
Parallel Computing
Release 9.7

The Sage Development Team

Jul 21, 2024

CONTENTS

1 Decorate interface for parallel computation 1

2 Reference Parallel Primitives 7

3 Parallel iterator built using the fork() system call 9

4 Parallel computations using RecursivelyEnumeratedSet and Map-Reduce 11
4.1 Contents . 11
4.2 How is this different from usual MapReduce? . 12
4.3 How can I use all that stuff? . 12
4.4 Advanced use . 15
4.5 Profiling . 16
4.6 Logging . 17
4.7 How does it work ? . 17
4.8 How thefts are performed . 18
4.9 The end of the computation . 19
4.10 Are there examples of classes? . 19
4.11 Tests . 19
4.12 Classes and methods . 20

5 Parallel Iterator built using Python’s multiprocessing module 33

6 Parallelization control 35

7 CPU Detection 41

8 Indices and Tables 43

Python Module Index 45

Index 47

i

ii

CHAPTER

ONE

DECORATE INTERFACE FOR PARALLEL COMPUTATION

class sage.parallel.decorate.Fork(timeout=0, verbose=False)
Bases: object

A fork decorator class.

class sage.parallel.decorate.Parallel(p_iter='fork', ncpus=None, **kwds)
Bases: object

Create a parallel-decorated function. This is the object created by parallel().

class sage.parallel.decorate.ParallelFunction(parallel, func)
Bases: object

Class which parallelizes a function or class method. This is typically accessed indirectly through Parallel.
__call__().

sage.parallel.decorate.fork(f=None, timeout=0, verbose=False)
Decorate a function so that when called it runs in a forked subprocess. This means that it won’t have any in-
memory side effects on the parent Sage process. The pexpect interfaces are all reset.

INPUT:

• f – a function

• timeout – (default: 0) if positive, kill the subprocess after this many seconds (wall time)

• verbose – (default: False) whether to print anything about what the decorator does (e.g., killing the
subprocess)

Warning: The forked subprocess will not have access to data created in pexpect interfaces. This behavior
with respect to pexpect interfaces is very important to keep in mind when setting up certain computations.
It’s the one big limitation of this decorator.

EXAMPLES:

We create a function and run it with the fork decorator. Note that it does not have a side effect. Despite trying
to change the global variable a below in g, the variable a does not get changed:

sage: a = 5
sage: @fork
....: def g(n, m):
....: global a
....: a = 10
....: return factorial(n).ndigits() + m
sage: g(5, m=5)

(continues on next page)

1

Parallel Computing, Release 9.7

(continued from previous page)

8
sage: a
5

We use fork to make sure that the function terminates after one second, no matter what:

sage: @fork(timeout=1, verbose=True)
....: def g(n, m): return factorial(n).ndigits() + m
sage: g(5, m=5)
8
sage: g(10^7, m=5)
Killing subprocess ... with input ((10000000,), {'m': 5}) which took too long
'NO DATA (timed out)'

We illustrate that the state of the pexpect interface is not altered by forked functions (they get their own new
pexpect interfaces!):

sage: gp.eval('a = 5')
'5'
sage: @fork()
....: def g():
....: gp.eval('a = 10')
....: return gp.eval('a')
sage: g()
'10'
sage: gp.eval('a')
'5'

We illustrate that the forked function has its own pexpect interface:

sage: gp.eval('a = 15')
'15'
sage: @fork()
....: def g(): return gp.eval('a')
sage: g()
'a'

We illustrate that segfaulting subprocesses are no trouble at all:

sage: cython('def f(): print(<char*>0)') # optional -␣
→˓sage.misc.cython
sage: @fork
....: def g(): f()
sage: print("this works"); g() # optional -␣
→˓sage.misc.cython
this works...

--
Unhandled SIG...
--
'NO DATA'

sage.parallel.decorate.normalize_input(a)
Convert a to a pair (args, kwds) using some rules:

2 Chapter 1. Decorate interface for parallel computation

Parallel Computing, Release 9.7

• if already of that form, leave that way.

• if a is a tuple make (a,{})

• if a is a dict make (tuple(),a)

• otherwise make ((a,),{})

INPUT:

• a – object

OUTPUT:

• args – tuple

• kwds – dictionary

EXAMPLES:

sage: sage.parallel.decorate.normalize_input((2, {3:4}))
((2, {3: 4}), {})
sage: sage.parallel.decorate.normalize_input((2,3))
((2, 3), {})
sage: sage.parallel.decorate.normalize_input({3:4})
((), {3: 4})
sage: sage.parallel.decorate.normalize_input(5)
((5,), {})

sage.parallel.decorate.parallel(p_iter='fork', ncpus=None, **kwds)
This is a decorator that gives a function a parallel interface, allowing it to be called with a list of inputs, whose
values will be computed in parallel.

Warning: The parallel subprocesses will not have access to data created in pexpect interfaces. This behavior
with respect to pexpect interfaces is very important to keep in mind when setting up certain computations.
It’s the one big limitation of this decorator.

INPUT:

• p_iter – parallel iterator function or string:

– 'fork' – (default) use a new forked subprocess for each input

– 'multiprocessing' – use multiprocessing library

– 'reference' – use a fake serial reference implementation

• ncpus – integer, maximal number of subprocesses to use at the same time

• timeout – number of seconds until each subprocess is killed (only supported by ‘fork’; zero means not at
all)

Warning: If you use anything but 'fork' above, then a whole new subprocess is spawned, so none of your
local state (variables, certain functions, etc.) is available.

EXAMPLES:

We create a simple decoration for a simple function. The number of cpus (or cores, or hardware threads) is
automatically detected:

3

Parallel Computing, Release 9.7

sage: @parallel
....: def f(n): return n*n
sage: f(10)
100
sage: sorted(list(f([1,2,3])))
[(((1,), {}), 1), (((2,), {}), 4), (((3,), {}), 9)]

We use exactly two cpus:

sage: @parallel(2)
....: def f(n): return n*n

We create a decorator that uses three subprocesses, and times out individual processes after 10 seconds:

sage: @parallel(ncpus=3, timeout=10)
....: def fac(n): return factor(2^n-1)
sage: for X, Y in sorted(list(fac([101,119,151,197,209]))): print((X,Y))
(((101,), {}), 7432339208719 * 341117531003194129)
(((119,), {}), 127 * 239 * 20231 * 131071 * 62983048367 * 131105292137)
(((151,), {}), 18121 * 55871 * 165799 * 2332951 * 7289088383388253664437433)
(((197,), {}), 7487 * 26828803997912886929710867041891989490486893845712448833)
(((209,), {}), 23 * 89 * 524287 * 94803416684681 * 1512348937147247 *␣
→˓5346950541323960232319657)

sage: @parallel('multiprocessing')
....: def f(N): return N^2
sage: v = list(f([1,2,4])); v.sort(); v
[(((1,), {}), 1), (((2,), {}), 4), (((4,), {}), 16)]
sage: @parallel('reference')
....: def f(N): return N^2
sage: v = list(f([1,2,4])); v.sort(); v
[(((1,), {}), 1), (((2,), {}), 4), (((4,), {}), 16)]

For functions that take multiple arguments, enclose the arguments in tuples when calling the parallel function:

sage: @parallel
....: def f(a,b): return a*b
sage: for X, Y in sorted(list(f([(2,3),(3,5),(5,7)]))): print((X, Y))
(((2, 3), {}), 6)
(((3, 5), {}), 15)
(((5, 7), {}), 35)

For functions that take a single tuple as an argument, enclose it in an additional tuple at call time, to distinguish
it as the first argument, as opposed to a tuple of arguments:

sage: @parallel
....: def firstEntry(aTuple): return aTuple[0]
sage: for X, Y in sorted(list(firstEntry([((1,2,3,4),),((5,6,7,8),)]))): print((X,␣
→˓Y))
((((1, 2, 3, 4),), {}), 1)
((((5, 6, 7, 8),), {}), 5)

The parallel decorator also works with methods, classmethods, and staticmethods. Be sure to apply the parallel
decorator after (“above”) either the classmethod or staticmethod decorators:

4 Chapter 1. Decorate interface for parallel computation

Parallel Computing, Release 9.7

sage: class Foo():
....: @parallel(2)
....: def square(self, n):
....: return n*n
....: @parallel(2)
....: @classmethod
....: def square_classmethod(cls, n):
....: return n*n
sage: a = Foo()
sage: a.square(3)
9
sage: sorted(a.square([2,3]))
[(((2,), {}), 4), (((3,), {}), 9)]
sage: Foo.square_classmethod(3)
9
sage: sorted(Foo.square_classmethod([2,3]))
[(((2,), {}), 4), (((3,), {}), 9)]
sage: Foo.square_classmethod(3)
9

Warning: Currently, parallel methods do not work with the multiprocessing implementation.

5

Parallel Computing, Release 9.7

6 Chapter 1. Decorate interface for parallel computation

CHAPTER

TWO

REFERENCE PARALLEL PRIMITIVES

These are reference implementations of basic parallel primitives. These are not actually parallel, but work the same
way. They are good for testing.

sage.parallel.reference.parallel_iter(f, inputs)
Reference parallel iterator implementation.

INPUT:

• f – a Python function that can be pickled using the pickle_function command.

• inputs – a list of pickleable pairs (args, kwds), where args is a tuple and kwds is a dictionary.

OUTPUT:

• iterator over 2-tuples (inputs[i], f(inputs[i])), where the order may be completely random

EXAMPLES:

sage: def f(N,M=10): return N*M
sage: inputs = [((2,3),{}), (tuple(), {'M':5,'N':3}), ((2,),{})]
sage: set_random_seed(0)
sage: for a, val in sage.parallel.reference.parallel_iter(f, inputs):
....: print((a, val))
(((2,), {}), 20)
(((), {'M': 5, 'N': 3}), 15)
(((2, 3), {}), 6)
sage: for a, val in sage.parallel.reference.parallel_iter(f, inputs):
....: print((a, val))
(((), {'M': 5, 'N': 3}), 15)
(((2,), {}), 20)
(((2, 3), {}), 6)

7

Parallel Computing, Release 9.7

8 Chapter 2. Reference Parallel Primitives

CHAPTER

THREE

PARALLEL ITERATOR BUILT USING THE FORK() SYSTEM CALL

class sage.parallel.use_fork.WorkerData(input, starttime=None, failure='')
Bases: object

Simple class which stores data about a running p_iter_fork worker.

This just stores three attributes:

• input: the input value used by this worker

• starttime: the walltime when this worker started

• failure: an optional message indicating the kind of failure

EXAMPLES:

sage: from sage.parallel.use_fork import WorkerData
sage: W = WorkerData(42); W
<sage.parallel.use_fork.WorkerData object at ...>
sage: W.starttime # random
1499330252.463206

class sage.parallel.use_fork.p_iter_fork(ncpus, timeout=0, verbose=False, reset_interfaces=True)
Bases: object

A parallel iterator implemented using fork().

INPUT:

• ncpus – the maximal number of simultaneous subprocesses to spawn

• timeout – (float, default: 0) wall time in seconds until a subprocess is automatically killed

• verbose – (default: False) whether to print anything about what the iterator does (e.g., killing subpro-
cesses)

• reset_interfaces – (default: True) whether to reset all pexpect interfaces

EXAMPLES:

sage: X = sage.parallel.use_fork.p_iter_fork(2,3, False); X
<sage.parallel.use_fork.p_iter_fork object at ...>
sage: X.ncpus
2
sage: X.timeout
3.0
sage: X.verbose
False

9

Parallel Computing, Release 9.7

10 Chapter 3. Parallel iterator built using the fork() system call

CHAPTER

FOUR

PARALLEL COMPUTATIONS USING
RECURSIVELYENUMERATEDSET AND MAP-REDUCE

There is an efficient way to distribute computations on a set 𝑆 of objects defined by RecursivelyEnumeratedSet()
(see sage.sets.recursively_enumerated_set for more details) over which one would like to perform the follow-
ing kind of operations:

• Compute the cardinality of a (very large) set defined recursively (through a call to
RecursivelyEnumeratedSet_forest)

• More generally, compute any kind of generating series over this set

• Test a conjecture, e.g. find an element of 𝑆 satisfying a specific property, or check that none does or that they all
do

• Count/list the elements of 𝑆 that have a specific property

• Apply any map/reduce kind of operation over the elements of 𝑆

AUTHORS:

• Florent Hivert – code, documentation (2012–2016)

• Jean Baptiste Priez – prototype, debugging help on MacOSX (2011-June, 2016)

• Nathann Cohen – some documentation (2012)

4.1 Contents

• How can I use all that stuff?

• Advanced use

• Profiling

• Logging

• How does it work ?

• Are there examples of classes?

11

../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#module-sage.sets.recursively_enumerated_set

Parallel Computing, Release 9.7

4.2 How is this different from usual MapReduce?

This implementation is specific to RecursivelyEnumeratedSet_forest, and uses its properties to do its job. Not
only mapping and reducing but also generating the elements of 𝑆 is done on different processors.

4.3 How can I use all that stuff?

First, you need to set the environment variable SAGE_NUM_THREADS to the desired number of parallel threads to be
used:

sage: import os # not tested
sage: os.environ["SAGE_NUM_THREADS"] = '8' # not tested

Second, you need the information necessary to describe a RecursivelyEnumeratedSet_forest representing your
set 𝑆 (see sage.sets.recursively_enumerated_set). Then, you need to provide a “map” function as well as a
“reduce” function. Here are some examples:

• Counting the number of elements. In this situation, the map function can be set to lambda x: 1, and the
reduce function just adds the values together, i.e. lambda x, y: x + y.

We count binary words of length ≤ 16:

sage: seeds = [[]]
sage: succ = lambda l: [l + [0], l + [1]] if len(l) < 16 else []
sage: S = RecursivelyEnumeratedSet(seeds, succ,
....: structure='forest', enumeration='depth')
sage: map_function = lambda x: 1
sage: reduce_function = lambda x, y: x + y
sage: reduce_init = 0
sage: S.map_reduce(map_function, reduce_function, reduce_init)
131071

This matches the number of binary words of length ≤ 16:

sage: factor(131071 + 1)
2^17

Note that the map and reduce functions here have the default values of the sage.sets.
recursively_enumerated_set.RecursivelyEnumeratedSet_forest.map_reduce() method so
that the number of elements can be obtained more simply with:

sage: S.map_reduce()
131071

Instead of using RecursivelyEnumeratedSet(), one can directly use RESetMapReduce, which gives finer
control over the parallel execution (see Advanced use below):

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce(
....: roots=[[]],
....: children=lambda l: [l + [0], l + [1]] if len(l) < 16 else [],
....: map_function=lambda x: 1,
....: reduce_function=lambda x, y: x + y,

(continues on next page)

12 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#module-sage.sets.recursively_enumerated_set
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest.map_reduce
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest.map_reduce
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet

Parallel Computing, Release 9.7

(continued from previous page)

....: reduce_init=0)
sage: S.run()
131071

• Generating series. For this, take a Map function that associates a monomial to each element of 𝑆, while the
Reduce function is still equal to lambda x, y: x + y.

We compute the generating series for counting binary words of each length ≤ 16:

sage: S = RecursivelyEnumeratedSet(
....: [[]], lambda l: [l + [0], l + [1]] if len(l) < 16 else [],
....: structure='forest', enumeration='depth')
sage: x = polygen(ZZ)
sage: sp = S.map_reduce(
....: map_function=lambda z: x**len(z),
....: reduce_function=lambda x, y: x + y,
....: reduce_init=0)
sage: sp
65536*x^16 + 32768*x^15 + 16384*x^14 + 8192*x^13 + 4096*x^12
+ 2048*x^11 + 1024*x^10 + 512*x^9 + 256*x^8 + 128*x^7 + 64*x^6
+ 32*x^5 + 16*x^4 + 8*x^3 + 4*x^2 + 2*x + 1

This is of course
∑︀16

𝑖=0(2𝑥)
𝑖:

sage: sp == sum((2*x)^i for i in range(17))
True

Here is another example where we count permutations of size ≤ 8 (here we use the default values):

sage: S = RecursivelyEnumeratedSet(
....: [[]],
....: lambda l: ([l[:i] + [len(l)] + l[i:]
....: for i in range(len(l) + 1)] if len(l) < 8 else []),
....: structure='forest',
....: enumeration='depth')
sage: x = polygen(ZZ)
sage: sp = S.map_reduce(lambda z: x**len(z)); sp
40320*x^8 + 5040*x^7 + 720*x^6 + 120*x^5 + 24*x^4 + 6*x^3 + 2*x^2 + x + 1

This is of course
∑︀8

𝑖=0 𝑖!𝑥
𝑖:

sage: sp == sum(factorial(i)*x^i for i in range(9))
True

• Post Processing. We now demonstrate the use of post_process. We generate the permutation as previously,
but we only perform the map/reduce computation on those of even len. Of course we get the even part of the
previous generating series:

sage: S = RecursivelyEnumeratedSet(
....: [[]],
....: lambda l: ([l[:i] + [len(l) + 1] + l[i:]
....: for i in range(len(l) + 1)] if len(l) < 8 else []),
....: post_process=lambda l: l if len(l) % 2 == 0 else None,

(continues on next page)

4.3. How can I use all that stuff? 13

Parallel Computing, Release 9.7

(continued from previous page)

....: structure='forest',

....: enumeration='depth')
sage: sp = S.map_reduce(lambda z: x**len(z)); sp
40320*x^8 + 720*x^6 + 24*x^4 + 2*x^2 + 1

This is also useful for example to call a constructor on the generated elements:

sage: S = RecursivelyEnumeratedSet(
....: [[]],
....: lambda l: ([l[:i] + [len(l) + 1] + l[i:]
....: for i in range(len(l) + 1)] if len(l) < 5 else []),
....: post_process=lambda l: Permutation(l) if len(l) == 5 else None,
....: structure='forest',
....: enumeration='depth')
sage: x = polygen(ZZ)
sage: sp = S.map_reduce(lambda z: x**z.number_of_inversions()); sp
x^10 + 4*x^9 + 9*x^8 + 15*x^7 + 20*x^6 + 22*x^5 + 20*x^4 + 15*x^3 + 9*x^2 + 4*x + 1

We get here a polynomial which is the 𝑞-factorial (in the variable 𝑥) of 5, that is,
∏︀5

𝑖=1
1−𝑥𝑖

1−𝑥 :

sage: x = polygen(ZZ)
sage: prod((1-x^i)//(1-x) for i in range(1, 6))
x^10 + 4*x^9 + 9*x^8 + 15*x^7 + 20*x^6 + 22*x^5 + 20*x^4 + 15*x^3 + 9*x^2 + 4*x + 1

Compare:

sage: from sage.combinat.q_analogues import q_factorial
sage: q_factorial(5)
q^10 + 4*q^9 + 9*q^8 + 15*q^7 + 20*q^6 + 22*q^5 + 20*q^4 + 15*q^3 + 9*q^2 + 4*q + 1

• Listing the objects. One can also compute the list of objects in a RecursivelyEnumeratedSet_forest>
using RESetMapReduce. As an example, we compute the set of numbers between 1 and 63, generated by their
binary expansion:

sage: S = RecursivelyEnumeratedSet(
....: [1],
....: lambda l: [(l<<1)|0, (l<<1)|1] if l < 1<<5 else [],
....: structure='forest',
....: enumeration='depth')

Here is the list computed without RESetMapReduce:

sage: serial = list(S)
sage: serial
[1, 2, 4, 8, 16, 32, 33, 17, 34, 35, 9, 18, 36, 37, 19, 38, 39, 5, 10,
20, 40, 41, 21, 42, 43, 11, 22, 44, 45, 23, 46, 47, 3, 6, 12, 24, 48,
49, 25, 50, 51, 13, 26, 52, 53, 27, 54, 55, 7, 14, 28, 56, 57, 29, 58,
59, 15, 30, 60, 61, 31, 62, 63]

Here is how to perform the parallel computation. The order of the lists depends on the synchronisation of the
various computation processes and therefore should be considered as random:

14 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Parallel Computing, Release 9.7

sage: parall = S.map_reduce(lambda x: [x], lambda x, y: x + y, [])
sage: parall # random
[1, 3, 7, 15, 31, 63, 62, 30, 61, 60, 14, 29, 59, 58, 28, 57, 56, 6, 13,
27, 55, 54, 26, 53, 52, 12, 25, 51, 50, 24, 49, 48, 2, 5, 11, 23, 47,
46, 22, 45, 44, 10, 21, 43, 42, 20, 41, 40, 4, 9, 19, 39, 38, 18, 37,
36, 8, 17, 35, 34, 16, 33, 32]
sage: sorted(serial) == sorted(parall)
True

4.4 Advanced use

Fine control over the execution of a map/reduce computation is achieved via parameters passed to the
RESetMapReduce.run() method. The following three parameters can be used:

• max_proc – (integer, default: None) if given, the maximum number of worker processors to use. The actual
number is also bounded by the value of the environment variable SAGE_NUM_THREADS (the number of cores by
default).

• timeout – a timeout on the computation (default: None)

• reduce_locally – whether the workers should reduce locally their work or sends results to the master as soon
as possible. See RESetMapReduceWorker for details.

Here is an example or how to deal with timeout:

sage: from sage.parallel.map_reduce import (RESetMPExample, AbortError)
sage: EX = RESetMPExample(maxl=100)
sage: try:
....: res = EX.run(timeout=float(0.01))
....: except AbortError:
....: print("Computation timeout")
....: else:
....: print("Computation normally finished")
....: res
Computation timeout

The following should not timeout even on a very slow machine:

sage: EX = RESetMPExample(maxl=8)
sage: try:
....: res = EX.run(timeout=60)
....: except AbortError:
....: print("Computation Timeout")
....: else:
....: print("Computation normally finished")
....: res
Computation normally finished
40320*x^8 + 5040*x^7 + 720*x^6 + 120*x^5 + 24*x^4 + 6*x^3 + 2*x^2 + x + 1

As for reduce_locally, one should not see any difference, except for speed during normal usage. Most of the time
one should leave it set to True, unless one sets up a mechanism to consume the partial results as soon as they arrive.
See RESetParallelIterator and in particular the __iter__ method for a example of consumer use.

4.4. Advanced use 15

Parallel Computing, Release 9.7

4.5 Profiling

It is possible to profile a map/reduce computation. First we create a RESetMapReduce object:

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce(
....: roots=[[]],
....: children=lambda l: [l + [0], l + [1]] if len(l) < 16 else [],
....: map_function=lambda x: 1,
....: reduce_function=lambda x, y: x + y,
....: reduce_init=0)

The profiling is activated by the profile parameter. The value provided should be a prefix (including a possible
directory) for the profile dump:

sage: prof = tmp_dir('RESetMR_profile') + 'profcomp'
sage: res = S.run(profile=prof) # random
[RESetMapReduceWorker-1:58] (20:00:41.444) Profiling in
/home/user/.sage/temp/.../32414/RESetMR_profilewRCRAx/profcomp1
...
[RESetMapReduceWorker-1:57] (20:00:41.444) Profiling in
/home/user/.sage/temp/.../32414/RESetMR_profilewRCRAx/profcomp0
...
sage: res
131071

In this example, the profiles have been dumped in files such as profcomp0. One can then load and print them as
follows. See cProfile.Profile for more details:

sage: import cProfile, pstats
sage: st = pstats.Stats(prof+'0')
sage: st.strip_dirs().sort_stats('cumulative').print_stats() # random
...

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.023 0.023 0.432 0.432 map_reduce.py:1211(run_myself)

11968 0.151 0.000 0.223 0.000 map_reduce.py:1292(walk_branch_locally)
...
<pstats.Stats instance at 0x7fedea40c6c8>

See also:

The Python Profilers for more detail on profiling in python.

16 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

https://docs.python.org/2/library/profile.html

Parallel Computing, Release 9.7

4.6 Logging

The computation progress is logged through a logging.Logger in sage.parallel.map_reduce.logger together
with logging.StreamHandler and a logging.Formatter. They are currently configured to print warning messages
to the console.

See also:

Logging facility for Python for more detail on logging and log system configuration.

Note: Calls to logger which involve printing the node are commented out in the code, because the printing (to a string)
of the node can be very time consuming depending on the node and it happens before the decision whether the logger
should record the string or drop it.

4.7 How does it work ?

The scheduling algorithm we use here is any adaptation of Wikipedia article Work_stealing:

In a work stealing scheduler, each processor in a computer system has a queue of work items (computational
tasks, threads) to perform. [. . .]. Each work items are initially put on the queue of the processor executing
the work item. When a processor runs out of work, it looks at the queues of other processors and “steals”
their work items. In effect, work stealing distributes the scheduling work over idle processors, and as long
as all processors have work to do, no scheduling overhead occurs.

For communication we use Python’s basic multiprocessing module. We first describe the different actors and com-
munication tools used by the system. The work is done under the coordination of a master object (an instance of
RESetMapReduce) by a bunch of worker objects (instances of RESetMapReduceWorker).

Each running map reduce instance works on a RecursivelyEnumeratedSet_forest> called here 𝐶 and is coordi-
nated by a RESetMapReduce object called the master. The master is in charge of launching the work, gathering the
results and cleaning up at the end of the computation. It doesn’t perform any computation associated to the generation
of the element 𝐶 nor the computation of the mapped function. It however occasionally perform a reduce, but most
reducing is by default done by the workers. Also thanks to the work-stealing algorithm, the master is only involved in
detecting the termination of the computation but all the load balancing is done at the level of the workers.

Workers are instances of RESetMapReduceWorker. They are responsible for doing the actual computations: element
generation, mapping and reducing. They are also responsible for the load balancing thanks to work-stealing.

Here is a description of the attributes of the master relevant to the map-reduce protocol:

• _results – a SimpleQueue where the master gathers the results sent by the workers.

• _active_tasks – a Semaphore recording the number of active tasks. The work is complete when it reaches 0.

• _done – a Lock which ensures that shutdown is done only once.

• _aborted – a Value() storing a shared ctypes.c_bool which is True if the computation was aborted before
all workers ran out of work.

• _workers – a list of RESetMapReduceWorker objects. Each worker is identified by its position in this list.

Each worker is a process (RESetMapReduceWorker inherits from Process) which contains:

• worker._iproc – the identifier of the worker that is its position in the master’s list of workers

• worker._todo – a collections.deque storing of nodes of the worker. It is used as a stack by the worker.
Thiefs steal from the bottom of this queue.

4.6. Logging 17

https://docs.python.org/library/logging.html#logging.Logger
https://docs.python.org/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/library/logging.html#logging.Formatter
https://docs.python.org/2/library/logging.html
https://en.wikipedia.org/wiki/Work_stealing
https://docs.python.org/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/library/multiprocessing.html#multiprocessing.Semaphore
https://docs.python.org/library/multiprocessing.html#multiprocessing.Lock
https://docs.python.org/library/multiprocessing.html#multiprocessing.Value
https://docs.python.org/library/ctypes.html#ctypes.c_bool
https://docs.python.org/library/multiprocessing.html#multiprocessing.Process
https://docs.python.org/library/collections.html#collections.deque

Parallel Computing, Release 9.7

• worker._request – a SimpleQueue storing steal request submitted to worker.

• worker._read_task, worker._write_task – a Pipe used to transfert node during steal.

• worker._thief – a Thread which is in charge of stealing from worker._todo.

Here is a schematic of the architecture:

4.8 How thefts are performed

During normal time, that is, when all workers are active, a worker W is iterating though a loop inside
RESetMapReduceWorker.walk_branch_locally(). Work nodes are taken from and new nodes W._todo are ap-
pended to W._todo. When a worker W runs out of work, that is, when worker._todo is empty, it tries to steal some
work (i.e., a node) from another worker. This is performed in the RESetMapReduceWorker.steal() method.

From the point of view of W, here is what happens:

• W signals to the master that it is idle: master._signal_task_done;

• W chooses a victim V at random;

• W sends a request to V: it puts its identifier into V._request;

• W tries to read a node from W._read_task. Then three things may happen:

– a proper node is read. Then the theft was a success and W starts working locally on the received node.

– None is received. This means that V was idle. Then W tries another victim.

– AbortError is received. This means either that the computation was aborted or that it simply succeeded
and that no more work is required by W. Therefore an AbortError exception is raised leading W to shutdown.

We now describe the protocol on the victim’s side. Each worker process contains a Thread which we call T for thief
which acts like some kind of Troyan horse during theft. It is normally blocked waiting for a steal request.

From the point of view of V and T, here is what happens:

• during normal time, T is blocked waiting on V._request;

• upon steal request, T wakes up receiving the identification of W;

• T signals to the master that a new task is starting by master._signal_task_start;

18 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

https://docs.python.org/library/threading.html#threading.Thread
https://docs.python.org/library/threading.html#threading.Thread

Parallel Computing, Release 9.7

• Two things may happen depending if the queue V._todo is empty or not. Remark that due to the GIL, there is
no parallel execution between the victim V and its thief thread T.

– If V._todo is empty, then None is answered on W._write_task. The task is immediately signaled to end
the master through master._signal_task_done.

– Otherwise, a node is removed from the bottom of V._todo. The node is sent to W on W._write_task.
The task will be ended by W, that is, when finished working on the subtree rooted at the node, W will call
master._signal_task_done.

4.9 The end of the computation

To detect when a computation is finished, a synchronized integer is kept which counts the number of active tasks. This
is essentially a semaphore but semaphores are broken on Darwin OSes so we ship two implementations depending on
the OS (see ActiveTaskCounter and ActiveTaskCounterDarwin and the note below).

When a worker finishes working on a task, it calls master._signal_task_done. This decreases the task counter
master._active_tasks. When it reaches 0, it means that there are no more nodes: the work is completed. The
worker executes master._shutdownwhich sends AbortError to all worker._request and worker._write_task
queues. Each worker or thief thread receiving such a message raises the corresponding exception, therefore stopping
its work. A lock called master._done ensures that shutdown is only done once.

Finally, it is also possible to interrupt the computation before its ends, by calling master.abort(). This is achieved
by setting master._active_tasks to 0 and calling master._shutdown.

Warning: The macOS Semaphore bug

Darwin OSes do not correctly implement POSIX’s semaphore semantic. Indeed, on these systems, acquire may
fail and return False not only when the semaphore is equal to zero but also because someone else is trying to
acquire at the same time. This makes using Semaphores impossible on macOS so that on these systems we use a
synchronized integer instead.

4.10 Are there examples of classes?

Yes! Here they are:

• RESetMPExample – a simple basic example

• RESetParallelIterator – a more advanced example using non standard communication configuration.

4.11 Tests

Generating series for the sum of strictly decreasing lists of integers smaller than 15:

sage: y = polygen(ZZ, 'y')
sage: R = RESetMapReduce(
....: roots=[([], 0, 0)] + [([i], i, i) for i in range(1, 15)],
....: children=lambda list_sum_last:
....: [(list_sum_last[0] + [i], list_sum_last[1] + i, i)
....: for i in range(1, list_sum_last[2])],

(continues on next page)

4.9. The end of the computation 19

Parallel Computing, Release 9.7

(continued from previous page)

....: map_function=lambda li_sum_dummy: y**li_sum_dummy[1])
sage: sg = R.run()
sage: sg == prod((1 + y**i) for i in range(1, 15))
True

4.12 Classes and methods

exception sage.parallel.map_reduce.AbortError
Bases: Exception

Exception for aborting parallel computations.

This is used both as exception or as abort message.

sage.parallel.map_reduce.ActiveTaskCounter
alias of sage.parallel.map_reduce.ActiveTaskCounterPosix

class sage.parallel.map_reduce.ActiveTaskCounterDarwin(task_number)
Bases: object

Handling the number of active tasks.

A class for handling the number of active tasks in a distributed computation process. This is essentially a
semaphore, but Darwin OSes do not correctly implement POSIX’s semaphore semantic. So we use a shared
integer with a lock.

abort()
Set the task counter to zero.

EXAMPLES:

sage: from sage.parallel.map_reduce import ActiveTaskCounterDarwin as ATC
sage: c = ATC(4); c
ActiveTaskCounter(value=4)
sage: c.abort()
sage: c
ActiveTaskCounter(value=0)

task_done()
Decrement the task counter by one.

OUTPUT:

Calling task_done() decrements the counter and returns its new value.

EXAMPLES:

sage: from sage.parallel.map_reduce import ActiveTaskCounterDarwin as ATC
sage: c = ATC(4); c
ActiveTaskCounter(value=4)
sage: c.task_done()
3
sage: c
ActiveTaskCounter(value=3)

(continues on next page)

20 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

https://docs.python.org/library/exceptions.html#Exception

Parallel Computing, Release 9.7

(continued from previous page)

sage: c = ATC(0)
sage: c.task_done()
-1

task_start()
Increment the task counter by one.

OUTPUT:

Calling task_start() on a zero or negative counter returns 0, otherwise increment the counter and returns
its value after the incrementation.

EXAMPLES:

sage: from sage.parallel.map_reduce import ActiveTaskCounterDarwin as ATC
sage: c = ATC(4); c
ActiveTaskCounter(value=4)
sage: c.task_start()
5
sage: c
ActiveTaskCounter(value=5)

Calling task_start() on a zero counter does nothing:

sage: c = ATC(0)
sage: c.task_start()
0
sage: c
ActiveTaskCounter(value=0)

class sage.parallel.map_reduce.ActiveTaskCounterPosix(task_number)
Bases: object

Handling the number of active tasks.

A class for handling the number of active tasks in a distributed computation process. This is the standard imple-
mentation on POSIX compliant OSes. We essentially wrap a semaphore.

Note: A legitimate question is whether there is a need in keeping the two implementations. I ran the following
experiment on my machine:

S = RecursivelyEnumeratedSet(
[[]],
lambda l: ([l[:i] + [len(l)] + l[i:]

for i in range(len(l) + 1)]
if len(l) < NNN else []),

structure='forest',
enumeration='depth')

%time sp = S.map_reduce(lambda z: x**len(z)); sp

For NNN = 10, averaging a dozen of runs, I got:

• Posix compliant implementation: 17.04 s

• Darwin implementation: 18.26 s

4.12. Classes and methods 21

Parallel Computing, Release 9.7

So there is a non negligible overhead. It will probably be worth it if we try to cythonize the code. So I’m keeping
both implementations.

abort()
Set the task counter to zero.

EXAMPLES:

sage: from sage.parallel.map_reduce import ActiveTaskCounter as ATC
sage: c = ATC(4); c
ActiveTaskCounter(value=4)
sage: c.abort()
sage: c
ActiveTaskCounter(value=0)

task_done()
Decrement the task counter by one.

OUTPUT:

Calling task_done() decrements the counter and returns its new value.

EXAMPLES:

sage: from sage.parallel.map_reduce import ActiveTaskCounter as ATC
sage: c = ATC(4); c
ActiveTaskCounter(value=4)
sage: c.task_done()
3
sage: c
ActiveTaskCounter(value=3)

sage: c = ATC(0)
sage: c.task_done()
-1

task_start()
Increment the task counter by one.

OUTPUT:

Calling task_start() on a zero or negative counter returns 0, otherwise increment the counter and returns
its value after the incrementation.

EXAMPLES:

sage: from sage.parallel.map_reduce import ActiveTaskCounterDarwin as ATC
sage: c = ATC(4); c
ActiveTaskCounter(value=4)
sage: c.task_start()
5
sage: c
ActiveTaskCounter(value=5)

Calling task_start() on a zero counter does nothing:

22 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Parallel Computing, Release 9.7

sage: c = ATC(0)
sage: c.task_start()
0
sage: c
ActiveTaskCounter(value=0)

class sage.parallel.map_reduce.RESetMPExample(maxl=9)
Bases: sage.parallel.map_reduce.RESetMapReduce

An example of map reduce class.

INPUT:

• maxl – the maximum size of permutations generated (default to 9).

This computes the generating series of permutations counted by their size up to size maxl.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample
sage: EX = RESetMPExample()
sage: EX.run()
362880*x^9 + 40320*x^8 + 5040*x^7 + 720*x^6 + 120*x^5
+ 24*x^4 + 6*x^3 + 2*x^2 + x + 1

See also:

This is an example of RESetMapReduce

children(l)
Return the children of the permutation 𝑙.

INPUT:

• l – a list containing a permutation

OUTPUT:

The lists with len(l) inserted at all possible positions into l.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample
sage: RESetMPExample().children([1,0])
[[2, 1, 0], [1, 2, 0], [1, 0, 2]]

map_function(l)
The monomial associated to the permutation 𝑙.

INPUT:

• l – a list containing a permutation

OUTPUT:

The monomial x^len(l).

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample
sage: RESetMPExample().map_function([1,0])
x^2

4.12. Classes and methods 23

Parallel Computing, Release 9.7

roots()
Return the empty permutation.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample
sage: RESetMPExample().roots()
[[]]

class sage.parallel.map_reduce.RESetMapReduce(roots=None, children=None, post_process=None,
map_function=None, reduce_function=None,
reduce_init=None, forest=None)

Bases: object

Map-Reduce on recursively enumerated sets.

INPUT:

Description of the set:

• either forest=f – where f is a RecursivelyEnumeratedSet_forest>

• or a triple roots, children, post_process as follows

– roots=r – The root of the enumeration

– children=c – a function iterating through children nodes, given a parent node

– post_process=p – a post-processing function

The option post_process allows for customizing the nodes that are actually produced. Furthermore, if
post_process(x) returns None, then x won’t be output at all.

Description of the map/reduce operation:

• map_function=f – (default to None)

• reduce_function=red – (default to None)

• reduce_init=init – (default to None)

See also:

the Map/Reduce module for details and examples.

abort()
Abort the current parallel computation.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetParallelIterator
sage: S = RESetParallelIterator([[]],
....: lambda l: [l + [0], l + [1]] if len(l) < 17 else [])
sage: it = iter(S)
sage: next(it) # random
[]
sage: S.abort()
sage: hasattr(S, 'work_queue')
False

Cleanup:

24 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Parallel Computing, Release 9.7

sage: S.finish()

finish()
Destroy the workers and all the communication objects.

Communication statistics are gathered before destroying the workers.

See also:

print_communication_statistics()

get_results(timeout=None)
Get the results from the queue.

OUTPUT:

The reduction of the results of all the workers, that is, the result of the map/reduce computation.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce()
sage: S.setup_workers(2)
sage: for v in [1, 2, None, 3, None]: S._results.put(v)
sage: S.get_results()
6

Cleanup:

sage: del S._results, S._active_tasks, S._done, S._workers

map_function(o)
Return the function mapped by self.

INPUT:

• o – a node

OUTPUT:

By default 1.

Note: This should be overloaded in applications.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce()
sage: S.map_function(7)
1
sage: S = RESetMapReduce(map_function = lambda x: 3*x + 5)
sage: S.map_function(7)
26

post_process(a)
Return the image of a under the post-processing function for self.

INPUT:

4.12. Classes and methods 25

Parallel Computing, Release 9.7

• a – a node

With the default post-processing function, which is the identity function, this returns a itself.

Note: This should be overloaded in applications.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce()
sage: S.post_process(4)
4
sage: S = RESetMapReduce(post_process=lambda x: x*x)
sage: S.post_process(4)
16

print_communication_statistics(blocksize=16)
Print the communication statistics in a nice way.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample
sage: S = RESetMPExample(maxl=6)
sage: S.run()
720*x^6 + 120*x^5 + 24*x^4 + 6*x^3 + 2*x^2 + x + 1

sage: S.print_communication_statistics() # random
#proc: 0 1 2 3 4 5 6 7
reqs sent: 5 2 3 11 21 19 1 0
reqs rcvs: 10 10 9 5 1 11 9 2
- thefs: 1 0 0 0 0 0 0 0
+ thefs: 0 0 1 0 0 0 0 0

random_worker()
Return a random worker.

OUTPUT:

A worker for self chosen at random.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample, RESetMapReduceWorker
sage: from threading import Thread
sage: EX = RESetMPExample(maxl=6)
sage: EX.setup_workers(2)
sage: EX.random_worker()
<RESetMapReduceWorker...RESetMapReduceWorker-... initial...>
sage: EX.random_worker() in EX._workers
True

Cleanup:

sage: del EX._results, EX._active_tasks, EX._done, EX._workers

26 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Parallel Computing, Release 9.7

reduce_function(a, b)
Return the reducer function for self.

INPUT:

• a, b – two values to be reduced

OUTPUT:

By default the sum of a and b.

Note: This should be overloaded in applications.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce()
sage: S.reduce_function(4, 3)
7
sage: S = RESetMapReduce(reduce_function=lambda x,y: x*y)
sage: S.reduce_function(4, 3)
12

reduce_init()
Return the initial element for a reduction.

Note: This should be overloaded in applications.

roots()
Return the roots of self.

OUTPUT:

An iterable of nodes.

Note: This should be overloaded in applications.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMapReduce
sage: S = RESetMapReduce(42)
sage: S.roots()
42

run(max_proc=None, reduce_locally=True, timeout=None, profile=None)
Run the computations.

INPUT:

• max_proc – (integer, default: None) if given, the maximum number of worker processors to use. The
actual number is also bounded by the value of the environment variable SAGE_NUM_THREADS (the
number of cores by default).

• reduce_locally – See RESetMapReduceWorker (default: True)

• timeout – a timeout on the computation (default: None)

4.12. Classes and methods 27

Parallel Computing, Release 9.7

• profile – directory/filename prefix for profiling, or None for no profiling (default: None)

OUTPUT:

The result of the map/reduce computation or an exception AbortError if the computation was interrupted
or timeout.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample
sage: EX = RESetMPExample(maxl = 8)
sage: EX.run()
40320*x^8 + 5040*x^7 + 720*x^6 + 120*x^5 + 24*x^4 + 6*x^3 + 2*x^2 + x + 1

Here is an example or how to deal with timeout:

sage: from sage.parallel.map_reduce import AbortError
sage: EX = RESetMPExample(maxl = 100)
sage: try:
....: res = EX.run(timeout=float(0.01))
....: except AbortError:
....: print("Computation timeout")
....: else:
....: print("Computation normally finished")
....: res
Computation timeout

The following should not timeout even on a very slow machine:

sage: from sage.parallel.map_reduce import AbortError
sage: EX = RESetMPExample(maxl = 8)
sage: try:
....: res = EX.run(timeout=60)
....: except AbortError:
....: print("Computation Timeout")
....: else:
....: print("Computation normally finished")
....: res
Computation normally finished
40320*x^8 + 5040*x^7 + 720*x^6 + 120*x^5 + 24*x^4 + 6*x^3 + 2*x^2 + x + 1

run_serial()
Run the computation serially (mostly for tests).

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample
sage: EX = RESetMPExample(maxl = 4)
sage: EX.run_serial()
24*x^4 + 6*x^3 + 2*x^2 + x + 1

setup_workers(max_proc=None, reduce_locally=True)
Setup the communication channels.

INPUT:

• max_proc – (integer) an upper bound on the number of worker processes.

28 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Parallel Computing, Release 9.7

• reduce_locally – whether the workers should reduce locally their work or sends results to the master
as soon as possible. See RESetMapReduceWorker for details.

start_workers()
Launch the workers.

The workers should have been created using setup_workers().

class sage.parallel.map_reduce.RESetMapReduceWorker(mapred, iproc, reduce_locally)
Bases: multiprocessing.context.ForkProcess

Worker for generate-map-reduce.

This shouldn’t be called directly, but instead created by RESetMapReduce.setup_workers().

INPUT:

• mapred – the instance of RESetMapReduce for which this process is working.

• iproc – the id of this worker.

• reduce_locally – when reducing the results. Three possible values are supported:

– True – means the reducing work is done all locally, the result is only sent back at the end of the work.
This ensure the lowest level of communication.

– False – results are sent back after each finished branches, when the process is asking for more work.

run()
The main function executed by the worker.

Calls run_myself() after possibly setting up parallel profiling.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample, RESetMapReduceWorker
sage: EX = RESetMPExample(maxl=6)
sage: EX.setup_workers(1)

sage: w = EX._workers[0]
sage: w._todo.append(EX.roots()[0])

sage: w.run()
sage: sleep(int(1))
sage: w._todo.append(None)

sage: EX.get_results()
720*x^6 + 120*x^5 + 24*x^4 + 6*x^3 + 2*x^2 + x + 1

Cleanups:

sage: del EX._results, EX._active_tasks, EX._done, EX._workers

run_myself()
The main function executed by the worker.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample, RESetMapReduceWorker
sage: EX = RESetMPExample(maxl=6)
sage: EX.setup_workers(1)

(continues on next page)

4.12. Classes and methods 29

Parallel Computing, Release 9.7

(continued from previous page)

sage: w = EX._workers[0]
sage: w._todo.append(EX.roots()[0])
sage: w.run_myself()

sage: sleep(int(1))
sage: w._todo.append(None)

sage: EX.get_results()
720*x^6 + 120*x^5 + 24*x^4 + 6*x^3 + 2*x^2 + x + 1

Cleanups:

sage: del EX._results, EX._active_tasks, EX._done, EX._workers

send_partial_result()
Send results to the MapReduce process.

Send the result stored in self._res to the master an reinitialize it to master.reduce_init.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample, RESetMapReduceWorker
sage: EX = RESetMPExample(maxl=4)
sage: EX.setup_workers(1)
sage: w = EX._workers[0]
sage: w._res = 4
sage: w.send_partial_result()
sage: w._res
0
sage: EX._results.get()
4

steal()
Steal some node from another worker.

OUTPUT:

A node stolen from another worker chosen at random.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample, RESetMapReduceWorker
sage: from threading import Thread
sage: EX = RESetMPExample(maxl=6)
sage: EX.setup_workers(2)

sage: w0, w1 = EX._workers
sage: w0._todo.append(42)
sage: thief0 = Thread(target = w0._thief, name="Thief")
sage: thief0.start() # known bug (Trac #27537)

sage: w1.steal() # known bug (Trac #27537)
42

(continues on next page)

30 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

Parallel Computing, Release 9.7

(continued from previous page)

sage: w0._todo # known bug (Trac #27537)
deque([])

walk_branch_locally(node)
Work locally.

Performs the map/reduce computation on the subtrees rooted at node.

INPUT:

• node – the root of the subtree explored.

OUTPUT:

Nothing, the result are stored in self._res.

This is where the actual work is performed.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetMPExample, RESetMapReduceWorker
sage: EX = RESetMPExample(maxl=4)
sage: w = RESetMapReduceWorker(EX, 0, True)
sage: def sync(): pass
sage: w.synchronize = sync
sage: w._res = 0

sage: w.walk_branch_locally([])
sage: w._res
x^4 + x^3 + x^2 + x + 1

sage: w.walk_branch_locally(w._todo.pop())
sage: w._res
2*x^4 + x^3 + x^2 + x + 1

sage: while True: w.walk_branch_locally(w._todo.pop())
Traceback (most recent call last):
...
IndexError: pop from an empty deque
sage: w._res
24*x^4 + 6*x^3 + 2*x^2 + x + 1

class sage.parallel.map_reduce.RESetParallelIterator(roots=None, children=None,
post_process=None, map_function=None,
reduce_function=None, reduce_init=None,
forest=None)

Bases: sage.parallel.map_reduce.RESetMapReduce

A parallel iterator for recursively enumerated sets.

This demonstrates how to use RESetMapReduce to get an iterator on a recursively enumerated set for which the
computations are done in parallel.

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetParallelIterator
sage: S = RESetParallelIterator([[]],

(continues on next page)

4.12. Classes and methods 31

Parallel Computing, Release 9.7

(continued from previous page)

....: lambda l: [l + [0], l + [1]] if len(l) < 15 else [])
sage: sum(1 for _ in S)
65535

map_function(z)
Return a singleton tuple.

INPUT:

• z – a node

OUTPUT:

The singleton (z,).

EXAMPLES:

sage: from sage.parallel.map_reduce import RESetParallelIterator
sage: S = RESetParallelIterator([[]],
....: lambda l: [l + [0], l + [1]] if len(l) < 15 else [])
sage: S.map_function([1, 0])
([1, 0],)

reduce_init
alias of builtins.tuple

sage.parallel.map_reduce.proc_number(max_proc=None)
Return the number of processes to use.

INPUT:

• max_proc – an upper bound on the number of processes or None.

EXAMPLES:

sage: from sage.parallel.map_reduce import proc_number
sage: proc_number() # random
8
sage: proc_number(max_proc=1)
1
sage: proc_number(max_proc=2) in (1, 2)
True

32 Chapter 4. Parallel computations using RecursivelyEnumeratedSet and Map-Reduce

CHAPTER

FIVE

PARALLEL ITERATOR BUILT USING PYTHON’S MULTIPROCESSING
MODULE

sage.parallel.multiprocessing_sage.parallel_iter(processes, f, inputs)
Return a parallel iterator.

INPUT:

• processes – integer

• f – function

• inputs – an iterable of pairs (args, kwds)

OUTPUT:

• iterator over values of f at args,kwds in some random order.

EXAMPLES:

sage: def f(x): return x+x
sage: import sage.parallel.multiprocessing_sage
sage: v = list(sage.parallel.multiprocessing_sage.parallel_iter(2, f, [((2,), {}),␣
→˓((3,),{})]))
sage: v.sort(); v
[(((2,), {}), 4), (((3,), {}), 6)]

sage.parallel.multiprocessing_sage.pyprocessing(processes=0)
Return a parallel iterator using a given number of processes implemented using pyprocessing.

INPUT:

• processes – integer (default: 0); if 0, set to the number of processors on the computer.

OUTPUT:

• a (partially evaluated) function

EXAMPLES:

sage: from sage.parallel.multiprocessing_sage import pyprocessing
sage: p_iter = pyprocessing(4)
sage: P = parallel(p_iter=p_iter)
sage: def f(x): return x+x
sage: v = list(P(f)(list(range(10)))); v.sort(); v
[(((0,), {}), 0), (((1,), {}), 2), (((2,), {}), 4), (((3,), {}), 6), (((4,), {}),␣
→˓8), (((5,), {}), 10), (((6,), {}), 12), (((7,), {}), 14), (((8,), {}), 16), (((9,
→˓), {}), 18)]

33

Parallel Computing, Release 9.7

34 Chapter 5. Parallel Iterator built using Python’s multiprocessing module

CHAPTER

SIX

PARALLELIZATION CONTROL

This module defines the singleton class Parallelism to govern the parallelization of computations in some specific
topics. It allows the user to set the number of processes to be used for parallelization.

Some examples of use are provided in the documentation of sage.tensor.modules.comp.Components.
contract().

AUTHORS:

• Marco Mancini, Eric Gourgoulhon, Michal Bejger (2015): initial version

class sage.parallel.parallelism.Parallelism
Bases: sage.misc.fast_methods.Singleton, sage.structure.sage_object.SageObject

Singleton class for managing the number of processes used in parallel computations involved in various fields.

EXAMPLES:

The number of processes is initialized to 1 (no parallelization) for each field:

sage: Parallelism()
Number of processes for parallelization:
- linbox computations: 1
- tensor computations: 1

Using 4 processes to parallelize tensor computations:

sage: Parallelism().set('tensor', nproc=4)
sage: Parallelism()
Number of processes for parallelization:
- linbox computations: 1
- tensor computations: 4
sage: Parallelism().get('tensor')
4

Using 6 processes to parallelize all types of computations:

sage: Parallelism().set(nproc=6)
sage: Parallelism()
Number of processes for parallelization:
- linbox computations: 6
- tensor computations: 6

Using all the cores available on the computer to parallelize tensor computations:

35

../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components.contract
../../../../../../html/en/reference/tensor_free_modules/sage/tensor/modules/comp.html#sage.tensor.modules.comp.Components.contract
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton
../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Parallel Computing, Release 9.7

sage: Parallelism().set('tensor')
sage: Parallelism() # random (depends on the computer)
Number of processes for parallelization:
- linbox computations: 1
- tensor computations: 8

Using all the cores available on the computer to parallelize all types of computations:

sage: Parallelism().set()
sage: Parallelism() # random (depends on the computer)
Number of processes for parallelization:
- linbox computations: 8
- tensor computations: 8

Switching off all parallelizations:

sage: Parallelism().set(nproc=1)

get(field)
Return the number of processes which will be used in parallel computations regarding some specific field.

INPUT:

• field – string specifying the part of Sage involved in parallel computations

OUTPUT:

• number of processes used in parallelization of computations pertaining to field

EXAMPLES:

The default is a single process (no parallelization):

sage: Parallelism().reset()
sage: Parallelism().get('tensor')
1

Asking for parallelization on 4 cores:

sage: Parallelism().set('tensor', nproc=4)
sage: Parallelism().get('tensor')
4

get_all()
Return the number of processes which will be used in parallel computations in all fields

OUTPUT:

• dictionary of the number of processes, with the computational fields as keys

EXAMPLES:

sage: Parallelism().reset()
sage: Parallelism().get_all()
{'linbox': 1, 'tensor': 1}

Asking for parallelization on 4 cores:

36 Chapter 6. Parallelization control

Parallel Computing, Release 9.7

sage: Parallelism().set(nproc=4)
sage: Parallelism().get_all()
{'linbox': 4, 'tensor': 4}

get_default()
Return the default number of processes to be launched in parallel computations.

EXAMPLES:

A priori, the default number of process for parallelization is the total number of cores found on the computer:

sage: Parallelism().reset()
sage: Parallelism().get_default() # random (depends on the computer)
8

It can be changed via set_default():

sage: Parallelism().set_default(nproc=4)
sage: Parallelism().get_default()
4

reset()
Put the singleton object Parallelism() in the same state as immediately after its creation.

EXAMPLES:

State of Parallelism() just after its creation:

sage: Parallelism()
Number of processes for parallelization:
- linbox computations: 1
- tensor computations: 1
sage: Parallelism().get_default() # random (depends on the computer)
8

Changing some values:

sage: Parallelism().set_default(6)
sage: Parallelism().set()
sage: Parallelism()
Number of processes for parallelization:
- linbox computations: 6
- tensor computations: 6
sage: Parallelism().get_default()
6

Back to the initial state:

sage: Parallelism().reset()
sage: Parallelism()
Number of processes for parallelization:
- linbox computations: 1
- tensor computations: 1
sage: Parallelism().get_default() # random (depends on the computer)
8

37

Parallel Computing, Release 9.7

set(field=None, nproc=None)
Set the number of processes to be launched for parallel computations regarding some specific field.

INPUT:

• field – (default: None) string specifying the computational field for which the number of parallel
processes is to be set; if None, all fields are considered

• nproc – (default: None) number of processes to be used for parallelization; if None, the number of
processes will be set to the default value, which, unless redefined by set_default(), is the total
number of cores found on the computer.

EXAMPLES:

The default is a single processor (no parallelization):

sage: Parallelism()
Number of processes for parallelization:
- linbox computations: 1
- tensor computations: 1

Asking for parallelization on 4 cores in tensor algebra:

sage: Parallelism().set('tensor', nproc=4)
sage: Parallelism()
Number of processes for parallelization:
- linbox computations: 1
- tensor computations: 4

Using all the cores available on the computer:

sage: Parallelism().set('tensor')
sage: Parallelism() # random (depends on the computer)
Number of processes for parallelization:
- linbox computations: 1
- tensor computations: 8

Using 6 cores in all parallelizations:

sage: Parallelism().set(nproc=6)
sage: Parallelism()
Number of processes for parallelization:
- linbox computations: 6
- tensor computations: 6

Using all the cores available on the computer in all parallelizations:

sage: Parallelism().set()
sage: Parallelism() # random (depends on the computer)
Number of processes for parallelization:
- linbox computations: 8
- tensor computations: 8

Switching off the parallelization:

sage: Parallelism().set(nproc=1)
sage: Parallelism()

(continues on next page)

38 Chapter 6. Parallelization control

Parallel Computing, Release 9.7

(continued from previous page)

Number of processes for parallelization:
- linbox computations: 1
- tensor computations: 1

set_default(nproc=None)
Set the default number of processes to be launched in parallel computations.

INPUT:

• nproc – (default: None) default number of processes; if None, the number of processes will be set to
the total number of cores found on the computer.

EXAMPLES:

A priori the default number of process for parallelization is the total number of cores found on the computer:

sage: Parallelism().get_default() # random (depends on the computer)
8

Changing it thanks to set_default:

sage: Parallelism().set_default(nproc=4)
sage: Parallelism().get_default()
4

Setting it back to the total number of cores available on the computer:

sage: Parallelism().set_default()
sage: Parallelism().get_default() # random (depends on the computer)
8

39

Parallel Computing, Release 9.7

40 Chapter 6. Parallelization control

CHAPTER

SEVEN

CPU DETECTION

sage.parallel.ncpus.ncpus()
Detects the number of effective CPUs in the system.

EXAMPLES:

sage: sage.parallel.ncpus.ncpus() # random output -- depends on machine.
2

See also:

• sage.interfaces.psage

41

../../../../html/en/reference/interfaces/sage/interfaces/psage.html#module-sage.interfaces.psage

Parallel Computing, Release 9.7

42 Chapter 7. CPU Detection

CHAPTER

EIGHT

INDICES AND TABLES

• Index

• Module Index

• Search Page

43

../genindex.html
../py-modindex.html
../search.html

Parallel Computing, Release 9.7

44 Chapter 8. Indices and Tables

PYTHON MODULE INDEX

p
sage.parallel.decorate, 1
sage.parallel.map_reduce, 11
sage.parallel.multiprocessing_sage, 33
sage.parallel.ncpus, 41
sage.parallel.parallelism, 35
sage.parallel.reference, 7
sage.parallel.use_fork, 9

45

Parallel Computing, Release 9.7

46 Python Module Index

INDEX

A
abort() (sage.parallel.map_reduce.ActiveTaskCounterDarwin

method), 20
abort() (sage.parallel.map_reduce.ActiveTaskCounterPosix

method), 22
abort() (sage.parallel.map_reduce.RESetMapReduce

method), 24
AbortError, 20
ActiveTaskCounter (in module

sage.parallel.map_reduce), 20
ActiveTaskCounterDarwin (class in

sage.parallel.map_reduce), 20
ActiveTaskCounterPosix (class in

sage.parallel.map_reduce), 21

C
children() (sage.parallel.map_reduce.RESetMPExample

method), 23

F
finish() (sage.parallel.map_reduce.RESetMapReduce

method), 25
Fork (class in sage.parallel.decorate), 1
fork() (in module sage.parallel.decorate), 1

G
get() (sage.parallel.parallelism.Parallelism method), 36
get_all() (sage.parallel.parallelism.Parallelism

method), 36
get_default() (sage.parallel.parallelism.Parallelism

method), 37
get_results() (sage.parallel.map_reduce.RESetMapReduce

method), 25

M
map_function() (sage.parallel.map_reduce.RESetMapReduce

method), 25
map_function() (sage.parallel.map_reduce.RESetMPExample

method), 23
map_function() (sage.parallel.map_reduce.RESetParallelIterator

method), 32

module
sage.parallel.decorate, 1
sage.parallel.map_reduce, 11
sage.parallel.multiprocessing_sage, 33
sage.parallel.ncpus, 41
sage.parallel.parallelism, 35
sage.parallel.reference, 7
sage.parallel.use_fork, 9

N
ncpus() (in module sage.parallel.ncpus), 41
normalize_input() (in module sage.parallel.decorate),

2

P
p_iter_fork (class in sage.parallel.use_fork), 9
Parallel (class in sage.parallel.decorate), 1
parallel() (in module sage.parallel.decorate), 3
parallel_iter() (in module

sage.parallel.multiprocessing_sage), 33
parallel_iter() (in module sage.parallel.reference), 7
ParallelFunction (class in sage.parallel.decorate), 1
Parallelism (class in sage.parallel.parallelism), 35
post_process() (sage.parallel.map_reduce.RESetMapReduce

method), 25
print_communication_statistics()

(sage.parallel.map_reduce.RESetMapReduce
method), 26

proc_number() (in module sage.parallel.map_reduce),
32

pyprocessing() (in module
sage.parallel.multiprocessing_sage), 33

R
random_worker() (sage.parallel.map_reduce.RESetMapReduce

method), 26
reduce_function() (sage.parallel.map_reduce.RESetMapReduce

method), 26
reduce_init (sage.parallel.map_reduce.RESetParallelIterator

attribute), 32
reduce_init() (sage.parallel.map_reduce.RESetMapReduce

method), 27

47

Parallel Computing, Release 9.7

reset() (sage.parallel.parallelism.Parallelism method),
37

RESetMapReduce (class in sage.parallel.map_reduce),
24

RESetMapReduceWorker (class in
sage.parallel.map_reduce), 29

RESetMPExample (class in sage.parallel.map_reduce),
23

RESetParallelIterator (class in
sage.parallel.map_reduce), 31

roots() (sage.parallel.map_reduce.RESetMapReduce
method), 27

roots() (sage.parallel.map_reduce.RESetMPExample
method), 23

run() (sage.parallel.map_reduce.RESetMapReduce
method), 27

run() (sage.parallel.map_reduce.RESetMapReduceWorker
method), 29

run_myself() (sage.parallel.map_reduce.RESetMapReduceWorker
method), 29

run_serial() (sage.parallel.map_reduce.RESetMapReduce
method), 28

S
sage.parallel.decorate

module, 1
sage.parallel.map_reduce

module, 11
sage.parallel.multiprocessing_sage

module, 33
sage.parallel.ncpus

module, 41
sage.parallel.parallelism

module, 35
sage.parallel.reference

module, 7
sage.parallel.use_fork

module, 9
send_partial_result()

(sage.parallel.map_reduce.RESetMapReduceWorker
method), 30

set() (sage.parallel.parallelism.Parallelism method), 37
set_default() (sage.parallel.parallelism.Parallelism

method), 39
setup_workers() (sage.parallel.map_reduce.RESetMapReduce

method), 28
start_workers() (sage.parallel.map_reduce.RESetMapReduce

method), 29
steal() (sage.parallel.map_reduce.RESetMapReduceWorker

method), 30

T
task_done() (sage.parallel.map_reduce.ActiveTaskCounterDarwin

method), 20

task_done() (sage.parallel.map_reduce.ActiveTaskCounterPosix
method), 22

task_start() (sage.parallel.map_reduce.ActiveTaskCounterDarwin
method), 21

task_start() (sage.parallel.map_reduce.ActiveTaskCounterPosix
method), 22

W
walk_branch_locally()

(sage.parallel.map_reduce.RESetMapReduceWorker
method), 31

WorkerData (class in sage.parallel.use_fork), 9

48 Index

	Decorate interface for parallel computation
	Reference Parallel Primitives
	Parallel iterator built using the fork() system call
	Parallel computations using RecursivelyEnumeratedSet and Map-Reduce
	Contents
	How is this different from usual MapReduce?
	How can I use all that stuff?
	Advanced use
	Profiling
	Logging
	How does it work ?
	How thefts are performed
	The end of the computation
	Are there examples of classes?
	Tests
	Classes and methods

	Parallel Iterator built using Python’s multiprocessing module
	Parallelization control
	CPU Detection
	Indices and Tables
	Python Module Index
	Index

