the trivial
valuation on
𝑄 and consider its induced Gauss valuation on
𝑄[𝑥], i.e., the valuation that assigns to a polynomial the minimum of the coefficient valuations:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))

The Gauss valuation can be augmented by specifying that 𝑥− 4 has valuation 1:

sage: v = v.augmentation(x - 4, 1); v
[Gauss valuation induced by Trivial valuation on Rational Field, v(x - 4) = 1]

This valuation then extends uniquely to the fraction field:

sage: K.<x> = FunctionField(QQ)
sage: v = v.extension(K); v
(x - 4)-adic valuation

Over the function field we repeat the above process, i.e., we define the Gauss valuation induced by it and augment it to
approximate an extension to 𝐿:

sage: R.<y> = K[]
sage: w = GaussValuation(R, v)
sage: w = w.augmentation(y - 2, 1); w
[Gauss valuation induced by (x - 4)-adic valuation, v(y - 2) = 1]
sage: L.<y> = K.extension(y^2 - x)
sage: ww = w.extension(L); ww
[(x - 4)-adic valuation, v(y - 2) = 1]-adic valuation

3

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

2.2 Limit valuations

In the previous example the final valuation ww is not merely given by evaluating w on the ring 𝐾[𝑦]:

sage: ww(y^2 - x)
+Infinity
sage: y = R.gen()
sage: w(y^2 - x)
1

Instead ww is given by a limit, i.e., an infinite sequence of augmentations of valuations:

sage: ww._base_valuation
[Gauss valuation induced by (x - 4)-adic valuation, v(y - 2) = 1 , ...]

The terms of this infinite sequence are computed on demand:

sage: ww._base_valuation._approximation
[Gauss valuation induced by (x - 4)-adic valuation, v(y - 2) = 1]
sage: ww(y - 1/4*x - 1)
2
sage: ww._base_valuation._approximation
[Gauss valuation induced by (x - 4)-adic valuation, v(y + 1/64*x^2 - 3/8*x - 3/4) = 3]

2.3 Non-classical valuations

Using the low-level interface we are not limited to classical valuations on function fields that correspond to points on
the corresponding projective curves. Instead we can start with a non-trivial valuation on the field of constants:

sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: w = GaussValuation(R, v) # v is not trivial
sage: K.<x> = FunctionField(QQ)
sage: w = w.extension(K)
sage: w.residue_field()
Rational function field in x over Finite Field of size 2

4 Chapter 2. Low-Level Interface

CHAPTER

THREE

MAC LANE APPROXIMANTS

The main tool underlying this package is an algorithm by Mac Lane to compute, starting from a Gauss valuation on a
polynomial ring and a monic squarefree polynomial G, approximations to the limit valuation which send G to infinity:

sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: f = x^5 + 3*x^4 + 5*x^3 + 8*x^2 + 6*x + 12
sage: v.mac_lane_approximants(f) # random output (order may vary)
[[Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = 3],
[Gauss valuation induced by 2-adic valuation, v(x) = 1/2],
[Gauss valuation induced by 2-adic valuation, v(x) = 1]]

From these approximants one can already see the residual degrees and ramification indices of the corresponding ex-
tensions. The approximants can be pushed to arbitrary precision, corresponding to a factorization of f:

sage: v.mac_lane_approximants(f, required_precision=10) # random output
[[Gauss valuation induced by 2-adic valuation, v(x^2 + 193*x + 13/21) = 10],
[Gauss valuation induced by 2-adic valuation, v(x + 86) = 10],
[Gauss valuation induced by 2-adic valuation, v(x) = 1/2, v(x^2 + 36/11*x + 2/17) = 11␣
→˓]]

5

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

6 Chapter 3. Mac Lane Approximants

CHAPTER

FOUR

REFERENCES

The theory was originally described in [Mac1936I] and [Mac1936II]. A summary and some algorithmic details can
also be found in Chapter 4 of [Rüt2014].

7

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

8 Chapter 4. References

CHAPTER

FIVE

MORE DETAILS

5.1 Value groups of discrete valuations

This file defines additive sub(semi-)groups of Q and related structures.

AUTHORS:

• Julian Rüth (2013-09-06): initial version

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: v.value_group()
Additive Abelian Group generated by 1
sage: v.value_semigroup()
Additive Abelian Semigroup generated by 1

class sage.rings.valuation.value_group.DiscreteValuationCodomain
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The codomain of discrete valuations, the rational numbers extended by ±∞.

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValuationCodomain
sage: C = DiscreteValuationCodomain(); C
Codomain of Discrete Valuations

class sage.rings.valuation.value_group.DiscreteValueGroup(generator)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The value group of a discrete valuation, an additive subgroup of Q generated by generator.

INPUT:

• generator – a rational number

Note: We do not rely on the functionality provided by additive abelian groups in Sage since these re-
quire the underlying set to be the integers. Therefore, we roll our own Z-module here. We could have used
AdditiveAbelianGroupWrapper here, but it seems to be somewhat outdated. In particular, generic group
functionality should now come from the category and not from the super-class. A facade of Q appeared to be the
better approach.

9

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/groups/sage/groups/additive_abelian/additive_abelian_wrapper.html#sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: D1 = DiscreteValueGroup(0); D1
Trivial Additive Abelian Group
sage: D2 = DiscreteValueGroup(4/3); D2
Additive Abelian Group generated by 4/3
sage: D3 = DiscreteValueGroup(-1/3); D3
Additive Abelian Group generated by 1/3

denominator()
Return the denominator of a generator of this group.

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: DiscreteValueGroup(3/8).denominator()
8

gen()
Return a generator of this group.

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: DiscreteValueGroup(-3/8).gen()
3/8

index(other)
Return the index of other in this group.

INPUT:

• other – a subgroup of this group

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: DiscreteValueGroup(3/8).index(DiscreteValueGroup(3))
8
sage: DiscreteValueGroup(3).index(DiscreteValueGroup(3/8))
Traceback (most recent call last):
...
ValueError: other must be a subgroup of this group
sage: DiscreteValueGroup(3).index(DiscreteValueGroup(0))
Traceback (most recent call last):
...
ValueError: other must have finite index in this group
sage: DiscreteValueGroup(0).index(DiscreteValueGroup(0))
1
sage: DiscreteValueGroup(0).index(DiscreteValueGroup(3))
Traceback (most recent call last):
...
ValueError: other must be a subgroup of this group

is_trivial()
Return whether this is the trivial additive abelian group.

10 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: DiscreteValueGroup(-3/8).is_trivial()
False
sage: DiscreteValueGroup(0).is_trivial()
True

numerator()
Return the numerator of a generator of this group.

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: DiscreteValueGroup(3/8).numerator()
3

some_elements()
Return some typical elements in this group.

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueGroup
sage: DiscreteValueGroup(-3/8).some_elements()
[3/8, -3/8, 0, 42, 3/2, -3/2, 9/8, -9/8]

class sage.rings.valuation.value_group.DiscreteValueSemigroup(generators)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The value semigroup of a discrete valuation, an additive subsemigroup of Q generated by generators.

INPUT:

• generators – rational numbers

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueSemigroup
sage: D1 = DiscreteValueSemigroup(0); D1
Trivial Additive Abelian Semigroup
sage: D2 = DiscreteValueSemigroup(4/3); D2
Additive Abelian Semigroup generated by 4/3
sage: D3 = DiscreteValueSemigroup([-1/3, 1/2]); D3
Additive Abelian Semigroup generated by -1/3, 1/2

gens()
Return the generators of this semigroup.

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueSemigroup
sage: DiscreteValueSemigroup(-3/8).gens()
(-3/8,)

is_group()
Return whether this semigroup is a group.

EXAMPLES:

5.1. Value groups of discrete valuations 11

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: from sage.rings.valuation.value_group import DiscreteValueSemigroup
sage: DiscreteValueSemigroup(1).is_group()
False
sage: D = DiscreteValueSemigroup([-1, 1])
sage: D.is_group()
True

Invoking this method also changes the category of this semigroup if it is a group:

sage: D in AdditiveMagmas().AdditiveAssociative().AdditiveUnital().
→˓AdditiveInverse()
True

is_trivial()
Return whether this is the trivial additive abelian semigroup.

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueSemigroup
sage: DiscreteValueSemigroup(-3/8).is_trivial()
False
sage: DiscreteValueSemigroup([]).is_trivial()
True

some_elements()
Return some typical elements in this semigroup.

EXAMPLES:

sage: from sage.rings.valuation.value_group import DiscreteValueSemigroup
sage: list(DiscreteValueSemigroup([-3/8,1/2]).some_elements())
[0, -3/8, 1/2, ...]

5.2 Discrete valuations

This file defines abstract base classes for discrete (pseudo-)valuations.

AUTHORS:

• Julian Rüth (2013-03-16): initial version

EXAMPLES:

Discrete valuations can be created on a variety of rings:

sage: ZZ.valuation(2)
2-adic valuation
sage: GaussianIntegers().valuation(3)
3-adic valuation
sage: QQ.valuation(5)
5-adic valuation
sage: Zp(7).valuation()
7-adic valuation

12 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: K.<x> = FunctionField(QQ)
sage: K.valuation(x)
(x)-adic valuation
sage: K.valuation(x^2 + 1)
(x^2 + 1)-adic valuation
sage: K.valuation(1/x)
Valuation at the infinite place

sage: R.<x> = QQ[]
sage: v = QQ.valuation(2)
sage: w = GaussValuation(R, v)
sage: w.augmentation(x, 3)
[Gauss valuation induced by 2-adic valuation, v(x) = 3]

We can also define discrete pseudo-valuations, i.e., discrete valuations that send more than just zero to infinity:

sage: w.augmentation(x, infinity)
[Gauss valuation induced by 2-adic valuation, v(x) = +Infinity]

class sage.rings.valuation.valuation.DiscretePseudoValuation(parent)
Bases: sage.categories.morphism.Morphism

Abstract base class for discrete pseudo-valuations, i.e., discrete valuations which might send more that just zero
to infinity.

INPUT:

• domain – an integral domain

EXAMPLES:

sage: v = ZZ.valuation(2); v # indirect doctest
2-adic valuation

is_equivalent(f, g)
Return whether f and g are equivalent.

EXAMPLES:

sage: v = QQ.valuation(2)
sage: v.is_equivalent(2, 1)
False
sage: v.is_equivalent(2, -2)
True
sage: v.is_equivalent(2, 0)
False
sage: v.is_equivalent(0, 0)
True

class sage.rings.valuation.valuation.DiscreteValuation(parent)
Bases: sage.rings.valuation.valuation.DiscretePseudoValuation

Abstract base class for discrete valuations.

EXAMPLES:

5.2. Discrete valuations 13

../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, v)
sage: w = v.augmentation(x, 1337); w # indirect doctest
[Gauss valuation induced by 2-adic valuation, v(x) = 1337]

is_discrete_valuation()
Return whether this valuation is a discrete valuation.

EXAMPLES:

sage: v = valuations.TrivialValuation(ZZ)
sage: v.is_discrete_valuation()
True

mac_lane_approximant(G, valuation, approximants=None)
Return the approximant from mac_lane_approximants() for G which is approximated by or approxi-
mates valuation.

INPUT:

• G – a monic squarefree integral polynomial in a univariate polynomial ring over the domain of this
valuation

• valuation – a valuation on the parent of G

• approximants – the output of mac_lane_approximants(). If not given, it is computed.

EXAMPLES:

sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: G = x^2 + 1

We can select an approximant by approximating it:

sage: w = GaussValuation(R, v).augmentation(x + 1, 1/2)
sage: v.mac_lane_approximant(G, w)
[Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2]

As long as this is the only matching approximant, the approximation can be very coarse:

sage: w = GaussValuation(R, v)
sage: v.mac_lane_approximant(G, w)
[Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2]

Or it can be very specific:

sage: w = GaussValuation(R, v).augmentation(x + 1, 1/2).augmentation(G,␣
→˓infinity)
sage: v.mac_lane_approximant(G, w)
[Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2]

But it must be an approximation of an approximant:

sage: w = GaussValuation(R, v).augmentation(x, 1/2)
sage: v.mac_lane_approximant(G, w)

(continues on next page)

14 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

Traceback (most recent call last):
...
ValueError: The valuation [Gauss valuation induced by 2-adic valuation, v(x) =␣
→˓1/2] is not an approximant for a valuation which extends 2-adic valuation␣
→˓with respect to x^2 + 1 since the valuation of x^2 + 1 does not increase in␣
→˓every step

The valuation must single out one approximant:

sage: G = x^2 - 1
sage: w = GaussValuation(R, v)
sage: v.mac_lane_approximant(G, w)
Traceback (most recent call last):
...
ValueError: The valuation Gauss valuation induced by 2-adic valuation does not␣
→˓approximate a unique extension of 2-adic valuation with respect to x^2 - 1

sage: w = GaussValuation(R, v).augmentation(x + 1, 1)
sage: v.mac_lane_approximant(G, w)
Traceback (most recent call last):
...
ValueError: The valuation [Gauss valuation induced by 2-adic valuation, v(x +␣
→˓1) = 1] does not approximate a unique extension of 2-adic valuation with␣
→˓respect to x^2 - 1

sage: w = GaussValuation(R, v).augmentation(x + 1, 2)
sage: v.mac_lane_approximant(G, w)
[Gauss valuation induced by 2-adic valuation, v(x + 1) = +Infinity]

sage: w = GaussValuation(R, v).augmentation(x + 3, 2)
sage: v.mac_lane_approximant(G, w)
[Gauss valuation induced by 2-adic valuation, v(x + 1) = 1]

mac_lane_approximants(G, assume_squarefree=False, require_final_EF=True, required_precision=- 1,
require_incomparability=False, require_maximal_degree=False,
algorithm='serial')

Return approximants on 𝐾[𝑥] for the extensions of this valuation to 𝐿 = 𝐾[𝑥]/(𝐺).

If 𝐺 is an irreducible polynomial, then this corresponds to extensions of this valuation to the completion
of 𝐿.

INPUT:

• G – a monic squarefree integral polynomial in a univariate polynomial ring over the domain of this
valuation

• assume_squarefree – a boolean (default: False), whether to assume that G is squarefree. If True,
the squafreeness of G is not verified though it is necessary when require_final_EF is set for the
algorithm to terminate.

• require_final_EF – a boolean (default: True); whether to require the returned key polynomials to
be in one-to-one correspondance to the extensions of this valuation to L and require them to have the
ramification index and residue degree of the valuations they correspond to.

• required_precision – a number or infinity (default: -1); whether to require the last key polynomial
of the returned valuations to have at least that valuation.

5.2. Discrete valuations 15

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

• require_incomparability – a boolean (default: False); whether to require the returned valua-
tions to be incomparable (with respect to the partial order on valuations defined by comparing them
pointwise.)

• require_maximal_degree – a boolean (default: False); whether to require the last key polynomial
of the returned valuation to have maximal degree. This is most relevant when using this algorithm
to compute approximate factorizations of G, when set to True, the last key polynomial has the same
degree as the corresponding factor.

• algorithm – one of "serial" or "parallel" (default: "serial"); whether or not to parallelize
the algorithm

EXAMPLES:

sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: v.mac_lane_approximants(x^2 + 1)
[[Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2]]
sage: v.mac_lane_approximants(x^2 + 1, required_precision=infinity)
[[Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2, v(x^2 + 1) =␣
→˓+Infinity]]
sage: v.mac_lane_approximants(x^2 + x + 1)
[[Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = +Infinity]]

Note that G does not need to be irreducible. Here, we detect a factor 𝑥+1 and an approximate factor 𝑥+1
(which is an approximation to 𝑥− 1):

sage: v.mac_lane_approximants(x^2 - 1)
[[Gauss valuation induced by 2-adic valuation, v(x + 1) = +Infinity],
[Gauss valuation induced by 2-adic valuation, v(x + 1) = 1]]

However, it needs to be squarefree:

sage: v.mac_lane_approximants(x^2)
Traceback (most recent call last):
...
ValueError: G must be squarefree

montes_factorization(G, assume_squarefree=False, required_precision=None)
Factor G over the completion of the domain of this valuation.

INPUT:

• G – a monic polynomial over the domain of this valuation

• assume_squarefree – a boolean (default: False), whether to assume G to be squarefree

• required_precision – a number or infinity (default: infinity); if infinity, the returned
polynomials are actual factors of G, otherwise they are only factors with precision at least
required_precision.

ALGORITHM:

We compute mac_lane_approximants() with required_precision. The key polynomials approxi-
mate factors of G. This can be very slow unless required_precision is set to zero. Single factor lifting
could improve this significantly.

EXAMPLES:

16 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: k=Qp(5,4)
sage: v = k.valuation()
sage: R.<x>=k[]
sage: G = x^2 + 1
sage: v.montes_factorization(G)
((1 + O(5^4))*x + 2 + 5 + 2*5^2 + 5^3 + O(5^4)) * ((1 + O(5^4))*x + 3 + 3*5 +␣
→˓2*5^2 + 3*5^3 + O(5^4))

The computation might not terminate over incomplete fields (in particular because the factors can not be
represented there):

sage: R.<x> = QQ[]
sage: v = QQ.valuation(2)
sage: v.montes_factorization(x^6 - 1)
(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)

sage: v.montes_factorization(x^7 - 1) # not tested, does not terminate

sage: v.montes_factorization(x^7 - 1, required_precision=5)
(x - 1) * (x^3 - 5*x^2 - 6*x - 1) * (x^3 + 6*x^2 + 5*x - 1)

REFERENCES:

The underlying algorithm is described in [Mac1936II] and thoroughly analyzed in [GMN2008].

class sage.rings.valuation.valuation.InfiniteDiscretePseudoValuation(parent)
Bases: sage.rings.valuation.valuation.DiscretePseudoValuation

Abstract base class for infinite discrete pseudo-valuations, i.e., discrete pseudo-valuations which are not discrete
valuations.

EXAMPLES:

sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, v)
sage: w = v.augmentation(x, infinity); w # indirect doctest
[Gauss valuation induced by 2-adic valuation, v(x) = +Infinity]

is_discrete_valuation()
Return whether this valuation is a discrete valuation.

EXAMPLES:

sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: v = GaussValuation(R, v)
sage: v.is_discrete_valuation()
True
sage: w = v.augmentation(x, infinity)
sage: w.is_discrete_valuation()
False

class sage.rings.valuation.valuation.MacLaneApproximantNode(valuation, parent, ef,
principal_part_bound, coefficients,
valuations)

Bases: object

5.2. Discrete valuations 17

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

A node in the tree computed by DiscreteValuation.mac_lane_approximants()

Leaves in the computation of the tree of approximants mac_lane_approximants(). Each vertex consists of a
tuple (v,ef,p,coeffs,vals)where v is an approximant, i.e., a valuation, ef is a boolean, p is the parent of this
vertex, and coeffs and vals are cached values. (Only v and ef are relevant, everything else are caches/debug
info.) The boolean ef denotes whether v already has the final ramification index E and residue degree F of this
approximant. An edge V – P represents the relation P.v≤ V.v (pointwise on the polynomial ring K[x]) between
the valuations.

class sage.rings.valuation.valuation.NegativeInfiniteDiscretePseudoValuation(parent)
Bases: sage.rings.valuation.valuation.InfiniteDiscretePseudoValuation

Abstract base class for pseudo-valuations which attain the value ∞ and −∞, i.e., whose domain contains an
element of valuation ∞ and its inverse.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)).augmentation(x,␣
→˓infinity)
sage: K.<x> = FunctionField(QQ)
sage: w = K.valuation(v)

is_negative_pseudo_valuation()
Return whether this valuation attains the value −∞.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)).augmentation(x,␣
→˓infinity)
sage: v.is_negative_pseudo_valuation()
False
sage: K.<x> = FunctionField(QQ)
sage: w = K.valuation(v)
sage: w.is_negative_pseudo_valuation()
True

5.3 Spaces of valuations

This module provides spaces of exponential pseudo-valuations on integral domains. It currently only provides support
for such valuations if they are discrete, i.e., their image is a discrete additive subgroup of the rational numbers extended
by ∞.

AUTHORS:

• Julian Rüth (2016-10-14): initial version

EXAMPLES:

sage: QQ.valuation(2).parent()
Discrete pseudo-valuations on Rational Field

Note: Note that many tests not only in this module do not create instances of valuations directly since this gives the
wrong inheritance structure on the resulting objects:

18 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
sage: from sage.rings.valuation.trivial_valuation import TrivialDiscretePseudoValuation
sage: H = DiscretePseudoValuationSpace(QQ)
sage: v = TrivialDiscretePseudoValuation(H)
sage: v._test_category()
Traceback (most recent call last):
...
AssertionError: False is not true

Instead, the valuations need to be created through the __make_element_class__ of the containing space:

sage: from sage.rings.valuation.trivial_valuation import TrivialDiscretePseudoValuation
sage: v = H.__make_element_class__(TrivialDiscretePseudoValuation)(H)
sage: v._test_category()

The factories such as TrivialPseudoValuation provide the right inheritance structure:

sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v._test_category()

class sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace(domain)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.categories.
homset.Homset

The space of discrete pseudo-valuations on domain.

EXAMPLES:

sage: from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
sage: H = DiscretePseudoValuationSpace(QQ)
sage: QQ.valuation(2) in H
True

Note: We do not distinguish between the space of discrete valuations and the space of discrete pseudo-valuations.
This is entirely for practical reasons: We would like to model the fact that every discrete valuation is also a
discrete pseudo-valuation. At first, it seems to be sufficient to make sure that the in operator works which
can essentially be achieved by overriding _element_constructor_ of the space of discrete pseudo-valuations
to accept discrete valuations by just returning them. Currently, however, if one does not change the parent
of an element in _element_constructor_ to self, then one cannot register that conversion as a coercion.
Consequently, the operators <= and >= cannot be made to work between discrete valuations and discrete pseudo-
valuations on the same domain (because the implementation only calls _richcmp if both operands have the same
parent.) Of course, we could override __ge__ and __le__ but then we would likely run into other surprises. So in
the end, we went for a single homspace for all discrete valuations (pseudo or not) as this makes the implementation
much easier.

Todo: The comparison problem might be fixed by trac ticket #22029 or similar.

class ElementMethods
Bases: object

Provides methods for discrete pseudo-valuations that are added automatically to valuations in this space.

5.3. Spaces of valuations 19

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.Homset
../../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.Homset
https://trac.sagemath.org/22029

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

EXAMPLES:

Here is an example of a method that is automagically added to a discrete valuation:

sage: from sage.rings.valuation.valuation_space import␣
→˓DiscretePseudoValuationSpace
sage: H = DiscretePseudoValuationSpace(QQ)
sage: QQ.valuation(2).is_discrete_pseudo_valuation() # indirect doctest
True

The methods will be provided even if the concrete type is not created with __make_element_class__:

sage: from sage.rings.valuation.valuation import DiscretePseudoValuation
sage: m = DiscretePseudoValuation(H)
sage: m.parent() is H
True
sage: m.is_discrete_pseudo_valuation()
True

However, the category framework advises you to use inheritance:

sage: m._test_category()
Traceback (most recent call last):
...
AssertionError: False is not true

Using __make_element_class__, makes your concrete valuation inherit from this class:

sage: m = H.__make_element_class__(DiscretePseudoValuation)(H)
sage: m._test_category()

change_domain(ring)
Return this valuation over ring.

Unlike extension() or restriction(), this might not be completely sane mathematically. It is
essentially a conversion of this valuation into another space of valuations.

EXAMPLES:

sage: v = QQ.valuation(3)
sage: v.change_domain(ZZ)
3-adic valuation

element_with_valuation(s)
Return an element in the domain of this valuation with valuation s.

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: v.element_with_valuation(10)
1024

extension(ring)
Return the unique extension of this valuation to ring.

EXAMPLES:

20 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: v = ZZ.valuation(2)
sage: w = v.extension(QQ)
sage: w.domain()
Rational Field

extensions(ring)
Return the extensions of this valuation to ring.

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: v.extensions(QQ)
[2-adic valuation]

inverse(x, precision)
Return an approximate inverse of x.

The element returned is such that the product differs from 1 by an element of valuation at least
precision.

INPUT:
• x – an element in the domain of this valuation
• precision – a rational or infinity

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: x = 3
sage: y = v.inverse(3, 2); y
3
sage: x*y - 1
8

This might not be possible for elements of positive valuation:

sage: v.inverse(2, 2)
Traceback (most recent call last):
...
ValueError: element has no approximate inverse in this ring

Of course this always works over fields:

sage: v = QQ.valuation(2)
sage: v.inverse(2, 2)
1/2

is_discrete_pseudo_valuation()
Return whether this valuation is a discrete pseudo-valuation.

EXAMPLES:

sage: QQ.valuation(2).is_discrete_pseudo_valuation()
True

is_discrete_valuation()
Return whether this valuation is a discrete valuation, i.e., whether it is a discrete pseudo
valuation that only sends zero to ∞.

5.3. Spaces of valuations 21

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

EXAMPLES:

sage: QQ.valuation(2).is_discrete_valuation()
True

is_negative_pseudo_valuation()
Return whether this valuation is a discrete pseudo-valuation that does attain −∞, i.e., it is non-trivial
and its domain contains an element with valuation ∞ that has an inverse.

EXAMPLES:

sage: QQ.valuation(2).is_negative_pseudo_valuation()
False

is_trivial()
Return whether this valuation is trivial, i.e., whether it is constant ∞ or constant zero for everything
but the zero element.

Subclasses need to override this method if they do not implement uniformizer().

EXAMPLES:

sage: QQ.valuation(7).is_trivial()
False

lift(X)
Return a lift of X in the domain which reduces down to X again via reduce().

EXAMPLES:

sage: v = QQ.valuation(2)
sage: v.lift(v.residue_ring().one())
1

lower_bound(x)
Return a lower bound of this valuation at x.

Use this method to get an approximation of the valuation of x when speed is more important than
accuracy.

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: v.lower_bound(2^10)
10

reduce(x)
Return the image of x in the residue_ring() of this valuation.

EXAMPLES:

sage: v = QQ.valuation(2)
sage: v.reduce(2)
0
sage: v.reduce(1)
1
sage: v.reduce(1/3)
1

(continues on next page)

22 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

sage: v.reduce(1/2)
Traceback (most recent call last):
...
ValueError: reduction is only defined for elements of non-negative valuation

residue_field()
Return the residue field of this valuation, i.e., the field of fractions of the residue_ring(), the ele-
ments of non-negative valuation modulo the elements of positive valuation.

EXAMPLES:

sage: QQ.valuation(2).residue_field()
Finite Field of size 2
sage: valuations.TrivialValuation(QQ).residue_field()
Rational Field

sage: valuations.TrivialValuation(ZZ).residue_field()
Rational Field
sage: GaussValuation(ZZ['x'], ZZ.valuation(2)).residue_field()
Rational function field in x over Finite Field of size 2

residue_ring()
Return the residue ring of this valuation, i.e., the elements of non-negative valuation modulo the ele-
ments of positive valuation. EXAMPLES:

sage: QQ.valuation(2).residue_ring()
Finite Field of size 2
sage: valuations.TrivialValuation(QQ).residue_ring()
Rational Field

Note that a residue ring always exists, even when a residue field may not:

sage: valuations.TrivialPseudoValuation(QQ).residue_ring()
Quotient of Rational Field by the ideal (1)
sage: valuations.TrivialValuation(ZZ).residue_ring()
Integer Ring
sage: GaussValuation(ZZ['x'], ZZ.valuation(2)).residue_ring()
Univariate Polynomial Ring in x over Finite Field of size 2 (using ...)

restriction(ring)
Return the restriction of this valuation to ring.

EXAMPLES:

sage: v = QQ.valuation(2)
sage: w = v.restriction(ZZ)
sage: w.domain()
Integer Ring

scale(scalar)
Return this valuation scaled by scalar.

INPUT:
• scalar – a non-negative rational number or infinity

EXAMPLES:

5.3. Spaces of valuations 23

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: v = ZZ.valuation(3)
sage: w = v.scale(3)
sage: w(3)
3

Scaling can also be done through multiplication with a scalar:

sage: w/3 == v
True

Multiplication by zero produces the trivial discrete valuation:

sage: w = 0*v
sage: w(3)
0
sage: w(0)
+Infinity

Multiplication by infinity produces the trivial discrete pseudo-valuation:

sage: w = infinity*v
sage: w(3)
+Infinity
sage: w(0)
+Infinity

separating_element(others)
Return an element in the domain of this valuation which has positive valuation with respect to this
valuation but negative valuation with respect to the valuations in others.

EXAMPLES:

sage: v2 = QQ.valuation(2)
sage: v3 = QQ.valuation(3)
sage: v5 = QQ.valuation(5)
sage: v2.separating_element([v3,v5])
4/15

shift(x, s)
Shift x in its expansion with respect to uniformizer() by s “digits”.

For non-negative s, this just returns x multiplied by a power of the uniformizer 𝜋.

For negative s, it does the same but when not over a field, it drops coefficients in the 𝜋-adic expansion
which have negative valuation.

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: v.shift(1, 10)
1024
sage: v.shift(11, -1)
5

For some rings, there is no clear 𝜋-adic expansion. In this case, this method performs negative shifts
by iterated division by the uniformizer and substraction of a lift of the reduction:

24 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<x> = ZZ[]
sage: v = ZZ.valuation(2)
sage: w = GaussValuation(R, v)
sage: w.shift(x, 1)
2*x
sage: w.shift(2*x, -1)
x
sage: w.shift(x + 2*x^2, -1)
x^2

simplify(x, error=None, force=False)
Return a simplified version of x.

Produce an element which differs from x by an element of valuation strictly greater than the valuation
of x (or strictly greater than error if set.)

If force is not set, then expensive simplifications may be avoided.

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: v.simplify(6, force=True)
2
sage: v.simplify(6, error=0, force=True)
0

uniformizer()
Return an element in the domain which has positive valuation and generates the value group of this
valuation.

EXAMPLES:

sage: QQ.valuation(11).uniformizer()
11

Trivial valuations have no uniformizer:

sage: from sage.rings.valuation.valuation_space import␣
→˓DiscretePseudoValuationSpace
sage: v = DiscretePseudoValuationSpace(QQ).an_element()
sage: v.is_trivial()
True
sage: v.uniformizer()
Traceback (most recent call last):
...
ValueError: Trivial valuations do not define a uniformizing element

upper_bound(x)
Return an upper bound of this valuation at x.

Use this method to get an approximation of the valuation of x when speed is more important than
accuracy.

EXAMPLES:

5.3. Spaces of valuations 25

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: v = ZZ.valuation(2)
sage: v.upper_bound(2^10)
10

value_group()
Return the value group of this discrete pseudo-valuation, the discrete additive subgroup of the rational
numbers which is generated by the valuation of the uniformizer().

EXAMPLES:

sage: QQ.valuation(2).value_group()
Additive Abelian Group generated by 1

A pseudo-valuation that is ∞ everywhere, does not have a value group:

sage: from sage.rings.valuation.valuation_space import␣
→˓DiscretePseudoValuationSpace
sage: v = DiscretePseudoValuationSpace(QQ).an_element()
sage: v.value_group()
Traceback (most recent call last):
...
ValueError: The trivial pseudo-valuation that is infinity everywhere does␣
→˓not have a value group.

value_semigroup()
Return the value semigroup of this discrete pseudo-valuation, the additive subsemigroup of the rational
numbers which is generated by the valuations of the elements in the domain.

EXAMPLES:

Most commonly, in particular over fields, the semigroup is the group generated by the valuation of the
uniformizer:

sage: G = QQ.valuation(2).value_semigroup(); G
Additive Abelian Semigroup generated by -1, 1
sage: G in AdditiveMagmas().AdditiveAssociative().AdditiveUnital().
→˓AdditiveInverse()
True

If the domain is a discrete valuation ring, then the semigroup consists of the positive elements of the
value_group():

sage: Zp(2).valuation().value_semigroup()
Additive Abelian Semigroup generated by 1

The semigroup can have a more complicated structure when the uniformizer is not in the domain:

sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: w = GaussValuation(R, v)
sage: u = w.augmentation(x, 5/3)
sage: u.value_semigroup()
Additive Abelian Semigroup generated by 1, 5/3

class sage.rings.valuation.valuation_space.ScaleAction
Bases: sage.categories.action.Action

26 Chapter 5. More Details

../../../../../../../html/en/reference/categories/sage/categories/action.html#sage.categories.action.Action

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

Action of integers, rationals and the infinity ring on valuations by scaling it.

EXAMPLES:

sage: v = QQ.valuation(5)
sage: from operator import mul
sage: v.parent().get_action(ZZ, mul, self_on_left=False)
Left action by Integer Ring on Discrete pseudo-valuations on Rational Field

5.4 Trivial valuations

AUTHORS:

• Julian Rüth (2016-10-14): initial version

EXAMPLES:

sage: v = valuations.TrivialValuation(QQ); v
Trivial valuation on Rational Field
sage: v(1)
0

class sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation(parent)
Bases: sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation_base,
sage.rings.valuation.valuation.InfiniteDiscretePseudoValuation

The trivial pseudo-valuation that is ∞ everywhere.

EXAMPLES:

sage: v = valuations.TrivialPseudoValuation(QQ); v
Trivial pseudo-valuation on Rational Field

lift(X)
Return a lift of X to the domain of this valuation.

EXAMPLES:

sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v.lift(v.residue_ring().zero())
0

reduce(x)
Reduce x modulo the positive elements of this valuation.

EXAMPLES:

sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v.reduce(1)
0

residue_ring()
Return the residue ring of this valuation.

EXAMPLES:

5.4. Trivial valuations 27

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: valuations.TrivialPseudoValuation(QQ).residue_ring()
Quotient of Rational Field by the ideal (1)

value_group()
Return the value group of this valuation.

EXAMPLES:

A trivial discrete pseudo-valuation has no value group:

sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v.value_group()
Traceback (most recent call last):
...
ValueError: The trivial pseudo-valuation that is infinity everywhere does not␣
→˓have a value group.

class sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation_base(parent)
Bases: sage.rings.valuation.valuation.DiscretePseudoValuation

Base class for code shared by trivial valuations.

EXAMPLES:

sage: v = valuations.TrivialPseudoValuation(ZZ); v
Trivial pseudo-valuation on Integer Ring

is_negative_pseudo_valuation()
Return whether this valuation attains the value −∞.

EXAMPLES:

sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v.is_negative_pseudo_valuation()
False

is_trivial()
Return whether this valuation is trivial.

EXAMPLES:

sage: v = valuations.TrivialPseudoValuation(QQ)
sage: v.is_trivial()
True

uniformizer()
Return a uniformizing element for this valuation.

EXAMPLES:

sage: v = valuations.TrivialPseudoValuation(ZZ)
sage: v.uniformizer()
Traceback (most recent call last):
...
ValueError: Trivial valuations do not define a uniformizing element

28 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

class sage.rings.valuation.trivial_valuation.TrivialDiscreteValuation(parent)
Bases: sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation_base,
sage.rings.valuation.valuation.DiscreteValuation

The trivial valuation that is zero on non-zero elements.

EXAMPLES:

sage: v = valuations.TrivialValuation(QQ); v
Trivial valuation on Rational Field

extensions(ring)
Return the unique extension of this valuation to ring.

EXAMPLES:

sage: v = valuations.TrivialValuation(ZZ)
sage: v.extensions(QQ)
[Trivial valuation on Rational Field]

lift(X)
Return a lift of X to the domain of this valuation.

EXAMPLES:

sage: v = valuations.TrivialValuation(QQ)
sage: v.lift(v.residue_ring().zero())
0

reduce(x)
Reduce x modulo the positive elements of this valuation.

EXAMPLES:

sage: v = valuations.TrivialValuation(QQ)
sage: v.reduce(1)
1

residue_ring()
Return the residue ring of this valuation.

EXAMPLES:

sage: valuations.TrivialValuation(QQ).residue_ring()
Rational Field

value_group()
Return the value group of this valuation.

EXAMPLES:

A trivial discrete valuation has a trivial value group:

sage: v = valuations.TrivialValuation(QQ)
sage: v.value_group()
Trivial Additive Abelian Group

5.4. Trivial valuations 29

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

class sage.rings.valuation.trivial_valuation.TrivialValuationFactory(clazz, parent, *args,
**kwargs)

Bases: sage.structure.factory.UniqueFactory

Create a trivial valuation on domain.

EXAMPLES:

sage: v = valuations.TrivialValuation(QQ); v
Trivial valuation on Rational Field
sage: v(1)
0

create_key(domain)
Create a key that identifies this valuation.

EXAMPLES:

sage: valuations.TrivialValuation(QQ) is valuations.TrivialValuation(QQ) #␣
→˓indirect doctest
True

create_object(version, key, **extra_args)
Create a trivial valuation from key.

EXAMPLES:

sage: valuations.TrivialValuation(QQ) # indirect doctest
Trivial valuation on Rational Field

5.5 Gauss valuations on polynomial rings

This file implements Gauss valuations for polynomial rings, i.e. discrete valuations which assign to a polynomial the
minimal valuation of its coefficients.

AUTHORS:

• Julian Rüth (2013-04-15): initial version

EXAMPLES:

A Gauss valuation maps a polynomial to the minimal valuation of any of its coefficients:

sage: R.<x> = QQ[]
sage: v0 = QQ.valuation(2)
sage: v = GaussValuation(R, v0); v
Gauss valuation induced by 2-adic valuation
sage: v(2*x + 2)
1

Gauss valuations can also be defined iteratively based on valuations over polynomial rings:

sage: v = v.augmentation(x, 1/4); v
[Gauss valuation induced by 2-adic valuation, v(x) = 1/4]
sage: v = v.augmentation(x^4+2*x^3+2*x^2+2*x+2, 4/3); v
[Gauss valuation induced by 2-adic valuation, v(x) = 1/4, v(x^4 + 2*x^3 + 2*x^2 + 2*x +␣
→˓2) = 4/3] (continues on next page)

30 Chapter 5. More Details

../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

sage: S.<T> = R[]
sage: w = GaussValuation(S, v); w
Gauss valuation induced by [Gauss valuation induced by 2-adic valuation, v(x) = 1/4,␣
→˓v(x^4 + 2*x^3 + 2*x^2 + 2*x + 2) = 4/3]
sage: w(2*T + 1)
0

class sage.rings.valuation.gauss_valuation.GaussValuationFactory
Bases: sage.structure.factory.UniqueFactory

Create a Gauss valuation on domain.

INPUT:

• domain – a univariate polynomial ring

• v – a valuation on the base ring of domain, the underlying valuation on the constants of the polynomial
ring (if unspecified take the natural valuation on the valued ring domain.)

EXAMPLES:

The Gauss valuation is the minimum of the valuation of the coefficients:

sage: v = QQ.valuation(2)
sage: R.<x> = QQ[]
sage: w = GaussValuation(R, v)
sage: w(2)
1
sage: w(x)
0
sage: w(x + 2)
0

create_key(domain, v=None)
Normalize and check the parameters to create a Gauss valuation.

create_object(version, key, **extra_args)
Create a Gauss valuation from normalized parameters.

class sage.rings.valuation.gauss_valuation.GaussValuation_generic(parent, v)
Bases: sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation

A Gauss valuation on a polynomial ring domain.

INPUT:

• domain – a univariate polynomial ring over a valued ring 𝑅

• v – a discrete valuation on 𝑅

EXAMPLES:

sage: R = Zp(3,5)
sage: S.<x> = R[]
sage: v0 = R.valuation()
sage: v = GaussValuation(S, v0); v
Gauss valuation induced by 3-adic valuation

sage: S.<x> = QQ[]
(continues on next page)

5.5. Gauss valuations on polynomial rings 31

../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

sage: v = GaussValuation(S, QQ.valuation(5)); v
Gauss valuation induced by 5-adic valuation

E()
Return the ramification index of this valuation over its underlying Gauss valuation, i.e., 1.

EXAMPLES:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.E()
1

F()
Return the degree of the residue field extension of this valuation over the Gauss valuation, i.e., 1.

EXAMPLES:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.F()
1

augmentation_chain()
Return a list with the chain of augmentations down to the underlying Gauss valuation.

EXAMPLES:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.augmentation_chain()
[Gauss valuation induced by 2-adic valuation]

change_domain(ring)
Return this valuation as a valuation over ring.

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: w = GaussValuation(R, v)
sage: w.change_domain(QQ['x'])
Gauss valuation induced by 2-adic valuation

element_with_valuation(s)
Return a polynomial of minimal degree with valuation s.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: v.element_with_valuation(-2)
1/4

32 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

equivalence_unit(s, reciprocal=False)
Return an equivalence unit of valuation s.

INPUT:

• s – an element of the value_group()

• reciprocal – a boolean (default: False); whether or not to return the equivalence unit as the
equivalence_reciprocal() of the equivalence unit of valuation -s

EXAMPLES:

sage: S.<x> = Qp(3,5)[]
sage: v = GaussValuation(S)
sage: v.equivalence_unit(2)
3^2 + O(3^7)
sage: v.equivalence_unit(-2)
3^-2 + O(3^3)

extensions(ring)
Return the extensions of this valuation to ring.

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: w = GaussValuation(R, v)
sage: w.extensions(GaussianIntegers()['x'])
[Gauss valuation induced by 2-adic valuation]

is_gauss_valuation()
Return whether this valuation is a Gauss valuation.

EXAMPLES:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_gauss_valuation()
True

is_trivial()
Return whether this is a trivial valuation (sending everything but zero to zero.)

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: v.is_trivial()
True

lift(F)
Return a lift of F.

INPUT:

• F – a polynomial over the residue_ring() of this valuation

OUTPUT:

5.5. Gauss valuations on polynomial rings 33

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

a (possibly non-monic) polynomial in the domain of this valuation which reduces to F

EXAMPLES:

sage: S.<x> = Qp(3,5)[]
sage: v = GaussValuation(S)
sage: f = x^2 + 2*x + 16
sage: F = v.reduce(f); F
x^2 + 2*x + 1
sage: g = v.lift(F); g
(1 + O(3^5))*x^2 + (2 + O(3^5))*x + 1 + O(3^5)
sage: v.is_equivalent(f,g)
True
sage: g.parent() is v.domain()
True

See also:

reduce()

lift_to_key(F)
Lift the irreducible polynomial F from the residue_ring() to a key polynomial over this valuation.

INPUT:

• F – an irreducible non-constant monic polynomial in residue_ring() of this valuation

OUTPUT:

A polynomial 𝑓 in the domain of this valuation which is a key polynomial for this valuation and which, for
a suitable equivalence unit 𝑅, satisfies that the reduction of 𝑅𝑓 is F

EXAMPLES:

sage: R.<u> = QQ
sage: S.<x> = R[]
sage: v = GaussValuation(S, QQ.valuation(2))
sage: y = v.residue_ring().gen()
sage: f = v.lift_to_key(y^2 + y + 1); f
x^2 + x + 1

lower_bound(f)
Return an lower bound of this valuation at f.

Use this method to get an approximation of the valuation of f when speed is more important than accuracy.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.lower_bound(1024*x + 2)
1
sage: v(1024*x + 2)
1

monic_integral_model(G)
Return a monic integral irreducible polynomial which defines the same extension of the base ring of the
domain as the irreducible polynomial G together with maps between the old and the new polynomial.

34 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

EXAMPLES:

sage: R.<x> = Qp(2, 5)[]
sage: v = GaussValuation(R)
sage: v.monic_integral_model(5*x^2 + 1/2*x + 1/4)
(Ring endomorphism of Univariate Polynomial Ring in x over 2-adic Field with␣
→˓capped relative precision 5

Defn: (1 + O(2^5))*x |--> (2^-1 + O(2^4))*x,
Ring endomorphism of Univariate Polynomial Ring in x over 2-adic Field with␣
→˓capped relative precision 5

Defn: (1 + O(2^5))*x |--> (2 + O(2^6))*x,
(1 + O(2^5))*x^2 + (1 + 2^2 + 2^3 + O(2^5))*x + 1 + 2^2 + 2^3 + O(2^5))

reduce(f, check=True, degree_bound=None, coefficients=None, valuations=None)
Return the reduction of f modulo this valuation.

INPUT:

• f – an integral element of the domain of this valuation

• check – whether or not to check whether f has non-negative valuation (default: True)

• degree_bound – an a-priori known bound on the degree of the result which can speed up the compu-
tation (default: not set)

• coefficients – the coefficients of f as produced by coefficients() or None (default: None);
ignored

• valuations – the valuations of coefficients or None (default: None); ignored

OUTPUT:

A polynomial in the residue_ring() of this valuation.

EXAMPLES:

sage: S.<x> = Qp(2,5)[]
sage: v = GaussValuation(S)
sage: f = x^2 + 2*x + 16
sage: v.reduce(f)
x^2
sage: v.reduce(f).parent() is v.residue_ring()
True

The reduction is only defined for integral elements:

sage: f = x^2/2
sage: v.reduce(f)
Traceback (most recent call last):
...
ValueError: reduction not defined for non-integral elements and (2^-1 + O(2^
→˓4))*x^2 is not integral over Gauss valuation induced by 2-adic valuation

See also:

lift()

residue_ring()
Return the residue ring of this valuation, i.e., the elements of valuation zero module the elements of positive
valuation.

5.5. Gauss valuations on polynomial rings 35

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

EXAMPLES:

sage: S.<x> = Qp(2,5)[]
sage: v = GaussValuation(S)
sage: v.residue_ring()
Univariate Polynomial Ring in x over Finite Field of size 2 (using ...)

restriction(ring)
Return the restriction of this valuation to ring.

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: w = GaussValuation(R, v)
sage: w.restriction(ZZ)
2-adic valuation

scale(scalar)
Return this valuation scaled by scalar.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: 3*v # indirect doctest
Gauss valuation induced by 3 * 2-adic valuation

simplify(f, error=None, force=False, size_heuristic_bound=32, effective_degree=None, phiadic=True)
Return a simplified version of f.

Produce an element which differs from f by an element of valuation strictly greater than the valuation of f
(or strictly greater than error if set.)

INPUT:

• f – an element in the domain of this valuation

• error – a rational, infinity, or None (default: None), the error allowed to introduce through the sim-
plification

• force – whether or not to simplify f even if there is heuristically no change in the coefficient size of
f expected (default: False)

• effective_degree – when set, assume that coefficients beyond effective_degree can be safely
dropped (default: None)

• size_heuristic_bound – when force is not set, the expected factor by which the coefficients need
to shrink to perform an actual simplification (default: 32)

• phiadic – whether to simplify in the 𝑥-adic expansion; the parameter is ignored as no other simplifi-
cation is implemented

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: f = x^10/2 + 1

(continues on next page)

36 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

sage: v.simplify(f)
(2^-1 + O(2^4))*x^10 + 1 + O(2^5)

uniformizer()
Return a uniformizer of this valuation, i.e., a uniformizer of the valuation of the base ring.

EXAMPLES:

sage: S.<x> = QQ[]
sage: v = GaussValuation(S, QQ.valuation(5))
sage: v.uniformizer()
5
sage: v.uniformizer().parent() is S
True

upper_bound(f)
Return an upper bound of this valuation at f.

Use this method to get an approximation of the valuation of f when speed is more important than accuracy.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.upper_bound(1024*x + 1)
10
sage: v(1024*x + 1)
0

valuations(f, coefficients=None, call_error=False)
Return the valuations of the 𝑓𝑖𝜑𝑖 in the expansion 𝑓 =

∑︀
𝑓𝑖𝜑

𝑖.

INPUT:

• f – a polynomial in the domain of this valuation

• coefficients – the coefficients of f as produced by coefficients() or None (default: None); this
can be used to speed up the computation when the expansion of f is already known from a previous
computation.

• call_error – whether or not to speed up the computation by assuming that the result is only used to
compute the valuation of f (default: False)

OUTPUT:

A list, each entry a rational numbers or infinity, the valuations of 𝑓0, 𝑓1𝜑, . . .

EXAMPLES:

sage: R = ZZ
sage: S.<x> = R[]
sage: v = GaussValuation(S, R.valuation(2))
sage: f = x^2 + 2*x + 16
sage: list(v.valuations(f))
[4, 1, 0]

5.5. Gauss valuations on polynomial rings 37

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

value_group()
Return the value group of this valuation.

EXAMPLES:

sage: S.<x> = QQ[]
sage: v = GaussValuation(S, QQ.valuation(5))
sage: v.value_group()
Additive Abelian Group generated by 1

value_semigroup()
Return the value semigroup of this valuation.

EXAMPLES:

sage: S.<x> = QQ[]
sage: v = GaussValuation(S, QQ.valuation(5))
sage: v.value_semigroup()
Additive Abelian Semigroup generated by -1, 1

5.6 Valuations on polynomial rings based on 𝜑-adic expansions

This file implements a base class for discrete valuations on polynomial rings, defined by a 𝜑-adic expansion.

AUTHORS:

• Julian Rüth (2013-04-15): initial version

EXAMPLES:

The Gauss valuation is a simple example of a valuation that relies on 𝜑-adic expansions:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))

In this case, 𝜑 = 𝑥, so the expansion simply lists the coefficients of the polynomial:

sage: f = x^2 + 2*x + 2
sage: list(v.coefficients(f))
[2, 2, 1]

Often only the first few coefficients are necessary in computations, so for performance reasons, coefficients are com-
puted lazily:

sage: v.coefficients(f)
<generator object ...coefficients at 0x...>

Another example of a DevelopingValuation is an augmented valuation:

sage: w = v.augmentation(x^2 + x + 1, 3)

Here, the expansion lists the remainders of repeated division by 𝑥2 + 𝑥+ 1:

sage: list(w.coefficients(f))
[x + 1, 1]

38 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

class sage.rings.valuation.developing_valuation.DevelopingValuation(parent, phi)
Bases: sage.rings.valuation.valuation.DiscretePseudoValuation

Abstract base class for a discrete valuation of polynomials defined over the polynomial ring domain by the 𝜑-adic
development.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(7))

coefficients(f)
Return the 𝜑-adic expansion of f.

INPUT:

• f – a monic polynomial in the domain of this valuation

OUTPUT:

An iterator 𝑓0, 𝑓1, . . . , 𝑓𝑛 of polynomials in the domain of this valuation such that 𝑓 =
∑︀

𝑖 𝑓𝑖𝜑
𝑖

EXAMPLES:

sage: R = Qp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: f = x^2 + 2*x + 3
sage: list(v.coefficients(f)) # note that these constants are in the polynomial␣
→˓ring
[1 + 2 + O(2^5), 2 + O(2^6), 1 + O(2^5)]
sage: v = v.augmentation(x^2 + x + 1, 1)
sage: list(v.coefficients(f))
[(1 + O(2^5))*x + 2 + O(2^5), 1 + O(2^5)]

effective_degree(f, valuations=None)
Return the effective degree of f with respect to this valuation.

The effective degree of 𝑓 is the largest 𝑖 such that the valuation of 𝑓 and the valuation of 𝑓𝑖𝜑
𝑖 in the

development 𝑓 =
∑︀

𝑗 𝑓𝑗𝜑
𝑗 coincide (see [Mac1936II] p.497.)

INPUT:

• f – a non-zero polynomial in the domain of this valuation

EXAMPLES:

sage: R = Zp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.effective_degree(x)
1
sage: v.effective_degree(2*x + 1)
0

newton_polygon(f, valuations=None)
Return the Newton polygon of the 𝜑-adic development of f.

INPUT:

• f – a polynomial in the domain of this valuation

5.6. Valuations on polynomial rings based on 𝜑-adic expansions 39

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

EXAMPLES:

sage: R = Qp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: f = x^2 + 2*x + 3
sage: v.newton_polygon(f)
Finite Newton polygon with 2 vertices: (0, 0), (2, 0)

sage: v = v.augmentation(x^2 + x + 1, 1)
sage: v.newton_polygon(f)
Finite Newton polygon with 2 vertices: (0, 0), (1, 1)
sage: v.newton_polygon(f * v.phi()^3)
Finite Newton polygon with 2 vertices: (3, 3), (4, 4)

phi()
Return the polynomial 𝜑, the key polynomial of this valuation.

EXAMPLES:

sage: R = Zp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.phi()
(1 + O(2^5))*x

valuations(f)
Return the valuations of the 𝑓𝑖𝜑𝑖 in the expansion 𝑓 =

∑︀
𝑓𝑖𝜑

𝑖.

INPUT:

• f – a polynomial in the domain of this valuation

OUTPUT:

A list, each entry a rational numbers or infinity, the valuations of 𝑓0, 𝑓1𝜑, . . .

EXAMPLES:

sage: R = Qp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S, R.valuation())
sage: f = x^2 + 2*x + 16
sage: list(v.valuations(f))
[4, 1, 0]

5.7 Inductive valuations on polynomial rings

This module provides functionality for inductive valuations, i.e., finite chains of augmented valuations on top of a
Gauss valuation.

AUTHORS:

• Julian Rüth (2016-11-01): initial version

EXAMPLES:

A Gauss valuation is an example of an inductive valuation:

40 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))

Generally, an inductive valuation is an augmentation of an inductive valuation, i.e., a valuation that was created from
a Gauss valuation in a finite number of augmentation steps:

sage: w = v.augmentation(x, 1)
sage: w = w.augmentation(x^2 + 2*x + 4, 3)

REFERENCES:

Inductive valuations are originally discussed in [Mac1936I] and [Mac1936II]. An introduction is also given in Chapter
4 of [Rüt2014].

class sage.rings.valuation.inductive_valuation.FinalInductiveValuation(parent, phi)
Bases: sage.rings.valuation.inductive_valuation.InductiveValuation

Abstract base class for an inductive valuation which cannot be augmented further.

class sage.rings.valuation.inductive_valuation.FiniteInductiveValuation(parent, phi)
Bases: sage.rings.valuation.inductive_valuation.InductiveValuation, sage.rings.
valuation.valuation.DiscreteValuation

Abstract base class for iterated augmented valuations on top of a Gauss valuation which is a discrete
valuation, i.e., the last key polynomial has finite valuation.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))

extensions(other)
Return the extensions of this valuation to other.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(ZZ))
sage: K.<x> = FunctionField(QQ)
sage: v.extensions(K)
[Trivial valuation on Rational Field]

class sage.rings.valuation.inductive_valuation.InductiveValuation(parent, phi)
Bases: sage.rings.valuation.developing_valuation.DevelopingValuation

Abstract base class for iterated augmented valuations on top of a Gauss valuation.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(5))

E()
Return the ramification index of this valuation over its underlying Gauss valuation.

EXAMPLES:

5.7. Inductive valuations on polynomial rings 41

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.E()
1

F()
Return the residual degree of this valuation over its Gauss extension.

EXAMPLES:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.F()
1

augmentation_chain()
Return a list with the chain of augmentations down to the underlying Gauss valuation.

EXAMPLES:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.augmentation_chain()
[Gauss valuation induced by 2-adic valuation]

element_with_valuation(s)
Return a polynomial of minimal degree with valuation s.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: v.element_with_valuation(-2)
1/4

Depending on the base ring, an element of valuation s might not exist:

sage: R.<x> = ZZ[]
sage: v = GaussValuation(R, ZZ.valuation(2))
sage: v.element_with_valuation(-2)
Traceback (most recent call last):
...
ValueError: s must be in the value semigroup of this valuation but -2 is not in␣
→˓Additive Abelian Semigroup generated by 1

equivalence_reciprocal(f, coefficients=None, valuations=None, check=True)
Return an equivalence reciprocal of f.

An equivalence reciprocal of 𝑓 is a polynomial ℎ such that 𝑓 · ℎ is equivalent to 1 modulo this valuation
(see [Mac1936II] p.497.)

INPUT:

• f – a polynomial in the domain of this valuation which is an equivalence_unit()

42 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

• coefficients – the coefficients of f in the phi()-adic expansion if known (default: None)

• valuations – the valuations of coefficients if known (default: None)

• check – whether or not to check the validity of f (default: True)

Warning: This method may not work over 𝑝-adic rings due to problems with the xgcd implementation
there.

EXAMPLES:

sage: R = Zp(3,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: f = 3*x + 2
sage: h = v.equivalence_reciprocal(f); h
2 + O(3^5)
sage: v.is_equivalent(f*h, 1)
True

In an extended valuation over an extension field:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v = v.augmentation(x^2 + x + u, 1)
sage: f = 2*x + u
sage: h = v.equivalence_reciprocal(f); h
(u + 1) + O(2^5)
sage: v.is_equivalent(f*h, 1)
True

Extending the valuation once more:

sage: v = v.augmentation((x^2 + x + u)^2 + 2*x*(x^2 + x + u) + 4*x, 3)
sage: h = v.equivalence_reciprocal(f); h
(u + 1) + O(2^5)
sage: v.is_equivalent(f*h, 1)
True

equivalence_unit(s, reciprocal=False)
Return an equivalence unit of valuation s.

INPUT:

• s – an element of the value_group()

• reciprocal – a boolean (default: False); whether or not to return the equivalence unit as the
equivalence_reciprocal() of the equivalence unit of valuation -s.

EXAMPLES:

sage: S.<x> = Qp(3,5)[]
sage: v = GaussValuation(S)
sage: v.equivalence_unit(2)
3^2 + O(3^7)

(continues on next page)

5.7. Inductive valuations on polynomial rings 43

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

sage: v.equivalence_unit(-2)
3^-2 + O(3^3)

Note that this might fail for negative s if the domain is not defined over a field:

sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: w = GaussValuation(R, v)
sage: w.equivalence_unit(1)
2
sage: w.equivalence_unit(-1)
Traceback (most recent call last):
...
ValueError: s must be in the value semigroup of this valuation but -1 is not in␣
→˓Additive Abelian Semigroup generated by 1

is_equivalence_unit(f, valuations=None)
Return whether the polynomial f is an equivalence unit, i.e., an element of effective_degree() zero
(see [Mac1936II] p.497.)

INPUT:

• f – a polynomial in the domain of this valuation

EXAMPLES:

sage: R = Zp(2,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_equivalence_unit(x)
False
sage: v.is_equivalence_unit(S.zero())
False
sage: v.is_equivalence_unit(2*x + 1)
True

is_gauss_valuation()
Return whether this valuation is a Gauss valuation over the domain.

EXAMPLES:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_gauss_valuation()
True

monic_integral_model(G)
Return a monic integral irreducible polynomial which defines the same extension of the base ring of the
domain as the irreducible polynomial G together with maps between the old and the new polynomial.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))

(continues on next page)

44 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

sage: v.monic_integral_model(5*x^2 + 1/2*x + 1/4)
(Ring endomorphism of Univariate Polynomial Ring in x over Rational Field

Defn: x |--> 1/2*x,
Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
Defn: x |--> 2*x,

x^2 + 1/5*x + 1/5)

mu()
Return the valuation of phi().

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: v.mu()
0

class sage.rings.valuation.inductive_valuation.InfiniteInductiveValuation(parent,
base_valuation)

Bases: sage.rings.valuation.inductive_valuation.FinalInductiveValuation, sage.rings.
valuation.valuation.InfiniteDiscretePseudoValuation

Abstract base class for an inductive valuation which is not discrete, i.e., which assigns infinite valuation to its
last key polynomial.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, infinity)

change_domain(ring)
Return this valuation over ring.

EXAMPLES:

We can turn an infinite valuation into a valuation on the quotient:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, infinity)
sage: w.change_domain(R.quo(x^2 + x + 1))
2-adic valuation

class sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation(parent, phi)
Bases: sage.rings.valuation.inductive_valuation.FiniteInductiveValuation, sage.rings.
valuation.valuation.DiscreteValuation

Abstract base class for iterated augmented valuations on top of a Gauss valuation which can be extended
further through augmentation().

EXAMPLES:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v = v.augmentation(x^2 + x + u, 1)

5.7. Inductive valuations on polynomial rings 45

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

augmentation(phi, mu, check=True)
Return the inductive valuation which extends this valuation by mapping phi to mu.

INPUT:

• phi – a polynomial in the domain of this valuation; this must be a key polynomial, see is_key() for
properties of key polynomials.

• mu – a rational number or infinity, the valuation of phi in the extended valuation

• check – a boolean (default: True), whether or not to check the correctness of the parameters

EXAMPLES:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v = v.augmentation(x^2 + x + u, 1)
sage: v = v.augmentation((x^2 + x + u)^2 + 2*x*(x^2 + x + u) + 4*x, 3)
sage: v
[Gauss valuation induced by 2-adic valuation,
v((1 + O(2^5))*x^2 + (1 + O(2^5))*x + u + O(2^5)) = 1,
v((1 + O(2^5))*x^4 + (2^2 + O(2^6))*x^3 + (1 + (u + 1)*2 + O(2^5))*x^2 + ((u␣

→˓+ 1)*2^2 + O(2^6))*x + (u + 1) + (u + 1)*2 + (u + 1)*2^2 + (u + 1)*2^3 + (u +␣
→˓1)*2^4 + O(2^5)) = 3]

See also:

augmented_valuation

equivalence_decomposition(f, assume_not_equivalence_unit=False, coefficients=None,
valuations=None, compute_unit=True, degree_bound=None)

Return an equivalence decomposition of f, i.e., a polynomial 𝑔(𝑥) = 𝑒(𝑥)
∏︀

𝑖 𝜑𝑖(𝑥) with 𝑒(𝑥) an
equivalence unit and the 𝜑𝑖 key polynomials such that f is_equivalent() to 𝑔.

INPUT:

• f – a non-zero polynomial in the domain of this valuation

• assume_not_equivalence_unit – whether or not to assume that f is not an equivalence unit
(default: False)

• coefficients – the coefficients of f in the phi()-adic expansion if known (default: None)

• valuations – the valuations of coefficients if known (default: None)

• compute_unit – whether or not to compute the unit part of the decomposition (default: True)

• degree_bound – a bound on the degree of the _equivalence_reduction() of f (default: None)

ALGORITHM:

We use the algorithm described in Theorem 4.4 of [Mac1936II]. After removing all factors 𝜑 from a
polynomial 𝑓 , there is an equivalence unit 𝑅 such that 𝑅𝑓 has valuation zero. Now 𝑅𝑓 can be factored as∏︀

𝑖 𝛼𝑖 over the residue_field(). Lifting all 𝛼𝑖 to key polynomials 𝜑𝑖 gives 𝑅𝑓 =
∏︀

𝑖 𝑅𝑖𝑓𝑖 for suitable
equivalence units 𝑅𝑖 (see lift_to_key()). Taking 𝑅′ an equivalence_reciprocal() of 𝑅, we have
𝑓 equivalent to (𝑅′ ∏︀

𝑖 𝑅𝑖)
∏︀

𝑖 𝜑𝑖.

EXAMPLES:

sage: R.<u> = Qq(4,10)
sage: S.<x> = R[]

(continues on next page)

46 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

sage: v = GaussValuation(S)
sage: v.equivalence_decomposition(S.zero())
Traceback (most recent call last):
...
ValueError: equivalence decomposition of zero is not defined
sage: v.equivalence_decomposition(S.one())
1 + O(2^10)
sage: v.equivalence_decomposition(x^2+2)
((1 + O(2^10))*x)^2
sage: v.equivalence_decomposition(x^2+1)
((1 + O(2^10))*x + 1 + O(2^10))^2

A polynomial that is an equivalence unit, is returned as the unit part of a Factorization, leading to a unit
non-minimal degree:

sage: w = v.augmentation(x, 1)
sage: F = w.equivalence_decomposition(x^2+1); F
(1 + O(2^10))*x^2 + 1 + O(2^10)
sage: F.unit()
(1 + O(2^10))*x^2 + 1 + O(2^10)

However, if the polynomial has a non-unit factor, then the unit might be replaced by a factor of lower degree:

sage: f = x * (x^2 + 1)
sage: F = w.equivalence_decomposition(f); F
(1 + O(2^10))*x
sage: F.unit()
1 + O(2^10)

Examples over an iterated unramified extension:

sage: v = v.augmentation(x^2 + x + u, 1)
sage: v = v.augmentation((x^2 + x + u)^2 + 2*x*(x^2 + x + u) + 4*x, 3)

sage: v.equivalence_decomposition(x)
(1 + O(2^10))*x
sage: F = v.equivalence_decomposition(v.phi())
sage: len(F)
1
sage: F = v.equivalence_decomposition(v.phi() * (x^4 + 4*x^3 + (7 + 2*u)*x^2 +␣
→˓(8 + 4*u)*x + 1023 + 3*u))
sage: len(F)
2

is_equivalence_irreducible(f, coefficients=None, valuations=None)
Return whether the polynomial f is equivalence-irreducible, i.e., whether its
equivalence_decomposition() is trivial.

ALGORITHM:

We use the same algorithm as in equivalence_decomposition() we just do not lift the result to key
polynomials.

INPUT:

5.7. Inductive valuations on polynomial rings 47

../../../../../../../html/en/reference/structure/sage/structure/factorization.html#sage.structure.factorization.Factorization

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

• f – a non-constant polynomial in the domain of this valuation

EXAMPLES:

sage: R.<u> = Qq(4,5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_equivalence_irreducible(x)
True
sage: v.is_equivalence_irreducible(x^2)
False
sage: v.is_equivalence_irreducible(x^2 + 2)
False

is_key(phi, explain=False, assume_equivalence_irreducible=False)
Return whether phi is a key polynomial for this valuation, i.e., whether it is monic, whether it
is_equivalence_irreducible(), and whether it is is_minimal().

INPUT:

• phi – a polynomial in the domain of this valuation

• explain – a boolean (default: False), if True, return a string explaining why phi is not a key
polynomial

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_key(x)
True
sage: v.is_key(2*x, explain = True)
(False, 'phi must be monic')
sage: v.is_key(x^2, explain = True)
(False, 'phi must be equivalence irreducible')

sage: w = v.augmentation(x, 1)
sage: w.is_key(x + 1, explain = True)
(False, 'phi must be minimal')

is_minimal(f, assume_equivalence_irreducible=False)
Return whether the polynomial f is minimal with respect to this valuation.

A polynomial 𝑓 is minimal with respect to 𝑣 if it is not a constant and any non-zero polynomial ℎ which is
𝑣-divisible by 𝑓 has at least the degree of 𝑓 .

A polynomial ℎ is 𝑣-divisible by 𝑓 if there is a polynomial 𝑐 such that 𝑓𝑐 is_equivalent() to ℎ.

ALGORITHM:

Based on Theorem 9.4 of [Mac1936II].

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.is_minimal(x + 1)

(continues on next page)

48 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

True
sage: w = v.augmentation(x, 1)
sage: w.is_minimal(x + 1)
False

lift_to_key(F)
Lift the irreducible polynomial F from the residue_ring() to a key polynomial over this valuation.

INPUT:

• F – an irreducible non-constant monic polynomial in residue_ring() of this valuation

OUTPUT:

A polynomial 𝑓 in the domain of this valuation which is a key polynomial for this valuation and which is
such that an augmentation() with this polynomial adjoins a root of F to the resulting residue_ring().

More specifically, if F is not the generator of the residue ring, then multiplying f with the
equivalence_reciprocal() of the equivalence_unit() of the valuation of f, produces a unit which
reduces to F.

EXAMPLES:

sage: R.<u> = Qq(4,10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: y = v.residue_ring().gen()
sage: u0 = v.residue_ring().base_ring().gen()
sage: f = v.lift_to_key(y^2 + y + u0); f
(1 + O(2^10))*x^2 + (1 + O(2^10))*x + u + O(2^10)

mac_lane_step(G, principal_part_bound=None, assume_squarefree=False,
assume_equivalence_irreducible=False, report_degree_bounds_and_caches=False,
coefficients=None, valuations=None, check=True, allow_equivalent_key=True)

Perform an approximation step towards the squarefree monic non-constant integral polynomial G which is
not an equivalence unit.

This performs the individual steps that are used in mac_lane_approximants().

INPUT:

• G – a squarefree monic non-constant integral polynomial G which is not an equivalence unit

• principal_part_bound – an integer or None (default: None), a bound on the length of the principal
part, i.e., the section of negative slope, of the Newton polygon of G

• assume_squarefree – whether or not to assume that G is squarefree (default: False)

• assume_equivalence_irreducible – whether or not to assume that G is equivalence irreducible
(default: False)

• report_degree_bounds_and_caches – whether or not to include internal state with the returned
value (used by mac_lane_approximants() to speed up sequential calls)

• coefficients – the coefficients of G in the phi()-adic expansion if known (default: None)

• valuations – the valuations of coefficients if known (default: None)

• check – whether to check that G is a squarefree monic non-constant integral polynomial and not an
equivalence unit (default: True)

5.7. Inductive valuations on polynomial rings 49

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

• allow_equivalent_key – whether to return valuations which end in essentially the same key poly-
nomial as this valuation but have a higher valuation assigned to that key polynomial (default: True)

EXAMPLES:

We can use this method to perform the individual steps of mac_lane_approximants():

sage: R.<x> = QQ[]
sage: v = QQ.valuation(2)
sage: f = x^36 + 1160/81*x^31 + 9920/27*x^30 + 1040/81*x^26 + 52480/81*x^25 +␣
→˓220160/81*x^24 - 5120/81*x^21 - 143360/81*x^20 - 573440/81*x^19 + 12451840/
→˓81*x^18 - 266240/567*x^16 - 20316160/567*x^15 - 198737920/189*x^14 -␣
→˓1129840640/81*x^13 - 1907359744/27*x^12 + 8192/81*x^11 + 655360/81*x^10 +␣
→˓5242880/21*x^9 + 2118123520/567*x^8 + 15460204544/567*x^7 + 6509559808/81*x^6␣
→˓- 16777216/567*x^2 - 268435456/567*x - 1073741824/567
sage: v.mac_lane_approximants(f)
[[Gauss valuation induced by 2-adic valuation, v(x + 2056) = 23/2],
[Gauss valuation induced by 2-adic valuation, v(x) = 11/9],
[Gauss valuation induced by 2-adic valuation, v(x) = 2/5, v(x^5 + 4) = 7/2],
[Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^10 + 8*x^5 +␣
→˓64) = 7],
[Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^5 + 8) = 5]]

Starting from the Gauss valuation, a MacLane step branches off with some linear key polynomials in the
above example:

sage: v0 = GaussValuation(R, v)
sage: V1 = sorted(v0.mac_lane_step(f)); V1
[[Gauss valuation induced by 2-adic valuation, v(x) = 2/5],
[Gauss valuation induced by 2-adic valuation, v(x) = 3/5],
[Gauss valuation induced by 2-adic valuation, v(x) = 11/9],
[Gauss valuation induced by 2-adic valuation, v(x) = 3]]

The computation of MacLane approximants would now perform a MacLane step on each of these branches,
note however, that a direct call to this method might produce some unexpected results:

sage: V1[1].mac_lane_step(f)
[[Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^5 + 8) = 5],
[Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^10 + 8*x^5 +␣
→˓64) = 7],
[Gauss valuation induced by 2-adic valuation, v(x) = 3],
[Gauss valuation induced by 2-adic valuation, v(x) = 11/9]]

Note how this detected the two augmentations of V1[1] but also two other valuations that we had seen
in the previous step and that are greater than V1[1]. To ignore such trivial augmentations, we can set
allow_equivalent_key:

sage: V1[1].mac_lane_step(f, allow_equivalent_key=False)
[[Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^5 + 8) = 5],
[Gauss valuation induced by 2-adic valuation, v(x) = 3/5, v(x^10 + 8*x^5 +␣
→˓64) = 7]]

minimal_representative(f)
Return a minimal representative for f, i.e., a pair 𝑒, 𝑎 such that f is_equivalent() to 𝑒𝑎, 𝑒 is an
equivalence unit, and 𝑎 is_minimal() and monic.

50 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

INPUT:

• f – a non-zero polynomial which is not an equivalence unit

OUTPUT:

A factorization which has 𝑒 as its unit and 𝑎 as its unique factor.

ALGORITHM:

We use the algorithm described in the proof of Lemma 4.1 of [Mac1936II]. In the expansion 𝑓 =∑︀
𝑖 𝑓𝑖𝜑

𝑖 take 𝑒 = 𝑓𝑖 for the largest 𝑖 with 𝑓𝑖𝜑
𝑖 minimal (see effective_degree()). Let ℎ be the

equivalence_reciprocal() of 𝑒 and take 𝑎 given by the terms of minimal valuation in the expansion
of 𝑒𝑓 .

EXAMPLES:

sage: R.<u> = Qq(4,10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.minimal_representative(x + 2)
(1 + O(2^10))*x

sage: v = v.augmentation(x, 1)
sage: v.minimal_representative(x + 2)
(1 + O(2^10))*x + 2 + O(2^11)
sage: f = x^3 + 6*x + 4
sage: F = v.minimal_representative(f); F
(2 + 2^2 + O(2^11)) * ((1 + O(2^10))*x + 2 + O(2^11))
sage: v.is_minimal(F[0][0])
True
sage: v.is_equivalent(F.prod(), f)
True

5.8 Augmented valuations on polynomial rings

Implements augmentations of (inductive) valuations.

AUTHORS:

• Julian Rüth (2013-04-15): initial version

EXAMPLES:

Starting from a Gauss valuation, we can create augmented valuations on polynomial rings:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x, 1); w
[Gauss valuation induced by 2-adic valuation, v(x) = 1]
sage: w(x)
1

This also works for polynomial rings over base rings which are not fields. However, much of the functionality is only
available over fields:

5.8. Augmented valuations on polynomial rings 51

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<x> = ZZ[]
sage: v = GaussValuation(R, ZZ.valuation(2))
sage: w = v.augmentation(x, 1); w
[Gauss valuation induced by 2-adic valuation, v(x) = 1]
sage: w(x)
1

REFERENCES:

Augmentations are described originally in [Mac1936I] and [Mac1936II]. An overview can also be found in Chapter 4
of [Rüt2014].

class sage.rings.valuation.augmented_valuation.AugmentedValuationFactory
Bases: sage.structure.factory.UniqueFactory

Factory for augmented valuations.

EXAMPLES:

This factory is not meant to be called directly. Instead, augmentation() of a valuation should be called:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x, 1) # indirect doctest

Note that trivial parts of the augmented valuation might be dropped, so you should not rely on _base_valuation
to be the valuation you started with:

sage: ww = w.augmentation(x, 2)
sage: ww._base_valuation is v
True

create_key(base_valuation, phi, mu, check=True)
Create a key which uniquely identifies the valuation over base_valuation which sends phi to mu.

Note: The uniqueness that this factory provides is not why we chose to use a factory. However, it makes
pickling and equality checks much easier. At the same time, going through a factory makes it easier to
enforce that all instances correctly inherit methods from the parent Hom space.

create_object(version, key)
Create the augmented valuation represented by key.

class sage.rings.valuation.augmented_valuation.AugmentedValuation_base(parent, v, phi, mu)
Bases: sage.rings.valuation.inductive_valuation.InductiveValuation

An augmented valuation is a discrete valuation on a polynomial ring. It extends another discrete valuation 𝑣 by
setting the valuation of a polynomial 𝑓 to the minimum of 𝑣(𝑓𝑖)𝑖𝜇 when writing 𝑓 =

∑︀
𝑖 𝑓𝑖𝜑

𝑖.

INPUT:

• v – a InductiveValuation on a polynomial ring

• phi – a key polynomial over v

• mu – a rational number such that mu > v(phi) or infinity

EXAMPLES:

52 Chapter 5. More Details

../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: K.<u> = CyclotomicField(5)
sage: R.<x> = K[]
sage: v = GaussValuation(R, K.valuation(2))
sage: w = v.augmentation(x, 1/2); w # indirect doctest
[Gauss valuation induced by 2-adic valuation, v(x) = 1/2]
sage: ww = w.augmentation(x^4 + 2*x^2 + 4*u, 3); ww
[Gauss valuation induced by 2-adic valuation, v(x) = 1/2, v(x^4 + 2*x^2 + 4*u) = 3␣
→˓]

E()
Return the ramification index of this valuation over its underlying Gauss valuation.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)

sage: w = v.augmentation(x^2 + x + u, 1)
sage: w.E()
1

sage: w = v.augmentation(x, 1/2)
sage: w.E()
2

F()
Return the degree of the residue field extension of this valuation over the underlying Gauss valuation.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)

sage: w = v.augmentation(x^2 + x + u, 1)
sage: w.F()
2

sage: w = v.augmentation(x, 1/2)
sage: w.F()
1

augmentation_chain()
Return a list with the chain of augmentations down to the underlying Gauss valuation.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x, 1)
sage: w.augmentation_chain()
[[Gauss valuation induced by 2-adic valuation, v(x) = 1],

Gauss valuation induced by 2-adic valuation]

5.8. Augmented valuations on polynomial rings 53

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

For performance reasons, (and to simplify the underlying implementation,) trivial augmentations might get
dropped. You should not rely on augmentation_chain() to contain all the steps that you specified to
create the current valuation:

sage: ww = w.augmentation(x, 2)
sage: ww.augmentation_chain()
[[Gauss valuation induced by 2-adic valuation, v(x) = 2],

Gauss valuation induced by 2-adic valuation]

change_domain(ring)
Return this valuation over ring.

EXAMPLES:

We can change the domain of an augmented valuation even if there is no coercion between rings:

sage: R.<x> = GaussianIntegers()[]
sage: v = GaussValuation(R, GaussianIntegers().valuation(2))
sage: v = v.augmentation(x, 1)
sage: v.change_domain(QQ['x'])
[Gauss valuation induced by 2-adic valuation, v(x) = 1]

element_with_valuation(s)
Create an element of minimal degree and of valuation s.

INPUT:

• s – a rational number in the value group of this valuation

OUTPUT:

An element in the domain of this valuation

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.element_with_valuation(0)
1 + O(2^5)
sage: w.element_with_valuation(1/2)
(1 + O(2^5))*x^2 + (1 + O(2^5))*x + u + O(2^5)
sage: w.element_with_valuation(1)
2 + O(2^6)
sage: c = w.element_with_valuation(-1/2); c
(2^-1 + O(2^4))*x^2 + (2^-1 + O(2^4))*x + u*2^-1 + O(2^4)
sage: w(c)
-1/2
sage: w.element_with_valuation(1/3)
Traceback (most recent call last):
...
ValueError: s must be in the value group of the valuation but 1/3 is not in␣
→˓Additive Abelian Group generated by 1/2.

equivalence_unit(s, reciprocal=False)
Return an equivalence unit of minimal degree and valuation s.

INPUT:

54 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

• s – a rational number

• reciprocal – a boolean (default: False); whether or not to return the equivalence unit as the
equivalence_reciprocal() of the equivalence unit of valuation -s.

OUTPUT:

A polynomial in the domain of this valuation which is_equivalence_unit() for this valuation.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1)

sage: w.equivalence_unit(0)
1 + O(2^5)
sage: w.equivalence_unit(-4)
2^-4 + O(2)

Since an equivalence unit is of effective degree zero, 𝜑 must not divide it. Therefore, its valuation is in the
value group of the base valuation:

sage: w = v.augmentation(x, 1/2)

sage: w.equivalence_unit(3/2)
Traceback (most recent call last):
...
ValueError: 3/2 is not in the value semigroup of 2-adic valuation
sage: w.equivalence_unit(1)
2 + O(2^6)

An equivalence unit might not be integral, even if s >= 0:

sage: w = v.augmentation(x, 3/4)
sage: ww = w.augmentation(x^4 + 8, 5)

sage: ww.equivalence_unit(1/2)
(2^-1 + O(2^4))*x^2

extensions(ring)
Return the extensions of this valuation to ring.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)

sage: w.extensions(GaussianIntegers().fraction_field()['x'])
[[Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = 1]]

is_gauss_valuation()
Return whether this valuation is a Gauss valuation.

EXAMPLES:

5.8. Augmented valuations on polynomial rings 55

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)

sage: w.is_gauss_valuation()
False

is_negative_pseudo_valuation()
Return whether this valuation attains −∞.

EXAMPLES:

No element in the domain of an augmented valuation can have valuation−∞, so this method always returns
False:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: w = v.augmentation(x, infinity)
sage: w.is_negative_pseudo_valuation()
False

is_trivial()
Return whether this valuation is trivial, i.e., zero outside of zero.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
sage: w.is_trivial()
False

monic_integral_model(G)
Return a monic integral irreducible polynomial which defines the same extension of the base ring of the
domain as the irreducible polynomial G together with maps between the old and the new polynomial.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)

sage: w.monic_integral_model(5*x^2 + 1/2*x + 1/4)
(Ring endomorphism of Univariate Polynomial Ring in x over Rational Field

Defn: x |--> 1/2*x,
Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
Defn: x |--> 2*x,

x^2 + 1/5*x + 1/5)

psi()
Return the minimal polynomial of the residue field extension of this valuation.

OUTPUT:

A polynomial in the residue ring of the base valuation

EXAMPLES:

56 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)

sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.psi()
x^2 + x + u0

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: ww.psi()
x + 1

restriction(ring)
Return the restriction of this valuation to ring.

EXAMPLES:

sage: K = GaussianIntegers().fraction_field()
sage: R.<x> = K[]
sage: v = GaussValuation(R, K.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)

sage: w.restriction(QQ['x'])
[Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = 1]

scale(scalar)
Return this valuation scaled by scalar.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)
sage: 3*w # indirect doctest
[Gauss valuation induced by 3 * 2-adic valuation, v(x^2 + x + 1) = 3]

uniformizer()
Return a uniformizing element for this valuation.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)

sage: w.uniformizer()
2

class sage.rings.valuation.augmented_valuation.FinalAugmentedValuation(parent, v, phi, mu)
Bases: sage.rings.valuation.augmented_valuation.AugmentedValuation_base, sage.rings.
valuation.inductive_valuation.FinalInductiveValuation

An augmented valuation which can not be augmented anymore, either because it augments a trivial valuation or
because it is infinite.

EXAMPLES:

5.8. Augmented valuations on polynomial rings 57

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: w = v.augmentation(x, 1)

lift(F)
Return a polynomial which reduces to F.

INPUT:

• F – an element of the residue_ring()

ALGORITHM:

We simply undo the steps performed in reduce().

OUTPUT:

A polynomial in the domain of the valuation with reduction F

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))

sage: w = v.augmentation(x, 1)
sage: w.lift(1/2)
1/2

sage: w = v.augmentation(x^2 + x + 1, infinity)
sage: w.lift(w.residue_ring().gen())
x

A case with non-trivial base valuation:

sage: R.<u> = Qq(4, 10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, infinity)
sage: w.lift(w.residue_ring().gen())
(1 + O(2^10))*x

reduce(f, check=True, degree_bound=None, coefficients=None, valuations=None)
Reduce f module this valuation.

INPUT:

• f – an element in the domain of this valuation

• check – whether or not to check whether f has non-negative valuation (default: True)

• degree_bound – an a-priori known bound on the degree of the result which can speed up the compu-
tation (default: not set)

• coefficients – the coefficients of f as produced by coefficients() or None (default: None); this
can be used to speed up the computation when the expansion of f is already known from a previous
computation.

• valuations – the valuations of coefficients or None (default: None); ignored

OUTPUT:

58 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

an element of the residue_ring() of this valuation, the reduction modulo the ideal of elements of positive
valuation

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))

sage: w = v.augmentation(x, 1)
sage: w.reduce(x^2 + x + 1)
1

sage: w = v.augmentation(x^2 + x + 1, infinity)
sage: w.reduce(x)
u1

residue_ring()
Return the residue ring of this valuation, i.e., the elements of non-negative valuation modulo the elements
of positive valuation.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))

sage: w = v.augmentation(x, 1)
sage: w.residue_ring()
Rational Field

sage: w = v.augmentation(x^2 + x + 1, infinity)
sage: w.residue_ring()
Number Field in u1 with defining polynomial x^2 + x + 1

An example with a non-trivial base valuation:

sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, infinity)
sage: w.residue_ring()
Finite Field in u1 of size 2^2

Since trivial extensions of finite fields are not implemented, the resulting ring might be identical to the
residue ring of the underlying valuation:

sage: w = v.augmentation(x, infinity)
sage: w.residue_ring()
Finite Field of size 2

class sage.rings.valuation.augmented_valuation.FinalFiniteAugmentedValuation(parent, v, phi,
mu)

Bases: sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation, sage.rings.
valuation.augmented_valuation.FinalAugmentedValuation

An augmented valuation which is discrete, i.e., which assigns a finite valuation to its last key polynomial, but
which can not be further augmented.

EXAMPLES:

5.8. Augmented valuations on polynomial rings 59

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, valuations.TrivialValuation(QQ))
sage: w = v.augmentation(x, 1)

class sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation(parent, v, phi, mu)
Bases: sage.rings.valuation.augmented_valuation.AugmentedValuation_base, sage.rings.
valuation.inductive_valuation.FiniteInductiveValuation

A finite augmented valuation, i.e., an augmented valuation which is discrete, or equivalently an augmented val-
uation which assigns to its last key polynomial a finite valuation.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)

lower_bound(f)
Return a lower bound of this valuation at f.

Use this method to get an approximation of the valuation of f when speed is more important than accuracy.

ALGORITHM:

The main cost of evaluation is the computation of the coefficients() of the phi()-adic expansion of
f (which often leads to coefficient bloat.) So unless phi() is trivial, we fall back to valuation which this
valuation augments since it is guaranteed to be smaller everywhere.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.lower_bound(x^2 + x + u)
0

simplify(f, error=None, force=False, effective_degree=None, size_heuristic_bound=32, phiadic=False)
Return a simplified version of f.

Produce an element which differs from f by an element of valuation strictly greater than the valuation of f
(or strictly greater than error if set.)

INPUT:

• f – an element in the domain of this valuation

• error – a rational, infinity, or None (default: None), the error allowed to introduce through the sim-
plification

• force – whether or not to simplify f even if there is heuristically no change in the coefficient size of
f expected (default: False)

• effective_degree – when set, assume that coefficients beyond effective_degree in the phi()-
adic development can be safely dropped (default: None)

• size_heuristic_bound – when force is not set, the expected factor by which the coefficients need
to shrink to perform an actual simplification (default: 32)

60 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

• phiadic – whether to simplify the coefficients in the 𝜑-adic expansion recursively. This often times
leads to huge coefficients in the 𝑥-adic expansion (default: False, i.e., use an 𝑥-adic expansion.)

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.simplify(x^10/2 + 1, force=True)
(u + 1)*2^-1 + O(2^4)

Check that trac ticket #25607 has been resolved, i.e., the coefficients in the following example are small::`

sage: R.<x> = QQ[] sage: K.<a> = NumberField(x^3 + 6) sage: R.<x> = K[] sage: v = Gauss-
Valuation(R, K.valuation(2)) sage: v = v.augmentation(x, 3/2) sage: v = v.augmentation(x^2 + 8,
13/4) sage: v = v.augmentation(x^4 + 16*x^2 + 32*x + 64, 20/3) sage: F.<x> = FunctionField(K)
sage: S.<y> = F[] sage: v = F.valuation(v) sage: G = y^2 - 2*x^5 + 8*x^3 + 80*x^2 + 128*x
+ 192 sage: v.mac_lane_approximants(G) [[Gauss valuation induced by Valuation on rational
function field induced by [Gauss valuation induced by 2-adic valuation, v(x) = 3/2, v(x^2 + 8) =
13/4, v(x^4 + 16*x^2 + 32*x + 64) = 20/3], v(y + 4*x + 8) = 31/8]]

upper_bound(f)
Return an upper bound of this valuation at f.

Use this method to get an approximation of the valuation of f when speed is more important than accuracy.

ALGORITHM:

Any entry of valuations() serves as an upper bound. However, computation of the phi()-adic expansion
of f is quite costly. Therefore, we produce an upper bound on the last entry of valuations(), namely the
valuation of the leading coefficient of f plus the valuation of the appropriate power of phi().

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.upper_bound(x^2 + x + u)
1/2

valuations(f, coefficients=None, call_error=False)
Return the valuations of the 𝑓𝑖𝜑𝑖 in the expansion 𝑓 =

∑︀
𝑖 𝑓𝑖𝜑

𝑖.

INPUT:

• f – a polynomial in the domain of this valuation

• coefficients – the coefficients of f as produced by coefficients() or None (default: None); this
can be used to speed up the computation when the expansion of f is already known from a previous
computation.

• call_error – whether or not to speed up the computation by assuming that the result is only used to
compute the valuation of f (default: False)

OUTPUT:

An iterator over rational numbers (or infinity) [𝑣(𝑓0), 𝑣(𝑓1𝜑), . . .]

EXAMPLES:

5.8. Augmented valuations on polynomial rings 61

https://trac.sagemath.org/25607

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)

sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: list(w.valuations(x^2 + 1))
[0, 1/2]

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: list(ww.valuations(((x^2 + x + u)^2 + 2)^3))
[+Infinity, +Infinity, +Infinity, 5]

value_group()
Return the value group of this valuation.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)

sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.value_group()
Additive Abelian Group generated by 1/2

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: ww.value_group()
Additive Abelian Group generated by 1/6

value_semigroup()
Return the value semigroup of this valuation.

EXAMPLES:

sage: R.<u> = Zq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)

sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.value_semigroup()
Additive Abelian Semigroup generated by 1/2

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: ww.value_semigroup()
Additive Abelian Semigroup generated by 1/2, 5/3

class sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation(parent, v, phi, mu)
Bases: sage.rings.valuation.augmented_valuation.FinalAugmentedValuation, sage.rings.
valuation.inductive_valuation.InfiniteInductiveValuation

An augmented valuation which is infinite, i.e., which assigns valuation infinity to its last key polynomial (and
which can therefore not be augmented further.)

EXAMPLES:

62 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x, infinity)

lower_bound(f)
Return a lower bound of this valuation at f.

Use this method to get an approximation of the valuation of f when speed is more important than accuracy.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, infinity)
sage: w.lower_bound(x^2 + x + u)
+Infinity

simplify(f, error=None, force=False, effective_degree=None)
Return a simplified version of f.

Produce an element which differs from f by an element of valuation strictly greater than the valuation of f
(or strictly greater than error if set.)

INPUT:

• f – an element in the domain of this valuation

• error – a rational, infinity, or None (default: None), the error allowed to introduce through the sim-
plification

• force – whether or not to simplify f even if there is heuristically no change in the coefficient size of
f expected (default: False)

• effective_degree – ignored; for compatibility with other simplify methods

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, infinity)
sage: w.simplify(x^10/2 + 1, force=True)
(u + 1)*2^-1 + O(2^4)

upper_bound(f)
Return an upper bound of this valuation at f.

Use this method to get an approximation of the valuation of f when speed is more important than accuracy.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, infinity)
sage: w.upper_bound(x^2 + x + u)
+Infinity

5.8. Augmented valuations on polynomial rings 63

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

valuations(f, coefficients=None, call_error=False)
Return the valuations of the 𝑓𝑖𝜑𝑖 in the expansion 𝑓 =

∑︀
𝑖 𝑓𝑖𝜑

𝑖.

INPUT:

• f – a polynomial in the domain of this valuation

• coefficients – the coefficients of f as produced by coefficients() or None (default: None); this
can be used to speed up the computation when the expansion of f is already known from a previous
computation.

• call_error – whether or not to speed up the computation by assuming that the result is only used to
compute the valuation of f (default: False)

OUTPUT:

An iterator over rational numbers (or infinity) [𝑣(𝑓0), 𝑣(𝑓1𝜑), . . .]

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x, infinity)
sage: list(w.valuations(x^2 + 1))
[0, +Infinity, +Infinity]

value_group()
Return the value group of this valuation.

EXAMPLES:

sage: R.<u> = Qq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x, infinity)
sage: w.value_group()
Additive Abelian Group generated by 1

value_semigroup()
Return the value semigroup of this valuation.

EXAMPLES:

sage: R.<u> = Zq(4, 5)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: w = v.augmentation(x, infinity)
sage: w.value_semigroup()
Additive Abelian Semigroup generated by 1

class sage.rings.valuation.augmented_valuation.NonFinalAugmentedValuation(parent, v, phi, mu)
Bases: sage.rings.valuation.augmented_valuation.AugmentedValuation_base, sage.rings.
valuation.inductive_valuation.NonFinalInductiveValuation

An augmented valuation which can be augmented further.

EXAMPLES:

64 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x^2 + x + 1, 1)

lift(F, report_coefficients=False)
Return a polynomial which reduces to F.

INPUT:

• F – an element of the residue_ring()

• report_coefficients – whether to return the coefficients of the phi()-adic expansion or the actual
polynomial (default: False, i.e., return the polynomial)

OUTPUT:

A polynomial in the domain of the valuation with reduction F, monic if F is monic.

ALGORITHM:

Since this is the inverse of reduce(), we only have to go backwards through the algorithm described there.

EXAMPLES:

sage: R.<u> = Qq(4, 10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)

sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: y = w.residue_ring().gen()
sage: u1 = w.residue_ring().base().gen()

sage: w.lift(1)
1 + O(2^10)
sage: w.lift(0)
0
sage: w.lift(u1)
(1 + O(2^10))*x
sage: w.reduce(w.lift(y)) == y
True
sage: w.reduce(w.lift(y + u1 + 1)) == y + u1 + 1
True

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: y = ww.residue_ring().gen()
sage: u2 = ww.residue_ring().base().gen()

sage: ww.reduce(ww.lift(y)) == y
True
sage: ww.reduce(ww.lift(1)) == 1
True
sage: ww.reduce(ww.lift(y + 1)) == y + 1
True

A more complicated example:

5.8. Augmented valuations on polynomial rings 65

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1)
sage: ww = w.augmentation((x^2 + x + u)^2 + 2*x*(x^2 + x + u) + 4*x, 3)
sage: u = ww.residue_ring().base().gen()

sage: F = ww.residue_ring()(u); F
u2
sage: f = ww.lift(F); f
(2^-1 + O(2^9))*x^2 + (2^-1 + O(2^9))*x + u*2^-1 + O(2^9)
sage: F == ww.reduce(f)
True

lift_to_key(F, check=True)
Lift the irreducible polynomial F to a key polynomial.

INPUT:

• F – an irreducible non-constant polynomial in the residue_ring() of this valuation

• check – whether or not to check correctness of F (default: True)

OUTPUT:

A polynomial 𝑓 in the domain of this valuation which is a key polynomial for this valuation and which, for
a suitable equivalence unit 𝑅, satisfies that the reduction of 𝑅𝑓 is F

ALGORITHM:

We follow the algorithm described in Theorem 13.1 [Mac1936I] which, after a lift() of F, essentially
shifts the valuations of all terms in the 𝜑-adic expansion up and then kills the leading coefficient.

EXAMPLES:

sage: R.<u> = Qq(4, 10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)

sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: y = w.residue_ring().gen()
sage: f = w.lift_to_key(y + 1); f
(1 + O(2^10))*x^4 + (2 + O(2^11))*x^3 + (1 + u*2 + O(2^10))*x^2 + (u*2 + O(2^
→˓11))*x + (u + 1) + u*2 + O(2^10)
sage: w.is_key(f)
True

A more complicated example:

sage: v = GaussValuation(S)
sage: w = v.augmentation(x^2 + x + u, 1)
sage: ww = w.augmentation((x^2 + x + u)^2 + 2*x*(x^2 + x + u) + 4*x, 3)

sage: u = ww.residue_ring().base().gen()
sage: y = ww.residue_ring().gen()
sage: f = ww.lift_to_key(y^3+y+u)
sage: f.degree()
12

(continues on next page)

66 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

sage: ww.is_key(f)
True

reduce(f, check=True, degree_bound=None, coefficients=None, valuations=None)
Reduce f module this valuation.

INPUT:

• f – an element in the domain of this valuation

• check – whether or not to check whether f has non-negative valuation (default: True)

• degree_bound – an a-priori known bound on the degree of the result which can speed up the compu-
tation (default: not set)

• coefficients – the coefficients of f as produced by coefficients() or None (default: None); this
can be used to speed up the computation when the expansion of f is already known from a previous
computation.

• valuations – the valuations of coefficients or None (default: None)

OUTPUT:

an element of the residue_ring() of this valuation, the reduction modulo the ideal of elements of positive
valuation

ALGORITHM:

We follow the algorithm given in the proof of Theorem 12.1 of [Mac1936I]: If f has positive valua-
tion, the reduction is simply zero. Otherwise, let 𝑓 =

∑︀
𝑓𝑖𝜑

𝑖 be the expansion of 𝑓 , as computed by
coefficients(). Since the valuation is zero, the exponents 𝑖must all be multiples of 𝜏 , the index the value
group of the base valuation in the value group of this valuation. Hence, there is an equivalence_unit()
𝑄 with the same valuation as 𝜑𝜏 . Let 𝑄′ be its equivalence_reciprocal(). Now, rewrite each term
𝑓𝑖𝜑

𝑖𝜏 = (𝑓𝑖𝑄
𝑖)(𝜑𝜏𝑄−1)𝑖; it turns out that the second factor in this expression is a lift of the generator of

the residue_field(). The reduction of the first factor can be computed recursively.

EXAMPLES:

sage: R.<u> = Qq(4, 10)
sage: S.<x> = R[]
sage: v = GaussValuation(S)
sage: v.reduce(x)
x
sage: v.reduce(S(u))
u0

sage: w = v.augmentation(x^2 + x + u, 1/2)
sage: w.reduce(S.one())
1
sage: w.reduce(S(2))
0
sage: w.reduce(S(u))
u0
sage: w.reduce(x) # this gives the generator of the residue field extension of␣
→˓w over v
u1
sage: f = (x^2 + x + u)^2 / 2
sage: w.reduce(f)

(continues on next page)

5.8. Augmented valuations on polynomial rings 67

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

x
sage: w.reduce(f + x + 1)
x + u1 + 1

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3)
sage: g = ((x^2 + x + u)^2 + 2)^3 / 2^5
sage: ww.reduce(g)
x
sage: ww.reduce(f)
1
sage: ww.is_equivalent(f, 1)
True
sage: ww.reduce(f * g)
x
sage: ww.reduce(f + g)
x + 1

residue_ring()
Return the residue ring of this valuation, i.e., the elements of non-negative valuation modulo the elements
of positive valuation.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))

sage: w = v.augmentation(x^2 + x + 1, 1)
sage: w.residue_ring()
Univariate Polynomial Ring in x over Finite Field in u1 of size 2^2

Since trivial valuations of finite fields are not implemented, the resulting ring might be identical to the
residue ring of the underlying valuation:

sage: w = v.augmentation(x, 1)
sage: w.residue_ring()
Univariate Polynomial Ring in x over Finite Field of size 2 (using ...)

class sage.rings.valuation.augmented_valuation.NonFinalFiniteAugmentedValuation(parent, v,
phi, mu)

Bases: sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation, sage.rings.
valuation.augmented_valuation.NonFinalAugmentedValuation

An augmented valuation which is discrete, i.e., which assigns a finite valuation to its last key polynomial, and
which can be augmented further.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = v.augmentation(x, 1)

68 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

5.9 Valuations which are defined as limits of valuations.

The discrete valuation of a complete field extends uniquely to a finite field extension. This is not the case anymore for
fields which are not complete with respect to their discrete valuation. In this case, the extensions essentially correspond
to the factors of the defining polynomial of the extension over the completion. However, these factors only exist over
the completion and this makes it difficult to write down such valuations with a representation of finite length.

More specifically, let 𝑣 be a discrete valuation on 𝐾 and let 𝐿 = 𝐾[𝑥]/(𝐺) a finite extension thereof. An extension
of 𝑣 to 𝐿 can be represented as a discrete pseudo-valuation 𝑤′ on 𝐾[𝑥] which sends 𝐺 to infinity. However, such 𝑤′

might not be described by an augmented valuation over a Gauss valuation anymore. Instead, we may need to
write is as a limit of augmented valuations.

The classes in this module provide the means of writing down such limits and resulting valuations on quotients.

AUTHORS:

• Julian Rüth (2016-10-19): initial version

EXAMPLES:

In this function field, the unique place of K which corresponds to the zero point has two extensions to L. The valuations
corresponding to these extensions can only be approximated:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)

sage: v = K.valuation(1)
sage: w = v.extensions(L); w
[[(x - 1)-adic valuation, v(y + 1) = 1]-adic valuation,
[(x - 1)-adic valuation, v(y - 1) = 1]-adic valuation]

The same phenomenon can be observed for valuations on number fields:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(5)
sage: w = v.extensions(L); w
[[5-adic valuation, v(t + 2) = 1]-adic valuation,
[5-adic valuation, v(t + 3) = 1]-adic valuation]

Note: We often rely on approximations of valuations even if we could represent the valuation without using a limit.
This is done to improve performance as many computations already can be done correctly with an approximation:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)

sage: v = K.valuation(1/x)
sage: w = v.extension(L); w
Valuation at the infinite place
sage: w._base_valuation._base_valuation._improve_approximation()
sage: w._base_valuation._base_valuation._approximation
[Gauss valuation induced by Valuation at the infinite place, v(y) = 1/2, v(y^2 - 1/x) =␣
→˓+Infinity] (continues on next page)

5.9. Valuations which are defined as limits of valuations. 69

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

REFERENCES:

Limits of inductive valuations are discussed in [Mac1936I] and [Mac1936II]. An overview can also be found in Section
4.6 of [Rüt2014].

class sage.rings.valuation.limit_valuation.LimitValuationFactory
Bases: sage.structure.factory.UniqueFactory

Return a limit valuation which sends the polynomial G to infinity and is greater than or equal than
base_valuation.

INPUT:

• base_valuation – a discrete (pseudo-)valuation on a polynomial ring which is a discrete valuation on
the coefficient ring which can be uniquely augmented (possibly only in the limit) to a pseudo-valuation that
sends G to infinity.

• G – a squarefree polynomial in the domain of base_valuation.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = valuations.LimitValuation(v, x)
sage: w(x)
+Infinity

create_key(base_valuation, G)
Create a key from the parameters of this valuation.

EXAMPLES:

Note that this does not normalize base_valuation in any way. It is easily possible to create the same
limit in two different ways:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = valuations.LimitValuation(v, x) # indirect doctest
sage: v = v.augmentation(x, infinity)
sage: u = valuations.LimitValuation(v, x)
sage: u == w
False

The point here is that this is not meant to be invoked from user code. But mostly from other factories which
have made sure that the parameters are normalized already.

create_object(version, key)
Create an object from key.

EXAMPLES:

sage: R.<x> = QQ[]
sage: v = GaussValuation(R, QQ.valuation(2))
sage: w = valuations.LimitValuation(v, x^2 + 1) # indirect doctest

70 Chapter 5. More Details

../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

class sage.rings.valuation.limit_valuation.LimitValuation_generic(parent, approximation)
Bases: sage.rings.valuation.valuation.DiscretePseudoValuation

Base class for limit valuations.

A limit valuation is realized as an approximation of a valuation and means to improve that approximation when
necessary.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)

sage: v = K.valuation(0)
sage: w = v.extension(L)
sage: w._base_valuation
[Gauss valuation induced by (x)-adic valuation, v(y) = 1/2 , ...]

The currently used approximation can be found in the _approximation field:

sage: w._base_valuation._approximation
[Gauss valuation induced by (x)-adic valuation, v(y) = 1/2]

reduce(f, check=True)
Return the reduction of f as an element of the residue_ring().

INPUT:

• f – an element in the domain of this valuation of non-negative valuation

• check – whether or not to check that f has non-negative valuation (default: True)

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - (x - 1))

sage: v = K.valuation(0)
sage: w = v.extension(L)
sage: w.reduce(y) # indirect doctest
u1

class sage.rings.valuation.limit_valuation.MacLaneLimitValuation(parent, approximation, G)
Bases: sage.rings.valuation.limit_valuation.LimitValuation_generic, sage.rings.
valuation.valuation.InfiniteDiscretePseudoValuation

A limit valuation that is a pseudo-valuation on polynomial ring 𝐾[𝑥] which sends a square-free polynomial 𝐺
to infinity.

This uses the MacLane algorithm to compute the next element in the limit.

It starts from a first valuation approximation which has a unique augmentation that sends 𝐺 to infinity and
whose uniformizer must be a uniformizer of the limit and whose residue field must contain the residue field of
the limit.

EXAMPLES:

5.9. Valuations which are defined as limits of valuations. 71

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: R.<x> = QQ[]
sage: K.<i> = QQ.extension(x^2 + 1)

sage: v = K.valuation(2)
sage: u = v._base_valuation; u
[Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 , ...]

element_with_valuation(s)
Return an element with valuation s.

extensions(ring)
Return the extensions of this valuation to ring.

EXAMPLES:

sage: v = GaussianIntegers().valuation(2)
sage: u = v._base_valuation
sage: u.extensions(QQ['x'])
[[Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 , ...]]

is_negative_pseudo_valuation()
Return whether this valuation attains −∞.

EXAMPLES:

For a Mac Lane limit valuation, this is never the case, so this method always returns False:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: u = v.extension(L)
sage: u.is_negative_pseudo_valuation()
False

lift(F)
Return a lift of F from the residue_ring() to the domain of this valuation.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^4 - x^2 - 2*x - 1)

sage: v = K.valuation(1)
sage: w = v.extensions(L)[1]; w
[(x - 1)-adic valuation, v(y^2 - 2) = 1]-adic valuation
sage: s = w.reduce(y); s
u1
sage: w.lift(s) # indirect doctest
y

lower_bound(f)
Return a lower bound of this valuation at x.

Use this method to get an approximation of the valuation of x when speed is more important than accuracy.

EXAMPLES:

72 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: u = v.extension(L)
sage: u.lower_bound(1024*t + 1024)
10
sage: u(1024*t + 1024)
21/2

residue_ring()
Return the residue ring of this valuation, which is always a field.

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: w = v.extension(L)
sage: w.residue_ring()
Finite Field of size 2

restriction(ring)
Return the restriction of this valuation to ring.

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: w = v.extension(L)
sage: w._base_valuation.restriction(K)
2-adic valuation

simplify(f, error=None, force=False)
Return a simplified version of f.

Produce an element which differs from f by an element of valuation strictly greater than the valuation of f
(or strictly greater than error if set.)

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: u = v.extension(L)
sage: u.simplify(t + 1024, force=True)
t

uniformizer()
Return a uniformizing element for this valuation.

EXAMPLES:

5.9. Valuations which are defined as limits of valuations. 73

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)

sage: v = K.valuation(0)
sage: w = v.extension(L)
sage: w.uniformizer() # indirect doctest
y

upper_bound(f)
Return an upper bound of this valuation at x.

Use this method to get an approximation of the valuation of x when speed is more important than accuracy.

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = QQ.valuation(2)
sage: u = v.extension(L)
sage: u.upper_bound(1024*t + 1024)
21/2
sage: u(1024*t + 1024)
21/2

value_semigroup()
Return the value semigroup of this valuation.

5.10 Valuations which are implemented through a map to another val-
uation

EXAMPLES:

Extensions of valuations over finite field extensions 𝐿 = 𝐾[𝑥]/(𝐺) are realized through an infinite valuation on 𝐾[𝑥]
which maps 𝐺 to infinity:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)

sage: v = K.valuation(0)
sage: w = v.extension(L); w
(x)-adic valuation

sage: w._base_valuation
[Gauss valuation induced by (x)-adic valuation, v(y) = 1/2 , ...]

AUTHORS:

• Julian Rüth (2016-11-10): initial version

74 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

class sage.rings.valuation.mapped_valuation.FiniteExtensionFromInfiniteValuation(parent,
base_valuation)

Bases: sage.rings.valuation.mapped_valuation.MappedValuation_base, sage.rings.
valuation.valuation.DiscreteValuation

A valuation on a quotient of the form 𝐿 = 𝐾[𝑥]/(𝐺) with an irreducible 𝐺 which is internally backed by a
pseudo-valuations on 𝐾[𝑥] which sends 𝐺 to infinity.

INPUT:

• parent – the containing valuation space (usually the space of discrete valuations on 𝐿)

• base_valuation – an infinite valuation on 𝐾[𝑥] which takes 𝐺 to infinity

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)

sage: v = K.valuation(0)
sage: w = v.extension(L); w
(x)-adic valuation

lower_bound(x)
Return an lower bound of this valuation at x.

Use this method to get an approximation of the valuation of x when speed is more important than accuracy.

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: u.lower_bound(t + 2)
0
sage: u(t + 2)
1

restriction(ring)
Return the restriction of this valuation to ring.

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 2)
sage: w = v.extension(L)
sage: w.restriction(K) is v
True

simplify(x, error=None, force=False)
Return a simplified version of x.

Produce an element which differs from x by an element of valuation strictly greater than the valuation of x
(or strictly greater than error if set.)

5.10. Valuations which are implemented through a map to another valuation 75

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: f = 125*t + 1
sage: u.simplify(f, error=u(f), force=True)
1

upper_bound(x)
Return an upper bound of this valuation at x.

Use this method to get an approximation of the valuation of x when speed is more important than accuracy.

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: u.upper_bound(t + 2) >= 1
True
sage: u(t + 2)
1

class sage.rings.valuation.mapped_valuation.FiniteExtensionFromLimitValuation(parent,
approximant,
G,
approximants)

Bases: sage.rings.valuation.mapped_valuation.FiniteExtensionFromInfiniteValuation

An extension of a valuation on a finite field extensions 𝐿 = 𝐾[𝑥]/(𝐺) which is induced by an infinite limit
valuation on 𝐾[𝑥].

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v = K.valuation(1)
sage: w = v.extensions(L); w
[[(x - 1)-adic valuation, v(y + 1) = 1]-adic valuation,
[(x - 1)-adic valuation, v(y - 1) = 1]-adic valuation]

class sage.rings.valuation.mapped_valuation.MappedValuation_base(parent, base_valuation)
Bases: sage.rings.valuation.valuation.DiscretePseudoValuation

A valuation which is implemented through another proxy “base” valuation.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)

(continues on next page)

76 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

sage: v = K.valuation(0)
sage: w = v.extension(L); w
(x)-adic valuation

element_with_valuation(s)
Return an element with valuation s.

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 5)
sage: u,uu = v.extensions(L)
sage: u.element_with_valuation(1)
5

lift(F)
Lift F from the residue_field() of this valuation into its domain.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)

sage: v = K.valuation(2)
sage: w = v.extension(L)
sage: w.lift(w.residue_field().gen())
y

reduce(f)
Return the reduction of f in the residue_field() of this valuation.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - (x - 2))

sage: v = K.valuation(0)
sage: w = v.extension(L)
sage: w.reduce(y)
u1

residue_ring()
Return the residue ring of this valuation.

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 2)

(continues on next page)

5.10. Valuations which are implemented through a map to another valuation 77

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

sage: v.extension(L).residue_ring()
Finite Field of size 2

simplify(x, error=None, force=False)
Return a simplified version of x.

Produce an element which differs from x by an element of valuation strictly greater than the valuation of x
(or strictly greater than error if set.)

If force is not set, then expensive simplifications may be avoided.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)

sage: v = K.valuation(0)
sage: w = v.extensions(L)[0]

As _relative_size() misses the bloated term x^32, the following term does not get simplified:

sage: w.simplify(y + x^32)
y + x^32

In this case the simplification can be forced but this should not happen as a default as the recursive simpli-
fication can be quite costly:

sage: w.simplify(y + x^32, force=True)
y

uniformizer()
Return a uniformizing element of this valuation.

EXAMPLES:

sage: K = QQ
sage: R.<t> = K[]
sage: L.<t> = K.extension(t^2 + 1)
sage: v = valuations.pAdicValuation(QQ, 2)
sage: v.extension(L).uniformizer()
t + 1

5.11 Valuations which are scaled versions of another valuation

EXAMPLES:

sage: 3*ZZ.valuation(3)
3 * 3-adic valuation

AUTHORS:

• Julian Rüth (2016-11-10): initial version

78 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

class sage.rings.valuation.scaled_valuation.ScaledValuationFactory
Bases: sage.structure.factory.UniqueFactory

Return a valuation which scales the valuation base by the factor s.

EXAMPLES:

sage: 3*ZZ.valuation(2) # indirect doctest
3 * 2-adic valuation

create_key(base, s)
Create a key which uniquely identifies a valuation.

create_object(version, key)
Create a valuation from key.

class sage.rings.valuation.scaled_valuation.ScaledValuation_generic(parent, base_valuation, s)
Bases: sage.rings.valuation.valuation.DiscreteValuation

A valuation which scales another base_valuation by a finite positive factor s.

EXAMPLES:

sage: v = 3*ZZ.valuation(3); v
3 * 3-adic valuation

extensions(ring)
Return the extensions of this valuation to ring.

EXAMPLES:

sage: v = 3*ZZ.valuation(5)
sage: v.extensions(GaussianIntegers().fraction_field())
[3 * [5-adic valuation, v(x + 2) = 1]-adic valuation,
3 * [5-adic valuation, v(x + 3) = 1]-adic valuation]

lift(F)
Lift F from the residue_field() of this valuation into its domain.

EXAMPLES:

sage: v = 3*ZZ.valuation(2)
sage: v.lift(1)
1

reduce(f)
Return the reduction of f in the residue_field() of this valuation.

EXAMPLES:

sage: v = 3*ZZ.valuation(2)
sage: v.reduce(1)
1

residue_ring()
Return the residue field of this valuation.

EXAMPLES:

5.11. Valuations which are scaled versions of another valuation 79

../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: v = 3*ZZ.valuation(2)
sage: v.residue_ring()
Finite Field of size 2

restriction(ring)
Return the restriction of this valuation to ring.

EXAMPLES:

sage: v = 3*QQ.valuation(5)
sage: v.restriction(ZZ)
3 * 5-adic valuation

uniformizer()
Return a uniformizing element of this valuation.

EXAMPLES:

sage: v = 3*ZZ.valuation(2)
sage: v.uniformizer()
2

value_semigroup()
Return the value semigroup of this valuation.

EXAMPLES:

sage: v2 = QQ.valuation(2)
sage: (2*v2).value_semigroup()
Additive Abelian Semigroup generated by -2, 2

5.12 Discrete valuations on function fields

AUTHORS:

• Julian Rüth (2016-10-16): initial version

EXAMPLES:

We can create classical valuations that correspond to finite and infinite places on a rational function field:

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(1); v
(x - 1)-adic valuation
sage: v = K.valuation(x^2 + 1); v
(x^2 + 1)-adic valuation
sage: v = K.valuation(1/x); v
Valuation at the infinite place

Note that we can also specify valuations which do not correspond to a place of the function field:

sage: R.<x> = QQ[]
sage: w = valuations.GaussValuation(R, QQ.valuation(2))
sage: v = K.valuation(w); v
2-adic valuation

80 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

Valuations on a rational function field can then be extended to finite extensions:

sage: v = K.valuation(x - 1); v
(x - 1)-adic valuation
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: w = v.extensions(L); w
[[(x - 1)-adic valuation, v(y + 1) = 1]-adic valuation,
[(x - 1)-adic valuation, v(y - 1) = 1]-adic valuation]

REFERENCES:

An overview of some computational tools relating to valuations on function fields can be found in Section 4.6 of
[Rüt2014]. Most of this was originally developed for number fields in [Mac1936I] and [Mac1936II].

class sage.rings.function_field.function_field_valuation.ClassicalFunctionFieldValuation_base(parent)
Bases: sage.rings.function_field.function_field_valuation.DiscreteFunctionFieldValuation_base

Base class for discrete valuations on rational function fields that come from points on the projective line.

class sage.rings.function_field.function_field_valuation.DiscreteFunctionFieldValuation_base(parent)
Bases: sage.rings.valuation.valuation.DiscreteValuation

Base class for discrete valuations on function fields.

extensions(L)
Return the extensions of this valuation to L.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x)
sage: v.extensions(L)
[(x)-adic valuation]

class sage.rings.function_field.function_field_valuation.FiniteRationalFunctionFieldValuation(parent,
base_valuation)

Bases: sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base,
sage.rings.function_field.function_field_valuation.ClassicalFunctionFieldValuation_base,
sage.rings.function_field.function_field_valuation.RationalFunctionFieldValuation_base

Valuation of a finite place of a function field.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x + 1); v # indirect doctest
(x + 1)-adic valuation

A finite place with residual degree:

sage: w = K.valuation(x^2 + 1); w
(x^2 + 1)-adic valuation

A finite place with ramification:

5.12. Discrete valuations on function fields 81

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: K.<t> = FunctionField(GF(3))
sage: L.<x> = FunctionField(K)
sage: u = L.valuation(x^3 - t); u
(x^3 + 2*t)-adic valuation

A finite place with residual degree and ramification:

sage: q = L.valuation(x^6 - t); q
(x^6 + 2*t)-adic valuation

class sage.rings.function_field.function_field_valuation.FunctionFieldExtensionMappedValuation(parent,
base_valuation,
to_base_valuation_domain,
from_base_valuation_domain)

Bases: sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuationRelative_base

A valuation on a finite extensions of function fields 𝐿 = 𝐾[𝑦]/(𝐺) where 𝐾 is another function field which
redirects to another base_valuation on an isomorphism function field 𝑀 = 𝐾[𝑦]/(𝐻).

The isomorphisms must be trivial on K.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 + y + x^3)
sage: v = K.valuation(1/x)
sage: w = v.extension(L)

sage: w(x)
-1
sage: w(y)
-3/2
sage: w.uniformizer()
1/x^2*y

restriction(ring)
Return the restriction of this valuation to ring.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 + y + x^3)
sage: v = K.valuation(1/x)
sage: w = v.extension(L)
sage: w.restriction(K) is v
True

82 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

class sage.rings.function_field.function_field_valuation.FunctionFieldFromLimitValuation(parent,
ap-
prox-
i-
mant,
G,
ap-
prox-
i-
mants)

Bases: sage.rings.valuation.mapped_valuation.FiniteExtensionFromLimitValuation, sage.
rings.function_field.function_field_valuation.DiscreteFunctionFieldValuation_base

A valuation on a finite extensions of function fields 𝐿 = 𝐾[𝑦]/(𝐺) where 𝐾 is another function field.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - (x^2 + x + 1))
sage: v = K.valuation(x - 1) # indirect doctest
sage: w = v.extension(L); w
(x - 1)-adic valuation

scale(scalar)
Return this valuation scaled by scalar.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - (x^2 + x + 1))
sage: v = K.valuation(x - 1) # indirect doctest
sage: w = v.extension(L)
sage: 3*w
3 * (x - 1)-adic valuation

class sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuationRelative_base(parent,
base_valuation,
to_base_valuation_domain,
from_base_valuation_domain)

Bases: sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuation_base

A valuation on a function field which relies on a base_valuation on an isomorphic function field and which
is such that the map from and to the other function field is the identity on the constant field.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2))
sage: v = K.valuation(1/x); v
Valuation at the infinite place

restriction(ring)
Return the restriction of this valuation to ring.

EXAMPLES:

5.12. Discrete valuations on function fields 83

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: K.<x> = FunctionField(GF(2))
sage: K.valuation(1/x).restriction(GF(2))
Trivial valuation on Finite Field of size 2

class sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuation_base(parent,
base_valuation,
to_base_valuation_domain,
from_base_valuation_domain)

Bases: sage.rings.function_field.function_field_valuation.FunctionFieldValuation_base,
sage.rings.valuation.mapped_valuation.MappedValuation_base

A valuation on a function field which relies on a base_valuation on an isomorphic function field.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2))
sage: v = K.valuation(1/x); v
Valuation at the infinite place

is_discrete_valuation()
Return whether this is a discrete valuation.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 - x^4 - 1)
sage: v = K.valuation(1/x)
sage: w0,w1 = v.extensions(L)
sage: w0.is_discrete_valuation()
True

scale(scalar)
Return this valuation scaled by scalar.

EXAMPLES:

sage: K.<x> = FunctionField(GF(2))
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 + y + x^3)
sage: v = K.valuation(1/x)
sage: w = v.extension(L)
sage: 3*w
3 * (x)-adic valuation (in Rational function field in x over Finite Field of␣
→˓size 2 after x |--> 1/x)

class sage.rings.function_field.function_field_valuation.FunctionFieldValuationFactory
Bases: sage.structure.factory.UniqueFactory

Create a valuation on domain corresponding to prime.

INPUT:

• domain – a function field

• prime – a place of the function field, a valuation on a subring, or a valuation on another function field
together with information for isomorphisms to and from that function field

EXAMPLES:

84 Chapter 5. More Details

../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(1); v # indirect doctest
(x - 1)-adic valuation
sage: v(x)
0
sage: v(x - 1)
1

See sage.rings.function_field.function_field.FunctionField.valuation() for further exam-
ples.

create_key_and_extra_args(domain, prime)
Create a unique key which identifies the valuation given by prime on domain.

create_key_and_extra_args_from_place(domain, generator)
Create a unique key which identifies the valuation at the place specified by generator.

create_key_and_extra_args_from_valuation(domain, valuation)
Create a unique key which identifies the valuation which extends valuation.

create_key_and_extra_args_from_valuation_on_isomorphic_field(domain, valuation,
to_valuation_domain,
from_valuation_domain)

Create a unique key which identifies the valuation which is valuation after mapping through
to_valuation_domain.

create_object(version, key, **extra_args)
Create the valuation specified by key.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<x> = QQ[]
sage: w = valuations.GaussValuation(R, QQ.valuation(2))
sage: v = K.valuation(w); v # indirect doctest
2-adic valuation

class sage.rings.function_field.function_field_valuation.FunctionFieldValuation_base(parent)
Bases: sage.rings.valuation.valuation.DiscretePseudoValuation

Abstract base class for any discrete (pseudo-)valuation on a function field.

class sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base(parent,
base_valuation)

Bases: sage.rings.function_field.function_field_valuation.FunctionFieldValuation_base

Base class for function field valuation induced by a valuation on the underlying polynomial ring.

extensions(L)
Return all extensions of this valuation to Lwhich has a larger constant field than the domain of this valuation.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x^2 + 1)
sage: L.<x> = FunctionField(GaussianIntegers().fraction_field())
sage: v.extensions(L) # indirect doctest
[(x - I)-adic valuation, (x + I)-adic valuation]

5.12. Discrete valuations on function fields 85

../../../../../../../html/en/reference/function_fields/sage/rings/function_field/function_field.html#sage.rings.function_field.function_field.FunctionField.valuation

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

lift(F)
Return a lift of F to the domain of this valuation such that reduce() returns the original element.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x)
sage: v.lift(0)
0
sage: v.lift(1)
1

reduce(f)
Return the reduction of f in residue_ring().

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(x^2 + 1)
sage: v.reduce(x)
u1

residue_ring()
Return the residue field of this valuation.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: K.valuation(x).residue_ring()
Rational Field

restriction(ring)
Return the restriction of this valuation to ring.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: K.valuation(x).restriction(QQ)
Trivial valuation on Rational Field

simplify(f, error=None, force=False)
Return a simplified version of f.

Produce an element which differs from f by an element of valuation strictly greater than the valuation of f
(or strictly greater than error if set.)

If force is not set, then expensive simplifications may be avoided.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(2)
sage: f = (x + 1)/(x - 1)

As the coefficients of this fraction are small, we do not simplify as this could be very costly in some cases:

sage: v.simplify(f)
(x + 1)/(x - 1)

86 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

However, simplification can be forced:

sage: v.simplify(f, force=True)
3

uniformizer()
Return a uniformizing element for this valuation.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: K.valuation(x).uniformizer()
x

value_group()
Return the value group of this valuation.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: K.valuation(x).value_group()
Additive Abelian Group generated by 1

class sage.rings.function_field.function_field_valuation.InfiniteRationalFunctionFieldValuation(parent)
Bases: sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuationRelative_base,
sage.rings.function_field.function_field_valuation.RationalFunctionFieldValuation_base,
sage.rings.function_field.function_field_valuation.ClassicalFunctionFieldValuation_base

Valuation of the infinite place of a function field.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: v = K.valuation(1/x) # indirect doctest

class sage.rings.function_field.function_field_valuation.NonClassicalRationalFunctionFieldValuation(parent,
base_valuation)

Bases: sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base,
sage.rings.function_field.function_field_valuation.RationalFunctionFieldValuation_base

Valuation induced by a valuation on the underlying polynomial ring which is non-classical.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: v = GaussValuation(QQ['x'], QQ.valuation(2))
sage: w = K.valuation(v); w # indirect doctest
2-adic valuation

residue_ring()
Return the residue field of this valuation.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: v = valuations.GaussValuation(QQ['x'], QQ.valuation(2))
sage: w = K.valuation(v)
sage: w.residue_ring()

(continues on next page)

5.12. Discrete valuations on function fields 87

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

(continued from previous page)

Rational function field in x over Finite Field of size 2

sage: R.<x> = QQ[]
sage: vv = v.augmentation(x, 1)
sage: w = K.valuation(vv)
sage: w.residue_ring()
Rational function field in x over Finite Field of size 2

sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 + 2*x)
sage: w.extension(L).residue_ring()
Function field in u2 defined by u2^2 + x

class sage.rings.function_field.function_field_valuation.RationalFunctionFieldMappedValuation(parent,
base_valuation,
to_base_valuation_doain,
from_base_valuation_domain)

Bases: sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuationRelative_base,
sage.rings.function_field.function_field_valuation.RationalFunctionFieldValuation_base

Valuation on a rational function field that is implemented after a map to an isomorphic rational function field.

EXAMPLES:

sage: K.<x> = FunctionField(QQ)
sage: R.<x> = QQ[]
sage: w = GaussValuation(R, QQ.valuation(2)).augmentation(x, 1)
sage: w = K.valuation(w)
sage: v = K.valuation((w, K.hom([~K.gen()]), K.hom([~K.gen()]))); v
Valuation on rational function field induced by [Gauss valuation induced by 2-adic␣
→˓valuation, v(x) = 1] (in Rational function field in x over Rational Field after␣
→˓x |--> 1/x)

class sage.rings.function_field.function_field_valuation.RationalFunctionFieldValuation_base(parent)
Bases: sage.rings.function_field.function_field_valuation.FunctionFieldValuation_base

Base class for valuations on rational function fields.

element_with_valuation(s)
Return an element with valuation s.

EXAMPLES:

sage: K.<a> = NumberField(x^3+6)
sage: v = K.valuation(2)
sage: R.<x> = K[]
sage: w = GaussValuation(R, v).augmentation(x, 1/123)
sage: K.<x> = FunctionField(K)
sage: w = w.extension(K)
sage: w.element_with_valuation(122/123)
2/x
sage: w.element_with_valuation(1)
2

88 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

5.13 𝑝-adic Valuations on Number Fields and Their Subrings and
Completions

EXAMPLES:

sage: ZZ.valuation(2)
2-adic valuation
sage: QQ.valuation(3)
3-adic valuation
sage: CyclotomicField(5).valuation(5)
5-adic valuation
sage: GaussianIntegers().valuation(7)
7-adic valuation
sage: Zp(11).valuation()
11-adic valuation

These valuations can then, e.g., be used to compute approximate factorizations in the completion of a ring:

sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: f = x^5 + x^4 + x^3 + x^2 + x - 1
sage: v.montes_factorization(f, required_precision=20)
(x + 676027) * (x^4 + 372550*x^3 + 464863*x^2 + 385052*x + 297869)

AUTHORS:

• Julian Rüth (2013-03-16): initial version

REFERENCES:

The theory used here was originally developed in [Mac1936I] and [Mac1936II]. An overview can also be found in
Chapter 4 of [Rüt2014].

class sage.rings.padics.padic_valuation.PadicValuationFactory
Bases: sage.structure.factory.UniqueFactory

Create a prime-adic valuation on R.

INPUT:

• R – a subring of a number field or a subring of a local field in characteristic zero

• prime – a prime that does not split, a discrete (pseudo-)valuation, a fractional ideal, or None (default:
None)

EXAMPLES:

For integers and rational numbers, prime is just a prime of the integers:

sage: valuations.pAdicValuation(ZZ, 3)
3-adic valuation

sage: valuations.pAdicValuation(QQ, 3)
3-adic valuation

prime may be None for local rings:

5.13. 𝑝-adic Valuations on Number Fields and Their Subrings and Completions 89

../../../../../../../html/en/reference/structure/sage/structure/factory.html#sage.structure.factory.UniqueFactory

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: valuations.pAdicValuation(Qp(2))
2-adic valuation

sage: valuations.pAdicValuation(Zp(2))
2-adic valuation

But it must be specified in all other cases:

sage: valuations.pAdicValuation(ZZ)
Traceback (most recent call last):
...
ValueError: prime must be specified for this ring

It can sometimes be beneficial to define a number field extension as a quotient of a polynomial ring (since number
field extensions always compute an absolute polynomial defining the extension which can be very costly):

sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^2 + 1)
sage: R.<x> = K[]
sage: L. = R.quo(x^2 + a)
sage: valuations.pAdicValuation(L, 2)
2-adic valuation

See also:

NumberField_generic.valuation(), Order.valuation(), pAdicGeneric.valuation(),
RationalField.valuation(), IntegerRing_class.valuation().

create_key_and_extra_args(R, prime=None, approximants=None)
Create a unique key identifying the valuation of R with respect to prime.

EXAMPLES:

sage: QQ.valuation(2) # indirect doctest
2-adic valuation

create_key_and_extra_args_for_number_field(R, prime, approximants)
Create a unique key identifying the valuation of R with respect to prime.

EXAMPLES:

sage: GaussianIntegers().valuation(2) # indirect doctest
2-adic valuation

create_key_and_extra_args_for_number_field_from_ideal(R, I, prime)
Create a unique key identifying the valuation of R with respect to I.

Note: prime, the original parameter that was passed to create_key_and_extra_args(), is only used
to provide more meaningful error messages

EXAMPLES:

sage: GaussianIntegers().valuation(GaussianIntegers().ideal(2)) # indirect␣
→˓doctest
2-adic valuation

90 Chapter 5. More Details

../../../../../../../html/en/reference/number_fields/sage/rings/number_field/number_field.html#sage.rings.number_field.number_field.NumberField_generic.valuation
../../../../../../../html/en/reference/number_fields/sage/rings/number_field/order.html#sage.rings.number_field.order.Order.valuation
../../../../../../../html/en/reference/padics/sage/rings/padics/padic_generic.html#sage.rings.padics.padic_generic.pAdicGeneric.valuation
../../../../../../../html/en/reference/rings_standard/sage/rings/rational_field.html#sage.rings.rational_field.RationalField.valuation
../../../../../../../html/en/reference/rings_standard/sage/rings/integer_ring.html#sage.rings.integer_ring.IntegerRing_class.valuation

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

create_key_and_extra_args_for_number_field_from_valuation(R, v, prime, approximants)
Create a unique key identifying the valuation of R with respect to v.

Note: prime, the original parameter that was passed to create_key_and_extra_args(), is only used
to provide more meaningful error messages

EXAMPLES:

sage: GaussianIntegers().valuation(ZZ.valuation(2)) # indirect doctest
2-adic valuation

create_key_for_integers(R, prime)
Create a unique key identifying the valuation of R with respect to prime.

EXAMPLES:

sage: QQ.valuation(2) # indirect doctest
2-adic valuation

create_key_for_local_ring(R, prime)
Create a unique key identifying the valuation of R with respect to prime.

EXAMPLES:

sage: Qp(2).valuation() # indirect doctest
2-adic valuation

create_object(version, key, **extra_args)
Create a 𝑝-adic valuation from key.

EXAMPLES:

sage: ZZ.valuation(5) # indirect doctest
5-adic valuation

class sage.rings.padics.padic_valuation.pAdicFromLimitValuation(parent, approximant, G,
approximants)

Bases: sage.rings.valuation.mapped_valuation.FiniteExtensionFromLimitValuation, sage.
rings.padics.padic_valuation.pAdicValuation_base

A 𝑝-adic valuation on a number field or a subring thereof, i.e., a valuation that extends the 𝑝-adic valuation on
the integers.

EXAMPLES:

sage: v = GaussianIntegers().valuation(3); v
3-adic valuation

extensions(ring)
Return the extensions of this valuation to ring.

EXAMPLES:

sage: v = GaussianIntegers().valuation(3)
sage: v.extensions(v.domain().fraction_field())
[3-adic valuation]

5.13. 𝑝-adic Valuations on Number Fields and Their Subrings and Completions 91

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

class sage.rings.padics.padic_valuation.pAdicValuation_base(parent, p)
Bases: sage.rings.valuation.valuation.DiscreteValuation

Abstract base class for 𝑝-adic valuations.

INPUT:

• ring – an integral domain

• p – a rational prime over which this valuation lies, not necessarily a uniformizer for the valuation

EXAMPLES:

sage: ZZ.valuation(3)
3-adic valuation

sage: QQ.valuation(5)
5-adic valuation

For `p`-adic rings, ``p`` has to match the `p` of the ring.

sage: v = valuations.pAdicValuation(Zp(3), 2); v
Traceback (most recent call last):
...
ValueError: prime must be an element of positive valuation

change_domain(ring)
Change the domain of this valuation to ring if possible.

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: v.change_domain(QQ).domain()
Rational Field

extensions(ring)
Return the extensions of this valuation to ring.

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: v.extensions(GaussianIntegers())
[2-adic valuation]

is_totally_ramified(G, include_steps=False, assume_squarefree=False)
Return whether G defines a single totally ramified extension of the completion of the domain of this valua-
tion.

INPUT:

• G – a monic squarefree polynomial over the domain of this valuation

• include_steps – a boolean (default: False); where to include the valuations produced during the
process of checking whether G is totally ramified in the return value

• assume_squarefree – a boolean (default: False); whether to assume that G is square-free over
the completion of the domain of this valuation. Setting this to True can significantly improve the
performance.

ALGORITHM:

92 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

This is a simplified version of sage.rings.valuation.valuation.DiscreteValuation.
mac_lane_approximants().

EXAMPLES:

sage: k = Qp(5,4)
sage: v = k.valuation()
sage: R.<x> = k[]
sage: G = x^2 + 1
sage: v.is_totally_ramified(G)
False
sage: G = x + 1
sage: v.is_totally_ramified(G)
True
sage: G = x^2 + 2
sage: v.is_totally_ramified(G)
False
sage: G = x^2 + 5
sage: v.is_totally_ramified(G)
True
sage: v.is_totally_ramified(G, include_steps=True)
(True, [Gauss valuation induced by 5-adic valuation, [Gauss valuation induced␣
→˓by 5-adic valuation, v((1 + O(5^4))*x) = 1/2]])

We consider an extension as totally ramified if its ramification index matches the degree. Hence, a trivial
extension is totally ramified:

sage: R.<x> = QQ[]
sage: v = QQ.valuation(2)
sage: v.is_totally_ramified(x)
True

is_unramified(G, include_steps=False, assume_squarefree=False)
Return whether G defines a single unramified extension of the completion of the domain of this valuation.

INPUT:

• G – a monic squarefree polynomial over the domain of this valuation

• include_steps – a boolean (default: False); whether to include the approximate valuations that
were used to determine the result in the return value.

• assume_squarefree – a boolean (default: False); whether to assume that G is square-free over
the completion of the domain of this valuation. Setting this to True can significantly improve the
performance.

EXAMPLES:

We consider an extension as unramified if its ramification index is 1. Hence, a trivial extension is unrami-
fied:

sage: R.<x> = QQ[]
sage: v = QQ.valuation(2)
sage: v.is_unramified(x)
True

If G remains irreducible in reduction, then it defines an unramified extension:

5.13. 𝑝-adic Valuations on Number Fields and Their Subrings and Completions 93

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: v.is_unramified(x^2 + x + 1)
True

However, even if G factors, it might define an unramified extension:

sage: v.is_unramified(x^2 + 2*x + 4)
True

lift(x)
Lift x from the residue field to the domain of this valuation.

INPUT:

• x – an element of the residue_field()

EXAMPLES:

sage: v = ZZ.valuation(3)
sage: xbar = v.reduce(4)
sage: v.lift(xbar)
1

p()
Return the 𝑝 of this 𝑝-adic valuation.

EXAMPLES:

sage: GaussianIntegers().valuation(2).p()
2

reduce(x)
Reduce x modulo the ideal of elements of positive valuation.

INPUT:

• x – an element in the domain of this valuation

OUTPUT:

An element of the residue_field().

EXAMPLES:

sage: v = ZZ.valuation(3)
sage: v.reduce(4)
1

restriction(ring)
Return the restriction of this valuation to ring.

EXAMPLES:

sage: v = GaussianIntegers().valuation(2)
sage: v.restriction(ZZ)
2-adic valuation

value_semigroup()
Return the value semigroup of this valuation.

EXAMPLES:

94 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage: v = GaussianIntegers().valuation(2)
sage: v.value_semigroup()
Additive Abelian Semigroup generated by 1/2

class sage.rings.padics.padic_valuation.pAdicValuation_int(parent, p)
Bases: sage.rings.padics.padic_valuation.pAdicValuation_base

A 𝑝-adic valuation on the integers or the rationals.

EXAMPLES:

sage: v = ZZ.valuation(3); v
3-adic valuation

inverse(x, precision)
Return an approximate inverse of x.

The element returned is such that the product differs from 1 by an element of valuation at least precision.

INPUT:

• x – an element in the domain of this valuation

• precision – a rational or infinity

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: x = 3
sage: y = v.inverse(3, 2); y
3
sage: x*y - 1
8

This might not be possible for elements of positive valuation:

sage: v.inverse(2, 2)
Traceback (most recent call last):
...
ValueError: element has no approximate inverse in this ring

Unless the precision is very small:

sage: v.inverse(2, 0)
1

residue_ring()
Return the residue field of this valuation.

EXAMPLES:

sage: v = ZZ.valuation(3)
sage: v.residue_ring()
Finite Field of size 3

simplify(x, error=None, force=False, size_heuristic_bound=32)
Return a simplified version of x.

5.13. 𝑝-adic Valuations on Number Fields and Their Subrings and Completions 95

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

Produce an element which differs from x by an element of valuation strictly greater than the valuation of x
(or strictly greater than error if set.)

INPUT:

• x – an element in the domain of this valuation

• error – a rational, infinity, or None (default: None), the error allowed to introduce through the sim-
plification

• force – ignored

• size_heuristic_bound – when force is not set, the expected factor by which the x need to shrink
to perform an actual simplification (default: 32)

EXAMPLES:

sage: v = ZZ.valuation(2)
sage: v.simplify(6, force=True)
2
sage: v.simplify(6, error=0, force=True)
0

In this example, the usual rational reconstruction misses a good answer for some moduli (because the
absolute value of the numerator is not bounded by the square root of the modulus):

sage: v = QQ.valuation(2)
sage: v.simplify(110406, error=16, force=True)
562/19
sage: Qp(2, 16)(110406).rational_reconstruction()
Traceback (most recent call last):
...
ArithmeticError: rational reconstruction of 55203 (mod 65536) does not exist

uniformizer()
Return a uniformizer of this 𝑝-adic valuation, i.e., 𝑝 as an element of the domain.

EXAMPLES:

sage: v = ZZ.valuation(3)
sage: v.uniformizer()
3

class sage.rings.padics.padic_valuation.pAdicValuation_padic(parent)
Bases: sage.rings.padics.padic_valuation.pAdicValuation_base

The 𝑝-adic valuation of a complete 𝑝-adic ring.

INPUT:

• R – a 𝑝-adic ring

EXAMPLES:

sage: v = Qp(2).valuation(); v #indirect doctest
2-adic valuation

element_with_valuation(v)
Return an element of valuation v.

INPUT:

96 Chapter 5. More Details

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

• v – an element of the pAdicValuation_base.value_semigroup() of this valuation

EXAMPLES:

sage: R = Zp(3)
sage: v = R.valuation()
sage: v.element_with_valuation(3)
3^3 + O(3^23)

sage: K = Qp(3)
sage: R.<y> = K[]
sage: L.<y> = K.extension(y^2 + 3*y + 3)
sage: L.valuation().element_with_valuation(3/2)
y^3 + O(y^43)

lift(x)
Lift x from the residue_field() to the domain of this valuation.

INPUT:

• x – an element of the residue field of this valuation

EXAMPLES:

sage: R = Zp(3)
sage: v = R.valuation()
sage: xbar = v.reduce(R(4))
sage: v.lift(xbar)
1 + O(3^20)

reduce(x)
Reduce x modulo the ideal of elements of positive valuation.

INPUT:

• x – an element of the domain of this valuation

OUTPUT:

An element of the residue_field().

EXAMPLES:

sage: R = Zp(3)
sage: Zp(3).valuation().reduce(R(4))
1

residue_ring()
Return the residue field of this valuation.

EXAMPLES:

sage: Qq(9, names='a').valuation().residue_ring()
Finite Field in a0 of size 3^2

shift(x, s)
Shift x in its expansion with respect to uniformizer() by s “digits”.

For non-negative s, this just returns x multiplied by a power of the uniformizer 𝜋.

5.13. 𝑝-adic Valuations on Number Fields and Their Subrings and Completions 97

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

For negative s, it does the same but when not over a field, it drops coefficients in the 𝜋-adic expansion
which have negative valuation.

EXAMPLES:

sage: R = ZpCA(2)
sage: v = R.valuation()
sage: v.shift(R.one(), 1)
2 + O(2^20)
sage: v.shift(R.one(), -1)
O(2^19)

sage: S.<y> = R[]
sage: S.<y> = R.extension(y^3 - 2)
sage: v = S.valuation()
sage: v.shift(1, 5)
y^5 + O(y^60)

simplify(x, error=None, force=False)
Return a simplified version of x.

Produce an element which differs from x by an element of valuation strictly greater than the valuation of x
(or strictly greater than error if set.)

INPUT:

• x – an element in the domain of this valuation

• error – a rational, infinity, or None (default: None), the error allowed to introduce through the sim-
plification

• force – ignored

EXAMPLES:

sage: R = Zp(2)
sage: v = R.valuation()
sage: v.simplify(6)
2 + O(2^21)
sage: v.simplify(6, error=0)
0

uniformizer()
Return a uniformizer of this valuation.

EXAMPLES:

sage: v = Zp(3).valuation()
sage: v.uniformizer()
3 + O(3^21)

98 Chapter 5. More Details

CHAPTER

SIX

INDICES AND TABLES

• Index

• Module Index

• Search Page

99

../genindex.html
../py-modindex.html
../search.html

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

100 Chapter 6. Indices and Tables

PYTHON MODULE INDEX

r
sage.rings.function_field.function_field_valuation,

80
sage.rings.padics.padic_valuation, 89
sage.rings.valuation.augmented_valuation, 51
sage.rings.valuation.developing_valuation, 38
sage.rings.valuation.gauss_valuation, 30
sage.rings.valuation.inductive_valuation, 40
sage.rings.valuation.limit_valuation, 69
sage.rings.valuation.mapped_valuation, 74
sage.rings.valuation.scaled_valuation, 78
sage.rings.valuation.trivial_valuation, 27
sage.rings.valuation.valuation, 12
sage.rings.valuation.valuation_space, 18
sage.rings.valuation.value_group, 9

101

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

102 Python Module Index

INDEX

A
augmentation() (sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation

method), 45
augmentation_chain()

(sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 53

augmentation_chain()
(sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 32

augmentation_chain()
(sage.rings.valuation.inductive_valuation.InductiveValuation
method), 42

AugmentedValuation_base (class in
sage.rings.valuation.augmented_valuation), 52

AugmentedValuationFactory (class in
sage.rings.valuation.augmented_valuation), 52

C
change_domain() (sage.rings.padics.padic_valuation.pAdicValuation_base

method), 92
change_domain() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base

method), 54
change_domain() (sage.rings.valuation.gauss_valuation.GaussValuation_generic

method), 32
change_domain() (sage.rings.valuation.inductive_valuation.InfiniteInductiveValuation

method), 45
change_domain() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods

method), 20
ClassicalFunctionFieldValuation_base (class in

sage.rings.function_field.function_field_valuation),
81

coefficients() (sage.rings.valuation.developing_valuation.DevelopingValuation
method), 39

create_key() (sage.rings.valuation.augmented_valuation.AugmentedValuationFactory
method), 52

create_key() (sage.rings.valuation.gauss_valuation.GaussValuationFactory
method), 31

create_key() (sage.rings.valuation.limit_valuation.LimitValuationFactory
method), 70

create_key() (sage.rings.valuation.scaled_valuation.ScaledValuationFactory
method), 79

create_key() (sage.rings.valuation.trivial_valuation.TrivialValuationFactory
method), 30

create_key_and_extra_args()
(sage.rings.function_field.function_field_valuation.FunctionFieldValuationFactory
method), 85

create_key_and_extra_args()
(sage.rings.padics.padic_valuation.PadicValuationFactory
method), 90

create_key_and_extra_args_for_number_field()
(sage.rings.padics.padic_valuation.PadicValuationFactory
method), 90

create_key_and_extra_args_for_number_field_from_ideal()
(sage.rings.padics.padic_valuation.PadicValuationFactory
method), 90

create_key_and_extra_args_for_number_field_from_valuation()
(sage.rings.padics.padic_valuation.PadicValuationFactory
method), 90

create_key_and_extra_args_from_place()
(sage.rings.function_field.function_field_valuation.FunctionFieldValuationFactory
method), 85

create_key_and_extra_args_from_valuation()
(sage.rings.function_field.function_field_valuation.FunctionFieldValuationFactory
method), 85

create_key_and_extra_args_from_valuation_on_isomorphic_field()
(sage.rings.function_field.function_field_valuation.FunctionFieldValuationFactory
method), 85

create_key_for_integers()
(sage.rings.padics.padic_valuation.PadicValuationFactory
method), 91

create_key_for_local_ring()
(sage.rings.padics.padic_valuation.PadicValuationFactory
method), 91

create_object() (sage.rings.function_field.function_field_valuation.FunctionFieldValuationFactory
method), 85

create_object() (sage.rings.padics.padic_valuation.PadicValuationFactory
method), 91

create_object() (sage.rings.valuation.augmented_valuation.AugmentedValuationFactory
method), 52

create_object() (sage.rings.valuation.gauss_valuation.GaussValuationFactory
method), 31

create_object() (sage.rings.valuation.limit_valuation.LimitValuationFactory
method), 70

103

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

create_object() (sage.rings.valuation.scaled_valuation.ScaledValuationFactory
method), 79

create_object() (sage.rings.valuation.trivial_valuation.TrivialValuationFactory
method), 30

D
denominator() (sage.rings.valuation.value_group.DiscreteValueGroup

method), 10
DevelopingValuation (class in

sage.rings.valuation.developing_valuation), 38
DiscreteFunctionFieldValuation_base (class in

sage.rings.function_field.function_field_valuation),
81

DiscretePseudoValuation (class in
sage.rings.valuation.valuation), 13

DiscretePseudoValuationSpace (class in
sage.rings.valuation.valuation_space), 19

DiscretePseudoValuationSpace.ElementMethods
(class in sage.rings.valuation.valuation_space),
19

DiscreteValuation (class in
sage.rings.valuation.valuation), 13

DiscreteValuationCodomain (class in
sage.rings.valuation.value_group), 9

DiscreteValueGroup (class in
sage.rings.valuation.value_group), 9

DiscreteValueSemigroup (class in
sage.rings.valuation.value_group), 11

E
E() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base

method), 53
E() (sage.rings.valuation.gauss_valuation.GaussValuation_generic

method), 32
E() (sage.rings.valuation.inductive_valuation.InductiveValuation

method), 41
effective_degree() (sage.rings.valuation.developing_valuation.DevelopingValuation

method), 39
element_with_valuation()

(sage.rings.function_field.function_field_valuation.RationalFunctionFieldValuation_base
method), 88

element_with_valuation()
(sage.rings.padics.padic_valuation.pAdicValuation_padic
method), 96

element_with_valuation()
(sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 54

element_with_valuation()
(sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 32

element_with_valuation()
(sage.rings.valuation.inductive_valuation.InductiveValuation
method), 42

element_with_valuation()
(sage.rings.valuation.limit_valuation.MacLaneLimitValuation
method), 72

element_with_valuation()
(sage.rings.valuation.mapped_valuation.MappedValuation_base
method), 77

element_with_valuation()
(sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 20

equivalence_decomposition()
(sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation
method), 46

equivalence_reciprocal()
(sage.rings.valuation.inductive_valuation.InductiveValuation
method), 42

equivalence_unit() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 54

equivalence_unit() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 32

equivalence_unit() (sage.rings.valuation.inductive_valuation.InductiveValuation
method), 43

extension() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 20

extensions() (sage.rings.function_field.function_field_valuation.DiscreteFunctionFieldValuation_base
method), 81

extensions() (sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base
method), 85

extensions() (sage.rings.padics.padic_valuation.pAdicFromLimitValuation
method), 91

extensions() (sage.rings.padics.padic_valuation.pAdicValuation_base
method), 92

extensions() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 55

extensions() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 33

extensions() (sage.rings.valuation.inductive_valuation.FiniteInductiveValuation
method), 41

extensions() (sage.rings.valuation.limit_valuation.MacLaneLimitValuation
method), 72

extensions() (sage.rings.valuation.scaled_valuation.ScaledValuation_generic
method), 79

extensions() (sage.rings.valuation.trivial_valuation.TrivialDiscreteValuation
method), 29

extensions() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 21

F
F() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base

method), 53
F() (sage.rings.valuation.gauss_valuation.GaussValuation_generic

method), 32
F() (sage.rings.valuation.inductive_valuation.InductiveValuation

method), 42

104 Index

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

FinalAugmentedValuation (class in
sage.rings.valuation.augmented_valuation), 57

FinalFiniteAugmentedValuation (class in
sage.rings.valuation.augmented_valuation), 59

FinalInductiveValuation (class in
sage.rings.valuation.inductive_valuation),
41

FiniteAugmentedValuation (class in
sage.rings.valuation.augmented_valuation), 60

FiniteExtensionFromInfiniteValuation (class in
sage.rings.valuation.mapped_valuation), 74

FiniteExtensionFromLimitValuation (class in
sage.rings.valuation.mapped_valuation), 76

FiniteInductiveValuation (class in
sage.rings.valuation.inductive_valuation),
41

FiniteRationalFunctionFieldValuation (class in
sage.rings.function_field.function_field_valuation),
81

FunctionFieldExtensionMappedValuation (class in
sage.rings.function_field.function_field_valuation),
82

FunctionFieldFromLimitValuation (class in
sage.rings.function_field.function_field_valuation),
82

FunctionFieldMappedValuation_base (class in
sage.rings.function_field.function_field_valuation),
84

FunctionFieldMappedValuationRelative_base
(class in sage.rings.function_field.function_field_valuation),
83

FunctionFieldValuation_base (class in
sage.rings.function_field.function_field_valuation),
85

FunctionFieldValuationFactory (class in
sage.rings.function_field.function_field_valuation),
84

G
GaussValuation_generic (class in

sage.rings.valuation.gauss_valuation), 31
GaussValuationFactory (class in

sage.rings.valuation.gauss_valuation), 31
gen() (sage.rings.valuation.value_group.DiscreteValueGroup

method), 10
gens() (sage.rings.valuation.value_group.DiscreteValueSemigroup

method), 11

I
index() (sage.rings.valuation.value_group.DiscreteValueGroup

method), 10
InducedRationalFunctionFieldValuation_base

(class in sage.rings.function_field.function_field_valuation),
85

InductiveValuation (class in
sage.rings.valuation.inductive_valuation),
41

InfiniteAugmentedValuation (class in
sage.rings.valuation.augmented_valuation), 62

InfiniteDiscretePseudoValuation (class in
sage.rings.valuation.valuation), 17

InfiniteInductiveValuation (class in
sage.rings.valuation.inductive_valuation),
45

InfiniteRationalFunctionFieldValuation (class
in sage.rings.function_field.function_field_valuation),
87

inverse() (sage.rings.padics.padic_valuation.pAdicValuation_int
method), 95

inverse() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 21

is_discrete_pseudo_valuation()
(sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 21

is_discrete_valuation()
(sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuation_base
method), 84

is_discrete_valuation()
(sage.rings.valuation.valuation.DiscreteValuation
method), 14

is_discrete_valuation()
(sage.rings.valuation.valuation.InfiniteDiscretePseudoValuation
method), 17

is_discrete_valuation()
(sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 21

is_equivalence_irreducible()
(sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation
method), 47

is_equivalence_unit()
(sage.rings.valuation.inductive_valuation.InductiveValuation
method), 44

is_equivalent() (sage.rings.valuation.valuation.DiscretePseudoValuation
method), 13

is_gauss_valuation()
(sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 55

is_gauss_valuation()
(sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 33

is_gauss_valuation()
(sage.rings.valuation.inductive_valuation.InductiveValuation
method), 44

is_group() (sage.rings.valuation.value_group.DiscreteValueSemigroup
method), 11

is_key() (sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation
method), 48

is_minimal() (sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation

Index 105

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

method), 48
is_negative_pseudo_valuation()

(sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 56

is_negative_pseudo_valuation()
(sage.rings.valuation.limit_valuation.MacLaneLimitValuation
method), 72

is_negative_pseudo_valuation()
(sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation_base
method), 28

is_negative_pseudo_valuation()
(sage.rings.valuation.valuation.NegativeInfiniteDiscretePseudoValuation
method), 18

is_negative_pseudo_valuation()
(sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 22

is_totally_ramified()
(sage.rings.padics.padic_valuation.pAdicValuation_base
method), 92

is_trivial() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 56

is_trivial() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 33

is_trivial() (sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation_base
method), 28

is_trivial() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 22

is_trivial() (sage.rings.valuation.value_group.DiscreteValueGroup
method), 10

is_trivial() (sage.rings.valuation.value_group.DiscreteValueSemigroup
method), 12

is_unramified() (sage.rings.padics.padic_valuation.pAdicValuation_base
method), 93

L
lift() (sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base

method), 85
lift() (sage.rings.padics.padic_valuation.pAdicValuation_base

method), 94
lift() (sage.rings.padics.padic_valuation.pAdicValuation_padic

method), 97
lift() (sage.rings.valuation.augmented_valuation.FinalAugmentedValuation

method), 58
lift() (sage.rings.valuation.augmented_valuation.NonFinalAugmentedValuation

method), 65
lift() (sage.rings.valuation.gauss_valuation.GaussValuation_generic

method), 33
lift() (sage.rings.valuation.limit_valuation.MacLaneLimitValuation

method), 72
lift() (sage.rings.valuation.mapped_valuation.MappedValuation_base

method), 77
lift() (sage.rings.valuation.scaled_valuation.ScaledValuation_generic

method), 79

lift() (sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation
method), 27

lift() (sage.rings.valuation.trivial_valuation.TrivialDiscreteValuation
method), 29

lift() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 22

lift_to_key() (sage.rings.valuation.augmented_valuation.NonFinalAugmentedValuation
method), 66

lift_to_key() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 34

lift_to_key() (sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation
method), 49

LimitValuation_generic (class in
sage.rings.valuation.limit_valuation), 70

LimitValuationFactory (class in
sage.rings.valuation.limit_valuation), 70

lower_bound() (sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation
method), 60

lower_bound() (sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation
method), 63

lower_bound() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 34

lower_bound() (sage.rings.valuation.limit_valuation.MacLaneLimitValuation
method), 72

lower_bound() (sage.rings.valuation.mapped_valuation.FiniteExtensionFromInfiniteValuation
method), 75

lower_bound() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 22

M
mac_lane_approximant()

(sage.rings.valuation.valuation.DiscreteValuation
method), 14

mac_lane_approximants()
(sage.rings.valuation.valuation.DiscreteValuation
method), 15

mac_lane_step() (sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation
method), 49

MacLaneApproximantNode (class in
sage.rings.valuation.valuation), 17

MacLaneLimitValuation (class in
sage.rings.valuation.limit_valuation), 71

MappedValuation_base (class in
sage.rings.valuation.mapped_valuation),
76

minimal_representative()
(sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation
method), 50

module
sage.rings.function_field.function_field_valuation,

80
sage.rings.padics.padic_valuation, 89
sage.rings.valuation.augmented_valuation,

51

106 Index

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

sage.rings.valuation.developing_valuation,
38

sage.rings.valuation.gauss_valuation, 30
sage.rings.valuation.inductive_valuation,

40
sage.rings.valuation.limit_valuation, 69
sage.rings.valuation.mapped_valuation, 74
sage.rings.valuation.scaled_valuation, 78
sage.rings.valuation.trivial_valuation,

27
sage.rings.valuation.valuation, 12
sage.rings.valuation.valuation_space, 18
sage.rings.valuation.value_group, 9

monic_integral_model()
(sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 56

monic_integral_model()
(sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 34

monic_integral_model()
(sage.rings.valuation.inductive_valuation.InductiveValuation
method), 44

montes_factorization()
(sage.rings.valuation.valuation.DiscreteValuation
method), 16

mu() (sage.rings.valuation.inductive_valuation.InductiveValuation
method), 45

N
NegativeInfiniteDiscretePseudoValuation (class

in sage.rings.valuation.valuation), 18
newton_polygon() (sage.rings.valuation.developing_valuation.DevelopingValuation

method), 39
NonClassicalRationalFunctionFieldValuation

(class in sage.rings.function_field.function_field_valuation),
87

NonFinalAugmentedValuation (class in
sage.rings.valuation.augmented_valuation), 64

NonFinalFiniteAugmentedValuation (class in
sage.rings.valuation.augmented_valuation), 68

NonFinalInductiveValuation (class in
sage.rings.valuation.inductive_valuation),
45

numerator() (sage.rings.valuation.value_group.DiscreteValueGroup
method), 11

P
p() (sage.rings.padics.padic_valuation.pAdicValuation_base

method), 94
pAdicFromLimitValuation (class in

sage.rings.padics.padic_valuation), 91
pAdicValuation_base (class in

sage.rings.padics.padic_valuation), 91

pAdicValuation_int (class in
sage.rings.padics.padic_valuation), 95

pAdicValuation_padic (class in
sage.rings.padics.padic_valuation), 96

PadicValuationFactory (class in
sage.rings.padics.padic_valuation), 89

phi() (sage.rings.valuation.developing_valuation.DevelopingValuation
method), 40

psi() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 56

R
RationalFunctionFieldMappedValuation (class in

sage.rings.function_field.function_field_valuation),
88

RationalFunctionFieldValuation_base (class in
sage.rings.function_field.function_field_valuation),
88

reduce() (sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base
method), 86

reduce() (sage.rings.padics.padic_valuation.pAdicValuation_base
method), 94

reduce() (sage.rings.padics.padic_valuation.pAdicValuation_padic
method), 97

reduce() (sage.rings.valuation.augmented_valuation.FinalAugmentedValuation
method), 58

reduce() (sage.rings.valuation.augmented_valuation.NonFinalAugmentedValuation
method), 67

reduce() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 35

reduce() (sage.rings.valuation.limit_valuation.LimitValuation_generic
method), 71

reduce() (sage.rings.valuation.mapped_valuation.MappedValuation_base
method), 77

reduce() (sage.rings.valuation.scaled_valuation.ScaledValuation_generic
method), 79

reduce() (sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation
method), 27

reduce() (sage.rings.valuation.trivial_valuation.TrivialDiscreteValuation
method), 29

reduce() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 22

residue_field() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 23

residue_ring() (sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base
method), 86

residue_ring() (sage.rings.function_field.function_field_valuation.NonClassicalRationalFunctionFieldValuation
method), 87

residue_ring() (sage.rings.padics.padic_valuation.pAdicValuation_int
method), 95

residue_ring() (sage.rings.padics.padic_valuation.pAdicValuation_padic
method), 97

residue_ring() (sage.rings.valuation.augmented_valuation.FinalAugmentedValuation
method), 59

Index 107

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

residue_ring() (sage.rings.valuation.augmented_valuation.NonFinalAugmentedValuation
method), 68

residue_ring() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 35

residue_ring() (sage.rings.valuation.limit_valuation.MacLaneLimitValuation
method), 73

residue_ring() (sage.rings.valuation.mapped_valuation.MappedValuation_base
method), 77

residue_ring() (sage.rings.valuation.scaled_valuation.ScaledValuation_generic
method), 79

residue_ring() (sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation
method), 27

residue_ring() (sage.rings.valuation.trivial_valuation.TrivialDiscreteValuation
method), 29

residue_ring() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 23

restriction() (sage.rings.function_field.function_field_valuation.FunctionFieldExtensionMappedValuation
method), 82

restriction() (sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuationRelative_base
method), 83

restriction() (sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base
method), 86

restriction() (sage.rings.padics.padic_valuation.pAdicValuation_base
method), 94

restriction() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 57

restriction() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 36

restriction() (sage.rings.valuation.limit_valuation.MacLaneLimitValuation
method), 73

restriction() (sage.rings.valuation.mapped_valuation.FiniteExtensionFromInfiniteValuation
method), 75

restriction() (sage.rings.valuation.scaled_valuation.ScaledValuation_generic
method), 80

restriction() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 23

S
sage.rings.function_field.function_field_valuation

module, 80
sage.rings.padics.padic_valuation

module, 89
sage.rings.valuation.augmented_valuation

module, 51
sage.rings.valuation.developing_valuation

module, 38
sage.rings.valuation.gauss_valuation

module, 30
sage.rings.valuation.inductive_valuation

module, 40
sage.rings.valuation.limit_valuation

module, 69
sage.rings.valuation.mapped_valuation

module, 74

sage.rings.valuation.scaled_valuation
module, 78

sage.rings.valuation.trivial_valuation
module, 27

sage.rings.valuation.valuation
module, 12

sage.rings.valuation.valuation_space
module, 18

sage.rings.valuation.value_group
module, 9

scale() (sage.rings.function_field.function_field_valuation.FunctionFieldFromLimitValuation
method), 83

scale() (sage.rings.function_field.function_field_valuation.FunctionFieldMappedValuation_base
method), 84

scale() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base
method), 57

scale() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 36

scale() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 23

ScaleAction (class in
sage.rings.valuation.valuation_space), 26

ScaledValuation_generic (class in
sage.rings.valuation.scaled_valuation), 79

ScaledValuationFactory (class in
sage.rings.valuation.scaled_valuation), 78

separating_element()
(sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 24

shift() (sage.rings.padics.padic_valuation.pAdicValuation_padic
method), 97

shift() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 24

simplify() (sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base
method), 86

simplify() (sage.rings.padics.padic_valuation.pAdicValuation_int
method), 95

simplify() (sage.rings.padics.padic_valuation.pAdicValuation_padic
method), 98

simplify() (sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation
method), 60

simplify() (sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation
method), 63

simplify() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 36

simplify() (sage.rings.valuation.limit_valuation.MacLaneLimitValuation
method), 73

simplify() (sage.rings.valuation.mapped_valuation.FiniteExtensionFromInfiniteValuation
method), 75

simplify() (sage.rings.valuation.mapped_valuation.MappedValuation_base
method), 78

simplify() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 25

some_elements() (sage.rings.valuation.value_group.DiscreteValueGroup

108 Index

Discrete Valuations and Discrete Pseudo-Valuations, Release 9.7

method), 11
some_elements() (sage.rings.valuation.value_group.DiscreteValueSemigroup

method), 12

T
TrivialDiscretePseudoValuation (class in

sage.rings.valuation.trivial_valuation), 27
TrivialDiscretePseudoValuation_base (class in

sage.rings.valuation.trivial_valuation), 28
TrivialDiscreteValuation (class in

sage.rings.valuation.trivial_valuation), 28
TrivialValuationFactory (class in

sage.rings.valuation.trivial_valuation), 29

U
uniformizer() (sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base

method), 87
uniformizer() (sage.rings.padics.padic_valuation.pAdicValuation_int

method), 96
uniformizer() (sage.rings.padics.padic_valuation.pAdicValuation_padic

method), 98
uniformizer() (sage.rings.valuation.augmented_valuation.AugmentedValuation_base

method), 57
uniformizer() (sage.rings.valuation.gauss_valuation.GaussValuation_generic

method), 37
uniformizer() (sage.rings.valuation.limit_valuation.MacLaneLimitValuation

method), 73
uniformizer() (sage.rings.valuation.mapped_valuation.MappedValuation_base

method), 78
uniformizer() (sage.rings.valuation.scaled_valuation.ScaledValuation_generic

method), 80
uniformizer() (sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation_base

method), 28
uniformizer() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods

method), 25
upper_bound() (sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation

method), 61
upper_bound() (sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation

method), 63
upper_bound() (sage.rings.valuation.gauss_valuation.GaussValuation_generic

method), 37
upper_bound() (sage.rings.valuation.limit_valuation.MacLaneLimitValuation

method), 74
upper_bound() (sage.rings.valuation.mapped_valuation.FiniteExtensionFromInfiniteValuation

method), 76
upper_bound() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods

method), 25

V
valuations() (sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation

method), 61
valuations() (sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation

method), 63

valuations() (sage.rings.valuation.developing_valuation.DevelopingValuation
method), 40

valuations() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 37

value_group() (sage.rings.function_field.function_field_valuation.InducedRationalFunctionFieldValuation_base
method), 87

value_group() (sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation
method), 62

value_group() (sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation
method), 64

value_group() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 37

value_group() (sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation
method), 28

value_group() (sage.rings.valuation.trivial_valuation.TrivialDiscreteValuation
method), 29

value_group() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 26

value_semigroup() (sage.rings.padics.padic_valuation.pAdicValuation_base
method), 94

value_semigroup() (sage.rings.valuation.augmented_valuation.FiniteAugmentedValuation
method), 62

value_semigroup() (sage.rings.valuation.augmented_valuation.InfiniteAugmentedValuation
method), 64

value_semigroup() (sage.rings.valuation.gauss_valuation.GaussValuation_generic
method), 38

value_semigroup() (sage.rings.valuation.limit_valuation.MacLaneLimitValuation
method), 74

value_semigroup() (sage.rings.valuation.scaled_valuation.ScaledValuation_generic
method), 80

value_semigroup() (sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods
method), 26

Index 109

	High-Level Interface
	p-adic valuations
	Valuations on Function Fields

	Low-Level Interface
	Mac Lane valuations
	Limit valuations
	Non-classical valuations

	Mac Lane Approximants
	References
	More Details
	Value groups of discrete valuations
	Discrete valuations
	Spaces of valuations
	Trivial valuations
	Gauss valuations on polynomial rings
	Valuations on polynomial rings based on -adic expansions
	Inductive valuations on polynomial rings
	Augmented valuations on polynomial rings
	Valuations which are defined as limits of valuations.
	Valuations which are implemented through a map to another valuation
	Valuations which are scaled versions of another valuation
	Discrete valuations on function fields
	p-adic Valuations on Number Fields and Their Subrings and Completions

	Indices and Tables
	Python Module Index
	Index

