
Combinatorics
Release 9.7

The Sage Development Team

Jul 21, 2024

CONTENTS

1 Introductory material 1

2 Thematic indexes 3

3 Utilities 5

4 Related topics 7

5 Comprehensive Module List 9

6 Indices and Tables 3677

Bibliography 3679

Python Module Index 3691

Index 3697

i

ii

CHAPTER

ONE

INTRODUCTORY MATERIAL

• Combinatorics quickref

• Introduction to combinatorics in Sage

1

Combinatorics, Release 9.7

2 Chapter 1. Introductory material

CHAPTER

TWO

THEMATIC INDEXES

• Algebraic combinatorics

– Combinatorial Hopf algebras

– Cluster algebras and quivers

– Crystals

– Root Systems

– Symmetric Functions

– FullyCommutativeElements

• Counting

• Enumerated sets and combinatorial objects

• Enumerated sets of partitions, tableaux, . . .

• Finite state machines, automata, transducers

• Combinatorial species

• Combinatorial designs and incidence structures

• Posets

• Combinatorics on words

3

Combinatorics, Release 9.7

4 Chapter 2. Thematic indexes

CHAPTER

THREE

UTILITIES

• Output functions

• Rankers

• Combinatorial maps

• Miscellaneous

5

Combinatorics, Release 9.7

6 Chapter 3. Utilities

CHAPTER

FOUR

RELATED TOPICS

• Coding Theory

• Discrete dynamics

• Graph Theory

7

../../../../html/en/reference/coding/index.html#sage-coding
../../../../html/en/reference/dynamics/index.html#sage-dynamics
../../../../html/en/reference/graphs/index.html#sage-graphs

Combinatorics, Release 9.7

8 Chapter 4. Related topics

CHAPTER

FIVE

COMPREHENSIVE MODULE LIST

5.1 Comprehensive Module List

Note: This list is currently sorted in alphabetical order w.r.t. the module names. It can be updated semi-automatically
by running in src/sage/combinat:

find -name "*.py*" | sed 's|\.pyx\?$||; s|\./| sage/combinat/|' | LANG=en_US.UTF-8 LC_
→˓COLLATE=C sort > /tmp/module_list.rst

and copy pasting the result back there.

Todo: See trac ticket #17421 for desirable improvements.

5.1.1 Abstract Recursive Trees

The purpose of this class is to help implement trees with a specific structure on the children of each node. For instance,
one could want to define a tree in which each node sees its children as linearly (see the Ordered Trees module) or
cyclically ordered.

Tree structures

Conceptually, one can define a tree structure from any object that can contain others. Indeed, a list can contain lists
which contain lists which contain lists, and thus define a tree . . . The same can be done with sets, or any kind of iterable
objects.

While any iterable is sufficient to encode trees, it can prove useful to have other methods available like isomorphism tests
(see next section), conversions to DiGraphs objects (see as_digraph()) or computation of the number of automor-
phisms constrained by the structure on children. Providing such methods is the whole purpose of the AbstractTree
class.

As a result, the AbstractTree class is not meant to be instantiated, but extended. It is expected that classes extending
this one may also inherit from classes representing iterables, for instance ClonableArray or ClonableList

Constrained Trees

The tree built from a specific container will reflect the properties of the container. Indeed, if A is an iterable class whose
elements are linearly ordered, a class B extending both of AbstractTree and A will be such that the children of a node
will be linearly ordered. If A behaves like a set (i.e. if there is no order on the elements it contains), then two trees will
be considered as equal if one can be obtained from the other through permutations between the children of a same node
(see next section).

9

https://trac.sagemath.org/17421
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList

Combinatorics, Release 9.7

Paths and ID

It is expected that each element of a set of children should be identified by its index in the container. This way, any
node of the tree can be identified by a word describing a path from the root node.

Canonical labellings

Equality between instances of classes extending both AbstractTree and A is entirely defined by the equality defined
on the elements of A. A canonical labelling of such a tree, however, should be such that two trees a and b satisfying a
== b have the same canonical labellings. On the other hand, the canonical labellings of trees a and b satisfying a !=
b are expected to be different.

For this reason, the values returned by the canonical_labelling method heavily depend on the data structure used
for a node’s children and should be overridden by most of the classes extending AbstractTree if it is incoherent
with the data structure.

Authors

• Florent Hivert (2010-2011): initial revision

• Frédéric Chapoton (2011): contributed some methods

class sage.combinat.abstract_tree.AbstractClonableTree
Bases: sage.combinat.abstract_tree.AbstractTree

Abstract Clonable Tree.

An abstract class for trees with clone protocol (see list_clone). It is expected that classes extending this one
may also inherit from classes like ClonableArray or ClonableList depending whether one wants to build
trees where adding a child is allowed.

Note: Due to the limitation of Cython inheritance, one cannot inherit here from ClonableElement, because it
would prevent us from later inheriting from ClonableArray or ClonableList.

How should this class be extended ?

A class extending AbstractClonableTree should satisfy the following assumptions:

• An instantiable class extending AbstractClonableTree should also extend the ClonableElement class
or one of its subclasses generally, at least ClonableArray.

• To respect the Clone protocol, the AbstractClonableTree.check() method should be overridden by
the new class.

See also the assumptions in AbstractTree.

check()
Check that self is a correct tree.

This method does nothing. It is implemented here because many extensions of AbstractClonableTree
also extend sage.structure.list_clone.ClonableElement, which requires it.

It should be overridden in subclasses in order to check that the characterizing property of the respective
kind of tree holds (eg: two children for binary trees).

EXAMPLES:

sage: OrderedTree([[],[[]]]).check()
sage: BinaryTree([[],[[],[]]]).check()

10 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#module-sage.structure.list_clone
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableElement
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableElement
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableElement

Combinatorics, Release 9.7

class sage.combinat.abstract_tree.AbstractLabelledClonableTree(parent, children, label=None,
check=True)

Bases: sage.combinat.abstract_tree.AbstractLabelledTree, sage.combinat.abstract_tree.
AbstractClonableTree

Abstract Labelled Clonable Tree

This class takes care of modification for the label by the clone protocol.

Note: Due to the limitation of Cython inheritance, one cannot inherit here from ClonableArray, because it
would prevent us to inherit later from ClonableList.

map_labels(f)
Apply the function 𝑓 to the labels of self

This method returns a copy of self on which the function 𝑓 has been applied on all labels (a label 𝑥 is
replaced by 𝑓(𝑥)).

EXAMPLES:

sage: LT = LabelledOrderedTree
sage: t = LT([LT([],label=1),LT([],label=7)],label=3); t
3[1[], 7[]]
sage: t.map_labels(lambda z:z+1)
4[2[], 8[]]

sage: LBT = LabelledBinaryTree
sage: bt = LBT([LBT([],label=1),LBT([],label=4)],label=2); bt
2[1[., .], 4[., .]]
sage: bt.map_labels(lambda z:z+1)
3[2[., .], 5[., .]]

set_label(path, label)
Change the label of subtree indexed by path to label.

INPUT:

• path – None (default) or a path (list or tuple of children index in the tree)

• label – any sage object

OUTPUT: Nothing, self is modified in place

Note: self must be in a mutable state. See sage.structure.list_clone for more details about
mutability.

EXAMPLES:

sage: t = LabelledOrderedTree([[],[[],[]]])
sage: t.set_label((0,), 4)
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: with t.clone() as t:
....: t.set_label((0,), 4)

(continues on next page)

5.1. Comprehensive Module List 11

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#module-sage.structure.list_clone

Combinatorics, Release 9.7

(continued from previous page)

sage: t
None[4[], None[None[], None[]]]
sage: with t.clone() as t:
....: t.set_label((1,0), label = 42)
sage: t
None[4[], None[42[], None[]]]

Todo: Do we want to implement the following syntactic sugar:

with t.clone() as tt:
tt.labels[1,2] = 3 ?

set_root_label(label)
Set the label of the root of self.

INPUT: label – any Sage object

OUTPUT: None, self is modified in place

Note: self must be in a mutable state. See sage.structure.list_clone for more details about
mutability.

EXAMPLES:

sage: t = LabelledOrderedTree([[],[[],[]]])
sage: t.set_root_label(3)
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: with t.clone() as t:
....: t.set_root_label(3)
sage: t.label()
3
sage: t
3[None[], None[None[], None[]]]

This also works for binary trees:

sage: bt = LabelledBinaryTree([[],[]])
sage: bt.set_root_label(3)
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: with bt.clone() as bt:
....: bt.set_root_label(3)
sage: bt.label()
3
sage: bt
3[None[., .], None[., .]]

12 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#module-sage.structure.list_clone

Combinatorics, Release 9.7

class sage.combinat.abstract_tree.AbstractLabelledTree(parent, children, label=None, check=True)
Bases: sage.combinat.abstract_tree.AbstractTree

Abstract Labelled Tree.

Typically a class for labelled trees is constructed by inheriting from a class for unlabelled trees and
AbstractLabelledTree.

How should this class be extended ?

A class extending AbstractLabelledTree should respect the following assumptions:

• For a labelled tree T the call T.parent().unlabelled_trees() should return a parent for unlabelled
trees of the same kind: for example,

– if T is a binary labelled tree, T.parent() is LabelledBinaryTrees() and T.parent().
unlabelled_trees() is BinaryTrees()

– if T is an ordered labelled tree, T.parent() is LabelledOrderedTrees() and T.parent().
unlabelled_trees() is OrderedTrees()

• In the same vein, the class of T should contain an attribute _UnLabelled which should be the class for the
corresponding unlabelled trees.

See also the assumptions in AbstractTree.

See also:

AbstractTree

as_digraph()
Return a directed graph version of self.

Warning: At this time, the output makes sense only if self is a labelled binary tree with no repeated
labels and no None labels.

EXAMPLES:

sage: LT = LabelledOrderedTrees()
sage: t1 = LT([LT([],label=6),LT([],label=1)],label=9)
sage: t1.as_digraph()
Digraph on 3 vertices

sage: t = BinaryTree([[None, None],[[],None]])
sage: lt = t.canonical_labelling()
sage: lt.as_digraph()
Digraph on 4 vertices

label(path=None)
Return the label of self.

INPUT:

• path – None (default) or a path (list or tuple of children index in the tree)

OUTPUT: the label of the subtree indexed by path

EXAMPLES:

5.1. Comprehensive Module List 13

Combinatorics, Release 9.7

sage: t = LabelledOrderedTree([[],[]], label = 3)
sage: t.label()
3
sage: t[0].label()
sage: t = LabelledOrderedTree([LabelledOrderedTree([], 5),[]], label = 3)
sage: t.label()
3
sage: t[0].label()
5
sage: t[1].label()
sage: t.label([0])
5

labels()
Return the list of labels of self.

EXAMPLES:

sage: LT = LabelledOrderedTree
sage: t = LT([LT([],label='b'),LT([],label='c')],label='a')
sage: t.labels()
['a', 'b', 'c']

sage: LBT = LabelledBinaryTree
sage: LBT([LBT([],label=1),LBT([],label=4)],label=2).labels()
[2, 1, 4]

leaf_labels()
Return the list of labels of the leaves of self.

In case of a labelled binary tree, these “leaves” are not actually the leaves of the binary trees, but the nodes
whose both children are leaves!

EXAMPLES:

sage: LT = LabelledOrderedTree
sage: t = LT([LT([],label='b'),LT([],label='c')],label='a')
sage: t.leaf_labels()
['b', 'c']

sage: LBT = LabelledBinaryTree
sage: bt = LBT([LBT([],label='b'),LBT([],label='c')],label='a')
sage: bt.leaf_labels()
['b', 'c']
sage: LBT([], label='1').leaf_labels()
['1']
sage: LBT(None).leaf_labels()
[]

shape()
Return the unlabelled tree associated to self.

EXAMPLES:

14 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: t = LabelledOrderedTree([[],[[]]], label = 25).shape(); t
[[], [[]]]

sage: LabelledBinaryTree([[],[[],[]]], label = 25).shape()
[[., .], [[., .], [., .]]]

sage: LRT = LabelledRootedTree
sage: tb = LRT([],label='b')
sage: LRT([tb, tb], label='a').shape()
[[], []]

class sage.combinat.abstract_tree.AbstractTree
Bases: object

Abstract Tree.

There is no data structure defined here, as this class is meant to be extended, not instantiated.

How should this class be extended?

A class extending AbstractTree should respect several assumptions:

• For a tree T, the call iter(T) should return an iterator on the children of the root T.

• The canonical_labelling method should return the same value for trees that are considered equal (see
the “canonical labellings” section in the documentation of the AbstractTree class).

• For a tree T the call T.parent().labelled_trees() should return a parent for labelled trees of the same
kind: for example,

– if T is a binary tree, T.parent() is BinaryTrees() and T.parent().labelled_trees() is
LabelledBinaryTrees()

– if T is an ordered tree, T.parent() is OrderedTrees() and T.parent().labelled_trees() is
LabelledOrderedTrees()

breadth_first_order_traversal(action=None)
Run the breadth-first post-order traversal algorithm and subject every node encountered to some procedure
action. The algorithm is:

queue <- [root];
while the queue is not empty:

node <- pop(queue);
manipulate the node;
prepend to the queue the list of all subtrees of

the node (from the rightmost to the leftmost).

INPUT:

• action – (optional) a function which takes a node as input, and does something during the exploration

OUTPUT:

None. (This is not an iterator.)

EXAMPLES:

For example, on the following binary tree 𝑏:

5.1. Comprehensive Module List 15

Combinatorics, Release 9.7

| ___3____ |
| / \ |
| 1 _7_ |
| \ / \ |
| 2 5 8 |
| / \ |
| 4 6 |

the breadth-first order traversal algorithm explores 𝑏 in the following order of nodes: 3, 1, 7, 2, 5, 8, 4, 6.

canonical_labelling(shift=1)
Return a labelled version of self.

The actual canonical labelling is currently unspecified. However, it is guaranteed to have labels in 1...𝑛
where 𝑛 is the number of nodes of the tree. Moreover, two (unlabelled) trees compare as equal if and only
if their canonical labelled trees compare as equal.

EXAMPLES:

sage: t = OrderedTree([[], [[], [[], []], [[], []]], [[], []]])
sage: t.canonical_labelling()
1[2[], 3[4[], 5[6[], 7[]], 8[9[], 10[]]], 11[12[], 13[]]]

sage: BinaryTree([]).canonical_labelling()
1[., .]
sage: BinaryTree([[],[[],[]]]).canonical_labelling()
2[1[., .], 4[3[., .], 5[., .]]]

depth()
Return the depth of self.

EXAMPLES:

sage: OrderedTree().depth()
1
sage: OrderedTree([]).depth()
1
sage: OrderedTree([[],[]]).depth()
2
sage: OrderedTree([[],[[]]]).depth()
3
sage: OrderedTree([[], [[], [[], []], [[], []]], [[], []]]).depth()
4

sage: BinaryTree().depth()
0
sage: BinaryTree([[],[[],[]]]).depth()
3

iterative_post_order_traversal(action=None)
Run the depth-first post-order traversal algorithm (iterative implementation) and subject every node en-
countered to some procedure action. The algorithm is:

explore each subtree (by the algorithm) from the
leftmost one to the rightmost one;

(continues on next page)

16 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

then manipulate the root with function `action` (in the
case of a binary tree, only if the root is not a leaf).

INPUT:

• action – (optional) a function which takes a node as input, and does something during the exploration

OUTPUT:

None. (This is not an iterator.)

See also:

• post_order_traversal_iter()

iterative_pre_order_traversal(action=None)
Run the depth-first pre-order traversal algorithm (iterative implementation) and subject every node encoun-
tered to some procedure action. The algorithm is:

manipulate the root with function `action` (in the case
of a binary tree, only if the root is not a leaf);

then explore each subtree (by the algorithm) from the
leftmost one to the rightmost one.

INPUT:

• action – (optional) a function which takes a node as input, and does something during the exploration

OUTPUT:

None. (This is not an iterator.)

See also:

• pre_order_traversal_iter()

• pre_order_traversal()

node_number()
Return the number of nodes of self.

See also:

node_number_at_depth(), node_number_to_the_right()

EXAMPLES:

sage: OrderedTree().node_number()
1
sage: OrderedTree([]).node_number()
1
sage: OrderedTree([[],[]]).node_number()
3
sage: OrderedTree([[],[[]]]).node_number()
4
sage: OrderedTree([[], [[], [[], []], [[], []]], [[], []]]).node_number()
13

EXAMPLES:

5.1. Comprehensive Module List 17

Combinatorics, Release 9.7

sage: BinaryTree(None).node_number()
0
sage: BinaryTree([]).node_number()
1
sage: BinaryTree([[], None]).node_number()
2
sage: BinaryTree([[None, [[], []]], None]).node_number()
5

node_number_at_depth(depth)
Return the number of nodes at a given depth.

This counts all nodes that are at the given depth.

Here the root is considered to have depth 0.

INPUT:

• depth – an integer

See also:

node_number(), node_number_to_the_right(), paths_at_depth()

EXAMPLES:

sage: T = OrderedTree([[[], [[]]], [[], [[[]]]], []])
sage: ascii_art(T)

___o____
/ / /

o_ o_ o
/ / / /

o o o o
| |
o o

|
o

sage: [T.node_number_at_depth(i) for i in range(6)]
[1, 3, 4, 2, 1, 0]

node_number_to_the_right(path)
Return the number of nodes at the same depth and to the right of the node identified by path.

This counts the nodes that are at the same depth as the given one, and strictly to its right.

See also:

node_number(), node_number_at_depth(), paths_to_the_right()

EXAMPLES:

sage: T = OrderedTree([[[], [[]]], [[], [[[]]]], []])
sage: ascii_art(T)

___o____
/ / /

o_ o_ o
/ / / /

o o o o
(continues on next page)

18 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

| |
o o

|
o

sage: T.node_number_to_the_right(())
0
sage: T.node_number_to_the_right((0,))
2
sage: T.node_number_to_the_right((0,1))
2
sage: T.node_number_to_the_right((0,1,0))
1

sage: T = OrderedTree([])
sage: T.node_number_to_the_right(())
0

paths()
Return a generator for all paths to nodes of self.

OUTPUT:

This method returns a list of sequences of integers. Each of these sequences represents a path from the root
node to some node. For instance, (1, 3, 2, 5, 0, 3) represents the node obtained by choosing the 1st child of
the root node (in the ordering returned by iter), then the 3rd child of its child, then the 2nd child of the
latter, etc. (where the labelling of the children is zero-based).

The root element is represented by the empty tuple ().

See also:

paths_at_depth(), paths_to_the_right()

EXAMPLES:

sage: list(OrderedTree([]).paths())
[()]
sage: list(OrderedTree([[],[[]]]).paths())
[(), (0,), (1,), (1, 0)]

sage: list(BinaryTree([[],[[],[]]]).paths())
[(), (0,), (1,), (1, 0), (1, 1)]

paths_at_depth(depth, path=[])
Return a generator for all paths at a fixed depth.

This iterates over all paths for nodes that are at the given depth.

Here the root is considered to have depth 0.

INPUT:

• depth – an integer

• path – optional given path (as a list) used in the recursion

5.1. Comprehensive Module List 19

Combinatorics, Release 9.7

Warning: The path option should not be used directly.

See also:

paths(), paths_to_the_right(), node_number_at_depth()

EXAMPLES:

sage: T = OrderedTree([[[], [[], [[]]]], [], [[[],[]]], [], []])
sage: ascii_art(T)

______o_______
/ / / / /

_o__ o o o o
/ / |

o o_ o_
/ / / /

o o o o
|
o

sage: list(T.paths_at_depth(0))
[()]
sage: list(T.paths_at_depth(2))
[(0, 0), (0, 1), (2, 0)]
sage: list(T.paths_at_depth(4))
[(0, 1, 1, 0)]
sage: list(T.paths_at_depth(5))
[]

sage: T2 = OrderedTree([])
sage: list(T2.paths_at_depth(0))
[()]

paths_to_the_right(path)
Return a generator of paths for all nodes at the same depth and to the right of the node identified by path.

This iterates over the paths for nodes that are at the same depth as the given one, and strictly to its right.

INPUT:

• path – any path in the tree

See also:

paths(), paths_at_depth(), node_number_to_the_right()

EXAMPLES:

sage: T = OrderedTree([[[], [[]]], [[], [[[]]]], []])
sage: ascii_art(T)

___o____
/ / /

o_ o_ o
/ / / /

o o o o
| |
o o

(continues on next page)

20 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

|
o

sage: g = T.paths_to_the_right(())
sage: list(g)
[]

sage: g = T.paths_to_the_right((0,))
sage: list(g)
[(1,), (2,)]

sage: g = T.paths_to_the_right((0,1))
sage: list(g)
[(1, 0), (1, 1)]

sage: g = T.paths_to_the_right((0,1,0))
sage: list(g)
[(1, 1, 0)]

sage: g = T.paths_to_the_right((1,2))
sage: list(g)
[]

post_order_traversal(action=None)
Run the depth-first post-order traversal algorithm (recursive implementation) and subject every node en-
countered to some procedure action. The algorithm is:

explore each subtree (by the algorithm) from the
leftmost one to the rightmost one;

then manipulate the root with function `action` (in the
case of a binary tree, only if the root is not a leaf).

INPUT:

• action – (optional) a function which takes a node as input, and does something during the exploration

OUTPUT:

None. (This is not an iterator.)

See also:

• post_order_traversal_iter()

• iterative_post_order_traversal()

post_order_traversal_iter()
The depth-first post-order traversal iterator.

This method iters each node following the depth-first post-order traversal algorithm (recursive implemen-
tation). The algorithm is:

explore each subtree (by the algorithm) from the
leftmost one to the rightmost one;

then yield the root (in the case of binary trees, only if
it is not a leaf).

5.1. Comprehensive Module List 21

Combinatorics, Release 9.7

EXAMPLES:

For example on the following binary tree 𝑏:

| ___3____ |
| / \ |
| 1 _7_ |
| \ / \ |
| 2 5 8 |
| / \ |
| 4 6 |

(only the nodes are shown), the depth-first post-order traversal algorithm explores 𝑏 in the following order
of nodes: 2, 1, 4, 6, 5, 8, 7, 3.

For another example, consider the labelled tree:

| __1____ |
| / / / |
| 2 6 8_ |
| | | / / |
| 3_ 7 9 10 |
| / / |
| 4 5 |

The algorithm explores this tree in the following order: 4, 5, 3, 2, 7, 6, 9, 10, 8, 1.

pre_order_traversal(action=None)
Run the depth-first pre-order traversal algorithm (recursive implementation) and subject every node en-
countered to some procedure action. The algorithm is:

manipulate the root with function `action` (in the case
of a binary tree, only if the root is not a leaf);

then explore each subtree (by the algorithm) from the
leftmost one to the rightmost one.

INPUT:

• action – (optional) a function which takes a node as input, and does something during the exploration

OUTPUT:

None. (This is not an iterator.)

EXAMPLES:

For example, on the following binary tree 𝑏:

| ___3____ |
| / \ |
| 1 _7_ |
| \ / \ |
| 2 5 8 |
| / \ |
| 4 6 |

the depth-first pre-order traversal algorithm explores 𝑏 in the following order of nodes: 3, 1, 2, 7, 5, 4, 6, 8.

Another example:

22 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

| __1____ |
| / / / |
| 2 6 8_ |
| | | / / |
| 3_ 7 9 10 |
| / / |
| 4 5 |

The algorithm explores this tree in the following order: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

See also:

• pre_order_traversal_iter()

• iterative_pre_order_traversal()

pre_order_traversal_iter()
The depth-first pre-order traversal iterator.

This method iters each node following the depth-first pre-order traversal algorithm (recursive implementa-
tion). The algorithm is:

yield the root (in the case of binary trees, if it is not
a leaf);

then explore each subtree (by the algorithm) from the
leftmost one to the rightmost one.

EXAMPLES:

For example, on the following binary tree 𝑏:

| ___3____ |
| / \ |
| 1 _7_ |
| \ / \ |
| 2 5 8 |
| / \ |
| 4 6 |

(only the nodes shown), the depth-first pre-order traversal algorithm explores 𝑏 in the following order of
nodes: 3, 1, 2, 7, 5, 4, 6, 8.

Another example:

| __1____ |
| / / / |
| 2 6 8_ |
| | | / / |
| 3_ 7 9 10 |
| / / |
| 4 5 |

The algorithm explores this labelled tree in the following order: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

subtrees()
Return a generator for all nonempty subtrees of self.

5.1. Comprehensive Module List 23

Combinatorics, Release 9.7

The number of nonempty subtrees of a tree is its number of nodes. (The word “nonempty” makes a differ-
ence only in the case of binary trees. For ordered trees, for example, all trees are nonempty.)

EXAMPLES:

sage: list(OrderedTree([]).subtrees())
[[]]
sage: list(OrderedTree([[],[[]]]).subtrees())
[[[], [[]]], [], [[]], []]

sage: list(OrderedTree([[],[[]]]).canonical_labelling().subtrees())
[1[2[], 3[4[]]], 2[], 3[4[]], 4[]]

sage: list(BinaryTree([[],[[],[]]]).subtrees())
[[[., .], [[., .], [., .]]], [., .], [[., .], [., .]], [., .], [., .]]

sage: v = BinaryTree([[],[]])
sage: list(v.canonical_labelling().subtrees())
[2[1[., .], 3[., .]], 1[., .], 3[., .]]

to_hexacode()
Transform a tree into an hexadecimal string.

The definition of the hexacode is recursive. The first letter is the valence of the root as an hexadecimal (up
to 15), followed by the concatenation of the hexacodes of the subtrees.

This method only works for trees where every vertex has valency at most 15.

See from_hexacode() for the reverse transformation.

EXAMPLES:

sage: from sage.combinat.abstract_tree import from_hexacode
sage: LT = LabelledOrderedTrees()
sage: from_hexacode('2010', LT).to_hexacode()
'2010'
sage: LT.an_element().to_hexacode()
'3020010'
sage: t = from_hexacode('a0000000000000000', LT)
sage: t.to_hexacode()
'a0000000000'

sage: OrderedTrees(6).an_element().to_hexacode()
'500000'

tree_factorial()
Return the tree-factorial of self.

Definition:

The tree-factorial 𝑇 ! of a tree 𝑇 is the product
∏︀
𝑣∈𝑇 #children(𝑣).

EXAMPLES:

sage: LT = LabelledOrderedTrees()
sage: t = LT([LT([],label=6),LT([],label=1)],label=9)
sage: t.tree_factorial()
3

(continues on next page)

24 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: BinaryTree([[],[[],[]]]).tree_factorial()
15

sage.combinat.abstract_tree.from_hexacode(ch, parent=None, label='@')
Transform an hexadecimal string into a tree.

INPUT:

• ch – an hexadecimal string

• parent – kind of trees to be produced. If None, this will be LabelledOrderedTrees

• label – a label (default: '@') to be used for every vertex of the tree

See AbstractTree.to_hexacode() for the description of the encoding

See _from_hexacode_aux() for the actual code

EXAMPLES:

sage: from sage.combinat.abstract_tree import from_hexacode
sage: from_hexacode('12000', LabelledOrderedTrees())
@[@[@[], @[]]]
sage: from_hexacode('12000')
@[@[@[], @[]]]

sage: from_hexacode('1200', LabelledOrderedTrees())
@[@[@[], @[]]]

It can happen that only a prefix of the word is used:

sage: from_hexacode('a'+14*'0', LabelledOrderedTrees())
@[@[], @[], @[], @[], @[], @[], @[], @[], @[], @[]]

One can choose the label:

sage: from_hexacode('1200', LabelledOrderedTrees(), label='o')
o[o[o[], o[]]]

One can also create other kinds of trees:

sage: from_hexacode('1200', OrderedTrees())
[[[], []]]

5.1.2 Affine Permutations

class sage.combinat.affine_permutation.AffinePermutation(parent, lst, check=True)
Bases: sage.structure.list_clone.ClonableArray

An affine permutation, represented in the window notation, and considered as a bijection from Z to Z.

EXAMPLES:

5.1. Comprehensive Module List 25

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

sage: A = AffinePermutationGroup(['A',7,1])
sage: p = A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p
Type A affine permutation with window [3, -1, 0, 6, 5, 4, 10, 9]

apply_simple_reflection(i, side='right')
Apply a simple reflection.

INPUT:

• i – an integer

• side – (default: 'right') determines whether to apply the reflection on the 'right' or 'left'

EXAMPLES:

sage: p = AffinePermutationGroup(['A',7,1])([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.apply_simple_reflection(3)
Type A affine permutation with window [3, -1, 6, 0, 5, 4, 10, 9]
sage: p.apply_simple_reflection(11)
Type A affine permutation with window [3, -1, 6, 0, 5, 4, 10, 9]
sage: p.apply_simple_reflection(3, 'left')
Type A affine permutation with window [4, -1, 0, 6, 5, 3, 10, 9]
sage: p.apply_simple_reflection(11, 'left')
Type A affine permutation with window [4, -1, 0, 6, 5, 3, 10, 9]

grassmannian_quotient(i=0, side='right')
Return the Grassmannian quotient.

Factors self into a unique product of a Grassmannian and a finite-type element. Returns a tuple containing
the Grassmannian and finite elements, in order according to side.

INPUT:

• i – (default: 0) an element of the index set; the descent checked for

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: gq=p.grassmannian_quotient()
sage: gq
(Type A affine permutation with window [-1, 0, 3, 4, 5, 6, 9, 10],
Type A affine permutation with window [3, 1, 2, 6, 5, 4, 8, 7])
sage: gq[0].is_i_grassmannian()
True
sage: 0 not in gq[1].reduced_word()
True
sage: prod(gq)==p
True

sage: gqLeft=p.grassmannian_quotient(side='left')
sage: 0 not in gqLeft[0].reduced_word()
True
sage: gqLeft[1].is_i_grassmannian(side='left')
True

(continues on next page)

26 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: prod(gqLeft)==p
True

index_set()
Index set of the affine permutation group.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: A.index_set()
(0, 1, 2, 3, 4, 5, 6, 7)

inverse()
Return the inverse affine permutation.

EXAMPLES:

sage: p = AffinePermutationGroup(['A',7,1])([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.inverse()
Type A affine permutation with window [0, -1, 1, 6, 5, 4, 10, 11]

is_i_grassmannian(i=0, side='right')
Test whether self is 𝑖-grassmannian, i.e., either is the identity or has i as the sole descent.

INPUT:

• i – an element of the index set

• side – determines the side on which to check the descents

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.is_i_grassmannian()
False
sage: q=A.from_word([3,2,1,0])
sage: q.is_i_grassmannian()
True
sage: q=A.from_word([2,3,4,5])
sage: q.is_i_grassmannian(5)
True
sage: q.is_i_grassmannian(2, side='left')
True

is_one()
Tests whether the affine permutation is the identity.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.is_one()
False
sage: q=A.one()
sage: q.is_one()
True

5.1. Comprehensive Module List 27

Combinatorics, Release 9.7

lower_covers(side='right')
Return lower covers of self.

The set of affine permutations of one less length related by multiplication by a simple transposition on the
indicated side. These are the elements that self covers in weak order.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.lower_covers()
[Type A affine permutation with window [-1, 3, 0, 6, 5, 4, 10, 9],
Type A affine permutation with window [3, -1, 0, 5, 6, 4, 10, 9],
Type A affine permutation with window [3, -1, 0, 6, 4, 5, 10, 9],
Type A affine permutation with window [3, -1, 0, 6, 5, 4, 9, 10]]

reduced_word()
Returns a reduced word for the affine permutation.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.reduced_word()
[0, 7, 4, 1, 0, 7, 5, 4, 2, 1]

signature()
Signature of the affine permutation, (−1)𝑙, where 𝑙 is the length of the permutation.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.signature()
1

to_weyl_group_element()
The affine Weyl group element corresponding to the affine permutation.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.to_weyl_group_element()
[0 -1 0 1 0 0 1 0]
[1 -1 0 1 0 0 1 -1]
[1 -1 0 1 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 0 1 0 -1 1 0]
[0 0 0 1 -1 0 1 0]
[0 0 0 0 0 0 1 0]
[0 -1 1 0 0 0 1 0]

sage.combinat.affine_permutation.AffinePermutationGroup(cartan_type)
Wrapper function for specific affine permutation groups.

These are combinatorial implementations of the affine Weyl groups of types 𝐴, 𝐵, 𝐶, 𝐷, and𝐺 as permutations
of the set of all integers. the basic algorithms are derived from [BB2005] and [Eri1995].

28 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: ct = CartanType(['A',7,1])
sage: A = AffinePermutationGroup(ct)
sage: A
The group of affine permutations of type ['A', 7, 1]

We define an element of A:

sage: p = A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p
Type A affine permutation with window [3, -1, 0, 6, 5, 4, 10, 9]

We find the value 𝑝(1), considering 𝑝 as a bijection on the integers. This is the same as calling the value()
method:

sage: p.value(1)
3
sage: p(1) == p.value(1)
True

We can also find the position of the integer 3 in 𝑝 considered as a sequence, equivalent to finding 𝑝−1(3):

sage: p.position(3)
1
sage: (p^-1)(3)
1

Since the affine permutation group is a group, we demonstrate its group properties:

sage: A.one()
Type A affine permutation with window [1, 2, 3, 4, 5, 6, 7, 8]

sage: q = A([0, 2, 3, 4, 5, 6, 7, 9])
sage: p * q
Type A affine permutation with window [1, -1, 0, 6, 5, 4, 10, 11]
sage: q * p
Type A affine permutation with window [3, -1, 1, 6, 5, 4, 10, 8]

sage: p^-1
Type A affine permutation with window [0, -1, 1, 6, 5, 4, 10, 11]
sage: p^-1 * p == A.one()
True
sage: p * p^-1 == A.one()
True

If we decide we prefer the Weyl Group implementation of the affine Weyl group, we can easily get it:

sage: p.to_weyl_group_element()
[0 -1 0 1 0 0 1 0]
[1 -1 0 1 0 0 1 -1]
[1 -1 0 1 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 0 1 0 -1 1 0]

(continues on next page)

5.1. Comprehensive Module List 29

Combinatorics, Release 9.7

(continued from previous page)

[0 0 0 1 -1 0 1 0]
[0 0 0 0 0 0 1 0]
[0 -1 1 0 0 0 1 0]

We can find a reduced word and do all of the other things one expects in a Coxeter group:

sage: p.has_right_descent(1)
True
sage: p.apply_simple_reflection(1)
Type A affine permutation with window [-1, 3, 0, 6, 5, 4, 10, 9]
sage: p.apply_simple_reflection(0)
Type A affine permutation with window [1, -1, 0, 6, 5, 4, 10, 11]
sage: p.reduced_word()
[0, 7, 4, 1, 0, 7, 5, 4, 2, 1]
sage: p.length()
10

The following methods are particular to type 𝐴. We can check if the element is fully commutative:

sage: p.is_fully_commutative()
False
sage: q.is_fully_commutative()
True

We can also compute the affine Lehmer code of the permutation, a weak composition with 𝑘 + 1 entries:

sage: p.to_lehmer_code()
[0, 3, 3, 0, 1, 2, 0, 1]

Once we have the Lehmer code, we can obtain a 𝑘-bounded partition by sorting the Lehmer code, and then reading
the row lengths. There is a unique 0-Grassmanian (dominant) affine permutation associated to this 𝑘-bounded
partition, and a 𝑘-core as well.

sage: p.to_bounded_partition()
[5, 3, 2]
sage: p.to_dominant()
Type A affine permutation with window [-2, -1, 1, 3, 4, 8, 10, 13]
sage: p.to_core()
[5, 3, 2]

Finally, we can take a reduced word for 𝑝 and insert it to find a standard composition tableau associated uniquely
to that word:

sage: p.tableau_of_word(p.reduced_word())
[[], [1, 6, 9], [2, 7, 10], [], [3], [4, 8], [], [5]]

We can also form affine permutation groups in types 𝐵, 𝐶, 𝐷, and 𝐺:

sage: B = AffinePermutationGroup(['B',4,1])
sage: B.an_element()
Type B affine permutation with window [-1, 3, 4, 11]

sage: C = AffinePermutationGroup(['C',4,1])
(continues on next page)

30 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: C.an_element()
Type C affine permutation with window [2, 3, 4, 10]

sage: D = AffinePermutationGroup(['D',4,1])
sage: D.an_element()
Type D affine permutation with window [-1, 3, 11, 5]

sage: G = AffinePermutationGroup(['G',2,1])
sage: G.an_element()
Type G affine permutation with window [0, 4, -1, 8, 3, 7]

class sage.combinat.affine_permutation.AffinePermutationGroupGeneric(cartan_type)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The generic affine permutation group class, in which we define all type-free methods for the specific affine
permutation groups.

cartan_matrix()
Returns the Cartan matrix of self.

EXAMPLES:

sage: AffinePermutationGroup(['A',7,1]).cartan_matrix()
[2 -1 0 0 0 0 0 -1]
[-1 2 -1 0 0 0 0 0]
[0 -1 2 -1 0 0 0 0]
[0 0 -1 2 -1 0 0 0]
[0 0 0 -1 2 -1 0 0]
[0 0 0 0 -1 2 -1 0]
[0 0 0 0 0 -1 2 -1]
[-1 0 0 0 0 0 -1 2]

cartan_type()
Returns the Cartan type of self.

EXAMPLES:

sage: AffinePermutationGroup(['A',7,1]).cartan_type()
['A', 7, 1]

classical()
Returns the finite permutation group.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: A.classical()
Symmetric group of order 8! as a permutation group

from_word(w)
Builds an affine permutation from a given word. Note: Already in category as from_reduced_word, but
this is less typing!

EXAMPLES:

5.1. Comprehensive Module List 31

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: A.from_word([0, 7, 4, 1, 0, 7, 5, 4, 2, 1])
Type A affine permutation with window [3, -1, 0, 6, 5, 4, 10, 9]

index_set()
EXAMPLES:

sage: AffinePermutationGroup(['A',7,1]).index_set()
(0, 1, 2, 3, 4, 5, 6, 7)

is_crystallographic()
Tells whether the affine permutation group is crystallographic.

EXAMPLES:

sage: AffinePermutationGroup(['A',7,1]).is_crystallographic()
True

random_element(n=None)
Return a random affine permutation of length n.

If n is not specified, then n is chosen as a random non-negative integer in [0, 1000].

Starts at the identity, then chooses an upper cover at random. Not very uniform: actually constructs a
uniformly random reduced word of length 𝑛. Thus we most likely get elements with lots of reduced words!

For the actual code, see sage.categories.coxeter_group.random_element_of_length().

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: A.random_element() # random
Type A affine permutation with window [-12, 16, 19, -1, -2, 10, -3, 9]
sage: p = A.random_element(10)
sage: p.length() == 10
True

rank()
Rank of the affine permutation group, equal to 𝑘 + 1.

EXAMPLES:

sage: AffinePermutationGroup(['A',7,1]).rank()
8

reflection_index_set()
EXAMPLES:

sage: AffinePermutationGroup(['A',7,1]).reflection_index_set()
(0, 1, 2, 3, 4, 5, 6, 7)

weyl_group()
Returns the Weyl Group of the same type as self.

EXAMPLES:

32 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: A = AffinePermutationGroup(['A',7,1])
sage: A.weyl_group()
Weyl Group of type ['A', 7, 1] (as a matrix group acting on the root space)

class sage.combinat.affine_permutation.AffinePermutationGroupTypeA(cartan_type)
Bases: sage.combinat.affine_permutation.AffinePermutationGroupGeneric

Element
alias of AffinePermutationTypeA

from_lehmer_code(C, typ='decreasing', side='right')
Return the affine permutation with the supplied Lehmer code (a weak composition with 𝑘+1 parts, at least
one of which is 0).

INPUT:

• typ – 'increasing' or 'decreasing' (default: 'decreasing'); type of product

• side – 'right' or 'left' (default: 'right'); whether the decomposition is from the right or left

EXAMPLES:

sage: import itertools
sage: A = AffinePermutationGroup(['A',7,1])
sage: p = A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.to_lehmer_code()
[0, 3, 3, 0, 1, 2, 0, 1]
sage: A.from_lehmer_code(p.to_lehmer_code()) == p
True
sage: orders = ('increasing','decreasing')
sage: sides = ('left','right')
sage: all(A.from_lehmer_code(p.to_lehmer_code(o,s),o,s) == p
....: for o,s in itertools.product(orders,sides))
True

one()
Return the identity element.

EXAMPLES:

sage: AffinePermutationGroup(['A',7,1]).one()
Type A affine permutation with window [1, 2, 3, 4, 5, 6, 7, 8]

class sage.combinat.affine_permutation.AffinePermutationGroupTypeB(cartan_type)
Bases: sage.combinat.affine_permutation.AffinePermutationGroupTypeC

Element
alias of AffinePermutationTypeB

class sage.combinat.affine_permutation.AffinePermutationGroupTypeC(cartan_type)
Bases: sage.combinat.affine_permutation.AffinePermutationGroupGeneric

Element
alias of AffinePermutationTypeC

one()
Return the identity element.

EXAMPLES:

5.1. Comprehensive Module List 33

Combinatorics, Release 9.7

sage: ct=CartanType(['C',4,1])
sage: C = AffinePermutationGroup(ct)
sage: C.one()
Type C affine permutation with window [1, 2, 3, 4]
sage: C.one()*C.one()==C.one()
True

class sage.combinat.affine_permutation.AffinePermutationGroupTypeD(cartan_type)
Bases: sage.combinat.affine_permutation.AffinePermutationGroupTypeC

Element
alias of AffinePermutationTypeD

class sage.combinat.affine_permutation.AffinePermutationGroupTypeG(cartan_type)
Bases: sage.combinat.affine_permutation.AffinePermutationGroupGeneric

Element
alias of AffinePermutationTypeG

one()
Return the identity element.

EXAMPLES:

sage: AffinePermutationGroup(['G',2,1]).one()
Type G affine permutation with window [1, 2, 3, 4, 5, 6]

class sage.combinat.affine_permutation.AffinePermutationTypeA(parent, lst, check=True)
Bases: sage.combinat.affine_permutation.AffinePermutation

apply_simple_reflection_left(i)
Apply the simple reflection to the values 𝑖, 𝑖+ 1.

EXAMPLES:

sage: p = AffinePermutationGroup(['A',7,1])([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.apply_simple_reflection_left(3)
Type A affine permutation with window [4, -1, 0, 6, 5, 3, 10, 9]
sage: p.apply_simple_reflection_left(11)
Type A affine permutation with window [4, -1, 0, 6, 5, 3, 10, 9]

apply_simple_reflection_right(i)
Apply the simple reflection to positions 𝑖, 𝑖+ 1.

INPUT:

• i – an integer

EXAMPLES:

sage: p = AffinePermutationGroup(['A',7,1])([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.apply_simple_reflection_right(3)
Type A affine permutation with window [3, -1, 6, 0, 5, 4, 10, 9]
sage: p.apply_simple_reflection_right(11)
Type A affine permutation with window [3, -1, 6, 0, 5, 4, 10, 9]

check()
Check that self is an affine permutation.

EXAMPLES:

34 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: A = AffinePermutationGroup(['A',7,1])
sage: p = A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p
Type A affine permutation with window [3, -1, 0, 6, 5, 4, 10, 9]
sage: q = A([1,2,3]) # indirect doctest
Traceback (most recent call last):
...
ValueError: length of list must be k+1=8
sage: q = A([1,2,3,4,5,6,7,0]) # indirect doctest
Traceback (most recent call last):
...
ValueError: window does not sum to 36
sage: q = A([1,1,3,4,5,6,7,9]) # indirect doctest
Traceback (most recent call last):
...
ValueError: entries must have distinct residues

flip_automorphism()
The Dynkin diagram automorphism which fixes 𝑠0 and reverses all other indices.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.flip_automorphism()
Type A affine permutation with window [0, -1, 5, 4, 3, 9, 10, 6]

has_left_descent(i)
Determine whether there is a descent at i.

INPUT:

• i – an integer

EXAMPLES:

sage: p = AffinePermutationGroup(['A',7,1])([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.has_left_descent(1)
True
sage: p.has_left_descent(9)
True
sage: p.has_left_descent(0)
True

has_right_descent(i)
Determine whether there is a descent at i.

INPUT:

• i – an integer

EXAMPLES:

sage: p = AffinePermutationGroup(['A',7,1])([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.has_right_descent(1)
True
sage: p.has_right_descent(9)

(continues on next page)

5.1. Comprehensive Module List 35

Combinatorics, Release 9.7

(continued from previous page)

True
sage: p.has_right_descent(0)
False

is_fully_commutative()
Determine whether self is fully commutative, i.e., has no reduced words with a braid.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.is_fully_commutative()
False
sage: q=A([-3, -2, 0, 7, 9, 2, 11, 12])
sage: q.is_fully_commutative()
True

maximal_cyclic_decomposition(typ='decreasing', side='right', verbose=False)
Find the unique maximal decomposition of self into cyclically decreasing/increasing elements.

INPUT:

• typ – 'increasing' or 'decreasing' (default: 'decreasing'); chooses whether to find increas-
ing or decreasing sets

• side – 'right' or 'left' (default: 'right') chooses whether to find maximal sets starting from
the left or the right

• verbose – (default: False) print extra information while finding the decomposition

EXAMPLES:

sage: p = AffinePermutationGroup(['A',7,1])([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.maximal_cyclic_decomposition()
[[0, 7], [4, 1, 0], [7, 5, 4, 2, 1]]
sage: p.maximal_cyclic_decomposition(side='left')
[[1, 0, 7, 5, 4], [1, 0, 5], [2, 1]]
sage: p.maximal_cyclic_decomposition(typ='increasing', side='right')
[[1], [5, 0, 1, 2], [4, 5, 7, 0, 1]]
sage: p.maximal_cyclic_decomposition(typ='increasing', side='left')
[[0, 1, 2, 4, 5], [4, 7, 0, 1], [7]]

maximal_cyclic_factor(typ='decreasing', side='right', verbose=False)
For an affine permutation 𝑥, find the unique maximal subset 𝐴 of the index set such that 𝑥 = 𝑦𝑑𝐴 is a
reduced product.

INPUT:

• typ – 'increasing' or 'decreasing' (default: 'decreasing'); chooses whether to find increas-
ing or decreasing sets

• side – 'right' or 'left' (default: 'right') chooses whether to find maximal sets starting from
the left or the right

• verbose – True or False. If True, outputs information about how the cyclically increasing element
was found.

EXAMPLES:

36 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p = AffinePermutationGroup(['A',7,1])([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.maximal_cyclic_factor()
[7, 5, 4, 2, 1]
sage: p.maximal_cyclic_factor(side='left')
[1, 0, 7, 5, 4]
sage: p.maximal_cyclic_factor('increasing','right')
[4, 5, 7, 0, 1]
sage: p.maximal_cyclic_factor('increasing','left')
[0, 1, 2, 4, 5]

position(i)
Find the position j such the self.value(j) == i.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p = A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.position(3)
1
sage: p.position(11)
9

promotion()
The Dynkin diagram automorphism which sends 𝑠𝑖 to 𝑠𝑖+1.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.promotion()
Type A affine permutation with window [2, 4, 0, 1, 7, 6, 5, 11]

tableau_of_word(w, typ='decreasing', side='right', alpha=None)
Finds a tableau on the Lehmer code of self corresponding to the given reduced word.

For a full description of this algorithm, see [Den2012].

INPUT:

• w – a reduced word for self

• typ – 'increasing' or 'decreasing'; the type of Lehmer code used

• side – 'right' or 'left'

• alpha – a content vector; w should be of type alpha; specifying alpha produces semistandard
tableaux

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.tableau_of_word(p.reduced_word())
[[], [1, 6, 9], [2, 7, 10], [], [3], [4, 8], [], [5]]
sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: w=p.reduced_word()
sage: w

(continues on next page)

5.1. Comprehensive Module List 37

Combinatorics, Release 9.7

(continued from previous page)

[0, 7, 4, 1, 0, 7, 5, 4, 2, 1]
sage: alpha=[5,3,2]
sage: p.tableau_of_word(p.reduced_word(), alpha=alpha)
[[], [1, 2, 3], [1, 2, 3], [], [1], [1, 2], [], [1]]
sage: p.tableau_of_word(p.reduced_word(), side='left')
[[1, 4, 9], [6], [], [], [3, 7], [8], [], [2, 5, 10]]
sage: p.tableau_of_word(p.reduced_word(), typ='increasing', side='right')
[[9, 10], [1, 2], [], [], [3, 4], [8], [], [5, 6, 7]]
sage: p.tableau_of_word(p.reduced_word(), typ='increasing', side='left')
[[1, 2], [4, 5, 6], [9, 10], [], [3], [7, 8], [], []]

to_bounded_partition(typ='decreasing', side='right')
Return the 𝑘-bounded partition associated to the dominant element obtained by sorting the Lehmer code.

INPUT:

• typ – ‘increasing’ or ‘decreasing’ (default: ‘decreasing’.) Chooses whether to find increasing or de-
creasing sets.

• side – ‘right’ or ‘left’ (default: ‘right’.) Chooses whether to find maximal sets starting from the left
or the right.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',2,1])
sage: p=A.from_lehmer_code([4,1,0])
sage: p.to_bounded_partition()
[2, 1, 1, 1]

to_core(typ='decreasing', side='right')
Returns the core associated to the dominant element obtained by sorting the Lehmer code.

INPUT:

• typ – ‘increasing’ or ‘decreasing’ (default: ‘decreasing’.)

• side – ‘right’ or ‘left’ (default: ‘right’.) Chooses whether to find maximal sets starting from the left
or the right.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',2,1])
sage: p=A.from_lehmer_code([4,1,0])
sage: p.to_bounded_partition()
[2, 1, 1, 1]
sage: p.to_core()
[4, 2, 1, 1]

to_dominant(typ='decreasing', side='right')
Finds the Lehmer code and then sorts it. Returns the affine permutation with the given sorted Lehmer code;
this element is 0-dominant.

INPUT:

• typ – 'increasing' or 'decreasing' (default: 'decreasing') chooses whether to find increasing
or decreasing sets

• side – 'right' or 'left' (default: 'right') chooses whether to find maximal sets starting from
the left or the right

38 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.to_dominant()
Type A affine permutation with window [-2, -1, 1, 3, 4, 8, 10, 13]
sage: p.to_dominant(typ='increasing', side='left')
Type A affine permutation with window [3, 4, -1, 5, 0, 9, 6, 10]

to_lehmer_code(typ='decreasing', side='right')
Return the affine Lehmer code.

There are four such codes; the options typ and side determine which code is generated. The codes gen-
erated are the shape of the maximal cyclic decompositions of self according to the given typ and side
options.

INPUT:

• typ – 'increasing' or 'decreasing' (default: 'decreasing'); chooses whether to find increas-
ing or decreasing sets

• side – 'right' or 'left' (default: 'right') chooses whether to find maximal sets starting from
the left or the right

EXAMPLES:

sage: import itertools
sage: A = AffinePermutationGroup(['A',7,1])
sage: p=A([3, -1, 0, 6, 5, 4, 10, 9])
sage: orders = ('increasing','decreasing')
sage: sides = ('left','right')
sage: for o,s in itertools.product(orders, sides):
....: p.to_lehmer_code(o,s)
[2, 3, 2, 0, 1, 2, 0, 0]
[2, 2, 0, 0, 2, 1, 0, 3]
[3, 1, 0, 0, 2, 1, 0, 3]
[0, 3, 3, 0, 1, 2, 0, 1]
sage: for a in itertools.product(orders, sides):
....: A.from_lehmer_code(p.to_lehmer_code(a[0],a[1]), a[0],a[1])==p
True
True
True
True

to_type_a()
Return an embedding of self into the affine permutation group of type𝐴. (For type𝐴, just returns self.)

EXAMPLES:

sage: p = AffinePermutationGroup(['A',7,1])([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.to_type_a() is p
True

value(i, base_window=False)
Return the image of the integer i under this permutation.

INPUT:

5.1. Comprehensive Module List 39

Combinatorics, Release 9.7

• base_window – boolean; indicating whether i is in the base window; if True, will run a bit faster, but
the method will screw up if i is not actually in the index set

EXAMPLES:

sage: A = AffinePermutationGroup(['A',7,1])
sage: p = A([3, -1, 0, 6, 5, 4, 10, 9])
sage: p.value(1)
3
sage: p.value(9)
11

class sage.combinat.affine_permutation.AffinePermutationTypeB(parent, lst, check=True)
Bases: sage.combinat.affine_permutation.AffinePermutationTypeC

apply_simple_reflection_left(i)
Apply the simple reflection indexed by i on values.

EXAMPLES:

sage: B = AffinePermutationGroup(['B',4,1])
sage: p=B([-5,1,6,-2])
sage: p.apply_simple_reflection_left(0)
Type B affine permutation with window [-5, -2, 6, 1]
sage: p.apply_simple_reflection_left(2)
Type B affine permutation with window [-5, 1, 7, -3]
sage: p.apply_simple_reflection_left(4)
Type B affine permutation with window [-4, 1, 6, -2]

apply_simple_reflection_right(i)
Apply the simple reflection indexed by i on positions.

EXAMPLES:

sage: B = AffinePermutationGroup(['B',4,1])
sage: p=B([-5,1,6,-2])
sage: p.apply_simple_reflection_right(1)
Type B affine permutation with window [1, -5, 6, -2]
sage: p.apply_simple_reflection_right(0)
Type B affine permutation with window [-1, 5, 6, -2]
sage: p.apply_simple_reflection_right(4)
Type B affine permutation with window [-5, 1, 6, 11]

check()
Check that self is an affine permutation.

EXAMPLES:

sage: B = AffinePermutationGroup(['B',4,1])
sage: x = B([-5,1,6,-2])
sage: x
Type B affine permutation with window [-5, 1, 6, -2]

has_left_descent(i)
Determines whether there is a descent at i.

INPUT:

40 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• i – an integer

EXAMPLES:

sage: B = AffinePermutationGroup(['B',4,1])
sage: p=B([-5,1,6,-2])
sage: [p.has_left_descent(i) for i in B.index_set()]
[True, True, False, False, True]

has_right_descent(i)
Determines whether there is a descent at index i.

INPUT:

• i – an integer

EXAMPLES:

sage: B = AffinePermutationGroup(['B',4,1])
sage: p = B([-5,1,6,-2])
sage: [p.has_right_descent(i) for i in B.index_set()]
[True, False, False, True, False]

class sage.combinat.affine_permutation.AffinePermutationTypeC(parent, lst, check=True)
Bases: sage.combinat.affine_permutation.AffinePermutation

apply_simple_reflection_left(i)
Apply the simple reflection indexed by i on values.

EXAMPLES:

sage: C = AffinePermutationGroup(['C',4,1])
sage: x = C([-1,5,3,7])
sage: for i in C.index_set(): x.apply_simple_reflection_left(i)
Type C affine permutation with window [1, 5, 3, 7]
Type C affine permutation with window [-2, 5, 3, 8]
Type C affine permutation with window [-1, 5, 2, 6]
Type C affine permutation with window [-1, 6, 4, 7]
Type C affine permutation with window [-1, 4, 3, 7]

apply_simple_reflection_right(i)
Apply the simple reflection indexed by i on positions.

EXAMPLES:

sage: C = AffinePermutationGroup(['C',4,1])
sage: x=C([-1,5,3,7])
sage: for i in C.index_set(): x.apply_simple_reflection_right(i)
Type C affine permutation with window [1, 5, 3, 7]
Type C affine permutation with window [5, -1, 3, 7]
Type C affine permutation with window [-1, 3, 5, 7]
Type C affine permutation with window [-1, 5, 7, 3]
Type C affine permutation with window [-1, 5, 3, 2]

check()
Check that self is an affine permutation.

EXAMPLES:

5.1. Comprehensive Module List 41

Combinatorics, Release 9.7

sage: C = AffinePermutationGroup(['C',4,1])
sage: x = C([-1,5,3,7])
sage: x
Type C affine permutation with window [-1, 5, 3, 7]

has_left_descent(i)
Determine whether there is a descent at i.

INPUT:

• i – an integer

EXAMPLES:

sage: C = AffinePermutationGroup(['C',4,1])
sage: x = C([-1,5,3,7])
sage: for i in C.index_set(): x.has_left_descent(i)
True
False
True
False
True

has_right_descent(i)
Determine whether there is a descent at index i.

INPUT:

• i – an integer

EXAMPLES:

sage: C = AffinePermutationGroup(['C',4,1])
sage: x = C([-1,5,3,7])
sage: for i in C.index_set(): x.has_right_descent(i)
True
False
True
False
True

position(i)
Find the position 𝑗 such the self.value(j)=i

EXAMPLES:

sage: C = AffinePermutationGroup(['C',4,1])
sage: x = C.one()
sage: [x.position(i) for i in range(-10,10)] == list(range(-10,10))
True

to_type_a()
Return an embedding of self into the affine permutation group of type 𝐴.

EXAMPLES:

42 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: C = AffinePermutationGroup(['C',4,1])
sage: x = C([-1,5,3,7])
sage: x.to_type_a()
Type A affine permutation with window [-1, 5, 3, 7, 2, 6, 4, 10, 9]

value(i)
Return the image of the integer i under this permutation.

EXAMPLES:

sage: C = AffinePermutationGroup(['C',4,1])
sage: x = C.one()
sage: [x.value(i) for i in range(-10,10)] == list(range(-10,10))
True

class sage.combinat.affine_permutation.AffinePermutationTypeD(parent, lst, check=True)
Bases: sage.combinat.affine_permutation.AffinePermutationTypeC

apply_simple_reflection_left(i)
Apply simple reflection indexed by i on values.

EXAMPLES:

sage: D = AffinePermutationGroup(['D',4,1])
sage: p=D([1,-6,5,-2])
sage: p.apply_simple_reflection_left(0)
Type D affine permutation with window [-2, -6, 5, 1]
sage: p.apply_simple_reflection_left(1)
Type D affine permutation with window [2, -6, 5, -1]
sage: p.apply_simple_reflection_left(4)
Type D affine permutation with window [1, -4, 3, -2]

apply_simple_reflection_right(i)
Apply the simple reflection indexed by i on positions.

EXAMPLES:

sage: D = AffinePermutationGroup(['D',4,1])
sage: p=D([1,-6,5,-2])
sage: p.apply_simple_reflection_right(0)
Type D affine permutation with window [6, -1, 5, -2]
sage: p.apply_simple_reflection_right(1)
Type D affine permutation with window [-6, 1, 5, -2]
sage: p.apply_simple_reflection_right(4)
Type D affine permutation with window [1, -6, 11, 4]

check()
Check that self is an affine permutation.

EXAMPLES:

sage: D = AffinePermutationGroup(['D',4,1])
sage: p = D([1,-6,5,-2])
sage: p
Type D affine permutation with window [1, -6, 5, -2]

5.1. Comprehensive Module List 43

Combinatorics, Release 9.7

has_left_descent(i)
Determine whether there is a descent at i.

INPUT:

• i – an integer

EXAMPLES:

sage: D = AffinePermutationGroup(['D',4,1])
sage: p=D([1,-6,5,-2])
sage: [p.has_left_descent(i) for i in D.index_set()]
[True, True, False, True, True]

has_right_descent(i)
Determine whether there is a descent at index i.

INPUT:

• i – an integer

EXAMPLES:

sage: D = AffinePermutationGroup(['D',4,1])
sage: p=D([1,-6,5,-2])
sage: [p.has_right_descent(i) for i in D.index_set()]
[True, True, False, True, False]

class sage.combinat.affine_permutation.AffinePermutationTypeG(parent, lst, check=True)
Bases: sage.combinat.affine_permutation.AffinePermutation

apply_simple_reflection_left(i)
Apply simple reflection indexed by 𝑖 on values.

EXAMPLES:

sage: G = AffinePermutationGroup(['G',2,1])
sage: p=G([2, 10, -5, 12, -3, 5])
sage: p.apply_simple_reflection_left(0)
Type G affine permutation with window [0, 10, -7, 14, -3, 7]
sage: p.apply_simple_reflection_left(1)
Type G affine permutation with window [1, 9, -4, 11, -2, 6]
sage: p.apply_simple_reflection_left(2)
Type G affine permutation with window [3, 11, -5, 12, -4, 4]

apply_simple_reflection_right(i)
Apply the simple reflection indexed by i on positions.

EXAMPLES:

sage: G = AffinePermutationGroup(['G',2,1])
sage: p = G([2, 10, -5, 12, -3, 5])
sage: p.apply_simple_reflection_right(0)
Type G affine permutation with window [-9, -1, -5, 12, 8, 16]
sage: p.apply_simple_reflection_right(1)
Type G affine permutation with window [10, 2, 12, -5, 5, -3]
sage: p.apply_simple_reflection_right(2)
Type G affine permutation with window [2, -5, 10, -3, 12, 5]

44 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

check()
Check that self is an affine permutation.

EXAMPLES:

sage: G = AffinePermutationGroup(['G',2,1])
sage: p = G([2, 10, -5, 12, -3, 5])
sage: p
Type G affine permutation with window [2, 10, -5, 12, -3, 5]

has_left_descent(i)
Determines whether there is a descent at i.

INPUT:

• i – an integer

EXAMPLES:

sage: G = AffinePermutationGroup(['G',2,1])
sage: p = G([2, 10, -5, 12, -3, 5])
sage: [p.has_left_descent(i) for i in G.index_set()]
[False, True, False]

has_right_descent(i)
Determines whether there is a descent at index 𝑖.

INPUT:

• i – an integer

EXAMPLES:

sage: G = AffinePermutationGroup(['G',2,1])
sage: p = G([2, 10, -5, 12, -3, 5])
sage: [p.has_right_descent(i) for i in G.index_set()]
[False, False, True]

position(i)
Find the position j such the self.value(j) == i.

EXAMPLES:

sage: G = AffinePermutationGroup(['G',2,1])
sage: p = G([2, 10, -5, 12, -3, 5])
sage: [p.position(i) for i in p]
[1, 2, 3, 4, 5, 6]

to_type_a()
Return an embedding of self into the affine permutation group of type A.

EXAMPLES:

sage: G = AffinePermutationGroup(['G',2,1])
sage: p = G([2, 10, -5, 12, -3, 5])
sage: p.to_type_a()
Type A affine permutation with window [2, 10, -5, 12, -3, 5]

value(i, base_window=False)
Return the image of the integer i under this permutation.

5.1. Comprehensive Module List 45

Combinatorics, Release 9.7

INPUT:

• base_window – boolean indicating whether i is between 1 and 𝑘 + 1; if True, will run a bit faster,
but the method will screw up if i is not actually in the index set

EXAMPLES:

sage: G = AffinePermutationGroup(['G',2,1])
sage: p=G([2, 10, -5, 12, -3, 5])
sage: [p.value(i) for i in [1..12]]
[2, 10, -5, 12, -3, 5, 8, 16, 1, 18, 3, 11]

5.1.3 Algebraic combinatorics

Thematic tutorials

• Algebraic Combinatorics in Sage

• Lie Methods and Related Combinatorics in Sage

• Linear Programming (Mixed Integer)

Enumerated sets of combinatorial objects

• Enumerated sets of partitions, tableaux, . . .

• GelfandTsetlinPattern, GelfandTsetlinPatterns

• KnutsonTaoPuzzleSolver

Groups and Algebras

• Catalog of algebras

• Groups

• SymmetricGroup, CoxeterGroup, WeylGroup

• PartitionAlgebra

• IwahoriHeckeAlgebra

• SymmetricGroupAlgebra

• NilCoxeterAlgebra

• AffineNilTemperleyLiebTypeA

• Descent Algebras

• Diagram and Partition Algebras

• Blob Algebras

46 Chapter 5. Comprehensive Module List

../../../../thematic_tutorials/algebraic_combinatorics.html
../../../../thematic_tutorials/lie.html
../../../../thematic_tutorials/linear_programming.html
../../../../../../html/en/reference/algebras/sage/algebras/catalog.html#sage-algebras-catalog
../../../../../../html/en/reference/groups/sage/groups/groups_catalog.html#sage-groups-groups-catalog
../../../../../../html/en/reference/groups/sage/groups/perm_gps/permgroup_named.html#sage.groups.perm_gps.permgroup_named.SymmetricGroup
../../../../../../html/en/reference/algebras/sage/algebras/iwahori_hecke_algebra.html#sage.algebras.iwahori_hecke_algebra.IwahoriHeckeAlgebra
../../../../../../html/en/reference/algebras/sage/algebras/nil_coxeter_algebra.html#sage.algebras.nil_coxeter_algebra.NilCoxeterAlgebra
../../../../../../html/en/reference/algebras/sage/algebras/affine_nil_temperley_lieb.html#sage.algebras.affine_nil_temperley_lieb.AffineNilTemperleyLiebTypeA

Combinatorics, Release 9.7

Combinatorial Representation Theory

• Root Systems

• Crystals

• Rigged configurations

• Cluster algebras and quivers

• KazhdanLusztigPolynomial

• SymmetricGroupRepresentation

• Yang-Baxter Graphs

• Hall Polynomials

Operads and their algebras

• Free Dendriform Algebras

• Free Pre-Lie Algebras

• Free Zinbiel Algebras

5.1.4 Combinatorics

Introductory material

• Combinatorics quickref

• Introduction to combinatorics in Sage

Thematic indexes

• Algebraic combinatorics

– Combinatorial Hopf algebras

– Cluster algebras and quivers

– Crystals

– Root Systems

– Symmetric Functions

– FullyCommutativeElements

• Counting

• Enumerated sets and combinatorial objects

• Enumerated sets of partitions, tableaux, . . .

• Finite state machines, automata, transducers

• Combinatorial species

• Combinatorial designs and incidence structures

• Posets

5.1. Comprehensive Module List 47

../../../../../../html/en/reference/algebras/sage/algebras/free_zinbiel_algebra.html#sage-algebras-free-zinbiel-algebra

Combinatorics, Release 9.7

• Combinatorics on words

Utilities

• Output functions

• Rankers

• Combinatorial maps

• Miscellaneous

Related topics

• Coding Theory

• Discrete dynamics

• Graph Theory

5.1.5 Alternating Sign Matrices

AUTHORS:

• Mike Hansen (2007): Initial version

• Pierre Cange, Luis Serrano (2012): Added monotone triangles

• Travis Scrimshaw (2013-28-03): Added element class for ASM’s and made MonotoneTriangles inherit from
GelfandTsetlinPatterns

• Jessica Striker (2013): Added additional methods

• Vincent Delecroix (2017): cleaning

class sage.combinat.alternating_sign_matrix.AlternatingSignMatrices(n)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Class of all 𝑛× 𝑛 alternating sign matrices.

An alternating sign matrix of size 𝑛 is an 𝑛 × 𝑛 matrix of 0’s, 1’s and −1’s such that the sum of each row and
column is 1 and the non-zero entries in each row and column alternate in sign.

Alternating sign matrices of size 𝑛 are in bijection with monotone triangles with 𝑛 rows.

INPUT:

• 𝑛 – an integer, the size of the matrices.

EXAMPLES:

This will create an instance to manipulate the alternating sign matrices of size 3:

sage: A = AlternatingSignMatrices(3)
sage: A
Alternating sign matrices of size 3
sage: A.cardinality()
7

Notably, this implementation allows to make a lattice of it:

48 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/coding/index.html#sage-coding
../../../../../../html/en/reference/dynamics/index.html#sage-dynamics
../../../../../../html/en/reference/graphs/index.html#sage-graphs
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: L = A.lattice()
sage: L
Finite lattice containing 7 elements
sage: L.category()
Category of facade finite enumerated lattice posets

Element
alias of AlternatingSignMatrix

cardinality()
Return the cardinality of self.

The number of 𝑛× 𝑛 alternating sign matrices is equal to
𝑛−1∏︁
𝑘=0

(3𝑘 + 1)!

(𝑛+ 𝑘)!
=

1!4!7!10! · · · (3𝑛− 2)!

𝑛!(𝑛+ 1)!(𝑛+ 2)!(𝑛+ 3)! · · · (2𝑛− 1)!

EXAMPLES:

sage: [AlternatingSignMatrices(n).cardinality() for n in range(11)]
[1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700]

cover_relations()
Iterate on the cover relations between the alternating sign matrices.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: for (a,b) in A.cover_relations():
....: eval('a, b')
(
[1 0 0] [0 1 0]
[0 1 0] [1 0 0]
[0 0 1], [0 0 1]
)
(
[1 0 0] [1 0 0]
[0 1 0] [0 0 1]
[0 0 1], [0 1 0]
)
(
[0 1 0] [0 1 0]
[1 0 0] [1 -1 1]
[0 0 1], [0 1 0]
)
(
[1 0 0] [0 1 0]
[0 0 1] [1 -1 1]
[0 1 0], [0 1 0]
)
(
[0 1 0] [0 0 1]
[1 -1 1] [1 0 0]
[0 1 0], [0 1 0]
)

(continues on next page)

5.1. Comprehensive Module List 49

Combinatorics, Release 9.7

(continued from previous page)

(
[0 1 0] [0 1 0]
[1 -1 1] [0 0 1]
[0 1 0], [1 0 0]
)
(
[0 0 1] [0 0 1]
[1 0 0] [0 1 0]
[0 1 0], [1 0 0]
)
(
[0 1 0] [0 0 1]
[0 0 1] [0 1 0]
[1 0 0], [1 0 0]
)

first()
Return the first alternating sign matrix.

EXAMPLES:

sage: AlternatingSignMatrices(5).first()
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

from_contre_tableau(comps)
Return an alternating sign matrix from a contre-tableau.

EXAMPLES:

sage: ASM = AlternatingSignMatrices(3)
sage: ASM.from_contre_tableau([[1, 2, 3], [1, 2], [1]])
[0 0 1]
[0 1 0]
[1 0 0]
sage: ASM.from_contre_tableau([[1, 2, 3], [2, 3], [3]])
[1 0 0]
[0 1 0]
[0 0 1]

from_corner_sum(corner)
Return an alternating sign matrix from a corner sum matrix.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A.from_corner_sum(matrix([[0,0,0,0],[0,1,1,1],[0,1,2,2],[0,1,2,3]]))
[1 0 0]
[0 1 0]
[0 0 1]
sage: A.from_corner_sum(matrix([[0,0,0,0],[0,0,1,1],[0,1,1,2],[0,1,2,3]]))

(continues on next page)

50 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0 1 0]
[1 -1 1]
[0 1 0]

from_height_function(height)
Return an alternating sign matrix from a height function.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A.from_height_function(matrix([[0,1,2,3],[1,2,1,2],[2,3,2,1],[3,2,1,0]]))
[0 0 1]
[1 0 0]
[0 1 0]
sage: A.from_height_function(matrix([[0,1,2,3],[1,2,1,2],[2,1,2,1],[3,2,1,0]]))
[0 1 0]
[1 -1 1]
[0 1 0]

from_monotone_triangle(triangle, check=True)
Return an alternating sign matrix from a monotone triangle.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A.from_monotone_triangle([[3, 2, 1], [2, 1], [1]])
[1 0 0]
[0 1 0]
[0 0 1]
sage: A.from_monotone_triangle([[3, 2, 1], [3, 2], [3]])
[0 0 1]
[0 1 0]
[1 0 0]

sage: A.from_monotone_triangle([[3, 2, 1], [2, 2], [1]])
Traceback (most recent call last):
...
ValueError: not a valid triangle

gyration_orbit_sizes()
Return the sizes of gyration orbits of self.

EXAMPLES:

sage: AlternatingSignMatrices(3).gyration_orbit_sizes()
[3, 2, 2]
sage: AlternatingSignMatrices(4).gyration_orbit_sizes()
[4, 8, 2, 8, 8, 8, 2, 2]

sage: A = AlternatingSignMatrices(5)
sage: li = [5,10,10,10,10,10,2,5,10,10,10,10,10,10,10,10,10,10,10,10,
....: 4,10,10,10,10,10,10,4,5,10,10,10,10,10,10,10,2,4,5,10,10,10,10,10,10,
....: 4,5,10,10,2,2]

(continues on next page)

5.1. Comprehensive Module List 51

Combinatorics, Release 9.7

(continued from previous page)

sage: A.gyration_orbit_sizes() == li
True

gyration_orbits()
Return the list of gyration orbits of self.

EXAMPLES:

sage: AlternatingSignMatrices(3).gyration_orbits()
((
[1 0 0] [0 0 1] [0 1 0]
[0 1 0] [0 1 0] [1 -1 1]
[0 0 1], [1 0 0], [0 1 0]
),
(
[0 1 0] [1 0 0]
[1 0 0] [0 0 1]
[0 0 1], [0 1 0]
),
(
[0 0 1] [0 1 0]
[1 0 0] [0 0 1]
[0 1 0], [1 0 0]
))

last()
Return the last alternating sign matrix.

EXAMPLES:

sage: AlternatingSignMatrices(5).last()
[0 0 0 0 1]
[0 0 0 1 0]
[0 0 1 0 0]
[0 1 0 0 0]
[1 0 0 0 0]

lattice()
Return the lattice of the alternating sign matrices of size 𝑛, created by LatticePoset.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: L = A.lattice()
sage: L
Finite lattice containing 7 elements

matrix_space()
Return the underlying matrix space.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A.matrix_space()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring

52 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

random_element()
Return a uniformly random alternating sign matrix.

EXAMPLES:

sage: AlternatingSignMatrices(7).random_element() # random
[0 0 0 0 1 0 0]
[0 0 1 0 -1 0 1]
[0 0 0 0 1 0 0]
[0 1 -1 0 0 1 0]
[1 -1 1 0 0 0 0]
[0 0 0 1 0 0 0]
[0 1 0 0 0 0 0]
sage: a = AlternatingSignMatrices(5).random_element()
sage: bool(a.number_negative_ones()) or a.is_permutation()
True

This is done using a modified version of Propp and Wilson’s “coupling from the past” algorithm. It creates
a uniformly random Gelfand-Tsetlin triangle with top row [𝑛, 𝑛 − 1, . . . 2, 1], and then converts it to an
alternating sign matrix.

size()
Return the size of the matrices in self.

class sage.combinat.alternating_sign_matrix.AlternatingSignMatrix(parent, asm)
Bases: sage.structure.element.Element

An alternating sign matrix.

An alternating sign matrix is a square matrix of 0’s, 1’s and −1’s such that the sum of each row and column is 1
and the non-zero entries in each row and column alternate in sign.

These were introduced in [MRR1983].

ASM_compatible(B)
Return True if self and B are compatible alternating sign matrices in the sense of [EKLP1992]. (If self
is of size 𝑛, B must be of size 𝑛+ 1.)

In [EKLP1992], there is a notion of a pair of ASM’s with sizes differing by 1 being compatible, in the sense
that they can be combined to encode a tiling of the Aztec Diamond.

EXAMPLES:

sage: A = AlternatingSignMatrix(matrix([[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,
→˓0]]))
sage: B = AlternatingSignMatrix(matrix([[0,0,1,0,0],[0,0,0,1,0],[1,0,0,-1,1],[0,
→˓1,0,0,0],[0,0,0,1,0]]))
sage: A.ASM_compatible(B)
True
sage: A = AlternatingSignMatrix(matrix([[0,1,0],[1,-1,1],[0,1,0]]))
sage: B = AlternatingSignMatrix(matrix([[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,
→˓0]]))
sage: A.ASM_compatible(B)
False

ASM_compatible_bigger()
Return all ASM’s compatible with self that are of size one greater than self.

5.1. Comprehensive Module List 53

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

Given an 𝑛× 𝑛 alternating sign matrix 𝐴, there are as many ASM’s of size 𝑛+ 1 compatible with 𝐴 as 2
raised to the power of the number of 1’s in 𝐴 [EKLP1992].

EXAMPLES:

sage: A = AlternatingSignMatrix([[1,0],[0,1]])
sage: A.ASM_compatible_bigger()
[
[0 1 0] [1 0 0] [0 1 0] [1 0 0]
[1 -1 1] [0 0 1] [1 0 0] [0 1 0]
[0 1 0], [0 1 0], [0 0 1], [0 0 1]
]
sage: B = AlternatingSignMatrix([[0,1],[1,0]])
sage: B.ASM_compatible_bigger()
[
[0 0 1] [0 0 1] [0 1 0] [0 1 0]
[0 1 0] [1 0 0] [0 0 1] [1 -1 1]
[1 0 0], [0 1 0], [1 0 0], [0 1 0]
]

sage: B = AlternatingSignMatrix([[0,1,0],[1,-1,1],[0,1,0]])
sage: len(B.ASM_compatible_bigger()) == 2**4
True

ASM_compatible_smaller()
Return the list of all ASMs compatible with self that are of size one smaller than self.

Given an alternating sign matrix 𝐴 of size 𝑛, there are as many ASM’s of size 𝑛− 1 compatible with it as
2 raised to the power of the number of −1’s in 𝐴 [EKLP1992].

EXAMPLES:

sage: A = AlternatingSignMatrix(matrix([[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,
→˓0]]))
sage: A.ASM_compatible_smaller()
[
[0 0 1] [0 1 0]
[1 0 0] [1 -1 1]
[0 1 0], [0 1 0]
]
sage: B = AlternatingSignMatrix(matrix([[1,0,0],[0,0,1],[0,1,0]]))
sage: B.ASM_compatible_smaller()
[
[1 0]
[0 1]
]

corner_sum_matrix()
Return the corner sum matrix of self.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).corner_sum_matrix()
[0 0 0 0]
[0 1 1 1]

(continues on next page)

54 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0 1 2 2]
[0 1 2 3]
sage: asm = A([[0, 1, 0],[1, -1, 1],[0, 1, 0]])
sage: asm.corner_sum_matrix()
[0 0 0 0]
[0 0 1 1]
[0 1 1 2]
[0 1 2 3]
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
sage: asm.corner_sum_matrix()
[0 0 0 0]
[0 0 0 1]
[0 1 1 2]
[0 1 2 3]

gyration()
Return the alternating sign matrix obtained by applying gyration to the height function in bijection with
self.

Gyration acts on height functions as follows. Go through the entries of the matrix, first those for which the
sum of the row and column indices is even, then for those for which it is odd, and increment or decrement
the squares by 2 wherever possible such that the resulting matrix is still a height function. Gyration was
first defined in [Wie2000] as an action on fully-packed loops.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).gyration()
[0 0 1]
[0 1 0]
[1 0 0]
sage: asm = A([[0, 1, 0],[1, -1, 1],[0, 1, 0]])
sage: asm.gyration()
[1 0 0]
[0 1 0]
[0 0 1]
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
sage: asm.gyration()
[0 1 0]
[0 0 1]
[1 0 0]
sage: A = AlternatingSignMatrices(3)
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).gyration().gyration()
[0 1 0]
[1 -1 1]
[0 1 0]
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).gyration().gyration().gyration()
[1 0 0]
[0 1 0]
[0 0 1]

sage: A = AlternatingSignMatrices(4)
sage: M = A([[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]])

(continues on next page)

5.1. Comprehensive Module List 55

Combinatorics, Release 9.7

(continued from previous page)

sage: for i in range(5):
....: M = M.gyration()
sage: M
[1 0 0 0]
[0 0 0 1]
[0 1 0 0]
[0 0 1 0]

sage: a0 = a = AlternatingSignMatrices(5).random_element()
sage: for i in range(20):
....: a = a.gyration()
sage: a == a0
True

gyration_orbit()
Return the gyration orbit of self (including self).

EXAMPLES:

sage: AlternatingSignMatrix([[0,1,0],[1,-1,1],[0,1,0]]).gyration_orbit()
[
[0 1 0] [1 0 0] [0 0 1]
[1 -1 1] [0 1 0] [0 1 0]
[0 1 0], [0 0 1], [1 0 0]
]

sage: AlternatingSignMatrix([[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]).
→˓gyration_orbit()
[
[0 1 0 0] [1 0 0 0] [0 0 1 0] [0 0 0 1]
[1 -1 1 0] [0 1 0 0] [0 1 -1 1] [0 0 1 0]
[0 1 -1 1] [0 0 1 0] [1 -1 1 0] [0 1 0 0]
[0 0 1 0], [0 0 0 1], [0 1 0 0], [1 0 0 0]
]

sage: len(AlternatingSignMatrix([[0,1,0,0,0,0],[0,0,1,0,0,0],[1,-1,0,0,0,1],
....: [0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]).gyration_orbit())
12

height_function()
Return the height function from self.

A height function corresponding to an 𝑛× 𝑛 ASM is an (𝑛+ 1)× (𝑛+ 1) matrix such that the first row is
0, 1, . . . , 𝑛, the last row is 𝑛, 𝑛− 1, . . . , 1, 0, and the difference between adjacent entries is 1.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).height_function()
[0 1 2 3]
[1 0 1 2]
[2 1 0 1]
[3 2 1 0]
sage: asm = A([[0, 1, 0],[1, -1, 1],[0, 1, 0]])

(continues on next page)

56 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: asm.height_function()
[0 1 2 3]
[1 2 1 2]
[2 1 2 1]
[3 2 1 0]
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
sage: asm.height_function()
[0 1 2 3]
[1 2 1 2]
[2 3 2 1]
[3 2 1 0]

sage: A = AlternatingSignMatrices(4)
sage: all(A.from_height_function(a.height_function()) == a for a in A)
True

inversion_number()
Return the inversion number of self.

If we denote the entries of the alternating sign matrix as 𝑎𝑖,𝑗 , the inversion number is defined as∑︀
𝑖>𝑘

∑︀
𝑗<𝑙 𝑎𝑖,𝑗𝑎𝑘,𝑙. When restricted to permutation matrices, this gives the usual inversion number of

the permutation.

This definition is equivalent to the one given in [MRR1983].

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).inversion_number()
0
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
sage: asm.inversion_number()
2
sage: asm = A([[0, 1, 0],[1, -1, 1],[0, 1, 0]])
sage: asm.inversion_number()
2
sage: P = Permutations(5)
sage: all(p.number_of_inversions()==AlternatingSignMatrix(p.to_matrix()).
→˓inversion_number() for p in P)
True

is_permutation()
Return True if self is a permutation matrix and False otherwise.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: asm = A([[0,1,0],[1,0,0],[0,0,1]])
sage: asm.is_permutation()
True
sage: asm = A([[0,1,0],[1,-1,1],[0,1,0]])
sage: asm.is_permutation()
False

5.1. Comprehensive Module List 57

Combinatorics, Release 9.7

left_key()
Return the left key of the alternating sign matrix self.

The left key of an alternating sign matrix was defined by Lascoux in [Lasc] and is obtained by successively
removing all the−1’s until what remains is a permutation matrix. This notion corresponds to the notion of
left key for semistandard tableaux. So our algorithm proceeds as follows: we map self to its corresponding
monotone triangle, view that monotone triangle as a semistandard tableau, take its left key, and then map
back through monotone triangles to the permutation matrix which is the left key.

See also [Ava2007].

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[0,0,1],[1,0,0],[0,1,0]]).left_key()
[0 0 1]
[1 0 0]
[0 1 0]
sage: t = A([[0,1,0],[1,-1,1],[0,1,0]]).left_key(); t
[1 0 0]
[0 0 1]
[0 1 0]
sage: parent(t)
Alternating sign matrices of size 3

left_key_as_permutation()
Return the permutation of the left key of self.

See also:

• left_key()

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[0,0,1],[1,0,0],[0,1,0]]).left_key_as_permutation()
[3, 1, 2]
sage: t = A([[0,1,0],[1,-1,1],[0,1,0]]).left_key_as_permutation(); t
[1, 3, 2]
sage: parent(t)
Standard permutations

link_pattern()
Return the link pattern corresponding to the fully packed loop corresponding to self.

EXAMPLES:

We can extract the underlying link pattern (a non-crossing partition) from a fully packed loop:

sage: A = AlternatingSignMatrix([[0, 1, 0], [1, -1, 1], [0, 1, 0]])
sage: A.link_pattern()
[(1, 2), (3, 6), (4, 5)]

sage: B = AlternatingSignMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
sage: B.link_pattern()
[(1, 6), (2, 5), (3, 4)]

58 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

number_negative_ones()
Return the number of entries in self equal to -1.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: asm = A([[0,1,0],[1,0,0],[0,0,1]])
sage: asm.number_negative_ones()
0
sage: asm = A([[0,1,0],[1,-1,1],[0,1,0]])
sage: asm.number_negative_ones()
1

rotate_ccw()
Return the counterclockwise quarter turn rotation of self.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).rotate_ccw()
[0 0 1]
[0 1 0]
[1 0 0]
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
sage: asm.rotate_ccw()
[1 0 0]
[0 0 1]
[0 1 0]

rotate_cw()
Return the clockwise quarter turn rotation of self.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).rotate_cw()
[0 0 1]
[0 1 0]
[1 0 0]
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
sage: asm.rotate_cw()
[0 1 0]
[1 0 0]
[0 0 1]

to_dyck_word(algorithm)
Return a Dyck word determined by the specified algorithm.

The algorithm ‘last_diagonal’ uses the last diagonal of the monotone triangle corresponding to self. The
algorithm ‘link_pattern’ returns the Dyck word in bijection with the link pattern of the fully packed loop.

Note that these two algorithms in general yield different Dyck words for a given alternating sign matrix.

INPUT:

• algorithm - either 'last_diagonal' or 'link_pattern'

EXAMPLES:

5.1. Comprehensive Module List 59

Combinatorics, Release 9.7

sage: A = AlternatingSignMatrices(3)
sage: A([[0,1,0],[1,0,0],[0,0,1]]).to_dyck_word(algorithm = 'last_diagonal')
[1, 1, 0, 0, 1, 0]
sage: d = A([[0,1,0],[1,-1,1],[0,1,0]]).to_dyck_word(algorithm = 'last_diagonal
→˓'); d
[1, 1, 0, 1, 0, 0]
sage: parent(d)
Complete Dyck words
sage: A = AlternatingSignMatrices(3)
sage: asm = A([[0,1,0],[1,0,0],[0,0,1]])
sage: asm.to_dyck_word(algorithm = 'link_pattern')
[1, 0, 1, 0, 1, 0]
sage: asm = A([[0,1,0],[1,-1,1],[0,1,0]])
sage: asm.to_dyck_word(algorithm = 'link_pattern')
[1, 0, 1, 1, 0, 0]
sage: A = AlternatingSignMatrices(4)
sage: asm = A([[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]])
sage: asm.to_dyck_word(algorithm = 'link_pattern')
[1, 1, 1, 0, 1, 0, 0, 0]
sage: asm.to_dyck_word()
Traceback (most recent call last):
...
TypeError: ...to_dyck_word() ...argument...
sage: asm.to_dyck_word(algorithm = 'notamethod')
Traceback (most recent call last):
...
ValueError: unknown algorithm 'notamethod'

to_fully_packed_loop()
Return the fully packed loop configuration from self.

See also:

FullyPackedLoop

EXAMPLES:

sage: asm = AlternatingSignMatrix([[1,0,0],[0,1,0],[0,0,1]])
sage: fpl = asm.to_fully_packed_loop()
sage: fpl

| |
| |
+ + -- +
| |
| |

-- + + + --
| |
| |

+ -- + +
| |
| |

to_matrix()
Return self as a regular matrix.

EXAMPLES:

60 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: A = AlternatingSignMatrices(3)
sage: asm = A([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
sage: m = asm.to_matrix(); m
[1 0 0]
[0 1 0]
[0 0 1]
sage: m.parent()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring

to_monotone_triangle()
Return a monotone triangle from self.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).to_monotone_triangle()
[[3, 2, 1], [2, 1], [1]]
sage: asm = A([[0, 1, 0],[1, -1, 1],[0, 1, 0]])
sage: asm.to_monotone_triangle()
[[3, 2, 1], [3, 1], [2]]
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
sage: asm.to_monotone_triangle()
[[3, 2, 1], [3, 1], [3]]
sage: A.from_monotone_triangle(asm.to_monotone_triangle()) == asm
True

to_permutation()
Return the corresponding permutation if self is a permutation matrix.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: asm = A([[0,1,0],[1,0,0],[0,0,1]])
sage: p = asm.to_permutation(); p
[2, 1, 3]
sage: parent(p)
Standard permutations
sage: asm = A([[0,1,0],[1,-1,1],[0,1,0]])
sage: asm.to_permutation()
Traceback (most recent call last):
...
ValueError: Not a permutation matrix

to_semistandard_tableau()
Return the semistandard tableau corresponding the monotone triangle corresponding to self.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[0,0,1],[1,0,0],[0,1,0]]).to_semistandard_tableau()
[[1, 1, 3], [2, 3], [3]]
sage: t = A([[0,1,0],[1,-1,1],[0,1,0]]).to_semistandard_tableau(); t
[[1, 1, 2], [2, 3], [3]]
sage: parent(t)
Semistandard tableaux

5.1. Comprehensive Module List 61

Combinatorics, Release 9.7

to_six_vertex_model()
Return the six vertex model configuration from self.

This method calls sage.combinat.six_vertex_model.from_alternating_sign_matrix().

EXAMPLES:

sage: asm = AlternatingSignMatrix([[0,1,0],[1,-1,1],[0,1,0]])
sage: asm.to_six_vertex_model()

^ ^ ^
| | |

--> # -> # <- # <--
^ | ^
| V |

--> # <- # -> # <--
| ^ |
V | V

--> # -> # <- # <--
| | |
V V V

transpose()
Return self transposed.

EXAMPLES:

sage: A = AlternatingSignMatrices(3)
sage: A([[1, 0, 0],[0, 1, 0],[0, 0, 1]]).transpose()
[1 0 0]
[0 1 0]
[0 0 1]
sage: asm = A([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
sage: asm.transpose()
[0 1 0]
[0 0 1]
[1 0 0]

class sage.combinat.alternating_sign_matrix.ContreTableaux
Bases: sage.structure.parent.Parent

Factory class for the combinatorial class of contre tableaux of size 𝑛.

EXAMPLES:

sage: ct4 = ContreTableaux(4); ct4
Contre tableaux of size 4
sage: ct4.cardinality()
42

class sage.combinat.alternating_sign_matrix.ContreTableaux_n(n)
Bases: sage.combinat.alternating_sign_matrix.ContreTableaux

cardinality()
EXAMPLES:

sage: [ContreTableaux(n).cardinality() for n in range(11)]
[1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700]

62 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

class sage.combinat.alternating_sign_matrix.MonotoneTriangles(n)
Bases: sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatternsTopRow

Monotone triangles with 𝑛 rows.

A monotone triangle is a number triangle (𝑎𝑖,𝑗)1≤𝑖≤𝑛,1≤𝑗≤𝑖 on {1, . . . , 𝑛} such that:

• 𝑎𝑖,𝑗 < 𝑎𝑖,𝑗+1

• 𝑎𝑖+1,𝑗 < 𝑎𝑖,𝑗 ≤ 𝑎𝑖+1,𝑗+1

This notably requires that the bottom column is [1,...,n].

Alternatively a monotone triangle is a strict Gelfand-Tsetlin pattern with top row (𝑛, . . . , 2, 1).

INPUT:

• n – The number of rows in the monotone triangles

EXAMPLES:

This represents the monotone triangles with base [3,2,1]:

sage: M = MonotoneTriangles(3)
sage: M
Monotone triangles with 3 rows
sage: M.cardinality()
7

The monotone triangles are a lattice:

sage: M.lattice()
Finite lattice containing 7 elements

Monotone triangles can be converted to alternating sign matrices and back:

sage: M = MonotoneTriangles(5)
sage: A = AlternatingSignMatrices(5)
sage: all(A.from_monotone_triangle(m).to_monotone_triangle() == m for m in M)
True

cardinality()
Cardinality of self.

The number of monotone triangles with 𝑛 rows is equal to

𝑛−1∏︁
𝑘=0

(3𝑘 + 1)!

(𝑛+ 𝑘)!
=

1!4!7!10! · · · (3𝑛− 2)!

𝑛!(𝑛+ 1)!(𝑛+ 2)!(𝑛+ 3)! · · · (2𝑛− 1)!

EXAMPLES:

sage: M = MonotoneTriangles(4)
sage: M.cardinality()
42

cover_relations()
Iterate on the cover relations in the set of monotone triangles with 𝑛 rows.

EXAMPLES:

5.1. Comprehensive Module List 63

Combinatorics, Release 9.7

sage: M = MonotoneTriangles(3)
sage: for (a,b) in M.cover_relations():
....: eval('a, b')
([[3, 2, 1], [2, 1], [1]], [[3, 2, 1], [2, 1], [2]])
([[3, 2, 1], [2, 1], [1]], [[3, 2, 1], [3, 1], [1]])
([[3, 2, 1], [2, 1], [2]], [[3, 2, 1], [3, 1], [2]])
([[3, 2, 1], [3, 1], [1]], [[3, 2, 1], [3, 1], [2]])
([[3, 2, 1], [3, 1], [2]], [[3, 2, 1], [3, 1], [3]])
([[3, 2, 1], [3, 1], [2]], [[3, 2, 1], [3, 2], [2]])
([[3, 2, 1], [3, 1], [3]], [[3, 2, 1], [3, 2], [3]])
([[3, 2, 1], [3, 2], [2]], [[3, 2, 1], [3, 2], [3]])

lattice()
Return the lattice of the monotone triangles with 𝑛 rows.

EXAMPLES:

sage: M = MonotoneTriangles(3)
sage: P = M.lattice()
sage: P
Finite lattice containing 7 elements

class sage.combinat.alternating_sign_matrix.TruncatedStaircases
Bases: sage.structure.parent.Parent

Factory class for the combinatorial class of truncated staircases of size n with last column last_column.

EXAMPLES:

sage: t4 = TruncatedStaircases(4, [2,3]); t4
Truncated staircases of size 4 with last column [2, 3]
sage: t4.cardinality()
4

class sage.combinat.alternating_sign_matrix.TruncatedStaircases_nlastcolumn(n, last_column)
Bases: sage.combinat.alternating_sign_matrix.TruncatedStaircases

cardinality()
EXAMPLES:

sage: T = TruncatedStaircases(4, [2,3])
sage: T.cardinality()
4

5.1.6 Backtracking

This library contains a generic tool for constructing large sets whose elements can be enumerated by exploring a search
space with a (lazy) tree or graph structure.

• GenericBacktracker: Depth first search through a tree described by a children function, with branch prun-
ing, etc.

This module has mostly been superseded by RecursivelyEnumeratedSet.

class sage.combinat.backtrack.GenericBacktracker(initial_data, initial_state)
Bases: object

64 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

A generic backtrack tool for exploring a search space organized as a tree, with branch pruning, etc.

See also RecursivelyEnumeratedSet_forest for handling simple special cases.

class sage.combinat.backtrack.PositiveIntegerSemigroup
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.sets.
recursively_enumerated_set.RecursivelyEnumeratedSet_forest

The commutative additive semigroup of positive integers.

This class provides an example of algebraic structure which inherits from
RecursivelyEnumeratedSet_forest. It builds the positive integers a la Peano, and endows it with its
natural commutative additive semigroup structure.

EXAMPLES:

sage: from sage.combinat.backtrack import PositiveIntegerSemigroup
sage: PP = PositiveIntegerSemigroup()
sage: PP.category()
Join of Category of monoids and Category of commutative additive semigroups and␣
→˓Category of infinite enumerated sets and Category of facade sets
sage: PP.cardinality()
+Infinity
sage: PP.one()
1
sage: PP.an_element()
1
sage: some_elements = list(PP.some_elements()); some_elements
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,␣
→˓24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,␣
→˓44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,␣
→˓64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,␣
→˓84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]

children(x)
Return the single child x+1 of the integer x

EXAMPLES:

sage: from sage.combinat.backtrack import PositiveIntegerSemigroup
sage: PP = PositiveIntegerSemigroup()
sage: list(PP.children(1))
[2]
sage: list(PP.children(42))
[43]

one()
Return the unit of self.

EXAMPLES:

sage: from sage.combinat.backtrack import PositiveIntegerSemigroup
sage: PP = PositiveIntegerSemigroup()
sage: PP.one()
1

roots()
Return the single root of self.

5.1. Comprehensive Module List 65

../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.backtrack import PositiveIntegerSemigroup
sage: PP = PositiveIntegerSemigroup()
sage: list(PP.roots())
[1]

5.1.7 Baxter permutations

class sage.combinat.baxter_permutations.BaxterPermutations
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The combinatorial class of Baxter permutations.

A Baxter permutation is a permutation avoiding the generalized permutation patterns 2− 41− 3 and 3− 14− 2.
In other words, a permutation 𝜎 is a Baxter permutation if for any subword 𝑢 := 𝑢1𝑢2𝑢3𝑢4 of 𝜎 such that the
letters 𝑢2 and 𝑢3 are adjacent in 𝜎, the standardized version of 𝑢 is neither 2413 nor 3142.

See [Gir2012] for a study of Baxter permutations.

INPUT:

• n – (default: None) a nonnegative integer, the size of the permutations.

OUTPUT:

Return the combinatorial class of the Baxter permutations of size n if n is not None. Otherwise, return the
combinatorial class of all Baxter permutations.

EXAMPLES:

sage: BaxterPermutations(5)
Baxter permutations of size 5
sage: BaxterPermutations()
Baxter permutations

class sage.combinat.baxter_permutations.BaxterPermutations_all(n=None)
Bases: sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets, sage.
combinat.baxter_permutations.BaxterPermutations

The enumerated set of all Baxter permutations.

See BaxterPermutations for the definition of Baxter permutations.

EXAMPLES:

sage: from sage.combinat.baxter_permutations import BaxterPermutations_all
sage: BaxterPermutations_all()
Baxter permutations

to_pair_of_twin_binary_trees(p)
Apply a bijection between Baxter permutations of size self._n and the set of pairs of twin binary trees
with self._n nodes.

INPUT:

• p – a Baxter permutation.

66 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

OUTPUT:

The pair of twin binary trees (𝑇𝐿, 𝑇𝑅) where 𝑇𝐿 (resp. 𝑇𝑅) is obtained by inserting the letters of p from left
to right (resp. right to left) following the binary search tree insertion algorithm. This is called the Baxter
P-symbol in [Gir2012] Definition 4.1.

Note: This method only works when p is a permutation. For words with repeated letters, it would return
two “right binary search trees” (in the terminology of [Gir2012]), which conflicts with the definition in
[Gir2012].

EXAMPLES:

sage: BaxterPermutations().to_pair_of_twin_binary_trees(Permutation([]))
(., .)
sage: BaxterPermutations().to_pair_of_twin_binary_trees(Permutation([1, 2, 3]))
(1[., 2[., 3[., .]]], 3[2[1[., .], .], .])
sage: BaxterPermutations().to_pair_of_twin_binary_trees(Permutation([3, 4, 1,␣
→˓2]))
(3[1[., 2[., .]], 4[., .]], 2[1[., .], 4[3[., .], .]])

class sage.combinat.baxter_permutations.BaxterPermutations_size(n)
Bases: sage.combinat.baxter_permutations.BaxterPermutations

The enumerated set of Baxter permutations of a given size.

See BaxterPermutations for the definition of Baxter permutations.

EXAMPLES:

sage: from sage.combinat.baxter_permutations import BaxterPermutations_size
sage: BaxterPermutations_size(5)
Baxter permutations of size 5

cardinality()
Return the number of Baxter permutations of size self._n.

For any positive integer 𝑛, the number of Baxter permutations of size 𝑛 equals

𝑛∑︁
𝑘=1

(︀
𝑛+1
𝑘−1
)︀(︀
𝑛+1
𝑘

)︀(︀
𝑛+1
𝑘+1

)︀(︀
𝑛+1
1

)︀(︀
𝑛+1
2

)︀ .

This is OEIS sequence A001181.

EXAMPLES:

sage: [BaxterPermutations(n).cardinality() for n in range(13)]
[1, 1, 2, 6, 22, 92, 422, 2074, 10754, 58202, 326240, 1882960, 11140560]

sage: BaxterPermutations(3r).cardinality()
6
sage: parent(_)
Integer Ring

5.1. Comprehensive Module List 67

https://oeis.org/A001181

Combinatorics, Release 9.7

5.1.8 Binary Recurrence Sequences

This class implements several methods relating to general linear binary recurrence sequences, including a sieve to find
perfect powers in integral linear binary recurrence sequences.

EXAMPLES:

sage: R = BinaryRecurrenceSequence(1,1) #the Fibonacci sequence
sage: R(137) #the 137th term of the Fibonacci sequence
19134702400093278081449423917
sage: R(137) == fibonacci(137)
True
sage: [R(i) % 4 for i in range(12)]
[0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1]
sage: R.period(4) #the period of the fibonacci sequence modulo 4
6
sage: R.pthpowers(2, 10**10) # long time (7 seconds) -- in fact these are all␣
→˓squares, c.f. [BMS06]
[0, 1, 2, 12]

sage: S = BinaryRecurrenceSequence(8,1) #a Lucas sequence
sage: S.period(73)
148
sage: S(5) % 73 == S(5 +148) %73
True
sage: S.pthpowers(3,10**10) # long time (3 seconds) -- provably finds the indices of␣
→˓all 3rd powers less than 10^10
[0, 1, 2]

sage: T = BinaryRecurrenceSequence(2,0,1,2)
sage: [T(i) for i in range(10)]
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
sage: T.is_degenerate()
True
sage: T.is_geometric()
True
sage: T.pthpowers(7,10**30)
Traceback (most recent call last):
...
ValueError: the degenerate binary recurrence sequence is geometric or quasigeometric and␣
→˓has many pth powers

AUTHORS:

• Isabel Vogt (2013): initial version

See [SV2013], [BMS2006], and [SS1983].

class sage.combinat.binary_recurrence_sequences.BinaryRecurrenceSequence(b, c, u0=0, u1=1)
Bases: sage.structure.sage_object.SageObject

Create a linear binary recurrence sequence defined by initial conditions 𝑢0 and 𝑢1 and recurrence relation 𝑢𝑛+2 =
𝑏 * 𝑢𝑛+1 + 𝑐 * 𝑢𝑛.

INPUT:

• b – an integer (partially determining the recurrence relation)

68 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

• c – an integer (partially determining the recurrence relation)

• u0 – an integer (the 0th term of the binary recurrence sequence)

• u1 – an integer (the 1st term of the binary recurrence sequence)

OUTPUT:

• An integral linear binary recurrence sequence defined by u0, u1, and 𝑢𝑛+2 = 𝑏 * 𝑢𝑛+1 + 𝑐 * 𝑢𝑛
See also:

fibonacci(), lucas_number1(), lucas_number2()

EXAMPLES:

sage: R = BinaryRecurrenceSequence(3,3,2,1)
sage: R
Binary recurrence sequence defined by: u_n = 3 * u_{n-1} + 3 * u_{n-2};
With initial conditions: u_0 = 2, and u_1 = 1

is_arithmetic()
Decide whether the sequence is degenerate and an arithmetic sequence.

The sequence is arithmetic if and only if 𝑢1 − 𝑢0 = 𝑢2 − 𝑢1 = 𝑢3 − 𝑢2.

This corresponds to the matrix 𝐹 = [[0, 1], [𝑐, 𝑏]] being nondiagonalizable and 𝛼/𝛽 = 1.

EXAMPLES:

sage: S = BinaryRecurrenceSequence(2,-1)
sage: [S(i) for i in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: S.is_arithmetic()
True

is_degenerate()
Decide whether the binary recurrence sequence is degenerate.

Let𝛼 and 𝛽 denote the roots of the characteristic polynomial 𝑝(𝑥) = 𝑥2−𝑏𝑥−𝑐. Let 𝑎 = 𝑢1−𝑢0𝛽/(𝛽−𝛼)
and 𝑏 = 𝑢1−𝑢0𝛼/(𝛽−𝛼). The sequence is, thus, given by 𝑢𝑛 = 𝑎𝛼𝑛−𝑏𝛽𝑛. Then we say that the sequence
is nondegenerate if and only if 𝑎 * 𝑏 * 𝛼 * 𝛽 ̸= 0 and 𝛼/𝛽 is not a root of unity.

More concretely, there are 4 classes of degeneracy, that can all be formulated in terms of the matrix 𝐹 =
[[0, 1], [𝑐, 𝑏]].

• 𝐹 is singular – this corresponds to c = 0, and thus 𝛼 * 𝛽 = 0. This sequence is geometric after term
u0 and so we call it quasigeometric.

• 𝑣 = [[𝑢0], [𝑢1]] is an eigenvector of 𝐹 – this corresponds to a geometric sequence with 𝑎 * 𝑏 = 0.

• 𝐹 is nondiagonalizable – this corresponds to 𝛼 = 𝛽. This sequence will be the point-wise product of
an arithmetic and geometric sequence.

• 𝐹 𝑘 is scaler, for some 𝑘 > 1 – this corresponds to 𝛼/𝛽 a 𝑘 th root of unity. This sequence is a union
of several geometric sequences, and so we again call it quasigeometric.

EXAMPLES:

sage: S = BinaryRecurrenceSequence(0,1)
sage: S.is_degenerate()
True

(continues on next page)

5.1. Comprehensive Module List 69

Combinatorics, Release 9.7

(continued from previous page)

sage: S.is_geometric()
False
sage: S.is_quasigeometric()
True

sage: R = BinaryRecurrenceSequence(3,-2)
sage: R.is_degenerate()
False

sage: T = BinaryRecurrenceSequence(2,-1)
sage: T.is_degenerate()
True
sage: T.is_arithmetic()
True

is_geometric()
Decide whether the binary recurrence sequence is geometric - ie a geometric sequence.

This is a subcase of a degenerate binary recurrence sequence, for which 𝑎𝑏 = 0, i.e. 𝑢𝑛/𝑢𝑛−1 = 𝑟 for
some value of 𝑟.

See is_degenerate() for a description of degeneracy and definitions of 𝑎 and 𝑏.

EXAMPLES:

sage: S = BinaryRecurrenceSequence(2,0,1,2)
sage: [S(i) for i in range(10)]
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
sage: S.is_geometric()
True

is_quasigeometric()
Decide whether the binary recurrence sequence is degenerate and similar to a geometric sequence, i.e. the
union of multiple geometric sequences, or geometric after term u0.

If 𝛼/𝛽 is a 𝑘 th root of unity, where 𝑘 > 1, then necessarily 𝑘 = 2, 3, 4, 6. Then 𝐹 = [[0, 1], [𝑐, 𝑏] is
diagonalizable, and 𝐹 𝑘 = [[𝛼𝑘, 0], [0, 𝛽𝑘]] is scaler matrix. Thus for all values of 𝑗 mod 𝑘, the 𝑗 mod 𝑘
terms of 𝑢𝑛 form a geometric series.

If 𝛼 or 𝛽 is zero, this implies that 𝑐 = 0. This is the case when 𝐹 is singular. In this case, 𝑢1, 𝑢2, 𝑢3, ... is
geometric.

EXAMPLES:

sage: S = BinaryRecurrenceSequence(0,1)
sage: [S(i) for i in range(10)]
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
sage: S.is_quasigeometric()
True

sage: R = BinaryRecurrenceSequence(3,0)
sage: [R(i) for i in range(10)]
[0, 1, 3, 9, 27, 81, 243, 729, 2187, 6561]
sage: R.is_quasigeometric()
True

70 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

period(m)
Return the period of the binary recurrence sequence modulo an integer m.

If 𝑛1 is congruent to 𝑛2 modulo period(m), then 𝑢𝑛1 is is congruent to 𝑢𝑛2 modulo m.

INPUT:

• m – an integer (modulo which the period of the recurrence relation is calculated).

OUTPUT:

• The integer (the period of the sequence modulo m)

EXAMPLES:

If 𝑝 = ±1 mod 5, then the period of the Fibonacci sequence mod 𝑝 is 𝑝 − 1 (c.f. Lemma 3.3 of
[BMS2006]).

sage: R = BinaryRecurrenceSequence(1,1)
sage: R.period(31)
30

sage: [R(i) % 4 for i in range(12)]
[0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1]
sage: R.period(4)
6

This function works for degenerate sequences as well.

sage: S = BinaryRecurrenceSequence(2,0,1,2)
sage: S.is_degenerate()
True
sage: S.is_geometric()
True
sage: [S(i) % 17 for i in range(16)]
[1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 15, 13, 9]
sage: S.period(17)
8

Note: The answer is cached.

pthpowers(p, Bound)
Find the indices of proveably all pth powers in the recurrence sequence bounded by Bound.

Let 𝑢𝑛 be a binary recurrence sequence. A p th power in 𝑢𝑛 is a solution to 𝑢𝑛 = 𝑦𝑝 for some integer 𝑦.
There are only finitely many p th powers in any recurrence sequence [SS1983].

INPUT:

• p - a rational prime integer (the fixed p in 𝑢𝑛 = 𝑦𝑝)

• Bound - a natural number (the maximum index 𝑛 in 𝑢𝑛 = 𝑦𝑝 that is checked).

OUTPUT:

• A list of the indices of all p th powers less bounded by Bound. If the sequence is degenerate and there
are many p th powers, raises ValueError.

EXAMPLES:

5.1. Comprehensive Module List 71

Combinatorics, Release 9.7

sage: R = BinaryRecurrenceSequence(1,1) #the Fibonacci sequence
sage: R.pthpowers(2, 10**10) # long time (7 seconds) -- in fact these␣
→˓are all squares, c.f. [BMS2006]_
[0, 1, 2, 12]

sage: S = BinaryRecurrenceSequence(8,1) #a Lucas sequence
sage: S.pthpowers(3,10**10) # long time (3 seconds) -- provably finds the␣
→˓indices of all 3rd powers less than 10^10
[0, 1, 2]

sage: Q = BinaryRecurrenceSequence(3,3,2,1)
sage: Q.pthpowers(11,10**10) # long time (7.5 seconds)
[1]

If the sequence is degenerate, and there are no p th powers, returns []. Otherwise, if there are many p th
powers, raises ValueError.

sage: T = BinaryRecurrenceSequence(2,0,1,2)
sage: T.is_degenerate()
True
sage: T.is_geometric()
True
sage: T.pthpowers(7,10**30)
Traceback (most recent call last):
...
ValueError: the degenerate binary recurrence sequence is geometric or␣
→˓quasigeometric and has many pth powers

sage: L = BinaryRecurrenceSequence(4,0,2,2)
sage: [L(i).factor() for i in range(10)]
[2, 2, 2^3, 2^5, 2^7, 2^9, 2^11, 2^13, 2^15, 2^17]
sage: L.is_quasigeometric()
True
sage: L.pthpowers(2,10**30)
[]

Note: This function is primarily optimized in the range where Bound is much larger than p.

5.1.9 Binary Trees

This module deals with binary trees as mathematical (in particular immutable) objects.

Note: If you need the data-structure for example to represent sets or hash tables with AVL trees, you should have a
look at sage.misc.sagex_ds.

AUTHORS:

• Florent Hivert (2010-2011): initial implementation.

• Adrien Boussicault (2015): Hook statistics.

72 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.binary_tree.BinaryTree(parent, children=None, check=True)
Bases: sage.combinat.abstract_tree.AbstractClonableTree, sage.structure.list_clone.
ClonableArray

Binary trees.

Binary trees here mean ordered (a.k.a. plane) finite binary trees, where “ordered” means that the children of each
node are ordered.

Binary trees contain nodes and leaves, where each node has two children while each leaf has no children. The
number of leaves of a binary tree always equals the number of nodes plus 1.

INPUT:

• children – None (default) or a list, tuple or iterable of length 2 of binary trees or convertible objects. This
corresponds to the standard recursive definition of a binary tree as either a leaf or a pair of binary trees. Syn-
tactic sugar allows leaving out all but the outermost calls of the BinaryTree() constructor, so that, e. g.,
BinaryTree([BinaryTree(None),BinaryTree(None)]) can be shortened to BinaryTree([None,
None]). It is also allowed to abbreviate [None, None] by [].

• check – (default: True) whether check for binary should be performed or not.

EXAMPLES:

sage: BinaryTree()
.
sage: BinaryTree(None)
.
sage: BinaryTree([])
[., .]
sage: BinaryTree([None, None])
[., .]
sage: BinaryTree([None, []])
[., [., .]]
sage: BinaryTree([[], None])
[[., .], .]
sage: BinaryTree("[[], .]")
[[., .], .]
sage: BinaryTree([None, BinaryTree([None, None])])
[., [., .]]

sage: BinaryTree([[], None, []])
Traceback (most recent call last):
...
ValueError: this is not a binary tree

as_ordered_tree(with_leaves=True)
Return the same tree seen as an ordered tree. By default, leaves are transformed into actual nodes, but this
can be avoided by setting the optional variable with_leaves to False.

EXAMPLES:

sage: bt = BinaryTree([]); bt
[., .]
sage: bt.as_ordered_tree()
[[], []]
sage: bt.as_ordered_tree(with_leaves = False)
[]

(continues on next page)

5.1. Comprehensive Module List 73

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

(continued from previous page)

sage: bt = bt.canonical_labelling(); bt
1[., .]
sage: bt.as_ordered_tree()
1[None[], None[]]
sage: bt.as_ordered_tree(with_leaves=False)
1[]

canonical_labelling(shift=1)
Return a labelled version of self.

The canonical labelling of a binary tree is a certain labelling of the nodes (not the leaves) of the tree. The
actual canonical labelling is currently unspecified. However, it is guaranteed to have labels in 1...𝑛 where
𝑛 is the number of nodes of the tree. Moreover, two (unlabelled) trees compare as equal if and only if their
canonical labelled trees compare as equal.

EXAMPLES:

sage: BinaryTree().canonical_labelling()
.
sage: BinaryTree([]).canonical_labelling()
1[., .]
sage: BinaryTree([[[], [[], None]], [[], []]]).canonical_labelling()
5[2[1[., .], 4[3[., .], .]], 7[6[., .], 8[., .]]]

canopee()
Return the canopee of self.

The canopee of a non-empty binary tree 𝑇 with 𝑛 internal nodes is the list 𝑙 of 0 and 1 of length 𝑛 − 1
obtained by going along the leaves of 𝑇 from left to right except the two extremal ones, writing 0 if the leaf
is a right leaf and 1 if the leaf is a left leaf.

EXAMPLES:

sage: BinaryTree([]).canopee()
[]
sage: BinaryTree([None, []]).canopee()
[1]
sage: BinaryTree([[], None]).canopee()
[0]
sage: BinaryTree([[], []]).canopee()
[0, 1]
sage: BinaryTree([[[], [[], None]], [[], []]]).canopee()
[0, 1, 0, 0, 1, 0, 1]

The number of pairs (𝑡1, 𝑡2) of binary trees of size 𝑛 such that the canopee of 𝑡1 is the complementary
of the canopee of 𝑡2 is also the number of Baxter permutations (see [DG1994], see also OEIS sequence
A001181). We check this in small cases:

sage: [len([(u,v) for u in BinaryTrees(n) for v in BinaryTrees(n)
....: if [1 - x for x in u.canopee()] == v.canopee()])
....: for n in range(1, 5)]
[1, 2, 6, 22]

Here is a less trivial implementation of this:

74 Chapter 5. Comprehensive Module List

https://oeis.org/A001181
https://oeis.org/A001181

Combinatorics, Release 9.7

sage: from sage.sets.finite_set_map_cy import fibers
sage: def baxter(n):
....: f = fibers(lambda t: tuple(t.canopee()),
....: BinaryTrees(n))
....: return sum(len(f[i])*len(f[tuple(1-x for x in i)])
....: for i in f)
sage: [baxter(n) for n in range(1, 7)]
[1, 2, 6, 22, 92, 422]

check()
Check that self is a binary tree.

EXAMPLES:

sage: BinaryTree([[], []]) # indirect doctest
[[., .], [., .]]
sage: BinaryTree([[], [], []]) # indirect doctest
Traceback (most recent call last):
...
ValueError: this is not a binary tree
sage: BinaryTree([[]]) # indirect doctest
Traceback (most recent call last):
...
ValueError: this is not a binary tree

comb(side='left')
Return the comb of a tree.

There are two combs in a binary tree: a left comb and a right comb.

Consider all the vertices of the leftmost (resp. rightmost) branch of the root. The left (resp. right) comb is
the list of right (resp. left) subtrees of each of these vertices.

INPUT:

• side – (default: ‘left’) set to ‘left’ to obtain a left comb, and to ‘right’ to obtain a right comb.

OUTPUT:

A list of binary trees.

See also:

over_decomposition(), under_decomposition()

EXAMPLES:

sage: BT = BinaryTree('.')
sage: [BT.comb('left'), BT.comb('right')]
[[], []]
sage: BT = BinaryTree('[.,.]')
sage: [BT.comb('left'), BT.comb('right')]
[[], []]
sage: BT = BinaryTree('[[[.,.], .], [.,.]]')
sage: BT.comb('left')
[., .]
sage: BT.comb('right')
[.]

(continues on next page)

5.1. Comprehensive Module List 75

Combinatorics, Release 9.7

(continued from previous page)

sage: BT = BinaryTree('[[[[., [., .]], .], [[., .], [[[., .], [., .]], [., .
→˓]]]], [., [[[., .], [[[., .], [., .]], .]], .]]]')
sage: ascii_art(BT)

________o________
/ \

__o__ o
/ \ \

o __o___ o
/ / \ /

o o _o_ __o__
\ / \ / \
o o o o o

/ \ /
o o o

/ \
o o

sage: BT.comb('left')
[[[., .], [[[., .], [., .]], [., .]]], ., [., .]]
sage: ascii_art(BT.comb('left'))
[__o___ , , o]
[/ \]
[o _o_]
[/ \]
[o o]
[/ \]
[o o]
sage: BT.comb('right')
[., [[., .], [[[., .], [., .]], .]]]
sage: ascii_art(BT.comb('right'))
[, __o__]
[/ \]
[o o]
[/]
[o]
[/ \]
[o o]

dendriform_shuffle(other)
Return the list of terms in the dendriform product.

This is the list of all binary trees that can be obtained by identifying the rightmost path in self and the
leftmost path in other. Every term corresponds to a shuffle of the vertices on the rightmost path in self
and the vertices on the leftmost path in other.

EXAMPLES:

sage: u = BinaryTree()
sage: g = BinaryTree([])
sage: l = BinaryTree([g, u])
sage: r = BinaryTree([u, g])

sage: list(g.dendriform_shuffle(g))
[[[., .], .], [., [., .]]]

(continues on next page)

76 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: list(l.dendriform_shuffle(l))
[[[[[., .], .], .], .], [[[., .], [., .]], .],
[[., .], [[., .], .]]]

sage: list(l.dendriform_shuffle(r))
[[[[., .], .], [., .]], [[., .], [., [., .]]]]

graph(with_leaves=True)
Convert self to a digraph.

By default, this graph contains both nodes and leaves, hence is never empty. To obtain a graph which
contains only the nodes, the with_leaves optional keyword variable has to be set to False.

The resulting digraph is endowed with a combinatorial embedding, in order to be displayed correctly.

INPUT:

• with_leaves – (default: True) a Boolean, determining whether the resulting graph will be formed
from the leaves and the nodes of self (if True), or only from the nodes of self (if False)

EXAMPLES:

sage: t1 = BinaryTree([[], None])
sage: t1.graph()
Digraph on 5 vertices
sage: t1.graph(with_leaves=False)
Digraph on 2 vertices

sage: t1 = BinaryTree([[], [[], None]])
sage: t1.graph()
Digraph on 9 vertices
sage: t1.graph().edges(sort=True)
[(0, 1, None), (0, 4, None), (1, 2, None), (1, 3, None), (4, 5, None), (4, 8,␣
→˓None), (5, 6, None), (5, 7, None)]
sage: t1.graph(with_leaves=False)
Digraph on 4 vertices
sage: t1.graph(with_leaves=False).edges(sort=True)
[(0, 1, None), (0, 2, None), (2, 3, None)]

sage: t1 = BinaryTree()
sage: t1.graph()
Digraph on 1 vertex
sage: t1.graph(with_leaves=False)
Digraph on 0 vertices

sage: BinaryTree([]).graph()
Digraph on 3 vertices
sage: BinaryTree([]).graph(with_leaves=False)
Digraph on 1 vertex

sage: t1 = BinaryTree([[], [[], []]])
sage: t1.graph(with_leaves=False)
Digraph on 5 vertices

(continues on next page)

5.1. Comprehensive Module List 77

Combinatorics, Release 9.7

(continued from previous page)

sage: t1.graph(with_leaves=False).edges(sort=True)
[(0, 1, None), (0, 2, None), (2, 3, None), (2, 4, None)]

hook_number()
Return the number of hooks.

Recalling that a branch is a path from a vertex of the tree to a leaf, the leftmost (resp. rightmost) branch of
a vertex 𝑣 is the branch from 𝑣 made only of left (resp. right) edges.

The hook of a vertex 𝑣 is a set of vertices formed by the union of 𝑣, and the vertices of its leftmost and
rightmost branches.

There is a unique way to partition the set of vertices in hooks. The number of hooks in such a partition is
the hook number of the tree.

We can obtain this partition recursively by extracting the root’s hook and iterating the processus on each
tree of the remaining forest.

EXAMPLES:

sage: BT = BinaryTree('.')
sage: BT.hook_number()
0
sage: BT = BinaryTree('[.,.]')
sage: BT.hook_number()
1
sage: BT = BinaryTree('[[[.,.], .], [.,.]]'); ascii_art(BT)

o
/ \

o o
/

o
sage: BT.hook_number()
1
sage: BT = BinaryTree('[[[[., [., .]], .], [[., .], [[[., .], [., .]], [., .
→˓]]]], [., [[[., .], [[[., .], [., .]], .]], .]]]')
sage: ascii_art(BT)

________o________
/ \

__o__ o
/ \ \

o __o___ o
/ / \ /

o o _o_ __o__
\ / \ / \
o o o o o

/ \ /
o o o

/ \
o o

sage: BT.hook_number()
6

in_order_traversal(node_action=None, leaf_action=None)
Explore the binary tree self using the depth-first infix-order traversal algorithm, executing the

78 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

node_action function whenever traversing a node and executing the leaf_action function whenever
traversing a leaf.

In more detail, what this method does to a tree 𝑇 is the following:

if the root of `T` is a node:
apply in_order_traversal to the left subtree of `T`

(with the same node_action and leaf_action);
apply node_action to the root of `T`;
apply in_order_traversal to the right subtree of `T`

(with the same node_action and leaf_action);
else:

apply leaf_action to the root of `T`.

For example on the following binary tree 𝑇 , where we denote leaves by 𝑎, 𝑏, 𝑐, . . . and nodes by 1, 2, 3, . . .:

| ____3____ |
| / \ |
| 1 __7__ |
| / \ / \ |
| a 2 _5_ 8 |
| / \ / \ / \ |
| b c 4 6 h i |
| / \ / \ |
| d e f g |

this method first applies leaf_action to 𝑎, then applies node_action to 1, then
leaf_action to 𝑏, then node_action to 2, etc., with the vertices being traversed in the order
𝑎, 1, 𝑏, 2, 𝑐, 3, 𝑑, 4, 𝑒, 5, 𝑓, 6, 𝑔, 7, ℎ, 8, 𝑖.

See in_order_traversal_iter() for a version of this algorithm which only iterates through the vertices
rather than applying any function to them.

INPUT:

• node_action – (optional) a function which takes a node in input and does something during the
exploration

• leaf_action – (optional) a function which takes a leaf in input and does something during the ex-
ploration

in_order_traversal_iter()
The depth-first infix-order traversal iterator for the binary tree self.

This method iters each vertex (node and leaf alike) of the given binary tree following the depth-first infix
order traversal algorithm.

The depth-first infix order traversal algorithm iterates through a binary tree as follows:

iterate through the left subtree (by the depth-first infix
order traversal algorithm);

yield the root;
iterate through the right subtree (by the depth-first infix

order traversal algorithm).

For example on the following binary tree 𝑇 , where we denote leaves by 𝑎, 𝑏, 𝑐, . . . and nodes by 1, 2, 3, . . .:

5.1. Comprehensive Module List 79

Combinatorics, Release 9.7

| ____3____ |
| / \ |
| 1 __7__ |
| / \ / \ |
| a 2 _5_ 8 |
| / \ / \ / \ |
| b c 4 6 h i |
| / \ / \ |
| d e f g |

the depth-first infix-order traversal algorithm iterates through the vertices of 𝑇 in the following order:
𝑎, 1, 𝑏, 2, 𝑐, 3, 𝑑, 4, 𝑒, 5, 𝑓, 6, 𝑔, 7, ℎ, 8, 𝑖.

See in_order_traversal() for a version of this algorithm which not only iterates through, but actually
does something at the vertices of tree.

is_complete()
Return True if self is complete, else return False.

In a nutshell, a complete binary tree is a perfect binary tree except possibly in the last level, with all nodes
in the last level “flush to the left”.

In more detail: A complete binary tree (also called binary heap) is a binary tree in which every level, except
possibly the last one (the deepest), is completely filled. At depth 𝑛, all nodes must be as far left as possible.

For example:

| ___o___ |
| / \ |
| __o__ o |
| / \ |
| o o |
| / \ / \ |
| o o o o |

is not complete but the following ones are:

| __o__ _o_ ___o___ |
| / \ / \ / \ |
| o o o o __o__ o |
| / \ / \ / \ / \ / \ |
| o o o o, o o , o o o o |
| / \ / |
| o o o |

EXAMPLES:

sage: def lst(i):
....: return [bt for bt in BinaryTrees(i) if bt.is_complete()]
sage: for i in range(8): ascii_art(lst(i)) # long time
[]
[o]
[o]
[/]
[o]
[o]

(continues on next page)

80 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[/ \]
[o o]
[o]
[/ \]
[o o]
[/]
[o]
[_o_]
[/ \]
[o o]
[/ \]
[o o]
[__o__]
[/ \]
[o o]
[/ \ /]
[o o o]
[__o__]
[/ \]
[o o]
[/ \ / \]
[o o o o]

is_empty()
Return whether self is empty.

The notion of emptiness employed here is the one which defines a binary tree to be empty if its root is a
leaf. There is precisely one empty binary tree.

EXAMPLES:

sage: BinaryTree().is_empty()
True
sage: BinaryTree([]).is_empty()
False
sage: BinaryTree([[], None]).is_empty()
False

is_full()
Return True if self is full, else return False.

A full binary tree is a tree in which every node either has two child nodes or has two child leaves.

This is also known as proper binary tree or 2-tree or strictly binary tree.

For example:

| __o__ |
| / \ |
| o o |
| / \ |
| o o |
| / \ |
| o o |

is not full but the next one is:

5.1. Comprehensive Module List 81

Combinatorics, Release 9.7

| ___o___ |
| / \ |
| __o__ o |
| / \ |
| o o |
| / \ / \ |
| o o o o |

EXAMPLES:

sage: BinaryTree([[[[],None],[None,[]]], []]).is_full()
False
sage: BinaryTree([[[[],[]],[[],[]]], []]).is_full()
True
sage: ascii_art([bt for bt in BinaryTrees(5) if bt.is_full()])
[_o_ , _o_]
[/ \ / \]
[o o o o]
[/ \ / \]
[o o o o]

is_perfect()
Return True if self is perfect, else return False.

A perfect binary tree is a full tree in which all leaves are at the same depth.

For example:

| ___o___ |
| / \ |
| __o__ o |
| / \ |
| o o |
| / \ / \ |
| o o o o |

is not perfect but the next one is:

| __o__ |
| / \ |
| o o |
| / \ / \ |
| o o o o |

EXAMPLES:

sage: def lst(i):
....: return [bt for bt in BinaryTrees(i) if bt.is_perfect()]
sage: for i in range(8): ascii_art(lst(i)) # long time
[]
[o]
[]
[o]
[/ \]

(continues on next page)

82 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[o o]
[]
[]
[]
[__o__]
[/ \]
[o o]
[/ \ / \]
[o o o o]

left_border_symmetry()
Return the tree where a symmetry has been applied recursively on all left borders. If a tree is made of
three trees [𝑇1, 𝑇2, 𝑇3] on its left border, it becomes [𝑇 ′3, 𝑇

′
2, 𝑇

′
1] where same symmetry has been applied to

𝑇1, 𝑇2, 𝑇3.

EXAMPLES:

sage: BinaryTree().left_border_symmetry()
.
sage: BinaryTree([]).left_border_symmetry()
[., .]
sage: BinaryTree([[None,[]],None]).left_border_symmetry()
[[., .], [., .]]
sage: BinaryTree([[None,[None,[]]],None]).left_border_symmetry()
[[., .], [., [., .]]]
sage: bt = BinaryTree([[None,[None,[]]],None]).canonical_labelling()
sage: bt
4[1[., 2[., 3[., .]]], .]
sage: bt.left_border_symmetry()
1[4[., .], 2[., 3[., .]]]

left_children_node_number(direction='left')
Return the number of nodes which are left children in self.

Every node (except the root) is either the left child or the right child of its parent node. The total number
of nodes is 1 plus the number of left-children nodes plus the number of right-children nodes.

INPUT:

• direction – either 'left' (default) or 'right' ; if set to 'right', instead count nodes that are
right children

EXAMPLES:

sage: bt = BinaryTree([[None,[[],[]]],[None,[[],None]]])
sage: ascii_art(bt)
__o__
/ \

o o
\ \
o o
/ \ /

o o o
sage: bt.left_children_node_number('left')
3

(continues on next page)

5.1. Comprehensive Module List 83

Combinatorics, Release 9.7

(continued from previous page)

sage: bt.left_children_node_number('right')
4

sage: all(5 == 1 + bt.left_children_node_number()
....: + bt.left_children_node_number('right')
....: for bt in BinaryTrees(5))
True

left_right_symmetry()
Return the left-right symmetrized tree of self.

EXAMPLES:

sage: BinaryTree().left_right_symmetry()
.
sage: BinaryTree([]).left_right_symmetry()
[., .]
sage: BinaryTree([[],None]).left_right_symmetry()
[., [., .]]
sage: BinaryTree([[None, []],None]).left_right_symmetry()
[., [[., .], .]]

left_rotate()
Return the result of left rotation applied to the binary tree self.

Left rotation on binary trees is defined as follows: Let 𝑇 be a binary tree such that the right child of the root
of 𝑇 is a node. Let 𝐴 be the left child of the root of 𝑇 , and let 𝐵 and 𝐶 be the left and right children of the
right child of the root of 𝑇 . (Keep in mind that nodes of trees are identified with the subtrees consisting of
their descendants.) Then, the left rotation of 𝑇 is the binary tree in which the right child of the root is 𝐶,
whereas the left child of the root is a node whose left and right children are 𝐴 and 𝐵. In pictures:

| * * |
| / \ / \ |
| A * -left-rotate-> * C |
| / \ / \ |
| B C A B |

where asterisks signify a single node each (but 𝐴, 𝐵 and 𝐶 might be empty).

For example,

| _o_ o |
| / \ / |
| o o -left-rotate-> o |
| / / \ |
| o o o |
<BLANKLINE>
| __o__ o |
| / \ / |
| o o -left-rotate-> o |
| / \ / |
| o o o |
| / \ / \ |
| o o o o |

(continues on next page)

84 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

| / \ |
| o o |

Left rotation is the inverse operation to right rotation (right_rotate()).

See also:

right_rotate()

EXAMPLES:

sage: b = BinaryTree([[],[[],None]]); ascii_art([b])
[_o_]
[/ \]
[o o]
[/]
[o]
sage: ascii_art([b.left_rotate()])
[o]
[/]
[o]
[/ \]
[o o]
sage: b.left_rotate().right_rotate() == b
True

make_leaf()
Modify self so that it becomes a leaf (i. e., an empty tree).

Note: self must be in a mutable state.

See also:

make_node

EXAMPLES:

sage: t = BinaryTree([None, None])
sage: t.make_leaf()
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: with t.clone() as t1:
....: t1.make_leaf()
sage: t, t1
([., .], .)

make_node(child_list=[None, None])
Modify self so that it becomes a node with children child_list.

INPUT:

• child_list – a pair of binary trees (or objects convertible to)

5.1. Comprehensive Module List 85

Combinatorics, Release 9.7

Note: self must be in a mutable state.

See also:

make_leaf

EXAMPLES:

sage: t = BinaryTree()
sage: t.make_node([None, None])
Traceback (most recent call last):
...
ValueError: object is immutable; please change a copy instead.
sage: with t.clone() as t1:
....: t1.make_node([None, None])
sage: t, t1
(., [., .])
sage: with t.clone() as t:
....: t.make_node([BinaryTree(), BinaryTree(), BinaryTree([])])
Traceback (most recent call last):
...
ValueError: the list must have length 2
sage: with t1.clone() as t2:
....: t2.make_node([t1, t1])
sage: with t2.clone() as t3:
....: t3.make_node([t1, t2])
sage: t1, t2, t3
([., .], [[., .], [., .]], [[., .], [[., .], [., .]]])

over(bt)
Return self over bt, where “over” is the over (/) operation.

If 𝑇 and 𝑇 ′ are two binary trees, then 𝑇 over 𝑇 ′ (written 𝑇/𝑇 ′) is defined as the tree obtained by grafting
𝑇 ′ on the rightmost leaf of 𝑇 . More precisely, 𝑇/𝑇 ′ is defined by identifying the root of the 𝑇 ′ with the
rightmost leaf of 𝑇 . See section 4.5 of [HNT2005].

If 𝑇 is empty, then 𝑇/𝑇 ′ = 𝑇 ′.

The definition of this “over” operation goes back to Loday-Ronco [LR0102066] (Definition 2.2), but it is
denoted by ∖ and called the “under” operation there. In fact, trees in sage have their root at the top, contrary
to the trees in [LR0102066] which are growing upwards. For this reason, the names of the over and under
operations are swapped, in order to keep a graphical meaning. (Our notation follows that of section 4.5 of
[HNT2005].)

See also:

under()

EXAMPLES:

Showing only the nodes of a binary tree, here is an example for the over operation:

| o __o__ _o_ |
| / \ / / \ = / \ |
| o o o o o o |
| \ / \ |
| o o __o__ |

(continues on next page)

86 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

| / \ |
| o o |
| \ / |
| o o |

A Sage example:

sage: b1 = BinaryTree([[],[[],[]]])
sage: b2 = BinaryTree([[None, []],[]])
sage: ascii_art((b1, b2, b1/b2))
(_o_ , _o_ , _o_)
(/ \ / \ / \)
(o o o o o o_)
(/ \ \ / \)
(o o o o o)
(\)
(_o_)
(/ \)
(o o)
(\)
(o)

over_decomposition()
Return the unique maximal decomposition as an over product.

This means that the tree is cut along all edges of its rightmost path.

Beware that the factors are ordered starting from the root.

See also:

comb(), under_decomposition()

EXAMPLES:

sage: g = BinaryTree([])
sage: r = g.over(g); r
[., [., .]]
sage: l = g.under(g); l
[[., .], .]
sage: r.over_decomposition()
[[., .], [., .]]
sage: l.over_decomposition() == [l]
True

sage: x = g.over(l).over(l).over(g).over(g)
sage: ascii_art(x)
o

o
/ o o

/ o o
o

sage: x.over_decomposition() == [g,l,l,g,g]
True

5.1. Comprehensive Module List 87

Combinatorics, Release 9.7

prune()
Return the binary tree obtained by deleting each leaf of self.

The operation of pruning is the left inverse of attaching as many leaves as possible to each node of a binary
tree. That is to say, for all binary trees bt, we have:

bt == bt.to_full().prune()

However, it is only a right inverse if and only if bt is a full binary tree:

bt == bt.prune().to_full()

OUTPUT:

A binary tree.

See also:

to_full()

EXAMPLES:

sage: bt = BinaryTree([[[None, []], [[], []]], None])
sage: ascii_art(bt)

o
/

__o__
/ \

o o
\ / \
o o o

sage: ascii_art(bt.prune())
o
/

o
/ \

o o

We check the relationship with to_full():

sage: bt = BinaryTree([[[], [[None, []], []]], [[],[]]])
sage: bt == bt.to_full().prune()
True
sage: bt == bt.prune().to_full()
False

sage: bt = BinaryTree([[[], []], [[], [[[], []], []]]])
sage: bt.is_full()
True
sage: bt == bt.prune().to_full()
True

Pruning the empty tree is again the empty tree:

sage: bt = BinaryTree(None)
sage: bt.prune()
.

88 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

q_hook_length_fraction(q=None, q_factor=False)
Compute the q-hook length fraction of the binary tree self, with an additional “q-factor” if desired.

If 𝑇 is a (plane) binary tree and 𝑞 is a polynomial indeterminate over some ring, then the 𝑞-hook length
fraction ℎ𝑞(𝑇) of 𝑇 is defined by

ℎ𝑞(𝑇) =
[|𝑇 |]𝑞!∏︀
𝑡∈𝑇 [|𝑇𝑡|]𝑞

,

where the product ranges over all nodes 𝑡 of 𝑇 , where 𝑇𝑡 denotes the subtree of 𝑇 consisting of 𝑡 and
its all descendants, and where for every tree 𝑆, we denote by |𝑆| the number of nodes of 𝑆. While this
definition only shows that ℎ𝑞(𝑇) is a rational function in 𝑇 , it is in fact easy to show that ℎ𝑞(𝑇) is actually
a polynomial in 𝑇 , and thus makes sense when any element of a commutative ring is substituted for 𝑞. This
can also be explicitly seen from the following recursive formula for ℎ𝑞(𝑇):

ℎ𝑞(𝑇) =

(︂
|𝑇 | − 1

|𝑇1|

)︂
𝑞

ℎ𝑞(𝑇1)ℎ𝑞(𝑇2),

where 𝑇 is any nonempty binary tree, and 𝑇1 and 𝑇2 are the two child trees of the root of 𝑇 , and where(︀
𝑎
𝑏

)︀
𝑞

denotes a 𝑞-binomial coefficient.

A variation of the 𝑞-hook length fraction is the following “𝑞-hook length fraction with 𝑞-factor”:

𝑓𝑞(𝑇) = ℎ𝑞(𝑇) ·
∏︁
𝑡∈𝑇

𝑞|𝑇right(𝑡)|,

where for every node 𝑡, we denote by right(𝑡) the right child of 𝑡. This 𝑓𝑞(𝑇) differs from ℎ𝑞(𝑇) only in a
multiplicative factor, which is a power of 𝑞.

When 𝑞 = 1, both 𝑓𝑞(𝑇) and ℎ𝑞(𝑇) equal the number of permutations whose binary search tree (see
[HNT2005] for the definition) is 𝑇 (after dropping the labels). For example, there are 20 permutations
which give a binary tree of the following shape:

| __o__ |
| / \ |
| o o |
| / \ / |
| o o o |

by the binary search insertion algorithm, in accordance with the fact that this tree satisfies 𝑓1(𝑇) = 20.

When 𝑞 is considered as a polynomial indeterminate, 𝑓𝑞(𝑇) is the generating function for all permutations
whose binary search tree is 𝑇 (after dropping the labels) with respect to the number of inversions (i. e., the
Coxeter length) of the permutations.

Objects similar to ℎ𝑞(𝑇) also make sense for general ordered forests (rather than just binary trees), see e.
g. [BW1988], Theorem 9.1.

INPUT:

• q – a ring element which is to be substituted as 𝑞 into the 𝑞-hook length fraction (by default, this is set
to be the indeterminate 𝑞 in the polynomial ring Z[𝑞])

• q_factor – a Boolean (default: False) which determines whether to compute ℎ𝑞(𝑇) or to compute
𝑓𝑞(𝑇) (namely, ℎ𝑞(𝑇) is obtained when q_factor == False, and 𝑓𝑞(𝑇) is obtained when q_factor
== True)

EXAMPLES:

Let us start with a simple example. Actually, let us start with the easiest possible example – the binary tree
with only one vertex (which is a leaf):

5.1. Comprehensive Module List 89

Combinatorics, Release 9.7

sage: b = BinaryTree()
sage: b.q_hook_length_fraction()
1
sage: b.q_hook_length_fraction(q_factor=True)
1

Nothing different for a tree with one node and two leaves:

sage: b = BinaryTree([]); b
[., .]
sage: b.q_hook_length_fraction()
1
sage: b.q_hook_length_fraction(q_factor=True)
1

Let us get to a more interesting tree:

sage: b = BinaryTree([[[],[]],[[],None]]); b
[[[., .], [., .]], [[., .], .]]
sage: b.q_hook_length_fraction()(q=1)
20
sage: b.q_hook_length_fraction()
q^7 + 2*q^6 + 3*q^5 + 4*q^4 + 4*q^3 + 3*q^2 + 2*q + 1
sage: b.q_hook_length_fraction(q_factor=True)
q^10 + 2*q^9 + 3*q^8 + 4*q^7 + 4*q^6 + 3*q^5 + 2*q^4 + q^3
sage: b.q_hook_length_fraction(q=2)
465
sage: b.q_hook_length_fraction(q=2, q_factor=True)
3720
sage: q = PolynomialRing(ZZ, 'q').gen()
sage: b.q_hook_length_fraction(q=q**2)
q^14 + 2*q^12 + 3*q^10 + 4*q^8 + 4*q^6 + 3*q^4 + 2*q^2 + 1

Let us check the fact that 𝑓𝑞(𝑇) is the generating function for all permutations whose binary search tree is
𝑇 (after dropping the labels) with respect to the number of inversions of the permutations:

sage: def q_hook_length_fraction_2(T):
....: P = PolynomialRing(ZZ, 'q')
....: q = P.gen()
....: res = P.zero()
....: for w in T.sylvester_class():
....: res += q ** Permutation(w).length()
....: return res
sage: def test_genfun(i):
....: return all(q_hook_length_fraction_2(T)
....: == T.q_hook_length_fraction(q_factor=True)
....: for T in BinaryTrees(i))
sage: test_genfun(4)
True

right_rotate()
Return the result of right rotation applied to the binary tree self.

Right rotation on binary trees is defined as follows: Let 𝑇 be a binary tree such that the left child of the root
of 𝑇 is a node. Let 𝐶 be the right child of the root of 𝑇 , and let 𝐴 and 𝐵 be the left and right children of

90 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

the left child of the root of 𝑇 . (Keep in mind that nodes of trees are identified with the subtrees consisting
of their descendants.) Then, the right rotation of 𝑇 is the binary tree in which the left child of the root is
𝐴, whereas the right child of the root is a node whose left and right children are 𝐵 and 𝐶. In pictures:

| * * |
| / \ / \ |
| * C -right-rotate-> A * |
| / \ / \ |
| A B B C |

where asterisks signify a single node each (but 𝐴, 𝐵 and 𝐶 might be empty).

For example,

| o _o_ |
| / / \ |
| o -right-rotate-> o o |
| / \ / |
| o o o |
<BLANKLINE>
| __o__ _o__ |
| / \ / \ |
| o o -right-rotate-> o _o_ |
| / \ / / \ |
| o o o o o |
| / \ \ |
| o o o |

Right rotation is the inverse operation to left rotation (left_rotate()).

The right rotation operation introduced here is the one defined in Definition 2.1 of [CP2012].

See also:

left_rotate()

EXAMPLES:

sage: b = BinaryTree([[[],[]], None]); ascii_art([b])
[o]
[/]
[o]
[/ \]
[o o]
sage: ascii_art([b.right_rotate()])
[_o_]
[/ \]
[o o]
[/]
[o]
sage: b = BinaryTree([[[[],None],[None,[]]], []]); ascii_art([b])
[__o__]
[/ \]
[o o]
[/ \]
[o o]

(continues on next page)

5.1. Comprehensive Module List 91

Combinatorics, Release 9.7

(continued from previous page)

[/ \]
[o o]
sage: ascii_art([b.right_rotate()])
[_o__]
[/ \]
[o _o_]
[/ / \]
[o o o]
[\]
[o]

show(with_leaves=False)
Show the binary tree show, with or without leaves depending on the Boolean keyword variable
with_leaves.

Warning: For a labelled binary tree, the labels shown in the picture are not (in general) the ones given
by the labelling!

Use _latex_(), view, _ascii_art_() or pretty_print for more faithful representations of the
data of the tree.

single_edge_cut_shapes()
Return the list of possible single-edge cut shapes for the binary tree.

This is used in sage.combinat.interval_posets.TamariIntervalPoset.is_new().

OUTPUT:

a list of triples (𝑚, 𝑖, 𝑛) of integers

This is a list running over all inner edges (i.e., edges joining two non-leaf vertices) of the binary tree. The
removal of each inner edge defines two binary trees (connected components), the root-tree and the sub-tree.
Thus, to every inner edge, we can assign three positive integers: 𝑚 is the node number of the root-tree 𝑅,
and 𝑛 is the node number of the sub-tree 𝑆. The integer 𝑖 is the index of the leaf of 𝑅 on which 𝑆 is
grafted to obtain the original tree. The leaves of 𝑅 are numbered starting from 1 (from left to right), hence
1 ≤ 𝑖 ≤ 𝑚+ 1.

In fact, each of 𝑚 and 𝑛 determines the other, as the total node number of 𝑅 and 𝑆 is the node number of
self.

EXAMPLES:

sage: BT = BinaryTrees(3)
sage: [t.single_edge_cut_shapes() for t in BT]
[[(2, 3, 1), (1, 2, 2)],
[(2, 2, 1), (1, 2, 2)],
[(2, 1, 1), (2, 3, 1)],
[(2, 2, 1), (1, 1, 2)],
[(2, 1, 1), (1, 1, 2)]]

sage: BT = BinaryTrees(2)
sage: [t.single_edge_cut_shapes() for t in BT]
[[(1, 2, 1)], [(1, 1, 1)]]

(continues on next page)

92 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: BT = BinaryTrees(1)
sage: [t.single_edge_cut_shapes() for t in BT]
[[]]

sylvester_class(left_to_right=False)
Iterate over the sylvester class corresponding to the binary tree self.

The sylvester class of a tree 𝑇 is the set of permutations 𝜎 whose right-to-left binary search tree (a notion
defined in [HNT2005], Definition 7) is 𝑇 after forgetting the labels. This is an equivalence class of the
sylvester congruence (the congruence on words which holds two words 𝑢𝑎𝑐𝑣𝑏𝑤 and 𝑢𝑐𝑎𝑣𝑏𝑤 congruent
whenever 𝑎, 𝑏, 𝑐 are letters satisfying 𝑎 ≤ 𝑏 < 𝑐, and extends by transitivity) on the symmetric group.

For example the following tree’s sylvester class consists of the permutations (1, 3, 2) and (3, 1, 2):

[o]
[/ \]
[o o]

(only the nodes are drawn here).

The right-to-left binary search tree of a word is constructed by an RSK-like insertion algorithm which
proceeds as follows: Start with an empty labelled binary tree, and read the word from right to left. Each
time a letter is read from the word, insert this letter in the existing tree using binary search tree insertion
(binary_search_insert()). This is what the binary_search_tree() method computes if it is given
the keyword left_to_right=False.

Here are two more descriptions of the sylvester class of a binary search tree:

• The sylvester class of a binary search tree 𝑇 is the set of all linear extensions of the poset corresponding
to 𝑇 (that is, of the poset whose Hasse diagram is 𝑇 , with the root on top), provided that the nodes of
𝑇 are labelled with 1, 2, . . . , 𝑛 in a binary-search-tree way (i.e., every left descendant of a node has a
label smaller than that of the node, and every right descendant of a node has a label higher than that
of the node).

• The sylvester class of a binary search tree 𝑇 (with vertex labels 1, 2, . . . , 𝑛) is the interval [𝑢, 𝑣] in
the right permutohedron order (permutohedron_lequal()), where 𝑢 is the 312-avoiding permu-
tation corresponding to 𝑇 (to_312_avoiding_permutation()), and where 𝑣 is the 132-avoiding
permutation corresponding to 𝑇 (to_132_avoiding_permutation()).

If the optional keyword variable left_to_right is set to True, then the left sylvester class of self is
returned instead. This is the set of permutations 𝜎 whose left-to-right binary search tree (that is, the result
of the binary_search_tree() with left_to_right set to True) is self. It is an equivalence class of
the left sylvester congruence.

Warning: This method yields the elements of the sylvester class as raw lists, not as permutations!

EXAMPLES:

Verifying the claim that the right-to-left binary search trees of the permutations in the sylvester class of a
tree 𝑡 all equal 𝑡:

sage: def test_bst_of_sc(n, left_to_right):
....: for t in BinaryTrees(n):
....: for p in t.sylvester_class(left_to_right=left_to_right):
....: p_per = Permutation(p)

(continues on next page)

5.1. Comprehensive Module List 93

Combinatorics, Release 9.7

(continued from previous page)

....: tree = p_per.binary_search_tree(left_to_right=left_to_right)

....: if not BinaryTree(tree) == t:

....: return False

....: return True
sage: test_bst_of_sc(4, False)
True
sage: test_bst_of_sc(5, False) # long time
True

The same with the left-to-right version of binary search:

sage: test_bst_of_sc(4, True)
True
sage: test_bst_of_sc(5, True) # long time
True

Checking that the sylvester class is the set of linear extensions of the poset of the tree:

sage: all(sorted(t.canonical_labelling().sylvester_class())
....: == sorted(list(v) for v in t.canonical_labelling().to_poset().linear_
→˓extensions())
....: for t in BinaryTrees(4))
True

tamari_greater()
The list of all trees greater or equal to self in the Tamari order.

This is the order filter of the Tamari order generated by self.

See tamari_lequal() for the definition of the Tamari poset.

See also:

tamari_smaller()

EXAMPLES:

For example, the tree:

| __o__ |
| / \ |
| o o |
| / \ / |
| o o o |

has these trees greater or equal to it:

|o , o , o , o , o , o ,|
| \ \ \ \ \ \ |
| o o o o _o_ __o__ |
| \ \ \ \ / \ / \ |
| o o o _o_ o o o o |
| \ \ / \ / \ \ \ \ / |
| o o o o o o o o o o |
| \ \ \ / |
| o o o o |

(continues on next page)

94 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

| \ / |
| o o |
<BLANKLINE>
| o , o , _o_ , _o__ , __o__ , ___o___ ,|
| / \ / \ / \ / \ / \ / \ |
| o o o o o o o _o_ o o o o |
| \ \ / \ / \ \ \ \ / |
| o o o o o o o o o o |
| \ \ \ / \ \ |
| o o o o o o |
| \ / |
| o o |
<BLANKLINE>
| _o_ , __o__ |
| / \ / \ |
| o o o o|
| / \ \ / \ / |
| o o o o o o |

tamari_interval(other)
Return the Tamari interval between self and other as a TamariIntervalPoset.

A “Tamari interval” is an interval in the Tamari poset. See tamari_lequal() for the definition of the
Tamari poset.

INPUT:

• other – a binary tree greater or equal to self in the Tamari order

EXAMPLES:

sage: bt = BinaryTree([[None, [[], None]], None])
sage: ip = bt.tamari_interval(BinaryTree([None, [[None, []], None]])); ip
The Tamari interval of size 4 induced by relations [(2, 4), (3, 4), (3, 1), (2,␣
→˓1)]
sage: ip.lower_binary_tree()
[[., [[., .], .]], .]
sage: ip.upper_binary_tree()
[., [[., [., .]], .]]
sage: ip.interval_cardinality()
4
sage: ip.number_of_tamari_inversions()
2
sage: list(ip.binary_trees())
[[., [[., [., .]], .]],
[[., [., [., .]]], .],
[., [[[., .], .], .]],
[[., [[., .], .]], .]]
sage: bt.tamari_interval(BinaryTree([[None,[]],[]]))
Traceback (most recent call last):
...
ValueError: the two binary trees are not comparable on the Tamari lattice

tamari_join(other)
Return the join of the binary trees self and other (of equal size) in the 𝑛-th Tamari poset (where 𝑛 is the

5.1. Comprehensive Module List 95

Combinatorics, Release 9.7

size of these trees).

The 𝑛-th Tamari poset (defined in tamari_lequal()) is known to be a lattice, and the map from the 𝑛-th
symmetric group 𝑆𝑛 to the 𝑛-th Tamari poset defined by sending every permutation 𝑝 ∈ 𝑆𝑛 to the binary
search tree of 𝑝 (more precisely, to p.binary_search_tree_shape()) is a lattice homomorphism. (See
Theorem 6.2 in [Rea2004].)

See also:

tamari_lequal(), tamari_meet().

AUTHORS:

Viviane Pons and Darij Grinberg, 18 June 2014; Frédéric Chapoton, 9 January 2018.

EXAMPLES:

sage: a = BinaryTree([None, [None, []]])
sage: b = BinaryTree([None, [[], None]])
sage: c = BinaryTree([[None, []], None])
sage: d = BinaryTree([[[], None], None])
sage: e = BinaryTree([[], []])
sage: a.tamari_join(c) == a
True
sage: b.tamari_join(c) == b
True
sage: c.tamari_join(e) == a
True
sage: d.tamari_join(e) == e
True
sage: e.tamari_join(b) == a
True
sage: e.tamari_join(a) == a
True

sage: b1 = BinaryTree([None, [[[], None], None]])
sage: b2 = BinaryTree([[[], None], []])
sage: b1.tamari_join(b2)
[., [[., .], [., .]]]
sage: b3 = BinaryTree([[], [[], None]])
sage: b1.tamari_join(b3)
[., [., [[., .], .]]]
sage: b2.tamari_join(b3)
[[., .], [., [., .]]]

The universal property of the meet operation is satisfied:

sage: def test_uni_join(p, q):
....: j = p.tamari_join(q)
....: if not p.tamari_lequal(j):
....: return False
....: if not q.tamari_lequal(j):
....: return False
....: for r in p.tamari_greater():
....: if q.tamari_lequal(r) and not j.tamari_lequal(r):
....: return False

(continues on next page)

96 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: return True
sage: all(test_uni_join(p, q) for p in BinaryTrees(3) for q in BinaryTrees(3))
True
sage: p = BinaryTrees(6).random_element(); q = BinaryTrees(6).random_element();␣
→˓test_uni_join(p, q)
True

Border cases:

sage: b = BinaryTree(None)
sage: b.tamari_join(b)
.
sage: b = BinaryTree([])
sage: b.tamari_join(b)
[., .]

tamari_lequal(t2)
Return True if self is less or equal to another binary tree t2 (of the same size as self) in the Tamari
order.

The Tamari order on binary trees of size 𝑛 is the partial order on the set of all binary trees of size 𝑛 generated
by the following requirement: If a binary tree 𝑇 ′ is obtained by right rotation (see right_rotate()) from
a binary tree 𝑇 , then 𝑇 < 𝑇 ′. This not only is a well-defined partial order, but actually is a lattice structure
on the set of binary trees of size 𝑛, and is a quotient of the weak order on the 𝑛-th symmetric group (also
known as the right permutohedron order, see permutohedron_lequal()). See [CP2012]. The set of
binary trees of size 𝑛 equipped with the Tamari order is called the 𝑛-th Tamari poset.

The Tamari order can equivalently be defined as follows:

If 𝑇 and 𝑆 are two binary trees of size 𝑛, then the following four statements are equivalent:

• We have 𝑇 ≤ 𝑆 in the Tamari order.

• There exist elements 𝑡 and 𝑠 of the Sylvester classes (sylvester_class()) of 𝑇 and 𝑆, respectively,
such that 𝑡 ≤ 𝑠 in the weak order on the symmetric group.

• The 132-avoiding permutation corresponding to 𝑇 (see to_132_avoiding_permutation()) is≤ to
the 132-avoiding permutation corresponding to 𝑆 in the weak order on the symmetric group.

• The 312-avoiding permutation corresponding to 𝑇 (see to_312_avoiding_permutation()) is≤ to
the 312-avoiding permutation corresponding to 𝑆 in the weak order on the symmetric group.

See also:

tamari_smaller(), tamari_greater(), tamari_pred(), tamari_succ(), tamari_interval()

EXAMPLES:

This tree:

| o |
| / \ |
| o o |
| / |
| o |
| / \ |
| o o |

is Tamari-≤ to the following tree:

5.1. Comprehensive Module List 97

Combinatorics, Release 9.7

| _o_ |
| / \ |
| o o |
| / \ \ |
| o o o |

Checking this:

sage: b = BinaryTree([[[[], []], None], []])
sage: c = BinaryTree([[[],[]],[None,[]]])
sage: b.tamari_lequal(c)
True

tamari_meet(other, side='right')
Return the meet of the binary trees self and other (of equal size) in the 𝑛-th Tamari poset (where 𝑛 is
the size of these trees).

The 𝑛-th Tamari poset (defined in tamari_lequal()) is known to be a lattice, and the map from the 𝑛-th
symmetric group 𝑆𝑛 to the 𝑛-th Tamari poset defined by sending every permutation 𝑝 ∈ 𝑆𝑛 to the binary
search tree of 𝑝 (more precisely, to p.binary_search_tree_shape()) is a lattice homomorphism. (See
Theorem 6.2 in [Rea2004].)

See also:

tamari_lequal(), tamari_join().

AUTHORS:

Viviane Pons and Darij Grinberg, 18 June 2014.

EXAMPLES:

sage: a = BinaryTree([None, [None, []]])
sage: b = BinaryTree([None, [[], None]])
sage: c = BinaryTree([[None, []], None])
sage: d = BinaryTree([[[], None], None])
sage: e = BinaryTree([[], []])
sage: a.tamari_meet(c) == c
True
sage: b.tamari_meet(c) == c
True
sage: c.tamari_meet(e) == d
True
sage: d.tamari_meet(e) == d
True
sage: e.tamari_meet(b) == d
True
sage: e.tamari_meet(a) == e
True

sage: b1 = BinaryTree([None, [[[], None], None]])
sage: b2 = BinaryTree([[[], None], []])
sage: b1.tamari_meet(b2)
[[[[., .], .], .], .]
sage: b3 = BinaryTree([[], [[], None]])
sage: b1.tamari_meet(b3)

(continues on next page)

98 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[[[., .], .], .], .]
sage: b2.tamari_meet(b3)
[[[[., .], .], .], .]

The universal property of the meet operation is satisfied:

sage: def test_uni_meet(p, q):
....: m = p.tamari_meet(q)
....: if not m.tamari_lequal(p):
....: return False
....: if not m.tamari_lequal(q):
....: return False
....: for r in p.tamari_smaller():
....: if r.tamari_lequal(q) and not r.tamari_lequal(m):
....: return False
....: return True
sage: all(test_uni_meet(p, q) for p in BinaryTrees(3) for q in BinaryTrees(3))
True
sage: p = BinaryTrees(6).random_element(); q = BinaryTrees(6).random_element();␣
→˓test_uni_meet(p, q)
True

Border cases:

sage: b = BinaryTree(None)
sage: b.tamari_meet(b)
.
sage: b = BinaryTree([])
sage: b.tamari_meet(b)
[., .]

tamari_pred()
Compute the list of predecessors of self in the Tamari poset.

This list is computed by performing all left rotates possible on its nodes.

See tamari_lequal() for the definition of the Tamari poset.

EXAMPLES:

For this tree:

| __o__ |
| / \ |
| o o |
| / \ / |
| o o o |

the list is:

| o , _o_ |
| / / \ |
| _o_ o o |
| / \ / / |
| o o o o |

(continues on next page)

5.1. Comprehensive Module List 99

Combinatorics, Release 9.7

(continued from previous page)

| / \ / |
| o o o |

tamari_smaller()
The list of all trees smaller or equal to self in the Tamari order.

This is the order ideal of the Tamari order generated by self.

See tamari_lequal() for the definition of the Tamari poset.

See also:

tamari_greater()

EXAMPLES:

The tree:

| __o__ |
| / \ |
| o o |
| / \ / |
| o o o |

has these trees smaller or equal to it:

| __o__ , _o_ , o , o, o, o |
| / \ / \ / / / / |
| o o o o _o_ o o o |
| / \ / / / / \ / \ / / |
|o o o o o o o o o o o |
| / / \ / / / |
| o o o o o o |
| / / \ / |
| o o o o |
| / |
| o |

tamari_sorting_tuple(reverse=False)
Return the Tamari sorting tuple of self and the size of self.

This is a pair (𝑤, 𝑛), where 𝑛 is the number of nodes of self, and 𝑤 is an 𝑛-tuple whose 𝑖-th entry is the
number of all nodes among the descendants of the right child of the 𝑖-th node of self. Here, the nodes of
self are numbered from left to right.

INPUT:

• reverse – boolean (default False) if True, return instead the result for the left-right symmetric of
the binary tree

OUTPUT:

a pair (𝑤, 𝑛), where 𝑤 is a tuple of integers, and 𝑛 the size

Two binary trees of the same size are comparable in the Tamari order if and only if the associated tu-
ples 𝑤 are componentwise comparable. (This is essentially the Theorem in [HT1972].) This is used in
tamari_lequal().

EXAMPLES:

100 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: [t.tamari_sorting_tuple() for t in BinaryTrees(3)]
[((2, 1, 0), 3),
((2, 0, 0), 3),
((0, 1, 0), 3),
((1, 0, 0), 3),
((0, 0, 0), 3)]

sage: t = BinaryTrees(10).random_element()
sage: u = t.left_right_symmetry()
sage: t.tamari_sorting_tuple(True) == u.tamari_sorting_tuple()
True

REFERENCES:

• [HT1972]

tamari_succ()
Compute the list of successors of self in the Tamari poset.

This is the list of all trees obtained by a right rotate of one of its nodes.

See tamari_lequal() for the definition of the Tamari poset.

EXAMPLES:

The list of successors of:

| __o__ |
| / \ |
| o o |
| / \ / |
| o o o |

is:

| _o__ , ___o___ , _o_ |
| / \ / \ / \ |
| o _o_ o o o o |
| / \ \ / / \ \ |
| o o o o o o o |
| / \ |
| o o |

to_132_avoiding_permutation()
Return a 132-avoiding permutation corresponding to the binary tree.

The linear extensions of a binary tree form an interval of the weak order called the sylvester class of the
tree. This permutation is the maximal element of this sylvester class.

EXAMPLES:

sage: bt = BinaryTree([[],[]])
sage: bt.to_132_avoiding_permutation()
[3, 1, 2]
sage: bt = BinaryTree([[[], [[], None]], [[], []]])
sage: bt.to_132_avoiding_permutation()
[8, 6, 7, 3, 4, 1, 2, 5]

5.1. Comprehensive Module List 101

Combinatorics, Release 9.7

to_312_avoiding_permutation()
Return a 312-avoiding permutation corresponding to the binary tree.

The linear extensions of a binary tree form an interval of the weak order called the sylvester class of the
tree. This permutation is the minimal element of this sylvester class.

EXAMPLES:

sage: bt = BinaryTree([[],[]])
sage: bt.to_312_avoiding_permutation()
[1, 3, 2]
sage: bt = BinaryTree([[[], [[], None]], [[], []]])
sage: bt.to_312_avoiding_permutation()
[1, 3, 4, 2, 6, 8, 7, 5]

to_dyck_word(usemap='1L0R')
Return the Dyck word associated with self using the given map.

INPUT:

• usemap – a string, either 1L0R, 1R0L, L1R0, R1L0

The bijection is defined recursively as follows:

• a leaf is associated to the empty Dyck Word

• a tree with children 𝑙, 𝑟 is associated with the Dyck word described by usemap where 𝐿 and 𝑅 are
respectively the Dyck words associated with the trees 𝑙 and 𝑟.

EXAMPLES:

sage: BinaryTree().to_dyck_word()
[]
sage: BinaryTree([]).to_dyck_word()
[1, 0]
sage: BinaryTree([[[], [[], None]], [[], []]]).to_dyck_word()
[1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0]
sage: BinaryTree([[None,[]],None]).to_dyck_word()
[1, 1, 0, 1, 0, 0]
sage: BinaryTree([[None,[]],None]).to_dyck_word("1R0L")
[1, 0, 1, 1, 0, 0]
sage: BinaryTree([[None,[]],None]).to_dyck_word("L1R0")
[1, 1, 0, 0, 1, 0]
sage: BinaryTree([[None,[]],None]).to_dyck_word("R1L0")
[1, 1, 0, 1, 0, 0]
sage: BinaryTree([[None,[]],None]).to_dyck_word("R10L")
Traceback (most recent call last):
...
ValueError: R10L is not a correct map

to_dyck_word_tamari()
Return the Dyck word associated with self in consistency with the Tamari order on Dyck words and binary
trees.

The bijection is defined recursively as follows:

• a leaf is associated with an empty Dyck word;

• a tree with children 𝑙, 𝑟 is associated with the Dyck word 𝑇 (𝑙)1𝑇 (𝑟)0.

102 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: BinaryTree().to_dyck_word_tamari()
[]
sage: BinaryTree([]).to_dyck_word_tamari()
[1, 0]
sage: BinaryTree([[None,[]],None]).to_dyck_word_tamari()
[1, 1, 0, 0, 1, 0]
sage: BinaryTree([[[], [[], None]], [[], []]]).to_dyck_word_tamari()
[1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0]

to_full()
Return the full binary tree constructed from self.

Let 𝑇 be a binary tree with 𝑛 nodes. We construct a full binary tree 𝐹 from 𝑇 by attaching a leaf to each
node of 𝑇 which does not have 2 children. The resulting tree will have 2𝑛+ 1 nodes.

OUTPUT:

A full binary tree. See is_full() for the definition of full.

See also:

prune()

EXAMPLES:

sage: bt = BinaryTree([[None,[]],None])
sage: bt.to_full().is_full()
True
sage: ascii_art(bt)
o
/

o
\
o

sage: ascii_art(bt.to_full())
__o___
/ \

o o
/ \

o o
/ \
o o

sage: bt = BinaryTree([[],[]])
sage: ascii_art(bt)
o
/ \

o o
sage: ascii_art(bt.to_full())

__o__
/ \

o o
/ \ / \

o o o o

(continues on next page)

5.1. Comprehensive Module List 103

Combinatorics, Release 9.7

(continued from previous page)

sage: BinaryTree(None).to_full()
[., .]

to_ordered_tree_left_branch()
Return an ordered tree of size 𝑛+ 1 by the following recursive rule:

• if 𝑥 is the left child of 𝑦, 𝑥 becomes the left brother of 𝑦

• if 𝑥 is the right child of 𝑦, 𝑥 becomes the last child of 𝑦

EXAMPLES:

sage: bt = BinaryTree([[],[]])
sage: bt.to_ordered_tree_left_branch()
[[], [[]]]
sage: bt = BinaryTree([[[], [[], None]], [[], []]])
sage: bt.to_ordered_tree_left_branch()
[[], [[], []], [[], [[]]]]

to_ordered_tree_right_branch()
Return an ordered tree of size 𝑛+ 1 by the following recursive rule:

• if 𝑥 is the right child of 𝑦, 𝑥 becomes the right brother of 𝑦

• if 𝑥 is the left child of 𝑦, 𝑥 becomes the first child of 𝑦

EXAMPLES:

sage: bt = BinaryTree([[],[]])
sage: bt.to_ordered_tree_right_branch()
[[[]], []]
sage: bt = BinaryTree([[[], [[], None]], [[], []]])
sage: bt.to_ordered_tree_right_branch()
[[[[]], [[]]], [[]], []]

to_poset(with_leaves=False, root_to_leaf=False)
Return the poset obtained by interpreting the tree as a Hasse diagram.

The default orientation is from leaves to root but you can pass root_to_leaf=True to obtain the inverse
orientation.

Leaves are ignored by default, but one can set with_leaves to True to obtain the poset of the complete
tree.

INPUT:

• with_leaves – (default: False) a Boolean, determining whether the resulting poset will be formed
from the leaves and the nodes of self (if True), or only from the nodes of self (if False)

• root_to_leaf – (default: False) a Boolean, determining whether the poset orientation should be
from root to leaves (if True) or from leaves to root (if False).

EXAMPLES:

sage: bt = BinaryTree([])
sage: bt.to_poset()
Finite poset containing 1 elements
sage: bt.to_poset(with_leaves=True)

(continues on next page)

104 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Finite poset containing 3 elements
sage: P1 = bt.to_poset(with_leaves=True)
sage: len(P1.maximal_elements())
1
sage: len(P1.minimal_elements())
2
sage: bt = BinaryTree([])
sage: P2 = bt.to_poset(with_leaves=True,root_to_leaf=True)
sage: len(P2.maximal_elements())
2
sage: len(P2.minimal_elements())
1

If the tree is labelled, we use its labelling to label the poset. Otherwise, we use the poset canonical labelling:

sage: bt = BinaryTree([[],[None,[]]]).canonical_labelling()
sage: bt
2[1[., .], 3[., 4[., .]]]
sage: bt.to_poset().cover_relations()
[[4, 3], [3, 2], [1, 2]]

Let us check that the empty binary tree is correctly handled:

sage: bt = BinaryTree()
sage: bt.to_poset()
Finite poset containing 0 elements
sage: bt.to_poset(with_leaves=True)
Finite poset containing 1 elements

to_tilting()
Transform a binary tree into a tilting object.

Let 𝑡 be a binary tree with 𝑛 nodes. There exists a unique depiction of 𝑡 (above the diagonal) such that all
leaves are regularly distributed on the diagonal line from (0, 0) to (𝑛, 𝑛) and all edges are either horizontal
or vertical. This method provides the coordinates of this depiction, with the root as the top-left vertex.

OUTPUT:

a list of pairs of integers.

Every vertex of the binary tree is mapped to a pair of integers. The conventions are the following. The root
has coordinates (0, 𝑛) where 𝑛 is the node number. If a vertex is the left (right) son of another vertex, they
share the first (second) coordinate.

EXAMPLES:

sage: t = BinaryTrees(1)[0]
sage: t.to_tilting()
[(0, 1)]

sage: for t in BinaryTrees(2):
....: print(t.to_tilting())
[(1, 2), (0, 2)]
[(0, 1), (0, 2)]

(continues on next page)

5.1. Comprehensive Module List 105

Combinatorics, Release 9.7

(continued from previous page)

sage: from sage.combinat.abstract_tree import from_hexacode
sage: t = from_hexacode('2020222002000', BinaryTrees())
sage: print(t.to_tilting())
[(0, 1), (2, 3), (4, 5), (6, 7), (4, 7), (8, 9), (10, 11),
(8, 11), (4, 11), (12, 13), (4, 13), (2, 13), (0, 13)]

sage: t2 = DyckWord([1,1,1,1,0,1,1,0,0,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0,0]).to_
→˓binary_tree()
sage: len(t2.to_tilting()) == t2.node_number()
True

to_undirected_graph(with_leaves=False)
Return the undirected graph obtained from the tree nodes and edges.

Leaves are ignored by default, but one can set with_leaves to True to obtain the graph of the complete
tree.

INPUT:

• with_leaves – (default: False) a Boolean, determining whether the resulting graph will be formed
from the leaves and the nodes of self (if True), or only from the nodes of self (if False)

EXAMPLES:

sage: bt = BinaryTree([])
sage: bt.to_undirected_graph()
Graph on 1 vertex
sage: bt.to_undirected_graph(with_leaves=True)
Graph on 3 vertices

sage: bt = BinaryTree()
sage: bt.to_undirected_graph()
Graph on 0 vertices
sage: bt.to_undirected_graph(with_leaves=True)
Graph on 1 vertex

If the tree is labelled, we use its labelling to label the graph. Otherwise, we use the graph canonical labelling
which means that two different trees can have the same graph.

EXAMPLES:

sage: bt = BinaryTree([[],[None,[]]])
sage: bt.canonical_labelling().to_undirected_graph() == bt.to_undirected_graph()
False
sage: BinaryTree([[],[]]).to_undirected_graph() == BinaryTree([[[],None],None]).
→˓to_undirected_graph()
True

twisting_number()
Return a pair (number of maximal left branches, number of maximal right branches).

Recalling that a branch of a vertex 𝑣 is a path from a vertex of the tree to a leaf, a left (resp. right) branch
is a branch made only of left (resp. right) edges. The length of a branch is the number of edges composing
it. A left (resp. right) branch is maximal if it is not included in a strictly longer left (resp. right) branch.

OUTPUT:

106 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

A list of two integers

EXAMPLES:

sage: BT = BinaryTree('.')
sage: BT.twisting_number()
[0, 0]
sage: BT = BinaryTree('[.,.]')
sage: BT.twisting_number()
[0, 0]
sage: BT = BinaryTree('[[[.,.], .], [.,.]]'); ascii_art(BT)

o
/ \

o o
/

o
sage: BT.twisting_number()
[1, 1]
sage: BT = BinaryTree('[[[[., [., .]], .], [[., .], [[[., .], [., .]], [., .
→˓]]]], [., [[[., .], [[[., .], [., .]], .]], .]]]')
sage: ascii_art(BT)

________o________
/ \

__o__ o
/ \ \

o __o___ o
/ / \ /

o o _o_ __o__
\ / \ / \
o o o o o

/ \ /
o o o

/ \
o o

sage: BT.twisting_number()
[5, 6]
sage: BT = BinaryTree('[.,[[[.,.],.],.]]'); ascii_art(BT)
o
\
o
/

o
/
o
sage: BT.twisting_number()
[1, 1]

under(bt)
Return self under bt, where “under” is the under (∖) operation.

If 𝑇 and 𝑇 ′ are two binary trees, then 𝑇 under 𝑇 ′ (written 𝑇∖𝑇 ′) is defined as the tree obtained by grafting
𝑇 on the leftmost leaf of 𝑇 ′. More precisely, 𝑇∖𝑇 ′ is defined by identifying the root of 𝑇 with the leftmost
leaf of 𝑇 ′.

If 𝑇 ′ is empty, then 𝑇∖𝑇 ′ = 𝑇 .

5.1. Comprehensive Module List 107

Combinatorics, Release 9.7

The definition of this “under” operation goes back to Loday-Ronco [LR0102066] (Definition 2.2), but it is
denoted by / and called the “over” operation there. In fact, trees in sage have their root at the top, contrary
to the trees in [LR0102066] which are growing upwards. For this reason, the names of the over and under
operations are swapped, in order to keep a graphical meaning. (Our notation follows that of section 4.5 of
[HNT2005].)

See also:

over()

EXAMPLES:

Showing only the nodes of a binary tree, here is an example for the under operation:

sage: b1 = BinaryTree([[],[]])
sage: b2 = BinaryTree([None,[]])
sage: ascii_art((b1, b2, b1 \ b2))
(o , o , _o_)
(/ \ \ / \)
(o o o o o)
(/ \)
(o o)

under_decomposition()
Return the unique maximal decomposition as an under product.

This means that the tree is cut along all edges of its leftmost path.

Beware that the factors are ordered starting from the root.

See also:

comb(), over_decomposition()

EXAMPLES:

sage: g = BinaryTree([])
sage: r = g.over(g); r
[., [., .]]
sage: l = g.under(g); l
[[., .], .]
sage: l.under_decomposition()
[[., .], [., .]]
sage: r.under_decomposition() == [r]
True

sage: x = r.under(g).under(r).under(g)
sage: ascii_art(x)

o
/
o
/ \

o o
/

o
\
o

(continues on next page)

108 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: x.under_decomposition() == [g,r,g,r]
True

class sage.combinat.binary_tree.BinaryTrees
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Factory for binary trees.

A binary tree is a tree with at most 2 children. The binary trees considered here are also ordered (a.k.a. planar),
that is to say, their children are ordered.

A full binary tree is a binary tree with no nodes with 1 child.

INPUT:

• size – (optional) an integer

• full – (optional) a boolean

OUTPUT:

The set of all (full if full=True) binary trees (of the given size if specified).

See also:

BinaryTree, BinaryTree.is_full()

EXAMPLES:

sage: BinaryTrees()
Binary trees

sage: BinaryTrees(2)
Binary trees of size 2

sage: BinaryTrees(full=True)
Full binary trees

sage: BinaryTrees(3, full=True)
Full binary trees of size 3

sage: BinaryTrees(4, full=True)
Traceback (most recent call last):
...
ValueError: n must be 0 or odd

Note: This is a factory class whose constructor returns instances of subclasses.

Note: The fact that BinaryTrees is a class instead of a simple callable is an implementation detail. It could be
changed in the future and one should not rely on it.

leaf()
Return a leaf tree with self as parent.

EXAMPLES:

5.1. Comprehensive Module List 109

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: BinaryTrees().leaf()
.

class sage.combinat.binary_tree.BinaryTrees_all
Bases: sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets, sage.
combinat.binary_tree.BinaryTrees

Element
alias of BinaryTree

labelled_trees()
Return the set of labelled trees associated to self.

EXAMPLES:

sage: BinaryTrees().labelled_trees()
Labelled binary trees

unlabelled_trees()
Return the set of unlabelled trees associated to self.

EXAMPLES:

sage: BinaryTrees().unlabelled_trees()
Binary trees

class sage.combinat.binary_tree.BinaryTrees_size(size)
Bases: sage.combinat.binary_tree.BinaryTrees

The enumerated sets of binary trees of given size.

cardinality()
The cardinality of self

This is a Catalan number.

random_element()
Return a random BinaryTree with uniform probability.

This method generates a random DyckWord and then uses a bijection between Dyck words and binary trees.

EXAMPLES:

sage: BinaryTrees(5).random_element() # random
[., [., [., [., [., .]]]]]
sage: BinaryTrees(0).random_element()
.
sage: BinaryTrees(1).random_element()
[., .]

class sage.combinat.binary_tree.FullBinaryTrees_all
Bases: sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets, sage.
combinat.binary_tree.BinaryTrees

All full binary trees.

class sage.combinat.binary_tree.FullBinaryTrees_size(size)
Bases: sage.combinat.binary_tree.BinaryTrees

Full binary trees of a fixed size (number of nodes).

110 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

cardinality()
The cardinality of self

This is a Catalan number.

random_element()
Return a random FullBinaryTree with uniform probability.

This method generates a random DyckWord of size (𝑠 − 1)/2, where 𝑠 is the size of self, which uses a
bijection between Dyck words and binary trees to get a binary tree, and convert it to a full binary tree.

EXAMPLES:

sage: BinaryTrees(5, full=True).random_element() # random
[[], [[], []]]
sage: BinaryTrees(0, full=True).random_element()
.
sage: BinaryTrees(1, full=True).random_element()
[., .]

class sage.combinat.binary_tree.LabelledBinaryTree(parent, children, label=None, check=True)
Bases: sage.combinat.abstract_tree.AbstractLabelledClonableTree, sage.combinat.
binary_tree.BinaryTree

Labelled binary trees.

A labelled binary tree is a binary tree (see BinaryTree for the meaning of this) with a label assigned to each
node. The labels need not be integers, nor are they required to be distinct. None can be used as a label.

Warning: While it is possible to assign values to leaves (not just nodes) using this class, these labels are
disregarded by various methods such as labels(), map_labels(), and (ironically) leaf_labels().

INPUT:

• children – None (default) or a list, tuple or iterable of length 2 of labelled binary trees or convertible
objects. This corresponds to the standard recursive definition of a labelled binary tree as being either a leaf,
or a pair of:

– a pair of labelled binary trees,

– and a label.

(The label is specified in the keyword variable label; see below.)

Syntactic sugar allows leaving out all but the outermost calls of the LabelledBinaryTree()
constructor, so that, e. g., LabelledBinaryTree([LabelledBinaryTree(None),
LabelledBinaryTree(None)]) can be shortened to LabelledBinaryTree([None,None]). However,
using this shorthand, it is impossible to label any vertex of the tree other than the root (because there is no
way to pass a label variable without calling LabelledBinaryTree explicitly).

It is also allowed to abbreviate [None, None] by [] if one does not want to label the leaves (which one
should not do anyway!).

• label – (default: None) the label to be put on the root of this tree.

• check – (default: True) whether checks should be performed or not.

5.1. Comprehensive Module List 111

Combinatorics, Release 9.7

Todo: It is currently not possible to use LabelledBinaryTree() as a shorthand for
LabelledBinaryTree(None) (in analogy to similar syntax in the BinaryTree class).

EXAMPLES:

sage: LabelledBinaryTree(None)
.
sage: LabelledBinaryTree(None, label="ae") # not well supported
'ae'
sage: LabelledBinaryTree([])
None[., .]
sage: LabelledBinaryTree([], label=3) # not well supported
3[., .]
sage: LabelledBinaryTree([None, None])
None[., .]
sage: LabelledBinaryTree([None, None], label=5)
5[., .]
sage: LabelledBinaryTree([None, []])
None[., None[., .]]
sage: LabelledBinaryTree([None, []], label=4)
4[., None[., .]]
sage: LabelledBinaryTree([[], None])
None[None[., .], .]
sage: LabelledBinaryTree("[[], .]", label=False)
False[None[., .], .]
sage: LabelledBinaryTree([None, LabelledBinaryTree([None, None], label=4)], label=3)
3[., 4[., .]]
sage: LabelledBinaryTree([None, BinaryTree([None, None])], label=3)
3[., None[., .]]

sage: LabelledBinaryTree([[], None, []])
Traceback (most recent call last):
...
ValueError: this is not a binary tree

sage: LBT = LabelledBinaryTree
sage: t1 = LBT([[LBT([], label=2), None], None], label=4); t1
4[None[2[., .], .], .]

binary_search_insert(letter)
Return the result of inserting a letter letter into the right strict binary search tree self.

INPUT:

• letter – any object comparable with the labels of self

OUTPUT:

The right strict binary search tree self with letter inserted into it according to the binary search insertion
algorithm.

Note: self is supposed to be a binary search tree. This is not being checked!

A right strict binary search tree is defined to be a labelled binary tree such that for each node 𝑛 with label

112 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

𝑥, every descendant of the left child of 𝑛 has a label ≤ 𝑥, and every descendant of the right child of 𝑛 has
a label > 𝑥. (Here, only nodes count as descendants, and every node counts as its own descendant too.)
Leaves are assumed to have no labels.

Given a right strict binary search tree 𝑡 and a letter 𝑖, the result of inserting 𝑖 into 𝑡 (denoted 𝐼𝑛𝑠(𝑖, 𝑡) in the
following) is defined recursively as follows:

• If 𝑡 is empty, then 𝐼𝑛𝑠(𝑖, 𝑡) is the tree with one node only, and this node is labelled with 𝑖.

• Otherwise, let 𝑗 be the label of the root of 𝑡. If 𝑖 > 𝑗, then 𝐼𝑛𝑠(𝑖, 𝑡) is obtained by replacing the right
child of 𝑡 by 𝐼𝑛𝑠(𝑖, 𝑟) in 𝑡, where 𝑟 denotes the right child of 𝑡. If 𝑖 ≤ 𝑗, then 𝐼𝑛𝑠(𝑖, 𝑡) is obtained by
replacing the left child of 𝑡 by 𝐼𝑛𝑠(𝑖, 𝑙) in 𝑡, where 𝑙 denotes the left child of 𝑡.

See, for example, [HNT2005] for properties of this algorithm.

Warning: If 𝑡 is nonempty, then inserting 𝑖 into 𝑡 does not change the root label of 𝑡. Hence, as opposed
to algorithms like Robinson-Schensted-Knuth, binary search tree insertion involves no bumping.

EXAMPLES:

The example from Fig. 2 of [HNT2005]:

sage: LBT = LabelledBinaryTree
sage: x = LBT(None)
sage: x
.
sage: x = x.binary_search_insert("b"); x
b[., .]
sage: x = x.binary_search_insert("d"); x
b[., d[., .]]
sage: x = x.binary_search_insert("e"); x
b[., d[., e[., .]]]
sage: x = x.binary_search_insert("a"); x
b[a[., .], d[., e[., .]]]
sage: x = x.binary_search_insert("b"); x
b[a[., b[., .]], d[., e[., .]]]
sage: x = x.binary_search_insert("d"); x
b[a[., b[., .]], d[d[., .], e[., .]]]
sage: x = x.binary_search_insert("a"); x
b[a[a[., .], b[., .]], d[d[., .], e[., .]]]
sage: x = x.binary_search_insert("c"); x
b[a[a[., .], b[., .]], d[d[c[., .], .], e[., .]]]

Other examples:

sage: LBT = LabelledBinaryTree
sage: LBT(None).binary_search_insert(3)
3[., .]
sage: LBT([], label = 1).binary_search_insert(3)
1[., 3[., .]]
sage: LBT([], label = 3).binary_search_insert(1)
3[1[., .], .]
sage: res = LBT(None)
sage: for i in [3,1,5,2,4,6]:
....: res = res.binary_search_insert(i)

(continues on next page)

5.1. Comprehensive Module List 113

Combinatorics, Release 9.7

(continued from previous page)

sage: res
3[1[., 2[., .]], 5[4[., .], 6[., .]]]

heap_insert(l)
Return the result of inserting a letter l into the binary heap (tree) self.

A binary heap is a labelled complete binary tree such that for each node, the label at the node is greater or
equal to the label of each of its child nodes. (More precisely, this is called a max-heap.)

For example:

| _7_ |
| / \ |
| 5 6 |
| / \ |
| 3 4 |

is a binary heap.

See Wikipedia article Binary_heap#Insert for a description of how to insert a letter into a binary heap. The
result is another binary heap.

INPUT:

• letter – any object comparable with the labels of self

Note: self is assumed to be a binary heap (tree). No check is performed.

left_rotate()
Return the result of left rotation applied to the labelled binary tree self.

Left rotation on labelled binary trees is defined as follows: Let 𝑇 be a labelled binary tree such that the
right child of the root of 𝑇 is a node. Let𝐴 be the left child of the root of 𝑇 , and let𝐵 and 𝐶 be the left and
right children of the right child of the root of 𝑇 . (Keep in mind that nodes of trees are identified with the
subtrees consisting of their descendants.) Furthermore, let 𝑥 be the label at the root of 𝑇 , and 𝑦 be the label
at the right child of the root of 𝑇 . Then, the left rotation of 𝑇 is the labelled binary tree in which the root
is labelled 𝑦, the right child of the root is 𝐶, whereas the left child of the root is a node labelled 𝑥 whose
left and right children are 𝐴 and 𝐵. In pictures:

| y x |
| / \ / \ |
| x C <-left-rotate- A y |
| / \ / \ |
| A B B C |

Left rotation is the inverse operation to right rotation (right_rotate()).

right_rotate()
Return the result of right rotation applied to the labelled binary tree self.

Right rotation on labelled binary trees is defined as follows: Let 𝑇 be a labelled binary tree such that the
left child of the root of 𝑇 is a node. Let 𝐶 be the right child of the root of 𝑇 , and let 𝐴 and 𝐵 be the left
and right children of the left child of the root of 𝑇 . (Keep in mind that nodes of trees are identified with the
subtrees consisting of their descendants.) Furthermore, let 𝑦 be the label at the root of 𝑇 , and 𝑥 be the label
at the left child of the root of 𝑇 . Then, the right rotation of 𝑇 is the labelled binary tree in which the root

114 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Binary_heap#Insert

Combinatorics, Release 9.7

is labelled 𝑥, the left child of the root is 𝐴, whereas the right child of the root is a node labelled 𝑦 whose
left and right children are 𝐵 and 𝐶. In pictures:

| y x |
| / \ / \ |
| x C -right-rotate-> A y |
| / \ / \ |
| A B B C |

Right rotation is the inverse operation to left rotation (left_rotate()).

semistandard_insert(letter)
Return the result of inserting a letter letter into the semistandard tree self using the bumping algorithm.

INPUT:

• letter – any object comparable with the labels of self

OUTPUT:

The semistandard tree self with letter inserted into it according to the bumping algorithm.

Note: self is supposed to be a semistandard tree. This is not being checked!

A semistandard tree is defined to be a labelled binary tree such that for each node 𝑛 with label 𝑥, every
descendant of the left child of 𝑛 has a label > 𝑥, and every descendant of the right child of 𝑛 has a label
≥ 𝑥. (Here, only nodes count as descendants, and every node counts as its own descendant too.) Leaves
are assumed to have no labels.

Given a semistandard tree 𝑡 and a letter 𝑖, the result of inserting 𝑖 into 𝑡 (denoted 𝐼𝑛𝑠(𝑖, 𝑡) in the following)
is defined recursively as follows:

• If 𝑡 is empty, then 𝐼𝑛𝑠(𝑖, 𝑡) is the tree with one node only, and this node is labelled with 𝑖.

• Otherwise, let 𝑗 be the label of the root of 𝑡. If 𝑖 ≥ 𝑗, then 𝐼𝑛𝑠(𝑖, 𝑡) is obtained by replacing the right
child of 𝑡 by 𝐼𝑛𝑠(𝑖, 𝑟) in 𝑡, where 𝑟 denotes the right child of 𝑡. If 𝑖 < 𝑗, then 𝐼𝑛𝑠(𝑖, 𝑡) is obtained
by replacing the label at the root of 𝑡 by 𝑖, and replacing the left child of 𝑡 by 𝐼𝑛𝑠(𝑗, 𝑙) in 𝑡, where 𝑙
denotes the left child of 𝑡.

This algorithm is similar to the Robinson-Schensted-Knuth insertion algorithm for semistandard Young
tableaux.

AUTHORS:

• Darij Grinberg (10 Nov 2013).

EXAMPLES:

sage: LBT = LabelledBinaryTree
sage: x = LBT(None)
sage: x
.
sage: x = x.semistandard_insert("b"); x
b[., .]
sage: x = x.semistandard_insert("d"); x
b[., d[., .]]
sage: x = x.semistandard_insert("e"); x
b[., d[., e[., .]]]

(continues on next page)

5.1. Comprehensive Module List 115

Combinatorics, Release 9.7

(continued from previous page)

sage: x = x.semistandard_insert("a"); x
a[b[., .], d[., e[., .]]]
sage: x = x.semistandard_insert("b"); x
a[b[., .], b[d[., .], e[., .]]]
sage: x = x.semistandard_insert("d"); x
a[b[., .], b[d[., .], d[e[., .], .]]]
sage: x = x.semistandard_insert("a"); x
a[b[., .], a[b[d[., .], .], d[e[., .], .]]]
sage: x = x.semistandard_insert("c"); x
a[b[., .], a[b[d[., .], .], c[d[e[., .], .], .]]]

Other examples:

sage: LBT = LabelledBinaryTree
sage: LBT(None).semistandard_insert(3)
3[., .]
sage: LBT([], label = 1).semistandard_insert(3)
1[., 3[., .]]
sage: LBT([], label = 3).semistandard_insert(1)
1[3[., .], .]
sage: res = LBT(None)
sage: for i in [3,1,5,2,4,6]:
....: res = res.semistandard_insert(i)
sage: res
1[3[., .], 2[5[., .], 4[., 6[., .]]]]

class sage.combinat.binary_tree.LabelledBinaryTrees(category=None)
Bases: sage.combinat.ordered_tree.LabelledOrderedTrees

This is a parent stub to serve as a factory class for trees with various labels constraints.

Element
alias of LabelledBinaryTree

labelled_trees()
Return the set of labelled trees associated to self.

EXAMPLES:

sage: LabelledBinaryTrees().labelled_trees()
Labelled binary trees

unlabelled_trees()
Return the set of unlabelled trees associated to self.

EXAMPLES:

sage: LabelledBinaryTrees().unlabelled_trees()
Binary trees

This is used to compute the shape:

sage: t = LabelledBinaryTrees().an_element().shape(); t
[[[., .], [., .]], [[., .], [., .]]]
sage: t.parent()
Binary trees

116 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.binary_tree.binary_search_tree_shape(w, left_to_right=True)
Direct computation of the binary search tree shape of a list of integers.

INPUT:

• w – a list of integers

• left_to_right – boolean (default True)

OUTPUT: a non labelled binary tree

This is used under the same name as a method for permutations.

EXAMPLES:

sage: from sage.combinat.binary_tree import binary_search_tree_shape
sage: binary_search_tree_shape([1,4,3,2])
[., [[[., .], .], .]]
sage: binary_search_tree_shape([5,1,3,2])
[[., [[., .], .]], .]

By passing the option left_to_right=False one can have the insertion going from right to left:

sage: binary_search_tree_shape([1,6,4,2], False)
[[., .], [., [., .]]]

sage.combinat.binary_tree.from_tamari_sorting_tuple(key)
Return a binary tree from its Tamari-sorting tuple.

See tamari_sorting_tuple()

INPUT:

• key – a tuple of integers

EXAMPLES:

sage: from sage.combinat.binary_tree import from_tamari_sorting_tuple
sage: t = BinaryTrees(60).random_element()
sage: from_tamari_sorting_tuple(t.tamari_sorting_tuple()[0]) == t
True

5.1.10 Blob Algebras

AUTHORS:

• Travis Scrimshaw (2020-05-16): Initial version

class sage.combinat.blob_algebra.BlobAlgebra(k, q1, q2, q3, base_ring, prefix)
Bases: sage.combinat.free_module.CombinatorialFreeModule

The blob algebra.

The blob algebra (also known as the Temperley-Lieb algebra of type 𝐵 in [ILZ2018], but is a quotient of the
Temperley-Lieb algebra of type 𝐵 defined in [Graham1985]) is a diagram-type algebra introduced in [MS1994]
whose basis consists of Temperley-Lieb diagrams, noncrossing perfect matchings, that may contain blobs
on strands that can be deformed so that the blob touches the left side (which we can think of as a frozen pole).

The form we give here has 3 parameters, the natural one from the Temperley-Lieb algebra, one for the
idempotent relation, and one for a loop with a blob.

5.1. Comprehensive Module List 117

Combinatorics, Release 9.7

INPUT:

• k – the order

• q1 – the loop parameter

• q2 – the idempotent parameter

• q3 – the blob loop parameter

EXAMPLES:

sage: R.<q,r,s> = ZZ[]
sage: B4 = algebras.Blob(4, q, r, s)
sage: B = sorted(B4.basis())
sage: B[14]
B({{-4, -3}}, {{-2, -1}, {1, 2}, {3, 4}})
sage: B[40]
B({{3, 4}}, {{-4, -3}, {-2, -1}, {1, 2}})
sage: B[14] * B[40]
q*r*s*B({}, {{-4, -3}, {-2, -1}, {1, 2}, {3, 4}})

REFERENCES:

• [MS1994]

• [ILZ2018]

one_basis()
Return the index of the basis element 1.

EXAMPLES:

sage: R.<q,r,s> = ZZ[]
sage: B4 = algebras.Blob(4, q, r, s)
sage: B4.one_basis()
({}, {{-4, 4}, {-3, 3}, {-2, 2}, {-1, 1}})

order()
Return the order of self.

The order of a partition algebra is defined as half of the number of nodes in the diagrams.

EXAMPLES:

sage: R.<q,r,s> = ZZ[]
sage: B4 = algebras.Blob(4, q, r, s)
sage: B4.order()
4

product_on_basis(top, bot)
Return the product of the basis elements indexed by top and bot.

EXAMPLES:

sage: R.<q,r,s> = ZZ[]
sage: B4 = algebras.Blob(4, q, r, s)
sage: B = B4.basis()
sage: BD = sorted(B.keys())
sage: BD[14]

(continues on next page)

118 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

({{-4, -3}}, {{-2, -1}, {1, 2}, {3, 4}})
sage: BD[40]
({{3, 4}}, {{-4, -3}, {-2, -1}, {1, 2}})
sage: B4.product_on_basis(BD[14], BD[40])
q*r*s*B({}, {{-4, -3}, {-2, -1}, {1, 2}, {3, 4}})
sage: all(len((x*y).support()) == 1 for x in B for y in B)
True

class sage.combinat.blob_algebra.BlobDiagram(parent, marked, unmarked)
Bases: sage.structure.element.Element

A blob diagram.

A blob diagram consists of a perfect matching of the set {1, . . . , 𝑛} ⊔ {−1, . . . ,−𝑛} such that the result is a
noncrossing matching (a Temperley-Lieb diagram), divided into two sets of pairs: one for the pairs with
blobs and one for those without. The blobed pairs must either be either the leftmost propagating strand or to the
left of it and not nested.

temperley_lieb_diagram()
Return the Temperley-Lieb diagram corresponding to self.

EXAMPLES:

sage: from sage.combinat.blob_algebra import BlobDiagrams
sage: BD4 = BlobDiagrams(4)
sage: B = BD4([[1,-3]], [[2,-4], [3,4], [-1,-2]])
sage: B.temperley_lieb_diagram()
{{-4, 2}, {-3, 1}, {-2, -1}, {3, 4}}

class sage.combinat.blob_algebra.BlobDiagrams(n)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

The set of all blob diagrams.

Element
alias of BlobDiagram

base_set()
Return the base set of self.

EXAMPLES:

sage: from sage.combinat.blob_algebra import BlobDiagrams
sage: BD4 = BlobDiagrams(4)
sage: sorted(BD4.base_set())
[-4, -3, -2, -1, 1, 2, 3, 4]

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: from sage.combinat.blob_algebra import BlobDiagrams
sage: BD4 = BlobDiagrams(4)
sage: BD4.cardinality()
70

5.1. Comprehensive Module List 119

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

order()
Return the order of self.

EXAMPLES:

sage: from sage.combinat.blob_algebra import BlobDiagrams
sage: BD4 = BlobDiagrams(4)
sage: BD4.order()
4

5.1.11 Cartesian Products

class sage.combinat.cartesian_product.CartesianProduct_iters(*iters)
Bases: sage.sets.set_from_iterator.EnumeratedSetFromIterator

Cartesian product of finite sets.

This class will soon be deprecated (see trac ticket #18411 and trac ticket #19195). One should instead use the
functorial construction cartesian_product. The main differences in behavior are:

• construction: CartesianProduct takes as many argument as there are factors whereas
cartesian_product takes a single list (or iterable) of factors;

• representation of elements: elements are represented by plain Python list for CartesianProduct versus
a custom element class for cartesian_product;

• membership testing: because of the above, plain Python lists are not considered as elements of a
cartesian_product.

All of these is illustrated in the examples below.

EXAMPLES:

sage: F1 = ['a', 'b']
sage: F2 = [1, 2, 3, 4]
sage: F3 = Permutations(3)
sage: from sage.combinat.cartesian_product import CartesianProduct_iters
sage: C = CartesianProduct_iters(F1, F2, F3)
sage: c = cartesian_product([F1, F2, F3])

sage: type(C.an_element())
<class 'list'>
sage: type(c.an_element())
<class 'sage.sets.cartesian_product.CartesianProduct_with_category.element_class'>

sage: l = ['a', 1, Permutation([3,2,1])]
sage: l in C
True
sage: l in c
False
sage: elt = c(l)
sage: elt
('a', 1, [3, 2, 1])
sage: elt in c
True

(continues on next page)

120 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/set_from_iterator.html#sage.sets.set_from_iterator.EnumeratedSetFromIterator
https://trac.sagemath.org/18411
https://trac.sagemath.org/19195
../../../../../../html/en/reference/categories/sage/categories/cartesian_product.html#sage.categories.cartesian_product.CartesianProductFunctor

Combinatorics, Release 9.7

(continued from previous page)

sage: elt.parent() is c
True

cardinality()
Returns the number of elements in the Cartesian product of everything in *iters.

EXAMPLES:

sage: from sage.combinat.cartesian_product import CartesianProduct_iters
sage: CartesianProduct_iters(range(2), range(3)).cardinality()
6
sage: CartesianProduct_iters(range(2), range(3)).cardinality()
6
sage: CartesianProduct_iters(range(2), range(3), range(4)).cardinality()
24

This works correctly for infinite objects:

sage: CartesianProduct_iters(ZZ, QQ).cardinality()
+Infinity
sage: CartesianProduct_iters(ZZ, []).cardinality()
0

is_finite()
The Cartesian product is finite if all of its inputs are finite, or if any input is empty.

EXAMPLES:

sage: from sage.combinat.cartesian_product import CartesianProduct_iters
sage: CartesianProduct_iters(ZZ, []).is_finite()
True
sage: CartesianProduct_iters(4,4).is_finite()
Traceback (most recent call last):
...
ValueError: Unable to determine whether this product is finite

list()
Returns

EXAMPLES:

sage: from sage.combinat.cartesian_product import CartesianProduct_iters
sage: CartesianProduct_iters(range(3), range(3)).list()
[[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]]
sage: CartesianProduct_iters('dog', 'cat').list()
[['d', 'c'],
['d', 'a'],
['d', 't'],
['o', 'c'],
['o', 'a'],
['o', 't'],
['g', 'c'],
['g', 'a'],
['g', 't']]

5.1. Comprehensive Module List 121

Combinatorics, Release 9.7

random_element()
Return a random element from the Cartesian product of *iters.

EXAMPLES:

sage: from sage.combinat.cartesian_product import CartesianProduct_iters
sage: c = CartesianProduct_iters('dog', 'cat').random_element()
sage: c in CartesianProduct_iters('dog', 'cat')
True

unrank(x)
For finite Cartesian products, we can reduce unrank to the constituent iterators.

EXAMPLES:

sage: from sage.combinat.cartesian_product import CartesianProduct_iters
sage: C = CartesianProduct_iters(range(1000), range(1000), range(1000))
sage: C[238792368]
[238, 792, 368]

Check for trac ticket #15919:

sage: FF = IntegerModRing(29)
sage: C = CartesianProduct_iters(FF, FF, FF)
sage: C.unrank(0)
[0, 0, 0]

5.1.12 Enumerated sets of partitions, tableaux, . . .

Partitions

• Integer partitions

• Skew Partitions

• Partition tuples

• Super Partitions

• TableauTuples

• Skew Tableaux

• Ribbons

• Ribbon Tableaux

• Strong and weak tableaux

• Shifted primed tableaux

• Residue sequences of tableaux

122 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/15919

Combinatorics, Release 9.7

RSK

• Robinson-Schensted-Knuth correspondence

• Growth diagrams and dual graded graphs

5.1.13 Combinatorial Hopf algebras

• Symmetric Functions

• Non-commutative symmetric functions and quasi-symmetric functions

• Symmetric functions in non-commuting variables

• Schubert Polynomials

• Poirier-Reutenauer Hopf algebra of standard tableaux

• Free Quasi-symmetric functions

• Grossman-Larson Hopf Algebras

• Word Quasi-symmetric functions

5.1.14 Poirier-Reutenauer Hopf algebra of standard tableaux

AUTHORS:

• Franco Saliola (2012): initial implementation

• Travis Scrimshaw (2018-04-11): added missing doctests and reorganization

class sage.combinat.chas.fsym.FSymBases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of graded bases of 𝐹𝑆𝑦𝑚 and 𝐹𝑆𝑦𝑚* indexed by standard tableaux.

class ElementMethods
Bases: object

duality_pairing(other)
Compute the pairing between self and an element other of the dual.

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: G = FSym.G()
sage: F = G.dual_basis()
sage: elt = G[[1,3],[2]] - 3*G[[1,2],[3]]
sage: elt.duality_pairing(F[[1,3],[2]])
1
sage: elt.duality_pairing(F[[1,2],[3]])
-3
sage: elt.duality_pairing(F[[1,2]])
0

class ParentMethods
Bases: object

5.1. Comprehensive Module List 123

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

basis(degree=None)
The basis elements (optionally: of the specified degree).

OUTPUT: Family

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: TG = FSym.G()
sage: TG.basis()
Lazy family (Term map from Standard tableaux to Hopf algebra of standard␣
→˓tableaux
over the Rational Field in the Fundamental basis(i))_{i in Standard␣
→˓tableaux}
sage: TG.basis().keys()
Standard tableaux
sage: TG.basis(degree=3).keys()
Standard tableaux of size 3
sage: TG.basis(degree=3).list()
[G[123], G[13|2], G[12|3], G[1|2|3]]

degree_on_basis(t)
Return the degree of a standard tableau in the algebra of free symmetric functions.

This is the size of the tableau t.

EXAMPLES:

sage: G = algebras.FSym(QQ).G()
sage: t = StandardTableau([[1,3],[2]])
sage: G.degree_on_basis(t)
3
sage: u = StandardTableau([[1,3,4,5],[2]])
sage: G.degree_on_basis(u)
5

duality_pairing(x, y)
The canonical pairing between 𝐹𝑆𝑦𝑚 and 𝐹𝑆𝑦𝑚*.

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: G = FSym.G()
sage: F = G.dual_basis()
sage: t1 = StandardTableau([[1,3,5],[2,4]])
sage: t2 = StandardTableau([[1,3],[2,5],[4]])
sage: G.duality_pairing(G[t1], F[t2])
0
sage: G.duality_pairing(G[t1], F[t1])
1
sage: G.duality_pairing(G[t2], F[t2])
1
sage: F.duality_pairing(F[t2], G[t2])
1

sage: z = G[[1,3,5],[2,4]]
(continues on next page)

124 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: all(F.duality_pairing(F[p1] * F[p2], z) == c
....: for ((p1, p2), c) in z.coproduct())
True

duality_pairing_matrix(basis, degree)
The matrix of scalar products between elements of 𝐹𝑆𝑦𝑚 and elements of 𝐹𝑆𝑦𝑚*.

INPUT:
• basis – a basis of the dual Hopf algebra
• degree – a non-negative integer

OUTPUT:
• the matrix of scalar products between the basis self and the basis basis in the dual Hopf algebra

of degree degree
EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: G = FSym.G()
sage: G.duality_pairing_matrix(G.dual_basis(), 3)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

one_basis()
Return the basis index corresponding to 1.

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: TG = FSym.G()
sage: TG.one_basis()
[]

super_categories()
The super categories of self.

EXAMPLES:

sage: from sage.combinat.chas.fsym import FSymBases
sage: FSym = algebras.FSym(ZZ)
sage: bases = FSymBases(FSym)
sage: bases.super_categories()
[Category of realizations of Hopf algebra of standard tableaux over the Integer␣
→˓Ring,
Join of Category of realizations of hopf algebras over Integer Ring

and Category of graded algebras over Integer Ring
and Category of graded coalgebras over Integer Ring,

Category of graded connected hopf algebras with basis over Integer Ring]

class sage.combinat.chas.fsym.FSymBasis_abstract(alg, graded=True)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

Abstract base class for graded bases of 𝐹𝑆𝑦𝑚 and of 𝐹𝑆𝑦𝑚* indexed by standard tableaux.

This must define the following attributes:

5.1. Comprehensive Module List 125

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

• _prefix – the basis prefix

some_elements()
Return some elements of self.

EXAMPLES:

sage: G = algebras.FSym(QQ).G()
sage: G.some_elements()
[G[], G[1], G[12], G[1] + G[1|2], G[] + 1/2*G[1]]

class sage.combinat.chas.fsym.FreeSymmetricFunctions(base_ring)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The free symmetric functions.

The free symmetric functions is a combinatorial Hopf algebra defined using tableaux and denoted 𝐹𝑆𝑦𝑚.

Consider the Hopf algebra 𝐹𝑄𝑆𝑦𝑚 (FreeQuasisymmetricFunctions) over a commutative ring 𝑅, and
its bases (𝐹𝑤) and (𝐺𝑤) (where 𝑤, in both cases, ranges over all permutations in all symmetric groups
𝑆0, 𝑆1, 𝑆2, . . .). For each word𝑤, let 𝑃 (𝑤) be the P-tableau of𝑤 (that is, the first of the two tableaux obtained by
applying the RSK algorithm to 𝑤; see RSK()). If 𝑡 is a standard tableau of size 𝑛, then we define 𝒢𝑡 ∈ 𝐹𝑄𝑆𝑦𝑚
to be the sum of the 𝐹𝑤 with𝑤 ranging over all permutations of {1, 2, . . . , 𝑛} satisfying 𝑃 (𝑤) = 𝑡. Equivalently,
𝒢𝑡 is the sum of the𝐺𝑤 with 𝑤 ranging over all permutations of {1, 2, . . . , 𝑛} satisfying𝑄(𝑤) = 𝑡 (where𝑄(𝑤)
denotes the Q-tableau of 𝑤).

The 𝑅-linear span of the 𝒢𝑡 (for 𝑡 ranging over all standard tableaux) is a Hopf subalgebra of 𝐹𝑄𝑆𝑦𝑚, denoted
by 𝐹𝑆𝑦𝑚 and known as the free symmetric functions or the Poirier-Reutenauer Hopf algebra of tableaux. It
has been introduced in [PoiReu95], where it was denoted by (Z𝑇, *, 𝛿). (What we call 𝒢𝑡 has just been called
𝑡 in [PoiReu95].) The family (𝒢𝑡) (with 𝑡 ranging over all standard tableaux) is a basis of 𝐹𝑆𝑦𝑚, called the
Fundamental basis.

EXAMPLES:

As explained above, 𝐹𝑆𝑦𝑚 is constructed as a Hopf subalgebra of 𝐹𝑄𝑆𝑦𝑚:

sage: G = algebras.FSym(QQ).G()
sage: F = algebras.FQSym(QQ).F()
sage: G[[1,3],[2]]
G[13|2]
sage: G[[1,3],[2]].to_fqsym()
G[2, 1, 3] + G[3, 1, 2]
sage: F(G[[1,3],[2]])
F[2, 1, 3] + F[2, 3, 1]

This embedding is a Hopf algebra morphism:

sage: all(F(G[t1] * G[t2]) == F(G[t1]) * F(G[t2])
....: for t1 in StandardTableaux(2)
....: for t2 in StandardTableaux(3))
True

sage: FF = F.tensor_square()
sage: all(FF(G[t].coproduct()) == F(G[t]).coproduct()
....: for t in StandardTableaux(4))
True

126 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

There is a Hopf algebra map from 𝐹𝑆𝑦𝑚 onto the Hopf algebra of symmetric functions, which maps a tableau
𝑡 to the Schur function indexed by the shape of 𝑡:

sage: TG = algebras.FSym(QQ).G()
sage: t = StandardTableau([[1,3],[2,4],[5]])
sage: TG[t]
G[13|24|5]
sage: TG[t].to_symmetric_function()
s[2, 2, 1]

class Fundamental(alg, graded=True)
Bases: sage.combinat.chas.fsym.FSymBasis_abstract

The Hopf algebra of tableaux on the Fundamental basis.

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: TG = FSym.G()
sage: TG
Hopf algebra of standard tableaux over the Rational Field
in the Fundamental basis

Elements of the algebra look like:

sage: TG.an_element()
2*G[] + 2*G[1] + 3*G[12]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

to_fqsym()
Return the image of self under the natural inclusion map to 𝐹𝑄𝑆𝑦𝑚.

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: G = FSym.G()
sage: t = StandardTableau([[1,3],[2,4],[5]])
sage: G[t].to_fqsym()
G[2, 1, 5, 4, 3] + G[3, 1, 5, 4, 2] + G[3, 2, 5, 4, 1]
+ G[4, 1, 5, 3, 2] + G[4, 2, 5, 3, 1]

to_symmetric_function()
Return the image of self under the natural projection map to 𝑆𝑦𝑚.

The natural projection map 𝐹𝑆𝑦𝑚 → 𝑆𝑦𝑚 sends each standard tableau 𝑡 to the Schur function
𝑠𝜆, where 𝜆 is the shape of 𝑡. This map is a surjective Hopf algebra homomorphism.

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: G = FSym.G()
sage: t = StandardTableau([[1,3],[2,4],[5]])
sage: G[t].to_symmetric_function()
s[2, 2, 1]

5.1. Comprehensive Module List 127

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

coproduct_on_basis(t)
Return the coproduct of the basis element indexed by t.

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: G = FSym.G()
sage: t = StandardTableau([[1,2,5], [3,4]])
sage: G.coproduct_on_basis(t)
G[] # G[125|34] + G[1] # G[12|34] + G[1] # G[124|3]
+ G[1|2] # G[13|2] + G[12] # G[12|3] + G[12] # G[123]
+ G[12|34] # G[1] + G[123] # G[12] + G[125|34] # G[]
+ G[13|2] # G[1|2] + G[13|2] # G[12] + G[134|2] # G[1]

dual_basis()
Return the dual basis to self.

EXAMPLES:

sage: G = algebras.FSym(QQ).G()
sage: G.dual_basis()
Dual Hopf algebra of standard tableaux over the Rational Field
in the FundamentalDual basis

product_on_basis(t1, t2)
Return the product of basis elements indexed by t1 and t2.

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: G = FSym.G()
sage: t1 = StandardTableau([[1,2], [3]])
sage: t2 = StandardTableau([[1,2,3]])
sage: G.product_on_basis(t1, t2)
G[12456|3] + G[1256|3|4] + G[1256|34] + G[126|35|4]

sage: t1 = StandardTableau([[1],[2]])
sage: t2 = StandardTableau([[1,2]])
sage: G.product_on_basis(t1, t2)
G[134|2] + G[14|2|3]

sage: t1 = StandardTableau([[1,2],[3]])
sage: t2 = StandardTableau([[1],[2]])
sage: G.product_on_basis(t1, t2)
G[12|3|4|5] + G[12|34|5] + G[124|3|5] + G[124|35]

G
alias of FreeSymmetricFunctions.Fundamental

a_realization()
Return a particular realization of self (the Fundamental basis).

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: FSym.a_realization()

(continues on next page)

128 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Hopf algebra of standard tableaux over the Rational Field
in the Fundamental basis

dual()
Return the dual Hopf algebra of 𝐹𝑆𝑦𝑚.

EXAMPLES:

sage: algebras.FSym(QQ).dual()
Dual Hopf algebra of standard tableaux over the Rational Field

class sage.combinat.chas.fsym.FreeSymmetricFunctions_Dual(base_ring)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The Hopf dual 𝐹𝑆𝑦𝑚* of the free symmetric functions 𝐹𝑆𝑦𝑚.

See FreeSymmetricFunctions for the definition of the latter.

Recall that the fundamental basis of 𝐹𝑆𝑦𝑚 consists of the elements 𝒢𝑡 for 𝑡 ranging over all standard tableaux.
The dual basis of this is called the dual fundamental basis of 𝐹𝑆𝑦𝑚*, and is denoted by (𝒢*𝑡). The Hopf dual
𝐹𝑆𝑦𝑚* is isomorphic to the Hopf algebra (Z𝑇, *′, 𝛿′) from [PoiReu95]; the isomorphism sends a basis element
𝒢*𝑡 to 𝑡.

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: TF = FSym.dual().F()
sage: TF[1,2] * TF[[1],[2]]
F[12|3|4] + F[123|4] + F[124|3] + F[13|2|4] + F[134|2] + F[14|2|3]
sage: TF[[1,2],[3]].coproduct()
F[] # F[12|3] + F[1] # F[1|2] + F[12] # F[1] + F[12|3] # F[]

The Hopf algebra 𝐹𝑆𝑦𝑚* is a Hopf quotient of 𝐹𝑄𝑆𝑦𝑚; the canonical projection sends 𝐹𝑤 (for a permutation
𝑤) to 𝒢*𝑄(𝑤), where 𝑄(𝑤) is the Q-tableau of 𝑤. This projection is implemented as a coercion:

sage: FQSym = algebras.FQSym(QQ)
sage: F = FQSym.F()
sage: TF(F[[1, 3, 2]])
F[12|3]
sage: TF(F[[5, 1, 4, 2, 3]])
F[135|2|4]

F
alias of FreeSymmetricFunctions_Dual.FundamentalDual

class FundamentalDual(alg, graded=True)
Bases: sage.combinat.chas.fsym.FSymBasis_abstract

The dual to the Hopf algebra of tableaux, on the fundamental dual basis.

EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: TF = FSym.dual().F()
sage: TF

(continues on next page)

5.1. Comprehensive Module List 129

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

Dual Hopf algebra of standard tableaux over the Rational Field
in the FundamentalDual basis

Elements of the algebra look like:

sage: TF.an_element()
2*F[] + 2*F[1] + 3*F[12]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

to_quasisymmetric_function()
Return the image of self under the canonical projection 𝐹𝑆𝑦𝑚* → 𝑄𝑆𝑦𝑚 to the ring of quasi-
symmetric functions.

This projection is the adjoint of the canonical injection 𝑁𝑆𝑦𝑚 → 𝐹𝑆𝑦𝑚 (see to_fsym()). It
sends each tableau 𝑡 to the fundamental quasi-symmetric function 𝐹𝛼, where 𝛼 is the descent
composition of 𝑡.

EXAMPLES:

sage: F = algebras.FSym(QQ).dual().F()
sage: F[[1,3,5],[2,4]].to_quasisymmetric_function()
F[1, 2, 2]

coproduct_on_basis(t)
EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: TF = FSym.dual().F()
sage: t = StandardTableau([[1,2,5], [3,4]])
sage: TF.coproduct_on_basis(t)
F[] # F[125|34] + F[1] # F[134|2] + F[12] # F[123]
+ F[12|3] # F[12] + F[12|34] # F[1] + F[125|34] # F[]

dual_basis()
Return the dual basis to self.

EXAMPLES:

sage: F = algebras.FSym(QQ).dual().F()
sage: F.dual_basis()
Hopf algebra of standard tableaux over the Rational Field
in the Fundamental basis

product_on_basis(t1, t2)
EXAMPLES:

sage: FSym = algebras.FSym(QQ)
sage: TF = FSym.dual().F()
sage: t1 = StandardTableau([[1,2]])
sage: TF.product_on_basis(t1, t1)
F[12|34] + F[123|4] + F[1234] + F[124|3] + F[13|24] + F[134|2]
sage: t0 = StandardTableau([])

(continues on next page)

130 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

(continued from previous page)

sage: TF.product_on_basis(t1, t0) == TF[t1] == TF.product_on_basis(t0, t1)
True

a_realization()
Return a particular realization of self (the Fundamental dual basis).

EXAMPLES:

sage: FSym = algebras.FSym(QQ).dual()
sage: FSym.a_realization()
Dual Hopf algebra of standard tableaux over the Rational Field
in the FundamentalDual basis

dual()
Return the dual Hopf algebra of self, which is 𝐹𝑆𝑦𝑚.

EXAMPLES:

sage: D = algebras.FSym(QQ).dual()
sage: D.dual()
Hopf algebra of standard tableaux over the Rational Field

sage.combinat.chas.fsym.ascent_set(t)
Return the ascent set of a standard tableau t (encoded as a sorted list).

The ascent set of a standard tableau 𝑡 is defined as the set of all entries 𝑖 of 𝑡 such that the number 𝑖 + 1 either
appears to the right of 𝑖 or appears in a row above 𝑖 or does not appear in 𝑡 at all.

EXAMPLES:

sage: from sage.combinat.chas.fsym import ascent_set
sage: t = StandardTableau([[1,3,4,7],[2,5,6],[8]])
sage: ascent_set(t)
[2, 3, 5, 6, 8]
sage: ascent_set(StandardTableau([]))
[]
sage: ascent_set(StandardTableau([[1, 2, 3]]))
[1, 2, 3]
sage: ascent_set(StandardTableau([[1, 2, 4], [3]]))
[1, 3, 4]
sage: ascent_set([[1, 3, 5], [2, 4]])
[2, 4, 5]

sage.combinat.chas.fsym.descent_composition(t)
Return the descent composition of a standard tableau t.

This is the composition of the size of 𝑡 whose partial sums are the elements of the descent set of t (see
descent_set()).

EXAMPLES:

sage: from sage.combinat.chas.fsym import descent_composition
sage: t = StandardTableau([[1,3,4,7],[2,5,6],[8]])
sage: descent_composition(t)
[1, 3, 3, 1]

(continues on next page)

5.1. Comprehensive Module List 131

Combinatorics, Release 9.7

(continued from previous page)

sage: descent_composition([[1, 3, 5], [2, 4]])
[1, 2, 2]

sage.combinat.chas.fsym.descent_set(t)
Return the descent set of a standard tableau t (encoded as a sorted list).

The descent set of a standard tableau 𝑡 is defined as the set of all entries 𝑖 of 𝑡 such that the number 𝑖+ 1 appears
in a row below 𝑖 in 𝑡.

EXAMPLES:

sage: from sage.combinat.chas.fsym import descent_set
sage: t = StandardTableau([[1,3,4,7],[2,5,6],[8]])
sage: descent_set(t)
[1, 4, 7]
sage: descent_set(StandardTableau([]))
[]
sage: descent_set(StandardTableau([[1, 2, 3]]))
[]
sage: descent_set(StandardTableau([[1, 2, 4], [3]]))
[2]
sage: descent_set([[1, 3, 5], [2, 4]])
[1, 3]

sage.combinat.chas.fsym.standardize(t)
Return the standard tableau corresponding to a given semistandard tableau t with no repeated entries.

Note: This is an optimized version of Tableau.standardization() for computations in 𝐹𝑆𝑦𝑚 by using the
assumption of no repeated entries in t.

EXAMPLES:

sage: from sage.combinat.chas.fsym import standardize
sage: t = Tableau([[1,3,5,7],[2,4,8],[9]])
sage: standardize(t)
[[1, 3, 5, 6], [2, 4, 7], [8]]
sage: t = Tableau([[3,8,9,15],[5,10,12],[133]])
sage: standardize(t)
[[1, 3, 4, 7], [2, 5, 6], [8]]

5.1.15 Word Quasi-symmetric functions

AUTHORS:

• Travis Scrimshaw (2018-04-09): initial implementation

• Darij Grinberg and Amy Pang (2018-04-12): further bases and methods

class sage.combinat.chas.wqsym.WQSymBases(base, graded)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of bases of 𝑊𝑄𝑆𝑦𝑚.

132 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

class ElementMethods
Bases: object

algebraic_complement()
Return the image of the element self of 𝑊𝑄𝑆𝑦𝑚 under the algebraic complement involution.

If 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) is a packed word that contains the letters 1, 2, . . . , 𝑘 and no others, then the
complement of 𝑢 is defined to be the packed word 𝑢 := (𝑘 + 1− 𝑢1, 𝑘 + 1− 𝑢2, . . . , 𝑘 + 1− 𝑢𝑛).

The algebraic complement involution is defined as the linear map 𝑊𝑄𝑆𝑦𝑚 → 𝑊𝑄𝑆𝑦𝑚 that sends
each basis element M𝑢 of the monomial basis of𝑊𝑄𝑆𝑦𝑚 to the basis element M𝑢. This is a graded
algebra automorphism and a coalgebra anti-automorphism of 𝑊𝑄𝑆𝑦𝑚. Denoting by 𝑓 the image
of an element 𝑓 ∈ 𝑊𝑄𝑆𝑦𝑚 under the algebraic complement involution, it can be shown that every
packed word 𝑢 satisfies

M𝑢 = M𝑢, 𝑋𝑢 = 𝑋𝑢,

where standard notations for classical bases of 𝑊𝑄𝑆𝑦𝑚 are being used (that is, M for the monomial
basis, and 𝑋 for the characteristic basis).

This can be restated in terms of ordered set partitions: For any ordered set partition 𝑅 =
(𝑅1, 𝑅2, . . . , 𝑅𝑘), let 𝑅𝑟 denote the ordered set partition (𝑅𝑘, 𝑅𝑘−1, . . . , 𝑅1); this is known as the
reversal of 𝑅. Then,

M𝐴 = M𝐴𝑟 , 𝑋𝐴 = 𝑋𝐴𝑟

for any ordered set partition 𝐴.

The formula describing algebraic complements on the Q basis (WordQuasiSymmetricFunctions.
StronglyCoarser) is more complicated, and requires some definitions. We define a partial order ≤
on the set of all ordered set partitions as follows: 𝐴 ≤ 𝐵 if and only if 𝐴 is strongly finer than 𝐵
(see is_strongly_finer() for a definition of this). The length ℓ(𝑅) of an ordered set partition 𝑅
shall be defined as the number of parts of 𝑅. Use the notation 𝑄 for the Q basis. For any ordered set
partition 𝐴 of [𝑛], we have

𝑄𝐴 =
∑︁
𝑃

𝑐𝐴,𝑃𝑄𝑃 ,

where the sum is over all ordered set partitions 𝑃 of [𝑛], and where the coefficient 𝑐𝐴,𝑃 is defined as
follows:

• If there exists an ordered set partition𝑅 satisfying𝑅 ≤ 𝑃 and𝐴 ≤ 𝑅𝑟, then this𝑅 is unique, and
𝑐𝐴,𝑃 = (−1)

ℓ(𝑅)−ℓ(𝑃).
• If there exists no such 𝑅, then 𝑐𝐴,𝑃 = 0.

The formula describing algebraic complements on the Φ basis (WordQuasiSymmetricFunctions.
StronglyFiner) is identical to the above formula for the Q basis, except that the ≤ sign has to be
replaced by ≥ in the definition of the coefficients 𝑐𝐴,𝑃 . In fact, both formulas are particular cases of
a general formula for involutions: Assume that 𝑉 is an (additive) abelian group, and that 𝐼 is a poset.
For each 𝑖 ∈ 𝐼 , let 𝑀𝑖 be an element of 𝑉 . Also, let 𝜔 be an involution of the set 𝐼 (not necessarily
order-preserving or order-reversing), and let 𝜔′ be an involutive group endomorphism of 𝑉 such that
each 𝑖 ∈ 𝐼 satisfies 𝜔′(𝑀𝑖) = 𝑀𝜔(𝑖). For each 𝑖 ∈ 𝐼 , let 𝐹𝑖 =

∑︀
𝑗≥𝑖𝑀𝑗 , where we assume that the

sum is finite. Then, each 𝑖 ∈ 𝐼 satisfies

𝜔′(𝐹𝑖) =
∑︁
𝑗

∑︁
𝑘≤𝑗;
𝜔(𝑘)≥𝑖

𝜇(𝑘, 𝑗)𝐹𝑗 ,

where 𝜇 denotes the Möbius function. This formula becomes particularly useful when the 𝑘 satisfying
𝑘 ≤ 𝑗 and 𝜔(𝑘) ≥ 𝑖 is unique (if it exists). In our situation, 𝑉 is 𝑊𝑄𝑆𝑦𝑚, and 𝐼 is the set of ordered

5.1. Comprehensive Module List 133

Combinatorics, Release 9.7

set partitions equipped either with the ≤ partial order defined above or with its opposite order. The
𝑀𝑖 is the M𝐴, whereas the 𝐹𝑖 is either 𝑄𝑖 or Φ𝑖.

If we denote the star involution (star_involution()) of the quasisymmetric functions by 𝑓 ↦→ 𝑓*,
and if we let 𝜋 be the canonical projection 𝑊𝑄𝑆𝑦𝑚 → 𝑄𝑆𝑦𝑚, then each 𝑓 ∈ 𝑊𝑄𝑆𝑦𝑚 satisfies
𝜋(𝑓) = (𝜋(𝑓))*.

See also:

coalgebraic_complement(), star_involution()

EXAMPLES:

Recall that the index set for the bases of𝑊𝑄𝑆𝑦𝑚 is given by ordered set partitions, not packed words.
Translated into the language of ordered set partitions, the algebraic complement involution acts on the
Monomial basis by reversing the ordered set partition. In other words, we have

M(𝑃1,𝑃2,...,𝑃𝑘) = M(𝑃𝑘,𝑃𝑘−1,...,𝑃1)

for any standard ordered set partition (𝑃1, 𝑃2, . . . , 𝑃𝑘). Let us check this in practice:

sage: WQSym = algebras.WQSym(ZZ)
sage: M = WQSym.M()
sage: M[[1,3],[2]].algebraic_complement()
M[{2}, {1, 3}]
sage: M[[1,4],[2,5],[3,6]].algebraic_complement()
M[{3, 6}, {2, 5}, {1, 4}]
sage: (3*M[[1]] - 4*M[[]] + 5*M[[1],[2]]).algebraic_complement()
-4*M[] + 3*M[{1}] + 5*M[{2}, {1}]
sage: X = WQSym.X()
sage: X[[1,3],[2]].algebraic_complement()
X[{2}, {1, 3}]
sage: C = WQSym.C()
sage: C[[1,3],[2]].algebraic_complement()
-C[{1, 2, 3}] - C[{1, 3}, {2}] + C[{2}, {1, 3}]
sage: Q = WQSym.Q()
sage: Q[[1,2],[5,6],[3,4]].algebraic_complement()
Q[{3, 4}, {1, 2, 5, 6}] + Q[{3, 4}, {5, 6}, {1, 2}] - Q[{3, 4, 5, 6}, {1, 2}
→˓]
sage: Phi = WQSym.Phi()
sage: Phi[[2], [1,3]].algebraic_complement()
-Phi[{1}, {3}, {2}] + Phi[{1, 3}, {2}] + Phi[{3}, {1}, {2}]

The algebraic complement involution intertwines the antipode and the inverse of the antipode:

sage: all(M(I).antipode().algebraic_complement().antipode() # long time
....: == M(I).algebraic_complement()
....: for I in OrderedSetPartitions(4))
True

Testing the 𝜋(𝑓) = (𝜋(𝑓))* relation:

sage: all(M[I].algebraic_complement().to_quasisymmetric_function()
....: == M[I].to_quasisymmetric_function().star_involution()
....: for I in OrderedSetPartitions(4))
True

134 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Todo: Check further commutative squares.

coalgebraic_complement()
Return the image of the element self of 𝑊𝑄𝑆𝑦𝑚 under the coalgebraic complement involution.

If 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) is a packed word, then the reversal of 𝑢 is defined to be the packed word
(𝑢𝑛, 𝑢𝑛−1, . . . , 𝑢1). This reversal is denoted by 𝑢𝑟.

The coalgebraic complement involution is defined as the linear map𝑊𝑄𝑆𝑦𝑚→𝑊𝑄𝑆𝑦𝑚 that sends
each basis element M𝑢 of the monomial basis of𝑊𝑄𝑆𝑦𝑚 to the basis element M𝑢𝑟 . This is a graded
coalgebra automorphism and an algebra anti-automorphism of 𝑊𝑄𝑆𝑦𝑚. Denoting by 𝑓𝑟 the image
of an element 𝑓 ∈𝑊𝑄𝑆𝑦𝑚 under the coalgebraic complement involution, it can be shown that every
packed word 𝑢 satisfies

(M𝑢)𝑟 = M𝑢𝑟 , (𝑋𝑢)𝑟 = 𝑋𝑢𝑟 ,

where standard notations for classical bases of 𝑊𝑄𝑆𝑦𝑚 are being used (that is, M for the monomial
basis, and 𝑋 for the characteristic basis).

This can be restated in terms of ordered set partitions: For any ordered set partition 𝑅 of [𝑛], let 𝑅
denote the complement of 𝑅 (defined in complement()). Then,

(M𝐴)𝑟 = M𝐴, (𝑋𝐴)𝑟 = 𝑋𝐴

for any ordered set partition 𝐴.

Recall that 𝑊𝑄𝑆𝑦𝑚 is a subring of the ring of all bounded-degree noncommutative power series in
countably many indeterminates. The latter ring has an obvious continuous algebra anti-endomorphism
which sends each letter 𝑥𝑖 to 𝑥𝑖 (and thus sends each monomial 𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛 to 𝑥𝑖𝑛𝑥𝑖𝑛−1

· · ·𝑥𝑖1).
This anti-endomorphism is actually an involution. The coalgebraic complement involution is simply
the restriction of this involution to the subring 𝑊𝑄𝑆𝑦𝑚.

The formula describing coalgebraic complements on the Q basis (WordQuasiSymmetricFunctions.
StronglyCoarser) is more complicated, and requires some definitions. We define a partial order ≤
on the set of all ordered set partitions as follows: 𝐴 ≤ 𝐵 if and only if 𝐴 is strongly finer than 𝐵
(see is_strongly_finer() for a definition of this). The length ℓ(𝑅) of an ordered set partition 𝑅
shall be defined as the number of parts of 𝑅. Use the notation 𝑄 for the Q basis. For any ordered set
partition 𝐴 of [𝑛], we have

(𝑄𝐴)𝑟 =
∑︁
𝑃

𝑐𝐴,𝑃𝑄𝑃 ,

where the sum is over all ordered set partitions 𝑃 of [𝑛], and where the coefficient 𝑐𝐴,𝑃 is defined as
follows:

• If there exists an ordered set partition 𝑅 satisfying 𝑅 ≤ 𝑃 and 𝐴 ≤ 𝑅, then this 𝑅 is unique, and
𝑐𝐴,𝑃 = (−1)

ℓ(𝑅)−ℓ(𝑃).
• If there exists no such 𝑅, then 𝑐𝐴,𝑃 = 0.

The formula describing coalgebraic complements on the Φ basis (WordQuasiSymmetricFunctions.
StronglyFiner) is identical to the above formula for the Q basis, except that the ≤ sign has to be
replaced by ≥ in the definition of the coefficients 𝑐𝐴,𝑃 . In fact, both formulas are particular cases of
the general formula for involutions described in the documentation of algebraic_complement().

If we let 𝜋 be the canonical projection𝑊𝑄𝑆𝑦𝑚→ 𝑄𝑆𝑦𝑚, then each 𝑓 ∈𝑊𝑄𝑆𝑦𝑚 satisfies 𝜋(𝑓𝑟) =
𝜋(𝑓).

See also:

algebraic_complement(), star_involution()

5.1. Comprehensive Module List 135

Combinatorics, Release 9.7

EXAMPLES:

Recall that the index set for the bases of𝑊𝑄𝑆𝑦𝑚 is given by ordered set partitions, not packed words.
Translated into the language of ordered set partitions, the coalgebraic complement involution acts on
the Monomial basis by complementing the ordered set partition. In other words, we have

(M𝐴)𝑟 = M𝐴

for any standard ordered set partition 𝑃 . Let us check this in practice:

sage: WQSym = algebras.WQSym(ZZ)
sage: M = WQSym.M()
sage: M[[1,3],[2]].coalgebraic_complement()
M[{1, 3}, {2}]
sage: M[[1,2],[3]].coalgebraic_complement()
M[{2, 3}, {1}]
sage: M[[1], [4], [2,3]].coalgebraic_complement()
M[{4}, {1}, {2, 3}]
sage: M[[1,4],[2,5],[3,6]].coalgebraic_complement()
M[{3, 6}, {2, 5}, {1, 4}]
sage: (3*M[[1]] - 4*M[[]] + 5*M[[1],[2]]).coalgebraic_complement()
-4*M[] + 3*M[{1}] + 5*M[{2}, {1}]
sage: X = WQSym.X()
sage: X[[1,3],[2]].coalgebraic_complement()
X[{1, 3}, {2}]
sage: C = WQSym.C()
sage: C[[1,3],[2]].coalgebraic_complement()
C[{1, 3}, {2}]
sage: Q = WQSym.Q()
sage: Q[[1,2],[5,6],[3,4]].coalgebraic_complement()
Q[{1, 2, 5, 6}, {3, 4}] + Q[{5, 6}, {1, 2}, {3, 4}] - Q[{5, 6}, {1, 2, 3, 4}
→˓]
sage: Phi = WQSym.Phi()
sage: Phi[[2], [1,3]].coalgebraic_complement()
-Phi[{2}, {1}, {3}] + Phi[{2}, {1, 3}] + Phi[{2}, {3}, {1}]

The coalgebraic complement involution intertwines the antipode and the inverse of the antipode:

sage: all(M(I).antipode().coalgebraic_complement().antipode() # long time
....: == M(I).coalgebraic_complement()
....: for I in OrderedSetPartitions(4))
True

Testing the 𝜋(𝑓𝑟) = 𝜋(𝑓) relation above:

sage: all(M[I].coalgebraic_complement().to_quasisymmetric_function()
....: == M[I].to_quasisymmetric_function()
....: for I in OrderedSetPartitions(4))
True

Todo: Check further commutative squares.

star_involution()
Return the image of the element self of 𝑊𝑄𝑆𝑦𝑚 under the star involution.

136 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The star involution is the composition of the algebraic complement involu-
tion (algebraic_complement()) with the coalgebraic complement involution
(coalgebraic_complement()). The composition can be performed in either order, as the
involutions commute.

The star involution is a graded Hopf algebra anti-automorphism of𝑊𝑄𝑆𝑦𝑚. Let 𝑓* denote the image
of an element 𝑓 ∈ 𝑊𝑄𝑆𝑦𝑚 under the star involution. Let M, 𝑋 , 𝑄 and Φ stand for the monomial,
characteristic, Q and Phi bases of𝑊𝑄𝑆𝑦𝑚. For any ordered set partition𝐴 of [𝑛], we let𝐴* denote the
complement (complement()) of the reversal (reversed()) of 𝐴. Then, for any ordered set partition
𝐴 of [𝑛], we have

(M𝐴)* = M𝐴* , (𝑋𝐴)* = 𝑋𝐴* , (𝑄𝐴)* = 𝑄𝐴* , (Φ𝐴)* = Φ𝐴* .

The star involution (star_involution()) on the ring of noncommutative symmetric functions is a
restriction of the star involution on 𝑊𝑄𝑆𝑦𝑚.

If we denote the star involution (star_involution()) of the quasisymmetric functions by 𝑓 ↦→ 𝑓*,
and if we let 𝜋 be the canonical projection 𝑊𝑄𝑆𝑦𝑚 → 𝑄𝑆𝑦𝑚, then each 𝑓 ∈ 𝑊𝑄𝑆𝑦𝑚 satisfies
𝜋(𝑓*) = (𝜋(𝑓))*.

Todo: More commutative diagrams? FQSym and FSym need their own star_involution methods
defined first.

See also:

algebraic_complement(), coalgebraic_complement()

EXAMPLES:

Keep in mind that the default input method for basis keys of 𝑊𝑄𝑆𝑦𝑚 is by entering an ordered set
partition, not a packed word. Let us check the basis formulas for the star involution:

sage: WQSym = algebras.WQSym(ZZ)
sage: M = WQSym.M()
sage: M[[1,3], [2,4,5]].star_involution()
M[{1, 2, 4}, {3, 5}]
sage: M[[1,3],[2]].star_involution()
M[{2}, {1, 3}]
sage: M[[1,4],[2,5],[3,6]].star_involution()
M[{1, 4}, {2, 5}, {3, 6}]
sage: (3*M[[1]] - 4*M[[]] + 5*M[[1],[2]]).star_involution()
-4*M[] + 3*M[{1}] + 5*M[{1}, {2}]
sage: X = WQSym.X()
sage: X[[1,3],[2]].star_involution()
X[{2}, {1, 3}]
sage: C = WQSym.C()
sage: C[[1,3],[2]].star_involution()
-C[{1, 2, 3}] - C[{1, 3}, {2}] + C[{2}, {1, 3}]
sage: Q = WQSym.Q()
sage: Q[[1,3], [2,4,5]].star_involution()
Q[{1, 2, 4}, {3, 5}]
sage: Phi = WQSym.Phi()
sage: Phi[[1,3], [2,4,5]].star_involution()
Phi[{1, 2, 4}, {3, 5}]

Testing the formulas for (𝑄𝐴)* and (Φ𝐴)*:

5.1. Comprehensive Module List 137

Combinatorics, Release 9.7

sage: all(Q[A].star_involution() == Q[A.complement().reversed()] for A in␣
→˓OrderedSetPartitions(4))
True
sage: all(Phi[A].star_involution() == Phi[A.complement().reversed()] for A␣
→˓in OrderedSetPartitions(4))
True

The star involution commutes with the antipode:

sage: all(M(I).antipode().star_involution() # long time
....: == M(I).star_involution().antipode()
....: for I in OrderedSetPartitions(4))
True

Testing the 𝜋(𝑓*) = (𝜋(𝑓))* relation:

sage: all(M[I].star_involution().to_quasisymmetric_function()
....: == M[I].to_quasisymmetric_function().star_involution()
....: for I in OrderedSetPartitions(4))
True

Testing the fact that the star involution on the noncommutative symmetric functions is a restriction of
the star involution on 𝑊𝑄𝑆𝑦𝑚:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: R = NCSF.R()
sage: all(R[I].star_involution().to_fqsym().to_wqsym()
....: == R[I].to_fqsym().to_wqsym().star_involution()
....: for I in Compositions(4))
True

Todo: Check further commutative squares.

to_quasisymmetric_function()
The projection of self to the ring 𝑄𝑆𝑦𝑚 of quasisymmetric functions.

There is a canonical projection 𝜋 : 𝑊𝑄𝑆𝑦𝑚→ 𝑄𝑆𝑦𝑚 that sends every elementM𝑃 of the monomial
basis of 𝑊𝑄𝑆𝑦𝑚 to the monomial quasisymmetric function 𝑀𝑐, where 𝑐 is the composition whose
parts are the sizes of the blocks of 𝑃 . This 𝜋 is a ring homomorphism.

OUTPUT:
• an element of the quasisymmetric functions in the monomial basis

EXAMPLES:

sage: M = algebras.WQSym(QQ).M()
sage: M[[1,3],[2]].to_quasisymmetric_function()
M[2, 1]
sage: (M[[1,3],[2]] + 3*M[[2,3],[1]] - M[[1,2,3],]).to_quasisymmetric_
→˓function()
4*M[2, 1] - M[3]
sage: X, Y = M[[1,3],[2]], M[[1,2,3],]
sage: X.to_quasisymmetric_function() * Y.to_quasisymmetric_function() ==␣
→˓(X*Y).to_quasisymmetric_function()

(continues on next page)

138 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

True

sage: C = algebras.WQSym(QQ).C()
sage: C[[2,3],[1,4]].to_quasisymmetric_function() == M(C[[2,3],[1,4]]).to_
→˓quasisymmetric_function()
True

sage: C2 = algebras.WQSym(GF(2)).C()
sage: C2[[1,2],[3,4]].to_quasisymmetric_function()
M[2, 2]
sage: C2[[2,3],[1,4]].to_quasisymmetric_function()
M[4]

class ParentMethods
Bases: object

degree_on_basis(t)
Return the degree of an ordered set partition in the algebra of word quasi-symmetric functions.

This is the sum of the sizes of the blocks of the ordered set partition.

EXAMPLES:

sage: A = algebras.WQSym(QQ).M()
sage: u = OrderedSetPartition([[2,1],])
sage: A.degree_on_basis(u)
2
sage: u = OrderedSetPartition([[2], [1]])
sage: A.degree_on_basis(u)
2

is_commutative()
Return whether self is commutative.

EXAMPLES:

sage: M = algebras.WQSym(ZZ).M()
sage: M.is_commutative()
False

is_field(proof=True)
Return whether self is a field.

EXAMPLES:

sage: M = algebras.WQSym(QQ).M()
sage: M.is_field()
False

one_basis()
Return the index of the unit.

EXAMPLES:

5.1. Comprehensive Module List 139

Combinatorics, Release 9.7

sage: A = algebras.WQSym(QQ).M()
sage: A.one_basis()
[]

super_categories()
The super categories of self.

EXAMPLES:

sage: from sage.combinat.chas.wqsym import WQSymBases
sage: WQSym = algebras.WQSym(ZZ)
sage: bases = WQSymBases(WQSym, True)
sage: bases.super_categories()
[Category of realizations of Word Quasi-symmetric functions over Integer Ring,
Join of Category of realizations of hopf algebras over Integer Ring

and Category of graded algebras over Integer Ring
and Category of graded coalgebras over Integer Ring,

Category of graded connected hopf algebras with basis over Integer Ring]

sage: bases = WQSymBases(WQSym, False)
sage: bases.super_categories()
[Category of realizations of Word Quasi-symmetric functions over Integer Ring,
Join of Category of realizations of hopf algebras over Integer Ring

and Category of graded algebras over Integer Ring
and Category of graded coalgebras over Integer Ring,

Join of Category of filtered connected hopf algebras with basis over Integer␣
→˓Ring

and Category of graded algebras over Integer Ring
and Category of graded coalgebras over Integer Ring]

class sage.combinat.chas.wqsym.WQSymBasis_abstract(alg, graded=True)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

Abstract base class for bases of 𝑊𝑄𝑆𝑦𝑚.

This must define two attributes:

• _prefix – the basis prefix

• _basis_name – the name of the basis (must match one of the names that the basis can be constructed from
𝑊𝑄𝑆𝑦𝑚)

an_element()
Return an element of self.

EXAMPLES:

sage: M = algebras.WQSym(QQ).M()
sage: M.an_element()
M[{1}] + 2*M[{1}, {2}]

options(*get_value, **set_value)
Set and display the global options for bases of WordQuasiSymmetricFunctions. If no parameters are set,
then the function returns a copy of the options dictionary.

The options can be accessed as the method WordQuasiSymmetricFunctions.options of
WordQuasiSymmetricFunctions or of any associated basis.

140 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

OPTIONS:

• display – (default: normal) Specifies how basis elements of WordQuasiSymmetricFunctions should
be printed

– compact – Using a severely compacted representation

– normal – Using the normal representation

– tight – Dropping spaces after commas

• objects – (default: compositions) Specifies how basis elements of WordQuasiSymmetricFunctions
should be indexed

– compositions – Indexing the basis by ordered set partitions

– words – Indexing the basis by packed words

The 'words' representation of a basis element of WordQuasiSymmetricFunctions, indexed by
an ordered set partition 𝐴, is the packed word associated to 𝐴. See OrderedSetPartition.
to_packed_word() for details.)

EXAMPLES:

sage: WQ = WordQuasiSymmetricFunctions(QQ)
sage: M = WQ.M()
sage: elt = M[[[1,2]]]*M[[[1]]]; elt
M[{1, 2}, {3}] + M[{1, 2, 3}] + M[{3}, {1, 2}]
sage: M.options.display = "tight"
sage: elt
M[{1,2},{3}] + M[{1,2,3}] + M[{3},{1,2}]
sage: M.options.display = "compact"
sage: elt
M[12.3] + M[123] + M[3.12]
sage: WQ.options._reset()
sage: M.options.objects = "words"
sage: elt
M[1, 1, 2] + M[1, 1, 1] + M[2, 2, 1]
sage: M.options.display = "tight"
sage: elt
M[1,1,2] + M[1,1,1] + M[2,2,1]
sage: WQ.options.display = "compact"
sage: elt
M[112] + M[111] + M[221]
sage: M.options._reset()
sage: elt
M[{1, 2}, {3}] + M[{1, 2, 3}] + M[{3}, {1, 2}]

See GlobalOptions for more features of these options.

some_elements()
Return some elements of the word quasi-symmetric functions.

EXAMPLES:

sage: M = algebras.WQSym(QQ).M()
sage: M.some_elements()
[M[], M[{1}], M[{1, 2}],

(continues on next page)

5.1. Comprehensive Module List 141

../../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

(continued from previous page)

M[{1}] + M[{1}, {2}],
M[] + 1/2*M[{1}]]

class sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions(R)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The word quasi-symmetric functions.

The ring of word quasi-symmetric functions can be defined as a subring of the ring of all bounded-degree non-
commutative power series in countably many indeterminates (i.e., elements in 𝑅⟨⟨𝑥1, 𝑥2, 𝑥3, . . .⟩⟩ of bounded
degree). Namely, consider words over the alphabet {1, 2, 3, . . .}; every noncommutative power series is an in-
finite 𝑅-linear combination of these words. For each such word 𝑤, we define the packing of 𝑤 to be the word
pack(𝑤) that is obtained from 𝑤 by replacing the smallest letter that appears in 𝑤 by 1, the second-smallest
letter that appears in 𝑤 by 2, etc. (for example, pack(4112774) = 3112443). A word 𝑤 is said to be packed if
pack(𝑤) = 𝑤. For each packed word 𝑢, we define the noncommutative power series M𝑢 =

∑︀
𝑤, where the

sum ranges over all words 𝑤 satisfying pack(𝑤) = 𝑢. The span of these power series M𝑢 is a subring of the
ring of all noncommutative power series; it is called the ring of word quasi-symmetric functions, and is denoted
by 𝑊𝑄𝑆𝑦𝑚.

For each nonnegative integer 𝑛, there is a bijection between packed words of length 𝑛 and ordered set partitions
of {1, 2, . . . , 𝑛}. Under this bijection, a packed word 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) of length 𝑛 corresponds to the
ordered set partition 𝑃 = (𝑃1, 𝑃2, . . . , 𝑃𝑘) of {1, 2, . . . , 𝑛} whose 𝑖-th part 𝑃𝑖 (for each 𝑖) is the set of all
𝑗 ∈ {1, 2, . . . , 𝑛} such that 𝑢𝑗 = 𝑖.

The basis element M𝑢 is also denoted as M𝑃 in this situation. The basis (M𝑃)𝑃 is called the Monomial basis
and is implemented as Monomial.

Other bases are the cone basis (aka C basis), the characteristic basis (aka X basis), the Q basis and the Phi basis.

Bases of𝑊𝑄𝑆𝑦𝑚 are implemented (internally) using ordered set partitions. However, the user may access spe-
cific basis vectors using either packed words or ordered set partitions. See the examples below, noting especially
the section on ambiguities.

𝑊𝑄𝑆𝑦𝑚 is endowed with a connected graded Hopf algebra structure (see Section 2.2 of [NoThWi08], Section
1.1 of [FoiMal14] and Section 4.3.2 of [MeNoTh11]) given by

∆(M(𝑃1,...,𝑃ℓ)) =

ℓ∑︁
𝑖=0

Mst(𝑃1,...,𝑃𝑖) ⊗Mst(𝑃𝑖+1,...,𝑃ℓ).

Here, for any ordered set partition (𝑄1, . . . , 𝑄𝑘) of a finite set 𝑍 of integers, we let st(𝑄1, . . . , 𝑄𝑘) denote the
set partition obtained from 𝑍 by replacing the smallest element appearing in it by 1, the second-smallest element
by 2, and so on.

A rule for multiplying elements of the monomial basis relies on the quasi-shuffle product of two ordered set
partitions. The quasi-shuffle product� is given by ShuffleProduct_overlapping with the + operation in the
overlapping of the shuffles being the union of the sets. The product M𝑃M𝑄 for two ordered set partitions 𝑃 and
𝑄 of [𝑛] and [𝑚] is then given by

M𝑃M𝑄 =
∑︁

𝑅∈𝑃�𝑄+

M𝑅,

where 𝑄+ means 𝑄 with all numbers shifted upwards by 𝑛.

Sometimes, 𝑊𝑄𝑆𝑦𝑚 is also denoted as 𝑁𝐶𝑄𝑆𝑦𝑚.

REFERENCES:

• [FoiMal14]

142 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

• [MeNoTh11]

• [NoThWi08]

• [BerZab05]

EXAMPLES:

Constructing the algebra and its Monomial basis:

sage: WQSym = algebras.WQSym(ZZ)
sage: WQSym
Word Quasi-symmetric functions over Integer Ring
sage: M = WQSym.M()
sage: M
Word Quasi-symmetric functions over Integer Ring in the Monomial basis
sage: M[[]]
M[]

Calling basis elements using packed words:

sage: x = M[1,2,1]; x
M[{1, 3}, {2}]
sage: x == M[[1,2,1]] == M[Word([1,2,1])]
True
sage: y = M[1,1,2] - M[1,2,2]; y
-M[{1}, {2, 3}] + M[{1, 2}, {3}]

Calling basis elements using ordered set partitions:

sage: z = M[[1,2,3],]; z
M[{1, 2, 3}]
sage: z == M[[[1,2,3]]] == M[OrderedSetPartition([[1,2,3]])]
True
sage: M[[1,2],[3]]
M[{1, 2}, {3}]

Note that expressions above are output in terms of ordered set partitions, even when input as packed words.
Output as packed words can be achieved by modifying the global options. (See OrderedSetPartitions.
options() for further details.):

sage: M.options.objects = "words"
sage: y
-M[1, 2, 2] + M[1, 1, 2]
sage: M.options.display = "compact"
sage: y
-M[122] + M[112]
sage: z
M[111]

The options should be reset to display as ordered set partitions:

sage: M.options._reset()
sage: z
M[{1, 2, 3}]

Illustration of the Hopf algebra structure:

5.1. Comprehensive Module List 143

Combinatorics, Release 9.7

sage: M[[2, 3], [5], [6], [4], [1]].coproduct()
M[] # M[{2, 3}, {5}, {6}, {4}, {1}] + M[{1, 2}] # M[{3}, {4}, {2}, {1}]
+ M[{1, 2}, {3}] # M[{3}, {2}, {1}] + M[{1, 2}, {3}, {4}] # M[{2}, {1}]
+ M[{1, 2}, {4}, {5}, {3}] # M[{1}] + M[{2, 3}, {5}, {6}, {4}, {1}] # M[]
sage: _ == M[5,1,1,4,2,3].coproduct()
True
sage: M[[1,1,1]] * M[[1,1,2]] # packed words
M[{1, 2, 3}, {4, 5}, {6}] + M[{1, 2, 3, 4, 5}, {6}]
+ M[{4, 5}, {1, 2, 3}, {6}] + M[{4, 5}, {1, 2, 3, 6}]
+ M[{4, 5}, {6}, {1, 2, 3}]
sage: M[[1,2,3],].antipode() # ordered set partition
-M[{1, 2, 3}]
sage: M[[1], [2], [3]].antipode()
-M[{1, 2, 3}] - M[{2, 3}, {1}] - M[{3}, {1, 2}] - M[{3}, {2}, {1}]
sage: x = M[[1],[2],[3]] + 3*M[[2],[1]]
sage: x.counit()
0
sage: x.antipode()
3*M[{1}, {2}] + 3*M[{1, 2}] - M[{1, 2, 3}] - M[{2, 3}, {1}]
- M[{3}, {1, 2}] - M[{3}, {2}, {1}]

Ambiguities

Some ambiguity arises when accessing basis vectors with the dictionary syntax, i.e., M[...]. A common exam-
ple is when referencing an ordered set partition with one part. For example, in the expression M[[1,2]], does
[[1,2]] refer to an ordered set partition or does [1,2] refer to a packed word? We choose the latter: if the
received arguments do not behave like a tuple of iterables, then view them as describing a packed word. (In the
running example, one argument is received, which behaves as a tuple of integers.) Here are a variety of ways to
get the same basis vector:

sage: x = M[1,1]; x
M[{1, 2}]
sage: x == M[[1,1]] # treated as word
True
sage: x == M[[1,2],] == M[[[1,2]]] # treated as ordered set partitions
True

sage: M[[1,3],[2]] # treat as ordered set partition
M[{1, 3}, {2}]
sage: M[[1,3],[2]] == M[1,2,1] # treat as word
True

Todo:

• Dendriform structure.

C
alias of WordQuasiSymmetricFunctions.Cone

class Characteristic(alg)
Bases: sage.combinat.chas.wqsym.WQSymBasis_abstract

144 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The Characteristic basis of 𝑊𝑄𝑆𝑦𝑚.

The Characteristic basis is a graded basis (𝑋𝑃) of 𝑊𝑄𝑆𝑦𝑚, indexed by ordered set partitions 𝑃 . It is
defined by

𝑋𝑃 = (−1)ℓ(𝑃)M𝑃 ,

where (M𝑃)𝑃 denotes the Monomial basis, and where ℓ(𝑃) denotes the number of blocks in an ordered
set partition 𝑃 .

EXAMPLES:

sage: WQSym = algebras.WQSym(QQ)
sage: X = WQSym.X(); X
Word Quasi-symmetric functions over Rational Field in the Characteristic basis

sage: X[[[1,2,3]]] * X[[1,2],[3]]
X[{1, 2, 3}, {4, 5}, {6}] - X[{1, 2, 3, 4, 5}, {6}]
+ X[{4, 5}, {1, 2, 3}, {6}] - X[{4, 5}, {1, 2, 3, 6}]
+ X[{4, 5}, {6}, {1, 2, 3}]

sage: X[[1, 4], [3], [2]].coproduct()
X[] # X[{1, 4}, {3}, {2}] + X[{1, 2}] # X[{2}, {1}]
+ X[{1, 3}, {2}] # X[{1}] + X[{1, 4}, {3}, {2}] # X[]

sage: M = WQSym.M()
sage: M(X[[1, 2, 3],])
-M[{1, 2, 3}]
sage: M(X[[1, 3], [2]])
M[{1, 3}, {2}]
sage: X(M[[1, 2, 3],])
-X[{1, 2, 3}]
sage: X(M[[1, 3], [2]])
X[{1, 3}, {2}]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

algebraic_complement()
Return the image of the element self of 𝑊𝑄𝑆𝑦𝑚 under the algebraic complement involution.

See WQSymBases.ElementMethods.algebraic_complement() for a definition of the involu-
tion and for examples.

See also:

coalgebraic_complement(), star_involution()

EXAMPLES:

sage: WQSym = algebras.WQSym(ZZ)
sage: X = WQSym.X()
sage: X[[1,2],[5,6],[3,4]].algebraic_complement()
X[{3, 4}, {5, 6}, {1, 2}]
sage: X[[3], [1, 2], [4]].algebraic_complement()
X[{4}, {1, 2}, {3}]

coalgebraic_complement()
Return the image of the element self of𝑊𝑄𝑆𝑦𝑚 under the coalgebraic complement involution.

5.1. Comprehensive Module List 145

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

See WQSymBases.ElementMethods.coalgebraic_complement() for a definition of the invo-
lution and for examples.

See also:

algebraic_complement(), star_involution()

EXAMPLES:

sage: WQSym = algebras.WQSym(ZZ)
sage: X = WQSym.X()
sage: X[[1,2],[5,6],[3,4]].coalgebraic_complement()
X[{5, 6}, {1, 2}, {3, 4}]
sage: X[[3], [1, 2], [4]].coalgebraic_complement()
X[{2}, {3, 4}, {1}]

star_involution()
Return the image of the element self of 𝑊𝑄𝑆𝑦𝑚 under the star involution.

See WQSymBases.ElementMethods.star_involution() for a definition of the involution and
for examples.

See also:

algebraic_complement(), coalgebraic_complement()

EXAMPLES:

sage: WQSym = algebras.WQSym(ZZ)
sage: X = WQSym.X()
sage: X[[1,2],[5,6],[3,4]].star_involution()
X[{3, 4}, {1, 2}, {5, 6}]
sage: X[[3], [1, 2], [4]].star_involution()
X[{1}, {3, 4}, {2}]

class Cone(alg)
Bases: sage.combinat.chas.wqsym.WQSymBasis_abstract

The Cone basis of 𝑊𝑄𝑆𝑦𝑚.

Let (𝑋𝑃)𝑃 denote the Characteristic basis of 𝑊𝑄𝑆𝑦𝑚. Denote the quasi-shuffle of two ordered set
partitions 𝐴 and 𝐵 by 𝐴�𝐵. For an ordered set partition 𝑃 = (𝑃1, . . . , 𝑃ℓ), we form a list of or-
dered set partitions [𝑃] := (𝑃 ′1, . . . , 𝑃

′
𝑘) as follows. Define a strictly decreasing sequence of integers

ℓ + 1 = 𝑖0 > 𝑖1 > · · · > 𝑖𝑘 = 1 recursively by requiring that min𝑃𝑖𝑗 ≤ min𝑃𝑎 for all 𝑎 < 𝑖𝑗−1. Set
𝑃 ′𝑗 = (𝑃𝑖𝑗 , . . . , 𝑃𝑖𝑗−1−1).

The Cone basis (𝐶𝑃)𝑃 is defined by

𝐶𝑃 =
∑︁
𝑄

𝑋𝑄,

where the sum is over all elements 𝑄 of the quasi-shuffle product 𝑃 ′1�𝑃 ′2� · · ·�𝑃 ′𝑘 with [𝑃] =
(𝑃 ′1, . . . , 𝑃

′
𝑘).

EXAMPLES:

sage: WQSym = algebras.WQSym(QQ)
sage: C = WQSym.C()
sage: C
Word Quasi-symmetric functions over Rational Field in the Cone basis

(continues on next page)

146 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: X = WQSym.X()
sage: X(C[[2,3],[1,4]])
X[{1, 2, 3, 4}] + X[{1, 4}, {2, 3}] + X[{2, 3}, {1, 4}]
sage: X(C[[1,4],[2,3]])
X[{1, 4}, {2, 3}]
sage: X(C[[2,3],[1],[4]])
X[{1}, {2, 3}, {4}] + X[{1}, {2, 3, 4}] + X[{1}, {4}, {2, 3}]
+ X[{1, 2, 3}, {4}] + X[{2, 3}, {1}, {4}]
sage: X(C[[3], [2, 5], [1, 4]])
X[{1, 2, 3, 4, 5}] + X[{1, 2, 4, 5}, {3}] + X[{1, 3, 4}, {2, 5}]
+ X[{1, 4}, {2, 3, 5}] + X[{1, 4}, {2, 5}, {3}]
+ X[{1, 4}, {3}, {2, 5}] + X[{2, 3, 5}, {1, 4}]
+ X[{2, 5}, {1, 3, 4}] + X[{2, 5}, {1, 4}, {3}]
+ X[{2, 5}, {3}, {1, 4}] + X[{3}, {1, 2, 4, 5}]
+ X[{3}, {1, 4}, {2, 5}] + X[{3}, {2, 5}, {1, 4}]
sage: C(X[[2,3],[1,4]])
-C[{1, 2, 3, 4}] - C[{1, 4}, {2, 3}] + C[{2, 3}, {1, 4}]

REFERENCES:

• Section 4 of [Early2017]

Todo: Experiments suggest that algebraic_complement(), coalgebraic_complement(), and
star_involution() should have reasonable formulas on the C basis; at least the coefficients of the out-
puts on any element of the C basis seem to be always 0, 1,−1. Is this true? What is the formula?

some_elements()
Return some elements of the word quasi-symmetric functions in the Cone basis.

EXAMPLES:

sage: C = algebras.WQSym(QQ).C()
sage: C.some_elements()
[C[], C[{1}], C[{1, 2}], C[] + 1/2*C[{1}]]

M
alias of WordQuasiSymmetricFunctions.Monomial

class Monomial(alg, graded=True)
Bases: sage.combinat.chas.wqsym.WQSymBasis_abstract

The Monomial basis of 𝑊𝑄𝑆𝑦𝑚.

The family (M𝑢), as defined in WordQuasiSymmetricFunctions with 𝑢 ranging over all packed words,
is a basis for the free𝑅-module𝑊𝑄𝑆𝑦𝑚 and called the Monomial basis. Here it is labelled using ordered
set partitions.

EXAMPLES:

sage: WQSym = algebras.WQSym(QQ)
sage: M = WQSym.M(); M
Word Quasi-symmetric functions over Rational Field in the Monomial basis
sage: sorted(M.basis(2))
[M[{1, 2}], M[{2}, {1}], M[{1}, {2}]]

5.1. Comprehensive Module List 147

Combinatorics, Release 9.7

coproduct_on_basis(x)
Return the coproduct of self on the basis element indexed by the ordered set partition x.

EXAMPLES:

sage: M = algebras.WQSym(QQ).M()

sage: M.coproduct(M.one()) # indirect doctest
M[] # M[]
sage: M.coproduct(M([[1]])) # indirect doctest
M[] # M[{1}] + M[{1}] # M[]
sage: M.coproduct(M([[1,2]]))
M[] # M[{1, 2}] + M[{1, 2}] # M[]
sage: M.coproduct(M([[1], [2]]))
M[] # M[{1}, {2}] + M[{1}] # M[{1}] + M[{1}, {2}] # M[]

product_on_basis(x, y)
Return the (associative) * product of the basis elements of self indexed by the ordered set partitions
𝑥 and 𝑦.

This is the shifted quasi-shuffle product of 𝑥 and 𝑦.

EXAMPLES:

sage: A = algebras.WQSym(QQ).M()
sage: x = OrderedSetPartition([[1],[2,3]])
sage: y = OrderedSetPartition([[1,2]])
sage: z = OrderedSetPartition([[1,2],[3]])
sage: A.product_on_basis(x, y)
M[{1}, {2, 3}, {4, 5}] + M[{1}, {2, 3, 4, 5}]
+ M[{1}, {4, 5}, {2, 3}] + M[{1, 4, 5}, {2, 3}]
+ M[{4, 5}, {1}, {2, 3}]
sage: A.product_on_basis(x, z)
M[{1}, {2, 3}, {4, 5}, {6}] + M[{1}, {2, 3, 4, 5}, {6}]
+ M[{1}, {4, 5}, {2, 3}, {6}] + M[{1}, {4, 5}, {2, 3, 6}]
+ M[{1}, {4, 5}, {6}, {2, 3}] + M[{1, 4, 5}, {2, 3}, {6}]
+ M[{1, 4, 5}, {2, 3, 6}] + M[{1, 4, 5}, {6}, {2, 3}]
+ M[{4, 5}, {1}, {2, 3}, {6}] + M[{4, 5}, {1}, {2, 3, 6}]
+ M[{4, 5}, {1}, {6}, {2, 3}] + M[{4, 5}, {1, 6}, {2, 3}]
+ M[{4, 5}, {6}, {1}, {2, 3}]
sage: A.product_on_basis(y, y)
M[{1, 2}, {3, 4}] + M[{1, 2, 3, 4}] + M[{3, 4}, {1, 2}]

Phi
alias of WordQuasiSymmetricFunctions.StronglyFiner

Q
alias of WordQuasiSymmetricFunctions.StronglyCoarser

class StronglyCoarser(alg)
Bases: sage.combinat.chas.wqsym.WQSymBasis_abstract

The Q basis of 𝑊𝑄𝑆𝑦𝑚.

We define a partial order ≤ on the set of all ordered set partitions as follows: 𝐴 ≤ 𝐵 if and only if 𝐴 is
strongly finer than 𝐵 (see is_strongly_finer() for a definition of this).

148 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The Q basis (𝑄𝑃)𝑃 is a basis of 𝑊𝑄𝑆𝑦𝑚 indexed by ordered set partitions, and is defined by

𝑄𝑃 =
∑︁

M𝑊 ,

where the sum is over ordered set partitions 𝑊 satisfying 𝑃 ≤𝑊 .

EXAMPLES:

sage: WQSym = algebras.WQSym(QQ)
sage: M = WQSym.M(); Q = WQSym.Q()
sage: Q
Word Quasi-symmetric functions over Rational Field in the Q basis

sage: Q(M[[2,3],[1,4]])
Q[{2, 3}, {1, 4}]
sage: Q(M[[1,2],[3,4]])
Q[{1, 2}, {3, 4}] - Q[{1, 2, 3, 4}]
sage: M(Q[[1,2],[3,4]])
M[{1, 2}, {3, 4}] + M[{1, 2, 3, 4}]
sage: M(Q[[2,3],[1],[4]])
M[{2, 3}, {1}, {4}] + M[{2, 3}, {1, 4}]
sage: M(Q[[3], [2, 5], [1, 4]])
M[{3}, {2, 5}, {1, 4}]
sage: M(Q[[1, 4], [2, 3], [5], [6]])
M[{1, 4}, {2, 3}, {5}, {6}] + M[{1, 4}, {2, 3}, {5, 6}]
+ M[{1, 4}, {2, 3, 5}, {6}] + M[{1, 4}, {2, 3, 5, 6}]

sage: Q[[1, 3], [2]] * Q[[1], [2]]
Q[{1, 3}, {2}, {4}, {5}] + Q[{1, 3}, {4}, {2}, {5}]
+ Q[{1, 3}, {4}, {5}, {2}] + Q[{4}, {1, 3}, {2}, {5}]
+ Q[{4}, {1, 3}, {5}, {2}] + Q[{4}, {5}, {1, 3}, {2}]

sage: Q[[1, 3], [2]].coproduct()
Q[] # Q[{1, 3}, {2}] + Q[{1, 2}] # Q[{1}] + Q[{1, 3}, {2}] # Q[]

REFERENCES:

• Section 6 of [BerZab05]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

algebraic_complement()
Return the image of the element self of 𝑊𝑄𝑆𝑦𝑚 under the algebraic complement involution.

See WQSymBases.ElementMethods.algebraic_complement() for a definition of the involu-
tion and for examples.

See also:

coalgebraic_complement(), star_involution()

EXAMPLES:

sage: WQSym = algebras.WQSym(ZZ)
sage: Q = WQSym.Q()
sage: Q[[1,2],[5,6],[3,4]].algebraic_complement()
Q[{3, 4}, {1, 2, 5, 6}] + Q[{3, 4}, {5, 6}, {1, 2}]

(continues on next page)

5.1. Comprehensive Module List 149

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

(continued from previous page)

- Q[{3, 4, 5, 6}, {1, 2}]
sage: Q[[3], [1, 2], [4]].algebraic_complement()
Q[{1, 2, 4}, {3}] + Q[{4}, {1, 2}, {3}] - Q[{4}, {1, 2, 3}]

coalgebraic_complement()
Return the image of the element self of𝑊𝑄𝑆𝑦𝑚 under the coalgebraic complement involution.

See WQSymBases.ElementMethods.coalgebraic_complement() for a definition of the invo-
lution and for examples.

See also:

algebraic_complement(), star_involution()

EXAMPLES:

sage: WQSym = algebras.WQSym(ZZ)
sage: Q = WQSym.Q()
sage: Q[[1,2],[5,6],[3,4]].coalgebraic_complement()
Q[{1, 2, 5, 6}, {3, 4}] + Q[{5, 6}, {1, 2}, {3, 4}] - Q[{5, 6}, {1, 2, 3,
→˓ 4}]
sage: Q[[3], [1, 2], [4]].coalgebraic_complement()
Q[{2}, {1, 3, 4}] + Q[{2}, {3, 4}, {1}] - Q[{2, 3, 4}, {1}]

star_involution()
Return the image of the element self of 𝑊𝑄𝑆𝑦𝑚 under the star involution.

See WQSymBases.ElementMethods.star_involution() for a definition of the involution and
for examples.

See also:

algebraic_complement(), coalgebraic_complement()

EXAMPLES:

sage: WQSym = algebras.WQSym(ZZ)
sage: Q = WQSym.Q()
sage: Q[[1,2],[5,6],[3,4]].star_involution()
Q[{3, 4}, {1, 2}, {5, 6}]
sage: Q[[3], [1, 2], [4]].star_involution()
Q[{1}, {3, 4}, {2}]

coproduct_on_basis(x)
Return the coproduct of self on the basis element indexed by the ordered set partition x.

EXAMPLES:

sage: Q = algebras.WQSym(QQ).Q()

sage: Q.coproduct(Q.one()) # indirect doctest
Q[] # Q[]
sage: Q.coproduct(Q([[1]])) # indirect doctest
Q[] # Q[{1}] + Q[{1}] # Q[]
sage: Q.coproduct(Q([[1,2]]))
Q[] # Q[{1, 2}] + Q[{1, 2}] # Q[]
sage: Q.coproduct(Q([[1], [2]]))

(continues on next page)

150 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Q[] # Q[{1}, {2}] + Q[{1}] # Q[{1}] + Q[{1}, {2}] # Q[]
sage: Q[[1,2],[3],[4]].coproduct()
Q[] # Q[{1, 2}, {3}, {4}] + Q[{1, 2}] # Q[{1}, {2}]
+ Q[{1, 2}, {3}] # Q[{1}] + Q[{1, 2}, {3}, {4}] # Q[]

product_on_basis(x, y)
Return the (associative) * product of the basis elements of the Q basis self indexed by the ordered
set partitions 𝑥 and 𝑦.

This is the shifted shuffle product of 𝑥 and 𝑦.

EXAMPLES:

sage: A = algebras.WQSym(QQ).Q()
sage: x = OrderedSetPartition([[1],[2,3]])
sage: y = OrderedSetPartition([[1,2]])
sage: z = OrderedSetPartition([[1,2],[3]])
sage: A.product_on_basis(x, y)
Q[{1}, {2, 3}, {4, 5}] + Q[{1}, {4, 5}, {2, 3}]
+ Q[{4, 5}, {1}, {2, 3}]
sage: A.product_on_basis(x, z)
Q[{1}, {2, 3}, {4, 5}, {6}] + Q[{1}, {4, 5}, {2, 3}, {6}]
+ Q[{1}, {4, 5}, {6}, {2, 3}] + Q[{4, 5}, {1}, {2, 3}, {6}]
+ Q[{4, 5}, {1}, {6}, {2, 3}] + Q[{4, 5}, {6}, {1}, {2, 3}]
sage: A.product_on_basis(y, y)
Q[{1, 2}, {3, 4}] + Q[{3, 4}, {1, 2}]

some_elements()
Return some elements of the word quasi-symmetric functions in the Q basis.

EXAMPLES:

sage: Q = algebras.WQSym(QQ).Q()
sage: Q.some_elements()
[Q[], Q[{1}], Q[{1, 2}], Q[] + 1/2*Q[{1}]]

class StronglyFiner(alg)
Bases: sage.combinat.chas.wqsym.WQSymBasis_abstract

The Phi basis of 𝑊𝑄𝑆𝑦𝑚.

We define a partial order ≤ on the set of all ordered set partitions as follows: 𝐴 ≤ 𝐵 if and only if 𝐴 is
strongly finer than 𝐵 (see is_strongly_finer() for a definition of this).

The Phi basis (Φ𝑃)𝑃 is a basis of 𝑊𝑄𝑆𝑦𝑚 indexed by ordered set partitions, and is defined by

Φ𝑃 =
∑︁

M𝑊 ,

where the sum is over ordered set partitions 𝑊 satisfying 𝑊 ≤ 𝑃 .

Novelli and Thibon introduced this basis in [NovThi06] Section 2.7.2, and called it the quasi-ribbon basis.
It later reappeared in [MeNoTh11] Section 4.3.2.

EXAMPLES:

sage: WQSym = algebras.WQSym(QQ)
sage: M = WQSym.M(); Phi = WQSym.Phi()

(continues on next page)

5.1. Comprehensive Module List 151

Combinatorics, Release 9.7

(continued from previous page)

sage: Phi
Word Quasi-symmetric functions over Rational Field in the Phi basis

sage: Phi(M[[2,3],[1,4]])
Phi[{2}, {3}, {1}, {4}] - Phi[{2}, {3}, {1, 4}]
- Phi[{2, 3}, {1}, {4}] + Phi[{2, 3}, {1, 4}]
sage: Phi(M[[1,2],[3,4]])
Phi[{1}, {2}, {3}, {4}] - Phi[{1}, {2}, {3, 4}]
- Phi[{1, 2}, {3}, {4}] + Phi[{1, 2}, {3, 4}]
sage: M(Phi[[1,2],[3,4]])
M[{1}, {2}, {3}, {4}] + M[{1}, {2}, {3, 4}]
+ M[{1, 2}, {3}, {4}] + M[{1, 2}, {3, 4}]
sage: M(Phi[[2,3],[1],[4]])
M[{2}, {3}, {1}, {4}] + M[{2, 3}, {1}, {4}]
sage: M(Phi[[3], [2, 5], [1, 4]])
M[{3}, {2}, {5}, {1}, {4}] + M[{3}, {2}, {5}, {1, 4}]
+ M[{3}, {2, 5}, {1}, {4}] + M[{3}, {2, 5}, {1, 4}]
sage: M(Phi[[1, 4], [2, 3], [5], [6]])
M[{1}, {4}, {2}, {3}, {5}, {6}] + M[{1}, {4}, {2, 3}, {5}, {6}]
+ M[{1, 4}, {2}, {3}, {5}, {6}] + M[{1, 4}, {2, 3}, {5}, {6}]

sage: Phi[[1],] * Phi[[1, 3], [2]]
Phi[{1, 2, 4}, {3}] + Phi[{2}, {1, 4}, {3}]
+ Phi[{2, 4}, {1, 3}] + Phi[{2, 4}, {3}, {1}]
sage: Phi[[3, 5], [1, 4], [2]].coproduct()
Phi[] # Phi[{3, 5}, {1, 4}, {2}]
+ Phi[{1}] # Phi[{4}, {1, 3}, {2}]
+ Phi[{1, 2}] # Phi[{1, 3}, {2}]
+ Phi[{2, 3}, {1}] # Phi[{2}, {1}]
+ Phi[{2, 4}, {1, 3}] # Phi[{1}]
+ Phi[{3, 5}, {1, 4}, {2}] # Phi[]

REFERENCES:

• Section 2.7.2 of [NovThi06]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

algebraic_complement()
Return the image of the element self of 𝑊𝑄𝑆𝑦𝑚 under the algebraic complement involution.

See WQSymBases.ElementMethods.algebraic_complement() for a definition of the involu-
tion and for examples.

See also:

coalgebraic_complement(), star_involution()

EXAMPLES:

sage: WQSym = algebras.WQSym(ZZ)
sage: Phi = WQSym.Phi()
sage: Phi[[1],[2,4],[3]].algebraic_complement()
-Phi[{3}, {2}, {4}, {1}] + Phi[{3}, {2, 4}, {1}] + Phi[{3}, {4}, {2}, {1}
→˓]

(continues on next page)

152 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

(continued from previous page)

sage: Phi[[1],[2,3],[4]].algebraic_complement()
-Phi[{4}, {2}, {3}, {1}] + Phi[{4}, {2, 3}, {1}] + Phi[{4}, {3}, {2}, {1}
→˓]

coalgebraic_complement()
Return the image of the element self of𝑊𝑄𝑆𝑦𝑚 under the coalgebraic complement involution.

See WQSymBases.ElementMethods.coalgebraic_complement() for a definition of the invo-
lution and for examples.

See also:

algebraic_complement(), star_involution()

EXAMPLES:

sage: WQSym = algebras.WQSym(ZZ)
sage: Phi = WQSym.Phi()
sage: Phi[[1],[2],[3,4]].coalgebraic_complement()
-Phi[{4}, {3}, {1}, {2}] + Phi[{4}, {3}, {1, 2}] + Phi[{4}, {3}, {2}, {1}
→˓]
sage: Phi[[2],[1,4],[3]].coalgebraic_complement()
-Phi[{3}, {1}, {4}, {2}] + Phi[{3}, {1, 4}, {2}] + Phi[{3}, {4}, {1}, {2}
→˓]

star_involution()
Return the image of the element self of 𝑊𝑄𝑆𝑦𝑚 under the star involution.

See WQSymBases.ElementMethods.star_involution() for a definition of the involution and
for examples.

See also:

algebraic_complement(), coalgebraic_complement()

EXAMPLES:

sage: WQSym = algebras.WQSym(ZZ)
sage: Phi = WQSym.Phi()
sage: Phi[[1,2],[5,6],[3,4]].star_involution()
Phi[{3, 4}, {1, 2}, {5, 6}]
sage: Phi[[3], [1, 2], [4]].star_involution()
Phi[{1}, {3, 4}, {2}]

coproduct_on_basis(x)
Return the coproduct of self on the basis element indexed by the ordered set partition x.

The coproduct of the basis element Φ𝑥 indexed by an ordered set partition 𝑥 of [𝑛] can be computed
by the following formula ([NovThi06]):

∆Φ𝑥 =
∑︁

Φ𝑦 ⊗ Φ𝑧,

where the sum ranges over all pairs (𝑦, 𝑧) of ordered set partitions 𝑦 and 𝑧 such that:
• 𝑦 and 𝑧 are ordered set partitions of two complementary subsets of [𝑛];
• 𝑥 is obtained either by concatenating 𝑦 and 𝑧, or by first concatenating 𝑦 and 𝑧 and then merging

the two “middle blocks” (i.e., the last block of 𝑦 and the first block of 𝑧); in the latter case, the
maximum of the last block of 𝑦 has to be smaller than the minimum of the first block of 𝑧 (so that
when merging these blocks, their entries don’t need to be sorted).

5.1. Comprehensive Module List 153

Combinatorics, Release 9.7

EXAMPLES:

sage: Phi = algebras.WQSym(QQ).Phi()

sage: Phi.coproduct(Phi.one()) # indirect doctest
Phi[] # Phi[]
sage: Phi.coproduct(Phi([[1]])) # indirect doctest
Phi[] # Phi[{1}] + Phi[{1}] # Phi[]
sage: Phi.coproduct(Phi([[1,2]]))
Phi[] # Phi[{1, 2}] + Phi[{1}] # Phi[{1}] + Phi[{1, 2}] # Phi[]
sage: Phi.coproduct(Phi([[1], [2]]))
Phi[] # Phi[{1}, {2}] + Phi[{1}] # Phi[{1}] + Phi[{1}, {2}] # Phi[]
sage: Phi[[1,2],[3],[4]].coproduct()
Phi[] # Phi[{1, 2}, {3}, {4}] + Phi[{1}] # Phi[{1}, {2}, {3}]
+ Phi[{1, 2}] # Phi[{1}, {2}] + Phi[{1, 2}, {3}] # Phi[{1}]
+ Phi[{1, 2}, {3}, {4}] # Phi[]

product_on_basis(x, y)
Return the (associative) * product of the basis elements of the Phi basis self indexed by the ordered
set partitions 𝑥 and 𝑦.

This is obtained by the following algorithm (going back to [NovThi06]):

Let 𝑥 be an ordered set partition of [𝑚], and 𝑦 an ordered set partition of [𝑛]. Transform 𝑥 into a
list 𝑢 of all the 𝑚 elements of [𝑚] by writing out each block of 𝑥 (in increasing order) and putting
bars between each two consecutive blocks; this is called a barred permutation. Do the same for 𝑦, but
also shift each entry of the resulting barred permutation by 𝑚. Let 𝑣 be the barred permutation of
[𝑚+ 𝑛] ∖ [𝑚] thus obtained. Now, shuffle the two barred permutations 𝑢 and 𝑣 (ignoring the bars) in
all the

(︀
𝑛+𝑚
𝑛

)︀
possible ways. For each shuffle obtained, place bars between some entries of the shuffle,

according to the following rule:
• If two consecutive entries of the shuffle both come from 𝑢, then place a bar between them if the

corresponding entries of 𝑢 had a bar between them.
• If the first of two consecutive entries of the shuffle comes from 𝑣 and the second from 𝑢, then place

a bar between them.
This results in a barred permutation of [𝑚+ 𝑛]. Transform it into an ordered set partition of [𝑚+ 𝑛],
by treating the bars as dividers separating consecutive blocks.

The product Φ𝑥Φ𝑦 is the sum of Φ𝑝 with 𝑝 ranging over all ordered set partitions obtained this way.

EXAMPLES:

sage: A = algebras.WQSym(QQ).Phi()
sage: x = OrderedSetPartition([[1],[2,3]])
sage: y = OrderedSetPartition([[1,2]])
sage: z = OrderedSetPartition([[1,2],[3]])
sage: A.product_on_basis(x, y)
Phi[{1}, {2, 3, 4, 5}] + Phi[{1}, {2, 4}, {3, 5}]
+ Phi[{1}, {2, 4, 5}, {3}] + Phi[{1, 4}, {2, 3, 5}]
+ Phi[{1, 4}, {2, 5}, {3}] + Phi[{1, 4, 5}, {2, 3}]
+ Phi[{4}, {1}, {2, 3, 5}] + Phi[{4}, {1}, {2, 5}, {3}]
+ Phi[{4}, {1, 5}, {2, 3}] + Phi[{4, 5}, {1}, {2, 3}]
sage: A.product_on_basis(x, z)
Phi[{1}, {2, 3, 4, 5}, {6}] + Phi[{1}, {2, 4}, {3, 5}, {6}]
+ Phi[{1}, {2, 4, 5}, {3, 6}] + Phi[{1}, {2, 4, 5}, {6}, {3}]
+ Phi[{1, 4}, {2, 3, 5}, {6}] + Phi[{1, 4}, {2, 5}, {3, 6}]
+ Phi[{1, 4}, {2, 5}, {6}, {3}] + Phi[{1, 4, 5}, {2, 3, 6}]

(continues on next page)

154 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

+ Phi[{1, 4, 5}, {2, 6}, {3}] + Phi[{1, 4, 5}, {6}, {2, 3}]
+ Phi[{4}, {1}, {2, 3, 5}, {6}]
+ Phi[{4}, {1}, {2, 5}, {3, 6}]
+ Phi[{4}, {1}, {2, 5}, {6}, {3}]
+ Phi[{4}, {1, 5}, {2, 3, 6}] + Phi[{4}, {1, 5}, {2, 6}, {3}]
+ Phi[{4}, {1, 5}, {6}, {2, 3}] + Phi[{4, 5}, {1}, {2, 3, 6}]
+ Phi[{4, 5}, {1}, {2, 6}, {3}] + Phi[{4, 5}, {1, 6}, {2, 3}]
+ Phi[{4, 5}, {6}, {1}, {2, 3}]
sage: A.product_on_basis(y, y)
Phi[{1, 2, 3, 4}] + Phi[{1, 3}, {2, 4}] + Phi[{1, 3, 4}, {2}]
+ Phi[{3}, {1, 2, 4}] + Phi[{3}, {1, 4}, {2}]
+ Phi[{3, 4}, {1, 2}]

some_elements()
Return some elements of the word quasi-symmetric functions in the Phi basis.

EXAMPLES:

sage: Phi = algebras.WQSym(QQ).Phi()
sage: Phi.some_elements()
[Phi[], Phi[{1}], Phi[{1, 2}], Phi[] + 1/2*Phi[{1}]]

X
alias of WordQuasiSymmetricFunctions.Characteristic

a_realization()
Return a particular realization of self (the 𝑀 -basis).

EXAMPLES:

sage: WQSym = algebras.WQSym(QQ)
sage: WQSym.a_realization()
Word Quasi-symmetric functions over Rational Field in the Monomial basis

options(*get_value, **set_value)
Set and display the global options for bases of WordQuasiSymmetricFunctions. If no parameters are set,
then the function returns a copy of the options dictionary.

The options can be accessed as the method WordQuasiSymmetricFunctions.options of
WordQuasiSymmetricFunctions or of any associated basis.

OPTIONS:

• display – (default: normal) Specifies how basis elements of WordQuasiSymmetricFunctions should
be printed

– compact – Using a severely compacted representation

– normal – Using the normal representation

– tight – Dropping spaces after commas

• objects – (default: compositions) Specifies how basis elements of WordQuasiSymmetricFunctions
should be indexed

– compositions – Indexing the basis by ordered set partitions

– words – Indexing the basis by packed words

5.1. Comprehensive Module List 155

Combinatorics, Release 9.7

The 'words' representation of a basis element of WordQuasiSymmetricFunctions, indexed by
an ordered set partition 𝐴, is the packed word associated to 𝐴. See OrderedSetPartition.
to_packed_word() for details.)

EXAMPLES:

sage: WQ = WordQuasiSymmetricFunctions(QQ)
sage: M = WQ.M()
sage: elt = M[[[1,2]]]*M[[[1]]]; elt
M[{1, 2}, {3}] + M[{1, 2, 3}] + M[{3}, {1, 2}]
sage: M.options.display = "tight"
sage: elt
M[{1,2},{3}] + M[{1,2,3}] + M[{3},{1,2}]
sage: M.options.display = "compact"
sage: elt
M[12.3] + M[123] + M[3.12]
sage: WQ.options._reset()
sage: M.options.objects = "words"
sage: elt
M[1, 1, 2] + M[1, 1, 1] + M[2, 2, 1]
sage: M.options.display = "tight"
sage: elt
M[1,1,2] + M[1,1,1] + M[2,2,1]
sage: WQ.options.display = "compact"
sage: elt
M[112] + M[111] + M[221]
sage: M.options._reset()
sage: elt
M[{1, 2}, {3}] + M[{1, 2, 3}] + M[{3}, {1, 2}]

See GlobalOptions for more features of these options.

5.1.16 Cluster algebras and quivers

• A compendium on the cluster algebra and quiver package in Sage [MS2011]

• Quiver mutation types

• Quiver

• ClusterSeed

5.1.17 ClusterSeed

A cluster seed is a pair (𝐵,x) with 𝐵 being a skew-symmetrizable (𝑛+𝑚× 𝑛) -matrix and with x being an 𝑛-tuple
of independent elements in the field of rational functions in 𝑛 variables.

For the compendium on the cluster algebra and quiver package see [MS2011].

AUTHORS:

• Gregg Musiker: Initial Version

• Christian Stump: Initial Version

• Aram Dermenjian (2015-07-01): Updating ability to not rely solely on clusters

156 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

• Jesse Levitt (2015-07-01): Updating ability to not rely solely on clusters

REFERENCES:

• [FZ2007]

• [BDP2013]

See also:

For mutation types of cluster seeds, see sage.combinat.cluster_algebra_quiver.quiver_mutation_type.
QuiverMutationType(). Cluster seeds are closely related to sage.combinat.cluster_algebra_quiver.
quiver.ClusterQuiver().

class sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed(data, frozen=None,
is_principal=False,
user_labels=None,
user_labels_prefix='x')

Bases: sage.structure.sage_object.SageObject

The cluster seed associated to an exchange matrix.

INPUT:

• data – can be any of the following:

* QuiverMutationType
* str - a string representing a QuiverMutationType or a common quiver type (see␣
→˓Examples)
* ClusterQuiver
* Matrix - a skew-symmetrizable matrix
* DiGraph - must be the input data for a quiver
* List of edges - must be the edge list of a digraph for a quiver

EXAMPLES:

sage: S = ClusterSeed(['A',5]); S
A seed for a cluster algebra of rank 5 of type ['A', 5]

sage: S = ClusterSeed(['A',[2,5],1]); S
A seed for a cluster algebra of rank 7 of type ['A', [2, 5], 1]

sage: T = ClusterSeed(S); T
A seed for a cluster algebra of rank 7 of type ['A', [2, 5], 1]

sage: T = ClusterSeed(S._M); T
A seed for a cluster algebra of rank 7

sage: T = ClusterSeed(S.quiver()._digraph); T
A seed for a cluster algebra of rank 7

sage: T = ClusterSeed(S.quiver()._digraph.edges(sort=True)); T
A seed for a cluster algebra of rank 7

sage: S = ClusterSeed(['B',2]); S
A seed for a cluster algebra of rank 2 of type ['B', 2]

sage: S = ClusterSeed(['C',2]); S
(continues on next page)

5.1. Comprehensive Module List 157

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

(continued from previous page)

A seed for a cluster algebra of rank 2 of type ['B', 2]

sage: S = ClusterSeed(['A', [5,0],1]); S
A seed for a cluster algebra of rank 5 of type ['D', 5]

sage: S = ClusterSeed(['GR',[3,7]]); S
A seed for a cluster algebra of rank 6 of type ['E', 6]

sage: S = ClusterSeed(['F', 4, [2,1]]); S
A seed for a cluster algebra of rank 6 of type ['F', 4, [1, 2]]

sage: S = ClusterSeed(['A',4]); S._use_fpolys
True

sage: S._use_d_vec
True

sage: S._use_g_vec
True

sage: S._use_c_vec
True

sage: S = ClusterSeed(['A', 4]); S.use_fpolys(False); S._use_fpolys
False

sage: S = ClusterSeed(DiGraph([['a', 'b'], ['c', 'b'], ['c', 'd'], ['e', 'd']]),␣
→˓frozen =
....: ['c']); S
A seed for a cluster algebra of rank 4 with 1 frozen variable

sage: S = ClusterSeed(['D', 4],user_labels = [-1, 0, 1, 2]);S
A seed for a cluster algebra of rank 4 of type ['D', 4]

LLM_gen_set(size_limit=- 1)
Produce a list of upper cluster algebra elements corresponding to all vectors in {0, 1}𝑛.

INPUT:

• 𝐵 – a skew-symmetric matrix.

• size_limit – a limit on how many vectors you want the function to return.

OUTPUT:

An array of elements in the upper cluster algebra.

EXAMPLES:

sage: B = matrix([[0,1,0],[-1,0,1],[0,-1,0],[1,0,0],[0,1,0],[0,0,1]])
sage: C = ClusterSeed(B)
sage: C.LLM_gen_set()
[1,
(x1 + x3)/x0,
(x0*x4 + x2)/x1,

(continues on next page)

158 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(x0*x3*x4 + x1*x2 + x2*x3)/(x0*x1),
(x1*x5 + 1)/x2,
(x1^2*x5 + x1*x3*x5 + x1 + x3)/(x0*x2),
(x0*x1*x4*x5 + x0*x4 + x2)/(x1*x2),
(x0*x1*x3*x4*x5 + x0*x3*x4 + x1*x2 + x2*x3)/(x0*x1*x2)]

b_matrix()
Returns the 𝐵 -matrix of self.

EXAMPLES:

sage: ClusterSeed(['A',4]).b_matrix()
[0 1 0 0]
[-1 0 -1 0]
[0 1 0 1]
[0 0 -1 0]

sage: ClusterSeed(['B',4]).b_matrix()
[0 1 0 0]
[-1 0 -1 0]
[0 1 0 1]
[0 0 -2 0]

sage: ClusterSeed(['D',4]).b_matrix()
[0 1 0 0]
[-1 0 -1 -1]
[0 1 0 0]
[0 1 0 0]

sage: ClusterSeed(QuiverMutationType([['A',2],['B',2]])).b_matrix()
[0 1 0 0]
[-1 0 0 0]
[0 0 0 1]
[0 0 -2 0]

b_matrix_class(depth=+ Infinity, up_to_equivalence=True)
Returns all 𝐵-matrices in the mutation class of self.

INPUT:

• depth – (default:infinity) integer or infinity, only seeds with distance at most depth from self are
returned

• up_to_equivalence – (default: True) if True, only ‘B’-matrices up to equivalence are considered.

EXAMPLES:

• for examples see b_matrix_class_iter()

b_matrix_class_iter(depth=+ Infinity, up_to_equivalence=True)
Returns an iterator through all 𝐵-matrices in the mutation class of self.

INPUT:

• depth – (default:infinity) integer or infinity, only seeds with distance at most depth from self are
returned

• up_to_equivalence – (default: True) if True, only ‘B’-matrices up to equivalence are considered.

5.1. Comprehensive Module List 159

Combinatorics, Release 9.7

EXAMPLES:

A standard finite type example:

sage: S = ClusterSeed(['A',4])
sage: it = S.b_matrix_class_iter()
sage: for T in it: print(T)
[0 0 0 1]
[0 0 1 1]
[0 -1 0 0]
[-1 -1 0 0]
[0 0 0 1]
[0 0 1 0]
[0 -1 0 1]
[-1 0 -1 0]
[0 0 1 1]
[0 0 0 -1]
[-1 0 0 0]
[-1 1 0 0]
[0 0 0 1]
[0 0 -1 1]
[0 1 0 -1]
[-1 -1 1 0]
[0 0 0 1]
[0 0 -1 0]
[0 1 0 -1]
[-1 0 1 0]
[0 0 0 -1]
[0 0 -1 1]
[0 1 0 -1]
[1 -1 1 0]

A finite type example with given depth:

sage: it = S.b_matrix_class_iter(depth=1)
sage: for T in it: print(T)
[0 0 0 1]
[0 0 1 1]
[0 -1 0 0]
[-1 -1 0 0]
[0 0 0 1]
[0 0 1 0]
[0 -1 0 1]
[-1 0 -1 0]
[0 0 1 1]
[0 0 0 -1]
[-1 0 0 0]
[-1 1 0 0]

Finite type example not considered up to equivalence:

sage: S = ClusterSeed(['A',3])
sage: it = S.b_matrix_class_iter(up_to_equivalence=False)
sage: b_matrix_class = list(it)

(continues on next page)

160 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: len(b_matrix_class)
14
sage: b_matrix_class[0]
[0 1 0]
[-1 0 -1]
[0 1 0]

Infinite (but finite mutation) type example:

sage: S = ClusterSeed(['A',[1,2],1])
sage: it = S.b_matrix_class_iter()
sage: for T in it: print(T)
[0 1 1]
[-1 0 1]
[-1 -1 0]
[0 -2 1]
[2 0 -1]
[-1 1 0]

Infinite mutation type example:

sage: S = ClusterSeed(['E',10])
sage: it = S.b_matrix_class_iter(depth=3)
sage: len ([T for T in it])
266

For a cluster seed from an arbitrarily labelled digraph:

sage: dg = DiGraph([['a', 'b'], ['b', 'c']], format="list_of_edges")
sage: S = ClusterSeed(dg, frozen=['b'])
sage: S.b_matrix_class()
[
[0 0] [0 0] [0 0]
[0 0] [0 0] [0 0]
[-1 1], [-1 -1], [1 1]
]

c_matrix(show_warnings=True)
Return all c-vectors of self.

Warning: this method assumes the sign-coherence conjecture and that the input seed is sign-coherent (has
an exchange matrix with columns of like signs). Otherwise, computational errors might arise.

EXAMPLES:

sage: S = ClusterSeed(['A',3]).principal_extension()
sage: S.mutate([2,1,2])
sage: S.c_matrix()
[1 0 0]
[0 0 -1]
[0 -1 0]

sage: S = ClusterSeed(['A',4])
sage: S.use_g_vectors(False); S.use_fpolys(False); S.use_c_vectors(False); S.
→˓use_d_vectors(False); S.track_mutations(False); (continues on next page)

5.1. Comprehensive Module List 161

Combinatorics, Release 9.7

(continued from previous page)

sage: S.c_matrix()
Traceback (most recent call last):
...
ValueError: Unable to calculate c-vectors. Need to use c vectors.

c_vector(k)
Return the k-th c-vector of self. It is obtained as the k-th column vector of the bottom part of the B-matrix
of self.

Warning: this method assumes the sign-coherence conjecture and that the input seed is sign-coherent (has
an exchange matrix with columns of like signs). Otherwise, computational errors might arise.

EXAMPLES:

sage: S = ClusterSeed(['A',3]).principal_extension()
sage: S.mutate([2,1,2])
sage: [S.c_vector(k) for k in range(3)]
[(1, 0, 0), (0, 0, -1), (0, -1, 0)]

sage: S = ClusterSeed(Matrix([[0,1],[-1,0],[1,0],[-1,1]])); S
A seed for a cluster algebra of rank 2 with 2 frozen variables
sage: S.c_vector(0)
(1, 0)

sage: S = ClusterSeed(Matrix([[0,1],[-1,0],[1,0],[-1,1]])); S.use_c_vectors(bot_
→˓is_c=True); S
A seed for a cluster algebra of rank 2 with 2 frozen variables
sage: S.c_vector(0)
(1, -1)

cluster()
Returns a copy of the cluster of self.

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: S.cluster()
[x0, x1, x2]

sage: S.mutate(1)
sage: S.cluster()
[x0, (x0*x2 + 1)/x1, x2]

sage: S.mutate(2)
sage: S.cluster()
[x0, (x0*x2 + 1)/x1, (x0*x2 + x1 + 1)/(x1*x2)]

sage: S.mutate([2,1])
sage: S.cluster()
[x0, x1, x2]

cluster_class(depth=+ Infinity, show_depth=False, up_to_equivalence=True)
Return the cluster class of self with respect to certain constraints.

INPUT:

162 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• depth – (default: infinity) integer, only seeds with distance at most depth from self are returned

• return_depth – (default False) - if True, ignored if depth is set; returns the depth of the mutation
class, i.e., the maximal distance from self of an element in the mutation class

• up_to_equivalence – (default: True) if True, only clusters up to equivalence are considered.

EXAMPLES:

• for examples see cluster_class_iter()

cluster_class_iter(depth=+ Infinity, show_depth=False, up_to_equivalence=True)
Returns an iterator through all clusters in the mutation class of self.

INPUT:

• depth – (default: infinity) integer or infinity, only seeds with distance at most depth from self are
returned

• show_depth – (default False) - if True, ignored if depth is set; returns the depth of the mutation class,
i.e., the maximal distance from self of an element in the mutation class

• up_to_equivalence – (default: True) if True, only clusters up to equivalence are considered.

EXAMPLES:

A standard finite type example:

sage: S = ClusterSeed(['A',3])
sage: it = S.cluster_class_iter()
sage: cluster_class = list(it)
sage: len(cluster_class)
14
sage: cluster_class[0]
[x0, x1, x2]

A finite type example with given depth:

sage: it = S.cluster_class_iter(depth=1)
sage: for T in it: print(T)
[x0, x1, x2]
[x0, x1, (x1 + 1)/x2]
[x0, (x0*x2 + 1)/x1, x2]
[(x1 + 1)/x0, x1, x2]

A finite type example where the depth is returned while computing:

sage: it = S.cluster_class_iter(show_depth=True)
sage: _ = list(it)
Depth: 0 found: 1 Time: ... s
Depth: 1 found: 4 Time: ... s
Depth: 2 found: 9 Time: ... s
Depth: 3 found: 13 Time: ... s
Depth: 4 found: 14 Time: ... s

Finite type examples not considered up to equivalence:

sage: it = S.cluster_class_iter(up_to_equivalence=False)
sage: len([T for T in it])

(continues on next page)

5.1. Comprehensive Module List 163

Combinatorics, Release 9.7

(continued from previous page)

84

sage: it = ClusterSeed(['A',2]).cluster_class_iter(up_to_equivalence=False)
sage: cluster_class = list(it)
sage: len(cluster_class)
10
sage: cluster_class[0]
[x0, x1]
sage: cluster_class[-1]
[x1, x0]

Infinite type examples:

sage: S = ClusterSeed(['A',[1,1],1])
sage: it = S.cluster_class_iter()
sage: next(it)
[x0, x1]
sage: next(it)
[x0, (x0^2 + 1)/x1]
sage: next(it)
[(x1^2 + 1)/x0, x1]
sage: next(it)
[(x0^4 + 2*x0^2 + x1^2 + 1)/(x0*x1^2), (x0^2 + 1)/x1]
sage: next(it)
[(x1^2 + 1)/x0, (x1^4 + x0^2 + 2*x1^2 + 1)/(x0^2*x1)]

sage: it = S.cluster_class_iter(depth=3)
sage: for T in it: print(T)
[x0, x1]
[x0, (x0^2 + 1)/x1]
[(x1^2 + 1)/x0, x1]
[(x0^4 + 2*x0^2 + x1^2 + 1)/(x0*x1^2), (x0^2 + 1)/x1]
[(x1^2 + 1)/x0, (x1^4 + x0^2 + 2*x1^2 + 1)/(x0^2*x1)]
[(x0^4 + 2*x0^2 + x1^2 + 1)/(x0*x1^2), (x0^6 + 3*x0^4 + 2*x0^2*x1^2 + x1^4 +␣
→˓3*x0^2 + 2*x1^2 + 1)/(x0^2*x1^3)]
[(x1^6 + x0^4 + 2*x0^2*x1^2 + 3*x1^4 + 2*x0^2 + 3*x1^2 + 1)/(x0^3*x1^2), (x1^4␣
→˓+ x0^2 + 2*x1^2 + 1)/(x0^2*x1)]

For a cluster seed from an arbitrarily labelled digraph:

sage: dg = DiGraph([['a', 'b'], ['b', 'c']], format="list_of_edges")
sage: S = ClusterSeed(dg, frozen = ['b'])
sage: S.cluster_class()
[[a, c], [a, (b + 1)/c], [(b + 1)/a, c], [(b + 1)/a, (b + 1)/c]]

sage: S2 = ClusterSeed(dg, frozen=[])
sage: S2.cluster_class()[0]
[a, b, c]

cluster_index(cluster_str)
Return the index of a cluster if use_fpolys is on.

INPUT:

164 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• cluster_str – the string to look for in the cluster

OUTPUT:

An integer or None if the string is not a cluster variable

EXAMPLES:

sage: S = ClusterSeed(['A', 4], user_labels=['x', 'y', 'z', 'w']); S.mutate('x')
sage: S.cluster_index('x')
sage: S.cluster_index('(y+1)/x')
0

cluster_variable(k)
Generates a cluster variable using F-polynomials

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: S.mutate([0,1])
sage: S.cluster_variable(0)
(x1 + 1)/x0
sage: S.cluster_variable(1)
(x0*x2 + x1 + 1)/(x0*x1)

coefficient(k)
Return the coefficient of self at index k, or vertex k if k is not an index.

EXAMPLES:

sage: S = ClusterSeed(['A',3]).principal_extension()
sage: S.mutate([2,1,2])
sage: [S.coefficient(k) for k in range(3)]
[y0, 1/y2, 1/y1]

coefficients()
Return all coefficients of self.

EXAMPLES:

sage: S = ClusterSeed(['A',3]).principal_extension()
sage: S.mutate([2,1,2])
sage: S.coefficients()
[y0, 1/y2, 1/y1]

d_matrix(show_warnings=True)
Return the matrix of d-vectors of self.

EXAMPLES:

sage: S = ClusterSeed(['A',4]); S.d_matrix()
[-1 0 0 0]
[0 -1 0 0]
[0 0 -1 0]
[0 0 0 -1]
sage: S.mutate([1,2,1,0,1,3]); S.d_matrix()
[1 1 0 1]
[1 1 1 1]

(continues on next page)

5.1. Comprehensive Module List 165

Combinatorics, Release 9.7

(continued from previous page)

[1 0 1 1]
[0 0 0 1]

d_vector(k)
Return the k-th d-vector of self. This is the exponent vector of the denominator of the k-th cluster variable.

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: S.mutate([2,1,2])
sage: [S.d_vector(k) for k in range(3)]
[(-1, 0, 0), (0, 1, 1), (0, 1, 0)]

exchangeable_part()
Return the restriction to the principal part (i.e. the exchangeable variables) of self.

EXAMPLES:

sage: S = ClusterSeed(['A',4])
sage: T = ClusterSeed(S.quiver().digraph().edges(sort=True), frozen=[3])
sage: T.quiver().digraph().edges(sort=True)
[(0, 1, (1, -1)), (2, 1, (1, -1)), (2, 3, (1, -1))]

sage: T.exchangeable_part().quiver().digraph().edges(sort=True)
[(0, 1, (1, -1)), (2, 1, (1, -1))]

f_polynomial(k)
Return the k-th F-polynomial of self. It is obtained from the k-th cluster variable by setting all 𝑥𝑖 to 1.

Warning: this method assumes the sign-coherence conjecture and that the input seed is sign-coherent (has
an exchange matrix with columns of like signs). Otherwise, computational errors might arise.

EXAMPLES:

sage: S = ClusterSeed(['A',3]).principal_extension()
sage: S.mutate([2,1,2])
sage: [S.f_polynomial(k) for k in range(3)]
[1, y1*y2 + y2 + 1, y1 + 1]

sage: S = ClusterSeed(Matrix([[0,1],[-1,0],[1,0],[-1,1]])); S.use_c_vectors(bot_
→˓is_c=True); S
A seed for a cluster algebra of rank 2 with 2 frozen variables
sage: T = ClusterSeed(Matrix([[0,1],[-1,0]])).principal_extension(); T
A seed for a cluster algebra of rank 2 with principal coefficients
sage: S.mutate(0)
sage: T.mutate(0)
sage: S.f_polynomials()
[y0 + y1, 1]
sage: T.f_polynomials()
[y0 + 1, 1]

f_polynomials()
Return all F-polynomials of self. These are obtained from the cluster variables by setting all 𝑥𝑖’s to 1.

Warning: this method assumes the sign-coherence conjecture and that the input seed is sign-coherent (has
an exchange matrix with columns of like signs). Otherwise, computational errors might arise.

166 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: S = ClusterSeed(['A',3]).principal_extension()
sage: S.mutate([2,1,2])
sage: S.f_polynomials()
[1, y1*y2 + y2 + 1, y1 + 1]

find_upper_bound(verbose=False)
Return the upper bound of the given cluster algebra as a quotient_ring.

The upper bound is the intersection of the Laurent polynomial rings of the initial cluster and its neighboring
clusters. As such, it always contains both the cluster algebra and the upper cluster algebra. This function
uses the algorithm from [MM2015].

When the initial seed is totally coprime (for example, when the unfrozen part of the exchange matrix has
full rank), the upper bound is equal to the upper cluster algebra by [BFZ2005].

Warning: The computation time grows rapidly with the size of the seed and the number of steps. For
most seeds larger than four vertices, the algorithm may take an infeasible amount of time. Additionally,
it will run forever without terminating whenever the upper bound is infinitely-generated (such as the
example in [Spe2013]).

INPUT:

• verbose – (default: False) if True, prints output during the computation.

EXAMPLES:

• finite type:

sage: S = ClusterSeed(['A',3])
sage: S.find_upper_bound()
Quotient of Multivariate Polynomial Ring in x0, x1, x2, x0p, x1p, x2p, z0␣
→˓over Rational Field by the ideal (x0*x0p - x1 - 1, x1*x1p - x0*x2 - 1,␣
→˓x2*x2p - x1 - 1, x0*z0 - x2p, x1*z0 + z0 - x0p*x2p, x2*z0 - x0p, x1p*z0 +␣
→˓z0 - x0p*x1p*x2p + x1 + 1)

• Markov:

sage: B = matrix([[0,2,-2],[-2,0,2],[2,-2,0]])
sage: S = ClusterSeed(B)
sage: S.find_upper_bound()
Quotient of Multivariate Polynomial Ring in x0, x1, x2, x0p, x1p, x2p, z0␣
→˓over Rational Field by the ideal (x0*x0p - x2^2 - x1^2, x1*x1p - x2^2 -␣
→˓x0^2, x2*x2p - x1^2 - x0^2, x0p*x1p*x2p - x0*x1*x2p - x0*x2*x1p -␣
→˓x1*x2*x0p - 2*x0*x1*x2, x0^3*z0 - x1p*x2p + x1*x2, x0*x1*z0 - x2p - x2,␣
→˓x1^3*z0 - x0p*x2p + x0*x2, x0*x2*z0 - x1p - x1, x1*x2*z0 - x0p - x0, x2^
→˓3*z0 - x0p*x1p + x0*x1)

first_green_vertex()
Return the first green vertex of self.

A vertex is defined to be green if its c-vector has all non-positive entries. More information on green
vertices can be found at [BDP2013]

EXAMPLES:

5.1. Comprehensive Module List 167

Combinatorics, Release 9.7

sage: ClusterSeed(['A',3]).principal_extension().first_green_vertex()
0

sage: ClusterSeed(['A',[3,3],1]).principal_extension().first_green_vertex()
0

first_red_vertex()
Return the first red vertex of self.

A vertex is defined to be red if its c-vector has all non-negative entries. More information on red vertices
can be found at [BDP2013].

EXAMPLES:

sage: ClusterSeed(['A',3]).principal_extension().first_red_vertex()

sage: ClusterSeed(['A',[3,3],1]).principal_extension().first_red_vertex()

sage: Q = ClusterSeed(['A',[3,3],1]).principal_extension()
sage: Q.mutate(1)
sage: Q.first_red_vertex()
1

first_urban_renewal()
Return the first urban renewal vertex.

An urban renewal vertex is one in which there are two arrows pointing toward the vertex and two arrows
pointing away.

EXAMPLES:

sage: G = ClusterSeed(['GR',[4,9]]); G.first_urban_renewal()
5

free_vertices()
Return the list of exchangeable vertices of self.

EXAMPLES:

sage: S = ClusterSeed(DiGraph([['a', 'b'], ['c', 'b'], ['c', 'd'], ['e', 'd']]),
....: frozen = ['b', 'd'])
sage: S.free_vertices()
['a', 'c', 'e']

sage: S = ClusterSeed(DiGraph([[5, 'b']]))
sage: S.free_vertices()
[5, 'b']

frozen_vertices()
Return the list of frozen vertices of self.

EXAMPLES:

sage: S = ClusterSeed(DiGraph([['a', 'b'], ['c', 'b'], ['c', 'd'], ['e', 'd']]),
....: frozen = ['b', 'd'])
sage: sorted(S.frozen_vertices())
['b', 'd']

168 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

g_matrix(show_warnings=True)
Return the matrix of all g-vectors of self. These are the degree vectors of the cluster variables after setting
all 𝑦𝑖’s to 0.

Warning: this method assumes the sign-coherence conjecture and that the input seed is sign-coherent (has
an exchange matrix with columns of like signs). Otherwise, computational errors might arise.

EXAMPLES:

sage: S = ClusterSeed(['A',3]).principal_extension()
sage: S.mutate([2,1,2])
sage: S.g_matrix()
[1 0 0]
[0 0 -1]
[0 -1 0]

sage: S = ClusterSeed(['A',3])
sage: S.mutate([0,1])
sage: S.g_matrix()
[-1 -1 0]
[1 0 0]
[0 0 1]

sage: S = ClusterSeed(['A',4]); S.use_g_vectors(False); S.use_fpolys(False); S.
→˓g_matrix()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

sage: S = ClusterSeed(['A',4])
sage: S.use_g_vectors(False); S.use_c_vectors(False); S.use_fpolys(False); S.
→˓track_mutations(False); S.g_matrix()
Traceback (most recent call last):
...
ValueError: Unable to calculate g-vectors. Need to use g vectors.

g_vector(k)
Return the k-th g-vector of self. This is the degree vector of the k-th cluster variable after setting all 𝑦𝑖’s
to 0.

Warning: this method assumes the sign-coherence conjecture and that the input seed is sign-coherent (has
an exchange matrix with columns of like signs). Otherwise, computational errors might arise.

EXAMPLES:

sage: S = ClusterSeed(['A',3]).principal_extension()
sage: S.mutate([2,1,2])
sage: [S.g_vector(k) for k in range(3)]
[(1, 0, 0), (0, 0, -1), (0, -1, 0)]

get_upper_cluster_algebra_element(a)
Computes an element in the upper cluster algebra of 𝐵 corresponding to the vector 𝑎 ∈ Z𝑛.

See [LLM2014] for more details.

INPUT:

5.1. Comprehensive Module List 169

Combinatorics, Release 9.7

• 𝐵 – a skew-symmetric matrix. Must have the same number of columns as the length of the vectors in
𝑣𝑑.

• 𝑎 – a vector in Z𝑛 where 𝑛 is the number of columns in 𝐵.

OUTPUT:

Returns an element in the upper cluster algebra. Depending on the input it may or may not be irreducible.

EXAMPLES:

sage: B = matrix([[0,3,-3],[-3,0,3],[3,-3,0],[1,0,0],[0,1,0],[0,0,1]])
sage: C = ClusterSeed(B)
sage: C.get_upper_cluster_algebra_element([1,1,0])
(x0^3*x2^3*x3*x4 + x2^6*x3 + x1^3*x2^3)/(x0*x1)
sage: C.get_upper_cluster_algebra_element([1,1,1])
x0^2*x1^2*x2^2*x3*x4*x5 + x0^2*x1^2*x2^2

sage: B = matrix([[0,3,0],[-3,0,3],[0,-3,0]])
sage: C = ClusterSeed(B)
sage: C.get_upper_cluster_algebra_element([1,1,0])
(x1^3*x2^3 + x0^3 + x2^3)/(x0*x1)
sage: C.get_upper_cluster_algebra_element([1,1,1])
(x0^3*x1^3 + x1^3*x2^3 + x0^3 + x2^3)/(x0*x1*x2)

sage: B = matrix([[0,2],[-3,0],[4,-5]])
sage: C = ClusterSeed(B)
sage: C.get_upper_cluster_algebra_element([1,1])
(x2^9 + x1^3*x2^5 + x0^2*x2^4)/(x0*x1)

sage: B = matrix([[0,3,-5],[-3,0,4],[5,-4,0]])
sage: C = ClusterSeed(B)
sage: C.get_upper_cluster_algebra_element([1,1,1])
x0^4*x1^2*x2^3 + x0^2*x1^3*x2^4

greedy(a1, a2, algorithm='by_recursion')
Returns the greedy element 𝑥[𝑎1, 𝑎2] assuming that self is rank two.

The third input can be ‘by_recursion’, ‘by_combinatorics’, or ‘just_numbers’ to specify if the user wants
the element computed by the recurrence, combinatorial formula, or wants to set 𝑥1 and 𝑥2 to be one.

See [LLZ2014] for more details.

EXAMPLES:

sage: S = ClusterSeed(['R2', [3, 3]])
sage: S.greedy(4, 4)
(x0^12 + x1^12 + 4*x0^9 + 4*x1^9 + 6*x0^6 + 4*x0^3*x1^3 + 6*x1^6 + 4*x0^3 +␣
→˓4*x1^3 + 1)/(x0^4*x1^4)
sage: S.greedy(4, 4, 'by_combinatorics')
(x0^12 + x1^12 + 4*x0^9 + 4*x1^9 + 6*x0^6 + 4*x0^3*x1^3 + 6*x1^6 + 4*x0^3 +␣
→˓4*x1^3 + 1)/(x0^4*x1^4)
sage: S.greedy(4, 4, 'just_numbers')
35
sage: S = ClusterSeed(['R2', [2, 2]])
sage: S.greedy(1, 2)
(x0^4 + 2*x0^2 + x1^2 + 1)/(x0*x1^2)

(continues on next page)

170 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: S.greedy(1, 2, 'by_combinatorics')
(x0^4 + 2*x0^2 + x1^2 + 1)/(x0*x1^2)

green_vertices()
Return the list of green vertices of self.

A vertex is defined to be green if its c-vector has all non-positive entries. More information on green
vertices can be found at [BDP2013]

OUTPUT:

The green vertices as a list of integers.

EXAMPLES:

sage: ClusterSeed(['A',3]).principal_extension().green_vertices()
[0, 1, 2]

sage: ClusterSeed(['A',[3,3],1]).principal_extension().green_vertices()
[0, 1, 2, 3, 4, 5]

ground_field()
Returns the ground field of the cluster of self.

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: S.ground_field()
Multivariate Polynomial Ring in x0, x1, x2, y0, y1, y2 over Rational Field

highest_degree_denominator(filter=None)
Return the vertex of the cluster polynomial with highest degree in the denominator.

INPUT:

• filter - Filter should be a list or iterable

OUTPUT:

An integer.

EXAMPLES:

sage: B = matrix([[0,-1,0,-1,1,1],[1,0,1,0,-1,-1],[0,-1,0,-1,1,1],[1,0,1,0,-1,-
→˓1],[-1,1,-1,1,0,0],[-1,1,-1,1,0,0]])
sage: C = ClusterSeed(B).principal_extension(); C.mutate([0,1,2,4,3,2,5,4,3])
sage: C.highest_degree_denominator()
5

interact(fig_size=1, circular=True)
Start an interactive window for cluster seed mutations.

Only in Jupyter notebook mode.

INPUT:

• fig_size – (default: 1) factor by which the size of the plot is multiplied.

• circular – (default: True) if True, the circular plot is chosen, otherwise >>spring<< is used.

5.1. Comprehensive Module List 171

Combinatorics, Release 9.7

is_acyclic()
Return True iff self is acyclic (i.e., if the underlying quiver is acyclic).

EXAMPLES:

sage: ClusterSeed(['A',4]).is_acyclic()
True

sage: ClusterSeed(['A',[2,1],1]).is_acyclic()
True

sage: ClusterSeed([[0,1],[1,2],[2,0]]).is_acyclic()
False

is_bipartite(return_bipartition=False)
Return True iff self is bipartite (i.e., if the underlying quiver is bipartite).

INPUT:

• return_bipartition – (default:False) if True, the bipartition is returned in the case of self being bipar-
tite.

EXAMPLES:

sage: ClusterSeed(['A',[3,3],1]).is_bipartite()
True

sage: ClusterSeed(['A',[4,3],1]).is_bipartite()
False

is_finite()
Return True if self is of finite type.

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: S.is_finite()
True

sage: S = ClusterSeed(['A',[2,2],1])
sage: S.is_finite()
False

is_mutation_finite(nr_of_checks=None, return_path=False)
Returns True if self is of finite mutation type.

INPUT:

• nr_of_checks – (default: None) number of mutations applied. Standard is 500*(number of vertices
of self).

• return_path – (default: False) if True, in case of self not being mutation finite, a path from self to a
quiver with an edge label (a,-b) and a*b > 4 is returned.

ALGORITHM:

• A cluster seed is mutation infinite if and only if every 𝑏𝑖𝑗 *𝑏𝑗𝑖 > −4. Thus, we apply random mutations
in random directions

WARNING:

172 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Uses a non-deterministic method by random mutations in various directions.

• In theory, it can return a wrong True.

EXAMPLES:

sage: S = ClusterSeed(['A',10])
sage: S._mutation_type = None
sage: S.is_mutation_finite()
True

sage: S = ClusterSeed([(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(2,9)])
sage: S.is_mutation_finite()
False

m()
Returns the number of frozen variables of self.

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: S.n()
3

sage: S.m()
0

sage: S = S.principal_extension()
sage: S.m()
3

most_decreased_denominator_after_mutation()
Return the vertex that will produce the most decrease in denominator degrees after mutation

EXAMPLES:

sage: S = ClusterSeed(['A',5])
sage: S.mutate([0,2,3,1,2,3,1,2,0,2,3])
sage: S.most_decreased_denominator_after_mutation()
2

most_decreased_edge_after_mutation()
Return the vertex that will produce the least degrees after mutation

EXAMPLES:

sage: S = ClusterSeed(['A',5])
sage: S.mutate([0,2,3,1,2,3,1,2,0,2,3])
sage: S.most_decreased_edge_after_mutation()
2

mutate(sequence, inplace=True, input_type=None)
Mutate self at a vertex or a sequence of vertices.

INPUT:

• sequence – a vertex of self, an iterator of vertices of self, a function which takes in the

5.1. Comprehensive Module List 173

Combinatorics, Release 9.7

ClusterSeed and returns a vertex or an iterator of vertices, or a string representing a type of ver-
tices to mutate

• inplace – (default: True) if False, the result is returned, otherwise self is modified

• input_type – (default: None) indicates the type of data contained in the sequence

Possible values for vertex types in sequence are:

• "first_source": mutates at first found source vertex,

• "sources": mutates at all sources,

• "first_sink": mutates at first sink,

• "sinks": mutates at all sink vertices,

• "green": mutates at the first green vertex,

• "red": mutates at the first red vertex,

• "urban_renewal" or "urban": mutates at first urban renewal vertex,

• "all_urban_renewals" or "all_urban": mutates at all urban renewal vertices.

For input_type, if no value is given, preference will be given to vertex names, then indices, then cluster
variables. If all input is not of the same type, an error is given. Possible values for input_type are:

• "vertices": interprets the input sequence as vertices

• "indices": interprets the input sequence as indices

• "cluster_vars": interprets the input sequence as cluster variables this must be selected if inputting
a sequence of cluster variables.

EXAMPLES:

sage: S = ClusterSeed(['A',4]); S.b_matrix()
[0 1 0 0]
[-1 0 -1 0]
[0 1 0 1]
[0 0 -1 0]

sage: S.mutate(0); S.b_matrix()
[0 -1 0 0]
[1 0 -1 0]
[0 1 0 1]
[0 0 -1 0]

sage: T = S.mutate(0, inplace=False); T
A seed for a cluster algebra of rank 4 of type ['A', 4]

sage: S.mutate(0)
sage: S == T
True

sage: S.mutate([0,1,0])
sage: S.b_matrix()
[0 -1 1 0]
[1 0 0 0]
[-1 0 0 1]

(continues on next page)

174 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0 0 -1 0]

sage: S = ClusterSeed(QuiverMutationType([['A',1],['A',3]]))
sage: S.b_matrix()
[0 0 0 0]
[0 0 1 0]
[0 -1 0 -1]
[0 0 1 0]

sage: T = S.mutate(0,inplace=False)
sage: S == T
False

sage: Q = ClusterSeed(['A',3]);Q.b_matrix()
[0 1 0]
[-1 0 -1]
[0 1 0]

sage: Q.mutate('first_sink');Q.b_matrix()
[0 -1 0]
[1 0 1]
[0 -1 0]

sage: def last_vertex(self): return self._n - 1
sage: Q.mutate(last_vertex); Q.b_matrix()
[0 -1 0]
[1 0 -1]
[0 1 0]

sage: S = ClusterSeed(['A', 4], user_labels=['a', 'b', 'c', 'd'])
sage: S.mutate('a'); S.mutate('(b+1)/a')
sage: S.cluster()
[a, b, c, d]

sage: S = ClusterSeed(['A', 4], user_labels=['a', 'b', 'c'])
Traceback (most recent call last):
...
ValueError: the number of user-defined labels is not
the number of exchangeable and frozen variables

sage: S = ClusterSeed(['A', 4], user_labels=['x', 'y', 'w', 'z'])
sage: S.mutate('x')
sage: S.cluster()
[(y + 1)/x, y, w, z]
sage: S.mutate('(y+1)/x')
sage: S.cluster()
[x, y, w, z]
sage: S.mutate('y')
sage: S.cluster()
[x, (x*w + 1)/y, w, z]
sage: S.mutate('(x*w+1)/y')
sage: S.cluster()

(continues on next page)

5.1. Comprehensive Module List 175

Combinatorics, Release 9.7

(continued from previous page)

[x, y, w, z]

sage: S = ClusterSeed(['A', 4], user_labels=[[1, 2], [2, 3], [4, 5], [5, 6]])
sage: S.cluster()
[x_1_2, x_2_3, x_4_5, x_5_6]
sage: S.mutate('[1,2]')
sage: S.cluster()
[(x_2_3 + 1)/x_1_2, x_2_3, x_4_5, x_5_6]

sage: S = ClusterSeed(['A', 4], user_labels=[[1, 2], [2, 3], [4, 5], [5, 6]],
....: user_labels_prefix='P');
sage: S.cluster()
[P_1_2, P_2_3, P_4_5, P_5_6]
sage: S.mutate('[1,2]')
sage: S.cluster()
[(P_2_3 + 1)/P_1_2, P_2_3, P_4_5, P_5_6]
sage: S.mutate('P_4_5')
sage: S.cluster()
[(P_2_3 + 1)/P_1_2, P_2_3, (P_2_3*P_5_6 + 1)/P_4_5, P_5_6]

sage: S = ClusterSeed(['A', 4])
sage: S.mutate([0, 1, 0, 1, 0, 2, 1])
sage: T = ClusterSeed(S)
sage: S.use_fpolys(False)
sage: S.use_g_vectors(False)
sage: S.use_c_vectors(False)
sage: S._C
sage: S._G
sage: S._F
sage: S.g_matrix()
[0 -1 0 0]
[1 1 1 0]
[0 0 -1 0]
[0 0 1 1]
sage: S.c_matrix()
[1 -1 0 0]
[1 0 0 0]
[1 0 -1 1]
[0 0 0 1]
sage: S.f_polynomials() == T.f_polynomials()
True

sage: S.cluster() == T.cluster()
True
sage: S._mut_path
[0, 1, 0, 1, 0, 2, 1]

sage: S = ClusterSeed(DiGraph([[1, 2], [2, 'c']]))
sage: S.mutate(1)
Input can be ambiguously interpreted as both vertices and indices.
Mutating at vertices by default.
sage: S.cluster()

(continues on next page)

176 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[(x2 + 1)/x1, x2, c]
sage: S.mutate(1, input_type="indices")
sage: S.cluster()
[(x2 + 1)/x1, (x2*c + x1 + c)/(x1*x2), c]

sage: S = ClusterSeed(DiGraph([['a', 'b'], ['c', 'b'], ['d', 'b']]))
sage: S.mutate(['a', 'b', 'a', 'b', 'a'])
sage: S.cluster()
[b, a, c, d]
sage: S.mutate('a')
Input can be ambiguously interpreted as both vertices and cluster variables.
Mutating at vertices by default.
sage: S.cluster()
[(a*c*d + 1)/b, a, c, d]
sage: S.mutate('a', input_type="cluster_vars")
sage: S.cluster()
[(a*c*d + 1)/b, (a*c*d + b + 1)/(a*b), c, d]
sage: S.mutate(['(a*c*d + 1)/b', 'd'])
sage: S.cluster()
[(b + 1)/a, (a*c*d + b + 1)/(a*b), c, (a*c*d + b^2 + 2*b + 1)/(a*b*d)]

sage: S = ClusterSeed(DiGraph([[5, 'b']]))
sage: S.mutate(5)
sage: S.cluster()
[(b + 1)/x5, b]
sage: S.mutate([5])
sage: S.cluster()
[x5, b]
sage: S.mutate(0)
sage: S.cluster()
[(b + 1)/x5, b]

sage: S = ClusterSeed(DiGraph([[1, 2]]))
sage: S.cluster()
[x1, x2]
sage: S.mutate(1)
Input can be ambiguously interpreted as both vertices and indices.
Mutating at vertices by default.
sage: S.cluster()
[(x2 + 1)/x1, x2]

sage: S = ClusterSeed(DiGraph([[-1, 0], [0, 1]]))
sage: S.cluster()
[xneg1, x0, x1]
sage: S.mutate(-1);S.cluster()
[(x0 + 1)/xneg1, x0, x1]
sage: S.mutate(0, input_type='vertices');S.cluster()
[(x0 + 1)/xneg1, (x0*x1 + xneg1 + x1)/(xneg1*x0), x1]

mutation_analysis(options=['all'], filter=None)
Runs an analysis of all potential mutation options. Note that this might take a long time on large seeds.

Notes: Edges are only returned if we have a non-valued quiver. Green and red vertices are only returned if

5.1. Comprehensive Module List 177

Combinatorics, Release 9.7

the cluster is principal.

INPUT:

• options – (default: [‘all’]) a list of mutation options.

• filter – (default: None) A vertex or interval of vertices to limit our search to

Possible options are:

• "all" - All options below

• "edges" - Number of edges (works with skew-symmetric quivers)

• "edge_diff" - Edges added/deleted (works with skew-symmetric quivers)

• "green_vertices" - List of green vertices (works with principals)

• "green_vertices_diff" - Green vertices added/removed (works with principals)

• "red_vertices" - List of red vertices (works with principals)

• "red_vertices_diff" - Red vertices added/removed (works with principals)

• "urban_renewals" - List of urban renewal vertices

• "urban_renewals_diff" - Urban renewal vertices added/removed

• "sources" - List of source vertices

• "sources_diff" - Source vertices added/removed

• "sinks" - List of sink vertices

• "sinks_diff" - Sink vertices added/removed

• "denominators" - List of all denominators of the cluster variables

OUTPUT:

Outputs a dictionary indexed by the vertex numbers. Each vertex will itself also be a dictionary with each
desired option included as a key in the dictionary. As an example you would get something similar to: {0:
{‘edges’: 1}, 1: {‘edges’: 2}}. This represents that if you were to do a mutation at the current seed then
mutating at vertex 0 would result in a quiver with 1 edge and mutating at vertex 0 would result in a quiver
with 2 edges.

EXAMPLES:

sage: B = [[0, 4, 0, -1],[-4,0, 3, 0],[0, -3, 0, 1],[1, 0, -1, 0]]
sage: S = ClusterSeed(matrix(B)); S.mutate([2,3,1,2,1,3,0,2])
sage: S.mutation_analysis()
{0: {'d_matrix': [0 0 1 0]
[0 -1 0 0]
[0 0 0 -1]
[-1 0 0 0],
'denominators': [1, 1, x0, 1],
'edge_diff': 6,
'edges': 13,
'green_vertices': [0, 1, 3],
'green_vertices_diff': {'added': [0], 'removed': []},
'red_vertices': [2],
'red_vertices_diff': {'added': [], 'removed': [0]},
'sinks': [],
'sinks_diff': {'added': [], 'removed': [2]},

(continues on next page)

178 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

'sources': [],
'sources_diff': {'added': [], 'removed': []},
'urban_renewals': [],
'urban_renewals_diff': {'added': [], 'removed': []}},
1: {'d_matrix': [1 4 1 0]
[0 1 0 0]
[0 0 0 -1]
[1 4 0 0],
'denominators': [x0*x3, x0^4*x1*x3^4, x0, 1],
'edge_diff': 2,
'edges': 9,
'green_vertices': [0, 3],
'green_vertices_diff': {'added': [0], 'removed': [1]},
'red_vertices': [1, 2],
'red_vertices_diff': {'added': [1], 'removed': [0]},
'sinks': [2],
'sinks_diff': {'added': [], 'removed': []},
'sources': [],
'sources_diff': {'added': [], 'removed': []},
'urban_renewals': [],
'urban_renewals_diff': {'added': [], 'removed': []}},
2: {'d_matrix': [1 0 0 0]
[0 -1 0 0]
[0 0 0 -1]
[1 0 1 0],
'denominators': [x0*x3, 1, x3, 1],
'edge_diff': 0,
'edges': 7,
'green_vertices': [1, 2, 3],
'green_vertices_diff': {'added': [2], 'removed': []},
'red_vertices': [0],
'red_vertices_diff': {'added': [], 'removed': [2]},
'sinks': [],
'sinks_diff': {'added': [], 'removed': [2]},
'sources': [2],
'sources_diff': {'added': [2], 'removed': []},
'urban_renewals': [],
'urban_renewals_diff': {'added': [], 'removed': []}},
3: {'d_matrix': [1 0 1 1]
[0 -1 0 0]
[0 0 0 1]
[1 0 0 1],
'denominators': [x0*x3, 1, x0, x0*x2*x3],
'edge_diff': -1,
'edges': 6,
'green_vertices': [1],
'green_vertices_diff': {'added': [], 'removed': [3]},
'red_vertices': [0, 2, 3],
'red_vertices_diff': {'added': [3], 'removed': []},
'sinks': [2],
'sinks_diff': {'added': [], 'removed': []},
'sources': [1],

(continues on next page)

5.1. Comprehensive Module List 179

Combinatorics, Release 9.7

(continued from previous page)

'sources_diff': {'added': [1], 'removed': []},
'urban_renewals': [],
'urban_renewals_diff': {'added': [], 'removed': []}}}

sage: S = ClusterSeed(['A',3]).principal_extension()
sage: S.mutation_analysis()
{0: {'d_matrix': [1 0 0]
[0 -1 0]
[0 0 -1],
'denominators': [x0, 1, 1],
'green_vertices': [1, 2],
'green_vertices_diff': {'added': [], 'removed': [0]},
'red_vertices': [0],
'red_vertices_diff': {'added': [0], 'removed': []},
'sinks': [],
'sinks_diff': {'added': [], 'removed': [1]},
'sources': [4, 5],
'sources_diff': {'added': [], 'removed': [3]},
'urban_renewals': [],
'urban_renewals_diff': {'added': [], 'removed': []}},
1: {'d_matrix': [-1 0 0]
[0 1 0]
[0 0 -1],
'denominators': [1, x1, 1],
'green_vertices': [0, 2],
'green_vertices_diff': {'added': [], 'removed': [1]},
'red_vertices': [1],
'red_vertices_diff': {'added': [1], 'removed': []},
'sinks': [0, 2, 4],
'sinks_diff': {'added': [0, 2, 4], 'removed': [1]},
'sources': [1, 3, 5],
'sources_diff': {'added': [1], 'removed': [4]},
'urban_renewals': [],
'urban_renewals_diff': {'added': [], 'removed': []}},
2: {'d_matrix': [-1 0 0]
[0 -1 0]
[0 0 1],
'denominators': [1, 1, x2],
'green_vertices': [0, 1],
'green_vertices_diff': {'added': [], 'removed': [2]},
'red_vertices': [2],
'red_vertices_diff': {'added': [2], 'removed': []},
'sinks': [],
'sinks_diff': {'added': [], 'removed': [1]},
'sources': [3, 4],
'sources_diff': {'added': [], 'removed': [5]},
'urban_renewals': [],
'urban_renewals_diff': {'added': [], 'removed': []}}}

mutation_class(depth=+ Infinity, show_depth=False, return_paths=False, up_to_equivalence=True,
only_sink_source=False)

Return the mutation class of self with respect to certain constraints.

180 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Note: Vertex labels are not tracked in this method.

See also:

mutation_class_iter()

INPUT:

• depth – (default: infinity`) integer, only seeds with distance at most depth from
``self are returned

• show_depth – (default: False) if True, the actual depth of the mutation is shown

• return_paths – (default: False) if True, a shortest path of mutation sequences from self to the
given quiver is returned as well

• up_to_equivalence – (default: True) if True, only seeds up to equivalence are considered

• sink_source – (default: False) if True, only mutations at sinks and sources are applied

EXAMPLES:

• for examples see mutation_class_iter()

mutation_class_iter(depth=+ Infinity, show_depth=False, return_paths=False, up_to_equivalence=True,
only_sink_source=False)

Return an iterator for the mutation class of self with respect to certain constraints.

INPUT:

• depth – (default: infinity) integer or infinity, only seeds with distance at most depth from self are
returned.

• show_depth – (default: False) if True, the current depth of the mutation is shown while computing.

• return_paths – (default: False) if True, a shortest path of mutations from self to the given quiver
is returned as well.

• up_to_equivalence – (default: True) if True, only one seed up to simultaneous permutation of rows
and columns of the exchange matrix is recorded.

• sink_source – (default: False) if True, only mutations at sinks and sources are applied.

EXAMPLES:

A standard finite type example:

sage: S = ClusterSeed(['A',3])
sage: it = S.mutation_class_iter()
sage: for T in it: print(T)
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]

(continues on next page)

5.1. Comprehensive Module List 181

Combinatorics, Release 9.7

(continued from previous page)

A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]

A finite type example with given depth:

sage: it = S.mutation_class_iter(depth=1)
sage: for T in it: print(T)
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]
A seed for a cluster algebra of rank 3 of type ['A', 3]

A finite type example where the depth is shown while computing:

sage: it = S.mutation_class_iter(show_depth=True)
sage: for T in it: pass
Depth: 0 found: 1 Time: ... s
Depth: 1 found: 4 Time: ... s
Depth: 2 found: 9 Time: ... s
Depth: 3 found: 13 Time: ... s
Depth: 4 found: 14 Time: ... s

A finite type example with shortest paths returned:

sage: it = S.mutation_class_iter(return_paths=True)
sage: mutation_class = list(it)
sage: len(mutation_class)
14
sage: mutation_class[0]
(A seed for a cluster algebra of rank 3 of type ['A', 3], [])

Finite type examples not considered up to equivalence:

sage: it = S.mutation_class_iter(up_to_equivalence=False)
sage: len([T for T in it])
84

sage: it = ClusterSeed(['A',2]).mutation_class_iter(return_paths=True,up_to_
→˓equivalence=False)
sage: mutation_class = list(it)
sage: len(mutation_class)
10
sage: mutation_class[0]
(A seed for a cluster algebra of rank 2 of type ['A', 2], [])

Check that trac ticket #14638 is fixed:

sage: S = ClusterSeed(['E',6])
sage: MC = S.mutation_class(depth=7); len(MC) # long time
534

Infinite type examples:

182 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/14638

Combinatorics, Release 9.7

sage: S = ClusterSeed(['A',[1,1],1])
sage: it = S.mutation_class_iter()
sage: next(it)
A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1]
sage: next(it)
A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1]
sage: next(it)
A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1]
sage: next(it)
A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1]

sage: it = S.mutation_class_iter(depth=3, return_paths=True)
sage: for T in it: print(T)
(A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1], [])
(A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1], [1])
(A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1], [0])
(A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1], [1, 0])
(A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1], [0, 1])
(A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1], [1, 0, 1])
(A seed for a cluster algebra of rank 2 of type ['A', [1, 1], 1], [0, 1, 0])

mutation_sequence(sequence, show_sequence=False, fig_size=1.2, return_output='seed')
Return the seeds obtained by mutating self at all vertices in sequence.

INPUT:

• sequence – an iterable of vertices of self.

• show_sequence – (default: False) if True, a png containing the associated quivers is shown.

• fig_size – (default: 1.2) factor by which the size of the plot is multiplied.

• return_output – (default: ‘seed’) determines what output is to be returned:

* if 'seed', outputs all the cluster seeds obtained by the ``sequence`` of␣
→˓mutations.
* if 'matrix', outputs a list of exchange matrices.
* if 'var', outputs a list of new cluster variables obtained at each step.

EXAMPLES:

sage: S = ClusterSeed(['A',2])
sage: for T in S.mutation_sequence([0,1,0]):
....: print(T.b_matrix())
[0 -1]
[1 0]
[0 1]
[-1 0]
[0 -1]
[1 0]

sage: S = ClusterSeed(['A',2])
sage: S.mutation_sequence([0,1,0,1], return_output='var')
[(x1 + 1)/x0, (x0 + x1 + 1)/(x0*x1), (x0 + 1)/x1, x0]

5.1. Comprehensive Module List 183

Combinatorics, Release 9.7

mutation_type()
Returns the mutation_type of each connected component of self, if it can be determined. Otherwise, the
mutation type of this component is set to be unknown.

The mutation types of the components are ordered by vertex labels.

WARNING:

• All finite types can be detected,

• All affine types can be detected, EXCEPT affine type D (the algorithm is not yet implemented)

• All exceptional types can be detected.

• Might fail to work if it is used within different Sage processes simultaneously (that happened in the
doctesting).

EXAMPLES:

• finite types:

sage: S = ClusterSeed(['A',5])
sage: S._mutation_type = S._quiver._mutation_type = None
sage: S.mutation_type()
['A', 5]

sage: S = ClusterSeed([(0,1),(1,2),(2,3),(3,4)])
sage: S.mutation_type()
['A', 5]

sage: S = ClusterSeed(DiGraph([['a','b'],['c','b'],['c','d'],['e','d']]),␣
→˓frozen = ['c'])
sage: S.mutation_type()
[['A', 2], ['A', 2]]

• affine types:

sage: S = ClusterSeed(['E',8,[1,1]]); S
A seed for a cluster algebra of rank 10 of type ['E', 8, [1, 1]]
sage: S._mutation_type = S._quiver._mutation_type = None; S
A seed for a cluster algebra of rank 10
sage: S.mutation_type() # long time
['E', 8, [1, 1]]

• the not yet working affine type D:

sage: S = ClusterSeed(['D',4,1])
sage: S._mutation_type = S._quiver._mutation_type = None
sage: S.mutation_type() # todo: not implemented
['D', 4, 1]

• the exceptional types:

sage: S = ClusterSeed(['X',6])
sage: S._mutation_type = S._quiver._mutation_type = None
sage: S.mutation_type() # long time
['X', 6]

• infinite types:

184 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: S = ClusterSeed(['GR',[4,9]])
sage: S._mutation_type = S._quiver._mutation_type = None
sage: S.mutation_type()
'undetermined infinite mutation type'

mutations()
Return the list of mutations self has undergone if they are being tracked.

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: S.mutations()
[]

sage: S.mutate([0,1,0,2])
sage: S.mutations()
[0, 1, 0, 2]

sage: S.track_mutations(False)
sage: S.mutations()
Traceback (most recent call last):
...
ValueError: Not recording mutation sequence. Need to track mutations.

n()
Return the number of exchangeable variables of self.

EXAMPLES:

sage: S = ClusterSeed(['A', 3])
sage: S.n()
3

oriented_exchange_graph()
Return the oriented exchange graph of self as a directed graph.

The seed must be a cluster seed for a cluster algebra of finite type with principal coefficients (the corre-
sponding quiver must have mutable vertices 0,1,. . . ,n-1).

EXAMPLES:

sage: S = ClusterSeed(['A', 2]).principal_extension()
sage: G = S.oriented_exchange_graph(); G
Digraph on 5 vertices
sage: G.out_degree_sequence()
[2, 1, 1, 1, 0]

sage: S = ClusterSeed(['B', 2]).principal_extension()
sage: G = S.oriented_exchange_graph(); G
Digraph on 6 vertices
sage: G.out_degree_sequence()
[2, 1, 1, 1, 1, 0]

plot(circular=False, mark=None, save_pos=False, force_c=False, with_greens=False, add_labels=False)
Returns the plot of the quiver of self.

INPUT:

5.1. Comprehensive Module List 185

Combinatorics, Release 9.7

• circular – (default:False) if True, the circular plot is chosen, otherwise >>spring<< is used.

• mark – (default: None) if set to i, the vertex i is highlighted.

• save_pos – (default:False) if True, the positions of the vertices are saved.

• force_c – (default:False) if True, will show the frozen vertices even if they were never initialized

• with_greens – (default:False) if True, will display the green vertices in green

• add_labels – (default:False) if True, will use the initial variables as labels

EXAMPLES:

sage: S = ClusterSeed(['A',5])
sage: S.plot()
Graphics object consisting of 15 graphics primitives
sage: S.plot(circular=True)
Graphics object consisting of 15 graphics primitives
sage: S.plot(circular=True, mark=1)
Graphics object consisting of 15 graphics primitives

principal_extension()
Return the principal extension of self, yielding a 2𝑛× 𝑛 matrix.

Raises an error if the input seed has a non-square exchange matrix. In this case, the method instead adds 𝑛
frozen variables to any previously frozen variables. I.e., the seed obtained by adding a frozen variable to
every exchangeable variable of self.

EXAMPLES:

sage: S = ClusterSeed([[0,1],[1,2],[2,3],[2,4]]); S
A seed for a cluster algebra of rank 5

sage: T = S.principal_extension(); T
A seed for a cluster algebra of rank 5 with principal coefficients

sage: T.b_matrix()
[0 1 0 0 0]
[-1 0 1 0 0]
[0 -1 0 1 1]
[0 0 -1 0 0]
[0 0 -1 0 0]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

sage: S = ClusterSeed(['A', 4], user_labels=['a', 'b', 'c', 'd'])
sage: T = S.principal_extension()
sage: T.cluster()
[a, b, c, d]
sage: T.coefficients()
[y0, y1, y2, y3]
sage: S2 = ClusterSeed(['A', 4], user_labels={0:'a', 1:'b', 2:'c', 3:'d'})
sage: S2 == S
True

(continues on next page)

186 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T2 = S2.principal_extension()
sage: T2 == T
True

quiver()
Return the quiver associated to self.

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: S.quiver()
Quiver on 3 vertices of type ['A', 3]

red_vertices()
Return the list of red vertices of self.

A vertex is defined to be red if its c-vector has all non-negative entries. More information on red vertices
can be found at [BDP2013].

OUTPUT:

The red vertices as a list of integers.

EXAMPLES:

sage: ClusterSeed(['A',3]).principal_extension().red_vertices()
[]

sage: ClusterSeed(['A',[3,3],1]).principal_extension().red_vertices()
[]

sage: Q = ClusterSeed(['A',[3,3],1]).principal_extension()
sage: Q.mutate(1)
sage: Q.red_vertices()
[1]

reorient(data)
Reorients self with respect to the given total order, or with respect to an iterator of ordered pairs.

WARNING:

• This operation might change the mutation type of self.

• Ignores ordered pairs (𝑖, 𝑗) for which neither (𝑖, 𝑗) nor (𝑗, 𝑖) is an edge of self.

INPUT:

• data – an iterator defining a total order on self.vertices(), or an iterator of ordered pairs in self
defining the new orientation of these edges.

EXAMPLES:

sage: S = ClusterSeed(['A',[2,3],1])
sage: S.mutation_type()
['A', [2, 3], 1]

sage: S.reorient([(0,1),(2,3)])
sage: S.mutation_type()

(continues on next page)

5.1. Comprehensive Module List 187

Combinatorics, Release 9.7

(continued from previous page)

['D', 5]

sage: S.reorient([(1,0),(2,3)])
sage: S.mutation_type()
['A', [1, 4], 1]

sage: S.reorient([0,1,2,3,4])
sage: S.mutation_type()
['A', [1, 4], 1]

reset_cluster()
Reset the cluster of self to the initial cluster.

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: S.mutate([1,2,1])
sage: S.cluster()
[x0, (x1 + 1)/x2, (x0*x2 + x1 + 1)/(x1*x2)]

sage: S.reset_cluster()
sage: S.cluster()
[x0, x1, x2]

sage: T = S.principal_extension()
sage: T.cluster()
[x0, x1, x2]
sage: T.mutate([1,2,1])
sage: T.cluster()
[x0, (x1*y2 + x0)/x2, (x1*y1*y2 + x0*y1 + x2)/(x1*x2)]

sage: T.reset_cluster()
sage: T.cluster()
[x0, x1, x2]

sage: S = ClusterSeed(['B',3],user_labels=[[1,2],[2,3],[3,4]],user_labels_
→˓prefix='p')
sage: S.mutate([0,1])
sage: S.cluster()
[(p_2_3 + 1)/p_1_2, (p_1_2*p_3_4^2 + p_2_3 + 1)/(p_1_2*p_2_3), p_3_4]

sage: S.reset_cluster()
sage: S.cluster()
[p_1_2, p_2_3, p_3_4]
sage: S.g_matrix()
[1 0 0]
[0 1 0]
[0 0 1]
sage: S.f_polynomials()
[1, 1, 1]

reset_coefficients()
Resets the coefficients of self to the frozen variables but keeps the current cluster. Raises an error if the

188 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

number of frozen variables is different than the number of exchangeable variables.

WARNING: This command to be phased out since ‘use_c_vectors() does this more effectively.

EXAMPLES:

sage: S = ClusterSeed(['A',3]).principal_extension()
sage: S.b_matrix()
[0 1 0]
[-1 0 -1]
[0 1 0]
[1 0 0]
[0 1 0]
[0 0 1]
sage: S.mutate([1,2,1])
sage: S.b_matrix()
[0 1 -1]
[-1 0 1]
[1 -1 0]
[1 0 0]
[0 1 -1]
[0 0 -1]
sage: S.reset_coefficients()
sage: S.b_matrix()
[0 1 -1]
[-1 0 1]
[1 -1 0]
[1 0 0]
[0 1 0]
[0 0 1]

save_image(filename, circular=False, mark=None, save_pos=False)
Saves the plot of the underlying digraph of the quiver of self.

INPUT:

• filename – the filename the image is saved to.

• circular – (default: False) if True, the circular plot is chosen, otherwise >>spring<< is used.

• mark – (default: None) if set to i, the vertex i is highlighted.

• save_pos – (default:False) if True, the positions of the vertices are saved.

EXAMPLES:

sage: S = ClusterSeed(['F',4,[1,2]])
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(suffix=".png") as f:
....: S.save_image(f.name)

set_c_matrix(data)
Will force set the c matrix according to a matrix, a quiver, or a seed.

INPUT:

• data – The matrix to set the c matrix to. Also allowed to be a quiver or cluster seed, in which case the
b_matrix is used.

EXAMPLES:

5.1. Comprehensive Module List 189

Combinatorics, Release 9.7

sage: S = ClusterSeed(['A',3])
sage: X = matrix([[0,0,1],[0,1,0],[1,0,0]])
sage: S.set_c_matrix(X)
sage: S.c_matrix()
[0 0 1]
[0 1 0]
[1 0 0]

sage: Y = matrix([[-1,0,1],[0,1,0],[1,0,0]])
sage: S.set_c_matrix(Y)
C matrix does not look to be valid - there exists a column containing positive␣
→˓and negative entries.
Continuing...

sage: Z = matrix([[1,0,1],[0,1,0],[2,0,2]])
sage: S.set_c_matrix(Z)
C matrix does not look to be valid - not a linearly independent set.
Continuing...

set_cluster(cluster, force=False)
Sets the cluster for self to cluster.

Warning: Initialization may lead to inconsistent data.

INPUT:

• cluster – an iterable defining a cluster for self.

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: cluster = S.cluster()
sage: S.mutate([1,2,1])
sage: S.cluster()
[x0, (x1 + 1)/x2, (x0*x2 + x1 + 1)/(x1*x2)]
sage: cluster2 = S.cluster()

sage: S.set_cluster(cluster)
Warning: using set_cluster at this point could lead to inconsistent seed data.

sage: S.set_cluster(cluster, force=True)
sage: S.cluster()
[x0, x1, x2]
sage: S.set_cluster(cluster2, force=True)
sage: S.cluster()
[x0, (x1 + 1)/x2, (x0*x2 + x1 + 1)/(x1*x2)]

sage: S = ClusterSeed(['A',3]); S.use_fpolys(False)
sage: S.set_cluster([1,1,1])
Warning: clusters not being tracked so this command is ignored.

show(fig_size=1, circular=False, mark=None, save_pos=False, force_c=False, with_greens=False,
add_labels=False)

Shows the plot of the quiver of self.

INPUT:

190 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• fig_size – (default: 1) factor by which the size of the plot is multiplied.

• circular – (default: False) if True, the circular plot is chosen, otherwise >>spring<< is used.

• mark – (default: None) if set to i, the vertex i is highlighted.

• save_pos – (default:False) if True, the positions of the vertices are saved.

• force_c – (default:False) if True, will show the frozen vertices even if they were never initialized

• with_greens – (default:False) if True, will display the green vertices in green

• add_labels – (default:False) if True, will use the initial variables as labels

smallest_c_vector()
Return the vertex with the smallest c vector.

OUTPUT:

An integer.

EXAMPLES:

sage: B = matrix([[0,2],[-2,0]])
sage: C = ClusterSeed(B).principal_extension()
sage: C.mutate(0)
sage: C.smallest_c_vector()
0

track_mutations(use=True)
Begins tracking the mutation path.

Warning: May initialize all other data to ensure that all c, d, and g vectors agree on the start of mutations.

INPUT:

• use – (default:True) If True, will begin filling the mutation path

EXAMPLES:

sage: S = ClusterSeed(['A',4]); S.track_mutations(False)
sage: S.mutate(0)
sage: S.mutations()
Traceback (most recent call last):
...
ValueError: Not recording mutation sequence. Need to track mutations.
sage: S.track_mutations(True)
sage: S.g_matrix()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

sage: S.mutate([0,1])
sage: S.mutations()
[0, 1]

universal_extension()
Return the universal extension of self.

This is the initial seed of the associated cluster algebra with universal coefficients, as defined in section 12
of [FZ2007].

5.1. Comprehensive Module List 191

Combinatorics, Release 9.7

This method works only if self is a bipartite, finite-type seed.

Due to some limitations in the current implementation of CartanType, we need to construct the set of
almost positive coroots by hand. As a consequence their ordering is not the standard one (the rows of the
bottom part of the exchange matrix might be a shuffling of those you would expect).

EXAMPLES:

sage: S = ClusterSeed(['A',2])
sage: T = S.universal_extension()
sage: T.b_matrix()
[0 1]
[-1 0]
[-1 0]
[1 0]
[1 -1]
[0 1]
[0 -1]

sage: S = ClusterSeed(['A',3])
sage: T = S.universal_extension()
sage: T.b_matrix()
[0 1 0]
[-1 0 -1]
[0 1 0]
[-1 0 0]
[1 0 0]
[1 -1 0]
[1 -1 1]
[0 1 0]
[0 -1 0]
[0 -1 1]
[0 0 -1]
[0 0 1]

sage: S = ClusterSeed(['B',2])
sage: T = S.universal_extension()
sage: T.b_matrix()
[0 1]
[-2 0]
[-1 0]
[1 0]
[1 -1]
[2 -1]
[0 1]
[0 -1]

sage: S = ClusterSeed(['A', 5], user_labels = [-2, -1, 0, 1 ,2])
sage: U = S.universal_extension()
sage: U.b_matrix() == ClusterSeed(['A', 5]).universal_extension().b_matrix()
True

urban_renewals(return_first=False)
Return the list of the urban renewal vertices of self.

An urban renewal vertex is one in which there are two arrows pointing toward the vertex and two arrows

192 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

pointing away.

INPUT:

• return_first – (default:False) if True, will return the first urban renewal

OUTPUT:

A list of vertices (as integers)

EXAMPLES:

sage: G = ClusterSeed(['GR',[4,9]]); G.urban_renewals()
[5, 6]

use_c_vectors(use=True, bot_is_c=False, force=False)
Reconstruct c vectors from other data or initialize if no usable data exists.

Warning: Initialization may lead to inconsistent data.

INPUT:

• use – (default:True) If True, will use c vectors

• bot_is_c – (default:False) If True and ClusterSeed self has self._m == self._n, then will assume
bottom half of the extended exchange matrix is the c-matrix. If true, lets the ClusterSeed know c-
vectors can be calculated.

EXAMPLES:

sage: S = ClusterSeed(['A',4])
sage: S.use_c_vectors(False); S.use_g_vectors(False); S.use_fpolys(False); S.
→˓track_mutations(False)
sage: S.use_c_vectors(True)
Warning: Initializing c-vectors at this point could lead to inconsistent seed␣
→˓data.

sage: S.use_c_vectors(True, force=True)
sage: S.c_matrix()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

sage: S = ClusterSeed(['A',4])
sage: S.use_c_vectors(False); S.use_g_vectors(False); S.use_fpolys(False); S.
→˓track_mutations(False)
sage: S.mutate(1)
sage: S.use_c_vectors(True, force=True)
sage: S.c_matrix()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

use_d_vectors(use=True, force=False)
Reconstruct d vectors from other data or initialize if no usable data exists.

Warning: Initialization may lead to inconsistent data.

5.1. Comprehensive Module List 193

Combinatorics, Release 9.7

INPUT:

• use – (default:True) If True, will use d vectors

EXAMPLES:

sage: S = ClusterSeed(['A',4])
sage: S.use_d_vectors(True)
sage: S.d_matrix()
[-1 0 0 0]
[0 -1 0 0]
[0 0 -1 0]
[0 0 0 -1]

sage: S = ClusterSeed(['A',4]); S.use_d_vectors(False); S.track_
→˓mutations(False); S.mutate(1); S.d_matrix()
[-1 0 0 0]
[0 1 0 0]
[0 0 -1 0]
[0 0 0 -1]
sage: S.use_fpolys(False)
sage: S.d_matrix()
Traceback (most recent call last):
...
ValueError: Unable to calculate d-vectors. Need to use d vectors.

sage: S = ClusterSeed(['A',4]); S.use_d_vectors(False); S.track_
→˓mutations(False); S.mutate(1); S.d_matrix()
[-1 0 0 0]
[0 1 0 0]
[0 0 -1 0]
[0 0 0 -1]
sage: S.use_fpolys(False)
sage: S.use_d_vectors(True)
Warning: Initializing d-vectors at this point could lead to inconsistent seed␣
→˓data.

sage: S.use_d_vectors(True, force=True)
sage: S.d_matrix()
[-1 0 0 0]
[0 -1 0 0]
[0 0 -1 0]
[0 0 0 -1]

sage: S = ClusterSeed(['A',4]); S.mutate(1); S.d_matrix()
[-1 0 0 0]
[0 1 0 0]
[0 0 -1 0]
[0 0 0 -1]
sage: S = ClusterSeed(['A',4]); S.use_d_vectors(True); S.mutate(1); S.d_matrix()
[-1 0 0 0]
[0 1 0 0]
[0 0 -1 0]
[0 0 0 -1]

194 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

use_fpolys(use=True, user_labels=None, user_labels_prefix=None)
Use F-polynomials in our Cluster Seed

Note: This will automatically try to recompute the cluster variables if possible

INPUT:

• use – (default:True) If True, will use F-polynomials

• user_labels – (default:None) If set will overwrite the default cluster variable labels

• user_labels_prefix – (default:None) If set will overwrite the default

EXAMPLES:

sage: S = ClusterSeed(['A',4]); S.use_fpolys(False); S._cluster
sage: S.use_fpolys(True)
sage: S.cluster()
[x0, x1, x2, x3]

sage: S = ClusterSeed(['A',4]); S.use_fpolys(False); S.track_mutations(False);␣
→˓S.mutate(1)
sage: S.use_fpolys(True)
Traceback (most recent call last):
...
ValueError: F-polynomials and Cluster Variables cannot be reconstructed from␣
→˓given data.
sage: S.cluster()
Traceback (most recent call last):
...
ValueError: Clusters not being tracked

use_g_vectors(use=True, force=False)
Reconstruct g vectors from other data or initialize if no usable data exists.

Warning: Initialization may lead to inconsistent data.

INPUT:

• use – (default:True) If True, will use g vectors

EXAMPLES:

sage: S = ClusterSeed(['A',4])
sage: S.use_g_vectors(False); S.use_fpolys(False)
sage: S.use_g_vectors(True)
sage: S.g_matrix()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

sage: S = ClusterSeed(['A',4])
sage: S.use_g_vectors(False); S.use_fpolys(False)
sage: S.mutate(1)
sage: S.use_g_vectors(True)
sage: S.g_matrix()
[1 0 0 0]
[0 -1 0 0]

(continues on next page)

5.1. Comprehensive Module List 195

Combinatorics, Release 9.7

(continued from previous page)

[0 0 1 0]
[0 0 0 1]

sage: S = ClusterSeed(['A',4])
sage: S.use_g_vectors(False); S.use_fpolys(False); S.track_mutations(False)
sage: S.mutate(1)
sage: S.use_c_vectors(False)
sage: S.g_matrix()
Traceback (most recent call last):
...
ValueError: Unable to calculate g-vectors. Need to use g vectors.

sage: S = ClusterSeed(['A',4])
sage: S.use_g_vectors(False); S.use_fpolys(False); S.track_mutations(False)
sage: S.mutate(1)
sage: S.use_c_vectors(False)
sage: S.use_g_vectors(True)
Warning: Initializing g-vectors at this point could lead to inconsistent seed␣
→˓data.

sage: S.use_g_vectors(True, force=True)
sage: S.g_matrix()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

variable_class(depth=+ Infinity, ignore_bipartite_belt=False)
Returns all cluster variables in the mutation class of self.

INPUT:

• depth – (default:infinity) integer, only seeds with distance at most depth from self are returned

• ignore_bipartite_belt – (default:False) if True, the algorithms does not use the bipartite belt

EXAMPLES:

• for examples see variable_class_iter()

variable_class_iter(depth=+ Infinity, ignore_bipartite_belt=False)
Returns an iterator for all cluster variables in the mutation class of self.

INPUT:

• depth – (default:infinity) integer, only seeds with distance at most depth from self are returned

• ignore_bipartite_belt – (default:False) if True, the algorithms does not use the bipartite belt

EXAMPLES:

A standard finite type example:

sage: S = ClusterSeed(['A',3])
sage: it = S.variable_class_iter()
sage: for T in it: print(T)
x0
x1

(continues on next page)

196 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

x2
(x1 + 1)/x0
(x1^2 + x0*x2 + 2*x1 + 1)/(x0*x1*x2)
(x1 + 1)/x2
(x0*x2 + x1 + 1)/(x0*x1)
(x0*x2 + 1)/x1
(x0*x2 + x1 + 1)/(x1*x2)

Finite type examples with given depth:

sage: it = S.variable_class_iter(depth=1)
sage: for T in it: print(T)
Found a bipartite seed - restarting the depth counter at zero and constructing␣
→˓the variable class using its bipartite belt.
x0
x1
x2
(x1 + 1)/x0
(x1^2 + x0*x2 + 2*x1 + 1)/(x0*x1*x2)
(x1 + 1)/x2
(x0*x2 + x1 + 1)/(x0*x1)
(x0*x2 + 1)/x1
(x0*x2 + x1 + 1)/(x1*x2)

Note that the notion of depth depends on whether a bipartite seed is found or not, or if it is manually ignored:

sage: it = S.variable_class_iter(depth=1,ignore_bipartite_belt=True)
sage: for T in it: print(T)
x0
x1
x2
(x1 + 1)/x2
(x0*x2 + 1)/x1
(x1 + 1)/x0

sage: S.mutate([0,1])
sage: it2 = S.variable_class_iter(depth=1)
sage: for T in it2: print(T)
(x1 + 1)/x0
(x0*x2 + x1 + 1)/(x0*x1)
x2
(x1^2 + x0*x2 + 2*x1 + 1)/(x0*x1*x2)
x1
(x0*x2 + 1)/x1

Infinite type examples:

sage: S = ClusterSeed(['A',[1,1],1])
sage: it = S.variable_class_iter(depth=2)
sage: for T in it: print(T)
Found a bipartite seed - restarting the depth counter at zero and constructing␣
→˓the variable class using its bipartite belt.
x0

(continues on next page)

5.1. Comprehensive Module List 197

Combinatorics, Release 9.7

(continued from previous page)

x1
(x1^2 + 1)/x0
(x1^4 + x0^2 + 2*x1^2 + 1)/(x0^2*x1)
(x0^4 + 2*x0^2 + x1^2 + 1)/(x0*x1^2)
(x0^2 + 1)/x1
(x1^6 + x0^4 + 2*x0^2*x1^2 + 3*x1^4 + 2*x0^2 + 3*x1^2 + 1)/(x0^3*x1^2)
(x1^8 + x0^6 + 2*x0^4*x1^2 + 3*x0^2*x1^4 + 4*x1^6 + 3*x0^4 + 6*x0^2*x1^2 + 6*x1^
→˓4 + 3*x0^2 + 4*x1^2 + 1)/(x0^4*x1^3)
(x0^8 + 4*x0^6 + 3*x0^4*x1^2 + 2*x0^2*x1^4 + x1^6 + 6*x0^4 + 6*x0^2*x1^2 + 3*x1^
→˓4 + 4*x0^2 + 3*x1^2 + 1)/(x0^3*x1^4)
(x0^6 + 3*x0^4 + 2*x0^2*x1^2 + x1^4 + 3*x0^2 + 2*x1^2 + 1)/(x0^2*x1^3)

x(k)
Return the 𝑘 -th initial cluster variable for the associated cluster seed, or the cluster variable of the corre-
sponding vertex in self.quiver.

EXAMPLES:

sage: S = ClusterSeed(['A', 3])
sage: S.mutate([2, 1])
sage: S.x(0)
x0

sage: S.x(1)
x1

sage: S.x(2)
x2

sage: dg = DiGraph([['a', 'b'], ['b', 'c']], format="list_of_edges")
sage: S = ClusterSeed(dg, frozen = ['c'])
sage: S.x(0)
a
sage: S.x('a')
a

y(k)
Return the 𝑘 -th initial coefficient (frozen variable) for the associated cluster seed, or the cluster variable of
the corresponding vertex in self.quiver.

EXAMPLES:

sage: S = ClusterSeed(['A', 3]).principal_extension()
sage: S.mutate([2, 1])
sage: S.y(0)
y0

sage: S.y(1)
y1

sage: S.y(2)
y2

(continues on next page)

198 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: dg = DiGraph([['a', 'b'], ['b', 'c']], format="list_of_edges")
sage: S = ClusterSeed(dg, frozen = ['c'])
sage: S.y(0)
c
sage: S.y('c')
c

class sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterVariable(parent, numerator,
denominator,
coerce=True,
reduce=True,
mutation_type=None,
variable_type=None,
xdim=0)

Bases: sage.rings.fraction_field_element.FractionFieldElement

This class is a thin wrapper for cluster variables in cluster seeds.

It provides the extra feature to store if a variable is frozen or not.

• the associated positive root:

sage: S = ClusterSeed(['A',3])
sage: for T in S.variable_class_iter():
....: print("{} {}".format(T, T.almost_positive_root()))
x0 -alpha[1]
x1 -alpha[2]
x2 -alpha[3]
(x1 + 1)/x0 alpha[1]
(x1^2 + x0*x2 + 2*x1 + 1)/(x0*x1*x2) alpha[1] + alpha[2] + alpha[3]
(x1 + 1)/x2 alpha[3]
(x0*x2 + x1 + 1)/(x0*x1) alpha[1] + alpha[2]
(x0*x2 + 1)/x1 alpha[2]
(x0*x2 + x1 + 1)/(x1*x2) alpha[2] + alpha[3]

almost_positive_root()
Return the almost positive root associated to self if self is of finite type.

EXAMPLES:

sage: S = ClusterSeed(['A',3])
sage: for T in S.variable_class_iter():
....: print("{} {}".format(T, T.almost_positive_root()))
x0 -alpha[1]
x1 -alpha[2]
x2 -alpha[3]
(x1 + 1)/x0 alpha[1]
(x1^2 + x0*x2 + 2*x1 + 1)/(x0*x1*x2) alpha[1] + alpha[2] + alpha[3]
(x1 + 1)/x2 alpha[3]
(x0*x2 + x1 + 1)/(x0*x1) alpha[1] + alpha[2]
(x0*x2 + 1)/x1 alpha[2]
(x0*x2 + x1 + 1)/(x1*x2) alpha[2] + alpha[3]

sage.combinat.cluster_algebra_quiver.cluster_seed.PathSubset(n, m)
Encodes a maximal Dyck path from (0,0) to (n,m) (for n >= m >= 0) as a subset of {0,1,2,. . . , 2n-1}. The encoding

5.1. Comprehensive Module List 199

../../../../../../../html/en/reference/rings/sage/rings/fraction_field_element.html#sage.rings.fraction_field_element.FractionFieldElement

Combinatorics, Release 9.7

is given by indexing horizontal edges by odd numbers and vertical edges by evens.

The horizontal between (i,j) and (i+1,j) is indexed by the odd number 2*i+1. The vertical between (i,j) and (i,j+1)
is indexed by the even number 2*j.

EXAMPLES:

sage: from sage.combinat.cluster_algebra_quiver.cluster_seed import PathSubset
sage: PathSubset(4,0)
{1, 3, 5, 7}
sage: PathSubset(4,1)
{1, 3, 5, 6, 7}
sage: PathSubset(4,2)
{1, 2, 3, 5, 6, 7}
sage: PathSubset(4,3)
{1, 2, 3, 4, 5, 6, 7}
sage: PathSubset(4,4)
{0, 1, 2, 3, 4, 5, 6, 7}

sage.combinat.cluster_algebra_quiver.cluster_seed.SetToPath(T)
Rearranges the encoding for a maximal Dyck path (as a set) so that it is a list in the proper order of the edges.

EXAMPLES:

sage: from sage.combinat.cluster_algebra_quiver.cluster_seed import PathSubset
sage: from sage.combinat.cluster_algebra_quiver.cluster_seed import SetToPath
sage: SetToPath(PathSubset(4,0))
[1, 3, 5, 7]
sage: SetToPath(PathSubset(4,1))
[1, 3, 5, 7, 6]
sage: SetToPath(PathSubset(4,2))
[1, 3, 2, 5, 7, 6]
sage: SetToPath(PathSubset(4,3))
[1, 3, 2, 5, 4, 7, 6]
sage: SetToPath(PathSubset(4,4))
[1, 0, 3, 2, 5, 4, 7, 6]

sage.combinat.cluster_algebra_quiver.cluster_seed.coeff_recurs(p, q, a1, a2, b, c)
Coefficients in Laurent expansion of greedy element, as defined by recursion.

EXAMPLES:

sage: from sage.combinat.cluster_algebra_quiver.cluster_seed import coeff_recurs
sage: coeff_recurs(1, 1, 5, 5, 3, 3)
10

sage.combinat.cluster_algebra_quiver.cluster_seed.get_green_vertices(C)
Get the green vertices from a matrix. Will go through each column and return the ones where no entry is greater
than 0.

INPUT:

• C – The C matrix to check

EXAMPLES:

200 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.cluster_algebra_quiver.cluster_seed import get_green_
→˓vertices
sage: S = ClusterSeed(['A',4]); S.mutate([1,2,3,2,0,1,2,0,3])
sage: get_green_vertices(S.c_matrix())
[0, 3]

sage.combinat.cluster_algebra_quiver.cluster_seed.get_red_vertices(C)
Get the red vertices from a matrix.

Will go through each column and return the ones where no entry is less than 0.

INPUT:

• C – The C matrix to check

EXAMPLES:

sage: from sage.combinat.cluster_algebra_quiver.cluster_seed import get_red_vertices
sage: S = ClusterSeed(['A',4]); S.mutate([1,2,3,2,0,1,2,0,3])
sage: get_red_vertices(S.c_matrix())
[1, 2]

sage.combinat.cluster_algebra_quiver.cluster_seed.is_LeeLiZel_allowable(T, n, m, b, c)
Check if the subset T contributes to the computation of the greedy element x[m,n] in the rank two (b,c)-cluster
algebra.

This uses the conditions of Lee-Li-Zelevinsky’s paper [LLZ2014].

EXAMPLES:

sage: from sage.combinat.cluster_algebra_quiver.cluster_seed import is_LeeLiZel_
→˓allowable
sage: is_LeeLiZel_allowable({1,3,2,5,7,6},4,2,6,6)
False
sage: is_LeeLiZel_allowable({1,2,5},3,3,1,1)
True

5.1.18 mutation_class

This file contains helper functions for compute the mutation class of a cluster algebra or quiver.

For the compendium on the cluster algebra and quiver package see [MS2011]

AUTHORS:

• Gregg Musiker

• Christian Stump

5.1. Comprehensive Module List 201

Combinatorics, Release 9.7

5.1.19 Helper functions for mutation types of quivers

This file contains helper functions for detecting the mutation type of a cluster algebra or quiver.

For the compendium on the cluster algebra and quiver package see [MS2011]

AUTHORS:

• Gregg Musiker

• Christian Stump

sage.combinat.cluster_algebra_quiver.mutation_type.is_mutation_finite(M, nr_of_checks=None)
Use a non-deterministic method by random mutations in various directions. Can result in a wrong answer.

Warning: This method modifies the input matrix M!

INPUT:

• nr_of_checks – (default: None) number of mutations applied. Standard is 500*(number of vertices of
self).

ALGORITHM:

A quiver is mutation infinite if and only if every edge label (a,-b) satisfy a*b > 4. Thus, we apply random
mutations in random directions

EXAMPLES:

sage: from sage.combinat.cluster_algebra_quiver.mutation_type import is_mutation_
→˓finite

sage: Q = ClusterQuiver(['A',10])
sage: M = Q.b_matrix()
sage: is_mutation_finite(M)
(True, None)

sage: Q = ClusterQuiver([(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(2,9)])
sage: M = Q.b_matrix()
sage: is_mutation_finite(M) # random
(False, [9, 6, 9, 8, 9, 4, 0, 4, 5, 2, 1, 0, 1, 0, 7, 1, 9, 2, 5, 7, 8, 6, 3, 0, 2,␣
→˓5, 4, 2, 6, 9, 2, 7, 3, 5, 3, 7, 9, 5, 9, 0, 2, 7, 9, 2, 4, 2, 1, 6, 9, 4, 3, 5,␣
→˓0, 8, 2, 9, 5, 3, 7, 0, 1, 8, 3, 7, 2, 7, 3, 4, 8, 0, 4, 9, 5, 2, 8, 4, 8, 1, 7,␣
→˓8, 9, 1, 5, 0, 8, 7, 4, 8, 9, 8, 0, 7, 4, 7, 1, 2, 8, 6, 1, 3, 9, 3, 9, 1, 3, 2,␣
→˓4, 9, 5, 1, 2, 9, 4, 8, 5, 3, 4, 6, 8, 9, 2, 5, 9, 4, 6, 2, 1, 4, 9, 6, 0, 9, 8,␣
→˓0, 4, 7, 9, 2, 1, 6])

Check that trac ticket #19495 is fixed:

sage: dg = DiGraph(); dg.add_vertex(0); S = ClusterSeed(dg); S
A seed for a cluster algebra of rank 1
sage: S.is_mutation_finite()
True

sage.combinat.cluster_algebra_quiver.mutation_type.load_data(n, user=True)
Load a dict with keys being tuples representing exceptional QuiverMutationTypes, and with values being lists or
sets containing all mutation equivalent quivers as dig6 data.

202 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/19495

Combinatorics, Release 9.7

We check

• the data stored by the user (unless user=False was given)

• and the data installed by the optional package database_mutation_class.

INPUT:

• user – boolean (default: True) whether to look at user data. If not, only consider the optional package.

EXAMPLES:

sage: from sage.combinat.cluster_algebra_quiver.mutation_type import load_data
sage: load_data(2) # random - depends on the data the user has stored
{('G', 2): [('AO', (((0, 1), (1, -3)),)), ('AO', (((0, 1), (3, -1)),))]}

5.1.20 Quiver

A quiver is an oriented graph without loops, two-cycles, or multiple edges. The edges are labelled by pairs (𝑖,−𝑗)
(with 𝑖 and 𝑗 being positive integers) such that the matrix 𝑀 = (𝑚𝑎𝑏) with 𝑚𝑎𝑏 = 𝑖,𝑚𝑏𝑎 = −𝑗 for an edge (𝑖,−𝑗)
between vertices 𝑎 and 𝑏 is skew-symmetrizable.

Warning: This is not the standard definition of a quiver. Normally, in cluster algebra theory, a quiver is defined
as an oriented graph without loops and two-cycles but with multiple edges allowed; the edges are unlabelled. This
notion of quivers, however, can be seen as a particular case of our notion of quivers. Namely, if we have a quiver
(in the regular sense of this word) with (precisely) 𝑖 edges from 𝑎 to 𝑏, then we represent it by a quiver (in our sense
of this word) with an edge from 𝑎 to 𝑏 labelled by the pair (𝑖,−𝑖).

For the compendium on the cluster algebra and quiver package see [MS2011]

AUTHORS:

• Gregg Musiker

• Christian Stump

See also:

For mutation types of combinatorial quivers, see QuiverMutationType(). Cluster seeds are closely related to
ClusterSeed().

class sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver(data, frozen=None,
user_labels=None)

Bases: sage.structure.sage_object.SageObject

The quiver associated to an exchange matrix.

INPUT:

• data – can be any of the following:

* QuiverMutationType
* str - a string representing a QuiverMutationType or a common quiver type (see␣
→˓Examples)
* ClusterQuiver
* Matrix - a skew-symmetrizable matrix
* DiGraph - must be the input data for a quiver
* List of edges - must be the edge list of a digraph for a quiver

5.1. Comprehensive Module List 203

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

• frozen – (default:None) sets the list of frozen variables if the input type is a DiGraph, it is ignored other-
wise

• user_labels – (default:None) sets the names of the labels for the vertices of the quiver if the input type
is not a DiGraph; otherwise it is ignored

EXAMPLES:

From a QuiverMutationType:

sage: Q = ClusterQuiver(['A',5]); Q
Quiver on 5 vertices of type ['A', 5]

sage: Q = ClusterQuiver(['B',2]); Q
Quiver on 2 vertices of type ['B', 2]
sage: Q2 = ClusterQuiver(['C',2]); Q2
Quiver on 2 vertices of type ['B', 2]
sage: MT = Q.mutation_type(); MT.standard_quiver() == Q
True
sage: MT = Q2.mutation_type(); MT.standard_quiver() == Q2
False

sage: Q = ClusterQuiver(['A',[2,5],1]); Q
Quiver on 7 vertices of type ['A', [2, 5], 1]

sage: Q = ClusterQuiver(['A', [5,0],1]); Q
Quiver on 5 vertices of type ['D', 5]
sage: Q.is_finite()
True
sage: Q.is_acyclic()
False

sage: Q = ClusterQuiver(['F', 4, [2,1]]); Q
Quiver on 6 vertices of type ['F', 4, [1, 2]]
sage: MT = Q.mutation_type(); MT.standard_quiver() == Q
False
sage: dg = Q.digraph(); Q.mutate([2,1,4,0,5,3])
sage: dg2 = Q.digraph(); dg2.is_isomorphic(dg,edge_labels=True)
False
sage: dg2.is_isomorphic(MT.standard_quiver().digraph(),edge_labels=True)
True

sage: Q = ClusterQuiver(['G',2, (3,1)]); Q
Quiver on 4 vertices of type ['G', 2, [1, 3]]
sage: MT = Q.mutation_type(); MT.standard_quiver() == Q
False

sage: Q = ClusterQuiver(['GR',[3,6]]); Q
Quiver on 4 vertices of type ['D', 4]
sage: MT = Q.mutation_type(); MT.standard_quiver() == Q
False

sage: Q = ClusterQuiver(['GR',[3,7]]); Q
Quiver on 6 vertices of type ['E', 6]

(continues on next page)

204 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph
../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Combinatorics, Release 9.7

(continued from previous page)

sage: Q = ClusterQuiver(['TR',2]); Q
Quiver on 3 vertices of type ['A', 3]
sage: MT = Q.mutation_type(); MT.standard_quiver() == Q
False
sage: Q.mutate([1,0]); MT.standard_quiver() == Q
True

sage: Q = ClusterQuiver(['TR',3]); Q
Quiver on 6 vertices of type ['D', 6]
sage: MT = Q.mutation_type(); MT.standard_quiver() == Q
False

From a ClusterQuiver:

sage: Q = ClusterQuiver(['A',[2,5],1]); Q
Quiver on 7 vertices of type ['A', [2, 5], 1]
sage: T = ClusterQuiver(Q); T
Quiver on 7 vertices of type ['A', [2, 5], 1]

From a Matrix:

sage: Q = ClusterQuiver(['A',[2,5],1]); Q
Quiver on 7 vertices of type ['A', [2, 5], 1]
sage: T = ClusterQuiver(Q._M); T
Quiver on 7 vertices

sage: Q = ClusterQuiver(matrix([[0,1,-1],[-1,0,1],[1,-1,0],[1,2,3]])); Q
Quiver on 4 vertices with 1 frozen vertex

sage: Q = ClusterQuiver(matrix([])); Q
Quiver without vertices

From a DiGraph:

sage: Q = ClusterQuiver(['A',[2,5],1]); Q
Quiver on 7 vertices of type ['A', [2, 5], 1]
sage: T = ClusterQuiver(Q._digraph); T
Quiver on 7 vertices

sage: Q = ClusterQuiver(DiGraph([[1,2],[2,3],[3,4],[4,1]])); Q
Quiver on 4 vertices

sage: Q = ClusterQuiver(DiGraph([['a', 'b'], ['b', 'c'], ['c', 'd'], ['d', 'e']]),
....: frozen=['c']); Q
Quiver on 5 vertices with 1 frozen vertex
sage: Q.mutation_type()
[['A', 2], ['A', 2]]
sage: Q
Quiver on 5 vertices of type [['A', 2], ['A', 2]] with 1 frozen vertex

From a List of edges:

5.1. Comprehensive Module List 205

Combinatorics, Release 9.7

sage: Q = ClusterQuiver(['A',[2,5],1]); Q
Quiver on 7 vertices of type ['A', [2, 5], 1]
sage: T = ClusterQuiver(Q._digraph.edges(sort=True)); T
Quiver on 7 vertices

sage: Q = ClusterQuiver([[1, 2], [2, 3], [3, 4], [4, 1]]); Q
Quiver on 4 vertices

b_matrix()
Return the b-matrix of self.

EXAMPLES:

sage: ClusterQuiver(['A',4]).b_matrix()
[0 1 0 0]
[-1 0 -1 0]
[0 1 0 1]
[0 0 -1 0]

sage: ClusterQuiver(['B',4]).b_matrix()
[0 1 0 0]
[-1 0 -1 0]
[0 1 0 1]
[0 0 -2 0]

sage: ClusterQuiver(['D',4]).b_matrix()
[0 1 0 0]
[-1 0 -1 -1]
[0 1 0 0]
[0 1 0 0]

sage: ClusterQuiver(QuiverMutationType([['A',2],['B',2]])).b_matrix()
[0 1 0 0]
[-1 0 0 0]
[0 0 0 1]
[0 0 -2 0]

canonical_label(certificate=False)
Return the canonical labelling of self.

See sage.graphs.generic_graph.GenericGraph.canonical_label().

INPUT:

• certificate – boolean (default: False) if True, the dictionary from self.vertices() to the ver-
tices of the returned quiver is returned as well.

EXAMPLES:

sage: Q = ClusterQuiver(['A',4]); Q.digraph().edges(sort=True)
[(0, 1, (1, -1)), (2, 1, (1, -1)), (2, 3, (1, -1))]

sage: T = Q.canonical_label(); T.digraph().edges(sort=True)
[(0, 3, (1, -1)), (1, 2, (1, -1)), (1, 3, (1, -1))]

(continues on next page)

206 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/graphs/sage/graphs/generic_graph.html#sage.graphs.generic_graph.GenericGraph.canonical_label

Combinatorics, Release 9.7

(continued from previous page)

sage: T, iso = Q.canonical_label(certificate=True)
sage: T.digraph().edges(sort=True); iso
[(0, 3, (1, -1)), (1, 2, (1, -1)), (1, 3, (1, -1))]
{0: 0, 1: 3, 2: 1, 3: 2}

sage: Q = ClusterQuiver(QuiverMutationType([['B',2],['A',1]])); Q
Quiver on 3 vertices of type [['B', 2], ['A', 1]]

sage: Q.canonical_label()
Quiver on 3 vertices of type [['A', 1], ['B', 2]]

sage: Q.canonical_label(certificate=True)
(Quiver on 3 vertices of type [['A', 1], ['B', 2]], {0: 1, 1: 2, 2: 0})

d_vector_fan()
Return the d-vector fan associated with the quiver.

It is the fan whose maximal cones are generated by the d-matrices of the clusters.

This is a complete simplicial fan (and even smooth when the initial quiver is acyclic). It only makes sense
for quivers of finite type.

EXAMPLES:

sage: Fd = ClusterQuiver([[1,2]]).d_vector_fan(); Fd
Rational polyhedral fan in 2-d lattice N
sage: Fd.ngenerating_cones()
5

sage: Fd = ClusterQuiver([[1,2],[2,3]]).d_vector_fan(); Fd
Rational polyhedral fan in 3-d lattice N
sage: Fd.ngenerating_cones()
14
sage: Fd.is_smooth()
True

sage: Fd = ClusterQuiver([[1,2],[2,3],[3,1]]).d_vector_fan(); Fd
Rational polyhedral fan in 3-d lattice N
sage: Fd.ngenerating_cones()
14
sage: Fd.is_smooth()
False

digraph()
Return the underlying digraph of self.

EXAMPLES:

sage: ClusterQuiver(['A',1]).digraph()
Digraph on 1 vertex
sage: list(ClusterQuiver(['A',1]).digraph())
[0]
sage: ClusterQuiver(['A',1]).digraph().edges(sort=True)
[]

(continues on next page)

5.1. Comprehensive Module List 207

Combinatorics, Release 9.7

(continued from previous page)

sage: ClusterQuiver(['A',4]).digraph()
Digraph on 4 vertices
sage: ClusterQuiver(['A',4]).digraph().edges(sort=True)
[(0, 1, (1, -1)), (2, 1, (1, -1)), (2, 3, (1, -1))]

sage: ClusterQuiver(['B',4]).digraph()
Digraph on 4 vertices
sage: ClusterQuiver(['A',4]).digraph().edges(sort=True)
[(0, 1, (1, -1)), (2, 1, (1, -1)), (2, 3, (1, -1))]

sage: ClusterQuiver(QuiverMutationType([['A',2],['B',2]])).digraph()
Digraph on 4 vertices

sage: ClusterQuiver(QuiverMutationType([['A',2],['B',2]])).digraph().
→˓edges(sort=True)
[(0, 1, (1, -1)), (2, 3, (1, -2))]

sage: ClusterQuiver(['C', 4], user_labels = ['x', 'y', 'z', 'w']).digraph().
→˓edges(sort=True)
[('x', 'y', (1, -1)), ('z', 'w', (2, -1)), ('z', 'y', (1, -1))]

exchangeable_part()
Return the restriction to the principal part (i.e. exchangeable part) of self, the subquiver obtained by
deleting the frozen vertices of self.

EXAMPLES:

sage: Q = ClusterQuiver(['A',4])
sage: T = ClusterQuiver(Q.digraph().edges(sort=True), frozen=[3])
sage: T.digraph().edges(sort=True)
[(0, 1, (1, -1)), (2, 1, (1, -1)), (2, 3, (1, -1))]

sage: T.exchangeable_part().digraph().edges(sort=True)
[(0, 1, (1, -1)), (2, 1, (1, -1))]

sage: Q2 = Q.principal_extension()
sage: Q3 = Q2.principal_extension()
sage: Q2.exchangeable_part() == Q3.exchangeable_part()
True

first_sink()
Return the first vertex of self that is a sink.

EXAMPLES:

sage: Q = ClusterQuiver(['A',5])
sage: Q.mutate([1,2,4,3,2])
sage: Q.first_sink()
0

first_source()
Return the first vertex of self that is a source

EXAMPLES:

208 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Q = ClusterQuiver(['A',5])
sage: Q.mutate([2,1,3,4,2])
sage: Q.first_source()
1

free_vertices()
Return the list of free vertices of self.

EXAMPLES:

sage: Q = ClusterQuiver(DiGraph([['a', 'b'], ['c', 'b'], ['c', 'd'], ['e', 'd
→˓']]),
....: frozen=['b', 'd'])
sage: Q.free_vertices()
['a', 'c', 'e']

frozen_vertices()
Return the list of frozen vertices of self.

EXAMPLES:

sage: Q = ClusterQuiver(DiGraph([['a', 'b'], ['c', 'b'], ['c', 'd'], ['e', 'd
→˓']]),
....: frozen=['b', 'd'])
sage: sorted(Q.frozen_vertices())
['b', 'd']

g_vector_fan()
Return the g-vector fan associated with the quiver.

It is the fan whose maximal cones are generated by the g-matrices of the clusters.

This is a complete simplicial fan. It is only supported for quivers of finite type.

EXAMPLES:

sage: Fg = ClusterQuiver([[1,2]]).g_vector_fan(); Fg
Rational polyhedral fan in 2-d lattice N
sage: Fg.ngenerating_cones()
5

sage: Fg = ClusterQuiver([[1,2],[2,3]]).g_vector_fan(); Fg
Rational polyhedral fan in 3-d lattice N
sage: Fg.ngenerating_cones()
14
sage: Fg.is_smooth()
True

sage: Fg = ClusterQuiver([[1,2],[2,3],[3,1]]).g_vector_fan(); Fg
Rational polyhedral fan in 3-d lattice N
sage: Fg.ngenerating_cones()
14
sage: Fg.is_smooth()
True

interact(fig_size=1, circular=True)
Start an interactive window for cluster quiver mutations.

5.1. Comprehensive Module List 209

Combinatorics, Release 9.7

Only in Jupyter notebook mode.

INPUT:

• fig_size – (default: 1) factor by which the size of the plot is multiplied.

• circular – (default: True) if True, the circular plot is chosen, otherwise >>spring<< is used.

is_acyclic()
Return true if self is acyclic.

EXAMPLES:

sage: ClusterQuiver(['A',4]).is_acyclic()
True

sage: ClusterQuiver(['A',[2,1],1]).is_acyclic()
True

sage: ClusterQuiver([[0,1],[1,2],[2,0]]).is_acyclic()
False

is_bipartite(return_bipartition=False)
Return True if self is bipartite.

EXAMPLES:

sage: ClusterQuiver(['A',[3,3],1]).is_bipartite()
True

sage: ClusterQuiver(['A',[4,3],1]).is_bipartite()
False

is_finite()
Return True if self is of finite type.

EXAMPLES:

sage: Q = ClusterQuiver(['A',3])
sage: Q.is_finite()
True
sage: Q = ClusterQuiver(['A',[2,2],1])
sage: Q.is_finite()
False
sage: Q = ClusterQuiver([['A',3],['B',3]])
sage: Q.is_finite()
True
sage: Q = ClusterQuiver(['T',[4,4,4]])
sage: Q.is_finite()
False
sage: Q = ClusterQuiver([['A',3],['T',[4,4,4]]])
sage: Q.is_finite()
False
sage: Q = ClusterQuiver([['A',3],['T',[2,2,3]]])
sage: Q.is_finite()
True
sage: Q = ClusterQuiver([['A',3],['D',5]])

(continues on next page)

210 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Q.is_finite()
True
sage: Q = ClusterQuiver([['A',3],['D',5,1]])
sage: Q.is_finite()
False

sage: Q = ClusterQuiver([[0,1,2],[1,2,2],[2,0,2]])
sage: Q.is_finite()
False

sage: Q = ClusterQuiver([[0,1,2],[1,2,2],[2,0,2],[3,4,1],[4,5,1]])
sage: Q.is_finite()
False

is_mutation_finite(nr_of_checks=None, return_path=False)
Uses a non-deterministic method by random mutations in various directions. Can result in a wrong answer.

INPUT:

• nr_of_checks – (default: None) number of mutations applied. Standard is 500*(number of vertices
of self).

• return_path – (default: False) if True, in case of self not being mutation finite, a path from self to a
quiver with an edge label (a,-b) and a*b > 4 is returned.

ALGORITHM:

A quiver is mutation infinite if and only if every edge label (a,-b) satisfy a*b > 4. Thus, we apply random
mutations in random directions

EXAMPLES:

sage: Q = ClusterQuiver(['A',10])
sage: Q._mutation_type = None
sage: Q.is_mutation_finite()
True

sage: Q = ClusterQuiver([(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(2,9)])
sage: Q.is_mutation_finite()
False

m()
Return the number of frozen vertices of self.

EXAMPLES:

sage: Q = ClusterQuiver(['A',4])
sage: Q.m()
0

sage: T = ClusterQuiver(Q.digraph().edges(sort=True), frozen=[3])
sage: T.n()
3
sage: T.m()
1

5.1. Comprehensive Module List 211

Combinatorics, Release 9.7

mutate(data, inplace=True)
Mutates self at a sequence of vertices.

INPUT:

• sequence – a vertex of self, an iterator of vertices of self, a function which takes in the Clus-
terQuiver and returns a vertex or an iterator of vertices, or a string of the parameter wanting to be
called on ClusterQuiver that will return a vertex or an iterator of vertices.

• inplace – (default: True) if False, the result is returned, otherwise self is modified.

EXAMPLES:

sage: Q = ClusterQuiver(['A',4]); Q.b_matrix()
[0 1 0 0]
[-1 0 -1 0]
[0 1 0 1]
[0 0 -1 0]

sage: Q.mutate(0); Q.b_matrix()
[0 -1 0 0]
[1 0 -1 0]
[0 1 0 1]
[0 0 -1 0]

sage: T = Q.mutate(0, inplace=False); T
Quiver on 4 vertices of type ['A', 4]

sage: Q.mutate(0)
sage: Q == T
True

sage: Q.mutate([0,1,0])
sage: Q.b_matrix()
[0 -1 1 0]
[1 0 0 0]
[-1 0 0 1]
[0 0 -1 0]

sage: Q = ClusterQuiver(QuiverMutationType([['A',1],['A',3]]))
sage: Q.b_matrix()
[0 0 0 0]
[0 0 1 0]
[0 -1 0 -1]
[0 0 1 0]

sage: T = Q.mutate(0,inplace=False)
sage: Q == T
True

sage: Q = ClusterQuiver(['A',3]); Q.b_matrix()
[0 1 0]
[-1 0 -1]
[0 1 0]
sage: Q.mutate('first_sink'); Q.b_matrix()

(continues on next page)

212 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0 -1 0]
[1 0 1]
[0 -1 0]
sage: Q.mutate('first_source'); Q.b_matrix()
[0 1 0]
[-1 0 -1]
[0 1 0]

sage: dg = DiGraph()
sage: dg.add_vertices(['a','b','c','d','e'])
sage: dg.add_edges([['a','b'], ['b','c'], ['c','d'], ['d','e']])
sage: Q2 = ClusterQuiver(dg, frozen=['c']); Q2.b_matrix()
[0 1 0 0]
[-1 0 0 0]
[0 0 0 1]
[0 0 -1 0]
[0 -1 1 0]
sage: Q2.mutate('a'); Q2.b_matrix()
[0 -1 0 0]
[1 0 0 0]
[0 0 0 1]
[0 0 -1 0]
[0 -1 1 0]

sage: dg = DiGraph([['a', 'b'], ['b', 'c']], format='list_of_edges')
sage: Q = ClusterQuiver(dg);Q
Quiver on 3 vertices
sage: Q.mutate(['a','b'],inplace=False).digraph().edges(sort=True)
[('a', 'b', (1, -1)), ('c', 'b', (1, -1))]

mutation_class(depth=+ Infinity, show_depth=False, return_paths=False, data_type='quiver',
up_to_equivalence=True, sink_source=False)

Return the mutation class of self together with certain constraints.

INPUT:

• depth – (default: infinity`) integer, only seeds with distance at most depth from
``self are returned

• show_depth – (default: False) if True, the actual depth of the mutation is shown

• return_paths – (default: False) if True, a shortest path of mutation sequences from self to the
given quiver is returned as well

• data_type – (default: "quiver") can be one of the following:

– "quiver" – the quiver is returned

– "dig6" – the dig6-data is returned

– "path" – shortest paths of mutation sequences from self are returned

• sink_source – (default: False) if True, only mutations at sinks and sources are applied

EXAMPLES:

5.1. Comprehensive Module List 213

Combinatorics, Release 9.7

sage: Q = ClusterQuiver(['A',3])
sage: Ts = Q.mutation_class()
sage: for T in Ts: print(T)
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]

sage: Ts = Q.mutation_class(depth=1)
sage: for T in Ts: print(T)
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]

sage: Ts = Q.mutation_class(show_depth=True)
Depth: 0 found: 1 Time: ... s
Depth: 1 found: 3 Time: ... s
Depth: 2 found: 4 Time: ... s

sage: Ts = Q.mutation_class(return_paths=True)
sage: for T in Ts: print(T)
(Quiver on 3 vertices of type ['A', 3], [])
(Quiver on 3 vertices of type ['A', 3], [1])
(Quiver on 3 vertices of type ['A', 3], [0])
(Quiver on 3 vertices of type ['A', 3], [0, 1])

sage: Ts = Q.mutation_class(up_to_equivalence=False)
sage: for T in Ts: print(T)
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]

sage: Ts = Q.mutation_class(return_paths=True,up_to_equivalence=False)
sage: len(Ts)
14
sage: Ts[0]
(Quiver on 3 vertices of type ['A', 3], [])

sage: Ts = Q.mutation_class(show_depth=True)
Depth: 0 found: 1 Time: ... s
Depth: 1 found: 3 Time: ... s
Depth: 2 found: 4 Time: ... s

(continues on next page)

214 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Ts = Q.mutation_class(show_depth=True, up_to_equivalence=False)
Depth: 0 found: 1 Time: ... s
Depth: 1 found: 4 Time: ... s
Depth: 2 found: 6 Time: ... s
Depth: 3 found: 10 Time: ... s
Depth: 4 found: 14 Time: ... s

mutation_class_iter(depth=+ Infinity, show_depth=False, return_paths=False, data_type='quiver',
up_to_equivalence=True, sink_source=False)

Return an iterator for the mutation class of self together with certain constraints.

INPUT:

• depth – (default: infinity) integer, only quivers with distance at most depth from self are returned.

• show_depth – (default: False) if True, the actual depth of the mutation is shown.

• return_paths – (default: False) if True, a shortest path of mutation sequences from self to the given
quiver is returned as well.

• data_type – (default: “quiver”) can be one of the following:

* "quiver"
* "matrix"
* "digraph"
* "dig6"
* "path"

• up_to_equivalence – (default: True) if True, only one quiver for each graph-isomorphism class is
recorded.

• sink_source – (default: False) if True, only mutations at sinks and sources are applied.

EXAMPLES:

sage: Q = ClusterQuiver(['A',3])
sage: it = Q.mutation_class_iter()
sage: for T in it: print(T)
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]

sage: it = Q.mutation_class_iter(depth=1)
sage: for T in it: print(T)
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]

sage: it = Q.mutation_class_iter(show_depth=True)
sage: for T in it: pass
Depth: 0 found: 1 Time: ... s
Depth: 1 found: 3 Time: ... s
Depth: 2 found: 4 Time: ... s

(continues on next page)

5.1. Comprehensive Module List 215

Combinatorics, Release 9.7

(continued from previous page)

sage: it = Q.mutation_class_iter(return_paths=True)
sage: for T in it: print(T)
(Quiver on 3 vertices of type ['A', 3], [])
(Quiver on 3 vertices of type ['A', 3], [1])
(Quiver on 3 vertices of type ['A', 3], [0])
(Quiver on 3 vertices of type ['A', 3], [0, 1])

sage: it = Q.mutation_class_iter(up_to_equivalence=False)
sage: for T in it: print(T)
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]
Quiver on 3 vertices of type ['A', 3]

sage: it = Q.mutation_class_iter(return_paths=True,up_to_equivalence=False)
sage: mutation_class = list(it)
sage: len(mutation_class)
14
sage: mutation_class[0]
(Quiver on 3 vertices of type ['A', 3], [])

sage: Q = ClusterQuiver(['A',3])
sage: it = Q.mutation_class_iter(data_type='path')
sage: for T in it: print(T)
[]
[1]
[0]
[0, 1]

sage: Q = ClusterQuiver(['A',3])
sage: it = Q.mutation_class_iter(return_paths=True,data_type='matrix')
sage: next(it)
(
[0 0 1]
[0 0 1]
[-1 -1 0], []
)

sage: dg = DiGraph([['a', 'b'], ['b', 'c']], format='list_of_edges')
sage: S = ClusterQuiver(dg, frozen=['b'])
sage: S.mutation_class()
[Quiver on 3 vertices with 1 frozen vertex,

(continues on next page)

216 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Quiver on 3 vertices with 1 frozen vertex,
Quiver on 3 vertices with 1 frozen vertex]

mutation_sequence(sequence, show_sequence=False, fig_size=1.2)
Return a list containing the sequence of quivers obtained from self by a sequence of mutations on vertices.

INPUT:

• sequence – a list or tuple of vertices of self.

• show_sequence – (default: False) if True, a png containing the mutation sequence is shown.

• fig_size – (default: 1.2) factor by which the size of the sequence is expanded.

EXAMPLES:

sage: Q = ClusterQuiver(['A',4])
sage: seq = Q.mutation_sequence([0,1]); seq
[Quiver on 4 vertices of type ['A', 4], Quiver on 4 vertices of type ['A', 4],␣
→˓Quiver on 4 vertices of type ['A', 4]]
sage: [T.b_matrix() for T in seq]
[
[0 1 0 0] [0 -1 0 0] [0 1 -1 0]
[-1 0 -1 0] [1 0 -1 0] [-1 0 1 0]
[0 1 0 1] [0 1 0 1] [1 -1 0 1]
[0 0 -1 0], [0 0 -1 0], [0 0 -1 0]
]

mutation_type()
Return the mutation type of self.

Return the mutation_type of each connected component of self if it can be determined, otherwise, the
mutation type of this component is set to be unknown.

The mutation types of the components are ordered by vertex labels.

If you do many type recognitions, you should consider to save exceptional mutation types using
save_quiver_data()

WARNING:

• All finite types can be detected,

• All affine types can be detected, EXCEPT affine type D (the algorithm is not yet implemented)

• All exceptional types can be detected.

EXAMPLES:

sage: ClusterQuiver(['A',4]).mutation_type()
['A', 4]
sage: ClusterQuiver(['A',(3,1),1]).mutation_type()
['A', [1, 3], 1]
sage: ClusterQuiver(['C',2]).mutation_type()
['B', 2]
sage: ClusterQuiver(['B',4,1]).mutation_type()
['BD', 4, 1]

finite types:

5.1. Comprehensive Module List 217

Combinatorics, Release 9.7

sage: Q = ClusterQuiver(['A',5])
sage: Q._mutation_type = None
sage: Q.mutation_type()
['A', 5]

sage: Q = ClusterQuiver([(0,1),(1,2),(2,3),(3,4)])
sage: Q.mutation_type()
['A', 5]

sage: Q = ClusterQuiver(DiGraph([['a', 'b'], ['c', 'b'], ['c', 'd'], ['e', 'd
→˓']]),
....: frozen=['c'])
sage: Q.mutation_type()
[['A', 2], ['A', 2]]

affine types:

sage: Q = ClusterQuiver(['E',8,[1,1]]); Q
Quiver on 10 vertices of type ['E', 8, [1, 1]]
sage: Q._mutation_type = None; Q
Quiver on 10 vertices
sage: Q.mutation_type() # long time
['E', 8, [1, 1]]

the not yet working affine type D (unless user has saved small classical quiver data):

sage: Q = ClusterQuiver(['D',4,1])
sage: Q._mutation_type = None
sage: Q.mutation_type() # todo: not implemented
['D', 4, 1]

the exceptional types:

sage: Q = ClusterQuiver(['X',6])
sage: Q._mutation_type = None
sage: Q.mutation_type() # long time
['X', 6]

examples from page 8 of [Ke2008]:

sage: dg = DiGraph(); dg.add_edges([(9,0),(9,4),(4,6),(6,7),(7,8),(8,3),(3,5),
→˓(5,6),(8,1),(2,3)])
sage: ClusterQuiver(dg).mutation_type() # long time
['E', 8, [1, 1]]

sage: dg = DiGraph({ 0:[3], 1:[0,4], 2:[0,6], 3:[1,2,7], 4:[3,8], 5:[2], 6:[3,
→˓5], 7:[4,6], 8:[7] })
sage: ClusterQuiver(dg).mutation_type() # long time
['E', 8, 1]

sage: dg = DiGraph({ 0:[3,9], 1:[0,4], 2:[0,6], 3:[1,2,7], 4:[3,8], 5:[2],␣
→˓6:[3,5], 7:[4,6], 8:[7], 9:[1] })
sage: ClusterQuiver(dg).mutation_type() # long time
['E', 8, [1, 1]]

218 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

infinite types:

sage: Q = ClusterQuiver(['GR',[4,9]])
sage: Q._mutation_type = None
sage: Q.mutation_type()
'undetermined infinite mutation type'

reducible types:

sage: Q = ClusterQuiver([['A', 3], ['B', 3]])
sage: Q._mutation_type = None
sage: Q.mutation_type()
[['A', 3], ['B', 3]]

sage: Q = ClusterQuiver([['A', 3], ['T', [4,4,4]]])
sage: Q._mutation_type = None
sage: Q.mutation_type()
[['A', 3], 'undetermined infinite mutation type']

sage: Q = ClusterQuiver([['A', 3], ['B', 3], ['T', [4,4,4]]])
sage: Q._mutation_type = None
sage: Q.mutation_type()
[['A', 3], ['B', 3], 'undetermined infinite mutation type']

sage: Q = ClusterQuiver([[0,1,2],[1,2,2],[2,0,2],[3,4,1],[4,5,1]])
sage: Q.mutation_type()
['undetermined finite mutation type', ['A', 3]]

n()
Return the number of free vertices of self.

EXAMPLES:

sage: ClusterQuiver(['A',4]).n()
4
sage: ClusterQuiver(['A',(3,1),1]).n()
4
sage: ClusterQuiver(['B',4]).n()
4
sage: ClusterQuiver(['B',4,1]).n()
5

number_of_edges()
Return the total number of edges on the quiver

Note: This only works with non-valued quivers. If used on a non-valued quiver then the positive value is
taken to be the number of edges added

OUTPUT:

An integer of the number of edges.

EXAMPLES:

sage: S = ClusterQuiver(['A',4]); S.number_of_edges()
3

(continues on next page)

5.1. Comprehensive Module List 219

Combinatorics, Release 9.7

(continued from previous page)

sage: S = ClusterQuiver(['B',4]); S.number_of_edges()
3

plot(circular=True, center=(0, 0), directed=True, mark=None, save_pos=False, greens=[])
Return the plot of the underlying digraph of self.

INPUT:

• circular – (default: True) if True, the circular plot is chosen, otherwise >>spring<< is used.

• center – (default:(0,0)) sets the center of the circular plot, otherwise it is ignored.

• directed – (default: True) if True, the directed version is shown, otherwise the undirected.

• mark – (default: None) if set to i, the vertex i is highlighted.

• save_pos – (default: False) if True, the positions of the vertices are saved.

• greens – (default: []) if set to a list, will display the green vertices as green

EXAMPLES:

sage: Q = ClusterQuiver(['A',5])
sage: Q.plot()
Graphics object consisting of 15 graphics primitives
sage: Q.plot(circular=True)
Graphics object consisting of 15 graphics primitives
sage: Q.plot(circular=True, mark=1)
Graphics object consisting of 15 graphics primitives

poincare_semistable(theta, d)
Return the Poincaré polynomial of the moduli space of semi-stable representations of dimension vector 𝑑.

INPUT:

• theta – stability weight, as list or vector of rationals

• d – dimension vector, as list or vector of coprime integers

The semi-stability is taken with respect to the slope function

𝜇(𝑑) = 𝜃(𝑑)/ dim(𝑑)

where 𝑑 is a dimension vector.

This uses the matrix-inversion algorithm from [Rei2002].

EXAMPLES:

sage: Q = ClusterQuiver(['A',2])
sage: Q.poincare_semistable([1,0],[1,0])
1
sage: Q.poincare_semistable([1,0],[1,1])
1

sage: K2 = ClusterQuiver(matrix([[0,2],[-2,0]]))
sage: theta = (1, 0)
sage: K2.poincare_semistable(theta, [1,0])

(continues on next page)

220 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

1
sage: K2.poincare_semistable(theta, [1,1])
v^2 + 1
sage: K2.poincare_semistable(theta, [1,2])
1
sage: K2.poincare_semistable(theta, [1,3])
0

sage: K3 = ClusterQuiver(matrix([[0,3],[-3,0]]))
sage: theta = (1, 0)
sage: K3.poincare_semistable(theta, (2,3))
v^12 + v^10 + 3*v^8 + 3*v^6 + 3*v^4 + v^2 + 1
sage: K3.poincare_semistable(theta, (3,4))(1)
68

REFERENCES:

principal_extension(inplace=False)
Return the principal extension of self, adding n frozen vertices to any previously frozen vertices. I.e., the
quiver obtained by adding an outgoing edge to every mutable vertex of self.

EXAMPLES:

sage: Q = ClusterQuiver(['A',2]); Q
Quiver on 2 vertices of type ['A', 2]
sage: T = Q.principal_extension(); T
Quiver on 4 vertices of type ['A', 2] with 2 frozen vertices
sage: T2 = T.principal_extension(); T2
Quiver on 6 vertices of type ['A', 2] with 4 frozen vertices
sage: Q.digraph().edges(sort=True)
[(0, 1, (1, -1))]
sage: T.digraph().edges(sort=True)
[(0, 1, (1, -1)), (2, 0, (1, -1)), (3, 1, (1, -1))]
sage: T2.digraph().edges(sort=True)
[(0, 1, (1, -1)), (2, 0, (1, -1)), (3, 1, (1, -1)), (4, 0, (1, -1)), (5, 1, (1,␣
→˓-1))]

qmu_save(filename=None)
Save self in a .qmu file.

This file can then be opened in Bernhard Keller’s Quiver Applet.

See https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/

INPUT:

• filename – the filename the image is saved to.

If a filename is not specified, the default name is from_sage.qmu in the current sage directory.

EXAMPLES:

sage: Q = ClusterQuiver(['F',4,[1,2]])
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(suffix=".qmu") as f:
....: Q.qmu_save(f.name)

5.1. Comprehensive Module List 221

https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/

Combinatorics, Release 9.7

Make sure we can save quivers with 𝑚! = 𝑛 frozen variables, see trac ticket #14851:

sage: S = ClusterSeed(['A',3])
sage: T1 = S.principal_extension()
sage: Q = T1.quiver()
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(suffix=".qmu") as f:
....: Q.qmu_save(f.name)

relabel(relabelling, inplace=True)
Return the quiver after doing a relabelling

Will relabel the vertices of the quiver

INPUT:

• relabelling – Dictionary of labels to move around

• inplace – (default:True) if True, will return a duplicate of the quiver

EXAMPLES:

sage: S = ClusterQuiver(['A',4]).relabel({1:'5',2:'go'})

reorient(data)
Reorient self with respect to the given total order, or with respect to an iterator of edges in self to be
reverted.

Warning: This operation might change the mutation type of self.

INPUT:

• data – an iterator defining a total order on self.vertices(), or an iterator of edges in self to be
reoriented.

EXAMPLES:

sage: Q = ClusterQuiver(['A',(2,3),1])
sage: Q.mutation_type()
['A', [2, 3], 1]

sage: Q.reorient([(0,1),(1,2),(2,3),(3,4)])
sage: Q.mutation_type()
['D', 5]

sage: Q.reorient([0,1,2,3,4])
sage: Q.mutation_type()
['A', [1, 4], 1]

save_image(filename, circular=False)
Save the plot of the underlying digraph of self.

INPUT:

• filename – the filename the image is saved to.

• circular – (default: False) if True, the circular plot is chosen, otherwise >>spring<< is used.

EXAMPLES:

222 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/14851

Combinatorics, Release 9.7

sage: Q = ClusterQuiver(['F',4,[1,2]])
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(suffix=".png") as f:
....: Q.save_image(f.name)

show(fig_size=1, circular=False, directed=True, mark=None, save_pos=False, greens=[])
Show the plot of the underlying digraph of self.

INPUT:

• fig_size – (default: 1) factor by which the size of the plot is multiplied.

• circular – (default: False) if True, the circular plot is chosen, otherwise >>spring<< is used.

• directed – (default: True) if True, the directed version is shown, otherwise the undirected.

• mark – (default: None) if set to i, the vertex i is highlighted.

• save_pos – (default:False) if True, the positions of the vertices are saved.

• greens – (default:[]) if set to a list, will display the green vertices as green

sinks()
Return all vertices of self that are sinks.

EXAMPLES:

sage: Q = ClusterQuiver(['A',5])
sage: Q.mutate([1,2,4,3,2])
sage: Q.sinks()
[0, 2]

sage: Q = ClusterQuiver(['A',5])
sage: Q.mutate([2,1,3,4,2])
sage: Q.sinks()
[3]

sources()
Return all vertices of self that are sources.

EXAMPLES:

sage: Q = ClusterQuiver(['A',5])
sage: Q.mutate([1,2,4,3,2])
sage: Q.sources()
[]

sage: Q = ClusterQuiver(['A',5])
sage: Q.mutate([2,1,3,4,2])
sage: Q.sources()
[1]

5.1. Comprehensive Module List 223

Combinatorics, Release 9.7

5.1.21 Quiver mutation types

AUTHORS:

• Gregg Musiker (2012, initial version)

• Christian Stump (2012, initial version)

• Hugh Thomas (2012, initial version)

sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType(*args)

Quiver mutation types can be seen as a slight generalization of generalized Cartan types.

Background on generalized Cartan types can be found at

Wikipedia article Generalized_Cartan_matrix

For the compendium on the cluster algebra and quiver package in Sage see [MS2011]

A 𝐵-matrix is a skew-symmetrizable (𝑛× 𝑛)-matrix 𝑀 . I.e., there exists an invertible diagonal matrix 𝐷 such
that 𝐷𝑀 is skew-symmetric. 𝑀 can be encoded as a quiver by having a directed edge from vertex 𝑖 to vertex 𝑗
with label (𝑎, 𝑏) if 𝑎 = 𝑀𝑖,𝑗 > 0 and 𝑏 = 𝑀𝑗,𝑖 < 0. We consider quivers up to mutation equivalence.

To a quiver mutation type we can associate a generalized Cartan type by sending 𝑀 to the generalized Cartan
matrix 𝐶(𝑀) obtained by replacing all positive entries by their negatives and adding 2’s on the main diagonal.

QuiverMutationType constructs a quiver mutation type object. For more detail on the possible different types,
please see the compendium.

INPUT:

The input consists either of a quiver mutation type, or of a letter (a string), a rank (one integer or a list/tuple of
integers), and an optional twist (an integer or a list of integers). There are several different naming conventions
for quiver mutation types.

• Finite type – letter is a Dynkin type (A-G), and rank is the rank.

• Affine type – there is more than one convention for naming affine types.

– Kac’s notation: letter is a Dynkin type, rank is the rank of the associated finite Dynkin diagram,
and twist is the twist, which could be 1, 2, or 3. In the special case of affine type A, there is more than
one quiver mutation type associated to the Cartan type. In this case only, rank is a pair of integers (i,j),
giving the number of edges pointing clockwise and the number of edges pointing counter-clockwise.
The total number of vertices is given by i+j in this case.

– Naive notation: letter is one of ‘BB’, ‘BC’, ‘BD’, ‘CC’, ‘CD’. The name specifies the two ends of
the diagram, which are joined by a path. The total number of vertices is given by rank +1 (to match
the indexing people expect because these are affine types). In general, rank must be large enough for
the picture to make sense, but we accept letter is BC and rank=1.

– Macdonald notation: for the dual of an untwisted affine type (such as [‘C’, 6, 1]), we accept a twist of
-1 (i.e., [‘C’,6,-1]).

• Elliptic type – letter is a Dynkin type, rank is the rank of the finite Dynkin diagram, and twist is a
tuple of two integers. We follow Saito’s notation.

• Other shapes:

– Rank 2: letter is ‘R2’, and rank is a pair of integers specifying the label on the unique edge.

– Triangle: letter is TR, and rank is the number of vertices along a side.

224 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Generalized_Cartan_matrix

Combinatorics, Release 9.7

– T: This defines a quiver shaped like a T. letter is ‘T’, and the rank is a triple, whose entries specify
the number of vertices along each path from the branch point (counting the branch point).

– Grassmannian: This defines the cluster algebra (without coefficients) corresponding to the cluster
algebra with coefficients which is the coordinate ring of a Grassmannian. letter is ‘GR’. rank is
a pair of integers (𝑘, 𝑛) with ‘k’ < ‘n’ specifying the Grassmannian of 𝑘-planes in 𝑛-space. This
defines a quiver given by a (k-1) x (n-k-1) grid where each square is cyclically oriented.

– Exceptional mutation finite quivers: The two exceptional mutation finite quivers, found by Derksen-
Owen, have letter as ‘X’ and rank 6 or 7, equal to the number of vertices.

– AE, BE, CE, DE: Quivers are built of one end which looks like type (affine A), B, C, or D, and the
other end which looks like type E (i.e., it consists of two antennae, one of length one, and one of length
two). letter is ‘AE’, ‘BE’, ‘CE’, or ‘DE’, and rank is the total number of vertices. Note that ‘AE’ is
of a slightly different form and requires rank to be a pair of integers (i,j) just as in the case of affine
type A. See Exercise 4.3 in Kac’s book Infinite Dimensional Lie Algebras for more details.

– Infinite type E: It is also possible to obtain infinite-type E quivers by specifying letter as ‘E’ and
rank as the number of vertices.

REFERENCES:

• A good reference for finite and affine Dynkin diagrams, including Kac’s notation, is the Wikipedia article
Dynkin_diagram.

• A good reference for the skew-symmetrizable elliptic diagrams is “Cluster algebras of finite mutation type
via unfolding” by A. Felikson, M. Shapiro, and P. Tumarkin, [FST2012].

EXAMPLES:

Finite types:

sage: QuiverMutationType('A', 1)
['A', 1]
sage: QuiverMutationType('A',5)
['A', 5]

sage: QuiverMutationType('B', 2)
['B', 2]
sage: QuiverMutationType('B',5)
['B', 5]

sage: QuiverMutationType('C', 2)
['B', 2]
sage: QuiverMutationType('C',5)
['C', 5]

sage: QuiverMutationType('D', 2)
[['A', 1], ['A', 1]]
sage: QuiverMutationType('D',3)
['A', 3]
sage: QuiverMutationType('D',4)
['D', 4]

sage: QuiverMutationType('E',6)
['E', 6]

sage: QuiverMutationType('G', 2)
(continues on next page)

5.1. Comprehensive Module List 225

https://en.wikipedia.org/wiki/Dynkin_diagram
https://en.wikipedia.org/wiki/Dynkin_diagram

Combinatorics, Release 9.7

(continued from previous page)

['G', 2]

sage: QuiverMutationType('A',(1,0), 1)
['A', 1]

sage: QuiverMutationType('A',(2,0), 1)
[['A', 1], ['A', 1]]

sage: QuiverMutationType('A',(7,0), 1)
['D', 7]

Affine types:

sage: QuiverMutationType('A',(1, 1), 1)
['A', [1, 1], 1]
sage: QuiverMutationType('A',(2,4), 1)
['A', [2, 4], 1]

sage: QuiverMutationType('BB', 2, 1)
['BB', 2, 1]
sage: QuiverMutationType('BB',4, 1)
['BB', 4, 1]

sage: QuiverMutationType('CC', 2, 1)
['CC', 2, 1]
sage: QuiverMutationType('CC',4, 1)
['CC', 4, 1]

sage: QuiverMutationType('BC', 1, 1)
['BC', 1, 1]
sage: QuiverMutationType('BC',5, 1)
['BC', 5, 1]

sage: QuiverMutationType('BD',3, 1)
['BD', 3, 1]
sage: QuiverMutationType('BD',5, 1)
['BD', 5, 1]

sage: QuiverMutationType('CD',3, 1)
['CD', 3, 1]
sage: QuiverMutationType('CD',5, 1)
['CD', 5, 1]

sage: QuiverMutationType('D',4, 1)
['D', 4, 1]
sage: QuiverMutationType('D',6, 1)
['D', 6, 1]

sage: QuiverMutationType('E',6, 1)
['E', 6, 1]
sage: QuiverMutationType('E',7, 1)
['E', 7, 1]

(continues on next page)

226 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: QuiverMutationType('E',8, 1)
['E', 8, 1]

sage: QuiverMutationType('F',4, 1)
['F', 4, 1]
sage: QuiverMutationType('F',4,-1)
['F', 4, -1]

sage: QuiverMutationType('G', 2, 1)
['G', 2, 1]
sage: QuiverMutationType('G', 2,-1)
['G', 2, -1]
sage: QuiverMutationType('A',3, 2) == QuiverMutationType('D',3, 2)
True

Affine types using Kac’s Notation:

sage: QuiverMutationType('A', 1, 1)
['A', [1, 1], 1]
sage: QuiverMutationType('B',5, 1)
['BD', 5, 1]
sage: QuiverMutationType('C',5, 1)
['CC', 5, 1]
sage: QuiverMutationType('A', 2, 2)
['BC', 1, 1]
sage: QuiverMutationType('A',7, 2)
['CD', 4, 1]
sage: QuiverMutationType('A',8, 2)
['BC', 4, 1]
sage: QuiverMutationType('D',6, 2)
['BB', 5, 1]
sage: QuiverMutationType('E',6, 2)
['F', 4, -1]
sage: QuiverMutationType('D',4,3)
['G', 2, -1]

Elliptic types:

sage: QuiverMutationType('E',6,[1, 1])
['E', 6, [1, 1]]
sage: QuiverMutationType('F',4,[2, 1])
['F', 4, [1, 2]]
sage: QuiverMutationType('G', 2,[3,3])
['G', 2, [3, 3]]

Mutation finite types:

Rank 2 cases:

sage: QuiverMutationType('R2',(1, 1))
['A', 2]
sage: QuiverMutationType('R2',(1, 2))
['B', 2]

(continues on next page)

5.1. Comprehensive Module List 227

Combinatorics, Release 9.7

(continued from previous page)

sage: QuiverMutationType('R2',(1,3))
['G', 2]
sage: QuiverMutationType('R2',(1,4))
['BC', 1, 1]
sage: QuiverMutationType('R2',(1,5))
['R2', [1, 5]]
sage: QuiverMutationType('R2',(2, 2))
['A', [1, 1], 1]
sage: QuiverMutationType('R2',(3,5))
['R2', [3, 5]]

Exceptional Derksen-Owen quivers:

sage: QuiverMutationType('X',6)
['X', 6]

(Mainly) mutation infinite types:

Infinite type E:

sage: QuiverMutationType('E',9)
['E', 8, 1]
sage: QuiverMutationType('E', 10)
['E', 10]
sage: QuiverMutationType('E', 12)
['E', 12]

sage: QuiverMutationType('AE',(2,3))
['AE', [2, 3]]
sage: QuiverMutationType('BE',5)
['BE', 5]
sage: QuiverMutationType('CE',5)
['CE', 5]
sage: QuiverMutationType('DE',6)
['DE', 6]

Grassmannian types:

sage: QuiverMutationType('GR',(2,4))
['A', 1]
sage: QuiverMutationType('GR',(2,6))
['A', 3]
sage: QuiverMutationType('GR',(3,6))
['D', 4]
sage: QuiverMutationType('GR',(3,7))
['E', 6]
sage: QuiverMutationType('GR',(3,8))
['E', 8]
sage: QuiverMutationType('GR',(3, 10))
['GR', [3, 10]]

Triangular types:

228 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: QuiverMutationType('TR', 2)
['A', 3]
sage: QuiverMutationType('TR',3)
['D', 6]
sage: QuiverMutationType('TR',4)
['E', 8, [1, 1]]
sage: QuiverMutationType('TR',5)
['TR', 5]

T types:

sage: QuiverMutationType('T',(1, 1, 1))
['A', 1]
sage: QuiverMutationType('T',(1, 1,4))
['A', 4]
sage: QuiverMutationType('T',(1,4,4))
['A', 7]
sage: QuiverMutationType('T',(2, 2, 2))
['D', 4]
sage: QuiverMutationType('T',(2, 2,4))
['D', 6]
sage: QuiverMutationType('T',(2,3,3))
['E', 6]
sage: QuiverMutationType('T',(2,3,4))
['E', 7]
sage: QuiverMutationType('T',(2,3,5))
['E', 8]
sage: QuiverMutationType('T',(2,3,6))
['E', 8, 1]
sage: QuiverMutationType('T',(2,3,7))
['E', 10]
sage: QuiverMutationType('T',(3,3,3))
['E', 6, 1]
sage: QuiverMutationType('T',(3,3,4))
['T', [3, 3, 4]]

Reducible types:

sage: QuiverMutationType(['A',3],['B',4])
[['A', 3], ['B', 4]]

class sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationTypeFactory
Bases: sage.structure.sage_object.SageObject

samples(finite=None, affine=None, elliptic=None, mutation_finite=None)
Return a sample of the available quiver mutations types.

INPUT:

• finite

• affine

• elliptic

• mutation_finite

5.1. Comprehensive Module List 229

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

All four input keywords default values are None. If set to True or False, only these samples are returned.

EXAMPLES:

sage: QuiverMutationType.samples()
[['A', 1], ['A', 5], ['B', 2], ['B', 5], ['C', 3],
['C', 5], [['A', 1], ['A', 1]], ['D', 5], ['E', 6],
['E', 7], ['E', 8], ['F', 4], ['G', 2],
['A', [1, 1], 1], ['A', [4, 5], 1], ['D', 4, 1],
['BB', 5, 1], ['E', 6, [1, 1]], ['E', 7, [1, 1]],
['R2', [1, 5]], ['R2', [3, 5]], ['E', 10], ['BE', 5],
['GR', [3, 10]], ['T', [3, 3, 4]]]

sage: QuiverMutationType.samples(finite=True)
[['A', 1], ['A', 5], ['B', 2], ['B', 5], ['C', 3],
['C', 5], [['A', 1], ['A', 1]], ['D', 5], ['E', 6],
['E', 7], ['E', 8], ['F', 4], ['G', 2]]

sage: QuiverMutationType.samples(affine=True)
[['A', [1, 1], 1], ['A', [4, 5], 1], ['D', 4, 1], ['BB', 5, 1]]

sage: QuiverMutationType.samples(elliptic=True)
[['E', 6, [1, 1]], ['E', 7, [1, 1]]]

sage: QuiverMutationType.samples(mutation_finite=False)
[['R2', [1, 5]], ['R2', [3, 5]], ['E', 10], ['BE', 5],
['GR', [3, 10]], ['T', [3, 3, 4]]]

class sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Irreducible(letter,
rank,
twist=None)

Bases: sage.combinat.cluster_algebra_quiver.quiver_mutation_type.
QuiverMutationType_abstract

The mutation type for a cluster algebra or a quiver. Should not be called directly, but through QuiverMutation-
Type.

class_size()
If it is known, the size of the mutation class of all quivers which are mutation equivalent to the standard
quiver of self (up to isomorphism) is returned.

Otherwise, NotImplemented is returned.

Formula for finite type A is taken from Torkildsen - Counting cluster-tilted algebras of type 𝐴𝑛. Formulas
for affine type A and finite type D are taken from Bastian, Prellberg, Rubey, Stump - Counting the number of
elements in the mutation classes of ̃︀𝐴𝑛 quivers. Formulas for finite and affine types B and C are proven but
not yet published. Conjectural formulas for several other non-simply-laced affine types are implemented.
Exceptional Types (finite, affine, and elliptic) E, F, G, and X are hardcoded.

EXAMPLES:

sage: mut_type = QuiverMutationType(['A',5]); mut_type
['A', 5]
sage: mut_type.class_size()
19

sage: mut_type = QuiverMutationType(['A',[10,3], 1]); mut_type
(continues on next page)

230 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

['A', [3, 10], 1]
sage: mut_type.class_size()
142120

sage: mut_type = QuiverMutationType(['B',6]); mut_type
['B', 6]
sage: mut_type.class_size()
132

sage: mut_type = QuiverMutationType(['BD',6, 1]); mut_type
['BD', 6, 1]
sage: mut_type.class_size()
Warning: This method uses a formula which has not been proved correct.
504

Check that trac ticket #14048 is fixed:

sage: mut_type = QuiverMutationType(['F',4,(2, 1)])
sage: mut_type.class_size()
90

dual()
Return the QuiverMutationType which is dual to self.

EXAMPLES:

sage: mut_type = QuiverMutationType('A',5); mut_type
['A', 5]
sage: mut_type.dual()
['A', 5]

sage: mut_type = QuiverMutationType('B',5); mut_type
['B', 5]
sage: mut_type.dual()
['C', 5]
sage: mut_type.dual().dual()
['B', 5]
sage: mut_type.dual().dual() == mut_type
True

irreducible_components()
Return a list of all irreducible components of self.

EXAMPLES:

sage: mut_type = QuiverMutationType('A',3); mut_type
['A', 3]
sage: mut_type.irreducible_components()
(['A', 3],)

class sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Reducible(*args)
Bases: sage.combinat.cluster_algebra_quiver.quiver_mutation_type.
QuiverMutationType_abstract

5.1. Comprehensive Module List 231

https://trac.sagemath.org/14048

Combinatorics, Release 9.7

The mutation type for a cluster algebra or a quiver. Should not be called directly, but through QuiverMutation-
Type. Inherits from QuiverMutationType_abstract.

class_size()
If it is known, the size of the mutation class of all quivers which are mutation equivalent to the standard
quiver of self (up to isomorphism) is returned.

Otherwise, NotImplemented is returned.

EXAMPLES:

sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type
[['A', 3], ['B', 3]]
sage: mut_type.class_size()
20

sage: mut_type = QuiverMutationType(['A',3],['B',3],['X',6])
sage: mut_type
[['A', 3], ['B', 3], ['X', 6]]
sage: mut_type.class_size()
100

dual()
Return the QuiverMutationType which is dual to self.

EXAMPLES:

sage: mut_type = QuiverMutationType(['A',5],['B',6],['C',5],['D',4]); mut_type
[['A', 5], ['B', 6], ['C', 5], ['D', 4]]
sage: mut_type.dual()
[['A', 5], ['C', 6], ['B', 5], ['D', 4]]

irreducible_components()
Return a list of all irreducible components of self.

EXAMPLES:

sage: mut_type = QuiverMutationType('A',3); mut_type
['A', 3]
sage: mut_type.irreducible_components()
(['A', 3],)

sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type
[['A', 3], ['B', 3]]
sage: mut_type.irreducible_components()
(['A', 3], ['B', 3])

sage: mut_type = QuiverMutationType(['A',3],['B',3],['X',6])
sage: mut_type
[['A', 3], ['B', 3], ['X', 6]]
sage: mut_type.irreducible_components()
(['A', 3], ['B', 3], ['X', 6])

class
sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
sage_object.SageObject

232 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

EXAMPLES:

sage: mut_type1 = QuiverMutationType('A',5)
sage: mut_type2 = QuiverMutationType('A',5)
sage: mut_type3 = QuiverMutationType('A',6)
sage: mut_type1 == mut_type2
True
sage: mut_type1 == mut_type3
False

b_matrix()
Return the B-matrix of the standard quiver of self.

The conventions for B-matrices agree with Fomin-Zelevinsky (up to a reordering of the simple roots).

EXAMPLES:

sage: mut_type = QuiverMutationType(['A',5]); mut_type
['A', 5]
sage: mut_type.b_matrix()
[0 1 0 0 0]
[-1 0 -1 0 0]
[0 1 0 1 0]
[0 0 -1 0 -1]
[0 0 0 1 0]

sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type
[['A', 3], ['B', 3]]
sage: mut_type.b_matrix()
[0 1 0 0 0 0]
[-1 0 -1 0 0 0]
[0 1 0 0 0 0]
[0 0 0 0 1 0]
[0 0 0 -1 0 -1]
[0 0 0 0 2 0]

cartan_matrix()
Return the Cartan matrix of self.

Note that (up to a reordering of the simple roots) the convention for the definition of Cartan matrix, used
here and elsewhere in Sage, agrees with the conventions of Kac, Fulton-Harris, and Fomin-Zelevinsky, but
disagrees with the convention of Bourbaki. The (𝑖, 𝑗) entry is 2(𝛼𝑖, 𝛼𝑗)/(𝛼𝑖, 𝛼𝑖).

EXAMPLES:

sage: mut_type = QuiverMutationType(['A',5]); mut_type
['A', 5]
sage: mut_type.cartan_matrix()
[2 -1 0 0 0]
[-1 2 -1 0 0]
[0 -1 2 -1 0]
[0 0 -1 2 -1]
[0 0 0 -1 2]

sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type
[['A', 3], ['B', 3]]

(continues on next page)

5.1. Comprehensive Module List 233

Combinatorics, Release 9.7

(continued from previous page)

sage: mut_type.cartan_matrix()
[2 -1 0 0 0 0]
[-1 2 -1 0 0 0]
[0 -1 2 0 0 0]
[0 0 0 2 -1 0]
[0 0 0 -1 2 -1]
[0 0 0 0 -2 2]

is_affine()
Return True if self is of affine type.

EXAMPLES:

sage: mt = QuiverMutationType(['A', 2])
sage: mt.is_affine()
False

sage: mt = QuiverMutationType(['A',[4, 2], 1])
sage: mt.is_affine()
True

is_elliptic()
Return True if self is of elliptic type.

EXAMPLES:

sage: mt = QuiverMutationType(['A', 2])
sage: mt.is_elliptic()
False

sage: mt = QuiverMutationType(['E',6,[1, 1]])
sage: mt.is_elliptic()
True

is_finite()
Return True if self is of finite type.

This means that the cluster algebra associated to self has only a finite number of cluster variables.

EXAMPLES:

sage: mt = QuiverMutationType(['A', 2])
sage: mt.is_finite()
True

sage: mt = QuiverMutationType(['A',[4, 2], 1])
sage: mt.is_finite()
False

is_irreducible()
Return True if self is irreducible.

EXAMPLES:

234 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: mt = QuiverMutationType(['A', 2])
sage: mt.is_irreducible()
True

is_mutation_finite()
Return True if self is of finite mutation type.

This means that its mutation class has only finitely many different B-matrices.

EXAMPLES:

sage: mt = QuiverMutationType(['D',5, 1])
sage: mt.is_mutation_finite()
True

is_simply_laced()
Return True if self is simply laced.

This means that the only arrows that appear in the quiver of self are single unlabelled arrows.

EXAMPLES:

sage: mt = QuiverMutationType(['A', 2])
sage: mt.is_simply_laced()
True

sage: mt = QuiverMutationType(['B', 2])
sage: mt.is_simply_laced()
False

sage: mt = QuiverMutationType(['A',(1, 1), 1])
sage: mt.is_simply_laced()
False

is_skew_symmetric()
Return True if the B-matrix of self is skew-symmetric.

EXAMPLES:

sage: mt = QuiverMutationType(['A', 2])
sage: mt.is_skew_symmetric()
True

sage: mt = QuiverMutationType(['B', 2])
sage: mt.is_skew_symmetric()
False

sage: mt = QuiverMutationType(['A',(1, 1), 1])
sage: mt.is_skew_symmetric()
True

letter()
Return the classification letter of self.

EXAMPLES:

5.1. Comprehensive Module List 235

Combinatorics, Release 9.7

sage: mut_type = QuiverMutationType(['A',5]); mut_type
['A', 5]
sage: mut_type.letter()
'A'

sage: mut_type = QuiverMutationType(['BC',5, 1]); mut_type
['BC', 5, 1]
sage: mut_type.letter()
'BC'

sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type
[['A', 3], ['B', 3]]
sage: mut_type.letter()
'A x B'

sage: mut_type = QuiverMutationType(['A',3],['B',3],['X',6]); mut_type
[['A', 3], ['B', 3], ['X', 6]]
sage: mut_type.letter()
'A x B x X'

plot(circular=False, directed=True)
Return the plot of the underlying graph or digraph of self.

INPUT:

• circular – (default:False) if True, the circular plot is chosen, otherwise >>spring<< is used.

• directed – (default: True) if True, the directed version is shown, otherwise the undirected.

EXAMPLES:

sage: QMT = QuiverMutationType(['A',5])
sage: pl = QMT.plot()
sage: pl = QMT.plot(circular=True)

properties()
Print a scheme of all properties of self.

Most properties have natural definitions for either irreducible or reducible types. affine and elliptic
are only defined for irreducible types.

EXAMPLES:

sage: mut_type = QuiverMutationType(['A',3]); mut_type
['A', 3]
sage: mut_type.properties()
['A', 3] has rank 3 and the following properties:

- irreducible: True
- mutation finite: True
- simply-laced: True
- skew-symmetric: True
- finite: True
- affine: False
- elliptic: False

sage: mut_type = QuiverMutationType(['B',3]); mut_type
(continues on next page)

236 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

['B', 3]
sage: mut_type.properties()
['B', 3] has rank 3 and the following properties:

- irreducible: True
- mutation finite: True
- simply-laced: False
- skew-symmetric: False
- finite: True
- affine: False
- elliptic: False

sage: mut_type = QuiverMutationType(['B',3, 1]); mut_type
['BD', 3, 1]
sage: mut_type.properties()
['BD', 3, 1] has rank 4 and the following properties:

- irreducible: True
- mutation finite: True
- simply-laced: False
- skew-symmetric: False
- finite: False
- affine: True
- elliptic: False

sage: mut_type = QuiverMutationType(['E',6,[1, 1]]); mut_type
['E', 6, [1, 1]]
sage: mut_type.properties()
['E', 6, [1, 1]] has rank 8 and the following properties:

- irreducible: True
- mutation finite: True
- simply-laced: False
- skew-symmetric: True
- finite: False
- affine: False
- elliptic: True

sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type
[['A', 3], ['B', 3]]
sage: mut_type.properties()
[['A', 3], ['B', 3]] has rank 6 and the following properties:

- irreducible: False
- mutation finite: True
- simply-laced: False
- skew-symmetric: False
- finite: True

sage: mut_type = QuiverMutationType('GR',[4,9]); mut_type
['GR', [4, 9]]
sage: mut_type.properties()
['GR', [4, 9]] has rank 12 and the following properties:

- irreducible: True
- mutation finite: False
- simply-laced: True

(continues on next page)

5.1. Comprehensive Module List 237

Combinatorics, Release 9.7

(continued from previous page)

- skew-symmetric: True
- finite: False
- affine: False
- elliptic: False

rank()
Return the rank in the standard quiver of self.

The rank is the number of vertices.

EXAMPLES:

sage: mut_type = QuiverMutationType(['A',5]); mut_type
['A', 5]
sage: mut_type.rank()
5

sage: mut_type = QuiverMutationType(['A',[4,5], 1]); mut_type
['A', [4, 5], 1]
sage: mut_type.rank()
9

sage: mut_type = QuiverMutationType(['BC',5, 1]); mut_type
['BC', 5, 1]
sage: mut_type.rank()
6

sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type
[['A', 3], ['B', 3]]
sage: mut_type.rank()
6

sage: mut_type = QuiverMutationType(['A',3],['B',3],['X',6]); mut_type
[['A', 3], ['B', 3], ['X', 6]]
sage: mut_type.rank()
12

show(circular=False, directed=True)
Show the plot of the underlying digraph of self.

INPUT:

• circular – (default:False) if True, the circular plot is chosen, otherwise >>spring<< is used.

• directed – (default: True) if True, the directed version is shown, otherwise the undirected.

standard_quiver()
Return the standard quiver of self.

EXAMPLES:

sage: mut_type = QuiverMutationType(['A',5]); mut_type
['A', 5]
sage: mut_type.standard_quiver()
Quiver on 5 vertices of type ['A', 5]

(continues on next page)

238 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: mut_type = QuiverMutationType(['A',[5,3], 1]); mut_type
['A', [3, 5], 1]
sage: mut_type.standard_quiver()
Quiver on 8 vertices of type ['A', [3, 5], 1]

sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type
[['A', 3], ['B', 3]]
sage: mut_type.standard_quiver()
Quiver on 6 vertices of type [['A', 3], ['B', 3]]

sage: mut_type = QuiverMutationType(['A',3],['B',3],['X',6]); mut_type
[['A', 3], ['B', 3], ['X', 6]]
sage: mut_type.standard_quiver()
Quiver on 12 vertices of type [['A', 3], ['B', 3], ['X', 6]]

sage.combinat.cluster_algebra_quiver.quiver_mutation_type.save_quiver_data(n, up_to=True,
types='ClassicalExceptional',
verbose=True)

Save mutation classes of certain quivers of ranks up to and equal to n or equal to n to DOT_SAGE/
cluster_algebra_quiver/mutation_classes_n.dig6.

This data will then be used to determine quiver mutation types.

INPUT:

• n: the rank (or the upper limit on the rank) of the mutation classes that are being saved.

• up_to – (default:True) if True, saves data for ranks smaller than or equal to n. If False, saves data for
rank exactly n.

• types – (default:’ClassicalExceptional’) if all, saves data for both exceptional mutation-finite quivers and
for classical quiver. The input ‘Exceptional’ or ‘Classical’ is also allowed to save only part of this data.

5.1.22 Cluster complex (or generalized dual associahedron)

EXAMPLES:

A first example of a cluster complex:

sage: C = ClusterComplex(['A', 2]); C
Cluster complex of type ['A', 2] with 5 vertices and 5 facets

Its vertices, facets, and minimal non-faces:

sage: C.vertices()
(0, 1, 2, 3, 4)

sage: C.facets()
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]

sage: for F in C.facets(): F.cluster()
[(-1, 0), (0, -1)]
[(-1, 0), (0, 1)]
[(0, -1), (1, 0)]

(continues on next page)

5.1. Comprehensive Module List 239

Combinatorics, Release 9.7

(continued from previous page)

[(1, 0), (1, 1)]
[(1, 1), (0, 1)]

sage: C.minimal_nonfaces()
[[0, 2], [0, 3], [1, 3], [1, 4], [2, 4]]

We can do everything we can do on simplicial complexes, e.g. computing its homology:

sage: C.homology()
{0: 0, 1: Z}

AUTHORS:

• Christian Stump (2011) Initial version

class sage.combinat.cluster_complex.ClusterComplex(W, k, coxeter_element, algorithm)
Bases: sage.combinat.subword_complex.SubwordComplex

A cluster complex (or generalized dual associahedron).

The cluster complex (or generalized dual associahedron) is a simplicial complex constructed from a cluster alge-
bra. Its vertices are the cluster variables and its facets are the clusters, i.e., maximal subsets of compatible cluster
variables.

The cluster complex of type 𝐴𝑛 is the simplicial complex with vertices being (proper) diagonals in a convex
(𝑛+ 3)-gon and with facets being triangulations.

The implementation of the cluster complex depends on its connection to subword complexes, see [CLS2014].
Let 𝑐 be a Coxeter element with reduced word c in a finite Coxeter group 𝑊 , and let w∘ be the 𝑐-sorting word
for the longest element 𝑤∘ ∈𝑊 .

The multi-cluster complex ∆(𝑊,𝑘) has vertices in one-to-one correspondence with letters in the word
𝑄 = ckw∘ and with facets being complements in 𝑄 of reduced expressions for 𝑤∘.

For 𝑘 = 1, the multi-cluster complex is isomorphic to the cluster complex as defined above.

EXAMPLES:

A first example of a cluster complex:

sage: C = ClusterComplex(['A', 2]); C
Cluster complex of type ['A', 2] with 5 vertices and 5 facets

Its vertices, facets, and minimal non-faces:

sage: C.vertices()
(0, 1, 2, 3, 4)

sage: C.facets()
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]

sage: C.minimal_nonfaces()
[[0, 2], [0, 3], [1, 3], [1, 4], [2, 4]]

We can do everything we can do on simplicial complexes, e.g. computing its homology:

sage: C.homology()
{0: 0, 1: Z}

240 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

We can also create a multi-cluster complex:

sage: ClusterComplex(['A', 2], k=2)
Multi-cluster complex of type ['A', 2] with 7 vertices and 14 facets

REFERENCES:

• [CLS2014]

Element
alias of ClusterComplexFacet

cyclic_rotation()
Return the operation on the facets of self obtained by the cyclic rotation as defined in [CLS2014].

EXAMPLES:

sage: ClusterComplex(['A', 2]).cyclic_rotation()
<function ...act at ...>

k()
Return the index 𝑘 of self.

EXAMPLES:

sage: ClusterComplex(['A', 2]).k()
1

minimal_nonfaces()
Return the minimal non-faces of self.

EXAMPLES:

sage: ClusterComplex(['A', 2]).minimal_nonfaces()
[[0, 2], [0, 3], [1, 3], [1, 4], [2, 4]]

class sage.combinat.cluster_complex.ClusterComplexFacet(parent, positions, facet_test=True)
Bases: sage.combinat.subword_complex.SubwordComplexFacet

A cluster (i.e., a facet) of a cluster complex.

cluster()
Return this cluster as a set of almost positive roots.

EXAMPLES:

sage: C = ClusterComplex(['A', 2])
sage: F = C((0, 1))
sage: F.cluster()
[(-1, 0), (0, -1)]

product_of_upper_cluster()
Return the product of the upper cluster in reversed order.

EXAMPLES:

sage: C = ClusterComplex(['A', 2])
sage: for F in C: F.product_of_upper_cluster().reduced_word()
[]

(continues on next page)

5.1. Comprehensive Module List 241

Combinatorics, Release 9.7

(continued from previous page)

[2]
[1]
[1, 2]
[1, 2]

upper_cluster()
Return the part of the cluster that contains positive roots

EXAMPLES:

sage: C = ClusterComplex(['A', 2])
sage: F = C((0, 1))
sage: F.upper_cluster()
[]

5.1.23 Colored Permutations

Todo: Much of the colored permutations (and element) class can be generalized to 𝐺 ≀ 𝑆𝑛

class sage.combinat.colored_permutations.ColoredPermutation(parent, colors, perm)
Bases: sage.structure.element.MultiplicativeGroupElement

A colored permutation.

colors()
Return the colors of self.

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: s1,s2,t = C.gens()
sage: x = s1*s2*t
sage: x.colors()
[1, 0, 0]

has_left_descent(i)
Return True if i is a left descent of self.

Let 𝑝 = ((𝑠1, . . . 𝑠𝑛), 𝜎) be a colored permutation. We say 𝑝 has a left 𝑛-descent if 𝑠𝑛 > 0. If 𝑖 < 𝑛, then
we say 𝑝 has a left 𝑖-descent if either

• 𝑠𝑖 ̸= 0, 𝑠𝑖+1 = 0 and 𝜎𝑖 < 𝜎𝑖+1 or

• 𝑠𝑖 = 𝑠𝑖+1 and 𝜎𝑖 > 𝜎𝑖+1.

This notion of a left 𝑖-descent is done in order to recursively construct 𝑤(𝑝) = 𝜎𝑖𝑤(𝜎−1𝑖 𝑝), where 𝑤(𝑝)
denotes a reduced word of 𝑝.

EXAMPLES:

sage: C = ColoredPermutations(2, 4)
sage: s1,s2,s3,s4 = C.gens()
sage: x = s4*s1*s2*s3*s4
sage: [x.has_left_descent(i) for i in C.index_set()]

(continues on next page)

242 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement

Combinatorics, Release 9.7

(continued from previous page)

[True, False, False, True]

sage: C = ColoredPermutations(1, 5)
sage: s1,s2,s3,s4 = C.gens()
sage: x = s4*s1*s2*s3*s4
sage: [x.has_left_descent(i) for i in C.index_set()]
[True, False, False, True]

sage: C = ColoredPermutations(3, 3)
sage: x = C([[2,1,0],[3,1,2]])
sage: [x.has_left_descent(i) for i in C.index_set()]
[False, True, False]

sage: C = ColoredPermutations(4, 4)
sage: x = C([[2,1,0,1],[3,2,4,1]])
sage: [x.has_left_descent(i) for i in C.index_set()]
[False, True, False, True]

inverse()
Return the inverse of self.

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: s1,s2,t = C.gens()
sage: ~t
[[0, 0, 3], [1, 2, 3]]
sage: all(x * ~x == C.one() for x in C.gens())
True

length()
Return the length of self in generating reflections.

This is the minimal numbers of generating reflections needed to obtain self.

EXAMPLES:

sage: C = ColoredPermutations(3, 3)
sage: x = C([[2,1,0],[3,1,2]])
sage: x.length()
7

sage: C = ColoredPermutations(4, 4)
sage: x = C([[2,1,0,1],[3,2,4,1]])
sage: x.length()
12

one_line_form()
Return the one line form of self.

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: s1,s2,t = C.gens()
sage: x = s1*s2*t

(continues on next page)

5.1. Comprehensive Module List 243

Combinatorics, Release 9.7

(continued from previous page)

sage: x
[[1, 0, 0], [3, 1, 2]]
sage: x.one_line_form()
[(1, 3), (0, 1), (0, 2)]

permutation()
Return the permutation of self.

This is obtained by forgetting the colors.

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: s1,s2,t = C.gens()
sage: x = s1*s2*t
sage: x.permutation()
[3, 1, 2]

reduced_word()
Return a word in the simple reflections to obtain self.

EXAMPLES:

sage: C = ColoredPermutations(3, 3)
sage: x = C([[2,1,0],[3,1,2]])
sage: x.reduced_word()
[2, 1, 3, 2, 1, 3, 3]

sage: C = ColoredPermutations(4, 4)
sage: x = C([[2,1,0,1],[3,2,4,1]])
sage: x.reduced_word()
[2, 1, 4, 3, 2, 1, 4, 3, 2, 4, 4, 3]

to_matrix()
Return a matrix of self.

The colors are mapped to roots of unity.

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: s1,s2,t = C.gens()
sage: x = s1*s2*t*s2; x.one_line_form()
[(1, 2), (0, 1), (0, 3)]
sage: M = x.to_matrix(); M
[0 1 0]
[zeta4 0 0]
[0 0 1]

The matrix multiplication is in the opposite order:

sage: M == s2.to_matrix()*t.to_matrix()*s2.to_matrix()*s1.to_matrix()
True

244 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.colored_permutations.ColoredPermutations(m, n)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

The group of 𝑚-colored permutations on {1, 2, . . . , 𝑛}.

Let 𝑆𝑛 be the symmetric group on 𝑛 letters and 𝐶𝑚 be the cyclic group of order𝑚. The𝑚-colored permutation
group on 𝑛 letters is given by 𝑃𝑚𝑛 = 𝐶𝑚 ≀ 𝑆𝑛. This is also the complex reflection group 𝐺(𝑚, 1, 𝑛).

We define our multiplication by

((𝑠1, . . . 𝑠𝑛), 𝜎) · ((𝑡1, . . . , 𝑡𝑛), 𝜏) = ((𝑠1𝑡𝜎(1), . . . , 𝑠𝑛𝑡𝜎(𝑛)), 𝜏𝜎).

EXAMPLES:

sage: C = ColoredPermutations(4, 3); C
4-colored permutations of size 3
sage: s1,s2,t = C.gens()
sage: (s1, s2, t)
([[0, 0, 0], [2, 1, 3]], [[0, 0, 0], [1, 3, 2]], [[0, 0, 1], [1, 2, 3]])
sage: s1*s2
[[0, 0, 0], [3, 1, 2]]
sage: s1*s2*s1 == s2*s1*s2
True
sage: t^4 == C.one()
True
sage: s2*t*s2
[[0, 1, 0], [1, 2, 3]]

We can also create a colored permutation by passing either a list of tuples consisting of (color, element):

sage: x = C([(2,1), (3,3), (3,2)]); x
[[2, 3, 3], [1, 3, 2]]

or a list of colors and a permutation:

sage: C([[3,3,1], [1,3,2]])
[[3, 3, 1], [1, 3, 2]]

There is also the natural lift from permutations:

sage: P = Permutations(3)
sage: C(P.an_element())
[[0, 0, 0], [3, 1, 2]]

REFERENCES:

• Wikipedia article Generalized_symmetric_group

• Wikipedia article Complex_reflection_group

Element
alias of ColoredPermutation

as_permutation_group()
Return the permutation group corresponding to self.

EXAMPLES:

5.1. Comprehensive Module List 245

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
https://en.wikipedia.org/wiki/Generalized_symmetric_group
https://en.wikipedia.org/wiki/Complex_reflection_group

Combinatorics, Release 9.7

sage: C = ColoredPermutations(4, 3)
sage: C.as_permutation_group()
Complex reflection group G(4, 1, 3) as a permutation group

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: C.cardinality()
384
sage: C.cardinality() == 4**3 * factorial(3)
True

codegrees()
Return the codegrees of self.

Let 𝐺 be a complex reflection group. The codegrees 𝑑*1 ≤ 𝑑*2 ≤ · · · ≤ 𝑑*ℓ of 𝐺 can be defined by:

ℓ∏︁
𝑖=1

(𝑞 − 𝑑*𝑖 − 1) =
∑︁
𝑔∈𝐺

det(𝑔)𝑞dim(𝑉 𝑔),

where 𝑉 is the natural complex vector space that 𝐺 acts on and ℓ is the rank().

If𝑚 = 1, then we are in the special case of the symmetric group and the codegrees are (𝑛−2, 𝑛−3, . . . 1, 0).
Otherwise the degrees are ((𝑛− 1)𝑚, (𝑛− 2)𝑚, . . . ,𝑚, 0).

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: C.codegrees()
(8, 4, 0)
sage: S = ColoredPermutations(1, 3)
sage: S.codegrees()
(1, 0)

coxeter_matrix()
Return the Coxeter matrix of self.

EXAMPLES:

sage: C = ColoredPermutations(3, 4)
sage: C.coxeter_matrix()
[1 3 2 2]
[3 1 3 2]
[2 3 1 4]
[2 2 4 1]

sage: C = ColoredPermutations(1, 4)
sage: C.coxeter_matrix()
[1 3 2]
[3 1 3]
[2 3 1]

degrees()
Return the degrees of self.

246 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The degrees of a complex reflection group are the degrees of the fundamental invariants of the ring of
polynomial invariants.

If 𝑚 = 1, then we are in the special case of the symmetric group and the degrees are (2, 3, . . . , 𝑛, 𝑛+ 1).
Otherwise the degrees are (𝑚, 2𝑚, . . . , 𝑛𝑚).

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: C.degrees()
(4, 8, 12)
sage: S = ColoredPermutations(1, 3)
sage: S.degrees()
(2, 3)

We now check that the product of the degrees is equal to the cardinality of self:

sage: prod(C.degrees()) == C.cardinality()
True
sage: prod(S.degrees()) == S.cardinality()
True

fixed_point_polynomial(q=None)
The fixed point polynomial of self.

The fixed point polynomial 𝑓𝐺 of a complex reflection group 𝐺 is counting the dimensions of fixed points
subspaces:

𝑓𝐺(𝑞) =
∑︁
𝑤∈𝑊

𝑞dim𝑉 𝑤

.

Furthermore, let 𝑑1, 𝑑2, . . . , 𝑑ℓ be the degrees of𝐺, where ℓ is the rank(). Then the fixed point polynomial
is given by

𝑓𝐺(𝑞) =

ℓ∏︁
𝑖=1

(𝑞 + 𝑑𝑖 − 1).

INPUT:

• q – (default: the generator of ZZ['q']) the parameter 𝑞

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: C.fixed_point_polynomial()
q^3 + 21*q^2 + 131*q + 231

sage: S = ColoredPermutations(1, 3)
sage: S.fixed_point_polynomial()
q^2 + 3*q + 2

gens()
Return the generators of self.

EXAMPLES:

5.1. Comprehensive Module List 247

Combinatorics, Release 9.7

sage: C = ColoredPermutations(4, 3)
sage: C.gens()
([[0, 0, 0], [2, 1, 3]],
[[0, 0, 0], [1, 3, 2]],
[[0, 0, 1], [1, 2, 3]])

sage: S = SignedPermutations(4)
sage: S.gens()
([2, 1, 3, 4], [1, 3, 2, 4], [1, 2, 4, 3], [1, 2, 3, -4])

index_set()
Return the index set of self.

EXAMPLES:

sage: C = ColoredPermutations(3, 4)
sage: C.index_set()
(1, 2, 3, 4)

sage: C = ColoredPermutations(1, 4)
sage: C.index_set()
(1, 2, 3)

is_well_generated()
Return if self is a well-generated complex reflection group.

A complex reflection group 𝐺 is well-generated if it is generated by ℓ reflections. Equivalently, 𝐺 is well-
generated if 𝑑𝑖 + 𝑑*𝑖 = 𝑑ℓ for all 1 ≤ 𝑖 ≤ ℓ.

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: C.is_well_generated()
True
sage: C = ColoredPermutations(2, 8)
sage: C.is_well_generated()
True
sage: C = ColoredPermutations(1, 4)
sage: C.is_well_generated()
True

matrix_group()
Return the matrix group corresponding to self.

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: C.matrix_group()
Matrix group over Cyclotomic Field of order 4 and degree 2 with 3 generators (
[0 1 0] [1 0 0] [1 0 0]
[1 0 0] [0 0 1] [0 1 0]
[0 0 1], [0 1 0], [0 0 zeta4]
)

number_of_reflection_hyperplanes()
Return the number of reflection hyperplanes of self.

248 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The number of reflection hyperplanes of a complex reflection group is equal to the sum of the codegrees
plus the rank.

EXAMPLES:

sage: C = ColoredPermutations(1, 2)
sage: C.number_of_reflection_hyperplanes()
1
sage: C = ColoredPermutations(1, 3)
sage: C.number_of_reflection_hyperplanes()
3
sage: C = ColoredPermutations(4, 12)
sage: C.number_of_reflection_hyperplanes()
276

one()
Return the identity element of self.

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: C.one()
[[0, 0, 0], [1, 2, 3]]

order()
Return the cardinality of self.

EXAMPLES:

sage: C = ColoredPermutations(4, 3)
sage: C.cardinality()
384
sage: C.cardinality() == 4**3 * factorial(3)
True

rank()
Return the rank of self.

The rank of a complex reflection group is equal to the dimension of the complex vector space the group
acts on.

EXAMPLES:

sage: C = ColoredPermutations(4, 12)
sage: C.rank()
12
sage: C = ColoredPermutations(7, 4)
sage: C.rank()
4
sage: C = ColoredPermutations(1, 4)
sage: C.rank()
3

simple_reflection(i)
Return the i-th simple reflection of self.

EXAMPLES:

5.1. Comprehensive Module List 249

Combinatorics, Release 9.7

sage: C = ColoredPermutations(4, 3)
sage: C.gens()
([[0, 0, 0], [2, 1, 3]], [[0, 0, 0], [1, 3, 2]], [[0, 0, 1], [1, 2, 3]])
sage: C.simple_reflection(2)
[[0, 0, 0], [1, 3, 2]]
sage: C.simple_reflection(3)
[[0, 0, 1], [1, 2, 3]]

sage: S = SignedPermutations(4)
sage: S.simple_reflection(1)
[2, 1, 3, 4]
sage: S.simple_reflection(4)
[1, 2, 3, -4]

class sage.combinat.colored_permutations.SignedPermutation(parent, colors, perm)
Bases: sage.combinat.colored_permutations.ColoredPermutation

A signed permutation.

has_left_descent(i)
Return True if i is a left descent of self.

EXAMPLES:

sage: S = SignedPermutations(4)
sage: s1,s2,s3,s4 = S.gens()
sage: x = s4*s1*s2*s3*s4
sage: [x.has_left_descent(i) for i in S.index_set()]
[True, False, False, True]

inverse()
Return the inverse of self.

EXAMPLES:

sage: S = SignedPermutations(4)
sage: s1,s2,s3,s4 = S.gens()
sage: x = s4*s1*s2*s3*s4
sage: ~x
[2, 3, -4, -1]
sage: x * ~x == S.one()
True

order()
Return the multiplicative order of the signed permutation.

EXAMPLES:

sage: pi = SignedPermutations(7)([2,-1,4,-6,-5,-3,7])
sage: pi.to_cycles(singletons=False)
[(1, 2, -1, -2), (3, 4, -6), (5, -5)]
sage: pi.order()
12

to_cycles(singletons=True, use_min=True, negative_singletons=True)
Return the signed permutation self as a list of disjoint cycles.

250 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The cycles are returned in the order of increasing smallest elements, and each cycle is returned as a tuple
which starts with its smallest positive element. We do not include the corresponding negative cycles.

INPUT:

• singletons – (default: True) whether to include singleton cycles or not

• use_min – (default: True) if False, the cycles are returned in the order of increasing largest (not
smallest) elements, and each cycle starts with its largest element

EXAMPLES:

sage: pi = SignedPermutations(7)([2,-1,4,-6,-5,-3,7])
sage: pi.to_cycles()
[(1, 2, -1, -2), (3, 4, -6), (5, -5), (7,)]
sage: pi.to_cycles(singletons=False)
[(1, 2, -1, -2), (3, 4, -6), (5, -5)]
sage: pi.to_cycles(use_min=False)
[(7,), (6, -3, -4), (5, -5), (2, -1, -2, 1)]
sage: pi.to_cycles(singletons=False, use_min=False)
[(6, -3, -4), (5, -5), (2, -1, -2, 1)]

to_matrix()
Return a matrix of self.

EXAMPLES:

sage: S = SignedPermutations(4)
sage: s1,s2,s3,s4 = S.gens()
sage: x = s4*s1*s2*s3*s4
sage: M = x.to_matrix(); M
[0 1 0 0]
[0 0 1 0]
[0 0 0 -1]
[-1 0 0 0]

The matrix multiplication is in the opposite order:

sage: m1,m2,m3,m4 = [g.to_matrix() for g in S.gens()]
sage: M == m4 * m3 * m2 * m1 * m4
True

class sage.combinat.colored_permutations.SignedPermutations(n)
Bases: sage.combinat.colored_permutations.ColoredPermutations

Group of signed permutations.

The group of signed permutations is also known as the hyperoctahedral group, the Coxeter group of type 𝐵𝑛,
and the 2-colored permutation group. Thus it can be constructed as the wreath product 𝑆2 ≀ 𝑆𝑛.

EXAMPLES:

sage: S = SignedPermutations(4)
sage: s1,s2,s3,s4 = S.group_generators()
sage: x = s4*s1*s2*s3*s4; x
[-4, 1, 2, -3]
sage: x^4 == S.one()
True

5.1. Comprehensive Module List 251

Combinatorics, Release 9.7

This is a finite Coxeter group of type 𝐵𝑛:

sage: S.canonical_representation()
Finite Coxeter group over Number Field in a with defining polynomial x^2 - 2 with a␣
→˓= 1.414213562373095? with Coxeter matrix:
[1 3 2 2]
[3 1 3 2]
[2 3 1 4]
[2 2 4 1]
sage: S.long_element()
[-1, -2, -3, -4]
sage: S.long_element().reduced_word()
[1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 4, 3, 4]

We can also go between the 2-colored permutation group:

sage: C = ColoredPermutations(2, 3)
sage: S = SignedPermutations(3)
sage: S.an_element()
[-3, 1, 2]
sage: C(S.an_element())
[[1, 0, 0], [3, 1, 2]]
sage: S(C(S.an_element())) == S.an_element()
True
sage: S(C.an_element())
[-3, 1, 2]

There is also the natural lift from permutations:

sage: P = Permutations(3)
sage: x = S(P.an_element()); x
[3, 1, 2]
sage: x.parent()
Signed permutations of 3

REFERENCES:

• Wikipedia article Hyperoctahedral_group

Element
alias of SignedPermutation

long_element(index_set=None)
Return the longest element of self, or of the parabolic subgroup corresponding to the given index_set.

INPUT:

• index_set – (optional) a subset (as a list or iterable) of the nodes of the indexing set

EXAMPLES:

sage: S = SignedPermutations(4)
sage: S.long_element()
[-1, -2, -3, -4]

one()
Return the identity element of self.

252 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Hyperoctahedral_group

Combinatorics, Release 9.7

EXAMPLES:

sage: S = SignedPermutations(4)
sage: S.one()
[1, 2, 3, 4]

simple_reflection(i)
Return the i-th simple reflection of self.

EXAMPLES:

sage: S = SignedPermutations(4)
sage: S.simple_reflection(1)
[2, 1, 3, 4]
sage: S.simple_reflection(4)
[1, 2, 3, -4]

5.1.24 Combinatorial Functions

This module implements some combinatorial functions, as listed below. For a more detailed description, see the relevant
docstrings.

Sequences:

• Bell numbers, bell_number()

• Catalan numbers, catalan_number() (not to be confused with the Catalan constant)

• Narayana numbers, narayana_number()

• Euler numbers, euler_number() (Maxima)

• Eulerian numbers, eulerian_number()

• Eulerian polynomial, eulerian_polynomial()

• Fibonacci numbers, fibonacci() (PARI) and fibonacci_number() (GAP) The PARI version is better.

• Lucas numbers, lucas_number1(), lucas_number2().

• Stirling numbers, stirling_number1(), stirling_number2().

• Polygonal numbers, polygonal_number()

Set-theoretic constructions:

• Derangements of a multiset, derangements() and number_of_derangements().

• Tuples of a multiset, tuples() and number_of_tuples(). An ordered tuple of length k of set S is a ordered
selection with repetitions of S and is represented by a sorted list of length k containing elements from S.

• Unordered tuples of a set, unordered_tuples() and number_of_unordered_tuples(). An unordered tuple
of length k of set S is an unordered selection with repetitions of S and is represented by a sorted list of length k
containing elements from S.

Warning: The following function is deprecated and will soon be removed.

• Permutations of a multiset, permutations(), permutations_iterator(),
number_of_permutations(). A permutation is a list that contains exactly the same elements but
possibly in different order.

5.1. Comprehensive Module List 253

Combinatorics, Release 9.7

Related functions:

• Bernoulli polynomials, bernoulli_polynomial()

Implemented in other modules (listed for completeness):

The sage.arith.all module contains the following combinatorial functions:

• binomial the binomial coefficient (wrapped from PARI)

• factorial (wrapped from PARI)

• partition (from the Python Cookbook) Generator of the list of all the partitions of the integer 𝑛.

• number_of_partitions() (wrapped from PARI) the number of partitions:

• falling_factorial() Definition: for integer 𝑎 ≥ 0 we have 𝑥(𝑥 − 1) · · · (𝑥 − 𝑎 + 1). In all other cases we
use the GAMMA-function: Γ(𝑥+1)

Γ(𝑥−𝑎+1) .

• rising_factorial() Definition: for integer 𝑎 ≥ 0 we have 𝑥(𝑥+ 1) · · · (𝑥+ 𝑎− 1). In all other cases we use
the GAMMA-function: Γ(𝑥+𝑎)

Γ(𝑥) .

• gaussian_binomial the gaussian binomial(︂
𝑛

𝑘

)︂
𝑞

=
(1− 𝑞𝑚)(1− 𝑞𝑚−1) · · · (1− 𝑞𝑚−𝑟+1)

(1− 𝑞)(1− 𝑞2) · · · (1− 𝑞𝑟)
.

The sage.groups.perm_gps.permgroup_elements contains the following combinatorial functions:

• matrix method of PermutationGroupElement yielding the permutation matrix of the group element.

Todo:

GUAVA commands:

• VandermondeMat

• GrayMat returns a list of all different vectors of length n over the field F, using Gray ordering.

Not in GAP:

• Rencontres numbers (Wikipedia article Rencontres_number)

REFERENCES:

• Wikipedia article Twelvefold_way (general reference)

AUTHORS:

• David Joyner (2006-07): initial implementation.

• William Stein (2006-07): editing of docs and code; many optimizations, refinements, and bug fixes in corner
cases

• David Joyner (2006-09): bug fix for combinations, added permutations_iterator, combinations_iterator from
Python Cookbook, edited docs.

• David Joyner (2007-11): changed permutations, added hadamard_matrix

• Florent Hivert (2009-02): combinatorial class cleanup

• Fredrik Johansson (2010-07): fast implementation of stirling_number2

• Punarbasu Purkayastha (2012-12): deprecate arrangements, combinations, combinations_iterator, and clean up
very old deprecated methods.

254 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/rings_standard/sage/arith/misc.html#sage.arith.misc.falling_factorial
../../../../../../html/en/reference/rings_standard/sage/arith/misc.html#sage.arith.misc.rising_factorial
https://en.wikipedia.org/wiki/Rencontres_number
https://en.wikipedia.org/wiki/Twelvefold_way

Combinatorics, Release 9.7

Functions and classes

class sage.combinat.combinat.CombinatorialClass(category=None)
Bases: sage.structure.parent.Parent

This class is deprecated, and will disappear as soon as all derived classes in Sage’s library will have been
fixed. Please derive directly from Parent and use the category EnumeratedSets, FiniteEnumeratedSets,
or InfiniteEnumeratedSets, as appropriate.

For examples, see:

sage: FiniteEnumeratedSets().example()
An example of a finite enumerated set: {1,2,3}
sage: InfiniteEnumeratedSets().example()
An example of an infinite enumerated set: the non negative integers

Element
alias of CombinatorialObject

cardinality()
Default implementation of cardinality which just goes through the iterator of the combinatorial class to
count the number of objects.

EXAMPLES:

sage: class C(CombinatorialClass):
....: def __iter__(self):
....: return iter([1,2,3])
sage: C().cardinality() #indirect doctest
3

element_class()
This function is a temporary helper so that a CombinatorialClass behaves as a parent for creating elements.
This will disappear when combinatorial classes will be turned into actual parents (in the category Enumer-
atedSets).

filter(f, name=None)
Return the combinatorial subclass of f which consists of the elements x of self such that f(x) is True.

EXAMPLES:

sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).filter(lambda x: x.avoids([1,2]))
sage: P.list()
[[3, 2, 1]]

first()
Default implementation for first which uses iterator.

EXAMPLES:

sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.first() # indirect doctest
1

is_finite()
Return whether self is finite or not.

5.1. Comprehensive Module List 255

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/categories/sage/categories/enumerated_sets.html#sage.categories.enumerated_sets.EnumeratedSets
../../../../../../html/en/reference/categories/sage/categories/finite_enumerated_sets.html#sage.categories.finite_enumerated_sets.FiniteEnumeratedSets
../../../../../../html/en/reference/categories/sage/categories/infinite_enumerated_sets.html#sage.categories.infinite_enumerated_sets.InfiniteEnumeratedSets

Combinatorics, Release 9.7

EXAMPLES:

sage: Partitions(5).is_finite()
True
sage: Permutations().is_finite()
False

last()
Default implementation for first which uses iterator.

EXAMPLES:

sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.last() # indirect doctest
3

list()
The default implementation of list which builds the list from the iterator.

EXAMPLES:

sage: class C(CombinatorialClass):
....: def __iter__(self):
....: return iter([1,2,3])
sage: C().list() #indirect doctest
[1, 2, 3]

map(f, name, is_injective=None)
Return the image {𝑓(𝑥)|𝑥 ∈ self} of this combinatorial class by 𝑓 , as a combinatorial class.

INPUT:

• is_injective – boolean (default: True) whether to assume that f is injective.

EXAMPLES:

sage: R = Permutations(3).map(attrcall('reduced_word')); R
Image of Standard permutations of 3 by The map *.reduced_word() from Standard␣
→˓permutations of 3
sage: R.cardinality()
6
sage: R.list()
[[], [2], [1], [1, 2], [2, 1], [2, 1, 2]]
sage: [r for r in R]
[[], [2], [1], [1, 2], [2, 1], [2, 1, 2]]

If the function is not injective, then there may be repeated elements:

sage: P = Partitions(4)
sage: P.list()
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
sage: P.map(len).list()
[1, 2, 2, 3, 4]

Use is_injective=False to get a correct result in this case:

256 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: P.map(len, is_injective=False).list()
[1, 2, 3, 4]

next(obj)
Default implementation for next which uses iterator.

EXAMPLES:

sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.next(2) # indirect doctest
3

previous(obj)
Default implementation for next which uses iterator.

EXAMPLES:

sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.previous(2) # indirect doctest
1

random_element()
Default implementation of random which uses unrank.

EXAMPLES:

sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.random_element() # random # indirect doctest
1

rank(obj)
Default implementation of rank which uses iterator.

EXAMPLES:

sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.rank(3) # indirect doctest
2

union(right_cc, name=None)
Return the combinatorial class representing the union of self and right_cc.

EXAMPLES:

sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(2).union(Permutations_CC(1))
sage: P.list()
[[1, 2], [2, 1], [1]]

unrank(r)
Default implementation of unrank which goes through the iterator.

EXAMPLES:

5.1. Comprehensive Module List 257

Combinatorics, Release 9.7

sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.unrank(1) # indirect doctest
2

class sage.combinat.combinat.CombinatorialElement(parent, *args, **kwds)
Bases: sage.combinat.combinat.CombinatorialObject, sage.structure.element.Element

CombinatorialElement is both a CombinatorialObject and an Element. So it represents a list which is an
element of some parent.

A CombinatorialElement subclass also automatically supports the __classcall__ mechanism.

Warning: This class is slowly being deprecated. Use ClonableList instead.

INPUT:

• parent – the Parent class for this element.

• lst – a list or any object that can be converted to a list by calling list().

EXAMPLES:

sage: from sage.combinat.combinat import CombinatorialElement
sage: e = CombinatorialElement(Partitions(6), [3,2,1])
sage: e == loads(dumps(e))
True
sage: parent(e)
Partitions of the integer 6
sage: list(e)
[3, 2, 1]

Check classcalls:

sage: class Foo(CombinatorialElement):
....: @staticmethod
....: def __classcall__(cls, x):
....: return x
sage: Foo(17)
17

class sage.combinat.combinat.CombinatorialObject(l, copy=True)
Bases: sage.structure.sage_object.SageObject

CombinatorialObject provides a thin wrapper around a list. The main differences are that __setitem__ is disabled
so that CombinatorialObjects are shallowly immutable, and the intention is that they are semantically immutable.

Because of this, CombinatorialObjects provide a __hash__ function which computes the hash of the string repre-
sentation of a list and the hash of its parent’s class. Thus, each CombinatorialObject should have a unique string
representation.

See also:

CombinatorialElement if you want a combinatorial object which is an element of a parent.

258 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element
../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

Warning: This class is slowly being deprecated. Use ClonableList instead.

INPUT:

• l – a list or any object that can be converted to a list by calling list().

• copy – (boolean, default True) if False, then lmust be a list, which is assigned to self._listwithout
copying.

EXAMPLES:

sage: c = CombinatorialObject([1,2,3])
sage: c == loads(dumps(c))
True
sage: c._list
[1, 2, 3]
sage: c._hash is None
True

For efficiency, you can specify copy=False if you know what you are doing:

sage: from sage.combinat.combinat import CombinatorialObject
sage: x = [3, 2, 1]
sage: C = CombinatorialObject(x, copy=False)
sage: C
[3, 2, 1]
sage: x[0] = 5
sage: C
[5, 2, 1]

index(key)
EXAMPLES:

sage: c = CombinatorialObject([1,2,3])
sage: c.index(1)
0
sage: c.index(3)
2

class sage.combinat.combinat.FilteredCombinatorialClass(combinatorial_class, f, name=None)
Bases: sage.combinat.combinat.CombinatorialClass

A filtered combinatorial class F is a subset of another combinatorial class C specified by a function f that takes
in an element c of C and returns True if and only if c is in F.

cardinality()
EXAMPLES:

sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).filter(lambda x: x.avoids([1,2]))
sage: P.cardinality()
1

class sage.combinat.combinat.InfiniteAbstractCombinatorialClass(category=None)
Bases: sage.combinat.combinat.CombinatorialClass

5.1. Comprehensive Module List 259

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList

Combinatorics, Release 9.7

This is an internal class that should not be used directly. A class which inherits from InfiniteAbstractCombina-
torialClass inherits the standard methods list and count.

If self._infinite_cclass_slice exists then self.__iter__ returns an iterator for self, otherwise raise NotImplement-
edError. The method self._infinite_cclass_slice is supposed to accept any integer as an argument and return
something which is iterable.

cardinality()
Count the elements of the combinatorial class.

EXAMPLES:

sage: R = InfiniteAbstractCombinatorialClass()
doctest:warning...
DeprecationWarning: this class is deprecated, do not use
See https://trac.sagemath.org/31545 for details.

sage: R.cardinality()
+Infinity

list()
Return an error since self is an infinite combinatorial class.

EXAMPLES:

sage: R = InfiniteAbstractCombinatorialClass()
sage: R.list()
Traceback (most recent call last):
...
NotImplementedError: infinite list

class sage.combinat.combinat.MapCombinatorialClass(cc, f, name, is_injective=None)
Bases: sage.sets.image_set.ImageSubobject, sage.combinat.combinat.CombinatorialClass

The image of a combinatorial class through a function.

INPUT:

• is_injective – boolean (default: True) whether to assume that f is injective.

See CombinatorialClass.map() for examples

EXAMPLES:

sage: R = SymmetricGroup(10).map(attrcall('reduced_word'))
sage: R.an_element()
[9, 8, 7, 6, 5, 4, 3, 2]
sage: R.cardinality()
3628800
sage: i = iter(R)
sage: next(i), next(i), next(i)
([], [1, 2, 3, 4, 5, 6, 7, 8, 9], [1])

class sage.combinat.combinat.Permutations_CC(n)
Bases: sage.combinat.combinat.CombinatorialClass

A testing class for CombinatorialClass since Permutations no longer inherits from CombinatorialClass
in trac ticket #14772.

260 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/14772

Combinatorics, Release 9.7

class sage.combinat.combinat.UnionCombinatorialClass(left_cc, right_cc, name=None)
Bases: sage.combinat.combinat.CombinatorialClass

A UnionCombinatorialClass is a union of two other combinatorial classes.

cardinality()
EXAMPLES:

sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.cardinality()
8

first()
EXAMPLES:

sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.first()
[1, 2, 3]

last()
EXAMPLES:

sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.last()
[2, 1]

list()
EXAMPLES:

sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.list()
[[1, 2, 3],
[1, 3, 2],
[2, 1, 3],
[2, 3, 1],
[3, 1, 2],
[3, 2, 1],
[1, 2],
[2, 1]]

rank(x)
EXAMPLES:

sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.rank(Permutation([2,1]))
7
sage: P.rank(Permutation([1,2,3]))
0

unrank(x)
EXAMPLES:

5.1. Comprehensive Module List 261

Combinatorics, Release 9.7

sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.unrank(7)
[2, 1]
sage: P.unrank(0)
[1, 2, 3]

sage.combinat.combinat.bell_number(n, algorithm='flint', **options)
Return the 𝑛-th Bell number.

This is the number of ways to partition a set of 𝑛 elements into pairwise disjoint nonempty subsets.

INPUT:

• n – a positive integer

• algorithm – (Default: 'flint') any one of the following:

– 'dobinski' – Use Dobinski’s formula implemented in Sage

– 'flint' – Wrap FLINT’s arith_bell_number

– 'gap' – Wrap GAP’s Bell

– 'mpmath' – Wrap mpmath’s bell

Warning: When using the mpmath algorithm to compute Bell numbers and you specify prec, it can return
incorrect results due to low precision. See the examples section.

Let 𝐵𝑛 denote the 𝑛-th Bell number. Dobinski’s formula is:

𝐵𝑛 = 𝑒−1
∞∑︁
𝑘=0

𝑘𝑛

𝑘!
.

To show our implementation of Dobinski’s method works, suppose that 𝑛 ≥ 5 and let 𝑘0 be the smallest positive
integer such that 𝑘

𝑛
0

𝑘0!
< 1. Note that 𝑘0 > 𝑛 and 𝑘0 ≤ 2𝑛 because we can prove that (2𝑛)𝑛

(2𝑛)! < 1 by Stirling.

If 𝑘 > 𝑘0, then we have 𝑘𝑛

𝑘! <
1

2𝑘−𝑘0
. We show this by induction: let 𝑐𝑘 = 𝑘𝑛

𝑘! , if 𝑘 > 𝑛 then

𝑐𝑘+1

𝑐𝑘
=

(1 + 𝑘−1)𝑛

𝑘 + 1
<

(1 + 𝑛−1)𝑛

𝑛
<

1

2
.

The last inequality can easily be checked numerically for 𝑛 ≥ 5.

Using this, we can see that 𝑐𝑘
𝑐𝑘0

< 1
2𝑘−𝑘0

for 𝑘 > 𝑘0 > 𝑛. So summing this it gives that
∑︀∞
𝑘=𝑘0+1

𝑘𝑛

𝑘! < 1, and
hence

𝐵𝑛 = 𝑒−1

(︃
𝑘0∑︁
𝑘=0

𝑘𝑛

𝑘!
+ 𝐸1

)︃
= 𝑒−1

𝑘0∑︁
𝑘=0

𝑘𝑛

𝑘!
+ 𝐸2,

where 0 < 𝐸1 < 1 and 0 < 𝐸2 < 𝑒−1. Next we have for any 𝑞 > 0

𝑘0∑︁
𝑘=0

𝑘𝑛

𝑘!
=

1

𝑞

𝑘0∑︁
𝑘=0

⌊︂
𝑞𝑘𝑛

𝑘!

⌋︂
+
𝐸3

𝑞

262 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

where 0 ≤ 𝐸3 ≤ 𝑘0 + 1 ≤ 2𝑛+ 1. Let 𝐸4 = 𝐸3

𝑞 and let 𝑞 = 2𝑛+ 1. We find 0 ≤ 𝐸4 ≤ 1. These two bounds
give:

𝐵𝑛 =
𝑒−1

𝑞

𝑘0∑︁
𝑘=0

⌊︂
𝑞𝑘𝑛

𝑘!

⌋︂
+ 𝑒−1𝐸4 + 𝐸2

=
𝑒−1

𝑞

𝑘0∑︁
𝑘=0

⌊︂
𝑞𝑘𝑛

𝑘!

⌋︂
+ 𝐸5

where

0 < 𝐸5 = 𝑒−1𝐸4 + 𝐸2 ≤ 𝑒−1 + 𝑒−1 <
3

4
.

It follows that

𝐵𝑛 =

⌈︃
𝑒−1

𝑞

𝑘0∑︁
𝑘=0

⌊︂
𝑞𝑘𝑛

𝑘!

⌋︂⌉︃
.

Now define

𝑏 =

𝑘0∑︁
𝑘=0

⌊︂
𝑞𝑘𝑛

𝑘!

⌋︂
.

This 𝑏 can be computed exactly using integer arithmetic. To avoid the costly integer division by 𝑘!, we collect
more terms and do only one division, for example with 3 terms:

𝑘𝑛

𝑘!
+

(𝑘 + 1)𝑛

(𝑘 + 1)!
+

(𝑘 + 2)𝑛

(𝑘 + 2)!
=
𝑘𝑛(𝑘 + 1)(𝑘 + 2) + (𝑘 + 1)𝑛(𝑘 + 2) + (𝑘 + 2)𝑛

(𝑘 + 2)!

In the implementation, we collect
√
𝑛/2 terms.

To actually compute 𝐵𝑛 from 𝑏, we let 𝑝 = ⌊log2(𝑏)⌋ + 1 such that 𝑏 < 2𝑝 and we compute with 𝑝 bits of
precision. This implies that 𝑏 (and 𝑞 < 𝑏) can be represented exactly.

We compute 𝑒−1

𝑞 𝑏, rounding down, and we must have an absolute error of at most 1/4 (given that 𝐸5 < 3/4).
This means that we need a relative error of at most

𝑒𝑞

4𝑏
>

(𝑒𝑞)/4

2𝑝
>

7

2𝑝

(assuming 𝑛 ≥ 5). With a precision of 𝑝 bits and rounding down, every rounding has a relative error of at most
21−𝑝 = 2/2𝑝. Since we do 3 roundings (𝑏 and 𝑞 do not require rounding), we get a relative error of at most 6/2𝑝.
All this implies that the precision of 𝑝 bits is sufficient.

EXAMPLES:

sage: bell_number(10)
115975
sage: bell_number(2)
2
sage: bell_number(-10)
Traceback (most recent call last):
...
ArithmeticError: Bell numbers not defined for negative indices
sage: bell_number(1)
1
sage: bell_number(1/3)
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

5.1. Comprehensive Module List 263

Combinatorics, Release 9.7

When using the mpmath algorithm, we are required have mpmath’s precision set to at least log2(𝐵𝑛) bits. If
upon computing the Bell number the first time, we deem the precision too low, we use our guess to (temporarily)
raise mpmath’s precision and the Bell number is recomputed.

sage: k = bell_number(30, 'mpmath'); k
846749014511809332450147
sage: k == bell_number(30)
True

If you knows what precision is necessary before computing the Bell number, you can use the prec option:

sage: k2 = bell_number(30, 'mpmath', prec=30); k2
846749014511809332450147
sage: k == k2
True

Warning: Running mpmath with the precision set too low can result in incorrect results:

sage: k = bell_number(30, 'mpmath', prec=15); k
846749014511809388871680
sage: k == bell_number(30)
False

AUTHORS:

• Robert Gerbicz

• Jeroen Demeyer: improved implementation of Dobinski formula with more accurate error estimates (trac
ticket #17157)

REFERENCES:

• Wikipedia article Bell_number

• http://fredrik-j.blogspot.com/2009/03/computing-generalized-bell-numbers.html

• http://mathworld.wolfram.com/DobinskisFormula.html

sage.combinat.combinat.bell_polynomial(n, k)
Return the Bell Polynomial

𝐵𝑛,𝑘(𝑥0, 𝑥1, . . . , 𝑥𝑛−𝑘) =
∑︁

∑︀
𝑗𝑖=𝑘,

∑︀
(𝑖+1)𝑗𝑖=𝑛

𝑛!

𝑗0!𝑗1! · · · 𝑗𝑛−𝑘!

(︂
𝑥0

(0 + 1)!

)︂𝑗0 (︂ 𝑥1
(1 + 1)!

)︂𝑗1
· · ·
(︂

𝑥𝑛−𝑘
(𝑛− 𝑘 + 1)!

)︂𝑗𝑛−𝑘

.

INPUT:

• n – integer

• k – integer

OUTPUT:

• a polynomial in 𝑛− 𝑘 + 1 variables over Z

EXAMPLES:

264 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/17157
https://trac.sagemath.org/17157
https://en.wikipedia.org/wiki/Bell_number
http://fredrik-j.blogspot.com/2009/03/computing-generalized-bell-numbers.html
http://mathworld.wolfram.com/DobinskisFormula.html

Combinatorics, Release 9.7

sage: bell_polynomial(6,2)
10*x2^2 + 15*x1*x3 + 6*x0*x4
sage: bell_polynomial(6,3)
15*x1^3 + 60*x0*x1*x2 + 15*x0^2*x3

REFERENCES:

• [Bel1927]

AUTHORS:

• Blair Sutton (2009-01-26)

• Thierry Monteil (2015-09-29): the result must always be a polynomial.

sage.combinat.combinat.bernoulli_polynomial(x, n)
Return the n-th Bernoulli polynomial evaluated at x.

The generating function for the Bernoulli polynomials is

𝑡𝑒𝑥𝑡

𝑒𝑡 − 1
=

∞∑︁
𝑛=0

𝐵𝑛(𝑥)
𝑡𝑛

𝑛!
,

and they are given directly by

𝐵𝑛(𝑥) =

𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝐵𝑛−𝑖𝑥

𝑖.

One has 𝐵𝑛(𝑥) = −𝑛𝜁(1 − 𝑛, 𝑥), where 𝜁(𝑠, 𝑥) is the Hurwitz zeta function. Thus, in a certain sense, the
Hurwitz zeta function generalizes the Bernoulli polynomials to non-integer values of n.

EXAMPLES:

sage: y = QQ['y'].0
sage: bernoulli_polynomial(y, 5)
y^5 - 5/2*y^4 + 5/3*y^3 - 1/6*y
sage: bernoulli_polynomial(y, 5)(12)
199870
sage: bernoulli_polynomial(12, 5)
199870
sage: bernoulli_polynomial(y^2 + 1, 5)
y^10 + 5/2*y^8 + 5/3*y^6 - 1/6*y^2
sage: P.<t> = ZZ[]
sage: p = bernoulli_polynomial(t, 6)
sage: p.parent()
Univariate Polynomial Ring in t over Rational Field

We verify an instance of the formula which is the origin of the Bernoulli polynomials (and numbers):

sage: power_sum = sum(k^4 for k in range(10))
sage: 5*power_sum == bernoulli_polynomial(10, 5) - bernoulli(5)
True

REFERENCES:

• Wikipedia article Bernoulli_polynomials

5.1. Comprehensive Module List 265

https://en.wikipedia.org/wiki/Bernoulli_polynomials

Combinatorics, Release 9.7

sage.combinat.combinat.catalan_number(n)
Return the 𝑛-th Catalan number.

The 𝑛-th Catalan number is given directly in terms of binomial coefficients by

𝐶𝑛 =
1

𝑛+ 1

(︂
2𝑛

𝑛

)︂
=

(2𝑛)!

(𝑛+ 1)!𝑛!
for 𝑛 ≥ 0.

Consider the set 𝑆 = {1, ..., 𝑛}. A noncrossing partition of 𝑆 is a partition in which no two blocks “cross” each
other, i.e., if 𝑎 and 𝑏 belong to one block and 𝑥 and 𝑦 to another, they are not arranged in the order 𝑎𝑥𝑏𝑦. 𝐶𝑛 is
the number of noncrossing partitions of the set 𝑆. There are many other interpretations (see REFERENCES).

When 𝑛 = −1, this function returns the limit value −1/2. For other 𝑛 < 0 it returns 0.

INPUT:

• n – integer

OUTPUT:

integer

EXAMPLES:

sage: [catalan_number(i) for i in range(7)]
[1, 1, 2, 5, 14, 42, 132]
sage: x = (QQ[['x']].0).O(8)
sage: (-1/2)*sqrt(1 - 4*x)
-1/2 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + O(x^8)
sage: [catalan_number(i) for i in range(-7,7)]
[0, 0, 0, 0, 0, 0, -1/2, 1, 1, 2, 5, 14, 42, 132]
sage: [catalan_number(n).mod(2) for n in range(16)]
[1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]

REFERENCES:

• Wikipedia article Catalan_number

• http://www-history.mcs.st-andrews.ac.uk/~history/Miscellaneous/CatalanNumbers/catalan.html

sage.combinat.combinat.euler_number(n, algorithm='flint')
Return the 𝑛-th Euler number.

INPUT:

• n – a positive integer

• algorithm – (Default: 'flint') any one of the following:

– 'maxima' – Wraps Maxima’s euler.

– 'flint' – Wrap FLINT’s arith_euler_number

EXAMPLES:

sage: [euler_number(i) for i in range(10)]
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0]
sage: x = PowerSeriesRing(QQ, 'x').gen().O(10)
sage: 2/(exp(x)+exp(-x))
1 - 1/2*x^2 + 5/24*x^4 - 61/720*x^6 + 277/8064*x^8 + O(x^10)
sage: [euler_number(i)/factorial(i) for i in range(11)]
[1, 0, -1/2, 0, 5/24, 0, -61/720, 0, 277/8064, 0, -50521/3628800]

(continues on next page)

266 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Catalan_number
http://www-history.mcs.st-andrews.ac.uk/~history/Miscellaneous/CatalanNumbers/catalan.html

Combinatorics, Release 9.7

(continued from previous page)

sage: euler_number(-1)
Traceback (most recent call last):
...
ValueError: n (=-1) must be a nonnegative integer

REFERENCES:

• Wikipedia article Euler_number

sage.combinat.combinat.eulerian_number(n, k, algorithm='recursive')
Return the Eulerian number of index (n, k).

This is the coefficient of 𝑡𝑘 in the Eulerian polynomial 𝐴𝑛(𝑡).

INPUT:

• n – integer

• k – integer between 0 and n - 1

• algorithm – "recursive" (default) or "formula"

OUTPUT:

an integer

See also:

eulerian_polynomial()

EXAMPLES:

sage: from sage.combinat.combinat import eulerian_number
sage: [eulerian_number(5,i) for i in range(5)]
[1, 26, 66, 26, 1]

sage.combinat.combinat.eulerian_polynomial(n, algorithm='derivative')
Return the Eulerian polynomial of index n.

This is the generating polynomial counting permutations in the symmetric group 𝑆𝑛 according to their number
of descents.

INPUT:

• n – an integer

• algorithm – "derivative" (default) or "coeffs"

OUTPUT:

polynomial in one variable t

See also:

eulerian_number()

EXAMPLES:

sage: from sage.combinat.combinat import eulerian_polynomial
sage: eulerian_polynomial(5)
t^4 + 26*t^3 + 66*t^2 + 26*t + 1

REFERENCES:

5.1. Comprehensive Module List 267

https://en.wikipedia.org/wiki/Euler_number

Combinatorics, Release 9.7

• Wikipedia article Eulerian_number

sage.combinat.combinat.fibonacci(n, algorithm='pari')
Return the 𝑛-th Fibonacci number.

The Fibonacci sequence 𝐹𝑛 is defined by the initial conditions 𝐹1 = 𝐹2 = 1 and the recurrence relation 𝐹𝑛+2 =
𝐹𝑛+1 + 𝐹𝑛. For negative 𝑛 we define 𝐹𝑛 = (−1)𝑛+1𝐹−𝑛, which is consistent with the recurrence relation.

INPUT:

• algorithm – a string:

– "pari" - (default) use the PARI C library’s pari:fibo function

– "gap" - use GAP’s Fibonacci function

Note: PARI is tens to hundreds of times faster than GAP here. Moreover, PARI works for every large input
whereas GAP does not.

EXAMPLES:

sage: fibonacci(10)
55
sage: fibonacci(10, algorithm='gap')
55

sage: fibonacci(-100)
-354224848179261915075
sage: fibonacci(100)
354224848179261915075

sage: fibonacci(0)
0
sage: fibonacci(1/2)
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

sage.combinat.combinat.fibonacci_sequence(start, stop=None, algorithm=None)
Return an iterator over the Fibonacci sequence, for all fibonacci numbers 𝑓𝑛 from n = start up to (but not
including) n = stop

INPUT:

• start – starting value

• stop – stopping value

• algorithm – (default: None) passed on to fibonacci function (or not passed on if None, i.e., use the default)

EXAMPLES:

sage: fibs = [i for i in fibonacci_sequence(10, 20)]
sage: fibs
[55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181]

sage: sum([i for i in fibonacci_sequence(100, 110)])
69919376923075308730013

268 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Eulerian_number
https://pari.math.u-bordeaux.fr/dochtml/help/fibo

Combinatorics, Release 9.7

See also:

fibonacci_xrange()

AUTHORS:

• Bobby Moretti

sage.combinat.combinat.fibonacci_xrange(start, stop=None, algorithm='pari')
Return an iterator over all of the Fibonacci numbers in the given range, including f_n = start up to, but not
including, f_n = stop.

EXAMPLES:

sage: fibs_in_some_range = [i for i in fibonacci_xrange(10^7, 10^8)]
sage: len(fibs_in_some_range)
4
sage: fibs_in_some_range
[14930352, 24157817, 39088169, 63245986]

sage: fibs = [i for i in fibonacci_xrange(10, 100)]
sage: fibs
[13, 21, 34, 55, 89]

sage: list(fibonacci_xrange(13, 34))
[13, 21]

A solution to the second Project Euler problem:

sage: sum([i for i in fibonacci_xrange(10^6) if is_even(i)])
1089154

See also:

fibonacci_sequence()

AUTHORS:

• Bobby Moretti

sage.combinat.combinat.lucas_number1(n, P, Q)

Return the 𝑛-th Lucas number “of the first kind” (this is not standard terminology). The Lucas sequence 𝐿(1)
𝑛 is

defined by the initial conditions 𝐿(1)
1 = 0, 𝐿(1)

2 = 1 and the recurrence relation 𝐿(1)
𝑛+2 = 𝑃 · 𝐿(1)

𝑛+1 −𝑄 · 𝐿
(1)
𝑛 .

Wraps GAP’s Lucas(...)[1].

𝑃 = 1, 𝑄 = −1 gives the Fibonacci sequence.

INPUT:

• n – integer

• P, Q – integer or rational numbers

OUTPUT: integer or rational number

EXAMPLES:

sage: lucas_number1(5,1,-1)
5
sage: lucas_number1(6,1,-1)

(continues on next page)

5.1. Comprehensive Module List 269

Combinatorics, Release 9.7

(continued from previous page)

8
sage: lucas_number1(7,1,-1)
13
sage: lucas_number1(7,1,-2)
43
sage: lucas_number1(5,2,3/5)
229/25
sage: lucas_number1(5,2,1.5)
1/4

There was a conjecture that the sequence 𝐿𝑛 defined by 𝐿𝑛+2 = 𝐿𝑛+1 +𝐿𝑛, 𝐿1 = 1, 𝐿2 = 3, has the property
that 𝑛 prime implies that 𝐿𝑛 is prime.

sage: lucas = lambda n : Integer((5/2)*lucas_number1(n,1,-1)+(1/2)*lucas_number2(n,
→˓1,-1))
sage: [[lucas(n),is_prime(lucas(n)),n+1,is_prime(n+1)] for n in range(15)]
[[1, False, 1, False],
[3, True, 2, True],
[4, False, 3, True],
[7, True, 4, False],
[11, True, 5, True],
[18, False, 6, False],
[29, True, 7, True],
[47, True, 8, False],
[76, False, 9, False],
[123, False, 10, False],
[199, True, 11, True],
[322, False, 12, False],
[521, True, 13, True],
[843, False, 14, False],
[1364, False, 15, False]]

Can you use Sage to find a counterexample to the conjecture?

sage.combinat.combinat.lucas_number2(n, P, Q)

Return the 𝑛-th Lucas number “of the second kind” (this is not standard terminology). The Lucas sequence 𝐿(2)
𝑛

is defined by the initial conditions 𝐿(2)
1 = 2, 𝐿(2)

2 = 𝑃 and the recurrence relation 𝐿(2)
𝑛+2 = 𝑃 ·𝐿(2)

𝑛+1−𝑄 ·𝐿
(2)
𝑛 .

Wraps GAP’s Lucas(. . .)[2].

INPUT:

• n - integer

• P, Q - integer or rational numbers

OUTPUT: integer or rational number

EXAMPLES:

sage: [lucas_number2(i,1,-1) for i in range(10)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76]
sage: [fibonacci(i-1)+fibonacci(i+1) for i in range(10)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76]

270 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: n = lucas_number2(5,2,3); n
2
sage: type(n)
<class 'sage.rings.integer.Integer'>
sage: n = lucas_number2(5,2,-3/9); n
418/9
sage: type(n)
<class 'sage.rings.rational.Rational'>

The case 𝑃 = 1,𝑄 = −1 is the Lucas sequence in Brualdi’s Introductory Combinatorics, 4th ed., Prentice-Hall,
2004:

sage: [lucas_number2(n,1,-1) for n in range(10)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76]

sage.combinat.combinat.narayana_number(n, k)
Return the Narayana number of index (n, k).

For every integer 𝑛 ≥ 1, the sum of Narayana numbers
∑︀
𝑘𝑁𝑛,𝑘 is the Catalan number 𝐶𝑛.

INPUT:

• n – an integer

• k – an integer between 0 and n - 1

OUTPUT:

an integer

EXAMPLES:

sage: from sage.combinat.combinat import narayana_number
sage: [narayana_number(3, i) for i in range(3)]
[1, 3, 1]
sage: sum(narayana_number(7,i) for i in range(7)) == catalan_number(7)
True

REFERENCES:

• Wikipedia article Narayana_number

sage.combinat.combinat.number_of_tuples(S, k, algorithm='naive')
Return the size of tuples(S, k) when 𝑆 is a set. More generally, return the size of tuples(set(S), k).
(So, unlike tuples(), this method removes redundant entries from 𝑆.)

INPUT:

• S – the base set

• k – the length of the tuples

• algorithm – can be one of the following:

– 'naive' - (default) use the naive counting |𝑆|𝑘

– 'gap' - wraps GAP’s NrTuples

5.1. Comprehensive Module List 271

https://en.wikipedia.org/wiki/Narayana_number

Combinatorics, Release 9.7

Warning: When using algorithm='gap', S must be a list of objects that have string representations that
can be interpreted by the GAP interpreter. If S consists of at all complicated Sage objects, this function might
not do what you expect.

EXAMPLES:

sage: S = [1,2,3,4,5]
sage: number_of_tuples(S,2)
25
sage: number_of_tuples(S,2, algorithm="gap")
25
sage: S = [1,1,2,3,4,5]
sage: number_of_tuples(S,2)
25
sage: number_of_tuples(S,2, algorithm="gap")
25
sage: number_of_tuples(S,0)
1
sage: number_of_tuples(S,0, algorithm="gap")
1

sage.combinat.combinat.number_of_unordered_tuples(S, k, algorithm='naive')
Return the size of unordered_tuples(S, k) when 𝑆 is a set.

INPUT:

• S – the base set

• k – the length of the tuples

• algorithm – can be one of the following:

– 'naive' - (default) use the naive counting
(︀|𝑆|+𝑘−1

𝑘

)︀
– 'gap' - wraps GAP’s NrUnorderedTuples

Warning: When using algorithm='gap', S must be a list of objects that have string representations that
can be interpreted by the GAP interpreter. If S consists of at all complicated Sage objects, this function might
not do what you expect.

EXAMPLES:

sage: S = [1,2,3,4,5]
sage: number_of_unordered_tuples(S,2)
15
sage: number_of_unordered_tuples(S,2, algorithm="gap")
15
sage: S = [1,1,2,3,4,5]
sage: number_of_unordered_tuples(S,2)
15
sage: number_of_unordered_tuples(S,2, algorithm="gap")
15
sage: number_of_unordered_tuples(S,0)
1

(continues on next page)

272 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: number_of_unordered_tuples(S,0, algorithm="gap")
1

sage.combinat.combinat.polygonal_number(s, n)
Return the 𝑛-th 𝑠-gonal number.

Polygonal sequences are represented by dots forming a regular polygon. Two famous sequences are the triangular
numbers (3rd column of Pascal’s Triangle) and the square numbers. The 𝑛-th term in a polygonal sequence is
defined by

𝑃 (𝑠, 𝑛) =
𝑛2(𝑠− 2)− 𝑛(𝑠− 4)

2
,

where 𝑠 is the number of sides of the polygon.

INPUT:

• s – integer greater than 1; the number of sides of the polygon

• n – integer; the index of the returned 𝑠-gonal number

OUTPUT: an integer

EXAMPLES:

The triangular numbers:

sage: [polygonal_number(3, n) for n in range(10)]
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]

sage: [polygonal_number(3, n) for n in range(-10, 0)]
[45, 36, 28, 21, 15, 10, 6, 3, 1, 0]

The square numbers:

sage: [polygonal_number(4, n) for n in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The pentagonal numbers:

sage: [polygonal_number(5, n) for n in range(10)]
[0, 1, 5, 12, 22, 35, 51, 70, 92, 117]

The hexagonal numbers:

sage: [polygonal_number(6, n) for n in range(10)]
[0, 1, 6, 15, 28, 45, 66, 91, 120, 153]

The input is converted into an integer:

sage: polygonal_number(3.0, 2.0)
3

A non-integer input returns an error:

sage: polygonal_number(3.5, 1)
Traceback (most recent call last):

(continues on next page)

5.1. Comprehensive Module List 273

Combinatorics, Release 9.7

(continued from previous page)

...
TypeError: Attempt to coerce non-integral RealNumber to Integer

𝑠 must be greater than 1:

sage: polygonal_number(1, 4)
Traceback (most recent call last):
...
ValueError: s (=1) must be greater than 1

REFERENCES:

• Wikipedia article Polygonal_number

sage.combinat.combinat.stirling_number1(n, k, algorithm='gap')
Return the 𝑛-th Stirling number 𝑆1(𝑛, 𝑘) of the first kind.

This is the number of permutations of 𝑛 points with 𝑘 cycles.

See Wikipedia article Stirling_numbers_of_the_first_kind.

INPUT:

• n – nonnegative machine-size integer

• k – nonnegative machine-size integer

• algorithm:

– "gap" (default) – use GAP’s Stirling1 function

– "flint" – use flint’s arith_stirling_number_1u function

EXAMPLES:

sage: stirling_number1(3,2)
3
sage: stirling_number1(5,2)
50
sage: 9*stirling_number1(9,5)+stirling_number1(9,4)
269325
sage: stirling_number1(10,5)
269325

Indeed, 𝑆1(𝑛, 𝑘) = 𝑆1(𝑛− 1, 𝑘 − 1) + (𝑛− 1)𝑆1(𝑛− 1, 𝑘).

sage.combinat.combinat.stirling_number2(n, k, algorithm=None)
Return the 𝑛-th Stirling number 𝑆2(𝑛, 𝑘) of the second kind.

This is the number of ways to partition a set of 𝑛 elements into 𝑘 pairwise disjoint nonempty subsets. The 𝑛-th
Bell number is the sum of the 𝑆2(𝑛, 𝑘)’s, 𝑘 = 0, ..., 𝑛.

See Wikipedia article Stirling_numbers_of_the_second_kind.

INPUT:

• n – nonnegative machine-size integer

• k – nonnegative machine-size integer

• algorithm:

– None (default) – use native implementation

274 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Polygonal_number
https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind

Combinatorics, Release 9.7

– "flint" – use flint’s arith_stirling_number_2 function

– "gap" – use GAP’s Stirling2 function

– "maxima" – use Maxima’s stirling2 function

EXAMPLES:

Print a table of the first several Stirling numbers of the second kind:

sage: for n in range(10):
....: for k in range(10):
....: print(str(stirling_number2(n,k)).rjust(k and 6))
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 3 1 0 0 0 0 0 0
0 1 7 6 1 0 0 0 0 0
0 1 15 25 10 1 0 0 0 0
0 1 31 90 65 15 1 0 0 0
0 1 63 301 350 140 21 1 0 0
0 1 127 966 1701 1050 266 28 1 0
0 1 255 3025 7770 6951 2646 462 36 1

Stirling numbers satisfy 𝑆2(𝑛, 𝑘) = 𝑆2(𝑛− 1, 𝑘 − 1) + 𝑘𝑆2(𝑛− 1, 𝑘):

sage: 5*stirling_number2(9,5) + stirling_number2(9,4)
42525
sage: stirling_number2(10,5)
42525

sage.combinat.combinat.tuples(S, k, algorithm='itertools')
Return a list of all 𝑘-tuples of elements of a given set S.

This function accepts the set S in the form of any iterable (list, tuple or iterator), and returns a list of 𝑘-tuples. If
S contains duplicate entries, then you should expect the method to return tuples multiple times!

Recall that 𝑘-tuples are ordered (in the sense that two 𝑘-tuples differing in the order of their entries count as
different) and can have repeated entries (even if S is a list with no repetition).

INPUT:

• S – the base set

• k – the length of the tuples

• algorithm – can be one of the following:

– 'itertools' - (default) use python’s itertools

– 'native' - use a native Sage implementation

Note: The ordering of the list of tuples depends on the algorithm.

EXAMPLES:

sage: S = [1,2]
sage: tuples(S,3)
[(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),

(continues on next page)

5.1. Comprehensive Module List 275

Combinatorics, Release 9.7

(continued from previous page)

(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]
sage: mset = ["s","t","e","i","n"]
sage: tuples(mset, 2)
[('s', 's'), ('s', 't'), ('s', 'e'), ('s', 'i'), ('s', 'n'),
('t', 's'), ('t', 't'), ('t', 'e'), ('t', 'i'), ('t', 'n'),
('e', 's'), ('e', 't'), ('e', 'e'), ('e', 'i'), ('e', 'n'),
('i', 's'), ('i', 't'), ('i', 'e'), ('i', 'i'), ('i', 'n'),
('n', 's'), ('n', 't'), ('n', 'e'), ('n', 'i'), ('n', 'n')]

sage: K.<a> = GF(4, 'a')
sage: mset = [x for x in K if x != 0]
sage: tuples(mset, 2)
[(a, a), (a, a + 1), (a, 1), (a + 1, a), (a + 1, a + 1),
(a + 1, 1), (1, a), (1, a + 1), (1, 1)]

We check that the implementations agree (up to ordering):

sage: tuples(S, 3, 'native')
[(1, 1, 1), (2, 1, 1), (1, 2, 1), (2, 2, 1),
(1, 1, 2), (2, 1, 2), (1, 2, 2), (2, 2, 2)]

Lastly we check on a multiset:

sage: S = [1,1,2]
sage: sorted(tuples(S, 3)) == sorted(tuples(S, 3, 'native'))
True

AUTHORS:

• Jon Hanke (2006-08)

sage.combinat.combinat.unordered_tuples(S, k, algorithm='itertools')
Return a list of all unordered tuples of length k of the set S.

An unordered tuple of length 𝑘 of set 𝑆 is a unordered selection with repetitions of 𝑆 and is represented by a
sorted list of length 𝑘 containing elements from 𝑆.

Unlike tuples(), the result of this method does not depend on how often an element appears in 𝑆; only the set
𝑆 is being used. For example, unordered_tuples([1, 1, 1], 2) will return [(1, 1)]. If you want it to
return [(1, 1), (1, 1), (1, 1)], use Python’s itertools.combinations_with_replacement instead.

INPUT:

• S – the base set

• k – the length of the tuples

• algorithm – can be one of the following:

– 'itertools' - (default) use python’s itertools

– 'gap' - wraps GAP’s UnorderedTuples

Warning: When using algorithm='gap', S must be a list of objects that have string representations that
can be interpreted by the GAP interpreter. If S consists of at all complicated Sage objects, this function might
not do what you expect.

276 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: S = [1,2]
sage: unordered_tuples(S, 3)
[(1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2)]

We check that this agrees with GAP:

sage: unordered_tuples(S, 3, algorithm='gap')
[(1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2)]

We check the result on strings:

sage: S = ["a","b","c"]
sage: unordered_tuples(S, 2)
[('a', 'a'), ('a', 'b'), ('a', 'c'), ('b', 'b'), ('b', 'c'), ('c', 'c')]
sage: unordered_tuples(S, 2, algorithm='gap')
[('a', 'a'), ('a', 'b'), ('a', 'c'), ('b', 'b'), ('b', 'c'), ('c', 'c')]

Lastly we check on a multiset:

sage: S = [1,1,2]
sage: unordered_tuples(S, 3) == unordered_tuples(S, 3, 'gap')
True
sage: unordered_tuples(S, 3)
[(1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2)]

sage.combinat.combinat.unshuffle_iterator(a, one=1)
Iterate over the unshuffles of a list (or tuple) a, also yielding the signs of the respective permutations.

If 𝑛 and 𝑘 are integers satisfying 0 ≤ 𝑘 ≤ 𝑛, then a (𝑘, 𝑛 − 𝑘)-unshuffle means a permutation 𝜋 ∈ 𝑆𝑛 such
that 𝜋(1) < 𝜋(2) < · · · < 𝜋(𝑘) and 𝜋(𝑘 + 1) < 𝜋(𝑘 + 2) < · · · < 𝜋(𝑛). This method provides, for a list
𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) of length 𝑛, an iterator yielding all pairs:(︁(︀

(𝑎𝜋(1), 𝑎𝜋(2), . . . , 𝑎𝜋(𝑘)), (𝑎𝜋(𝑘+1), 𝑎𝜋(𝑘+2), . . . , 𝑎𝜋(𝑛))
)︀
, (−1)𝜋

)︁
for all 𝑘 ∈ {0, 1, . . . , 𝑛} and all (𝑘, 𝑛−𝑘)-unshuffles 𝜋. The optional variable one can be set to a different value
which results in the (−1)𝜋 component being multiplied by said value.

The iterator does not yield these in order of increasing 𝑘.

EXAMPLES:

sage: from sage.combinat.combinat import unshuffle_iterator
sage: list(unshuffle_iterator([1, 3, 4]))
[(((), (1, 3, 4)), 1), (((1,), (3, 4)), 1), (((3,), (1, 4)), -1),
(((1, 3), (4,)), 1), (((4,), (1, 3)), 1), (((1, 4), (3,)), -1),
(((3, 4), (1,)), 1), (((1, 3, 4), ()), 1)]
sage: list(unshuffle_iterator([3, 1]))
[(((), (3, 1)), 1), (((3,), (1,)), 1), (((1,), (3,)), -1),
(((3, 1), ()), 1)]
sage: list(unshuffle_iterator([8]))
[(((), (8,)), 1), (((8,), ()), 1)]
sage: list(unshuffle_iterator([]))
[(((), ()), 1)]
sage: list(unshuffle_iterator([3, 1], 3/2))

(continues on next page)

5.1. Comprehensive Module List 277

Combinatorics, Release 9.7

(continued from previous page)

[(((), (3, 1)), 3/2), (((3,), (1,)), 3/2), (((1,), (3,)), -3/2),
(((3, 1), ()), 3/2)]

5.1.25 Fast computation of combinatorial functions (Cython + mpz)

Currently implemented:

• Stirling numbers of the second kind

• iterators for set partitions

• iterator for Lyndon words

• iterator for perfect matchings

• conjugate of partitions

AUTHORS:

• Fredrik Johansson (2010-10): Stirling numbers of second kind

• Martin Rubey and Travis Scrimshaw (2018): iterators for set partitions, Lyndon words, and perfect matchings

sage.combinat.combinat_cython.conjugate(p)
Return the conjugate partition associated to the partition p as a list.

EXAMPLES:

sage: from sage.combinat.combinat_cython import conjugate
sage: conjugate([2,2])
[2, 2]
sage: conjugate([6,3,1])
[3, 2, 2, 1, 1, 1]

sage.combinat.combinat_cython.linear_extension_iterator(D)
Iterate over the linear extensions of the poset.

The list _le keeps track of the current linear extensions. The boolean variable is_plus keeps track of the “sign”.

INPUT:

• D, the Hasse diagram of a poset.

Warning: It is assumed that D is not modified while the linear extensions are generated.

EXAMPLES:

sage: from sage.combinat.combinat_cython import linear_extension_iterator
sage: D = Poset({ 0:[1,2], 1:[3], 2:[3,4] })._hasse_diagram
sage: list(linear_extension_iterator(D))
[[0, 1, 2, 3, 4],
[0, 2, 1, 3, 4],
[0, 2, 1, 4, 3],
[0, 2, 4, 1, 3],
[0, 1, 2, 4, 3]]

(continues on next page)

278 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: D = posets.BooleanLattice(3)._hasse_diagram
sage: len(list(linear_extension_iterator(D)))
48

sage: D = posets.AntichainPoset(9)._hasse_diagram
sage: len(list(linear_extension_iterator(D))) == factorial(9) # long time
True

sage.combinat.combinat_cython.lyndon_word_iterator(n, k)
Generate the Lyndon words of fixed length k with n letters.

The resulting Lyndon words will be words represented as lists whose alphabet is range(n) (= {0, 1, . . . , 𝑛−1}).

ALGORITHM:

The iterative FKM Algorithm 7.2 from [Rus2003].

EXAMPLES:

sage: from sage.combinat.combinat_cython import lyndon_word_iterator
sage: list(lyndon_word_iterator(4, 2))
[[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]
sage: list(lyndon_word_iterator(2, 4))
[[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1]]

sage.combinat.combinat_cython.perfect_matchings_iterator(n)
Iterate over all perfect matchings with n parts.

This iterates over all perfect matchings of {0, 1, . . . , 2𝑛− 1} using a Gray code for fixed-point-free involutions
due to Walsh [Wal2001].

EXAMPLES:

sage: from sage.combinat.combinat_cython import perfect_matchings_iterator
sage: list(perfect_matchings_iterator(1))
[[(0, 1)]]
sage: list(perfect_matchings_iterator(2))
[[(0, 1), (2, 3)], [(0, 2), (1, 3)], [(0, 3), (1, 2)]]

sage: list(perfect_matchings_iterator(0))
[[]]

REFERENCES:

• [Wal2001]

sage.combinat.combinat_cython.set_partition_composition(sp1, sp2)
Return a tuple consisting of the composition of the set partitions sp1 and sp2 and the number of components
removed from the middle rows of the graph.

EXAMPLES:

sage: from sage.combinat.combinat_cython import set_partition_composition
sage: sp1 = ((1,-2),(2,-1))
sage: sp2 = ((1,-2),(2,-1))
sage: p, c = set_partition_composition(sp1, sp2)

(continues on next page)

5.1. Comprehensive Module List 279

Combinatorics, Release 9.7

(continued from previous page)

sage: (SetPartition(p), c) == (SetPartition([[1,-1],[2,-2]]), 0)
True

sage.combinat.combinat_cython.set_partition_iterator(base_set)
A fast iterator for the set partitions of the base set, which returns lists of lists instead of set partitions types.

EXAMPLES:

sage: from sage.combinat.combinat_cython import set_partition_iterator
sage: list(set_partition_iterator([1,-1,x]))
[[[1, -1, x]],
[[1, -1], [x]],
[[1, x], [-1]],
[[1], [-1, x]],
[[1], [-1], [x]]]

sage.combinat.combinat_cython.set_partition_iterator_blocks(base_set, k)
A fast iterator for the set partitions of the base set into the specified number of blocks, which returns lists of lists
instead of set partitions types.

EXAMPLES:

sage: from sage.combinat.combinat_cython import set_partition_iterator_blocks
sage: list(set_partition_iterator_blocks([1,-1,x], 2))
[[[1, x], [-1]], [[1], [-1, x]], [[1, -1], [x]]]

5.1.26 Combinations

AUTHORS:

• Mike Hansen (2007): initial implementation

• Vincent Delecroix (2011): cleaning, bug corrections, doctests

• Antoine Genitrini (2020) : new implementation of the lexicographic unranking of combinations

class sage.combinat.combination.ChooseNK(mset, k)
Bases: sage.combinat.combination.Combinations_setk

sage.combinat.combination.Combinations(mset, k=None)
Return the combinatorial class of combinations of the multiset mset. If k is specified, then it returns the combi-
natorial class of combinations of mset of size k.

A combination of a multiset 𝑀 is an unordered selection of 𝑘 objects of 𝑀 , where every object can appear at
most as many times as it appears in 𝑀 .

The combinatorial classes correctly handle the cases where mset has duplicate elements.

EXAMPLES:

sage: C = Combinations(range(4)); C
Combinations of [0, 1, 2, 3]
sage: C.list()
[[],
[0],
[1],

(continues on next page)

280 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[2],
[3],
[0, 1],
[0, 2],
[0, 3],
[1, 2],
[1, 3],
[2, 3],
[0, 1, 2],
[0, 1, 3],
[0, 2, 3],
[1, 2, 3],
[0, 1, 2, 3]]
sage: C.cardinality()
16

sage: C2 = Combinations(range(4),2); C2
Combinations of [0, 1, 2, 3] of length 2
sage: C2.list()
[[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]
sage: C2.cardinality()
6

sage: Combinations([1,2,2,3]).list()
[[],
[1],
[2],
[3],
[1, 2],
[1, 3],
[2, 2],
[2, 3],
[1, 2, 2],
[1, 2, 3],
[2, 2, 3],
[1, 2, 2, 3]]

sage: Combinations([1,2,3], 2).list()
[[1, 2], [1, 3], [2, 3]]

sage: mset = [1,1,2,3,4,4,5]
sage: Combinations(mset,2).list()
[[1, 1],
[1, 2],
[1, 3],
[1, 4],
[1, 5],
[2, 3],
[2, 4],
[2, 5],
[3, 4],

(continues on next page)

5.1. Comprehensive Module List 281

Combinatorics, Release 9.7

(continued from previous page)

[3, 5],
[4, 4],
[4, 5]]

sage: mset = ["d","a","v","i","d"]
sage: Combinations(mset,3).list()
[['d', 'd', 'a'],
['d', 'd', 'v'],
['d', 'd', 'i'],
['d', 'a', 'v'],
['d', 'a', 'i'],
['d', 'v', 'i'],
['a', 'v', 'i']]

sage: X = Combinations([1,2,3,4,5],3)
sage: [x for x in X]
[[1, 2, 3],
[1, 2, 4],
[1, 2, 5],
[1, 3, 4],
[1, 3, 5],
[1, 4, 5],
[2, 3, 4],
[2, 3, 5],
[2, 4, 5],
[3, 4, 5]]

It is possible to take combinations of Sage objects:

sage: Combinations([vector([1,1]), vector([2,2]), vector([3,3])], 2).list()
[[(1, 1), (2, 2)], [(1, 1), (3, 3)], [(2, 2), (3, 3)]]

class sage.combinat.combination.Combinations_mset(mset)
Bases: sage.structure.parent.Parent

cardinality()

class sage.combinat.combination.Combinations_msetk(mset, k)
Bases: sage.structure.parent.Parent

cardinality()
Return the size of combinations(mset, k).

IMPLEMENTATION: Wraps GAP’s NrCombinations.

EXAMPLES:

sage: mset = [1,1,2,3,4,4,5]
sage: Combinations(mset,2).cardinality()
12

class sage.combinat.combination.Combinations_set(mset)
Bases: sage.combinat.combination.Combinations_mset

cardinality()
Return the size of Combinations(set).

282 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

EXAMPLES:

sage: Combinations(range(16000)).cardinality() == 2^16000
True

rank(x)
EXAMPLES:

sage: c = Combinations([1,2,3])
sage: list(range(c.cardinality())) == list(map(c.rank, c))
True

unrank(r)
EXAMPLES:

sage: c = Combinations([1,2,3])
sage: c.list() == list(map(c.unrank, range(c.cardinality())))
True

class sage.combinat.combination.Combinations_setk(mset, k)
Bases: sage.combinat.combination.Combinations_msetk

cardinality()
Return the size of combinations(set, k).

EXAMPLES:

sage: Combinations(range(16000), 5).cardinality()
8732673194560003200

list()
EXAMPLES:

sage: Combinations([1,2,3,4,5],3).list()
[[1, 2, 3],
[1, 2, 4],
[1, 2, 5],
[1, 3, 4],
[1, 3, 5],
[1, 4, 5],
[2, 3, 4],
[2, 3, 5],
[2, 4, 5],
[3, 4, 5]]

rank(x)
EXAMPLES:

sage: c = Combinations([1,2,3], 2)
sage: list(range(c.cardinality())) == list(map(c.rank, c.list()))
True

unrank(r)
EXAMPLES:

5.1. Comprehensive Module List 283

Combinatorics, Release 9.7

sage: c = Combinations([1,2,3], 2)
sage: c.list() == list(map(c.unrank, range(c.cardinality())))
True

sage.combinat.combination.from_rank(r, n, k)
Return the combination of rank r in the subsets of range(n) of size k when listed in lexicographic order.

The algorithm used is based on factoradics and presented in [DGH2020]. It is there compared to the other from
the literature.

EXAMPLES:

sage: import sage.combinat.combination as combination
sage: combination.from_rank(0,3,0)
()
sage: combination.from_rank(0,3,1)
(0,)
sage: combination.from_rank(1,3,1)
(1,)
sage: combination.from_rank(2,3,1)
(2,)
sage: combination.from_rank(0,3,2)
(0, 1)
sage: combination.from_rank(1,3,2)
(0, 2)
sage: combination.from_rank(2,3,2)
(1, 2)
sage: combination.from_rank(0,3,3)
(0, 1, 2)

sage.combinat.combination.rank(comb, n, check=True)
Return the rank of comb in the subsets of range(n) of size k where k is the length of comb.

The algorithm used is based on combinadics and James McCaffrey’s MSDN article. See: Wikipedia article
Combinadic.

EXAMPLES:

sage: import sage.combinat.combination as combination
sage: combination.rank((), 3)
0
sage: combination.rank((0,), 3)
0
sage: combination.rank((1,), 3)
1
sage: combination.rank((2,), 3)
2
sage: combination.rank((0,1), 3)
0
sage: combination.rank((0,2), 3)
1
sage: combination.rank((1,2), 3)
2
sage: combination.rank((0,1,2), 3)
0

(continues on next page)

284 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Combinadic
https://en.wikipedia.org/wiki/Combinadic

Combinatorics, Release 9.7

(continued from previous page)

sage: combination.rank((0,1,2,3), 3)
Traceback (most recent call last):
...
ValueError: len(comb) must be <= n
sage: combination.rank((0,0), 2)
Traceback (most recent call last):
...
ValueError: comb must be a subword of (0,1,...,n)

sage: combination.rank([1,2], 3)
2
sage: combination.rank([0,1,2], 3)
0

5.1.27 Combinatorial maps

This module provides a decorator that can be used to add semantic to a Python method by marking it as implementing
a combinatorial map, that is a map between two enumerated sets:

sage: from sage.combinat.combinatorial_map import combinatorial_map
sage: class MyPermutation():
....: @combinatorial_map()
....: def reverse(self):
....: '''
....: Reverse the permutation
....: '''
....: # ... code ...

By default, this decorator is a no-op: it returns the decorated method as is:

sage: MyPermutation.reverse
<function MyPermutation.reverse at ...>

See combinatorial_map_wrapper() for the various options this decorator can take.

Projects built on top of Sage are welcome to customize locally this hook to instrument the Sage code and exploit
this semantic information. Typically, the decorator could be used to populate a database of maps. For a real-life
application, see the project 𝐹𝑖𝑛𝑑𝑆𝑡𝑎𝑡 < ℎ𝑡𝑡𝑝 : //𝑓𝑖𝑛𝑑𝑠𝑡𝑎𝑡.𝑜𝑟𝑔/ >. As a basic example, a variant of the dec-
orator is provided as combinatorial_map_wrapper(); it wraps the decorated method, so that one can later use
combinatorial_maps_in_class() to query an object, or class thereof, for all the combinatorial maps that apply to
it.

Note: Since decorators are evaluated upon loading Python modules, customizing combinatorial map needs
to be done before the modules using it are loaded. In the examples below, where we illustrate the customized
combinatorial_map decorator on the sage.combinat.permutation module, we resort to force a reload of this
module after dynamically changing sage.combinat.combinatorial_map.combinatorial_map. This is good
enough for those doctests, but remains fragile.

For real use cases, it is probably best to just edit this source file statically (see below).

5.1. Comprehensive Module List 285

../../../../../../html/en/reference/categories/sage/categories/enumerated_sets.html#sage.categories.enumerated_sets.EnumeratedSets

Combinatorics, Release 9.7

class sage.combinat.combinatorial_map.CombinatorialMap(f, order=None, name=None)
Bases: object

This is a wrapper class for methods that are combinatorial maps.

For further details and doctests, see Combinatorial maps and combinatorial_map_wrapper().

name()
Returns the name of a combinatorial map. This is used for the string representation of self.

EXAMPLES:

sage: from sage.combinat.combinatorial_map import combinatorial_map
sage: class CombinatorialClass:
....: @combinatorial_map(name='map1')
....: def to_self_1(): pass
....: @combinatorial_map()
....: def to_self_2(): pass
sage: CombinatorialClass.to_self_1.name()
'map1'
sage: CombinatorialClass.to_self_2.name()
'to_self_2'

order()
Returns the order of self, or None if the order is not known.

EXAMPLES:

sage: from sage.combinat.combinatorial_map import combinatorial_map
sage: class CombinatorialClass:
....: @combinatorial_map(order=2)
....: def to_self_1(): pass
....: @combinatorial_map()
....: def to_self_2(): pass
sage: CombinatorialClass.to_self_1.order()
2
sage: CombinatorialClass.to_self_2.order() is None
True

unbounded_map()
Return the unbounded version of self.

You can use this method to return a function which takes as input an element in the domain of the combi-
natorial map. See the example below.

EXAMPLES:

sage: sage.combinat.combinatorial_map.combinatorial_map = sage.combinat.
→˓combinatorial_map.combinatorial_map_wrapper
sage: from importlib import reload
sage: _ = reload(sage.combinat.permutation)
sage: from sage.combinat.permutation import Permutation
sage: pi = Permutation([1,3,2])
sage: f = pi.reverse
sage: F = f.unbounded_map()
sage: F(pi)
[2, 3, 1]

286 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.combinatorial_map.combinatorial_map(f=None, order=None, name=None)
Combinatorial map decorator

See Combinatorial maps for a description of this decorator and its purpose. This default implementation does
nothing.

INPUT:

• f – (default: None, if combinatorial_map is used as a decorator) a function

• name – (default: None) the name for nicer outputs on combinatorial maps

• order – (default: None) the order of the combinatorial map, if it is known. Is not used, but might be helpful
later

OUTPUT:

• f unchanged

EXAMPLES:

sage: from sage.combinat.combinatorial_map import combinatorial_map_trivial as␣
→˓combinatorial_map
sage: class MyPermutation():
....: @combinatorial_map
....: def reverse(self):
....: '''
....: Reverse the permutation
....: '''
....: # ... code ...
....: @combinatorial_map(name='descent set of permutation')
....: def descent_set(self):
....: '''
....: The descent set of the permutation
....: '''
....: # ... code ...

sage: MyPermutation.reverse
<function MyPermutation.reverse at ...>

sage: MyPermutation.descent_set
<function MyPermutation.descent_set at ...>

sage.combinat.combinatorial_map.combinatorial_map_trivial(f=None, order=None, name=None)
Combinatorial map decorator

See Combinatorial maps for a description of this decorator and its purpose. This default implementation does
nothing.

INPUT:

• f – (default: None, if combinatorial_map is used as a decorator) a function

• name – (default: None) the name for nicer outputs on combinatorial maps

• order – (default: None) the order of the combinatorial map, if it is known. Is not used, but might be helpful
later

OUTPUT:

• f unchanged

5.1. Comprehensive Module List 287

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.combinatorial_map import combinatorial_map_trivial as␣
→˓combinatorial_map
sage: class MyPermutation():
....: @combinatorial_map
....: def reverse(self):
....: '''
....: Reverse the permutation
....: '''
....: # ... code ...
....: @combinatorial_map(name='descent set of permutation')
....: def descent_set(self):
....: '''
....: The descent set of the permutation
....: '''
....: # ... code ...

sage: MyPermutation.reverse
<function MyPermutation.reverse at ...>

sage: MyPermutation.descent_set
<function MyPermutation.descent_set at ...>

sage.combinat.combinatorial_map.combinatorial_map_wrapper(f=None, order=None, name=None)
Combinatorial map decorator (basic example).

See Combinatorial maps for a description of the combinatorial_map decorator and its purpose. This imple-
mentation, together with combinatorial_maps_in_class() illustrates how to use this decorator as a hook to
instrument the Sage code.

INPUT:

• f – (default: None, if combinatorial_map is used as a decorator) a function

• name – (default: None) the name for nicer outputs on combinatorial maps

• order – (default: None) the order of the combinatorial map, if it is known. Is not used, but might be helpful
later

OUTPUT:

• A combinatorial map. This is an instance of the CombinatorialMap.

EXAMPLES:

We define a class illustrating the use of this implementation of the combinatorial_map decorator with its
various arguments:

sage: from sage.combinat.combinatorial_map import combinatorial_map_wrapper as␣
→˓combinatorial_map
sage: class MyPermutation():
....: @combinatorial_map()
....: def reverse(self):
....: '''
....: Reverse the permutation
....: '''
....: pass

(continues on next page)

288 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: @combinatorial_map(order=2)

....: def inverse(self):

....: '''

....: The inverse of the permutation

....: '''

....: pass

....: @combinatorial_map(name='descent set of permutation')

....: def descent_set(self):

....: '''

....: The descent set of the permutation

....: '''

....: pass

....: def major_index(self):

....: '''

....: The major index of the permutation

....: '''

....: pass
sage: MyPermutation.reverse
Combinatorial map: reverse
sage: MyPermutation.descent_set
Combinatorial map: descent set of permutation
sage: MyPermutation.inverse
Combinatorial map: inverse

One can now determine all the combinatorial maps associated with a given object as follows:

sage: from sage.combinat.combinatorial_map import combinatorial_maps_in_class
sage: X = combinatorial_maps_in_class(MyPermutation); X # random
[Combinatorial map: reverse,
Combinatorial map: descent set of permutation,
Combinatorial map: inverse]

The method major_index defined about is not a combinatorial map:

sage: MyPermutation.major_index
<function MyPermutation.major_index at ...>

But one can define a function that turns major_index into a combinatorial map:

sage: def major_index(p):
....: return p.major_index()
sage: major_index
<function major_index at ...>
sage: combinatorial_map(major_index)
Combinatorial map: major_index

sage.combinat.combinatorial_map.combinatorial_maps_in_class(cls)
Return the combinatorial maps of the class as a list of combinatorial maps.

For further details and doctests, see Combinatorial maps and combinatorial_map_wrapper().

EXAMPLES:

5.1. Comprehensive Module List 289

Combinatorics, Release 9.7

sage: sage.combinat.combinatorial_map.combinatorial_map = sage.combinat.
→˓combinatorial_map.combinatorial_map_wrapper
sage: from importlib import reload
sage: _ = reload(sage.combinat.permutation)
sage: from sage.combinat.combinatorial_map import combinatorial_maps_in_class
sage: p = Permutation([1,3,2,4])
sage: cmaps = combinatorial_maps_in_class(p)
sage: cmaps # random
[Combinatorial map: Robinson-Schensted insertion tableau,
Combinatorial map: Robinson-Schensted recording tableau,
Combinatorial map: Robinson-Schensted tableau shape,
Combinatorial map: complement,
Combinatorial map: descent composition,
Combinatorial map: inverse, ...]
sage: p.left_tableau in cmaps
True
sage: p.right_tableau in cmaps
True
sage: p.complement in cmaps
True

5.1.28 Integer compositions

A composition 𝑐 of a nonnegative integer 𝑛 is a list of positive integers (the parts of the composition) with total sum 𝑛.

This module provides tools for manipulating compositions and enumerated sets of compositions.

EXAMPLES:

sage: Composition([5, 3, 1, 3])
[5, 3, 1, 3]
sage: list(Compositions(4))
[[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [2, 2], [3, 1], [4]]

AUTHORS:

• Mike Hansen, Nicolas M. Thiéry

• MuPAD-Combinat developers (algorithms and design inspiration)

• Travis Scrimshaw (2013-02-03): Removed CombinatorialClass

class sage.combinat.composition.Composition(parent, *args, **kwds)
Bases: sage.combinat.combinat.CombinatorialElement

Integer compositions

A composition of a nonnegative integer 𝑛 is a list (𝑖1, . . . , 𝑖𝑘) of positive integers with total sum 𝑛.

EXAMPLES:

The simplest way to create a composition is by specifying its entries as a list, tuple (or other iterable):

sage: Composition([3,1,2])
[3, 1, 2]
sage: Composition((3,1,2))
[3, 1, 2]

(continues on next page)

290 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Composition(i for i in range(2,5))
[2, 3, 4]

You can also create a composition from its code. The code of a composition (𝑖1, 𝑖2, . . . , 𝑖𝑘) of 𝑛 is a list of length
𝑛 that consists of a 1 followed by 𝑖1 − 1 zeros, then a 1 followed by 𝑖2 − 1 zeros, and so on.

sage: Composition([4,1,2,3,5]).to_code()
[1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0]
sage: Composition(code=_)
[4, 1, 2, 3, 5]
sage: Composition([3,1,2,3,5]).to_code()
[1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0]
sage: Composition(code=_)
[3, 1, 2, 3, 5]

You can also create the composition of 𝑛 corresponding to a subset of {1, 2, . . . , 𝑛− 1} under the bijection that
maps the composition (𝑖1, 𝑖2, . . . , 𝑖𝑘) of 𝑛 to the subset {𝑖1, 𝑖1 + 𝑖2, 𝑖1 + 𝑖2 + 𝑖3, . . . , 𝑖1 + · · · + 𝑖𝑘−1} (see
to_subset()):

sage: Composition(from_subset=({1, 2, 4}, 5))
[1, 1, 2, 1]
sage: Composition([1, 1, 2, 1]).to_subset()
{1, 2, 4}

The following notation equivalently specifies the composition from the set {𝑖1 − 1, 𝑖1 + 𝑖2 − 1, 𝑖1 + 𝑖2 + 𝑖3 −
1, . . . , 𝑖1 + · · ·+ 𝑖𝑘−1− 1, 𝑛− 1} or {𝑖1− 1, 𝑖1 + 𝑖2− 1, 𝑖1 + 𝑖2 + 𝑖3− 1, . . . , 𝑖1 + · · ·+ 𝑖𝑘−1− 1} and 𝑛. This
provides compatibility with Python’s 0-indexing.

sage: Composition(descents=[1,0,4,8,11])
[1, 1, 3, 4, 3]
sage: Composition(descents=[0,1,3,4])
[1, 1, 2, 1]
sage: Composition(descents=([0,1,3],5))
[1, 1, 2, 1]
sage: Composition(descents=({0,1,3},5))
[1, 1, 2, 1]

EXAMPLES:

sage: C = Composition([3,1,2])
sage: TestSuite(C).run()

complement()
Return the complement of the composition self.

The complement of a composition 𝐼 is defined as follows:

If 𝐼 is the empty composition, then the complement is the empty composition as well. Otherwise, let 𝑆 be
the descent set of 𝐼 (that is, the subset {𝑖1, 𝑖1 + 𝑖2, . . . , 𝑖1 + 𝑖2 + · · ·+ 𝑖𝑘−1} of {1, 2, . . . , |𝐼| − 1}, where
𝐼 is written as (𝑖1, 𝑖2, . . . , 𝑖𝑘)). Then, the complement of 𝐼 is defined as the composition of size |𝐼| whose
descent set is {1, 2, . . . , |𝐼| − 1} ∖ 𝑆.

The complement of a composition 𝐼 also is the reverse composition (reversed()) of the conjugate
(conjugate()) of 𝐼 .

EXAMPLES:

5.1. Comprehensive Module List 291

Combinatorics, Release 9.7

sage: Composition([1, 1, 3, 1, 2, 1, 3]).conjugate()
[1, 1, 3, 3, 1, 3]
sage: Composition([1, 1, 3, 1, 2, 1, 3]).complement()
[3, 1, 3, 3, 1, 1]

conjugate()
Return the conjugate of the composition self.

The conjugate of a composition 𝐼 is defined as the complement (see complement()) of the reverse com-
position (see reversed()) of 𝐼 .

An equivalent definition of the conjugate goes by saying that the ribbon shape of the conjugate of a com-
position 𝐼 is the conjugate of the ribbon shape of 𝐼 . (The ribbon shape of a composition is returned by
to_skew_partition().)

This implementation uses the algorithm from mupad-combinat.

EXAMPLES:

sage: Composition([1, 1, 3, 1, 2, 1, 3]).conjugate()
[1, 1, 3, 3, 1, 3]

The ribbon shape of the conjugate of 𝐼 is the conjugate of the ribbon shape of 𝐼:

sage: all(I.conjugate().to_skew_partition()
....: == I.to_skew_partition().conjugate()
....: for I in Compositions(4))
True

descents(final_descent=False)
This gives one fewer than the partial sums of the composition.

This is here to maintain some sort of backward compatibility, even through the original implementation
was broken (it gave the wrong answer). The same information can be found in partial_sums().

See also:

partial_sums()

INPUT:

• final_descent – (Default: False) a boolean integer

OUTPUT:

• the list of partial sums of self with each part decremented by 1. This includes the sum of all entries
when final_descent is True.

EXAMPLES:

sage: c = Composition([2,1,3,2])
sage: c.descents()
[1, 2, 5]
sage: c.descents(final_descent=True)
[1, 2, 5, 7]

fatten(grouping)
Return the composition fatter than self, obtained by grouping together consecutive parts according to
grouping.

INPUT:

292 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• grouping – a composition whose sum is the length of self

EXAMPLES:

Let us start with the composition:

sage: c = Composition([4,5,2,7,1])

With grouping equal to (1, . . . , 1), 𝑐 is left unchanged:

sage: c.fatten(Composition([1,1,1,1,1]))
[4, 5, 2, 7, 1]

With grouping equal to (ℓ) where ℓ is the length of 𝑐, this yields the coarsest composition above 𝑐:

sage: c.fatten(Composition([5]))
[19]

Other values for grouping yield (all the) other compositions coarser than 𝑐:

sage: c.fatten(Composition([2,1,2]))
[9, 2, 8]
sage: c.fatten(Composition([3,1,1]))
[11, 7, 1]

fatter()
Return the set of compositions which are fatter than self.

Complexity for generation: 𝑂(|𝑐|) memory, 𝑂(|𝑟|) time where |𝑐| is the size of self and 𝑟 is the result.

EXAMPLES:

sage: C = Composition([4,5,2]).fatter()
sage: C.cardinality()
4
sage: list(C)
[[4, 5, 2], [4, 7], [9, 2], [11]]

Some extreme cases:

sage: list(Composition([5]).fatter())
[[5]]
sage: list(Composition([]).fatter())
[[]]
sage: list(Composition([1,1,1,1]).fatter()) == list(Compositions(4))
True

finer()
Return the set of compositions which are finer than self.

EXAMPLES:

sage: C = Composition([3,2]).finer()
sage: C.cardinality()
8
sage: C.list()
[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 1, 1], [1, 2, 2], [2, 1, 1, 1], [2, 1,␣
→˓2], [3, 1, 1], [3, 2]]

(continues on next page)

5.1. Comprehensive Module List 293

Combinatorics, Release 9.7

(continued from previous page)

sage: Composition([]).finer()
{[]}

inf(other, check=True)
Return the meet of self with a composition other of the same size.

The meet of two compositions 𝐼 and 𝐽 of size 𝑛 is the finest composition of 𝑛 which is coarser than each
of 𝐼 and 𝐽 . It can be described as the composition whose descent set is the intersection of the descent sets
of 𝐼 and 𝐽 .

INPUT:

• other – composition of same size as self

• check – (default: True) a Boolean determining whether to check the input compositions for having
the same size

OUTPUT:

• the meet of the compositions self and other

EXAMPLES:

sage: Composition([3, 1, 1, 3, 1]).meet([4, 3, 2])
[4, 5]
sage: Composition([9, 6]).meet([1, 3, 6, 3, 2])
[15]
sage: Composition([9, 6]).meet([1, 3, 5, 1, 3, 2])
[9, 6]
sage: Composition([1, 1, 1, 1, 1]).meet([3, 2])
[3, 2]
sage: Composition([4, 2]).meet([3, 3])
[6]
sage: Composition([]).meet([])
[]
sage: Composition([1]).meet([1])
[1]

Let us verify on small examples that the meet of 𝐼 and 𝐽 is coarser than both of 𝐼 and 𝐽 :

sage: all(all(I.is_finer(I.meet(J)) and
....: J.is_finer(I.meet(J))
....: for J in Compositions(4))
....: for I in Compositions(4))
True

and is the finest composition to do so:

sage: all(all(all(I.meet(J).is_finer(K)
....: for K in I.fatter()
....: if J.is_finer(K))
....: for J in Compositions(3))
....: for I in Compositions(3))
True

The descent set of the meet of 𝐼 and 𝐽 is the intersection of the descent sets of 𝐼 and 𝐽 :

294 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: def test_meet(n):
....: return all(all(I.to_subset().intersection(J.to_subset())
....: == I.meet(J).to_subset()
....: for J in Compositions(n))
....: for I in Compositions(n))
sage: all(test_meet(n) for n in range(1, 5))
True

See also:

join()

AUTHORS:

• Darij Grinberg (2013-09-05)

is_finer(co2)
Return True if the composition self is finer than the composition co2; otherwise, return False.

EXAMPLES:

sage: Composition([4,1,2]).is_finer([3,1,3])
False
sage: Composition([3,1,3]).is_finer([4,1,2])
False
sage: Composition([1,2,2,1,1,2]).is_finer([5,1,3])
True
sage: Composition([2,2,2]).is_finer([4,2])
True

join(other, check=True)
Return the join of self with a composition other of the same size.

The join of two compositions 𝐼 and 𝐽 of size 𝑛 is the coarsest composition of 𝑛 which refines each of 𝐼
and 𝐽 . It can be described as the composition whose descent set is the union of the descent sets of 𝐼 and
𝐽 . It is also the concatenation of 𝐼1, 𝐼2, · · · , 𝐼𝑚, where 𝐼 = 𝐼1 ∙ 𝐼2 ∙ . . . ∙ 𝐼𝑚 is the ribbon decomposition
of 𝐼 with respect to 𝐽 (see ribbon_decomposition()).

INPUT:

• other – composition of same size as self

• check – (default: True) a Boolean determining whether to check the input compositions for having
the same size

OUTPUT:

• the join of the compositions self and other

EXAMPLES:

sage: Composition([3, 1, 1, 3, 1]).join([4, 3, 2])
[3, 1, 1, 2, 1, 1]
sage: Composition([9, 6]).join([1, 3, 6, 3, 2])
[1, 3, 5, 1, 3, 2]
sage: Composition([9, 6]).join([1, 3, 5, 1, 3, 2])
[1, 3, 5, 1, 3, 2]
sage: Composition([1, 1, 1, 1, 1]).join([3, 2])
[1, 1, 1, 1, 1]

(continues on next page)

5.1. Comprehensive Module List 295

Combinatorics, Release 9.7

(continued from previous page)

sage: Composition([4, 2]).join([3, 3])
[3, 1, 2]
sage: Composition([]).join([])
[]

Let us verify on small examples that the join of 𝐼 and 𝐽 refines both of 𝐼 and 𝐽 :

sage: all(all(I.join(J).is_finer(I) and
....: I.join(J).is_finer(J)
....: for J in Compositions(4))
....: for I in Compositions(4))
True

and is the coarsest composition to do so:

sage: all(all(all(K.is_finer(I.join(J))
....: for K in I.finer()
....: if K.is_finer(J))
....: for J in Compositions(3))
....: for I in Compositions(3))
True

Let us check that the join of 𝐼 and 𝐽 is indeed the concatenation of 𝐼1, 𝐼2, · · · , 𝐼𝑚, where 𝐼 = 𝐼1∙𝐼2∙. . .∙𝐼𝑚
is the ribbon decomposition of 𝐼 with respect to 𝐽 :

sage: all(all(Composition.sum(I.ribbon_decomposition(J)[0])
....: == I.join(J) for J in Compositions(4))
....: for I in Compositions(4))
True

Also, the descent set of the join of 𝐼 and 𝐽 is the union of the descent sets of 𝐼 and 𝐽 :

sage: all(all(I.to_subset().union(J.to_subset())
....: == I.join(J).to_subset()
....: for J in Compositions(4))
....: for I in Compositions(4))
True

See also:

meet(), ribbon_decomposition()

AUTHORS:

• Darij Grinberg (2013-09-05)

major_index()
Return the major index of self. The major index is defined as the sum of the descents.

EXAMPLES:

sage: Composition([1, 1, 3, 1, 2, 1, 3]).major_index()
31

meet(other, check=True)
Return the meet of self with a composition other of the same size.

296 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The meet of two compositions 𝐼 and 𝐽 of size 𝑛 is the finest composition of 𝑛 which is coarser than each
of 𝐼 and 𝐽 . It can be described as the composition whose descent set is the intersection of the descent sets
of 𝐼 and 𝐽 .

INPUT:

• other – composition of same size as self

• check – (default: True) a Boolean determining whether to check the input compositions for having
the same size

OUTPUT:

• the meet of the compositions self and other

EXAMPLES:

sage: Composition([3, 1, 1, 3, 1]).meet([4, 3, 2])
[4, 5]
sage: Composition([9, 6]).meet([1, 3, 6, 3, 2])
[15]
sage: Composition([9, 6]).meet([1, 3, 5, 1, 3, 2])
[9, 6]
sage: Composition([1, 1, 1, 1, 1]).meet([3, 2])
[3, 2]
sage: Composition([4, 2]).meet([3, 3])
[6]
sage: Composition([]).meet([])
[]
sage: Composition([1]).meet([1])
[1]

Let us verify on small examples that the meet of 𝐼 and 𝐽 is coarser than both of 𝐼 and 𝐽 :

sage: all(all(I.is_finer(I.meet(J)) and
....: J.is_finer(I.meet(J))
....: for J in Compositions(4))
....: for I in Compositions(4))
True

and is the finest composition to do so:

sage: all(all(all(I.meet(J).is_finer(K)
....: for K in I.fatter()
....: if J.is_finer(K))
....: for J in Compositions(3))
....: for I in Compositions(3))
True

The descent set of the meet of 𝐼 and 𝐽 is the intersection of the descent sets of 𝐼 and 𝐽 :

sage: def test_meet(n):
....: return all(all(I.to_subset().intersection(J.to_subset())
....: == I.meet(J).to_subset()
....: for J in Compositions(n))
....: for I in Compositions(n))

(continues on next page)

5.1. Comprehensive Module List 297

Combinatorics, Release 9.7

(continued from previous page)

sage: all(test_meet(n) for n in range(1, 5))
True

See also:

join()

AUTHORS:

• Darij Grinberg (2013-09-05)

near_concatenation(other)
Return the near-concatenation of two nonempty compositions self and other.

The near-concatenation 𝐼 ⊙ 𝐽 of two nonempty compositions 𝐼 and 𝐽 is defined as the composition
(𝑖1, 𝑖2, . . . , 𝑖𝑛−1, 𝑖𝑛 + 𝑗1, 𝑗2, 𝑗3, . . . , 𝑗𝑚), where (𝑖1, 𝑖2, . . . , 𝑖𝑛) = 𝐼 and (𝑗1, 𝑗2, . . . , 𝑗𝑚) = 𝐽 .

This method returns None if one of the two input compositions is empty.

EXAMPLES:

sage: Composition([1, 1, 3]).near_concatenation(Composition([4, 1, 2]))
[1, 1, 7, 1, 2]
sage: Composition([6]).near_concatenation(Composition([1, 5]))
[7, 5]
sage: Composition([1, 5]).near_concatenation(Composition([6]))
[1, 11]

partial_sums(final=True)
The partial sums of the sequence defined by the entries of the composition.

If 𝐼 = (𝑖1, . . . , 𝑖𝑚) is a composition, then the partial sums of the entries of the composition are [𝑖1, 𝑖1 +
𝑖2, . . . , 𝑖1 + 𝑖2 + · · ·+ 𝑖𝑚].

INPUT:

• final – (default: True) whether or not to include the final partial sum, which is always the size of the
composition.

See also:

to_subset()

EXAMPLES:

sage: Composition([1,1,3,1,2,1,3]).partial_sums()
[1, 2, 5, 6, 8, 9, 12]

With final = False, the last partial sum is not included:

sage: Composition([1,1,3,1,2,1,3]).partial_sums(final=False)
[1, 2, 5, 6, 8, 9]

peaks()
Return a list of the peaks of the composition self.

The peaks of a composition are the descents which do not immediately follow another descent.

EXAMPLES:

298 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Composition([1, 1, 3, 1, 2, 1, 3]).peaks()
[4, 7]

refinement_splitting(J)
Return the refinement splitting of self according to J.

INPUT:

• J – A composition such that self is finer than J

OUTPUT:

• the unique list of compositions (𝐼(𝑝))𝑝=1,...,𝑚, obtained by splitting 𝐼 , such that |𝐼(𝑝)| = 𝐽𝑝 for all
𝑝 = 1, . . . ,𝑚.

See also:

refinement_splitting_lengths()

EXAMPLES:

sage: Composition([1,2,2,1,1,2]).refinement_splitting([5,1,3])
[[1, 2, 2], [1], [1, 2]]
sage: Composition([]).refinement_splitting([])
[]
sage: Composition([3]).refinement_splitting([2])
Traceback (most recent call last):
...
ValueError: compositions self (= [3]) and J (= [2]) must be of the same size
sage: Composition([2,1]).refinement_splitting([1,2])
Traceback (most recent call last):
...
ValueError: composition J (= [2, 1]) does not refine self (= [1, 2])

refinement_splitting_lengths(J)
Return the lengths of the compositions in the refinement splitting of self according to J.

See also:

refinement_splitting() for the definition of refinement splitting

EXAMPLES:

sage: Composition([1,2,2,1,1,2]).refinement_splitting_lengths([5,1,3])
[3, 1, 2]
sage: Composition([]).refinement_splitting_lengths([])
[]
sage: Composition([3]).refinement_splitting_lengths([2])
Traceback (most recent call last):
...
ValueError: compositions self (= [3]) and J (= [2]) must be of the same size
sage: Composition([2,1]).refinement_splitting_lengths([1,2])
Traceback (most recent call last):
...
ValueError: composition J (= [2, 1]) does not refine self (= [1, 2])

reversed()
Return the reverse composition of self.

5.1. Comprehensive Module List 299

Combinatorics, Release 9.7

The reverse composition of a composition (𝑖1, 𝑖2, . . . , 𝑖𝑘) is defined as the composition (𝑖𝑘, 𝑖𝑘−1, . . . , 𝑖1).

EXAMPLES:

sage: Composition([1, 1, 3, 1, 2, 1, 3]).reversed()
[3, 1, 2, 1, 3, 1, 1]

ribbon_decomposition(other, check=True)
Return a pair describing the ribbon decomposition of a composition self with respect to a composition
other of the same size.

If 𝐼 and 𝐽 are two compositions of the same nonzero size, then the ribbon decomposition of 𝐼 with respect
to 𝐽 is defined as follows: Write 𝐼 and 𝐽 as 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑛) and 𝐽 = (𝑗1, 𝑗2, . . . , 𝑗𝑚). Then, the
equality 𝐼 = 𝐼1 ∙ 𝐼2 ∙ . . . ∙ 𝐼𝑚 holds for a unique 𝑚-tuple (𝐼1, 𝐼2, . . . , 𝐼𝑚) of compositions such that each
𝐼𝑘 has size 𝑗𝑘 and for a unique choice of 𝑚− 1 signs ∙ each of which is either the concatenation sign · or
the near-concatenation sign ⊙ (see __add__() and near_concatenation() for the definitions of these
two signs). This 𝑚-tuple and this choice of signs together are said to form the ribbon decomposition of 𝐼
with respect to 𝐽 . If 𝐼 and 𝐽 are empty, then the same definition applies, except that there are 0 rather than
𝑚− 1 signs.

See Section 4.8 of [NCSF1].

INPUT:

• other – composition of same size as self

• check – (default: True) a Boolean determining whether to check the input compositions for having
the same size

OUTPUT:

• a pair (u, v), where u is a tuple of compositions (corresponding to the 𝑚-tuple (𝐼1, 𝐼2, . . . , 𝐼𝑚) in
the above definition), and v is a tuple of 0 in the above definition, with a 0 standing for · and a 1 standing
for ⊙).

EXAMPLES:

sage: Composition([3, 1, 1, 3, 1]).ribbon_decomposition([4, 3, 2])
(([3, 1], [1, 2], [1, 1]), (0, 1))
sage: Composition([9, 6]).ribbon_decomposition([1, 3, 6, 3, 2])
(([1], [3], [5, 1], [3], [2]), (1, 1, 1, 1))
sage: Composition([9, 6]).ribbon_decomposition([1, 3, 5, 1, 3, 2])
(([1], [3], [5], [1], [3], [2]), (1, 1, 0, 1, 1))
sage: Composition([1, 1, 1, 1, 1]).ribbon_decomposition([3, 2])
(([1, 1, 1], [1, 1]), (0,))
sage: Composition([4, 2]).ribbon_decomposition([6])
(([4, 2],), ())
sage: Composition([]).ribbon_decomposition([])
((), ())

Let us check that the defining property 𝐼 = 𝐼1 ∙ 𝐼2 ∙ . . . ∙ 𝐼𝑚 is satisfied:

sage: def compose_back(u, v):
....: comp = u[0]
....: r = len(v)
....: if len(u) != r + 1:
....: raise ValueError("something is wrong")
....: for i in range(r):

(continues on next page)

300 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: if v[i] == 0:

....: comp += u[i + 1]

....: else:

....: comp = comp.near_concatenation(u[i + 1])

....: return comp
sage: all(all(all(compose_back(*(I.ribbon_decomposition(J))) == I
....: for J in Compositions(n))
....: for I in Compositions(n))
....: for n in range(1, 5))
True

AUTHORS:

• Darij Grinberg (2013-08-29)

shuffle_product(other, overlap=False)
The (overlapping) shuffles of self and other.

Suppose 𝐼 = (𝑖1, . . . , 𝑖𝑘) and 𝐽 = (𝑗1, . . . , 𝑗𝑙) are two compositions. A shuffle of 𝐼 and 𝐽 is a composition
of length 𝑘 + 𝑙 that contains both 𝐼 and 𝐽 as subsequences.

More generally, an overlapping shuffle of 𝐼 and 𝐽 is obtained by distributing the elements of 𝐼 and 𝐽
(preserving the relative ordering of these elements) among the positions of an empty list; an element of 𝐼
and an element of 𝐽 are permitted to share the same position, in which case they are replaced by their sum.
In particular, a shuffle of 𝐼 and 𝐽 is an overlapping shuffle of 𝐼 and 𝐽 .

INPUT:

• other – composition

• overlap – boolean (default: False); if True, the overlapping shuffle product is returned.

OUTPUT:

An enumerated set (allowing for multiplicities)

EXAMPLES:

The shuffle product of [2, 2] and [1, 1, 3]:

sage: alph = Composition([2,2])
sage: beta = Composition([1,1,3])
sage: S = alph.shuffle_product(beta); S
Shuffle product of [2, 2] and [1, 1, 3]
sage: S.list()
[[2, 2, 1, 1, 3], [2, 1, 2, 1, 3], [2, 1, 1, 2, 3], [2, 1, 1, 3, 2], [1, 2, 2,␣
→˓1, 3], [1, 2, 1, 2, 3], [1, 2, 1, 3, 2], [1, 1, 2, 2, 3], [1, 1, 2, 3, 2], [1,
→˓ 1, 3, 2, 2]]

The overlapping shuffle product of [2, 2] and [1, 1, 3]:

sage: alph = Composition([2,2])
sage: beta = Composition([1,1,3])
sage: O = alph.shuffle_product(beta, overlap=True); O
Overlapping shuffle product of [2, 2] and [1, 1, 3]
sage: O.list()
[[2, 2, 1, 1, 3], [2, 1, 2, 1, 3], [2, 1, 1, 2, 3], [2, 1, 1, 3, 2], [1, 2, 2,␣
→˓1, 3], [1, 2, 1, 2, 3], [1, 2, 1, 3, 2], [1, 1, 2, 2, 3], [1, 1, 2, 3, 2], [1,
→˓ 1, 3, 2, 2], [3, 2, 1, 3], [2, 3, 1, 3], [3, 1, 2, 3], [2, 1, 3, 3], [3, 1,␣
→˓3, 2], [2, 1, 1, 5], [1, 3, 2, 3], [1, 2, 3, 3], [1, 3, 3, 2], [1, 2, 1, 5],␣
→˓[1, 1, 5, 2], [1, 1, 2, 5], [3, 3, 3], [3, 1, 5], [1, 3, 5]]

(continues on next page)

5.1. Comprehensive Module List 301

Combinatorics, Release 9.7

(continued from previous page)

Note that the shuffle product of two compositions can include the same composition more than once since
a composition can be a shuffle of two compositions in several ways. For example:

sage: w1 = Composition([1])
sage: S = w1.shuffle_product(w1); S
Shuffle product of [1] and [1]
sage: S.list()
[[1, 1], [1, 1]]
sage: O = w1.shuffle_product(w1, overlap=True); O
Overlapping shuffle product of [1] and [1]
sage: O.list()
[[1, 1], [1, 1], [2]]

size()
Return the size of self, that is the sum of its parts.

EXAMPLES:

sage: Composition([7,1,3]).size()
11

static sum(compositions)
Return the concatenation of the given compositions.

INPUT:

• compositions – a list (or iterable) of compositions

EXAMPLES:

sage: Composition.sum([Composition([1, 1, 3]), Composition([4, 1, 2]),␣
→˓Composition([3,1])])
[1, 1, 3, 4, 1, 2, 3, 1]

Any iterable can be provided as input:

sage: Composition.sum([Composition([i,i]) for i in [4,1,3]])
[4, 4, 1, 1, 3, 3]

Empty inputs are handled gracefully:

sage: Composition.sum([]) == Composition([])
True

sup(other, check=True)
Return the join of self with a composition other of the same size.

The join of two compositions 𝐼 and 𝐽 of size 𝑛 is the coarsest composition of 𝑛 which refines each of 𝐼
and 𝐽 . It can be described as the composition whose descent set is the union of the descent sets of 𝐼 and
𝐽 . It is also the concatenation of 𝐼1, 𝐼2, · · · , 𝐼𝑚, where 𝐼 = 𝐼1 ∙ 𝐼2 ∙ . . . ∙ 𝐼𝑚 is the ribbon decomposition
of 𝐼 with respect to 𝐽 (see ribbon_decomposition()).

INPUT:

• other – composition of same size as self

302 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• check – (default: True) a Boolean determining whether to check the input compositions for having
the same size

OUTPUT:

• the join of the compositions self and other

EXAMPLES:

sage: Composition([3, 1, 1, 3, 1]).join([4, 3, 2])
[3, 1, 1, 2, 1, 1]
sage: Composition([9, 6]).join([1, 3, 6, 3, 2])
[1, 3, 5, 1, 3, 2]
sage: Composition([9, 6]).join([1, 3, 5, 1, 3, 2])
[1, 3, 5, 1, 3, 2]
sage: Composition([1, 1, 1, 1, 1]).join([3, 2])
[1, 1, 1, 1, 1]
sage: Composition([4, 2]).join([3, 3])
[3, 1, 2]
sage: Composition([]).join([])
[]

Let us verify on small examples that the join of 𝐼 and 𝐽 refines both of 𝐼 and 𝐽 :

sage: all(all(I.join(J).is_finer(I) and
....: I.join(J).is_finer(J)
....: for J in Compositions(4))
....: for I in Compositions(4))
True

and is the coarsest composition to do so:

sage: all(all(all(K.is_finer(I.join(J))
....: for K in I.finer()
....: if K.is_finer(J))
....: for J in Compositions(3))
....: for I in Compositions(3))
True

Let us check that the join of 𝐼 and 𝐽 is indeed the concatenation of 𝐼1, 𝐼2, · · · , 𝐼𝑚, where 𝐼 = 𝐼1∙𝐼2∙. . .∙𝐼𝑚
is the ribbon decomposition of 𝐼 with respect to 𝐽 :

sage: all(all(Composition.sum(I.ribbon_decomposition(J)[0])
....: == I.join(J) for J in Compositions(4))
....: for I in Compositions(4))
True

Also, the descent set of the join of 𝐼 and 𝐽 is the union of the descent sets of 𝐼 and 𝐽 :

sage: all(all(I.to_subset().union(J.to_subset())
....: == I.join(J).to_subset()
....: for J in Compositions(4))
....: for I in Compositions(4))
True

5.1. Comprehensive Module List 303

Combinatorics, Release 9.7

See also:

meet(), ribbon_decomposition()

AUTHORS:

• Darij Grinberg (2013-09-05)

to_code()
Return the code of the composition self.

The code of a composition 𝐼 is a list of length size(𝐼) of 1s and 0s such that there is a 1 wherever a new
part starts. (Exceptional case: When the composition is empty, the code is [0].)

EXAMPLES:

sage: Composition([4,1,2,3,5]).to_code()
[1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0]

to_partition()
Return the partition obtained by sorting self into decreasing order.

EXAMPLES:

sage: Composition([2,1,3]).to_partition()
[3, 2, 1]
sage: Composition([4,2,2]).to_partition()
[4, 2, 2]
sage: Composition([]).to_partition()
[]

to_skew_partition(overlap=1)
Return the skew partition obtained from self.

This is a skew partition whose rows have the entries of self as their length, taken in reverse order (so the
first entry of self is the length of the lowermost row, etc.). The parameter overlap indicates the number
of cells on each row that are directly below cells of the previous row. When it is set to 1 (its default value),
the result is the ribbon shape of self.

EXAMPLES:

sage: Composition([3,4,1]).to_skew_partition()
[6, 6, 3] / [5, 2]
sage: Composition([3,4,1]).to_skew_partition(overlap=0)
[8, 7, 3] / [7, 3]
sage: Composition([]).to_skew_partition()
[] / []
sage: Composition([1,2]).to_skew_partition()
[2, 1] / []
sage: Composition([2,1]).to_skew_partition()
[2, 2] / [1]

to_subset(final=False)
The subset corresponding to self under the bijection (see below) between compositions of 𝑛 and subsets
of {1, 2, . . . , 𝑛− 1}.

The bijection maps a composition (𝑖1, . . . , 𝑖𝑘) of 𝑛 to {𝑖1, 𝑖1 + 𝑖2, 𝑖1 + 𝑖2 + 𝑖3, . . . , 𝑖1 + · · ·+ 𝑖𝑘−1}.

INPUT:

304 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• final – (default: False) whether or not to include the final partial sum, which is always the size of
the composition.

See also:

partial_sums()

EXAMPLES:

sage: Composition([1,1,3,1,2,1,3]).to_subset()
{1, 2, 5, 6, 8, 9}
sage: for I in Compositions(3): print(I.to_subset())
{1, 2}
{1}
{2}
{}

With final=True, the sum of all the elements of the composition is included in the subset:

sage: Composition([1,1,3,1,2,1,3]).to_subset(final=True)
{1, 2, 5, 6, 8, 9, 12}

wll_gt(co2)
Return True if the composition self is greater than the composition co2 with respect to the wll-ordering;
otherwise, return False.

The wll-ordering is a total order on the set of all compositions defined as follows: A composition 𝐼 is greater
than a composition 𝐽 if and only if one of the following conditions holds:

• The size of 𝐼 is greater than the size of 𝐽 .

• The size of 𝐼 equals the size of 𝐽 , but the length of 𝐼 is greater than the length of 𝐽 .

• The size of 𝐼 equals the size of 𝐽 , and the length of 𝐼 equals the length of 𝐽 , but 𝐼 is lexicographically
greater than 𝐽 .

(“wll-ordering” is short for “weight, length, lexicographic ordering”.)

EXAMPLES:

sage: Composition([4,1,2]).wll_gt([3,1,3])
True
sage: Composition([7]).wll_gt([4,1,2])
False
sage: Composition([8]).wll_gt([4,1,2])
True
sage: Composition([3,2,2,2]).wll_gt([5,2])
True
sage: Composition([]).wll_gt([3])
False
sage: Composition([2,1]).wll_gt([2,1])
False
sage: Composition([2,2,2]).wll_gt([4,2])
True
sage: Composition([4,2]).wll_gt([2,2,2])
False
sage: Composition([1,1,2]).wll_gt([2,2])
True

(continues on next page)

5.1. Comprehensive Module List 305

Combinatorics, Release 9.7

(continued from previous page)

sage: Composition([2,2]).wll_gt([1,3])
True
sage: Composition([2,1,2]).wll_gt([])
True

class sage.combinat.composition.Compositions(is_infinite=False)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Set of integer compositions.

A composition 𝑐 of a nonnegative integer 𝑛 is a list of positive integers with total sum 𝑛.

See also:

• Composition

• Partitions

• IntegerVectors

EXAMPLES:

There are 8 compositions of 4:

sage: Compositions(4).cardinality()
8

Here is the list of them:

sage: Compositions(4).list()
[[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [2, 2], [3, 1], [4]]

You can use the .first() method to get the ‘first’ composition of a number:

sage: Compositions(4).first()
[1, 1, 1, 1]

You can also calculate the ‘next’ composition given the current one:

sage: Compositions(4).next([1,1,2])
[1, 2, 1]

If 𝑛 is not specified, this returns the combinatorial class of all (non-negative) integer compositions:

sage: Compositions()
Compositions of non-negative integers
sage: [] in Compositions()
True
sage: [2,3,1] in Compositions()
True
sage: [-2,3,1] in Compositions()
False

If 𝑛 is specified, it returns the class of compositions of 𝑛:

306 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: Compositions(3)
Compositions of 3
sage: list(Compositions(3))
[[1, 1, 1], [1, 2], [2, 1], [3]]
sage: Compositions(3).cardinality()
4

The following examples show how to test whether or not an object is a composition:

sage: [3,4] in Compositions()
True
sage: [3,4] in Compositions(7)
True
sage: [3,4] in Compositions(5)
False

Similarly, one can check whether or not an object is a composition which satisfies further constraints:

sage: [4,2] in Compositions(6, inner=[2,2])
True
sage: [4,2] in Compositions(6, inner=[2,3])
False
sage: [4,1] in Compositions(5, inner=[2,1], max_slope = 0)
True

An example with incompatible constraints:

sage: [4,2] in Compositions(6, inner=[2,2], min_part=3)
False

The options length, min_length, and max_length can be used to set length constraints on the compositions.
For example, the compositions of 4 of length equal to, at least, and at most 2 are given by:

sage: Compositions(4, length=2).list()
[[3, 1], [2, 2], [1, 3]]
sage: Compositions(4, min_length=2).list()
[[3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
sage: Compositions(4, max_length=2).list()
[[4], [3, 1], [2, 2], [1, 3]]

Setting both min_length and max_length to the same value is equivalent to setting length to this value:

sage: Compositions(4, min_length=2, max_length=2).list()
[[3, 1], [2, 2], [1, 3]]

The options inner and outer can be used to set part-by-part containment constraints. The list of compositions
of 4 bounded above by [3,1,2] is given by:

sage: list(Compositions(4, outer=[3,1,2]))
[[3, 1], [2, 1, 1], [1, 1, 2]]

outer sets max_length to the length of its argument. Moreover, the parts of outer may be infinite to clear the
constraint on specific parts. This is the list of compositions of 4 of length at most 3 such that the first and third
parts are at most 1:

5.1. Comprehensive Module List 307

Combinatorics, Release 9.7

sage: Compositions(4, outer=[1,oo,1]).list()
[[1, 3], [1, 2, 1]]

This is the list of compositions of 4 bounded below by [1,1,1]:

sage: Compositions(4, inner=[1,1,1]).list()
[[2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]

The options min_slope and max_slope can be used to set constraints on the slope, that is the difference
p[i+1]-p[i] of two consecutive parts. The following is the list of weakly increasing compositions of 4:

sage: Compositions(4, min_slope=0).list()
[[4], [2, 2], [1, 3], [1, 1, 2], [1, 1, 1, 1]]

Here are the weakly decreasing ones:

sage: Compositions(4, max_slope=0).list()
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

The following is the list of compositions of 4 such that two consecutive parts differ by at most one:

sage: Compositions(4, min_slope=-1, max_slope=1).list()
[[4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]

The constraints can be combined together in all reasonable ways. This is the list of compositions of 5 of length
between 2 and 4 such that the difference between consecutive parts is between -2 and 1:

sage: Compositions(5, max_slope=1, min_slope=-2, min_length=2, max_length=4).list()
[[3, 2], [3, 1, 1], [2, 3], [2, 2, 1], [2, 1, 2], [2, 1, 1, 1], [1, 2, 2], [1, 2, 1,
→˓ 1], [1, 1, 2, 1], [1, 1, 1, 2]]

We can do the same thing with an outer constraint:

sage: Compositions(5, max_slope=1, min_slope=-2, min_length=2, max_length=4,␣
→˓outer=[2,5,2]).list()
[[2, 3], [2, 2, 1], [2, 1, 2], [1, 2, 2]]

However, providing incoherent constraints may yield strange results. It is up to the user to ensure that the inner
and outer compositions themselves satisfy the parts and slope constraints.

Note that if you specify min_part=0, then the objects produced may have parts equal to zero. This violates
the internal assumptions that the composition class makes. Use at your own risk, or preferably consider using
IntegerVectors instead:

sage: Compositions(2, length=3, min_part=0).list()
doctest:...: RuntimeWarning: Currently, setting min_part=0 produces Composition␣
→˓objects which violate internal assumptions. Calling methods on these objects may␣
→˓produce errors or WRONG results!
[[2, 0, 0], [1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1], [0, 0, 2]]

sage: list(IntegerVectors(2, 3))
[[2, 0, 0], [1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1], [0, 0, 2]]

The generation algorithm is constant amortized time, and handled by the generic tool IntegerListsLex.

308 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Element
alias of Composition

from_code(code)
Return the composition from its code. The code of a composition 𝐼 is a list of length size(𝐼) consisting
of 1s and 0s such that there is a 1 wherever a new part starts. (Exceptional case: When the composition is
empty, the code is [0].)

EXAMPLES:

sage: Composition([4,1,2,3,5]).to_code()
[1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0]
sage: Compositions().from_code(_)
[4, 1, 2, 3, 5]
sage: Composition([3,1,2,3,5]).to_code()
[1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0]
sage: Compositions().from_code(_)
[3, 1, 2, 3, 5]

from_descents(descents, nps=None)
Return a composition from the list of descents.

INPUT:

• descents – an iterable

• nps – (default: None) an integer or None

OUTPUT:

• The composition of nps whose descents are listed in descents, assuming that nps is not None (other-
wise, the last element of descents is removed from descents, and nps is set to be this last element
plus 1).

EXAMPLES:

sage: [x-1 for x in Composition([1, 1, 3, 4, 3]).to_subset()]
[0, 1, 4, 8]
sage: Compositions().from_descents([1,0,4,8],12)
[1, 1, 3, 4, 3]
sage: Compositions().from_descents([1,0,4,8,11])
[1, 1, 3, 4, 3]

from_subset(S, n)
The composition of 𝑛 corresponding to the subset S of {1, 2, . . . , 𝑛 − 1} under the bijection that maps
the composition (𝑖1, 𝑖2, . . . , 𝑖𝑘) of 𝑛 to the subset {𝑖1, 𝑖1 + 𝑖2, 𝑖1 + 𝑖2 + 𝑖3, . . . , 𝑖1 + · · · + 𝑖𝑘−1} (see
Composition.to_subset()).

INPUT:

• S – an iterable, a subset of {1, 2, . . . , 𝑛− 1}

• n – an integer

EXAMPLES:

sage: Compositions().from_subset([2,1,5,9], 12)
[1, 1, 3, 4, 3]
sage: Compositions().from_subset({2,1,5,9}, 12)
[1, 1, 3, 4, 3]

(continues on next page)

5.1. Comprehensive Module List 309

Combinatorics, Release 9.7

(continued from previous page)

sage: Compositions().from_subset([], 12)
[12]
sage: Compositions().from_subset([], 0)
[]

class sage.combinat.composition.Compositions_all
Bases: sage.combinat.composition.Compositions

Class of all compositions.

subset(size=None)
Return the set of compositions of the given size.

EXAMPLES:

sage: C = Compositions()
sage: C.subset(4)
Compositions of 4
sage: C.subset(size=3)
Compositions of 3

class sage.combinat.composition.Compositions_constraints(*args, **kwds)
Bases: sage.combinat.integer_lists.invlex.IntegerListsLex

class sage.combinat.composition.Compositions_n(n)
Bases: sage.combinat.composition.Compositions

Class of compositions of a fixed 𝑛.

cardinality()
Return the number of compositions of 𝑛.

random_element()
Return a random Composition with uniform probability.

This method generates a random binary word starting with a 1 and then uses the bijection between compo-
sitions and their code.

EXAMPLES:

sage: Compositions(5).random_element() # random
[2, 1, 1, 1]
sage: Compositions(0).random_element()
[]
sage: Compositions(1).random_element()
[1]

sage.combinat.composition.composition_iterator_fast(n)
Iterator over compositions of n yielded as lists.

310 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.29 Signed Compositions

class sage.combinat.composition_signed.SignedCompositions(n)
Bases: sage.combinat.composition.Compositions_n

The class of signed compositions of 𝑛.

EXAMPLES:

sage: SC3 = SignedCompositions(3); SC3
Signed compositions of 3
sage: SC3.cardinality()
18
sage: len(SC3.list())
18
sage: SC3.first()
[1, 1, 1]
sage: SC3.last()
[-3]
sage: SC3.random_element() # random
[1, -1, 1]
sage: SC3.list()
[[1, 1, 1],
[1, 1, -1],
[1, -1, 1],
[1, -1, -1],
[-1, 1, 1],
[-1, 1, -1],
[-1, -1, 1],
[-1, -1, -1],
[1, 2],
[1, -2],
[-1, 2],
[-1, -2],
[2, 1],
[2, -1],
[-2, 1],
[-2, -1],
[3],
[-3]]

cardinality()
Return the number of elements in self.

The number of signed compositions of 𝑛 is equal to
𝑛+1∑︁
𝑖=1

(︂
𝑛− 1

𝑖− 1

)︂
2𝑖

EXAMPLES:

sage: SC4 = SignedCompositions(4)
sage: SC4.cardinality() == len(SC4.list())
True
sage: SignedCompositions(3).cardinality()
18

5.1. Comprehensive Module List 311

Combinatorics, Release 9.7

5.1.30 Composition Tableaux

AUTHORS:

• Chris Berg, Jeff Ferreira (2012-9): Initial version

class sage.combinat.composition_tableau.CompositionTableau(parent, t)
Bases: sage.combinat.combinat.CombinatorialElement

A composition tableau.

A composition tableau 𝑡 of shape 𝐼 = (𝐼1, . . . , 𝐼ℓ) is an array of boxes in rows, 𝐼𝑖 boxes in row 𝑖, filled with
positive integers such that:

1) the entries in the rows of 𝑡 weakly decrease from left to right,

2) the left-most column of 𝑡 strictly increase from top to bottom.

3) Add zero entries to the rows of 𝑡 until the resulting array is rectangular of shape ℓ ×𝑚. For 1 ≤ 𝑖 < 𝑗 ≤
ℓ, 2 ≤ 𝑘 ≤ 𝑚 and (𝑡(𝑗, 𝑘) ̸= 0, and also if 𝑡(𝑗, 𝑘) ≥ 𝑡(𝑖, 𝑘)) implies 𝑡(𝑗, 𝑘) > 𝑡(𝑖, 𝑘 − 1).

INPUT:

• t – A list of lists

EXAMPLES:

sage: CompositionTableau([[1],[2,2]])
[[1], [2, 2]]
sage: CompositionTableau([[1],[3,2],[4,4]])
[[1], [3, 2], [4, 4]]
sage: CompositionTableau([])
[]

descent_composition()
Return the composition corresponding to the set of all 𝑖 that do not have 𝑖+ 1 appearing strictly to the left
of 𝑖 in self.

EXAMPLES:

sage: CompositionTableau([[1],[3,2],[4,4]]).descent_composition()
[1, 2, 2]

descent_set()
Return the set of all 𝑖 that do not have 𝑖+ 1 appearing strictly to the left of 𝑖 in self.

EXAMPLES:

sage: CompositionTableau([[1],[3,2],[4,4]]).descent_set()
[1, 3]

is_standard()
Return True if self is a standard composition tableau and False otherwise.

EXAMPLES:

sage: CompositionTableau([[1,1],[3,2],[4,4,3]]).is_standard()
False
sage: CompositionTableau([[2,1],[3],[4]]).is_standard()
True

312 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

pp()
Return a pretty print string of self.

EXAMPLES:

sage: CompositionTableau([[1],[3,2],[4,4]]).pp()
1
3 2
4 4

shape_composition()
Return a Composition object which is the shape of self.

EXAMPLES:

sage: CompositionTableau([[1,1],[3,2],[4,4,3]]).shape_composition()
[2, 2, 3]
sage: CompositionTableau([[2,1],[3],[4]]).shape_composition()
[2, 1, 1]

shape_partition()
Return a partition which is the shape of self sorted into weakly decreasing order.

EXAMPLES:

sage: CompositionTableau([[1,1],[3,2],[4,4,3]]).shape_partition()
[3, 2, 2]
sage: CompositionTableau([[2,1],[3],[4]]).shape_partition()
[2, 1, 1]

size()
Return the number of boxes in self.

EXAMPLES:

sage: CompositionTableau([[1],[3,2],[4,4]]).size()
5

weight()
Return a composition where entry 𝑖 is the number of times that 𝑖 appears in self.

EXAMPLES:

sage: CompositionTableau([[1],[3,2],[4,4]]).weight()
[1, 1, 1, 2, 0]

class sage.combinat.composition_tableau.CompositionTableaux(**kwds)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Composition tableaux.

INPUT:

Keyword arguments:

• size – the size of the composition tableaux

• shape – the shape of the composition tableaux

5.1. Comprehensive Module List 313

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

• max_entry – the maximum entry for the composition tableaux

Positional arguments:

• The first argument is interpreted as size or shape depending on whether it is an integer or a composition.

EXAMPLES:

sage: CT = CompositionTableaux(3); CT
Composition Tableaux of size 3 and maximum entry 3
sage: list(CT)
[[[1], [2], [3]],
[[1], [2, 2]],
[[1], [3, 2]],
[[1], [3, 3]],
[[2], [3, 3]],
[[1, 1], [2]],
[[1, 1], [3]],
[[2, 1], [3]],
[[2, 2], [3]],
[[1, 1, 1]],
[[2, 1, 1]],
[[2, 2, 1]],
[[2, 2, 2]],
[[3, 1, 1]],
[[3, 2, 1]],
[[3, 2, 2]],
[[3, 3, 1]],
[[3, 3, 2]],
[[3, 3, 3]]]

sage: CT = CompositionTableaux([1,2,1]); CT
Composition tableaux of shape [1, 2, 1] and maximum entry 4
sage: list(CT)
[[[1], [2, 2], [3]],
[[1], [2, 2], [4]],
[[1], [3, 2], [4]],
[[1], [3, 3], [4]],
[[2], [3, 3], [4]]]

sage: CT = CompositionTableaux(shape=[1,2,1],max_entry=3); CT
Composition tableaux of shape [1, 2, 1] and maximum entry 3
sage: list(CT)
[[[1], [2, 2], [3]]]

sage: CT = CompositionTableaux(2,max_entry=3); CT
Composition Tableaux of size 2 and maximum entry 3
sage: list(CT)
[[[1], [2]],
[[1], [3]],
[[2], [3]],
[[1, 1]],
[[2, 1]],
[[2, 2]],
[[3, 1]],

(continues on next page)

314 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[3, 2]],
[[3, 3]]]

sage: CT = CompositionTableaux(0); CT
Composition Tableaux of size 0 and maximum entry 0
sage: list(CT)
[[]]

Element
alias of CompositionTableau

class sage.combinat.composition_tableau.CompositionTableauxBacktracker(shape,
max_entry=None)

Bases: sage.combinat.backtrack.GenericBacktracker

A backtracker class for generating sets of composition tableaux.

get_next_pos(ii, jj)
EXAMPLES:

sage: from sage.combinat.composition_tableau import␣
→˓CompositionTableauxBacktracker
sage: T = CompositionTableau([[2,1],[5,4,3,2],[6],[7,7,6]])
sage: n = CompositionTableauxBacktracker(T.shape_composition())
sage: n.get_next_pos(1,1)
(1, 2)

class sage.combinat.composition_tableau.CompositionTableaux_all(max_entry=None)
Bases: sage.combinat.composition_tableau.CompositionTableaux, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

All composition tableaux.

an_element()
Return a particular element of self.

EXAMPLES:

sage: CT = CompositionTableaux()
sage: CT.an_element()
[[1, 1], [2]]

class sage.combinat.composition_tableau.CompositionTableaux_shape(comp, max_entry=None)
Bases: sage.combinat.composition_tableau.CompositionTableaux

Composition tableaux of a fixed shape comp with a given max entry.

INPUT:

• comp – a composition.

• max_entry – a nonnegative integer. This keyword argument defaults to the size of comp.

an_element()
Return a particular element of CompositionTableaux_shape.

EXAMPLES:

5.1. Comprehensive Module List 315

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

sage: CT = CompositionTableaux([1,2,1])
sage: CT.an_element()
[[1], [2, 2], [3]]

class sage.combinat.composition_tableau.CompositionTableaux_size(n, max_entry=None)
Bases: sage.combinat.composition_tableau.CompositionTableaux

Composition tableaux of a fixed size 𝑛.

INPUT:

• n – a nonnegative integer.

• max_entry – a nonnegative integer. This keyword argument defaults to n.

OUTPUT:

• The class of composition tableaux of size n.

5.1.31 Constellations

A constellation is a tuple (𝑔0, 𝑔1, . . . , 𝑔𝑘) of permutations such that the product 𝑔0𝑔1...𝑔𝑘 is the identity. One often
assumes that the group generated by 𝑔0, 𝑔1, . . . , 𝑔𝑘 acts transitively ([LZ2004] definition 1). Geometrically, it corre-
sponds to a covering of the 2-sphere ramified over 𝑘 points (the transitivity condition corresponds to the connectivity
of the covering).

EXAMPLES:

sage: c = Constellation(['(1,2)', '(1,3)', None])
sage: c
Constellation of length 3 and degree 3
g0 (1,2)(3)
g1 (1,3)(2)
g2 (1,3,2)
sage: C = Constellations(3,4); C
Connected constellations of length 3 and degree 4 on {1, 2, 3, 4}
sage: C.cardinality() # long time
426

sage: C = Constellations(3, 4, domain=('a', 'b', 'c', 'd'))
sage: C
Connected constellations of length 3 and degree 4 on {'a', 'b', 'c', 'd'}
sage: c = C(('a','c'),(('b','c'),('a','d')), None)
sage: c
Constellation of length 3 and degree 4
g0 ('a','c')('b')('d')
g1 ('a','d')('b','c')
g2 ('a','d','c','b')
sage: c.is_connected()
True
sage: c.euler_characteristic()
2
sage: TestSuite(C).run()

sage.combinat.constellation.Constellation(g=None, mutable=False, connected=True, check=True)
Constellation

316 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• g – a list of permutations

• mutable – whether the result is mutable or not. Default is False.

• connected – whether the result should be connected. Default is True.

• check – whether or not to check. If it is True, then the list g must contains no None.

EXAMPLES:

Simple initialization:

sage: Constellation(['(0,1)','(0,3)(1,2)','(0,3,1,2)'])
Constellation of length 3 and degree 4
g0 (0,1)(2)(3)
g1 (0,3)(1,2)
g2 (0,3,1,2)

One of the permutation can be omitted:

sage: Constellation(['(0,1)', None, '(0,4)(1,2,3)'])
Constellation of length 3 and degree 5
g0 (0,1)(2)(3)(4)
g1 (0,3,2,1,4)
g2 (0,4)(1,2,3)

One can define mutable constellations:

sage: Constellation(([0,2,1], [2,1,0], [1,2,0]), mutable=True)
Constellation of length 3 and degree 3
g0 (0)(1,2)
g1 (0,2)(1)
g2 (0,1,2)

class sage.combinat.constellation.Constellation_class(parent, g, connected, mutable, check)
Bases: sage.structure.element.Element

Constellation

A constellation or a tuple of permutations (𝑔0, 𝑔1, ..., 𝑔𝑘) such that the product 𝑔0𝑔1...𝑔𝑘 is the identity.

braid_group_action(i)
Act on self as the braid group generator that exchanges position 𝑖 and 𝑖+ 1.

INPUT:

• i – integer in [0, 𝑛− 1] where 𝑛 is the length of self

EXAMPLES:

sage: sigma = lambda c, i: c.braid_group_action(i)

sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,4)(2)(3)
g2 (0,1,3,2,4)
sage: sigma(c, 1)

(continues on next page)

5.1. Comprehensive Module List 317

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

(continued from previous page)

Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0,1,3,2,4)
g2 (0,3)(1)(2)(4)

Check the commutation relation:

sage: c = Constellation(['(0,1)(2,3,4)','(1,4)','(2,5)(0,4)',None])
sage: d = Constellation(['(0,1,3,5)','(2,3,4)','(0,3,5)',None])
sage: c13 = sigma(sigma(c, 0), 2)
sage: c31 = sigma(sigma(c, 2), 0)
sage: c13 == c31
True
sage: d13 = sigma(sigma(d, 0), 2)
sage: d31 = sigma(sigma(d, 2), 0)
sage: d13 == d31
True

Check the braid relation:

sage: c121 = sigma(sigma(sigma(c, 1), 2), 1)
sage: c212 = sigma(sigma(sigma(c, 2), 1), 2)
sage: c121 == c212
True
sage: d121 = sigma(sigma(sigma(d, 1), 2), 1)
sage: d212 = sigma(sigma(sigma(d, 2), 1), 2)
sage: d121 == d212
True

braid_group_orbit()
Return the graph of the action of the braid group.

The action is considered up to isomorphism of constellation.

EXAMPLES:

sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,4)(2)(3)
g2 (0,1,3,2,4)
sage: G = c.braid_group_orbit()
sage: G.num_verts()
4
sage: G.num_edges()
12

connected_components()
Return the connected components.

OUTPUT:

A list of connected constellations.

EXAMPLES:

318 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: c = Constellation(['(0,1)(2)', None, '(0,1)(2)'], connected=False)
sage: cc = c.connected_components(); cc
[Constellation of length 3 and degree 2
g0 (0,1)
g1 (0)(1)
g2 (0,1),
Constellation of length 3 and degree 1
g0 (0)
g1 (0)
g2 (0)]
sage: all(c2.is_connected() for c2 in cc)
True

sage: c = Constellation(['(0,1,2)', None], connected=False)
sage: c.connected_components()
[Constellation of length 2 and degree 3
g0 (0,1,2)
g1 (0,2,1)]

copy()
Return a copy of self.

degree()
Return the degree of the constellation.

The degree of a constellation is the number 𝑛 that corresponds to the symmetric group 𝑆(𝑛) in which the
permutations of the constellation are defined.

EXAMPLES:

sage: c = Constellation([])
sage: c.degree()
0
sage: c = Constellation(['(0,1)',None])
sage: c.degree()
2
sage: c = Constellation(['(0,1)','(0,3,2)(1,5)',None,'(4,3,2,1)'])
sage: c.degree()
6

euler_characteristic()
Return the Euler characteristic of the surface.

ALGORITHM:

Hurwitz formula

EXAMPLES:

sage: c = Constellation(['(0,1)', '(0,2)', None])
sage: c.euler_characteristic()
2

sage: c = Constellation(['(0,1,2,3)','(1,3,0,2)', '(0,3,1,2)', None])
sage: c.euler_characteristic()
-4

5.1. Comprehensive Module List 319

Combinatorics, Release 9.7

g(i=None)
Return the permutation 𝑔𝑖 of the constellation.

INPUT:

• i – integer or None (default)

If None , return instead the list of all 𝑔𝑖.

EXAMPLES:

sage: c = Constellation(['(0,1,2)(3,4)','(0,3)',None])
sage: c.g(0)
(0,1,2)(3,4)
sage: c.g(1)
(0,3)
sage: c.g(2)
(0,4,3,2,1)
sage: c.g()
[(0,1,2)(3,4), (0,3), (0,4,3,2,1)]

genus()
Return the genus of the surface.

EXAMPLES:

sage: c = Constellation(['(0,1)', '(0,2)', None])
sage: c.genus()
0

sage: c = Constellation(['(0,1)(2,3,4)','(1,3,4)(2,0)', None])
sage: c.genus()
1

is_connected()
Test of connectedness.

EXAMPLES:

sage: c = Constellation(['(0,1)(2)', None, '(0,1)(2)'], connected=False)
sage: c.is_connected()
False
sage: c = Constellation(['(0,1,2)', None], connected=False)
sage: c.is_connected()
True

is_isomorphic(other, return_map=False)
Test of isomorphism.

Return True if the constellations are isomorphic (i.e. related by a common conjugacy) and return the per-
mutation that conjugate the two permutations if return_map is True in such a way that self.relabel(m)
== other.

ALGORITHM:

uses canonical labels obtained from the method relabel().

EXAMPLES:

320 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: c = Constellation([[1,0,2],[2,1,0],[0,2,1],None])
sage: d = Constellation([[2,1,0],[0,2,1],[1,0,2],None])
sage: answer, mapping = c.is_isomorphic(d,return_map=True)
sage: answer
True
sage: c.relabel(mapping) == d
True

is_mutable()
Return False as self is immutable.

EXAMPLES:

sage: c = Constellation(([0,2,1],[2,1,0],[1,2,0]), mutable=False)
sage: c.is_mutable()
False

length()
Return the number of permutations.

EXAMPLES:

sage: c = Constellation(['(0,1)','(0,2)','(0,3)',None])
sage: c.length()
4
sage: c = Constellation(['(0,1,3)',None,'(1,2)'])
sage: c.length()
3

mutable_copy()
Return a mutable copy of self.

EXAMPLES:

sage: c = Constellation(([0,2,1],[2,1,0],[1,2,0]), mutable=False)
sage: d = c.mutable_copy()
sage: d.is_mutable()
True

passport(i=None)
Return the profile of self.

The profile of a constellation is the tuple of partitions associated to the conjugacy classes of the permutations
of the constellation.

This is also called the passport.

EXAMPLES:

sage: c = Constellation(['(0,1,2)(3,4)','(0,3)',None])
sage: c.profile()
([3, 2], [2, 1, 1, 1], [5])

profile(i=None)
Return the profile of self.

The profile of a constellation is the tuple of partitions associated to the conjugacy classes of the permutations
of the constellation.

5.1. Comprehensive Module List 321

Combinatorics, Release 9.7

This is also called the passport.

EXAMPLES:

sage: c = Constellation(['(0,1,2)(3,4)','(0,3)',None])
sage: c.profile()
([3, 2], [2, 1, 1, 1], [5])

relabel(perm=None, return_map=False)
Relabel self.

If perm is provided then relabel with respect to perm. Otherwise use canonical labels. In that case, if
return_map is provided, the return also the map used for canonical labels.

Algorithm:

the cycle for g(0) are adjacent and the cycle are joined with respect to the other permutations. The minimum
is taken for all possible renumerotations.

EXAMPLES:

sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,4)(2)(3)
g2 (0,1,3,2,4)
sage: c2 = c.relabel(); c2
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,2)(3)(4)
g2 (0,1,4,3,2)

The map returned when the option return_map is set to True can be used to set the relabelling:

sage: c3, perm = c.relabel(return_map=True)
sage: c3 == c2 and c3 == c.relabel(perm=perm)
True

sage: S5 = SymmetricGroup(range(5))
sage: d = c.relabel(S5([4,3,1,0,2])); d
Constellation of length 3 and degree 5
g0 (0,2,1)(3,4)
g1 (0)(1)(2,3)(4)
g2 (0,1,2,4,3)
sage: d.is_isomorphic(c)
True

We check that after a random relabelling the new constellation is isomorphic to the initial one:

sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None])
sage: p = S5.random_element()
sage: cc = c.relabel(perm=p)
sage: cc.is_isomorphic(c)
True

Check that it works for “non standard” labels:

322 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: c = Constellation([(('a','b'),('c','d','e')),('b','d'), None])
sage: c.relabel()
Constellation of length 3 and degree 5
g0 ('a','b')('c','d','e')
g1 ('a')('b','c')('d')('e')
g2 ('a','b','e','d','c')

set_immutable()
Do nothing, as self is already immutable.

EXAMPLES:

sage: c = Constellation(([0,2,1],[2,1,0],[1,2,0]), mutable=False)
sage: c.set_immutable()
sage: c.is_mutable()
False

switch(i, j0, j1)
Perform the multiplication by the transposition (𝑗0, 𝑗1) between the permutations 𝑔𝑖 and 𝑔𝑖+1.

The modification is local in the sense that it modifies 𝑔𝑖 and 𝑔𝑖+1 but does not modify the product 𝑔𝑖𝑔𝑖+1.
The new constellation is

(𝑔0, . . . , 𝑔𝑖−1, 𝑔𝑖(𝑗0𝑗1), (𝑗0𝑗1)𝑔𝑖+1, 𝑔𝑖+2, . . . , 𝑔𝑘)

EXAMPLES:

sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None], mutable=True); c
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,4)(2)(3)
g2 (0,1,3,2,4)
sage: c.is_mutable()
True
sage: c.switch(1,2,3); c
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,4)(2,3)
g2 (0,1,3,4)(2)
sage: c._check()
sage: c.switch(2,1,3); c
Constellation of length 3 and degree 5
g0 (0,1,4,2,3)
g1 (0)(1,4)(2,3)
g2 (0,3,4)(1)(2)
sage: c._check()
sage: c.switch(0,0,1); c
Constellation of length 3 and degree 5
g0 (0)(1,4,2,3)
g1 (0,4,1)(2,3)
g2 (0,3,4)(1)(2)
sage: c._check()

sage.combinat.constellation.Constellations(*data, **options)
Build a set of constellations.

5.1. Comprehensive Module List 323

Combinatorics, Release 9.7

INPUT:

• profile – an optional profile

• length – an optional length

• degree – an optional degree

• connected – an optional boolean

EXAMPLES:

sage: Constellations(4,2)
Connected constellations of length 4 and degree 2 on {1, 2}

sage: Constellations([[3,2,1],[3,3],[3,3]])
Connected constellations with profile ([3, 2, 1], [3, 3], [3, 3]) on {1, 2, 3, 4, 5,
→˓ 6}

class sage.combinat.constellation.Constellations_ld(length, degree, sym=None, connected=True)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Constellations of given length and degree.

EXAMPLES:

sage: C = Constellations(2,3); C
Connected constellations of length 2 and degree 3 on {1, 2, 3}
sage: C([[2,3,1],[3,1,2]])
Constellation of length 2 and degree 3
g0 (1,2,3)
g1 (1,3,2)
sage: C.cardinality()
2
sage: Constellations(2,3,connected=False).cardinality()
6

Element
alias of Constellation_class

braid_group_action()
Return a list of graphs that corresponds to the braid group action on self up to isomorphism.

OUTPUT:

• list of graphs

EXAMPLES:

sage: C = Constellations(3,3)
sage: C.braid_group_action()
[Looped multi-digraph on 3 vertices,
Looped multi-digraph on 1 vertex,
Looped multi-digraph on 3 vertices]

braid_group_orbits()
Return the orbits under the action of braid group.

EXAMPLES:

324 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: C = Constellations(3,3)
sage: O = C.braid_group_orbits()
sage: len(O)
3
sage: [x.profile() for x in O[0]]
[([1, 1, 1], [3], [3]), ([3], [1, 1, 1], [3]), ([3], [3], [1, 1, 1])]
sage: [x.profile() for x in O[1]]
[([3], [3], [3])]
sage: [x.profile() for x in O[2]]
[([2, 1], [2, 1], [3]), ([2, 1], [3], [2, 1]), ([3], [2, 1], [2, 1])]

is_empty()
Return whether this set of constellations is empty.

EXAMPLES:

sage: Constellations(2, 3).is_empty()
False
sage: Constellations(1, 2).is_empty()
True
sage: Constellations(1, 2, connected=False).is_empty()
False

random_element(mutable=False)
Return a random element.

This is found by trial and rejection, starting from a random list of permutations.

EXAMPLES:

sage: const = Constellations(3,3)
sage: const.random_element()
Constellation of length 3 and degree 3
...
...
...
sage: c = const.random_element()
sage: c.degree() == 3 and c.length() == 3
True

class sage.combinat.constellation.Constellations_p(profile, domain=None, connected=True)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Constellations with fixed profile.

EXAMPLES:

sage: C = Constellations([[3,1],[3,1],[2,2]]); C
Connected constellations with profile ([3, 1], [3, 1], [2, 2]) on {1, 2, 3, 4}
sage: C.cardinality()
24
sage: C.first()
Constellation of length 3 and degree 4
g0 (1)(2,3,4)
g1 (1,2,3)(4)

(continues on next page)

5.1. Comprehensive Module List 325

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

g2 (1,2)(3,4)
sage: C.last()
Constellation of length 3 and degree 4
g0 (1,4,3)(2)
g1 (1,4,2)(3)
g2 (1,2)(3,4)

Note that the cardinality can also be computed using characters of the symmetric group (Frobenius formula):

sage: P = Partitions(4)
sage: p1 = Partition([3,1])
sage: p2 = Partition([3,1])
sage: p3 = Partition([2,2])
sage: i1 = P.cardinality() - P.rank(p1) - 1
sage: i2 = P.cardinality() - P.rank(p2) - 1
sage: i3 = P.cardinality() - P.rank(p3) - 1
sage: s = 0
sage: for c in SymmetricGroup(4).irreducible_characters():
....: v = c.values()
....: s += v[i1] * v[i2] * v[i3] / v[0]
sage: c1 = p1.conjugacy_class_size()
sage: c2 = p2.conjugacy_class_size()
sage: c3 = p3.conjugacy_class_size()
sage: c1 * c2 * c3 / factorial(4)**2 * s
1

The number obtained above is up to isomorphism. And we can check:

sage: len(C.isomorphism_representatives())
1

isomorphism_representatives()
Return a set of isomorphism representative of self.

EXAMPLES:

sage: C = Constellations([[5], [4,1], [3,2]])
sage: C.cardinality()
240
sage: ir = sorted(C.isomorphism_representatives())
sage: len(ir)
2
sage: ir[0]
Constellation of length 3 and degree 5
g0 (1,2,3,4,5)
g1 (1)(2,3,4,5)
g2 (1,5,3)(2,4)
sage: ir[1]
Constellation of length 3 and degree 5
g0 (1,2,3,4,5)
g1 (1)(2,5,3,4)
g2 (1,5)(2,3,4)

326 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.constellation.perm_conjugate(p, s)
Return the conjugate of the permutation 𝑝 by the permutation 𝑠.

INPUT:

two permutations of {0,..,n-1} given by lists of values

OUTPUT:

a permutation of {0,..,n-1} given by a list of values

EXAMPLES:

sage: from sage.combinat.constellation import perm_conjugate
sage: perm_conjugate([3,1,2,0], [3,2,0,1])
[0, 3, 2, 1]

sage.combinat.constellation.perm_invert(p)
Return the inverse of the permutation 𝑝.

INPUT:

a permutation of {0,..,n-1} given by a list of values

OUTPUT:

a permutation of {0,..,n-1} given by a list of values

EXAMPLES:

sage: from sage.combinat.constellation import perm_invert
sage: perm_invert([3,2,0,1])
[2, 3, 1, 0]

sage.combinat.constellation.perm_sym_domain(g)
Return the domain of a single permutation (before initialization).

EXAMPLES:

sage: from sage.combinat.constellation import perm_sym_domain
sage: perm_sym_domain([1,2,3,4])
{1, 2, 3, 4}
sage: perm_sym_domain(((1,2),(0,4)))
{0, 1, 2, 4}
sage: sorted(perm_sym_domain('(1,2,0,5)'))
[0, 1, 2, 5]

sage.combinat.constellation.perms_are_connected(g, n)
Checks that the action of the generated group is transitive

INPUT:

• a list of permutations of [0, 𝑛− 1] (in a SymmetricGroup)

• an integer 𝑛

EXAMPLES:

sage: from sage.combinat.constellation import perms_are_connected
sage: S = SymmetricGroup(range(3))
sage: perms_are_connected([S([0,1,2]),S([0,2,1])],3)

(continues on next page)

5.1. Comprehensive Module List 327

Combinatorics, Release 9.7

(continued from previous page)

False
sage: perms_are_connected([S([0,1,2]),S([1,2,0])],3)
True

sage.combinat.constellation.perms_canonical_labels(p, e=None)
Relabel a list with a common conjugation such that two conjugated lists are relabeled the same way.

INPUT:

• p is a list of at least 2 permutations

• e is None or a list of integer in the domain of the permutations. If provided, then the renumbering algorithm
is only performed from the elements of e.

OUTPUT:

• a pair made of a list of permutations (as a list of lists) and a list that corresponds to the conjugacy used.

EXAMPLES:

sage: from sage.combinat.constellation import perms_canonical_labels
sage: l0 = [[2,0,3,1], [3,1,2,0], [0,2,1,3]]
sage: l, m = perms_canonical_labels(l0); l
[[1, 2, 3, 0], [0, 3, 2, 1], [2, 1, 0, 3]]

sage: S = SymmetricGroup(range(4))
sage: [~S(m) * S(u) * S(m) for u in l0] == list(map(S, l))
True

sage: perms_canonical_labels([])
Traceback (most recent call last):
...
ValueError: input must have length >= 2

sage.combinat.constellation.perms_canonical_labels_from(x, y, j0, verbose=False)
Return canonical labels for x, y that starts at j0

Warning: The group generated by x and the elements of y should be transitive.

INPUT:

• x – list - a permutation of [0, ..., 𝑛] as a list

• y – list of permutations of [0, ..., 𝑛] as a list of lists

• j0 – an index in [0, . . . , n]

OUTPUT:

mapping: a permutation that specify the new labels

EXAMPLES:

sage: from sage.combinat.constellation import perms_canonical_labels_from
sage: perms_canonical_labels_from([0,1,2],[[1,2,0]], 0)
[0, 1, 2]
sage: perms_canonical_labels_from([1,0,2], [[2,0,1]], 0)

(continues on next page)

328 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0, 1, 2]
sage: perms_canonical_labels_from([1,0,2], [[2,0,1]], 1)
[1, 0, 2]
sage: perms_canonical_labels_from([1,0,2], [[2,0,1]], 2)
[2, 1, 0]

sage.combinat.constellation.perms_sym_init(g, sym=None)
Initialize a list of permutations (in the same symmetric group).

OUTPUT:

• sym – a symmetric group

• gg – a list of permutations

EXAMPLES:

sage: from sage.combinat.constellation import perms_sym_init
sage: S, g = perms_sym_init([[0,2,1,3], [1,3,2,0]])
sage: S.domain()
{0, 1, 2, 3}
sage: g
[(1,2), (0,1,3)]

sage: S, g = perms_sym_init(['(2,1)', '(0,3)'])
sage: S.domain()
{0, 1, 2, 3}
sage: g
[(1,2), (0,3)]

sage: S, g = perms_sym_init([(1,0), (2,1)])
sage: S.domain()
{0, 1, 2}
sage: g
[(0,1), (1,2)]

sage: S, g = perms_sym_init([((1,0),(2,3)), '(0,1,4)'])
sage: S.domain()
{0, 1, 2, 3, 4}
sage: g
[(0,1)(2,3), (0,1,4)]

5.1.32 Cores

A 𝑘-core is a partition from which no rim hook of size 𝑘 can be removed. Alternatively, a 𝑘-core is an integer partition
such that the Ferrers diagram for the partition contains no cells with a hook of size (a multiple of) 𝑘.

Authors:

• Anne Schilling and Mike Zabrocki (2011): initial version

• Travis Scrimshaw (2012): Added latex output for Core class

class sage.combinat.core.Core(parent, core)
Bases: sage.combinat.combinat.CombinatorialElement

5.1. Comprehensive Module List 329

Combinatorics, Release 9.7

A 𝑘-core is an integer partition from which no rim hook of size 𝑘 can be removed.

EXAMPLES:

sage: c = Core([2,1],4); c
[2, 1]
sage: c = Core([3,1],4); c
Traceback (most recent call last):
...
ValueError: [3, 1] is not a 4-core

affine_symmetric_group_action(w, transposition=False)
Return the (left) action of the affine symmetric group on self.

INPUT:

• w is a tuple of integers [𝑤1, . . . , 𝑤𝑚] with 0 ≤ 𝑤𝑗 < 𝑘. If transposition is set to be True, then
𝑤 = [𝑤0, 𝑤1] is interpreted as a transposition 𝑡𝑤0,𝑤1

(see _transposition_to_reduced_word()).

The output is the (left) action of the product of the corresponding simple transpositions on self, that is
𝑠𝑤1
· · · 𝑠𝑤𝑚

(𝑠𝑒𝑙𝑓). See affine_symmetric_group_simple_action().

EXAMPLES:

sage: c = Core([4,2],3)
sage: c.affine_symmetric_group_action([0,1,0,2,1])
[8, 6, 4, 2]
sage: c.affine_symmetric_group_action([0,2], transposition=True)
[4, 2, 1, 1]

sage: c = Core([11,8,5,5,3,3,1,1,1],4)
sage: c.affine_symmetric_group_action([2,5],transposition=True)
[11, 8, 7, 6, 5, 4, 3, 2, 1]

affine_symmetric_group_simple_action(i)
Return the action of the simple transposition 𝑠𝑖 of the affine symmetric group on self.

This gives the action of the affine symmetric group of type 𝐴(1)
𝑘 on the 𝑘-core self. If self has outside

(resp. inside) corners of content 𝑖 modulo 𝑘, then these corners are added (resp. removed). Otherwise the
action is trivial.

EXAMPLES:

sage: c = Core([4,2],3)
sage: c.affine_symmetric_group_simple_action(0)
[3, 1]
sage: c.affine_symmetric_group_simple_action(1)
[5, 3, 1]
sage: c.affine_symmetric_group_simple_action(2)
[4, 2]

This action corresponds to the left action by the 𝑖-th simple reflection in the affine symmetric group:

sage: c = Core([4,2],3)
sage: W = c.to_grassmannian().parent()
sage: i = 0
sage: c.affine_symmetric_group_simple_action(i).to_grassmannian() == W.simple_
→˓reflection(i)*c.to_grassmannian()

(continues on next page)

330 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

True
sage: i = 1
sage: c.affine_symmetric_group_simple_action(i).to_grassmannian() == W.simple_
→˓reflection(i)*c.to_grassmannian()
True

contains(other)
Checks whether self contains other.

INPUT:

• other – another 𝑘-core or a list

OUTPUT: a boolean

This returns True if the Ferrers diagram of self contains the Ferrers diagram of other.

EXAMPLES:

sage: c = Core([4,2],3)
sage: x = Core([4,2,2,1,1],3)
sage: x.contains(c)
True
sage: c.contains(x)
False

k()
Return 𝑘 of the 𝑘-core self.

EXAMPLES:

sage: c = Core([2,1],4)
sage: c.k()
4

length()
Return the length of self.

The length of a 𝑘-core is the size of the corresponding (𝑘 − 1)-bounded partition which agrees with the
length of the corresponding Grassmannian element, see to_grassmannian().

EXAMPLES:

sage: c = Core([4,2],3); c.length()
4
sage: c.to_grassmannian().length()
4

sage: Core([9,5,3,2,1,1], 5).length()
13

size()
Return the size of self as a partition.

EXAMPLES:

5.1. Comprehensive Module List 331

Combinatorics, Release 9.7

sage: Core([2,1],4).size()
3
sage: Core([4,2],3).size()
6

strong_covers()
Return a list of all elements that cover self in strong order.

EXAMPLES:

sage: c = Core([1],3)
sage: c.strong_covers()
[[2], [1, 1]]
sage: c = Core([4,2],3)
sage: c.strong_covers()
[[5, 3, 1], [4, 2, 1, 1]]

strong_down_list()
Return a list of all elements that are covered by self in strong order.

EXAMPLES:

sage: c = Core([1],3)
sage: c.strong_down_list()
[[]]
sage: c = Core([5,3,1],3)
sage: c.strong_down_list()
[[4, 2], [3, 1, 1]]

strong_le(other)
Strong order (Bruhat) comparison on cores.

INPUT:

• other – another 𝑘-core

OUTPUT: a boolean

This returns whether self <= other in Bruhat (or strong) order.

EXAMPLES:

sage: c = Core([4,2],3)
sage: x = Core([4,2,2,1,1],3)
sage: c.strong_le(x)
True
sage: c.strong_le([4,2,2,1,1])
True

sage: x = Core([4,1],4)
sage: c.strong_le(x)
Traceback (most recent call last):
...
ValueError: The two cores do not have the same k

to_bounded_partition()
Bijection between 𝑘-cores and (𝑘 − 1)-bounded partitions.

332 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

This maps the 𝑘-core self to the corresponding (𝑘 − 1)-bounded partition. This bijection is achieved by
deleting all cells in self of hook length greater than 𝑘.

EXAMPLES:

sage: gamma = Core([9,5,3,2,1,1], 5)
sage: gamma.to_bounded_partition()
[4, 3, 2, 2, 1, 1]

to_grassmannian()

Bijection between 𝑘-cores and Grassmannian elements in the affine Weyl group of type 𝐴(1)
𝑘−1.

For further details, see the documentation of the method from_kbounded_to_reduced_word() and
from_kbounded_to_grassmannian().

EXAMPLES:

sage: c = Core([3,1,1],3)
sage: w = c.to_grassmannian(); w
[-1 1 1]
[-2 2 1]
[-2 1 2]
sage: c.parent()
3-Cores of length 4
sage: w.parent()
Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root space)

sage: c = Core([],3)
sage: c.to_grassmannian()
[1 0 0]
[0 1 0]
[0 0 1]

to_partition()
Turn the core self into the partition identical to self.

EXAMPLES:

sage: mu = Core([2,1,1],3)
sage: mu.to_partition()
[2, 1, 1]

weak_covers()
Return a list of all elements that cover self in weak order.

EXAMPLES:

sage: c = Core([1],3)
sage: c.weak_covers()
[[1, 1], [2]]

sage: c = Core([4,2],3)
sage: c.weak_covers()
[[5, 3, 1]]

weak_le(other)
Weak order comparison on cores.

5.1. Comprehensive Module List 333

Combinatorics, Release 9.7

INPUT:

• other – another 𝑘-core

OUTPUT: a boolean

This returns whether self <= other in weak order.

EXAMPLES:

sage: c = Core([4,2],3)
sage: x = Core([5,3,1],3)
sage: c.weak_le(x)
True
sage: c.weak_le([5,3,1])
True

sage: x = Core([4,2,2,1,1],3)
sage: c.weak_le(x)
False

sage: x = Core([5,3,1],6)
sage: c.weak_le(x)
Traceback (most recent call last):
...
ValueError: The two cores do not have the same k

sage.combinat.core.Cores(k, length=None, **kwargs)
A 𝑘-core is a partition from which no rim hook of size 𝑘 can be removed. Alternatively, a 𝑘-core is an integer
partition such that the Ferrers diagram for the partition contains no cells with a hook of size (a multiple of) 𝑘.

The 𝑘-cores generally have two notions of size which are useful for different applications. One is the number of
cells in the Ferrers diagram with hook less than 𝑘, the other is the total number of cells of the Ferrers diagram.
In the implementation in Sage, the first of notion is referred to as the length of the 𝑘-core and the second is the
size of the 𝑘-core. The class of Cores requires that either the size or the length of the elements in the class is
specified.

EXAMPLES:

We create the set of the 4-cores of length 6. Here the length of a 𝑘-core is the size of the corresponding (𝑘− 1)-
bounded partition, see also length():

sage: C = Cores(4, 6); C
4-Cores of length 6
sage: C.list()
[[6, 3], [5, 2, 1], [4, 1, 1, 1], [4, 2, 2], [3, 3, 1, 1], [3, 2, 1, 1, 1], [2, 2,␣
→˓2, 1, 1, 1]]
sage: C.cardinality()
7
sage: C.an_element()
[6, 3]

We may also list the set of 4-cores of size 6, where the size is the number of boxes in the core, see also size():

sage: C = Cores(4, size=6); C
4-Cores of size 6
sage: C.list()

(continues on next page)

334 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[4, 1, 1], [3, 2, 1], [3, 1, 1, 1]]
sage: C.cardinality()
3
sage: C.an_element()
[4, 1, 1]

class sage.combinat.core.Cores_length(k, n)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The class of 𝑘-cores of length 𝑛.

Element
alias of Core

from_partition(part)
Converts the partition part into a core (as the identity map).

This is the inverse method to to_partition().

EXAMPLES:

sage: C = Cores(3,4)
sage: c = C.from_partition([4,2]); c
[4, 2]

sage: mu = Partition([2,1,1])
sage: C = Cores(3,3)
sage: C.from_partition(mu).to_partition() == mu
True

sage: mu = Partition([])
sage: C = Cores(3,0)
sage: C.from_partition(mu).to_partition() == mu
True

list()
Return the list of all 𝑘-cores of length 𝑛.

EXAMPLES:

sage: C = Cores(3,4)
sage: C.list()
[[4, 2], [3, 1, 1], [2, 2, 1, 1]]

class sage.combinat.core.Cores_size(k, n)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The class of 𝑘-cores of size 𝑛.

Element
alias of Core

from_partition(part)
Convert the partition part into a core (as the identity map).

This is the inverse method to to_partition().

5.1. Comprehensive Module List 335

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

EXAMPLES:

sage: C = Cores(3,size=4)
sage: c = C.from_partition([2,1,1]); c
[2, 1, 1]

sage: mu = Partition([2,1,1])
sage: C = Cores(3,size=4)
sage: C.from_partition(mu).to_partition() == mu
True

sage: mu = Partition([])
sage: C = Cores(3,size=0)
sage: C.from_partition(mu).to_partition() == mu
True

list()
Return the list of all 𝑘-cores of size 𝑛.

EXAMPLES:

sage: C = Cores(3, size = 4)
sage: C.list()
[[3, 1], [2, 1, 1]]

5.1.33 Counting

• The On-Line Encyclopedia of Integer Sequences (OEIS)

• Functions that compute some of the sequences in Sloane’s tables

• Compute Bell and Uppuluri-Carpenter numbers

• q-Analogues, q-Bernoulli Numbers and Polynomials

• Binary Recurrence Sequences

• C-Finite Sequences

• Combinatorial Functions

Todo: Mention sage/combinat/degree_sequences?

5.1.34 Affine Crystals

class sage.combinat.crystals.affine.AffineCrystalFromClassical(cartan_type, classical_crystal,
category=None)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

This abstract class can be used for affine crystals that are constructed from a classical crystal. The zero arrows
can be implemented using different methods (for example using a Dynkin diagram automorphisms or virtual
crystals).

336 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/databases/sage/databases/oeis.html#sage-databases-oeis
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

This is a helper class, mostly used to implement Kirillov-Reshetikhin crystals (see:
KirillovReshetikhinCrystal()).

For general information about crystals see sage.combinat.crystals.

INPUT:

• cartan_type – the Cartan type of the resulting affine crystal

• classical_crystal – instance of a classical crystal

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: A.list()
[[[1]], [[2]], [[3]]]
sage: A.cartan_type()
['A', 2, 1]
sage: A.index_set()
(0, 1, 2)
sage: b = A(rows=[[1]])
sage: b.weight()
-Lambda[0] + Lambda[1]
sage: b.classical_weight()
(1, 0, 0)
sage: [x.s(0) for x in A.list()]
[[[3]], [[2]], [[1]]]
sage: [x.s(1) for x in A.list()]
[[[2]], [[1]], [[3]]]

Element
alias of AffineCrystalFromClassicalElement

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: C = crystals.Tableaux(['A',3],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',3,1],C,pr,pr_inverse,1)
sage: A.cardinality() == C.cardinality()
True

lift(affine_elt)
Lift an affine crystal element to the corresponding classical crystal element.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")

(continues on next page)

5.1. Comprehensive Module List 337

Combinatorics, Release 9.7

(continued from previous page)

sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A.list()[0]
sage: A.lift(b)
[[1]]
sage: A.lift(b).parent()
The crystal of tableaux of type ['A', 2] and shape(s) [[1]]

retract(classical_elt)
Transform a classical crystal element to the corresponding affine crystal element.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: t = C(rows=[[1]])
sage: t.parent()
The crystal of tableaux of type ['A', 2] and shape(s) [[1]]
sage: A.retract(t)
[[1]]
sage: A.retract(t).parent() is A
True

class sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotion(cartan_type,
classical_crystal,
p_automorphism,
p_inverse_automorphism,
dynkin_node,
category=None)

Bases: sage.combinat.crystals.affine.AffineCrystalFromClassical

Crystals that are constructed from a classical crystal and a Dynkin diagram automorphism 𝜎. In type 𝐴𝑛, the
Dynkin diagram automorphism is 𝑖 → 𝑖 + 1 (mod 𝑛) + 1 and the corresponding map on the crystal is the
promotion operation pr on tableaux. The affine crystal operators are given by 𝑓0 = pr−1𝑓𝜎(0)pr.

INPUT:

• cartan_type – the Cartan type of the resulting affine crystal

• classical_crystal – instance of a classical crystal

• automorphism, inverse_automorphism – a function on the elements of the classical_crystal

• dynkin_node – an integer specifying the classical node in the image of the zero node under the automor-
phism sigma

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: A.list()

(continues on next page)

338 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[[1]], [[2]], [[3]]]
sage: A.cartan_type()
['A', 2, 1]
sage: A.index_set()
(0, 1, 2)
sage: b = A(rows=[[1]])
sage: b.weight()
-Lambda[0] + Lambda[1]
sage: b.classical_weight()
(1, 0, 0)
sage: [x.s(0) for x in A.list()]
[[[3]], [[2]], [[1]]]
sage: [x.s(1) for x in A.list()]
[[[2]], [[1]], [[3]]]

Element
alias of AffineCrystalFromClassicalAndPromotionElement

automorphism(x)
Give the analogue of the affine Dynkin diagram automorphism on the level of crystals.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A.list()[0]
sage: A.automorphism(b)
[[2]]

inverse_automorphism(x)
Give the analogue of the inverse of the affine Dynkin diagram automorphism on the level of crystals.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A.list()[0]
sage: A.inverse_automorphism(b)
[[3]]

class sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotionElement
Bases: sage.combinat.crystals.affine.AffineCrystalFromClassicalElement

Elements of crystals that are constructed from a classical crystal and a Dynkin diagram automorphism. In type
𝐴, the automorphism is the promotion operation on tableaux.

This class is not instantiated directly but rather __call__-ed from
AffineCrystalFromClassicalAndPromotion. The syntax of this is governed by the (classical) crys-
tal.

5.1. Comprehensive Module List 339

Combinatorics, Release 9.7

Since this class inherits from AffineCrystalFromClassicalElement, the methods that need to be imple-
mented are e0(), f0() and possibly epsilon0() and phi0() if more efficient algorithms exist.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A(rows=[[1]])
sage: b._repr_()
'[[1]]'

e0()
Implement 𝑒0 using the automorphism as 𝑒0 = pr−1 𝑒𝑑𝑦𝑛𝑘𝑖𝑛𝑛𝑜𝑑𝑒 pr

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A(rows=[[1]])
sage: b.e0()
[[3]]

epsilon0()
Implement 𝑒𝑝𝑠𝑖𝑙𝑜𝑛0 using the automorphism.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: [x.epsilon0() for x in A.list()]
[1, 0, 0]

f0()
Implement 𝑓0 using the automorphism as 𝑓0 = pr−1 𝑓𝑑𝑦𝑛𝑘𝑖𝑛𝑛𝑜𝑑𝑒 pr

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A(rows=[[3]])
sage: b.f0()
[[1]]

phi0()
Implement 𝑝ℎ𝑖0 using the automorphism.

340 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: [x.phi0() for x in A.list()]
[0, 0, 1]

class sage.combinat.crystals.affine.AffineCrystalFromClassicalElement
Bases: sage.structure.element_wrapper.ElementWrapper

Elements of crystals that are constructed from a classical crystal.

The elements inherit many of their methods from the classical crystal using lift and retract.

This class is not instantiated directly but rather __call__-ed from AffineCrystalFromClassical. The syn-
tax of this is governed by the (classical) crystal.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A(rows=[[1]])
sage: b._repr_()
'[[1]]'

classical_weight()
Return the classical weight corresponding to self.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A(rows=[[1]])
sage: b.classical_weight()
(1, 0, 0)

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A(rows=[[1]])
sage: b.e(0)

(continues on next page)

5.1. Comprehensive Module List 341

../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

(continued from previous page)

[[3]]
sage: b.e(1)

e0()
Assumes that 𝑒0 is implemented separately.

epsilon(i)
Return the maximal time the crystal operator 𝑒𝑖 can be applied to self.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: [x.epsilon(0) for x in A.list()]
[1, 0, 0]
sage: [x.epsilon(1) for x in A.list()]
[0, 1, 0]

epsilon0()
Uses 𝜀0 from the super class, but should be implemented if a faster implementation exists.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: [x.epsilon0() for x in A.list()]
[1, 0, 0]

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A(rows=[[3]])
sage: b.f(0)
[[1]]
sage: b.f(2)

f0()
Assumes that 𝑓0 is implemented separately.

lift()
Lift an affine crystal element to the corresponding classical crystal element.

EXAMPLES:

342 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: b = A.list()[0]
sage: b.lift()
[[1]]
sage: b.lift().parent()
The crystal of tableaux of type ['A', 2] and shape(s) [[1]]

phi(i)
Returns the maximal time the crystal operator 𝑓𝑖 can be applied to self.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: [x.phi(0) for x in A.list()]
[0, 0, 1]
sage: [x.phi(1) for x in A.list()]
[1, 0, 0]

phi0()
Uses 𝜙0 from the super class, but should be implemented if a faster implementation exists.

EXAMPLES:

sage: n = 2
sage: C = crystals.Tableaux(['A',n],shape=[1])
sage: pr = attrcall("promotion")
sage: pr_inverse = attrcall("promotion_inverse")
sage: A = crystals.AffineFromClassicalAndPromotion(['A',n,1],C,pr,pr_inverse,1)
sage: [x.phi0() for x in A.list()]
[0, 0, 1]

pp()
Method for pretty printing.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',3,2],1,1)
sage: t=K(rows=[[1]])
sage: t.pp()
1

5.1. Comprehensive Module List 343

Combinatorics, Release 9.7

5.1.35 Affine factorization crystal of type 𝐴

class sage.combinat.crystals.affine_factorization.AffineFactorizationCrystal(w, n, x=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The crystal on affine factorizations with a cut-point, as introduced by [MS2015].

INPUT:

• w – an element in an (affine) Weyl group or a skew shape of 𝑘-bounded partitions (if 𝑘 was specified)

• n – the number of factors in the factorization

• x – (default: None) the cut point; if not specified it is determined as the minimal missing residue in w

• k – (default: None) positive integer, specifies that w is 𝑘-bounded or a 𝑘 + 1-core when specified

EXAMPLES:

sage: W = WeylGroup(['A',3,1], prefix='s')
sage: w = W.from_reduced_word([2,3,2,1])
sage: B = crystals.AffineFactorization(w,3); B
Crystal on affine factorizations of type A2 associated to s2*s3*s2*s1
sage: B.list()
[(1, s2, s3*s2*s1),
(1, s3*s2, s3*s1),
(1, s3*s2*s1, s3),
(s3, s2, s3*s1),
(s3, s2*s1, s3),
(s3*s2, s1, s3),
(s3*s2*s1, 1, s3),
(s3*s2*s1, s3, 1),
(s3*s2, 1, s3*s1),
(s3*s2, s3, s1),
(s3*s2, s3*s1, 1),
(s2, 1, s3*s2*s1),
(s2, s3, s2*s1),
(s2, s3*s2, s1),
(s2, s3*s2*s1, 1)]

We can also access the crystal by specifying a skew shape in terms of 𝑘-bounded partitions:

sage: crystals.AffineFactorization([[3,1,1],[1]], 3, k=3)
Crystal on affine factorizations of type A2 associated to s2*s3*s2*s1

We can compute the highest weight elements:

sage: hw = [w for w in B if w.is_highest_weight()]
sage: hw
[(1, s2, s3*s2*s1)]
sage: hw[0].weight()
(3, 1, 0)

And show that this crystal is isomorphic to the tableau model of the same weight:

344 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: C = crystals.Tableaux(['A',2],shape=[3,1])
sage: GC = C.digraph()
sage: GB = B.digraph()
sage: GC.is_isomorphic(GB, edge_labels=True)
True

The crystal operators themselves move elements between adjacent factors:

sage: b = hw[0];b
(1, s2, s3*s2*s1)
sage: b.f(1)
(1, s3*s2, s3*s1)

The cut point 𝑥 is not supposed to occur in the reduced words for 𝑤:

sage: B = crystals.AffineFactorization([[3,2],[2]],4,x=0,k=3)
Traceback (most recent call last):
...
ValueError: x cannot be in reduced word of s0*s3*s2

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

bracketing(i)
Removes all bracketed letters between 𝑖-th and 𝑖+ 1-th entry.

EXAMPLES:

sage: B = crystals.AffineFactorization([[3,1],[1]], 3, k=3, x=4)
sage: W = B.w.parent()
sage: t = B((W.one(),W.from_reduced_word([3]),W.from_reduced_word([2,1])));␣
→˓t
(1, s3, s2*s1)
sage: t.bracketing(1)
[[3], [2, 1]]

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: B = crystals.AffineFactorization([[3,1],[1]], 4, k=3)
sage: W = B.w.parent()
sage: t = B((W.one(),W.one(),W.from_reduced_word([3]),W.from_reduced_
→˓word([2,1]))); t
(1, 1, s3, s2*s1)
sage: t.e(1)
(1, 1, 1, s3*s2*s1)

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: B = crystals.AffineFactorization([[3,1],[1]], 4, k=3)
sage: W = B.w.parent()

(continues on next page)

5.1. Comprehensive Module List 345

../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

(continued from previous page)

sage: t = B((W.one(),W.one(),W.from_reduced_word([3]),W.from_reduced_
→˓word([2,1]))); t
(1, 1, s3, s2*s1)
sage: t.f(2)
(1, s3, 1, s2*s1)
sage: t.f(1)
(1, 1, s3*s2, s1)

to_tableau()
Return the tableau representation of self.

Uses the recording tableau of a minor variation of Edelman-Greene insertion. See Theorem 4.11 in
[MS2015].

EXAMPLES:

sage: W = WeylGroup(['A',3,1], prefix='s')
sage: w = W.from_reduced_word([2,1,3,2])
sage: B = crystals.AffineFactorization(w,3)
sage: for x in B:
....: x
....: x.to_tableau().pp()
(1, s2*s1, s3*s2)
1 1
2 2

(s2, s1, s3*s2)
1 1
2 3

(s2, s3*s1, s2)
1 2
2 3

(s2*s1, 1, s3*s2)
1 1
3 3

(s2*s1, s3, s2)
1 2
3 3

(s2*s1, s3*s2, 1)
2 2
3 3

class sage.combinat.crystals.affine_factorization.FactorizationToTableaux(parent,
cartan_type=None,
virtualiza-
tion=None,
scal-
ing_factors=None)

Bases: sage.categories.crystals.CrystalMorphism

is_embedding()
Return True as this is an isomorphism.

EXAMPLES:

346 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/crystals.html#sage.categories.crystals.CrystalMorphism

Combinatorics, Release 9.7

sage: W = WeylGroup(['A',3,1], prefix='s')
sage: w = W.from_reduced_word([2,1,3,2])
sage: B = crystals.AffineFactorization(w,3)
sage: phi = B._tableaux_isomorphism
sage: phi.is_isomorphism()
True

is_isomorphism()
Return True as this is an isomorphism.

EXAMPLES:

sage: W = WeylGroup(['A',3,1], prefix='s')
sage: w = W.from_reduced_word([2,1,3,2])
sage: B = crystals.AffineFactorization(w,3)
sage: phi = B._tableaux_isomorphism
sage: phi.is_isomorphism()
True

is_surjective()
Return True as this is an isomorphism.

EXAMPLES:

sage: W = WeylGroup(['A',3,1], prefix='s')
sage: w = W.from_reduced_word([2,1,3,2])
sage: B = crystals.AffineFactorization(w,3)
sage: phi = B._tableaux_isomorphism
sage: phi.is_isomorphism()
True

sage.combinat.crystals.affine_factorization.affine_factorizations(w, l, weight=None)
Return all factorizations of w into l factors or of weight weight.

INPUT:

• w – an (affine) permutation or element of the (affine) Weyl group

• l – nonnegative integer

• weight – (default: None) tuple of nonnegative integers specifying the length of the factors

EXAMPLES:

sage: W = WeylGroup(['A',3,1], prefix='s')
sage: w = W.from_reduced_word([3,2,3,1,0,1])
sage: from sage.combinat.crystals.affine_factorization import affine_factorizations
sage: affine_factorizations(w,4)
[[s2, s3, s0, s2*s1*s0],
[s2, s3, s2*s0, s1*s0],
[s2, s3, s2*s1*s0, s1],
[s2, s3*s2, s0, s1*s0],
[s2, s3*s2, s1*s0, s1],
[s2, s3*s2*s1, s0, s1],
[s3*s2, s3, s0, s1*s0],
[s3*s2, s3, s1*s0, s1],
[s3*s2, s3*s1, s0, s1],

(continues on next page)

5.1. Comprehensive Module List 347

Combinatorics, Release 9.7

(continued from previous page)

[s3*s2*s1, s3, s0, s1]]

sage: W = WeylGroup(['A',2], prefix='s')
sage: w0 = W.long_element()
sage: affine_factorizations(w0,3)
[[1, s1, s2*s1],
[1, s2*s1, s2],
[s1, 1, s2*s1],
[s1, s2, s1],
[s1, s2*s1, 1],
[s2, s1, s2],
[s2*s1, 1, s2],
[s2*s1, s2, 1]]
sage: affine_factorizations(w0,3,(0,1,2))
[[1, s1, s2*s1]]
sage: affine_factorizations(w0,3,(1,1,1))
[[s1, s2, s1], [s2, s1, s2]]
sage: W = WeylGroup(['A',3], prefix='s')
sage: w0 = W.long_element()
sage: affine_factorizations(w0,6,(1,1,1,1,1,1))
[[s1, s2, s1, s3, s2, s1],
[s1, s2, s3, s1, s2, s1],
[s1, s2, s3, s2, s1, s2],
[s1, s3, s2, s1, s3, s2],
[s1, s3, s2, s3, s1, s2],
[s2, s1, s2, s3, s2, s1],
[s2, s1, s3, s2, s1, s3],
[s2, s1, s3, s2, s3, s1],
[s2, s3, s1, s2, s1, s3],
[s2, s3, s1, s2, s3, s1],
[s2, s3, s2, s1, s2, s3],
[s3, s1, s2, s1, s3, s2],
[s3, s1, s2, s3, s1, s2],
[s3, s2, s1, s2, s3, s2],
[s3, s2, s1, s3, s2, s3],
[s3, s2, s3, s1, s2, s3]]
sage: affine_factorizations(w0,6,(0,0,0,1,2,3))
[[1, 1, 1, s1, s2*s1, s3*s2*s1]]

5.1.36 Affinization Crystals

class sage.combinat.crystals.affinization.AffinizationOfCrystal(B)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An affinization of a crystal.

Let g be a Kac-Moody algebra of affine type. The affinization of a finite 𝑈 ′𝑞(g)-crystal 𝐵 is the (infinite) 𝑈𝑞(g)-
crystal with underlying set:

𝐵aff = {𝑏(𝑚) | 𝑏 ∈ 𝐵,𝑚 ∈ Z}

348 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

and crystal structure determined by:

𝑒𝑖(𝑏(𝑚)) =

{︃
(𝑒0𝑏)(𝑚+ 1) 𝑖 = 0,

(𝑒𝑖𝑏)(𝑚) 𝑖 ̸= 0,

𝑓𝑖(𝑏(𝑚)) =

{︃
(𝑓0𝑏)(𝑚− 1) 𝑖 = 0,

(𝑓𝑖𝑏)(𝑚) 𝑖 ̸= 0,

wt(𝑏(𝑚)) = wt(𝑏) +𝑚𝛿.

EXAMPLES:

We first construct a Kirillov-Reshetikhin crystal and then take it’s corresponding affinization:

sage: K = crystals.KirillovReshetikhin(['A',2,1], 2, 2)
sage: A = K.affinization()

Next we construct an affinization crystal from a tensor product of KR crystals:

sage: KT = crystals.TensorProductOfKirillovReshetikhinTableaux(['C',2,1], [[1,2],[2,
→˓1]])
sage: A = crystals.AffinizationOf(KT)

REFERENCES:

• [HK2002] Chapter 10

class Element(parent, b, m)
Bases: sage.structure.element.Element

An element in an affinization crystal.

e(i)
Return the action of 𝑒𝑖 on self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: A = crystals.KirillovReshetikhin(['A',2,1], 2,2).affinization()
sage: mg = A.module_generators[0]
sage: mg.e(0)
[[1, 2], [2, 3]](1)
sage: mg.e(1)
sage: mg.e(0).e(1)
[[1, 1], [2, 3]](1)

epsilon(i)
Return 𝜀𝑖 of self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: A = crystals.KirillovReshetikhin(['A',2,1], 2,2).affinization()
sage: mg = A.module_generators[0]
sage: mg.epsilon(0)
2

(continues on next page)

5.1. Comprehensive Module List 349

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

(continued from previous page)

sage: mg.epsilon(1)
0

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: A = crystals.KirillovReshetikhin(['A',2,1], 2,2).affinization()
sage: mg = A.module_generators[0]
sage: mg.f(2)
[[1, 1], [2, 3]](0)
sage: mg.f(2).f(2).f(0)
sage: mg.f_string([2,1,1])
sage: mg.f_string([2,1])
[[1, 2], [2, 3]](0)
sage: mg.f_string([2,1,0])
[[1, 1], [2, 2]](-1)

phi(i)
Return 𝜙𝑖 of self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: A = crystals.KirillovReshetikhin(['A',2,1], 2,2).affinization()
sage: mg = A.module_generators[0]
sage: mg.phi(0)
0
sage: mg.phi(2)
2

weight()
Return the weight of self.

The weight wt of an element is:

wt
(︀
𝑏(𝑚)

)︀
= wt(𝑏) +𝑚𝛿,

where 𝛿 is the null root.

EXAMPLES:

sage: A = crystals.KirillovReshetikhin(['A',2,1], 2,2).affinization()
sage: mg = A.module_generators[0]
sage: mg.weight()
-2*Lambda[0] + 2*Lambda[2]
sage: mg.e(0).weight()
-Lambda[1] + Lambda[2] + delta
sage: mg.e(0).e(0).weight()
2*Lambda[0] - 2*Lambda[1] + 2*delta

350 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.37 Alcove paths

AUTHORS:

• Brant Jones (2008): initial version

• Arthur Lubovsky (2013-03-07): rewritten to implement affine type

• Travis Scrimshaw (2016-06-23): implemented ℬ(∞)

Special thanks to: Nicolas Borie, Anne Schilling, Travis Scrimshaw, and Nicolas Thiéry.

class sage.combinat.crystals.alcove_path.CrystalOfAlcovePaths(starting_weight,
highest_weight_crystal)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Crystal of alcove paths generated from a “straight-line” path to the negative of a given dominant weight.

INPUT:

• cartan_type – Cartan type of a finite or affine untwisted root system.

• weight – Dominant weight as a list of (integral) coefficients of the fundamental weights.

• highest_weight_crystal – (Default: True) If True returns the highest weight crystal. If False returns
an object which is close to being isomorphic to the tensor product of Kirillov-Reshetikhin crystals of column
shape in the following sense: We get all the vertices, but only some of the edges. We’ll call the included
edges pseudo-Demazure. They are all non-zero edges and the 0-edges not at the end of a 0-string of edges,
i.e. not those with 𝑓0(𝑏) = 𝑏′ with 𝜙0(𝑏) = 1. (Whereas Demazure 0-edges are those that are not at the
beginning of a zero string.) In this case the weight [𝑐1, 𝑐2, . . . , 𝑐𝑘] represents

∑︀𝑘
𝑖=1 𝑐𝑖𝜔𝑖.

Note: If highest_weight_crystal = False, since we do not get the full crystal, TestSuite will fail
on the Stembridge axioms.

See also:

• Crystals

EXAMPLES:

The following example appears in Figure 2 of [LP2008]:

sage: C = crystals.AlcovePaths(['G',2],[0,1])
sage: G = C.digraph()
sage: GG = DiGraph({
....: () : {(0) : 2 },
....: (0) : {(0,8) : 1 },
....: (0,1) : {(0,1,7) : 2 },
....: (0,1,2) : {(0,1,2,9) : 1 },
....: (0,1,2,3) : {(0,1,2,3,4) : 2 },
....: (0,1,2,6) : {(0,1,2,3) : 1 },
....: (0,1,2,9) : {(0,1,2,6) : 1 },
....: (0,1,7) : {(0,1,2) : 2 },
....: (0,1,7,9) : {(0,1,2,9) : 2 },
....: (0,5) : {(0,1) : 1, (0,5,7) : 2 },
....: (0,5,7) : {(0,5,7,9) : 1 },
....: (0,5,7,9) : {(0,1,7,9) : 1 },

(continues on next page)

5.1. Comprehensive Module List 351

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/categories/sage/categories/crystals.html#sage.categories.crystals.Crystals

Combinatorics, Release 9.7

(continued from previous page)

....: (0,8) : {(0,5) : 1 },

....: })
sage: G.is_isomorphic(GG)
True
sage: for (u,v,i) in G.edges(sort=True):
....: print((u.integer_sequence() , v.integer_sequence(), i))
([], [0], 2)
([0], [0, 8], 1)
([0, 1], [0, 1, 7], 2)
([0, 1, 2], [0, 1, 2, 9], 1)
([0, 1, 2, 3], [0, 1, 2, 3, 4], 2)
([0, 1, 2, 6], [0, 1, 2, 3], 1)
([0, 1, 2, 9], [0, 1, 2, 6], 1)
([0, 1, 7], [0, 1, 2], 2)
([0, 1, 7, 9], [0, 1, 2, 9], 2)
([0, 5], [0, 1], 1)
([0, 5], [0, 5, 7], 2)
([0, 5, 7], [0, 5, 7, 9], 1)
([0, 5, 7, 9], [0, 1, 7, 9], 1)
([0, 8], [0, 5], 1)

Alcove path crystals are a discrete version of Littelmann paths. We verify that the alcove path crystal is isomor-
phic to the LS path crystal:

sage: C1 = crystals.AlcovePaths(['C',3],[2,1,0])
sage: g1 = C1.digraph() #long time
sage: C2 = crystals.LSPaths(['C',3],[2,1,0])
sage: g2 = C2.digraph() #long time
sage: g1.is_isomorphic(g2, edge_labels=True) #long time
True

The preferred initialization method is via explicit weights rather than a Cartan type and the coefficients of the
fundamental weights:

sage: R = RootSystem(['C',3])
sage: P = R.weight_lattice()
sage: La = P.fundamental_weights()
sage: C = crystals.AlcovePaths(2*La[1]+La[2]); C
Highest weight crystal of alcove paths of type ['C', 3] and weight 2*Lambda[1] +␣
→˓Lambda[2]
sage: C1==C
True

We now explain the data structure:

sage: C = crystals.AlcovePaths(['A',2],[2,0]) ; C
Highest weight crystal of alcove paths of type ['A', 2] and weight 2*Lambda[1]
sage: C._R.lambda_chain()
[(alpha[1], 0), (alpha[1] + alpha[2], 0), (alpha[1], 1), (alpha[1] + alpha[2], 1)]

The previous list gives the initial “straight line” path from the fundamental alcove 𝐴𝑜 to its translation 𝐴𝑜 − 𝜆
where 𝜆 = 2𝜔1 in this example. The initial path for weight 𝜆 is called the 𝜆-chain. This path is constructed from
the ordered pairs (𝛽, 𝑘), by crossing the hyperplane orthogonal to 𝛽 at height −𝑘. We can view a plot of this

352 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

path as follows:

sage: x=C(())
sage: x.plot() # not tested - outputs a pdf

An element of the crystal is given by a subset of the 𝜆-chain. This subset indicates the hyperplanes where the
initial path should be folded. The highest weight element is given by the empty subset.

sage: x
()
sage: x.f(1).f(2)
((alpha[1], 1), (alpha[1] + alpha[2], 1))
sage: x.f(1).f(2).integer_sequence()
[2, 3]
sage: C([2,3])
((alpha[1], 1), (alpha[1] + alpha[2], 1))
sage: C([2,3]).is_admissible() #check if a valid vertex
True
sage: C([1,3]).is_admissible() #check if a valid vertex
False

Alcove path crystals now works in affine type (trac ticket #14143):

sage: C = crystals.AlcovePaths(['A',2,1],[1,0,0]) ; C
Highest weight crystal of alcove paths of type ['A', 2, 1] and weight Lambda[0]
sage: x=C(())
sage: x.f(0)
((alpha[0], 0),)
sage: C.R
Root system of type ['A', 2, 1]
sage: C.weight
Lambda[0]

Test that the tensor products of Kirillov-Reshetikhin crystals minus non-pseudo-Demazure arrows is in bijection
with alcove path construction:

sage: K = crystals.KirillovReshetikhin(['B',3,1],2,1)
sage: T = crystals.TensorProduct(K,K)
sage: g = T.digraph() #long time
sage: for e in g.edges(sort=False): #long time
....: if e[0].phi(0) == 1 and e[2] == 0: #long time
....: g.delete_edge(e) #long time

sage: C = crystals.AlcovePaths(['B',3,1],[0,2,0], highest_weight_crystal=False)
sage: g2 = C.digraph() #long time
sage: g.is_isomorphic(g2, edge_labels = True) #long time
True

Note: In type 𝐶(1)
𝑛 , the Kirillov-Reshetikhin crystal is not connected when restricted to pseudo-Demazure

arrows, hence the previous example will fail for type 𝐶(1)
𝑛 crystals.

5.1. Comprehensive Module List 353

https://trac.sagemath.org/14143

Combinatorics, Release 9.7

sage: R = RootSystem(['B',3])
sage: P = R.weight_lattice()
sage: La = P.fundamental_weights()
sage: D = crystals.AlcovePaths(2*La[2], highest_weight_crystal=False)
sage: C == D
True

Warning: Weights from finite root systems index non-highest weight crystals.

Element
alias of CrystalOfAlcovePathsElement

vertices()
Return a list of all the vertices of the crystal.

The vertices are represented as lists of integers recording the folding positions.

One can compute all vertices of the crystal by finding all the admissible subsets of the 𝜆-chain (see method
is_admissible, for definition). We use the breadth first search algorithm.

Warning: This method is (currently) only useful for the case when highest_weight_crystal =
False, where you cannot always reach all vertices of the crystal using crystal operators, starting from
the highest weight vertex. This method is typically slower than generating the crystal graph using crystal
operators.

EXAMPLES:

sage: C = crystals.AlcovePaths(['C',2],[1,0])
sage: C.vertices()
[[], [0], [0, 1], [0, 1, 2]]
sage: C = crystals.AlcovePaths(['C',2,1],[2,1],False)
sage: len(C.vertices())
80

The number of elements reachable using the crystal operators from the module generator:

sage: len(list(C))
55

class sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement
Bases: sage.structure.element_wrapper.ElementWrapper

Crystal of alcove paths element.

INPUT:

• data – a list of folding positions in the lambda chain (indexing starts at 0) or a tuple of RootsWithHeight
giving folding positions in the lambda chain.

EXAMPLES:

sage: C = crystals.AlcovePaths(['A',2],[3,2])
sage: x = C (())

(continues on next page)

354 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

(continued from previous page)

sage: x.f(1).f(2)
((alpha[1], 2), (alpha[1] + alpha[2], 4))
sage: x.f(1).f(2).integer_sequence()
[8, 9]
sage: C([8,9])
((alpha[1], 2), (alpha[1] + alpha[2], 4))

e(i)
Return the 𝑖-th crystal raising operator on self.

INPUT:

• i – element of the index set of the underlying root system.

EXAMPLES:

sage: C = crystals.AlcovePaths(['A',2],[2,0]); C
Highest weight crystal of alcove paths of type ['A', 2] and weight 2*Lambda[1]
sage: x = C(())
sage: x.e(1)
sage: x.f(1) == x.f(1).f(2).e(2)
True

epsilon(i)
Return the distance to the start of the 𝑖-string.

EXAMPLES:

sage: C = crystals.AlcovePaths(['A',2],[1,1])
sage: [c.epsilon(1) for c in C]
[0, 1, 0, 0, 1, 0, 1, 2]
sage: [c.epsilon(2) for c in C]
[0, 0, 1, 2, 1, 1, 0, 0]

f(i)
Returns the 𝑖-th crystal lowering operator on self.

INPUT:

• i – element of the index_set of the underlying root_system.

EXAMPLES:

sage: C=crystals.AlcovePaths(['B',2],[1,1])
sage: x=C(())
sage: x.f(1)
((alpha[1], 0),)
sage: x.f(1).f(2)
((alpha[1], 0), (alpha[1] + alpha[2], 2))

integer_sequence()
Return a list of integers corresponding to positions in the 𝜆-chain where it is folded.

Todo: Incorporate this method into the _repr_ for finite Cartan type.

5.1. Comprehensive Module List 355

Combinatorics, Release 9.7

Note: Only works for finite Cartan types and indexing starts at 0.

EXAMPLES:

sage: C = crystals.AlcovePaths(['A',2],[3,2])
sage: x = C(())
sage: x.f(1).f(2).integer_sequence()
[8, 9]

is_admissible()
Diagnostic test to check if self is a valid element of the crystal.

If self.value is given by

(𝛽1, 𝑖1), (𝛽2, 𝑖2), . . . , (𝛽𝑘, 𝑖𝑘),

for highest weight crystals this checks if the sequence

1→ 𝑠𝛽1
→ 𝑠𝛽1

𝑠𝛽2
→ · · · → 𝑠𝛽1

𝑠𝛽2
. . . 𝑠𝛽𝑘

is a path in the Bruhat graph. If highest_weight_crystal=False, then the method checks if the above
sequence is a path in the quantum Bruhat graph.

EXAMPLES:

sage: C = crystals.AlcovePaths(['A',2],[1,1]); C
Highest weight crystal of alcove paths of type ['A', 2] and weight Lambda[1] +␣
→˓Lambda[2]
sage: roots = sorted(C._R._root_lattice.positive_roots()); roots
[alpha[1], alpha[1] + alpha[2], alpha[2]]
sage: r1 = C._R(roots[0],0); r1
(alpha[1], 0)
sage: r2 = C._R(roots[2],0); r2
(alpha[2], 0)
sage: r3 = C._R(roots[1],1); r3
(alpha[1] + alpha[2], 1)
sage: x = C((r1,r2))
sage: x.is_admissible()
True
sage: x = C((r3,)); x
((alpha[1] + alpha[2], 1),)
sage: x.is_admissible()
False
sage: C = crystals.AlcovePaths(['C',2,1],[2,1],False)
sage: C([7,8]).is_admissible()
True
sage: C = crystals.AlcovePaths(['A',2],[3,2])
sage: C([2,3]).is_admissible()
True

Todo: Better doctest

356 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

path()
Return the path in the (quantum) Bruhat graph corresponding to self.

EXAMPLES:

sage: C = crystals.AlcovePaths(['B', 3], [3,1,2])
sage: b = C.highest_weight_vector().f_string([1,3,2,1,3,1])
sage: b.path()
[1, s1, s3*s1, s2*s3*s1, s3*s2*s3*s1]
sage: b = C.highest_weight_vector().f_string([2,3,3,2])
sage: b.path()
[1, s2, s3*s2, s2*s3*s2]
sage: b = C.highest_weight_vector().f_string([2,3,3,2,1])
sage: b.path()
[1, s2, s3*s2, s2*s3*s2, s1*s2*s3*s2]

phi(i)
Return the distance to the end of the 𝑖-string.

This method overrides the generic implementation in the category of crystals since this computation is more
efficient.

EXAMPLES:

sage: C = crystals.AlcovePaths(['A',2],[1,1])
sage: [c.phi(1) for c in C]
[1, 0, 0, 1, 0, 2, 1, 0]
sage: [c.phi(2) for c in C]
[1, 2, 1, 0, 0, 0, 0, 1]

plot()
Return a plot self.

Note: Currently only implemented for types 𝐴2, 𝐵2, and 𝐶2.

EXAMPLES:

sage: C = crystals.AlcovePaths(['A',2],[2,0])
sage: x = C(()).f(1).f(2)
sage: x.plot() # Not tested - creates a pdf

weight()
Return the weight of self.

EXAMPLES:

sage: C = crystals.AlcovePaths(['A',2],[2,0])
sage: for i in C: i.weight()
(2, 0, 0)
(1, 1, 0)
(0, 2, 0)
(0, -1, 0)
(-1, 0, 0)
(-2, -2, 0)
sage: B = crystals.AlcovePaths(['A',2,1],[1,0,0])

(continues on next page)

5.1. Comprehensive Module List 357

Combinatorics, Release 9.7

(continued from previous page)

sage: p = B.module_generators[0].f_string([0,1,2])
sage: p.weight()
Lambda[0] - delta

class sage.combinat.crystals.alcove_path.InfinityCrystalOfAlcovePaths(cartan_type)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

ℬ(∞) crystal of alcove paths.

class Element(parent, elt, shift)
Bases: sage.structure.element_wrapper.ElementWrapper

Initialize self.

EXAMPLES:

sage: A = crystals.infinity.AlcovePaths(['F',4])
sage: mg = A.highest_weight_vector()
sage: x = mg.f_string([2,3,1,4,4,2,3,1])
sage: TestSuite(x).run()

e(i)
Return the action of 𝑒𝑖 on self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: A = crystals.infinity.AlcovePaths(['D',5,1])
sage: mg = A.highest_weight_vector()
sage: x = mg.f_string([1,3,4,2,5,4,5,5])
sage: x.f(4).e(5) == x.e(5).f(4)
True

epsilon(i)
Return 𝜀𝑖 of self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: A = crystals.infinity.AlcovePaths(['A',7,2])
sage: mg = A.highest_weight_vector()
sage: x = mg.f_string([1,0,2,3,4,4,4,2,3,3,3])
sage: [x.epsilon(i) for i in A.index_set()]
[0, 0, 0, 3, 0]
sage: x = mg.f_string([2,2,1,1,0,1,0,2,3,3,3,4])
sage: [x.epsilon(i) for i in A.index_set()]
[1, 2, 0, 1, 1]

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:
• i – an element of the index set

EXAMPLES:

358 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

sage: A = crystals.infinity.AlcovePaths(['E',7,1])
sage: mg = A.highest_weight_vector()
sage: mg.f_string([1,3,5,6,4,2,0,2,1,0,2,4,7,4,2])
((alpha[2], -3), (alpha[5], -1), (alpha[1], -1),
(alpha[0] + alpha[1], -2),
(alpha[2] + alpha[4] + alpha[5], -2),
(alpha[5] + alpha[6], -1), (alpha[1] + alpha[3], -1),
(alpha[5] + alpha[6] + alpha[7], -1),
(alpha[0] + alpha[1] + alpha[3], -1),
(alpha[1] + alpha[3] + alpha[4] + alpha[5], -1))

phi(i)
Return 𝜙𝑖 of self.

Let 𝐴 ∈ ℬ(∞) Define 𝜙𝑖(𝐴) := 𝜀𝑖(𝐴) + ⟨ℎ𝑖,wt(𝐴)⟩, where ℎ𝑖 is the 𝑖-th simple coroot and wt(𝐴)
is the weight() of 𝐴.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: A = crystals.infinity.AlcovePaths(['A',8,2])
sage: mg = A.highest_weight_vector()
sage: x = mg.f_string([1,0,2,3,4,4,4,2,3,3,3])
sage: [x.phi(i) for i in A.index_set()]
[1, 1, 1, 3, -2]
sage: x = mg.f_string([2,2,1,1,0,1,0,2,3,3,3,4])
sage: [x.phi(i) for i in A.index_set()]
[4, -1, 0, 0, 2]

projection(k=None)
Return the projection self onto 𝐵(𝑘𝜌).

INPUT:
• k – (optional) if not given, defaults to the smallest value such that self is not None under the

projection
EXAMPLES:

sage: A = crystals.infinity.AlcovePaths(['G',2])
sage: mg = A.highest_weight_vector()
sage: x = mg.f_string([2,1,1,2,2,2,1,1]); x
((alpha[2], -3), (alpha[1] + alpha[2], -3),
(3*alpha[1] + 2*alpha[2], -1), (2*alpha[1] + alpha[2], -1))
sage: x.projection()
((alpha[2], 0), (alpha[1] + alpha[2], 9),
(3*alpha[1] + 2*alpha[2], 8), (2*alpha[1] + alpha[2], 14))
sage: x.projection().parent()
Highest weight crystal of alcove paths of type ['G', 2]
and weight 3*Lambda[1] + 3*Lambda[2]

sage: mg.projection().parent()
Highest weight crystal of alcove paths of type ['G', 2]
and weight 0
sage: mg.f(1).projection().parent()

(continues on next page)

5.1. Comprehensive Module List 359

Combinatorics, Release 9.7

(continued from previous page)

Highest weight crystal of alcove paths of type ['G', 2]
and weight Lambda[1] + Lambda[2]
sage: mg.f(1).f(2).projection().parent()
Highest weight crystal of alcove paths of type ['G', 2]
and weight Lambda[1] + Lambda[2]
sage: b = mg.f_string([1,2,2,1,2])
sage: b.projection().parent()
Highest weight crystal of alcove paths of type ['G', 2]
and weight 2*Lambda[1] + 2*Lambda[2]
sage: b.projection(3).parent()
Highest weight crystal of alcove paths of type ['G', 2]
and weight 3*Lambda[1] + 3*Lambda[2]
sage: b.projection(1)

weight()
Return the weight of self.

EXAMPLES:

sage: A = crystals.infinity.AlcovePaths(['E',6])
sage: mg = A.highest_weight_vector()
sage: fstr = [1,3,4,2,1,2,3,6,5,3,2,6,2]
sage: x = mg.f_string(fstr)
sage: al = A.weight_lattice_realization().simple_roots()
sage: x.weight() == -sum(al[i]*fstr.count(i) for i in A.index_set())
True

class sage.combinat.crystals.alcove_path.RootsWithHeight(weight)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Data structure of the ordered pairs (𝛽, 𝑘), where 𝛽 is a positive root and 𝑘 is a non-negative integer. A total order
is implemented on this set, and depends on the weight.

INPUT:

• cartan_type – Cartan type of a finite or affine untwisted root system

• weight – dominant weight as a list of (integral) coefficients of the fundamental weights

EXAMPLES:

sage: from sage.combinat.crystals.alcove_path import RootsWithHeight
sage: R = RootsWithHeight(['A',2],[1,1]); R
Roots with height of Cartan type ['A', 2] and dominant weight Lambda[1] + Lambda[2]

sage: r1 = R._root_lattice.from_vector(vector([1,0])); r1
alpha[1]
sage: r2 = R._root_lattice.from_vector(vector([1,1])); r2
alpha[1] + alpha[2]

sage: x = R(r1,0); x
(alpha[1], 0)
sage: y = R(r2,1); y
(alpha[1] + alpha[2], 1)

(continues on next page)

360 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

sage: x < y
True

Element
alias of RootsWithHeightElement

lambda_chain()
Return the unfolded 𝜆-chain.

Note: Only works in root systems of finite type.

EXAMPLES:

sage: from sage.combinat.crystals.alcove_path import RootsWithHeight
sage: R = RootsWithHeight(['A',2],[1,1]); R
Roots with height of Cartan type ['A', 2] and dominant weight Lambda[1] +␣
→˓Lambda[2]
sage: R.lambda_chain()
[(alpha[2], 0), (alpha[1] + alpha[2], 0), (alpha[1], 0), (alpha[1] + alpha[2],␣
→˓1)]

word()
Gives the initial alcove path (𝜆-chain) in terms of simple roots. Used for plotting the path.

Note: Currently only implemented for finite Cartan types.

EXAMPLES:

sage: from sage.combinat.crystals.alcove_path import RootsWithHeight
sage: R = RootsWithHeight(['A',2],[3,2])
sage: R.word()
[2, 1, 2, 0, 1, 2, 1, 0, 1, 2]

class sage.combinat.crystals.alcove_path.RootsWithHeightElement(parent, root, height)
Bases: sage.structure.element.Element

Element of RootsWithHeight.

INPUT:

• root – A positive root 𝛽 in our root system

• height – Is an integer, such that 0 ≤ 𝑙 ≤ ⟨𝜆, 𝛽∨⟩

EXAMPLES:

sage: from sage.combinat.crystals.alcove_path import RootsWithHeight
sage: rl = RootSystem(['A',2]).root_lattice()
sage: x = rl.from_vector(vector([1,1])); x
alpha[1] + alpha[2]
sage: R = RootsWithHeight(['A',2],[1,1]); R
Roots with height of Cartan type ['A', 2] and dominant weight Lambda[1] + Lambda[2]
sage: y = R(x, 1); y
(alpha[1] + alpha[2], 1)

5.1. Comprehensive Module List 361

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

sage.combinat.crystals.alcove_path.compare_graphs(g1, g2, node1, node2)
Compare two edge-labeled graphs obtained from Crystal.digraph(), starting from the root nodes of each
graph.

• g1 – graphs, first digraph

• g2 – graphs, second digraph

• node1 – element of g1

• node2 – element of g2

Traverse g1 starting at node1 and compare this graph with the one obtained by traversing g2 starting with node2.
If the graphs match (including labels) then return True. Return False otherwise.

EXAMPLES:

sage: from sage.combinat.crystals.alcove_path import compare_graphs
sage: G1 = crystals.Tableaux(['A',3], shape=[1,1]).digraph()
sage: C = crystals.AlcovePaths(['A',3],[0,1,0])
sage: G2 = C.digraph()
sage: compare_graphs(G1, G2, C(()), G2.vertices(sort=True)[0])
True

5.1.38 Crystals

Introductory material

• An introduction to crystals

• The Lie Methods and Related Combinatorics thematic tutorial

Catalogs of crystals

• Catalog Of Crystals

See also

• The categories for crystals: Crystals, HighestWeightCrystals, FiniteCrystals, ClassicalCrystals,
RegularCrystals, RegularSuperCrystals – The categories for crystals

• Root Systems

5.1.39 Benkart-Kang-Kashiwara crystals for the general-linear Lie superalgebra

class sage.combinat.crystals.bkk_crystals.CrystalOfBKKTableaux(ct, shape)
Bases: sage.combinat.crystals.tensor_product.CrystalOfWords

Crystal of tableaux for type 𝐴(𝑚|𝑛).

This is an implementation of the tableaux model of the Benkart-Kang-Kashiwara crystal [BKK2000] for the Lie
superalgebra gl(𝑚+ 1, 𝑛+ 1).

INPUT:

• ct – a super Lie Cartan type of type 𝐴(𝑚|𝑛)

362 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph
../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph
../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph
../../../../../thematic_tutorials/lie.html
../../../../../../../html/en/reference/categories/sage/categories/crystals.html#sage.categories.crystals.Crystals
../../../../../../../html/en/reference/categories/sage/categories/highest_weight_crystals.html#sage.categories.highest_weight_crystals.HighestWeightCrystals
../../../../../../../html/en/reference/categories/sage/categories/finite_crystals.html#sage.categories.finite_crystals.FiniteCrystals
../../../../../../../html/en/reference/categories/sage/categories/classical_crystals.html#sage.categories.classical_crystals.ClassicalCrystals
../../../../../../../html/en/reference/categories/sage/categories/regular_crystals.html#sage.categories.regular_crystals.RegularCrystals
../../../../../../../html/en/reference/categories/sage/categories/regular_supercrystals.html#sage.categories.regular_supercrystals.RegularSuperCrystals

Combinatorics, Release 9.7

• shape – shape specifying the highest weight; this should be a partition contained in a hook of height 𝑛+ 1
and width 𝑚+ 1

EXAMPLES:

sage: T = crystals.Tableaux(['A', [1,1]], shape = [2,1])
sage: T.cardinality()
20

class Element
Bases: sage.combinat.crystals.tensor_product_element.CrystalOfBKKTableauxElement

genuine_highest_weight_vectors(index_set=None)
Return a tuple of genuine highest weight elements.

A fake highest weight vector is one which is annihilated by 𝑒𝑖 for all 𝑖 in the index set, but whose weight is
not bigger in dominance order than all other elements in the crystal. A genuine highest weight vector is a
highest weight element that is not fake.

EXAMPLES:

sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: B.genuine_highest_weight_vectors()
([[-2, -2, -2], [-1, -1], [1]],)
sage: B.highest_weight_vectors()
([[-2, -2, -2], [-1, -1], [1]],
[[-2, -2, -2], [-1, 2], [1]],
[[-2, -2, 2], [-1, -1], [1]])

shape()
Return the shape of self.

EXAMPLES:

sage: T = crystals.Tableaux(['A', [1, 2]], shape=[2,1])
sage: T.shape()
[2, 1]

5.1.40 Catalog Of Crystals

Let 𝐼 be an index set and let (𝐴,Π,Π∨, 𝑃, 𝑃∨) be a Cartan datum associated with generalized Cartan matrix 𝐴 =
(𝑎𝑖𝑗)𝑖,𝑗∈𝐼 . An abstract crystal associated to this Cartan datum is a set 𝐵 together with maps

𝑒𝑖, 𝑓𝑖 : 𝐵 → 𝐵 ∪ {0}, 𝜀𝑖, 𝜙𝑖 : 𝐵 → Z ∪ {−∞}, wt: 𝐵 → 𝑃,

subject to the following conditions:

1. 𝜙𝑖(𝑏) = 𝜀𝑖(𝑏) + ⟨ℎ𝑖,wt(𝑏)⟩ for all 𝑏 ∈ 𝐵 and 𝑖 ∈ 𝐼;

2. wt(𝑒𝑖𝑏) = wt(𝑏) + 𝛼𝑖 if 𝑒𝑖𝑏 ∈ 𝐵;

3. wt(𝑓𝑖𝑏) = wt(𝑏)− 𝛼𝑖 if 𝑓𝑖𝑏 ∈ 𝐵;

4. 𝜀𝑖(𝑒𝑖𝑏) = 𝜀𝑖(𝑏)− 1, 𝜙𝑖(𝑒𝑖𝑏) = 𝜙𝑖(𝑏) + 1 if 𝑒𝑖𝑏 ∈ 𝐵;

5. 𝜀𝑖(𝑓𝑖𝑏) = 𝜀𝑖(𝑏) + 1, 𝜙𝑖(𝑓𝑖𝑏) = 𝜙𝑖(𝑏)− 1 if 𝑓𝑖𝑏 ∈ 𝐵;

6. 𝑓𝑖𝑏 = 𝑏′ if and only if 𝑏 = 𝑒𝑖𝑏
′ for 𝑏, 𝑏′ ∈ 𝐵 and 𝑖 ∈ 𝐼;

7. if 𝜙𝑖(𝑏) = −∞ for 𝑏 ∈ 𝐵, then 𝑒𝑖𝑏 = 𝑓𝑖𝑏 = 0.

5.1. Comprehensive Module List 363

Combinatorics, Release 9.7

See also:

• sage.categories.crystals

• sage.combinat.crystals.crystals

Catalog

This is a catalog of crystals that are currently implemented in Sage:

• AffineCrystalFromClassical

• AffineCrystalFromClassicalAndPromotion

• AffineFactorization

• AffinizationOf

• AlcovePaths

• FastRankTwo

• FullyCommutativeStableGrothendieck

• GeneralizedYoungWalls

• HighestWeight

• Induced

• KacModule

• KirillovReshetikhin

• KleshchevPartitions

• KyotoPathModel

• Letters

• LSPaths

• Minimaj

• NakajimaMonomials

• OddNegativeRoots

• ProjectedLevelZeroLSPaths

• RiggedConfigurations

• ShiftedPrimedTableaux

• Spins

• SpinsPlus

• SpinsMinus

• Tableaux

Subcatalogs:

• Catalog Of Crystal Models For B(\infty)

• Catalog Of Elementary Crystals

• Catalog Of Crystal Models For Kirillov-Reshetikhin Crystals

364 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/crystals.html#module-sage.categories.crystals

Combinatorics, Release 9.7

Functorial constructions:

• DirectSum

• TensorProduct

5.1.41 Catalog Of Elementary Crystals

See elementary_crystals.

• Component

• Elementary or B

• R

• T

5.1.42 Catalog Of Crystal Models For 𝐵(∞)

We currently have the following models:

• AlcovePaths

• GeneralizedYoungWalls

• LSPaths

• Multisegments

• MVPolytopes

• NakajimaMonomials

• PBW

• PolyhedralRealization

• RiggedConfigurations

• Star

• Tableaux

5.1.43 Catalog Of Crystal Models For Kirillov-Reshetikhin Crystals

We currently have the following models:

• KashiwaraNakashimaTableaux

• KirillovReshetikhinTableaux

• LSPaths

• RiggedConfigurations

5.1. Comprehensive Module List 365

Combinatorics, Release 9.7

5.1.44 An introduction to crystals

Informally, a crystal ℬ is an oriented graph with edges colored in some set 𝐼 such that, for each 𝑖 ∈ 𝐼 , each node 𝑥 has:

• at most one 𝑖-successor, denoted 𝑓𝑖𝑥;

• at most one 𝑖-predecessor, denoted 𝑒𝑖𝑥.

By convention, one writes 𝑓𝑖𝑥 = ∅ and 𝑒𝑖𝑥 = ∅ when 𝑥 has no successor resp. predecessor.

One may think of ℬ as essentially a deterministic automaton whose dual is also deterministic; in this context, the 𝑓𝑖’s
and 𝑒𝑖’s are respectively the transition functions of the automaton and of its dual, and ∅ is the sink.

A crystal comes further endowed with a weight function wt : ℬ → 𝐿 which satisfies appropriate conditions.

In combinatorial representation theory, crystals are used as combinatorial data to model representations of Lie algebra.

Axiomatic definition

Let 𝐶 be a Cartan type (CartanType) with index set 𝐼 , and 𝐿 be a realization of the weight lattice of the type 𝐶. Let
𝛼𝑖 and 𝛼∨𝑖 denote the simple roots and coroots respectively.

A type 𝐶 crystal is a non-empty set ℬ endowed with maps wt : ℬ → 𝐿, 𝑒𝑖, 𝑓𝑖 : ℬ → ℬ ∪ {∅}, and 𝜀𝑖, 𝜙𝑖 : ℬ →
Z ∪ {−∞} for 𝑖 ∈ 𝐼 satisfying the following properties for all 𝑖 ∈ 𝐼:

• for 𝑏, 𝑏′ ∈ ℬ, we have 𝑓𝑖𝑏′ = 𝑏 if and only if 𝑒𝑖𝑏 = 𝑏′;

• if 𝑒𝑖𝑏 ∈ ℬ, then:

– wt(𝑒𝑖𝑏) = wt(𝑏) + 𝛼𝑖,

– 𝜀𝑖(𝑒𝑖𝑏) = 𝜀𝑖(𝑏)− 1,

– 𝜙𝑖(𝑒𝑖𝑏) = 𝜙𝑖(𝑏) + 1;

• if 𝑓𝑖𝑏 ∈ ℬ, then:

– wt(𝑓𝑖𝑏) = wt(𝑏)− 𝛼𝑖,

– 𝜀𝑖(𝑓𝑖𝑏) = 𝜀𝑖(𝑏) + 1,

– 𝜙𝑖(𝑓𝑖𝑏) = 𝜙𝑖(𝑏)− 1;

• 𝜙𝑖(𝑏) = 𝜀𝑖(𝑏) + ⟨𝛼∨𝑖 ,wt(𝑏)⟩,

• if 𝜙𝑖(𝑏) = −∞ for 𝑏 ∈ ℬ, then 𝑒𝑖𝑏 = 𝑓𝑖𝑏 = ∅.

Some further conditions are required to guarantee that this data indeed models a representation of a Lie algebra. For
finite simply laced types a complete characterization is given by Stembridge’s local axioms [Ste2003].

EXAMPLES:

We construct the type 𝐴5 crystal on letters (or in representation theoretic terms, the highest weight crystal of type 𝐴5

corresponding to the highest weight Λ1):

sage: C = crystals.Letters(['A',5]); C
The crystal of letters for type ['A', 5]

It has a single highest weight element:

sage: C.highest_weight_vectors()
(1,)

366 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

A crystal is an enumerated set (see EnumeratedSets); and we can count and list its elements in the usual way:

sage: C.cardinality()
6
sage: C.list()
[1, 2, 3, 4, 5, 6]

as well as use it in for loops:

sage: [x for x in C]
[1, 2, 3, 4, 5, 6]

Here are some more elaborate crystals (see their respective documentations):

sage: Tens = crystals.TensorProduct(C, C)
sage: Spin = crystals.Spins(['B', 3])
sage: Tab = crystals.Tableaux(['A', 3], shape = [2,1,1])
sage: Fast = crystals.FastRankTwo(['B', 2], shape = [3/2, 1/2])
sage: KR = crystals.KirillovReshetikhin(['A',2,1],1,1)

One can get (currently) crude plotting via:

sage: Tab.plot()
Graphics object consisting of 52 graphics primitives

If dot2tex is installed, one can obtain nice latex pictures via:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 1,1)
sage: view(K, pdflatex=True) # optional - dot2tex graphviz, not tested (opens external␣
→˓window)

or with colored edges:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 1,1)
sage: G = K.digraph()
sage: G.set_latex_options(color_by_label={0:"black", 1:"red", 2:"blue", 3:"green"})
sage: view(G, pdflatex=True) # optional - dot2tex graphviz, not tested (opens external␣
→˓window)

For rank two crystals, there is an alternative method of getting metapost pictures. For more information see C.
metapost?.

See also:

The overview of crystal features in Sage

Todo:

• Vocabulary and conventions:

– For a classical crystal: connected / highest weight / irreducible

– . . .

• Layout instructions for plot() for rank 2 types

• RestrictionOfCrystal

5.1. Comprehensive Module List 367

../../../../../../../html/en/reference/categories/sage/categories/enumerated_sets.html#sage.categories.enumerated_sets.EnumeratedSets

Combinatorics, Release 9.7

The crystals library in Sage grew up from an initial implementation in MuPAD-Combinat (see <MuPAD-
Combinat>/lib/COMBINAT/crystals.mu).

class sage.combinat.crystals.crystals.CrystalBacktracker(crystal, index_set=None)
Bases: sage.combinat.backtrack.GenericBacktracker

Time complexity: 𝑂(𝑛𝐹) amortized for each produced element, where 𝑛 is the size of the index set, and 𝐹 is
the cost of computing 𝑒 and 𝑓 operators.

Memory complexity: 𝑂(𝐷) where 𝐷 is the depth of the crystal.

Principle of the algorithm:

Let𝐶 be a classical crystal. It’s an acyclic graph where each connected component has a unique element without
predecessors (the highest weight element for this component). Let’s assume for simplicity that 𝐶 is irreducible
(i.e. connected) with highest weight element 𝑢.

One can define a natural spanning tree of 𝐶 by taking 𝑢 as the root of the tree, and for any other element 𝑦 taking
as ancestor the element 𝑥 such that there is an 𝑖-arrow from 𝑥 to 𝑦 with 𝑖 minimal. Then, a path from 𝑢 to 𝑦
describes the lexicographically smallest sequence 𝑖1, . . . , 𝑖𝑘 such that (𝑓𝑖𝑘 ∘ 𝑓𝑖1)(𝑢) = 𝑦.

Morally, the iterator implemented below just does a depth first search walk through this spanning tree. In practice,
this can be achieved recursively as follows: take an element 𝑥, and consider in turn each successor 𝑦 = 𝑓𝑖(𝑥),
ignoring those such that 𝑦 = 𝑓𝑗(𝑥

′) for some 𝑥′ and 𝑗 < 𝑖 (this can be tested by computing 𝑒𝑗(𝑦) for 𝑗 < 𝑖).

EXAMPLES:

sage: from sage.combinat.crystals.crystals import CrystalBacktracker
sage: C = crystals.Tableaux(['B',3],shape=[3,2,1])
sage: CB = CrystalBacktracker(C)
sage: len(list(CB))
1617
sage: CB = CrystalBacktracker(C, [1,2])
sage: len(list(CB))
8

5.1.45 Direct Sum of Crystals

class sage.combinat.crystals.direct_sum.DirectSumOfCrystals(crystals, facade, keepkey, category,
**options)

Bases: sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Direct sum of crystals.

Given a list of crystals 𝐵0, . . . , 𝐵𝑘 of the same Cartan type, one can form the direct sum 𝐵0 ⊕ · · · ⊕𝐵𝑘.

INPUT:

• crystals – a list of crystals of the same Cartan type

• keepkey – a boolean

The option keepkey is by default set to False, assuming that the crystals are all distinct. In this case the elements
of the direct sum are just represented by the elements in the crystals 𝐵𝑖. If the crystals are not all distinct, one
should set the keepkey option to True. In this case, the elements of the direct sum are represented as tuples
(𝑖, 𝑏) where 𝑏 ∈ 𝐵𝑖.

EXAMPLES:

368 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

sage: C = crystals.Letters(['A',2])
sage: C1 = crystals.Tableaux(['A',2],shape=[1,1])
sage: B = crystals.DirectSum([C,C1])
sage: B.list()
[1, 2, 3, [[1], [2]], [[1], [3]], [[2], [3]]]
sage: [b.f(1) for b in B]
[2, None, None, None, [[2], [3]], None]
sage: B.module_generators
(1, [[1], [2]])

sage: B = crystals.DirectSum([C,C], keepkey=True)
sage: B.list()
[(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3)]
sage: B.module_generators
((0, 1), (1, 1))
sage: b = B(tuple([0,C(1)]))
sage: b
(0, 1)
sage: b.weight()
(1, 0, 0)

The following is required, because DirectSumOfCrystals takes the same arguments as
DisjointUnionEnumeratedSets (which see for details).

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

A class for elements of direct sums of crystals.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['A',2])
sage: B = crystals.DirectSum([C,C], keepkey=True)
sage: [[b, b.e(2)] for b in B]
[[(0, 1), None], [(0, 2), None], [(0, 3), (0, 2)], [(1, 1), None], [(1, 2),␣
→˓None], [(1, 3), (1, 2)]]

epsilon(i)
EXAMPLES:

sage: C = crystals.Letters(['A',2])
sage: B = crystals.DirectSum([C,C], keepkey=True)
sage: b = B(tuple([0,C(2)]))
sage: b.epsilon(2)
0

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

5.1. Comprehensive Module List 369

../../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

sage: C = crystals.Letters(['A',2])
sage: B = crystals.DirectSum([C,C], keepkey=True)
sage: [[b,b.f(1)] for b in B]
[[(0, 1), (0, 2)], [(0, 2), None], [(0, 3), None], [(1, 1), (1, 2)], [(1,␣
→˓2), None], [(1, 3), None]]

phi(i)
EXAMPLES:

sage: C = crystals.Letters(['A',2])
sage: B = crystals.DirectSum([C,C], keepkey=True)
sage: b = B(tuple([0,C(2)]))
sage: b.phi(2)
1

weight()
Return the weight of self.

EXAMPLES:

sage: C = crystals.Letters(['A',2])
sage: B = crystals.DirectSum([C,C], keepkey=True)
sage: b = B(tuple([0,C(2)]))
sage: b
(0, 2)
sage: b.weight()
(0, 1, 0)

weight_lattice_realization()
Return the weight lattice realization used to express weights.

The weight lattice realization is the common parent which all weight lattice realizations of the crystals of
self coerce into.

EXAMPLES:

sage: LaZ = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: LaQ = RootSystem(['A',2,1]).weight_space(extended=True).fundamental_
→˓weights()
sage: B = crystals.LSPaths(LaQ[1])
sage: B.weight_lattice_realization()
Extended weight space over the Rational Field of the Root system of type ['A',␣
→˓2, 1]
sage: C = crystals.AlcovePaths(LaZ[1])
sage: C.weight_lattice_realization()
Extended weight lattice of the Root system of type ['A', 2, 1]
sage: D = crystals.DirectSum([B,C])
sage: D.weight_lattice_realization()
Extended weight space over the Rational Field of the Root system of type ['A',␣
→˓2, 1]

370 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.46 Elementary Crystals

Let 𝜆 be a weight. The crystals 𝑇𝜆,𝑅𝜆,𝐵𝑖, and𝐶 are important objects in the tensor category of crystals. For example,
the crystal 𝑇0 is the neutral object in this category; i.e., 𝑇0 ⊗𝐵 ∼= 𝐵 ⊗ 𝑇0 ∼= 𝐵 for any crystal 𝐵. We list some other
properties of these crystals:

• The crystal 𝑇𝜆⊗𝐵(∞) is the crystal of the Verma module with highest weight 𝜆, where 𝜆 is a dominant integral
weight.

• Let 𝑢∞ be the highest weight vector of 𝐵(∞) and 𝜆 be a dominant integral weight. There is an embedding
of crystals 𝐵(𝜆) −→ 𝑇𝜆 ⊗ 𝐵(∞) sending 𝑢𝜆 ↦→ 𝑡𝜆 ⊗ 𝑢∞ which is not strict, but the embedding 𝐵(𝜆) −→
𝐶 ⊗ 𝑇𝜆 ⊗𝐵(∞) by 𝑢𝜆 ↦→ 𝑐⊗ 𝑡𝜆 ⊗ 𝑢∞ is a strict embedding.

• For any dominant integral weight 𝜆, there is a surjective crystal morphism Ψ𝜆 : 𝑅𝜆 ⊗ 𝐵(∞) −→ 𝐵(𝜆). More
precisely, if 𝐵 = {𝑟𝜆 ⊗ 𝑏 ∈ 𝑅𝜆 ⊗𝐵(∞) : Ψ𝜆(𝑟𝜆 ⊗ 𝑏) ̸= 0}, then 𝐵 ∼= 𝐵(𝜆) as crystals.

• For all Cartan types and all weights 𝜆, we have 𝑅𝜆 ∼= 𝐶 ⊗ 𝑇𝜆 as crystals.

• For each 𝑖, there is a strict crystal morphism Ψ𝑖 : 𝐵(∞) −→ 𝐵𝑖 ⊗𝐵(∞) defined by 𝑢∞ ↦→ 𝑏𝑖(0)⊗ 𝑢∞, where
𝑢∞ is the highest weight vector of 𝐵(∞).

For more information on 𝐵(∞), see InfinityCrystalOfTableaux.

Note: As with TensorProductOfCrystals, we are using the opposite of Kashiwara’s convention.

AUTHORS:

• Ben Salisbury: Initial version

REFERENCES:

• [Ka1993]

• [NZ1997]

class sage.combinat.crystals.elementary_crystals.AbstractSingleCrystalElement
Bases: sage.structure.element.Element

Abstract base class for elements in crystals with a single element.

e(i)
Return 𝑒𝑖 of self, which is None for all 𝑖.

INPUT:

• i – An element of the index set

EXAMPLES:

sage: ct = CartanType(['A',2])
sage: la = RootSystem(ct).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(ct,la[1])
sage: t = T.highest_weight_vector()
sage: t.e(1)
sage: t.e(2)

f(i)
Return 𝑓𝑖 of self, which is None for all 𝑖.

INPUT:

• i – An element of the index set

5.1. Comprehensive Module List 371

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

EXAMPLES:

sage: ct = CartanType(['A',2])
sage: la = RootSystem(ct).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(ct,la[1])
sage: t = T.highest_weight_vector()
sage: t.f(1)
sage: t.f(2)

class sage.combinat.crystals.elementary_crystals.ComponentCrystal(cartan_type, P)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The component crystal.

Defined in [Ka1993], the component crystal 𝐶 = {𝑐} is the single element crystal whose crystal structure is
defined by

wt(𝑐) = 0, 𝑒𝑖𝑐 = 𝑓𝑖𝑐 = 0, 𝜀𝑖(𝑐) = 𝜙𝑖(𝑐) = 0.

Note 𝐶 ∼= 𝐵(0), where 𝐵(0) is the highest weight crystal of highest weight 0.

INPUT:

• cartan_type – a Cartan type

class Element
Bases: sage.combinat.crystals.elementary_crystals.AbstractSingleCrystalElement

Element of a component crystal.

epsilon(i)
Return 𝜀𝑖 of self, which is 0 for all 𝑖.

INPUT:
• i – An element of the index set

EXAMPLES:

sage: C = crystals.elementary.Component("C5")
sage: c = C.highest_weight_vector()
sage: [c.epsilon(i) for i in C.index_set()]
[0, 0, 0, 0, 0]

phi(i)
Return 𝜙𝑖 of self, which is 0 for all 𝑖.

INPUT:
• i – An element of the index set

EXAMPLES:

sage: C = crystals.elementary.Component("C5")
sage: c = C.highest_weight_vector()
sage: [c.phi(i) for i in C.index_set()]
[0, 0, 0, 0, 0]

weight()
Return the weight of self, which is always 0.

EXAMPLES:

372 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: C = crystals.elementary.Component("F4")
sage: c = C.highest_weight_vector()
sage: c.weight()
(0, 0, 0, 0)

cardinality()
Return the cardinality of self, which is always 1.

EXAMPLES:

sage: C = crystals.elementary.Component("E6")
sage: c = C.highest_weight_vector()
sage: C.cardinality()
1

weight_lattice_realization()
Return the weight lattice realization of self.

EXAMPLES:

sage: C = crystals.elementary.Component("A2")
sage: C.weight_lattice_realization()
Ambient space of the Root system of type ['A', 2]

sage: P = RootSystem(['A',2]).weight_lattice()
sage: C = crystals.elementary.Component(P)
sage: C.weight_lattice_realization() is P
True

class sage.combinat.crystals.elementary_crystals.ElementaryCrystal(cartan_type, i)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The elementary crystal 𝐵𝑖.

For 𝑖 an element of the index set of type 𝑋 , the crystal 𝐵𝑖 of type 𝑋 is the set

𝐵𝑖 = {𝑏𝑖(𝑚) : 𝑚 ∈ Z},

where the crystal structure is given by

wt
(︀
𝑏𝑖(𝑚)

)︀
= 𝑚𝛼𝑖

𝜙𝑗
(︀
𝑏𝑖(𝑚)

)︀
=

{︃
𝑚 if 𝑗 = 𝑖,

−∞ if 𝑗 ̸= 𝑖,

𝜀𝑗
(︀
𝑏𝑖(𝑚)

)︀
=

{︃
−𝑚 if 𝑗 = 𝑖,

−∞ if 𝑗 ̸= 𝑖,

𝑒𝑗𝑏𝑖(𝑚) =

{︃
𝑏𝑖(𝑚+ 1) if 𝑗 = 𝑖,

0 if 𝑗 ̸= 𝑖,

𝑓𝑗𝑏𝑖(𝑚) =

{︃
𝑏𝑖(𝑚− 1) if 𝑗 = 𝑖,

0 if 𝑗 ̸= 𝑖.

The Kashiwara embedding theorem asserts there is a unique strict crystal embedding of crystals

𝐵(∞) →˓ 𝐵𝑖 ⊗𝐵(∞),

5.1. Comprehensive Module List 373

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

satisfying certain properties (see [Ka1993]). The above embedding may be iterated to obtain a new embedding

𝐵(∞) →˓ 𝐵𝑖𝑁 ⊗𝐵𝑖𝑁−1
⊗ · · · ⊗𝐵𝑖2 ⊗𝐵𝑖1 ⊗𝐵(∞),

which is a foundational object in the study of polyhedral realizations of crystals (see, for example, [NZ1997]).

class Element(parent, m)
Bases: sage.structure.element.Element

Element of a 𝐵𝑖 crystal.

e(i)
Return the action of 𝑒𝑖 on self.

INPUT:
• i – An element of the index set

EXAMPLES:

sage: B = crystals.elementary.Elementary(['E',7],1)
sage: B(3).e(1)
4
sage: B(172).e_string([1]*171)
343
sage: B(0).e(2)

epsilon(i)
Return 𝜀𝑖 of self.

INPUT:
• i – An element of the index set

EXAMPLES:

sage: B = crystals.elementary.Elementary(['F',4],3)
sage: [[B(j).epsilon(i) for i in B.index_set()] for j in range(5)]
[[-inf, -inf, 0, -inf],
[-inf, -inf, -1, -inf],
[-inf, -inf, -2, -inf],
[-inf, -inf, -3, -inf],
[-inf, -inf, -4, -inf]]

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:
• i – An element of the index set

EXAMPLES:

sage: B = crystals.elementary.Elementary(['E',7],1)
sage: B(3).f(1)
2
sage: B(172).f_string([1]*171)
1
sage: B(0).e(2)

phi(i)
Return 𝜙𝑖 of self.

INPUT:

374 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

• i – An element of the index set
EXAMPLES:

sage: B = crystals.elementary.Elementary(['E',8,1],4)
sage: [[B(m).phi(j) for j in B.index_set()] for m in range(44,49)]
[[-inf, -inf, -inf, -inf, 44, -inf, -inf, -inf, -inf],
[-inf, -inf, -inf, -inf, 45, -inf, -inf, -inf, -inf],
[-inf, -inf, -inf, -inf, 46, -inf, -inf, -inf, -inf],
[-inf, -inf, -inf, -inf, 47, -inf, -inf, -inf, -inf],
[-inf, -inf, -inf, -inf, 48, -inf, -inf, -inf, -inf]]

weight()
Return the weight of self.

EXAMPLES:

sage: B = crystals.elementary.Elementary(['C',14],12)
sage: B(-385).weight()
-385*alpha[12]

weight_lattice_realization()
Return a realization of the lattice containing the weights of self.

EXAMPLES:

sage: B = crystals.elementary.Elementary(['A',4, 1], 2)
sage: B.weight_lattice_realization()
Root lattice of the Root system of type ['A', 4, 1]

class sage.combinat.crystals.elementary_crystals.RCrystal(cartan_type, weight, dual)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The crystal 𝑅𝜆.

For a fixed weight 𝜆, the crystal 𝑅𝜆 = {𝑟𝜆} is a single element crystal with the crystal structure defined by

wt(𝑟𝜆) = 𝜆, 𝑒𝑖𝑟𝜆 = 𝑓𝑖𝑟𝜆 = 0, 𝜀𝑖(𝑟𝜆) = −⟨ℎ𝑖, 𝜆⟩, 𝜙𝑖(𝑟𝜆) = 0,

where {ℎ𝑖} are the simple coroots.

Tensoring 𝑅𝜆 with a crystal 𝐵 results in shifting the weights of the vertices in 𝐵 by 𝜆 and may also cut a subset
out of the original graph of𝐵. That is, wt(𝑟𝜆⊗𝑏) = wt(𝑏)+𝜆, where 𝑏 ∈ 𝐵, provided 𝑟𝜆⊗𝑏 ̸= 0. For example,
the crystal graph of𝐵(𝜆) is the same as the crystal graph of𝑅𝜆⊗𝐵(∞) generated from the component 𝑟𝜆⊗𝑢∞.

There is also a dual version of this crystal given by 𝑅∨𝜆 = {𝑟∨𝜆} with the crystal structure defined by

wt(𝑟∨𝜆) = 𝜆, 𝑒𝑖𝑟
∨
𝜆 = 𝑓𝑖𝑟

∨
𝜆 = 0, 𝜀𝑖(𝑟

∨
𝜆) = 0, 𝜙𝑖(𝑟

∨
𝜆) = ⟨ℎ𝑖, 𝜆⟩.

INPUT:

• cartan_type – a Cartan type

• weight – an element of the weight lattice of type cartan_type

• dual – (default: False) boolean

EXAMPLES:

We check by tensoring 𝑅𝜆 with 𝐵(∞) results in a component of 𝐵(𝜆):

5.1. Comprehensive Module List 375

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: B = crystals.infinity.Tableaux("A2")
sage: R = crystals.elementary.R("A2", B.Lambda()[1]+B.Lambda()[2])
sage: T = crystals.TensorProduct(R, B)
sage: mg = T(R.highest_weight_vector(), B.highest_weight_vector())
sage: S = T.subcrystal(generators=[mg])
sage: sorted([x.weight() for x in S], key=str)
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1),
(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
sage: C = crystals.Tableaux("A2", shape=[2,1])
sage: sorted([x.weight() for x in C], key=str)
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1),
(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
sage: GT = T.digraph(subset=S)
sage: GC = C.digraph()
sage: GT.is_isomorphic(GC, edge_labels=True)
True

class Element
Bases: sage.combinat.crystals.elementary_crystals.AbstractSingleCrystalElement

Element of a 𝑅𝜆 crystal.

epsilon(i)
Return 𝜀𝑖 of self.

We have 𝜀𝑖(𝑟𝜆) = −⟨ℎ𝑖, 𝜆⟩ for all 𝑖, where ℎ𝑖 is a simple coroot.

INPUT:
• i – An element of the index set

EXAMPLES:

sage: la = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: R = crystals.elementary.R("A2", la[1])
sage: r = R.highest_weight_vector()
sage: [r.epsilon(i) for i in R.index_set()]
[-1, 0]

sage: R = crystals.elementary.R("A2", la[1], dual=True)
sage: r = R.highest_weight_vector()
sage: [r.epsilon(i) for i in R.index_set()]
[0, 0]

phi(i)
Return 𝜙𝑖 of self, which is 0 for all 𝑖.

INPUT:
• i – An element of the index set

EXAMPLES:

sage: la = RootSystem("C5").weight_lattice().fundamental_weights()
sage: R = crystals.elementary.R("C5", la[4]+la[5])
sage: r = R.highest_weight_vector()
sage: [r.phi(i) for i in R.index_set()]
[0, 0, 0, 0, 0]

(continues on next page)

376 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: R = crystals.elementary.R("C5", la[4]+la[5], dual=True)
sage: r = R.highest_weight_vector()
sage: [r.phi(i) for i in R.index_set()]
[0, 0, 0, 1, 1]

weight()
Return the weight of self, which is always 𝜆.

EXAMPLES:

sage: ct = CartanType(['C',5])
sage: la = RootSystem(ct).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(ct,la[4]+la[5]-la[1]-la[2])
sage: t = T.highest_weight_vector()
sage: t.weight()
-Lambda[1] - Lambda[2] + Lambda[4] + Lambda[5]

cardinality()
Return the cardinality of self, which is always 1.

EXAMPLES:

sage: La = RootSystem(['C',12]).weight_lattice().fundamental_weights()
sage: R = crystals.elementary.R(['C',12],La[9])
sage: R.cardinality()
1

weight_lattice_realization()
Return a realization of the lattice containing the weights of self.

EXAMPLES:

sage: La = RootSystem(['C',12]).weight_lattice().fundamental_weights()
sage: R = crystals.elementary.R(['C',12], La[9])
sage: R.weight_lattice_realization()
Weight lattice of the Root system of type ['C', 12]

sage: ct = CartanMatrix([[2, -4], [-5, 2]])
sage: La = RootSystem(ct).weight_lattice().fundamental_weights()
sage: R = crystals.elementary.R(ct, La[1])
sage: R.weight_lattice_realization()
Weight lattice of the Root system of type
[2 -4]
[-5 2]

class sage.combinat.crystals.elementary_crystals.TCrystal(cartan_type, weight)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The crystal 𝑇𝜆.

Let 𝜆 be a weight. As defined in [Ka1993] the crystal 𝑇𝜆 = {𝑡𝜆} is a single element crystal with the crystal
structure defined by

wt(𝑡𝜆) = 𝜆, 𝑒𝑖𝑡𝜆 = 𝑓𝑖𝑡𝜆 = 0, 𝜀𝑖(𝑡𝜆) = 𝜙𝑖(𝑡𝜆) = −∞.

5.1. Comprehensive Module List 377

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

The crystal 𝑇𝜆 shifts the weights of the vertices in a crystal 𝐵 by 𝜆 when tensored with 𝐵, but leaves the graph
structure of 𝐵 unchanged. That is to say, for all 𝑏 ∈ 𝐵, we have wt(𝑏⊗ 𝑡𝜆) = wt(𝑏) + 𝜆.

INPUT:

• cartan_type – A Cartan type

• weight – An element of the weight lattice of type cartan_type

EXAMPLES:

sage: ct = CartanType(['A',2])
sage: C = crystals.Tableaux(ct, shape=[1])
sage: for x in C: x.weight()
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
sage: La = RootSystem(ct).ambient_space().fundamental_weights()
sage: TLa = crystals.elementary.T(ct, 3*(La[1] + La[2]))
sage: TP = crystals.TensorProduct(TLa, C)
sage: for x in TP: x.weight()
(7, 3, 0)
(6, 4, 0)
(6, 3, 1)
sage: G = C.digraph()
sage: H = TP.digraph()
sage: G.is_isomorphic(H,edge_labels=True)
True

class Element
Bases: sage.combinat.crystals.elementary_crystals.AbstractSingleCrystalElement

Element of a 𝑇𝜆 crystal.

epsilon(i)
Return 𝜀𝑖 of self, which is −∞ for all 𝑖.

INPUT:
• i – An element of the index set

EXAMPLES:

sage: ct = CartanType(['C',5])
sage: la = RootSystem(ct).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(ct,la[4]+la[5]-la[1]-la[2])
sage: t = T.highest_weight_vector()
sage: [t.epsilon(i) for i in T.index_set()]
[-inf, -inf, -inf, -inf, -inf]

phi(i)
Return 𝜙𝑖 of self, which is −∞ for all 𝑖.

INPUT:
• i – An element of the index set

EXAMPLES:

sage: ct = CartanType(['C',5])
sage: la = RootSystem(ct).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(ct,la[4]+la[5]-la[1]-la[2])

(continues on next page)

378 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: t = T.highest_weight_vector()
sage: [t.phi(i) for i in T.index_set()]
[-inf, -inf, -inf, -inf, -inf]

weight()
Return the weight of self, which is always 𝜆.

EXAMPLES:

sage: ct = CartanType(['C',5])
sage: la = RootSystem(ct).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(ct,la[4]+la[5]-la[1]-la[2])
sage: t = T.highest_weight_vector()
sage: t.weight()
-Lambda[1] - Lambda[2] + Lambda[4] + Lambda[5]

cardinality()
Return the cardinality of self, which is always 1.

EXAMPLES:

sage: La = RootSystem(['C',12]).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(['C',12], La[9])
sage: T.cardinality()
1

weight_lattice_realization()
Return a realization of the lattice containing the weights of self.

EXAMPLES:

sage: La = RootSystem(['C',12]).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(['C',12], La[9])
sage: T.weight_lattice_realization()
Weight lattice of the Root system of type ['C', 12]

sage: ct = CartanMatrix([[2, -4], [-5, 2]])
sage: La = RootSystem(ct).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(ct, La[1])
sage: T.weight_lattice_realization()
Weight lattice of the Root system of type
[2 -4]
[-5 2]

5.1. Comprehensive Module List 379

Combinatorics, Release 9.7

5.1.47 Fast Rank Two Crystals

class sage.combinat.crystals.fast_crystals.FastCrystal(ct, shape, format)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An alternative implementation of rank 2 crystals. The root operators are implemented in memory by table lookup.
This means that in comparison with the CrystalsOfTableaux, these crystals are slow to instantiate but faster
for computation. Implemented for types 𝐴2, 𝐵2, and 𝐶2.

INPUT:

• cartan_type – the Cartan type and must be either type 𝐴2, 𝐵2, or 𝐶2

• shape – A shape is of the form [l1,l2] where l1 and l2 are either integers or (in type 𝐵2)
half integers such that l1 - l2 is integral. It is assumed that l1 >= l2 >= 0. If l1 and l2`
are integers, this will produce a crystal isomorphic to the one obtained by
``crystals.Tableaux(type, shape=[l1,l2]). Furthermore crystals.FastRankTwo(['B',
2], l1+1/2, l2+1/2) produces a crystal isomorphic to the following crystal T:

sage: C = crystals.Tableaux(['B',2], shape=[l1,l2]) # not tested
sage: D = crystals.Spins(['B',2]) # not tested
sage: T = crystals.TensorProduct(C, D, C.list()[0], D.list()[0]) # not tested

• format – (default: 'string') the default representation of elements is in term of theBerenstein-
Zelevinsky-Littelmann (BZL) strings [a1, a2, ...] described under metapost in crystals. Alternative
representations may be obtained by the options 'dual_string' or 'simple'. In the 'simple' format,
the element is represented by and integer, and in the 'dual_string' format, it is represented by the BZL
string, but the underlying decomposition of the long Weyl group element into simple reflections is changed.

class Element(parent, value, format)
Bases: sage.structure.element.Element

EXAMPLES:

sage: C = crystals.FastRankTwo(['A',2],shape=[2,1])
sage: c = C(0); c
[0, 0, 0]
sage: C[0].parent()
The fast crystal for A2 with shape [2,1]
sage: TestSuite(c).run()

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.FastRankTwo(['A',2],shape=[2,1])
sage: C(1).e(1)
[0, 0, 0]
sage: C(0).e(1) is None
True

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

380 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/categories/sage/categories/crystals.html#module-sage.categories.crystals
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

sage: C = crystals.FastRankTwo(['A',2],shape=[2,1])
sage: C(6).f(1)
[1, 2, 1]
sage: C(7).f(1) is None
True

weight()
Return the weight of self.

EXAMPLES:

sage: [v.weight() for v in crystals.FastRankTwo(['A',2], shape=[2,1])]
[(2, 1, 0), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 1, 2), (2, 0, 1), (1, 1,␣
→˓1), (0, 2, 1)]
sage: [v.weight() for v in crystals.FastRankTwo(['B',2], shape=[1,0])]
[(1, 0), (0, 1), (0, 0), (0, -1), (-1, 0)]
sage: [v.weight() for v in crystals.FastRankTwo(['B',2], shape=[1/2,1/2])]
[(1/2, 1/2), (1/2, -1/2), (-1/2, 1/2), (-1/2, -1/2)]
sage: [v.weight() for v in crystals.FastRankTwo(['C',2], shape=[1,0])]
[(1, 0), (0, 1), (0, -1), (-1, 0)]
sage: [v.weight() for v in crystals.FastRankTwo(['C',2], shape=[1,1])]
[(1, 1), (1, -1), (0, 0), (-1, 1), (-1, -1)]

cmp_elements(x, y)
Return True if and only if there is a path from x to y in the crystal graph.

Because the crystal graph is classical, it is a directed acyclic graph which can be interpreted as a poset.
This function implements the comparison function of this poset.

EXAMPLES:

sage: C = crystals.FastRankTwo(['A',2],shape=[2,1])
sage: x = C(0)
sage: y = C(1)
sage: C.cmp_elements(x,y)
-1
sage: C.cmp_elements(y,x)
1
sage: C.cmp_elements(x,x)
0

digraph()
Return the digraph associated to self.

EXAMPLES:

sage: C = crystals.FastRankTwo(['A',2],shape=[2,1])
sage: C.digraph()
Digraph on 8 vertices

5.1. Comprehensive Module List 381

Combinatorics, Release 9.7

5.1.48 Fully commutative stable Grothendieck crystal

AUTHORS:

• Jianping Pan (2020-08-31): initial version

• Wencin Poh (2020-08-31): initial version

• Anne Schilling (2020-08-31): initial version

class sage.combinat.crystals.fully_commutative_stable_grothendieck.DecreasingHeckeFactorization(parent,
t)

Bases: sage.structure.element.Element

Class of decreasing factorizations in the 0-Hecke monoid.

INPUT:

• t – decreasing factorization inputted as list of lists

• max_value – maximal value of entries

EXAMPLES:

sage: from sage.combinat.crystals.fully_commutative_stable_grothendieck import␣
→˓DecreasingHeckeFactorization
sage: t = [[3, 2], [], [2, 1]]
sage: h = DecreasingHeckeFactorization(t, 3); h
(3, 2)()(2, 1)
sage: h.excess
1
sage: h.factors
3
sage: h.max_value
3
sage: h.value
((3, 2), (), (2, 1))

sage: u = [[3, 2, 1], [3], [2, 1]]
sage: h = DecreasingHeckeFactorization(u); h
(3, 2, 1)(3)(2, 1)
sage: h.weight()
(2, 1, 3)
sage: h.parent()
Decreasing Hecke factorizations with 3 factors associated to [2, 1, 3, 2, 1] with␣
→˓excess 1

to_increasing_hecke_biword()
Return the associated increasing Hecke biword of self.

EXAMPLES:

sage: from sage.combinat.crystals.fully_commutative_stable_grothendieck import␣
→˓DecreasingHeckeFactorization
sage: t = [[2], [], [2, 1],[4, 3, 1]]
sage: h = DecreasingHeckeFactorization(t, 4)
sage: h.to_increasing_hecke_biword()
[[1, 1, 1, 2, 2, 4], [1, 3, 4, 1, 2, 2]]

382 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

to_word()
Return the word associated to self in the 0-Hecke monoid.

EXAMPLES:

sage: from sage.combinat.crystals.fully_commutative_stable_grothendieck import␣
→˓DecreasingHeckeFactorization
sage: t = [[2], [], [2, 1], [4, 3, 1]]
sage: h = DecreasingHeckeFactorization(t)
sage: h.to_word()
[2, 2, 1, 4, 3, 1]

weight()
Return the weight of self.

EXAMPLES:

sage: from sage.combinat.crystals.fully_commutative_stable_grothendieck import␣
→˓DecreasingHeckeFactorization
sage: t = [[2], [2, 1], [], [4, 3, 1]]
sage: h = DecreasingHeckeFactorization(t, 6)
sage: h.weight()
(3, 0, 2, 1)

class sage.combinat.crystals.fully_commutative_stable_grothendieck.DecreasingHeckeFactorizations(w,
fac-
tors,
ex-
cess)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Set of decreasing factorizations in the 0-Hecke monoid.

INPUT:

• w – an element in the symmetric group

• factors – the number of factors in the factorization

• excess – the total number of letters in the factorization minus the length of a reduced word for w

EXAMPLES:

sage: from sage.combinat.crystals.fully_commutative_stable_grothendieck import␣
→˓DecreasingHeckeFactorizations
sage: S = SymmetricGroup(3+1)
sage: w = S.from_reduced_word([1, 3, 2, 1])
sage: F = DecreasingHeckeFactorizations(w, 3, 3); F
Decreasing Hecke factorizations with 3 factors associated to [1, 3, 2, 1] with␣
→˓excess 3
sage: F.list()
[(3, 1)(3, 1)(3, 2, 1), (3, 1)(3, 2, 1)(2, 1), (3, 2, 1)(2, 1)(2, 1)]

Element
alias of DecreasingHeckeFactorization

list()
Return list of all elements of self.

5.1. Comprehensive Module List 383

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.crystals.fully_commutative_stable_grothendieck import␣
→˓DecreasingHeckeFactorizations
sage: S = SymmetricGroup(3+1)
sage: w = S.from_reduced_word([1, 3, 2, 1])
sage: F = DecreasingHeckeFactorizations(w, 3, 3)
sage: F.list()
[(3, 1)(3, 1)(3, 2, 1), (3, 1)(3, 2, 1)(2, 1), (3, 2, 1)(2, 1)(2, 1)]

class sage.combinat.crystals.fully_commutative_stable_grothendieck.FullyCommutativeStableGrothendieckCrystal(w,
fac-
tors,
ex-
cess)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The crystal on fully commutative decreasing factorizations in the 0-Hecke monoid, as introduced by
[MPPS2020].

INPUT:

• w – an element in the symmetric group or a (skew) shape

• factors – the number of factors in the factorization

• excess – the total number of letters in the factorization minus the length of a reduced word for w

• shape – (default: False) indicator for input w, True if w is entered as a (skew) shape and False otherwise.

EXAMPLES:

sage: S = SymmetricGroup(3+1)
sage: w = S.from_reduced_word([1, 3, 2])
sage: B = crystals.FullyCommutativeStableGrothendieck(w, 3, 2); B
Fully commutative stable Grothendieck crystal of type A_2 associated to [1, 3, 2]␣
→˓with excess 2
sage: B.list()
[(1)(3, 1)(3, 2),
(3, 1)(1)(3, 2),
(3, 1)(3, 1)(2),
(3)(3, 1)(3, 2),
(3, 1)(3)(3, 2),
(3, 1)(3, 2)(2)]

We can also access the crystal by specifying a skew shape:

sage: crystals.FullyCommutativeStableGrothendieck([[2, 2], [1]], 4, 1, shape=True)
Fully commutative stable Grothendieck crystal of type A_3 associated to [2, 1, 3]␣
→˓with excess 1

We can compute the highest weight elements:

sage: hw = [w for w in B if w.is_highest_weight()]
sage: hw
[(1)(3, 1)(3, 2), (3)(3, 1)(3, 2)]

(continues on next page)

384 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

sage: hw[0].weight()
(2, 2, 1)

The crystal operators themselves move elements between adjacent factors:

sage: b = hw[0]; b
(1)(3, 1)(3, 2)
sage: b.f(2)
(3, 1)(1)(3, 2)

class Element(parent, t)
Bases: sage.combinat.crystals.fully_commutative_stable_grothendieck.
DecreasingHeckeFactorization

Create an instance self of element t.

This method takes into account the constraints on the word, the number of factors, and excess statistic
associated to the parent class.

EXAMPLES:

sage: S = SymmetricGroup(3+1)
sage: w = S.from_reduced_word([1, 3, 2])
sage: B = crystals.FullyCommutativeStableGrothendieck(w, 3, 2)
sage: from sage.combinat.crystals.fully_commutative_stable_grothendieck import␣
→˓DecreasingHeckeFactorization
sage: h = DecreasingHeckeFactorization([[3, 1], [3], [3, 2]], 4)
sage: u = B(h); u.value
((3, 1), (3,), (3, 2))
sage: v = B([[3, 1], [3], [3, 2]]); v.value
((3, 1), (3,), (3, 2))

bracketing(i)
Remove all bracketed letters between 𝑖-th and (𝑖+ 1)-th entry.

EXAMPLES:

sage: S = SymmetricGroup(4+1)
sage: w = S.from_reduced_word([3, 2, 1, 4, 3])
sage: B = crystals.FullyCommutativeStableGrothendieck(w, 3, 2)
sage: h = B([[3], [4, 2, 1], [4, 3, 1]])
sage: h.bracketing(1)
[[], []]
sage: h.bracketing(2)
[[], [2, 1]]

e(i)
Return the action of 𝑒𝑖 on self using the rules described in [MPPS2020].

EXAMPLES:

sage: S = SymmetricGroup(4+1)
sage: w = S.from_reduced_word([2, 1, 4, 3, 2])
sage: B = crystals.FullyCommutativeStableGrothendieck(w, 4, 3)
sage: h = B([[4, 2], [4, 2, 1], [3, 2], [2]]); h

(continues on next page)

5.1. Comprehensive Module List 385

Combinatorics, Release 9.7

(continued from previous page)

(4, 2)(4, 2, 1)(3, 2)(2)
sage: h.e(1)
(4, 2)(4, 2, 1)(3)(3, 2)
sage: h.e(2)
(4, 2)(2, 1)(4, 3, 2)(2)
sage: h.e(3)

f(i)
Return the action of 𝑓𝑖 on self using the rules described in [MPPS2020].

EXAMPLES:

sage: S = SymmetricGroup(4+1)
sage: w = S.from_reduced_word([3, 2, 1, 4, 3])
sage: B = crystals.FullyCommutativeStableGrothendieck(w, 4, 3)
sage: h = B([[3, 2], [2, 1], [4, 3], [3, 1]]); h
(3, 2)(2, 1)(4, 3)(3, 1)
sage: h.f(1)
(3, 2)(2, 1)(4, 3, 1)(3)
sage: h.f(2)
sage: h.f(3)
(3, 2, 1)(1)(4, 3)(3, 1)

module_generators()
Return generators for self as a crystal.

EXAMPLES:

sage: S = SymmetricGroup(3+1)
sage: w = S.from_reduced_word([1, 3, 2])
sage: B = crystals.FullyCommutativeStableGrothendieck(w, 3, 2)
sage: B.module_generators
((1)(3, 1)(3, 2), (3)(3, 1)(3, 2))
sage: C = crystals.FullyCommutativeStableGrothendieck(w, 4, 2)
sage: C.module_generators
(()(1)(3, 1)(3, 2),
()(3)(3, 1)(3, 2),
(1)(1)(1)(3, 2),
(1)(1)(3)(3, 2),
(1)(3)(3)(3, 2))

5.1.49 Crystals of Generalized Young Walls

AUTHORS:

• Lucas David-Roesler: Initial version

• Ben Salisbury: Initial version

• Travis Scrimshaw: Initial version

Generalized Young walls are certain generalizations of Young tableaux introduced in [KS2010] and designed to be a
realization of the crystals ℬ(∞) and ℬ(𝜆) in type 𝐴(1)

𝑛 .

REFERENCES:

386 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• [KLRS2016]

• [KS2010]

class sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWalls(n, La)
Bases: sage.combinat.crystals.generalized_young_walls.InfinityCrystalOfGeneralizedYoungWalls

The crystal 𝒴(𝜆) of generalized Young walls of the given type with highest weight 𝜆.

These were characterized in Theorem 4.1 of [KS2010]. See GeneralizedYoungWall.
in_highest_weight_crystal().

INPUT:

• n – type 𝐴(1)
𝑛

• weight – dominant integral weight

EXAMPLES:

sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_
→˓weights()[1]
sage: YLa = crystals.GeneralizedYoungWalls(3,La)
sage: y = YLa([[0],[1,0,3,2,1],[2,1,0],[3]])
sage: y.pp()

3|
0|1|2|

1|2|3|0|1|
0|

sage: y.weight()
-Lambda[0] + Lambda[2] + Lambda[3] - 3*delta
sage: y.in_highest_weight_crystal(La)
True
sage: y.f(1)
[[0], [1, 0, 3, 2, 1], [2, 1, 0], [3], [], [1]]
sage: y.f(1).f(1)
sage: yy = crystals.infinity.GeneralizedYoungWalls(3)([[0], [1, 0, 3, 2, 1], [2, 1,␣
→˓0], [3], [], [1]])
sage: yy.f(1)
[[0], [1, 0, 3, 2, 1], [2, 1, 0], [3], [], [1], [], [], [], [1]]
sage: yyy = yy.f(1)
sage: yyy.in_highest_weight_crystal(La)
False

sage: LS = crystals.LSPaths(['A',3,1],[1,0,0,0])
sage: C = LS.subcrystal(max_depth=4)
sage: G = LS.digraph(subset=C)
sage: P = RootSystem(['A',3,1]).weight_lattice(extended=True)
sage: La = P.fundamental_weights()
sage: YW = crystals.GeneralizedYoungWalls(3,La[0])
sage: CW = YW.subcrystal(max_depth=4)
sage: GW = YW.digraph(subset=CW)
sage: GW.is_isomorphic(G,edge_labels=True)
True

To display the crystal down to a specified depth:

5.1. Comprehensive Module List 387

Combinatorics, Release 9.7

sage: S = YLa.subcrystal(max_depth=4)
sage: G = YLa.digraph(subset=S)
sage: view(G) # not tested

Element
alias of CrystalOfGeneralizedYoungWallsElement

class sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWallsElement(parent,
data)

Bases: sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall

Element of the highest weight crystal of generalized Young walls.

e(i)
Compute the action of 𝑒𝑖 restricted to the highest weight crystal.

EXAMPLES:

sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()[1]
sage: hwy = crystals.GeneralizedYoungWalls(2,La)([[],[1,0],[2,1]])
sage: hwy.e(1)
[[], [1, 0], [2]]
sage: hwy.e(2)
sage: hwy.e(3)

f(i)
Compute the action of 𝑓𝑖 restricted to the highest weight crystal.

EXAMPLES:

sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()[1]
sage: GYW = crystals.infinity.GeneralizedYoungWalls(2)
sage: y = GYW([[],[1,0],[2,1]])
sage: y.f(1)
[[], [1, 0], [2, 1], [], [1]]
sage: hwy = crystals.GeneralizedYoungWalls(2,La)([[],[1,0],[2,1]])
sage: hwy.f(1)

phi(i)
Return the value 𝜀𝑖(𝑌) + ⟨ℎ𝑖,wt(𝑌)⟩, where ℎ𝑖 is the 𝑖-th simple coroot and 𝑌 is self.

EXAMPLES:

sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: y = crystals.GeneralizedYoungWalls(3,La[0])([])
sage: y.phi(1)
0
sage: y.phi(2)
0

weight()
Return the weight of self in the highest weight crystal as an element of the weight lattice

⨁︀𝑛
𝑖=0 ZΛ𝑖.

EXAMPLES:

388 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()[1]
sage: hwy = crystals.GeneralizedYoungWalls(2,La)([[],[1,0],[2,1]])
sage: hwy.weight()
Lambda[0] - Lambda[1] + Lambda[2] - delta

class sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall(parent, data)
Bases: sage.combinat.combinat.CombinatorialElement

A generalized Young wall.

For more information, see InfinityCrystalOfGeneralizedYoungWalls.

EXAMPLES:

sage: Y = crystals.infinity.GeneralizedYoungWalls(4)
sage: mg = Y.module_generators[0]; mg.pp()
0
sage: mg.f_string([1,2,0,1]).pp()
1|2|
0|1|

|

Epsilon()
Return

∑︀𝑛
𝑖=0 𝜀𝑖(𝑌)Λ𝑖 where 𝑌 is self.

EXAMPLES:

sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[0],[1,0,3,2],[2,1],[3,2,
→˓1,0,3,2],[0],[],[2]])
sage: y.Epsilon()
Lambda[0] + 3*Lambda[2]

Phi()
Return

∑︀𝑛
𝑖=0 𝜙𝑖(𝑌)Λ𝑖 where 𝑌 is self.

EXAMPLES:

sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[0],[1,0,3,2],[2,1],[3,2,
→˓1,0,3,2],[0],[],[2]])
sage: y.Phi()
-Lambda[0] + 3*Lambda[1] - Lambda[2] + 3*Lambda[3]

sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,
→˓0,3,2],[],[],[2]])
sage: x.Phi()
2*Lambda[0] + Lambda[1] - Lambda[2] + Lambda[3]

a(i, k)
Return the number 𝑎𝑖(𝑘) of 𝑖-colored boxes in the k-th column of self.

EXAMPLES:

sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[0],[1,0,3,2],[2,1],[3,2,
→˓1,0,3,2],[0],[],[2]])
sage: y.a(1,2)

(continues on next page)

5.1. Comprehensive Module List 389

Combinatorics, Release 9.7

(continued from previous page)

1
sage: y.a(0,2)
1
sage: y.a(3,2)
0

column(k)
Return the list of boxes from the k-th column of self.

EXAMPLES:

sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[0],[1,0,3,2],[2,1],[3,2,
→˓1,0,3,2],[0],[],[2]])
sage: y.column(2)
[None, 0, 1, 2, None, None, None]

sage: hw = crystals.infinity.GeneralizedYoungWalls(5)([])
sage: hw.column(1)
[]

content()
Return total number of blocks in self.

EXAMPLES:

sage: y = crystals.infinity.GeneralizedYoungWalls(2)([[0],[1,0],[2,1,0,2],[],
→˓[1]])
sage: y.content()
8

sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,
→˓0,3,2],[],[],[2]])
sage: x.content()
13

e(i)
Return the application of the Kashiwara raising operator 𝑒𝑖 on self.

This will remove the 𝑖-colored box corresponding to the rightmost + in self.signature(i).

EXAMPLES:

sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,
→˓0,3,2],[],[],[2]])
sage: x.e(2)
[[], [1, 0, 3, 2], [2, 1], [3, 2, 1, 0, 3, 2]]
sage: _.e(2)
[[], [1, 0, 3], [2, 1], [3, 2, 1, 0, 3, 2]]
sage: _.e(2)
[[], [1, 0, 3], [2, 1], [3, 2, 1, 0, 3]]
sage: _.e(2)

epsilon(i)
Return the number of 𝑖-colored arrows in the 𝑖-string above self in the crystal graph.

EXAMPLES:

390 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,
→˓0,3,2],[],[],[2]])
sage: y.epsilon(1)
0
sage: y.epsilon(2)
3
sage: y.epsilon(0)
0

f(i)
Return the application of the Kashiwara lowering operator 𝑓𝑖 on self.

This will add an 𝑖-colored colored box to the site corresponding to the leftmost plus in self.
signature(i).

EXAMPLES:

sage: hw = crystals.infinity.GeneralizedYoungWalls(2)([])
sage: hw.f(1)
[[], [1]]
sage: _.f(2)
[[], [1], [2]]
sage: _.f(0)
[[], [1, 0], [2]]
sage: _.f(0)
[[0], [1, 0], [2]]

generate_signature(i)
The 𝑖-signature of self (with whitespace where cancellation occurs) together with the unreduced sequence
from {+,−}. The result also records to the row and column position of the sign.

EXAMPLES:

sage: y = crystals.infinity.GeneralizedYoungWalls(2)([[0],[1,0],[2,1,0,2],[],
→˓[1]])
sage: y.generate_signature(1)
([['+', 2, 5], ['-', 4, 1]], ' ')

in_highest_weight_crystal(La)
Return a boolean indicating if the generalized Young wall element is in the highest weight crystal cut out
by the given highest weight La.

By Theorem 4.1 of [KS2010], a generalized Young wall 𝑌 represents a vertex in the highest weight crystal
𝑌 (𝜆), with 𝜆 = Λ𝑖1 +Λ𝑖2 + · · ·+Λ𝑖ℓ a dominant integral weight of level ℓ > 0, if it satisfies the following
condition. For each positive integer 𝑘, if there exists 𝑗 ∈ 𝐼 such that 𝑎𝑗(𝑘)− 𝑎𝑗−1(𝑘) > 0, then for some
𝑝 = 1, . . . , ℓ,

𝑗 + 𝑘 ≡ 𝑖𝑝 + 1 mod 𝑛+ 1 and 𝑎𝑗(𝑘)− 𝑎𝑗−1(𝑘) ≤ 𝜆(ℎ𝑖𝑝),

where {ℎ0, ℎ1, . . . , ℎ𝑛} is the set of simple coroots attached to 𝐴(1)
𝑛 .

EXAMPLES:

sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()[1]
sage: GYW = crystals.infinity.GeneralizedYoungWalls(2)

(continues on next page)

5.1. Comprehensive Module List 391

Combinatorics, Release 9.7

(continued from previous page)

sage: y = GYW([[],[1,0],[2,1]])
sage: y.in_highest_weight_crystal(La)
True
sage: x = GYW([[],[1],[2],[],[],[2],[],[],[2]])
sage: x.in_highest_weight_crystal(La)
False

latex_large()
Generate LaTeX code for self but the output is larger. Requires TikZ.

EXAMPLES:

sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,
→˓0,3,2],[],[],[2]])
sage: x.latex_large()
'\\begin{tikzpicture}[baseline=5,scale=.45] \n \\foreach \\x [count=\\s from 0]␣
→˓in \n{{},{1,0,3,2},{2,1},{3,2,1,0,3,2},{},{},{2}} \n{\\foreach \\y [count=\\t␣
→˓from 0] in \\x { \\node[font=\\scriptsize] at (-\\t,\\s) {$\\y$}; \n \\draw␣
→˓(-\\t+.5,\\s+.5) to (-\\t-.5,\\s+.5); \n \\draw (-\\t+.5,\\s-.5) to (-\\t-.5,\
→˓\s-.5); \n \\draw (-\\t-.5,\\s-.5) to (-\\t-.5,\\s+.5); } \n \\draw[-,thick]␣
→˓(.5,\\s+1) to (.5,-.5) to (-\\t-1,-.5); } \n \\end{tikzpicture} \n'

number_of_parts()
Return the value of N on self.

In [KLRS2016], the statistic N was defined on elements in 𝒴(∞) which counts how many parts are in
the corresponding Kostant partition. Specifically, the computation of N (𝑌) is done using the following
algorithm:

• If 𝑌 has no rows whose right-most box is colored 𝑛 and such that the length of this row is a multiple
of 𝑛+ 1, then N (𝑌) is the total number of distinct rows in 𝑌 , not counting multiplicity.

• Otherwise, search 𝑌 for the longest row such that the right-most box is colored 𝑛 and such that the
total number of boxes in the row is 𝑘(𝑛+ 1) for some 𝑘 ≥ 1. Replace this row by 𝑛+ 1 distinct rows
of length 𝑘, reordering all rows, if necessary, so that the result is a proper wall. (Note that the resulting
wall may no longer be reduced.) Repeat the search and replace process for all other rows of the above
form for each 𝑘′ < 𝑘. Then N (𝑌) is the number of distinct rows, not counting multiplicity, in the
wall resulting from this process.

EXAMPLES:

sage: Y = crystals.infinity.GeneralizedYoungWalls(3)
sage: y = Y([[0],[],[],[],[0],[],[],[],[0]])
sage: y.number_of_parts()
1

sage: Y = crystals.infinity.GeneralizedYoungWalls(3)
sage: y = Y([[0,3,2],[1,0],[],[],[0,3],[1,0],[],[],[0]])
sage: y.number_of_parts()
4

sage: Y = crystals.infinity.GeneralizedYoungWalls(2)
sage: y = Y([[0,2,1],[1,0],[2,1,0,2,1,0,2,1,0],[],[2,1,0,2,1,0]])
sage: y.number_of_parts()
8

392 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

phi(i)
Return the value 𝜀𝑖(𝑌) + ⟨ℎ𝑖,wt(𝑌)⟩, where ℎ𝑖 is the 𝑖-th simple coroot and 𝑌 is self.

EXAMPLES:

sage: y = crystals.infinity.GeneralizedYoungWalls(3)([[0],[1,0,3,2],[2,1],[3,2,
→˓1,0,3,2],[0],[],[2]])
sage: y.phi(1)
3
sage: y.phi(2)
-1

pp()
Pretty print self.

EXAMPLES:

sage: y = crystals.infinity.GeneralizedYoungWalls(2)([[0,2,1],[1,0,2,1,0],[],
→˓[0],[1,0,2],[],[],[1]])
sage: y.pp()

1|
|
|

2|0|1|
0|
|

0|1|2|0|1|
1|2|0|

raw_signature(i)
Return the sequence from {+,−} obtained from all 𝑖-admissible slots and removable 𝑖-boxes without can-
celing any (+,−)-pairs. The result also notes the row and column of the sign.

EXAMPLES:

sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,
→˓0,3,2],[],[],[2]])
sage: x.raw_signature(2)
[['-', 3, 6], ['-', 1, 4], ['-', 6, 1]]

signature(i)
Return the 𝑖-signature of self.

The signature is obtained by reading self in columns bottom to top starting from the left. Then add a
− at every 𝑖-box which may be removed from self and still obtain a legal generalized Young wall, and
add a + at each site for which an 𝑖-box may be added and still obtain a valid generalized Young wall.
Then successively cancel any (+,−)-pair to obtain a sequence of the form − · · · −+ · · ·+. This resulting
sequence is the output.

EXAMPLES:

sage: y = crystals.infinity.GeneralizedYoungWalls(2)([[0],[1,0],[2,1,0,2],[],
→˓[1]])
sage: y.signature(1)
''

(continues on next page)

5.1. Comprehensive Module List 393

Combinatorics, Release 9.7

(continued from previous page)

sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,
→˓0,3,2],[],[],[2]])
sage: x.signature(2)
'---'

sum_of_weighted_row_lengths()
Return the value of M on self.

Let 𝒴0 ⊂ 𝒴(∞) be the set of generalized Young walls which have no rows whose right-most box is colored
𝑛. For 𝑌 ∈ 𝒴0,

M (𝑌) =

𝑛∑︁
𝑖=1

(𝑖+ 1)𝑀𝑖(𝑌),

where 𝑀𝑖(𝑌) is the number of nonempty rows in 𝑌 whose right-most box is colored 𝑖− 1.

EXAMPLES:

sage: Y = crystals.infinity.GeneralizedYoungWalls(2)
sage: y = Y([[0,2,1,0,2],[1,0,2],[],[0,2],[1,0],[],[0],[1,0]])
sage: y.sum_of_weighted_row_lengths()
15

weight(root_lattice=False)
Return the weight of self.

INPUT:

• root_lattice – boolean determining whether weight should appear in root lattice or not in extended
affine weight lattice.

EXAMPLES:

sage: x = crystals.infinity.GeneralizedYoungWalls(3)([[],[1,0,3,2],[2,1],[3,2,1,
→˓0,3,2],[],[],[2]])
sage: x.weight()
2*Lambda[0] + Lambda[1] - 4*Lambda[2] + Lambda[3] - 2*delta
sage: x.weight(root_lattice=True)
-2*alpha[0] - 3*alpha[1] - 5*alpha[2] - 3*alpha[3]

class sage.combinat.crystals.generalized_young_walls.InfinityCrystalOfGeneralizedYoungWalls(n,
cat-
e-
gory)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The crystal 𝒴(∞) of generalized Young walls of type 𝐴(1)
𝑛 as defined in [KS2010].

A generalized Young wall is a collection of boxes stacked on a fixed board, such that color of the box at the site
located in the 𝑗-th row from the bottom and the 𝑖-th column from the right is 𝑗− 1 mod 𝑛+ 1. There are several
growth conditions on elements in 𝑌 ∈ 𝒴(∞):

• Walls grow in rows from right to left. That is, for every box 𝑦 ∈ 𝑌 that is not in the rightmost column,
there must be a box immediately to the right of 𝑦.

• For all 𝑝 > 𝑞 such that 𝑝− 𝑞 ≡ 0 mod 𝑛+ 1, the 𝑝-th row has most as many boxes as the 𝑞-th row.

394 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

• There does not exist a column in the wall such that if one 𝑖-colored box, for every 𝑖 = 0, 1, . . . , 𝑛, is removed
from that column, then the result satisfies the above conditions.

There is a crystal structure on 𝒴(∞) defined as follows. Define maps

𝑒𝑖, 𝑓𝑖 : 𝒴(∞) −→ 𝒴(∞) ⊔ {0}, 𝜀𝑖, 𝜙𝑖 : 𝒴(∞) −→ Z, wt: 𝒴(∞) −→
𝑛⨁︁
𝑖=0

ZΛ𝑖 ⊕ Z𝛿,

by

wt(𝑌) = −
𝑛∑︁
𝑖=0

𝑚𝑖(𝑌)𝛼𝑖,

where 𝑚𝑖(𝑌) is the number of 𝑖-boxes in 𝑌 , 𝜀𝑖(𝑌) is the number of − in the 𝑖-signature of 𝑌 , and

𝜙𝑖(𝑌) = 𝜀𝑖(𝑌) + ⟨ℎ𝑖,wt(𝑌)⟩.

See GeneralizedYoungWall.e(), GeneralizedYoungWall.f(), and GeneralizedYoungWall.
signature() for more about 𝑒𝑖, 𝑓𝑖, and 𝑖-signatures.

INPUT:

• n – type 𝐴(1)
𝑛

EXAMPLES:

sage: Yinf = crystals.infinity.GeneralizedYoungWalls(3)
sage: y = Yinf([[0],[1,0,3,2],[],[3,2,1],[0],[1,0]])
sage: y.pp()

0|1|
0|

1|2|3|
|

2|3|0|1|
0|

sage: y.weight(root_lattice=True)
-4*alpha[0] - 3*alpha[1] - 2*alpha[2] - 2*alpha[3]
sage: y.f(0)
[[0], [1, 0, 3, 2], [], [3, 2, 1], [0], [1, 0], [], [], [0]]
sage: y.e(0).pp()

0|1|
|

1|2|3|
|

2|3|0|1|
0|

To display the crystal down to depth 3:

sage: S = Yinf.subcrystal(max_depth=3)
sage: G = Yinf.digraph(subset=S) # long time
sage: view(G) # not tested

Element
alias of GeneralizedYoungWall

5.1. Comprehensive Module List 395

Combinatorics, Release 9.7

5.1.50 Highest weight crystals

class sage.combinat.crystals.highest_weight_crystals.FiniteDimensionalHighestWeightCrystal_TypeE(dominant_weight)
Bases: sage.combinat.crystals.tensor_product.TensorProductOfCrystals

Commonalities for all finite dimensional type 𝐸 highest weight crystals.

Subclasses should setup an attribute column_crystal in their __init__ method before calling the __init__
method of this class.

Element
alias of sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement

module_generator()
This yields the module generator (or highest weight element) of the classical crystal of given dominant
weight in self.

EXAMPLES:

sage: C=CartanType(['E',6])
sage: La=C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[2])
sage: T.module_generator()
[[(2, -1), (1,)]]
sage: T = crystals.HighestWeight(0*La[2])
sage: T.module_generator()
[]

sage: C=CartanType(['E',7])
sage: La=C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[1])
sage: T.module_generator()
[[(-7, 1), (7,)]]

class sage.combinat.crystals.highest_weight_crystals.FiniteDimensionalHighestWeightCrystal_TypeE6(dominant_weight)
Bases: sage.combinat.crystals.highest_weight_crystals.FiniteDimensionalHighestWeightCrystal_TypeE

Class of finite dimensional highest weight crystals of type 𝐸6.

EXAMPLES:

sage: C=CartanType(['E',6])
sage: La=C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[2]); T
Finite dimensional highest weight crystal of type ['E', 6] and highest weight␣
→˓Lambda[2]
sage: B1 = T.column_crystal[1]; B1
The crystal of letters for type ['E', 6]
sage: B6 = T.column_crystal[6]; B6
The crystal of letters for type ['E', 6] (dual)
sage: t = T(B6([-1]),B1([-1,3])); t
[(-1,), (-1, 3)]
sage: [t.epsilon(i) for i in T.index_set()]
[2, 0, 0, 0, 0, 0]
sage: [t.phi(i) for i in T.index_set()]
[0, 0, 1, 0, 0, 0]
sage: TestSuite(t).run()

396 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.crystals.highest_weight_crystals.FiniteDimensionalHighestWeightCrystal_TypeE7(dominant_weight)
Bases: sage.combinat.crystals.highest_weight_crystals.FiniteDimensionalHighestWeightCrystal_TypeE

Class of finite dimensional highest weight crystals of type 𝐸7.

EXAMPLES:

sage: C=CartanType(['E',7])
sage: La=C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[1])
sage: T.cardinality()
133
sage: B7 = T.column_crystal[7]; B7
The crystal of letters for type ['E', 7]
sage: t = T(B7([-5, 6]), B7([-2, 3])); t
[(-5, 6), (-2, 3)]
sage: [t.epsilon(i) for i in T.index_set()]
[0, 1, 0, 0, 1, 0, 0]
sage: [t.phi(i) for i in T.index_set()]
[0, 0, 1, 0, 0, 1, 0]
sage: TestSuite(t).run()

sage.combinat.crystals.highest_weight_crystals.HighestWeightCrystal(dominant_weight,
model=None)

Return the highest weight crystal of highest weight dominant_weight of the given model.

INPUT:

• dominant_weight – a dominant weight

• model – (optional) if not specified, then we have the following default models:

– types 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛, 𝐺2 - tableaux

– types 𝐸6,7 - type E finite dimensional crystal

– all other types - LS paths

otherwise can be one of the following:

– 'Tableaux' - KN tableaux

– 'TypeE' - type E finite dimensional crystal

– 'NakajimaMonomials' - Nakajima monomials

– 'LSPaths' - LS paths

– 'AlcovePaths' - alcove paths

– 'GeneralizedYoungWalls' - generalized Young walls

– 'RiggedConfigurations' - rigged configurations

EXAMPLES:

sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: wt = La[1] + La[2]
sage: crystals.HighestWeight(wt)
The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]]

sage: La = RootSystem(['C',2]).weight_lattice().fundamental_weights()
(continues on next page)

5.1. Comprehensive Module List 397

Combinatorics, Release 9.7

(continued from previous page)

sage: wt = 5*La[1] + La[2]
sage: crystals.HighestWeight(wt)
The crystal of tableaux of type ['C', 2] and shape(s) [[6, 1]]

sage: La = RootSystem(['B',2]).weight_lattice().fundamental_weights()
sage: wt = La[1] + La[2]
sage: crystals.HighestWeight(wt)
The crystal of tableaux of type ['B', 2] and shape(s) [[3/2, 1/2]]

Some type 𝐸 examples:

sage: C = CartanType(['E',6])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[1])
sage: T.cardinality()
27
sage: T = crystals.HighestWeight(La[6])
sage: T.cardinality()
27
sage: T = crystals.HighestWeight(La[2])
sage: T.cardinality()
78
sage: T = crystals.HighestWeight(La[4])
sage: T.cardinality()
2925
sage: T = crystals.HighestWeight(La[3])
sage: T.cardinality()
351
sage: T = crystals.HighestWeight(La[5])
sage: T.cardinality()
351

sage: C = CartanType(['E',7])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[1])
sage: T.cardinality()
133
sage: T = crystals.HighestWeight(La[2])
sage: T.cardinality()
912
sage: T = crystals.HighestWeight(La[3])
sage: T.cardinality()
8645
sage: T = crystals.HighestWeight(La[4])
sage: T.cardinality()
365750
sage: T = crystals.HighestWeight(La[5])
sage: T.cardinality()
27664
sage: T = crystals.HighestWeight(La[6])
sage: T.cardinality()
1539

(continues on next page)

398 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T = crystals.HighestWeight(La[7])
sage: T.cardinality()
56

An example with an affine type:

sage: C = CartanType(['C',2,1])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[1])
sage: sorted(T.subcrystal(max_depth=3), key=str)
[(-Lambda[0] + 3*Lambda[1] - Lambda[2] - delta,),
(-Lambda[0] + Lambda[1] + Lambda[2] - delta,),
(-Lambda[1] + 2*Lambda[2] - delta,),
(2*Lambda[0] - Lambda[1],),
(Lambda[0] + Lambda[1] - Lambda[2],),
(Lambda[0] - Lambda[1] + Lambda[2],),
(Lambda[1],)]

Using the various models:

sage: La = RootSystem(['F',4]).weight_lattice().fundamental_weights()
sage: wt = La[1] + La[4]
sage: crystals.HighestWeight(wt)
The crystal of LS paths of type ['F', 4] and weight Lambda[1] + Lambda[4]
sage: crystals.HighestWeight(wt, model='NakajimaMonomials')
Highest weight crystal of modified Nakajima monomials of
Cartan type ['F', 4] and highest weight Lambda[1] + Lambda[4]
sage: crystals.HighestWeight(wt, model='AlcovePaths')
Highest weight crystal of alcove paths of type ['F', 4] and weight Lambda[1] +␣
→˓Lambda[4]
sage: crystals.HighestWeight(wt, model='RiggedConfigurations')
Crystal of rigged configurations of type ['F', 4] and weight Lambda[1] + Lambda[4]
sage: La = RootSystem(['A',3,1]).weight_lattice().fundamental_weights()
sage: wt = La[0] + La[2]
sage: crystals.HighestWeight(wt, model='GeneralizedYoungWalls')
Highest weight crystal of generalized Young walls of
Cartan type ['A', 3, 1] and highest weight Lambda[0] + Lambda[2]

5.1.51 Induced Crystals

We construct a crystal structure on a set induced by a bijection Φ.

AUTHORS:

• Travis Scrimshaw (2014-05-15): Initial implementation

class sage.combinat.crystals.induced_structure.InducedCrystal(X, phi, inverse)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

A crystal induced from an injection.

Let 𝑋 be a set and let 𝐶 be crystal and consider any injection Φ : 𝑋 → 𝐶. We induce a crystal structure on 𝑋
by considering Φ to be a crystal morphism.

5.1. Comprehensive Module List 399

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

Alternatively we can induce a crystal structure on some (sub)set of 𝑋 by considering an injection Φ : 𝐶 → 𝑋
considered as a crystal morphism. This form is also useful when the set 𝑋 is not explicitly known.

INPUT:

• X – the base set

• phi – the map Φ

• inverse – (optional) the inverse map Φ−1

• from_crystal – (default: False) if the induced structure is of the second type Φ : 𝐶 → 𝑋

EXAMPLES:

We construct a crystal structure of Gelfand-Tsetlin patterns by going through their bijection with semistandard
tableaux:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,3))
sage: G = GelfandTsetlinPatterns(4, 3)
sage: phi = lambda x: D(x.to_tableau())
sage: phi_inv = lambda x: G(x.to_tableau())
sage: I = crystals.Induced(G, phi, phi_inv)
sage: I.digraph().is_isomorphic(D.digraph(), edge_labels=True)
True

Now we construct the above example but inducing the structure going the other way (from tableaux to Gelfand-
Tsetlin patterns). This can also give us more information coming from the crystal.

sage: D2 = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,1))
sage: G2 = GelfandTsetlinPatterns(4, 1)
sage: phi2 = lambda x: D2(x.to_tableau())
sage: phi2_inv = lambda x: G2(x.to_tableau())
sage: I2 = crystals.Induced(D2, phi2_inv, phi2, from_crystal=True)
sage: I2.module_generators
([[0, 0, 0, 0], [0, 0, 0], [0, 0], [0]],
[[1, 0, 0, 0], [1, 0, 0], [1, 0], [1]],
[[1, 1, 0, 0], [1, 1, 0], [1, 1], [1]],
[[1, 1, 1, 0], [1, 1, 1], [1, 1], [1]],
[[1, 1, 1, 1], [1, 1, 1], [1, 1], [1]])

We check an example when the codomain is larger than the domain (although here the crystal structure is trivial):

sage: P = Permutations(4)
sage: D = crystals.Tableaux(['A',3], shapes=Partitions(4))
sage: T = crystals.TensorProduct(D, D)
sage: phi = lambda p: T(D(RSK(p)[0]), D(RSK(p)[1]))
sage: phi_inv = lambda d: RSK_inverse(d[0].to_tableau(), d[1].to_tableau(), output=
→˓'permutation')
sage: all(phi_inv(phi(p)) == p for p in P) # Check it really is the inverse
True
sage: I = crystals.Induced(P, phi, phi_inv)
sage: I.digraph()
Digraph on 24 vertices

We construct an example without a specified inverse map:

400 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: X = Words(2,4)
sage: L = crystals.Letters(['A',1])
sage: T = crystals.TensorProduct(*[L]*4)
sage: Phi = lambda x : T(*[L(i) for i in x])
sage: I = crystals.Induced(X, Phi)
sage: I.digraph()
Digraph on 16 vertices

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

An element of an induced crystal.

e(i)
Return 𝑒𝑖 of self.

EXAMPLES:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,3))
sage: G = GelfandTsetlinPatterns(4, 3)
sage: phi = lambda x: D(x.to_tableau())
sage: phi_inv = lambda x: G(x.to_tableau())
sage: I = crystals.Induced(G, phi, phi_inv)
sage: elt = I([[1, 1, 0, 0], [1, 1, 0], [1, 0], [1]])
sage: elt.e(1)
sage: elt.e(2)
[[1, 1, 0, 0], [1, 1, 0], [1, 1], [1]]
sage: elt.e(3)

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,3))
sage: G = GelfandTsetlinPatterns(4, 3)
sage: phi = lambda x: D(x.to_tableau())
sage: phi_inv = lambda x: G(x.to_tableau())
sage: I = crystals.Induced(G, phi, phi_inv)
sage: elt = I([[1, 1, 0, 0], [1, 1, 0], [1, 0], [1]])
sage: [elt.epsilon(i) for i in I.index_set()]
[0, 1, 0]

f(i)
Return 𝑓𝑖 of self.

EXAMPLES:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,3))
sage: G = GelfandTsetlinPatterns(4, 3)
sage: phi = lambda x: D(x.to_tableau())
sage: phi_inv = lambda x: G(x.to_tableau())
sage: I = crystals.Induced(G, phi, phi_inv)
sage: elt = I([[1, 1, 0, 0], [1, 1, 0], [1, 0], [1]])
sage: elt.f(1)
[[1, 1, 0, 0], [1, 1, 0], [1, 0], [0]]

(continues on next page)

5.1. Comprehensive Module List 401

../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

(continued from previous page)

sage: elt.f(2)
sage: elt.f(3)
[[1, 1, 0, 0], [1, 0, 0], [1, 0], [1]]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,3))
sage: G = GelfandTsetlinPatterns(4, 3)
sage: phi = lambda x: D(x.to_tableau())
sage: phi_inv = lambda x: G(x.to_tableau())
sage: I = crystals.Induced(G, phi, phi_inv)
sage: elt = I([[1, 1, 0, 0], [1, 1, 0], [1, 0], [1]])
sage: [elt.phi(i) for i in I.index_set()]
[1, 0, 1]

weight()
Return the weight of self.

EXAMPLES:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,3))
sage: G = GelfandTsetlinPatterns(4, 3)
sage: phi = lambda x: D(x.to_tableau())
sage: phi_inv = lambda x: G(x.to_tableau())
sage: I = crystals.Induced(G, phi, phi_inv)
sage: elt = I([[1, 1, 0, 0], [1, 1, 0], [1, 0], [1]])
sage: elt.weight()
(1, 0, 1, 0)

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: P = Permutations(4)
sage: D = crystals.Tableaux(['A',3], shapes=Partitions(4))
sage: T = crystals.TensorProduct(D, D)
sage: phi = lambda p: T(D(RSK(p)[0]), D(RSK(p)[1]))
sage: phi_inv = lambda d: RSK_inverse(d[0].to_tableau(), d[1].to_tableau(),␣
→˓output='permutation')
sage: I = crystals.Induced(P, phi, phi_inv)
sage: I.cardinality() == factorial(4)
True

class sage.combinat.crystals.induced_structure.InducedFromCrystal(X, phi, inverse)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

A crystal induced from an injection.

Alternatively we can induce a crystal structure on some (sub)set of 𝑋 by considering an injection Φ : 𝐶 → 𝑋
considered as a crystal morphism.

402 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

See also:

InducedCrystal

INPUT:

• X – the base set

• phi – the map Φ

• inverse – (optional) the inverse map Φ−1

EXAMPLES:

We construct a crystal structure on generalized permutations with a fixed first row by using RSK:

sage: C = crystals.Tableaux(['A',3], shape=[2,1])
sage: def psi(x):
....: ret = RSK_inverse(x.to_tableau(), Tableau([[1,1],[2]]))
....: return (tuple(ret[0]), tuple(ret[1]))
sage: psi_inv = lambda x: C(RSK(*x)[0])
sage: I = crystals.Induced(C, psi, psi_inv, from_crystal=True)

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

An element of an induced crystal.

e(i)
Return 𝑒𝑖 of self.

EXAMPLES:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,1))
sage: G = GelfandTsetlinPatterns(4, 1)
sage: def phi(x): return G(x.to_tableau())
sage: def phi_inv(x): return D(G(x).to_tableau())
sage: I = crystals.Induced(D, phi, phi_inv, from_crystal=True)
sage: elt = I([[1, 1, 0, 0], [1, 1, 0], [1, 0], [1]])
sage: elt.e(1)
sage: elt.e(2)
[[1, 1, 0, 0], [1, 1, 0], [1, 1], [1]]
sage: elt.e(3)

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,1))
sage: G = GelfandTsetlinPatterns(4, 1)
sage: def phi(x): return G(x.to_tableau())
sage: def phi_inv(x): return D(G(x).to_tableau())
sage: I = crystals.Induced(D, phi, phi_inv, from_crystal=True)
sage: elt = I([[1, 1, 0, 0], [1, 1, 0], [1, 0], [1]])
sage: [elt.epsilon(i) for i in I.index_set()]
[0, 1, 0]

f(i)
Return 𝑓𝑖 of self.

5.1. Comprehensive Module List 403

../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

EXAMPLES:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,1))
sage: G = GelfandTsetlinPatterns(4, 1)
sage: def phi(x): return G(x.to_tableau())
sage: def phi_inv(x): return D(G(x).to_tableau())
sage: I = crystals.Induced(D, phi, phi_inv, from_crystal=True)
sage: elt = I([[1, 1, 0, 0], [1, 1, 0], [1, 0], [1]])
sage: elt.f(1)
[[1, 1, 0, 0], [1, 1, 0], [1, 0], [0]]
sage: elt.f(2)
sage: elt.f(3)
[[1, 1, 0, 0], [1, 0, 0], [1, 0], [1]]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,1))
sage: G = GelfandTsetlinPatterns(4, 1)
sage: def phi(x): return G(x.to_tableau())
sage: def phi_inv(x): return D(G(x).to_tableau())
sage: I = crystals.Induced(D, phi, phi_inv, from_crystal=True)
sage: elt = I([[1, 1, 0, 0], [1, 1, 0], [1, 0], [1]])
sage: [elt.epsilon(i) for i in I.index_set()]
[0, 1, 0]

weight()
Return the weight of self.

EXAMPLES:

sage: D = crystals.Tableaux(['A',3], shapes=PartitionsInBox(4,1))
sage: G = GelfandTsetlinPatterns(4, 1)
sage: def phi(x): return G(x.to_tableau())
sage: def phi_inv(x): return D(G(x).to_tableau())
sage: I = crystals.Induced(D, phi, phi_inv, from_crystal=True)
sage: elt = I([[1, 1, 0, 0], [1, 1, 0], [1, 0], [1]])
sage: elt.weight()
(1, 0, 1, 0)

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: C = crystals.Tableaux(['A',3], shape=[2,1])
sage: def psi(x):
....: ret = RSK_inverse(x.to_tableau(), Tableau([[1,1],[2]]))
....: return (tuple(ret[0]), tuple(ret[1]))
sage: psi_inv = lambda x: C(RSK(*x)[0])
sage: I = crystals.Induced(C, psi, psi_inv, from_crystal=True)
sage: I.cardinality() == C.cardinality()
True

404 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.52 ℬ(∞) Crystals of Tableaux in Nonexceptional Types and 𝐺2

A tableau model for ℬ(∞). For more information, see InfinityCrystalOfTableaux.

AUTHORS:

• Ben Salisbury: Initial version

• Travis Scrimshaw: Initial version

class sage.combinat.crystals.infinity_crystals.DualInfinityQueerCrystalOfTableaux(cartan_type)
Bases: sage.combinat.crystals.tensor_product.CrystalOfWords

Initialize self.

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['A',2])
sage: TestSuite(B).run() # long time

class Element
Bases: sage.combinat.crystals.tensor_product_element.InfinityQueerCrystalOfTableauxElement

index_set()
Return the index set of self.

EXAMPLES:

sage: B = crystals.infinity.Tableaux(["Q",3])
sage: B.index_set()
(1, 2, -1)

module_generator()
Return the module generator (or highest weight element) of self.

The module generator is the unique semistandard hook tableau of shape (𝑛, 𝑛− 1, . . . , 2, 1) with weight 0.

EXAMPLES:

sage: B = crystals.infinity.Tableaux(["Q",5])
sage: B.module_generator()
[[5, 5, 5, 5, 5], [4, 4, 4, 4], [3, 3, 3], [2, 2], [1]]

class sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux(cartan_type)
Bases: sage.combinat.crystals.tensor_product.CrystalOfWords

ℬ(∞) crystal of tableaux.

A tableaux model 𝒯 (∞) for the crystal ℬ(∞) is introduced by Hong and Lee in [HL2008]. This model is
currently valid for types 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛, and 𝐺2, and builds on the tableaux model given by Kashiwara and
Nakashima [KN1994] in types 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, and 𝐷𝑛, and by Kang and Misra [KM1994] in type 𝐺2.

Note: We are using the English convention for our tableaux.

We say a tableau 𝑇 is marginally large if:

• for each 1 ≤ 𝑖 ≤ 𝑛, the leftmost box in the 𝑖-th row from the top in 𝑇 is an 𝑖-box,

• for each 1 ≤ 𝑖 ≤ 𝑛, the number of 𝑖-boxes in the 𝑖-th row from the top in 𝑇 is greater than the total number
of boxes in the (𝑖+ 1)-th row by exactly one.

5.1. Comprehensive Module List 405

Combinatorics, Release 9.7

We now will describe this tableaux model type-by-type.

Type 𝐴𝑛

𝒯 (∞) is the set of marginally large semistandard tableaux with exactly 𝑛 rows over the alphabet {1 ≺ 2 ≺ · · · ≺
𝑛+ 1}.

Type 𝐵𝑛

𝒯 (∞) is the set of marginally large semistandard tableaux with exactly 𝑛 rows over the alphabet {1 ≺ · · · ≺
𝑛 ≺ 0 ≺ 𝑛 ≺ · · · ≺ 1} and subject to the following constraints:

• for each 1 ≤ 𝑖 ≤ 𝑛, the contents of the boxes in the 𝑖-th row are ⪯ 𝑖,

• the entry 0 can appear at most once in a single row.

Type 𝐶𝑛

𝒯 (∞) is the set of marginally large semistandard tableaux with exactly 𝑛 rows over the alphabet {1 ≺ · · · ≺
𝑛 ≺ 𝑛 ≺ · · · ≺ 1} and for each 1 ≤ 𝑖 ≤ 𝑛, the contents of the boxes in the 𝑖-th row are ⪯ 𝑖.

Type 𝐷𝑛

𝒯 (∞) is the set of marginally large semistandard tableaux with exactly 𝑛− 1 rows over the alphabet {1 ≺ · · · ≺
𝑛, 𝑛 ≺ · · · ≺ 1} and subject to the following constraints:

• for each 1 ≤ 𝑖 ≤ 𝑛, the contents of the boxes in the 𝑖-th row are ⪯ 𝑖,

• the entries 𝑛 and 𝑛 may not appear simultaneously in a single row.

Type 𝐺2

𝒯 (∞) is the set of marginally large semistandard tableaux with exactly 2 rows over the ordered alphabet {1 ≺
2 ≺ 3 ≺ 0 ≺ 3 ≺ 2 ≺ 1} and subject to the following constraints:

• the contents of the boxes in the first row are ⪯ 𝑖,

• the contents of the boxes in the second row are ⪯ 3,

• the entry 0 can appear at most once in the first row and not at all in the second row.

In particular, the shape of the tableaux is not fixed in any instance of 𝒯 (∞); the row lengths of a tableau can be
arbitrarily long.

INPUT:

• cartan_type – One of ['A',n], ['B',n], ['C',n], ['D',n], or ['G',2], where n is a positive integer

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['A',2])
sage: b = B.highest_weight_vector(); b.pp()
1 1
2
sage: b.f_string([2,1,1,2,2,2]).pp()

(continues on next page)

406 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

1 1 1 1 1 2 3
2 3 3 3

sage: B = crystals.infinity.Tableaux(['G',2])
sage: b = B(rows=[[1,1,1,1,1,2,3,3,0,-3,-1,-1,-1],[2,3,3,3]])
sage: b.e_string([2,1,1,1,1,1,1]).pp()
1 1 1 1 2 3 3 3 3 -2 -2 -2
2 3 3
sage: b.e_string([2,1,1,1,1,1,1,1])

We check that a few classical crystals embed into 𝒯 (∞):

sage: def crystal_test(B, C):
....: T = crystals.elementary.T(C.cartan_type(), C.module_generators[0].
→˓weight())
....: TP = crystals.TensorProduct(T, B)
....: mg = TP(T[0], B.module_generators[0])
....: g = {C.module_generators[0]: mg}
....: f = C.crystal_morphism(g, category=HighestWeightCrystals())
....: G = B.digraph(subset=[f(x) for x in C])
....: return G.is_isomorphic(C.digraph(), edge_labels=True)
sage: B = crystals.infinity.Tableaux(['A',2])
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: crystal_test(B, C)
True
sage: C = crystals.Tableaux(['A',2], shape=[6,2])
sage: crystal_test(B, C)
True
sage: B = crystals.infinity.Tableaux(['B',2])
sage: C = crystals.Tableaux(['B',2], shape=[3])
sage: crystal_test(B, C)
True
sage: C = crystals.Tableaux(['B',2], shape=[2,1])
sage: crystal_test(B, C)
True
sage: B = crystals.infinity.Tableaux(['C',3])
sage: C = crystals.Tableaux(['C',3], shape=[2,1])
sage: crystal_test(B, C)
True
sage: B = crystals.infinity.Tableaux(['D',4])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: crystal_test(B, C)
True
sage: C = crystals.Tableaux(['D',4], shape=[1,1,1,1])
sage: crystal_test(B, C)
True
sage: B = crystals.infinity.Tableaux(['G',2])
sage: C = crystals.Tableaux(['G',2], shape=[3])
sage: crystal_test(B, C)
True

class Element
Bases: sage.combinat.crystals.tensor_product_element.InfinityCrystalOfTableauxElement

5.1. Comprehensive Module List 407

Combinatorics, Release 9.7

Elements in ℬ(∞) crystal of tableaux.

content()
Return the content of self.

The content |𝑇 | of 𝑇 ∈ ℬ(∞) is the number of blocks added to the highest weight to obtain 𝑇 with
any 𝚤-boxes in the 𝑖-th row counted with multiplicity 2 provided the underlying Cartan type is of type
𝐵, 𝐷, or 𝐺.

EXAMPLES:

sage: B = crystals.infinity.Tableaux("D5")
sage: b = B.highest_weight_vector().f_string([5,4,3,1,1,3,4,5,3,4,5,1,4,5,2,
→˓3,5,3,2,4])
sage: b.content()
13

sage: B = crystals.infinity.Tableaux("B2")
sage: b = B(rows=[[1,1,1,1,1,1,2,2,2,-2,-2],[2,0,-2,-2,-2]])
sage: b.content()
12

sage: B = crystals.infinity.Tableaux("C2")
sage: b = B(rows=[[1,1,1,1,1,1,2,2,2,-2,-2],[2,-2,-2,-2]])
sage: b.content()
8

phi(i)
Return 𝜙𝑖 of self.

Let 𝑇 ∈ ℬ(∞) Define 𝜙𝑖(𝑇) := 𝜀𝑖(𝑇) + ⟨ℎ𝑖,wt(𝑇)⟩, where ℎ𝑖 is the 𝑖-th simple coroot and wt(𝑇)
is the weight() of 𝑇 .

INPUT:
• i – An element of the index set

EXAMPLES:

sage: B = crystals.infinity.Tableaux("A3")
sage: [B.highest_weight_vector().f_string([1,3,2,3,1,3,2,1]).phi(i) for i␣
→˓in B.index_set()]
[-3, 4, -3]

sage: B = crystals.infinity.Tableaux("G2")
sage: [B.highest_weight_vector().f_string([2,2,1,2,1,1,1,2]).phi(i) for i␣
→˓in B.index_set()]
[5, -3]

reduced_form()
Return the reduced form of self.

The reduced form of a tableaux 𝑇 ∈ 𝒯 (∞) is the (not necessarily semistandard) tableaux obtained
from 𝑇 by removing all 𝑖-boxes in the 𝑖-th row, subject to the condition that if the row is empty, a * is
put as a placeholder. This is described in [BN2010] and [LS2012].

EXAMPLES:

408 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: B = crystals.infinity.Tableaux(['A',3])
sage: b = B.highest_weight_vector().f_string([2,2,2,3,3,3,3,3])
sage: b.pp()
1 1 1 1 1 1 1 1
2 2 2 2 4 4 4
3 4 4
sage: b.reduced_form()
[['*'], [4, 4, 4], [4, 4]]

seg()
Returns the statistic seg of self.

More precisely, following [LS2012], define a 𝑘-segment of a tableau 𝑇 in ℬ(∞) to be a maximal string
of 𝑘-boxes in a single row of 𝑇 . Set seg′(𝑇) to be the number of 𝑘-segments in 𝑇 , as 𝑘 varies over all
possible values. Then seg(𝑇) is determined type-by-type.

• In types 𝐴𝑛 and 𝐶𝑛, define seg(𝑇) := seg′(𝑇).
• In types 𝐵𝑛 and 𝐺2, set 𝑒(𝑇) to be the number of rows in 𝑇 which contain both a 0-box and an
𝚤-box. Define seg(𝑇) := seg′(𝑇)− 𝑒(𝑇).

• In type 𝐷𝑛, set 𝑑(𝑇) to be the number of rows in 𝑇 which contain an 𝚤-box, but no 𝑛-box nor
𝑛-box. Define seg(𝑇) := seg′(𝑇) + 𝑑(𝑇).

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['A',3])
sage: b = B.highest_weight_vector().f_string([1,3,2,2,3,1,1,3])
sage: b.pp()
1 1 1 1 1 1 2 2 4
2 2 2 2 3
3 4 4
sage: b.seg()
4

sage: B = crystals.infinity.Tableaux(['D',4])
sage: b = B(rows=[[1,1,1,1,1,1,3,-2,-1],[2,2,2,4,-2],[3,3],[4]])
sage: b.pp()
1 1 1 1 1 1 3 -2 -1
2 2 2 4 -2
3 3
4
sage: b.seg()
6

sage: B = crystals.infinity.Tableaux(['G',2])
sage: b = B.highest_weight_vector().f_string([2,1,1,1,2,1,2,2,1,2,2,2,1,2,2,
→˓1])
sage: b.pp()
1 1 1 1 1 1 1 1 2 3 0 -3
2 3 3 3 3 3 3
sage: b.seg()
5

weight()
Return the weight of self.

From the definition of a crystal and that the highest weight element 𝑏∞ of ℬ(∞) is 0, the weight of
𝑇 ∈ ℬ(∞) can be defined as wt(𝑇) := −

∑︀
𝑗 𝛼𝑖𝑗 where ̃︀𝑒𝑖1 · · · ̃︀𝑒𝑖ℓ𝑇 = 𝑏∞ and {𝛼𝑖} is the set of

5.1. Comprehensive Module List 409

Combinatorics, Release 9.7

simple roots. (Note that the weight is independent of the path chosen to get to the highest weight.)

However we can also take advantage of the fact that 𝜌 : 𝑅𝜆 ⊗ ℬ(∞) −→ 𝐵(𝜆), where 𝜆 is the shape
of 𝑇 , preserves the tableau representation of 𝑇 . Therefore

wt(𝑇) = wt
(︀
𝜌(𝑇)

)︀
− 𝜆

where wt
(︀
𝜌(𝑇)

)︀
is just the usual weight of the tableau 𝑇 .

Let Λ𝑖 be the 𝑖-th fundamental weight. In type𝐷, the height 𝑛−1 columns corresponds to Λ𝑛−1 +Λ𝑛
and the in type 𝐵, the height 𝑛 columns corresponds to 2Λ𝑛.

EXAMPLES:

sage: B = crystals.infinity.Tableaux("C7")
sage: b = B.highest_weight_vector().f_string([1,6,4,7,4,2,4,6,2,4,6,7,1,2,4,
→˓7])
sage: b.weight()
(-2, -1, 3, -5, 5, -3, -3)

Check that the definitions agree:

sage: P = B.weight_lattice_realization()
sage: alpha = P.simple_roots()
sage: b.weight() == -2*alpha[1] - 3*alpha[2] - 5*alpha[4] - 3*alpha[6] -␣
→˓3*alpha[7]
True

Check that it works for type 𝐵:

sage: B = crystals.infinity.Tableaux("B2")
sage: B.highest_weight_vector().weight()
(0, 0)
sage: b = B.highest_weight_vector().f_string([1,2,2,2,1,2])
sage: P = B.weight_lattice_realization()
sage: alpha = P.simple_roots()
sage: b.weight() == -2*alpha[1] - 4*alpha[2]
True

Check that it works for type 𝐷:

sage: B = crystals.infinity.Tableaux("D4")
sage: B.highest_weight_vector().weight()
(0, 0, 0, 0)
sage: b = B.highest_weight_vector().f_string([1,4,4,2,4,3,2,4,1,3,2,4])
sage: P = B.weight_lattice_realization()
sage: alpha = P.simple_roots()
sage: b.weight() == -2*alpha[1] - 3*alpha[2] - 2*alpha[3] - 5*alpha[4]
True

module_generator()
Return the module generator (or highest weight element) of self.

The module generator is the unique tableau of shape (𝑛, 𝑛− 1, . . . , 2, 1) with weight 0.

EXAMPLES:

410 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: T = crystals.infinity.Tableaux(['A',3])
sage: T.module_generator()
[[1, 1, 1], [2, 2], [3]]

class sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableauxTypeD(cartan_type)
Bases: sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux

ℬ(∞) crystal of tableaux for type 𝐷𝑛.

This is the set 𝒯 (∞) of marginally large semistandard tableaux with exactly 𝑛− 1 rows over the alphabet {1 ≺
· · · ≺ 𝑛, 𝑛 ≺ · · · ≺ 1} and subject to the following constraints:

• for each 1 ≤ 𝑖 ≤ 𝑛, the contents of the boxes in the 𝑖-th row are ⪯ 𝑖,

• the entries 𝑛 and 𝑛 may not appear simultaneously in a single row.

For more information, see InfinityCrystalOfTableaux.

EXAMPLES:

sage: B = crystals.infinity.Tableaux("D4")
sage: b = B.highest_weight_vector().f_string([4,3,2,1,4])
sage: b.pp()
1 1 1 1 1 1 2
2 2 2 2 3
3 -4 -3
sage: b.weight()
(-1, 0, -2, -1)

class Element
Bases: sage.combinat.crystals.tensor_product_element.InfinityCrystalOfTableauxElementTypeD,
sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux.Element

Elements in ℬ(∞) crystal of tableaux for type 𝐷𝑛.

module_generator()
Return the module generator (or highest weight element) of self.

The module generator is the unique tableau of shape (𝑛− 1, . . . , 2, 1) with weight 0.

EXAMPLES:

sage: T = crystals.infinity.Tableaux(['D',4])
sage: T.module_generator()
[[1, 1, 1], [2, 2], [3]]

5.1.53 Crystals of Kac modules of the general-linear Lie superalgebra

class sage.combinat.crystals.kac_modules.CrystalOfKacModule(cartan_type, la, mu)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Crystal of a Kac module.

Let g be the general linear Lie superalgebra gl(𝑚|𝑛). Let 𝜆 and 𝜇 be dominant weights for gl𝑚 and gl𝑛, re-
spectively. Let 𝐾 be the module 𝐾 = ⟨𝑓𝛼⟩, where 𝛼 ranges over all odd positive roots. A Kac module is the

5.1. Comprehensive Module List 411

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

𝑈𝑞(g)-module constructed from the highest weight 𝑈𝑞(gl𝑚⊕ gl𝑛)-module 𝑉 (𝜆, 𝜇) (induced to a 𝑈𝑞(g)-module
in the natural way) by

𝐾(𝜆, 𝜇) := 𝐾 ⊗𝐿 𝑉 (𝜆, 𝜇),

where 𝐿 is the subalgebra generated by 𝑒0 and 𝑈𝑞(gl𝑚 ⊕ gl𝑛).

The Kac module admits a 𝑈𝑞(g)-crystal structure by taking the crystal structure of 𝐾 as given by
CrystalOfOddNegativeRoots and the crystal 𝐵(𝜆, 𝜇) (the natural crystal structure of 𝑉 (𝜆, 𝜇)).

Note: Our notation differs slightly from [Kwon2012] in that our last tableau is transposed.

EXAMPLES:

sage: K = crystals.KacModule(['A', [1,2]], [2], [1,1])
sage: K.cardinality()
576
sage: K.cardinality().factor()
2^6 * 3^2
sage: len(K.cartan_type().root_system().ambient_space().positive_odd_roots())
6
sage: mg = K.module_generator()
sage: mg
({}, [[-2, -2]], [[1], [2]])
sage: mg.weight()
(2, 0, 1, 1, 0)
sage: mg.f(-1)
({}, [[-2, -1]], [[1], [2]])
sage: mg.f(0)
({-e[-1]+e[1]}, [[-2, -2]], [[1], [2]])
sage: mg.f(1)
sage: mg.f(2)
({}, [[-2, -2]], [[1], [3]])

sage: sorted(K.highest_weight_vectors(), key=str)
[({-e[-1]+e[3]}, [[-2, -1]], [[1], [2]]),
({-e[-1]+e[3]}, [[-2, -2]], [[1], [2]]),
({}, [[-2, -2]], [[1], [2]])]

sage: K = crystals.KacModule(['A', [1,1]], [2], [1])
sage: K.cardinality()
96
sage: K.cardinality().factor()
2^5 * 3
sage: len(K.cartan_type().root_system().ambient_space().positive_odd_roots())
4

sage: sorted(K.highest_weight_vectors(), key=str)
[({-e[-1]+e[2]}, [[-2, -1]], [[1]]),
({-e[-1]+e[2]}, [[-2, -2]], [[1]]),
({}, [[-2, -2]], [[1]])]
sage: K.genuine_lowest_weight_vectors()
(({-e[-2]+e[1], -e[-2]+e[2], -e[-1]+e[1], -e[-1]+e[2]}, [[-1, -1]], [[2]]),)

(continues on next page)

412 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: sorted(K.lowest_weight_vectors(), key=str)
[({-e[-1]+e[1], -e[-1]+e[2]}, [[-1, -1]], [[2]]),
({-e[-2]+e[1], -e[-2]+e[2], -e[-1]+e[1], -e[-1]+e[2]}, [[-1, -1]], [[2]]),
({-e[-2]+e[2], -e[-1]+e[1], -e[-1]+e[2]}, [[-1, -1]], [[1]]),
({-e[-2]+e[2], -e[-1]+e[1], -e[-1]+e[2]}, [[-1, -1]], [[2]])]

REFERENCES:

• [Kwon2012]

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

An element of a Kac module crystal.

e(i)
Return the action of the crystal operator 𝑒𝑖 on self.

EXAMPLES:

sage: K = crystals.KacModule(['A', [2,2]], [2,1], [1])
sage: mg = K.module_generator()
sage: mg.e(0)
sage: mg.e(1)
sage: mg.e(-1)
sage: b = mg.f_string([1,0,1,-1,-2,0,1,2,0,-2,-1,-1,-1]); b
({-e[-3]+e[2], -e[-2]+e[1], -e[-2]+e[2]}, [[-3, -1], [-2]], [[3]])
sage: b.e(-2)
sage: b.e(-1)
({-e[-3]+e[2], -e[-2]+e[1], -e[-2]+e[2]}, [[-3, -2], [-2]], [[3]])
sage: b.e(0)
sage: b.e(1)
({-e[-3]+e[1], -e[-2]+e[1], -e[-2]+e[2]}, [[-3, -1], [-2]], [[3]])
sage: b.e(2)
({-e[-3]+e[2], -e[-2]+e[1], -e[-2]+e[2]}, [[-3, -1], [-2]], [[2]])

f(i)
Return the action of the crystal operator 𝑓𝑖 on self.

EXAMPLES:

sage: K = crystals.KacModule(['A', [2,2]], [2,1], [1])
sage: mg = K.module_generator()
sage: mg.f(-2)
({}, [[-3, -2], [-2]], [[1]])
sage: mg.f(-1)
({}, [[-3, -3], [-1]], [[1]])
sage: mg.f(0)
({-e[-1]+e[1]}, [[-3, -3], [-2]], [[1]])
sage: mg.f(1)
({}, [[-3, -3], [-2]], [[2]])
sage: mg.f(2)
sage: b = mg.f_string([1,0,1,-1,-2,0,1,2,0,-2,-1,2,0]); b
({-e[-3]+e[3], -e[-2]+e[1], -e[-1]+e[1], -e[-1]+e[2]},
[[-3, -2], [-2]], [[3]])

5.1. Comprehensive Module List 413

../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

weight()
Return weight of self.

EXAMPLES:

sage: K = crystals.KacModule(['A', [3,2]], [2,1], [5,1])
sage: mg = K.module_generator()
sage: mg.weight()
(2, 1, 0, 0, 5, 1, 0)
sage: mg.weight().is_dominant()
True
sage: mg.f(0).weight()
(2, 1, 0, -1, 6, 1, 0)
sage: b = mg.f_string([2,1,-3,-2,-1,1,1,0,-2,-1,2,1,1,1,0,2,-3,-2,-1])
sage: b.weight()
(0, 0, 0, 1, 1, 4, 3)

module_generator()
Return the module generator of self.

EXAMPLES:

sage: K = crystals.KacModule(['A', [2,1]], [2,1], [1])
sage: K.module_generator()
({}, [[-3, -3], [-2]], [[1]])

class sage.combinat.crystals.kac_modules.CrystalOfOddNegativeRoots(cartan_type)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Crystal of the set of odd negative roots.

Let g be the general-linear Lie superalgebra gl(𝑚|𝑛). This is the crystal structure on the set of negative roots as
given by [Kwon2012].

More specifically, this is the crystal basis of the subalgebra of 𝑈−𝑞 (g) generated by 𝑓𝛼, where 𝛼 ranges over all
odd positive roots. As Q(𝑞)-modules, we have

𝑈−𝑞 (g) ∼= 𝐾 ⊗ 𝑈−𝑞 (gl𝑚 ⊕ gl𝑛).

EXAMPLES:

sage: S = crystals.OddNegativeRoots(['A', [2,1]])
sage: mg = S.module_generator(); mg
{}
sage: mg.f(0)
{-e[-1]+e[1]}
sage: mg.f_string([0,-1,0,1,2,1,0])
{-e[-2]+e[3], -e[-1]+e[1], -e[-1]+e[2]}

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

An element of the crystal of odd negative roots.

e(i)
Return the action of the crystal operator 𝑒𝑖 on self.

EXAMPLES:

414 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

sage: S = crystals.OddNegativeRoots(['A', [2,2]])
sage: mg = S.module_generator()
sage: mg.e(0)
sage: mg.e(1)
sage: b = mg.f_string([0,1,2,-1,0])
sage: b.e(-1)
sage: b.e(0)
{-e[-2]+e[3]}
sage: b.e(1)
sage: b.e(2)
{-e[-2]+e[2], -e[-1]+e[1]}
sage: b.e_string([2,1,0,-1,0])
{}

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: S = crystals.OddNegativeRoots(['A', [2,2]])
sage: mg = S.module_generator()
sage: [mg.epsilon(i) for i in S.index_set()]
[0, 0, 0, 0, 0]
sage: b = mg.f_string([0,1,0,-1,0,-1,-2,-2]); b
{-e[-3]+e[1], -e[-3]+e[2], -e[-1]+e[1]}
sage: [b.epsilon(i) for i in S.index_set()]
[2, 0, 1, 0, 0]
sage: b = mg.f_string([0,1,0,-1,0,-1,-2,-2,2,-1,0]); b
{-e[-3]+e[1], -e[-3]+e[3], -e[-2]+e[1], -e[-1]+e[1]}
sage: [b.epsilon(i) for i in S.index_set()]
[1, 0, 1, 0, 1]

f(i)
Return the action of the crystal operator 𝑓𝑖 on self.

EXAMPLES:

sage: S = crystals.OddNegativeRoots(['A', [2,2]])
sage: mg = S.module_generator()
sage: mg.f(0)
{-e[-1]+e[1]}
sage: mg.f(1)
sage: b = mg.f_string([0,1,2,-1,0]); b
{-e[-2]+e[3], -e[-1]+e[1]}
sage: b.f(-2)
{-e[-3]+e[3], -e[-1]+e[1]}
sage: b.f(-1)
sage: b.f(0)
sage: b.f(1)
{-e[-2]+e[3], -e[-1]+e[2]}

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

5.1. Comprehensive Module List 415

Combinatorics, Release 9.7

sage: S = crystals.OddNegativeRoots(['A', [2,2]])
sage: mg = S.module_generator()
sage: [mg.phi(i) for i in S.index_set()]
[0, 0, 1, 0, 0]
sage: b = mg.f(0)
sage: [b.phi(i) for i in S.index_set()]
[0, 1, 0, 1, 0]
sage: b = mg.f_string([0,1,0,-1,0,-1]); b
{-e[-2]+e[1], -e[-2]+e[2], -e[-1]+e[1]}
sage: [b.phi(i) for i in S.index_set()]
[2, 0, 0, 1, 1]

weight()
Return the weight of self.

EXAMPLES:

sage: S = crystals.OddNegativeRoots(['A', [2,2]])
sage: mg = S.module_generator()
sage: mg.weight()
(0, 0, 0, 0, 0, 0)
sage: mg.f_string([0,1,2,-1,-2]).weight()
(-1, 0, 0, 0, 0, 1)
sage: mg.f_string([0,1,2,-1,-2,0,1,0,2]).weight()
(-1, 0, -2, 1, 0, 2)

module_generator()
Return the module generator of self.

EXAMPLES:

sage: S = crystals.OddNegativeRoots(['A', [2,1]])
sage: S.module_generator()
{}

sage.combinat.crystals.kac_modules.latex_dual(elt)
Return a latex representation of a type 𝐴𝑛 crystal tableau elt expressed in terms of dual letters.

The dual letter of 𝑘 is expressed as 𝑛+ 2− 𝑘.

EXAMPLES:

sage: from sage.combinat.crystals.kac_modules import latex_dual
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: print(latex_dual(T[0]))
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[b]{*{2}c}\cline{1-2}
\lr{\overline{3}}&\lr{\overline{3}}\\\cline{1-2}
\lr{\overline{2}}\\\cline{1-1}
\end{array}$}
}

sage.combinat.crystals.kac_modules.to_dual_tableau(elt)
Return a type 𝐴𝑛 crystal tableau elt as a tableau expressed in terms of dual letters.

The dual letter of 𝑘 is expressed as 𝑛+ 2− 𝑘 represented as −(𝑛+ 2− 𝑘).

416 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.crystals.kac_modules import to_dual_tableau
sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: ascii_art([to_dual_tableau(t) for t in T])
[-3 -3 -3 -2 -3 -1 -3 -1 -2 -1 -3 -3 -3 -2 -2 -2]
[-2 , -2 , -2 , -1 , -1 , -1 , -1 , -1]

5.1.54 Kirillov-Reshetikhin Crystals

class sage.combinat.crystals.kirillov_reshetikhin.AmbientRetractMap(base, ambient, pdict_inv,
index_set, similar-
ity_factor_domain=None,
automorphism=None)

Bases: sage.categories.map.Map

The retraction map from the ambient crystal.

Consider a crystal embedding 𝜑 : 𝑋 → 𝑌 , then the elements𝑋 can be considered as a subcrystal of the ambient
crystal 𝑌 . The ambient retract is the partial map 𝜑 : 𝑌 → 𝑋 such that 𝜑 ∘ 𝜑 is the identity on 𝑋 .

class sage.combinat.crystals.kirillov_reshetikhin.CrystalDiagramAutomorphism(C, on_hw, in-
dex_set=None,
automor-
phism=None,
cache=True)

Bases: sage.categories.crystals.CrystalMorphism

The crystal automorphism induced from the diagram automorphism.

For example, in type 𝐴(1)
𝑛 this is the promotion operator and in type𝐷(1)

𝑛 , this corresponds to the automorphism
induced from interchanging the 0 and 1 nodes in the Dynkin diagram.

INPUT:

• C – a crystal

• on_hw – a function for the images of the index_set-highest weight elements

• index_set – (default: the empty set) the index set

• automorphism – (default: the identity) the twisting automorphism

• cache – (default: True) cache the result

is_embedding()
Return True as self is a crystal isomorphism.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: K.promotion().is_isomorphism()
True

is_isomorphism()
Return True as self is a crystal isomorphism.

EXAMPLES:

5.1. Comprehensive Module List 417

../../../../../../../html/en/reference/categories/sage/categories/map.html#sage.categories.map.Map
../../../../../../../html/en/reference/categories/sage/categories/crystals.html#sage.categories.crystals.CrystalMorphism

Combinatorics, Release 9.7

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: K.promotion().is_isomorphism()
True

is_strict()
Return True as self is a crystal isomorphism.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: K.promotion().is_isomorphism()
True

is_surjective()
Return True as self is a crystal isomorphism.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: K.promotion().is_isomorphism()
True

class sage.combinat.crystals.kirillov_reshetikhin.CrystalOfTableaux_E7(cartan_type, shapes)
Bases: sage.combinat.crystals.tensor_product.CrystalOfTableaux

The type 𝐸7 crystal 𝐵(𝑠Λ7).

This is a helper class for the corresponding:class:𝐾𝑅𝑐𝑟𝑦𝑠𝑡𝑎𝑙 < 𝑠𝑎𝑔𝑒.𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡.𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠.𝑘𝑖𝑟𝑖𝑙𝑙𝑜𝑣𝑟𝑒𝑠ℎ𝑒𝑡𝑖𝑘ℎ𝑖𝑛.𝐾𝑅𝑡𝑦𝑝𝑒𝐸7 >
𝐵7,𝑠.

module_generator(shape)
Return the module generator of self with shape shape.

Note: Only implemented for single rows (i.e., highest weight 𝑠Λ7).

EXAMPLES:

sage: from sage.combinat.crystals.kirillov_reshetikhin import CrystalOfTableaux_
→˓E7
sage: T = CrystalOfTableaux_E7(CartanType(['E',7]), shapes=(Partition([5]),))
sage: T.module_generator([5])
[[(7,), (7,), (7,), (7,), (7,)]]

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_A(cartan_type, r, s)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromPromotion

Class of Kirillov-Reshetikhin crystals of type 𝐴(1)
𝑛 .

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: b = K(rows=[[1,2],[2,4]])
sage: b.f(0)
[[1, 1], [2, 2]]

classical_decomposition()
Specifies the classical crystal underlying the KR crystal of type A.

418 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['A', 3] and shape(s) [[2, 2]]

dynkin_diagram_automorphism(i)
Specifies the Dynkin diagram automorphism underlying the promotion action on the crystal elements. The
automorphism needs to map node 0 to some other Dynkin node.

For type 𝐴 we use the Dynkin diagram automorphism which 𝑖 ↦→ 𝑖+ 1 mod 𝑛+ 1, where 𝑛 is the rank.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: K.dynkin_diagram_automorphism(0)
1
sage: K.dynkin_diagram_automorphism(3)
0

promotion()
Specifies the promotion operator used to construct the affine type 𝐴 crystal.

For type 𝐴 this corresponds to the Dynkin diagram automorphism which 𝑖 ↦→ 𝑖+ 1 mod 𝑛+ 1, where 𝑛
is the rank.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: b = K.classical_decomposition()(rows=[[1,2],[3,4]])
sage: K.promotion()(b)
[[1, 3], [2, 4]]

promotion_inverse()
Specifies the inverse promotion operator used to construct the affine type 𝐴 crystal.

For type 𝐴 this corresponds to the Dynkin diagram automorphism which 𝑖 ↦→ 𝑖− 1 mod 𝑛+ 1, where 𝑛
is the rank.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: b = K.classical_decomposition()(rows=[[1,3],[2,4]])
sage: K.promotion_inverse()(b)
[[1, 2], [3, 4]]
sage: b = K.classical_decomposition()(rows=[[1,2],[3,3]])
sage: K.promotion_inverse()(K.promotion()(b))
[[1, 2], [3, 3]]

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(cartan_type, r, s, dual=None)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal

Class of Kirillov-Reshetikhin crystals𝐵𝑟,𝑠 of type𝐴(2)
2𝑛 for 1 ≤ 𝑟 ≤ 𝑛 in the realization with classical subalgebra

𝐵𝑛. The Cartan type in this case is inputted as the dual of 𝐴(2)
2𝑛 .

This is an alternative implementation to KR_type_box that uses the classical decomposition into type 𝐶𝑛 crys-
tals.

EXAMPLES:

5.1. Comprehensive Module List 419

Combinatorics, Release 9.7

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 1)
sage: K
Kirillov-Reshetikhin crystal of type ['BC', 2, 2]^* with (r,s)=(1,1)
sage: b = K(rows=[[-1]])
sage: b.f(0)
[[1]]
sage: b.e(0)

We can now check whether the two KR crystals of type 𝐴(2)
4 (namely the KR crystal and its dual construction)

are isomorphic up to relabelling of the edges:

sage: C = CartanType(['A',4,2])
sage: K = crystals.KirillovReshetikhin(C,1,1)
sage: Kdual = crystals.KirillovReshetikhin(C.dual(),1,1)
sage: G = K.digraph()
sage: Gdual = Kdual.digraph()
sage: f = {0:2, 1:1, 2:0}
sage: Gnew = DiGraph(); Gnew.add_vertices(Gdual.vertices(sort=True)); Gnew.add_
→˓edges([(u,v,f[i]) for (u,v,i) in Gdual.edges(sort=True)])
sage: G.is_isomorphic(Gnew, edge_labels = True)
True

Element
alias of KR_type_A2Element

ambient_crystal()

Return the ambient crystal 𝐵𝑟,𝑠 of type 𝐵(1)
𝑛+1 associated to the Kirillov-Reshetikhin crystal of type 𝐴(2)

2𝑛

dual.

This ambient crystal is used to construct the zero arrows.

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 2, 3)
sage: K.ambient_crystal()
Kirillov-Reshetikhin crystal of type ['B', 3, 1] with (r,s)=(2,3)

ambient_dict_pm_diagrams()
Return a dictionary of all self-dual ± diagrams for the ambient crystal whose keys are their inner shape.

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 1)
sage: K.ambient_dict_pm_diagrams()
{[1]: [[0, 0], [1]]}
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 2)
sage: K.ambient_dict_pm_diagrams()
{[]: [[1, 1], [0]], [2]: [[0, 0], [2]]}
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 2, 2)
sage: K.ambient_dict_pm_diagrams()
{[]: [[1, 1], [0, 0], [0]],

(continues on next page)

420 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[2]: [[0, 0], [1, 1], [0]],
[2, 2]: [[0, 0], [0, 0], [2]]}

ambient_highest_weight_dict()
Return a dictionary of all {2, . . . , 𝑛+ 1}-highest weight vectors in the ambient crystal.

The key is the inner shape of their corresponding ± diagram, or equivalently, their {2, . . . , 𝑛+ 1} weight.

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 2)
sage: K.ambient_highest_weight_dict()
{[]: [[1, -1]], [2]: [[2, 2]]}

classical_decomposition()

Return the classical crystal underlying the Kirillov-Reshetikhin crystal of type 𝐴(2)
2𝑛 with 𝐵𝑛 as classical

subdiagram.

It is given by 𝐵𝑟,𝑠 ∼=
⨁︀

Λ𝐵(Λ), where 𝐵(Λ) is a highest weight crystal of type 𝐵𝑛 of highest weight Λ.
The sum is over all weights Λ obtained from a rectangle of width 𝑠 and height 𝑟 by removing horizontal
dominoes. Here we identify the fundamental weight Λ𝑖 with a column of height 𝑖.

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 2, 2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['B', 2] and shape(s) [[], [2], [2, 2]]

from_ambient_crystal()

Return a map from the ambient crystal of type 𝐵(1)
𝑛+1 to the Kirillov-Reshetikhin crystal of type 𝐴(2)

2𝑛 .

Note that this map is only well-defined on type 𝐴
(2)
2𝑛 elements that are in the image under

to_ambient_crystal().

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 2)
sage: b = K.ambient_crystal()(rows=[[2,2]])
sage: K.from_ambient_crystal()(b)
[[1, 1]]

highest_weight_dict()
Return a dictionary of the classical highest weight vectors of self whose keys are their shape.

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 2)
sage: K.highest_weight_dict()
{[]: [], [2]: [[1, 1]]}

module_generator()
Return the unique module generator of classical weight 𝑠Λ𝑟 of a Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠.

5.1. Comprehensive Module List 421

Combinatorics, Release 9.7

EXAMPLES:

sage: ct = CartanType(['A',8,2]).dual()
sage: K = crystals.KirillovReshetikhin(ct, 3, 5)
sage: K.module_generator()
[[1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3]]

to_ambient_crystal()

Return a map from the Kirillov-Reshetikhin crystal of type 𝐴(2)
2𝑛 to the ambient crystal of type 𝐵(1)

𝑛+1.

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 2)
sage: b=K(rows=[[1,1]])
sage: K.to_ambient_crystal()(b)
[[2, 2]]
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 2, 2)
sage: b=K(rows=[[1,1]])
sage: K.to_ambient_crystal()(b)
[[1, 2], [2, -1]]
sage: K.to_ambient_crystal()(b).parent()
Kirillov-Reshetikhin crystal of type ['B', 3, 1] with (r,s)=(2,2)

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2Element
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

Class for the elements in the Kirillov-Reshetikhin crystals 𝐵𝑟,𝑠 of type 𝐴(2)
2𝑛 for 𝑟 < 𝑛 with underlying classical

algebra 𝐵𝑛.

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 2)
sage: type(K.module_generators[0])
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2_with_category.
→˓element_class'>

e0()
Return 𝑒0 on self by mapping self to the ambient crystal, calculating 𝑒1𝑒0 there and pulling the element
back.

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 1)
sage: b = K(rows=[[1]])
sage: b.e(0) # indirect doctest
[[-1]]

epsilon0()
Calculate 𝜀0 of self by mapping the element to the ambient crystal and calculating \varepsilon_1 there.

EXAMPLES:

422 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 1)
sage: b=K(rows=[[1]])
sage: b.epsilon(0) # indirect doctest
1

f0()
Return 𝑓0 on self by mapping self to the ambient crystal, calculating 𝑓1𝑓0 there and pulling the element
back.

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 1)
sage: b = K(rows=[[-1]])
sage: b.f(0) # indirect doctest
[[1]]

phi0()
Calculate 𝜙0 of self by mapping the element to the ambient crystal and calculating 𝜙1 there.

EXAMPLES:

sage: C = CartanType(['A',4,2]).dual()
sage: K = sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2(C, 1, 1)
sage: b = K(rows=[[-1]])
sage: b.phi(0) # indirect doctest
1

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn(cartan_type, r, s, dual=None)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal

Class of Kirillov-Reshetikhin crystals 𝐵𝑛,𝑠 of type 𝐵(1)
𝑛 .

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,2)
sage: K
Kirillov-Reshetikhin crystal of type ['B', 3, 1] with (r,s)=(3,2)
sage: b = K(rows=[[1],[2],[3]])
sage: b.f(0)
sage: b.e(0)
[[3]]

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,2)
sage: [b.weight() for b in K if b.is_highest_weight([1,2,3])]
[-Lambda[0] + Lambda[1], -2*Lambda[0] + 2*Lambda[3]]
sage: [b.weight() for b in K if b.is_highest_weight([0,2,3])]
[Lambda[0] - Lambda[1], -2*Lambda[1] + 2*Lambda[3]]

Element
alias of KR_type_BnElement

ambient_crystal()

Return the ambient crystal 𝐵𝑛,𝑠 of type 𝐴(2)
2𝑛−1 associated to the Kirillov-Reshetikhin crystal.

The ambient crystal is used to construct the zero arrows.

5.1. Comprehensive Module List 423

Combinatorics, Release 9.7

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,2)
sage: K.ambient_crystal()
Kirillov-Reshetikhin crystal of type ['B', 3, 1]^* with (r,s)=(3,2)

ambient_highest_weight_dict()
Return a dictionary of the classical highest weight vectors of the ambient crystal of self whose keys are
their shape.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,2)
sage: K.ambient_highest_weight_dict()
{(2,): [[1, 1]], (2, 1, 1): [[1, 1], [2], [3]], (2, 2, 2): [[1, 1], [2, 2], [3,␣
→˓3]]}

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,3)
sage: K.ambient_highest_weight_dict()
{(3,): [[1, 1, 1]],
(3, 1, 1): [[1, 1, 1], [2], [3]],
(3, 2, 2): [[1, 1, 1], [2, 2], [3, 3]],
(3, 3, 3): [[1, 1, 1], [2, 2, 2], [3, 3, 3]]}

classical_decomposition()

Return the classical crystal underlying the Kirillov-Reshetikhin crystal 𝐵𝑛,𝑠 of type 𝐵(1)
𝑛 .

It is the same as for 𝑟 < 𝑛, given by 𝐵𝑛,𝑠 ∼=
⨁︀

Λ𝐵(Λ), where Λ are weights obtained from a rectangle
of width 𝑠/2 and height 𝑛 by removing horizontal dominoes. Here we identify the fundamental weight Λ𝑖
with a column of height 𝑖 for 𝑖 < 𝑛 and a column of width 1/2 for 𝑖 = 𝑛.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['B',3,1], 3, 2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['B', 3] and shape(s) [[1], [1, 1, 1]]
sage: K = crystals.KirillovReshetikhin(['B',3,1], 3, 3)
sage: K.classical_decomposition()
The crystal of tableaux of type ['B', 3] and shape(s) [[3/2, 1/2, 1/2], [3/2, 3/
→˓2, 3/2]]

from_ambient_crystal()

Return a map from the ambient crystal of type 𝐴(2)
2𝑛−1 to the Kirillov-Reshetikhin crystal self.

Note that this map is only well-defined on elements that are in the image under to_ambient_crystal().

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,1)
sage: [b == K.from_ambient_crystal()(K.to_ambient_crystal()(b)) for b in K]
[True, True, True, True, True, True, True, True]
sage: b = K.ambient_crystal()(rows=[[1],[2],[-3]])
sage: K.from_ambient_crystal()(b)
[++-, []]

highest_weight_dict()
Return a dictionary of the classical highest weight vectors of self whose keys are 2 times their shape.

424 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,2)
sage: K.highest_weight_dict()
{(2,): [[1]], (2, 2, 2): [[1], [2], [3]]}
sage: K = crystals.KirillovReshetikhin(['B',3,1],3,3)
sage: K.highest_weight_dict()
{(3, 1, 1): [+++, [[1]]], (3, 3, 3): [+++, [[1], [2], [3]]]}

similarity_factor()
Sets the similarity factor used to map to the ambient crystal.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,2)
sage: K.similarity_factor()
{1: 2, 2: 2, 3: 1}

to_ambient_crystal()

Return a map from self to the ambient crystal of type 𝐴(2)
2𝑛−1.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,1)
sage: [K.to_ambient_crystal()(b) for b in K]
[[[1], [2], [3]], [[1], [2], [-3]], [[1], [3], [-2]], [[2], [3], [-1]], [[1], [-
→˓3], [-2]],
[[2], [-3], [-1]], [[3], [-2], [-1]], [[-3], [-2], [-1]]]

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_BnElement
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

Class for the elements in the Kirillov-Reshetikhin crystals 𝐵𝑛,𝑠 of type 𝐵(1)
𝑛 .

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['B',3,1],3,2)
sage: type(K.module_generators[0])
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn_with_category.
→˓element_class'>

e0()
Return 𝑒0 on self by mapping self to the ambient crystal, calculating 𝑒0 there and pulling the element
back.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['B',3,1],3,1)
sage: b = K.module_generators[0]
sage: b.e(0) # indirect doctest
[--+, []]

epsilon0()
Calculate 𝜀0 of self by mapping the element to the ambient crystal and calculating 𝜀0 there.

EXAMPLES:

5.1. Comprehensive Module List 425

Combinatorics, Release 9.7

sage: K=crystals.KirillovReshetikhin(['B',3,1],3,1)
sage: b = K.module_generators[0]
sage: b.epsilon(0) # indirect doctest
1

f0()
Return 𝑓0 on self by mapping self to the ambient crystal, calculating 𝑓0 there and pulling the element
back.

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['B',3,1],3,1)
sage: b = K.module_generators[0]
sage: b.f(0) # indirect doctest

phi0()
Calculate 𝜙0 of self by mapping the element to the ambient crystal and calculating 𝜙0 there.

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['B',3,1],3,1)
sage: b = K.module_generators[0]
sage: b.phi(0) # indirect doctest
0

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_C(cartan_type, r, s, dual=None)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal

Class of Kirillov-Reshetikhin crystals 𝐵𝑟,𝑠 of type 𝐶(1)
𝑛 for 𝑟 < 𝑛.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',2,1], 1,2)
sage: K
Kirillov-Reshetikhin crystal of type ['C', 2, 1] with (r,s)=(1,2)
sage: b = K(rows=[])
sage: b.f(0)
[[1, 1]]
sage: b.e(0)
[[-1, -1]]

Element
alias of KR_type_CElement

ambient_crystal()

Return the ambient crystal 𝐵𝑟,𝑠 of type 𝐴(2)
2𝑛+1 associated to the Kirillov-Reshetikhin crystal of type 𝐶(1)

𝑛 .

This ambient crystal is used to construct the zero arrows.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',3,1], 2,3)
sage: K.ambient_crystal()
Kirillov-Reshetikhin crystal of type ['B', 4, 1]^* with (r,s)=(2,3)

ambient_dict_pm_diagrams()
Return a dictionary of all self-dual ± diagrams for the ambient crystal whose keys are their inner shape.

426 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',2,1], 1,2)
sage: K.ambient_dict_pm_diagrams()
{[]: [[1, 1], [0]], [2]: [[0, 0], [2]]}
sage: K = crystals.KirillovReshetikhin(['C',3,1], 2,2)
sage: K.ambient_dict_pm_diagrams()
{[]: [[1, 1], [0, 0], [0]],
[2]: [[0, 0], [1, 1], [0]],
[2, 2]: [[0, 0], [0, 0], [2]]}
sage: K = crystals.KirillovReshetikhin(['C',3,1], 2,3)
sage: K.ambient_dict_pm_diagrams()
{[1, 1]: [[1, 1], [0, 0], [1]],
[3, 1]: [[0, 0], [1, 1], [1]],
[3, 3]: [[0, 0], [0, 0], [3]]}

ambient_highest_weight_dict()
Return a dictionary of all {2, . . . , 𝑛+ 1}-highest weight vectors in the ambient crystal.

The key is the inner shape of their corresponding ± diagram, or equivalently, their {2, . . . , 𝑛+ 1} weight.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',3,1], 2,2)
sage: K.ambient_highest_weight_dict()
{[]: [[2], [-2]], [2]: [[1, 2], [2, -1]], [2, 2]: [[2, 2], [3, 3]]}

classical_decomposition()

Return the classical crystal underlying the Kirillov-Reshetikhin crystal of type 𝐶(1)
𝑛 .

It is given by 𝐵𝑟,𝑠 ∼=
⨁︀

Λ𝐵(Λ), where Λ are weights obtained from a rectangle of width 𝑠 and height 𝑟 by
removing horizontal dominoes. Here we identify the fundamental weight Λ𝑖 with a column of height 𝑖.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',3,1], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['C', 3] and shape(s) [[], [2], [2, 2]]

from_ambient_crystal()

Return a map from the ambient crystal of type 𝐴(2)
2𝑛+1 to the Kirillov-Reshetikhin crystal of type 𝐶(1)

𝑛 .

Note that this map is only well-defined on type 𝐶
(1)
𝑛 elements that are in the image under

to_ambient_crystal().

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',3,1], 2,2)
sage: b = K.ambient_crystal()(rows=[[2,2],[3,3]])
sage: K.from_ambient_crystal()(b)
[[1, 1], [2, 2]]

highest_weight_dict()
Return a dictionary of the classical highest weight vectors of self whose keys are their shape.

EXAMPLES:

5.1. Comprehensive Module List 427

Combinatorics, Release 9.7

sage: K = crystals.KirillovReshetikhin(['C',3,1], 2,2)
sage: K.highest_weight_dict()
{[]: [], [2]: [[1, 1]], [2, 2]: [[1, 1], [2, 2]]}

to_ambient_crystal()

Return a map from the Kirillov-Reshetikhin crystal of type 𝐶(1)
𝑛 to the ambient crystal of type 𝐴(2)

2𝑛+1.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',3,1], 2,2)
sage: b=K(rows=[[1,1]])
sage: K.to_ambient_crystal()(b)
[[1, 2], [2, -1]]
sage: b=K(rows=[])
sage: K.to_ambient_crystal()(b)
[[2], [-2]]
sage: K.to_ambient_crystal()(b).parent()
Kirillov-Reshetikhin crystal of type ['B', 4, 1]^* with (r,s)=(2,2)

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_CElement
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

Class for the elements in the Kirillov-Reshetikhin crystals 𝐵𝑟,𝑠 of type 𝐶(1)
𝑛 for 𝑟 < 𝑛.

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['C',3,1],1,2)
sage: type(K.module_generators[0])
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_C_with_category.element_
→˓class'>

e0()
Return 𝑒0 on self by mapping self to the ambient crystal, calculating 𝑒1𝑒0 there and pulling the element
back.

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['C',3,1],1,2)
sage: b = K(rows=[])
sage: b.e(0) # indirect doctest
[[-1, -1]]

epsilon0()
Calculate 𝜀0 of self by mapping the element to the ambient crystal and calculating 𝜀1 there.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',2,1], 1,2)
sage: b=K(rows=[[1,1]])
sage: b.epsilon(0) # indirect doctest
2

f0()
Return 𝑓0 on self by mapping self to the ambient crystal, calculating 𝑓1𝑓0 there and pulling the element
back.

EXAMPLES:

428 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: K=crystals.KirillovReshetikhin(['C',3,1],1,2)
sage: b = K(rows=[])
sage: b.f(0) # indirect doctest
[[1, 1]]

phi0()
Calculate 𝜙0 of self by mapping the element to the ambient crystal and calculating 𝜙1 there.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',2,1], 1,2)
sage: b=K(rows=[[-1,-1]])
sage: b.phi(0) # indirect doctest
2

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_Cn(cartan_type, r, s, dual=None)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal

Class of Kirillov-Reshetikhin crystals 𝐵𝑛,𝑠 of type 𝐶(1)
𝑛 .

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',3,1],3,1)
sage: [[b,b.f(0)] for b in K]
[[[[1], [2], [3]], None], [[[1], [2], [-3]], None],
[[[1], [3], [-3]], None], [[[2], [3], [-3]], None],
[[[1], [3], [-2]], None], [[[2], [3], [-2]], None],
[[[2], [3], [-1]], [[1], [2], [3]]], [[[1], [-3], [-2]], None],
[[[2], [-3], [-2]], None], [[[2], [-3], [-1]], [[1], [2], [-3]]],
[[[3], [-3], [-2]], None], [[[3], [-3], [-1]], [[1], [3], [-3]]],
[[[3], [-2], [-1]], [[1], [3], [-2]]],
[[[-3], [-2], [-1]], [[1], [-3], [-2]]]]

Element
alias of KR_type_CnElement

classical_decomposition()

Specifies the classical crystal underlying the Kirillov-Reshetikhin crystal 𝐵𝑛,𝑠 of type 𝐶(1)
𝑛 .

The classical decomposition is given by 𝐵𝑛,𝑠 ∼= 𝐵(𝑠Λ𝑛).

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',3,1],3,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['C', 3] and shape(s) [[2, 2, 2]]

from_highest_weight_vector_to_pm_diagram(b)
This gives the bijection between an element b in the classical decomposition of the KR crystal that is
2, 3, .., 𝑛-highest weight and ± diagrams.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',3,1],3,2)
sage: T = K.classical_decomposition()
sage: b = T(rows=[[2, 2], [3, 3], [-3, -1]])

(continues on next page)

5.1. Comprehensive Module List 429

Combinatorics, Release 9.7

(continued from previous page)

sage: pm = K.from_highest_weight_vector_to_pm_diagram(b); pm
[[0, 0], [1, 0], [0, 1], [0]]
sage: pm.pp()
. .
. +
- -

sage: hw = [b for b in T if all(b.epsilon(i)==0 for i in [2,3])]
sage: all(K.from_pm_diagram_to_highest_weight_vector(K.from_highest_weight_
→˓vector_to_pm_diagram(b)) == b for b in hw)
True

from_pm_diagram_to_highest_weight_vector(pm)
This gives the bijection between a ± diagram and an element b in the classical decomposition of the KR
crystal that is {2, 3, .., 𝑛}-highest weight.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',3,1],3,2)
sage: pm = sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[0, 0], [1,␣
→˓0], [0, 1], [0]])
sage: K.from_pm_diagram_to_highest_weight_vector(pm)
[[2, 2], [3, 3], [-3, -1]]

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_CnElement
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

Class for the elements in the Kirillov-Reshetikhin crystals 𝐵𝑛,𝑠 of type 𝐶(1)
𝑛 .

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['C',3,1],3,2)
sage: type(K.module_generators[0])
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_Cn_with_category.
→˓element_class'>

e0()
Return 𝑒0 on self by going to the ±-diagram corresponding to the {2, ..., 𝑛}-highest weight vector in the
component of self, then applying [Definition 6.1, 4], and pulling back from ±-diagrams.

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['C',3,1],3,2)
sage: b = K.module_generators[0]
sage: b.e(0) # indirect doctest
[[1, 2], [2, 3], [3, -1]]
sage: b = K(rows=[[1,2],[2,3],[3,-1]])
sage: b.e(0)
[[2, 2], [3, 3], [-1, -1]]
sage: b=K(rows=[[1, -3], [3, -2], [-3, -1]])
sage: b.e(0)
[[3, -3], [-3, -2], [-1, -1]]

epsilon0()
Calculate 𝜀0 of self using Lemma 6.1 of [4].

430 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['C',3,1],3,1)
sage: b = K.module_generators[0]
sage: b.epsilon(0) # indirect doctest
1

f0()
Return 𝑒0 on self by going to the ±-diagram corresponding to the {2, ..., 𝑛}-highest weight vector in the
component of self, then applying [Definition 6.1, 4], and pulling back from ±-diagrams.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',3,1],3,1)
sage: b = K.module_generators[0]
sage: b.f(0) # indirect doctest

phi0()
Calculate 𝜙0 of self.

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['C',3,1],3,1)
sage: b = K.module_generators[0]
sage: b.phi(0) # indirect doctest
0

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_D_tri1(ct, s)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal

Class of Kirillov-Reshetikhin crystals 𝐵1,𝑠 of type 𝐷(3)
4 .

The crystal structure was defined in Section 4 of [KMOY2007] using the coordinate representation.

class Element
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

coordinates()
Return self as coordinates.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,3], 1, 3)
sage: all(K.from_coordinates(x.coordinates()) == x for x in K)
True

e0()
Return the action of 𝑒0 on self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,3], 1,1)
sage: [x.e0() for x in K]
[[[-1]], [], [[-3]], [[-2]], None, None, None, None]

epsilon0()
Return 𝜀0 of self.

EXAMPLES:

5.1. Comprehensive Module List 431

Combinatorics, Release 9.7

sage: K = crystals.KirillovReshetikhin(['D',4,3], 1, 5)
sage: [mg.epsilon0() for mg in K.module_generators]
[5, 6, 7, 8, 9, 10]

f0()
Return the action of 𝑓0 on self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,3], 1,1)
sage: [x.f0() for x in K]
[[[1]], None, None, None, None, [[2]], [[3]], []]

phi0()
Return 𝜙0 of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,3], 1, 5)
sage: [mg.phi0() for mg in K.module_generators]
[5, 4, 3, 2, 1, 0]

classical_decomposition()
Return the classical decomposition of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,3], 1, 5)
sage: K.classical_decomposition()
The crystal of tableaux of type ['G', 2]
and shape(s) [[], [1], [2], [3], [4], [5]]

from_coordinates(coords)
Return an element of self from the coordinates coords.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,3], 1, 5)
sage: K.from_coordinates((0, 2, 3, 1, 0, 1))
[[2, 2, 3, 0, -1]]

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twisted(cartan_type, r, s,
dual=None)

Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal

Class of Kirillov-Reshetikhin crystals 𝐵𝑛,𝑠 of type 𝐷(2)
𝑛+1.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,2],3,1)
sage: [[b,b.f(0)] for b in K]
[[[+++, []], None], [[++-, []], None], [[+-+, []], None], [[-++, []],
[+++, []]], [[+--, []], None], [[-+-, []], [++-, []]], [[--+, []], [+-+, []]],
[[---, []], [+--, []]]]

Element
alias of KR_type_Dn_twistedElement

432 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

classical_decomposition()

Return the classical crystal underlying the Kirillov-Reshetikhin crystal 𝐵𝑛,𝑠 of type 𝐷(2)
𝑛+1.

The classical decomposition is given by 𝐵𝑛,𝑠 ∼= 𝐵(𝑠Λ𝑛).

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,2],3,1)
sage: K.classical_decomposition()
The crystal of tableaux of type ['B', 3] and shape(s) [[1/2, 1/2, 1/2]]
sage: K = crystals.KirillovReshetikhin(['D',4,2],3,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['B', 3] and shape(s) [[1, 1, 1]]

from_highest_weight_vector_to_pm_diagram(b)
This gives the bijection between an element b in the classical decomposition of the KR crystal that is
{2, 3, . . . , 𝑛}-highest weight and ± diagrams.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,2],3,1)
sage: T = K.classical_decomposition()
sage: hw = [b for b in T if all(b.epsilon(i)==0 for i in [2,3])]
sage: [K.from_highest_weight_vector_to_pm_diagram(b) for b in hw]
[[[0, 0], [0, 0], [1, 0], [0]], [[0, 0], [0, 0], [0, 1], [0]]]

sage: K = crystals.KirillovReshetikhin(['D',4,2],3,2)
sage: T = K.classical_decomposition()
sage: hw = [b for b in T if all(b.epsilon(i)==0 for i in [2,3])]
sage: [K.from_highest_weight_vector_to_pm_diagram(b) for b in hw]
[[[0, 0], [0, 0], [2, 0], [0]], [[0, 0], [0, 0], [0, 0], [2]],
[[0, 0], [2, 0], [0, 0], [0]], [[0, 0], [0, 0], [0, 2], [0]]]

Note that, since the classical decomposition of this crystal is of type 𝐵𝑛, there can be (at most one) entry 0
in the {2, 3, . . . , 𝑛}-highest weight elements at height 𝑛. In the following implementation this is realized
as an empty column of height 𝑛 since this uniquely specifies the existence of the 0.

EXAMPLES:

sage: b = hw[1]
sage: pm = K.from_highest_weight_vector_to_pm_diagram(b)
sage: pm.pp()
. .
. .
. .

from_pm_diagram_to_highest_weight_vector(pm)
This gives the bijection between a ± diagram and an element b in the classical decomposition of the KR
crystal that is {2, 3, . . . , 𝑛}-highest weight.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,2],3,2)
sage: pm = sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[0, 0], [0,␣
→˓0], [0, 0], [2]])
sage: K.from_pm_diagram_to_highest_weight_vector(pm)
[[2], [3], [0]]

5.1. Comprehensive Module List 433

Combinatorics, Release 9.7

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twistedElement
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

Class for the elements in the Kirillov-Reshetikhin crystals 𝐵𝑛,𝑠 of type 𝐷(2)
𝑛+1.

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['D',4,2],3,2)
sage: type(K.module_generators[0])
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twisted_with_
→˓category.element_class'>

e0()
Return 𝑒0 on self by going to the±-diagram corresponding to the {2, . . . , 𝑛}-highest weight vector in the
component of self, then applying [Definition 6.2, 4], and pulling back from ±-diagrams.

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['D',4,2],3,3)
sage: b = K.module_generators[0]
sage: b.e(0) # indirect doctest
[+++, [[2], [3], [0]]]

epsilon0()
Calculate 𝜀0 of self using Lemma 6.2 of [4].

EXAMPLES:

sage: K=crystals.KirillovReshetikhin(['D',4,2],3,1)
sage: b = K.module_generators[0]
sage: b.epsilon(0) # indirect doctest
1

f0()
Return 𝑒0 on self by going to the±-diagram corresponding to the {2, . . . , 𝑛}-highest weight vector in the
component of self, then applying [Definition 6.2, 4], and pulling back from ±-diagrams.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,2],3,2)
sage: b = K.module_generators[0]
sage: b.f(0) # indirect doctest

phi0()
Calculate 𝜙0 of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,2],3,1)
sage: b = K.module_generators[0]
sage: b.phi(0) # indirect doctest
0

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6(cartan_type, r, s)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromPromotion

Class of Kirillov-Reshetikhin crystals of type 𝐸(1)
6 for 𝑟 = 1, 2, 6.

EXAMPLES:

434 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: K = crystals.KirillovReshetikhin(['E',6,1],2,1)
sage: K.module_generator().e(0)
[]
sage: K.module_generator().e(0).f(0)
[[(2, -1), (1,)]]
sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,1)
sage: b = K.module_generator()
sage: b
[(1,)]
sage: b.e(0)
[(-2, 1)]
sage: b = [t for t in K if t.epsilon(1) == 1 and t.phi(3) == 1 and t.phi(2) == 0␣
→˓and t.epsilon(2) == 0][0]
sage: b
[(-1, 3)]
sage: b.e(0)
[(-1, -2, 3)]

The elements of the Kirillov-Reshetikhin crystals can be constructed from a classical crystal element using
retract().

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1],2,1)
sage: La = K.cartan_type().classical().root_system().weight_lattice().fundamental_
→˓weights()
sage: H = crystals.HighestWeight(La[2])
sage: t = H.module_generator()
sage: t
[[(2, -1), (1,)]]
sage: type(K.retract(t))
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6_with_category.
→˓element_class'>
sage: K.retract(t).e(0)
[]

affine_weight(b)
Return the affine level zero weight corresponding to the element b of the classical crystal underlying self.

For the coefficients to calculate the level, see Table Aff 1 in [Ka1990].

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1],2,1)
sage: [K.affine_weight(x.lift()) for x in K
....: if all(x.epsilon(i) == 0 for i in [2,3,4,5])]
[(0, 0, 0, 0, 0, 0, 0),
(-2, 0, 1, 0, 0, 0, 0),
(-1, -1, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 1, -2),
(0, -1, 1, 0, 0, 0, -1),
(-1, 0, 0, 1, 0, 0, -1),
(-1, -1, 0, 0, 1, 0, -1),

(continues on next page)

5.1. Comprehensive Module List 435

Combinatorics, Release 9.7

(continued from previous page)

(0, 0, 0, 0, 0, 0, 0),
(0, -2, 0, 1, 0, 0, 0)]

automorphism_on_affine_weight(weight)
Act with the Dynkin diagram automorphism on affine weights as outputted by the affine_weightmethod.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1],2,1)
sage: sorted([x[0], K.automorphism_on_affine_weight(x[0])]
....: for x in K.highest_weight_dict().values())
[[(-2, 0, 1, 0, 0, 0, 0), (0, -2, 0, 1, 0, 0, 0)],
[(-1, 0, 0, 1, 0, 0, -1), (-1, -1, 0, 0, 0, 1, 0)],
[(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0)],
[(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0)],
[(0, 0, 0, 0, 0, 1, -2), (-2, 0, 1, 0, 0, 0, 0)]]

classical_decomposition()

Specifies the classical crystal underlying the KR crystal of type 𝐸(1)
6 .

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1], 2,2)
sage: K.classical_decomposition()
Direct sum of the crystals Family
(Finite dimensional highest weight crystal of type ['E', 6] and highest weight␣
→˓0,
Finite dimensional highest weight crystal of type ['E', 6] and highest weight␣

→˓Lambda[2],
Finite dimensional highest weight crystal of type ['E', 6] and highest weight␣

→˓2*Lambda[2])
sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,2)
sage: K.classical_decomposition()
Direct sum of the crystals Family
(Finite dimensional highest weight crystal of type ['E', 6] and highest weight␣
→˓2*Lambda[1],)

dynkin_diagram_automorphism(i)
Specifies the Dynkin diagram automorphism underlying the promotion action on the crystal elements.

Here we use the Dynkin diagram automorphism of order 3 which maps node 0 to node 1.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1],2,1)
sage: [K.dynkin_diagram_automorphism(i) for i in K.index_set()]
[1, 6, 3, 5, 4, 2, 0]

highest_weight_dict()
Return a dictionary between {1, 2, 3, 4, 5}-highest weight elements, and a tuple of affine weights and its
classical component.

EXAMPLES:

436 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: K = crystals.KirillovReshetikhin(['E',6,1],2,1)
sage: sorted(K.highest_weight_dict().items(), key=str)
[([[(2, -1), (1,)]], ((-2, 0, 1, 0, 0, 0, 0), 1)),
([[(3, -1, -6), (1,)]], ((-1, 0, 0, 1, 0, 0, -1), 1)),
([[(5, -2, -6), (-6, 2)]], ((0, 0, 0, 0, 0, 1, -2), 1)),
([[(6, -2), (-6, 2)]], ((0, 0, 0, 0, 0, 0, 0), 1)),
([], ((0, 0, 0, 0, 0, 0, 0), 0))]

highest_weight_dict_inv()
Return a dictionary between a tuple of affine weights and a classical component, and {2, 3, 4, 5, 6}-highest
weight elements.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1],2,1)
sage: K.highest_weight_dict_inv()
{((-2, 0, 1, 0, 0, 0, 0), 1): [[(2, -1), (1,)]],
((-1, -1, 0, 0, 0, 1, 0), 1): [[(5, -3), (-1, 3)]],
((0, -2, 0, 1, 0, 0, 0), 1): [[(-1,), (-1, 3)]],
((0, 0, 0, 0, 0, 0, 0), 0): [],
((0, 0, 0, 0, 0, 0, 0), 1): [[(1, -3), (-1, 3)]]}

hw_auxiliary()
Return the 2, 3, 4, 5 highest weight elements of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1],2,1)
sage: K.hw_auxiliary()
([], [[(2, -1), (1,)]],
[[(5, -3), (-1, 3)]],
[[(6, -2), (-6, 2)]],
[[(5, -2, -6), (-6, 2)]],
[[(-1,), (-6, 2)]],
[[(3, -1, -6), (1,)]],
[[(4, -3, -6), (-1, 3)]],
[[(1, -3), (-1, 3)]],
[[(-1,), (-1, 3)]])

promotion()

Specifies the promotion operator used to construct the affine type 𝐸(1)
6 crystal.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1], 2,1)
sage: promotion = K.promotion()
sage: all(promotion(promotion(promotion(b))) == b for b in K.classical_
→˓decomposition())
True
sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: promotion = K.promotion()
sage: all(promotion(promotion(promotion(b))) == b for b in K.classical_
→˓decomposition())
True

5.1. Comprehensive Module List 437

Combinatorics, Release 9.7

promotion_inverse()
Return the inverse promotion. Since promotion is of order 3, the inverse promotion is the same as promotion
applied twice.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1], 2,1)
sage: p = K.promotion()
sage: p_inv = K.promotion_inverse()
sage: all(p_inv(p(b)) == b for b in K.classical_decomposition())
True

promotion_on_highest_weight_vectors()
Return a dictionary of the promotion map on {1, 2, 3, 4, 5}-highest weight elements to {2, 3, 4, 5, 6}-highest
weight elements in self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1], 2, 1)
sage: dic = K.promotion_on_highest_weight_vectors()
sage: sorted(dic.items(), key=str)
[([[(2, -1), (1,)]], [[(-1,), (-1, 3)]]),
([[(3, -1, -6), (1,)]], [[(5, -3), (-1, 3)]]),
([[(5, -2, -6), (-6, 2)]], [[(2, -1), (1,)]]),
([[(6, -2), (-6, 2)]], []),
([], [[(1, -3), (-1, 3)]])]

promotion_on_highest_weight_vectors_function()
Return a lambda function on x defined by self.promotion_on_highest_weight_vectors()[x].

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1], 2, 1)
sage: f = K.promotion_on_highest_weight_vectors_function()
sage: f(K.module_generator().lift())
[[(-1,), (-1, 3)]]

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_E7(ct, r, s)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal

The Kirillov-Reshetikhin crystal 𝐵7,𝑠 of type 𝐸(1)
7 .

A7_decomposition()
Return the decomposition of self into 𝐴7 highest weight crystals.

The 𝐴7 decomposition of 𝐵7,𝑠 is given by the parameters 𝑚4,𝑚5,𝑚6,𝑚7 ≥ 0 such that 𝑚4 +𝑚5 ≤ 𝑚7

and 𝑠 = 𝑚4 + 𝑚5 + 𝑚6 + 𝑚7. The corresponding 𝐴7 highest weight crystal has highest weight 𝜆 =
(𝑚7 −𝑚4 −𝑚5)Λ6 +𝑚5Λ4 +𝑚6Λ2.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',7,1], 7, 3)
sage: K.A7_decomposition()
The crystal of tableaux of type ['A', 7] and shape(s)
[[3, 3, 3, 3, 3, 3], [3, 3, 2, 2, 2, 2], [3, 3, 1, 1, 1, 1], [3, 3],
[2, 2, 2, 2, 1, 1], [2, 2, 1, 1], [1, 1, 1, 1, 1, 1], [1, 1]]

438 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class Element
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

e0()
Return the action of 𝑒0 on self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',7,1], 7, 2)
sage: mg = K.module_generator()
sage: mg.e0()
[[(7,), (-1, 7)]]
sage: mg.e0().e0()
[[(-1, 7), (-1, 7)]]
sage: mg.e_string([0,0,0]) is None
True

f0()
Return the action of 𝑓0 on self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',7,1], 7, 2)
sage: mg = K.module_generator()
sage: x = mg.f_string([7,6,5,4,3,2,4,5,6,1,3,4,5,2,4,3,1])
sage: x.f0()
[[(7,), (7,)]]
sage: mg.f0() is None
True

classical_decomposition()
Return the classical decomposition of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',7,1], 7, 4)
sage: K.classical_decomposition()
The crystal of tableaux of type ['E', 7] and shape(s) [[4]]

from_A7_crystal()

Return the inclusion of the KR crystal 𝐵7,𝑠 of type 𝐸(1)
7 into type 𝐴7 highest weight crystals.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',7,1], 7, 2)
sage: K.from_A7_crystal()
['A', 6] -> ['E', 7, 1] Virtual Crystal morphism:
From: The crystal of tableaux of type ['A', 7] and shape(s)

[[2, 2, 2, 2, 2, 2], [2, 2, 1, 1, 1, 1], [2, 2], [1, 1, 1, 1], []]
To: Kirillov-Reshetikhin crystal of type ['E', 7, 1] with (r,s)=(7,2)
Defn: ...

to_A7_crystal()

Return the map decomposing the KR crystal 𝐵7,𝑠 of type 𝐸(1)
7 into type 𝐴7 highest weight crystals.

EXAMPLES:

5.1. Comprehensive Module List 439

Combinatorics, Release 9.7

sage: K = crystals.KirillovReshetikhin(['E',7,1], 7, 2)
sage: K.to_A7_crystal()
['A', 6] relabelled by {1: 1, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7} -> ['A', 7] Virtual␣
→˓Crystal morphism:
From: Kirillov-Reshetikhin crystal of type ['E', 7, 1] with (r,s)=(7,2)
To: The crystal of tableaux of type ['A', 7] and shape(s)

[[2, 2, 2, 2, 2, 2], [2, 2, 1, 1, 1, 1], [2, 2], [1, 1, 1, 1], []]
Defn: ...

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_box(cartan_type, r, s)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal,
sage.combinat.crystals.affine.AffineCrystalFromClassical

Class of Kirillov-Reshetikhin crystals 𝐵𝑟,𝑠 of type 𝐴(2)
2𝑛 for 𝑟 ≤ 𝑛 and type 𝐷(2)

𝑛+1 for 𝑟 < 𝑛.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',4,2], 1,1)
sage: K
Kirillov-Reshetikhin crystal of type ['BC', 2, 2] with (r,s)=(1,1)
sage: b = K(rows=[])
sage: b.f(0)
[[1]]
sage: b.e(0)
[[-1]]

Element
alias of KR_type_boxElement

ambient_crystal()

Return the ambient crystal 𝐵𝑟,2𝑠 of type 𝐶(1)
𝑛 associated to the Kirillov-Reshetikhin crystal.

The ambient crystal is used to construct the zero arrows.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',4,2], 2,2)
sage: K.ambient_crystal()
Kirillov-Reshetikhin crystal of type ['C', 2, 1] with (r,s)=(2,4)

ambient_highest_weight_dict()
Return a dictionary of the classical highest weight vectors of the ambient crystal of self whose keys are
their shape.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',6,2], 2,2)
sage: K.ambient_highest_weight_dict()
{[]: [],
[2]: [[1, 1]],
[2, 2]: [[1, 1], [2, 2]],
[4]: [[1, 1, 1, 1]],
[4, 2]: [[1, 1, 1, 1], [2, 2]],
[4, 4]: [[1, 1, 1, 1], [2, 2, 2, 2]]}

440 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

classical_decomposition()

Return the classical crystal underlying the Kirillov-Reshetikhin crystal of type 𝐴(2)
2𝑛 and 𝐷(2)

𝑛+1.

It is given by 𝐵𝑟,𝑠 ∼=
⨁︀

Λ𝐵(Λ), where Λ are weights obtained from a rectangle of width 𝑠 and height 𝑟 by
removing boxes. Here we identify the fundamental weight Λ𝑖 with a column of height 𝑖.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',4,2], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['C', 2] and shape(s) [[], [1], [2], [1, 1], [2,
→˓ 1], [2, 2]]
sage: K = crystals.KirillovReshetikhin(['D',4,2], 2,3)
sage: K.classical_decomposition()
The crystal of tableaux of type ['B', 3] and shape(s) [[], [1], [2], [1, 1],␣
→˓[3], [2, 1], [3, 1], [2, 2], [3, 2], [3, 3]]

from_ambient_crystal()

Return a map from the ambient crystal of type 𝐶(1)
𝑛 to the Kirillov-Reshetikhin crystal self.

Note that this map is only well-defined on elements that are in the image under to_ambient_crystal().

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,2], 1,1)
sage: b = K.ambient_crystal()(rows=[[3,-3]])
sage: K.from_ambient_crystal()(b)
[[0]]
sage: K = crystals.KirillovReshetikhin(['A',4,2], 1,1)
sage: b = K.ambient_crystal()(rows=[])
sage: K.from_ambient_crystal()(b)
[]

highest_weight_dict()
Return a dictionary of the classical highest weight vectors of self whose keys are 2 times their shape.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',6,2], 2,2)
sage: K.highest_weight_dict()
{[]: [],
[2]: [[1]],
[2, 2]: [[1], [2]],
[4]: [[1, 1]],
[4, 2]: [[1, 1], [2]],
[4, 4]: [[1, 1], [2, 2]]}

similarity_factor()
Sets the similarity factor used to map to the ambient crystal.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',6,2], 2,2)
sage: K.similarity_factor()
{1: 2, 2: 2, 3: 2}
sage: K = crystals.KirillovReshetikhin(['D',5,2], 1,1)

(continues on next page)

5.1. Comprehensive Module List 441

Combinatorics, Release 9.7

(continued from previous page)

sage: K.similarity_factor()
{1: 2, 2: 2, 3: 2, 4: 1}

to_ambient_crystal()

Return a map from self to the ambient crystal of type 𝐶(1)
𝑛 .

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,2], 1,1)
sage: [K.to_ambient_crystal()(b) for b in K]
[[], [[1, 1]], [[2, 2]], [[3, 3]], [[3, -3]], [[-3, -3]], [[-2, -2]], [[-1, -
→˓1]]]
sage: K = crystals.KirillovReshetikhin(['A',4,2], 1,1)
sage: [K.to_ambient_crystal()(b) for b in K]
[[], [[1, 1]], [[2, 2]], [[-2, -2]], [[-1, -1]]]

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_boxElement
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

Class for the elements in the Kirillov-Reshetikhin crystals𝐵𝑟,𝑠 of type 𝐴(2)
2𝑛 for 𝑟 ≤ 𝑛 and type𝐷(2)

𝑛+1 for 𝑟 < 𝑛.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',4,2],1,2)
sage: type(K.module_generators[0])
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_box_with_category.
→˓element_class'>

e0()
Return 𝑒0 on self by mapping self to the ambient crystal, calculating 𝑒0 there and pulling the element
back.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',4,2],1,1)
sage: b = K(rows=[])
sage: b.e(0) # indirect doctest
[[-1]]

epsilon0()
Return 𝜀0 of self by mapping the element to the ambient crystal and calculating 𝜀0 there.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',4,2], 1,1)
sage: b = K(rows=[[1]])
sage: b.epsilon(0) # indirect doctest
2

f0()
Return 𝑓0 on self by mapping self to the ambient crystal, calculating 𝑓0 there and pulling the element
back.

EXAMPLES:

442 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: K = crystals.KirillovReshetikhin(['A',4,2],1,1)
sage: b = K(rows=[])
sage: b.f(0) # indirect doctest
[[1]]

phi0()
Return 𝜙0 of self by mapping the element to the ambient crystal and calculating 𝜙0 there.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',3,2], 1,1)
sage: b = K(rows=[[-1]])
sage: b.phi(0) # indirect doctest
2

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_spin(cartan_type, r, s)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromPromotion

Class of Kirillov-Reshetikhin crystals 𝐵𝑛,𝑠 of type 𝐷(1)
𝑛 .

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1],4,1); K
Kirillov-Reshetikhin crystal of type ['D', 4, 1] with (r,s)=(4,1)
sage: [[b,b.f(0)] for b in K]
[[[++++, []], None], [[++--, []], None], [[+-+-, []], None],
[[-++-, []], None], [[+--+, []], None], [[-+-+, []], None],
[[--++, []], [++++, []]], [[----, []], [++--, []]]]

sage: K = crystals.KirillovReshetikhin(['D',4,1],4,2); K
Kirillov-Reshetikhin crystal of type ['D', 4, 1] with (r,s)=(4,2)
sage: [[b,b.f(0)] for b in K]
[[[[1], [2], [3], [4]], None], [[[1], [2], [-4], [4]], None],
[[[1], [3], [-4], [4]], None], [[[2], [3], [-4], [4]], None],
[[[1], [4], [-4], [4]], None], [[[2], [4], [-4], [4]], None],
[[[3], [4], [-4], [4]], [[1], [2], [3], [4]]],
[[[-4], [4], [-4], [4]], [[1], [2], [-4], [4]]],
[[[-4], [4], [-4], [-3]], [[1], [2], [-4], [-3]]],
[[[-4], [4], [-4], [-2]], [[1], [3], [-4], [-3]]],
[[[-4], [4], [-4], [-1]], [[2], [3], [-4], [-3]]],
[[[-4], [4], [-3], [-2]], [[1], [4], [-4], [-3]]],
[[[-4], [4], [-3], [-1]], [[2], [4], [-4], [-3]]],
[[[-4], [4], [-2], [-1]], [[-4], [4], [-4], [4]]],
[[[-4], [-3], [-2], [-1]], [[-4], [4], [-4], [-3]]],
[[[1], [2], [-4], [-3]], None], [[[1], [3], [-4], [-3]], None],
[[[2], [3], [-4], [-3]], None], [[[1], [3], [-4], [-2]], None],
[[[2], [3], [-4], [-2]], None], [[[2], [3], [-4], [-1]], None],
[[[1], [4], [-4], [-3]], None], [[[2], [4], [-4], [-3]], None],
[[[3], [4], [-4], [-3]], None],
[[[3], [4], [-4], [-2]], [[1], [3], [-4], [4]]],
[[[3], [4], [-4], [-1]], [[2], [3], [-4], [4]]],
[[[1], [4], [-4], [-2]], None], [[[2], [4], [-4], [-2]], None],
[[[2], [4], [-4], [-1]], None], [[[1], [4], [-3], [-2]], None],
[[[2], [4], [-3], [-2]], None], [[[2], [4], [-3], [-1]], None],

(continues on next page)

5.1. Comprehensive Module List 443

Combinatorics, Release 9.7

(continued from previous page)

[[[3], [4], [-3], [-2]], [[1], [4], [-4], [4]]],
[[[3], [4], [-3], [-1]], [[2], [4], [-4], [4]]],
[[[3], [4], [-2], [-1]], [[3], [4], [-4], [4]]]]

classical_decomposition()

Return the classical crystal underlying the Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠 of type 𝐷(1)
𝑛 for 𝑟 = 𝑛− 1, 𝑛.

The classical decomposition is given by 𝐵𝑛,𝑠 ∼= 𝐵(𝑠Λ𝑟).

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1],4,1)
sage: K.classical_decomposition()
The crystal of tableaux of type ['D', 4] and shape(s) [[1/2, 1/2, 1/2, 1/2]]
sage: K = crystals.KirillovReshetikhin(['D',4,1],3,1)
sage: K.classical_decomposition()
The crystal of tableaux of type ['D', 4] and shape(s) [[1/2, 1/2, 1/2, -1/2]]
sage: K = crystals.KirillovReshetikhin(['D',4,1],3,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['D', 4] and shape(s) [[1, 1, 1, -1]]

dynkin_diagram_automorphism(i)
Specifies the Dynkin diagram automorphism underlying the promotion action on the crystal elements.

Here we use the Dynkin diagram automorphism which interchanges nodes 0 and 1 and leaves all other
nodes unchanged.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1],4,1)
sage: K.dynkin_diagram_automorphism(0)
1
sage: K.dynkin_diagram_automorphism(1)
0
sage: K.dynkin_diagram_automorphism(4)
4

promotion()

Return the promotion operator on 𝐵𝑟,𝑠 of type 𝐷(1)
𝑛 for 𝑟 = 𝑛− 1, 𝑛.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1],3,1)
sage: T = K.classical_decomposition()
sage: promotion = K.promotion()
sage: for t in T:
....: print("{} {}".format(t, promotion(t)))
[+++-, []] [-++-, []]
[++-+, []] [-+-+, []]
[+-++, []] [--++, []]
[-+++, []] [++++, []]
[+---, []] [----, []]
[-+--, []] [++--, []]
[--+-, []] [+-+-, []]
[---+, []] [+--+, []]

444 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

promotion_inverse()

Return the inverse promotion operator on 𝐵𝑟,𝑠 of type 𝐷(1)
𝑛 for 𝑟 = 𝑛− 1, 𝑛.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1],3,1)
sage: T = K.classical_decomposition()
sage: promotion = K.promotion()
sage: promotion_inverse = K.promotion_inverse()
sage: all(promotion_inverse(promotion(t)) == t for t in T)
True

promotion_on_highest_weight_vectors()
Return the promotion operator on {2, 3, . . . , 𝑛}-highest weight vectors.

A {2, 3, . . . , 𝑛}-highest weight vector in 𝐵(𝑠Λ𝑛) of weight 𝑤 = (𝑤1, . . . , 𝑤𝑛) is mapped to a
{2, 3, . . . , 𝑛}-highest weight vector in 𝐵(𝑠Λ𝑛−1) of weight (−𝑤1, 𝑤2, . . . , 𝑤𝑛) and vice versa.

See also:

• promotion_on_highest_weight_vectors_inverse()

• promotion()

EXAMPLES:

sage: KR = crystals.KirillovReshetikhin(['D',4,1],4,2)
sage: prom = KR.promotion_on_highest_weight_vectors()
sage: T = KR.classical_decomposition()
sage: HW = [t for t in T if t.is_highest_weight([2,3,4])]
sage: for t in HW:
....: print("{} {}".format(t, prom[t]))
[[1], [2], [3], [4]] [[2], [3], [4], [-1]]
[[2], [3], [-4], [4]] [[2], [3], [4], [-4]]
[[2], [3], [-4], [-1]] [[1], [2], [3], [-4]]

sage: KR = crystals.KirillovReshetikhin(['D',4,1],4,1)
sage: prom = KR.promotion_on_highest_weight_vectors()
sage: T = KR.classical_decomposition()
sage: HW = [t for t in T if t.is_highest_weight([2,3,4])]
sage: for t in HW:
....: print("{} {}".format(t, prom[t]))
[++++, []] [-+++, []]
[-++-, []] [+++-, []]

promotion_on_highest_weight_vectors_inverse()
Return the inverse promotion operator on {2, 3, . . . , 𝑛}-highest weight vectors.

See also:

• promotion_on_highest_weight_vectors()

• promotion_inverse()

EXAMPLES:

5.1. Comprehensive Module List 445

Combinatorics, Release 9.7

sage: KR = crystals.KirillovReshetikhin(['D',4,1],3,2)
sage: prom = KR.promotion_on_highest_weight_vectors()
sage: prom_inv = KR.promotion_on_highest_weight_vectors_inverse()
sage: T = KR.classical_decomposition()
sage: HW = [t for t in T if t.is_highest_weight([2,3,4])]
sage: all(prom_inv[prom[t]] == t for t in HW)
True

class sage.combinat.crystals.kirillov_reshetikhin.KR_type_vertical(cartan_type, r, s)
Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromPromotion

Class of Kirillov-Reshetikhin crystals 𝐵𝑟,𝑠 of type 𝐷(1)
𝑛 for 𝑟 ≤ 𝑛− 2, 𝐵(1)

𝑛 for 𝑟 < 𝑛, and 𝐴(2)
2𝑛−1 for 𝑟 ≤ 𝑛.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: b = K(rows=[])
sage: b.f(0)
[[1], [2]]
sage: b.f(0).f(0)
[[1, 1], [2, 2]]
sage: b.e(0)
[[-2], [-1]]
sage: b.e(0).e(0)
[[-2, -2], [-1, -1]]

sage: K = crystals.KirillovReshetikhin(['D',5,1], 3,1)
sage: b = K(rows=[[1]])
sage: b.e(0)
[[3], [-3], [-2]]

sage: K = crystals.KirillovReshetikhin(['B',3,1], 1,1)
sage: [[b,b.f(0)] for b in K]
[[[[1]], None], [[[2]], None], [[[3]], None], [[[0]], None],
[[[-3]], None], [[[-2]], [[1]]], [[[-1]], [[2]]]]

sage: K = crystals.KirillovReshetikhin(['A',5,2], 1,1)
sage: [[b,b.f(0)] for b in K]
[[[[1]], None], [[[2]], None], [[[3]], None], [[[-3]], None],
[[[-2]], [[1]]], [[[-1]], [[2]]]]

classical_decomposition()

Specifies the classical crystal underlying the Kirillov-Reshetikhin crystal of type 𝐷(1)
𝑛 , 𝐵(1)

𝑛 , and 𝐴(2)
2𝑛−1.

It is given by 𝐵𝑟,𝑠 ∼=
⨁︀

Λ𝐵(Λ), where Λ are weights obtained from a rectangle of width 𝑠 and height 𝑟 by
removing vertical dominoes. Here we identify the fundamental weight Λ𝑖 with a column of height 𝑖.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['D', 4] and shape(s) [[], [1, 1], [2, 2]]

dynkin_diagram_automorphism(i)
Specifies the Dynkin diagram automorphism underlying the promotion action on the crystal elements. The

446 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

automorphism needs to map node 0 to some other Dynkin node.

Here we use the Dynkin diagram automorphism which interchanges nodes 0 and 1 and leaves all other
nodes unchanged.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1],1,1)
sage: K.dynkin_diagram_automorphism(0)
1
sage: K.dynkin_diagram_automorphism(1)
0
sage: K.dynkin_diagram_automorphism(4)
4

from_highest_weight_vector_to_pm_diagram(b)
This gives the bijection between an element b in the classical decomposition of the KR crystal that is
2, 3, . . . , 𝑛-highest weight and ± diagrams.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: T = K.classical_decomposition()
sage: b = T(rows=[[2],[-2]])
sage: pm = K.from_highest_weight_vector_to_pm_diagram(b); pm
[[1, 1], [0, 0], [0]]
sage: pm.pp()
+
-
sage: b = T(rows=[])
sage: pm=K.from_highest_weight_vector_to_pm_diagram(b); pm
[[0, 2], [0, 0], [0]]
sage: pm.pp()

sage: hw = [b for b in T if all(b.epsilon(i)==0 for i in [2,3,4])]
sage: all(K.from_pm_diagram_to_highest_weight_vector(K.from_highest_weight_
→˓vector_to_pm_diagram(b)) == b for b in hw)
True

from_pm_diagram_to_highest_weight_vector(pm)
This gives the bijection between a ± diagram and an element b in the classical decomposition of the KR
crystal that is 2, 3, . . . , 𝑛-highest weight.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: pm = sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[1, 1], [0,␣
→˓0], [0]])
sage: K.from_pm_diagram_to_highest_weight_vector(pm)
[[2], [-2]]

promotion()

Specifies the promotion operator used to construct the affine type 𝐷(1)
𝑛 etc. crystal.

This corresponds to the Dynkin diagram automorphism which interchanges nodes 0 and 1, and leaves all
other nodes unchanged. On the level of crystals it is constructed using ± diagrams.

5.1. Comprehensive Module List 447

Combinatorics, Release 9.7

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: promotion = K.promotion()
sage: b = K.classical_decomposition()(rows=[])
sage: promotion(b)
[[1, 2], [-2, -1]]
sage: b = K.classical_decomposition()(rows=[[1,3],[2,-1]])
sage: promotion(b)
[[1, 3], [2, -1]]
sage: b = K.classical_decomposition()(rows=[[1],[-3]])
sage: promotion(b)
[[2, -3], [-2, -1]]

promotion_inverse()
Return inverse of promotion.

In this case promotion is an involution, so promotion inverse equals promotion.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: promotion = K.promotion()
sage: promotion_inverse = K.promotion_inverse()
sage: all(promotion_inverse(promotion(b.lift())) == b.lift() for b in K)
True

promotion_on_highest_weight_vector(b)
Calculates promotion on a 2, 3, ..., 𝑛 highest weight vector b.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: T = K.classical_decomposition()
sage: hw = [b for b in T if all(b.epsilon(i)==0 for i in [2,3,4])]
sage: [K.promotion_on_highest_weight_vector(b) for b in hw]
[[[1, 2], [-2, -1]], [[2, 2], [-2, -1]], [[1, 2], [3, -1]],
[[2], [-2]], [[1, 2], [2, -2]], [[2, 2], [-1, -1]],
[[2, 2], [3, -1]], [[2, 2], [3, 3]], [], [[1], [2]],
[[1, 1], [2, 2]], [[2], [-1]], [[1, 2], [2, -1]],
[[2], [3]], [[1, 2], [2, 3]]]

sage.combinat.crystals.kirillov_reshetikhin.KashiwaraNakashimaTableaux(cartan_type, r, s)
Return the Kashiwara-Nakashima model for the Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠 in the given type.

The Kashiwara-Nakashima (KN) model constructs the KR crystal from the KN tableaux model for the corre-
sponding classical crystals. This model is named for the underlying KN tableaux.

Many Kirillov-Reshetikhin crystals are constructed from a classical crystal together with an automorphism 𝑝 on
the level of crystals which corresponds to a Dynkin diagram automorphism mapping node 0 to some other node
𝑖. The action of 𝑓0 and 𝑒0 is then constructed using 𝑓0 = 𝑝−1 ∘ 𝑓𝑖 ∘ 𝑝.

For example, for type 𝐴(1)
𝑛 the Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠 is obtained from the classical crystal 𝐵(𝑠𝜔𝑟)

using the promotion operator. For other types, see [Shi2002], [Sch2008], and [JS2010].

Other Kirillov-Reshetikhin crystals are constructed using similarity methods. See Section 4 of [FOS2009].

For more information on Kirillov-Reshetikhin crystals, see KirillovReshetikhinCrystal().

448 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2, 1)
sage: K2 = crystals.kirillov_reshetikhin.KashiwaraNakashimaTableaux(['A',3,1], 2, 1)
sage: K is K2
True

sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystal(cartan_type, r, s,
model='KN')

Return the Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠 of the given type in the given model.

For more information about general crystals see sage.combinat.crystals.crystals.

There are a variety of models for Kirillov-Reshetikhin crystals. There is one using the classical crys-
tal with Kashiwara-Nakashima tableaux. There is one using rigged configurations. Another
tableaux model comes from the bijection between rigged configurations and tensor products of tableaux called
Kirillov-Reshetikhin tableaux Lastly there is a model of Kirillov-Reshetikhin crystals for 𝑠 = 1 from
crystals of LS paths.

INPUT:

• cartan_type – an affine Cartan type

• r – a label of finite Dynkin diagram

• s – a positive integer

• model – (default: 'KN') can be one of the following:

– 'KN' or 'KashiwaraNakashimaTableaux' - use the Kashiwara-Nakashima tableaux model

– 'KR' or 'KirillovReshetkihinTableaux' - use the Kirillov-Reshetkihin tableaux model

– 'RC' or 'RiggedConfiguration' - use the rigged configuration model

– 'LSPaths' - use the LS path model

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2, 1)
sage: K.index_set()
(0, 1, 2, 3)
sage: K.list()
[[[1], [2]], [[1], [3]], [[2], [3]], [[1], [4]], [[2], [4]], [[3], [4]]]
sage: b=K(rows=[[1],[2]])
sage: b.weight()
-Lambda[0] + Lambda[2]

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: K.automorphism(K.module_generators[0])
[[2, 2], [3, 3]]
sage: K.module_generators[0].e(0)
[[1, 2], [2, 4]]
sage: K.module_generators[0].f(2)
[[1, 1], [2, 3]]
sage: K.module_generators[0].f(1)
sage: K.module_generators[0].phi(0)
0
sage: K.module_generators[0].phi(1)

(continues on next page)

5.1. Comprehensive Module List 449

Combinatorics, Release 9.7

(continued from previous page)

0
sage: K.module_generators[0].phi(2)
2
sage: K.module_generators[0].epsilon(0)
2
sage: K.module_generators[0].epsilon(1)
0
sage: K.module_generators[0].epsilon(2)
0
sage: b = K(rows=[[1,2],[2,3]])
sage: b
[[1, 2], [2, 3]]
sage: b.f(2)
[[1, 2], [3, 3]]

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2, 1)
sage: K.cartan_type()
['D', 4, 1]
sage: type(K.module_generators[0])
<class 'sage.combinat.crystals.kirillov_reshetikhin.KR_type_vertical_with_category.
→˓element_class'>

The following gives some tests with regards to Lemma 3.11 in [LOS2012].

REFERENCES:

• [Shi2002]

• [Sch2008]

• [JS2010]

• [FOS2009]

• [LOS2012]

sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromLSPaths(cartan_type,
r, s=1)

Single column Kirillov-Reshetikhin crystals.

This yields the single column Kirillov-Reshetikhin crystals from the projected level zero LS paths, see
CrystalOfLSPaths. This works for all types (even exceptional types). The weight of the canonical element in
this crystal is Λ𝑟. For other implementation see KirillovReshetikhinCrystal().

EXAMPLES:

sage: K = crystals.kirillov_reshetikhin.LSPaths(['A',2,1],2) # indirect doctest
sage: KR = crystals.KirillovReshetikhin(['A',2,1],2,1)
sage: G = K.digraph()
sage: GR = KR.digraph()
sage: G.is_isomorphic(GR, edge_labels = True)
True

sage: K = crystals.kirillov_reshetikhin.LSPaths(['C',3,1],2)
sage: KR = crystals.KirillovReshetikhin(['C',3,1],2,1)
sage: G = K.digraph()
sage: GR = KR.digraph()

(continues on next page)

450 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: G.is_isomorphic(GR, edge_labels = True)
True

sage: K = crystals.kirillov_reshetikhin.LSPaths(['E',6,1],1)
sage: KR = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: G = K.digraph()
sage: GR = KR.digraph()
sage: G.is_isomorphic(GR, edge_labels = True)
True
sage: K.cardinality()
27

sage: K = crystals.kirillov_reshetikhin.LSPaths(['G',2,1],1)
sage: K.cardinality()
7

sage: K = crystals.kirillov_reshetikhin.LSPaths(['B',3,1],2)
sage: KR = crystals.KirillovReshetikhin(['B',3,1],2,1)
sage: KR.cardinality()
22
sage: K.cardinality()
22
sage: G = K.digraph()
sage: GR = KR.digraph()
sage: G.is_isomorphic(GR, edge_labels = True)
True

class sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromPromotion(cartan_type,
r,
s)

Bases: sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal,
sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotion

This generic class assumes that the Kirillov-Reshetikhin crystal is constructed from a classical crystal using the
classical_decomposition and an automorphism promotion and its inverse, which corresponds to a Dynkin
diagram automorphism dynkin_diagram_automorphism.

Each instance using this class needs to implement the methods:

• classical_decomposition

• promotion

• promotion_inverse

• dynkin_diagram_automorphism

Element
alias of KirillovReshetikhinCrystalFromPromotionElement

class sage.combinat.crystals.kirillov_reshetikhin.
KirillovReshetikhinCrystalFromPromotionElement

Bases: sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotionElement,
sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

Element for a Kirillov-Reshetikhin crystal from promotion.

5.1. Comprehensive Module List 451

Combinatorics, Release 9.7

class sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal(cartan_type,
r, s,
dual=None)

Bases: sage.combinat.crystals.affine.AffineCrystalFromClassical

Generic class for Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠 of the given type.

Input is a Dynkin node r, a positive integer s, and a Cartan type cartan_type.

Element
alias of KirillovReshetikhinGenericCrystalElement

classically_highest_weight_vectors()
Return the classically highest weight vectors of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2)
sage: K.classically_highest_weight_vectors()
([], [[1], [2]], [[1, 1], [2, 2]])

kirillov_reshetikhin_tableaux()
Return the corresponding set of KirillovReshetikhinTableaux.

EXAMPLES:

sage: KRC = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2)
sage: KRC.kirillov_reshetikhin_tableaux()
Kirillov-Reshetikhin tableaux of type ['D', 4, 1] and shape (2, 2)

module_generator()
Return the unique module generator of classical weight 𝑠Λ𝑟 of a Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',2,1],1,2)
sage: K.module_generator()
[[1, 1]]
sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: K.module_generator()
[(1,)]

sage: K = crystals.KirillovReshetikhin(['D',4,1],2,1)
sage: K.module_generator()
[[1], [2]]

r()
Return 𝑟 of the underlying Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2, 1)
sage: K.r()
2

s()
Return 𝑠 of the underlying Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠.

EXAMPLES:

452 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2, 1)
sage: K.s()
1

class
sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

Bases: sage.combinat.crystals.affine.AffineCrystalFromClassicalElement

Abstract class for all Kirillov-Reshetikhin crystal elements.

lusztig_involution()
Return the classical Lusztig involution on self.

EXAMPLES:

sage: KRC = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: elt = KRC(-1,2); elt
[[2], [-1]]
sage: elt.lusztig_involution()
[[1], [-2]]

pp()
Pretty print self.

EXAMPLES:

sage: C = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: C(2,1).pp()
1
2

sage: C = crystals.KirillovReshetikhin(['B',3,1], 3,3)
sage: C.module_generators[0].pp()
+ (X) 1
+
+

to_kirillov_reshetikhin_tableau()
Construct the corresponding KirillovReshetikhinTableauxElement from self.

We construct the Kirillov-Reshetikhin tableau element as follows:

1. Let 𝜆 be the shape of self.

2. Determine a path 𝑒𝑖1𝑒𝑖2 · · · 𝑒𝑖𝑘 to the highest weight.

3. Apply 𝑓𝑖𝑘 · · · 𝑓𝑖2𝑓𝑖1 to a highest weight KR tableau from filling the shape 𝜆.

EXAMPLES:

sage: KRC = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1)
sage: KRC(columns=[[2,1]]).to_kirillov_reshetikhin_tableau()
[[1], [2]]
sage: KRC = crystals.KirillovReshetikhin(['D', 4, 1], 2, 1)
sage: KRC(rows=[]).to_kirillov_reshetikhin_tableau()
[[1], [-1]]

to_tableau()
Return the Tableau corresponding to self.

5.1. Comprehensive Module List 453

Combinatorics, Release 9.7

EXAMPLES:

sage: C = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: t = C(2,1).to_tableau(); t
[[1], [2]]
sage: type(t)
<class 'sage.combinat.tableau.Tableaux_all_with_category.element_class'>

class sage.combinat.crystals.kirillov_reshetikhin.PMDiagram(pm_diagram, from_shapes=None)
Bases: sage.combinat.combinat.CombinatorialObject

Class of ± diagrams. These diagrams are in one-to-one bijection with 𝑋𝑛−1 highest weight vectors in an 𝑋𝑛

highest weight crystal 𝑋 = 𝐵,𝐶,𝐷. See Section 4.1 of [Sch2008].

The input is a list 𝑝𝑚 = [[𝑎0, 𝑏0], [𝑎1, 𝑏1], ..., [𝑎𝑛−1, 𝑏𝑛−1], [𝑏𝑛]] of pairs and a last 1-tuple (or list of length 1).
The pair [𝑎𝑖, 𝑏𝑖] specifies the number of 𝑎𝑖 + and 𝑏𝑖 − in the 𝑖-th row of the ± diagram if 𝑛 − 𝑖 is odd and the
number of 𝑎𝑖 ± pairs above row 𝑖 and 𝑏𝑖 columns of height 𝑖 not containing any + or − if 𝑛− 𝑖 is even.

Setting the option from_shapes = True one can also input a ± diagram in terms of its outer, intermediate,
and inner shape by specifying a list [n, s, outer, intermediate, inner] where s is the width of the ±
diagram, and outer, intermediate, and inner are the outer, intermediate, and inner shapes, respectively.

EXAMPLES:

sage: from sage.combinat.crystals.kirillov_reshetikhin import PMDiagram
sage: pm = PMDiagram([[0,1],[1,2],[1]])
sage: pm.pm_diagram
[[0, 1], [1, 2], [1]]
sage: pm._list
[1, 1, 2, 0, 1]
sage: pm.n
2
sage: pm.width
5
sage: pm.pp()
. . . .
. + - -
sage: PMDiagram([2,5,[4,4],[4,2],[4,1]], from_shapes=True)
[[0, 1], [1, 2], [1]]

heights_of_addable_plus()
Return a list with the heights of all addable plus in the ± diagram.

EXAMPLES:

sage: from sage.combinat.crystals.kirillov_reshetikhin import PMDiagram
sage: pm = PMDiagram([[1,2],[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.heights_of_addable_plus()
[1, 1, 2, 3, 4, 5]
sage: pm = PMDiagram([[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.heights_of_addable_plus()
[1, 2, 3, 4]

heights_of_minus()
Return a list with the heights of all minus in the ± diagram.

EXAMPLES:

454 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.crystals.kirillov_reshetikhin import PMDiagram
sage: pm = PMDiagram([[1,2],[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.heights_of_minus()
[5, 5, 3, 3, 1, 1]
sage: pm = PMDiagram([[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.heights_of_minus()
[4, 4, 2, 2]

inner_shape()
Return the inner shape of the pm diagram

EXAMPLES:

sage: from sage.combinat.crystals.kirillov_reshetikhin import PMDiagram
sage: pm = PMDiagram([[0,1],[1,2],[1]])
sage: pm.inner_shape()
[4, 1]
sage: pm = PMDiagram([[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.inner_shape()
[7, 5, 3, 1]
sage: pm = PMDiagram([[1,2],[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.inner_shape()
[10, 7, 5, 3, 1]

intermediate_shape()
Return the intermediate shape of the pm diagram (inner shape plus positions of plusses)

EXAMPLES:

sage: from sage.combinat.crystals.kirillov_reshetikhin import PMDiagram
sage: pm = PMDiagram([[0,1],[1,2],[1]])
sage: pm.intermediate_shape()
[4, 2]
sage: pm = PMDiagram([[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.intermediate_shape()
[8, 6, 4, 2]
sage: pm = PMDiagram([[1,2],[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.intermediate_shape()
[11, 8, 6, 4, 2]
sage: pm = PMDiagram([[1,0],[0,1],[2,0],[0,0],[0]])
sage: pm.intermediate_shape()
[4, 2, 2]
sage: pm = PMDiagram([[1, 0], [0, 0], [0, 0], [0, 0], [0]])
sage: pm.intermediate_shape()
[1]

outer_shape()
Return the outer shape of the ± diagram

EXAMPLES:

sage: from sage.combinat.crystals.kirillov_reshetikhin import PMDiagram
sage: pm = PMDiagram([[0,1],[1,2],[1]])
sage: pm.outer_shape()
[4, 4]

(continues on next page)

5.1. Comprehensive Module List 455

Combinatorics, Release 9.7

(continued from previous page)

sage: pm = PMDiagram([[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.outer_shape()
[8, 8, 4, 4]
sage: pm = PMDiagram([[1,2],[1,2],[1,1],[1,1],[1,1],[1]])
sage: pm.outer_shape()
[13, 8, 8, 4, 4]

pp()
Pretty print self.

EXAMPLES:

sage: from sage.combinat.crystals.kirillov_reshetikhin import PMDiagram
sage: pm = PMDiagram([[1,0],[0,1],[2,0],[0,0],[0]])
sage: pm.pp()
. . . +
. . - -
+ +
- -
sage: pm = PMDiagram([[0,2], [0,0], [0]])
sage: pm.pp()

sigma()
Return sigma on pm diagrams as needed for the analogue of the Dynkin diagram automorphism that inter-
changes nodes 0 and 1 for type 𝐷𝑛(1), 𝐵𝑛(1), 𝐴2𝑛−1(2) for Kirillov-Reshetikhin crystals.

EXAMPLES:

sage: pm = sage.combinat.crystals.kirillov_reshetikhin.PMDiagram([[0,1],[1,2],
→˓[1]])
sage: pm.sigma()
[[1, 0], [2, 1], [1]]

sage.combinat.crystals.kirillov_reshetikhin.horizontal_dominoes_removed(r, s)
Returns all partitions obtained from a rectangle of width s and height r by removing horizontal dominoes.

EXAMPLES:

sage: sage.combinat.crystals.kirillov_reshetikhin.horizontal_dominoes_removed(2,2)
[[], [2], [2, 2]]
sage: sage.combinat.crystals.kirillov_reshetikhin.horizontal_dominoes_removed(3,2)
[[], [2], [2, 2], [2, 2, 2]]

sage.combinat.crystals.kirillov_reshetikhin.partitions_in_box(r, s)
Returns all partitions in a box of width s and height r.

EXAMPLES:

sage: sage.combinat.crystals.kirillov_reshetikhin.partitions_in_box(3,2)
[[], [1], [2], [1, 1], [2, 1], [1, 1, 1], [2, 2], [2, 1, 1],
[2, 2, 1], [2, 2, 2]]

sage.combinat.crystals.kirillov_reshetikhin.vertical_dominoes_removed(r, s)
Returns all partitions obtained from a rectangle of width s and height r by removing vertical dominoes.

EXAMPLES:

456 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: sage.combinat.crystals.kirillov_reshetikhin.vertical_dominoes_removed(2,2)
[[], [1, 1], [2, 2]]
sage: sage.combinat.crystals.kirillov_reshetikhin.vertical_dominoes_removed(3,2)
[[2], [2, 1, 1], [2, 2, 2]]
sage: sage.combinat.crystals.kirillov_reshetikhin.vertical_dominoes_removed(4,2)
[[], [1, 1], [1, 1, 1, 1], [2, 2], [2, 2, 1, 1], [2, 2, 2, 2]]

5.1.55 Kyoto Path Model for Affine Highest Weight Crystals

class sage.combinat.crystals.kyoto_path_model.KyotoPathModel(crystals, weight, P)
Bases: sage.combinat.crystals.tensor_product.TensorProductOfCrystals

The Kyoto path model for an affine highest weight crystal.

Note: Here we are using anti-Kashiwara notation and might differ from some of the literature.

Consider a Kac–Moody algebra g of affine Cartan type𝑋 , and we want to model the𝑈 ′𝑞(g)-crystal𝐵(𝜆). First we
consider the set of fundamental weights {Λ𝑖}𝑖∈𝐼 of g and let {Λ𝑖}𝑖∈𝐼0 be the corresponding fundamental weights
of the corresponding classical Lie algebra g0. To model𝐵(𝜆), we start with a sequence of perfect 𝑈 ′𝑞(g)-crystals
(𝐵(𝑖))𝑖 of level 𝑙 such that

𝜆 ∈ 𝑃+

𝑙 =
{︁
𝜇 ∈ 𝑃+ | ⟨𝑐, 𝜇⟩ = 𝑙

}︁
where 𝑐 is the canonical central element of 𝑈 ′𝑞(g) and 𝑃+ is the nonnegative weight lattice spanned by {Λ𝑖 | 𝑖 ∈
𝐼}.

Next we consider the crystal isomorphism Φ0 : 𝐵(𝜆0)→ 𝐵(0)⊗𝐵(𝜆1) defined by 𝑢𝜆0
↦→ 𝑏

(0)
𝜆0
⊗𝑢𝜆1

where 𝑏(0)𝜆0

is the unique element in 𝐵(0) such that 𝜙
(︁
𝑏
(0)
𝜆0

)︁
= 𝜆0 and 𝜆1 = 𝜀

(︁
𝑏
(0)
𝜆0

)︁
and 𝑢𝜇 is the highest weight element

in 𝐵(𝜇). Iterating this, we obtain the following isomorphism:

Φ𝑛 : 𝐵(𝜆)→ 𝐵(0) ⊗𝐵(1) ⊗ · · · ⊗𝐵(𝑁) ⊗𝐵(𝜆𝑁+1).

We note by Lemma 10.6.2 in [HK2002] that for any 𝑏 ∈ 𝐵(𝜆) there exists a finite 𝑁 such that

Φ𝑁 (𝑏) =

(︃
𝑁−1⨂︁
𝑘=0

𝑏(𝑘)

)︃
⊗ 𝑢𝜆𝑁

.

Therefore we can model elements 𝑏 ∈ 𝐵(𝜆) as a 𝑈 ′𝑞(g)-crystal by considering an infinite list of elements 𝑏(𝑘) ∈
𝐵(𝑘) and defining the crystal structure by:

wt(𝑏) = 𝜆𝑁 +

𝑁−1∑︁
𝑘=0

wt
(︁
𝑏(𝑘)
)︁

𝑒𝑖(𝑏) = 𝑒𝑖

(︁
𝑏′ ⊗ 𝑏(𝑁)

)︁
⊗ 𝑢𝜆𝑁

,

𝑓𝑖(𝑏) = 𝑓𝑖

(︁
𝑏′ ⊗ 𝑏(𝑁)

)︁
⊗ 𝑢𝜆𝑁

,

𝜀𝑖(𝑏) = max
(︁
𝜀𝑖(𝑏

′)− 𝜙𝑖
(︁
𝑏(𝑁)

)︁
, 0
)︁
,

𝜙𝑖(𝑏) = 𝜙𝑖(𝑏
′) + max

(︁
𝜙𝑖

(︁
𝑏(𝑁)

)︁
− 𝜀𝑖(𝑏′), 0

)︁
,

5.1. Comprehensive Module List 457

Combinatorics, Release 9.7

where 𝑏′ = 𝑏(0) ⊗ · · · ⊗ 𝑏(𝑁−1). To translate this into a finite list, we consider a finite sequence 𝑏(0) ⊗ · · · ⊗
𝑏(𝑁−1) ⊗ 𝑏(𝑁)

𝜆𝑁
and if

𝑓𝑖

(︁
𝑏(0) ⊗ · · · 𝑏(𝑁−1) ⊗ 𝑏(𝑁)

𝜆𝑁

)︁
= 𝑏0 ⊗ · · · ⊗ 𝑏(𝑁−1) ⊗ 𝑓𝑖

(︁
𝑏
(𝑁)
𝜆𝑁

)︁
,

then we take the image as 𝑏(0) ⊗ · · · ⊗ 𝑓𝑖
(︁
𝑏
(𝑁)
𝜆𝑁

)︁
⊗ 𝑏(𝑁+1)

𝜆𝑁+1
. Similarly we remove 𝑏(𝑁)

𝜆𝑁
if we have 𝑏0 ⊗ · · · ⊗

𝑏(𝑁−1) ⊗ 𝑏(𝑁−1)𝜆𝑁−1
⊗ 𝑏(𝑁)

𝜆𝑁
. Additionally if

𝑒𝑖

(︁
𝑏(0) ⊗ · · · ⊗ 𝑏(𝑁−1) ⊗ 𝑏(𝑁)

𝜆𝑁

)︁
= 𝑏(0) ⊗ · · · ⊗ 𝑏(𝑁−1) ⊗ 𝑒𝑖

(︁
𝑏
(𝑁)
𝜆𝑁

)︁
,

then we consider this to be 0.

We can then lift the 𝑈 ′𝑞(g)-crystal structure to a 𝑈𝑞(g)-crystal structure by using a tensor product of the
affinization of the of crystals 𝐵(𝑖) for all 𝑖.

INPUT:

• B – a single or list of 𝑈 ′𝑞 perfect crystal(s) of level 𝑙

• weight – a weight in 𝑃+

𝑙

EXAMPLES:

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel(B, La[0])
sage: mg = C.module_generators[0]; mg
[[[3]]]
sage: mg.f_string([0,1,2,2])
[[[3]], [[3]], [[1]]]
sage: x = mg.f_string([0,1,2]); x
[[[2]], [[3]], [[1]]]
sage: x.weight()
Lambda[0]

An example of type 𝐴(2)
5 :

sage: B = crystals.KirillovReshetikhin(['A',5,2], 1,1)
sage: La = RootSystem(['A',5,2]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel(B, La[0])
sage: mg = C.module_generators[0]; mg
[[[-1]]]
sage: mg.f_string([0,2,1,3])
[[[-3]], [[2]], [[-1]]]
sage: mg.f_string([0,2,3,1])
[[[-3]], [[2]], [[-1]]]

An example of type 𝐷(2)
3 :

sage: B = crystals.KirillovReshetikhin(['D',3,2], 1,1)
sage: La = RootSystem(['D',3,2]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel(B, La[0])
sage: mg = C.module_generators[0]; mg
[[]]
sage: mg.f_string([0,1,2,0])
[[[0]], [[1]], []]

458 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

An example using multiple crystals of the same level:

sage: B1 = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: B2 = crystals.KirillovReshetikhin(['A',2,1], 2,1)
sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel([B1, B2, B1], La[0])
sage: mg = C.module_generators[0]; mg
[[[3]]]
sage: mg.f_string([0,1,2,2])
[[[3]], [[1], [3]], [[3]]]
sage: mg.f_string([0,1,2,2,2])
sage: mg.f_string([0,1,2,2,1,0])
[[[3]], [[2], [3]], [[1]], [[2]]]
sage: mg.f_string([0,1,2,2,1,0,0,2])
[[[3]], [[1], [2]], [[1]], [[3]], [[1], [3]]]

By using the extended weight lattice, the Kyoto path model lifts the perfect crystals to their affinizations:

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: P = RootSystem(['A',2,1]).weight_lattice(extended=True)
sage: La = P.fundamental_weights()
sage: C = crystals.KyotoPathModel(B, La[0])
sage: mg = C.module_generators[0]; mg
[[[3]](0)]
sage: x = mg.f_string([0,1,2]); x
[[[2]](-1), [[3]](0), [[1]](0)]
sage: x.weight()
Lambda[0] - delta

class Element
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement

An element in the Kyoto path model.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel(B, La[0])
sage: mg = C.module_generators[0]
sage: all(mg.e(i) is None for i in C.index_set())
True
sage: mg.f(0).e(0) == mg
True

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel(B, La[0])

(continues on next page)

5.1. Comprehensive Module List 459

Combinatorics, Release 9.7

(continued from previous page)

sage: mg = C.module_generators[0]
sage: [mg.epsilon(i) for i in C.index_set()]
[0, 0, 0]
sage: elt = mg.f(0)
sage: [elt.epsilon(i) for i in C.index_set()]
[1, 0, 0]
sage: elt = mg.f_string([0,1,2])
sage: [elt.epsilon(i) for i in C.index_set()]
[0, 0, 1]
sage: elt = mg.f_string([0,1,2,2])
sage: [elt.epsilon(i) for i in C.index_set()]
[0, 0, 2]

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel(B, La[0])
sage: mg = C.module_generators[0]
sage: mg.f(2)
sage: mg.f(0)
[[[1]], [[2]]]
sage: mg.f_string([0,1,2])
[[[2]], [[3]], [[1]]]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel(B, La[0])
sage: mg = C.module_generators[0]
sage: [mg.phi(i) for i in C.index_set()]
[1, 0, 0]
sage: elt = mg.f(0)
sage: [elt.phi(i) for i in C.index_set()]
[0, 1, 1]
sage: elt = mg.f_string([0,1])
sage: [elt.phi(i) for i in C.index_set()]
[0, 0, 2]

truncate(k=None)
Truncate self to have length k and return as an element in a (finite) tensor product of crystals.

INPUT:
• k – (optional) the length to truncate to; if not specified, then returns one more than the current

non-ground-state elements (i.e. the current list in self)
EXAMPLES:

460 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: B1 = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: B2 = crystals.KirillovReshetikhin(['A',2,1], 2,1)
sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel([B1,B2,B1], La[0])
sage: mg = C.highest_weight_vector()
sage: elt = mg.f_string([0,1,2,2,1,0]); elt
[[[3]], [[2], [3]], [[1]], [[2]]]
sage: t = elt.truncate(); t
[[[3]], [[2], [3]], [[1]], [[2]]]
sage: t.parent() is C.finite_tensor_product(4)
True
sage: elt.truncate(2)
[[[3]], [[2], [3]]]
sage: elt.truncate(10)
[[[3]], [[2], [3]], [[1]], [[2]], [[1], [3]],
[[2]], [[1]], [[2], [3]], [[1]], [[3]]]

weight()
Return the weight of self.

EXAMPLES:

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: P = RootSystem(['A',2,1]).weight_lattice(extended=True)
sage: La = P.fundamental_weights()
sage: C = crystals.KyotoPathModel(B, La[0])
sage: mg = C.module_generators[0]
sage: mg.weight()
Lambda[0]
sage: mg.f_string([0,1,2]).weight()
Lambda[0] - delta

finite_tensor_product(k)
Return the finite tensor product of crystals of length k from truncating self.

EXAMPLES:

sage: B1 = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: B2 = crystals.KirillovReshetikhin(['A',2,1], 2,1)
sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel([B1,B2,B1], La[0])
sage: C.finite_tensor_product(5)
Full tensor product of the crystals
[Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(1,1),
Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(2,1),
Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(1,1),
Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(1,1),
Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(2,1)]

weight_lattice_realization()
Return the weight lattice realization used to express weights.

EXAMPLES:

5.1. Comprehensive Module List 461

Combinatorics, Release 9.7

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1)
sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights()
sage: C = crystals.KyotoPathModel(B, La[0])
sage: C.weight_lattice_realization()
Weight lattice of the Root system of type ['A', 2, 1]

sage: P = RootSystem(['A',2,1]).weight_lattice(extended=True)
sage: C = crystals.KyotoPathModel(B, P.fundamental_weight(0))
sage: C.weight_lattice_realization()
Extended weight lattice of the Root system of type ['A', 2, 1]

5.1.56 Crystals of letters

class sage.combinat.crystals.letters.BKKLetter
Bases: sage.combinat.crystals.letters.Letter

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['A', [2, 1]])
sage: c = C(-2)
sage: c.e(-2)
-3
sage: c = C(1)
sage: c.e(0)
-1
sage: c = C(2)
sage: c.e(1)
1
sage: c.e(-2)

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['A', [2, 1]])
sage: c = C.an_element()
sage: c.f(-2)
-2
sage: c = C(-1)
sage: c.f(0)
1
sage: c = C(1)
sage: c.f(1)
2
sage: c.f(-2)

weight()
Return weight of self.

EXAMPLES:

462 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: C = crystals.Letters(['A', [2, 1]])
sage: c = C(-1)
sage: c.weight()
(0, 0, 1, 0, 0)
sage: c = C(2)
sage: c.weight()
(0, 0, 0, 0, 1)

class sage.combinat.crystals.letters.ClassicalCrystalOfLetters(cartan_type, element_class,
element_print_style=None,
dual=None)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

A generic class for classical crystals of letters.

All classical crystals of letters should be instances of this class or of subclasses. To define a new crystal of letters,
one only needs to implement a class for the elements (which subclasses Letter), with appropriate 𝑒𝑖 and 𝑓𝑖 op-
erations. If the module generator is not 1, one also needs to define the subclass ClassicalCrystalOfLetters
for the crystal itself.

The basic assumption is that crystals of letters are small, but used intensively as building blocks. Therefore, we
explicitly build in memory the list of all elements, the crystal graph and its transitive closure, so as to make the
following operations constant time: list, cmp, (todo: phi, epsilon, e, and f with caching)

list()
Return a list of the elements of self.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C.list()
[1, 2, 3, 4, 5, 6]

lt_elements(x, y)
Return True if and only if there is a path from x to y in the crystal graph, when x is not equal to y.

Because the crystal graph is classical, it is a directed acyclic graph which can be interpreted as a poset.
This function implements the comparison function of this poset.

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: x = C(1)
sage: y = C(2)
sage: C.lt_elements(x,y)
True
sage: C.lt_elements(y,x)
False
sage: C.lt_elements(x,x)
False
sage: C = crystals.Letters(['D', 4])
sage: C.lt_elements(C(4),C(-4))
False
sage: C.lt_elements(C(-4),C(4))
False

5.1. Comprehensive Module List 463

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

class sage.combinat.crystals.letters.ClassicalCrystalOfLettersWrapped(cartan_type)
Bases: sage.combinat.crystals.letters.ClassicalCrystalOfLetters

Crystal of letters by wrapping another crystal.

This is used for a crystal of letters of type 𝐸8 and 𝐹4.

This class follows the same output as the other crystal of letters, where 𝑏 is represented by the “letter” with 𝜙𝑖(𝑏)
(resp., 𝜀𝑖) number of 𝑖’s (resp., −𝑖’s or �̄�’s). However, this uses an auxiliary crystal to construct these letters to
avoid hardcoding the crystal elements and the corresponding edges; in particular, the 248 nodes of 𝐸8.

class sage.combinat.crystals.letters.CrystalOfBKKLetters(ct, dual)
Bases: sage.combinat.crystals.letters.ClassicalCrystalOfLetters

Crystal of letters for Benkart-Kang-Kashiwara supercrystals.

This implements the gl(𝑚|𝑛) crystal of Benkart, Kang and Kashiwara [BKK2000].

EXAMPLES:

sage: C = crystals.Letters(['A', [1, 1]]); C
The crystal of letters for type ['A', [1, 1]]

sage: C = crystals.Letters(['A', [2,4]], dual=True); C
The crystal of letters for type ['A', [2, 4]] (dual)

Element
alias of BKKLetter

sage.combinat.crystals.letters.CrystalOfLetters(cartan_type, element_print_style=None, dual=None)
Return the crystal of letters of the given type.

For classical types, this is a combinatorial model for the crystal with highest weight Λ1 (the first fundamental
weight).

Any irreducible classical crystal appears as the irreducible component of the tensor product of several copies
of this crystal (plus possibly one copy of the spin crystal, see CrystalOfSpins). See [KN1994]. Elements
of this irreducible component have a fixed shape, and can be fit inside a tableau shape. Otherwise said, any
irreducible classical crystal is isomorphic to a crystal of tableaux with cells filled by elements of the crystal of
letters (possibly tensored with the crystal of spins).

We also have the crystal of fundamental representation of the general linear Lie superalgebra, which are used
as letters inside of tableaux following [BKK2000]. Similarly, all of these crystals appear as a subcrystal of a
sufficiently large tensor power of this crystal.

INPUT:

• T – a Cartan type

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C.list()
[1, 2, 3, 4, 5, 6]
sage: C.cartan_type()
['A', 5]

For type 𝐸6, one can also specify how elements are printed. This option is usually set to None and the default
representation is used. If one chooses the option ‘compact’, the elements are printed in the more compact con-
vention with 27 letters +abcdefghijklmnopqrstuvwxyz and the 27 letters -ABCDEFGHIJKLMNOPQRSTUVWXYZ
for the dual crystal.

464 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: C = crystals.Letters(['E',6], element_print_style = 'compact')
sage: C
The crystal of letters for type ['E', 6]
sage: C.list()
[+, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z]
sage: C = crystals.Letters(['E',6], element_print_style = 'compact', dual = True)
sage: C
The crystal of letters for type ['E', 6] (dual)
sage: C.list()
[-, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z]

class sage.combinat.crystals.letters.CrystalOfQueerLetters(ct)
Bases: sage.combinat.crystals.letters.ClassicalCrystalOfLetters

Queer crystal of letters elements.

The index set is of the form {−𝑛, . . . ,−1, 1, . . . , 𝑛}. For 1 < 𝑖 ≤ 𝑛, the operators 𝑒−𝑖 and 𝑓−𝑖 are defined as

𝑓−𝑖 = 𝑠𝑤−1
𝑖
𝑓−1𝑠𝑤𝑖

, 𝑒−𝑖 = 𝑠𝑤−1
𝑖
𝑒−1𝑠𝑤𝑖

,

where 𝑤𝑖 = 𝑠2 · · · 𝑠𝑖𝑠1 · · · 𝑠𝑖−1 and 𝑠𝑖 is the reflection along the 𝑖-string in the crystal. See [GJK+2014].

Element
alias of QueerLetter_element

index_set()
Return index set of self.

EXAMPLES:

sage: Q = crystals.Letters(['Q',3])
sage: Q.index_set()
(1, 2, -2, -1)

class sage.combinat.crystals.letters.Crystal_of_letters_type_A_element
Bases: sage.combinat.crystals.letters.Letter

Type 𝐴 crystal of letters elements.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['A',4])
sage: [(c,i,c.e(i)) for i in C.index_set() for c in C if c.e(i) is not None]
[(2, 1, 1), (3, 2, 2), (4, 3, 3), (5, 4, 4)]

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['A',4])
sage: [(c,i) for i in C.index_set() for c in C if c.epsilon(i) != 0]
[(2, 1), (3, 2), (4, 3), (5, 4)]

5.1. Comprehensive Module List 465

Combinatorics, Release 9.7

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['A',4])
sage: [(c,i,c.f(i)) for i in C.index_set() for c in C if c.f(i) is not None]
[(1, 1, 2), (2, 2, 3), (3, 3, 4), (4, 4, 5)]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['A',4])
sage: [(c,i) for i in C.index_set() for c in C if c.phi(i) != 0]
[(1, 1), (2, 2), (3, 3), (4, 4)]

weight()
Return the weight of self.

EXAMPLES:

sage: [v.weight() for v in crystals.Letters(['A',3])]
[(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)]

class sage.combinat.crystals.letters.Crystal_of_letters_type_B_element
Bases: sage.combinat.crystals.letters.Letter

Type 𝐵 crystal of letters elements.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['B',4])
sage: [(c,i,c.e(i)) for i in C.index_set() for c in C if c.e(i) is not None]
[(2, 1, 1),
(-1, 1, -2),
(3, 2, 2),
(-2, 2, -3),
(4, 3, 3),
(-3, 3, -4),
(0, 4, 4),
(-4, 4, 0)]

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['B',3])
sage: [(c,i) for i in C.index_set() for c in C if c.epsilon(i) != 0]
[(2, 1), (-1, 1), (3, 2), (-2, 2), (0, 3), (-3, 3)]

f(i)
Return the actions of 𝑓𝑖 on self.

466 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: C = crystals.Letters(['B',4])
sage: [(c,i,c.f(i)) for i in C.index_set() for c in C if c.f(i) is not None]
[(1, 1, 2),
(-2, 1, -1),
(2, 2, 3),
(-3, 2, -2),
(3, 3, 4),
(-4, 3, -3),
(4, 4, 0),
(0, 4, -4)]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['B',3])
sage: [(c,i) for i in C.index_set() for c in C if c.phi(i) != 0]
[(1, 1), (-2, 1), (2, 2), (-3, 2), (3, 3), (0, 3)]

weight()
Return the weight of self.

EXAMPLES:

sage: [v.weight() for v in crystals.Letters(['B',3])]
[(1, 0, 0),
(0, 1, 0),
(0, 0, 1),
(0, 0, 0),
(0, 0, -1),
(0, -1, 0),
(-1, 0, 0)]

class sage.combinat.crystals.letters.Crystal_of_letters_type_C_element
Bases: sage.combinat.crystals.letters.Letter

Type 𝐶 crystal of letters elements.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['C',4])
sage: [(c,i,c.e(i)) for i in C.index_set() for c in C if c.e(i) is not None]
[(2, 1, 1),
(-1, 1, -2),
(3, 2, 2),
(-2, 2, -3),
(4, 3, 3),
(-3, 3, -4),
(-4, 4, 4)]

5.1. Comprehensive Module List 467

Combinatorics, Release 9.7

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['C',3])
sage: [(c,i) for i in C.index_set() for c in C if c.epsilon(i) != 0]
[(2, 1), (-1, 1), (3, 2), (-2, 2), (-3, 3)]

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['C',4])
sage: [(c,i,c.f(i)) for i in C.index_set() for c in C if c.f(i) is not None]
[(1, 1, 2), (-2, 1, -1), (2, 2, 3),
(-3, 2, -2), (3, 3, 4), (-4, 3, -3), (4, 4, -4)]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['C',3])
sage: [(c,i) for i in C.index_set() for c in C if c.phi(i) != 0]
[(1, 1), (-2, 1), (2, 2), (-3, 2), (3, 3)]

weight()
Return the weight of self.

EXAMPLES:

sage: [v.weight() for v in crystals.Letters(['C',3])]
[(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, -1), (0, -1, 0), (-1, 0, 0)]

class sage.combinat.crystals.letters.Crystal_of_letters_type_D_element
Bases: sage.combinat.crystals.letters.Letter

Type 𝐷 crystal of letters elements.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['D',5])
sage: [(c,i,c.e(i)) for i in C.index_set() for c in C if c.e(i) is not None]
[(2, 1, 1),
(-1, 1, -2),
(3, 2, 2),
(-2, 2, -3),
(4, 3, 3),
(-3, 3, -4),
(5, 4, 4),
(-4, 4, -5),
(-5, 5, 4),
(-4, 5, 5)]

468 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['D',4])
sage: [(c,i) for i in C.index_set() for c in C if c.epsilon(i) != 0]
[(2, 1), (-1, 1), (3, 2), (-2, 2), (4, 3), (-3, 3), (-4, 4), (-3, 4)]

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['D',5])
sage: [(c,i,c.f(i)) for i in C.index_set() for c in C if c.f(i) is not None]
[(1, 1, 2),
(-2, 1, -1),
(2, 2, 3),
(-3, 2, -2),
(3, 3, 4),
(-4, 3, -3),
(4, 4, 5),
(-5, 4, -4),
(4, 5, -5),
(5, 5, -4)]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['D',4])
sage: [(c,i) for i in C.index_set() for c in C if c.phi(i) != 0]
[(1, 1), (-2, 1), (2, 2), (-3, 2), (3, 3), (-4, 3), (3, 4), (4, 4)]

weight()
Return the weight of self.

EXAMPLES:

sage: [v.weight() for v in crystals.Letters(['D',4])]
[(1, 0, 0, 0),
(0, 1, 0, 0),
(0, 0, 1, 0),
(0, 0, 0, 1),
(0, 0, 0, -1),
(0, 0, -1, 0),
(0, -1, 0, 0),
(-1, 0, 0, 0)]

class sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element
Bases: sage.combinat.crystals.letters.LetterTuple

Type 𝐸6 crystal of letters elements. This crystal corresponds to the highest weight crystal 𝐵(Λ1).

e(i)
Return the action of 𝑒𝑖 on self.

5.1. Comprehensive Module List 469

Combinatorics, Release 9.7

EXAMPLES:

sage: C = crystals.Letters(['E',6])
sage: C((-1,3)).e(1)
(1,)
sage: C((-2,-3,4)).e(2)
(-3, 2)
sage: C((1,)).e(1)

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['E',6])
sage: C((1,)).f(1)
(-1, 3)
sage: C((-6,)).f(1)

weight()
Return the weight of self.

EXAMPLES:

sage: [v.weight() for v in crystals.Letters(['E',6])]
[(0, 0, 0, 0, 0, -2/3, -2/3, 2/3),
(-1/2, 1/2, 1/2, 1/2, 1/2, -1/6, -1/6, 1/6),
(1/2, -1/2, 1/2, 1/2, 1/2, -1/6, -1/6, 1/6),
(1/2, 1/2, -1/2, 1/2, 1/2, -1/6, -1/6, 1/6),
(-1/2, -1/2, -1/2, 1/2, 1/2, -1/6, -1/6, 1/6),
(1/2, 1/2, 1/2, -1/2, 1/2, -1/6, -1/6, 1/6),
(-1/2, -1/2, 1/2, -1/2, 1/2, -1/6, -1/6, 1/6),
(-1/2, 1/2, -1/2, -1/2, 1/2, -1/6, -1/6, 1/6),
(1/2, -1/2, -1/2, -1/2, 1/2, -1/6, -1/6, 1/6),
(0, 0, 0, 0, 1, 1/3, 1/3, -1/3),
(1/2, 1/2, 1/2, 1/2, -1/2, -1/6, -1/6, 1/6),
(-1/2, -1/2, 1/2, 1/2, -1/2, -1/6, -1/6, 1/6),
(-1/2, 1/2, -1/2, 1/2, -1/2, -1/6, -1/6, 1/6),
(1/2, -1/2, -1/2, 1/2, -1/2, -1/6, -1/6, 1/6),
(0, 0, 0, 1, 0, 1/3, 1/3, -1/3),
(-1/2, 1/2, 1/2, -1/2, -1/2, -1/6, -1/6, 1/6),
(1/2, -1/2, 1/2, -1/2, -1/2, -1/6, -1/6, 1/6),
(0, 0, 1, 0, 0, 1/3, 1/3, -1/3),
(1/2, 1/2, -1/2, -1/2, -1/2, -1/6, -1/6, 1/6),
(0, 1, 0, 0, 0, 1/3, 1/3, -1/3),
(1, 0, 0, 0, 0, 1/3, 1/3, -1/3),
(0, -1, 0, 0, 0, 1/3, 1/3, -1/3),
(0, 0, -1, 0, 0, 1/3, 1/3, -1/3),
(0, 0, 0, -1, 0, 1/3, 1/3, -1/3),
(0, 0, 0, 0, -1, 1/3, 1/3, -1/3),
(-1/2, -1/2, -1/2, -1/2, -1/2, -1/6, -1/6, 1/6),
(-1, 0, 0, 0, 0, 1/3, 1/3, -1/3)]

class sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element_dual
Bases: sage.combinat.crystals.letters.LetterTuple

470 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Type 𝐸6 crystal of letters elements. This crystal corresponds to the highest weight crystal 𝐵(Λ6). This crystal
is dual to 𝐵(Λ1) of type 𝐸6.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['E',6], dual = True)
sage: C((-1,)).e(1)
(1, -3)

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['E',6], dual = True)
sage: C((6,)).f(6)
(5, -6)
sage: C((6,)).f(1)

lift()
Lift an element of self to the crystal of letters crystals.Letters(['E',6]) by taking its inverse
weight.

EXAMPLES:

sage: C = crystals.Letters(['E',6], dual = True)
sage: b = C.module_generators[0]
sage: b.lift()
(-6,)

retract(p)
Retract element p, which is an element in crystals.Letters(['E',6]) to an element in crystals.
Letters(['E',6], dual=True) by taking its inverse weight.

EXAMPLES:

sage: C = crystals.Letters(['E',6])
sage: Cd = crystals.Letters(['E',6], dual = True)
sage: b = Cd.module_generators[0]
sage: p = C((-1,3))
sage: b.retract(p)
(1, -3)
sage: b.retract(None)

weight()
Return the weight of self.

EXAMPLES:

sage: C = crystals.Letters(['E',6], dual = True)
sage: b=C.module_generators[0]
sage: b.weight()
(0, 0, 0, 0, 1, -1/3, -1/3, 1/3)
sage: [v.weight() for v in C]

(continues on next page)

5.1. Comprehensive Module List 471

Combinatorics, Release 9.7

(continued from previous page)

[(0, 0, 0, 0, 1, -1/3, -1/3, 1/3),
(0, 0, 0, 1, 0, -1/3, -1/3, 1/3),
(0, 0, 1, 0, 0, -1/3, -1/3, 1/3),
(0, 1, 0, 0, 0, -1/3, -1/3, 1/3),
(-1, 0, 0, 0, 0, -1/3, -1/3, 1/3),
(1, 0, 0, 0, 0, -1/3, -1/3, 1/3),
(1/2, 1/2, 1/2, 1/2, 1/2, 1/6, 1/6, -1/6),
(0, -1, 0, 0, 0, -1/3, -1/3, 1/3),
(-1/2, -1/2, 1/2, 1/2, 1/2, 1/6, 1/6, -1/6),
(0, 0, -1, 0, 0, -1/3, -1/3, 1/3),
(-1/2, 1/2, -1/2, 1/2, 1/2, 1/6, 1/6, -1/6),
(1/2, -1/2, -1/2, 1/2, 1/2, 1/6, 1/6, -1/6),
(0, 0, 0, -1, 0, -1/3, -1/3, 1/3),
(-1/2, 1/2, 1/2, -1/2, 1/2, 1/6, 1/6, -1/6),
(1/2, -1/2, 1/2, -1/2, 1/2, 1/6, 1/6, -1/6),
(1/2, 1/2, -1/2, -1/2, 1/2, 1/6, 1/6, -1/6),
(-1/2, -1/2, -1/2, -1/2, 1/2, 1/6, 1/6, -1/6),
(0, 0, 0, 0, -1, -1/3, -1/3, 1/3),
(-1/2, 1/2, 1/2, 1/2, -1/2, 1/6, 1/6, -1/6),
(1/2, -1/2, 1/2, 1/2, -1/2, 1/6, 1/6, -1/6),
(1/2, 1/2, -1/2, 1/2, -1/2, 1/6, 1/6, -1/6),
(-1/2, -1/2, -1/2, 1/2, -1/2, 1/6, 1/6, -1/6),
(1/2, 1/2, 1/2, -1/2, -1/2, 1/6, 1/6, -1/6),
(-1/2, -1/2, 1/2, -1/2, -1/2, 1/6, 1/6, -1/6),
(-1/2, 1/2, -1/2, -1/2, -1/2, 1/6, 1/6, -1/6),
(1/2, -1/2, -1/2, -1/2, -1/2, 1/6, 1/6, -1/6),
(0, 0, 0, 0, 0, 2/3, 2/3, -2/3)]

class sage.combinat.crystals.letters.Crystal_of_letters_type_E7_element
Bases: sage.combinat.crystals.letters.LetterTuple

Type 𝐸7 crystal of letters elements. This crystal corresponds to the highest weight crystal 𝐵(Λ7).

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['E',7])
sage: C((7,)).e(7)
sage: C((-7,6)).e(7)
(7,)

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['E',7])
sage: C((-7,)).f(7)
sage: C((7,)).f(7)
(-7, 6)

weight()
Return the weight of self.

472 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: [v.weight() for v in crystals.Letters(['E',7])]
[(0, 0, 0, 0, 0, 1, -1/2, 1/2), (0, 0, 0, 0, 1, 0, -1/2, 1/2), (0, 0, 0,
1, 0, 0, -1/2, 1/2), (0, 0, 1, 0, 0, 0, -1/2, 1/2), (0, 1, 0, 0, 0, 0,
-1/2, 1/2), (-1, 0, 0, 0, 0, 0, -1/2, 1/2), (1, 0, 0, 0, 0, 0, -1/2,
1/2), (1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 0, 0), (0, -1, 0, 0, 0, 0, -1/2,
1/2), (-1/2, -1/2, 1/2, 1/2, 1/2, 1/2, 0, 0), (0, 0, -1, 0, 0, 0, -1/2,
1/2), (-1/2, 1/2, -1/2, 1/2, 1/2, 1/2, 0, 0), (1/2, -1/2, -1/2, 1/2,
1/2, 1/2, 0, 0), (0, 0, 0, -1, 0, 0, -1/2, 1/2), (-1/2, 1/2, 1/2, -1/2,
1/2, 1/2, 0, 0), (1/2, -1/2, 1/2, -1/2, 1/2, 1/2, 0, 0), (1/2, 1/2,
-1/2, -1/2, 1/2, 1/2, 0, 0), (-1/2, -1/2, -1/2, -1/2, 1/2, 1/2, 0, 0),
(0, 0, 0, 0, -1, 0, -1/2, 1/2), (-1/2, 1/2, 1/2, 1/2, -1/2, 1/2, 0, 0),
(1/2, -1/2, 1/2, 1/2, -1/2, 1/2, 0, 0), (1/2, 1/2, -1/2, 1/2, -1/2, 1/2,
0, 0), (-1/2, -1/2, -1/2, 1/2, -1/2, 1/2, 0, 0), (1/2, 1/2, 1/2, -1/2,
-1/2, 1/2, 0, 0), (-1/2, -1/2, 1/2, -1/2, -1/2, 1/2, 0, 0), (-1/2, 1/2,
-1/2, -1/2, -1/2, 1/2, 0, 0), (1/2, -1/2, -1/2, -1/2, -1/2, 1/2, 0, 0),
(0, 0, 0, 0, 0, 1, 1/2, -1/2), (0, 0, 0, 0, 0, -1, -1/2, 1/2), (-1/2,
1/2, 1/2, 1/2, 1/2, -1/2, 0, 0), (1/2, -1/2, 1/2, 1/2, 1/2, -1/2, 0, 0),
(1/2, 1/2, -1/2, 1/2, 1/2, -1/2, 0, 0), (-1/2, -1/2, -1/2, 1/2, 1/2,
-1/2, 0, 0), (1/2, 1/2, 1/2, -1/2, 1/2, -1/2, 0, 0), (-1/2, -1/2, 1/2,
-1/2, 1/2, -1/2, 0, 0), (-1/2, 1/2, -1/2, -1/2, 1/2, -1/2, 0, 0), (1/2,
-1/2, -1/2, -1/2, 1/2, -1/2, 0, 0), (0, 0, 0, 0, 1, 0, 1/2, -1/2), (1/2,
1/2, 1/2, 1/2, -1/2, -1/2, 0, 0), (-1/2, -1/2, 1/2, 1/2, -1/2, -1/2, 0,
0), (-1/2, 1/2, -1/2, 1/2, -1/2, -1/2, 0, 0), (1/2, -1/2, -1/2, 1/2,
-1/2, -1/2, 0, 0), (0, 0, 0, 1, 0, 0, 1/2, -1/2), (-1/2, 1/2, 1/2, -1/2,
-1/2, -1/2, 0, 0), (1/2, -1/2, 1/2, -1/2, -1/2, -1/2, 0, 0), (0, 0, 1,
0, 0, 0, 1/2, -1/2), (1/2, 1/2, -1/2, -1/2, -1/2, -1/2, 0, 0), (0, 1, 0,
0, 0, 0, 1/2, -1/2), (1, 0, 0, 0, 0, 0, 1/2, -1/2), (0, -1, 0, 0, 0, 0,
1/2, -1/2), (0, 0, -1, 0, 0, 0, 1/2, -1/2), (0, 0, 0, -1, 0, 0, 1/2,
-1/2), (0, 0, 0, 0, -1, 0, 1/2, -1/2), (0, 0, 0, 0, 0, -1, 1/2, -1/2),
(-1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 0, 0), (-1, 0, 0, 0, 0, 0, 1/2,
-1/2)]

class sage.combinat.crystals.letters.Crystal_of_letters_type_G_element
Bases: sage.combinat.crystals.letters.Letter

Type 𝐺2 crystal of letters elements.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['G',2])
sage: [(c,i,c.e(i)) for i in C.index_set() for c in C if c.e(i) is not None]
[(2, 1, 1),
(0, 1, 3),
(-3, 1, 0),
(-1, 1, -2),
(3, 2, 2),
(-2, 2, -3)]

epsilon(i)
Return 𝜀𝑖 of self.

5.1. Comprehensive Module List 473

Combinatorics, Release 9.7

EXAMPLES:

sage: C = crystals.Letters(['G',2])
sage: [(c,i,c.epsilon(i)) for i in C.index_set() for c in C if c.epsilon(i) !=␣
→˓0]
[(2, 1, 1), (0, 1, 1), (-3, 1, 2), (-1, 1, 1), (3, 2, 1), (-2, 2, 1)]

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['G',2])
sage: [(c,i,c.f(i)) for i in C.index_set() for c in C if c.f(i) is not None]
[(1, 1, 2),
(3, 1, 0),
(0, 1, -3),
(-2, 1, -1),
(2, 2, 3),
(-3, 2, -2)]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['G',2])
sage: [(c,i,c.phi(i)) for i in C.index_set() for c in C if c.phi(i) != 0]
[(1, 1, 1), (3, 1, 2), (0, 1, 1), (-2, 1, 1), (2, 2, 1), (-3, 2, 1)]

weight()
Return the weight of self.

EXAMPLES:

sage: [v.weight() for v in crystals.Letters(['G',2])]
[(1, 0, -1), (1, -1, 0), (0, 1, -1), (0, 0, 0), (0, -1, 1), (-1, 1, 0), (-1, 0,␣
→˓1)]

class sage.combinat.crystals.letters.EmptyLetter
Bases: sage.structure.element.Element

The affine letter ∅ thought of as a classical crystal letter in classical type 𝐵𝑛 and 𝐶𝑛.

Warning: This is not a classical letter.

Used in the rigged configuration bijections.

e(i)
Return 𝑒𝑖 of self which is None.

EXAMPLES:

sage: C = crystals.Letters(['C', 3])
sage: C('E').e(1)

474 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['C', 3])
sage: C('E').epsilon(1)
0

f(i)
Return 𝑓𝑖 of self which is None.

EXAMPLES:

sage: C = crystals.Letters(['C', 3])
sage: C('E').f(1)

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['C', 3])
sage: C('E').phi(1)
0

value

weight()
Return the weight of self.

EXAMPLES:

sage: C = crystals.Letters(['C', 3])
sage: C('E').weight()
(0, 0, 0)

class sage.combinat.crystals.letters.Letter
Bases: sage.structure.element.Element

A class for letters.

Like ElementWrapper, plus delegates __lt__ (comparison) to the parent.

EXAMPLES:

sage: from sage.combinat.crystals.letters import Letter
sage: a = Letter(ZZ, 1)
sage: Letter(ZZ, 1).parent()
Integer Ring

sage: Letter(ZZ, 1)._repr_()
'1'

sage: parent1 = ZZ # Any fake value ...
sage: parent2 = QQ # Any fake value ...
sage: l11 = Letter(parent1, 1)
sage: l12 = Letter(parent1, 2)

(continues on next page)

5.1. Comprehensive Module List 475

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element
../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

(continued from previous page)

sage: l21 = Letter(parent2, 1)
sage: l22 = Letter(parent2, 2)
sage: l11 == l11
True
sage: l11 == l12
False
sage: l11 == l21 # not tested
False

sage: C = crystals.Letters(['B', 3])
sage: C(0) != C(0)
False
sage: C(1) != C(-1)
True

value

class sage.combinat.crystals.letters.LetterTuple
Bases: sage.structure.element.Element

Abstract class for type 𝐸 letters.

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['E',6])
sage: C((-6,)).epsilon(1)
0
sage: C((-6,)).epsilon(6)
1

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['E',6])
sage: C((1,)).phi(1)
1
sage: C((1,)).phi(6)
0

value

class sage.combinat.crystals.letters.LetterWrapped
Bases: sage.structure.element.Element

Element which uses another crystal implementation and converts those elements to a tuple with ±𝑖.

e(i)
Return 𝑒𝑖 of self.

EXAMPLES:

476 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

sage: C = crystals.Letters(['E', 8])
sage: C((-8,)).e(1)
sage: C((-8,)).e(8)
(-7, 8)

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['E', 8])
sage: C((-8,)).epsilon(1)
0
sage: C((-8,)).epsilon(8)
1

f(i)
Return 𝑓𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['E', 8])
sage: C((8,)).f(6)
sage: C((8,)).f(8)
(7, -8)

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['E', 8])
sage: C((8,)).phi(8)
1
sage: C((8,)).phi(6)
0

value

class sage.combinat.crystals.letters.QueerLetter_element
Bases: sage.combinat.crystals.letters.Letter

Queer supercrystal letters elements.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: Q = crystals.Letters(['Q',3])
sage: [(c,i,c.e(i)) for i in Q.index_set() for c in Q if c.e(i) is not None]
[(2, 1, 1), (3, 2, 2), (3, -2, 2), (2, -1, 1)]

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

5.1. Comprehensive Module List 477

Combinatorics, Release 9.7

sage: Q = crystals.Letters(['Q',3])
sage: [(c,i) for i in Q.index_set() for c in Q if c.epsilon(i) != 0]
[(2, 1), (3, 2), (3, -2), (2, -1)]

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: Q = crystals.Letters(['Q',3])
sage: [(c,i,c.f(i)) for i in Q.index_set() for c in Q if c.f(i) is not None]
[(1, 1, 2), (2, 2, 3), (2, -2, 3), (1, -1, 2)]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: Q = crystals.Letters(['Q',3])
sage: [(c,i) for i in Q.index_set() for c in Q if c.phi(i) != 0]
[(1, 1), (2, 2), (2, -2), (1, -1)]

weight()
Return the weight of self.

EXAMPLES:

sage: [v.weight() for v in crystals.Letters(['Q',4])]
[(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)]

5.1.57 Littelmann paths

AUTHORS:

• Mark Shimozono, Anne Schilling (2012): Initial version

• Anne Schilling (2013): Implemented CrystalOfProjectedLevelZeroLSPaths

• Travis Scrimshaw (2016): Implemented InfinityCrystalOfLSPaths

class sage.combinat.crystals.littelmann_path.CrystalOfLSPaths(starting_weight,
starting_weight_parent)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Crystal graph of LS paths generated from the straight-line path to a given weight.

INPUT:

• cartan_type – (optional) the Cartan type of a finite or affine root system

• starting_weight – a weight; if cartan_type is given, then the weight should be given as a list of
coefficients of the fundamental weights, otherwise it should be given in the weight_space basis; for affine
highest weight crystals, one needs to use the extended weight space.

The crystal class of piecewise linear paths in the weight space, generated from a straight-line path from the origin
to a given element of the weight lattice.

OUTPUT:

478 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

• a tuple of weights defining the directions of the piecewise linear segments

EXAMPLES:

sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space(extended = True).basis()
sage: B = crystals.LSPaths(La[2]-La[0]); B
The crystal of LS paths of type ['A', 2, 1] and weight -Lambda[0] + Lambda[2]

sage: C = crystals.LSPaths(['A',2,1],[-1,0,1]); C
The crystal of LS paths of type ['A', 2, 1] and weight -Lambda[0] + Lambda[2]
sage: B == C
True
sage: c = C.module_generators[0]; c
(-Lambda[0] + Lambda[2],)
sage: [c.f(i) for i in C.index_set()]
[None, None, (Lambda[1] - Lambda[2],)]

sage: R = C.R; R
Root system of type ['A', 2, 1]
sage: Lambda = R.weight_space().basis(); Lambda
Finite family {0: Lambda[0], 1: Lambda[1], 2: Lambda[2]}
sage: b=C(tuple([-Lambda[0]+Lambda[2]]))
sage: b==c
True
sage: b.f(2)
(Lambda[1] - Lambda[2],)

For classical highest weight crystals we can also compare the results with the tableaux implementation:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: sorted(C, key=str)
[(-2*Lambda[1] + Lambda[2],), (-Lambda[1] + 1/2*Lambda[2], Lambda[1] - 1/
→˓2*Lambda[2]),
(-Lambda[1] + 2*Lambda[2],), (-Lambda[1] - Lambda[2],),
(1/2*Lambda[1] - Lambda[2], -1/2*Lambda[1] + Lambda[2]), (2*Lambda[1] - Lambda[2],
→˓),
(Lambda[1] + Lambda[2],), (Lambda[1] - 2*Lambda[2],)]
sage: C.cardinality()
8
sage: B = crystals.Tableaux(['A',2],shape=[2,1])
sage: B.cardinality()
8
sage: B.digraph().is_isomorphic(C.digraph())
True

Make sure you use the weight space and not the weight lattice for your weights:

sage: R = RootSystem(['A',2,1])
sage: La = R.weight_lattice(extended = True).basis()
sage: B = crystals.LSPaths(La[2]); B
Traceback (most recent call last):
...
ValueError: Please use the weight space, rather than weight lattice for your weights

5.1. Comprehensive Module List 479

Combinatorics, Release 9.7

REFERENCES:

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

compress()
Merges consecutive positively parallel steps present in the path.

EXAMPLES:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: Lambda = C.R.weight_space().fundamental_weights(); Lambda
Finite family {1: Lambda[1], 2: Lambda[2]}
sage: c = C(tuple([1/2*Lambda[1]+1/2*Lambda[2], 1/2*Lambda[1]+1/
→˓2*Lambda[2]]))
sage: c.compress()
(Lambda[1] + Lambda[2],)

dualize()
Returns dualized path.

EXAMPLES:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: for c in C:
....: print("{} {}".format(c, c.dualize()))
(Lambda[1] + Lambda[2],) (-Lambda[1] - Lambda[2],)
(-Lambda[1] + 2*Lambda[2],) (Lambda[1] - 2*Lambda[2],)
(1/2*Lambda[1] - Lambda[2], -1/2*Lambda[1] + Lambda[2]) (1/2*Lambda[1] -␣
→˓Lambda[2], -1/2*Lambda[1] + Lambda[2])
(Lambda[1] - 2*Lambda[2],) (-Lambda[1] + 2*Lambda[2],)
(-Lambda[1] - Lambda[2],) (Lambda[1] + Lambda[2],)
(2*Lambda[1] - Lambda[2],) (-2*Lambda[1] + Lambda[2],)
(-Lambda[1] + 1/2*Lambda[2], Lambda[1] - 1/2*Lambda[2]) (-Lambda[1] + 1/
→˓2*Lambda[2], Lambda[1] - 1/2*Lambda[2])
(-2*Lambda[1] + Lambda[2],) (2*Lambda[1] - Lambda[2],)

e(i, power=1, to_string_end=False, length_only=False)
Returns the 𝑖-th crystal raising operator on self.

INPUT:
• i – element of the index set of the underlying root system
• power – positive integer; specifies the power of the raising operator to be applied (default: 1)
• to_string_end – boolean; if set to True, returns the dominant end of the 𝑖-string of self. (de-

fault: False)
• length_only – boolean; if set to True, returns the distance to the dominant end of the 𝑖-string of
self.

EXAMPLES:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: c = C[2]; c
(1/2*Lambda[1] - Lambda[2], -1/2*Lambda[1] + Lambda[2])
sage: c.e(1)
sage: c.e(2)
(-Lambda[1] + 2*Lambda[2],)
sage: c.e(2,to_string_end=True)

(continues on next page)

480 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

(continued from previous page)

(-Lambda[1] + 2*Lambda[2],)
sage: c.e(1,to_string_end=True)
(1/2*Lambda[1] - Lambda[2], -1/2*Lambda[1] + Lambda[2])
sage: c.e(1,length_only=True)
0

endpoint()
Computes the endpoint of the path.

EXAMPLES:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: b = C.module_generators[0]
sage: b.endpoint()
Lambda[1] + Lambda[2]
sage: b.f_string([1,2,2,1])
(-Lambda[1] - Lambda[2],)
sage: b.f_string([1,2,2,1]).endpoint()
-Lambda[1] - Lambda[2]
sage: b.f_string([1,2])
(1/2*Lambda[1] - Lambda[2], -1/2*Lambda[1] + Lambda[2])
sage: b.f_string([1,2]).endpoint()
0
sage: b = C([])
sage: b.endpoint()
0

epsilon(i)
Returns the distance to the beginning of the 𝑖-string.

This method overrides the generic implementation in the category of crystals since this computation
is more efficient.

EXAMPLES:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: [c.epsilon(1) for c in C]
[0, 1, 0, 0, 1, 0, 1, 2]
sage: [c.epsilon(2) for c in C]
[0, 0, 1, 2, 1, 1, 0, 0]

f(i, power=1, to_string_end=False, length_only=False)
Returns the 𝑖-th crystal lowering operator on self.

INPUT:
• i – element of the index set of the underlying root system
• power – positive integer; specifies the power of the lowering operator to be applied (default: 1)
• to_string_end – boolean; if set to True, returns the anti-dominant end of the 𝑖-string of self.

(default: False)
• length_only – boolean; if set to True, returns the distance to the anti-dominant end of the 𝑖-string

of self.
EXAMPLES:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: c = C.module_generators[0]

(continues on next page)

5.1. Comprehensive Module List 481

Combinatorics, Release 9.7

(continued from previous page)

sage: c.f(1)
(-Lambda[1] + 2*Lambda[2],)
sage: c.f(1,power=2)
sage: c.f(2)
(2*Lambda[1] - Lambda[2],)
sage: c.f(2,to_string_end=True)
(2*Lambda[1] - Lambda[2],)
sage: c.f(2,length_only=True)
1

sage: C = crystals.LSPaths(['A',2,1],[-1,-1,2])
sage: c = C.module_generators[0]
sage: c.f(2,power=2)
(Lambda[0] + Lambda[1] - 2*Lambda[2],)

phi(i)
Returns the distance to the end of the 𝑖-string.

This method overrides the generic implementation in the category of crystals since this computation
is more efficient.

EXAMPLES:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: [c.phi(1) for c in C]
[1, 0, 0, 1, 0, 2, 1, 0]
sage: [c.phi(2) for c in C]
[1, 2, 1, 0, 0, 0, 0, 1]

reflect_step(which_step, i)
Apply the 𝑖-th simple reflection to the indicated step in self.

EXAMPLES:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: b = C.module_generators[0]
sage: b.reflect_step(0,1)
(-Lambda[1] + 2*Lambda[2],)
sage: b.reflect_step(0,2)
(2*Lambda[1] - Lambda[2],)

s(i)
Computes the reflection of self along the 𝑖-string.

This method is more efficient than the generic implementation since it uses powers of 𝑒 and 𝑓 in the
Littelmann model directly.

EXAMPLES:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: c = C.module_generators[0]
sage: c.s(1)
(-Lambda[1] + 2*Lambda[2],)
sage: c.s(2)
(2*Lambda[1] - Lambda[2],)

(continues on next page)

482 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: C = crystals.LSPaths(['A',2,1],[-1,0,1])
sage: c = C.module_generators[0]; c
(-Lambda[0] + Lambda[2],)
sage: c.s(2)
(Lambda[1] - Lambda[2],)
sage: c.s(1)
(-Lambda[0] + Lambda[2],)
sage: c.f(2).s(1)
(Lambda[0] - Lambda[1],)

split_step(which_step, r)
Splits indicated step into two parallel steps of relative lengths 𝑟 and 1− 𝑟.

INPUT:
• which_step – a position in the tuple self
• r – a rational number between 0 and 1

EXAMPLES:

sage: C = crystals.LSPaths(['A',2],[1,1])
sage: b = C.module_generators[0]
sage: b.split_step(0,1/3)
(1/3*Lambda[1] + 1/3*Lambda[2], 2/3*Lambda[1] + 2/3*Lambda[2])

weight()
Return the weight of self.

EXAMPLES:

sage: B = crystals.LSPaths(['A',1,1],[1,0])
sage: b = B.highest_weight_vector()
sage: b.f(0).weight()
-Lambda[0] + 2*Lambda[1] - delta

weight_lattice_realization()
Return weight lattice realization of self.

EXAMPLES:

sage: B = crystals.LSPaths(['B',3],[1,1,0])
sage: B.weight_lattice_realization()
Weight space over the Rational Field of the Root system of type ['B', 3]
sage: B = crystals.LSPaths(['B',3,1],[1,1,1,0])
sage: B.weight_lattice_realization()
Extended weight space over the Rational Field of the Root system of type ['B',␣
→˓3, 1]

class sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths(starting_weight,
start-
ing_weight_parent)

Bases: sage.combinat.crystals.littelmann_path.CrystalOfLSPaths

Crystal of projected level zero LS paths.

INPUT:

5.1. Comprehensive Module List 483

Combinatorics, Release 9.7

• weight – a dominant weight of the weight space of an affine Kac-Moody root system

When weight is just a single fundamental weight Λ𝑟, this crystal is isomorphic to a Kirillov-
Reshetikhin (KR) crystal, see also sage.combinat.crystals.kirillov_reshetikhin.
KirillovReshetikhinFromLSPaths(). For general weights, it is isomorphic to a tensor product of
single-column KR crystals.

EXAMPLES:

sage: R = RootSystem(['C',3,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1]+La[3])
sage: LS.cardinality()
84
sage: GLS = LS.digraph()

sage: K1 = crystals.KirillovReshetikhin(['C',3,1],1,1)
sage: K3 = crystals.KirillovReshetikhin(['C',3,1],3,1)
sage: T = crystals.TensorProduct(K3,K1)
sage: T.cardinality()
84
sage: GT = T.digraph() # long time
sage: GLS.is_isomorphic(GT, edge_labels = True) # long time
True

class Element
Bases: sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element

Element of a crystal of projected level zero LS paths.

energy_function()
Return the energy function of self.

The energy function 𝐷(𝜋) of the level zero LS path 𝜋 ∈ Bcl(𝜆) requires a series of definitions; for
simplicity the root system is assumed to be untwisted affine.

The LS path 𝜋 is a piecewise linear map from the unit interval [0, 1] to the weight lattice. It is specified
by “times” 0 = 𝜎0 < 𝜎1 < · · · < 𝜎𝑠 = 1 and “direction vectors” 𝑥𝑢𝜆 where 𝑥𝑢 ∈ 𝑊/𝑊𝐽 for
1 ≤ 𝑢 ≤ 𝑠, and 𝑊𝐽 is the stabilizer of 𝜆 in the finite Weyl group 𝑊 . Precisely,

𝜋(𝑡) =

𝑢−1∑︁
𝑢′=1

(𝜎𝑢′ − 𝜎𝑢′−1)𝑥𝑢′𝜆+ (𝑡− 𝜎𝑢−1)𝑥𝑢𝜆

for 1 ≤ 𝑢 ≤ 𝑠 and 𝜎𝑢−1 ≤ 𝑡 ≤ 𝜎𝑢.

For any 𝑥, 𝑦 ∈𝑊/𝑊𝐽 , let

𝑑 : 𝑥 = 𝑤0
𝛽1← 𝑤1

𝛽2← · · · 𝛽𝑛← 𝑤𝑛 = 𝑦

be a shortest directed path in the parabolic quantum Bruhat graph. Define

wt(𝑑) :=
∑︁

1≤𝑘≤𝑛
ℓ(𝑤𝑘−1)<ℓ(𝑤𝑘)

𝛽∨𝑘 .

It can be shown that wt(𝑑) depends only on 𝑥, 𝑦; call its value wt(𝑥, 𝑦). The energy function 𝐷(𝜋) is
defined by

𝐷(𝜋) = −
𝑠−1∑︁
𝑢=1

(1− 𝜎𝑢)⟨𝜆,wt(𝑥𝑢, 𝑥𝑢+1)⟩.

484 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

For more information, see [LNSSS2013].

Note: In the dual-of-untwisted case the parabolic quantum Bruhat graph that is used is obtained
by exchanging the roles of roots and coroots. Moreover, in the computation of the pairing the short
roots must be doubled (or tripled for type 𝐺). This factor is determined by the translation factor of
the corresponding root. Type 𝐵𝐶 is viewed as untwisted type, whereas the dual of 𝐵𝐶 is viewed as
twisted. Except for the untwisted cases, these formulas are currently still conjectural.

EXAMPLES:

sage: R = RootSystem(['C',3,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1]+La[3])
sage: b = LS.module_generators[0]
sage: c = b.f(1).f(3).f(2)
sage: c.energy_function()
0
sage: c=b.e(0)
sage: c.energy_function()
1

sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: b = LS.module_generators[0]
sage: c = b.e(0)
sage: c.energy_function()
1
sage: for c in sorted(LS, key=str):
....: print("{} {}".format(c,c.energy_function()))
(-2*Lambda[0] + 2*Lambda[1],) 0
(-2*Lambda[1] + 2*Lambda[2],) 0
(-Lambda[0] + Lambda[1], -Lambda[1] + Lambda[2]) 1
(-Lambda[0] + Lambda[1], Lambda[0] - Lambda[2]) 1
(-Lambda[1] + Lambda[2], -Lambda[0] + Lambda[1]) 0
(-Lambda[1] + Lambda[2], Lambda[0] - Lambda[2]) 1
(2*Lambda[0] - 2*Lambda[2],) 0
(Lambda[0] - Lambda[2], -Lambda[0] + Lambda[1]) 0
(Lambda[0] - Lambda[2], -Lambda[1] + Lambda[2]) 0

The next test checks that the energy function is constant on classically connected components:

sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]+La[2])
sage: G = LS.digraph(index_set=[1,2])
sage: C = G.connected_components()
sage: [all(c[0].energy_function()==a.energy_function() for a in c) for c in␣
→˓C]
[True, True, True, True]

sage: R = RootSystem(['D',4,2])
sage: La = R.weight_space().basis()

(continues on next page)

5.1. Comprehensive Module List 485

Combinatorics, Release 9.7

(continued from previous page)

sage: LS = crystals.ProjectedLevelZeroLSPaths(La[2])
sage: J = R.cartan_type().classical().index_set()
sage: hw = [x for x in LS if x.is_highest_weight(J)]
sage: [(x.weight(), x.energy_function()) for x in hw]
[(-2*Lambda[0] + Lambda[2], 0), (-2*Lambda[0] + Lambda[1], 1), (0, 2)]
sage: G = LS.digraph(index_set=J)
sage: C = G.connected_components()
sage: [all(c[0].energy_function()==a.energy_function() for a in c) for c in␣
→˓C]
[True, True, True]

sage: R = RootSystem(CartanType(['G',2,1]).dual())
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1]+La[2])
sage: G = LS.digraph(index_set=[1,2])
sage: C = G.connected_components()
sage: [all(c[0].energy_function()==a.energy_function() for a in c) for c in␣
→˓C] # long time
[True, True, True, True, True, True, True, True, True, True, True, True,␣
→˓True, True, True, True]

sage: ct = CartanType(['BC',2,2]).dual()
sage: R = RootSystem(ct)
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]+La[2])
sage: G = LS.digraph(index_set=R.cartan_type().classical().index_set())
sage: C = G.connected_components()
sage: [all(c[0].energy_function()==a.energy_function() for a in c) for c in␣
→˓C] # long time
[True, True, True, True, True, True, True, True, True, True, True]

sage: R = RootSystem(['BC',2,2])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]+La[2])
sage: G = LS.digraph(index_set=R.cartan_type().classical().index_set())
sage: C = G.connected_components()
sage: [all(c[0].energy_function()==a.energy_function() for a in c) for c in␣
→˓C] # long time
[True, True, True, True, True, True, True, True, True, True, True, True,␣
→˓True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True,␣
→˓True, True, True, True]

scalar_factors()
Obtain the scalar factors for self.

Each LS path (or self) can be written as a piecewise linear map

𝜋(𝑡) =

𝑢−1∑︁
𝑢′=1

(𝜎𝑢′ − 𝜎𝑢′−1)𝜈𝑢′ + (𝑡− 𝜎𝑢−1)𝜈𝑢

for 0 < 𝜎1 < 𝜎2 < · · · < 𝜎𝑠 = 1 and 𝜎𝑢−1 ≤ 𝑡 ≤ 𝜎𝑢 and 1 ≤ 𝑢 ≤ 𝑠. This method returns the tuple
of (𝜎1, . . . , 𝜎𝑠).

486 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: R = RootSystem(['C',3,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1]+La[3])
sage: b = LS.module_generators[0]
sage: b.scalar_factors()
[1]
sage: c = b.f(1).f(3).f(2)
sage: c.scalar_factors()
[1/3, 1]

weyl_group_representation()
Transform the weights in the LS path self to elements in the Weyl group.

Each LS path can be written as the piecewise linear map:

𝜋(𝑡) =
𝑢−1∑︁
𝑢′=1

(𝜎𝑢′ − 𝜎𝑢′−1)𝜈𝑢′ + (𝑡− 𝜎𝑢−1)𝜈𝑢

for 0 < 𝜎1 < 𝜎2 < · · · < 𝜎𝑠 = 1 and 𝜎𝑢−1 ≤ 𝑡 ≤ 𝜎𝑢 and 1 ≤ 𝑢 ≤ 𝑠. Each weight 𝜈𝑢 is also
associated to a Weyl group element. This method returns the list of Weyl group elements associated
to the 𝜈𝑢 for 1 ≤ 𝑢 ≤ 𝑠.

EXAMPLES:

sage: R = RootSystem(['C',3,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1]+La[3])
sage: b = LS.module_generators[0]
sage: c = b.f(1).f(3).f(2)
sage: c.weyl_group_representation()
[s2*s1*s3, s1*s3]

classically_highest_weight_vectors()
Return the classically highest weight vectors of self.

EXAMPLES:

sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: LS.classically_highest_weight_vectors()
((-2*Lambda[0] + 2*Lambda[1],),
(-Lambda[0] + Lambda[1], -Lambda[1] + Lambda[2]))

is_perfect(level=1)
Check whether the crystal self is perfect (of level level).

INPUT:

• level – (default: 1) positive integer

A crystal ℬ is perfect of level ℓ if:

1. ℬ is isomorphic to the crystal graph of a finite-dimensional 𝑈 ′

𝑞(g)-module.

2. ℬ ⊗ ℬ is connected.

5.1. Comprehensive Module List 487

Combinatorics, Release 9.7

3. There exists a 𝜆 ∈ 𝑋 , such that wt(ℬ) ⊂ 𝜆 +
∑︀
𝑖∈𝐼 Z≤0𝛼𝑖 and there is a unique element in ℬ of

classical weight 𝜆.

4. For all 𝑏 ∈ ℬ, level(𝜀(𝑏)) ≥ ℓ.

5. For all Λ dominant weights of level ℓ, there exist unique elements 𝑏Λ, 𝑏Λ ∈ ℬ, such that 𝜀(𝑏Λ) = Λ =
𝜙(𝑏Λ).

Points (1)-(3) are known to hold. This method checks points (4) and (5).

EXAMPLES:

sage: C = CartanType(['C',2,1])
sage: R = RootSystem(C)
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1])
sage: LS.is_perfect()
False
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[2])
sage: LS.is_perfect()
True

sage: C = CartanType(['E',6,1])
sage: R = RootSystem(C)
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1])
sage: LS.is_perfect()
True
sage: LS.is_perfect(2)
False

sage: C = CartanType(['D',4,1])
sage: R = RootSystem(C)
sage: La = R.weight_space().basis()
sage: all(crystals.ProjectedLevelZeroLSPaths(La[i]).is_perfect() for i in [1,2,
→˓3,4])
True

sage: C = CartanType(['A',6,2])
sage: R = RootSystem(C)
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1]+La[2])
sage: LS.is_perfect()
True
sage: LS.is_perfect(2)
False

maximal_vector()
Return the maximal vector of self.

EXAMPLES:

sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]+La[2])
sage: LS.maximal_vector()

(continues on next page)

488 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(-3*Lambda[0] + 2*Lambda[1] + Lambda[2],)

one_dimensional_configuration_sum(q=None, group_components=True)
Compute the one-dimensional configuration sum.

INPUT:

• q – (default: None) a variable or None; if None, a variable q is set in the code

• group_components – (default: True) boolean; if True, then the terms are grouped by classical
component

The one-dimensional configuration sum is the sum of the weights of all elements in the crystal weighted by
the energy function. For untwisted types it uses the parabolic quantum Bruhat graph, see [LNSSS2013].
In the dual-of-untwisted case, the parabolic quantum Bruhat graph is defined by exchanging the roles of
roots and coroots (which is still conjectural at this point).

EXAMPLES:

sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: LS.one_dimensional_configuration_sum() # long time
B[-2*Lambda[1] + 2*Lambda[2]] + (q+1)*B[-Lambda[1]]
+ (q+1)*B[Lambda[1] - Lambda[2]] + B[2*Lambda[1]]
+ B[-2*Lambda[2]] + (q+1)*B[Lambda[2]]
sage: R.<t> = ZZ[]
sage: LS.one_dimensional_configuration_sum(t, False) # long time
B[-2*Lambda[1] + 2*Lambda[2]] + (t+1)*B[-Lambda[1]]
+ (t+1)*B[Lambda[1] - Lambda[2]] + B[2*Lambda[1]]
+ B[-2*Lambda[2]] + (t+1)*B[Lambda[2]]

class sage.combinat.crystals.littelmann_path.InfinityCrystalOfLSPaths(cartan_type)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

LS path model for ℬ(∞).

Elements of ℬ(∞) are equivalence classes of paths [𝜋] in ℬ(𝑘𝜌) for 𝑘 ≫ 0, where 𝜌 is the Weyl vector. A
canonical representative for an element of ℬ(∞) is chosen by taking 𝑘 to be minimal such that the endpoint of
𝜋 is strictly dominant but its representative in ℬ((𝑘 − 1)𝜌) is on the wall of the dominant chamber.

REFERENCES:

• [LZ2011]

class Element
Bases: sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element

e(i, power=1, length_only=False)
Return the 𝑖-th crystal raising operator on self.

INPUT:
• i – element of the index set
• power – (default: 1) positive integer; specifies the power of the lowering operator to be applied
• length_only – (default: False) boolean; if True, then return the distance to the anti-dominant

end of the 𝑖-string of self
EXAMPLES:

5.1. Comprehensive Module List 489

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: B = crystals.infinity.LSPaths(['B',3,1])
sage: mg = B.module_generator()
sage: mg.e(0)
sage: mg.e(1)
sage: mg.e(2)
sage: x = mg.f_string([1,0,2,1,0,2,1,1,0])
sage: all(x.f(i).e(i) == x for i in B.index_set())
True
sage: all(x.e(i).f(i) == x for i in B.index_set() if x.epsilon(i) > 0)
True

f(i, power=1, length_only=False)
Return the 𝑖-th crystal lowering operator on self.

INPUT:
• i – element of the index set
• power – (default: 1) positive integer; specifies the power of the lowering operator to be applied
• length_only – (default: False) boolean; if True, then return the distance to the anti-dominant

end of the 𝑖-string of self
EXAMPLES:

sage: B = crystals.infinity.LSPaths(['D',3,2])
sage: mg = B.highest_weight_vector()
sage: mg.f(1)
(3*Lambda[0] - Lambda[1] + 3*Lambda[2],
2*Lambda[0] + 2*Lambda[1] + 2*Lambda[2])
sage: mg.f(2)
(Lambda[0] + 2*Lambda[1] - Lambda[2],
2*Lambda[0] + 2*Lambda[1] + 2*Lambda[2])
sage: mg.f(0)
(-Lambda[0] + 2*Lambda[1] + Lambda[2] - delta,
2*Lambda[0] + 2*Lambda[1] + 2*Lambda[2])

phi(i)
Return 𝜙𝑖 of self.

Let 𝜋 ∈ ℬ(∞). Define

𝜙𝑖(𝜋) := 𝜀𝑖(𝜋) + ⟨ℎ𝑖,wt(𝜋)⟩,

where ℎ𝑖 is the 𝑖-th simple coroot and wt(𝜋) is the weight() of 𝜋.

INPUT:
• i – element of the index set

EXAMPLES:

sage: B = crystals.infinity.LSPaths(['D',4])
sage: mg = B.highest_weight_vector()
sage: x = mg.f_string([1,3,4,2,4,3,2,1,4])
sage: [x.phi(i) for i in B.index_set()]
[-1, 4, -2, -3]

weight()
Return the weight of self.

490 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Todo: This is a generic algorithm. We should find a better description and implement it.

EXAMPLES:

sage: B = crystals.infinity.LSPaths(['E',6])
sage: mg = B.highest_weight_vector()
sage: f_seq = [1,4,2,6,4,2,3,1,5,5]
sage: x = mg.f_string(f_seq)
sage: x.weight()
-3*Lambda[1] - 2*Lambda[2] + 2*Lambda[3] + Lambda[4] - Lambda[5]

sage: al = B.cartan_type().root_system().weight_space().simple_roots()
sage: x.weight() == -sum(al[i] for i in f_seq)
True

module_generator()
Return the module generator (or highest weight element) of self.

The module generator is the unique path 𝜋∞ : 𝑡 ↦→ 𝑡𝜌, for 𝑡 ∈ [0,∞).

EXAMPLES:

sage: B = crystals.infinity.LSPaths(['A',6,2])
sage: mg = B.module_generator(); mg
(Lambda[0] + Lambda[1] + Lambda[2] + Lambda[3],)
sage: mg.weight()
0

weight_lattice_realization()
Return the weight lattice realization of self.

EXAMPLES:

sage: B = crystals.infinity.LSPaths(['C',4])
sage: B.weight_lattice_realization()
Weight space over the Rational Field of the Root system of type ['C', 4]

sage.combinat.crystals.littelmann_path.positively_parallel_weights(v, w)
Check whether the vectors v and w are positive scalar multiples of each other.

EXAMPLES:

sage: from sage.combinat.crystals.littelmann_path import positively_parallel_weights
sage: La = RootSystem(['A',5,2]).weight_space(extended=True).fundamental_weights()
sage: rho = sum(La)
sage: positively_parallel_weights(rho, 4*rho)
True
sage: positively_parallel_weights(4*rho, rho)
True
sage: positively_parallel_weights(rho, -rho)
False
sage: positively_parallel_weights(rho, La[1] + La[2])
False

5.1. Comprehensive Module List 491

Combinatorics, Release 9.7

5.1.58 Crystals of Modified Nakajima Monomials

AUTHORS:

• Arthur Lubovsky: Initial version

• Ben Salisbury: Initial version

Let 𝑌𝑖,𝑘, for 𝑖 ∈ 𝐼 and 𝑘 ∈ Z, be a commuting set of variables, and let 1 be a new variable which commutes with each
𝑌𝑖,𝑘. (Here, 𝐼 represents the index set of a Cartan datum.) One may endow the structure of a crystal on the set ̂︁ℳ of
monomials of the form

𝑀 =
∏︁

(𝑖,𝑘)∈𝐼×Z≥0

𝑌
𝑦𝑖(𝑘)
𝑖,𝑘 1.

Elements of ̂︁ℳ are called modified Nakajima monomials. We will omit the 1 from the end of a monomial if there
exists at least one 𝑦𝑖(𝑘) ̸= 0. The crystal structure on this set is defined by

wt(𝑀) =
∑︁
𝑖∈𝐼

(︁∑︁
𝑘≥0

𝑦𝑖(𝑘)
)︁

Λ𝑖,

𝜙𝑖(𝑀) = max
{︁ ∑︁
0≤𝑗≤𝑘

𝑦𝑖(𝑗) : 𝑘 ≥ 0
}︁
,

𝜀𝑖(𝑀) = 𝜙𝑖(𝑀)− ⟨ℎ𝑖,wt(𝑀)⟩,

𝑘𝑓 = 𝑘𝑓 (𝑀) = min
{︁
𝑘 ≥ 0 : 𝜙𝑖(𝑀) =

∑︁
0≤𝑗≤𝑘

𝑦𝑖(𝑗)
}︁
,

𝑘𝑒 = 𝑘𝑒(𝑀) = max
{︁
𝑘 ≥ 0 : 𝜙𝑖(𝑀) =

∑︁
0≤𝑗≤𝑘

𝑦𝑖(𝑗)
}︁
,

where {ℎ𝑖 : 𝑖 ∈ 𝐼} and {Λ𝑖 : 𝑖 ∈ 𝐼} are the simple coroots and fundamental weights, respectively. With a chosen set
of integers 𝐶 = (𝑐𝑖𝑗)𝑖 ̸=𝑗 such that 𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 1, one defines

𝐴𝑖,𝑘 = 𝑌𝑖,𝑘𝑌𝑖,𝑘+1

∏︁
𝑗 ̸=𝑖

𝑌
𝑎𝑗𝑖
𝑗,𝑘+𝑐𝑗𝑖

,

where (𝑎𝑖𝑗) is a Cartan matrix. Then

𝑒𝑖𝑀 =

{︃
0 if 𝜀𝑖(𝑀) = 0,

𝐴𝑖,𝑘𝑒𝑀 if 𝜀𝑖(𝑀) > 0,

𝑓𝑖𝑀 = 𝐴−1𝑖,𝑘𝑓𝑀.

It is shown in [KKS2007] that the connected component of ̂︁ℳ containing the element 1, which we denote byℳ(∞),
is crystal isomorphic to the crystal 𝐵(∞).

Let ̃︁ℳ be ̂︁ℳ as a set, and with crystal structure defined as on ̂︁ℳ with the exception that

𝑓𝑖𝑀 =

{︃
0 if 𝜙𝑖(𝑀) = 0,

𝐴−1𝑖,𝑘𝑓𝑀 if 𝜙𝑖(𝑀) > 0.

Then Kashiwara [Ka2003] showed that the connected component in ̃︁ℳ containing a monomial𝑀 such that 𝑒𝑖𝑀 = 0,
for all 𝑖 ∈ 𝐼 , is crystal isomorphic to the irreducible highest weight crystal 𝐵(wt(𝑀)).

WARNING:

Monomial crystals depend on the choice of positive integers 𝐶 = (𝑐𝑖𝑗)�̸�=𝑗 satisfying the condition 𝑐𝑖𝑗 +
𝑐𝑗𝑖 = 1. We have chosen such integers uniformly such that 𝑐𝑖𝑗 = 1 if 𝑖 < 𝑗 and 𝑐𝑖𝑗 = 0 if 𝑖 > 𝑗.

492 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomials(ct, La, c)
Bases: sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials

Let ̃︁ℳ be ̂︁ℳ as a set, and with crystal structure defined as on ̂︁ℳ with the exception that

𝑓𝑖𝑀 =

{︃
0 if 𝜙𝑖(𝑀) = 0,

𝐴−1𝑖,𝑘𝑓𝑀 if 𝜙𝑖(𝑀) > 0.

Then Kashiwara [Ka2003] showed that the connected component in ̃︁ℳ containing a monomial 𝑀 such that
𝑒𝑖𝑀 = 0, for all 𝑖 ∈ 𝐼 , is crystal isomorphic to the irreducible highest weight crystal 𝐵(wt(𝑀)).

INPUT:

• ct – a Cartan type

• La – an element of the weight lattice

EXAMPLES:

sage: La = RootSystem("A2").weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials("A2",La[1]+La[2])
sage: B = crystals.Tableaux("A2",shape=[2,1])
sage: GM = M.digraph()
sage: GB = B.digraph()
sage: GM.is_isomorphic(GB,edge_labels=True)
True

sage: La = RootSystem("G2").weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials("G2",La[1]+La[2])
sage: B = crystals.Tableaux("G2",shape=[2,1])
sage: GM = M.digraph()
sage: GB = B.digraph()
sage: GM.is_isomorphic(GB,edge_labels=True)
True

sage: La = RootSystem("B2").weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(['B',2],La[1]+La[2])
sage: B = crystals.Tableaux("B2",shape=[3/2,1/2])
sage: GM = M.digraph()
sage: GB = B.digraph()
sage: GM.is_isomorphic(GB,edge_labels=True)
True

sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_weights()
sage: M = crystals.NakajimaMonomials(['A',3,1],La[0]+La[2])
sage: B = crystals.GeneralizedYoungWalls(3,La[0]+La[2])
sage: SM = M.subcrystal(max_depth=4)
sage: SB = B.subcrystal(max_depth=4)
sage: GM = M.digraph(subset=SM) # long time
sage: GB = B.digraph(subset=SB) # long time
sage: GM.is_isomorphic(GB,edge_labels=True) # long time
True

sage: La = RootSystem(['A',5,2]).weight_lattice(extended=True).fundamental_weights()
sage: LA = RootSystem(['A',5,2]).weight_space().fundamental_weights()
sage: M = crystals.NakajimaMonomials(['A',5,2],3*La[0])

(continues on next page)

5.1. Comprehensive Module List 493

Combinatorics, Release 9.7

(continued from previous page)

sage: B = crystals.LSPaths(3*LA[0])
sage: SM = M.subcrystal(max_depth=4)
sage: SB = B.subcrystal(max_depth=4)
sage: GM = M.digraph(subset=SM)
sage: GB = B.digraph(subset=SB)
sage: GM.is_isomorphic(GB,edge_labels=True)
True

sage: c = matrix([[0,1,0],[0,0,1],[1,0,0]])
sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()
sage: M = crystals.NakajimaMonomials(2*La[1], c=c)
sage: sorted(M.subcrystal(max_depth=3), key=str)
[Y(0,0) Y(0,1) Y(1,0) Y(2,1)^-1,
Y(0,0) Y(0,1)^2 Y(1,1)^-1 Y(2,0) Y(2,1)^-1,
Y(0,0) Y(0,2)^-1 Y(1,0) Y(1,1) Y(2,1)^-1 Y(2,2),
Y(0,1) Y(0,2)^-1 Y(1,1)^-1 Y(2,0)^2 Y(2,2),
Y(0,1) Y(1,0) Y(1,1)^-1 Y(2,0),
Y(0,1)^2 Y(1,1)^-2 Y(2,0)^2,
Y(0,2)^-1 Y(1,0) Y(2,0) Y(2,2),
Y(1,0) Y(1,3) Y(2,0) Y(2,3)^-1,
Y(1,0)^2]

Element
alias of CrystalOfNakajimaMonomialsElement

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(['A',2], La[1])
sage: M.cardinality()
3

sage: La = RootSystem(['D',4,2]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: M = crystals.NakajimaMonomials(['D',4,2], La[1])
sage: M.cardinality()
+Infinity

class sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomialsElement(parent, Y,
A)

Bases: sage.combinat.crystals.monomial_crystals.NakajimaMonomial

Element class for CrystalOfNakajimaMonomials.

The 𝑓𝑖 operators need to be modified from the version in monomial_crystalsNakajimaMonomial in order to
create irreducible highest weight realizations. This modified 𝑓𝑖 is defined as

𝑓𝑖𝑀 =

{︃
0 if 𝜙𝑖(𝑀) = 0,

𝐴−1𝑖,𝑘𝑓𝑀 if 𝜙𝑖(𝑀) > 0.

EXAMPLES:

494 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: La = RootSystem(['A',5,2]).weight_lattice(extended=True).fundamental_weights()
sage: M = crystals.NakajimaMonomials(['A',5,2],3*La[0])
sage: m = M.module_generators[0].f(0); m
Y(0,0)^2 Y(0,1)^-1 Y(2,0)
sage: TestSuite(m).run()

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: La = RootSystem(['A',5,2]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: M = crystals.NakajimaMonomials(['A',5,2],3*La[0])
sage: m = M.module_generators[0]
sage: [m.f(i) for i in M.index_set()]
[Y(0,0)^2 Y(0,1)^-1 Y(2,0), None, None, None]

sage: M = crystals.infinity.NakajimaMonomials("E8")
sage: M.set_variables('A')
sage: m = M.module_generators[0].f_string([4,2,3,8])
sage: m
A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(8,0)^-1
sage: [m.f(i) for i in M.index_set()]
[A(1,2)^-1 A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(8,0)^-1,
A(2,0)^-1 A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(8,0)^-1,
A(2,1)^-1 A(3,0)^-1 A(3,1)^-1 A(4,0)^-1 A(8,0)^-1,
A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(4,1)^-1 A(8,0)^-1,
A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(5,0)^-1 A(8,0)^-1,
A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(6,0)^-1 A(8,0)^-1,
A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(7,1)^-1 A(8,0)^-1,
A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(8,0)^-2]
sage: M.set_variables('Y')

weight()
Return the weight of self as an element of the weight lattice.

EXAMPLES:

sage: La = RootSystem("A2").weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials("A2",La[1]+La[2])
sage: M.module_generators[0].weight()
(2, 1, 0)

class sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials(ct, c,
cate-
gory=None)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Crystal 𝐵(∞) in terms of (modified) Nakajima monomials.

5.1. Comprehensive Module List 495

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

Let 𝑌𝑖,𝑘, for 𝑖 ∈ 𝐼 and 𝑘 ∈ Z, be a commuting set of variables, and let 1 be a new variable which commutes
with each 𝑌𝑖,𝑘. (Here, 𝐼 represents the index set of a Cartan datum.) One may endow the structure of a crystal
on the set ̂︁ℳ of monomials of the form

𝑀 =
∏︁

(𝑖,𝑘)∈𝐼×Z≥0

𝑌
𝑦𝑖(𝑘)
𝑖,𝑘 1.

Elements of ̂︁ℳ are called modified Nakajima monomials. We will omit the 1 from the end of a monomial if
there exists at least one 𝑦𝑖(𝑘) ̸= 0. The crystal structure on this set is defined by

wt(𝑀) =
∑︁
𝑖∈𝐼

(︁∑︁
𝑘≥0

𝑦𝑖(𝑘)
)︁

Λ𝑖,

𝜙𝑖(𝑀) = max
{︁ ∑︁
0≤𝑗≤𝑘

𝑦𝑖(𝑗) : 𝑘 ≥ 0
}︁
,

𝜀𝑖(𝑀) = 𝜙𝑖(𝑀)− ⟨ℎ𝑖,wt(𝑀)⟩,

𝑘𝑓 = 𝑘𝑓 (𝑀) = min
{︁
𝑘 ≥ 0 : 𝜙𝑖(𝑀) =

∑︁
0≤𝑗≤𝑘

𝑦𝑖(𝑗)
}︁
,

𝑘𝑒 = 𝑘𝑒(𝑀) = max
{︁
𝑘 ≥ 0 : 𝜙𝑖(𝑀) =

∑︁
0≤𝑗≤𝑘

𝑦𝑖(𝑗)
}︁
,

where {ℎ𝑖 : 𝑖 ∈ 𝐼} and {Λ𝑖 : 𝑖 ∈ 𝐼} are the simple coroots and fundamental weights, respectively. With a
chosen set of non-negative integers 𝐶 = (𝑐𝑖𝑗)𝑖 ̸=𝑗 such that 𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 1, one defines

𝐴𝑖,𝑘 = 𝑌𝑖,𝑘𝑌𝑖,𝑘+1

∏︁
𝑗 ̸=𝑖

𝑌
𝑎𝑗𝑖
𝑗,𝑘+𝑐𝑗𝑖

,

where (𝑎𝑖𝑗)𝑖,𝑗∈𝐼 is a Cartan matrix. Then

𝑒𝑖𝑀 =

{︃
0 if 𝜀𝑖(𝑀) = 0,

𝐴𝑖,𝑘𝑒𝑀 if 𝜀𝑖(𝑀) > 0,

𝑓𝑖𝑀 = 𝐴−1𝑖,𝑘𝑓𝑀.

It is shown in [KKS2007] that the connected component of ̂︁ℳ containing the element 1, which we denote by
ℳ(∞), is crystal isomorphic to the crystal 𝐵(∞).

INPUT:

• cartan_type – a Cartan type

• c – (optional) the matrix (𝑐𝑖𝑗)𝑖,𝑗∈𝐼 such that 𝑐𝑖𝑖 = 0 for all 𝑖 ∈ 𝐼 , 𝑐𝑖𝑗 ∈ Z>0 for all 𝑖, 𝑗 ∈ 𝐼 , and 𝑐𝑖𝑗+𝑐𝑗𝑖 = 1
for all 𝑖 ̸= 𝑗; the default is 𝑐𝑖𝑗 = 0 if 𝑖 < 𝑗 and 0 otherwise

EXAMPLES:

sage: B = crystals.infinity.Tableaux("C3")
sage: S = B.subcrystal(max_depth=4)
sage: G = B.digraph(subset=S) # long time
sage: M = crystals.infinity.NakajimaMonomials("C3") # long time
sage: T = M.subcrystal(max_depth=4) # long time
sage: H = M.digraph(subset=T) # long time
sage: G.is_isomorphic(H,edge_labels=True) # long time
True

sage: M = crystals.infinity.NakajimaMonomials(['A',2,1])
(continues on next page)

496 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T = M.subcrystal(max_depth=3)
sage: H = M.digraph(subset=T) # long time
sage: Y = crystals.infinity.GeneralizedYoungWalls(2)
sage: YS = Y.subcrystal(max_depth=3)
sage: YG = Y.digraph(subset=YS) # long time
sage: YG.is_isomorphic(H,edge_labels=True) # long time
True

sage: M = crystals.infinity.NakajimaMonomials("D4")
sage: B = crystals.infinity.Tableaux("D4")
sage: MS = M.subcrystal(max_depth=3)
sage: BS = B.subcrystal(max_depth=3)
sage: MG = M.digraph(subset=MS) # long time
sage: BG = B.digraph(subset=BS) # long time
sage: BG.is_isomorphic(MG,edge_labels=True) # long time
True

Element
alias of NakajimaMonomial

c()
Return the matrix 𝑐𝑖𝑗 of self.

EXAMPLES:

sage: La = RootSystem(['B',3]).weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(La[1]+La[2])
sage: M.c()
[0 1 1]
[0 0 1]
[0 0 0]

sage: c = Matrix([[0,0,1],[1,0,0],[0,1,0]])
sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: M = crystals.NakajimaMonomials(2*La[1], c=c)
sage: M.c() == c
True

cardinality()
Return the cardinality of self, which is always∞.

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['A',5,2])
sage: M.cardinality()
+Infinity

get_variables()
Return the type of monomials to use for the element output.

EXAMPLES:

5.1. Comprehensive Module List 497

Combinatorics, Release 9.7

sage: M = crystals.infinity.NakajimaMonomials(['A', 4])
sage: M.get_variables()
'Y'

set_variables(letter)
Set the type of monomials to use for the element output.

If the 𝐴 variables are used, the output is written as
∏︀
𝑖∈𝐼 𝑌

𝜆𝑖
𝑖,0

∏︀
𝑖,𝑘 𝐴

𝑐𝑖,𝑘
𝑖,𝑘 , where

∑︀
𝑖∈𝐼 𝜆𝑖Λ𝑖 is the corre-

sponding dominant weight.

INPUT:

• letter – can be one of the following:

– 'Y' - use 𝑌𝑖,𝑘, corresponds to fundamental weights

– 'A' - use 𝐴𝑖,𝑘, corresponds to simple roots

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['A', 4])
sage: elt = M.highest_weight_vector().f_string([2,1,3,2,3,2,4,3])
sage: elt
Y(1,2) Y(2,0)^-1 Y(2,2)^-1 Y(3,0)^-1 Y(3,2)^-1 Y(4,0)
sage: M.set_variables('A')
sage: elt
A(1,1)^-1 A(2,0)^-1 A(2,1)^-2 A(3,0)^-2 A(3,1)^-1 A(4,0)^-1
sage: M.set_variables('Y')

sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(La[1]+La[2])
sage: lw = M.lowest_weight_vectors()[0]
sage: lw
Y(1,2)^-1 Y(2,1)^-1
sage: M.set_variables('A')
sage: lw
Y(1,0) Y(2,0) A(1,0)^-1 A(1,1)^-1 A(2,0)^-2
sage: M.set_variables('Y')

class sage.combinat.crystals.monomial_crystals.NakajimaMonomial(parent, Y, A)
Bases: sage.structure.element.Element

An element of the monomial crystal.

Monomials of the form 𝑌 𝑦1𝑖1,𝑘1 · · ·𝑌
𝑦𝑡
𝑖𝑡,𝑘𝑡

, where 𝑖1, . . . , 𝑖𝑡 are elements of the index set, 𝑘1, . . . , 𝑘𝑡 are nonnegative
integers, and 𝑦1, . . . , 𝑦𝑡 are integers.

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['B',3,1])
sage: mg = M.module_generators[0]
sage: mg
1
sage: mg.f_string([1,3,2,0,1,2,3,0,0,1])
Y(0,0)^-1 Y(0,1)^-1 Y(0,2)^-1 Y(0,3)^-1 Y(1,0)^-3
Y(1,1)^-2 Y(1,2) Y(2,0)^3 Y(2,2) Y(3,0) Y(3,2)^-1

An example using the 𝐴 variables:

498 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

sage: M = crystals.infinity.NakajimaMonomials("A3")
sage: M.set_variables('A')
sage: mg = M.module_generators[0]
sage: mg.f_string([1,2,3,2,1])
A(1,0)^-1 A(1,1)^-1 A(2,0)^-2 A(3,0)^-1
sage: mg.f_string([3,2,1])
A(1,2)^-1 A(2,1)^-1 A(3,0)^-1
sage: M.set_variables('Y')

e(i)
Return the action of 𝑒𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['E',7,1])
sage: m = M.module_generators[0].f_string([0,1,4,3])
sage: [m.e(i) for i in M.index_set()]
[None,
None,
None,
Y(0,0)^-1 Y(1,1)^-1 Y(2,1) Y(3,0) Y(3,1) Y(4,0)^-1 Y(4,1)^-1 Y(5,0),
None,
None,
None,
None]

sage: M = crystals.infinity.NakajimaMonomials("C5")
sage: m = M.module_generators[0].f_string([1,3])
sage: [m.e(i) for i in M.index_set()]
[Y(2,1) Y(3,0)^-1 Y(3,1)^-1 Y(4,0),
None,
Y(1,0)^-1 Y(1,1)^-1 Y(2,0),
None,
None]

sage: M = crystals.infinity.NakajimaMonomials(['D',4,1])
sage: M.set_variables('A')
sage: m = M.module_generators[0].f_string([4,2,3,0])
sage: [m.e(i) for i in M.index_set()]
[A(2,1)^-1 A(3,1)^-1 A(4,0)^-1,
None,
None,
A(0,2)^-1 A(2,1)^-1 A(4,0)^-1,
None]
sage: M.set_variables('Y')

epsilon(i)
Return the value of 𝜀𝑖 on self.

INPUT:

• i – an element of the index set

5.1. Comprehensive Module List 499

Combinatorics, Release 9.7

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['G',2,1])
sage: m = M.module_generators[0].f(2)
sage: [m.epsilon(i) for i in M.index_set()]
[0, 0, 1]

sage: M = crystals.infinity.NakajimaMonomials(['C',4,1])
sage: m = M.module_generators[0].f_string([4,2,3])
sage: [m.epsilon(i) for i in M.index_set()]
[0, 0, 0, 1, 0]

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials("B4")
sage: m = M.module_generators[0].f_string([1,3,4])
sage: [m.f(i) for i in M.index_set()]
[Y(1,0)^-2 Y(1,1)^-2 Y(2,0)^2 Y(2,1) Y(3,0)^-1 Y(4,0) Y(4,1)^-1,
Y(1,0)^-1 Y(1,1)^-1 Y(1,2) Y(2,0) Y(2,2)^-1 Y(3,0)^-1 Y(3,1) Y(4,0) Y(4,1)^-1,
Y(1,0)^-1 Y(1,1)^-1 Y(2,0) Y(2,1)^2 Y(3,0)^-2 Y(3,1)^-1 Y(4,0)^3 Y(4,1)^-1,
Y(1,0)^-1 Y(1,1)^-1 Y(2,0) Y(2,1) Y(3,0)^-1 Y(3,1) Y(4,1)^-2]

phi(i)
Return the value of 𝜙𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['D',4,3])
sage: m = M.module_generators[0].f(1)
sage: [m.phi(i) for i in M.index_set()]
[1, -1, 1]

sage: M = crystals.infinity.NakajimaMonomials(['C',4,1])
sage: m = M.module_generators[0].f_string([4,2,3])
sage: [m.phi(i) for i in M.index_set()]
[0, 1, -1, 2, -1]

weight()
Return the weight of self as an element of the weight lattice.

EXAMPLES:

sage: C = crystals.infinity.NakajimaMonomials(['A',1,1])
sage: v = C.highest_weight_vector()
sage: v.f(1).weight() + v.f(0).weight()
-delta

(continues on next page)

500 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: M = crystals.infinity.NakajimaMonomials(['A',4,2])
sage: m = M.highest_weight_vector().f_string([1,2,0,1])
sage: m.weight()
2*Lambda[0] - Lambda[1] - delta

weight_in_root_lattice()
Return the weight of self as an element of the root lattice.

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['F',4])
sage: m = M.module_generators[0].f_string([3,3,1,2,4])
sage: m.weight_in_root_lattice()
-alpha[1] - alpha[2] - 2*alpha[3] - alpha[4]

sage: M = crystals.infinity.NakajimaMonomials(['B',3,1])
sage: mg = M.module_generators[0]
sage: m = mg.f_string([1,3,2,0,1,2,3,0,0,1])
sage: m.weight_in_root_lattice()
-3*alpha[0] - 3*alpha[1] - 2*alpha[2] - 2*alpha[3]

sage: M = crystals.infinity.NakajimaMonomials(['C',3,1])
sage: m = M.module_generators[0].f_string([3,0,1,2,0])
sage: m.weight_in_root_lattice()
-2*alpha[0] - alpha[1] - alpha[2] - alpha[3]

5.1.59 Crystal of Bernstein-Zelevinsky Multisegments

class sage.combinat.crystals.multisegments.InfinityCrystalOfMultisegments(n)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

The type 𝐴(1)
𝑛 crystal 𝐵(∞) realized using Bernstein-Zelevinsky (BZ) multisegments.

Using (a modified version of the) notation from [JL2009], for ℓ ∈ Z>0 and 𝑖 ∈ Z/(𝑛+ 1)Z, a segment of length
ℓ and head 𝑖 is the sequence of consecutive residues [𝑖, 𝑖 + 1, . . . , 𝑖 + ℓ − 1]. The notation for a segment of
length ℓ and head 𝑖 is simplified to [𝑖; ℓ). Similarly, a segment of length ℓ and tail 𝑖 is the sequence of consecutive
residues [𝑖− ℓ+ 1, . . . , 𝑖− 1, 𝑖]. The latter is denoted simply by (ℓ; 𝑖]. Finally, a multisegment is a formal linear
combination of segments, usually written in the form

𝜓 =
∑︁

𝑖∈Z/(𝑛+1)Z
ℓ∈Z>0

𝑚(ℓ;𝑖](ℓ; 𝑖].

Such a multisegment is called aperiodic if, for every ℓ > 0, there exists some 𝑖 ∈ Z/(𝑛 + 1)Z such that (ℓ; 𝑖]
does not appear in 𝜓. Denote the set of all periodic multisegments, together with the empty multisegment ∅, by
Ψ. We define a crystal structure on multisegments as follows. Set 𝑆ℓ,𝑖 =

∑︀
𝑘≥ℓ(𝑚(𝑘;𝑖−1] −𝑚(𝑘;𝑖]) and let ℓ𝑓

be the minimal ℓ that attains the value minℓ>0 𝑆ℓ,𝑖. Then we have

𝑓𝑖𝜓 =

{︃
𝜓 + (1; 𝑖] if ℓ𝑓 = 1,

𝜓 + (ℓ𝑓 ; 𝑖]− (ℓ𝑓 − 1; 𝑖− 1] if ℓ𝑓 > 1.

5.1. Comprehensive Module List 501

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

Similarly, let ℓ𝑒 be the maximal ℓ that attains the value minℓ>0 𝑆ℓ,𝑖. Then we have

𝑒𝑖𝜓 =

⎧⎪⎨⎪⎩
0 if minℓ>0 𝑆ℓ,𝑖 = 0,

𝜓 + (1; 𝑖] if ℓ𝑒 = 1,

𝜓 − (ℓ𝑒; 𝑖] + (ℓ𝑒 − 1; 𝑖− 1] if ℓ𝑒 > 1.

Alternatively, the crystal operators may be defined using a signature rule, as detailed in Section 4 of [JL2009]
(following [AJL2011]). For 𝜓 ∈ Ψ and 𝑖 ∈ Z/(𝑛 + 1)Z, encode all segments in 𝜓 with tail 𝑖 by the symbol 𝑅
and all segments in 𝜓 with tail 𝑖 − 1 by 𝐴. For ℓ > 0, set 𝑤𝑖,ℓ = 𝑅𝑚(ℓ;𝑖]𝐴𝑚(ℓ;𝑖−1] and 𝑤𝑖 =

∏︀
ℓ≥1 𝑤𝑖,ℓ. By

successively canceling out as many 𝑅𝐴 factors as possible, set ̃︀𝑤𝑖 = 𝐴𝑎𝑖(𝜓)𝑅𝑟𝑖(𝜓). If 𝑎𝑖(𝜓) > 0, denote by
ℓ𝑓 > 0 the length of the rightmost segment 𝐴 in ̃︀𝑤𝑖. If 𝑎𝑖(𝜓) = 0, set ℓ𝑓 = 0. Then

𝑓𝑖𝜓 =

{︃
𝜓 + (1; 𝑖] if 𝑎𝑖(𝜓) = 0,

𝜓 + (ℓ𝑓 ; 𝑖]− (ℓ𝑓 − 1; 𝑖− 1] if 𝑎𝑖(𝜓) > 0.

The rule for computing 𝑒𝑖𝜓 is similar.

INPUT:

• n – for type 𝐴(1)
𝑛

EXAMPLES:

sage: B = crystals.infinity.Multisegments(2)
sage: x = B([(8,1),(6,0),(5,1),(5,0),(4,0),(4,1),(4,1),(3,0),(3,0),(3,1),(3,1),(1,
→˓0),(1,2),(1,2)]); x
(8; 1] + (6; 0] + (5; 0] + (5; 1] + (4; 0] + 2 * (4; 1]
+ 2 * (3; 0] + 2 * (3; 1] + (1; 0] + 2 * (1; 2]
sage: x.f(1)
(8; 1] + (6; 0] + (5; 0] + (5; 1] + (4; 0] + 2 * (4; 1]
+ 2 * (3; 0] + 2 * (3; 1] + (2; 1] + 2 * (1; 2]
sage: x.f(1).f(1)
(8; 1] + (6; 0] + (5; 0] + (5; 1] + (4; 0] + 2 * (4; 1]
+ 2 * (3; 0] + 2 * (3; 1] + (2; 1] + (1; 1] + 2 * (1; 2]
sage: x.e(1)
(7; 0] + (6; 0] + (5; 0] + (5; 1] + (4; 0] + 2 * (4; 1]
+ 2 * (3; 0] + 2 * (3; 1] + (1; 0] + 2 * (1; 2]
sage: x.e(1).e(1)
sage: x.f(0)
(8; 1] + (6; 0] + (5; 0] + (5; 1] + (4; 0] + 2 * (4; 1]
+ 2 * (3; 0] + 2 * (3; 1] + (2; 0] + (1; 0] + (1; 2]

We check an ̂︀sl2 example against the generalized Young walls:

sage: B = crystals.infinity.Multisegments(1)
sage: G = B.subcrystal(max_depth=4).digraph()
sage: C = crystals.infinity.GeneralizedYoungWalls(1)
sage: GC = C.subcrystal(max_depth=4).digraph()
sage: G.is_isomorphic(GC, edge_labels=True)
True

REFERENCES:

• [AJL2011]

• [JL2009]

502 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• [LTV1999]

class Element(parent, value)
Bases: sage.structure.element_wrapper.ElementWrapper

An element in a BZ multisegments crystal.

e(i)
Return the action of 𝑒𝑖 on self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Multisegments(2)
sage: b = B([(4,2), (3,0), (3,1), (1,1), (1,0)])
sage: b.e(0)
(4; 2] + (3; 0] + (3; 1] + (1; 1]
sage: b.e(1)
sage: b.e(2)
(3; 0] + 2 * (3; 1] + (1; 0] + (1; 1]

epsilon(i)
Return 𝜀𝑖 of self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Multisegments(2)
sage: b = B([(4,2), (3,0), (3,1), (1,1), (1,0)])
sage: b.epsilon(0)
1
sage: b.epsilon(1)
0
sage: b.epsilon(2)
1

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Multisegments(2)
sage: b = B([(4,2), (3,0), (3,1), (1,1), (1,0)])
sage: b.f(0)
(4; 2] + (3; 0] + (3; 1] + 2 * (1; 0] + (1; 1]
sage: b.f(1)
(4; 2] + (3; 0] + (3; 1] + (1; 0] + 2 * (1; 1]
sage: b.f(2)
2 * (4; 2] + (3; 0] + (1; 0] + (1; 1]

phi(i)
Return 𝜙𝑖 of self.

5.1. Comprehensive Module List 503

../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

Let 𝜓 ∈ Ψ. Define 𝜙𝑖(𝜓) := 𝜀𝑖(𝜓) + ⟨ℎ𝑖,wt(𝜓)⟩, where ℎ𝑖 is the 𝑖-th simple coroot and wt(𝜓) is the
weight() of 𝜓.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Multisegments(2)
sage: b = B([(4,2), (3,0), (3,1), (1,1), (1,0)])
sage: b.phi(0)
1
sage: b.phi(1)
0
sage: mg = B.highest_weight_vector()
sage: mg.f(1).phi(0)
1

weight()
Return the weight of self.

EXAMPLES:

sage: B = crystals.infinity.Multisegments(2)
sage: b = B([(4,2), (3,0), (3,1), (1,1), (1,0)])
sage: b.weight()
-4*delta

highest_weight_vector()
Return the highest weight vector of self.

EXAMPLES:

sage: B = crystals.infinity.Multisegments(2)
sage: B.highest_weight_vector()
0

weight_lattice_realization()
Return a realization of the weight lattice of self.

EXAMPLES:

sage: B = crystals.infinity.Multisegments(2)
sage: B.weight_lattice_realization()
Extended weight lattice of the Root system of type ['A', 2, 1]

5.1.60 Crystal Of Mirković-Vilonen (MV) Polytopes

AUTHORS:

• Dinakar Muthiah, Travis Scrimshaw (2015-05-11): initial version

class sage.combinat.crystals.mv_polytopes.MVPolytope(parent, lusztig_datum, long_word=None)
Bases: sage.combinat.crystals.pbw_crystal.PBWCrystalElement

A Mirković-Vilonen (MV) polytope.

EXAMPLES:

504 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

We can create an animation showing how the MV polytope changes under a string of crystal operators:

sage: MV = crystals.infinity.MVPolytopes(['C', 2])
sage: u = MV.highest_weight_vector()
sage: L = RootSystem(['C',2,1]).ambient_space()
sage: s = [1,2,1,2,2,2,1,1,1,1,2,1,2,2,1,2]
sage: BB = [[-9, 2], [-10, 2]]
sage: p = L.plot(reflection_hyperplanes=False, bounding_box=BB) # long time
sage: frames = [p + L.plot_mv_polytope(u.f_string(s[:i]), # long time
....: circle_size=0.1,
....: wireframe='green',
....: fill='purple',
....: bounding_box=BB)
....: for i in range(len(s))]
sage: for f in frames: # long time
....: f.axes(False)
sage: animate(frames).show(delay=60) # optional -- ImageMagick # long time

plot(P=None, **options)
Plot self.

INPUT:

• P – (optional) a space to realize the polytope; default is the weight lattice realization of the crystal

See also:

plot_mv_polytope()

EXAMPLES:

sage: MV = crystals.infinity.MVPolytopes(['C', 2])
sage: b = MV.highest_weight_vector().f_string([1,2,1,2,2,2,1,1,1,1,2,1])
sage: b.plot()
Graphics object consisting of 12 graphics primitives

Here is the above example placed inside the ambient space of type 𝐶2:

α0

α1

α2

Λ0 Λ1

Λ2

polytope(P=None)
Return a polytope of self.

INPUT:

5.1. Comprehensive Module List 505

Combinatorics, Release 9.7

• P – (optional) a space to realize the polytope; default is the weight lattice realization of the crystal

EXAMPLES:

sage: MV = crystals.infinity.MVPolytopes(['C', 3])
sage: b = MV.module_generators[0].f_string([3,2,3,2,1])
sage: P = b.polytope(); P
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 6 vertices
sage: P.vertices()
(A vertex at (0, 0, 0),
A vertex at (0, 1, -1),
A vertex at (0, 1, 1),
A vertex at (1, -1, 0),
A vertex at (1, 1, -2),
A vertex at (1, 1, 2))

class sage.combinat.crystals.mv_polytopes.MVPolytopes(cartan_type)
Bases: sage.combinat.crystals.pbw_crystal.PBWCrystal

The crystal of Mirković-Vilonen (MV) polytopes.

Let 𝑊 denote the corresponding Weyl group and 𝑃R = R ⊗ 𝑃 . Let Γ = {𝑤Λ𝑖 | 𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼}. Consider
𝑀 = (𝑀𝛾 ∈ Z)𝛾∈Γ that satisfy the tropical Plücker relations (see Proposition 7.1 of [BZ01]). The MV polytope
is defined as

𝑃 (𝑀) = {𝛼 ∈ 𝑃R | ⟨𝛼, 𝛾⟩ ≥𝑀𝛾 for all 𝛾 ∈ Γ}.

The vertices {𝜇𝑤}𝑤∈𝑊 are given by

⟨𝜇𝑤, 𝛾⟩ = 𝑀𝛾

and are known as the GGMS datum of the MV polytope.

Each path from 𝜇𝑒 to 𝜇𝑤0
corresponds to a reduced expression i = (𝑖1, . . . , 𝑖𝑚) for 𝑤0 and the corresponding

edge lengths (𝑛𝑘)𝑚𝑘=1 from the Lusztig datum with respect to i. Explicitly, we have

𝑛𝑘 = −𝑀𝑤𝑘−1Λ𝑖𝑘
−𝑀𝑤𝑘Λ𝑖𝑘

−
∑︁
𝑗 ̸=𝑖

𝑎𝑗𝑖𝑀𝑤𝑘Λ𝑗
,

𝜇𝑤𝑘
− 𝜇𝑤𝑘−1

= 𝑛𝑘𝑤𝑘−1𝛼𝑖𝑘 ,

where 𝑤𝑘 = 𝑠𝑖1 · · · 𝑠𝑖𝑘 and (𝑎𝑗𝑖) is the Cartan matrix.

MV polytopes have a crystal structure that corresponds to the crystal structure, which is isomorphic toℬ(∞) with
𝜇𝑤0 = 0, on PBW data. Specifically, we have 𝑓𝑗𝑃 (𝑀) as being the unique MV polytope given by shifting 𝜇𝑒
by−𝛼𝑗 and fixing the vertices 𝜇𝑤 when 𝑠𝑗𝑤 < 𝑤 (in Bruhat order) and the weight is given by 𝜇𝑒. Furthermore,
the *-involution is given by negating 𝑃 (𝑀).

INPUT:

• cartan_type – a Cartan type

EXAMPLES:

sage: MV = crystals.infinity.MVPolytopes(['B', 3])
sage: hw = MV.highest_weight_vector()
sage: x = hw.f_string([1,2,2,3,3,1,3,3,2,3,2,1,3,1,2,3,1,2,1,3,2]); x
MV polytope with Lusztig datum (1, 1, 1, 3, 1, 0, 0, 1, 1)

Elements are expressed in terms of Lusztig datum for a fixed reduced expression of 𝑤0:

506 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: MV.default_long_word()
[1, 3, 2, 3, 1, 2, 3, 1, 2]
sage: MV.set_default_long_word([2,1,3,2,1,3,2,3,1])
sage: x
MV polytope with Lusztig datum (3, 1, 1, 0, 1, 0, 1, 3, 4)
sage: MV.set_default_long_word([1, 3, 2, 3, 1, 2, 3, 1, 2])

We can construct elements by giving it Lusztig data (with respect to the default long word reduced expression):

sage: MV([1,1,1,3,1,0,0,1,1])
MV polytope with Lusztig datum (1, 1, 1, 3, 1, 0, 0, 1, 1)

We can also construct elements by passing in a reduced expression for a long word:

sage: x = MV([1,1,1,3,1,0,0,1,1], [3,2,1,3,2,3,2,1,2]); x
MV polytope with Lusztig datum (1, 1, 1, 0, 1, 0, 5, 1, 1)
sage: x.to_highest_weight()[1]
[1, 2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 1, 3]

The highest weight crystal𝐵(𝜆) ⊆ 𝐵(∞) is characterized by the MV polytopes that sit inside of𝑊𝜆 (translating
𝜇𝑤0
↦→ 𝜆):

sage: MV = crystals.infinity.MVPolytopes(['A',2])
sage: La = MV.weight_lattice_realization().fundamental_weights()
sage: R = crystals.elementary.R(La[1]+La[2])
sage: T = tensor([R, MV])
sage: x = T(R.module_generators[0], MV.highest_weight_vector())
sage: lw = x.to_lowest_weight()[0]; lw
[(2, 1, 0), MV polytope with Lusztig datum (1, 1, 1)]
sage: lw[1].polytope().vertices()
(A vertex at (0, 0, 0),
A vertex at (0, 1, -1),
A vertex at (1, -1, 0),
A vertex at (1, 1, -2),
A vertex at (2, -1, -1),
A vertex at (2, 0, -2))

1.5 1.0 0.5 0.5 1.0 1.5

3.5

3.0

2.5

2.0

1.5

1.0

0.5

REFERENCES:

5.1. Comprehensive Module List 507

Combinatorics, Release 9.7

• [Kam2007]

• [Kam2010]

Element
alias of MVPolytope

latex_options()
Return the latex options of self.

EXAMPLES:

sage: MV = crystals.infinity.MVPolytopes(['F', 4])
sage: MV.latex_options()
{'P': Ambient space of the Root system of type ['F', 4],
'circle_size': 0.1,
'mark_endpoints': True,
'projection': True}

set_latex_options(**kwds)
Set the latex options for the elements of self.

INPUT:

• projection – the projection; set to True to use the default projection of the specified weight lattice
realization (initial: True)

• P – the weight lattice realization to use (initial: the weight lattice realization of self)

• mark_endpoints – whether to mark the endpoints (initial: True)

• circle_size – the size of the endpoint circles (initial: 0.1)

EXAMPLES:

sage: MV = crystals.infinity.MVPolytopes(['C', 2])
sage: P = RootSystem(['C', 2]).weight_lattice()
sage: b = MV.highest_weight_vector().f_string([1,2,1,2])
sage: latex(b)
\begin{tikzpicture}
\draw (0, 0) -- (0, -2) -- (-1, -3) -- (-1, -3) -- (-2, -2);
\draw (0, 0) -- (-1, 1) -- (-1, 1) -- (-2, 0) -- (-2, -2);
\draw[fill=black] (0, 0) circle (0.1);
\draw[fill=black] (-2, -2) circle (0.1);
\end{tikzpicture}
sage: MV.set_latex_options(P=P, circle_size=float(0.2))
sage: latex(b)
\begin{tikzpicture}
\draw (0, 0) -- (2, -2) -- (2, -3) -- (2, -3) -- (0, -2);
\draw (0, 0) -- (-2, 1) -- (-2, 1) -- (-2, 0) -- (0, -2);
\draw[fill=black] (0, 0) circle (0.2);
\draw[fill=black] (0, -2) circle (0.2);
\end{tikzpicture}
sage: MV.set_latex_options(mark_endpoints=False)
sage: latex(b)
\begin{tikzpicture}
\draw (0, 0) -- (2, -2) -- (2, -3) -- (2, -3) -- (0, -2);
\draw (0, 0) -- (-2, 1) -- (-2, 1) -- (-2, 0) -- (0, -2);
\end{tikzpicture}

(continues on next page)

508 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: MV.set_latex_options(P=MV.weight_lattice_realization(),
....: circle_size=0.2,
....: mark_endpoints=True)

5.1.61 ℬ(∞) Crystal Of PBW Monomials

AUTHORS:

• Dinakar Muthiah (2015-05-11): initial version

See also:

For information on PBW datum, see PBW Data.

class sage.combinat.crystals.pbw_crystal.PBWCrystal(cartan_type)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

Crystal of ℬ(∞) given by PBW monomials.

A model of the crystal ℬ(∞) whose elements are PBW datum up to equivalence by the tropical Plücker relations.
The crystal structure on Lusztig data 𝑥 = (𝑥1, . . . , 𝑥𝑚) for the reduced word 𝑠𝑖1 · · · 𝑠𝑖𝑚 = 𝑤0 is given as follows.
Suppose 𝑖1 = 𝑗, then 𝑓𝑗𝑥 = (𝑥1 +1, 𝑥2, . . . , 𝑥𝑚). If 𝑖1 ̸= 𝑗, then we use the tropical Plücker relations to change
the reduced expression such that 𝑖′1 = 𝑗 and then we change back to the original word.

EXAMPLES:

sage: PBW = crystals.infinity.PBW(['B', 3])
sage: hw = PBW.highest_weight_vector()
sage: x = hw.f_string([1,2,2,3,3,1,3,3,2,3,2,1,3,1,2,3,1,2,1,3,2]); x
PBW monomial with Lusztig datum (1, 1, 1, 3, 1, 0, 0, 1, 1)

Elements are expressed in terms of Lusztig datum for a fixed reduced expression of 𝑤0:

sage: PBW.default_long_word()
[1, 3, 2, 3, 1, 2, 3, 1, 2]
sage: PBW.set_default_long_word([2,1,3,2,1,3,2,3,1])
sage: x
PBW monomial with Lusztig datum (3, 1, 1, 0, 1, 0, 1, 3, 4)
sage: PBW.set_default_long_word([1, 3, 2, 3, 1, 2, 3, 1, 2])

We can construct elements by giving it Lusztig data (with respect to the default long word):

sage: PBW([1,1,1,3,1,0,0,1,1])
PBW monomial with Lusztig datum (1, 1, 1, 3, 1, 0, 0, 1, 1)

We can also construct elements by passing in a reduced expression for a long word:

sage: x = PBW([1,1,1,3,1,0,0,1,1], [3,2,1,3,2,3,2,1,2]); x
PBW monomial with Lusztig datum (1, 1, 1, 0, 1, 0, 5, 1, 1)
sage: x.to_highest_weight()[1]
[1, 2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 1, 3]

Element
alias of PBWCrystalElement

5.1. Comprehensive Module List 509

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

default_long_word()
Return the default long word used to express elements of self.

EXAMPLES:

sage: B = crystals.infinity.PBW(['E', 6])
sage: B.default_long_word()
[1, 3, 4, 5, 6, 2, 4, 5, 3, 4, 1, 3, 2, 4, 5, 6, 2, 4,
5, 3, 4, 1, 3, 2, 4, 5, 3, 4, 1, 3, 2, 4, 1, 3, 2, 1]

set_default_long_word(word)
Set the default long word used to express elements of self.

EXAMPLES:

sage: B = crystals.infinity.PBW(['C', 3])
sage: B.default_long_word()
[1, 3, 2, 3, 1, 2, 3, 1, 2]
sage: x = B.highest_weight_vector().f_string([2,1,3,2,3,1,2,3,3,1])
sage: x
PBW monomial with Lusztig datum (1, 2, 2, 0, 0, 0, 0, 0, 1)
sage: B.set_default_long_word([2,1,3,2,1,3,2,3,1])
sage: B.default_long_word()
[2, 1, 3, 2, 1, 3, 2, 3, 1]
sage: x
PBW monomial with Lusztig datum (2, 0, 0, 0, 0, 0, 1, 3, 2)

class sage.combinat.crystals.pbw_crystal.PBWCrystalElement(parent, lusztig_datum,
long_word=None)

Bases: sage.structure.element.Element

A crystal element in the PBW model.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: B = crystals.infinity.PBW(['B', 3])
sage: b = B.highest_weight_vector()
sage: c = b.f_string([2,1,3,2,1,3,2,2]); c
PBW monomial with Lusztig datum (0, 1, 0, 1, 0, 0, 0, 1, 2)
sage: c.e(2)
PBW monomial with Lusztig datum (0, 1, 0, 1, 0, 0, 0, 1, 1)
sage: c.e_string([2,2,1,3,2,1,3,2]) == b
True

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: B = crystals.infinity.PBW(["A2"])
sage: s = B((3,0,0), (1,2,1))
sage: s.epsilon(1)
3

(continues on next page)

510 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

(continued from previous page)

sage: s.epsilon(2)
0

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: B = crystals.infinity.PBW("D4")
sage: b = B.highest_weight_vector()
sage: c = b.f_string([1,2,3,1,2,3,4]); c
PBW monomial with Lusztig datum (0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0)
sage: c == b.f_string([1,2,4,1,2,3,3])
True

lusztig_datum(word=None)
Return the Lusztig datum of self with respect to the reduced expression of the long word word.

EXAMPLES:

sage: B = crystals.infinity.PBW(['A', 2])
sage: u = B.highest_weight_vector()
sage: b = u.f_string([2,1,2,2,2,2,1,1,2,1,2,1,2,1,2,2])
sage: b.lusztig_datum()
(6, 0, 10)
sage: b.lusztig_datum(word=[2,1,2])
(4, 6, 0)

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: B = crystals.infinity.PBW(['A', 2])
sage: s = B((3,0,0), (1,2,1))
sage: s.phi(1)
-3
sage: s.phi(2)
3

star()
Return the starred crystal element corresponding to self.

Let 𝑏 be an element of self with Lusztig datum (𝑏1, . . . , 𝑏𝑁) with respect to 𝑤0 = 𝑠𝑖1 · · · 𝑠𝑖𝑁 . Then 𝑏* is
the element with Lusztig datum (𝑏𝑁 , . . . , 𝑏1) with respect to 𝑤0 = 𝑠𝑖*𝑁 · · · 𝑠𝑖*1 , where 𝑖*𝑗 = 𝜔(𝑖𝑗) with 𝜔
being the automorphism given by the action of 𝑤0 on the simple roots.

EXAMPLES:

sage: P = crystals.infinity.PBW(['A', 2])
sage: P((1,2,3), (1,2,1)).star() == P((3,2,1), (2,1,2))
True

sage: B = crystals.infinity.PBW(['E', 6])
sage: b = B.highest_weight_vector()

(continues on next page)

5.1. Comprehensive Module List 511

Combinatorics, Release 9.7

(continued from previous page)

sage: c = b.f_string([1,2,6,3,4,2,5,2,3,4,1,6])
sage: c == c.star().star()
True

weight()
Return weight of self.

EXAMPLES:

sage: B = crystals.infinity.PBW(['A', 2])
sage: s = B((2,2,2), (1,2,1))
sage: s.weight()
(-4, 0, 4)

5.1.62 PBW Data

This contains helper classes and functions which encode PBW data in finite type.

AUTHORS:

• Dinakar Muthiah (2015-05): initial version

• Travis Scrimshaw (2016-06): simplified code and converted to Cython

class sage.combinat.crystals.pbw_datum.PBWData(cartan_type)
Bases: object

Helper class for the set of PBW data.

convert_to_new_long_word(pbw_datum, new_long_word)
Convert the PBW datum pbw_datum from its long word to new_long_word.

EXAMPLES:

sage: from sage.combinat.crystals.pbw_datum import PBWData, PBWDatum
sage: P = PBWData("A2")
sage: datum = PBWDatum(P, (1,2,1), (1,0,1))
sage: new_datum = P.convert_to_new_long_word(datum,(2,1,2))
sage: new_datum
PBW Datum element of type ['A', 2] with long word (2, 1, 2)
and Lusztig datum (0, 1, 0)
sage: new_datum.long_word
(2, 1, 2)
sage: new_datum.lusztig_datum
(0, 1, 0)

class sage.combinat.crystals.pbw_datum.PBWDatum(parent, long_word, lusztig_datum)
Bases: object

Helper class which represents a PBW datum.

convert_to_long_word_with_first_letter(i)
Return a new PBWDatum equivalent to self whose long word begins with i.

EXAMPLES:

512 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.crystals.pbw_datum import PBWData, PBWDatum
sage: P = PBWData("A3")
sage: datum = PBWDatum(P, (1,2,1,3,2,1), (1,0,1,4,2,3))
sage: datum.convert_to_long_word_with_first_letter(1)
PBW Datum element of type ['A', 3] with long word (1, 2, 3, 1, 2, 1)
and Lusztig datum (1, 0, 4, 1, 2, 3)
sage: datum.convert_to_long_word_with_first_letter(2)
PBW Datum element of type ['A', 3] with long word (2, 1, 2, 3, 2, 1)
and Lusztig datum (0, 1, 0, 4, 2, 3)
sage: datum.convert_to_long_word_with_first_letter(3)
PBW Datum element of type ['A', 3] with long word (3, 1, 2, 3, 1, 2)
and Lusztig datum (8, 1, 0, 4, 1, 2)

convert_to_new_long_word(new_long_word)
Return a new PBWDatum equivalent to self whose long word is new_long_word.

EXAMPLES:

sage: from sage.combinat.crystals.pbw_datum import PBWData, PBWDatum
sage: P = PBWData("A2")
sage: datum = PBWDatum(P, (1,2,1), (1,0,1))
sage: new_datum = datum.convert_to_new_long_word((2,1,2))
sage: new_datum.long_word
(2, 1, 2)
sage: new_datum.lusztig_datum
(0, 1, 0)

is_equivalent_to(other_pbw_datum)
Return whether self is equivalent to other_pbw_datum. modulo the tropical Plücker relations.

EXAMPLES:

sage: from sage.combinat.crystals.pbw_datum import PBWData, PBWDatum
sage: P = PBWData("A2")
sage: L1 = PBWDatum(P, (1,2,1), (1,0,1))
sage: L2 = PBWDatum(P, (2,1,2), (0,1,0))
sage: L1.is_equivalent_to(L2)
True
sage: L1 == L2
False

star()
Return the starred version of self, i.e., with reversed 𝑙𝑜𝑛𝑔𝑤𝑜𝑟𝑑 and 𝑙𝑢𝑠𝑧𝑡𝑖𝑔𝑑𝑎𝑡𝑢𝑚

EXAMPLES:

sage: from sage.combinat.crystals.pbw_datum import PBWData, PBWDatum
sage: P = PBWData("A2")
sage: L1 = PBWDatum(P, (1,2,1), (1,2,3))
sage: L1.star() == PBWDatum(P, (2,1,2), (3,2,1))
True

weight()
Return the weight of self.

EXAMPLES:

5.1. Comprehensive Module List 513

Combinatorics, Release 9.7

sage: from sage.combinat.crystals.pbw_datum import PBWData, PBWDatum
sage: P = PBWData("A2")
sage: L = PBWDatum(P, (1,2,1), (1,1,1))
sage: L.weight()
-2*alpha[1] - 2*alpha[2]

sage.combinat.crystals.pbw_datum.compute_new_lusztig_datum(enhanced_braid_chain,
initial_lusztig_datum)

Return the Lusztig datum obtained by applying tropical Plücker relations along enhanced_braid_chain start-
ing with initial_lusztig_datum.

EXAMPLES:

sage: from sage.combinat.root_system.braid_move_calculator import␣
→˓BraidMoveCalculator
sage: from sage.combinat.crystals.pbw_datum import enhance_braid_move_chain
sage: from sage.combinat.crystals.pbw_datum import compute_new_lusztig_datum
sage: ct = CartanType(['A', 2])
sage: W = CoxeterGroup(ct)
sage: B = BraidMoveCalculator(W)
sage: chain = B.chain_of_reduced_words((1,2,1),(2,1,2))
sage: enhanced_braid_chain = enhance_braid_move_chain(chain, ct)
sage: compute_new_lusztig_datum(enhanced_braid_chain,(1,0,1))
(0, 1, 0)

sage.combinat.crystals.pbw_datum.enhance_braid_move_chain(braid_move_chain, cartan_type)
Return a list of tuples that records the data of the long words in braid_move_chain plus the data of the intervals
where the braid moves occur and the data of the off-diagonal entries of the 2 × 2 Cartan submatrices of each
braid move.

INPUT:

• braid_move_chain – a chain of reduced words in the Weyl group of cartan_type

• cartan_type – a finite Cartan type

OUTPUT:

A list of 2-tuples (interval_of_change, cartan_sub_matrix) where

• interval_of_change is the (half-open) interval of indices where the braid move occurs; this is𝑁𝑜𝑛𝑒 for
the first tuple

• cartan_sub_matrix is the off-diagonal entries of the 2×2 submatrix of the Cartan matrix corresponding
to the braid move; this is 𝑁𝑜𝑛𝑒 for the first tuple

For a matrix:

[2 a]
[b 2]

the cartan_sub_matrix is the pair (a, b).

sage.combinat.crystals.pbw_datum.tropical_plucker_relation(a, lusztig_datum)
Apply the tropical Plücker relation of type a to lusztig_datum.

The relations are obtained by tropicalizing the relations in Proposition 7.1 of [BZ01].

INPUT:

514 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• a – a pair (x, y) of the off-diagonal entries of a 2× 2 Cartan matrix

EXAMPLES:

sage: from sage.combinat.crystals.pbw_datum import tropical_plucker_relation
sage: tropical_plucker_relation((0,0), (2,3))
(3, 2)
sage: tropical_plucker_relation((-1,-1), (1,2,3))
(4, 1, 2)
sage: tropical_plucker_relation((-1,-2), (1,2,3,4))
(8, 1, 2, 3)
sage: tropical_plucker_relation((-2,-1), (1,2,3,4))
(6, 1, 2, 3)

5.1.63 Polyhedral Realization of 𝐵(∞)

class sage.combinat.crystals.polyhedral_realization.InfinityCrystalAsPolyhedralRealization(cartan_type,
seq)

Bases: sage.combinat.crystals.tensor_product.TensorProductOfCrystals

The polyhedral realization of 𝐵(∞).

Note: Here we are using anti-Kashiwara notation and might differ from some of the literature.

Consider a Kac-Moody algebra g of Cartan type 𝑋 with index set 𝐼 , and consider a finite sequence 𝐽 =
(𝑗1, 𝑗2, . . . , 𝑗𝑚) whose support equals 𝐼 . We extend this to an infinite sequence by taking 𝐽 = 𝐽 · 𝐽 · 𝐽 · · ·,
where · denotes concatenation of sequences. Let

𝐵𝐽 = 𝐵𝑗𝑚 ⊗ · · · ⊗𝐵𝑗2 ⊗𝐵𝑗1 ,

where 𝐵𝑖 is an ElementaryCrystal.

As given in Theorem 2.1.1 of [Ka1993], there exists a strict crystal embedding Ψ𝑖 : 𝐵(∞) → 𝐵𝑖 ⊗ 𝐵(∞)
defined by 𝑢∞ ↦→ 𝑏𝑖(0) ⊗ 𝑢∞, where 𝑏𝑖(0) ∈ 𝐵𝑖 and 𝑢∞ is the (unique) highest weight element in 𝐵(∞).
This is sometimes known as the Kashiwara embedding [NZ1997] (though, in [NZ1997], the target of this map is
denoted by Z∞𝐽). By iterating this embedding by taking Ψ𝐽 = Ψ𝑗𝑛 ∘Ψ𝑗𝑛−1

∘ · · · ∘Ψ𝑗1 , we obtain the following
strict crystal embedding:

Ψ𝑛
𝐽 : 𝐵(∞)→ 𝐵⊗𝑛𝐽 ⊗𝐵(∞).

We note there is a natural analog of Lemma 10.6.2 in [HK2002] that for any 𝑏 ∈ 𝐵(∞), there exists a positive
integer 𝑁 such that

Ψ𝑁
𝐽 (𝑏) =

(︃
𝑁⨂︁
𝑘=1

𝑏(𝑘)

)︃
⊗ 𝑢∞.

Therefore we can model elements 𝑏 ∈ 𝐵(∞) by considering an infinite list of elements 𝑏(𝑘) ∈ 𝐵𝐽 and defining

5.1. Comprehensive Module List 515

Combinatorics, Release 9.7

the crystal structure by:

wt(𝑏) =

𝑁∑︁
𝑘=1

wt(𝑏(𝑘))

𝑒𝑖(𝑏) = 𝑒𝑖

(︃(︃
𝑁⨂︁
𝑘=1

𝑏(𝑘)

)︃)︃
⊗ 𝑢∞,

𝑓𝑖(𝑏) = 𝑓𝑖

(︃(︃
𝑁⨂︁
𝑘=1

𝑏(𝑘)

)︃)︃
⊗ 𝑢∞,

𝜀𝑖(𝑏) = max
𝑒𝑘𝑖 (𝑏)̸=0

𝑘,

𝜙𝑖(𝑏) = 𝜀𝑖(𝑏)− ⟨wt(𝑏), ℎ∨𝑖 ⟩.

To translate this into a finite list, we consider a finite sequence 𝑏1 ⊗ · · · ⊗ 𝑏𝑁 and if

𝑓𝑖

(︁
𝑏(1) ⊗ · · · 𝑏(𝑁−1) ⊗ 𝑏(𝑁)

)︁
= 𝑏(1) ⊗ · · · ⊗ 𝑏(𝑁−1) ⊗ 𝑓𝑖

(︁
𝑏(𝑁)

)︁
,

then we take the image as 𝑏(1) ⊗ · · · ⊗ 𝑓𝑖
(︀
𝑏(𝑁)

)︀
⊗ 𝑏(𝑁+1). Similarly we remove 𝑏(𝑁) if we have 𝑏(𝑁) =⨂︀𝑚

𝑘=1 𝑏𝑗𝑘(0). Additionally if

𝑒𝑖

(︁
𝑏(1) ⊗ · · · ⊗ 𝑏(𝑁−1) ⊗ 𝑏(𝑁)

)︁
= 𝑏(1) ⊗ · · · ⊗ 𝑏(𝑁−1) ⊗ 𝑒𝑖

(︁
𝑏(𝑁)

)︁
,

then we consider this to be 0.

INPUT:

• cartan_type – a Cartan type

• seq – (default: None) a finite sequence whose support equals the index set of the Cartan type; if None, then
this is the index set

EXAMPLES:

sage: B = crystals.infinity.PolyhedralRealization(['A',2])
sage: mg = B.module_generators[0]; mg
[0, 0]
sage: mg.f_string([2,1,2,2])
[0, -3, -1, 0, 0, 0]

An example of type 𝐵2:

sage: B = crystals.infinity.PolyhedralRealization(['B',2])
sage: mg = B.module_generators[0]; mg
[0, 0]
sage: mg.f_string([2,1,2,2])
[0, -2, -1, -1, 0, 0]

An example of type 𝐺2:

sage: B = crystals.infinity.PolyhedralRealization(['G',2])
sage: mg = B.module_generators[0]; mg
[0, 0]
sage: mg.f_string([2,1,2,2])
[0, -3, -1, 0, 0, 0]

516 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class Element
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfCrystalsElement

An element in the polyhedral realization of 𝐵(∞).

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: B = crystals.infinity.PolyhedralRealization(['A',2])
sage: mg = B.module_generators[0]
sage: all(mg.e(i) is None for i in B.index_set())
True
sage: mg.f(1).e(1) == mg
True

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: B = crystals.infinity.PolyhedralRealization(['A',2,1])
sage: mg = B.module_generators[0]
sage: [mg.epsilon(i) for i in B.index_set()]
[0, 0, 0]
sage: elt = mg.f(0)
sage: [elt.epsilon(i) for i in B.index_set()]
[1, 0, 0]
sage: elt = mg.f_string([0,1,2])
sage: [elt.epsilon(i) for i in B.index_set()]
[0, 0, 1]
sage: elt = mg.f_string([0,1,2,2])
sage: [elt.epsilon(i) for i in B.index_set()]
[0, 0, 2]

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: B = crystals.infinity.PolyhedralRealization(['A',2])
sage: mg = B.module_generators[0]
sage: mg.f(1)
[-1, 0, 0, 0]
sage: mg.f_string([1,2,2,1])
[-1, -2, -1, 0, 0, 0]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: B = crystals.infinity.PolyhedralRealization(['A',2,1])
sage: mg = B.module_generators[0]
sage: [mg.phi(i) for i in B.index_set()]
[0, 0, 0]

(continues on next page)

5.1. Comprehensive Module List 517

Combinatorics, Release 9.7

(continued from previous page)

sage: elt = mg.f(0)
sage: [elt.phi(i) for i in B.index_set()]
[-1, 1, 1]
sage: elt = mg.f_string([0,1])
sage: [elt.phi(i) for i in B.index_set()]
[-1, 0, 2]
sage: elt = mg.f_string([0,1,2,2])
sage: [elt.phi(i) for i in B.index_set()]
[1, 1, 0]

truncate(k=None)
Truncate self to have length k and return as an element in a (finite) tensor product of crystals.

INPUT:
• k – (optional) the length of the truncation; if not specified, then returns one more than the current

non-ground-state elements (i.e. the current list in self)
EXAMPLES:

sage: B = crystals.infinity.PolyhedralRealization(['A',2])
sage: mg = B.module_generators[0]
sage: elt = mg.f_string([1,2,2,1]); elt
[-1, -2, -1, 0, 0, 0]
sage: t = elt.truncate(); t
[-1, -2, -1, 0, 0, 0]
sage: t.parent() is B.finite_tensor_product(6)
True
sage: elt.truncate(2)
[-1, -2]
sage: elt.truncate(10)
[-1, -2, -1, 0, 0, 0, 0, 0, 0, 0]

finite_tensor_product(k)
Return the finite tensor product of crystals of length k by truncating self.

EXAMPLES:

sage: B = crystals.infinity.PolyhedralRealization(['A',2])
sage: B.finite_tensor_product(5)
Full tensor product of the crystals
[The 1-elementary crystal of type ['A', 2],
The 2-elementary crystal of type ['A', 2],
The 1-elementary crystal of type ['A', 2],
The 2-elementary crystal of type ['A', 2],
The 1-elementary crystal of type ['A', 2]]

518 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.64 Spin Crystals

These are the crystals associated with the three spin representations: the spin representations of odd orthogonal groups
(or rather their double covers); and the + and − spin representations of the even orthogonal groups.

We follow Kashiwara and Nakashima (Journal of Algebra 165, 1994) in representing the elements of the spin crystal
by sequences of signs ±.

sage.combinat.crystals.spins.CrystalOfSpins(ct)
Return the spin crystal of the given type 𝐵.

This is a combinatorial model for the crystal with highest weight 𝐿𝑎𝑚𝑏𝑑𝑎𝑛 (the 𝑛-th fundamental weight).
It has 2𝑛 elements, here called Spins. See also CrystalOfLetters(), CrystalOfSpinsPlus(), and
CrystalOfSpinsMinus().

INPUT:

• ['B', n] - A Cartan type 𝐵𝑛.

EXAMPLES:

sage: C = crystals.Spins(['B',3])
sage: C.list()
[+++, ++-, +-+, -++, +--, -+-, --+, ---]
sage: C.cartan_type()
['B', 3]

sage: [x.signature() for x in C]
['+++', '++-', '+-+', '-++', '+--', '-+-', '--+', '---']

sage.combinat.crystals.spins.CrystalOfSpinsMinus(ct)
Return the minus spin crystal of the given type D.

This is the crystal with highest weight 𝐿𝑎𝑚𝑏𝑑𝑎𝑛−1 (the (𝑛− 1)-st fundamental weight).

INPUT:

• ['D', n] - A Cartan type 𝐷𝑛.

EXAMPLES:

sage: E = crystals.SpinsMinus(['D',4])
sage: E.list()
[+++-, ++-+, +-++, -+++, +---, -+--, --+-, ---+]
sage: [x.signature() for x in E]
['+++-', '++-+', '+-++', '-+++', '+---', '-+--', '--+-', '---+']

sage.combinat.crystals.spins.CrystalOfSpinsPlus(ct)
Return the plus spin crystal of the given type D.

This is the crystal with highest weight 𝐿𝑎𝑚𝑏𝑑𝑎𝑛 (the 𝑛-th fundamental weight).

INPUT:

• ['D', n] - A Cartan type 𝐷𝑛.

EXAMPLES:

sage: D = crystals.SpinsPlus(['D',4])
sage: D.list()
[++++, ++--, +-+-, -++-, +--+, -+-+, --++, ----]

5.1. Comprehensive Module List 519

Combinatorics, Release 9.7

sage: [x.signature() for x in D]
['++++', '++--', '+-+-', '-++-', '+--+', '-+-+', '--++', '----']

class sage.combinat.crystals.spins.GenericCrystalOfSpins(ct, element_class, case)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

A generic crystal of spins.

lt_elements(x, y)
Return True if and only if there is a path from x to y in the crystal graph.

Because the crystal graph is classical, it is a directed acyclic graph which can be interpreted as a poset.
This function implements the comparison function of this poset.

EXAMPLES:

sage: C = crystals.Spins(['B',3])
sage: x = C([1,1,1])
sage: y = C([-1,-1,-1])
sage: C.lt_elements(x, y)
True
sage: C.lt_elements(y, x)
False
sage: C.lt_elements(x, x)
False

class sage.combinat.crystals.spins.Spin
Bases: sage.structure.element.Element

A spin letter in the crystal of spins.

EXAMPLES:

sage: C = crystals.Spins(['B',3])
sage: c = C([1,1,1])
sage: c
+++
sage: c.parent()
The crystal of spins for type ['B', 3]

sage: D = crystals.Spins(['B',4])
sage: a = C([1,1,1])
sage: b = C([-1,-1,-1])
sage: c = D([1,1,1,1])
sage: a == a
True
sage: a == b
False
sage: b == c
False

pp()
Pretty print self as a column.

EXAMPLES:

520 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

sage: C = crystals.Spins(['B',3])
sage: b = C([1,1,-1])
sage: b.pp()
+
+
-

signature()
Return the signature of self.

EXAMPLES:

sage: C = crystals.Spins(['B',3])
sage: C([1,1,1]).signature()
'+++'
sage: C([1,1,-1]).signature()
'++-'

value
Return self as a tuple with +1 and −1.

EXAMPLES:

sage: C = crystals.Spins(['B',3])
sage: C([1,1,1]).value
(1, 1, 1)
sage: C([1,1,-1]).value
(1, 1, -1)

weight()
Return the weight of self.

EXAMPLES:

sage: [v.weight() for v in crystals.Spins(['B',3])]
[(1/2, 1/2, 1/2), (1/2, 1/2, -1/2),
(1/2, -1/2, 1/2), (-1/2, 1/2, 1/2),
(1/2, -1/2, -1/2), (-1/2, 1/2, -1/2),
(-1/2, -1/2, 1/2), (-1/2, -1/2, -1/2)]

class sage.combinat.crystals.spins.Spin_crystal_type_B_element
Bases: sage.combinat.crystals.spins.Spin

Type B spin representation crystal element

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Spins(['B',3])
sage: [[C[m].e(i) for i in range(1,4)] for m in range(8)]
[[None, None, None], [None, None, +++], [None, ++-, None], [+-+, None, None],
[None, None, +-+], [+--, None, -++], [None, -+-, None], [None, None, --+]]

epsilon(i)
Return 𝜀𝑖 of self.

5.1. Comprehensive Module List 521

Combinatorics, Release 9.7

EXAMPLES:

sage: C = crystals.Spins(['B',3])
sage: [[C[m].epsilon(i) for i in range(1,4)] for m in range(8)]
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0],
[0, 0, 1], [1, 0, 1], [0, 1, 0], [0, 0, 1]]

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = crystals.Spins(['B',3])
sage: [[C[m].f(i) for i in range(1,4)] for m in range(8)]
[[None, None, ++-], [None, +-+, None], [-++, None, +--], [None, None, -+-],
[-+-, None, None], [None, --+, None], [None, None, ---], [None, None, None]]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Spins(['B',3])
sage: [[C[m].phi(i) for i in range(1,4)] for m in range(8)]
[[0, 0, 1], [0, 1, 0], [1, 0, 1], [0, 0, 1],
[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]

class sage.combinat.crystals.spins.Spin_crystal_type_D_element
Bases: sage.combinat.crystals.spins.Spin

Type D spin representation crystal element

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: D = crystals.SpinsPlus(['D',4])
sage: [[D.list()[m].e(i) for i in range(1,4)] for m in range(8)]
[[None, None, None], [None, None, None], [None, ++--, None], [+-+-, None, None],
[None, None, +-+-], [+--+, None, -++-], [None, -+-+, None], [None, None, None]]

sage: E = crystals.SpinsMinus(['D',4])
sage: [[E[m].e(i) for i in range(1,4)] for m in range(8)]
[[None, None, None], [None, None, +++-], [None, ++-+, None], [+-++, None, None],
[None, None, None], [+---, None, None], [None, -+--, None], [None, None, --+-]]

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.SpinsMinus(['D',4])
sage: [[C[m].epsilon(i) for i in C.index_set()] for m in range(8)]
[[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0],
[0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0]]

522 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

sage: D = crystals.SpinsPlus(['D',4])
sage: [[D.list()[m].f(i) for i in range(1,4)] for m in range(8)]
[[None, None, None], [None, +-+-, None], [-++-, None, +--+], [None, None, -+-+],
[-+-+, None, None], [None, --++, None], [None, None, None], [None, None, None]]

sage: E = crystals.SpinsMinus(['D',4])
sage: [[E[m].f(i) for i in range(1,4)] for m in range(8)]
[[None, None, ++-+], [None, +-++, None], [-+++, None, None], [None, None, None],
[-+--, None, None], [None, --+-, None], [None, None, ---+], [None, None, None]]

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.SpinsPlus(['D',4])
sage: [[C[m].phi(i) for i in C.index_set()] for m in range(8)]
[[0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 1, 0], [0, 0, 1, 0],
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0]]

5.1.65 Star-Crystal Structure On 𝐵(∞)

AUTHORS:

• Ben Salisbury: Initial version

• Travis Scrimshaw: Initial version

class sage.combinat.crystals.star_crystal.StarCrystal(Binf)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The star-crystal or *-crystal version of a highest weight crystal.

The *-crystal structure on 𝐵(∞) is the structure induced by the algebra antiautomorphism * : 𝑈𝑞(g) −→ 𝑈𝑞(g)
that stabilizes the negative half 𝑈−𝑞 (g). It is defined by

𝐸*𝑖 = 𝐸𝑖, 𝐹 *𝑖 = 𝐹𝑖, 𝑞* = 𝑞, (𝑞ℎ)* = 𝑞−ℎ,

where 𝐸𝑖 and 𝐹𝑖 are the Chevalley generators of 𝑈𝑞(g) and ℎ is an element of the Cartan subalgebra.

The induced operation on the crystal𝐵(∞) is called the Kashiwara involution. Its implementation here is based
on the recursive algorithm from Theorem 2.2.1 of [Ka1993], which states that for any 𝑖 ∈ 𝐼 there is a unique
strict crystal embedding

Ψ𝑖 : 𝐵(∞) −→ 𝐵𝑖 ⊗𝐵(∞)

such that

• 𝑢∞ ↦→ 𝑏𝑖(0)⊗ 𝑢∞, where 𝑢∞ is the highest weight vector in 𝐵(∞);

• if Ψ𝑖(𝑏) = 𝑓𝑚𝑖 𝑏𝑖(0)⊗ 𝑏0, then Ψ𝑖(𝑓
*
𝑖 𝑏) = 𝑓𝑚+1

𝑖 𝑏𝑖(0)⊗ 𝑏0 and 𝜀𝑖(𝑏*) = 𝑚;

• the image of Ψ𝑖 is {𝑓𝑚𝑖 𝑏𝑖(0)⊗ 𝑏 : 𝜀𝑖(𝑏
*) = 0, 𝑚 ≥ 0}.

5.1. Comprehensive Module List 523

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

Here, 𝐵𝑖 is the 𝑖-th elementary crystal. See ElementaryCrystal for more information.

INPUT:

• Binf – a crystal from catalog_infinity_crystals

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['A',2])
sage: Bstar = crystals.infinity.Star(B)
sage: mg = Bstar.highest_weight_vector()
sage: mg
[[1, 1], [2]]
sage: mg.f_string([1,2,1,2,2])
[[1, 1, 1, 1, 1, 2, 2], [2, 3, 3, 3]]

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

e(i)
Return the action of 𝑒*𝑖 on self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: RC = crystals.infinity.RiggedConfigurations(['E',6,1])
sage: RCstar = crystals.infinity.Star(RC)
sage: nuJ = RCstar.module_generators[0].f_string([0,4,6,1,2])
sage: ascii_art(nuJ.e(1))
-1[]-1 (/) 0[]1 (/) -1[]-1 (/) -2[]-1

sage: M = crystals.infinity.NakajimaMonomials(['B',2,1])
sage: Mstar = crystals.infinity.Star(M)
sage: m = Mstar.module_generators[0].f_string([0,1,2,2,1,0])
sage: m.e(1)
Y(0,0)^-1 Y(0,2)^-1 Y(1,1) Y(1,2)^-1 Y(2,1)^2

epsilon(i)
Return 𝜀*𝑖 of self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: Y = crystals.infinity.GeneralizedYoungWalls(3)
sage: Ystar = crystals.infinity.Star(Y)
sage: y = Ystar.module_generators[0].f_string([0,1,3,2,1,0])
sage: [y.epsilon(i) for i in y.index_set()]
[1, 0, 1, 0]

sage: RC = crystals.infinity.RiggedConfigurations(['E',6,1])
sage: RCstar = crystals.infinity.Star(RC)
sage: nuJ = RCstar.module_generators[0].f_string([0,4,6,1,2])
sage: [nuJ.epsilon(i) for i in nuJ.index_set()]
[0, 1, 1, 0, 0, 0, 1]

524 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

f(i)
Return the action of 𝑓*𝑖 on self.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: T = crystals.infinity.Tableaux("G2")
sage: Tstar = crystals.infinity.Star(T)
sage: t = Tstar.module_generators[0].f_string([1,2,1,1,2])
sage: t
[[1, 1, 1, 2, 0], [2, 3]]

sage: M = crystals.infinity.NakajimaMonomials(['B',2,1])
sage: Mstar = crystals.infinity.Star(M)
sage: m = Mstar.module_generators[0].f_string([0,1,2,2,1,0])
sage: m
Y(0,0)^-1 Y(0,2)^-1 Y(1,0)^-1 Y(1,2)^-1 Y(2,0)^2 Y(2,1)^2

jump(i)
Return the 𝑖-jump of self.

For 𝑏 ∈ 𝐵(∞),

jump𝑖(𝑏) = 𝜀𝑖(𝑏) + 𝜀*𝑖 (𝑏) + ⟨ℎ𝑖,wt(𝑏)⟩,

where ℎ𝑖 is a simple coroot.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: RC = crystals.infinity.RiggedConfigurations("D4")
sage: RCstar = crystals.infinity.Star(RC)
sage: nu0star = RCstar.module_generators[0]
sage: nustar = nu0star.f_string([2,1,3,4,2])
sage: [nustar.jump(i) for i in RC.index_set()]
[0, 1, 0, 0]
sage: nustar = nu0star.f_string([2,1,3,4,2,2,1,3,2]) # long time
sage: [nustar.jump(i) for i in RC.index_set()] # long time
[1, 0, 1, 2]

phi(i)
Return 𝜙*𝑖 of self.

For 𝑏 ∈ 𝐵(∞),

𝜙*𝑖 (𝑏) = 𝜀*𝑖 (𝑏) + ⟨ℎ𝑖,wt(𝑏)⟩,

where ℎ𝑖 is a simple coroot.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: T = crystals.infinity.Tableaux("A2")
sage: Tstar = crystals.infinity.Star(T)

(continues on next page)

5.1. Comprehensive Module List 525

Combinatorics, Release 9.7

(continued from previous page)

sage: t = Tstar.module_generators[0].f_string([1,2,1,1,2])
sage: [t.phi(i) for i in t.index_set()]
[-3, 1]

sage: M = crystals.infinity.NakajimaMonomials(['B',2,1])
sage: Mstar = crystals.infinity.Star(M)
sage: m = Mstar.module_generators[0].f_string([0,1,2,2,1,0])
sage: [m.phi(i) for i in m.index_set()]
[-1, -1, 4]

weight()
Return the weight of self.

EXAMPLES:

sage: RC = crystals.infinity.RiggedConfigurations(['E',6,1])
sage: RCstar = crystals.infinity.Star(RC)
sage: nuJ = RCstar.module_generators[0].f_string([0,4,6,1,2])
sage: nuJ.weight()
-Lambda[0] - 2*Lambda[1] + 2*Lambda[3] - Lambda[4]
+ 2*Lambda[5] - 2*Lambda[6] - delta

5.1.66 Tensor Products of Crystals

Main entry points:

• TensorProductOfCrystals

• CrystalOfTableaux

AUTHORS:

• Anne Schilling, Nicolas Thiery (2007): Initial version

• Ben Salisbury, Travis Scrimshaw (2013): Refactored tensor products to handle non-regular crystals and created
new subclass to take advantage of the regularity

• Travis Scrimshaw (2020): Added queer crystal

class sage.combinat.crystals.tensor_product.CrystalOfQueerTableaux(cartan_type, shape)
Bases: sage.combinat.crystals.tensor_product.CrystalOfWords, sage.combinat.crystals.
tensor_product.QueerSuperCrystalsMixin

A queer crystal of the semistandard decomposition tableaux of a given shape.

INPUT:

• cartan_type – a Cartan type

• shape – a shape

class Element
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfQueerSuperCrystalsElement

rows()
Return the list of rows of self.

EXAMPLES:

526 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: B = crystals.Tableaux(['Q',3], shape=[3,2,1])
sage: t = B.an_element()
sage: t.rows()
[[3, 3, 3], [2, 2], [1]]

class sage.combinat.crystals.tensor_product.CrystalOfTableaux(cartan_type, shapes)
Bases: sage.combinat.crystals.tensor_product.CrystalOfWords

A class for crystals of tableaux with integer valued shapes

INPUT:

• cartan_type – a Cartan type

• shape – a partition of length at most cartan_type.rank()

• shapes – a list of such partitions

This constructs a classical crystal with the given Cartan type and highest weight(s) corresponding to the given
shape(s).

If the type is 𝐷𝑟, the shape is permitted to have a negative value in the 𝑟-th position. Thus if the shape equals
[𝑠1, . . . , 𝑠𝑟], then 𝑠𝑟 may be negative but in any case 𝑠1 ≥ · · · ≥ 𝑠𝑟−1 ≥ |𝑠𝑟|. This crystal is related to that of
shape [𝑠1, . . . , |𝑠𝑟|] by the outer automorphism of 𝑆𝑂(2𝑟).

If the type is𝐷𝑟 or𝐵𝑟, the shape is permitted to be of length 𝑟with all parts of half integer value. This corresponds
to having one spin column at the beginning of the tableau. If several shapes are provided, they currently should
all or none have this property.

Crystals of tableaux are constructed using an embedding into tensor products following Kashiwara and
Nakashima [KN1994]. Sage’s tensor product rule for crystals differs from that of Kashiwara and Nakashima
by reversing the order of the tensor factors. Sage produces the same crystals of tableaux as Kashiwara and
Nakashima. With Sage’s convention, the tensor product of crystals is the same as the monoid operation on
tableaux and hence the plactic monoid.

See also:

sage.combinat.crystals.crystals for general help on crystals, and in particular plotting and LATEX output.

EXAMPLES:

We create the crystal of tableaux for type 𝐴2, with highest weight given by the partition [2, 1, 1]:

sage: T = crystals.Tableaux(['A',3], shape = [2,1,1])

Here is the list of its elements:

sage: T.list()
[[[1, 1], [2], [3]], [[1, 2], [2], [3]], [[1, 3], [2], [3]],
[[1, 4], [2], [3]], [[1, 4], [2], [4]], [[1, 4], [3], [4]],
[[2, 4], [3], [4]], [[1, 1], [2], [4]], [[1, 2], [2], [4]],
[[1, 3], [2], [4]], [[1, 3], [3], [4]], [[2, 3], [3], [4]],
[[1, 1], [3], [4]], [[1, 2], [3], [4]], [[2, 2], [3], [4]]]

Internally, a tableau of a given Cartan type is represented as a tensor product of letters of the same type. The
order in which the tensor factors appear is by reading the columns of the tableaux left to right, top to bottom (in
French notation). As an example:

5.1. Comprehensive Module List 527

Combinatorics, Release 9.7

sage: T = crystals.Tableaux(['A',2], shape = [3,2])
sage: T.module_generators[0]
[[1, 1, 1], [2, 2]]
sage: list(T.module_generators[0])
[2, 1, 2, 1, 1]

To create a tableau, one can use:

sage: Tab = crystals.Tableaux(['A',3], shape = [2,2])
sage: Tab(rows=[[1,2],[3,4]])
[[1, 2], [3, 4]]
sage: Tab(columns=[[3,1],[4,2]])
[[1, 2], [3, 4]]

Todo: FIXME:

• Do we want to specify the columns increasingly or decreasingly? That is, should this be Tab(columns =
[[1,3],[2,4]])?

• Make this fully consistent with Tableau()!

We illustrate the use of a shape with a negative last entry in type 𝐷:

sage: T = crystals.Tableaux(['D',4],shape=[1,1,1,-1])
sage: T.cardinality()
35
sage: TestSuite(T).run()

We illustrate the construction of crystals of spin tableaux when the partitions have half integer values in type 𝐵
and 𝐷:

sage: T = crystals.Tableaux(['B',3],shape=[3/2,1/2,1/2]); T
The crystal of tableaux of type ['B', 3] and shape(s) [[3/2, 1/2, 1/2]]
sage: T.cardinality()
48
sage: T.module_generators
([+++, [[1]]],)
sage: TestSuite(T).run()

sage: T = crystals.Tableaux(['D',3],shape=[3/2,1/2,-1/2]); T
The crystal of tableaux of type ['D', 3] and shape(s) [[3/2, 1/2, -1/2]]
sage: T.cardinality()
20
sage: T.module_generators
([++-, [[1]]],)
sage: TestSuite(T).run()

We can also construct the tableaux for gl(𝑚|𝑛) as given by [BKK2000]:

sage: T = crystals.Tableaux(['A', [1,2]], shape=[4,2,1,1,1])
sage: T.cardinality()
1392

We can also construct the tableaux for q(𝑛) as given by [GJK+2014]:

528 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: T = crystals.Tableaux(['Q', 3], shape=[3,1])
sage: T.cardinality()
24

class Element
Bases: sage.combinat.crystals.tensor_product_element.CrystalOfTableauxElement

cartan_type()
Returns the Cartan type of the associated crystal

EXAMPLES:

sage: T = crystals.Tableaux(['A',3], shape = [2,2])
sage: T.cartan_type()
['A', 3]

module_generator(shape)
This yields the module generator (or highest weight element) of a classical crystal of given shape. The
module generator is the unique tableau with equal shape and content.

EXAMPLES:

sage: T = crystals.Tableaux(['D',3], shape = [1,1])
sage: T.module_generator([1,1])
[[1], [2]]

sage: T = crystals.Tableaux(['D',4],shape=[2,2,2,-2])
sage: T.module_generator(tuple([2,2,2,-2]))
[[1, 1], [2, 2], [3, 3], [-4, -4]]
sage: T.cardinality()
294
sage: T = crystals.Tableaux(['D',4],shape=[2,2,2,2])
sage: T.module_generator(tuple([2,2,2,2]))
[[1, 1], [2, 2], [3, 3], [4, 4]]
sage: T.cardinality()
294

class sage.combinat.crystals.tensor_product.CrystalOfWords
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Auxiliary class to provide a call method to create tensor product elements. This class is shared with several tensor
product classes and is also used in CrystalOfTableaux to allow tableaux of different tensor product structures
in column-reading (and hence different shapes) to be considered elements in the same crystal.

class Element
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfCrystalsElement

class sage.combinat.crystals.tensor_product.FullTensorProductOfCrystals(crystals, **options)
Bases: sage.combinat.crystals.tensor_product.TensorProductOfCrystals

Full tensor product of crystals.

Todo: Merge this into TensorProductOfCrystals.

5.1. Comprehensive Module List 529

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C)
sage: T.cardinality()
9

weight_lattice_realization()
Return the weight lattice realization used to express weights.

The weight lattice realization is the common parent which all weight lattice realizations of the crystals of
self coerce into.

EXAMPLES:

sage: B = crystals.elementary.B(['A',4], 2)
sage: B.weight_lattice_realization()
Root lattice of the Root system of type ['A', 4]
sage: T = crystals.infinity.Tableaux(['A',4])
sage: T.weight_lattice_realization()
Ambient space of the Root system of type ['A', 4]
sage: TP = crystals.TensorProduct(B, T)
sage: TP.weight_lattice_realization()
Ambient space of the Root system of type ['A', 4]

class sage.combinat.crystals.tensor_product.FullTensorProductOfQueerSuperCrystals(crystals,
**op-
tions)

Bases: sage.combinat.crystals.tensor_product.FullTensorProductOfCrystals, sage.
combinat.crystals.tensor_product.QueerSuperCrystalsMixin

Tensor product of queer super crystals.

class Element
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfQueerSuperCrystalsElement

class sage.combinat.crystals.tensor_product.FullTensorProductOfRegularCrystals(crystals,
**options)

Bases: sage.combinat.crystals.tensor_product.FullTensorProductOfCrystals

Full tensor product of regular crystals.

class Element
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement

class sage.combinat.crystals.tensor_product.FullTensorProductOfSuperCrystals(crystals,
**options)

Bases: sage.combinat.crystals.tensor_product.FullTensorProductOfCrystals

Tensor product of super crystals.

EXAMPLES:

sage: L = crystals.Letters(['A', [1,1]])
sage: T = tensor([L,L,L])
sage: T.cardinality()
64

530 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class Element
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfSuperCrystalsElement

class sage.combinat.crystals.tensor_product.QueerSuperCrystalsMixin
Bases: object

Mixin class with methods for a finite queer supercrystal.

index_set()
Return the enlarged index set.

EXAMPLES:

sage: Q = crystals.Letters(['Q',3])
sage: T = tensor([Q,Q])
sage: T.index_set()
(-4, -3, -2, -1, 1, 2)

class sage.combinat.crystals.tensor_product.TensorProductOfCrystals
Bases: sage.combinat.crystals.tensor_product.CrystalOfWords

Tensor product of crystals.

Given two crystals 𝐵 and 𝐵′ of the same Cartan type, one can form the tensor product 𝐵⊗𝐵′. As a set 𝐵⊗𝐵′
is the Cartesian product 𝐵 ×𝐵′. The crystal operators 𝑓𝑖 and 𝑒𝑖 act on 𝑏⊗ 𝑏′ ∈ 𝐵 ⊗𝐵′ as follows:

𝑓𝑖(𝑏⊗ 𝑏′) =

{︃
𝑓𝑖(𝑏)⊗ 𝑏′ if 𝜀𝑖(𝑏) ≥ 𝜙𝑖(𝑏′)
𝑏⊗ 𝑓𝑖(𝑏′) otherwise

and

𝑒𝑖(𝑏⊗ 𝑏′) =

{︃
𝑒𝑖(𝑏)⊗ 𝑏′ if 𝜀𝑖(𝑏) > 𝜙𝑖(𝑏

′)

𝑏⊗ 𝑒𝑖(𝑏′) otherwise.

We also define:

𝜙𝑖(𝑏⊗ 𝑏′) = max (𝜙𝑖(𝑏), 𝜙𝑖(𝑏
′) + ⟨𝛼∨𝑖 ,wt(𝑏)⟩) ,

𝜀𝑖(𝑏⊗ 𝑏′) = max (𝜀𝑖(𝑏
′), 𝜀𝑖(𝑏)− ⟨𝛼∨𝑖 ,wt(𝑏′)⟩) .

Note: This is the opposite of Kashiwara’s convention for tensor products of crystals.

Since tensor products are associative (ℬ ⊗ 𝒞)⊗𝒟 ∼= ℬ ⊗ (𝒞 ⊗ 𝒟) via the natural isomorphism (𝑏⊗ 𝑐)⊗ 𝑑 ↦→
𝑏 ⊗ (𝑐 ⊗ 𝑑), we can generalizing this to arbitrary tensor products. Thus consider 𝐵𝑁 ⊗ · · · ⊗ 𝐵1, where each
𝐵𝑘 is an abstract crystal. The underlying set of the tensor product is 𝐵𝑁 × · · · ×𝐵1, while the crystal structure
is given as follows. Let 𝐼 be the index set, and fix some 𝑖 ∈ 𝐼 and 𝑏𝑁 ⊗ · · · ⊗ 𝑏1 ∈ 𝐵𝑁 ⊗ · · · ⊗𝐵1. Define

𝑎𝑖(𝑘) := 𝜀𝑖(𝑏𝑘)−
𝑘−1∑︁
𝑗=1

⟨𝛼∨𝑖 ,wt(𝑏𝑗)⟩.

5.1. Comprehensive Module List 531

Combinatorics, Release 9.7

Then

wt(𝑏𝑁 ⊗ · · · ⊗ 𝑏1) = wt(𝑏𝑁) + · · ·+ wt(𝑏1),

𝜀𝑖(𝑏𝑁 ⊗ · · · ⊗ 𝑏1) = max
1≤𝑘≤𝑛

⎛⎝ 𝑘∑︁
𝑗=1

𝜀𝑖(𝑏𝑗)−
𝑘−1∑︁
𝑗=1

𝜙𝑖(𝑏𝑗)

⎞⎠
= max

1≤𝑘≤𝑁

(︀
𝑎𝑖(𝑘)

)︀
,

𝜙𝑖(𝑏𝑁 ⊗ · · · ⊗ 𝑏1) = max
1≤𝑘≤𝑁

⎛⎝𝜙𝑖(𝑏𝑁) +

𝑁−1∑︁
𝑗=𝑘

(︀
𝜙𝑖(𝑏𝑗)− 𝜀𝑖(𝑏𝑗+1)

)︀⎞⎠
= max

1≤𝑘≤𝑁

(︀
𝜆𝑖 + 𝑎𝑖(𝑘)

)︀
where 𝜆𝑖 = ⟨𝛼∨𝑖 ,wt(𝑏𝑁⊗· · ·⊗𝑏1)⟩. Then for 𝑘 = 1, . . . , 𝑁 the action of the Kashiwara operators is determined
as follows.

• If 𝑎𝑖(𝑘) > 𝑎𝑖(𝑗) for 1 ≤ 𝑗 < 𝑘 and 𝑎𝑖(𝑘) ≥ 𝑎𝑖(𝑗) for 𝑘 < 𝑗 ≤ 𝑁 :

𝑒𝑖(𝑏𝑁 ⊗ · · · ⊗ 𝑏1) = 𝑏𝑁 ⊗ · · · ⊗ 𝑒𝑖𝑏𝑘 ⊗ · · · ⊗ 𝑏1.

• If 𝑎𝑖(𝑘) ≥ 𝑎𝑖(𝑗) for 1 ≤ 𝑗 < 𝑘 and 𝑎𝑖(𝑘) > 𝑎𝑖(𝑗) for 𝑘 < 𝑗 ≤ 𝑁 :

𝑓𝑖(𝑏𝑁 ⊗ · · · ⊗ 𝑏1) = 𝑏𝑁 ⊗ · · · ⊗ 𝑓𝑖𝑏𝑘 ⊗ · · · ⊗ 𝑏1.

Note that this is just recursively applying the definition of the tensor product on two crystals. Recall that
⟨𝛼∨𝑖 ,wt(𝑏𝑗)⟩ = 𝜙𝑖(𝑏𝑗)− 𝜀𝑖(𝑏𝑗) by the definition of a crystal.

Regular crystals

Now if all crystals 𝐵𝑘 are regular crystals, all 𝜀𝑖 and 𝜙𝑖 are non-negative and we can define tensor product by
the signature rule. We start by writing a word in + and − as follows:

− · · ·−⏟ ⏞
𝜙𝑖(𝑏𝑁) times

+ · · ·+⏟ ⏞
𝜀𝑖(𝑏𝑁) times

· · · − · · · −⏟ ⏞
𝜙𝑖(𝑏1) times

+ · · ·+⏟ ⏞
𝜀𝑖(𝑏1) times

,

and then canceling ordered pairs of +− until the word is in the reduced form:

− · · ·−⏟ ⏞
𝜙𝑖 times

+ · · ·+⏟ ⏞
𝜀𝑖 times

.

Here 𝑒𝑖 acts on the factor corresponding to the leftmost + and 𝑓𝑖 on the factor corresponding to the rightmost−.
If there is no + or − respectively, then the result is 0 (None).

EXAMPLES:

We construct the type 𝐴2-crystal generated by 2⊗ 1⊗ 1:

sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C,C,generators=[[C(2),C(1),C(1)]])

It has 8 elements:

sage: T.list()
[[2, 1, 1], [2, 1, 2], [2, 1, 3], [3, 1, 3],
[3, 2, 3], [3, 1, 1], [3, 1, 2], [3, 2, 2]]

532 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

One can also check the Cartan type of the crystal:

sage: T.cartan_type()
['A', 2]

Other examples include crystals of tableaux (which internally are represented as tensor products obtained by
reading the tableaux columnwise):

sage: C = crystals.Tableaux(['A',3], shape=[1,1,0])
sage: D = crystals.Tableaux(['A',3], shape=[1,0,0])
sage: T = crystals.TensorProduct(C,D, generators=[[C(rows=[[1], [2]]),␣
→˓D(rows=[[1]])], [C(rows=[[2], [3]]), D(rows=[[1]])]])
sage: T.cardinality()
24
sage: TestSuite(T).run()
sage: T.module_generators
([[[1], [2]], [[1]]], [[[2], [3]], [[1]]])
sage: [x.weight() for x in T.module_generators]
[(2, 1, 0, 0), (1, 1, 1, 0)]

If no module generators are specified, we obtain the full tensor product:

sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C)
sage: T.list()
[[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], [3, 3]]
sage: T.cardinality()
9

For a tensor product of crystals without module generators, the default implementation of module_generators
contains all elements in the tensor product of the crystals. If there is a subset of elements in the tensor product
that still generates the crystal, this needs to be implemented for the specific crystal separately:

sage: T.module_generators.list()
[[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], [3, 3]]

For classical highest weight crystals, it is also possible to list all highest weight elements:

sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C,C,generators=[[C(2),C(1),C(1)],[C(1),C(2),
→˓C(1)]])
sage: T.highest_weight_vectors()
([2, 1, 1], [1, 2, 1])

Examples with non-regular and infinite crystals (these did not work before trac ticket #14402):

sage: B = crystals.infinity.Tableaux(['D',10])
sage: T = crystals.TensorProduct(B,B)
sage: T
Full tensor product of the crystals
[The infinity crystal of tableaux of type ['D', 10],
The infinity crystal of tableaux of type ['D', 10]]

sage: B = crystals.infinity.GeneralizedYoungWalls(15)
(continues on next page)

5.1. Comprehensive Module List 533

https://trac.sagemath.org/14402

Combinatorics, Release 9.7

(continued from previous page)

sage: T = crystals.TensorProduct(B,B,B)
sage: T
Full tensor product of the crystals
[Crystal of generalized Young walls of type ['A', 15, 1],
Crystal of generalized Young walls of type ['A', 15, 1],
Crystal of generalized Young walls of type ['A', 15, 1]]

sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights()
sage: B = crystals.GeneralizedYoungWalls(2,La[0]+La[1])
sage: C = crystals.GeneralizedYoungWalls(2,2*La[2])
sage: D = crystals.GeneralizedYoungWalls(2,3*La[0]+La[2])
sage: T = crystals.TensorProduct(B,C,D)
sage: T
Full tensor product of the crystals
[Highest weight crystal of generalized Young walls of Cartan type ['A', 2, 1] and␣
→˓highest weight Lambda[0] + Lambda[1],
Highest weight crystal of generalized Young walls of Cartan type ['A', 2, 1] and␣
→˓highest weight 2*Lambda[2],
Highest weight crystal of generalized Young walls of Cartan type ['A', 2, 1] and␣
→˓highest weight 3*Lambda[0] + Lambda[2]]

There is also a global option for setting the convention (by default Sage uses anti-Kashiwara):

sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C)
sage: elt = T(C(1), C(2)); elt
[1, 2]
sage: crystals.TensorProduct.options.convention = "Kashiwara"
sage: elt
[2, 1]
sage: crystals.TensorProduct.options._reset()

options(*get_value, **set_value)
Sets the global options for tensor products of crystals. The default is to use the anti-Kashiwara convention.

There are two conventions for how 𝑒𝑖 and 𝑓𝑖 act on tensor products, and the difference between the two is
the order of the tensor factors are reversed. This affects both the input and output. See the example below.

OPTIONS:

• convention – (default: antiKashiwara) Sets the convention used for displaying/inputting tensor
product of crystals

– Kashiwara – use the Kashiwara convention

– anti – alias for antiKashiwara

– antiKashiwara – use the anti-Kashiwara convention

– opposite – alias for antiKashiwara

Note: Changing the convention also changes how the input is handled.

534 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Warning: Internally, the crystals are always stored using the anti-Kashiwara convention.

If no parameters are set, then the function returns a copy of the options dictionary.

EXAMPLES:

sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C)
sage: elt = T(C(1), C(2)); elt
[1, 2]
sage: crystals.TensorProduct.options.convention = "Kashiwara"
sage: elt
[2, 1]
sage: T(C(1), C(2)) == elt
False
sage: T(C(2), C(1)) == elt
True
sage: crystals.TensorProduct.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.crystals.tensor_product.TensorProductOfCrystalsWithGenerators(crystals,
genera-
tors,
car-
tan_type)

Bases: sage.combinat.crystals.tensor_product.TensorProductOfCrystals

Tensor product of crystals with a generating set.

Todo: Deprecate this class in favor of using subcrystal().

class sage.combinat.crystals.tensor_product.TensorProductOfRegularCrystalsWithGenerators(crystals,
gen-
er-
a-
tors,
car-
tan_type)

Bases: sage.combinat.crystals.tensor_product.TensorProductOfCrystalsWithGenerators

Tensor product of regular crystals with a generating set.

class Element
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement

5.1. Comprehensive Module List 535

../../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions
../../../../../../../html/en/reference/categories/sage/categories/crystals.html#sage.categories.crystals.Crystals.ParentMethods.subcrystal

Combinatorics, Release 9.7

5.1.67 Tensor Products of Crystal Elements

AUTHORS:

• Anne Schilling, Nicolas Thiery (2007): Initial version

• Ben Salisbury, Travis Scrimshaw (2013): Refactored tensor products to handle non-regular crystals and created
new subclass to take advantage of the regularity

• Travis Scrimshaw (2017): Cythonized element classes

• Franco Saliola (2017): Tensor products for crystal of super algebras

• Anne Schilling (2018): Tensor products for crystals of queer super algebras

class sage.combinat.crystals.tensor_product_element.CrystalOfBKKTableauxElement
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfSuperCrystalsElement

Element class for the crystal of tableaux for Lie superalgebras of [BKK2000].

pp()
Pretty print self.

EXAMPLES:

sage: C = crystals.Tableaux(['A',[1,2]], shape=[1,1])
sage: c = C.an_element()
sage: c.pp()
-2
-1

to_tableau()
Return the Tableau object corresponding to self.

EXAMPLES:

sage: C = crystals.Tableaux(['A',[1,2]], shape=[1,1])
sage: c = C.an_element()
sage: c.to_tableau()
[[-2], [-1]]
sage: type(c.to_tableau())
<class 'sage.combinat.tableau.Tableaux_all_with_category.element_class'>
sage: type(c)
<class 'sage.combinat.crystals.bkk_crystals.CrystalOfBKKTableaux_with_category.
→˓element_class'>

class sage.combinat.crystals.tensor_product_element.CrystalOfTableauxElement
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement

Element in a crystal of tableaux.

pp()
EXAMPLES:

sage: T = crystals.Tableaux(['A',3], shape = [2,2])
sage: t = T(rows=[[1,2],[3,4]])
sage: t.pp()
1 2
3 4

536 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

promotion()
Return the result of applying promotion on self.

Promotion for type A crystals of tableaux of rectangular shape. This method only makes sense in type A
with rectangular shapes.

EXAMPLES:

sage: C = crystals.Tableaux(["A",3], shape = [3,3,3])
sage: t = C(Tableau([[1,1,1],[2,2,3],[3,4,4]]))
sage: t
[[1, 1, 1], [2, 2, 3], [3, 4, 4]]
sage: t.promotion()
[[1, 1, 2], [2, 2, 3], [3, 4, 4]]
sage: t.promotion().parent()
The crystal of tableaux of type ['A', 3] and shape(s) [[3, 3, 3]]

promotion_inverse()
Return the result of applying inverse promotion on self.

Inverse promotion for type A crystals of tableaux of rectangular shape. This method only makes sense in
type A with rectangular shapes.

EXAMPLES:

sage: C = crystals.Tableaux(["A",3], shape = [3,3,3])
sage: t = C(Tableau([[1,1,1],[2,2,3],[3,4,4]]))
sage: t
[[1, 1, 1], [2, 2, 3], [3, 4, 4]]
sage: t.promotion_inverse()
[[1, 1, 2], [2, 3, 3], [4, 4, 4]]
sage: t.promotion_inverse().parent()
The crystal of tableaux of type ['A', 3] and shape(s) [[3, 3, 3]]

shape()
Return the shape of the tableau corresponding to self.

OUTPUT: an instance of Partition

See also:

to_tableau()

EXAMPLES:

sage: C = crystals.Tableaux(["A", 2], shape=[2,1])
sage: x = C.an_element()
sage: x.to_tableau().shape()
[2, 1]
sage: x.shape()
[2, 1]

to_tableau()
Return the Tableau object corresponding to self.

EXAMPLES:

5.1. Comprehensive Module List 537

Combinatorics, Release 9.7

sage: T = crystals.Tableaux(['A',3], shape = [2,2])
sage: t = T(rows=[[1,2],[3,4]]).to_tableau(); t
[[1, 2], [3, 4]]
sage: type(t)
<class 'sage.combinat.tableau.Tableaux_all_with_category.element_class'>
sage: type(t[0][0])
<class 'int'>
sage: T = crystals.Tableaux(['D',3], shape = [1,1])
sage: t=T(rows=[[-3],[3]]).to_tableau(); t
[[-3], [3]]
sage: t=T(rows=[[3],[-3]]).to_tableau(); t
[[3], [-3]]
sage: T = crystals.Tableaux(['B',2], shape = [1,1])
sage: t = T(rows=[[0],[0]]).to_tableau(); t
[[0], [0]]

class sage.combinat.crystals.tensor_product_element.ImmutableListWithParent
Bases: sage.structure.list_clone.ClonableArray

A class for lists having a parent

Specification: any subclass C should implement __init__ which accepts the following form C(parent,
list=list)

class sage.combinat.crystals.tensor_product_element.InfinityCrystalOfTableauxElement
Bases: sage.combinat.crystals.tensor_product_element.CrystalOfTableauxElement

e(i)
Return the action of ̃︀𝑒𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['B',3])
sage: b = B(rows=[[1,1,1,1,1,1,1,2,0,-3,-1,-1,-1,-1],[2,2,2,2,-2,-2],[3,-3,-3]])
sage: b.e(3).pp()
1 1 1 1 1 1 1 2 0 -3 -1 -1 -1 -1
2 2 2 2 -2 -2
3 0 -3
sage: b.e(1).pp()
1 1 1 1 1 1 1 0 -3 -1 -1 -1 -1
2 2 2 2 -2 -2
3 -3 -3

f(i)
Return the action of ̃︀𝑓𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['C',4])
sage: b = B.highest_weight_vector()

(continues on next page)

538 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

(continued from previous page)

sage: b.f(1).pp()
1 1 1 1 2
2 2 2
3 3
4
sage: b.f(3).pp()
1 1 1 1 1
2 2 2 2
3 3 4
4
sage: b.f(3).f(4).pp()
1 1 1 1 1
2 2 2 2
3 3 -4
4

class sage.combinat.crystals.tensor_product_element.InfinityCrystalOfTableauxElementTypeD
Bases: sage.combinat.crystals.tensor_product_element.InfinityCrystalOfTableauxElement

e(i)
Return the action of ̃︀𝑒𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['D',4])
sage: b = B.highest_weight_vector().f_string([1,4,3,1,2]); b.pp()
1 1 1 1 2 3
2 2 2
3 -3
sage: b.e(2).pp()
1 1 1 1 2 2
2 2 2
3 -3

f(i)
Return the action of ̃︀𝑓𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['D',5])
sage: b = B.highest_weight_vector().f_string([1,4,3,1,5]); b.pp()
1 1 1 1 1 1 2 2
2 2 2 2 2
3 3 3 -5
4 5
sage: b.f(1).pp()
1 1 1 1 1 1 2 2 2
2 2 2 2 2

(continues on next page)

5.1. Comprehensive Module List 539

Combinatorics, Release 9.7

(continued from previous page)

3 3 3 -5
4 5
sage: b.f(5).pp()
1 1 1 1 1 1 2 2
2 2 2 2 2
3 3 3 -5
4 -4

class sage.combinat.crystals.tensor_product_element.InfinityQueerCrystalOfTableauxElement
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfQueerSuperCrystalsElement

Initialize self.

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['Q',4])
sage: t = B([[4,4,4,4,2,1],[3,3,3],[2,2],[1]])
sage: t
[[4, 4, 4, 4, 2, 1], [3, 3, 3], [2, 2], [1]]
sage: TestSuite(t).run()

e(i)
Return the action of 𝑒𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['Q',4])
sage: t = B([[4,4,4,4,4,2,1],[3,3,3,3],[2,2,1],[1]])
sage: t.e(1)
[[4, 4, 4, 4, 4, 4, 2, 1], [3, 3, 3, 3, 3], [2, 2, 1, 1], [1]]
sage: t.e(3)
[[4, 4, 4, 4, 4, 3, 2, 1], [3, 3, 3, 3], [2, 2, 1], [1]]
sage: t.e(-1)

epsilon(i)
Return 𝜀𝑖 of self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['Q',4])
sage: t = B([[4,4,4,4,4,2,1],[3,3,3,3],[2,2,1],[1]])
sage: [t.epsilon(i) for i in B.index_set()]
[-1, 1, -2, 0]

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:

• i – an element of the index set

540 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['Q',4])
sage: t = B([[4,4,4,4,4,2,1],[3,3,3,3],[2,2,1],[1]])
sage: t.f(1)
[[4, 4, 4, 4, 4, 2, 2], [3, 3, 3, 3], [2, 2, 1], [1]]
sage: t.f(3)
sage: t.f(-1)
[[4, 4, 4, 4, 4, 2, 2], [3, 3, 3, 3], [2, 2, 1], [1]]

rows()
Return the list of rows of self.

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['Q',4])
sage: t = B([[4,4,4,4,4,2,1],[3,3,3,3],[2,2,1],[1]])
sage: t.rows()
[[1, 2, 4, 4, 4, 4, 4], [3, 3, 3, 3], [1, 2, 2], [1]]

weight()
Return the weight of self.

EXAMPLES:

sage: B = crystals.infinity.Tableaux(['Q',4])
sage: t = B([[4,4,4,4,4,2,1],[3,3,3,3],[2,2,1],[1]])
sage: t.weight()
(4, 2, 2, 0)

class sage.combinat.crystals.tensor_product_element.TensorProductOfCrystalsElement
Bases: sage.combinat.crystals.tensor_product_element.ImmutableListWithParent

A class for elements of tensor products of crystals.

e(i)
Return the action of 𝑒𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Tableaux("D4")
sage: T = crystals.TensorProduct(B,B)
sage: b1 = B.highest_weight_vector().f_string([1,4,3])
sage: b2 = B.highest_weight_vector().f_string([2,2,3,1,4])
sage: t = T(b2, b1)
sage: t.e(1)
[[[1, 1, 1, 1, 1], [2, 2, 3, -3], [3]], [[1, 1, 1, 1, 2], [2, 2, 2], [3, -3]]]
sage: t.e(2)
sage: t.e(3)
[[[1, 1, 1, 1, 1, 2], [2, 2, 3, -4], [3]], [[1, 1, 1, 1, 2], [2, 2, 2], [3, -
→˓3]]]
sage: t.e(4)
[[[1, 1, 1, 1, 1, 2], [2, 2, 3, 4], [3]], [[1, 1, 1, 1, 2], [2, 2, 2], [3, -3]]]

5.1. Comprehensive Module List 541

Combinatorics, Release 9.7

epsilon(i)
Return 𝜀𝑖 of self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: B = crystals.infinity.Tableaux("G2")
sage: T = crystals.TensorProduct(B,B)
sage: b1 = B.highest_weight_vector().f(2)
sage: b2 = B.highest_weight_vector().f_string([2,2,1])
sage: t = T(b2, b1)
sage: [t.epsilon(i) for i in B.index_set()]
[0, 3]

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: B = crystals.GeneralizedYoungWalls(3,La[0])
sage: T = crystals.TensorProduct(B,B,B)
sage: b1 = B.highest_weight_vector().f_string([0,3])
sage: b2 = B.highest_weight_vector().f_string([0])
sage: b3 = B.highest_weight_vector()
sage: t = T(b3, b2, b1)
sage: t.f(0)
[[[0]], [[0]], [[0, 3]]]
sage: t.f(1)
[[], [[0]], [[0, 3], [1]]]
sage: t.f(2)
[[], [[0]], [[0, 3, 2]]]
sage: t.f(3)
[[], [[0, 3]], [[0, 3]]]

phi(i)
Return 𝜙𝑖 of self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: B = crystals.GeneralizedYoungWalls(2,La[0]+La[1])
sage: T = crystals.TensorProduct(B,B)
sage: b1 = B.highest_weight_vector().f_string([1,0])
sage: b2 = B.highest_weight_vector().f_string([0,1])

(continues on next page)

542 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: t = T(b2, b1)
sage: [t.phi(i) for i in B.index_set()]
[1, 1, 4]

pp()
Pretty print self.

EXAMPLES:

sage: C = crystals.Tableaux(['A',3], shape=[3,1])
sage: D = crystals.Tableaux(['A',3], shape=[1])
sage: E = crystals.Tableaux(['A',3], shape=[2,2,2])
sage: T = crystals.TensorProduct(C,D,E)
sage: T.module_generators[0].pp()
1 1 1 (X) 1 (X) 1 1
2 2 2

3 3

weight()
Return the weight of self.

EXAMPLES:

sage: B = crystals.infinity.Tableaux("A3")
sage: T = crystals.TensorProduct(B,B)
sage: b1 = B.highest_weight_vector().f_string([2,1,3])
sage: b2 = B.highest_weight_vector().f(1)
sage: t = T(b2, b1)
sage: t
[[[1, 1, 1, 2], [2, 2], [3]], [[1, 1, 1, 1, 2], [2, 2, 4], [3]]]
sage: t.weight()
(-2, 1, 0, 1)

sage: C = crystals.Letters(['A',3])
sage: T = crystals.TensorProduct(C,C)
sage: T(C(1),C(2)).weight()
(1, 1, 0, 0)
sage: T = crystals.Tableaux(['D',4],shape=[])
sage: T.list()[0].weight()
(0, 0, 0, 0)

class
sage.combinat.crystals.tensor_product_element.TensorProductOfQueerSuperCrystalsElement

Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement

Element class for a tensor product of crystals for queer Lie superalgebras.

This implements the tensor product rule for crystals of Grantcharov et al. [GJK+2014]. Given crystals 𝐵1 and
𝐵2 of type q𝑛+1, we define the tensor product 𝑏1⊗ 𝑏2 ∈ 𝐵1⊗𝐵2, where 𝑏1 ∈ 𝐵1 and 𝑏2 ∈ 𝐵2, as the following:

In addition to the tensor product rule for type 𝐴𝑛, the tensor product rule for 𝑒−1 and 𝑓−1 on 𝑏1 ⊗ 𝑏2 are given

5.1. Comprehensive Module List 543

Combinatorics, Release 9.7

by

𝑒−1(𝑏1 ⊗ 𝑏2) =

{︃
𝑏1 ⊗ 𝑒−1𝑏2 if wt(𝑏1)1 = wt(𝑏1)2 = 0,

𝑒−1𝑏1 ⊗ 𝑏2 otherwise,

𝑓−1(𝑏1 ⊗ 𝑏2) =

{︃
𝑏1 ⊗ 𝑓−1𝑏2 if wt(𝑏1)1 = wt(𝑏1)2 = 0,

𝑓−1𝑏1 ⊗ 𝑏2 otherwise.

For 1 < 𝑖 ≤ 𝑛, the operators 𝑒−𝑖 and 𝑓−𝑖 are defined as

𝑒−𝑖 = 𝑠𝑤−1
𝑖
𝑒−1𝑠𝑤𝑖

, 𝑓−𝑖 = 𝑠𝑤−1
𝑖
𝑓−1𝑠𝑤𝑖

.

Here, 𝑤𝑖 = 𝑠2 · · · 𝑠𝑖𝑠1 · · · 𝑠𝑖−1 and 𝑠𝑖 is the reflection along the 𝑖-string in the crystal. Moreover, for 1 < 𝑖 ≤ 𝑛,
we define the operators 𝑒−𝑖′ and 𝑓−𝑖′ as

𝑒−𝑖′ = 𝑠𝑤0𝑓−(𝑛+1−𝑖)𝑠𝑤0 , 𝑓−𝑖′ = 𝑠𝑤0𝑒−(𝑛+1−𝑖)𝑠𝑤0 ,

where 𝑤0 is the longest element in the symmetric group 𝑆𝑛+1 generated by 𝑠1, . . . , 𝑠𝑛. In this implementation,
we use the integers −2𝑛, . . . ,−(𝑛+ 1) to respectively denote the indices −𝑛′, . . . ,−1′.

e(i)
Return 𝑒𝑖 on self.

EXAMPLES:

sage: Q = crystals.Letters(['Q', 3])
sage: T = tensor([Q,Q])
sage: t = T(Q(1),Q(1))
sage: t.e(-1)
sage: t = T(Q(2),Q(1))
sage: t.e(-1)
[1, 1]

sage: T = tensor([Q,Q,Q,Q])
sage: t = T(Q(1),Q(3),Q(2),Q(1))
sage: t.e(-2)
[2, 2, 1, 1]

epsilon(i)
Return 𝜀𝑖 on self.

EXAMPLES:

sage: Q = crystals.Letters(['Q', 3])
sage: T = tensor([Q, Q, Q, Q])
sage: t = T(Q(1), Q(3), Q(2), Q(1))
sage: t.epsilon(-2)
1

f(i)
Return 𝑓𝑖 on self.

EXAMPLES:

sage: Q = crystals.Letters(['Q', 3])
sage: T = tensor([Q, Q])

(continues on next page)

544 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: t = T(Q(1), Q(1))
sage: t.f(-1)
[2, 1]

phi(i)
Return 𝜙𝑖 on self.

EXAMPLES:

sage: Q = crystals.Letters(['Q', 3])
sage: T = tensor([Q, Q, Q, Q])
sage: t = T(Q(1), Q(3), Q(2), Q(1))
sage: t.phi(-2)
0
sage: t.phi(-1)
1

class sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfCrystalsElement

Element class for a tensor product of regular crystals.

e(i)
Return the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: T = crystals.TensorProduct(C,C)
sage: T(C(1),C(2)).e(1) == T(C(1),C(1))
True
sage: T(C(2),C(1)).e(1) is None
True
sage: T(C(2),C(2)).e(1) == T(C(1),C(2))
True

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: T = crystals.TensorProduct(C,C)
sage: T(C(1),C(1)).epsilon(1)
0
sage: T(C(1),C(2)).epsilon(1)
1
sage: T(C(2),C(1)).epsilon(1)
0

f(i)
Return the action of 𝑓𝑖 on self.

EXAMPLES:

5.1. Comprehensive Module List 545

Combinatorics, Release 9.7

sage: C = crystals.Letters(['A',5])
sage: T = crystals.TensorProduct(C,C)
sage: T(C(1),C(1)).f(1)
[1, 2]
sage: T(C(1),C(2)).f(1)
[2, 2]
sage: T(C(2),C(1)).f(1) is None
True

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: T = crystals.TensorProduct(C,C)
sage: T(C(1),C(1)).phi(1)
2
sage: T(C(1),C(2)).phi(1)
1
sage: T(C(2),C(1)).phi(1)
0

position_of_first_unmatched_plus(i)
Return the position of the first unmatched + or None if there is no unmatched +.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: T = crystals.TensorProduct(C,C)
sage: T(C(2),C(1)).position_of_first_unmatched_plus(1)
sage: T(C(1),C(2)).position_of_first_unmatched_plus(1)
1

position_of_last_unmatched_minus(i)
Return the position of the last unmatched − or None if there is no unmatched −.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: T = crystals.TensorProduct(C,C)
sage: T(C(2),C(1)).position_of_last_unmatched_minus(1)
sage: T(C(1),C(2)).position_of_last_unmatched_minus(1)
0

positions_of_unmatched_minus(i, dual=False, reverse=False)
EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: T = crystals.TensorProduct(C,C)
sage: T(C(2),C(1)).positions_of_unmatched_minus(1)
[]
sage: T(C(1),C(2)).positions_of_unmatched_minus(1)
[0]

546 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

positions_of_unmatched_plus(i)
EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: T = crystals.TensorProduct(C,C)
sage: T(C(2),C(1)).positions_of_unmatched_plus(1)
[]
sage: T(C(1),C(2)).positions_of_unmatched_plus(1)
[1]

class sage.combinat.crystals.tensor_product_element.TensorProductOfSuperCrystalsElement
Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement

Element class for a tensor product of crystals for Lie superalgebras.

This implements the tensor product rule for crystals of Lie superalgebras of [BKK2000].

e(i)
Return 𝑒𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['A', [2, 1]])
sage: T = tensor([C,C])
sage: t = T(C(1),C(1))
sage: t.e(0)
[-1, 1]

epsilon(i)
Return 𝜀𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['A', [2, 1]])
sage: T = tensor([C,C])
sage: t = T(C(1),C(1))
sage: t.epsilon(0)
1

f(i)
Return 𝑓𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['A', [2, 1]])
sage: T = tensor([C,C])
sage: t = T(C(1),C(1))
sage: t.f(0)
sage: t.f(1)
[1, 2]

phi(i)
Return 𝜙𝑖 on self.

EXAMPLES:

sage: C = crystals.Letters(['A', [2, 1]])
sage: T = tensor([C,C])

(continues on next page)

5.1. Comprehensive Module List 547

Combinatorics, Release 9.7

(continued from previous page)

sage: t = T(C(1),C(1))
sage: t.phi(0)
0

5.1.68 Cyclic sieving phenomenon

Implementation of the Cyclic Sieving Phenomenon as described by Reiner, Stanton, and White in [RSW2004].

We define the CyclicSievingPolynomial() of a finite set 𝑆 together with cyclic action cyc_act (of order 𝑛) to
be the unique polynomial P(q) of order < 𝑛 such that the triple (𝑆, cyc_act, P(q)) exhibits the cyclic sieving phe-
nomenon.

AUTHORS:

• Christian Stump

REFERENCES:

sage.combinat.cyclic_sieving_phenomenon.CyclicSievingCheck(L, cyc_act, f, order=None)
Return whether the triple (L, cyc_act, f) exhibits the cyclic sieving phenomenon.

If cyc_act is None, L is expected to contain the orbit lengths.

INPUT:

• L – if cyc_act is None: list of orbit sizes, otherwise list of objects

• cyc_act – (default:None) bijective function from L to L

• order – (default:None) if set to an integer, this cyclic order of cyc_act is used (must be an integer mul-
tiple of the order of cyc_act) otherwise, the order of cyc_action is used

EXAMPLES:

sage: from sage.combinat.cyclic_sieving_phenomenon import *
sage: from sage.combinat.q_analogues import q_binomial
sage: S42 = Subsets([1,2,3,4], 2)
sage: def cyc_act(S): return Set(i.mod(4) + 1 for i in S)
sage: cyc_act([1,3])
{2, 4}
sage: cyc_act([1,4])
{1, 2}
sage: p = q_binomial(4,2); p
q^4 + q^3 + 2*q^2 + q + 1
sage: CyclicSievingPolynomial(S42, cyc_act)
q^3 + 2*q^2 + q + 2
sage: CyclicSievingCheck(S42, cyc_act, p)
True

sage.combinat.cyclic_sieving_phenomenon.CyclicSievingPolynomial(L, cyc_act=None, order=None,
get_order=False)

Return the unique polynomial p of degree smaller than order such that the triple (L, cyc_act, p) exhibits
the Cyclic Sieving Phenomenon.

If cyc_act is None, L is expected to contain the orbit lengths.

INPUT:

• L – if cyc_act is None: list of orbit sizes, otherwise list of objects

548 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• cyc_act – (default:None) bijective function from L to L

• order – (default:None) if set to an integer, this cyclic order of cyc_act is used (must be an integer mul-
tiple of the order of cyc_act) otherwise, the order of cyc_action is used

• get_order – (default:False) if True, a tuple [p,n] is returned where p is as above, and n is the order

EXAMPLES:

sage: from sage.combinat.cyclic_sieving_phenomenon import CyclicSievingPolynomial
sage: S42 = Subsets([1,2,3,4], 2)
sage: def cyc_act(S): return Set(i.mod(4) + 1 for i in S)
sage: cyc_act([1,3])
{2, 4}
sage: cyc_act([1,4])
{1, 2}
sage: CyclicSievingPolynomial(S42, cyc_act)
q^3 + 2*q^2 + q + 2
sage: CyclicSievingPolynomial(S42, cyc_act, get_order=True)
[q^3 + 2*q^2 + q + 2, 4]
sage: CyclicSievingPolynomial(S42, cyc_act, order=8)
q^6 + 2*q^4 + q^2 + 2
sage: CyclicSievingPolynomial([4,2])
q^3 + 2*q^2 + q + 2

sage.combinat.cyclic_sieving_phenomenon.orbit_decomposition(L, cyc_act)
Return the orbit decomposition of L by the action of cyc_act.

INPUT:

• L – list

• cyc_act – bijective function from L to L

OUTPUT:

• a list of lists, the orbits under the cyc_act acting on L

EXAMPLES:

sage: from sage.combinat.cyclic_sieving_phenomenon import *
sage: S42 = Subsets([1,2,3,4], 2); S42
Subsets of {1, 2, 3, 4} of size 2
sage: def cyc_act(S): return Set(i.mod(4) + 1 for i in S)
sage: cyc_act([1,3])
{2, 4}
sage: cyc_act([1,4])
{1, 2}
sage: orbits = orbit_decomposition(S42, cyc_act)
sage: sorted([sorted(orb, key=sorted) for orb in orbits], key=len)
[[{1, 3}, {2, 4}], [{1, 2}, {1, 4}, {2, 3}, {3, 4}]]

5.1. Comprehensive Module List 549

Combinatorics, Release 9.7

5.1.69 De Bruijn sequences

A De Bruijn sequence is defined as the shortest cyclic sequence that incorporates all substrings of a certain length of
an alphabet.

For instance, the 23 = 8 binary strings of length 3 are all included in the following string:

sage: DeBruijnSequences(2,3).an_element()
[0, 0, 0, 1, 0, 1, 1, 1]

They can be obtained as a subsequence of the cyclic De Bruijn sequence of parameters 𝑘 = 2 and 𝑛 = 3:

sage: seq = DeBruijnSequences(2,3).an_element()
sage: print(Word(seq).string_rep())
00010111
sage: shift = lambda i: [(i+j)%2**3 for j in range(3)]
sage: for i in range(2**3):
....: w = Word([b if j in shift(i) else '*' for j, b in enumerate(seq)])
....: print(w.string_rep())
000*****
*001****
010*
***101**
****011*
*****111
0*****11
00*****1

This sequence is of length 𝑘𝑛, which is best possible as it is the number of 𝑘-ary strings of length𝑛. One can equivalently
define a De Bruijn sequence of parameters 𝑘 and 𝑛 as a cyclic sequence of length 𝑘𝑛 in which all substring of length 𝑛
are different.

See also Wikipedia article De_Bruijn_sequence.

AUTHOR:

• Eviatar Bach (2011): initial version

• Nathann Cohen (2011): Some work on the documentation and defined the __contain__ method

class sage.combinat.debruijn_sequence.DeBruijnSequences(k, n)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Represents the De Bruijn sequences of given parameters 𝑘 and 𝑛.

A De Bruijn sequence of parameters 𝑘 and 𝑛 is defined as the shortest cyclic sequence that incorporates all
substrings of length 𝑛 a 𝑘-ary alphabet.

This class can be used to generate the lexicographically smallest De Bruijn sequence, to count the number of
existing De Bruijn sequences or to test whether a given sequence is De Bruijn.

INPUT:

• k – A natural number to define arity. The letters used are the integers 0..𝑘 − 1.

• n – A natural number that defines the length of the substring.

EXAMPLES:

Obtaining a De Bruijn sequence:

550 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/De_Bruijn_sequence
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: seq = DeBruijnSequences(2, 3).an_element()
sage: seq
[0, 0, 0, 1, 0, 1, 1, 1]

Testing whether it is indeed one:

sage: seq in DeBruijnSequences(2, 3)
True

The total number for these parameters:

sage: DeBruijnSequences(2, 3).cardinality()
2

Note: This function only generates one De Bruijn sequence (the smallest lexicographically). Support for gen-
erating all possible ones may be added in the future.

an_element()
Returns the lexicographically smallest De Bruijn sequence with the given parameters.

ALGORITHM:

The algorithm is described in the book “Combinatorial Generation” by Frank Ruskey. This program is
based on a Ruby implementation by Jonas Elfström, which is based on the C program by Joe Sadawa.

EXAMPLES:

sage: DeBruijnSequences(2, 3).an_element()
[0, 0, 0, 1, 0, 1, 1, 1]

cardinality()
Returns the number of distinct De Bruijn sequences for the object’s parameters.

EXAMPLES:

sage: DeBruijnSequences(2, 5).cardinality()
2048

ALGORITHM:

The formula for cardinality is 𝑘!𝑘
𝑛−1

/𝑘𝑛 [Ros2002].

sage.combinat.debruijn_sequence.debruijn_sequence(k, n)
The generating function for De Bruijn sequences. This avoids the object creation, so is significantly faster than
accessing from DeBruijnSequence. For more information, see the documentation there. The algorithm used is
from Frank Ruskey’s “Combinatorial Generation”.

INPUT:

• k – Arity. Must be an integer.

• n – Substring length. Must be an integer.

EXAMPLES:

sage: from sage.combinat.debruijn_sequence import debruijn_sequence
sage: debruijn_sequence(3, 1)
[0, 1, 2]

5.1. Comprehensive Module List 551

Combinatorics, Release 9.7

sage.combinat.debruijn_sequence.is_debruijn_sequence(seq, k, n)
Given a sequence of integer elements in 0..𝑘−1, tests whether it corresponds to a De Bruijn sequence of param-
eters 𝑘 and 𝑛.

INPUT:

• seq – Sequence of elements in 0..𝑘 − 1.

• n,k – Integers.

EXAMPLES:

sage: from sage.combinat.debruijn_sequence import is_debruijn_sequence
sage: s = DeBruijnSequences(2, 3).an_element()
sage: is_debruijn_sequence(s, 2, 3)
True
sage: is_debruijn_sequence(s + [0], 2, 3)
False
sage: is_debruijn_sequence([1] + s[1:], 2, 3)
False

5.1.70 Degree sequences

The present module implements the DegreeSequences class, whose instances represent the integer sequences of
length 𝑛:

sage: DegreeSequences(6)
Degree sequences on 6 elements

With the object DegreeSequences(n), one can:

• Check whether a sequence is indeed a degree sequence:

sage: DS = DegreeSequences(5)
sage: [4, 3, 3, 3, 3] in DS
True
sage: [4, 4, 0, 0, 0] in DS
False

• List all the possible degree sequences of length 𝑛:

sage: for seq in DegreeSequences(4):
....: print(seq)
[0, 0, 0, 0]
[1, 1, 0, 0]
[2, 1, 1, 0]
[3, 1, 1, 1]
[1, 1, 1, 1]
[2, 2, 1, 1]
[2, 2, 2, 0]
[3, 2, 2, 1]
[2, 2, 2, 2]
[3, 3, 2, 2]
[3, 3, 3, 3]

552 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Note: Given a degree sequence, one can obtain a graph realizing it by using DegreeSequence(). For instance:

sage: ds = [3, 3, 2, 2, 2, 2, 2, 1, 1, 0]
sage: g = graphs.DegreeSequence(ds)
sage: g.degree_sequence()
[3, 3, 2, 2, 2, 2, 2, 1, 1, 0]

Definitions

A sequence of integers 𝑑1, ..., 𝑑𝑛 is said to be a degree sequence (or graphic sequence) if there exists a graph in which
vertex 𝑖 is of degree 𝑑𝑖. It is often required to be non-increasing, i.e. that 𝑑1 ≥ ... ≥ 𝑑𝑛. Finding a graph with given
degree sequence is known as graph realization problem.

An integer sequence need not necessarily be a degree sequence. Indeed, in a degree sequence of length 𝑛 no integer
can be larger than 𝑛− 1 – the degree of a vertex is at most 𝑛− 1 – and the sum of them is at most 𝑛(𝑛− 1).

Degree sequences are completely characterized by a result from Erdos and Gallai:

Erdos and Gallai: The sequence of integers 𝑑1 ≥ · · · ≥ 𝑑𝑛 is a degree sequence if and only if
∑︀
𝑖 𝑑𝑖 is even and ∀𝑖∑︁

𝑗≤𝑖

𝑑𝑗 ≤ 𝑗(𝑗 − 1) +
∑︁
𝑗>𝑖

min(𝑑𝑗 , 𝑖).

Alternatively, a degree sequence can be defined recursively:

Havel and Hakimi: The sequence of integers 𝑑1 ≥ ... ≥ 𝑑𝑛 is a degree sequence if and only if 𝑑2 − 1, ..., 𝑑𝑑1+1 −
1, 𝑑𝑑1+2, ..., 𝑑𝑛 is also a degree sequence.

Or equivalently:

Havel and Hakimi (bis): If there is a realization of an integer sequence as a graph (i.e. if the sequence is a degree
sequence), then it can be realized in such a way that the vertex of maximum degree ∆ is adjacent to the ∆ vertices of
highest degree (except itself, of course).

Algorithms

Checking whether a given sequence is a degree sequence

This is tested using Erdos and Gallai’s criterion. It is also checked that the given sequence is non-increasing and has
length 𝑛.

Iterating through the sequences of length 𝑛

From Havel and Hakimi’s recursive definition of a degree sequence, one can build an enumeration algorithm as done in
[RCES1994]. It consists in trying to extend a current degree sequence on 𝑛 elements into a degree sequence on 𝑛+ 1
elements by adding a vertex of degree larger than those already present in the sequence. This can be seen as reversing
the reduction operation described in Havel and Hakimi’s characterization. This operation can appear in several different
ways:

• Extensions of a degree sequence that do not change the value of the maximum element

– If the maximum element of a given degree sequence is 0, then one can remove it to reduce the sequence,
following Havel and Hakimi’s rule. Conversely, if the maximum element of the (current) sequence is 0,
then one can always extend it by adding a new element of degree 0 to the sequence.

0, 0, 0
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛−−−−−−−→ 0, 0, 0, 0

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛−−−−−−−→ 0, 0, 0, ..., 0, 0, 0
𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛−−−−−−−→ 0, 0, 0, 0

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛−−−−−−−→ 0, 0, 0

5.1. Comprehensive Module List 553

Combinatorics, Release 9.7

– If there are at least ∆ + 1 elements of (maximum) degree ∆ in a given degree sequence, then one can
reduce it by removing a vertex of degree ∆ and decreasing the values of ∆ elements of value ∆ to ∆− 1.
Conversely, if the maximum element of the (current) sequence is 𝑑 > 0, then one can add a new element
of degree 𝑑 to the sequence if it can be linked to 𝑑 elements of (current) degree 𝑑− 1. Those 𝑑 vertices of
degree 𝑑− 1 hence become vertices of degree 𝑑, and so 𝑑 elements of degree 𝑑− 1 are removed from the
sequence while 𝑑+ 1 elements of degree 𝑑 are added to it.

3, 2, 2, 2, 1
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛−−−−−−−→ 3, 3, (2 + 1), (2 + 1), (2 + 1), 1 = 3, 3, 3, 3, 3, 1

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛−−−−−−−→ 3, 2, 2, 2, 1

• Extension of a degree sequence that changes the value of the maximum element:

– In the general case, i.e. when the number of elements of value ∆,∆ − 1 is small compared to ∆ (i.e. the
maximum element of a given degree sequence), reducing a sequence strictly decreases the value of the
maximum element. According to Havel and Hakimi’s characterization there is only one way to reduce a
sequence, but reversing this operation is more complicated than in the previous cases. Indeed, the following
extensions are perfectly valid according to the reduction rule.

2, 1, 1, 0, 0
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛−−−−−−−→ 3, (2 + 1), (1 + 1), (1 + 1), 0, 0 = 3, 3, 2, 2, 0, 0

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛−−−−−−−→ 2, 1, 1, 0, 0

2, 1, 1, 0, 0
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛−−−−−−−→ 3, (2 + 1), (1 + 1), 1, (0 + 1), 0 = 3, 3, 2, 1, 1, 0

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛−−−−−−−→ 2, 1, 1, 0, 0

2, 1, 1, 0, 0
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛−−−−−−−→ 3, (2 + 1), 1, 1, (0 + 1), (0 + 1) = 3, 3, 1, 1, 1, 1

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛−−−−−−−→ 2, 1, 1, 0, 0

...

In order to extend a current degree sequence while strictly increasing its maximum degree, it is equivalent
to pick a set 𝐼 of elements of the degree sequence with |𝐼| > ∆ in such a way that the (𝑑𝑖 + 1)𝑖∈𝐼 are the
|𝐼|maximum elements of the sequence (𝑑𝑖 + 1 if 𝑖∈𝐼

0 if �̸�∈𝐼)1≤𝑖≤𝑛, and to add to this new sequence an element of
value |𝐼|. The non-increasing sequence containing the elements |𝐼| and (𝑑𝑖+

1 if 𝑖∈𝐼
0 if 𝑖 ̸∈𝐼)1≤𝑖≤𝑛 can be reduced

to (𝑑𝑖)1≤𝑖≤𝑛 by Havel and Hakimi’s rule.

...1, 1, 2,2,2, 2, 2, 3, 3, 3,3,3,4,6, ...
𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛−−−−−−−→ ...1, 1, 2, 2, 2, 3, 3, 3,3,3,4,4,5,7, ...

The number of possible sets 𝐼 having this property (i.e. the number of possible extensions of a sequence)
is smaller than it seems. Indeed, by definition, if 𝑗 ̸∈ 𝐼 then for all 𝑖 ∈ 𝐼 the inequality 𝑑𝑗 ≤ 𝑑𝑖 + 1 holds.
Hence, each set 𝐼 is entirely determined by the largest element 𝑑𝑘 of the sequence that it does not contain
(hence 𝐼 contains {1, ..., 𝑘 − 1}), and by the cardinalities of {𝑖 ∈ 𝐼 : 𝑑𝑖 = 𝑑𝑘} and {𝑖 ∈ 𝐼 : 𝑑𝑖 = 𝑑𝑘 − 1}.

𝐼 = {𝑖 ∈ 𝐼 : 𝑑𝑖 = 𝑑𝑘} ∪ {𝑖 ∈ 𝐼 : 𝑑𝑖 = 𝑑𝑘 − 1} ∪ {𝑖 : 𝑑𝑖 > 𝑑𝑘}.

The number of possible extensions is hence at most cubic, and is easily enumerated.

About the implementation

In the actual implementation of the enumeration algorithm, the degree sequence is stored differently for reasons of
efficiency.

Indeed, when enumerating all the degree sequences of length 𝑛, Sage first allocates an array seq of 𝑛+1 integers where
seq[i] is the number of elements of value i in the current sequence. Obviously, seq[n]=0 holds in permanence : it
is useful to allocate a larger array than necessary to simplify the code. The seq array is a global variable.

The recursive function enum(depth, maximum) is the one building the list of sequences. It builds the list of degree
sequences of length 𝑛 which extend the sequence currently stored in seq[0]...seq[depth-1]. When it is called,
maximum must be set to the maximum value of an element in the partial sequence seq[0]...seq[depth-1].

If during its run the function enum heavily works on the content of the seq array, the value of seq is the same before
and after the run of enum.

554 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Extending the current partial sequence

The two cases for which the maximum degree of the partial sequence does not change are easy to detect. It is (slightly)
harder to enumerate all the sets 𝐼 corresponding to possible extensions of the partial sequence. As said previously,
to each set 𝐼 one can associate an integer current_box such that 𝐼 contains all the 𝑖 satisfying 𝑑𝑖 > 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑜𝑥.
The variable taken represents the number of all such elements 𝑖, so that when enumerating all possible sets 𝐼 in the
algorithm we have the equality

𝐼 = taken + number of elements of value 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑜𝑥+ number of elements of value 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑜𝑥− 1.

REFERENCES:

• [RCES1994]

AUTHORS:

• Nathann Cohen

Warning: For the moment, iterating over all degree sequences involves building the list of them first, then iterate
on this list. This is obviously bad, as it requires uselessly a lot of memory for large values of 𝑛.

This should be changed. Updating the code does not require more than a couple of minutes.

class sage.combinat.degree_sequences.DegreeSequences(n)
Bases: object

Degree Sequences

An instance of this class represents the degree sequences of graphs on a given number 𝑛 of vertices. It can be
used to list and count them, as well as to test whether a sequence is a degree sequence. For more information,
please refer to the documentation of the DegreeSequence module.

EXAMPLES:

sage: DegreeSequences(8)
Degree sequences on 8 elements
sage: [3,3,2,2,2,2,2,2] in DegreeSequences(8)
True

5.1.71 Derangements

AUTHORS:

• Alasdair McAndrew (2010-05): Initial version

• Travis Scrimshaw (2013-03-30): Put derangements into category framework

class sage.combinat.derangements.Derangement(parent, *args, **kwds)
Bases: sage.combinat.combinat.CombinatorialElement

A derangement.

A derangement on a set 𝑆 is a permutation 𝜎 such that 𝜎(𝑥) ̸= 𝑥 for all 𝑥 ∈ 𝑆, i.e. 𝜎 is a permutation of 𝑆 with
no fixed points.

EXAMPLES:

5.1. Comprehensive Module List 555

Combinatorics, Release 9.7

sage: D = Derangements(4)
sage: elt = D([4,3,2,1])
sage: TestSuite(elt).run()

to_permutation()
Return the permutation corresponding to self.

EXAMPLES:

sage: D = Derangements(4)
sage: p = D([4,3,2,1]).to_permutation(); p
[4, 3, 2, 1]
sage: type(p)
<class 'sage.combinat.permutation.StandardPermutations_all_with_category.
→˓element_class'>
sage: D = Derangements([1, 3, 3, 4])
sage: D[0].to_permutation()
Traceback (most recent call last):
...
ValueError: Can only convert to a permutation for derangements of [1, 2, ..., n]

class sage.combinat.derangements.Derangements(x)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The class of all derangements of a set or multiset.

A derangement on a set 𝑆 is a permutation 𝜎 such that 𝜎(𝑥) ̸= 𝑥 for all 𝑥 ∈ 𝑆, i.e. 𝜎 is a permutation of 𝑆 with
no fixed points.

For an integer, or a list or string with all elements distinct, the derangements are obtained by a standard result
described in [BV2004]. For a list or string with repeated elements, the derangements are formed by computing
all permutations of the input and discarding all non-derangements.

INPUT:

• x – Can be an integer which corresponds to derangements of {1, 2, 3, . . . , 𝑥}, a list, or a string

REFERENCES:

• [BV2004]

• Wikipedia article Derangement

EXAMPLES:

sage: D1 = Derangements([2,3,4,5])
sage: D1.list()
[[3, 4, 5, 2],
[5, 4, 2, 3],
[3, 5, 2, 4],
[4, 5, 3, 2],
[4, 2, 5, 3],
[5, 2, 3, 4],
[5, 4, 3, 2],
[4, 5, 2, 3],
[3, 2, 5, 4]]
sage: D1.cardinality()

(continues on next page)

556 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
https://en.wikipedia.org/wiki/Derangement

Combinatorics, Release 9.7

(continued from previous page)

9
sage: D1.random_element() # random
[4, 2, 5, 3]
sage: D2 = Derangements([1,2,3,1,2,3])
sage: D2.cardinality()
10
sage: D2.list()
[[2, 1, 1, 3, 3, 2],
[2, 1, 2, 3, 3, 1],
[2, 3, 1, 2, 3, 1],
[2, 3, 1, 3, 1, 2],
[2, 3, 2, 3, 1, 1],
[3, 1, 1, 2, 3, 2],
[3, 1, 2, 2, 3, 1],
[3, 1, 2, 3, 1, 2],
[3, 3, 1, 2, 1, 2],
[3, 3, 2, 2, 1, 1]]
sage: D2.random_element() # random
[2, 3, 1, 3, 1, 2]

Element
alias of Derangement

cardinality()
Counts the number of derangements of a positive integer, a list, or a string. The list or string may con-
tain repeated elements. If an integer 𝑛 is given, the value returned is the number of derangements of
[1, 2, 3, . . . , 𝑛].

For an integer, or a list or string with all elements distinct, the value is obtained by the standard result
𝐷2 = 1, 𝐷3 = 2, 𝐷𝑛 = (𝑛− 1)(𝐷𝑛−1 +𝐷𝑛−2).

For a list or string with repeated elements, the number of derangements is computed by Macmahon’s theo-
rem. If the numbers of repeated elements are 𝑎1, 𝑎2, . . . , 𝑎𝑘 then the number of derangements is given by
the coefficient of 𝑥1𝑥2 · · ·𝑥𝑘 in the expansion of

∏︀𝑘
𝑖=0(𝑆 − 𝑠𝑖)𝑎𝑖 where 𝑆 = 𝑥1 + 𝑥2 + · · ·+ 𝑥𝑘.

EXAMPLES:

sage: D = Derangements(5)
sage: D.cardinality()
44
sage: D = Derangements([1,44,918,67,254])
sage: D.cardinality()
44
sage: D = Derangements(['A','AT','CAT','CATS','CARTS'])
sage: D.cardinality()
44
sage: D = Derangements('UNCOPYRIGHTABLE')
sage: D.cardinality()
481066515734
sage: D = Derangements([1,1,2,2,3,3])
sage: D.cardinality()
10
sage: D = Derangements('SATTAS')
sage: D.cardinality()

(continues on next page)

5.1. Comprehensive Module List 557

Combinatorics, Release 9.7

(continued from previous page)

10
sage: D = Derangements([1,1,2,2,2])
sage: D.cardinality()
0

random_element()
Produces all derangements of a positive integer, a list, or a string. The list or string may contain repeated
elements. If an integer 𝑛 is given, then a random derangements of [1, 2, 3, . . . , 𝑛] is returned

For an integer, or a list or string with all elements distinct, the value is obtained by an algorithm described in
[MPP2008]. For a list or string with repeated elements the derangement is formed by choosing an element
at random from the list of all possible derangements.

OUTPUT:

A single list or string containing a derangement, or an empty list if there are no derangements.

EXAMPLES:

sage: D = Derangements(4)
sage: D.random_element() # random
[2, 3, 4, 1]
sage: D = Derangements(['A','AT','CAT','CATS','CARTS','CARETS'])
sage: D.random_element() # random
['AT', 'CARTS', 'A', 'CAT', 'CARETS', 'CATS']
sage: D = Derangements('UNCOPYRIGHTABLE')
sage: D.random_element() # random
['C', 'U', 'I', 'H', 'O', 'G', 'N', 'B', 'E', 'L', 'A', 'R', 'P', 'Y', 'T']
sage: D = Derangements([1,1,1,1,2,2,2,2,3,3,3,3])
sage: D.random_element() # random
[3, 2, 2, 3, 1, 3, 1, 3, 2, 1, 1, 2]
sage: D = Derangements('ESSENCES')
sage: D.random_element() # random
['N', 'E', 'E', 'C', 'S', 'S', 'S', 'E']
sage: D = Derangements([1,1,2,2,2])
sage: D.random_element()
[]

5.1.72 Descent Algebras

AUTHORS:

• Travis Scrimshaw (2013-07-28): Initial version

class sage.combinat.descent_algebra.DescentAlgebra(R, n)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Solomon’s descent algebra.

The descent algebra Σ𝑛 over a ring 𝑅 is a subalgebra of the symmetric group algebra 𝑅𝑆𝑛. (The product in the
latter algebra is defined by (𝑝𝑞)(𝑖) = 𝑞(𝑝(𝑖)) for any two permutations 𝑝 and 𝑞 in 𝑆𝑛 and every 𝑖 ∈ {1, 2, . . . , 𝑛}.
The algebra Σ𝑛 inherits this product.)

There are three bases currently implemented for Σ𝑛:

• the standard basis 𝐷𝑆 of (sums of) descent classes, indexed by subsets 𝑆 of {1, 2, . . . , 𝑛− 1},

558 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

• the subset basis 𝐵𝑝, indexed by compositions 𝑝 of 𝑛,

• the idempotent basis 𝐼𝑝, indexed by compositions 𝑝 of 𝑛, which is used to construct the mutually orthogonal
idempotents of the symmetric group algebra.

The idempotent basis is only defined when 𝑅 is a Q-algebra.

We follow the notations and conventions in [GR1989], apart from the order of multiplication being different from
the one used in that article. Schocker’s exposition [Sch2004], in turn, uses the same order of multiplication as
we are, but has different notations for the bases.

INPUT:

• R – the base ring

• n – a nonnegative integer

REFERENCES:

• [GR1989]

• [At1992]

• [MR1995]

• [Sch2004]

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: D = DA.D(); D
Descent algebra of 4 over Rational Field in the standard basis
sage: B = DA.B(); B
Descent algebra of 4 over Rational Field in the subset basis
sage: I = DA.I(); I
Descent algebra of 4 over Rational Field in the idempotent basis
sage: basis_B = B.basis()
sage: elt = basis_B[Composition([1,2,1])] + 4*basis_B[Composition([1,3])]; elt
B[1, 2, 1] + 4*B[1, 3]
sage: D(elt)
5*D{} + 5*D{1} + D{1, 3} + D{3}
sage: I(elt)
7/6*I[1, 1, 1, 1] + 2*I[1, 1, 2] + 3*I[1, 2, 1] + 4*I[1, 3]

As syntactic sugar, one can use the notation D[i,...,l] to construct elements of the basis; note that for the
empty set one must use D[[]] due to Python’s syntax:

sage: D[[]] + D[2] + 2*D[1,2]
D{} + 2*D{1, 2} + D{2}

The same syntax works for the other bases:

sage: I[1,2,1] + 3*I[4] + 2*I[3,1]
I[1, 2, 1] + 2*I[3, 1] + 3*I[4]

class B(alg, prefix='B')
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The subset basis of a descent algebra (indexed by compositions).

5.1. Comprehensive Module List 559

../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

The subset basis (𝐵𝑆)𝑆⊆{1,2,...,𝑛−1} of Σ𝑛 is formed by

𝐵𝑆 =
∑︁
𝑇⊆𝑆

𝐷𝑇 ,

where (𝐷𝑆)𝑆⊆{1,2,...,𝑛−1} is the standard basis. However it is more natural to index the subset basis
by compositions of 𝑛 under the bijection {𝑖1, 𝑖2, . . . , 𝑖𝑘} ↦→ (𝑖1, 𝑖2 − 𝑖1, 𝑖3 − 𝑖2, . . . , 𝑖𝑘 − 𝑖𝑘−1, 𝑛 − 𝑖𝑘)
(where 𝑖1 < 𝑖2 < · · · < 𝑖𝑘), which is what Sage uses to index the basis.

The basis element 𝐵𝑝 is denoted Ξ𝑝 in [Sch2004].

By using compositions of 𝑛, the product 𝐵𝑝𝐵𝑞 becomes a sum over the non-negative-integer matrices 𝑀
with row sum 𝑝 and column sum 𝑞. The summand corresponding to 𝑀 is 𝐵𝑐, where 𝑐 is the composition
obtained by reading 𝑀 row-by-row from left-to-right and top-to-bottom and removing all zeroes. This
multiplication rule is commonly called “Solomon’s Mackey formula”.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: B = DA.B()
sage: list(B.basis())
[B[1, 1, 1, 1], B[1, 1, 2], B[1, 2, 1], B[1, 3],
B[2, 1, 1], B[2, 2], B[3, 1], B[4]]

one_basis()
Return the identity element which is the composition [𝑛], as per AlgebrasWithBasis.
ParentMethods.one_basis.

EXAMPLES:

sage: DescentAlgebra(QQ, 4).B().one_basis()
[4]
sage: DescentAlgebra(QQ, 0).B().one_basis()
[]

sage: all(U * DescentAlgebra(QQ, 3).B().one() == U
....: for U in DescentAlgebra(QQ, 3).B().basis())
True

product_on_basis(p, q)
Return 𝐵𝑝𝐵𝑞 , where 𝑝 and 𝑞 are compositions of 𝑛.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: B = DA.B()
sage: p = Composition([1,2,1])
sage: q = Composition([3,1])
sage: B.product_on_basis(p, q)
B[1, 1, 1, 1] + 2*B[1, 2, 1]

to_D_basis(p)
Return 𝐵𝑝 as a linear combination of 𝐷-basis elements.

EXAMPLES:

560 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: DA = DescentAlgebra(QQ, 4)
sage: B = DA.B()
sage: D = DA.D()
sage: list(map(D, B.basis())) # indirect doctest
[D{} + D{1} + D{1, 2} + D{1, 2, 3}
+ D{1, 3} + D{2} + D{2, 3} + D{3},
D{} + D{1} + D{1, 2} + D{2},
D{} + D{1} + D{1, 3} + D{3},
D{} + D{1},
D{} + D{2} + D{2, 3} + D{3},
D{} + D{2},
D{} + D{3},
D{}]

to_I_basis(p)
Return 𝐵𝑝 as a linear combination of 𝐼-basis elements.

This is done using the formula

𝐵𝑝 =
∑︁
𝑞≤𝑝

1

k!(𝑞, 𝑝)
𝐼𝑞,

where ≤ is the refinement order and k!(𝑞, 𝑝) is defined as follows: When 𝑞 ≤ 𝑝, we can write 𝑞 as a
concatenation 𝑞(1)𝑞(2) · · · 𝑞(𝑘) with each 𝑞(𝑖) being a composition of the 𝑖-th entry of 𝑝, and then we set
k!(𝑞, 𝑝) to be 𝑙(𝑞(1))!𝑙(𝑞(2))! · · · 𝑙(𝑞(𝑘))!, where 𝑙(𝑟) denotes the number of parts of any composition 𝑟.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: B = DA.B()
sage: I = DA.I()
sage: list(map(I, B.basis())) # indirect doctest
[I[1, 1, 1, 1],
1/2*I[1, 1, 1, 1] + I[1, 1, 2],
1/2*I[1, 1, 1, 1] + I[1, 2, 1],
1/6*I[1, 1, 1, 1] + 1/2*I[1, 1, 2] + 1/2*I[1, 2, 1] + I[1, 3],
1/2*I[1, 1, 1, 1] + I[2, 1, 1],
1/4*I[1, 1, 1, 1] + 1/2*I[1, 1, 2] + 1/2*I[2, 1, 1] + I[2, 2],
1/6*I[1, 1, 1, 1] + 1/2*I[1, 2, 1] + 1/2*I[2, 1, 1] + I[3, 1],
1/24*I[1, 1, 1, 1] + 1/6*I[1, 1, 2] + 1/6*I[1, 2, 1]
+ 1/2*I[1, 3] + 1/6*I[2, 1, 1] + 1/2*I[2, 2] + 1/2*I[3, 1] + I[4]]

to_nsym(p)
Return 𝐵𝑝 as an element in 𝑁𝑆𝑦𝑚, the non-commutative symmetric functions.

This maps 𝐵𝑝 to 𝑆𝑝 where 𝑆 denotes the Complete basis of 𝑁𝑆𝑦𝑚.

EXAMPLES:

sage: B = DescentAlgebra(QQ, 4).B()
sage: S = NonCommutativeSymmetricFunctions(QQ).Complete()
sage: list(map(S, B.basis())) # indirect doctest
[S[1, 1, 1, 1],
S[1, 1, 2],
S[1, 2, 1],

(continues on next page)

5.1. Comprehensive Module List 561

Combinatorics, Release 9.7

(continued from previous page)

S[1, 3],
S[2, 1, 1],
S[2, 2],
S[3, 1],
S[4]]

class D(alg, prefix='D')
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The standard basis of a descent algebra.

This basis is indexed by 𝑆 ⊆ {1, 2, . . . , 𝑛− 1}, and the basis vector indexed by 𝑆 is the sum of all permu-
tations, taken in the symmetric group algebra 𝑅𝑆𝑛, whose descent set is 𝑆. We denote this basis vector by
𝐷𝑆 .

Occasionally this basis appears in literature but indexed by compositions of 𝑛 rather than subsets of
{1, 2, . . . , 𝑛 − 1}. The equivalence between these two indexings is owed to the bijection from the power
set of {1, 2, . . . , 𝑛 − 1} to the set of all compositions of 𝑛 which sends every subset {𝑖1, 𝑖2, . . . , 𝑖𝑘} of
{1, 2, . . . , 𝑛− 1} (with 𝑖1 < 𝑖2 < · · · < 𝑖𝑘) to the composition (𝑖1, 𝑖2 − 𝑖1, . . . , 𝑖𝑘 − 𝑖𝑘−1, 𝑛− 𝑖𝑘).

The basis element corresponding to a composition 𝑝 (or to the subset of {1, 2, . . . , 𝑛− 1}) is denoted ∆𝑝

in [Sch2004].

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: D = DA.D()
sage: list(D.basis())
[D{}, D{1}, D{2}, D{3}, D{1, 2}, D{1, 3}, D{2, 3}, D{1, 2, 3}]

sage: DA = DescentAlgebra(QQ, 0)
sage: D = DA.D()
sage: list(D.basis())
[D{}]

one_basis()
Return the identity element, as per AlgebrasWithBasis.ParentMethods.one_basis.

EXAMPLES:

sage: DescentAlgebra(QQ, 4).D().one_basis()
()
sage: DescentAlgebra(QQ, 0).D().one_basis()
()

sage: all(U * DescentAlgebra(QQ, 3).D().one() == U
....: for U in DescentAlgebra(QQ, 3).D().basis())
True

product_on_basis(S, T)
Return 𝐷𝑆𝐷𝑇 , where 𝑆 and 𝑇 are subsets of [𝑛− 1].

EXAMPLES:

562 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

sage: DA = DescentAlgebra(QQ, 4)
sage: D = DA.D()
sage: D.product_on_basis((1, 3), (2,))
D{} + D{1} + D{1, 2} + 2*D{1, 2, 3} + D{1, 3} + D{2} + D{2, 3} + D{3}

to_B_basis(S)
Return 𝐷𝑆 as a linear combination of 𝐵𝑝-basis elements.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: D = DA.D()
sage: B = DA.B()
sage: list(map(B, D.basis())) # indirect doctest
[B[4],
B[1, 3] - B[4],
B[2, 2] - B[4],
B[3, 1] - B[4],
B[1, 1, 2] - B[1, 3] - B[2, 2] + B[4],
B[1, 2, 1] - B[1, 3] - B[3, 1] + B[4],
B[2, 1, 1] - B[2, 2] - B[3, 1] + B[4],
B[1, 1, 1, 1] - B[1, 1, 2] - B[1, 2, 1] + B[1, 3]
- B[2, 1, 1] + B[2, 2] + B[3, 1] - B[4]]

to_symmetric_group_algebra_on_basis(S)
Return 𝐷𝑆 as a linear combination of basis elements in the symmetric group algebra.

EXAMPLES:

sage: D = DescentAlgebra(QQ, 4).D()
sage: [D.to_symmetric_group_algebra_on_basis(tuple(b))
....: for b in Subsets(3)]
[[1, 2, 3, 4],
[2, 1, 3, 4] + [3, 1, 2, 4] + [4, 1, 2, 3],
[1, 3, 2, 4] + [1, 4, 2, 3] + [2, 3, 1, 4]
+ [2, 4, 1, 3] + [3, 4, 1, 2],
[1, 2, 4, 3] + [1, 3, 4, 2] + [2, 3, 4, 1],
[3, 2, 1, 4] + [4, 2, 1, 3] + [4, 3, 1, 2],
[2, 1, 4, 3] + [3, 1, 4, 2] + [3, 2, 4, 1]
+ [4, 1, 3, 2] + [4, 2, 3, 1],
[1, 4, 3, 2] + [2, 4, 3, 1] + [3, 4, 2, 1],
[4, 3, 2, 1]]

class I(alg, prefix='I')
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The idempotent basis of a descent algebra.

The idempotent basis (𝐼𝑝)𝑝|=𝑛 is a basis for Σ𝑛 whenever the ground ring is a Q-algebra. One way to
compute it is using the formula (Theorem 3.3 in [GR1989])

𝐼𝑝 =
∑︁
𝑞≤𝑝

(−1)𝑙(𝑞)−𝑙(𝑝)

k(𝑞, 𝑝)
𝐵𝑞,

where ≤ is the refinement order and 𝑙(𝑟) denotes the number of parts of any composition 𝑟, and where

5.1. Comprehensive Module List 563

../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

k(𝑞, 𝑝) is defined as follows: When 𝑞 ≤ 𝑝, we can write 𝑞 as a concatenation 𝑞(1)𝑞(2) · · · 𝑞(𝑘) with each 𝑞(𝑖)
being a composition of the 𝑖-th entry of 𝑝, and then we set k(𝑞, 𝑝) to be the product 𝑙(𝑞(1))𝑙(𝑞(2)) · · · 𝑙(𝑞(𝑘)).

Let 𝜆(𝑝) denote the partition obtained from a composition 𝑝 by sorting. This basis is called the idempotent
basis since for any 𝑞 such that 𝜆(𝑝) = 𝜆(𝑞), we have:

𝐼𝑝𝐼𝑞 = 𝑠(𝜆)𝐼𝑝

where 𝜆 denotes 𝜆(𝑝) = 𝜆(𝑞), and where 𝑠(𝜆) is the stabilizer of 𝜆 in 𝑆𝑛. (This is part of Theorem 4.2 in
[GR1989].)

It is also straightforward to compute the idempotents 𝐸𝜆 for the symmetric group algebra by the formula
(Theorem 3.2 in [GR1989]):

𝐸𝜆 =
1

𝑘!

∑︁
𝜆(𝑝)=𝜆

𝐼𝑝.

Note: The basis elements are not orthogonal idempotents.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: I = DA.I()
sage: list(I.basis())
[I[1, 1, 1, 1], I[1, 1, 2], I[1, 2, 1], I[1, 3], I[2, 1, 1], I[2, 2], I[3, 1],␣
→˓I[4]]

idempotent(la)
Return the idempotent corresponding to the partition la of 𝑛.

EXAMPLES:

sage: I = DescentAlgebra(QQ, 4).I()
sage: E = I.idempotent([3,1]); E
1/2*I[1, 3] + 1/2*I[3, 1]
sage: E*E == E
True
sage: E2 = I.idempotent([2,1,1]); E2
1/6*I[1, 1, 2] + 1/6*I[1, 2, 1] + 1/6*I[2, 1, 1]
sage: E2*E2 == E2
True
sage: E*E2 == I.zero()
True

one()
Return the identity element, which is 𝐵[𝑛], in the 𝐼 basis.

EXAMPLES:

sage: DescentAlgebra(QQ, 4).I().one()
1/24*I[1, 1, 1, 1] + 1/6*I[1, 1, 2] + 1/6*I[1, 2, 1]
+ 1/2*I[1, 3] + 1/6*I[2, 1, 1] + 1/2*I[2, 2]
+ 1/2*I[3, 1] + I[4]
sage: DescentAlgebra(QQ, 0).I().one()
I[]

564 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

one_basis()
The element 1 is not (generally) a basis vector in the 𝐼 basis, thus this returns a TypeError.

EXAMPLES:

sage: DescentAlgebra(QQ, 4).I().one_basis()
Traceback (most recent call last):
...
TypeError: 1 is not a basis element in the I basis

product_on_basis(p, q)
Return 𝐼𝑝𝐼𝑞 , where 𝑝 and 𝑞 are compositions of 𝑛.

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: I = DA.I()
sage: p = Composition([1,2,1])
sage: q = Composition([3,1])
sage: I.product_on_basis(p, q)
0
sage: I.product_on_basis(p, p)
2*I[1, 2, 1]

to_B_basis(p)
Return 𝐼𝑝 as a linear combination of 𝐵-basis elements.

This is computed using the formula (Theorem 3.3 in [GR1989])

𝐼𝑝 =
∑︁
𝑞≤𝑝

(−1)𝑙(𝑞)−𝑙(𝑝)

k(𝑞, 𝑝)
𝐵𝑞,

where≤ is the refinement order and 𝑙(𝑟) denotes the number of parts of any composition 𝑟, and where
k(𝑞, 𝑝) is defined as follows: When 𝑞 ≤ 𝑝, we can write 𝑞 as a concatenation 𝑞(1)𝑞(2) · · · 𝑞(𝑘) with each
𝑞(𝑖) being a composition of the 𝑖-th entry of 𝑝, and then we set k(𝑞, 𝑝) to be 𝑙(𝑞(1))𝑙(𝑞(2)) · · · 𝑙(𝑞(𝑘)).

EXAMPLES:

sage: DA = DescentAlgebra(QQ, 4)
sage: B = DA.B()
sage: I = DA.I()
sage: list(map(B, I.basis())) # indirect doctest
[B[1, 1, 1, 1],
-1/2*B[1, 1, 1, 1] + B[1, 1, 2],
-1/2*B[1, 1, 1, 1] + B[1, 2, 1],
1/3*B[1, 1, 1, 1] - 1/2*B[1, 1, 2] - 1/2*B[1, 2, 1] + B[1, 3],
-1/2*B[1, 1, 1, 1] + B[2, 1, 1],
1/4*B[1, 1, 1, 1] - 1/2*B[1, 1, 2] - 1/2*B[2, 1, 1] + B[2, 2],
1/3*B[1, 1, 1, 1] - 1/2*B[1, 2, 1] - 1/2*B[2, 1, 1] + B[3, 1],
-1/4*B[1, 1, 1, 1] + 1/3*B[1, 1, 2] + 1/3*B[1, 2, 1]
- 1/2*B[1, 3] + 1/3*B[2, 1, 1] - 1/2*B[2, 2]
- 1/2*B[3, 1] + B[4]]

a_realization()
Return a particular realization of self (the 𝐵-basis).

EXAMPLES:

5.1. Comprehensive Module List 565

Combinatorics, Release 9.7

sage: DA = DescentAlgebra(QQ, 4)
sage: DA.a_realization()
Descent algebra of 4 over Rational Field in the subset basis

idempotent
alias of DescentAlgebra.I

standard
alias of DescentAlgebra.D

subset
alias of DescentAlgebra.B

class sage.combinat.descent_algebra.DescentAlgebraBases(base)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of bases of a descent algebra.

class ElementMethods
Bases: object

to_symmetric_group_algebra()
Return self in the symmetric group algebra.

EXAMPLES:

sage: B = DescentAlgebra(QQ, 4).B()
sage: B[1,3].to_symmetric_group_algebra()
[1, 2, 3, 4] + [2, 1, 3, 4] + [3, 1, 2, 4] + [4, 1, 2, 3]
sage: I = DescentAlgebra(QQ, 4).I()
sage: elt = I(B[1,3])
sage: elt.to_symmetric_group_algebra()
[1, 2, 3, 4] + [2, 1, 3, 4] + [3, 1, 2, 4] + [4, 1, 2, 3]

class ParentMethods
Bases: object

is_commutative()
Return whether this descent algebra is commutative.

EXAMPLES:

sage: B = DescentAlgebra(QQ, 4).B()
sage: B.is_commutative()
False
sage: B = DescentAlgebra(QQ, 1).B()
sage: B.is_commutative()
True

is_field(proof=True)
Return whether this descent algebra is a field.

EXAMPLES:

sage: B = DescentAlgebra(QQ, 4).B()
sage: B.is_field()
False
sage: B = DescentAlgebra(QQ, 1).B()

(continues on next page)

566 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

(continued from previous page)

sage: B.is_field()
True

to_symmetric_group_algebra()
Morphism from self to the symmetric group algebra.

EXAMPLES:

sage: D = DescentAlgebra(QQ, 4).D()
sage: D.to_symmetric_group_algebra(D[1,3])
[2, 1, 4, 3] + [3, 1, 4, 2] + [3, 2, 4, 1] + [4, 1, 3, 2] + [4, 2, 3, 1]
sage: B = DescentAlgebra(QQ, 4).B()
sage: B.to_symmetric_group_algebra(B[1,2,1])
[1, 2, 3, 4] + [1, 2, 4, 3] + [1, 3, 4, 2] + [2, 1, 3, 4]
+ [2, 1, 4, 3] + [2, 3, 4, 1] + [3, 1, 2, 4] + [3, 1, 4, 2]
+ [3, 2, 4, 1] + [4, 1, 2, 3] + [4, 1, 3, 2] + [4, 2, 3, 1]

to_symmetric_group_algebra_on_basis(S)
Return the basis element index by S as a linear combination of basis elements in the symmetric group
algebra.

EXAMPLES:

sage: B = DescentAlgebra(QQ, 3).B()
sage: [B.to_symmetric_group_algebra_on_basis(c)
....: for c in Compositions(3)]
[[1, 2, 3] + [1, 3, 2] + [2, 1, 3]
+ [2, 3, 1] + [3, 1, 2] + [3, 2, 1],
[1, 2, 3] + [2, 1, 3] + [3, 1, 2],
[1, 2, 3] + [1, 3, 2] + [2, 3, 1],
[1, 2, 3]]
sage: I = DescentAlgebra(QQ, 3).I()
sage: [I.to_symmetric_group_algebra_on_basis(c)
....: for c in Compositions(3)]
[[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1]
+ [3, 1, 2] + [3, 2, 1],
1/2*[1, 2, 3] - 1/2*[1, 3, 2] + 1/2*[2, 1, 3]
- 1/2*[2, 3, 1] + 1/2*[3, 1, 2] - 1/2*[3, 2, 1],
1/2*[1, 2, 3] + 1/2*[1, 3, 2] - 1/2*[2, 1, 3]
+ 1/2*[2, 3, 1] - 1/2*[3, 1, 2] - 1/2*[3, 2, 1],
1/3*[1, 2, 3] - 1/6*[1, 3, 2] - 1/6*[2, 1, 3]
- 1/6*[2, 3, 1] - 1/6*[3, 1, 2] + 1/3*[3, 2, 1]]

super_categories()
The super categories of self.

EXAMPLES:

sage: from sage.combinat.descent_algebra import DescentAlgebraBases
sage: DA = DescentAlgebra(QQ, 4)
sage: bases = DescentAlgebraBases(DA)
sage: bases.super_categories()
[Category of finite dimensional algebras with basis over Rational Field,
Category of realizations of Descent algebra of 4 over Rational Field]

5.1. Comprehensive Module List 567

Combinatorics, Release 9.7

5.1.73 Combinatorial designs and incidence structures

All designs can be accessed by designs.<tab> and are listed in the design catalog:

• Catalog of designs

Design-related classes

• Incidence structures (i.e. hypergraphs, i.e. set systems)

• Covering designs: coverings of t-element subsets of a v-set by k-sets

Constructions

• Block designs

• Balanced Incomplete Block Designs (BIBD)

• Resolvable Balanced Incomplete Block Design (RBIBD)

• Group-Divisible Designs (GDD)

• Mutually Orthogonal Latin Squares (MOLS)

• Orthogonal arrays (OA)

• Orthogonal arrays (build recursive constructions)

• Orthogonal arrays (find recursive constructions)

• Difference families

• Difference Matrices

• Steiner Quadruple Systems

• Two-graphs

• Database of small combinatorial designs

• Database of generalised quadrangles with spread

Technical things

• External Representations of Block Designs

• Cython functions for combinatorial designs

• Hypergraph isomorphic copy search

• Evenly distributed sets in finite fields

5.1.74 Balanced Incomplete Block Designs (BIBD)

This module gathers everything related to Balanced Incomplete Block Designs. One can build a BIBD (or check that
it can be built) with balanced_incomplete_block_design():

sage: BIBD = designs.balanced_incomplete_block_design(7,3,1)

In particular, Sage can build a (𝑣, 𝑘, 1)-BIBD when one exists for all 𝑘 ≤ 5. The following functions are available:

568 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

balanced_incomplete_block_design()Return a BIBD of parameters 𝑣, 𝑘, 𝜆.
BIBD_from_TD() Return a BIBD through TD-based constructions.
BIBD_from_difference_family()Return the BIBD associated to the difference family D on the group G.
BIBD_from_PBD() Return a (𝑣, 𝑘, 1)-BIBD from a (𝑟,𝐾)-PBD where 𝑟 = (𝑣 − 1)/(𝑘 − 1).
PBD_from_TD() Return a (𝑘𝑡, {𝑘, 𝑡})-PBD if 𝑢 = 0 and a (𝑘𝑡+ 𝑢, {𝑘, 𝑘 + 1, 𝑡, 𝑢})-PBD other-

wise.
steiner_triple_system() Return a Steiner Triple System.
v_5_1_BIBD() Return a (𝑣, 5, 1)-BIBD.
v_4_1_BIBD() Return a (𝑣, 4, 1)-BIBD.
PBD_4_5_8_9_12() Return a (𝑣, {4, 5, 8, 9, 12})-PBD on 𝑣 elements.
BIBD_5q_5_for_q_prime_power()Return a (5𝑞, 5, 1)-BIBD with 𝑞 ≡ 1 (mod 4) a prime power.

Construction of BIBD when 𝑘 = 4

Decompositions of 𝐾𝑣 into 𝐾4 (i.e. (𝑣, 4, 1)-BIBD) are built following Douglas Stinson’s construction as pre-
sented in [Stinson2004] page 167. It is based upon the construction of (𝑣{4, 5, 8, 9, 12})-PBD (see the doc of
PBD_4_5_8_9_12()), knowing that a (𝑣{4, 5, 8, 9, 12})-PBD on 𝑣 points can always be transformed into a ((𝑘 −
1)𝑣 + 1, 4, 1)-BIBD, which covers all possible cases of (𝑣, 4, 1)-BIBD.

Construction of BIBD when 𝑘 = 5

Decompositions of 𝐾𝑣 into 𝐾4 (i.e. (𝑣, 4, 1)-BIBD) are built following Clayton Smith’s construction [ClaytonSmith].

Functions

sage.combinat.designs.bibd.BIBD
alias of sage.combinat.designs.bibd.BalancedIncompleteBlockDesign

sage.combinat.designs.bibd.BIBD_5q_5_for_q_prime_power(q)
Return a (5𝑞, 5, 1)-BIBD with 𝑞 ≡ 1 (mod 4) a prime power.

See Theorem 24 [ClaytonSmith].

INPUT:

• q (integer) – a prime power such that 𝑞 ≡ 1 (mod 4).

EXAMPLES:

sage: from sage.combinat.designs.bibd import BIBD_5q_5_for_q_prime_power
sage: for q in [25, 45, 65, 85, 125, 145, 185, 205, 305, 405, 605]: # long time
....: _ = BIBD_5q_5_for_q_prime_power(q/5) # long time

sage.combinat.designs.bibd.BIBD_from_PBD(PBD, v, k, check=True, base_cases=None)
Return a (𝑣, 𝑘, 1)-BIBD from a (𝑟,𝐾)-PBD where 𝑟 = (𝑣 − 1)/(𝑘 − 1).

This is Theorem 7.20 from [Stinson2004].

INPUT:

• v,k – integers.

• PBD – A PBD on 𝑟 = (𝑣 − 1)/(𝑘 − 1) points, such that for any block of PBD of size 𝑠 there must exist a
((𝑘 − 1)𝑠+ 1, 𝑘, 1)-BIBD.

• check (boolean) – whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

5.1. Comprehensive Module List 569

Combinatorics, Release 9.7

• base_cases – caching system, for internal use.

EXAMPLES:

sage: from sage.combinat.designs.bibd import PBD_4_5_8_9_12
sage: from sage.combinat.designs.bibd import BIBD_from_PBD
sage: from sage.combinat.designs.bibd import is_pairwise_balanced_design
sage: PBD = PBD_4_5_8_9_12(17)
sage: bibd = is_pairwise_balanced_design(BIBD_from_PBD(PBD,52,4),52,[4])

sage.combinat.designs.bibd.BIBD_from_TD(v, k, existence=False)
Return a BIBD through TD-based constructions.

INPUT:

• v,k – (integers) computes a (𝑣, 𝑘, 1)-BIBD.

• existence – (boolean) instead of building the design, return:

– True – meaning that Sage knows how to build the design

– Unknown – meaning that Sage does not know how to build the design, but that the design may exist
(see sage.misc.unknown)

– False – meaning that the design does not exist

This method implements three constructions:

• If there exists a 𝑇𝐷(𝑘, 𝑣) and a (𝑣, 𝑘, 1)-BIBD then there exists a (𝑘𝑣, 𝑘, 1)-BIBD.

The BIBD is obtained from all blocks of the 𝑇𝐷, and from the blocks of the (𝑣, 𝑘, 1)-BIBDs defined over
the 𝑘 groups of the 𝑇𝐷.

• If there exists a 𝑇𝐷(𝑘, 𝑣) and a (𝑣 + 1, 𝑘, 1)-BIBD then there exists a (𝑘𝑣 + 1, 𝑘, 1)-BIBD.

The BIBD is obtained from all blocks of the 𝑇𝐷, and from the blocks of the (𝑣 + 1, 𝑘, 1)-BIBDs defined
over the sets 𝑉1 ∪∞, . . . , 𝑉𝑘 ∪∞ where the 𝑉1, . . . , 𝑉𝑘 are the groups of the TD.

• If there exists a 𝑇𝐷(𝑘, 𝑣) and a (𝑣 + 𝑘, 𝑘, 1)-BIBD then there exists a (𝑘𝑣 + 𝑘, 𝑘, 1)-BIBD.

The BIBD is obtained from all blocks of the 𝑇𝐷, and from the blocks of the (𝑣 + 𝑘, 𝑘, 1)-BIBDs defined
over the sets 𝑉1∪{∞1, . . . ,∞𝑘}, . . . , 𝑉𝑘∪{∞1, . . . ,∞𝑘}where the 𝑉1, . . . , 𝑉𝑘 are the groups of the TD.
By making sure that all copies of the (𝑣 + 𝑘, 𝑘, 1)-BIBD contain the block {∞1, . . . ,∞𝑘}, the result is
also a BIBD.

These constructions can be found in http://www.argilo.net/files/bibd.pdf.

EXAMPLES:

First construction:

sage: from sage.combinat.designs.bibd import BIBD_from_TD
sage: BIBD_from_TD(25,5,existence=True)
True
sage: _ = BlockDesign(25,BIBD_from_TD(25,5))

Second construction:

sage: from sage.combinat.designs.bibd import BIBD_from_TD
sage: BIBD_from_TD(21,5,existence=True)
True
sage: _ = BlockDesign(21,BIBD_from_TD(21,5))

570 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown
http://www.argilo.net/files/bibd.pdf

Combinatorics, Release 9.7

Third construction:

sage: from sage.combinat.designs.bibd import BIBD_from_TD
sage: BIBD_from_TD(85,5,existence=True)
True
sage: _ = BlockDesign(85,BIBD_from_TD(85,5))

No idea:

sage: from sage.combinat.designs.bibd import BIBD_from_TD
sage: BIBD_from_TD(20,5,existence=True)
Unknown
sage: BIBD_from_TD(20,5)
Traceback (most recent call last):
...
NotImplementedError: I do not know how to build a (20,5,1)-BIBD!

sage.combinat.designs.bibd.BIBD_from_arc_in_desarguesian_projective_plane(n, k,
existence=False)

Return a (𝑛, 𝑘, 1)-BIBD from a maximal arc in a projective plane.

This function implements a construction from Denniston [Denniston69], who describes a maximal arc in a
Desarguesian Projective Plane of order 2𝑘. From two powers of two 𝑛, 𝑞 with 𝑛 < 𝑞, it produces a
((𝑛− 1)(𝑞 + 1) + 1, 𝑛, 1)-BIBD.

INPUT:

• n,k (integers) – must be powers of two (among other restrictions).

• existence (boolean) – whether to return the BIBD obtained through this construction (default), or to
merely indicate with a boolean return value whether this method can build the requested BIBD.

EXAMPLES:

A (232, 8, 1)-BIBD:

sage: from sage.combinat.designs.bibd import BIBD_from_arc_in_desarguesian_
→˓projective_plane
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: D = BIBD_from_arc_in_desarguesian_projective_plane(232,8)
sage: BalancedIncompleteBlockDesign(232,D)
(232,8,1)-Balanced Incomplete Block Design

A (120, 8, 1)-BIBD:

sage: D = BIBD_from_arc_in_desarguesian_projective_plane(120,8)
sage: BalancedIncompleteBlockDesign(120,D)
(120,8,1)-Balanced Incomplete Block Design

Other parameters:

sage: all(BIBD_from_arc_in_desarguesian_projective_plane(n,k,existence=True)
....: for n,k in
....: [(120, 8), (232, 8), (456, 8), (904, 8), (496, 16),
....: (976, 16), (1936, 16), (2016, 32), (4000, 32), (8128, 64)])
True

Of course, not all can be built this way:

5.1. Comprehensive Module List 571

Combinatorics, Release 9.7

sage: BIBD_from_arc_in_desarguesian_projective_plane(7,3,existence=True)
False
sage: BIBD_from_arc_in_desarguesian_projective_plane(7,3)
Traceback (most recent call last):
...
ValueError: This function cannot produce a (7,3,1)-BIBD

REFERENCE:

sage.combinat.designs.bibd.BIBD_from_difference_family(G, D, lambd=None, check=True)
Return the BIBD associated to the difference family D on the group G.

Let 𝐺 be a group. A (𝐺, 𝑘, 𝜆)-difference family is a family 𝐵 = {𝐵1, 𝐵2, . . . , 𝐵𝑏} of 𝑘-subsets of 𝐺 such that
for each element of 𝐺∖{0} there exists exactly 𝜆 pairs of elements (𝑥, 𝑦), 𝑥 and 𝑦 belonging to the same block,
such that 𝑥− 𝑦 = 𝑔 (or x y^{-1} = g` in multiplicative notation).

If {𝐵1, 𝐵2, . . . , 𝐵𝑏} is a (𝐺, 𝑘, 𝜆)-difference family then its set of translates {𝐵𝑖 · 𝑔; 𝑖 ∈ {1, . . . , 𝑏}, 𝑔 ∈ 𝐺} is a
(𝑣, 𝑘, 𝜆)-BIBD where 𝑣 is the cardinality of 𝐺.

INPUT:

• G - a finite additive Abelian group

• D - a difference family on G (short blocks are allowed).

• lambd - the 𝜆 parameter (optional, only used if check is True)

• check - whether or not we check the output (default: True)

EXAMPLES:

sage: G = Zmod(21)
sage: D = [[0,1,4,14,16]]
sage: sorted(G(x-y) for x in D[0] for y in D[0] if x != y)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

sage: from sage.combinat.designs.bibd import BIBD_from_difference_family
sage: BIBD_from_difference_family(G, D)
[[0, 1, 4, 14, 16],
[1, 2, 5, 15, 17],
[2, 3, 6, 16, 18],
[3, 4, 7, 17, 19],
[4, 5, 8, 18, 20],
[5, 6, 9, 19, 0],
[6, 7, 10, 20, 1],
[7, 8, 11, 0, 2],
[8, 9, 12, 1, 3],
[9, 10, 13, 2, 4],
[10, 11, 14, 3, 5],
[11, 12, 15, 4, 6],
[12, 13, 16, 5, 7],
[13, 14, 17, 6, 8],
[14, 15, 18, 7, 9],
[15, 16, 19, 8, 10],
[16, 17, 20, 9, 11],
[17, 18, 0, 10, 12],
[18, 19, 1, 11, 13],

(continues on next page)

572 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[19, 20, 2, 12, 14],
[20, 0, 3, 13, 15]]

class sage.combinat.designs.bibd.BalancedIncompleteBlockDesign(points, blocks, k=None, lambd=1,
check=True, copy=True, **kwds)

Bases: sage.combinat.designs.bibd.PairwiseBalancedDesign

Balanced Incomplete Block Design (BIBD)

INPUT:

• points – the underlying set. If points is an integer 𝑣, then the set is considered to be {0, ..., 𝑣 − 1}.

• blocks – collection of blocks

• k (integer) – size of the blocks. Set to None (automatic guess) by default.

• lambd (integer) – value of 𝜆, set to 1 by default.

• check (boolean) – whether to check that the design is a 𝑃𝐵𝐷 with the right parameters.

• copy – (use with caution) if set to False then blocks must be a list of lists of integers. The list will not
be copied but will be modified in place (each block is sorted, and the whole list is sorted). Your blocks
object will become the instance’s internal data.

EXAMPLES:

sage: b=designs.balanced_incomplete_block_design(9,3); b
(9,3,1)-Balanced Incomplete Block Design

arc(s, solver=2, verbose=None, integrality_tolerance=0)
Return the s-arc with maximum cardinality.

A 𝑠-arc is a subset of points in a BIBD that intersects each block on at most 𝑠 points. It is one possible
generalization of independent set for graphs.

A simple counting shows that the cardinality of a 𝑠-arc is at most (𝑠− 1) * 𝑟+ 1 where 𝑟 is the number of
blocks incident to any point. A 𝑠-arc in a BIBD with cardinality (𝑠 − 1) * 𝑟 + 1 is called maximal and is
characterized by the following property: it is not empty and each block either contains 0 or 𝑠 points of this
arc. Equivalently, the trace of the BIBD on these points is again a BIBD (with block size 𝑠).

For more informations, see Wikipedia article Arc_(projective_geometry).

INPUT:

• s - (default to 2) the maximum number of points from the arc in each block

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If
set to None, the default one is used. For more information on MILP solvers and which default solver
is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see
MixedIntegerLinearProgram.get_values().

EXAMPLES:

sage: B = designs.balanced_incomplete_block_design(21, 5)
sage: a2 = B.arc()
sage: a2 # random

(continues on next page)

5.1. Comprehensive Module List 573

https://en.wikipedia.org/wiki/Arc_(projective_geometry)
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.get_values

Combinatorics, Release 9.7

(continued from previous page)

[5, 9, 10, 12, 15, 20]
sage: len(a2)
6
sage: a4 = B.arc(4)
sage: a4 # random
[0, 1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20]
sage: len(a4)
16

The 2-arc and 4-arc above are maximal. One can check that they intersect the blocks in either 0 or 𝑠 points.
Or equivalently that the traces are again BIBD:

sage: r = (21-1)//(5-1)
sage: 1 + r*1
6
sage: 1 + r*3
16

sage: B.trace(a2).is_t_design(2, return_parameters=True)
(True, (2, 6, 2, 1))
sage: B.trace(a4).is_t_design(2, return_parameters=True)
(True, (2, 16, 4, 1))

Some other examples which are not maximal:

sage: B = designs.balanced_incomplete_block_design(25, 4)
sage: a2 = B.arc(2)
sage: r = (25-1)//(4-1)
sage: len(a2), 1 + r
(8, 9)
sage: sa2 = set(a2)
sage: set(len(sa2.intersection(b)) for b in B.blocks())
{0, 1, 2}
sage: B.trace(a2).is_t_design(2)
False

sage: a3 = B.arc(3)
sage: len(a3), 1 + 2*r
(15, 17)
sage: sa3 = set(a3)
sage: set(len(sa3.intersection(b)) for b in B.blocks()) == set([0,3])
False
sage: B.trace(a3).is_t_design(3)
False

sage.combinat.designs.bibd.BruckRyserChowla_check(v, k, lambd)
Check whether the parameters passed satisfy the Bruck-Ryser-Chowla theorem.

For more information on the theorem, see the corresponding Wikipedia entry.

INPUT:

• v, k, lambd – integers; parameters to check

OUTPUT:

574 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Bruck\T1\textendash {}Ryser\T1\textendash {}Chowla_theorem

Combinatorics, Release 9.7

• True – the parameters satisfy the theorem

• False – the theorem fails for the given parameters

• Unknown – the preconditions of the theorem are not met

EXAMPLES:

sage: from sage.combinat.designs.bibd import BruckRyserChowla_check sage: BruckRyser-
Chowla_check(22,7,2) False

Nonexistence of projective planes of order 6 and 14

sage: from sage.combinat.designs.bibd import BruckRyserChowla_check sage: BruckRyser-
Chowla_check(43,7,1) False sage: BruckRyserChowla_check(211,15,1) False

Existence of symmetric BIBDs with parameters (79, 13, 2) and (56, 11, 2)

sage: from sage.combinat.designs.bibd import BruckRyserChowla_check sage: BruckRyser-
Chowla_check(79,13,2) True sage: BruckRyserChowla_check(56,11,2) True

sage.combinat.designs.bibd.PBD_4_5_8_9_12(v, check=True)
Return a (𝑣, {4, 5, 8, 9, 12})-PBD on 𝑣 elements.

A (𝑣, {4, 5, 8, 9, 12})-PBD exists if and only if 𝑣 ≡ 0, 1 (mod 4). The construction implemented here appears
page 168 in [Stinson2004].

INPUT:

• v – an integer congruent to 0 or 1 modulo 4.

• check (boolean) – whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

EXAMPLES:

sage: designs.balanced_incomplete_block_design(40,4).blocks() # indirect doctest
[[0, 1, 2, 12], [0, 3, 6, 9], [0, 4, 8, 10],
[0, 5, 7, 11], [0, 13, 26, 39], [0, 14, 25, 28],
[0, 15, 27, 38], [0, 16, 22, 32], [0, 17, 23, 34],
...

Check that trac ticket #16476 is fixed:

sage: from sage.combinat.designs.bibd import PBD_4_5_8_9_12
sage: for v in (0,1,4,5,8,9,12,13,16,17,20,21,24,25):
....: _ = PBD_4_5_8_9_12(v)

sage.combinat.designs.bibd.PBD_from_TD(k, t, u)
Return a (𝑘𝑡, {𝑘, 𝑡})-PBD if 𝑢 = 0 and a (𝑘𝑡+ 𝑢, {𝑘, 𝑘 + 1, 𝑡, 𝑢})-PBD otherwise.

This is theorem 23 from [ClaytonSmith]. The PBD is obtained from the blocks a truncated 𝑇𝐷(𝑘 + 1, 𝑡), to
which are added the blocks corresponding to the groups of the TD. When 𝑢 = 0, a 𝑇𝐷(𝑘, 𝑡) is used instead.

INPUT:

• k,t,u – integers such that 0 ≤ 𝑢 ≤ 𝑡.

EXAMPLES:

5.1. Comprehensive Module List 575

https://trac.sagemath.org/16476

Combinatorics, Release 9.7

sage: from sage.combinat.designs.bibd import PBD_from_TD
sage: from sage.combinat.designs.bibd import is_pairwise_balanced_design
sage: PBD = PBD_from_TD(2,2,1); PBD
[[0, 2, 4], [0, 3], [1, 2], [1, 3, 4], [0, 1], [2, 3]]
sage: is_pairwise_balanced_design(PBD,2*2+1,[2,3])
True

class sage.combinat.designs.bibd.PairwiseBalancedDesign(points, blocks, K=None, lambd=1,
check=True, copy=True, **kwds)

Bases: sage.combinat.designs.group_divisible_designs.GroupDivisibleDesign

Pairwise Balanced Design (PBD)

A Pairwise Balanced Design, or (𝑣,𝐾, 𝜆)-PBD, is a collection ℬ of blocks defined on a set 𝑋 of size 𝑣, such
that any block pair of points 𝑝1, 𝑝2 ∈ 𝑋 occurs in exactly 𝜆 blocks of ℬ. Besides, for every block 𝐵 ∈ ℬ we
must have |𝐵| ∈ 𝐾.

INPUT:

• points – the underlying set. If points is an integer 𝑣, then the set is considered to be {0, ..., 𝑣 − 1}.

• blocks – collection of blocks

• K – list of integers of which the sizes of the blocks must be elements. Set to None (automatic guess) by
default.

• lambd (integer) – value of 𝜆, set to 1 by default.

• check (boolean) – whether to check that the design is a 𝑃𝐵𝐷 with the right parameters.

• copy – (use with caution) if set to False then blocks must be a list of lists of integers. The list will not
be copied but will be modified in place (each block is sorted, and the whole list is sorted). Your blocks
object will become the instance’s internal data.

sage.combinat.designs.bibd.balanced_incomplete_block_design(v, k, lambd=1, existence=False,
use_LJCR=False)

Return a BIBD of parameters 𝑣, 𝑘, 𝜆.

A Balanced Incomplete Block Design of parameters 𝑣, 𝑘, 𝜆 is a collection 𝒞 of 𝑘-subsets of 𝑉 = {0, . . . , 𝑣− 1}
such that for any two distinct elements 𝑥, 𝑦 ∈ 𝑉 there are 𝜆 elements 𝑆 ∈ 𝒞 such that 𝑥, 𝑦 ∈ 𝑆.

For more information on BIBD, see the corresponding Wikipedia entry.

INPUT:

• v,k,lambd (integers)

• existence (boolean) – instead of building the design, return:

– True – meaning that Sage knows how to build the design

– Unknown – meaning that Sage does not know how to build the design, but that the design may exist
(see sage.misc.unknown).

– False – meaning that the design does not exist.

• use_LJCR (boolean) – whether to query the La Jolla Covering Repository for the design when Sage does
not know how to build it (see best_known_covering_design_www()). This requires internet.

See also:

• steiner_triple_system()

• v_4_1_BIBD()

576 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Block_design#Definition_of_a_BIBD_.28or_2-design.29
../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

• v_5_1_BIBD()

Todo: Implement other constructions from the Handbook of Combinatorial Designs.

EXAMPLES:

sage: designs.balanced_incomplete_block_design(7, 3, 1).blocks()
[[0, 1, 3], [0, 2, 4], [0, 5, 6], [1, 2, 6], [1, 4, 5], [2, 3, 5], [3, 4, 6]]
sage: B = designs.balanced_incomplete_block_design(66, 6, 1, use_LJCR=True) #␣
→˓optional - internet
sage: B # optional -␣
→˓internet
(66,6,1)-Balanced Incomplete Block Design
sage: B.blocks() # optional -␣
→˓internet
[[0, 1, 2, 3, 4, 65], [0, 5, 22, 32, 38, 58], [0, 6, 21, 30, 43, 48], ...
sage: designs.balanced_incomplete_block_design(216, 6, 1)
Traceback (most recent call last):
...
NotImplementedError: I don't know how to build a (216,6,1)-BIBD!

sage.combinat.designs.bibd.biplane(n, existence=False)
Return a biplane of order 𝑛.

A biplane of order 𝑛 is a symmetric (1 + (𝑛+1)(𝑛+2)
2 , 𝑛+ 2, 2)-BIBD. A symmetric (or square) (𝑣, 𝑘, 𝜆)-BIBD

is a (𝑣, 𝑘, 𝜆)-BIBD with 𝑣 blocks.

INPUT:

• n – (integer) order of the biplane

• existence (boolean) – instead of building the design, return:

– True – meaning that Sage knows how to build the design

– Unknown – meaning that Sage does not know how to build the design, but that the design may exist
(see sage.misc.unknown).

– False – meaning that the design does not exist.

See also:

• balanced_incomplete_block_design()

EXAMPLES:

sage: designs.biplane(4)
(16,6,2)-Balanced Incomplete Block Design
sage: designs.biplane(7, existence=True)
True
sage: designs.biplane(11)
(79,13,2)-Balanced Incomplete Block Design

sage.combinat.designs.bibd.steiner_triple_system(n)
Return a Steiner Triple System

5.1. Comprehensive Module List 577

../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

A Steiner Triple System (STS) of a set {0, ..., 𝑛− 1} is a family 𝑆 of 3-sets such that for any 𝑖 ̸= 𝑗 there exists
exactly one set of 𝑆 in which they are both contained.

It can alternatively be thought of as a factorization of the complete graph 𝐾𝑛 with triangles.

A Steiner Triple System of a 𝑛-set exists if and only if 𝑛 ≡ 1 (mod 6) or 𝑛 ≡ 3 (mod 6), in which case one
can be found through Bose’s and Skolem’s constructions, respectively [AndHonk97].

INPUT:

• n return a Steiner Triple System of {0, ..., 𝑛− 1}

EXAMPLES:

A Steiner Triple System on 9 elements

sage: sts = designs.steiner_triple_system(9)
sage: sts
(9,3,1)-Balanced Incomplete Block Design
sage: list(sts)
[[0, 1, 5], [0, 2, 4], [0, 3, 6], [0, 7, 8], [1, 2, 3],
[1, 4, 7], [1, 6, 8], [2, 5, 8], [2, 6, 7], [3, 4, 8],
[3, 5, 7], [4, 5, 6]]

As any pair of vertices is covered once, its parameters are

sage: sts.is_t_design(return_parameters=True)
(True, (2, 9, 3, 1))

An exception is raised for invalid values of n

sage: designs.steiner_triple_system(10)
Traceback (most recent call last):
...
EmptySetError: Steiner triple systems only exist for n = 1 mod 6 or n = 3 mod 6

REFERENCE:

sage.combinat.designs.bibd.v_4_1_BIBD(v, check=True)
Return a (𝑣, 4, 1)-BIBD.

A (𝑣, 4, 1)-BIBD is an edge-decomposition of the complete graph 𝐾𝑣 into copies of 𝐾4. For more information,
see balanced_incomplete_block_design(). It exists if and only if 𝑣 ≡ 1, 4 (mod 12).

See page 167 of [Stinson2004] for the construction details.

See also:

• balanced_incomplete_block_design()

INPUT:

• v (integer) – number of points.

• check (boolean) – whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

EXAMPLES:

578 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.designs.bibd import v_4_1_BIBD # long time
sage: for n in range(13,100): # long time
....: if n%12 in [1,4]: # long time
....: _ = v_4_1_BIBD(n, check = True) # long time

sage.combinat.designs.bibd.v_5_1_BIBD(v, check=True)
Return a (𝑣, 5, 1)-BIBD.

This method follows the construction from [ClaytonSmith].

INPUT:

• v (integer)

See also:

• balanced_incomplete_block_design()

EXAMPLES:

sage: from sage.combinat.designs.bibd import v_5_1_BIBD
sage: i = 0
sage: while i<200:
....: i += 20
....: _ = v_5_1_BIBD(i+1)
....: _ = v_5_1_BIBD(i+5)

5.1.75 Resolvable Balanced Incomplete Block Design (RBIBD)

This module contains everything related to resolvable Balanced Incomplete Block Designs. The constructions imple-
mented here can be obtained through the designs.<tab> object:

designs.resolvable_balanced_incomplete_block_design(15,3)

For Balanced Incomplete Block Design (BIBD) see the module bibd . A BIBD is said to be resolvable if its blocks
can be partitionned into parallel classes, i.e. partitions of its ground set.

The main function of this module is resolvable_balanced_incomplete_block_design(), which calls all others.

resolvable_balanced_incomplete_block_design()Return a resolvable BIBD of parameters 𝑣, 𝑘.
kirkman_triple_system() Return a Kirkman Triple System on 𝑣 points.
v_4_1_rbibd() Return a (𝑣, 4, 1)-RBIBD
PBD_4_7() Return a (𝑣, {4, 7})-PBD
PBD_4_7_from_Y() Return a (3𝑣 + 1, {4, 7})-PBD from a (𝑣, {4, 5, 7},N− {3, 6, 10})-GDD.

References:

5.1. Comprehensive Module List 579

Combinatorics, Release 9.7

Functions

sage.combinat.designs.resolvable_bibd.PBD_4_7(v, check=True, existence=False)
Return a (𝑣, {4, 7})-PBD

For all 𝑣 such that 𝑛 ≡ 1 (mod 3) and 𝑛 ̸= 10, 19, 31 there exists a (𝑣, {4, 7})-PBD. This is proved in Proposi-
tion IX.4.5 from [BJL99], which this method implements.

This construction of PBD is used by the construction of Kirkman Triple Systems.

EXAMPLES:

sage: from sage.combinat.designs.resolvable_bibd import PBD_4_7
sage: PBD_4_7(22)
Pairwise Balanced Design on 22 points with sets of sizes in [4, 7]

sage.combinat.designs.resolvable_bibd.PBD_4_7_from_Y(gdd, check=True)
Return a (3𝑣 + 1, {4, 7})-PBD from a (𝑣, {4, 5, 7},N− {3, 6, 10})-GDD.

This implements Lemma IX.3.11 from [BJL99] (p.625). All points of the GDD are tripled, and a +∞ point is
added to the design.

• A group of size 𝑠 ∈ 𝑌 = N−{3, 6, 10} becomes a set of size 3𝑠. Adding∞ to it gives it size 3𝑠+ 1, and
this set is then replaced by a (3𝑠+ 1, {4, 7})-PBD.

• A block of size 𝑠 ∈ {4, 5, 7} becomes a (3𝑠, {4, 7}, {3})-GDD.

This lemma is part of the existence proof of (𝑣, {4, 7})-PBD as explained in IX.4.5 from [BJL99]).

INPUT:

• gdd – a (𝑣, {4, 5, 7}, 𝑌)-GDD where 𝑌 = N− {3, 6, 10}.

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

EXAMPLES:

sage: from sage.combinat.designs.resolvable_bibd import PBD_4_7_from_Y
sage: PBD_4_7_from_Y(designs.transversal_design(7,8))
Pairwise Balanced Design on 169 points with sets of sizes in [4, 7]

sage.combinat.designs.resolvable_bibd.kirkman_triple_system(v, existence=False)
Return a Kirkman Triple System on 𝑣 points.

A Kirkman Triple System𝐾𝑇𝑆(𝑣) is a resolvable Steiner Triple System. It exists if and only if 𝑣 ≡ 3 (mod 6).

INPUT:

• 𝑛 (integer)

• existence (boolean; False by default) – whether to build the 𝐾𝑇𝑆(𝑛) or only answer whether it exists.

See also:

IncidenceStructure.is_resolvable()

EXAMPLES:

A solution to Kirkmman’s original problem:

580 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: kts = designs.kirkman_triple_system(15)
sage: classes = kts.is_resolvable(1)[1]
sage: names = '0123456789abcde'
sage: def to_name(r_s_t):
....: r, s, t = r_s_t
....: return ' ' + names[r] + names[s] + names[t] + ' '
sage: rows = [' '.join(('Day {}'.format(i) for i in range(1,8)))]
sage: rows.extend(' '.join(map(to_name,row)) for row in zip(*classes))
sage: print('\n'.join(rows))
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
07e 18e 29e 3ae 4be 5ce 6de
139 24a 35b 46c 05d 167 028
26b 03c 14d 257 368 049 15a
458 569 06a 01b 12c 23d 347
acd 7bd 78c 89d 79a 8ab 9bc

sage.combinat.designs.resolvable_bibd.resolvable_balanced_incomplete_block_design(v, k, exis-
tence=False)

Return a resolvable BIBD of parameters 𝑣, 𝑘.

A BIBD is said to be resolvable if its blocks can be partitionned into parallel classes, i.e. partitions of the ground
set.

INPUT:

• v,k (integers)

• existence (boolean) – instead of building the design, return:

– True – meaning that Sage knows how to build the design

– Unknown – meaning that Sage does not know how to build the design, but that the design may exist
(see sage.misc.unknown).

– False – meaning that the design does not exist.

See also:

• IncidenceStructure.is_resolvable()

• balanced_incomplete_block_design()

EXAMPLES:

sage: KTS15 = designs.resolvable_balanced_incomplete_block_design(15,3); KTS15
(15,3,1)-Balanced Incomplete Block Design
sage: KTS15.is_resolvable()
True

sage.combinat.designs.resolvable_bibd.v_4_1_rbibd(v, existence=False)
Return a (𝑣, 4, 1)-RBIBD.

INPUT:

• 𝑛 (integer)

• existence (boolean; False by default) – whether to build the design or only answer whether it exists.

See also:

5.1. Comprehensive Module List 581

../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

• IncidenceStructure.is_resolvable()

• resolvable_balanced_incomplete_block_design()

Note: A resolvable (𝑣, 4, 1)-BIBD exists whenever 1 ≡ 4 (mod ()12). This function, however, only imple-
ments a construction of (𝑣, 4, 1)-BIBD such that 𝑣 = 3𝑞 + 1 ≡ 1 (mod 3) where 𝑞 is a prime power (see
VII.7.5.a from [BJL99]).

EXAMPLES:

sage: rBIBD = designs.resolvable_balanced_incomplete_block_design(28,4)
sage: rBIBD.is_resolvable()
True
sage: rBIBD.is_t_design(return_parameters=True)
(True, (2, 28, 4, 1))

5.1.76 Group-Divisible Designs (GDD)

This module gathers everything related to Group-Divisible Designs. The constructions defined here can be accessed
through designs.<tab>:

sage: designs.group_divisible_design(14,{4},{2})
Group Divisible Design on 14 points of type 2^7

The main function implemented here is group_divisible_design() (which calls all others) and the main class is
GroupDivisibleDesign. The following functions are available:

group_divisible_design() Return a (𝑣,𝐾,𝐺)-Group Divisible Design.
GDD_4_2() Return a (2𝑞, {4}, {2})-GDD for 𝑞 a prime power with 𝑞 ≡ 1 (mod 6).

Functions

sage.combinat.designs.group_divisible_designs.GDD_4_2(q, existence=False, check=True)
Return a (2𝑞, {4}, {2})-GDD for 𝑞 a prime power with 𝑞 ≡ 1 (mod 6).

This method implements Lemma VII.5.17 from [BJL99] (p.495).

INPUT:

• q (integer)

• existence (boolean) – instead of building the design, return:

– True – meaning that Sage knows how to build the design

– Unknown – meaning that Sage does not know how to build the design, but that the design may exist
(see sage.misc.unknown).

– False – meaning that the design does not exist.

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

EXAMPLES:

582 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

sage: from sage.combinat.designs.group_divisible_designs import GDD_4_2
sage: GDD_4_2(7,existence=True)
True
sage: GDD_4_2(7)
Group Divisible Design on 14 points of type 2^7
sage: GDD_4_2(8,existence=True)
Unknown
sage: GDD_4_2(8)
Traceback (most recent call last):
...
NotImplementedError

class sage.combinat.designs.group_divisible_designs.GroupDivisibleDesign(points, groups,
blocks, G=None,
K=None, lambd=1,
check=True,
copy=True, **kwds)

Bases: sage.combinat.designs.incidence_structures.IncidenceStructure

Group Divisible Design (GDD)

Let 𝐾 and 𝐺 be sets of positive integers and let 𝜆 be a positive integer. A Group Divisible Design of index 𝜆
and order 𝑣 is a triple (𝑉,𝒢,ℬ) where:

• 𝑉 is a set of cardinality 𝑣

• 𝒢 is a partition of 𝑉 into groups whose size belongs to 𝐺

• ℬ is a family of subsets of 𝑉 whose size belongs to 𝐾 such that any two points 𝑝1, 𝑝2 ∈ 𝑉 from different
groups appear simultaneously in exactly 𝜆 elements of ℬ. Besides, a group and a block intersect on at most
one point.

If 𝐾 = {𝑘1, ..., 𝑘𝑙} and 𝐺 has exactly 𝑚𝑖 groups of cardinality 𝑘𝑖 then 𝐺 is said to have type 𝑘𝑚1
1 ...𝑘𝑚𝑙

𝑙 .

INPUT:

• points – the underlying set. If points is an integer 𝑣, then the set is considered to be {0, ..., 𝑣 − 1}.

• groups – the groups of the design. Set to None for an automatic guess (this triggers check=True and can
thus cost some time).

• blocks – collection of blocks

• G – list of integers of which the sizes of the groups must be elements. Set to None (automatic guess) by
default.

• K – list of integers of which the sizes of the blocks must be elements. Set to None (automatic guess) by
default.

• lambd (integer) – value of 𝜆, set to 1 by default.

• check (boolean) – whether to check that the design is indeed a 𝐺𝐷𝐷 with the right parameters. Set to
True by default.

• copy – (use with caution) if set to False then blocks must be a list of lists of integers. The list will not
be copied but will be modified in place (each block is sorted, and the whole list is sorted). Your blocks
object will become the instance’s internal data.

EXAMPLES:

5.1. Comprehensive Module List 583

Combinatorics, Release 9.7

sage: from sage.combinat.designs.group_divisible_designs import GroupDivisibleDesign
sage: TD = designs.transversal_design(4,10)
sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)]
sage: GDD = GroupDivisibleDesign(40,groups,TD); GDD
Group Divisible Design on 40 points of type 10^4

With unspecified groups:

sage: D = designs.transversal_design(4,3).relabel(list('abcdefghiklm'),
→˓inplace=False).blocks()
sage: GDD = GroupDivisibleDesign('abcdefghiklm',None,D)
sage: sorted(GDD.groups())
[['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 'i'], ['k', 'l', 'm']]

groups()
Return the groups of the Group-Divisible Design.

EXAMPLES:

sage: from sage.combinat.designs.group_divisible_designs import␣
→˓GroupDivisibleDesign
sage: TD = designs.transversal_design(4,10)
sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)]
sage: GDD = GroupDivisibleDesign(40,groups,TD); GDD
Group Divisible Design on 40 points of type 10^4
sage: GDD.groups()
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39]]

sage.combinat.designs.group_divisible_designs.group_divisible_design(v, K, G, existence=False,
check=False)

Return a (𝑣,𝐾,𝐺)-Group Divisible Design.

A (𝑣,𝐾,𝐺)-GDD is a pair (𝒢,ℬ) where:

• 𝒢 is a partition of 𝑋 =
⋃︀
𝒢 where |𝑋| = 𝑣

• ∀𝑆 ∈ 𝒢, |𝑆| ∈ 𝐺

• ∀𝑆 ∈ ℬ, |𝑆| ∈ 𝐾

• 𝒢 ∪ ℬ is a (𝑣,𝐾 ∪𝐺)-PBD

For more information, see the documentation of GroupDivisibleDesign or PairwiseBalancedDesign.

INPUT:

• v (integer)

• K,G (sets of integers)

• existence (boolean) – instead of building the design, return:

– True – meaning that Sage knows how to build the design

– Unknown – meaning that Sage does not know how to build the design, but that the design may exist
(see sage.misc.unknown).

– False – meaning that the design does not exist.

584 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

Note: The GDD returned by this function are defined on range(v), and its groups are sets of consecutive
integers.

EXAMPLES:

sage: designs.group_divisible_design(14,{4},{2})
Group Divisible Design on 14 points of type 2^7

5.1.77 Block designs

A block design is a set together with a family of subsets (repeated subsets are allowed) whose members are chosen to
satisfy some set of properties that are deemed useful for a particular application. See Wikipedia article Block_design.

REFERENCES:

• Block design from wikipedia: Wikipedia article Block_design

• What is a block design?, http://designtheory.org/library/extrep/extrep-1.1-html/node4.html (in ‘The External
Representation of Block Designs’ by Peter J. Cameron, Peter Dobcsanyi, John P. Morgan, Leonard H. Soicher)

AUTHORS:

• Quentin Honoré (2015): construction of Hughes plane trac ticket #18527

• Vincent Delecroix (2014): rewrite the part on projective planes trac ticket #16281

• Peter Dobcsanyi and David Joyner (2007-2008)

This is a significantly modified form of the module block_design.py (version 0.6) written by Peter Dobcsanyi
peter@designtheory.org. Thanks go to Robert Miller for lots of good design suggestions.

Todo: Implement more finite non-Desarguesian plane as in [We07] and Wikipedia article Non-Desarguesian_plane.

Functions and methods

sage.combinat.designs.block_design.AffineGeometryDesign(n, d, F, point_coordinates=True,
check=True)

Return an affine geometry design.

The affine geometry design 𝐴𝐺𝑑(𝑛, 𝑞) is the 2-design whose blocks are the 𝑑-vector subspaces in F𝑛𝑞 . It has
parameters

𝑣 = 𝑞𝑛, 𝑘 = 𝑞𝑑, 𝜆 =

(︂
𝑛− 1

𝑑− 1

)︂
𝑞

where the 𝑞-binomial coefficient
(︀
𝑚
𝑟

)︀
𝑞

is defined by(︂
𝑚

𝑟

)︂
𝑞

=
(𝑞𝑚 − 1)(𝑞𝑚−1 − 1) · · · (𝑞𝑚−𝑟+1 − 1)

(𝑞𝑟 − 1)(𝑞𝑟−1 − 1) · · · (𝑞 − 1)

5.1. Comprehensive Module List 585

https://en.wikipedia.org/wiki/Block_design
https://en.wikipedia.org/wiki/Block_design
http://designtheory.org/library/extrep/extrep-1.1-html/node4.html
https://trac.sagemath.org/18527
https://trac.sagemath.org/16281
mailto:peter@designtheory.org
https://en.wikipedia.org/wiki/Non-Desarguesian_plane

Combinatorics, Release 9.7

See also:

ProjectiveGeometryDesign()

INPUT:

• n (integer) – the Euclidean dimension. The number of points of the design is 𝑣 = |F𝑛𝑞 |.

• d (integer) – the dimension of the (affine) subspaces of F𝑛𝑞 which make up the blocks.

• F – a finite field or a prime power.

• point_coordinates – (optional, default True) whether we use coordinates in F𝑛𝑞 or plain integers for
the points of the design.

• check – (optional, default True) whether to check the output.

EXAMPLES:

sage: BD = designs.AffineGeometryDesign(3, 1, GF(2))
sage: BD.is_t_design(return_parameters=True)
(True, (2, 8, 2, 1))
sage: BD = designs.AffineGeometryDesign(3, 2, GF(4))
sage: BD.is_t_design(return_parameters=True)
(True, (2, 64, 16, 5))
sage: BD = designs.AffineGeometryDesign(4, 2, GF(3))
sage: BD.is_t_design(return_parameters=True)
(True, (2, 81, 9, 13))

With F an integer instead of a finite field:

sage: BD = designs.AffineGeometryDesign(3, 2, 4)
sage: BD.is_t_design(return_parameters=True)
(True, (2, 64, 16, 5))

Testing the option point_coordinates:

sage: designs.AffineGeometryDesign(3, 1, GF(2), point_coordinates=True).blocks()[0]
[(0, 0, 0), (0, 0, 1)]
sage: designs.AffineGeometryDesign(3, 1, GF(2), point_coordinates=False).blocks()[0]
[0, 1]

sage.combinat.designs.block_design.CremonaRichmondConfiguration()
Return the Cremona-Richmond configuration

The Cremona-Richmond configuration is a set system whose incidence graph is equal to the
TutteCoxeterGraph(). It is a generalized quadrangle of parameters (2, 2).

For more information, see the Wikipedia article Cremona-Richmond_configuration.

EXAMPLES:

sage: H = designs.CremonaRichmondConfiguration(); H
Incidence structure with 15 points and 15 blocks
sage: g = graphs.TutteCoxeterGraph()
sage: H.incidence_graph().is_isomorphic(g)
True

586 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/graphs/sage/graphs/graph_generators.html#sage.graphs.graph_generators.GraphGenerators.TutteCoxeterGraph
https://en.wikipedia.org/wiki/Cremona-Richmond_configuration

Combinatorics, Release 9.7

sage.combinat.designs.block_design.DesarguesianProjectivePlaneDesign(n,
point_coordinates=True,
check=True)

Return the Desarguesian projective plane of order n as a 2-design.

The Desarguesian projective plane of order 𝑛 can also be defined as the projective plane over a field of order 𝑛.
For more information, have a look at Wikipedia article Projective_plane.

INPUT:

• n – an integer which must be a power of a prime number

• point_coordinates (boolean) – whether to label the points with their homogeneous coordinates (default)
or with integers.

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

See also:

ProjectiveGeometryDesign()

EXAMPLES:

sage: designs.DesarguesianProjectivePlaneDesign(2)
(7,3,1)-Balanced Incomplete Block Design
sage: designs.DesarguesianProjectivePlaneDesign(3)
(13,4,1)-Balanced Incomplete Block Design
sage: designs.DesarguesianProjectivePlaneDesign(4)
(21,5,1)-Balanced Incomplete Block Design
sage: designs.DesarguesianProjectivePlaneDesign(5)
(31,6,1)-Balanced Incomplete Block Design
sage: designs.DesarguesianProjectivePlaneDesign(6)
Traceback (most recent call last):
...
ValueError: the order of a finite field must be a prime power

sage.combinat.designs.block_design.Hadamard3Design(n)
Return the Hadamard 3-design with parameters 3− (𝑛, 𝑛2 ,

𝑛
4 − 1).

This is the unique extension of the Hadamard 2-design (see HadamardDesign()). We implement the description
from pp. 12 in [CvL].

INPUT:

• n (integer) – a multiple of 4 such that 𝑛 > 4.

EXAMPLES:

sage: designs.Hadamard3Design(12)
Incidence structure with 12 points and 22 blocks

We verify that any two blocks of the Hadamard 3-design 3−(8, 4, 1) design meet in 0 or 2 points. More generally,
it is true that any two blocks of a Hadamard 3-design meet in 0 or 𝑛4 points (for 𝑛 > 4).

sage: D = designs.Hadamard3Design(8)
sage: N = D.incidence_matrix()
sage: N.transpose()*N
[4 2 2 2 2 2 2 2 2 2 2 2 2 0]

(continues on next page)

5.1. Comprehensive Module List 587

https://en.wikipedia.org/wiki/Projective_plane

Combinatorics, Release 9.7

(continued from previous page)

[2 4 2 2 2 2 2 2 2 2 2 2 0 2]
[2 2 4 2 2 2 2 2 2 2 2 0 2 2]
[2 2 2 4 2 2 2 2 2 2 0 2 2 2]
[2 2 2 2 4 2 2 2 2 0 2 2 2 2]
[2 2 2 2 2 4 2 2 0 2 2 2 2 2]
[2 2 2 2 2 2 4 0 2 2 2 2 2 2]
[2 2 2 2 2 2 0 4 2 2 2 2 2 2]
[2 2 2 2 2 0 2 2 4 2 2 2 2 2]
[2 2 2 2 0 2 2 2 2 4 2 2 2 2]
[2 2 2 0 2 2 2 2 2 2 4 2 2 2]
[2 2 0 2 2 2 2 2 2 2 2 4 2 2]
[2 0 2 2 2 2 2 2 2 2 2 2 4 2]
[0 2 2 2 2 2 2 2 2 2 2 2 2 4]

REFERENCES:

sage.combinat.designs.block_design.HadamardDesign(n)
As described in Section 1, p. 10, in [CvL]. The input n must have the property that there is a Hadamard matrix
of order 𝑛+ 1 (and that a construction of that Hadamard matrix has been implemented. . .).

EXAMPLES:

sage: designs.HadamardDesign(7)
Incidence structure with 7 points and 7 blocks
sage: print(designs.HadamardDesign(7))
Incidence structure with 7 points and 7 blocks

For example, the Hadamard 2-design with 𝑛 = 11 is a design whose parameters are 2-(11, 5, 2). We verify that
𝑁𝐽 = 5𝐽 for this design.

sage: D = designs.HadamardDesign(11); N = D.incidence_matrix()
sage: J = matrix(ZZ, 11, 11, [1]*11*11); N*J
[5 5 5 5 5 5 5 5 5 5 5]
[5 5 5 5 5 5 5 5 5 5 5]
[5 5 5 5 5 5 5 5 5 5 5]
[5 5 5 5 5 5 5 5 5 5 5]
[5 5 5 5 5 5 5 5 5 5 5]
[5 5 5 5 5 5 5 5 5 5 5]
[5 5 5 5 5 5 5 5 5 5 5]
[5 5 5 5 5 5 5 5 5 5 5]
[5 5 5 5 5 5 5 5 5 5 5]
[5 5 5 5 5 5 5 5 5 5 5]
[5 5 5 5 5 5 5 5 5 5 5]

REFERENCES:

• [CvL] P. Cameron, J. H. van Lint, Designs, graphs, codes and their links, London Math. Soc., 1991.

sage.combinat.designs.block_design.HughesPlane(q2, check=True)
Return the Hughes projective plane of order q2.

Let 𝑞 be an odd prime, the Hughes plane of order 𝑞2 is a finite projective plane of order 𝑞2 introduced by D.
Hughes in [Hu57]. Its construction is as follows.

Let𝐾 = 𝐺𝐹 (𝑞2) be a finite field with 𝑞2 elements and 𝐹 = 𝐺𝐹 (𝑞) ⊂ 𝐾 be its unique subfield with 𝑞 elements.

588 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

We define a twisted multiplication on 𝐾 as

𝑥 ∘ 𝑦 =

{︃
𝑥 𝑦 if y is a square in K
𝑥𝑞 𝑦 otherwise

The points of the Hughes plane are the triples (𝑥, 𝑦, 𝑧) of points in 𝐾3∖{0, 0, 0} up to the equivalence relation
(𝑥, 𝑦, 𝑧) ∼ (𝑥 ∘ 𝑘, 𝑦 ∘ 𝑘, 𝑧 ∘ 𝑘) where 𝑘 ∈ 𝐾.

For 𝑎 = 1 or 𝑎 ∈ (𝐾∖𝐹) we define a block 𝐿(𝑎) as the set of triples (𝑥, 𝑦, 𝑧) so that 𝑥+ 𝑎 ∘ 𝑦+ 𝑧 = 0. The rest
of the blocks are obtained by letting act the group 𝐺𝐿(3, 𝐹) by its standard action.

For more information, see Wikipedia article Hughes_plane and [We07].

See also:

DesarguesianProjectivePlaneDesign() to build the Desarguesian projective planes

INPUT:

• q2 – an even power of an odd prime number

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

EXAMPLES:

sage: H = designs.HughesPlane(9)
sage: H
(91,10,1)-Balanced Incomplete Block Design

We prove in the following computations that the Desarguesian plane H is not Desarguesian. Let us consider the
two triangles (0, 1, 10) and (57, 70, 59). We show that the intersection points𝐷0,1 ∩𝐷57,70,𝐷1,10 ∩𝐷70,59 and
𝐷10,0 ∩𝐷59,57 are on the same line while 𝐷0,70, 𝐷1,59 and 𝐷10,57 are not concurrent:

sage: blocks = H.blocks()
sage: line = lambda p,q: next(b for b in blocks if p in b and q in b)

sage: b_0_1 = line(0, 1)
sage: b_1_10 = line(1, 10)
sage: b_10_0 = line(10, 0)
sage: b_57_70 = line(57, 70)
sage: b_70_59 = line(70, 59)
sage: b_59_57 = line(59, 57)

sage: set(b_0_1).intersection(b_57_70)
{2}
sage: set(b_1_10).intersection(b_70_59)
{73}
sage: set(b_10_0).intersection(b_59_57)
{60}

sage: line(2, 73) == line(73, 60)
True

sage: b_0_57 = line(0, 57)
sage: b_1_70 = line(1, 70)
sage: b_10_59 = line(10, 59)

(continues on next page)

5.1. Comprehensive Module List 589

https://en.wikipedia.org/wiki/Hughes_plane

Combinatorics, Release 9.7

(continued from previous page)

sage: p = set(b_0_57).intersection(b_1_70)
sage: q = set(b_1_70).intersection(b_10_59)
sage: p == q
False

sage.combinat.designs.block_design.ProjectiveGeometryDesign(n, d, F, algorithm=None,
point_coordinates=True, check=True)

Return a projective geometry design.

The projective geometry design 𝑃𝐺𝑑(𝑛, 𝑞) has for points the lines of F𝑛+1
𝑞 , and for blocks the 𝑑+1-dimensional

subspaces of F𝑛+1
𝑞 , each of which contains |F𝑞|𝑑+1−1

|F𝑞|−1 lines. It is a 2-design with parameters

𝑣 =

(︂
𝑛+ 1

1

)︂
𝑞

, 𝑘 =

(︂
𝑑+ 1

1

)︂
𝑞

, 𝜆 =

(︂
𝑛− 1

𝑑− 1

)︂
𝑞

where the 𝑞-binomial coefficient
(︀
𝑚
𝑟

)︀
𝑞

is defined by(︂
𝑚

𝑟

)︂
𝑞

=
(𝑞𝑚 − 1)(𝑞𝑚−1 − 1) · · · (𝑞𝑚−𝑟+1 − 1)

(𝑞𝑟 − 1)(𝑞𝑟−1 − 1) · · · (𝑞 − 1)

See also:

AffineGeometryDesign()

INPUT:

• n is the projective dimension

• d is the dimension of the subspaces which make up the blocks.

• F – a finite field or a prime power.

• algorithm – set to None by default, which results in using Sage’s own implementation. In order to use
GAP’s implementation instead (i.e. its PGPointFlatBlockDesign function) set algorithm="gap".
Note that GAP’s “design” package must be available in this case, and that it can be installed with the
gap_packages spkg.

• point_coordinates – True by default. Ignored and assumed to be False if algorithm="gap". If
True, the ground set is indexed by coordinates in F𝑛+1

𝑞 . Otherwise the ground set is indexed by integers.

• check – (optional, default to True) whether to check the output.

EXAMPLES:

The set of 𝑑-dimensional subspaces in a 𝑛-dimensional projective space forms 2-designs (or balanced incomplete
block designs):

sage: PG = designs.ProjectiveGeometryDesign(4, 2, GF(2))
sage: PG
Incidence structure with 31 points and 155 blocks
sage: PG.is_t_design(return_parameters=True)
(True, (2, 31, 7, 7))

sage: PG = designs.ProjectiveGeometryDesign(3, 1, GF(4))
sage: PG.is_t_design(return_parameters=True)
(True, (2, 85, 5, 1))

590 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Check with F being a prime power:

sage: PG = designs.ProjectiveGeometryDesign(3, 2, 4)
sage: PG
Incidence structure with 85 points and 85 blocks

Use coordinates:

sage: PG = designs.ProjectiveGeometryDesign(2, 1, GF(3))
sage: PG.blocks()[0]
[(1, 0, 0), (1, 0, 1), (1, 0, 2), (0, 0, 1)]

Use indexing by integers:

sage: PG = designs.ProjectiveGeometryDesign(2,1,GF(3),point_coordinates=0)
sage: PG.blocks()[0]
[0, 1, 2, 12]

Check that the constructor using gap also works:

sage: BD = designs.ProjectiveGeometryDesign(2, 1, GF(2), algorithm="gap") #␣
→˓optional - gap_packages (design package)
sage: BD.is_t_design(return_parameters=True) #␣
→˓optional - gap_packages (design package)
(True, (2, 7, 3, 1))

sage.combinat.designs.block_design.WittDesign(n)
INPUT:

• n is in 9, 10, 11, 12, 21, 22, 23, 24.

Wraps GAP Design’s WittDesign. If n=24 then this function returns the large Witt design 𝑊24, the unique (up
to isomorphism) 5− (24, 8, 1) design. If n=12 then this function returns the small Witt design 𝑊12, the unique
(up to isomorphism) 5− (12, 6, 1) design. The other values of 𝑛 return a block design derived from these.

Note: Requires GAP’s Design package (included in the gap_packages Sage spkg).

EXAMPLES:

sage: BD = designs.WittDesign(9) # optional - gap_packages (design␣
→˓package)
sage: BD.is_t_design(return_parameters=True) # optional - gap_packages (design␣
→˓package)
(True, (2, 9, 3, 1))
sage: BD # optional - gap_packages (design package)
Incidence structure with 9 points and 12 blocks
sage: print(BD) # optional - gap_packages (design package)
Incidence structure with 9 points and 12 blocks

sage.combinat.designs.block_design.are_hyperplanes_in_projective_geometry_parameters(v, k,
lmbda,
re-
turn_parameters=False)

Return True if the parameters (v,k,lmbda) are the one of hyperplanes in a (finite Desarguesian) projective
space.

5.1. Comprehensive Module List 591

Combinatorics, Release 9.7

In other words, test whether there exists a prime power q and an integer d greater than two such that:

• 𝑣 = (𝑞𝑑+1 − 1)/(𝑞 − 1) = 𝑞𝑑 + 𝑞𝑑−1 + ...+ 1

• 𝑘 = (𝑞𝑑 − 1)/(𝑞 − 1) = 𝑞𝑑−1 + 𝑞𝑑−2 + ...+ 1

• 𝑙𝑚𝑏𝑑𝑎 = (𝑞𝑑−1 − 1)/(𝑞 − 1) = 𝑞𝑑−2 + 𝑞𝑑−3 + ...+ 1

If it exists, such a pair (q,d) is unique.

INPUT:

• v,k,lmbda (integers)

OUTPUT:

• a boolean or, if return_parameters is set to True a pair (True, (q,d)) or (False, (None,None)).

EXAMPLES:

sage: from sage.combinat.designs.block_design import are_hyperplanes_in_projective_
→˓geometry_parameters
sage: are_hyperplanes_in_projective_geometry_parameters(40,13,4)
True
sage: are_hyperplanes_in_projective_geometry_parameters(40,13,4,return_
→˓parameters=True)
(True, (3, 3))
sage: PG = designs.ProjectiveGeometryDesign(3,2,GF(3))
sage: PG.is_t_design(return_parameters=True)
(True, (2, 40, 13, 4))

sage: are_hyperplanes_in_projective_geometry_parameters(15,3,1)
False
sage: are_hyperplanes_in_projective_geometry_parameters(15,3,1,return_
→˓parameters=True)
(False, (None, None))

sage.combinat.designs.block_design.normalize_hughes_plane_point(p, q)
Return the normalized form of point p as a 3-tuple.

In the Hughes projective plane over the finite field𝐾, all triples (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) with 𝑘 ∈ 𝐾 represent the same point
(where the multiplication is over the nearfield built from 𝐾). This function chooses a canonical representative
among them.

This function is used in HughesPlane().

INPUT:

• p - point with the coordinates (x,y,z) (a list, a vector, a tuple. . .)

• q - cardinality of the underlying finite field

EXAMPLES:

sage: from sage.combinat.designs.block_design import normalize_hughes_plane_point
sage: K = FiniteField(9,'x')
sage: x = K.gen()
sage: normalize_hughes_plane_point((x, x+1, x), 9)
(1, x, 1)
sage: normalize_hughes_plane_point(vector((x,x,x)), 9)
(1, 1, 1)

(continues on next page)

592 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: zero = K.zero()
sage: normalize_hughes_plane_point((2*x+2, zero, zero), 9)
(1, 0, 0)
sage: one = K.one()
sage: normalize_hughes_plane_point((2*x, one, zero), 9)
(2*x, 1, 0)

sage.combinat.designs.block_design.projective_plane(n, check=True, existence=False)
Return a projective plane of order n as a 2-design.

A finite projective plane is a 2-design with 𝑛2 + 𝑛 + 1 lines (or blocks) and 𝑛2 + 𝑛 + 1 points. For more
information on finite projective planes, see the Wikipedia article Projective_plane#Finite_projective_planes.

If no construction is possible, then the function raises a EmptySetError whereas if no construction is available
the function raises a NotImplementedError.

INPUT:

• n – the finite projective plane’s order

EXAMPLES:

sage: designs.projective_plane(2)
(7,3,1)-Balanced Incomplete Block Design
sage: designs.projective_plane(3)
(13,4,1)-Balanced Incomplete Block Design
sage: designs.projective_plane(4)
(21,5,1)-Balanced Incomplete Block Design
sage: designs.projective_plane(5)
(31,6,1)-Balanced Incomplete Block Design
sage: designs.projective_plane(6)
Traceback (most recent call last):
...
EmptySetError: By the Bruck-Ryser theorem, no projective plane of order 6 exists.
sage: designs.projective_plane(10)
Traceback (most recent call last):
...
EmptySetError: No projective plane of order 10 exists by C. Lam, L. Thiel and S.␣
→˓Swiercz "The nonexistence of finite projective planes of order 10" (1989), Canad.␣
→˓J. Math.
sage: designs.projective_plane(12)
Traceback (most recent call last):
...
NotImplementedError: If such a projective plane exists, we do not know how to build␣
→˓it.
sage: designs.projective_plane(14)
Traceback (most recent call last):
...
EmptySetError: By the Bruck-Ryser theorem, no projective plane of order 14 exists.

sage.combinat.designs.block_design.projective_plane_to_OA(pplane, pt=None, check=True)
Return the orthogonal array built from the projective plane pplane.

The orthogonal array 𝑂𝐴(𝑛 + 1, 𝑛, 2) is obtained from the projective plane pplane by removing the point pt
and the 𝑛 + 1 lines that pass through it`. These 𝑛 + 1 lines form the 𝑛 + 1 groups while the remaining 𝑛2 + 𝑛
lines form the transversals.

5.1. Comprehensive Module List 593

https://en.wikipedia.org/wiki/Projective_plane#Finite_projective_planes

Combinatorics, Release 9.7

INPUT:

• pplane - a projective plane as a 2-design

• pt - a point in the projective plane pplane. If it is not provided then it is set to 𝑛2 + 𝑛.

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

EXAMPLES:

sage: from sage.combinat.designs.block_design import projective_plane_to_OA
sage: p2 = designs.DesarguesianProjectivePlaneDesign(2,point_coordinates=False)
sage: projective_plane_to_OA(p2)
[[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]]
sage: p3 = designs.DesarguesianProjectivePlaneDesign(3,point_coordinates=False)
sage: projective_plane_to_OA(p3)
[[0, 0, 0, 0],
[0, 1, 2, 1],
[0, 2, 1, 2],
[1, 0, 2, 2],
[1, 1, 1, 0],
[1, 2, 0, 1],
[2, 0, 1, 1],
[2, 1, 0, 2],
[2, 2, 2, 0]]

sage: pp = designs.DesarguesianProjectivePlaneDesign(16,point_coordinates=False)
sage: _ = projective_plane_to_OA(pp, pt=0)
sage: _ = projective_plane_to_OA(pp, pt=3)
sage: _ = projective_plane_to_OA(pp, pt=7)

sage.combinat.designs.block_design.q3_minus_one_matrix(K)
Return a companion matrix in 𝐺𝐿(3,𝐾) whose multiplicative order is 𝑞3 − 1.

This function is used in HughesPlane()

EXAMPLES:

sage: from sage.combinat.designs.block_design import q3_minus_one_matrix
sage: m = q3_minus_one_matrix(GF(3))
sage: m.multiplicative_order() == 3**3 - 1
True

sage: m = q3_minus_one_matrix(GF(4,'a'))
sage: m.multiplicative_order() == 4**3 - 1
True

sage: m = q3_minus_one_matrix(GF(5))
sage: m.multiplicative_order() == 5**3 - 1
True

sage: m = q3_minus_one_matrix(GF(9,'a'))
sage: m.multiplicative_order() == 9**3 - 1
True

594 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.designs.block_design.tdesign_params(t, v, k, L)
Return the design’s parameters: (𝑡, 𝑣, 𝑏, 𝑟, 𝑘, 𝐿). Note that 𝑡 must be given.

EXAMPLES:

sage: BD = BlockDesign(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]])
sage: from sage.combinat.designs.block_design import tdesign_params
sage: tdesign_params(2,7,3,1)
(2, 7, 7, 3, 3, 1)

5.1.78 Covering designs: coverings of 𝑡-element subsets of a 𝑣-set by 𝑘-sets

A (𝑣, 𝑘, 𝑡) covering design 𝐶 is an incidence structure consisting of a set of points 𝑃 of order 𝑣, and a set of blocks 𝐵,
where each block contains 𝑘 points of 𝑃 . Every 𝑡-element subset of 𝑃 must be contained in at least one block.

If every 𝑡-set is contained in exactly one block of 𝐶, then we have a block design. Following the block design imple-
mentation, the standard representation of a covering design uses 𝑃 = [0, 1, ..., 𝑣 − 1].

In addition to the parameters and incidence structure for a covering design from this database, we include extra infor-
mation:

• Best known lower bound on the size of a (𝑣, 𝑘, 𝑡)-covering design

• Name of the person(s) who produced the design

• Method of construction used

• Date when the design was added to the database

REFERENCES:

AUTHORS:

• Daniel M. Gordon (2008-12-22): initial version

Classes and methods

class sage.combinat.designs.covering_design.CoveringDesign(v=0, k=0, t=0, size=0, points=None,
blocks=None, low_bd=0, method='',
creator='', timestamp='')

Bases: sage.structure.sage_object.SageObject

Covering design.

INPUT:

• v, k, t – integer parameters of the covering design

• size (integer)

• points – list of points (default points are [0, ..., 𝑣 − 1])

• blocks

• low_bd (integer) – lower bound for such a design

• method, creator, timestamp – database information

creator()
Return the creator of the covering design

5.1. Comprehensive Module List 595

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

This field is optional, and is used in a database to give attribution for the covering design It can refer to the
person who submitted it, or who originally gave a construction

EXAMPLES:

sage: from sage.combinat.designs.covering_design import CoveringDesign
sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6],
....: [2, 4, 5]],0, 'Projective Plane', 'Gino Fano')
sage: C.creator()
'Gino Fano'

incidence_structure()
Return the incidence structure of this design, without extra parameters.

EXAMPLES:

sage: from sage.combinat.designs.covering_design import CoveringDesign
sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6],
....: [2, 3, 6], [2, 4, 5]], 0, 'Projective Plane')
sage: D = C.incidence_structure()
sage: D.ground_set()
[0, 1, 2, 3, 4, 5, 6]
sage: D.blocks()
[[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5],
[1, 4, 6], [2, 3, 6], [2, 4, 5]]

is_covering()
Check all 𝑡-sets are in fact covered by the blocks of self.

Note: This is very slow and wasteful of memory.

EXAMPLES:

sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6],
....: [2, 3, 6], [2, 4, 5]], 0, 'Projective Plane')
sage: C.is_covering()
True
sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6],
....: [2, 4, 6]], 0, 'not a covering') # last block altered
sage: C.is_covering()
False

k()
Return 𝑘, the size of blocks of the covering design

EXAMPLES:

sage: from sage.combinat.designs.covering_design import CoveringDesign
sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6],

(continues on next page)

596 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: [2, 3, 6], [2, 4, 5]], 0, 'Projective Plane')
sage: C.k()
3

low_bd()
Return a lower bound for the number of blocks a covering design with these parameters could have.

Typically this is the Schonheim bound, but for some parameters better bounds have been shown.

EXAMPLES:

sage: from sage.combinat.designs.covering_design import CoveringDesign
sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6],
....: [2, 3, 6], [2, 4, 5]], 0, 'Projective Plane')
sage: C.low_bd()
7

method()
Return the method used to create the covering design.

This field is optional, and is used in a database to give information about how coverings were constructed.

EXAMPLES:

sage: from sage.combinat.designs.covering_design import CoveringDesign
sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6],
....: [2, 3, 6], [2, 4, 5]], 0, 'Projective Plane')
sage: C.method()
'Projective Plane'

size()
Return the number of blocks in the covering design

EXAMPLES:

sage: from sage.combinat.designs.covering_design import CoveringDesign
sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6],
....: [2, 3, 6], [2, 4, 5]], 0, 'Projective Plane')
sage: C.size()
7

t()
Return 𝑡, the size of sets which must be covered by the blocks of the covering design

EXAMPLES:

sage: from sage.combinat.designs.covering_design import CoveringDesign
sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6],
....: [2, 3, 6], [2, 4, 5]], 0, 'Projective Plane')
sage: C.t()
2

5.1. Comprehensive Module List 597

Combinatorics, Release 9.7

timestamp()
Return the time that the covering was submitted to the database

EXAMPLES:

sage: from sage.combinat.designs.covering_design import CoveringDesign
sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6],
....: [2, 3, 6], [2, 4, 5]],0, 'Projective Plane',
....: 'Gino Fano', '1892-01-01 00:00:00')
sage: C.timestamp() # No exact date known; in Fano's 1892 article
'1892-01-01 00:00:00'

v()
Return 𝑣, the number of points in the covering design.

EXAMPLES:

sage: from sage.combinat.designs.covering_design import CoveringDesign
sage: C = CoveringDesign(7, 3, 2, 7, range(7), [[0, 1, 2],
....: [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6],
....: [2, 3, 6], [2, 4, 5]], 0, 'Projective Plane')
sage: C.v()
7

sage.combinat.designs.covering_design.best_known_covering_design_www(v, k, t, verbose=False)
Return the best known (𝑣, 𝑘, 𝑡) covering design from an online database.

This uses the La Jolla Covering Repository, a database available at https://ljcr.dmgordon.org/cover.html

INPUT:

• v – integer, the size of the point set for the design

• k – integer, the number of points per block

• t – integer, the size of sets covered by the blocks

• verbose – bool (default: False), print verbose message

OUTPUT:

A CoveringDesign object representing the (v, k, t)-covering design with smallest number of blocks avail-
able in the database.

EXAMPLES:

sage: from sage.combinat.designs.covering_design import (# optional - internet
....: best_known_covering_design_www)
sage: C = best_known_covering_design_www(7, 3, 2) # optional - internet
sage: print(C) # optional - internet
C(7, 3, 2) = 7
Method: lex covering
Submitted on: 1996-12-01 00:00:00
0 1 2
0 3 4
0 5 6
1 3 5
1 4 6

(continues on next page)

598 Chapter 5. Comprehensive Module List

https://ljcr.dmgordon.org/cover.html

Combinatorics, Release 9.7

(continued from previous page)

2 3 6
2 4 5

A ValueError is raised if the (v, k, t) parameters are not found in the database.

sage.combinat.designs.covering_design.schonheim(v, k, t)
Return the Schonheim lower bound for the size of such a covering design.

INPUT:

• v – integer, size of point set

• k – integer, cardinality of each block

• t – integer, cardinality of sets being covered

OUTPUT:

The Schonheim lower bound for such a covering design’s size: 𝐶(𝑣, 𝑘, 𝑡) ≤ ⌈(𝑣𝑘 ⌈
𝑣−1
𝑘−1 · · · ⌈

𝑣−𝑡+1
𝑘−𝑡+1⌉ · · · ⌉⌉

EXAMPLES:

sage: from sage.combinat.designs.covering_design import schonheim
sage: schonheim(10, 3, 2)
17
sage: schonheim(32, 16, 8)
930

sage.combinat.designs.covering_design.trivial_covering_design(v, k, t)
Construct a trivial covering design.

INPUT:

• v – integer, size of point set

• k – integer, cardinality of each block

• t – integer, cardinality of sets being covered

OUTPUT:

A trivial (𝑣, 𝑘, 𝑡) covering design

EXAMPLES:

sage: C = trivial_covering_design(8, 3, 1)
sage: print(C)
C(8, 3, 1) = 3
Method: Trivial
0 1 2
0 6 7
3 4 5
sage: C = trivial_covering_design(5, 3, 2)
sage: print(C)
4 <= C(5, 3, 2) <= 10
Method: Trivial
0 1 2
0 1 3
0 1 4
0 2 3

(continues on next page)

5.1. Comprehensive Module List 599

Combinatorics, Release 9.7

(continued from previous page)

0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4

Note: Cases are:

• 𝑡 = 0: This could be empty, but it’s a useful convention to have one block (which is empty if 𝑘 = 0).

• 𝑡 = 1 : This contains ⌈𝑣/𝑘⌉ blocks: [0, ..., 𝑘− 1], [𝑘, ..., 2𝑘− 1], The last block wraps around if 𝑘 does
not divide 𝑣.

• anything else: Just use every 𝑘-subset of [0, 1, ..., 𝑣 − 1].

5.1.79 Database of small combinatorial designs

This module implements combinatorial designs that cannot be obtained by more general constructions. Most of them
come from the Handbook of Combinatorial Designs [DesignHandbook].

All this would only be a dream without the mathematical knowledge and help of Julian R. Abel.

These functions can all be obtained through the designs.<tab> functions.

This module implements:

• OA(7,18), OA(9,40), OA(7,66), OA(7,68), OA(8,69), OA(7,74), OA(8,76), OA(11,80), OA(15,112),
OA(9,120), OA(9,135), OA(11,160), OA(16,176), OA(11,185), OA(10,205), OA(16,208), OA(15,224),
OA(11,254), OA(20,352), OA(20,416), OA(10,469), OA(10,520), OA(12,522), OA(14,524), OA(20,
544), OA(17,560), OA(11,640), OA(10,796), OA(15,896), OA(9,1078), OA(25,1262), OA(9,1612),
OA(10,1620)

• 2 MOLS of order 10, 5 MOLS of order 12, 4 MOLS of order 14, 4 MOLS of order 15, 3 MOLS of
order 18

• 𝑉 (𝑚, 𝑡) vectors:

– 𝑚 = 3 and 𝑡 = 2, 4, 6, 10, 12, 14, 20, 24, 26, 32, 34

– 𝑚 = 4 and 𝑡 = 3, 7, 9, 13, 15, 25

– 𝑚 = 5 and 𝑡 = 6, 8, 12, 14, 20, 26

– 𝑚 = 6 and 𝑡 = 5, 7, 11, 13, 17, 21

– 𝑚 = 7 and 𝑡 = 6, 10, 16, 18

– 𝑚 = 8 and 𝑡 = 9, 11, 17, 29, 57

– 𝑚 = 9 and 𝑡 = 12, 14, 18, 20, 22, 30, 34, 42, 44

– 𝑚 = 10 and 𝑡 = 13, 15, 19, 21, 25, 27, 31, 33, 43, 49, 81, 97, 103, 181, 187, 259, 273, 319, 391, 409

– 𝑚 = 11 and 𝑡 = 30, 32, 36, 38, 42, 56, 60, 62, 66, 78, 80, 86, 90, 92, 102, 116, 120, 128, 132, 146,
162, 170, 182, 188, 192, 198, 206, 210, 212, 216, 218, 230, 242, 246, 248, 260, 266, 270, 276, 288,
290, 296, 300, 302, 308, 312, 318, 330, 336, 338, 350, 356, 366, 368, 372, 378, 396, 402, 420, 422,
450, 452

600 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

– 𝑚 = 12 and 𝑡 = 33, 35, 45, 51, 55, 59, 61, 63, 69, 71, 73, 83, 85, 89, 91, 93, 101, 103, 115, 119, 121,
129, 133, 135, 139, 141, 145, 149, 155, 161, 169, 171, 185, 189, 191, 195, 199, 203, 213, 223, 229,
233, 243, 253, 255, 259, 265, 269, 271, 275, 281, 289, 293, 295, 301, 303, 309, 311, 321, 323, 335,
341, 355, 363, 379, 383, 385, 399, 401, 405, 409, 411, 413

• RBIBD(120,8,1)

• (𝑣, 𝑘, 𝜆)-BIBD:

– 𝜆 = 1:n (66, 6, 1), (76, 6, 1), (96, 6, 1), (106, 6, 1), (111, 6, 1), (120, 8, 1), (126, 6, 1), (136, 6, 1),
(141, 6, 1), (171, 6, 1), (196, 6, 1), (201, 6, 1)

– 𝜆 = 2:n (56, 11, 2), (79, 13, 2)

– 𝜆 = 8:n (45, 9, 8)

– 𝜆 = 14:n (176, 50, 14)

• (𝑣, 𝑘, 𝜆)-difference families:

– 𝜆 = 1:n (15, 3, 1), (21, 3, 1), (21, 5, 1), (25, 3, 1), (25, 4, 1), (27, 3, 1), (33, 3, 1), (37, 4, 1), (39, 3, 1),
(40, 4, 1), (45, 3, 1), (45, 5, 1), (49, 3, 1), (49, 4, 1), (51, 3, 1), (52, 4, 1), (55, 3, 1), (57, 3, 1),
(63, 3, 1), (64, 4, 1), (65, 5, 1), (69, 3, 1), (75, 3, 1), (76, 4, 1), (81, 3, 1), (81, 5, 1), (85, 4, 1),
(91, 6, 1), (91, 7, 1), (121, 5, 1), (121, 6, 1), (141, 5, 1), (161, 5, 1), (175, 7, 1), (201, 5, 1), (217, 7, 1),
(221, 5, 1), (259, 7, 1)

– 𝜆 = 2:n (16, 3, 2), (19, 4, 2), (22, 4, 2), (28, 3, 2), (31, 4, 2), (31, 5, 2), (34, 4, 2), (35, 5, 2), (40, 3, 2),
(43, 4, 2), (43, 7, 2), (46, 4, 2), (46, 6, 2), (51, 5, 2), (61, 6, 2), (64, 7, 2), (71, 5, 2), (75, 5, 2),
(85, 7, 2), (85, 8, 2), (153, 9, 2), (181, 10, 2)

– 𝜆 = 3:n (21, 4, 3), (21, 6, 3), (29, 7, 3), (41, 6, 3), (43, 7, 3), (45, 12, 3), (49, 9, 3), (51, 6, 3),
(57, 7, 3), (61, 6, 3), (61, 10, 3), (71, 7, 3), (85, 7, 3), (97, 9, 3), (121, 10, 3)

– 𝜆 = 4:n (22, 7, 4), (29, 8, 4), (43, 8, 4), (46, 10, 4), (55, 9, 4), (67, 12, 4), (71, 8, 4)

– 𝜆 = 5:n (13, 5, 5), (17, 5, 5), (21, 6, 5), (22, 6, 5), (28, 6, 5), (33, 5, 5), (33, 6, 5), (37, 10, 5),
(39, 6, 5), (45, 11, 5), (46, 10, 5), (55, 10, 5), (67, 11, 5), (73, 10, 5)

– 𝜆 = 6:n (11, 4, 6), (15, 4, 6), (15, 5, 6), (29, 8, 6), (46, 10, 6), (53, 13, 6), (67, 12, 6)

– 𝜆 = 7:n (25, 7, 7), (53, 14, 7), (61, 15, 7)

– 𝜆 = 8:n (22, 8, 8), (34, 12, 8), (133, 33, 8)

– 𝜆 = 9:n (21, 10, 9)

– 𝜆 = 10:n (34, 12, 10), (43, 15, 10), (49, 21, 10)

– 𝜆 = 12:n (22, 8, 12)

– 𝜆 = 14:n (21, 8, 14)

– 𝜆 = 56:n (901, 225, 56)

• (𝑣, 𝑘, 𝜆)-difference matrices:

– 𝜆 = 1:n (12, 6, 1), (21, 6, 1), (24, 8, 1), (28, 6, 1), (33, 6, 1), (35, 6, 1), (36, 9, 1), (39, 6, 1), (44, 6, 1),
(45, 7, 1), (48, 9, 1), (51, 6, 1), (52, 6, 1), (55, 7, 1), (56, 8, 1), (57, 8, 1), (60, 6, 1), (75, 8, 1),
(273, 17, 1), (993, 32, 1)

• (𝑛, 𝑘;𝜆, 𝜇;𝑢)-quasi-difference matrices: (19, 6; 1, 1; 1), (21, 5; 1, 1; 1), (21, 6; 1, 1; 5), (25, 6; 1, 1; 5),
(33, 6; 1, 1; 1), (35, 7; 1, 1; 7), (37, 6; 1, 1; 1), (45, 7; 1, 1; 9), (54, 7; 1, 1; 8), (57, 9; 1, 1; 8)

• (𝑞, 𝑘) evenly distributed sets

5.1. Comprehensive Module List 601

Combinatorics, Release 9.7

– 𝑘 = 4: 13, 25, 37, 49, 61, 73, 97, 109, 121, 157, 169, 181, 193, 229, 241, 277, 289, 313, 337, 349,
361, 373, 397, 409, 421, 433, 457, 529, 541, 577, 601, 613, 625, 661, 673, 709, 733, 757, 769, 829,
841, 853, 877, 937, 961, 997, 1009, 1021, 1033, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237,
1249, 1297, 1321, 1369, 1381, 1429, 1453, 1489, 1549, 1597, 1609, 1621, 1657, 1669, 1681, 1693,
1741, 1753, 1777, 1789, 1801, 1849, 1861, 1873, 1933, 1993, 2017, 2029, 2053, 2089, 2113, 2137,
2161, 2197, 2209, 2221, 2269, 2281, 2293, 2341, 2377, 2389, 2401, 2437, 2473, 2521, 2557, 2593,
2617, 2677, 2689, 2713, 2749, 2797, 2809

– 𝑘 = 5: 41, 61, 101, 121, 181, 241, 281, 361, 401, 421, 461, 521, 541, 601, 641, 661, 701, 761, 821,
841, 881, 941, 961, 1021, 1061, 1181, 1201, 1301, 1321, 1361, 1381, 1481, 1601, 1621, 1681, 1721,
1741, 1801, 1861, 1901

– 𝑘 = 6: 31, 151, 181, 211, 241, 271, 331, 361, 421, 541, 571, 601, 631, 661, 691, 751, 811, 841, 961,
991, 1021, 1051, 1171, 1201, 1231, 1291, 1321, 1381, 1471, 1531, 1621, 1681, 1741, 1801, 1831,
1861, 1951

– 𝑘 = 7: 169, 337, 379, 421, 463, 547, 631, 673, 757, 841, 883, 967, 1009, 1051, 1093, 1303, 1429,
1471, 1597, 1681, 1723, 1849, 1933

– 𝑘 = 8: 449, 617, 673, 729, 841, 953, 1009, 1289, 1681, 1849

– 𝑘 = 9: 73, 433, 937, 1009, 1153, 1297, 1369, 1657, 1801, 1873

– 𝑘 = 10: 1171, 1531, 1621, 1801

REFERENCES:

Functions

sage.combinat.designs.database.BIBD_106_6_1()
Return a (106,6,1)-BIBD.

This constructions appears in II.3.32 from [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_106_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(106, BIBD_106_6_1())
(106,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.BIBD_111_6_1()
Return a (111,6,1)-BIBD.

This constructions appears in II.3.32 from [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_111_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(111, BIBD_111_6_1())
(111,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.BIBD_126_6_1()
Return a (126,6,1)-BIBD.

This constructions appears in VI.16.92 from [DesignHandbook].

EXAMPLES:

602 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.designs.database import BIBD_126_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(126, BIBD_126_6_1())
(126,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.BIBD_136_6_1()
Return a (136,6,1)-BIBD.

This constructions appears in II.3.32 from [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_136_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(136, BIBD_136_6_1())
(136,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.BIBD_141_6_1()
Return a (141,6,1)-BIBD.

This constructions appears in II.3.32 from [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_141_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(141, BIBD_141_6_1())
(141,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.BIBD_171_6_1()
Return a (171,6,1)-BIBD.

This constructions appears in II.3.32 from [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_171_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(171, BIBD_171_6_1())
(171,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.BIBD_196_6_1()
Return a (196,6,1)-BIBD.

This constructions appears in II.3.32 from [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_196_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(196, BIBD_196_6_1())
(196,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.BIBD_201_6_1()
Return a (201,6,1)-BIBD.

This constructions appears in II.3.32 from [DesignHandbook].

EXAMPLES:

5.1. Comprehensive Module List 603

Combinatorics, Release 9.7

sage: from sage.combinat.designs.database import BIBD_201_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(201, BIBD_201_6_1())
(201,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.BIBD_45_9_8(from_code=False)
Return a (45, 9, 1)-BIBD.

This BIBD is obtained from the codewords of minimal weight in the ExtendedQuadraticResidueCode() of
length 48. This construction appears in VII.11.2 from [DesignHandbook], which cites [HT95].

INPUT:

• from_code (boolean) – whether to build the design from hardcoded data (default) or from the code object
(much longer).

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_45_9_8
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: B = BalancedIncompleteBlockDesign(45, BIBD_45_9_8(),lambd=8); B
(45,9,8)-Balanced Incomplete Block Design

REFERENCE:

sage.combinat.designs.database.BIBD_56_11_2()
Return a symmetric (56, 11, 2)-BIBD.

The construction implemented is given in [Hall71].

Note: A symmetric (𝑣, 𝑘, 𝜆) BIBD is a (𝑣, 𝑘, 𝜆) BIBD with 𝑣 blocks.

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_56_11_2 sage: D = IncidenceStruc-
ture(BIBD_56_11_2()) sage: D.is_t_design(t=2, v=56, k=11, l=2) True

sage.combinat.designs.database.BIBD_66_6_1()
Return a (66,6,1)-BIBD.

This BIBD was obtained from La Jolla covering repository (https://math.ccrwest.org/cover.html) where it is
attributed to Colin Barker.

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_66_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(66, BIBD_66_6_1())
(66,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.BIBD_76_6_1()
Return a (76,6,1)-BIBD.

This BIBD was obtained from La Jolla covering repository (https://math.ccrwest.org/cover.html) where it is
attributed to Colin Barker.

EXAMPLES:

604 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/coding/sage/coding/code_constructions.html#sage.coding.code_constructions.ExtendedQuadraticResidueCode
https://math.ccrwest.org/cover.html
https://math.ccrwest.org/cover.html

Combinatorics, Release 9.7

sage: from sage.combinat.designs.database import BIBD_76_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(76, BIBD_76_6_1())
(76,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.BIBD_79_13_2()
Return a symmetric (79, 13, 2)-BIBD.

The construction implemented is the one described in [Aschbacher71]. A typo in that paper was corrected in
[Hall71].

Note: A symmetric (𝑣, 𝑘, 𝜆) BIBD is a (𝑣, 𝑘, 𝜆) BIBD with 𝑣 blocks.

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_79_13_2 sage: D = IncidenceStruc-
ture(BIBD_79_13_2()) sage: D.is_t_design(t=2, v=79, k=13, l=2) True

sage.combinat.designs.database.BIBD_96_6_1()
Return a (96,6,1)-BIBD.

This BIBD was obtained from La Jolla covering repository (https://math.ccrwest.org/cover.html) where it is
attributed to Colin Barker.

EXAMPLES:

sage: from sage.combinat.designs.database import BIBD_96_6_1
sage: from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign
sage: BalancedIncompleteBlockDesign(96, BIBD_96_6_1())
(96,6,1)-Balanced Incomplete Block Design

sage.combinat.designs.database.DM_12_6_1()
Return a (12, 6, 1)-difference matrix as built in [Hanani75].

This design is Lemma 3.21 from [Hanani75].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_12_6_1
sage: G,M = DM_12_6_1()
sage: is_difference_matrix(M,G,6,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(12,6)

REFERENCES:

sage.combinat.designs.database.DM_21_6_1()
Return a (21, 6, 1)-difference matrix.

As explained in the Handbook III.3.50 [DesignHandbook].

EXAMPLES:

5.1. Comprehensive Module List 605

https://math.ccrwest.org/cover.html

Combinatorics, Release 9.7

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_21_6_1
sage: G,M = DM_21_6_1()
sage: is_difference_matrix(M,G,6,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(21,6)

sage.combinat.designs.database.DM_24_8_1()
Return a (24, 8, 1)-difference matrix.

As explained in the Handbook III.3.52 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_24_8_1
sage: G,M = DM_24_8_1()
sage: is_difference_matrix(M,G,8,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(24,8)

sage.combinat.designs.database.DM_273_17_1()
Return a (273, 17, 1)-difference matrix.

Given by Julian R. Abel.

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_273_17_1
sage: G,M = DM_273_17_1()
sage: is_difference_matrix(M,G,17,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(273,17)

sage.combinat.designs.database.DM_28_6_1()
Return a (28, 6, 1)-difference matrix.

As explained in the Handbook III.3.54 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_28_6_1
sage: G,M = DM_28_6_1()
sage: is_difference_matrix(M,G,6,1)
True

Can be obtained from the constructor:

606 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: _ = designs.difference_matrix(28,6)

sage.combinat.designs.database.DM_33_6_1()
Return a (33, 6, 1)-difference matrix.

As explained in the Handbook III.3.56 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_33_6_1
sage: G,M = DM_33_6_1()
sage: is_difference_matrix(M,G,6,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(33,6)

sage.combinat.designs.database.DM_35_6_1()
Return a (35, 6, 1)-difference matrix.

As explained in the Handbook III.3.58 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_35_6_1
sage: G,M = DM_35_6_1()
sage: is_difference_matrix(M,G,6,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(35,6)

sage.combinat.designs.database.DM_36_9_1()
Return a (36, 9, 1)-difference matrix.

As explained in the Handbook III.3.59 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_36_9_1
sage: G,M = DM_36_9_1()
sage: is_difference_matrix(M,G,9,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(36,9)

sage.combinat.designs.database.DM_39_6_1()
Return a (39, 6, 1)-difference matrix.

As explained in the Handbook III.3.61 [DesignHandbook].

EXAMPLES:

5.1. Comprehensive Module List 607

Combinatorics, Release 9.7

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_39_6_1
sage: G,M = DM_39_6_1()
sage: is_difference_matrix(M,G,6,1)
True

The design is available from the general constructor:

sage: designs.difference_matrix(39,6,existence=True)
True

sage.combinat.designs.database.DM_44_6_1()
Return a (44, 6, 1)-difference matrix.

As explained in the Handbook III.3.64 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_44_6_1
sage: G,M = DM_44_6_1()
sage: is_difference_matrix(M,G,6,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(44,6)

sage.combinat.designs.database.DM_45_7_1()
Return a (45, 7, 1)-difference matrix.

As explained in the Handbook III.3.65 [DesignHandbook].

. . . whose description contained a very deadly typo, kindly fixed by Julian R. Abel.

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_45_7_1
sage: G,M = DM_45_7_1()
sage: is_difference_matrix(M,G,7,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(45,7)

sage.combinat.designs.database.DM_48_9_1()
Return a (48, 9, 1)-difference matrix.

As explained in the Handbook III.3.67 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_48_9_1
sage: G,M = DM_48_9_1()

(continues on next page)

608 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: is_difference_matrix(M,G,9,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(48,9)

sage.combinat.designs.database.DM_51_6_1()
Return a (51, 6, 1)-difference matrix.

As explained in the Handbook III.3.69 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_51_6_1
sage: G,M = DM_51_6_1()
sage: is_difference_matrix(M,G,6,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(51,6)

sage.combinat.designs.database.DM_52_6_1()
Return a (52, 6, 1)-difference matrix.

As explained in the Handbook III.3.70 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_52_6_1
sage: G,M = DM_52_6_1()
sage: is_difference_matrix(M,G,6,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(52,6)

sage.combinat.designs.database.DM_55_7_1()
Return a (55, 7, 1)-difference matrix.

As explained in the Handbook III.3.72 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_55_7_1
sage: G,M = DM_55_7_1()
sage: is_difference_matrix(M,G,7,1)
True

Can be obtained from the constructor:

5.1. Comprehensive Module List 609

Combinatorics, Release 9.7

sage: _ = designs.difference_matrix(55,7)

sage.combinat.designs.database.DM_56_8_1()
Return a (56, 8, 1)-difference matrix.

As explained in the Handbook III.3.73 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_56_8_1
sage: G,M = DM_56_8_1()
sage: is_difference_matrix(M,G,8,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(56,8)

sage.combinat.designs.database.DM_57_8_1()
Return a (57, 8, 1)-difference matrix.

Given by Julian R. Abel.

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_57_8_1
sage: G,M = DM_57_8_1()
sage: is_difference_matrix(M,G,8,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(57,8)

sage.combinat.designs.database.DM_60_6_1()
Return a (60, 6, 1)-difference matrix.

As explained in [JulianAbel13].

REFERENCES:

http://onlinelibrary.wiley.com/doi/10.1002/jcd.21384/abstract

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_60_6_1
sage: G,M = DM_60_6_1()
sage: is_difference_matrix(M,G,6,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(60,6)

sage.combinat.designs.database.DM_75_8_1()
Return a (75, 8, 1)-difference matrix.

610 Chapter 5. Comprehensive Module List

http://onlinelibrary.wiley.com/doi/10.1002/jcd.21384/abstract

Combinatorics, Release 9.7

As explained in the Handbook III.3.75 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_75_8_1
sage: G,M = DM_75_8_1()
sage: is_difference_matrix(M,G,8,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(75,8)

sage.combinat.designs.database.DM_993_32_1()
Return a (993, 32, 1)-difference matrix.

Given by Julian R. Abel.

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: from sage.combinat.designs.database import DM_993_32_1
sage: G,M = DM_993_32_1()
sage: is_difference_matrix(M,G,32,1)
True

Can be obtained from the constructor:

sage: _ = designs.difference_matrix(993,32)

sage.combinat.designs.database.HigmanSimsDesign()
Return the Higman-Sims designs, which is a (176, 50, 14)-BIBD.

This design is built from a from the WittDesign 𝑊 on 24 points. We define two points 𝑎, 𝑏, and consider:

• The collection 𝑊𝑎 of all blocks of 𝑊 containing 𝑎 but not containing 𝑏.

• The collection 𝑊𝑏 of all blocks of 𝑊 containing 𝑏 but not containing 𝑎.

The design is then obtained from the incidence structure produced by the blocks 𝐴 ∈ 𝑊𝑎 and 𝐵 ∈ 𝑊𝑏 whose
intersection has cardinality 2. This construction, due to M.Smith, can be found in [KY04] or in 10.A.(v) of
[BL1984].

EXAMPLES:

sage: H = designs.HigmanSimsDesign(); H # optional - gap_packages
Incidence structure with 176 points and 176 blocks
sage: H.is_t_design(return_parameters=1) # optional - gap_packages
(True, (2, 176, 50, 14))

Make sure that the automorphism group of this designs is isomorphic to the automorphism group of the
HigmanSimsGraph(). Note that the first of those permutation groups acts on 176 points, while the second
acts on 100:

sage: gH = H.automorphism_group() # optional - gap_packages
sage: gG = graphs.HigmanSimsGraph().automorphism_group() # optional - gap_packages
sage: gG.is_isomorphic(gG) # long time # optional - gap_packages
True

5.1. Comprehensive Module List 611

../../../../../../../html/en/reference/graphs/sage/graphs/generators/smallgraphs.html#sage.graphs.generators.smallgraphs.HigmanSimsGraph

Combinatorics, Release 9.7

REFERENCE:

sage.combinat.designs.database.MOLS_10_2()
Return a pair of MOLS of order 10

Data obtained from http://www.cecm.sfu.ca/organics/papers/lam/paper/html/POLS10/POLS10.html

EXAMPLES:

sage: from sage.combinat.designs.latin_squares import are_mutually_orthogonal_latin_
→˓squares
sage: from sage.combinat.designs.database import MOLS_10_2
sage: MOLS = MOLS_10_2()
sage: print(are_mutually_orthogonal_latin_squares(MOLS))
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(2,10)
True

sage.combinat.designs.database.MOLS_12_5()
Return 5 MOLS of order 12

These MOLS have been found by Brendan McKay.

EXAMPLES:

sage: from sage.combinat.designs.latin_squares import are_mutually_orthogonal_latin_
→˓squares
sage: from sage.combinat.designs.database import MOLS_12_5
sage: MOLS = MOLS_12_5()
sage: print(are_mutually_orthogonal_latin_squares(MOLS))
True

sage.combinat.designs.database.MOLS_14_4()
Return four MOLS of order 14

These MOLS were shared by Ian Wanless. The first proof of existence was given in [Todorov12].

EXAMPLES:

sage: from sage.combinat.designs.latin_squares import are_mutually_orthogonal_latin_
→˓squares
sage: from sage.combinat.designs.database import MOLS_14_4
sage: MOLS = MOLS_14_4()
sage: print(are_mutually_orthogonal_latin_squares(MOLS))
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(4,14)
True

REFERENCE:

sage.combinat.designs.database.MOLS_15_4()
Return 4 MOLS of order 15.

612 Chapter 5. Comprehensive Module List

http://www.cecm.sfu.ca/organics/papers/lam/paper/html/POLS10/POLS10.html

Combinatorics, Release 9.7

These MOLS were shared by Ian Wanless.

EXAMPLES:

sage: from sage.combinat.designs.latin_squares import are_mutually_orthogonal_latin_
→˓squares
sage: from sage.combinat.designs.database import MOLS_15_4
sage: MOLS = MOLS_15_4()
sage: print(are_mutually_orthogonal_latin_squares(MOLS))
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(4,15)
True

sage.combinat.designs.database.MOLS_18_3()
Return 3 MOLS of order 18.

These MOLS were shared by Ian Wanless.

EXAMPLES:

sage: from sage.combinat.designs.latin_squares import are_mutually_orthogonal_latin_
→˓squares
sage: from sage.combinat.designs.database import MOLS_18_3
sage: MOLS = MOLS_18_3()
sage: print(are_mutually_orthogonal_latin_squares(MOLS))
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(3,18)
True

sage.combinat.designs.database.OA_10_1620()
Returns an OA(10,1620)

This is obtained through the generalized Brouwer-van Rees construction. Indeed, 1620 = 144.11 + (36 = 4.9)
and there exists an 𝑂𝐴(10, 153)−𝑂𝐴(10, 9).

Note: This function should be removed once find_brouwer_van_rees_with_one_truncated_column()
can handle all incomplete orthogonal arrays obtained through incomplete_orthogonal_array().

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_10_1620
sage: OA = OA_10_1620() # not tested -- ~7s
sage: is_orthogonal_array(OA,10,1620,2) # not tested -- ~7s
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(10,1620)
True

5.1. Comprehensive Module List 613

Combinatorics, Release 9.7

sage.combinat.designs.database.OA_10_205()
Return an 𝑂𝐴(10, 205).

Julian R. Abel shared the following construction, which originally appeared in Theorem 8.7 of [Greig99], and
can in Lemmas 5.14-5.16 of [ColDin01]:

Consider a 𝑃𝐺(2, 42) containing a Baer subplane (i.e. a 𝑃𝐺(2, 4))𝐵 and a point 𝑝 ∈ 𝐵. Among the
42 + 1 = 17 lines of 𝑃𝐺(2, 42) containing 𝑝:

• 4 + 1 = 5 lines intersect 𝐵 on 5 points

• 42 − 4 = 12 lines intersect 𝐵 on 1 point

As those lines are disjoint outside of 𝐵 we can use them as groups to build a GDD on 162 + 16 +
1 − (44 + 4 + 1) = 252 points. By keeping only 9 lines of the second kind, however, we obtain a
(204, {9, 13, 17})-GDD of type 12^5.16^9.

We complete it into a PBD by adding a block 𝑔 ∪ {204} for each group 𝑔. We then build an OA from
this PBD using the fact that all blocks of size 9 are disjoint.

See also:

sage.combinat.designs.orthogonal_arrays.OA_from_PBD()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_10_205
sage: OA = OA_10_205()
sage: is_orthogonal_array(OA,10,205,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(10,205)
True

sage.combinat.designs.database.OA_10_469()
Return an OA(10,469)

This construction appears in [Brouwer80]. It is based on the same technique used in
brouwer_separable_design().

Julian R. Abel’s instructions:

Brouwer notes that a cyclic 𝑃𝐺(2, 37) (or (1407, 38, 1)-BIBD) can be obtained with a base block
containing 13, 9, and 16 points in each residue class mod 3. Thus, by reducing the 𝑃𝐺(2, 37) to its
points congruent to 0 (mod 3) one obtains a (469, {9, 13, 16})-PBD which consists in 3 symmetric
designs, i.e. 469 blocks of size 9, 469 blocks of size 13, and 469 blocks of size 16.

For each block size 𝑠, one can build a matrix with size 𝑠 × 469 in which each block is a row, and
such that each point of the PBD appears once per column. By multiplying a row of an 𝑂𝐴(9, 𝑠) −
𝑠.𝑂𝐴(9, 1) with the rows of the matrix one obtains a parallel class of a resolvable 𝑂𝐴(9, 469).

Add to this the parallel class of all blocks (0, 0, ...), (1, 1, ...), ... to obtain a resolvable 𝑂𝐴(9, 469)
equivalent to an 𝑂𝐴(10, 469).

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_10_469

(continues on next page)

614 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: OA = OA_10_469()
sage: is_orthogonal_array(OA,10,469,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(10,469)
True

sage.combinat.designs.database.OA_10_520()
Return an OA(10,520).

This design is built by the slightly more general construction OA_520_plus_x().

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_10_520
sage: OA = OA_10_520()
sage: is_orthogonal_array(OA,10,520,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(10,520)
True

sage.combinat.designs.database.OA_10_796()
Returns an OA(10,796)

Construction shared by Julian R. Abel, from [AC07]:

Truncate one block of a 𝑇𝐷(17, 47) to size 13, then add an extra point. Form a block on each group
plus the extra point: we obtain a (796, {13, 16, 17, 47, 48})-PBD in which only the extra point lies in
more than one block of size 48 (and each other point lies in exactly 1 such block).

For each block𝐵 (of size 𝑘 say) not containing the extra point, construct a 𝑇𝐷(10, 𝑘)−𝑘.𝑇𝐷(𝑘, 1) on
𝐼(10)𝑋𝐵. For each block𝐵 (of size 𝑘 = 47 or 48) containing the extra point, construct a𝑇𝐷(10, 𝑘)−
𝑇𝐷(𝑘, 1) on 𝐼(10)𝑋𝐵, the size 1 hole being on 𝐼(10)𝑋𝑃 where 𝑃 is the extra point. Finally form
1 extra block of size 10 on 𝐼(10)𝑋𝑃 .

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_10_796
sage: OA = OA_10_796()
sage: is_orthogonal_array(OA,10,796,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(10,796)
True

sage.combinat.designs.database.OA_11_160()
Returns an OA(11,160)

5.1. Comprehensive Module List 615

Combinatorics, Release 9.7

Published by Julian R. Abel in [Ab1995]. Uses the fact that 160 = 25 × 5 is a product of a power of 2 and a
prime number.

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_11_160
sage: OA = OA_11_160()
sage: is_orthogonal_array(OA,11,160,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(11,160)
True

sage.combinat.designs.database.OA_11_185()
Returns an OA(11,185)

The construction is given in [Greig99]. In Julian R. Abel’s words:

Start with a 𝑃𝐺(2, 16) with a 7 points Fano subplane; outside this plane there are 7(17 − 3) = 98
points on a line of the subplane and 273− 98− 7 = 168 other points. Greig notes that the subdesign
consisting of these 168 points is a (168, {10, 12})− 𝑃𝐵𝐷. Now add the 17 points of a line disjoint
from this subdesign (e.g. a line of the Fano subplane). This line will intersect every line of the 168
point subdesign in 1 point. Thus the new line sizes are 11 and 13, plus a unique line of size 17, giving
a (185, {11, 13, 17}-PBD and an 𝑂𝐴(11, 185).

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_11_185
sage: OA = OA_11_185()
sage: is_orthogonal_array(OA,11,185,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(11,185)
True

sage.combinat.designs.database.OA_11_254()
Return an OA(11,254)

This constructions appears in [Greig99].

From a cyclic 𝑃𝐺(2, 19) whose base blocks contains 7,9, and 4 points in the congruence classes
mod 3, build a (254, 11, 13, 16) − 𝑃𝐵𝐷 by ignoring the points of a congruence class. There exist
𝑂𝐴(12, 11), 𝑂𝐴(12, 13), 𝑂𝐴(12, 16), which gives the 𝑂𝐴(11, 254).

See also:

sage.combinat.designs.orthogonal_arrays.OA_from_PBD()

EXAMPLES:

616 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_11_254
sage: OA = OA_11_254()
sage: is_orthogonal_array(OA,11,254,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(11,254)
True

sage.combinat.designs.database.OA_11_640()
Returns an OA(11,640)

Published by Julian R. Abel in [Ab1995] (uses the fact that 640 = 27 × 5 is the product of a power of 2 and a
prime number).

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_11_640
sage: OA = OA_11_640() # not tested (too long)
sage: is_orthogonal_array(OA,11,640,2) # not tested (too long)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(11,640)
True

sage.combinat.designs.database.OA_11_80()
Return an OA(11,80)

As explained in the Handbook III.3.76 [DesignHandbook]. Uses the fact that 80 = 24 × 5 and that 5 is prime.

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_11_80
sage: OA = OA_11_80()
sage: is_orthogonal_array(OA,11,80,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(11,80)
True

sage.combinat.designs.database.OA_12_522()
Return an OA(12,522)

5.1. Comprehensive Module List 617

Combinatorics, Release 9.7

This design is built by the slightly more general construction OA_520_plus_x().

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_12_522
sage: OA = OA_12_522()
sage: is_orthogonal_array(OA,12,522,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(12,522)
True

sage.combinat.designs.database.OA_14_524()
Return an OA(14,524)

This design is built by the slightly more general construction OA_520_plus_x().

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_14_524
sage: OA = OA_14_524()
sage: is_orthogonal_array(OA,14,524,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(14,524)
True

sage.combinat.designs.database.OA_15_112()
Returns an OA(15,112)

Published by Julian R. Abel in [Ab1995]. Uses the fact that 112 = 24 × 7 and that 7 is prime.

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_15_112
sage: OA = OA_15_112()
sage: is_orthogonal_array(OA,15,112,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(15,112)
True

sage.combinat.designs.database.OA_15_224()
Returns an OA(15,224)

618 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Published by Julian R. Abel in [Ab1995] (uses the fact that 224 = 25×7 is a product of a power of 2 and a prime
number).

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_15_224
sage: OA = OA_15_224() # not tested -- too long
sage: is_orthogonal_array(OA,15,224,2) # not tested -- too long
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(15,224)
True

sage.combinat.designs.database.OA_15_896()
Returns an OA(15,896)

Uses the fact that 896 = 27 × 7 is the product of a power of 2 and a prime number.

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_15_896
sage: OA = OA_15_896() # not tested -- too long (~2min)
sage: is_orthogonal_array(OA,15,896,2) # not tested -- too long
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(15,896)
True

sage.combinat.designs.database.OA_16_176()
Returns an OA(16,176)

Published by Julian R. Abel in [Ab1995]. Uses the fact that 176 = 24 × 11 is a product of a power of 2 and a
prime number.

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_16_176
sage: OA = OA_16_176()
sage: is_orthogonal_array(OA,16,176,2)
True

5.1. Comprehensive Module List 619

Combinatorics, Release 9.7

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(16,176)
True

sage.combinat.designs.database.OA_16_208()
Returns an OA(16,208)

Published by Julian R. Abel in [Ab1995]. Uses the fact that 208 = 24×13 is a product of 2 and a prime number.

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_16_208
sage: OA = OA_16_208() # not tested -- too long
sage: is_orthogonal_array(OA,16,208,2) # not tested -- too long
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(16,208)
True

sage.combinat.designs.database.OA_17_560()
Returns an OA(17,560)

This OA is built in Corollary 2.2 of [Thwarts].

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_17_560
sage: OA = OA_17_560()
sage: is_orthogonal_array(OA,17,560,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(17,560)
True

sage.combinat.designs.database.OA_20_352()
Returns an OA(20,352)

Published by Julian R. Abel in [Ab1995] (uses the fact that 352 = 25 × 11 is the product of a power of 2 and a
prime number).

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_20_352

(continues on next page)

620 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: OA = OA_20_352() # not tested (~25s)
sage: is_orthogonal_array(OA,20,352,2) # not tested (~25s)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(20,352)
True

sage.combinat.designs.database.OA_20_416()
Returns an OA(20,416)

Published by Julian R. Abel in [Ab1995] (uses the fact that 416 = 25 × 13 is the product of a power of 2 and a
prime number).

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_20_416
sage: OA = OA_20_416() # not tested (~35s)
sage: is_orthogonal_array(OA,20,416,2) # not tested
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(20,416)
True

sage.combinat.designs.database.OA_20_544()
Returns an OA(20,544)

Published by Julian R. Abel in [Ab1995] (uses the fact that 544 = 25 × 17 is the product of a power of 2 and a
prime number).

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_20_544
sage: OA = OA_20_544() # not tested (too long ~1mn)
sage: is_orthogonal_array(OA,20,544,2) # not tested
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(20,544)
True

sage.combinat.designs.database.OA_25_1262()
Returns an OA(25,1262)

5.1. Comprehensive Module List 621

Combinatorics, Release 9.7

The construction is given in [Greig99]. In Julian R. Abel’s words:

Start with a cyclic 𝑃𝐺(2, 43) or (1893, 44, 1)-BIBD whose base block contains respectively 12, 13
and 19 point in the residue classes mod 3. In the resulting BIBD, remove one of the three classes: the
result is a (1262, {25, 31, 32})-PBD, from which the 𝑂𝐴(25, 1262) is obtained.

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_25_1262
sage: OA = OA_25_1262() # not tested -- too long
sage: is_orthogonal_array(OA,25,1262,2) # not tested -- too long
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(25,1262)
True

sage.combinat.designs.database.OA_520_plus_x(x)
Return an 𝑂𝐴(10 + 𝑥, 520 + 𝑥).

The construction shared by Julian R. Abel works for OA(10,520), OA(12,522), and OA(14,524).

Let 𝑛 = 520 +𝑥 and 𝑘 = 10 +𝑥. Build a 𝑇𝐷(17, 31). Remove 8−𝑥 points contained in a common
block, add a new point 𝑝 and create a block 𝑔𝑖 ∪ {𝑝} for every (possibly truncated) group 𝑔𝑖. The
result is a (520 + 𝑥, 9 + 𝑥, 16, 17, 31, 32) − 𝑃𝐵𝐷. Note that all blocks of size ≥ 30 only intersect
on 𝑝, and that the unique block 𝐵9 of size 9 intersects all blocks of size 32 on one point. Now:

• Build an 𝑂𝐴(𝑘, 16)− 16.𝑂𝐴(𝑘, 16) for each block of size 16

• Build an 𝑂𝐴(𝑘, 17)− 17.𝑂𝐴(𝑘, 17) for each block of size 17

• Build an 𝑂𝐴(𝑘, 31)−𝑂𝐴(𝑘, 1) for each block of size 31 (with the hole on 𝑝).

• Build an 𝑂𝐴(𝑘, 32)− 2.𝑂𝐴(𝑘, 1) for each block 𝐵 of size 32 (with the holes on 𝑝 and 𝐵 ∩𝐵9).

• Build an 𝑂𝐴(𝑘, 9) on 𝐵9.

Only a row [𝑝, 𝑝, ...] is missing from the 𝑂𝐴(10 + 𝑥, 520 + 𝑥)

This construction is used in OA(10,520), OA(12,522), and OA(14,524).

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_520_plus_x
sage: OA = OA_520_plus_x(0) # not tested (already tested in OA_10_
→˓520)
sage: is_orthogonal_array(OA,10,520,2) # not tested (already tested in OA_10_520)
True

sage.combinat.designs.database.OA_7_18()
Return an OA(7,18)

Proved in [JulianAbel13].

See also:

sage.combinat.designs.orthogonal_arrays.OA_from_quasi_difference_matrix()

EXAMPLES:

622 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_7_18
sage: OA = OA_7_18()
sage: is_orthogonal_array(OA,7,18,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(7,18)
True

sage.combinat.designs.database.OA_7_66()
Return an OA(7,66)

Construction shared by Julian R. Abel.

See also:

sage.combinat.designs.orthogonal_arrays.OA_from_PBD()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_7_66
sage: OA = OA_7_66()
sage: is_orthogonal_array(OA,7,66,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(7,66)
True

sage.combinat.designs.database.OA_7_68()
Return an OA(7,68)

Construction shared by Julian R. Abel.

See also:

sage.combinat.designs.orthogonal_arrays.OA_from_PBD()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_7_68
sage: OA = OA_7_68()
sage: is_orthogonal_array(OA,7,68,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(7,68)
True

sage.combinat.designs.database.OA_7_74()
Return an OA(7,74)

Construction shared by Julian R. Abel.

5.1. Comprehensive Module List 623

Combinatorics, Release 9.7

See also:

sage.combinat.designs.orthogonal_arrays.OA_from_PBD()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_7_74
sage: OA = OA_7_74()
sage: is_orthogonal_array(OA,7,74,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(7,74)
True

sage.combinat.designs.database.OA_8_69()
Return an OA(8,69)

Construction shared by Julian R. Abel.

See also:

sage.combinat.designs.orthogonal_arrays.OA_from_PBD()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_8_69
sage: OA = OA_8_69()
sage: is_orthogonal_array(OA,8,69,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(8,69)
True

sage.combinat.designs.database.OA_8_76()
Return an OA(8,76)

Construction shared by Julian R. Abel.

See also:

sage.combinat.designs.orthogonal_arrays.OA_from_PBD()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_8_76
sage: OA = OA_8_76()
sage: is_orthogonal_array(OA,8,76,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(8,76)
True

624 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.designs.database.OA_9_1078()
Returns an OA(9,1078)

This is obtained through the generalized Brouwer-van Rees construction. Indeed, 1078 = 89.11 + (99 = 9.11)
and there exists an 𝑂𝐴(9, 100)−𝑂𝐴(9, 11).

Note: This function should be removed once find_brouwer_van_rees_with_one_truncated_column()
can handle all incomplete orthogonal arrays obtained through incomplete_orthogonal_array().

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_9_1078
sage: OA = OA_9_1078() # not tested -- ~3s
sage: is_orthogonal_array(OA,9,1078,2) # not tested -- ~3s
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(9,1078)
True

sage.combinat.designs.database.OA_9_120()
Return an OA(9,120)

Construction shared by Julian R. Abel:

From a resolvable (120, 8, 1) − 𝐵𝐼𝐵𝐷, one can obtain 7 𝑀𝑂𝐿𝑆(120) or a resolvable 𝑇𝐷(8, 120)
by forming a resolvable 𝑇𝐷(8, 8)− 8.𝑇𝐷(8, 1) on 𝐼8 ×𝐵 for each block 𝐵 in the BIBD. This gives
a 𝑇𝐷(8, 120)− 120𝑇𝐷(8, 1) (which is resolvable as the BIBD is resolvable).

See also:

RBIBD_120_8_1()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_9_120
sage: OA = OA_9_120()
sage: is_orthogonal_array(OA,9,120,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(9,120)
True

sage.combinat.designs.database.OA_9_135()
Return an OA(9,135)

Construction shared by Julian R. Abel:

This design can be built by Wilson’s method (135 = 8.16 + 7) applied to an Orthogonal Array
𝑂𝐴(9 + 7, 16) with 7 groups truncated to size 1 in such a way that a block contain 0, 1 or 3 points of
the truncated groups.

5.1. Comprehensive Module List 625

Combinatorics, Release 9.7

This is possible, because𝑃𝐺(2, 2) (the projective plane over𝐺𝐹 (2)) is a subdesign in𝑃𝐺(2, 16) (the
projective plane over𝐺𝐹 (16)); in a cyclic𝑃𝐺(2, 16) or𝐵𝐼𝐵𝐷(273, 17, 1) the points≡ 0 (mod 39)
form such a subdesign (note that 273 = 162 + 16 + 1 and 273 = 39× 7 and 7 = 22 + 2 + 1).

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_9_135
sage: OA = OA_9_135()
sage: is_orthogonal_array(OA,9,135,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(9,135)
True

As this orthogonal array requires a (273, 17, 1) cyclic difference set, we check that it is available:

sage: G,D = designs.difference_family(273,17,1)
sage: G
Ring of integers modulo 273

sage.combinat.designs.database.OA_9_1612()
Returns an OA(9,1612)

This is obtained through the generalized Brouwer-van Rees construction. Indeed, 1612 = 89.17 + (99 = 9.11)
and there exists an 𝑂𝐴(9, 100)−𝑂𝐴(9, 11).

Note: This function should be removed once find_brouwer_van_rees_with_one_truncated_column()
can handle all incomplete orthogonal arrays obtained through incomplete_orthogonal_array().

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_9_1612
sage: OA = OA_9_1612() # not tested -- ~6s
sage: is_orthogonal_array(OA,9,1612,2) # not tested -- ~6s
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(9,1612)
True

sage.combinat.designs.database.OA_9_40()
Return an OA(9,40)

As explained in the Handbook III.3.62 [DesignHandbook]. Uses the fact that 40 = 23 × 5 and that 5 is prime.

See also:

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix()

EXAMPLES:

626 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.database import OA_9_40
sage: OA = OA_9_40()
sage: is_orthogonal_array(OA,9,40,2)
True

The design is available from the general constructor:

sage: designs.orthogonal_arrays.is_available(9,40)
True

sage.combinat.designs.database.QDM_19_6_1_1_1()
Return a (19, 6; 1, 1; 1)-quasi-difference matrix.

Used to build an 𝑂𝐴(6, 20)

Given in the Handbook III.3.49 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_19_6_1_1_1
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_19_6_1_1_1()
sage: is_quasi_difference_matrix(M,G,6,1,1,1)
True

sage.combinat.designs.database.QDM_21_5_1_1_1()
Return a (21, 5; 1, 1; 1)-quasi-difference matrix.

Used to build an 𝑂𝐴(5, 22)

Given in the Handbook III.3.51 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_21_5_1_1_1
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_21_5_1_1_1()
sage: is_quasi_difference_matrix(M,G,5,1,1,1)
True

sage.combinat.designs.database.QDM_21_6_1_1_5()
Return a (21, 6; 1, 1; 5)-quasi-difference matrix.

Used to build an 𝑂𝐴(6, 26)

Given in the Handbook III.3.53 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_21_6_1_1_5
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_21_6_1_1_5()
sage: is_quasi_difference_matrix(M,G,6,1,1,5)
True

sage.combinat.designs.database.QDM_25_6_1_1_5()
Return a (25, 6; 1, 1; 5)-quasi-difference matrix.

5.1. Comprehensive Module List 627

Combinatorics, Release 9.7

Used to build an 𝑂𝐴(6, 30)

Given in the Handbook III.3.55 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_25_6_1_1_5
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_25_6_1_1_5()
sage: is_quasi_difference_matrix(M,G,6,1,1,5)
True

sage.combinat.designs.database.QDM_33_6_1_1_1()
Return a (33, 6; 1, 1; 1)-quasi-difference matrix.

Used to build an 𝑂𝐴(6, 34)

Given in the Handbook III.3.57 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_33_6_1_1_1
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_33_6_1_1_1()
sage: is_quasi_difference_matrix(M,G,6,1,1,1)
True

sage.combinat.designs.database.QDM_35_7_1_1_7()
Return a (35, 7; 1, 1; 7)-quasi-difference matrix.

Used to build an 𝑂𝐴(7, 42)

As explained in the Handbook III.3.63 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_35_7_1_1_7
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_35_7_1_1_7()
sage: is_quasi_difference_matrix(M,G,7,1,1,7)
True

sage.combinat.designs.database.QDM_37_6_1_1_1()
Return a (37, 6; 1, 1; 1)-quasi-difference matrix.

Used to build an 𝑂𝐴(6, 38)

Given in the Handbook III.3.60 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_37_6_1_1_1
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_37_6_1_1_1()
sage: is_quasi_difference_matrix(M,G,6,1,1,1)
True

sage.combinat.designs.database.QDM_45_7_1_1_9()
Return a (45, 7; 1, 1; 9)-quasi-difference matrix.

Used to build an 𝑂𝐴(7, 54)

628 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

As explained in the Handbook III.3.71 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_45_7_1_1_9
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_45_7_1_1_9()
sage: is_quasi_difference_matrix(M,G,7,1,1,9)
True

sage.combinat.designs.database.QDM_54_7_1_1_8()
Return a (54, 7; 1, 1; 8)-quasi-difference matrix.

Used to build an 𝑂𝐴(7, 62)

As explained in the Handbook III.3.74 [DesignHandbook].

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_54_7_1_1_8
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_54_7_1_1_8()
sage: is_quasi_difference_matrix(M,G,7,1,1,8)
True

sage.combinat.designs.database.QDM_57_9_1_1_8()
Return a (57, 9; 1, 1; 8)-quasi-difference matrix.

Used to build an 𝑂𝐴(9, 65)

Construction shared by Julian R. Abel

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_57_9_1_1_8
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_57_9_1_1_8()
sage: is_quasi_difference_matrix(M,G,9,1,1,8)
True

sage.combinat.designs.database.RBIBD_120_8_1()
Return a resolvable 𝐵𝐼𝐵𝐷(120, 8, 1)

This function output a list L of 17× 15 blocks such that L[i*15:(i+1)*15] is a partition of 120.

Construction shared by Julian R. Abel:

Seiden’s method: Start with a cyclic (273, 17, 1)−𝐵𝐼𝐵𝐷 and let 𝐵 be an hyperoval, i.e. a set of 18
points which intersects any block of the BIBD in either 0 points (153 blocks) or 2 points (120 blocks).
Dualise this design and take these last 120 blocks as points in the design; blocks in the design will
correspond to the 273− 18 = 255 non-hyperoval points.

The design is also resolvable. In the original𝑃𝐺(2, 16) take any point 𝑇 in the hyperoval and consider
a block 𝐵1 containing 𝑇 . The 15 points in 𝐵1 that do not belong to the hyperoval correspond to 15
blocks forming a parallel class in the dualised design. The other 16 parallel classes come in a similar
way, by using point 𝑇 and the other 16 blocks containing 𝑇 .

See also:

OA_9_120()

EXAMPLES:

5.1. Comprehensive Module List 629

Combinatorics, Release 9.7

sage: from sage.combinat.designs.database import RBIBD_120_8_1
sage: from sage.combinat.designs.bibd import is_pairwise_balanced_design
sage: RBIBD = RBIBD_120_8_1()
sage: is_pairwise_balanced_design(RBIBD,120,[8])
True

It is indeed resolvable, and the parallel classes are given by 17 slices of consecutive 15 blocks:

sage: for i in range(17):
....: assert len(set(sum(RBIBD[i*15:(i+1)*15],[]))) == 120

The BIBD is available from the constructor:

sage: _ = designs.balanced_incomplete_block_design(120,8)

sage.combinat.designs.database.cyclic_shift(l, i)

sage.combinat.designs.database.f()
Return a (57, 9; 1, 1; 8)-quasi-difference matrix.

Used to build an 𝑂𝐴(9, 65)

Construction shared by Julian R. Abel

EXAMPLES:

sage: from sage.combinat.designs.database import QDM_57_9_1_1_8
sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: G,M = QDM_57_9_1_1_8()
sage: is_quasi_difference_matrix(M,G,9,1,1,8)
True

5.1.80 Catalog of designs

This module gathers all designs that can be reached through designs.<tab>. Example with the Witt design on 24
points:

sage: designs.WittDesign(24) # optional - gap_packages
Incidence structure with 24 points and 759 blocks

Or a Steiner Triple System on 19 points:

sage: designs.steiner_triple_system(19)
(19,3,1)-Balanced Incomplete Block Design

La Jolla Covering Repository

The La Jolla Covering Repository (LJCR, see1) is an online database of covering designs. As it is frequently updated,
it is not included in Sage, but one can query it through designs.best_known_covering_design_from_LJCR :

sage: C = designs.best_known_covering_design_from_LJCR(7, 3, 2) # optional - internet
sage: C # optional - internet
(7, 3, 2)-covering design of size 7

(continues on next page)

1 La Jolla Covering Repository, https://math.ccrwest.org/cover.html

630 Chapter 5. Comprehensive Module List

https://math.ccrwest.org/cover.html

Combinatorics, Release 9.7

(continued from previous page)

Lower bound: 7
Method: lex covering
Submitted on: 1996-12-01 00:00:00
sage: C.incidence_structure() # optional - internet
Incidence structure with 7 points and 7 blocks

Design constructors

This module gathers the following designs:

ProjectiveGeometryDesign()
DesarguesianProjectivePlaneDesign()
HughesPlane()
HigmanSimsDesign()
balanced_incomplete_block_design()
resolvable_balanced_incomplete_block_design()
kirkman_triple_system()
AffineGeometryDesign()
CremonaRichmondConfiguration()
WittDesign()
HadamardDesign()
Hadamard3Design()
mutually_orthogonal_latin_squares()
transversal_design()
orthogonal_array()
incomplete_orthogonal_array()
difference_family()
difference_matrix()
steiner_triple_system()
steiner_quadruple_system()
projective_plane()
biplane()
gen_quadrangles_with_spread()

And the designs.best_known_covering_design_from_LJCR function which queries the LJCR.

Todo: Implement DerivedDesign and ComplementaryDesign.

REFERENCES:

5.1.81 Cython functions for combinatorial designs

This module implements the design methods that need to be somewhat efficient.

5.1. Comprehensive Module List 631

Combinatorics, Release 9.7

Functions

sage.combinat.designs.designs_pyx.is_difference_matrix(M, G, k, lmbda=1, verbose=False)
Test if 𝑀 is a (𝐺, 𝑘, 𝜆)-difference matrix.

A matrix 𝑀 is a (𝐺, 𝑘, 𝜆)-difference matrix if its entries are element of 𝐺, and if for any two rows 𝑅,𝑅′ of 𝑀
and 𝑥 ∈ 𝐺 there are exactly 𝜆 values 𝑖 such that 𝑅𝑖 −𝑅′𝑖 = 𝑥.

INPUT:

• M – a matrix with entries from G

• G – a group

• k – integer

• lmbda (integer) – set to 1 by default.

• verbose (boolean) – whether to print some information when the answer is False.

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix
sage: q = 3**3
sage: F = GF(q,'x')
sage: M = [[x*y for y in F] for x in F]
sage: is_difference_matrix(M,F,q,verbose=1)
True

sage: B = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
....: [0, 1, 2, 3, 4, 2, 3, 4, 0, 1],
....: [0, 2, 4, 1, 3, 3, 0, 2, 4, 1]]
sage: G = GF(5)
sage: B = [[G(b) for b in R] for R in B]
sage: is_difference_matrix(list(zip(*B)),G,3,2)
True

Bad input:

sage: for R in M: R.append(None)
sage: is_difference_matrix(M,F,q,verbose=1)
The matrix has 28 columns but k=27
False
sage: for R in M: _=R.pop(-1)
sage: M.append([None]*3**3)
sage: is_difference_matrix(M,F,q,verbose=1)
The matrix has 28 rows instead of lambda(|G|-1+2u)+mu=1(27-1+2.0)+1=27
False
sage: _= M.pop(-1)
sage: for R in M: R[-1] = 0
sage: is_difference_matrix(M,F,q,verbose=1)
Columns 0 and 26 generate 0 exactly 27 times instead of the expected mu(=1)
False
sage: for R in M: R[-1] = 1
sage: M[-1][-1] = 0
sage: is_difference_matrix(M,F,q,verbose=1)

(continues on next page)

632 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Columns 0 and 26 do not generate all elements of G exactly lambda(=1) times. The␣
→˓element x appeared 0 times as a difference.
False

sage.combinat.designs.designs_pyx.is_group_divisible_design(groups, blocks, v, G=None, K=None,
lambd=1, verbose=False)

Checks that input is a Group Divisible Design on {0, ..., 𝑣 − 1}

For more information on Group Divisible Designs, see GroupDivisibleDesign.

INPUT:

• groups – a partition of 𝑋 . If set to None the groups are guessed automatically, and the function returns
(True, guessed_groups) instead of True

• blocks – collection of blocks

• v (integers) – size of the ground set assumed to be 𝑋 = {0, ..., 𝑣 − 1}.

• G – list of integers of which the sizes of the groups must be elements. Set to None (automatic guess) by
default.

• K – list of integers of which the sizes of the blocks must be elements. Set to None (automatic guess) by
default.

• lambd – value of 𝜆. Set to 1 by default.

• verbose (boolean) – whether to display some information when the design is not a GDD.

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_group_divisible_design
sage: TD = designs.transversal_design(4,10)
sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)]
sage: is_group_divisible_design(groups,TD,40,lambd=1)
True

sage.combinat.designs.designs_pyx.is_orthogonal_array(OA, k, n, t=2, verbose=False,
terminology='OA')

Check that the integer matrix 𝑂𝐴 is an 𝑂𝐴(𝑘, 𝑛, 𝑡).

See orthogonal_array() for a definition.

INPUT:

• OA – the Orthogonal Array to be tested

• k,n,t (integers) – only implemented for 𝑡 = 2.

• verbose (boolean) – whether to display some information when OA is not an orthogonal array 𝑂𝐴(𝑘, 𝑛).

• terminology (string) – how to phrase the information when verbose = True. Possible values are ”𝑂𝐴”,
”𝑀𝑂𝐿𝑆”.

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: OA = designs.orthogonal_arrays.build(8,9)
sage: is_orthogonal_array(OA,8,9)
True
sage: is_orthogonal_array(OA,8,10)

(continues on next page)

5.1. Comprehensive Module List 633

Combinatorics, Release 9.7

(continued from previous page)

False
sage: OA[4][3] = 1
sage: is_orthogonal_array(OA,8,9)
False
sage: is_orthogonal_array(OA,8,9,verbose=True)
Columns 0 and 3 are not orthogonal
False
sage: is_orthogonal_array(OA,8,9,verbose=True,terminology="MOLS")
Squares 0 and 3 are not orthogonal
False

sage.combinat.designs.designs_pyx.is_pairwise_balanced_design(blocks, v, K=None, lambd=1,
verbose=False)

Checks that input is a Pairwise Balanced Design (PBD) on {0, ..., 𝑣 − 1}

For more information on Pairwise Balanced Designs (PBD), see PairwiseBalancedDesign.

INPUT:

• blocks – collection of blocks

• v (integers) – size of the ground set assumed to be 𝑋 = {0, ..., 𝑣 − 1}.

• K – list of integers of which the sizes of the blocks must be elements. Set to None (automatic guess) by
default.

• lambd – value of 𝜆. Set to 1 by default.

• verbose (boolean) – whether to display some information when the design is not a PBD.

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_pairwise_balanced_design
sage: sts = designs.steiner_triple_system(9)
sage: is_pairwise_balanced_design(sts,9,[3],1)
True
sage: TD = designs.transversal_design(4,10).blocks()
sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)]
sage: is_pairwise_balanced_design(TD+groups,40,[4,10],1,verbose=True)
True

sage.combinat.designs.designs_pyx.is_projective_plane(blocks, verbose=False)
Test whether the blocks form a projective plane on {0, ..., 𝑣 − 1}

A projective plane is an incidence structure that has the following properties:

1. Given any two distinct points, there is exactly one line incident with both of them.

2. Given any two distinct lines, there is exactly one point incident with both of them.

3. There are four points such that no line is incident with more than two of them.

For more informations, see Wikipedia article Projective_plane.

is_t_design() can also check if an incidence structure is a projective plane with the parameters 𝑣 = 𝑘2+𝑘+1,
𝑡 = 2 and 𝑙 = 1.

INPUT:

• blocks – collection of blocks

634 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Projective_plane

Combinatorics, Release 9.7

• verbose – whether to print additional information

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_projective_plane
sage: p = designs.projective_plane(4)
sage: b = p.blocks()
sage: is_projective_plane(b, verbose=True)
True

sage: p = designs.projective_plane(2)
sage: b = p.blocks()
sage: is_projective_plane(b)
True
sage: b[0][2] = 5
sage: is_projective_plane(b, verbose=True)
the pair (0,5) has been seen 2 times but lambda=1
False

sage: is_projective_plane([[0,1,2],[1,2,4]], verbose=True)
the pair (0,3) has been seen 0 times but lambda=1
False

sage: is_projective_plane([[1]], verbose=True)
First block has less than 3 points.
False

sage: p = designs.projective_plane(2)
sage: b = p.blocks()
sage: b[2].append(4)
sage: is_projective_plane(b, verbose=True)
a block has size 4 while K=[3]
False

sage.combinat.designs.designs_pyx.is_quasi_difference_matrix(M, G, k, lmbda, mu, u,
verbose=False)

Test if the matrix is a (𝐺, 𝑘;𝜆, 𝜇;𝑢)-quasi-difference matrix

Let 𝐺 be an abelian group of order 𝑛. A (𝑛, 𝑘;𝜆, 𝜇;𝑢)-quasi-difference matrix (QDM) is a matrix 𝑄𝑖𝑗 with
𝜆(𝑛 − 1 + 2𝑢) + 𝜇 rows and 𝑘 columns, with each entry either equal to None (i.e. the ‘missing entries’) or
to an element of 𝐺. Each column contains exactly 𝜆𝑢 empty entries, and each row contains at most one None.
Furthermore, for each 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, the multiset

{𝑞𝑙𝑖 − 𝑞𝑙𝑗 : 1 ≤ 𝑙 ≤ 𝜆(𝑛− 1 + 2𝑢) + 𝜇, with 𝑞𝑙𝑖 and 𝑞𝑙𝑗 not empty}

contains 𝜆 times every nonzero element of 𝐺 and contains 𝜇 times 0.

INPUT:

• M – a matrix with entries from G (or equal to None for missing entries)

• G – a group

• k,lmbda,mu,u – integers

• verbose (boolean) – whether to print some information when the answer is False.

EXAMPLES:

5.1. Comprehensive Module List 635

Combinatorics, Release 9.7

Differences matrices:

sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix
sage: q = 3**3
sage: F = GF(q,'x')
sage: M = [[x*y for y in F] for x in F]
sage: is_quasi_difference_matrix(M,F,q,1,1,0,verbose=1)
True

sage: B = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
....: [0, 1, 2, 3, 4, 2, 3, 4, 0, 1],
....: [0, 2, 4, 1, 3, 3, 0, 2, 4, 1]]
sage: G = GF(5)
sage: B = [[G(b) for b in R] for R in B]
sage: is_quasi_difference_matrix(list(zip(*B)),G,3,2,2,0)
True

A quasi-difference matrix from the database:

sage: from sage.combinat.designs.database import QDM
sage: G,M = QDM[38,1][37,1,1,1][1]()
sage: is_quasi_difference_matrix(M,G,k=6,lmbda=1,mu=1,u=1)
True

Bad input:

sage: is_quasi_difference_matrix(M,G,k=6,lmbda=1,mu=1,u=3,verbose=1)
The matrix has 39 rows instead of lambda(|G|-1+2u)+mu=1(37-1+2.3)+1=43
False
sage: is_quasi_difference_matrix(M,G,k=6,lmbda=1,mu=2,u=1,verbose=1)
The matrix has 39 rows instead of lambda(|G|-1+2u)+mu=1(37-1+2.1)+2=40
False
sage: M[3][1] = None
sage: is_quasi_difference_matrix(M,G,k=6,lmbda=1,mu=1,u=1,verbose=1)
Row 3 contains more than one empty entry
False
sage: M[3][1] = 1
sage: M[6][1] = None
sage: is_quasi_difference_matrix(M,G,k=6,lmbda=1,mu=1,u=1,verbose=1)
Column 1 contains 2 empty entries instead of the expected lambda.u=1.1=1
False

5.1.82 Difference families

This module gathers everything related to difference families. One can build a difference family (or check that it can
be built) with difference_family():

sage: G,F = designs.difference_family(13,4,1)

It defines the following functions:

636 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

are_hadamard_difference_set_parameters()Check whether (v,k,lmbda) is of the form (4N^2, 2N^2 - N, N^2 - N).
are_mcfarland_1973_parameters()Test whether (v,k,lmbda) is a triple that can be obtained from the construction

from [McF1973].
block_stabilizer() Compute the left stabilizer of the block B under the action of G.
df_q_6_1() Return a (𝑞, 6, 1)-difference family over the finite field 𝐾.
difference_family() Return a (k, l)-difference family on an Abelian group of cardinality v.
group_law() Return a triple (identity, operation, inverse) that define the operations

on the group G.
hadamard_difference_set_product()Make a product of two Hadamard difference sets.
is_difference_family() Check whether D forms a difference family in the group G.
mcfarland_1973_construction()Return a difference set.
one_cyclic_tiling() Given a subset A of the cyclic additive group 𝐺 = 𝑍/𝑛𝑍 return another subset

𝐵 so that 𝐴 + 𝐵 = 𝐺 and |𝐴||𝐵| = 𝑛 (i.e. any element of 𝐺 is uniquely
expressed as a sum 𝑎+ 𝑏 with 𝑎 in 𝐴 and 𝑏 in 𝐵).

one_radical_difference_family()Search for a radical difference family on K using dancing links algorithm.
radical_difference_family()Return a (v,k,l)-radical difference family.
radical_difference_set() Return a difference set made of a cyclotomic coset in the finite field K and with

parameters k and l.
singer_difference_set() Return a difference set associated to the set of hyperplanes in a projective space

of dimension 𝑑 over 𝐺𝐹 (𝑞).
turyn_1965_3x3xK() Return a difference set in either 𝐶3 × 𝐶3 × 𝐶4 or 𝐶3 × 𝐶3 × 𝐶2 × 𝐶2 with

parameters 𝑣 = 36, 𝑘 = 15, 𝜆 = 6.
twin_prime_powers_difference_set()Return a difference set on 𝐺𝐹 (𝑝)×𝐺𝐹 (𝑝+ 2).

REFERENCES:

Functions

sage.combinat.designs.difference_family.are_hadamard_difference_set_parameters(v, k, lmbda)
Check whether (v,k,lmbda) is of the form (4N^2, 2N^2 - N, N^2 - N).

INPUT:

• (v,k,lmbda) – parameters of a difference set

EXAMPLES:

sage: from sage.combinat.designs.difference_family import are_hadamard_difference_
→˓set_parameters
sage: are_hadamard_difference_set_parameters(36, 15, 6)
True
sage: are_hadamard_difference_set_parameters(60, 13, 5)
False

sage.combinat.designs.difference_family.are_mcfarland_1973_parameters(v, k, lmbda, re-
turn_parameters=False)

Test whether (v,k,lmbda) is a triple that can be obtained from the construction from [McF1973].

See mcfarland_1973_construction().

INPUT:

• v, k, lmbda - (integers) parameters of the difference family

5.1. Comprehensive Module List 637

Combinatorics, Release 9.7

• return_parameters – (boolean, default False) if True return a pair (True, (q, s)) so that (q,s) can
be used in the function mcfarland_1973_construction() to actually build a (v,k,lmbda)-difference
family. Or (False, None) if the construction is not possible.

EXAMPLES:

sage: from sage.combinat.designs.difference_family import are_mcfarland_1973_
→˓parameters
sage: are_mcfarland_1973_parameters(64, 28, 12)
True
sage: are_mcfarland_1973_parameters(64, 28, 12, return_parameters=True)
(True, (2, 2))
sage: are_mcfarland_1973_parameters(60, 13, 5)
False
sage: are_mcfarland_1973_parameters(98125, 19500, 3875)
True
sage: are_mcfarland_1973_parameters(98125, 19500, 3875, True)
(True, (5, 3))

sage: from sage.combinat.designs.difference_family import are_mcfarland_1973_
→˓parameters
sage: for v in range(1, 100):
....: for k in range(1,30):
....: for l in range(1,15):
....: if are_mcfarland_1973_parameters(v,k,l):
....: answer, (q,s) = are_mcfarland_1973_parameters(v,k,l,return_
→˓parameters=True)
....: print("{} {} {} {} {}".format(v,k,l,q,s))
....: assert answer is True
....: assert designs.difference_family(v,k,l,existence=True) is True
....: G,D = designs.difference_family(v,k,l)
16 6 2 2 1
45 12 3 3 1
64 28 12 2 2
96 20 4 4 1

sage.combinat.designs.difference_family.block_stabilizer(G, B)
Compute the left stabilizer of the block B under the action of G.

This function return the list of all 𝑥 ∈ 𝐺 such that 𝑥 ·𝐵 = 𝐵 (as a set).

INPUT:

• G – a group (additive or multiplicative).

• B – a subset of G.

EXAMPLES:

sage: from sage.combinat.designs.difference_family import block_stabilizer

sage: Z8 = Zmod(8)
sage: block_stabilizer(Z8, [Z8(0),Z8(2),Z8(4),Z8(6)])
[0, 2, 4, 6]
sage: block_stabilizer(Z8, [Z8(0),Z8(2)])
[0]

(continues on next page)

638 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: C = cartesian_product([Zmod(4),Zmod(3)])
sage: block_stabilizer(C, [C((0,0)),C((2,0)),C((0,1)),C((2,1))])
[(0, 0), (2, 0)]

sage: b = list(map(Zmod(45),[1, 3, 7, 10, 22, 25, 30, 35, 37, 38, 44]))
sage: block_stabilizer(Zmod(45),b)
[0]

sage.combinat.designs.difference_family.df_q_6_1(K, existence=False, check=True)
Return a (𝑞, 6, 1)-difference family over the finite field 𝐾.

The construction uses Theorem 11 of [Wi72].

EXAMPLES:

sage: from sage.combinat.designs.difference_family import is_difference_family, df_
→˓q_6_1
sage: prime_powers = [v for v in range(31,500,30) if is_prime_power(v)]
sage: parameters = [v for v in prime_powers if df_q_6_1(GF(v,'a'), existence=True)␣
→˓is True]
sage: parameters
[31, 151, 181, 211, 241, 271, 331, 361, 421]
sage: for v in parameters:
....: K = GF(v, 'a')
....: df = df_q_6_1(K, check=True)
....: assert is_difference_family(K, df, v, 6, 1)

Todo: Do improvements due to Zhen and Wu 1999.

sage.combinat.designs.difference_family.difference_family(v, k, l=1, existence=False,
explain_construction=False,
check=True)

Return a (k, l)-difference family on an Abelian group of cardinality v.

Let 𝐺 be a finite Abelian group. For a given subset 𝐷 of 𝐺, we define ∆𝐷 to be the multi-set of differences
∆𝐷 = {𝑥 − 𝑦;𝑥 ∈ 𝐷, 𝑦 ∈ 𝐷,𝑥 ̸= 𝑦}. A (𝐺, 𝑘, 𝜆)-difference family is a collection of 𝑘-subsets of 𝐺,
𝐷 = {𝐷1, 𝐷2, . . . , 𝐷𝑏} such that the union of the difference sets ∆𝐷𝑖 for 𝑖 = 1, ...𝑏, seen as a multi-set,
contains each element of 𝐺∖{0} exactly 𝜆-times.

When there is only one block, i.e. 𝜆(𝑣 − 1) = 𝑘(𝑘 − 1), then a (𝐺, 𝑘, 𝜆)-difference family is also called a
difference set.

See also Wikipedia article Difference_set.

If there is no such difference family, an EmptySetError is raised and if there is no construction at the moment
NotImplementedError is raised.

INPUT:

• v,k,l – parameters of the difference family. If l is not provided it is assumed to be 1.

• existence – if True, then return either True if Sage knows how to build such design, Unknown if it does
not and False if it knows that the design does not exist.

• explain_construction – instead of returning a difference family, returns a string that explains the con-
struction used.

5.1. Comprehensive Module List 639

https://en.wikipedia.org/wiki/Difference_set

Combinatorics, Release 9.7

• check – boolean (default: True). If True then the result of the computation is checked before being
returned. This should not be needed but ensures that the output is correct.

OUTPUT:

A pair (G,D) made of a group 𝐺 and a difference family 𝐷 on that group. Or, if existence is True a troolean
or if explain_construction is True a string.

EXAMPLES:

sage: G,D = designs.difference_family(73,4)
sage: G
Finite Field of size 73
sage: D
[[0, 1, 5, 18],
[0, 3, 15, 54],
[0, 9, 45, 16],
[0, 27, 62, 48],
[0, 8, 40, 71],
[0, 24, 47, 67]]

sage: print(designs.difference_family(73, 4, explain_construction=True))
The database contains a (73,4)-evenly distributed set

sage: G,D = designs.difference_family(15,7,3)
sage: G
Ring of integers modulo 15
sage: D
[[0, 1, 2, 4, 5, 8, 10]]
sage: print(designs.difference_family(15,7,3,explain_construction=True))
Singer difference set

sage: print(designs.difference_family(91,10,1,explain_construction=True))
Singer difference set
sage: print(designs.difference_family(64,28,12, explain_construction=True))
McFarland 1973 construction
sage: print(designs.difference_family(576, 276, 132, explain_construction=True))
Hadamard difference set product from N1=2 and N2=3

For 𝑘 = 6, 7 we look at the set of small prime powers for which a construction is available:

sage: def prime_power_mod(r,m):
....: k = m+r
....: while True:
....: if is_prime_power(k):
....: yield k
....: k += m

sage: from itertools import islice
sage: l6 = {True:[], False: [], Unknown: []}
sage: for q in islice(prime_power_mod(1,30), int(60)):
....: l6[designs.difference_family(q,6,existence=True)].append(q)
sage: l6[True]
[31, 121, 151, 181, 211, ..., 3061, 3121, 3181]
sage: l6[Unknown]

(continues on next page)

640 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[61]
sage: l6[False]
[]

sage: l7 = {True: [], False: [], Unknown: []}
sage: for q in islice(prime_power_mod(1,42), int(60)):
....: l7[designs.difference_family(q,7,existence=True)].append(q)
sage: l7[True]
[169, 337, 379, 421, 463, 547, 631, 673, 757, 841, 883, 967, ..., 4621, 4957, 5167]
sage: l7[Unknown]
[43, 127, 211, 2017, 2143, 2269, 2311, 2437, 2521, 2647, ..., 4999, 5041, 5209]
sage: l7[False]
[]

List available constructions:

sage: for v in range(2,100):
....: constructions = []
....: for k in range(2,10):
....: for l in range(1,10):
....: ret = designs.difference_family(v,k,l,existence=True)
....: if ret is True:
....: constructions.append((k,l))
....: _ = designs.difference_family(v,k,l)
....: if constructions:
....: print("%2d: %s"%(v, ', '.join('(%d,%d)'%(k,l) for k,l in␣
→˓constructions)))
3: (2,1)
4: (3,2)
5: (2,1), (4,3)
6: (5,4)
7: (2,1), (3,1), (3,2), (4,2), (6,5)
8: (7,6)
9: (2,1), (4,3), (8,7)
10: (9,8)
11: (2,1), (4,6), (5,2), (5,4), (6,3)
13: (2,1), (3,1), (3,2), (4,1), (4,3), (5,5), (6,5)
15: (3,1), (4,6), (5,6), (7,3)
16: (3,2), (5,4), (6,2)
17: (2,1), (4,3), (5,5), (8,7)
19: (2,1), (3,1), (3,2), (4,2), (6,5), (9,4), (9,8)
21: (3,1), (4,3), (5,1), (6,3), (6,5)
22: (4,2), (6,5), (7,4), (8,8)
23: (2,1)
25: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (7,7), (8,7)
27: (2,1), (3,1)
28: (3,2), (6,5)
29: (2,1), (4,3), (7,3), (7,6), (8,4), (8,6)
31: (2,1), (3,1), (3,2), (4,2), (5,2), (5,4), (6,1), (6,5)
33: (3,1), (5,5), (6,5)
34: (4,2)
35: (5,2)

(continues on next page)

5.1. Comprehensive Module List 641

Combinatorics, Release 9.7

(continued from previous page)

37: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (9,2), (9,8)
39: (3,1), (6,5)
40: (3,2), (4,1)
41: (2,1), (4,3), (5,1), (5,4), (6,3), (8,7)
43: (2,1), (3,1), (3,2), (4,2), (6,5), (7,2), (7,3), (7,6), (8,4)
45: (3,1), (5,1)
46: (4,2), (6,2)
47: (2,1)
49: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (8,7), (9,3)
51: (3,1), (5,2), (6,3)
52: (4,1)
53: (2,1), (4,3)
55: (3,1), (9,4)
57: (3,1), (7,3), (8,1)
59: (2,1)
61: (2,1), (3,1), (3,2), (4,1), (4,3), (5,1), (5,4), (6,2), (6,3), (6,5)
63: (3,1)
64: (3,2), (4,1), (7,2), (7,6), (9,8)
65: (5,1)
67: (2,1), (3,1), (3,2), (6,5)
69: (3,1)
71: (2,1), (5,2), (5,4), (7,3), (7,6), (8,4)
73: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (8,7), (9,1), (9,8)
75: (3,1), (5,2)
76: (4,1)
79: (2,1), (3,1), (3,2), (6,5)
81: (2,1), (3,1), (4,3), (5,1), (5,4), (8,7)
83: (2,1)
85: (4,1), (7,2), (7,3), (8,2)
89: (2,1), (4,3), (8,7)
91: (6,1), (7,1)
97: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (8,7), (9,3)

Todo: Implement recursive constructions from Buratti “Recursive for difference matrices and relative difference
families” (1998) and Jungnickel “Composition theorems for difference families and regular planes” (1978)

sage.combinat.designs.difference_family.group_law(G)
Return a triple (identity, operation, inverse) that define the operations on the group G.

EXAMPLES:

sage: from sage.combinat.designs.difference_family import group_law
sage: group_law(Zmod(3))
(0, <built-in function add>, <built-in function neg>)
sage: group_law(SymmetricGroup(5))
((), <built-in function mul>, <built-in function inv>)
sage: group_law(VectorSpace(QQ,3))
((0, 0, 0), <built-in function add>, <built-in function neg>)

sage.combinat.designs.difference_family.hadamard_difference_set_product(G1, D1, G2, D2)
Make a product of two Hadamard difference sets.

642 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

This product construction appears in [Tu1984].

INPUT:

• G1,D1, G2,D2 – two Hadamard difference sets

EXAMPLES:

sage: from sage.combinat.designs.difference_family import hadamard_difference_set_
→˓product
sage: from sage.combinat.designs.difference_family import is_difference_family

sage: G1,D1 = designs.difference_family(16,6,2)
sage: G2,D2 = designs.difference_family(36,15,6)

sage: G11,D11 = hadamard_difference_set_product(G1,D1,G1,D1)
sage: assert is_difference_family(G11, D11, 256, 120, 56)
sage: assert designs.difference_family(256, 120, 56, existence=True) is True

sage: G12,D12 = hadamard_difference_set_product(G1,D1,G2,D2)
sage: assert is_difference_family(G12, D12, 576, 276, 132)
sage: assert designs.difference_family(576, 276, 132, existence=True) is True

sage.combinat.designs.difference_family.hadamard_difference_set_product_parameters(N)
Check whether a product construction is available for Hadamard difference set with parameter N.

This function looks for two integers𝑁1 and𝑁2 greater than 1 and so that𝑁 = 2𝑁1𝑁2 and there exists Hadamard
difference set with parameters (4𝑁2

𝑖 , 2𝑁
2
𝑖 −𝑁𝑖, 𝑁2

𝑖 −𝑁𝑖). If such pair exists, the output is the pair (N_1, N_2)
otherwise it is None.

INPUT:

• N – positive integer

EXAMPLES:

sage: from sage.combinat.designs.difference_family import hadamard_difference_set_
→˓product_parameters
sage: hadamard_difference_set_product_parameters(8)
(2, 2)

sage.combinat.designs.difference_family.is_difference_family(G, D, v=None, k=None, l=None,
verbose=False)

Check whether D forms a difference family in the group G.

INPUT:

• G – group of cardinality v

• D – a set of k-subsets of G

• v, k and l – optional parameters of the difference family

• verbose - whether to print additional information

See also:

difference_family()

EXAMPLES:

5.1. Comprehensive Module List 643

Combinatorics, Release 9.7

sage: from sage.combinat.designs.difference_family import is_difference_family
sage: G = Zmod(21)
sage: D = [[0,1,4,14,16]]
sage: is_difference_family(G, D, 21, 5)
True

sage: G = Zmod(41)
sage: D = [[0,1,4,11,29],[0,2,8,17,21]]
sage: is_difference_family(G, D, verbose=True)
Too few:
5 is obtained 0 times in blocks []
14 is obtained 0 times in blocks []
27 is obtained 0 times in blocks []
36 is obtained 0 times in blocks []

Too much:
4 is obtained 2 times in blocks [0, 1]
13 is obtained 2 times in blocks [0, 1]
28 is obtained 2 times in blocks [0, 1]
37 is obtained 2 times in blocks [0, 1]

False
sage: D = [[0,1,4,11,29],[0,2,8,17,22]]
sage: is_difference_family(G, D)
True

sage: G = Zmod(61)
sage: D = [[0,1,3,13,34],[0,4,9,23,45],[0,6,17,24,32]]
sage: is_difference_family(G, D)
True

sage: G = AdditiveAbelianGroup([3]*4)
sage: a,b,c,d = G.gens()
sage: D = [[d, -a+d, -c+d, a-b-d, b+c+d],
....: [c, a+b-d, -b+c, a-b+d, a+b+c],
....: [-a-b+c+d, a-b-c-d, -a+c-d, b-c+d, a+b],
....: [-b-d, a+b+d, a-b+c-d, a-b+c, -b+c+d]]
sage: is_difference_family(G, D)
True

The following example has a third block with a non-trivial stabilizer:

sage: G = Zmod(15)
sage: D = [[0,1,4],[0,2,9],[0,5,10]]
sage: is_difference_family(G,D,verbose=True)
It is a (15,3,1)-difference family
True

The function also supports multiplicative groups (non necessarily Abelian):

sage: G = DihedralGroup(8)
sage: x,y = G.gens()
sage: i = G.one()
sage: D1 = [[i,x,x^4], [i,x^2, y*x], [i,x^5,y], [i,x^6,y*x^2], [i,x^7,y*x^5]]
sage: is_difference_family(G, D1, 16, 3, 2)

(continues on next page)

644 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

True
sage: from sage.combinat.designs.bibd import BIBD_from_difference_family
sage: bibd = BIBD_from_difference_family(G,D1,lambd=2)

sage.combinat.designs.difference_family.mcfarland_1973_construction(q, s)
Return a difference set.

The difference set returned has the following parameters

𝑣 =
𝑞𝑠+1(𝑞𝑠+1 + 𝑞 − 2)

𝑞 − 1
, 𝑘 =

𝑞𝑠(𝑞𝑠+1 − 1)

𝑞 − 1
, 𝜆 =

𝑞𝑠(𝑞𝑠 − 1)

𝑞 − 1

This construction is due to [McF1973].

INPUT:

• q, s - (integers) parameters for the difference set (see the above formulas for the expression of v, k, l in
terms of q and s)

See also:

The function are_mcfarland_1973_parameters() makes the translation between the parameters (𝑞, 𝑠) cor-
responding to a given triple (𝑣, 𝑘, 𝜆).

REFERENCES:

EXAMPLES:

sage: from sage.combinat.designs.difference_family import (
....: mcfarland_1973_construction, is_difference_family)

sage: G,D = mcfarland_1973_construction(3, 1)
sage: assert is_difference_family(G, D, 45, 12, 3)

sage: G,D = mcfarland_1973_construction(2, 2)
sage: assert is_difference_family(G, D, 64, 28, 12)

sage.combinat.designs.difference_family.one_cyclic_tiling(A, n)
Given a subset A of the cyclic additive group 𝐺 = 𝑍/𝑛𝑍 return another subset 𝐵 so that 𝐴 + 𝐵 = 𝐺 and
|𝐴||𝐵| = 𝑛 (i.e. any element of 𝐺 is uniquely expressed as a sum 𝑎+ 𝑏 with 𝑎 in 𝐴 and 𝑏 in 𝐵).

EXAMPLES:

sage: from sage.combinat.designs.difference_family import one_cyclic_tiling
sage: tile = [0,2,4]
sage: m = one_cyclic_tiling(tile,6); m
[0, 3]
sage: sorted((i+j)%6 for i in tile for j in m)
[0, 1, 2, 3, 4, 5]

sage: def print_tiling(tile, translat, n):
....: for x in translat:
....: print(''.join('X' if (i-x)%n in tile else '.' for i in range(n)))

sage: tile = [0, 1, 2, 7]
sage: m = one_cyclic_tiling(tile, 12)
sage: print_tiling(tile, m, 12)

(continues on next page)

5.1. Comprehensive Module List 645

Combinatorics, Release 9.7

(continued from previous page)

XXX....X....
....XXX....X
...X....XXX.

sage: tile = [0, 1, 5]
sage: m = one_cyclic_tiling(tile, 12)
sage: print_tiling(tile, m, 12)
XX...X......
...XX...X...
......XX...X
..X......XX.

sage: tile = [0, 2]
sage: m = one_cyclic_tiling(tile, 8)
sage: print_tiling(tile, m, 8)
X.X.....
....X.X.
.X.X....
.....X.X

ALGORITHM:

Uses dancing links sage.combinat.dlx

sage.combinat.designs.difference_family.one_radical_difference_family(K, k)
Search for a radical difference family on K using dancing links algorithm.

For the definition of radical difference family, see radical_difference_family(). Here, we consider only
radical difference family with 𝜆 = 1.

INPUT:

• K – a finite field of cardinality 𝑞.

• k – a positive integer so that 𝑘(𝑘 − 1) divides 𝑞 − 1.

OUTPUT:

Either a difference family or None if it does not exist.

ALGORITHM:

The existence of a radical difference family is equivalent to a one dimensional tiling (or packing) problem in a
cyclic group. This subsequent problem is solved by a call to the function one_cyclic_tiling().

Let 𝐾* be the multiplicative group of the finite field 𝐾. A radical family has the form ℬ =
{𝑥1𝐵, . . . , 𝑥𝑘𝐵}, where 𝐵 = {𝑥 : 𝑥𝑘 = 1} (for 𝑘 odd) or 𝐵 = {𝑥 : 𝑥𝑘−1 = 1} ∪ {0} (for 𝑘
even). Equivalently, 𝐾* decomposes as:

𝐾* = ∆(𝑥1𝐵) ∪ · · · ∪∆(𝑥𝑘𝐵) = 𝑥1∆𝐵 ∪ · · · ∪ 𝑥𝑘∆𝐵.

We observe that 𝐶 = 𝐵∖0 is a subgroup of the (cyclic) group𝐾*, that can thus be generated by some
element 𝑟. Furthermore, we observe that ∆𝐵 is always a union of cosets of±𝐶 (which is twice larger
than 𝐶).

(𝑘 odd) ∆𝐵 = {𝑟𝑖 − 𝑟𝑗 : 𝑟𝑖 ̸= 𝑟𝑗} = ±𝐶 · {𝑟𝑖 − 1 : 0 < 𝑖 ≤ 𝑚}
(𝑘 even) ∆𝐵 = {𝑟𝑖 − 𝑟𝑗 : 𝑟𝑖 ̸= 𝑟𝑗} ∪ 𝐶 = ±𝐶 · {𝑟𝑖 − 1 : 0 < 𝑖 < 𝑚} ∪ ±𝐶

646 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

where

(𝑘 odd) 𝑚 = (𝑘 − 1)/2 and (𝑘 even) 𝑚 = 𝑘/2.

Consequently, ℬ = {𝑥1𝐵, . . . , 𝑥𝑘𝐵} is a radical difference family if and only if
{𝑥1(∆𝐵/(±𝐶)), . . . , 𝑥𝑘(∆𝐵/(±𝐶))} is a partition of the cyclic group 𝐾*/(±𝐶).

EXAMPLES:

sage: from sage.combinat.designs.difference_family import (
....: one_radical_difference_family,
....: is_difference_family)

sage: one_radical_difference_family(GF(13),4)
[[0, 1, 3, 9]]

The parameters that appear in [Bu95]:

sage: df = one_radical_difference_family(GF(449), 8); df
[[0, 1, 18, 25, 176, 324, 359, 444],
[0, 9, 88, 162, 222, 225, 237, 404],
[0, 11, 140, 198, 275, 357, 394, 421],
[0, 40, 102, 249, 271, 305, 388, 441],
[0, 49, 80, 93, 161, 204, 327, 433],
[0, 70, 99, 197, 230, 362, 403, 435],
[0, 121, 141, 193, 293, 331, 335, 382],
[0, 191, 285, 295, 321, 371, 390, 392]]
sage: is_difference_family(GF(449), df, 449, 8, 1)
True

sage.combinat.designs.difference_family.radical_difference_family(K, k, l=1, existence=False,
check=True)

Return a (v,k,l)-radical difference family.

Let fix an integer 𝑘 and a prime power 𝑞 = 𝑡𝑘(𝑘−1)+1. Let𝐾 be a field of cardinality 𝑞. A (𝑞, 𝑘, 1)-difference
family is radical if its base blocks are either: a coset of the 𝑘-th root of unity for 𝑘 odd or a coset of 𝑘− 1-th root
of unity and 0 if 𝑘 is even (the number 𝑡 is the number of blocks of that difference family).

The terminology comes from M. Buratti article [Bu95] but the first constructions go back to R. Wilson [Wi72].

INPUT:

• K - a finite field

• k – positive integer, the size of the blocks

• l – the 𝜆 parameter (default to 1)

• existence – if True, then return either True if Sage knows how to build such design, Unknown if it does
not and False if it knows that the design does not exist.

• check – boolean (default: True). If True then the result of the computation is checked before being
returned. This should not be needed but ensures that the output is correct.

EXAMPLES:

sage: from sage.combinat.designs.difference_family import radical_difference_family

sage: radical_difference_family(GF(73),9)
(continues on next page)

5.1. Comprehensive Module List 647

Combinatorics, Release 9.7

(continued from previous page)

[[1, 2, 4, 8, 16, 32, 37, 55, 64]]

sage: radical_difference_family(GF(281),5)
[[1, 86, 90, 153, 232],
[4, 50, 63, 79, 85],
[5, 36, 149, 169, 203],
[7, 40, 68, 219, 228],
[9, 121, 212, 248, 253],
[29, 81, 222, 246, 265],
[31, 137, 167, 247, 261],
[32, 70, 118, 119, 223],
[39, 56, 66, 138, 263],
[43, 45, 116, 141, 217],
[98, 101, 109, 256, 279],
[106, 124, 145, 201, 267],
[111, 123, 155, 181, 273],
[156, 209, 224, 264, 271]]

sage: for k in range(5,10):
....: print("k = {}".format(k))
....: list_q = []
....: for q in range(k*(k-1)+1, 2000, k*(k-1)):
....: if is_prime_power(q):
....: K = GF(q,'a')
....: if radical_difference_family(K, k, existence=True) is True:
....: list_q.append(q)
....: _ = radical_difference_family(K,k)
....: print(" ".join(str(p) for p in list_q))
k = 5
41 61 81 241 281 401 421 601 641 661 701 761 821 881 1181 1201 1301 1321
1361 1381 1481 1601 1681 1801 1901
k = 6
181 211 241 631 691 1531 1831 1861
k = 7
337 421 463 883 1723
k = 8
449 1009
k = 9
73 1153 1873

sage.combinat.designs.difference_family.radical_difference_set(K, k, l=1, existence=False,
check=True)

Return a difference set made of a cyclotomic coset in the finite field K and with parameters k and l.

Most of these difference sets appear in chapter VI.18.48 of the Handbook of combinatorial designs.

EXAMPLES:

sage: from sage.combinat.designs.difference_family import radical_difference_set

sage: D = radical_difference_set(GF(7), 3, 1); D
[[1, 2, 4]]
sage: sorted(x-y for x in D[0] for y in D[0] if x != y)

(continues on next page)

648 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1, 2, 3, 4, 5, 6]

sage: D = radical_difference_set(GF(16,'a'), 6, 2)
sage: sorted(x-y for x in D[0] for y in D[0] if x != y)
[1,
1,
a,
a,
a + 1,
a + 1,
a^2,
a^2,
...
a^3 + a^2 + a + 1,
a^3 + a^2 + a + 1]

sage: for k in range(2,50):
....: for l in reversed(divisors(k*(k-1))):
....: v = k*(k-1)//l + 1
....: if is_prime_power(v) and radical_difference_set(GF(v,'a'),k,l,
→˓existence=True) is True:
....: _ = radical_difference_set(GF(v,'a'),k,l)
....: print("{:3} {:3} {:3}".format(v,k,l))
3 2 1
4 3 2
7 3 1
5 4 3
7 4 2
13 4 1
11 5 2
7 6 5
11 6 3
16 6 2
8 7 6
9 8 7
19 9 4
37 9 2
73 9 1
11 10 9
19 10 5
23 11 5
13 12 11
23 12 6
27 13 6
27 14 7
16 15 14
31 15 7
...
41 40 39
79 40 20
83 41 20
43 42 41

(continues on next page)

5.1. Comprehensive Module List 649

Combinatorics, Release 9.7

(continued from previous page)

83 42 21
47 46 45
49 48 47
197 49 12

sage.combinat.designs.difference_family.singer_difference_set(q, d)
Return a difference set associated to the set of hyperplanes in a projective space of dimension 𝑑 over 𝐺𝐹 (𝑞).

A Singer difference set has parameters:

𝑣 =
𝑞𝑑+1 − 1

𝑞 − 1
, 𝑘 =

𝑞𝑑 − 1

𝑞 − 1
, 𝜆 =

𝑞𝑑−1 − 1

𝑞 − 1
.

The idea of the construction is as follows. One consider the finite field𝐺𝐹 (𝑞𝑑+1) as a vector space of dimension
𝑑+ 1 over 𝐺𝐹 (𝑞). The set of 𝐺𝐹 (𝑞)-lines in 𝐺𝐹 (𝑞𝑑+1) is a projective plane and its set of hyperplanes form a
balanced incomplete block design.

Now, considering a multiplicative generator 𝑧 of 𝐺𝐹 (𝑞𝑑+1), we get a transitive action of a cyclic group on our
projective plane from which it is possible to build a difference set.

The construction is given in details in [Stinson2004], section 3.3.

EXAMPLES:

sage: from sage.combinat.designs.difference_family import singer_difference_set, is_
→˓difference_family
sage: G,D = singer_difference_set(3,2)
sage: is_difference_family(G,D,verbose=True)
It is a (13,4,1)-difference family
True

sage: G,D = singer_difference_set(4,2)
sage: is_difference_family(G,D,verbose=True)
It is a (21,5,1)-difference family
True

sage: G,D = singer_difference_set(3,3)
sage: is_difference_family(G,D,verbose=True)
It is a (40,13,4)-difference family
True

sage: G,D = singer_difference_set(9,3)
sage: is_difference_family(G,D,verbose=True)
It is a (820,91,10)-difference family
True

sage.combinat.designs.difference_family.turyn_1965_3x3xK(k=4)
Return a difference set in either 𝐶3 ×𝐶3 ×𝐶4 or 𝐶3 ×𝐶3 ×𝐶2 ×𝐶2 with parameters 𝑣 = 36, 𝑘 = 15, 𝜆 = 6.

This example appears in [Tu1965].

INPUT:

• k – either 2 (to get a difference set in𝐶3×𝐶3×𝐶2×𝐶2) or 4 (to get a difference set in𝐶3×𝐶3×𝐶3×𝐶4).

EXAMPLES:

650 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.designs.difference_family import turyn_1965_3x3xK
sage: from sage.combinat.designs.difference_family import is_difference_family
sage: G,D = turyn_1965_3x3xK(4)
sage: assert is_difference_family(G, D, 36, 15, 6)
sage: G,D = turyn_1965_3x3xK(2)
sage: assert is_difference_family(G, D, 36, 15, 6)

sage.combinat.designs.difference_family.twin_prime_powers_difference_set(p, check=True)
Return a difference set on 𝐺𝐹 (𝑝)×𝐺𝐹 (𝑝+ 2).

The difference set is built from the following element of the Cartesian product of finite fields𝐺𝐹 (𝑝)×𝐺𝐹 (𝑝+2):

• (𝑥, 0) with any 𝑥

• (𝑥, 𝑦) with 𝑥 and 𝑦 squares

• (𝑥, 𝑦) with 𝑥 and 𝑦 non-squares

For more information see Wikipedia article Difference_set.

INPUT:

• check – boolean (default: True). If True then the result of the computation is checked before being
returned. This should not be needed but ensures that the output is correct.

EXAMPLES:

sage: from sage.combinat.designs.difference_family import twin_prime_powers_
→˓difference_set
sage: G,D = twin_prime_powers_difference_set(3)
sage: G
The Cartesian product of (Finite Field of size 3, Finite Field of size 5)
sage: D
[[(1, 1), (1, 4), (2, 2), (2, 3), (0, 0), (1, 0), (2, 0)]]

5.1.83 Difference Matrices

This module gathers code related to difference matrices. One can build those objects (or know if they can be built) with
difference_matrix():

sage: G,DM = designs.difference_matrix(9,5,1)

Functions

sage.combinat.designs.difference_matrices.difference_matrix(g, k, lmbda=1, existence=False,
check=True)

Return a (𝑔, 𝑘, 𝜆)-difference matrix

A matrix 𝑀 is a (𝑔, 𝑘, 𝜆)-difference matrix if it has size 𝜆𝑔 × 𝑘, its entries belong to the group 𝐺 of cardinality
𝑔, and for any two rows 𝑅,𝑅′ of 𝑀 and 𝑥 ∈ 𝐺 there are exactly 𝜆 values 𝑖 such that 𝑅𝑖 −𝑅′𝑖 = 𝑥.

INPUT:

• k – (integer) number of columns. If k=None it is set to the largest value available.

• g – (integer) cardinality of the group 𝐺

• lmbda – (integer; default: 1) – number of times each element of 𝐺 appears as a difference.

5.1. Comprehensive Module List 651

https://en.wikipedia.org/wiki/Difference_set

Combinatorics, Release 9.7

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

• existence (boolean) – instead of building the design, return:

– True – meaning that Sage knows how to build the design

– Unknown – meaning that Sage does not know how to build the design, but that the design may exist
(see sage.misc.unknown).

– False – meaning that the design does not exist.

Note: When k=None and existence=True the function returns an integer, i.e. the largest 𝑘 such that we
can build a (𝑔, 𝑘, 𝜆)-DM.

EXAMPLES:

sage: G,M = designs.difference_matrix(25,10); G
Finite Field in x of size 5^2
sage: designs.difference_matrix(993,None,existence=1)
32

Here we print for each 𝑔 the maximum possible 𝑘 for which Sage knows how to build a (𝑔, 𝑘, 1)-difference matrix:

sage: for g in range(2,30):
....: k_max = designs.difference_matrix(g=g,k=None,existence=True)
....: print("{:2} {}".format(g, k_max))
....: _ = designs.difference_matrix(g,k_max)
2 2
3 3
4 4
5 5
6 2
7 7
8 8
9 9
10 2
11 11
12 6
13 13
14 2
15 3
16 16
17 17
18 2
19 19
20 4
21 6
22 2
23 23
24 8
25 25
26 2
27 27

(continues on next page)

652 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

(continued from previous page)

28 6
29 29

sage.combinat.designs.difference_matrices.difference_matrix_product(k, M1, G1, lmbda1, M2, G2,
lmbda2, check=True)

Return the product of the (G1,k,lmbda1) and (G2,k,lmbda2) difference matrices M1 and M2.

The result is a (𝐺1×𝐺2, 𝑘, 𝜆1𝜆2)-difference matrix.

INPUT:

• k,lmbda1,lmbda2 – positive integer

• G1, G2 – groups

• M1, M2 – (G1,k,lmbda1) and (G,k,lmbda2) difference matrices

• check (boolean) – if True (default), the output is checked before being returned.

EXAMPLES:

sage: from sage.combinat.designs.difference_matrices import (
....: difference_matrix_product,
....: is_difference_matrix)
sage: G1,M1 = designs.difference_matrix(11,6)
sage: G2,M2 = designs.difference_matrix(7,6)
sage: G,M = difference_matrix_product(6,M1,G1,1,M2,G2,1)
sage: G1
Finite Field of size 11
sage: G2
Finite Field of size 7
sage: G
The Cartesian product of (Finite Field of size 11, Finite Field of size 7)
sage: is_difference_matrix(M,G,6,1)
True

sage.combinat.designs.difference_matrices.find_product_decomposition(g, k, lmbda=1)
Try to find a product decomposition construction for difference matrices.

INPUT:

• g,k,lmbda – integers, parameters of the difference matrix

OUTPUT:

A pair of pairs (g1,lmbda),(g2,lmbda2) if Sage knows how to build (𝑔1, 𝑘, 𝑙𝑚𝑏𝑑𝑎1) and (𝑔2, 𝑘, 𝑙𝑚𝑏𝑑𝑎2)
difference matrices and False otherwise.

EXAMPLES:

sage: from sage.combinat.designs.difference_matrices import find_product_
→˓decomposition
sage: find_product_decomposition(77,6)
((7, 1), (11, 1))
sage: find_product_decomposition(616,7)
((7, 1), (88, 1))
sage: find_product_decomposition(24,10)
False

5.1. Comprehensive Module List 653

Combinatorics, Release 9.7

5.1.84 Evenly distributed sets in finite fields

This module consists of a simple class EvenlyDistributedSetsBacktracker. Its main purpose is to iterate through
the evenly distributed sets of a given finite field.

The naive backtracker implemented here is not directly used to generate difference family as even for small parameters
it already takes time to run. Instead, its output has been stored into a database sage.combinat.designs.database.
If the backtracker is improved, then one might want to update this database with more values.

Classes and methods

class sage.combinat.designs.evenly_distributed_sets.EvenlyDistributedSetsBacktracker
Bases: object

Set of evenly distributed subsets in finite fields.

Definition: Let𝐾 be a finite field of cardinality 𝑞 and 𝑘 an integer so that 𝑘(𝑘−1) divides 𝑞−1. Let
𝐻 = 𝐾* be the multiplicative group of invertible elements in𝐾. A 𝑘-evenly distributed set in𝐾 is a
set 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑘} of 𝑘 elements of 𝐾 so that the 𝑘(𝑘− 1) differences ∆𝐵 = {𝑏𝑖 − 𝑏𝑗 ; 𝑖 ̸= 𝑗}
hit each coset modulo 𝐻2(𝑞−1)/(𝑘(𝑘−1)) exactly twice.

Evenly distributed sets were introduced by Wilson [Wi72] (see also [BJL99-1], Chapter VII.6). He proved that
for any 𝑘, and for any prime power 𝑞 large enough such that 𝑘(𝑘−1) divides 𝑘 there exists a 𝑘-evenly distributed
set in the field of cardinality 𝑞. This existence result based on a counting argument (using Dirichlet theorem)
does not provide a simple method to generate them.

From a 𝑘-evenly distributed set, it is straightforward to build a (𝑞, 𝑘, 1)-difference family (see
to_difference_family()). Another approach to generate a difference family, somehow dual to this
one, is via radical difference family (see in particular radical_difference_family() from the module
difference_family).

By default, this backtracker only considers evenly distributed sets up to affine automorphisms, i.e. 𝐵 is considered
equivalent to 𝑠𝐵+ 𝑡 for any invertible element 𝑠 and any element 𝑡 in the field𝐾. Note that the set of differences
is just multiplicatively translated by 𝑠 as ∆(𝑠𝐵 + 𝑡) = 𝑠(∆𝐵), and so that 𝐵 is an evenly distributed set if and
only if 𝑠𝐵 is one too. This behaviour can be modified via the argument up_to_isomorphism (see the input
section and the examples below).

INPUT:

• K – a finite field of cardinality 𝑞

• k – a positive integer such that 𝑘(𝑘 − 1) divides 𝑞 − 1

• up_to_isomorphism - (boolean, default True) whether only consider evenly distributed sets up to au-
tomorphisms of the field of the form 𝑥 ↦→ 𝑎𝑥 + 𝑏. If set to False then the iteration is over all evenly
distributed sets that contain 0 and 1.

• check – boolean (default is False). Whether you want to check intermediate steps of the iterator. This is
mainly intended for debugging purpose. Setting it to True will considerably slow the iteration.

EXAMPLES:

The main part of the code is contained in the iterator. To get one evenly distributed set just do:

sage: from sage.combinat.designs.evenly_distributed_sets import␣
→˓EvenlyDistributedSetsBacktracker
sage: E = EvenlyDistributedSetsBacktracker(Zmod(151),6)
sage: B = E.an_element()

(continues on next page)

654 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: B
[0, 1, 69, 36, 57, 89]

The class has a method to convert it to a difference family:

sage: E.to_difference_family(B)
[[0, 1, 69, 36, 57, 89],
[0, 132, 48, 71, 125, 121],
[0, 59, 145, 10, 41, 117],
[0, 87, 114, 112, 127, 42],
[0, 8, 99, 137, 3, 108]]

It is also possible to run over all evenly distributed sets:

sage: E = EvenlyDistributedSetsBacktracker(Zmod(13), 4, up_to_isomorphism=False)
sage: for B in E: print(B)
[0, 1, 11, 5]
[0, 1, 4, 6]
[0, 1, 9, 3]
[0, 1, 8, 10]

sage: E = EvenlyDistributedSetsBacktracker(Zmod(13), 4, up_to_isomorphism=True)
sage: for B in E: print(B)
[0, 1, 11, 5]

Or only count them:

sage: for k in range(13, 200, 12):
....: if is_prime_power(k):
....: K = GF(k,'a')
....: E1 = EvenlyDistributedSetsBacktracker(K, 4, False)
....: E2 = EvenlyDistributedSetsBacktracker(K, 4, True)
....: print("{:3} {:3} {:3}".format(k, E1.cardinality(), E2.cardinality()))
13 4 1
25 40 4
37 12 1
49 24 2
61 12 1
73 48 4
97 64 6
109 72 6
121 240 20
157 96 8
169 240 20
181 204 17
193 336 28

Note that by definition, the number of evenly distributed sets up to isomorphisms is at most 𝑘(𝑘−1) times smaller
than without isomorphisms. But it might not be exactly 𝑘(𝑘 − 1) as some of them might have symmetries:

sage: B = EvenlyDistributedSetsBacktracker(Zmod(13), 4).an_element()
sage: B
[0, 1, 11, 5]

(continues on next page)

5.1. Comprehensive Module List 655

Combinatorics, Release 9.7

(continued from previous page)

sage: [9*x + 5 for x in B]
[5, 1, 0, 11]
sage: [3*x + 11 for x in B]
[11, 1, 5, 0]

an_element()
Return an evenly distributed set.

If there is no such subset raise an EmptySetError.

EXAMPLES:

sage: from sage.combinat.designs.evenly_distributed_sets import␣
→˓EvenlyDistributedSetsBacktracker

sage: E = EvenlyDistributedSetsBacktracker(Zmod(41),5)
sage: E.an_element()
[0, 1, 13, 38, 31]

sage: E = EvenlyDistributedSetsBacktracker(Zmod(61),6)
sage: E.an_element()
Traceback (most recent call last):
...
EmptySetError: no 6-evenly distributed set in Ring of integers modulo 61

cardinality()
Return the number of evenly distributed sets.

Use with precaution as there can be a lot of such sets and this method might be very long to answer!

EXAMPLES:

sage: from sage.combinat.designs.evenly_distributed_sets import␣
→˓EvenlyDistributedSetsBacktracker

sage: E = EvenlyDistributedSetsBacktracker(GF(25,'a'),4)
sage: E
4-evenly distributed sets (up to isomorphism) in Finite Field in a of size 5^2
sage: E.cardinality()
4

sage: E = EvenlyDistributedSetsBacktracker(GF(25,'a'), 4, up_to_
→˓isomorphism=False)
sage: E.cardinality()
40

to_difference_family(B, check=True)
Given an evenly distributed set B convert it to a difference family.

As for any 𝑥 ∈ 𝐾* = 𝐻 we have |∆𝐵 ∩ 𝑥𝐻2(𝑞−1)/(𝑘(𝑘−1))| = 2 (see
EvenlyDistributedSetsBacktracker), the difference family is produced as {𝑥𝐵 : 𝑥 ∈
𝐻2(𝑞−1)/(𝑘(𝑘−1))}

This method is useful if you want to obtain the difference family from the output of the iterator.

INPUT:

656 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/sets_cat.html#sage.categories.sets_cat.EmptySetError

Combinatorics, Release 9.7

• B – an evenly distributed set

• check – (boolean, default True) whether to check the result

EXAMPLES:

sage: from sage.combinat.designs.evenly_distributed_sets import␣
→˓EvenlyDistributedSetsBacktracker
sage: E = EvenlyDistributedSetsBacktracker(Zmod(41),5)
sage: B = E.an_element(); B
[0, 1, 13, 38, 31]
sage: D = E.to_difference_family(B); D
[[0, 1, 13, 38, 31], [0, 32, 6, 27, 8]]

sage: from sage.combinat.designs.difference_family import is_difference_family
sage: is_difference_family(Zmod(41),D,41,5,1)
True

Setting check to False is much faster:

sage: timeit("df = E.to_difference_family(B, check=True)") # random
625 loops, best of 3: 117 𝜇s per loop

sage: timeit("df = E.to_difference_family(B, check=False)") # random
625 loops, best of 3: 1.83 𝜇s per loop

5.1.85 External Representations of Block Designs

The “ext_rep” module is an API to the abstract tree represented by an XML document containing the External Rep-
resentation of a list of block designs. The module also provides the related I/O operations for reading/writing ext-rep
files or data. The parsing is based on expat.

This is a modified form of the module ext_rep.py (version 0.8) written by Peter Dobcsanyi [Do2009] pe-
ter@designtheory.org.

Todo: The XML data from the designtheory.org database contains a wealth of information about things like automor-
phism groups, transitivity, cycle type representatives, etc, but none of this data is made available through the current
implementation.

Functions

class sage.combinat.designs.ext_rep.XTree(node)
Bases: object

A lazy class to wrap a rooted tree representing an XML document. The tree’s nodes are tuples of the structure:

(name, {dictionary of attributes}, [list of children])

Methods and services of an XTree object t:

• t.attribute – attribute named

• t.child – first child named

• t[i] – i-th child

5.1. Comprehensive Module List 657

mailto:peter@designtheory.org
mailto:peter@designtheory.org

Combinatorics, Release 9.7

• for child in t: – iterate over t’s children

• len(t) – number of t’s children

If child is not an empty subtree, return the subtree as an XTree object. If child is an empty subtree, return _name
of the subtree. Otherwise return the child itself.

The lazy tree idea originated from a utility class of the pyRXP 0.9 package by Robin Becker at ReportLab.

class sage.combinat.designs.ext_rep.XTreeProcessor
Bases: object

An incremental event-driven parser for ext-rep documents. The processing stages:

• <list_of_designs ...> opening element. call-back: list_of_designs_proc

• <list_definition> subtree. call-back: list_definition_proc

• <info> subtree. call-back: info_proc

• iterating over <designs> processing each <block_design> separately. call-back: block_design_proc

• finishing with closing </designs> and </list_of_designs>.

parse(xml_source)
The main parsing function. Given an XML source (either a file handle or a string), parse the entire XML
source.

EXAMPLES:

sage: from sage.combinat.designs import ext_rep
sage: file_loc = ext_rep.dump_to_tmpfile(ext_rep.v2_b2_k2_icgsa)
sage: proc = ext_rep.XTreeProcessor()
sage: proc.save_designs = True
sage: f = ext_rep.open_extrep_file(file_loc)
sage: proc.parse(f)
sage: f.close()
sage: os.remove(file_loc)
sage: proc.list_of_designs[0]
(2, [[0, 1], [0, 1]])

sage.combinat.designs.ext_rep.check_dtrs_protocols(input_name, input_pv)
Check that the XML data is in a valid format. We can currently handle version 2.0. For more information see
http://designtheory.org/library/extrep/

EXAMPLES:

sage: from sage.combinat.designs import ext_rep
sage: ext_rep.check_dtrs_protocols('source', '2.0')
sage: ext_rep.check_dtrs_protocols('source', '3.0')
Traceback (most recent call last):
...
RuntimeError: Incompatible dtrs_protocols: program: 2.0 source: 3.0

sage.combinat.designs.ext_rep.designs_from_XML(fname)
Return a list of designs contained in an XML file fname. The list contains tuples of the form (v, bs) where v is
the number of points of the design and bs is the list of blocks.

EXAMPLES:

658 Chapter 5. Comprehensive Module List

http://designtheory.org/library/extrep/

Combinatorics, Release 9.7

sage: from sage.combinat.designs import ext_rep
sage: file_loc = ext_rep.dump_to_tmpfile(ext_rep.v2_b2_k2_icgsa)
sage: ext_rep.designs_from_XML(file_loc)[0]
(2, [[0, 1], [0, 1]])
sage: os.remove(file_loc)

sage: from sage.combinat.designs import ext_rep
sage: from sage.combinat.designs.block_design import BlockDesign
sage: file_loc = ext_rep.dump_to_tmpfile(ext_rep.v2_b2_k2_icgsa)
sage: v, blocks = ext_rep.designs_from_XML(file_loc)[0]
sage: d = BlockDesign(v, blocks)
sage: d.blocks()
[[0, 1], [0, 1]]
sage: d.is_t_design(t=2)
True
sage: d.is_t_design(return_parameters=True)
(True, (2, 2, 2, 2))

sage.combinat.designs.ext_rep.designs_from_XML_url(url)
Return a list of designs contained in an XML file named by a URL. The list contains tuples of the form (v, bs)
where v is the number of points of the design and bs is the list of blocks.

EXAMPLES:

sage: from sage.combinat.designs import ext_rep
sage: file_loc = ext_rep.dump_to_tmpfile(ext_rep.v2_b2_k2_icgsa)
sage: ext_rep.designs_from_XML_url("file://" + file_loc)[0]
(2, [[0, 1], [0, 1]])
sage: os.remove(file_loc)

sage: from sage.combinat.designs import ext_rep
sage: ext_rep.designs_from_XML_url("http://designtheory.org/database/v-b-k/v3-b6-k2.
→˓icgsa.txt.bz2") # optional - internet
[(3, [[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 2]]),
(3, [[0, 1], [0, 1], [0, 1], [0, 1], [0, 2], [0, 2]]),
(3, [[0, 1], [0, 1], [0, 1], [0, 1], [0, 2], [1, 2]]),
(3, [[0, 1], [0, 1], [0, 1], [0, 2], [0, 2], [0, 2]]),
(3, [[0, 1], [0, 1], [0, 1], [0, 2], [0, 2], [1, 2]]),
(3, [[0, 1], [0, 1], [0, 2], [0, 2], [1, 2], [1, 2]])]

sage.combinat.designs.ext_rep.dump_to_tmpfile(s)
Utility function to dump a string to a temporary file.

EXAMPLES:

sage: from sage.combinat.designs import ext_rep
sage: file_loc = ext_rep.dump_to_tmpfile("boo")
sage: os.remove(file_loc)

sage.combinat.designs.ext_rep.open_extrep_file(fname)
Try to guess the compression type from extension and open the extrep file.

EXAMPLES:

5.1. Comprehensive Module List 659

Combinatorics, Release 9.7

sage: from sage.combinat.designs import ext_rep
sage: file_loc = ext_rep.dump_to_tmpfile(ext_rep.v2_b2_k2_icgsa)
sage: proc = ext_rep.XTreeProcessor()
sage: f = ext_rep.open_extrep_file(file_loc)
sage: proc.parse(f)
sage: f.close()
sage: os.remove(file_loc)

sage.combinat.designs.ext_rep.open_extrep_url(url)
Try to guess the compression type from extension and open the extrep file pointed to by the url. This function
(unlike open_extrep_file) returns the uncompressed text contained in the file.

EXAMPLES:

sage: from sage.combinat.designs import ext_rep
sage: file_loc = ext_rep.dump_to_tmpfile(ext_rep.v2_b2_k2_icgsa)
sage: proc = ext_rep.XTreeProcessor()
sage: s = ext_rep.open_extrep_url("file://" + file_loc)
sage: proc.parse(s)
sage: os.remove(file_loc)

sage: from sage.combinat.designs import ext_rep
sage: s = ext_rep.designs_from_XML_url("http://designtheory.org/database/v-b-k/v3-
→˓b6-k2.icgsa.txt.bz2") # optional - internet

5.1.86 Database of generalised quadrangles with spread

This module implements some construction of generalised quadrangles with spread.

EXAMPLES:

sage: GQ, S = designs.generalised_quadrangle_with_spread(4, 16, check=False)
sage: GQ
Incidence structure with 325 points and 1105 blocks
sage: GQ2, O = designs.generalised_quadrangle_hermitian_with_ovoid(4)
sage: GQ2
Incidence structure with 1105 points and 325 blocks
sage: GQ3 = GQ.dual()
sage: set(GQ3._points) == set(GQ2._points)
True
sage: GQ2.is_isomorphic(GQ3) # long time
True

REFERENCES:

• [PT2009]

• [TP1994]

• Wikipedia article Generalized_quadrangle

AUTHORS:

• Ivo Maffei (2020-07-26): initial version

660 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Generalized_quadrangle

Combinatorics, Release 9.7

sage.combinat.designs.gen_quadrangles_with_spread.dual_GQ_ovoid(GQ, O)
Compute the dual incidence structure of GQ and return the image of 𝑂 under the dual map

INPUT:

• GQ – IncidenceStructure; the generalised quadrangle we want the dual of

• O – iterable; the iterable of blocks we want to compute the dual

OUTPUT:

A pair (D, S) where D is the dual of GQ and S is the dual of O

EXAMPLES:

sage: from sage.combinat.designs.gen_quadrangles_with_spread import \
....: dual_GQ_ovoid
sage: t = designs.generalised_quadrangle_hermitian_with_ovoid(3)
sage: t[0].is_generalized_quadrangle(parameters=True)
(9, 3)
sage: t = dual_GQ_ovoid(*t)
sage: t[0].is_generalized_quadrangle(parameters=True)
(3, 9)
sage: all([x in t[0] for x in t[1]])
True

sage.combinat.designs.gen_quadrangles_with_spread.generalised_quadrangle_hermitian_with_ovoid(q)
Construct the generalised quadrangle 𝐻(3, 𝑞2) with an ovoid.

The GQ has order (𝑞2, 𝑞).

INPUT:

• q – integer; a prime power

OUTPUT:

A pair (D, O) where D is an IncidenceStructure representing the generalised quadrangle and O is a list of points
of D which constitute an ovoid of D

EXAMPLES:

sage: t = designs.generalised_quadrangle_hermitian_with_ovoid(4)
sage: t[0]
Incidence structure with 1105 points and 325 blocks
sage: len(t[1])
65
sage: G = t[0].intersection_graph([1]) # line graph
sage: G.is_strongly_regular(True)
(325, 68, 3, 17)
sage: set(t[0].block_sizes())
{17}

REFERENCES:

For more on 𝐻(3, 𝑞2) and the construction implemented here see [PT2009] or [TP1994].

5.1. Comprehensive Module List 661

Combinatorics, Release 9.7

sage.combinat.designs.gen_quadrangles_with_spread.generalised_quadrangle_with_spread(s, t,
exis-
tence=False,
check=True)

Construct a generalised quadrangle GQ of order (𝑠, 𝑡) with a spread S.

INPUT:

• s, t – integers; order of the generalised quadrangle

• existence – boolean;

• check – boolean; if True, then Sage checks that the object built is correct. (default: True)

OUTPUT:

A pair (𝐺𝑄,𝑆) where 𝐺𝑄 is a IncidenceStructure representing the generalised quadrangle and 𝑆 is a list
of blocks of 𝐺𝑄 representing the spread of 𝐺𝑄.

EXAMPLES:

sage: t = designs.generalised_quadrangle_with_spread(3, 9)
sage: t[0]
Incidence structure with 112 points and 280 blocks
sage: designs.generalised_quadrangle_with_spread(5, 25, existence=True)
True
sage: (designs.generalised_quadrangle_with_spread(4, 16, check=False))[0]
Incidence structure with 325 points and 1105 blocks
sage: designs.generalised_quadrangle_with_spread(0, 2, existence=True)
False

REFERENCES:

For more on generalised quadrangles and their spread see [PT2009] or [TP1994].

sage.combinat.designs.gen_quadrangles_with_spread.is_GQ_with_spread(GQ, S, s=None, t=None)
Check if GQ is a generalised quadrangle of order (𝑠, 𝑡) and check that S is a spread of GQ

INPUT:

• GQ – IncidenceStructure; the incidence structure that is supposed to be a generalised quadrangle

• S – iterable; the spread of GQ as an iterable of the blocks of GQ

• s, t – integers (optional); if (𝑠, 𝑡) are given, then we check that GQ has order (𝑠, 𝑡)

EXAMPLES:

sage: from sage.combinat.designs.gen_quadrangles_with_spread import *
sage: t = generalised_quadrangle_hermitian_with_ovoid(3)
sage: is_GQ_with_spread(*t)
Traceback (most recent call last):
...
TypeError: 'int' object is not iterable
sage: t = dual_GQ_ovoid(*t)
sage: is_GQ_with_spread(*t)
True
sage: is_GQ_with_spread(*t, s=3)
True

662 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.87 Incidence structures (i.e. hypergraphs, i.e. set systems)

An incidence structure is specified by a list of points, blocks, or an incidence matrix (1,2). IncidenceStructure
instances have the following methods:

automorphism_group() Return the subgroup of the automorphism group of the incidence graph which
respects the P B partition. It is (isomorphic to) the automorphism group of the
block design, although the degrees differ.

block_sizes() Return the set of block sizes.
blocks() Return the list of blocks.
canonical_label() Return a canonical label for the incidence structure.
coloring() Compute a (weak) 𝑘-coloring of the hypergraph
complement() Return the complement of the incidence structure.
copy() Return a copy of the incidence structure.
degree() Return the degree of a point p (or a set of points).
degrees() Return the degree of all sets of given size, or the degree of all points.
dual() Return the dual of the incidence structure.
edge_coloring() Compute a proper edge-coloring.
ground_set() Return the ground set (i.e the list of points).
incidence_graph() Return the incidence graph of the incidence structure
incidence_matrix() Return the incidence matrix 𝐴 of the design. A is a (𝑣 × 𝑏) matrix defined by:

A[i,j] = 1 if i is in block B_j and 0 otherwise.
induced_substructure() Return the substructure induced by a set of points.
intersection_graph() Return the intersection graph of the incidence structure.
is_berge_cyclic() Check whether self is a Berge-Cyclic uniform hypergraph.
is_connected() Test whether the design is connected.
is_generalized_quadrangle()Test if the incidence structure is a generalized quadrangle.
is_isomorphic() Return whether the two incidence structures are isomorphic.
is_regular() Test whether the incidence structure is 𝑟-regular.
is_resolvable() Test whether the hypergraph is resolvable
is_simple() Test whether this design is simple (i.e. no repeated block).
is_spread() Check whether the input is a spread for self.
is_t_design() Test whether self is a 𝑡− (𝑣, 𝑘, 𝑙) design.
is_uniform() Test whether the incidence structure is 𝑘-uniform
isomorphic_substructures_iterator()Iterates over all copies of H2 contained in self.
num_blocks() Return the number of blocks.
num_points() Return the size of the ground set.
packing() Return a maximum packing
rank() Return the rank of the hypergraph (the maximum size of a block).
relabel() Relabel the ground set
trace() Return the trace of a set of points.

REFERENCES:

AUTHORS:

• Peter Dobcsanyi and David Joyner (2007-2008)

This is a significantly modified form of part of the module block_design.py (version 0.6) written by Peter Dobc-
sanyi peter@designtheory.org.

• Vincent Delecroix (2014): major rewrite
1 Block designs and incidence structures from wikipedia, Wikipedia article Block_design Wikipedia article Incidence_structure
2 E. Assmus, J. Key, Designs and their codes, CUP, 1992.

5.1. Comprehensive Module List 663

mailto:peter@designtheory.org
https://en.wikipedia.org/wiki/Block_design
https://en.wikipedia.org/wiki/Incidence_structure

Combinatorics, Release 9.7

Methods

class sage.combinat.designs.incidence_structures.IncidenceStructure(points=None, blocks=None,
incidence_matrix=None,
name=None, check=True,
copy=True)

Bases: object

A base class for incidence structures (i.e. hypergraphs, i.e. set systems)

An incidence structure (i.e. hypergraph, i.e. set system) can be defined from a collection of blocks (i.e. sets, i.e.
edges), optionally with an explicit ground set (i.e. point set, i.e. vertex set). Alternatively they can be defined
from a binary incidence matrix.

INPUT:

• points – (i.e. ground set, i.e. vertex set) the underlying set. If points is an integer 𝑣, then the set is
considered to be {0, ..., 𝑣 − 1}.

Note: The following syntax, where points is omitted, automatically defines the ground set as the union
of the blocks:

sage: H = IncidenceStructure([['a','b','c'],['c','d','e']])
sage: sorted(H.ground_set())
['a', 'b', 'c', 'd', 'e']

• blocks – (i.e. edges, i.e. sets) the blocks defining the incidence structure. Can be any iterable.

• incidence_matrix – a binary incidence matrix. Each column represents a set.

• name (a string, such as “Fano plane”).

• check – whether to check the input

• copy – (use with caution) if set to False then blocks must be a list of lists of integers. The list will not
be copied but will be modified in place (each block is sorted, and the whole list is sorted). Your blocks
object will become the IncidenceStructure instance’s internal data.

EXAMPLES:

An incidence structure can be constructed by giving the number of points and the list of blocks:

sage: IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,
→˓5]])
Incidence structure with 7 points and 7 blocks

Only providing the set of blocks is sufficient. In this case, the ground set is defined as the union of the blocks:

sage: IncidenceStructure([[1,2,3],[2,3,4]])
Incidence structure with 4 points and 2 blocks

Or by its adjacency matrix (a {0, 1}-matrix in which rows are indexed by points and columns by blocks):

sage: m = matrix([[0,1,0],[0,0,1],[1,0,1],[1,1,1]])
sage: IncidenceStructure(m)
Incidence structure with 4 points and 3 blocks

The points can be any (hashable) object:

664 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: V = [(0,'a'),(0,'b'),(1,'a'),(1,'b')]
sage: B = [(V[0],V[1],V[2]), (V[1],V[2]), (V[0],V[2])]
sage: I = IncidenceStructure(V, B)
sage: I.ground_set()
[(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')]
sage: I.blocks()
[[(0, 'a'), (0, 'b'), (1, 'a')], [(0, 'a'), (1, 'a')], [(0, 'b'), (1, 'a')]]

The order of the points and blocks does not matter as they are sorted on input (see trac ticket #11333):

sage: A = IncidenceStructure([0,1,2], [[0],[0,2]])
sage: B = IncidenceStructure([1,0,2], [[0],[2,0]])
sage: B == A
True

sage: C = BlockDesign(2, [[0], [1,0]])
sage: D = BlockDesign(2, [[0,1], [0]])
sage: C == D
True

If you care for speed, you can set copy to False, but in that case, your input must be a list of lists and the ground
set must be 0, ..., 𝑣 − 1:

sage: blocks = [[0,1],[2,0],[1,2]] # a list of lists of integers
sage: I = IncidenceStructure(3, blocks, copy=False)
sage: I._blocks is blocks
True

automorphism_group()
Return the subgroup of the automorphism group of the incidence graph which respects the P B partition.
It is (isomorphic to) the automorphism group of the block design, although the degrees differ.

EXAMPLES:

sage: P = designs.DesarguesianProjectivePlaneDesign(2); P
(7,3,1)-Balanced Incomplete Block Design
sage: G = P.automorphism_group()
sage: G.is_isomorphic(PGL(3,2))
True
sage: G
Permutation Group with generators [...]
sage: G.cardinality()
168

A non self-dual example:

sage: IS = IncidenceStructure(list(range(4)), [[0,1,2,3],[1,2,3]])
sage: IS.automorphism_group().cardinality()
6
sage: IS.dual().automorphism_group().cardinality()
1

Examples with non-integer points:

5.1. Comprehensive Module List 665

https://trac.sagemath.org/11333

Combinatorics, Release 9.7

sage: I = IncidenceStructure('abc', ('ab','ac','bc'))
sage: I.automorphism_group()
Permutation Group with generators [('b','c'), ('a','b')]
sage: IncidenceStructure([[(1,2),(3,4)]]).automorphism_group()
Permutation Group with generators [((1,2),(3,4))]

block_sizes()
Return the set of block sizes.

EXAMPLES:

sage: BD = IncidenceStructure(8, [[0,1,3],[1,4,5,6],[1,2],[5,6,7]])
sage: BD.block_sizes()
[3, 2, 4, 3]
sage: BD = IncidenceStructure(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,
→˓6],[2,4,5]])
sage: BD.block_sizes()
[3, 3, 3, 3, 3, 3, 3]

blocks()
Return the list of blocks.

EXAMPLES:

sage: BD = IncidenceStructure(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,
→˓6],[2,4,5]])
sage: BD.blocks()
[[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6], [2, 4, 5]]

canonical_label()
Return a canonical label for the incidence structure.

A canonical label is relabeling of the points into integers {0, ..., 𝑛 − 1} such that isomorphic incidence
structures are relabelled to equal objects.

EXAMPLES:

sage: fano1 = designs.balanced_incomplete_block_design(7,3)
sage: fano2 = designs.projective_plane(2)
sage: fano1 == fano2
False
sage: fano1.relabel(fano1.canonical_label())
sage: fano2.relabel(fano2.canonical_label())
sage: fano1 == fano2
True

coloring(k, solver=None, verbose=None, integrality_tolerance=0)
Compute a (weak) 𝑘-coloring of the hypergraph

A weak coloring of a hypergraphℋ is an assignment of colors to its vertices such that no set is monochro-
matic.

INPUT:

• k (integer) – compute a coloring with 𝑘 colors if an integer is provided, otherwise returns an optimal
coloring (i.e. with the minimum possible number of colors).

666 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If
set to None, the default one is used. For more information on MILP solvers and which default solver
is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – non-negative integer (default: 0). Set the level of verbosity you want from the linear
program solver. Since the problem is𝑁𝑃 -complete, its solving may take some time depending on the
graph. A value of 0 means that there will be no message printed by the solver.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see
MixedIntegerLinearProgram.get_values().

EXAMPLES:

The Fano plane has chromatic number 3:

sage: len(designs.steiner_triple_system(7).coloring())
3

One admissible 3-coloring:

sage: designs.steiner_triple_system(7).coloring() # not tested - architecture-
→˓dependent
[[0, 2, 5, 1], [4, 3], [6]]

The chromatic number of a graph is equal to the chromatic number of its 2-uniform corresponding hyper-
graph:

sage: g = graphs.PetersenGraph()
sage: H = IncidenceStructure(g.edges(sort=True, labels=False))
sage: len(g.coloring())
3
sage: len(H.coloring())
3

complement(uniform=False)
Return the complement of the incidence structure.

Two different definitions of “complement” are made available, according to the value of uniform.

INPUT:

• uniform (boolean) –

– if set to False (default), returns the incidence structure whose blocks are the complements of all
blocks of the incidence structure.

– If set to True and the incidence structure is 𝑘-uniform, returns the incidence structure whose
blocks are all 𝑘-sets of the ground set that do not appear in self.

EXAMPLES:

The complement of a BalancedIncompleteBlockDesign is also a 2-design:

sage: bibd = designs.balanced_incomplete_block_design(13,4)
sage: bibd.is_t_design(return_parameters=True)
(True, (2, 13, 4, 1))
sage: bibd.complement().is_t_design(return_parameters=True)
(True, (2, 13, 9, 6))

The “uniform” complement of a graph is a graph:

5.1. Comprehensive Module List 667

../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.get_values

Combinatorics, Release 9.7

sage: g = graphs.PetersenGraph()
sage: G = IncidenceStructure(g.edges(sort=True, labels=False))
sage: H = G.complement(uniform=True)
sage: h = Graph(H.blocks())
sage: g == h
False
sage: g == h.complement()
True

copy()
Return a copy of the incidence structure.

EXAMPLES:

sage: IS = IncidenceStructure([[1,2,3,"e"]],name="Test")
sage: IS
Incidence structure with 4 points and 1 blocks
sage: copy(IS)
Incidence structure with 4 points and 1 blocks
sage: [1, 2, 3, 'e'] in copy(IS)
True
sage: copy(IS)._name
'Test'

degree(p=None, subset=False)
Return the degree of a point p (or a set of points).

The degree of a point (or set of points) is the number of blocks that contain it.

INPUT:

• p – a point (or a set of points) of the incidence structure.

• subset (boolean) – whether to interpret the argument as a set of point (subset=True) or as a point
(subset=False, default).

EXAMPLES:

sage: designs.steiner_triple_system(9).degree(3)
4
sage: designs.steiner_triple_system(9).degree({1,2},subset=True)
1

degrees(size=None)
Return the degree of all sets of given size, or the degree of all points.

The degree of a point (or set of point) is the number of blocks that contain it.

INPUT:

• size (integer) – return the degree of all subsets of points of cardinality size. When size=None, the
function outputs the degree of all points.

Note: When size=None the output is indexed by the points. When size=1 it is indexed by tuples of
size 1. This is the same information, stored slightly differently.

OUTPUT:

668 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

A dictionary whose values are degrees and keys are either:

• the points of the incidence structure if size=None (default)

• the subsets of size size of the points stored as tuples

EXAMPLES:

sage: IncidenceStructure([[1,2,3],[1,4]]).degrees(2)
{(1, 2): 1, (1, 3): 1, (1, 4): 1, (2, 3): 1, (2, 4): 0, (3, 4): 0}

In a Steiner triple system, all pairs have degree 1:

sage: S13 = designs.steiner_triple_system(13)
sage: all(v == 1 for v in S13.degrees(2).values())
True

dual(algorithm=None)
Return the dual of the incidence structure.

INPUT:

• algorithm – whether to use Sage’s implementation (algorithm=None, default) or use GAP’s
(algorithm="gap").

Note: The algorithm="gap" option requires GAP’s Design package (included in the
gap_packages Sage spkg).

EXAMPLES:

The dual of a projective plane is a projective plane:

sage: PP = designs.DesarguesianProjectivePlaneDesign(4)
sage: PP.dual().is_t_design(return_parameters=True)
(True, (2, 21, 5, 1))

REFERENCE:

• Soicher, Leonard, Design package manual, available at https://www.gap-system.org/Manuals/pkg/
design/htm/CHAP003.htm

edge_coloring()
Compute a proper edge-coloring.

A proper edge-coloring is an assignment of colors to the sets of the incidence structure such that two sets
with non-empty intersection receive different colors. The coloring returned minimizes the number of colors.

OUTPUT:

A partition of the sets into color classes.

EXAMPLES:

sage: H = Hypergraph([{1,2,3},{2,3,4},{3,4,5},{4,5,6}]); H
Incidence structure with 6 points and 4 blocks
sage: C = H.edge_coloring()
sage: C # random
[[[3, 4, 5]], [[2, 3, 4]], [[4, 5, 6], [1, 2, 3]]]

(continues on next page)

5.1. Comprehensive Module List 669

https://www.gap-system.org/Manuals/pkg/design/htm/CHAP003.htm
https://www.gap-system.org/Manuals/pkg/design/htm/CHAP003.htm

Combinatorics, Release 9.7

(continued from previous page)

sage: Set(map(Set,sum(C,[]))) == Set(map(Set,H.blocks()))
True

ground_set()
Return the ground set (i.e the list of points).

EXAMPLES:

sage: IncidenceStructure(3, [[0,1],[0,2]]).ground_set()
[0, 1, 2]

incidence_graph(labels=False)
Return the incidence graph of the incidence structure

A point and a block are adjacent in this graph whenever they are incident.

INPUT:

• labels (boolean) – whether to return a graph whose vertices are integers, or labelled elements.

– labels is False (default) – in this case the first vertices of the graphs are the elements of
ground_set(), and appear in the same order. Similarly, the following vertices represent the
elements of blocks(), and appear in the same order.

– labels is True, the points keep their original labels, and the blocks are Set objects.

Note that the labelled incidence graph can be incorrect when blocks are repeated, and on some
(rare) occasions when the elements of ground_set() mix Set() and non-Set objects.

EXAMPLES:

sage: BD = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,
→˓6],[2,4,5]])
sage: BD.incidence_graph()
Bipartite graph on 14 vertices
sage: A = BD.incidence_matrix()
sage: Graph(block_matrix([[A*0,A],[A.transpose(),A*0]])) == BD.incidence_graph()
True

incidence_matrix()
Return the incidence matrix𝐴 of the design. A is a (𝑣× 𝑏) matrix defined by: A[i,j] = 1 if i is in block
B_j and 0 otherwise.

EXAMPLES:

sage: BD = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,
→˓6],[2,4,5]])
sage: BD.block_sizes()
[3, 3, 3, 3, 3, 3, 3]
sage: BD.incidence_matrix()
[1 1 1 0 0 0 0]
[1 0 0 1 1 0 0]
[1 0 0 0 0 1 1]
[0 1 0 1 0 1 0]
[0 1 0 0 1 0 1]
[0 0 1 1 0 0 1]
[0 0 1 0 1 1 0]

(continues on next page)

670 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/sets/sage/sets/set.html#sage.sets.set.Set
../../../../../../../html/en/reference/sets/sage/sets/set.html#sage.sets.set.Set
../../../../../../../html/en/reference/sets/sage/sets/set.html#sage.sets.set.Set

Combinatorics, Release 9.7

(continued from previous page)

sage: I = IncidenceStructure('abc', ('ab','abc','ac','c'))
sage: I.incidence_matrix()
[1 1 1 0]
[1 1 0 0]
[0 1 1 1]

induced_substructure(points)
Return the substructure induced by a set of points.

The substructure induced in ℋ by a set 𝑋 ⊆ 𝑉 (ℋ) of points is the incidence structure ℋ𝑋 defined on 𝑋
whose sets are all 𝑆 ∈ ℋ such that 𝑆 ⊆ 𝑋 .

INPUT:

• points – a set of points.

Note: This method goes over all sets of self before building a new IncidenceStructure (which
involves some relabelling and sorting). It probably should not be called in a performance-critical code.

EXAMPLES:

A Fano plane with one point removed:

sage: F = designs.steiner_triple_system(7)
sage: F.induced_substructure([0..5])
Incidence structure with 6 points and 4 blocks

intersection_graph(sizes=None)
Return the intersection graph of the incidence structure.

The vertices of this graph are the blocks() of the incidence structure. Two of them are adjacent if the size
of their intersection belongs to the set sizes.

INPUT:

• sizes – a list/set of integers. For convenience, setting sizes to 5 has the same effect as sizes=[5].
When set to None (default), behaves as sizes=PositiveIntegers().

EXAMPLES:

The intersection graph of a balanced_incomplete_block_design() is a strongly regular graph
(when it is not trivial):

sage: BIBD = designs.balanced_incomplete_block_design(19,3)
sage: G = BIBD.intersection_graph(1)
sage: G.is_strongly_regular(parameters=True)
(57, 24, 11, 9)

is_berge_cyclic()
Check whether self is a Berge-Cyclic uniform hypergraph.

A 𝑘-uniform Berge cycle (named after Claude Berge) of length ℓ is a cyclic list of distinct 𝑘-sets 𝐹1, . . . , 𝐹ℓ,
ℓ > 1, and distinct vertices 𝐶 = {𝑣1, . . . , 𝑣ℓ} such that for each 1 ≤ 𝑖 ≤ ℓ, 𝐹𝑖 contains 𝑣𝑖 and 𝑣𝑖+1 (where
𝑣𝑙+1 = 𝑣1).

A uniform hypergraph is Berge-cyclic if its incidence graph is cyclic. It is called “Berge-acyclic” otherwise.

5.1. Comprehensive Module List 671

../../../../../../../html/en/reference/graphs/sage/graphs/graph.html#sage.graphs.graph.Graph.is_strongly_regular

Combinatorics, Release 9.7

For more information, see [Fag1983] and Wikipedia article Hypergraph.

EXAMPLES:

sage: Hypergraph(5, [[1, 2, 3], [2, 3 ,4]]).is_berge_cyclic()
True
sage: Hypergraph(6, [[1, 2, 3], [3 ,4, 5]]).is_berge_cyclic()
False

is_connected()
Test whether the design is connected.

EXAMPLES:

sage: IncidenceStructure(3, [[0,1],[0,2]]).is_connected()
True
sage: IncidenceStructure(4, [[0,1],[2,3]]).is_connected()
False

is_generalized_quadrangle(verbose=False, parameters=False)
Test if the incidence structure is a generalized quadrangle.

An incidence structure is a generalized quadrangle iff (see [BH2012], section 9.6):

• two blocks intersect on at most one point.

• For every point 𝑝 not in a block 𝐵, there is a unique block 𝐵′ intersecting both {𝑝} and 𝐵

It is a regular generalized quadrangle if furthermore:

• it is 𝑠+ 1-uniform for some positive integer 𝑠.

• it is 𝑡+ 1-regular for some positive integer 𝑡.

For more information, see the Wikipedia article Generalized_quadrangle.

Note: Some references (e.g. [PT2009] or Wikipedia article Generalized_quadrangle) only allow regular
generalized quadrangles. To use such a definition, see the parameters optional argument described below,
or the methods is_regular() and is_uniform().

INPUT:

• verbose (boolean) – whether to print an explanation when the instance is not a generalized quadrangle.

• parameters (boolean; False) – if set to True, the function returns a pair (s,t) instead of True
answers. In this case, 𝑠 and 𝑡 are the integers defined above if they exist (each can be set to False
otherwise).

EXAMPLES:

sage: h = designs.CremonaRichmondConfiguration()
sage: h.is_generalized_quadrangle()
True

This is actually a regular generalized quadrangle:

sage: h.is_generalized_quadrangle(parameters=True)
(2, 2)

672 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Hypergraph
https://en.wikipedia.org/wiki/Generalized_quadrangle
https://en.wikipedia.org/wiki/Generalized_quadrangle

Combinatorics, Release 9.7

is_isomorphic(other, certificate=False)
Return whether the two incidence structures are isomorphic.

INPUT:

• other – an incidence structure.

• certificate (boolean) – whether to return an isomorphism from self to other instead of a boolean
answer.

EXAMPLES:

sage: fano1 = designs.balanced_incomplete_block_design(7,3)
sage: fano2 = designs.projective_plane(2)
sage: fano1.is_isomorphic(fano2)
True
sage: fano1.is_isomorphic(fano2,certificate=True)
{0: 0, 1: 1, 2: 2, 3: 6, 4: 4, 5: 3, 6: 5}

is_regular(r=None)
Test whether the incidence structure is 𝑟-regular.

An incidence structure is said to be 𝑟-regular if all its points are incident with exactly 𝑟 blocks.

INPUT:

• r (integer)

OUTPUT:

If r is defined, a boolean is returned. If r is set to None (default), the method returns either False or the
integer r such that the incidence structure is 𝑟-regular.

Warning: In case of 0-regular incidence structure, beware that if not H.is_regular() is a satis-
fied condition.

EXAMPLES:

sage: designs.balanced_incomplete_block_design(7,3).is_regular()
3
sage: designs.balanced_incomplete_block_design(7,3).is_regular(r=3)
True
sage: designs.balanced_incomplete_block_design(7,3).is_regular(r=4)
False

is_resolvable(certificate, solver=False, verbose=None, check=0, integrality_tolerance=True)
Test whether the hypergraph is resolvable

A hypergraph is said to be resolvable if its sets can be partitionned into classes, each of which is a partition
of the ground set.

Note: This problem is solved using an Integer Linear Program, and GLPK (the default LP solver) has been
reported to be very slow on some instances. If you hit this wall, consider installing a more powerful MILP
solver (CPLEX, Gurobi, . . .).

INPUT:

5.1. Comprehensive Module List 673

Combinatorics, Release 9.7

• certificate (boolean) – whether to return the classes along with the binary answer (see examples
below).

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If
set to None, the default one is used. For more information on MILP solvers and which default solver
is used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

• check (boolean) – whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True
by default.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see
MixedIntegerLinearProgram.get_values().

EXAMPLES:

Some resolvable designs:

sage: TD = designs.transversal_design(2,2,resolvable=True)
sage: TD.is_resolvable()
True

sage: AG = designs.AffineGeometryDesign(3,1,GF(2))
sage: AG.is_resolvable()
True

Their classes:

sage: b,cls = TD.is_resolvable(True)
sage: b
True
sage: cls # random
[[[0, 3], [1, 2]], [[1, 3], [0, 2]]]

sage: b,cls = AG.is_resolvable(True)
sage: b
True
sage: cls # random
[[[6, 7], [4, 5], [0, 1], [2, 3]],
[[5, 7], [0, 4], [3, 6], [1, 2]],
[[0, 2], [4, 7], [1, 3], [5, 6]],
[[3, 4], [0, 7], [1, 5], [2, 6]],
[[3, 7], [1, 6], [0, 5], [2, 4]],
[[0, 6], [2, 7], [1, 4], [3, 5]],
[[4, 6], [0, 3], [2, 5], [1, 7]]]

A non-resolvable design:

sage: Fano = designs.balanced_incomplete_block_design(7,3)
sage: Fano.is_resolvable()
False
sage: Fano.is_resolvable(True)
(False, [])

is_simple()
Test whether this design is simple (i.e. no repeated block).

674 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.get_values

Combinatorics, Release 9.7

EXAMPLES:

sage: IncidenceStructure(3, [[0,1],[1,2],[0,2]]).is_simple()
True
sage: IncidenceStructure(3, [[0],[0]]).is_simple()
False

sage: V = [(0,'a'),(0,'b'),(1,'a'),(1,'b')]
sage: B = [[V[0],V[1]], [V[1],V[2]]]
sage: I = IncidenceStructure(V, B)
sage: I.is_simple()
True
sage: I2 = IncidenceStructure(V, B*2)
sage: I2.is_simple()
False

is_spread(spread)
Check whether the input is a spread for self.

A spread of an incidence structure (𝑃,𝐵) is a subset of 𝐵 which forms a partition of 𝑃 .

INPUT:

• spread – iterable; defines the spread

EXAMPLES:

sage: E = IncidenceStructure([[1, 2, 3], [4, 5, 6], [1, 5, 6]])
sage: E.is_spread([[1, 2, 3], [4, 5, 6]])
True
sage: E.is_spread([1, 2, 3, 4, 5, 6])
Traceback (most recent call last):
...
TypeError: 'sage.rings.integer.Integer' object is not iterable
sage: E.is_spread([[1, 2, 3, 4], [5, 6]])
False

Order of blocks or of points within each block doesn’t matter:

sage: E = IncidenceStructure([[1, 2, 3], [4, 5, 6], [1, 5, 6]])
sage: E.is_spread([[5, 6, 4], [3, 1, 2]])
True

is_t_design(t=None, v=None, k=None, l=None, return_parameters=False)
Test whether self is a 𝑡− (𝑣, 𝑘, 𝑙) design.

A 𝑡− (𝑣, 𝑘, 𝜆) (sometimes called 𝑡-design for short) is a block design in which:

• the underlying set has cardinality 𝑣

• the blocks have size 𝑘

• each 𝑡-subset of points is covered by 𝜆 blocks

INPUT:

• t,v,k,l (integers) – their value is set to None by default. The function tests whether the design is a
t-(v,k,l) design using the provided values and guesses the others. Note that 𝑙 cannot be specified
if t is not.

5.1. Comprehensive Module List 675

Combinatorics, Release 9.7

• return_parameters (boolean)– whether to return the parameters of the 𝑡-design. If set to True, the
function returns a pair (boolean_answer,(t,v,k,l)).

EXAMPLES:

sage: fano_blocks = [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]
sage: BD = IncidenceStructure(7, fano_blocks)
sage: BD.is_t_design()
True
sage: BD.is_t_design(return_parameters=True)
(True, (2, 7, 3, 1))
sage: BD.is_t_design(2, 7, 3, 1)
True
sage: BD.is_t_design(1, 7, 3, 3)
True
sage: BD.is_t_design(0, 7, 3, 7)
True

sage: BD.is_t_design(0,6,3,7) or BD.is_t_design(0,7,4,7) or BD.is_t_design(0,7,
→˓3,8)
False

sage: BD = designs.AffineGeometryDesign(3, 1, GF(2))
sage: BD.is_t_design(1)
True
sage: BD.is_t_design(2)
True

Steiner triple and quadruple systems are other names for 2− (𝑣, 3, 1) and 3− (𝑣, 4, 1) designs:

sage: S3_9 = designs.steiner_triple_system(9)
sage: S3_9.is_t_design(2,9,3,1)
True

sage: blocks = designs.steiner_quadruple_system(8)
sage: S4_8 = IncidenceStructure(8, blocks)
sage: S4_8.is_t_design(3,8,4,1)
True

sage: blocks = designs.steiner_quadruple_system(14)
sage: S4_14 = IncidenceStructure(14, blocks)
sage: S4_14.is_t_design(3,14,4,1)
True

Some examples of Witt designs that need the gap database:

sage: BD = designs.WittDesign(9) # optional - gap_packages
sage: BD.is_t_design(2,9,3,1) # optional - gap_packages
True
sage: W12 = designs.WittDesign(12) # optional - gap_packages
sage: W12.is_t_design(5,12,6,1) # optional - gap_packages
True
sage: W12.is_t_design(4) # optional - gap_packages
True

676 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Further examples:

sage: D = IncidenceStructure(4,[[],[]])
sage: D.is_t_design(return_parameters=True)
(True, (0, 4, 0, 2))

sage: D = IncidenceStructure(4, [[0,1],[0,2],[0,3]])
sage: D.is_t_design(return_parameters=True)
(True, (0, 4, 2, 3))

sage: D = IncidenceStructure(4, [[0],[1],[2],[3]])
sage: D.is_t_design(return_parameters=True)
(True, (1, 4, 1, 1))

sage: D = IncidenceStructure(4,[[0,1],[2,3]])
sage: D.is_t_design(return_parameters=True)
(True, (1, 4, 2, 1))

sage: D = IncidenceStructure(4, [list(range(4))])
sage: D.is_t_design(return_parameters=True)
(True, (4, 4, 4, 1))

is_uniform(k=None)
Test whether the incidence structure is 𝑘-uniform

An incidence structure is said to be 𝑘-uniform if all its blocks have size 𝑘.

INPUT:

• k (integer)

OUTPUT:

If k is defined, a boolean is returned. If k is set to None (default), the method returns either False or the
integer k such that the incidence structure is 𝑘-uniform.

Warning: In case of 0-uniform incidence structure, beware that if not H.is_uniform() is a sat-
isfied condition.

EXAMPLES:

sage: designs.balanced_incomplete_block_design(7,3).is_uniform()
3
sage: designs.balanced_incomplete_block_design(7,3).is_uniform(k=3)
True
sage: designs.balanced_incomplete_block_design(7,3).is_uniform(k=4)
False

isomorphic_substructures_iterator(H2, induced=False)
Iterates over all copies of H2 contained in self.

A hypergraph𝐻1 contains an isomorphic copy of a hypergraph𝐻2 if there exists an injection 𝑓 : 𝑉 (𝐻2) ↦→
𝑉 (𝐻1) such that for any set 𝑆2 ∈ 𝐸(𝐻2) the set 𝑆1 = 𝑓(𝑆2) belongs to 𝐸(𝐻1).

It is an induced copy if no other set of 𝐸(𝐻1) is contained in 𝑓(𝑉 (𝐻2)), i.e. |𝐸(𝐻2)| = {𝑆 : 𝑆 ∈
𝐸(𝐻1) and 𝑓(𝑉 (𝐻2))}.

5.1. Comprehensive Module List 677

Combinatorics, Release 9.7

This function lists all such injections. In particular, the number of copies of 𝐻 in itself is equal to the size
of its automorphism group.

See subhypergraph_search for more information.

INPUT:

• H2 an IncidenceStructure object.

• induced (boolean) – whether to require the copies to be induced. Set to False by default.

EXAMPLES:

How many distinct 𝐶5 in Petersen’s graph ?

sage: P = graphs.PetersenGraph()
sage: C = graphs.CycleGraph(5)
sage: IP = IncidenceStructure(P.edges(sort=True, labels=False))
sage: IC = IncidenceStructure(C.edges(sort=True, labels=False))
sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC))
120

As the automorphism group of 𝐶5 has size 10, the number of distinct unlabelled copies is 12. Let us check
that all functions returned correspond to an actual 𝐶5 subgraph:

sage: for f in IP.isomorphic_substructures_iterator(IC):
....: assert all(P.has_edge(f[x],f[y]) for x,y in C.edges(sort=True,␣
→˓labels=False))

The number of induced copies, in this case, is the same:

sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC,induced=True))
120

They begin to differ if we make one vertex universal:

sage: P.add_edges([(0,x) for x in P], loops=False)
sage: IP = IncidenceStructure(P.edges(sort=True, labels=False))
sage: IC = IncidenceStructure(C.edges(sort=True, labels=False))
sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC))
420
sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC,induced=True))
60

The number of copies of 𝐻 in itself is the size of its automorphism group:

sage: H = designs.projective_plane(3)
sage: sum(1 for _ in H.isomorphic_substructures_iterator(H))
5616
sage: H.automorphism_group().cardinality()
5616

num_blocks()
Return the number of blocks.

EXAMPLES:

678 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: designs.DesarguesianProjectivePlaneDesign(2).num_blocks()
7
sage: B = IncidenceStructure(4, [[0,1],[0,2],[0,3],[1,2], [1,2,3]])
sage: B.num_blocks()
5

num_points()
Return the size of the ground set.

EXAMPLES:

sage: designs.DesarguesianProjectivePlaneDesign(2).num_points()
7
sage: B = IncidenceStructure(4, [[0,1],[0,2],[0,3],[1,2], [1,2,3]])
sage: B.num_points()
4

packing(solver, verbose=None, integrality_tolerance=0)
Return a maximum packing

A maximum packing in a hypergraph is collection of disjoint sets/blocks of maximal cardinality. This
problem is NP-complete in general, and in particular on 3-uniform hypergraphs. It is solved here with an
Integer Linear Program.

For more information, see the Wikipedia article Packing_in_a_hypergraph.

INPUT:

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If
set to None, the default one is used. For more information on LP solvers and which default solver is
used, see the method solve of the class MixedIntegerLinearProgram.

• verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see
MixedIntegerLinearProgram.get_values().

EXAMPLES:

sage: P = IncidenceStructure([[1,2],[3,4],[2,3]]).packing()
sage: sorted(sorted(b) for b in P)
[[1, 2], [3, 4]]
sage: len(designs.steiner_triple_system(9).packing())
3

rank()
Return the rank of the hypergraph (the maximum size of a block).

EXAMPLES:

sage: h = Hypergraph(8, [[0,1,3],[1,4,5,6],[1,2]])
sage: h.rank()
4

relabel(perm=None, inplace=True)
Relabel the ground set

INPUT:

5.1. Comprehensive Module List 679

https://en.wikipedia.org/wiki/Packing_in_a_hypergraph
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.get_values

Combinatorics, Release 9.7

• perm – can be one of

– a dictionary – then each point p (which should be a key of d) is relabeled to d[p]

– a list or a tuple of length n – the first point returned by ground_set() is relabeled to l[0], the
second to l[1], . . .

– None – the incidence structure is relabeled to be on {0, 1, ..., 𝑛 − 1} in the ordering given by
ground_set().

• inplace – If True then return a relabeled graph and does not touch self (default is False).

EXAMPLES:

sage: TD=designs.transversal_design(5,5)
sage: TD.relabel({i:chr(97+i) for i in range(25)})
sage: TD.ground_set()
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
→˓ 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y']
sage: TD.blocks()[:3]
[['a', 'f', 'k', 'p', 'u'], ['a', 'g', 'm', 's', 'y'], ['a', 'h', 'o', 'q', 'x
→˓']]

Relabel to integer points:

sage: TD.relabel()
sage: TD.blocks()[:3]
[[0, 5, 10, 15, 20], [0, 6, 12, 18, 24], [0, 7, 14, 16, 23]]

trace(points, min_size=1, multiset=True)
Return the trace of a set of points.

Given an hypergraphℋ, the trace of a set𝑋 of points inℋ is the hypergraph whose blocks are all non-empty
𝑆 ∩𝑋 where 𝑆 ∈ ℋ.

INPUT:

• points – a set of points.

• min_size (integer; default 1) – minimum size of the sets to keep. By default all empty sets are
discarded, i.e. min_size=1.

• multiset (boolean; default True) – whether to keep multiple copies of the same set.

Note: This method goes over all sets of self before building a new IncidenceStructure (which
involves some relabelling and sorting). It probably should not be called in a performance-critical code.

EXAMPLES:

A Baer subplane of order 2 (i.e. a Fano plane) in a projective plane of order 4:

sage: P4 = designs.projective_plane(4)
sage: F = designs.projective_plane(2)
sage: for x in Subsets(P4.ground_set(),7):
....: if P4.trace(x,min_size=2).is_isomorphic(F):
....: break
sage: subplane = P4.trace(x,min_size=2); subplane
Incidence structure with 7 points and 7 blocks

(continues on next page)

680 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: subplane.is_isomorphic(F)
True

5.1.88 Mutually Orthogonal Latin Squares (MOLS)

The main function of this module is mutually_orthogonal_latin_squares() and can be can be used to generate
MOLS (or check that they exist):

sage: MOLS = designs.mutually_orthogonal_latin_squares(4,8)

For more information on MOLS, see the Wikipedia entry on MOLS. If you are only interested by latin squares, see
latin.

The functions defined here are

mutually_orthogonal_latin_squares()Return 𝑘 Mutually Orthogonal 𝑛× 𝑛 Latin Squares.
are_mutually_orthogonal_latin_squares()Check that the list l of matrices in are MOLS.
latin_square_product() Return the product of two (or more) latin squares.
MOLS_table() Prints the MOLS table.

Table of MOLS

Sage can produce a table of MOLS similar to the one from the Handbook of Combinatorial Designs [DesignHandbook]
(available here).

sage: from sage.combinat.designs.latin_squares import MOLS_table
sage: MOLS_table(600) # long time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
__

0| +oo +oo 1 2 3 4 1 6 7 8 2 10 5 12 4 4 15 16 5 18
20| 4 5 3 22 7 24 4 26 5 28 4 30 31 5 4 5 8 36 4 5
40| 7 40 5 42 5 6 4 46 8 48 6 5 5 52 5 6 7 7 5 58
60| 5 60 5 6 63 7 5 66 5 6 6 70 7 72 5 7 6 6 6 78
80| 9 80 8 82 6 6 6 6 7 88 6 7 6 6 6 6 7 96 6 8
100| 8 100 6 102 7 7 6 106 6 108 6 6 13 112 6 7 6 8 6 6
120| 7 120 6 6 6 124 6 126 127 7 6 130 6 7 6 7 7 136 6 138
140| 6 7 6 10 10 7 6 7 6 148 6 150 7 8 8 7 6 156 7 6
160| 9 7 6 162 6 7 6 166 7 168 6 8 6 172 6 6 14 9 6 178
180| 6 180 6 6 7 9 6 10 6 8 6 190 7 192 6 7 6 196 6 198
200| 7 7 6 7 6 8 6 8 14 11 10 210 6 7 6 7 7 8 6 10
220| 6 12 6 222 13 8 6 226 6 228 6 7 7 232 6 7 6 7 6 238
240| 7 240 6 242 6 7 6 12 7 7 6 250 6 12 9 7 255 256 6 12
260| 6 8 8 262 7 8 7 10 7 268 7 270 15 16 6 13 10 276 6 9
280| 7 280 6 282 6 12 6 7 15 288 6 6 6 292 6 6 7 10 10 12
300| 7 7 7 7 15 15 6 306 7 7 7 310 7 312 7 10 7 316 7 10
320| 15 15 6 16 8 12 6 7 7 9 6 330 7 8 7 6 7 336 6 7
340| 6 10 10 342 7 7 6 346 6 348 8 12 18 352 6 9 7 9 6 358
360| 7 360 6 7 7 7 6 366 15 15 7 15 7 372 7 15 7 13 7 378
380| 7 12 7 382 15 15 7 15 7 388 7 16 7 7 7 7 8 396 7 7
400| 15 400 7 15 11 8 7 15 8 408 7 13 8 12 10 9 18 15 7 418
420| 7 420 7 15 7 16 6 7 7 7 6 430 15 432 6 15 6 18 7 438

(continues on next page)

5.1. Comprehensive Module List 681

https://en.wikipedia.org/wiki/Graeco-Latin_square#Mutually_orthogonal_Latin_squares
http://books.google.fr/books?id=S9FA9rq1BgoC&dq=handbook%20combinatorial%20designs%20MOLS%2010000&pg=PA176

Combinatorics, Release 9.7

(continued from previous page)

440| 7 15 7 442 7 13 7 11 15 448 7 15 7 7 7 15 7 456 7 16
460| 7 460 7 462 15 15 7 466 8 8 7 15 7 15 10 18 7 15 6 478
480| 15 15 6 15 8 7 6 486 7 15 6 490 6 16 6 7 15 15 6 498
500| 7 8 9 502 7 15 6 15 7 508 6 15 511 18 7 15 8 12 8 15
520| 8 520 10 522 12 15 8 16 15 528 7 15 8 12 7 15 8 15 10 15
540| 12 540 7 15 18 7 7 546 7 8 7 18 7 7 7 7 7 556 7 12
560| 15 7 7 562 7 7 6 7 7 568 6 570 7 7 15 22 8 576 7 7
580| 7 8 7 10 7 8 7 586 7 18 17 7 15 592 8 15 7 7 8 598

Comparison with the results from the Handbook of Combinatorial Designs (2ed) [DesignHandbook]:

sage: MOLS_table(600,compare=True) # long time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

__
0| + +

20|
40|
60| +
80|
100|
120|
140|
160|
180|
200| -
220|
240|
260|
280|
300|
320| -
340|
360| - -
380| -
400|
420| -
440|
460|
480|
500| -
520|
540|
560|
580|

Todo: Look at [ColDin01].

REFERENCES:

682 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Functions

sage.combinat.designs.latin_squares.MOLS_table(start, stop=None, compare=False, width=None)
Prints the MOLS table that Sage can produce.

INPUT:

• start,stop (integers) – print the table of MOLS for value of 𝑛 such that start<=n<stop. If only one
integer is given as input, it is interpreted as the value of stop with start=0 (same behaviour as range).

• compare (boolean) – if sets to True the MOLS displays with + and − entries its difference with the table
from the Handbook of Combinatorial Designs (2ed).

• width (integer) – the width of each column of the table. By default, it is computed from range of values
determined by the parameters start and stop.

EXAMPLES:

sage: from sage.combinat.designs.latin_squares import MOLS_table
sage: MOLS_table(100)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
__

0| +oo +oo 1 2 3 4 1 6 7 8 2 10 5 12 4 4 15 16 5 18
20| 4 5 3 22 7 24 4 26 5 28 4 30 31 5 4 5 8 36 4 5
40| 7 40 5 42 5 6 4 46 8 48 6 5 5 52 5 6 7 7 5 58
60| 5 60 5 6 63 7 5 66 5 6 6 70 7 72 5 7 6 6 6 78
80| 9 80 8 82 6 6 6 6 7 88 6 7 6 6 6 6 7 96 6 8
sage: MOLS_table(100, width=4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ␣
→˓15 16 17 18 19

→˓_____________________

0| +oo +oo 1 2 3 4 1 6 7 8 2 10 5 12 4 ␣
→˓4 15 16 5 18
20| 4 5 3 22 7 24 4 26 5 28 4 30 31 5 4 ␣

→˓5 8 36 4 5
40| 7 40 5 42 5 6 4 46 8 48 6 5 5 52 5 ␣

→˓6 7 7 5 58
60| 5 60 5 6 63 7 5 66 5 6 6 70 7 72 5 ␣

→˓7 6 6 6 78
80| 9 80 8 82 6 6 6 6 7 88 6 7 6 6 6 ␣

→˓6 7 96 6 8
sage: MOLS_table(100, compare=True)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
__

0| + +
20|
40|
60| +
80|
sage: MOLS_table(50, 100, compare=True)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
__

40|
60| +
80|

5.1. Comprehensive Module List 683

Combinatorics, Release 9.7

sage.combinat.designs.latin_squares.are_mutually_orthogonal_latin_squares(l, verbose=False)
Check whether the list of matrices in l form mutually orthogonal latin squares.

INPUT:

• verbose - if True then print why the list of matrices provided are not mutually orthogonal latin squares

EXAMPLES:

sage: from sage.combinat.designs.latin_squares import are_mutually_orthogonal_latin_
→˓squares
sage: m1 = matrix([[0,1,2],[2,0,1],[1,2,0]])
sage: m2 = matrix([[0,1,2],[1,2,0],[2,0,1]])
sage: m3 = matrix([[0,1,2],[2,0,1],[1,2,0]])
sage: are_mutually_orthogonal_latin_squares([m1,m2])
True
sage: are_mutually_orthogonal_latin_squares([m1,m3])
False
sage: are_mutually_orthogonal_latin_squares([m2,m3])
True
sage: are_mutually_orthogonal_latin_squares([m1,m2,m3], verbose=True)
Squares 0 and 2 are not orthogonal
False

sage: m = designs.mutually_orthogonal_latin_squares(7,8)
sage: are_mutually_orthogonal_latin_squares(m)
True

sage.combinat.designs.latin_squares.latin_square_product(M, N, *others)
Return the product of two (or more) latin squares.

Given two Latin Squares 𝑀,𝑁 of respective sizes 𝑚,𝑛, the direct product 𝑀 × 𝑁 of size 𝑚𝑛 is defined by
(𝑀 ×𝑁)((𝑖1, 𝑖2), (𝑗1, 𝑗2)) = (𝑀(𝑖1, 𝑗1), 𝑁(𝑖2, 𝑗2)) where 𝑖1, 𝑗1 ∈ [𝑚], 𝑖2, 𝑗2 ∈ [𝑛]

Each pair of values (𝑖, 𝑗) ∈ [𝑚]× [𝑛] is then relabeled to 𝑖𝑛+ 𝑗.

This is Lemma 6.25 of [Stinson2004].

INPUT:

An arbitrary number of latin squares (greater than 2).

EXAMPLES:

sage: from sage.combinat.designs.latin_squares import latin_square_product
sage: m=designs.mutually_orthogonal_latin_squares(3,4)[0]
sage: latin_square_product(m,m,m)
64 x 64 sparse matrix over Integer Ring (use the '.str()' method to see the entries)

sage.combinat.designs.latin_squares.mutually_orthogonal_latin_squares(k, n, partitions=False,
check=True)

Return 𝑘 Mutually Orthogonal 𝑛× 𝑛 Latin Squares (MOLS).

For more information on Mutually Orthogonal Latin Squares, see latin_squares.

INPUT:

• k (integer) – number of MOLS. If k=None it is set to the largest value available.

• n (integer) – size of the latin square.

684 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• partitions (boolean) – a Latin Square can be seen as 3 partitions of the 𝑛2 cells of the array into 𝑛 sets
of size 𝑛, respectively:

– The partition of rows

– The partition of columns

– The partition of number (cells numbered with 0, cells numbered with 1, . . .)

These partitions have the additional property that any two sets from different partitions intersect on exactly
one element.

When partitions is set to True, this function returns a list of 𝑘+ 2 partitions satisfying this intersection
property instead of the 𝑘 + 2 MOLS (though the data is exactly the same in both cases).

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

EXAMPLES:

sage: designs.mutually_orthogonal_latin_squares(4,5)
[
[0 2 4 1 3] [0 3 1 4 2] [0 4 3 2 1] [0 1 2 3 4]
[4 1 3 0 2] [3 1 4 2 0] [2 1 0 4 3] [4 0 1 2 3]
[3 0 2 4 1] [1 4 2 0 3] [4 3 2 1 0] [3 4 0 1 2]
[2 4 1 3 0] [4 2 0 3 1] [1 0 4 3 2] [2 3 4 0 1]
[1 3 0 2 4], [2 0 3 1 4], [3 2 1 0 4], [1 2 3 4 0]
]

sage: designs.mutually_orthogonal_latin_squares(3,7)
[
[0 2 4 6 1 3 5] [0 3 6 2 5 1 4] [0 4 1 5 2 6 3]
[6 1 3 5 0 2 4] [5 1 4 0 3 6 2] [4 1 5 2 6 3 0]
[5 0 2 4 6 1 3] [3 6 2 5 1 4 0] [1 5 2 6 3 0 4]
[4 6 1 3 5 0 2] [1 4 0 3 6 2 5] [5 2 6 3 0 4 1]
[3 5 0 2 4 6 1] [6 2 5 1 4 0 3] [2 6 3 0 4 1 5]
[2 4 6 1 3 5 0] [4 0 3 6 2 5 1] [6 3 0 4 1 5 2]
[1 3 5 0 2 4 6], [2 5 1 4 0 3 6], [3 0 4 1 5 2 6]
]

sage: designs.mutually_orthogonal_latin_squares(2,5,partitions=True)
[[[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]],
[[0, 5, 10, 15, 20],
[1, 6, 11, 16, 21],
[2, 7, 12, 17, 22],
[3, 8, 13, 18, 23],
[4, 9, 14, 19, 24]],
[[0, 8, 11, 19, 22],
[3, 6, 14, 17, 20],
[1, 9, 12, 15, 23],
[4, 7, 10, 18, 21],
[2, 5, 13, 16, 24]],

(continues on next page)

5.1. Comprehensive Module List 685

Combinatorics, Release 9.7

(continued from previous page)

[[0, 9, 13, 17, 21],
[2, 6, 10, 19, 23],
[4, 8, 12, 16, 20],
[1, 5, 14, 18, 22],
[3, 7, 11, 15, 24]]]

What is the maximum number of MOLS of size 8 that Sage knows how to build?:

sage: designs.orthogonal_arrays.largest_available_k(8)-2
7

If you only want to know if Sage is able to build a given set of MOLS, query the orthogonal_arrays.*
functions:

sage: designs.orthogonal_arrays.is_available(5+2, 5) # 5 MOLS of order 5
False
sage: designs.orthogonal_arrays.is_available(4+2,6) # 4 MOLS of order 6
False

Sage, however, is not able to prove that the second MOLS do not exist:

sage: designs.orthogonal_arrays.exists(4+2,6) # 4 MOLS of order 6
Unknown

If you ask for such a MOLS then you will respectively get an informative EmptySetError or
NotImplementedError:

sage: designs.mutually_orthogonal_latin_squares(5, 5)
Traceback (most recent call last):
...
EmptySetError: there exist at most n-1 MOLS of size n if n>=2
sage: designs.mutually_orthogonal_latin_squares(4,6)
Traceback (most recent call last):
...
NotImplementedError: I don't know how to build 4 MOLS of order 6

5.1.89 Orthogonal arrays (OA)

This module gathers some construction related to orthogonal arrays (or transversal designs). One can build an𝑂𝐴(𝑘, 𝑛)
(or check that it can be built) from the Sage console with designs.orthogonal_arrays.build:

sage: OA = designs.orthogonal_arrays.build(4,8)

See also the modules orthogonal_arrays_build_recursive or orthogonal_arrays_find_recursive for re-
cursive constructions.

This module defines the following functions:

orthogonal_array() Return an orthogonal array of parameters 𝑘, 𝑛, 𝑡.
transversal_design() Return a transversal design of parameters 𝑘, 𝑛.
incomplete_orthogonal_array()Return an 𝑂𝐴(𝑘, 𝑛)−

∑︀
1≤𝑖≤𝑥𝑂𝐴(𝑘, 𝑠𝑖).

686 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

is_transversal_design() Check that a given set of blocks B is a transversal design.
is_orthogonal_array() Check that the integer matrix 𝑂𝐴 is an 𝑂𝐴(𝑘, 𝑛, 𝑡).
wilson_construction() Return a𝑂𝐴(𝑘, 𝑟𝑚+𝑢) from a truncated𝑂𝐴(𝑘+𝑠, 𝑟) by Wilson’s construction.
TD_product() Return the product of two transversal designs.
OA_find_disjoint_blocks() Return 𝑥 disjoint blocks contained in a given 𝑂𝐴(𝑘, 𝑛).
OA_relabel() Return a relabelled version of the OA.
OA_from_quasi_difference_matrix()Return an Orthogonal Array from a Quasi-Difference matrix
OA_from_Vmt() Return an Orthogonal Array from a 𝑉 (𝑚, 𝑡)
OA_from_PBD() Return an 𝑂𝐴(𝑘, 𝑛) from a PBD
OA_n_times_2_pow_c_from_matrix()Return an 𝑂𝐴(𝑘, |𝐺| · 2𝑐) from a constrained (𝐺, 𝑘 − 1, 2)-difference matrix.
OA_from_wider_OA() Return the first 𝑘 columns of 𝑂𝐴.
QDM_from_Vmt() Return a QDM a 𝑉 (𝑚, 𝑡)

REFERENCES:

– [CD1996]

Functions

class sage.combinat.designs.orthogonal_arrays.OAMainFunctions(*args, **kwds)
Bases: object

Functions related to orthogonal arrays.

An orthogonal array of parameters 𝑘, 𝑛, 𝑡 is a matrix with 𝑘 columns filled with integers from [𝑛] in such a way
that for any 𝑡 columns, each of the 𝑛𝑡 possible rows occurs exactly once. In particular, the matrix has 𝑛𝑡 rows.

For more information on orthogonal arrays, see Wikipedia article Orthogonal_array.

From here you have access to:

• build(k,n,t=2): return an orthogonal array with the given parameters.

• is_available(k,n,t=2): answer whether there is a construction available in Sage for a given set of
parameters.

• exists(k,n,t=2): answer whether an orthogonal array with these parameters exist.

• largest_available_k(n,t=2): return the largest integer 𝑘 such that Sage knows how to build an
𝑂𝐴(𝑘, 𝑛).

• explain_construction(k,n,t=2): return a string that explains the construction that Sage uses to build
an 𝑂𝐴(𝑘, 𝑛).

EXAMPLES:

sage: designs.orthogonal_arrays.build(3,2)
[[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]]

sage: designs.orthogonal_arrays.build(5,5)
[[0, 0, 0, 0, 0], [0, 1, 2, 3, 4], [0, 2, 4, 1, 3],
[0, 3, 1, 4, 2], [0, 4, 3, 2, 1], [1, 0, 4, 3, 2],
[1, 1, 1, 1, 1], [1, 2, 3, 4, 0], [1, 3, 0, 2, 4],
[1, 4, 2, 0, 3], [2, 0, 3, 1, 4], [2, 1, 0, 4, 3],
[2, 2, 2, 2, 2], [2, 3, 4, 0, 1], [2, 4, 1, 3, 0],
[3, 0, 2, 4, 1], [3, 1, 4, 2, 0], [3, 2, 1, 0, 4],
[3, 3, 3, 3, 3], [3, 4, 0, 1, 2], [4, 0, 1, 2, 3],

(continues on next page)

5.1. Comprehensive Module List 687

https://en.wikipedia.org/wiki/Orthogonal_array

Combinatorics, Release 9.7

(continued from previous page)

[4, 1, 3, 0, 2], [4, 2, 0, 3, 1], [4, 3, 2, 1, 0],
[4, 4, 4, 4, 4]]

What is the largest value of 𝑘 for which Sage knows how to compute a 𝑂𝐴(𝑘, 14, 2)?:

sage: designs.orthogonal_arrays.largest_available_k(14)
6

If you ask for an orthogonal array that does not exist, then you will either obtain an EmptySetError (if it knows
that such an orthogonal array does not exist) or a NotImplementedError:

sage: designs.orthogonal_arrays.build(4,2)
Traceback (most recent call last):
...
EmptySetError: There exists no OA(4,2) as k(=4)>n+t-1=3
sage: designs.orthogonal_arrays.build(12,20)
Traceback (most recent call last):
...
NotImplementedError: I don't know how to build an OA(12,20)!

static build(k, n, t=2, resolvable=False)
Return an 𝑂𝐴(𝑘, 𝑛) of strength 𝑡

An orthogonal array of parameters 𝑘, 𝑛, 𝑡 is a matrix with 𝑘 columns filled with integers from [𝑛] in such a
way that for any 𝑡 columns, each of the 𝑛𝑡 possible rows occurs exactly once. In particular, the matrix has
𝑛𝑡 rows.

More general definitions sometimes involve a 𝜆 parameter, and we assume here that 𝜆 = 1.

For more information on orthogonal arrays, see Wikipedia article Orthogonal_array.

INPUT:

• k,n,t (integers) – parameters of the orthogonal array.

• resolvable (boolean) – set to True if you want the design to be resolvable. The 𝑛 classes of the
resolvable design are obtained as the first 𝑛 blocks, then the next 𝑛 blocks, etc . . . Set to False by
default.

EXAMPLES:

sage: designs.orthogonal_arrays.build(3,3,resolvable=True) # indirect doctest
[[0, 0, 0],
[1, 2, 1],
[2, 1, 2],
[0, 2, 2],
[1, 1, 0],
[2, 0, 1],
[0, 1, 1],
[1, 0, 2],
[2, 2, 0]]
sage: OA_7_50 = designs.orthogonal_arrays.build(7,50) # indirect doctest

static exists(k, n, t=2)
Return the existence status of an 𝑂𝐴(𝑘, 𝑛)

INPUT:

688 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Orthogonal_array

Combinatorics, Release 9.7

• k,n,t (integers) – parameters of the orthogonal array.

Warning: The function does not only return booleans, but True, False, or Unknown.

See also:

is_available()

EXAMPLES:

sage: designs.orthogonal_arrays.exists(3,6) # indirect doctest
True
sage: designs.orthogonal_arrays.exists(4,6) # indirect doctest
Unknown
sage: designs.orthogonal_arrays.exists(7,6) # indirect doctest
False

static explain_construction(k, n, t=2)
Return a string describing how to builds an 𝑂𝐴(𝑘, 𝑛)

INPUT:

• k,n,t (integers) – parameters of the orthogonal array.

EXAMPLES:

sage: designs.orthogonal_arrays.explain_construction(9,565)
"Wilson's construction n=23.24+13 with master design OA(9+1,23)"
sage: designs.orthogonal_arrays.explain_construction(10,154)
'the database contains a (137,10;1,0;17)-quasi difference matrix'

static is_available(k, n, t=2)
Return whether Sage can build an 𝑂𝐴(𝑘, 𝑛).

INPUT:

• k,n,t (integers) – parameters of the orthogonal array.

See also:

exists()

EXAMPLES:

sage: designs.orthogonal_arrays.is_available(3,6) # indirect doctest
True
sage: designs.orthogonal_arrays.is_available(4,6) # indirect doctest
False

static largest_available_k(n, t=2)
Return the largest 𝑘 such that Sage can build an 𝑂𝐴(𝑘, 𝑛).

INPUT:

• n (integer)

• t – (integer; default: 2) – strength of the array

EXAMPLES:

5.1. Comprehensive Module List 689

Combinatorics, Release 9.7

sage: designs.orthogonal_arrays.largest_available_k(0)
+Infinity
sage: designs.orthogonal_arrays.largest_available_k(1)
+Infinity
sage: designs.orthogonal_arrays.largest_available_k(10)
4
sage: designs.orthogonal_arrays.largest_available_k(27)
28
sage: designs.orthogonal_arrays.largest_available_k(100)
10
sage: designs.orthogonal_arrays.largest_available_k(-1)
Traceback (most recent call last):
...
ValueError: n(=-1) was expected to be >=0

sage.combinat.designs.orthogonal_arrays.OA_find_disjoint_blocks(OA, k, n, x, solver,
integrality_tolerance)

Return 𝑥 disjoint blocks contained in a given 𝑂𝐴(𝑘, 𝑛).

𝑥 blocks of an 𝑂𝐴 are said to be disjoint if they all have different values for a every given index, i.e. if they
correspond to disjoint blocks in the 𝑇𝐷 associated with the 𝑂𝐴.

INPUT:

• OA – an orthogonal array

• k, n, x (integers)

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If set
to None, the default one is used. For more information on MILP solvers and which default solver is used,
see the method solve of the class MixedIntegerLinearProgram.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see
MixedIntegerLinearProgram.get_values().

See also:

incomplete_orthogonal_array()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import OA_find_disjoint_blocks
sage: k=3;n=4;x=3
sage: Bs = OA_find_disjoint_blocks(designs.orthogonal_arrays.build(k,n),k,n,x)
sage: assert len(Bs) == x
sage: for i in range(k):
....: assert len(set([B[i] for B in Bs])) == x
sage: OA_find_disjoint_blocks(designs.orthogonal_arrays.build(k,n),k,n,5)
Traceback (most recent call last):
...
ValueError: There does not exist 5 disjoint blocks in this OA(3,4)

sage.combinat.designs.orthogonal_arrays.OA_from_PBD(k, n, PBD, check=True)
Return an 𝑂𝐴(𝑘, 𝑛) from a PBD

Construction

Let ℬ be a (𝑛,𝐾, 1)-PBD. If there exists for every 𝑖 ∈ 𝐾 a 𝑇𝐷(𝑘, 𝑖) − 𝑖 × 𝑇𝐷(𝑘, 1) (i.e. if there exist 𝑘
idempotent MOLS), then one can obtain a 𝑂𝐴(𝑘, 𝑛) by concatenating:

690 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.get_values

Combinatorics, Release 9.7

• A 𝑇𝐷(𝑘, 𝑖)− 𝑖× 𝑇𝐷(𝑘, 1) defined over the elements of 𝐵 for every 𝐵 ∈ ℬ.

• The rows (𝑖, ..., 𝑖) of length 𝑘 for every 𝑖 ∈ [𝑛].

Note: This function raises an exception when Sage is unable to build the necessary designs.

INPUT:

• k,n (integers)

• PBD – a PBD on 0, ..., 𝑛− 1.

EXAMPLES:

We start from the example VI.1.2 from the [DesignHandbook] to build an 𝑂𝐴(3, 10):

sage: from sage.combinat.designs.orthogonal_arrays import OA_from_PBD
sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: pbd = [[0,1,2,3],[0,4,5,6],[0,7,8,9],[1,4,7],[1,5,8],
....: [1,6,9],[2,4,9],[2,5,7],[2,6,8],[3,4,8],[3,5,9],[3,6,7]]
sage: oa = OA_from_PBD(3,10,pbd)
sage: is_orthogonal_array(oa, 3, 10)
True

But we cannot build an 𝑂𝐴(4, 10) for this PBD (although there exists an 𝑂𝐴(4, 10):

sage: OA_from_PBD(4,10,pbd)
Traceback (most recent call last):
...
EmptySetError: There is no OA(n+1,n) - 3.OA(n+1,1) as all blocks intersect in a␣
→˓projective plane.

Or an 𝑂𝐴(3, 6) (as the PBD has 10 points):

sage: _ = OA_from_PBD(3,6,pbd)
Traceback (most recent call last):
...
RuntimeError: PBD is not a valid Pairwise Balanced Design on [0,...,5]

sage.combinat.designs.orthogonal_arrays.OA_from_Vmt(m, t, V)
Return an Orthogonal Array from a 𝑉 (𝑚, 𝑡)

INPUT:

• m,t (integers)

• V – the vector 𝑉 (𝑚, 𝑡).

See also:

• QDM_from_Vmt()

• OA_from_quasi_difference_matrix()

EXAMPLES:

sage: _ = designs.orthogonal_arrays.build(6,46) # indirect doctest

5.1. Comprehensive Module List 691

Combinatorics, Release 9.7

sage.combinat.designs.orthogonal_arrays.OA_from_quasi_difference_matrix(M, G, add_col=True,
fill_hole=True)

Return an Orthogonal Array from a Quasi-Difference matrix

Difference Matrices

Let 𝐺 be a group of order 𝑔. A difference matrix 𝑀 is a 𝑔 × 𝑘 matrix with entries from 𝐺 such that for any
1 ≤ 𝑖 < 𝑗 < 𝑘 the set {𝑑𝑙𝑖 − 𝑑𝑙𝑗 : 1 ≤ 𝑙 ≤ 𝑔} is equal to 𝐺.

By concatenating the 𝑔 matrices 𝑀 + 𝑥 (where 𝑥 ∈ 𝐺), one obtains a matrix of size 𝑔2 × 𝑥 which is also an
𝑂𝐴(𝑘, 𝑔).

Quasi-difference Matrices

A quasi-difference matrix is a difference matrix with missing entries. The construction above can be applied
again in this case, where the missing entries in each column of𝑀 are replaced by unique values on which𝐺 has
a trivial action.

This produces an incomplete orthogonal array with a “hole” (i.e. missing rows) of size ‘u’ (i.e. the number of
missing values per column of 𝑀). If there exists an 𝑂𝐴(𝑘, 𝑢), then adding the rows of this 𝑂𝐴(𝑘, 𝑢) to the
incomplete orthogonal array should lead to an OA. . .

Formal definition (from the Handbook of Combinatorial Designs [DesignHandbook])

Let 𝐺 be an abelian group of order 𝑛. A (𝑛, 𝑘;𝜆, 𝜇;𝑢)-quasi-difference matrix (QDM) is a matrix 𝑄 = (𝑞𝑖𝑗)
with 𝜆(𝑛 − 1 + 2𝑢) + 𝜇 rows and 𝑘 columns, with each entry either empty or containing an element of 𝐺.
Each column contains exactly 𝜆𝑢 entries, and each row contains at most one empty entry. Furthermore, for each
1 ≤ 𝑖 < 𝑗 ≤ 𝑘 the multiset

{𝑞𝑙𝑖 − 𝑞𝑙𝑗 : 1 ≤ 𝑙 ≤ 𝜆(𝑛− 1 + 2𝑢) + 𝜇, with 𝑞𝑙𝑖 and 𝑞𝑙𝑗 not empty}

contains every nonzero element of 𝐺 exactly 𝜆 times, and contains 0 exactly 𝜇 times.

Construction

If a (𝑛, 𝑘;𝜆, 𝜇;𝑢)-QDM exists and 𝜇 ≤ 𝜆, then an 𝐼𝑇𝐷𝜆(𝑘, 𝑛+𝑢;𝑢) exists. Start with a (𝑛, 𝑘;𝜆, 𝜇;𝑢)-QDM𝐴
over the group 𝐺. Append 𝜆− 𝜇 rows of zeroes. Then select 𝑢 elements∞1, . . . ,∞𝑢 not in 𝐺, and replace the
empty entries, each by one of these infinite symbols, so that∞𝑖 appears exactly once in each column. Develop
the resulting matrix over the group 𝐺 (leaving infinite symbols fixed), to obtain a 𝜆(𝑛2 + 2𝑛𝑢) × 𝑘 matrix 𝑇 .
Then 𝑇 is an orthogonal array with 𝑘 columns and index 𝜆, having 𝑛+ 𝑢 symbols and one hole of size 𝑢.

Adding to 𝑇 an 𝑂𝐴(𝑘, 𝑢) with elements∞1, . . . ,∞𝑢 yields the 𝐼𝑇𝐷𝜆(𝑘, 𝑛+ 𝑢;𝑢).

For more information, see the Handbook of Combinatorial Designs [DesignHandbook] or http://web.cs.du.edu/
~petr/milehigh/2013/Colbourn.pdf.

INPUT:

• M – the difference matrix whose entries belong to G

• G – a group

• add_col (boolean) – whether to add a column to the final OA equal to (𝑥1, . . . , 𝑥𝑔, 𝑥1, . . . , 𝑥𝑔, . . .) where
𝐺 = {𝑥1, . . . , 𝑥𝑔}.

• fill_hole (boolean) – whether to return the incomplete orthogonal array, or complete it with the𝑂𝐴(𝑘, 𝑢)
(default). When fill_hole is None, no block of the incomplete OA contains more than one value≥ |𝐺|.

EXAMPLES:

sage: _ = designs.orthogonal_arrays.build(6,20) # indirect doctest

692 Chapter 5. Comprehensive Module List

http://web.cs.du.edu/~petr/milehigh/2013/Colbourn.pdf
http://web.cs.du.edu/~petr/milehigh/2013/Colbourn.pdf

Combinatorics, Release 9.7

sage.combinat.designs.orthogonal_arrays.OA_from_wider_OA(OA, k)
Return the first 𝑘 columns of 𝑂𝐴.

If 𝑂𝐴 has 𝑘 columns, this function returns 𝑂𝐴 immediately.

INPUT:

• OA – an orthogonal array.

• k (integer)

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import OA_from_wider_OA
sage: OA_from_wider_OA(designs.orthogonal_arrays.build(6,20,2),1)[:5]
[(19,), (19,), (19,), (19,), (19,)]
sage: _ = designs.orthogonal_arrays.build(5,46) # indirect doctest

sage.combinat.designs.orthogonal_arrays.OA_n_times_2_pow_c_from_matrix(k, c, G, A, Y,
check=True)

Return an 𝑂𝐴(𝑘, |𝐺| · 2𝑐) from a constrained (𝐺, 𝑘 − 1, 2)-difference matrix.

This construction appears in [AC1994] and [Ab1995].

Let 𝐺 be an additive Abelian group. We denote by 𝐻 a 𝐺𝐹 (2)-hyperplane in 𝐺𝐹 (2𝑐).

Let 𝐴 be a (𝑘 − 1) × 2|𝐺| array with entries in 𝐺 × 𝐺𝐹 (2𝑐) and 𝑌 be a vector with 𝑘 − 1 entries in 𝐺𝐹 (2𝑐).
Let 𝐵 and 𝐶 be respectively the part of the array that belong to 𝐺 and 𝐺𝐹 (2𝑐).

The input 𝐴 and 𝑌 must satisfy the following conditions. For any 𝑖 ̸= 𝑗 and 𝑔 ∈ 𝐺:

• there are exactly two values of 𝑠 such that 𝐵𝑖,𝑠 −𝐵𝑗,𝑠 = 𝑔 (i.e. 𝐵 is a (𝐺, 𝑘 − 1, 2)-difference matrix),

• let 𝑠1 and 𝑠2 denote the two values of 𝑠 given above, then exactly one of 𝐶𝑖,𝑠1 − 𝐶𝑗,𝑠1 and 𝐶𝑖,𝑠2 − 𝐶𝑗,𝑠2
belongs to the 𝐺𝐹 (2)-hyperplane (𝑌𝑖 − 𝑌𝑗) ·𝐻 (we implicitly assumed that 𝑌𝑖 ̸= 𝑌𝑗).

Under these conditions, it is easy to check that the array whose 𝑘− 1 rows of length |𝐺| · 2𝑐 indexed by 1 ≤ 𝑖 ≤
𝑘 − 1 given by 𝐴𝑖,𝑠 + (0, 𝑌𝑖 · 𝑣) where 1 ≤ 𝑠 ≤ 2|𝐺|, 𝑣 ∈ 𝐻 is a (𝐺×𝐺𝐹 (2𝑐), 𝑘 − 1, 1)-difference matrix.

INPUT:

• k,c (integers) – integers

• G – an additive Abelian group

• A – a matrix with entries in 𝐺×𝐺𝐹 (2𝑐)

• Y – a vector with entries in 𝐺𝐹 (2𝑐)

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

Note: By convention, a multiplicative generator 𝑤 of 𝐺𝐹 (2𝑐)* is fixed (inside the function). The hyperplane
𝐻 is the one spanned by 𝑤0, 𝑤1, . . . , 𝑤𝑐−1. The 𝐺𝐹 (2𝑐) part of the input matrix 𝐴 and vector 𝑌 are given in
the following form: the integer 𝑖 corresponds to the element 𝑤𝑖 and None corresponds to 0.

See also:

Several examples use this construction:

• OA_9_40()

• OA_11_80()

5.1. Comprehensive Module List 693

Combinatorics, Release 9.7

• OA_15_112()

• OA_11_160()

• OA_16_176()

• OA_16_208()

• OA_15_224()

• OA_20_352()

• OA_20_416()

• OA_20_544()

• OA_11_640()

• OA_15_896()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import OA_n_times_2_pow_c_from_
→˓matrix
sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: A = [
....: [(0,None),(0,None),(0,None),(0,None),(0,None),(0,None),(0,None),(0,None),(0,
→˓None),(0,None)],
....: [(0,None),(1,None), (2,2), (3,2), (4,2),(2,None),(3,None),(4,None), ␣
→˓(0,2), (1,2)],
....: [(0,None), (2,5), (4,5), (1,2), (3,6), (3,4), (0,0), (2,1), ␣
→˓(4,1), (1,6)],
....: [(0,None), (3,4), (1,4), (4,0), (2,5),(3,None), (1,0), (4,1), ␣
→˓(2,2), (0,3)],
....:]
sage: Y = [None, 0, 1, 6]
sage: OA = OA_n_times_2_pow_c_from_matrix(5,3,GF(5),A,Y)
sage: is_orthogonal_array(OA,5,40,2)
True

sage: A[0][0] = (1,None)
sage: OA_n_times_2_pow_c_from_matrix(5,3,GF(5),A,Y)
Traceback (most recent call last):
...
ValueError: the first part of the matrix A must be a
(G,k-1,2)-difference matrix

sage: A[0][0] = (0,0)
sage: OA_n_times_2_pow_c_from_matrix(5,3,GF(5),A,Y)
Traceback (most recent call last):
...
ValueError: B_2,0 - B_0,0 = B_2,6 - B_0,6 but the associated part of the
matrix C does not satisfies the required condition

sage.combinat.designs.orthogonal_arrays.OA_relabel(OA, k, n, blocks=(), matrix=None)
Return a relabelled version of the OA.

INPUT:

• OA – an OA, or rather a list of blocks of length 𝑘, each of which contains integers from 0 to 𝑛− 1.

694 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• k,n (integers)

• blocks (list of blocks) – relabels the integers of the OA from [0..𝑛− 1] into [0..𝑛− 1] in such a way that
the 𝑖 blocks from block are respectively relabeled as [n-i,...,n-i], . . . , [n-1,...,n-1]. Thus, the
blocks from this list are expected to have disjoint values for each coordinate.

If set to the empty list (default) no such relabelling is performed.

• matrix – a matrix of dimensions 𝑘, 𝑛 such that if the i th coordinate of a block is 𝑥, this 𝑥will be relabelled
with matrix[i][x]. This is not necessarily an integer between 0 and 𝑛 − 1, and it is not necessarily an
integer either. This is performed after the previous relabelling.

If set to None (default) no such relabelling is performed.

Note: A None coordinate in one block remains a None coordinate in the final block.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import OA_relabel
sage: OA = designs.orthogonal_arrays.build(3,2)
sage: OA_relabel(OA,3,2,matrix=[["A","B"],["C","D"],["E","F"]])
[['A', 'C', 'E'], ['A', 'D', 'F'], ['B', 'C', 'F'], ['B', 'D', 'E']]

sage: TD = OA_relabel(OA,3,2,matrix=[[0,1],[2,3],[4,5]]); TD
[[0, 2, 4], [0, 3, 5], [1, 2, 5], [1, 3, 4]]
sage: from sage.combinat.designs.orthogonal_arrays import is_transversal_design
sage: is_transversal_design(TD,3,2)
True

Making sure that [2,2,2,2] is a block of𝑂𝐴(4, 3). We do this by relabelling block [0,0,0,0] which belongs
to the design:

sage: designs.orthogonal_arrays.build(4,3)
[[0, 0, 0, 0], [0, 1, 2, 1], [0, 2, 1, 2], [1, 0, 2, 2], [1, 1, 1, 0], [1, 2, 0, 1],
→˓ [2, 0, 1, 1], [2, 1, 0, 2], [2, 2, 2, 0]]
sage: OA_relabel(designs.orthogonal_arrays.build(4,3),4,3,blocks=[[0,0,0,0]])
[[2, 2, 2, 2], [2, 0, 1, 0], [2, 1, 0, 1], [0, 2, 1, 1], [0, 0, 0, 2], [0, 1, 2, 0],
→˓ [1, 2, 0, 0], [1, 0, 2, 1], [1, 1, 1, 2]]

sage.combinat.designs.orthogonal_arrays.QDM_from_Vmt(m, t, V)
Return a QDM from a 𝑉 (𝑚, 𝑡)

Definition

Let 𝑞 be a prime power and let 𝑞 = 𝑚𝑡 + 1 for 𝑚, 𝑡 integers. Let 𝜔 be a primitive element of F𝑞 . A 𝑉 (𝑚, 𝑡)
vector is a vector (𝑎1, . . . , 𝑎𝑚+1 for which, for each 1 ≤ 𝑘 < 𝑚, the differences

{𝑎𝑖+𝑘 − 𝑎𝑖 : 1 ≤ 𝑖 ≤ 𝑚+ 1, 𝑖+ 𝑘 ̸= 𝑚+ 2}

represent the 𝑚 cyclotomic classes of F𝑚𝑡+1 (compute subscripts modulo 𝑚 + 2). In other words, for fixed 𝑘,
is 𝑎𝑖+𝑘 − 𝑎𝑖 = 𝜔𝑚𝑥+𝛼 and 𝑎𝑗+𝑘 − 𝑎𝑗 = 𝜔𝑚𝑦+𝛽 then 𝛼 ̸≡ 𝛽 mod 𝑚

Construction of a quasi-difference matrix from a `V(m,t)` vector

Starting with a 𝑉 (𝑚, 𝑡) vector (𝑎1, . . . , 𝑎𝑚+1), form a single row of length 𝑚 + 2 whose first entry is empty,
and whose remaining entries are (𝑎1, . . . , 𝑎𝑚+1). Form 𝑡 rows by multiplying this row by the 𝑡 th roots, i.e. the
powers of 𝜔𝑚. From each of these 𝑡 rows, form 𝑚 + 2 rows by taking the 𝑚 + 2 cyclic shifts of the row. The
result is a (𝑎,𝑚+ 2; 1, 0; 𝑡)−𝑄𝐷𝑀 .

5.1. Comprehensive Module List 695

Combinatorics, Release 9.7

For more information, refer to the Handbook of Combinatorial Designs [DesignHandbook].

INPUT:

• m,t (integers)

• V – the vector 𝑉 (𝑚, 𝑡).

See also:

OA_from_quasi_difference_matrix()

EXAMPLES:

sage: _ = designs.orthogonal_arrays.build(6,46) # indirect doctest

sage.combinat.designs.orthogonal_arrays.TD_product(k, TD1, n1, TD2, n2, check=True)
Return the product of two transversal designs.

From a transversal design 𝑇𝐷1 of parameters 𝑘, 𝑛1 and a transversal design 𝑇𝐷2 of parameters 𝑘, 𝑛2, this
function returns a transversal design of parameters 𝑘, 𝑛 where 𝑛 = 𝑛1 × 𝑛2.

Formally, if the groups of 𝑇𝐷1 are 𝑉 1
1 , . . . , 𝑉

1
𝑘 and the groups of 𝑇𝐷2 are 𝑉 2

1 , . . . , 𝑉
2
𝑘 , the groups of the product

design are 𝑉 1
1 ×𝑉 2

1 , . . . , 𝑉
1
𝑘 ×𝑉 2

𝑘 and its blocks are the {(𝑥11, 𝑥21), . . . , (𝑥1𝑘, 𝑥
2
𝑘)} where {𝑥11, . . . , 𝑥1𝑘} is a block

of 𝑇𝐷1 and {𝑥21, . . . , 𝑥2𝑘} is a block of 𝑇𝐷2.

INPUT:

• TD1, TD2 – transversal designs.

• k,n1,n2 (integers) – see above.

• check (boolean) – Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

Note: This function uses transversal designs with 𝑉1 = {0, . . . , 𝑛−1}, . . . , 𝑉𝑘 = {(𝑘−1)𝑛, . . . , 𝑘𝑛−1} both
as input and output.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import TD_product
sage: TD1 = designs.transversal_design(6,7)
sage: TD2 = designs.transversal_design(6,12)
sage: TD6_84 = TD_product(6,TD1,7,TD2,12)

class sage.combinat.designs.orthogonal_arrays.TransversalDesign(blocks, k=None, n=None,
check=True, **kwds)

Bases: sage.combinat.designs.group_divisible_designs.GroupDivisibleDesign

Class for Transversal Designs

INPUT:

• blocks – collection of blocks

• k,n (integers) – parameters of the transversal design. They can be set to None (default) in which case their
value is determined by the blocks.

• check (boolean) – whether to check that the design is indeed a transversal design with the right parameters.
Set to True by default.

696 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: designs.transversal_design(None,5)
Transversal Design TD(6,5)
sage: designs.transversal_design(None,30)
Transversal Design TD(6,30)
sage: designs.transversal_design(None,36)
Transversal Design TD(10,36)

sage.combinat.designs.orthogonal_arrays.incomplete_orthogonal_array(k, n, holes,
resolvable=False,
existence=False)

Return an 𝑂𝐴(𝑘, 𝑛)−
∑︀

1≤𝑖≤𝑥𝑂𝐴(𝑘, 𝑠𝑖).

An 𝑂𝐴(𝑘, 𝑛) −
∑︀

1≤𝑖≤𝑥𝑂𝐴(𝑘, 𝑠𝑖) is an orthogonal array from which have been removed disjoint
𝑂𝐴(𝑘, 𝑠1), ..., 𝑂𝐴(𝑘, 𝑠𝑥). If there exist 𝑂𝐴(𝑘, 𝑠1), ..., 𝑂𝐴(𝑘, 𝑠𝑥) they can be used to fill the holes and give
rise to an 𝑂𝐴(𝑘, 𝑛).

A very useful particular case (see e.g. the Wilson construction in wilson_construction()) is when all 𝑠𝑖 = 1.
In that case the incomplete design is a 𝑂𝐴(𝑘, 𝑛)− 𝑥.𝑂𝐴(𝑘, 1). Such design is equivalent to transversal design
𝑇𝐷(𝑘, 𝑛) from which has been removed 𝑥 disjoint blocks.

INPUT:

• k,n (integers)

• holes (list of integers) – respective sizes of the holes to be found.

• resolvable (boolean) – set to True if you want the design to be resolvable. The classes of the resolvable
design are obtained as the first 𝑛 blocks, then the next 𝑛 blocks, etc . . . Set to False by default.

• existence (boolean) – instead of building the design, return:

– True – meaning that Sage knows how to build the design

– Unknown – meaning that Sage does not know how to build the design, but that the design may exist
(see sage.misc.unknown).

– False – meaning that the design does not exist.

Note: By convention, the ground set is always 𝑉 = {0, ..., 𝑛− 1}.

If all holes have size 1, in the incomplete orthogonal array returned by this function the holes are {𝑛− 1, ..., 𝑛−
𝑠1}𝑘, {𝑛− 𝑠1 − 1, ..., 𝑛− 𝑠1 − 𝑠2}𝑘, etc.

More generally, if holes is equal to 𝑢1, ..., 𝑢𝑘, the 𝑖-th hole is the set of points {𝑛 −
∑︀
𝑗≥𝑖 𝑢𝑗 , ..., 𝑛 −∑︀

𝑗≥𝑖+1 𝑢𝑗}𝑘.

See also:

OA_find_disjoint_blocks()

EXAMPLES:

sage: IOA = designs.incomplete_orthogonal_array(3,3,[1,1,1])
sage: IOA
[[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
sage: missing_blocks = [[0,0,0],[1,1,1],[2,2,2]]
sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array

(continues on next page)

5.1. Comprehensive Module List 697

../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

(continued from previous page)

sage: is_orthogonal_array(IOA + missing_blocks,3,3,2)
True

sage.combinat.designs.orthogonal_arrays.is_transversal_design(B, k, n, verbose=False)
Check that a given set of blocks B is a transversal design.

See transversal_design() for a definition.

INPUT:

• B – the list of blocks

• k, n – integers

• verbose (boolean) – whether to display information about what is going wrong.

Note: The transversal design must have {0, . . . , 𝑘𝑛 − 1} as a ground set, partitioned as 𝑘 sets of size 𝑛:
{0, . . . , 𝑘 − 1} ⊔ {𝑘, . . . , 2𝑘 − 1} ⊔ · · · ⊔ {𝑘(𝑛− 1), . . . , 𝑘𝑛− 1}.

EXAMPLES:

sage: TD = designs.transversal_design(5, 5, check=True) # indirect doctest
sage: from sage.combinat.designs.orthogonal_arrays import is_transversal_design
sage: is_transversal_design(TD, 5, 5)
True
sage: is_transversal_design(TD, 4, 4)
False

sage.combinat.designs.orthogonal_arrays.largest_available_k(n, t=2)
Return the largest 𝑘 such that Sage can build an 𝑂𝐴(𝑘, 𝑛).

INPUT:

• n (integer)

• t – (integer; default: 2) – strength of the array

EXAMPLES:

sage: designs.orthogonal_arrays.largest_available_k(0)
+Infinity
sage: designs.orthogonal_arrays.largest_available_k(1)
+Infinity
sage: designs.orthogonal_arrays.largest_available_k(10)
4
sage: designs.orthogonal_arrays.largest_available_k(27)
28
sage: designs.orthogonal_arrays.largest_available_k(100)
10
sage: designs.orthogonal_arrays.largest_available_k(-1)
Traceback (most recent call last):
...
ValueError: n(=-1) was expected to be >=0

698 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.designs.orthogonal_arrays.orthogonal_array(k, n, t=2, resolvable=False, check=True,
existence=False,
explain_construction=False)

Return an orthogonal array of parameters 𝑘, 𝑛, 𝑡.

An orthogonal array of parameters 𝑘, 𝑛, 𝑡 is a matrix with 𝑘 columns filled with integers from [𝑛] in such a way
that for any 𝑡 columns, each of the 𝑛𝑡 possible rows occurs exactly once. In particular, the matrix has 𝑛𝑡 rows.

More general definitions sometimes involve a 𝜆 parameter, and we assume here that 𝜆 = 1.

An orthogonal array is said to be resolvable if it corresponds to a resolvable transversal design (see sage.
combinat.designs.incidence_structures.IncidenceStructure.is_resolvable()).

For more information on orthogonal arrays, see Wikipedia article Orthogonal_array.

INPUT:

• k – (integer) number of columns. If k=None it is set to the largest value available.

• n – (integer) number of symbols

• t – (integer; default: 2) – strength of the array

• resolvable (boolean) – set to True if you want the design to be resolvable. The 𝑛 classes of the resolvable
design are obtained as the first 𝑛 blocks, then the next 𝑛 blocks, etc . . . Set to False by default.

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

• existence (boolean) – instead of building the design, return:

– True – meaning that Sage knows how to build the design

– Unknown – meaning that Sage does not know how to build the design, but that the design may exist
(see sage.misc.unknown).

– False – meaning that the design does not exist.

Note: When k=None and existence=True the function returns an integer, i.e. the largest 𝑘 such that we
can build a 𝑂𝐴(𝑘, 𝑛).

• explain_construction (boolean) – return a string describing the construction.

OUTPUT:

The kind of output depends on the input:

• if existence=False (the default) then the output is a list of lists that represent an orthogonal array with
parameters k and n

• if existence=True and k is an integer, then the function returns a troolean: either True, Unknown or
False

• if existence=True and k=None then the output is the largest value of k for which Sage knows how to
compute a 𝑇𝐷(𝑘, 𝑛).

Note: This method implements theorems from [Stinson2004]. See the code’s documentation for details.

5.1. Comprehensive Module List 699

https://en.wikipedia.org/wiki/Orthogonal_array
../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

See also:

When 𝑡 = 2 an orthogonal array is also a transversal design (see transversal_design()) and a family of
mutually orthogonal latin squares (see mutually_orthogonal_latin_squares()).

sage.combinat.designs.orthogonal_arrays.transversal_design(k, n, resolvable=False, check=True,
existence=False)

Return a transversal design of parameters 𝑘, 𝑛.

A transversal design of parameters 𝑘, 𝑛 is a collection 𝒮 of subsets of 𝑉 = 𝑉1 ∪ · · · ∪ 𝑉𝑘 (where the groups 𝑉𝑖
are disjoint and have cardinality 𝑛) such that:

• Any 𝑆 ∈ 𝒮 has cardinality 𝑘 and intersects each group on exactly one element.

• Any two elements from distincts groups are contained in exactly one element of 𝒮.

More general definitions sometimes involve a 𝜆 parameter, and we assume here that 𝜆 = 1.

For more information on transversal designs, see http://mathworld.wolfram.com/TransversalDesign.html.

INPUT:

• 𝑛, 𝑘 – integers. If k is None it is set to the largest value available.

• resolvable (boolean) – set to True if you want the design to be resolvable (see sage.combinat.
designs.incidence_structures.IncidenceStructure.is_resolvable()). The 𝑛 classes of the
resolvable design are obtained as the first 𝑛 blocks, then the next 𝑛 blocks, etc . . . Set to False by default.

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

• existence (boolean) – instead of building the design, return:

– True – meaning that Sage knows how to build the design

– Unknown – meaning that Sage does not know how to build the design, but that the design may exist
(see sage.misc.unknown).

– False – meaning that the design does not exist.

Note: When k=None and existence=True the function returns an integer, i.e. the largest 𝑘 such that we
can build a 𝑇𝐷(𝑘, 𝑛).

OUTPUT:

The kind of output depends on the input:

• if existence=False (the default) then the output is a list of lists that represent a 𝑇𝐷(𝑘, 𝑛) with 𝑉1 =
{0, . . . , 𝑛− 1}, . . . , 𝑉𝑘 = {(𝑘 − 1)𝑛, . . . , 𝑘𝑛− 1}

• if existence=True and k is an integer, then the function returns a troolean: either True, Unknown or
False

• if existence=True and k=None then the output is the largest value of k for which Sage knows how to
compute a 𝑇𝐷(𝑘, 𝑛).

See also:

orthogonal_array() – a transversal design 𝑇𝐷(𝑘, 𝑛) is equivalent to an orthogonal array 𝑂𝐴(𝑘, 𝑛, 2).

EXAMPLES:

700 Chapter 5. Comprehensive Module List

http://mathworld.wolfram.com/TransversalDesign.html
../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

sage: TD = designs.transversal_design(5,5); TD
Transversal Design TD(5,5)
sage: TD.blocks()
[[0, 5, 10, 15, 20], [0, 6, 12, 18, 24], [0, 7, 14, 16, 23],
[0, 8, 11, 19, 22], [0, 9, 13, 17, 21], [1, 5, 14, 18, 22],
[1, 6, 11, 16, 21], [1, 7, 13, 19, 20], [1, 8, 10, 17, 24],
[1, 9, 12, 15, 23], [2, 5, 13, 16, 24], [2, 6, 10, 19, 23],
[2, 7, 12, 17, 22], [2, 8, 14, 15, 21], [2, 9, 11, 18, 20],
[3, 5, 12, 19, 21], [3, 6, 14, 17, 20], [3, 7, 11, 15, 24],
[3, 8, 13, 18, 23], [3, 9, 10, 16, 22], [4, 5, 11, 17, 23],
[4, 6, 13, 15, 22], [4, 7, 10, 18, 21], [4, 8, 12, 16, 20],
[4, 9, 14, 19, 24]]

Some examples of the maximal number of transversal Sage is able to build:

sage: TD_4_10 = designs.transversal_design(4,10)
sage: designs.transversal_design(5,10,existence=True)
Unknown

For prime powers, there is an explicit construction which gives a 𝑇𝐷(𝑛+ 1, 𝑛):

sage: designs.transversal_design(4, 3, existence=True)
True
sage: designs.transversal_design(674, 673, existence=True)
True

For other values of n it depends:

sage: designs.transversal_design(7, 6, existence=True)
False
sage: designs.transversal_design(4, 6, existence=True)
Unknown
sage: designs.transversal_design(3, 6, existence=True)
True

sage: designs.transversal_design(11, 10, existence=True)
False
sage: designs.transversal_design(4, 10, existence=True)
True
sage: designs.transversal_design(5, 10, existence=True)
Unknown

sage: designs.transversal_design(7, 20, existence=True)
Unknown
sage: designs.transversal_design(6, 12, existence=True)
True
sage: designs.transversal_design(7, 12, existence=True)
True
sage: designs.transversal_design(8, 12, existence=True)
Unknown

sage: designs.transversal_design(6, 20, existence = True)
True

(continues on next page)

5.1. Comprehensive Module List 701

Combinatorics, Release 9.7

(continued from previous page)

sage: designs.transversal_design(7, 20, existence = True)
Unknown

If you ask for a transversal design that Sage is not able to build then an EmptySetError or a
NotImplementedError is raised:

sage: designs.transversal_design(47, 100)
Traceback (most recent call last):
...
NotImplementedError: I don't know how to build a TD(47,100)!
sage: designs.transversal_design(55, 54)
Traceback (most recent call last):
...
EmptySetError: There exists no TD(55,54)!

Those two errors correspond respectively to the cases where Sage answer Unknown or Falsewhen the parameter
existence is set to True:

sage: designs.transversal_design(47, 100, existence=True)
Unknown
sage: designs.transversal_design(55, 54, existence=True)
False

If for a given 𝑛 you want to know the largest 𝑘 for which Sage is able to build a 𝑇𝐷(𝑘, 𝑛) just call the function
with 𝑘 set to None and existence set to True as follows:

sage: designs.transversal_design(None, 6, existence=True)
3
sage: designs.transversal_design(None, 20, existence=True)
6
sage: designs.transversal_design(None, 30, existence=True)
6
sage: designs.transversal_design(None, 120, existence=True)
9

sage.combinat.designs.orthogonal_arrays.wilson_construction(OA, k, r, m, u, check=True,
explain_construction=False)

Returns a 𝑂𝐴(𝑘, 𝑟𝑚+
∑︀
𝑖 𝑢𝑖) from a truncated 𝑂𝐴(𝑘 + 𝑠, 𝑟) by Wilson’s construction.

Simple form:

Let 𝑂𝐴 be a truncated 𝑂𝐴(𝑘 + 𝑠, 𝑟) with 𝑠 truncated columns of sizes 𝑢1, ..., 𝑢𝑠, whose blocks have sizes in
{𝑘 + 𝑏1, ..., 𝑘 + 𝑏𝑡}. If there exist:

• An 𝑂𝐴(𝑘,𝑚+ 𝑏𝑖)− 𝑏𝑖.𝑂𝐴(𝑘, 1) for every 1 ≤ 𝑖 ≤ 𝑡

• An 𝑂𝐴(𝑘, 𝑢𝑖) for every 1 ≤ 𝑖 ≤ 𝑠

Then there exists an𝑂𝐴(𝑘, 𝑟𝑚+
∑︀
𝑢𝑖). The construction is a generalization of Lemma 3.16 in [HananiBIBD].

Brouwer-Van Rees form:

Let 𝑂𝐴 be a truncated 𝑂𝐴(𝑘+ 𝑠, 𝑟) with 𝑠 truncated columns of sizes 𝑢1, ..., 𝑢𝑠. Let the set𝐻𝑖 of the 𝑢𝑖 points
of column 𝑘 + 𝑖 be partitionned into

∑︀
𝑗 𝐻𝑖𝑗 . Let 𝑚𝑖𝑗 be integers such that:

• For 0 ≤ 𝑖 < 𝑙 there exists an 𝑂𝐴(𝑘,
∑︀
𝑗𝑚𝑖𝑗 |𝐻𝑖𝑗 |)

• For any block𝐵 ∈ 𝑂𝐴 intersecting the sets𝐻𝑖𝑗(𝑖) there exists an𝑂𝐴(𝑘,𝑚+
∑︀
𝑖𝑚𝑖𝑗)−

∑︀
𝑖𝑂𝐴(𝑘,𝑚𝑖𝑗(𝑗)).

702 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Then there exists an 𝑂𝐴(𝑘, 𝑟𝑚+
∑︀
𝑖,𝑗𝑚𝑖𝑗). This construction appears in [BvR1982].

INPUT:

• OA – an incomplete orthogonal array with 𝑘 + 𝑠 columns. The elements of a column of size 𝑐 must belong
to {0, ..., 𝑐}. The missing entries of a block are represented by None values. If OA=None, it is defined as a
truncated orthogonal arrays with 𝑘 + 𝑠 columns.

• k,r,m (integers)

• u (list) – two cases depending on the form to use:

– Simple form: a list of length 𝑠 such that column k+i has size u[i]. The untruncated points of column
k+i are assumed to be [0,...,u[i]-1].

– Brouwer-Van Rees form: a list of length 𝑠 such that u[i] is the list of pairs
(𝑚𝑖0, |𝐻𝑖0|), ..., (𝑚𝑖𝑝𝑖 , |𝐻𝑖𝑝𝑖 |). The untruncated points of column k+i are assumed to be [0, ..., 𝑢𝑖−1]
where 𝑢𝑖 =

∑︀
𝑗 |𝐻𝑖𝑝𝑖 |. Besides, the first |𝐻𝑖0| points represent 𝐻𝑖0, the next |𝐻𝑖1| points represent

𝐻𝑖1, etc. . .

• explain_construction (boolean) – return a string describing the construction.

• check (boolean) – whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

REFERENCE:

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays import wilson_construction
sage: from sage.combinat.designs.orthogonal_arrays import OA_relabel
sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓wilson_decomposition_with_one_truncated_group
sage: total = 0
sage: for k in range(3,8):
....: for n in range(1,30):
....: if find_wilson_decomposition_with_one_truncated_group(k,n):
....: total += 1
....: f, args = find_wilson_decomposition_with_one_truncated_group(k,n)
....: _ = f(*args)
sage: total
41

sage: print(designs.orthogonal_arrays.explain_construction(7,58))
Wilson's construction n=8.7+1+1 with master design OA(7+2,8)
sage: print(designs.orthogonal_arrays.explain_construction(9,115))
Wilson's construction n=13.8+11 with master design OA(9+1,13)
sage: print(wilson_construction(None,5,11,21,[[(5,5)]],explain_construction=True))
Brouwer-van Rees construction n=11.21+(5.5) with master design OA(5+1,11)
sage: print(wilson_construction(None,71,17,21,[[(4,9),(1,1)],[(9,9),(1,1)]],explain_
→˓construction=True))
Brouwer-van Rees construction n=17.21+(9.4+1.1)+(9.9+1.1) with master design␣
→˓OA(71+2,17)

An example using the Brouwer-van Rees generalization:

sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: from sage.combinat.designs.orthogonal_arrays import wilson_construction

(continues on next page)

5.1. Comprehensive Module List 703

Combinatorics, Release 9.7

(continued from previous page)

sage: OA = designs.orthogonal_arrays.build(6,11)
sage: OA = [[x if (i<5 or x<5) else None for i,x in enumerate(R)] for R in OA]
sage: OAb = wilson_construction(OA,5,11,21,[[(5,5)]])
sage: is_orthogonal_array(OAb,5,256)
True

5.1.90 Orthogonal arrays (build recursive constructions)

This module implements several constructions of Orthogonal Arrays. As their input can be complex, they all have
a counterpart in the orthogonal_arrays_find_recursive module that automatically computes it.

All these constructions are automatically queried when the orthogonal_array() function is called.

construction_3_3() Return an 𝑂𝐴(𝑘, 𝑛𝑚+ 𝑖).
construction_3_4() Return a 𝑂𝐴(𝑘, 𝑛𝑚+ 𝑟𝑠).
construction_3_5() Return an 𝑂𝐴(𝑘, 𝑛𝑚+ 𝑟 + 𝑠+ 𝑡).
construction_3_6() Return a 𝑂𝐴(𝑘, 𝑛𝑚+ 𝑖).
construction_q_x() Return an 𝑂𝐴(𝑘, (𝑞 − 1) * (𝑞 − 𝑥) + 𝑥+ 2) using the 𝑞 − 𝑥 construction.
OA_and_oval() Return a 𝑂𝐴(𝑞 + 1, 𝑞) whose blocks contains ≤ 2 zeroes in the last 𝑞 columns.
thwart_lemma_3_5() Returns an 𝑂𝐴(𝑘, 𝑛𝑚+ 𝑎+ 𝑏+ 𝑐+ 𝑑).
thwart_lemma_4_1() Returns an 𝑂𝐴(𝑘, 𝑛𝑚+ 4(𝑛− 2)).
three_factor_product() Returns an 𝑂𝐴(𝑘 + 1, 𝑛1𝑛2𝑛3).
brouwer_separable_design() Returns a𝑂𝐴(𝑘, 𝑡(𝑞2+𝑞+1)+𝑥) using Brouwer’s result on separable designs.

Functions

sage.combinat.designs.orthogonal_arrays_build_recursive.OA_and_oval(q, solver,
integrality_tolerance)

Return a 𝑂𝐴(𝑞 + 1, 𝑞) whose blocks contains ≤ 2 zeroes in the last 𝑞 columns.

This 𝑂𝐴 is build from a projective plane of order 𝑞, in which there exists an oval 𝑂 of size 𝑞 + 1 (i.e. a set of
𝑞 + 1 points no three of which are [colinear/contained in a common set of the projective plane]).

Removing an element 𝑥 ∈ 𝑂 and all sets that contain it, we obtain a 𝑇𝐷(𝑞 + 1, 𝑞) in which 𝑂 intersects all
columns except one. As 𝑂 is an oval, no block of the 𝑇𝐷 intersects it more than twice.

INPUT:

• q – a prime power

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If set
to None, the default one is used. For more information on MILP solvers and which default solver is used,
see the method solve of the class MixedIntegerLinearProgram.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see
MixedIntegerLinearProgram.get_values().

Note: This function is called by construction_3_6(), an implementation of Construction 3.6 from [AC07].

EXAMPLES:

704 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.get_values

Combinatorics, Release 9.7

sage: from sage.combinat.designs.orthogonal_arrays_build_recursive import OA_and_
→˓oval
sage: _ = OA_and_oval

sage.combinat.designs.orthogonal_arrays_build_recursive.brouwer_separable_design(k, t, q, x,
check=False,
ver-
bose=False,
ex-
plain_construction=False)

Returns a 𝑂𝐴(𝑘, 𝑡(𝑞2 + 𝑞 + 1) + 𝑥) using Brouwer’s result on separable designs.

This method is an implementation of Brouwer’s construction presented in [Brouwer80]. It consists in a systematic
application of the usual transformation from PBD to OA, applied to a specific PBD.

Baer subplanes

When 𝑞 is a prime power, the projective plane 𝑃𝐺(2, 𝑞2) can be partitionned into subplanes 𝑃𝐺(2, 𝑞) (called
Baer subplanes), giving 𝑃𝐺(2, 𝑞2) = 𝐵1 ∪ · · · ∪ 𝐵𝑞2−𝑞+1. As a result, every line of the 𝑃𝐺(2, 𝑞2) intersects
one of the subplane on 𝑞 + 1 points and all others on 1 point.

The 𝑂𝐴 are built by considering 𝐵1 ∪ · · · ∪ 𝐵𝑡, for a total of 𝑡(𝑞2 + 𝑞 + 1) points (to which 𝑥 new points are
then added). The blocks of this subdesign belong to two categories:

• The blocks of size 𝑡: they come from the lines which intersect a 𝐵𝑖 on 𝑞 + 1 points for some 𝑖 > 𝑡. The
blocks of size 𝑡 can be partitionned into 𝑞2−𝑞+𝑡−1 parallel classes according to their associated subplane
𝐵𝑖 with 𝑖 > 𝑡.

• The blocks of size 𝑞 + 𝑡: those blocks form a symmetric design, as every point is incident with 𝑞 + 𝑡 of
them.

Constructions

In the following, we write𝑁 = 𝑡(𝑞2 +𝑞+1)+𝑥. The code is also heavily commented, and will clear any doubt.

• i) 𝑥 = 0: in that case we build a resolvable 𝑂𝐴(𝑘 − 1, 𝑁) that will then be completed into an 𝑂𝐴(𝑘,𝑁).

– Sets of size 𝑡)

We take the product of each parallel class with the parallel classes of a resolvable 𝑂𝐴(𝑘 − 1, 𝑡) −
𝑡.𝑂𝐴(𝑘 − 1, 𝑡), yielding new parallel classes.

– Sets of size 𝑞 + 𝑡)

A 𝑁 × (𝑞 + 𝑡) array is built whose rows are the sets of size 𝑞 + 𝑡 such that every value appears once
per column. For each block of a 𝑂𝐴(𝑘 − 1, 𝑞 + 𝑡)− (𝑞 + 𝑡).𝑂𝐴(𝑘 − 1, 𝑡), the product with the rows
of the matrix yields a parallel class.

• ii) 𝑥 = 𝑞 + 𝑡

– Sets of size 𝑡)

Each set of size 𝑡 gives a 𝑂𝐴(𝑘, 𝑡) − 𝑡.𝑂𝐴(𝑘, 1), except if there is only one parallel class in which
case a 𝑂𝐴(𝑘, 𝑡) is sufficient.

– Sets of size 𝑞 + 𝑡)

A (𝑁 − 𝑥) × (𝑞 + 𝑡) array 𝑀 is built whose 𝑁 − 𝑥 rows are the sets of size 𝑞 + 𝑡 such that every
value appears once per column. For each of the new 𝑥 = 𝑞 + 𝑡 points 𝑝1, . . . , 𝑝𝑞+𝑡 we build a matrix
𝑀𝑖 obtained from 𝑀 by adding a column equal to (𝑝𝑖, 𝑝𝑖, 𝑝𝑖 . . .). We add to the OA the product of
all rows of the 𝑀𝑖 with the block of the 𝑥 = 𝑞 + 𝑡 parallel classes of a resolvable 𝑂𝐴(𝑘, 𝑡+ 𝑞 + 1)−
(𝑡+ 𝑞 + 1).𝑂𝐴(𝑘, 1).

5.1. Comprehensive Module List 705

Combinatorics, Release 9.7

– Set of size 𝑥) An 𝑂𝐴(𝑘, 𝑥)

• iii) 𝑥 = 𝑞2 − 𝑞 + 1− 𝑡

– Sets of size 𝑡)

All blocks of the 𝑖-th parallel class are extended with the 𝑖-th new point. The blocks are then replaced
by a𝑂𝐴(𝑘, 𝑡+ 1)− (𝑡+ 1).𝑂𝐴(𝑘, 1) or, if there is only one parallel class (i.e. 𝑥 = 1) by a𝑂𝐴(𝑘, 𝑡+
1)−𝑂𝐴(𝑘, 1).

– Set of size 𝑞 + 𝑡)

They are replaced by 𝑂𝐴(𝑘, 𝑞 + 𝑡)− (𝑞 + 𝑡).𝑂𝐴(𝑘, 1).

– Set of size 𝑥) An 𝑂𝐴(𝑘, 𝑥)

• iv) 𝑥 = 𝑞2 + 1

– Sets of size 𝑡)

All blocks of the 𝑖-th parallel class are extended with the 𝑖-th new point (the other 𝑥− 𝑞− 𝑡 new points
are not touched at this step). The blocks are then replaced by a 𝑂𝐴(𝑘, 𝑡 + 1) − (𝑡 + 1).𝑂𝐴(𝑘, 1) or,
if there is only one parallel class (i.e. 𝑥 = 1) by a 𝑂𝐴(𝑘, 𝑡+ 1)−𝑂𝐴(𝑘, 1).

– Sets of size 𝑞 + 𝑡) Same as for ii)

– Set of size 𝑥) An 𝑂𝐴(𝑘, 𝑥)

• v) 0 < 𝑥 < 𝑞2 − 𝑞 + 1− 𝑡

– Sets of size 𝑡)

The blocks of the first 𝑥 parallel class are extended with the 𝑥 new points, and replaced with𝑂𝐴(𝑘.𝑡+
1)− (𝑡+ 1).𝑂𝐴(𝑘, 1) or, if 𝑥 = 1, by 𝑂𝐴(𝑘.𝑡+ 1)− .𝑂𝐴(𝑘, 1)

The blocks of the other parallel classes are replaced by 𝑂𝐴(𝑘, 𝑡)− 𝑡.𝑂𝐴(𝑘, 𝑡) or, if there is only one
class left, by 𝑂𝐴(𝑘, 𝑡)−𝑂𝐴(𝑘, 𝑡)

– Sets of size 𝑞 + 𝑡)

They are replaced with 𝑂𝐴(𝑘, 𝑞 + 𝑡)− (𝑞 + 𝑡).𝑂𝐴(𝑘, 1).

– Set of size 𝑥) An 𝑂𝐴(𝑘, 𝑥)

• vi) 𝑡+ 𝑞 < 𝑥 < 𝑞2 + 1

– Sets of size 𝑡) Same as in v) with an 𝑥 equal to 𝑥− 𝑞 + 𝑡.

– Sets of size 𝑡) Same as in vii)

– Set of size 𝑥) An 𝑂𝐴(𝑘, 𝑥)

INPUT:

• k,t,q,x (integers)

• check – (boolean) Whether to check that output is correct before returning it. Set to False by default.

• verbose (boolean) – whether to print some information on the construction and parameters being used.

• explain_construction (boolean) – return a string describing the construction.

See also:

706 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• find_brouwer_separable_design()

REFERENCES:

EXAMPLES:

Test all possible cases:

sage: from sage.combinat.designs.orthogonal_arrays_build_recursive import brouwer_
→˓separable_design
sage: k,q,t=4,4,3; _=brouwer_separable_design(k,q,t,0,verbose=True)
Case i) with k=4,q=3,t=4,x=0
sage: k,q,t=3,3,3; _=brouwer_separable_design(k,t,q,t+q,verbose=True,check=True)
Case ii) with k=3,q=3,t=3,x=6,e3=1
sage: k,q,t=3,3,6; _=brouwer_separable_design(k,t,q,t+q,verbose=True,check=True)
Case ii) with k=3,q=3,t=6,x=9,e3=0
sage: k,q,t=3,3,6; _=brouwer_separable_design(k,t,q,q**2-q+1-t,verbose=True,
→˓check=True)
Case iii) with k=3,q=3,t=6,x=1,e2=0
sage: k,q,t=3,4,6; _=brouwer_separable_design(k,t,q,q**2-q+1-t,verbose=True,
→˓check=True)
Case iii) with k=3,q=4,t=6,x=7,e2=1
sage: k,q,t=3,4,6; _=brouwer_separable_design(k,t,q,q**2+1,verbose=True,check=True)
Case iv) with k=3,q=4,t=6,x=17,e4=1
sage: k,q,t=3,2,2; _=brouwer_separable_design(k,t,q,q**2+1,verbose=True,check=True)
Case iv) with k=3,q=2,t=2,x=5,e4=0
sage: k,q,t=3,4,7; _=brouwer_separable_design(k,t,q,3,verbose=True,check=True)
Case v) with k=3,q=4,t=7,x=3,e1=1,e2=1
sage: k,q,t=3,4,7; _=brouwer_separable_design(k,t,q,1,verbose=True,check=True)
Case v) with k=3,q=4,t=7,x=1,e1=1,e2=0
sage: k,q,t=3,4,7; _=brouwer_separable_design(k,t,q,q**2-q-t,verbose=True,
→˓check=True)
Case v) with k=3,q=4,t=7,x=5,e1=0,e2=1
sage: k,q,t=5,4,7; _=brouwer_separable_design(k,t,q,t+q+3,verbose=True,check=True)
Case vi) with k=5,q=4,t=7,x=14,e3=1,e4=1
sage: k,q,t=5,4,8; _=brouwer_separable_design(k,t,q,t+q+1,verbose=True,check=True)
Case vi) with k=5,q=4,t=8,x=13,e3=1,e4=0
sage: k,q,t=5,4,8; _=brouwer_separable_design(k,t,q,q**2,verbose=True,check=True)
Case vi) with k=5,q=4,t=8,x=16,e3=0,e4=1

sage: print(designs.orthogonal_arrays.explain_construction(10,189))
Brouwer's separable design construction with t=9,q=4,x=0 from:

Andries E. Brouwer,
A series of separable designs with application to pairwise orthogonal Latin␣

→˓squares
Vol. 1, n. 1, pp. 39-41,
European Journal of Combinatorics, 1980

sage.combinat.designs.orthogonal_arrays_build_recursive.construction_3_3(k, n, m, i, ex-
plain_construction=False)

Return an 𝑂𝐴(𝑘, 𝑛𝑚+ 𝑖).

This is Wilson’s construction with 𝑖 truncated columns of size 1 and such that a block 𝐵0 of the incomplete OA
intersects all truncated columns. As a consequence, all other blocks intersect only 0 or 1 of the last 𝑖 columns.
This allow to consider the block 𝐵0 only up to its first 𝑘 coordinates and then use a 𝑂𝐴(𝑘, 𝑖) instead of a
𝑂𝐴(𝑘,𝑚+ 𝑖)− 𝑖.𝑂𝐴(𝑘, 1).

5.1. Comprehensive Module List 707

Combinatorics, Release 9.7

This is construction 3.3 from [AC07].

INPUT:

• k,n,m,i (integers) such that the following designs are available: 𝑂𝐴(𝑘, 𝑛), 𝑂𝐴(𝑘,𝑚), 𝑂𝐴(𝑘,𝑚 + 1),
𝑂𝐴(𝑘, 𝑟).

• explain_construction (boolean) – return a string describing the construction.

See also:

find_construction_3_3()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓construction_3_3
sage: from sage.combinat.designs.orthogonal_arrays_build_recursive import␣
→˓construction_3_3
sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: k=11;n=177
sage: is_orthogonal_array(construction_3_3(*find_construction_3_3(k,n)[1]),k,n,2)
True

sage: print(designs.orthogonal_arrays.explain_construction(9,91))
Construction 3.3 with n=11,m=8,i=3 from:

Julian R. Abel, Nicholas Cavenagh
Concerning eight mutually orthogonal latin squares,
Vol. 15, n.3, pp. 255-261,
Journal of Combinatorial Designs, 2007

sage.combinat.designs.orthogonal_arrays_build_recursive.construction_3_4(k, n, m, r, s, ex-
plain_construction=False)

Return a 𝑂𝐴(𝑘, 𝑛𝑚+ 𝑟𝑠).

This is Wilson’s construction applied to a truncated 𝑂𝐴(𝑘+ 𝑟+ 1, 𝑛) with 𝑟 columns of size 1 and one column
of size 𝑠.

The unique elements of the 𝑟 truncated columns are picked so that a block 𝐵0 contains them all.

• If there exists an 𝑂𝐴(𝑘,𝑚+ 𝑟 + 1) the column of size 𝑠 is truncated in order to intersect 𝐵0.

• Otherwise, if there exists an 𝑂𝐴(𝑘,𝑚+ 𝑟), the last column must not intersect 𝐵0

This is construction 3.4 from [AC07].

INPUT:

• k,n,m,r,s (integers) – we assume that 𝑠 < 𝑛 and 1 ≤ 𝑟, 𝑠

The following designs must be available: 𝑂𝐴(𝑘, 𝑛), 𝑂𝐴(𝑘,𝑚), 𝑂𝐴(𝑘,𝑚+ 1), 𝑂𝐴(𝑘,𝑚+ 2), 𝑂𝐴(𝑘, 𝑠).
Additionally, it requires either a 𝑂𝐴(𝑘,𝑚+ 𝑟) or a 𝑂𝐴(𝑘,𝑚+ 𝑟 + 1).

• explain_construction (boolean) – return a string describing the construction.

See also:

find_construction_3_4()

EXAMPLES:

708 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓construction_3_4
sage: from sage.combinat.designs.orthogonal_arrays_build_recursive import␣
→˓construction_3_4
sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: k=8;n=196
sage: is_orthogonal_array(construction_3_4(*find_construction_3_4(k,n)[1]),k,n,2)
True

sage: print(designs.orthogonal_arrays.explain_construction(8,164))
Construction 3.4 with n=23,m=7,r=2,s=1 from:

Julian R. Abel, Nicholas Cavenagh
Concerning eight mutually orthogonal latin squares,
Vol. 15, n.3, pp. 255-261,
Journal of Combinatorial Designs, 2007

sage.combinat.designs.orthogonal_arrays_build_recursive.construction_3_5(k, n, m, r, s, t, ex-
plain_construction=False)

Return an 𝑂𝐴(𝑘, 𝑛𝑚+ 𝑟 + 𝑠+ 𝑡).

This is exactly Wilson’s construction with three truncated groups except we make sure that all blocks have size
> 𝑘, so we don’t need a 𝑂𝐴(𝑘,𝑚+ 0) but only 𝑂𝐴(𝑘,𝑚+ 1), 𝑂𝐴(𝑘,𝑚+ 2) ,`OA(k,m+3)`.

This is construction 3.5 from [AC07].

INPUT:

• k,n,m (integers)

• r,s,t (integers) – sizes of the three truncated groups, such that 𝑟 ≤ 𝑠 and (𝑞 − 𝑟 − 1)(𝑞 − 𝑠) ≥ (𝑞 − 𝑠−
1) * (𝑞 − 𝑟).

• explain_construction (boolean) – return a string describing the construction.

The following designs must be available : 𝑂𝐴(𝑘, 𝑛),𝑂𝐴(𝑘, 𝑟),𝑂𝐴(𝑘, 𝑠),𝑂𝐴(𝑘, 𝑡),𝑂𝐴(𝑘,𝑚+1),𝑂𝐴(𝑘,𝑚+
2), 𝑂𝐴(𝑘,𝑚+ 3).

See also:

find_construction_3_5()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓construction_3_5
sage: from sage.combinat.designs.orthogonal_arrays_build_recursive import␣
→˓construction_3_5
sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: k=8;n=111
sage: is_orthogonal_array(construction_3_5(*find_construction_3_5(k,n)[1]),k,n,2)
True

sage: print(designs.orthogonal_arrays.explain_construction(8,90))
Construction 3.5 with n=11,m=6,r=8,s=8,t=8 from:

Julian R. Abel, Nicholas Cavenagh
Concerning eight mutually orthogonal latin squares,
Vol. 15, n.3, pp. 255-261,
Journal of Combinatorial Designs, 2007

5.1. Comprehensive Module List 709

Combinatorics, Release 9.7

sage.combinat.designs.orthogonal_arrays_build_recursive.construction_3_6(k, n, m, i, ex-
plain_construction=False)

Return a 𝑂𝐴(𝑘, 𝑛𝑚+ 𝑖)

This is Wilson’s construction with 𝑟 columns of order 1, in which each block intersects at most two truncated
columns. Such a design exists when 𝑛 is a prime power and is returned by OA_and_oval().

INPUT:

• k,n,m,i (integers) – 𝑛 must be a prime power. The following designs must be available: 𝑂𝐴(𝑘 + 𝑟, 𝑞),
𝑂𝐴(𝑘,𝑚), 𝑂𝐴(𝑘,𝑚+ 1), 𝑂𝐴(𝑘,𝑚+ 2).

• explain_construction (boolean) – return a string describing the construction.

This is construction 3.6 from [AC07].

See also:

• find_construction_3_6()

• OA_and_oval()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓construction_3_6
sage: from sage.combinat.designs.orthogonal_arrays_build_recursive import␣
→˓construction_3_6
sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: k=8;n=95
sage: is_orthogonal_array(construction_3_6(*find_construction_3_6(k,n)[1]),k,n,2)
True

sage: print(designs.orthogonal_arrays.explain_construction(10,756))
Construction 3.6 with n=16,m=47,i=4 from:

Julian R. Abel, Nicholas Cavenagh
Concerning eight mutually orthogonal latin squares,
Vol. 15, n.3, pp. 255-261,
Journal of Combinatorial Designs, 2007

sage.combinat.designs.orthogonal_arrays_build_recursive.construction_q_x(k, q, x, check=True,
ex-
plain_construction=False)

Return an 𝑂𝐴(𝑘, (𝑞 − 1) * (𝑞 − 𝑥) + 𝑥+ 2) using the 𝑞 − 𝑥 construction.

Let 𝑣 = (𝑞− 1) * (𝑞−𝑥) +𝑥+ 2. If there exists a projective plane of order 𝑞 (e.g. when 𝑞 is a prime power) and
0 < 𝑥 < 𝑞 then there exists a (𝑣 − 1, {𝑞 − 𝑥− 1, 𝑞 − 𝑥+ 1})-GDD of type (𝑞 − 1)𝑞−𝑥(𝑥+ 1)1 (see [Greig99]
or Theorem 2.50, section IV.2.3 of [DesignHandbook]). By adding to the ground set one point contained in all
groups of the GDD, one obtains a (𝑣, {𝑞 − 𝑥− 1, 𝑞 − 𝑥+ 1, 𝑞, 𝑥+ 2})-PBD with exactly one set of size 𝑥+ 2.

Thus, assuming that we have the following:

• 𝑂𝐴(𝑘, 𝑞 − 𝑥− 1)− (𝑞 − 𝑥− 1).𝑂𝐴(𝑘, 1)

• 𝑂𝐴(𝑘, 𝑞 − 𝑥+ 1)− (𝑞 − 𝑥+ 1).𝑂𝐴(𝑘, 1)

• 𝑂𝐴(𝑘, 𝑞)− 𝑞.𝑂𝐴(𝑘, 1)

• 𝑂𝐴(𝑘, 𝑥+ 2)

710 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Then we can build from the PBD an 𝑂𝐴(𝑘, 𝑣).

Construction of the PBD (shared by Julian R. Abel):

Start with a resolvable (𝑞2, 𝑞, 1)-BIBD and put the points into a 𝑞×𝑞 array so that rows form a parallel
class and columns form another.

Now delete:

• All 𝑥(𝑞 − 1) points from the first 𝑥 columns and not in the first row

• All 𝑞 − 𝑥 points in the last 𝑞 − 𝑥 columns AND the first row.

Then add a point 𝑝1 to the blocks that are rows. Add a second point 𝑝2 to the 𝑞 − 𝑥 blocks that are
columns of size 𝑞 − 1, plus the first row of size 𝑥+ 1.

INPUT:

• k,q,x – integers such that 0 < 𝑥 < 𝑞 and such that Sage can build:

– A projective plane of order 𝑞

– 𝑂𝐴(𝑘, 𝑞 − 𝑥− 1)− (𝑞 − 𝑥− 1).𝑂𝐴(𝑘, 1)

– 𝑂𝐴(𝑘, 𝑞 − 𝑥+ 1)− (𝑞 − 𝑥+ 1).𝑂𝐴(𝑘, 1)

– 𝑂𝐴(𝑘, 𝑞)− 𝑞.𝑂𝐴(𝑘, 1)

– 𝑂𝐴(𝑘, 𝑥+ 2)

• check – (boolean) Whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

• explain_construction (boolean) – return a string describing the construction.

See also:

• find_q_x()

• projective_plane()

• orthogonal_array()

• OA_from_PBD()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_build_recursive import␣
→˓construction_q_x
sage: _ = construction_q_x(9,16,6)

sage: print(designs.orthogonal_arrays.explain_construction(9,158))
(q-x)-construction with q=16,x=6 from:

Malcolm Greig,
Designs from projective planes and PBD bases,
vol. 7, num. 5, pp. 341--374,
Journal of Combinatorial Designs, 1999

REFERENCES:

5.1. Comprehensive Module List 711

Combinatorics, Release 9.7

sage.combinat.designs.orthogonal_arrays_build_recursive.three_factor_product(k, n1, n2, n3,
check=False,
ex-
plain_construction=False)

Returns an 𝑂𝐴(𝑘 + 1, 𝑛1𝑛2𝑛3)

The three factor product construction from [DukesLing14] does the following:

If 𝑛1 ≤ 𝑛2 ≤ 𝑛3 are such that there exists an 𝑂𝐴(𝑘, 𝑛1), 𝑂𝐴(𝑘 + 1, 𝑛2) and 𝑂𝐴(𝑘 + 1, 𝑛3), then
there exists a 𝑂𝐴(𝑘 + 1, 𝑛1𝑛2𝑛3).

It works with a modified product of orthogonal arrays ([Rees93], [Rees00]) which keeps track of parallel classes
in the 𝑂𝐴 (the definition is given for transversal designs).

A subset of blocks in an 𝑇𝐷(𝑘, 𝑛) is called a 𝑐-parallel class if every point is covered exactly 𝑐 times.
A 1-parallel class is a parallel class.

The modified product:

If there exists an 𝑂𝐴(𝑘, 𝑛1), and if there exists an 𝑂𝐴(𝑘, 𝑛2) whose blocks are partitionned into 𝑠
𝑛1-parallel classes and 𝑛2− 𝑠𝑛1 parallel classes, then there exists an𝑂𝐴(𝑘, 𝑛1𝑛2) whose blocks can
be partitionned into 𝑠𝑛21 parallel classes and (𝑛1𝑛2 − 𝑠𝑛21)/𝑛1 = 𝑛2 − 𝑠𝑛1 𝑛1-parallel classes.

Proof:

• The product of the blocks of a parallel class with an 𝑂𝐴(𝑘, 𝑛1) yields an 𝑛1-parallel class of an
𝑂𝐴(𝑘, 𝑛1𝑛2).

• The product of the blocks of a 𝑛1-parallel class of 𝑂𝐴(𝑘, 𝑛2) with an 𝑂𝐴(𝑘, 𝑛1) can be done in
such a way that it yields 𝑛1𝑛2 parallel classes of 𝑂𝐴(𝑘, 𝑛1𝑛2). Those classes cover exactly the
pairs that would have been covered with the usual product.

This can be achieved by simple cyclic permutations. Let us build the product of the 𝑛1-parallel
class 𝒫 ⊆ 𝑂𝐴(𝑘, 𝑛2) with 𝑂𝐴(𝑘, 𝑛1): when computing the product of 𝑃 ∈ 𝒫 with 𝐵1 ∈
𝑂𝐴(𝑘, 𝑛1) the 𝑖-th coordinate should not be (𝐵1

𝑖 , 𝑃𝑖) but (𝐵1
𝑖 + 𝑟, 𝑃𝑖) (the sum is mod 𝑛1)

where 𝑟 is the number of blocks of 𝒫 we have already processed whose 𝑖-th coordinate is equal
to 𝑃𝑖 (note that 𝑟 < 𝑛1 as 𝒫 is 𝑛1-parallel).

With these tools, one can obtain the designs promised by the three factors construction applied to 𝑘, 𝑛1, 𝑛2, 𝑛3
(thanks to Julian R. Abel’s help):

1) Let 𝑠 be the largest integer ≤ 𝑛3/𝑛1. Apply the product construction to 𝑂𝐴(𝑘, 𝑛1) and a resolvable
𝑂𝐴(𝑘, 𝑛3) whose blocks are partitionned into 𝑠 𝑛1-parallel classes and 𝑛3− 𝑠𝑛1 parallel classes. It results
in a 𝑂𝐴(𝑘, 𝑛1𝑛3) partitionned into 𝑠𝑛21 parallel classes plus (𝑛1𝑛3 − 𝑠𝑛21)/𝑛1 = 𝑛3 − 𝑠𝑛1 𝑛1-parallel
classes.

2) Add 𝑛3 − 𝑛1 parallel classes to every 𝑛1-parallel class to turn them into 𝑛3-parallel classes. Apply the
product construction to this partitionned 𝑂𝐴(𝑘, 𝑛1𝑛3) with a resolvable 𝑂𝐴(𝑘, 𝑛2).

3) As𝑂𝐴(𝑘, 𝑛2) is resolvable, the 𝑛2-parallel classes of𝑂𝐴(𝑘, 𝑛1𝑛2𝑛3) are actually the union of 𝑛2 parallel
classes, thus the 𝑂𝐴(𝑘, 𝑛1𝑛2𝑛3) is resolvable and can be turned into an 𝑂𝐴(𝑘 + 1, 𝑛1𝑛2𝑛3)

INPUT:

• k,n1,n2,n3 (integers)

• check – (boolean) Whether to check that everything is going smoothly while the design is being built. It
is disabled by default, as the constructor of orthogonal arrays checks the final design anyway.

• explain_construction (boolean) – return a string describing the construction.

See also:

712 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• find_three_factor_product()

EXAMPLES:

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: from sage.combinat.designs.orthogonal_arrays_build_recursive import three_
→˓factor_product

sage: OA = three_factor_product(4,4,4,4)
sage: is_orthogonal_array(OA,5,64)
True

sage: OA = three_factor_product(4,3,4,5)
sage: is_orthogonal_array(OA,5,60)
True

sage: OA = three_factor_product(5,4,5,7)
sage: is_orthogonal_array(OA,6,140)
True

sage: OA = three_factor_product(9,8,9,9) # long time
sage: is_orthogonal_array(OA,10,8*9*9) # long time
True

sage: print(designs.orthogonal_arrays.explain_construction(10,648))
Three-factor product with n=8.9.9 from:

Peter J. Dukes, Alan C.H. Ling,
A three-factor product construction for mutually orthogonal latin squares,
https://arxiv.org/abs/1401.1466

REFERENCE:

sage.combinat.designs.orthogonal_arrays_build_recursive.thwart_lemma_3_5(k, n, m, a, b, c, d=0,
complement=False,
ex-
plain_construction=False)

Returns an 𝑂𝐴(𝑘, 𝑛𝑚+ 𝑎+ 𝑏+ 𝑐+ 𝑑)

(When `d=0`)

According to [Thwarts] when 𝑛 is a prime power and 𝑎 + 𝑏 + 𝑐 ≤ 𝑛 + 1, one can build an 𝑂𝐴(𝑘 + 3, 𝑛) with
three truncated columns of sizes 𝑎, 𝑏, 𝑐 in such a way that all blocks have size ≤ 𝑘 + 2.

(in order to build a𝑂𝐴(𝑘, 𝑛𝑚+𝑎+𝑏+𝑐) the following designs must also exist: 𝑂𝐴(𝑘, 𝑎),𝑂𝐴(𝑘, 𝑏),𝑂𝐴(𝑘, 𝑐),
𝑂𝐴(𝑘,𝑚+ 0), 𝑂𝐴(𝑘,𝑚+ 1), 𝑂𝐴(𝑘,𝑚+ 2))

Considering the complement of each truncated column, it is also possible to build an 𝑂𝐴(𝑘 + 3, 𝑛) with three
truncated columns of sizes 𝑎, 𝑏, 𝑐 in such a way that all blocks have size> 𝑘whenever (𝑛−𝑎)+(𝑛−𝑏)+(𝑛−𝑐) ≤
𝑛+ 1.

(in order to build a𝑂𝐴(𝑘, 𝑛𝑚+𝑎+𝑏+𝑐) the following designs must also exist: 𝑂𝐴(𝑘, 𝑎),𝑂𝐴(𝑘, 𝑏),𝑂𝐴(𝑘, 𝑐),
𝑂𝐴(𝑘,𝑚+ 1), 𝑂𝐴(𝑘,𝑚+ 2), 𝑂𝐴(𝑘,𝑚+ 3))

Here is the proof of Lemma 3.5 from [Thwarts] enriched with explanations from Julian R. Abel:

For any prime power 𝑛 one can build 𝑘 − 1 MOLS by associating to every nonzero 𝑥 ∈ F𝑛 the latin

5.1. Comprehensive Module List 713

Combinatorics, Release 9.7

square:

𝑀𝑥(𝑖, 𝑗) = 𝑖+ 𝑥 * 𝑗 where 𝑖, 𝑗 ∈ F𝑛

In particular 𝑀1(𝑖, 𝑗) = 𝑖+ 𝑗, whose 𝑛 columns and lines are indexed by the elements of F𝑛. If we
order the elements of F𝑛 as 0, 1, ..., 𝑛 − 1, 𝑥 + 0, ..., 𝑥 + 𝑛 − 1, 𝑥2 + 0, ... and reorder the columns
and lines of 𝑀1 accordingly, the top-left 𝑎× 𝑏 squares contains at most 𝑎+ 𝑏− 1 distinct symbols.

(When 𝑑 ̸= 0)

If there exists an 𝑂𝐴(𝑘 + 3, 𝑛) with three truncated columns of sizes 𝑎, 𝑏, 𝑐 in such a way that all blocks have
size ≤ 𝑘 + 2, by truncating arbitrarily another column to size 𝑑 one obtains an 𝑂𝐴 with 4 truncated columns
whose blocks miss at least one value. Thus, following the proof again one can build an 𝑂𝐴(𝑘 + 4) with four
truncated columns of sizes 𝑎, 𝑏, 𝑐, 𝑑 with blocks of size ≤ 𝑘 + 3.

(in order to build a 𝑂𝐴(𝑘, 𝑛𝑚 + 𝑎 + 𝑏 + 𝑐 + 𝑑) the following designs must also exist: 𝑂𝐴(𝑘, 𝑎), 𝑂𝐴(𝑘, 𝑏),
𝑂𝐴(𝑘, 𝑐), 𝑂𝐴(𝑘, 𝑑), 𝑂𝐴(𝑘,𝑚+ 0), 𝑂𝐴(𝑘,𝑚+ 1), 𝑂𝐴(𝑘,𝑚+ 2), 𝑂𝐴(𝑘,𝑚+ 3))

As before, this also shows that one can build an 𝑂𝐴(𝑘 + 4, 𝑛) with four truncated columns of sizes 𝑎, 𝑏, 𝑐, 𝑑 in
such a way that all blocks have size > 𝑘 whenever (𝑛− 𝑎) + (𝑛− 𝑏) + (𝑛− 𝑐) ≤ 𝑛+ 1

(in order to build a𝑂𝐴(𝑘, 𝑛𝑚+𝑎+𝑏+𝑐+𝑑) the following designs must also exist: 𝑂𝐴(𝑘, 𝑛−𝑎),𝑂𝐴(𝑘, 𝑛−𝑏),
𝑂𝐴(𝑘, 𝑛− 𝑐), 𝑂𝐴(𝑘, 𝑑), 𝑂𝐴(𝑘,𝑚+ 1), 𝑂𝐴(𝑘,𝑚+ 2), 𝑂𝐴(𝑘,𝑚+ 3), 𝑂𝐴(𝑘,𝑚+ 4))

INPUT:

• k,n,m,a,b,c,d – integers which must satisfy the constraints above. In particular, 𝑎+ 𝑏+ 𝑐 ≤ 𝑛+ 1 must
hold. By default, 𝑑 = 0.

• complement (boolean) – whether to complement the sets, i.e. follow the 𝑛−𝑎, 𝑛−𝑏, 𝑛−𝑐 variant described
above.

• explain_construction (boolean) – return a string describing the construction.

See also:

• find_thwart_lemma_3_5()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_build_recursive import thwart_
→˓lemma_3_5
sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array
sage: OA = thwart_lemma_3_5(6,23,7,5,7,8)
sage: is_orthogonal_array(OA,6,23*7+5+7+8,2)
True

sage: print(designs.orthogonal_arrays.explain_construction(10,408))
Lemma 4.1 with n=13,m=28 from:

Charles J.Colbourn, Jeffrey H. Dinitz, Mieczyslaw Wojtas,
Thwarts in transversal designs,
Designs, Codes and Cryptography 5, no. 3 (1995): 189-197.

With sets of parameters from [Thwarts]:

sage: l = [
....: [11, 27, 78, 16, 17, 25, 0],
....: [12, 19, 208, 11, 13, 16, 0],
....: [12, 19, 208, 13, 13, 16, 0],

(continues on next page)

714 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: [10, 13, 78, 9, 9, 13, 1],

....: [10, 13, 79, 9, 9, 13, 1]]
sage: for k,n,m,a,b,c,d in l: # not tested --␣
→˓too long
....: OA = thwart_lemma_3_5(k,n,m,a,b,c,d,complement=True) # not tested --␣
→˓too long
....: assert is_orthogonal_array(OA,k,n*m+a+b+c+d,verbose=True) # not tested --␣
→˓too long

sage: print(designs.orthogonal_arrays.explain_construction(10,1046))
Lemma 3.5 with n=13,m=79,a=9,b=1,c=0,d=9 from:

Charles J.Colbourn, Jeffrey H. Dinitz, Mieczyslaw Wojtas,
Thwarts in transversal designs,
Designs, Codes and Cryptography 5, no. 3 (1995): 189-197.

REFERENCE:

sage.combinat.designs.orthogonal_arrays_build_recursive.thwart_lemma_4_1(k, n, m, ex-
plain_construction=False)

Returns an 𝑂𝐴(𝑘, 𝑛𝑚+ 4(𝑛− 2)).

Implements Lemma 4.1 from [Thwarts].

If 𝑛 ≡ 0, 1 (mod 3) is a prime power, then there exists a truncated 𝑂𝐴(𝑛 + 1, 𝑛) whose last four
columns have size 𝑛− 2 and intersect every block on 1, 3 or 4 values. Consequently, if there exists an
𝑂𝐴(𝑘,𝑚+ 1), 𝑂𝐴(𝑘,𝑚+ 3), 𝑂𝐴(𝑘,𝑚+ 4) and a 𝑂𝐴(𝑘, 𝑛− 2) then there exists an 𝑂𝐴(𝑘, 𝑛𝑚+
4(𝑛− 2)

Proof: form the transversal design by removing one point of the 𝐴𝐺(2, 3) (Affine Geometry) con-
tained in the Desarguesian Projective Plane 𝑃𝐺(2, 𝑛).

The affine geometry on 9 points contained in the projective geometry 𝑃𝐺(2, 𝑛) is given explicitly in [OS64]
(Thanks to Julian R. Abel for finding the reference!).

INPUT:

• k,n,m (integers)

• explain_construction (boolean) – return a string describing the construction.

See also:

• find_thwart_lemma_4_1()

EXAMPLES:

sage: print(designs.orthogonal_arrays.explain_construction(10,408))
Lemma 4.1 with n=13,m=28 from:

Charles J.Colbourn, Jeffrey H. Dinitz, Mieczyslaw Wojtas,
Thwarts in transversal designs,
Designs, Codes and Cryptography 5, no. 3 (1995): 189-197.

REFERENCES:

5.1. Comprehensive Module List 715

Combinatorics, Release 9.7

5.1.91 Orthogonal arrays (find recursive constructions)

This module implements several functions to find recursive constructions of Orthogonal Arrays.

The main function of this module, i.e. find_recursive_construction(), queries all implemented recursive con-
structions of designs implemented in orthogonal_arrays_build_recursive in order to obtain an 𝑂𝐴(𝑘, 𝑛).

find_recursive_construction() is called by the orthogonal_array() function.

find_recursive_construction()Find a recursive construction of an𝑂𝐴(𝑘, 𝑛) (calls all others find_* functions)
find_product_decomposition()Find 𝑛1𝑛2 = 𝑛 to obtain an 𝑂𝐴(𝑘, 𝑛) by the product construction
find_wilson_decomposition_with_one_truncated_group()Find 𝑟𝑚 + 𝑢 = 𝑛 to obtain an 𝑂𝐴(𝑘, 𝑛) by Wilson’s construction with one

truncated column.
find_wilson_decomposition_with_two_truncated_groups()Find 𝑟𝑚 + 𝑟1 + 𝑟2 = 𝑛 to obtain an 𝑂𝐴(𝑘, 𝑛) by Wilson’s construction with

two truncated columns.
find_construction_3_3() Find a decomposition for construction 3.3 from [AC07].
find_construction_3_4() Find a decomposition for construction 3.4 from [AC07].
find_construction_3_5() Find a decomposition for construction 3.5 from [AC07].
find_construction_3_6() Find a decomposition for construction 3.6 from [AC07].
find_q_x() Find integers 𝑞, 𝑥 such that the 𝑞 − 𝑥 construction yields an 𝑂𝐴(𝑘, 𝑛).
find_thwart_lemma_3_5() Find the values on which Lemma 3.5 from [Thwarts] applies.
find_thwart_lemma_4_1() Find a decomposition for Lemma 4.1 from [Thwarts].
find_three_factor_product()Find 𝑛1𝑛2𝑛3 = 𝑛 to obtain an 𝑂𝐴(𝑘, 𝑛) by the three-factor product from

[DukesLing14]
find_brouwer_separable_design()Find 𝑡(𝑞2+𝑞+1)+𝑥 = 𝑛 to obtain an𝑂𝐴(𝑘, 𝑛) by Brouwer’s separable design

construction.
find_brouwer_van_rees_with_one_truncated_column()Find 𝑟𝑚 + 𝑥1 + ... + 𝑥𝑐 = 𝑛 such that the Brouwer-van Rees constructions

yields a 𝑂𝐴(𝑘, 𝑛).

REFERENCES:

Functions

sage.combinat.designs.orthogonal_arrays_find_recursive.find_brouwer_separable_design(k, n)
Find 𝑡(𝑞2 + 𝑞 + 1) + 𝑥 = 𝑛 to obtain an 𝑂𝐴(𝑘, 𝑛) by Brouwer’s separable design construction.

INPUT:

• k,n (integers)

The assumptions made on the parameters 𝑡, 𝑞, 𝑥 are explained in the documentation of
brouwer_separable_design().

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓brouwer_separable_design
sage: find_brouwer_separable_design(5,13)[1]
(5, 1, 3, 0)
sage: find_brouwer_separable_design(5,14)
False

sage.combinat.designs.orthogonal_arrays_find_recursive.find_brouwer_van_rees_with_one_truncated_column(k,
n)

Find 𝑟𝑚+ 𝑥1 + ...+ 𝑥𝑐 = 𝑛 such that the Brouwer-van Rees constructions yields a 𝑂𝐴(𝑘, 𝑛).

716 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Let 𝑛 = 𝑟𝑚+
∑︀

1≤𝑖≤𝑐 such that 𝑐 ≤ 𝑟. The generalization of Wilson’s construction found by Brouwer and van
Rees (with one truncated column) ensures that an 𝑂𝐴(𝑘, 𝑛) exists if the following designs exist: 𝑂𝐴(𝑘 + 1, 𝑟),
𝑂𝐴(𝑘,𝑚), 𝑂𝐴(𝑘,

∑︀
1≤𝑖≤𝑐 𝑢𝑖), 𝑂𝐴(𝑘,𝑚+ 𝑥1)−𝑂𝐴(𝑘, 𝑥1), . . . , 𝑂𝐴(𝑘,𝑚+ 𝑥𝑐)−𝑂𝐴(𝑘, 𝑥𝑐).

For more information, see the documentation of wilson_construction().

INPUT:

• k,n (integers)

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓brouwer_van_rees_with_one_truncated_column
sage: find_brouwer_van_rees_with_one_truncated_column(5,53)[1]
(None, 5, 7, 7, [[(2, 1), (2, 1)]])
sage: find_brouwer_van_rees_with_one_truncated_column(6,96)[1]
(None, 6, 7, 13, [[(3, 1), (1, 1), (1, 1)]])

sage.combinat.designs.orthogonal_arrays_find_recursive.find_construction_3_3(k, n)
Find a decomposition for construction 3.3 from [AC07]

INPUT:

• k,n (integers)

See also:

construction_3_3()

OUTPUT:

A pair f,args such that f(*args) returns the requested OA.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓construction_3_3
sage: find_construction_3_3(11,177)[1]
(11, 11, 16, 1)
sage: find_construction_3_3(12,11)

sage.combinat.designs.orthogonal_arrays_find_recursive.find_construction_3_4(k, n)
Find a decomposition for construction 3.4 from [AC07]

INPUT:

• k,n (integers)

See also:

construction_3_4()

OUTPUT:

A pair f,args such that f(*args) returns the requested OA.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓construction_3_4
sage: find_construction_3_4(8,196)[1]

(continues on next page)

5.1. Comprehensive Module List 717

Combinatorics, Release 9.7

(continued from previous page)

(8, 25, 7, 12, 9)
sage: find_construction_3_4(9,24)

sage.combinat.designs.orthogonal_arrays_find_recursive.find_construction_3_5(k, n)
Find a decomposition for construction 3.5 from [AC07]

INPUT:

• k,n (integers)

See also:

construction_3_5()

OUTPUT:

A pair f,args such that f(*args) returns the requested OA.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓construction_3_5
sage: find_construction_3_5(8,111)[1]
(8, 13, 6, 9, 11, 13)
sage: find_construction_3_5(9,24)

sage.combinat.designs.orthogonal_arrays_find_recursive.find_construction_3_6(k, n)
Find a decomposition for construction 3.6 from [AC07]

INPUT:

• k,n (integers)

See also:

construction_3_6()

OUTPUT:

A pair f,args such that f(*args) returns the requested OA.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓construction_3_6
sage: find_construction_3_6(8,95)[1]
(8, 13, 7, 4)
sage: find_construction_3_6(8,98)

sage.combinat.designs.orthogonal_arrays_find_recursive.find_product_decomposition(k, n)
Find 𝑛1𝑛2 = 𝑛 to obtain an 𝑂𝐴(𝑘, 𝑛) by the product construction.

If Sage can build a𝑂𝐴(𝑘, 𝑛1) and a𝑂𝐴(𝑘, 𝑛2) such that 𝑛 = 𝑛1×𝑛2 then a𝑂𝐴(𝑘, 𝑛) can be built by a product
construction (which correspond to Wilson’s construction with no truncated column). This function look for a
pair of integers (𝑛1, 𝑛2) with 𝑛1 ≤ 𝑛2, 𝑛1 × 𝑛2 = 𝑛 and such that both an 𝑂𝐴(𝑘, 𝑛1) and an 𝑂𝐴(𝑘, 𝑛2) are
available.

INPUT:

• k,n (integers) – see above.

718 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

A pair f,args such that f(*args) is an 𝑂𝐴(𝑘, 𝑛) or False if no product decomposition was found.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓product_decomposition
sage: f,args = find_product_decomposition(6, 84)
sage: args
(None, 6, 7, 12, (), False)
sage: _ = f(*args)

sage.combinat.designs.orthogonal_arrays_find_recursive.find_q_x(k, n)
Find integers 𝑞, 𝑥 such that the 𝑞 − 𝑥 construction yields an 𝑂𝐴(𝑘, 𝑛).

See the documentation of construction_q_x() to find out what hypotheses the integers 𝑞, 𝑥 must satisfy.

Warning: For efficiency reasons, this function checks that Sage can build an 𝑂𝐴(𝑘 + 1, 𝑞 − 𝑥− 1) and an
𝑂𝐴(𝑘 + 1, 𝑞 − 𝑥+ 1), which is stronger than checking that Sage can build a 𝑂𝐴(𝑘, 𝑞 − 𝑥− 1)− (𝑞 − 𝑥−
1).𝑂𝐴(𝑘, 1) and a𝑂𝐴(𝑘, 𝑞−𝑥+1)−(𝑞−𝑥+1).𝑂𝐴(𝑘, 1). The latter would trigger a lot of independent set
computations in sage.combinat.designs.orthogonal_arrays.incomplete_orthogonal_array().

INPUT:

• k,n (integers)

See also:

construction_q_x()

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_q_x
sage: find_q_x(10,9)
False
sage: find_q_x(9,158)[1]
(9, 16, 6)

sage.combinat.designs.orthogonal_arrays_find_recursive.find_recursive_construction(k, n)
Find a recursive construction of an 𝑂𝐴(𝑘, 𝑛) (calls all others find_* functions)

This determines whether an 𝑂𝐴(𝑘, 𝑛) can be built through the following constructions:

• wilson_construction()

• construction_3_3()

• construction_3_4()

• construction_3_5()

• construction_3_6()

• construction_q_x()

• thwart_lemma_3_5()

• thwart_lemma_4_1()

• three_factor_product()

5.1. Comprehensive Module List 719

Combinatorics, Release 9.7

• brouwer_separable_design()

INPUT:

• k,n (integers)

OUTPUT:

Return a pair f,args such that f(*args) returns the requested 𝑂𝐴 if possible, and False otherwise.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓recursive_construction
sage: from sage.combinat.designs.orthogonal_arrays import is_orthogonal_array
sage: count = 0
sage: for n in range(10,150):
....: k = designs.orthogonal_arrays.largest_available_k(n)
....: if find_recursive_construction(k,n):
....: count = count + 1
....: f,args = find_recursive_construction(k,n)
....: OA = f(*args)
....: assert is_orthogonal_array(OA,k,n,2,verbose=True)
sage: count
56

sage.combinat.designs.orthogonal_arrays_find_recursive.find_three_factor_product(k, n)
Find 𝑛1𝑛2𝑛3 = 𝑛 to obtain an 𝑂𝐴(𝑘, 𝑛) by the three-factor product from [DukesLing14]

INPUT:

• k,n (integers)

See also:

three_factor_product()

OUTPUT:

A pair f,args such that f(*args) returns the requested OA.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_three_
→˓factor_product
sage: find_three_factor_product(10,648)[1]
(9, 8, 9, 9)
sage: find_three_factor_product(10,50)
False

sage.combinat.designs.orthogonal_arrays_find_recursive.find_thwart_lemma_3_5(k, N)
Find the values on which Lemma 3.5 from [Thwarts] applies.

OUTPUT:

A pair (f,args) such that f(*args) returns an 𝑂𝐴(𝑘, 𝑛) or False if the construction is not available.

See also:

thwart_lemma_3_5()

EXAMPLES:

720 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓thwart_lemma_3_5
sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array

sage: f,args = find_thwart_lemma_3_5(7,66)
sage: args
(7, 9, 7, 1, 1, 1, 0, False)
sage: OA = f(*args)
sage: is_orthogonal_array(OA,7,66,2)
True

sage: f,args = find_thwart_lemma_3_5(6,100)
sage: args
(6, 8, 10, 8, 7, 5, 0, True)
sage: OA = f(*args)
sage: is_orthogonal_array(OA,6,100,2)
True

Some values from [Thwarts]:

sage: kn = ((10,1046), (10,1048), (10,1059), (11,1524),
....: (11,2164), (12,3362), (12,3992), (12,3994))
sage: for k,n in kn:
....: print("{} {} {}".format(k,n,find_thwart_lemma_3_5(k,n)[1]))
10 1046 (10, 13, 79, 9, 1, 0, 9, False)
10 1048 (10, 13, 79, 9, 1, 0, 11, False)
10 1059 (10, 13, 80, 9, 1, 0, 9, False)
11 1524 (11, 19, 78, 16, 13, 13, 0, True)
11 2164 (11, 27, 78, 23, 19, 16, 0, True)
12 3362 (12, 16, 207, 13, 13, 11, 13, True)
12 3992 (12, 19, 207, 16, 13, 11, 19, True)
12 3994 (12, 19, 207, 16, 13, 13, 19, True)

sage: for k,n in kn: # not␣
→˓tested -- too long
....: assert designs.orthogonal_array(k,n,existence=True) is True # not␣
→˓tested -- too long

sage.combinat.designs.orthogonal_arrays_find_recursive.find_thwart_lemma_4_1(k, n)
Find a decomposition for Lemma 4.1 from [Thwarts].

INPUT:

• k,n (integers)

See also:

thwart_lemma_4_1()

OUTPUT:

A pair f,args such that f(*args) returns the requested OA.

EXAMPLES:

5.1. Comprehensive Module List 721

Combinatorics, Release 9.7

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓thwart_lemma_4_1
sage: find_thwart_lemma_4_1(10,408)[1]
(10, 13, 28)
sage: find_thwart_lemma_4_1(10,50)
False

sage.combinat.designs.orthogonal_arrays_find_recursive.find_wilson_decomposition_with_one_truncated_group(k,
n)

Find 𝑟𝑚+ 𝑢 = 𝑛 to obtain an 𝑂𝐴(𝑘, 𝑛) by Wilson’s construction with one truncated column.

This function looks for possible integers 𝑚, 𝑡, 𝑢 satisfying that 𝑚𝑡 + 𝑢 = 𝑛 and such that Sage knows how to
build a 𝑂𝐴(𝑘,𝑚), 𝑂𝐴(𝑘,𝑚+ 1), 𝑂𝐴(𝑘 + 1, 𝑡) and a 𝑂𝐴(𝑘, 𝑢).

INPUT:

• k,n (integers) – see above

OUTPUT:

A pair f,args such that f(*args) is an 𝑂𝐴(𝑘, 𝑛) or False if no decomposition with one truncated block was
found.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓wilson_decomposition_with_one_truncated_group
sage: f,args = find_wilson_decomposition_with_one_truncated_group(4,38)
sage: args
(None, 4, 5, 7, (3,), False)
sage: _ = f(*args)

sage: find_wilson_decomposition_with_one_truncated_group(4,20)
False

sage.combinat.designs.orthogonal_arrays_find_recursive.find_wilson_decomposition_with_two_truncated_groups(k,
n)

Find 𝑟𝑚+ 𝑟1 + 𝑟2 = 𝑛 to obtain an 𝑂𝐴(𝑘, 𝑛) by Wilson’s construction with two truncated columns.

Look for integers 𝑟,𝑚, 𝑟1, 𝑟2 satisfying 𝑛 = 𝑟𝑚+𝑟1+𝑟2 and 1 ≤ 𝑟1, 𝑟2 < 𝑟 and such that the following designs
exist : 𝑂𝐴(𝑘 + 2, 𝑟), 𝑂𝐴(𝑘, 𝑟1), 𝑂𝐴(𝑘, 𝑟2), 𝑂𝐴(𝑘,𝑚), 𝑂𝐴(𝑘,𝑚+ 1), 𝑂𝐴(𝑘,𝑚+ 2).

INPUT:

• k,n (integers) – see above

OUTPUT:

A pair f,args such that f(*args) is an𝑂𝐴(𝑘, 𝑛) or False if no decomposition with two truncated blocks was
found.

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import find_
→˓wilson_decomposition_with_two_truncated_groups
sage: f,args = find_wilson_decomposition_with_two_truncated_groups(5,58)
sage: args
(None, 5, 7, 7, (4, 5), False)
sage: _ = f(*args)

722 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.designs.orthogonal_arrays_find_recursive.int_as_sum(value, S, k_max)
Return a tuple (𝑠1, 𝑠2, . . . , 𝑠𝑘) of less then 𝑘𝑚𝑎𝑥 elements of 𝑆 such that 𝑣𝑎𝑙𝑢𝑒 = 𝑠1 + 𝑠2 + . . .+ 𝑠𝑘. If there
is no such tuples then the function returns None.

INPUT:

• value (integer)

• S – a list of integers

• k_max (integer)

EXAMPLES:

sage: from sage.combinat.designs.orthogonal_arrays_find_recursive import int_as_sum
sage: D = int_as_sum(21,[5,12],100)
sage: for k in range(20,40):
....: print("{} {}".format(k, int_as_sum(k,[5,12],100)))
20 (5, 5, 5, 5)
21 None
22 (12, 5, 5)
23 None
24 (12, 12)
25 (5, 5, 5, 5, 5)
26 None
27 (12, 5, 5, 5)
28 None
29 (12, 12, 5)
30 (5, 5, 5, 5, 5, 5)
31 None
32 (12, 5, 5, 5, 5)
33 None
34 (12, 12, 5, 5)
35 (5, 5, 5, 5, 5, 5, 5)
36 (12, 12, 12)
37 (12, 5, 5, 5, 5, 5)
38 None
39 (12, 12, 5, 5, 5)

5.1.92 Steiner Quadruple Systems

A Steiner Quadruple System on 𝑛 points is a family 𝑆𝑄𝑆𝑛 ⊂
(︀
[𝑛]
4

)︀
of 4-sets, such that any set 𝑆 ⊂ [𝑛] of size three is

a subset of exactly one member of 𝑆𝑄𝑆𝑛.

This module implements Haim Hanani’s constructive proof that a Steiner Quadruple System exists if and only if 𝑛 ≡
2, 4 (mod 6). Hanani’s proof consists in 6 different constructions that build a large Steiner Quadruple System from a
smaller one, and though it does not give a very clear understanding of why it works (to say the least). . . it does !

The constructions have been implemented while reading two papers simultaneously, for one of them sometimes provides
the informations that the other one does not. The first one is Haim Hanani’s original paper [Han1960], and the other
one is a paper from Horan and Hurlbert which goes through all constructions [HH2012].

It can be used through the designs object:

sage: designs.steiner_quadruple_system(8)
Incidence structure with 8 points and 14 blocks

5.1. Comprehensive Module List 723

Combinatorics, Release 9.7

AUTHORS:

• Nathann Cohen (May 2013, while listening to “Le Blues Du Pauvre Delahaye”)

Index

This module’s main function is the following:

steiner_quadruple_system()Return a Steiner Quadruple System on 𝑛 points

This function redistributes its work among 6 constructions:

Construction
1

two_n() Return a Steiner Quadruple System on 2𝑛 points

Construction
2

three_n_minus_two()Return a Steiner Quadruple System on 3𝑛− 2 points

Construction
3

three_n_minus_eight()Return a Steiner Quadruple System on 3𝑛− 8 points

Construction
4

three_n_minus_four()Return a Steiner Quadruple System on 3𝑛− 4 points

Construction
5

four_n_minus_six()Return a Steiner Quadruple System on 4𝑛− 6 points

Construction
6

twelve_n_minus_ten()Return a Steiner Quadruple System on 12𝑛− 10 points

It also defines two specific Steiner Quadruple Systems that the constructions require, i.e. 𝑆𝑄𝑆14 and 𝑆𝑄𝑆38 as well
as the systems of pairs 𝑃𝛼(𝑚) and 𝑃𝛼(𝑚) (see [Han1960]).

Functions

sage.combinat.designs.steiner_quadruple_systems.P(alpha, m)
Return the collection of pairs 𝑃𝛼(𝑚)

For more information on this system, see [Han1960].

EXAMPLES:

sage: from sage.combinat.designs.steiner_quadruple_systems import P
sage: P(3,4)
[(0, 5), (2, 7), (4, 1), (6, 3)]

sage.combinat.designs.steiner_quadruple_systems.barP(eps, m)

Return the collection of pairs 𝑃𝛼(𝑚)

For more information on this system, see [Han1960].

EXAMPLES:

sage: from sage.combinat.designs.steiner_quadruple_systems import barP
sage: barP(3,4)
[(0, 4), (3, 5), (1, 2)]

sage.combinat.designs.steiner_quadruple_systems.barP_system(m)

Return the 1-factorization of 𝐾2𝑚 𝑃 (𝑚)

724 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

For more information on this system, see [Han1960].

EXAMPLES:

sage: from sage.combinat.designs.steiner_quadruple_systems import barP_system
sage: barP_system(3)
[[(4, 3), (2, 5)],
[(0, 5), (4, 1)],
[(0, 2), (1, 3)],
[(1, 5), (4, 2), (0, 3)],
[(0, 4), (3, 5), (1, 2)],
[(0, 1), (2, 3), (4, 5)]]

sage.combinat.designs.steiner_quadruple_systems.four_n_minus_six(B)
Return a Steiner Quadruple System on 4𝑛− 6 points.

INPUT:

• B – A Steiner Quadruple System on 𝑛 points.

EXAMPLES:

sage: from sage.combinat.designs.steiner_quadruple_systems import four_n_minus_six
sage: for n in range(4, 20):
....: if (n%6) in [2,4]:
....: sqs = designs.steiner_quadruple_system(n)
....: if not four_n_minus_six(sqs).is_t_design(3,4*n-6,4,1):
....: print("Something is wrong !")

sage.combinat.designs.steiner_quadruple_systems.relabel_system(B)
Relabels the set so that {𝑛− 4, 𝑛− 3, 𝑛− 2, 𝑛− 1} is in 𝐵.

INPUT:

• B – a list of 4-uples on 0, ..., 𝑛− 1.

EXAMPLES:

sage: from sage.combinat.designs.steiner_quadruple_systems import relabel_system
sage: SQS8 = designs.steiner_quadruple_system(8)
sage: relabel_system(SQS8)
Incidence structure with 8 points and 14 blocks

sage.combinat.designs.steiner_quadruple_systems.steiner_quadruple_system(n, check=False)
Return a Steiner Quadruple System on 𝑛 points.

INPUT:

• n – an integer such that 𝑛 ≡ 2, 4 (mod 6)

• check (boolean) – whether to check that the system is a Steiner Quadruple System before returning it
(𝐹𝑎𝑙𝑠𝑒 by default)

EXAMPLES:

sage: sqs4 = designs.steiner_quadruple_system(4)
sage: sqs4
Incidence structure with 4 points and 1 blocks
sage: sqs4.is_t_design(3,4,4,1)

(continues on next page)

5.1. Comprehensive Module List 725

Combinatorics, Release 9.7

(continued from previous page)

True

sage: sqs8 = designs.steiner_quadruple_system(8)
sage: sqs8
Incidence structure with 8 points and 14 blocks
sage: sqs8.is_t_design(3,8,4,1)
True

sage.combinat.designs.steiner_quadruple_systems.three_n_minus_eight(B)
Return a Steiner Quadruple System on 3𝑛− 8 points.

INPUT:

• B – A Steiner Quadruple System on 𝑛 points.

EXAMPLES:

sage: from sage.combinat.designs.steiner_quadruple_systems import three_n_minus_
→˓eight
sage: for n in range(4, 30):
....: if (n%12) == 2:
....: sqs = designs.steiner_quadruple_system(n)
....: if not three_n_minus_eight(sqs).is_t_design(3,3*n-8,4,1):
....: print("Something is wrong !")

sage.combinat.designs.steiner_quadruple_systems.three_n_minus_four(B)
Return a Steiner Quadruple System on 3𝑛− 4 points.

INPUT:

• B – A Steiner Quadruple System on 𝑛 points where 𝑛 ≡ 10 (mod 12).

EXAMPLES:

sage: from sage.combinat.designs.steiner_quadruple_systems import three_n_minus_four
sage: for n in range(4, 30):
....: if n%12 == 10:
....: sqs = designs.steiner_quadruple_system(n)
....: if not three_n_minus_four(sqs).is_t_design(3,3*n-4,4,1):
....: print("Something is wrong !")

sage.combinat.designs.steiner_quadruple_systems.three_n_minus_two(B)
Return a Steiner Quadruple System on 3𝑛− 2 points.

INPUT:

• B – A Steiner Quadruple System on 𝑛 points.

EXAMPLES:

sage: from sage.combinat.designs.steiner_quadruple_systems import three_n_minus_two
sage: for n in range(4, 30):
....: if (n%6) in [2,4]:
....: sqs = designs.steiner_quadruple_system(n)
....: if not three_n_minus_two(sqs).is_t_design(3,3*n-2,4,1):
....: print("Something is wrong !")

726 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.designs.steiner_quadruple_systems.twelve_n_minus_ten(B)
Return a Steiner Quadruple System on 12𝑛− 6 points.

INPUT:

• B – A Steiner Quadruple System on 𝑛 points.

EXAMPLES:

sage: from sage.combinat.designs.steiner_quadruple_systems import twelve_n_minus_ten
sage: for n in range(4, 15):
....: if (n%6) in [2,4]:
....: sqs = designs.steiner_quadruple_system(n)
....: if not twelve_n_minus_ten(sqs).is_t_design(3,12*n-10,4,1):
....: print("Something is wrong !")

sage.combinat.designs.steiner_quadruple_systems.two_n(B)
Return a Steiner Quadruple System on 2𝑛 points.

INPUT:

• B – A Steiner Quadruple System on 𝑛 points.

EXAMPLES:

sage: from sage.combinat.designs.steiner_quadruple_systems import two_n
sage: for n in range(4, 30):
....: if (n%6) in [2,4]:
....: sqs = designs.steiner_quadruple_system(n)
....: if not two_n(sqs).is_t_design(3,2*n,4,1):
....: print("Something is wrong !")

5.1.93 Hypergraph isomorphic copy search

This module implements a code for the following problem:

INPUT: two hypergraphs 𝐻1, 𝐻2

OUTPUT: a copy of 𝐻2 in 𝐻1

It is also possible to enumerate all such copies, and to require that such copies be induced copies. More formally:

A copy of 𝐻2 in 𝐻1 is an injection 𝑓 : 𝑉 (𝐻2) ↦→ 𝑉 (𝐻1) such that for any set 𝑆2 ∈ 𝐸(𝐻2) we have
𝑓(𝑆2) ∈ 𝐸(𝐻1).

It is an induced copy if no other set of 𝐸(𝐻1) is contained in 𝑓(𝑉 (𝐻2)), i.e. |𝐸(𝐻2)| = {𝑆 : 𝑆 ∈
𝐸(𝐻1) and 𝑆 ⊆ 𝑓(𝑉 (𝐻2))}.

The functions implemented here lists all such injections. In particular, the number of copies of 𝐻 in itself is equal to
|𝐴𝑢𝑡(𝐻)|.

The feature is available through IncidenceStructure.isomorphic_substructures_iterator().

5.1. Comprehensive Module List 727

Combinatorics, Release 9.7

Implementation

A hypergraph is stored as a list of edges, each of which is a “dense” bitset over |𝑉 (𝐻1)| points. In particular, two sets
of distinct cardinalities require the same memory space. A hypergraph is a C struct with the following fields:

• n,m (int) – number of points and edges.

• limbs (int) – number of 64-bits blocks per set.

• set_space (uint64_t *) – address of the memory used to store the sets.

• sets (uint64_t **) – sets[i] points toward the limbs blocks encoding set 𝑖. Note
also that sets[i][limbs] is equal to the cardinality of set[i], so that sets has length
m*(limbs+1)*sizeof(uint64_t).

• names (int *) – associates an integer ‘name’ to each of the n points.

The operations used on this data structure are:

• void permute(hypergraph * h, int n1, int n2) – exchanges points 𝑛1 and 𝑛2 in the data structure.
Note that their names are also exchanged so that we still know which is which.

• int induced_hypergraph(hypergraph * h1, int n, hypergraph * tmp1) – stores in tmp1 the hy-
pergraph induced by the first 𝑛 points, i.e. all sets 𝑆 such that 𝑆 ⊆ {0, ..., 𝑛 − 1}. The function returns the
number of such sets.

• void trace_hypergraph64(hypergraph * h, int n, hypergraph * tmp) – stores in tmp1 the trace
of ℎ on the first 𝑛 points, i.e. all sets of the form 𝑆 ∩ {0, . . . , 𝑛− 1}.

Algorithm

We try all possible assignments of a representant 𝑟𝑖 ∈ 𝐻1 for every 𝑖 ∈ 𝐻2. When we have picked a representant for
the first 𝑛 < points {0, . . . , 𝑛− 1} (𝑉 (𝐻2), we check that:

• The hypergraph induced by the (ordered) list 0, . . . , 𝑛− 1 in 𝐻2 is equal to the one induced by 𝑟0, . . . , 𝑟𝑛−1 in
𝐻1.

• If 𝑆 ⊆ {0, ..., 𝑛− 1} is contained in 𝑐 sets of size 𝑘 in 𝐻2, then {𝑟𝑖 : 𝑖 ∈ 𝑆} is contained in ≥ 𝑐 sets of size 𝑘 in
𝐻1. This is done by comparing the trace of the hypergraphs while remembering the original size of each set.

As we very often need to build the hypergraph obtained by the trace of the first 𝑛 points (for all possible 𝑛), those
hypergraphs are cached. The hypergraphs induced by the same points are handled similarly.

Limitations

Number of points For efficiency reason the implementation assumes that 𝐻2 has ≤ 64 points. Making this work
for larger values means that calls to qsort have to be replaced by calls to qsort_r (i.e. to sort the edges you need
to know the number of limbs per edge) and that induces a big slowdown for small cases (~50% when this code was
implemented). Also, 64 points for 𝐻2 is already very very big considering the problem at hand. Even |𝑉 (𝐻1)| > 64
seems too much.

Vertex ordering The order of vertices in 𝐻2 has a huge influence on the performance of the algorithm. If no set of
𝐻2 contains more that one of the first 𝑘 < 𝑛 points, then almost all partial assignments of representants are possible
for the first 𝑘 points (though the degree of the vertices is taken into account). For this reason it is best to pick an
ordering such that the first vertices are contained in as many sets as possible together. A heuristic is implemented at
relabel_heuristic().

AUTHORS:

• Nathann Cohen (November 2014, written in various airports between Nice and Chennai).

728 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Methods

class sage.combinat.designs.subhypergraph_search.SubHypergraphSearch
Bases: object

relabel_heuristic()
Relabels 𝐻2 in order to make the algorithm faster.

Objective: we try to pick an ordering 𝑝1, ..., 𝑝𝑘 of the points of 𝐻2 that maximizes the number of sets
involving the first points in the ordering. One way to formalize the problems indicates that it may be NP-
Hard (generalizes the max clique problem for graphs) so we do not try to solve it exactly: we just need a
sufficiently good heuristic.

Assuming that the first points are 𝑝1, ..., 𝑝𝑘, we determine 𝑝𝑘+1 as the point 𝑥 such that the number of sets
𝑆 with 𝑥 ∈ 𝑆 and 𝑆 ∩ {𝑝1, ..., 𝑝𝑘} ≠ ∅ is maximal. In case of ties, we take a point with maximum degree.

This function is called when an instance of SubHypergraphSearch is created.

EXAMPLES:

sage: d = designs.projective_plane(3)
sage: d.isomorphic_substructures_iterator(d).relabel_heuristic()

5.1.94 Two-graphs

A two-graph on 𝑛 points is a family 𝑇 ⊂
(︀
[𝑛]
3

)︀
of 3-sets, such that any 4-set 𝑆 ⊂ [𝑛] of size four contains an even

number of elements of 𝑇 . Any graph ([𝑛], 𝐸) gives rise to a two-graph 𝑇 (𝐸) = {𝑡 ∈
(︀
[𝑛]
3

)︀
:
⃒⃒(︀
𝑡
2

)︀
∩ 𝐸

⃒⃒
𝑜𝑑𝑑}, and

any two graphs with the same two-graph can be obtained one from the other by Seidel switching. This defines an
equivalence relation on the graphs on [𝑛], called Seidel switching equivalence. Conversely, given a two-graph 𝑇 , one
can construct a graph Γ in the corresponding Seidel switching class with an isolated vertex𝑤. The graph Γ∖𝑤 is called
the descendant of 𝑇 w.r.t. 𝑣.

𝑇 is called regular if each two-subset of [𝑛] is contained in the same number alpha of triples of 𝑇 .

This module implements a direct construction of a two-graph from a list of triples, construction of descendant graphs,
regularity checking, and other things such as constructing the complement two-graph, cf. [BH2012].

AUTHORS:

• Dima Pasechnik (Aug 2015)

Index

This module’s methods are the following:

is_regular_twograph() tests if self is a regular two-graph, i.e. a 2-design
complement() returns the complement of self
descendant() returns the descendant graph at 𝑤

This module’s functions are the following:

taylor_twograph() constructs Taylor’s two-graph for 𝑈3(𝑞)
is_twograph() checks that the incidence system is a two-graph
twograph_descendant() returns the descendant graph w.r.t. a given vertex of the two-graph of a given

graph

5.1. Comprehensive Module List 729

../../../../../../../html/en/reference/graphs/sage/graphs/graph.html#sage.graphs.graph.Graph.seidel_switching

Combinatorics, Release 9.7

Methods

class sage.combinat.designs.twographs.TwoGraph(points=None, blocks=None, incidence_matrix=None,
name=None, check=False, copy=True)

Bases: sage.combinat.designs.incidence_structures.IncidenceStructure

Two-graphs class.

A two-graph on 𝑛 points is a 3-uniform hypergraph, i.e. a family 𝑇 ⊂
(︀
[𝑛]
3

)︀
of 3-sets, such that any 4-set 𝑆 ⊂ [𝑛]

of size four contains an even number of elements of 𝑇 . For more information, see the documentation of the
twographs module.

complement()
The two-graph which is the complement of self

That is, the two-graph consisting exactly of triples not in self. Note that this is different from complement
of the parent class.

EXAMPLES:

sage: p = graphs.CompleteGraph(8).line_graph().twograph()
sage: pc = p.complement(); pc
Incidence structure with 28 points and 1260 blocks

descendant(v)
The descendant graph at v

The switching class of graphs corresponding to self contains a graph D with v its own connected
component; removing v from D, one obtains the descendant graph of self at v, which is constructed by
this method.

INPUT:

• v – an element of ground_set()

EXAMPLES:

sage: p = graphs.PetersenGraph().twograph().descendant(0)
sage: p.is_strongly_regular(parameters=True)
(9, 4, 1, 2)

is_regular_twograph(alpha=False)
Test if the TwoGraph is regular, i.e. is a 2-design.

Namely, each pair of elements of ground_set() is contained in exactly alpha triples.

INPUT:

• alpha – (optional, default is False) return the value of alpha, if possible.

EXAMPLES:

sage: p=graphs.PetersenGraph().twograph()
sage: p.is_regular_twograph(alpha=True)
4
sage: p.is_regular_twograph()
True
sage: p=graphs.PathGraph(5).twograph()
sage: p.is_regular_twograph(alpha=True)
False

(continues on next page)

730 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/graphs/sage/graphs/graph.html#sage.graphs.graph.Graph

Combinatorics, Release 9.7

(continued from previous page)

sage: p.is_regular_twograph()
False

sage.combinat.designs.twographs.is_twograph(T)
Checks that the incidence system 𝑇 is a two-graph

INPUT:

• T – an incidence structure

EXAMPLES:

a two-graph from a graph:

sage: from sage.combinat.designs.twographs import (is_twograph, TwoGraph)
sage: p=graphs.PetersenGraph().twograph()
sage: is_twograph(p)
True

a non-regular 2-uniform hypergraph which is a two-graph:

sage: is_twograph(TwoGraph([[1,2,3],[1,2,4]]))
True

sage.combinat.designs.twographs.taylor_twograph(q)
constructing Taylor’s two-graph for 𝑈3(𝑞), 𝑞 odd prime power

The Taylor’s two-graph 𝑇 has the 𝑞3+1 points of the projective plane over 𝐹𝑞2 singular w.r.t. the non-degenerate
Hermitean form 𝑆 preserved by 𝑈3(𝑞) as its ground set; the triples are {𝑥, 𝑦, 𝑧} satisfying the condition that
𝑆(𝑥, 𝑦)𝑆(𝑦, 𝑧)𝑆(𝑧, 𝑥) is square (respectively non-square) if 𝑞 ∼= 1 mod 4 (respectively if 𝑞 ∼= 3 mod 4). See
§7E of [BL1984].

There is also a 2− (𝑞3 + 1, 𝑞+ 1, 1)-design on these 𝑞3 + 1 points, known as the unital of order 𝑞, also invariant
under 𝑈3(𝑞).

INPUT:

• q – a power of an odd prime

EXAMPLES:

sage: from sage.combinat.designs.twographs import taylor_twograph
sage: T=taylor_twograph(3); T
Incidence structure with 28 points and 1260 blocks

sage.combinat.designs.twographs.twograph_descendant(G, v, name=None)
Return the descendant graph w.r.t. vertex 𝑣 of the two-graph of 𝐺

In the switching class of 𝐺, construct a graph ∆ with 𝑣 an isolated vertex, and return the subgraph ∆ ∖ 𝑣. It
is equivalent to, although much faster than, computing the TwoGraph.descendant() of two-graph of G, as
the intermediate two-graph is not constructed.

INPUT:

• G – a graph

• v – a vertex of G

• name – (optional) None - no name, otherwise derive from the construction

5.1. Comprehensive Module List 731

../../../../../../../html/en/reference/graphs/sage/graphs/graph.html#sage.graphs.graph.Graph.twograph
../../../../../../../html/en/reference/graphs/sage/graphs/graph.html#sage.graphs.graph.Graph

Combinatorics, Release 9.7

EXAMPLES:

one of s.r.g.’s from the database:

sage: from sage.combinat.designs.twographs import twograph_descendant
sage: A=graphs.strongly_regular_graph(280,135,70) # optional -␣
→˓gap_packages internet
sage: twograph_descendant(A, 0).is_strongly_regular(parameters=True) # optional -␣
→˓gap_packages internet
(279, 150, 85, 75)

5.1.95 Diagram and Partition Algebras

AUTHORS:

• Mike Hansen (2007): Initial version

• Stephen Doty, Aaron Lauve, George H. Seelinger (2012): Implementation of partition, Brauer, Temperley–Lieb,
and ideal partition algebras

• Stephen Doty, Aaron Lauve, George H. Seelinger (2015): Implementation of *Diagram classes and other meth-
ods to improve diagram algebras.

• Mike Zabrocki (2018): Implementation of individual element diagram classes

• Aaron Lauve, Mike Zabrocki (2018): Implementation of orbit basis for Partition algebra.

class sage.combinat.diagram_algebras.AbstractPartitionDiagram(parent, d, check=True)
Bases: sage.combinat.set_partition.AbstractSetPartition

Abstract base class for partition diagrams.

This class represents a single partition diagram, that is used as a basis key for a diagram algebra element. A
partition diagram should be a partition of the set {1, . . . , 𝑘,−1, . . . ,−𝑘}. Each such set partition is regarded as
a graph on nodes {1, . . . , 𝑘,−1, . . . ,−𝑘} arranged in two rows, with nodes 1, . . . , 𝑘 in the top row from left to
right and with nodes −1, . . . ,−𝑘 in the bottom row from left to right, and an edge connecting two nodes if and
only if the nodes lie in the same subset of the set partition.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: pd = da.AbstractPartitionDiagrams(2)
sage: pd1 = da.AbstractPartitionDiagram(pd, [[1,2],[-1,-2]])
sage: pd2 = da.AbstractPartitionDiagram(pd, [[1,2],[-1,-2]])
sage: pd1
{{-2, -1}, {1, 2}}
sage: pd1 == pd2
True
sage: pd1 == [[1,2],[-1,-2]]
True
sage: pd1 == ((-2,-1),(2,1))
True
sage: pd1 == SetPartition([[1,2],[-1,-2]])
True
sage: pd3 = da.AbstractPartitionDiagram(pd, [[1,-2],[-1,2]])
sage: pd1 == pd3
False

(continues on next page)

732 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/graphs/sage/graphs/strongly_regular_db.html#module-sage.graphs.strongly_regular_db

Combinatorics, Release 9.7

(continued from previous page)

sage: pd4 = da.AbstractPartitionDiagram(pd, [[1,2],[3,4]])
Traceback (most recent call last):
...
ValueError: {{1, 2}, {3, 4}} does not represent two rows of vertices of order 2

base_diagram()
Return the underlying implementation of the diagram.

OUTPUT:

• tuple of tuples of integers

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: pd = da.AbstractPartitionDiagrams(2)
sage: pd([[1,2],[-1,-2]]).base_diagram() == ((-2,-1),(1,2))
True

check()
Check the validity of the input for the diagram.

compose(other, check=True)
Compose self with other.

The composition of two diagrams 𝑋 and 𝑌 is given by placing 𝑋 on top of 𝑌 and removing all loops.

OUTPUT:

A tuple where the first entry is the composite diagram and the second entry is how many loop were removed.

Note: This is not really meant to be called directly, but it works to call it this way if desired.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: pd = da.AbstractPartitionDiagrams(2)
sage: pd([[1,2],[-1,-2]]).compose(pd([[1,2],[-1,-2]]))
({{-2, -1}, {1, 2}}, 1)

count_blocks_of_size(n)
Count the number of blocks of a given size.

INPUT:

• n – a positive integer

EXAMPLES:

sage: from sage.combinat.diagram_algebras import PartitionDiagram
sage: pd = PartitionDiagram([[1,-3,-5],[2,4],[3,-1,-2],[5],[-4]])
sage: pd.count_blocks_of_size(1)
2
sage: pd.count_blocks_of_size(2)
1
sage: pd.count_blocks_of_size(3)
2

5.1. Comprehensive Module List 733

Combinatorics, Release 9.7

diagram()
Return the underlying implementation of the diagram.

OUTPUT:

• tuple of tuples of integers

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: pd = da.AbstractPartitionDiagrams(2)
sage: pd([[1,2],[-1,-2]]).base_diagram() == ((-2,-1),(1,2))
True

dual()
Return the dual diagram of self by flipping it top-to-bottom.

EXAMPLES:

sage: from sage.combinat.diagram_algebras import PartitionDiagram
sage: D = PartitionDiagram([[1,-1],[2,-2,-3],[3]])
sage: D.dual()
{{-3}, {-2, 2, 3}, {-1, 1}}

is_planar()
Test if the diagram self is planar.

A diagram element is planar if the graph of the nodes is planar.

EXAMPLES:

sage: from sage.combinat.diagram_algebras import BrauerDiagram
sage: BrauerDiagram([[1,-2],[2,-1]]).is_planar()
False
sage: BrauerDiagram([[1,-1],[2,-2]]).is_planar()
True

order()
Return the maximum entry in the diagram element.

A diagram element will be a partition of the set {−1,−2, . . . ,−𝑘, 1, 2, . . . , 𝑘}. The order of the diagram
element is the value 𝑘.

EXAMPLES:

sage: from sage.combinat.diagram_algebras import PartitionDiagram
sage: PartitionDiagram([[1,-1],[2,-2,-3],[3]]).order()
3
sage: PartitionDiagram([[1,-1]]).order()
1
sage: PartitionDiagram([[1,-3,-5],[2,4],[3,-1,-2],[5],[-4]]).order()
5

propagating_number()
Return the propagating number of the diagram.

The propagating number is the number of blocks with both a positive and negative number.

EXAMPLES:

734 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: import sage.combinat.diagram_algebras as da
sage: pd = da.AbstractPartitionDiagrams(2)
sage: d1 = pd([[1,-2],[2,-1]])
sage: d1.propagating_number()
2
sage: d2 = pd([[1,2],[-2,-1]])
sage: d2.propagating_number()
0

set_partition()
Return the underlying implementation of the diagram as a set of sets.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: pd = da.AbstractPartitionDiagrams(2)
sage: X = pd([[1,2],[-1,-2]]).set_partition(); X
{{-2, -1}, {1, 2}}
sage: X.parent()
Set partitions

class sage.combinat.diagram_algebras.AbstractPartitionDiagrams(order, category=None)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

This is an abstract base class for partition diagrams.

The primary use of this class is to serve as basis keys for diagram algebras, but diagrams also have properties in
their own right. Furthermore, this class is meant to be extended to create more efficient contains methods.

INPUT:

• order – integer or integer +1/2; the order of the diagrams

• category – (default: FiniteEnumeratedSets()); the category

All concrete classes should implement attributes

• _name – the name of the class

• _diagram_func – an iterator function that takes the order as its only input

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: pd = da.PartitionDiagrams(2)
sage: pd
Partition diagrams of order 2
sage: pd.an_element() in pd
True
sage: elm = pd([[1,2],[-1,-2]])
sage: elm in pd
True

Element
alias of AbstractPartitionDiagram

5.1. Comprehensive Module List 735

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

class sage.combinat.diagram_algebras.BrauerAlgebra(k, q, base_ring, prefix)
Bases: sage.combinat.diagram_algebras.SubPartitionAlgebra, sage.combinat.
diagram_algebras.UnitDiagramMixin

A Brauer algebra.

The Brauer algebra of rank 𝑘 is an algebra with basis indexed by the collection of set partitions of
{1, . . . , 𝑘,−1, . . . ,−𝑘} with block size 2.

This algebra is a subalgebra of the partition algebra. For more information, see PartitionAlgebra.

INPUT:

• k – rank of the algebra

• q – the deformation parameter 𝑞

OPTIONAL ARGUMENTS:

• base_ring – (default None) a ring containing q; if None then just takes the parent of q

• prefix – (default "B") a label for the basis elements

EXAMPLES:

We now define the Brauer algebra of rank 2 with parameter x over Z:

sage: R.<x> = ZZ[]
sage: B = BrauerAlgebra(2, x, R)
sage: B
Brauer Algebra of rank 2 with parameter x
over Univariate Polynomial Ring in x over Integer Ring
sage: B.basis()
Lazy family (Term map from Brauer diagrams of order 2 to Brauer Algebra
of rank 2 with parameter x over Univariate Polynomial Ring in x
over Integer Ring(i))_{i in Brauer diagrams of order 2}
sage: B.basis().keys()
Brauer diagrams of order 2
sage: B.basis().keys()([[-2, 1], [2, -1]])
{{-2, 1}, {-1, 2}}
sage: b = B.basis().list(); b
[B{{-2, -1}, {1, 2}}, B{{-2, 1}, {-1, 2}}, B{{-2, 2}, {-1, 1}}]
sage: b[0]
B{{-2, -1}, {1, 2}}
sage: b[0]^2
x*B{{-2, -1}, {1, 2}}
sage: b[0]^5
x^4*B{{-2, -1}, {1, 2}}

Note, also that since the symmetric group algebra is contained in the Brauer algebra, there is also a conversion
between the two.

sage: R.<x> = ZZ[]
sage: B = BrauerAlgebra(2, x, R)
sage: S = SymmetricGroupAlgebra(R, 2)
sage: S([2,1])*B([[1,-1],[2,-2]])
B{{-2, 1}, {-1, 2}}

jucys_murphy(j)
Return the j-th generalized Jucys-Murphy element of self.

736 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The 𝑗-th Jucys-Murphy element of a Brauer algebra is simply the 𝑗-th Jucys-Murphy element of the sym-
metric group algebra with an extra (𝑧 − 1)/2 term, where z is the parameter of the Brauer algebra.

REFERENCES:

EXAMPLES:

sage: z = var('z')
sage: B = BrauerAlgebra(3,z)
sage: B.jucys_murphy(1)
(1/2*z-1/2)*B{{-3, 3}, {-2, 2}, {-1, 1}}
sage: B.jucys_murphy(3)
-B{{-3, -2}, {-1, 1}, {2, 3}} - B{{-3, -1}, {-2, 2}, {1, 3}}
+ B{{-3, 1}, {-2, 2}, {-1, 3}} + B{{-3, 2}, {-2, 3}, {-1, 1}}
+ (1/2*z-1/2)*B{{-3, 3}, {-2, 2}, {-1, 1}}

options(*get_value, **set_value)
Set and display the global options for Brauer diagram (algebras). If no parameters are set, then the function
returns a copy of the options dictionary.

The options to diagram algebras can be accessed as the method BrauerAlgebra.options of
BrauerAlgebra and related classes.

OPTIONS:

• display – (default: normal) Specifies how the Brauer diagrams should be printed

– compact – Using the compact representation

– normal – Using the normal representation

The compact representation [A/B;pi] of the Brauer algebra diagram (see [GL1996]) has the following
components:

• A – is a list of pairs of positive elements (upper row) that are connected,

• B – is a list of pairs of negative elements (lower row) that are connected, and

• pi – is a permutation that is to be interpreted as the relative order of the remaining elements in the top
row and the bottom row.

EXAMPLES:

sage: R.<q> = QQ[]
sage: BA = BrauerAlgebra(2, q)
sage: E = BA([[1,2],[-1,-2]])
sage: E
B{{-2, -1}, {1, 2}}
sage: BA8 = BrauerAlgebra(8, q)
sage: BA8([[1,-4],[2,4],[3,8],[-7,-2],[5,7],[6,-1],[-3,-5],[-6,-8]])
B{{-8, -6}, {-7, -2}, {-5, -3}, {-4, 1}, {-1, 6}, {2, 4}, {3, 8}, {5, 7}}
sage: BrauerAlgebra.options.display = "compact"
sage: E
B[12/12;]
sage: BA8([[1,-4],[2,4],[3,8],[-7,-2],[5,7],[6,-1],[-3,-5],[-6,-8]])
B[24.38.57/35.27.68;21]
sage: BrauerAlgebra.options._reset()

See GlobalOptions for more features of these options.

5.1. Comprehensive Module List 737

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

class sage.combinat.diagram_algebras.BrauerDiagram(parent, d, check=True)
Bases: sage.combinat.diagram_algebras.AbstractPartitionDiagram

A Brauer diagram.

A Brauer diagram for an integer 𝑘 is a partition of the set {1, . . . , 𝑘,−1, . . . ,−𝑘} with block size 2.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: bd = da.BrauerDiagrams(2)
sage: bd1 = bd([[1,2],[-1,-2]])
sage: bd2 = bd([[1,2,-1,-2]])
Traceback (most recent call last):
...
ValueError: all blocks of {{-2, -1, 1, 2}} must be of size 2

bijection_on_free_nodes(two_line=False)
Return the induced bijection - as a list of (𝑥, 𝑓(𝑥)) values - from the free nodes on the top at the Brauer
diagram to the free nodes at the bottom of self.

OUTPUT:

If two_line is True, then the output is the induced bijection as a two-row list (inputs, outputs).

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: bd = da.BrauerDiagrams(3)
sage: elm = bd([[1,2],[-2,-3],[3,-1]])
sage: elm.bijection_on_free_nodes()
[[3, -1]]
sage: elm2 = bd([[1,-2],[2,-3],[3,-1]])
sage: elm2.bijection_on_free_nodes(two_line=True)
[[1, 2, 3], [-2, -3, -1]]

check()
Check the validity of the input for self.

involution_permutation_triple(curt=True)
Return the involution permutation triple of self.

From Graham-Lehrer (see BrauerDiagrams), a Brauer diagram is a triple (𝐷1, 𝐷2, 𝜋), where:

• 𝐷1 is a partition of the top nodes;

• 𝐷2 is a partition of the bottom nodes;

• 𝜋 is the induced permutation on the free nodes.

INPUT:

• curt – (default: True) if True, then return bijection on free nodes as a one-line notation (standardized
to look like a permutation), else, return the honest mapping, a list of pairs (𝑖,−𝑗) describing the
bijection on free nodes

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: bd = da.BrauerDiagrams(3)
sage: elm = bd([[1,2],[-2,-3],[3,-1]])

(continues on next page)

738 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: elm.involution_permutation_triple()
([(1, 2)], [(-3, -2)], [1])
sage: elm.involution_permutation_triple(curt=False)
([(1, 2)], [(-3, -2)], [[3, -1]])

is_elementary_symmetric()
Check if is elementary symmetric.

Let (𝐷1, 𝐷2, 𝜋) be the Graham-Lehrer representation of the Brauer diagram 𝑑. We say 𝑑 is elementary
symmetric if 𝐷1 = 𝐷2 and 𝜋 is the identity.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: bd = da.BrauerDiagrams(3)
sage: elm = bd([[1,2],[-1,-2],[3,-3]])
sage: elm.is_elementary_symmetric()
True
sage: elm2 = bd([[1,2],[-1,-3],[3,-2]])
sage: elm2.is_elementary_symmetric()
False

options(*get_value, **set_value)
Set and display the global options for Brauer diagram (algebras). If no parameters are set, then the function
returns a copy of the options dictionary.

The options to diagram algebras can be accessed as the method BrauerAlgebra.options of
BrauerAlgebra and related classes.

OPTIONS:

• display – (default: normal) Specifies how the Brauer diagrams should be printed

– compact – Using the compact representation

– normal – Using the normal representation

The compact representation [A/B;pi] of the Brauer algebra diagram (see [GL1996]) has the following
components:

• A – is a list of pairs of positive elements (upper row) that are connected,

• B – is a list of pairs of negative elements (lower row) that are connected, and

• pi – is a permutation that is to be interpreted as the relative order of the remaining elements in the top
row and the bottom row.

EXAMPLES:

sage: R.<q> = QQ[]
sage: BA = BrauerAlgebra(2, q)
sage: E = BA([[1,2],[-1,-2]])
sage: E
B{{-2, -1}, {1, 2}}
sage: BA8 = BrauerAlgebra(8, q)
sage: BA8([[1,-4],[2,4],[3,8],[-7,-2],[5,7],[6,-1],[-3,-5],[-6,-8]])
B{{-8, -6}, {-7, -2}, {-5, -3}, {-4, 1}, {-1, 6}, {2, 4}, {3, 8}, {5, 7}}
sage: BrauerAlgebra.options.display = "compact"

(continues on next page)

5.1. Comprehensive Module List 739

Combinatorics, Release 9.7

(continued from previous page)

sage: E
B[12/12;]
sage: BA8([[1,-4],[2,4],[3,8],[-7,-2],[5,7],[6,-1],[-3,-5],[-6,-8]])
B[24.38.57/35.27.68;21]
sage: BrauerAlgebra.options._reset()

See GlobalOptions for more features of these options.

perm()
Return the induced bijection on the free nodes of self in one-line notation, re-indexed and treated as a
permutation.

See also:

bijection_on_free_nodes()

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: bd = da.BrauerDiagrams(3)
sage: elm = bd([[1,2],[-2,-3],[3,-1]])
sage: elm.perm()
[1]

class sage.combinat.diagram_algebras.BrauerDiagrams(order, category=None)
Bases: sage.combinat.diagram_algebras.AbstractPartitionDiagrams

This class represents all Brauer diagrams of integer or integer +1/2 order. For more information on Brauer
diagrams, see BrauerAlgebra.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: bd = da.BrauerDiagrams(2); bd
Brauer diagrams of order 2
sage: bd.list()
[{{-2, -1}, {1, 2}}, {{-2, 1}, {-1, 2}}, {{-2, 2}, {-1, 1}}]

sage: bd = da.BrauerDiagrams(5/2); bd
Brauer diagrams of order 5/2
sage: bd.list()
[{{-3, 3}, {-2, -1}, {1, 2}},
{{-3, 3}, {-2, 1}, {-1, 2}},
{{-3, 3}, {-2, 2}, {-1, 1}}]

Element
alias of BrauerDiagram

cardinality()
Return the cardinality of self.

The number of Brauer diagrams of integer order 𝑘 is (2𝑘 − 1)!!.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: bd = da.BrauerDiagrams(3)

(continues on next page)

740 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

(continued from previous page)

sage: bd.cardinality()
15

sage: bd = da.BrauerDiagrams(7/2)
sage: bd.cardinality()
15

from_involution_permutation_triple(D1_D2_pi)
Construct a Brauer diagram of self from an involution permutation triple.

A Brauer diagram can be represented as a triple where the first entry is a list of arcs on the top row of
the diagram, the second entry is a list of arcs on the bottom row of the diagram, and the third entry is
a permutation on the remaining nodes. This triple is called the involution permutation triple. For more
information, see [GL1996].

INPUT:

• D1_D2_pi– a list or tuple where the first entry is a list of arcs on the top of the diagram, the second
entry is a list of arcs on the bottom of the diagram, and the third entry is a permutation on the free
nodes.

REFERENCES:

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: bd = da.BrauerDiagrams(4)
sage: bd.from_involution_permutation_triple([[[1,2]],[[3,4]],[2,1]])
{{-4, -3}, {-2, 3}, {-1, 4}, {1, 2}}

options(*get_value, **set_value)
Set and display the global options for Brauer diagram (algebras). If no parameters are set, then the function
returns a copy of the options dictionary.

The options to diagram algebras can be accessed as the method BrauerAlgebra.options of
BrauerAlgebra and related classes.

OPTIONS:

• display – (default: normal) Specifies how the Brauer diagrams should be printed

– compact – Using the compact representation

– normal – Using the normal representation

The compact representation [A/B;pi] of the Brauer algebra diagram (see [GL1996]) has the following
components:

• A – is a list of pairs of positive elements (upper row) that are connected,

• B – is a list of pairs of negative elements (lower row) that are connected, and

• pi – is a permutation that is to be interpreted as the relative order of the remaining elements in the top
row and the bottom row.

EXAMPLES:

sage: R.<q> = QQ[]
sage: BA = BrauerAlgebra(2, q)
sage: E = BA([[1,2],[-1,-2]])

(continues on next page)

5.1. Comprehensive Module List 741

Combinatorics, Release 9.7

(continued from previous page)

sage: E
B{{-2, -1}, {1, 2}}
sage: BA8 = BrauerAlgebra(8, q)
sage: BA8([[1,-4],[2,4],[3,8],[-7,-2],[5,7],[6,-1],[-3,-5],[-6,-8]])
B{{-8, -6}, {-7, -2}, {-5, -3}, {-4, 1}, {-1, 6}, {2, 4}, {3, 8}, {5, 7}}
sage: BrauerAlgebra.options.display = "compact"
sage: E
B[12/12;]
sage: BA8([[1,-4],[2,4],[3,8],[-7,-2],[5,7],[6,-1],[-3,-5],[-6,-8]])
B[24.38.57/35.27.68;21]
sage: BrauerAlgebra.options._reset()

See GlobalOptions for more features of these options.

symmetric_diagrams(l=None, perm=None)
Return the list of Brauer diagrams with symmetric placement of 𝑙 arcs, and with free nodes permuted
according to 𝑝𝑒𝑟𝑚.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: bd = da.BrauerDiagrams(4)
sage: bd.symmetric_diagrams(l=1, perm=[2,1])
[{{-4, -2}, {-3, 1}, {-1, 3}, {2, 4}},
{{-4, -3}, {-2, 1}, {-1, 2}, {3, 4}},
{{-4, -1}, {-3, 2}, {-2, 3}, {1, 4}},
{{-4, 2}, {-3, -1}, {-2, 4}, {1, 3}},
{{-4, 3}, {-3, 4}, {-2, -1}, {1, 2}},
{{-4, 1}, {-3, -2}, {-1, 4}, {2, 3}}]

class sage.combinat.diagram_algebras.DiagramAlgebra(k, q, base_ring, prefix, diagrams,
category=None)

Bases: sage.combinat.free_module.CombinatorialFreeModule

Abstract class for diagram algebras and is not designed to be used directly.

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element of a diagram algebra.

This subclass provides a few additional methods for partition algebra elements. Most element methods are
already implemented elsewhere.

diagram()
Return the underlying diagram of self if self is a basis element. Raises an error if self is not a
basis element.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: P = PartitionAlgebra(2, x, R)
sage: elt = 3*P([[1,2],[-2,-1]])
sage: elt.diagram()
{{-2, -1}, {1, 2}}

742 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions
../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

diagrams()
Return the diagrams in the support of self.

EXAMPLES:

sage: R.<x> = ZZ[]
sage: P = PartitionAlgebra(2, x, R)
sage: elt = 3*P([[1,2],[-2,-1]]) + P([[1,2],[-2], [-1]])
sage: sorted(elt.diagrams(), key=str)
[{{-2, -1}, {1, 2}}, {{-2}, {-1}, {1, 2}}]

order()
Return the order of self.

The order of a partition algebra is defined as half of the number of nodes in the diagrams.

EXAMPLES:

sage: q = var('q')
sage: PA = PartitionAlgebra(2, q)
sage: PA.order()
2

set_partitions()
Return the collection of underlying set partitions indexing the basis elements of a given diagram algebra.

Todo: Is this really necessary? deprecate?

class sage.combinat.diagram_algebras.DiagramBasis(k, q, base_ring, prefix, diagrams, category=None)
Bases: sage.combinat.diagram_algebras.DiagramAlgebra

Abstract base class for diagram algebras in the diagram basis.

product_on_basis(d1, d2)
Return the product 𝐷𝑑1𝐷𝑑2 by two basis diagrams.

class sage.combinat.diagram_algebras.IdealDiagram(parent, d, check=True)
Bases: sage.combinat.diagram_algebras.AbstractPartitionDiagram

The element class for a ideal diagram.

An ideal diagram for an integer 𝑘 is a partition of the set {1, . . . , 𝑘,−1, . . . ,−𝑘} where the propagating number
is strictly smaller than the order.

EXAMPLES:

sage: from sage.combinat.diagram_algebras import IdealDiagrams as IDs
sage: IDs(2)
Ideal diagrams of order 2
sage: IDs(2).list()
[{{-2, -1, 1, 2}},
{{-2, 1, 2}, {-1}},
{{-2}, {-1, 1, 2}},
{{-2, -1}, {1, 2}},
{{-2}, {-1}, {1, 2}},
{{-2, -1, 1}, {2}},
{{-2, 1}, {-1}, {2}},

(continues on next page)

5.1. Comprehensive Module List 743

Combinatorics, Release 9.7

(continued from previous page)

{{-2, -1, 2}, {1}},
{{-2, 2}, {-1}, {1}},
{{-2}, {-1, 1}, {2}},
{{-2}, {-1, 2}, {1}},
{{-2, -1}, {1}, {2}},
{{-2}, {-1}, {1}, {2}}]

sage: from sage.combinat.diagram_algebras import PartitionDiagrams as PDs
sage: PDs(4).cardinality() == factorial(4) + IDs(4).cardinality()
True

check()
Check the validity of the input for self.

class sage.combinat.diagram_algebras.IdealDiagrams(order, category=None)
Bases: sage.combinat.diagram_algebras.AbstractPartitionDiagrams

All “ideal” diagrams of integer or integer +1/2 order.

If 𝑘 is an integer then an ideal diagram of order 𝑘 is a partition diagram of order 𝑘 with propagating number less
than 𝑘.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: id = da.IdealDiagrams(3)
sage: id.an_element() in id
True
sage: id.cardinality() == len(id.list())
True
sage: da.IdealDiagrams(3/2).list()
[{{-2, -1, 1, 2}},
{{-2, 1, 2}, {-1}},
{{-2, -1, 2}, {1}},
{{-2, 2}, {-1}, {1}}]

Element
alias of IdealDiagram

class sage.combinat.diagram_algebras.OrbitBasis(alg)
Bases: sage.combinat.diagram_algebras.DiagramAlgebra

The orbit basis of the partition algebra.

Let 𝐷𝜋 represent the diagram basis element indexed by the partition 𝜋, then (see equations (2.14), (2.17) and
(2.18) of [BH2017])

𝐷𝜋 =
∑︁
𝜏≥𝜋

𝑂𝜏 ,

where the sum is over all partitions 𝜏 which are coarser than 𝜋 and 𝑂𝜏 is the orbit basis element indexed by the
partition 𝜏 .

If 𝜇2𝑘(𝜋, 𝜏) represents the Moebius function of the partition lattice, then

𝑂𝜋 =
∑︁
𝜏≥𝜋

𝜇2𝑘(𝜋, 𝜏)𝐷𝜏 .

744 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

If 𝜏 is a partition of ℓ blocks and the 𝑖𝑡ℎ block of 𝜏 is a union of 𝑏𝑖 blocks of 𝜋, then

𝜇2𝑘(𝜋, 𝜏) =

ℓ∏︁
𝑖=1

(−1)𝑏𝑖−1(𝑏𝑖 − 1)!.

EXAMPLES:

sage: R.<x> = QQ[]
sage: P2 = PartitionAlgebra(2, x, R)
sage: O2 = P2.orbit_basis(); O2
Orbit basis of Partition Algebra of rank 2 with parameter x over
Univariate Polynomial Ring in x over Rational Field
sage: oa = O2([[1],[-1],[2,-2]]); ob = O2([[-1,-2,2],[1]]); oa, ob
(O{{-2, 2}, {-1}, {1}}, O{{-2, -1, 2}, {1}})
sage: oa * ob
(x-2)*O{{-2, -1, 2}, {1}}

We can convert between the two bases:

sage: pa = P2(oa); pa
2*P{{-2, -1, 1, 2}} - P{{-2, -1, 2}, {1}} - P{{-2, 1, 2}, {-1}}
+ P{{-2, 2}, {-1}, {1}} - P{{-2, 2}, {-1, 1}}
sage: pa * ob
(-x+2)*P{{-2, -1, 1, 2}} + (x-2)*P{{-2, -1, 2}, {1}}
sage: _ == pa * P2(ob)
True
sage: O2(pa * ob)
(x-2)*O{{-2, -1, 2}, {1}}

Note that the unit in the orbit basis is not a single diagram, in contrast to the natural diagram basis:

sage: P2.one()
P{{-2, 2}, {-1, 1}}
sage: O2.one()
O{{-2, -1, 1, 2}} + O{{-2, 2}, {-1, 1}}
sage: O2.one() == P2.one()
True

class Element
Bases: sage.combinat.diagram_algebras.PartitionAlgebra.Element

to_diagram_basis()
Expand self in the natural diagram basis of the partition algebra.

EXAMPLES:

sage: R.<x> = QQ[]
sage: P = PartitionAlgebra(2, x, R)
sage: O = P.orbit_basis()
sage: elt = O.an_element(); elt
3*O{{-2}, {-1, 1, 2}} + 2*O{{-2, -1, 1, 2}} + 2*O{{-2, 1, 2}, {-1}}
sage: elt.to_diagram_basis()
3*P{{-2}, {-1, 1, 2}} - 3*P{{-2, -1, 1, 2}} + 2*P{{-2, 1, 2}, {-1}}
sage: pp = P.an_element(); pp
3*P{{-2}, {-1, 1, 2}} + 2*P{{-2, -1, 1, 2}} + 2*P{{-2, 1, 2}, {-1}}

(continues on next page)

5.1. Comprehensive Module List 745

Combinatorics, Release 9.7

(continued from previous page)

sage: op = pp.to_orbit_basis(); op
3*O{{-2}, {-1, 1, 2}} + 7*O{{-2, -1, 1, 2}} + 2*O{{-2, 1, 2}, {-1}}
sage: pp == op.to_diagram_basis()
True

diagram_basis()
Return the associated partition algebra of self in the diagram basis.

EXAMPLES:

sage: R.<x> = QQ[]
sage: O2 = PartitionAlgebra(2, x, R).orbit_basis()
sage: P2 = O2.diagram_basis(); P2
Partition Algebra of rank 2 with parameter x over Univariate
Polynomial Ring in x over Rational Field
sage: o2 = O2.an_element(); o2
3*O{{-2}, {-1, 1, 2}} + 2*O{{-2, -1, 1, 2}} + 2*O{{-2, 1, 2}, {-1}}
sage: P2(o2)
3*P{{-2}, {-1, 1, 2}} - 3*P{{-2, -1, 1, 2}} + 2*P{{-2, 1, 2}, {-1}}

one()
Return the element 1 of the partition algebra in the orbit basis.

EXAMPLES:

sage: R.<x> = QQ[]
sage: P2 = PartitionAlgebra(2, x, R)
sage: O2 = P2.orbit_basis()
sage: O2.one()
O{{-2, -1, 1, 2}} + O{{-2, 2}, {-1, 1}}

product_on_basis(d1, d2)
Return the product 𝑂𝑑1𝑂𝑑2 of two elements in the orbit basis self.

EXAMPLES:

sage: R.<x> = QQ[]
sage: OP = PartitionAlgebra(2, x, R).orbit_basis()
sage: SP = OP.basis().keys(); sp = SP([[-2, -1, 1, 2]])
sage: OP.product_on_basis(sp, sp)
O{{-2, -1, 1, 2}}
sage: o1 = OP.one(); o2 = OP([]); o3 = OP.an_element()
sage: o2 == o1
False
sage: o1 * o1 == o1
True
sage: o3 * o1 == o1 * o3 and o3 * o1 == o3
True
sage: o4 = (3*OP([[-2, -1, 1], [2]]) + 2*OP([[-2, -1, 1, 2]])
....: + 2*OP([[-2, -1, 2], [1]]))
sage: o4 * o4
6*O{{-2, -1, 1}, {2}} + 4*O{{-2, -1, 1, 2}} + 4*O{{-2, -1, 2}, {1}}

We compute Examples 4.5 in [BH2017]:

746 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: R.<x> = QQ[]
sage: P = PartitionAlgebra(3,x); O = P.orbit_basis()
sage: O[[1,2,3],[-1,-2,-3]] * O[[1,2,3],[-1,-2,-3]]
(x-2)*O{{-3, -2, -1}, {1, 2, 3}} + (x-1)*O{{-3, -2, -1, 1, 2, 3}}

sage: P = PartitionAlgebra(4,x); O = P.orbit_basis()
sage: O[[1],[-1],[2,3],[4,-2],[-3,-4]] * O[[1],[2,-2],[3,4],[-1,-3],[-4]]
(x^2-11*x+30)*O{{-4}, {-3, -1}, {-2, 4}, {1}, {2, 3}}
+ (x^2-9*x+20)*O{{-4}, {-3, -1, 1}, {-2, 4}, {2, 3}}
+ (x^2-9*x+20)*O{{-4}, {-3, -1, 2, 3}, {-2, 4}, {1}}
+ (x^2-9*x+20)*O{{-4, 1}, {-3, -1}, {-2, 4}, {2, 3}}
+ (x^2-7*x+12)*O{{-4, 1}, {-3, -1, 2, 3}, {-2, 4}}
+ (x^2-9*x+20)*O{{-4, 2, 3}, {-3, -1}, {-2, 4}, {1}}
+ (x^2-7*x+12)*O{{-4, 2, 3}, {-3, -1, 1}, {-2, 4}}

sage: O[[1,-1],[2,-2],[3],[4,-3],[-4]] * O[[1,-2],[2],[3,-1],[4],[-3],[-4]]
(x-6)*O{{-4}, {-3}, {-2, 1}, {-1, 4}, {2}, {3}}
+ (x-5)*O{{-4}, {-3, 3}, {-2, 1}, {-1, 4}, {2}}
+ (x-5)*O{{-4, 3}, {-3}, {-2, 1}, {-1, 4}, {2}}

sage: P = PartitionAlgebra(6,x); O = P.orbit_basis()
sage: (O[[1,-2,-3],[2,4],[3,5,-6],[6],[-1],[-4,-5]]
....: * O[[1,-2],[2,3],[4],[5],[6,-4,-5,-6],[-1,-3]])
0

sage: (O[[1,-2],[2,-3],[3,5],[4,-5],[6,-4],[-1],[-6]]
....: * O[[1,-2],[2,-1],[3,-4],[4,-6],[5,-3],[6,-5]])
O{{-6, 6}, {-5}, {-4, 2}, {-3, 4}, {-2}, {-1, 1}, {3, 5}}

REFERENCES:

• [BH2017]

class sage.combinat.diagram_algebras.PartitionAlgebra(k, q, base_ring, prefix)
Bases: sage.combinat.diagram_algebras.DiagramBasis, sage.combinat.diagram_algebras.
UnitDiagramMixin

A partition algebra.

A partition algebra of rank 𝑘 over a given ground ring 𝑅 is an algebra with (𝑅-module) basis indexed by the
collection of set partitions of {1, . . . , 𝑘,−1, . . . ,−𝑘}. Each such set partition can be represented by a graph on
nodes {1, . . . , 𝑘,−1, . . . ,−𝑘} arranged in two rows, with nodes 1, . . . , 𝑘 in the top row from left to right and
with nodes−1, . . . ,−𝑘 in the bottom row from left to right, and edges drawn such that the connected components
of the graph are precisely the parts of the set partition. (This choice of edges is often not unique, and so there
are often many graphs representing one and the same set partition; the representation nevertheless is useful and
vivid. We often speak of “diagrams” to mean graphs up to such equivalence of choices of edges; of course, we
could just as well speak of set partitions.)

There is not just one partition algebra of given rank over a given ground ring, but rather a whole family of
them, indexed by the elements of𝑅. More precisely, for every 𝑞 ∈ 𝑅, the partition algebra of rank 𝑘 over𝑅 with
parameter 𝑞 is defined to be the𝑅-algebra with basis the collection of all set partitions of {1, . . . , 𝑘,−1, . . . ,−𝑘},
where the product of two basis elements is given by the rule

𝑎 · 𝑏 = 𝑞𝑁 (𝑎 ∘ 𝑏),

where 𝑎 ∘ 𝑏 is the composite set partition obtained by placing the diagram (i.e., graph) of 𝑎 above the diagram

5.1. Comprehensive Module List 747

Combinatorics, Release 9.7

of 𝑏, identifying the bottom row nodes of 𝑎 with the top row nodes of 𝑏, and omitting any closed “loops” in the
middle. The number 𝑁 is the number of connected components formed by the omitted loops.

The parameter 𝑞 is a deformation parameter. Taking 𝑞 = 1 produces the semigroup algebra (over the base ring)
of the partition monoid, in which the product of two set partitions is simply given by their composition.

The partition algebra is regarded as an example of a “diagram algebra” due to the fact that its natural basis is
given by certain graphs often called diagrams.

There are a number of predefined elements for the partition algebra. We define the cup/cap pair by a(). The
simple transpositions are denoted s(). Finally, we define elements e(), where if 𝑖 = (2𝑟 + 1)/2, then e(i)
contains the blocks {𝑟 + 1} and {−𝑟 − 1} and if 𝑖 ∈ Z, then 𝑒𝑖 contains the block {−𝑖,−𝑖 − 1, 𝑖, 𝑖 + 1}, with
all other blocks being {−𝑗, 𝑗}. So we have:

sage: P = PartitionAlgebra(4, 0)
sage: P.a(2)
P{{-4, 4}, {-3, -2}, {-1, 1}, {2, 3}}
sage: P.e(3/2)
P{{-4, 4}, {-3, 3}, {-2}, {-1, 1}, {2}}
sage: P.e(2)
P{{-4, 4}, {-3, -2, 2, 3}, {-1, 1}}
sage: P.e(5/2)
P{{-4, 4}, {-3}, {-2, 2}, {-1, 1}, {3}}
sage: P.s(2)
P{{-4, 4}, {-3, 2}, {-2, 3}, {-1, 1}}

An excellent reference for partition algebras and their various subalgebras (Brauer algebra, Temperley–Lieb
algebra, etc) is the paper [HR2005].

INPUT:

• k – rank of the algebra

• q – the deformation parameter 𝑞

OPTIONAL ARGUMENTS:

• base_ring – (default None) a ring containing q; if None, then Sage automatically chooses the parent of q

• prefix – (default "P") a label for the basis elements

EXAMPLES:

The following shorthand simultaneously defines the univariate polynomial ring over the rationals as well as the
variable x:

sage: R.<x> = PolynomialRing(QQ)
sage: R
Univariate Polynomial Ring in x over Rational Field
sage: x
x
sage: x.parent() is R
True

We now define the partition algebra of rank 2 with parameter x over Z in the usual (diagram) basis:

sage: R.<x> = ZZ[]
sage: A2 = PartitionAlgebra(2, x, R)
sage: A2

(continues on next page)

748 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Partition Algebra of rank 2 with parameter x
over Univariate Polynomial Ring in x over Integer Ring
sage: A2.basis().keys()
Partition diagrams of order 2
sage: A2.basis().keys()([[-2, 1, 2], [-1]])
{{-2, 1, 2}, {-1}}
sage: A2.basis().list()
[P{{-2, -1, 1, 2}}, P{{-2, 1, 2}, {-1}},
P{{-2}, {-1, 1, 2}}, P{{-2, -1}, {1, 2}},
P{{-2}, {-1}, {1, 2}}, P{{-2, -1, 1}, {2}},
P{{-2, 1}, {-1, 2}}, P{{-2, 1}, {-1}, {2}},
P{{-2, 2}, {-1, 1}}, P{{-2, -1, 2}, {1}},
P{{-2, 2}, {-1}, {1}}, P{{-2}, {-1, 1}, {2}},
P{{-2}, {-1, 2}, {1}}, P{{-2, -1}, {1}, {2}},
P{{-2}, {-1}, {1}, {2}}]
sage: E = A2([[1,2],[-2,-1]]); E
P{{-2, -1}, {1, 2}}
sage: E in A2.basis().list()
True
sage: E^2
x*P{{-2, -1}, {1, 2}}
sage: E^5
x^4*P{{-2, -1}, {1, 2}}
sage: (A2([[2,-2],[-1,1]]) - 2*A2([[1,2],[-1,-2]]))^2
(4*x-4)*P{{-2, -1}, {1, 2}} + P{{-2, 2}, {-1, 1}}

Next, we construct an element:

sage: a2 = A2.an_element(); a2
3*P{{-2}, {-1, 1, 2}} + 2*P{{-2, -1, 1, 2}} + 2*P{{-2, 1, 2}, {-1}}

There is a natural embedding into partition algebras on more elements, by adding identity strands:

sage: A4 = PartitionAlgebra(4, x, R)
sage: A4(a2)
3*P{{-4, 4}, {-3, 3}, {-2}, {-1, 1, 2}}
+ 2*P{{-4, 4}, {-3, 3}, {-2, -1, 1, 2}}
+ 2*P{{-4, 4}, {-3, 3}, {-2, 1, 2}, {-1}}

Thus, the empty partition corresponds to the identity:

sage: A4([])
P{{-4, 4}, {-3, 3}, {-2, 2}, {-1, 1}}
sage: A4(5)
5*P{{-4, 4}, {-3, 3}, {-2, 2}, {-1, 1}}

The group algebra of the symmetric group is a subalgebra:

sage: S3 = SymmetricGroupAlgebra(ZZ, 3)
sage: s3 = S3.an_element(); s3
[1, 2, 3] + 2*[1, 3, 2] + 3*[2, 1, 3] + [3, 1, 2]
sage: A4(s3)
P{{-4, 4}, {-3, 1}, {-2, 3}, {-1, 2}}

(continues on next page)

5.1. Comprehensive Module List 749

Combinatorics, Release 9.7

(continued from previous page)

+ 2*P{{-4, 4}, {-3, 2}, {-2, 3}, {-1, 1}}
+ 3*P{{-4, 4}, {-3, 3}, {-2, 1}, {-1, 2}}
+ P{{-4, 4}, {-3, 3}, {-2, 2}, {-1, 1}}
sage: A4([2,1])
P{{-4, 4}, {-3, 3}, {-2, 1}, {-1, 2}}

Be careful not to confuse the embedding of the group algebra of the symmetric group with the embedding of
partial set partitions. The latter are embedded by adding the parts {𝑖,−𝑖} if possible, and singletons sets for the
remaining parts:

sage: A4([[2,1]])
P{{-4, 4}, {-3, 3}, {-2}, {-1}, {1, 2}}
sage: A4([[-1,3],[-2,-3,1]])
P{{-4, 4}, {-3, -2, 1}, {-1, 3}, {2}}

Another subalgebra is the Brauer algebra, which has perfect matchings as basis elements. The group algebra of
the symmetric group is in fact a subalgebra of the Brauer algebra:

sage: B3 = BrauerAlgebra(3, x, R)
sage: b3 = B3(s3); b3
B{{-3, 1}, {-2, 3}, {-1, 2}} + 2*B{{-3, 2}, {-2, 3}, {-1, 1}}
+ 3*B{{-3, 3}, {-2, 1}, {-1, 2}} + B{{-3, 3}, {-2, 2}, {-1, 1}}

An important basis of the partition algebra is the orbit basis:

sage: O2 = A2.orbit_basis()
sage: o2 = O2([[1,2],[-1,-2]]) + O2([[1,2,-1,-2]]); o2
O{{-2, -1}, {1, 2}} + O{{-2, -1, 1, 2}}

The diagram basis element corresponds to the sum of all orbit basis elements indexed by coarser set partitions:

sage: A2(o2)
P{{-2, -1}, {1, 2}}

We can convert back from the orbit basis to the diagram basis:

sage: o2 = O2.an_element(); o2
3*O{{-2}, {-1, 1, 2}} + 2*O{{-2, -1, 1, 2}} + 2*O{{-2, 1, 2}, {-1}}
sage: A2(o2)
3*P{{-2}, {-1, 1, 2}} - 3*P{{-2, -1, 1, 2}} + 2*P{{-2, 1, 2}, {-1}}

One can work with partition algebras using a symbol for the parameter, leaving the base ring unspecified. This
implies that the underlying base ring is Sage’s symbolic ring.

sage: q = var('q')
sage: PA = PartitionAlgebra(2, q); PA
Partition Algebra of rank 2 with parameter q over Symbolic Ring
sage: PA([[1,2],[-2,-1]])^2 == q*PA([[1,2],[-2,-1]])
True
sage: (PA([[2, -2], [1, -1]]) - 2*PA([[-2, -1], [1, 2]]))^2 == (4*q-4)*PA([[1, 2],␣
→˓[-2, -1]]) + PA([[2, -2], [1, -1]])
True

The identity element of the partition algebra is the set partition {{1,−1}, {2,−2}, . . . , {𝑘,−𝑘}}:

750 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: P = PA.basis().list()
sage: PA.one()
P{{-2, 2}, {-1, 1}}
sage: PA.one() * P[7] == P[7]
True
sage: P[7] * PA.one() == P[7]
True

We now give some further examples of the use of the other arguments. One may wish to “specialize” the param-
eter to a chosen element of the base ring:

sage: R.<q> = RR[]
sage: PA = PartitionAlgebra(2, q, R, prefix='B')
sage: PA
Partition Algebra of rank 2 with parameter q over
Univariate Polynomial Ring in q over Real Field with 53 bits of precision
sage: PA([[1,2],[-1,-2]])
1.00000000000000*B{{-2, -1}, {1, 2}}
sage: PA = PartitionAlgebra(2, 5, base_ring=ZZ, prefix='B')
sage: PA
Partition Algebra of rank 2 with parameter 5 over Integer Ring
sage: (PA([[2, -2], [1, -1]]) - 2*PA([[-2, -1], [1, 2]]))^2 == 16*PA([[-2, -1], [1,␣
→˓2]]) + PA([[2, -2], [1, -1]])
True

Symmetric group algebra elements and elements from other subalgebras of the partition algebra (e.g.,
BrauerAlgebra and TemperleyLiebAlgebra) can also be coerced into the partition algebra:

sage: S = SymmetricGroupAlgebra(SR, 2)
sage: B = BrauerAlgebra(2, x, SR)
sage: A = PartitionAlgebra(2, x, SR)
sage: S([2,1])*A([[1,-1],[2,-2]])
P{{-2, 1}, {-1, 2}}
sage: B([[-1,-2],[2,1]]) * A([[1],[-1],[2,-2]])
P{{-2}, {-1}, {1, 2}}
sage: A([[1],[-1],[2,-2]]) * B([[-1,-2],[2,1]])
P{{-2, -1}, {1}, {2}}

The same is true if the elements come from a subalgebra of a partition algebra of smaller order, or if they are
defined over a different base ring:

sage: R = FractionField(ZZ['q']); q = R.gen()
sage: S = SymmetricGroupAlgebra(ZZ, 2)
sage: B = BrauerAlgebra(2, q, ZZ[q])
sage: A = PartitionAlgebra(3, q, R)
sage: S([2,1])*A([[1,-1],[2,-3],[3,-2]])
P{{-3, 1}, {-2, 3}, {-1, 2}}
sage: A(B([[-1,-2],[2,1]]))
P{{-3, 3}, {-2, -1}, {1, 2}}

class Element
Bases: sage.combinat.diagram_algebras.DiagramAlgebra.Element

dual()
Return the dual of self.

5.1. Comprehensive Module List 751

Combinatorics, Release 9.7

The dual of an element in the partition algebra is formed by taking the dual of each diagram in the
support.

EXAMPLES:

sage: R.<x> = QQ[]
sage: P = PartitionAlgebra(2, x, R)
sage: elt = P.an_element(); elt
3*P{{-2}, {-1, 1, 2}} + 2*P{{-2, -1, 1, 2}} + 2*P{{-2, 1, 2}, {-1}}
sage: elt.dual()
3*P{{-2, -1, 1}, {2}} + 2*P{{-2, -1, 1, 2}} + 2*P{{-2, -1, 2}, {1}}

to_orbit_basis()
Return self in the orbit basis of the associated partition algebra.

EXAMPLES:

sage: R.<x> = QQ[]
sage: P = PartitionAlgebra(2, x, R)
sage: pp = P.an_element();
sage: pp.to_orbit_basis()
3*O{{-2}, {-1, 1, 2}} + 7*O{{-2, -1, 1, 2}} + 2*O{{-2, 1, 2}, {-1}}
sage: pp = (3*P([[-2], [-1, 1, 2]]) + 2*P([[-2, -1, 1, 2]])
....: + 2*P([[-2, 1, 2], [-1]])); pp
3*P{{-2}, {-1, 1, 2}} + 2*P{{-2, -1, 1, 2}} + 2*P{{-2, 1, 2}, {-1}}
sage: pp.to_orbit_basis()
3*O{{-2}, {-1, 1, 2}} + 7*O{{-2, -1, 1, 2}} + 2*O{{-2, 1, 2}, {-1}}

L(i)
Return the i-th Jucys-Murphy element 𝐿𝑖 from [Eny2012].

INPUT:

• i – a half integer between 1/2 and 𝑘

ALGORITHM:

We use the recursive definition for 𝐿2𝑖 given in [Cre2020]. See also [Eny2012] and [Eny2013].

Note: 𝐿1/2 and 𝐿1 differs from [HR2005].

EXAMPLES:

sage: R.<n> = QQ[]
sage: P3 = PartitionAlgebra(3, n)
sage: P3.jucys_murphy_element(1/2)
0
sage: P3.jucys_murphy_element(1)
P{{-3, 3}, {-2, 2}, {-1}, {1}}
sage: P3.jucys_murphy_element(2)
P{{-3, 3}, {-2}, {-1, 1}, {2}} - P{{-3, 3}, {-2}, {-1, 1, 2}}
+ P{{-3, 3}, {-2, -1}, {1, 2}} - P{{-3, 3}, {-2, -1, 1}, {2}}
+ P{{-3, 3}, {-2, 1}, {-1, 2}}
sage: P3.jucys_murphy_element(3/2)
n*P{{-3, 3}, {-2, -1, 1, 2}} - P{{-3, 3}, {-2, -1, 2}, {1}}
- P{{-3, 3}, {-2, 1, 2}, {-1}} + P{{-3, 3}, {-2, 2}, {-1, 1}}

(continues on next page)

752 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: P3.L(3/2) * P3.L(2) == P3.L(2) * P3.L(3/2)
True

We test the relations in Lemma 2.2.3(2) in [Cre2020] (v1):

sage: k = 4
sage: R.<n> = QQ[]
sage: P = PartitionAlgebra(k, n)
sage: L = [P.L(i/2) for i in range(1,2*k+1)]
sage: all(x.dual() == x for x in L)
True
sage: all(x * y == y * x for x in L for y in L) # long time
True
sage: Lsum = sum(L)
sage: gens = [P.s(i) for i in range(1,k)]
sage: gens += [P.e(i/2) for i in range(1,2*k)]
sage: all(x * Lsum == Lsum * x for x in gens)
True

Also the relations in Lemma 2.2.3(3) in [Cre2020] (v1):

sage: all(P.e((2*i+1)/2) * P.sigma(2*i/2) * P.e((2*i+1)/2)
....: == (n - P.L((2*i-1)/2)) * P.e((2*i+1)/2) for i in range(1,k))
True
sage: all(P.e(i/2) * (P.L(i/2) + P.L((i+1)/2))
....: == (P.L(i/2) + P.L((i+1)/2)) * P.e(i/2)
....: == n * P.e(i/2) for i in range(1,2*k))
True
sage: all(P.sigma(2*i/2) * P.e((2*i-1)/2) * P.e(2*i/2)
....: == P.L(2*i/2) * P.e(2*i/2) for i in range(1,k))
True
sage: all(P.e(2*i/2) * P.e((2*i-1)/2) * P.sigma(2*i/2)
....: == P.e(2*i/2) * P.L(2*i/2) for i in range(1,k))
True
sage: all(P.sigma((2*i+1)/2) * P.e((2*i+1)/2) * P.e(2*i/2)
....: == P.L(2*i/2) * P.e(2*i/2) for i in range(1,k))
True
sage: all(P.e(2*i/2) * P.e((2*i+1)/2) * P.sigma((2*i+1)/2)
....: == P.e(2*i/2) * P.L(2*i/2) for i in range(1,k))
True

The same tests for a half integer partition algebra:

sage: k = 9/2
sage: R.<n> = QQ[]
sage: P = PartitionAlgebra(k, n)
sage: L = [P.L(i/2) for i in range(1,2*k+1)]
sage: all(x.dual() == x for x in L)
True
sage: all(x * y == y * x for x in L for y in L) # long time
True
sage: Lsum = sum(L)
sage: gens = [P.s(i) for i in range(1,k-1/2)]

(continues on next page)

5.1. Comprehensive Module List 753

Combinatorics, Release 9.7

(continued from previous page)

sage: gens += [P.e(i/2) for i in range(1,2*k)]
sage: all(x * Lsum == Lsum * x for x in gens)
True
sage: all(P.e((2*i+1)/2) * P.sigma(2*i/2) * P.e((2*i+1)/2)
....: == (n - P.L((2*i-1)/2)) * P.e((2*i+1)/2) for i in range(1,floor(k)))
True
sage: all(P.e(i/2) * (P.L(i/2) + P.L((i+1)/2))
....: == (P.L(i/2) + P.L((i+1)/2)) * P.e(i/2)
....: == n * P.e(i/2) for i in range(1,2*k))
True
sage: all(P.sigma(2*i/2) * P.e((2*i-1)/2) * P.e(2*i/2)
....: == P.L(2*i/2) * P.e(2*i/2) for i in range(1,ceil(k)))
True
sage: all(P.e(2*i/2) * P.e((2*i-1)/2) * P.sigma(2*i/2)
....: == P.e(2*i/2) * P.L(2*i/2) for i in range(1,ceil(k)))
True
sage: all(P.sigma((2*i+1)/2) * P.e((2*i+1)/2) * P.e(2*i/2)
....: == P.L(2*i/2) * P.e(2*i/2) for i in range(1,floor(k)))
True
sage: all(P.e(2*i/2) * P.e((2*i+1)/2) * P.sigma((2*i+1)/2)
....: == P.e(2*i/2) * P.L(2*i/2) for i in range(1,floor(k)))
True

a(i)
Return the element 𝑎𝑖 in self.

The element 𝑎𝑖 is the cap and cup at (𝑖, 𝑖 + 1), so it contains the blocks {𝑖, 𝑖 + 1}, {−𝑖,−𝑖 − 1}. Other
blocks are of the form {−𝑗, 𝑗}.

INPUT:

• i – an integer between 1 and 𝑘 − 1

EXAMPLES:

sage: R.<n> = QQ[]
sage: P3 = PartitionAlgebra(3, n)
sage: P3.a(1)
P{{-3, 3}, {-2, -1}, {1, 2}}
sage: P3.a(2)
P{{-3, -2}, {-1, 1}, {2, 3}}

sage: P3 = PartitionAlgebra(5/2, n)
sage: P3.a(1)
P{{-3, 3}, {-2, -1}, {1, 2}}
sage: P3.a(2)
Traceback (most recent call last):
...
ValueError: i must be an integer between 1 and 1

e(i)
Return the element 𝑒𝑖 in self.

If 𝑖 = (2𝑟 + 1)/2, then 𝑒𝑖 contains the blocks {𝑟 + 1} and {−𝑟 − 1}. If 𝑖 ∈ Z, then 𝑒𝑖 contains the block
{−𝑖,−𝑖− 1, 𝑖, 𝑖+ 1}. Other blocks are of the form {−𝑗, 𝑗}.

754 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• i – a half integer between 1/2 and 𝑘 − 1/2

EXAMPLES:

sage: R.<n> = QQ[]
sage: P3 = PartitionAlgebra(3, n)
sage: P3.e(1)
P{{-3, 3}, {-2, -1, 1, 2}}
sage: P3.e(2)
P{{-3, -2, 2, 3}, {-1, 1}}
sage: P3.e(1/2)
P{{-3, 3}, {-2, 2}, {-1}, {1}}
sage: P3.e(5/2)
P{{-3}, {-2, 2}, {-1, 1}, {3}}
sage: P3.e(0)
Traceback (most recent call last):
...
ValueError: i must be an (half) integer between 1/2 and 5/2
sage: P3.e(3)
Traceback (most recent call last):
...
ValueError: i must be an (half) integer between 1/2 and 5/2

sage: P2h = PartitionAlgebra(5/2,n)
sage: [P2h.e(k/2) for k in range(1,5)]
[P{{-3, 3}, {-2, 2}, {-1}, {1}},
P{{-3, 3}, {-2, -1, 1, 2}},
P{{-3, 3}, {-2}, {-1, 1}, {2}},
P{{-3, -2, 2, 3}, {-1, 1}}]

generator_a(i)
Return the element 𝑎𝑖 in self.

The element 𝑎𝑖 is the cap and cup at (𝑖, 𝑖 + 1), so it contains the blocks {𝑖, 𝑖 + 1}, {−𝑖,−𝑖 − 1}. Other
blocks are of the form {−𝑗, 𝑗}.

INPUT:

• i – an integer between 1 and 𝑘 − 1

EXAMPLES:

sage: R.<n> = QQ[]
sage: P3 = PartitionAlgebra(3, n)
sage: P3.a(1)
P{{-3, 3}, {-2, -1}, {1, 2}}
sage: P3.a(2)
P{{-3, -2}, {-1, 1}, {2, 3}}

sage: P3 = PartitionAlgebra(5/2, n)
sage: P3.a(1)
P{{-3, 3}, {-2, -1}, {1, 2}}
sage: P3.a(2)
Traceback (most recent call last):

(continues on next page)

5.1. Comprehensive Module List 755

Combinatorics, Release 9.7

(continued from previous page)

...
ValueError: i must be an integer between 1 and 1

generator_e(i)
Return the element 𝑒𝑖 in self.

If 𝑖 = (2𝑟 + 1)/2, then 𝑒𝑖 contains the blocks {𝑟 + 1} and {−𝑟 − 1}. If 𝑖 ∈ Z, then 𝑒𝑖 contains the block
{−𝑖,−𝑖− 1, 𝑖, 𝑖+ 1}. Other blocks are of the form {−𝑗, 𝑗}.

INPUT:

• i – a half integer between 1/2 and 𝑘 − 1/2

EXAMPLES:

sage: R.<n> = QQ[]
sage: P3 = PartitionAlgebra(3, n)
sage: P3.e(1)
P{{-3, 3}, {-2, -1, 1, 2}}
sage: P3.e(2)
P{{-3, -2, 2, 3}, {-1, 1}}
sage: P3.e(1/2)
P{{-3, 3}, {-2, 2}, {-1}, {1}}
sage: P3.e(5/2)
P{{-3}, {-2, 2}, {-1, 1}, {3}}
sage: P3.e(0)
Traceback (most recent call last):
...
ValueError: i must be an (half) integer between 1/2 and 5/2
sage: P3.e(3)
Traceback (most recent call last):
...
ValueError: i must be an (half) integer between 1/2 and 5/2

sage: P2h = PartitionAlgebra(5/2,n)
sage: [P2h.e(k/2) for k in range(1,5)]
[P{{-3, 3}, {-2, 2}, {-1}, {1}},
P{{-3, 3}, {-2, -1, 1, 2}},
P{{-3, 3}, {-2}, {-1, 1}, {2}},
P{{-3, -2, 2, 3}, {-1, 1}}]

generator_s(i)
Return the i-th simple transposition 𝑠𝑖 in self.

Borrowing the notation from the symmetric group, the 𝑖-th simple transposition 𝑠𝑖 has blocks of the form
{−𝑖, 𝑖+ 1}, {−𝑖− 1, 𝑖}. Other blocks are of the form {−𝑗, 𝑗}.

INPUT:

• i – an integer between 1 and 𝑘 − 1

EXAMPLES:

sage: R.<n> = QQ[]
sage: P3 = PartitionAlgebra(3, n)
sage: P3.s(1)

(continues on next page)

756 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

P{{-3, 3}, {-2, 1}, {-1, 2}}
sage: P3.s(2)
P{{-3, 2}, {-2, 3}, {-1, 1}}

sage: R.<n> = ZZ[]
sage: P2h = PartitionAlgebra(5/2,n)
sage: P2h.s(1)
P{{-3, 3}, {-2, 1}, {-1, 2}}

jucys_murphy_element(i)
Return the i-th Jucys-Murphy element 𝐿𝑖 from [Eny2012].

INPUT:

• i – a half integer between 1/2 and 𝑘

ALGORITHM:

We use the recursive definition for 𝐿2𝑖 given in [Cre2020]. See also [Eny2012] and [Eny2013].

Note: 𝐿1/2 and 𝐿1 differs from [HR2005].

EXAMPLES:

sage: R.<n> = QQ[]
sage: P3 = PartitionAlgebra(3, n)
sage: P3.jucys_murphy_element(1/2)
0
sage: P3.jucys_murphy_element(1)
P{{-3, 3}, {-2, 2}, {-1}, {1}}
sage: P3.jucys_murphy_element(2)
P{{-3, 3}, {-2}, {-1, 1}, {2}} - P{{-3, 3}, {-2}, {-1, 1, 2}}
+ P{{-3, 3}, {-2, -1}, {1, 2}} - P{{-3, 3}, {-2, -1, 1}, {2}}
+ P{{-3, 3}, {-2, 1}, {-1, 2}}
sage: P3.jucys_murphy_element(3/2)
n*P{{-3, 3}, {-2, -1, 1, 2}} - P{{-3, 3}, {-2, -1, 2}, {1}}
- P{{-3, 3}, {-2, 1, 2}, {-1}} + P{{-3, 3}, {-2, 2}, {-1, 1}}
sage: P3.L(3/2) * P3.L(2) == P3.L(2) * P3.L(3/2)
True

We test the relations in Lemma 2.2.3(2) in [Cre2020] (v1):

sage: k = 4
sage: R.<n> = QQ[]
sage: P = PartitionAlgebra(k, n)
sage: L = [P.L(i/2) for i in range(1,2*k+1)]
sage: all(x.dual() == x for x in L)
True
sage: all(x * y == y * x for x in L for y in L) # long time
True
sage: Lsum = sum(L)
sage: gens = [P.s(i) for i in range(1,k)]
sage: gens += [P.e(i/2) for i in range(1,2*k)]

(continues on next page)

5.1. Comprehensive Module List 757

Combinatorics, Release 9.7

(continued from previous page)

sage: all(x * Lsum == Lsum * x for x in gens)
True

Also the relations in Lemma 2.2.3(3) in [Cre2020] (v1):

sage: all(P.e((2*i+1)/2) * P.sigma(2*i/2) * P.e((2*i+1)/2)
....: == (n - P.L((2*i-1)/2)) * P.e((2*i+1)/2) for i in range(1,k))
True
sage: all(P.e(i/2) * (P.L(i/2) + P.L((i+1)/2))
....: == (P.L(i/2) + P.L((i+1)/2)) * P.e(i/2)
....: == n * P.e(i/2) for i in range(1,2*k))
True
sage: all(P.sigma(2*i/2) * P.e((2*i-1)/2) * P.e(2*i/2)
....: == P.L(2*i/2) * P.e(2*i/2) for i in range(1,k))
True
sage: all(P.e(2*i/2) * P.e((2*i-1)/2) * P.sigma(2*i/2)
....: == P.e(2*i/2) * P.L(2*i/2) for i in range(1,k))
True
sage: all(P.sigma((2*i+1)/2) * P.e((2*i+1)/2) * P.e(2*i/2)
....: == P.L(2*i/2) * P.e(2*i/2) for i in range(1,k))
True
sage: all(P.e(2*i/2) * P.e((2*i+1)/2) * P.sigma((2*i+1)/2)
....: == P.e(2*i/2) * P.L(2*i/2) for i in range(1,k))
True

The same tests for a half integer partition algebra:

sage: k = 9/2
sage: R.<n> = QQ[]
sage: P = PartitionAlgebra(k, n)
sage: L = [P.L(i/2) for i in range(1,2*k+1)]
sage: all(x.dual() == x for x in L)
True
sage: all(x * y == y * x for x in L for y in L) # long time
True
sage: Lsum = sum(L)
sage: gens = [P.s(i) for i in range(1,k-1/2)]
sage: gens += [P.e(i/2) for i in range(1,2*k)]
sage: all(x * Lsum == Lsum * x for x in gens)
True
sage: all(P.e((2*i+1)/2) * P.sigma(2*i/2) * P.e((2*i+1)/2)
....: == (n - P.L((2*i-1)/2)) * P.e((2*i+1)/2) for i in range(1,floor(k)))
True
sage: all(P.e(i/2) * (P.L(i/2) + P.L((i+1)/2))
....: == (P.L(i/2) + P.L((i+1)/2)) * P.e(i/2)
....: == n * P.e(i/2) for i in range(1,2*k))
True
sage: all(P.sigma(2*i/2) * P.e((2*i-1)/2) * P.e(2*i/2)
....: == P.L(2*i/2) * P.e(2*i/2) for i in range(1,ceil(k)))
True
sage: all(P.e(2*i/2) * P.e((2*i-1)/2) * P.sigma(2*i/2)
....: == P.e(2*i/2) * P.L(2*i/2) for i in range(1,ceil(k)))

(continues on next page)

758 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

True
sage: all(P.sigma((2*i+1)/2) * P.e((2*i+1)/2) * P.e(2*i/2)
....: == P.L(2*i/2) * P.e(2*i/2) for i in range(1,floor(k)))
True
sage: all(P.e(2*i/2) * P.e((2*i+1)/2) * P.sigma((2*i+1)/2)
....: == P.e(2*i/2) * P.L(2*i/2) for i in range(1,floor(k)))
True

orbit_basis()
Return the orbit basis of self.

EXAMPLES:

sage: R.<x> = QQ[]
sage: P2 = PartitionAlgebra(2, x, R)
sage: O2 = P2.orbit_basis(); O2
Orbit basis of Partition Algebra of rank 2 with parameter x over
Univariate Polynomial Ring in x over Rational Field
sage: pp = 7 * P2[{-1}, {-2, 1, 2}] - 2 * P2[{-2}, {-1, 1}, {2}]; pp
-2*P{{-2}, {-1, 1}, {2}} + 7*P{{-2, 1, 2}, {-1}}
sage: op = pp.to_orbit_basis(); op
-2*O{{-2}, {-1, 1}, {2}} - 2*O{{-2}, {-1, 1, 2}}
- 2*O{{-2, -1, 1}, {2}} + 5*O{{-2, -1, 1, 2}}
+ 7*O{{-2, 1, 2}, {-1}} - 2*O{{-2, 2}, {-1, 1}}
sage: op == O2(op)
True
sage: pp * op.leading_term()
4*P{{-2}, {-1, 1}, {2}} - 4*P{{-2, -1, 1}, {2}}
+ 14*P{{-2, -1, 1, 2}} - 14*P{{-2, 1, 2}, {-1}}

s(i)
Return the i-th simple transposition 𝑠𝑖 in self.

Borrowing the notation from the symmetric group, the 𝑖-th simple transposition 𝑠𝑖 has blocks of the form
{−𝑖, 𝑖+ 1}, {−𝑖− 1, 𝑖}. Other blocks are of the form {−𝑗, 𝑗}.

INPUT:

• i – an integer between 1 and 𝑘 − 1

EXAMPLES:

sage: R.<n> = QQ[]
sage: P3 = PartitionAlgebra(3, n)
sage: P3.s(1)
P{{-3, 3}, {-2, 1}, {-1, 2}}
sage: P3.s(2)
P{{-3, 2}, {-2, 3}, {-1, 1}}

sage: R.<n> = ZZ[]
sage: P2h = PartitionAlgebra(5/2,n)
sage: P2h.s(1)
P{{-3, 3}, {-2, 1}, {-1, 2}}

sigma(i)
Return the element 𝜎𝑖 from [Eny2012] of self.

5.1. Comprehensive Module List 759

Combinatorics, Release 9.7

INPUT:

• i – a half integer between 1/2 and 𝑘 − 1/2

Note: In [Cre2020] and [Eny2013], these are the elements 𝜎2𝑖.

EXAMPLES:

sage: R.<n> = QQ[]
sage: P3 = PartitionAlgebra(3, n)
sage: P3.sigma(1)
P{{-3, 3}, {-2, 2}, {-1, 1}}
sage: P3.sigma(3/2)
P{{-3, 3}, {-2, 1}, {-1, 2}}
sage: P3.sigma(2)
-P{{-3, -1, 1, 3}, {-2, 2}} + P{{-3, -1, 3}, {-2, 1, 2}}
+ P{{-3, 1, 3}, {-2, -1, 2}} - P{{-3, 3}, {-2, -1, 1, 2}}
+ P{{-3, 3}, {-2, 2}, {-1, 1}}
sage: P3.sigma(5/2)
-P{{-3, -1, 1, 2}, {-2, 3}} + P{{-3, -1, 2}, {-2, 1, 3}}
+ P{{-3, 1, 2}, {-2, -1, 3}} - P{{-3, 2}, {-2, -1, 1, 3}}
+ P{{-3, 2}, {-2, 3}, {-1, 1}}

We test the relations in Lemma 2.2.3(1) in [Cre2020] (v1):

sage: k = 4
sage: R.<x> = QQ[]
sage: P = PartitionAlgebra(k, x)
sage: all(P.sigma(i/2).dual() == P.sigma(i/2)
....: for i in range(1,2*k))
True
sage: all(P.sigma(i)*P.sigma(i+1/2) == P.sigma(i+1/2)*P.sigma(i) == P.s(i)
....: for i in range(1,floor(k)))
True
sage: all(P.sigma(i)*P.e(i) == P.e(i)*P.sigma(i) == P.e(i)
....: for i in range(1,floor(k)))
True
sage: all(P.sigma(i+1/2)*P.e(i) == P.e(i)*P.sigma(i+1/2) == P.e(i)
....: for i in range(1,floor(k)))
True

sage: k = 9/2
sage: R.<x> = QQ[]
sage: P = PartitionAlgebra(k, x)
sage: all(P.sigma(i/2).dual() == P.sigma(i/2)
....: for i in range(1,2*k-1))
True
sage: all(P.sigma(i)*P.sigma(i+1/2) == P.sigma(i+1/2)*P.sigma(i) == P.s(i)
....: for i in range(1,k-1/2))
True
sage: all(P.sigma(i)*P.e(i) == P.e(i)*P.sigma(i) == P.e(i)
....: for i in range(1,floor(k)))
True

(continues on next page)

760 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: all(P.sigma(i+1/2)*P.e(i) == P.e(i)*P.sigma(i+1/2) == P.e(i)
....: for i in range(1,floor(k)))
True

class sage.combinat.diagram_algebras.PartitionDiagram(parent, d, check=True)
Bases: sage.combinat.diagram_algebras.AbstractPartitionDiagram

The element class for a partition diagram.

A partition diagram for an integer 𝑘 is a partition of the set {1, . . . , 𝑘,−1, . . . ,−𝑘}

EXAMPLES:

sage: from sage.combinat.diagram_algebras import PartitionDiagram, PartitionDiagrams
sage: PartitionDiagrams(1)
Partition diagrams of order 1
sage: PartitionDiagrams(1).list()
[{{-1, 1}}, {{-1}, {1}}]
sage: PartitionDiagram([[1,-1]])
{{-1, 1}}
sage: PartitionDiagram(((1,-2),(2,-1))).parent()
Partition diagrams of order 2

class sage.combinat.diagram_algebras.PartitionDiagrams(order, category=None)
Bases: sage.combinat.diagram_algebras.AbstractPartitionDiagrams

This class represents all partition diagrams of integer or integer +1/2 order.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: pd = da.PartitionDiagrams(1); pd
Partition diagrams of order 1
sage: pd.list()
[{{-1, 1}}, {{-1}, {1}}]

sage: pd = da.PartitionDiagrams(3/2); pd
Partition diagrams of order 3/2
sage: pd.list()
[{{-2, -1, 1, 2}},
{{-2, 1, 2}, {-1}},
{{-2, 2}, {-1, 1}},
{{-2, -1, 2}, {1}},
{{-2, 2}, {-1}, {1}}]

Element
alias of PartitionDiagram

cardinality()
The cardinality of partition diagrams of half-integer order 𝑛 is the 2𝑛-th Bell number.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: pd = da.PartitionDiagrams(3)
sage: pd.cardinality()

(continues on next page)

5.1. Comprehensive Module List 761

Combinatorics, Release 9.7

(continued from previous page)

203

sage: pd = da.PartitionDiagrams(7/2)
sage: pd.cardinality()
877

class sage.combinat.diagram_algebras.PlanarAlgebra(k, q, base_ring, prefix)
Bases: sage.combinat.diagram_algebras.SubPartitionAlgebra, sage.combinat.
diagram_algebras.UnitDiagramMixin

A planar algebra.

The planar algebra of rank 𝑘 is an algebra with basis indexed by the collection of all planar set partitions of
{1, . . . , 𝑘,−1, . . . ,−𝑘}.

This algebra is thus a subalgebra of the partition algebra. For more information, see PartitionAlgebra.

INPUT:

• k – rank of the algebra

• q – the deformation parameter 𝑞

OPTIONAL ARGUMENTS:

• base_ring – (default None) a ring containing q; if None then just takes the parent of q

• prefix – (default "Pl") a label for the basis elements

EXAMPLES:

We define the planar algebra of rank 2 with parameter 𝑥 over Z:

sage: R.<x> = ZZ[]
sage: Pl = PlanarAlgebra(2, x, R); Pl
Planar Algebra of rank 2 with parameter x over Univariate Polynomial Ring in x over␣
→˓Integer Ring
sage: Pl.basis().keys()
Planar diagrams of order 2
sage: Pl.basis().keys()([[-1, 1], [2, -2]])
{{-2, 2}, {-1, 1}}
sage: Pl.basis().list()
[Pl{{-2, -1, 1, 2}},
Pl{{-2, 1, 2}, {-1}},
Pl{{-2}, {-1, 1, 2}},
Pl{{-2, -1}, {1, 2}},
Pl{{-2}, {-1}, {1, 2}},
Pl{{-2, -1, 1}, {2}},
Pl{{-2, 1}, {-1}, {2}},
Pl{{-2, 2}, {-1, 1}},
Pl{{-2, -1, 2}, {1}},
Pl{{-2, 2}, {-1}, {1}},
Pl{{-2}, {-1, 1}, {2}},
Pl{{-2}, {-1, 2}, {1}},
Pl{{-2, -1}, {1}, {2}},
Pl{{-2}, {-1}, {1}, {2}}]
sage: E = Pl([[1,2],[-1,-2]])
sage: E^2 == x*E

(continues on next page)

762 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

True
sage: E^5 == x^4*E
True

class sage.combinat.diagram_algebras.PlanarDiagram(parent, d, check=True)
Bases: sage.combinat.diagram_algebras.AbstractPartitionDiagram

The element class for a planar diagram.

A planar diagram for an integer 𝑘 is a partition of the set {1, . . . , 𝑘,−1, . . . ,−𝑘} so that the diagram is non-
crossing.

EXAMPLES:

sage: from sage.combinat.diagram_algebras import PlanarDiagrams
sage: PlanarDiagrams(2)
Planar diagrams of order 2
sage: PlanarDiagrams(2).list()
[{{-2, -1, 1, 2}},
{{-2, 1, 2}, {-1}},
{{-2}, {-1, 1, 2}},
{{-2, -1}, {1, 2}},
{{-2}, {-1}, {1, 2}},
{{-2, -1, 1}, {2}},
{{-2, 1}, {-1}, {2}},
{{-2, 2}, {-1, 1}},
{{-2, -1, 2}, {1}},
{{-2, 2}, {-1}, {1}},
{{-2}, {-1, 1}, {2}},
{{-2}, {-1, 2}, {1}},
{{-2, -1}, {1}, {2}},
{{-2}, {-1}, {1}, {2}}]

check()
Check the validity of the input for self.

class sage.combinat.diagram_algebras.PlanarDiagrams(order, category=None)
Bases: sage.combinat.diagram_algebras.AbstractPartitionDiagrams

All planar diagrams of integer or integer +1/2 order.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: pld = da.PlanarDiagrams(1); pld
Planar diagrams of order 1
sage: pld.list()
[{{-1, 1}}, {{-1}, {1}}]

sage: pld = da.PlanarDiagrams(3/2); pld
Planar diagrams of order 3/2
sage: pld.list()
[{{-2, -1, 1, 2}},
{{-2, 1, 2}, {-1}},
{{-2, 2}, {-1, 1}},

(continues on next page)

5.1. Comprehensive Module List 763

Combinatorics, Release 9.7

(continued from previous page)

{{-2, -1, 2}, {1}},
{{-2, 2}, {-1}, {1}}]

Element
alias of PlanarDiagram

cardinality()
Return the cardinality of self.

The number of all planar diagrams of order 𝑘 is the 2𝑘-th Catalan number.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: pld = da.PlanarDiagrams(3)
sage: pld.cardinality()
132

class sage.combinat.diagram_algebras.PropagatingIdeal(k, q, base_ring, prefix)
Bases: sage.combinat.diagram_algebras.SubPartitionAlgebra

A propagating ideal.

The propagating ideal of rank 𝑘 is a non-unital algebra with basis indexed by the collection of ideal set partitions
of {1, . . . , 𝑘,−1, . . . ,−𝑘}. We say a set partition is ideal if its propagating number is less than 𝑘.

This algebra is a non-unital subalgebra and an ideal of the partition algebra. For more information, see
PartitionAlgebra.

EXAMPLES:

We now define the propagating ideal of rank 2 with parameter 𝑥 over Z:

sage: R.<x> = QQ[]
sage: I = PropagatingIdeal(2, x, R); I
Propagating Ideal of rank 2 with parameter x
over Univariate Polynomial Ring in x over Rational Field
sage: I.basis().keys()
Ideal diagrams of order 2
sage: I.basis().list()
[I{{-2, -1, 1, 2}},
I{{-2, 1, 2}, {-1}},
I{{-2}, {-1, 1, 2}},
I{{-2, -1}, {1, 2}},
I{{-2}, {-1}, {1, 2}},
I{{-2, -1, 1}, {2}},
I{{-2, 1}, {-1}, {2}},
I{{-2, -1, 2}, {1}},
I{{-2, 2}, {-1}, {1}},
I{{-2}, {-1, 1}, {2}},
I{{-2}, {-1, 2}, {1}},
I{{-2, -1}, {1}, {2}},
I{{-2}, {-1}, {1}, {2}}]
sage: E = I([[1,2],[-1,-2]])
sage: E^2 == x*E
True

(continues on next page)

764 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: E^5 == x^4*E
True

class Element
Bases: sage.combinat.diagram_algebras.SubPartitionAlgebra.Element

An element of a propagating ideal.

We need to take care of exponents since we are not unital.

class sage.combinat.diagram_algebras.SubPartitionAlgebra(k, q, base_ring, prefix, diagrams,
category=None)

Bases: sage.combinat.diagram_algebras.DiagramBasis

A subalgebra of the partition algebra in the diagram basis indexed by a subset of the diagrams.

class Element
Bases: sage.combinat.diagram_algebras.DiagramAlgebra.Element

to_orbit_basis()
Return self in the orbit basis of the associated ambient partition algebra.

EXAMPLES:

sage: R.<x> = QQ[]
sage: B = BrauerAlgebra(2, x, R)
sage: bb = B([[-2, -1], [1, 2]]); bb
B{{-2, -1}, {1, 2}}
sage: bb.to_orbit_basis()
O{{-2, -1}, {1, 2}} + O{{-2, -1, 1, 2}}

ambient()
Return the partition algebra self is a sub-algebra of.

EXAMPLES:

sage: x = var('x')
sage: BA = BrauerAlgebra(2, x)
sage: BA.ambient()
Partition Algebra of rank 2 with parameter x over Symbolic Ring

lift()
Return the lift map from diagram subalgebra to the ambient space.

EXAMPLES:

sage: R.<x> = QQ[]
sage: BA = BrauerAlgebra(2, x, R)
sage: E = BA([[1,2],[-1,-2]])
sage: lifted = BA.lift(E); lifted
B{{-2, -1}, {1, 2}}
sage: lifted.parent() is BA.ambient()
True

retract(x)
Retract an appropriate partition algebra element to the corresponding element in the partition subalgebra.

EXAMPLES:

5.1. Comprehensive Module List 765

Combinatorics, Release 9.7

sage: R.<x> = QQ[]
sage: BA = BrauerAlgebra(2, x, R)
sage: PA = BA.ambient()
sage: E = PA([[1,2], [-1,-2]])
sage: BA.retract(E) in BA
True

sage.combinat.diagram_algebras.TL_diagram_ascii_art(diagram, use_unicode=False, blobs=[])
Return ascii art for a Temperley-Lieb diagram diagram.

INPUT:

• diagram – a list of pairs of matchings of the set {−1, . . . ,−𝑛, 1, . . . , 𝑛}

• use_unicode – (default: False): whether or not to use unicode art instead of ascii art

• blobs – (optional) a list of matchings with blobs on them

EXAMPLES:

sage: from sage.combinat.diagram_algebras import TL_diagram_ascii_art
sage: TL = [(-15,-12), (-14,-13), (-11,15), (-10,14), (-9,-6),
....: (-8,-7), (-5,-4), (-3,1), (-2,-1), (2,3), (4,5),
....: (6,11), (7, 8), (9,10), (12,13)]
sage: TL_diagram_ascii_art(TL, use_unicode=False)
o o o o o o o o o o o o o o o
| `-` `-` | `-` `-` | `-` | |
| `---------` | |
| .-------` |
`---. | .-------`

| .-----. | | .-----.
.-. | .-. | .-. | | | | .-. |
o o o o o o o o o o o o o o o
sage: TL_diagram_ascii_art(TL, use_unicode=True)
∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘
| +-+ +-+ | +-+ +-+ | +-+ | |
| +———+ | |
| +——-+ |
+—+ | +——-+

| +—–+ | | +—–+
+-+ | +-+ | +-+ | | | | +-+ |
∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

sage: TL = [(-20,-9), (-19,-10), (-18,-11), (-17,-16), (-15,-12), (2,3),
....: (-14,-13), (-8,16), (-7,7), (-6,6), (-5,1), (-4,-3), (-2,-1),
....: (4,5), (8,15), (9,10), (11,14), (12,13), (17,20), (18,19)]
sage: TL_diagram_ascii_art(TL, use_unicode=False, blobs=[(-2,-1), (-5,1)])
o o o o o o o o o o o o o o o o o o o o
| `-` `-` | | | `-` | `-` | | | | `-` |
| | | | `-----` | | `-----`
| | | `-------------` |
`---0---. | | .---------------`

| | | | .---------------------.
| | | | | .-----------------. |
| | | | | | .-------------. | |

(continues on next page)

766 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

| | | | | | | .-----. | | |
.0. .-. | | | | | | | | .-. | .-. | | |
o o o o o o o o o o o o o o o o o o o o
sage: TL_diagram_ascii_art(TL, use_unicode=True, blobs=[(-2,-1), (-5,1)])
∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘
| +-+ +-+ | | | +-+ | +-+ | | | | +-+ |
| | | | +—–+ | | +—–+
| | | +————-+ |
+—∙—+ | | +—————+

| | | | +———————+
				+—————–+				
					+————-+			
						+—–+		

+∙+ +-+ | | | | | | | | +-+ | +-+ | | |
∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

class sage.combinat.diagram_algebras.TemperleyLiebAlgebra(k, q, base_ring, prefix)
Bases: sage.combinat.diagram_algebras.SubPartitionAlgebra, sage.combinat.
diagram_algebras.UnitDiagramMixin

A Temperley–Lieb algebra.

The Temperley–Lieb algebra of rank 𝑘 is an algebra with basis indexed by the collection of planar set partitions
of {1, . . . , 𝑘,−1, . . . ,−𝑘} with block size 2.

This algebra is thus a subalgebra of the partition algebra. For more information, see PartitionAlgebra.

INPUT:

• k – rank of the algebra

• q – the deformation parameter 𝑞

OPTIONAL ARGUMENTS:

• base_ring – (default None) a ring containing q; if None then just takes the parent of q

• prefix – (default "T") a label for the basis elements

EXAMPLES:

We define the Temperley–Lieb algebra of rank 2 with parameter 𝑥 over Z:

sage: R.<x> = ZZ[]
sage: T = TemperleyLiebAlgebra(2, x, R); T
Temperley-Lieb Algebra of rank 2 with parameter x
over Univariate Polynomial Ring in x over Integer Ring
sage: T.basis()
Lazy family (Term map from Temperley Lieb diagrams of order 2
to Temperley-Lieb Algebra of rank 2 with parameter x over
Univariate Polynomial Ring in x over Integer
Ring(i))_{i in Temperley Lieb diagrams of order 2}
sage: T.basis().keys()
Temperley Lieb diagrams of order 2
sage: T.basis().keys()([[-1, 1], [2, -2]])
{{-2, 2}, {-1, 1}}
sage: b = T.basis().list(); b
[T{{-2, -1}, {1, 2}}, T{{-2, 2}, {-1, 1}}]

(continues on next page)

5.1. Comprehensive Module List 767

Combinatorics, Release 9.7

(continued from previous page)

sage: b[0]
T{{-2, -1}, {1, 2}}
sage: b[0]^2 == x*b[0]
True
sage: b[0]^5 == x^4*b[0]
True

class sage.combinat.diagram_algebras.TemperleyLiebDiagram(parent, d, check=True)
Bases: sage.combinat.diagram_algebras.AbstractPartitionDiagram

The element class for a Temperley-Lieb diagram.

A Temperley-Lieb diagram for an integer 𝑘 is a partition of the set {1, . . . , 𝑘,−1, . . . ,−𝑘} so that the blocks are
all of size 2 and the diagram is planar.

EXAMPLES:

sage: from sage.combinat.diagram_algebras import TemperleyLiebDiagrams
sage: TemperleyLiebDiagrams(2)
Temperley Lieb diagrams of order 2
sage: TemperleyLiebDiagrams(2).list()
[{{-2, -1}, {1, 2}}, {{-2, 2}, {-1, 1}}]

check()
Check the validity of the input for self.

class sage.combinat.diagram_algebras.TemperleyLiebDiagrams(order, category=None)
Bases: sage.combinat.diagram_algebras.AbstractPartitionDiagrams

All Temperley-Lieb diagrams of integer or integer +1/2 order.

For more information on Temperley-Lieb diagrams, see TemperleyLiebAlgebra.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: td = da.TemperleyLiebDiagrams(3); td
Temperley Lieb diagrams of order 3
sage: td.list()
[{{-3, 3}, {-2, -1}, {1, 2}},
{{-3, 1}, {-2, -1}, {2, 3}},
{{-3, -2}, {-1, 1}, {2, 3}},
{{-3, -2}, {-1, 3}, {1, 2}},
{{-3, 3}, {-2, 2}, {-1, 1}}]

sage: td = da.TemperleyLiebDiagrams(5/2); td
Temperley Lieb diagrams of order 5/2
sage: td.list()
[{{-3, 3}, {-2, -1}, {1, 2}}, {{-3, 3}, {-2, 2}, {-1, 1}}]

Element
alias of TemperleyLiebDiagram

cardinality()
Return the cardinality of self.

The number of Temperley–Lieb diagrams of integer order 𝑘 is the 𝑘-th Catalan number.

768 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: td = da.TemperleyLiebDiagrams(3)
sage: td.cardinality()
5

class sage.combinat.diagram_algebras.UnitDiagramMixin
Bases: object

Mixin class for diagram algebras that have the unit indexed by the identity_set_partition().

one_basis()
The following constructs the identity element of self.

It is not called directly; instead one should use DA.one() if DA is a defined diagram algebra.

EXAMPLES:

sage: R.<x> = QQ[]
sage: P = PartitionAlgebra(2, x, R)
sage: P.one_basis()
{{-2, 2}, {-1, 1}}

sage.combinat.diagram_algebras.brauer_diagrams(k)
Return a generator of all Brauer diagrams of order k.

A Brauer diagram of order 𝑘 is a partition diagram of order 𝑘 with block size 2.

INPUT:

• k – the order of the Brauer diagrams

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: [SetPartition(p) for p in da.brauer_diagrams(2)]
[{{-2, -1}, {1, 2}}, {{-2, 1}, {-1, 2}}, {{-2, 2}, {-1, 1}}]
sage: [SetPartition(p) for p in da.brauer_diagrams(5/2)]
[{{-3, 3}, {-2, -1}, {1, 2}},
{{-3, 3}, {-2, 1}, {-1, 2}},
{{-3, 3}, {-2, 2}, {-1, 1}}]

sage.combinat.diagram_algebras.diagram_latex(diagram, fill=False, edge_options=None,
edge_additions=None)

Return latex code for the diagram diagram using tikz.

EXAMPLES:

sage: from sage.combinat.diagram_algebras import PartitionDiagrams, diagram_latex
sage: P = PartitionDiagrams(2)
sage: D = P([[1,2],[-2,-1]])
sage: print(diagram_latex(D)) # indirect doctest
\begin{tikzpicture}[scale = 0.5,thick, baseline={(0,-1ex/2)}]
\tikzstyle{vertex} = [shape = circle, minimum size = 7pt, inner sep = 1pt]
\node[vertex] (G--2) at (1.5, -1) [shape = circle, draw] {};
\node[vertex] (G--1) at (0.0, -1) [shape = circle, draw] {};
\node[vertex] (G-1) at (0.0, 1) [shape = circle, draw] {};

(continues on next page)

5.1. Comprehensive Module List 769

Combinatorics, Release 9.7

(continued from previous page)

\node[vertex] (G-2) at (1.5, 1) [shape = circle, draw] {};
\draw[] (G--2) .. controls +(-0.5, 0.5) and +(0.5, 0.5) .. (G--1);
\draw[] (G-1) .. controls +(0.5, -0.5) and +(-0.5, -0.5) .. (G-2);
\end{tikzpicture}

sage.combinat.diagram_algebras.ideal_diagrams(k)
Return a generator of all “ideal” diagrams of order k.

An ideal diagram of order 𝑘 is a partition diagram of order 𝑘 with propagating number less than 𝑘.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: all_diagrams = da.partition_diagrams(2)
sage: [SetPartition(p) for p in all_diagrams if p not in da.ideal_diagrams(2)]
[{{-2, 1}, {-1, 2}}, {{-2, 2}, {-1, 1}}]

sage: all_diagrams = da.partition_diagrams(3/2)
sage: [SetPartition(p) for p in all_diagrams if p not in da.ideal_diagrams(3/2)]
[{{-2, 2}, {-1, 1}}]

sage.combinat.diagram_algebras.identity_set_partition(k)
Return the identity set partition {{1,−1}, . . . , {𝑘,−𝑘}}.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: SetPartition(da.identity_set_partition(2))
{{-2, 2}, {-1, 1}}

sage.combinat.diagram_algebras.is_planar(sp)
Return True if the diagram corresponding to the set partition sp is planar; otherwise, return False.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: da.is_planar(da.to_set_partition([[1,-2],[2,-1]]))
False
sage: da.is_planar(da.to_set_partition([[1,-1],[2,-2]]))
True

sage.combinat.diagram_algebras.pair_to_graph(sp1, sp2)
Return a graph consisting of the disjoint union of the graphs of set partitions sp1 and sp2 along with edges
joining the bottom row (negative numbers) of sp1 to the top row (positive numbers) of sp2.

The vertices of the graph sp1 appear in the result as pairs (k, 1), whereas the vertices of the graph sp2 appear
as pairs (k, 2).

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: sp1 = da.to_set_partition([[1,-2],[2,-1]])
sage: sp2 = da.to_set_partition([[1,-2],[2,-1]])
sage: g = da.pair_to_graph(sp1, sp2); g
Graph on 8 vertices

(continues on next page)

770 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: g.vertices(sort=True)
[(-2, 1), (-2, 2), (-1, 1), (-1, 2), (1, 1), (1, 2), (2, 1), (2, 2)]
sage: g.edges(sort=True)
[((-2, 1), (1, 1), None), ((-2, 1), (2, 2), None),
((-2, 2), (1, 2), None), ((-1, 1), (1, 2), None),
((-1, 1), (2, 1), None), ((-1, 2), (2, 2), None)]

Another example which used to be wrong until trac ticket #15958:

sage: sp3 = da.to_set_partition([[1, -1], [2], [-2]])
sage: sp4 = da.to_set_partition([[1], [-1], [2], [-2]])
sage: g = da.pair_to_graph(sp3, sp4); g
Graph on 8 vertices

sage: g.vertices(sort=True)
[(-2, 1), (-2, 2), (-1, 1), (-1, 2), (1, 1), (1, 2), (2, 1), (2, 2)]
sage: g.edges(sort=True)
[((-2, 1), (2, 2), None), ((-1, 1), (1, 1), None),
((-1, 1), (1, 2), None)]

sage.combinat.diagram_algebras.partition_diagrams(k)
Return a generator of all partition diagrams of order k.

A partition diagram of order 𝑘 ∈ Z to is a set partition of {1, . . . , 𝑘,−1, . . . ,−𝑘}. If we have 𝑘 − 1/2 ∈ 𝑍𝑍,
then a partition diagram of order 𝑘 ∈ 1/2Z is a set partition of {1, . . . , 𝑘 + 1/2,−1, . . . ,−(𝑘 + 1/2)} with
𝑘 + 1/2 and −(𝑘 + 1/2) in the same block. See [HR2005].

INPUT:

• k – the order of the partition diagrams

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: [SetPartition(p) for p in da.partition_diagrams(2)]
[{{-2, -1, 1, 2}},
{{-2, 1, 2}, {-1}},
{{-2}, {-1, 1, 2}},
{{-2, -1}, {1, 2}},
{{-2}, {-1}, {1, 2}},
{{-2, -1, 1}, {2}},
{{-2, 1}, {-1, 2}},
{{-2, 1}, {-1}, {2}},
{{-2, 2}, {-1, 1}},
{{-2, -1, 2}, {1}},
{{-2, 2}, {-1}, {1}},
{{-2}, {-1, 1}, {2}},
{{-2}, {-1, 2}, {1}},
{{-2, -1}, {1}, {2}},
{{-2}, {-1}, {1}, {2}}]
sage: [SetPartition(p) for p in da.partition_diagrams(3/2)]
[{{-2, -1, 1, 2}},
{{-2, 1, 2}, {-1}},
{{-2, 2}, {-1, 1}},

(continues on next page)

5.1. Comprehensive Module List 771

https://trac.sagemath.org/15958

Combinatorics, Release 9.7

(continued from previous page)

{{-2, -1, 2}, {1}},
{{-2, 2}, {-1}, {1}}]

sage.combinat.diagram_algebras.planar_diagrams(k)
Return a generator of all planar diagrams of order k.

A planar diagram of order 𝑘 is a partition diagram of order 𝑘 that has no crossings.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: all_diagrams = da.partition_diagrams(2)
sage: [SetPartition(p) for p in all_diagrams if p not in da.planar_diagrams(2)]
[{{-2, 1}, {-1, 2}}]
sage: all_diagrams = da.partition_diagrams(5/2)
sage: [SetPartition(p) for p in all_diagrams if p not in da.planar_diagrams(5/2)]
[{{-3, -1, 3}, {-2, 1, 2}},
{{-3, -2, 1, 3}, {-1, 2}},
{{-3, -1, 1, 3}, {-2, 2}},
{{-3, 1, 3}, {-2, -1, 2}},
{{-3, 1, 3}, {-2, 2}, {-1}},
{{-3, 1, 3}, {-2}, {-1, 2}},
{{-3, -1, 2, 3}, {-2, 1}},
{{-3, 3}, {-2, 1}, {-1, 2}},
{{-3, -1, 3}, {-2, 1}, {2}},
{{-3, -1, 3}, {-2, 2}, {1}}]

sage.combinat.diagram_algebras.propagating_number(sp)
Return the propagating number of the set partition sp.

The propagating number is the number of blocks with both a positive and negative number.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: sp1 = da.to_set_partition([[1,-2],[2,-1]])
sage: sp2 = da.to_set_partition([[1,2],[-2,-1]])
sage: da.propagating_number(sp1)
2
sage: da.propagating_number(sp2)
0

sage.combinat.diagram_algebras.temperley_lieb_diagrams(k)
Return a generator of all Temperley–Lieb diagrams of order k.

A Temperley–Lieb diagram of order 𝑘 is a partition diagram of order 𝑘 with block size 2 and is planar.

INPUT:

• k – the order of the Temperley–Lieb diagrams

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: [SetPartition(p) for p in da.temperley_lieb_diagrams(2)]
[{{-2, -1}, {1, 2}}, {{-2, 2}, {-1, 1}}]

(continues on next page)

772 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: [SetPartition(p) for p in da.temperley_lieb_diagrams(5/2)]
[{{-3, 3}, {-2, -1}, {1, 2}}, {{-3, 3}, {-2, 2}, {-1, 1}}]

sage.combinat.diagram_algebras.to_Brauer_partition(l, k=None)
Same as to_set_partition() but assumes omitted elements are connected straight through.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: f = lambda sp: SetPartition(da.to_Brauer_partition(sp))
sage: f([[1,2],[-1,-2]]) == SetPartition([[1,2],[-1,-2]])
True
sage: f([[1,3],[-1,-3]]) == SetPartition([[1,3],[-3,-1],[2,-2]])
True
sage: f([[1,-4],[-3,-1],[3,4]]) == SetPartition([[-3,-1],[2,-2],[1,-4],[3,4]])
True
sage: p = SetPartition([[1,2],[-1,-2],[3,-3],[4,-4]])
sage: SetPartition(da.to_Brauer_partition([[1,2],[-1,-2]], k=4)) == p
True

sage.combinat.diagram_algebras.to_graph(sp)
Return a graph representing the set partition sp.

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: g = da.to_graph(da.to_set_partition([[1,-2],[2,-1]])); g
Graph on 4 vertices

sage: g.vertices(sort=True)
[-2, -1, 1, 2]
sage: g.edges(sort=True)
[(-2, 1, None), (-1, 2, None)]

sage.combinat.diagram_algebras.to_set_partition(l, k=None)
Convert input to a set partition of {1, . . . , 𝑘,−1, . . . ,−𝑘}

Convert a list of a list of numbers to a set partitions. Each list of numbers in the outer list specifies the numbers
contained in one of the blocks in the set partition.

If 𝑘 is specified, then the set partition will be a set partition of {1, . . . , 𝑘,−1, . . . ,−𝑘}. Otherwise, 𝑘 will default
to the minimum number needed to contain all of the specified numbers.

INPUT:

• l - a list of lists of integers

• k - integer (optional, default None)

OUTPUT:

• a list of sets

EXAMPLES:

sage: import sage.combinat.diagram_algebras as da
sage: f = lambda sp: SetPartition(da.to_set_partition(sp))

(continues on next page)

5.1. Comprehensive Module List 773

Combinatorics, Release 9.7

(continued from previous page)

sage: f([[1,-1],[2,-2]]) == SetPartition(da.identity_set_partition(2))
True
sage: da.to_set_partition([[1]])
[{1}, {-1}]
sage: da.to_set_partition([[1,-1],[-2,3]],9/2)
[{-1, 1}, {-2, 3}, {2}, {-4, 4}, {-5, 5}, {-3}]

5.1.96 Exact Cover Problem via Dancing Links

sage.combinat.dlx.AllExactCovers(M)
Use A. Ajanki’s DLXMatrix class to solve the exact cover problem on the matrix M (treated as a dense binary
matrix).

EXAMPLES:

sage: M = Matrix([[1,1,0],[1,0,1],[0,1,1]]) #no exact covers
sage: for cover in AllExactCovers(M):
....: print(cover)
sage: M = Matrix([[1,1,0],[1,0,1],[0,0,1],[0,1,0]]) #two exact covers
sage: for cover in AllExactCovers(M):
....: print(cover)
[(1, 1, 0), (0, 0, 1)]
[(1, 0, 1), (0, 1, 0)]

class sage.combinat.dlx.DLXMatrix(ones, initialsolution=None)
Bases: object

Solve the Exact Cover problem by using the Dancing Links algorithm described by Knuth.

Consider a matrix M with entries of 0 and 1, and compute a subset of the rows of this matrix which sum to the
vector of all 1’s.

The dancing links algorithm works particularly well for sparse matrices, so the input is a list of lists of the form:
(note the 1-index!):

[
[1, [i_11,i_12,...,i_1r]]
...
[m,[i_m1,i_m2,...,i_ms]]
]

where M[j][i_jk] = 1.

The first example below corresponds to the matrix:

1110
1010
0100
0001

which is exactly covered by:

1110
0001

774 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

and

1010
0100
0001

EXAMPLES:

sage: from sage.combinat.dlx import *
sage: ones = [[1,[1,2,3]]]
sage: ones+= [[2,[1,3]]]
sage: ones+= [[3,[2]]]
sage: ones+= [[4,[4]]]
sage: DLXM = DLXMatrix(ones,[4])
sage: for C in DLXM:
....: print(C)
[4, 1]
[4, 2, 3]

Note: The 0 entry is reserved internally for headers in the sparse representation, so rows and columns begin
their indexing with 1. Apologies for any heartache this causes. Blame the original author, or fix it yourself.

next()
Search for the first solution we can find, and return it.

Knuth describes the Dancing Links algorithm recursively, though actually implementing it as a recursive
algorithm is permissible only for highly restricted problems. (for example, the original author implemented
this for Sudoku, and it works beautifully there)

What follows is an iterative description of DLX:

stack <- [(NULL)]
level <- 0
while level >= 0:

cur <- stack[level]
if cur = NULL:

if R[h] = h:
level <- level - 1
yield solution

else:
cover(best_column)
stack[level] = best_column

else if D[cur] != C[cur]:
if cur != C[cur]:

delete solution[level]
for j in L[cur], L[L[cur]], ... , while j != cur:

uncover(C[j])
cur <- D[cur]
solution[level] <- cur
stack[level] <- cur
for j in R[cur], R[R[cur]], ... , while j != cur:

cover(C[j])
level <- level + 1

(continues on next page)

5.1. Comprehensive Module List 775

Combinatorics, Release 9.7

(continued from previous page)

stack[level] <- (NULL)
else:

if C[cur] != cur:
delete solution[level]
for j in L[cur], L[L[cur]], ... , while j != cur:

uncover(C[j])
uncover(cur)
level <- level - 1

sage.combinat.dlx.OneExactCover(M)
Use A. Ajanki’s DLXMatrix class to solve the exact cover problem on the matrix M (treated as a dense binary
matrix).

EXAMPLES:

sage: M = Matrix([[1,1,0],[1,0,1],[0,1,1]]) # no exact covers
sage: OneExactCover(M)

sage: M = Matrix([[1,1,0],[1,0,1],[0,0,1],[0,1,0]]) # two exact covers
sage: OneExactCover(M)
[(1, 1, 0), (0, 0, 1)]

5.1.97 Dyck Words

A class of an object enumerated by the Catalan numbers, see [Sta-EC2], [StaCat98] for details.

AUTHORS:

• Mike Hansen

• Dan Drake (2008-05-30): DyckWordBacktracker support

• Florent Hivert (2009-02-01): Bijections with NonDecreasingParkingFunctions

• Christian Stump (2011-12): added combinatorial maps and statistics

• Mike Zabrocki:

– (2012-10): added pretty print, characteristic function, more functions

– (2013-01): added inverse of area/dinv, bounce/area map

• Jean–Baptiste Priez, Travis Scrimshaw (2013-05-17): Added ASCII art

• Travis Scrimshaw (2013-07-09): Removed CombinatorialClass and added global options.

REFERENCES:

class sage.combinat.dyck_word.CompleteDyckWords
Bases: sage.combinat.dyck_word.DyckWords

Abstract base class for all complete Dyck words.

Element
alias of DyckWord_complete

from_Catalan_code(code)
Return the Dyck word associated to the given Catalan code code.

A Catalan code of length 𝑛 is a sequence (𝑎1, 𝑎2, . . . , 𝑎𝑛) of 𝑛 integers 𝑎𝑖 such that:

776 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• 0 ≤ 𝑎𝑖 ≤ 𝑛− 𝑖 for every 𝑖;

• if 𝑖 < 𝑗 and 𝑎𝑖 > 0 and 𝑎𝑗 > 0 and 𝑎𝑖+1 = 𝑎𝑖+2 = · · · = 𝑎𝑗−1 = 0, then 𝑎𝑖 − 𝑎𝑗 < 𝑗 − 𝑖.

It turns out that the Catalan codes of length 𝑛 are in bijection with Dyck words.

The Catalan code of a Dyck word is example (x) in Richard Stanley’s exercises on combinatorial interpre-
tations for Catalan objects. The code in this example is the reverse of the description provided there. See
[Sta-EC2] and [StaCat98].

EXAMPLES:

sage: DyckWords().from_Catalan_code([])
[]
sage: DyckWords().from_Catalan_code([0])
[1, 0]
sage: DyckWords().from_Catalan_code([0, 1])
[1, 1, 0, 0]
sage: DyckWords().from_Catalan_code([0, 0])
[1, 0, 1, 0]

from_area_sequence(code)
Return the Dyck word associated to the given area sequence code.

See to_area_sequence() for a definition of the area sequence of a Dyck word.

See also:

area(), to_area_sequence().

INPUT:

• code – a list of integers satisfying code[0] == 0 and 0 <= code[i+1] <= code[i]+1.

EXAMPLES:

sage: DyckWords().from_area_sequence([])
[]
sage: DyckWords().from_area_sequence([0])
[1, 0]
sage: DyckWords().from_area_sequence([0, 1])
[1, 1, 0, 0]
sage: DyckWords().from_area_sequence([0, 0])
[1, 0, 1, 0]

from_non_decreasing_parking_function(pf)
Bijection from non-decreasing parking functions.

See there the method to_dyck_word() for more information.

EXAMPLES:

sage: D = DyckWords()
sage: D.from_non_decreasing_parking_function([])
[]
sage: D.from_non_decreasing_parking_function([1])
[1, 0]
sage: D.from_non_decreasing_parking_function([1,1])
[1, 1, 0, 0]
sage: D.from_non_decreasing_parking_function([1,2])

(continues on next page)

5.1. Comprehensive Module List 777

Combinatorics, Release 9.7

(continued from previous page)

[1, 0, 1, 0]
sage: D.from_non_decreasing_parking_function([1,1,1])
[1, 1, 1, 0, 0, 0]
sage: D.from_non_decreasing_parking_function([1,2,3])
[1, 0, 1, 0, 1, 0]
sage: D.from_non_decreasing_parking_function([1,1,3,3,4,6,6])
[1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0]

from_noncrossing_partition(ncp)
Convert a noncrossing partition ncp to a Dyck word.

EXAMPLES:

sage: DyckWord(noncrossing_partition=[[1,2]]) # indirect doctest
[1, 1, 0, 0]
sage: DyckWord(noncrossing_partition=[[1],[2]])
[1, 0, 1, 0]

sage: dws = DyckWords(5).list()
sage: ncps = [x.to_noncrossing_partition() for x in dws]
sage: dws2 = [DyckWord(noncrossing_partition=x) for x in ncps]
sage: dws == dws2
True

class sage.combinat.dyck_word.CompleteDyckWords_all
Bases: sage.combinat.dyck_word.CompleteDyckWords, sage.combinat.dyck_word.DyckWords_all

All complete Dyck words.

class height_poset
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The poset of complete Dyck words compared componentwise by heights.

This is, D is smaller than or equal to D' if it is weakly below D'.

This is implemented by comparison of area sequences.

le(dw1, dw2)
Compare two Dyck words of equal size, and return True if all of the heights of dw1 are less than or
equal to the respective heights of dw2 .

See also:

to_area_sequence()

EXAMPLES:

sage: poset = DyckWords().height_poset()
sage: poset.le(DyckWord([]), DyckWord([]))
True
sage: poset.le(DyckWord([1,0]), DyckWord([1,0]))
True
sage: poset.le(DyckWord([1,0,1,0]), DyckWord([1,1,0,0]))
True
sage: poset.le(DyckWord([1,1,0,0]), DyckWord([1,0,1,0]))

(continues on next page)

778 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

False
sage: [poset.le(dw1, dw2)
....: for dw1 in DyckWords(3) for dw2 in DyckWords(3)]
[True, True, True, True, True, False, True, False, True, True,
False, False, True, True, True, False, False, False, True,
True, False, False, False, False, True]

class sage.combinat.dyck_word.CompleteDyckWords_size(k)
Bases: sage.combinat.dyck_word.CompleteDyckWords, sage.combinat.dyck_word.
DyckWords_size

All complete Dyck words of a given size.

cardinality()
Return the number of complete Dyck words of semilength 𝑛, i.e. the 𝑛-th Catalan number.

EXAMPLES:

sage: DyckWords(4).cardinality()
14
sage: ns = list(range(9))
sage: dws = [DyckWords(n) for n in ns]
sage: all(dw.cardinality() == len(dw.list()) for dw in dws)
True

random_element()
Return a random complete Dyck word of semilength 𝑛.

The algorithm is based on a classical combinatorial fact. One chooses at random a word with 𝑛 0’s and
𝑛+ 1 1’s. One then considers every 1 as an ascending step and every 0 as a descending step, and one finds
the lowest point of the path (with respect to a slightly tilted slope). One then cuts the path at this point and
builds a Dyck word by exchanging the two parts of the word and removing the initial step.

Todo: extend this to m-Dyck words

EXAMPLES:

sage: dw = DyckWords(8)
sage: dw.random_element() # random
[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0]

sage: D = DyckWords(8)
sage: D.random_element() in D
True

class sage.combinat.dyck_word.DyckWord(parent, l, latex_options={})
Bases: sage.combinat.combinat.CombinatorialElement

A Dyck word.

A Dyck word is a sequence of open and close symbols such that every close symbol has a corresponding open
symbol preceding it. That is to say, a Dyck word of length 𝑛 is a list with 𝑘 entries 1 and 𝑛 − 𝑘 entries 0 such
that the first 𝑖 entries always have at least as many 1s among them as 0s. (Here, the 1 serves as the open symbol
and the 0 as the close symbol.) Alternatively, the alphabet 1 and 0 can be replaced by other characters such as
‘(’ and ‘)’.

5.1. Comprehensive Module List 779

Combinatorics, Release 9.7

A Dyck word is complete if every open symbol moreover has a corresponding close symbol.

A Dyck word may also be specified by either a noncrossing partition or by an area sequence or the sequence of
heights.

A Dyck word may also be thought of as a lattice path in the Z2 grid, starting at the origin (0, 0), and with steps
in the North 𝑁 = (0, 1) and east 𝐸 = (1, 0) directions such that it does not pass below the 𝑥 = 𝑦 diagonal. The
diagonal is referred to as the “main diagonal” in the documentation. A North step is represented by a 1 in the list
and an East step is represented by a 0.

Equivalently, the path may be represented with steps in the 𝑁𝐸 = (1, 1) and the 𝑆𝐸 = (1,−1) direction such
that it does not pass below the horizontal axis.

5 10 15 20

1
2
3
4
5

A path representing a Dyck word (either using𝑁 and𝐸 steps, or using𝑁𝐸 and 𝑆𝐸 steps) is called a Dyck path.

EXAMPLES:

sage: dw = DyckWord([1, 0, 1, 0]); dw
[1, 0, 1, 0]
sage: print(dw)
()()
sage: dw.height()
1
sage: dw.to_noncrossing_partition()
{{1}, {2}}

sage: DyckWord('()()')
[1, 0, 1, 0]
sage: DyckWord('(())')
[1, 1, 0, 0]
sage: DyckWord('((')
[1, 1]
sage: DyckWord('')
[]

780 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: DyckWord(noncrossing_partition=[[1],[2]])
[1, 0, 1, 0]
sage: DyckWord(noncrossing_partition=[[1,2]])
[1, 1, 0, 0]
sage: DyckWord(noncrossing_partition=[])
[]

sage: DyckWord(area_sequence=[0,0])
[1, 0, 1, 0]
sage: DyckWord(area_sequence=[0,1])
[1, 1, 0, 0]
sage: DyckWord(area_sequence=[0,1,2,2,0,1,1,2])
[1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0]
sage: DyckWord(area_sequence=[])
[]

sage: DyckWord(heights_sequence=(0,1,0,1,0))
[1, 0, 1, 0]
sage: DyckWord(heights_sequence=(0,1,2,1,0))
[1, 1, 0, 0]
sage: DyckWord(heights_sequence=(0,))
[]

sage: print(DyckWord([1,0,1,1,0,0]).to_path_string())
/\

/\/ \
sage: DyckWord([1,0,1,1,0,0]).pretty_print()

| x
_| .
| . .

ascent_prime_decomposition()
Decompose this Dyck word into a sequence of ascents and prime Dyck paths.

A Dyck word is prime if it is complete and has precisely one return - the final step. In particular, the empty
Dyck path is not prime. Thus, the factorization is unique.

This decomposition yields a sequence of odd length: the words with even indices consist of up steps only,
the words with odd indices are prime Dyck paths. The concatenation of the result is the original word.

EXAMPLES:

sage: D = DyckWord([1,1,1,0,1,0,1,1,1,1,0,1])
sage: D.ascent_prime_decomposition()
[[1, 1], [1, 0], [], [1, 0], [1, 1, 1], [1, 0], [1]]

sage: DyckWord([]).ascent_prime_decomposition()
[[]]

sage: DyckWord([1,1]).ascent_prime_decomposition()
[[1, 1]]

(continues on next page)

5.1. Comprehensive Module List 781

Combinatorics, Release 9.7

(continued from previous page)

sage: DyckWord([1,0,1,0]).ascent_prime_decomposition()
[[], [1, 0], [], [1, 0], []]

associated_parenthesis(pos)
Report the position for the parenthesis in self that matches the one at position pos.

The positions in self are counted from 0.

INPUT:

• pos – the index of the parenthesis in the list

OUTPUT:

• Integer representing the index of the matching parenthesis. If no parenthesis matches, return None.

EXAMPLES:

sage: DyckWord([1, 0]).associated_parenthesis(0)
1
sage: DyckWord([1, 0, 1, 0]).associated_parenthesis(0)
1
sage: DyckWord([1, 0, 1, 0]).associated_parenthesis(1)
0
sage: DyckWord([1, 0, 1, 0]).associated_parenthesis(2)
3
sage: DyckWord([1, 0, 1, 0]).associated_parenthesis(3)
2
sage: DyckWord([1, 1, 0, 0]).associated_parenthesis(0)
3
sage: DyckWord([1, 1, 0, 0]).associated_parenthesis(2)
1
sage: DyckWord([1, 1, 0]).associated_parenthesis(1)
2
sage: DyckWord([1, 1]).associated_parenthesis(0)

catalan_factorization()
Decompose this Dyck word into a sequence of complete Dyck words.

Each element of the list returned is a (possibly empty) complete Dyck word. The original word is obtained
by placing an up step between each of these complete Dyck words. Thus, the number of words returned is
one more than the final height.

See Section 1.2 of [CC1982] or Lemma 9.1.1 of [Lot2005].

EXAMPLES:

sage: D = DyckWord([1,1,1,0,1,0,1,1,1,1,0,1])
sage: D.catalan_factorization()
[[], [], [1, 0, 1, 0], [], [], [1, 0], []]

sage: DyckWord([]).catalan_factorization()
[[]]

sage: DyckWord([1,1]).catalan_factorization()
[[], [], []]

(continues on next page)

782 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: DyckWord([1,0,1,0]).catalan_factorization()
[[1, 0, 1, 0]]

height()
Return the height of self.

We view the Dyck word as a Dyck path from (0, 0) to (2𝑛, 0) in the first quadrant by letting 1’s represent
steps in the direction (1, 1) and 0’s represent steps in the direction (1,−1).

The height is the maximum 𝑦-coordinate reached.

See also:

heights()

EXAMPLES:

sage: DyckWord([]).height()
0
sage: DyckWord([1,0]).height()
1
sage: DyckWord([1, 1, 0, 0]).height()
2
sage: DyckWord([1, 1, 0, 1, 0]).height()
2
sage: DyckWord([1, 1, 0, 0, 1, 0]).height()
2
sage: DyckWord([1, 0, 1, 0]).height()
1
sage: DyckWord([1, 1, 0, 0, 1, 1, 1, 0, 0, 0]).height()
3

heights()
Return the heights of self.

We view the Dyck word as a Dyck path from (0, 0) to (2𝑛, 0) in the first quadrant by letting 1’s represent
steps in the direction (1, 1) and 0’s represent steps in the direction (1,−1).

The heights is the sequence of the 𝑦-coordinates of all 2𝑛+ 1 lattice points along the path.

See also:

from_heights(), min_from_heights()

EXAMPLES:

sage: DyckWord([]).heights()
(0,)
sage: DyckWord([1,0]).heights()
(0, 1, 0)
sage: DyckWord([1, 1, 0, 0]).heights()
(0, 1, 2, 1, 0)
sage: DyckWord([1, 1, 0, 1, 0]).heights()
(0, 1, 2, 1, 2, 1)
sage: DyckWord([1, 1, 0, 0, 1, 0]).heights()
(0, 1, 2, 1, 0, 1, 0)
sage: DyckWord([1, 0, 1, 0]).heights()

(continues on next page)

5.1. Comprehensive Module List 783

Combinatorics, Release 9.7

(continued from previous page)

(0, 1, 0, 1, 0)
sage: DyckWord([1, 1, 0, 0, 1, 1, 1, 0, 0, 0]).heights()
(0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0)

is_complete()
Return True if self is complete.

A Dyck word 𝑑 is complete if 𝑑 contains as many closers as openers.

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).is_complete()
True
sage: DyckWord([1, 0, 1, 1, 0]).is_complete()
False

latex_options()
Return the latex options for use in the _latex_ function as a dictionary.

The default values are set using the options.

• tikz_scale – (default: 1) scale for use with the tikz package.

• diagonal – (default: False) boolean value to draw the diagonal or not.

• line width – (default: 2*``tikz_scale``) value representing the line width.

• color – (default: black) the line color.

• bounce path – (default: False) boolean value to indicate if the bounce path should be drawn.

• peaks – (default: False) boolean value to indicate if the peaks should be displayed.

• valleys – (default: False) boolean value to indicate if the valleys should be displayed.

EXAMPLES:

sage: D = DyckWord([1,0,1,0,1,0])
sage: D.latex_options()
{'bounce path': False,
'color': black,
'diagonal': False,
'line width': 2,
'peaks': False,
'tikz_scale': 1,
'valleys': False}

Todo: This should probably be merged into DyckWord.options.

length()
Return the length of self.

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).length()
4

(continues on next page)

784 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: DyckWord([1, 0, 1, 1, 0]).length()
5

number_of_close_symbols()
Return the number of close symbols in self.

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).number_of_close_symbols()
2
sage: DyckWord([1, 0, 1, 1, 0]).number_of_close_symbols()
2

number_of_double_rises()
Return a the number of positions in self where there are two consecutive 1’s.

EXAMPLES:

sage: DyckWord([1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0]).number_of_double_
→˓rises()
2
sage: DyckWord([1, 1, 0, 0]).number_of_double_rises()
1
sage: DyckWord([1, 0, 1, 0]).number_of_double_rises()
0

number_of_initial_rises()
Return the length of the initial run of self.

OUTPUT:

• a non–negative integer indicating the length of the initial rise

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).number_of_initial_rises()
1
sage: DyckWord([1, 1, 0, 0]).number_of_initial_rises()
2
sage: DyckWord([1, 1, 0, 0, 1, 0]).number_of_initial_rises()
2
sage: DyckWord([1, 0, 1, 1, 0, 0]).number_of_initial_rises()
1

number_of_open_symbols()
Return the number of open symbols in self.

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).number_of_open_symbols()
2
sage: DyckWord([1, 0, 1, 1, 0]).number_of_open_symbols()
3

number_of_peaks()
Return the number of peaks of the Dyck path associated to self .

5.1. Comprehensive Module List 785

Combinatorics, Release 9.7

See also:

peaks(), number_of_valleys()

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).number_of_peaks()
2
sage: DyckWord([1, 1, 0, 0]).number_of_peaks()
1
sage: DyckWord([1,1,0,1,0,1,0,0]).number_of_peaks()
3
sage: DyckWord([]).number_of_peaks()
0

number_of_touch_points()
Return the number of touches of self at the main diagonal.

OUTPUT:

• a non–negative integer

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).number_of_touch_points()
2
sage: DyckWord([1, 1, 0, 0]).number_of_touch_points()
1
sage: DyckWord([1, 1, 0, 0, 1, 0]).number_of_touch_points()
2
sage: DyckWord([1, 0, 1, 1, 0, 0]).number_of_touch_points()
2

number_of_valleys()
Return the number of valleys of self.

See also:

number_of_peaks(), valleys()

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).number_of_valleys()
1
sage: DyckWord([1, 1, 0, 0]).number_of_valleys()
0
sage: DyckWord([1, 1, 0, 0, 1, 0]).number_of_valleys()
1
sage: DyckWord([1, 0, 1, 1, 0, 0]).number_of_valleys()
1

peaks()
Return a list of the positions of the peaks of a Dyck word.

A peak is 1 followed by a 0. Note that this does not agree with the definition given in [Hag2008].

See also:

valleys(), number_of_peaks()

EXAMPLES:

786 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: DyckWord([1, 0, 1, 0]).peaks()
[0, 2]
sage: DyckWord([1, 1, 0, 0]).peaks()
[1]
sage: DyckWord([1,1,0,1,0,1,0,0]).peaks() # Haglund's def gives 2
[1, 3, 5]

plot(**kwds)
Plot a Dyck word as a continuous path.

EXAMPLES:

sage: w = DyckWords(100).random_element()
sage: w.plot()
Graphics object consisting of 1 graphics primitive

position_of_first_return()
Return the number of vertical steps before the Dyck path returns to the main diagonal.

EXAMPLES:

sage: DyckWord([1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0]).position_of_first_
→˓return()
1
sage: DyckWord([1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0]).position_of_first_
→˓return()
7
sage: DyckWord([1, 1, 0, 0]).position_of_first_return()
2
sage: DyckWord([1, 0, 1, 0]).position_of_first_return()
1
sage: DyckWord([]).position_of_first_return()
0

positions_of_double_rises()
Return a list of positions in self where there are two consecutive 1’s.

EXAMPLES:

sage: DyckWord([1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0]).positions_of_double_
→˓rises()
[2, 5]
sage: DyckWord([1, 1, 0, 0]).positions_of_double_rises()
[0]
sage: DyckWord([1, 0, 1, 0]).positions_of_double_rises()
[]

pp(type=None, labelling=None, underpath=True)
Display a DyckWord as a lattice path in the Z2 grid.

If the type is “N-E”, then a cell below the diagonal is indicated by a period, whereas a cell below the
path but above the diagonal is indicated by an x. If a list of labels is included, they are displayed along the
vertical edges of the Dyck path.

If the type is “NE-SE”, then the path is simply printed as up steps and down steps.

INPUT:

5.1. Comprehensive Module List 787

Combinatorics, Release 9.7

• type – (default: None) can either be:

– None to use the option default

– “N-E” to show self as a path of north and east steps, or

– “NE-SE” to show self as a path of north-east and south-east steps.

• labelling – (if type is “N-E”) a list of labels assigned to the up steps in self.

• underpath – (if type is “N-E”, default:True) If True, the labelling is shown under the path; otherwise,
it is shown to the right of the path.

EXAMPLES:

sage: for D in DyckWords(3): D.pretty_print()
_

_|
_| .

| . .

| x
_| .

| . .
_

___|
| x .
| . .

_| x

| x .
| . .

| x x
| x .
| . .

sage: for D in DyckWords(3): D.pretty_print(type="NE-SE")
/\/\/\

/\
/\/ \
/\

/ \/\
/\/\

/ \
/\
/ \

/ \

sage: D = DyckWord([1,1,1,0,1,0,0,1,1])
sage: D.pretty_print()

| x x
___| x .

_| x x . .
| x x . . .
| x

(continues on next page)

788 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

|

sage: D = DyckWord([1,1,1,0,1,0,0,1,1,0])
sage: D.pretty_print()

_
| x x

___| x .
_| x x . .

| x x . . .
| x
|

sage: D = DyckWord([1,1,1,0,1,0,0,1,1,0,0])
sage: D.pretty_print()

| x x

___| x .
_| x x . .

| x x . . .
| x
|

sage: DyckWord(area_sequence=[0,1,0]).pretty_print(labelling=[1,3,2])
_

___|2
|3x .
|1 . .

sage: DyckWord(area_sequence=[0,1,0]).pretty_print(labelling=[1,3,2],
→˓underpath=False)

_
___| 2

| x . 3
| . . 1

sage: DyckWord(area_sequence=[0,1,1,2,3,2,3,3,2,0,1,1,2,3,4,2,3]).pretty_print()

| x x x

_____| x x .
| x x x x . .
| x x x . . .
| x x

_| x
| x

_____|
___| x x

_| x x x
| x x x

___| x x
| x x x
| x x

(continues on next page)

5.1. Comprehensive Module List 789

Combinatorics, Release 9.7

(continued from previous page)

_| x
| x
|

sage: DyckWord(area_sequence=[0,1,1,2,3,2,3,3,2,0,1,1,2,3,4,2,3]).pretty_
→˓print(labelling=list(range(17)),underpath=False)

| x x x 16

_____| x x . 15
| x x x x . . 14
| x x x . . . 13
| x x 12

_| x 11
| x 10

_____| 9
___| x x 8

_| x x x 7
| x x x 6

___| x x 5
| x x x 4
| x x 3
_| x 2

| x 1
| 0

sage: DyckWord([]).pretty_print()
.

pretty_print(type=None, labelling=None, underpath=True)
Display a DyckWord as a lattice path in the Z2 grid.

If the type is “N-E”, then a cell below the diagonal is indicated by a period, whereas a cell below the
path but above the diagonal is indicated by an x. If a list of labels is included, they are displayed along the
vertical edges of the Dyck path.

If the type is “NE-SE”, then the path is simply printed as up steps and down steps.

INPUT:

• type – (default: None) can either be:

– None to use the option default

– “N-E” to show self as a path of north and east steps, or

– “NE-SE” to show self as a path of north-east and south-east steps.

• labelling – (if type is “N-E”) a list of labels assigned to the up steps in self.

• underpath – (if type is “N-E”, default:True) If True, the labelling is shown under the path; otherwise,
it is shown to the right of the path.

EXAMPLES:

sage: for D in DyckWords(3): D.pretty_print()
_

_|
(continues on next page)

790 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

_| .
| . .

| x
_| .

| . .
_

___|
| x .
| . .

_| x

| x .
| . .

| x x
| x .
| . .

sage: for D in DyckWords(3): D.pretty_print(type="NE-SE")
/\/\/\

/\
/\/ \
/\

/ \/\
/\/\

/ \
/\
/ \

/ \

sage: D = DyckWord([1,1,1,0,1,0,0,1,1])
sage: D.pretty_print()

| x x
___| x .

_| x x . .
| x x . . .
| x
|

sage: D = DyckWord([1,1,1,0,1,0,0,1,1,0])
sage: D.pretty_print()

_
| x x

___| x .
_| x x . .

| x x . . .
| x
|

sage: D = DyckWord([1,1,1,0,1,0,0,1,1,0,0])
(continues on next page)

5.1. Comprehensive Module List 791

Combinatorics, Release 9.7

(continued from previous page)

sage: D.pretty_print()

| x x

___| x .
_| x x . .

| x x . . .
| x
|

sage: DyckWord(area_sequence=[0,1,0]).pretty_print(labelling=[1,3,2])
_

___|2
|3x .
|1 . .

sage: DyckWord(area_sequence=[0,1,0]).pretty_print(labelling=[1,3,2],
→˓underpath=False)

_
___| 2

| x . 3
| . . 1

sage: DyckWord(area_sequence=[0,1,1,2,3,2,3,3,2,0,1,1,2,3,4,2,3]).pretty_print()

| x x x

_____| x x .
| x x x x . .
| x x x . . .
| x x

_| x
| x

_____|
___| x x

_| x x x
| x x x

___| x x
| x x x
| x x
_| x

| x
|

sage: DyckWord(area_sequence=[0,1,1,2,3,2,3,3,2,0,1,1,2,3,4,2,3]).pretty_
→˓print(labelling=list(range(17)),underpath=False)

| x x x 16

_____| x x . 15
| x x x x . . 14
| x x x . . . 13
| x x 12

_| x 11
(continues on next page)

792 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

| x 10
_____| 9

___| x x 8
_| x x x 7
| x x x 6

___| x x 5
| x x x 4
| x x 3
_| x 2

| x 1
| 0

sage: DyckWord([]).pretty_print()
.

returns_to_zero()
Return a list of positions where self has height 0, excluding the position 0.

EXAMPLES:

sage: DyckWord([]).returns_to_zero()
[]
sage: DyckWord([1, 0]).returns_to_zero()
[2]
sage: DyckWord([1, 0, 1, 0]).returns_to_zero()
[2, 4]
sage: DyckWord([1, 1, 0, 0]).returns_to_zero()
[4]

rise_composition()
The sequences of lengths of runs of 1’s in self. Also equal to the sequence of lengths of vertical segments
in the Dyck path.

EXAMPLES:

sage: DyckWord([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0]).pretty_print()

| x
_______| .

| x x x . .
| x x . . .
_| x

| x
|

sage: DyckWord([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0]).rise_composition()
[2, 3, 2]
sage: DyckWord([1,1,0,0]).rise_composition()
[2]
sage: DyckWord([1,0,1,0]).rise_composition()
[1, 1]

set_latex_options(D)
Set the latex options for use in the _latex_ function.

5.1. Comprehensive Module List 793

Combinatorics, Release 9.7

The default values are set in the __init__ function.

• tikz_scale – (default: 1) scale for use with the tikz package.

• diagonal – (default: False) boolean value to draw the diagonal or not.

• line width – (default: 2*``tikz_scale``) value representing the line width.

• color – (default: black) the line color.

• bounce path – (default: False) boolean value to indicate if the bounce path should be drawn.

• peaks – (default: False) boolean value to indicate if the peaks should be displayed.

• valleys – (default: False) boolean value to indicate if the valleys should be displayed.

INPUT:

• D – a dictionary with a list of latex parameters to change

EXAMPLES:

sage: D = DyckWord([1,0,1,0,1,0])
sage: D.set_latex_options({"tikz_scale":2})
sage: D.set_latex_options({"valleys":True, "color":"blue"})

Todo: This should probably be merged into DyckWord.options.

tamari_interval(other)
Return the Tamari interval between self and other as a TamariIntervalPoset.

A “Tamari interval” means an interval in the Tamari order. The Tamari order on the set of Dyck
words of size 𝑛 is the partial order obtained from the Tamari order on the set of binary trees of size
𝑛 (see tamari_lequal()) by means of the Tamari bijection between Dyck words and binary trees
(to_dyck_word_tamari()).

INPUT:

• other – a Dyck word greater or equal to self in the Tamari order

EXAMPLES:

sage: dw = DyckWord([1, 1, 0, 1, 0, 0, 1, 0])
sage: ip = dw.tamari_interval(DyckWord([1, 1, 1, 0, 0, 1, 0, 0])); ip
The Tamari interval of size 4 induced by relations [(2, 4), (3, 4), (3, 1), (2,␣
→˓1)]
sage: ip.lower_dyck_word()
[1, 1, 0, 1, 0, 0, 1, 0]
sage: ip.upper_dyck_word()
[1, 1, 1, 0, 0, 1, 0, 0]
sage: ip.interval_cardinality()
4
sage: ip.number_of_tamari_inversions()
2
sage: list(ip.dyck_words())
[[1, 1, 1, 0, 0, 1, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 0],
[1, 1, 0, 1, 0, 1, 0, 0],
[1, 1, 0, 1, 0, 0, 1, 0]]

(continues on next page)

794 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: dw.tamari_interval(DyckWord([1,1,0,0,1,1,0,0]))
Traceback (most recent call last):
...
ValueError: the two Dyck words are not comparable on the Tamari lattice

to_area_sequence()
Return the area sequence of the Dyck word self.

The area sequence of a Dyck word 𝑤 is defined as follows: Representing the Dyck word 𝑤 as a Dyck path
from (0, 0) to (𝑛, 𝑛) using 𝑁 and 𝐸 steps (this involves padding 𝑤 by 𝐸 steps until 𝑤 reaches the main
diagonal if𝑤 is not already a complete Dyck path), the area sequence of𝑤 is the sequence (𝑎1, 𝑎2, . . . , 𝑎𝑛),
where 𝑎𝑖 is the number of full cells in the 𝑖-th row of the rectangle [0, 𝑛]× [0, 𝑛] which lie completely above
the diagonal. (The cells are the regions into which the rectangle is subdivided by the lines 𝑥 = 𝑖 with 𝑖
integer and the lines 𝑦 = 𝑗 with 𝑗 integer. The 𝑖-th row consists of all the cells between the lines 𝑦 = 𝑖− 1
and 𝑦 = 𝑖.)

An alternative definition: Representing the Dyck word 𝑤 as a Dyck path consisting of 𝑁𝐸 and 𝑆𝐸 steps,
the area sequence is the sequence of ordinates of all lattice points on the path which are starting points of
𝑁𝐸 steps.

A list of integers 𝑙 is the area sequence of some Dyck path if and only if it satisfies 𝑙0 = 0 and 0 ≤ 𝑙𝑖+1 ≤
𝑙𝑖 + 1 for 𝑖 > 0.

EXAMPLES:

sage: DyckWord([]).to_area_sequence()
[]
sage: DyckWord([1, 0]).to_area_sequence()
[0]
sage: DyckWord([1, 1, 0, 0]).to_area_sequence()
[0, 1]
sage: DyckWord([1, 0, 1, 0]).to_area_sequence()
[0, 0]
sage: all(dw ==
....: DyckWords().from_area_sequence(dw.to_area_sequence())
....: for i in range(6) for dw in DyckWords(i))
True
sage: DyckWord([1,0,1,0,1,0,1,0,1,0]).to_area_sequence()
[0, 0, 0, 0, 0]
sage: DyckWord([1,1,1,1,1,0,0,0,0,0]).to_area_sequence()
[0, 1, 2, 3, 4]
sage: DyckWord([1,1,1,1,0,1,0,0,0,0]).to_area_sequence()
[0, 1, 2, 3, 3]
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).to_area_sequence()
[0, 1, 1, 0, 1, 1, 1]

to_binary_tree(usemap='1L0R')
Return a binary tree recursively constructed from the Dyck path self by the map usemap. The default
usemap is '1L0R' which means:

• an empty Dyck word is a leaf,

• a non empty Dyck word reads 1𝐿0𝑅 where 𝐿 and 𝑅 correspond to respectively its left and right
subtrees.

INPUT:

5.1. Comprehensive Module List 795

Combinatorics, Release 9.7

• usemap – a string, either '1L0R', '1R0L', 'L1R0', 'R1L0'

Other valid usemap are '1R0L', 'L1R0', and 'R1L0'. These correspond to different maps from Dyck
paths to binary trees, whose recursive definitions are hopefully clear from the names.

EXAMPLES:

sage: dw = DyckWord([1,0])
sage: dw.to_binary_tree()
[., .]
sage: dw = DyckWord([])
sage: dw.to_binary_tree()
.
sage: dw = DyckWord([1,0,1,1,0,0])
sage: dw.to_binary_tree()
[., [[., .], .]]
sage: dw.to_binary_tree("L1R0")
[[., .], [., .]]
sage: dw = DyckWord([1,0,1,1,0,0,1,1,1,0,1,0,0,0])
sage: dw.to_binary_tree() == dw.to_binary_tree("1R0L").left_right_symmetry()
True
sage: dw.to_binary_tree() == dw.to_binary_tree("L1R0").left_border_symmetry()
False
sage: dw.to_binary_tree("1R0L") == dw.to_binary_tree("L1R0").left_border_
→˓symmetry()
True
sage: dw.to_binary_tree("R1L0") == dw.to_binary_tree("L1R0").left_right_
→˓symmetry()
True
sage: dw.to_binary_tree("R10L")
Traceback (most recent call last):
...
ValueError: R10L is not a correct map

to_binary_tree_tamari()
Return the binary tree corresponding to self in a way which is consistent with the Tamari orders on the
set of Dyck paths and on the set of binary trees.

This is the 'L1R0' map documented in to_binary_tree().

EXAMPLES:

sage: DyckWord([1,0]).to_binary_tree_tamari()
[., .]
sage: DyckWord([1,0,1,1,0,0]).to_binary_tree_tamari()
[[., .], [., .]]
sage: DyckWord([1,0,1,0,1,0]).to_binary_tree_tamari()
[[[., .], .], .]

to_path_string(unicode=False)
Return a path representation of the Dyck word consisting of steps / and \ .

INPUT:

• unicode – boolean (default False) whether to use unicode

EXAMPLES:

796 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: print(DyckWord([1, 0, 1, 0]).to_path_string())
/\/\
sage: print(DyckWord([1, 1, 0, 0]).to_path_string())
/\

/ \
sage: print(DyckWord([1,1,0,1,1,0,0,1,0,1,0,0]).to_path_string())

/\
/\/ \/\/\

/ \

to_standard_tableau()
Return a standard tableau of shape (𝑎, 𝑏) where 𝑎 is the number of open symbols and 𝑏 is the number of
close symbols in self.

EXAMPLES:

sage: DyckWord([]).to_standard_tableau()
[]
sage: DyckWord([1, 0]).to_standard_tableau()
[[1], [2]]
sage: DyckWord([1, 1, 0, 0]).to_standard_tableau()
[[1, 2], [3, 4]]
sage: DyckWord([1, 0, 1, 0]).to_standard_tableau()
[[1, 3], [2, 4]]
sage: DyckWord([1]).to_standard_tableau()
[[1]]
sage: DyckWord([1, 0, 1]).to_standard_tableau()
[[1, 3], [2]]

to_tamari_sorting_tuple()
Convert a Dyck word to a Tamari sorting tuple.

The result is a list of integers, one for every up-step from left to right. To each up-step is associated the
distance to the corresponding down step in the Dyck word.

This is useful for a faster conversion to binary trees.

EXAMPLES:

sage: DyckWord([]).to_tamari_sorting_tuple()
[]
sage: DyckWord([1, 0]).to_tamari_sorting_tuple()
[0]
sage: DyckWord([1, 1, 0, 0]).to_tamari_sorting_tuple()
[1, 0]
sage: DyckWord([1, 0, 1, 0]).to_tamari_sorting_tuple()
[0, 0]
sage: DyckWord([1, 1, 0, 1, 0, 0]).to_tamari_sorting_tuple()
[2, 0, 0]

See also:

to_Catalan_code()

touch_composition()
Return a composition which indicates the positions where self returns to the diagonal.

5.1. Comprehensive Module List 797

Combinatorics, Release 9.7

This assumes self to be a complete Dyck word.

OUTPUT:

• a composition of length equal to the length of the Dyck word.

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).touch_composition()
[1, 1]
sage: DyckWord([1, 1, 0, 0]).touch_composition()
[2]
sage: DyckWord([1, 1, 0, 0, 1, 0]).touch_composition()
[2, 1]
sage: DyckWord([1, 0, 1, 1, 0, 0]).touch_composition()
[1, 2]
sage: DyckWord([]).touch_composition()
[]

touch_points()
Return the abscissae (or, equivalently, ordinates) of the points where the Dyck path corresponding to self
(comprising𝑁𝐸 and 𝑆𝐸 steps) touches the main diagonal. This includes the last point (if it is on the main
diagonal) but excludes the beginning point.

Note that these abscissae are precisely the entries of returns_to_zero() divided by 2.

OUTPUT:

• a list of integers indicating where the path touches the diagonal

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).touch_points()
[1, 2]
sage: DyckWord([1, 1, 0, 0]).touch_points()
[2]
sage: DyckWord([1, 1, 0, 0, 1, 0]).touch_points()
[2, 3]
sage: DyckWord([1, 0, 1, 1, 0, 0]).touch_points()
[1, 3]

valleys()
Return a list of the positions of the valleys of a Dyck word.

A valley is 0 followed by a 1.

See also:

peaks(), number_of_valleys()

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).valleys()
[1]
sage: DyckWord([1, 1, 0, 0]).valleys()
[]
sage: DyckWord([1,1,0,1,0,1,0,0]).valleys()
[2, 4]

798 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.dyck_word.DyckWordBacktracker(k1, k2)
Bases: sage.combinat.backtrack.GenericBacktracker

This class is an iterator for all Dyck words with 𝑛 opening parentheses and 𝑛− 𝑘 closing parentheses using the
backtracker class. It is used by the DyckWords_size class.

This is not really meant to be called directly, partially because it fails in a couple corner cases: DWB(0) yields
[0], not the empty word, and DWB(k, k+1) yields something (it shouldn’t yield anything). This could be fixed
with a sanity check in _rec(), but then we’d be doing the sanity check every time we generate new objects;
instead, we do one sanity check in DyckWords and assume here that the sanity check has already been made.

AUTHOR:

• Dan Drake (2008-05-30)

class sage.combinat.dyck_word.DyckWord_complete(parent, l, latex_options={})
Bases: sage.combinat.dyck_word.DyckWord

The class of complete Dyck words. A Dyck word is complete, if it contains as many closers as openers.

For further information on Dyck words, see DyckWords_class.

area()
Return the area for self corresponding to the area of the Dyck path.

One can view a balanced Dyck word as a lattice path from (0, 0) to (𝑛, 𝑛) in the first quadrant by letting
‘1’s represent steps in the direction (1, 0) and ‘0’s represent steps in the direction (0, 1). The resulting path
will remain weakly above the diagonal 𝑦 = 𝑥.

The area statistic is the number of complete squares in the integer lattice which are below the path and
above the line 𝑦 = 𝑥. The ‘half-squares’ directly above the line 𝑦 = 𝑥 do not contribute to this statistic.

EXAMPLES:

sage: dw = DyckWord([1,0,1,0])
sage: dw.area() # 2 half-squares, 0 complete squares
0

sage: dw = DyckWord([1,1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0,0])
sage: dw.area()
19

sage: DyckWord([1,1,1,1,0,0,0,0]).area()
6
sage: DyckWord([1,1,1,0,1,0,0,0]).area()
5
sage: DyckWord([1,1,1,0,0,1,0,0]).area()
4
sage: DyckWord([1,1,1,0,0,0,1,0]).area()
3
sage: DyckWord([1,0,1,1,0,1,0,0]).area()
2
sage: DyckWord([1,1,0,1,1,0,0,0]).area()
4
sage: DyckWord([1,1,0,0,1,1,0,0]).area()
2
sage: DyckWord([1,0,1,1,1,0,0,0]).area()
3

(continues on next page)

5.1. Comprehensive Module List 799

Combinatorics, Release 9.7

(continued from previous page)

sage: DyckWord([1,0,1,1,0,0,1,0]).area()
1
sage: DyckWord([1,0,1,0,1,1,0,0]).area()
1
sage: DyckWord([1,1,0,0,1,0,1,0]).area()
1
sage: DyckWord([1,1,0,1,0,0,1,0]).area()
2
sage: DyckWord([1,1,0,1,0,1,0,0]).area()
3
sage: DyckWord([1,0,1,0,1,0,1,0]).area()
0

area_dinv_to_bounce_area_map()
Return the image of self under the map which sends a Dyck word with area equal to 𝑟 and dinv equal
to 𝑠 to a Dyck word with bounce equal to 𝑟 and area equal to 𝑠 .

The inverse of this map is bounce_area_to_area_dinv_map().

For a definition of this map, see [Hag2008] p. 50 where it is called 𝜁. However, this map differs from
Haglund’s map by an application of reverse() (as does the definition of the bounce() statistic).

EXAMPLES:

sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).area_dinv_to_bounce_area_map()
[1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0]
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).area()
5
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).dinv()
13
sage: DyckWord([1,1,1,1,1,0,0,0,1,0,0,1,0,0]).area()
13
sage: DyckWord([1,1,1,1,1,0,0,0,1,0,0,1,0,0]).bounce()
5
sage: DyckWord([1,1,1,1,1,0,0,0,1,0,0,1,0,0]).area_dinv_to_bounce_area_map()
[1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0]
sage: DyckWord([1,1,0,0]).area_dinv_to_bounce_area_map()
[1, 0, 1, 0]
sage: DyckWord([1,0,1,0]).area_dinv_to_bounce_area_map()
[1, 1, 0, 0]

bounce()
Return the bounce statistic of self due to J. Haglund, see [Hag2008].

One can view a balanced Dyck word as a lattice path from (0, 0) to (𝑛, 𝑛) in the first quadrant by letting
‘1’s represent steps in the direction (0, 1) and ‘0’s represent steps in the direction (1, 0). The resulting path
will remain weakly above the diagonal 𝑦 = 𝑥.

We describe the bounce statistic of such a path in terms of what is known as the “bounce path”.

We can think of our bounce path as describing the trail of a billiard ball shot West from (𝑛, 𝑛), which
“bounces” down whenever it encounters a vertical step and “bounces” left when it encounters the line
𝑦 = 𝑥.

The bouncing ball will strike the diagonal at the places

(0, 0), (𝑗1, 𝑗1), (𝑗2, 𝑗2), . . . , (𝑗𝑟 − 1, 𝑗𝑟 − 1), (𝑗𝑟, 𝑗𝑟) = (𝑛, 𝑛).

800 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

We define the bounce to be the sum
∑︀𝑟−1
𝑖=1 𝑗𝑖.

EXAMPLES:

sage: DyckWord([1,1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0,0]).bounce()
7
sage: DyckWord([1,1,1,1,0,0,0,0]).bounce()
0
sage: DyckWord([1,1,1,0,1,0,0,0]).bounce()
1
sage: DyckWord([1,1,1,0,0,1,0,0]).bounce()
2
sage: DyckWord([1,1,1,0,0,0,1,0]).bounce()
3
sage: DyckWord([1,0,1,1,0,1,0,0]).bounce()
3
sage: DyckWord([1,1,0,1,1,0,0,0]).bounce()
1
sage: DyckWord([1,1,0,0,1,1,0,0]).bounce()
2
sage: DyckWord([1,0,1,1,1,0,0,0]).bounce()
1
sage: DyckWord([1,0,1,1,0,0,1,0]).bounce()
4
sage: DyckWord([1,0,1,0,1,1,0,0]).bounce()
3
sage: DyckWord([1,1,0,0,1,0,1,0]).bounce()
5
sage: DyckWord([1,1,0,1,0,0,1,0]).bounce()
4
sage: DyckWord([1,1,0,1,0,1,0,0]).bounce()
2
sage: DyckWord([1,0,1,0,1,0,1,0]).bounce()
6

bounce_area_to_area_dinv_map()
Return the image of the Dyck word under the map which sends a Dyck word with bounce equal to 𝑟 and
area equal to 𝑠 to a Dyck word with area equal to 𝑟 and dinv equal to 𝑠 .

This implementation uses a recursive method by saying that the last entry in the area sequence of the Dyck
word self is equal to the number of touch points of the Dyck path minus 1 of the image of this map.

The inverse of this map is area_dinv_to_bounce_area_map().

For a definition of this map, see [Hag2008] p. 50 where it is called 𝜁−1. However, this map differs from
Haglund’s map by an application of reverse() (as does the definition of the bounce() statistic).

EXAMPLES:

sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).bounce_area_to_area_dinv_map()
[1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0]
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).area()
5
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).bounce()
9
sage: DyckWord([1,1,0,0,1,1,1,1,0,0,1,0,0,0]).area()

(continues on next page)

5.1. Comprehensive Module List 801

Combinatorics, Release 9.7

(continued from previous page)

9
sage: DyckWord([1,1,0,0,1,1,1,1,0,0,1,0,0,0]).dinv()
5
sage: all(D==D.bounce_area_to_area_dinv_map().area_dinv_to_bounce_area_map()␣
→˓for D in DyckWords(6))
True
sage: DyckWord([1,1,0,0]).bounce_area_to_area_dinv_map()
[1, 0, 1, 0]
sage: DyckWord([1,0,1,0]).bounce_area_to_area_dinv_map()
[1, 1, 0, 0]

bounce_path()
Return the bounce path of self formed by starting at (𝑛, 𝑛) and traveling West until encountering the first
vertical step of self, then South until encountering the diagonal, then West again to hit the path, etc. until
the (0, 0) point is reached. The path followed by this walk is the bounce path.

See also:

bounce()

EXAMPLES:

sage: DyckWord([1,1,0,1,0,0]).bounce_path()
[1, 0, 1, 1, 0, 0]
sage: DyckWord([1,1,1,0,0,0]).bounce_path()
[1, 1, 1, 0, 0, 0]
sage: DyckWord([1,0,1,0,1,0]).bounce_path()
[1, 0, 1, 0, 1, 0]
sage: DyckWord([1,1,1,1,0,0,1,0,0,0]).bounce_path()
[1, 1, 0, 0, 1, 1, 1, 0, 0, 0]

characteristic_symmetric_function(q=None, R=Fraction Field of Multivariate Polynomial Ring in q, t
over Rational Field)

The characteristic function of self is the sum of 𝑞𝑑𝑖𝑛𝑣(𝐷,𝐹)𝑄𝑖𝑑𝑒𝑠(𝑟𝑒𝑎𝑑(𝐷,𝐹)) over all permutation fillings
of the Dyck path representing self, where 𝑖𝑑𝑒𝑠(𝑟𝑒𝑎𝑑(𝐷,𝐹)) is the descent composition of the inverse of
the reading word of the filling.

INPUT:

• q – (default: q = R('q')) a parameter for the generating function power

• R – (default : R = QQ['q','t'].fraction_field()) the base ring to do the calculations over

OUTPUT:

• an element of the symmetric functions over the ring R (in the Schur basis).

EXAMPLES:

sage: R = QQ['q','t'].fraction_field()
sage: (q,t) = R.gens()
sage: f = sum(t**D.area()*D.characteristic_symmetric_function() for D in␣
→˓DyckWords(3)); f
(q^3+q^2*t+q*t^2+t^3+q*t)*s[1, 1, 1] + (q^2+q*t+t^2+q+t)*s[2, 1] + s[3]
sage: f.nabla(power=-1)
s[1, 1, 1]

802 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

decomposition_reverse()
Return the involution of self with a recursive definition.

If a Dyck word𝐷 decomposes as 1𝐷10𝐷2 where𝐷1 and𝐷2 are complete Dyck words then the decompo-
sition reverse is 1𝜑(𝐷2)0𝜑(𝐷1).

EXAMPLES:

sage: DyckWord([1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0]).decomposition_
→˓reverse()
[1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0]
sage: DyckWord([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0]).decomposition_
→˓reverse()
[1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0]
sage: DyckWord([1,1,0,0]).decomposition_reverse()
[1, 0, 1, 0]
sage: DyckWord([1,0,1,0]).decomposition_reverse()
[1, 1, 0, 0]

dinv(labeling=None)
Return the dinv statistic of self due to M. Haiman, see [Hag2008].

If a labeling is provided then this function returns the dinv of the labeled Dyck word.

INPUT:

• labeling – an optional argument to be viewed as the labelings of the vertical edges of the Dyck path

OUTPUT:

• an integer representing the dinv statistic of the Dyck path or the labelled Dyck path.

EXAMPLES:

sage: DyckWord([1,0,1,0,1,0,1,0,1,0]).dinv()
10
sage: DyckWord([1,1,1,1,1,0,0,0,0,0]).dinv()
0
sage: DyckWord([1,1,1,1,0,1,0,0,0,0]).dinv()
1
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).dinv()
13
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).dinv([1,2,3,4,5,6,7])
11
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).dinv([6,7,5,3,4,2,1])
2

first_return_decomposition()
Decompose a Dyck word into a pair of Dyck words (potentially empty) where the first word consists of the
word after the first up step and the corresponding matching closing parenthesis.

EXAMPLES:

sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).first_return_decomposition()
([1, 0, 1, 0], [1, 1, 0, 1, 0, 1, 0, 0])
sage: DyckWord([1,1,0,0]).first_return_decomposition()
([1, 0], [])
sage: DyckWord([1,0,1,0]).first_return_decomposition()
([], [1, 0])

5.1. Comprehensive Module List 803

Combinatorics, Release 9.7

list_parking_functions()
Return all parking functions whose supporting Dyck path is self.

EXAMPLES:

sage: DyckWord([1,1,0,0,1,0]).list_parking_functions()
Permutations of the multi-set [1, 1, 3]
sage: DyckWord([1,1,1,0,0,0]).list_parking_functions()
Permutations of the multi-set [1, 1, 1]
sage: DyckWord([1,0,1,0,1,0]).list_parking_functions()
Standard permutations of 3

major_index()
Return the major index of self .

The major index of a Dyck word 𝐷 is the sum of the positions of the valleys of 𝐷 (when started counting
at position 1).

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).major_index()
2
sage: DyckWord([1, 1, 0, 0]).major_index()
0
sage: DyckWord([1, 1, 0, 0, 1, 0]).major_index()
4
sage: DyckWord([1, 0, 1, 1, 0, 0]).major_index()
2

number_of_parking_functions()
Return the number of parking functions with self as the supporting Dyck path.

One representation of a parking function is as a pair consisting of a Dyck path and a permutation 𝜋 such that
if [𝑎0, 𝑎1, . . . , 𝑎𝑛−1] is the area_sequence of the Dyck path (see to_area_sequence) then the permutation
𝜋 satisfies 𝜋𝑖 < 𝜋𝑖+1 whenever 𝑎𝑖 < 𝑎𝑖+1. This function counts the number of permutations 𝜋 which
satisfy this condition.

EXAMPLES:

sage: DyckWord(area_sequence=[0,1,2]).number_of_parking_functions()
1
sage: DyckWord(area_sequence=[0,1,1]).number_of_parking_functions()
3
sage: DyckWord(area_sequence=[0,1,0]).number_of_parking_functions()
3
sage: DyckWord(area_sequence=[0,0,0]).number_of_parking_functions()
6

number_of_tunnels(tunnel_type='centered')
Return the number of tunnels of self of type tunnel_type.

A tunnel is a pair (𝑎, 𝑏) where a is the position of an open parenthesis and b is the position of the matching
close parenthesis. If 𝑎 + 𝑏 = 𝑛 then the tunnel is called centered . If 𝑎 + 𝑏 < 𝑛 then the tunnel is called
left and if 𝑎+ 𝑏 > 𝑛, then the tunnel is called right.

INPUT:

• tunnel_type – (default: 'centered') can be one of the following: 'left', 'right', 'centered',
or 'all'.

804 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: DyckWord([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0]).number_of_tunnels()
0
sage: DyckWord([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0]).number_of_tunnels(
→˓'left')
5
sage: DyckWord([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0]).number_of_tunnels(
→˓'right')
2
sage: DyckWord([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0]).number_of_tunnels(
→˓'all')
7
sage: DyckWord([1, 1, 0, 0]).number_of_tunnels('centered')
2

pyramid_weight()
Return the pyramid weight of self.

A pyramid of self is a subsequence of the form 1ℎ0ℎ. A pyramid is maximal if it is neither preceded by
a 1 nor followed by a 0.

The pyramid weight of a Dyck path is the sum of the lengths of the maximal pyramids and was defined in
[DS1992].

EXAMPLES:

sage: DyckWord([1,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0]).pyramid_weight()
6
sage: DyckWord([1,1,1,0,0,0]).pyramid_weight()
3
sage: DyckWord([1,0,1,0,1,0]).pyramid_weight()
3
sage: DyckWord([1,1,0,1,0,0]).pyramid_weight()
2

reading_permutation()
Return the reading permutation of self.

This is the permutation formed by taking the reading word of the Dyck path representing self (with 𝑁
and 𝐸 steps) if the vertical edges of the Dyck path are labeled from bottom to top with 1 through 𝑛 and the
diagonals are read from top to bottom starting with the diagonal furthest from the main diagonal.

EXAMPLES:

sage: DyckWord([1,0,1,0]).reading_permutation()
[2, 1]
sage: DyckWord([1,1,0,0]).reading_permutation()
[2, 1]
sage: DyckWord([1,1,0,1,0,0]).reading_permutation()
[3, 2, 1]
sage: DyckWord([1,1,0,0,1,0]).reading_permutation()
[2, 3, 1]
sage: DyckWord([1,0,1,1,0,0,1,0]).reading_permutation()
[3, 4, 2, 1]

5.1. Comprehensive Module List 805

Combinatorics, Release 9.7

reverse()
Return the reverse and complement of self.

This operation corresponds to flipping the Dyck path across the 𝑦 = −𝑥 line.

EXAMPLES:

sage: DyckWord([1,1,0,0,1,0]).reverse()
[1, 0, 1, 1, 0, 0]
sage: DyckWord([1,1,1,0,0,0]).reverse()
[1, 1, 1, 0, 0, 0]
sage: len([D for D in DyckWords(5) if D.reverse() == D])
10

semilength()
Return the semilength of self.

The semilength of a complete Dyck word 𝑑 is the number of openers and the number of closers.

EXAMPLES:

sage: DyckWord([1, 0, 1, 0]).semilength()
2

to_132_avoiding_permutation()
Use the bijection by C. Krattenthaler in [Kra2001] to send self to a 132-avoiding permutation.

EXAMPLES:

sage: DyckWord([1,1,0,0]).to_132_avoiding_permutation()
[1, 2]
sage: DyckWord([1,0,1,0]).to_132_avoiding_permutation()
[2, 1]
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).to_132_avoiding_permutation()
[6, 5, 4, 7, 2, 1, 3]

to_312_avoiding_permutation()
Convert self to a 312-avoiding permutation using the bijection by Bandlow and Killpatrick in [BK2001].

This sends the area to the inversion number.

EXAMPLES:

sage: DyckWord([1,1,0,0]).to_312_avoiding_permutation()
[2, 1]
sage: DyckWord([1,0,1,0]).to_312_avoiding_permutation()
[1, 2]
sage: p = DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).to_312_avoiding_permutation();
→˓ p
[2, 3, 1, 5, 6, 7, 4]
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).area()
5
sage: p.length()
5

to_321_avoiding_permutation()
Use the bijection (pp. 60-61 of [Knu1973] or section 3.1 of [CK2008]) to send self to a 321-avoiding
permutation.

806 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

It is shown in [EP2004] that it sends the number of centered tunnels to the number of fixed points, the
number of right tunnels to the number of excedences, and the semilength plus the height of the middle
point to 2 times the length of the longest increasing subsequence.

EXAMPLES:

sage: DyckWord([1,0,1,0]).to_321_avoiding_permutation()
[2, 1]
sage: DyckWord([1,1,0,0]).to_321_avoiding_permutation()
[1, 2]
sage: D = DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0])
sage: p = D.to_321_avoiding_permutation()
sage: p
[3, 5, 1, 6, 2, 7, 4]
sage: D.number_of_tunnels()
0
sage: p.number_of_fixed_points()
0
sage: D.number_of_tunnels('right')
4
sage: len(p.weak_excedences())-p.number_of_fixed_points()
4
sage: n = D.semilength()
sage: D.heights()[n] + n
8
sage: 2*p.longest_increasing_subsequence_length()
8

to_Catalan_code()
Return the Catalan code associated to self.

A Catalan code of length 𝑛 is a sequence (𝑎1, 𝑎2, . . . , 𝑎𝑛) of 𝑛 integers 𝑎𝑖 such that:

• 0 ≤ 𝑎𝑖 ≤ 𝑛− 𝑖 for every 𝑖;

• if 𝑖 < 𝑗 and 𝑎𝑖 > 0 and 𝑎𝑗 > 0 and 𝑎𝑖+1 = 𝑎𝑖+2 = · · · = 𝑎𝑗−1 = 0, then 𝑎𝑖 − 𝑎𝑗 < 𝑗 − 𝑖.

It turns out that the Catalan codes of length 𝑛 are in bijection with Dyck words.

The Catalan code of a Dyck word is example (x) in Richard Stanley’s exercises on combinatorial interpre-
tations for Catalan objects. The code in this example is the reverse of the description provided there. See
[Sta-EC2] and [StaCat98].

EXAMPLES:

sage: DyckWord([]).to_Catalan_code()
[]
sage: DyckWord([1, 0]).to_Catalan_code()
[0]
sage: DyckWord([1, 1, 0, 0]).to_Catalan_code()
[0, 1]
sage: DyckWord([1, 0, 1, 0]).to_Catalan_code()
[0, 0]
sage: all(dw ==
....: DyckWords().from_Catalan_code(dw.to_Catalan_code())
....: for i in range(6) for dw in DyckWords(i))
True

5.1. Comprehensive Module List 807

Combinatorics, Release 9.7

See also:

to_tamari_sorting_tuple()

to_alternating_sign_matrix()
Return self as an alternating sign matrix.

This is an inclusion map from Dyck words of length 2𝑛 to certain 𝑛× 𝑛 alternating sign matrices.

EXAMPLES:

sage: DyckWord([1,1,1,0,1,0,0,0]).to_alternating_sign_matrix()
[0 0 1 0]
[1 0 -1 1]
[0 1 0 0]
[0 0 1 0]
sage: DyckWord([1,0,1,0,1,1,0,0]).to_alternating_sign_matrix()
[1 0 0 0]
[0 1 0 0]
[0 0 0 1]
[0 0 1 0]

to_non_decreasing_parking_function()
Bijection to non-decreasing parking functions.

See there the method to_dyck_word() for more information.

EXAMPLES:

sage: DyckWord([]).to_non_decreasing_parking_function()
[]
sage: DyckWord([1,0]).to_non_decreasing_parking_function()
[1]
sage: DyckWord([1,1,0,0]).to_non_decreasing_parking_function()
[1, 1]
sage: DyckWord([1,0,1,0]).to_non_decreasing_parking_function()
[1, 2]
sage: DyckWord([1,0,1,1,0,1,0,0,1,0]).to_non_decreasing_parking_function()
[1, 2, 2, 3, 5]

to_noncrossing_partition(bijection=None)
Bijection of Biane from self to a noncrossing partition.

There is an optional parameter bijection that indicates if a different bijection from Dyck words to non-
crossing partitions should be used (since there are potentially many).

If the parameter bijection is “Stump” then the bijection used is from [Stu2008], see also the method
to_noncrossing_permutation().

Thanks to Mathieu Dutour for describing the bijection. See also from_noncrossing_partition().

EXAMPLES:

sage: DyckWord([]).to_noncrossing_partition()
{}
sage: DyckWord([1, 0]).to_noncrossing_partition()
{{1}}
sage: DyckWord([1, 1, 0, 0]).to_noncrossing_partition()
{{1, 2}}

(continues on next page)

808 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: DyckWord([1, 1, 1, 0, 0, 0]).to_noncrossing_partition()
{{1, 2, 3}}
sage: DyckWord([1, 0, 1, 0, 1, 0]).to_noncrossing_partition()
{{1}, {2}, {3}}
sage: DyckWord([1, 1, 0, 1, 0, 0]).to_noncrossing_partition()
{{1, 3}, {2}}
sage: DyckWord([]).to_noncrossing_partition("Stump")
{}
sage: DyckWord([1, 0]).to_noncrossing_partition("Stump")
{{1}}
sage: DyckWord([1, 1, 0, 0]).to_noncrossing_partition("Stump")
{{1, 2}}
sage: DyckWord([1, 1, 1, 0, 0, 0]).to_noncrossing_partition("Stump")
{{1, 3}, {2}}
sage: DyckWord([1, 0, 1, 0, 1, 0]).to_noncrossing_partition("Stump")
{{1}, {2}, {3}}
sage: DyckWord([1, 1, 0, 1, 0, 0]).to_noncrossing_partition("Stump")
{{1, 2, 3}}

to_noncrossing_permutation()
Use the bijection by C. Stump in [Stu2008] to send self to a non-crossing permutation.

A non-crossing permutation when written in cyclic notation has cycles which are strictly increasing. Sends
the area to the inversion number and self.major_index() to 𝑛(𝑛 − 1) −𝑚𝑎𝑗(𝜎) −𝑚𝑎𝑗(𝜎−1). Uses
the function pealing()

EXAMPLES:

sage: DyckWord([1,1,0,0]).to_noncrossing_permutation()
[2, 1]
sage: DyckWord([1,0,1,0]).to_noncrossing_permutation()
[1, 2]
sage: p = DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).to_noncrossing_permutation();␣
→˓p
[2, 3, 1, 5, 6, 7, 4]
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).area()
5
sage: p.length()
5

to_ordered_tree()
Return the ordered tree corresponding to self where the depth of the tree is the maximal height of self.

EXAMPLES:

sage: D = DyckWord([1,1,0,0])
sage: D.to_ordered_tree()
[[[]]]
sage: D = DyckWord([1,0,1,0])
sage: D.to_ordered_tree()
[[], []]
sage: D = DyckWord([1, 0, 1, 1, 0, 0])
sage: D.to_ordered_tree()
[[], [[]]]

(continues on next page)

5.1. Comprehensive Module List 809

Combinatorics, Release 9.7

(continued from previous page)

sage: D = DyckWord([1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0])
sage: D.to_ordered_tree()
[[], [[], []], [[], [[]]]]

to_pair_of_standard_tableaux()
Convert self to a pair of standard tableaux of the same shape and of length less than or equal to two.

EXAMPLES:

sage: DyckWord([1,0,1,0]).to_pair_of_standard_tableaux()
([[1], [2]], [[1], [2]])
sage: DyckWord([1,1,0,0]).to_pair_of_standard_tableaux()
([[1, 2]], [[1, 2]])
sage: DyckWord([1,1,0,1,0,0,1,1,0,1,0,1,0,0]).to_pair_of_standard_tableaux()
([[1, 2, 4, 7], [3, 5, 6]], [[1, 2, 4, 6], [3, 5, 7]])

to_partition()
Return the partition associated to self .

This partition is determined by thinking of self as a lattice path and considering the cells which are above
the path but within the 𝑛 × 𝑛 grid and the partition is formed by reading the sequence of the number of
cells in this collection in each row.

OUTPUT:

• a partition representing the rows of cells in the square lattice and above the path

EXAMPLES:

sage: DyckWord([]).to_partition()
[]
sage: DyckWord([1,0]).to_partition()
[]
sage: DyckWord([1,1,0,0]).to_partition()
[]
sage: DyckWord([1,0,1,0]).to_partition()
[1]
sage: DyckWord([1,0,1,0,1,0]).to_partition()
[2, 1]
sage: DyckWord([1,1,0,0,1,0]).to_partition()
[2]
sage: DyckWord([1,0,1,1,0,0]).to_partition()
[1, 1]

to_permutation(map)
This is simply a method collecting all implemented maps from Dyck words to permutations.

INPUT:

• map – defines the map from Dyck words to permutations. These are currently:

– Bandlow-Killpatrick: to_312_avoiding_permutation()

– Knuth: to_321_avoiding_permutation()

– Krattenthaler: to_132_avoiding_permutation()

– Stump: to_noncrossing_permutation()

810 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: D = DyckWord([1,1,1,0,1,0,0,0])
sage: D.pretty_print()

_| x x

| x x .
| x . .
| . . .

sage: D.to_permutation(map="Bandlow-Killpatrick")
[3, 4, 2, 1]
sage: D.to_permutation(map="Stump")
[4, 2, 3, 1]
sage: D.to_permutation(map="Knuth")
[1, 2, 4, 3]
sage: D.to_permutation(map="Krattenthaler")
[2, 1, 3, 4]

to_triangulation()
Map self to a triangulation.

The map from complete Dyck words of length 2𝑛 to triangulations of 𝑛 + 2-gon given by this function is
a bijection that can be described as follows.

Consider the Dyck word as a path from (0, 0) to (𝑛, 𝑛) staying above the diagonal, where 1 is an up step and
0 is a right step. Then each horizontal step has a co-height (0 at the top and 𝑛 − 1 at most at the bottom).
One reads the Dyck word from left to right. At the beginning, all vertices from 0 to 𝑛 + 1 are available.
For each horizontal step, one creates an edge from the vertex indexed by the co-height to the next available
vertex. This chops out a triangle from the polygon and one removes the middle vertex of this triangle from
the list of available vertices.

This bijection has the property that the set of smallest vertices of the edges in a triangulation is an encoding
of the co-heights, from which the Dyck word can be easily recovered.

OUTPUT:

a list of pairs (𝑖, 𝑗) that are the edges of the triangulations.

EXAMPLES:

sage: DyckWord([1, 1, 0, 0]).to_triangulation()
[(0, 2)]

sage: [t.to_triangulation() for t in DyckWords(3)]
[[(2, 4), (1, 4)],
[(2, 4), (0, 2)],
[(1, 3), (1, 4)],
[(1, 3), (0, 3)],
[(0, 2), (0, 3)]]

REFERENCES:

• [Cha2005]

to_triangulation_as_graph()
Map self to a triangulation and return the result as a graph.

See to_triangulation() for the bijection used to map complete Dyck words to triangulations.

5.1. Comprehensive Module List 811

Combinatorics, Release 9.7

OUTPUT:

• a graph containing both the perimeter edges and the inner edges of a triangulation of a regular polygon.

EXAMPLES:

sage: g = DyckWord([1, 1, 0, 0, 1, 0]).to_triangulation_as_graph()
sage: g
Graph on 5 vertices
sage: g.edges(sort=True, labels=False)
[(0, 1), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (3, 4)]
sage: g.show() # not tested

tunnels()
Return an iterator of ranges of the matching parentheses in the Dyck word self.

That is, if (a,b) is in self.tunnels(), then the matching parenthesis to self[a] is self[b-1].

EXAMPLES:

sage: list(DyckWord([1, 1, 0, 1, 1, 0, 0, 1, 0, 0]).tunnels())
[(0, 10), (1, 3), (3, 7), (4, 6), (7, 9)]

class sage.combinat.dyck_word.DyckWords
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Dyck words.

A Dyck word is a sequence (𝑤1, . . . , 𝑤𝑛) consisting of 1 s and 0 s, with the property that for any 𝑖with 1 ≤ 𝑖 ≤ 𝑛,
the sequence (𝑤1, . . . , 𝑤𝑖) contains at least as many 1 s as 0 s.

A Dyck word is balanced if the total number of 1 s is equal to the total number of 0 s. The number of balanced
Dyck words of length 2𝑘 is given by the Catalan number 𝐶𝑘.

EXAMPLES:

This class can be called with three keyword parameters k1, k2 and complete.

If neither k1 nor k2 are specified, then DyckWords returns the combinatorial class of all balanced (=complete)
Dyck words, unless the keyword complete is set to False (in which case it returns the class of all Dyck words).

sage: DW = DyckWords(); DW
Complete Dyck words
sage: [] in DW
True
sage: [1, 0, 1, 0] in DW
True
sage: [1, 1, 0] in DW
False
sage: ADW = DyckWords(complete=False); ADW
Dyck words
sage: [] in ADW
True
sage: [1, 0, 1, 0] in ADW
True
sage: [1, 1, 0] in ADW
True

(continues on next page)

812 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

sage: [1, 0, 0] in ADW
False

If just k1 is specified, then it returns the balanced Dyck words with k1 opening parentheses and k1 closing
parentheses.

sage: DW2 = DyckWords(2); DW2
Dyck words with 2 opening parentheses and 2 closing parentheses
sage: DW2.first()
[1, 0, 1, 0]
sage: DW2.last()
[1, 1, 0, 0]
sage: DW2.cardinality()
2
sage: DyckWords(100).cardinality() == catalan_number(100)
True

If k2 is specified in addition to k1, then it returns the Dyck words with k1 opening parentheses and k2 closing
parentheses.

sage: DW32 = DyckWords(3,2); DW32
Dyck words with 3 opening parentheses and 2 closing parentheses
sage: DW32.list()
[[1, 0, 1, 0, 1],
[1, 0, 1, 1, 0],
[1, 1, 0, 0, 1],
[1, 1, 0, 1, 0],
[1, 1, 1, 0, 0]]

Element
alias of DyckWord

from_heights(heights)
Compute a Dyck word knowing its heights.

We view the Dyck word as a Dyck path from (0, 0) to (2𝑛, 0) in the first quadrant by letting 1’s represent
steps in the direction (1, 1) and 0’s represent steps in the direction (1,−1).

The heights() is the sequence of the 𝑦-coordinates of the 2𝑛+ 1 lattice points along this path.

EXAMPLES:

sage: from sage.combinat.dyck_word import DyckWord
sage: D = DyckWords(complete=False)
sage: D.from_heights((0,))
[]
sage: D.from_heights((0, 1, 0))
[1, 0]
sage: D.from_heights((0, 1, 2, 1, 0))
[1, 1, 0, 0]

This also works for incomplete Dyck words:

sage: D.from_heights((0, 1, 2, 1, 2, 1))
[1, 1, 0, 1, 0]

(continues on next page)

5.1. Comprehensive Module List 813

Combinatorics, Release 9.7

(continued from previous page)

sage: D.from_heights((0, 1, 2, 1))
[1, 1, 0]

See also:

heights(), min_from_heights()

min_from_heights(heights)
Compute the smallest Dyck word which achieves or surpasses a given sequence of heights.

INPUT:

• heights – a nonempty list or iterable consisting of nonnegative integers, the first of which is 0

OUTPUT:

• The smallest Dyck word whose sequence of heights is componentwise higher-or-equal to heights.
Here, “smaller” can be understood both in the sense of lexicographic order on the Dyck words, and in
the sense of every vertex of the path having the smallest possible height.

See also:

• heights()

• from_heights()

EXAMPLES:

sage: D = DyckWords(complete=False)
sage: D.min_from_heights((0,))
[]
sage: D.min_from_heights((0, 1, 0))
[1, 0]
sage: D.min_from_heights((0, 0, 2, 0, 0))
[1, 1, 0, 0]
sage: D.min_from_heights((0, 0, 2, 0, 2, 0))
[1, 1, 0, 1, 0]
sage: D.min_from_heights((0, 0, 1, 0, 1, 0))
[1, 1, 0, 1, 0]

options(*get_value, **set_value)
Set and display the options for Dyck words. If no parameters are set, then the function returns a copy of
the options dictionary.

The options to Dyck words can be accessed as the method DyckWords.options() of DyckWords and
related parent classes.

@OPTIONS

EXAMPLES:

sage: D = DyckWord([1, 1, 0, 1, 0, 0])
sage: D
[1, 1, 0, 1, 0, 0]
sage: DyckWords.options.display="lattice"
sage: D

_| x

(continues on next page)

814 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

| x .
| . .
sage: DyckWords.options(diagram_style="line")
sage: D
/\/\

/ \
sage: DyckWords.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.dyck_word.DyckWords_all
Bases: sage.combinat.dyck_word.DyckWords

All Dyck words.

class sage.combinat.dyck_word.DyckWords_size(k1, k2)
Bases: sage.combinat.dyck_word.DyckWords

Dyck words with 𝑘1 openers and 𝑘2 closers.

cardinality()
Return the number of Dyck words with 𝑘1 openers and 𝑘2 closers.

This number is
𝑘1 − 𝑘2 + 1

𝑘1 + 1

(︂
𝑘1 + 𝑘2
𝑘2

)︂
=

(︂
𝑘1 + 𝑘2
𝑘2

)︂
−
(︂
𝑘1 + 𝑘2
𝑘2 − 1

)︂
if 𝑘2 ≤ 𝑘1 + 1, and 0 if 𝑘2 > 𝑘1 (these numbers are the same if 𝑘2 = 𝑘1 + 1).

EXAMPLES:

sage: DyckWords(3, 2).cardinality()
5
sage: all(all(DyckWords(p, q).cardinality()
....: == len(DyckWords(p, q).list()) for q in range(p + 1))
....: for p in range(7))
True

sage.combinat.dyck_word.is_a(obj, k1=None, k2=None)
Test if obj is a Dyck word with exactly k1 open symbols and exactly k2 close symbols.

If k1 is not specified, then the number of open symbols can be arbitrary. If k1 is specified but k2 is not, then k2
is set to be k1.

EXAMPLES:

sage: from sage.combinat.dyck_word import is_a
sage: is_a([1,1,0,0])
True
sage: is_a([1,0,1,0])
True
sage: is_a([1,1,0,0], 2)
True
sage: is_a([1,1,0,0], 3)
False
sage: is_a([1,1,0,0], 3, 2)
False

(continues on next page)

5.1. Comprehensive Module List 815

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

(continued from previous page)

sage: is_a([1,1,0])
True
sage: is_a([0,1,0])
False
sage: is_a([1,0,0])
False
sage: is_a([1,1,0],2,1)
True
sage: is_a([1,1,0],2)
False
sage: is_a([1,1,0],1,1)
False

sage.combinat.dyck_word.is_area_sequence(seq)
Test if a sequence 𝑙 of integers satisfies 𝑙0 = 0 and 0 ≤ 𝑙𝑖+1 ≤ 𝑙𝑖 + 1 for 𝑖 > 0.

EXAMPLES:

sage: from sage.combinat.dyck_word import is_area_sequence
sage: is_area_sequence([0,2,0])
False
sage: is_area_sequence([1,2,3])
False
sage: is_area_sequence([0,1,0])
True
sage: is_area_sequence([0,1,2])
True
sage: is_area_sequence([])
True

sage.combinat.dyck_word.pealing(D, return_touches=False)
A helper function for computing the bijection from a Dyck word to a 231-avoiding permutation using the bijection
“Stump”. For details see [Stu2008].

See also:

to_noncrossing_partition()

EXAMPLES:

sage: from sage.combinat.dyck_word import pealing
sage: pealing(DyckWord([1,1,0,0]))
[1, 0, 1, 0]
sage: pealing(DyckWord([1,0,1,0]))
[1, 0, 1, 0]
sage: pealing(DyckWord([1, 1, 0, 0, 1, 1, 1, 0, 0, 0]))
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
sage: pealing(DyckWord([1,1,0,0]),return_touches=True)
([1, 0, 1, 0], [[1, 2]])
sage: pealing(DyckWord([1,0,1,0]),return_touches=True)
([1, 0, 1, 0], [])
sage: pealing(DyckWord([1, 1, 0, 0, 1, 1, 1, 0, 0, 0]),return_touches=True)
([1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [[1, 2], [3, 5]])

816 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.dyck_word.replace_parens(x)
A map sending '(' to open_symbol and ')' to close_symbol, and raising an error on any input other than
'(' and ')'. The values of the constants open_symbol and close_symbol are subject to change.

This is the inverse map of replace_symbols().

INPUT:

• x – either an opening or closing parenthesis

OUTPUT:

• If x is an opening parenthesis, replace x with the constant open_symbol.

• If x is a closing parenthesis, replace x with the constant close_symbol.

• Raise a ValueError if x is neither an opening nor a closing parenthesis.

See also:

replace_symbols()

EXAMPLES:

sage: from sage.combinat.dyck_word import replace_parens
sage: replace_parens('(')
1
sage: replace_parens(')')
0
sage: replace_parens(1)
Traceback (most recent call last):
...
ValueError

sage.combinat.dyck_word.replace_symbols(x)
A map sending open_symbol to '(' and close_symbol to ')', and raising an error on any input other than
open_symbol and close_symbol. The values of the constants open_symbol and close_symbol are subject
to change.

This is the inverse map of replace_parens().

INPUT:

• x – either open_symbol or close_symbol.

OUTPUT:

• If x is open_symbol, replace x with '('.

• If x is close_symbol, replace x with ')'.

• If x is neither open_symbol nor close_symbol, a ValueError is raised.

See also:

replace_parens()

EXAMPLES:

sage: from sage.combinat.dyck_word import replace_symbols
sage: replace_symbols(1)
'('
sage: replace_symbols(0)

(continues on next page)

5.1. Comprehensive Module List 817

Combinatorics, Release 9.7

(continued from previous page)

')'
sage: replace_symbols(3)
Traceback (most recent call last):
...
ValueError

5.1.98 Substitutions over unit cube faces (Rauzy fractals)

This module implements the 𝐸*1 (𝜎) substitution associated with a one-dimensional substitution 𝜎, that acts on unit
faces of dimension (𝑑− 1) in R𝑑.

This module defines the following classes and functions:

• Face - a class to model a face

• Patch - a class to model a finite set of faces

• E1Star - a class to model the 𝐸*1 (𝜎) application defined by the substitution sigma

See the documentation of these objects for more information.

The convention for the choice of the unit faces and the definition of 𝐸*1 (𝜎) varies from article to article. Here, unit
faces are defined by

[𝑥, 1]* = {𝑥+ 𝜆𝑒2 + 𝜇𝑒3 : 𝜆, 𝜇 ∈ [0, 1]}
[𝑥, 2]* = {𝑥+ 𝜆𝑒1 + 𝜇𝑒3 : 𝜆, 𝜇 ∈ [0, 1]}
[𝑥, 3]* = {𝑥+ 𝜆𝑒1 + 𝜇𝑒2 : 𝜆, 𝜇 ∈ [0, 1]}

and the dual substitution 𝐸*1 (𝜎) is defined by

𝐸*1 (𝜎)([𝑥, 𝑖]*) =
⋃︁

𝑘=1,2,3

⋃︁
𝑠|𝜎(𝑘)=𝑝𝑖𝑠

[𝑀−1(𝑥+ ℓ(𝑠)), 𝑘]*,

where ℓ(𝑠) is the abelianized of 𝑠, and 𝑀 is the matrix of 𝜎.

AUTHORS:

• Franco Saliola (2009): initial version

• Vincent Delecroix, Timo Jolivet, Stepan Starosta, Sebastien Labbe (2010-05): redesign

• Timo Jolivet (2010-08, 2010-09, 2011): redesign

REFERENCES:

EXAMPLES:

We start by drawing a simple three-face patch:

sage: from sage.combinat.e_one_star import E1Star, Face, Patch
sage: x = [Face((0,0,0),1), Face((0,0,0),2), Face((0,0,0),3)]
sage: P = Patch(x)
sage: P
Patch: [[(0, 0, 0), 1]*, [(0, 0, 0), 2]*, [(0, 0, 0), 3]*]
sage: P.plot() #not tested

We apply a substitution to this patch, and draw the result:

818 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: E(P)
Patch: [[(0, 0, 0), 1]*, [(0, 0, 0), 2]*, [(0, 0, 0), 3]*, [(0, 1, -1), 2]*, [(1, 0, -1),
→˓ 1]*]
sage: E(P).plot() #not tested

Note:

• The type of a face is given by an integer in [1, ..., d] where d is the length of the vector of the face.

• The alphabet of the domain and the codomain of 𝜎 must be equal, and they must be of the form [1, ..., d],
where d is a positive integer corresponding to the length of the vectors of the faces on which 𝐸*1 (𝜎) will act.

sage: P = Patch([Face((0,0,0),1), Face((0,0,0),2), Face((0,0,0),3)])
sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: E(P)
Patch: [[(0, 0, 0), 1]*, [(0, 0, 0), 2]*, [(0, 0, 0), 3]*, [(0, 1, -1), 2]*, [(1, 0, -1),
→˓ 1]*]

The application of an E1Star substitution assigns to each new face the color of its preimage. The repaint method
allows us to repaint the faces of a patch. A single color can also be assigned to every face, by specifying a list of a
single color:

sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P = E(P, 5)
sage: P.repaint(['green'])
sage: P.plot() #not tested

A list of colors allows us to color the faces sequentially:

sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P = E(P)
sage: P.repaint(['red', 'yellow', 'green', 'blue', 'black'])
sage: P = E(P, 3)
sage: P.plot() #not tested

All the color schemes from list(matplotlib.cm.datad) can be used:

sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P.repaint(cmap='summer')
sage: P = E(P, 3)
sage: P.plot() #not tested
sage: P.repaint(cmap='hsv')
sage: P = E(P, 2)
sage: P.plot() #not tested

It is also possible to specify a dictionary to color the faces according to their type:

sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P = E(P, 5)
sage: P.repaint({1:(0.7, 0.7, 0.7), 2:(0.5,0.5,0.5), 3:(0.3,0.3,0.3)})

(continues on next page)

5.1. Comprehensive Module List 819

Combinatorics, Release 9.7

(continued from previous page)

sage: P.plot() #not tested
sage: P.repaint({1:'red', 2:'yellow', 3:'green'})
sage: P.plot() #not tested

Let us look at a nice big patch in 3D:

sage: sigma = WordMorphism({1:[1,2], 2:[3], 3:[1]})
sage: E = E1Star(sigma)
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P = P + P.translate([-1,1,0])
sage: P = E(P, 11)
sage: P.plot3d() #not tested

Plotting with TikZ pictures is possible:

sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: s = P.plot_tikz()
sage: print(s) #not tested
\begin{tikzpicture}
[x={(-0.216506cm,-0.125000cm)}, y={(0.216506cm,-0.125000cm)}, z={(0.000000cm,0.250000cm)}
→˓]
\definecolor{facecolor}{rgb}{0.000,1.000,0.000}
\fill[fill=facecolor, draw=black, shift={(0,0,0)}]
(0, 0, 0) -- (0, 0, 1) -- (1, 0, 1) -- (1, 0, 0) -- cycle;
\definecolor{facecolor}{rgb}{1.000,0.000,0.000}
\fill[fill=facecolor, draw=black, shift={(0,0,0)}]
(0, 0, 0) -- (0, 1, 0) -- (0, 1, 1) -- (0, 0, 1) -- cycle;
\definecolor{facecolor}{rgb}{0.000,0.000,1.000}
\fill[fill=facecolor, draw=black, shift={(0,0,0)}]
(0, 0, 0) -- (1, 0, 0) -- (1, 1, 0) -- (0, 1, 0) -- cycle;
\end{tikzpicture}

Plotting patches made of unit segments instead of unit faces:

sage: P = Patch([Face([0,0], 1), Face([0,0], 2)])
sage: E = E1Star(WordMorphism({1:[1,2],2:[1]}))
sage: F = E1Star(WordMorphism({1:[1,1,2],2:[2,1]}))
sage: E(P,5).plot()
Graphics object consisting of 21 graphics primitives
sage: F(P,3).plot()
Graphics object consisting of 34 graphics primitives

Everything works in any dimension (except for the plotting features which only work in dimension two or three):

sage: P = Patch([Face((0,0,0,0),1), Face((0,0,0,0),4)])
sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1,4], 4:[1]})
sage: E = E1Star(sigma)
sage: E(P)
Patch: [[(0, 0, 0, 0), 3]*, [(0, 0, 0, 0), 4]*, [(0, 0, 1, -1), 3]*, [(0, 1, 0, -1), 2]*,
→˓ [(1, 0, 0, -1), 1]*]

sage: sigma = WordMorphism({1:[1,2],2:[1,3],3:[1,4],4:[1,5],5:[1,6],6:[1,7],7:[1,8],8:[1,
→˓9],9:[1,10],10:[1,11],11:[1,12],12:[1]})

(continues on next page)

820 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: E = E1Star(sigma)
sage: E
E_1^*(1->12, 10->1,11, 11->1,12, 12->1, 2->13, 3->14, 4->15, 5->16, 6->17, 7->18, 8->19,␣
→˓9->1,10)
sage: P = Patch([Face((0,0,0,0,0,0,0,0,0,0,0,0),t) for t in [1,2,3]])
sage: for x in sorted(E(P), key=lambda x : (x.vector(),x.type())): print(x)
[(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1]*
[(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 2]*
[(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 12]*
[(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1), 11]*
[(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1), 10]*
[(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1), 9]*
[(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1), 8]*
[(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1), 7]*
[(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1), 6]*
[(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1), 5]*
[(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1), 4]*
[(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1), 3]*
[(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1), 2]*
[(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1), 1]*

class sage.combinat.e_one_star.E1Star(sigma, method='suffix')
Bases: sage.structure.sage_object.SageObject

A class to model the 𝐸*1 (𝜎) map associated with a unimodular substitution 𝜎.

INPUT:

• sigma - unimodular WordMorphism, i.e. such that its incidence matrix has determinant ±1.

• method - ‘prefix’ or ‘suffix’ (optional, default: ‘suffix’) Enables to use an alternative definition 𝐸*1 (𝜎)
substitutions, where the abelianized of the prefix` is used instead of the suffix.

Note: The alphabet of the domain and the codomain of 𝜎 must be equal, and they must be of the form [1,
..., d], where d is a positive integer corresponding to the length of the vectors of the faces on which 𝐸*1 (𝜎)
will act.

EXAMPLES:

sage: from sage.combinat.e_one_star import E1Star, Face, Patch
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: E(P)
Patch: [[(0, 0, 0), 1]*, [(0, 0, 0), 2]*, [(0, 0, 0), 3]*, [(0, 1, -1), 2]*, [(1, 0,
→˓ -1), 1]*]

sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma, method='prefix')
sage: E(P)
Patch: [[(0, 0, 0), 1]*, [(0, 0, 0), 2]*, [(0, 0, 0), 3]*, [(0, 0, 1), 1]*, [(0, 0,␣
→˓1), 2]*]

5.1. Comprehensive Module List 821

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

sage: x = [Face((0,0,0,0),1), Face((0,0,0,0),4)]
sage: P = Patch(x)
sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1,4], 4:[1]})
sage: E = E1Star(sigma)
sage: E(P)
Patch: [[(0, 0, 0, 0), 3]*, [(0, 0, 0, 0), 4]*, [(0, 0, 1, -1), 3]*, [(0, 1, 0, -1),
→˓ 2]*, [(1, 0, 0, -1), 1]*]

inverse_matrix()
Return the inverse of the matrix associated with self.

EXAMPLES:

sage: from sage.combinat.e_one_star import E1Star, Face, Patch
sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: E.inverse_matrix()
[0 1 0]
[0 0 1]
[1 -1 -1]

matrix()
Return the matrix associated with self.

EXAMPLES:

sage: from sage.combinat.e_one_star import E1Star, Face, Patch
sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: E.matrix()
[1 1 1]
[1 0 0]
[0 1 0]

sigma()
Return the WordMorphism associated with self.

EXAMPLES:

sage: from sage.combinat.e_one_star import E1Star, Face, Patch
sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: E.sigma()
WordMorphism: 1->12, 2->13, 3->1

class sage.combinat.e_one_star.Face(v, t, color=None)
Bases: sage.structure.sage_object.SageObject

A class to model a unit face of arbitrary dimension.

A unit face in dimension 𝑑 is represented by a 𝑑-dimensional vector v and a type t in {1, . . . , 𝑑}. The type of
the face corresponds to the canonical unit vector to which the face is orthogonal. The optional color argument
is used in plotting functions.

INPUT:

• v - tuple of integers

822 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

• t - integer in [1, ..., len(v)], type of the face. The face of type 𝑖 is orthogonal to the canonical vector
𝑒𝑖.

• color - color (optional, default: None) color of the face, used for plotting only. If None, its value is guessed
from the face type.

EXAMPLES:

sage: from sage.combinat.e_one_star import Face
sage: f = Face((0,2,0), 3)
sage: f.vector()
(0, 2, 0)
sage: f.type()
3

sage: f = Face((0,2,0), 3, color=(0.5, 0.5, 0.5))
sage: f.color()
RGB color (0.5, 0.5, 0.5)

color(color=None)
Return or change the color of the face.

INPUT:

• color - string, rgb tuple, color (optional, default: None) the new color to assign to the face. If None,
it returns the color of the face.

OUTPUT:

color or None

EXAMPLES:

sage: from sage.combinat.e_one_star import Face
sage: f = Face((0,2,0), 3)
sage: f.color()
RGB color (0.0, 0.0, 1.0)
sage: f.color('red')
sage: f.color()
RGB color (1.0, 0.0, 0.0)

type()
Return the type of the face.

EXAMPLES:

sage: from sage.combinat.e_one_star import Face
sage: f = Face((0,2,0), 3)
sage: f.type()
3

sage: f = Face((0,2,0), 3)
sage: f.type()
3

vector()
Return the vector of the face.

EXAMPLES:

5.1. Comprehensive Module List 823

Combinatorics, Release 9.7

sage: from sage.combinat.e_one_star import Face
sage: f = Face((0,2,0), 3)
sage: f.vector()
(0, 2, 0)

class sage.combinat.e_one_star.Patch(faces, face_contour=None)
Bases: sage.structure.sage_object.SageObject

A class to model a collection of faces. A patch is represented by an immutable set of Faces.

Note: The dimension of a patch is the length of the vectors of the faces in the patch, which is assumed to be the
same for every face in the patch.

Note: Since version 4.7.1, Patches are immutable, except for the colors of the faces, which are not taken into
account for equality tests and hash functions.

INPUT:

• faces - finite iterable of faces

• face_contour - dict (optional, default:None) maps the face type to vectors describing the contour of unit
faces. If None, defaults contour are assumed for faces of type 1, 2, 3 or 1, 2, 3. Used in plotting methods
only.

EXAMPLES:

sage: from sage.combinat.e_one_star import Face, Patch
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P
Patch: [[(0, 0, 0), 1]*, [(0, 0, 0), 2]*, [(0, 0, 0), 3]*]

sage: face_contour = {}
sage: face_contour[1] = map(vector, [(0,0,0),(0,1,0),(0,1,1),(0,0,1)])
sage: face_contour[2] = map(vector, [(0,0,0),(0,0,1),(1,0,1),(1,0,0)])
sage: face_contour[3] = map(vector, [(0,0,0),(1,0,0),(1,1,0),(0,1,0)])
sage: Patch([Face((0,0,0),t) for t in [1,2,3]], face_contour=face_contour)
Patch: [[(0, 0, 0), 1]*, [(0, 0, 0), 2]*, [(0, 0, 0), 3]*]

difference(other)
Return the difference of self and other.

INPUT:

• other - a finite iterable of faces or a single face

EXAMPLES:

sage: from sage.combinat.e_one_star import Face, Patch
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P.difference(Face([0,0,0],2))
Patch: [[(0, 0, 0), 1]*, [(0, 0, 0), 3]*]
sage: P.difference(P)
Patch: []

824 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

dimension()
Return the dimension of the vectors of the faces of self

It returns None if self is the empty patch.

The dimension of a patch is the length of the vectors of the faces in the patch, which is assumed to be the
same for every face in the patch.

EXAMPLES:

sage: from sage.combinat.e_one_star import Face, Patch
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P.dimension()
3

faces_of_color(color)
Return a list of the faces that have the given color.

INPUT:

• color - color

EXAMPLES:

sage: from sage.combinat.e_one_star import Face, Patch
sage: P = Patch([Face((0,0,0),1, 'red'), Face((1,2,0),3, 'blue'), Face((1,2,0),
→˓1, 'red')])
sage: sorted(P.faces_of_color('red'))
[[(0, 0, 0), 1]*, [(1, 2, 0), 1]*]

faces_of_type(t)
Return a list of the faces that have type t.

INPUT:

• t - integer or any other type

EXAMPLES:

sage: from sage.combinat.e_one_star import Face, Patch
sage: P = Patch([Face((0,0,0),1), Face((1,2,0),3), Face((1,2,0),1)])
sage: sorted(P.faces_of_type(1))
[[(0, 0, 0), 1]*, [(1, 2, 0), 1]*]

faces_of_vector(v)
Return a list of the faces whose vector is v.

INPUT:

• v - a vector

EXAMPLES:

sage: from sage.combinat.e_one_star import Face, Patch
sage: P = Patch([Face((0,0,0),1), Face((1,2,0),3), Face((1,2,0),1)])
sage: sorted(P.faces_of_vector([1,2,0]))
[[(1, 2, 0), 1]*, [(1, 2, 0), 3]*]

occurrences_of(other)
Return all positions at which other appears in self, that is, all vectors v such that set(other.
translate(v)) <= set(self).

5.1. Comprehensive Module List 825

Combinatorics, Release 9.7

INPUT:

• other - a Patch

OUTPUT:

a list of vectors

EXAMPLES:

sage: from sage.combinat.e_one_star import Face, Patch, E1Star
sage: P = Patch([Face([0,0,0], 1), Face([0,0,0], 2), Face([0,0,0], 3)])
sage: Q = Patch([Face([0,0,0], 1), Face([0,0,0], 2)])
sage: P.occurrences_of(Q)
[(0, 0, 0)]
sage: Q = Q.translate([1,2,3])
sage: P.occurrences_of(Q)
[(-1, -2, -3)]

sage: E = E1Star(WordMorphism({1:[1,2], 2:[1,3], 3:[1]}))
sage: P = Patch([Face([0,0,0], 1), Face([0,0,0], 2), Face([0,0,0], 3)])
sage: P = E(P,4)
sage: Q = Patch([Face([0,0,0], 1), Face([0,0,0], 2)])
sage: L = P.occurrences_of(Q)
sage: sorted(L)
[(0, 0, 0), (0, 0, 1), (0, 1, -1), (1, 0, -1), (1, 1, -3), (1, 1, -2)]

plot(projmat=None, opacity=0.75)
Return a 2D graphic object depicting the patch.

INPUT:

• projmat - matrix (optional, default: None) the projection matrix. Its number of lines must be two. Its
number of columns must equal the dimension of the ambient space of the faces. If None, the isometric
projection is used by default.

• opacity - float between 0 and 1 (optional, default: 0.75) opacity of the face

Warning: Plotting is implemented only for patches in two or three dimensions.

EXAMPLES:

sage: from sage.combinat.e_one_star import E1Star, Face, Patch
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P.plot()
Graphics object consisting of 3 graphics primitives

sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P = E(P, 5)
sage: P.plot()
Graphics object consisting of 57 graphics primitives

Plot with a different projection matrix:

826 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: M = matrix(2, 3, [1,0,-1,0.3,1,-3])
sage: P = E(P, 3)
sage: P.plot(projmat=M)
Graphics object consisting of 17 graphics primitives

Plot patches made of unit segments:

sage: P = Patch([Face([0,0], 1), Face([0,0], 2)])
sage: E = E1Star(WordMorphism({1:[1,2],2:[1]}))
sage: F = E1Star(WordMorphism({1:[1,1,2],2:[2,1]}))
sage: E(P,5).plot()
Graphics object consisting of 21 graphics primitives
sage: F(P,3).plot()
Graphics object consisting of 34 graphics primitives

plot3d()
Return a 3D graphics object depicting the patch.

Warning: 3D plotting is implemented only for patches in three dimensions.

EXAMPLES:

sage: from sage.combinat.e_one_star import E1Star, Face, Patch
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P.plot3d() #not tested

sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P = E(P, 5)
sage: P.repaint()
sage: P.plot3d() #not tested

plot_tikz(projmat=None, print_tikz_env=True, edgecolor='black', scale=0.25, drawzero=False,
extra_code_before='', extra_code_after='')

Return a string containing some TikZ code to be included into a LaTeX document, depicting the patch.

Warning: Tikz Plotting is implemented only for patches in three dimensions.

INPUT:

• projmat - matrix (optional, default: None) the projection matrix. Its number of lines must be two. Its
number of columns must equal the dimension of the ambient space of the faces. If None, the isometric
projection is used by default.

• print_tikz_env - bool (optional, default: True) if True, the tikzpicture environment are printed

• edgecolor - string (optional, default: 'black') either 'black' or 'facecolor' (color of unit face
edges)

5.1. Comprehensive Module List 827

Combinatorics, Release 9.7

• scale - real number (optional, default: 0.25) scaling constant for the whole figure

• drawzero - bool (optional, default: False) if True, mark the origin by a black dot

• extra_code_before - string (optional, default: '') extra code to include in the tikz picture

• extra_code_after - string (optional, default: '') extra code to include in the tikz picture

EXAMPLES:

sage: from sage.combinat.e_one_star import E1Star, Face, Patch
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: s = P.plot_tikz()
sage: len(s)
602
sage: print(s) #not tested
\begin{tikzpicture}
[x={(-0.216506cm,-0.125000cm)}, y={(0.216506cm,-0.125000cm)}, z={(0.000000cm,0.
→˓250000cm)}]
\definecolor{facecolor}{rgb}{0.000,1.000,0.000}
\fill[fill=facecolor, draw=black, shift={(0,0,0)}]
(0, 0, 0) -- (0, 0, 1) -- (1, 0, 1) -- (1, 0, 0) -- cycle;
\definecolor{facecolor}{rgb}{1.000,0.000,0.000}
\fill[fill=facecolor, draw=black, shift={(0,0,0)}]
(0, 0, 0) -- (0, 1, 0) -- (0, 1, 1) -- (0, 0, 1) -- cycle;
\definecolor{facecolor}{rgb}{0.000,0.000,1.000}
\fill[fill=facecolor, draw=black, shift={(0,0,0)}]
(0, 0, 0) -- (1, 0, 0) -- (1, 1, 0) -- (0, 1, 0) -- cycle;
\end{tikzpicture}

sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P = E(P, 4)
sage: from sage.misc.latex import latex #not tested
sage: latex.add_to_preamble('\\usepackage{tikz}') #not tested
sage: view(P) #not tested

Plot using shades of gray (useful for article figures):

sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P.repaint([(0.9, 0.9, 0.9), (0.65,0.65,0.65), (0.4,0.4,0.4)])
sage: P = E(P, 4)
sage: s = P.plot_tikz()

Plotting with various options:

sage: sigma = WordMorphism({1:[1,2], 2:[1,3], 3:[1]})
sage: E = E1Star(sigma)
sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: M = matrix(2,3,[float(u) for u in [1,0,-0.7071,0,1,-0.7071]])
sage: P = E(P, 3)
sage: s = P.plot_tikz(projmat=M, edgecolor='facecolor', scale=0.6,␣
→˓drawzero=True)

828 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Adding X, Y, Z axes using the extra code feature:

sage: length = 1.5
sage: space = 0.3
sage: axes = ''
sage: axes += "\\draw[->, thick, black] (0,0,0) -- (%s, 0, 0);\n" % length
sage: axes += "\\draw[->, thick, black] (0,0,0) -- (0, %s, 0);\n" % length
sage: axes += "\\node at (%s,0,0) {x};\n" % (length + space)
sage: axes += "\\node at (0,%s,0) {y};\n" % (length + space)
sage: axes += "\\node at (0,0,%s) {z};\n" % (length + space)
sage: axes += "\\draw[->, thick, black] (0,0,0) -- (0, 0, %s);\n" % length
sage: cube = Patch([Face((0,0,0),1), Face((0,0,0),2), Face((0,0,0),3)])
sage: options = dict(scale=0.5,drawzero=True,extra_code_before=axes)
sage: s = cube.plot_tikz(**options)
sage: len(s)
986
sage: print(s) #not tested
\begin{tikzpicture}
[x={(-0.433013cm,-0.250000cm)}, y={(0.433013cm,-0.250000cm)}, z={(0.000000cm,0.
→˓500000cm)}]
\draw[->, thick, black] (0,0,0) -- (1.50000000000000, 0, 0);
\draw[->, thick, black] (0,0,0) -- (0, 1.50000000000000, 0);
\node at (1.80000000000000,0,0) {x};
\node at (0,1.80000000000000,0) {y};
\node at (0,0,1.80000000000000) {z};
\draw[->, thick, black] (0,0,0) -- (0, 0, 1.50000000000000);
\definecolor{facecolor}{rgb}{0.000,1.000,0.000}
\fill[fill=facecolor, draw=black, shift={(0,0,0)}]
(0, 0, 0) -- (0, 0, 1) -- (1, 0, 1) -- (1, 0, 0) -- cycle;
\definecolor{facecolor}{rgb}{1.000,0.000,0.000}
\fill[fill=facecolor, draw=black, shift={(0,0,0)}]
(0, 0, 0) -- (0, 1, 0) -- (0, 1, 1) -- (0, 0, 1) -- cycle;
\definecolor{facecolor}{rgb}{0.000,0.000,1.000}
\fill[fill=facecolor, draw=black, shift={(0,0,0)}]
(0, 0, 0) -- (1, 0, 0) -- (1, 1, 0) -- (0, 1, 0) -- cycle;
\node[circle,fill=black,draw=black,minimum size=1.5mm,inner sep=0pt] at (0,0,0)
→˓{};
\end{tikzpicture}

repaint(cmap='Set1')
Repaint all the faces of self from the given color map.

This only changes the colors of the faces of self.

INPUT:

• cmap - color map (default: 'Set1'). It can be one of the following:

– string – A coloring map. For available coloring map names type: sorted(colormaps)

– list – a list of colors to assign cyclically to the faces. A list of a single color colors all the faces
with the same color.

– dict – a dict of face types mapped to colors, to color the faces according to their type.

– {}, the empty dict - shortcut for {1:'red', 2:'green', 3:'blue'}.

EXAMPLES:

5.1. Comprehensive Module List 829

Combinatorics, Release 9.7

Using a color map:

sage: from sage.combinat.e_one_star import Face, Patch
sage: color = (0, 0, 0)
sage: P = Patch([Face((0,0,0),t,color) for t in [1,2,3]])
sage: for f in P: f.color()
RGB color (0.0, 0.0, 0.0)
RGB color (0.0, 0.0, 0.0)
RGB color (0.0, 0.0, 0.0)
sage: P.repaint()
sage: next(iter(P)).color() #random
RGB color (0.498..., 0.432..., 0.522...)

Using a list of colors:

sage: P = Patch([Face((0,0,0),t,color) for t in [1,2,3]])
sage: P.repaint([(0.9, 0.9, 0.9), (0.65,0.65,0.65), (0.4,0.4,0.4)])
sage: for f in P: f.color()
RGB color (0.9, 0.9, 0.9)
RGB color (0.65, 0.65, 0.65)
RGB color (0.4, 0.4, 0.4)

Using a dictionary to color faces according to their type:

sage: P = Patch([Face((0,0,0),t) for t in [1,2,3]])
sage: P.repaint({1:'black', 2:'yellow', 3:'green'})
sage: P.plot() #not tested
sage: P.repaint({})
sage: P.plot() #not tested

translate(v)
Return a translated copy of self by vector v.

INPUT:

• v - vector or tuple

EXAMPLES:

sage: from sage.combinat.e_one_star import Face, Patch
sage: P = Patch([Face((0,0,0),1), Face((1,2,0),3), Face((1,2,0),1)])
sage: P.translate([-1,-2,0])
Patch: [[(-1, -2, 0), 1]*, [(0, 0, 0), 1]*, [(0, 0, 0), 3]*]

union(other)
Return a Patch consisting of the union of self and other.

INPUT:

• other - a Patch or a Face or a finite iterable of faces

EXAMPLES:

sage: from sage.combinat.e_one_star import Face, Patch
sage: P = Patch([Face((0,0,0),1), Face((0,0,0),2)])
sage: P.union(Face((1,2,3), 3))
Patch: [[(0, 0, 0), 1]*, [(0, 0, 0), 2]*, [(1, 2, 3), 3]*]

(continues on next page)

830 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: P.union([Face((1,2,3), 3), Face((2,3,3), 2)])
Patch: [[(0, 0, 0), 1]*, [(0, 0, 0), 2]*, [(1, 2, 3), 3]*, [(2, 3, 3), 2]*]

5.1.99 Enumerated sets and combinatorial objects

Todo: Proofread / point to the main classes rather than the modules

Categories

• EnumeratedSets, FiniteEnumeratedSets

Basic enumerated sets

• Subsets, Combinations

• Arrangements, Tuples

• FiniteEnumeratedSet

• DisjointUnionEnumeratedSets

Integer lists

• Integer partitions (see also: Enumerated sets of partitions, tableaux, . . .)

• Integer compositions

• SignedCompositions

• IntegerListsLex

• Super Partitions

• IntegerVectors

• WeightedIntegerVectors()

• IntegerVectorsModPermutationGroup

• Parking Functions

• Non-Decreasing Parking Functions

• Sidon sets and their generalizations, Sidon g-sets

5.1. Comprehensive Module List 831

../../../../../../html/en/reference/categories/sage/categories/enumerated_sets.html#sage.categories.enumerated_sets.EnumeratedSets
../../../../../../html/en/reference/categories/sage/categories/finite_enumerated_sets.html#sage.categories.finite_enumerated_sets.FiniteEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/finite_enumerated_set.html#sage.sets.finite_enumerated_set.FiniteEnumeratedSet
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

Words

• Words

• Subwords

• Necklaces

• Lyndon words

• Dyck Words

• De Bruijn sequences

• Shuffle product of iterables

Permutations, . . .

• Permutations

• Permutations (Cython file)

• Affine Permutations

• Arrangements

• Derangements

• Baxter permutations

See also:

• SymmetricGroup, PermutationGroup(), Catalog of permutation groups

• FiniteSetMaps

• Integer vectors modulo the action of a permutation group

• Robinson-Schensted-Knuth correspondence

Partitions, tableaux, . . .

See: Enumerated sets of partitions, tableaux, . . .

Polyominoes

See: Parallelogram Polyominoes

Integer matrices, . . .

• Counting, generating, and manipulating non-negative integer matrices

• Hadamard matrices

• Latin Squares

• Alternating Sign Matrices

• Six Vertex Model

• Similarity class types of matrices with entries in a finite field

832 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/groups/sage/groups/perm_gps/permgroup_named.html#sage.groups.perm_gps.permgroup_named.SymmetricGroup
../../../../../../html/en/reference/groups/sage/groups/perm_gps/permgroup.html#sage.groups.perm_gps.permgroup.PermutationGroup
../../../../../../html/en/reference/groups/sage/groups/perm_gps/permutation_groups_catalog.html#sage-groups-perm-gps-permutation-groups-catalog
../../../../../../html/en/reference/sets/sage/sets/finite_set_maps.html#sage.sets.finite_set_maps.FiniteSetMaps

Combinatorics, Release 9.7

• Restricted growth arrays

• Vector Partitions

See also:

• MatrixSpace

• Library of Interesting Groups

Subsets and set partitions

• Subsets, Combinations

• PairwiseCompatibleSubsets

• Subsets satisfying a hereditary property

• Ordered Set Partitions

• Set Partitions

• Diagram and Partition Algebras

• OrderedMultisetPartitionsIntoSets, OrderedMultisetPartitionIntoSets

Trees

• Abstract Recursive Trees

• Ordered Rooted Trees

• Binary Trees

• Rooted (Unordered) Trees

Enumerated sets related to graphs

• Degree sequences

• Paths in Directed Acyclic Graphs

• Perfect matchings

Backtracking solvers and generic enumerated sets

Todo: Do we want a separate section, possibly more proeminent, for backtracking solvers?

• RecursivelyEnumeratedSet()

• GenericBacktracker

• sage.parallel.map_reduce

• Tiling Solver

• Exact Cover Problem via Dancing Links

• Dancing links C++ wrapper

5.1. Comprehensive Module List 833

../../../../../../html/en/reference/matrices/sage/matrix/matrix_space.html#sage.matrix.matrix_space.MatrixSpace
../../../../../../html/en/reference/groups/sage/groups/matrix_gps/catalog.html#sage-groups-matrix-gps-catalog
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet
../../../../../../html/en/reference/parallel/sage/parallel/map_reduce.html#module-sage.parallel.map_reduce

Combinatorics, Release 9.7

• Combinatorial species

• IntegerListsLex

• IntegerVectorsModPermutationGroup

Low level enumerated sets

• Gray codes

Misc enumerated sets

• GelfandTsetlinPattern, GelfandTsetlinPatterns

• KnutsonTaoPuzzleSolver

• LatticePolytope()

5.1.100 Tools for enumeration modulo the action of a permutation group

sage.combinat.enumeration_mod_permgroup.all_children(v, max_part)
Returns all the children of an integer vector (ClonableIntArray) v in the tree of enumeration by lexicographic
order. The children of an integer vector v whose entries have the sum 𝑛 are all integer vectors of sum 𝑛 + 1
which follow v in the lexicographic order.

That means this function adds 1 on the last non zero entries and the following ones. For an integer vector 𝑣 such
that

𝑣 = [. . . , 𝑎, 0, 0] with 𝑎 ̸= 0,

then, the list of children is

[[. . . , 𝑎+ 1, 0, 0], [. . . , 𝑎, 1, 0], [. . . , 𝑎, 0, 1]].

EXAMPLES:

sage: from sage.combinat.enumeration_mod_permgroup import all_children
sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: v = IncreasingIntArrays()([1,2,3,4])
sage: all_children(v, -1)
[[1, 2, 3, 5]]

sage.combinat.enumeration_mod_permgroup.canonical_children(sgs, v, max_part)
Returns the canonical children of the integer vector v. This function computes all children of the integer vector
v via the function all_children() and returns from this list only these which are canonicals identified via the
function is_canonical().

EXAMPLES:

sage: from sage.combinat.enumeration_mod_permgroup import canonical_children
sage: G = PermutationGroup([[(1,2,3,4)]])
sage: sgs = G.strong_generating_system()
sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: IA = IncreasingIntArrays()
sage: canonical_children(sgs, IA([1,2,3,5]), -1)
[]

834 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/discrete_geometry/sage/geometry/lattice_polytope.html#sage.geometry.lattice_polytope.LatticePolytope
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableIntArray

Combinatorics, Release 9.7

sage.combinat.enumeration_mod_permgroup.canonical_representative_of_orbit_of(sgs, v)
Returns the maximal vector for the lexicographic order living in the orbit of 𝑣 under the action of the permutation
group whose strong generating system is sgs. The maximal vector is also called “canonical”. Hence, this method
returns the canonical vector inside the orbit of 𝑣. If 𝑣 is already canonical, the method returns 𝑣.

Let 𝐺 to be the permutation group which admits sgs as a strong generating system. An integer vector 𝑣 is said
to be canonical under the action of 𝐺 if and only if:

𝑣 = max
lex order

{𝑔 · 𝑣|𝑔 ∈ 𝐺}

EXAMPLES:

sage: from sage.combinat.enumeration_mod_permgroup import canonical_representative_
→˓of_orbit_of
sage: G = PermutationGroup([[(1,2,3,4)]])
sage: sgs = G.strong_generating_system()
sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: IA = IncreasingIntArrays()
sage: canonical_representative_of_orbit_of(sgs, IA([1,2,3,5]))
[5, 1, 2, 3]

sage.combinat.enumeration_mod_permgroup.is_canonical(sgs, v)
Returns True if the integer vector 𝑣 is maximal with respect to the lexicographic order in its orbit under the
action of the permutation group whose strong generating system is sgs. Such vectors are said to be canonical.

Let𝐺 to be the permutation group which admit sgs as a strong generating system. An integer vector 𝑣 is said to
be canonical under the action of 𝐺 if and only if:

𝑣 = max
lex order

{𝑔 · 𝑣|𝑔 ∈ 𝐺}

EXAMPLES:

sage: from sage.combinat.enumeration_mod_permgroup import is_canonical
sage: G = PermutationGroup([[(1,2,3,4)]])
sage: sgs = G.strong_generating_system()
sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: IA = IncreasingIntArrays()
sage: is_canonical(sgs, IA([1,2,3,6]))
False

sage.combinat.enumeration_mod_permgroup.lex_cmp(v1, v2)
Lexicographic comparison of ClonableIntArray.

INPUT:

Two instances 𝑣1, 𝑣2 of ClonableIntArray

OUTPUT:

-1,0,1, depending on whether 𝑣1 is lexicographically smaller, equal, or greater than 𝑣2.

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(SymmetricGroup(5),5)
sage: I = IntegerVectorsModPermutationGroup(SymmetricGroup(5))
sage: J = IntegerVectorsModPermutationGroup(SymmetricGroup(6))
sage: v1 = I([2,3,1,2,3], check=False)
sage: v2 = I([2,3,2,3,2], check=False)

(continues on next page)

5.1. Comprehensive Module List 835

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableIntArray
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableIntArray

Combinatorics, Release 9.7

(continued from previous page)

sage: v3 = J([2,3,1,2,3,1], check=False)
sage: from sage.combinat.enumeration_mod_permgroup import lex_cmp
sage: lex_cmp(v1, v1)
0
sage: lex_cmp(v1, v2)
-1
sage: lex_cmp(v2, v1)
1
sage: lex_cmp(v1, v3)
-1
sage: lex_cmp(v3, v1)
1

sage.combinat.enumeration_mod_permgroup.lex_cmp_partial(v1, v2, step)
Partial comparison of the two lists according the lexicographic order. It compares the step-th first entries.

EXAMPLES:

sage: from sage.combinat.enumeration_mod_permgroup import lex_cmp_partial
sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: IA = IncreasingIntArrays()
sage: lex_cmp_partial(IA([0,1,2,3]),IA([0,1,2,4]),3)
0
sage: lex_cmp_partial(IA([0,1,2,3]),IA([0,1,2,4]),4)
-1

sage.combinat.enumeration_mod_permgroup.orbit(sgs, v)
Returns the orbit of the integer vector v under the action of the permutation group whose strong generating
system is sgs.

NOTE:

The returned orbit is a set. In the doctests, we convert it into a sorted list.

EXAMPLES:

sage: from sage.combinat.enumeration_mod_permgroup import orbit
sage: G = PermutationGroup([[(1,2,3,4)]])
sage: sgs = G.strong_generating_system()
sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: IA = IncreasingIntArrays()
sage: sorted(orbit(sgs, IA([1,2,3,4])))
[[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3]]

5.1.101 Compute Bell and Uppuluri-Carpenter numbers

AUTHORS:

• Nick Alexander

sage.combinat.expnums.expnums(n, aa)
Compute the first 𝑛 exponential numbers around 𝑎𝑎, starting with the zero-th.

INPUT:

• n - C machine int

836 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• aa - C machine int

OUTPUT: A list of length 𝑛.

ALGORITHM: We use the same integer addition algorithm as GAP. This is an extension of Bell’s triangle
to the general case of exponential numbers. The recursion performs 𝑂(𝑛2) additions, but the running time is
dominated by the cost of the last integer addition, because the growth of the integer results of partial computations
is exponential in 𝑛. The algorithm stores 𝑂(𝑛) integers, but each is exponential in 𝑛.

EXAMPLES:

sage: expnums(10, 1)
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147]

sage: expnums(10, -1)
[1, -1, 0, 1, 1, -2, -9, -9, 50, 267]

sage: expnums(1, 1)
[1]
sage: expnums(0, 1)
[]
sage: expnums(-1, 0)
[]

AUTHORS:

• Nick Alexander

sage.combinat.expnums.expnums2(n, aa)
A vanilla python (but compiled via Cython) implementation of expnums.

We Compute the first 𝑛 exponential numbers around 𝑎𝑎, starting with the zero-th.

EXAMPLES:

sage: from sage.combinat.expnums import expnums2
sage: expnums2(10, 1)
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147]

5.1.102 Families

This is a backward compatibility stub. Use sage.sets.family instead.

5.1.103 Brent Yorgey’s fast algorithm for integer vector (multiset) partitions.

ALGORITHM:

Brent Yorgey, Generating Multiset Partitions, The Monad Reader, Issue 8, September 2007, p. 5.

https://wiki.haskell.org/The_Monad.Reader/Previous_issues

AUTHORS:

• D. K. Sunko (2020-02-19): initial version

• F. Chapoton (2020-02-22): conversion to iterators and shorter doctests and doc tweaks

• T. Scrimshaw (2020-03-06): Cython optimizations and doc tweaks

5.1. Comprehensive Module List 837

../../../../../../html/en/reference/sets/sage/sets/family.html#module-sage.sets.family
https://wiki.haskell.org/The_Monad.Reader/Previous_issues

Combinatorics, Release 9.7

sage.combinat.fast_vector_partitions.fast_vector_partitions(v, min_vals=None)
Brent Yorgey’s fast algorithm for integer vector (multiset) partitions.

INPUT:

• v – list of non-negative integers, understood as the vector to be partitioned

• min_vals – optional list of non-negative integers, of same length as v

OUTPUT:

A list of lists, each representing a vector partition of v.

If min_vals is given, only partitions with parts p >= min_vals in the lexicographic ordering will appear.

If min_vals is given and len(min_vals) != len(v), an error is raised.

EXAMPLES:

The older the computer, the more impressive the comparison:

sage: from sage.combinat.fast_vector_partitions import fast_vector_partitions
sage: fastvparts = list(fast_vector_partitions([3, 3, 3]))
sage: vparts = list(VectorPartitions([3, 3, 3]))
sage: vparts == fastvparts[::-1]
True
sage: len(fastvparts)
686
sage: list(fast_vector_partitions([1, 2, 3], min_vals=[0, 1, 1]))
[[[1, 2, 3]],
[[0, 2, 3], [1, 0, 0]],
[[0, 2, 2], [1, 0, 1]],
[[0, 2, 1], [1, 0, 2]],
[[0, 2, 0], [1, 0, 3]],
[[0, 1, 3], [1, 1, 0]],
[[0, 1, 2], [1, 1, 1]],
[[0, 1, 1], [1, 1, 2]],
[[0, 1, 1], [0, 1, 2], [1, 0, 0]],
[[0, 1, 1], [0, 1, 1], [1, 0, 1]]]
sage: L1 = list(fast_vector_partitions([5, 7, 6], min_vals=[1, 3, 2]))
sage: L1 == list(VectorPartitions([5, 7, 6], min=[1, 3, 2]))[::-1]
True

Note: The partitions are returned as an iterator.

In this documentation, a <|= b means a[i] <= b[i] for all i (notation following B. Yorgey’s paper). It is the
monomial partial ordering in Dickson’s lemma: a <|= b iff x^a divides x^b as monomials.

Warning: The ordering of the partitions is reversed with respect to the output of Sage class
VectorPartitions.

sage.combinat.fast_vector_partitions.recursive_vector_partitions(v, vL)
Iterate over a lexicographically ordered list of lists, each list representing a vector partition of v, such that no part
of any partition is lexicographically smaller than vL.

Internal part of fast_vector_partitions().

838 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• v – list of non-negative integers, understood as a vector

• vL – list of non-negative integers, understood as a vector

EXAMPLES:

sage: from sage.combinat.fast_vector_partitions import recursive_vector_partitions
sage: list(recursive_vector_partitions([2, 2, 2],[1, 1, 1]))
[[[2, 2, 2]], [[1, 1, 1], [1, 1, 1]]]
sage: list(recursive_vector_partitions([2, 2, 2],[1, 1, 0]))
[[[2, 2, 2]], [[1, 1, 1], [1, 1, 1]], [[1, 1, 0], [1, 1, 2]]]
sage: list(recursive_vector_partitions([2, 2, 2],[1, 0, 1]))
[[[2, 2, 2]],
[[1, 1, 1], [1, 1, 1]],
[[1, 1, 0], [1, 1, 2]],
[[1, 0, 2], [1, 2, 0]],
[[1, 0, 1], [1, 2, 1]]]

sage.combinat.fast_vector_partitions.recursive_within_from_to(m, s, e, useS, useE)
Iterate over a lexicographically ordered list of lists v satisfying e <= v <= s and v <|= m as vectors.

Internal part of fast_vector_partitions().

INPUT:

• m – list of non-negative integers, understood as a vector

• s – list of non-negative integers, understood as a vector

• e – list of non-negative integers, understood as a vector

• useS – boolean

• useE – boolean

EXAMPLES:

sage: from sage.combinat.fast_vector_partitions import recursive_within_from_to
sage: list(recursive_within_from_to([1, 2, 3],[1, 2, 2],[1, 1, 1],True,True))
[[1, 2, 2], [1, 2, 1], [1, 2, 0], [1, 1, 3], [1, 1, 2], [1, 1, 1]]

Note: The flags useS and useE are used to implement the condition efficiently. Because testing it loops over
the vector, re-testing at each step as the vector is parsed is inefficient: all but the last comparison have been
done cumulatively already. This code tests only for the last one, using the flags to accumulate information from
previous calls.

Warning: Expects to be called with s <|= m.

Expects to be called first with useS == useE == True.

sage.combinat.fast_vector_partitions.within_from_to(m, s, e)
Iterate over a lexicographically ordered list of lists v satisfying e <= v <= s and v <|= m as vectors.

Internal part of fast_vector_partitions().

INPUT:

5.1. Comprehensive Module List 839

Combinatorics, Release 9.7

• m – list of non-negative integers, understood as a vector

• s – list of non-negative integers, understood as a vector

• e – list of non-negative integers, understood as a vector

EXAMPLES:

sage: from sage.combinat.fast_vector_partitions import within_from_to
sage: list(within_from_to([1, 2, 3], [1, 2, 2], [1, 1, 1]))
[[1, 2, 2], [1, 2, 1], [1, 2, 0], [1, 1, 3], [1, 1, 2], [1, 1, 1]]

Note: The input s will be “clipped” internally if it does not satisfy the condition s <|= m.

To understand the input check, some line art is helpful. Assume that (a,b) are the two least significant coordi-
nates of some vector. Say:

e = (2,3), s = (7,6), m = (9,8).

In the figure, these values are denoted by E, S, and M, while the letter X stands for all other allowed values of v
= (a,b):

b ^
|

8 --------X---X---X---X---X-----------M
| |

7 - X X X X X |
| |

6 - X X X X X S |
| |

5 - X X X X X X |
| |

4 - X X X X X X |
| |

3 - E X X X X X |
| |

2 - X X X X X |
| |

1 - X X X X X |
| |

0 ----|---|---X---X---X---X---X---|---|--->
0 1 2 3 4 5 6 7 8 9 a

If Smoves horizontally, the full-height columns fill the box in until S reaches M, at which point it remains the limit
in the b-direction as it moves out of the box, while M takes over as the limit in the a-direction, so the M-column
remains filled only up to S, no matter how much S moves further to the right.

If S moves vertically, its column will be filled to the top of the box, but it remains the relevant limit in the
a-direction, while M takes over in the b-direction as S goes out of the box upwards.

Both behaviors are captured by using the smaller coordinate of S and M, whenever S is outside the box defined
by M. The input will be “clipped” accordingly in that case.

840 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Warning: The “clipping” behavior is transparent to the user, but may be puzzling when comparing outputs
with the function recursive_within_from_to() which has no input protection.

5.1.104 Fully commutative elements of Coxeter groups

An element 𝑤 in a Coxeter system (W,S) is fully commutative (FC) if every two reduced words of w can be related by
a sequence of only commutation relations, i.e., relations of the form 𝑠𝑡 = 𝑡𝑠 where 𝑠, 𝑡 are commuting generators in 𝑆.
See [Ste1996].

Authors:

• Chase Meadors, Tianyuan Xu (2020): Initial version

Acknowledgements

A draft of this code was written during an REU project at University of Colorado Boulder. We thank Rachel Castro,
Joel Courtney, Thomas Magnuson and Natalie Schoenhals for their contribution to the project and the code.

class sage.combinat.fully_commutative_elements.FullyCommutativeElement
Bases: sage.structure.list_clone.NormalizedClonableList

A fully commutative (FC) element in a Coxeter system.

An element 𝑤 in a Coxeter system (W,S) is fully commutative (FC) if every two reduced word of w can be
related by a sequence of only commutation relations, i.e., relations of the form 𝑠𝑡 = 𝑡𝑠 where 𝑠, 𝑡 are commuting
generators in 𝑆.

Every FC element has a canonical reduced word called its Cartier–Foata form. See [Gre2006]. We will normalize
each FC element to this form.

check()
Called automatically when an element is created.

EXAMPLES:

sage: CoxeterGroup(['A', 3]).fully_commutative_elements()([1, 2]) # indirect␣
→˓doctest
[1, 2]
sage: CoxeterGroup(['A', 3]).fully_commutative_elements()([1, 2, 1]) # indirect␣
→˓doctest
Traceback (most recent call last):
...
ValueError: the input is not a reduced word of a fully commutative element

coset_decomposition(J, side='left')
Return the coset decomposition of self with respect to the parabolic subgroup generated by J.

INPUT:

• J – subset of the generating set 𝑆 of the Coxeter system

• side – string (default: 'left'); if the value is set to ‘right’, then the function returns the tuple
(𝑤′𝐽 , 𝑤′𝐽) from the coset decomposition 𝑤 = 𝑤′𝐽 · 𝑤′𝐽 of 𝑤 with respect to 𝐽

OUTPUT:

5.1. Comprehensive Module List 841

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.NormalizedClonableList

Combinatorics, Release 9.7

The tuple of elements (𝑤𝐽 , 𝑤
𝐽) such that 𝑤 = 𝑤𝐽 ·𝑤𝐽 , 𝑤𝐽 is generated by the elements in 𝐽 , and 𝑤𝐽 has

no left descent from 𝐽 . This tuple is unique and satisfies the equation ℓ(𝑤) = ℓ(𝑤𝐽) + ℓ(𝑤𝐽), where ℓ
denotes Coxeter length, by general theory; see Proposition 2.4.4 of [BB2005].

EXAMPLES:

sage: FC = CoxeterGroup(['B', 6]).fully_commutative_elements()
sage: w = FC([1, 6, 2, 5, 4, 6, 5])
sage: w.coset_decomposition({1})
([1], [6, 2, 5, 4, 6, 5])
sage: w.coset_decomposition({1}, side = 'right')
([1, 6, 2, 5, 4, 6, 5], [])
sage: w.coset_decomposition({5, 6})
([6, 5, 6], [1, 2, 4, 5])
sage: w.coset_decomposition({5, 6}, side='right')
([1, 6, 2, 5, 4], [6, 5])

Note: The factor 𝑤𝐽 of the coset decomposition 𝑤 = 𝑤𝐽 · 𝑤𝐽 can be obtained by greedily “pulling left
descents of 𝑤 that are in 𝐽 to the left”; see the proof of [BB2005]. This greedy algorithm works for all
elements in Coxeter group, but it becomes especially simple for FC elements because descents are easier
to find for FC elements.

descents(side='left')
Obtain the set of descents on the appropriate side of self.

INPUT:

• side – string (default: 'left'); if set to ‘right’, find the right descents

A generator 𝑠 is called a left or right descent of an element 𝑤 if 𝑙(𝑠𝑤) or 𝑙(𝑤𝑠) is smaller than 𝑙(𝑤),
respectively. If 𝑤 is FC, then 𝑠 is a left descent of 𝑤 if and only if 𝑠 appears to in the word and every
generator to the left of the leftmost 𝑠 in the word commutes with 𝑠. A similar characterization exists for
right descents of FC elements.

EXAMPLES:

sage: FC = CoxeterGroup(['B', 5]).fully_commutative_elements()
sage: w = FC([1, 4, 3, 5, 2, 4, 3])
sage: sorted(w.descents())
[1, 4]
sage: w.descents(side='right')
{3}
sage: FC = CoxeterGroup(['A', 5]).fully_commutative_elements()
sage: sorted(FC([1, 4, 3, 5, 2, 4, 3]).descents())
[1, 4]

See also:

find_descent()

find_descent(s, side='left')
Check if s is a descent of self and find its position if so.

A generator 𝑠 is called a left or right descent of an element 𝑤 if 𝑙(𝑠𝑤) or 𝑙(𝑤𝑠) is smaller than 𝑙(𝑤),
respectively. If 𝑤 is FC, then 𝑠 is a left descent of 𝑤 if and only if 𝑠 appears to in the word and every
generator to the left of the leftmost 𝑠 in the word commutes with 𝑠. A similar characterization exists for
right descents of FC elements.

842 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• s – integer representing a generator of the Coxeter system

• side – string (default: 'left'); if the argument is set to ‘right’, the function checks if s is a right
descent of self and finds the index of the rightmost occurrence of s if so

OUTPUT:

Determine if the generator s is a left descent of self; return the index of the leftmost occurrence of s in
self if so and return None if not.

EXAMPLES:

sage: FC = CoxeterGroup(['B', 5]).fully_commutative_elements()
sage: w = FC([1, 4, 3, 5, 2, 4, 3])
sage: w.find_descent(1)
0
sage: w.find_descent(1, side='right')

sage: w.find_descent(4)
1
sage: w.find_descent(4, side='right')

sage: w.find_descent(3)

group_element()
Get the actual element of the Coxeter group associated with self.parent() corresponding to self.

EXAMPLES:

sage: W = CoxeterGroup(['A', 3])
sage: FC = W.fully_commutative_elements()
sage: x = FC([1, 2])
sage: x.group_element()
[0 -1 1]
[1 -1 1]
[0 0 1]
sage: x.group_element() in W
True

has_descent(s, side='left')
Determine if s is a descent on the appropriate side of self.

INPUT:

• side – string (default: 'left'); if set to ‘right’, determine if self has s as a right descent

OUTPUT: a boolean value

EXAMPLES:

sage: FC = CoxeterGroup(['B', 5]).fully_commutative_elements()
sage: w = FC([1, 4, 3, 5, 2, 4, 3])
sage: w.has_descent(1)
True
sage: w.has_descent(1, side='right')
False
sage: w.has_descent(4)

(continues on next page)

5.1. Comprehensive Module List 843

Combinatorics, Release 9.7

(continued from previous page)

True
sage: w.has_descent(4, side='right')
False

See also:

find_descent()

heap(**kargs)
Create the heap poset of self.

The heap of an FC element 𝑤 is a labeled poset that can be defined from any reduced word of 𝑤. Different
reduced words yield isomorphic labeled posets, so the heap is well defined.

Heaps are very useful for visualizing and studying FC elements; see, for example, [Ste1996] and [GX2020].

INPUT:

• self – list, a reduced word 𝑤 = 𝑠0...𝑠𝑘−1 of an FC element

• one_index – boolean (default: False). Setting the value to True will change the underlying set of the
poset to {1, 2, . . . , 𝑛}

• display_labeling – boolean (default: False). Setting the value to True will display the label 𝑠𝑖 for
each element 𝑖 of the poset

OUTPUT: A labeled poset where the underlying set is {0, 1, ..., 𝑘− 1} and where each element 𝑖 carries 𝑠𝑖
as its label. The partial order ≺ on the poset is defined by declaring 𝑖 ≺ 𝑗 if 𝑖 < 𝑗 and 𝑚(𝑠𝑖, 𝑠𝑗) ̸= 2.

EXAMPLES:

sage: FC = CoxeterGroup(['A', 5]).fully_commutative_elements()
sage: FC([1, 4, 3, 5, 2, 4]).heap().cover_relations()
[[1, 2], [1, 3], [2, 5], [2, 4], [3, 5], [0, 4]]
sage: FC([1, 4, 3, 5, 4, 2]).heap(one_index=True).cover_relations()
[[2, 3], [2, 4], [3, 6], [3, 5], [4, 6], [1, 5]]

is_fully_commutative()
Check if self is the reduced word of an FC element.

To check if 𝑠𝑒𝑙𝑓 is FC, we use the well-known characterization that an element 𝑤 in a Coxeter system
(𝑊,𝑆) is FC if and only if for every pair of generators 𝑠, 𝑡 ∈ 𝑆 for which 𝑚(𝑠, 𝑡) > 2, no reduced word of
𝑤 contains the ‘braid’ word 𝑠𝑡𝑠... of length 𝑚(𝑠, 𝑡) as a contiguous subword. See [Ste1996].

check() is an alias of this method, and is called automatically when an element is created.

EXAMPLES:

sage: FC = CoxeterGroup(['A', 3]).fully_commutative_elements()
sage: x = FC([1, 2]); x.is_fully_commutative()
True
sage: x = FC.element_class(FC, [1, 2, 1], check=False); x.is_fully_commutative()
False

n_value()
Calculate the n-value of self.

The n-value of a fully commutative element is the width (length of any longest antichain) of its heap. The
n-value is important as it coincides with Lusztig’s a-value for FC elements in all Weyl and affine Weyl
groups as well as so-called star-reducible groups; see [GX2020].

844 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: FC = CoxeterGroup(['A', 5]).fully_commutative_elements()
sage: FC([1,3]).n_value()
2
sage: FC([1,2,3]).n_value()
1
sage: FC([1,3,2]).n_value()
2
sage: FC([1,3,2,5]).n_value()
3

normalize()
Mutate self into Cartier-Foata normal form.

EXAMPLES:

The following reduced words express the same FC elements in 𝐵5:

sage: FC = CoxeterGroup(['B', 5]).fully_commutative_elements()
sage: FC([1, 4, 3, 5, 2, 4, 3]) # indirect doctest
[1, 4, 3, 5, 2, 4, 3]
sage: FC([4, 1, 3, 5, 2, 4, 3]) # indirect doctest
[1, 4, 3, 5, 2, 4, 3]
sage: FC([4, 3, 1, 5, 4, 2, 3]) # indirect doctest
[1, 4, 3, 5, 2, 4, 3]

Note: The Cartier–Foata form of a reduced word of an FC element𝑤 can be found recursively by repeatedly
moving left descents of elements to the left and ordering the left descents from small to large. In the above
example, the left descents of the element are 4 and 1, therefore the Cartier–Foata form of the element is the
concatenation of [1,4] with the Cartier–Foata form of the remaining part of the word. See [Gre2006].

See also:

descents()

plot_heap()
Display the Hasse diagram of the heap of self.

The Hasse diagram is rendered in the lattice 𝑆 × N, with every element 𝑖 in the poset drawn as a point
labelled by its label 𝑠𝑖. Every point is placed in the column for its label at a certain level. The levels
start at 0 and the level k of an element 𝑖 is the maximal number 𝑘 such that the heap contains a chain
𝑖0 ≺ 𝑖1 ≺ ... ≺ 𝑖𝑘 where 𝑖𝑘 = 𝑖. See [Ste1996] and [GX2020].

OUTPUT: GraphicsObject

EXAMPLES:

sage: FC = CoxeterGroup(['B', 5]).fully_commutative_elements()
sage: FC([3,2,4,3,1]).plot_heap()
Graphics object consisting of 15 graphics primitives

star_operation(J, direction, side='left')
Apply a star operation on self relative to two noncommuting generators.

Star operations were first defined on elements of Coxeter groups by Kazhdan and Lusztig in [KL1979]
with respect to pair of generators 𝑠, 𝑡 such that 𝑚(𝑠, 𝑡) = 3. Later, Lusztig generalized the definition in

5.1. Comprehensive Module List 845

Combinatorics, Release 9.7

3

2 4

1 3

[Lus1985], via coset decompositions, to allow star operations with respect to any pair of generators 𝑠, 𝑡 such
that𝑚(𝑠, 𝑡) ≥ 3. Given such a pair, we can potentially perform four types of star operations corresponding
to all combinations of a ‘direction’ and a ‘side’: upper left, lower left, upper right and lower right; see
[Gre2006].

Let 𝑤 be an element in 𝑊 and let 𝐽 be any pair {𝑠, 𝑡} of noncommuting generators in 𝑆. Consider the
coset decomposition 𝑤 = 𝑤𝐽 · 𝐽𝑤 of 𝑤 relative to 𝐽 . Then an upper left star operation is defined on 𝑤 if
and only if 1 ≤ 𝑙(𝑤𝐽) ≤ 𝑚(𝑠, 𝑡) − 2; when this is the case, the operation returns 𝑥 · 𝑤𝐽 · 𝑤𝐽 where 𝑥 is
the letter 𝐽 different from the leftmost letter of 𝑤𝐽 . A lower left star operation is defined on 𝑤 if and only
if 2 ≤ 𝑙(𝑤𝐽) ≤ 𝑚(𝑠, 𝑡)− 1; when this is the case, the operation removes the leftmost letter of 𝑤𝐽 from 𝑤.
Similar facts hold for right star operations. See [Gre2006].

The facts of the previous paragraph hold in general, even if 𝑤 is not FC. Note that if 𝑓 is a star operation
of any kind, then for every element 𝑤 ∈𝑊 , the elements 𝑤 and 𝑓(𝑤) are either both FC or both not FC.

INPUT:

• J – a set of two integers representing two noncommuting generators of the Coxeter system

• direction – string, 'upper' or 'lower'; the function performs an upper or lower star operation
according to direction

• side – string (default: 'left'); if this is set to ‘right’, the function performs a right star operation

OUTPUT:

The Cartier–Foata form of the result of the star operation if the operation is defined on self, None other-
wise.

EXAMPLES:

We will compute all star operations on the following FC element in type 𝐵6 relative to 𝐽 = {5, 6}:

sage: FC = CoxeterGroup(['B', 6]).fully_commutative_elements()
sage: w = FC([1, 6, 2, 5, 4, 6, 5])

Whether and how a left star operations can be applied depend on the coset decomposition 𝑤 = 𝑤𝐽 · 𝑤𝐽 :

846 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: w.coset_decomposition({5, 6})
([6, 5, 6], [1, 2, 4, 5])

Only the lower star operation is defined on the left on 𝑤:

sage: w.star_operation({5,6}, 'upper')

sage: w.star_operation({5,6}, 'lower')
[1, 5, 2, 4, 6, 5]

Whether and how a right star operations can be applied depend on the coset decomposition 𝑤 = 𝑤𝐽 · 𝑤𝐽 :

sage: w.coset_decomposition({5, 6}, side='right')
([1, 6, 2, 5, 4], [6, 5])

Both types of right star operations on defined for this example:

sage: w.star_operation({5, 6}, 'upper', side='right')
[1, 6, 2, 5, 4, 6, 5, 6]

sage: w.star_operation({5, 6}, 'lower', side='right')
[1, 6, 2, 5, 4, 6]

class sage.combinat.fully_commutative_elements.FullyCommutativeElements(coxeter_group)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Class for the set of fully commutative (FC) elements of a Coxeter system.

Coxeter systems with finitely many FC elements, or FC-finite Coxeter systems, are classfied by Stembridge in
[Ste1996]. They fall into seven families, namely the groups of types 𝐴𝑛, 𝐵𝑛, 𝐷𝑛, 𝐸𝑛, 𝐹𝑛, 𝐻𝑛 and 𝐼2(𝑚).

INPUT:

• data – CoxeterMatrix, CartanType, or the usual datum that can is taken in the constructors for these classes
(see sage.combinat.root_system.coxeter_group.CoxeterGroup())

OUTPUT:

The class of fully commutative elements in the Coxeter group constructed from data. This will belong to the
category of enumerated sets. If the Coxeter data corresponds to a Cartan type, the category is further refined to
either finite enumerated sets or infinite enumerated sets depending on i whether the Coxeter group is FC-finite;
the refinement is not carried out if data is a Coxeter matrix not corresponding to a Cartan type.

Todo: It would be ideal to implement the aforementioned refinement to finite and infinite enumerated sets for
all possible data, regardless of whether it corresponds to a Cartan type. Doing so requires determining if an
arbitrary Coxeter matrix corresponds to a Cartan type. It may be best to address this issue in sage.combinat.
root_system. On the other hand, the refinement in the general case may be unnecessary in light of the fact that
Stembridge’s classification of FC-finite groups contains a very small number of easily-recognizable families.

EXAMPLES:

Create the enumerate set of fully commutative elements in 𝐵3:

sage: FC = CoxeterGroup(['B', 3]).fully_commutative_elements(); FC
Fully commutative elements of Finite Coxeter group over Number Field in a with␣
→˓defining polynomial x^2 - 2 with a = 1.414213562373095? with Coxeter matrix:(continues on next page)

5.1. Comprehensive Module List 847

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

[1 3 2]
[3 1 4]
[2 4 1]

Construct elements:

sage: FC([])
[]
sage: FC([1,2])
[1, 2]
sage: FC([2,3,2])
[2, 3, 2]
sage: FC([3,2,3])
[3, 2, 3]

Elements are normalized to Cartier–Foata normal form upon construction:

sage: FC([3,1])
[1, 3]
sage: FC([2,3,1])
[2, 1, 3]
sage: FC([1,3]) == FC([3,1])
True

Attempting to create an element from an input that is not the reduced word of a fully commutative element throws
a ValueError:

sage: FC([1,2,1])
Traceback (most recent call last):
...
ValueError: the input is not a reduced word of a fully commutative element
sage: FC([2,3,2,3])
Traceback (most recent call last):
...
ValueError: the input is not a reduced word of a fully commutative element

Enumerate the FC elements in 𝐴3:

sage: FCA3 = CoxeterGroup(['A', 3]).fully_commutative_elements()
sage: FCA3.category()
Category of finite enumerated sets
sage: FCA3.list()
[[],
[1],
[2],
[3],
[2, 1],
[1, 3],
[1, 2],
[3, 2],
[2, 3],
[3, 2, 1],
[2, 1, 3],

(continues on next page)

848 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1, 3, 2],
[1, 2, 3],
[2, 1, 3, 2]]

Count the FC elements in 𝐵8:

sage: FCB8 = CoxeterGroup(['B', 8]).fully_commutative_elements()
sage: len(FCB8) # long time (7 seconds)
14299

Iterate through the FC elements of length up to 2 in the non-FC-finite group affine 𝐴2:

sage: FCAffineA2 = CoxeterGroup(['A', 2, 1]).fully_commutative_elements()
sage: FCAffineA2.category()
Category of infinite enumerated sets
sage: list(FCAffineA2.iterate_to_length(2))
[[], [0], [1], [2], [1, 0], [2, 0], [0, 1], [2, 1], [0, 2], [1, 2]]

The cardinality of the set is determined from the classification of FC-finite Coxeter groups:

sage: CoxeterGroup('A2').fully_commutative_elements().category()
Category of finite enumerated sets
sage: CoxeterGroup('B7').fully_commutative_elements().category()
Category of finite enumerated sets
sage: CoxeterGroup('A3~').fully_commutative_elements().category()
Category of infinite enumerated sets
sage: CoxeterGroup('F4~').fully_commutative_elements().category()
Category of finite enumerated sets
sage: CoxeterGroup('E8~').fully_commutative_elements().category()
Category of finite enumerated sets
sage: CoxeterGroup('F4~xE8~').fully_commutative_elements().category()
Category of finite enumerated sets
sage: CoxeterGroup('B4~xE8~').fully_commutative_elements().category()
Category of infinite enumerated sets

Element
alias of FullyCommutativeElement

coxeter_group()
Obtain the Coxeter group associated with self.

EXAMPLES:

sage: FCA3 = CoxeterGroup(['A', 3]).fully_commutative_elements()
sage: FCA3.coxeter_group()
Finite Coxeter group over Integer Ring with Coxeter matrix:
[1 3 2]
[3 1 3]
[2 3 1]

iterate_to_length(length)
Iterate through the elements of this class up to a maximum length.

INPUT:

• length – integer; maximum length of element to generate

5.1. Comprehensive Module List 849

Combinatorics, Release 9.7

OUTPUT: generator for elements of self of length up to length

EXAMPLES:

The following example produces all FC elements of length up to 2 in the group 𝐴3:

sage: FCA3 = CoxeterGroup(['A', 3]).fully_commutative_elements()
sage: list(FCA3.iterate_to_length(2))
[[], [1], [2], [3], [2, 1], [1, 3], [1, 2], [3, 2], [2, 3]]

The lists for length 4 and 5 are the same since 4 is the maximum length of an FC element in 𝐴3:

sage: list(FCA3.iterate_to_length(4))
[[], [1], [2], [3], [2, 1], [1, 3], [1, 2], [3, 2], [2, 3],
[3, 2, 1], [2, 1, 3], [1, 3, 2], [1, 2, 3], [2, 1, 3, 2]]
sage: list(FCA3.iterate_to_length(5))
[[], [1], [2], [3], [2, 1], [1, 3], [1, 2], [3, 2], [2, 3],
[3, 2, 1], [2, 1, 3], [1, 3, 2], [1, 2, 3], [2, 1, 3, 2]]
sage: list(FCA3.iterate_to_length(4)) == list(FCA3)
True

The following example produces all FC elements of length up to 4 in the affine Weyl group 𝐴2:

sage: FCAffineA2 = CoxeterGroup(['A', 2, 1]).fully_commutative_elements()
sage: FCAffineA2.category()
Category of infinite enumerated sets
sage: list(FCAffineA2.iterate_to_length(4))
[[], [0], [1], [2], [1, 0], [2, 0], [0, 1], [2, 1], [0, 2],
[1, 2], [2, 1, 0], [1, 2, 0], [2, 0, 1], [0, 2, 1], [1, 0, 2],
[0, 1, 2], [0, 2, 1, 0], [0, 1, 2, 0], [1, 2, 0, 1],
[1, 0, 2, 1], [2, 1, 0, 2], [2, 0, 1, 2]]

5.1.105 Finite state machines, automata, transducers

This module adds support for finite state machines, automata and transducers.

For creating automata and transducers you can use classes

• Automaton and Transducer (or the more general class FiniteStateMachine)

or the generators

• automata and transducers

which contain preconstructed and commonly used automata and transducers. See also the examples below.

Contents

FiniteStateMachine and derived classes Transducer and Automaton

850 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Accessing parts of a finite state machine

state() Get a state by its label
states() List of states
iter_states() Iterator over the states
initial_states() List of initial states
iter_initial_states() Iterator over initial states
final_states() List of final states
iter_final_states() Iterator over final states
transition() Get a transition by its states and labels
transitions() List of transitions
iter_transitions() Iterator over the transitions
predecessors() List of predecessors of a state
induced_sub_finite_state_machine()Induced sub-machine
accessible_components() Accessible components
coaccessible_components() Coaccessible components
final_components() Final components (connected components which cannot be left again)

(Modified) Copies

empty_copy() Returns an empty deep copy
deepcopy() Returns a deep copy
relabeled() Returns a relabeled deep copy
Automaton.with_output() Extends an automaton to a transducer

Manipulation

add_state() Add a state
add_states() Add states
delete_state() Delete a state
add_transition() Add a transition
add_transitions_from_function()Add transitions
input_alphabet Input alphabet
output_alphabet Output alphabet
on_duplicate_transition Hook for handling duplicate transitions
add_from_transition_function()Add transitions by a transition function
delete_transition() Delete a transition
remove_epsilon_transitions()Remove epsilon transitions (not implemented)
split_transitions() Split transitions with input words of length > 1
determine_alphabets() Determine input and output alphabets
determine_input_alphabet() Determine input alphabet
determine_output_alphabet()Determine output alphabet
construct_final_word_out() Construct final output by implicitly reading trailing letters; cf.

with_final_word_out()

5.1. Comprehensive Module List 851

Combinatorics, Release 9.7

Properties

has_state() Checks for a state
has_initial_state() Checks for an initial state
has_initial_states() Checks for initial states
has_final_state() Checks for an final state
has_final_states() Checks for final states
has_transition() Checks for a transition
is_deterministic() Checks for a deterministic machine
is_complete() Checks for a complete machine
is_connected() Checks for a connected machine
Automaton.
is_equivalent()

Checks for equivalent automata

is_Markov_chain() Checks for a Markov chain
is_monochromatic() Checks whether the colors of all states are equal
number_of_words() Determine the number of successful paths
asymptotic_moments() Main terms of expectation and variance of sums of labels
moments_waiting_time() Moments of the waiting time for first true output
epsilon_successors() Epsilon successors of a state
Automaton.
shannon_parry_markov_chain()

Compute Markov chain with Parry measure

852 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Operations

disjoint_union() Disjoint union
concatenation() Concatenation
kleene_star() Kleene star
Automaton.complement() Complement of an automaton
Automaton.intersection() Intersection of automata
Transducer.
intersection()

Intersection of transducers

Transducer.
cartesian_product()

Cartesian product of a transducer with another finite state machine

product_FiniteStateMachine()Product of finite state machines
composition() Composition (output of other is input of self)
input_projection() Input projection (output is deleted)
output_projection() Output projection (old output is new input)
projection() Input or output projection
transposition() Transposition (all transitions are reversed)
with_final_word_out() Machine with final output constructed by implicitly reading trailing letters, cf.

construct_final_word_out() for inplace version
Automaton.
determinisation()

Determinisation of an automaton

completion() Completion of a finite state machine
process() Process input
__call__() Process input with shortened output
Automaton.process() Process input of an automaton (output differs from general case)
Transducer.process() Process input of a transducer (output differs from general case)
iter_process() Return process iterator
language() Return all possible output words
Automaton.language() Return all possible accepted words

Simplification

prepone_output() Prepone output where possible
equivalence_classes() List of equivalent states
quotient() Quotient with respect to equivalence classes
merged_transitions() Merge transitions while adding input
markov_chain_simplification()Simplification of a Markov chain
Automaton.minimization() Minimization of an automaton
Transducer.
simplification()

Simplification of a transducer

5.1. Comprehensive Module List 853

Combinatorics, Release 9.7

Conversion

adjacency_matrix() (Weighted) adjacency matrix()
graph() Underlying DiGraph
plot() Plot

LaTeX output

latex_options() Set options
set_coordinates() Set coordinates of the states
default_format_transition_label()Default formatting of words in transition labels
format_letter_negative() Format negative numbers as overlined number
format_transition_label_reversed()Format words in transition labels in reversed order

See also:

LaTeX output

FSMState

final_word_out Final output of a state
is_final Describes whether a state is final or not
is_initial Describes whether a state is initial or not
initial_probability Probability of starting in this state as part of a Markov chain
label() Label of a state
relabeled() Returns a relabeled deep copy of a state
fully_equal() Checks whether two states are fully equal (including all attributes)

FSMTransition

from_state State in which transition starts
to_state State in which transition ends
word_in Input word of the transition
word_out Output word of the transition
deepcopy() Returns a deep copy of the transition

FSMProcessIterator

next() Makes one step in processing the input tape
preview_word() Reads a word from the input tape
result() Returns the finished branches during process

854 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/matrices/sage/matrix/constructor.html#sage.matrix.constructor.matrix
../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Combinatorics, Release 9.7

Helper Functions

equal() Checks whether all elements of iterator are equal
full_group_by() Group iterable by values of some key
startswith() Determine whether list starts with the given prefix
FSMLetterSymbol() Returns a string associated to the input letter
FSMWordSymbol() Returns a string associated to a word
is_FSMState() Tests whether an object inherits from FSMState
is_FSMTransition() Tests whether an object inherits from FSMTransition
is_FiniteStateMachine() Tests whether an object inherits from FiniteStateMachine
duplicate_transition_ignore()Default function for handling duplicate transitions
duplicate_transition_raise_error()Raise error when inserting a duplicate transition
duplicate_transition_add_input()Add input when inserting a duplicate transition

Examples

We start with a general FiniteStateMachine. Later there will be also an Automaton and a Transducer.

A simple finite state machine

We can easily create a finite state machine by

sage: fsm = FiniteStateMachine()
sage: fsm
Empty finite state machine

By default this is the empty finite state machine, so not very interesting. Let’s create and add some states and transitions:

sage: day = fsm.add_state('day')
sage: night = fsm.add_state('night')
sage: sunrise = fsm.add_transition(night, day)
sage: sunset = fsm.add_transition(day, night)

Let us look at sunset more closely:

sage: sunset
Transition from 'day' to 'night': -|-

Note that could also have created and added the transitions directly by:

sage: fsm.add_transition('day', 'night')
Transition from 'day' to 'night': -|-

This would have had added the states automatically, since they are present in the transitions.

Anyhow, we got the following finite state machine:

sage: fsm
Finite state machine with 2 states

We can also obtain the underlying directed graph by

5.1. Comprehensive Module List 855

../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Combinatorics, Release 9.7

sage: fsm.graph()
Looped multi-digraph on 2 vertices

To visualize a finite state machine, we can use latex() and run the result through LaTeX, see the section on LaTeX
output below.

Alternatively, we could have created the finite state machine above simply by

sage: FiniteStateMachine([('night', 'day'), ('day', 'night')])
Finite state machine with 2 states

See FiniteStateMachine for a lot of possibilities to create finite state machines.

A simple Automaton (recognizing NAFs)

We want to build an automaton which recognizes non-adjacent forms (NAFs), i.e., sequences which have no adjacent
non-zeros. We use 0, 1, and −1 as digits:

sage: NAF = Automaton(
....: {'A': [('A', 0), ('B', 1), ('B', -1)], 'B': [('A', 0)]})
sage: NAF.state('A').is_initial = True
sage: NAF.state('A').is_final = True
sage: NAF.state('B').is_final = True
sage: NAF
Automaton with 2 states

Of course, we could have specified the initial and final states directly in the definition of NAF by
initial_states=['A'] and final_states=['A', 'B'].

So let’s test the automaton with some input:

sage: NAF([0])
True
sage: NAF([0, 1])
True
sage: NAF([1, -1])
False
sage: NAF([0, -1, 0, 1])
True
sage: NAF([0, -1, -1, -1, 0])
False
sage: NAF([-1, 0, 0, 1, 1])
False

Alternatively, we could call that by

sage: NAF.process([0, -1, 0, 1])
(True, 'B')

which gives additionally the state in which we arrived.

We can also let an automaton act on a word:

856 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.latex

Combinatorics, Release 9.7

sage: W = Words([-1, 0, 1]); W
Finite and infinite words over {-1, 0, 1}
sage: w = W([1, 0, 1, 0, -1]); w
word: 1,0,1,0,-1
sage: NAF(w)
True

Recognizing NAFs via Automata Operations

Alternatively, we can use automata operations to recognize NAFs; for simplicity, we only use the input alphabet [0,
1]. On the one hand, we can construct such an automaton by forbidding the word 11:

sage: forbidden = automata.ContainsWord([1, 1], input_alphabet=[0, 1])
sage: NAF_negative = forbidden.complement()
sage: NAF_negative([1, 1, 0, 1])
False
sage: NAF_negative([1, 0, 1, 0, 1])
True

On the other hand, we can write this as a regular expression and translate that into automata operations:

sage: zero = automata.Word([0])
sage: one = automata.Word([1])
sage: epsilon = automata.EmptyWord(input_alphabet=[0, 1])
sage: NAF_positive = (zero + one*zero).kleene_star() * (epsilon + one)

We check that the two approaches are equivalent:

sage: NAF_negative.is_equivalent(NAF_positive)
True

See also:

ContainsWord(), Word(), complement(), kleene_star(), EmptyWord(), is_equivalent().

LaTeX output

We can visualize a finite state machine by converting it to LaTeX by using the usual function latex(). Within LaTeX,
TikZ is used for typesetting the graphics, see the Wikipedia article PGF/TikZ.

sage: print(latex(NAF)) # abs tol 1e-3
\begin{tikzpicture}[auto, initial text=, >=latex]
\node[state, accepting, initial] (v0) at (3.000000, 0.000000) {$\text{\texttt{A}}$};
\node[state, accepting] (v1) at (-3.000000, 0.000000) {$\text{\texttt{B}}$};
\path[->] (v0) edge[loop above] node {0} ();
\path[->] (v0.185.00) edge node[rotate=360.00, anchor=north] {$1, -1$} (v1.355.00);
\path[->] (v1.5.00) edge node[rotate=0.00, anchor=south] {0} (v0.175.00);
\end{tikzpicture}

We can turn this into a graphical representation.

5.1. Comprehensive Module List 857

../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.latex
https://en.wikipedia.org/wiki/PGF/TikZ

Combinatorics, Release 9.7

sage: view(NAF) # not tested

To actually see this, use the live documentation in the Sage notebook and execute the cells in this and the previous
section.

Several options can be set to customize the output, see latex_options() for details. In particular, we use
format_letter_negative() to format −1 as 1.

sage: NAF.latex_options(
....: coordinates={'A': (0, 0),
....: 'B': (6, 0)},
....: initial_where={'A': 'below'},
....: format_letter=NAF.format_letter_negative,
....: format_state_label=lambda x:
....: r'\mathcal{%s}' % x.label()
....:)
sage: print(latex(NAF))
\begin{tikzpicture}[auto, initial text=, >=latex]
\node[state, accepting, initial, initial where=below] (v0) at (0.000000, 0.000000) {$\
→˓mathcal{A}$};
\node[state, accepting] (v1) at (6.000000, 0.000000) {\mathcal{B}};
\path[->] (v0) edge[loop above] node {0} ();
\path[->] (v0.5.00) edge node[rotate=0.00, anchor=south] {$1, \overline{1}$} (v1.175.00);
\path[->] (v1.185.00) edge node[rotate=360.00, anchor=north] {0} (v0.355.00);
\end{tikzpicture}
sage: view(NAF) # not tested

To use the output of latex() in your own LATEX file, you have to include

\usepackage{tikz}
\usetikzlibrary{automata}

into the preamble of your file.

A simple transducer (binary inverter)

Let’s build a simple transducer, which rewrites a binary word by inverting each bit:

sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]},
....: initial_states=['A'], final_states=['A'])

We can look at the states and transitions:

sage: inverter.states()
['A']
sage: for t in inverter.transitions():
....: print(t)
Transition from 'A' to 'A': 0|1
Transition from 'A' to 'A': 1|0

Now we apply a word to it and see what the transducer does:

sage: inverter([0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1])
[1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0]

858 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.latex

Combinatorics, Release 9.7

True means, that we landed in a final state, that state is labeled 'A', and we also got an output.

Transducers and (in)finite Words

A transducer can also act on everything iterable, in particular, on Sage’s words.

sage: W = Words([0, 1]); W
Finite and infinite words over {0, 1}

Let us take the inverter from the previous section and feed some finite word into it:

sage: w = W([1, 1, 0, 1]); w
word: 1101
sage: inverter(w)
word: 0010

We see that the output is again a word (this is a consequence of calling process() with automatic_output_type).

We can even input something infinite like an infinite word:

sage: tm = words.ThueMorseWord(); tm
word: 0110100110010110100101100110100110010110...
sage: inverter(tm)
word: 1001011001101001011010011001011001101001...

A transducer which performs division by 3 in binary

Now we build a transducer, which divides a binary number by 3. The labels of the states are the remainder of the
division. The transition function is

sage: def f(state_from, read):
....: if state_from + read <= 1:
....: state_to = 2*state_from + read
....: write = 0
....: else:
....: state_to = 2*state_from + read - 3
....: write = 1
....: return (state_to, write)

which assumes reading a binary number from left to right. We get the transducer with

sage: D = Transducer(f, initial_states=[0], final_states=[0],
....: input_alphabet=[0, 1])

Let us try to divide 12 by 3:

sage: D([1, 1, 0, 0])
[0, 1, 0, 0]

Now we want to divide 13 by 3:

5.1. Comprehensive Module List 859

Combinatorics, Release 9.7

sage: D([1, 1, 0, 1])
Traceback (most recent call last):
...
ValueError: Invalid input sequence.

The raised ValueError means 13 is not divisible by 3.

Gray Code

The Gray code is a binary numeral system where two successive values differ in only one bit, cf. the Wikipedia article
Gray_code. The Gray code of an integer 𝑛 is obtained by a bitwise xor between the binary expansion of 𝑛 and the
binary expansion of ⌊𝑛/2⌋; the latter corresponds to a shift by one position in binary.

The purpose of this example is to construct a transducer converting the standard binary expansion to the Gray code by
translating this construction into operations with transducers.

For this construction, the least significant digit is at the left-most position. Note that it is easier to shift everything to
the right first, i.e., multiply by 2 instead of building ⌊𝑛/2⌋. Then, we take the input xor with the right shift of the input
and forget the first letter.

We first construct a transducer shifting the binary expansion to the right. This requires storing the previously read digit
in a state.

sage: def shift_right_transition(state, digit):
....: if state == 'I':
....: return (digit, None)
....: else:
....: return (digit, state)
sage: shift_right_transducer = Transducer(
....: shift_right_transition,
....: initial_states=['I'],
....: input_alphabet=[0, 1],
....: final_states=[0])
sage: shift_right_transducer.transitions()
[Transition from 'I' to 0: 0|-,
Transition from 'I' to 1: 1|-,
Transition from 0 to 0: 0|0,
Transition from 0 to 1: 1|0,
Transition from 1 to 0: 0|1,
Transition from 1 to 1: 1|1]
sage: shift_right_transducer([0, 1, 1, 0])
[0, 1, 1]
sage: shift_right_transducer([1, 0, 0])
[1, 0]

The output of the shifts above look a bit weird (from a right-shift transducer, we would expect, for example, that [1,
0, 0] was mapped to [0, 1, 0]), since we write None instead of the zero at the left. Further, note that only 0 is
listed as a final state as we have to enforce that a most significant zero is read as the last input letter in order to flush the
last digit:

sage: shift_right_transducer([0, 1, 0, 1])
Traceback (most recent call last):
...
ValueError: Invalid input sequence.

860 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Numeral_system
https://en.wikipedia.org/wiki/Gray_code
https://en.wikipedia.org/wiki/Gray_code

Combinatorics, Release 9.7

Next, we construct the transducer performing the xor operation. We also have to take None into account as our
shift_right_transducer waits one iteration until it starts writing output. This corresponds with our intention
to forget the first letter.

sage: def xor_transition(state, digits):
....: if digits[0] is None or digits[1] is None:
....: return (0, None)
....: else:
....: return (0, digits[0].__xor__(digits[1]))
sage: from itertools import product
sage: xor_transducer = Transducer(
....: xor_transition,
....: initial_states=[0],
....: final_states=[0],
....: input_alphabet=list(product([None, 0, 1], [0, 1])))
sage: xor_transducer.transitions()
[Transition from 0 to 0: (None, 0)|-,
Transition from 0 to 0: (None, 1)|-,
Transition from 0 to 0: (0, 0)|0,
Transition from 0 to 0: (0, 1)|1,
Transition from 0 to 0: (1, 0)|1,
Transition from 0 to 0: (1, 1)|0]
sage: xor_transducer([(None, 0), (None, 1), (0, 0), (0, 1), (1, 0), (1, 1)])
[0, 1, 1, 0]
sage: xor_transducer([(0, None)])
Traceback (most recent call last):
...
ValueError: Invalid input sequence.

The transducer computing the Gray code is then constructed as a Cartesian product between the shifted version and
the original input (represented here by the shift_right_transducer and the identity transducer, respectively).
This Cartesian product is then fed into the xor_transducer as a composition of transducers.

sage: product_transducer = shift_right_transducer.cartesian_product(transducers.
→˓Identity([0, 1]))
sage: Gray_transducer = xor_transducer(product_transducer)

We use construct_final_word_out() to make sure that all output is written; otherwise, we would have to make
sure that a sufficient number of trailing zeros is read.

sage: Gray_transducer.construct_final_word_out([0])
sage: Gray_transducer.transitions()
[Transition from (('I', 0), 0) to ((0, 0), 0): 0|-,
Transition from (('I', 0), 0) to ((1, 0), 0): 1|-,
Transition from ((0, 0), 0) to ((0, 0), 0): 0|0,
Transition from ((0, 0), 0) to ((1, 0), 0): 1|1,
Transition from ((1, 0), 0) to ((0, 0), 0): 0|1,
Transition from ((1, 0), 0) to ((1, 0), 0): 1|0]

There is a prepackaged transducer for Gray code, let’s see whether they agree. We have to use relabeled() to
relabel our states with integers.

sage: constructed = Gray_transducer.relabeled()
sage: packaged = transducers.GrayCode()

(continues on next page)

5.1. Comprehensive Module List 861

Combinatorics, Release 9.7

(continued from previous page)

sage: constructed == packaged
True

Finally, we check that this indeed computes the Gray code of the first 10 non-negative integers.

sage: for n in srange(10):
....: Gray_transducer(n.bits())
[]
[1]
[1, 1]
[0, 1]
[0, 1, 1]
[1, 1, 1]
[1, 0, 1]
[0, 0, 1]
[0, 0, 1, 1]
[1, 0, 1, 1]

Using the hook-functions

Let’s use the previous example “division by 3” to demonstrate the optional state and transition parameters hook.

First, we define what those functions should do. In our case, this is just saying in which state we are and which transition
we take

sage: def state_hook(process, state, output):
....: print("We are now in State %s." % (state.label(),))
sage: from sage.combinat.finite_state_machine import FSMWordSymbol
sage: def transition_hook(transition, process):
....: print("Currently we go from %s to %s, "
....: "reading %s and writing %s." % (
....: transition.from_state, transition.to_state,
....: FSMWordSymbol(transition.word_in),
....: FSMWordSymbol(transition.word_out)))

Now, let’s add these hook-functions to the existing transducer:

sage: for s in D.iter_states():
....: s.hook = state_hook
sage: for t in D.iter_transitions():
....: t.hook = transition_hook

Rerunning the process again now gives the following output:

sage: D.process([1, 1, 0, 1], check_epsilon_transitions=False)
We are now in State 0.
Currently we go from 0 to 1, reading 1 and writing 0.
We are now in State 1.
Currently we go from 1 to 0, reading 1 and writing 1.
We are now in State 0.
Currently we go from 0 to 0, reading 0 and writing 0.
We are now in State 0.

(continues on next page)

862 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Currently we go from 0 to 1, reading 1 and writing 0.
We are now in State 1.
(False, 1, [0, 1, 0, 0])

The example above just explains the basic idea of using hook-functions. In the following, we will use those hooks more
seriously.

Warning: The hooks of the states are also called while exploring the epsilon successors of a state (during pro-
cessing). In the example above, we used check_epsilon_transitions=False to avoid this (and also therefore
got a cleaner output).

Warning: The arguments used when calling a hook have changed in trac ticket #16538 from hook(state,
process) to hook(process, state, output).

Detecting sequences with same number of 0 and 1

Suppose we have a binary input and want to accept all sequences with the same number of 0 and 1. This cannot be
done with a finite automaton. Anyhow, we can make usage of the hook functions to extend our finite automaton by a
counter:

sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition
sage: C = FiniteStateMachine()
sage: def update_counter(process, state, output):
....: try:
....: l = process.preview_word()
....: except RuntimeError:
....: raise StopIteration
....: process.fsm.counter += 1 if l == 1 else -1
....: if process.fsm.counter > 0:
....: next_state = 'positive'
....: elif process.fsm.counter < 0:
....: next_state = 'negative'
....: else:
....: next_state = 'zero'
....: return FSMTransition(state, process.fsm.state(next_state),
....: l, process.fsm.counter)
sage: C.add_state(FSMState('zero', hook=update_counter,
....: is_initial=True, is_final=True))
'zero'
sage: C.add_state(FSMState('positive', hook=update_counter))
'positive'
sage: C.add_state(FSMState('negative', hook=update_counter))
'negative'

Now, let’s input some sequence:

sage: C.counter = 0; C([1, 1, 1, 1, 0, 0])
(False, 'positive', [1, 2, 3, 4, 3, 2])

5.1. Comprehensive Module List 863

https://trac.sagemath.org/16538

Combinatorics, Release 9.7

The result is False, since there are four 1 but only two 0. We land in the state positive and we can also see the values
of the counter in each step.

Let’s try some other examples:

sage: C.counter = 0; C([1, 1, 0, 0])
(True, 'zero', [1, 2, 1, 0])
sage: C.counter = 0; C([0, 1, 0, 0])
(False, 'negative', [-1, 0, -1, -2])

See also methods Automaton.process() and Transducer.process() (or even FiniteStateMachine.
process()), the explanation of the parameter hook and the examples in FSMState and FSMTransition, and the
description and examples in FSMProcessIterator for more information on processing and hooks.

REFERENCES:

AUTHORS:

• Daniel Krenn (2012-03-27): initial version

• Clemens Heuberger (2012-04-05): initial version

• Sara Kropf (2012-04-17): initial version

• Clemens Heuberger (2013-08-21): release candidate for Sage patch

• Daniel Krenn (2013-08-21): release candidate for Sage patch

• Sara Kropf (2013-08-21): release candidate for Sage patch

• Clemens Heuberger (2013-09-02): documentation improved

• Daniel Krenn (2013-09-13): comments from trac worked in

• Clemens Heuberger (2013-11-03): output (labels) of determinisation, product, composition, etc. changed
(for consistency), representation of state changed, documentation improved

• Daniel Krenn (2013-11-04): whitespaces in documentation corrected

• Clemens Heuberger (2013-11-04): full_group_by added

• Daniel Krenn (2013-11-04): next release candidate for Sage patch

• Sara Kropf (2013-11-08): fix for adjacency matrix

• Clemens Heuberger (2013-11-11): fix for prepone_output

• Daniel Krenn (2013-11-11): comments from trac ticket #15078 included: docstring of FiniteStateMachine
rewritten, Automaton and Transducer inherited from FiniteStateMachine

• Daniel Krenn (2013-11-25): documentation improved according to comments from trac ticket #15078

• Clemens Heuberger, Daniel Krenn, Sara Kropf (2014-02-21–2014-07-18): A huge bunch of improvements. De-
tails see trac ticket #15841, trac ticket #15847, trac ticket #15848, trac ticket #15849, trac ticket #15850, trac ticket
#15922, trac ticket #15923, trac ticket #15924, trac ticket #15925, trac ticket #15928, trac ticket #15960, trac
ticket #15961, trac ticket #15962, trac ticket #15963, trac ticket #15975, trac ticket #16016, trac ticket #16024,
trac ticket #16061, trac ticket #16128, trac ticket #16132, trac ticket #16138, trac ticket #16139, trac ticket
#16140, trac ticket #16143, trac ticket #16144, trac ticket #16145, trac ticket #16146, trac ticket #16191, trac
ticket #16200, trac ticket #16205, trac ticket #16206, trac ticket #16207, trac ticket #16229, trac ticket #16253,
trac ticket #16254, trac ticket #16255, trac ticket #16266, trac ticket #16355, trac ticket #16357, trac ticket
#16387, trac ticket #16425, trac ticket #16539, trac ticket #16555, trac ticket #16557, trac ticket #16588, trac
ticket #16589, trac ticket #16666, trac ticket #16668, trac ticket #16674, trac ticket #16675, trac ticket #16677.

• Daniel Krenn (2015-09-14): cleanup trac ticket #18227

864 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/15078
https://trac.sagemath.org/15078
https://trac.sagemath.org/15841
https://trac.sagemath.org/15847
https://trac.sagemath.org/15848
https://trac.sagemath.org/15849
https://trac.sagemath.org/15850
https://trac.sagemath.org/15922
https://trac.sagemath.org/15922
https://trac.sagemath.org/15923
https://trac.sagemath.org/15924
https://trac.sagemath.org/15925
https://trac.sagemath.org/15928
https://trac.sagemath.org/15960
https://trac.sagemath.org/15961
https://trac.sagemath.org/15961
https://trac.sagemath.org/15962
https://trac.sagemath.org/15963
https://trac.sagemath.org/15975
https://trac.sagemath.org/16016
https://trac.sagemath.org/16024
https://trac.sagemath.org/16061
https://trac.sagemath.org/16128
https://trac.sagemath.org/16132
https://trac.sagemath.org/16138
https://trac.sagemath.org/16139
https://trac.sagemath.org/16140
https://trac.sagemath.org/16140
https://trac.sagemath.org/16143
https://trac.sagemath.org/16144
https://trac.sagemath.org/16145
https://trac.sagemath.org/16146
https://trac.sagemath.org/16191
https://trac.sagemath.org/16200
https://trac.sagemath.org/16200
https://trac.sagemath.org/16205
https://trac.sagemath.org/16206
https://trac.sagemath.org/16207
https://trac.sagemath.org/16229
https://trac.sagemath.org/16253
https://trac.sagemath.org/16254
https://trac.sagemath.org/16255
https://trac.sagemath.org/16266
https://trac.sagemath.org/16355
https://trac.sagemath.org/16357
https://trac.sagemath.org/16387
https://trac.sagemath.org/16387
https://trac.sagemath.org/16425
https://trac.sagemath.org/16539
https://trac.sagemath.org/16555
https://trac.sagemath.org/16557
https://trac.sagemath.org/16588
https://trac.sagemath.org/16589
https://trac.sagemath.org/16589
https://trac.sagemath.org/16666
https://trac.sagemath.org/16668
https://trac.sagemath.org/16674
https://trac.sagemath.org/16675
https://trac.sagemath.org/16677
https://trac.sagemath.org/18227

Combinatorics, Release 9.7

ACKNOWLEDGEMENT:

• Clemens Heuberger, Daniel Krenn and Sara Kropf are supported by the Austrian Science Fund (FWF): P 24644-
N26.

Methods

class sage.combinat.finite_state_machine.Automaton(*args, **kwargs)
Bases: sage.combinat.finite_state_machine.FiniteStateMachine

This creates an automaton, which is a finite state machine, whose transitions have input labels.

An automaton has additional features like creating a deterministic and a minimized automaton.

See class FiniteStateMachine for more information.

EXAMPLES:

We can create an automaton recognizing even numbers (given in binary and read from left to right) in the fol-
lowing way:

sage: A = Automaton([('P', 'Q', 0), ('P', 'P', 1),
....: ('Q', 'P', 1), ('Q', 'Q', 0)],
....: initial_states=['P'], final_states=['Q'])
sage: A
Automaton with 2 states
sage: A([0])
True
sage: A([1, 1, 0])
True
sage: A([1, 0, 1])
False

Note that the full output of the commands can be obtained by calling process() and looks like this:

sage: A.process([1, 0, 1])
(False, 'P')

cartesian_product(other, only_accessible_components=True)
Return a new automaton which accepts an input if it is accepted by both given automata.

INPUT:

• other – an automaton

• only_accessible_components – If True (default), then the result is piped through
accessible_components(). If no new_input_alphabet is given, it is determined by
determine_alphabets().

OUTPUT:

A new automaton which computes the intersection (see below) of the languages of self and other.

The set of states of the new automaton is the Cartesian product of the set of states of both given au-
tomata. There is a transition ((𝐴,𝐵), (𝐶,𝐷), 𝑎) in the new automaton if there are transitions (𝐴,𝐶, 𝑎)
and (𝐵,𝐷, 𝑎) in the old automata.

The methods intersection() and cartesian_product() are the same (for automata).

EXAMPLES:

5.1. Comprehensive Module List 865

Combinatorics, Release 9.7

sage: aut1 = Automaton([('1', '2', 1),
....: ('2', '2', 1),
....: ('2', '2', 0)],
....: initial_states=['1'],
....: final_states=['2'],
....: determine_alphabets=True)
sage: aut2 = Automaton([('A', 'A', 1),
....: ('A', 'B', 0),
....: ('B', 'B', 0),
....: ('B', 'A', 1)],
....: initial_states=['A'],
....: final_states=['B'],
....: determine_alphabets=True)
sage: res = aut1.intersection(aut2)
sage: (aut1([1, 1]), aut2([1, 1]), res([1, 1]))
(True, False, False)
sage: (aut1([1, 0]), aut2([1, 0]), res([1, 0]))
(True, True, True)
sage: res.transitions()
[Transition from ('1', 'A') to ('2', 'A'): 1|-,
Transition from ('2', 'A') to ('2', 'B'): 0|-,
Transition from ('2', 'A') to ('2', 'A'): 1|-,
Transition from ('2', 'B') to ('2', 'B'): 0|-,
Transition from ('2', 'B') to ('2', 'A'): 1|-]

For automata with epsilon-transitions, intersection is not well defined. But for any finite state machine,
epsilon-transitions can be removed by remove_epsilon_transitions().

sage: a1 = Automaton([(0, 0, 0),
....: (0, 1, None),
....: (1, 1, 1),
....: (1, 2, 1)],
....: initial_states=[0],
....: final_states=[1],
....: determine_alphabets=True)
sage: a2 = Automaton([(0, 0, 0), (0, 1, 1), (1, 1, 1)],
....: initial_states=[0],
....: final_states=[1],
....: determine_alphabets=True)
sage: a1.intersection(a2)
Traceback (most recent call last):
...
ValueError: An epsilon-transition (with empty input)
was found.
sage: a1.remove_epsilon_transitions() # not tested (since not implemented yet)
sage: a1.intersection(a2) # not tested

complement()
Return the complement of this automaton.

OUTPUT:

An Automaton.

If this automaton recognizes language ℒ over an input alphabet𝒜, then the complement recognizes𝒜∖ℒ.

866 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: A = automata.Word([0, 1])
sage: [w for w in ([], [0], [1], [0, 0], [0, 1], [1, 0], [1, 1])
....: if A(w)]
[[0, 1]]
sage: Ac = A.complement()
sage: Ac.transitions()
[Transition from 0 to 1: 0|-,
Transition from 0 to 3: 1|-,
Transition from 2 to 3: 0|-,
Transition from 2 to 3: 1|-,
Transition from 1 to 2: 1|-,
Transition from 1 to 3: 0|-,
Transition from 3 to 3: 0|-,
Transition from 3 to 3: 1|-]
sage: [w for w in ([], [0], [1], [0, 0], [0, 1], [1, 0], [1, 1])
....: if Ac(w)]
[[], [0], [1], [0, 0], [1, 0], [1, 1]]

The automaton must be deterministic:

sage: A = automata.Word([0]) * automata.Word([1])
sage: A.complement()
Traceback (most recent call last):
...
ValueError: The finite state machine must be deterministic.
sage: Ac = A.determinisation().complement()
sage: [w for w in ([], [0], [1], [0, 0], [0, 1], [1, 0], [1, 1])
....: if Ac(w)]
[[], [0], [1], [0, 0], [1, 0], [1, 1]]

determinisation()
Return a deterministic automaton which accepts the same input words as the original one.

OUTPUT:

A new automaton, which is deterministic.

The labels of the states of the new automaton are frozensets of states of self. The color of a new state is
the frozenset of colors of the constituent states of self. Therefore, the colors of the constituent states have
to be hashable. However, if all constituent states have color None, then the resulting color is None, too.

The input alphabet must be specified.

EXAMPLES:

sage: aut = Automaton([('A', 'A', 0), ('A', 'B', 1), ('B', 'B', 1)],
....: initial_states=['A'], final_states=['B'])
sage: aut.determinisation().transitions()
[Transition from frozenset({'A'}) to frozenset({'A'}): 0|-,
Transition from frozenset({'A'}) to frozenset({'B'}): 1|-,
Transition from frozenset({'B'}) to frozenset(): 0|-,
Transition from frozenset({'B'}) to frozenset({'B'}): 1|-,
Transition from frozenset() to frozenset(): 0|-,
Transition from frozenset() to frozenset(): 1|-]

5.1. Comprehensive Module List 867

Combinatorics, Release 9.7

sage: A = Automaton([('A', 'A', 1), ('A', 'A', 0), ('A', 'B', 1),
....: ('B', 'C', 0), ('C', 'C', 1), ('C', 'C', 0)],
....: initial_states=['A'], final_states=['C'])
sage: A.determinisation().states()
[frozenset({'A'}),
frozenset({'A', 'B'}),
frozenset({'A', 'C'}),
frozenset({'A', 'B', 'C'})]

sage: A = Automaton([(0, 1, 1), (0, 2, [1, 1]), (0, 3, [1, 1, 1]),
....: (1, 0, -1), (2, 0, -2), (3, 0, -3)],
....: initial_states=[0], final_states=[0, 1, 2, 3])
sage: B = A.determinisation().relabeled().coaccessible_components()
sage: sorted(B.transitions())
[Transition from 0 to 1: 1|-,
Transition from 1 to 0: -1|-,
Transition from 1 to 3: 1|-,
Transition from 3 to 0: -2|-,
Transition from 3 to 4: 1|-,
Transition from 4 to 0: -3|-]

Note that colors of states have to be hashable:

sage: A = Automaton([[0, 0, 0]], initial_states=[0])
sage: A.state(0).color = []
sage: A.determinisation()
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'
sage: A.state(0).color = ()
sage: A.determinisation()
Automaton with 1 state

If the colors of all constituent states are None, the resulting color is None, too (trac ticket #19199):

sage: A = Automaton([(0, 0, 0)],
....: initial_states=[0],
....: final_states=[0])
sage: [s.color for s in A.determinisation().iter_states()]
[None]

intersection(other, only_accessible_components=True)
Return a new automaton which accepts an input if it is accepted by both given automata.

INPUT:

• other – an automaton

• only_accessible_components – If True (default), then the result is piped through
accessible_components(). If no new_input_alphabet is given, it is determined by
determine_alphabets().

OUTPUT:

A new automaton which computes the intersection (see below) of the languages of self and other.

868 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/19199

Combinatorics, Release 9.7

The set of states of the new automaton is the Cartesian product of the set of states of both given au-
tomata. There is a transition ((𝐴,𝐵), (𝐶,𝐷), 𝑎) in the new automaton if there are transitions (𝐴,𝐶, 𝑎)
and (𝐵,𝐷, 𝑎) in the old automata.

The methods intersection() and cartesian_product() are the same (for automata).

EXAMPLES:

sage: aut1 = Automaton([('1', '2', 1),
....: ('2', '2', 1),
....: ('2', '2', 0)],
....: initial_states=['1'],
....: final_states=['2'],
....: determine_alphabets=True)
sage: aut2 = Automaton([('A', 'A', 1),
....: ('A', 'B', 0),
....: ('B', 'B', 0),
....: ('B', 'A', 1)],
....: initial_states=['A'],
....: final_states=['B'],
....: determine_alphabets=True)
sage: res = aut1.intersection(aut2)
sage: (aut1([1, 1]), aut2([1, 1]), res([1, 1]))
(True, False, False)
sage: (aut1([1, 0]), aut2([1, 0]), res([1, 0]))
(True, True, True)
sage: res.transitions()
[Transition from ('1', 'A') to ('2', 'A'): 1|-,
Transition from ('2', 'A') to ('2', 'B'): 0|-,
Transition from ('2', 'A') to ('2', 'A'): 1|-,
Transition from ('2', 'B') to ('2', 'B'): 0|-,
Transition from ('2', 'B') to ('2', 'A'): 1|-]

For automata with epsilon-transitions, intersection is not well defined. But for any finite state machine,
epsilon-transitions can be removed by remove_epsilon_transitions().

sage: a1 = Automaton([(0, 0, 0),
....: (0, 1, None),
....: (1, 1, 1),
....: (1, 2, 1)],
....: initial_states=[0],
....: final_states=[1],
....: determine_alphabets=True)
sage: a2 = Automaton([(0, 0, 0), (0, 1, 1), (1, 1, 1)],
....: initial_states=[0],
....: final_states=[1],
....: determine_alphabets=True)
sage: a1.intersection(a2)
Traceback (most recent call last):
...
ValueError: An epsilon-transition (with empty input)
was found.
sage: a1.remove_epsilon_transitions() # not tested (since not implemented yet)
sage: a1.intersection(a2) # not tested

5.1. Comprehensive Module List 869

Combinatorics, Release 9.7

is_equivalent(other)
Test whether two automata are equivalent, i.e., accept the same language.

INPUT:

• other – an Automaton.

EXAMPLES:

sage: A = Automaton([(0, 0, 0), (0, 1, 1), (1, 0, 1)],
....: initial_states=[0],
....: final_states=[0])
sage: B = Automaton([('a', 'a', 0), ('a', 'b', 1), ('b', 'a', 1)],
....: initial_states=['a'],
....: final_states=['a'])
sage: A.is_equivalent(B)
True
sage: B.add_transition('b', 'a', 0)
Transition from 'b' to 'a': 0|-
sage: A.is_equivalent(B)
False

language(max_length=None, **kwargs)
Return all words accepted by this automaton.

INPUT:

• max_length – an integer or None (default). Only inputs of length at most max_length will be con-
sidered. If None, then this iterates over all possible words without length restrictions.

• kwargs – will be passed on to the process iterator. See process() for a description.

OUTPUT:

An iterator.

EXAMPLES:

sage: NAF = Automaton(
....: {'A': [('A', 0), ('B', 1), ('B', -1)],
....: 'B': [('A', 0)]},
....: initial_states=['A'], final_states=['A', 'B'])
sage: list(NAF.language(3))
[[],
[0], [-1], [1],
[-1, 0], [0, 0], [1, 0], [0, -1], [0, 1],
[-1, 0, 0], [0, -1, 0], [0, 0, 0], [0, 1, 0], [1, 0, 0],
[-1, 0, -1], [-1, 0, 1], [0, 0, -1],
[0, 0, 1], [1, 0, -1], [1, 0, 1]]

See also:

FiniteStateMachine.language(), process().

minimization(algorithm=None)
Return the minimization of the input automaton as a new automaton.

INPUT:

870 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• algorithm – Either Moore’s algorithm (by algorithm='Moore' or as default for deterministic au-
tomata) or Brzozowski’s algorithm (when algorithm='Brzozowski' or when the automaton is not
deterministic) is used.

OUTPUT:

A new automaton.

The resulting automaton is deterministic and has a minimal number of states.

EXAMPLES:

sage: A = Automaton([('A', 'A', 1), ('A', 'A', 0), ('A', 'B', 1),
....: ('B', 'C', 0), ('C', 'C', 1), ('C', 'C', 0)],
....: initial_states=['A'], final_states=['C'])
sage: B = A.minimization(algorithm='Brzozowski')
sage: B_trans = B.transitions(B.states()[1])
sage: B_trans # random
[Transition from frozenset({frozenset({'B', 'C'}),

frozenset({'A', 'C'}),
frozenset({'A', 'B', 'C'})})

to frozenset({frozenset({'C'}),
frozenset({'B', 'C'}),
frozenset({'A', 'C'}),
frozenset({'A', 'B', 'C'})}):

0|-,
Transition from frozenset({frozenset({'B', 'C'}),

frozenset({'A', 'C'}),
frozenset({'A', 'B', 'C'})})

to frozenset({frozenset({'B', 'C'}),
frozenset({'A', 'C'}),
frozenset({'A', 'B', 'C'})}):

1|-]
sage: len(B.states())
3
sage: C = A.minimization(algorithm='Brzozowski')
sage: C_trans = C.transitions(C.states()[1])
sage: B_trans == C_trans
True
sage: len(C.states())
3

sage: aut = Automaton([('1', '2', 'a'), ('2', '3', 'b'),
....: ('3', '2', 'a'), ('2', '1', 'b'),
....: ('3', '4', 'a'), ('4', '3', 'b')],
....: initial_states=['1'], final_states=['1'])
sage: min = aut.minimization(algorithm='Brzozowski')
sage: [len(min.states()), len(aut.states())]
[3, 4]
sage: min = aut.minimization(algorithm='Moore')
Traceback (most recent call last):
...
NotImplementedError: Minimization via Moore's Algorithm is only
implemented for deterministic finite state machines

5.1. Comprehensive Module List 871

Combinatorics, Release 9.7

process(*args, **kwargs)
Return whether the automaton accepts the input and the state where the computation stops.

INPUT:

• input_tape – the input tape can be a list or an iterable with entries from the input alphabet. If we are
working with a multi-tape machine (see parameter use_multitape_input and notes below), then
the tape is a list or tuple of tracks, each of which can be a list or an iterable with entries from the input
alphabet.

• initial_state or initial_states – the initial state(s) in which the machine starts. Either spec-
ify a single one with initial_state or a list of them with initial_states. If both are given,
initial_state will be appended to initial_states. If neither is specified, the initial states of the
finite state machine are taken.

• list_of_outputs – (default: None) a boolean or None. If True, then the outputs are given in list
form (even if we have no or only one single output). If False, then the result is never a list (an ex-
ception is raised if the result cannot be returned). If list_of_outputs=None the method determines
automatically what to do (e.g. if a non-deterministic machine returns more than one path, then the
output is returned in list form).

• only_accepted – (default: False) a boolean. If set, then the first argument in the output is guaranteed
to be True (if the output is a list, then the first argument of each element will be True).

• full_output – (default: True) a boolean. If set, then the full output is given, otherwise only whether
the sequence is accepted or not (the first entry below only).

• always_include_output – if set (not by default), always return a triple containing the (non-existing)
output. This is in order to obtain output compatible with that of FiniteStateMachine.process().
If this parameter is set, full_output has no effect.

• format_output – a function that translates the written output (which is in form of a list) to something
more readable. By default (None) identity is used here.

• check_epsilon_transitions – (default: True) a boolean. If False, then epsilon transitions are
not taken into consideration during process.

• write_final_word_out – (default: True) a boolean specifying whether the final output words
should be written or not.

• use_multitape_input – (default: False) a boolean. If True, then the multi-tape mode of the
process iterator is activated. See also the notes below for multi-tape machines.

• process_all_prefixes_of_input – (default: False) a boolean. If True, then each prefix of the
input word is processed (instead of processing the whole input word at once). Consequently, there is
an output generated for each of these prefixes.

• process_iterator_class – (default: None) a class inherited from FSMProcessIterator. If
None, then FSMProcessIterator is taken. An instance of this class is created and is used during
the processing.

OUTPUT:

The full output is a pair (or a list of pairs, cf. parameter list_of_outputs), where

• the first entry is True if the input string is accepted and

• the second gives the state reached after processing the input tape (This is a state with label None if the
input could not be processed, i.e., if at one point no transition to go on could be found.).

If full_output is False, then only the first entry is returned.

If always_include_output is set, an additional third entry [] is included.

872 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Note that in the case the automaton is not deterministic, all possible paths are taken into account. You can
use determinisation() to get a deterministic automaton machine.

This function uses an iterator which, in its simplest form, goes from one state to another in each step. To
decide which way to go, it uses the input words of the outgoing transitions and compares them to the input
tape. More precisely, in each step, the iterator takes an outgoing transition of the current state, whose input
label equals the input letter of the tape.

If the choice of the outgoing transition is not unique (i.e., we have a non-deterministic finite state machine),
all possibilities are followed. This is done by splitting the process into several branches, one for each of the
possible outgoing transitions.

The process (iteration) stops if all branches are finished, i.e., for no branch, there is any transition whose
input word coincides with the processed input tape. This can simply happen when the entire tape was read.

Also see __call__() for a version of process() with shortened output.

Internally this function creates and works with an instance of FSMProcessIterator. This iterator can
also be obtained with iter_process().

If working with multi-tape finite state machines, all input words of transitions are words of 𝑘-tuples of
letters. Moreover, the input tape has to consist of 𝑘 tracks, i.e., be a list or tuple of 𝑘 iterators, one for each
track.

Warning: Working with multi-tape finite state machines is still experimental and can lead to wrong
outputs.

EXAMPLES:

In the following examples, we construct an automaton which accepts non-adjacent forms (see also the ex-
ample on non-adjacent forms in the documentation of the module Finite state machines, automata, trans-
ducers) and then test it by feeding it with several binary digit expansions.

sage: NAF = Automaton(
....: {'_': [('_', 0), ('1', 1)], '1': [('_', 0)]},
....: initial_states=['_'], final_states=['_', '1'])
sage: [NAF.process(w) for w in [[0], [0, 1], [1, 1], [0, 1, 0, 1],
....: [0, 1, 1, 1, 0], [1, 0, 0, 1, 1]]]
[(True, '_'), (True, '1'), (False, None),
(True, '1'), (False, None), (False, None)]

If we just want a condensed output, we use:

sage: [NAF.process(w, full_output=False)
....: for w in [[0], [0, 1], [1, 1], [0, 1, 0, 1],
....: [0, 1, 1, 1, 0], [1, 0, 0, 1, 1]]]
[True, True, False, True, False, False]

It is equivalent to:

sage: [NAF(w) for w in [[0], [0, 1], [1, 1], [0, 1, 0, 1],
....: [0, 1, 1, 1, 0], [1, 0, 0, 1, 1]]]
[True, True, False, True, False, False]

The following example illustrates the difference between non-existing paths and reaching a non-final state:

5.1. Comprehensive Module List 873

Combinatorics, Release 9.7

sage: NAF.process([2])
(False, None)
sage: NAF.add_transition(('_', 's', 2))
Transition from '_' to 's': 2|-
sage: NAF.process([2])
(False, 's')

A simple example of a (non-deterministic) multi-tape automaton is the following: It checks whether the
two input tapes have the same number of ones:

sage: M = Automaton([('=', '=', (1, 1)),
....: ('=', '=', (None, 0)),
....: ('=', '=', (0, None)),
....: ('=', '<', (None, 1)),
....: ('<', '<', (None, 1)),
....: ('<', '<', (None, 0)),
....: ('=', '>', (1, None)),
....: ('>', '>', (1, None)),
....: ('>', '>', (0, None))],
....: initial_states=['='],
....: final_states=['='])
sage: M.process(([1, 0, 1], [1, 0]), use_multitape_input=True)
(False, '>')
sage: M.process(([0, 1, 0], [0, 1, 1]), use_multitape_input=True)
(False, '<')
sage: M.process(([1, 1, 0, 1], [0, 0, 1, 0, 1, 1]),
....: use_multitape_input=True)
(True, '=')

Alternatively, we can use the following (non-deterministic) multi-tape automaton for the same check:

sage: N = Automaton([('=', '=', (0, 0)),
....: ('=', '<', (None, 1)),
....: ('<', '<', (0, None)),
....: ('<', '=', (1, None)),
....: ('=', '>', (1, None)),
....: ('>', '>', (None, 0)),
....: ('>', '=', (None, 1))],
....: initial_states=['='],
....: final_states=['='])
sage: N.process(([1, 0, 1], [1, 0]), use_multitape_input=True)
(False, '>')
sage: N.process(([0, 1, 0], [0, 1, 1]), use_multitape_input=True)
(False, '<')
sage: N.process(([1, 1, 0, 1], [0, 0, 1, 0, 1, 1]),
....: use_multitape_input=True)
(True, '=')

See also:

FiniteStateMachine.process(), Transducer.process(), iter_process(), __call__(),
FSMProcessIterator.

shannon_parry_markov_chain()
Compute a time homogeneous Markov chain such that all words of a given length recognized by the original

874 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

automaton occur as the output with the same weight; the transition probabilities correspond to the Parry
measure.

OUTPUT:

A Markov chain. Its input labels are the transition probabilities, the output labels the labels of the original
automaton. In order to obtain equal weight for all words of the same length, an “exit weight” is needed. It
is stored in the attribute color of the states of the Markov chain. The weights of the words of the same
length sum up to one up to an exponentially small error.

The stationary distribution of this Markov chain is saved as the initial probabilities of the states.

The transition probabilities correspond to the Parry measure (see [S1948] and [P1964]).

The automaton is assumed to be deterministic, irreducible and aperiodic. All states must be final.

EXAMPLES:

sage: NAF = Automaton([(0, 0, 0), (0, 1, 1), (0, 1, -1),
....: (1, 0, 0)], initial_states=[0],
....: final_states=[0, 1])
sage: P_NAF = NAF.shannon_parry_markov_chain()
sage: P_NAF.transitions()
[Transition from 0 to 0: 1/2|0,
Transition from 0 to 1: 1/4|1,
Transition from 0 to 1: 1/4|-1,
Transition from 1 to 0: 1|0]
sage: for s in P_NAF.iter_states():
....: print(s.color)
3/4
3/2

The stationary distribution is also computed and saved as the initial probabilities of the returned Markov
chain:

sage: for s in P_NAF.states():
....: print("{} {}".format(s, s.initial_probability))
0 2/3
1 1/3

The automaton is assumed to be deterministic, irreducible and aperiodic:

sage: A = Automaton([(0, 0, 0), (0, 1, 1), (1, 1, 1), (1, 1, 0)],
....: initial_states=[0])
sage: A.shannon_parry_markov_chain()
Traceback (most recent call last):
...
NotImplementedError: Automaton must be strongly connected.
sage: A = Automaton([(0, 0, 0), (0, 1, 0)],
....: initial_states=[0])
sage: A.shannon_parry_markov_chain()
Traceback (most recent call last):
...
NotImplementedError: Automaton must be deterministic.
sage: A = Automaton([(0, 1, 0), (1, 0, 0)],
....: initial_states=[0])
sage: A.shannon_parry_markov_chain()

(continues on next page)

5.1. Comprehensive Module List 875

Combinatorics, Release 9.7

(continued from previous page)

Traceback (most recent call last):
...
NotImplementedError: Automaton must be aperiodic.

All states must be final:

sage: A = Automaton([(0, 1, 0), (0, 0, 1), (1, 0, 0)],
....: initial_states=[0])
sage: A.shannon_parry_markov_chain()
Traceback (most recent call last):
...
NotImplementedError: All states must be final.

ALGORITHM:

See [HKP2015a], Lemma 4.1.

REFERENCES:

with_output(word_out_function=None)
Construct a transducer out of this automaton.

INPUT:

• word_out_function – (default: None) a function. It transforms a transition to the output word
for this transition.

If this is None, then the output word will be equal to the input word of each transition.

OUTPUT:

A transducer.

EXAMPLES:

sage: A = Automaton([(0, 0, 'A'), (0, 1, 'B'), (1, 2, 'C')])
sage: T = A.with_output(); T
Transducer with 3 states
sage: T.transitions()
[Transition from 0 to 0: 'A'|'A',
Transition from 0 to 1: 'B'|'B',
Transition from 1 to 2: 'C'|'C']

This result is in contrast to:

sage: Transducer(A).transitions()
[Transition from 0 to 0: 'A'|-,
Transition from 0 to 1: 'B'|-,
Transition from 1 to 2: 'C'|-]

where no output labels are created.

Here is another example:

sage: T2 = A.with_output(lambda t: [c.lower() for c in t.word_in])
sage: T2.transitions()
[Transition from 0 to 0: 'A'|'a',

(continues on next page)

876 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Transition from 0 to 1: 'B'|'b',
Transition from 1 to 2: 'C'|'c']

We can obtain the same result by composing two transducers. As inner transducer of the composition,
we use with_output() without the optional argument word_out_function (which makes the output of
each transition equal to its input); as outer transducer we use a map-transducer (for converting to lower
case). This gives

sage: L = transducers.map(lambda x: x.lower(), ['A', 'B', 'C'])
sage: L.composition(A.with_output()).relabeled().transitions()
[Transition from 0 to 0: 'A'|'a',
Transition from 0 to 1: 'B'|'b',
Transition from 1 to 2: 'C'|'c']

See also:

input_projection(), output_projection(), Transducer, transducers.map().

sage.combinat.finite_state_machine.FSMLetterSymbol(letter)
Return a string associated to the input letter.

INPUT:

• letter – the input letter or None (representing the empty word).

OUTPUT:

If letter is None the symbol for the empty word FSMEmptyWordSymbol is returned, otherwise the string
associated to the letter.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMLetterSymbol
sage: FSMLetterSymbol(0)
'0'
sage: FSMLetterSymbol(None)
'-'

class sage.combinat.finite_state_machine.FSMProcessIterator(fsm, input_tape=None,
initial_state=None, initial_states=[],
use_multitape_input=False,
check_epsilon_transitions=True,
write_final_word_out=True,
format_output=None,
process_all_prefixes_of_input=False,
**kwargs)

Bases: sage.structure.sage_object.SageObject, collections.abc.Iterator

This class takes an input, feeds it into a finite state machine (automaton or transducer, in particular), tests whether
this was successful and calculates the written output.

INPUT:

• fsm – the finite state machine on which the input should be processed.

• input_tape – the input tape can be a list or an iterable with entries from the input alphabet. If we are
working with a multi-tape machine (see parameter use_multitape_input and notes below), then the
tape is a list or tuple of tracks, each of which can be a list or an iterable with entries from the input alphabet.

5.1. Comprehensive Module List 877

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
https://docs.python.org/library/collections.abc.html#collections.abc.Iterator

Combinatorics, Release 9.7

• initial_state or initial_states – the initial state(s) in which the machine starts. Either specify a sin-
gle one with initial_state or a list of them with initial_states. If both are given, initial_state
will be appended to initial_states. If neither is specified, the initial states of the finite state machine
are taken.

• format_output – a function that translates the written output (which is in form of a list) to something
more readable. By default (None) identity is used here.

• check_epsilon_transitions – (default: True) a boolean. If False, then epsilon transitions are not
taken into consideration during process.

• write_final_word_out – (default: True) a boolean specifying whether the final output words should be
written or not.

• use_multitape_input – (default: False) a boolean. If True, then the multi-tape mode of the process
iterator is activated. See also the notes below for multi-tape machines.

• process_all_prefixes_of_input – (default: False) a boolean. If True, then each prefix of the input
word is processed (instead of processing the whole input word at once). Consequently, there is an output
generated for each of these prefixes.

OUTPUT:

An iterator.

In its simplest form, it behaves like an iterator which, in each step, goes from one state to another. To decide
which way to go, it uses the input words of the outgoing transitions and compares them to the input tape. More
precisely, in each step, the process iterator takes an outgoing transition of the current state, whose input label
equals the input letter of the tape. The output label of the transition, if present, is written on the output tape.

If the choice of the outgoing transition is not unique (i.e., we have a non-deterministic finite state machine), all
possibilities are followed. This is done by splitting the process into several branches, one for each of the possible
outgoing transitions.

The process (iteration) stops if all branches are finished, i.e., for no branch, there is any transition whose input
word coincides with the processed input tape. This can simply happen when the entire tape was read. When the
process stops, a StopIteration exception is thrown.

Warning: Processing an input tape of length 𝑛 usually takes at least 𝑛 + 1 iterations, since there will be
𝑛+ 1 states visited (in the case the taken transitions have input words consisting of single letters).

An instance of this class is generated when FiniteStateMachine.process() or FiniteStateMachine.
iter_process() of a finite state machine, an automaton, or a transducer is invoked.

When working with multi-tape finite state machines, all input words of transitions are words of 𝑘-tuples of letters.
Moreover, the input tape has to consist of 𝑘 tracks, i.e., be a list or tuple of 𝑘 iterators, one for each track.

Warning: Working with multi-tape finite state machines is still experimental and can lead to wrong outputs.

EXAMPLES:

The following transducer reads binary words and outputs a word, where blocks of ones are replaced by just a
single one. Further only words that end with a zero are accepted.

sage: T = Transducer({'A': [('A', 0, 0), ('B', 1, None)],
....: 'B': [('B', 1, None), ('A', 0, [1, 0])]},
....: initial_states=['A'], final_states=['A'])

(continues on next page)

878 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: input = [1, 1, 0, 0, 1, 0, 1, 1, 1, 0]
sage: T.process(input)
(True, 'A', [1, 0, 0, 1, 0, 1, 0])

The function FiniteStateMachine.process() (internally) uses a FSMProcessIterator. We can do that
manually, too, and get full access to the iteration process:

sage: from sage.combinat.finite_state_machine import FSMProcessIterator
sage: it = FSMProcessIterator(T, input_tape=input)
sage: for current in it:
....: print(current)
process (1 branch)
+ at state 'B'
+-- tape at 1, [[]]
process (1 branch)
+ at state 'B'
+-- tape at 2, [[]]
process (1 branch)
+ at state 'A'
+-- tape at 3, [[1, 0]]
process (1 branch)
+ at state 'A'
+-- tape at 4, [[1, 0, 0]]
process (1 branch)
+ at state 'B'
+-- tape at 5, [[1, 0, 0]]
process (1 branch)
+ at state 'A'
+-- tape at 6, [[1, 0, 0, 1, 0]]
process (1 branch)
+ at state 'B'
+-- tape at 7, [[1, 0, 0, 1, 0]]
process (1 branch)
+ at state 'B'
+-- tape at 8, [[1, 0, 0, 1, 0]]
process (1 branch)
+ at state 'B'
+-- tape at 9, [[1, 0, 0, 1, 0]]
process (1 branch)
+ at state 'A'
+-- tape at 10, [[1, 0, 0, 1, 0, 1, 0]]
process (0 branches)
sage: it.result()
[Branch(accept=True, state='A', output=[1, 0, 0, 1, 0, 1, 0])]

sage: T = Transducer([(0, 0, 0, 'a'), (0, 1, 0, 'b'),
....: (1, 2, 1, 'c'), (2, 0, 0, 'd'),
....: (2, 1, None, 'd')],
....: initial_states=[0], final_states=[2])
sage: sorted(T.process([0, 0, 1], format_output=lambda o: ''.join(o)))
[(False, 1, 'abcd'), (True, 2, 'abc')]
sage: it = FSMProcessIterator(T, input_tape=[0, 0, 1],

(continues on next page)

5.1. Comprehensive Module List 879

Combinatorics, Release 9.7

(continued from previous page)

....: format_output=lambda o: ''.join(o))
sage: for current in it:
....: print(current)
process (2 branches)
+ at state 0
+-- tape at 1, [['a']]
+ at state 1
+-- tape at 1, [['b']]
process (2 branches)
+ at state 0
+-- tape at 2, [['a', 'a']]
+ at state 1
+-- tape at 2, [['a', 'b']]
process (2 branches)
+ at state 1
+-- tape at 3, [['a', 'b', 'c', 'd']]
+ at state 2
+-- tape at 3, [['a', 'b', 'c']]
process (0 branches)
sage: sorted(it.result())
[Branch(accept=False, state=1, output='abcd'),
Branch(accept=True, state=2, output='abc')]

See also:

FiniteStateMachine.process(), Automaton.process(), Transducer.process(),
FiniteStateMachine.iter_process(), FiniteStateMachine.__call__(), next().

class Current
Bases: dict

This class stores the branches which have to be processed during iteration and provides a nicer formatting
of them.

This class is derived from dict. It is returned by the next-function during iteration.

EXAMPLES:

In the following example you can see the dict directly and then the nicer output provided by this class:

sage: from sage.combinat.finite_state_machine import FSMProcessIterator
sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]},
....: initial_states=['A'], final_states=['A'])
sage: it = FSMProcessIterator(inverter, input_tape=[0, 1])
sage: for current in it:
....: print(dict(current))
....: print(current)
{((1, 0),): {'A': Branch(tape_cache=tape at 1, outputs=[[1]])}}
process (1 branch)
+ at state 'A'
+-- tape at 1, [[1]]
{((2, 0),): {'A': Branch(tape_cache=tape at 2, outputs=[[1, 0]])}}
process (1 branch)
+ at state 'A'
+-- tape at 2, [[1, 0]]

(continues on next page)

880 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

{}
process (0 branches)

FinishedBranch = <class 'sage.combinat.finite_state_machine.Branch'>
A named tuple representing the attributes of a branch, once it is fully processed.

next()
Makes one step in processing the input tape.

INPUT:

Nothing.

OUTPUT:

It returns the current status of the iterator (see below). A StopIteration exception is thrown when there
is/was nothing to do (i.e. all branches ended with previous call of next()).

The current status is a dictionary (encapsulated into an instance of Current). The keys are positions on
the tape. The value corresponding to such a position is again a dictionary, where each entry represents a
branch of the process. This dictionary maps the current state of a branch to a pair consisting of a tape cache
and a list of output words, which were written during reaching this current state.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMProcessIterator
sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]},
....: initial_states=['A'], final_states=['A'])
sage: it = FSMProcessIterator(inverter, input_tape=[0, 1])
sage: next(it)
process (1 branch)
+ at state 'A'
+-- tape at 1, [[1]]
sage: next(it)
process (1 branch)
+ at state 'A'
+-- tape at 2, [[1, 0]]
sage: next(it)
process (0 branches)
sage: next(it)
Traceback (most recent call last):
...
StopIteration

See also:

FiniteStateMachine.process(), Automaton.process(), Transducer.process(),
FiniteStateMachine.iter_process(), FiniteStateMachine.__call__(),
FSMProcessIterator.

preview_word(track_number=None, length=1, return_word=False)
Read a word from the input tape.

INPUT:

• track_number – an integer or None. If None, then a tuple of words (one from each track) is returned.

• length – (default: 1) the length of the word(s).

5.1. Comprehensive Module List 881

https://docs.python.org/library/collections.html#collections.namedtuple

Combinatorics, Release 9.7

• return_word – (default: False) a boolean. If set, then a word is returned, otherwise a single letter
(in which case length has to be 1).

OUTPUT:

A single letter or a word.

An exception StopIteration is thrown if the tape (at least one track) has reached its end.

Typically, this method is called from a hook-function of a state.

EXAMPLES:

sage: inverter = Transducer({'A': [('A', 0, 'one'),
....: ('A', 1, 'zero')]},
....: initial_states=['A'], final_states=['A'])
sage: def state_hook(process, state, output):
....: print("We are now in state %s." % (state.label(),))
....: try:
....: w = process.preview_word()
....: except RuntimeError:
....: raise StopIteration
....: print("Next on the tape is a %s." % (w,))
sage: inverter.state('A').hook = state_hook
sage: it = inverter.iter_process(
....: input_tape=[0, 1, 1],
....: check_epsilon_transitions=False)
sage: for _ in it:
....: pass
We are now in state A.
Next on the tape is a 0.
We are now in state A.
Next on the tape is a 1.
We are now in state A.
Next on the tape is a 1.
We are now in state A.
sage: it.result()
[Branch(accept=True, state='A', output=['one', 'zero', 'zero'])]

result(format_output=None)
Return the already finished branches during process.

INPUT:

• format_output – a function converting the output from list form to something more readable (default:
output the list directly).

OUTPUT:

A list of triples (accepted, state, output).

See also the parameter format_output of FSMProcessIterator.

EXAMPLES:

sage: inverter = Transducer({'A': [('A', 0, 'one'), ('A', 1, 'zero')]},
....: initial_states=['A'], final_states=['A'])
sage: it = inverter.iter_process(input_tape=[0, 1, 1])
sage: for _ in it:

(continues on next page)

882 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: pass
sage: it.result()
[Branch(accept=True, state='A', output=['one', 'zero', 'zero'])]
sage: it.result(lambda L: ', '.join(L))
[(True, 'A', 'one, zero, zero')]

Using both the parameter format_output of FSMProcessIterator and the parameter format_output
of result() leads to concatenation of the two functions:

sage: it = inverter.iter_process(input_tape=[0, 1, 1],
....: format_output=lambda L: ', '.join(L))
sage: for _ in it:
....: pass
sage: it.result()
[Branch(accept=True, state='A', output='one, zero, zero')]
sage: it.result(lambda L: ', '.join(L))
[(True, 'A', 'o, n, e, ,, , z, e, r, o, ,, , z, e, r, o')]

class sage.combinat.finite_state_machine.FSMState(label, word_out=None, is_initial=False,
is_final=False, final_word_out=None,
initial_probability=None, hook=None,
color=None, allow_label_None=False)

Bases: sage.structure.sage_object.SageObject

Class for a state of a finite state machine.

INPUT:

• label – the label of the state.

• word_out – (default: None) a word that is written when the state is reached.

• is_initial – (default: False)

• is_final – (default: False)

• final_word_out – (default: None) a word that is written when the state is reached as the last state of some
input; only for final states.

• initial_probability – (default: None) The probability of starting in this state if it is a state of a Markov
chain.

• hook – (default: None) A function which is called when the state is reached during processing input. It
takes two input parameters: the first is the current state (to allow using the same hook for several states),
the second is the current process iterator object (to have full access to everything; e.g. the next letter from
the input tape can be read in). It can output the next transition, i.e. the transition to take next. If it returns
None the process iterator chooses. Moreover, this function can raise a StopIteration exception to stop
processing of a finite state machine the input immediately. See also the example below.

• color – (default: None) In order to distinguish states, they can be given an arbitrary “color” (an arbitrary
object). This is used in FiniteStateMachine.equivalence_classes(): states of different colors are
never considered to be equivalent. Note that Automaton.determinisation() requires that color is
hashable.

• allow_label_None – (default: False) If True allows also None as label. Note that a state with label
None is used in FSMProcessIterator.

OUTPUT:

5.1. Comprehensive Module List 883

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

A state of a finite state machine.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('state 1', word_out=0, is_initial=True)
sage: A
'state 1'
sage: A.label()
'state 1'
sage: B = FSMState('state 2')
sage: A == B
False

We can also define a final output word of a final state which is used if the input of a transducer leads to this state.
Such final output words are used in subsequential transducers.

sage: C = FSMState('state 3', is_final=True, final_word_out='end')
sage: C.final_word_out
['end']

The final output word can be a single letter, None or a list of letters:

sage: A = FSMState('A')
sage: A.is_final = True
sage: A.final_word_out = 2
sage: A.final_word_out
[2]
sage: A.final_word_out = [2, 3]
sage: A.final_word_out
[2, 3]

Only final states can have a final output word which is not None:

sage: B = FSMState('B')
sage: B.final_word_out is None
True
sage: B.final_word_out = 2
Traceback (most recent call last):
...
ValueError: Only final states can have a final output word,
but state B is not final.

Setting the final_word_out of a final state to None is the same as setting it to [] and is also the default for a
final state:

sage: C = FSMState('C', is_final=True)
sage: C.final_word_out
[]
sage: C.final_word_out = None
sage: C.final_word_out
[]
sage: C.final_word_out = []
sage: C.final_word_out
[]

884 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

It is not allowed to use None as a label:

sage: from sage.combinat.finite_state_machine import FSMState
sage: FSMState(None)
Traceback (most recent call last):
...
ValueError: Label None reserved for a special state,
choose another label.

This can be overridden by:

sage: FSMState(None, allow_label_None=True)
None

Note that Automaton.determinisation() requires that color is hashable:

sage: A = Automaton([[0, 0, 0]], initial_states=[0])
sage: A.state(0).color = []
sage: A.determinisation()
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'
sage: A.state(0).color = ()
sage: A.determinisation()
Automaton with 1 state

We can use a hook function of a state to stop processing. This is done by raising a StopIteration exception.
The following code demonstrates this:

sage: T = Transducer([(0, 1, 9, 'a'), (1, 2, 9, 'b'),
....: (2, 3, 9, 'c'), (3, 4, 9, 'd')],
....: initial_states=[0],
....: final_states=[4],
....: input_alphabet=[9])
sage: def stop(process, state, output):
....: raise StopIteration()
sage: T.state(3).hook = stop
sage: T.process([9, 9, 9, 9])
(False, 3, ['a', 'b', 'c'])

copy()
Return a (shallow) copy of the state.

INPUT:

Nothing.

OUTPUT:

A new state.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A')
sage: A.is_initial = True
sage: A.is_final = True

(continues on next page)

5.1. Comprehensive Module List 885

Combinatorics, Release 9.7

(continued from previous page)

sage: A.final_word_out = [1]
sage: A.color = 'green'
sage: A.initial_probability = 1/2
sage: B = copy(A)
sage: B.fully_equal(A)
True
sage: A.label() is B.label()
True
sage: A.is_initial is B.is_initial
True
sage: A.is_final is B.is_final
True
sage: A.final_word_out is B.final_word_out
True
sage: A.color is B.color
True
sage: A.initial_probability is B.initial_probability
True

deepcopy(memo=None)
Return a deep copy of the state.

INPUT:

• memo – (default: None) a dictionary storing already processed elements.

OUTPUT:

A new state.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState((1, 3), color=[1, 2],
....: is_final=True, final_word_out=3,
....: initial_probability=1/3)
sage: B = deepcopy(A)
sage: B
(1, 3)
sage: B.label() == A.label()
True
sage: B.label is A.label
False
sage: B.color == A.color
True
sage: B.color is A.color
False
sage: B.is_final == A.is_final
True
sage: B.is_final is A.is_final
True
sage: B.final_word_out == A.final_word_out
True
sage: B.final_word_out is A.final_word_out
False

(continues on next page)

886 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: B.initial_probability == A.initial_probability
True

final_word_out
The final output word of a final state which is written if the state is reached as the last state of the input of
the finite state machine. For a non-final state, the value is None.

final_word_out can be a single letter, a list or None, but for a final-state, it is always saved as a list.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A', is_final=True, final_word_out=2)
sage: A.final_word_out
[2]
sage: A.final_word_out = 3
sage: A.final_word_out
[3]
sage: A.final_word_out = [3, 4]
sage: A.final_word_out
[3, 4]
sage: A.final_word_out = None
sage: A.final_word_out
[]
sage: B = FSMState('B')
sage: B.final_word_out is None
True

A non-final state cannot have a final output word:

sage: B.final_word_out = [3, 4]
Traceback (most recent call last):
...
ValueError: Only final states can have a final
output word, but state B is not final.

fully_equal(other, compare_color=True)
Check whether two states are fully equal, i.e., including all attributes except hook.

INPUT:

• self – a state.

• other – a state.

• compare_color – If True (default) colors are compared as well, otherwise not.

OUTPUT:

True or False.

Note that usual comparison by == does only compare the labels.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A')

(continues on next page)

5.1. Comprehensive Module List 887

Combinatorics, Release 9.7

(continued from previous page)

sage: B = FSMState('A', is_initial=True)
sage: A.fully_equal(B)
False
sage: A == B
True
sage: A.is_initial = True; A.color = 'green'
sage: A.fully_equal(B)
False
sage: A.fully_equal(B, compare_color=False)
True

is_final
Describes whether the state is final or not.

True if the state is final and False otherwise.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A', is_final=True, final_word_out=3)
sage: A.is_final
True
sage: A.is_final = False
Traceback (most recent call last):
...
ValueError: State A cannot be non-final, because it has a
final output word. Only final states can have a final output
word.
sage: A.final_word_out = None
sage: A.is_final = False
sage: A.is_final
False

label()
Return the label of the state.

INPUT:

Nothing.

OUTPUT:

The label of the state.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('state')
sage: A.label()
'state'

relabeled(label, memo=None)
Return a deep copy of the state with a new label.

INPUT:

• label – the label of new state.

888 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• memo – (default: None) a dictionary storing already processed elements.

OUTPUT:

A new state.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A')
sage: A.relabeled('B')
'B'

class sage.combinat.finite_state_machine.FSMTransition(from_state, to_state, word_in=None,
word_out=None, hook=None)

Bases: sage.structure.sage_object.SageObject

Class for a transition of a finite state machine.

INPUT:

• from_state – state from which transition starts.

• to_state – state in which transition ends.

• word_in – the input word of the transitions (when the finite state machine is used as automaton)

• word_out – the output word of the transitions (when the finite state machine is used as transducer)

OUTPUT:

A transition of a finite state machine.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition
sage: A = FSMState('A')
sage: B = FSMState('B')
sage: S = FSMTransition(A, B, 0, 1)
sage: T = FSMTransition('A', 'B', 0, 1)
sage: T == S
True
sage: U = FSMTransition('A', 'B', 0)
sage: U == T
False

copy()
Return a (shallow) copy of the transition.

OUTPUT:

A new transition.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMTransition
sage: t = FSMTransition('A', 'B', 0)
sage: copy(t)
Transition from 'A' to 'B': 0|-

deepcopy(memo=None)
Return a deep copy of the transition.

5.1. Comprehensive Module List 889

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

INPUT:

• memo – (default: None) a dictionary storing already processed elements.

OUTPUT:

A new transition.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMTransition
sage: t = FSMTransition('A', 'B', 0)
sage: deepcopy(t)
Transition from 'A' to 'B': 0|-

from_state = None
State from which the transition starts. Read-only.

to_state = None
State in which the transition ends. Read-only.

word_in = None
Input word of the transition. Read-only.

word_out = None
Output word of the transition. Read-only.

sage.combinat.finite_state_machine.FSMWordSymbol(word)
Return a string of word. It may returns the symbol of the empty word FSMEmptyWordSymbol.

INPUT:

• word – the input word.

OUTPUT:

A string of word.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMWordSymbol
sage: FSMWordSymbol([0, 1, 1])
'0,1,1'

class sage.combinat.finite_state_machine.FiniteStateMachine(data=None, initial_states=None,
final_states=None,
input_alphabet=None,
output_alphabet=None,
determine_alphabets=None,
with_final_word_out=None,
store_states_dict=True,
on_duplicate_transition=None)

Bases: sage.structure.sage_object.SageObject

Class for a finite state machine.

A finite state machine is a finite set of states connected by transitions.

INPUT:

• data – can be any of the following:

1. a dictionary of dictionaries (of transitions),

890 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

2. a dictionary of lists (of states or transitions),

3. a list (of transitions),

4. a function (transition function),

5. an other instance of a finite state machine.

• initial_states and final_states – the initial and final states of this machine

• input_alphabet and output_alphabet – the input and output alphabets of this machine

• determine_alphabets – If True, then the function determine_alphabets() is called after data was
read and processed, if False, then not. If it is None, then it is decided during the construction of the finite
state machine whether determine_alphabets() should be called.

• with_final_word_out – If given (not None), then the function with_final_word_out()
(more precisely, its inplace pendant construct_final_word_out()) is called with input
letters=with_final_word_out at the end of the creation process.

• store_states_dict – If True, then additionally the states are stored in an internal dictionary for speed
up.

• on_duplicate_transition – A function which is called when a transition is inserted into self which
already existed (same from_state, same to_state, same word_in, same word_out).

This function is assumed to take two arguments, the first being the already existing transition, the second
being the new transition (as an FSMTransition). The function must return the (possibly modified) original
transition.

By default, we have on_duplicate_transition=None, which is inter-
preted as on_duplicate_transition=duplicate_transition_ignore, where
duplicate_transition_ignore is a predefined function ignoring the occurrence. Other such prede-
fined functions are duplicate_transition_raise_error and duplicate_transition_add_input.

OUTPUT:

A finite state machine.

The object creation of Automaton and Transducer is the same as the one described here (i.e. just replace the
word FiniteStateMachine by Automaton or Transducer).

Each transition of an automaton has an input label. Automata can, for example, be determinised (see
Automaton.determinisation()) and minimized (see Automaton.minimization()). Each transition of
a transducer has an input and an output label. Transducers can, for example, be simplified (see Transducer.
simplification()).

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition

See documentation for more examples.

We illustrate the different input formats:

1. The input-data can be a dictionary of dictionaries, where

• the keys of the outer dictionary are state-labels (from-states of transitions),

• the keys of the inner dictionaries are state-labels (to-states of transitions),

• the values of the inner dictionaries specify the transition more precisely.

The easiest is to use a tuple consisting of an input and an output word:

5.1. Comprehensive Module List 891

Combinatorics, Release 9.7

sage: FiniteStateMachine({'a':{'b':(0, 1), 'c':(1, 1)}})
Finite state machine with 3 states

Instead of the tuple anything iterable (e.g. a list) can be used as well.

If you want to use the arguments of FSMTransition directly, you can use a dictionary:

sage: FiniteStateMachine({'a':{'b':{'word_in':0, 'word_out':1},
....: 'c':{'word_in':1, 'word_out':1}}})
Finite state machine with 3 states

In the case you already have instances of FSMTransition, it is possible to use them directly:

sage: FiniteStateMachine({'a':{'b':FSMTransition('a', 'b', 0, 1),
....: 'c':FSMTransition('a', 'c', 1, 1)}})
Finite state machine with 3 states

2. The input-data can be a dictionary of lists, where the keys are states or label of states.

The list-elements can be states:

sage: a = FSMState('a')
sage: b = FSMState('b')
sage: c = FSMState('c')
sage: FiniteStateMachine({a:[b, c]})
Finite state machine with 3 states

Or the list-elements can simply be labels of states:

sage: FiniteStateMachine({'a':['b', 'c']})
Finite state machine with 3 states

The list-elements can also be transitions:

sage: FiniteStateMachine({'a':[FSMTransition('a', 'b', 0, 1),
....: FSMTransition('a', 'c', 1, 1)]})
Finite state machine with 3 states

Or they can be tuples of a label, an input word and an output word specifying a transition:

sage: FiniteStateMachine({'a':[('b', 0, 1), ('c', 1, 1)]})
Finite state machine with 3 states

3. The input-data can be a list, where its elements specify transitions:

sage: FiniteStateMachine([FSMTransition('a', 'b', 0, 1),
....: FSMTransition('a', 'c', 1, 1)])
Finite state machine with 3 states

It is possible to skip FSMTransition in the example above:

sage: FiniteStateMachine([('a', 'b', 0, 1), ('a', 'c', 1, 1)])
Finite state machine with 3 states

The parameters of the transition are given in tuples. Anyhow, anything iterable (e.g. a list) is possible.

You can also name the parameters of the transition. For this purpose you take a dictionary:

892 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: FiniteStateMachine([{'from_state':'a', 'to_state':'b',
....: 'word_in':0, 'word_out':1},
....: {'from_state':'a', 'to_state':'c',
....: 'word_in':1, 'word_out':1}])
Finite state machine with 3 states

Other arguments, which FSMTransition accepts, can be added, too.

4. The input-data can also be function acting as transition function:

This function has two input arguments:

1. a label of a state (from which the transition starts),

2. a letter of the (input-)alphabet (as input-label of the transition).

It returns a tuple with the following entries:

1. a label of a state (to which state the transition goes),

2. a letter of or a word over the (output-)alphabet (as output-label of the transition).

It may also output a list of such tuples if several transitions from the from-state and the input letter exist
(this means that the finite state machine is non-deterministic).

If the transition does not exist, the function should raise a LookupError or return an empty list.

When constructing a finite state machine in this way, some initial states and an input alphabet have to be
specified.

sage: def f(state_from, read):
....: if int(state_from) + read <= 2:
....: state_to = 2*int(state_from)+read
....: write = 0
....: else:
....: state_to = 2*int(state_from) + read - 5
....: write = 1
....: return (str(state_to), write)
sage: F = FiniteStateMachine(f, input_alphabet=[0, 1],
....: initial_states=['0'],
....: final_states=['0'])
sage: F([1, 0, 1])
(True, '0', [0, 0, 1])

5. The input-data can be an other instance of a finite state machine:

sage: F = FiniteStateMachine()
sage: G = Transducer(F)
sage: G == F
True

The other parameters cannot be specified in that case. If you want to change these,
use the attributes FSMState.is_initial, FSMState.is_final, input_alphabet,
output_alphabet, on_duplicate_transition and methods determine_alphabets(),
construct_final_word_out() on the new machine, respectively.

The following examples demonstrate the use of on_duplicate_transition:

5.1. Comprehensive Module List 893

Combinatorics, Release 9.7

sage: F = FiniteStateMachine([['a', 'a', 1/2], ['a', 'a', 1/2]])
sage: F.transitions()
[Transition from 'a' to 'a': 1/2|-]

sage: from sage.combinat.finite_state_machine import duplicate_transition_raise_
→˓error
sage: F1 = FiniteStateMachine([['a', 'a', 1/2], ['a', 'a', 1/2]],
....: on_duplicate_transition=duplicate_transition_raise_
→˓error)
Traceback (most recent call last):
...
ValueError: Attempting to re-insert transition Transition from 'a' to 'a': 1/2|-

Use duplicate_transition_add_input to emulate a Markov chain, the input labels are considered as tran-
sition probabilities:

sage: from sage.combinat.finite_state_machine import duplicate_transition_add_input
sage: F = FiniteStateMachine([['a', 'a', 1/2], ['a', 'a', 1/2]],
....: on_duplicate_transition=duplicate_transition_add_input)
sage: F.transitions()
[Transition from 'a' to 'a': 1|-]

Use with_final_word_out to construct final output:

sage: T = Transducer([(0, 1, 0, 0), (1, 0, 0, 0)],
....: initial_states=[0],
....: final_states=[0],
....: with_final_word_out=0)
sage: for s in T.iter_final_states():
....: print("{} {}".format(s, s.final_word_out))
0 []
1 [0]

__call__(*args, **kwargs)
Call either method composition() or process() (with full_output=False). If the input is not fi-
nite (is_finite of input is False), then iter_process() (with iterator_type='simple') is called.
Moreover, the flag automatic_output_type is set (unless format_output is specified). See the docu-
mentation of these functions for possible parameters.

EXAMPLES:

The following code performs a composition():

sage: F = Transducer([('A', 'B', 1, 0), ('B', 'B', 1, 1),
....: ('B', 'B', 0, 0)],
....: initial_states=['A'], final_states=['B'])
sage: G = Transducer([(1, 1, 0, 0), (1, 2, 1, 0),
....: (2, 2, 0, 1), (2, 1, 1, 1)],
....: initial_states=[1], final_states=[1])
sage: H = G(F)
sage: H.states()
[('A', 1), ('B', 1), ('B', 2)]

An automaton or transducer can also act on an input (an list or other iterable of letters):

894 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: binary_inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]},
....: initial_states=['A'], final_states=['A'])
sage: binary_inverter([0, 1, 0, 0, 1, 1])
[1, 0, 1, 1, 0, 0]

We can also let them act on words:

sage: W = Words([0, 1]); W
Finite and infinite words over {0, 1}
sage: binary_inverter(W([0, 1, 1, 0, 1, 1]))
word: 100100

Infinite words work as well:

sage: words.FibonacciWord()
word: 0100101001001010010100100101001001010010...
sage: binary_inverter(words.FibonacciWord())
word: 1011010110110101101011011010110110101101...

When only one successful path is found in a non-deterministic transducer, the result of that path is returned.

sage: T = Transducer([(0, 1, 0, 1), (0, 2, 0, 2)],
....: initial_states=[0], final_states=[1])
sage: T.process([0])
[(False, 2, [2]), (True, 1, [1])]
sage: T([0])
[1]

See also:

composition(), process(), iter_process(), Automaton.process(), Transducer.process().

accessible_components()
Return a new finite state machine with the accessible states of self and all transitions between those states.

INPUT:

Nothing.

OUTPUT:

A finite state machine with the accessible states of self and all transitions between those states.

A state is accessible if there is a directed path from an initial state to the state. If self has no initial states
then a copy of the finite state machine self is returned.

EXAMPLES:

sage: F = Automaton([(0, 0, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1)],
....: initial_states=[0])
sage: F.accessible_components()
Automaton with 2 states

sage: F = Automaton([(0, 0, 1), (0, 0, 1), (1, 1, 0), (1, 0, 1)],
....: initial_states=[0])
sage: F.accessible_components()
Automaton with 1 state

5.1. Comprehensive Module List 895

Combinatorics, Release 9.7

See also:

coaccessible_components()

add_from_transition_function(function, initial_states=None, explore_existing_states=True)
Constructs a finite state machine from a transition function.

INPUT:

• function may return a tuple (new_state, output_word) or a list of such tuples.

• initial_states – If no initial states are given, the already existing initial states of self are taken.

• If explore_existing_states is True (default), then already existing states in self (e.g. already
given final states) will also be processed if they are reachable from the initial states.

OUTPUT:

Nothing.

EXAMPLES:

sage: F = FiniteStateMachine(initial_states=['A'],
....: input_alphabet=[0, 1])
sage: def f(state, input):
....: return [('A', input), ('B', 1-input)]
sage: F.add_from_transition_function(f)
sage: F.transitions()
[Transition from 'A' to 'A': 0|0,
Transition from 'A' to 'B': 0|1,
Transition from 'A' to 'A': 1|1,
Transition from 'A' to 'B': 1|0,
Transition from 'B' to 'A': 0|0,
Transition from 'B' to 'B': 0|1,
Transition from 'B' to 'A': 1|1,
Transition from 'B' to 'B': 1|0]

Initial states can also be given as a parameter:

sage: F = FiniteStateMachine(input_alphabet=[0,1])
sage: def f(state, input):
....: return [('A', input), ('B', 1-input)]
sage: F.add_from_transition_function(f,initial_states=['A'])
sage: F.initial_states()
['A']

Already existing states in the finite state machine (the final states in the example below) are also explored:

sage: F = FiniteStateMachine(initial_states=[0],
....: final_states=[1],
....: input_alphabet=[0])
sage: def transition_function(state, letter):
....: return 1 - state, []
sage: F.add_from_transition_function(transition_function)
sage: F.transitions()
[Transition from 0 to 1: 0|-,
Transition from 1 to 0: 0|-]

896 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

If explore_existing_states=False, however, this behavior is turned off, i.e., already existing states
are not explored:

sage: F = FiniteStateMachine(initial_states=[0],
....: final_states=[1],
....: input_alphabet=[0])
sage: def transition_function(state, letter):
....: return 1 - state, []
sage: F.add_from_transition_function(transition_function,
....: explore_existing_states=False)
sage: F.transitions()
[Transition from 0 to 1: 0|-]

add_state(state)
Adds a state to the finite state machine and returns the new state. If the state already exists, that existing
state is returned.

INPUT:

• state is either an instance of FSMState or, otherwise, a label of a state.

OUTPUT:

The new or existing state.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: F = FiniteStateMachine()
sage: A = FSMState('A', is_initial=True)
sage: F.add_state(A)
'A'

add_states(states)
Adds several states. See add_state for more information.

INPUT:

• states – a list of states or iterator over states.

OUTPUT:

Nothing.

EXAMPLES:

sage: F = FiniteStateMachine()
sage: F.add_states(['A', 'B'])
sage: F.states()
['A', 'B']

add_transition(*args, **kwargs)
Adds a transition to the finite state machine and returns the new transition.

If the transition already exists, the return value of self.on_duplicate_transition is returned. See the
documentation of FiniteStateMachine.

INPUT:

The following forms are all accepted:

5.1. Comprehensive Module List 897

Combinatorics, Release 9.7

sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition
sage: A = FSMState('A')
sage: B = FSMState('B')

sage: FSM = FiniteStateMachine()
sage: FSM.add_transition(FSMTransition(A, B, 0, 1))
Transition from 'A' to 'B': 0|1

sage: FSM = FiniteStateMachine()
sage: FSM.add_transition(A, B, 0, 1)
Transition from 'A' to 'B': 0|1

sage: FSM = FiniteStateMachine()
sage: FSM.add_transition(A, B, word_in=0, word_out=1)
Transition from 'A' to 'B': 0|1

sage: FSM = FiniteStateMachine()
sage: FSM.add_transition('A', 'B', {'word_in': 0, 'word_out': 1})
Transition from 'A' to 'B': {'word_in': 0, 'word_out': 1}|-

sage: FSM = FiniteStateMachine()
sage: FSM.add_transition(from_state=A, to_state=B,
....: word_in=0, word_out=1)
Transition from 'A' to 'B': 0|1

sage: FSM = FiniteStateMachine()
sage: FSM.add_transition({'from_state': A, 'to_state': B,
....: 'word_in': 0, 'word_out': 1})
Transition from 'A' to 'B': 0|1

sage: FSM = FiniteStateMachine()
sage: FSM.add_transition((A, B, 0, 1))
Transition from 'A' to 'B': 0|1

sage: FSM = FiniteStateMachine()
sage: FSM.add_transition([A, B, 0, 1])
Transition from 'A' to 'B': 0|1

If the states A and B are not instances of FSMState, then it is assumed that they are labels of states.

OUTPUT:

The new transition.

add_transitions_from_function(function, labels_as_input=True)
Adds one or more transitions if function(state, state) says that there are some.

INPUT:

• function – a transition function. Given two states from_state and to_state (or their labels if
label_as_input is true), this function shall return a tuple (word_in, word_out) to add a transition
from from_state to to_state with input and output labels word_in and word_out, respectively.
If no such addition is to be added, the transition function shall return None. The transition function
may also return a list of such tuples in order to add multiple transitions between the pair of states.

• label_as_input – (default: True)

898 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

Nothing.

EXAMPLES:

sage: F = FiniteStateMachine()
sage: F.add_states(['A', 'B', 'C'])
sage: def f(state1, state2):
....: if state1 == 'C':
....: return None
....: return (0, 1)
sage: F.add_transitions_from_function(f)
sage: len(F.transitions())
6

Multiple transitions are also possible:

sage: F = FiniteStateMachine()
sage: F.add_states([0, 1])
sage: def f(state1, state2):
....: if state1 != state2:
....: return [(0, 1), (1, 0)]
....: else:
....: return None
sage: F.add_transitions_from_function(f)
sage: F.transitions()
[Transition from 0 to 1: 0|1,
Transition from 0 to 1: 1|0,
Transition from 1 to 0: 0|1,
Transition from 1 to 0: 1|0]

adjacency_matrix(input=None, entry=None)
Return the adjacency matrix of the underlying graph.

INPUT:

• input – Only transitions with input label input are respected.

• entry – The function entry takes a transition and the return value is written in the matrix as the entry
(transition.from_state, transition.to_state). The default value (None) of entry takes the
variable x to the power of the sum of the output word of the transition.

OUTPUT:

A matrix.

If any label of a state is not an integer, the finite state machine is relabeled at the beginning. If there are
more than one transitions between two states, then the different return values of entry are added up.

EXAMPLES:

sage: B = FiniteStateMachine({0:{0:(0, 0), 'a':(1, 0)},
....: 'a':{2:(0, 0), 3:(1, 0)},
....: 2:{0:(1, 1), 4:(0, 0)},
....: 3:{'a':(0, 1), 2:(1, 1)},
....: 4:{4:(1, 1), 3:(0, 1)}},
....: initial_states=[0])

(continues on next page)

5.1. Comprehensive Module List 899

Combinatorics, Release 9.7

(continued from previous page)

sage: B.adjacency_matrix() # optional - sage.
→˓symbolic
[1 1 0 0 0]
[0 0 1 1 0]
[x 0 0 0 1]
[0 x x 0 0]
[0 0 0 x x]

This is equivalent to:

sage: matrix(B) # optional - sage.
→˓symbolic
[1 1 0 0 0]
[0 0 1 1 0]
[x 0 0 0 1]
[0 x x 0 0]
[0 0 0 x x]

It is also possible to use other entries in the adjacency matrix:

sage: B.adjacency_matrix(entry=(lambda transition: 1))
[1 1 0 0 0]
[0 0 1 1 0]
[1 0 0 0 1]
[0 1 1 0 0]
[0 0 0 1 1]
sage: var('t') # optional - sage.
→˓symbolic
t
sage: B.adjacency_matrix(1, entry=(lambda transition: # optional - sage.
→˓symbolic
....: exp(I*transition.word_out[0]*t)))
[0 1 0 0 0]
[0 0 0 1 0]
[e^(I*t) 0 0 0 0]
[0 0 e^(I*t) 0 0]
[0 0 0 0 e^(I*t)]
sage: a = Automaton([(0, 1, 0),
....: (1, 2, 0),
....: (2, 0, 1),
....: (2, 1, 0)],
....: initial_states=[0],
....: final_states=[0])
sage: a.adjacency_matrix() # optional - sage.
→˓symbolic
[0 1 0]
[0 0 1]
[1 1 0]

asymptotic_moments(variable=None)
Return the main terms of expectation and variance of the sum of output labels and its covariance with the
sum of input labels.

INPUT:

900 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• variable – a symbol denoting the length of the input, by default 𝑛.

OUTPUT:

A dictionary consisting of

• expectation – 𝑒𝑛+ Order(1),

• variance – 𝑣𝑛+ Order(1),

• covariance – 𝑐𝑛+ Order(1)

for suitable constants 𝑒, 𝑣 and 𝑐.

Assume that all input and output labels are numbers and that self is complete and has only one final
component. Assume further that this final component is aperiodic. Furthermore, assume that there is
exactly one initial state and that all states are final.

Denote by 𝑋𝑛 the sum of output labels written by the finite state machine when reading a random input
word of length 𝑛 over the input alphabet (assuming equidistribution).

Then the expectation of 𝑋𝑛 is 𝑒𝑛+𝑂(1), the variance of 𝑋𝑛 is 𝑣𝑛+𝑂(1) and the covariance of 𝑋𝑛 and
the sum of input labels is 𝑐𝑛+𝑂(1), cf. [HKW2015], Theorem 3.9.

In the case of non-integer input or output labels, performance degrades significantly. For rational input
and output labels, consider rescaling to integers. This limitation comes from the fact that determinants
over polynomial rings can be computed much more efficiently than over the symbolic ring. In fact, we
compute (parts) of a trivariate generating function where the input and output labels are exponents of some
indeterminates, see [HKW2015], Theorem 3.9 for details. If those exponents are integers, we can use a
polynomial ring.

EXAMPLES:

1. A trivial example: write the negative of the input:

sage: T = Transducer([(0, 0, 0, 0), (0, 0, 1, -1)],
....: initial_states=[0],
....: final_states=[0])
sage: T([0, 1, 1])
[0, -1, -1]
sage: moments = T.asymptotic_moments() # optional -
→˓ sage.symbolic
sage: moments['expectation'] # optional -
→˓ sage.symbolic
-1/2*n + Order(1)
sage: moments['variance'] # optional -
→˓ sage.symbolic
1/4*n + Order(1)
sage: moments['covariance'] # optional -
→˓ sage.symbolic
-1/4*n + Order(1)

2. For the case of the Hamming weight of the non-adjacent-form (NAF) of integers, cf. the Wikipedia
article Non-adjacent_form and the example on recognizing NAFs, the following agrees with the results
in [HP2007].

We first use the transducer to convert the standard binary expansion to the NAF given in [HP2007]. We
use the parameter with_final_word_out such that we do not have to add sufficiently many trailing
zeros:

5.1. Comprehensive Module List 901

https://en.wikipedia.org/wiki/Non-adjacent_form
https://en.wikipedia.org/wiki/Non-adjacent_form

Combinatorics, Release 9.7

sage: NAF = Transducer([(0, 0, 0, 0),
....: (0, '.1', 1, None),
....: ('.1', 0, 0, [1, 0]),
....: ('.1', 1, 1, [-1, 0]),
....: (1, 1, 1, 0),
....: (1, '.1', 0, None)],
....: initial_states=[0],
....: final_states=[0],
....: with_final_word_out=[0])

As an example, we compute the NAF of 27 by this transducer.

sage: binary_27 = 27.bits()
sage: binary_27
[1, 1, 0, 1, 1]
sage: NAF_27 = NAF(binary_27)
sage: NAF_27
[-1, 0, -1, 0, 0, 1, 0]
sage: ZZ(NAF_27, base=2)
27

Next, we are only interested in the Hamming weight:

sage: def weight(state, input):
....: if input is None:
....: result = 0
....: else:
....: result = ZZ(input != 0)
....: return (0, result)
sage: weight_transducer = Transducer(weight,
....: input_alphabet=[-1, 0, 1],
....: initial_states=[0],
....: final_states=[0])
sage: NAFweight = weight_transducer.composition(NAF)
sage: NAFweight.transitions()
[Transition from (0, 0) to (0, 0): 0|0,
Transition from (0, 0) to ('.1', 0): 1|-,
Transition from ('.1', 0) to (0, 0): 0|1,0,
Transition from ('.1', 0) to (1, 0): 1|1,0,
Transition from (1, 0) to ('.1', 0): 0|-,
Transition from (1, 0) to (1, 0): 1|0]
sage: NAFweight(binary_27)
[1, 0, 1, 0, 0, 1, 0]

Now, we actually compute the asymptotic moments:

sage: moments = NAFweight.asymptotic_moments() # optional -
→˓ sage.symbolic
sage: moments['expectation'] # optional -
→˓ sage.symbolic
1/3*n + Order(1)
sage: moments['variance'] # optional -
→˓ sage.symbolic

(continues on next page)

902 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

2/27*n + Order(1)
sage: moments['covariance'] # optional -
→˓ sage.symbolic
Order(1)

3. This is Example 3.16 in [HKW2015], where a transducer with variable output labels is given. There,
the aim was to choose the output labels of this very simple transducer such that the input and output
sum are asymptotically independent, i.e., the constant 𝑐 vanishes.

sage: var('a_1, a_2, a_3, a_4') # optional -
→˓ sage.symbolic
(a_1, a_2, a_3, a_4)
sage: T = Transducer([[0, 0, 0, a_1], [0, 1, 1, a_3], # optional -
→˓ sage.symbolic
....: [1, 0, 0, a_4], [1, 1, 1, a_2]],
....: initial_states=[0], final_states=[0, 1])
sage: moments = T.asymptotic_moments() # optional -
→˓ sage.symbolic
verbose 0 (...) Non-integer output weights lead to
significant performance degradation.
sage: moments['expectation'] # optional -
→˓ sage.symbolic
1/4*(a_1 + a_2 + a_3 + a_4)*n + Order(1)
sage: moments['covariance'] # optional -
→˓ sage.symbolic
-1/4*(a_1 - a_2)*n + Order(1)

Therefore, the asymptotic covariance vanishes if and only if 𝑎2 = 𝑎1.

4. This is Example 4.3 in [HKW2015], dealing with the transducer converting the binary expansion of
an integer into Gray code (cf. the Wikipedia article Gray_code and the example on Gray code):

sage: moments = transducers.GrayCode().asymptotic_moments() # optional -
→˓ sage.symbolic
sage: moments['expectation'] # optional -
→˓ sage.symbolic
1/2*n + Order(1)
sage: moments['variance'] # optional -
→˓ sage.symbolic
1/4*n + Order(1)
sage: moments['covariance'] # optional -
→˓ sage.symbolic
Order(1)

5. This is the first part of Example 4.4 in [HKW2015], counting the number of 10 blocks in the standard
binary expansion. The least significant digit is at the left-most position:

sage: block10 = transducers.CountSubblockOccurrences(
....: [1, 0],
....: input_alphabet=[0, 1])
sage: sorted(block10.transitions())
[Transition from () to (): 0|0,
Transition from () to (1,): 1|0,

(continues on next page)

5.1. Comprehensive Module List 903

https://en.wikipedia.org/wiki/Gray_code

Combinatorics, Release 9.7

(continued from previous page)

Transition from (1,) to (): 0|1,
Transition from (1,) to (1,): 1|0]
sage: moments = block10.asymptotic_moments() # optional -
→˓ sage.symbolic
sage: moments['expectation'] # optional -
→˓ sage.symbolic
1/4*n + Order(1)
sage: moments['variance'] # optional -
→˓ sage.symbolic
1/16*n + Order(1)
sage: moments['covariance'] # optional -
→˓ sage.symbolic
Order(1)

6. This is the second part of Example 4.4 in [HKW2015], counting the number of 11 blocks in the standard
binary expansion. The least significant digit is at the left-most position:

sage: block11 = transducers.CountSubblockOccurrences(
....: [1, 1],
....: input_alphabet=[0, 1])
sage: sorted(block11.transitions())
[Transition from () to (): 0|0,
Transition from () to (1,): 1|0,
Transition from (1,) to (): 0|0,
Transition from (1,) to (1,): 1|1]
sage: var('N') # optional -
→˓ sage.symbolic
N
sage: moments = block11.asymptotic_moments(N) # optional -
→˓ sage.symbolic
sage: moments['expectation'] # optional -
→˓ sage.symbolic
1/4*N + Order(1)
sage: moments['variance'] # optional -
→˓ sage.symbolic
5/16*N + Order(1)
sage: correlation = (moments['covariance'].coefficient(N) / # optional -
→˓ sage.symbolic
....: (1/2 * sqrt(moments['variance'].coefficient(N))))
sage: correlation # optional -
→˓ sage.symbolic
2/5*sqrt(5)

7. This is Example 4.5 in [HKW2015], counting the number of 01 blocks minus the number of 10 blocks
in the standard binary expansion. The least significant digit is at the left-most position:

sage: block01 = transducers.CountSubblockOccurrences(
....: [0, 1],
....: input_alphabet=[0, 1])
sage: product_01x10 = block01.cartesian_product(block10)
sage: block_difference = transducers.sub([0, 1])(product_01x10)
sage: T = block_difference.simplification().relabeled()

(continues on next page)

904 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T.transitions()
[Transition from 0 to 2: 0|-1,
Transition from 0 to 0: 1|0,
Transition from 1 to 2: 0|0,
Transition from 1 to 0: 1|0,
Transition from 2 to 2: 0|0,
Transition from 2 to 0: 1|1]
sage: moments = T.asymptotic_moments() # optional -
→˓ sage.symbolic
sage: moments['expectation'] # optional -
→˓ sage.symbolic
Order(1)
sage: moments['variance'] # optional -
→˓ sage.symbolic
Order(1)
sage: moments['covariance'] # optional -
→˓ sage.symbolic
Order(1)

8. The finite state machine must have a unique final component:

sage: T = Transducer([(0, -1, -1, -1), (0, 1, 1, 1),
....: (-1, -1, -1, -1), (-1, -1, 1, -1),
....: (1, 1, -1, 1), (1, 1, 1, 1)],
....: initial_states=[0],
....: final_states=[0, 1, -1])
sage: T.asymptotic_moments()
Traceback (most recent call last):
...
NotImplementedError: asymptotic_moments is only
implemented for finite state machines with one final
component.

In this particular example, the first letter of the input decides whether we reach the loop at −1 or the
loop at 1. In the first case, we have 𝑋𝑛 = −𝑛, while we have 𝑋𝑛 = 𝑛 in the second case. Therefore,
the expectation𝐸(𝑋𝑛) of𝑋𝑛 is𝐸(𝑋𝑛) = 0. We get (𝑋𝑛−𝐸(𝑋𝑛))2 = 𝑛2 in all cases, which results
in a variance of 𝑛2.

So this example shows that the variance may be non-linear if there is more than one final component.

ALGORITHM:

See [HKW2015], Theorem 3.9.

REFERENCES:

coaccessible_components()
Return the sub-machine induced by the coaccessible states of this finite state machine.

OUTPUT:

A finite state machine of the same type as this finite state machine.

EXAMPLES:

5.1. Comprehensive Module List 905

Combinatorics, Release 9.7

sage: A = automata.ContainsWord([1, 1],
....: input_alphabet=[0, 1]).complement().minimization().relabeled()
sage: A.transitions()
[Transition from 0 to 0: 0|-,
Transition from 0 to 0: 1|-,
Transition from 1 to 2: 0|-,
Transition from 1 to 0: 1|-,
Transition from 2 to 2: 0|-,
Transition from 2 to 1: 1|-]
sage: A.initial_states()
[2]
sage: A.final_states()
[1, 2]
sage: C = A.coaccessible_components()
sage: C.transitions()
[Transition from 1 to 2: 0|-,
Transition from 2 to 2: 0|-,
Transition from 2 to 1: 1|-]

See also:

accessible_components(), induced_sub_finite_state_machine()

completion(sink=None)
Return a completion of this finite state machine.

INPUT:

• sink – either an instance of FSMState or a label for the sink (default: None). If None, the least
available non-zero integer is used.

OUTPUT:

A FiniteStateMachine of the same type as this finite state machine.

The resulting finite state machine is a complete version of this finite state machine. A finite state machine is
considered to be complete if each transition has an input label of length one and for each pair (𝑞, 𝑎) where
𝑞 is a state and 𝑎 is an element of the input alphabet, there is exactly one transition from 𝑞 with input label
𝑎.

If this finite state machine is already complete, a deep copy is returned. Otherwise, a new non-final state
(usually called a sink) is created and transitions to this sink are introduced as appropriate.

EXAMPLES:

sage: F = FiniteStateMachine([(0, 0, 0, 0),
....: (0, 1, 1, 1),
....: (1, 1, 0, 0)])
sage: F.is_complete()
False
sage: G1 = F.completion()
sage: G1.is_complete()
True
sage: G1.transitions()
[Transition from 0 to 0: 0|0,
Transition from 0 to 1: 1|1,
Transition from 1 to 1: 0|0,

(continues on next page)

906 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Transition from 1 to 2: 1|-,
Transition from 2 to 2: 0|-,
Transition from 2 to 2: 1|-]
sage: G2 = F.completion('Sink')
sage: G2.is_complete()
True
sage: G2.transitions()
[Transition from 0 to 0: 0|0,
Transition from 0 to 1: 1|1,
Transition from 1 to 1: 0|0,
Transition from 1 to 'Sink': 1|-,
Transition from 'Sink' to 'Sink': 0|-,
Transition from 'Sink' to 'Sink': 1|-]
sage: F.completion(1)
Traceback (most recent call last):
...
ValueError: The finite state machine already contains a state
'1'.

An input alphabet must be given:

sage: F = FiniteStateMachine([(0, 0, 0, 0),
....: (0, 1, 1, 1),
....: (1, 1, 0, 0)],
....: determine_alphabets=False)
sage: F.is_complete()
Traceback (most recent call last):
...
ValueError: No input alphabet is given. Try calling
determine_alphabets().

Non-deterministic machines are not allowed.

sage: F = FiniteStateMachine([(0, 0, 0, 0), (0, 1, 0, 0)])
sage: F.is_complete()
False
sage: F.completion()
Traceback (most recent call last):
...
ValueError: The finite state machine must be deterministic.
sage: F = FiniteStateMachine([(0, 0, [0, 0], 0)])
sage: F.is_complete()
False
sage: F.completion()
Traceback (most recent call last):
...
ValueError: The finite state machine must be deterministic.

See also:

is_complete(), split_transitions(), determine_alphabets(), is_deterministic().

composition(other, algorithm=None, only_accessible_components=True)
Return a new transducer which is the composition of self and other.

5.1. Comprehensive Module List 907

Combinatorics, Release 9.7

INPUT:

• other – a transducer

• algorithm – can be one of the following

– direct – The composition is calculated directly.

There can be arbitrarily many initial and final states, but the input and output labels must have
length 1.

Warning: The output of other is fed into self.

– explorative – An explorative algorithm is used.

The input alphabet of self has to be specified.

Warning: The output of other is fed into self.

If algorithm is None, then the algorithm is chosen automatically (at the moment always direct, except
when there are output words of other or input words of self of length greater than 1).

OUTPUT:

A new transducer.

The labels of the new finite state machine are pairs of states of the original finite state machines. The color
of a new state is the tuple of colors of the constituent states.

EXAMPLES:

sage: F = Transducer([('A', 'B', 1, 0), ('B', 'A', 0, 1)],
....: initial_states=['A', 'B'], final_states=['B'],
....: determine_alphabets=True)
sage: G = Transducer([(1, 1, 1, 0), (1, 2, 0, 1),
....: (2, 2, 1, 1), (2, 2, 0, 0)],
....: initial_states=[1], final_states=[2],
....: determine_alphabets=True)
sage: Hd = F.composition(G, algorithm='direct')
sage: Hd.initial_states()
[(1, 'B'), (1, 'A')]
sage: Hd.transitions()
[Transition from (1, 'B') to (1, 'A'): 1|1,
Transition from (1, 'A') to (2, 'B'): 0|0,
Transition from (2, 'B') to (2, 'A'): 0|1,
Transition from (2, 'A') to (2, 'B'): 1|0]
sage: He = F.composition(G, algorithm='explorative')
sage: He.initial_states()
[(1, 'A'), (1, 'B')]
sage: He.transitions()
[Transition from (1, 'A') to (2, 'B'): 0|0,
Transition from (1, 'B') to (1, 'A'): 1|1,
Transition from (2, 'B') to (2, 'A'): 0|1,
Transition from (2, 'A') to (2, 'B'): 1|0]

(continues on next page)

908 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Hd == He
True

The following example has output of length> 1, so the explorative algorithm has to be used (and is selected
automatically).

sage: F = Transducer([('A', 'B', 1, [1, 0]), ('B', 'B', 1, 1),
....: ('B', 'B', 0, 0)],
....: initial_states=['A'], final_states=['B'])
sage: G = Transducer([(1, 1, 0, 0), (1, 2, 1, 0),
....: (2, 2, 0, 1), (2, 1, 1, 1)],
....: initial_states=[1], final_states=[1])
sage: He = G.composition(F, algorithm='explorative')
sage: He.transitions()
[Transition from ('A', 1) to ('B', 2): 1|0,1,
Transition from ('B', 2) to ('B', 2): 0|1,
Transition from ('B', 2) to ('B', 1): 1|1,
Transition from ('B', 1) to ('B', 1): 0|0,
Transition from ('B', 1) to ('B', 2): 1|0]
sage: Ha = G.composition(F)
sage: Ha == He
True

Final output words are also considered:

sage: F = Transducer([('A', 'B', 1, 0), ('B', 'A', 0, 1)],
....: initial_states=['A', 'B'],
....: final_states=['A', 'B'])
sage: F.state('A').final_word_out = 0
sage: F.state('B').final_word_out = 1
sage: G = Transducer([(1, 1, 1, 0), (1, 2, 0, 1),
....: (2, 2, 1, 1), (2, 2, 0, 0)],
....: initial_states=[1], final_states=[2])
sage: G.state(2).final_word_out = 0
sage: Hd = F.composition(G, algorithm='direct')
sage: Hd.final_states()
[(2, 'B')]
sage: He = F.composition(G, algorithm='explorative')
sage: He.final_states()
[(2, 'B')]

Note that (2, 'A') is not final, as the final output 0 of state 2 of 𝐺 cannot be processed in state 'A' of 𝐹 .

sage: [s.final_word_out for s in Hd.final_states()]
[[1, 0]]
sage: [s.final_word_out for s in He.final_states()]
[[1, 0]]
sage: Hd == He
True

Here is a non-deterministic example with intermediate output length > 1.

5.1. Comprehensive Module List 909

Combinatorics, Release 9.7

sage: F = Transducer([(1, 1, 1, ['a', 'a']), (1, 2, 1, 'b'),
....: (2, 1, 2, 'a'), (2, 2, 2, 'b')],
....: initial_states=[1, 2])
sage: G = Transducer([('A', 'A', 'a', 'i'),
....: ('A', 'B', 'a', 'l'),
....: ('B', 'B', 'b', 'e')],
....: initial_states=['A', 'B'])
sage: G(F).transitions()
[Transition from (1, 'A') to (1, 'A'): 1|'i','i',
Transition from (1, 'A') to (1, 'B'): 1|'i','l',
Transition from (1, 'B') to (2, 'B'): 1|'e',
Transition from (2, 'A') to (1, 'A'): 2|'i',
Transition from (2, 'A') to (1, 'B'): 2|'l',
Transition from (2, 'B') to (2, 'B'): 2|'e']

Be aware that after composition, different transitions may share the same output label (same python object):

sage: F = Transducer([('A','B',0,0), ('B','A',0,0)],
....: initial_states=['A'],
....: final_states=['A'])
sage: F.transitions()[0].word_out is F.transitions()[1].word_out
False
sage: G = Transducer([('C','C',0,1)],
....: initial_states=['C'],
....: final_states=['C'])
sage: H = G.composition(F)
sage: H.transitions()[0].word_out is H.transitions()[1].word_out
True

concatenation(other)
Concatenate this finite state machine with another finite state machine.

INPUT:

• other – a FiniteStateMachine.

OUTPUT:

A FiniteStateMachine of the same type as this finite state machine.

Assume that both finite state machines are automata. If ℒ1 is the language accepted by this automaton
and ℒ2 is the language accepted by the other automaton, then the language accepted by the concatenated
automaton is {𝑤1𝑤2 | 𝑤1 ∈ ℒ1, 𝑤2 ∈ ℒ2} where 𝑤1𝑤2 denotes the concatenation of the words 𝑤1 and
𝑤2.

Assume that both finite state machines are transducers and that this transducer maps words 𝑤1 ∈ ℒ1 to
words 𝑓1(𝑤1) and that the other transducer maps words 𝑤2 ∈ ℒ2 to words 𝑓2(𝑤2). Then the concatenated
transducer maps words𝑤1𝑤2 with𝑤1 ∈ ℒ1 and𝑤2 ∈ ℒ2 to 𝑓1(𝑤1)𝑓2(𝑤2). Here,𝑤1𝑤2 and 𝑓1(𝑤1)𝑓2(𝑤2)
again denote concatenation of words.

The input alphabet is the union of the input alphabets (if possible) and None otherwise. In the latter case,
try calling determine_alphabets().

Instead of A.concatenation(B), the notation A * B can be used.

EXAMPLES:

Concatenation of two automata:

910 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: A = automata.Word([0])
sage: B = automata.Word([1])
sage: C = A.concatenation(B)
sage: C.transitions()
[Transition from (0, 0) to (0, 1): 0|-,
Transition from (0, 1) to (1, 0): -|-,
Transition from (1, 0) to (1, 1): 1|-]
sage: [w
....: for w in ([0, 0], [0, 1], [1, 0], [1, 1])
....: if C(w)]
[[0, 1]]
sage: from sage.combinat.finite_state_machine import (
....: is_Automaton, is_Transducer)
sage: is_Automaton(C)
True

Concatenation of two transducers:

sage: A = Transducer([(0, 1, 0, 1), (0, 1, 1, 2)],
....: initial_states=[0],
....: final_states=[1])
sage: B = Transducer([(0, 1, 0, 1), (0, 1, 1, 0)],
....: initial_states=[0],
....: final_states=[1])
sage: C = A.concatenation(B)
sage: C.transitions()
[Transition from (0, 0) to (0, 1): 0|1,
Transition from (0, 0) to (0, 1): 1|2,
Transition from (0, 1) to (1, 0): -|-,
Transition from (1, 0) to (1, 1): 0|1,
Transition from (1, 0) to (1, 1): 1|0]
sage: [(w, C(w)) for w in ([0, 0], [0, 1], [1, 0], [1, 1])]
[([0, 0], [1, 1]),
([0, 1], [1, 0]),
([1, 0], [2, 1]),
([1, 1], [2, 0])]
sage: is_Transducer(C)
True

Alternative notation as multiplication:

sage: C == A * B
True

Final output words are taken into account:

sage: A = Transducer([(0, 1, 0, 1)],
....: initial_states=[0],
....: final_states=[1])
sage: A.state(1).final_word_out = 2
sage: B = Transducer([(0, 1, 0, 3)],
....: initial_states=[0],
....: final_states=[1])

(continues on next page)

5.1. Comprehensive Module List 911

Combinatorics, Release 9.7

(continued from previous page)

sage: B.state(1).final_word_out = 4
sage: C = A * B
sage: C([0, 0])
[1, 2, 3, 4]

Handling of the input alphabet:

sage: A = Automaton([(0, 0, 0)])
sage: B = Automaton([(0, 0, 1)], input_alphabet=[1, 2])
sage: C = Automaton([(0, 0, 2)], determine_alphabets=False)
sage: D = Automaton([(0, 0, [[0, 0]])], input_alphabet=[[0, 0]])
sage: A.input_alphabet
[0]
sage: B.input_alphabet
[1, 2]
sage: C.input_alphabet is None
True
sage: D.input_alphabet
[[0, 0]]
sage: (A * B).input_alphabet
[0, 1, 2]
sage: (A * C).input_alphabet is None
True
sage: (A * D).input_alphabet is None
True

See also:

disjoint_union(), determine_alphabets().

construct_final_word_out(letters, allow_non_final=True)
This is an inplace version of with_final_word_out(). See with_final_word_out() for documenta-
tion and examples.

copy()
Return a (shallow) copy of the finite state machine.

OUTPUT:

A new finite state machine.

deepcopy(memo=None)
Return a deep copy of the finite state machine.

INPUT:

• memo – (default: None) a dictionary storing already processed elements.

OUTPUT:

A new finite state machine.

EXAMPLES:

sage: F = FiniteStateMachine([('A', 'A', 0, 1), ('A', 'A', 1, 0)])
sage: deepcopy(F)
Finite state machine with 1 state

912 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

default_format_letter(x, combine_all=False)
Return a LatexExpr built out of the argument x.

INPUT:

• x – a Sage object

• combine_all – boolean (Default: False) If combine_all is True and the input is a tuple, then it
does not return a tuple and instead returns a string with all the elements separated by a single space.

OUTPUT:

A LatexExpr built from x

EXAMPLES:

sage: latex(Integer(3)) # indirect doctest
3
sage: latex(1==0)
\mathrm{False}
sage: print(latex([x,2]))
\left[x, 2\right]

Check that trac ticket #11775 is fixed:

sage: latex((x,2), combine_all=True)
x 2

default_format_transition_label(word)
Default formatting of words in transition labels for LaTeX output.

INPUT:

word – list of letters

OUTPUT:

String representation of word suitable to be typeset in mathematical mode.

• For a non-empty word: Concatenation of the letters, piped through self.format_letter and sepa-
rated by blanks.

• For an empty word: sage.combinat.finite_state_machine.EmptyWordLaTeX.

There is also a variant format_transition_label_reversed() writing the words in reversed order.

EXAMPLES:

1. Example of a non-empty word:

sage: T = Transducer()
sage: print(T.default_format_transition_label(
....: ['a', 'alpha', 'a_1', '0', 0, (0, 1)]))
\text{\texttt{a}} \text{\texttt{alpha}}
\text{\texttt{a{\char`_}1}} 0 0 \left(0, 1\right)

2. In the example above, 'a' and 'alpha' should perhaps be symbols:

sage: var('a alpha a_1') #␣
→˓optional - sage.symbolic
(a, alpha, a_1)

(continues on next page)

5.1. Comprehensive Module List 913

../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.LatexExpr
../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.LatexExpr
https://trac.sagemath.org/11775

Combinatorics, Release 9.7

(continued from previous page)

sage: print(T.default_format_transition_label([a, alpha, a_1])) #␣
→˓optional - sage.symbolic
a \alpha a_{1}

3. Example of an empty word:

sage: print(T.default_format_transition_label([]))
\varepsilon

We can change this by setting sage.combinat.finite_state_machine.EmptyWordLaTeX:

sage: sage.combinat.finite_state_machine.EmptyWordLaTeX = ''
sage: T.default_format_transition_label([])
''

Finally, we restore the default value:

sage: sage.combinat.finite_state_machine.EmptyWordLaTeX = r'\varepsilon'

4. This method is the default value for FiniteStateMachine.format_transition_label. That can
be changed to be any other function:

sage: A = Automaton([(0, 1, 0)])
sage: def custom_format_transition_label(word):
....: return "t"
sage: A.latex_options(format_transition_label=custom_format_transition_
→˓label)
sage: print(latex(A))
\begin{tikzpicture}[auto, initial text=, >=latex]
\node[state] (v0) at (3.000000, 0.000000) {0};
\node[state] (v1) at (-3.000000, 0.000000) {1};
\path[->] (v0) edge node[rotate=360.00, anchor=south] {t} (v1);
\end{tikzpicture}

delete_state(s)
Deletes a state and all transitions coming or going to this state.

INPUT:

• s – a label of a state or an FSMState.

OUTPUT:

Nothing.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMTransition
sage: t1 = FSMTransition('A', 'B', 0)
sage: t2 = FSMTransition('B', 'B', 1)
sage: F = FiniteStateMachine([t1, t2])
sage: F.delete_state('A')
sage: F.transitions()
[Transition from 'B' to 'B': 1|-]

914 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

delete_transition(t)
Deletes a transition by removing it from the list of transitions of the state, where the transition starts.

INPUT:

• t – a transition.

OUTPUT:

Nothing.

EXAMPLES:

sage: F = FiniteStateMachine([('A', 'B', 0), ('B', 'A', 1)])
sage: F.delete_transition(('A', 'B', 0))
sage: F.transitions()
[Transition from 'B' to 'A': 1|-]

determine_alphabets(reset=True)
Determine the input and output alphabet according to the transitions in this finite state machine.

INPUT:

• reset – If reset is True, then the existing input and output alphabets are erased, otherwise new letters
are appended to the existing alphabets.

OUTPUT:

Nothing.

After this operation the input alphabet and the output alphabet of this finite state machine are a list of letters.

Todo: At the moment, the letters of the alphabets need to be hashable.

EXAMPLES:

sage: T = Transducer([(1, 1, 1, 0), (1, 2, 2, 1),
....: (2, 2, 1, 1), (2, 2, 0, 0)],
....: final_states=[1],
....: determine_alphabets=False)
sage: T.state(1).final_word_out = [1, 4]
sage: (T.input_alphabet, T.output_alphabet)
(None, None)
sage: T.determine_alphabets()
sage: (T.input_alphabet, T.output_alphabet)
([0, 1, 2], [0, 1, 4])

See also:

determine_input_alphabet(), determine_output_alphabet().

determine_input_alphabet(reset=True)
Determine the input alphabet according to the transitions of this finite state machine.

INPUT:

• reset – a boolean (default: True). If True, then the existing input alphabet is erased, otherwise new
letters are appended to the existing alphabet.

OUTPUT:

5.1. Comprehensive Module List 915

Combinatorics, Release 9.7

Nothing.

After this operation the input alphabet of this finite state machine is a list of letters.

Todo: At the moment, the letters of the alphabet need to be hashable.

EXAMPLES:

sage: T = Transducer([(1, 1, 1, 0), (1, 2, 2, 1),
....: (2, 2, 1, 1), (2, 2, 0, 0)],
....: final_states=[1],
....: determine_alphabets=False)
sage: (T.input_alphabet, T.output_alphabet)
(None, None)
sage: T.determine_input_alphabet()
sage: (T.input_alphabet, T.output_alphabet)
([0, 1, 2], None)

See also:

determine_output_alphabet(), determine_alphabets().

determine_output_alphabet(reset=True)
Determine the output alphabet according to the transitions of this finite state machine.

INPUT:

• reset – a boolean (default: True). If True, then the existing output alphabet is erased, otherwise
new letters are appended to the existing alphabet.

OUTPUT:

Nothing.

After this operation the output alphabet of this finite state machine is a list of letters.

Todo: At the moment, the letters of the alphabet need to be hashable.

EXAMPLES:

sage: T = Transducer([(1, 1, 1, 0), (1, 2, 2, 1),
....: (2, 2, 1, 1), (2, 2, 0, 0)],
....: final_states=[1],
....: determine_alphabets=False)
sage: T.state(1).final_word_out = [1, 4]
sage: (T.input_alphabet, T.output_alphabet)
(None, None)
sage: T.determine_output_alphabet()
sage: (T.input_alphabet, T.output_alphabet)
(None, [0, 1, 4])

See also:

determine_input_alphabet(), determine_alphabets().

digraph(edge_labels='words_in_out')
Return the graph of the finite state machine with labeled vertices and labeled edges.

916 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• edge_label: (default: 'words_in_out') can be

– 'words_in_out' (labels will be strings 'i|o')

– a function with which takes as input a transition and outputs (returns) the label

OUTPUT:

A directed graph.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A')
sage: T = Transducer()
sage: T.graph()
Looped multi-digraph on 0 vertices
sage: T.add_state(A)
'A'
sage: T.graph()
Looped multi-digraph on 1 vertex
sage: T.add_transition(('A', 'A', 0, 1))
Transition from 'A' to 'A': 0|1
sage: T.graph()
Looped multi-digraph on 1 vertex

See also:

DiGraph

disjoint_union(other)
Return the disjoint union of this and another finite state machine.

INPUT:

• other – a FiniteStateMachine.

OUTPUT:

A finite state machine of the same type as this finite state machine.

In general, the disjoint union of two finite state machines is non-deterministic. In the case of a automata, the
language accepted by the disjoint union is the union of the languages accepted by the constituent automata.
In the case of transducer, for each successful path in one of the constituent transducers, there will be one
successful path with the same input and output labels in the disjoint union.

The labels of the states of the disjoint union are pairs (i, s): for each state s of this finite state machine,
there is a state (0, s) in the disjoint union; for each state s of the other finite state machine, there is a state
(1, s) in the disjoint union.

The input alphabet is the union of the input alphabets (if possible) and None otherwise. In the latter case,
try calling determine_alphabets().

The disjoint union can also be written as A + B or A | B.

EXAMPLES:

sage: A = Automaton([(0, 1, 0), (1, 0, 1)],
....: initial_states=[0],
....: final_states=[0])

(continues on next page)

5.1. Comprehensive Module List 917

../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph
../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Combinatorics, Release 9.7

(continued from previous page)

sage: A([0, 1, 0, 1])
True
sage: B = Automaton([(0, 1, 0), (1, 2, 0), (2, 0, 1)],
....: initial_states=[0],
....: final_states=[0])
sage: B([0, 0, 1])
True
sage: C = A.disjoint_union(B)
sage: C
Automaton with 5 states
sage: C.transitions()
[Transition from (0, 0) to (0, 1): 0|-,
Transition from (0, 1) to (0, 0): 1|-,
Transition from (1, 0) to (1, 1): 0|-,
Transition from (1, 1) to (1, 2): 0|-,
Transition from (1, 2) to (1, 0): 1|-]
sage: C([0, 0, 1])
True
sage: C([0, 1, 0, 1])
True
sage: C([1])
False
sage: C.initial_states()
[(0, 0), (1, 0)]

Instead of .disjoint_union, alternative notations are available:

sage: C1 = A + B
sage: C1 == C
True
sage: C2 = A | B
sage: C2 == C
True

In general, the disjoint union is not deterministic.:

sage: C.is_deterministic()
False
sage: D = C.determinisation().minimization()
sage: D.is_equivalent(Automaton([(0, 0, 0), (0, 0, 1),
....: (1, 7, 0), (1, 0, 1), (2, 6, 0), (2, 0, 1),
....: (3, 5, 0), (3, 0, 1), (4, 0, 0), (4, 2, 1),
....: (5, 0, 0), (5, 3, 1), (6, 4, 0), (6, 0, 1),
....: (7, 4, 0), (7, 3, 1)],
....: initial_states=[1],
....: final_states=[1, 2, 3]))
True

Disjoint union of transducers:

sage: T1 = Transducer([(0, 0, 0, 1)],
....: initial_states=[0],
....: final_states=[0])

(continues on next page)

918 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T2 = Transducer([(0, 0, 0, 2)],
....: initial_states=[0],
....: final_states=[0])
sage: T1([0])
[1]
sage: T2([0])
[2]
sage: T = T1.disjoint_union(T2)
sage: T([0])
Traceback (most recent call last):
...
ValueError: Found more than one accepting path.
sage: T.process([0])
[(True, (0, 0), [1]), (True, (1, 0), [2])]

Handling of the input alphabet (see trac ticket #18989):

sage: A = Automaton([(0, 0, 0)])
sage: B = Automaton([(0, 0, 1)], input_alphabet=[1, 2])
sage: C = Automaton([(0, 0, 2)], determine_alphabets=False)
sage: D = Automaton([(0, 0, [[0, 0]])], input_alphabet=[[0, 0]])
sage: A.input_alphabet
[0]
sage: B.input_alphabet
[1, 2]
sage: C.input_alphabet is None
True
sage: D.input_alphabet
[[0, 0]]
sage: (A + B).input_alphabet
[0, 1, 2]
sage: (A + C).input_alphabet is None
True
sage: (A + D).input_alphabet is None
True

See also:

Automaton.intersection(), Transducer.intersection(), determine_alphabets().

empty_copy(memo=None, new_class=None)
Return an empty deep copy of the finite state machine, i.e., input_alphabet, output_alphabet,
on_duplicate_transition are preserved, but states and transitions are not.

INPUT:

• memo – a dictionary storing already processed elements.

• new_class – a class for the copy. By default (None), the class of self is used.

OUTPUT:

A new finite state machine.

EXAMPLES:

5.1. Comprehensive Module List 919

https://trac.sagemath.org/18989

Combinatorics, Release 9.7

sage: from sage.combinat.finite_state_machine import duplicate_transition_raise_
→˓error
sage: F = FiniteStateMachine([('A', 'A', 0, 2), ('A', 'A', 1, 3)],
....: input_alphabet=[0, 1],
....: output_alphabet=[2, 3],
....: on_duplicate_transition=duplicate_transition_raise_
→˓error)
sage: FE = F.empty_copy(); FE
Empty finite state machine
sage: FE.input_alphabet
[0, 1]
sage: FE.output_alphabet
[2, 3]
sage: FE.on_duplicate_transition == duplicate_transition_raise_error
True

epsilon_successors(state)
Return the dictionary with states reachable from state without reading anything from an input tape as
keys. The values are lists of outputs.

INPUT:

• state – the state whose epsilon successors should be determined.

OUTPUT:

A dictionary mapping states to a list of output words.

The states in the output are the epsilon successors of state. Each word of the list of output words is a
word written when taking a path from state to the corresponding state.

EXAMPLES:

sage: T = Transducer([(0, 1, None, 'a'), (1, 2, None, 'b')])
sage: T.epsilon_successors(0)
{1: [['a']], 2: [['a', 'b']]}
sage: T.epsilon_successors(1)
{2: [['b']]}
sage: T.epsilon_successors(2)
{}

If there is a cycle with only epsilon transitions, then this cycle is only processed once and there is no infinite
loop:

sage: S = Transducer([(0, 1, None, 'a'), (1, 0, None, 'b')])
sage: S.epsilon_successors(0)
{0: [['a', 'b']], 1: [['a']]}
sage: S.epsilon_successors(1)
{0: [['b']], 1: [['b', 'a']]}

equivalence_classes()
Return a list of equivalence classes of states.

OUTPUT:

A list of equivalence classes of states.

920 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Two states 𝑎 and 𝑏 are equivalent if and only if there is a bijection 𝜙 between paths starting at 𝑎 and paths
starting at 𝑏 with the following properties: Let 𝑝𝑎 be a path from 𝑎 to 𝑎′ and 𝑝𝑏 a path from 𝑏 to 𝑏′ such that
𝜙(𝑝𝑎) = 𝑝𝑏, then

• 𝑝𝑎.word in = 𝑝𝑏.word in ,

• 𝑝𝑎.wordout = 𝑝𝑏.wordout ,

• 𝑎′ and 𝑏′ have the same output label, and

• 𝑎′ and 𝑏′ are both final or both non-final and have the same final output word.

The function equivalence_classes() returns a list of the equivalence classes to this equivalence rela-
tion.

This is one step of Moore’s minimization algorithm.

See also:

minimization()

EXAMPLES:

sage: fsm = FiniteStateMachine([("A", "B", 0, 1), ("A", "B", 1, 0),
....: ("B", "C", 0, 0), ("B", "C", 1, 1),
....: ("C", "D", 0, 1), ("C", "D", 1, 0),
....: ("D", "A", 0, 0), ("D", "A", 1, 1)])
sage: sorted(fsm.equivalence_classes())
[['A', 'C'], ['B', 'D']]
sage: fsm.state("A").is_final = True
sage: sorted(fsm.equivalence_classes())
[['A'], ['B'], ['C'], ['D']]
sage: fsm.state("C").is_final = True
sage: sorted(fsm.equivalence_classes())
[['A', 'C'], ['B', 'D']]
sage: fsm.state("A").final_word_out = 1
sage: sorted(fsm.equivalence_classes())
[['A'], ['B'], ['C'], ['D']]
sage: fsm.state("C").final_word_out = 1
sage: sorted(fsm.equivalence_classes())
[['A', 'C'], ['B', 'D']]

final_components()
Return the final components of a finite state machine as finite state machines.

OUTPUT:

A list of finite state machines, each representing a final component of self.

A final component of a transducer T is a strongly connected component C such that there are no transitions
of T leaving C.

The final components are the only parts of a transducer which influence the main terms of the asymptotic
behaviour of the sum of output labels of a transducer, see [HKP2015] and [HKW2015].

EXAMPLES:

sage: T = Transducer([['A', 'B', 0, 0], ['B', 'C', 0, 1],
....: ['C', 'B', 0, 1], ['A', 'D', 1, 0],
....: ['D', 'D', 0, 0], ['D', 'B', 1, 0],

(continues on next page)

5.1. Comprehensive Module List 921

Combinatorics, Release 9.7

(continued from previous page)

....: ['A', 'E', 2, 0], ['E', 'E', 0, 0]])
sage: FC = T.final_components()
sage: sorted(FC[0].transitions())
[Transition from 'B' to 'C': 0|1,
Transition from 'C' to 'B': 0|1]
sage: FC[1].transitions()
[Transition from 'E' to 'E': 0|0]

Another example (cycle of length 2):

sage: T = Automaton([[0, 1, 0], [1, 0, 0]])
sage: len(T.final_components()) == 1
True
sage: T.final_components()[0].transitions()
[Transition from 0 to 1: 0|-,
Transition from 1 to 0: 0|-]

final_states()
Return a list of all final states.

OUTPUT:

A list of all final states.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A', is_final=True)
sage: B = FSMState('B', is_initial=True)
sage: C = FSMState('C', is_final=True)
sage: F = FiniteStateMachine([(A, B), (A, C)])
sage: F.final_states()
['A', 'C']

format_letter(x, combine_all=False)
Return a LatexExpr built out of the argument x.

INPUT:

• x – a Sage object

• combine_all – boolean (Default: False) If combine_all is True and the input is a tuple, then it
does not return a tuple and instead returns a string with all the elements separated by a single space.

OUTPUT:

A LatexExpr built from x

EXAMPLES:

sage: latex(Integer(3)) # indirect doctest
3
sage: latex(1==0)
\mathrm{False}
sage: print(latex([x,2]))
\left[x, 2\right]

Check that trac ticket #11775 is fixed:

922 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.LatexExpr
../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.LatexExpr
https://trac.sagemath.org/11775

Combinatorics, Release 9.7

sage: latex((x,2), combine_all=True)
x 2

format_letter_negative(letter)
Format negative numbers as overlined numbers, everything else by standard LaTeX formatting.

INPUT:

letter – anything.

OUTPUT:

Overlined absolute value if letter is a negative integer, latex(letter) otherwise.

EXAMPLES:

sage: A = Automaton([(0, 0, -1)])
sage: list(map(A.format_letter_negative, [-1, 0, 1, 'a', None]))
['\\overline{1}', 0, 1, \text{\texttt{a}}, \mathrm{None}]
sage: A.latex_options(format_letter=A.format_letter_negative)
sage: print(latex(A))
\begin{tikzpicture}[auto, initial text=, >=latex]
\node[state] (v0) at (3.000000, 0.000000) {0};
\path[->] (v0) edge[loop above] node {$\overline{1}$} ();
\end{tikzpicture}

format_transition_label(word)
Default formatting of words in transition labels for LaTeX output.

INPUT:

word – list of letters

OUTPUT:

String representation of word suitable to be typeset in mathematical mode.

• For a non-empty word: Concatenation of the letters, piped through self.format_letter and sepa-
rated by blanks.

• For an empty word: sage.combinat.finite_state_machine.EmptyWordLaTeX.

There is also a variant format_transition_label_reversed() writing the words in reversed order.

EXAMPLES:

1. Example of a non-empty word:

sage: T = Transducer()
sage: print(T.default_format_transition_label(
....: ['a', 'alpha', 'a_1', '0', 0, (0, 1)]))
\text{\texttt{a}} \text{\texttt{alpha}}
\text{\texttt{a{\char`_}1}} 0 0 \left(0, 1\right)

2. In the example above, 'a' and 'alpha' should perhaps be symbols:

sage: var('a alpha a_1') #␣
→˓optional - sage.symbolic
(a, alpha, a_1)

(continues on next page)

5.1. Comprehensive Module List 923

../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.latex

Combinatorics, Release 9.7

(continued from previous page)

sage: print(T.default_format_transition_label([a, alpha, a_1])) #␣
→˓optional - sage.symbolic
a \alpha a_{1}

3. Example of an empty word:

sage: print(T.default_format_transition_label([]))
\varepsilon

We can change this by setting sage.combinat.finite_state_machine.EmptyWordLaTeX:

sage: sage.combinat.finite_state_machine.EmptyWordLaTeX = ''
sage: T.default_format_transition_label([])
''

Finally, we restore the default value:

sage: sage.combinat.finite_state_machine.EmptyWordLaTeX = r'\varepsilon'

4. This method is the default value for FiniteStateMachine.format_transition_label. That can
be changed to be any other function:

sage: A = Automaton([(0, 1, 0)])
sage: def custom_format_transition_label(word):
....: return "t"
sage: A.latex_options(format_transition_label=custom_format_transition_
→˓label)
sage: print(latex(A))
\begin{tikzpicture}[auto, initial text=, >=latex]
\node[state] (v0) at (3.000000, 0.000000) {0};
\node[state] (v1) at (-3.000000, 0.000000) {1};
\path[->] (v0) edge node[rotate=360.00, anchor=south] {t} (v1);
\end{tikzpicture}

format_transition_label_reversed(word)
Format words in transition labels in reversed order.

INPUT:

word – list of letters.

OUTPUT:

String representation of word suitable to be typeset in mathematical mode, letters are written in reversed
order.

This is the reversed version of default_format_transition_label().

In digit expansions, digits are frequently processed from the least significant to the most significant position,
but it is customary to write the least significant digit at the right-most position. Therefore, the labels have
to be reversed.

EXAMPLES:

sage: T = Transducer([(0, 0, 0, [1, 2, 3])])
sage: T.format_transition_label_reversed([1, 2, 3])

(continues on next page)

924 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

'3 2 1'
sage: T.latex_options(format_transition_label=T.format_transition_label_
→˓reversed)
sage: print(latex(T))
\begin{tikzpicture}[auto, initial text=, >=latex]
\node[state] (v0) at (3.000000, 0.000000) {0};
\path[->] (v0) edge[loop above] node {$0\mid 3 2 1$} ();
\end{tikzpicture}

graph(edge_labels='words_in_out')
Return the graph of the finite state machine with labeled vertices and labeled edges.

INPUT:

• edge_label: (default: 'words_in_out') can be

– 'words_in_out' (labels will be strings 'i|o')

– a function with which takes as input a transition and outputs (returns) the label

OUTPUT:

A directed graph.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A')
sage: T = Transducer()
sage: T.graph()
Looped multi-digraph on 0 vertices
sage: T.add_state(A)
'A'
sage: T.graph()
Looped multi-digraph on 1 vertex
sage: T.add_transition(('A', 'A', 0, 1))
Transition from 'A' to 'A': 0|1
sage: T.graph()
Looped multi-digraph on 1 vertex

See also:

DiGraph

has_final_state(state)
Return whether state is one of the final states of the finite state machine.

INPUT:

• state can be a FSMState or a label.

OUTPUT:

True or False.

EXAMPLES:

sage: FiniteStateMachine(final_states=['A']).has_final_state('A')
True

5.1. Comprehensive Module List 925

../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph
../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Combinatorics, Release 9.7

has_final_states()
Return whether the finite state machine has a final state.

OUTPUT:

True or False.

EXAMPLES:

sage: FiniteStateMachine().has_final_states()
False

has_initial_state(state)
Return whether state is one of the initial states of the finite state machine.

INPUT:

• state can be a FSMState or a label.

OUTPUT:

True or False.

EXAMPLES:

sage: F = FiniteStateMachine([('A', 'A')], initial_states=['A'])
sage: F.has_initial_state('A')
True

has_initial_states()
Return whether the finite state machine has an initial state.

OUTPUT:

True or False.

EXAMPLES:

sage: FiniteStateMachine().has_initial_states()
False

has_state(state)
Return whether state is one of the states of the finite state machine.

INPUT:

• state can be a FSMState or a label of a state.

OUTPUT:

True or False.

EXAMPLES:

sage: FiniteStateMachine().has_state('A')
False

has_transition(transition)
Return whether transition is one of the transitions of the finite state machine.

INPUT:

• transition has to be a FSMTransition.

926 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

True or False.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMTransition
sage: t = FSMTransition('A', 'A', 0, 1)
sage: FiniteStateMachine().has_transition(t)
False
sage: FiniteStateMachine().has_transition(('A', 'A', 0, 1))
Traceback (most recent call last):
...
TypeError: Transition is not an instance of FSMTransition.

induced_sub_finite_state_machine(states)
Return a sub-finite-state-machine of the finite state machine induced by the given states.

INPUT:

• states – a list (or an iterator) of states (either labels or instances of FSMState) of the sub-finite-state-
machine.

OUTPUT:

A new finite state machine. It consists (of deep copies) of the given states and (deep copies) of all transitions
of self between these states.

EXAMPLES:

sage: FSM = FiniteStateMachine([(0, 1, 0), (0, 2, 0),
....: (1, 2, 0), (2, 0, 0)])
sage: sub_FSM = FSM.induced_sub_finite_state_machine([0, 1])
sage: sub_FSM.states()
[0, 1]
sage: sub_FSM.transitions()
[Transition from 0 to 1: 0|-]
sage: FSM.induced_sub_finite_state_machine([3])
Traceback (most recent call last):
...
ValueError: 3 is not a state of this finite state machine.

initial_states()
Return a list of all initial states.

OUTPUT:

A list of all initial states.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A', is_initial=True)
sage: B = FSMState('B')
sage: F = FiniteStateMachine([(A, B, 1, 0)])
sage: F.initial_states()
['A']

input_alphabet = None
A list of letters representing the input alphabet of the finite state machine.

5.1. Comprehensive Module List 927

Combinatorics, Release 9.7

It can be set by the parameter input_alphabet when initializing a finite state machine, see
FiniteStateMachine.

It can also be set by the method determine_alphabets().

See also:

FiniteStateMachine, determine_alphabets(), output_alphabet.

input_projection()
Return an automaton where the output of each transition of self is deleted.

OUTPUT:

An automaton.

EXAMPLES:

sage: F = FiniteStateMachine([('A', 'B', 0, 1), ('A', 'A', 1, 1),
....: ('B', 'B', 1, 0)])
sage: G = F.input_projection()
sage: G.transitions()
[Transition from 'A' to 'B': 0|-,
Transition from 'A' to 'A': 1|-,
Transition from 'B' to 'B': 1|-]

intersection(other)

is_Markov_chain(is_zero=None)
Checks whether self is a Markov chain where the transition probabilities are modeled as input labels.

INPUT:

• is_zero – by default (is_zero=None), checking for zero is simply done by is_zero(). This pa-
rameter can be used to provide a more sophisticated check for zero, e.g. in the case of symbolic
probabilities, see the examples below.

OUTPUT:

True or False.

on_duplicate_transition must be duplicate_transition_add_input(), the sum of the input
weights of the transitions leaving a state must add up to 1 and the sum of initial probabilities must add
up to 1 (or all be None).

EXAMPLES:

sage: from sage.combinat.finite_state_machine import duplicate_transition_add_
→˓input
sage: F = Transducer([[0, 0, 1/4, 0], [0, 1, 3/4, 1],
....: [1, 0, 1/2, 0], [1, 1, 1/2, 1]],
....: on_duplicate_transition=duplicate_transition_add_input)
sage: F.is_Markov_chain()
True

on_duplicate_transition must be duplicate_transition_add_input():

sage: F = Transducer([[0, 0, 1/4, 0], [0, 1, 3/4, 1],
....: [1, 0, 1/2, 0], [1, 1, 1/2, 1]])
sage: F.is_Markov_chain()
False

928 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element.is_zero

Combinatorics, Release 9.7

Sum of input labels of the transitions leaving states must be 1:

sage: F = Transducer([[0, 0, 1/4, 0], [0, 1, 3/4, 1],
....: [1, 0, 1/2, 0]],
....: on_duplicate_transition=duplicate_transition_add_input)
sage: F.is_Markov_chain()
False

The initial probabilities of all states must be None or they must sum up to 1. The initial probabilities of all
states have to be set in the latter case:

sage: F = Transducer([[0, 0, 1/4, 0], [0, 1, 3/4, 1],
....: [1, 0, 1, 0]],
....: on_duplicate_transition=duplicate_transition_add_input)
sage: F.is_Markov_chain()
True
sage: F.state(0).initial_probability = 1/4
sage: F.is_Markov_chain()
False
sage: F.state(1).initial_probability = 7
sage: F.is_Markov_chain()
False
sage: F.state(1).initial_probability = 3/4
sage: F.is_Markov_chain()
True

If the probabilities are variables in the symbolic ring, assume() will do the trick:

sage: var('p q')
→˓# optional - sage.symbolic
(p, q)
sage: F = Transducer([(0, 0, p, 1), (0, 0, q, 0)],
→˓# optional - sage.symbolic
....: on_duplicate_transition=duplicate_transition_add_input)
sage: assume(p + q == 1)
→˓# optional - sage.symbolic
sage: (p + q - 1).is_zero()
→˓# optional - sage.symbolic
True
sage: F.is_Markov_chain()
→˓# optional - sage.symbolic
True
sage: forget()
→˓# optional - sage.symbolic
sage: del(p, q)
→˓# optional - sage.symbolic

If the probabilities are variables in some polynomial ring, the parameter is_zero can be used:

sage: R.<p, q> = PolynomialRing(QQ)
sage: def is_zero_polynomial(polynomial):
....: return polynomial in (p + q - 1)*R
sage: F = Transducer([(0, 0, p, 1), (0, 0, q, 0)],
....: on_duplicate_transition=duplicate_transition_add_input)

(continues on next page)

5.1. Comprehensive Module List 929

../../../../../../html/en/reference/calculus/sage/symbolic/assumptions.html#sage.symbolic.assumptions.assume

Combinatorics, Release 9.7

(continued from previous page)

sage: F.state(0).initial_probability = p + q
sage: F.is_Markov_chain()
False
sage: F.is_Markov_chain(is_zero_polynomial)
True

is_complete()
Return whether the finite state machine is complete.

OUTPUT:

True or False

A finite state machine is considered to be complete if each transition has an input label of length one and for
each pair (𝑞, 𝑎) where 𝑞 is a state and 𝑎 is an element of the input alphabet, there is exactly one transition
from 𝑞 with input label 𝑎.

EXAMPLES:

sage: fsm = FiniteStateMachine([(0, 0, 0, 0),
....: (0, 1, 1, 1),
....: (1, 1, 0, 0)],
....: determine_alphabets=False)
sage: fsm.is_complete()
Traceback (most recent call last):
...
ValueError: No input alphabet is given. Try calling determine_alphabets().
sage: fsm.input_alphabet = [0, 1]
sage: fsm.is_complete()
False
sage: fsm.add_transition((1, 1, 1, 1))
Transition from 1 to 1: 1|1
sage: fsm.is_complete()
True
sage: fsm.add_transition((0, 0, 1, 0))
Transition from 0 to 0: 1|0
sage: fsm.is_complete()
False

is_connected()

is_deterministic()
Return whether the finite finite state machine is deterministic.

OUTPUT:

True or False

A finite state machine is considered to be deterministic if each transition has input label of length one and
for each pair (𝑞, 𝑎) where 𝑞 is a state and 𝑎 is an element of the input alphabet, there is at most one transition
from 𝑞 with input label 𝑎. Furthermore, the finite state may not have more than one initial state.

EXAMPLES:

sage: fsm = FiniteStateMachine()
sage: fsm.add_transition(('A', 'B', 0, []))
Transition from 'A' to 'B': 0|-

(continues on next page)

930 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: fsm.is_deterministic()
True
sage: fsm.add_transition(('A', 'C', 0, []))
Transition from 'A' to 'C': 0|-
sage: fsm.is_deterministic()
False
sage: fsm.add_transition(('A', 'B', [0,1], []))
Transition from 'A' to 'B': 0,1|-
sage: fsm.is_deterministic()
False

Check that trac ticket #18556 is fixed:

sage: Automaton().is_deterministic()
True
sage: Automaton(initial_states=[0]).is_deterministic()
True
sage: Automaton(initial_states=[0, 1]).is_deterministic()
False

is_monochromatic()
Check whether the colors of all states are equal.

OUTPUT:

True or False

EXAMPLES:

sage: G = transducers.GrayCode()
sage: [s.color for s in G.iter_states()]
[None, None, None]
sage: G.is_monochromatic()
True
sage: G.state(1).color = 'blue'
sage: G.is_monochromatic()
False

iter_final_states()
Return an iterator of the final states.

OUTPUT:

An iterator over all initial states.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A', is_final=True)
sage: B = FSMState('B', is_initial=True)
sage: C = FSMState('C', is_final=True)
sage: F = FiniteStateMachine([(A, B), (A, C)])
sage: [s.label() for s in F.iter_final_states()]
['A', 'C']

5.1. Comprehensive Module List 931

https://trac.sagemath.org/18556

Combinatorics, Release 9.7

iter_initial_states()
Return an iterator of the initial states.

OUTPUT:

An iterator over all initial states.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A', is_initial=True)
sage: B = FSMState('B')
sage: F = FiniteStateMachine([(A, B, 1, 0)])
sage: [s.label() for s in F.iter_initial_states()]
['A']

iter_process(input_tape=None, initial_state=None, process_iterator_class=None, iterator_type=None,
automatic_output_type=False, **kwargs)

This function returns an iterator for processing the input. See process() (which runs this iterator until the
end) for more information.

INPUT:

• iterator_type – If None (default), then an instance of FSMProcessIterator is returned. If this
is 'simple' only an iterator over one output is returned (an exception is raised if this is not the case,
i.e., if the process has branched).

See process() for a description of the other parameters.

OUTPUT:

An iterator.

EXAMPLES:

We can use iter_process() to deal with infinite words:

sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]},
....: initial_states=['A'], final_states=['A'])
sage: words.FibonacciWord()
word: 0100101001001010010100100101001001010010...
sage: it = inverter.iter_process(
....: words.FibonacciWord(), iterator_type='simple')
sage: Words([0,1])(it)
word: 1011010110110101101011011010110110101101...

This can also be done by:

sage: inverter.iter_process(words.FibonacciWord(),
....: iterator_type='simple',
....: automatic_output_type=True)
word: 1011010110110101101011011010110110101101...

or even simpler by:

sage: inverter(words.FibonacciWord())
word: 1011010110110101101011011010110110101101...

To see what is going on, we use iter_process() without arguments:

932 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from itertools import islice
sage: it = inverter.iter_process(words.FibonacciWord())
sage: for current in islice(it, 4r):
....: print(current)
process (1 branch)
+ at state 'A'
+-- tape at 1, [[1]]
process (1 branch)
+ at state 'A'
+-- tape at 2, [[1, 0]]
process (1 branch)
+ at state 'A'
+-- tape at 3, [[1, 0, 1]]
process (1 branch)
+ at state 'A'
+-- tape at 4, [[1, 0, 1, 1]]

The following show the difference between using the 'simple'-option and not using it. With this option,
we have

sage: it = inverter.iter_process(input_tape=[0, 1, 1],
....: iterator_type='simple')
sage: for i, o in enumerate(it):
....: print('step %s: output %s' % (i, o))
step 0: output 1
step 1: output 0
step 2: output 0

So iter_process() is a generator expression which gives a new output letter in each step (and not more).
In many cases this is sufficient.

Doing the same without the 'simple'-option does not give the output directly; it has to be extracted first.
On the other hand, additional information is presented:

sage: it = inverter.iter_process(input_tape=[0, 1, 1])
sage: for current in it:
....: print(current)
process (1 branch)
+ at state 'A'
+-- tape at 1, [[1]]
process (1 branch)
+ at state 'A'
+-- tape at 2, [[1, 0]]
process (1 branch)
+ at state 'A'
+-- tape at 3, [[1, 0, 0]]
process (0 branches)
sage: it.result()
[Branch(accept=True, state='A', output=[1, 0, 0])]

One can see the growing of the output (the list of lists at the end of each entry).

Even if the transducer has transitions with empty or multiletter output, the simple iterator returns one new
output letter in each step:

5.1. Comprehensive Module List 933

Combinatorics, Release 9.7

sage: T = Transducer([(0, 0, 0, []),
....: (0, 0, 1, [1]),
....: (0, 0, 2, [2, 2])],
....: initial_states=[0])
sage: it = T.iter_process(input_tape=[0, 1, 2, 0, 1, 2],
....: iterator_type='simple')
sage: for i, o in enumerate(it):
....: print('step %s: output %s' % (i, o))
step 0: output 1
step 1: output 2
step 2: output 2
step 3: output 1
step 4: output 2
step 5: output 2

See also:

FiniteStateMachine.process(), Automaton.process(), Transducer.process(), __call__(),
FSMProcessIterator.

iter_states()
Return an iterator of the states.

OUTPUT:

An iterator of the states of the finite state machine.

EXAMPLES:

sage: FSM = Automaton([('1', '2', 1), ('2', '2', 0)])
sage: [s.label() for s in FSM.iter_states()]
['1', '2']

iter_transitions(from_state=None)
Return an iterator of all transitions.

INPUT:

• from_state – (default: None) If from_state is given, then a list of transitions starting there is given.

OUTPUT:

An iterator of all transitions.

EXAMPLES:

sage: FSM = Automaton([('1', '2', 1), ('2', '2', 0)])
sage: [(t.from_state.label(), t.to_state.label())
....: for t in FSM.iter_transitions('1')]
[('1', '2')]
sage: [(t.from_state.label(), t.to_state.label())
....: for t in FSM.iter_transitions('2')]
[('2', '2')]
sage: [(t.from_state.label(), t.to_state.label())
....: for t in FSM.iter_transitions()]
[('1', '2'), ('2', '2')]

kleene_star()
Compute the Kleene closure of this finite state machine.

934 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

A FiniteStateMachine of the same type as this finite state machine.

Assume that this finite state machine is an automaton recognizing the language ℒ. Then the Kleene star
recognizes the language ℒ* = {𝑤1 . . . 𝑤𝑛 | 𝑛 ≥ 0, 𝑤𝑗 ∈ ℒ for all 𝑗}.

Assume that this finite state machine is a transducer realizing a function 𝑓 on some alphabet ℒ. Then the
Kleene star realizes a function 𝑔 on ℒ* with 𝑔(𝑤1 . . . 𝑤𝑛) = 𝑓(𝑤1) . . . 𝑓(𝑤𝑛).

EXAMPLES:

Kleene star of an automaton:

sage: A = automata.Word([0, 1])
sage: B = A.kleene_star()
sage: B.transitions()
[Transition from 0 to 1: 0|-,
Transition from 2 to 0: -|-,
Transition from 1 to 2: 1|-]
sage: from sage.combinat.finite_state_machine import (
....: is_Automaton, is_Transducer)
sage: is_Automaton(B)
True
sage: [w for w in ([], [0, 1], [0, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1])
....: if B(w)]
[[],
[0, 1],
[0, 1, 0, 1]]

Kleene star of a transducer:

sage: T = Transducer([(0, 1, 0, 1), (0, 1, 1, 0)],
....: initial_states=[0],
....: final_states=[1])
sage: S = T.kleene_star()
sage: S.transitions()
[Transition from 0 to 1: 0|1,
Transition from 0 to 1: 1|0,
Transition from 1 to 0: -|-]
sage: is_Transducer(S)
True
sage: for w in ([], [0], [1], [0, 0], [0, 1]):
....: print("{} {}".format(w, S.process(w)))
[] (True, 0, [])
[0] [(True, 0, [1]), (True, 1, [1])]
[1] [(True, 0, [0]), (True, 1, [0])]
[0, 0] [(True, 0, [1, 1]), (True, 1, [1, 1])]
[0, 1] [(True, 0, [1, 0]), (True, 1, [1, 0])]

Final output words are taken into account:

sage: T = Transducer([(0, 1, 0, 1)],
....: initial_states=[0],
....: final_states=[1])
sage: T.state(1).final_word_out = 2

(continues on next page)

5.1. Comprehensive Module List 935

Combinatorics, Release 9.7

(continued from previous page)

sage: S = T.kleene_star()
sage: sorted(S.process([0, 0]))
[(True, 0, [1, 2, 1, 2]), (True, 1, [1, 2, 1, 2])]

Final output words may lead to undesirable situations if initial states and final states coincide:

sage: T = Transducer(initial_states=[0], final_states=[0])
sage: T.state(0).final_word_out = 1
sage: T([])
[1]
sage: S = T.kleene_star()
sage: S([])
Traceback (most recent call last):
...
RuntimeError: State 0 is in an epsilon cycle (no input), but
output is written.

language(max_length=None, **kwargs)
Return all words that can be written by this transducer.

INPUT:

• max_length – an integer or None (default). Only output words which come from inputs of length
at most max_length will be considered. If None, then this iterates over all possible words without
length restrictions.

• kwargs – will be passed on to the process iterator. See process() for a description.

OUTPUT:

An iterator.

EXAMPLES:

sage: NAF = Transducer([('I', 0, 0, None), ('I', 1, 1, None),
....: (0, 0, 0, 0), (0, 1, 1, 0),
....: (1, 0, 0, 1), (1, 2, 1, -1),
....: (2, 1, 0, 0), (2, 2, 1, 0)],
....: initial_states=['I'], final_states=[0],
....: input_alphabet=[0, 1])
sage: sorted(NAF.language(4),
....: key=lambda o: (ZZ(o, base=2), len(o)))
[[], [0], [0, 0], [0, 0, 0],
[1], [1, 0], [1, 0, 0],
[0, 1], [0, 1, 0],
[-1, 0, 1],
[0, 0, 1],
[1, 0, 1]]

sage: iterator = NAF.language()
sage: next(iterator)
[]
sage: next(iterator)
[0]
sage: next(iterator)

(continues on next page)

936 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1]
sage: next(iterator)
[0, 0]
sage: next(iterator)
[0, 1]

See also:

Automaton.language(), process().

latex_options(coordinates=None, format_state_label=None, format_letter=None,
format_transition_label=None, loop_where=None, initial_where=None,
accepting_style=None, accepting_distance=None, accepting_where=None,
accepting_show_empty=None)

Set options for LaTeX output via latex() and therefore view().

INPUT:

• coordinates – a dictionary or a function mapping labels of states to pairs interpreted as coordi-
nates. If no coordinates are given, states a placed equidistantly on a circle of radius 3. See also
set_coordinates().

• format_state_label – a function mapping labels of states to a string suitable for typesetting in
LaTeX’s mathematics mode. If not given, latex() is used.

• format_letter – a function mapping letters of the input and output alphabets to a string suitable for
typesetting in LaTeX’s mathematics mode. If not given, default_format_transition_label()
uses latex().

• format_transition_label – a function mapping words over the input and output alpha-
bets to a string suitable for typesetting in LaTeX’s mathematics mode. If not given,
default_format_transition_label() is used.

• loop_where – a dictionary or a function mapping labels of initial states to one of 'above', 'left',
'below', 'right'. If not given, 'above' is used.

• initial_where – a dictionary or a function mapping labels of initial states to one of 'above',
'left', 'below', 'right'. If not given, TikZ’ default (currently 'left') is used.

• accepting_style – one of 'accepting by double' and 'accepting by arrow'. If not given,
'accepting by double' is used unless there are non-empty final output words.

• accepting_distance – a string giving a LaTeX length used for the length of the arrow leading from
a final state. If not given, TikZ’ default (currently '3ex') is used unless there are non-empty final
output words, in which case '7ex' is used.

• accepting_where – a dictionary or a function mapping labels of final states to one of 'above',
'left', 'below', 'right'. If not given, TikZ’ default (currently 'right') is used. If the final state
has a final output word, it is also possible to give an angle in degrees.

• accepting_show_empty – if True the arrow of an empty final output word is labeled as well. Note
that this implicitly implies accepting_style='accepting by arrow'. If not given, the default
False is used.

OUTPUT:

Nothing.

As TikZ (cf. the Wikipedia article PGF/TikZ) is used to typeset the graphics, the syntax is oriented on
TikZ’ syntax.

5.1. Comprehensive Module List 937

../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.latex
../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.view
../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.latex
../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.latex
https://en.wikipedia.org/wiki/PGF/TikZ

Combinatorics, Release 9.7

This is a convenience function collecting all options for LaTeX output. All of its functionality can also be
achieved by directly setting the attributes

• coordinates, format_label, loop_where, initial_where, and accepting_where of
FSMState (here, format_label is a callable without arguments, everything else is a specific value);

• format_label of FSMTransition (format_label is a callable without arguments);

• format_state_label, format_letter, format_transition_label, accepting_style,
accepting_distance, and accepting_show_empty of FiniteStateMachine.

This function, however, also (somewhat) checks its input and serves to collect documentation on all these
options.

The function can be called several times, only those arguments which are not None are taken into account.
By the same means, it can be combined with directly setting some attributes as outlined above.

EXAMPLES:

See also the section on LaTeX output in the introductory examples of this module.

sage: T = Transducer(initial_states=[4],
....: final_states=[0, 3])
sage: for j in srange(4):
....: T.add_transition(4, j, 0, [0, j])
....: T.add_transition(j, 4, 0, [0, -j])
....: T.add_transition(j, j, 0, 0)
Transition from 4 to 0: 0|0,0
Transition from 0 to 4: 0|0,0
Transition from 0 to 0: 0|0
Transition from 4 to 1: 0|0,1
Transition from 1 to 4: 0|0,-1
Transition from 1 to 1: 0|0
Transition from 4 to 2: 0|0,2
Transition from 2 to 4: 0|0,-2
Transition from 2 to 2: 0|0
Transition from 4 to 3: 0|0,3
Transition from 3 to 4: 0|0,-3
Transition from 3 to 3: 0|0
sage: T.add_transition(4, 4, 0, 0)
Transition from 4 to 4: 0|0
sage: T.state(3).final_word_out = [0, 0]
sage: T.latex_options(
....: coordinates={4: (0, 0),
....: 0: (-6, 3),
....: 1: (-2, 3),
....: 2: (2, 3),
....: 3: (6, 3)},
....: format_state_label=lambda x: r'\mathbf{%s}' % x,
....: format_letter=lambda x: r'w_{%s}' % x,
....: format_transition_label=lambda x:
....: r"{\scriptstyle %s}" % T.default_format_transition_label(x),
....: loop_where={4: 'below', 0: 'left', 1: 'above',
....: 2: 'right', 3:'below'},
....: initial_where=lambda x: 'above',
....: accepting_style='accepting by double',
....: accepting_distance='10ex',

(continues on next page)

938 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: accepting_where={0: 'left', 3: 45}

....:)
sage: T.state(4).format_label=lambda: r'\mathcal{I}'
sage: latex(T)
\begin{tikzpicture}[auto, initial text=, >=latex]
\node[state, initial, initial where=above] (v0) at (0.000000, 0.000000) {$\
→˓mathcal{I}$};
\node[state, accepting, accepting where=left] (v1) at (-6.000000, 3.000000) {$\
→˓mathbf{0}$};
\node[state, accepting, accepting where=45] (v2) at (6.000000, 3.000000) {$\
→˓mathbf{3}$};
\path[->] (v2.45.00) edge node[rotate=45.00, anchor=south] {$$ \mid {\
→˓scriptstyle w_{0} w_{0}}$} ++(45.00:10ex);
\node[state] (v3) at (-2.000000, 3.000000) {$\mathbf{1}$};
\node[state] (v4) at (2.000000, 3.000000) {$\mathbf{2}$};
\path[->] (v1) edge[loop left] node[rotate=90, anchor=south] {${\scriptstyle w_
→˓{0}}\mid {\scriptstyle w_{0}}$} ();
\path[->] (v1.-21.57) edge node[rotate=-26.57, anchor=south] {${\scriptstyle w_
→˓{0}}\mid {\scriptstyle w_{0} w_{0}}$} (v0.148.43);
\path[->] (v3) edge[loop above] node {${\scriptstyle w_{0}}\mid {\scriptstyle w_
→˓{0}}$} ();
\path[->] (v3.-51.31) edge node[rotate=-56.31, anchor=south] {${\scriptstyle w_
→˓{0}}\mid {\scriptstyle w_{0} w_{-1}}$} (v0.118.69);
\path[->] (v4) edge[loop right] node[rotate=90, anchor=north] {${\scriptstyle w_
→˓{0}}\mid {\scriptstyle w_{0}}$} ();
\path[->] (v4.-118.69) edge node[rotate=56.31, anchor=north] {${\scriptstyle w_
→˓{0}}\mid {\scriptstyle w_{0} w_{-2}}$} (v0.51.31);
\path[->] (v2) edge[loop below] node {${\scriptstyle w_{0}}\mid {\scriptstyle w_
→˓{0}}$} ();
\path[->] (v2.-148.43) edge node[rotate=26.57, anchor=north] {${\scriptstyle w_
→˓{0}}\mid {\scriptstyle w_{0} w_{-3}}$} (v0.21.57);
\path[->] (v0.158.43) edge node[rotate=333.43, anchor=north] {${\scriptstyle w_
→˓{0}}\mid {\scriptstyle w_{0} w_{0}}$} (v1.328.43);
\path[->] (v0.128.69) edge node[rotate=303.69, anchor=north] {${\scriptstyle w_
→˓{0}}\mid {\scriptstyle w_{0} w_{1}}$} (v3.298.69);
\path[->] (v0.61.31) edge node[rotate=56.31, anchor=south] {${\scriptstyle w_{0}
→˓}\mid {\scriptstyle w_{0} w_{2}}$} (v4.231.31);
\path[->] (v0.31.57) edge node[rotate=26.57, anchor=south] {${\scriptstyle w_{0}
→˓}\mid {\scriptstyle w_{0} w_{3}}$} (v2.201.57);
\path[->] (v0) edge[loop below] node {${\scriptstyle w_{0}}\mid {\scriptstyle w_
→˓{0}}$} ();
\end{tikzpicture}
sage: view(T) # not tested

To actually see this, use the live documentation in the Sage notebook and execute the cells.

By changing some of the options, we get the following output:

sage: T.latex_options(
....: format_transition_label=T.default_format_transition_label,
....: accepting_style='accepting by arrow',
....: accepting_show_empty=True
....:)

(continues on next page)

5.1. Comprehensive Module List 939

Combinatorics, Release 9.7

(continued from previous page)

sage: latex(T)
\begin{tikzpicture}[auto, initial text=, >=latex, accepting text=, accepting/.
→˓style=accepting by arrow, accepting distance=10ex]
\node[state, initial, initial where=above] (v0) at (0.000000, 0.000000) {$\
→˓mathcal{I}$};
\node[state] (v1) at (-6.000000, 3.000000) {$\mathbf{0}$};
\path[->] (v1.180.00) edge node[rotate=360.00, anchor=south] {$$ \mid \
→˓varepsilon$} ++(180.00:10ex);
\node[state] (v2) at (6.000000, 3.000000) {$\mathbf{3}$};
\path[->] (v2.45.00) edge node[rotate=45.00, anchor=south] {$$ \mid w_{0} w_{0}
→˓$} ++(45.00:10ex);
\node[state] (v3) at (-2.000000, 3.000000) {$\mathbf{1}$};
\node[state] (v4) at (2.000000, 3.000000) {$\mathbf{2}$};
\path[->] (v1) edge[loop left] node[rotate=90, anchor=south] {$w_{0}\mid w_{0}$}
→˓ ();
\path[->] (v1.-21.57) edge node[rotate=-26.57, anchor=south] {$w_{0}\mid w_{0}␣
→˓w_{0}$} (v0.148.43);
\path[->] (v3) edge[loop above] node {$w_{0}\mid w_{0}$} ();
\path[->] (v3.-51.31) edge node[rotate=-56.31, anchor=south] {$w_{0}\mid w_{0}␣
→˓w_{-1}$} (v0.118.69);
\path[->] (v4) edge[loop right] node[rotate=90, anchor=north] {$w_{0}\mid w_{0}
→˓$} ();
\path[->] (v4.-118.69) edge node[rotate=56.31, anchor=north] {$w_{0}\mid w_{0}␣
→˓w_{-2}$} (v0.51.31);
\path[->] (v2) edge[loop below] node {$w_{0}\mid w_{0}$} ();
\path[->] (v2.-148.43) edge node[rotate=26.57, anchor=north] {$w_{0}\mid w_{0}␣
→˓w_{-3}$} (v0.21.57);
\path[->] (v0.158.43) edge node[rotate=333.43, anchor=north] {$w_{0}\mid w_{0}␣
→˓w_{0}$} (v1.328.43);
\path[->] (v0.128.69) edge node[rotate=303.69, anchor=north] {$w_{0}\mid w_{0}␣
→˓w_{1}$} (v3.298.69);
\path[->] (v0.61.31) edge node[rotate=56.31, anchor=south] {$w_{0}\mid w_{0} w_
→˓{2}$} (v4.231.31);
\path[->] (v0.31.57) edge node[rotate=26.57, anchor=south] {$w_{0}\mid w_{0} w_
→˓{3}$} (v2.201.57);
\path[->] (v0) edge[loop below] node {$w_{0}\mid w_{0}$} ();
\end{tikzpicture}
sage: view(T) # not tested

markov_chain_simplification()
Consider self as Markov chain with probabilities as input labels and simplify it.

INPUT:

Nothing.

OUTPUT:

Simplified version of self.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import duplicate_transition_add_
→˓input
sage: T = Transducer([[1, 2, 1/4, 0], [1, -2, 1/4, 0], [1, -2, 1/2, 0],

(continues on next page)

940 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: [2, 2, 1/4, 1], [2, -2, 1/4, 1], [-2, -2, 1/4, 1],

....: [-2, 2, 1/4, 1], [2, 3, 1/2, 2], [-2, 3, 1/2, 2]],

....: initial_states=[1],

....: final_states=[3],

....: on_duplicate_transition=duplicate_transition_add_input)
sage: T1 = T.markov_chain_simplification()
sage: sorted(T1.transitions())
[Transition from ((1,),) to ((2, -2),): 1|0,
Transition from ((2, -2),) to ((2, -2),): 1/2|1,
Transition from ((2, -2),) to ((3,),): 1/2|2]

merged_transitions()
Merges transitions which have the same from_state, to_state and word_out while adding their
word_in.

INPUT:

Nothing.

OUTPUT:

A finite state machine with merged transitions. If no mergers occur, return self.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import duplicate_transition_add_
→˓input
sage: T = Transducer([[1, 2, 1/4, 1], [1, -2, 1/4, 1], [1, -2, 1/2, 1],
....: [2, 2, 1/4, 1], [2, -2, 1/4, 1], [-2, -2, 1/4, 1],
....: [-2, 2, 1/4, 1], [2, 3, 1/2, 1], [-2, 3, 1/2, 1]],
....: on_duplicate_transition=duplicate_transition_add_input)
sage: T1 = T.merged_transitions()
sage: T1 is T
False
sage: sorted(T1.transitions())
[Transition from -2 to -2: 1/4|1,
Transition from -2 to 2: 1/4|1,
Transition from -2 to 3: 1/2|1,
Transition from 1 to 2: 1/4|1,
Transition from 1 to -2: 3/4|1,
Transition from 2 to -2: 1/4|1,
Transition from 2 to 2: 1/4|1,
Transition from 2 to 3: 1/2|1]

Applying the function again does not change the result:

sage: T2 = T1.merged_transitions()
sage: T2 is T1
True

moments_waiting_time(test=<class 'bool'>, is_zero=None, expectation_only=False)
If this finite state machine acts as a Markov chain, return the expectation and variance of the number of
steps until first writing True.

INPUT:

5.1. Comprehensive Module List 941

Combinatorics, Release 9.7

• test – (default: bool) a callable deciding whether an output label is to be considered True. By
default, the standard conversion to boolean is used.

• is_zero – (default: None) a callable deciding whether an expression for a probability is zero. By
default, checking for zero is simply done by is_zero(). This parameter can be used to provide a
more sophisticated check for zero, e.g. in the case of symbolic probabilities, see the examples below.
This parameter is passed on to is_Markov_chain(). This parameter only affects the input of the
Markov chain.

• expectation_only – (default: False) if set, the variance is not computed (in order to save time).
By default, the variance is computed.

OUTPUT:

A dictionary (if expectation_only=False) consisting of

• expectation,

• variance.

Otherwise, just the expectation is returned (no dictionary for expectation_only=True).

Expectation and variance of the number of steps until first writing True (as determined by the parameter
test).

ALGORITHM:

Relies on a (classical and easy) probabilistic argument, cf. [FGT1992], Eqns. (6) and (7).

For the variance, see [FHP2015], Section 2.

EXAMPLES:

1. The simplest example is to wait for the first 1 in a 0-1-string where both digits appear with probability
1/2. In fact, the waiting time equals 𝑘 if and only if the string starts with 0𝑘−11. This event occurs
with probability 2−𝑘. Therefore, the expected waiting time and the variance are

∑︀
𝑘≥1 𝑘2−𝑘 = 2 and∑︀

𝑘≥1(𝑘 − 2)22−𝑘 = 2:

sage: var('k')
k
sage: sum(k * 2^(-k), k, 1, infinity)
2
sage: sum((k-2)^2 * 2^(-k), k, 1, infinity)
2

We now compute the same expectation and variance by using a Markov chain:

sage: from sage.combinat.finite_state_machine import (
....: duplicate_transition_add_input)
sage: T = Transducer(
....: [(0, 0, 1/2, 0), (0, 0, 1/2, 1)],
....: on_duplicate_transition=\
....: duplicate_transition_add_input,
....: initial_states=[0],
....: final_states=[0])
sage: T.moments_waiting_time()
{'expectation': 2, 'variance': 2}
sage: T.moments_waiting_time(expectation_only=True)
2

In the following, we replace the output 0 by -1 and demonstrate the use of the parameter test:

942 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element.is_zero

Combinatorics, Release 9.7

sage: T.delete_transition((0, 0, 1/2, 0))
sage: T.add_transition((0, 0, 1/2, -1))
Transition from 0 to 0: 1/2|-1
sage: T.moments_waiting_time(test=lambda x: x<0)
{'expectation': 2, 'variance': 2}

2. Make sure that the transducer is actually a Markov chain. Although this is checked by the code, unex-
pected behaviour may still occur if the transducer looks like a Markov chain. In the following example,
we ‘forget’ to assign probabilities, but due to a coincidence, all ‘probabilities’ add up to one. Never-
theless, 0 is never written, so the expectation is 1.

sage: T = Transducer([(0, 0, 0, 0), (0, 0, 1, 1)],
....: on_duplicate_transition=\
....: duplicate_transition_add_input,
....: initial_states=[0],
....: final_states=[0])
sage: T.moments_waiting_time()
{'expectation': 1, 'variance': 0}

3. If True is never written, the moments are +Infinity:

sage: T = Transducer([(0, 0, 1, 0)],
....: on_duplicate_transition=\
....: duplicate_transition_add_input,
....: initial_states=[0],
....: final_states=[0])
sage: T.moments_waiting_time()
{'expectation': +Infinity, 'variance': +Infinity}

4. Let ℎ and 𝑟 be positive integers. We consider random strings of letters 1, . . ., 𝑟 where the letter 𝑗 occurs
with probability 𝑝𝑗 . Let 𝐵 be the random variable giving the first position of a block of ℎ consecutive
identical letters. Then

E(𝐵) =
1

𝑟∑︁
𝑖=1

1

𝑝−1𝑖 + · · ·+ 𝑝−ℎ𝑖

,

V(𝐵) =

𝑟∑︁
𝑖=1

(︂
𝑝𝑖 + 𝑝ℎ𝑖
1− 𝑝ℎ𝑖

− 2ℎ
𝑝ℎ𝑖 (1− 𝑝𝑖)
(1− 𝑝ℎ𝑖)2

)︂
(︂ 𝑟∑︁
𝑖=1

1

𝑝−1𝑖 + · · ·+ 𝑝−ℎ𝑖

)︂2

cf. [S1986], p. 62, or [FHP2015], Theorem 1. We now verify this with a transducer approach.

sage: def test(h, r):
....: R = PolynomialRing(
....: QQ,
....: names=['p_%d' % j for j in range(r)])
....: p = R.gens()
....: def is_zero(polynomial):
....: return polynomial in (sum(p) - 1) * R
....: theory_expectation = 1/(sum(1/sum(p[j]^(-i)
....: for i in range(1, h+1))

(continues on next page)

5.1. Comprehensive Module List 943

Combinatorics, Release 9.7

(continued from previous page)

....: for j in range(r)))

....: theory_variance = sum(

....: (p[i] + p[i]^h)/(1 - p[i]^h)

....: - 2*h*p[i]^h * (1 - p[i])/(1 - p[i]^h)^2

....: for i in range(r)

....:) * theory_expectation^2

....: alphabet = list(range(r))

....: counters = [

....: transducers.CountSubblockOccurrences([j]*h,

....: alphabet)

....: for j in alphabet]

....: all_counter = counters[0].cartesian_product(

....: counters[1:])

....: adder = transducers.add(input_alphabet=[0, 1],

....: number_of_operands=r)

....: probabilities = Transducer(

....: [(0, 0, p[j], j) for j in alphabet],

....: initial_states=[0],

....: final_states=[0],

....: on_duplicate_transition=\

....: duplicate_transition_add_input)

....: chain = adder(all_counter(probabilities))

....: result = chain.moments_waiting_time(

....: is_zero=is_zero)

....: return is_zero((result['expectation'] -

....: theory_expectation).numerator()) \

....: and \

....: is_zero((result['variance'] -

....: theory_variance).numerator())
sage: test(2, 2)
True
sage: test(2, 3)
True
sage: test(3, 3)
True

5. Consider the alphabet {0, . . . , 𝑟−1}, some 1 ≤ 𝑗 ≤ 𝑟 and some ℎ ≥ 1. For some probabilities 𝑝0, . . .,
𝑝𝑟−1, we consider infinite words where the letters occur independently with the given probabilities.
The random variable𝐵𝑗 is the first position𝑛 such that there exist 𝑗 of the 𝑟 letters having an ℎ-run. The
expectation of𝐵𝑗 is given in [FHP2015], Theorem 2. Here, we verify this result by using transducers:

sage: def test(h, r, j):
....: R = PolynomialRing(
....: QQ,
....: names=['p_%d' % i for i in range(r)])
....: p = R.gens()
....: def is_zero(polynomial):
....: return polynomial in (sum(p) - 1) * R
....: alphabet = list(range(r))
....: counters = [
....: transducers.Wait([0, 1])(
....: transducers.CountSubblockOccurrences(

(continues on next page)

944 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: [i]*h,

....: alphabet))

....: for i in alphabet]

....: all_counter = counters[0].cartesian_product(

....: counters[1:])

....: adder = transducers.add(input_alphabet=[0, 1],

....: number_of_operands=r)

....: threshold = transducers.map(

....: f=lambda x: x >= j,

....: input_alphabet=srange(r+1))

....: probabilities = Transducer(

....: [(0, 0, p[i], i) for i in alphabet],

....: initial_states=[0],

....: final_states=[0],

....: on_duplicate_transition=\

....: duplicate_transition_add_input)

....: chain = threshold(adder(all_counter(

....: probabilities)))

....: result = chain.moments_waiting_time(

....: is_zero=is_zero,

....: expectation_only=True)

....: R_v = PolynomialRing(

....: QQ,

....: names=['p_%d' % i for i in range(r)])

....: v = R_v.gens()

....: S = 1/(1 - sum(v[i]/(1+v[i])

....: for i in range(r)))

....: alpha = [(p[i] - p[i]^h)/(1 - p[i])

....: for i in range(r)]

....: gamma = [p[i]/(1 - p[i]) for i in range(r)]

....: alphabet_set = set(alphabet)

....: expectation = 0

....: for q in range(j):

....: for M in Subsets(alphabet_set, q):

....: summand = S

....: for i in M:

....: summand = summand.subs(

....: {v[i]: gamma[i]}) -\

....: summand.subs({v[i]: alpha[i]})

....: for i in alphabet_set - set(M):

....: summand = summand.subs(

....: {v[i]: alpha[i]})

....: expectation += summand

....: return is_zero((result - expectation).\

....: numerator())
sage: test(2, 3, 2)
True

REFERENCES:

number_of_words(variable=None, base_ring=None)
Return the number of successful input words of given length.

INPUT:

5.1. Comprehensive Module List 945

Combinatorics, Release 9.7

• variable – a symbol denoting the length of the words, by default 𝑛.

• base_ring – Ring (default: QQbar) in which to compute the eigenvalues.

OUTPUT:

A symbolic expression.

EXAMPLES:

sage: NAFpm = Automaton([(0, 0, 0), (0, 1, 1),
....: (0, 1, -1), (1, 0, 0)],
....: initial_states=[0],
....: final_states=[0, 1])
sage: N = NAFpm.number_of_words(); N # optional -␣
→˓sage.symbolic
4/3*2^n - 1/3*(-1)^n
sage: all(len(list(NAFpm.language(s))) # optional -␣
→˓sage.symbolic
....: - len(list(NAFpm.language(s-1))) == N.subs(n=s)
....: for s in srange(1, 6))
True

An example with non-rational eigenvalues. By default, eigenvalues are elements of the field of
algebraic numbers.

sage: NAFp = Automaton([(0, 0, 0), (0, 1, 1), (1, 0, 0)],
....: initial_states=[0],
....: final_states=[0, 1])
sage: N = NAFp.number_of_words(); N # optional -␣
→˓sage.symbolic
1.170820393249937?*1.618033988749895?^n
- 0.1708203932499369?*(-0.618033988749895?)^n
sage: all(len(list(NAFp.language(s))) # optional -␣
→˓sage.symbolic
....: - len(list(NAFp.language(s-1))) == N.subs(n=s)
....: for s in srange(1, 6))
True

We specify a suitable base_ring to obtain a radical expression. To do so, we first compute the characteristic
polynomial and then construct a number field generated by its roots.

sage: M = NAFp.adjacency_matrix(entry=lambda t: 1)
sage: M.characteristic_polynomial() # optional -␣
→˓sage.symbolic
x^2 - x - 1
sage: R.<phi> = NumberField(x^2-x-1, embedding=1.6) # optional -␣
→˓sage.symbolic
sage: N = NAFp.number_of_words(base_ring=R); N # optional -␣
→˓sage.symbolic
1/2*(1/2*sqrt(5) + 1/2)^n*(3*sqrt(1/5) + 1)
- 1/2*(-1/2*sqrt(5) + 1/2)^n*(3*sqrt(1/5) - 1)
sage: all(len(list(NAFp.language(s))) # optional -␣
→˓sage.symbolic
....: - len(list(NAFp.language(s-1))) == N.subs(n=s)

(continues on next page)

946 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/number_fields/sage/rings/qqbar.html#module-sage.rings.qqbar
../../../../../../html/en/reference/number_fields/sage/rings/qqbar.html#module-sage.rings.qqbar

Combinatorics, Release 9.7

(continued from previous page)

....: for s in srange(1, 6))
True

In this special case, we might also use the constant golden_ratio:

sage: R.<phi> = NumberField(x^2-x-1, embedding=golden_ratio) # optional -␣
→˓sage.symbolic
sage: N = NAFp.number_of_words(base_ring=R); N # optional -␣
→˓sage.symbolic
1/5*(3*golden_ratio + 1)*golden_ratio^n
- 1/5*(3*golden_ratio - 4)*(-golden_ratio + 1)^n
sage: all(len(list(NAFp.language(s))) # optional -␣
→˓sage.symbolic
....: - len(list(NAFp.language(s-1))) == N.subs(n=s)
....: for s in srange(1, 6))
True

The adjacency matrix of the following example is a Jordan matrix of size 3 to the eigenvalue 4:

sage: J3 = Automaton([(0, 1, -1), (1, 2, -1)],
....: initial_states=[0],
....: final_states=[0, 1, 2])
sage: for i in range(3):
....: for j in range(4):
....: new_transition = J3.add_transition(i, i, j)
sage: J3.adjacency_matrix(entry=lambda t: 1)
[4 1 0]
[0 4 1]
[0 0 4]
sage: N = J3.number_of_words(); N # optional -␣
→˓sage.symbolic
1/2*4^(n - 2)*(n - 1)*n + 4^(n - 1)*n + 4^n
sage: all(len(list(J3.language(s))) # optional -␣
→˓sage.symbolic
....: - len(list(J3.language(s-1))) == N.subs(n=s)
....: for s in range(1, 6))
True

Here is an automaton without cycles, so with eigenvalue 0.

sage: A = Automaton([(j, j+1, 0) for j in range(3)],
....: initial_states=[0],
....: final_states=list(range(3)))
sage: A.number_of_words() # optional -␣
→˓sage.symbolic
1/2*0^(n - 2)*(n - 1)*n + 0^(n - 1)*n + 0^n

on_duplicate_transition = <function duplicate_transition_ignore>
Which function to call when a duplicate transition is inserted.

It can be set by the parameter on_duplicate_transition when initializing a finite state machine, see
FiniteStateMachine.

5.1. Comprehensive Module List 947

../../../../../../html/en/reference/constants/sage/symbolic/constants.html#sage.symbolic.constants.GoldenRatio

Combinatorics, Release 9.7

See also:

FiniteStateMachine, is_Markov_chain(), markov_chain_simplification().

output_alphabet = None
A list of letters representing the output alphabet of the finite state machine.

It can be set by the parameter output_alphabet when initializing a finite state machine, see
FiniteStateMachine.

It can also be set by the method determine_alphabets().

See also:

FiniteStateMachine, determine_alphabets(), input_alphabet.

output_projection()
Return a automaton where the input of each transition of self is deleted and the new input is the original
output.

OUTPUT:

An automaton.

EXAMPLES:

sage: F = FiniteStateMachine([('A', 'B', 0, 1), ('A', 'A', 1, 1),
....: ('B', 'B', 1, 0)])
sage: G = F.output_projection()
sage: G.transitions()
[Transition from 'A' to 'B': 1|-,
Transition from 'A' to 'A': 1|-,
Transition from 'B' to 'B': 0|-]

Final output words are also considered correctly:

sage: H = Transducer([('A', 'B', 0, 1), ('A', 'A', 1, 1),
....: ('B', 'B', 1, 0), ('A', ('final', 0), 0, 0)],
....: final_states=['A', 'B'])
sage: H.state('B').final_word_out = 2
sage: J = H.output_projection()
sage: J.states()
['A', 'B', ('final', 0), ('final', 1)]
sage: J.transitions()
[Transition from 'A' to 'B': 1|-,
Transition from 'A' to 'A': 1|-,
Transition from 'A' to ('final', 0): 0|-,
Transition from 'B' to 'B': 0|-,
Transition from 'B' to ('final', 1): 2|-]
sage: J.final_states()
['A', ('final', 1)]

plot()
Plots a graph of the finite state machine with labeled vertices and labeled edges.

INPUT:

Nothing.

OUTPUT:

948 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

A plot of the graph of the finite state machine.

predecessors(state, valid_input=None)
Lists all predecessors of a state.

INPUT:

• state – the state from which the predecessors should be listed.

• valid_input – If valid_input is a list, then we only consider transitions whose input labels are
contained in valid_input. state has to be a FSMState (not a label of a state). If input labels of
length larger than 1 are used, then valid_input has to be a list of lists.

OUTPUT:

A list of states.

EXAMPLES:

sage: A = Transducer([('I', 'A', 'a', 'b'), ('I', 'B', 'b', 'c'),
....: ('I', 'C', 'c', 'a'), ('A', 'F', 'b', 'a'),
....: ('B', 'F', ['c', 'b'], 'b'), ('C', 'F', 'a', 'c')],
....: initial_states=['I'], final_states=['F'])
sage: A.predecessors(A.state('A'))
['A', 'I']
sage: A.predecessors(A.state('F'), valid_input=['b', 'a'])
['F', 'C', 'A', 'I']
sage: A.predecessors(A.state('F'), valid_input=[['c', 'b'], 'a'])
['F', 'C', 'B']

prepone_output()
For all paths, shift the output of the path from one transition to the earliest possible preceding transition of
the path.

INPUT:

Nothing.

OUTPUT:

Nothing.

Apply the following to each state 𝑠 (except initial states) of the finite state machine as often as possible:

If the letter 𝑎 is a prefix of the output label of all transitions from 𝑠 (including the final output of 𝑠), then
remove it from all these labels and append it to all output labels of all transitions leading to 𝑠.

We assume that the states have no output labels, but final outputs are allowed.

EXAMPLES:

sage: A = Transducer([('A', 'B', 1, 1),
....: ('B', 'B', 0, 0),
....: ('B', 'C', 1, 0)],
....: initial_states=['A'],
....: final_states=['C'])
sage: A.prepone_output()
sage: A.transitions()
[Transition from 'A' to 'B': 1|1,0,
Transition from 'B' to 'B': 0|0,
Transition from 'B' to 'C': 1|-]

5.1. Comprehensive Module List 949

Combinatorics, Release 9.7

sage: B = Transducer([('A', 'B', 0, 1),
....: ('B', 'C', 1, [1, 1]),
....: ('B', 'C', 0, 1)],
....: initial_states=['A'],
....: final_states=['C'])
sage: B.prepone_output()
sage: B.transitions()
[Transition from 'A' to 'B': 0|1,1,
Transition from 'B' to 'C': 1|1,
Transition from 'B' to 'C': 0|-]

If initial states are not labeled as such, unexpected results may be obtained:

sage: C = Transducer([(0,1,0,0)])
sage: C.prepone_output()
verbose 0 (...: finite_state_machine.py, prepone_output)
All transitions leaving state 0 have an output label with
prefix 0. However, there is no inbound transition and it
is not an initial state. This routine (possibly called by
simplification) therefore erased this prefix from all
outbound transitions.
sage: C.transitions()
[Transition from 0 to 1: 0|-]

Also the final output of final states can be changed:

sage: T = Transducer([('A', 'B', 0, 1),
....: ('B', 'C', 1, [1, 1]),
....: ('B', 'C', 0, 1)],
....: initial_states=['A'],
....: final_states=['B'])
sage: T.state('B').final_word_out = [1]
sage: T.prepone_output()
sage: T.transitions()
[Transition from 'A' to 'B': 0|1,1,
Transition from 'B' to 'C': 1|1,
Transition from 'B' to 'C': 0|-]
sage: T.state('B').final_word_out
[]

sage: S = Transducer([('A', 'B', 0, 1),
....: ('B', 'C', 1, [1, 1]),
....: ('B', 'C', 0, 1)],
....: initial_states=['A'],
....: final_states=['B'])
sage: S.state('B').final_word_out = [0]
sage: S.prepone_output()
sage: S.transitions()
[Transition from 'A' to 'B': 0|1,
Transition from 'B' to 'C': 1|1,1,
Transition from 'B' to 'C': 0|1]
sage: S.state('B').final_word_out
[0]

950 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Output labels do not have to be hashable:

sage: C = Transducer([(0, 1, 0, []),
....: (1, 0, 0, [vector([0, 0]), 0]),
....: (1, 1, 1, [vector([0, 0]), 1]),
....: (0, 0, 1, 0)],
....: determine_alphabets=False,
....: initial_states=[0])
sage: C.prepone_output()
sage: sorted(C.transitions())
[Transition from 0 to 1: 0|(0, 0),
Transition from 0 to 0: 1|0,
Transition from 1 to 0: 0|0,
Transition from 1 to 1: 1|1,(0, 0)]

process(*args, **kwargs)
Return whether the finite state machine accepts the input, the state where the computation stops and which
output is generated.

INPUT:

• input_tape – the input tape can be a list or an iterable with entries from the input alphabet. If we are
working with a multi-tape machine (see parameter use_multitape_input and notes below), then
the tape is a list or tuple of tracks, each of which can be a list or an iterable with entries from the input
alphabet.

• initial_state or initial_states – the initial state(s) in which the machine starts. Either spec-
ify a single one with initial_state or a list of them with initial_states. If both are given,
initial_state will be appended to initial_states. If neither is specified, the initial states of the
finite state machine are taken.

• list_of_outputs – (default: None) a boolean or None. If True, then the outputs are given in list
form (even if we have no or only one single output). If False, then the result is never a list (an excep-
tion is raised if the result cannot be returned). If list_of_outputs=None, the method determines
automatically what to do (e.g. if a non-deterministic machine returns more than one path, then the
output is returned in list form).

• only_accepted – (default: False) a boolean. If set, then the first argument in the output is guaranteed
to be True (if the output is a list, then the first argument of each element will be True).

• always_include_output – if set (not by default), always include the output. This is inconsequential
for a FiniteStateMachine, but can be used in derived classes where the output is suppressed by
default, cf. Automaton.process().

• format_output – a function that translates the written output (which is in form of a list) to something
more readable. By default (None) identity is used here.

• check_epsilon_transitions – (default: True) a boolean. If False, then epsilon transitions are
not taken into consideration during process.

• write_final_word_out – (default: True) a boolean specifying whether the final output words
should be written or not.

• use_multitape_input – (default: False) a boolean. If True, then the multi-tape mode of the
process iterator is activated. See also the notes below for multi-tape machines.

• process_all_prefixes_of_input – (default: False) a boolean. If True, then each prefix of the
input word is processed (instead of processing the whole input word at once). Consequently, there is
an output generated for each of these prefixes.

5.1. Comprehensive Module List 951

Combinatorics, Release 9.7

• process_iterator_class – (default: None) a class inherited from FSMProcessIterator. If
None, then FSMProcessIterator is taken. An instance of this class is created and is used during
the processing.

• automatic_output_type – (default: False) a boolean. If set and the input has a parent, then the
output will have the same parent. If the input does not have a parent, then the output will be of the
same type as the input.

OUTPUT:

A triple (or a list of triples, cf. parameter list_of_outputs), where

• the first entry is True if the input string is accepted,

• the second gives the reached state after processing the input tape (This is a state with label None if the
input could not be processed, i.e., if at one point no transition to go on could be found.), and

• the third gives a list of the output labels written during processing (in the case the finite state machine
runs as transducer).

Note that in the case the finite state machine is not deterministic, all possible paths are taken into account.

This function uses an iterator which, in its simplest form, goes from one state to another in each step. To
decide which way to go, it uses the input words of the outgoing transitions and compares them to the input
tape. More precisely, in each step, the iterator takes an outgoing transition of the current state, whose input
label equals the input letter of the tape. The output label of the transition, if present, is written on the output
tape.

If the choice of the outgoing transition is not unique (i.e., we have a non-deterministic finite state machine),
all possibilities are followed. This is done by splitting the process into several branches, one for each of the
possible outgoing transitions.

The process (iteration) stops if all branches are finished, i.e., for no branch, there is any transition whose
input word coincides with the processed input tape. This can simply happen when the entire tape was read.

Also see __call__() for a version of process() with shortened output.

Internally this function creates and works with an instance of FSMProcessIterator. This iterator can
also be obtained with iter_process().

If working with multi-tape finite state machines, all input words of transitions are words of 𝑘-tuples of
letters. Moreover, the input tape has to consist of 𝑘 tracks, i.e., be a list or tuple of 𝑘 iterators, one for each
track.

Warning: Working with multi-tape finite state machines is still experimental and can lead to wrong
outputs.

EXAMPLES:

sage: binary_inverter = FiniteStateMachine({'A': [('A', 0, 1), ('A', 1, 0)]},
....: initial_states=['A'], final_states=[
→˓'A'])
sage: binary_inverter.process([0, 1, 0, 0, 1, 1])
(True, 'A', [1, 0, 1, 1, 0, 0])

Alternatively, we can invoke this function by:

sage: binary_inverter([0, 1, 0, 0, 1, 1])
(True, 'A', [1, 0, 1, 1, 0, 0])

952 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Below we construct a finite state machine which tests if an input is a non-adjacent form, i.e., no two neigh-
boring letters are both nonzero (see also the example on non-adjacent forms in the documentation of the
module Finite state machines, automata, transducers):

sage: NAF = FiniteStateMachine(
....: {'_': [('_', 0), (1, 1)], 1: [('_', 0)]},
....: initial_states=['_'], final_states=['_', 1])
sage: [NAF.process(w)[0] for w in [[0], [0, 1], [1, 1], [0, 1, 0, 1],
....: [0, 1, 1, 1, 0], [1, 0, 0, 1, 1]]]
[True, True, False, True, False, False]

Working only with the first component (i.e., returning whether accepted or not) usually corresponds to
using the more specialized class Automaton.

Non-deterministic finite state machines can be handled as well.

sage: T = Transducer([(0, 1, 0, 0), (0, 2, 0, 0)],
....: initial_states=[0])
sage: T.process([0])
[(False, 1, [0]), (False, 2, [0])]

Here is another non-deterministic finite state machine. Note that we use format_output (see
FSMProcessIterator) to convert the written outputs (all characters) to strings.

sage: T = Transducer([(0, 1, [0, 0], 'a'), (0, 2, [0, 0, 1], 'b'),
....: (0, 1, 1, 'c'), (1, 0, [], 'd'),
....: (1, 1, 1, 'e')],
....: initial_states=[0], final_states=[0, 1])
sage: T.process([0], format_output=lambda o: ''.join(o))
(False, None, None)
sage: T.process([0, 0], format_output=lambda o: ''.join(o))
[(True, 0, 'ad'), (True, 1, 'a')]
sage: T.process([1], format_output=lambda o: ''.join(o))
[(True, 0, 'cd'), (True, 1, 'c')]
sage: T.process([1, 1], format_output=lambda o: ''.join(o))
[(True, 0, 'cdcd'), (True, 0, 'ced'),
(True, 1, 'cdc'), (True, 1, 'ce')]
sage: T.process([0, 0, 1], format_output=lambda o: ''.join(o))
[(False, 2, 'b'),
(True, 0, 'adcd'),
(True, 0, 'aed'),
(True, 1, 'adc'),
(True, 1, 'ae')]
sage: T.process([0, 0, 1], format_output=lambda o: ''.join(o),
....: only_accepted=True)
[(True, 0, 'adcd'), (True, 0, 'aed'),
(True, 1, 'adc'), (True, 1, 'ae')]

A simple example of a multi-tape finite state machine is the following: It writes the length of the first tape
many letters a and then the length of the second tape many letters b:

sage: M = FiniteStateMachine([(0, 0, (1, None), 'a'),
....: (0, 1, [], []),
....: (1, 1, (None, 1), 'b')],
....: initial_states=[0],

(continues on next page)

5.1. Comprehensive Module List 953

Combinatorics, Release 9.7

(continued from previous page)

....: final_states=[1])
sage: M.process(([1, 1], [1]), use_multitape_input=True)
(True, 1, ['a', 'a', 'b'])

See also:

Automaton.process(), Transducer.process(), iter_process(), __call__(),
FSMProcessIterator.

product_FiniteStateMachine(other, function, new_input_alphabet=None,
only_accessible_components=True, final_function=None,
new_class=None)

Return a new finite state machine whose states are 𝑑-tuples of states of the original finite state machines.

INPUT:

• other – a finite state machine (for 𝑑 = 2) or a list (or iterable) of 𝑑− 1 finite state machines.

• function has to accept 𝑑 transitions from 𝐴𝑗 to 𝐵𝑗 for 𝑗 ∈ {1, . . . , 𝑑} and returns a pair (word_in,
word_out) which is the label of the transition 𝐴 = (𝐴1, . . . , 𝐴𝑑) to 𝐵 = (𝐵1, . . . , 𝐵𝑑). If there is
no transition from 𝐴 to 𝐵, then function should raise a LookupError.

• new_input_alphabet (optional) – the new input alphabet as a list.

• only_accessible_components – If True (default), then the result is piped through
accessible_components(). If no new_input_alphabet is given, it is determined by
determine_alphabets().

• final_function – A function mapping 𝑑 final states of the original finite state machines to the final
output of the corresponding state in the new finite state machine. By default, the final output is the
empty word if both final outputs of the constituent states are empty; otherwise, a ValueError is raised.

• new_class – Class of the new finite state machine. By default (None), the class of self is used.

OUTPUT:

A finite state machine whose states are 𝑑-tuples of states of the original finite state machines. A state is
initial or final if all constituent states are initial or final, respectively.

The labels of the transitions are defined by function.

The final output of a final state is determined by calling final_function on the constituent states.

The color of a new state is the tuple of colors of the constituent states of self and other. However, if all
constituent states have color None, then the state has color None, too.

EXAMPLES:

sage: F = Automaton([('A', 'B', 1), ('A', 'A', 0), ('B', 'A', 2)],
....: initial_states=['A'], final_states=['B'],
....: determine_alphabets=True)
sage: G = Automaton([(1, 1, 1)], initial_states=[1], final_states=[1])
sage: def addition(transition1, transition2):
....: return (transition1.word_in[0] + transition2.word_in[0],
....: None)
sage: H = F.product_FiniteStateMachine(G, addition, [0, 1, 2, 3], only_
→˓accessible_components=False)
sage: H.transitions()
[Transition from ('A', 1) to ('B', 1): 2|-,
Transition from ('A', 1) to ('A', 1): 1|-,

(continues on next page)

954 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Transition from ('B', 1) to ('A', 1): 3|-]
sage: [s.color for s in H.iter_states()]
[None, None]
sage: H1 = F.product_FiniteStateMachine(G, addition, [0, 1, 2, 3], only_
→˓accessible_components=False)
sage: H1.states()[0].label()[0] is F.states()[0]
True
sage: H1.states()[0].label()[1] is G.states()[0]
True

sage: F = Automaton([(0,1,1/4), (0,0,3/4), (1,1,3/4), (1,0,1/4)],
....: initial_states=[0])
sage: G = Automaton([(0,0,1), (1,1,3/4), (1,0,1/4)],
....: initial_states=[0])
sage: H = F.product_FiniteStateMachine(
....: G, lambda t1,t2: (t1.word_in[0]*t2.word_in[0], None))
sage: H.states()
[(0, 0), (1, 0)]

sage: F = Automaton([(0,1,1/4), (0,0,3/4), (1,1,3/4), (1,0,1/4)],
....: initial_states=[0])
sage: G = Automaton([(0,0,1), (1,1,3/4), (1,0,1/4)],
....: initial_states=[0])
sage: H = F.product_FiniteStateMachine(G,
....: lambda t1,t2: (t1.word_in[0]*t2.word_
→˓in[0], None),
....: only_accessible_components=False)
sage: H.states()
[(0, 0), (1, 0), (0, 1), (1, 1)]

Also final output words are considered according to the function final_function:

sage: F = Transducer([(0, 1, 0, 1), (1, 1, 1, 1), (1, 1, 0, 1)],
....: final_states=[1])
sage: F.state(1).final_word_out = 1
sage: G = Transducer([(0, 0, 0, 1), (0, 0, 1, 0)], final_states=[0])
sage: G.state(0).final_word_out = 1
sage: def minus(t1, t2):
....: return (t1.word_in[0] - t2.word_in[0],
....: t1.word_out[0] - t2.word_out[0])
sage: H = F.product_FiniteStateMachine(G, minus)
Traceback (most recent call last):
...
ValueError: A final function must be given.
sage: def plus(s1, s2):
....: return s1.final_word_out[0] + s2.final_word_out[0]
sage: H = F.product_FiniteStateMachine(G, minus,
....: final_function=plus)
sage: H.final_states()
[(1, 0)]
sage: H.final_states()[0].final_word_out
[2]

5.1. Comprehensive Module List 955

Combinatorics, Release 9.7

Products of more than two finite state machines are also possible:

sage: def plus(s1, s2, s3):
....: if s1.word_in == s2.word_in == s3.word_in:
....: return (s1.word_in,
....: sum(s.word_out[0] for s in (s1, s2, s3)))
....: else:
....: raise LookupError
sage: T0 = transducers.CountSubblockOccurrences([0, 0], [0, 1, 2])
sage: T1 = transducers.CountSubblockOccurrences([1, 1], [0, 1, 2])
sage: T2 = transducers.CountSubblockOccurrences([2, 2], [0, 1, 2])
sage: T = T0.product_FiniteStateMachine([T1, T2], plus)
sage: T.transitions()
[Transition from ((), (), ()) to ((0,), (), ()): 0|0,
Transition from ((), (), ()) to ((), (1,), ()): 1|0,
Transition from ((), (), ()) to ((), (), (2,)): 2|0,
Transition from ((0,), (), ()) to ((0,), (), ()): 0|1,
Transition from ((0,), (), ()) to ((), (1,), ()): 1|0,
Transition from ((0,), (), ()) to ((), (), (2,)): 2|0,
Transition from ((), (1,), ()) to ((0,), (), ()): 0|0,
Transition from ((), (1,), ()) to ((), (1,), ()): 1|1,
Transition from ((), (1,), ()) to ((), (), (2,)): 2|0,
Transition from ((), (), (2,)) to ((0,), (), ()): 0|0,
Transition from ((), (), (2,)) to ((), (1,), ()): 1|0,
Transition from ((), (), (2,)) to ((), (), (2,)): 2|1]
sage: T([0, 0, 1, 1, 2, 2, 0, 1, 2, 2])
[0, 1, 0, 1, 0, 1, 0, 0, 0, 1]

other can also be an iterable:

sage: T == T0.product_FiniteStateMachine(iter([T1, T2]), plus)
True

projection(what='input')
Return an Automaton which transition labels are the projection of the transition labels of the input.

INPUT:

• what – (default: input) either input or output.

OUTPUT:

An automaton.

EXAMPLES:

sage: F = FiniteStateMachine([('A', 'B', 0, 1), ('A', 'A', 1, 1),
....: ('B', 'B', 1, 0)])
sage: G = F.projection(what='output')
sage: G.transitions()
[Transition from 'A' to 'B': 1|-,
Transition from 'A' to 'A': 1|-,
Transition from 'B' to 'B': 0|-]

quotient(classes)
Construct the quotient with respect to the equivalence classes.

INPUT:

956 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• classes is a list of equivalence classes of states.

OUTPUT:

A finite state machine.

The labels of the new states are tuples of states of the self, corresponding to classes.

Assume that 𝑐 is a class, and 𝑎 and 𝑏 are states in 𝑐. Then there is a bijection 𝜙 between the transitions from
𝑎 and the transitions from 𝑏 with the following properties: if 𝜙(𝑡𝑎) = 𝑡𝑏, then

• 𝑡𝑎.word in = 𝑡𝑏.word in ,

• 𝑡𝑎.wordout = 𝑡𝑏.wordout , and

• 𝑡𝑎 and 𝑡𝑏 lead to some equivalent states 𝑎′ and 𝑏′.

Non-initial states may be merged with initial states, the resulting state is an initial state.

All states in a class must have the same is_final, final_word_out and word_out values.

EXAMPLES:

sage: fsm = FiniteStateMachine([("A", "B", 0, 1), ("A", "B", 1, 0),
....: ("B", "C", 0, 0), ("B", "C", 1, 1),
....: ("C", "D", 0, 1), ("C", "D", 1, 0),
....: ("D", "A", 0, 0), ("D", "A", 1, 1)])
sage: fsmq = fsm.quotient([[fsm.state("A"), fsm.state("C")],
....: [fsm.state("B"), fsm.state("D")]])
sage: fsmq.transitions()
[Transition from ('A', 'C')

to ('B', 'D'): 0|1,
Transition from ('A', 'C')

to ('B', 'D'): 1|0,
Transition from ('B', 'D')

to ('A', 'C'): 0|0,
Transition from ('B', 'D')

to ('A', 'C'): 1|1]
sage: fsmq.relabeled().transitions()
[Transition from 0 to 1: 0|1,
Transition from 0 to 1: 1|0,
Transition from 1 to 0: 0|0,
Transition from 1 to 0: 1|1]
sage: fsmq1 = fsm.quotient(fsm.equivalence_classes())
sage: fsmq1 == fsmq
True
sage: fsm.quotient([[fsm.state("A"), fsm.state("B"), fsm.state("C"), fsm.state(
→˓"D")]])
Traceback (most recent call last):

...
AssertionError: Transitions of state 'A' and 'B' are incompatible.

relabeled(memo=None, labels=None)
Return a deep copy of the finite state machine, but the states are relabeled.

INPUT:

• memo – (default: None) a dictionary storing already processed elements.

• labels – (default: None) a dictionary or callable mapping old labels to new labels. If None, then the
new labels are integers starting with 0.

5.1. Comprehensive Module List 957

Combinatorics, Release 9.7

OUTPUT:

A new finite state machine.

EXAMPLES:

sage: FSM1 = FiniteStateMachine([('A', 'B'), ('B', 'C'), ('C', 'A')])
sage: FSM1.states()
['A', 'B', 'C']
sage: FSM2 = FSM1.relabeled()
sage: FSM2.states()
[0, 1, 2]
sage: FSM3 = FSM1.relabeled(labels={'A': 'a', 'B': 'b', 'C': 'c'})
sage: FSM3.states()
['a', 'b', 'c']
sage: FSM4 = FSM2.relabeled(labels=lambda x: 2*x)
sage: FSM4.states()
[0, 2, 4]

remove_epsilon_transitions()

set_coordinates(coordinates, default=True)
Set coordinates of the states for the LaTeX representation by a dictionary or a function mapping labels to
coordinates.

INPUT:

• coordinates – a dictionary or a function mapping labels of states to pairs interpreted as coordinates.

• default – If True, then states not given by coordinates get a default position on a circle of radius
3.

OUTPUT:

Nothing.

EXAMPLES:

sage: F = Automaton([[0, 1, 1], [1, 2, 2], [2, 0, 0]])
sage: F.set_coordinates({0: (0, 0), 1: (2, 0), 2: (1, 1)})
sage: F.state(0).coordinates
(0, 0)

We can also use a function to determine the coordinates:

sage: F = Automaton([[0, 1, 1], [1, 2, 2], [2, 0, 0]])
sage: F.set_coordinates(lambda l: (l, 3/(l+1)))
sage: F.state(2).coordinates
(2, 1)

split_transitions()
Return a new transducer, where all transitions in self with input labels consisting of more than one letter
are replaced by a path of the corresponding length.

OUTPUT:

A new transducer.

EXAMPLES:

958 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: A = Transducer([('A', 'B', [1, 2, 3], 0)],
....: initial_states=['A'], final_states=['B'])
sage: A.split_transitions().states()
[('A', ()), ('B', ()),
('A', (1,)), ('A', (1, 2))]

state(state)
Return the state of the finite state machine.

INPUT:

• state – If state is not an instance of FSMState, then it is assumed that it is the label of a state.

OUTPUT:

The state of the finite state machine corresponding to state.

If no state is found, then a LookupError is thrown.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import FSMState
sage: A = FSMState('A')
sage: FSM = FiniteStateMachine([(A, 'B'), ('C', A)])
sage: FSM.state('A') == A
True
sage: FSM.state('xyz')
Traceback (most recent call last):
...
LookupError: No state with label xyz found.

states()
Return the states of the finite state machine.

OUTPUT:

The states of the finite state machine as list.

EXAMPLES:

sage: FSM = Automaton([('1', '2', 1), ('2', '2', 0)])
sage: FSM.states()
['1', '2']

transition(transition)
Return the transition of the finite state machine.

INPUT:

• transition – If transition is not an instance of FSMTransition, then it is assumed that it is a
tuple (from_state, to_state, word_in, word_out).

OUTPUT:

The transition of the finite state machine corresponding to transition.

If no transition is found, then a LookupError is thrown.

EXAMPLES:

5.1. Comprehensive Module List 959

Combinatorics, Release 9.7

sage: from sage.combinat.finite_state_machine import FSMTransition
sage: t = FSMTransition('A', 'B', 0)
sage: F = FiniteStateMachine([t])
sage: F.transition(('A', 'B', 0))
Transition from 'A' to 'B': 0|-
sage: id(t) == id(F.transition(('A', 'B', 0)))
True

transitions(from_state=None)
Return a list of all transitions.

INPUT:

• from_state – (default: None) If from_state is given, then a list of transitions starting there is given.

OUTPUT:

A list of all transitions.

EXAMPLES:

sage: FSM = Automaton([('1', '2', 1), ('2', '2', 0)])
sage: FSM.transitions()
[Transition from '1' to '2': 1|-,
Transition from '2' to '2': 0|-]

transposition(reverse_output_labels=True)
Return a new finite state machine, where all transitions of the input finite state machine are reversed.

INPUT:

• reverse_output_labels – a boolean (default: True): whether to reverse output labels.

OUTPUT:

A new finite state machine.

EXAMPLES:

sage: aut = Automaton([('A', 'A', 0), ('A', 'A', 1), ('A', 'B', 0)],
....: initial_states=['A'], final_states=['B'])
sage: aut.transposition().transitions('B')
[Transition from 'B' to 'A': 0|-]

sage: aut = Automaton([('1', '1', 1), ('1', '2', 0), ('2', '2', 0)],
....: initial_states=['1'], final_states=['1', '2'])
sage: aut.transposition().initial_states()
['1', '2']

sage: A = Automaton([(0, 1, [1, 0])],
....: initial_states=[0],
....: final_states=[1])
sage: A([1, 0])
True
sage: A.transposition()([0, 1])
True

960 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: T = Transducer([(0, 1, [1, 0], [1, 0])],
....: initial_states=[0],
....: final_states=[1])
sage: T([1, 0])
[1, 0]
sage: T.transposition()([0, 1])
[0, 1]
sage: T.transposition(reverse_output_labels=False)([0, 1])
[1, 0]

with_final_word_out(letters, allow_non_final=True)
Constructs a new finite state machine with final output words for all states by implicitly reading trailing
letters until a final state is reached.

INPUT:

• letters – either an element of the input alphabet or a list of such elements. This is repeated cyclically
when needed.

• allow_non_final – a boolean (default: True) which indicates whether we allow that some states
may be non-final in the resulting finite state machine. I.e., if False then each state has to have a path
to a final state with input label matching letters.

OUTPUT:

A finite state machine.

The inplace version of this function is construct_final_word_out().

Suppose for the moment a single element letter as input for letters. This is equivalent to letters =
[letter]. We will discuss the general case below.

Let word_in be a word over the input alphabet and assume that the original finite state machine transforms
word_in to word_out reaching a possibly non-final state s. Let further 𝑘 be the minimum number of
letters letter such that there is a path from s to some final state f whose input label consists of 𝑘 copies
of letter and whose output label is path_word_out. Then the state s of the resulting finite state machine
is a final state with final output path_word_out + f.final_word_out. Therefore, the new finite state
machine transforms word_in to word_out + path_word_out + f.final_word_out.

This is e.g. useful for finite state machines operating on digit expansions: there, it is sometimes required
to read a sufficient number of trailing zeros (at the most significant positions) in order to reach a final state
and to flush all carries. In this case, this method constructs an essentially equivalent finite state machine in
the sense that it not longer requires adding sufficiently many trailing zeros. However, it is the responsibility
of the user to make sure that if adding trailing zeros to the input anyway, the output is equivalent.

If letters consists of more than one letter, then it is assumed that (not necessarily complete) cycles of
letters are appended as trailing input.

See also:

example on Gray code

EXAMPLES:

1. A simple transducer transforming 00 blocks to 01 blocks:

sage: T = Transducer([(0, 1, 0, 0), (1, 0, 0, 1)],
....: initial_states=[0],
....: final_states=[0])
sage: T.process([0, 0, 0])

(continues on next page)

5.1. Comprehensive Module List 961

Combinatorics, Release 9.7

(continued from previous page)

(False, 1, [0, 1, 0])
sage: T.process([0, 0, 0, 0])
(True, 0, [0, 1, 0, 1])
sage: F = T.with_final_word_out(0)
sage: for f in F.iter_final_states():
....: print("{} {}".format(f, f.final_word_out))
0 []
1 [1]
sage: F.process([0, 0, 0])
(True, 1, [0, 1, 0, 1])
sage: F.process([0, 0, 0, 0])
(True, 0, [0, 1, 0, 1])

2. A more realistic example: Addition of 1 in binary. We construct a transition function transforming the
input to its binary expansion:

sage: def binary_transition(carry, input):
....: value = carry + input
....: if value.mod(2) == 0:
....: return (value/2, 0)
....: else:
....: return ((value-1)/2, 1)

Now, we only have to start with a carry of 1 to get the required transducer:

sage: T = Transducer(binary_transition,
....: input_alphabet=[0, 1],
....: initial_states=[1],
....: final_states=[0])

We test this for the binary expansion of 7:

sage: T.process([1, 1, 1])
(False, 1, [0, 0, 0])

The final carry 1 has not be flushed yet, we have to add a trailing zero:

sage: T.process([1, 1, 1, 0])
(True, 0, [0, 0, 0, 1])

We check that with this trailing zero, the transducer performs as advertised:

sage: all(ZZ(T(k.bits()+[0]), base=2) == k + 1
....: for k in srange(16))
True

However, most of the time, we produce superfluous trailing zeros:

sage: T(11.bits()+[0])
[0, 0, 1, 1, 0]

We now use this method:

962 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: F = T.with_final_word_out(0)
sage: for f in F.iter_final_states():
....: print("{} {}".format(f, f.final_word_out))
1 [1]
0 []

The same tests as above, but we do not have to pad with trailing zeros anymore:

sage: F.process([1, 1, 1])
(True, 1, [0, 0, 0, 1])
sage: all(ZZ(F(k.bits()), base=2) == k + 1
....: for k in srange(16))
True

No more trailing zero in the output:

sage: F(11.bits())
[0, 0, 1, 1]
sage: all(F(k.bits())[-1] == 1
....: for k in srange(16))
True

3. Here is an example, where we allow trailing repeated 10:

sage: T = Transducer([(0, 1, 0, 'a'),
....: (1, 2, 1, 'b'),
....: (2, 0, 0, 'c')],
....: initial_states=[0],
....: final_states=[0])
sage: F = T.with_final_word_out([1, 0])
sage: for f in F.iter_final_states():
....: print(str(f) + ' ' + ''.join(f.final_word_out))
0
1 bc

Trying this with trailing repeated 01 does not produce a final_word_out for state 1, but for state 2:

sage: F = T.with_final_word_out([0, 1])
sage: for f in F.iter_final_states():
....: print(str(f) + ' ' + ''.join(f.final_word_out))
0
2 c

4. Here another example with a more-letter trailing input:

sage: T = Transducer([(0, 1, 0, 'a'),
....: (1, 2, 0, 'b'), (1, 2, 1, 'b'),
....: (2, 3, 0, 'c'), (2, 0, 1, 'e'),
....: (3, 1, 0, 'd'), (3, 1, 1, 'd')],
....: initial_states=[0],
....: final_states=[0],
....: with_final_word_out=[0, 0, 1, 1])
sage: for f in T.iter_final_states():
....: print(str(f) + ' ' + ''.join(f.final_word_out))

(continues on next page)

5.1. Comprehensive Module List 963

Combinatorics, Release 9.7

(continued from previous page)

0
1 bcdbcdbe
2 cdbe
3 dbe

class sage.combinat.finite_state_machine.Transducer(data=None, initial_states=None,
final_states=None, input_alphabet=None,
output_alphabet=None,
determine_alphabets=None,
with_final_word_out=None,
store_states_dict=True,
on_duplicate_transition=None)

Bases: sage.combinat.finite_state_machine.FiniteStateMachine

This creates a transducer, which is a finite state machine, whose transitions have input and output labels.

An transducer has additional features like creating a simplified transducer.

See class FiniteStateMachine for more information.

EXAMPLES:

We can create a transducer performing the addition of 1 (for numbers given in binary and read from right to left)
in the following way:

sage: T = Transducer([('C', 'C', 1, 0), ('C', 'N', 0, 1),
....: ('N', 'N', 0, 0), ('N', 'N', 1, 1)],
....: initial_states=['C'], final_states=['N'])
sage: T
Transducer with 2 states
sage: T([0])
[1]
sage: T([1,1,0])
[0, 0, 1]
sage: ZZ(T(15.digits(base=2)+[0]), base=2)
16

Note that we have padded the binary input sequence by a 0 so that the transducer can reach its final state.

cartesian_product(other, only_accessible_components=True)
Return a new transducer which can simultaneously process an input with the machines self and other
where the output labels are 𝑑-tuples of the original output labels.

INPUT:

• other - a finite state machine (if 𝑑 = 2) or a list (or other iterable) of 𝑑− 1 finite state machines

• only_accessible_components – If True (default), then the result is piped through
accessible_components(). If no new_input_alphabet is given, it is determined by
determine_alphabets().

OUTPUT:

A transducer which can simultaneously process an input with self and the machine(s) in other.

The set of states of the new transducer is the Cartesian product of the set of states of self and other.

Let (𝐴𝑗 , 𝐵𝑗 , 𝑎𝑗 , 𝑏𝑗) for 𝑗 ∈ {1, . . . , 𝑑} be transitions in the machines self and in other. Then there is a
transition ((𝐴1, . . . , 𝐴𝑑), (𝐵1, . . . , 𝐵𝑑), 𝑎, (𝑏1, . . . , 𝑏𝑑)) in the new transducer if 𝑎1 = · · · = 𝑎𝑑 =: 𝑎.

964 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: transducer1 = Transducer([('A', 'A', 0, 0),
....: ('A', 'A', 1, 1)],
....: initial_states=['A'],
....: final_states=['A'],
....: determine_alphabets=True)
sage: transducer2 = Transducer([(0, 1, 0, ['b', 'c']),
....: (0, 0, 1, 'b'),
....: (1, 1, 0, 'a')],
....: initial_states=[0],
....: final_states=[1],
....: determine_alphabets=True)
sage: result = transducer1.cartesian_product(transducer2)
sage: result
Transducer with 2 states
sage: result.transitions()
[Transition from ('A', 0) to ('A', 1): 0|(0, 'b'),(None, 'c'),
Transition from ('A', 0) to ('A', 0): 1|(1, 'b'),
Transition from ('A', 1) to ('A', 1): 0|(0, 'a')]
sage: result([1, 0, 0])
[(1, 'b'), (0, 'b'), (None, 'c'), (0, 'a')]
sage: (transducer1([1, 0, 0]), transducer2([1, 0, 0]))
([1, 0, 0], ['b', 'b', 'c', 'a'])

Also final output words are correctly processed:

sage: transducer1.state('A').final_word_out = 2
sage: result = transducer1.cartesian_product(transducer2)
sage: result.final_states()[0].final_word_out
[(2, None)]

The following transducer counts the number of 11 blocks minus the number of 10 blocks over the alphabet
[0, 1].

sage: count_11 = transducers.CountSubblockOccurrences(
....: [1, 1],
....: input_alphabet=[0, 1])
sage: count_10 = transducers.CountSubblockOccurrences(
....: [1, 0],
....: input_alphabet=[0, 1])
sage: count_11x10 = count_11.cartesian_product(count_10)
sage: difference = transducers.sub([0, 1])(count_11x10)
sage: T = difference.simplification().relabeled()
sage: T.initial_states()
[1]
sage: sorted(T.transitions())
[Transition from 0 to 1: 0|-1,
Transition from 0 to 0: 1|1,
Transition from 1 to 1: 0|0,
Transition from 1 to 0: 1|0]
sage: input = [0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0]
sage: output = [0, 0, 1, -1, 0, -1, 0, 0, 0, 1, 1, -1]
sage: T(input) == output

(continues on next page)

5.1. Comprehensive Module List 965

Combinatorics, Release 9.7

(continued from previous page)

True

If other is an automaton, then cartesian_product() returns self where the input is restricted to the
input accepted by other.

For example, if the transducer transforms the standard binary expansion into the non-adjacent form and
the automaton recognizes the binary expansion without adjacent ones, then the Cartesian product of these
two is a transducer which does not change the input (except for changing a to (a, None) and ignoring a
leading 0).

sage: NAF = Transducer([(0, 1, 0, None),
....: (0, 2, 1, None),
....: (1, 1, 0, 0),
....: (1, 2, 1, 0),
....: (2, 1, 0, 1),
....: (2, 3, 1, -1),
....: (3, 2, 0, 0),
....: (3, 3, 1, 0)],
....: initial_states=[0],
....: final_states=[1],
....: determine_alphabets=True)
sage: aut11 = Automaton([(0, 0, 0), (0, 1, 1), (1, 0, 0)],
....: initial_states=[0],
....: final_states=[0, 1],
....: determine_alphabets=True)
sage: res = NAF.cartesian_product(aut11)
sage: res([1, 0, 0, 1, 0, 1, 0])
[(1, None), (0, None), (0, None), (1, None), (0, None), (1, None)]

This is obvious because if the standard binary expansion does not have adjacent ones, then it is the same as
the non-adjacent form.

Be aware that cartesian_product() is not commutative.

sage: aut11.cartesian_product(NAF)
Traceback (most recent call last):
...
TypeError: Only an automaton can be intersected with an automaton.

The Cartesian product of more than two finite state machines can also be computed:

sage: T0 = transducers.CountSubblockOccurrences([0, 0], [0, 1, 2])
sage: T1 = transducers.CountSubblockOccurrences([1, 1], [0, 1, 2])
sage: T2 = transducers.CountSubblockOccurrences([2, 2], [0, 1, 2])
sage: T = T0.cartesian_product([T1, T2])
sage: T.transitions()
[Transition from ((), (), ()) to ((0,), (), ()): 0|(0, 0, 0),
Transition from ((), (), ()) to ((), (1,), ()): 1|(0, 0, 0),
Transition from ((), (), ()) to ((), (), (2,)): 2|(0, 0, 0),
Transition from ((0,), (), ()) to ((0,), (), ()): 0|(1, 0, 0),
Transition from ((0,), (), ()) to ((), (1,), ()): 1|(0, 0, 0),
Transition from ((0,), (), ()) to ((), (), (2,)): 2|(0, 0, 0),
Transition from ((), (1,), ()) to ((0,), (), ()): 0|(0, 0, 0),
Transition from ((), (1,), ()) to ((), (1,), ()): 1|(0, 1, 0),

(continues on next page)

966 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Transition from ((), (1,), ()) to ((), (), (2,)): 2|(0, 0, 0),
Transition from ((), (), (2,)) to ((0,), (), ()): 0|(0, 0, 0),
Transition from ((), (), (2,)) to ((), (1,), ()): 1|(0, 0, 0),
Transition from ((), (), (2,)) to ((), (), (2,)): 2|(0, 0, 1)]
sage: T([0, 0, 1, 1, 2, 2, 0, 1, 2, 2])
[(0, 0, 0),
(1, 0, 0),
(0, 0, 0),
(0, 1, 0),
(0, 0, 0),
(0, 0, 1),
(0, 0, 0),
(0, 0, 0),
(0, 0, 0),
(0, 0, 1)]

intersection(other, only_accessible_components=True)
Return a new transducer which accepts an input if it is accepted by both given finite state machines produc-
ing the same output.

INPUT:

• other – a transducer

• only_accessible_components – If True (default), then the result is piped through
accessible_components(). If no new_input_alphabet is given, it is determined by
determine_alphabets().

OUTPUT:

A new transducer which computes the intersection (see below) of the languages of self and other.

The set of states of the transducer is the Cartesian product of the set of states of both given transducer.
There is a transition ((𝐴,𝐵), (𝐶,𝐷), 𝑎, 𝑏) in the new transducer if there are transitions (𝐴,𝐶, 𝑎, 𝑏) and
(𝐵,𝐷, 𝑎, 𝑏) in the old transducers.

EXAMPLES:

sage: transducer1 = Transducer([('1', '2', 1, 0),
....: ('2', '2', 1, 0),
....: ('2', '2', 0, 1)],
....: initial_states=['1'],
....: final_states=['2'])
sage: transducer2 = Transducer([('A', 'A', 1, 0),
....: ('A', 'B', 0, 0),
....: ('B', 'B', 0, 1),
....: ('B', 'A', 1, 1)],
....: initial_states=['A'],
....: final_states=['B'])
sage: res = transducer1.intersection(transducer2)
sage: res.transitions()
[Transition from ('1', 'A') to ('2', 'A'): 1|0,
Transition from ('2', 'A') to ('2', 'A'): 1|0]

In general, transducers are not closed under intersection. But for transducer which do not have epsilon-
transitions, the intersection is well defined (cf. [BaWo2012]). However, in the next example the intersection

5.1. Comprehensive Module List 967

Combinatorics, Release 9.7

of the two transducers is not well defined. The intersection of the languages consists of (𝑎𝑛, 𝑏𝑛𝑐𝑛). This
set is not recognizable by a finite transducer.

sage: t1 = Transducer([(0, 0, 'a', 'b'),
....: (0, 1, None, 'c'),
....: (1, 1, None, 'c')],
....: initial_states=[0],
....: final_states=[0, 1])
sage: t2 = Transducer([('A', 'A', None, 'b'),
....: ('A', 'B', 'a', 'c'),
....: ('B', 'B', 'a', 'c')],
....: initial_states=['A'],
....: final_states=['A', 'B'])
sage: t2.intersection(t1)
Traceback (most recent call last):
...
ValueError: An epsilon-transition (with empty input or output)
was found.

REFERENCES:

process(*args, **kwargs)
Return whether the transducer accepts the input, the state where the computation stops and which output is
generated.

INPUT:

• input_tape – the input tape can be a list or an iterable with entries from the input alphabet. If we are
working with a multi-tape machine (see parameter use_multitape_input and notes below), then
the tape is a list or tuple of tracks, each of which can be a list or an iterable with entries from the input
alphabet.

• initial_state or initial_states – the initial state(s) in which the machine starts. Either spec-
ify a single one with initial_state or a list of them with initial_states. If both are given,
initial_state will be appended to initial_states. If neither is specified, the initial states of the
finite state machine are taken.

• list_of_outputs – (default: None) a boolean or None. If True, then the outputs are given in list
form (even if we have no or only one single output). If False, then the result is never a list (an ex-
ception is raised if the result cannot be returned). If list_of_outputs=None the method determines
automatically what to do (e.g. if a non-deterministic machine returns more than one path, then the
output is returned in list form).

• only_accepted – (default: False) a boolean. If set, then the first argument in the output is guaranteed
to be True (if the output is a list, then the first argument of each element will be True).

• full_output – (default: True) a boolean. If set, then the full output is given, otherwise only the
generated output (the third entry below only). If the input is not accepted, a ValueError is raised.

• always_include_output – if set (not by default), always include the output. This is inconsequential
for a Transducer, but can be used in other classes derived from FiniteStateMachine where the
output is suppressed by default, cf. Automaton.process().

• format_output – a function that translates the written output (which is in form of a list) to something
more readable. By default (None) identity is used here.

• check_epsilon_transitions – (default: True) a boolean. If False, then epsilon transitions are
not taken into consideration during process.

968 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• write_final_word_out – (default: True) a boolean specifying whether the final output words
should be written or not.

• use_multitape_input – (default: False) a boolean. If True, then the multi-tape mode of the
process iterator is activated. See also the notes below for multi-tape machines.

• process_all_prefixes_of_input – (default: False) a boolean. If True, then each prefix of the
input word is processed (instead of processing the whole input word at once). Consequently, there is
an output generated for each of these prefixes.

• process_iterator_class – (default: None) a class inherited from FSMProcessIterator. If
None, then FSMProcessIterator is taken. An instance of this class is created and is used during
the processing.

• automatic_output_type – (default: False) a boolean If set and the input has a parent, then the
output will have the same parent. If the input does not have a parent, then the output will be of the
same type as the input.

OUTPUT:

The full output is a triple (or a list of triples, cf. parameter list_of_outputs), where

• the first entry is True if the input string is accepted,

• the second gives the reached state after processing the input tape (This is a state with label None if the
input could not be processed, i.e., if at one point no transition to go on could be found.), and

• the third gives a list of the output labels written during processing.

If full_output is False, then only the third entry is returned.

Note that in the case the transducer is not deterministic, all possible paths are taken into account.

This function uses an iterator which, in its simplest form, goes from one state to another in each step. To
decide which way to go, it uses the input words of the outgoing transitions and compares them to the input
tape. More precisely, in each step, the iterator takes an outgoing transition of the current state, whose input
label equals the input letter of the tape. The output label of the transition, if present, is written on the output
tape.

If the choice of the outgoing transition is not unique (i.e., we have a non-deterministic finite state machine),
all possibilities are followed. This is done by splitting the process into several branches, one for each of the
possible outgoing transitions.

The process (iteration) stops if all branches are finished, i.e., for no branch, there is any transition whose
input word coincides with the processed input tape. This can simply happen when the entire tape was read.

Also see __call__() for a version of process() with shortened output.

Internally this function creates and works with an instance of FSMProcessIterator. This iterator can
also be obtained with iter_process().

If working with multi-tape finite state machines, all input words of transitions are words of 𝑘-tuples of
letters. Moreover, the input tape has to consist of 𝑘 tracks, i.e., be a list or tuple of 𝑘 iterators, one for each
track.

Warning: Working with multi-tape finite state machines is still experimental and can lead to wrong
outputs.

EXAMPLES:

5.1. Comprehensive Module List 969

Combinatorics, Release 9.7

sage: binary_inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]},
....: initial_states=['A'], final_states=['A'])
sage: binary_inverter.process([0, 1, 0, 0, 1, 1])
(True, 'A', [1, 0, 1, 1, 0, 0])

If we are only interested in the output, we can also use:

sage: binary_inverter([0, 1, 0, 0, 1, 1])
[1, 0, 1, 1, 0, 0]

This can also be used with words as input:

sage: W = Words([0, 1]); W
Finite and infinite words over {0, 1}
sage: w = W([0, 1, 0, 0, 1, 1]); w
word: 010011
sage: binary_inverter(w)
word: 101100

In this case it is automatically determined that the output is a word. The call above is equivalent to:

sage: binary_inverter.process(w,
....: full_output=False,
....: list_of_outputs=False,
....: automatic_output_type=True)
word: 101100

The following transducer transforms 0𝑛1 to 1𝑛2:

sage: T = Transducer([(0, 0, 0, 1), (0, 1, 1, 2)])
sage: T.state(0).is_initial = True
sage: T.state(1).is_final = True

We can see the different possibilities of the output by:

sage: [T.process(w) for w in [[1], [0, 1], [0, 0, 1], [0, 1, 1],
....: [0], [0, 0], [2, 0], [0, 1, 2]]]
[(True, 1, [2]), (True, 1, [1, 2]),
(True, 1, [1, 1, 2]), (False, None, None),
(False, 0, [1]), (False, 0, [1, 1]),
(False, None, None), (False, None, None)]

If we just want a condensed output, we use:

sage: [T.process(w, full_output=False)
....: for w in [[1], [0, 1], [0, 0, 1]]]
[[2], [1, 2], [1, 1, 2]]
sage: T.process([0], full_output=False)
Traceback (most recent call last):
...
ValueError: Invalid input sequence.
sage: T.process([0, 1, 2], full_output=False)
Traceback (most recent call last):

(continues on next page)

970 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

...
ValueError: Invalid input sequence.

It is equivalent to:

sage: [T(w) for w in [[1], [0, 1], [0, 0, 1]]]
[[2], [1, 2], [1, 1, 2]]
sage: T([0])
Traceback (most recent call last):
...
ValueError: Invalid input sequence.
sage: T([0, 1, 2])
Traceback (most recent call last):
...
ValueError: Invalid input sequence.

A cycle with empty input and empty output is correctly processed:

sage: T = Transducer([(0, 1, None, None), (1, 0, None, None)],
....: initial_states=[0], final_states=[1])
sage: T.process([])
[(False, 0, []), (True, 1, [])]
sage: _ = T.add_transition(-1, 0, 0, 'r')
sage: T.state(-1).is_initial = True
sage: T.state(0).is_initial = False
sage: T.process([0])
[(False, 0, ['r']), (True, 1, ['r'])]

If there is a cycle with empty input but non-empty output, the possible outputs would be an infinite set:

sage: T = Transducer([(0, 1, None, 'z'), (1, 0, None, None)],
....: initial_states=[0], final_states=[1])
sage: T.process([])
Traceback (most recent call last):
...
RuntimeError: State 0 is in an epsilon cycle (no input),
but output is written.

But if this cycle with empty input and non-empty output is not reached, the correct output is produced:

sage: _ = T.add_transition(-1, 0, 0, 'r')
sage: T.state(-1).is_initial = True
sage: T.state(0).is_initial = False
sage: T.process([])
(False, -1, [])
sage: T.process([0])
Traceback (most recent call last):
...
RuntimeError: State 0 is in an epsilon cycle (no input),
but output is written.

If we set check_epsilon_transitions=False, then no transitions with empty input are considered
anymore. Thus cycles with empty input are no problem anymore:

5.1. Comprehensive Module List 971

Combinatorics, Release 9.7

sage: T.process([0], check_epsilon_transitions=False)
(False, 0, ['r'])

A simple example of a multi-tape transducer is the following: It writes the length of the first tape many
letters a and then the length of the second tape many letters b:

sage: M = Transducer([(0, 0, (1, None), 'a'),
....: (0, 1, [], []),
....: (1, 1, (None, 1), 'b')],
....: initial_states=[0],
....: final_states=[1])
sage: M.process(([1, 1], [1]), use_multitape_input=True)
(True, 1, ['a', 'a', 'b'])

See also:

FiniteStateMachine.process(), Automaton.process(), iter_process(), __call__(),
FSMProcessIterator.

simplification()
Return a simplified transducer.

OUTPUT:

A new transducer.

This function simplifies a transducer by Moore’s algorithm, first moving common output labels of transi-
tions leaving a state to output labels of transitions entering the state (cf. prepone_output()).

The resulting transducer implements the same function as the original transducer.

EXAMPLES:

sage: fsm = Transducer([("A", "B", 0, 1), ("A", "B", 1, 0),
....: ("B", "C", 0, 0), ("B", "C", 1, 1),
....: ("C", "D", 0, 1), ("C", "D", 1, 0),
....: ("D", "A", 0, 0), ("D", "A", 1, 1)])
sage: fsms = fsm.simplification()
sage: fsms
Transducer with 2 states
sage: fsms.transitions()
[Transition from ('B', 'D') to ('A', 'C'): 0|0,
Transition from ('B', 'D') to ('A', 'C'): 1|1,
Transition from ('A', 'C') to ('B', 'D'): 0|1,
Transition from ('A', 'C') to ('B', 'D'): 1|0]
sage: fsms.relabeled().transitions()
[Transition from 0 to 1: 0|0,
Transition from 0 to 1: 1|1,
Transition from 1 to 0: 0|1,
Transition from 1 to 0: 1|0]

sage: fsm = Transducer([("A", "A", 0, 0),
....: ("A", "B", 1, 1),
....: ("A", "C", 1, -1),
....: ("B", "A", 2, 0),
....: ("C", "A", 2, 0)])

(continues on next page)

972 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: fsm_simplified = fsm.simplification()
sage: fsm_simplified
Transducer with 2 states
sage: fsm_simplified.transitions()
[Transition from ('A',) to ('A',): 0|0,
Transition from ('A',) to ('B', 'C'): 1|1,0,
Transition from ('A',) to ('B', 'C'): 1|-1,0,
Transition from ('B', 'C') to ('A',): 2|-]

sage: from sage.combinat.finite_state_machine import duplicate_transition_add_
→˓input
sage: T = Transducer([('A', 'A', 1/2, 0),
....: ('A', 'B', 1/4, 1),
....: ('A', 'C', 1/4, 1),
....: ('B', 'A', 1, 0),
....: ('C', 'A', 1, 0)],
....: initial_states=[0],
....: final_states=['A', 'B', 'C'],
....: on_duplicate_transition=duplicate_transition_add_input)
sage: sorted(T.simplification().transitions())
[Transition from ('A',) to ('A',): 1/2|0,
Transition from ('A',) to ('B', 'C'): 1/2|1,
Transition from ('B', 'C') to ('A',): 1|0]

Illustrating the use of colors in order to avoid identification of states:

sage: T = Transducer([[0,0,0,0], [0,1,1,1],
....: [1,0,0,0], [1,1,1,1]],
....: initial_states=[0],
....: final_states=[0,1])
sage: sorted(T.simplification().transitions())
[Transition from (0, 1) to (0, 1): 0|0,
Transition from (0, 1) to (0, 1): 1|1]
sage: T.state(0).color = 0
sage: T.state(0).color = 1
sage: sorted(T.simplification().transitions())
[Transition from (0,) to (0,): 0|0,
Transition from (0,) to (1,): 1|1,
Transition from (1,) to (0,): 0|0,
Transition from (1,) to (1,): 1|1]

sage.combinat.finite_state_machine.duplicate_transition_add_input(old_transition,
new_transition)

Alternative function for handling duplicate transitions in finite state machines. This implementation adds the
input label of the new transition to the input label of the old transition. This is intended for the case where a
Markov chain is modelled by a finite state machine using the input labels as transition probabilities.

See the documentation of the on_duplicate_transition parameter of FiniteStateMachine.

INPUT:

• old_transition – A transition in a finite state machine.

• new_transition – A transition, identical to old_transition, which is to be inserted into the finite state
machine.

5.1. Comprehensive Module List 973

Combinatorics, Release 9.7

OUTPUT:

A transition whose input weight is the sum of the input weights of old_transition and new_transition.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import duplicate_transition_add_input
sage: from sage.combinat.finite_state_machine import FSMTransition
sage: duplicate_transition_add_input(FSMTransition('a', 'a', 1/2),
....: FSMTransition('a', 'a', 1/2))
Transition from 'a' to 'a': 1|-

Input labels must be lists of length 1:

sage: duplicate_transition_add_input(FSMTransition('a', 'a', [1, 1]),
....: FSMTransition('a', 'a', [1, 1]))
Traceback (most recent call last):
...
TypeError: Trying to use duplicate_transition_add_input on
"Transition from 'a' to 'a': 1,1|-" and
"Transition from 'a' to 'a': 1,1|-",
but input words are assumed to be lists of length 1

sage.combinat.finite_state_machine.duplicate_transition_ignore(old_transition, new_transition)
Default function for handling duplicate transitions in finite state machines. This implementation ignores the
occurrence.

See the documentation of the on_duplicate_transition parameter of FiniteStateMachine.

INPUT:

• old_transition – A transition in a finite state machine.

• new_transition – A transition, identical to old_transition, which is to be inserted into the finite state
machine.

OUTPUT:

The same transition, unchanged.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import duplicate_transition_ignore
sage: from sage.combinat.finite_state_machine import FSMTransition
sage: duplicate_transition_ignore(FSMTransition(0, 0, 1),
....: FSMTransition(0, 0, 1))
Transition from 0 to 0: 1|-

sage.combinat.finite_state_machine.duplicate_transition_raise_error(old_transition,
new_transition)

Alternative function for handling duplicate transitions in finite state machines. This implementation raises a
ValueError.

See the documentation of the on_duplicate_transition parameter of FiniteStateMachine.

INPUT:

• old_transition – A transition in a finite state machine.

• new_transition – A transition, identical to old_transition, which is to be inserted into the finite state
machine.

974 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

Nothing. A ValueError is raised.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import duplicate_transition_raise_
→˓error
sage: from sage.combinat.finite_state_machine import FSMTransition
sage: duplicate_transition_raise_error(FSMTransition(0, 0, 1),
....: FSMTransition(0, 0, 1))
Traceback (most recent call last):
...
ValueError: Attempting to re-insert transition Transition from 0 to 0: 1|-

sage.combinat.finite_state_machine.equal(iterator)
Checks whether all elements of iterator are equal.

INPUT:

• iterator – an iterator of the elements to check

OUTPUT:

True or False.

This implements https://stackoverflow.com/a/3844832/1052778.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import equal
sage: equal([0, 0, 0])
True
sage: equal([0, 1, 0])
False
sage: equal([])
True
sage: equal(iter([None, None]))
True

We can test other properties of the elements than the elements themselves. In the following example, we check
whether all tuples have the same lengths:

sage: equal(len(x) for x in [(1, 2), (2, 3), (3, 1)])
True
sage: equal(len(x) for x in [(1, 2), (1, 2, 3), (3, 1)])
False

sage.combinat.finite_state_machine.full_group_by(l, key=<function <lambda> at 0x7f8749b8cee0>)
Group iterable l by values of key.

INPUT:

• iterable l

• key function key

OUTPUT:

A list of pairs (k, elements) such that key(e)=k for all e in elements.

5.1. Comprehensive Module List 975

https://stackoverflow.com/a/3844832/1052778

Combinatorics, Release 9.7

This is similar to itertools.groupby() except that lists are returned instead of iterables and no prior sorting
is required.

We do not require

• that the keys are sortable (in contrast to the approach via sorted() and itertools.groupby()) and

• that the keys are hashable (in contrast to the implementation proposed in https://stackoverflow.com/a/
15250161).

However, it is required

• that distinct keys have distinct str-representations.

The implementation is inspired by https://stackoverflow.com/a/15250161, but non-hashable keys are allowed.

EXAMPLES:

sage: from sage.combinat.finite_state_machine import full_group_by
sage: t = [2/x, 1/x, 2/x] # optional -
→˓ sage.symbolic
sage: r = full_group_by([0, 1, 2], key=lambda i: t[i]) # optional -
→˓ sage.symbolic
sage: sorted(r, key=lambda p: p[1]) # optional -
→˓ sage.symbolic
[(2/x, [0, 2]), (1/x, [1])]
sage: from itertools import groupby
sage: for k, elements in groupby(sorted([0, 1, 2], # optional -
→˓ sage.symbolic
....: key=lambda i:t[i]),
....: key=lambda i:t[i]):
....: print("{} {}".format(k, list(elements)))
2/x [0]
1/x [1]
2/x [2]

Note that the behavior is different from itertools.groupby() because neither 1/𝑥 < 2/𝑥 nor 2/𝑥 < 1/𝑥
does hold.

Here, the result r has been sorted in order to guarantee a consistent order for the doctest suite.

sage.combinat.finite_state_machine.is_Automaton(FSM)
Tests whether or not FSM inherits from Automaton.

sage.combinat.finite_state_machine.is_FSMProcessIterator(PI)
Tests whether or not PI inherits from FSMProcessIterator.

sage.combinat.finite_state_machine.is_FSMState(S)
Tests whether or not S inherits from FSMState.

sage.combinat.finite_state_machine.is_FSMTransition(T)
Tests whether or not T inherits from FSMTransition.

sage.combinat.finite_state_machine.is_FiniteStateMachine(FSM)
Tests whether or not FSM inherits from FiniteStateMachine.

sage.combinat.finite_state_machine.is_Transducer(FSM)
Tests whether or not FSM inherits from Transducer.

sage.combinat.finite_state_machine.setup_latex_preamble()
This function adds the package tikz with support for automata to the preamble of Latex so that the finite state
machines can be drawn nicely.

976 Chapter 5. Comprehensive Module List

https://docs.python.org/library/itertools.html#itertools.groupby
https://docs.python.org/library/functions.html#sorted
https://docs.python.org/library/itertools.html#itertools.groupby
https://stackoverflow.com/a/15250161
https://stackoverflow.com/a/15250161
https://stackoverflow.com/a/15250161
https://docs.python.org/library/itertools.html#itertools.groupby

Combinatorics, Release 9.7

See the section on LaTeX output in the introductory examples of this module.

sage.combinat.finite_state_machine.startswith(list_, prefix)
Determine whether list starts with the given prefix.

INPUT:

• list_ – list

• prefix – list representing the prefix

OUTPUT:

True or False.

Similar to str.startswith().

EXAMPLES:

sage: from sage.combinat.finite_state_machine import startswith
sage: startswith([1, 2, 3], [1, 2])
True
sage: startswith([1], [1, 2])
False
sage: startswith([1, 3, 2], [1, 2])
False

sage.combinat.finite_state_machine.tupleofwords_to_wordoftuples(tupleofwords)
Transposes a tuple of words over the alphabet to a word of tuples.

INPUT:

• tupleofwords – a tuple of a list of letters.

OUTPUT:

A list of tuples.

Missing letters in the words are padded with the letter None (from the empty word).

EXAMPLES:

sage: from sage.combinat.finite_state_machine import (
....: tupleofwords_to_wordoftuples)
sage: tupleofwords_to_wordoftuples(
....: ([1, 2], [3, 4, 5, 6], [7]))
[(1, 3, 7), (2, 4, None), (None, 5, None), (None, 6, None)]

sage.combinat.finite_state_machine.wordoftuples_to_tupleofwords(wordoftuples)
Transposes a word of tuples to a tuple of words over the alphabet.

INPUT:

• wordoftuples – a list of tuples of letters.

OUTPUT:

A tuple of lists.

Letters None (empty word) are removed from each word in the output.

EXAMPLES:

5.1. Comprehensive Module List 977

https://docs.python.org/library/stdtypes.html#str.startswith

Combinatorics, Release 9.7

sage: from sage.combinat.finite_state_machine import (
....: wordoftuples_to_tupleofwords)
sage: wordoftuples_to_tupleofwords(
....: [(1, 2), (1, None), (1, None), (1, 2), (None, 2)])
([1, 1, 1, 1], [2, 2, 2])

5.1.106 Common Automata and Transducers (Finite State Machines Generators)

Automata and Transducers in Sage can be built through the automata and transducers objects, respectively. It
contains generators for common finite state machines. For example,

sage: I = transducers.Identity([0, 1, 2])

generates an identity transducer on the alphabet {0, 1, 2}.

To construct automata and transducers manually, you can use the classes Automaton and Transducer, respectively.
See Finite state machines, automata, transducers for more details and a lot of examples.

Automata

AnyLetter() Return an automaton recognizing any letter.
AnyWord() Return an automaton recognizing any word.
EmptyWord() Return an automaton recognizing the empty word.
Word() Return an automaton recognizing the given word.
ContainsWord() Return an automaton recognizing words containing the given word.

Transducers

Identity() Returns a transducer realizing the identity map.
abs() Returns a transducer realizing absolute value.
map() Returns a transducer realizing a function.
operator() Returns a transducer realizing a binary operation.
all() Returns a transducer realizing logical and.
any() Returns a transducer realizing logical or.
add() Returns a transducer realizing addition.
sub() Returns a transducer realizing subtraction.
CountSubblockOccurrences() Returns a transducer counting the occurrences of a subblock.
Wait() Returns a transducer writing False until first (or k-th) true input is read.
weight() Returns a transducer realizing the Hamming weight.
GrayCode() Returns a transducer realizing binary Gray code.
Recursion() Returns a transducer defined by recursions.

AUTHORS:

• Clemens Heuberger (2014-04-07): initial version

• Sara Kropf (2014-04-10): some changes in TransducerGenerator

• Daniel Krenn (2014-04-15): improved common docstring during review

• Clemens Heuberger, Daniel Krenn, Sara Kropf (2014-04-16–2014-05-02): A couple of improvements. Details
see trac ticket #16141, trac ticket #16142, trac ticket #16143, trac ticket #16186.

• Sara Kropf (2014-04-29): weight transducer

978 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/16141
https://trac.sagemath.org/16142
https://trac.sagemath.org/16143
https://trac.sagemath.org/16186

Combinatorics, Release 9.7

• Clemens Heuberger, Daniel Krenn (2014-07-18): transducers Wait, all, any

• Clemens Heuberger (2014-08-10): transducer Recursion

• Clemens Heuberger (2015-07-31): automaton word

• Daniel Krenn (2015-09-14): cleanup trac ticket #18227

ACKNOWLEDGEMENT:

• Clemens Heuberger, Daniel Krenn and Sara Kropf are supported by the Austrian Science Fund (FWF): P 24644-
N26.

Functions and methods

class sage.combinat.finite_state_machine_generators.AutomatonGenerators
Bases: object

A collection of constructors for several common automata.

A list of all automata in this database is available via tab completion. Type “automata.” and then hit tab to see
which automata are available.

The automata currently in this class include:

• AnyLetter()

• AnyWord()

• EmptyWord()

• Word()

• ContainsWord()

AnyLetter(input_alphabet)
Return an automaton recognizing any letter of the given input alphabet.

INPUT:

• input_alphabet – a list, the input alphabet

OUTPUT:

An Automaton.

EXAMPLES:

sage: A = automata.AnyLetter([0, 1])
sage: A([])
False
sage: A([0])
True
sage: A([1])
True
sage: A([0, 0])
False

See also:

AnyWord()

5.1. Comprehensive Module List 979

https://trac.sagemath.org/18227

Combinatorics, Release 9.7

AnyWord(input_alphabet)
Return an automaton recognizing any word of the given input alphabet.

INPUT:

• input_alphabet – a list, the input alphabet

OUTPUT:

An Automaton.

EXAMPLES:

sage: A = automata.AnyWord([0, 1])
sage: A([0])
True
sage: A([1])
True
sage: A([0, 1])
True
sage: A([0, 2])
False

This is equivalent to taking the kleene_star() of AnyLetter() and minimizing the result. This method
immediately gives a minimized version:

sage: B = automata.AnyLetter([0, 1]).kleene_star().minimization().relabeled()
sage: B == A
True

See also:

AnyLetter(), Word().

ContainsWord(word, input_alphabet)
Return an automaton recognizing the words containing the given word as a factor.

INPUT:

• word – a list (or other iterable) of letters, the word we are looking for.

• input_alphabet – a list or other iterable, the input alphabet.

OUTPUT:

An Automaton.

EXAMPLES:

sage: A = automata.ContainsWord([0, 1, 0, 1, 1],
....: input_alphabet=[0, 1])
sage: A([1, 0, 1, 0, 1, 0, 1, 1, 0, 0])
True
sage: A([1, 0, 1, 0, 1, 0, 1, 0])
False

This is equivalent to taking the concatenation of AnyWord(), Word() and AnyWord() and minimizing the
result. This method immediately gives a minimized version:

980 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: B = (automata.AnyWord([0, 1]) *
....: automata.Word([0, 1, 0, 1, 1], [0, 1]) *
....: automata.AnyWord([0, 1])).minimization()
sage: B.is_equivalent(A)
True

See also:

CountSubblockOccurrences(), AnyWord(), Word().

EmptyWord(input_alphabet=None)
Return an automaton recognizing the empty word.

INPUT:

• input_alphabet – (default: None) an iterable or None.

OUTPUT:

An Automaton.

EXAMPLES:

sage: A = automata.EmptyWord()
sage: A([])
True
sage: A([0])
False

See also:

AnyLetter(), AnyWord().

Word(word, input_alphabet=None)
Return an automaton recognizing the given word.

INPUT:

• word – an iterable.

• input_alphabet – a list or None. If None, then the letters occurring in the word are used.

OUTPUT:

An Automaton.

EXAMPLES:

sage: A = automata.Word([0])
sage: A.transitions()
[Transition from 0 to 1: 0|-]
sage: [A(w) for w in ([], [0], [1])]
[False, True, False]
sage: A = automata.Word([0, 1, 0])
sage: A.transitions()
[Transition from 0 to 1: 0|-,
Transition from 1 to 2: 1|-,
Transition from 2 to 3: 0|-]
sage: [A(w) for w in ([], [0], [0, 1], [0, 1, 1], [0, 1, 0])]
[False, False, False, False, True]

5.1. Comprehensive Module List 981

Combinatorics, Release 9.7

If the input alphabet is not given, it is derived from the given word.

sage: A.input_alphabet
[0, 1]
sage: A = automata.Word([0, 1, 0], input_alphabet=[0, 1, 2])
sage: A.input_alphabet
[0, 1, 2]

See also:

AnyWord(), ContainsWord().

class sage.combinat.finite_state_machine_generators.TransducerGenerators
Bases: object

A collection of constructors for several common transducers.

A list of all transducers in this database is available via tab completion. Type “transducers.” and then hit tab
to see which transducers are available.

The transducers currently in this class include:

• Identity()

• abs()

• operator()

• all()

• any()

• add()

• sub()

• CountSubblockOccurrences()

• Wait()

• GrayCode()

• Recursion()

CountSubblockOccurrences(block, input_alphabet)
Returns a transducer counting the number of (possibly overlapping) occurrences of a block in the input.

INPUT:

• block – a list (or other iterable) of letters.

• input_alphabet – a list or other iterable.

OUTPUT:

A transducer counting (in unary) the number of occurrences of the given block in the input. Overlapping
occurrences are counted several times.

Denoting the block by 𝑏0 . . . 𝑏𝑘−1, the input word by 𝑖0 . . . 𝑖𝐿 and the output word by 𝑜0 . . . 𝑜𝐿, we have
𝑜𝑗 = 1 if and only if 𝑖𝑗−𝑘+1 . . . 𝑖𝑗 = 𝑏0 . . . 𝑏𝑘−1. Otherwise, 𝑜𝑗 = 0.

EXAMPLES:

1. Counting the number of 10 blocks over the alphabet [0, 1]:

982 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: T = transducers.CountSubblockOccurrences(
....: [1, 0],
....: [0, 1])
sage: sorted(T.transitions())
[Transition from () to (): 0|0,
Transition from () to (1,): 1|0,
Transition from (1,) to (): 0|1,
Transition from (1,) to (1,): 1|0]
sage: T.input_alphabet
[0, 1]
sage: T.output_alphabet
[0, 1]
sage: T.initial_states()
[()]
sage: T.final_states()
[(), (1,)]

Check some sequence:

sage: T([0, 1, 0, 1, 1, 0])
[0, 0, 1, 0, 0, 1]

2. Counting the number of 11 blocks over the alphabet [0, 1]:

sage: T = transducers.CountSubblockOccurrences(
....: [1, 1],
....: [0, 1])
sage: sorted(T.transitions())
[Transition from () to (): 0|0,
Transition from () to (1,): 1|0,
Transition from (1,) to (): 0|0,
Transition from (1,) to (1,): 1|1]

Check some sequence:

sage: T([0, 1, 0, 1, 1, 0])
[0, 0, 0, 0, 1, 0]

3. Counting the number of 1010 blocks over the alphabet [0, 1, 2]:

sage: T = transducers.CountSubblockOccurrences(
....: [1, 0, 1, 0],
....: [0, 1, 2])
sage: sorted(T.transitions())
[Transition from () to (): 0|0,
Transition from () to (1,): 1|0,
Transition from () to (): 2|0,
Transition from (1,) to (1, 0): 0|0,
Transition from (1,) to (1,): 1|0,
Transition from (1,) to (): 2|0,
Transition from (1, 0) to (): 0|0,
Transition from (1, 0) to (1, 0, 1): 1|0,
Transition from (1, 0) to (): 2|0,

(continues on next page)

5.1. Comprehensive Module List 983

Combinatorics, Release 9.7

(continued from previous page)

Transition from (1, 0, 1) to (1, 0): 0|1,
Transition from (1, 0, 1) to (1,): 1|0,
Transition from (1, 0, 1) to (): 2|0]
sage: input = [0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2]
sage: output = [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0]
sage: T(input) == output
True

See also:

ContainsWord()

GrayCode()
Returns a transducer converting the standard binary expansion to Gray code.

INPUT:

Nothing.

OUTPUT:

A transducer.

Cf. the Wikipedia article Gray_code for a description of the Gray code.

EXAMPLES:

sage: G = transducers.GrayCode()
sage: G
Transducer with 3 states
sage: for v in srange(10):
....: print("{} {}".format(v, G(v.digits(base=2))))
0 []
1 [1]
2 [1, 1]
3 [0, 1]
4 [0, 1, 1]
5 [1, 1, 1]
6 [1, 0, 1]
7 [0, 0, 1]
8 [0, 0, 1, 1]
9 [1, 0, 1, 1]

In the example Gray Code in the documentation of the Finite state machines, automata, transducers module,
the Gray code transducer is derived from the algorithm converting the binary expansion to the Gray code.
The result is the same as the one given here.

Identity(input_alphabet)
Returns the identity transducer realizing the identity map.

INPUT:

• input_alphabet – a list or other iterable.

OUTPUT:

A transducer mapping each word over input_alphabet to itself.

EXAMPLES:

984 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Gray_code

Combinatorics, Release 9.7

sage: T = transducers.Identity([0, 1])
sage: sorted(T.transitions())
[Transition from 0 to 0: 0|0,
Transition from 0 to 0: 1|1]
sage: T.initial_states()
[0]
sage: T.final_states()
[0]
sage: T.input_alphabet
[0, 1]
sage: T.output_alphabet
[0, 1]
sage: T([0, 1, 0, 1, 1])
[0, 1, 0, 1, 1]

Recursion(recursions, base, function=None, var=None, input_alphabet=None, word_function=None,
is_zero=None, output_rings=[Integer Ring, Rational Field])

Return a transducer realizing the given recursion when reading the digit expansion with base base.

INPUT:

• recursions – list or iterable of equations. Each equation has either the form

– f(base^K * n + r) == f(base^k * n + s) + t for some integers 0 <= k < K, r and
some t—valid for all n such that the arguments on both sides are non-negative—

or the form

– f(r) == t for some integer r and some t.

Alternatively, an equation may be replaced by a transducers.RecursionRule with the attributes
K, r, k, s, t as above or a tuple (r, t). Note that t must be a list in this case.

• base – base of the digit expansion.

• function – symbolic function f occurring in the recursions.

• var – symbolic variable.

• input_alphabet – (default: None) a list of digits to be used as the input alphabet. If None and the
base is an integer, input_alphabet is chosen to be srange(base.abs()).

• word_function – (default: None) a symbolic function. If not None, word_function(arg1, ..
., argn) in a symbolic recurrence relation is interpreted as a transition with output [arg1, ...,
argn]. This could not be entered in a symbolic recurrence relation because lists do not coerce into
the SymbolicRing.

• is_zero – (default: None) a callable. The recursion relations are only well-posed if there is no cycle
with non-zero output and input consisting of zeros. This parameter is used to determine whether the
output of such a cycle is non-zero. By default, the output must evaluate to False as a boolean.

• output_rings – (default: [ZZ, QQ]) a list of rings. The output labels are converted into the first ring
of the list in which they are contained. If they are not contained in any ring, they remain in whatever
ring they are after parsing the recursions, typically the symbolic ring.

OUTPUT:

A transducer T.

The transducer is constructed such that T(expansion) == f(n) if expansion is the digit expansion of
n to the base base with the given input alphabet as set of digits. Here, the + on the right hand side of the

5.1. Comprehensive Module List 985

../../../../../../html/en/reference/calculus/sage/symbolic/ring.html#sage.symbolic.ring.SymbolicRing

Combinatorics, Release 9.7

recurrence relation is interpreted as the concatenation of words.

The formal equations and initial conditions in the recursion have to be selected such that f is uniquely
defined.

EXAMPLES:

• The following example computes the Hamming weight of the ternary expansion of integers.

sage: function('f')
f
sage: var('n')
n
sage: T = transducers.Recursion([
....: f(3*n + 1) == f(n) + 1,
....: f(3*n + 2) == f(n) + 1,
....: f(3*n) == f(n),
....: f(0) == 0],
....: 3, f, n)
sage: T.transitions()
[Transition from (0, 0) to (0, 0): 0|-,
Transition from (0, 0) to (0, 0): 1|1,
Transition from (0, 0) to (0, 0): 2|1]

To illustrate what this transducer does, we consider the example of 𝑛 = 601:

sage: ternary_expansion = 601.digits(base=3)
sage: ternary_expansion
[1, 2, 0, 1, 1, 2]
sage: weight_sequence = T(ternary_expansion)
sage: weight_sequence
[1, 1, 1, 1, 1]
sage: sum(weight_sequence)
5

Note that the digit zero does not show up in the output because the equation f(3*n) == f(n) means
that no output is added to f(n).

• The following example computes the Hamming weight of the non-adjacent form, cf. the Wikipedia
article Non-adjacent_form.

sage: function('f')
f
sage: var('n')
n
sage: T = transducers.Recursion([
....: f(4*n + 1) == f(n) + 1,
....: f(4*n - 1) == f(n) + 1,
....: f(2*n) == f(n),
....: f(0) == 0],
....: 2, f, n)
sage: T.transitions()
[Transition from (0, 0) to (0, 0): 0|-,
Transition from (0, 0) to (1, 1): 1|-,
Transition from (1, 1) to (0, 0): 0|1,
Transition from (1, 1) to (1, 0): 1|1,

(continues on next page)

986 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Non-adjacent_form
https://en.wikipedia.org/wiki/Non-adjacent_form

Combinatorics, Release 9.7

(continued from previous page)

Transition from (1, 0) to (1, 1): 0|-,
Transition from (1, 0) to (1, 0): 1|-]
sage: [(s.label(), s.final_word_out)
....: for s in T.iter_final_states()]
[((0, 0), []),
((1, 1), [1]),
((1, 0), [1])]

As we are interested in the weight only, we also output 1 for numbers congruent to 3 mod 4. The actual
expansion is computed in the next example.

Consider the example of 29 = (1001̄01)2 (as usual, the digit−1 is denoted by 1̄ and digits are written
from the most significant digit at the left to the least significant digit at the right; for the transducer, we
have to give the digits in the reverse order):

sage: NAF = [1, 0, -1, 0, 0, 1]
sage: ZZ(NAF, base=2)
29
sage: binary_expansion = 29.digits(base=2)
sage: binary_expansion
[1, 0, 1, 1, 1]
sage: T(binary_expansion)
[1, 1, 1]
sage: sum(T(binary_expansion))
3

Indeed, the given non-adjacent form has three non-zero digits.

• The following example computes the non-adjacent form from the binary expansion, cf. the Wikipedia
article Non-adjacent_form. In contrast to the previous example, we actually compute the expansion,
not only the weight.

We have to write the output 0 when converting an even number. This cannot be encoded directly by
an equation in the symbolic ring, because f(2*n) == f(n) + 0 would be equivalent to f(2*n) ==
f(n) and an empty output would be written. Therefore, we wrap the output in the symbolic function
w and use the parameter word_function to announce this.

Similarly, we use w(-1, 0) to write an output word of length 2 in one iteration. Finally, we write
f(0) == w() to write an empty word upon completion.

Moreover, there is a cycle with output [0] which—from the point of view of this method—is a con-
tradicting recursion. We override this by the parameter is_zero.

sage: var('n')
n
sage: function('f w')
(f, w)
sage: T = transducers.Recursion([
....: f(2*n) == f(n) + w(0),
....: f(4*n + 1) == f(n) + w(1, 0),
....: f(4*n - 1) == f(n) + w(-1, 0),
....: f(0) == w()],
....: 2, f, n,
....: word_function=w,
....: is_zero=lambda x: sum(x).is_zero())

(continues on next page)

5.1. Comprehensive Module List 987

https://en.wikipedia.org/wiki/Non-adjacent_form
https://en.wikipedia.org/wiki/Non-adjacent_form

Combinatorics, Release 9.7

(continued from previous page)

sage: T.transitions()
[Transition from (0, 0) to (0, 0): 0|0,
Transition from (0, 0) to (1, 1): 1|-,
Transition from (1, 1) to (0, 0): 0|1,0,
Transition from (1, 1) to (1, 0): 1|-1,0,
Transition from (1, 0) to (1, 1): 0|-,
Transition from (1, 0) to (1, 0): 1|0]
sage: for s in T.iter_states():
....: print("{} {}".format(s, s.final_word_out))
(0, 0) []
(1, 1) [1, 0]
(1, 0) [1, 0]

We again consider the example of 𝑛 = 29:

sage: T(29.digits(base=2))
[1, 0, -1, 0, 0, 1, 0]

The same transducer can also be entered bypassing the symbolic equations:

sage: R = transducers.RecursionRule
sage: TR = transducers.Recursion([
....: R(K=1, r=0, k=0, s=0, t=[0]),
....: R(K=2, r=1, k=0, s=0, t=[1, 0]),
....: R(K=2, r=-1, k=0, s=0, t=[-1, 0]),
....: (0, [])],
....: 2,
....: is_zero=lambda x: sum(x).is_zero())
sage: TR == T
True

• Here is an artificial example where some of the 𝑠 are negative:

sage: function('f')
f
sage: var('n')
n
sage: T = transducers.Recursion([
....: f(2*n + 1) == f(n-1) + 1,
....: f(2*n) == f(n),
....: f(1) == 1,
....: f(0) == 0], 2, f, n)
sage: T.transitions()
[Transition from (0, 0) to (0, 0): 0|-,
Transition from (0, 0) to (1, 1): 1|-,
Transition from (1, 1) to (-1, 1): 0|1,
Transition from (1, 1) to (0, 0): 1|1,
Transition from (-1, 1) to (-1, 2): 0|-,
Transition from (-1, 1) to (1, 2): 1|-,
Transition from (-1, 2) to (-1, 1): 0|1,
Transition from (-1, 2) to (0, 0): 1|1,
Transition from (1, 2) to (-1, 2): 0|1,
Transition from (1, 2) to (1, 2): 1|1]

(continues on next page)

988 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: [(s.label(), s.final_word_out)
....: for s in T.iter_final_states()]
[((0, 0), []),
((1, 1), [1]),
((-1, 1), [0]),
((-1, 2), [0]),
((1, 2), [1])]

• Abelian complexity of the paperfolding sequence (cf. [HKP2015], Example 2.8):

sage: T = transducers.Recursion([
....: f(4*n) == f(2*n),
....: f(4*n+2) == f(2*n+1)+1,
....: f(16*n+1) == f(8*n+1),
....: f(16*n+5) == f(4*n+1)+2,
....: f(16*n+11) == f(4*n+3)+2,
....: f(16*n+15) == f(2*n+2)+1,
....: f(1) == 2, f(0) == 0]
....: + [f(16*n+jj) == f(2*n+1)+2 for jj in [3,7,9,13]],
....: 2, f, n)
sage: T.transitions()
[Transition from (0, 0) to (0, 1): 0|-,
Transition from (0, 0) to (1, 1): 1|-,
Transition from (0, 1) to (0, 1): 0|-,
Transition from (0, 1) to (1, 1): 1|1,
Transition from (1, 1) to (1, 2): 0|-,
Transition from (1, 1) to (3, 2): 1|-,
Transition from (1, 2) to (1, 3): 0|-,
Transition from (1, 2) to (5, 3): 1|-,
Transition from (3, 2) to (3, 3): 0|-,
Transition from (3, 2) to (7, 3): 1|-,
Transition from (1, 3) to (1, 3): 0|-,
Transition from (1, 3) to (1, 1): 1|2,
Transition from (5, 3) to (1, 2): 0|2,
Transition from (5, 3) to (1, 1): 1|2,
Transition from (3, 3) to (1, 1): 0|2,
Transition from (3, 3) to (3, 2): 1|2,
Transition from (7, 3) to (1, 1): 0|2,
Transition from (7, 3) to (2, 1): 1|1,
Transition from (2, 1) to (1, 1): 0|1,
Transition from (2, 1) to (2, 1): 1|-]
sage: for s in T.iter_states():
....: print("{} {}".format(s, s.final_word_out))
(0, 0) []
(0, 1) []
(1, 1) [2]
(1, 2) [2]
(3, 2) [2, 2]
(1, 3) [2]
(5, 3) [2, 2]
(3, 3) [2, 2]
(7, 3) [2, 2]

(continues on next page)

5.1. Comprehensive Module List 989

Combinatorics, Release 9.7

(continued from previous page)

(2, 1) [1, 2]
sage: list(sum(T(n.bits())) for n in srange(1, 21))
[2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 4, 3, 4, 5, 6, 5]

• We now demonstrate the use of the output_rings parameter. If no output_rings are specified, the
output labels are converted into ZZ:

sage: function('f')
f
sage: var('n')
n
sage: T = transducers.Recursion([
....: f(2*n + 1) == f(n) + 1,
....: f(2*n) == f(n),
....: f(0) == 2],
....: 2, f, n)
sage: for t in T.transitions():
....: print([x.parent() for x in t.word_out])
[]
[Integer Ring]
sage: [x.parent() for x in T.states()[0].final_word_out]
[Integer Ring]

In contrast, if output_rings is set to the empty list, the results are not converted:

sage: T = transducers.Recursion([
....: f(2*n + 1) == f(n) + 1,
....: f(2*n) == f(n),
....: f(0) == 2],
....: 2, f, n, output_rings=[])
sage: for t in T.transitions():
....: print([x.parent() for x in t.word_out])
[]
[Symbolic Ring]
sage: [x.parent() for x in T.states()[0].final_word_out]
[Symbolic Ring]

Finally, we use a somewhat questionable conversion:

sage: T = transducers.Recursion([
....: f(2*n + 1) == f(n) + 1,
....: f(2*n) == f(n),
....: f(0) == 0],
....: 2, f, n, output_rings=[GF(5)])
sage: for t in T.transitions():
....: print([x.parent() for x in t.word_out])
[]
[Finite Field of size 5]

Todo: Extend the method to

• non-integral bases,

990 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• higher dimensions.

ALGORITHM:

See [HKP2015], Section 6. However, there are also recursion transitions for states of level < 𝜅 if the
recursion rules allow such a transition. Furthermore, the intermediate step of a non-deterministic transducer
is left out by implicitly using recursion transitions. The well-posedness is checked in a truncated version
of the recursion digraph.

class RecursionRule
Bases: tuple

K
Alias for field number 0

k
Alias for field number 2

r
Alias for field number 1

s
Alias for field number 3

t
Alias for field number 4

Wait(input_alphabet, threshold=1)
Writes False until reading the threshold-th occurrence of a true input letter; then writes True.

INPUT:

• input_alphabet – a list or other iterable.

• threshold – a positive integer specifying how many occurrences of True inputs are waited for.

OUTPUT:

A transducer writing False until the threshold-th true (Python’s standard conversion to boolean is used
to convert the actual input to boolean) input is read. Subsequently, the transducer writes True.

EXAMPLES:

sage: T = transducers.Wait([0, 1])
sage: T([0, 0, 1, 0, 1, 0])
[False, False, True, True, True, True]
sage: T2 = transducers.Wait([0, 1], threshold=2)
sage: T2([0, 0, 1, 0, 1, 0])
[False, False, False, False, True, True]

abs(input_alphabet)
Returns a transducer which realizes the letter-wise absolute value of an input word over the given input
alphabet.

INPUT:

• input_alphabet – a list or other iterable.

OUTPUT:

A transducer mapping 𝑖0 . . . 𝑖𝑘 to |𝑖0| . . . |𝑖𝑘|.

EXAMPLES:

5.1. Comprehensive Module List 991

Combinatorics, Release 9.7

The following transducer realizes letter-wise absolute value:

sage: T = transducers.abs([-1, 0, 1])
sage: T.transitions()
[Transition from 0 to 0: -1|1,
Transition from 0 to 0: 0|0,
Transition from 0 to 0: 1|1]
sage: T.initial_states()
[0]
sage: T.final_states()
[0]
sage: T([-1, -1, 0, 1])
[1, 1, 0, 1]

add(input_alphabet, number_of_operands=2)
Returns a transducer which realizes addition on pairs over the given input alphabet.

INPUT:

• input_alphabet – a list or other iterable.

• number_of_operands – (default: 2) it specifies the number of input arguments the operator takes.

OUTPUT:

A transducer mapping an input word (𝑖01, . . . , 𝑖0𝑑) . . . (𝑖𝑘1, . . . , 𝑖𝑘𝑑) to the word (𝑖01 + · · ·+ 𝑖0𝑑) . . . (𝑖𝑘1 +
· · ·+ 𝑖𝑘𝑑).

The input alphabet of the generated transducer is the Cartesian product of number_of_operands copies
of input_alphabet.

EXAMPLES:

The following transducer realizes letter-wise addition:

sage: T = transducers.add([0, 1])
sage: T.transitions()
[Transition from 0 to 0: (0, 0)|0,
Transition from 0 to 0: (0, 1)|1,
Transition from 0 to 0: (1, 0)|1,
Transition from 0 to 0: (1, 1)|2]
sage: T.input_alphabet
[(0, 0), (0, 1), (1, 0), (1, 1)]
sage: T.initial_states()
[0]
sage: T.final_states()
[0]
sage: T([(0, 0), (0, 1), (1, 0), (1, 1)])
[0, 1, 1, 2]

More than two operands can also be handled:

sage: T3 = transducers.add([0, 1], number_of_operands=3)
sage: T3.input_alphabet
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)]
sage: T3([(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1)])
[0, 1, 2, 3]

992 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

all(input_alphabet, number_of_operands=2)
Returns a transducer which realizes logical and over the given input alphabet.

INPUT:

• input_alphabet – a list or other iterable.

• number_of_operands – (default: 2) specifies the number of input arguments for the and operation.

OUTPUT:

A transducer mapping an input word (𝑖01, . . . , 𝑖0𝑑) . . . (𝑖𝑘1, . . . , 𝑖𝑘𝑑) to the word (𝑖01 ∧ · · · ∧ 𝑖0𝑑) . . . (𝑖𝑘1 ∧
· · · ∧ 𝑖𝑘𝑑).

The input alphabet of the generated transducer is the Cartesian product of number_of_operands copies
of input_alphabet.

EXAMPLES:

The following transducer realizes letter-wise logical and:

sage: T = transducers.all([False, True])
sage: T.transitions()
[Transition from 0 to 0: (False, False)|False,
Transition from 0 to 0: (False, True)|False,
Transition from 0 to 0: (True, False)|False,
Transition from 0 to 0: (True, True)|True]
sage: T.input_alphabet
[(False, False), (False, True), (True, False), (True, True)]
sage: T.initial_states()
[0]
sage: T.final_states()
[0]
sage: T([(False, False), (False, True), (True, False), (True, True)])
[False, False, False, True]

More than two operands and other input alphabets (with conversion to boolean) are also possible:

sage: T3 = transducers.all([0, 1], number_of_operands=3)
sage: T3([(0, 0, 0), (1, 0, 0), (1, 1, 1)])
[False, False, True]

any(input_alphabet, number_of_operands=2)
Returns a transducer which realizes logical or over the given input alphabet.

INPUT:

• input_alphabet – a list or other iterable.

• number_of_operands – (default: 2) specifies the number of input arguments for the or operation.

OUTPUT:

A transducer mapping an input word (𝑖01, . . . , 𝑖0𝑑) . . . (𝑖𝑘1, . . . , 𝑖𝑘𝑑) to the word (𝑖01 ∨ · · · ∨ 𝑖0𝑑) . . . (𝑖𝑘1 ∨
· · · ∨ 𝑖𝑘𝑑).

The input alphabet of the generated transducer is the Cartesian product of number_of_operands copies
of input_alphabet.

EXAMPLES:

The following transducer realizes letter-wise logical or:

5.1. Comprehensive Module List 993

Combinatorics, Release 9.7

sage: T = transducers.any([False, True])
sage: T.transitions()
[Transition from 0 to 0: (False, False)|False,
Transition from 0 to 0: (False, True)|True,
Transition from 0 to 0: (True, False)|True,
Transition from 0 to 0: (True, True)|True]
sage: T.input_alphabet
[(False, False), (False, True), (True, False), (True, True)]
sage: T.initial_states()
[0]
sage: T.final_states()
[0]
sage: T([(False, False), (False, True), (True, False), (True, True)])
[False, True, True, True]

More than two operands and other input alphabets (with conversion to boolean) are also possible:

sage: T3 = transducers.any([0, 1], number_of_operands=3)
sage: T3([(0, 0, 0), (1, 0, 0), (1, 1, 1)])
[False, True, True]

map(f, input_alphabet)
Return a transducer which realizes a function on the alphabet.

INPUT:

• f – function to realize.

• input_alphabet – a list or other iterable.

OUTPUT:

A transducer mapping an input letter 𝑥 to 𝑓(𝑥).

EXAMPLES:

The following binary transducer realizes component-wise absolute value (this transducer is also available
as abs()):

sage: T = transducers.map(abs, [-1, 0, 1])
sage: T.transitions()
[Transition from 0 to 0: -1|1,
Transition from 0 to 0: 0|0,
Transition from 0 to 0: 1|1]
sage: T.input_alphabet
[-1, 0, 1]
sage: T.initial_states()
[0]
sage: T.final_states()
[0]
sage: T([-1, 1, 0, 1])
[1, 1, 0, 1]

See also:

Automaton.with_output().

994 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

operator(operator, input_alphabet, number_of_operands=2)
Returns a transducer which realizes an operation on tuples over the given input alphabet.

INPUT:

• operator – operator to realize. It is a function which takes number_of_operands input arguments
(each out of input_alphabet).

• input_alphabet – a list or other iterable.

• number_of_operands – (default: 2) it specifies the number of input arguments the operator takes.

OUTPUT:

A transducer mapping an input letter (𝑖1, . . . , 𝑖𝑛) to operator(𝑖1, . . . , 𝑖𝑛). Here, 𝑛 equals
number_of_operands.

The input alphabet of the generated transducer is the Cartesian product of number_of_operands copies
of input_alphabet.

EXAMPLES:

The following binary transducer realizes component-wise addition (this transducer is also available as
add()):

sage: import operator
sage: T = transducers.operator(operator.add, [0, 1])
sage: T.transitions()
[Transition from 0 to 0: (0, 0)|0,
Transition from 0 to 0: (0, 1)|1,
Transition from 0 to 0: (1, 0)|1,
Transition from 0 to 0: (1, 1)|2]
sage: T.input_alphabet
[(0, 0), (0, 1), (1, 0), (1, 1)]
sage: T.initial_states()
[0]
sage: T.final_states()
[0]
sage: T([(0, 0), (0, 1), (1, 0), (1, 1)])
[0, 1, 1, 2]

Note that for a unary operator the input letters of the new transducer are tuples of length 1:

sage: T = transducers.operator(abs,
....: [-1, 0, 1],
....: number_of_operands=1)
sage: T([-1, 1, 0])
Traceback (most recent call last):
...
ValueError: Invalid input sequence.
sage: T([(-1,), (1,), (0,)])
[1, 1, 0]

Compare this with the transducer generated by map():

sage: T = transducers.map(abs,
....: [-1, 0, 1])
sage: T([-1, 1, 0])
[1, 1, 0]

5.1. Comprehensive Module List 995

Combinatorics, Release 9.7

In fact, this transducer is also available as abs():

sage: T = transducers.abs([-1, 0, 1])
sage: T([-1, 1, 0])
[1, 1, 0]

sub(input_alphabet)
Returns a transducer which realizes subtraction on pairs over the given input alphabet.

INPUT:

• input_alphabet – a list or other iterable.

OUTPUT:

A transducer mapping an input word (𝑖0, 𝑖
′
0) . . . (𝑖𝑘, 𝑖

′
𝑘) to the word (𝑖0 − 𝑖′0) . . . (𝑖𝑘 − 𝑖′𝑘).

The input alphabet of the generated transducer is the Cartesian product of two copies of input_alphabet.

EXAMPLES:

The following transducer realizes letter-wise subtraction:

sage: T = transducers.sub([0, 1])
sage: T.transitions()
[Transition from 0 to 0: (0, 0)|0,
Transition from 0 to 0: (0, 1)|-1,
Transition from 0 to 0: (1, 0)|1,
Transition from 0 to 0: (1, 1)|0]
sage: T.input_alphabet
[(0, 0), (0, 1), (1, 0), (1, 1)]
sage: T.initial_states()
[0]
sage: T.final_states()
[0]
sage: T([(0, 0), (0, 1), (1, 0), (1, 1)])
[0, -1, 1, 0]

weight(input_alphabet, zero=0)
Returns a transducer which realizes the Hamming weight of the input over the given input alphabet.

INPUT:

• input_alphabet – a list or other iterable.

• zero – the zero symbol in the alphabet used

OUTPUT:

A transducer mapping 𝑖0 . . . 𝑖𝑘 to (𝑖0 ̸= 0) . . . (𝑖𝑘 ̸= 0).

The Hamming weight is defined as the number of non-zero digits in the input sequence over the alphabet
input_alphabet (see Wikipedia article Hamming_weight). The output sequence of the transducer is a
unary encoding of the Hamming weight. Thus the sum of the output sequence is the Hamming weight of
the input.

EXAMPLES:

sage: W = transducers.weight([-1, 0, 2])
sage: W.transitions()
[Transition from 0 to 0: -1|1,

(continues on next page)

996 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Hamming_weight

Combinatorics, Release 9.7

(continued from previous page)

Transition from 0 to 0: 0|0,
Transition from 0 to 0: 2|1]
sage: unary_weight = W([-1, 0, 0, 2, -1])
sage: unary_weight
[1, 0, 0, 1, 1]
sage: weight = add(unary_weight)
sage: weight
3

Also the joint Hamming weight can be computed:

sage: v1 = vector([-1, 0])
sage: v0 = vector([0, 0])
sage: W = transducers.weight([v1, v0])
sage: unary_weight = W([v1, v0, v1, v0])
sage: add(unary_weight)
2

For the input alphabet [-1, 0, 1] the weight transducer is the same as the absolute value transducer
abs():

sage: W = transducers.weight([-1, 0, 1])
sage: A = transducers.abs([-1, 0, 1])
sage: W == A
True

For other input alphabets, we can specify the zero symbol:

sage: W = transducers.weight(['a', 'b'], zero='a')
sage: add(W(['a', 'b', 'b']))
2

5.1.107 Free Quasi-symmetric functions

AUTHORS:

• Frédéric Chapoton, Darij Grinberg (2017)

class sage.combinat.fqsym.FQSymBases(base)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of graded bases of 𝐹𝑄𝑆𝑦𝑚 indexed by permutations.

class ElementMethods
Bases: object

omega_involution()
Return the image of the element self of 𝐹𝑄𝑆𝑦𝑚 under the omega involution.

The𝜔 involution is defined as the linear map𝐹𝑄𝑆𝑦𝑚→ 𝐹𝑄𝑆𝑦𝑚 that sends each basis element𝐹𝑢 of
the F-basis of𝐹𝑄𝑆𝑦𝑚 to the basis element𝐹𝑢∘𝑤0

, where𝑤0 is the longest word (i.e.,𝑤0(𝑖) = 𝑛+1−𝑖)
in the symmetric group 𝑆𝑛 that contains 𝑢. The 𝜔 involution is a graded algebra automorphism and a
coalgebra anti-automorphism of 𝐹𝑄𝑆𝑦𝑚. Every permutation 𝑢 ∈ 𝑆𝑛 satisfies

𝜔(𝐹𝑢) = 𝐹𝑢∘𝑤0
, 𝜔(𝐺𝑢) = 𝐺𝑤0∘𝑢,

5.1. Comprehensive Module List 997

../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

where standard notations for classical bases of 𝐹𝑄𝑆𝑦𝑚 are being used (that is, 𝐹 for the F-basis, and
𝐺 for the G-basis). In other words, writing permutations in one-line notation, we have

𝜔(𝐹(𝑢1,𝑢2,...,𝑢𝑛)) = 𝐹(𝑢𝑛,𝑢𝑛−1,...,𝑢1), 𝜔(𝐺(𝑢1,𝑢2,...,𝑢𝑛)) = 𝐺(𝑛+1−𝑢1,𝑛+1−𝑢2,...,𝑛+1−𝑢𝑛).

If we also consider the 𝜔 involution (omega_involution()) of the quasisymmetric functions (by
slight abuse of notation), and if we let 𝜋 be the canonical projection 𝐹𝑄𝑆𝑦𝑚→ 𝑄𝑆𝑦𝑚, then 𝜋 ∘𝜔 =
𝜔 ∘ 𝜋.

Additionally, consider the𝜓 involution (psi_involution()) of the noncommutative symmetric func-
tions, and if we let 𝜄 be the canonical inclusion 𝑁𝑆𝑦𝑚→ 𝐹𝑄𝑆𝑦𝑚, then 𝜔 ∘ 𝜄 = 𝜄 ∘ 𝜓.

Todo: Duality?

See also:

psi_involution(), star_involution()

EXAMPLES:

sage: FQSym = algebras.FQSym(ZZ)
sage: F = FQSym.F()
sage: F[[2,3,1]].omega_involution()
F[1, 3, 2]
sage: (3*F[[1]] - 4*F[[]] + 5*F[[1,2]]).omega_involution()
-4*F[] + 3*F[1] + 5*F[2, 1]
sage: G = FQSym.G()
sage: G[[2,3,1]].omega_involution()
G[2, 1, 3]
sage: M = FQSym.M()
sage: M[[2,3,1]].omega_involution()
-M[1, 2, 3] - M[2, 1, 3] - M[3, 1, 2]

The omega involution is an algebra homomorphism:

sage: (F[1,2] * F[1]).omega_involution()
F[2, 1, 3] + F[2, 3, 1] + F[3, 2, 1]
sage: F[1,2].omega_involution() * F[1].omega_involution()
F[2, 1, 3] + F[2, 3, 1] + F[3, 2, 1]

The omega involution intertwines the antipode and the inverse of the antipode:

sage: all(F(I).antipode().omega_involution().antipode()
....: == F(I).omega_involution()
....: for I in Permutations(4))
True

Testing the 𝜋 ∘ 𝜔 = 𝜔 ∘ 𝜋 relation noticed above:

sage: all(M[I].omega_involution().to_qsym()
....: == M[I].to_qsym().omega_involution()
....: for I in Permutations(4))
True

Testing the 𝜔 ∘ 𝜄 = 𝜄 ∘ 𝜓 relation:

998 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: S = NSym.S()
sage: all(S[I].psi_involution().to_fqsym() == S[I].to_fqsym().omega_
→˓involution()
....: for I in Compositions(4))
True

Todo: Check further commutative squares.

psi_involution()
Return the image of the element self of 𝐹𝑄𝑆𝑦𝑚 under the psi involution.

The𝜓 involution is defined as the linear map𝐹𝑄𝑆𝑦𝑚→ 𝐹𝑄𝑆𝑦𝑚 that sends each basis element𝐹𝑢 of
the F-basis of𝐹𝑄𝑆𝑦𝑚 to the basis element𝐹𝑤0∘𝑢, where𝑤0 is the longest word (i.e.,𝑤0(𝑖) = 𝑛+1−𝑖)
in the symmetric group 𝑆𝑛 that contains 𝑢. The 𝜓 involution is a graded coalgebra automorphism and
an algebra anti-automorphism of 𝐹𝑄𝑆𝑦𝑚. Every permutation 𝑢 ∈ 𝑆𝑛 satisfies

𝜓(𝐹𝑢) = 𝐹𝑤0∘𝑢, 𝜓(𝐺𝑢) = 𝐺𝑢∘𝑤0 ,

where standard notations for classical bases of 𝐹𝑄𝑆𝑦𝑚 are being used (that is, 𝐹 for the F-basis, and
𝐺 for the G-basis). In other words, writing permutations in one-line notation, we have

𝜓(𝐹(𝑢1,𝑢2,...,𝑢𝑛)) = 𝐹(𝑛+1−𝑢1,𝑛+1−𝑢2,...,𝑛+1−𝑢𝑛), 𝜓(𝐺(𝑢1,𝑢2,...,𝑢𝑛)) = 𝐺(𝑢𝑛,𝑢𝑛−1,...,𝑢1).

If we also consider the 𝜓 involution (psi_involution()) of the quasisymmetric functions (by slight
abuse of notation), and if we let 𝜋 be the canonical projection 𝐹𝑄𝑆𝑦𝑚→ 𝑄𝑆𝑦𝑚, then 𝜋∘𝜓 = 𝜓∘𝜋.

Additionally, consider the 𝜔 involution (omega_involution()) of the noncommutative symmetric
functions, and if we let 𝜄 be the canonical inclusion 𝑁𝑆𝑦𝑚→ 𝐹𝑄𝑆𝑦𝑚, then 𝜓 ∘ 𝜄 = 𝜄 ∘ 𝜔.

Todo: Duality?

See also:

omega_involution(), star_involution()

EXAMPLES:

sage: FQSym = algebras.FQSym(ZZ)
sage: F = FQSym.F()
sage: F[[2,3,1]].psi_involution()
F[2, 1, 3]
sage: (3*F[[1]] - 4*F[[]] + 5*F[[1,2]]).psi_involution()
-4*F[] + 3*F[1] + 5*F[2, 1]
sage: G = FQSym.G()
sage: G[[2,3,1]].psi_involution()
G[1, 3, 2]
sage: M = FQSym.M()
sage: M[[2,3,1]].psi_involution()
-M[1, 2, 3] - M[1, 3, 2] - M[2, 3, 1]

The 𝜓 involution intertwines the antipode and the inverse of the antipode:

5.1. Comprehensive Module List 999

Combinatorics, Release 9.7

sage: all(F(I).antipode().psi_involution().antipode()
....: == F(I).psi_involution()
....: for I in Permutations(4))
True

Testing the 𝜋 ∘ 𝜓 = 𝜓 ∘ 𝜋 relation above:

sage: all(M[I].psi_involution().to_qsym()
....: == M[I].to_qsym().psi_involution()
....: for I in Permutations(4))
True

Testing the 𝜓 ∘ 𝜄 = 𝜄 ∘ 𝜔 relation:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: S = NSym.S()
sage: all(S[I].omega_involution().to_fqsym() == S[I].to_fqsym().psi_
→˓involution()
....: for I in Compositions(4))
True

Todo: Check further commutative squares.

star_involution()
Return the image of the element self of 𝐹𝑄𝑆𝑦𝑚 under the star involution.

The star involution is defined as the linear map 𝐹𝑄𝑆𝑦𝑚 → 𝐹𝑄𝑆𝑦𝑚 that sends each basis element
𝐹𝑢 of the F-basis of 𝐹𝑄𝑆𝑦𝑚 to the basis element 𝐹𝑤0∘𝑢∘𝑤0

, where 𝑤0 is the longest word (i.e.,
𝑤0(𝑖) = 𝑛 + 1 − 𝑖) in the symmetric group 𝑆𝑛 that contains 𝑢. The star involution is a graded Hopf
algebra anti-automorphism of 𝐹𝑄𝑆𝑦𝑚. It is denoted by 𝑓 ↦→ 𝑓*. Every permutation 𝑢 ∈ 𝑆𝑛 satisfies

(𝐹𝑢)* = 𝐹𝑤0∘𝑢∘𝑤0
, (𝐺𝑢)* = 𝐺𝑤0∘𝑢∘𝑤0

, (ℳ𝑢)* =ℳ𝑤0∘𝑢∘𝑤0
,

where standard notations for classical bases of 𝐹𝑄𝑆𝑦𝑚 are being used (that is, 𝐹 for the F-basis, 𝐺
for the G-basis, and ℳ for the Monomial basis). In other words, writing permutations in one-line
notation, we have

(𝐹(𝑢1,𝑢2,...,𝑢𝑛))
* = 𝐹(𝑛+1−𝑢𝑛,𝑛+1−𝑢𝑛−1,...,𝑛+1−𝑢1), (𝐺(𝑢1,𝑢2,...,𝑢𝑛))

* = 𝐺(𝑛+1−𝑢𝑛,𝑛+1−𝑢𝑛−1,...,𝑛+1−𝑢1),

and

(ℳ(𝑢1,𝑢2,...,𝑢𝑛))
* =ℳ(𝑛+1−𝑢𝑛,𝑛+1−𝑢𝑛−1,...,𝑛+1−𝑢1).

Let us denote the star involution by (*) as well.

If we also denote by (*) the star involution of of the quasisymmetric functions (star_involution())
and if we let 𝜋 : 𝐹𝑄𝑆𝑦𝑚 → 𝑄𝑆𝑦𝑚 be the canonical projection then 𝜋 ∘ (*) = (*) ∘ 𝜋. Similar
for the noncommutative symmetric functions (star_involution()) with 𝜋 : 𝑁𝑆𝑦𝑚 → 𝐹𝑄𝑆𝑦𝑚
being the canonical inclusion and the word quasisymmetric functions (star_involution()) with
𝜋 : 𝐹𝑄𝑆𝑦𝑚→𝑊𝑄𝑆𝑦𝑚 the canonical inclusion.

Todo: Duality?

1000 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

omega_involution(), psi_involution()

EXAMPLES:

sage: FQSym = algebras.FQSym(ZZ)
sage: F = FQSym.F()
sage: F[[2,3,1]].star_involution()
F[3, 1, 2]
sage: (3*F[[1]] - 4*F[[]] + 5*F[[1,2]]).star_involution()
-4*F[] + 3*F[1] + 5*F[1, 2]
sage: G = FQSym.G()
sage: G[[2,3,1]].star_involution()
G[3, 1, 2]
sage: M = FQSym.M()
sage: M[[2,3,1]].star_involution()
M[3, 1, 2]

The star involution commutes with the antipode:

sage: all(F(I).antipode().star_involution()
....: == F(I).star_involution().antipode()
....: for I in Permutations(4))
True

Testing the 𝜋 ∘ (*) = (*) ∘ 𝜋 relation:

sage: all(M[I].star_involution().to_qsym()
....: == M[I].to_qsym().star_involution()
....: for I in Permutations(4))
True

Similar for 𝑁𝑆𝑦𝑚:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: S = NSym.S()
sage: all(S[I].star_involution().to_fqsym() == S[I].to_fqsym().star_
→˓involution()
....: for I in Compositions(4))
True

Similar for 𝑊𝑄𝑆𝑦𝑚:

sage: WQSym = algebras.WQSym(ZZ)
sage: all(F(I).to_wqsym().star_involution()
....: == F(I).star_involution().to_wqsym()
....: for I in Permutations(4))
True

Todo: Check further commutative squares.

to_qsym()
Return the image of self under the canonical projection 𝐹𝑄𝑆𝑦𝑚→ 𝑄𝑆𝑦𝑚.

5.1. Comprehensive Module List 1001

Combinatorics, Release 9.7

The canonical projection 𝐹𝑄𝑆𝑦𝑚 → 𝑄𝑆𝑦𝑚 is a surjective homomorphism of Hopf algebras. It
sends a basis element𝐹𝑤 of𝐹𝑄𝑆𝑦𝑚 to the basis element𝐹Comp𝑤 of the fundamental basis of𝑄𝑆𝑦𝑚,
where Comp𝑤 stands for the descent composition (sage.combinat.permutation.Permutation.
descents_composition()) of the permutation 𝑤.

See also:

QuasiSymmetricFunctions for a definition of 𝑄𝑆𝑦𝑚.

EXAMPLES:

sage: G = algebras.FQSym(QQ).G()
sage: x = G[1, 3, 2]
sage: x.to_qsym()
F[2, 1]
sage: G[2, 3, 1].to_qsym()
F[1, 2]
sage: F = algebras.FQSym(QQ).F()
sage: F[2, 3, 1].to_qsym()
F[2, 1]
sage: (F[2, 3, 1] + F[1, 3, 2] + F[1, 2, 3]).to_qsym()
2*F[2, 1] + F[3]
sage: F2 = algebras.FQSym(GF(2)).F()
sage: F2[2, 3, 1].to_qsym()
F[2, 1]
sage: (F2[2, 3, 1] + F2[1, 3, 2] + F2[1, 2, 3]).to_qsym()
F[3]

to_symmetric_group_algebra(n=None)
Return the element of a symmetric group algebra corresponding to the element self of 𝐹𝑄𝑆𝑦𝑚.

INPUT:
• n – integer (default: the maximal degree of self); the rank of the target symmetric group algebra

EXAMPLES:

sage: A = algebras.FQSym(QQ).G()
sage: x = A([1,3,2,4]) + 5/2 * A([2,3,4,1])
sage: x.to_symmetric_group_algebra()
[1, 3, 2, 4] + 5/2*[4, 1, 2, 3]

to_wqsym()
Return the image of self under the canonical inclusion map 𝐹𝑄𝑆𝑦𝑚→𝑊𝑄𝑆𝑦𝑚.

The canonical inclusion map 𝐹𝑄𝑆𝑦𝑚→𝑊𝑄𝑆𝑦𝑚 is an injective homomorphism of Hopf algebras.
It sends a basis element𝐺𝑤 of 𝐹𝑄𝑆𝑦𝑚 to the sum of basis elements M𝑢 of𝑊𝑄𝑆𝑦𝑚, where 𝑢 ranges
over all packed words whose standardization is 𝑤.

See also:

WordQuasiSymmetricFunctions for a definition of 𝑊𝑄𝑆𝑦𝑚.

EXAMPLES:

sage: G = algebras.FQSym(QQ).G()
sage: x = G[1, 3, 2]
sage: x.to_wqsym()
M[{1}, {3}, {2}] + M[{1, 3}, {2}]
sage: G[1, 2].to_wqsym()

(continues on next page)

1002 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

M[{1}, {2}] + M[{1, 2}]
sage: F = algebras.FQSym(QQ).F()
sage: F[3, 1, 2].to_wqsym()
M[{3}, {1}, {2}] + M[{3}, {1, 2}]
sage: G[2, 3, 1].to_wqsym()
M[{3}, {1}, {2}] + M[{3}, {1, 2}]

class ParentMethods
Bases: object

basis(degree=None)
The basis elements (optionally: of the specified degree).

OUTPUT: Family

EXAMPLES:

sage: FQSym = algebras.FQSym(QQ)
sage: G = FQSym.G()
sage: G.basis()
Lazy family (Term map from Standard permutations to Free Quasi-symmetric␣
→˓functions over Rational Field in the G basis(i))_{i in Standard␣
→˓permutations}
sage: G.basis().keys()
Standard permutations
sage: G.basis(degree=3).keys()
Standard permutations of 3
sage: G.basis(degree=3).list()
[G[1, 2, 3], G[1, 3, 2], G[2, 1, 3], G[2, 3, 1], G[3, 1, 2], G[3, 2, 1]]

from_symmetric_group_algebra(x)
Return the element of 𝐹𝑄𝑆𝑦𝑚 corresponding to the element 𝑥 of a symmetric group algebra.

EXAMPLES:

sage: A = algebras.FQSym(QQ).F()
sage: SGA4 = SymmetricGroupAlgebra(QQ, 4)
sage: x = SGA4([1,3,2,4]) + 5/2 * SGA4([1,2,4,3])
sage: A.from_symmetric_group_algebra(x)
5/2*F[1, 2, 4, 3] + F[1, 3, 2, 4]
sage: A.from_symmetric_group_algebra(SGA4.zero())
0

is_commutative()
Return whether this 𝐹𝑄𝑆𝑦𝑚 is commutative.

EXAMPLES:

sage: F = algebras.FQSym(ZZ).F()
sage: F.is_commutative()
False

is_field(proof=True)
Return whether this 𝐹𝑄𝑆𝑦𝑚 is a field.

EXAMPLES:

5.1. Comprehensive Module List 1003

Combinatorics, Release 9.7

sage: F = algebras.FQSym(QQ).F()
sage: F.is_field()
False

one_basis()
Return the index of the unit.

EXAMPLES:

sage: A = algebras.FQSym(QQ).F()
sage: A.one_basis()
[]

prec()
Return the ≺ product.

On the F-basis of FQSym, this product is determined by 𝐹𝑥 ≺ 𝐹𝑦 =
∑︀
𝐹𝑧 , where the sum ranges

over all 𝑧 in the shifted shuffle of 𝑥 and 𝑦 with the additional condition that the first letter of the result
comes from 𝑥.

The usual symbol for this operation is ≺.

See also:

product(), succ()

EXAMPLES:

sage: A = algebras.FQSym(QQ).F()
sage: x = A([2,1])
sage: A.prec(x, x)
F[2, 1, 4, 3] + F[2, 4, 1, 3] + F[2, 4, 3, 1]
sage: y = A([2,1,3])
sage: A.prec(x, y)
F[2, 1, 4, 3, 5] + F[2, 4, 1, 3, 5] + F[2, 4, 3, 1, 5]
+ F[2, 4, 3, 5, 1]
sage: A.prec(y, x)
F[2, 1, 3, 5, 4] + F[2, 1, 5, 3, 4] + F[2, 1, 5, 4, 3]
+ F[2, 5, 1, 3, 4] + F[2, 5, 1, 4, 3] + F[2, 5, 4, 1, 3]

prec_by_coercion(x, y)
Return 𝑥 ≺ 𝑦, computed using coercion to the F-basis.

See prec() for the definition of the objects involved.

EXAMPLES:

sage: G = algebras.FQSym(ZZ).G()
sage: a = G([1])
sage: b = G([2, 3, 1])
sage: G.prec(a, b) + G.succ(a, b) == a * b # indirect doctest
True

some_elements()
Return some elements of the free quasi-symmetric functions.

EXAMPLES:

1004 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/categories/sage/categories/magmas.html#sage.categories.magmas.Magmas.ParentMethods.product

Combinatorics, Release 9.7

sage: A = algebras.FQSym(QQ)
sage: F = A.F()
sage: F.some_elements()
[F[], F[1], F[1, 2] + F[2, 1], F[] + F[1, 2] + F[2, 1]]
sage: G = A.G()
sage: G.some_elements()
[G[], G[1], G[1, 2] + G[2, 1], G[] + G[1, 2] + G[2, 1]]
sage: M = A.M()
sage: M.some_elements()
[M[], M[1], M[1, 2] + 2*M[2, 1], M[] + M[1, 2] + 2*M[2, 1]]

succ()
Return the ≻ product.

On the F-basis of FQSym, this product is determined by 𝐹𝑥 ≻ 𝐹𝑦 =
∑︀
𝐹𝑧 , where the sum ranges

over all 𝑧 in the shifted shuffle of 𝑥 and 𝑦 with the additional condition that the first letter of the result
comes from 𝑦.

The usual symbol for this operation is ≻.

See also:

product(), prec()

EXAMPLES:

sage: A = algebras.FQSym(QQ).F()
sage: x = A([1])
sage: A.succ(x, x)
F[2, 1]
sage: y = A([3,1,2])
sage: A.succ(x, y)
F[4, 1, 2, 3] + F[4, 2, 1, 3] + F[4, 2, 3, 1]
sage: A.succ(y, x)
F[4, 3, 1, 2]

succ_by_coercion(x, y)
Return 𝑥 ≻ 𝑦, computed using coercion to the F-basis.

See succ() for the definition of the objects involved.

EXAMPLES:

sage: G = algebras.FQSym(ZZ).G()
sage: G.succ(G([1]), G([2, 3, 1])) # indirect doctest
G[2, 3, 4, 1] + G[3, 2, 4, 1] + G[4, 2, 3, 1]

super_categories()
The super categories of self.

EXAMPLES:

sage: from sage.combinat.fqsym import FQSymBases
sage: FQSym = algebras.FQSym(ZZ)
sage: bases = FQSymBases(FQSym)
sage: bases.super_categories()
[Category of realizations of Free Quasi-symmetric functions over Integer Ring,

(continues on next page)

5.1. Comprehensive Module List 1005

../../../../../../html/en/reference/categories/sage/categories/magmas.html#sage.categories.magmas.Magmas.ParentMethods.product

Combinatorics, Release 9.7

(continued from previous page)

Join of Category of realizations of hopf algebras over Integer Ring
and Category of graded algebras over Integer Ring
and Category of graded coalgebras over Integer Ring,

Category of graded connected hopf algebras with basis over Integer Ring]

class sage.combinat.fqsym.FQSymBasis_abstract(alg)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

Abstract base class for bases of FQSym.

This must define two attributes:

• _prefix – the basis prefix

• _basis_name – the name of the basis and must match one of the names that the basis can be constructed
from FQSym

an_element()
Return an element of self.

EXAMPLES:

sage: A = algebras.FQSym(QQ)
sage: F = A.F()
sage: F.an_element()
F[1] + 2*F[1, 2] + 2*F[2, 1]
sage: G = A.G()
sage: G.an_element()
G[1] + 2*G[1, 2] + 2*G[2, 1]
sage: M = A.M()
sage: M.an_element()
M[1] + 2*M[1, 2] + 4*M[2, 1]

class sage.combinat.fqsym.FreeQuasisymmetricFunctions(R)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The free quasi-symmetric functions.

The Hopf algebra 𝐹𝑄𝑆𝑦𝑚 of free quasi-symmetric functions over a commutative ring 𝑅 is the free 𝑅-module
with basis indexed by all permutations (i.e., the indexing set is the disjoint union of all symmetric groups). Its
product is determined by the shifted shuffles of two permutations, whereas its coproduct is given by splitting a
permutation (regarded as a word) into two (at every possible point) and standardizing the two pieces. This Hopf
algebra was introduced in [MR]. See [GriRei18] (Chapter 8) for a treatment using modern notations.

In more detail: For each 𝑛 ≥ 0, consider the symmetric group 𝑆𝑛. Let 𝑆 be the disjoint union of the 𝑆𝑛 over
all 𝑛 ≥ 0. Then, 𝐹𝑄𝑆𝑦𝑚 is the free 𝑅-module with basis (𝐹𝑤)𝑤∈𝑆 . This 𝑅-module is graded, with the 𝑛-th
graded component being spanned by all 𝐹𝑤 for 𝑤 ∈ 𝑆𝑛. A multiplication is defined on 𝐹𝑄𝑆𝑦𝑚 as follows: For
any two permutations 𝑢 ∈ 𝑆𝑘 and 𝑣 ∈ 𝑆𝑙, we set

𝐹𝑢𝐹𝑣 =
∑︁

𝐹𝑤,

where the sum is over all shuffles of 𝑢 with 𝑣[𝑘]. Here, the permutations 𝑢 and 𝑣 are regarded as words (by
writing them in one-line notation), and 𝑣[𝑘] means the word obtained from 𝑣 by increasing each letter by 𝑘 (for
example, (1, 4, 2, 3)[5] = (6, 9, 7, 8)); and the shuffles 𝑤 are translated back into permutations. This defines an
associative multiplication on 𝐹𝑄𝑆𝑦𝑚; its unity is 𝐹𝑒, where 𝑒 is the identity permutation in 𝑆0.

1006 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

In Section 1.3 of [AguSot05], Aguiar and Sottile construct a different basis of 𝐹𝑄𝑆𝑦𝑚. Their basis, called the
monomial basis and denoted by (ℳ𝑢), is also indexed by permutations. It is connected to the above F-basis by
the relation

𝐹𝑢 =
∑︁
𝑣

ℳ𝑣,

where the sum ranges over all permutations 𝑣 such that each inversion of 𝑢 is an inversion of 𝑣. (An inversion of
a permutation 𝑤 means a pair (𝑖, 𝑗) of positions satisfying 𝑖 < 𝑗 and 𝑤(𝑖) > 𝑤(𝑗).) The above relation yields a
unitriangular change-of-basis matrix, and thus can be used to compute theℳ𝑢 by Mobius inversion.

Another classical basis of 𝐹𝑄𝑆𝑦𝑚 is (𝐺𝑤)𝑤∈𝑆 , where 𝐺𝑤 = 𝐹𝑤−1 . This is just a relabeling of the basis
(𝐹𝑤)𝑤∈𝑆 , but is a more natural choice from some viewpoints.

The algebra 𝐹𝑄𝑆𝑦𝑚 is often identified with (“realized as”) a subring of the ring of all bounded-degree non-
commutative power series in countably many indeterminates (i.e., elements in 𝑅⟨⟨𝑥1, 𝑥2, 𝑥3, . . .⟩⟩ of bounded
degree). Namely, consider words over the alphabet {1, 2, 3, . . .}; every noncommutative power series is an infi-
nite𝑅-linear combination of these words. Consider the𝑅-linear map that sends each𝐺𝑢 to the sum of all words
whose standardization (also known as “standard permutation”; see standard_permutation()) is 𝑢. This map
is an injective 𝑅-algebra homomorphism, and thus embeds 𝐹𝑄𝑆𝑦𝑚 into the latter ring.

As an associative algebra, 𝐹𝑄𝑆𝑦𝑚 has the richer structure of a dendriform algebra. This means that the asso-
ciative product * is decomposed as a sum of two binary operations

𝑥𝑦 = 𝑥 ≻ 𝑦 + 𝑥 ≺ 𝑦

that satisfy the axioms:

(𝑥 ≻ 𝑦) ≺ 𝑧 = 𝑥 ≻ (𝑦 ≺ 𝑧),

(𝑥 ≺ 𝑦) ≺ 𝑧 = 𝑥 ≺ (𝑦𝑧),

(𝑥𝑦) ≻ 𝑧 = 𝑥 ≻ (𝑦 ≻ 𝑧).

These two binary operations are defined similarly to the (associative) product above: We set

𝐹𝑢 ≺ 𝐹𝑣 =
∑︁

𝐹𝑤,

where the sum is now over all shuffles of 𝑢 with 𝑣[𝑘] whose first letter is taken from 𝑢 (rather than from 𝑣[𝑘]).
Similarly,

𝐹𝑢 ≻ 𝐹𝑣 =
∑︁

𝐹𝑤,

where the sum is over all remaining shuffles of 𝑢 with 𝑣[𝑘].

Todo: Decide what 1 ≺ 1 and 1 ≻ 1 are.

Note: The usual binary operator * is used for the associative product.

EXAMPLES:

sage: F = algebras.FQSym(ZZ).F()
sage: x,y,z = F([1]), F([1,2]), F([1,3,2])
sage: (x * y) * z
F[1, 2, 3, 4, 6, 5] + ...

5.1. Comprehensive Module List 1007

Combinatorics, Release 9.7

The product of 𝐹𝑄𝑆𝑦𝑚 is associative:

sage: x * (y * z) == (x * y) * z
True

The associative product decomposes into two parts:

sage: x * y == F.prec(x, y) + F.succ(x, y)
True

The axioms of a dendriform algebra hold:

sage: F.prec(F.succ(x, y), z) == F.succ(x, F.prec(y, z))
True
sage: F.prec(F.prec(x, y), z) == F.prec(x, y * z)
True
sage: F.succ(x * y, z) == F.succ(x, F.succ(y, z))
True

𝐹𝑄𝑆𝑦𝑚 is also known as the Malvenuto-Reutenauer algebra:

sage: algebras.MalvenutoReutenauer(ZZ)
Free Quasi-symmetric functions over Integer Ring

REFERENCES:

• [MR]

• [LR1998]

• [GriRei18]

class F(alg)
Bases: sage.combinat.fqsym.FQSymBasis_abstract

The F-basis of 𝐹𝑄𝑆𝑦𝑚.

This is the basis (𝐹𝑤), with 𝑤 ranging over all permutations. See the documentation of
FreeQuasisymmetricFunctions for details.

EXAMPLES:

sage: FQSym = algebras.FQSym(QQ)
sage: FQSym.F()
Free Quasi-symmetric functions over Rational Field in the F basis

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

to_symmetric_group_algebra(n=None)
Return the element of a symmetric group algebra corresponding to the element self of 𝐹𝑄𝑆𝑦𝑚.

INPUT:
• n – integer (default: the maximal degree of self); the rank of the target symmetric group

algebra
EXAMPLES:

1008 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

sage: A = algebras.FQSym(QQ).F()
sage: x = A([1,3,2,4]) + 5/2 * A([1,2,4,3])
sage: x.to_symmetric_group_algebra()
5/2*[1, 2, 4, 3] + [1, 3, 2, 4]
sage: x.to_symmetric_group_algebra(n=7)
5/2*[1, 2, 4, 3, 5, 6, 7] + [1, 3, 2, 4, 5, 6, 7]
sage: a = A.zero().to_symmetric_group_algebra(); a
0
sage: parent(a)
Symmetric group algebra of order 0 over Rational Field

sage: y = A([1,3,2,4]) + 5/2 * A([2,1])
sage: y.to_symmetric_group_algebra()
[1, 3, 2, 4] + 5/2*[2, 1, 3, 4]
sage: y.to_symmetric_group_algebra(6)
[1, 3, 2, 4, 5, 6] + 5/2*[2, 1, 3, 4, 5, 6]

coproduct_on_basis(x)
Return the coproduct of 𝐹𝜎 for 𝜎 a permutation (here, 𝜎 is x).

EXAMPLES:

sage: A = algebras.FQSym(QQ).F()
sage: x = A([1])
sage: ascii_art(A.coproduct(A.one())) # indirect doctest
1 # 1

sage: ascii_art(A.coproduct(x)) # indirect doctest
1 # F + F # 1

[1] [1]

sage: A = algebras.FQSym(QQ).F()
sage: x, y, z = A([1]), A([2,1]), A([3,2,1])
sage: A.coproduct(z)
F[] # F[3, 2, 1] + F[1] # F[2, 1] + F[2, 1] # F[1]
+ F[3, 2, 1] # F[]

degree_on_basis(t)
Return the degree of a permutation in the algebra of free quasi-symmetric functions.

This is the size of the permutation (i.e., the 𝑛 for which the permutation belongs to 𝑆𝑛).

EXAMPLES:

sage: A = algebras.FQSym(QQ).F()
sage: u = Permutation([2,1])
sage: A.degree_on_basis(u)
2

prec_product_on_basis(x, y)
Return the ≺ product of two permutations.

This is the shifted shuffle of 𝑥 and 𝑦 with the additional condition that the first letter of the result comes
from 𝑥.

The usual symbol for this operation is ≺.

5.1. Comprehensive Module List 1009

Combinatorics, Release 9.7

See also:

product_on_basis(), succ_product_on_basis()

EXAMPLES:

sage: A = algebras.FQSym(QQ).F()
sage: x = Permutation([1,2])
sage: A.prec_product_on_basis(x, x)
F[1, 2, 3, 4] + F[1, 3, 2, 4] + F[1, 3, 4, 2]
sage: y = Permutation([])
sage: A.prec_product_on_basis(x, y) == A(x)
True
sage: A.prec_product_on_basis(y, x) == 0
True

product_on_basis(x, y)
Return the * associative product of two permutations.

This is the shifted shuffle of 𝑥 and 𝑦.

See also:

succ_product_on_basis(), prec_product_on_basis()

EXAMPLES:

sage: A = algebras.FQSym(QQ).F()
sage: x = Permutation([1])
sage: A.product_on_basis(x, x)
F[1, 2] + F[2, 1]

succ_product_on_basis(x, y)
Return the ≻ product of two permutations.

This is the shifted shuffle of 𝑥 and 𝑦 with the additional condition that the first letter of the result comes
from 𝑦.

The usual symbol for this operation is ≻.

See also:

• product_on_basis(), prec_product_on_basis()

EXAMPLES:

sage: A = algebras.FQSym(QQ).F()
sage: x = Permutation([1,2])
sage: A.succ_product_on_basis(x, x)
F[3, 1, 2, 4] + F[3, 1, 4, 2] + F[3, 4, 1, 2]
sage: y = Permutation([])
sage: A.succ_product_on_basis(x, y) == 0
True
sage: A.succ_product_on_basis(y, x) == A(x)
True

class G(alg)
Bases: sage.combinat.fqsym.FQSymBasis_abstract

The G-basis of 𝐹𝑄𝑆𝑦𝑚.

1010 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

This is the basis (𝐺𝑤), with 𝑤 ranging over all permutations. See the documentation of
FreeQuasisymmetricFunctions for details.

EXAMPLES:

sage: FQSym = algebras.FQSym(QQ)
sage: G = FQSym.G(); G
Free Quasi-symmetric functions over Rational Field in the G basis

sage: G([3, 1, 2]).coproduct()
G[] # G[3, 1, 2] + G[1] # G[2, 1] + G[1, 2] # G[1]
+ G[3, 1, 2] # G[]

sage: G([3, 1, 2]) * G([2, 1])
G[3, 1, 2, 5, 4] + G[4, 1, 2, 5, 3] + G[4, 1, 3, 5, 2]
+ G[4, 2, 3, 5, 1] + G[5, 1, 2, 4, 3] + G[5, 1, 3, 4, 2]
+ G[5, 1, 4, 3, 2] + G[5, 2, 3, 4, 1] + G[5, 2, 4, 3, 1]
+ G[5, 3, 4, 2, 1]

degree_on_basis(t)
Return the degree of a permutation in the algebra of free quasi-symmetric functions.

This is the size of the permutation (i.e., the 𝑛 for which the permutation belongs to 𝑆𝑛).

EXAMPLES:

sage: A = algebras.FQSym(QQ).G()
sage: u = Permutation([2,1])
sage: A.degree_on_basis(u)
2

class M(alg)
Bases: sage.combinat.fqsym.FQSymBasis_abstract

The M-basis of 𝐹𝑄𝑆𝑦𝑚.

This is the Monomial basis (ℳ𝑤), with 𝑤 ranging over all permutations. See the documentation of FQSym
for details.

EXAMPLES:

sage: FQSym = algebras.FQSym(QQ)
sage: M = FQSym.M(); M
Free Quasi-symmetric functions over Rational Field in the Monomial basis

sage: M([3, 1, 2]).coproduct()
M[] # M[3, 1, 2] + M[1] # M[1, 2] + M[3, 1, 2] # M[]
sage: M([3, 2, 1]).coproduct()
M[] # M[3, 2, 1] + M[1] # M[2, 1] + M[2, 1] # M[1]
+ M[3, 2, 1] # M[]

sage: M([1, 2]) * M([1])
M[1, 2, 3] + 2*M[1, 3, 2] + M[2, 3, 1] + M[3, 1, 2]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

5.1. Comprehensive Module List 1011

../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

star_involution()
Return the image of the element self of 𝐹𝑄𝑆𝑦𝑚 under the star involution.

See FQSymBases.ElementMethods.star_involution() for a definition of the involution and
for examples.

See also:

omega_involution(), psi_involution()

EXAMPLES:

sage: FQSym = algebras.FQSym(ZZ)
sage: M = FQSym.M()
sage: M[[2,3,1]].star_involution()
M[3, 1, 2]
sage: M[[]].star_involution()
M[]

coproduct_on_basis(x)
Return the coproduct ofℳ𝜎 for 𝜎 a permutation (here, 𝜎 is x).

This uses Theorem 3.1 in [AguSot05].

EXAMPLES:

sage: M = algebras.FQSym(QQ).M()
sage: x = M([1])
sage: ascii_art(M.coproduct(M.one())) # indirect doctest
1 # 1

sage: ascii_art(M.coproduct(x)) # indirect doctest
1 # M + M # 1

[1] [1]

sage: M.coproduct(M([2, 1, 3]))
M[] # M[2, 1, 3] + M[2, 1, 3] # M[]
sage: M.coproduct(M([2, 3, 1]))
M[] # M[2, 3, 1] + M[1, 2] # M[1] + M[2, 3, 1] # M[]
sage: M.coproduct(M([3, 2, 1]))
M[] # M[3, 2, 1] + M[1] # M[2, 1] + M[2, 1] # M[1]
+ M[3, 2, 1] # M[]
sage: M.coproduct(M([3, 4, 2, 1]))
M[] # M[3, 4, 2, 1] + M[1, 2] # M[2, 1] + M[2, 3, 1] # M[1]
+ M[3, 4, 2, 1] # M[]
sage: M.coproduct(M([3, 4, 1, 2]))
M[] # M[3, 4, 1, 2] + M[1, 2] # M[1, 2] + M[3, 4, 1, 2] # M[]

degree_on_basis(t)
Return the degree of a permutation in the algebra of free quasi-symmetric functions.

This is the size of the permutation (i.e., the 𝑛 for which the permutation belongs to 𝑆𝑛).

EXAMPLES:

sage: A = algebras.FQSym(QQ).M()
sage: u = Permutation([2,1])

(continues on next page)

1012 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: A.degree_on_basis(u)
2

a_realization()
Return a particular realization of self (the F-basis).

EXAMPLES:

sage: FQSym = algebras.FQSym(QQ)
sage: FQSym.a_realization()
Free Quasi-symmetric functions over Rational Field in the F basis

5.1.108 Free modules

class sage.combinat.free_module.CartesianProductWithFlattening(flatten)
Bases: object

A class for Cartesian product constructor, with partial flattening

class sage.combinat.free_module.CombinatorialFreeModule(R, basis_keys=None, element_class=None,
category=None, prefix=None,
names=None, **kwds)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.modules.module.
Module, sage.structure.indexed_generators.IndexedGenerators

Class for free modules with a named basis

INPUT:

• R - base ring

• basis_keys - list, tuple, family, set, etc. defining the indexing set for the basis of this module

• element_class - the class of which elements of this module should be instances (optional, default None,
in which case the elements are instances of IndexedFreeModuleElement)

• category - the category in which this module lies (optional, default None, in which case use the “category
of modules with basis” over the base ring R); this should be a subcategory of ModulesWithBasis

For the options controlling the printing of elements, see IndexedGenerators.

Note: These print options may also be accessed and modified using the print_options() method, after the
module has been defined.

EXAMPLES:

We construct a free module whose basis is indexed by the letters a, b, c:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: F
Free module generated by {'a', 'b', 'c'} over Rational Field

Its basis is a family, indexed by a, b, c:

5.1. Comprehensive Module List 1013

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/modules/sage/modules/module.html#sage.modules.module.Module
../../../../../../html/en/reference/modules/sage/modules/module.html#sage.modules.module.Module
../../../../../../html/en/reference/structure/sage/structure/indexed_generators.html#sage.structure.indexed_generators.IndexedGenerators
../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement
../../../../../../html/en/reference/categories/sage/categories/modules_with_basis.html#sage.categories.modules_with_basis.ModulesWithBasis
../../../../../../html/en/reference/structure/sage/structure/indexed_generators.html#sage.structure.indexed_generators.IndexedGenerators

Combinatorics, Release 9.7

sage: e = F.basis()
sage: e
Finite family {'a': B['a'], 'b': B['b'], 'c': B['c']}

sage: [x for x in e]
[B['a'], B['b'], B['c']]
sage: [k for k in e.keys()]
['a', 'b', 'c']

Let us construct some elements, and compute with them:

sage: e['a']
B['a']
sage: 2*e['a']
2*B['a']
sage: e['a'] + 3*e['b']
B['a'] + 3*B['b']

Some uses of sage.categories.commutative_additive_semigroups.
CommutativeAdditiveSemigroups.ParentMethods.summation() and sum():

sage: F = CombinatorialFreeModule(QQ, [1,2,3,4])
sage: F.summation(F.monomial(1), F.monomial(3))
B[1] + B[3]

sage: F = CombinatorialFreeModule(QQ, [1,2,3,4])
sage: F.sum(F.monomial(i) for i in [1,2,3])
B[1] + B[2] + B[3]

Note that free modules with a given basis and parameters are unique:

sage: F1 = CombinatorialFreeModule(QQ, (1,2,3,4))
sage: F1 is F
True

The identity of the constructed free module depends on the order of the basis and on the other parameters, like
the prefix. Note that CombinatorialFreeModule is a UniqueRepresentation. Hence, two combinatorial
free modules evaluate equal if and only if they are identical:

sage: F1 = CombinatorialFreeModule(QQ, (1,2,3,4))
sage: F1 is F
True
sage: F1 = CombinatorialFreeModule(QQ, [4,3,2,1])
sage: F1 == F
False
sage: F2 = CombinatorialFreeModule(QQ, [1,2,3,4], prefix='F')
sage: F2 == F
False

Because of this, if you create a free module with certain parameters and then modify its prefix or other print
options, this affects all modules which were defined using the same parameters.

1014 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

sage: F2.print_options(prefix='x')
sage: F2.prefix()
'x'
sage: F3 = CombinatorialFreeModule(QQ, [1,2,3,4], prefix='F')
sage: F3 is F2 # F3 was defined just like F2
True
sage: F3.prefix()
'x'
sage: F4 = CombinatorialFreeModule(QQ, [1,2,3,4], prefix='F', bracket=True)
sage: F4 == F2 # F4 was NOT defined just like F2
False
sage: F4.prefix()
'F'

sage: F2.print_options(prefix='F') #reset for following doctests

The constructed module is in the category of modules with basis over the base ring:

sage: CombinatorialFreeModule(QQ, Partitions()).category()
Category of vector spaces with basis over Rational Field

If furthermore the index set is finite (i.e. in the category Sets().Finite()), then the module is declared as
being finite dimensional:

sage: CombinatorialFreeModule(QQ, [1,2,3,4]).category()
Category of finite dimensional vector spaces with basis over Rational Field
sage: CombinatorialFreeModule(QQ, Partitions(3),
....: category=Algebras(QQ).WithBasis()).category()
Category of finite dimensional algebras with basis over Rational Field

See sage.categories.examples.algebras_with_basis and sage.categories.examples.
hopf_algebras_with_basis for illustrations of the use of the category keyword, and see sage.
combinat.root_system.weight_space.WeightSpace for an example of the use of element_class.

Customizing print and LaTeX representations of elements:

sage: F = CombinatorialFreeModule(QQ, ['a','b'], prefix='x')
sage: original_print_options = F.print_options()
sage: sorted(original_print_options.items())
[('bracket', None),
('iterate_key', False),
('latex_bracket', False), ('latex_names', None),
('latex_prefix', None), ('latex_scalar_mult', None),
('names', None), ('prefix', 'x'),
('scalar_mult', '*'),
('sorting_key', <function ...<lambda> at ...>),
('sorting_reverse', False), ('string_quotes', True),
('tensor_symbol', None)]

sage: e = F.basis()
sage: e['a'] - 3 * e['b']
x['a'] - 3*x['b']

sage: F.print_options(prefix='x', scalar_mult=' ', bracket='{')
(continues on next page)

5.1. Comprehensive Module List 1015

../../../../../../html/en/reference/categories/sage/categories/examples/algebras_with_basis.html#module-sage.categories.examples.algebras_with_basis
../../../../../../html/en/reference/categories/sage/categories/examples/hopf_algebras_with_basis.html#module-sage.categories.examples.hopf_algebras_with_basis
../../../../../../html/en/reference/categories/sage/categories/examples/hopf_algebras_with_basis.html#module-sage.categories.examples.hopf_algebras_with_basis

Combinatorics, Release 9.7

(continued from previous page)

sage: e['a'] - 3 * e['b']
x{'a'} - 3 x{'b'}
sage: latex(e['a'] - 3 * e['b'])
x_{a} - 3 x_{b}

sage: F.print_options(latex_prefix='y')
sage: latex(e['a'] - 3 * e['b'])
y_{a} - 3 y_{b}

sage: F.print_options(sorting_reverse=True)
sage: e['a'] - 3 * e['b']
-3 x{'b'} + x{'a'}
sage: F.print_options(**original_print_options) # reset print options

sage: F = CombinatorialFreeModule(QQ, [(1,2), (3,4)])
sage: e = F.basis()
sage: e[(1,2)] - 3 * e[(3,4)]
B[(1, 2)] - 3*B[(3, 4)]

sage: F.print_options(bracket=['_{', '}'])
sage: e[(1,2)] - 3 * e[(3,4)]
B_{(1, 2)} - 3*B_{(3, 4)}

sage: F.print_options(prefix='', bracket=False)
sage: e[(1,2)] - 3 * e[(3,4)]
(1, 2) - 3*(3, 4)

CartesianProduct
alias of CombinatorialFreeModule_CartesianProduct

Element
alias of sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Tensor
alias of CombinatorialFreeModule_Tensor

construction()
The construction functor and base ring for self.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'],␣
→˓category=AlgebrasWithBasis(QQ))
sage: F.construction()
(VectorFunctor, Rational Field)

dimension()
Return the dimension of the free module (which is given by the number of elements in the basis).

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.dimension()
3
sage: F.basis().cardinality()

(continues on next page)

1016 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

(continued from previous page)

3
sage: F.basis().keys().cardinality()
3

Rank is available as a synonym:

sage: F.rank()
3

sage: s = SymmetricFunctions(QQ).schur()
sage: s.dimension()
+Infinity

element_class()
The (default) class for the elements of this parent

Overrides Parent.element_class() to force the construction of Python class. This is currently needed
to inherit really all the features from categories, and in particular the initialization of _mul_ in Magmas.
ParentMethods.__init_extra__().

EXAMPLES:

sage: A = Algebras(QQ).WithBasis().example(); A
An example of an algebra with basis:
the free algebra on the generators ('a', 'b', 'c') over Rational Field

sage: A.element_class.mro()
[<class 'sage.categories.examples.algebras_with_basis.FreeAlgebra_with_category.
→˓element_class'>,
<class 'sage.modules.with_basis.indexed_element.IndexedFreeModuleElement'>,
...]
sage: a,b,c = A.algebra_generators()
sage: a * b
B[word: ab]

from_vector(vector, order=None, coerce=True)
Build an element of self from a (sparse) vector.

See also:

get_order(), CombinatorialFreeModule.Element._vector_()

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: b = QS3.from_vector(vector((2, 0, 0, 0, 0, 4))); b
2*[1, 2, 3] + 4*[3, 2, 1]
sage: a = 2*QS3([1,2,3])+4*QS3([3,2,1])
sage: a == b
True

get_order()
Return the order of the elements in the basis.

EXAMPLES:

5.1. Comprehensive Module List 1017

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent.element_class

Combinatorics, Release 9.7

sage: QS2 = SymmetricGroupAlgebra(QQ,2)
sage: QS2.get_order() # note: order changed on 2009-03-13
[[2, 1], [1, 2]]

get_order_key()
Return a comparison key on the basis indices that is compatible with the current term order.

EXAMPLES:

sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example()
sage: A.set_order(['x', 'y', 'a', 'b'])
sage: Akey = A.get_order_key()
sage: sorted(A.basis().keys(), key=Akey)
['x', 'y', 'a', 'b']
sage: A.set_order(list(reversed(A.basis().keys())))
sage: Akey = A.get_order_key()
sage: sorted(A.basis().keys(), key=Akey)
['b', 'a', 'y', 'x']

is_exact()
Return True if elements of self have exact representations, which is true of self if and only if it is true
of self.basis().keys() and self.base_ring().

EXAMPLES:

sage: GroupAlgebra(GL(3, GF(7))).is_exact()
True
sage: GroupAlgebra(GL(3, GF(7)), RR).is_exact()
False
sage: GroupAlgebra(GL(3, pAdicRing(7))).is_exact() # not implemented correctly␣
→˓(not my fault)!
False

linear_combination(iter_of_elements_coeff, factor_on_left=True)
Return the linear combination 𝜆1𝑣1 + · · ·+ 𝜆𝑘𝑣𝑘 (resp. the linear combination 𝑣1𝜆1 + · · ·+ 𝑣𝑘𝜆𝑘) where
iter_of_elements_coeff iterates through the sequence ((𝑣1, 𝜆1), ..., (𝑣𝑘, 𝜆𝑘)).

INPUT:

• iter_of_elements_coeff – iterator of pairs (element, coeff) with element in self and
coeff in self.base_ring()

• factor_on_left – (optional) if True, the coefficients are multiplied from the left if False, the
coefficients are multiplied from the right

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ,[1,2])
sage: f = F.an_element(); f
2*B[1] + 2*B[2]
sage: F.linear_combination((f,i) for i in range(5))
20*B[1] + 20*B[2]

monomial()
Return the basis element indexed by i.

INPUT:

1018 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• i – an element of the index set

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.monomial('a')
B['a']

F.monomial is in fact (almost) a map:

sage: F.monomial
Term map from {'a', 'b', 'c'} to Free module generated by {'a', 'b', 'c'} over␣
→˓Rational Field

rank()
Return the dimension of the free module (which is given by the number of elements in the basis).

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.dimension()
3
sage: F.basis().cardinality()
3
sage: F.basis().keys().cardinality()
3

Rank is available as a synonym:

sage: F.rank()
3

sage: s = SymmetricFunctions(QQ).schur()
sage: s.dimension()
+Infinity

set_order(order)
Set the order of the elements of the basis.

If set_order() has not been called, then the ordering is the one used in the generation of the elements of
self’s associated enumerated set.

Warning: Many cached methods depend on this order, in particular for constructing subspaces and
quotients. Changing the order after some computations have been cached does not invalidate the cache,
and is likely to introduce inconsistencies.

EXAMPLES:

sage: QS2 = SymmetricGroupAlgebra(QQ,2)
sage: b = list(QS2.basis().keys())
sage: b.reverse()
sage: QS2.set_order(b)
sage: QS2.get_order()
[[2, 1], [1, 2]]

5.1. Comprehensive Module List 1019

Combinatorics, Release 9.7

sum(iter_of_elements)
Return the sum of all elements in iter_of_elements.

Overrides method inherited from commutative additive monoid as it is much faster on dicts directly.

INPUT:

• iter_of_elements – iterator of elements of self

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ,[1,2])
sage: f = F.an_element(); f
2*B[1] + 2*B[2]
sage: F.sum(f for _ in range(5))
10*B[1] + 10*B[2]

sum_of_terms(terms, distinct=False)
Construct a sum of terms of self.

INPUT:

• terms – a list (or iterable) of pairs (index, coeff)

• distinct – (default: False) whether the indices are guaranteed to be distinct

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.sum_of_terms([('a',2), ('c',3)])
2*B['a'] + 3*B['c']

If distinct is True, then the construction is optimized:

sage: F.sum_of_terms([('a',2), ('c',3)], distinct = True)
2*B['a'] + 3*B['c']

Warning: Use distinct=True only if you are sure that the indices are indeed distinct:

sage: F.sum_of_terms([('a',2), ('a',3)], distinct = True)
3*B['a']

Extreme case:

sage: F.sum_of_terms([])
0

term(index, coeff=None)
Construct a term in self.

INPUT:

• index – the index of a basis element

• coeff – an element of the coefficient ring (default: one)

EXAMPLES:

1020 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.term('a',3)
3*B['a']
sage: F.term('a')
B['a']

Design: should this do coercion on the coefficient ring?

zero()
EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.zero()
0

class sage.combinat.free_module.CombinatorialFreeModule_CartesianProduct(modules, **options)
Bases: sage.combinat.free_module.CombinatorialFreeModule

An implementation of Cartesian products of modules with basis

EXAMPLES:

We construct two free modules, assign them short names, and construct their Cartesian product:

sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
sage: H = CombinatorialFreeModule(ZZ, [4,7]); H.__custom_name = "H"
sage: S = cartesian_product([F, G])
sage: S
F (+) G
sage: S.basis()
Lazy family (Term map from Disjoint union of Family ({4, 5}, {4, 6}) to F (+) G(i))_
→˓{i in Disjoint union of Family ({4, 5}, {4, 6})}

Note that the indices of the basis elements of F and G intersect non trivially. This is handled by forcing the union
to be disjoint:

sage: list(S.basis())
[B[(0, 4)], B[(0, 5)], B[(1, 4)], B[(1, 6)]]

We now compute the Cartesian product of elements of free modules:

sage: f = F.monomial(4) + 2 * F.monomial(5)
sage: g = 2*G.monomial(4) + G.monomial(6)
sage: h = H.monomial(4) + H.monomial(7)
sage: cartesian_product([f,g])
B[(0, 4)] + 2*B[(0, 5)] + 2*B[(1, 4)] + B[(1, 6)]
sage: cartesian_product([f,g,h])
B[(0, 4)] + 2*B[(0, 5)] + 2*B[(1, 4)] + B[(1, 6)] + B[(2, 4)] + B[(2, 7)]
sage: cartesian_product([f,g,h]).parent()
F (+) G (+) H

TODO: choose an appropriate semantic for Cartesian products of Cartesian products (associativity?):

sage: S = cartesian_product([cartesian_product([F, G]), H]) # todo: not implemented
F (+) G (+) H

5.1. Comprehensive Module List 1021

Combinatorics, Release 9.7

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

cartesian_embedding(i)
Return the natural embedding morphism of the i-th Cartesian factor (summand) of self into self.

INPUT:

• i – an integer

EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
sage: S = cartesian_product([F, G])
sage: phi = S.cartesian_embedding(0)
sage: phi(F.monomial(4) + 2 * F.monomial(5))
B[(0, 4)] + 2*B[(0, 5)]
sage: phi(F.monomial(4) + 2 * F.monomial(6)).parent() == S
True

cartesian_factors()
Return the factors of the Cartesian product.

EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
sage: S = cartesian_product([F, G])
sage: S.cartesian_factors()
(F, G)

cartesian_projection(i)
Return the natural projection onto the 𝑖-th Cartesian factor (summand) of self.

INPUT:

• i – an integer

EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
sage: S = cartesian_product([F, G])
sage: x = S.monomial((0,4)) + 2 * S.monomial((0,5)) + 3 * S.monomial((1,6))
sage: S.cartesian_projection(0)(x)
B[4] + 2*B[5]
sage: S.cartesian_projection(1)(x)
3*B[6]
sage: S.cartesian_projection(0)(x).parent() == F
True
sage: S.cartesian_projection(1)(x).parent() == G
True

summand_embedding(i)
Return the natural embedding morphism of the i-th Cartesian factor (summand) of self into self.

INPUT:

• i – an integer

1022 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
sage: S = cartesian_product([F, G])
sage: phi = S.cartesian_embedding(0)
sage: phi(F.monomial(4) + 2 * F.monomial(5))
B[(0, 4)] + 2*B[(0, 5)]
sage: phi(F.monomial(4) + 2 * F.monomial(6)).parent() == S
True

summand_projection(i)
Return the natural projection onto the 𝑖-th Cartesian factor (summand) of self.

INPUT:

• i – an integer

EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
sage: S = cartesian_product([F, G])
sage: x = S.monomial((0,4)) + 2 * S.monomial((0,5)) + 3 * S.monomial((1,6))
sage: S.cartesian_projection(0)(x)
B[4] + 2*B[5]
sage: S.cartesian_projection(1)(x)
3*B[6]
sage: S.cartesian_projection(0)(x).parent() == F
True
sage: S.cartesian_projection(1)(x).parent() == G
True

class sage.combinat.free_module.CombinatorialFreeModule_Tensor(modules, **options)
Bases: sage.combinat.free_module.CombinatorialFreeModule

Tensor Product of Free Modules

EXAMPLES:

We construct two free modules, assign them short names, and construct their tensor product:

sage: F = CombinatorialFreeModule(ZZ, [1,2]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [3,4]); G.__custom_name = "G"
sage: T = tensor([F, G]); T
F # G

sage: T.category()
Category of tensor products of finite dimensional modules with basis over Integer␣
→˓Ring

sage: T.construction() # todo: not implemented
[tensor,]

T is a free module, with same base ring as F and G:

5.1. Comprehensive Module List 1023

Combinatorics, Release 9.7

sage: T.base_ring()
Integer Ring

The basis of T is indexed by tuples of basis indices of F and G:

sage: T.basis().keys()
Image of Cartesian product of {1, 2}, {3, 4} by The map <class 'tuple'> from␣
→˓Cartesian product of {1, 2}, {3, 4}
sage: T.basis().keys().list()
[(1, 3), (1, 4), (2, 3), (2, 4)]

FIXME: Should elements of a CartesianProduct be tuples (making them hashable)?

Here are the basis elements themselves:

sage: T.basis().cardinality()
4
sage: list(T.basis())
[B[1] # B[3], B[1] # B[4], B[2] # B[3], B[2] # B[4]]

The tensor product is associative and flattens sub tensor products:

sage: H = CombinatorialFreeModule(ZZ, [5,6]); H.rename("H")
sage: tensor([F, tensor([G, H])])
F # G # H
sage: tensor([tensor([F, G]), H])
F # G # H
sage: tensor([F, G, H])
F # G # H

We now compute the tensor product of elements of free modules:

sage: f = F.monomial(1) + 2 * F.monomial(2)
sage: g = 2*G.monomial(3) + G.monomial(4)
sage: h = H.monomial(5) + H.monomial(6)
sage: tensor([f, g])
2*B[1] # B[3] + B[1] # B[4] + 4*B[2] # B[3] + 2*B[2] # B[4]

Again, the tensor product is associative on elements:

sage: tensor([f, tensor([g, h])]) == tensor([f, g, h])
True
sage: tensor([tensor([f, g]), h]) == tensor([f, g, h])
True

Note further that the tensor product spaces need not preexist:

sage: t = tensor([f, g, h])
sage: t.parent()
F # G # H

tensor_constructor(modules)
INPUT:

• modules – a tuple (𝐹1, . . . , 𝐹𝑛) of free modules whose tensor product is self

1024 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Returns the canonical multilinear morphism from 𝐹1 × · · · × 𝐹𝑛 to 𝐹1 ⊗ · · · ⊗ 𝐹𝑛
EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [1,2]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [3,4]); G.__custom_name = "G"
sage: H = CombinatorialFreeModule(ZZ, [5,6]); H.rename("H")

sage: f = F.monomial(1) + 2 * F.monomial(2)
sage: g = 2*G.monomial(3) + G.monomial(4)
sage: h = H.monomial(5) + H.monomial(6)
sage: FG = tensor([F, G])
sage: phi_fg = FG.tensor_constructor((F, G))
sage: phi_fg(f,g)
2*B[1] # B[3] + B[1] # B[4] + 4*B[2] # B[3] + 2*B[2] # B[4]

sage: FGH = tensor([F, G, H])
sage: phi_fgh = FGH.tensor_constructor((F, G, H))
sage: phi_fgh(f, g, h)
2*B[1] # B[3] # B[5] + 2*B[1] # B[3] # B[6] + B[1] # B[4] # B[5] + B[1] # B[4]
→˓# B[6] + 4*B[2] # B[3] # B[5] + 4*B[2] # B[3] # B[6] + 2*B[2] # B[4] # B[5] +␣
→˓2*B[2] # B[4] # B[6]

sage: phi_fg_h = FGH.tensor_constructor((FG, H))
sage: phi_fg_h(phi_fg(f, g), h)
2*B[1] # B[3] # B[5] + 2*B[1] # B[3] # B[6] + B[1] # B[4] # B[5] + B[1] # B[4]
→˓# B[6] + 4*B[2] # B[3] # B[5] + 4*B[2] # B[3] # B[6] + 2*B[2] # B[4] # B[5] +␣
→˓2*B[2] # B[4] # B[6]

5.1.109 Free Dendriform Algebras

AUTHORS:

Frédéric Chapoton (2017)

class sage.combinat.free_dendriform_algebra.DendriformFunctor(vars)
Bases: sage.categories.pushout.ConstructionFunctor

A constructor for dendriform algebras.

EXAMPLES:

sage: P = algebras.FreeDendriform(ZZ, 'x,y')
sage: x,y = P.gens()
sage: F = P.construction()[0]; F
Dendriform[x,y]

sage: A = GF(5)['a,b']
sage: a, b = A.gens()
sage: F(A)
Free Dendriform algebra on 2 generators ['x', 'y']
over Multivariate Polynomial Ring in a, b over Finite Field of size 5

sage: f = A.hom([a+b,a-b],A)
sage: F(f)

(continues on next page)

5.1. Comprehensive Module List 1025

../../../../../../html/en/reference/categories/sage/categories/pushout.html#sage.categories.pushout.ConstructionFunctor

Combinatorics, Release 9.7

(continued from previous page)

Generic endomorphism of Free Dendriform algebra on 2 generators ['x', 'y']
over Multivariate Polynomial Ring in a, b over Finite Field of size 5

sage: F(f)(a * F(A)(x))
(a+b)*B[x[., .]]

merge(other)
Merge self with another construction functor, or return None.

EXAMPLES:

sage: F = sage.combinat.free_dendriform_algebra.DendriformFunctor(['x','y'])
sage: G = sage.combinat.free_dendriform_algebra.DendriformFunctor(['t'])
sage: F.merge(G)
Dendriform[x,y,t]
sage: F.merge(F)
Dendriform[x,y]

Now some actual use cases:

sage: R = algebras.FreeDendriform(ZZ, 'x,y,z')
sage: x,y,z = R.gens()
sage: 1/2 * x
1/2*B[x[., .]]
sage: parent(1/2 * x)
Free Dendriform algebra on 3 generators ['x', 'y', 'z'] over Rational Field

sage: S = algebras.FreeDendriform(QQ, 'zt')
sage: z,t = S.gens()
sage: x + t
B[t[., .]] + B[x[., .]]
sage: parent(x + t)
Free Dendriform algebra on 4 generators ['z', 't', 'x', 'y'] over Rational Field

class sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra(R, names=None)
Bases: sage.combinat.free_module.CombinatorialFreeModule

The free dendriform algebra.

Dendriform algebras are associative algebras, where the associative product * is decomposed as a sum of two
binary operations

𝑥 * 𝑦 = 𝑥 ≻ 𝑦 + 𝑥 ≺ 𝑦

that satisfy the axioms:

(𝑥 ≻ 𝑦) ≺ 𝑧 = 𝑥 ≻ (𝑦 ≺ 𝑧),

(𝑥 ≺ 𝑦) ≺ 𝑧 = 𝑥 ≺ (𝑦 * 𝑧).

(𝑥 * 𝑦) ≻ 𝑧 = 𝑥 ≻ (𝑦 ≻ 𝑧).

The free Dendriform algebra on a given set 𝐸 has an explicit description using (planar) binary trees, just as
the free associative algebra can be described using words. The underlying vector space has a basis indexed by
finite binary trees endowed with a map from their vertices to 𝐸. In this basis, the associative product of two

1026 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(decorated) binary trees 𝑆 * 𝑇 is the sum over all possible ways of identifying (glueing) the rightmost path in 𝑆
and the leftmost path in 𝑇 .

The decomposition of the associative product as the sum of two binary operations≻ and≺ is made by separating
the terms according to the origin of the root vertex. For 𝑥 ≻ 𝑦, one keeps the terms where the root vertex comes
from 𝑦, whereas for 𝑥 ≺ 𝑦 one keeps the terms where the root vertex comes from 𝑥.

The free dendriform algebra can also be considered as the free algebra over the Dendriform operad.

Note: The usual binary operator * is used for the associative product.

EXAMPLES:

sage: F = algebras.FreeDendriform(ZZ, 'xyz')
sage: x,y,z = F.gens()
sage: (x * y) * z
B[x[., y[., z[., .]]]] + B[x[., z[y[., .], .]]] + B[y[x[., .], z[., .]]] + B[z[x[.,␣
→˓y[., .]], .]] + B[z[y[x[., .], .], .]]

The free dendriform algebra is associative:

sage: x * (y * z) == (x * y) * z
True

The associative product decomposes in two parts:

sage: x * y == F.prec(x, y) + F.succ(x, y)
True

The axioms hold:

sage: F.prec(F.succ(x, y), z) == F.succ(x, F.prec(y, z))
True
sage: F.prec(F.prec(x, y), z) == F.prec(x, y * z)
True
sage: F.succ(x * y, z) == F.succ(x, F.succ(y, z))
True

When there is only one generator, unlabelled trees are used instead:

sage: F1 = algebras.FreeDendriform(QQ)
sage: w = F1.gen(0); w
B[[., .]]
sage: w * w * w
B[[., [., [., .]]]] + B[[., [[., .], .]]] + B[[[., .], [., .]]] + B[[[., [., .]], .
→˓]] + B[[[[., .], .], .]]

REFERENCES:

• [LR1998]

algebra_generators()
Return the generators of this algebra.

These are the binary trees with just one vertex.

EXAMPLES:

5.1. Comprehensive Module List 1027

Combinatorics, Release 9.7

sage: A = algebras.FreeDendriform(ZZ, 'fgh'); A
Free Dendriform algebra on 3 generators ['f', 'g', 'h']
over Integer Ring
sage: list(A.algebra_generators())
[B[f[., .]], B[g[., .]], B[h[., .]]]

sage: A = algebras.FreeDendriform(QQ, ['x1','x2'])
sage: list(A.algebra_generators())
[B[x1[., .]], B[x2[., .]]]

an_element()
Return an element of self.

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ, 'xy')
sage: A.an_element()
B[x[., .]] + 2*B[x[., x[., .]]] + 2*B[x[x[., .], .]]

change_ring(R)
Return the free dendriform algebra in the same variables over 𝑅.

INPUT:

• R – a ring

EXAMPLES:

sage: A = algebras.FreeDendriform(ZZ, 'fgh')
sage: A.change_ring(QQ)
Free Dendriform algebra on 3 generators ['f', 'g', 'h'] over
Rational Field

construction()
Return a pair (F, R), where F is a DendriformFunctor and 𝑅 is a ring, such that F(R) returns self.

EXAMPLES:

sage: P = algebras.FreeDendriform(ZZ, 'x,y')
sage: x,y = P.gens()
sage: F, R = P.construction()
sage: F
Dendriform[x,y]
sage: R
Integer Ring
sage: F(ZZ) is P
True
sage: F(QQ)
Free Dendriform algebra on 2 generators ['x', 'y'] over Rational Field

coproduct_on_basis(x)
Return the coproduct of a binary tree.

EXAMPLES:

1028 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: A = algebras.FreeDendriform(QQ)
sage: x = A.gen(0)
sage: ascii_art(A.coproduct(A.one())) # indirect doctest
1 # 1

sage: ascii_art(A.coproduct(x)) # indirect doctest
1 # B + B # 1

o o

sage: A = algebras.FreeDendriform(QQ, 'xyz')
sage: x, y, z = A.gens()
sage: w = A.under(z,A.over(x,y))
sage: A.coproduct(z)
B[.] # B[z[., .]] + B[z[., .]] # B[.]
sage: A.coproduct(w)
B[.] # B[x[z[., .], y[., .]]] + B[x[., .]] # B[z[., y[., .]]] +
B[x[., .]] # B[y[z[., .], .]] + B[x[., y[., .]]] # B[z[., .]] +
B[x[z[., .], .]] # B[y[., .]] + B[x[z[., .], y[., .]]] # B[.]

degree_on_basis(t)
Return the degree of a binary tree in the free Dendriform algebra.

This is the number of vertices.

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ,'@')
sage: RT = A.basis().keys()
sage: u = RT([], '@')
sage: A.degree_on_basis(u.over(u))
2

gen(i)
Return the i-th generator of the algebra.

INPUT:

• i – an integer

EXAMPLES:

sage: F = algebras.FreeDendriform(ZZ, 'xyz')
sage: F.gen(0)
B[x[., .]]

sage: F.gen(4)
Traceback (most recent call last):
...
IndexError: argument i (= 4) must be between 0 and 2

gens()
Return the generators of self (as an algebra).

EXAMPLES:

5.1. Comprehensive Module List 1029

Combinatorics, Release 9.7

sage: A = algebras.FreeDendriform(ZZ, 'fgh')
sage: A.gens()
(B[f[., .]], B[g[., .]], B[h[., .]])

one_basis()
Return the index of the unit.

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ, '@')
sage: A.one_basis()
.
sage: A = algebras.FreeDendriform(QQ, 'xy')
sage: A.one_basis()
.

over()
Return the over product.

The over product 𝑥/𝑦 is the binary tree obtained by grafting the root of 𝑦 at the rightmost leaf of 𝑥.

The usual symbol for this operation is /.

See also:

product(), succ(), prec(), under()

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ)
sage: RT = A.basis().keys()
sage: x = A.gen(0)
sage: A.over(x, x)
B[[., [., .]]]

prec()
Return the ≺ dendriform product.

This is the sum over all possible ways to identify the rightmost path in 𝑥 and the leftmost path in 𝑦, with
the additional condition that the root vertex of the result comes from 𝑥.

The usual symbol for this operation is ≺.

See also:

product(), succ(), over(), under()

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ)
sage: RT = A.basis().keys()
sage: x = A.gen(0)
sage: A.prec(x, x)
B[[., [., .]]]

prec_product_on_basis(x, y)
Return the ≺ dendriform product of two trees.

This is the sum over all possible ways of identifying the rightmost path in 𝑥 and the leftmost path in 𝑦, with
the additional condition that the root vertex of the result comes from 𝑥.

1030 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The usual symbol for this operation is ≺.

See also:

• product_on_basis(), succ_product_on_basis()

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ)
sage: RT = A.basis().keys()
sage: x = RT([])
sage: A.prec_product_on_basis(x, x)
B[[., [., .]]]

product_on_basis(x, y)
Return the * associative dendriform product of two trees.

This is the sum over all possible ways of identifying the rightmost path in 𝑥 and the leftmost path in 𝑦. Every
term corresponds to a shuffle of the vertices on the rightmost path in 𝑥 and the vertices on the leftmost path
in 𝑦.

See also:

• succ_product_on_basis(), prec_product_on_basis()

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ)
sage: RT = A.basis().keys()
sage: x = RT([])
sage: A.product_on_basis(x, x)
B[[., [., .]]] + B[[[., .], .]]

some_elements()
Return some elements of the free dendriform algebra.

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ)
sage: A.some_elements()
[B[.],
B[[., .]],
B[[., [., .]]] + B[[[., .], .]],
B[.] + B[[., [., .]]] + B[[[., .], .]]]

With several generators:

sage: A = algebras.FreeDendriform(QQ, 'xy')
sage: A.some_elements()
[B[.],
B[x[., .]],
B[x[., x[., .]]] + B[x[x[., .], .]],
B[.] + B[x[., x[., .]]] + B[x[x[., .], .]]]

succ()
Return the ≻ dendriform product.

5.1. Comprehensive Module List 1031

Combinatorics, Release 9.7

This is the sum over all possible ways of identifying the rightmost path in 𝑥 and the leftmost path in 𝑦, with
the additional condition that the root vertex of the result comes from 𝑦.

The usual symbol for this operation is ≻.

See also:

product(), prec(), over(), under()

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ)
sage: RT = A.basis().keys()
sage: x = A.gen(0)
sage: A.succ(x, x)
B[[[., .], .]]

succ_product_on_basis(x, y)
Return the ≻ dendriform product of two trees.

This is the sum over all possible ways to identify the rightmost path in 𝑥 and the leftmost path in 𝑦, with
the additional condition that the root vertex of the result comes from 𝑦.

The usual symbol for this operation is ≻.

See also:

• product_on_basis(), prec_product_on_basis()

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ)
sage: RT = A.basis().keys()
sage: x = RT([])
sage: A.succ_product_on_basis(x, x)
B[[[., .], .]]

under()
Return the under product.

The over product 𝑥∖𝑦 is the binary tree obtained by grafting the root of 𝑥 at the leftmost leaf of 𝑦.

The usual symbol for this operation is ∖.

See also:

product(), succ(), prec(), over()

EXAMPLES:

sage: A = algebras.FreeDendriform(QQ)
sage: RT = A.basis().keys()
sage: x = A.gen(0)
sage: A.under(x, x)
B[[[., .], .]]

variable_names()
Return the names of the variables.

EXAMPLES:

1032 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: R = algebras.FreeDendriform(QQ, 'xy')
sage: R.variable_names()
{'x', 'y'}

5.1.110 Free Pre-Lie Algebras

AUTHORS:

• Florent Hivert, Frédéric Chapoton (2011)

class sage.combinat.free_prelie_algebra.FreePreLieAlgebra(R, names=None)
Bases: sage.combinat.free_module.CombinatorialFreeModule

The free pre-Lie algebra.

Pre-Lie algebras are non-associative algebras, where the product * satisfies

(𝑥 * 𝑦) * 𝑧 − 𝑥 * (𝑦 * 𝑧) = (𝑥 * 𝑧) * 𝑦 − 𝑥 * (𝑧 * 𝑦).

We use here the convention where the associator

(𝑥, 𝑦, 𝑧) := (𝑥 * 𝑦) * 𝑧 − 𝑥 * (𝑦 * 𝑧)

is symmetric in its two rightmost arguments. This is sometimes called a right pre-Lie algebra.

They have appeared in numerical analysis and deformation theory.

The free Pre-Lie algebra on a given set𝐸 has an explicit description using rooted trees, just as the free associative
algebra can be described using words. The underlying vector space has a basis indexed by finite rooted trees
endowed with a map from their vertices to 𝐸. In this basis, the product of two (decorated) rooted trees 𝑆 * 𝑇 is
the sum over vertices of 𝑆 of the rooted tree obtained by adding one edge from the root of 𝑇 to the given vertex
of 𝑆. The root of these trees is taken to be the root of 𝑆. The free pre-Lie algebra can also be considered as the
free algebra over the PreLie operad.

Warning: The usual binary operator * can be used for the pre-Lie product. Beware that it but must be
parenthesized properly, as the pre-Lie product is not associative. By default, a multiple product will be taken
with left parentheses.

EXAMPLES:

sage: F = algebras.FreePreLie(ZZ, 'xyz')
sage: x,y,z = F.gens()
sage: (x * y) * z
B[x[y[z[]]]] + B[x[y[], z[]]]
sage: (x * y) * z - x * (y * z) == (x * z) * y - x * (z * y)
True

The free pre-Lie algebra is non-associative:

sage: x * (y * z) == (x * y) * z
False

The default product is with left parentheses:

5.1. Comprehensive Module List 1033

Combinatorics, Release 9.7

sage: x * y * z == (x * y) * z
True
sage: x * y * z * x == ((x * y) * z) * x
True

The NAP product as defined in [Liv2006] is also implemented on the same vector space:

sage: N = F.nap_product
sage: N(x*y,z*z)
B[x[y[], z[z[]]]]

When None is given as input, unlabelled trees are used instead:

sage: F1 = algebras.FreePreLie(QQ, None)
sage: w = F1.gen(0); w
B[[]]
sage: w * w * w * w
B[[[[[]]]]] + B[[[[], []]]] + 3*B[[[], [[]]]] + B[[[], [], []]]

However, it is equally possible to use labelled trees instead:

sage: F1 = algebras.FreePreLie(QQ, 'q')
sage: w = F1.gen(0); w
B[q[]]
sage: w * w * w * w
B[q[q[q[q[]]]]] + B[q[q[q[], q[]]]] + 3*B[q[q[], q[q[]]]] + B[q[q[], q[], q[]]]

The set 𝐸 can be infinite:

sage: F = algebras.FreePreLie(QQ, ZZ)
sage: w = F.gen(1); w
B[1[]]
sage: x = F.gen(2); x
B[-1[]]
sage: y = F.gen(3); y
B[2[]]
sage: w*x
B[1[-1[]]]
sage: (w*x)*y
B[1[-1[2[]]]] + B[1[-1[], 2[]]]
sage: w*(x*y)
B[1[-1[2[]]]]

Elements of a free pre-Lie algebra can be lifted to the universal enveloping algebra of the associated Lie algebra.
The universal enveloping algebra is the Grossman-Larson Hopf algebra:

sage: F = algebras.FreePreLie(QQ,'abc')
sage: a,b,c = F.gens()
sage: (a*b+b*c).lift()
B[#[a[b[]]]] + B[#[b[c[]]]]

Note: Variables names can be None, a list of strings, a string or an integer. When None is given, unlabelled
rooted trees are used. When a single string is given, each letter is taken as a variable. See sage.combinat.

1034 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

words.alphabet.build_alphabet().

Warning: Beware that the underlying combinatorial free module is based either on RootedTrees or on
LabelledRootedTrees, with no restriction on the labellings. This means that all code calling the basis()
method would not give meaningful results, since basis() returns many “chaff” elements that do not belong
to the algebra.

REFERENCES:

• [ChLi]

• [Liv2006]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

lift()
Lift element to the Grossman-Larson algebra.

EXAMPLES:

sage: F = algebras.FreePreLie(QQ,'abc')
sage: elt = F.an_element().lift(); elt
B[#[a[a[a[a[]]]]]] + B[#[a[a[], a[a[]]]]]
sage: parent(elt)
Grossman-Larson Hopf algebra on 3 generators ['a', 'b', 'c']
over Rational Field

algebra_generators()
Return the generators of this algebra.

These are the rooted trees with just one vertex.

EXAMPLES:

sage: A = algebras.FreePreLie(ZZ, 'fgh'); A
Free PreLie algebra on 3 generators ['f', 'g', 'h']
over Integer Ring
sage: list(A.algebra_generators())
[B[f[]], B[g[]], B[h[]]]

sage: A = algebras.FreePreLie(QQ, ['x1','x2'])
sage: list(A.algebra_generators())
[B[x1[]], B[x2[]]]

an_element()
Return an element of self.

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, 'xy')
sage: A.an_element()
B[x[x[x[x[]]]]] + B[x[x[], x[x[]]]]

bracket_on_basis(x, y)
Return the Lie bracket of two trees.

5.1. Comprehensive Module List 1035

../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

This is the commutator [𝑥, 𝑦] = 𝑥 * 𝑦 − 𝑦 * 𝑥 of the pre-Lie product.

See also:

pre_Lie_product_on_basis()

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = RT([RT([])])
sage: y = RT([x])
sage: A.bracket_on_basis(x, y)
-B[[[[], [[]]]]] + B[[[], [[[]]]]] - B[[[[]], [[]]]]

change_ring(R)
Return the free pre-Lie algebra in the same variables over 𝑅.

INPUT:

• 𝑅 – a ring

EXAMPLES:

sage: A = algebras.FreePreLie(ZZ, 'fgh')
sage: A.change_ring(QQ)
Free PreLie algebra on 3 generators ['f', 'g', 'h'] over
Rational Field

construction()
Return a pair (F, R), where F is a PreLieFunctor and 𝑅 is a ring, such that F(R) returns self.

EXAMPLES:

sage: P = algebras.FreePreLie(ZZ, 'x,y')
sage: x,y = P.gens()
sage: F, R = P.construction()
sage: F
PreLie[x,y]
sage: R
Integer Ring
sage: F(ZZ) is P
True
sage: F(QQ)
Free PreLie algebra on 2 generators ['x', 'y'] over Rational Field

degree_on_basis(t)
Return the degree of a rooted tree in the free Pre-Lie algebra.

This is the number of vertices.

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: A.degree_on_basis(RT([RT([])]))
2

1036 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

gen(i)
Return the i-th generator of the algebra.

INPUT:

• i – an integer

EXAMPLES:

sage: F = algebras.FreePreLie(ZZ, 'xyz')
sage: F.gen(0)
B[x[]]

sage: F.gen(4)
Traceback (most recent call last):
...
IndexError: argument i (= 4) must be between 0 and 2

gens()
Return the generators of self (as an algebra).

EXAMPLES:

sage: A = algebras.FreePreLie(ZZ, 'fgh')
sage: A.gens()
(B[f[]], B[g[]], B[h[]])

nap_product()
Return the NAP product.

See also:

nap_product_on_basis()

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = A(RT([RT([])]))
sage: A.nap_product(x, x)
B[[[], [[]]]]

nap_product_on_basis(x, y)
Return the NAP product of two trees.

This is the grafting of the root of 𝑦 over the root of 𝑥. The root of the resulting tree is the root of 𝑥.

See also:

nap_product()

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = RT([RT([])])
sage: A.nap_product_on_basis(x, x)
B[[[], [[]]]]

5.1. Comprehensive Module List 1037

Combinatorics, Release 9.7

pre_Lie_product()
Return the pre-Lie product.

See also:

pre_Lie_product_on_basis()

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = A(RT([RT([])]))
sage: A.pre_Lie_product(x, x)
B[[[[[]]]]] + B[[[], [[]]]]

pre_Lie_product_on_basis(x, y)
Return the pre-Lie product of two trees.

This is the sum over all graftings of the root of 𝑦 over a vertex of 𝑥. The root of the resulting trees is the
root of 𝑥.

See also:

pre_Lie_product()

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = RT([RT([])])
sage: A.product_on_basis(x, x)
B[[[[[]]]]] + B[[[], [[]]]]

product_on_basis(x, y)
Return the pre-Lie product of two trees.

This is the sum over all graftings of the root of 𝑦 over a vertex of 𝑥. The root of the resulting trees is the
root of 𝑥.

See also:

pre_Lie_product()

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: RT = A.basis().keys()
sage: x = RT([RT([])])
sage: A.product_on_basis(x, x)
B[[[[[]]]]] + B[[[], [[]]]]

some_elements()
Return some elements of the free pre-Lie algebra.

EXAMPLES:

sage: A = algebras.FreePreLie(QQ, None)
sage: A.some_elements()
[B[[]], B[[[]]], B[[[[[]]]]] + B[[[], [[]]]], B[[[[]]]] + B[[[], []]], B[[[]]]]

With several generators:

1038 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: A = algebras.FreePreLie(QQ, 'xy')
sage: A.some_elements()
[B[x[]],
B[x[x[]]],
B[x[x[x[x[]]]]] + B[x[x[], x[x[]]]],
B[x[x[x[]]]] + B[x[x[], x[]]],
B[x[x[y[]]]] + B[x[x[], y[]]]]

variable_names()
Return the names of the variables.

EXAMPLES:

sage: R = algebras.FreePreLie(QQ, 'xy')
sage: R.variable_names()
{'x', 'y'}

sage: R = algebras.FreePreLie(QQ, None)
sage: R.variable_names()
{'o'}

class sage.combinat.free_prelie_algebra.PreLieFunctor(vars)
Bases: sage.categories.pushout.ConstructionFunctor

A constructor for pre-Lie algebras.

EXAMPLES:

sage: P = algebras.FreePreLie(ZZ, 'x,y')
sage: x,y = P.gens()
sage: F = P.construction()[0]; F
PreLie[x,y]

sage: A = GF(5)['a,b']
sage: a, b = A.gens()
sage: F(A)
Free PreLie algebra on 2 generators ['x', 'y'] over Multivariate Polynomial Ring in␣
→˓a, b over Finite Field of size 5

sage: f = A.hom([a+b,a-b],A)
sage: F(f)
Generic endomorphism of Free PreLie algebra on 2 generators ['x', 'y']
over Multivariate Polynomial Ring in a, b over Finite Field of size 5

sage: F(f)(a * F(A)(x))
(a+b)*B[x[]]

merge(other)
Merge self with another construction functor, or return None.

EXAMPLES:

sage: F = sage.combinat.free_prelie_algebra.PreLieFunctor(['x','y'])
sage: G = sage.combinat.free_prelie_algebra.PreLieFunctor(['t'])
sage: F.merge(G)

(continues on next page)

5.1. Comprehensive Module List 1039

../../../../../../html/en/reference/categories/sage/categories/pushout.html#sage.categories.pushout.ConstructionFunctor

Combinatorics, Release 9.7

(continued from previous page)

PreLie[x,y,t]
sage: F.merge(F)
PreLie[x,y]

Now some actual use cases:

sage: R = algebras.FreePreLie(ZZ, 'xyz')
sage: x,y,z = R.gens()
sage: 1/2 * x
1/2*B[x[]]
sage: parent(1/2 * x)
Free PreLie algebra on 3 generators ['x', 'y', 'z'] over Rational Field

sage: S = algebras.FreePreLie(QQ, 'zt')
sage: z,t = S.gens()
sage: x + t
B[t[]] + B[x[]]
sage: parent(x + t)
Free PreLie algebra on 4 generators ['z', 't', 'x', 'y'] over Rational Field

5.1.111 Fully packed loops

AUTHORS:

• Vincent Knight, James Campbell, Kevin Dilks, Emily Gunawan (2015): Initial version

• Vincent Delecroix (2017): cleaning and enhanced plotting function

class sage.combinat.fully_packed_loop.FullyPackedLoop(parent, generator)
Bases: sage.structure.element.Element

A class for fully packed loops.

A fully packed loop is a collection of non-intersecting lattice paths on a square grid such that every vertex is part
of some path, and the paths are either closed internal loops or have endpoints corresponding to alternate points
on the boundary [Pro2001]. They are known to be in bijection with alternating sign matrices.

See also:

AlternatingSignMatrix

To each fully packed loop, we assign a link pattern, which is the non-crossing matching attained by seeing which
points on the boundary are connected by open paths in the fully packed loop.

We can create a fully packed loop using the corresponding alternating sign matrix and also extract the link pattern:

sage: A = AlternatingSignMatrix([[0, 0, 1], [0, 1, 0], [1, 0, 0]])
sage: fpl = FullyPackedLoop(A)
sage: fpl.link_pattern()
[(1, 4), (2, 3), (5, 6)]
sage: fpl

| |
| |
+ -- + +

| |
(continues on next page)

1040 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

(continued from previous page)

| |
-- + + + --

| |
| |
+ + -- +
| |
| |

sage: B = AlternatingSignMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
sage: fplb = FullyPackedLoop(B)
sage: fplb.link_pattern()
[(1, 6), (2, 5), (3, 4)]
sage: fplb

| |
| |
+ + -- +
| |
| |

-- + + + --
| |
| |

+ -- + +
| |
| |

The class also has a plot method:

sage: fpl.plot()
Graphics object consisting of 3 graphics primitives

which gives:

Note that we can also create a fully packed loop from a six vertex model configuration:

sage: S = SixVertexModel(3, boundary_conditions='ice').from_alternating_sign_
→˓matrix(A)
sage: S

^ ^ ^
| | |

--> # -> # -> # <--
^ ^ |
| | V

--> # -> # <- # <--
(continues on next page)

5.1. Comprehensive Module List 1041

Combinatorics, Release 9.7

(continued from previous page)

^ | |
| V V

--> # <- # <- # <--
| | |
V V V

sage: fpl = FullyPackedLoop(S)
sage: fpl

| |
| |
+ -- + +

| |
| |

-- + + + --
| |
| |
+ + -- +
| |
| |

Once we have a fully packed loop we can obtain the corresponding alternating sign matrix:

sage: fpl.to_alternating_sign_matrix()
[0 0 1]
[0 1 0]
[1 0 0]

Here are some more examples using bigger ASMs:

sage: A = AlternatingSignMatrix([[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]])
sage: S = SixVertexModel(4, boundary_conditions='ice').from_alternating_sign_
→˓matrix(A)
sage: fpl = FullyPackedLoop(S)
sage: fpl.link_pattern()
[(1, 2), (3, 6), (4, 5), (7, 8)]
sage: fpl

| |
| |
+ -- + -- + + --

|
|

-- + + -- + -- +
| |
| |
+ + + -- + --
| | |
| | |

-- + + + -- +
| |
| |

sage: m = AlternatingSignMatrix([[0,0,1,0,0,0],
....: [1,0,-1,0,1,0],

(continues on next page)

1042 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: [0,0,0,1,0,0],

....: [0,1,0,0,-1,1],

....: [0,0,0,0,1,0],

....: [0,0,1,0,0,0]])
sage: fpl = FullyPackedLoop(m)
sage: fpl.link_pattern()
[(1, 12), (2, 7), (3, 4), (5, 6), (8, 9), (10, 11)]
sage: fpl

| | |
| | |
+ -- + + + -- + + --

| | | |
| | | |

-- + -- + + + -- + -- +
|
|

+ -- + + -- + -- + + --
| | | |
| | | |

-- + + + -- + + +
| | | | |
| | | | |

+ -- + + -- + + + --
| |
| |

-- + + -- + -- + + -- +
| | |
| | |

sage: m = AlternatingSignMatrix([[0,1,0,0,0,0,0],
....: [1,-1,0,0,1,0,0],
....: [0,0,0,1,0,0,0],
....: [0,1,0,0,-1,1,0],
....: [0,0,0,0,1,0,0],
....: [0,0,1,0,-1,0,1],
....: [0,0,0,0,1,0,0]])
sage: fpl = FullyPackedLoop(m)
sage: fpl.link_pattern()
[(1, 2), (3, 4), (5, 6), (7, 8), (9, 14), (10, 11), (12, 13)]
sage: fpl

| | | |
| | | |
+ -- + -- + + -- + + -- +

| |
| |

-- + -- + -- + + -- + -- + + --
| |
| |

+ -- + + -- + -- + + -- +
| | | |
| | | |

-- + + + -- + + + + --

(continues on next page)

5.1. Comprehensive Module List 1043

Combinatorics, Release 9.7

(continued from previous page)

| | | | | |
| | | | | |

+ -- + + -- + + + -- +
| |
| |

-- + + -- + -- + + + -- + --
| | | |
| | | |

+ -- + + -- + + + -- +
| | | |
| | | |

Gyration on an alternating sign matrix/fully packed loop fpl of the link pattern corresponding to fpl:

sage: ASMs = AlternatingSignMatrices(3).list()
sage: ncp = FullyPackedLoop(ASMs[1]).link_pattern() # fpl's gyration orbit size is 2
sage: rotated_ncp=[]
sage: for (a,b) in ncp:
....: for i in range(5):
....: a,b=a%6+1,b%6+1;
....: rotated_ncp.append((a,b))
sage: PerfectMatching(ASMs[1].gyration().to_fully_packed_loop().link_pattern()) ==\
....: PerfectMatching(rotated_ncp)
True

sage: fpl = FullyPackedLoop(ASMs[0])
sage: ncp = fpl.link_pattern() # fpl's gyration size is 3
sage: rotated_ncp=[]
sage: for (a,b) in ncp:
....: for i in range(5):
....: a,b=a%6+1,b%6+1;
....: rotated_ncp.append((a,b))
sage: PerfectMatching(ASMs[0].gyration().to_fully_packed_loop().link_pattern()) ==\
....: PerfectMatching(rotated_ncp)
True

sage: mat = AlternatingSignMatrix([[0,0,1,0,0,0,0],[1,0,-1,0,1,0,0],
....: [0,0,1,0,0,0,0],[0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,
→˓0,0,1]])
sage: fpl = FullyPackedLoop(mat) # n=7
sage: ncp = fpl.link_pattern()
sage: rotated_ncp=[]
sage: for (a,b) in ncp:
....: for i in range(13):
....: a,b=a%14+1,b%14+1;
....: rotated_ncp.append((a,b))
sage: PerfectMatching(mat.gyration().to_fully_packed_loop().link_pattern()) ==\
....: PerfectMatching(rotated_ncp)
True

sage: mat = AlternatingSignMatrix([[0,0,0,1,0,0], [0,0,1,-1,1,0],
....: [0,1,0,0,-1,1], [1,0,-1,1,0,0], [0,0,1,0,0,0], [0,0,0,0,1,0]])

(continues on next page)

1044 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: fpl = FullyPackedLoop(mat) # n =6
sage: ncp = fpl.link_pattern()
sage: rotated_ncp=[]
sage: for (a,b) in ncp:
....: for i in range(11):
....: a,b=a%12+1,b%12+1;
....: rotated_ncp.append((a,b))
sage: PerfectMatching(mat.gyration().to_fully_packed_loop().link_pattern()) ==\
....: PerfectMatching(rotated_ncp)
True

More examples:

We can initiate a fully packed loop using an alternating sign matrix:

sage: A = AlternatingSignMatrix([[0, 0, 1], [0, 1, 0], [1, 0, 0]])
sage: fpl = FullyPackedLoop(A)
sage: fpl

| |
| |
+ -- + +

| |
| |

-- + + + --
| |
| |
+ + -- +
| |
| |

sage: FullyPackedLoops(3)(A) == fpl
True

We can also input a matrix:

sage: FullyPackedLoop([[0, 0, 1], [0, 1, 0], [1, 0, 0]])
| |
| |
+ -- + +

| |
| |

-- + + + --
| |
| |
+ + -- +
| |
| |

sage: FullyPackedLoop([[0, 0, 1], [0, 1, 0], [1, 0, 0]]) ==\
....: FullyPackedLoops(3)([[0, 0, 1], [0, 1, 0], [1, 0, 0]])
True

Otherwise we initiate a fully packed loop using a six vertex model:

5.1. Comprehensive Module List 1045

Combinatorics, Release 9.7

sage: S = SixVertexModel(3, boundary_conditions='ice').from_alternating_sign_
→˓matrix(A)
sage: fpl = FullyPackedLoop(S)
sage: fpl

| |
| |
+ -- + +

| |
| |

-- + + + --
| |
| |
+ + -- +
| |
| |

sage: FullyPackedLoops(3)(S) == FullyPackedLoop(S)
True

sage: fpl.six_vertex_model().to_alternating_sign_matrix()
[0 0 1]
[0 1 0]
[1 0 0]

We can also input the matrix associated to a six vertex model:

sage: SixVertexModel(2)([[3,1],[5,3]])
^ ^
| |

--> # <- # <--
| ^
V |

--> # -> # <--
| |
V V

sage: FullyPackedLoop([[3,1],[5,3]])
|
|
+ + --
| |
| |

-- + +
|
|

sage: FullyPackedLoops(2)([[3,1],[5,3]]) == FullyPackedLoop([[3,1],[5,3]])
True

Note that the matrix corresponding to a six vertex model without the ice boundary condition is not allowed:

sage: SixVertexModel(2)([[3,1],[5,5]])
^ ^

(continues on next page)

1046 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

| |
--> # <- # <--

| ^
V V

--> # -> # -->
| |
V V

sage: FullyPackedLoop([[3,1],[5,5]])
Traceback (most recent call last):
...
ValueError: invalid alternating sign matrix

sage: FullyPackedLoops(2)([[3,1],[5,5]])
Traceback (most recent call last):
...
ValueError: invalid alternating sign matrix

Note that if anything else is used to generate the fully packed loop an error will occur:

sage: fpl = FullyPackedLoop(5)
Traceback (most recent call last):
...
ValueError: invalid alternating sign matrix

sage: fpl = FullyPackedLoop((1, 2, 3))
Traceback (most recent call last):
...
ValueError: The alternating sign matrices must be square

sage: SVM = SixVertexModel(3)[0]
sage: FullyPackedLoop(SVM)
Traceback (most recent call last):
...
ValueError: invalid alternating sign matrix

REFERENCES:

• [Pro2001]

• [Str2015]

gyration()
Return the fully packed loop obtained by applying gyration to the alternating sign matrix in bijection with
self.

Gyration was first defined in [Wie2000] as an action on fully-packed loops.

EXAMPLES:

sage: A = AlternatingSignMatrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
sage: fpl = FullyPackedLoop(A)
sage: fpl.gyration().to_alternating_sign_matrix()
[0 0 1]
[0 1 0]

(continues on next page)

5.1. Comprehensive Module List 1047

Combinatorics, Release 9.7

(continued from previous page)

[1 0 0]
sage: asm = AlternatingSignMatrix([[0, 0, 1],[1, 0, 0],[0, 1, 0]])
sage: f = FullyPackedLoop(asm)
sage: f.gyration().to_alternating_sign_matrix()
[0 1 0]
[0 0 1]
[1 0 0]

link_pattern()
Return a link pattern corresponding to a fully packed loop.

Here we define a link pattern 𝐿𝑃 to be a partition of the list [1, ..., 2𝑘] into 2-element sets (such a partition
is also known as a perfect matching) such that the following non-crossing condition holds: Let the numbers
1, ..., 2𝑘 be written on the perimeter of a circle. For every 2-element set (𝑎, 𝑏) of the partition 𝐿𝑃 , draw an
arc linking the two numbers 𝑎 and 𝑏. We say that 𝐿𝑃 is non-crossing if every arc can be drawn so that no
two arcs intersect.

Since every endpoint of a fully packed loop 𝑓𝑝𝑙 is connected to a different endpoint, there is a natural
surjection from the fully packed loops on an nxn grid onto the link patterns on the list [1, . . . , 2𝑛]. The pairs
of connected endpoints of a fully packed loop 𝑓𝑝𝑙 correspond to the 2-element tuples of the corresponding
link pattern.

See also:

PerfectMatching

Note: by convention, we choose the top left vertex to be even. See [Pro2001] and [Str2015].

EXAMPLES:

We can extract the underlying link pattern (a non-crossing partition) from a fully packed loop:

sage: A = AlternatingSignMatrix([[0, 1, 0], [1, -1, 1], [0, 1, 0]])
sage: fpl = FullyPackedLoop(A)
sage: fpl.link_pattern()
[(1, 2), (3, 6), (4, 5)]

sage: B = AlternatingSignMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
sage: fpl = FullyPackedLoop(B)
sage: fpl.link_pattern()
[(1, 6), (2, 5), (3, 4)]

Gyration on an alternating sign matrix/fully packed loop fpl corresponds to a rotation (i.e. a becomes a-1
mod 2n) of the link pattern corresponding to fpl:

sage: ASMs = AlternatingSignMatrices(3).list()
sage: ncp = FullyPackedLoop(ASMs[1]).link_pattern()
sage: rotated_ncp=[]
sage: for (a,b) in ncp:
....: for i in range(5):
....: a,b=a%6+1,b%6+1;
....: rotated_ncp.append((a,b))
sage: PerfectMatching(ASMs[1].gyration().to_fully_packed_loop().link_pattern())␣
→˓==\

(continues on next page)

1048 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: PerfectMatching(rotated_ncp)
True

sage: fpl = FullyPackedLoop(ASMs[0])
sage: ncp = fpl.link_pattern()
sage: rotated_ncp=[]
sage: for (a,b) in ncp:
....: for i in range(5):
....: a,b=a%6+1,b%6+1;
....: rotated_ncp.append((a,b))
sage: PerfectMatching(ASMs[0].gyration().to_fully_packed_loop().link_pattern())␣
→˓==\
....: PerfectMatching(rotated_ncp)
True

sage: mat = AlternatingSignMatrix([[0,0,1,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,1,0,0,
→˓0,0],
....: [0,1,-1,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]])
sage: fpl = FullyPackedLoop(mat) # n=7
sage: ncp = fpl.link_pattern()
sage: rotated_ncp=[]
sage: for (a,b) in ncp:
....: for i in range(13):
....: a,b=a%14+1,b%14+1;
....: rotated_ncp.append((a,b))
sage: PerfectMatching(mat.gyration().to_fully_packed_loop().link_pattern()) ==\
....: PerfectMatching(rotated_ncp)
True

sage: mat = AlternatingSignMatrix([[0,0,0,1,0,0], [0,0,1,-1,1,0], [0,1,0,0,-1,
→˓1], [1,0,-1,1,0,0],
....: [0,0,1,0,0,0], [0,0,0,0,1,0]])
sage: fpl = FullyPackedLoop(mat)
sage: ncp = fpl.link_pattern()
sage: rotated_ncp=[]
sage: for (a,b) in ncp:
....: for i in range(11):
....: a,b=a%12+1,b%12+1;
....: rotated_ncp.append((a,b))
sage: PerfectMatching(mat.gyration().to_fully_packed_loop().link_pattern()) ==\
....: PerfectMatching(rotated_ncp)
True

plot(link=True, loop=True, loop_fill=False, **options)
Return a graphical object of the Fully Packed Loop.

Each option can be specified separately for links (the curves that join boundary points) and the loops. In
order to do so, you need to prefix its name with either 'link_' or 'loop_'. As an example, setting
color='red' will color both links and loops in red while setting link_color='red' will only apply the
color option for the links.

INPUT:

• link, loop - (boolean, default True) whether to plot the links or the loops

5.1. Comprehensive Module List 1049

Combinatorics, Release 9.7

• color, link_color, loop_color - (optional, a string or a RGB triple)

• colors, link_colors, loop_colors - (optional, list) a list of colors

• color_map, link_color_map, loop_color_map - (string, optional) a name of a matplotlib color
map for the link or the loop

• link_color_randomize - (boolean, default False) when link_colors or link_color_map is
specified it randomizes its order. Setting this option to True makes it unlikely to have two neighboring
links with the same color.

• loop_fill - (boolean, optional) whether to fill the interior of the loops

EXAMPLES:

To plot the fully packed loop associated to the following alternating sign matrix⎛⎝0 1 1
1 −1 1
0 1 0

⎞⎠
simply do:

sage: A = AlternatingSignMatrix([[0, 1, 0], [1, -1, 1], [0, 1, 0]])
sage: fpl = FullyPackedLoop(A)
sage: fpl.plot()
Graphics object consisting of 3 graphics primitives

The resulting graphics is as follows

You can also have the three links in different colors with:

sage: A = AlternatingSignMatrix([[0, 1, 0], [1, -1, 1], [0, 1, 0]])
sage: fpl = FullyPackedLoop(A)
sage: fpl.plot(link_color_map='rainbow')
Graphics object consisting of 3 graphics primitives

You can plot the 42 fully packed loops of size 4× 4 using:

1050 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: G = [fpl.plot(link_color_map='winter', loop_color='black') for fpl in␣
→˓FullyPackedLoops(4)]
sage: graphics_array(G, 7, 6)
Graphics Array of size 7 x 6

Here is an example of a 20× 20 fully packed loop:

sage: s = "00000000000+0000000000000000+00-0+00000000000+00-00+0-+00000\
....: 0000+-00+00-+00000000+00-0000+0000-+00000000+000-0+0-+0-+000\
....: 000+-000+-00+0000000+-+-000+00-+0-000+000+-000+-0+0000000-0+\
....: 0000+0-+0-+00000-+00000+-+0-0+-00+0000000000+-0000+0-00+0000\
....: 000000+0-000+000000000000000+0000-00+00000000+0000-000+00000\
....: 00+0-00+0000000000000000+-0000+000000-+000000+00-0000+-00+00\
....: 00000000+-0000+00000000000000+0000000000"
sage: a = matrix(20, [{'0':0, '+':1, '-': -1}[i] for i in s])
sage: fpl = FullyPackedLoop(a)
sage: fpl.plot(loop_fill=True, loop_color_map='rainbow')
Graphics object consisting of 27 graphics primitives

six_vertex_model()
Return the underlying six vertex model configuration.

EXAMPLES:

5.1. Comprehensive Module List 1051

Combinatorics, Release 9.7

sage: B = AlternatingSignMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
sage: fpl = FullyPackedLoop(B)
sage: fpl

| |
| |
+ + -- +
| |
| |

-- + + + --
| |
| |

+ -- + +
| |
| |

sage: fpl.six_vertex_model()
^ ^ ^
| | |

--> # <- # <- # <--
| ^ ^
V | |

--> # -> # <- # <--
| | ^
V V |

--> # -> # -> # <--
| | |
V V V

to_alternating_sign_matrix()
Return the alternating sign matrix corresponding to this class.

See also:

AlternatingSignMatrix

1052 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: A = AlternatingSignMatrix([[0, 1, 0], [1, -1, 1], [0, 1, 0]])
sage: S = SixVertexModel(3, boundary_conditions='ice').from_alternating_sign_
→˓matrix(A)
sage: fpl = FullyPackedLoop(S)
sage: fpl.to_alternating_sign_matrix()
[0 1 0]
[1 -1 1]
[0 1 0]
sage: A = AlternatingSignMatrix([[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]])
sage: S = SixVertexModel(4, boundary_conditions='ice').from_alternating_sign_
→˓matrix(A)
sage: fpl = FullyPackedLoop(S)
sage: fpl.to_alternating_sign_matrix()
[0 1 0 0]
[0 0 1 0]
[1 -1 0 1]
[0 1 0 0]

class sage.combinat.fully_packed_loop.FullyPackedLoops(n)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

Class of all fully packed loops on an 𝑛× 𝑛 grid.

They are known to be in bijection with alternating sign matrices.

See also:

AlternatingSignMatrices

INPUT:

• n – the number of row (and column) or grid

EXAMPLES:

This will create an instance to manipulate the fully packed loops of size 3:

sage: FPLs = FullyPackedLoops(3)
sage: FPLs
Fully packed loops on a 3x3 grid
sage: FPLs.cardinality()
7

When using the square ice model, it is known that the number of configurations is equal to the number of alter-
nating sign matrices:

sage: M = FullyPackedLoops(1)
sage: len(M)
1
sage: M = FullyPackedLoops(4)
sage: len(M)
42
sage: all(len(SixVertexModel(n, boundary_conditions='ice'))
....: == FullyPackedLoops(n).cardinality() for n in range(1, 7))
True

5.1. Comprehensive Module List 1053

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

Element
alias of FullyPackedLoop

cardinality()
Return the cardinality of self.

The number of fully packed loops on 𝑛× 𝑛 grid
𝑛−1∏︁
𝑘=0

(3𝑘 + 1)!

(𝑛+ 𝑘)!
=

1!4!7!10! · · · (3𝑛− 2)!

𝑛!(𝑛+ 1)!(𝑛+ 2)!(𝑛+ 3)! · · · (2𝑛− 1)!
.

EXAMPLES:

sage: [AlternatingSignMatrices(n).cardinality() for n in range(11)]
[1, 1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, 129534272700]

size()
Return the size of the matrices in self.

5.1.112 Gelfand-Tsetlin Patterns

AUTHORS:

• Travis Scrimshaw (2013-15-03): Initial version

REFERENCES:

class sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
Bases: sage.structure.list_clone.ClonableArray

A Gelfand-Tsetlin (sometimes written as Gelfand-Zetlin or Gelfand-Cetlin) pattern. They were originally defined
in [GC50].

A Gelfand-Tsetlin pattern is a triangular array:

𝑎1,1 𝑎1,2 𝑎1,3 · · · 𝑎1,𝑛
𝑎2,2 𝑎2,3 · · · 𝑎2,𝑛

𝑎3,3 · · · 𝑎3,𝑛
. . .

𝑎𝑛,𝑛

such that 𝑎𝑖,𝑗 ≥ 𝑎𝑖+1,𝑗+1 ≥ 𝑎𝑖,𝑗+1.

Gelfand-Tsetlin patterns are in bijection with semistandard Young tableaux by the following algorithm. Let 𝐺
be a Gelfand-Tsetlin pattern with 𝜆(𝑘) being the (𝑛− 𝑘 + 1)-st row (note that this is a partition). The definition
of 𝐺 implies

𝜆(0) ⊆ 𝜆(1) ⊆ · · · ⊆ 𝜆(𝑛),

where 𝜆(0) is the empty partition, and each skew shape 𝜆(𝑘)/𝜆(𝑘−1) is a horizontal strip. Thus define 𝑇 (𝐺) by
inserting 𝑘 into the squares of the skew shape 𝜆(𝑘)/𝜆(𝑘−1), for 𝑘 = 1, . . . , 𝑛.

To each entry in a Gelfand-Tsetlin pattern, one may attach a decoration of a circle or a box (or both or nei-
ther). These decorations appear in the study of Weyl group multiple Dirichlet series, and are implemented here
following the exposition in [BBF].

Note: We use the “right-hand” rule for determining circled and boxed entries.

1054 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

Warning: The entries in Sage are 0-based and are thought of as flushed to the left in a matrix. In other
words, the coordinates of entries in the Gelfand-Tsetlin patterns are thought of as the matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑔0,0 𝑔0,1 𝑔0,2 · · · 𝑔0,𝑛−2 𝑔𝑛−1,𝑛−1
𝑔1,0 𝑔1,1 𝑔1,2 · · · 𝑔1,𝑛−2
𝑔2,0 𝑔2,1 𝑔2,2 · · ·

...
...

...
𝑔𝑛−2,0 𝑔𝑛−2,1
𝑔𝑛−1,0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

However, in the discussions, we will be using the standard numbering system.

EXAMPLES:

sage: G = GelfandTsetlinPattern([[3, 2, 1], [2, 1], [1]]); G
[[3, 2, 1], [2, 1], [1]]
sage: G.pp()
3 2 1

2 1
1

sage: G = GelfandTsetlinPattern([[7, 7, 4, 0], [7, 7, 3], [7, 5], [5]]); G.pp()
7 7 4 0

7 7 3
7 5

5
sage: G.to_tableau().pp()
1 1 1 1 1 2 2
2 2 2 2 2 3 3
3 3 3 4

Tokuyama_coefficient(name='t')
Return the Tokuyama coefficient attached to self.

Following the exposition of [BBF], Tokuyama’s formula asserts∑︁
𝐺

(𝑡+ 1)𝑠(𝐺)𝑡𝑙(𝐺)𝑧
𝑑𝑛+1

1 𝑧
𝑑𝑛−𝑑𝑛+1

2 · · · 𝑧𝑑1−𝑑2𝑛+1 = 𝑠𝜆(𝑧1, . . . , 𝑧𝑛+1)
∏︁
𝑖<𝑗

(𝑧𝑗 + 𝑡𝑧𝑖),

where the sum is over all strict Gelfand-Tsetlin patterns with fixed top row 𝜆+ 𝜌, with 𝜆 a partition with at
most 𝑛+ 1 parts and 𝜌 = (𝑛, 𝑛− 1, . . . , 1, 0), and 𝑠𝜆 is a Schur function.

INPUT:

• name – (Default: 't') An alternative name for the variable 𝑡.

EXAMPLES:

sage: P = GelfandTsetlinPattern([[3,2,1],[2,2],[2]])
sage: P.Tokuyama_coefficient()
0
sage: G = GelfandTsetlinPattern([[3,2,1],[3,1],[2]])
sage: G.Tokuyama_coefficient()
t^2 + t
sage: G = GelfandTsetlinPattern([[2,1,0],[1,1],[1]])
sage: G.Tokuyama_coefficient()

(continues on next page)

5.1. Comprehensive Module List 1055

Combinatorics, Release 9.7

(continued from previous page)

0
sage: G = GelfandTsetlinPattern([[5,3,2,1,0],[4,3,2,0],[4,2,1],[3,2],[3]])
sage: G.Tokuyama_coefficient()
t^8 + 3*t^7 + 3*t^6 + t^5

bender_knuth_involution(i)
Return the image of self under the 𝑖-th Bender-Knuth involution.

If the triangle self has size 𝑛 then this is defined for 0 < 𝑖 < 𝑛.

The entries of self can take values in any ordered ring. Usually, this will be the integers but can also be
the rationals or the real numbers.

This implements the construction of the Bender-Knuth involution using toggling due to Berenstein-Kirillov.

This agrees with the Bender-Knuth involution on semistandard tableaux.

EXAMPLES:

sage: G = GelfandTsetlinPattern([[5,3,2,1,0],[4,3,2,0],[4,2,1],[3,2],[3]])
sage: G.bender_knuth_involution(2)
[[5, 3, 2, 1, 0], [4, 3, 2, 0], [4, 2, 1], [4, 1], [3]]

sage: G = GelfandTsetlinPattern([[3,2,0],[2.2,0],[2]])
sage: G.bender_knuth_involution(2)
[[3, 2, 0], [2.80000000000000, 2], [2]]

boxed_entries()
Return the position of the boxed entries of self.

Using the right-hand rule, an entry 𝑎𝑖,𝑗 is boxed if 𝑎𝑖,𝑗 = 𝑎𝑖−1,𝑗−1; i.e., 𝑎𝑖,𝑗 has the same value as its
neighbor to the northwest.

EXAMPLES:

sage: G = GelfandTsetlinPattern([[3,2,1],[3,1],[1]])
sage: G.boxed_entries()
((1, 0),)

check()
Check that this is a valid Gelfand-Tsetlin pattern.

EXAMPLES:

sage: G = GelfandTsetlinPatterns()
sage: G([[3,2,1],[2,1],[1]]).check()

circled_entries()
Return the circled entries of self.

Using the right-hand rule, an entry 𝑎𝑖,𝑗 is circled if 𝑎𝑖,𝑗 = 𝑎𝑖−1,𝑗 ; i.e., 𝑎𝑖,𝑗 has the same value as its
neighbor to the northeast.

EXAMPLES:

sage: G = GelfandTsetlinPattern([[3,2,1],[3,1],[1]])
sage: G.circled_entries()
((1, 1), (2, 0))

1056 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

is_strict()
Return True if self is a strict Gelfand-Tsetlin pattern.

A Gelfand-Tsetlin pattern is said to be strict if every row is strictly decreasing.

EXAMPLES:

sage: GelfandTsetlinPattern([[7,3,1],[6,2],[4]]).is_strict()
True
sage: GelfandTsetlinPattern([[3,2,1],[3,1],[1]]).is_strict()
True
sage: GelfandTsetlinPattern([[6,0,0],[3,0],[2]]).is_strict()
False

number_of_boxes()
Return the number of boxed entries. See boxed_entries().

EXAMPLES:

sage: G = GelfandTsetlinPattern([[3,2,1],[3,1],[1]])
sage: G.number_of_boxes()
1

number_of_circles()
Return the number of boxed entries. See circled_entries().

EXAMPLES:

sage: G = GelfandTsetlinPattern([[3,2,1],[3,1],[1]])
sage: G.number_of_circles()
2

number_of_special_entries()
Return the number of special entries. See special_entries().

EXAMPLES:

sage: G = GelfandTsetlinPattern([[4,2,1],[4,1],[2]])
sage: G.number_of_special_entries()
1

pp()
Pretty print self.

EXAMPLES:

sage: G = GelfandTsetlinPatterns()
sage: G([[3,2,1],[2,1],[1]]).pp()
3 2 1

2 1
1

row_sums()
Return the list of row sums.

For a Gelfand-Tsetlin pattern 𝐺, the 𝑖-th row sum 𝑑𝑖 is

𝑑𝑖 = 𝑑𝑖(𝐺) =

𝑛∑︁
𝑗=𝑖

𝑎𝑖,𝑗 .

5.1. Comprehensive Module List 1057

Combinatorics, Release 9.7

EXAMPLES:

sage: G = GelfandTsetlinPattern([[5,3,2,1,0],[4,3,2,0],[4,2,1],[3,2],[3]])
sage: G.row_sums()
[11, 9, 7, 5, 3]
sage: G = GelfandTsetlinPattern([[3,2,1],[3,1],[2]])
sage: G.row_sums()
[6, 4, 2]

special_entries()
Return the special entries.

An entry 𝑎𝑖,𝑗 is special if 𝑎𝑖−1,𝑗−1 > 𝑎𝑖,𝑗 > 𝑎𝑖−1,𝑗 , that is to say, the entry is neither boxed nor circled and
is not in the first row. The name was coined by [Tok88].

EXAMPLES:

sage: G = GelfandTsetlinPattern([[3,2,1],[3,1],[1]])
sage: G.special_entries()
()
sage: G = GelfandTsetlinPattern([[4,2,1],[4,1],[2]])
sage: G.special_entries()
((2, 0),)

to_tableau()
Return self as a semistandard Young tableau.

The conversion from a Gelfand-Tsetlin pattern to a semistandard Young tableaux is as follows. Let 𝐺 be a
Gelfand-Tsetlin pattern with 𝜆(𝑘) being the (𝑛− 𝑘+ 1)-st row (note that this is a partition). The definition
of 𝐺 implies

𝜆(0) ⊆ 𝜆(1) ⊆ · · · ⊆ 𝜆(𝑛),

where 𝜆(0) is the empty partition, and each skew shape 𝜆(𝑘)/𝜆(𝑘−1) is a horizontal strip. Thus define 𝑇 (𝐺)
by inserting 𝑘 into the squares of the skew shape 𝜆(𝑘)/𝜆(𝑘−1), for 𝑘 = 1, . . . , 𝑛.

EXAMPLES:

sage: G = GelfandTsetlinPatterns()
sage: elt = G([[3,2,1],[2,1],[1]])
sage: T = elt.to_tableau(); T
[[1, 2, 3], [2, 3], [3]]
sage: T.pp()
1 2 3
2 3
3

sage: G(T) == elt
True

weight()
Return the weight of self.

Define the weight of𝐺 to be the content of the tableau to which𝐺 corresponds under the bijection between
Gelfand-Tsetlin patterns and semistandard tableaux. More precisely,

wt(𝐺) = (𝑑𝑛, 𝑑𝑛−1 − 𝑑𝑛, . . . , 𝑑1 − 𝑑2),

where the 𝑑𝑖 are the row sums.

1058 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: G = GelfandTsetlinPattern([[2,1,0],[1,0],[1]])
sage: G.weight()
(1, 0, 2)
sage: G = GelfandTsetlinPattern([[4,2,1],[3,1],[2]])
sage: G.weight()
(2, 2, 3)

class sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatterns(n, k, strict)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Gelfand-Tsetlin patterns.

INPUT:

• n – The width or depth of the array, also known as the rank

• k – (Default: None) If specified, this is the maximum value that can occur in the patterns

• top_row – (Default: None) If specified, this is the fixed top row of all patterns

• strict – (Default: False) Set to True if all patterns are strict patterns

Element
alias of GelfandTsetlinPattern

random_element()
Return a uniformly random Gelfand-Tsetlin pattern.

EXAMPLES:

sage: g = GelfandTsetlinPatterns(4, 5)
sage: x = g.random_element()
sage: x in g
True
sage: len(x)
4
sage: all(y in range(5+1) for z in x for y in z)
True
sage: x.check()

sage: g = GelfandTsetlinPatterns(4, 5, strict=True)
sage: x = g.random_element()
sage: x in g
True
sage: len(x)
4
sage: all(y in range(5+1) for z in x for y in z)
True
sage: x.check()
sage: x.is_strict()
True

class sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatternsTopRow(top_row, strict)
Bases: sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatterns

Gelfand-Tsetlin patterns with a fixed top row.

5.1. Comprehensive Module List 1059

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

Tokuyama_formula(name='t')
Return the Tokuyama formula of self.

Following the exposition of [BBF], Tokuyama’s formula asserts∑︁
𝐺

(𝑡+ 1)𝑠(𝐺)𝑡𝑙(𝐺)𝑧
𝑑𝑛+1

1 𝑧
𝑑𝑛−𝑑𝑛+1

2 · · · 𝑧𝑑1−𝑑2𝑛+1 = 𝑠𝜆(𝑧1, . . . , 𝑧𝑛+1)
∏︁
𝑖<𝑗

(𝑧𝑗 + 𝑡𝑧𝑖),

where the sum is over all strict Gelfand-Tsetlin patterns with fixed top row 𝜆+ 𝜌, with 𝜆 a partition with at
most 𝑛+ 1 parts and 𝜌 = (𝑛, 𝑛− 1, . . . , 1, 0), and 𝑠𝜆 is a Schur function.

INPUT:

• name – (Default: 't') An alternative name for the variable 𝑡.

EXAMPLES:

sage: GT = GelfandTsetlinPatterns(top_row=[2,1,0],strict=True)
sage: GT.Tokuyama_formula()
t^3*x1^2*x2 + t^2*x1*x2^2 + t^2*x1^2*x3 + t^2*x1*x2*x3 + t*x1*x2*x3 + t*x2^2*x3␣
→˓+ t*x1*x3^2 + x2*x3^2
sage: GT = GelfandTsetlinPatterns(top_row=[3,2,1],strict=True)
sage: GT.Tokuyama_formula()
t^3*x1^3*x2^2*x3 + t^2*x1^2*x2^3*x3 + t^2*x1^3*x2*x3^2 + t^2*x1^2*x2^2*x3^2 +␣
→˓t*x1^2*x2^2*x3^2 + t*x1*x2^3*x3^2 + t*x1^2*x2*x3^3 + x1*x2^2*x3^3
sage: GT = GelfandTsetlinPatterns(top_row=[1,1,1],strict=True)
sage: GT.Tokuyama_formula()
0

random_element()
Return a uniformly random Gelfand-Tsetlin pattern with specified top row.

EXAMPLES:

sage: g = GelfandTsetlinPatterns(top_row = [4, 3, 1, 1])
sage: x = g.random_element()
sage: x in g
True
sage: x[0] == [4, 3, 1, 1]
True
sage: x.check()

sage: g = GelfandTsetlinPatterns(top_row=[4, 3, 2, 1], strict=True)
sage: x = g.random_element()
sage: x in g
True
sage: x[0] == [4, 3, 2, 1]
True
sage: x.is_strict()
True
sage: x.check()

top_row()
Return the top row of self.

EXAMPLES:

1060 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: G = GelfandTsetlinPatterns(top_row=[4,4,3,1])
sage: G.top_row()
(4, 4, 3, 1)

5.1.113 Paths in Directed Acyclic Graphs

sage.combinat.graph_path.GraphPaths(g, source=None, target=None)
Return the combinatorial class of paths in the directed acyclic graph g.

EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)

If source and target are not given, then the returned class contains all paths (including trivial paths containing
only one vertex).

sage: p = GraphPaths(G); p
Paths in Multi-digraph on 5 vertices
sage: p.cardinality()
37
sage: path = p.random_element()
sage: all(G.has_edge(*path[i:i+2]) for i in range(len(path) -1))
True

If the source is specified, then the returned class contains all of the paths starting at the vertex source (including
the trivial path).

sage: p = GraphPaths(G, source=3); p
Paths in Multi-digraph on 5 vertices starting at 3
sage: p.list()
[[3], [3, 4], [3, 4, 5], [3, 4, 5]]

If the target is specified, then the returned class contains all of the paths ending at the vertex target (including the
trivial path).

sage: p = GraphPaths(G, target=3); p
Paths in Multi-digraph on 5 vertices ending at 3
sage: p.cardinality()
5
sage: p.list()
[[3], [1, 3], [2, 3], [1, 2, 3], [1, 2, 3]]

If both the target and source are specified, then the returned class contains all of the paths from source to target.

sage: p = GraphPaths(G, source=1, target=3); p
Paths in Multi-digraph on 5 vertices starting at 1 and ending at 3
sage: p.cardinality()
3
sage: p.list()
[[1, 2, 3], [1, 2, 3], [1, 3]]

Note that G must be a directed acyclic graph.

5.1. Comprehensive Module List 1061

Combinatorics, Release 9.7

sage: G = DiGraph({1:[2,2,3,5], 2:[3,4], 3:[4], 4:[2,5,7], 5:[6]}, multiedges=True)
sage: GraphPaths(G)
Traceback (most recent call last):
...
TypeError: g must be a directed acyclic graph

class sage.combinat.graph_path.GraphPaths_all(g)
Bases: sage.structure.parent.Parent, sage.combinat.graph_path.GraphPaths_common

EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: p = GraphPaths(G)
sage: p.cardinality()
37

list()
Return a list of the paths of self.

EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: len(GraphPaths(G).list())
37

class sage.combinat.graph_path.GraphPaths_common
Bases: object

incoming_edges(v)
Return a list of v’s incoming edges.

EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: p = GraphPaths(G)
sage: p.incoming_edges(2)
[(1, 2, None), (1, 2, None)]

incoming_paths(v)
Return a list of paths that end at v.

EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: gp = GraphPaths(G)
sage: gp.incoming_paths(2)
[[2], [1, 2], [1, 2]]

outgoing_edges(v)
Return a list of v’s outgoing edges.

EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: p = GraphPaths(G)
sage: p.outgoing_edges(2)
[(2, 3, None), (2, 4, None)]

1062 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

outgoing_paths(v)
Return a list of the paths that start at v.

EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: gp = GraphPaths(G)
sage: gp.outgoing_paths(3)
[[3], [3, 4], [3, 4, 5], [3, 4, 5]]
sage: gp.outgoing_paths(2)
[[2],
[2, 3],
[2, 3, 4],
[2, 3, 4, 5],
[2, 3, 4, 5],
[2, 4],
[2, 4, 5],
[2, 4, 5]]

paths()
Return a list of all the paths of self.

EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: gp = GraphPaths(G)
sage: len(gp.paths())
37

paths_from_source_to_target(source, target)
Return a list of paths from source to target.

EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: gp = GraphPaths(G)
sage: gp.paths_from_source_to_target(2,4)
[[2, 3, 4], [2, 4]]

class sage.combinat.graph_path.GraphPaths_s(g, source)
Bases: sage.structure.parent.Parent, sage.combinat.graph_path.GraphPaths_common

list()
EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: p = GraphPaths(G, 4)
sage: p.list()
[[4], [4, 5], [4, 5]]

class sage.combinat.graph_path.GraphPaths_st(g, source, target)
Bases: sage.structure.parent.Parent, sage.combinat.graph_path.GraphPaths_common

EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: GraphPaths(G,1,2).cardinality()

(continues on next page)

5.1. Comprehensive Module List 1063

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

2
sage: GraphPaths(G,1,3).cardinality()
3
sage: GraphPaths(G,1,4).cardinality()
5
sage: GraphPaths(G,1,5).cardinality()
10
sage: GraphPaths(G,2,3).cardinality()
1
sage: GraphPaths(G,2,4).cardinality()
2
sage: GraphPaths(G,2,5).cardinality()
4
sage: GraphPaths(G,3,4).cardinality()
1
sage: GraphPaths(G,3,5).cardinality()
2
sage: GraphPaths(G,4,5).cardinality()
2

list()
EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: p = GraphPaths(G,1,2)
sage: p.list()
[[1, 2], [1, 2]]

class sage.combinat.graph_path.GraphPaths_t(g, target)
Bases: sage.structure.parent.Parent, sage.combinat.graph_path.GraphPaths_common

list()
EXAMPLES:

sage: G = DiGraph({1:[2,2,3], 2:[3,4], 3:[4], 4:[5,5]}, multiedges=True)
sage: p = GraphPaths(G, target=4)
sage: p.list()
[[4],
[2, 4],
[1, 2, 4],
[1, 2, 4],
[3, 4],
[1, 3, 4],
[2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]]

1064 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

5.1.114 Gray codes

Functions

sage.combinat.gray_codes.combinations(n, t)
Iterator through the switches of the revolving door algorithm.

The revolving door algorithm is a way to generate all combinations of a set (i.e. the subset of given cardinality)
in such way that two consecutive subsets differ by one element. At each step, the iterator output a pair (i,j)
where the item i has to be removed and j has to be added.

The ground set is always {0, 1, ..., 𝑛− 1}. Note that n can be infinity in that algorithm.

See [Knu2011] Section 7.2.1.3, “Generating All Combinations”.

INPUT:

• n – (integer or Infinity) – size of the ground set

• t – (integer) – size of the subsets

EXAMPLES:

sage: from sage.combinat.gray_codes import combinations
sage: b = [1, 1, 1, 0, 0]
sage: for i,j in combinations(5,3):
....: b[i] = 0; b[j] = 1
....: print(b)
[1, 0, 1, 1, 0]
[0, 1, 1, 1, 0]
[1, 1, 0, 1, 0]
[1, 0, 0, 1, 1]
[0, 1, 0, 1, 1]
[0, 0, 1, 1, 1]
[1, 0, 1, 0, 1]
[0, 1, 1, 0, 1]
[1, 1, 0, 0, 1]

sage: s = set([0,1])
sage: for i,j in combinations(4,2):
....: s.remove(i)
....: s.add(j)
....: print(sorted(s))
[1, 2]
[0, 2]
[2, 3]
[1, 3]
[0, 3]

Note that n can be infinity:

sage: c = combinations(Infinity,4)
sage: s = set([0,1,2,3])
sage: for _ in range(10):
....: i,j = next(c)
....: s.remove(i); s.add(j)
....: print(sorted(s))

(continues on next page)

5.1. Comprehensive Module List 1065

Combinatorics, Release 9.7

(continued from previous page)

[0, 1, 3, 4]
[1, 2, 3, 4]
[0, 2, 3, 4]
[0, 1, 2, 4]
[0, 1, 4, 5]
[1, 2, 4, 5]
[0, 2, 4, 5]
[2, 3, 4, 5]
[1, 3, 4, 5]
[0, 3, 4, 5]
sage: for _ in range(1000):
....: i,j = next(c)
....: s.remove(i); s.add(j)
sage: sorted(s)
[0, 4, 13, 14]

sage.combinat.gray_codes.product(m)
Iterator over the switch for the iteration of the product [𝑚0]× [𝑚1] . . .× [𝑚𝑘].

The iterator return at each step a pair (p,i) which corresponds to the modification to perform to get the next
element. More precisely, one has to apply the increment i at the position p. By construction, the increment is
either +1 or -1.

This is algorithm H in [Knu2011] Section 7.2.1.1, “Generating All 𝑛-Tuples”: loopless reflected mixed-radix
Gray generation.

INPUT:

• m – a list or tuple of positive integers that correspond to the size of the sets in the product

EXAMPLES:

sage: from sage.combinat.gray_codes import product
sage: l = [0,0,0]
sage: for p,i in product([3,3,3]):
....: l[p] += i
....: print(l)
[1, 0, 0]
[2, 0, 0]
[2, 1, 0]
[1, 1, 0]
[0, 1, 0]
[0, 2, 0]
[1, 2, 0]
[2, 2, 0]
[2, 2, 1]
[1, 2, 1]
[0, 2, 1]
[0, 1, 1]
[1, 1, 1]
[2, 1, 1]
[2, 0, 1]
[1, 0, 1]
[0, 0, 1]
[0, 0, 2]

(continues on next page)

1066 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1, 0, 2]
[2, 0, 2]
[2, 1, 2]
[1, 1, 2]
[0, 1, 2]
[0, 2, 2]
[1, 2, 2]
[2, 2, 2]
sage: l = [0,0]
sage: for i,j in product([2,1]):
....: l[i] += j
....: print(l)
[1, 0]

5.1.115 Growth diagrams and dual graded graphs

AUTHORS:

• Martin Rubey (2016-09): Initial version

• Martin Rubey (2017-09): generalize, more rules, improve documentation

• Travis Scrimshaw (2017-09): switch to rule-based framework

Todo:

• provide examples for the P and Q-symbol in the skew case

• implement a method providing a visualization of the growth diagram with all labels, perhaps as LaTeX code

• when shape is given, check that it is compatible with filling or labels

• optimize rules, mainly for RuleRSK and RuleBurge

• implement backward rules for GrowthDiagram.rules.Domino

• implement backward rule from [LLMSSZ2013], [LS2007]

• make semistandard extension generic

• accommodate dual filtered graphs

A guided tour

Growth diagrams, invented by Sergey Fomin [Fom1994], [Fom1995], provide a vast generalization of the Robinson-
Schensted-Knuth (RSK) correspondence between matrices with non-negative integer entries and pairs of semistandard
Young tableaux of the same shape.

The main fact is that many correspondences similar to RSK can be defined by providing a pair of so-called local rules: a
‘forward’ rule, whose input are three vertices 𝑦, 𝑡 and 𝑥 of a certain directed graph (in the case of Robinson-Schensted:
the directed graph corresponding to Young’s lattice) and an integer (in the case of Robinson-Schensted: 0 or 1), and
whose output is a fourth vertex 𝑧. This rule should be invertible in the following sense: there is a so-called ‘backward’
rule that recovers the integer and 𝑡 given 𝑦, 𝑧 and 𝑥.

As an example, the growth rules for the classical RSK correspondence are provided by RuleRSK . To produce a growth
diagram, pass the desired rule and a permutation to GrowthDiagram :

5.1. Comprehensive Module List 1067

Combinatorics, Release 9.7

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: w = [2,3,6,1,4,5]; G = GrowthDiagram(RuleRSK, w); G
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

The forward rule just mentioned assigns 49 partitions to the corners of each of the 36 cells of this matrix (i.e., 49 the
vertices of a (6 + 1) × (6 + 1) grid graph), with the exception of the corners on the left and top boundary, which
are initialized with the empty partition. More precisely, for each cell, the forward_rule() computes the partition 𝑧
labelling the lower right corner, given the content 𝑐 of a cell and the other three partitions:

t --- x
| c |
y --- z

Warning: Note that a growth diagram is printed with matrix coordinates, the origin being in the top-left corner.
Therefore, the growth is from the top left to the bottom right!

The partitions along the boundary opposite of the origin, reading from the bottom left to the top right, are obtained by
using the method out_labels():

sage: G.out_labels()
[[],
[1],
[2],
[3],
[3, 1],
[3, 2],
[4, 2],
[4, 1],
[3, 1],
[2, 1],
[1, 1],
[1],
[]]

However, in the case of a rectangular filling, it is more practical to split this sequence of labels in two. Interpreting the
sequence of partitions along the right boundary as a standard Young tableau, we then obtain the so-called P_symbol(),
the partitions along the bottom boundary yield the so-called Q_symbol(). These coincide with the output of the
classical RSK() insertion algorithm:

sage: ascii_art([G.P_symbol(), G.Q_symbol()])
[1 3 4 5 1 2 3 6]
[2 6 , 4 5]
sage: ascii_art(RSK(w))
[1 3 4 5 1 2 3 6]
[2 6 , 4 5]

The filling can be recovered knowing the partitions labelling the corners of the bottom and the right boundary alone,

1068 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

by repeatedly applying the backward_rule(). Therefore, to initialize a GrowthDiagram , we can provide these labels
instead of the filling:

sage: GrowthDiagram(RuleRSK, labels=G.out_labels())
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

Invocation

In general, growth diagrams are defined for 0 − 1-fillings of arbitrary skew shapes. In the case of the Robinson-
Schensted-Knuth correspondence, even arbitrary non-negative integers are allowed. In other cases, entries may be
either zero or an 𝑟-th root of unity - for example, RuleDomino insertion is defined for signed permutations, that is,
𝑟 = 2. Traditionally, words and permutations are also used to specify a filling in special cases.

To accommodate all this, the filling may be passed in various ways. The most general possibility is to pass a dictionary
of coordinates to (signed) entries, where zeros can be omitted. In this case, when the parameter shape is not explicitly
specified, it is assumed to be the minimal rectangle containing the origin and all coordinates with non-zero entries.

For example, consider the following generalized permutation:

1 2 2 2 4 4
4 2 3 3 2 3

that we encode as the dictionary:

sage: P = {(1-1,4-1): 1, (2-1,2-1): 1, (2-1,3-1): 2, (4-1,2-1): 1, (4-1,3-1): 1}

Note that we are subtracting 1 from all entries because of zero-based indexing, we obtain:

sage: GrowthDiagram(RuleRSK, P)
0 0 0 0
0 1 0 1
0 2 0 1
1 0 0 0

Alternatively, we could create the same growth diagram using a matrix.

Let us also mention that one can pass the arguments specifying a growth diagram directly to the rule:

sage: RuleRSK(P)
0 0 0 0
0 1 0 1
0 2 0 1
1 0 0 0

In contrast to the classical insertion algorithms, growth diagrams immediately generalize to fillings whose shape is an
arbitrary skew partition:

sage: GrowthDiagram(RuleRSK, [3,1,2], shape=SkewPartition([[3,3,2],[1,1]]))
. 1 0

(continues on next page)

5.1. Comprehensive Module List 1069

Combinatorics, Release 9.7

(continued from previous page)

. 0 1
1 0

As an important example, consider the Stanley-Sundaram correspondence between oscillating tableaux and (partial)
perfect matchings. Perfect matchings of {1, . . . , 2𝑟} are in bijection with 0−1-fillings of a triangular shape with 2𝑟−1
rows, such that for each 𝑘 there is either exactly one non-zero entry in row 𝑘 or exactly one non-zero entry in column
2𝑟 − 𝑘. Explicitly, if (𝑖, 𝑗) is a pair in the perfect matching, the entry in column 𝑖 − 1 and row 2𝑟 − 𝑗 equals 1. For
example:

sage: m = [[1,5],[3,4],[2,7],[6,8]]
sage: G = RuleRSK({(i-1, 8-j): 1 for i,j in m}, shape=[7,6,5,4,3,2,1]); G
0 0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0
1 0 0 0
0 0 1
0 0
0

The partitions labelling the bottom-right corners along the boundary opposite of the origin then form a so-called oscil-
lating tableau - the remaining partitions along the bottom-right boundary are redundant:

sage: G.out_labels()[1::2]
[[1], [1, 1], [2, 1], [1, 1], [1], [1, 1], [1]]

Another great advantage of growth diagrams is that we immediately have access to a skew version of the correspon-
dence, by providing different initialization for the labels on the side of the origin. We reproduce the original example
of Bruce Sagan and Richard Stanley, see also Tom Roby’s thesis [Rob1991]:

sage: w = {(1-1,4-1): 1, (2-1,2-1): 1, (4-1,3-1): 1}
sage: T = SkewTableau([[None, None], [None, 5], [1]])
sage: U = SkewTableau([[None, None], [None, 3], [5]])
sage: labels = T.to_chain()[::-1] + U.to_chain()[1:]
sage: G = GrowthDiagram(RuleRSK, filling=w, shape=[5,5,5,5,5], labels=labels); G
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 0
sage: ascii_art([G.P_symbol(), G.Q_symbol()])
[. . 2 3 . . 1 4]
[. . . .]
[. 4 . 2]
[1 3]
[5 , 5]

Similarly, there is a correspondence for skew oscillating tableau. Let us conclude by reproducing Example 4.2.6 from
[Rob1991]. The oscillating tableau, as given, is:

sage: o = [[2,1],[2,2],[3,2],[4,2],[4,1],[4,1,1],[3,1,1],[3,1],[3,2],[3,1],[2,1]]

From this, we have to construct the list of labels of the corners along the bottom-right boundary. The labels with odd
indices are given by the oscillating tableau, the other labels are obtained by taking the smaller of the two neighbouring
partitions:

1070 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: l = [o[i//2] if is_even(i) else min(o[(i-1)//2],o[(i+1)//2])
....: for i in range(2*len(o)-1)]
sage: la = list(range(len(o)-2, 0, -1))
sage: G = RuleRSK(labels=l[1:-1], shape=la); G
0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0
0 0 0 0
0 0 0
0 0
0

The skew tableaux can now be read off the partitions labelling the left and the top boundary. These can be accessed
using the method in_labels():

sage: ascii_art(SkewTableau(chain=G.in_labels()[len(o)-2:]),
....: SkewTableau(chain=G.in_labels()[len(o)-2::-1]))
. 1 . 7
5 4

Rules currently available

As mentioned at the beginning, the Robinson-Schensted-Knuth correspondence is just a special case of growth dia-
grams. In particular, we have implemented the following local rules:

• RSK (RuleRSK).

• A variation of RSK originally due to Burge (RuleBurge).

• A correspondence producing binary words originally due to Viennot (RuleBinaryWord).

• A correspondence producing domino tableaux (RuleDomino) originally due to Barbasch and Vogan.

• A correspondence for shifted shapes (RuleShiftedShapes), where the original insertion algorithm is due to
Sagan and Worley, and Haiman.

• The Sylvester correspondence, producing binary trees (RuleSylvester).

• The Young-Fibonacci correspondence (RuleYoungFibonacci).

• LLMS insertion (RuleLLMS).

Background

At the heart of Fomin’s framework is the notion of dual graded graphs. This is a pair of digraphs 𝑃,𝑄 (multiple edges
being allowed) on the same set of vertices 𝑉 , that satisfy the following conditions:

• the graphs are graded, that is, there is a function 𝜌 : 𝑉 → N, such that for any edge (𝑣, 𝑤) of 𝑃 and also of 𝑄
we have 𝜌(𝑤) = 𝜌(𝑣) + 1,

• there is a vertex 0 with rank zero, and

• there is a positive integer 𝑟 such that𝐷𝑈 = 𝑈𝐷+ 𝑟𝐼 on the free Z-module Z[𝑉], where𝐷 is the down operator
of 𝑄, assigning to each vertex the formal sum of its predecessors, 𝑈 is the up operator of 𝑃 , assigning to each
vertex the formal sum of its successors, and 𝐼 is the identity operator.

5.1. Comprehensive Module List 1071

Combinatorics, Release 9.7

Note that the condition 𝐷𝑈 = 𝑈𝐷 + 𝑟𝐼 is symmetric with respect to the interchange of the graphs 𝑃 and 𝑄, because
the up operator of a graph is the transpose of its down operator.

For example, taking for both 𝑃 and 𝑄 to be Young’s lattice and 𝑟 = 1, we obtain the dual graded graphs for classical
Schensted insertion.

Given such a pair of graphs, there is a bijection between the 𝑟-colored permutations on 𝑘 letters and pairs (𝑝, 𝑞), where
𝑝 is a path in 𝑃 from zero to a vertex of rank 𝑘 and 𝑞 is a path in 𝑄 from zero to the same vertex.

It turns out that - in principle - this bijection can always be described by so-called local forward and backward rules, see
[Fom1995] for a detailed description. Knowing at least the forward rules, or the backward rules, you can implement
your own growth diagram class.

Implementing your own growth diagrams

The class GrowthDiagram is written so that it is easy to implement growth diagrams you come across in your research.
Moreover, the class tolerates some deviations from Fomin’s definitions. For example, although the general Robinson-
Schensted-Knuth correspondence between integer matrices and semistandard tableaux is, strictly speaking, not a growth
on dual graded graphs, it is supported by our framework.

For illustration, let us implement a growth diagram class with the backward rule only. Suppose that the vertices of
the graph are the non-negative integers, the rank is given by the integer itself, and the backward rule is (𝑦, 𝑧, 𝑥) ↦→
(min(𝑥, 𝑦), 0) if 𝑦 = 𝑧 or 𝑥 = 𝑧 and (𝑦, 𝑧, 𝑥) ↦→ (min(𝑥, 𝑦), 1) otherwise.

We first need to import the base class for a rule:

sage: from sage.combinat.growth import Rule

Next, we implement the backward rule and the rank function and provide the bottom element zero of the graph. For
more information, see Rule.

sage: class RulePascal(Rule):
....: zero = 0
....: def rank(self, v): return v
....: def backward_rule(self, y, z, x):
....: return (min(x,y), 0 if y==z or x==z else 1)

We can now compute the filling corresponding to a sequence of labels as follows:

sage: GrowthDiagram(RulePascal(), labels=[0,1,2,1,2,1,0])
1 0 0
0 0 1
0 1

Of course, since we have not provided the forward rule, we cannot compute the labels belonging to a filling:

sage: GrowthDiagram(RulePascal(), [3,1,2])
Traceback (most recent call last):
...
AttributeError: 'RulePascal' object has no attribute 'forward_rule'

We now re-implement the rule where we provide the dual graded graphs:

sage: class RulePascal(Rule):
....: zero = 0
....: def rank(self, v): return v

(continues on next page)

1072 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: def backward_rule(self, y, z, x):

....: return (min(x,y), 0 if y==z or x==z else 1)

....: def vertices(self, n): return [n]

....: def is_P_edge(self, v, w): return w == v + 1

....: def is_Q_edge(self, v, w): return w == v + 1

Are they really dual?

sage: RulePascal()._check_duality(3)
Traceback (most recent call last):
...
ValueError: D U - U D differs from 1 I for vertex 3:
D U = [3]
U D + 1 I = [3, 3]

With our current definition, duality fails - in fact, there are no dual graded graphs on the integers without multiple edges.
Consequently, also the backward rule cannot work as backward_rule requires additional information (the edge labels
as arguments).

Let us thus continue with the example from Section 4.7 of [Fom1995] instead, which defines dual graded graphs with
multiple edges on the integers. The color self.zero_edge, which defaults to 0 is reserved for degenerate edges, but
may be abused for the unique edge if one of the graphs has no multiple edges. For greater clarity in this example we
set it to None:

sage: class RulePascal(Rule):
....: zero = 0
....: has_multiple_edges = True
....: zero_edge = None
....: def rank(self, v): return v
....: def vertices(self, n): return [n]
....: def is_P_edge(self, v, w): return [0] if w == v + 1 else []
....: def is_Q_edge(self, v, w): return list(range(w)) if w == v+1 else []

We verify these are 1 dual at level 5:

sage: RulePascal()._check_duality(5)

Finally, let us provide the backward rule. The arguments of the rule are vertices together with the edge labels now,
specifying the path from the lower left to the upper right of the cell. The horizontal edges come from 𝑄, whereas the
vertical edges come from 𝑃 .

Thus, the definition in Section 4.7 of [Fom1995] translates as follows:

sage: class RulePascal(Rule):
....: zero = 0
....: has_multiple_edges = True
....: zero_edge = None
....: def rank(self, v): return v
....: def vertices(self, n): return [n]
....: def is_P_edge(self, v, w): return [0] if w == v + 1 else []
....: def is_Q_edge(self, v, w): return list(range(w)) if w == v+1 else []
....: def backward_rule(self, y, g, z, h, x):
....: if g is None:
....: return (0, x, None, 0)

(continues on next page)

5.1. Comprehensive Module List 1073

Combinatorics, Release 9.7

(continued from previous page)

....: if h is None:

....: return (None, y, g, 0)

....: if g == 0:

....: return (None, y, None, 1)

....: else:

....: return (0, x-1, g-1, 0)

The labels are now alternating between vertices and edge-colors:

sage: GrowthDiagram(RulePascal(), labels=[0,0,1,0,2,0,1,0,0])
1 0
0 1

sage: GrowthDiagram(RulePascal(), labels=[0,0,1,1,2,0,1,0,0])
0 1
1 0

class sage.combinat.growth.GrowthDiagram(rule, filling=None, shape=None, labels=None)
Bases: sage.structure.sage_object.SageObject

A generalized Schensted growth diagram in the sense of Fomin.

Growth diagrams were introduced by Sergey Fomin [Fom1994], [Fom1995] and provide a vast generalization of
the Robinson-Schensted-Knuth (RSK) correspondence between matrices with non-negative integer entries and
pairs of semistandard Young tableaux of the same shape.

A growth diagram is based on the notion of dual graded graphs, a pair of digraphs 𝑃,𝑄 (multiple edges being
allowed) on the same set of vertices 𝑉 , that satisfy the following conditions:

• the graphs are graded, that is, there is a function 𝜌 : 𝑉 → N, such that for any edge (𝑣, 𝑤) of 𝑃 and also
of 𝑄 we have 𝜌(𝑤) = 𝜌(𝑣) + 1,

• there is a vertex 0 with rank zero, and

• there is a positive integer 𝑟 such that 𝐷𝑈 = 𝑈𝐷 + 𝑟𝐼 on the free Z-module Z[𝑉], where 𝐷 is the down
operator of 𝑄, assigning to each vertex the formal sum of its predecessors, 𝑈 is the up operator of 𝑃 ,
assigning to each vertex the formal sum of its successors, and 𝐼 is the identity operator.

Growth diagrams are defined by providing a pair of local rules: a ‘forward’ rule, whose input are three vertices
𝑦, 𝑡 and 𝑥 of the dual graded graphs and an integer, and whose output is a fourth vertex 𝑧. This rule should be
invertible in the following sense: there is a so-called ‘backward’ rule that recovers the integer and 𝑡 given 𝑦, 𝑧
and 𝑥.

All implemented growth diagram rules are available by GrowthDiagram.rules.<tab>. The current list is:

• RuleRSK – RSK

• RuleBurge – a variation of RSK originally due to Burge

• RuleBinaryWord – a correspondence producing binary words originally due to Viennot

• RuleDomino – a correspondence producing domino tableaux originally due to Barbasch and Vogan

• RuleShiftedShapes – a correspondence for shifted shapes, where the original insertion algorithm is due
to Sagan and Worley, and Haiman.

• RuleSylvester – the Sylvester correspondence, producing binary trees

• RuleYoungFibonacci – the Young-Fibonacci correspondence

• RuleLLMS – LLMS insertion

1074 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

INPUT:

• rule – Rule; the growth diagram rule

• filling – (optional) a dictionary whose keys are coordinates and values are integers, a list of lists of
integers, or a word with integer values; if a word, then negative letters but without repetitions are allowed
and interpreted as coloured permutations

• shape – (optional) a (possibly skew) partition

• labels – (optional) a list that specifies a path whose length in the half-perimeter of the shape; more details
given below

If filling is not given, then the growth diagram is determined by applying the backward rule to labels dec-
orating the boundary opposite of the origin of the shape. In this case, labels are interpreted as labelling the
boundary opposite of the origin.

Otherwise, shape is inferred from filling or labels if possible and labels is set to rule.zero if not
specified. Here, labels are labelling the boundary on the side of the origin.

For labels, if rule.has_multiple_edges is True, then the elements should be of the form
(𝑣1, 𝑒1, . . . , 𝑒𝑛−1, 𝑣𝑛), where 𝑛 is the half-perimeter of shape, and (𝑣𝑖−1, 𝑒𝑖, 𝑣𝑖) is an edge in the dual graded
graph for all 𝑖. Otherwise, it is a list of 𝑛 vertices.

Note: Coordinates are of the form (col, row) where the origin is in the upper left, to be consistent with
permutation matrices and skew tableaux (in English convention). This is different from Fomin’s convention,
who uses a Cartesian coordinate system.

Conventions are chosen such that for permutations, the same growth diagram is constructed when passing the
permutation matrix instead.

EXAMPLES:

We create a growth diagram using the forward RSK rule and a permutation:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: pi = Permutation([4, 1, 2, 3])
sage: G = GrowthDiagram(RuleRSK, pi); G
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
sage: G.out_labels()
[[], [1], [1, 1], [2, 1], [3, 1], [3], [2], [1], []]

Passing the permutation matrix instead gives the same result:

sage: G = GrowthDiagram(RuleRSK, pi.to_matrix())
sage: ascii_art([G.P_symbol(), G.Q_symbol()])
[1 2 3 1 3 4]
[4 , 2]

We give the same example but using a skew shape:

sage: shape = SkewPartition([[4,4,4,2],[1,1]])
sage: G = GrowthDiagram(RuleRSK, pi, shape=shape); G
. 1 0 0

(continues on next page)

5.1. Comprehensive Module List 1075

Combinatorics, Release 9.7

(continued from previous page)

. 0 1 0
0 0 0 1
1 0
sage: G.out_labels()
[[], [1], [1, 1], [1], [2], [3], [2], [1], []]

We construct a growth diagram using the backwards RSK rule by specifying the labels:

sage: GrowthDiagram(RuleRSK, labels=G.out_labels())
0 1 0 0
0 0 1 0
0 0 0 1
1 0

P_chain()
Return the labels along the vertical boundary of a rectangular growth diagram.

EXAMPLES:

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()
sage: G = GrowthDiagram(BinaryWord, [4, 1, 2, 3])
sage: G.P_chain()
[word: , word: 1, word: 11, word: 111, word: 1011]

Check that trac ticket #25631 is fixed:

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()
sage: BinaryWord(filling = {}).P_chain()
[word:]

P_symbol()
Return the labels along the vertical boundary of a rectangular growth diagram as a generalized standard
tableau.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: G = GrowthDiagram(RuleRSK, [[0,1,0], [1,0,2]])
sage: ascii_art([G.P_symbol(), G.Q_symbol()])
[1 2 2 1 3 3]
[2 , 2]

Q_chain()
Return the labels along the horizontal boundary of a rectangular growth diagram.

EXAMPLES:

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()
sage: G = GrowthDiagram(BinaryWord, [[0,1,0,0], [0,0,1,0], [0,0,0,1], [1,0,0,
→˓0]])
sage: G.Q_chain()
[word: , word: 1, word: 10, word: 101, word: 1011]

Check that trac ticket #25631 is fixed:

1076 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/25631
https://trac.sagemath.org/25631

Combinatorics, Release 9.7

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()
sage: BinaryWord(filling = {}).Q_chain()
[word:]

Q_symbol()
Return the labels along the horizontal boundary of a rectangular growth diagram as a generalized standard
tableau.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: G = GrowthDiagram(RuleRSK, [[0,1,0], [1,0,2]])
sage: ascii_art([G.P_symbol(), G.Q_symbol()])
[1 2 2 1 3 3]
[2 , 2]

conjugate()
Return the conjugate growth diagram of self.

This is the growth diagram with the filling reflected over the main diagonal.

The sequence of labels along the boundary on the side of the origin is the reversal of the corresponding
sequence of the original growth diagram.

When the filling is a permutation, the conjugate filling corresponds to its inverse.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: G = GrowthDiagram(RuleRSK, [[0,1,0], [1,0,2]])
sage: Gc = G.conjugate()
sage: (Gc.P_symbol(), Gc.Q_symbol()) == (G.Q_symbol(), G.P_symbol())
True

filling()
Return the filling of the diagram as a dictionary.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: G = GrowthDiagram(RuleRSK, [[0,1,0], [1,0,2]])
sage: G.filling()
{(0, 1): 1, (1, 0): 1, (2, 1): 2}

half_perimeter()
Return half the perimeter of the shape of the growth diagram.

in_labels()
Return the labels along the boundary on the side of the origin.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: G = GrowthDiagram(RuleRSK, labels=[[2,2],[3,2],[3,3],[3,2]]); G
1 0
sage: G.in_labels()
[[2, 2], [2, 2], [2, 2], [3, 2]]

5.1. Comprehensive Module List 1077

Combinatorics, Release 9.7

is_rectangular()
Return True if the shape of the growth diagram is rectangular.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: GrowthDiagram(RuleRSK, [2,3,1]).is_rectangular()
True
sage: GrowthDiagram(RuleRSK, [[1,0,1],[0,1]]).is_rectangular()
False

out_labels()
Return the labels along the boundary opposite of the origin.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: G = GrowthDiagram(RuleRSK, [[0,1,0], [1,0,2]])
sage: G.out_labels()
[[], [1], [1, 1], [3, 1], [1], []]

rotate()
Return the growth diagram with the filling rotated by 180 degrees.

The rotated growth diagram is initialized with labels=None, that is, all labels along the boundary on the
side of the origin are set to rule.zero.

For RSK-growth diagrams and rectangular fillings, this corresponds to evacuation of the 𝑃 - and the 𝑄-
symbol.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: G = GrowthDiagram(RuleRSK, [[0,1,0], [1,0,2]])
sage: Gc = G.rotate()
sage: ascii_art([Gc.P_symbol(), Gc.Q_symbol()])
[1 1 1 1 1 2]
[2 , 3]

sage: ascii_art([Tableau(t).evacuation()
....: for t in [G.P_symbol(), G.Q_symbol()]])
[1 1 1 1 1 2]
[2 , 3]

rules
alias of Rules

shape()
Return the shape of the growth diagram as a skew partition.

Warning: In the literature the label on the corner opposite of the origin of a rectangular filling is often
called the shape of the filling. This method returns the shape of the region instead.

EXAMPLES:

1078 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: GrowthDiagram(RuleRSK, [1]).shape()
[1] / []

to_biword()
Return the filling as a biword, if the shape is rectangular.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: P = Tableau([[1,2,2],[2]])
sage: Q = Tableau([[1,3,3],[2]])
sage: bw = RSK_inverse(P, Q); bw
[[1, 2, 3, 3], [2, 1, 2, 2]]
sage: G = GrowthDiagram(RuleRSK, labels=Q.to_chain()[:-1]+P.to_chain()[::-1]); G
0 1 0
1 0 2

sage: P = SemistandardTableau([[1, 1, 2], [2]])
sage: Q = SemistandardTableau([[1, 2, 2], [2]])
sage: G = GrowthDiagram(RuleRSK, labels=Q.to_chain()[:-1]+P.to_chain()[::-1]); G
0 2
1 1
sage: G.to_biword()
([1, 2, 2, 2], [2, 1, 1, 2])
sage: RSK([1, 2, 2, 2], [2, 1, 1, 2])
[[[1, 1, 2], [2]], [[1, 2, 2], [2]]]

to_word()
Return the filling as a word, if the shape is rectangular and there is at most one nonzero entry in each
column, which must be 1.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: w = [3,3,2,4,1]; G = GrowthDiagram(RuleRSK, w)
sage: G
0 0 0 0 1
0 0 1 0 0
1 1 0 0 0
0 0 0 1 0
sage: G.to_word()
[3, 3, 2, 4, 1]

class sage.combinat.growth.Rule
Bases: sage.structure.unique_representation.UniqueRepresentation

Generic base class for a rule for a growth diagram.

Subclasses may provide the following attributes:

• zero – the zero element of the vertices of the graphs

• r – (default: 1) the parameter in the equation 𝐷𝑈 − 𝑈𝐷 = 𝑟𝐼

• has_multiple_edges – (default: False) if the dual graded graph has multiple edges and therefore edges
are triples consisting of two vertices and a label.

5.1. Comprehensive Module List 1079

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

• zero_edge – (default: 0) the zero label of the edges of the graphs used for degenerate edges. It is allowed
to use this label also for other edges.

Subclasses may provide the following methods:

• normalize_vertex – a function that converts its input to a vertex.

• vertices – a function that takes a non-negative integer as input and returns the list of vertices on this rank.

• rank – the rank function of the dual graded graphs.

• forward_rule – a function with input (y, t, x, content) or (y, e, t, f, x, content) if
has_multiple_edges is True. (y, e, t) is an edge in the graph 𝑃 , (t, f, x) an edge in the graph
Q. It should return the fourth vertex z, or, if has_multiple_edges is True, the path (g, z, h) from y
to x.

• backward_rule – a function with input (y, z, x) or (y, g, z, h, x) if has_multiple_edges is
True. (y, g, z) is an edge in the graph𝑄, (z, h, x) an edge in the graph P. It should return the fourth
vertex and the content (t, content), or, if has_multiple_edges is True, the path from y to x and the
content as (e, t, f, content).

• is_P_edge, is_Q_edge – functions that take two vertices as arguments and return True or False, or, if
multiple edges are allowed, the list of edge labels of the edges from the first vertex to the second in the
respective graded graph. These are only used for checking user input and providing the dual graded graph,
and are therefore not mandatory.

Note that the class GrowthDiagram is able to use partially implemented subclasses just fine. Suppose that
MyRule is such a subclass. Then:

• GrowthDiagram(MyRule, my_filling) requires only an implementation of forward_rule, zero and
possibly has_multiple_edges.

• GrowthDiagram(MyRule, labels=my_labels, shape=my_shape) requires only an implementation
of backward_rule and possibly has_multiple_edges, provided that the labels my_labels are given
as needed by backward_rule.

• GrowthDiagram(MyRule, labels=my_labels) additionally needs an implementation of rank to de-
duce the shape.

In particular, this allows to implement rules which do not quite fit Fomin’s notion of dual graded graphs. An
example would be Bloom and Saracino’s variant of the RSK correspondence [BS2012], where a backward rule
is not available.

Similarly:

• MyRule.P_graph only requires an implementation of vertices, is_P_edge and possibly
has_multiple_edges is required, mutatis mutandis for MyRule.Q_graph.

• MyRule._check_duality requires P_graph and Q_graph.

In particular, this allows to work with dual graded graphs without local rules.

P_graph(n)
Return the first n levels of the first dual graded graph.

The non-degenerate edges in the vertical direction come from this graph.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()
sage: Domino.P_graph(3)
Finite poset containing 8 elements

1080 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Q_graph(n)
Return the first n levels of the second dual graded graph.

The non-degenerate edges in the horizontal direction come from this graph.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()
sage: Q = Domino.Q_graph(3); Q
Finite poset containing 8 elements

sage: Q.upper_covers(Partition([1,1]))
[[1, 1, 1, 1], [3, 1], [2, 2]]

normalize_vertex(v)
Return v as a vertex of the dual graded graph.

This is a default implementation, returning its argument.

EXAMPLES:

sage: from sage.combinat.growth import Rule
sage: Rule().normalize_vertex("hello") == "hello"
True

class sage.combinat.growth.RuleBinaryWord
Bases: sage.combinat.growth.Rule

A rule modelling a Schensted-like correspondence for binary words.

EXAMPLES:

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()
sage: GrowthDiagram(BinaryWord, [3,1,2])
0 1 0
0 0 1
1 0 0

The vertices of the dual graded graph are binary words:

sage: BinaryWord.vertices(3)
[word: 100, word: 101, word: 110, word: 111]

Note that, instead of passing the rule to GrowthDiagram , we can also use call the rule to create growth diagrams.
For example:

sage: BinaryWord([2,4,1,3]).P_chain()
[word: , word: 1, word: 10, word: 101, word: 1101]
sage: BinaryWord([2,4,1,3]).Q_chain()
[word: , word: 1, word: 11, word: 110, word: 1101]

The Kleitman Greene invariant is the descent word, encoded by the positions of the zeros:

sage: pi = Permutation([4,1,8,3,6,5,2,7,9])
sage: G = BinaryWord(pi); G
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

(continues on next page)

5.1. Comprehensive Module List 1081

Combinatorics, Release 9.7

(continued from previous page)

0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
sage: pi.descents()
[1, 3, 5, 6]

backward_rule(y, z, x)
Return the content and the input shape.

See [Fom1995] Lemma 4.6.1, page 40.

• y, z, x – three binary words from a cell in a growth diagram, labelled as:

x
y z

OUTPUT:

A pair (t, content) consisting of the shape of the fourth word and the content of the cell according to
Viennot’s bijection [Vie1983].

forward_rule(y, t, x, content)
Return the output shape given three shapes and the content.

See [Fom1995] Lemma 4.6.1, page 40.

INPUT:

• y, t, x – three binary words from a cell in a growth diagram, labelled as:

t x
y

• content – 0 or 1; the content of the cell

OUTPUT:

The fourth binary word z according to Viennot’s bijection [Vie1983].

EXAMPLES:

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()

sage: BinaryWord.forward_rule([], [], [], 1)
word: 1

sage: BinaryWord.forward_rule([1], [1], [1], 1)
word: 11

if x != y append last letter of x to y:

sage: BinaryWord.forward_rule([1,0], [1], [1,1], 0)
word: 101

if x == y != t append 0 to y:

1082 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: BinaryWord.forward_rule([1,1], [1], [1,1], 0)
word: 110

is_P_edge(v, w)
Return whether (v, w) is a 𝑃 -edge of self.

(v, w) is an edge if v is obtained from w by deleting a letter.

EXAMPLES:

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()
sage: v = BinaryWord.vertices(2)[1]; v
word: 11
sage: [w for w in BinaryWord.vertices(3) if BinaryWord.is_P_edge(v, w)]
[word: 101, word: 110, word: 111]
sage: [w for w in BinaryWord.vertices(4) if BinaryWord.is_P_edge(v, w)]
[]

is_Q_edge(v, w)
Return whether (v, w) is a 𝑄-edge of self.

(w, v) is an edge if w is obtained from v by appending a letter.

EXAMPLES:

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()
sage: v = BinaryWord.vertices(2)[0]; v
word: 10
sage: [w for w in BinaryWord.vertices(3) if BinaryWord.is_Q_edge(v, w)]
[word: 100, word: 101]
sage: [w for w in BinaryWord.vertices(4) if BinaryWord.is_Q_edge(v, w)]
[]

normalize_vertex(v)
Return v as a binary word.

EXAMPLES:

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()
sage: BinaryWord.normalize_vertex([0,1]).parent()
Finite words over {0, 1}

rank(v)
Return the rank of v: number of letters of the word.

EXAMPLES:

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()
sage: BinaryWord.rank(BinaryWord.vertices(3)[0])
3

vertices(n)
Return the vertices of the dual graded graph on level n.

EXAMPLES:

5.1. Comprehensive Module List 1083

Combinatorics, Release 9.7

sage: BinaryWord = GrowthDiagram.rules.BinaryWord()
sage: BinaryWord.vertices(3)
[word: 100, word: 101, word: 110, word: 111]

class sage.combinat.growth.RuleBurge
Bases: sage.combinat.growth.RulePartitions

A rule modelling Burge insertion.

EXAMPLES:

sage: Burge = GrowthDiagram.rules.Burge()
sage: GrowthDiagram(Burge, labels=[[],[1,1,1],[2,1,1,1],[2,1,1],[2,1],[1,1],[]])
1 1
0 1
1 0
1 0

The vertices of the dual graded graph are integer partitions:

sage: Burge.vertices(3)
Partitions of the integer 3

The local rules implemented provide Burge’s correspondence between matrices with non-negative integer entries
and pairs of semistandard tableaux, the P_symbol() and the Q_symbol(). For permutations, it reduces to
classical Schensted insertion.

Instead of passing the rule to GrowthDiagram , we can also call the rule to create growth diagrams. For example:

sage: m = matrix([[2,0,0,1,0],[1,1,0,0,0], [0,0,0,0,3]])
sage: G = Burge(m); G
2 0 0 1 0
1 1 0 0 0
0 0 0 0 3

sage: ascii_art([G.P_symbol(), G.Q_symbol()])
[1 2 3 1 2 5]
[1 3 1 5]
[1 3 1 5]
[2 , 4]

For rectangular fillings, the Kleitman-Greene invariant is the shape of the P_symbol(). Put differently, it is the
partition labelling the lower right corner of the filling (recall that we are using matrix coordinates). It can be
computed alternatively as the transpose of the partition (𝜇1, . . . , 𝜇𝑛), where 𝜇1 + · · · + 𝜇𝑖 is the maximal sum
of entries in a collection of 𝑖 pairwise disjoint sequences of cells with weakly decreasing row indices and weakly
increasing column indices.

backward_rule(y, z, x)
Return the content and the input shape.

See [Kra2006] (𝐵40) − (𝐵42). (In the arXiv version of the article there is a typo: in the computation of
carry in (𝐵42) , 𝜌 must be replaced by 𝜆).

INPUT:

• y, z, x – three partitions from a cell in a growth diagram, labelled as:

1084 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

x
y z

OUTPUT:

A pair (t, content) consisting of the shape of the fourth partition according to the Burge correspondence
and the content of the cell.

EXAMPLES:

sage: Burge = GrowthDiagram.rules.Burge()
sage: Burge.backward_rule([1,1,1],[2,1,1,1],[2,1,1])
([1, 1], 0)

forward_rule(y, t, x, content)
Return the output shape given three shapes and the content.

See [Kra2006] (𝐹 40)− (𝐹 42).

INPUT:

• y, t, x – three from a cell in a growth diagram, labelled as:

t x
y

• content – a non-negative integer; the content of the cell

OUTPUT:

The fourth partition according to the Burge correspondence.

EXAMPLES:

sage: Burge = GrowthDiagram.rules.Burge()
sage: Burge.forward_rule([2,1],[2,1],[2,1],1)
[3, 1]

sage: Burge.forward_rule([1],[],[2],2)
[2, 1, 1, 1]

class sage.combinat.growth.RuleDomino
Bases: sage.combinat.growth.Rule

A rule modelling domino insertion.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()
sage: GrowthDiagram(Domino, [[1,0,0],[0,0,1],[0,-1,0]])
1 0 0
0 0 1
0 -1 0

The vertices of the dual graded graph are integer partitions whose Ferrers diagram can be tiled with dominoes:

sage: Domino.vertices(2)
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

5.1. Comprehensive Module List 1085

Combinatorics, Release 9.7

Instead of passing the rule to GrowthDiagram , we can also call the rule to create growth diagrams. For example,
let us check Figure 3 in [Lam2004]:

sage: G = Domino([[0,0,0,-1],[0,0,1,0],[-1,0,0,0],[0,1,0,0]]); G
0 0 0 -1
0 0 1 0
-1 0 0 0
0 1 0 0

sage: ascii_art([G.P_symbol(), G.Q_symbol()])
[1 2 4 1 2 2]
[1 2 4 1 3 3]
[3 3 , 4 4]

The spin of a domino tableau is half the number of vertical dominoes:

sage: def spin(T):
....: return sum(2*len(set(row)) - len(row) for row in T)/4

According to [Lam2004], the number of negative entries in the signed permutation equals the sum of the spins
of the two associated tableaux:

sage: pi = [3,-1,2,4,-5]
sage: G = Domino(pi)
sage: list(G.filling().values()).count(-1) == spin(G.P_symbol()) + spin(G.Q_
→˓symbol())
True

Negating all signs transposes all the partitions:

sage: G.P_symbol() == Domino([-e for e in pi]).P_symbol().conjugate()
True

P_symbol(P_chain)
Return the labels along the vertical boundary of a rectangular growth diagram as a (skew) domino tableau.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()
sage: G = Domino([[0,1,0],[0,0,-1],[1,0,0]])
sage: G.P_symbol().pp()
1 1
2 3
2 3

Q_symbol(P_chain)
Return the labels along the vertical boundary of a rectangular growth diagram as a (skew) domino tableau.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()
sage: G = Domino([[0,1,0],[0,0,-1],[1,0,0]])
sage: G.P_symbol().pp()
1 1
2 3
2 3

1086 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

forward_rule(y, t, x, content)
Return the output shape given three shapes and the content.

See [Lam2004] Section 3.1.

INPUT:

• y, t, x – three partitions from a cell in a growth diagram, labelled as:

t x
y

• content – −1, 0 or 1; the content of the cell

OUTPUT:

The fourth partition according to domino insertion.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()

Rule 1:

sage: Domino.forward_rule([], [], [], 1)
[2]

sage: Domino.forward_rule([1,1], [1,1], [1,1], 1)
[3, 1]

Rule 2:

sage: Domino.forward_rule([1,1], [1,1], [1,1], -1)
[1, 1, 1, 1]

Rule 3:

sage: Domino.forward_rule([1,1], [1,1], [2,2], 0)
[2, 2]

Rule 4:

sage: Domino.forward_rule([2,2,2], [2,2], [3,3], 0)
[3, 3, 2]

sage: Domino.forward_rule([2], [], [1,1], 0)
[2, 2]

sage: Domino.forward_rule([1,1], [], [2], 0)
[2, 2]

sage: Domino.forward_rule([2], [], [2], 0)
[2, 2]

sage: Domino.forward_rule([4], [2], [4], 0)
[4, 2]

(continues on next page)

5.1. Comprehensive Module List 1087

Combinatorics, Release 9.7

(continued from previous page)

sage: Domino.forward_rule([1,1,1,1], [1,1], [1,1,1,1], 0)
[2, 2, 1, 1]

sage: Domino.forward_rule([2,1,1], [2], [4], 0)
[4, 1, 1]

is_P_edge(v, w)
Return whether (v, w) is a 𝑃 -edge of self.

(v, w) is an edge if v is obtained from w by deleting a domino.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()
sage: v = Domino.vertices(2)[1]; ascii_art(v)

*
sage: ascii_art([w for w in Domino.vertices(3) if Domino.is_P_edge(v, w)])
[***]
[*]
[***** *** *]
[* , ***, *]
sage: [w for w in Domino.vertices(4) if Domino.is_P_edge(v, w)]
[]

is_Q_edge(v, w)
Return whether (v, w) is a 𝑃 -edge of self.

(v, w) is an edge if v is obtained from w by deleting a domino.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()
sage: v = Domino.vertices(2)[1]; ascii_art(v)

*
sage: ascii_art([w for w in Domino.vertices(3) if Domino.is_P_edge(v, w)])
[***]
[*]
[***** *** *]
[* , ***, *]
sage: [w for w in Domino.vertices(4) if Domino.is_P_edge(v, w)]
[]

normalize_vertex(v)
Return v as a partition.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()
sage: Domino.normalize_vertex([3,1]).parent()
Partitions

rank(v)
Return the rank of v.

1088 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The rank of a vertex is half the size of the partition, which equals the number of dominoes in any filling.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()
sage: Domino.rank(Domino.vertices(3)[0])
3

vertices(n)
Return the vertices of the dual graded graph on level n.

EXAMPLES:

sage: Domino = GrowthDiagram.rules.Domino()
sage: Domino.vertices(2)
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

zero = []

class sage.combinat.growth.RuleLLMS(k)
Bases: sage.combinat.growth.Rule

A rule modelling the Schensted correspondence for affine permutations.

EXAMPLES:

sage: LLMS3 = GrowthDiagram.rules.LLMS(3)
sage: GrowthDiagram(LLMS3, [3,1,2])
0 1 0
0 0 1
1 0 0

The vertices of the dual graded graph are Cores:

sage: LLMS3.vertices(4)
3-Cores of length 4

Let us check example of Figure 1 in [LS2007]. Note that, instead of passing the rule to GrowthDiagram , we can
also call the rule to create growth diagrams:

sage: G = LLMS3([4,1,2,6,3,5]); G
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

The P_symbol() is a StrongTableau:

sage: G.P_symbol().pp()
-1 -2 -3 -5
3 5
-4 -6
5
6

The Q_symbol() is a WeakTableau:

5.1. Comprehensive Module List 1089

Combinatorics, Release 9.7

sage: G.Q_symbol().pp()
1 3 4 5
2 5
3 6
5
6

Let us also check Example 6.2 in [LLMSSZ2013]:

sage: G = LLMS3([4,1,3,2])
sage: G.P_symbol().pp()
-1 -2 3
-3
-4

sage: G.Q_symbol().pp()
1 3 4
2
3

P_symbol(P_chain)
Return the labels along the vertical boundary of a rectangular growth diagram as a skew StrongTableau.

EXAMPLES:

sage: LLMS4 = GrowthDiagram.rules.LLMS(4)
sage: G = LLMS4([3,4,1,2])
sage: G.P_symbol().pp()
-1 -2
-3 -4

Q_symbol(Q_chain)
Return the labels along the horizontal boundary of a rectangular growth diagram as a skew WeakTableau.

EXAMPLES:

sage: LLMS4 = GrowthDiagram.rules.LLMS(4)
sage: G = LLMS4([3,4,1,2])
sage: G.Q_symbol().pp()
1 2
3 4

forward_rule(y, e, t, f, x, content)
Return the output path given two incident edges and the content.

See [LS2007] Section 3.4 and [LLMSSZ2013] Section 6.3.

INPUT:

• y, e, t, f, x – a path of three partitions and two colors from a cell in a growth diagram, labelled
as:

t f x
e
y

• content – 0 or 1; the content of the cell

1090 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

The two colors and the fourth partition g, z, h according to LLMS insertion.

EXAMPLES:

sage: LLMS3 = GrowthDiagram.rules.LLMS(3)
sage: LLMS4 = GrowthDiagram.rules.LLMS(4)

sage: Z = LLMS3.zero
sage: LLMS3.forward_rule(Z, None, Z, None, Z, 0)
(None, [], None)

sage: LLMS3.forward_rule(Z, None, Z, None, Z, 1)
(None, [1], 0)

sage: Y = Core([3,1,1], 3)
sage: LLMS3.forward_rule(Y, None, Y, None, Y, 1)
(None, [4, 2, 1, 1], 3)

if x != y:

sage: Y = Core([1,1], 3); T = Core([1], 3); X = Core([2], 3)
sage: LLMS3.forward_rule(Y, -1, T, None, X, 0)
(None, [2, 1, 1], -1)

sage: Y = Core([2], 4); T = Core([1], 4); X = Core([1,1], 4)
sage: LLMS4.forward_rule(Y, 1, T, None, X, 0)
(None, [2, 1], 1)

sage: Y = Core([2,1,1], 3); T = Core([2], 3); X = Core([3,1], 3)
sage: LLMS3.forward_rule(Y, -1, T, None, X, 0)
(None, [3, 1, 1], -2)

if x == y != t:

sage: Y = Core([1], 3); T = Core([], 3); X = Core([1], 3)
sage: LLMS3.forward_rule(Y, 0, T, None, X, 0)
(None, [1, 1], -1)

sage: Y = Core([1], 4); T = Core([], 4); X = Core([1], 4)
sage: LLMS4.forward_rule(Y, 0, T, None, X, 0)
(None, [1, 1], -1)

sage: Y = Core([2,1], 4); T = Core([1,1], 4); X = Core([2,1], 4)
sage: LLMS4.forward_rule(Y, 1, T, None, X, 0)
(None, [2, 2], 0)

is_P_edge(v, w)
Return whether (v, w) is a 𝑃 -edge of self.

For two k-cores v and w containing v, there are as many edges as there are components in the skew partition
w/v. These components are ribbons, and therefore contain a unique cell with maximal content. We index
the edge with this content.

EXAMPLES:

5.1. Comprehensive Module List 1091

Combinatorics, Release 9.7

sage: LLMS4 = GrowthDiagram.rules.LLMS(4)
sage: v = LLMS4.vertices(2)[0]; v
[2]
sage: [(w, LLMS4.is_P_edge(v, w)) for w in LLMS4.vertices(3)]
[([3], [2]), ([2, 1], [-1]), ([1, 1, 1], [])]
sage: all(LLMS4.is_P_edge(v, w) == [] for w in LLMS4.vertices(4))
True

is_Q_edge(v, w)
Return whether (v, w) is a 𝑄-edge of self.

(v, w) is an edge if w is a weak cover of v, see weak_covers().

EXAMPLES:

sage: LLMS4 = GrowthDiagram.rules.LLMS(4)
sage: v = LLMS4.vertices(3)[1]; v
[2, 1]
sage: [w for w in LLMS4.vertices(4) if len(LLMS4.is_Q_edge(v, w)) > 0]
[[2, 2], [3, 1, 1]]
sage: all(LLMS4.is_Q_edge(v, w) == [] for w in LLMS4.vertices(5))
True

normalize_vertex(v)
Convert v to a 𝑘-core.

EXAMPLES:

sage: LLMS3 = GrowthDiagram.rules.LLMS(3)
sage: LLMS3.normalize_vertex([3,1]).parent()
3-Cores of length 3

rank(v)
Return the rank of v: the length of the core.

EXAMPLES:

sage: LLMS3 = GrowthDiagram.rules.LLMS(3)
sage: LLMS3.rank(LLMS3.vertices(3)[0])
3

vertices(n)
Return the vertices of the dual graded graph on level n.

EXAMPLES:

sage: LLMS3 = GrowthDiagram.rules.LLMS(3)
sage: LLMS3.vertices(2)
3-Cores of length 2

class sage.combinat.growth.RulePartitions
Bases: sage.combinat.growth.Rule

A rule for growth diagrams on Young’s lattice on integer partitions graded by size.

P_symbol(P_chain)
Return the labels along the vertical boundary of a rectangular growth diagram as a (skew) tableau.

1092 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: G = RuleRSK([[0,1,0], [1,0,2]])
sage: G.P_symbol().pp()
1 2 2
2

Q_symbol(Q_chain)
Return the labels along the horizontal boundary of a rectangular growth diagram as a skew tableau.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: G = RuleRSK([[0,1,0], [1,0,2]])
sage: G.Q_symbol().pp()
1 3 3
2

normalize_vertex(v)
Return v as a partition.

EXAMPLES:

sage: RSK = GrowthDiagram.rules.RSK()
sage: RSK.normalize_vertex([3,1]).parent()
Partitions

rank(v)
Return the rank of v: the size of the partition.

EXAMPLES:

sage: RSK = GrowthDiagram.rules.RSK()
sage: RSK.rank(RSK.vertices(3)[0])
3

vertices(n)
Return the vertices of the dual graded graph on level n.

EXAMPLES:

sage: RSK = GrowthDiagram.rules.RSK()
sage: RSK.vertices(3)
Partitions of the integer 3

zero = []

class sage.combinat.growth.RuleRSK
Bases: sage.combinat.growth.RulePartitions

A rule modelling Robinson-Schensted-Knuth insertion.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: GrowthDiagram(RuleRSK, [3,2,1,2,3])
0 0 1 0 0

(continues on next page)

5.1. Comprehensive Module List 1093

Combinatorics, Release 9.7

(continued from previous page)

0 1 0 1 0
1 0 0 0 1

The vertices of the dual graded graph are integer partitions:

sage: RuleRSK.vertices(3)
Partitions of the integer 3

The local rules implemented provide the RSK correspondence between matrices with non-negative integer entries
and pairs of semistandard tableaux, the P_symbol() and the Q_symbol(). For permutations, it reduces to
classical Schensted insertion.

Instead of passing the rule to GrowthDiagram , we can also call the rule to create growth diagrams. For example:

sage: m = matrix([[0,0,0,0,1],[1,1,0,2,0], [0,3,0,0,0]])
sage: G = RuleRSK(m); G
0 0 0 0 1
1 1 0 2 0
0 3 0 0 0

sage: ascii_art([G.P_symbol(), G.Q_symbol()])
[1 2 2 2 3 1 2 2 2 2]
[2 3 4 4]
[3 , 5]

For rectangular fillings, the Kleitman-Greene invariant is the shape of the P_symbol() (or the Q_symbol()).
Put differently, it is the partition labelling the lower right corner of the filling (recall that we are using matrix
coordinates). It can be computed alternatively as the partition (𝜇1, . . . , 𝜇𝑛), where 𝜇1 + · · ·+𝜇𝑖 is the maximal
sum of entries in a collection of 𝑖 pairwise disjoint sequences of cells with weakly increasing coordinates.

For rectangular fillings, we could also use the (faster) implementation provided via RSK(). Because the of the
coordinate conventions in RSK(), we have to transpose matrices:

sage: [G.P_symbol(), G.Q_symbol()] == RSK(m.transpose())
True

sage: n = 5; l = [(pi, RuleRSK(pi)) for pi in Permutations(n)]
sage: all([G.P_symbol(), G.Q_symbol()] == RSK(pi) for pi, G in l)
True

sage: n = 5; l = [(w, RuleRSK(w)) for w in Words([1,2,3], 5)]
sage: all([G.P_symbol(), G.Q_symbol()] == RSK(pi) for pi, G in l)
True

backward_rule(y, z, x)
Return the content and the input shape.

See [Kra2006] (𝐵10)− (𝐵12).

INPUT:

• y, z, x – three partitions from a cell in a growth diagram, labelled as:

x
y z

1094 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

A pair (t, content) consisting of the shape of the fourth word according to the Robinson-Schensted-
Knuth correspondence and the content of the cell.

forward_rule(y, t, x, content)
Return the output shape given three shapes and the content.

See [Kra2006] (𝐹 10)− (𝐹 12).

INPUT:

• y, t, x – three partitions from a cell in a growth diagram, labelled as:

t x
y

• content – a non-negative integer; the content of the cell

OUTPUT:

The fourth partition according to the Robinson-Schensted-Knuth correspondence.

EXAMPLES:

sage: RuleRSK = GrowthDiagram.rules.RSK()
sage: RuleRSK.forward_rule([2,1],[2,1],[2,1],1)
[3, 1]

sage: RuleRSK.forward_rule([1],[],[2],2)
[4, 1]

class sage.combinat.growth.RuleShiftedShapes
Bases: sage.combinat.growth.Rule

A class modelling the Schensted correspondence for shifted shapes.

This agrees with Sagan [Sag1987] and Worley’s [Wor1984], and Haiman’s [Hai1989] insertion algorithms, see
Proposition 4.5.2 of [Fom1995].

EXAMPLES:

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: GrowthDiagram(Shifted, [3,1,2])
0 1 0
0 0 1
1 0 0

The vertices of the dual graded graph are shifted shapes:

sage: Shifted.vertices(3)
Partitions of the integer 3 satisfying constraints max_slope=-1

Let us check the example just before Corollary 3.2 in [Sag1987]. Note that, instead of passing the rule to
GrowthDiagram , we can also call the rule to create growth diagrams:

sage: G = Shifted([2,6,5,1,7,4,3])
sage: G.P_chain()
[[], 0, [1], 0, [2], 0, [3], 0, [3, 1], 0, [3, 2], 0, [4, 2], 0, [5, 2]]

(continues on next page)

5.1. Comprehensive Module List 1095

Combinatorics, Release 9.7

(continued from previous page)

sage: G.Q_chain()
[[], 1, [1], 2, [2], 1, [2, 1], 3, [3, 1], 2, [4, 1], 3, [4, 2], 3, [5, 2]]

P_symbol(P_chain)
Return the labels along the vertical boundary of a rectangular growth diagram as a shifted tableau.

EXAMPLES:

Check the example just before Corollary 3.2 in [Sag1987]:

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: G = Shifted([2,6,5,1,7,4,3])
sage: G.P_symbol().pp()
1 2 3 6 7

4 5

Check the example just before Corollary 8.2 in [SS1990]:

sage: T = ShiftedPrimedTableau([[4],[1],[5]], skew=[3,1])
sage: T.pp()
. . . 4

. 1
5

sage: U = ShiftedPrimedTableau([[1],[3.5],[5]], skew=[3,1])
sage: U.pp()
. . . 1

. 4'
5

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: labels = [mu if is_even(i) else 0 for i, mu in enumerate(T.to_chain()[::-
→˓1])] + U.to_chain()[1:]
sage: G = Shifted({(1,2):1, (2,1):1}, shape=[5,5,5,5,5], labels=labels)
sage: G.P_symbol().pp()
. . . . 2

. . 1 3
. 4 5

Q_symbol(Q_chain)
Return the labels along the horizontal boundary of a rectangular growth diagram as a skew tableau.

EXAMPLES:

Check the example just before Corollary 3.2 in [Sag1987]:

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: G = Shifted([2,6,5,1,7,4,3])
sage: G.Q_symbol().pp()
1 2 4' 5 7'

3 6'

Check the example just before Corollary 8.2 in [SS1990]:

sage: T = ShiftedPrimedTableau([[4],[1],[5]], skew=[3,1])
sage: T.pp()
. . . 4

(continues on next page)

1096 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

. 1
5

sage: U = ShiftedPrimedTableau([[1],[3.5],[5]], skew=[3,1])
sage: U.pp()
. . . 1

. 4'
5

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: labels = [mu if is_even(i) else 0 for i, mu in enumerate(T.to_chain()[::-
→˓1])] + U.to_chain()[1:]
sage: G = Shifted({(1,2):1, (2,1):1}, shape=[5,5,5,5,5], labels=labels)
sage: G.Q_symbol().pp()
. . . . 2

. . 1 4'
. 3' 5'

backward_rule(y, g, z, h, x)
Return the input path and the content given two incident edges.

See [Fom1995] Lemma 4.5.1, page 38.

INPUT:

• y, g, z, h, x – a path of three partitions and two colors from a cell in a growth diagram, labelled
as:

x
h

y g z

OUTPUT:

A tuple (e, t, f, content) consisting of the shape t of the fourth word, the colours of the incident
edges and the content of the cell according to Sagan - Worley insertion.

EXAMPLES:

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: Shifted.backward_rule([], 1, [1], 0, [])
(0, [], 0, 1)

sage: Shifted.backward_rule([1], 2, [2], 0, [1])
(0, [1], 0, 1)

if x != y:

sage: Shifted.backward_rule([3], 1, [3, 1], 0, [2,1])
(0, [2], 1, 0)

sage: Shifted.backward_rule([2,1], 2, [3, 1], 0, [3])
(0, [2], 2, 0)

if x == y != t:

5.1. Comprehensive Module List 1097

Combinatorics, Release 9.7

sage: Shifted.backward_rule([3], 1, [3, 1], 0, [3])
(0, [2], 2, 0)

sage: Shifted.backward_rule([3,1], 2, [3, 2], 0, [3,1])
(0, [2, 1], 2, 0)

sage: Shifted.backward_rule([2,1], 3, [3, 1], 0, [2,1])
(0, [2], 1, 0)

sage: Shifted.backward_rule([3], 3, [4], 0, [3])
(0, [2], 3, 0)

forward_rule(y, e, t, f, x, content)
Return the output path given two incident edges and the content.

See [Fom1995] Lemma 4.5.1, page 38.

INPUT:

• y, e, t, f, x – a path of three partitions and two colors from a cell in a growth diagram, labelled
as:

t f x
e
y

• content – 0 or 1; the content of the cell

OUTPUT:

The two colors and the fourth partition g, z, h according to Sagan-Worley insertion.

EXAMPLES:

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: Shifted.forward_rule([], 0, [], 0, [], 1)
(1, [1], 0)

sage: Shifted.forward_rule([1], 0, [1], 0, [1], 1)
(2, [2], 0)

if x != y:

sage: Shifted.forward_rule([3], 0, [2], 1, [2,1], 0)
(1, [3, 1], 0)

sage: Shifted.forward_rule([2,1], 0, [2], 2, [3], 0)
(2, [3, 1], 0)

if x == y != t:

sage: Shifted.forward_rule([3], 0, [2], 2, [3], 0)
(1, [3, 1], 0)

sage: Shifted.forward_rule([3,1], 0, [2,1], 2, [3,1], 0)
(2, [3, 2], 0)

(continues on next page)

1098 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Shifted.forward_rule([2,1], 0, [2], 1, [2,1], 0)
(3, [3, 1], 0)

sage: Shifted.forward_rule([3], 0, [2], 3, [3], 0)
(3, [4], 0)

is_P_edge(v, w)
Return whether (v, w) is a 𝑃 -edge of self.

(v, w) is an edge if w contains v.

EXAMPLES:

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: v = Shifted.vertices(2)[0]; v
[2]
sage: [w for w in Shifted.vertices(3) if Shifted.is_P_edge(v, w)]
[[3], [2, 1]]

is_Q_edge(v, w)
Return whether (v, w) is a 𝑄-edge of self.

(v, w) is an edge if w is obtained from v by adding a cell. It is a black (color 1) edge, if the cell is on the
diagonal, otherwise it can be blue or red (color 2 or 3).

EXAMPLES:

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: v = Shifted.vertices(2)[0]; v
[2]
sage: [(w, Shifted.is_Q_edge(v, w)) for w in Shifted.vertices(3)]
[([3], [2, 3]), ([2, 1], [1])]
sage: all(Shifted.is_Q_edge(v, w) == [] for w in Shifted.vertices(4))
True

normalize_vertex(v)
Return v as a partition.

EXAMPLES:

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: Shifted.normalize_vertex([3,1]).parent()
Partitions

rank(v)
Return the rank of v: the size of the shifted partition.

EXAMPLES:

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: Shifted.rank(Shifted.vertices(3)[0])
3

vertices(n)
Return the vertices of the dual graded graph on level n.

5.1. Comprehensive Module List 1099

Combinatorics, Release 9.7

EXAMPLES:

sage: Shifted = GrowthDiagram.rules.ShiftedShapes()
sage: Shifted.vertices(3)
Partitions of the integer 3 satisfying constraints max_slope=-1

zero = []

class sage.combinat.growth.RuleSylvester
Bases: sage.combinat.growth.Rule

A rule modelling a Schensted-like correspondence for binary trees.

EXAMPLES:

sage: Sylvester = GrowthDiagram.rules.Sylvester()
sage: GrowthDiagram(Sylvester, [3,1,2])
0 1 0
0 0 1
1 0 0

The vertices of the dual graded graph are BinaryTrees:

sage: Sylvester.vertices(3)
Binary trees of size 3

The P_graph() is also known as the bracket tree, the Q_graph() is the lattice of finite order ideals of the infinite
binary tree, see Example 2.4.6 in [Fom1994].

For a permutation, the P_symbol() is the binary search tree, the Q_symbol() is the increasing tree correspond-
ing to the inverse permutation. Note that, instead of passing the rule to GrowthDiagram , we can also call the
rule to create growth diagrams. From [Nze2007]:

sage: pi = Permutation([3,5,1,4,2,6]); G = Sylvester(pi); G
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
sage: ascii_art(G.P_symbol())
__3__
/ \
1 5
\ / \
2 4 6

sage: ascii_art(G.Q_symbol())
__1__
/ \
3 2
\ / \
5 4 6

sage: all(Sylvester(pi).P_symbol() == pi.binary_search_tree()
....: for pi in Permutations(5))
True

(continues on next page)

1100 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: all(Sylvester(pi).Q_symbol() == pi.inverse().increasing_tree()
....: for pi in Permutations(5))
True

P_symbol(P_chain)
Return the labels along the vertical boundary of a rectangular growth diagram as a labelled binary tree.

For permutations, this coincides with the binary search tree.

EXAMPLES:

sage: Sylvester = GrowthDiagram.rules.Sylvester()
sage: pi = Permutation([2,4,3,1])
sage: ascii_art(Sylvester(pi).P_symbol())
2
/ \

1 4
/
3

sage: Sylvester(pi).P_symbol() == pi.binary_search_tree()
True

We can also do the skew version:

sage: B = BinaryTree; E = B(); N = B([])
sage: ascii_art(Sylvester([3,2], shape=[3,3,3], labels=[N,N,N,E,E,E,N]).P_
→˓symbol())
__1___
/ \

None 3
/
2

Q_symbol(Q_chain)
Return the labels along the vertical boundary of a rectangular growth diagram as a labelled binary tree.

For permutations, this coincides with the increasing tree.

EXAMPLES:

sage: Sylvester = GrowthDiagram.rules.Sylvester()
sage: pi = Permutation([2,4,3,1])
sage: ascii_art(Sylvester(pi).Q_symbol())
1
/ \

4 2
/
3

sage: Sylvester(pi).Q_symbol() == pi.inverse().increasing_tree()
True

We can also do the skew version:

5.1. Comprehensive Module List 1101

Combinatorics, Release 9.7

sage: B = BinaryTree; E = B(); N = B([])
sage: ascii_art(Sylvester([3,2], shape=[3,3,3], labels=[N,N,N,E,E,E,N]).Q_
→˓symbol())
None
/ \

3 1
/
2

backward_rule(y, z, x)
Return the output shape given three shapes and the content.

See [Nze2007], page 9.

INPUT:

• y, z, x – three binary trees from a cell in a growth diagram, labelled as:

x
y z

OUTPUT:

A pair (t, content) consisting of the shape of the fourth binary tree t and the content of the cell.

EXAMPLES:

sage: Sylvester = GrowthDiagram.rules.Sylvester()
sage: B = BinaryTree; E = B(); N = B([]); L = B([[],None])
sage: R = B([None,[]]); T = B([[],[]])

sage: ascii_art(Sylvester.backward_rule(E, E, E))
(, 0)
sage: ascii_art(Sylvester.backward_rule(N, N, N))
(o, 0)

forward_rule(y, t, x, content)
Return the output shape given three shapes and the content.

See [Nze2007], page 9.

INPUT:

• y, t, x – three binary trees from a cell in a growth diagram, labelled as:

t x
y

• content – 0 or 1; the content of the cell

OUTPUT:

The fourth binary tree z.

EXAMPLES:

sage: Sylvester = GrowthDiagram.rules.Sylvester()
sage: B = BinaryTree; E = B(); N = B([]); L = B([[],None])
sage: R = B([None,[]]); T = B([[],[]])

(continues on next page)

1102 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: ascii_art(Sylvester.forward_rule(E, E, E, 1))
o
sage: ascii_art(Sylvester.forward_rule(N, N, N, 1))
o
\
o

sage: ascii_art(Sylvester.forward_rule(L, L, L, 1))
o
/ \

o o
sage: ascii_art(Sylvester.forward_rule(R, R, R, 1))
o
\
o
\
o

If y != x, obtain z from y adding a node such that deleting the right most gives x:

sage: ascii_art(Sylvester.forward_rule(R, N, L, 0))
o
/ \

o o

sage: ascii_art(Sylvester.forward_rule(L, N, R, 0))
o
/

o
\
o

If y == x != t, obtain z from x by adding a node as left child to the right most node:

sage: ascii_art(Sylvester.forward_rule(N, E, N, 0))
o
/

o
sage: ascii_art(Sylvester.forward_rule(T, L, T, 0))

o
/ \

o o
/
o

sage: ascii_art(Sylvester.forward_rule(L, N, L, 0))
o
/

o
/

o
sage: ascii_art(Sylvester.forward_rule(R, N, R, 0))
o

(continues on next page)

5.1. Comprehensive Module List 1103

Combinatorics, Release 9.7

(continued from previous page)

\
o
/

o

is_P_edge(v, w)
Return whether (v, w) is a 𝑃 -edge of self.

(v, w) is an edge if v is obtained from w by deleting its right-most node.

EXAMPLES:

sage: Sylvester = GrowthDiagram.rules.Sylvester()
sage: v = Sylvester.vertices(2)[1]; ascii_art(v)
o
/

o

sage: ascii_art([w for w in Sylvester.vertices(3) if Sylvester.is_P_edge(v, w)])
[o , o]
[/ \ /]
[o o o]
[/]
[o]

sage: [w for w in Sylvester.vertices(4) if Sylvester.is_P_edge(v, w)]
[]

is_Q_edge(v, w)
Return whether (v, w) is a 𝑄-edge of self.

(v, w) is an edge if v is a sub-tree of w with one node less.

EXAMPLES:

sage: Sylvester = GrowthDiagram.rules.Sylvester()
sage: v = Sylvester.vertices(2)[1]; ascii_art(v)
o
/

o
sage: ascii_art([w for w in Sylvester.vertices(3) if Sylvester.is_Q_edge(v, w)])
[o , o, o]
[/ \ / /]
[o o o o]
[\ /]
[o o]
sage: [w for w in Sylvester.vertices(4) if Sylvester.is_Q_edge(v, w)]
[]

normalize_vertex(v)
Return v as a binary tree.

EXAMPLES:

1104 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Sylvester = GrowthDiagram.rules.Sylvester()
sage: Sylvester.normalize_vertex([[],[]]).parent()
Binary trees

rank(v)
Return the rank of v: the number of nodes of the tree.

EXAMPLES:

sage: Sylvester = GrowthDiagram.rules.Sylvester()
sage: Sylvester.rank(Sylvester.vertices(3)[0])
3

vertices(n)
Return the vertices of the dual graded graph on level n.

EXAMPLES:

sage: Sylvester = GrowthDiagram.rules.Sylvester()
sage: Sylvester.vertices(3)
Binary trees of size 3

zero = .

class sage.combinat.growth.RuleYoungFibonacci
Bases: sage.combinat.growth.Rule

A rule modelling a Schensted-like correspondence for Young-Fibonacci-tableaux.

EXAMPLES:

sage: YF = GrowthDiagram.rules.YoungFibonacci()
sage: GrowthDiagram(YF, [3,1,2])
0 1 0
0 0 1
1 0 0

The vertices of the dual graded graph are Fibonacci words - compositions into parts of size at most two:

sage: YF.vertices(4)
[word: 22, word: 211, word: 121, word: 112, word: 1111]

Note that, instead of passing the rule to GrowthDiagram , we can also use call the rule to create growth diagrams.
For example:

sage: G = YF([2, 3, 7, 4, 1, 6, 5]); G
0 0 0 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0

The Kleitman Greene invariant is: take the last letter and the largest letter of the permutation and remove them.
If they coincide write 1, otherwise write 2:

5.1. Comprehensive Module List 1105

Combinatorics, Release 9.7

sage: G.P_chain()[-1]
word: 21211

backward_rule(y, z, x)
Return the content and the input shape.

See [Fom1995] Lemma 4.4.1, page 35.

• y, z, x – three Fibonacci words from a cell in a growth diagram, labelled as:

x
y z

OUTPUT:

A pair (t, content) consisting of the shape of the fourth word and the content of the cell.

forward_rule(y, t, x, content)
Return the output shape given three shapes and the content.

See [Fom1995] Lemma 4.4.1, page 35.

INPUT:

• y, t, x – three Fibonacci words from a cell in a growth diagram, labelled as:

t x
y

• content – 0 or 1; the content of the cell

OUTPUT:

The fourth Fibonacci word.

EXAMPLES:

sage: YF = GrowthDiagram.rules.YoungFibonacci()

sage: YF.forward_rule([], [], [], 1)
word: 1

sage: YF.forward_rule([1], [1], [1], 1)
word: 11

sage: YF.forward_rule([1,2], [1], [1,1], 0)
word: 21

sage: YF.forward_rule([1,1], [1], [1,1], 0)
word: 21

is_P_edge(v, w)
Return whether (v, w) is a 𝑃 -edge of self.

(v, w) is an edge if v is obtained from w by deleting a 1 or replacing the left-most 2 by a 1.

EXAMPLES:

1106 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: YF = GrowthDiagram.rules.YoungFibonacci()
sage: v = YF.vertices(5)[5]; v
word: 1121
sage: [w for w in YF.vertices(6) if YF.is_P_edge(v, w)]
[word: 2121, word: 11121]
sage: [w for w in YF.vertices(7) if YF.is_P_edge(v, w)]
[]

is_Q_edge(v, w)
Return whether (v, w) is a 𝑃 -edge of self.

(v, w) is an edge if v is obtained from w by deleting a 1 or replacing the left-most 2 by a 1.

EXAMPLES:

sage: YF = GrowthDiagram.rules.YoungFibonacci()
sage: v = YF.vertices(5)[5]; v
word: 1121
sage: [w for w in YF.vertices(6) if YF.is_P_edge(v, w)]
[word: 2121, word: 11121]
sage: [w for w in YF.vertices(7) if YF.is_P_edge(v, w)]
[]

normalize_vertex(v)
Return v as a word with letters 1 and 2.

EXAMPLES:

sage: YF = GrowthDiagram.rules.YoungFibonacci()
sage: YF.normalize_vertex([1,2,1]).parent()
Finite words over {1, 2}

rank(v)
Return the rank of v: the size of the corresponding composition.

EXAMPLES:

sage: YF = GrowthDiagram.rules.YoungFibonacci()
sage: YF.rank(YF.vertices(3)[0])
3

vertices(n)
Return the vertices of the dual graded graph on level n.

EXAMPLES:

sage: YF = GrowthDiagram.rules.YoungFibonacci()
sage: YF.vertices(3)
[word: 21, word: 12, word: 111]

class sage.combinat.growth.Rules
Bases: object

Catalog of rules for growth diagrams.

BinaryWord
alias of RuleBinaryWord

5.1. Comprehensive Module List 1107

Combinatorics, Release 9.7

Burge
alias of RuleBurge

Domino
alias of RuleDomino

LLMS
alias of RuleLLMS

RSK
alias of RuleRSK

ShiftedShapes
alias of RuleShiftedShapes

Sylvester
alias of RuleSylvester

YoungFibonacci
alias of RuleYoungFibonacci

5.1.116 Grossman-Larson Hopf Algebras

AUTHORS:

• Frédéric Chapoton (2017)

class sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra(R, names=None)
Bases: sage.combinat.free_module.CombinatorialFreeModule

The Grossman-Larson Hopf Algebra.

The Grossman-Larson Hopf Algebras are Hopf algebras with a basis indexed by forests of decorated rooted trees.
They are the universal enveloping algebras of free pre-Lie algebras, seen as Lie algebras.

The Grossman-Larson Hopf algebra on a given set𝐸 has an explicit description using rooted forests. The under-
lying vector space has a basis indexed by finite rooted forests endowed with a map from their vertices to𝐸 (called
the “labeling”). In this basis, the product of two (decorated) rooted forests 𝑆 * 𝑇 is a sum over all maps from
the set of roots of 𝑇 to the union of a singleton {#} and the set of vertices of 𝑆. Given such a map, one defines
a new forest as follows. Starting from the disjoint union of all rooted trees of 𝑆 and 𝑇 , one adds an edge from
every root of 𝑇 to its image when this image is not the fake vertex labelled #. The coproduct sends a rooted forest
𝑇 to the sum of all tensors 𝑇1 ⊗ 𝑇2 obtained by splitting the connected components of 𝑇 into two subsets and
letting 𝑇1 be the forest formed by the first subset and 𝑇2 the forest formed by the second. This yields a connected
graded Hopf algebra (the degree of a forest is its number of vertices).

See [Pana2002] (Section 2) and [GroLar1]. (Note that both references use rooted trees rather than rooted forests,
so think of each rooted forest grafted onto a new root. Also, the product is reversed, so they are defining the
opposite algebra structure.)

Warning: For technical reasons, instead of using forests as labels for the basis, we use rooted trees. Their
root vertex should be considered as a fake vertex. This fake root vertex is labelled '#'when labels are present.

EXAMPLES:

sage: G = algebras.GrossmanLarson(QQ, 'xy')
sage: x, y = G.single_vertex_all()
sage: ascii_art(x*y)

(continues on next page)

1108 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

B + B
#_
| / /
x x y
|
y

sage: ascii_art(x*x*x)
B + B + 3*B + B
#_ _#__
| | / / / / /
x x_ x x x x x
| / / |
x x x x
|
x

The Grossman-Larson algebra is associative:

sage: z = x * y
sage: x * (y * z) == (x * y) * z
True

It is not commutative:

sage: x * y == y * x
False

When None is given as input, unlabelled forests are used instead; this corresponds to a 1-element set 𝐸:

sage: G = algebras.GrossmanLarson(QQ, None)
sage: x = G.single_vertex_all()[0]
sage: ascii_art(x*x)
B + B
o o_
| / /
o o o
|
o

Note: Variables names can be None, a list of strings, a string or an integer. When None is given, unlabelled
rooted forests are used. When a single string is given, each letter is taken as a variable. See sage.combinat.
words.alphabet.build_alphabet().

Warning: Beware that the underlying combinatorial free module is based either on RootedTrees or on
LabelledRootedTrees, with no restriction on the labellings. This means that all code calling the basis()
method would not give meaningful results, since basis() returns many “chaff” elements that do not belong
to the algebra.

REFERENCES:

5.1. Comprehensive Module List 1109

Combinatorics, Release 9.7

• [Pana2002]

• [GroLar1]

an_element()
Return an element of self.

EXAMPLES:

sage: A = algebras.GrossmanLarson(QQ, 'xy')
sage: A.an_element()
B[#[x[]]] + 2*B[#[x[x[]]]] + 2*B[#[x[], x[]]]

antipode_on_basis(x)
Return the antipode of a forest.

EXAMPLES:

sage: G = algebras.GrossmanLarson(QQ,2)
sage: x, y = G.single_vertex_all()
sage: G.antipode(x) # indirect doctest
-B[#[0[]]]

sage: G.antipode(y*x) # indirect doctest
B[#[0[1[]]]] + B[#[0[], 1[]]]

change_ring(R)
Return the Grossman-Larson algebra in the same variables over 𝑅.

INPUT:

• 𝑅 – a ring

EXAMPLES:

sage: A = algebras.GrossmanLarson(ZZ, 'fgh')
sage: A.change_ring(QQ)
Grossman-Larson Hopf algebra on 3 generators ['f', 'g', 'h']
over Rational Field

coproduct_on_basis(x)
Return the coproduct of a forest.

EXAMPLES:

sage: G = algebras.GrossmanLarson(QQ,2)
sage: x, y = G.single_vertex_all()
sage: ascii_art(G.coproduct(x)) # indirect doctest
1 # B + B # 1

#
| |
0 0

sage: Delta_xy = G.coproduct(y*x)
sage: ascii_art(Delta_xy) # random indirect doctest
1 # B + 1 # B + B # B + B # 1 + B # B + B # 1

#_ # # # #_ # # #
/ / | | | / / | | |

(continues on next page)

1110 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

0 1 1 0 1 0 1 1 0 1
| |
0 0

counit_on_basis(x)
Return the counit on a basis element.

This is zero unless the forest 𝑥 is empty.

EXAMPLES:

sage: A = algebras.GrossmanLarson(QQ, 'xy')
sage: RT = A.basis().keys()
sage: x = RT([RT([],'x')],'#')
sage: A.counit_on_basis(x)
0
sage: A.counit_on_basis(RT([],'#'))
1

degree_on_basis(t)
Return the degree of a rooted forest in the Grossman-Larson algebra.

This is the total number of vertices of the forest.

EXAMPLES:

sage: A = algebras.GrossmanLarson(QQ, '@')
sage: RT = A.basis().keys()
sage: A.degree_on_basis(RT([RT([])]))
1

one_basis()
Return the empty rooted forest.

EXAMPLES:

sage: A = algebras.GrossmanLarson(QQ, 'ab')
sage: A.one_basis()
#[]

sage: A = algebras.GrossmanLarson(QQ, None)
sage: A.one_basis()
[]

product_on_basis(x, y)
Return the product of two forests 𝑥 and 𝑦.

This is the sum over all possible ways for the components of the forest 𝑦 to either fall side-by-side with
components of 𝑥 or be grafted on a vertex of 𝑥.

EXAMPLES:

sage: A = algebras.GrossmanLarson(QQ, None)
sage: RT = A.basis().keys()
sage: x = RT([RT([])])
sage: A.product_on_basis(x, x)
B[[[[]]]] + B[[[], []]]

5.1. Comprehensive Module List 1111

Combinatorics, Release 9.7

Check that the product is the correct one:

sage: A = algebras.GrossmanLarson(QQ, 'uv')
sage: RT = A.basis().keys()
sage: Tu = RT([RT([],'u')],'#')
sage: Tv = RT([RT([],'v')],'#')
sage: A.product_on_basis(Tu, Tv)
B[#[u[v[]]]] + B[#[u[], v[]]]

single_vertex(i)
Return the i-th rooted forest with one vertex.

This is the rooted forest with just one vertex, labelled by the i-th element of the label list.

See also:

single_vertex_all().

INPUT:

• i – a nonnegative integer

EXAMPLES:

sage: F = algebras.GrossmanLarson(ZZ, 'xyz')
sage: F.single_vertex(0)
B[#[x[]]]

sage: F.single_vertex(4)
Traceback (most recent call last):
...
IndexError: argument i (= 4) must be between 0 and 2

single_vertex_all()
Return the rooted forests with one vertex in self.

They freely generate the Lie algebra of primitive elements as a pre-Lie algebra.

See also:

single_vertex().

EXAMPLES:

sage: A = algebras.GrossmanLarson(ZZ, 'fgh')
sage: A.single_vertex_all()
(B[#[f[]]], B[#[g[]]], B[#[h[]]])

sage: A = algebras.GrossmanLarson(QQ, ['x1','x2'])
sage: A.single_vertex_all()
(B[#[x1[]]], B[#[x2[]]])

sage: A = algebras.GrossmanLarson(ZZ, None)
sage: A.single_vertex_all()
(B[[[]]],)

some_elements()
Return some elements of the Grossman-Larson Hopf algebra.

EXAMPLES:

1112 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: A = algebras.GrossmanLarson(QQ, None)
sage: A.some_elements()
[B[[[]]], B[[]] + B[[[[]]]] + B[[[], []]],
4*B[[[[]]]] + 4*B[[[], []]]]

With several generators:

sage: A = algebras.GrossmanLarson(QQ, 'xy')
sage: A.some_elements()
[B[#[x[]]],
B[#[]] + B[#[x[x[]]]] + B[#[x[], x[]]],
B[#[x[x[]]]] + 3*B[#[x[y[]]]] + B[#[x[], x[]]] + 3*B[#[x[], y[]]]]

variable_names()
Return the names of the variables.

This returns the set 𝐸 (as a family).

EXAMPLES:

sage: R = algebras.GrossmanLarson(QQ, 'xy')
sage: R.variable_names()
{'x', 'y'}

sage: R = algebras.GrossmanLarson(QQ, ['a','b'])
sage: R.variable_names()
{'a', 'b'}

sage: R = algebras.GrossmanLarson(QQ, 2)
sage: R.variable_names()
{0, 1}

sage: R = algebras.GrossmanLarson(QQ, None)
sage: R.variable_names()
{'o'}

5.1.117 Hall Polynomials

sage.combinat.hall_polynomial.hall_polynomial(nu, mu, la, q=None)
Return the (classical) Hall polynomial 𝑃 𝜈𝜇,𝜆 (where 𝜈, 𝜇 and 𝜆 are the inputs nu, mu and la).

Let 𝜈, 𝜇, 𝜆 be partitions. The Hall polynomial 𝑃 𝜈𝜇,𝜆(𝑞) (in the indeterminate 𝑞) is defined as follows: Specialize
𝑞 to a prime power, and consider the category of F𝑞-vector spaces with a distinguished nilpotent endomorphism.
The morphisms in this category shall be the linear maps commuting with the distinguished endomorphisms. The
type of an object in the category will be the Jordan type of the distinguished endomorphism; this is a partition.
Now, if 𝑁 is any fixed object of type 𝜈 in this category, then the polynomial 𝑃 𝜈𝜇,𝜆(𝑞) specialized at the prime
power 𝑞 counts the number of subobjects 𝐿 of 𝑁 having type 𝜆 such that the quotient object 𝑁/𝐿 has type
𝜇. This determines the values of the polynomial 𝑃 𝜈𝜇,𝜆 at infinitely many points (namely, at all prime powers),
and hence 𝑃 𝜈𝜇,𝜆 is uniquely determined. The degree of this polynomial is at most 𝑛(𝜈) − 𝑛(𝜆) − 𝑛(𝜇), where
𝑛(𝜅) =

∑︀
𝑖(𝑖− 1)𝜅𝑖 for every partition 𝜅. (If this is negative, then the polynomial is zero.)

These are the structure coefficients of the (classical) Hall algebra.

If |𝜈| ≠ |𝜇|+|𝜆|, then we have 𝑃 𝜈𝜇,𝜆 = 0. More generally, if the Littlewood-Richardson coefficient 𝑐𝜈𝜇,𝜆 vanishes,
then 𝑃 𝜈𝜇,𝜆 = 0.

5.1. Comprehensive Module List 1113

../../../../../../html/en/reference/algebras/sage/algebras/hall_algebra.html#sage.algebras.hall_algebra.HallAlgebra

Combinatorics, Release 9.7

The Hall polynomials satisfy the symmetry property 𝑃 𝜈𝜇,𝜆 = 𝑃 𝜈𝜆,𝜇.

ALGORITHM:

If 𝜆 = (1𝑟) and |𝜈| = |𝜇|+ |𝜆|, then we compute 𝑃 𝜈𝜇,𝜆 as follows (cf. Example 2.4 in [Sch2006]):

First, write 𝜈 = (1𝑙1 , 2𝑙2 , . . . , 𝑛𝑙𝑛), and define a sequence 𝑟 = 𝑟0 ≥ 𝑟1 ≥ · · · ≥ 𝑟𝑛 such that

𝜇 =
(︀
1𝑙1−𝑟0+2𝑟1−𝑟2 , 2𝑙2−𝑟1+2𝑟2−𝑟3 , . . . , (𝑛− 1)𝑙𝑛−1−𝑟𝑛−2+2𝑟𝑛−1−𝑟𝑛 , 𝑛𝑙𝑛−𝑟𝑛−1+𝑟𝑛

)︀
.

Thus if 𝜇 = (1𝑚1 , . . . , 𝑛𝑚𝑛), we have the following system of equations:

𝑚1 = 𝑙1 − 𝑟 + 2𝑟1 − 𝑟2,
𝑚2 = 𝑙2 − 𝑟1 + 2𝑟2 − 𝑟3,

...,
𝑚𝑛−1 = 𝑙𝑛−1 − 𝑟𝑛−2 + 2𝑟𝑛−1 − 𝑟𝑛,
𝑚𝑛 = 𝑙𝑛 − 𝑟𝑛−1 + 𝑟𝑛

and solving for 𝑟𝑖 and back substituting we obtain the equations:

𝑟𝑛 = 𝑟𝑛−1 +𝑚𝑛 − 𝑙𝑛,
𝑟𝑛−1 = 𝑟𝑛−2 +𝑚𝑛−1 − 𝑙𝑛−1 +𝑚𝑛 − 𝑙𝑛,

...,

𝑟1 = 𝑟 +

𝑛∑︁
𝑘=1

(𝑚𝑘 − 𝑙𝑘),

or in general we have the recursive equation:

𝑟𝑖 = 𝑟𝑖−1 +

𝑛∑︁
𝑘=𝑖

(𝑚𝑘 − 𝑙𝑘).

This, combined with the condition that 𝑟0 = 𝑟, determines the 𝑟𝑖 uniquely (recursively). Next we define

𝑡 = (𝑟𝑛−2 − 𝑟𝑛−1)(𝑙𝑛 − 𝑟𝑛−1) + (𝑟𝑛−3 − 𝑟𝑛−2)(𝑙𝑛−1 + 𝑙𝑛 − 𝑟𝑛−2) + · · ·+ (𝑟0 − 𝑟1)(𝑙2 + · · ·+ 𝑙𝑛 − 𝑟1),

and with these notations we have

𝑃 𝜈𝜇,(1𝑟) = 𝑞𝑡
(︂

𝑙𝑛
𝑟𝑛−1

)︂
𝑞

(︂
𝑙𝑛−1

𝑟𝑛−2 − 𝑟𝑛−1

)︂
𝑞

· · ·
(︂

𝑙1
𝑟0 − 𝑟1

)︂
𝑞

.

To compute 𝑃 𝜈𝜇,𝜆 in general, we compute the product 𝐼𝜇𝐼𝜆 in the Hall algebra and return the coefficient of 𝐼𝜈 .

EXAMPLES:

sage: from sage.combinat.hall_polynomial import hall_polynomial
sage: hall_polynomial([1,1],[1],[1])
q + 1
sage: hall_polynomial([2],[1],[1])
1
sage: hall_polynomial([2,1],[2],[1])
q
sage: hall_polynomial([2,2,1],[2,1],[1,1])
q^2 + q
sage: hall_polynomial([2,2,2,1],[2,2,1],[1,1])

(continues on next page)

1114 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

q^4 + q^3 + q^2
sage: hall_polynomial([3,2,2,1], [3,2], [2,1])
q^6 + q^5
sage: hall_polynomial([4,2,1,1], [3,1,1], [2,1])
2*q^3 + q^2 - q - 1
sage: hall_polynomial([4,2], [2,1], [2,1], 0)
1

5.1.118 The Hillman-Grassl correspondence

This module implements weak reverse plane partitions and four correspondences on them: the Hillman-Grassl corre-
spondence and its inverse, as well as the Sulzgruber correspondence and its inverse (the Pak correspondence).

Fix a partition 𝜆 (see Partition()). We draw all partitions and tableaux in English notation.

A 𝜆-array will mean a tableau of shape 𝜆 whose entries are nonnegative integers. (No conditions on the order of these
entries are made. Note that 0 is allowed.)

A weak reverse plane partition of shape 𝜆 (short: 𝜆-rpp) will mean a 𝜆-array whose entries weakly increase along
each row and weakly increase along each column. (The name “weak reverse plane partition” comes from Stanley in
[EnumComb2] Section 7.22; other authors – such as Pak [Sulzgr2017], or Hillman and Grassl in [HilGra1976] – just
call it a reverse plane partition.)

The Hillman-Grassl correspondence is a bijection from the set of 𝜆-arrays to the set of 𝜆-rpps. For its definition, see
hillman_grassl(); for its inverse, see hillman_grassl_inverse().

The Sulzgruber correspondence Φ𝜆 and the Pak correspondence 𝜉𝜆 are two further mutually inverse bijections between
the set of 𝜆-arrays and the set of 𝜆-rpps. They appear (sometimes with different definitions, but defining the same
maps) in [Pak2002], [Hopkins2017] and [Sulzgr2017]. For their definitions, see sulzgruber_correspondence()
and pak_correspondence().

EXAMPLES:

We construct a 𝜆-rpp for 𝜆 = (3, 3, 1) (note that 𝜆 needs not be specified explicitly):

sage: p = WeakReversePlanePartition([[0, 1, 3], [2, 4, 4], [3]])
sage: p.parent()
Weak Reverse Plane Partitions

(This is the example in Section 7.22 of [EnumComb2].)

Next, we apply the inverse of the Hillman-Grassl correspondence to it:

sage: HGp = p.hillman_grassl_inverse(); HGp
[[1, 2, 0], [1, 0, 1], [1]]
sage: HGp.parent()
Tableaux

This is a 𝜆-array, encoded as a tableau. We can recover our original 𝜆-rpp from it using the Hillman-Grassl correspon-
dence:

sage: HGp.hillman_grassl() == p
True

We can also apply the Pak correspondence to our rpp:

5.1. Comprehensive Module List 1115

Combinatorics, Release 9.7

sage: Pp = p.pak_correspondence(); Pp
[[2, 0, 1], [0, 2, 0], [1]]
sage: Pp.parent()
Tableaux

This is undone by the Sulzgruber correspondence:

sage: Pp.sulzgruber_correspondence() == p
True

These four correspondences can also be accessed as standalone functions (hillman_grassl_inverse(),
hillman_grassl(), pak_correspondence() and sulzgruber_correspondence()) that transform lists of lists
into lists of lists; this may be more efficient. For example, the above computation of HGp can also be obtained as follows:

sage: from sage.combinat.hillman_grassl import hillman_grassl_inverse
sage: HGp_bare = hillman_grassl_inverse([[0, 1, 3], [2, 4, 4], [3]])
sage: HGp_bare
[[1, 2, 0], [1, 0, 1], [1]]
sage: isinstance(HGp_bare, list)
True

REFERENCES:

• [Gans1981]

• [HilGra1976]

• [EnumComb2]

• [Pak2002]

• [Sulzgr2017]

• [Hopkins2017]

AUTHORS:

• Darij Grinberg and Tom Roby (2018): Initial implementation

class sage.combinat.hillman_grassl.WeakReversePlanePartition(parent, t)
Bases: sage.combinat.tableau.Tableau

A weak reverse plane partition (short: rpp).

A weak reverse plane partition is a tableau with nonnegative entries that are weakly increasing in each row and
weakly increasing in each column.

EXAMPLES:

sage: x = WeakReversePlanePartition([[0, 1, 1], [0, 1, 3], [1, 2, 2], [1, 2, 3],␣
→˓[2]]); x
[[0, 1, 1], [0, 1, 3], [1, 2, 2], [1, 2, 3], [2]]
sage: x.pp()
0 1 1
0 1 3
1 2 2
1 2 3
2

sage: x.shape()
[3, 3, 3, 3, 1]

1116 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

conjugate()
Return the conjugate of self.

EXAMPLES:

sage: c = WeakReversePlanePartition([[1,1],[1,3],[2]]).conjugate(); c
[[1, 1, 2], [1, 3]]
sage: c.parent()
Weak Reverse Plane Partitions

hillman_grassl_inverse()
Return the image of the𝜆-rpp self under the inverse of the Hillman-Grassl correspondence (as a Tableau).

Fix a partition 𝜆 (see Partition()). We draw all partitions and tableaux in English notation.

A 𝜆-array will mean a tableau of shape 𝜆 whose entries are nonnegative integers. (No conditions on the
order of these entries are made. Note that 0 is allowed.)

A weak reverse plane partition of shape 𝜆 (short: 𝜆-rpp) will mean a 𝜆-array whose entries weakly increase
along each row and weakly increase along each column.

The inverse 𝐻−1 of the Hillman-Grassl correspondence (see (hillman_grassl() for the latter) sends a
𝜆-rpp 𝜋 to a 𝜆-array 𝐻−1(𝜋) constructed recursively as follows:

• If all entries of 𝜋 are 0, then 𝐻−1(𝜋) = 𝜋.

• Otherwise, let 𝑠 be the index of the leftmost column of 𝜋 containing a nonzero entry. Write the 𝜆-array
𝑀 as (𝑚𝑖,𝑗).

• Define a sequence ((𝑖1, 𝑗1), (𝑖2, 𝑗2), . . . , (𝑖𝑛, 𝑗𝑛)) of boxes in the diagram of 𝜆 (actually a lattice path
made of northward and eastward steps) as follows: Let (𝑖1, 𝑗1) be the bottommost box in the 𝑠-th
column of 𝜋. If (𝑖𝑘, 𝑗𝑘) is defined for some 𝑘 ≥ 1, then (𝑖𝑘+1, 𝑗𝑘+1) is constructed as follows: If
𝑞𝑖𝑘−1,𝑗𝑘 is well-defined and equals 𝑞𝑖𝑘,𝑗𝑘 , then we set (𝑖𝑘+1, 𝑗𝑘+1) = (𝑖𝑘 − 1, 𝑗𝑘). Otherwise, we set
(𝑖𝑘+1, 𝑗𝑘+1) = (𝑖𝑘, 𝑗𝑘 + 1) if this is still a box of 𝜆. Otherwise, the sequence ends here.

• Let 𝜋′ be the 𝜆-rpp obtained from 𝜋 by subtracting 1 from the (𝑖𝑘, 𝑗𝑘)-th entry of 𝜋 for each 𝑘 ∈
{1, 2, . . . , 𝑛}.

• Let 𝑁 ′ be the image 𝐻−1(𝜋′) (which is already constructed by recursion). Then, 𝐻−1(𝜋) is obtained
from 𝑁 ′ by adding 1 to the (𝑖𝑛, 𝑠)-th entry of 𝑁 ′.

This construction appears in [HilGra1976] Section 6 (where 𝜆-arrays are re-encoded as sequences of “hook
number multiplicities”) and [EnumComb2] Section 7.22.

See also:

hillman_grassl_inverse() for the inverse of the Hillman-Grassl correspondence as a standalone func-
tion.

hillman_grassl() for the inverse map.

EXAMPLES:

sage: a = WeakReversePlanePartition([[2, 2, 4], [2, 3, 4], [3, 5]])
sage: a.hillman_grassl_inverse()
[[2, 1, 1], [0, 2, 0], [1, 1]]
sage: b = WeakReversePlanePartition([[1, 1, 2, 2], [1, 1, 2, 2], [2, 2, 3, 3],␣
→˓[2, 2, 3, 3]])
sage: B = b.hillman_grassl_inverse(); B
[[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1]]

(continues on next page)

5.1. Comprehensive Module List 1117

Combinatorics, Release 9.7

(continued from previous page)

sage: b.parent(), B.parent()
(Weak Reverse Plane Partitions, Tableaux)

Applying the inverse of the Hillman-Grassl correspondence to the transpose of a 𝜆-rpp 𝑀 yields the same
result as applying it to 𝑀 and then transposing the result ([Gans1981] Corollary 3.4):

sage: a = WeakReversePlanePartition([[1,3,5],[2,4]])
sage: aic = a.hillman_grassl_inverse().conjugate()
sage: aic == a.conjugate().hillman_grassl_inverse()
True

pak_correspondence()
Return the image of the 𝜆-rpp self under the Pak correspondence (as a Tableau).

See hillman_grassl.

The Pak correspondence is the map 𝜉𝜆 from [Sulzgr2017] Section 7, and is the map 𝜉𝜆 from [Pak2002]
Section 4. It is the inverse of the Sulzgruber correspondence (sulzgruber_correspondence()). The
following description of the Pak correspondence follows [Hopkins2017] (which denotes it byℛ𝒮𝒦−1):

Fix a partition 𝜆 (see Partition()). We draw all partitions and tableaux in English notation.

A 𝜆-array will mean a tableau of shape 𝜆 whose entries are nonnegative integers. (No conditions on the
order of these entries are made. Note that 0 is allowed.)

A weak reverse plane partition of shape 𝜆 (short: 𝜆-rpp) will mean a 𝜆-array whose entries weakly increase
along each row and weakly increase along each column.

We shall also use the following notation: If (𝑢, 𝑣) is a cell of 𝜆, and if 𝜋 is a 𝜆-rpp, then:

• the lower bound of 𝜋 at (𝑢, 𝑣) (denoted by 𝜋<(𝑢,𝑣)) is defined to be max{𝜋𝑢−1,𝑣, 𝜋𝑢,𝑣−1} (where 𝜋0,𝑣
and 𝜋𝑢,0 are understood to mean 0).

• the upper bound of 𝜋 at (𝑢, 𝑣) (denoted by 𝜋>(𝑢,𝑣)) is defined to be min{𝜋𝑢+1,𝑣, 𝜋𝑢,𝑣+1} (where 𝜋𝑖,𝑗
is understood to mean +∞ if (𝑖, 𝑗) is not in 𝜆; thus, the upper bound at a corner cell is +∞).

• toggling 𝜋 at (𝑢, 𝑣) means replacing the entry 𝜋𝑢,𝑣 of 𝜋 at (𝑢, 𝑣) by 𝜋<(𝑢,𝑣) + 𝜋>(𝑢,𝑣) − 𝜋𝑢,𝑣 (this is
well-defined as long as (𝑢, 𝑣) is not a corner of 𝜆).

Note that every 𝜆-rpp 𝜋 and every cell (𝑢, 𝑣) of 𝜆 satisfy 𝜋<(𝑢,𝑣) ≤ 𝜋𝑢,𝑣 ≤ 𝜋>(𝑢,𝑣). Note that toggling a
𝜆-rpp (at a cell that is not a corner) always results in a 𝜆-rpp. Also, toggling is an involution).

Note also that the lower bound of 𝜋 at (𝑢, 𝑣) is defined (and finite) even when (𝑢, 𝑣) is not a cell of 𝜆, as
long as both (𝑢− 1, 𝑣) and (𝑢, 𝑣 − 1) are cells of 𝜆.

The Pak correspondence Φ𝜆 sends a 𝜆-array 𝑀 = (𝑚𝑖,𝑗) to a 𝜆-rpp Φ𝜆(𝑀). It is defined by recursion
on 𝜆 (that is, we assume that Φ𝜇 is already defined for every partition 𝜇 smaller than 𝜆), and its definition
proceeds as follows:

• If 𝜆 = ∅, then Φ𝜆 is the obvious bijection sending the only ∅-array to the only ∅-rpp.

• Pick any corner 𝑐 = (𝑖, 𝑗) of 𝜆, and let 𝜇 be the result of removing this corner 𝑐 from the partition 𝜆.
(The exact choice of 𝑐 is immaterial.)

• Let 𝑀 ′ be what remains of 𝑀 when the corner cell 𝑐 is removed.

• Let 𝜋′ = Φ𝜇(𝑀 ′).

• For each positive integer 𝑘 such that (𝑖− 𝑘, 𝑗 − 𝑘) is a cell of 𝜆, toggle 𝜋′ at (𝑖− 𝑘, 𝑗 − 𝑘). (All these
togglings commute, so the order in which they are made is immaterial.)

1118 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Extend the 𝜇-rpp 𝜋′ to a 𝜆-rpp 𝜋 by adding the cell 𝑐 and writing the number 𝑚𝑖,𝑗 − 𝜋′<(𝑖,𝑗) into this
cell.

• Set Φ𝜆(𝑀) = 𝜋.

See also:

pak_correspondence() for the Pak correspondence as a standalone function.

sulzgruber_correspondence() for the inverse map.

EXAMPLES:

sage: a = WeakReversePlanePartition([[1, 2, 3], [1, 2, 3], [2, 4, 4]])
sage: A = a.pak_correspondence(); A
[[1, 0, 2], [0, 2, 0], [1, 1, 0]]
sage: a.parent(), A.parent()
(Weak Reverse Plane Partitions, Tableaux)

Applying the Pak correspondence to the transpose of a 𝜆-rpp 𝑀 yields the same result as applying it to 𝑀
and then transposing the result:

sage: a = WeakReversePlanePartition([[1,3,5],[2,4]])
sage: acc = a.pak_correspondence().conjugate()
sage: acc == a.conjugate().pak_correspondence()
True

class sage.combinat.hillman_grassl.WeakReversePlanePartitions
Bases: sage.combinat.tableau.Tableaux

The set of all weak reverse plane partitions.

Element
alias of WeakReversePlanePartition

an_element()
Returns a particular element of the class.

sage.combinat.hillman_grassl.hillman_grassl(M)
Return the image of the 𝜆-array M under the Hillman-Grassl correspondence.

The Hillman-Grassl correspondence is a bijection between the tableaux with nonnegative entries (otherwise
arbitrary) and the weak reverse plane partitions with nonnegative entries. This bijection preserves the shape of
the tableau. See hillman_grassl.

See hillman_grassl() for a description of this map.

See also:

hillman_grassl_inverse()

EXAMPLES:

sage: from sage.combinat.hillman_grassl import hillman_grassl
sage: hillman_grassl([[2, 1, 1], [0, 2, 0], [1, 1]])
[[2, 2, 4], [2, 3, 4], [3, 5]]
sage: hillman_grassl([[1, 2, 0], [1, 0, 1], [1]])
[[0, 1, 3], [2, 4, 4], [3]]
sage: hillman_grassl([])
[]
sage: hillman_grassl([[3, 1, 2]])

(continues on next page)

5.1. Comprehensive Module List 1119

Combinatorics, Release 9.7

(continued from previous page)

[[3, 4, 6]]
sage: hillman_grassl([[2, 2, 0], [1, 1, 1], [1]])
[[1, 2, 4], [3, 5, 5], [4]]
sage: hillman_grassl([[1, 1, 1, 1]]*3)
[[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]]

sage.combinat.hillman_grassl.hillman_grassl_inverse(M)
Return the image of the 𝜆-rpp M under the inverse of the Hillman-Grassl correspondence.

See hillman_grassl.

See hillman_grassl_inverse() for a description of this map.

See also:

hillman_grassl()

EXAMPLES:

sage: from sage.combinat.hillman_grassl import hillman_grassl_inverse
sage: hillman_grassl_inverse([[2, 2, 4], [2, 3, 4], [3, 5]])
[[2, 1, 1], [0, 2, 0], [1, 1]]
sage: hillman_grassl_inverse([[0, 1, 3], [2, 4, 4], [3]])
[[1, 2, 0], [1, 0, 1], [1]]

Applying the inverse of the Hillman-Grassl correspondence to the transpose of a 𝜆-rpp𝑀 yields the same result
as applying it to 𝑀 and then transposing the result ([Gans1981] Corollary 3.4):

sage: hillman_grassl_inverse([[1,3,5],[2,4]])
[[1, 2, 2], [1, 1]]
sage: hillman_grassl_inverse([[1,2],[3,4],[5]])
[[1, 1], [2, 1], [2]]
sage: hillman_grassl_inverse([[1, 2, 3], [1, 2, 3], [2, 4, 4]])
[[1, 2, 0], [0, 1, 1], [1, 0, 1]]
sage: hillman_grassl_inverse([[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]])
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]

sage.combinat.hillman_grassl.pak_correspondence(M, copy=True)
Return the image of a 𝜆-rpp M under the Pak correspondence.

The Pak correspondence is the map 𝜉𝜆 from [Sulzgr2017] Section 7, and is the map 𝜉𝜆 from [Pak2002] Section
4. It is the inverse of the Sulzgruber correspondence (sulzgruber_correspondence()).

See pak_correspondence() for a description of this map.

INPUT:

• copy (default: True) – boolean; if set to False, the algorithm will mutate the input (but be more efficient)

EXAMPLES:

sage: from sage.combinat.hillman_grassl import pak_correspondence
sage: pak_correspondence([[1, 2, 3], [1, 2, 3], [2, 4, 4]])
[[1, 0, 2], [0, 2, 0], [1, 1, 0]]
sage: pak_correspondence([[1, 1, 4], [2, 3, 4], [4, 4, 4]])
[[1, 1, 2], [0, 1, 0], [3, 0, 0]]
sage: pak_correspondence([[0, 2, 3], [1, 3, 3], [2, 4]])

(continues on next page)

1120 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[1, 0, 2], [0, 2, 0], [1, 1]]
sage: pak_correspondence([[1, 2, 4], [1, 3], [3]])
[[0, 2, 2], [1, 1], [2]]
sage: pak_correspondence([[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]])
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]

The Pak correspondence can actually be extended (by the same definition) to “rpps” of nonnegative reals rather
than nonnegative integers. This implementation supports this:

sage: pak_correspondence([[0, 1, 3/2], [1/2, 3/2, 3/2], [1, 2]])
[[1/2, 0, 1], [0, 1, 0], [1/2, 1/2]]

sage.combinat.hillman_grassl.sulzgruber_correspondence(M)
Return the image of a 𝜆-array M under the Sulzgruber correspondence.

The Sulzgruber correspondence is the map Φ𝜆 from [Sulzgr2017] Section 7, and is the map 𝜉−1𝜆 from
[Pak2002] Section 5. It is denoted by ℛ𝒮𝒦 in [Hopkins2017]. It is the inverse of the Pak correspondence
(pak_correspondence()).

See sulzgruber_correspondence() for a description of this map.

EXAMPLES:

sage: from sage.combinat.hillman_grassl import sulzgruber_correspondence
sage: sulzgruber_correspondence([[1, 0, 2], [0, 2, 0], [1, 1, 0]])
[[1, 2, 3], [1, 2, 3], [2, 4, 4]]
sage: sulzgruber_correspondence([[1, 1, 2], [0, 1, 0], [3, 0, 0]])
[[1, 1, 4], [2, 3, 4], [4, 4, 4]]
sage: sulzgruber_correspondence([[1, 0, 2], [0, 2, 0], [1, 1]])
[[0, 2, 3], [1, 3, 3], [2, 4]]
sage: sulzgruber_correspondence([[0, 2, 2], [1, 1], [2]])
[[1, 2, 4], [1, 3], [3]]
sage: sulzgruber_correspondence([[1, 1, 1, 1]]*3)
[[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]]

The Sulzgruber correspondence can actually be extended (by the same definition) to arrays of nonnegative reals
rather than nonnegative integers. This implementation supports this:

sage: sulzgruber_correspondence([[1/2, 0, 1], [0, 1, 0], [1/2, 1/2]])
[[0, 1, 3/2], [1/2, 3/2, 3/2], [1, 2]]

sage.combinat.hillman_grassl.transpose(M)
Return the transpose of a 𝜆-array.

The transpose of a 𝜆-array (𝑚𝑖,𝑗) is the 𝜆𝑡-array (𝑚𝑗,𝑖) (where 𝜆𝑡 is the conjugate of the partition 𝜆).

EXAMPLES:

sage: from sage.combinat.hillman_grassl import transpose
sage: transpose([[1, 2, 3], [4, 5]])
[[1, 4], [2, 5], [3]]
sage: transpose([[5, 0, 3], [4, 1, 0], [7]])
[[5, 4, 7], [0, 1], [3, 0]]

5.1. Comprehensive Module List 1121

Combinatorics, Release 9.7

5.1.119 Enumerated set of lists of integers with constraints: base classes

• IntegerListsBackend : base class for the Cython back-end of an enumerated set of lists of integers with
specified constraints.

• Envelope: a utility class for upper (lower) envelope of a function under constraints.

class sage.combinat.integer_lists.base.Envelope
Bases: object

The (currently approximated) upper (lower) envelope of a function under the specified constraints.

INPUT:

• f – a function, list, or tuple; if f is a list, it is considered as the function f(i)=f[i], completed for larger
𝑖 with f(i)=max_part.

• min_part, max_part, min_slope, max_slope, . . . as for IntegerListsLex (please consult for details).

• sign – (+1 or -1) multiply the input values with sign and multiply the output with sign. Setting this to
−1 can be used to implement a lower envelope.

The upper envelope 𝑈(𝑓) of 𝑓 is the (pointwise) largest function which is bounded above by 𝑓 and satisfies the
max_part and max_slope conditions. Furthermore, for i,i+1<min_length, the upper envelope also satisfies
the min_slope condition.

Upon computing 𝑈(𝑓)(𝑖), all the previous values for 𝑗 ≤ 𝑖 are computed and cached; in particular 𝑓(𝑖) will be
computed at most once for each 𝑖.

Todo:

• This class is a good candidate for Cythonization, especially to get the critical path in __call__ super fast.

• To get full envelopes, we would want both the min_slope and max_slope conditions to always be satisfied.
This is only properly defined for the restriction of 𝑓 to a finite interval 0, .., 𝑘, and depends on 𝑘.

• This is the core “data structure” of IntegerListsLex. Improving the lookahead there essentially depends
on having functions with a good complexity to compute the area below an envelope; and in particular how
it evolves when increasing the length.

EXAMPLES:

sage: from sage.combinat.integer_lists import Envelope

Trivial upper and lower envelopes:

sage: f = Envelope([3,2,2])
sage: [f(i) for i in range(10)]
[3, 2, 2, inf, inf, inf, inf, inf, inf, inf]
sage: f = Envelope([3,2,2], sign=-1)
sage: [f(i) for i in range(10)]
[3, 2, 2, 0, 0, 0, 0, 0, 0, 0]

A more interesting lower envelope:

sage: f = Envelope([4,1,5,3,5], sign=-1, min_part=2, min_slope=-1)
sage: [f(i) for i in range(10)]
[4, 3, 5, 4, 5, 4, 3, 2, 2, 2]

1122 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Currently, adding max_slope has no effect:

sage: f = Envelope([4,1,5,3,5], sign=-1, min_part=2, min_slope=-1, max_slope=0)
sage: [f(i) for i in range(10)]
[4, 3, 5, 4, 5, 4, 3, 2, 2, 2]

unless min_length is large enough:

sage: f = Envelope([4,1,5,3,5], sign=-1, min_part=2, min_slope=-1, max_slope=0, min_
→˓length=2)
sage: [f(i) for i in range(10)]
[4, 3, 5, 4, 5, 4, 3, 2, 2, 2]

sage: f = Envelope([4,1,5,3,5], sign=-1, min_part=2, min_slope=-1, max_slope=0, min_
→˓length=4)
sage: [f(i) for i in range(10)]
[5, 5, 5, 4, 5, 4, 3, 2, 2, 2]

sage: f = Envelope([4,1,5,3,5], sign=-1, min_part=2, min_slope=-1, max_slope=0, min_
→˓length=5)
sage: [f(i) for i in range(10)]
[5, 5, 5, 5, 5, 4, 3, 2, 2, 2]

A non trivial upper envelope:

sage: f = Envelope([9,1,5,4], max_part=7, max_slope=2)
sage: [f(i) for i in range(10)]
[7, 1, 3, 4, 6, 7, 7, 7, 7, 7]

adapt(m, j)
Return this envelope adapted to an additional local constraint.

INPUT:

• m – a nonnegative integer (starting value)

• j – a nonnegative integer (position)

This method adapts this envelope to the additional local constraint imposed by having a part 𝑚 at position
𝑗. Namely, this returns a function which computes, for any 𝑖 > 𝑗, the minimum of the ceiling function and
the value restriction given by the slope conditions.

EXAMPLES:

sage: from sage.combinat.integer_lists import Envelope
sage: f = Envelope(3)
sage: g = f.adapt(1,1)
sage: g is f
True
sage: [g(i) for i in range(10)]
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

sage: f = Envelope(3, max_slope=1)
sage: g = f.adapt(1,1)
sage: [g(i) for i in range(10)]
[0, 1, 2, 3, 3, 3, 3, 3, 3, 3]

5.1. Comprehensive Module List 1123

Combinatorics, Release 9.7

Note that, in both cases above, the adapted envelope is only guaranteed to be valid for 𝑖 > 𝑗! This is to
leave potential room in the future for sharing similar adapted envelopes:

sage: g = f.adapt(0,0)
sage: [g(i) for i in range(10)]
[0, 1, 2, 3, 3, 3, 3, 3, 3, 3]

sage: g = f.adapt(2,2)
sage: [g(i) for i in range(10)]
[0, 1, 2, 3, 3, 3, 3, 3, 3, 3]

sage: g = f.adapt(3,3)
sage: [g(i) for i in range(10)]
[0, 1, 2, 3, 3, 3, 3, 3, 3, 3]

Now with a lower envelope:

sage: f = Envelope(1, sign=-1, min_slope=-1)
sage: g = f.adapt(2,2)
sage: [g(i) for i in range(10)]
[4, 3, 2, 1, 1, 1, 1, 1, 1, 1]
sage: g = f.adapt(1,3)
sage: [g(i) for i in range(10)]
[4, 3, 2, 1, 1, 1, 1, 1, 1, 1]

limit()
Return a bound on the limit of self.

OUTPUT: a nonnegative integer or∞

This returns some upper bound for the accumulation points of this upper envelope. For a lower envelope,
a lower bound is returned instead.

In particular this gives a bound for the value of self at 𝑖 for 𝑖 large enough. Special case: for a lower
envelop, and when the limit is∞, the envelope is guaranteed to tend to∞ instead.

When s=self.limit_start() is finite, this bound is guaranteed to be valid for 𝑖 >= 𝑠.

Sometimes it’s better to have a loose bound that starts early; sometimes the converse holds. At this point
which specific bound and starting point is returned is not set in stone, in order to leave room for later
optimizations.

EXAMPLES:

sage: from sage.combinat.integer_lists import Envelope
sage: Envelope([4,1,5]).limit()
inf
sage: Envelope([4,1,5], max_part=2).limit()
2
sage: Envelope([4,1,5], max_slope=0).limit()
1
sage: Envelope(lambda x: 3, max_part=2).limit()
2

Lower envelopes:

1124 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Envelope(lambda x: 3, min_part=2, sign=-1).limit()
2
sage: Envelope([4,1,5], min_slope=0, sign=-1).limit()
5
sage: Envelope([4,1,5], sign=-1).limit()
0

See also:

limit_start()

limit_start()
Return from which 𝑖 on the bound returned by limit holds.

See also:

limit() for the precise specifications.

EXAMPLES:

sage: from sage.combinat.integer_lists import Envelope
sage: Envelope([4,1,5]).limit_start()
3
sage: Envelope([4,1,5], sign=-1).limit_start()
3

sage: Envelope([4,1,5], max_part=2).limit_start()
3

sage: Envelope(4).limit_start()
0
sage: Envelope(4, sign=-1).limit_start()
0

sage: Envelope(lambda x: 3).limit_start() == Infinity
True
sage: Envelope(lambda x: 3, max_part=2).limit_start() == Infinity
True

sage: Envelope(lambda x: 3, sign=-1, min_part=2).limit_start() == Infinity
True

max_part

max_slope

min_slope

sign

class sage.combinat.integer_lists.base.IntegerListsBackend
Bases: object

Base class for the Cython back-end of an enumerated set of lists of integers with specified constraints.

This base implements the basic operations, including checking for containment using _contains(), but not
iteration. For iteration, subclass this class and implement an _iter() method.

EXAMPLES:

5.1. Comprehensive Module List 1125

Combinatorics, Release 9.7

sage: from sage.combinat.integer_lists.base import IntegerListsBackend
sage: L = IntegerListsBackend(6, max_slope=-1)
sage: L._contains([3,2,1])
True

ceiling

floor

max_length

max_part

max_slope

max_sum

min_length

min_part

min_slope

min_sum

5.1.120 Enumerated set of lists of integers with constraints: front-end

• IntegerLists: class which models an enumerated set of lists of integers with certain constraints. This is a
Python front-end where all user-accessible functionality should be implemented.

class sage.combinat.integer_lists.lists.IntegerList
Bases: sage.structure.list_clone.ClonableArray

Element class for IntegerLists.

check()
Check to make sure this is a valid element in its IntegerLists parent.

EXAMPLES:

sage: C = IntegerListsLex(4)
sage: C([4]).check()
True
sage: C([5]).check()
False

class sage.combinat.integer_lists.lists.IntegerLists(*args, **kwds)
Bases: sage.structure.parent.Parent

Enumerated set of lists of integers with constraints.

Currently, this is simply an abstract base class which should not be used by itself. See IntegerListsLex for a
class which can be used by end users.

IntegerLists is just a Python front-end, acting as a Parent, supporting element classes and so on. The
attribute .backendwhich is an instance of sage.combinat.integer_lists.base.IntegerListsBackend
is the Cython back-end which implements all operations such as iteration.

The front-end (i.e. this class) and the back-end are supposed to be orthogonal: there is no imposed correspon-
dence between front-ends and back-ends.

1126 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

For example, the set of partitions of 5 and the set of weakly decreasing sequences which sum to 5 might be
implemented by the same back-end, but they will be presented to the user by a different front-end.

EXAMPLES:

sage: from sage.combinat.integer_lists import IntegerLists
sage: L = IntegerLists(5)
sage: L
Integer lists of sum 5 satisfying certain constraints

sage: IntegerListsLex(2, length=3, name="A given name")
A given name

Element
alias of IntegerList

backend_class
alias of sage.combinat.integer_lists.base.IntegerListsBackend

5.1.121 Enumerated set of lists of integers with constraints, in inverse lexico-
graphic order

• IntegerListsLex: the enumerated set of lists of nonnegative integers with specified constraints, in inverse
lexicographic order.

• IntegerListsBackend_invlex: Cython back-end for IntegerListsLex.

HISTORY:

This generic tool was originally written by Hivert and Thiery in MuPAD-Combinat in 2000 and ported over to Sage
by Mike Hansen in 2007. It was then completely rewritten in 2015 by Gillespie, Schilling, and Thiery, with the help of
many, to deal with limitations and lack of robustness w.r.t. input.

class sage.combinat.integer_lists.invlex.IntegerListsBackend_invlex
Bases: sage.combinat.integer_lists.base.IntegerListsBackend

Cython back-end of an set of lists of integers with specified constraints enumerated in inverse lexicographic order.

check

class sage.combinat.integer_lists.invlex.IntegerListsLex(*args, **kwds)
Bases: sage.combinat.integer_lists.lists.IntegerLists

Lists of nonnegative integers with constraints, in inverse lexicographic order.

An integer list is a list 𝑙 of nonnegative integers, its parts. The slope (at position 𝑖) is the difference l[i+1]-l[i]
between two consecutive parts.

This class allows to construct the set 𝑆 of all integer lists 𝑙 satisfying specified bounds on the sum, the length,
the slope, and the individual parts, enumerated in inverse lexicographic order, that is from largest to smallest in
lexicographic order. Note that, to admit such an enumeration, 𝑆 is almost necessarily finite (see On finiteness
and inverse lexicographic enumeration).

The main purpose is to provide a generic iteration engine for all the enumerated sets like Partitions,
Compositions, IntegerVectors. It can also be used to generate many other combinatorial objects like Dyck
paths, Motzkin paths, etc. Mathematically speaking, this is a special case of set of integral points of a polytope
(or union thereof, when the length is not fixed).

INPUT:

5.1. Comprehensive Module List 1127

Combinatorics, Release 9.7

• min_sum – a nonnegative integer (default: 0): a lower bound on sum(l).

• max_sum – a nonnegative integer or∞ (default: ∞): an upper bound on sum(l).

• n – a nonnegative integer (optional): if specified, this overrides min_sum and max_sum.

• min_length – a nonnegative integer (default: 0): a lower bound on len(l).

• max_length – a nonnegative integer or∞ (default: ∞): an upper bound on len(l).

• length – an integer (optional); overrides min_length and max_length if specified;

• min_part – a nonnegative integer: a lower bounds on all parts: min_part <= l[i] for 0 <= i <
len(l).

• floor – a list of nonnegative integers or a function: lower bounds on the individual parts 𝑙[𝑖].

If floor is a list of integers, then floor<=l[i] for 0 <= i < min(len(l), len(floor). Similarly,
if floor is a function, then floor(i) <= l[i] for 0 <= i < len(l).

• max_part – a nonnegative integer or∞: an upper bound on all parts: l[i] <= max_part for 0 <= i <
len(l).

• ceiling – upper bounds on the individual parts l[i]; this takes the same type of input as floor, except
that∞ is allowed in addition to integers, and the default value is∞.

• min_slope – an integer or −∞ (default: −∞): an lower bound on the slope between consecutive parts:
min_slope <= l[i+1]-l[i] for 0 <= i < len(l)-1

• max_slope – an integer or +∞ (defaults: +∞) an upper bound on the slope between consecutive parts:
l[i+1]-l[i] <= max_slope for 0 <= i < len(l)-1

• category – a category (default: FiniteEnumeratedSets)

• check – boolean (default: True): whether to display the warnings raised when functions are given as input
to floor or ceiling and the errors raised when there is no proper enumeration.

• name – a string or None (default: None) if set, this will be passed down to Parent.rename() to specify
the name of self. It is recommended to use rename method directly because this feature may become
deprecated.

• element_constructor – a function (or callable) that creates elements of self from a list. See also
Parent.

• element_class – a class for the elements of self (default: 𝐶𝑙𝑜𝑛𝑎𝑏𝑙𝑒𝐴𝑟𝑟𝑎𝑦). This merely sets the
attribute self.Element. See the examples for details.

Note: When several lists satisfying the constraints differ only by trailing zeroes, only the shortest one is enu-
merated (and therefore counted). The others are still considered valid. See the examples below.

This feature is questionable. It is recommended not to rely on it, as it may eventually be discontinued.

EXAMPLES:

We create the enumerated set of all lists of nonnegative integers of length 3 and sum 2:

sage: C = IntegerListsLex(2, length=3)
sage: C
Integer lists of sum 2 satisfying certain constraints
sage: C.cardinality()
6
sage: [p for p in C]

(continues on next page)

1128 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/finite_enumerated_sets.html#sage.categories.finite_enumerated_sets.FiniteEnumeratedSets
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

[[2, 0, 0], [1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1], [0, 0, 2]]

sage: [2, 0, 0] in C
True
sage: [2, 0, 1] in C
False
sage: "a" in C
False
sage: ["a"] in C
False
sage: C.first()
[2, 0, 0]

One can specify lower and upper bounds on each part:

sage: list(IntegerListsLex(5, length=3, floor=[1,2,0], ceiling=[3,2,3]))
[[3, 2, 0], [2, 2, 1], [1, 2, 2]]

When the length is fixed as above, one can also use IntegerVectors:

sage: IntegerVectors(2,3).list()
[[2, 0, 0], [1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1], [0, 0, 2]]

Using the slope condition, one can generate integer partitions (but see Partitions):

sage: list(IntegerListsLex(4, max_slope=0))
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

The following is the list of all partitions of 7 with parts at least 2:

sage: list(IntegerListsLex(7, max_slope=0, min_part=2))
[[7], [5, 2], [4, 3], [3, 2, 2]]

floor and ceiling conditions

Next we list all partitions of 5 of length at most 3 which are bounded below by [2,1,1]:

sage: list(IntegerListsLex(5, max_slope=0, max_length=3, floor=[2,1,1]))
[[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1]]

Note that [5] is considered valid, because the floor constraints only apply to existing positions in the list. To
obtain instead the partitions containing [2,1,1], one needs to use min_length or length:

sage: list(IntegerListsLex(5, max_slope=0, length=3, floor=[2,1,1]))
[[3, 1, 1], [2, 2, 1]]

Here is the list of all partitions of 5 which are contained in [3,2,2]:

sage: list(IntegerListsLex(5, max_slope=0, max_length=3, ceiling=[3,2,2]))
[[3, 2], [3, 1, 1], [2, 2, 1]]

This is the list of all compositions of 4 (but see Compositions):

5.1. Comprehensive Module List 1129

Combinatorics, Release 9.7

sage: list(IntegerListsLex(4, min_part=1))
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]

This is the list of all integer vectors of sum 4 and length 3:

sage: list(IntegerListsLex(4, length=3))
[[4, 0, 0], [3, 1, 0], [3, 0, 1], [2, 2, 0], [2, 1, 1],
[2, 0, 2], [1, 3, 0], [1, 2, 1], [1, 1, 2], [1, 0, 3],
[0, 4, 0], [0, 3, 1], [0, 2, 2], [0, 1, 3], [0, 0, 4]]

For whatever it is worth, the floor and min_part constraints can be combined:

sage: L = IntegerListsLex(5, floor=[2,0,2], min_part=1)
sage: L.list()
[[5], [4, 1], [3, 2], [2, 3], [2, 1, 2]]

This is achieved by updating the floor upon constructing L:

sage: [L.floor(i) for i in range(5)]
[2, 1, 2, 1, 1]

Similarly, the ceiling and max_part constraints can be combined:

sage: L = IntegerListsLex(4, ceiling=[2,3,1], max_part=2, length=3)
sage: L.list()
[[2, 2, 0], [2, 1, 1], [1, 2, 1]]
sage: [L.ceiling(i) for i in range(5)]
[2, 2, 1, 2, 2]

This can be used to generate Motzkin words (see Wikipedia article Motzkin_number):

sage: def motzkin_words(n):
....: return IntegerListsLex(length=n+1, min_slope=-1, max_slope=1,
....: ceiling=[0]+[+oo for i in range(n-1)]+[0])
sage: motzkin_words(4).list()
[[0, 1, 2, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 0, 0],
[0, 1, 0, 1, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 0]]
sage: [motzkin_words(n).cardinality() for n in range(8)]
[1, 1, 2, 4, 9, 21, 51, 127]
sage: oeis(_) # optional -- internet
0: A001006: Motzkin numbers: number of ways of drawing any number
of nonintersecting chords joining n (labeled) points on a circle.
1: ...
2: ...

or Dyck words (see also DyckWords), through the bijection with paths from (0, 0) to (𝑛, 𝑛) with left and up steps
that remain below the diagonal:

1130 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Motzkin_number

Combinatorics, Release 9.7

sage: def dyck_words(n):
....: return IntegerListsLex(length=n, ceiling=list(range(n+1)), min_slope=0)
sage: [dyck_words(n).cardinality() for n in range(8)]
[1, 1, 2, 5, 14, 42, 132, 429]
sage: dyck_words(3).list()
[[0, 1, 2], [0, 1, 1], [0, 0, 2], [0, 0, 1], [0, 0, 0]]

On finiteness and inverse lexicographic enumeration

The set of all lists of integers cannot be enumerated in inverse lexicographic order, since there is no largest list
(take [𝑛] for 𝑛 as large as desired):

sage: IntegerListsLex().first()
Traceback (most recent call last):
...
ValueError: could not prove that the specified constraints yield a finite set

Here is a variant which could be enumerated in lexicographic order but not in inverse lexicographic order:

sage: L = IntegerListsLex(length=2, ceiling=[Infinity, 0], floor=[0,1])
sage: for l in L: print(l)
Traceback (most recent call last):
...
ValueError: infinite upper bound for values of m

Even when the sum is specified, it is not necessarily possible to enumerate all elements in inverse lexicographic
order. In the following example, the list [1, 1, 1] will never appear in the enumeration:

sage: IntegerListsLex(3).first()
Traceback (most recent call last):
...
ValueError: could not prove that the specified constraints yield a finite set

If one wants to proceed anyway, one can sign a waiver by setting check=False (again, be warned that some
valid lists may never appear):

sage: L = IntegerListsLex(3, check=False)
sage: it = iter(L)
sage: [next(it) for i in range(6)]
[[3], [2, 1], [2, 0, 1], [2, 0, 0, 1], [2, 0, 0, 0, 1], [2, 0, 0, 0, 0, 1]]

In fact, being inverse lexicographically enumerable is almost equivalent to being finite. The only infinity that can
occur would be from a tail of numbers 0, 1 as in the previous example, where the 1 moves further and further to
the right. If there is any list that is inverse lexicographically smaller than such a configuration, the iterator would
not reach it and hence would not be considered iterable. Given that the infinite cases are very specific, at this
point only the finite cases are supported (without signing the waiver).

The finiteness detection is not complete yet, so some finite cases may not be supported either, at least not without
disabling the checks. Practical examples of such are welcome.

5.1. Comprehensive Module List 1131

Combinatorics, Release 9.7

On trailing zeroes, and their caveats

As mentioned above, when several lists satisfying the constraints differ only by trailing zeroes, only the shortest
one is listed:

sage: L = IntegerListsLex(max_length=4, max_part=1)
sage: L.list()
[[1, 1, 1, 1],
[1, 1, 1],
[1, 1, 0, 1],
[1, 1],
[1, 0, 1, 1],
[1, 0, 1],
[1, 0, 0, 1],
[1],
[0, 1, 1, 1],
[0, 1, 1],
[0, 1, 0, 1],
[0, 1],
[0, 0, 1, 1],
[0, 0, 1],
[0, 0, 0, 1],
[]]

and counted:

sage: L.cardinality()
16

Still, the others are considered as elements of 𝐿:

sage: L = IntegerListsLex(4,min_length=3,max_length=4)
sage: L.list()
[..., [2, 2, 0], ...]

sage: [2, 2, 0] in L # in L.list()
True
sage: [2, 2, 0, 0] in L # not in L.list() !
True
sage: [2, 2, 0, 0, 0] in L
False

Specifying functions as input for the floor or ceiling

We construct all lists of sum 4 and length 4 such that l[i] <= i:

sage: list(IntegerListsLex(4, length=4, ceiling=lambda i: i, check=False))
[[0, 1, 2, 1], [0, 1, 1, 2], [0, 1, 0, 3], [0, 0, 2, 2], [0, 0, 1, 3]]

Warning: When passing a function as floor or ceiling, it may become undecidable to detect improper
inverse lexicographic enumeration. For example, the following example has a finite enumeration:

1132 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = IntegerListsLex(3, floor=lambda i: 1 if i>=2 else 0, check=False)
sage: L.list()
[[3],
[2, 1],
[2, 0, 1],
[1, 2],
[1, 1, 1],
[1, 0, 2],
[1, 0, 1, 1],
[0, 3],
[0, 2, 1],
[0, 1, 2],
[0, 1, 1, 1],
[0, 0, 3],
[0, 0, 2, 1],
[0, 0, 1, 2],
[0, 0, 1, 1, 1]]

but one cannot decide whether the following has an improper inverse lexicographic enumeration without
computing the floor all the way to Infinity:
sage: L = IntegerListsLex(3, floor=lambda i: 0, check=False)
sage: it = iter(L)
sage: [next(it) for i in range(6)]
[[3], [2, 1], [2, 0, 1], [2, 0, 0, 1], [2, 0, 0, 0, 1], [2, 0, 0, 0, 0, 1]]

Hence a warning is raised when a function is specified as input, unless the waiver is signed by setting
check=False:
sage: L = IntegerListsLex(3, floor=lambda i: 1 if i>=2 else 0)
doctest:...
A function has been given as input of the floor=[...] or ceiling=[...]
arguments of IntegerListsLex. Please see the documentation for the caveats.
If you know what you are doing, you can set check=False to skip this warning.

Similarly, the algorithm may need to search forever for a solution when the ceiling is ultimately zero:
sage: L = IntegerListsLex(2,ceiling=lambda i:0, check=False)
sage: L.first() # not tested: will hang forever
sage: L = IntegerListsLex(2,ceiling=lambda i:0 if i<20 else 1, check=False)
sage: it = iter(L)
sage: next(it)
[0, 1, 1]
sage: next(it)
[0, 1, 0, 1]
sage: next(it)
[0, 1, 0, 0, 1]

5.1. Comprehensive Module List 1133

Combinatorics, Release 9.7

Tip: using disjoint union enumerated sets for additional flexibility

Sometimes, specifying a range for the sum or the length may be too restrictive. One would want instead to specify
a list, or iterable 𝐿, of acceptable values. This is easy to achieve using a disjoint union of enumerated
sets. Here we want to accept the values 𝑛 = 0, 2, 3:

sage: C = DisjointUnionEnumeratedSets(Family([0,2,3],
....: lambda n: IntegerListsLex(n, length=2)))
sage: C
Disjoint union of Finite family
{0: Integer lists of sum 0 satisfying certain constraints,
2: Integer lists of sum 2 satisfying certain constraints,
3: Integer lists of sum 3 satisfying certain constraints}
sage: C.list()
[[0, 0],
[2, 0], [1, 1], [0, 2],
[3, 0], [2, 1], [1, 2], [0, 3]]

The price to pay is that the enumeration order is now graded lexicographic instead of lexicographic: first choose
the value according to the order specified by𝐿, and use lexicographic order within each value. Here is we reverse
𝐿:

sage: DisjointUnionEnumeratedSets(Family([3,2,0],
....: lambda n: IntegerListsLex(n, length=2))).list()
[[3, 0], [2, 1], [1, 2], [0, 3],
[2, 0], [1, 1], [0, 2],
[0, 0]]

Note that if a given value appears several times, the corresponding elements will be enumerated several times,
which may, or not, be what one wants:

sage: DisjointUnionEnumeratedSets(Family([2,2],
....: lambda n: IntegerListsLex(n, length=2))).list()
[[2, 0], [1, 1], [0, 2], [2, 0], [1, 1], [0, 2]]

Here is a variant where we specify acceptable values for the length:

sage: DisjointUnionEnumeratedSets(Family([0,1,3],
....: lambda l: IntegerListsLex(2, length=l))).list()
[[2],
[2, 0, 0], [1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1], [0, 0, 2]]

This technique can also be useful to obtain a proper enumeration on infinite sets by using a graded lexicographic
enumeration:

sage: C = DisjointUnionEnumeratedSets(Family(NN,
....: lambda n: IntegerListsLex(n, length=2)))
sage: C
Disjoint union of Lazy family (<lambda>(i))_{i in Non negative integer semiring}
sage: it = iter(C)
sage: [next(it) for i in range(10)]
[[0, 0],
[1, 0], [0, 1],
[2, 0], [1, 1], [0, 2],
[3, 0], [2, 1], [1, 2], [0, 3]]

1134 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

Specifying how to construct elements

This is the list of all monomials of degree 4 which divide the monomial 𝑥3𝑦1𝑧2 (a monomial being identified
with its exponent vector):

sage: R.<x,y,z> = QQ[]
sage: m = [3,1,2]
sage: def term(exponents):
....: return x^exponents[0] * y^exponents[1] * z^exponents[2]
sage: list(IntegerListsLex(4, length=len(m), ceiling=m, element_constructor=term))
[x^3*y, x^3*z, x^2*y*z, x^2*z^2, x*y*z^2]

Note the use of the element_constructor option to specify how to construct elements from a plain list.

A variant is to specify a class for the elements. With the default element constructor, this class should take as
input the parent self and a list.

Warning: The protocol for specifying the element class and constructor is subject to changes.

ALGORITHM:

The iteration algorithm uses a depth first search through the prefix tree of the list of integers (see also Lexico-
graphic generation of lists of integers). While doing so, it does some lookahead heuristics to attempt to cut dead
branches.

In most practical use cases, most dead branches are cut. Then, roughly speaking, the time needed to iterate
through all the elements of 𝑆 is proportional to the number of elements, where the proportion factor is controlled
by the length 𝑙 of the longest element of 𝑆. In addition, the memory usage is also controlled by 𝑙, which is to say
negligible in practice.

Still, there remains much room for efficiency improvements; see trac ticket #18055, trac ticket #18056.

Note: The generation algorithm could in principle be extended to deal with non-constant slope constraints and
with negative parts.

TESTS from comments on trac ticket #17979

Comment 191:

sage: list(IntegerListsLex(1, min_length=2, min_slope=0, max_slope=0))
[]

Comment 240:

sage: L = IntegerListsLex(min_length=2, max_part=0)
sage: L.list()
[[0, 0]]

5.1. Comprehensive Module List 1135

https://trac.sagemath.org/18055
https://trac.sagemath.org/18056

Combinatorics, Release 9.7

Tests on the element constructor feature and mutability

Internally, the iterator works on a single list that is mutated along the way. Therefore, you need to make sure that
the element_constructor actually copies its input. This example shows what can go wrong:

sage: P = IntegerListsLex(n=3, max_slope=0, min_part=1, element_constructor=lambda␣
→˓x: x)
sage: list(P)
[[], [], []]

However, specifying list() as constructor solves this problem:

sage: P = IntegerListsLex(n=3, max_slope=0, min_part=1, element_constructor=list)
sage: list(P)
[[3], [2, 1], [1, 1, 1]]

Same, step by step:

sage: it = iter(P)
sage: a = next(it); a
[3]
sage: b = next(it); b
[2, 1]
sage: a
[3]
sage: a is b
False

Tests from MuPAD-Combinat:

sage: IntegerListsLex(7, min_length=2, max_length=6, floor=[0,0,2,0,0,1],␣
→˓ceiling=[3,2,3,2,1,2]).cardinality()
83
sage: IntegerListsLex(7, min_length=2, max_length=6, floor=[0,0,2,0,1,1],␣
→˓ceiling=[3,2,3,2,1,2]).cardinality()
53
sage: IntegerListsLex(5, min_length=2, max_length=6, floor=[0,0,2,0,0,0],␣
→˓ceiling=[2,2,2,2,2,2]).cardinality()
30
sage: IntegerListsLex(5, min_length=2, max_length=6, floor=[0,0,1,1,0,0],␣
→˓ceiling=[2,2,2,2,2,2]).cardinality()
43

sage: IntegerListsLex(0, min_length=0, max_length=7, floor=[1,1,0,0,1,0],␣
→˓ceiling=[4,3,2,3,2,2,1]).first()
[]

sage: IntegerListsLex(0, min_length=1, max_length=7, floor=[0,1,0,0,1,0],␣
→˓ceiling=[4,3,2,3,2,2,1]).first()
[0]
sage: IntegerListsLex(0, min_length=1, max_length=7, floor=[1,1,0,0,1,0],␣
→˓ceiling=[4,3,2,3,2,2,1]).cardinality()
0

(continues on next page)

1136 Chapter 5. Comprehensive Module List

http://mupad-combinat.svn.sourceforge.net/viewvc/mupad-combinat/trunk/MuPAD-Combinat/lib/COMBINAT/TEST/MachineIntegerListsLex.tst

Combinatorics, Release 9.7

(continued from previous page)

sage: IntegerListsLex(2, min_length=0, max_length=7, floor=[1,1,0,0,0,0],␣
→˓ceiling=[4,3,2,3,2,2,1]).first() # Was [1,1], due to slightly different specs
[2]
sage: IntegerListsLex(1, min_length=1, max_length=7, floor=[1,1,0,0,0,0],␣
→˓ceiling=[4,3,2,3,2,2,1]).first()
[1]
sage: IntegerListsLex(1, min_length=2, max_length=7, floor=[1,1,0,0,0,0],␣
→˓ceiling=[4,3,2,3,2,2,1]).cardinality()
0
sage: IntegerListsLex(2, min_length=5, max_length=7, floor=[1,1,0,0,0,0],␣
→˓ceiling=[4,3,2,3,2,2,1]).first()
[1, 1, 0, 0, 0]
sage: IntegerListsLex(2, min_length=5, max_length=7, floor=[1,1,0,0,0,1],␣
→˓ceiling=[4,3,2,3,2,2,1]).first()
[1, 1, 0, 0, 0]
sage: IntegerListsLex(2, min_length=5, max_length=7, floor=[1,1,0,0,1,0],␣
→˓ceiling=[4,3,2,3,2,2,1]).cardinality()
0

sage: IntegerListsLex(4, min_length=3, max_length=6, floor=[2, 1, 2, 1, 1, 1],␣
→˓ceiling=[3, 1, 2, 3, 2, 2]).cardinality()
0
sage: IntegerListsLex(5, min_length=3, max_length=6, floor=[2, 1, 2, 1, 1, 1],␣
→˓ceiling=[3, 1, 2, 3, 2, 2]).first()
[2, 1, 2]
sage: IntegerListsLex(6, min_length=3, max_length=6, floor=[2, 1, 2, 1, 1, 1],␣
→˓ceiling=[3, 1, 2, 3, 2, 2]).first()
[3, 1, 2]
sage: IntegerListsLex(12, min_length=3, max_length=6, floor=[2, 1, 2, 1, 1, 1],␣
→˓ceiling=[3, 1, 2, 3, 2, 2]).first()
[3, 1, 2, 3, 2, 1]
sage: IntegerListsLex(13, min_length=3, max_length=6, floor=[2, 1, 2, 1, 1, 1],␣
→˓ceiling=[3, 1, 2, 3, 2, 2]).first()
[3, 1, 2, 3, 2, 2]
sage: IntegerListsLex(14, min_length=3, max_length=6, floor=[2, 1, 2, 1, 1, 1],␣
→˓ceiling=[3, 1, 2, 3, 2, 2]).cardinality()
0

This used to hang (see comment 389 and fix in Envelope.__init__()):

sage: IntegerListsLex(7, max_part=0, ceiling=lambda i:i, check=False).list()
[]

backend_class
alias of IntegerListsBackend_invlex

class sage.combinat.integer_lists.invlex.IntegerListsLexIter(backend)
Bases: object

Iterator class for IntegerListsLex.

Let T be the prefix tree of all lists of nonnegative integers that satisfy all constraints except possibly for
min_length and min_sum; let the children of a list be sorted decreasingly according to their last part.

The iterator is based on a depth-first search exploration of a subtree of this tree, trying to cut branches that do not

5.1. Comprehensive Module List 1137

Combinatorics, Release 9.7

contain a valid list. Each call of next iterates through the nodes of this tree until it finds a valid list to return.

Here are the attributes describing the current state of the iterator, and their invariants:

• backend – the IntegerListsBackend object this is iterating on;

• _current_list – the list corresponding to the current node of the tree;

• _j – the index of the last element of _current_list: self._j == len(self._current_list) - 1;

• _current_sum – the sum of the parts of _current_list;

• _search_ranges – a list of same length as _current_list: the range for each part.

Furthermore, we assume that there is no obvious contradiction in the constraints:

• self.backend.min_length <= self.backend.max_length;

• self.backend.min_slope <= self.backend.max_slope unless self.backend.min_length <=
1.

Along this iteration, next switches between the following states:

• LOOKAHEAD: determine whether the current list could be a prefix of a valid list;

• PUSH: go deeper into the prefix tree by appending the largest possible part to the current list;

• ME: check whether the current list is valid and if yes return it

• DECREASE: decrease the last part;

• POP: pop the last part of the current list;

• STOP: the iteration is finished.

The attribute _next_state contains the next state next should enter in.

5.1.122 Counting, generating, and manipulating non-negative integer matrices

Counting, generating, and manipulating non-negative integer matrices with prescribed row sums and column sums.

AUTHORS:

• Franco Saliola

class sage.combinat.integer_matrices.IntegerMatrices(row_sums, column_sums)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The class of non-negative integer matrices with prescribed row sums and column sums.

An integer matrix𝑚with column sums 𝑐 := (𝑐1, ..., 𝑐𝑘) and row sums 𝑙 := (𝑙1, ..., 𝑙𝑛) where 𝑐1+...+𝑐𝑘 is equal
to 𝑙1+...+𝑙𝑛, is a 𝑛×𝑘matrix𝑚 = (𝑚𝑖,𝑗) such that𝑚1,𝑗+· · ·+𝑚𝑛,𝑗 = 𝑐𝑗 , for all 𝑗 and𝑚𝑖,1+· · ·+𝑚𝑖,𝑘 = 𝑙𝑖,
for all 𝑖.

EXAMPLES:

There are 6 integer matrices with row sums [3, 2, 2] and column sums [2, 5]:

sage: from sage.combinat.integer_matrices import IntegerMatrices
sage: IM = IntegerMatrices([3,2,2], [2,5]); IM
Non-negative integer matrices with row sums [3, 2, 2] and column sums [2, 5]
sage: IM.list()
[

(continues on next page)

1138 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

[2 1] [1 2] [1 2] [0 3] [0 3] [0 3]
[0 2] [1 1] [0 2] [2 0] [1 1] [0 2]
[0 2], [0 2], [1 1], [0 2], [1 1], [2 0]
]
sage: IM.cardinality()
6

cardinality()
The number of integer matrices with the prescribed row sums and columns sums.

EXAMPLES:

sage: from sage.combinat.integer_matrices import IntegerMatrices
sage: IntegerMatrices([2,5], [3,2,2]).cardinality()
6
sage: IntegerMatrices([1,1,1,1,1], [1,1,1,1,1]).cardinality()
120
sage: IntegerMatrices([2,2,2,2], [2,2,2,2]).cardinality()
282
sage: IntegerMatrices([4], [3]).cardinality()
0
sage: len(IntegerMatrices([0,0], [0]).list())
1

This method computes the cardinality using symmetric functions. Below are the same examples, but com-
puted by generating the actual matrices:

sage: from sage.combinat.integer_matrices import IntegerMatrices
sage: len(IntegerMatrices([2,5], [3,2,2]).list())
6
sage: len(IntegerMatrices([1,1,1,1,1], [1,1,1,1,1]).list())
120
sage: len(IntegerMatrices([2,2,2,2], [2,2,2,2]).list())
282
sage: len(IntegerMatrices([4], [3]).list())
0
sage: len(IntegerMatrices([0], [0]).list())
1

column_sums()
The column sums of the integer matrices in self.

OUTPUT:

• Composition

EXAMPLES:

sage: from sage.combinat.integer_matrices import IntegerMatrices
sage: IM = IntegerMatrices([3,2,2], [2,5])
sage: IM.column_sums()
[2, 5]

row_sums()
The row sums of the integer matrices in self.

5.1. Comprehensive Module List 1139

Combinatorics, Release 9.7

OUTPUT:

• Composition

EXAMPLES:

sage: from sage.combinat.integer_matrices import IntegerMatrices
sage: IM = IntegerMatrices([3,2,2], [2,5])
sage: IM.row_sums()
[3, 2, 2]

to_composition(x)
The composition corresponding to the integer matrix.

This is the composition obtained by reading the entries of the matrix from left to right along each row, and
reading the rows from top to bottom, ignore zeros.

INPUT:

• x – matrix

EXAMPLES:

sage: from sage.combinat.integer_matrices import IntegerMatrices
sage: IM = IntegerMatrices([3,2,2], [2,5]); IM
Non-negative integer matrices with row sums [3, 2, 2] and column sums [2, 5]
sage: IM.list()
[
[2 1] [1 2] [1 2] [0 3] [0 3] [0 3]
[0 2] [1 1] [0 2] [2 0] [1 1] [0 2]
[0 2], [0 2], [1 1], [0 2], [1 1], [2 0]
]
sage: for m in IM: print(IM.to_composition(m))
[2, 1, 2, 2]
[1, 2, 1, 1, 2]
[1, 2, 2, 1, 1]
[3, 2, 2]
[3, 1, 1, 1, 1]
[3, 2, 2]

sage.combinat.integer_matrices.integer_matrices_generator(row_sums, column_sums)
Recursively generate the integer matrices with the prescribed row sums and column sums.

INPUT:

• row_sums – list or tuple

• column_sums – list or tuple

OUTPUT:

• an iterator producing a list of lists

EXAMPLES:

sage: from sage.combinat.integer_matrices import integer_matrices_generator
sage: iter = integer_matrices_generator([3,2,2], [2,5]); iter
<generator object ...integer_matrices_generator at ...>
sage: for m in iter: print(m)
[[2, 1], [0, 2], [0, 2]]

(continues on next page)

1140 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[1, 2], [1, 1], [0, 2]]
[[1, 2], [0, 2], [1, 1]]
[[0, 3], [2, 0], [0, 2]]
[[0, 3], [1, 1], [1, 1]]
[[0, 3], [0, 2], [2, 0]]

5.1.123 (Non-negative) Integer vectors

AUTHORS:

• Mike Hansen (2007) - original module

• Nathann Cohen, David Joyner (2009-2010) - Gale-Ryser stuff

• Nathann Cohen, David Joyner (2011) - Gale-Ryser bugfix

• Travis Scrimshaw (2012-05-12) - Updated doc-strings to tell the user of that the class’s name is a misnomer (that
they only contains non-negative entries).

• Federico Poloni (2013) - specialized rank()

• Travis Scrimshaw (2013-02-04) - Refactored to use ClonableIntArray

class sage.combinat.integer_vector.IntegerVector
Bases: sage.structure.list_clone.ClonableArray

An integer vector.

check()
Check to make sure this is a valid integer vector by making sure all entries are non-negative.

EXAMPLES:

sage: IV = IntegerVectors()
sage: elt = IV([1,2,1])
sage: elt.check()

class sage.combinat.integer_vector.IntegerVectors(category=None)
Bases: sage.structure.parent.Parent

The class of (non-negative) integer vectors.

INPUT:

• n – if set to an integer, returns the combinatorial class of integer vectors whose sum is n; if set to None
(default), no such constraint is defined

• k – the length of the vectors; set to None (default) if you do not want such a constraint

Note: The entries are non-negative integers.

EXAMPLES:

If n is not specified, it returns the class of all integer vectors:

5.1. Comprehensive Module List 1141

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: IntegerVectors()
Integer vectors
sage: [] in IntegerVectors()
True
sage: [1,2,1] in IntegerVectors()
True
sage: [1, 0, 0] in IntegerVectors()
True

Entries are non-negative:

sage: [-1, 2] in IntegerVectors()
False

If n is specified, then it returns the class of all integer vectors which sum to n:

sage: IV3 = IntegerVectors(3); IV3
Integer vectors that sum to 3

Note that trailing zeros are ignored so that [3, 0] does not show up in the following list (since [3] does):

sage: IntegerVectors(3, max_length=2).list()
[[3], [2, 1], [1, 2], [0, 3]]

If n and k are both specified, then it returns the class of integer vectors that sum to n and are of length k:

sage: IV53 = IntegerVectors(5,3); IV53
Integer vectors of length 3 that sum to 5
sage: IV53.cardinality()
21
sage: IV53.first()
[5, 0, 0]
sage: IV53.last()
[0, 0, 5]
sage: IV53.random_element().parent() is IV53
True

Further examples:

sage: IntegerVectors(-1, 0, min_part = 1).list()
[]
sage: IntegerVectors(-1, 2, min_part = 1).list()
[]
sage: IntegerVectors(0, 0, min_part=1).list()
[[]]
sage: IntegerVectors(3, 0, min_part=1).list()
[]
sage: IntegerVectors(0, 1, min_part=1).list()
[]
sage: IntegerVectors(2, 2, min_part=1).list()
[[1, 1]]
sage: IntegerVectors(2, 3, min_part=1).list()
[]

(continues on next page)

1142 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: IntegerVectors(4, 2, min_part=1).list()
[[3, 1], [2, 2], [1, 3]]

sage: IntegerVectors(0, 3, outer=[0,0,0]).list()
[[0, 0, 0]]
sage: IntegerVectors(1, 3, outer=[0,0,0]).list()
[]
sage: IntegerVectors(2, 3, outer=[0,2,0]).list()
[[0, 2, 0]]
sage: IntegerVectors(2, 3, outer=[1,2,1]).list()
[[1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1]]
sage: IntegerVectors(2, 3, outer=[1,1,1]).list()
[[1, 1, 0], [1, 0, 1], [0, 1, 1]]
sage: IntegerVectors(2, 5, outer=[1,1,1,1,1]).list()
[[1, 1, 0, 0, 0],
[1, 0, 1, 0, 0],
[1, 0, 0, 1, 0],
[1, 0, 0, 0, 1],
[0, 1, 1, 0, 0],
[0, 1, 0, 1, 0],
[0, 1, 0, 0, 1],
[0, 0, 1, 1, 0],
[0, 0, 1, 0, 1],
[0, 0, 0, 1, 1]]

sage: iv = [IntegerVectors(n,k) for n in range(-2, 7) for k in range(7)]
sage: all(map(lambda x: x.cardinality() == len(x.list()), iv))
True
sage: essai = [[1,1,1], [2,5,6], [6,5,2]]
sage: iv = [IntegerVectors(x[0], x[1], max_part = x[2]-1) for x in essai]
sage: all(map(lambda x: x.cardinality() == len(x.list()), iv))
True

An example showing the same output by using IntegerListsLex:

sage: IntegerVectors(4, max_length=2).list()
[[4], [3, 1], [2, 2], [1, 3], [0, 4]]
sage: list(IntegerListsLex(4, max_length=2))
[[4], [3, 1], [2, 2], [1, 3], [0, 4]]

See also:

class 𝑠𝑎𝑔𝑒.𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡.𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑙𝑖𝑠𝑡𝑠.𝑖𝑛𝑣𝑙𝑒𝑥.𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐿𝑖𝑠𝑡𝑠𝐿𝑒𝑥.

Element
alias of IntegerVector

class sage.combinat.integer_vector.IntegerVectorsConstraints(n=None, k=None, **constraints)
Bases: sage.combinat.integer_vector.IntegerVectors

Class of integer vectors subject to various constraints.

cardinality()
Return the cardinality of self.

5.1. Comprehensive Module List 1143

Combinatorics, Release 9.7

EXAMPLES:

sage: IntegerVectors(3, 3, min_part=1).cardinality()
1
sage: IntegerVectors(5, 3, min_part=1).cardinality()
6
sage: IntegerVectors(13, 4, max_part=4).cardinality()
20
sage: IntegerVectors(k=4, max_part=3).cardinality()
256
sage: IntegerVectors(k=3, min_part=2, max_part=4).cardinality()
27
sage: IntegerVectors(13, 4, min_part=2, max_part=4).cardinality()
16

class sage.combinat.integer_vector.IntegerVectors_all
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.combinat.
integer_vector.IntegerVectors

Class of all integer vectors.

class sage.combinat.integer_vector.IntegerVectors_k(k)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.combinat.
integer_vector.IntegerVectors

Integer vectors of length 𝑘.

class sage.combinat.integer_vector.IntegerVectors_n(n)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.combinat.
integer_vector.IntegerVectors

Integer vectors that sum to 𝑛.

class sage.combinat.integer_vector.IntegerVectors_nk(n, k)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.combinat.
integer_vector.IntegerVectors

Integer vectors of length 𝑘 that sum to 𝑛.

AUTHORS:

• Martin Albrecht

• Mike Hansen

rank(x)
Return the rank of a given element.

INPUT:

• x – a list with sum(x) == n and len(x) == k

class sage.combinat.integer_vector.IntegerVectors_nnondescents(n, comp)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.combinat.
integer_vector.IntegerVectors

Integer vectors graded by two parameters.

The grading parameters on the integer vector 𝑣 are:

• 𝑛 – the sum of the parts of 𝑣,

• 𝑐 – the non descents composition of 𝑣.

1144 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

In other words: the length of 𝑣 equals 𝑐1 + · · · + 𝑐𝑘, and 𝑣 is decreasing in the consecutive blocs of length
𝑐1, . . . , 𝑐𝑘,

INPUT:

• n – the positive integer 𝑛

• comp – the composition 𝑐

Those are the integer vectors of sum 𝑛 that are lexicographically maximal (for the natural left-to-right reading)
in their orbit by the Young subgroup 𝑆𝑐1 × · · · × 𝑆𝑐𝑘 . In particular, they form a set of orbit representative of
integer vectors with respect to this Young subgroup.

sage.combinat.integer_vector.gale_ryser_theorem(p1, p2, algorithm, solver,
integrality_tolerance='gale')

Returns the binary matrix given by the Gale-Ryser theorem.

The Gale Ryser theorem asserts that if 𝑝1, 𝑝2 are two partitions of 𝑛 of respective lengths 𝑘1, 𝑘2, then there is a
binary 𝑘1 × 𝑘2 matrix 𝑀 such that 𝑝1 is the vector of row sums and 𝑝2 is the vector of column sums of 𝑀 , if
and only if the conjugate of 𝑝2 dominates 𝑝1.

INPUT:

• p1, p2– list of integers representing the vectors of row/column sums

• algorithm – two possible string values:

– 'ryser' implements the construction due to Ryser [Ryser63].

– 'gale' (default) implements the construction due to Gale [Gale57].

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If set
to None, the default one is used. For more information on MILP solvers and which default solver is used,
see the method solve of the class MixedIntegerLinearProgram.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see
MixedIntegerLinearProgram.get_values().

OUTPUT:

A binary matrix if it exists, None otherwise.

Gale’s Algorithm:

(Gale [Gale57]): A matrix satisfying the constraints of its sums can be defined as the solution of the following
Linear Program, which Sage knows how to solve.

∀𝑖
𝑘2∑︁
𝑗=1

𝑏𝑖,𝑗 = 𝑝1,𝑗

∀𝑖
𝑘1∑︁
𝑗=1

𝑏𝑗,𝑖 = 𝑝2,𝑗

𝑏𝑖,𝑗 is a binary variable

Ryser’s Algorithm:

(Ryser [Ryser63]): The construction of an 𝑚 × 𝑛 matrix 𝐴 = 𝐴𝑟,𝑠, due to Ryser, is described as follows. The
construction works if and only if have 𝑠 ⪯ 𝑟*.

• Construct the 𝑚 × 𝑛 matrix 𝐵 from 𝑟 by defining the 𝑖-th row of 𝐵 to be the vector whose first 𝑟𝑖 entries
are 1, and the remainder are 0’s, 1 ≤ 𝑖 ≤ 𝑚. This maximal matrix𝐵 with row sum 𝑟 and ones left justified
has column sum 𝑟*.

5.1. Comprehensive Module List 1145

../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram
../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.get_values

Combinatorics, Release 9.7

• Shift the last 1 in certain rows of 𝐵 to column 𝑛 in order to achieve the sum 𝑠𝑛. Call this 𝐵 again.

– The 1’s in column 𝑛 are to appear in those rows in which𝐴 has the largest row sums, giving preference
to the bottom-most positions in case of ties.

– Note: When this step automatically “fixes” other columns, one must skip ahead to the first column
index with a wrong sum in the step below.

• Proceed inductively to construct columns 𝑛− 1, . . . , 2, 1. Note: when performing the induction on step 𝑘,
we consider the row sums of the first 𝑘 columns.

• Set 𝐴 = 𝐵. Return 𝐴.

EXAMPLES:

Computing the matrix for 𝑝1 = 𝑝2 = 2 + 2 + 1:

sage: from sage.combinat.integer_vector import gale_ryser_theorem
sage: p1 = [2,2,1]
sage: p2 = [2,2,1]
sage: print(gale_ryser_theorem(p1, p2)) # not tested
[1 1 0]
[1 0 1]
[0 1 0]
sage: A = gale_ryser_theorem(p1, p2)
sage: rs = [sum(x) for x in A.rows()]
sage: cs = [sum(x) for x in A.columns()]
sage: p1 == rs; p2 == cs
True
True

Or for a non-square matrix with 𝑝1 = 3 + 3 + 2 + 1 and 𝑝2 = 3 + 2 + 2 + 1 + 1, using Ryser’s algorithm:

sage: from sage.combinat.integer_vector import gale_ryser_theorem
sage: p1 = [3,3,1,1]
sage: p2 = [3,3,1,1]
sage: gale_ryser_theorem(p1, p2, algorithm = "ryser")
[1 1 1 0]
[1 1 0 1]
[1 0 0 0]
[0 1 0 0]
sage: p1 = [4,2,2]
sage: p2 = [3,3,1,1]
sage: gale_ryser_theorem(p1, p2, algorithm = "ryser")
[1 1 1 1]
[1 1 0 0]
[1 1 0 0]
sage: p1 = [4,2,2,0]
sage: p2 = [3,3,1,1,0,0]
sage: gale_ryser_theorem(p1, p2, algorithm = "ryser")
[1 1 1 1 0 0]
[1 1 0 0 0 0]
[1 1 0 0 0 0]
[0 0 0 0 0 0]
sage: p1 = [3,3,2,1]
sage: p2 = [3,2,2,1,1]
sage: print(gale_ryser_theorem(p1, p2, algorithm="gale")) # not tested

(continues on next page)

1146 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1 1 1 0 0]
[1 1 0 0 1]
[1 0 1 0 0]
[0 0 0 1 0]

With 0 in the sequences, and with unordered inputs:

sage: from sage.combinat.integer_vector import gale_ryser_theorem
sage: gale_ryser_theorem([3,3,0,1,1,0], [3,1,3,1,0], algorithm="ryser")
[1 1 1 0 0]
[1 0 1 1 0]
[0 0 0 0 0]
[1 0 0 0 0]
[0 0 1 0 0]
[0 0 0 0 0]
sage: p1 = [3,1,1,1,1]; p2 = [3,2,2,0]
sage: gale_ryser_theorem(p1, p2, algorithm="ryser")
[1 1 1 0]
[1 0 0 0]
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]

REFERENCES:

sage.combinat.integer_vector.integer_vectors_nk_fast_iter(n, k)
A fast iterator for integer vectors of n of length k which yields Python lists filled with Sage Integers.

EXAMPLES:

sage: from sage.combinat.integer_vector import integer_vectors_nk_fast_iter
sage: list(integer_vectors_nk_fast_iter(3, 2))
[[3, 0], [2, 1], [1, 2], [0, 3]]
sage: list(integer_vectors_nk_fast_iter(2, 2))
[[2, 0], [1, 1], [0, 2]]
sage: list(integer_vectors_nk_fast_iter(1, 2))
[[1, 0], [0, 1]]

We check some corner cases:

sage: list(integer_vectors_nk_fast_iter(5, 1))
[[5]]
sage: list(integer_vectors_nk_fast_iter(1, 1))
[[1]]
sage: list(integer_vectors_nk_fast_iter(2, 0))
[]
sage: list(integer_vectors_nk_fast_iter(0, 2))
[[0, 0]]
sage: list(integer_vectors_nk_fast_iter(0, 0))
[[]]

sage.combinat.integer_vector.is_gale_ryser(r, s)
Tests whether the given sequences satisfy the condition of the Gale-Ryser theorem.

5.1. Comprehensive Module List 1147

Combinatorics, Release 9.7

Given a binary matrix𝐵 of dimension 𝑛×𝑚, the vector of row sums is defined as the vector whose 𝑖th component
is equal to the sum of the 𝑖th row in 𝐴. The vector of column sums is defined similarly.

If, given a binary matrix, these two vectors are easy to compute, the Gale-Ryser theorem lets us decide whether,
given two non-negative vectors 𝑟, 𝑠, there exists a binary matrix whose row/column sums vectors are 𝑟 and 𝑠.

This functions answers accordingly.

INPUT:

• r, s – lists of non-negative integers.

ALGORITHM:

Without loss of generality, we can assume that:

• The two given sequences do not contain any 0 (which would correspond to an empty column/row)

• The two given sequences are ordered in decreasing order (reordering the sequence of row (resp. column)
sums amounts to reordering the rows (resp. columns) themselves in the matrix, which does not alter the
columns (resp. rows) sums.

We can then assume that 𝑟 and 𝑠 are partitions (see the corresponding class Partition)

If 𝑟* denote the conjugate of 𝑟, the Gale-Ryser theorem asserts that a binary Matrix satisfying the constraints
exists if and only if 𝑠 ⪯ 𝑟*, where ⪯ denotes the domination order on partitions.

EXAMPLES:

sage: from sage.combinat.integer_vector import is_gale_ryser
sage: is_gale_ryser([4,2,2],[3,3,1,1])
True
sage: is_gale_ryser([4,2,1,1],[3,3,1,1])
True
sage: is_gale_ryser([3,2,1,1],[3,3,1,1])
False

REMARK: In the literature, what we are calling a Gale-Ryser sequence sometimes goes by the (rather generic-
sounding) term ‘’realizable sequence”.

sage.combinat.integer_vector.list2func(l, default=None)
Given a list l, return a function that takes in a value i and return l[i]. If default is not None, then the function
will return the default value for out of range i’s.

EXAMPLES:

sage: f = sage.combinat.integer_vector.list2func([1,2,3])
sage: f(0)
1
sage: f(1)
2
sage: f(2)
3
sage: f(3)
Traceback (most recent call last):
...
IndexError: list index out of range

1148 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: f = sage.combinat.integer_vector.list2func([1,2,3], 0)
sage: f(2)
3
sage: f(3)
0

5.1.124 Weighted Integer Vectors

AUTHORS:

• Mike Hansen (2007): initial version, ported from MuPAD-Combinat

• Nicolas M. Thiery (2010-10-30): WeightedIntegerVectors(weights) + cleanup

class sage.combinat.integer_vector_weighted.WeightedIntegerVectors(n, weight)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

The class of integer vectors of 𝑛 weighted by weight, that is, the nonnegative integer vectors (𝑣1, . . . , 𝑣ℓ) satis-
fying

∑︀ℓ
𝑖=1 𝑣𝑖𝑤𝑖 = 𝑛 where ℓ is length(weight) and 𝑤𝑖 is weight[i].

INPUT:

• n – a non negative integer (optional)

• weight – a tuple (or list or iterable) of positive integers

EXAMPLES:

sage: WeightedIntegerVectors(8, [1,1,2])
Integer vectors of 8 weighted by [1, 1, 2]
sage: WeightedIntegerVectors(8, [1,1,2]).first()
[0, 0, 4]
sage: WeightedIntegerVectors(8, [1,1,2]).last()
[8, 0, 0]
sage: WeightedIntegerVectors(8, [1,1,2]).cardinality()
25
sage: w = WeightedIntegerVectors(8, [1,1,2]).random_element()
sage: w.parent() is WeightedIntegerVectors(8, [1,1,2])
True

sage: WeightedIntegerVectors([1,1,2])
Integer vectors weighted by [1, 1, 2]
sage: WeightedIntegerVectors([1,1,2]).cardinality()
+Infinity
sage: WeightedIntegerVectors([1,1,2]).first()
[0, 0, 0]

Todo: Should the order of the arguments n and weight be exchanged to simplify the logic?

Element
alias of sage.combinat.integer_vector.IntegerVector

class sage.combinat.integer_vector_weighted.WeightedIntegerVectors_all(weight)
Bases: sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

5.1. Comprehensive Module List 1149

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

Set of weighted integer vectors.

EXAMPLES:

sage: W = WeightedIntegerVectors([3,1,1,2,1]); W
Integer vectors weighted by [3, 1, 1, 2, 1]
sage: W.cardinality()
+Infinity

sage: W12 = W.graded_component(12)
sage: W12.an_element()
[4, 0, 0, 0, 0]
sage: W12.last()
[0, 12, 0, 0, 0]
sage: W12.cardinality()
441
sage: for w in W12: print(w)
[4, 0, 0, 0, 0]
[3, 0, 0, 1, 1]
[3, 0, 1, 1, 0]
...
[0, 11, 1, 0, 0]
[0, 12, 0, 0, 0]

grading(x)
EXAMPLES:

sage: C = WeightedIntegerVectors([2,1,3])
sage: C.grading((2,1,1))
8

subset(size=None)
EXAMPLES:

sage: C = WeightedIntegerVectors([2,1,3])
sage: C.subset(4)
Integer vectors of 4 weighted by [2, 1, 3]

sage.combinat.integer_vector_weighted.iterator_fast(n, l)
Iterate over all l weighted integer vectors with total weight n.

INPUT:

• n – an integer

• l – the weights in weakly decreasing order

EXAMPLES:

sage: from sage.combinat.integer_vector_weighted import iterator_fast
sage: list(iterator_fast(3, [2,1,1]))
[[1, 1, 0], [1, 0, 1], [0, 3, 0], [0, 2, 1], [0, 1, 2], [0, 0, 3]]
sage: list(iterator_fast(2, [2]))
[[1]]

Test that trac ticket #20491 is fixed:

1150 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/20491

Combinatorics, Release 9.7

sage: type(list(iterator_fast(2, [2]))[0][0])
<class 'sage.rings.integer.Integer'>

5.1.125 Integer vectors modulo the action of a permutation group

class sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup
Bases: sage.structure.unique_representation.UniqueRepresentation

Returns an enumerated set containing integer vectors which are maximal in their orbit under the action of the
permutation group G for the lexicographic order.

In Sage, a permutation group 𝐺 is viewed as a subgroup of the symmetric group 𝑆𝑛 of degree 𝑛 and 𝑛 is said to
be the degree of 𝐺. Any integer vector 𝑣 is said to be canonical if it is maximal in its orbit under the action of
𝐺. 𝑣 is canonical if and only if

𝑣 = max
lex order

{𝑔 · 𝑣|𝑔 ∈ 𝐺}

The action of 𝐺 is on position. This means for example that the simple transposition 𝑠1 = (1, 2) swaps the first
and the second entries of any integer vector 𝑣 = [𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛]

𝑠1 · 𝑣 = [𝑎2, 𝑎1, 𝑎3, . . . , 𝑎𝑛]

This functions returns a parent which contains a single integer vector by orbit under the action of the permutation
group 𝐺. The approach chosen here is to keep the maximal integer vector for the lexicographic order in each
orbit. Such maximal vector will be called canonical integer vector under the action of the permutation group 𝐺.

INPUT:

• G - a permutation group

• sum - (default: None) - a nonnegative integer

• max_part - (default: None) - a nonnegative integer setting the maximum of entries of elements

• sgs - (default: None) - a strong generating system of the group 𝐺. If you do not provide it, it will be
calculated at the creation of the parent

OUTPUT:

• If sum and max_part are None, it returns the infinite enumerated set of all integer vectors (list of integers)
maximal in their orbit for the lexicographic order.

• If sum is an integer, it returns a finite enumerated set containing all integer vectors maximal in their orbit
for the lexicographic order and whose entries sum to sum.

EXAMPLES:

Here is the set enumerating integer vectors modulo the action of the cyclic group of 3 elements:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3)]]))
sage: I.category()
Category of infinite enumerated quotients of sets
sage: I.cardinality()
+Infinity
sage: I.list()
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set

(continues on next page)

5.1. Comprehensive Module List 1151

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

(continued from previous page)

sage: p = iter(I)
sage: for i in range(10): next(p)
[0, 0, 0]
[1, 0, 0]
[2, 0, 0]
[1, 1, 0]
[3, 0, 0]
[2, 1, 0]
[2, 0, 1]
[1, 1, 1]
[4, 0, 0]
[3, 1, 0]

The method is_canonical() tests if any integer vector is maximal in its orbit. This method is also used in the
containment test:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: I.is_canonical([5,2,0,4])
True
sage: I.is_canonical([5,0,6,4])
False
sage: I.is_canonical([1,1,1,1])
True
sage: [2,3,1,0] in I
False
sage: [5,0,5,0] in I
True
sage: 'Bla' in I
False
sage: I.is_canonical('bla')
Traceback (most recent call last):
...
AssertionError: bla should be a list or a integer vector

If you give a value to the extra argument sum, the set returned will be a finite set containing only canonical vectors
whose entries sum to sum.:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3)]]), sum=6)
sage: I.cardinality()
10
sage: I.list()
[[6, 0, 0], [5, 1, 0], [5, 0, 1], [4, 2, 0], [4, 1, 1],
[4, 0, 2], [3, 3, 0], [3, 2, 1], [3, 1, 2], [2, 2, 2]]
sage: I.category()
Join of Category of finite enumerated sets and Category of subquotients of finite␣
→˓sets and Category of quotients of sets

To get the orbit of any integer vector 𝑣 under the action of the group, use the method orbit(); we convert the
returned set of vectors into a list in increasing lexicographic order, to get a reproducible test:

sage: sorted(I.orbit([6,0,0]))
[[0, 0, 6], [0, 6, 0], [6, 0, 0]]
sage: sorted(I.orbit([5,1,0]))

(continues on next page)

1152 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[0, 5, 1], [1, 0, 5], [5, 1, 0]]
sage: I.orbit([2,2,2])
{[2, 2, 2]}

class sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All(G,
sgs=None)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.sets.
recursively_enumerated_set.RecursivelyEnumeratedSet_forest

A class for integer vectors enumerated up to the action of a permutation group.

A Sage permutation group is viewed as a subgroup of the symmetric group 𝑆𝑛 for a certain 𝑛. This group has
a natural action by position on vectors of length 𝑛. This class implements a set which keeps a single vector for
each orbit. We say that a vector is canonical if it is the maximum in its orbit under the action of the permutation
group for the lexicographic order.

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: I
Integer vectors of length 4 enumerated up to the action of Permutation Group with␣
→˓generators [(1,2,3,4)]
sage: I.cardinality()
+Infinity
sage: TestSuite(I).run()
sage: it = iter(I)
sage: [next(it), next(it), next(it), next(it), next(it)]
[[0, 0, 0, 0],
[1, 0, 0, 0],
[2, 0, 0, 0],
[1, 1, 0, 0],
[1, 0, 1, 0]]
sage: x = next(it); x
[3, 0, 0, 0]
sage: I.first()
[0, 0, 0, 0]

class Element
Bases: sage.structure.list_clone.ClonableIntArray

Element class for the set of integer vectors of given sum enumerated modulo the action of a permutation
group. These vectors are clonable lists of integers which must satisfy conditions coming from the parent
appearing in the method check().

check()
Checks that self verify the invariants needed for living in self.parent().

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: v = I.an_element()
sage: v.check()
sage: w = I([0,4,0,0], check=False); w
[0, 4, 0, 0]
sage: w.check()

(continues on next page)

5.1. Comprehensive Module List 1153

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableIntArray
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableIntArray.check

Combinatorics, Release 9.7

(continued from previous page)

Traceback (most recent call last):
...
AssertionError

ambient()
Return the ambient space from which self is a quotient.

EXAMPLES:

sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: S.ambient()
Integer vectors of length 4

children(x)
Returns the list of children of the element x. This method is required to build the tree structure of self
which inherits from the class RecursivelyEnumeratedSet_forest.

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: I.children(I([2,1,0,0], check=False))
[[2, 2, 0, 0], [2, 1, 1, 0], [2, 1, 0, 1]]

is_canonical(v, check=True)
Returns True if the integer list v is maximal in its orbit under the action of the permutation group given to
define self. Such integer vectors are said to be canonical. A vector 𝑣 is canonical if and only if

𝑣 = max
lex order

{𝑔 · 𝑣|𝑔 ∈ 𝐺}

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: I.is_canonical([4,3,2,1])
True
sage: I.is_canonical([4,0,0,1])
True
sage: I.is_canonical([4,0,3,3])
True
sage: I.is_canonical([4,0,4,4])
False

lift(elt)
Lift the element elt inside the ambient space from which self is a quotient.

EXAMPLES:

sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: v = S.lift(S([4,3,0,1])); v
[4, 3, 0, 1]
sage: type(v)
<class 'list'>

orbit(v)
Returns the orbit of the integer vector v under the action of the permutation group defining self. The
result is a set.

1154 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest

Combinatorics, Release 9.7

EXAMPLES:

In order to get reproducible doctests, we convert the returned sets into lists in increasing lexicographic
order:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: sorted(I.orbit([2,2,0,0]))
[[0, 0, 2, 2], [0, 2, 2, 0], [2, 0, 0, 2], [2, 2, 0, 0]]
sage: sorted(I.orbit([2,1,0,0]))
[[0, 0, 2, 1], [0, 2, 1, 0], [1, 0, 0, 2], [2, 1, 0, 0]]
sage: sorted(I.orbit([2,0,1,0]))
[[0, 1, 0, 2], [0, 2, 0, 1], [1, 0, 2, 0], [2, 0, 1, 0]]
sage: sorted(I.orbit([2,0,2,0]))
[[0, 2, 0, 2], [2, 0, 2, 0]]
sage: I.orbit([1,1,1,1])
{[1, 1, 1, 1]}

permutation_group()
Returns the permutation group given to define self.

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: I.permutation_group()
Permutation Group with generators [(1,2,3,4)]

retract(elt)
Return the canonical representative of the orbit of the integer elt under the action of the permutation group
defining self.

If the element elt is already maximal in its orbit for the lexicographic order, elt is thus the good repre-
sentative for its orbit.

EXAMPLES:

sage: [0,0,0,0] in IntegerVectors(0,4)
True
sage: [1,0,0,0] in IntegerVectors(1,4)
True
sage: [0,1,0,0] in IntegerVectors(1,4)
True
sage: [1,0,1,0] in IntegerVectors(2,4)
True
sage: [0,1,0,1] in IntegerVectors(2,4)
True
sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: S.retract([0,0,0,0])
[0, 0, 0, 0]
sage: S.retract([1,0,0,0])
[1, 0, 0, 0]
sage: S.retract([0,1,0,0])
[1, 0, 0, 0]
sage: S.retract([1,0,1,0])
[1, 0, 1, 0]
sage: S.retract([0,1,0,1])
[1, 0, 1, 0]

5.1. Comprehensive Module List 1155

Combinatorics, Release 9.7

roots()
Returns the root of generation of self. This method is required to build the tree structure of self which
inherits from the class RecursivelyEnumeratedSet_forest.

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: I.roots()
[[0, 0, 0, 0]]

subset(sum=None, max_part=None)
Returns the subset of self containing integer vectors whose entries sum to sum.

EXAMPLES:

sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: S.subset(4)
Integer vectors of length 4 and of sum 4 enumerated up to
the action of Permutation Group with generators
[(1,2,3,4)]

class sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints(G,
d,
max_part,
sgs=None)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.sets.
recursively_enumerated_set.RecursivelyEnumeratedSet_forest

This class models finite enumerated sets of integer vectors with constraint enumerated up to the action of a
permutation group. Integer vectors are enumerated modulo the action of the permutation group. To implement
that, we keep a single integer vector by orbit under the action of the permutation group. Elements chosen are
vectors maximal in their orbit for the lexicographic order.

For more information see IntegerVectorsModPermutationGroup.

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]), max_
→˓part=1)
sage: I.list()
[[0, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 0], [1, 1, 1, 1]]
sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]), sum=6,␣
→˓max_part=4)
sage: I.list()
[[4, 2, 0, 0], [4, 1, 1, 0], [4, 1, 0, 1], [4, 0, 2, 0], [4, 0, 1, 1],
[4, 0, 0, 2], [3, 3, 0, 0], [3, 2, 1, 0], [3, 2, 0, 1], [3, 1, 2, 0],
[3, 1, 1, 1], [3, 1, 0, 2], [3, 0, 3, 0], [3, 0, 2, 1], [3, 0, 1, 2],
[2, 2, 2, 0], [2, 2, 1, 1], [2, 1, 2, 1]]

Here is the enumeration of unlabeled graphs over 5 vertices:

sage: G = IntegerVectorsModPermutationGroup(TransitiveGroup(10,12), max_part=1)
sage: G.cardinality()
34

class Element
Bases: sage.structure.list_clone.ClonableIntArray

1156 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest
../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableIntArray

Combinatorics, Release 9.7

Element class for the set of integer vectors with constraints enumerated modulo the action of a permutation
group. These vectors are clonable lists of integers which must satisfy conditions coming from the parent
as in the method check().

check()
Checks that self meets the constraints of being an element of self.parent().

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),
→˓ 4)
sage: v = I.an_element()
sage: v.check()
sage: w = I([0,4,0,0], check=False); w
[0, 4, 0, 0]
sage: w.check()
Traceback (most recent call last):
...
AssertionError

ambient()
Return the ambient space from which self is a quotient.

EXAMPLES:

sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]), 6);
→˓ S.ambient()
Integer vectors that sum to 6
sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]), 6,␣
→˓max_part=12); S.ambient()
Integer vectors that sum to 6 with constraints: max_part=12
sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓max_part=12); S.ambient()
Integer vectors with constraints: max_part=12

an_element()
Returns an element of self or raises an EmptySetError when self is empty.

EXAMPLES:

sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓sum=0, max_part=1); S.an_element()
[0, 0, 0, 0]
sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓sum=1, max_part=1); S.an_element()
[1, 0, 0, 0]
sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓sum=2, max_part=1); S.an_element()
[1, 1, 0, 0]
sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓sum=3, max_part=1); S.an_element()
[1, 1, 1, 0]
sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓sum=4, max_part=1); S.an_element()
[1, 1, 1, 1]
sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓sum=5, max_part=1); S.an_element() (continues on next page)

5.1. Comprehensive Module List 1157

Combinatorics, Release 9.7

(continued from previous page)

Traceback (most recent call last):
...
EmptySetError

children(x)
Returns the list of children of the element x. This method is required to build the tree structure of self
which inherits from the class RecursivelyEnumeratedSet_forest.

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: I.children(I([2,1,0,0], check=False))
[[2, 2, 0, 0], [2, 1, 1, 0], [2, 1, 0, 1]]

is_canonical(v, check=True)
Returns True if the integer list v is maximal in its orbit under the action of the permutation group given to
define self. Such integer vectors are said to be canonical. A vector 𝑣 is canonical if and only if

𝑣 = max
lex order

{𝑔 · 𝑣|𝑔 ∈ 𝐺}

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓max_part=3)
sage: I.is_canonical([3,0,0,0])
True
sage: I.is_canonical([1,0,2,0])
False
sage: I.is_canonical([2,0,1,0])
True

lift(elt)
Lift the element elt inside the ambient space from which self is a quotient.

EXAMPLES:

sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓max_part=1)
sage: v = S.lift([1,0,1,0]); v
[1, 0, 1, 0]
sage: v in IntegerVectors(2,4,max_part=1)
True
sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓sum=6)
sage: v = S.lift(S.list()[5]); v
[4, 1, 1, 0]
sage: v in IntegerVectors(n=6)
True

orbit(v)
Returns the orbit of the vector v under the action of the permutation group defining self. The result is a
set.

INPUT:

• v - an element of self or any list of length the degree of the permutation group.

1158 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest

Combinatorics, Release 9.7

EXAMPLES:

We convert the result in a list in increasing lexicographic order, to get a reproducible doctest:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),4)
sage: I.orbit([1,1,1,1])
{[1, 1, 1, 1]}
sage: sorted(I.orbit([3,0,0,1]))
[[0, 0, 1, 3], [0, 1, 3, 0], [1, 3, 0, 0], [3, 0, 0, 1]]

permutation_group()
Returns the permutation group given to define self.

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3)]]), 5)
sage: I.permutation_group()
Permutation Group with generators [(1,2,3)]

retract(elt)
Return the canonical representative of the orbit of the integer elt under the action of the permutation group
defining self.

If the element elt is already maximal in its orbits for the lexicographic order, elt is thus the good repre-
sentative for its orbit.

EXAMPLES:

sage: S = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]),␣
→˓sum=2, max_part=1)
sage: S.retract([1,1,0,0])
[1, 1, 0, 0]
sage: S.retract([1,0,1,0])
[1, 0, 1, 0]
sage: S.retract([1,0,0,1])
[1, 1, 0, 0]
sage: S.retract([0,1,1,0])
[1, 1, 0, 0]
sage: S.retract([0,1,0,1])
[1, 0, 1, 0]
sage: S.retract([0,0,1,1])
[1, 1, 0, 0]

roots()
Returns the root of generation of self.This method is required to build the tree structure of self which
inherits from the class RecursivelyEnumeratedSet_forest.

EXAMPLES:

sage: I = IntegerVectorsModPermutationGroup(PermutationGroup([[(1,2,3,4)]]))
sage: I.roots()
[[0, 0, 0, 0]]

5.1. Comprehensive Module List 1159

../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest

Combinatorics, Release 9.7

5.1.126 Tamari Interval-posets

This module implements Tamari interval-posets: combinatorial objects which represent intervals of the Tamari order.
They have been introduced in [CP2015] and allow for many combinatorial operations on Tamari intervals. In particular,
they are linked to DyckWords and BinaryTrees. An introduction into Tamari interval-posets is given in Chapter 7 of
[Pons2013].

The Tamari lattice can be defined as a lattice structure on either of several classes of Catalan objects, especially binary
trees and Dyck paths [Tam1962] [HT1972] [Sta-EC2]. An interval can be seen as a pair of comparable elements. The
number of intervals has been given in [Cha2008].

AUTHORS:

• Viviane Pons 2014: initial implementation

• Frédéric Chapoton 2014: review

• Darij Grinberg 2014: review

• Travis Scrimshaw 2014: review

sage.combinat.interval_posets.TIP
alias of sage.combinat.interval_posets.TamariIntervalPoset

class sage.combinat.interval_posets.TamariIntervalPoset(parent, size, relations=None, check=True)
Bases: sage.structure.element.Element

The class of Tamari interval-posets.

An interval-poset is a labelled poset of size 𝑛, with labels 1, 2, . . . , 𝑛, satisfying the following conditions:

• if 𝑎 < 𝑐 (as integers) and 𝑎 precedes 𝑐 in the poset, then, for all 𝑏 such that 𝑎 < 𝑏 < 𝑐, 𝑏 precedes 𝑐,

• if 𝑎 < 𝑐 (as integers) and 𝑐 precedes 𝑎 in the poset, then, for all 𝑏 such that 𝑎 < 𝑏 < 𝑐, 𝑏 precedes 𝑎.

We use the word “precedes” here to distinguish the poset order and the natural order on numbers. “Precedes”
means “is smaller than with respect to the poset structure”; this does not imply a covering relation.

Interval-posets of size 𝑛 are in bijection with intervals of the Tamari lattice of binary trees of size 𝑛. Specifically,
if 𝑃 is an interval-poset of size 𝑛, then the set of linear extensions of 𝑃 (as permutations in 𝑆𝑛) is an interval in
the right weak order (see permutohedron_lequal()), and is in fact the preimage of an interval in the Tamari
lattice (of binary trees of size 𝑛) under the operation which sends a permutation to its right-to-left binary search
tree (binary_search_tree() with the left_to_right variable set to False) without its labelling.

INPUT:

• size – an integer, the size of the interval-posets (number of vertices)

• relations – a list (or tuple) of pairs (a,b) (themselves lists or tuples), each representing a relation of the
form ‘𝑎 precedes 𝑏’ in the poset.

• check – (default: True) whether to check the interval-poset condition or not.

Warning: The relations input can be a list or tuple, but not an iterator (nor should its entries be iterators).

NOTATION:

Here and in the following, the signs < and > always refer to the natural ordering on integers, whereas the word
“precedes” refers to the order of the interval-poset. “Minimal” and “maximal” refer to the natural ordering on
integers.

1160 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

The increasing relations of an interval-poset 𝑃 mean the pairs (𝑎, 𝑏) of elements of 𝑃 such that 𝑎 < 𝑏 as integers
and 𝑎 precedes 𝑏 in 𝑃 . The initial forest of 𝑃 is the poset obtained by imposing (only) the increasing relations
on the ground set of 𝑃 . It is a sub-interval poset of 𝑃 , and is a forest with its roots on top. This forest is usually
given the structure of a planar forest by ordering brother nodes by their labels; it then has the property that if its
nodes are traversed in post-order (see post_order_traversal(), and traverse the trees of the forest from left
to right as well), then the labels encountered are 1, 2, . . . , 𝑛 in this order.

The decreasing relations of an interval-poset 𝑃 mean the pairs (𝑎, 𝑏) of elements of 𝑃 such that 𝑏 < 𝑎 as integers
and 𝑎 precedes 𝑏 in 𝑃 . The final forest of 𝑃 is the poset obtained by imposing (only) the decreasing relations on
the ground set of 𝑃 . It is a sub-interval poset of 𝑃 , and is a forest with its roots on top. This forest is usually
given the structure of a planar forest by ordering brother nodes by their labels; it then has the property that if its
nodes are traversed in pre-order (see pre_order_traversal(), and traverse the trees of the forest from left to
right as well), then the labels encountered are 1, 2, . . . , 𝑛 in this order.

EXAMPLES:

sage: TamariIntervalPoset(0,[])
The Tamari interval of size 0 induced by relations []
sage: TamariIntervalPoset(3,[])
The Tamari interval of size 3 induced by relations []
sage: TamariIntervalPoset(3,[(1,2)])
The Tamari interval of size 3 induced by relations [(1, 2)]
sage: TamariIntervalPoset(3,[(1,2),(2,3)])
The Tamari interval of size 3 induced by relations [(1, 2), (2, 3)]
sage: TamariIntervalPoset(3,[(1,2),(2,3),(1,3)])
The Tamari interval of size 3 induced by relations [(1, 2), (2, 3)]
sage: TamariIntervalPoset(3,[(1,2),(3,2)])
The Tamari interval of size 3 induced by relations [(1, 2), (3, 2)]
sage: TamariIntervalPoset(3,[[1,2],[2,3]])
The Tamari interval of size 3 induced by relations [(1, 2), (2, 3)]
sage: TamariIntervalPoset(3,[[1,2],[2,3],[1,2],[1,3]])
The Tamari interval of size 3 induced by relations [(1, 2), (2, 3)]

sage: TamariIntervalPoset(3,[(3,4)])
Traceback (most recent call last):
...
ValueError: the relations do not correspond to the size of the poset

sage: TamariIntervalPoset(2,[(2,1),(1,2)])
Traceback (most recent call last):
...
ValueError: The graph is not directed acyclic

sage: TamariIntervalPoset(3,[(1,3)])
Traceback (most recent call last):
...
ValueError: this does not satisfy the Tamari interval-poset condition

It is also possible to transform a poset directly into an interval-poset:

sage: TIP = TamariIntervalPosets()
sage: p = Poset(([1,2,3], [(1,2)]))
sage: TIP(p)
The Tamari interval of size 3 induced by relations [(1, 2)]
sage: TIP(Poset({1: []}))

(continues on next page)

5.1. Comprehensive Module List 1161

Combinatorics, Release 9.7

(continued from previous page)

The Tamari interval of size 1 induced by relations []
sage: TIP(Poset({}))
The Tamari interval of size 0 induced by relations []

binary_trees()
Return an iterator on all the binary trees in the interval represented by self.

See also:

interval_cardinality()

EXAMPLES:

sage: list(TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)]).binary_trees())
[[., [[., [., .]], .]],
[[., [., [., .]]], .],
[., [[[., .], .], .]],
[[., [[., .], .]], .]]
sage: set(TamariIntervalPoset(4,[]).binary_trees()) == set(BinaryTrees(4))
True

complement()
Return the complement of the interval-poset self.

If 𝑃 is a Tamari interval-poset of size 𝑛, then the complement of 𝑃 is defined as the interval-poset𝑄whose
base set is [𝑛] = {1, 2, . . . , 𝑛} (just as for 𝑃), but whose order relation has 𝑎 precede 𝑏 if and only if
𝑛+ 1− 𝑎 precedes 𝑛+ 1− 𝑏 in 𝑃 .

In terms of the Tamari lattice, the complement is the symmetric of self. It is formed from
the left-right symmetrized of the binary trees of the interval (switching left and right subtrees, see
left_right_symmetry()). In particular, initial intervals are sent to final intervals and vice-versa.

EXAMPLES:

sage: TamariIntervalPoset(3, [(2, 1), (3, 1)]).complement()
The Tamari interval of size 3 induced by relations [(1, 3), (2, 3)]
sage: TamariIntervalPoset(0, []).complement()
The Tamari interval of size 0 induced by relations []
sage: ip = TamariIntervalPoset(4, [(1, 2), (2, 4), (3, 4)])
sage: ip.complement() == TamariIntervalPoset(4, [(2, 1), (3, 1), (4, 3)])
True
sage: ip.lower_binary_tree() == ip.complement().upper_binary_tree().left_right_
→˓symmetry()
True
sage: ip.upper_binary_tree() == ip.complement().lower_binary_tree().left_right_
→˓symmetry()
True
sage: ip.is_initial_interval()
True
sage: ip.complement().is_final_interval()
True

contains_binary_tree(binary_tree)
Return whether the interval represented by self contains the binary tree binary_tree.

INPUT:

1162 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• binary_tree – a binary tree

See also:

contains_dyck_word()

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: ip.contains_binary_tree(BinaryTree([[None,[None,[]]],None]))
True
sage: ip.contains_binary_tree(BinaryTree([None,[[[],None],None]]))
True
sage: ip.contains_binary_tree(BinaryTree([[],[[],None]]))
False
sage: ip.contains_binary_tree(ip.lower_binary_tree())
True
sage: ip.contains_binary_tree(ip.upper_binary_tree())
True
sage: all(ip.contains_binary_tree(bt) for bt in ip.binary_trees())
True

contains_dyck_word(dyck_word)
Return whether the interval represented by self contains the Dyck word dyck_word.

INPUT:

• dyck_word – a Dyck word

See also:

contains_binary_tree()

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: ip.contains_dyck_word(DyckWord([1,1,1,0,0,0,1,0]))
True
sage: ip.contains_dyck_word(DyckWord([1,1,0,1,0,1,0,0]))
True
sage: ip.contains_dyck_word(DyckWord([1,0,1,1,0,1,0,0]))
False
sage: ip.contains_dyck_word(ip.lower_dyck_word())
True
sage: ip.contains_dyck_word(ip.upper_dyck_word())
True
sage: all(ip.contains_dyck_word(bt) for bt in ip.dyck_words())
True

contains_interval(other)
Return whether the interval represented by other is contained in self as an interval of the Tamari lattice.

In terms of interval-posets, it means that all relations of self are relations of other.

INPUT:

• other – an interval-poset

EXAMPLES:

5.1. Comprehensive Module List 1163

Combinatorics, Release 9.7

sage: ip1 = TamariIntervalPoset(4,[(1,2),(2,3),(4,3)])
sage: ip2 = TamariIntervalPoset(4,[(2,3)])
sage: ip2.contains_interval(ip1)
True
sage: ip3 = TamariIntervalPoset(4,[(2,1)])
sage: ip2.contains_interval(ip3)
False
sage: ip4 = TamariIntervalPoset(3,[(2,3)])
sage: ip2.contains_interval(ip4)
False

cubical_coordinates()
Return the cubical coordinates of self.

This provides a fast and natural way to order the set of interval-posets of a given size.

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(2,3)])
sage: ip.cubical_coordinates()
(-1, -2, 0)

REFERENCES:

• [Com2019]

decomposition_to_triple()
Decompose an interval-poset into a triple (left, right, r).

For the inverse method, see TamariIntervalPosets.recomposition_from_triple().

OUTPUT:

a triple (left, right, r) where left and right are interval-posets and r (an integer) is the parameter of
the decomposition.

EXAMPLES:

sage: tip = TamariIntervalPoset(8, [(1,2), (2,4), (3,4), (6,7), (3,2), (5,4),␣
→˓(6,4), (8,7)])
sage: tip.decomposition_to_triple()
(The Tamari interval of size 3 induced by relations [(1, 2), (3, 2)],
The Tamari interval of size 4 induced by relations [(2, 3), (4, 3)],
2)
sage: tip == TamariIntervalPosets.recomposition_from_triple(*tip.decomposition_
→˓to_triple())
True

REFERENCES:

• [CP2015]

decreasing_children(v)
Return the children of v in the final forest of self.

INPUT:

• v – an integer representing a vertex of self (between 1 and size)

OUTPUT:

1164 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The list of all children of v in the final forest of self, in increasing order.

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(3,5),(4,5)]);␣
→˓ip
The Tamari interval of size 6 induced by relations [(1, 2), (3, 5), (4, 5), (6,␣
→˓5), (5, 2), (4, 3), (3, 2)]
sage: ip.decreasing_children(2)
[3, 5]
sage: ip.decreasing_children(3)
[4]
sage: ip.decreasing_children(1)
[]

decreasing_cover_relations()
Return the cover relations of the final forest of self.

This is the poset formed by keeping only the relations of the form 𝑎 precedes 𝑏 with 𝑎 > 𝑏.

The final forest of self is a forest with its roots being on top. It is also called the decreasing poset of self.

Warning: This method computes the cover relations of the final forest. This is not identical with the
cover relations of self which happen to be decreasing!

See also:

final_forest()

EXAMPLES:

sage: TamariIntervalPoset(4,[(2,1),(3,2),(3,4),(4,2)]).decreasing_cover_
→˓relations()
[(4, 2), (3, 2), (2, 1)]
sage: TamariIntervalPoset(4,[(2,1),(4,3),(2,3)]).decreasing_cover_relations()
[(4, 3), (2, 1)]
sage: TamariIntervalPoset(3,[(2,1),(3,1),(3,2)]).decreasing_cover_relations()
[(3, 2), (2, 1)]

decreasing_parent(v)
Return the vertex parent of v in the final forest of self.

This is the highest (as integer!) vertex 𝑎 < 𝑣 such that v precedes a. If there is no such vertex (that is, 𝑣 is
a decreasing root), then None is returned.

INPUT:

• v – an integer representing a vertex of self (between 1 and size)

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(3,5),(4,5)]);␣
→˓ip
The Tamari interval of size 6 induced by relations [(1, 2), (3, 5), (4, 5), (6,␣
→˓5), (5, 2), (4, 3), (3, 2)]
sage: ip.decreasing_parent(4)
3

(continues on next page)

5.1. Comprehensive Module List 1165

Combinatorics, Release 9.7

(continued from previous page)

sage: ip.decreasing_parent(3)
2
sage: ip.decreasing_parent(5)
2
sage: ip.decreasing_parent(2) is None
True

decreasing_roots()
Return the root vertices of the final forest of self.

These are the vertices 𝑏 such that there is no 𝑎 < 𝑏 with 𝑏 preceding 𝑎.

OUTPUT:

The list of all roots of the final forest of self, in increasing order.

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(3,5),(4,5)]);␣
→˓ip
The Tamari interval of size 6 induced by relations [(1, 2), (3, 5), (4, 5), (6,␣
→˓5), (5, 2), (4, 3), (3, 2)]
sage: ip.decreasing_roots()
[1, 2]
sage: ip.final_forest().decreasing_roots()
[1, 2]

dyck_words()
Return an iterator on all the Dyck words in the interval represented by self.

EXAMPLES:

sage: list(TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)]).dyck_words())
[[1, 1, 1, 0, 0, 1, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 0],
[1, 1, 0, 1, 0, 1, 0, 0],
[1, 1, 0, 1, 0, 0, 1, 0]]
sage: set(TamariIntervalPoset(4,[]).dyck_words()) == set(DyckWords(4))
True

factor()
Return the unique decomposition as a list of connected components.

EXAMPLES:

sage: factor(TamariIntervalPoset(2,[])) # indirect doctest
[The Tamari interval of size 1 induced by relations [],
The Tamari interval of size 1 induced by relations []]

See also:

is_connected()

final_forest()
Return the final forest of self, i.e., the interval-poset formed with only the decreasing relations of self.

1166 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

initial_forest()

EXAMPLES:

sage: TamariIntervalPoset(4,[(2,1),(3,2),(3,4),(4,2)]).final_forest()
The Tamari interval of size 4 induced by relations [(4, 2), (3, 2), (2, 1)]
sage: ip = TamariIntervalPoset(3,[(2,1),(3,1)])
sage: ip.final_forest() == ip
True

ge(e1, e2)
Return whether e2 precedes or equals e1 in self.

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(2,3)])
sage: ip.ge(2,1)
True
sage: ip.ge(3,1)
True
sage: ip.ge(3,2)
True
sage: ip.ge(4,3)
False
sage: ip.ge(1,1)
True

grafting_tree()
Return the grafting tree of the interval-poset.

For the inverse method, see TamariIntervalPosets.from_grafting_tree().

EXAMPLES:

sage: tip = TamariIntervalPoset(8, [(1,2), (2,4), (3,4), (6,7), (3,2), (5,4),␣
→˓(6,4), (8,7)])
sage: tip.grafting_tree()
2[1[0[., .], 0[., .]], 0[., 1[0[., .], 0[., .]]]]
sage: tip == TamariIntervalPosets.from_grafting_tree(tip.grafting_tree())
True

REFERENCES:

• [Pons2018]

gt(e1, e2)
Return whether e2 strictly precedes e1 in self.

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(2,3)])
sage: ip.gt(2,1)
True
sage: ip.gt(3,1)
True
sage: ip.gt(3,2)

(continues on next page)

5.1. Comprehensive Module List 1167

Combinatorics, Release 9.7

(continued from previous page)

True
sage: ip.gt(4,3)
False
sage: ip.gt(1,1)
False

increasing_children(v)
Return the children of v in the initial forest of self.

INPUT:

• v – an integer representing a vertex of self (between 1 and size)

OUTPUT:

The list of all children of v in the initial forest of self, in decreasing order.

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(3,5),(4,5)]);␣
→˓ip
The Tamari interval of size 6 induced by relations [(1, 2), (3, 5), (4, 5), (6,␣
→˓5), (5, 2), (4, 3), (3, 2)]
sage: ip.increasing_children(2)
[1]
sage: ip.increasing_children(5)
[4, 3]
sage: ip.increasing_children(1)
[]

increasing_cover_relations()
Return the cover relations of the initial forest of self.

This is the poset formed by keeping only the relations of the form 𝑎 precedes 𝑏 with 𝑎 < 𝑏.

The initial forest of self is a forest with its roots being on top. It is also called the increasing poset of
self.

Warning: This method computes the cover relations of the initial forest. This is not identical with the
cover relations of self which happen to be increasing!

See also:

initial_forest()

EXAMPLES:

sage: TamariIntervalPoset(4,[(1,2),(3,2),(2,4),(3,4)]).increasing_cover_
→˓relations()
[(1, 2), (2, 4), (3, 4)]
sage: TamariIntervalPoset(3,[(1,2),(1,3),(2,3)]).increasing_cover_relations()
[(1, 2), (2, 3)]

increasing_parent(v)
Return the vertex parent of v in the initial forest of self.

1168 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

This is the lowest (as integer!) vertex 𝑏 > 𝑣 such that 𝑣 precedes 𝑏. If there is no such vertex (that is, 𝑣 is
an increasing root), then None is returned.

INPUT:

• v – an integer representing a vertex of self (between 1 and size)

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(3,5),(4,5)]);␣
→˓ip
The Tamari interval of size 6 induced by relations [(1, 2), (3, 5), (4, 5), (6,␣
→˓5), (5, 2), (4, 3), (3, 2)]
sage: ip.increasing_parent(1)
2
sage: ip.increasing_parent(3)
5
sage: ip.increasing_parent(4)
5
sage: ip.increasing_parent(5) is None
True

increasing_roots()
Return the root vertices of the initial forest of self.

These are the vertices 𝑎 of self such that there is no 𝑏 > 𝑎 with 𝑎 precedes 𝑏.

OUTPUT:

The list of all roots of the initial forest of self, in decreasing order.

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(3,5),(4,5)]);␣
→˓ip
The Tamari interval of size 6 induced by relations [(1, 2), (3, 5), (4, 5), (6,␣
→˓5), (5, 2), (4, 3), (3, 2)]
sage: ip.increasing_roots()
[6, 5, 2]
sage: ip.initial_forest().increasing_roots()
[6, 5, 2]

initial_forest()
Return the initial forest of self, i.e., the interval-poset formed from only the increasing relations of self.

See also:

final_forest()

EXAMPLES:

sage: TamariIntervalPoset(4,[(1,2),(3,2),(2,4),(3,4)]).initial_forest()
The Tamari interval of size 4 induced by relations [(1, 2), (2, 4), (3, 4)]
sage: ip = TamariIntervalPoset(4,[(1,2),(2,3)])
sage: ip.initial_forest() == ip
True

insertion(i)
Return the Tamari insertion of an integer 𝑖 into the interval-poset self.

5.1. Comprehensive Module List 1169

Combinatorics, Release 9.7

If 𝑃 is a Tamari interval-poset of size 𝑛 and 𝑖 is an integer with 1 ≤ 𝑖 ≤ 𝑛+ 1, then the Tamari insertion of
𝑖 into 𝑃 is defined as the Tamari interval-poset of size 𝑛+ 1 which corresponds to the interval [𝐶1, 𝐶2] on
the Tamari lattice, where the binary trees 𝐶1 and 𝐶2 are defined as follows: We write the interval-poset 𝑃
as [𝐵1, 𝐵2] for two binary trees𝐵1 and𝐵2. We label the vertices of each of these two trees with the integers
1, 2, . . . , 𝑖− 1, 𝑖+ 1, 𝑖+ 2, . . . , 𝑛+ 1 in such a way that the trees are binary search trees (this labelling is
unique). Then, we insert 𝑖 into each of these trees (in the way as explained in binary_search_insert()).
The shapes of the resulting two trees are denoted 𝐶1 and 𝐶2.

An alternative way to construct the insertion of 𝑖 into 𝑃 is by relabeling each vertex 𝑢 of 𝑃 satisfying 𝑢 ≥ 𝑖
(as integers) as 𝑢+ 1, and then adding a vertex 𝑖 which should precede 𝑖− 1 and 𝑖+ 1.

Todo: To study this, it would be more natural to define interval-posets on arbitrary ordered sets rather than
just on {1, 2, . . . , 𝑛}.

EXAMPLES:

sage: ip = TamariIntervalPoset(4, [(2, 3), (4, 3)]); ip
The Tamari interval of size 4 induced by relations [(2, 3), (4, 3)]
sage: ip.insertion(1)
The Tamari interval of size 5 induced by relations [(1, 2), (3, 4), (5, 4)]
sage: ip.insertion(2)
The Tamari interval of size 5 induced by relations [(2, 3), (3, 4), (5, 4), (2,␣
→˓1)]
sage: ip.insertion(3)
The Tamari interval of size 5 induced by relations [(2, 4), (3, 4), (5, 4), (3,␣
→˓2)]
sage: ip.insertion(4)
The Tamari interval of size 5 induced by relations [(2, 3), (4, 5), (5, 3), (4,␣
→˓3)]
sage: ip.insertion(5)
The Tamari interval of size 5 induced by relations [(2, 3), (5, 4), (4, 3)]

sage: ip = TamariIntervalPoset(0, [])
sage: ip.insertion(1)
The Tamari interval of size 1 induced by relations []

sage: ip = TamariIntervalPoset(1, [])
sage: ip.insertion(1)
The Tamari interval of size 2 induced by relations [(1, 2)]
sage: ip.insertion(2)
The Tamari interval of size 2 induced by relations [(2, 1)]

intersection(other)
Return the interval-poset formed by combining the relations from both self and other. It corresponds to
the intersection of the two corresponding intervals of the Tamari lattice.

INPUT:

• other – an interval-poset of the same size as self

EXAMPLES:

sage: ip1 = TamariIntervalPoset(4,[(1,2),(2,3)])
sage: ip2 = TamariIntervalPoset(4,[(4,3)])
sage: ip1.intersection(ip2)

(continues on next page)

1170 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

The Tamari interval of size 4 induced by relations [(1, 2), (2, 3), (4, 3)]
sage: ip3 = TamariIntervalPoset(4,[(2,1)])
sage: ip1.intersection(ip3)
Traceback (most recent call last):
...
ValueError: this intersection is empty, it does not correspond to an interval-
→˓poset
sage: ip4 = TamariIntervalPoset(3,[(2,3)])
sage: ip2.intersection(ip4)
Traceback (most recent call last):
...
ValueError: intersections are only possible on interval-posets of the same size

interval_cardinality()
Return the cardinality of the interval, i.e., the number of elements (binary trees or Dyck words) in the
interval represented by self.

Not to be confused with size() which is the number of vertices.

See also:

binary_trees()

EXAMPLES:

sage: TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)]).interval_cardinality()
4
sage: TamariIntervalPoset(4,[]).interval_cardinality()
14
sage: TamariIntervalPoset(4,[(1,2),(2,3),(3,4)]).interval_cardinality()
1

is_connected()
Return whether self is a connected Tamari interval.

This means that the Hasse diagram is connected.

This condition is invariant under complementation.

See also:

is_indecomposable(), factor()

EXAMPLES:

sage: len([T for T in TamariIntervalPosets(3) if T.is_connected()])
8

is_dexter()
Return whether self is a dexter Tamari interval.

This is defined by an exclusion pattern in the Hasse diagram. See the code for the exact description.

This condition is not invariant under complementation.

EXAMPLES:

sage: len([T for T in TamariIntervalPosets(3) if T.is_dexter()])
12

5.1. Comprehensive Module List 1171

Combinatorics, Release 9.7

is_exceptional()
Return whether self is an exceptional Tamari interval.

This is defined by exclusion of a simple pattern in the Hasse diagram, namely there is no configuration y
<-- x --> z with 1 ≤ 𝑦 < 𝑥 < 𝑧 ≤ 𝑛.

This condition is invariant under complementation.

EXAMPLES:

sage: len([T for T in TamariIntervalPosets(3)
....: if T.is_exceptional()])
12

is_final_interval()
Return if self corresponds to a final interval of the Tamari lattice.

This means that its upper end is the largest element of the lattice. It consists of checking that self does
not contain any increasing relations.

See also:

is_initial_interval()

EXAMPLES:

sage: ip = TamariIntervalPoset(4, [(4, 3), (3, 1), (2, 1)])
sage: ip.is_final_interval()
True
sage: ip.upper_dyck_word()
[1, 1, 1, 1, 0, 0, 0, 0]
sage: ip = TamariIntervalPoset(4, [(4, 3), (3, 1), (2, 1), (2, 3)])
sage: ip.is_final_interval()
False
sage: ip.upper_dyck_word()
[1, 1, 0, 1, 1, 0, 0, 0]
sage: all(dw.tamari_interval(DyckWord([1, 1, 1, 0, 0, 0])).is_final_interval()␣
→˓for dw in DyckWords(3))
True

is_indecomposable()
Return whether self is an indecomposable Tamari interval.

This is the terminology of [Cha2008].

This means that the upper binary tree has an empty left subtree.

This condition is not invariant under complementation.

See also:

is_connected()

EXAMPLES:

sage: len([T for T in TamariIntervalPosets(3)
....: if T.is_indecomposable()])
8

is_infinitely_modern()
Return whether self is an infinitely-modern Tamari interval.

1172 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

This is defined by the exclusion of the configuration 𝑖→ 𝑖+ 1 and 𝑗 + 1→ 𝑗 with 𝑖 < 𝑗.

This condition is invariant under complementation.

See also:

is_new(), is_modern()

EXAMPLES:

sage: len([T for T in TamariIntervalPosets(3)
....: if T.is_infinitely_modern()])
12

REFERENCES:

• [Rog2018]

is_initial_interval()
Return if self corresponds to an initial interval of the Tamari lattice.

This means that its lower end is the smallest element of the lattice. It consists of checking that self does
not contain any decreasing relations.

See also:

is_final_interval()

EXAMPLES:

sage: ip = TamariIntervalPoset(4, [(1, 2), (2, 4), (3, 4)])
sage: ip.is_initial_interval()
True
sage: ip.lower_dyck_word()
[1, 0, 1, 0, 1, 0, 1, 0]
sage: ip = TamariIntervalPoset(4, [(1, 2), (2, 4), (3, 4), (3, 2)])
sage: ip.is_initial_interval()
False
sage: ip.lower_dyck_word()
[1, 0, 1, 1, 0, 0, 1, 0]
sage: all(DyckWord([1,0,1,0,1,0]).tamari_interval(dw).is_initial_interval() for␣
→˓dw in DyckWords(3))
True

is_linear_extension(perm)
Return whether the permutation perm is a linear extension of self.

INPUT:

• perm – a permutation of the size of self

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(2,3),(4,3)])
sage: ip.is_linear_extension([1,4,2,3])
True
sage: ip.is_linear_extension(Permutation([1,4,2,3]))
True
sage: ip.is_linear_extension(Permutation([1,4,3,2]))
False

5.1. Comprehensive Module List 1173

Combinatorics, Release 9.7

is_modern()
Return whether self is a modern Tamari interval.

This is defined by exclusion of a simple pattern in the Hasse diagram, namely there is no configuration
𝑦 → 𝑥← 𝑧 with 1 ≤ 𝑦 < 𝑥 < 𝑧 ≤ 𝑛.

This condition is invariant under complementation.

See also:

is_new(), is_infinitely_modern()

EXAMPLES:

sage: len([T for T in TamariIntervalPosets(3) if T.is_modern()])
12

REFERENCES:

• [Rog2018]

is_new()
Return whether self is a new Tamari interval.

Here ‘new’ means that the interval is not contained in any facet of the associahedron. This condition is
invariant under complementation.

They have been considered in section 9 of [Cha2008].

See also:

is_modern()

EXAMPLES:

sage: TIP4 = TamariIntervalPosets(4)
sage: len([u for u in TIP4 if u.is_new()])
12

sage: TIP3 = TamariIntervalPosets(3)
sage: len([u for u in TIP3 if u.is_new()])
3

is_simple()
Return whether self is a simple Tamari interval.

Here ‘simple’ means that the interval contains a unique binary tree.

These intervals define the simple modules over the incidence algebras of the Tamari lattices.

See also:

is_final_interval(), is_initial_interval()

EXAMPLES:

sage: TIP4 = TamariIntervalPosets(4)
sage: len([u for u in TIP4 if u.is_simple()])
14

sage: TIP3 = TamariIntervalPosets(3)
sage: len([u for u in TIP3 if u.is_simple()])
5

1174 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

is_synchronized()
Return whether self is a synchronized Tamari interval.

This means that the upper and lower binary trees have the same canopee. This condition is invariant under
complementation.

This has been considered in [FPR2015]. The numbers of synchronized intervals are given by the sequence
OEIS sequence A000139.

EXAMPLES:

sage: len([T for T in TamariIntervalPosets(3)
....: if T.is_synchronized()])
6

latex_options()
Return the latex options for use in the _latex_ function as a dictionary.

The default values are set using the options.

• tikz_scale – (default: 1) scale for use with the tikz package

• line_width – (default: 1) value representing the line width (additionally scaled by tikz_scale)

• color_decreasing – (default: 'red') the color for decreasing relations

• color_increasing – (default: 'blue') the color for increasing relations

• hspace – (default: 1) the difference between horizontal coordinates of adjacent vertices

• vspace – (default: 1) the difference between vertical coordinates of adjacent vertices

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: ip.latex_options()['color_decreasing']
'red'
sage: ip.latex_options()['hspace']
1

le(e1, e2)
Return whether e1 precedes or equals e2 in self.

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(2,3)])
sage: ip.le(1,2)
True
sage: ip.le(1,3)
True
sage: ip.le(2,3)
True
sage: ip.le(3,4)
False
sage: ip.le(1,1)
True

left_branch_involution()
Return the image of self by the left-branch involution.

OUTPUT: an interval-poset

5.1. Comprehensive Module List 1175

https://oeis.org/A000139

Combinatorics, Release 9.7

See also:

rise_contact_involution()

EXAMPLES:

sage: tip = TamariIntervalPoset(8, [(1,2), (2,4), (3,4), (6,7), (3,2), (5,4),␣
→˓(6,4), (8,7)])
sage: t = tip.left_branch_involution(); t
The Tamari interval of size 8 induced by relations [(1, 6), (2, 6),
(3, 5), (4, 5), (5, 6), (6, 8), (7, 8), (7, 6), (4, 3), (3, 1),
(2, 1)]
sage: t.left_branch_involution() == tip
True

REFERENCES:

• [Pons2018]

linear_extensions()
Return an iterator on the permutations which are linear extensions of self.

They form an interval of the right weak order (also called the right permutohedron order – see
permutohedron_lequal() for a definition).

EXAMPLES:

sage: ip = TamariIntervalPoset(3,[(1,2),(3,2)])
sage: list(ip.linear_extensions())
[[3, 1, 2], [1, 3, 2]]
sage: ip = TamariIntervalPoset(4,[(1,2),(2,3),(4,3)])
sage: list(ip.linear_extensions())
[[4, 1, 2, 3], [1, 2, 4, 3], [1, 4, 2, 3]]

lower_binary_tree()
Return the lowest binary tree in the interval of the Tamari lattice represented by self.

This is a binary tree. It is the shape of the unique binary search tree whose left-branch ordered forest (i.e.,
the result of applying to_ordered_tree_left_branch() and cutting off the root) is the final forest of
self.

See also:

lower_dyck_word()

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(4,5)]); ip
The Tamari interval of size 6 induced by relations [(1, 2), (4, 5), (6, 5), (5,␣
→˓2), (4, 3), (3, 2)]
sage: ip.lower_binary_tree()
[[., .], [[., [., .]], [., .]]]
sage: TamariIntervalPosets.final_forest(ip.lower_binary_tree()) == ip.final_
→˓forest()
True
sage: ip == TamariIntervalPosets.from_binary_trees(ip.lower_binary_tree(),ip.
→˓upper_binary_tree())
True

1176 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

lower_contained_intervals()
If self represents the interval [𝑡1, 𝑡2] of the Tamari lattice, return an iterator on all intervals [𝑡1, 𝑡] with
𝑡 ≤ 𝑡2 for the Tamari lattice.

In terms of interval-posets, it corresponds to adding all possible relations of the form 𝑛 precedes 𝑚 with
𝑛 < 𝑚.

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: list(ip.lower_contained_intervals())
[The Tamari interval of size 4 induced by relations [(2, 4), (3, 4), (3, 1), (2,
→˓ 1)],
The Tamari interval of size 4 induced by relations [(1, 4), (2, 4), (3, 4), (3,
→˓ 1), (2, 1)],
The Tamari interval of size 4 induced by relations [(2, 3), (3, 4), (3, 1), (2,
→˓ 1)],
The Tamari interval of size 4 induced by relations [(1, 4), (2, 3), (3, 4), (3,
→˓ 1), (2, 1)]]
sage: ip = TamariIntervalPoset(4,[])
sage: len(list(ip.lower_contained_intervals()))
14

lower_contains_interval(other)
Return whether the interval represented by other is contained in self as an interval of the Tamari lattice
and if they share the same lower bound.

As interval-posets, it means that other contains the relations of self plus some extra increasing relations.

INPUT:

• other – an interval-poset

EXAMPLES:

sage: ip1 = TamariIntervalPoset(4,[(1,2),(2,3),(4,3)])
sage: ip2 = TamariIntervalPoset(4,[(4,3)])
sage: ip2.lower_contains_interval(ip1)
True
sage: ip2.contains_interval(ip1) and ip2.lower_binary_tree() == ip1.lower_
→˓binary_tree()
True
sage: ip3 = TamariIntervalPoset(4,[(4,3),(2,1)])
sage: ip2.contains_interval(ip3)
True
sage: ip2.lower_binary_tree() == ip3.lower_binary_tree()
False
sage: ip2.lower_contains_interval(ip3)
False

lower_dyck_word()
Return the lowest Dyck word in the interval of the Tamari lattice represented by self.

See also:

lower_binary_tree()

EXAMPLES:

5.1. Comprehensive Module List 1177

Combinatorics, Release 9.7

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(4,5)]); ip
The Tamari interval of size 6 induced by relations [(1, 2), (4, 5), (6, 5), (5,␣
→˓2), (4, 3), (3, 2)]
sage: ip.lower_dyck_word()
[1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0]
sage: TamariIntervalPosets.final_forest(ip.lower_dyck_word()) == ip.final_
→˓forest()
True
sage: ip == TamariIntervalPosets.from_dyck_words(ip.lower_dyck_word(),ip.upper_
→˓dyck_word())
True

lt(e1, e2)
Return whether e1 strictly precedes e2 in self.

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(2,3)])
sage: ip.lt(1,2)
True
sage: ip.lt(1,3)
True
sage: ip.lt(2,3)
True
sage: ip.lt(3,4)
False
sage: ip.lt(1,1)
False

max_linear_extension()
Return the maximal permutation for the right weak order which is a linear extension of self.

This is also the maximal permutation in the sylvester class of self.upper_binary_tree() and is a 132-
avoiding permutation.

The right weak order is also known as the right permutohedron order. See permutohedron_lequal() for
its definition.

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(2,3),(4,3)])
sage: ip.max_linear_extension()
[4, 1, 2, 3]
sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(4,5)]); ip
The Tamari interval of size 6 induced by relations [(1, 2), (4, 5), (6, 5), (5,␣
→˓2), (4, 3), (3, 2)]
sage: ip.max_linear_extension()
[6, 4, 5, 3, 1, 2]
sage: ip = TamariIntervalPoset(0,[]); ip
The Tamari interval of size 0 induced by relations []
sage: ip.max_linear_extension()
[]
sage: ip = TamariIntervalPoset(5, [(1, 4), (2, 4), (3, 4), (5, 4)]); ip
The Tamari interval of size 5 induced by relations [(1, 4), (2, 4), (3, 4), (5,␣
→˓4)]

(continues on next page)

1178 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: ip.max_linear_extension()
[5, 3, 2, 1, 4]

maximal_chain_binary_trees()
Return an iterator on the binary trees forming a longest chain of self (regarding self as an interval of the
Tamari lattice).

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: list(ip.maximal_chain_binary_trees())
[[[., [[., .], .]], .], [., [[[., .], .], .]], [., [[., [., .]], .]]]
sage: ip = TamariIntervalPoset(4,[])
sage: list(ip.maximal_chain_binary_trees())
[[[[[., .], .], .], .],
[[[., [., .]], .], .],
[[., [[., .], .]], .],
[., [[[., .], .], .]],
[., [[., [., .]], .]],
[., [., [[., .], .]]],
[., [., [., [., .]]]]]

maximal_chain_dyck_words()
Return an iterator on the Dyck words forming a longest chain of self (regarding self as an interval of the
Tamari lattice).

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: list(ip.maximal_chain_dyck_words())
[[1, 1, 0, 1, 0, 0, 1, 0], [1, 1, 0, 1, 0, 1, 0, 0], [1, 1, 1, 0, 0, 1, 0, 0]]
sage: ip = TamariIntervalPoset(4,[])
sage: list(ip.maximal_chain_dyck_words())
[[1, 0, 1, 0, 1, 0, 1, 0],
[1, 1, 0, 0, 1, 0, 1, 0],
[1, 1, 0, 1, 0, 0, 1, 0],
[1, 1, 0, 1, 0, 1, 0, 0],
[1, 1, 1, 0, 0, 1, 0, 0],
[1, 1, 1, 0, 1, 0, 0, 0],
[1, 1, 1, 1, 0, 0, 0, 0]]

maximal_chain_tamari_intervals()
Return an iterator on the upper contained intervals of one longest chain of the Tamari interval represented
by self.

If self represents the interval [𝑇1, 𝑇2] of the Tamari lattice, this returns intervals [𝑇 ′, 𝑇2] with 𝑇 ′ following
one longest chain between 𝑇1 and 𝑇2.

To obtain a longest chain, we use the Tamari inversions of self. The elements of the chain are obtained
by adding one by one the relations (𝑏, 𝑎) from each Tamari inversion (𝑎, 𝑏) to self, where the Tamari
inversions are taken in lexicographic order.

EXAMPLES:

5.1. Comprehensive Module List 1179

Combinatorics, Release 9.7

sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: list(ip.maximal_chain_tamari_intervals())
[The Tamari interval of size 4 induced by relations [(2, 4), (3, 4), (3, 1), (2,
→˓ 1)],
The Tamari interval of size 4 induced by relations [(2, 4), (3, 4), (4, 1), (3,
→˓ 1), (2, 1)],
The Tamari interval of size 4 induced by relations [(2, 4), (3, 4), (4, 1), (3,
→˓ 2), (2, 1)]]
sage: ip = TamariIntervalPoset(4,[])
sage: list(ip.maximal_chain_tamari_intervals())
[The Tamari interval of size 4 induced by relations [],
The Tamari interval of size 4 induced by relations [(2, 1)],
The Tamari interval of size 4 induced by relations [(3, 1), (2, 1)],
The Tamari interval of size 4 induced by relations [(4, 1), (3, 1), (2, 1)],
The Tamari interval of size 4 induced by relations [(4, 1), (3, 2), (2, 1)],
The Tamari interval of size 4 induced by relations [(4, 2), (3, 2), (2, 1)],
The Tamari interval of size 4 induced by relations [(4, 3), (3, 2), (2, 1)]]

min_linear_extension()
Return the minimal permutation for the right weak order which is a linear extension of self.

This is also the minimal permutation in the sylvester class of self.lower_binary_tree() and is a 312-
avoiding permutation.

The right weak order is also known as the right permutohedron order. See permutohedron_lequal() for
its definition.

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(2,3),(4,3)])
sage: ip.min_linear_extension()
[1, 2, 4, 3]
sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(4,5)])
sage: ip.min_linear_extension()
[1, 4, 3, 6, 5, 2]
sage: ip = TamariIntervalPoset(0,[])
sage: ip.min_linear_extension()
[]
sage: ip = TamariIntervalPoset(5, [(1, 4), (2, 4), (3, 4), (5, 4)]); ip
The Tamari interval of size 5 induced by relations [(1, 4), (2, 4), (3, 4), (5,␣
→˓4)]
sage: ip.min_linear_extension()
[1, 2, 3, 5, 4]

new_decomposition()
Return the decomposition of the interval-poset into new interval-posets.

Every interval-poset has a unique decomposition as a planar tree of new interval-posets, as explained in
[Cha2008]. This function computes the terms of this decomposition, but not the planar tree.

For the number of terms, you can use instead the method number_of_new_components().

OUTPUT:

a list of new interval-posets.

1180 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

number_of_new_components(), is_new()

EXAMPLES:

sage: ex = TamariIntervalPosets(4)[11]
sage: ex.number_of_new_components()
3
sage: ex.new_decomposition()
[The Tamari interval of size 1 induced by relations [],
The Tamari interval of size 2 induced by relations [],
The Tamari interval of size 1 induced by relations []]

number_of_new_components()
Return the number of terms in the decomposition in new interval-posets.

Every interval-poset has a unique decomposition as a planar tree of new interval-posets, as explained in
[Cha2008]. This function just computes the number of terms, not the planar tree nor the terms themselves.

See also:

is_new(), new_decomposition()

EXAMPLES:

sage: TIP4 = TamariIntervalPosets(4)
sage: nb = [u.number_of_new_components() for u in TIP4]
sage: [nb.count(i) for i in range(1, 5)]
[12, 21, 21, 14]

number_of_tamari_inversions()
Return the number of Tamari inversions of self.

This is also the length the longest chain of the Tamari interval represented by self.

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: ip.number_of_tamari_inversions()
2
sage: ip = TamariIntervalPoset(4,[])
sage: ip.number_of_tamari_inversions()
6
sage: ip = TamariIntervalPoset(3,[])
sage: ip.number_of_tamari_inversions()
3

plot(**kwds)
Return a picture.

The picture represents the Hasse diagram, where the covers are colored in blue if they are increasing and
in red if they are decreasing.

This uses the same coordinates as the latex view.

EXAMPLES:

5.1. Comprehensive Module List 1181

Combinatorics, Release 9.7

sage: ti = TamariIntervalPosets(4)[2]
sage: ti.plot()
Graphics object consisting of 6 graphics primitives

poset()
Return self as a labelled poset.

An interval-poset is indeed constructed from a labelled poset which is stored internally. This method allows
to access the poset and all the associated methods.

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(3,2),(2,4),(3,4)])
sage: pos = ip.poset(); pos
Finite poset containing 4 elements
sage: pos.maximal_chains()
[[3, 2, 4], [1, 2, 4]]
sage: pos.maximal_elements()
[4]
sage: pos.is_lattice()
False

rise_contact_involution()
Return the image of self by the rise-contact involution.

OUTPUT: an interval-poset

This is defined by conjugating the complement involution by the left-branch involution.

See also:

left_branch_involution(), complement()

EXAMPLES:

sage: tip = TamariIntervalPoset(8, [(1,2), (2,4), (3,4), (6,7), (3,2), (5,4),␣
→˓(6,4), (8,7)])
sage: t = tip.rise_contact_involution(); t
The Tamari interval of size 8 induced by relations [(2, 8), (3, 8),
(4, 5), (5, 7), (6, 7), (7, 8), (8, 1), (7, 2), (6, 2), (5, 3),
(4, 3), (3, 2), (2, 1)]
sage: t.rise_contact_involution() == tip
True
sage: tip.lower_dyck_word().number_of_touch_points() == t.upper_dyck_word().
→˓number_of_initial_rises()
True
sage: tip.number_of_tamari_inversions() == t.number_of_tamari_inversions()
True

REFERENCES:

• [Pons2018]

set_latex_options(D)
Set the latex options for use in the _latex_ function.

The default values are set in the __init__ function.

• tikz_scale – (default: 1) scale for use with the tikz package

1182 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• line_width – (default: 1 * tikz_scale) value representing the line width

• color_decreasing – (default: red) the color for decreasing relations

• color_increasing – (default: blue) the color for increasing relations

• hspace – (default: 1) the difference between horizontal coordinates of adjacent vertices

• vspace – (default: 1) the difference between vertical coordinates of adjacent vertices

INPUT:

• D – a dictionary with a list of latex parameters to change

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: ip.latex_options()["color_decreasing"]
'red'
sage: ip.set_latex_options({"color_decreasing":'green'})
sage: ip.latex_options()["color_decreasing"]
'green'
sage: ip.set_latex_options({"color_increasing":'black'})
sage: ip.latex_options()["color_increasing"]
'black'

To change the default options for all interval-posets, use the parent’s latex options:

sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: ip2 = TamariIntervalPoset(4,[(1,2),(2,3)])
sage: ip.latex_options()["color_decreasing"]
'red'
sage: ip2.latex_options()["color_decreasing"]
'red'
sage: TamariIntervalPosets.options(latex_color_decreasing='green')
sage: ip.latex_options()["color_decreasing"]
'green'
sage: ip2.latex_options()["color_decreasing"]
'green'

Next we set a local latex option and show the global option does not override it:

sage: ip.set_latex_options({"color_decreasing": 'black'})
sage: ip.latex_options()["color_decreasing"]
'black'
sage: TamariIntervalPosets.options(latex_color_decreasing='blue')
sage: ip.latex_options()["color_decreasing"]
'black'
sage: ip2.latex_options()["color_decreasing"]
'blue'
sage: TamariIntervalPosets.options._reset()

size()
Return the size (number of vertices) of the interval-poset.

EXAMPLES:

5.1. Comprehensive Module List 1183

Combinatorics, Release 9.7

sage: TamariIntervalPoset(3,[(2,1),(3,1)]).size()
3

sub_poset(start, end)
Return the renormalized subposet of self consisting solely of integers from start (inclusive) to end (not
inclusive).

“Renormalized” means that these integers are relabelled 1, 2, . . . , 𝑘 in the obvious way (i.e., by subtracting
start - 1).

INPUT:

• start – an integer, the starting vertex (inclusive)

• end – an integer, the ending vertex (not inclusive)

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(3,5),(4,5)]);␣
→˓ip
The Tamari interval of size 6 induced by relations [(1, 2), (3, 5), (4, 5), (6,␣
→˓5), (5, 2), (4, 3), (3, 2)]
sage: ip.subposet(1,3)
The Tamari interval of size 2 induced by relations [(1, 2)]
sage: ip.subposet(1,4)
The Tamari interval of size 3 induced by relations [(1, 2), (3, 2)]
sage: ip.subposet(1,5)
The Tamari interval of size 4 induced by relations [(1, 2), (4, 3), (3, 2)]
sage: ip.subposet(1,7) == ip
True
sage: ip.subposet(1,1)
The Tamari interval of size 0 induced by relations []

subposet(start, end)
Return the renormalized subposet of self consisting solely of integers from start (inclusive) to end (not
inclusive).

“Renormalized” means that these integers are relabelled 1, 2, . . . , 𝑘 in the obvious way (i.e., by subtracting
start - 1).

INPUT:

• start – an integer, the starting vertex (inclusive)

• end – an integer, the ending vertex (not inclusive)

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(3,5),(4,5)]);␣
→˓ip
The Tamari interval of size 6 induced by relations [(1, 2), (3, 5), (4, 5), (6,␣
→˓5), (5, 2), (4, 3), (3, 2)]
sage: ip.subposet(1,3)
The Tamari interval of size 2 induced by relations [(1, 2)]
sage: ip.subposet(1,4)
The Tamari interval of size 3 induced by relations [(1, 2), (3, 2)]
sage: ip.subposet(1,5)
The Tamari interval of size 4 induced by relations [(1, 2), (4, 3), (3, 2)]

(continues on next page)

1184 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: ip.subposet(1,7) == ip
True
sage: ip.subposet(1,1)
The Tamari interval of size 0 induced by relations []

tamari_inversions()
Return the Tamari inversions of self.

A Tamari inversion is a pair of vertices (𝑎, 𝑏) with 𝑎 < 𝑏 such that:

• the decreasing parent of 𝑏 is strictly smaller than 𝑎 (or does not exist), and

• the increasing parent of 𝑎 is strictly bigger than 𝑏 (or does not exist).

“Smaller” and “bigger” refer to the numerical values of the elements, not to the poset order.

This method returns the list of all Tamari inversions in lexicographic order.

The number of Tamari inversions is the length of the longest chain of the Tamari interval represented by
self.

Indeed, when an interval consists of just one binary tree, it has no inversion. One can also prove that if
a Tamari interval 𝐼 ′ = [𝑇 ′1, 𝑇

′
2] is a proper subset of a Tamari interval 𝐼 = [𝑇1, 𝑇2], then the inversion

number of 𝐼 ′ is strictly lower than the inversion number of 𝐼 . And finally, by adding the relation (𝑏, 𝑎) to
the interval-poset where (𝑎, 𝑏) is the first inversion of 𝐼 in lexicographic order, one reduces the inversion
number by exactly 1.

See also:

tamari_inversions_iter(), number_of_tamari_inversions()

EXAMPLES:

sage: ip = TamariIntervalPoset(3,[])
sage: ip.tamari_inversions()
[(1, 2), (1, 3), (2, 3)]
sage: ip = TamariIntervalPoset(3,[(2,1)])
sage: ip.tamari_inversions()
[(1, 3), (2, 3)]
sage: ip = TamariIntervalPoset(3,[(1,2)])
sage: ip.tamari_inversions()
[(2, 3)]
sage: ip = TamariIntervalPoset(3,[(1,2),(3,2)])
sage: ip.tamari_inversions()
[]
sage: ip = TamariIntervalPoset(4,[(2,4),(3,4),(2,1),(3,1)])
sage: ip.tamari_inversions()
[(1, 4), (2, 3)]
sage: ip = TamariIntervalPoset(4,[])
sage: ip.tamari_inversions()
[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
sage: all(len(TamariIntervalPosets.from_binary_trees(bt,bt).tamari_
→˓inversions())==0 for bt in BinaryTrees(3))
True
sage: all(len(TamariIntervalPosets.from_binary_trees(bt,bt).tamari_
→˓inversions())==0 for bt in BinaryTrees(4))
True

5.1. Comprehensive Module List 1185

Combinatorics, Release 9.7

tamari_inversions_iter()
Iterate over the Tamari inversions of self, in lexicographic order.

See tamari_inversions() for the definition of the terms involved.

EXAMPLES:

sage: T = TamariIntervalPoset(5, [[1,2],[3,4],[3,2],[5,2],[4,2]])
sage: list(T.tamari_inversions_iter())
[(4, 5)]

sage: T = TamariIntervalPoset(8, [(2, 7), (3, 7), (4, 7), (5, 7), (6, 7), (8,␣
→˓7), (6, 4), (5, 4), (4, 3), (3, 2)])
sage: list(T.tamari_inversions_iter())
[(1, 2), (1, 7), (5, 6)]

sage: T = TamariIntervalPoset(1, [])
sage: list(T.tamari_inversions_iter())
[]

sage: T = TamariIntervalPoset(0, [])
sage: list(T.tamari_inversions_iter())
[]

upper_binary_tree()
Return the highest binary tree in the interval of the Tamari lattice represented by self.

This is a binary tree. It is the shape of the unique binary search tree whose right-branch ordered forest (i.e.,
the result of applying to_ordered_tree_right_branch() and cutting off the root) is the initial forest
of self.

See also:

upper_dyck_word()

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(4,5)]); ip
The Tamari interval of size 6 induced by relations [(1, 2), (4, 5), (6, 5), (5,␣
→˓2), (4, 3), (3, 2)]
sage: ip.upper_binary_tree()
[[., .], [., [[., .], [., .]]]]
sage: TamariIntervalPosets.initial_forest(ip.upper_binary_tree()) == ip.initial_
→˓forest()
True
sage: ip == TamariIntervalPosets.from_binary_trees(ip.lower_binary_tree(),ip.
→˓upper_binary_tree())
True

upper_contains_interval(other)
Return whether the interval represented by other is contained in self as an interval of the Tamari lattice
and if they share the same upper bound.

As interval-posets, it means that other contains the relations of self plus some extra decreasing relations.

INPUT:

• other – an interval-poset

1186 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: ip1 = TamariIntervalPoset(4,[(1,2),(2,3),(4,3)])
sage: ip2 = TamariIntervalPoset(4,[(1,2),(2,3)])
sage: ip2.upper_contains_interval(ip1)
True
sage: ip2.contains_interval(ip1) and ip2.upper_binary_tree() == ip1.upper_
→˓binary_tree()
True
sage: ip3 = TamariIntervalPoset(4,[(1,2),(2,3),(3,4)])
sage: ip2.upper_contains_interval(ip3)
False
sage: ip2.contains_interval(ip3)
True
sage: ip2.upper_binary_tree() == ip3.upper_binary_tree()
False

upper_dyck_word()
Return the highest Dyck word in the interval of the Tamari lattice represented by self.

See also:

upper_binary_tree()

EXAMPLES:

sage: ip = TamariIntervalPoset(6,[(3,2),(4,3),(5,2),(6,5),(1,2),(4,5)]); ip
The Tamari interval of size 6 induced by relations [(1, 2), (4, 5), (6, 5), (5,␣
→˓2), (4, 3), (3, 2)]
sage: ip.upper_dyck_word()
[1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0]
sage: TamariIntervalPosets.initial_forest(ip.upper_dyck_word()) == ip.initial_
→˓forest()
True
sage: ip == TamariIntervalPosets.from_dyck_words(ip.lower_dyck_word(),ip.upper_
→˓dyck_word())
True

class sage.combinat.interval_posets.TamariIntervalPosets
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Factory for interval-posets.

INPUT:

• size – (optional) an integer

OUTPUT:

• the set of all interval-posets (of the given size if specified)

EXAMPLES:

sage: TamariIntervalPosets()
Interval-posets

sage: TamariIntervalPosets(2)
Interval-posets of size 2

5.1. Comprehensive Module List 1187

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

Note: This is a factory class whose constructor returns instances of subclasses.

static check_poset(poset)
Check if the given poset poset is a interval-poset, that is, if it satisfies the following properties:

• Its labels are exactly 1, . . . , 𝑛 where 𝑛 is its size.

• If 𝑎 < 𝑐 (as numbers) and 𝑎 precedes 𝑐, then 𝑏 precedes 𝑐 for all 𝑏 such that 𝑎 < 𝑏 < 𝑐.

• If 𝑎 < 𝑐 (as numbers) and 𝑐 precedes 𝑎, then 𝑏 precedes 𝑎 for all 𝑏 such that 𝑎 < 𝑏 < 𝑐.

INPUT:

• poset – a finite labeled poset

EXAMPLES:

sage: p = Poset(([1,2,3],[(1,2),(3,2)]))
sage: TamariIntervalPosets.check_poset(p)
True
sage: p = Poset(([2,3],[(3,2)]))
sage: TamariIntervalPosets.check_poset(p)
False
sage: p = Poset(([1,2,3],[(3,1)]))
sage: TamariIntervalPosets.check_poset(p)
False
sage: p = Poset(([1,2,3],[(1,3)]))
sage: TamariIntervalPosets.check_poset(p)
False

static final_forest(element)
Return the final forest of a binary tree, an interval-poset or a Dyck word.

A final forest is an interval-poset corresponding to a final interval of the Tamari lattice, i.e., containing only
decreasing relations.

It can be constructed from a binary tree by its binary search tree labeling with the rule: 𝑏 precedes 𝑎 in the
final forest iff 𝑏 is in the right subtree of 𝑎 in the binary search tree.

INPUT:

• element – a binary tree, a Dyck word or an interval-poset

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(2,3),(4,3)])
sage: TamariIntervalPosets.final_forest(ip)
The Tamari interval of size 4 induced by relations [(4, 3)]

From binary trees:

sage: bt = BinaryTree(); bt
.
sage: TamariIntervalPosets.final_forest(bt)
The Tamari interval of size 0 induced by relations []
sage: bt = BinaryTree([]); bt
[., .]
sage: TamariIntervalPosets.final_forest(bt)

(continues on next page)

1188 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

The Tamari interval of size 1 induced by relations []
sage: bt = BinaryTree([[],None]); bt
[[., .], .]
sage: TamariIntervalPosets.final_forest(bt)
The Tamari interval of size 2 induced by relations []
sage: bt = BinaryTree([None,[]]); bt
[., [., .]]
sage: TamariIntervalPosets.final_forest(bt)
The Tamari interval of size 2 induced by relations [(2, 1)]
sage: bt = BinaryTree([[],[]]); bt
[[., .], [., .]]
sage: TamariIntervalPosets.final_forest(bt)
The Tamari interval of size 3 induced by relations [(3, 2)]
sage: bt = BinaryTree([[None,[[],None]],[]]); bt
[[., [[., .], .]], [., .]]
sage: TamariIntervalPosets.final_forest(bt)
The Tamari interval of size 5 induced by relations [(5, 4), (3, 1), (2, 1)]

From Dyck words:

sage: dw = DyckWord([1,0])
sage: TamariIntervalPosets.final_forest(dw)
The Tamari interval of size 1 induced by relations []
sage: dw = DyckWord([1,1,0,1,0,0,1,1,0,0])
sage: TamariIntervalPosets.final_forest(dw)
The Tamari interval of size 5 induced by relations [(5, 4), (3, 1), (2, 1)]

static from_binary_trees(tree1, tree2)
Return the interval-poset corresponding to the interval [tree1, tree2] of the Tamari lattice.

Raise an exception if tree1 is not ≤ tree2 in the Tamari lattice.

INPUT:

• tree1 – a binary tree

• tree2 – a binary tree greater or equal than tree1 for the Tamari lattice

EXAMPLES:

sage: tree1 = BinaryTree([[],None])
sage: tree2 = BinaryTree([None,[]])
sage: TamariIntervalPosets.from_binary_trees(tree1,tree2)
The Tamari interval of size 2 induced by relations []
sage: TamariIntervalPosets.from_binary_trees(tree1,tree1)
The Tamari interval of size 2 induced by relations [(1, 2)]
sage: TamariIntervalPosets.from_binary_trees(tree2,tree2)
The Tamari interval of size 2 induced by relations [(2, 1)]

sage: tree1 = BinaryTree([[],[[None,[]],[]]])
sage: tree2 = BinaryTree([None,[None,[None,[[],[]]]]])
sage: TamariIntervalPosets.from_binary_trees(tree1,tree2)
The Tamari interval of size 6 induced by relations [(4, 5), (6, 5), (5, 2), (4,␣
→˓3), (3, 2)]

(continues on next page)

5.1. Comprehensive Module List 1189

Combinatorics, Release 9.7

(continued from previous page)

sage: tree3 = BinaryTree([None,[None,[[],[None,[]]]]])
sage: TamariIntervalPosets.from_binary_trees(tree1,tree3)
Traceback (most recent call last):
...
ValueError: the two binary trees are not comparable on the Tamari lattice
sage: TamariIntervalPosets.from_binary_trees(tree1,BinaryTree())
Traceback (most recent call last):
...
ValueError: the two binary trees are not comparable on the Tamari lattice

static from_dyck_words(dw1, dw2)
Return the interval-poset corresponding to the interval [dw1, dw2] of the Tamari lattice.

Raise an exception if the two Dyck words dw1 and dw2 do not satisfy dw1 ≤ dw2 in the Tamari lattice.

INPUT:

• dw1 – a Dyck word

• dw2 – a Dyck word greater or equal than dw1 for the Tamari lattice

EXAMPLES:

sage: dw1 = DyckWord([1,0,1,0])
sage: dw2 = DyckWord([1,1,0,0])
sage: TamariIntervalPosets.from_dyck_words(dw1,dw2)
The Tamari interval of size 2 induced by relations []
sage: TamariIntervalPosets.from_dyck_words(dw1,dw1)
The Tamari interval of size 2 induced by relations [(1, 2)]
sage: TamariIntervalPosets.from_dyck_words(dw2,dw2)
The Tamari interval of size 2 induced by relations [(2, 1)]

sage: dw1 = DyckWord([1,0,1,1,1,0,0,1,1,0,0,0])
sage: dw2 = DyckWord([1,1,1,1,0,1,1,0,0,0,0,0])
sage: TamariIntervalPosets.from_dyck_words(dw1,dw2)
The Tamari interval of size 6 induced by relations [(4, 5), (6, 5), (5, 2), (4,␣
→˓3), (3, 2)]

sage: dw3 = DyckWord([1,1,1,0,1,1,1,0,0,0,0,0])
sage: TamariIntervalPosets.from_dyck_words(dw1,dw3)
Traceback (most recent call last):
...
ValueError: the two Dyck words are not comparable on the Tamari lattice
sage: TamariIntervalPosets.from_dyck_words(dw1,DyckWord([1,0]))
Traceback (most recent call last):
...
ValueError: the two Dyck words are not comparable on the Tamari lattice

static from_grafting_tree(tree)
Return an interval-poset from a grafting tree.

For the inverse method, see TamariIntervalPoset.grafting_tree().

EXAMPLES:

1190 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: tip = TamariIntervalPoset(8, [(1,2), (2,4), (3,4), (6,7), (3,2), (5,4),␣
→˓(6,4), (8,7)])
sage: t = tip.grafting_tree()
sage: TamariIntervalPosets.from_grafting_tree(t) == tip
True

REFERENCES:

• [Pons2018]

static from_minimal_schnyder_wood(graph)
Return a Tamari interval built from a minimal Schnyder wood.

This is an implementation of Bernardi and Bonichon’s bijection [BeBo2009].

INPUT:

a minimal Schnyder wood, given as a graph with colored and oriented edges, without the three exterior
unoriented edges

The three boundary vertices must be -1, -2 and -3.

One assumes moreover that the embedding around -1 is the list of neighbors of -1 and not just a cyclic
permutation of that.

Beware that the embedding convention used here is the opposite of the one used by the plot method.

OUTPUT:

a Tamari interval-poset

EXAMPLES:

A small example:

sage: TIP = TamariIntervalPosets
sage: G = DiGraph([(0,-1,0),(0,-2,1),(0,-3,2)], format='list_of_edges')
sage: G.set_embedding({-1:[0],-2:[0],-3:[0],0:[-1,-2,-3]})
sage: TIP.from_minimal_schnyder_wood(G)
The Tamari interval of size 1 induced by relations []

An example from page 14 of [BeBo2009]:

sage: c0 = [(0,-1),(1,0),(2,0),(4,3),(3,-1),(5,3)]
sage: c1 = [(5,-2),(3,-2),(4,5),(1,3),(2,3),(0,3)]
sage: c2 = [(0,-3),(1,-3),(3,-3),(4,-3),(5,-3),(2,1)]
sage: ed = [(u,v,0) for u,v in c0]
sage: ed += [(u,v,1) for u,v in c1]
sage: ed += [(u,v,2) for u,v in c2]
sage: G = DiGraph(ed, format='list_of_edges')
sage: embed = {-1:[3,0],-2:[5,3],-3:[0,1,3,4,5]}
sage: data_emb = [[3,2,1,-3,-1],[2,3,-3,0],[3,1,0]]
sage: data_emb += [[-2,5,4,-3,1,2,0,-1],[5,-3,3],[-2,-3,4,3]]
sage: for k in range(6):
....: embed[k] = data_emb[k]
sage: G.set_embedding(embed)
sage: TIP.from_minimal_schnyder_wood(G)
The Tamari interval of size 6 induced by relations [(1, 4), (2, 4), (3, 4), (5,␣
→˓6), (6, 4), (5, 4), (3, 1), (2, 1)]

5.1. Comprehensive Module List 1191

Combinatorics, Release 9.7

An example from page 18 of [BeBo2009]:

sage: c0 = [(0,-1),(1,0),(2,-1),(3,2),(4,2),(5,-1)]
sage: c1 = [(5,-2),(2,-2),(4,-2),(3,4),(1,2),(0,2)]
sage: c2 = [(0,-3),(1,-3),(3,-3),(4,-3),(2,-3),(5,2)]
sage: ed = [(u,v,0) for u,v in c0]
sage: ed += [(u,v,1) for u,v in c1]
sage: ed += [(u,v,2) for u,v in c2]
sage: G = DiGraph(ed, format='list_of_edges')
sage: embed = {-1:[5,2,0],-2:[4,2,5],-3:[0,1,2,3,4]}
sage: data_emb = [[2,1,-3,-1],[2,-3,0],[3,-3,1,0,-1,5,-2,4]]
sage: data_emb += [[4,-3,2],[-2,-3,3,2],[-2,2,-1]]
sage: for k in range(6):
....: embed[k] = data_emb[k]
sage: G.set_embedding(embed)
sage: TIP.from_minimal_schnyder_wood(G)
The Tamari interval of size 6 induced by relations [(1, 3), (2, 3), (4, 5), (5,␣
→˓3), (4, 3), (2, 1)]

Another small example:

sage: c0 = [(0,-1),(2,-1),(1,0)]
sage: c1 = [(2,-2),(1,-2),(0,2)]
sage: c2 = [(0,-3),(1,-3),(2,1)]
sage: ed = [(u,v,0) for u,v in c0]
sage: ed += [(u,v,1) for u,v in c1]
sage: ed += [(u,v,2) for u,v in c2]
sage: G = DiGraph(ed, format='list_of_edges')
sage: embed = {-1:[2,0],-2:[1,2],-3:[0,1]}
sage: data_emb = [[2,1,-3,-1],[-3,0,2,-2],[-2,1,0,-1]]
sage: for k in range(3):
....: embed[k] = data_emb[k]
sage: G.set_embedding(embed)
sage: TIP.from_minimal_schnyder_wood(G)
The Tamari interval of size 3 induced by relations [(2, 3), (2, 1)]

static initial_forest(element)
Return the initial forest of a binary tree, an interval-poset or a Dyck word.

An initial forest is an interval-poset corresponding to an initial interval of the Tamari lattice, i.e., containing
only increasing relations.

It can be constructed from a binary tree by its binary search tree labeling with the rule: 𝑎 precedes 𝑏 in the
initial forest iff 𝑎 is in the left subtree of 𝑏 in the binary search tree.

INPUT:

• element – a binary tree, a Dyck word or an interval-poset

EXAMPLES:

sage: ip = TamariIntervalPoset(4,[(1,2),(2,3),(4,3)])
sage: TamariIntervalPosets.initial_forest(ip)
The Tamari interval of size 4 induced by relations [(1, 2), (2, 3)]

with binary trees:

1192 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: bt = BinaryTree(); bt
.
sage: TamariIntervalPosets.initial_forest(bt)
The Tamari interval of size 0 induced by relations []
sage: bt = BinaryTree([]); bt
[., .]
sage: TamariIntervalPosets.initial_forest(bt)
The Tamari interval of size 1 induced by relations []
sage: bt = BinaryTree([[],None]); bt
[[., .], .]
sage: TamariIntervalPosets.initial_forest(bt)
The Tamari interval of size 2 induced by relations [(1, 2)]
sage: bt = BinaryTree([None,[]]); bt
[., [., .]]
sage: TamariIntervalPosets.initial_forest(bt)
The Tamari interval of size 2 induced by relations []
sage: bt = BinaryTree([[],[]]); bt
[[., .], [., .]]
sage: TamariIntervalPosets.initial_forest(bt)
The Tamari interval of size 3 induced by relations [(1, 2)]
sage: bt = BinaryTree([[None,[[],None]],[]]); bt
[[., [[., .], .]], [., .]]
sage: TamariIntervalPosets.initial_forest(bt)
The Tamari interval of size 5 induced by relations [(1, 4), (2, 3), (3, 4)]

from Dyck words:

sage: dw = DyckWord([1,0])
sage: TamariIntervalPosets.initial_forest(dw)
The Tamari interval of size 1 induced by relations []
sage: dw = DyckWord([1,1,0,1,0,0,1,1,0,0])
sage: TamariIntervalPosets.initial_forest(dw)
The Tamari interval of size 5 induced by relations [(1, 4), (2, 3), (3, 4)]

le(el1, el2)
Poset structure on the set of interval-posets.

The comparison is first by size, then using the cubical coordinates.

See also:

cubical_coordinates()

INPUT:

• el1 – an interval-poset

• el2 – an interval-poset

EXAMPLES:

sage: ip1 = TamariIntervalPoset(4,[(1,2),(2,3),(4,3)])
sage: ip2 = TamariIntervalPoset(4,[(1,2),(2,3)])
sage: TamariIntervalPosets().le(ip1,ip2)
False
sage: TamariIntervalPosets().le(ip2,ip1)
True

5.1. Comprehensive Module List 1193

Combinatorics, Release 9.7

options(*get_value, **set_value)
Set and display the options for Tamari interval-posets.

If no parameters are set, then the function returns a copy of the options dictionary.

The options to Tamari interval-posets can be accessed as the method TamariIntervalPosets.
options() of TamariIntervalPosets and related parent classes.

OPTIONS:

• latex_color_decreasing – (default: red) the default color of decreasing relations when latexed

• latex_color_increasing – (default: blue) the default color of increasing relations when latexed

• latex_hspace – (default: 1) the default difference between horizontal coordinates of vertices when
latexed

• latex_line_width_scalar – (default: 0.5) the default value for the line width as amultiple of the
tikz scale when latexed

• latex_tikz_scale – (default: 1) the default value for the tikz scale when latexed

• latex_vspace – (default: 1) the default difference between vertical coordinates of vertices when
latexed

EXAMPLES:

sage: TIP = TamariIntervalPosets
sage: TIP.options.latex_color_decreasing
red
sage: TIP.options.latex_color_decreasing='green'
sage: TIP.options.latex_color_decreasing
green
sage: TIP.options._reset()
sage: TIP.options.latex_color_decreasing
red

See GlobalOptions for more features of these options.

static recomposition_from_triple(left, right, r)
Recompose an interval-poset from a triple (left, right, r).

For the inverse method, see TamariIntervalPoset.decomposition_to_triple().

INPUT:

• left – an interval-poset

• right – an interval-poset

• r – the parameter of the decomposition, an integer

OUTPUT: an interval-poset

EXAMPLES:

sage: T1 = TamariIntervalPoset(3, [(1, 2), (3, 2)])
sage: T2 = TamariIntervalPoset(4, [(2, 3), (4, 3)])
sage: TamariIntervalPosets.recomposition_from_triple(T1, T2, 2)
The Tamari interval of size 8 induced by relations [(1, 2), (2, 4),
(3, 4), (6, 7), (8, 7), (6, 4), (5, 4), (3, 2)]

REFERENCES:

1194 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

• [Pons2018]

class sage.combinat.interval_posets.TamariIntervalPosets_all
Bases: sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets, sage.
combinat.interval_posets.TamariIntervalPosets

The enumerated set of all Tamari interval-posets.

Element
alias of TamariIntervalPoset

one()
Return the unit of the monoid.

This is the empty interval poset, of size 0.

EXAMPLES:

sage: TamariIntervalPosets().one()
The Tamari interval of size 0 induced by relations []

class sage.combinat.interval_posets.TamariIntervalPosets_size(size)
Bases: sage.combinat.interval_posets.TamariIntervalPosets

The enumerated set of interval-posets of a given size.

cardinality()
The cardinality of self. That is, the number of interval-posets of size 𝑛.

The formula was given in [Cha2008]:

2(4𝑛+ 1)!

(𝑛+ 1)!(3𝑛+ 2)!
=

2

𝑛(𝑛+ 1)

(︂
4𝑛+ 1

𝑛− 1

)︂
.

EXAMPLES:

sage: [TamariIntervalPosets(i).cardinality() for i in range(6)]
[1, 1, 3, 13, 68, 399]

element_class()

random_element()
Return a random Tamari interval of fixed size.

This is obtained by first creating a random rooted planar triangulation, then computing its unique minimal
Schnyder wood, then applying a bijection of Bernardi and Bonichon [BeBo2009].

Because the random rooted planar triangulation is chosen uniformly at random, the Tamari interval is also
chosen according to the uniform distribution.

EXAMPLES:

sage: T = TamariIntervalPosets(4).random_element()
sage: T.parent()
Interval-posets
sage: u = T.lower_dyck_word(); u # random
[1, 1, 0, 1, 0, 0, 1, 0]
sage: v = T.lower_dyck_word(); v # random
[1, 1, 0, 1, 0, 0, 1, 0]
sage: len(u)
8

5.1. Comprehensive Module List 1195

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

5.1.127 𝑘-regular Sequences

An introduction and formal definition of 𝑘-regular sequences can be found, for example, on the Wikipedia article
k-regular_sequence or in [AS2003].

Warning: As this code is experimental, warnings are thrown when a 𝑘-regular sequence space is created for the
first time in a session (see sage.misc.superseded.experimental).

Examples

Binary sum of digits

The binary sum of digits 𝑆(𝑛) of a nonnegative integer 𝑛 satisfies 𝑆(2𝑛) = 𝑆(𝑛) and 𝑆(2𝑛 + 1) = 𝑆(𝑛) + 1. We
model this by the following:

sage: Seq2 = kRegularSequenceSpace(2, ZZ)
sage: S = Seq2((Matrix([[1, 0], [0, 1]]), Matrix([[1, 0], [1, 1]])),
....: left=vector([0, 1]), right=vector([1, 0]))
sage: S
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
sage: all(S[n] == sum(n.digits(2)) for n in srange(10))
True

Number of odd entries in Pascal’s triangle

Let us consider the number of odd entries in the first 𝑛 rows of Pascals’s triangle:

sage: @cached_function
....: def u(n):
....: if n <= 1:
....: return n
....: return 2 * u(n // 2) + u((n+1) // 2)
sage: tuple(u(n) for n in srange(10))
(0, 1, 3, 5, 9, 11, 15, 19, 27, 29)

There is a 2-recursive sequence describing the numbers above as well:

sage: U = Seq2((Matrix([[3, 2], [0, 1]]), Matrix([[2, 0], [1, 3]])),
....: left=vector([0, 1]), right=vector([1, 0])).transposed()
sage: all(U[n] == u(n) for n in srange(30))
True

1196 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/k-regular_sequence
https://en.wikipedia.org/wiki/k-regular_sequence
../../../../../../html/en/reference/misc/sage/misc/superseded.html#sage.misc.superseded.experimental

Combinatorics, Release 9.7

Various

See also:

recognizable series, sage.rings.cfinite_sequence, sage.combinat.binary_recurrence_sequences.

AUTHORS:

• Daniel Krenn (2016, 2021)

• Gabriel F. Lipnik (2021)

ACKNOWLEDGEMENT:

• Daniel Krenn is supported by the Austrian Science Fund (FWF): P 24644-N26.

• Gabriel F. Lipnik is supported by the Austrian Science Fund (FWF): W 1230.

Classes and Methods

class sage.combinat.k_regular_sequence.RecurrenceParser(k, coefficient_ring)
Bases: object

A parser for recurrence relations that allow the construction of a 𝑘-linear representation for the sequence satis-
fying these recurrence relations.

This is used by kRegularSequenceSpace.from_recurrence() to construct a kRegularSequence.

ind(M, m, ll, uu)
Determine the index operator corresponding to the recursive sequence as defined in [HKL2021].

INPUT:

• M, m – parameters of the recursive sequences, see [HKL2021], Definition 3.1

• ll, uu – parameters of the resulting linear representation, see [HKL2021], Theorem A

OUTPUT:

A dictionary which maps both row numbers to subsequence parameters and vice versa, i.e.,

• ind[i] – a pair (j, d) representing the sequence 𝑥(𝑘𝑗𝑛+ 𝑑) in the 𝑖-th component (0-based) of the
resulting linear representation,

• ind[(j, d)] – the (0-based) row number of the sequence 𝑥(𝑘𝑗𝑛+ 𝑑) in the linear representation.

EXAMPLES:

sage: from sage.combinat.k_regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: RP.ind(3, 1, -3, 3)
{(0, 0): 0, (1, -1): 3, (1, -2): 2, (1, -3): 1,
(1, 0): 4, (1, 1): 5, (1, 2): 6, (1, 3): 7, (2, -1): 10,
(2, -2): 9, (2, -3): 8, (2, 0): 11, (2, 1): 12, (2, 2): 13,
(2, 3): 14, (2, 4): 15, (2, 5): 16, 0: (0, 0), 1: (1, -3),
10: (2, -1), 11: (2, 0), 12: (2, 1), 13: (2, 2), 14: (2, 3),
15: (2, 4), 16: (2, 5), 2: (1, -2), 3: (1, -1), 4: (1, 0),
5: (1, 1), 6: (1, 2), 7: (1, 3), 8: (2, -3), 9: (2, -2)}

See also:

kRegularSequenceSpace.from_recurrence()

5.1. Comprehensive Module List 1197

Combinatorics, Release 9.7

left(recurrence_rules)
Construct the vector left of the linear representation of recursive sequences.

INPUT:

• recurrence_rules – a namedtuple generated by parameters(); it only needs to contain a field dim
(a positive integer)

OUTPUT: a vector

EXAMPLES:

sage: from collections import namedtuple
sage: from sage.combinat.k_regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: RRD = namedtuple('recurrence_rules_dim', ['dim'])
sage: recurrence_rules = RRD(dim=5)
sage: RP.left(recurrence_rules)
(1, 0, 0, 0, 0)

See also:

kRegularSequenceSpace.from_recurrence()

matrix(recurrence_rules, rem, correct_offset=True)
Construct the matrix for remainder rem of the linear representation of the sequence represented by
recurrence_rules.

INPUT:

• recurrence_rules – a namedtuple generated by parameters()

• rem – an integer between 0 and k - 1

• correct_offset – (default: True) a boolean. If True, then the resulting linear representation has
no offset. See [HKL2021] for more information.

OUTPUT: a matrix

EXAMPLES:

The following example illustrates how the coefficients in the right-hand sides of the recurrence relations
correspond to the entries of the matrices.

sage: from sage.combinat.k_regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: var('n')
n
sage: function('f')
f
sage: M, m, coeffs, initial_values = RP.parse_recurrence([
....: f(8*n) == -1*f(2*n - 1) + 1*f(2*n + 1),
....: f(8*n + 1) == -11*f(2*n - 1) + 10*f(2*n) + 11*f(2*n + 1),
....: f(8*n + 2) == -21*f(2*n - 1) + 20*f(2*n) + 21*f(2*n + 1),
....: f(8*n + 3) == -31*f(2*n - 1) + 30*f(2*n) + 31*f(2*n + 1),
....: f(8*n + 4) == -41*f(2*n - 1) + 40*f(2*n) + 41*f(2*n + 1),
....: f(8*n + 5) == -51*f(2*n - 1) + 50*f(2*n) + 51*f(2*n + 1),
....: f(8*n + 6) == -61*f(2*n - 1) + 60*f(2*n) + 61*f(2*n + 1),
....: f(8*n + 7) == -71*f(2*n - 1) + 70*f(2*n) + 71*f(2*n + 1),
....: f(0) == 0, f(1) == 1, f(2) == 2, f(3) == 3, f(4) == 4,

(continues on next page)

1198 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: f(5) == 5, f(6) == 6, f(7) == 7], f, n)
sage: rules = RP.parameters(
....: M, m, coeffs, initial_values, 0)
sage: RP.matrix(rules, 0, False)
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 -51 50 51 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 -61 60 61 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 -71 70 71 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -11 10 11 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -21 20 21 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -31 30 31 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -41 40 41 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -51 50 51 0 0 0 0 0 0 0 0 0 0 0]
sage: RP.matrix(rules, 1, False)
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
[0 0 0 -11 10 11 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -21 20 21 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -31 30 31 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -41 40 41 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -51 50 51 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -61 60 61 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 -71 70 71 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 -11 10 11 0 0 0 0 0 0 0 0 0]

Stern–Brocot Sequence:

sage: SB_rules = RP.parameters(
....: 1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1},
....: {0: 0, 1: 1, 2: 1}, 0)
sage: RP.matrix(SB_rules, 0)
[1 0 0]
[1 1 0]
[0 1 0]
sage: RP.matrix(SB_rules, 1)
[1 1 0]
[0 1 0]

(continues on next page)

5.1. Comprehensive Module List 1199

Combinatorics, Release 9.7

(continued from previous page)

[0 1 1]

Number of Unbordered Factors in the Thue–Morse Sequence:

sage: M, m, coeffs, initial_values = RP.parse_recurrence([
....: f(8*n) == 2*f(4*n),
....: f(8*n + 1) == f(4*n + 1),
....: f(8*n + 2) == f(4*n + 1) + f(4*n + 3),
....: f(8*n + 3) == -f(4*n + 1) + f(4*n + 2),
....: f(8*n + 4) == 2*f(4*n + 2),
....: f(8*n + 5) == f(4*n + 3),
....: f(8*n + 6) == -f(4*n + 1) + f(4*n + 2) + f(4*n + 3),
....: f(8*n + 7) == 2*f(4*n + 1) + f(4*n + 3),
....: f(0) == 1, f(1) == 2, f(2) == 2, f(3) == 4, f(4) == 2,
....: f(5) == 4, f(6) == 6, f(7) == 0, f(8) == 4, f(9) == 4,
....: f(10) == 4, f(11) == 4, f(12) == 12, f(13) == 0, f(14) == 4,
....: f(15) == 4, f(16) == 8, f(17) == 4, f(18) == 8, f(19) == 0,
....: f(20) == 8, f(21) == 4, f(22) == 4, f(23) == 8], f, n)
sage: UB_rules = RP.parameters(
....: M, m, coeffs, initial_values, 3)
sage: RP.matrix(UB_rules, 0)
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 2 0 0 0 0 0 0 0 0 0 -1 0 0]
[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 1 0 0 0 0 0 0 -4 0 0]
[0 0 0 0 -1 1 0 0 0 0 0 0 0 4 2 0]
[0 0 0 0 0 2 0 0 0 0 0 0 0 -2 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 -1 1 1 0 0 0 0 0 0 2 2 0]
[0 0 0 0 2 0 1 0 0 0 0 0 0 -8 -4 -4]
[0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
sage: RP.matrix(UB_rules, 1)
[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 2 0 0 0 0 0 0 0 -2 0 0]
[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 -1 1 1 0 0 0 0 0 0 2 2 0]
[0 0 0 0 2 0 1 0 0 0 0 0 0 -8 -4 -4]
[0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 -1 1 0 0 0 2 0 0]
[0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

(continues on next page)

1200 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

See also:

kRegularSequenceSpace.from_recurrence()

parameters(M, m, coeffs, initial_values, offset=0)
Determine parameters from recurrence relations as admissible in kRegularSequenceSpace.
from_recurrence().

INPUT:

All parameters are explained in the high-level method kRegularSequenceSpace.from_recurrence().

OUTPUT: a namedtuple recurrence_rules consisting of

• M, m, l, u, offset – parameters of the recursive sequences, see [HKL2021], Definition 3.1

• ll, uu, n1, dim – parameters and dimension of the resulting linear representation, see [HKL2021],
Theorem A

• coeffs – a dictionary mapping (r, j) to the coefficients 𝑐𝑟,𝑗 as given in [HKL2021], Equation (3.1).
If coeffs[(r, j)] is not given for some r and j, then it is assumed to be zero.

• initial_values – a dictionary mapping integers n to the n-th value of the sequence

EXAMPLES:

sage: from sage.combinat.k_regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: RP.parameters(2, 1,
....: {(0, -2): 3, (0, 0): 1, (0, 1): 2, (1, -2): 6, (1, 0): 4,
....: (1, 1): 5, (2, -2): 9, (2, 0): 7, (2, 1): 8, (3, -2): 12,
....: (3, 0): 10, (3, 1): 11}, {0: 1, 1: 2, 2: 1, 3: 4}, 0)
recurrence_rules(M=2, m=1, l=-2, u=1, ll=-6, uu=3, dim=14,
coeffs={(0, -2): 3, (0, 0): 1, (0, 1): 2, (1, -2): 6, (1, 0): 4,
(1, 1): 5, (2, -2): 9, (2, 0): 7, (2, 1): 8, (3, -2): 12,
(3, 0): 10, (3, 1): 11}, initial_values={0: 1, 1: 2, 2: 1, 3: 4,
4: 12, 5: 30, 6: 48, 7: 66, 8: 75, 9: 204, 10: 333, 11: 462,
12: 216, 13: 594, -6: 0, -5: 0, -4: 0, -3: 0, -2: 0, -1: 0},
offset=1, n1=3)

See also:

kRegularSequenceSpace.from_recurrence()

parse_direct_arguments(M, m, coeffs, initial_values)
Check whether the direct arguments as admissible in kRegularSequenceSpace.from_recurrence()
are valid.

INPUT:

All parameters are explained in the high-level method kRegularSequenceSpace.from_recurrence().

OUTPUT: a tuple consisting of the input parameters

EXAMPLES:

5.1. Comprehensive Module List 1201

Combinatorics, Release 9.7

sage: from sage.combinat.k_regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: RP.parse_direct_arguments(2, 1,
....: {(0, -2): 3, (0, 0): 1, (0, 1): 2,
....: (1, -2): 6, (1, 0): 4, (1, 1): 5,
....: (2, -2): 9, (2, 0): 7, (2, 1): 8,
....: (3, -2): 12, (3, 0): 10, (3, 1): 11},
....: {0: 1, 1: 2, 2: 1})
(2, 1, {(0, -2): 3, (0, 0): 1, (0, 1): 2,
(1, -2): 6, (1, 0): 4, (1, 1): 5,
(2, -2): 9, (2, 0): 7, (2, 1): 8,
(3, -2): 12, (3, 0): 10, (3, 1): 11},
{0: 1, 1: 2, 2: 1})

Stern–Brocot Sequence:

sage: RP.parse_direct_arguments(1, 0,
....: {(0, 0): 1, (1, 0): 1, (1, 1): 1},
....: {0: 0, 1: 1})
(1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1}, {0: 0, 1: 1})

See also:

kRegularSequenceSpace.from_recurrence()

parse_recurrence(equations, function, var)
Parse recurrence relations as admissible in kRegularSequenceSpace.from_recurrence().

INPUT:

All parameters are explained in the high-level method kRegularSequenceSpace.from_recurrence().

OUTPUT: a tuple consisting of

• M, m – see kRegularSequenceSpace.from_recurrence()

• coeffs – see kRegularSequenceSpace.from_recurrence()

• initial_values – see kRegularSequenceSpace.from_recurrence()

EXAMPLES:

sage: from sage.combinat.k_regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: var('n')
n
sage: function('f')
f
sage: RP.parse_recurrence([
....: f(4*n) == f(2*n) + 2*f(2*n + 1) + 3*f(2*n - 2),
....: f(4*n + 1) == 4*f(2*n) + 5*f(2*n + 1) + 6*f(2*n - 2),
....: f(4*n + 2) == 7*f(2*n) + 8*f(2*n + 1) + 9*f(2*n - 2),
....: f(4*n + 3) == 10*f(2*n) + 11*f(2*n + 1) + 12*f(2*n - 2),
....: f(0) == 1, f(1) == 2, f(2) == 1], f, n)
(2, 1, {(0, -2): 3, (0, 0): 1, (0, 1): 2, (1, -2): 6, (1, 0): 4,
(1, 1): 5, (2, -2): 9, (2, 0): 7, (2, 1): 8, (3, -2): 12, (3, 0): 10,
(3, 1): 11}, {0: 1, 1: 2, 2: 1})

1202 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Stern–Brocot Sequence:

sage: RP.parse_recurrence([
....: f(2*n) == f(n), f(2*n + 1) == f(n) + f(n + 1),
....: f(0) == 0, f(1) == 1], f, n)
(1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1}, {0: 0, 1: 1})

See also:

kRegularSequenceSpace.from_recurrence()

right(recurrence_rules)
Construct the vector right of the linear representation of the sequence induced by recurrence_rules.

INPUT:

• recurrence_rules – a namedtuple generated by parameters()

OUTPUT: a vector

See also:

kRegularSequenceSpace.from_recurrence()

v_eval_n(recurrence_rules, n)
Return the vector 𝑣(𝑛) as given in [HKL2021], Theorem A.

INPUT:

• recurrence_rules – a namedtuple generated by parameters()

• n – an integer

OUTPUT: a vector

EXAMPLES:

Stern–Brocot Sequence:

sage: from sage.combinat.k_regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: SB_rules = RP.parameters(
....: 1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1},
....: {0: 0, 1: 1, 2: 1}, 0)
sage: RP.v_eval_n(SB_rules, 0)
(0, 1, 1)

See also:

kRegularSequenceSpace.from_recurrence()

values(M, m, l, u, ll, coeffs, initial_values, last_value_needed, offset)
Determine enough values of the corresponding recursive sequence by applying the recurrence relations
given in kRegularSequenceSpace.from_recurrence() to the values given in initial_values.

INPUT:

• M, m, l, u, offset – parameters of the recursive sequences, see [HKL2021], Definition 3.1

• ll – parameter of the resulting linear representation, see [HKL2021], Theorem A

• coeffs – a dictionary where coeffs[(r, j)] is the coefficient 𝑐𝑟,𝑗 as given in
kRegularSequenceSpace.from_recurrence(). If coeffs[(r, j)] is not given for some
r and j, then it is assumed to be zero.

5.1. Comprehensive Module List 1203

Combinatorics, Release 9.7

• initial_values – a dictionary mapping integers n to the n-th value of the sequence

• last_value_needed – last initial value which is needed to determine the linear representation

OUTPUT:

A dictionary mapping integers n to the n-th value of the sequence for all n up to last_value_needed.

EXAMPLES:

Stern–Brocot Sequence:

sage: from sage.combinat.k_regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: RP.values(M=1, m=0, l=0, u=1, ll=0,
....: coeffs={(0, 0): 1, (1, 0): 1, (1, 1): 1},
....: initial_values={0: 0, 1: 1, 2: 1}, last_value_needed=20,
....: offset=0)
{0: 0, 1: 1, 2: 1, 3: 2, 4: 1, 5: 3, 6: 2, 7: 3, 8: 1, 9: 4, 10: 3,
11: 5, 12: 2, 13: 5, 14: 3, 15: 4, 16: 1, 17: 5, 18: 4, 19: 7, 20: 3}

See also:

kRegularSequenceSpace.from_recurrence()

class sage.combinat.k_regular_sequence.kRegularSequence(parent, mu, left=None, right=None)
Bases: sage.combinat.recognizable_series.RecognizableSeries

A 𝑘-regular sequence.

INPUT:

• parent – an instance of kRegularSequenceSpace

• mu – a family of square matrices, all of which have the same dimension. The indices of this family are
0, ..., 𝑘 − 1. mu may be a list or tuple of cardinality 𝑘 as well. See also mu().

• left – (default: None) a vector. When evaluating the sequence, this vector is multiplied from the left to
the matrix product. If None, then this multiplication is skipped.

• right – (default: None) a vector. When evaluating the sequence, this vector is multiplied from the right to
the matrix product. If None, then this multiplication is skipped.

EXAMPLES:

sage: Seq2 = kRegularSequenceSpace(2, ZZ)
sage: S = Seq2((Matrix([[3, 6], [0, 1]]), Matrix([[0, -6], [1, 5]])),
....: vector([0, 1]), vector([1, 0])).transposed(); S
2-regular sequence 0, 1, 3, 5, 9, 11, 15, 19, 27, 29, ...

We can access the coefficients of a sequence by

sage: S[5]
11

or iterating over the first, say 10, by

sage: from itertools import islice
sage: list(islice(S, 10))
[0, 1, 3, 5, 9, 11, 15, 19, 27, 29]

1204 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

k-regular sequence, kRegularSequenceSpace.

backward_differences(**kwds)
Return the sequence of backward differences of this 𝑘-regular sequence.

INPUT:

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the
operation, if False, then not. If this argument is None, then the default specified by the parent’s
minimize_results is used.

OUTPUT:

A kRegularSequence

Note: The coefficient to the index −1 is 0.

EXAMPLES:

sage: Seq2 = kRegularSequenceSpace(2, ZZ)
sage: C = Seq2((Matrix([[2, 0], [2, 1]]), Matrix([[0, 1], [-2, 3]])),
....: vector([1, 0]), vector([0, 1]))
sage: C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
sage: C.backward_differences()
2-regular sequence 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

sage: E = Seq2((Matrix([[0, 1], [0, 1]]), Matrix([[0, 0], [0, 1]])),
....: vector([1, 0]), vector([1, 1]))
sage: E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
sage: E.backward_differences()
2-regular sequence 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ...

forward_differences(**kwds)
Return the sequence of forward differences of this 𝑘-regular sequence.

INPUT:

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the
operation, if False, then not. If this argument is None, then the default specified by the parent’s
minimize_results is used.

OUTPUT:

A kRegularSequence

EXAMPLES:

sage: Seq2 = kRegularSequenceSpace(2, ZZ)
sage: C = Seq2((Matrix([[2, 0], [2, 1]]), Matrix([[0, 1], [-2, 3]])),
....: vector([1, 0]), vector([0, 1]))
sage: C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
sage: C.forward_differences()
2-regular sequence 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

5.1. Comprehensive Module List 1205

Combinatorics, Release 9.7

sage: E = Seq2((Matrix([[0, 1], [0, 1]]), Matrix([[0, 0], [0, 1]])),
....: vector([1, 0]), vector([1, 1]))
sage: E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
sage: E.forward_differences()
2-regular sequence -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, ...

partial_sums(*args, **kwds)
Return the sequence of partial sums of this 𝑘-regular sequence. That is, the 𝑛 entries in the original se-
quence.

INPUT:

• include_n – (default: False) a boolean. If set, then the 𝑛-th entry of the result is the sum of the
entries up to index 𝑛 (included).

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the
operation, if False, then not. If this argument is None, then the default specified by the parent’s
minimize_results is used.

OUTPUT:

A kRegularSequence

EXAMPLES:

sage: Seq2 = kRegularSequenceSpace(2, ZZ)

sage: E = Seq2((Matrix([[0, 1], [0, 1]]), Matrix([[0, 0], [0, 1]])),
....: vector([1, 0]), vector([1, 1]))
sage: E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
sage: E.partial_sums()
2-regular sequence 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, ...
sage: E.partial_sums(include_n=True)
2-regular sequence 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...

sage: C = Seq2((Matrix([[2, 0], [2, 1]]), Matrix([[0, 1], [-2, 3]])),
....: vector([1, 0]), vector([0, 1]))
sage: C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
sage: C.partial_sums()
2-regular sequence 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, ...
sage: C.partial_sums(include_n=True)
2-regular sequence 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ...

shift_left(b=1, **kwds)
Return the sequence obtained by shifting this 𝑘-regular sequence 𝑏 steps to the left.

INPUT:

• b – an integer

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the
operation, if False, then not. If this argument is None, then the default specified by the parent’s
minimize_results is used.

OUTPUT:

1206 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

A kRegularSequence

Note: If 𝑏 is negative (i.e., actually a right-shift), then the coefficients when accessing negative indices are
0.

EXAMPLES:

sage: Seq2 = kRegularSequenceSpace(2, ZZ)
sage: C = Seq2((Matrix([[2, 0], [0, 1]]), Matrix([[2, 1], [0, 1]])),
....: vector([1, 0]), vector([0, 1])); C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

sage: C.shift_left()
2-regular sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
sage: C.shift_left(3)
2-regular sequence 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
sage: C.shift_left(-2)
2-regular sequence 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, ...

shift_right(b=1, **kwds)
Return the sequence obtained by shifting this 𝑘-regular sequence 𝑏 steps to the right.

INPUT:

• b – an integer

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the
operation, if False, then not. If this argument is None, then the default specified by the parent’s
minimize_results is used.

OUTPUT:

A kRegularSequence

Note: If 𝑏 is positive (i.e., indeed a right-shift), then the coefficients when accessing negative indices are
0.

EXAMPLES:

sage: Seq2 = kRegularSequenceSpace(2, ZZ)
sage: C = Seq2((Matrix([[2, 0], [0, 1]]), Matrix([[2, 1], [0, 1]])),
....: vector([1, 0]), vector([0, 1])); C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

sage: C.shift_right()
2-regular sequence 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
sage: C.shift_right(3)
2-regular sequence 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, ...
sage: C.shift_right(-2)
2-regular sequence 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

subsequence(*args, **kwds)
Return the subsequence with indices 𝑎𝑛+ 𝑏 of this 𝑘-regular sequence.

INPUT:

5.1. Comprehensive Module List 1207

Combinatorics, Release 9.7

• a – a nonnegative integer

• b – an integer

Alternatively, this is allowed to be a dictionary 𝑏𝑗 ↦→ 𝑐𝑗 . If so and applied on 𝑓(𝑛), the result will be
the sum of all 𝑐𝑗 · 𝑓(𝑎𝑛+ 𝑏𝑗).

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the
operation, if False, then not. If this argument is None, then the default specified by the parent’s
minimize_results is used.

OUTPUT:

A kRegularSequence

Note: If 𝑏 is negative (i.e., right-shift), then the coefficients when accessing negative indices are 0.

EXAMPLES:

sage: Seq2 = kRegularSequenceSpace(2, ZZ)

We consider the sequence 𝐶 with 𝐶(𝑛) = 𝑛 and the following linear representation corresponding to the
vector (𝑛, 1):

sage: C = Seq2((Matrix([[2, 0], [0, 1]]), Matrix([[2, 1], [0, 1]])),
....: vector([1, 0]), vector([0, 1])); C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

We now extract various subsequences of 𝐶:

sage: C.subsequence(2, 0)
2-regular sequence 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, ...

sage: S31 = C.subsequence(3, 1); S31
2-regular sequence 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, ...
sage: S31.linear_representation()
((1, 0),
Finite family {0: [0 1]

[-2 3],
1: [6 -2]

[10 -3]},
(1, 1))

sage: C.subsequence(3, 2)
2-regular sequence 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, ...

sage: Srs = C.subsequence(1, -1); Srs
2-regular sequence 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
sage: Srs.linear_representation()
((1, 0, 0),
Finite family {0: [0 1 0]

[-2 3 0]
[-4 4 1],

1: [-2 2 0]
[0 0 1]

(continues on next page)

1208 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[12 -12 5]},
(0, 0, 1))

We can build backward_differences() manually by passing a dictionary for the parameter b:

sage: Sbd = C.subsequence(1, {0: 1, -1: -1}); Sbd
2-regular sequence 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

class sage.combinat.k_regular_sequence.kRegularSequenceSpace(k, *args, **kwds)
Bases: sage.combinat.recognizable_series.RecognizableSeriesSpace

The space of 𝑘-regular Sequences over the given coefficient_ring.

INPUT:

• k – an integer at least 2 specifying the base

• coefficient_ring – a (semi-)ring

• category – (default: None) the category of this space

EXAMPLES:

sage: kRegularSequenceSpace(2, ZZ)
Space of 2-regular sequences over Integer Ring
sage: kRegularSequenceSpace(3, ZZ)
Space of 3-regular sequences over Integer Ring

See also:

k-regular sequence, kRegularSequence.

Element
alias of kRegularSequence

from_recurrence(*args, **kwds)
Construct the unique 𝑘-regular sequence which fulfills the given recurrence relations and initial values. The
recurrence relations have to have the specific shape of 𝑘-recursive sequences as described in [HKL2021],
and are either given as symbolic equations, e.g.,

sage: Seq2 = kRegularSequenceSpace(2, ZZ)
sage: var('n')
n
sage: function('f')
f
sage: Seq2.from_recurrence([
....: f(2*n) == 2*f(n), f(2*n + 1) == 3*f(n) + 4*f(n - 1),
....: f(0) == 0, f(1) == 1], f, n)
2-regular sequence 0, 0, 0, 1, 2, 3, 4, 10, 6, 17, ...

or via the parameters of the 𝑘-recursive sequence as described in the input block below:

sage: Seq2.from_recurrence(M=1, m=0,
....: coeffs={(0, 0): 2, (1, 0): 3, (1, -1): 4},
....: initial_values={0: 0, 1: 1})
2-regular sequence 0, 0, 0, 1, 2, 3, 4, 10, 6, 17, ...

5.1. Comprehensive Module List 1209

Combinatorics, Release 9.7

INPUT:

Positional arguments:

If the recurrence relations are represented by symbolic equations, then the following arguments are required:

• equations – A list of equations where the elements have either the form

– 𝑓(𝑘𝑀𝑛 + 𝑟) = 𝑐𝑟,𝑙𝑓(𝑘𝑚𝑛 + 𝑙) + 𝑐𝑟,𝑙+1𝑓(𝑘𝑚𝑛 + 𝑙 + 1) + ... + 𝑐𝑟,𝑢𝑓(𝑘𝑚𝑛 + 𝑢) for some
integers 0 ≤ 𝑟 < 𝑘𝑀 , 𝑀 > 𝑚 ≥ 0 and 𝑙 ≤ 𝑢, and some coefficients 𝑐𝑟,𝑗 from the (semi)ring
coefficients of the corresponding kRegularSequenceSpace, valid for all integers 𝑛 ≥ offset
for some integer offset ≥ max(−𝑙/𝑘𝑚, 0) (default: 0), and there is an equation of this form (with
the same parameters 𝑀 and 𝑚) for all 𝑟

or the form

– f(k) == t for some integer k and some t from the (semi)ring coefficient_ring.

The recurrence relations above uniquely determine a 𝑘-regular sequence; see [HKL2021] for further
information.

• function – symbolic function f occurring in the equations

• var – symbolic variable (n in the above description of equations)

The following second representation of the recurrence relations is particularly useful for cases where
coefficient_ring is not compatible with sage.symbolic.ring.SymbolicRing. Then the following
arguments are required:

• M – parameter of the recursive sequences, see [HKL2021], Definition 3.1, as well as in the description
of equations above

• m – parameter of the recursive sequences, see [HKL2021], Definition 3.1, as well as in the description
of equations above

• coeffs – a dictionary where coeffs[(r, j)] is the coefficient 𝑐𝑟,𝑗 as given in the description of
equations above. If coeffs[(r, j)] is not given for some r and j, then it is assumed to be zero.

• initial_values – a dictionary mapping integers n to the n-th value of the sequence

Optional keyword-only argument:

• offset – an integer (default: 0). See explanation of equations above.

OUTPUT: a kRegularSequence

EXAMPLES:

Stern–Brocot Sequence:

sage: Seq2 = kRegularSequenceSpace(2, ZZ)
sage: var('n')
n
sage: function('f')
f
sage: Seq2.from_recurrence([
....: f(2*n) == f(n), f(2*n + 1) == f(n) + f(n + 1),
....: f(0) == 0, f(1) == 1], f, n)
2-regular sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ...

Number of Odd Entries in Pascal’s Triangle:

1210 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/calculus/sage/symbolic/ring.html#sage.symbolic.ring.SymbolicRing

Combinatorics, Release 9.7

sage: Seq2.from_recurrence([
....: f(2*n) == 3*f(n), f(2*n + 1) == 2*f(n) + f(n + 1),
....: f(0) == 0, f(1) == 1], f, n)
2-regular sequence 0, 1, 3, 5, 9, 11, 15, 19, 27, 29, ...

Number of Unbordered Factors in the Thue–Morse Sequence:

sage: Seq2.from_recurrence([
....: f(8*n) == 2*f(4*n),
....: f(8*n + 1) == f(4*n + 1),
....: f(8*n + 2) == f(4*n + 1) + f(4*n + 3),
....: f(8*n + 3) == -f(4*n + 1) + f(4*n + 2),
....: f(8*n + 4) == 2*f(4*n + 2),
....: f(8*n + 5) == f(4*n + 3),
....: f(8*n + 6) == -f(4*n + 1) + f(4*n + 2) + f(4*n + 3),
....: f(8*n + 7) == 2*f(4*n + 1) + f(4*n + 3),
....: f(0) == 1, f(1) == 2, f(2) == 2, f(3) == 4, f(4) == 2,
....: f(5) == 4, f(6) == 6, f(7) == 0, f(8) == 4, f(9) == 4,
....: f(10) == 4, f(11) == 4, f(12) == 12, f(13) == 0, f(14) == 4,
....: f(15) == 4, f(16) == 8, f(17) == 4, f(18) == 8, f(19) == 0,
....: f(20) == 8, f(21) == 4, f(22) == 4, f(23) == 8], f, n, offset=3)
2-regular sequence 1, 2, 2, 4, 2, 4, 6, 0, 4, 4, ...

Number of Non-Zero Elements in the Generalized Pascal’s Triangle (see [LRS2017]):

sage: Seq2 = kRegularSequenceSpace(2, QQ)
sage: Seq2.from_recurrence([
....: f(4*n) == 5/3*f(2*n) - 1/3*f(2*n + 1),
....: f(4*n + 1) == 4/3*f(2*n) + 1/3*f(2*n + 1),
....: f(4*n + 2) == 1/3*f(2*n) + 4/3*f(2*n + 1),
....: f(4*n + 3) == -1/3*f(2*n) + 5/3*f(2*n + 1),
....: f(0) == 1, f(1) == 2], f, n)
2-regular sequence 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, ...

Finally, the same sequence can also be obtained via direct parameters without symbolic equations:

sage: Seq2.from_recurrence(2, 1,
....: {(0, 0): 5/3, (0, 1): -1/3,
....: (1, 0): 4/3, (1, 1): 1/3,
....: (2, 0): 1/3, (2, 1): 4/3,
....: (3, 0): -1/3, (3, 1): 5/3},
....: {0: 1, 1: 2})
2-regular sequence 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, ...

5.1. Comprehensive Module List 1211

Combinatorics, Release 9.7

5.1.128 Strong and weak tableaux

There are two types of 𝑘-tableaux: strong 𝑘-tableaux and weak 𝑘-tableaux. Standard weak 𝑘-tableaux correspond
to saturated chains in the weak order, whereas standard strong 𝑘-tableaux correspond to saturated chains in the strong
Bruhat order. For semistandard tableaux, the notion of weak and strong horizontal strip is necessary. More information
can be found in [LLMS2006] .

See also:

sage.combinat.k_tableau.StrongTableau(), sage.combinat.k_tableau.WeakTableau()

Authors:

• Anne Schilling and Mike Zabrocki (2013): initial version

• Avi Dalal and Nate Gallup (2013): implementation of 𝑘-charge

class sage.combinat.k_tableau.StrongTableau(parent, T)
Bases: sage.structure.list_clone.ClonableList

A (standard) strong 𝑘-tableau is a (saturated) chain in Bruhat order.

Combinatorially, it is a sequence of embedded 𝑘 + 1-cores (subject to some conditions) together with a set of
markings.

A strong cover in terms of cores corresponds to certain translated ribbons. A marking corresponds to the choice
of one of the translated ribbons, which is indicated by marking the head (southeast most cell in French notation)
of the chosen ribbon. For more information, see [LLMS2006] and [LLMSSZ2013].

In Sage, a strong 𝑘-tableau is created by specifying 𝑘, a standard strong tableau together with its markings, and
a weight 𝜇. Here the standard tableau is represented by a sequence of 𝑘 + 1-cores

𝜆(0) ⊆ 𝜆(1) ⊆ · · · ⊆ 𝜆(𝑚)

where each of the 𝜆(𝑖) is a 𝑘+1-core. The standard tableau is a filling of the diagram for the core 𝜆(𝑚)/𝜆(0) where
a strong cover is represented by letters±𝑖 in the skew shape 𝜆(𝑖)/𝜆(𝑖−1). Each skew (𝑘+1)-core 𝜆(𝑖)/𝜆(𝑖−1) is a
ribbon or multiple copies of the same ribbon which are separated by 𝑘+ 1 diagonals. Precisely one of the copies
of the ribbons will be marked in the largest diagonal of the connected component (the ‘head’ of the ribbon). The
marked cells are indicated by negative signs.

The strong tableau is stored as a standard strong marked tableau (referred to as the standard part of the strong
tableau) and a vector representing the weight.

EXAMPLES:

sage: StrongTableau([[-1, -2, -3], [3]], 2, [3])
[[-1, -1, -1], [1]]
sage: StrongTableau([[-1,-2,-4,-7],[-3,6,-6,8],[4,7],[-5,-8]], 3, [2,2,3,1])
[[-1, -1, -2, -3], [-2, 3, -3, 4], [2, 3], [-3, -4]]

Alternatively, the strong 𝑘-tableau can also be entered directly in semistandard format and then the standard
tableau and the weight are computed and stored:

sage: T = StrongTableau([[-1,-1,-1],[1]], 2); T
[[-1, -1, -1], [1]]
sage: T.to_standard_list()
[[-1, -2, -3], [3]]
sage: T.weight()
(3,)
sage: T = StrongTableau([[-1, -1, -2, -3], [-2, 3, -3, 4], [2, 3], [-3, -4]], 3); T

(continues on next page)

1212 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList

Combinatorics, Release 9.7

(continued from previous page)

[[-1, -1, -2, -3], [-2, 3, -3, 4], [2, 3], [-3, -4]]
sage: T.to_standard_list()
[[-1, -2, -4, -7], [-3, 6, -6, 8], [4, 7], [-5, -8]]
sage: T.weight()
(2, 2, 3, 1)

cell_of_highest_head(v)
Return the cell of the highest head of label v in the standard part of self.

Return the cell where the head of the ribbon in the highest row is located in the underlying standard tableau.
If there is no cell with entry v then the cell returned is (0, 𝑟) where 𝑟 is the length of the first row.

This cell is calculated by iterating through the diagonals of the tableau.

INPUT:

• v – an integer indicating the label in the standard tableau

OUTPUT:

• a pair of integers indicating the coordinates of the head of the highest ribbon with label v

EXAMPLES:

sage: T = StrongTableau([[-1,2,-3],[-2,3],[3]], 1)
sage: [T.cell_of_highest_head(v) for v in range(1,5)]
[(0, 0), (1, 0), (2, 0), (0, 3)]
sage: T = StrongTableau([[None,None,-3,4],[3,-4]],2)
sage: [T.cell_of_highest_head(v) for v in range(1,5)]
[(1, 0), (1, 1), (0, 4), (0, 4)]

cell_of_marked_head(v)
Return location of marked head labeled by v in the standard part of self.

Return the coordinates of the v-th marked cell in the strong standard tableau self. If there is no mark, then
the value returned is (0, 𝑟) where 𝑟 is the length of the first row.

INPUT:

• v – an integer representing the label in the standard tableau

OUTPUT:

• a pair of the coordinates of the marked cell with entry v

EXAMPLES:

sage: T = StrongTableau([[-1, -3, 4, -5], [-2], [-4]], 3)
sage: [T.cell_of_marked_head(i) for i in range(1,7)]
[(0, 0), (1, 0), (0, 1), (2, 0), (0, 3), (0, 4)]
sage: T = StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2],␣
→˓[-3], [3], [3], [3]], 4)
sage: [T.cell_of_marked_head(i) for i in range(1,7)]
[(2, 0), (0, 2), (2, 1), (0, 3), (4, 0), (0, 4)]

cells_head_dictionary()
Return a dictionary with the locations of the heads of all markings.

Return a dictionary of values and lists of cells where the heads with the values are located.

OUTPUT:

5.1. Comprehensive Module List 1213

Combinatorics, Release 9.7

• a dictionary with keys the entries in the tableau and values are the coordinates of the heads with those
entries

EXAMPLES:

sage: T = StrongTableau([[-1,-2,-4,7],[-3,6,-6,8],[4,-7],[-5,-8]], 3)
sage: T.cells_head_dictionary()
{1: [(0, 0)],
2: [(0, 1)],
3: [(1, 0)],
4: [(2, 0), (0, 2)],
5: [(3, 0)],
6: [(1, 2)],
7: [(2, 1), (0, 3)],
8: [(3, 1), (1, 3)]}
sage: T = StrongTableau([[None, 4, -4, -6, -7, 8, 8, -8], [None, -5, 8, 8, 8],␣
→˓[-3, 6]],3)
sage: T.cells_head_dictionary()
{1: [(2, 0)],
2: [(0, 2)],
3: [(1, 1)],
4: [(2, 1), (0, 3)],
5: [(0, 4)],
6: [(1, 4), (0, 7)]}
sage: StrongTableau([[None, None], [None, -1]], 4).cells_head_dictionary()
{1: [(1, 1)]}

cells_of_heads(v)
Return a list of cells of the heads with label v in the standard part of self.

A list of cells which are heads of the ribbons with label v in the standard part of the tableau self. If there
is no cell labelled by v then return the empty list.

INPUT:

• v – an integer label

OUTPUT:

• a list of pairs of integers of the coordinates of the heads of the ribbons with label v

EXAMPLES:

sage: T = StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2],␣
→˓[-3], [3], [3], [3]], 4)
sage: T.cells_of_heads(1)
[(2, 0)]
sage: T.cells_of_heads(2)
[(3, 0), (0, 2)]
sage: T.cells_of_heads(3)
[(2, 1)]
sage: T.cells_of_heads(4)
[(3, 1), (0, 3)]
sage: T.cells_of_heads(5)
[(4, 0)]
sage: T.cells_of_heads(6)
[]

1214 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

cells_of_marked_ribbon(v)
Return a list of all cells the marked ribbon labeled by v in the standard part of self.

Return the list of coordinates of the cells which are in the marked ribbon with label v in the standard part
of the tableau. Note that the result is independent of the weight of the tableau.

The cells are listed from largest content (where the mark is located) to the smallest. Hence, the first entry
in this list will be the marked cell.

INPUT:

• v – the entry of the standard tableau

OUTPUT:

• a list of pairs representing the coordinates of the cells of the marked ribbon

EXAMPLES:

sage: T = StrongTableau([[-1, -1, -2, -2, 3], [2, -3], [-3]],3)
sage: T.to_standard_list()
[[-1, -2, -3, -4, 6], [4, -6], [-5]]
sage: T.cells_of_marked_ribbon(1)
[(0, 0)]
sage: T.cells_of_marked_ribbon(4)
[(0, 3)]
sage: T = StrongTableau([[-1,-2,-4,-7],[-3,6,-6,8],[4,7],[-5,-8]], 3)
sage: T.cells_of_marked_ribbon(6)
[(1, 2), (1, 1)]
sage: T.cells_of_marked_ribbon(9)
[]
sage: T = StrongTableau([[None, None, -1, -1, 3], [1, -3], [-3]],3)
sage: T.to_standard_list()
[[None, None, -1, -2, 4], [2, -4], [-3]]
sage: T.cells_of_marked_ribbon(1)
[(0, 2)]

check()
Check that self is a valid strong 𝑘-tableau.

This function verifies that the outer and inner shape of the parent class is equal to the outer and inner
shape of the tableau, that the tableau portion of self is a valid standard tableau, that the marks are placed
correctly and that the size and weight agree.

EXAMPLES:

sage: T = StrongTableau([[-1, -1, -2], [2]], 2)
sage: T.check()
sage: T = StrongTableau([[None, None, 2, -4, -4], [-1, 4], [-2]], 3)
sage: T.check()

content_of_highest_head(v)
Return the diagonal of the highest head of the cells labeled v in the standard part of self.

Return the content of the cell of the head in the highest row of all ribbons labeled by v of the underlying
standard tableau. If there is no cell with entry v then the value returned is the length of the first row.

INPUT:

• v – an integer representing the label in the standard tableau

5.1. Comprehensive Module List 1215

Combinatorics, Release 9.7

OUTPUT:

• an integer representing the content of the head of the highest ribbon with label v

EXAMPLES:

sage: [StrongTableau([[-1,2,-3],[-2,3],[3]], 1).content_of_highest_head(v) for␣
→˓v in range(1,5)]
[0, -1, -2, 3]

content_of_marked_head(v)
Return the diagonal of the marked label v in the standard part of self.

Return the content (the 𝑗 − 𝑖 coordinate of the cell) of the v-th marked cell in the strong standard tableau
self. If there is no mark, then the value returned is the size of first row.

INPUT:

• v – an integer representing the label in the standard tableau

OUTPUT:

• an integer representing the residue of the location of the mark

EXAMPLES:

sage: [StrongTableau([[-1, -3, 4, -5], [-2], [-4]], 3).content_of_marked_
→˓head(i) for i in range(1,7)]
[0, -1, 1, -2, 3, 4]
sage: T = StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2],␣
→˓[-3], [3], [3], [3]], 4)
sage: [T.content_of_marked_head(i) for i in range(1,7)]
[-2, 2, -1, 3, -4, 4]

contents_of_heads(v)
A list of contents of the cells which are heads of the ribbons with label v.

If there is no cell labelled by v then return the empty list.

INPUT:

• v – an integer label

OUTPUT:

• a list of integers of the content of the heads of the ribbons with label v

EXAMPLES:

sage: T = StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2],␣
→˓[-3], [3], [3], [3]], 4)
sage: T.contents_of_heads(1)
[-2]
sage: T.contents_of_heads(2)
[-3, 2]
sage: T.contents_of_heads(3)
[-1]
sage: T.contents_of_heads(4)
[-2, 3]
sage: T.contents_of_heads(5)
[-4]

(continues on next page)

1216 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T.contents_of_heads(6)
[]

entries_by_content(diag)
Return the entries on the diagonal of self.

Return the entries in the tableau that are in the cells (𝑖, 𝑗) with 𝑗 − 𝑖 equal to diag (that is, with content
equal to diag).

INPUT:

• diag – an integer indicating the diagonal

OUTPUT:

• a list (perhaps empty) of labels on the diagonal diag

EXAMPLES:

sage: T = StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2],␣
→˓[-3], [3], [3], [3]], 4)
sage: T.entries_by_content(0)
[]
sage: T.entries_by_content(1)
[]
sage: T.entries_by_content(2)
[-1]
sage: T.entries_by_content(-2)
[-1, 2]

entries_by_content_standard(diag)
Return the entries on the diagonal of the standard part of self.

Return the entries in the tableau that are in the cells (𝑖, 𝑗) with 𝑗 − 𝑖 equal to diag (that is, with content
equal to diag) in the standard tableau.

INPUT:

• diag – an integer indicating the diagonal

OUTPUT:

• a list (perhaps empty) of labels on the diagonal diag

EXAMPLES:

sage: T = StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2],␣
→˓[-3], [3], [3], [3]], 4)
sage: T.entries_by_content_standard(0)
[]
sage: T.entries_by_content_standard(1)
[]
sage: T.entries_by_content_standard(2)
[-2]
sage: T.entries_by_content_standard(-2)
[-1, 4]

follows_tableau()
Return a list of strong marked tableaux with length one longer than self.

5.1. Comprehensive Module List 1217

Combinatorics, Release 9.7

Return list of all strong tableaux obtained from self by extending to a core which follows the shape of
self in the strong order.

OUTPUT:

• a list of strong tableaux which follow self in strong order

EXAMPLES:

sage: T = StrongTableau([[-1,-2,-4,-7],[-3,6,-6,8],[4,7],[-5,-8]], 3, [2,2,3,1])
sage: T.follows_tableau()
[[[-1, -1, -2, -3, 5, 5, -5], [-2, 3, -3, 4], [2, 3], [-3, -4]],
[[-1, -1, -2, -3, 5], [-2, 3, -3, 4], [2, 3, 5], [-3, -4], [-5]],
[[-1, -1, -2, -3, 5], [-2, 3, -3, 4], [2, 3, -5], [-3, -4], [5]],
[[-1, -1, -2, -3, -5], [-2, 3, -3, 4], [2, 3, 5], [-3, -4], [5]],
[[-1, -1, -2, -3], [-2, 3, -3, 4], [2, 3], [-3, -4], [-5], [5], [5]]]
sage: StrongTableau([[-1,-2],[-3,-4]],3).follows_tableau()
[[[-1, -2, 5, 5, -5], [-3, -4]], [[-1, -2, 5], [-3, -4], [-5]],
[[-1, -2, -5], [-3, -4], [5]], [[-1, -2], [-3, -4], [-5], [5], [5]]]

height_of_ribbon(v)
The number of rows occupied by one of the ribbons with label v.

The number of rows occupied by the marked ribbon with label v (and by consequence the number of rows
occupied by any ribbon with the same label) in the standard part of self.

INPUT:

• v – the label of the standard marked tableau

OUTPUT:

• a non-negative integer representing the number of rows occupied by the ribbon which is marked

EXAMPLES:

sage: T = StrongTableau([[-1, -1, -2, -2, 3], [2, -3], [-3]],3)
sage: T.to_standard_list()
[[-1, -2, -3, -4, 6], [4, -6], [-5]]
sage: T.height_of_ribbon(1)
1
sage: T.height_of_ribbon(4)
1
sage: T = StrongTableau([[None,None,1,-2],[None,-3,4,-5],[-1,3],[-4,5]], 3)
sage: T.height_of_ribbon(3)
2
sage: T.height_of_ribbon(6)
0

inner_shape()
Return the inner shape of self.

If self is a strong skew tableau, then this method returns the inner shape (the shape of the cells labelled
with None). If self is not skew, then the inner shape is empty.

OUTPUT:

• a (𝑘 + 1)-core

EXAMPLES:

1218 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2], [-3],
→˓ [3], [3], [3]], 4).inner_shape()
[2, 2]
sage: StrongTableau([[-1,-2,-4,-7],[-3,6,-6,8],[4,7],[-5,-8]], 3, [2,2,3,1]).
→˓inner_shape()
[]

intermediate_shapes()
Return the intermediate shapes of self.

A (skew) tableau with letters 1, 2, . . . , ℓ can be viewed as a sequence of shapes, where the 𝑖-th shape is
given by the shape of the subtableau on letters 1, 2, . . . , 𝑖.

The output is the list of these shapes. The marked cells are ignored so to recover the strong tableau one
would need the intermediate shapes and the content_of_marked_head() for each pair of adjacent shapes
in the list.

OUTPUT:

• a list of lists of integers representing 𝑘 + 1-cores

EXAMPLES:

sage: T = StrongTableau([[-1,-2,-4,-7],[-3,6,-6,8],[4,7],[-5,-8]], 3, [2,2,3,1])
sage: T.intermediate_shapes()
[[], [2], [3, 1, 1], [4, 3, 2, 1], [4, 4, 2, 2]]
sage: T = StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2],␣
→˓[-3], [3], [3], [3]], 4)
sage: T.intermediate_shapes()
[[2, 2], [3, 2, 1, 1], [4, 2, 2, 2], [4, 2, 2, 2, 1, 1, 1, 1]]

is_column_strict_with_weight(mu)
Test if self is a column strict tableau with respect to the weight mu.

INPUT:

• mu – a vector of weights

OUTPUT:

• a boolean, True means the underlying column strict strong marked tableau is valid

EXAMPLES:

sage: StrongTableau([[-1, -2, -3], [3]], 2).is_column_strict_with_weight([3])
True
sage: StrongTableau([[-1, -2, 3], [-3]], 2).is_column_strict_with_weight([3])
False

left_action(tij)
Action of transposition tij on self by adding marked ribbons.

Computes the left action of the transposition tij on the tableau. If tij acting on the element of the affine
Grassmannian raises the length by 1, then this function will add a cell to the standard tableau.

INPUT:

• tij – a transposition represented as a pair (𝑖, 𝑗).

OUTPUT:

5.1. Comprehensive Module List 1219

Combinatorics, Release 9.7

• self after it has been modified by the action of the transposition tij

EXAMPLES:

sage: StrongTableau([[None, -1, -2, -3], [3], [-4]], 3, weight=[1,1,1,1]).
→˓left_action([0,1])
[[None, -1, -2, -3, 5], [3, -5], [-4]]
sage: StrongTableau([[None, -1, -2, -3], [3], [-4]], 3, weight=[1,1,1,1]).
→˓left_action([4,5])
[[None, -1, -2, -3, -5], [3, 5], [-4]]
sage: T = StrongTableau([[None, -1, -2, -3], [3], [-4]], 3, weight=[1,1,1,1])
sage: T.left_action([-3,-2])
[[None, -1, -2, -3], [3], [-4], [-5]]
sage: T = StrongTableau([[None, -1, -2, -3], [3], [-4]], 3, weight=[3,1])
sage: T.left_action([-3,-2])
[[None, -1, -1, -1], [1], [-2], [-3]]
sage: T
[[None, -1, -1, -1], [1], [-2]]
sage: T.check()
sage: T.weight()
(3, 1)

number_of_connected_components(v)
Number of connected components of ribbons with label v in the standard part.

The number of connected components is calculated by finding the number of cells with label v in the
standard part of the tableau and dividing by the number of cells in the ribbon.

INPUT:

• v – the label of the standard marked tableau

OUTPUT:

• a non-negative integer representing the number of connected components

EXAMPLES:

sage: T = StrongTableau([[-1, -1, -2, -2, 3], [2, -3], [-3]],3)
sage: T.to_standard_list()
[[-1, -2, -3, -4, 6], [4, -6], [-5]]
sage: T.number_of_connected_components(1)
1
sage: T.number_of_connected_components(4)
2
sage: T = StrongTableau([[-1,-2,-4,-7],[-3,6,-6,8],[4,7],[-5,-8]], 3)
sage: T.number_of_connected_components(6)
1
sage: T.number_of_connected_components(9)
0

outer_shape()
Return the outer shape of self.

This method returns the outer shape of self as viewed as a Core. The outer shape of a strong tableau is
always a (𝑘 + 1)-core.

OUTPUT:

1220 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• a (𝑘 + 1)-core

EXAMPLES:

sage: StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2], [-3],
→˓ [3], [3], [3]], 4).outer_shape()
[4, 2, 2, 2, 1, 1, 1, 1]
sage: StrongTableau([[-1,-2,-4,-7],[-3,6,-6,8],[4,7],[-5,-8]], 3, [2,2,3,1]).
→˓outer_shape()
[4, 4, 2, 2]

pp()
Print the strong tableau self in pretty print format.

EXAMPLES:

sage: T = StrongTableau([[-1,-2,-4,-7],[-3,6,-6,8],[4,7],[-5,-8]], 3, [2,2,3,1])
sage: T.pp()
-1 -1 -2 -3
-2 3 -3 4
2 3

-3 -4
sage: T = StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2],␣
→˓[-3], [3], [3], [3]], 4)
sage: T.pp()
. . -1 -2
. .
-1 -2
1 2
-3
3
3
3

sage: Tableaux.options(convention="French")
sage: T.pp()
3
3
3
-3
1 2
-1 -2
. .
. . -1 -2

sage: Tableaux.options(convention="English")

restrict(r)
Restrict the standard part of the tableau to the labels 1, 2, . . . , 𝑟.

Return the tableau consisting of the labels of the standard part of self restricted to the labels of 1 through
r. The result is another StrongTableau object.

INPUT:

• r – an integer

OUTPUT:

• A strong tableau

5.1. Comprehensive Module List 1221

Combinatorics, Release 9.7

EXAMPLES:

sage: T = StrongTableau([[None, None, -4, 5, -5], [None, None], [-1, -3], [-2],␣
→˓[2], [2], [3]], 4, weight=[1,1,1,1,1])
sage: T.restrict(3)
[[None, None], [None, None], [-1, -3], [-2], [2], [2], [3]]
sage: TT = T.restrict(0)
sage: TT
[[None, None], [None, None]]
sage: TT == StrongTableau([[None, None], [None, None]], 4)
True
sage: T.restrict(5) == T
True

ribbons_above_marked(v)
Number of ribbons of label v higher than the marked ribbon in the standard part.

Return the number of copies of the ribbon with label v in the standard part of self which are in a higher
row than the marked ribbon. Note that the result is independent of the weight of the tableau.

INPUT:

• v – the entry of the standard tableau

OUTPUT:

• an integer representing the number of copies of the ribbon above the marked ribbon

EXAMPLES:

sage: T = StrongTableau([[-1,-2,-4,-7],[-3,6,-6,8],[4,7],[-5,-8]], 3)
sage: T.ribbons_above_marked(4)
1
sage: T.ribbons_above_marked(6)
0
sage: T.ribbons_above_marked(9)
0
sage: StrongTableau([[-1,-2,-3,-4],[2,3,4],[3,4],[4]], 1).ribbons_above_
→˓marked(4)
3

set_weight(mu)
Sets a new weight mu for self.

This method first tests if the underlying standard tableau is column-strict with respect to the weight mu. If
it is, then it changes the weight and returns the tableau; otherwise it raises an error.

INPUT:

• mu – a list of non-negative integers representing the new weight

EXAMPLES:

sage: StrongTableau([[-1, -2, -3], [3]], 2).set_weight([3])
[[-1, -1, -1], [1]]
sage: StrongTableau([[-1, -2, -3], [3]], 2).set_weight([0,3])
[[-2, -2, -2], [2]]
sage: StrongTableau([[-1, -2, 3], [-3]], 2).set_weight([2, 0, 1])
[[-1, -1, 3], [-3]]

(continues on next page)

1222 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: StrongTableau([[-1, -2, 3], [-3]], 2).set_weight([3])
Traceback (most recent call last):
...
ValueError: [[-1, -2, 3], [-3]] is not a semistandard strong tableau with␣
→˓respect to the partition [3]

shape()
Return the shape of self.

If self is a skew tableau then return a pair of 𝑘 + 1-cores consisting of the outer and the inner shape. If
self is strong tableau with no inner shape then return a 𝑘 + 1-core.

INPUT:

• form - optional argument to indicate ‘inner’, ‘outer’ or ‘skew’ (default : ‘outer’)

OUTPUT:

• a 𝑘 + 1-core or a pair of 𝑘 + 1-cores if form is not ‘inner’ or ‘outer’

EXAMPLES:

sage: T = StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2],␣
→˓[-3], [3], [3], [3]], 4)
sage: T.shape()
([4, 2, 2, 2, 1, 1, 1, 1], [2, 2])
sage: StrongTableau([[-1, -2, 3], [-3]], 2).shape()
[3, 1]
sage: type(StrongTableau([[-1, -2, 3], [-3]], 2).shape())
<class 'sage.combinat.core.Cores_length_with_category.element_class'>

size()
Return the size of the strong tableau.

The size of the strong tableau is the sum of the entries in the weight(). It will also be equal to the length
of the outer shape (as a 𝑘 + 1-core) minus the length of the inner shape.

See also:

sage.combinat.core.Core.length()

OUTPUT:

• a non-negative integer

EXAMPLES:

sage: StrongTableau([[-1, -2, -3, 4], [-4], [-5]], 3).size()
5
sage: StrongTableau([[None, None, -1, 2], [-2], [-3]], 3).size()
3

spin()
Return the spin statistic of the tableau self.

The spin is an integer statistic on a strong marked tableau. It is the sum of (ℎ − 1)𝑟 plus the number
of connected components above the marked one where ℎ is the height of the marked ribbon and 𝑟 is the
number of connected components.

5.1. Comprehensive Module List 1223

Combinatorics, Release 9.7

See also:

height_of_ribbon(), number_of_connected_components(), ribbons_above_marked()

The 𝑘-Schur functions with a parameter 𝑡 can be defined as

𝑠
(𝑘)
𝜆 [𝑋; 𝑡] =

∑︁
𝑇

𝑡𝑠𝑝𝑖𝑛(𝑇)𝑚𝑤𝑒𝑖𝑔ℎ𝑡(𝑇)[𝑋]

where the sum is over all column strict marked strong 𝑘-tableaux of shape 𝜆 and partition content.

OUTPUT:

• an integer value representing the spin.

EXAMPLES:

sage: StrongTableau([[-1,-2,5,6],[-3,-4,-7,8],[-5,-6],[7,-8]], 3, [2,2,3,1]).
→˓spin()
1
sage: StrongTableau([[-1,-2,-4,-7],[-3,6,-6,8],[4,7],[-5,-8]], 3, [2,2,3,1]).
→˓spin()
2
sage: StrongTableau([[None,None,-1,-3],[-2,3,-3,4],[2,3],[-3,-4]], 3).spin()
2
sage: ks3 = SymmetricFunctions(QQ['t'].fraction_field()).kschur(3)
sage: t = ks3.realization_of().t
sage: m = ks3.ambient().realization_of().m()
sage: myks221 = sum(sum(t**T.spin() for T in StrongTableaux(3,[3,2,1],
→˓weight=mu))*m(mu) for mu in Partitions(5, max_part=3))
sage: myks221 == m(ks3[2,2,1])
True
sage: h = ks3.ambient().realization_of().h()
sage: Core([4,4,2,2],4).to_bounded_partition()
[2, 2, 2, 2]
sage: ks3[2,2,2,2].lift().scalar(h[3,3,2]) == sum(t**T.spin() for T in␣
→˓StrongTableaux(3, [4,4,2,2], weight=[3,3,2]))
True

spin_of_ribbon(v)
Return the spin of the ribbon with label v in the standard part of self.

The spin of a ribbon is an integer statistic. It is the sum of (ℎ− 1)𝑟 plus the number of connected compo-
nents above the marked one where ℎ is the height of the marked ribbon and 𝑟 is the number of connected
components.

See also:

height_of_ribbon(), number_of_connected_components(), ribbons_above_marked()

INPUT:

• v – a label of the standard part of the tableau

OUTPUT:

• an integer value representing the spin of the ribbon with label v.

EXAMPLES:

1224 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: T = StrongTableau([[-1,-2,5,6],[-3,-4,-7,8],[-5,-6],[7,-8]], 3)
sage: [T.spin_of_ribbon(v) for v in range(1,9)]
[0, 0, 0, 0, 0, 0, 1, 0]
sage: T = StrongTableau([[None,None,-1,-3],[-2,3,-3,4],[2,3],[-3,-4]], 3)
sage: [T.spin_of_ribbon(v) for v in range(1,7)]
[0, 1, 0, 0, 1, 0]

to_list()
Return the marked column strict (possibly skew) tableau as a list of lists.

OUTPUT:

• a list of lists of integers or None

EXAMPLES:

sage: StrongTableau([[-1, -2, -3, 4], [-4], [-5]], 3).set_weight([2,1,1,1]).to_
→˓list()
[[-1, -1, -2, 3], [-3], [-4]]
sage: StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2], [-3],
→˓ [3], [3], [3]], 4).to_list()
[[None, None, -1, -2], [None, None], [-1, -2], [1, 2], [-3], [3], [3], [3]]
sage: StrongTableau([[-1, -2, -3, 4], [-4], [-5]], 3, [3,1,1]).to_list()
[[-1, -1, -1, 2], [-2], [-3]]

to_standard_list()
Return the underlying standard strong tableau as a list of lists.

Internally, for a strong tableau the standard strong tableau and its weight is stored separately. This method
returns the underlying standard part.

OUTPUT:

• a list of lists of integers or None

EXAMPLES:

sage: StrongTableau([[-1, -2, -3, 4], [-4], [-5]], 3, [3,1,1]).to_standard_
→˓list()
[[-1, -2, -3, 4], [-4], [-5]]
sage: StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2], [-3],
→˓ [3], [3], [3]], 4).to_standard_list()
[[None, None, -2, -4], [None, None], [-1, -3], [2, 4], [-5], [5], [5], [5]]

to_standard_tableau()
Return the underlying standard strong tableau as a StrongTableau object.

Internally, for a strong tableau the standard strong tableau and its weight is stored separately. This method
returns the underlying standard part as a StrongTableau.

OUTPUT:

• a strong tableau with standard weight

EXAMPLES:

sage: T = StrongTableau([[-1, -2, -3, 4], [-4], [-5]], 3, [3,1,1])
sage: T.to_standard_tableau()
[[-1, -2, -3, 4], [-4], [-5]]

(continues on next page)

5.1. Comprehensive Module List 1225

Combinatorics, Release 9.7

(continued from previous page)

sage: T.to_standard_tableau() == T.to_standard_list()
False
sage: StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2], [-3],
→˓ [3], [3], [3]], 4).to_standard_tableau()
[[None, None, -2, -4], [None, None], [-1, -3], [2, 4], [-5], [5], [5], [5]]

to_transposition_sequence()
Return a list of transpositions corresponding to self.

Given a strong column strict tableau self returns the list of transpositions which when applied to the left
of an empty tableau gives the corresponding strong standard tableau.

OUTPUT:

• a list of pairs of values [i,j] representing the transpositions 𝑡𝑖𝑗
EXAMPLES:

sage: T = StrongTableau([[-1, -1, -1], [1]],2)
sage: T.to_transposition_sequence()
[[2, 3], [1, 2], [0, 1]]
sage: T = StrongTableau([[-1, -1, 2], [-2]],2)
sage: T.to_transposition_sequence()
[[-1, 0], [1, 2], [0, 1]]
sage: T = StrongTableau([[None, -1, 2, -3], [-2, 3]],2)
sage: T.to_transposition_sequence()
[[3, 4], [-1, 0], [1, 2]]

to_unmarked_list()
Return the tableau as a list of lists with markings removed.

Return the list of lists of the rows of the tableau where the markings have been removed.

OUTPUT:

• a list of lists of integers or None

EXAMPLES:

sage: T = StrongTableau([[-1, -2, -3, 4], [-4], [-5]], 3, [3,1,1])
sage: T.to_unmarked_list()
[[1, 1, 1, 2], [2], [3]]
sage: TT = T.set_weight([2,1,1,1])
sage: TT.to_unmarked_list()
[[1, 1, 2, 3], [3], [4]]
sage: StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2], [-
→˓3], [3], [3], [3]], 4).to_unmarked_list()
[[None, None, 1, 2], [None, None], [1, 2], [1, 2], [3], [3], [3], [3]]

to_unmarked_standard_list()
Return the standard part of the tableau as a list of lists with markings removed.

Return the list of lists of the rows of the tableau where the markings have been removed.

OUTPUT:

• a list of lists of integers or None

EXAMPLES:

1226 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: StrongTableau([[-1, -2, -3, 4], [-4], [-5]], 3, [3,1,1]).to_unmarked_
→˓standard_list()
[[1, 2, 3, 4], [4], [5]]
sage: StrongTableau([[None, None, -1, -2], [None, None], [-1, -2], [1, 2], [-
→˓3], [3], [3], [3]], 4).to_unmarked_standard_list()
[[None, None, 2, 4], [None, None], [1, 3], [2, 4], [5], [5], [5], [5]]

weight()
Return the weight of the tableau.

The weight is a list of non-negative integers indicating the number of 1s, number of 2s, number of 3s, etc.

OUTPUT:

• a list of non-negative integers

EXAMPLES:

sage: T = StrongTableau([[-1, -2, -3, 4], [-4], [-5]], 3); T.weight()
(1, 1, 1, 1, 1)
sage: T.set_weight([3,1,1]).weight()
(3, 1, 1)
sage: StrongTableau([[-1,-1,-2,-3],[-2,3,-3,4],[2,3],[-3,-4]], 3).weight()
(2, 2, 3, 1)

class sage.combinat.k_tableau.StrongTableaux(k, shape, weight)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Element
alias of StrongTableau

classmethod add_marking(unmarkedT, marking, k, weight)
Add markings to a partially marked strong tableau.

Given an partially marked standard tableau and a list of cells where the marks should be placed along with
a weight, return the semi-standard marked strong tableau. The marking should complete the marking so
that the result is a strong standard marked tableau.

INPUT:

• unmarkedT - a list of lists which is a partially marked strong 𝑘-tableau

• marking - a list of pairs of coordinates where cells are to be marked

• k - a positive integer

• weight - a tuple of the weight of the output tableau

OUTPUT:

• a StrongTableau object

EXAMPLES:

sage: StrongTableaux.add_marking([[None,1,2],[2]], [(0,1), (1,0)], 2, [1,1])
[[None, -1, 2], [-2]]
sage: StrongTableaux.add_marking([[None,1,2],[2]], [(0,1), (1,0)], 2, [2])
Traceback (most recent call last):
...

(continues on next page)

5.1. Comprehensive Module List 1227

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

ValueError: The weight=(2,) and the markings on the standard tableau=[[None, -1,
→˓ 2], [-2]] do not agree.
sage: StrongTableaux.add_marking([[None,1,2],[2]], [(0,1), (0,2)], 2, [2])
[[None, -1, -1], [1]]

an_element()
Return the first generated element of the class of StrongTableaux.

EXAMPLES:

sage: ST = StrongTableaux(3, [3], weight=[3])
sage: ST.an_element()
[[-1, -1, -1]]

classmethod cells_head_dictionary(T)
Return a dictionary with the locations of the heads of all markings.

Return a dictionary of values and lists of cells where the heads with the values are located in a strong
standard unmarked tableau T.

INPUT:

• T – a strong standard unmarked tableau as a list of lists

OUTPUT:

• a dictionary with keys the entries in the tableau and values are the coordinates of the heads with those
entries

EXAMPLES:

sage: StrongTableaux.cells_head_dictionary([[1,2,4,7],[3,6,6,8],[4,7],[5,8]])
{1: [(0, 0)],
2: [(0, 1)],
3: [(1, 0)],
4: [(2, 0), (0, 2)],
5: [(3, 0)],
6: [(1, 2)],
7: [(2, 1), (0, 3)],
8: [(3, 1), (1, 3)]}
sage: StrongTableaux.cells_head_dictionary([[None, 2, 2, 4, 5, 6, 6, 6], [None,␣
→˓3, 6, 6, 6], [1, 4]])
{1: [(2, 0)],
2: [(0, 2)],
3: [(1, 1)],
4: [(2, 1), (0, 3)],
5: [(0, 4)],
6: [(1, 4), (0, 7)]}

classmethod follows_tableau_unsigned_standard(Tlist, k)
Return a list of strong tableaux one longer in length than Tlist.

Return list of all standard strong tableaux obtained from Tlist by extending to a core which follows the
shape of Tlist in the strong order. It does not put the markings on the last entry that it adds but it does
keep the markings on all entries smaller. The objects returned are not StrongTableau objects (and cannot
be) because the last entry will not properly marked.

INPUT:

1228 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Tlist – a filling of a 𝑘 + 1-core as a list of lists

• k - an integer

OUTPUT:

• a list of strong tableaux which follow Tlist in strong order

EXAMPLES:

sage: StrongTableaux.follows_tableau_unsigned_standard([[-1, -1, -2, -3], [-2,␣
→˓3, -3, 4], [2, 3], [-3, -4]], 3)
[[[-1, -1, -2, -3, 5, 5, 5], [-2, 3, -3, 4], [2, 3], [-3, -4]],
[[-1, -1, -2, -3, 5], [-2, 3, -3, 4], [2, 3, 5], [-3, -4], [5]],
[[-1, -1, -2, -3], [-2, 3, -3, 4], [2, 3], [-3, -4], [5], [5], [5]]]
sage: StrongTableaux.follows_tableau_unsigned_standard([[None,-1],[-2,-3]],3)
[[[None, -1, 4, 4, 4], [-2, -3]], [[None, -1, 4], [-2, -3], [4]],
[[None, -1], [-2, -3], [4], [4], [4]]]

inner_shape()
Return the inner shape of the class of strong tableaux.

OUTPUT:

• a 𝑘 + 1-core

EXAMPLES:

sage: StrongTableaux(2, [3,1]).inner_shape()
[]
sage: type(StrongTableaux(2, [3,1]).inner_shape())
<class 'sage.combinat.core.Cores_length_with_category.element_class'>
sage: StrongTableaux(4, [[2,1], [1]]).inner_shape()
[1]

classmethod marked_CST_to_transposition_sequence(T, k)
Return a list of transpositions corresponding to T.

Given a strong column strict tableau T returns the list of transpositions which when applied to the left of an
empty tableau gives the corresponding strong standard tableau.

INPUT:

• T – a non-empty column strict tableau as a list of lists

• k – a positive integer

OUTPUT:

• a list of pairs of values [i,j] representing the transpositions 𝑡𝑖𝑗
EXAMPLES:

sage: CST_to_trans = StrongTableaux.marked_CST_to_transposition_sequence
sage: CST_to_trans([[-1, -1, -1], [1]], 2)
[[2, 3], [1, 2], [0, 1]]
sage: CST_to_trans([], 2)
[]
sage: CST_to_trans([[-2, -2, -2], [2]], 2)
[[2, 3], [1, 2], [0, 1]]
sage: CST_to_trans([[-1, -2, -2, -2, -2], [-2, 2], [2]], 3)

(continues on next page)

5.1. Comprehensive Module List 1229

Combinatorics, Release 9.7

(continued from previous page)

[[4, 5], [3, 4], [2, 3], [1, 2], [-1, 0], [0, 1]]
sage: CST_to_trans([[-1, -2, -5, 5, -5, 5, -5], [-3, -4, 5, 5], [5]],3)
[[5, 7], [3, 5], [2, 3], [0, 1], [-1, 0], [1, 2], [0, 1]]
sage: CST_to_trans([[-1, -2, -3, 4, -7], [-4, -6], [-5, 6]],3)
[[4, 5], [-1, 1], [-2, -1], [-1, 0], [2, 3], [1, 2], [0, 1]]

classmethod marked_given_unmarked_and_weight_iterator(unmarkedT, k, weight)
An iterator generating strong marked tableaux from an unmarked strong tableau.

Iterator which lists all marked tableaux of weight weight such that the standard unmarked part of the
tableau is equal to unmarkedT.

INPUT:

• unmarkedT - a list of lists representing a strong unmarked tableau

• k - a positive integer

• weight - a list of non-negative integers indicating the weight

OUTPUT:

• an iterator that returns StrongTableau objects

EXAMPLES:

sage: ST = StrongTableaux.marked_given_unmarked_and_weight_iterator([[1,2,3],
→˓[3]], 2, [3])
sage: list(ST)
[[[-1, -1, -1], [1]]]
sage: ST = StrongTableaux.marked_given_unmarked_and_weight_iterator([[1,2,3],
→˓[3]], 2, [0,3])
sage: list(ST)
[[[-2, -2, -2], [2]]]
sage: ST = StrongTableaux.marked_given_unmarked_and_weight_iterator([[1,2,3],
→˓[3]], 2, [1,2])
sage: list(ST)
[[[-1, -2, -2], [2]]]
sage: ST = StrongTableaux.marked_given_unmarked_and_weight_iterator([[1,2,3],
→˓[3]], 2, [2,1])
sage: list(ST)
[[[-1, -1, 2], [-2]], [[-1, -1, -2], [2]]]
sage: ST = StrongTableaux.marked_given_unmarked_and_weight_iterator([[None,␣
→˓None, 1, 2, 4], [2, 4], [3]], 3, [3,1])
sage: list(ST)
[]
sage: ST = StrongTableaux.marked_given_unmarked_and_weight_iterator([[None,␣
→˓None, 1, 2, 4], [2, 4], [3]], 3, [2,2])
sage: list(ST)
[[[None, None, -1, -1, 2], [1, -2], [-2]],
[[None, None, -1, -1, -2], [1, 2], [-2]]]

options(*get_value, **set_value)
Sets the global options for elements of the tableau, skew_tableau, and tableau tuple classes. The defaults
are for tableau to be displayed as a list, latexed as a Young diagram using the English convention.

OPTIONS:

1230 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• ascii_art – (default: repr) Controls the ascii art output for tableaux

– compact – minimal length ascii art

– repr – display using the diagram string representation

– table – display as a table

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• display – (default: list) Controls the way in which tableaux are printed

– array – alias for diagram

– compact – minimal length string representation

– diagram – display as Young diagram (similar to pp()

– ferrers_diagram – alias for diagram

– list – print tableaux as lists

– young_diagram – alias for diagram

• latex – (default: diagram) Controls the way in which tableaux are latexed

– array – alias for diagram

– diagram – as a Young diagram

– ferrers_diagram – alias for diagram

– list – as a list

– young_diagram – alias for diagram

• notation – alternative name for convention

Note: Changing the convention for tableaux also changes the convention for partitions.

If no parameters are set, then the function returns a copy of the options dictionary.

EXAMPLES:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T
[[1, 2, 3], [4, 5]]
sage: Tableaux.options.display="array"
sage: T
1 2 3
4 5

sage: Tableaux.options.convention="french"
sage: T
4 5
1 2 3

Changing the convention for tableaux also changes the convention for partitions and vice versa:

5.1. Comprehensive Module List 1231

Combinatorics, Release 9.7

sage: P = Partition([3,3,1])
sage: print(P.ferrers_diagram())
*

sage: Partitions.options.convention="english"
sage: print(P.ferrers_diagram())

*
sage: T
1 2 3
4 5

The ASCII art can also be changed:

sage: t = Tableau([[1,2,3],[4,5]])
sage: ascii_art(t)
1 2 3
4 5

sage: Tableaux.options.ascii_art = "table"
sage: ascii_art(t)
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 |
+---+---+
sage: Tableaux.options.ascii_art = "compact"
sage: ascii_art(t)
|1|2|3|
|4|5|
sage: Tableaux.options._reset()

See GlobalOptions for more features of these options.

outer_shape()
Return the outer shape of the class of strong tableaux.

OUTPUT:

• a 𝑘 + 1-core

EXAMPLES:

sage: StrongTableaux(2, [3,1]).outer_shape()
[3, 1]
sage: type(StrongTableaux(2, [3,1]).outer_shape())
<class 'sage.combinat.core.Cores_length_with_category.element_class'>
sage: StrongTableaux(4, [[2,1], [1]]).outer_shape()
[2, 1]

shape()
Return the shape of self.

If the self has an inner shape return a pair consisting of an inner and an outer shape. If the inner shape is
empty then return only the outer shape.

1232 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

OUTPUT:

• a 𝑘 + 1-core or a pair of 𝑘 + 1-cores

EXAMPLES:

sage: StrongTableaux(2, [3,1]).shape()
[3, 1]
sage: type(StrongTableaux(2, [3,1]).shape())
<class 'sage.combinat.core.Cores_length_with_category.element_class'>
sage: StrongTableaux(4, [[2,1], [1]]).shape()
([2, 1], [1])

classmethod standard_marked_iterator(k, size, outer_shape=None, inner_shape=[])
An iterator for generating standard strong marked tableaux.

An iterator which generates all standard marked 𝑘-tableaux of a given size which are contained in
outer_shape and contain the inner_shape. If outer_shape is None then there is no restriction on
the shape of the tableaux which are created.

INPUT:

• k - a positive integer

• size - a positive integer

• outer_shape - a list which is a 𝑘 + 1-core (default: None)

• inner_shape - a list which is a 𝑘 + 1-core (default: [])

OUTPUT:

• an iterator which returns the standard marked tableaux with size cells and that are contained in
outer_shape and contain inner_shape

EXAMPLES:

sage: list(StrongTableaux.standard_marked_iterator(2, 3))
[[[-1, -2, 3], [-3]], [[-1, -2, -3], [3]], [[-1, -2], [-3], [3]], [[-1, 3, -3],␣
→˓[-2]], [[-1, 3], [-2], [-3]], [[-1, -3], [-2], [3]]]
sage: list(StrongTableaux.standard_marked_iterator(2, 1, inner_shape=[1,1]))
[[[None, 1, -1], [None]], [[None, 1], [None], [-1]], [[None, -1], [None], [1]]]
sage: len(list(StrongTableaux.standard_marked_iterator(4,4)))
10
sage: len(list(StrongTableaux.standard_marked_iterator(4,6)))
140
sage: len(list(StrongTableaux.standard_marked_iterator(4,4, inner_shape=[2,2])))
200
sage: len(list(StrongTableaux.standard_marked_iterator(4,4, outer_shape=[5,2,2,
→˓1], inner_shape=[2,2])))
24

classmethod standard_unmarked_iterator(k, size, outer_shape=None, inner_shape=[])
An iterator for standard unmarked strong tableaux.

An iterator which generates all unmarked tableaux of a given size which are contained in outer_shape
and which contain the inner_shape.

These are built recursively by building all standard marked strong tableaux of size size −1 and adding all
possible covers.

5.1. Comprehensive Module List 1233

Combinatorics, Release 9.7

If outer_shape is None then there is no restriction on the shape of the tableaux which are created.

INPUT:

• k, size - a positive integers

• outer_shape - a list representing a 𝑘 + 1-core (default: None)

• inner_shape - a list representing a 𝑘 + 1-core (default: [])

OUTPUT:

• an iterator which lists all standard strong unmarked tableaux with size cells and which are contained
in outer_shape and contain inner_shape

EXAMPLES:

sage: list(StrongTableaux.standard_unmarked_iterator(2, 3))
[[[1, 2, 3], [3]], [[1, 2], [3], [3]], [[1, 3, 3], [2]], [[1, 3], [2], [3]]]
sage: list(StrongTableaux.standard_unmarked_iterator(2, 1, inner_shape=[1,1]))
[[[None, 1, 1], [None]], [[None, 1], [None], [1]]]
sage: len(list(StrongTableaux.standard_unmarked_iterator(4,4)))
10
sage: len(list(StrongTableaux.standard_unmarked_iterator(4,6)))
98
sage: len(list(StrongTableaux.standard_unmarked_iterator(4,4, inner_shape=[2,
→˓2])))
92
sage: len(list(StrongTableaux.standard_unmarked_iterator(4,4, outer_shape=[5,2,
→˓2,1], inner_shape=[2,2])))
10

classmethod transpositions_to_standard_strong(transeq, k, emptyTableau=[])
Return a strong tableau corresponding to a sequence of transpositions.

This method returns the action by left multiplication on the empty strong tableau by transpositions specified
by transeq.

INPUT:

• transeq – a sequence of transpositions 𝑡𝑖𝑗 (a list of pairs).

• emptyTableau – (default: []) an empty list or a skew strong tableau possibly consisting of None
entries

OUTPUT:

• a StrongTableau object

EXAMPLES:

sage: StrongTableaux.transpositions_to_standard_strong([[0,1]], 2)
[[-1]]
sage: StrongTableaux.transpositions_to_standard_strong([[-2,-1], [2,3]], 2,␣
→˓[[None, None]])
[[None, None, -1], [1], [-2]]
sage: StrongTableaux.transpositions_to_standard_strong([[2, 3], [1, 2], [0, 1]],
→˓ 2)
[[-1, -2, -3], [3]]
sage: StrongTableaux.transpositions_to_standard_strong([[-1, 0], [1, 2], [0,␣
→˓1]], 2)

(continues on next page)

1234 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[-1, -2, 3], [-3]]
sage: StrongTableaux.transpositions_to_standard_strong([[3, 4], [-1, 0], [1,␣
→˓2]], 2, [[None]])
[[None, -1, 2, -3], [-2, 3]]

sage.combinat.k_tableau.WeakTableau(t, k, inner_shape=[], representation='core')
This is the dispatcher method for the element class of weak 𝑘-tableaux.

Standard weak 𝑘-tableaux correspond to saturated chains in the weak order. There are three formulations of
weak tableaux, one in terms of cores, one in terms of 𝑘-bounded partitions, and one in terms of factorizations of
affine Grassmannian elements. For semistandard weak 𝑘-tableaux, all letters of the same value have to satisfy the
conditions of a horizontal strip. In the affine Grassmannian formulation this means that all factors are cyclically
decreasing elements. For more information, see for example [LLMSSZ2013].

INPUT:

• t – a weak 𝑘-tableau in the specified representation:

– for the ‘core’ representation t is a list of lists where each subtableaux should have a 𝑘+ 1-core shape;
None is allowed as an entry for skew weak 𝑘-tableaux

– for the ‘bounded’ representation t is a list of lists where each subtableaux should have a 𝑘-bounded
shape; None is allowed as an entry for skew weak 𝑘-tableaux

– for the ‘factorized_permutation’ representation t is either a list of cyclically decreasing Weyl group
elements or a list of reduced words of cyclically decreasing Weyl group elements; to indicate a skew
tableau in this representation, inner_shape should be the inner shape as a (𝑘 + 1)-core

• k – positive integer

• inner_shape – this entry is only relevant for the ‘factorized_permutation’ representation and specifies the
inner shape in case the tableau is skew (default: [])

• representation – ‘core’, ‘bounded’, or ‘factorized_permutation’ (default: ‘core’)

EXAMPLES:

Here is an example of a weak 3-tableau in core representation:

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]], 3)
sage: t.shape()
[5, 2, 1]
sage: t.weight()
(2, 2, 2)
sage: type(t)
<class 'sage.combinat.k_tableau.WeakTableaux_core_with_category.element_class'>

And now we give a skew weak 3-tableau in core representation:

sage: ts = WeakTableau([[None, 1, 1, 2, 2], [None, 2], [1]], 3)
sage: ts.shape()
([5, 2, 1], [1, 1])
sage: ts.weight()
(2, 2)
sage: type(ts)
<class 'sage.combinat.k_tableau.WeakTableaux_core_with_category.element_class'>

Next we create the analogue of the first example in bounded representation:

5.1. Comprehensive Module List 1235

Combinatorics, Release 9.7

sage: tb = WeakTableau([[1,1,2],[2,3],[3]], 3, representation="bounded")
sage: tb.shape()
[3, 2, 1]
sage: tb.weight()
(2, 2, 2)
sage: type(tb)
<class 'sage.combinat.k_tableau.WeakTableaux_bounded_with_category.element_class'>
sage: tb.to_core_tableau()
[[1, 1, 2, 2, 3], [2, 3], [3]]
sage: t == tb.to_core_tableau()
True

And the analogue of the skew example in bounded representation:

sage: tbs = WeakTableau([[None, 1, 2], [None, 2], [1]], 3, representation = "bounded
→˓")
sage: tbs.shape()
([3, 2, 1], [1, 1])
sage: tbs.weight()
(2, 2)
sage: tbs.to_core_tableau()
[[None, 1, 1, 2, 2], [None, 2], [1]]
sage: ts.to_bounded_tableau() == tbs
True

Finally we do the same examples for the factorized permutation representation:

sage: tf = WeakTableau([[2,0],[3,2],[1,0]], 3, representation = "factorized_
→˓permutation")
sage: tf.shape()
[5, 2, 1]
sage: tf.weight()
(2, 2, 2)
sage: type(tf)
<class 'sage.combinat.k_tableau.WeakTableaux_factorized_permutation_with_category.
→˓element_class'>
sage: tf.to_core_tableau() == t
True

sage: tfs = WeakTableau([[0,3],[2,1]], 3, inner_shape = [1,1], representation =
→˓'factorized_permutation')
sage: tfs.shape()
([5, 2, 1], [1, 1])
sage: tfs.weight()
(2, 2)
sage: type(tfs)
<class 'sage.combinat.k_tableau.WeakTableaux_factorized_permutation_with_category.
→˓element_class'>
sage: tfs.to_core_tableau()
[[None, 1, 1, 2, 2], [None, 2], [1]]

Another way to pass from one representation to another is as follows:

1236 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: ts
[[None, 1, 1, 2, 2], [None, 2], [1]]
sage: ts.parent()._representation
'core'
sage: ts.representation('bounded')
[[None, 1, 2], [None, 2], [1]]

To test whether a given semistandard tableau is a weak 𝑘-tableau in the bounded representation, one can ask:

sage: t = Tableau([[1,1,2],[2,3],[3]])
sage: t.is_k_tableau(3)
True
sage: t = SkewTableau([[None, 1, 2], [None, 2], [1]])
sage: t.is_k_tableau(3)
True
sage: t = SkewTableau([[None, 1, 1], [None, 2], [2]])
sage: t.is_k_tableau(3)
False

class sage.combinat.k_tableau.WeakTableau_abstract
Bases: sage.structure.list_clone.ClonableList

Abstract class for the various element classes of WeakTableau.

intermediate_shapes()
Return the intermediate shapes of self.

A (skew) tableau with letters 1, 2, . . . , ℓ can be viewed as a sequence of shapes, where the 𝑖-th shape is
given by the shape of the subtableau on letters 1, 2, . . . , 𝑖. The output is the list of these shapes.

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]],3)
sage: t.intermediate_shapes()
[[], [2], [4, 1], [5, 2, 1]]

sage: t = WeakTableau([[None, None, 2, 3, 4], [1, 4], [2]], 3)
sage: t.intermediate_shapes()
[[2], [2, 1], [3, 1, 1], [4, 1, 1], [5, 2, 1]]

sage: t = WeakTableau([[1,1,1],[2,2],[3]], 3, representation = 'bounded')
sage: t.intermediate_shapes()
[[], [3], [3, 2], [3, 2, 1]]

sage: t = WeakTableau([[None, None, 1], [2, 4], [3]], 3, representation =
→˓'bounded')
sage: t.intermediate_shapes()
[[2], [3], [3, 1], [3, 1, 1], [3, 2, 1]]

sage: t = WeakTableau([[0],[3],[2],[3]], 3, inner_shape = [2], representation =
→˓'factorized_permutation')
sage: t.intermediate_shapes()
[[2], [2, 1], [3, 1, 1], [4, 1, 1], [5, 2, 1]]

pp()
Return a pretty print string of the tableau.

5.1. Comprehensive Module List 1237

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList

Combinatorics, Release 9.7

EXAMPLES:

sage: t = WeakTableau([[None, 1, 1, 2, 2], [None, 2], [1]], 3)
sage: t.pp()
. 1 1 2 2
. 2
1
sage: t = WeakTableau([[2,0],[3,2]], 3, inner_shape = [2], representation =
→˓'factorized_permutation')
sage: t.pp()
[s2*s0, s3*s2]

representation(representation='core')
Return the analogue of self in the specified representation.

INPUT:

• representation – ‘core’, ‘bounded’, or ‘factorized_permutation’ (default: ‘core’)

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2, 3, 4, 4, 5, 5, 6], [2, 3, 5, 5, 6], [3, 4, 7],␣
→˓[5, 6], [6], [7]], 4)
sage: t.parent()._representation
'core'
sage: t.representation('bounded')
[[1, 1, 2, 4], [2, 3, 5], [3, 4], [5, 6], [6], [7]]
sage: t.representation('factorized_permutation')
[s0, s3*s1, s2*s1, s0*s4, s3*s0, s4*s2, s1*s0]

sage: tb = WeakTableau([[1, 1, 2, 4], [2, 3, 5], [3, 4], [5, 6], [6], [7]], 4,␣
→˓representation = 'bounded')
sage: tb.parent()._representation
'bounded'
sage: tb.representation('core') == t
True
sage: tb.representation('factorized_permutation')
[s0, s3*s1, s2*s1, s0*s4, s3*s0, s4*s2, s1*s0]

sage: tp = WeakTableau([[0],[3,1],[2,1],[0,4],[3,0],[4,2],[1,0]], 4,␣
→˓representation = 'factorized_permutation')
sage: tp.parent()._representation
'factorized_permutation'
sage: tp.representation('core') == t
True
sage: tp.representation('bounded') == tb
True

shape()
Return the shape of self.

When the tableau is straight, the outer shape is returned. When the tableau is skew, the tuple of the outer
and inner shape is returned.

EXAMPLES:

1238 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]], 3)
sage: t.shape()
[5, 2, 1]
sage: t = WeakTableau([[None, None, 2, 3, 4], [1, 4], [2]], 3)
sage: t.shape()
([5, 2, 1], [2])

sage: t = WeakTableau([[1,1,1],[2,2],[3]], 3, representation = 'bounded')
sage: t.shape()
[3, 2, 1]
sage: t = WeakTableau([[None, None, 1], [2, 4], [3]], 3, representation =
→˓'bounded')
sage: t.shape()
([3, 2, 1], [2])

sage: t = WeakTableau([[2],[0,3],[2,1,0]], 3, representation = 'factorized_
→˓permutation')
sage: t.shape()
[5, 2, 1]
sage: t = WeakTableau([[2,0],[3,2]], 3, inner_shape = [2], representation =
→˓'factorized_permutation')
sage: t.shape()
([5, 2, 1], [2])

size()
Return the size of the shape of self.

In the bounded representation, the size of the shape is the number of boxes in the outer shape minus the
number of boxes in the inner shape. For the core and factorized permutation representation, the size is the
length of the outer shape minus the length of the inner shape.

See also:

sage.combinat.core.Core.length()

EXAMPLES:

sage: t = WeakTableau([[None, 1, 1, 2, 2], [None, 2], [1]], 3)
sage: t.shape()
([5, 2, 1], [1, 1])
sage: t.size()
4
sage: t = WeakTableau([[1,1,2],[2,3],[3]], 3, representation="bounded")
sage: t.shape()
[3, 2, 1]
sage: t.size()
6

weight()
Return the weight of self.

The weight is a tuple whose 𝑖-th entry is the number of labels 𝑖 in the bounded representation of self.

EXAMPLES:

5.1. Comprehensive Module List 1239

Combinatorics, Release 9.7

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]], 3)
sage: t.weight()
(2, 2, 2)
sage: t = WeakTableau([[None, None, 2, 3, 4], [1, 4], [2]], 3)
sage: t.weight()
(1, 1, 1, 1)
sage: t = WeakTableau([[None,2,3],[3]],2)
sage: t.weight()
(0, 1, 1)

sage: t = WeakTableau([[1,1,1],[2,2],[3]], 3, representation = 'bounded')
sage: t.weight()
(3, 2, 1)
sage: t = WeakTableau([[1,1,2],[2,3],[3]], 3, representation = 'bounded')
sage: t.weight()
(2, 2, 2)
sage: t = WeakTableau([[None, None, 1], [2, 4], [3]], 3, representation =
→˓'bounded')
sage: t.weight()
(1, 1, 1, 1)

sage: t = WeakTableau([[2],[0,3],[2,1,0]], 3, representation = 'factorized_
→˓permutation')
sage: t.weight()
(3, 2, 1)
sage: t = WeakTableau([[2,0],[3,2],[1,0]], 3, representation = 'factorized_
→˓permutation')
sage: t.weight()
(2, 2, 2)
sage: t = WeakTableau([[2,0],[3,2]], 3, inner_shape = [2], representation =
→˓'factorized_permutation')
sage: t.weight()
(2, 2)

class sage.combinat.k_tableau.WeakTableau_bounded(parent, t)
Bases: sage.combinat.k_tableau.WeakTableau_abstract

A (skew) weak 𝑘-tableau represented in terms of 𝑘-bounded partitions.

check()
Check that self is a valid weak 𝑘-tableau.

EXAMPLES:

sage: t = WeakTableau([[1,1],[2]], 2, representation = 'bounded')
sage: t.check()

sage: t = WeakTableau([[None, None, 1], [2, 4], [3]], 3, representation =
→˓'bounded')
sage: t.check()

classmethod from_core_tableau(t, k)
Construct weak 𝑘-bounded tableau from in 𝑘-core tableau.

EXAMPLES:

1240 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.k_tableau import WeakTableau_bounded
sage: WeakTableau_bounded.from_core_tableau([[1, 1, 2, 2, 3], [2, 3], [3]], 3)
[[1, 1, 2], [2, 3], [3]]

sage: WeakTableau_bounded.from_core_tableau([[None, None, 2, 3, 4], [1, 4],␣
→˓[2]], 3)
[[None, None, 3], [1, 4], [2]]

sage: WeakTableau_bounded.from_core_tableau([[None,2,3],[3]], 2)
[[None, 2], [3]]

k_charge(algorithm='I')
Return the 𝑘-charge of self.

INPUT:

• algorithm – (default: “I”) if “I”, computes 𝑘-charge using the 𝐼 algorithm, otherwise uses the 𝐽-
algorithm

OUTPUT:

• a nonnegative integer

For the definition of 𝑘-charge and the various algorithms to compute it see Section 3.3 of [LLMSSZ2013].

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2], [2, 3], [3]], 3, representation = 'bounded')
sage: t.k_charge()
2
sage: t = WeakTableau([[1, 3, 5], [2, 6], [4]], 3, representation = 'bounded')
sage: t.k_charge()
8
sage: t = WeakTableau([[1, 1, 2, 4], [2, 3, 5], [3, 4], [5, 6], [6], [7]], 4,␣
→˓representation = 'bounded')
sage: t.k_charge()
12

shape_bounded()
Return the shape of self as 𝑘-bounded partition.

When the tableau is straight, the outer shape is returned as a 𝑘-bounded partition. When the tableau is skew,
the tuple of the outer and inner shape is returned as 𝑘-bounded partitions.

EXAMPLES:

sage: t = WeakTableau([[1,1,1],[2,2],[3]], 3, representation = 'bounded')
sage: t.shape_bounded()
[3, 2, 1]

sage: t = WeakTableau([[None, None, 1], [2, 4], [3]], 3, representation =
→˓'bounded')
sage: t.shape_bounded()
([3, 2, 1], [2])

shape_core()
Return the shape of self as (𝑘 + 1)-core.

5.1. Comprehensive Module List 1241

Combinatorics, Release 9.7

When the tableau is straight, the outer shape is returned as a (𝑘 + 1)-core. When the tableau is skew, the
tuple of the outer and inner shape is returned as (𝑘 + 1)-cores.

EXAMPLES:

sage: t = WeakTableau([[1,1,1],[2,2],[3]], 3, representation = 'bounded')
sage: t.shape_core()
[5, 2, 1]

sage: t = WeakTableau([[None, None, 1], [2, 4], [3]], 3, representation =
→˓'bounded')
sage: t.shape_core()
([5, 2, 1], [2])

to_core_tableau()
Return the weak 𝑘-tableau self where the shape of each restricted tableau is a (𝑘 + 1)-core.

EXAMPLES:

sage: t = WeakTableau([[1,1,2,4],[2,3,5],[3,4],[5,6],[6],[7]], 4,␣
→˓representation = 'bounded')
sage: c = t.to_core_tableau(); c
[[1, 1, 2, 3, 4, 4, 5, 5, 6], [2, 3, 5, 5, 6], [3, 4, 7], [5, 6], [6], [7]]
sage: type(c)
<class 'sage.combinat.k_tableau.WeakTableaux_core_with_category.element_class'>
sage: t = WeakTableau([], 4, representation = 'bounded')
sage: t.to_core_tableau()
[]

sage: from sage.combinat.k_tableau import WeakTableau_bounded
sage: t = WeakTableau([[1,1,2],[2,3],[3]], 3, representation = 'bounded')
sage: WeakTableau_bounded.from_core_tableau(t.to_core_tableau(),3)
[[1, 1, 2], [2, 3], [3]]
sage: t == WeakTableau_bounded.from_core_tableau(t.to_core_tableau(),3)
True

sage: t = WeakTableau([[None, None, 1], [2, 4], [3]], 3, representation =
→˓'bounded')
sage: t.to_core_tableau()
[[None, None, 1, 2, 4], [2, 4], [3]]
sage: t == WeakTableau_bounded.from_core_tableau(t.to_core_tableau(),3)
True

class sage.combinat.k_tableau.WeakTableau_core(parent, t)
Bases: sage.combinat.k_tableau.WeakTableau_abstract

A (skew) weak 𝑘-tableau represented in terms of (𝑘 + 1)-cores.

check()
Check that self is a valid weak 𝑘-tableau.

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2], [2]], 2)
sage: t.check()
sage: t = WeakTableau([[None, None, 2, 3, 4], [1, 4], [2]], 3)
sage: t.check()

1242 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

dictionary_of_coordinates_at_residues(v)
Return a dictionary assigning to all residues of self with label v a list of cells with the given residue.

INPUT:

• v – a label of a cell in self

OUTPUT:

• dictionary assigning coordinates in self to residues

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]],3)
sage: t.dictionary_of_coordinates_at_residues(3)
{0: [(0, 4), (1, 1)], 2: [(2, 0)]}

sage: t = WeakTableau([[None, None, 1, 1, 4], [1, 4], [3]], 3)
sage: t.dictionary_of_coordinates_at_residues(1)
{2: [(0, 2)], 3: [(0, 3), (1, 0)]}

sage: t = WeakTableau([], 3)
sage: t.dictionary_of_coordinates_at_residues(1)
{}

k_charge(algorithm='I')
Return the 𝑘-charge of self.

INPUT:

• algorithm – (default: “I”) if “I”, computes 𝑘-charge using the 𝐼 algorithm, otherwise uses the 𝐽-
algorithm

OUTPUT:

• a nonnegative integer

For the definition of 𝑘-charge and the various algorithms to compute it see Section 3.3 of [LLMSSZ2013].

See also:

k_charge_I() and k_charge_J()

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]], 3)
sage: t.k_charge()
2
sage: t = WeakTableau([[1, 3, 4, 5, 6], [2, 6], [4]], 3)
sage: t.k_charge()
8
sage: t = WeakTableau([[1, 1, 2, 3, 4, 4, 5, 5, 6], [2, 3, 5, 5, 6], [3, 4, 7],␣
→˓[5, 6], [6], [7]], 4)
sage: t.k_charge()
12

k_charge_I()
Return the 𝑘-charge of self using the 𝐼-algorithm.

For the definition of 𝑘-charge and the 𝐼-algorithm see Section 3.3 of [LLMSSZ2013].

OUTPUT:

5.1. Comprehensive Module List 1243

Combinatorics, Release 9.7

• a nonnegative integer

See also:

k_charge() and k_charge_J()

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]], 3)
sage: t.k_charge_I()
2
sage: t = WeakTableau([[1, 3, 4, 5, 6], [2, 6], [4]], 3)
sage: t.k_charge_I()
8
sage: t = WeakTableau([[1, 1, 2, 3, 4, 4, 5, 5, 6], [2, 3, 5, 5, 6], [3, 4, 7],␣
→˓[5, 6], [6], [7]], 4)
sage: t.k_charge_I()
12

k_charge_J()
Return the 𝑘-charge of self using the 𝐽-algorithm.

For the definition of 𝑘-charge and the 𝐽-algorithm see Section 3.3 of [LLMSSZ2013].

OUTPUT:

• a nonnegative integer

See also:

k_charge() and k_charge_I()

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]], 3)
sage: t.k_charge_J()
2
sage: t = WeakTableau([[1, 3, 4, 5, 6], [2, 6], [4]], 3)
sage: t.k_charge_J()
8
sage: t = WeakTableau([[1, 1, 2, 3, 4, 4, 5, 5, 6], [2, 3, 5, 5, 6], [3, 4, 7],␣
→˓[5, 6], [6], [7]], 4)
sage: t.k_charge_J()
12

list_of_standard_cells()
Return a list of lists of the coordinates of the standard cells of self.

INPUT:

• self – a weak 𝑘-tableau in core representation with partition weight

OUTPUT:

• a list of lists of coordinates

Warning: This method currently only works for straight weak tableaux with partition weight.

EXAMPLES:

1244 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]], 3)
sage: t.list_of_standard_cells()
[[(0, 1), (1, 0), (2, 0)], [(0, 0), (0, 2), (1, 1)]]
sage: t = WeakTableau([[1, 1, 1, 2], [2, 2, 3]], 5)
sage: t.list_of_standard_cells()
[[(0, 2), (1, 1), (1, 2)], [(0, 1), (1, 0)], [(0, 0), (0, 3)]]
sage: t = WeakTableau([[1, 1, 2, 3, 4, 4, 5, 5, 6], [2, 3, 5, 5, 6], [3, 4, 7],␣
→˓[5, 6], [6], [7]], 4)
sage: t.list_of_standard_cells()
[[(0, 1), (1, 0), (2, 0), (0, 5), (3, 0), (4, 0), (5, 0)], [(0, 0), (0, 2), (1,␣
→˓1), (2, 1), (1, 2), (3, 1)]]

residues_of_entries(v)
Return a list of residues of cells of weak 𝑘-tableau self labeled by v.

INPUT:

• v – a label of a cell in self

OUTPUT:

• a list of residues

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]],3)
sage: t.residues_of_entries(1)
[0, 1]

sage: t = WeakTableau([[None, None, 1, 1, 4], [1, 4], [3]], 3)
sage: t.residues_of_entries(1)
[2, 3]

shape_bounded()
Return the shape of self as a 𝑘-bounded partition.

When the tableau is straight, the outer shape is returned as a 𝑘-bounded partition. When the tableau is skew,
the tuple of the outer and inner shape is returned as 𝑘-bounded partitions.

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]],3)
sage: t.shape_bounded()
[3, 2, 1]

sage: t = WeakTableau([[None, None, 2, 3, 4], [1, 4], [2]], 3)
sage: t.shape_bounded()
([3, 2, 1], [2])

shape_core()
Return the shape of self as a (𝑘 + 1)-core.

When the tableau is straight, the outer shape is returned as a core. When the tableau is skew, the tuple of
the outer and inner shape is returned as cores.

EXAMPLES:

5.1. Comprehensive Module List 1245

Combinatorics, Release 9.7

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]],3)
sage: t.shape_core()
[5, 2, 1]

sage: t = WeakTableau([[None, None, 2, 3, 4], [1, 4], [2]], 3)
sage: t.shape_core()
([5, 2, 1], [2])

to_bounded_tableau()
Return the bounded representation of the weak 𝑘-tableau self.

Each restricted subtableau of the output is a 𝑘-bounded partition.

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]], 3)
sage: c = t.to_bounded_tableau(); c
[[1, 1, 2], [2, 3], [3]]
sage: type(c)
<class 'sage.combinat.k_tableau.WeakTableaux_bounded_with_category.element_class
→˓'>

sage: t = WeakTableau([[None, None, 2, 3, 4], [1, 4], [2]], 3)
sage: t.to_bounded_tableau()
[[None, None, 3], [1, 4], [2]]
sage: t.to_bounded_tableau().to_core_tableau() == t
True

to_factorized_permutation_tableau()
Return the factorized permutation representation of the weak 𝑘-tableau self.

EXAMPLES:

sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]], 3)
sage: c = t.to_factorized_permutation_tableau(); c
[s2*s0, s3*s2, s1*s0]
sage: type(c)
<class 'sage.combinat.k_tableau.WeakTableaux_factorized_permutation_with_
→˓category.element_class'>
sage: c.to_core_tableau() == t
True

sage: t = WeakTableau([[None, None, 2, 3, 4], [1, 4], [2]], 3)
sage: c = t.to_factorized_permutation_tableau(); c
[s0, s3, s2, s3]
sage: c._inner_shape
[2]
sage: c.to_core_tableau() == t
True

class sage.combinat.k_tableau.WeakTableau_factorized_permutation(parent, t)
Bases: sage.combinat.k_tableau.WeakTableau_abstract

A weak (skew) 𝑘-tableau represented in terms of factorizations of affine permutations into cyclically decreasing
elements.

1246 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

check()
Check that self is a valid weak 𝑘-tableau.

EXAMPLES:

sage: t = WeakTableau([[2],[0,3],[2,1,0]], 3, representation = 'factorized_
→˓permutation')
sage: t.check()

classmethod from_core_tableau(t, k)
Construct weak factorized affine permutation tableau from a 𝑘-core tableau.

EXAMPLES:

sage: from sage.combinat.k_tableau import WeakTableau_factorized_permutation
sage: WeakTableau_factorized_permutation.from_core_tableau([[1, 1, 2, 2, 3], [2,
→˓ 3], [3]],3)
[s2*s0, s3*s2, s1*s0]
sage: WeakTableau_factorized_permutation.from_core_tableau([[1, 1, 2, 3, 4, 4,␣
→˓5, 5, 6], [2, 3, 5, 5, 6], [3, 4, 7], [5, 6], [6], [7]], 4)
[s0, s3*s1, s2*s1, s0*s4, s3*s0, s4*s2, s1*s0]
sage: WeakTableau_factorized_permutation.from_core_tableau([[None, 1, 1, 2, 2],␣
→˓[None, 2], [1]], 3)
[s0*s3, s2*s1]

k_charge(algorithm='I')
Return the 𝑘-charge of self.

OUTPUT:

• a nonnegative integer

EXAMPLES:

sage: t = WeakTableau([[2,0],[3,2],[1,0]], 3, representation = 'factorized_
→˓permutation')
sage: t.k_charge()
2
sage: t = WeakTableau([[0],[3],[2],[1],[3],[0]], 3, representation =
→˓'factorized_permutation')
sage: t.k_charge()
8
sage: t = WeakTableau([[0],[3,1],[2,1],[0,4],[3,0],[4,2],[1,0]], 4,␣
→˓representation = 'factorized_permutation')
sage: t.k_charge()
12

shape_bounded()
Return the shape of self as a 𝑘-bounded partition.

When the tableau is straight, the outer shape is returned as a 𝑘-bounded partition. When the tableau is skew,
the tuple of the outer and inner shape is returned as 𝑘-bounded partitions.

EXAMPLES:

sage: t = WeakTableau([[2],[0,3],[2,1,0]], 3, representation = 'factorized_
→˓permutation')
sage: t.shape_bounded()

(continues on next page)

5.1. Comprehensive Module List 1247

Combinatorics, Release 9.7

(continued from previous page)

[3, 2, 1]

sage: t = WeakTableau([[2,0],[3,2]], 3, inner_shape = [2], representation =
→˓'factorized_permutation')
sage: t.shape_bounded()
([3, 2, 1], [2])

shape_core()
Return the shape of self as a (𝑘 + 1)-core.

When the tableau is straight, the outer shape is returned as a core. When the tableau is skew, the tuple of
the outer and inner shape is returned as cores.

EXAMPLES:

sage: t = WeakTableau([[2],[0,3],[2,1,0]], 3, representation = 'factorized_
→˓permutation')
sage: t.shape_core()
[5, 2, 1]

sage: t = WeakTableau([[2,0],[3,2]], 3, inner_shape = [2], representation =
→˓'factorized_permutation')
sage: t.shape()
([5, 2, 1], [2])

static straighten_input(t, k)
Straightens input.

INPUT:

• t – a list of reduced words or a list of elements in the Weyl group of type 𝐴(1)
𝑘

• k – a positive integer

EXAMPLES:

sage: from sage.combinat.k_tableau import WeakTableau_factorized_permutation
sage: WeakTableau_factorized_permutation.straighten_input([[2,0],[3,2],[1,0]],␣
→˓3)
(s2*s0, s3*s2, s1*s0)
sage: W = WeylGroup(['A',4,1])
sage: WeakTableau_factorized_permutation.straighten_input([W.an_element(),W.an_
→˓element()], 4)
(s0*s1*s2*s3*s4, s0*s1*s2*s3*s4)

to_core_tableau()
Return the weak 𝑘-tableau self where the shape of each restricted tableau is a (𝑘 + 1)-core.

EXAMPLES:

sage: t = WeakTableau([[0], [3,1], [2,1], [0,4], [3,0], [4,2], [1,0]], 4,␣
→˓representation = 'factorized_permutation'); t
[s0, s3*s1, s2*s1, s0*s4, s3*s0, s4*s2, s1*s0]
sage: c = t.to_core_tableau(); c
[[1, 1, 2, 3, 4, 4, 5, 5, 6], [2, 3, 5, 5, 6], [3, 4, 7], [5, 6], [6], [7]]
sage: type(c)

(continues on next page)

1248 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

<class 'sage.combinat.k_tableau.WeakTableaux_core_with_category.element_class'>
sage: t = WeakTableau([[]], 4, representation = 'factorized_permutation'); t
[1]
sage: t.to_core_tableau()
[]

sage: from sage.combinat.k_tableau import WeakTableau_factorized_permutation
sage: t = WeakTableau([[2,0],[3,2],[1,0]], 3, representation = 'factorized_
→˓permutation')
sage: WeakTableau_factorized_permutation.from_core_tableau(t.to_core_tableau(),␣
→˓3)
[s2*s0, s3*s2, s1*s0]
sage: t == WeakTableau_factorized_permutation.from_core_tableau(t.to_core_
→˓tableau(), 3)
True

sage: t = WeakTableau([[2,0],[3,2]], 3, inner_shape = [2], representation =
→˓'factorized_permutation')
sage: t.to_core_tableau()
[[None, None, 1, 1, 2], [1, 2], [2]]
sage: t == WeakTableau_factorized_permutation.from_core_tableau(t.to_core_
→˓tableau(), 3)
True

sage.combinat.k_tableau.WeakTableaux(k, shape, weight, representation='core')
This is the dispatcher method for the parent class of weak 𝑘-tableaux.

INPUT:

• k – positive integer

• shape – shape of the weak 𝑘-tableaux; for the ‘core’ and ‘factorized_permutation’ representation, the shape
is inputted as a (𝑘+1)-core; for the ‘bounded’ representation, the shape is inputted as a 𝑘-bounded partition;
for skew tableaux, the shape is inputted as a tuple of the outer and inner shape

• weight – the weight of the weak 𝑘-tableaux as a list or tuple

• representation – ‘core’, ‘bounded’, or ‘factorized_permutation’ (default: ‘core’)

EXAMPLES:

sage: T = WeakTableaux(3, [5,2,1], [1,1,1,1,1,1])
sage: T.list()
[[[1, 3, 4, 5, 6], [2, 6], [4]],
[[1, 2, 4, 5, 6], [3, 6], [4]],
[[1, 2, 3, 4, 6], [4, 6], [5]],
[[1, 2, 3, 4, 5], [4, 5], [6]]]
sage: T.cardinality()
4

sage: T = WeakTableaux(3, [[5,2,1], [2]], [1,1,1,1])
sage: T.list()
[[[None, None, 2, 3, 4], [1, 4], [2]],
[[None, None, 1, 2, 4], [2, 4], [3]],
[[None, None, 1, 2, 3], [2, 3], [4]]]

(continues on next page)

5.1. Comprehensive Module List 1249

Combinatorics, Release 9.7

(continued from previous page)

sage: T = WeakTableaux(3, [3,2,1], [1,1,1,1,1,1], representation = 'bounded')
sage: T.list()
[[[1, 3, 5], [2, 6], [4]],
[[1, 2, 5], [3, 6], [4]],
[[1, 2, 3], [4, 6], [5]],
[[1, 2, 3], [4, 5], [6]]]

sage: T = WeakTableaux(3, [[3,2,1], [2]], [1,1,1,1], representation = 'bounded')
sage: T.list()
[[[None, None, 3], [1, 4], [2]],
[[None, None, 1], [2, 4], [3]],
[[None, None, 1], [2, 3], [4]]]

sage: T = WeakTableaux(3, [5,2,1], [1,1,1,1,1,1], representation = 'factorized_
→˓permutation')
sage: T.list()
[[s0, s3, s2, s1, s3, s0],
[s0, s3, s2, s3, s1, s0],
[s0, s2, s3, s2, s1, s0],
[s2, s0, s3, s2, s1, s0]]

sage: T = WeakTableaux(3, [[5,2,1], [2]], [1,1,1,1], representation = 'factorized_
→˓permutation')
sage: T.list()
[[s0, s3, s2, s3], [s0, s2, s3, s2], [s2, s0, s3, s2]]

class sage.combinat.k_tableau.WeakTableaux_abstract
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Abstract class for the various parent classes of WeakTableaux.

representation(representation='core')
Return the analogue of self in the specified representation.

INPUT:

• representation – ‘core’, ‘bounded’, or ‘factorized_permutation’ (default: ‘core’)

EXAMPLES:

sage: T = WeakTableaux(3, [5,2,1], [1,1,1,1,1,1])
sage: T._representation
'core'
sage: T.representation('bounded')
Bounded weak 3-Tableaux of (skew) 3-bounded shape [3, 2, 1] and weight (1, 1, 1,
→˓ 1, 1, 1)
sage: T.representation('factorized_permutation')
Factorized permutation (skew) weak 3-Tableaux of shape [5, 2, 1] and weight (1,␣
→˓1, 1, 1, 1, 1)

sage: T = WeakTableaux(3, [3,2,1], [1,1,1,1,1,1], representation = 'bounded')
sage: T._representation
'bounded'

(continues on next page)

1250 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

sage: T.representation('core')
Core weak 3-Tableaux of (skew) core shape [5, 2, 1] and weight (1, 1, 1, 1, 1,␣
→˓1)
sage: T.representation('bounded')
Bounded weak 3-Tableaux of (skew) 3-bounded shape [3, 2, 1] and weight (1, 1, 1,
→˓ 1, 1, 1)
sage: T.representation('bounded') == T
True
sage: T.representation('factorized_permutation')
Factorized permutation (skew) weak 3-Tableaux of shape [5, 2, 1] and weight (1,␣
→˓1, 1, 1, 1, 1)
sage: T.representation('factorized_permutation') == T
False

sage: T = WeakTableaux(3, [5,2,1], [1,1,1,1,1,1], representation = 'factorized_
→˓permutation')
sage: T._representation
'factorized_permutation'
sage: T.representation('core')
Core weak 3-Tableaux of (skew) core shape [5, 2, 1] and weight (1, 1, 1, 1, 1,␣
→˓1)
sage: T.representation('bounded')
Bounded weak 3-Tableaux of (skew) 3-bounded shape [3, 2, 1] and weight (1, 1, 1,
→˓ 1, 1, 1)
sage: T.representation('factorized_permutation')
Factorized permutation (skew) weak 3-Tableaux of shape [5, 2, 1] and weight (1,␣
→˓1, 1, 1, 1, 1)

shape()
Return the shape of the tableaux of self.

When self is the class of straight tableaux, the outer shape is returned. When self is the class of skew
tableaux, the tuple of the outer and inner shape is returned.

Note that in the ‘core’ and ‘factorized_permutation’ representation, the shapes are (𝑘 + 1)-cores. In the
‘bounded’ representation, the shapes are 𝑘-bounded partitions.

If the user wants to access the skew shape (even if the inner shape is empty), please use self._shape.

EXAMPLES:

sage: T = WeakTableaux(3, [5,2,2], [2,2,2,1])
sage: T.shape()
[5, 2, 2]
sage: T._shape
([5, 2, 2], [])
sage: T = WeakTableaux(3, [[5,2,2], [1]], [2,1,2,1])
sage: T.shape()
([5, 2, 2], [1])

sage: T = WeakTableaux(3, [3,2,2], [2,2,2,1], representation = 'bounded')
sage: T.shape()
[3, 2, 2]
sage: T._shape

(continues on next page)

5.1. Comprehensive Module List 1251

Combinatorics, Release 9.7

(continued from previous page)

([3, 2, 2], [])
sage: T = WeakTableaux(3, [[3,2,2], [1]], [2,1,2,1], representation = 'bounded')
sage: T.shape()
([3, 2, 2], [1])

sage: T = WeakTableaux(3, [4,1], [2,2], representation = 'factorized_permutation
→˓')
sage: T.shape()
[4, 1]
sage: T._shape
([4, 1], [])
sage: T = WeakTableaux(4, [[6,2,1], [2]], [2,1,1,1], representation =
→˓'factorized_permutation')
sage: T.shape()
([6, 2, 1], [2])

size()
Return the size of the shape.

In the bounded representation, the size of the shape is the number of boxes in the outer shape minus the
number of boxes in the inner shape. For the core and factorized permutation representation, the size is the
length of the outer shape minus the length of the inner shape.

EXAMPLES:

sage: T = WeakTableaux(3, [5,2,1], [1,1,1,1,1,1])
sage: T.size()
6
sage: T = WeakTableaux(3, [3,2,1], [1,1,1,1,1,1], representation = 'bounded')
sage: T.size()
6
sage: T = WeakTableaux(4, [[6,2,1], [2]], [2,1,1,1], 'factorized_permutation')
sage: T.size()
5

class sage.combinat.k_tableau.WeakTableaux_bounded(k, shape, weight)
Bases: sage.combinat.k_tableau.WeakTableaux_abstract

The class of (skew) weak 𝑘-tableaux in the bounded representation of shape shape (as 𝑘-bounded partition or
tuple of 𝑘-bounded partitions in the skew case) and weight weight.

INPUT:

• k – positive integer

• shape – the shape of the 𝑘-tableaux represented as a 𝑘-bounded partition; if the tableaux are skew, the
shape is a tuple of the outer and inner shape each represented as a 𝑘-bounded partition

• weight – the weight of the 𝑘-tableaux

EXAMPLES:

sage: T = WeakTableaux(3, [3,1], [2,2], representation = 'bounded')
sage: T.list()
[[[1, 1, 2], [2]]]

(continues on next page)

1252 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T = WeakTableaux(3, [[3,2,1], [2]], [1,1,1,1], representation = 'bounded')
sage: T.list()
[[[None, None, 3], [1, 4], [2]],
[[None, None, 1], [2, 4], [3]],
[[None, None, 1], [2, 3], [4]]]

Element
alias of WeakTableau_bounded

class sage.combinat.k_tableau.WeakTableaux_core(k, shape, weight)
Bases: sage.combinat.k_tableau.WeakTableaux_abstract

The class of (skew) weak 𝑘-tableaux in the core representation of shape shape (as 𝑘+1-core) and weight weight.

INPUT:

• k – positive integer

• shape – the shape of the 𝑘-tableaux represented as a (𝑘 + 1)-core; if the tableaux are skew, the shape is a
tuple of the outer and inner shape (both as (𝑘 + 1)-cores)

• weight – the weight of the 𝑘-tableaux

EXAMPLES:

sage: T = WeakTableaux(3, [4,1], [2,2])
sage: T.list()
[[[1, 1, 2, 2], [2]]]

sage: T = WeakTableaux(3, [[5,2,1], [2]], [1,1,1,1])
sage: T.list()
[[[None, None, 2, 3, 4], [1, 4], [2]],
[[None, None, 1, 2, 4], [2, 4], [3]],
[[None, None, 1, 2, 3], [2, 3], [4]]]

Element
alias of WeakTableau_core

circular_distance(cr, r)
Return the shortest counterclockwise distance between cr and r modulo 𝑘 + 1.

INPUT:

• cr, r – nonnegative integers between 0 and 𝑘

OUTPUT:

• a positive integer

EXAMPLES:

sage: T = WeakTableaux(10, [], [])
sage: T.circular_distance(8, 6)
2
sage: T.circular_distance(8, 8)
0
sage: T.circular_distance(8, 9)
10

5.1. Comprehensive Module List 1253

Combinatorics, Release 9.7

diag(c, ha)
Return the number of diagonals strictly between cells c and ha of the same residue as c.

INPUT:

• c – a cell in the lattice

• ha – another cell in the lattice with bigger row and smaller column than 𝑐

OUTPUT:

• a nonnegative integer

EXAMPLES:

sage: T = WeakTableaux(4, [5,2,2], [2,2,2,1])
sage: T.diag((1,2),(4,0))
0

class sage.combinat.k_tableau.WeakTableaux_factorized_permutation(k, shape, weight)
Bases: sage.combinat.k_tableau.WeakTableaux_abstract

The class of (skew) weak 𝑘-tableaux in the factorized permutation representation of shape shape (as 𝑘+ 1-core
or tuple of (𝑘 + 1)-cores in the skew case) and weight weight.

INPUT:

• k – positive integer

• shape – the shape of the 𝑘-tableaux represented as a (𝑘 + 1)-core; in the skew case the shape is a tuple of
the outer and inner shape both as (𝑘 + 1)-cores

• weight – the weight of the 𝑘-tableaux

EXAMPLES:

sage: T = WeakTableaux(3, [4,1], [2,2], representation = 'factorized_permutation')
sage: T.list()
[[s3*s2, s1*s0]]

sage: T = WeakTableaux(4, [[6,2,1], [2]], [2,1,1,1], representation = 'factorized_
→˓permutation')
sage: T.list()
[[s0, s4, s3, s4*s2], [s0, s3, s4, s3*s2], [s3, s0, s4, s3*s2]]

Element
alias of WeakTableau_factorized_permutation

sage.combinat.k_tableau.intermediate_shapes(t)
Return the intermediate shapes of tableau t.

A (skew) tableau with letters 1, 2, . . . , ℓ can be viewed as a sequence of shapes, where the 𝑖-th shape is given by
the shape of the subtableau on letters 1, 2, . . . , 𝑖. The output is the list of these shapes.

OUTPUT:

• a list of lists representing partitions

EXAMPLES:

sage: from sage.combinat.k_tableau import intermediate_shapes
sage: t = WeakTableau([[1, 1, 2, 2, 3], [2, 3], [3]],3)

(continues on next page)

1254 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: intermediate_shapes(t)
[[], [2], [4, 1], [5, 2, 1]]

sage: t = WeakTableau([[None, None, 2, 3, 4], [1, 4], [2]], 3)
sage: intermediate_shapes(t)
[[2], [2, 1], [3, 1, 1], [4, 1, 1], [5, 2, 1]]

sage.combinat.k_tableau.nabs(v)
Return the absolute value of v or None.

INPUT:

• v – either an integer or None

OUTPUT:

• either a non-negative integer or None

EXAMPLES:

sage: from sage.combinat.k_tableau import nabs
sage: nabs(None)
sage: nabs(-3)
3
sage: nabs(None)

5.1.129 Kazhdan-Lusztig Polynomials

AUTHORS:

• Daniel Bump (2008): initial version

• Alan J.X. Guo (2014-03-18): R_tilde() method.

class sage.combinat.kazhdan_lusztig.KazhdanLusztigPolynomial(W, q, trace=False)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
sage_object.SageObject

A Kazhdan-Lusztig polynomial.

INPUT:

• W – a Weyl Group

• q – an indeterminate

OPTIONAL:

• trace – if True, then this displays the trace: the intermediate results. This is instructive and fun.

The parent of q may be a PolynomialRing or a LaurentPolynomialRing.

EXAMPLES:

sage: W = WeylGroup("B3",prefix="s")
sage: [s1,s2,s3] = W.simple_reflections()
sage: R.<q> = LaurentPolynomialRing(QQ)
sage: KL = KazhdanLusztigPolynomial(W,q)

(continues on next page)

5.1. Comprehensive Module List 1255

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

(continued from previous page)

sage: KL.P(s2,s3*s2*s3*s1*s2)
1 + q

A faster implementation (using the optional package Coxeter 3) is given by:

sage: W = CoxeterGroup(['B', 3], implementation='coxeter3') # optional - coxeter3
sage: W.kazhdan_lusztig_polynomial([2], [3,2,3,1,2]) # optional - coxeter3
q + 1

P(x, y)
Return the Kazhdan-Lusztig 𝑃 polynomial.

If the rank is large, this runs slowly at first but speeds up as you do repeated calculations due to the caching.

INPUT:

• x, y – elements of the underlying Coxeter group

See also:

kazhdan_lusztig_polynomial for a faster implementation using Fokko Ducloux’s Coxeter3 C++ li-
brary.

EXAMPLES:

sage: R.<q> = QQ[]
sage: W = WeylGroup("A3", prefix="s")
sage: [s1,s2,s3] = W.simple_reflections()
sage: KL = KazhdanLusztigPolynomial(W, q)
sage: KL.P(s2,s2*s1*s3*s2)
q + 1

R(x, y)
Return the Kazhdan-Lusztig 𝑅 polynomial.

INPUT:

• x, y – elements of the underlying Coxeter group

EXAMPLES:

sage: R.<q>=QQ[]
sage: W = WeylGroup("A2", prefix="s")
sage: [s1,s2]=W.simple_reflections()
sage: KL = KazhdanLusztigPolynomial(W, q)
sage: [KL.R(x,s2*s1) for x in [1,s1,s2,s1*s2]]
[q^2 - 2*q + 1, q - 1, q - 1, 0]

R_tilde(x, y)
Return the Kazhdan-Lusztig �̃� polynomial.

Information about the �̃� polynomials can be found in [Dy1993] and [BB2005].

INPUT:

• x, y – elements of the underlying Coxeter group

EXAMPLES:

1256 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: R.<q> = QQ[]
sage: W = WeylGroup("A2", prefix="s")
sage: [s1,s2] = W.simple_reflections()
sage: KL = KazhdanLusztigPolynomial(W, q)
sage: [KL.R_tilde(x,s2*s1) for x in [1,s1,s2,s1*s2]]
[q^2, q, q, 0]

5.1.130 Knutson-Tao Puzzles

This module implements a generic algorithm to solve Knutson-Tao puzzles. An instance of this class will be callable:
the arguments are the labels of north-east and north-west sides of the puzzle boundary; the output is the list of the
fillings of the puzzle with the specified pieces.

Acknowledgements

This code was written during Sage Days 45 at ICERM with Franco Saliola, Anne Schilling, and Avinash Dalal in
discussions with Allen Knutson. The code was tested afterwards by Liz Beazley and Ed Richmond.

Todo: Functionality to add:

• plotter will not plot edge labels higher than 2; e.g. in BK puzzles, the labels are 1,. . . , n and so in 3-step examples,
none of the edge labels with 3 appear

• we should also have a 3-step puzzle pieces constructor, taken from p22 of arXiv math/0610538

• implement the bijection from puzzles to tableaux; see for example R. Vakil, A geometric Littlewood-Richardson
rule, arXiv math/0302294 or K. Purbhoo, Puzzles, Tableaux and Mosaics, arXiv 0705.1184.

sage.combinat.knutson_tao_puzzles.BK_pieces(max_letter)
The puzzle pieces used in computing the Belkale-Kumar coefficients for any partial flag variety in type 𝐴.

There are two types of puzzle pieces:

• a triangle, with each edge labeled with the same letter;

• a rhombus, with edges labeled 𝑖, 𝑗, 𝑖, 𝑗 in clockwise order with 𝑖 > 𝑗.

Each of these is rotated by 60 degrees, but not reflected.

We model the rhombus pieces as two triangles: a delta piece north-west label 𝑖, north-east label 𝑗 and south label
𝑖(𝑗); and a nabla piece with south-east label 𝑖, south-west label 𝑗 and north label 𝑖(𝑗).

INPUT:

• max_letter – positive integer specifying the number of steps in the partial flag variety, equivalently, the
number of elements in the alphabet for the edge labels. The smallest label is 1.

REFERENCES:

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import BK_pieces
sage: BK_pieces(3)
Nablas : [1\1/1, 1\2(1)/2, 1\3(1)/3, 2(1)\2/1, 2\1/2(1), 2\2/2, 2\3(2)/3, 3(1)\3/1,␣
→˓3(2)\3/2, 3\1/3(1), 3\2/3(2), 3\3/3]
Deltas : [1/1\1, 1/2\2(1), 1/3\3(1), 2(1)/1\2, 2/2(1)\1, 2/2\2, 2/3\3(2), 3(1)/1\3,␣
→˓3(2)/2\3, 3/3(1)\1, 3/3(2)\2, 3/3\3] (continues on next page)

5.1. Comprehensive Module List 1257

https://arxiv.org/abs/math/0610538
https://arxiv.org/abs/math/0302294
https://arxiv.org/abs/0705.1184

Combinatorics, Release 9.7

(continued from previous page)

class sage.combinat.knutson_tao_puzzles.DeltaPiece(south, north_west, north_east)
Bases: sage.combinat.knutson_tao_puzzles.PuzzlePiece

Delta Piece takes as input three labels, inputted as strings. They label the South, Northwest and Northeast edges,
respectively.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece
sage: DeltaPiece('a','b','c')
b/a\c

clockwise_rotation()
Rotate the Delta piece by 120 degree clockwise.

OUTPUT:

• Delta piece

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece
sage: delta = DeltaPiece('1','2','3')
sage: delta.clockwise_rotation()
1/3\2

edges()
Return the tuple of edge names.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece
sage: delta = DeltaPiece('1','2','3')
sage: delta.edges()
('south', 'north_west', 'north_east')

half_turn_rotation()
Rotate the Delta piece by 180 degree.

OUTPUT:

• Nabla piece

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece
sage: delta = DeltaPiece('1','2','3')
sage: delta.half_turn_rotation()
3\1/2

sage.combinat.knutson_tao_puzzles.HT_grassmannian_pieces()
Define the puzzle pieces used in computing the torus-equivariant cohomology of the Grassmannian.

REFERENCES:

EXAMPLES:

1258 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.knutson_tao_puzzles import HT_grassmannian_pieces
sage: HT_grassmannian_pieces()
Nablas : [0\0/0, 0\10/1, 10\1/0, 1\0/10, 1\1/1, 1\T0|1/0]
Deltas : [0/0\0, 0/1\10, 0/T0|1\1, 1/10\0, 1/1\1, 10/0\1]

sage.combinat.knutson_tao_puzzles.HT_two_step_pieces()
Define the puzzle pieces used in computing the equivariant two step puzzle pieces.

For the puzzle pieces, see Figure 26 on page 22 of [CoskunVakil06].

REFERENCES:

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import HT_two_step_pieces
sage: HT_two_step_pieces()
Nablas : [(21)0\21/0, 0\(21)0/21, 0\0/0, 0\10/1, 0\20/2, 10\1/0, 10\2(10)/2,
1\0/10, 1\1/1, 1\21/2, 1\T0|1/0, 2(10)\2/10, 20\2/0, 21\0/(21)0, 21\2/1, 21\T0|21/0,
21\T10|21/10, 2\0/20, 2\1/21, 2\10/2(10), 2\2/2, 2\T0|2/0, 2\T10|2/10, 2\T1|2/1]
Deltas : [(21)0/0\21, 0/0\0, 0/1\10, 0/21\(21)0, 0/2\20, 0/T0|1\1, 0/T0|21\21, 0/
→˓T0|2\2,
1/10\0, 1/1\1, 1/2\21, 1/T1|2\2, 10/0\1, 10/2\2(10), 10/T10|21\21, 10/T10|2\2,␣
→˓2(10)/10\2,
2/2(10)\10, 2/20\0, 2/21\1, 2/2\2, 20/0\2, 21/(21)0\0, 21/1\2]

sage.combinat.knutson_tao_puzzles.H_grassmannian_pieces()
Define the puzzle pieces used in computing the cohomology of the Grassmannian.

REFERENCES:

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import H_grassmannian_pieces
sage: H_grassmannian_pieces()
Nablas : [0\0/0, 0\10/1, 10\1/0, 1\0/10, 1\1/1]
Deltas : [0/0\0, 0/1\10, 1/10\0, 1/1\1, 10/0\1]

sage.combinat.knutson_tao_puzzles.H_two_step_pieces()
Define the puzzle pieces used in two step flags.

This rule is currently only conjecturally true. See [BuchKreschTamvakis03].

REFERENCES:

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import H_two_step_pieces
sage: H_two_step_pieces()
Nablas : [(21)0\21/0, 0\(21)0/21, 0\0/0, 0\10/1, 0\20/2, 10\1/0, 10\2(10)/2, 1\0/10,
→˓ 1\1/1, 1\21/2,
2(10)\2/10, 20\2/0, 21\0/(21)0, 21\2/1, 2\0/20, 2\1/21, 2\10/2(10), 2\2/2]
Deltas : [(21)0/0\21, 0/0\0, 0/1\10, 0/21\(21)0, 0/2\20, 1/10\0, 1/1\1, 1/2\21, 10/
→˓0\1, 10/2\2(10),
2(10)/10\2, 2/2(10)\10, 2/20\0, 2/21\1, 2/2\2, 20/0\2, 21/(21)0\0, 21/1\2]

sage.combinat.knutson_tao_puzzles.K_grassmannian_pieces()
Define the puzzle pieces used in computing the K-theory of the Grassmannian.

REFERENCES:

5.1. Comprehensive Module List 1259

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import K_grassmannian_pieces
sage: K_grassmannian_pieces()
Nablas : [0\0/0, 0\10/1, 0\K/1, 10\1/0, 1\0/10, 1\0/K, 1\1/1, K\1/0]
Deltas : [0/0\0, 0/1\10, 1/10\0, 1/1\1, 10/0\1, K/K\K]

class sage.combinat.knutson_tao_puzzles.KnutsonTaoPuzzleSolver(puzzle_pieces)
Bases: sage.structure.unique_representation.UniqueRepresentation

Return puzzle solver function used to create all puzzles with given boundary conditions.

This class implements a generic algorithm to solve Knutson-Tao puzzles. An instance of this class will be
callable: the arguments are the labels of north-east and north-west sides of the puzzle boundary; the output is the
list of the fillings of the puzzle with the specified pieces.

INPUT:

• puzzle_pieces – takes either a collection of puzzle pieces or a string indicating a pre-programmed col-
lection of puzzle pieces:

– H – cohomology of the Grassmannian

– HT – equivariant cohomology of the Grassmannian

– K – K-theory

– H2step – cohomology of the 2-step Grassmannian

– HT2step – equivariant cohomology of the 2-step Grassmannian

– BK – Belkale-Kumar puzzle pieces

• max_letter – (default: None) None or a positive integer. This is only required only for Belkale-Kumar
puzzles.

EXAMPLES:

Each puzzle piece is an edge-labelled triangle oriented in such a way that it has a south edge (called a delta piece)
or a north edge (called a nabla piece). For example, the puzzle pieces corresponding to the cohomology of the
Grassmannian are the following:

sage: from sage.combinat.knutson_tao_puzzles import H_grassmannian_pieces
sage: H_grassmannian_pieces()
Nablas : [0\0/0, 0\10/1, 10\1/0, 1\0/10, 1\1/1]
Deltas : [0/0\0, 0/1\10, 1/10\0, 1/1\1, 10/0\1]

In the string representation, the nabla pieces are depicted as c\a/b, where 𝑎 is the label of the north edge, 𝑏 is
the label of the south-east edge, 𝑐 is the label of the south-west edge. A similar string representation exists for
the delta pieces.

To create a puzzle solver, one specifies a collection of puzzle pieces:

sage: KnutsonTaoPuzzleSolver(H_grassmannian_pieces())
Knutson-Tao puzzle solver with pieces:
Nablas : [0\0/0, 0\10/1, 10\1/0, 1\0/10, 1\1/1]
Deltas : [0/0\0, 0/1\10, 1/10\0, 1/1\1, 10/0\1]

The following shorthand to create the above puzzle solver is also supported:

1260 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

sage: KnutsonTaoPuzzleSolver('H')
Knutson-Tao puzzle solver with pieces:
Nablas : [0\0/0, 0\10/1, 10\1/0, 1\0/10, 1\1/1]
Deltas : [0/0\0, 0/1\10, 1/10\0, 1/1\1, 10/0\1]

The solver will compute all fillings of the puzzle with the given puzzle pieces. The user specifies the labels of
north-east and north-west sides of the puzzle boundary and the output is a list of the fillings of the puzzle with
the specified pieces. For example, there is one solution to the puzzle whose north-west and north-east edges are
both labeled ‘0’:

sage: ps = KnutsonTaoPuzzleSolver('H')
sage: ps('0', '0')
[{(1, 1): 0/0\0}]

There are two solutions to the puzzle whose north-west and north-east edges are both labeled ‘0101’:

sage: ps = KnutsonTaoPuzzleSolver('H')
sage: solns = ps('0101', '0101')
sage: len(solns)
2
sage: solns.sort(key=str)
sage: solns
[{(1, 1): 0/0\0,
(1, 2): 1/\0 0\/1,
(1, 3): 0/\0 0\/0,
(1, 4): 1/\0 0\/1,
(2, 2): 1/1\1,
(2, 3): 0/\10 1\/1,
(2, 4): 1/\1 10\/0,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(4, 4): 10/0\1}, {(1, 1): 0/1\10,
(1, 2): 1/\1 10\/0,
(1, 3): 0/\0 1\/10,
(1, 4): 1/\0 0\/1,
(2, 2): 0/0\0,
(2, 3): 10/\1 0\/0,
(2, 4): 1/\1 1\/1,
(3, 3): 0/0\0,
(3, 4): 1/\0 0\/1,
(4, 4): 1/1\1}]

The pieces in a puzzle filling are indexed by pairs of non-negative integers (𝑖, 𝑗) with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, where 𝑛 is
the length of the word labelling the triangle edge. The pieces indexed by (𝑖, 𝑖) are the triangles along the south
edge of the puzzle.

sage: f = solns[0]
sage: [f[i, i] for i in range(1,5)]
[0/0\0, 1/1\1, 1/1\1, 10/0\1]

The pieces indexed by (𝑖, 𝑗) for 𝑗 > 𝑖 are a pair consisting of a delta piece and nabla piece glued together along
the south edge and north edge, respectively (these pairs are called rhombi).

5.1. Comprehensive Module List 1261

Combinatorics, Release 9.7

sage: f = solns[0]
sage: f[1, 2]
1/\0 0\/1

There are various methods and options to display puzzle solutions. A single puzzle can be displayed using the
plot method of the puzzle:

sage: ps = KnutsonTaoPuzzleSolver("H")
sage: puzzle = ps('0101','1001')[0]
sage: puzzle.plot() #not tested
sage: puzzle.plot(style='fill') #not tested
sage: puzzle.plot(style='edges') #not tested

To plot several puzzle solutions, use the plot method of the puzzle solver:

sage: ps = KnutsonTaoPuzzleSolver('K')
sage: solns = ps('0101', '0101')
sage: ps.plot(solns) # not tested

The code can also generate a PDF of a puzzle (using LaTeX and tikz):

sage: latex.extra_preamble(r'''\usepackage{tikz}''')
sage: ps = KnutsonTaoPuzzleSolver('H')
sage: solns = ps('0101', '0101')
sage: view(solns[0], viewer='pdf') # not tested

Below are examples of using each of the currently supported puzzles.

Cohomology of the Grassmannian:

sage: ps = KnutsonTaoPuzzleSolver("H")
sage: solns = ps('0101', '0101')
sage: sorted(solns, key=str)
[{(1, 1): 0/0\0,
(1, 2): 1/\0 0\/1,
(1, 3): 0/\0 0\/0,
(1, 4): 1/\0 0\/1,
(2, 2): 1/1\1,
(2, 3): 0/\10 1\/1,
(2, 4): 1/\1 10\/0,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(4, 4): 10/0\1}, {(1, 1): 0/1\10,
(1, 2): 1/\1 10\/0,
(1, 3): 0/\0 1\/10,
(1, 4): 1/\0 0\/1,
(2, 2): 0/0\0,
(2, 3): 10/\1 0\/0,
(2, 4): 1/\1 1\/1,
(3, 3): 0/0\0,
(3, 4): 1/\0 0\/1,
(4, 4): 1/1\1}]

Equivariant puzzles:

1262 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: ps = KnutsonTaoPuzzleSolver("HT")
sage: solns = ps('0101', '0101')
sage: sorted(solns, key=str)
[{(1, 1): 0/0\0,
(1, 2): 1/\0 0\/1,
(1, 3): 0/\0 0\/0,
(1, 4): 1/\0 0\/1,
(2, 2): 1/1\1,
(2, 3): 0/\1 1\/0,
(2, 4): 1/\1 1\/1,
(3, 3): 0/0\0,
(3, 4): 1/\0 0\/1,
(4, 4): 1/1\1}, {(1, 1): 0/0\0,
(1, 2): 1/\0 0\/1,
(1, 3): 0/\0 0\/0,
(1, 4): 1/\0 0\/1,
(2, 2): 1/1\1,
(2, 3): 0/\10 1\/1,
(2, 4): 1/\1 10\/0,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(4, 4): 10/0\1}, {(1, 1): 0/1\10,
(1, 2): 1/\1 10\/0,
(1, 3): 0/\0 1\/10,
(1, 4): 1/\0 0\/1,
(2, 2): 0/0\0,
(2, 3): 10/\1 0\/0,
(2, 4): 1/\1 1\/1,
(3, 3): 0/0\0,
(3, 4): 1/\0 0\/1,
(4, 4): 1/1\1}]

K-Theory puzzles:

sage: ps = KnutsonTaoPuzzleSolver("K")
sage: solns = ps('0101', '0101')
sage: sorted(solns, key=str)
[{(1, 1): 0/0\0,
(1, 2): 1/\0 0\/1,
(1, 3): 0/\0 0\/0,
(1, 4): 1/\0 0\/1,
(2, 2): 1/1\1,
(2, 3): 0/\10 1\/1,
(2, 4): 1/\1 10\/0,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(4, 4): 10/0\1}, {(1, 1): 0/1\10,
(1, 2): 1/\1 10\/0,
(1, 3): 0/\0 1\/10,
(1, 4): 1/\0 0\/1,
(2, 2): 0/0\0,
(2, 3): 10/\1 0\/0,
(2, 4): 1/\1 1\/1,

(continues on next page)

5.1. Comprehensive Module List 1263

Combinatorics, Release 9.7

(continued from previous page)

(3, 3): 0/0\0,
(3, 4): 1/\0 0\/1,
(4, 4): 1/1\1}, {(1, 1): 0/1\10,
(1, 2): 1/\1 10\/0,
(1, 3): 0/\0 1\/K,
(1, 4): 1/\0 0\/1,
(2, 2): 0/0\0,
(2, 3): K/\K 0\/1,
(2, 4): 1/\1 K\/0,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(4, 4): 10/0\1}]

Two-step puzzles:

sage: ps = KnutsonTaoPuzzleSolver("H2step")
sage: solns = ps('01201', '01021')
sage: sorted(solns, key=str)
[{(1, 1): 0/0\0,
(1, 2): 1/\0 0\/1,
(1, 3): 2/\0 0\/2,
(1, 4): 0/\0 0\/0,
(1, 5): 1/\0 0\/1,
(2, 2): 1/2\21,
(2, 3): 2/\2 21\/1,
(2, 4): 0/\10 2\/21,
(2, 5): 1/\1 10\/0,
(3, 3): 1/1\1,
(3, 4): 21/\2 1\/1,
(3, 5): 0/\0 2\/20,
(4, 4): 1/1\1,
(4, 5): 20/\2 1\/10,
(5, 5): 10/0\1}, {(1, 1): 0/1\10,
(1, 2): 1/\1 10\/0,
(1, 3): 2/\1 1\/2,
(1, 4): 0/\0 1\/10,
(1, 5): 1/\0 0\/1,
(2, 2): 0/2\20,
(2, 3): 2/\2 20\/0,
(2, 4): 10/\1 2\/20,
(2, 5): 1/\1 1\/1,
(3, 3): 0/0\0,
(3, 4): 20/\2 0\/0,
(3, 5): 1/\0 2\/2(10),
(4, 4): 0/0\0,
(4, 5): 2(10)/\2 0\/1,
(5, 5): 1/1\1}, {(1, 1): 0/2\20,
(1, 2): 1/\21 20\/0,
(1, 3): 2/\2 21\/1,
(1, 4): 0/\0 2\/20,
(1, 5): 1/\0 0\/1,
(2, 2): 0/0\0,

(continues on next page)

1264 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(2, 3): 1/\0 0\/1,
(2, 4): 20/\2 0\/0,
(2, 5): 1/\1 2\/21,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(3, 5): 21/\0 0\/21,
(4, 4): 10/0\1,
(4, 5): 21/\2 1\/1,
(5, 5): 1/1\1}]

Two-step equivariant puzzles:

sage: ps = KnutsonTaoPuzzleSolver("HT2step")
sage: solns = ps('10212', '12012')
sage: sorted(solns, key=str)
[{(1, 1): 1/1\1,
(1, 2): 0/\(21)0 1\/2,
(1, 3): 2/\1 (21)0\/0,
(1, 4): 1/\1 1\/1,
(1, 5): 2/\1 1\/2,
(2, 2): 2/2\2,
(2, 3): 0/\2 2\/0,
(2, 4): 1/\2 2\/1,
(2, 5): 2/\2 2\/2,
(3, 3): 0/0\0,
(3, 4): 1/\0 0\/1,
(3, 5): 2/\0 0\/2,
(4, 4): 1/1\1,
(4, 5): 2/\1 1\/2,
(5, 5): 2/2\2}, {(1, 1): 1/1\1,
(1, 2): 0/\(21)0 1\/2,
(1, 3): 2/\1 (21)0\/0,
(1, 4): 1/\1 1\/1,
(1, 5): 2/\1 1\/2,
(2, 2): 2/2\2,
(2, 3): 0/\2 2\/0,
(2, 4): 1/\21 2\/2,
(2, 5): 2/\2 21\/1,
(3, 3): 0/0\0,
(3, 4): 2/\0 0\/2,
(3, 5): 1/\0 0\/1,
(4, 4): 2/2\2,
(4, 5): 1/\1 2\/21,
(5, 5): 21/1\2}, {(1, 1): 1/1\1,
(1, 2): 0/\(21)0 1\/2,
(1, 3): 2/\1 (21)0\/0,
(1, 4): 1/\1 1\/1,
(1, 5): 2/\1 1\/2,
(2, 2): 2/2\2,
(2, 3): 0/\20 2\/2,
(2, 4): 1/\21 20\/0,
(2, 5): 2/\2 21\/1,

(continues on next page)

5.1. Comprehensive Module List 1265

Combinatorics, Release 9.7

(continued from previous page)

(3, 3): 2/2\2,
(3, 4): 0/\0 2\/20,
(3, 5): 1/\0 0\/1,
(4, 4): 20/0\2,
(4, 5): 1/\1 2\/21,
(5, 5): 21/1\2}, {(1, 1): 1/1\1,
(1, 2): 0/\1 1\/0,
(1, 3): 2/\1 1\/2,
(1, 4): 1/\1 1\/1,
(1, 5): 2/\1 1\/2,
(2, 2): 0/2\20,
(2, 3): 2/\2 20\/0,
(2, 4): 1/\2 2\/1,
(2, 5): 2/\2 2\/2,
(3, 3): 0/0\0,
(3, 4): 1/\0 0\/1,
(3, 5): 2/\0 0\/2,
(4, 4): 1/1\1,
(4, 5): 2/\1 1\/2,
(5, 5): 2/2\2}, {(1, 1): 1/1\1,
(1, 2): 0/\1 1\/0,
(1, 3): 2/\1 1\/2,
(1, 4): 1/\1 1\/1,
(1, 5): 2/\1 1\/2,
(2, 2): 0/2\20,
(2, 3): 2/\2 20\/0,
(2, 4): 1/\21 2\/2,
(2, 5): 2/\2 21\/1,
(3, 3): 0/0\0,
(3, 4): 2/\0 0\/2,
(3, 5): 1/\0 0\/1,
(4, 4): 2/2\2,
(4, 5): 1/\1 2\/21,
(5, 5): 21/1\2}, {(1, 1): 1/1\1,
(1, 2): 0/\10 1\/1,
(1, 3): 2/\10 10\/2,
(1, 4): 1/\1 10\/0,
(1, 5): 2/\1 1\/2,
(2, 2): 1/2\21,
(2, 3): 2/\2 21\/1,
(2, 4): 0/\2 2\/0,
(2, 5): 2/\2 2\/2,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(3, 5): 2/\0 0\/2,
(4, 4): 10/0\1,
(4, 5): 2/\1 1\/2,
(5, 5): 2/2\2}, {(1, 1): 1/1\1,
(1, 2): 0/\10 1\/1,
(1, 3): 2/\10 10\/2,
(1, 4): 1/\1 10\/0,
(1, 5): 2/\1 1\/2,

(continues on next page)

1266 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(2, 2): 1/2\21,
(2, 3): 2/\2 21\/1,
(2, 4): 0/\20 2\/2,
(2, 5): 2/\2 20\/0,
(3, 3): 1/1\1,
(3, 4): 2/\1 1\/2,
(3, 5): 0/\0 1\/10,
(4, 4): 2/2\2,
(4, 5): 10/\1 2\/20,
(5, 5): 20/0\2}, {(1, 1): 1/2\21,
(1, 2): 0/\20 21\/1,
(1, 3): 2/\2 20\/0,
(1, 4): 1/\1 2\/21,
(1, 5): 2/\1 1\/2,
(2, 2): 1/1\1,
(2, 3): 0/\1 1\/0,
(2, 4): 21/\2 1\/1,
(2, 5): 2/\2 2\/2,
(3, 3): 0/0\0,
(3, 4): 1/\0 0\/1,
(3, 5): 2/\0 0\/2,
(4, 4): 1/1\1,
(4, 5): 2/\1 1\/2,
(5, 5): 2/2\2}, {(1, 1): 1/2\21,
(1, 2): 0/\20 21\/1,
(1, 3): 2/\2 20\/0,
(1, 4): 1/\1 2\/21,
(1, 5): 2/\1 1\/2,
(2, 2): 1/1\1,
(2, 3): 0/\10 1\/1,
(2, 4): 21/\2 10\/0,
(2, 5): 2/\2 2\/2,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(3, 5): 2/\0 0\/2,
(4, 4): 10/0\1,
(4, 5): 2/\1 1\/2,
(5, 5): 2/2\2}, {(1, 1): 1/2\21,
(1, 2): 0/\21 21\/0,
(1, 3): 2/\2 21\/1,
(1, 4): 1/\1 2\/21,
(1, 5): 2/\1 1\/2,
(2, 2): 0/1\10,
(2, 3): 1/\1 10\/0,
(2, 4): 21/\2 1\/1,
(2, 5): 2/\2 2\/2,
(3, 3): 0/0\0,
(3, 4): 1/\0 0\/1,
(3, 5): 2/\0 0\/2,
(4, 4): 1/1\1,
(4, 5): 2/\1 1\/2,
(5, 5): 2/2\2}]

5.1. Comprehensive Module List 1267

Combinatorics, Release 9.7

Belkale-Kumar puzzles (the following example is Figure 2 of [KnutsonPurbhoo10]):

sage: ps = KnutsonTaoPuzzleSolver('BK', 3)
sage: solns = ps('12132', '23112')
sage: len(solns)
1
sage: solns[0].south_labels()
('3', '2', '1', '2', '1')
sage: solns
[{(1, 1): 1/3\3(1),
(1, 2): 2/\3(2) 3(1)\/1,
(1, 3): 1/\3(1) 3(2)\/2,
(1, 4): 3/\3 3(1)\/1,
(1, 5): 2/\2 3\/3(2),
(2, 2): 1/2\2(1),
(2, 3): 2/\2 2(1)\/1,
(2, 4): 1/\2(1) 2\/2,
(2, 5): 3(2)/\3 2(1)\/1,
(3, 3): 1/1\1,
(3, 4): 2/\1 1\/2,
(3, 5): 1/\1 1\/1,
(4, 4): 2/2\2,
(4, 5): 1/\1 2\/2(1),
(5, 5): 2(1)/1\2}]

plot(puzzles)
Return plot of puzzles.

INPUT:

• puzzles – list of puzzles

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import KnutsonTaoPuzzleSolver
sage: ps = KnutsonTaoPuzzleSolver('K')
sage: solns = ps('0101', '0101')
sage: ps.plot(solns) # not tested

puzzle_pieces()
The puzzle pieces used for filling in the puzzles.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import KnutsonTaoPuzzleSolver
sage: ps = KnutsonTaoPuzzleSolver('H')
sage: ps.puzzle_pieces()
Nablas : [0\0/0, 0\10/1, 10\1/0, 1\0/10, 1\1/1]
Deltas : [0/0\0, 0/1\10, 1/10\0, 1/1\1, 10/0\1]

solutions(lamda, mu, algorithm='strips')

structure_constants(lamda, mu, nu=None)
Compute cohomology structure coefficients from puzzles.

INPUT:

• pieces – puzzle pieces to be used

1268 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• lambda, mu – edge labels of puzzle for northwest and north east side

• nu – (default: None) If nu is not specified a dictionary is returned with the structure coefficients
corresponding to all south labels; if nu is given, only the coefficients with the specified label is returned.

OUTPUT: dictionary

EXAMPLES:

Note: In order to standardize the output of the following examples, we output a sorted list of items from
the dictionary instead of the dictionary itself.

Grassmannian cohomology:

sage: ps = KnutsonTaoPuzzleSolver('H')
sage: cp = ps.structure_constants('0101', '0101')
sage: sorted(cp.items(), key=str)
[(('0', '1', '1', '0'), 1), (('1', '0', '0', '1'), 1)]
sage: ps.structure_constants('001001', '001010', '010100')
1

Equivariant cohomology:

sage: ps = KnutsonTaoPuzzleSolver('HT')
sage: cp = ps.structure_constants('0101', '0101')
sage: sorted(cp.items(), key=str)
[(('0', '1', '0', '1'), y2 - y3),
(('0', '1', '1', '0'), 1),
(('1', '0', '0', '1'), 1)]

K-theory:

sage: ps = KnutsonTaoPuzzleSolver('K')
sage: cp = ps.structure_constants('0101', '0101')
sage: sorted(cp.items(), key=str)
[(('0', '1', '1', '0'), 1), (('1', '0', '0', '1'), 1), (('1', '0', '1', '0'), -
→˓1)]

Two-step:

sage: ps = KnutsonTaoPuzzleSolver('H2step')
sage: cp = ps.structure_constants('01122', '01122')
sage: sorted(cp.items(), key=str)
[(('0', '1', '1', '2', '2'), 1)]
sage: cp = ps.structure_constants('01201', '01021')
sage: sorted(cp.items(), key=str)
[(('0', '2', '1', '1', '0'), 1),
(('1', '2', '0', '0', '1'), 1),
(('2', '0', '1', '0', '1'), 1)]

Two-step equivariant:

sage: ps = KnutsonTaoPuzzleSolver('HT2step')
sage: cp = ps.structure_constants('10212', '12012')
sage: sorted(cp.items(), key=str)
[(('1', '2', '0', '1', '2'), y1*y2 - y2*y3 - y1*y4 + y3*y4),
(('1', '2', '0', '2', '1'), y1 - y3),

(continues on next page)

5.1. Comprehensive Module List 1269

Combinatorics, Release 9.7

(continued from previous page)

(('1', '2', '1', '0', '2'), y2 - y4),
(('1', '2', '1', '2', '0'), 1),
(('1', '2', '2', '0', '1'), 1),
(('2', '1', '0', '1', '2'), y1 - y3),
(('2', '1', '1', '0', '2'), 1)]

class sage.combinat.knutson_tao_puzzles.NablaPiece(north, south_east, south_west)
Bases: sage.combinat.knutson_tao_puzzles.PuzzlePiece

Nabla Piece takes as input three labels, inputted as strings. They label the North, Southeast and Southwest edges,
respectively.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import NablaPiece
sage: NablaPiece('a','b','c')
c\a/b

clockwise_rotation()
Rotate the Nabla piece by 120 degree clockwise.

OUTPUT:

• Nabla piece

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import NablaPiece
sage: nabla = NablaPiece('1','2','3')
sage: nabla.clockwise_rotation()
2\3/1

edges()
Return the tuple of edge names.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import NablaPiece
sage: nabla = NablaPiece('1','2','3')
sage: nabla.edges()
('north', 'south_east', 'south_west')

half_turn_rotation()
Rotate the Nabla piece by 180 degree.

OUTPUT:

• Delta piece

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import NablaPiece
sage: nabla = NablaPiece('1','2','3')
sage: nabla.half_turn_rotation()
2/1\3

class sage.combinat.knutson_tao_puzzles.PuzzleFilling(north_west_labels, north_east_labels)
Bases: object

1270 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Create partial puzzles and provides methods to build puzzles from them.

add_piece(piece)
Add piece to partial puzzle.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece, PuzzleFilling
sage: piece = DeltaPiece('0','1','0')
sage: P = PuzzleFilling('0101','0101'); P
{}
sage: P.add_piece(piece); P
{(1, 4): 1/0\0}

add_pieces(pieces)
Add piece to partial puzzle.

INPUT:

• pieces – tuple of pieces

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece, PuzzleFilling
sage: P = PuzzleFilling('0101','0101'); P
{}
sage: piece = DeltaPiece('0','1','0')
sage: pieces = [piece,piece]
sage: P.add_pieces(pieces)
sage: P
{(1, 4): 1/0\0, (2, 4): 1/0\0}

contribution()
Return equivariant contributions from self in polynomial ring.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import KnutsonTaoPuzzleSolver
sage: ps = KnutsonTaoPuzzleSolver("HT")
sage: puzzles = ps('0101','1001')
sage: sorted([p.contribution() for p in puzzles], key=str)
[1, y1 - y3]

copy()
Return copy of self.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece, PuzzleFilling
sage: piece = DeltaPiece('0','1','0')
sage: P = PuzzleFilling('0101','0101'); P
{}
sage: PP = P.copy()
sage: P.add_piece(piece); P
{(1, 4): 1/0\0}
sage: PP
{}

5.1. Comprehensive Module List 1271

Combinatorics, Release 9.7

is_completed()
Whether partial puzzle is complete (completely filled) or not.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzleFilling
sage: P = PuzzleFilling('0101','0101')
sage: P.is_completed()
False

sage: from sage.combinat.knutson_tao_puzzles import KnutsonTaoPuzzleSolver
sage: ps = KnutsonTaoPuzzleSolver("H")
sage: puzzle = ps('0101','1001')[0]
sage: puzzle.is_completed()
True

is_in_south_edge()
Check whether kink coordinates of partial puzzle is in south corner.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzleFilling
sage: P = PuzzleFilling('0101','0101')
sage: P.is_in_south_edge()
False

kink_coordinates()
Provide the coordinates of the kinks.

The kink coordinates are the coordinates up to which the puzzle has already been built. The kink starts in
the north corner and then moves down the diagonals as the puzzles is built.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzleFilling
sage: P = PuzzleFilling('0101','0101')
sage: P
{}
sage: P.kink_coordinates()
(1, 4)

north_east_label_of_kink()
Return north east label of kink.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzleFilling
sage: P = PuzzleFilling('0101','0101')
sage: P.north_east_label_of_kink()
'0'

north_west_label_of_kink()
Return north-west label of kink.

EXAMPLES:

1272 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.knutson_tao_puzzles import PuzzleFilling
sage: P = PuzzleFilling('0101','0101')
sage: P.north_west_label_of_kink()
'1'

plot(labels=True, style='fill')
Plot completed puzzle.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import KnutsonTaoPuzzleSolver
sage: ps = KnutsonTaoPuzzleSolver("H")
sage: puzzle = ps('0101','1001')[0]
sage: puzzle.plot() #not tested
sage: puzzle.plot(style='fill') #not tested
sage: puzzle.plot(style='edges') #not tested

south_labels()
Return south labels for completed puzzle.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import KnutsonTaoPuzzleSolver
sage: ps = KnutsonTaoPuzzleSolver("H")
sage: ps('0101','1001')[0].south_labels()
('1', '0', '1', '0')

class sage.combinat.knutson_tao_puzzles.PuzzlePiece
Bases: object

Abstract class for puzzle pieces.

This abstract class contains information on how to test equality of puzzle pieces, and sets color and plotting
options.

border()
Return the border of self.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece
sage: delta = DeltaPiece('a','b','c')
sage: sorted(delta.border())
['a', 'b', 'c']

color()
Return the color of self.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece
sage: delta = DeltaPiece('a','b','c')
sage: delta.color()
'white'
sage: delta = DeltaPiece('0','0','0')
sage: delta.color()
'red'

(continues on next page)

5.1. Comprehensive Module List 1273

Combinatorics, Release 9.7

(continued from previous page)

sage: delta = DeltaPiece('1','1','1')
sage: delta.color()
'blue'
sage: delta = DeltaPiece('2','2','2')
sage: delta.color()
'green'
sage: delta = DeltaPiece('2','K','2')
sage: delta.color()
'orange'
sage: delta = DeltaPiece('2','T1/2','2')
sage: delta.color()
'yellow'

edge_color(edge)
Color of the specified edge of self (to be used when plotting the piece).

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece
sage: delta = DeltaPiece('1','0','10')
sage: delta.edge_color('south')
'blue'
sage: delta.edge_color('north_west')
'red'
sage: delta.edge_color('north_east')
'white'

edge_label(edge)
Return the edge label of edge.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece
sage: delta = DeltaPiece('2','K','2')
sage: delta.edge_label('south')
'2'
sage: delta.edge_label('north_east')
'2'
sage: delta.edge_label('north_west')
'K'

class sage.combinat.knutson_tao_puzzles.PuzzlePieces(forbidden_border_labels=None)
Bases: object

Construct a valid set of puzzle pieces.

This class constructs the set of valid puzzle pieces. It can take a list of forbidden border labels as input. These
labels are forbidden from appearing on the south edge of a puzzle filling. The user can add valid nabla or delta
pieces and specify which rotations of these pieces are legal. For example, rotations=0 does not add any
additional pieces (only the piece itself), rotations=60 adds six pieces (the pieces and its rotations by 60, 120,
180, 240, 300), etc..

EXAMPLES:

1274 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.knutson_tao_puzzles import PuzzlePieces, NablaPiece
sage: forbidden_border_labels = ['10']
sage: pieces = PuzzlePieces(forbidden_border_labels)
sage: pieces.add_piece(NablaPiece('0','0','0'), rotations=60)
sage: pieces.add_piece(NablaPiece('1','1','1'), rotations=60)
sage: pieces.add_piece(NablaPiece('1','0','10'), rotations=60)
sage: pieces
Nablas : [0\0/0, 0\10/1, 10\1/0, 1\0/10, 1\1/1]
Deltas : [0/0\0, 0/1\10, 1/10\0, 1/1\1, 10/0\1]

The user can obtain the list of valid rhombi pieces as follows:

sage: sorted([p for p in pieces.rhombus_pieces()], key=str)
[0/\0 0\/0, 0/\0 1\/10, 0/\10 10\/0, 0/\10 1\/1, 1/\0 0\/1,
1/\1 10\/0, 1/\1 1\/1, 10/\1 0\/0, 10/\1 1\/10]

add_T_piece(label1, label2)
Add a nabla and delta piece with label1 and label2.

This method adds a nabla piece with edges label2T``label1``|``label2`` / label1. and a delta piece with
edges label1/ T``label1``|``label2`` label2. It also adds T``label1``|``label2`` to the forbidden list.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzlePieces
sage: pieces = PuzzlePieces()
sage: pieces.add_T_piece('1','3')
sage: pieces
Nablas : [3\T1|3/1]
Deltas : [1/T1|3\3]
sage: pieces._forbidden_border_labels
['T1|3']

add_forbidden_label(label)
Add forbidden border labels.

INPUT:

• label – string specifying a new forbidden label

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzlePieces
sage: pieces = PuzzlePieces()
sage: pieces.add_forbidden_label('1')
sage: pieces._forbidden_border_labels
['1']
sage: pieces.add_forbidden_label('2')
sage: pieces._forbidden_border_labels
['1', '2']

add_piece(piece, rotations=120)
Add piece to the list of pieces.

INPUT:

• piece – a nabla piece or a delta piece

5.1. Comprehensive Module List 1275

Combinatorics, Release 9.7

• rotations – (default: 120) 0, 60, 120, 180

The user can add valid nabla or delta pieces and specify which rotations of these pieces are legal. For
example, rotations=0 does not add any additional pieces (only the piece itself), rotations=60 adds
six pieces (namely three delta and three nabla pieces), while rotations=120 adds only delta or nabla
(depending on which piece self is). rotations=180 adds the piece and its 180 degree rotation, i.e. one
delta and one nabla piece.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzlePieces, DeltaPiece
sage: delta = DeltaPiece('a','b','c')
sage: pieces = PuzzlePieces()
sage: pieces
Nablas : []
Deltas : []
sage: pieces.add_piece(delta)
sage: pieces
Nablas : []
Deltas : [a/c\b, b/a\c, c/b\a]

sage: pieces = PuzzlePieces()
sage: pieces.add_piece(delta,rotations=0)
sage: pieces
Nablas : []
Deltas : [b/a\c]

sage: pieces = PuzzlePieces()
sage: pieces.add_piece(delta,rotations=60)
sage: pieces
Nablas : [a\b/c, b\c/a, c\a/b]
Deltas : [a/c\b, b/a\c, c/b\a]

boundary_deltas()
Return deltas with south edges not in the forbidden list.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzlePieces, DeltaPiece
sage: pieces = PuzzlePieces(['a'])
sage: delta = DeltaPiece('a','b','c')
sage: pieces.add_piece(delta,rotations=60)
sage: sorted([p for p in pieces.boundary_deltas()], key=str)
[a/c\b, c/b\a]

delta_pieces()
Return the delta pieces as a set.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzlePieces, DeltaPiece
sage: pieces = PuzzlePieces()
sage: delta = DeltaPiece('a','b','c')
sage: pieces.add_piece(delta,rotations=60)
sage: sorted([p for p in pieces.delta_pieces()], key=str)
[a/c\b, b/a\c, c/b\a]

1276 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

nabla_pieces()
Return the nabla pieces as a set.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzlePieces, DeltaPiece
sage: pieces = PuzzlePieces()
sage: delta = DeltaPiece('a','b','c')
sage: pieces.add_piece(delta,rotations=60)
sage: sorted([p for p in pieces.nabla_pieces()], key=str)
[a\b/c, b\c/a, c\a/b]

rhombus_pieces()
Return a set of all allowable rhombus pieces.

Allowable rhombus pieces are those where the south edge of the delta piece equals the north edge of the
nabla piece.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import PuzzlePieces, DeltaPiece
sage: pieces = PuzzlePieces()
sage: delta = DeltaPiece('a','b','c')
sage: pieces.add_piece(delta,rotations=60)
sage: sorted([p for p in pieces.rhombus_pieces()], key=str)
[a/\b b\/a, b/\c c\/b, c/\a a\/c]

class sage.combinat.knutson_tao_puzzles.RhombusPiece(north_piece, south_piece)
Bases: sage.combinat.knutson_tao_puzzles.PuzzlePiece

Class of rhombi pieces.

To construct a rhombus piece we input a delta and a nabla piece. The delta and nabla pieces are joined along the
south and north edge, respectively.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece, NablaPiece,␣
→˓RhombusPiece
sage: delta = DeltaPiece('1','2','3')
sage: nabla = NablaPiece('4','5','6')
sage: RhombusPiece(delta,nabla)
2/\3 6\/5

edges()
Return the tuple of edge names.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece, NablaPiece,␣
→˓RhombusPiece
sage: delta = DeltaPiece('1','2','3')
sage: nabla = NablaPiece('4','5','6')
sage: RhombusPiece(delta,nabla).edges()
('north_west', 'north_east', 'south_east', 'south_west')

north_piece()
Return the north piece.

5.1. Comprehensive Module List 1277

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece, NablaPiece,␣
→˓RhombusPiece
sage: delta = DeltaPiece('1','2','3')
sage: nabla = NablaPiece('4','5','6')
sage: r = RhombusPiece(delta,nabla)
sage: r.north_piece()
2/1\3

south_piece()
Return the south piece.

EXAMPLES:

sage: from sage.combinat.knutson_tao_puzzles import DeltaPiece, NablaPiece,␣
→˓RhombusPiece
sage: delta = DeltaPiece('1','2','3')
sage: nabla = NablaPiece('4','5','6')
sage: r = RhombusPiece(delta,nabla)
sage: r.south_piece()
6\4/5

5.1.131 Combinatorics on matrices

• Dancing Links internal pyx code

• Dancing links C++ wrapper

• Hadamard matrices

• Latin Squares

5.1.132 Dancing Links internal pyx code

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [3,4,5], [0,1], [2,3,4,5], [0], [1,2,3,4,5]]
sage: x = dlx_solver(rows)
sage: x
Dancing links solver for 6 columns and 6 rows

The number of solutions:

sage: x.number_of_solutions()
3

Iterate over the solutions:

sage: sorted(map(sorted, x.solutions_iterator()))
[[0, 1], [2, 3], [4, 5]]

All solutions (computed in parallel):

1278 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: sorted(map(sorted, x.all_solutions()))
[[0, 1], [2, 3], [4, 5]]

Return the first solution found when the computation is done in parallel:

sage: sorted(x.one_solution(ncpus=2)) # random
[0, 1]

Find all solutions using some specific rows:

sage: x_using_row_2 = x.restrict([2])
sage: x_using_row_2
Dancing links solver for 7 columns and 6 rows
sage: sorted(map(sorted, x_using_row_2.solutions_iterator()))
[[2, 3]]

The two basic methods that are wrapped in this class are search which returns 1 if a solution is found or 0 otherwise
and get_solution which return the current solution:

sage: x = dlx_solver(rows)
sage: x.search()
1
sage: x.get_solution()
[0, 1]
sage: x.search()
1
sage: x.get_solution()
[2, 3]
sage: x.search()
1
sage: x.get_solution()
[4, 5]
sage: x.search()
0

There is also a method reinitialize to reinitialize the algorithm:

sage: x.reinitialize()
sage: x.search()
1
sage: x.get_solution()
[0, 1]

class sage.combinat.matrices.dancing_links.dancing_linksWrapper
Bases: object

A simple class that implements dancing links.

The main methods to list the solutions are search() and get_solution(). You can also use
number_of_solutions() to count them.

This class simply wraps a C++ implementation of Carlo Hamalainen.

all_solutions(ncpus=None, column=None)
Return all solutions found after splitting the problem to allow parallel computation.

INPUT:

5.1. Comprehensive Module List 1279

Combinatorics, Release 9.7

• ncpus – integer (default: None), maximal number of subprocesses to use at the same time. If None,
it detects the number of effective CPUs in the system using sage.parallel.ncpus.ncpus().

• column – integer (default: None), the column used to split the problem, if None a random column is
chosen

OUTPUT:

list of solutions

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [3,4,5], [0,1], [2,3,4,5], [0], [1,2,3,4,5]]
sage: d = dlx_solver(rows)
sage: S = d.all_solutions()
sage: sorted(sorted(s) for s in S)
[[0, 1], [2, 3], [4, 5]]

The number of CPUs can be specified as input:

sage: S = Subsets(range(4))
sage: rows = map(list, S)
sage: dlx = dlx_solver(rows)
sage: dlx
Dancing links solver for 4 columns and 16 rows
sage: dlx.number_of_solutions()
15
sage: sorted(sorted(s) for s in dlx.all_solutions(ncpus=2))
[[1, 2, 3, 4],
[1, 2, 10],
[1, 3, 9],
[1, 4, 8],
[1, 14],
[2, 3, 7],
[2, 4, 6],
[2, 13],
[3, 4, 5],
[3, 12],
[4, 11],
[5, 10],
[6, 9],
[7, 8],
[15]]

If ncpus=1, the computation is not done in parallel:

sage: sorted(sorted(s) for s in dlx.all_solutions(ncpus=1))
[[1, 2, 3, 4],
[1, 2, 10],
[1, 3, 9],
[1, 4, 8],
[1, 14],
[2, 3, 7],
[2, 4, 6],
[2, 13],

(continues on next page)

1280 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/parallel/sage/parallel/ncpus.html#sage.parallel.ncpus.ncpus

Combinatorics, Release 9.7

(continued from previous page)

[3, 4, 5],
[3, 12],
[4, 11],
[5, 10],
[6, 9],
[7, 8],
[15]]

get_solution()
Return the current solution.

After a new solution is found using the method search() this method return the rows that make up the
current solution.

ncols()
Return the number of columns.

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [1,2], [0], [3,4,5]]
sage: dlx = dlx_solver(rows)
sage: dlx.ncols()
6

nrows()
Return the number of rows.

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [1,2], [0], [3,4,5]]
sage: dlx = dlx_solver(rows)
sage: dlx.nrows()
4

number_of_solutions(ncpus=None, column=None)
Return the number of distinct solutions.

INPUT:

• ncpus – integer (default: None), maximal number of subprocesses to use at the same time. If 𝑛𝑐𝑝𝑢𝑠 >
1 the dancing links problem is split into independent subproblems to allow parallel computation. If
None, it detects the number of effective CPUs in the system using sage.parallel.ncpus.ncpus().

• column – integer (default: None), the column used to split the problem, if None a random column is
chosen (this argument is ignored if ncpus is 1)

OUTPUT:

integer

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2]]
sage: rows += [[0,2]]

(continues on next page)

5.1. Comprehensive Module List 1281

../../../../../../../html/en/reference/parallel/sage/parallel/ncpus.html#sage.parallel.ncpus.ncpus

Combinatorics, Release 9.7

(continued from previous page)

sage: rows += [[1]]
sage: rows += [[3]]
sage: x = dlx_solver(rows)
sage: x.number_of_solutions()
2

The number of CPUs can be specified as input:

sage: rows = [[0,1,2], [3,4,5], [0,1], [2,3,4,5], [0], [1,2,3,4,5]]
sage: x = dlx_solver(rows)
sage: x.number_of_solutions(ncpus=2, column=3)
3

sage: S = Subsets(range(5))
sage: rows = map(list, S)
sage: d = dlx_solver(rows)
sage: d.number_of_solutions()
52

one_solution(ncpus=None, column=None)
Return the first solution found.

This method allows parallel computations which might be useful for some kind of problems when it is very
hard just to find one solution.

INPUT:

• ncpus – integer (default: None), maximal number of subprocesses to use at the same time. If None,
it detects the number of effective CPUs in the system using sage.parallel.ncpus.ncpus(). If
ncpus=1, the first solution is searched serially.

• column – integer (default: None), the column used to split the problem (see restrict()). If None,
a random column is chosen. This argument is ignored if ncpus=1.

OUTPUT:

list of rows or None if no solution is found

Note: For some case, increasing the number of cpus makes it faster. For other instances, ncpus=1 is faster.
It all depends on problem which is considered.

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [3,4,5], [0,1], [2,3,4,5], [0], [1,2,3,4,5]]
sage: d = dlx_solver(rows)
sage: solutions = [[0,1], [2,3], [4,5]]
sage: sorted(d.one_solution()) in solutions
True

The number of CPUs can be specified as input:

sage: sorted(d.one_solution(ncpus=2)) in solutions
True

1282 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/parallel/sage/parallel/ncpus.html#sage.parallel.ncpus.ncpus

Combinatorics, Release 9.7

The column used to split the problem for parallel computations can be given:

sage: sorted(d.one_solution(ncpus=2, column=4)) in solutions
True

When no solution is found:

sage: rows = [[0,1,2], [2,3,4,5], [0,1,2,3]]
sage: d = dlx_solver(rows)
sage: d.one_solution() is None
True

one_solution_using_milp_solver(solver=None, integrality_tolerance=0.001)
Return a solution found using a MILP solver.

INPUT:

• solver – string or None (default: None), possible values include 'GLPK', 'GLPK/exact', 'Coin',
'CPLEX', 'Gurobi', 'CVXOPT', 'PPL', 'InteractiveLP'.

OUTPUT:

list of rows or None if no solution is found

Note: When comparing the time taken by method 𝑜𝑛𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, have in mind that
𝑜𝑛𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑢𝑠𝑖𝑛𝑔𝑚𝑖𝑙𝑝𝑠𝑜𝑙𝑣𝑒𝑟 first creates (and caches) the MILP solver instance from the dancing
links solver. This copy of data may take many seconds depending on the size of the problem.

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [3,4,5], [0,1], [2,3,4,5], [0], [1,2,3,4,5]]
sage: d = dlx_solver(rows)
sage: solutions = [[0,1], [2,3], [4,5]]
sage: d.one_solution_using_milp_solver() in solutions
True

Using optional solvers:

sage: s = d.one_solution_using_milp_solver('gurobi') # optional - gurobi sage_
→˓numerical_backends_gurobi
sage: s in solutions # optional - gurobi sage_
→˓numerical_backends_gurobi
True

When no solution is found:

sage: rows = [[0,1,2], [2,3,4,5], [0,1,2,3]]
sage: d = dlx_solver(rows)
sage: d.one_solution_using_milp_solver() is None
True

one_solution_using_sat_solver(solver=None)
Return a solution found using a SAT solver.

INPUT:

5.1. Comprehensive Module List 1283

Combinatorics, Release 9.7

• solver – string or None (default: None), possible values include 'picosat', 'cryptominisat',
'LP', 'glucose', 'glucose-syrup'.

OUTPUT:

list of rows or None if no solution is found

Note: When comparing the time taken by method 𝑜𝑛𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, have in mind that
𝑜𝑛𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑢𝑠𝑖𝑛𝑔𝑠𝑎𝑡𝑠𝑜𝑙𝑣𝑒𝑟 first creates the SAT solver instance from the dancing links solver.
This copy of data may take many seconds depending on the size of the problem.

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [3,4,5], [0,1], [2,3,4,5], [0], [1,2,3,4,5]]
sage: d = dlx_solver(rows)
sage: solutions = [[0,1], [2,3], [4,5]]
sage: d.one_solution_using_sat_solver() in solutions
True

Using optional solvers:

sage: s = d.one_solution_using_sat_solver('glucose') # optional - glucose
sage: s in solutions # optional - glucose
True

When no solution is found:

sage: rows = [[0,1,2], [2,3,4,5], [0,1,2,3]]
sage: d = dlx_solver(rows)
sage: d.one_solution_using_sat_solver() is None
True

reinitialize()
Reinitialization of the search algorithm

This recreates an empty 𝑑𝑎𝑛𝑐𝑖𝑛𝑔𝑙𝑖𝑛𝑘𝑠 object and adds the rows to the instance of dancing_links.

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [3,4,5], [0,1], [2,3,4,5], [0], [1,2,3,4,5]]
sage: x = dlx_solver(rows)
sage: x.get_solution() if x.search() else None
[0, 1]
sage: x.get_solution() if x.search() else None
[2, 3]

Reinitialization of the algorithm:

sage: x.reinitialize()
sage: x.get_solution() if x.search() else None
[0, 1]
sage: x.get_solution() if x.search() else None
[2, 3]

(continues on next page)

1284 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: x.get_solution() if x.search() else None
[4, 5]
sage: x.get_solution() if x.search() else None

Reinitialization works after solutions are exhausted:

sage: x.reinitialize()
sage: x.get_solution() if x.search() else None
[0, 1]
sage: x.get_solution() if x.search() else None
[2, 3]
sage: x.get_solution() if x.search() else None
[4, 5]
sage: x.get_solution() if x.search() else None

restrict(indices)
Return a dancing links solver solving the subcase which uses some given rows.

For every row that is wanted in the solution, we add a new column to the row to make sure it is in the
solution.

INPUT:

• indices – list, row indices to be found in the solution

OUTPUT:

dancing links solver

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [3,4,5], [0,1], [2,3,4,5], [0], [1,2,3,4,5]]
sage: d = dlx_solver(rows)
sage: d
Dancing links solver for 6 columns and 6 rows
sage: sorted(map(sorted, d.solutions_iterator()))
[[0, 1], [2, 3], [4, 5]]

To impose that the 0th row is part of the solution, the rows of the new problem are:

sage: d_using_0 = d.restrict([0])
sage: d_using_0
Dancing links solver for 7 columns and 6 rows
sage: d_using_0.rows()
[[0, 1, 2, 6], [3, 4, 5], [0, 1], [2, 3, 4, 5], [0], [1, 2, 3, 4, 5]]

After restriction the subproblem has one more columns and the same number of rows as the original one:

sage: d.restrict([1]).rows()
[[0, 1, 2], [3, 4, 5, 6], [0, 1], [2, 3, 4, 5], [0], [1, 2, 3, 4, 5]]
sage: d.restrict([2]).rows()
[[0, 1, 2], [3, 4, 5], [0, 1, 6], [2, 3, 4, 5], [0], [1, 2, 3, 4, 5]]

This method allows to find solutions where the 0th row is part of a solution:

5.1. Comprehensive Module List 1285

Combinatorics, Release 9.7

sage: sorted(map(sorted, d.restrict([0]).solutions_iterator()))
[[0, 1]]

Some other examples:

sage: sorted(map(sorted, d.restrict([1]).solutions_iterator()))
[[0, 1]]
sage: sorted(map(sorted, d.restrict([2]).solutions_iterator()))
[[2, 3]]
sage: sorted(map(sorted, d.restrict([3]).solutions_iterator()))
[[2, 3]]

Here there are no solution using both 0th and 3rd row:

sage: list(d.restrict([0,3]).solutions_iterator())
[]

rows()
Return the list of rows.

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [1,2], [0]]
sage: x = dlx_solver(rows)
sage: x.rows()
[[0, 1, 2], [1, 2], [0]]

search()
Search for a new solution.

Return 1 if a new solution is found and 0 otherwise. To recover the solution, use the method
get_solution().

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2]]
sage: rows+= [[0,2]]
sage: rows+= [[1]]
sage: rows+= [[3]]
sage: x = dlx_solver(rows)
sage: print(x.search())
1
sage: print(x.get_solution())
[3, 0]

solutions_iterator()
Return an iterator of the solutions.

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [3,4,5], [0,1], [2,3,4,5], [0], [1,2,3,4,5]]
sage: d = dlx_solver(rows)

(continues on next page)

1286 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: sorted(map(sorted, d.solutions_iterator()))
[[0, 1], [2, 3], [4, 5]]

split(column)
Return a dict of independent solvers.

For each i-th row containing a 1 in the column, the dict associates the solver giving all solution using the
i-th row.

This is used for parallel computations.

INPUT:

• column – integer, the column used to split the problem into independent subproblems

OUTPUT:

dict where keys are row numbers and values are dlx solvers

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [3,4,5], [0,1], [2,3,4,5], [0], [1,2,3,4,5]]
sage: d = dlx_solver(rows)
sage: d
Dancing links solver for 6 columns and 6 rows
sage: sorted(map(sorted, d.solutions_iterator()))
[[0, 1], [2, 3], [4, 5]]

After the split each subproblem has one more column and the same number of rows as the original problem:

sage: D = d.split(0)
sage: D
{0: Dancing links solver for 7 columns and 6 rows,
2: Dancing links solver for 7 columns and 6 rows,
4: Dancing links solver for 7 columns and 6 rows}

The (disjoint) union of the solutions of the subproblems is equal to the set of solutions shown above:

sage: for x in D.values(): sorted(map(sorted, x.solutions_iterator()))
[[0, 1]]
[[2, 3]]
[[4, 5]]

to_milp(solver=None)
Return the mixed integer linear program (MILP) representing an equivalent problem.

See also sage.numerical.mip.MixedIntegerLinearProgram.

INPUT:

• solver – string or None (default: None), possible values include 'GLPK', 'GLPK/exact', 'Coin',
'CPLEX', 'Gurobi', 'CVXOPT', 'PPL', 'InteractiveLP'.

OUTPUT:

• MixedIntegerLinearProgram instance

• MIPVariable with binary components

5.1. Comprehensive Module List 1287

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [0,2], [1], [3]]
sage: d = dlx_solver(rows)
sage: p,x = d.to_milp()
sage: p
Boolean Program (no objective, 4 variables, 4 constraints)
sage: x
MIPVariable with 4 binary components

In the reduction, the boolean variable x_i is True if and only if the i-th row is in the solution:

sage: p.show()
Maximization:

Constraints:
one 1 in 0-th column: 1.0 <= x_0 + x_1 <= 1.0
one 1 in 1-th column: 1.0 <= x_0 + x_2 <= 1.0
one 1 in 2-th column: 1.0 <= x_0 + x_1 <= 1.0
one 1 in 3-th column: 1.0 <= x_3 <= 1.0

Variables:
x_0 is a boolean variable (min=0.0, max=1.0)
x_1 is a boolean variable (min=0.0, max=1.0)
x_2 is a boolean variable (min=0.0, max=1.0)
x_3 is a boolean variable (min=0.0, max=1.0)

Using some optional MILP solvers:

sage: d.to_milp('gurobi') # optional - gurobi sage_numerical_backends_gurobi
(Boolean Program (no objective, 4 variables, 4 constraints),
MIPVariable with 4 binary components)

to_sat_solver(solver=None)
Return the SAT solver solving an equivalent problem.

Note that row index 𝑖 in the dancing links solver corresponds to the boolean variable index + 1 for the SAT
solver to avoid the variable index 0.

See also sage.sat.solvers.satsolver.

INPUT:

• solver – string or None (default: None), possible values include 'picosat', 'cryptominisat',
'LP', 'glucose', 'glucose-syrup'.

OUTPUT:

SAT solver instance

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2], [0,2], [1], [3]]
sage: x = dlx_solver(rows)
sage: s = x.to_sat_solver()

1288 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/sat/sage/sat/solvers/satsolver.html#module-sage.sat.solvers.satsolver

Combinatorics, Release 9.7

Using some optional SAT solvers:

sage: x.to_sat_solver('cryptominisat') # optional - pycryptosat
CryptoMiniSat solver: 4 variables, 7 clauses.

sage.combinat.matrices.dancing_links.dlx_solver(rows)
Internal-use wrapper for the dancing links C++ code.

EXAMPLES:

sage: from sage.combinat.matrices.dancing_links import dlx_solver
sage: rows = [[0,1,2]]
sage: rows+= [[0,2]]
sage: rows+= [[1]]
sage: rows+= [[3]]
sage: x = dlx_solver(rows)
sage: print(x.search())
1
sage: print(x.get_solution())
[3, 0]
sage: print(x.search())
1
sage: print(x.get_solution())
[3, 1, 2]
sage: print(x.search())
0

sage.combinat.matrices.dancing_links.make_dlxwrapper(s)
Create a dlx wrapper from a Python string s.

This was historically used in unpickling and is kept for backwards compatibility. We expect s to be dumps(rows)
where rows is the list of rows used to instantiate the object.

5.1.133 Dancing links C++ wrapper

sage.combinat.matrices.dlxcpp.AllExactCovers(M)
Solves the exact cover problem on the matrix M (treated as a dense binary matrix).

EXAMPLES: No exact covers:

sage: M = Matrix([[1,1,0],[1,0,1],[0,1,1]])
sage: [cover for cover in AllExactCovers(M)]
[]

Two exact covers:

sage: M = Matrix([[1,1,0],[1,0,1],[0,0,1],[0,1,0]])
sage: [cover for cover in AllExactCovers(M)]
[[(1, 1, 0), (0, 0, 1)], [(1, 0, 1), (0, 1, 0)]]

sage.combinat.matrices.dlxcpp.DLXCPP(rows)
Solves the Exact Cover problem by using the Dancing Links algorithm described by Knuth.

Consider a matrix M with entries of 0 and 1, and compute a subset of the rows of this matrix which sum to the
vector of all 1’s.

5.1. Comprehensive Module List 1289

Combinatorics, Release 9.7

The dancing links algorithm works particularly well for sparse matrices, so the input is a list of lists of the form:

[
[i_11,i_12,...,i_1r]
...
[i_m1,i_m2,...,i_ms]
]

where M[j][i_jk] = 1.

The first example below corresponds to the matrix:

1110
1010
0100
0001

which is exactly covered by:

1110
0001

and

1010
0100
0001

If soln is a solution given by DLXCPP(rows) then

[rows[soln[0]], rows[soln[1]], . . . rows[soln[len(soln)-1]]]

is an exact cover.

Solutions are given as a list.

EXAMPLES:

sage: rows = [[0,1,2]]
sage: rows+= [[0,2]]
sage: rows+= [[1]]
sage: rows+= [[3]]
sage: [x for x in DLXCPP(rows)]
[[3, 0], [3, 1, 2]]

sage.combinat.matrices.dlxcpp.OneExactCover(M)
Solves the exact cover problem on the matrix M (treated as a dense binary matrix).

EXAMPLES:

sage: M = Matrix([[1,1,0],[1,0,1],[0,1,1]]) #no exact covers
sage: print(OneExactCover(M))
None
sage: M = Matrix([[1,1,0],[1,0,1],[0,0,1],[0,1,0]]) #two exact covers
sage: OneExactCover(M)
[(1, 1, 0), (0, 0, 1)]

1290 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.134 Hadamard matrices

A Hadamard matrix is an 𝑛×𝑛matrix𝐻 whose entries are either +1 or−1 and whose rows are mutually orthogonal.
For example, the matrix 𝐻2 defined by (︂

1 1
1 −1

)︂
is a Hadamard matrix. An 𝑛× 𝑛 matrix 𝐻 whose entries are either +1 or −1 is a Hadamard matrix if and only if:

(a) |𝑑𝑒𝑡(𝐻)| = 𝑛𝑛/2 or

(b) 𝐻 *𝐻𝑡 = 𝑛 · 𝐼𝑛, where 𝐼𝑛 is the identity matrix.

In general, the tensor product of an 𝑚 × 𝑚 Hadamard matrix and an 𝑛 × 𝑛 Hadamard matrix is an (𝑚𝑛) × (𝑚𝑛)
matrix. In particular, if there is an 𝑛 × 𝑛 Hadamard matrix then there is a (2𝑛) × (2𝑛) Hadamard matrix (since one
may tensor with 𝐻2). This particular case is sometimes called the Sylvester construction.

The Hadamard conjecture (possibly due to Paley) states that a Hadamard matrix of order 𝑛 exists if and only if 𝑛 = 1, 2
or 𝑛 is a multiple of 4.

The module below implements the Paley constructions (see for example [Hora]) and the Sylvester construction. It also
allows you to pull a Hadamard matrix from the database at [HadaSloa].

AUTHORS:

• David Joyner (2009-05-17): initial version

REFERENCES:

sage.combinat.matrices.hadamard_matrix.GS_skew_hadamard_smallcases(n, existence=False,
check=True)

Data for Williamson-Goethals-Seidel construction of skew Hadamard matrices

Here we keep the data for this construction. Namely, it needs 4 circulant matri-
ces with extra properties, as described in sage.combinat.matrices.hadamard_matrix.
williamson_goethals_seidel_skew_hadamard_matrix() Matrices for 𝑛 = 36 and 52 are given in
[GS70s]. Matrices for 𝑛 = 92 are given in [Wall71].

INPUT:

• n – the order of the matrix

• existence – if true (default), only check that we can do the construction

• check – if true (default), check the result.

sage.combinat.matrices.hadamard_matrix.RSHCD_324(e)
Return a size 324x324 Regular Symmetric Hadamard Matrix with Constant Diagonal.

We build the matrix 𝑀 for the case 𝑛 = 324, 𝜖 = 1 directly from JankoKharaghaniTonchevGraph and for
the case 𝜖 = −1 from the “twist” 𝑀 ′ of 𝑀 , using Lemma 11 in [HX2010]. Namely, it turns out that the matrix

𝑀 ′ =

(︂
𝑀12 𝑀11

𝑀⊤11 𝑀21

)︂
, where 𝑀 =

(︂
𝑀11 𝑀12

𝑀21 𝑀22

)︂
,

and the𝑀𝑖𝑗 are 162x162-blocks, also RSHCD, its diagonal blocks having zero row sums, as needed by [loc.cit.].
Interestingly, the corresponding (324, 152, 70, 72)-strongly regular graph has a vertex-transitive automorphism
group of order 2592, twice the order of the (intransitive) automorphism group of the graph corresponding to𝑀 .
Cf. [CP2016].

INPUT:

• e – one of −1 or +1, equal to the value of 𝜖

5.1. Comprehensive Module List 1291

../../../../../../../html/en/reference/graphs/sage/graphs/graph_generators.html#sage.graphs.graph_generators.GraphGenerators.JankoKharaghaniTonchevGraph

Combinatorics, Release 9.7

REFERENCE:

• [CP2016]

sage.combinat.matrices.hadamard_matrix.hadamard_matrix(n, existence=False, check=True)
This function is available as hadamard_matrix(. . .) and matrix.hadamard(. . .).

Tries to construct a Hadamard matrix using a combination of Paley and Sylvester constructions.

INPUT:

• n (integer) – dimension of the matrix

• existence (boolean) – whether to build the matrix or merely query if a construction is available in Sage.
When set to True, the function returns:

– True – meaning that Sage knows how to build the matrix

– Unknown – meaning that Sage does not know how to build the matrix, although the matrix may exist
(see sage.misc.unknown).

– False – meaning that the matrix does not exist.

• check (boolean) – whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

EXAMPLES:

sage: hadamard_matrix(12).det()
2985984
sage: 12^6
2985984
sage: hadamard_matrix(1)
[1]
sage: hadamard_matrix(2)
[1 1]
[1 -1]
sage: hadamard_matrix(8) # random
[1 1 1 1 1 1 1 1]
[1 -1 1 -1 1 -1 1 -1]
[1 1 -1 -1 1 1 -1 -1]
[1 -1 -1 1 1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1]
[1 -1 1 -1 -1 1 -1 1]
[1 1 -1 -1 -1 -1 1 1]
[1 -1 -1 1 -1 1 1 -1]
sage: hadamard_matrix(8).det() == 8^4
True

We note that hadamard_matrix() returns a normalised Hadamard matrix (the entries in the first row and column
are all +1)

sage: hadamard_matrix(12) # random
[1 1| 1 1| 1 1| 1 1| 1 1| 1 1]
[1 -1|-1 1|-1 1|-1 1|-1 1|-1 1]
[-----+-----+-----+-----+-----+-----]
[1 -1| 1 -1| 1 1|-1 -1|-1 -1| 1 1]
[1 1|-1 -1| 1 -1|-1 1|-1 1| 1 -1]

(continues on next page)

1292 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

(continued from previous page)

[-----+-----+-----+-----+-----+-----]
[1 -1| 1 1| 1 -1| 1 1|-1 -1|-1 -1]
[1 1| 1 -1|-1 -1| 1 -1|-1 1|-1 1]
[-----+-----+-----+-----+-----+-----]
[1 -1|-1 -1| 1 1| 1 -1| 1 1|-1 -1]
[1 1|-1 1| 1 -1|-1 -1| 1 -1|-1 1]
[-----+-----+-----+-----+-----+-----]
[1 -1|-1 -1|-1 -1| 1 1| 1 -1| 1 1]
[1 1|-1 1|-1 1| 1 -1|-1 -1| 1 -1]
[-----+-----+-----+-----+-----+-----]
[1 -1| 1 1|-1 -1|-1 -1| 1 1| 1 -1]
[1 1| 1 -1|-1 1|-1 1| 1 -1|-1 -1]

sage.combinat.matrices.hadamard_matrix.hadamard_matrix_paleyI(n, normalize=True)
Implement the Paley type I construction.

The Paley type I case corresponds to the case 𝑝 ∼= 3 mod 4 for a prime 𝑝 (see [Hora]).

INPUT:

• n – the matrix size

• normalize (boolean) – whether to normalize the result.

EXAMPLES:

We note that this method by default returns a normalised Hadamard matrix

sage: from sage.combinat.matrices.hadamard_matrix import hadamard_matrix_paleyI
sage: hadamard_matrix_paleyI(4)
[1 1 1 1]
[1 -1 1 -1]
[1 -1 -1 1]
[1 1 -1 -1]

Otherwise, it returns a skew Hadamard matrix 𝐻 , i.e. 𝐻 = 𝑆 + 𝐼 , with 𝑆 = −𝑆⊤

sage: M = hadamard_matrix_paleyI(4, normalize=False); M
[1 1 1 1]
[-1 1 1 -1]
[-1 -1 1 1]
[-1 1 -1 1]
sage: S = M - identity_matrix(4); -S == S.T
True

sage.combinat.matrices.hadamard_matrix.hadamard_matrix_paleyII(n)
Implement the Paley type II construction.

The Paley type II case corresponds to the case 𝑝 ∼= 1 mod 4 for a prime 𝑝 (see [Hora]).

EXAMPLES:

sage: sage.combinat.matrices.hadamard_matrix.hadamard_matrix_paleyII(12).det()
2985984
sage: 12^6
2985984

5.1. Comprehensive Module List 1293

Combinatorics, Release 9.7

We note that the method returns a normalised Hadamard matrix

sage: sage.combinat.matrices.hadamard_matrix.hadamard_matrix_paleyII(12)
[1 1| 1 1| 1 1| 1 1| 1 1| 1 1]
[1 -1|-1 1|-1 1|-1 1|-1 1|-1 1]
[-----+-----+-----+-----+-----+-----]
[1 -1| 1 -1| 1 1|-1 -1|-1 -1| 1 1]
[1 1|-1 -1| 1 -1|-1 1|-1 1| 1 -1]
[-----+-----+-----+-----+-----+-----]
[1 -1| 1 1| 1 -1| 1 1|-1 -1|-1 -1]
[1 1| 1 -1|-1 -1| 1 -1|-1 1|-1 1]
[-----+-----+-----+-----+-----+-----]
[1 -1|-1 -1| 1 1| 1 -1| 1 1|-1 -1]
[1 1|-1 1| 1 -1|-1 -1| 1 -1|-1 1]
[-----+-----+-----+-----+-----+-----]
[1 -1|-1 -1|-1 -1| 1 1| 1 -1| 1 1]
[1 1|-1 1|-1 1| 1 -1|-1 -1| 1 -1]
[-----+-----+-----+-----+-----+-----]
[1 -1| 1 1|-1 -1|-1 -1| 1 1| 1 -1]
[1 1| 1 -1|-1 1|-1 1| 1 -1|-1 -1]

sage.combinat.matrices.hadamard_matrix.hadamard_matrix_www(url_file, comments=False)
Pull file from Sloane’s database and return the corresponding Hadamard matrix as a Sage matrix.

You must input a filename of the form “had.n.xxx.txt” as described on the webpage http://neilsloane.com/
hadamard/, where “xxx” could be empty or a number of some characters.

If comments=True then the “Automorphism. . . ” line of the had.n.xxx.txt file is printed if it exists. Otherwise
nothing is done.

EXAMPLES:

sage: hadamard_matrix_www("had.4.txt") # optional - internet
[1 1 1 1]
[1 -1 1 -1]
[1 1 -1 -1]
[1 -1 -1 1]
sage: hadamard_matrix_www("had.16.2.txt",comments=True) # optional - internet
Automorphism group has order = 49152 = 2^14 * 3
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]
[1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1]
[1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]
[1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1]
[1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1]
[1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1]
[1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1]
[1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1]
[1 1 -1 -1 1 -1 1 -1 -1 -1 1 1 -1 1 -1 1]
[1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 1 -1 1 -1]
[1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1]
[1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1]
[1 -1 -1 1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1]
[1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 1 1 -1 -1]

1294 Chapter 5. Comprehensive Module List

http://neilsloane.com/hadamard/
http://neilsloane.com/hadamard/

Combinatorics, Release 9.7

sage.combinat.matrices.hadamard_matrix.is_hadamard_matrix(M, normalized=False, skew=False,
verbose=False)

Test if 𝑀 is a hadamard matrix.

INPUT:

• M – a matrix

• normalized (boolean) – whether to test if M is a normalized Hadamard matrix, i.e. has its first row/column
filled with +1.

• skew (boolean) – whether to test if M is a skew Hadamard matrix, i.e. 𝑀 = 𝑆+ 𝐼 for−𝑆 = 𝑆⊤, and 𝐼 the
identity matrix.

• verbose (boolean) – whether to be verbose when the matrix is not Hadamard.

EXAMPLES:

sage: from sage.combinat.matrices.hadamard_matrix import is_hadamard_matrix
sage: h = matrix.hadamard(12)
sage: is_hadamard_matrix(h)
True
sage: from sage.combinat.matrices.hadamard_matrix import skew_hadamard_matrix
sage: h = skew_hadamard_matrix(12)
sage: is_hadamard_matrix(h, skew=True)
True
sage: h = matrix.hadamard(12)
sage: h[0,0] = 2
sage: is_hadamard_matrix(h,verbose=True)
The matrix does not only contain +1 and -1 entries, e.g. 2
False
sage: h = matrix.hadamard(12)
sage: for i in range(12):
....: h[i,2] = -h[i,2]
sage: is_hadamard_matrix(h,verbose=True,normalized=True)
The matrix is not normalized
False

sage.combinat.matrices.hadamard_matrix.normalise_hadamard(H)
Return the normalised Hadamard matrix corresponding to H.

The normalised Hadamard matrix corresponding to a Hadamard matrix 𝐻 is a matrix whose every entry in the
first row and column is +1.

EXAMPLES:

sage: from sage.combinat.matrices.hadamard_matrix import normalise_hadamard
sage: H = normalise_hadamard(hadamard_matrix(4))
sage: H == hadamard_matrix(4)
True

sage.combinat.matrices.hadamard_matrix.regular_symmetric_hadamard_matrix_with_constant_diagonal(n,
e,
ex-
is-
tence=False)

Return a Regular Symmetric Hadamard Matrix with Constant Diagonal.

A Hadamard matrix is said to be regular if its rows all sum to the same value.

5.1. Comprehensive Module List 1295

Combinatorics, Release 9.7

For 𝜖 ∈ {−1,+1}, we say that 𝑀 is a (𝑛, 𝜖) − 𝑅𝑆𝐻𝐶𝐷 if 𝑀 is a regular symmetric Hadamard matrix with
constant diagonal 𝛿 ∈ {−1,+1} and row sums all equal to 𝛿𝜖

√︀
(𝑛). For more information, see [HX2010] or

10.5.1 in [BH2012]. For the case 𝑛 = 324, see RSHCD_324() and [CP2016].

INPUT:

• n (integer) – side of the matrix

• e – one of −1 or +1, equal to the value of 𝜖

EXAMPLES:

sage: from sage.combinat.matrices.hadamard_matrix import regular_symmetric_hadamard_
→˓matrix_with_constant_diagonal
sage: regular_symmetric_hadamard_matrix_with_constant_diagonal(4,1)
[1 1 1 -1]
[1 1 -1 1]
[1 -1 1 1]
[-1 1 1 1]
sage: regular_symmetric_hadamard_matrix_with_constant_diagonal(4,-1)
[1 -1 -1 -1]
[-1 1 -1 -1]
[-1 -1 1 -1]
[-1 -1 -1 1]

Other hardcoded values:

sage: for n,e in [(36,1),(36,-1),(100,1),(100,-1),(196, 1)]: # long time
....: print(repr(regular_symmetric_hadamard_matrix_with_constant_diagonal(n,e)))
36 x 36 dense matrix over Integer Ring
36 x 36 dense matrix over Integer Ring
100 x 100 dense matrix over Integer Ring
100 x 100 dense matrix over Integer Ring
196 x 196 dense matrix over Integer Ring

sage: for n,e in [(324,1),(324,-1)]: # not tested - long time, tested in RSHCD_324
....: print(repr(regular_symmetric_hadamard_matrix_with_constant_diagonal(n,e)))
324 x 324 dense matrix over Integer Ring
324 x 324 dense matrix over Integer Ring

From two close prime powers:

sage: regular_symmetric_hadamard_matrix_with_constant_diagonal(64,-1)
64 x 64 dense matrix over Integer Ring (use the '.str()' method to see the entries)

From a prime power and a conference matrix:

sage: regular_symmetric_hadamard_matrix_with_constant_diagonal(676,1) # long time
676 x 676 dense matrix over Integer Ring (use the '.str()' method to see the␣
→˓entries)

Recursive construction:

sage: regular_symmetric_hadamard_matrix_with_constant_diagonal(144,-1)
144 x 144 dense matrix over Integer Ring (use the '.str()' method to see the␣
→˓entries)

1296 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

REFERENCE:

• [BH2012]

• [HX2010]

sage.combinat.matrices.hadamard_matrix.rshcd_from_close_prime_powers(n)
Return a (𝑛2, 1)-RSHCD when 𝑛− 1 and 𝑛+ 1 are odd prime powers and 𝑛 = 0 (mod 4).

The construction implemented here appears in Theorem 4.3 from [GS1970].

Note that the authors of [SWW1972] claim in Corollary 5.12 (page 342) to have proved the same result without
the 𝑛 = 0 (mod 4) restriction with a very similar construction. So far, however, I (Nathann Cohen) have not
been able to make it work.

INPUT:

• n – an integer congruent to 0 (mod 4)

See also:

regular_symmetric_hadamard_matrix_with_constant_diagonal()

EXAMPLES:

sage: from sage.combinat.matrices.hadamard_matrix import rshcd_from_close_prime_
→˓powers
sage: rshcd_from_close_prime_powers(4)
[-1 -1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1 -1]
[-1 -1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1]
[1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 -1]
[-1 1 1 -1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1]
[1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1]
[-1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1]
[-1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 -1]
[1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1]
[-1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1 1 1]
[1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 1 1 1 -1 -1]
[-1 1 -1 -1 1 -1 1 -1 1 -1 -1 -1 1 1 -1 -1]
[-1 -1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1]
[1 -1 -1 -1 1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1]
[-1 1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 -1 -1 -1]
[1 -1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1]
[-1 1 -1 1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 -1]

REFERENCE:

• [SWW1972]

sage.combinat.matrices.hadamard_matrix.rshcd_from_prime_power_and_conference_matrix(n)
Return a ((𝑛− 1)2, 1)-RSHCD if 𝑛 is prime power, and symmetric (𝑛− 1)-conference matrix exists

The construction implemented here is Theorem 16 (and Corollary 17) from [WW1972].

In [SWW1972] this construction (Theorem 5.15 and Corollary 5.16) is reproduced with a typo. Note that
[WW1972] refers to [Sz1969] for the construction, provided by szekeres_difference_set_pair(), of com-
plementary difference sets, and the latter has a typo.

From a symmetric_conference_matrix(), we only need the Seidel adjacency matrix of the underlying
strongly regular conference (i.e. Paley type) graph, which we construct directly.

INPUT:

5.1. Comprehensive Module List 1297

Combinatorics, Release 9.7

• n – an integer

See also:

regular_symmetric_hadamard_matrix_with_constant_diagonal()

EXAMPLES:

A 36x36 example

sage: from sage.combinat.matrices.hadamard_matrix import rshcd_from_prime_power_and_
→˓conference_matrix
sage: from sage.combinat.matrices.hadamard_matrix import is_hadamard_matrix
sage: H = rshcd_from_prime_power_and_conference_matrix(7); H
36 x 36 dense matrix over Integer Ring (use the '.str()' method to see the entries)
sage: H == H.T and is_hadamard_matrix(H) and H.diagonal() == [1]*36 and␣
→˓list(sum(H)) == [6]*36
True

Bigger examples, only provided by this construction

sage: H = rshcd_from_prime_power_and_conference_matrix(27) # long time
sage: H == H.T and is_hadamard_matrix(H) # long time
True
sage: H.diagonal() == [1]*676 and list(sum(H)) == [26]*676 # long time
True

In this example the conference matrix is not Paley, as 45 is not a prime power

sage: H = rshcd_from_prime_power_and_conference_matrix(47) # not tested (long time)

REFERENCE:

• [WW1972]

sage.combinat.matrices.hadamard_matrix.skew_hadamard_matrix(n, existence=False,
skew_normalize=True, check=True)

Tries to construct a skew Hadamard matrix

A Hadamard matrix 𝐻 is called skew if 𝐻 = 𝑆 − 𝐼 , for 𝐼 the identity matrix and −𝑆 = 𝑆⊤. Currently
constructions from Section 14.1 of [Ha83] and few more exotic ones are implemented.

INPUT:

• n (integer) – dimension of the matrix

• existence (boolean) – whether to build the matrix or merely query if a construction is available in Sage.
When set to True, the function returns:

– True – meaning that Sage knows how to build the matrix

– Unknown – meaning that Sage does not know how to build the matrix, but that the design may exist
(see sage.misc.unknown).

– False – meaning that the matrix does not exist.

• skew_normalize (boolean) – whether to make the 1st row all-one, and adjust the 1st column accordingly.
Set to True by default.

• check (boolean) – whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

1298 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/unknown.html#module-sage.misc.unknown

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.matrices.hadamard_matrix import skew_hadamard_matrix
sage: skew_hadamard_matrix(12).det()
2985984
sage: 12^6
2985984
sage: skew_hadamard_matrix(1)
[1]
sage: skew_hadamard_matrix(2)
[1 1]
[-1 1]

REFERENCES:

sage.combinat.matrices.hadamard_matrix.symmetric_conference_matrix(n, check=True)
Tries to construct a symmetric conference matrix

A conference matrix is an 𝑛 × 𝑛 matrix 𝐶 with 0s on the main diagonal and 1s and -1s elsewhere, satisfying
𝐶𝐶⊤ = (𝑛 − 1)𝐼 . If 𝐶 = 𝐶⊤ then 𝑛 ∼= 2 mod 4 and 𝐶 is Seidel adjacency matrix of a graph, whose
descendent graphs are strongly regular graphs with parameters (𝑛 − 1, (𝑛 − 2)/2, (𝑛 − 6)/4, (𝑛 − 2)/4), see
Sec.10.4 of [BH2012]. Thus we build𝐶 from the Seidel adjacency matrix of the latter by adding row and column
of 1s.

INPUT:

• n (integer) – dimension of the matrix

• check (boolean) – whether to check that output is correct before returning it. As this is expected to be
useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to True by
default.

EXAMPLES:

sage: from sage.combinat.matrices.hadamard_matrix import symmetric_conference_matrix
sage: C = symmetric_conference_matrix(10); C
[0 1 1 1 1 1 1 1 1 1]
[1 0 -1 -1 1 -1 1 1 1 -1]
[1 -1 0 -1 1 1 -1 -1 1 1]
[1 -1 -1 0 -1 1 1 1 -1 1]
[1 1 1 -1 0 -1 -1 1 -1 1]
[1 -1 1 1 -1 0 -1 1 1 -1]
[1 1 -1 1 -1 -1 0 -1 1 1]
[1 1 -1 1 1 1 -1 0 -1 -1]
[1 1 1 -1 -1 1 1 -1 0 -1]
[1 -1 1 1 1 -1 1 -1 -1 0]
sage: C^2 == 9*identity_matrix(10) and C == C.T
True

sage.combinat.matrices.hadamard_matrix.szekeres_difference_set_pair(m, check=True)
Construct Szekeres (2𝑚+ 1,𝑚, 1)-cyclic difference family

Let 4𝑚 + 3 be a prime power. Theorem 3 in [Sz1969] contains a construction of a pair of complementary
difference sets 𝐴, 𝐵 in the subgroup 𝐺 of the quadratic residues in 𝐹 *4𝑚+3. Namely |𝐴| = |𝐵| = 𝑚, 𝑎 ∈ 𝐴
whenever 𝑎− 1 ∈ 𝐺, 𝑏 ∈ 𝐵 whenever 𝑏+ 1 ∈ 𝐺. See also Theorem 2.6 in [SWW1972] (there the formula for
𝐵 is correct, as opposed to (4.2) in [Sz1969], where the sign before 1 is wrong.

In modern terminology, for 𝑚 > 1 the sets 𝐴 and 𝐵 form a difference family with parameters (2𝑚 +

5.1. Comprehensive Module List 1299

Combinatorics, Release 9.7

1,𝑚, 1). I.e. each non-identity 𝑔 ∈ 𝐺 can be expressed uniquely as 𝑥𝑦−1 for 𝑥, 𝑦 ∈ 𝐴 or 𝑥, 𝑦 ∈ 𝐵. Other,
specific to this construction, properties of 𝐴 and 𝐵 are: for 𝑎 in 𝐴 one has 𝑎−1 not in 𝐴, whereas for 𝑏 in 𝐵 one
has 𝑏−1 in 𝐵.

INPUT:

• m (integer) – dimension of the matrix

• check (default: True) – whether to check 𝐴 and 𝐵 for correctness

EXAMPLES:

sage: from sage.combinat.matrices.hadamard_matrix import szekeres_difference_set_
→˓pair
sage: G,A,B=szekeres_difference_set_pair(6)
sage: G,A,B=szekeres_difference_set_pair(7)

REFERENCE:

• [Sz1969]

sage.combinat.matrices.hadamard_matrix.typeI_matrix_difference_set(G, A)
(1,-1)-incidence type I matrix of a difference set 𝐴 in 𝐺

Let 𝐴 be a difference set in a group 𝐺 of order 𝑛. Return 𝑛 × 𝑛 matrix 𝑀 with 𝑀𝑖𝑗 = 1 if 𝐴𝑖𝐴−1𝑗 ∈ 𝐴, and
𝑀𝑖𝑗 = −1 otherwise.

EXAMPLES:

sage: from sage.combinat.matrices.hadamard_matrix import szekeres_difference_set_
→˓pair
sage: from sage.combinat.matrices.hadamard_matrix import typeI_matrix_difference_set
sage: G,A,B=szekeres_difference_set_pair(2)
sage: typeI_matrix_difference_set(G,A)
[-1 1 -1 -1 1]
[-1 -1 -1 1 1]
[1 1 -1 -1 -1]
[1 -1 1 -1 -1]
[-1 -1 1 1 -1]

sage.combinat.matrices.hadamard_matrix.williamson_goethals_seidel_skew_hadamard_matrix(a,
b,
c,
d,
check=True)

Williamson-Goethals-Seidel construction of a skew Hadamard matrix

Given 𝑛×𝑛 (anti)circulant matrices𝐴,𝐵, 𝐶,𝐷 with 1,-1 entries, and satisfying𝐴+𝐴⊤ = 2𝐼 ,𝐴𝐴⊤+𝐵𝐵⊤+
𝐶𝐶⊤ +𝐷𝐷⊤ = 4𝑛𝐼 , one can construct a skew Hadamard matrix of order 4𝑛, cf. [GS70s].

INPUT:

• a – 1,-1 list specifying the 1st row of 𝐴

• b – 1,-1 list specifying the 1st row of 𝐵

• d – 1,-1 list specifying the 1st row of 𝐶

• c – 1,-1 list specifying the 1st row of 𝐷

EXAMPLES:

1300 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.matrices.hadamard_matrix import williamson_goethals_seidel_
→˓skew_hadamard_matrix as WGS
sage: a = [1, 1, 1, -1, 1, -1, 1, -1, -1]
sage: b = [1, -1, 1, 1, -1, -1, 1, 1, -1]
sage: c = [-1, -1]+[1]*6+[-1]
sage: d = [1, 1, 1, -1, 1, 1, -1, 1, 1]
sage: M = WGS(a,b,c,d,check=True)

REFERENCES:

5.1.135 Latin Squares

A latin square of order 𝑛 is an 𝑛×𝑛 array such that each symbol 𝑠 ∈ {0, 1, . . . , 𝑛− 1} appears precisely once in each
row, and precisely once in each column. A partial latin square of order 𝑛 is an 𝑛 × 𝑛 array such that each symbol
𝑠 ∈ {0, 1, . . . , 𝑛− 1} appears at most once in each row, and at most once in each column. Empty cells are denoted by
−1. A latin square 𝐿 is a completion of a partial latin square 𝑃 if 𝑃 ⊆ 𝐿. If 𝑃 completes to just 𝐿 then 𝑃 has unique
completion.

A latin bitrade (𝑇1, 𝑇2) is a pair of partial latin squares such that:

1. {(𝑖, 𝑗) | (𝑖, 𝑗, 𝑘) ∈ 𝑇1 for some symbol 𝑘} = {(𝑖, 𝑗) | (𝑖, 𝑗, 𝑘′) ∈ 𝑇2 for some symbol 𝑘′};

2. for each (𝑖, 𝑗, 𝑘) ∈ 𝑇1 and (𝑖, 𝑗, 𝑘′) ∈ 𝑇2, 𝑘 ̸= 𝑘′;

3. the symbols appearing in row 𝑖 of 𝑇1 are the same as those of row 𝑖 of 𝑇2; the symbols appearing in column 𝑗 of
𝑇1 are the same as those of column 𝑗 of 𝑇2.

Intuitively speaking, a bitrade gives the difference between two latin squares, so if (𝑇1, 𝑇2) is a bitrade for the pair of
latin squares (𝐿1, 𝐿2), then 𝐿1 = (𝐿2 ∖ 𝑇1) ∪ 𝑇2 and 𝐿2 = (𝐿1 ∖ 𝑇2) ∪ 𝑇1.

This file contains

1. LatinSquare class definition;

2. some named latin squares (back circulant, forward circulant, abelian 2-group);

3. functions is_partial_latin_square and is_latin_square to test if a LatinSquare object satisfies the definition of a
latin square or partial latin square, respectively;

4. tests for completion and unique completion (these use the C++ implementation of Knuth’s dancing links algo-
rithm to solve the problem as a instance of 0− 1 matrix exact cover);

5. functions for calculating the 𝜏𝑖 representation of a bitrade and the genus of the associated hypermap embedding;

6. Markov chain of Jacobson and Matthews (1996) for generating latin squares uniformly at random (provides a
generator interface);

7. a few examples of 𝜏𝑖 representations of bitrades constructed from the action of a group on itself by right multi-
plication, functions for converting to a pair of LatinSquare objects.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: B = back_circulant(5)
sage: B
[0 1 2 3 4]
[1 2 3 4 0]
[2 3 4 0 1]
[3 4 0 1 2]

(continues on next page)

5.1. Comprehensive Module List 1301

Combinatorics, Release 9.7

(continued from previous page)

[4 0 1 2 3]
sage: B.is_latin_square()
True
sage: B[0, 1] = 0
sage: B.is_latin_square()
False

sage: (a, b, c, G) = alternating_group_bitrade_generators(1)
sage: (T1, T2) = bitrade_from_group(a, b, c, G)
sage: T1
[0 -1 3 1]
[-1 1 0 2]
[1 3 2 -1]
[2 0 -1 3]
sage: T2
[1 -1 0 3]
[-1 0 2 1]
[2 1 3 -1]
[0 3 -1 2]
sage: T1.nr_filled_cells()
12
sage: genus(T1, T2)
1

Todo:

1. Latin squares with symbols from a ring instead of the integers {0, 1, . . . , 𝑛− 1}.

2. Isotopism testing of latin squares and bitrades via graph isomorphism (nauty?).

3. Combinatorial constructions for bitrades.

AUTHORS:

• Carlo Hamalainen (2008-03-23): initial version

class sage.combinat.matrices.latin.LatinSquare(*args)
Bases: object

Latin squares.

This class implements a latin square of order n with rows and columns indexed by the set 0, 1, . . . , n-1 and
symbols from the same set. The underlying latin square is a matrix(ZZ, n, n). If L is a latin square, then the cell
at row r, column c is empty if and only if L[r, c] < 0. In this way we allow partial latin squares and can speak of
completions to latin squares, etc.

There are two ways to declare a latin square:

Empty latin square of order n:

sage: n = 3
sage: L = LatinSquare(n)
sage: L
[-1 -1 -1]

(continues on next page)

1302 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[-1 -1 -1]
[-1 -1 -1]

Latin square from a matrix:

sage: M = matrix(ZZ, [[0, 1], [2, 3]])
sage: LatinSquare(M)
[0 1]
[2 3]

actual_row_col_sym_sizes()
Bitrades sometimes end up in partial latin squares with unused rows, columns, or symbols. This function
works out the actual number of used rows, columns, and symbols.

Warning: We assume that the unused rows/columns occur in the lower right of self, and that the used
symbols are in the range {0, 1, . . . , m} (no holes in that list).

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: B = back_circulant(3)
sage: B[0,2] = B[1,2] = B[2,2] = -1
sage: B[0,0] = B[2,1] = -1
sage: B
[-1 1 -1]
[1 2 -1]
[2 -1 -1]
sage: B.actual_row_col_sym_sizes()
(3, 2, 2)

apply_isotopism(row_perm, col_perm, sym_perm)
An isotopism is a permutation of the rows, columns, and symbols of a partial latin square self. Use iso-
topism() to convert a tuple (indexed from 0) to a Permutation object.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: B = back_circulant(5)
sage: B
[0 1 2 3 4]
[1 2 3 4 0]
[2 3 4 0 1]
[3 4 0 1 2]
[4 0 1 2 3]
sage: alpha = isotopism((0,1,2,3,4))
sage: beta = isotopism((1,0,2,3,4))
sage: gamma = isotopism((2,1,0,3,4))
sage: B.apply_isotopism(alpha, beta, gamma)
[3 4 2 0 1]
[0 2 3 1 4]
[1 3 0 4 2]

(continues on next page)

5.1. Comprehensive Module List 1303

Combinatorics, Release 9.7

(continued from previous page)

[4 0 1 2 3]
[2 1 4 3 0]

clear_cells()
Mark every cell in self as being empty.

EXAMPLES:

sage: A = LatinSquare(matrix(ZZ, [[0, 1], [2, 3]]))
sage: A.clear_cells()
sage: A
[-1 -1]
[-1 -1]

column(x)
Return column x of the latin square.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: back_circulant(3).column(0)
(0, 1, 2)

contained_in(Q)
Return True if self is a subset of Q?

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: P = elementary_abelian_2group(2)
sage: P[0, 0] = -1
sage: P.contained_in(elementary_abelian_2group(2))
True
sage: back_circulant(4).contained_in(elementary_abelian_2group(2))
False

disjoint_mate_dlxcpp_rows_and_map(allow_subtrade)
Internal function for find_disjoint_mates.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: B = back_circulant(4)
sage: B.disjoint_mate_dlxcpp_rows_and_map(allow_subtrade = True)
([[0, 16, 32],
[1, 17, 32],
[2, 18, 32],
[3, 19, 32],
[4, 16, 33],
[5, 17, 33],
[6, 18, 33],
[7, 19, 33],
[8, 16, 34],
[9, 17, 34],
[10, 18, 34],

(continues on next page)

1304 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[11, 19, 34],
[12, 16, 35],
[13, 17, 35],
[14, 18, 35],
[15, 19, 35],
[0, 20, 36],
[1, 21, 36],
[2, 22, 36],
[3, 23, 36],
[4, 20, 37],
[5, 21, 37],
[6, 22, 37],
[7, 23, 37],
[8, 20, 38],
[9, 21, 38],
[10, 22, 38],
[11, 23, 38],
[12, 20, 39],
[13, 21, 39],
[14, 22, 39],
[15, 23, 39],
[0, 24, 40],
[1, 25, 40],
[2, 26, 40],
[3, 27, 40],
[4, 24, 41],
[5, 25, 41],
[6, 26, 41],
[7, 27, 41],
[8, 24, 42],
[9, 25, 42],
[10, 26, 42],
[11, 27, 42],
[12, 24, 43],
[13, 25, 43],
[14, 26, 43],
[15, 27, 43],
[0, 28, 44],
[1, 29, 44],
[2, 30, 44],
[3, 31, 44],
[4, 28, 45],
[5, 29, 45],
[6, 30, 45],
[7, 31, 45],
[8, 28, 46],
[9, 29, 46],
[10, 30, 46],
[11, 31, 46],
[12, 28, 47],
[13, 29, 47],
[14, 30, 47],

(continues on next page)

5.1. Comprehensive Module List 1305

Combinatorics, Release 9.7

(continued from previous page)

[15, 31, 47]],
{(0, 16, 32): (0, 0, 0),
(0, 20, 36): (1, 0, 0),
(0, 24, 40): (2, 0, 0),
(0, 28, 44): (3, 0, 0),
(1, 17, 32): (0, 0, 1),
(1, 21, 36): (1, 0, 1),
(1, 25, 40): (2, 0, 1),
(1, 29, 44): (3, 0, 1),
(2, 18, 32): (0, 0, 2),
(2, 22, 36): (1, 0, 2),
(2, 26, 40): (2, 0, 2),
(2, 30, 44): (3, 0, 2),
(3, 19, 32): (0, 0, 3),
(3, 23, 36): (1, 0, 3),
(3, 27, 40): (2, 0, 3),
(3, 31, 44): (3, 0, 3),
(4, 16, 33): (0, 1, 0),
(4, 20, 37): (1, 1, 0),
(4, 24, 41): (2, 1, 0),
(4, 28, 45): (3, 1, 0),
(5, 17, 33): (0, 1, 1),
(5, 21, 37): (1, 1, 1),
(5, 25, 41): (2, 1, 1),
(5, 29, 45): (3, 1, 1),
(6, 18, 33): (0, 1, 2),
(6, 22, 37): (1, 1, 2),
(6, 26, 41): (2, 1, 2),
(6, 30, 45): (3, 1, 2),
(7, 19, 33): (0, 1, 3),
(7, 23, 37): (1, 1, 3),
(7, 27, 41): (2, 1, 3),
(7, 31, 45): (3, 1, 3),
(8, 16, 34): (0, 2, 0),
(8, 20, 38): (1, 2, 0),
(8, 24, 42): (2, 2, 0),
(8, 28, 46): (3, 2, 0),
(9, 17, 34): (0, 2, 1),
(9, 21, 38): (1, 2, 1),
(9, 25, 42): (2, 2, 1),
(9, 29, 46): (3, 2, 1),
(10, 18, 34): (0, 2, 2),
(10, 22, 38): (1, 2, 2),
(10, 26, 42): (2, 2, 2),
(10, 30, 46): (3, 2, 2),
(11, 19, 34): (0, 2, 3),
(11, 23, 38): (1, 2, 3),
(11, 27, 42): (2, 2, 3),
(11, 31, 46): (3, 2, 3),
(12, 16, 35): (0, 3, 0),
(12, 20, 39): (1, 3, 0),
(12, 24, 43): (2, 3, 0),

(continues on next page)

1306 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(12, 28, 47): (3, 3, 0),
(13, 17, 35): (0, 3, 1),
(13, 21, 39): (1, 3, 1),
(13, 25, 43): (2, 3, 1),
(13, 29, 47): (3, 3, 1),
(14, 18, 35): (0, 3, 2),
(14, 22, 39): (1, 3, 2),
(14, 26, 43): (2, 3, 2),
(14, 30, 47): (3, 3, 2),
(15, 19, 35): (0, 3, 3),
(15, 23, 39): (1, 3, 3),
(15, 27, 43): (2, 3, 3),
(15, 31, 47): (3, 3, 3)})

dlxcpp_has_unique_completion()
Check if the partial latin square self of order n can be embedded in precisely one latin square of order n.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: back_circulant(2).dlxcpp_has_unique_completion()
True
sage: P = LatinSquare(2)
sage: P.dlxcpp_has_unique_completion()
False
sage: P[0, 0] = 0
sage: P.dlxcpp_has_unique_completion()
True

dumps()
Since the latin square class does not hold any other private variables we just call dumps on self.square:

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: back_circulant(2) == loads(dumps(back_circulant(2)))
True

filled_cells_map()
Number the filled cells of self with integers from {1, 2, 3, . . . }

INPUT:

• self - Partial latin square self (empty cells have negative values)

OUTPUT: A dictionary cells_map where cells_map[(i,j)] = m means that (i,j) is the m-th filled cell in P,
while cells_map[m] = (i,j).

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: (a, b, c, G) = alternating_group_bitrade_generators(1)
sage: (T1, T2) = bitrade_from_group(a, b, c, G)
sage: D = T1.filled_cells_map()
sage: {i: v for i,v in D.items() if i in ZZ}

(continues on next page)

5.1. Comprehensive Module List 1307

Combinatorics, Release 9.7

(continued from previous page)

{1: (0, 0),
2: (0, 2),
3: (0, 3),
4: (1, 1),
5: (1, 2),
6: (1, 3),
7: (2, 0),
8: (2, 1),
9: (2, 2),
10: (3, 0),
11: (3, 1),
12: (3, 3)}
sage: {i: v for i,v in D.items() if i not in ZZ}
{(0, 0): 1,
(0, 2): 2,
(0, 3): 3,
(1, 1): 4,
(1, 2): 5,
(1, 3): 6,
(2, 0): 7,
(2, 1): 8,
(2, 2): 9,
(3, 0): 10,
(3, 1): 11,
(3, 3): 12}

find_disjoint_mates(nr_to_find=None, allow_subtrade=False)

Warning: If allow_subtrade is True then we may return a partial latin square that is not disjoint to
self. In that case, use bitrade(P, Q) to get an actual bitrade.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: B = back_circulant(4)
sage: g = B.find_disjoint_mates(allow_subtrade = True)
sage: B1 = next(g)
sage: B0, B1 = bitrade(B, B1)
sage: assert is_bitrade(B0, B1)
sage: print(B0)
[-1 1 2 -1]
[-1 2 -1 0]
[-1 -1 -1 -1]
[-1 0 1 2]
sage: print(B1)
[-1 2 1 -1]
[-1 0 -1 2]
[-1 -1 -1 -1]
[-1 1 2 0]

gcs()
A greedy critical set of a latin square self is found by successively removing elements in a row-wise (bottom-

1308 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

up) manner, checking for unique completion at each step.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: A = elementary_abelian_2group(3)
sage: G = A.gcs()
sage: A
[0 1 2 3 4 5 6 7]
[1 0 3 2 5 4 7 6]
[2 3 0 1 6 7 4 5]
[3 2 1 0 7 6 5 4]
[4 5 6 7 0 1 2 3]
[5 4 7 6 1 0 3 2]
[6 7 4 5 2 3 0 1]
[7 6 5 4 3 2 1 0]
sage: G
[0 1 2 3 4 5 6 -1]
[1 0 3 2 5 4 -1 -1]
[2 3 0 1 6 -1 4 -1]
[3 2 1 0 -1 -1 -1 -1]
[4 5 6 -1 0 1 2 -1]
[5 4 -1 -1 1 0 -1 -1]
[6 -1 4 -1 2 -1 0 -1]
[-1 -1 -1 -1 -1 -1 -1 -1]

is_completable()
Return True if the partial latin square can be completed to a latin square.

EXAMPLES:

The following partial latin square has no completion because there is nowhere that we can place the symbol
0 in the third row:

sage: B = LatinSquare(3)

sage: B[0, 0] = 0
sage: B[1, 1] = 0
sage: B[2, 2] = 1

sage: B
[0 -1 -1]
[-1 0 -1]
[-1 -1 1]

sage: B.is_completable()
False

sage: B[2, 2] = 0
sage: B.is_completable()
True

is_empty_column(c)
Check if column c of the partial latin square self is empty.

5.1. Comprehensive Module List 1309

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: L = back_circulant(4)
sage: L.is_empty_column(0)
False
sage: L[0,0] = L[1,0] = L[2,0] = L[3,0] = -1
sage: L.is_empty_column(0)
True

is_empty_row(r)
Check if row r of the partial latin square self is empty.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: L = back_circulant(4)
sage: L.is_empty_row(0)
False
sage: L[0,0] = L[0,1] = L[0,2] = L[0,3] = -1
sage: L.is_empty_row(0)
True

is_latin_square()
self is a latin square if it is an n by n matrix, and each symbol in [0, 1, . . . , n-1] appears exactly once in each
row, and exactly once in each column.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: elementary_abelian_2group(4).is_latin_square()
True

sage: forward_circulant(7).is_latin_square()
True

is_partial_latin_square()
self is a partial latin square if it is an n by n matrix, and each symbol in [0, 1, . . . , n-1] appears at most once
in each row, and at most once in each column.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: LatinSquare(4).is_partial_latin_square()
True
sage: back_circulant(3).gcs().is_partial_latin_square()
True
sage: back_circulant(6).is_partial_latin_square()
True

is_uniquely_completable()
Return True if the partial latin square self has exactly one completion to a latin square. This is just a wrapper
for the current best-known algorithm, Dancing Links by Knuth. See dancing_links.spyx

EXAMPLES:

1310 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.matrices.latin import *
sage: back_circulant(4).gcs().is_uniquely_completable()
True

sage: G = elementary_abelian_2group(3).gcs()
sage: G.is_uniquely_completable()
True

sage: G[0, 0] = -1
sage: G.is_uniquely_completable()
False

latex()
Return LaTeX code for the latin square.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: print(back_circulant(3).latex())
\begin{array}{|c|c|c|}\hline 0 & 1 & 2\\\hline 1 & 2 & 0\\\hline 2 & 0 & 1\\\
→˓hline\end{array}

list()
Convert the latin square into a list, in a row-wise manner.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: back_circulant(3).list()
[0, 1, 2, 1, 2, 0, 2, 0, 1]

ncols()
Number of columns in the latin square.

EXAMPLES:

sage: LatinSquare(3).ncols()
3

nr_distinct_symbols()
Return the number of distinct symbols in the partial latin square self.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: back_circulant(5).nr_distinct_symbols()
5
sage: L = LatinSquare(10)
sage: L.nr_distinct_symbols()
0
sage: L[0, 0] = 0
sage: L[0, 1] = 1
sage: L.nr_distinct_symbols()
2

5.1. Comprehensive Module List 1311

Combinatorics, Release 9.7

nr_filled_cells()
Return the number of filled cells (i.e. cells with a positive value) in the partial latin square self.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: LatinSquare(matrix([[0, -1], [-1, 0]])).nr_filled_cells()
2

nrows()
Number of rows in the latin square.

EXAMPLES:

sage: LatinSquare(3).nrows()
3

permissable_values(r, c)
Find all values that do not appear in row r and column c of the latin square self. If self[r, c] is filled then
we return the empty list.

INPUT:

• self - LatinSquare

• r - int; row of the latin square

• c - int; column of the latin square

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: L = back_circulant(5)
sage: L[0, 0] = -1
sage: L.permissable_values(0, 0)
[0]

random_empty_cell()
Find an empty cell of self, uniformly at random.

INPUT:

• self - LatinSquare

OUTPUT:

• [r, c] - cell such that self[r, c] is empty, or returns None if self is a (full) latin square.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: P = back_circulant(2)
sage: P[1,1] = -1
sage: P.random_empty_cell()
[1, 1]

row(x)
Return row x of the latin square.

EXAMPLES:

1312 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.matrices.latin import *
sage: back_circulant(3).row(0)
(0, 1, 2)

set_immutable()
A latin square is immutable if the underlying matrix is immutable.

EXAMPLES:

sage: L = LatinSquare(matrix(ZZ, [[0, 1], [2, 3]]))
sage: L.set_immutable()
sage: {L : 0} # this would fail without set_immutable()
{[0 1]
[2 3]: 0}

top_left_empty_cell()
Return the least [r, c] such that self[r, c] is an empty cell. If all cells are filled then we return None.

INPUT:

• self - LatinSquare

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: B = back_circulant(5)
sage: B[3, 4] = -1
sage: B.top_left_empty_cell()
[3, 4]

vals_in_col(c)
Return a dictionary with key e if and only if column c of self has the symbol e.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: B = back_circulant(3)
sage: B[0, 0] = -1
sage: back_circulant(3).vals_in_col(0)
{0: True, 1: True, 2: True}

vals_in_row(r)
Return a dictionary with key e if and only if row r of self has the symbol e.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: B = back_circulant(3)
sage: B[0, 0] = -1
sage: back_circulant(3).vals_in_row(0)
{0: True, 1: True, 2: True}

sage.combinat.matrices.latin.LatinSquare_generator(L_start, check_assertions=False)
Generator for a sequence of uniformly distributed latin squares, given L_start as the initial latin square.

This code implements the Markov chain algorithm of Jacobson and Matthews (1996), see below for the BibTex
entry. This generator will never throw the StopIteration exception, so it provides an infinite sequence of latin
squares.

5.1. Comprehensive Module List 1313

Combinatorics, Release 9.7

EXAMPLES:

Use the back circulant latin square of order 4 as the initial square and print the next two latin squares given by
the Markov chain:

sage: from sage.combinat.matrices.latin import *
sage: g = LatinSquare_generator(back_circulant(4))
sage: next(g).is_latin_square()
True

REFERENCES:

sage.combinat.matrices.latin.alternating_group_bitrade_generators(m)
Construct generators a, b, c for the alternating group on 3m+1 points, such that a*b*c = 1.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: a, b, c, G = alternating_group_bitrade_generators(1)
sage: (a, b, c, G)
((1,2,3), (1,4,2), (2,4,3), Permutation Group with generators [(1,2,3), (1,4,2)])
sage: a*b*c
()

sage: (T1, T2) = bitrade_from_group(a, b, c, G)
sage: T1
[0 -1 3 1]
[-1 1 0 2]
[1 3 2 -1]
[2 0 -1 3]
sage: T2
[1 -1 0 3]
[-1 0 2 1]
[2 1 3 -1]
[0 3 -1 2]

sage.combinat.matrices.latin.back_circulant(n)
The back-circulant latin square of order n is the Cayley table for (Z_n, +), the integers under addition modulo n.

INPUT:

• n – int; order of the latin square.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: back_circulant(5)
[0 1 2 3 4]
[1 2 3 4 0]
[2 3 4 0 1]
[3 4 0 1 2]
[4 0 1 2 3]

sage.combinat.matrices.latin.beta1(rce, T1, T2)
Find the unique (x, c, e) in T2 such that (r, c, e) is in T1.

INPUT:

1314 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• rce - tuple (or list) (r, c, e) in T1

• T1, T2 - latin bitrade

OUTPUT: (x, c, e) in T2.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: T1 = back_circulant(5)
sage: x = isotopism((0,1,2,3,4))
sage: y = isotopism(5) # identity
sage: z = isotopism(5) # identity
sage: T2 = T1.apply_isotopism(x, y, z)
sage: is_bitrade(T1, T2)
True
sage: beta1([0, 0, 0], T1, T2)
(1, 0, 0)

sage.combinat.matrices.latin.beta2(rce, T1, T2)
Find the unique (r, x, e) in T2 such that (r, c, e) is in T1.

INPUT:

• rce - tuple (or list) (r, c, e) in T1

• T1, T2 - latin bitrade

OUTPUT:

• (r, x, e) in T2.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: T1 = back_circulant(5)
sage: x = isotopism((0,1,2,3,4))
sage: y = isotopism(5) # identity
sage: z = isotopism(5) # identity
sage: T2 = T1.apply_isotopism(x, y, z)
sage: is_bitrade(T1, T2)
True
sage: beta2([0, 0, 0], T1, T2)
(0, 1, 0)

sage.combinat.matrices.latin.beta3(rce, T1, T2)
Find the unique (r, c, x) in T2 such that (r, c, e) is in T1.

INPUT:

• rce - tuple (or list) (r, c, e) in T1

• T1, T2 - latin bitrade

OUTPUT:

• (r, c, x) in T2.

EXAMPLES:

5.1. Comprehensive Module List 1315

Combinatorics, Release 9.7

sage: from sage.combinat.matrices.latin import *
sage: T1 = back_circulant(5)
sage: x = isotopism((0,1,2,3,4))
sage: y = isotopism(5) # identity
sage: z = isotopism(5) # identity
sage: T2 = T1.apply_isotopism(x, y, z)
sage: is_bitrade(T1, T2)
True
sage: beta3([0, 0, 0], T1, T2)
(0, 0, 4)

sage.combinat.matrices.latin.bitrade(T1, T2)
Form the bitrade (Q1, Q2) from (T1, T2) by setting empty the cells (r, c) such that T1[r, c] == T2[r, c].

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: B1 = back_circulant(5)
sage: alpha = isotopism((0,1,2,3,4))
sage: beta = isotopism((1,0,2,3,4))
sage: gamma = isotopism((2,1,0,3,4))
sage: B2 = B1.apply_isotopism(alpha, beta, gamma)
sage: T1, T2 = bitrade(B1, B2)
sage: T1
[0 1 -1 3 4]
[1 -1 -1 4 0]
[2 -1 4 0 1]
[3 4 0 1 2]
[4 0 1 2 3]
sage: T2
[3 4 -1 0 1]
[0 -1 -1 1 4]
[1 -1 0 4 2]
[4 0 1 2 3]
[2 1 4 3 0]

sage.combinat.matrices.latin.bitrade_from_group(a, b, c, G)
Given group elements a, b, c in G such that abc = 1 and the subgroups a, b, c intersect (pairwise) only in the
identity, construct a bitrade (T1, T2) where rows, columns, and symbols correspond to cosets of a, b, and c,
respectively.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: a, b, c, G = alternating_group_bitrade_generators(1)
sage: (T1, T2) = bitrade_from_group(a, b, c, G)
sage: T1
[0 -1 3 1]
[-1 1 0 2]
[1 3 2 -1]
[2 0 -1 3]
sage: T2
[1 -1 0 3]
[-1 0 2 1]

(continues on next page)

1316 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[2 1 3 -1]
[0 3 -1 2]

sage.combinat.matrices.latin.cells_map_as_square(cells_map, n)
Return a LatinSquare with cells numbered from 1, 2, . . . to given the dictionary cells_map.

Note: The value n should be the maximum of the number of rows and columns of the original partial latin
square

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: (a, b, c, G) = alternating_group_bitrade_generators(1)
sage: (T1, T2) = bitrade_from_group(a, b, c, G)
sage: T1
[0 -1 3 1]
[-1 1 0 2]
[1 3 2 -1]
[2 0 -1 3]

There are 12 filled cells in T:

sage: cells_map_as_square(T1.filled_cells_map(), max(T1.nrows(), T1.ncols()))
[1 -1 2 3]
[-1 4 5 6]
[7 8 9 -1]
[10 11 -1 12]

sage.combinat.matrices.latin.check_bitrade_generators(a, b, c)
Three group elements a, b, c will generate a bitrade if a*b*c = 1 and the subgroups a, b, c intersect (pairwise) in
just the identity.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: a, b, c, G = p3_group_bitrade_generators(3)
sage: check_bitrade_generators(a, b, c)
True
sage: check_bitrade_generators(a, b, gap('()'))
False

sage.combinat.matrices.latin.coin()
Simulate a fair coin (returns True or False) using ZZ.random_element(2).

EXAMPLES:

sage: from sage.combinat.matrices.latin import coin
sage: x = coin()
sage: x == 0 or x == 1
True

sage.combinat.matrices.latin.column_containing_sym(L, r, x)
Given an improper latin square L with L[r, c1] = L[r, c2] = x, return c1 or c2 with equal probability. This is an
internal function and should only be used in LatinSquare_generator().

5.1. Comprehensive Module List 1317

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: L = matrix([(1, 0, 2, 3), (0, 2, 3, 0), (2, 3, 0, 1), (3, 0, 1, 2)])
sage: L
[1 0 2 3]
[0 2 3 0]
[2 3 0 1]
[3 0 1 2]
sage: c = column_containing_sym(L, 1, 0)
sage: c == 0 or c == 3
True

sage.combinat.matrices.latin.direct_product(L1, L2, L3, L4)
The ‘direct product’ of four latin squares L1, L2, L3, L4 of order n is the latin square of order 2n consisting of

| L1 | L2 |

| L3 | L4 |

where the subsquares L2 and L3 have entries offset by n.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: direct_product(back_circulant(4), back_circulant(4), elementary_abelian_
→˓2group(2), elementary_abelian_2group(2))
[0 1 2 3 4 5 6 7]
[1 2 3 0 5 6 7 4]
[2 3 0 1 6 7 4 5]
[3 0 1 2 7 4 5 6]
[4 5 6 7 0 1 2 3]
[5 4 7 6 1 0 3 2]
[6 7 4 5 2 3 0 1]
[7 6 5 4 3 2 1 0]

sage.combinat.matrices.latin.dlxcpp_find_completions(P, nr_to_find=None)
Return a list of all latin squares L of the same order as P such that P is contained in L. The optional parameter
nr_to_find limits the number of latin squares that are found.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: dlxcpp_find_completions(LatinSquare(2))
[[0 1]
[1 0], [1 0]
[0 1]]

sage: dlxcpp_find_completions(LatinSquare(2), 1)
[[0 1]
[1 0]]

sage.combinat.matrices.latin.dlxcpp_rows_and_map(P)
Internal function for dlxcpp_find_completions. Given a partial latin square P we construct a list of rows of

1318 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

a 0-1 matrix M such that an exact cover of M corresponds to a completion of P to a latin square.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: dlxcpp_rows_and_map(LatinSquare(2))
([[0, 4, 8],
[1, 5, 8],
[2, 4, 9],
[3, 5, 9],
[0, 6, 10],
[1, 7, 10],
[2, 6, 11],
[3, 7, 11]],
{(0, 4, 8): (0, 0, 0),
(0, 6, 10): (1, 0, 0),
(1, 5, 8): (0, 0, 1),
(1, 7, 10): (1, 0, 1),
(2, 4, 9): (0, 1, 0),
(2, 6, 11): (1, 1, 0),
(3, 5, 9): (0, 1, 1),
(3, 7, 11): (1, 1, 1)})

sage.combinat.matrices.latin.elementary_abelian_2group(s)
Return the latin square based on the Cayley table for the elementary abelian 2-group of order 2s.

INPUT:

• s – int; order of the latin square will be 2s.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: elementary_abelian_2group(3)
[0 1 2 3 4 5 6 7]
[1 0 3 2 5 4 7 6]
[2 3 0 1 6 7 4 5]
[3 2 1 0 7 6 5 4]
[4 5 6 7 0 1 2 3]
[5 4 7 6 1 0 3 2]
[6 7 4 5 2 3 0 1]
[7 6 5 4 3 2 1 0]

sage.combinat.matrices.latin.forward_circulant(n)
The forward-circulant latin square of order n is the Cayley table for the operation r + c = (n-c+r) mod n.

INPUT:

• n – int; order of the latin square.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: forward_circulant(5)
[0 4 3 2 1]
[1 0 4 3 2]
[2 1 0 4 3]

(continues on next page)

5.1. Comprehensive Module List 1319

Combinatorics, Release 9.7

(continued from previous page)

[3 2 1 0 4]
[4 3 2 1 0]

sage.combinat.matrices.latin.genus(T1, T2)
Return the genus of hypermap embedding associated with the bitrade (T1, T2).

Informally, we compute the [tau_1, tau_2, tau_3] permutation representation of the bitrade. Each cycle of tau_1,
tau_2, and tau_3 gives a rotation scheme for a black, white, and star vertex (respectively). The genus then comes
from Euler’s formula.

For more details see Carlo Hamalainen: Partitioning 3-homogeneous latin bitrades. To appear in Geometriae
Dedicata, available at arXiv 0710.0938

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: (a, b, c, G) = alternating_group_bitrade_generators(1)
sage: (T1, T2) = bitrade_from_group(a, b, c, G)
sage: genus(T1, T2)
1
sage: (a, b, c, G) = pq_group_bitrade_generators(3, 7)
sage: (T1, T2) = bitrade_from_group(a, b, c, G)
sage: genus(T1, T2)
3

sage.combinat.matrices.latin.group_to_LatinSquare(G)
Construct a latin square on the symbols [0, 1, . . . , n-1] for a group with an n by n Cayley table.

EXAMPLES:

sage: from sage.combinat.matrices.latin import group_to_LatinSquare

sage: group_to_LatinSquare(DihedralGroup(2))
[0 1 2 3]
[1 0 3 2]
[2 3 0 1]
[3 2 1 0]

sage: G = gap.Group(PermutationGroupElement((1,2,3)))
sage: group_to_LatinSquare(G)
[0 1 2]
[1 2 0]
[2 0 1]

sage.combinat.matrices.latin.is_bitrade(T1, T2)
Combinatorially, a pair (T1, T2) of partial latin squares is a bitrade if they are disjoint, have the same shape, and
have row and column balance. For definitions of each of these terms see the relevant function in this file.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: T1 = back_circulant(5)
sage: x = isotopism((0,1,2,3,4))
sage: y = isotopism(5) # identity
sage: z = isotopism(5) # identity

(continues on next page)

1320 Chapter 5. Comprehensive Module List

https://arxiv.org/abs/0710.0938

Combinatorics, Release 9.7

(continued from previous page)

sage: T2 = T1.apply_isotopism(x, y, z)
sage: is_bitrade(T1, T2)
True

sage.combinat.matrices.latin.is_disjoint(T1, T2)
The partial latin squares T1 and T2 are disjoint if T1[r, c] != T2[r, c] or T1[r, c] == T2[r, c] == -1 for each cell
[r, c].

EXAMPLES:

sage: from sage.combinat.matrices.latin import is_disjoint, back_circulant,␣
→˓isotopism
sage: is_disjoint(back_circulant(2), back_circulant(2))
False

sage: T1 = back_circulant(5)
sage: x = isotopism((0,1,2,3,4))
sage: y = isotopism(5) # identity
sage: z = isotopism(5) # identity
sage: T2 = T1.apply_isotopism(x, y, z)
sage: is_disjoint(T1, T2)
True

sage.combinat.matrices.latin.is_primary_bitrade(a, b, c, G)
A bitrade generated from elements a, b, c is primary if a, b, c = G.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: (a, b, c, G) = p3_group_bitrade_generators(5)
sage: is_primary_bitrade(a, b, c, G)
True

sage.combinat.matrices.latin.is_row_and_col_balanced(T1, T2)
Partial latin squares T1 and T2 are balanced if the symbols appearing in row r of T1 are the same as the symbols
appearing in row r of T2, for each r, and if the same condition holds on columns.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: T1 = matrix([[0,1,-1,-1], [-1,-1,-1,-1], [-1,-1,-1,-1], [-1,-1,-1,-1]])
sage: T2 = matrix([[0,1,-1,-1], [-1,-1,-1,-1], [-1,-1,-1,-1], [-1,-1,-1,-1]])
sage: is_row_and_col_balanced(T1, T2)
True
sage: T2 = matrix([[0,3,-1,-1], [-1,-1,-1,-1], [-1,-1,-1,-1], [-1,-1,-1,-1]])
sage: is_row_and_col_balanced(T1, T2)
False

sage.combinat.matrices.latin.is_same_shape(T1, T2)
Two partial latin squares T1, T2 have the same shape if T1[r, c] = 0 if and only if T2[r, c] = 0.

EXAMPLES:

5.1. Comprehensive Module List 1321

Combinatorics, Release 9.7

sage: from sage.combinat.matrices.latin import *
sage: is_same_shape(elementary_abelian_2group(2), back_circulant(4))
True
sage: is_same_shape(LatinSquare(5), LatinSquare(5))
True
sage: is_same_shape(forward_circulant(5), LatinSquare(5))
False

sage.combinat.matrices.latin.isotopism(p)
Return a Permutation object that represents an isotopism (for rows, columns or symbols of a partial latin square).

Technically, all this function does is take as input a representation of a permutation of 0, ..., 𝑛 − 1 and return a
Permutation object defined on 1, ..., 𝑛.

For a definition of isotopism, see the wikipedia section on isotopism.

INPUT:

According to the type of input (see examples below):

• an integer 𝑛 – the function returns the identity on 1, ..., 𝑛.

• a string representing a permutation in disjoint cycles notation, e.g. (0, 1, 2)(3, 4, 5) – the corresponding
permutation is returned, shifted by 1 to act on 1, ..., 𝑛.

• list/tuple of tuples – assumes disjoint cycle notation, see previous entry.

• a list of integers – the function adds 1 to each member of the list, and returns the corresponding permutation.

• a PermutationGroupElement p – returns a permutation describing p without any shift.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: isotopism(5) # identity on 5 points
[1, 2, 3, 4, 5]

sage: G = PermutationGroup(['(1,2,3)(4,5)'])
sage: g = G.gen(0)
sage: isotopism(g)
[2, 3, 1, 5, 4]

sage: isotopism([0,3,2,1]) # 0 goes to 0, 1 goes to 3, etc.
[1, 4, 3, 2]

sage: isotopism((0,1,2)) # single cycle, presented as a tuple
[2, 3, 1]

sage: x = isotopism(((0,1,2), (3,4))) # tuple of cycles
sage: x
[2, 3, 1, 5, 4]
sage: x.to_cycles()
[(1, 2, 3), (4, 5)]

sage.combinat.matrices.latin.next_conjugate(L)
Permute L[r, c] = e to the conjugate L[c, e] = r.

We assume that L is an n by n matrix and has values in the range 0, 1, . . . , n-1.

1322 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Latin_square#Equivalence_classes_of_Latin_squares

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: L = back_circulant(6)
sage: L
[0 1 2 3 4 5]
[1 2 3 4 5 0]
[2 3 4 5 0 1]
[3 4 5 0 1 2]
[4 5 0 1 2 3]
[5 0 1 2 3 4]
sage: next_conjugate(L)
[0 1 2 3 4 5]
[5 0 1 2 3 4]
[4 5 0 1 2 3]
[3 4 5 0 1 2]
[2 3 4 5 0 1]
[1 2 3 4 5 0]
sage: L == next_conjugate(next_conjugate(next_conjugate(L)))
True

sage.combinat.matrices.latin.p3_group_bitrade_generators(p)
Generators for a group of order p3 where p is a prime.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: p3_group_bitrade_generators(3)
((2,6,7)(3,8,9), (1,2,3)(4,7,8)(5,6,9), (1,9,2)(3,7,4)(5,8,6), Permutation Group␣
→˓with generators [(2,6,7)(3,8,9), (1,2,3)(4,7,8)(5,6,9)])

sage.combinat.matrices.latin.pq_group_bitrade_generators(p, q)
Generators for a group of order pq where p and q are primes such that (q % p) == 1.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: pq_group_bitrade_generators(3,7)
((2,3,5)(4,7,6), (1,2,3,4,5,6,7), (1,4,2)(3,5,6), Permutation Group with generators␣
→˓[(2,3,5)(4,7,6), (1,2,3,4,5,6,7)])

sage.combinat.matrices.latin.row_containing_sym(L, c, x)
Given an improper latin square L with L[r1, c] = L[r2, c] = x, return r1 or r2 with equal probability. This is an
internal function and should only be used in LatinSquare_generator().

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: L = matrix([(0, 1, 0, 3), (3, 0, 2, 1), (1, 0, 3, 2), (2, 3, 1, 0)])
sage: L
[0 1 0 3]
[3 0 2 1]
[1 0 3 2]
[2 3 1 0]
sage: c = row_containing_sym(L, 1, 0)

(continues on next page)

5.1. Comprehensive Module List 1323

Combinatorics, Release 9.7

(continued from previous page)

sage: c == 1 or c == 2
True

sage.combinat.matrices.latin.tau1(T1, T2, cells_map)
The definition of 𝜏1 is

𝜏1 : 𝑇1→ 𝑇1

𝜏1 = 𝛽−12 𝛽3

where the composition is left to right and 𝛽𝑖 : 𝑇2→ 𝑇1 changes just the 𝑖𝑡ℎ coordinate of a triple.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: T1 = back_circulant(5)
sage: x = isotopism((0,1,2,3,4))
sage: y = isotopism(5) # identity
sage: z = isotopism(5) # identity
sage: T2 = T1.apply_isotopism(x, y, z)
sage: is_bitrade(T1, T2)
True
sage: (cells_map, t1, t2, t3) = tau123(T1, T2)
sage: t1 = tau1(T1, T2, cells_map)
sage: t1
[2, 3, 4, 5, 1, 7, 8, 9, 10, 6, 12, 13, 14, 15, 11, 17, 18, 19, 20, 16, 22, 23, 24,␣
→˓25, 21]
sage: t1.to_cycles()
[(1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15), (16, 17, 18, 19, 20), (21,
→˓ 22, 23, 24, 25)]

sage.combinat.matrices.latin.tau123(T1, T2)
Compute the tau_i representation for a bitrade (T1, T2).

See the functions tau1, tau2, and tau3 for the mathematical definitions.

OUTPUT:

• (cells_map, t1, t2, t3)

where cells_map is a map to/from the filled cells of T1, and t1, t2, t3 are the tau1, tau2, tau3 permutations.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: (a, b, c, G) = pq_group_bitrade_generators(3, 7)
sage: (T1, T2) = bitrade_from_group(a, b, c, G)
sage: T1
[0 1 3 -1 -1 -1 -1]
[1 2 4 -1 -1 -1 -1]
[2 3 5 -1 -1 -1 -1]
[3 4 6 -1 -1 -1 -1]
[4 5 0 -1 -1 -1 -1]
[5 6 1 -1 -1 -1 -1]
[6 0 2 -1 -1 -1 -1]
sage: T2

(continues on next page)

1324 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1 3 0 -1 -1 -1 -1]
[2 4 1 -1 -1 -1 -1]
[3 5 2 -1 -1 -1 -1]
[4 6 3 -1 -1 -1 -1]
[5 0 4 -1 -1 -1 -1]
[6 1 5 -1 -1 -1 -1]
[0 2 6 -1 -1 -1 -1]
sage: (cells_map, t1, t2, t3) = tau123(T1, T2)
sage: D = cells_map
sage: {i: v for i,v in D.items() if i in ZZ}
{1: (0, 0),
2: (0, 1),
3: (0, 2),
4: (1, 0),
5: (1, 1),
6: (1, 2),
7: (2, 0),
8: (2, 1),
9: (2, 2),
10: (3, 0),
11: (3, 1),
12: (3, 2),
13: (4, 0),
14: (4, 1),
15: (4, 2),
16: (5, 0),
17: (5, 1),
18: (5, 2),
19: (6, 0),
20: (6, 1),
21: (6, 2)}
sage: {i: v for i,v in D.items() if i not in ZZ}
{(0, 0): 1,
(0, 1): 2,
(0, 2): 3,
(1, 0): 4,
(1, 1): 5,
(1, 2): 6,
(2, 0): 7,
(2, 1): 8,
(2, 2): 9,
(3, 0): 10,
(3, 1): 11,
(3, 2): 12,
(4, 0): 13,
(4, 1): 14,
(4, 2): 15,
(5, 0): 16,
(5, 1): 17,
(5, 2): 18,
(6, 0): 19,
(6, 1): 20,

(continues on next page)

5.1. Comprehensive Module List 1325

Combinatorics, Release 9.7

(continued from previous page)

(6, 2): 21}
sage: cells_map_as_square(cells_map, max(T1.nrows(), T1.ncols()))
[1 2 3 -1 -1 -1 -1]
[4 5 6 -1 -1 -1 -1]
[7 8 9 -1 -1 -1 -1]
[10 11 12 -1 -1 -1 -1]
[13 14 15 -1 -1 -1 -1]
[16 17 18 -1 -1 -1 -1]
[19 20 21 -1 -1 -1 -1]
sage: t1
[3, 1, 2, 6, 4, 5, 9, 7, 8, 12, 10, 11, 15, 13, 14, 18, 16, 17, 21, 19, 20]
sage: t2
[4, 8, 15, 7, 11, 18, 10, 14, 21, 13, 17, 3, 16, 20, 6, 19, 2, 9, 1, 5, 12]
sage: t3
[20, 18, 10, 2, 21, 13, 5, 3, 16, 8, 6, 19, 11, 9, 1, 14, 12, 4, 17, 15, 7]

sage: t1.to_cycles()
[(1, 3, 2), (4, 6, 5), (7, 9, 8), (10, 12, 11), (13, 15, 14), (16, 18, 17), (19, 21,
→˓ 20)]
sage: t2.to_cycles()
[(1, 4, 7, 10, 13, 16, 19), (2, 8, 14, 20, 5, 11, 17), (3, 15, 6, 18, 9, 21, 12)]
sage: t3.to_cycles()
[(1, 20, 15), (2, 18, 4), (3, 10, 8), (5, 21, 7), (6, 13, 11), (9, 16, 14), (12, 19,
→˓ 17)]

The product t1*t2*t3 is the identity, i.e. it fixes every point:

sage: len((t1*t2*t3).fixed_points()) == T1.nr_filled_cells()
True

sage.combinat.matrices.latin.tau2(T1, T2, cells_map)
The definition of 𝜏2 is

𝜏2 : 𝑇1→ 𝑇1

𝜏2 = 𝛽−13 𝛽1

where the composition is left to right and 𝛽𝑖 : 𝑇2→ 𝑇1 changes just the 𝑖𝑡ℎ coordinate of a triple.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: T1 = back_circulant(5)
sage: x = isotopism((0,1,2,3,4))
sage: y = isotopism(5) # identity
sage: z = isotopism(5) # identity
sage: T2 = T1.apply_isotopism(x, y, z)
sage: is_bitrade(T1, T2)
True
sage: (cells_map, t1, t2, t3) = tau123(T1, T2)
sage: t2 = tau2(T1, T2, cells_map)
sage: t2
[21, 22, 23, 24, 25, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,␣
→˓19, 20]

(continues on next page)

1326 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: t2.to_cycles()
[(1, 21, 16, 11, 6), (2, 22, 17, 12, 7), (3, 23, 18, 13, 8), (4, 24, 19, 14, 9), (5,
→˓ 25, 20, 15, 10)]

sage.combinat.matrices.latin.tau3(T1, T2, cells_map)
The definition of 𝜏3 is

𝜏3 : 𝑇1→ 𝑇1

𝜏3 = 𝛽−11 𝛽2

where the composition is left to right and 𝛽𝑖 : 𝑇2→ 𝑇1 changes just the 𝑖𝑡ℎ coordinate of a triple.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: T1 = back_circulant(5)
sage: x = isotopism((0,1,2,3,4))
sage: y = isotopism(5) # identity
sage: z = isotopism(5) # identity
sage: T2 = T1.apply_isotopism(x, y, z)
sage: is_bitrade(T1, T2)
True
sage: (cells_map, t1, t2, t3) = tau123(T1, T2)
sage: t3 = tau3(T1, T2, cells_map)
sage: t3
[10, 6, 7, 8, 9, 15, 11, 12, 13, 14, 20, 16, 17, 18, 19, 25, 21, 22, 23, 24, 5, 1,␣
→˓2, 3, 4]
sage: t3.to_cycles()
[(1, 10, 14, 18, 22), (2, 6, 15, 19, 23), (3, 7, 11, 20, 24), (4, 8, 12, 16, 25),␣
→˓(5, 9, 13, 17, 21)]

sage.combinat.matrices.latin.tau_to_bitrade(t1, t2, t3)
Given permutations t1, t2, t3 that represent a latin bitrade, convert them to an explicit latin bitrade (T1, T2). The
result is unique up to isotopism.

EXAMPLES:

sage: from sage.combinat.matrices.latin import *
sage: T1 = back_circulant(5)
sage: x = isotopism((0,1,2,3,4))
sage: y = isotopism(5) # identity
sage: z = isotopism(5) # identity
sage: T2 = T1.apply_isotopism(x, y, z)
sage: _, t1, t2, t3 = tau123(T1, T2)
sage: U1, U2 = tau_to_bitrade(t1, t2, t3)
sage: assert is_bitrade(U1, U2)
sage: U1
[0 1 2 3 4]
[1 2 3 4 0]
[2 3 4 0 1]
[3 4 0 1 2]
[4 0 1 2 3]
sage: U2
[4 0 1 2 3]

(continues on next page)

5.1. Comprehensive Module List 1327

Combinatorics, Release 9.7

(continued from previous page)

[0 1 2 3 4]
[1 2 3 4 0]
[2 3 4 0 1]
[3 4 0 1 2]

5.1.136 Miscellaneous

class sage.combinat.misc.DoublyLinkedList(l)
Bases: object

A doubly linked list class that provides constant time hiding and unhiding of entries.

Note that this list’s indexing is 1-based.

EXAMPLES:

sage: dll = sage.combinat.misc.DoublyLinkedList([1,2,3]); dll
Doubly linked list of [1, 2, 3]: [1, 2, 3]
sage: dll.hide(1); dll
Doubly linked list of [1, 2, 3]: [2, 3]
sage: dll.unhide(1); dll
Doubly linked list of [1, 2, 3]: [1, 2, 3]
sage: dll.hide(2); dll
Doubly linked list of [1, 2, 3]: [1, 3]
sage: dll.unhide(2); dll
Doubly linked list of [1, 2, 3]: [1, 2, 3]

head()

hide(i)

next(j)

prev(j)

unhide(i)

class sage.combinat.misc.IterableFunctionCall(f, *args, **kwargs)
Bases: object

This class wraps functions with a yield statement (generators) by an object that can be iterated over. For example,

EXAMPLES:

sage: def f(): yield 'a'; yield 'b'

This does not work:

sage: for z in f: print(z)
Traceback (most recent call last):
...
TypeError: 'function' object is not iterable

Use IterableFunctionCall if you want something like the above to work:

1328 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.misc import IterableFunctionCall
sage: g = IterableFunctionCall(f)
sage: for z in g: print(z)
a
b

If your function takes arguments, just put them after the function name. You needn’t enclose them in a tuple or
anything, just put them there:

sage: def f(n, m): yield 'a' * n; yield 'b' * m; yield 'foo'
sage: g = IterableFunctionCall(f, 2, 3)
sage: for z in g: print(z)
aa
bbb
foo

sage.combinat.misc.check_integer_list_constraints(l, **kwargs)
EXAMPLES:

sage: from sage.combinat.misc import check_integer_list_constraints
sage: cilc = check_integer_list_constraints
sage: l = [[2,1,3],[1,2],[3,3],[4,1,1]]
sage: cilc(l, min_part=2)
[[3, 3]]
sage: cilc(l, max_part=2)
[[1, 2]]
sage: cilc(l, length=2)
[[1, 2], [3, 3]]
sage: cilc(l, max_length=2)
[[1, 2], [3, 3]]
sage: cilc(l, min_length=3)
[[2, 1, 3], [4, 1, 1]]
sage: cilc(l, max_slope=0)
[[3, 3], [4, 1, 1]]
sage: cilc(l, min_slope=1)
[[1, 2]]
sage: cilc(l, outer=[2,2])
[[1, 2]]
sage: cilc(l, inner=[2,2])
[[3, 3]]

sage: cilc([1,2,3], length=3, singleton=True)
[1, 2, 3]
sage: cilc([1,2,3], length=2, singleton=True) is None
True

sage.combinat.misc.umbral_operation(poly)
Returns the umbral operation ↓ applied to poly.

The umbral operation replaces each instance of 𝑥𝑎𝑖𝑖 with 𝑥𝑖 * (𝑥𝑖 − 1) * · · · * (𝑥𝑖 − 𝑎𝑖 + 1).

EXAMPLES:

5.1. Comprehensive Module List 1329

Combinatorics, Release 9.7

sage: P = PolynomialRing(QQ, 2, 'x')
sage: x = P.gens()
sage: from sage.combinat.misc import umbral_operation
sage: umbral_operation(x[0]^3) == x[0]*(x[0]-1)*(x[0]-2)
True
sage: umbral_operation(x[0]*x[1])
x0*x1
sage: umbral_operation(x[0]+x[1])
x0 + x1
sage: umbral_operation(x[0]^2*x[1]^2) == x[0]*(x[0]-1)*x[1]*(x[1]-1)
True

5.1.137 Ordered Multiset Partitions into Sets and the Minimaj Crystal

This module provides element and parent classes for ordered multiset partitions. It also implements the minimaj crystal
of Benkart et al. [BCHOPSY2017]. (See MinimajCrystal.)

AUTHORS:

• Aaron Lauve (2018): initial implementation. First draft of minimaj crystal code provided by Anne Schilling.

REFERENCES:

• [BCHOPSY2017]

• [HRW2015]

• [HRS2016]

• [LM2018]

EXAMPLES:

An ordered multiset partition into sets of the multiset {{1, 3, 3, 5}}:

sage: OrderedMultisetPartitionIntoSets([[5, 3], [1, 3]])
[{3,5}, {1,3}]

Ordered multiset partitions into sets of the multiset {{1, 3, 3}}:

sage: OrderedMultisetPartitionsIntoSets([1,1,3]).list()
[[{1}, {1}, {3}], [{1}, {1,3}], [{1}, {3}, {1}], [{1,3}, {1}], [{3}, {1}, {1}]]

Ordered multiset partitions into sets of the integer 4:

sage: OrderedMultisetPartitionsIntoSets(4).list()
[[{4}], [{1,3}], [{3}, {1}], [{1,2}, {1}], [{2}, {2}], [{2}, {1}, {1}],
[{1}, {3}], [{1}, {1,2}], [{1}, {2}, {1}], [{1}, {1}, {2}], [{1}, {1}, {1}, {1}]]

Ordered multiset partitions into sets on the alphabet {1, 4} of order 3:

sage: OrderedMultisetPartitionsIntoSets([1,4], 3).list()
[[{1,4}, {1}], [{1,4}, {4}], [{1}, {1,4}], [{4}, {1,4}], [{1}, {1}, {1}],
[{1}, {1}, {4}], [{1}, {4}, {1}], [{1}, {4}, {4}], [{4}, {1}, {1}],
[{4}, {1}, {4}], [{4}, {4}, {1}], [{4}, {4}, {4}]]

Crystal of ordered multiset partitions into sets on the alphabet {1, 2, 3} with 4 letters divided into 2 blocks:

1330 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: crystals.Minimaj(3, 4, 2).list()
[((2, 3, 1), (1,)), ((2, 3), (1, 2)), ((2, 3), (1, 3)), ((2, 1), (1, 2)),
((3, 1), (1, 2)), ((3, 1, 2), (2,)), ((3, 1), (1, 3)), ((3, 1), (2, 3)),
((3, 2), (2, 3)), ((2, 1), (1, 3)), ((2,), (1, 2, 3)), ((3,), (1, 2, 3)),
((1,), (1, 2, 3)), ((1, 2), (2, 3)), ((1, 2, 3), (3,))]

class sage.combinat.multiset_partition_into_sets_ordered.MinimajCrystal(n, ell, k)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Crystal of ordered multiset partitions into sets with 𝑒𝑙𝑙 letters from alphabet {1, 2, . . . , 𝑛} divided into 𝑘 blocks.

Elements are represented in the minimaj ordering of blocks as in Benkart et al. [BCHOPSY2017].

Note: Elements are not stored internally as ordered multiset partitions into sets, but as certain
(pairs of) words stemming from the minimaj bijection 𝜑 of [BCHOPSY2017]. See sage.combinat.
multiset_partition_into_sets_ordered.MinimajCrystal.Element for further details.

AUTHORS:

• Anne Schilling (2018): initial draft

• Aaron Lauve (2018): changed to use Letters crystal for elements

EXAMPLES:

sage: list(crystals.Minimaj(2,3,2))
[((2, 1), (1,)), ((2,), (1, 2)), ((1,), (1, 2)), ((1, 2), (2,))]

sage: b = crystals.Minimaj(3, 5, 2).an_element(); b
((2, 3, 1), (1, 2))
sage: b.f(2)
((2, 3, 1), (1, 3))
sage: b.e(2)

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

An element of a Minimaj crystal.

Note: Minimaj elements 𝑏 are stored internally as pairs (w, breaks), where:

• w is a word of length self.parent().ell over the letters 1 up to self.parent().n;

• breaks is a list of de-concatenation points to turn w into a list of row words of (skew-)tableaux that
represent 𝑏 under the minimaj bijection 𝜑 of [BCHOPSY2017].

The pair (w, breaks) may be recovered via b.value.

e(i)
Return 𝑒𝑖 on self.

EXAMPLES:

sage: B = crystals.Minimaj(4,3,2)
sage: b = B([[2,3], [3]]); b

(continues on next page)

5.1. Comprehensive Module List 1331

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/element_wrapper.html#sage.structure.element_wrapper.ElementWrapper

Combinatorics, Release 9.7

(continued from previous page)

((2, 3), (3,))
sage: [b.e(i) for i in range(1,4)]
[((1, 3), (3,)), ((2,), (2, 3)), None]

f(i)
Return 𝑓𝑖 on self.

EXAMPLES:

sage: B = crystals.Minimaj(4,3,2)
sage: b = B([[2,3], [3]]); b
((2, 3), (3,))
sage: [b.f(i) for i in range(1,4)]
[None, None, ((2, 3), (4,))]

to_tableaux_words()
Return the image of the ordered multiset partition into sets self under the minimaj bijection 𝜑 of
[BCHOPSY2017].

EXAMPLES:

sage: B = crystals.Minimaj(4,5,3)
sage: b = B.an_element(); b
((2, 3, 1), (1,), (1,))
sage: b.to_tableaux_words()
[[1], [3], [2, 1, 1]]

sage: b = B([[1,3,4], [3], [3]]); b
((4, 1, 3), (3,), (3,))
sage: b.to_tableaux_words()
[[3, 1], [], [4, 3, 3]]

from_tableau(t)
Return the bijection 𝜑−1 of [BCHOPSY2017] applied to t.

INPUT:

• t – a sequence of column tableaux and a ribbon tableau

EXAMPLES:

sage: B = crystals.Minimaj(3,6,3)
sage: b = B.an_element(); b
((3, 1, 2), (2, 1), (1,))
sage: t = b.to_tableaux_words(); t
[[1], [2, 1], [], [3, 2, 1]]
sage: B.from_tableau(t)
((3, 1, 2), (2, 1), (1,))
sage: B.from_tableau(t) == b
True

val(q='q')
Return the 𝑉 𝑎𝑙 polynomial corresponding to self.

EXAMPLES:

Verifying Example 4.5 from [BCHOPSY2017]:

1332 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: B = crystals.Minimaj(3, 4, 2) # for `Val_{4,1}^{(3)}`
sage: B.val()
(q^2+q+1)*s[2, 1, 1] + q*s[2, 2]

class sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets(parent,
data)

Bases: sage.structure.list_clone.ClonableArray

Ordered Multiset Partition into sets

An ordered multiset partition into sets 𝑐 of a multiset𝑋 is a list [𝑐1, . . . , 𝑐𝑟] of nonempty subsets of𝑋 (note: not
sub-multisets), called the blocks of 𝑐, whose multi-union is 𝑋 .

EXAMPLES:

The simplest way to create an ordered multiset partition into sets is by specifying its blocks as a list or tuple:

sage: OrderedMultisetPartitionIntoSets([[3],[2,1]])
[{3}, {1,2}]
sage: OrderedMultisetPartitionIntoSets(((3,), (1,2)))
[{3}, {1,2}]
sage: OrderedMultisetPartitionIntoSets([set([i]) for i in range(2,5)])
[{2}, {3}, {4}]

REFERENCES:

• [HRW2015]

• [HRS2016]

• [LM2018]

check()
Check that we are a valid ordered multiset partition into sets.

EXAMPLES:

sage: c = OrderedMultisetPartitionsIntoSets(4)([[1], [1,2]])
sage: c.check()

sage: OMPs = OrderedMultisetPartitionsIntoSets()
sage: c = OMPs([[1], [1], ['a']])
sage: c.check()

deconcatenate(k=2)
Return the list of 𝑘-deconcatenations of self.

A 𝑘-tuple (𝐶1, . . . , 𝐶𝑘) of ordered multiset partitions into sets represents a 𝑘-deconcatenation of an ordered
multiset partition into sets 𝐶 if 𝐶1 + · · ·+ 𝐶𝑘 = 𝐶.

Note: This is not to be confused with self.split_blocks(), which splits each block of self before
making 𝑘-tuples of ordered multiset partitions into sets.

EXAMPLES:

sage: OrderedMultisetPartitionIntoSets([[7,1],[3,4,5]]).deconcatenate()
[([{1,7}, {3,4,5}], []), ([{1,7}], [{3,4,5}]), ([], [{1,7}, {3,4,5}])]

(continues on next page)

5.1. Comprehensive Module List 1333

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

(continued from previous page)

sage: OrderedMultisetPartitionIntoSets([['b','c'],['a']]).deconcatenate()
[([{'b','c'}, {'a'}], []), ([{'b','c'}], [{'a'}]), ([], [{'b','c'}, {'a'}])]
sage: OrderedMultisetPartitionIntoSets([['a','b','c']]).deconcatenate(3)
[([{'a','b','c'}], [], []),
([], [{'a','b','c'}], []),
([], [], [{'a','b','c'}])]

fatten(grouping)
Return the ordered multiset partition into sets fatter than self, obtained by grouping together consecutive
parts according to grouping (whenever this does not violate the strictness condition).

INPUT:

• grouping – a composition (or list) whose sum is the length of self

EXAMPLES:

Let us start with the composition:

sage: C = OrderedMultisetPartitionIntoSets([[4,1,5], [2], [7,1]]); C
[{1,4,5}, {2}, {1,7}]

With grouping equal to (1, 1, 1), 𝐶 is left unchanged:

sage: C.fatten([1,1,1])
[{1,4,5}, {2}, {1,7}]

With grouping equal to (2, 1) or (1, 2), a union of consecutive parts is achieved:

sage: C.fatten([2,1])
[{1,2,4,5}, {1,7}]
sage: C.fatten([1,2])
[{1,4,5}, {1,2,7}]

However, the grouping (3) will throw an error, as 1 cannot appear twice in any block of C:

sage: C.fatten(Composition([3]))
Traceback (most recent call last):
...
ValueError: [{1,4,5,2,1,7}] is not a valid ordered multiset partition into sets

fatter()
Return the set of ordered multiset partitions into sets which are fatter than self.

An ordered multiset partition into sets 𝐴 is fatter than another 𝐵 if, reading left-to-right, every block of 𝐴
is the union of some consecutive blocks of 𝐵.

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([{1,4,5}, {2}, {1,7}]).fatter()
sage: len(C)
3
sage: sorted(C)
[[{1,4,5}, {2}, {1,7}], [{1,4,5}, {1,2,7}], [{1,2,4,5}, {1,7}]]
sage: sorted(OrderedMultisetPartitionIntoSets([['a','b'],['c'],['a']]).fatter())
[[{'a','b'}, {'c'}, {'a'}], [{'a','b'}, {'a','c'}], [{'a','b','c'}, {'a'}]]

1334 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Some extreme cases:

sage: list(OrderedMultisetPartitionIntoSets([['a','b','c']]).fatter())
[[{'a','b','c'}]]
sage: list(OrderedMultisetPartitionIntoSets([]).fatter())
[[]]
sage: A = OrderedMultisetPartitionIntoSets([[1], [2], [3], [4]])
sage: B = OrderedMultisetPartitionIntoSets([[1,2,3,4]])
sage: A.fatter().issubset(B.finer())
True

finer(strong=False)
Return the set of ordered multiset partitions into sets that are finer than self.

An ordered multiset partition into sets 𝐴 is finer than another 𝐵 if, reading left-to-right, every block of 𝐵
is the union of some consecutive blocks of 𝐴.

If optional argument strong is set to True, then return only those 𝐴 whose blocks are deconcatenations
of blocks of 𝐵. (Here, we view blocks of 𝐵 as sorted lists instead of sets.)

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([[3,2]]).finer()
sage: len(C)
3
sage: sorted(C, key=str)
[[{2,3}], [{2}, {3}], [{3}, {2}]]
sage: OrderedMultisetPartitionIntoSets([]).finer()
{[]}
sage: O = OrderedMultisetPartitionsIntoSets([1, 1, 'a', 'b'])
sage: o = O([{1}, {'a', 'b'}, {1}])
sage: sorted(o.finer(), key=str)
[[{1}, {'a','b'}, {1}], [{1}, {'a'}, {'b'}, {1}], [{1}, {'b'}, {'a'}, {1}]]
sage: o.finer() & o.fatter() == set([o])
True

is_finer(co)
Return True if the ordered multiset partition into sets self is finer than the composition co; otherwise,
return False.

EXAMPLES:

sage: OrderedMultisetPartitionIntoSets([[4],[1],[2]]).is_finer([[1,4],[2]])
True
sage: OrderedMultisetPartitionIntoSets([[1],[4],[2]]).is_finer([[1,4],[2]])
True
sage: OrderedMultisetPartitionIntoSets([[1,4],[1],[1]]).is_finer([[1,4],[2]])
False

length()
Return the number of blocks of self.

EXAMPLES:

sage: OrderedMultisetPartitionIntoSets([[7,1],[3]]).length()
2

5.1. Comprehensive Module List 1335

Combinatorics, Release 9.7

letters()
Return the set of distinct elements occurring within the blocks of self.

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([[3, 4, 1], [2], [1, 2, 3, 7]]); C
[{1,3,4}, {2}, {1,2,3,7}]
sage: C.letters()
frozenset({1, 2, 3, 4, 7})

major_index()
Return the major index of self.

The major index is a statistic on ordered multiset partitions into sets, which we define here via an example.

1. Sort each block in the list self in descending order to create a word 𝑤, keeping track of the original
separation into blocks:

in: [{3,4,5}, {2,3,4}, {1}, {4,5}]
out: [5,4,3 / 4,3,2 / 1 / 5,4]

2. Create a sequence 𝑣 = (𝑣0, 𝑣1, 𝑣2, . . .) of length self.order()+1, built recursively by:

1. 𝑣0 = 0

2. 𝑣𝑗 = 𝑣𝑗−1 + 𝛿(𝑗), where 𝛿(𝑗) = 1 if 𝑗 is the index of an end of a block, and zero otherwise.

in: [5,4,3 / 4,3,2 / 1 / 5,4]
out: (0, 0,0,1, 1,1,2, 3, 3,4)

3. Compute
∑︀
𝑗 𝑣𝑗 , restricted to descent positions in 𝑤, i.e., sum over those 𝑗 with 𝑤𝑗 > 𝑤𝑗+1:

in: w: [5, 4, 3, 4, 3, 2, 1, 5, 4]
v: (0 0, 0, 1, 1, 1, 2, 3, 3, 4)

maj := 0 +0 +1 +1 +2 +3 = 7

REFERENCES:

• [HRW2015]

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([{1,5,7}, {2,4}, {5,6}, {4,6,8}, {1,
→˓3}, {1,2,3}])
sage: C.major_index()
27
sage: C = OrderedMultisetPartitionIntoSets([{3,4,5}, {2,3,4}, {1}, {4,5}])
sage: C.major_index()
7

max_letter()
Return the maximum letter appearing in self.letters() of self.

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([[3, 4, 1], [2], [1, 2, 3, 7]])
sage: C.max_letter()
7

(continues on next page)

1336 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: D = OrderedMultisetPartitionIntoSets([['a','b','c'],['a','b'],['a'],['b',
→˓'c','f'],['c','d']])
sage: D.max_letter()
'f'
sage: C = OrderedMultisetPartitionIntoSets([])
sage: C.max_letter()

minimaj()
Return the minimaj statistic on ordered multiset partitions into sets.

We define 𝑚𝑖𝑛𝑖𝑚𝑎𝑗 via an example:

1. Sort the block in self as prescribed by self.minimaj_word(), keeping track of the original sepa-
ration into blocks:

in: [{1,5,7}, {2,4}, {5,6}, {4,6,8}, {1,3}, {1,2,3}]
out: (5,7,1 / 2,4 / 5,6 / 4,6,8 / 3,1 / 1,2,3)

2. Record the indices where descents in this word occur:

word: (5, 7, 1 / 2, 4 / 5, 6 / 4, 6, 8 / 3, 1 / 1, 2, 3)
indices: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
descents: { 2, 7, 10, 11 }

3. Compute the sum of the descents:

minimaj = 2 + 7 + 10 + 11 = 30

REFERENCES:

• [HRW2015]

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([{1,5,7}, {2,4}, {5,6}, {4,6,8}, {1,
→˓3}, {1,2,3}])
sage: C, C.minimaj_word()
([{1,5,7}, {2,4}, {5,6}, {4,6,8}, {1,3}, {1,2,3}],
(5, 7, 1, 2, 4, 5, 6, 4, 6, 8, 3, 1, 1, 2, 3))
sage: C.minimaj()
30
sage: C = OrderedMultisetPartitionIntoSets([{2,4}, {1,2,3}, {1,6,8}, {2,3}])
sage: C, C.minimaj_word()
([{2,4}, {1,2,3}, {1,6,8}, {2,3}], (2, 4, 1, 2, 3, 6, 8, 1, 2, 3))
sage: C.minimaj()
9
sage: OrderedMultisetPartitionIntoSets([]).minimaj()
0
sage: C = OrderedMultisetPartitionIntoSets([['b','d'],['a','b','c'],['b']])
sage: C, C.minimaj_word()
([{'b','d'}, {'a','b','c'}, {'b'}], ('d', 'b', 'c', 'a', 'b', 'b'))
sage: C.minimaj()
4

minimaj_blocks()
Return the minimaj ordering on blocks of self.

5.1. Comprehensive Module List 1337

Combinatorics, Release 9.7

We define the ordering via the example below.

Sort the blocks [𝐵1, ..., 𝐵𝑘] of self from right to left via:

1. Sort the last block 𝐵𝑘 in increasing order, call it the word 𝑊𝑘

2. If blocks𝐵𝑖+1, . . . , 𝐵𝑘 have been converted to words𝑊𝑖+1, . . . ,𝑊𝑘, use the letters in𝐵𝑖 to make the
unique word 𝑊𝑖 that has a factorization 𝑊𝑖 = (𝑢, 𝑣) satisfying:

• letters of 𝑢 and 𝑣 appear in increasing order, with 𝑣 possibly empty;

• letters in 𝑣𝑢 appear in increasing order;

• v[-1] is the largest letter 𝑎 ∈ 𝐵𝑖 satisfying a <= W_{i+1}[0].

EXAMPLES:

sage: OrderedMultisetPartitionIntoSets([[1,5,7], [2,4], [5,6], [4,6,8], [1,3],␣
→˓[1,2,3]])
[{1,5,7}, {2,4}, {5,6}, {4,6,8}, {1,3}, {1,2,3}]
sage: _.minimaj_blocks()
((5, 7, 1), (2, 4), (5, 6), (4, 6, 8), (3, 1), (1, 2, 3))
sage: OrderedMultisetPartitionIntoSets([]).minimaj_blocks()
()

minimaj_word()
Return an ordering of self._multiset derived from the minimaj ordering on blocks of self.

See also:

OrderedMultisetPartitionIntoSets.minimaj_blocks().

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([[2,1], [1,2,3], [1,2], [3], [1]]); C
[{1,2}, {1,2,3}, {1,2}, {3}, {1}]
sage: C.minimaj_blocks()
((1, 2), (2, 3, 1), (1, 2), (3,), (1,))
sage: C.minimaj_word()
(1, 2, 2, 3, 1, 1, 2, 3, 1)

multiset(as_dict=False)
Return the multiset corresponding to self.

INPUT:

• as_dict – (default: False) whether to return the multiset as a tuple of a dict of multiplicities

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([[3, 4, 1], [2], [1, 2, 3, 7]]); C
[{1,3,4}, {2}, {1,2,3,7}]
sage: C.multiset()
(1, 1, 2, 2, 3, 3, 4, 7)
sage: C.multiset(as_dict=True)
{1: 2, 2: 2, 3: 2, 4: 1, 7: 1}
sage: OrderedMultisetPartitionIntoSets([]).multiset() == ()
True

order()
Return the total number of elements in all blocks of self.

1338 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([[3, 4, 1], [2], [1, 2, 3, 7]]); C
[{1,3,4}, {2}, {1,2,3,7}]
sage: C.order()
8
sage: C.order() == sum(C.weight().values())
True
sage: C.order() == sum(k for k in C.shape_from_cardinality())
True
sage: OrderedMultisetPartitionIntoSets([[7,1],[3]]).order()
3

reversal()
Return the reverse ordered multiset partition into sets of self.

Given an ordered multiset partition into sets (𝐵1, 𝐵2, . . . , 𝐵𝑘), its reversal is defined to be the ordered
multiset partition into sets (𝐵𝑘, . . . , 𝐵2, 𝐵1).

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([[1], [1, 3], [2, 3, 4]]); C
[{1}, {1,3}, {2,3,4}]
sage: C.reversal()
[{2,3,4}, {1,3}, {1}]

shape_from_cardinality()
Return a composition that records the cardinality of each block of self.

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([[3, 4, 1], [2], [1, 2, 3, 7]]); C
[{1,3,4}, {2}, {1,2,3,7}]
sage: C.shape_from_cardinality()
[3, 1, 4]
sage: OrderedMultisetPartitionIntoSets([]).shape_from_cardinality() ==␣
→˓Composition([])
True

shape_from_size()
Return a composition that records the sum of entries of each block of self.

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([[3, 4, 1], [2], [1, 2, 3, 7]]); C
[{1,3,4}, {2}, {1,2,3,7}]
sage: C.shape_from_size()
[8, 2, 13]

shuffle_product(other, overlap=False)
Return the shuffles (with multiplicity) of blocks of self with blocks of other.

In case optional argument overlap is True, instead return the allowable overlapping shuffles. An overlap-
ping shuffle 𝐶 is allowable if, whenever one of its blocks 𝑐 comes from the union 𝑐 = 𝑎 ∪ 𝑏 of a block of
self and a block of other, then this union is disjoint.

5.1. Comprehensive Module List 1339

Combinatorics, Release 9.7

See also:

Composition.shuffle_product()

EXAMPLES:

sage: A = OrderedMultisetPartitionIntoSets([[2,1,3], [1,2]]); A
[{1,2,3}, {1,2}]
sage: B = OrderedMultisetPartitionIntoSets([[3,4]]); B
[{3,4}]
sage: C = OrderedMultisetPartitionIntoSets([[4,5]]); C
[{4,5}]
sage: list(A.shuffle_product(B))
[[{1,2,3}, {1,2}, {3,4}], [{3,4}, {1,2,3}, {1,2}], [{1,2,3}, {3,4}, {1,2}]]
sage: list(A.shuffle_product(B, overlap=True))
[[{1,2,3}, {1,2}, {3,4}], [{1,2,3}, {3,4}, {1,2}],
[{3,4}, {1,2,3}, {1,2}], [{1,2,3}, {1,2,3,4}]]
sage: list(A.shuffle_product(C, overlap=True))
[[{1,2,3}, {1,2}, {4,5}], [{1,2,3}, {4,5}, {1,2}], [{4,5}, {1,2,3}, {1,2}],
[{1,2,3,4,5}, {1,2}], [{1,2,3}, {1,2,4,5}]]

size()
Return the size of self (that is, the sum of all integers in all blocks) if self is a list of subsets of positive
integers.

Else, return None.

EXAMPLES:

sage: C = OrderedMultisetPartitionIntoSets([[3, 4, 1], [2], [1, 2, 3, 7]]); C
[{1,3,4}, {2}, {1,2,3,7}]
sage: C.size()
23
sage: C.size() == sum(k for k in C.shape_from_size())
True
sage: OrderedMultisetPartitionIntoSets([[7,1],[3]]).size()
11

split_blocks(k=2)
Return a dictionary representing the 𝑘-splittings of self.

A 𝑘-tuple (𝐴1, . . . , 𝐴𝑘) of ordered multiset partitions into sets represents a 𝑘-splitting of an ordered multiset
partition into sets 𝐴 = [𝑏1, . . . , 𝑏𝑟] if one can express each block 𝑏𝑖 as an (ordered) disjoint union of
sets 𝑏𝑖 = 𝑏1𝑖 ⊔ · · · ⊔ 𝑏𝑘𝑖 (some possibly empty) so that each 𝐴𝑗 is the ordered multiset partition into sets
corresponding to the list [𝑏𝑗1, 𝑏

𝑗
2, . . . , 𝑏

𝑗
𝑟], excising empty sets appearing therein.

This operation represents the coproduct in Hopf algebra of ordered multiset partitions into sets in its natural
basis [LM2018].

EXAMPLES:

sage: sorted(OrderedMultisetPartitionIntoSets([[1,2],[3,4]]).split_blocks(),␣
→˓key=str)
[([], [{1,2}, {3,4}]),
([{1,2}, {3,4}], []),
([{1,2}, {3}], [{4}]),
([{1,2}, {4}], [{3}]),

(continues on next page)

1340 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

([{1,2}], [{3,4}]),
([{1}, {3,4}], [{2}]),
([{1}, {3}], [{2}, {4}]),
([{1}, {4}], [{2}, {3}]),
([{1}], [{2}, {3,4}]),
([{2}, {3,4}], [{1}]),
([{2}, {3}], [{1}, {4}]),
([{2}, {4}], [{1}, {3}]),
([{2}], [{1}, {3,4}]),
([{3,4}], [{1,2}]),
([{3}], [{1,2}, {4}]),
([{4}], [{1,2}, {3}])]
sage: sorted(OrderedMultisetPartitionIntoSets([[1,2]]).split_blocks(3), key=str)
[([], [], [{1,2}]), ([], [{1,2}], []), ([], [{1}], [{2}]),
([], [{2}], [{1}]), ([{1,2}], [], []), ([{1}], [], [{2}]),
([{1}], [{2}], []), ([{2}], [], [{1}]), ([{2}], [{1}], [])]
sage: OrderedMultisetPartitionIntoSets([[4],[4]]).split_blocks()
{([], [{4}, {4}]): 1, ([{4}], [{4}]): 2, ([{4}, {4}], []): 1}

to_tableaux_words()
Return a sequence of lists corresponding to row words of (skew-)tableaux.

OUTPUT:

The minimaj bijection 𝜑 of [BCHOPSY2017] applied to self.

Todo: Implement option for mapping to sequence of (skew-)tableaux?

EXAMPLES:

sage: co = ((1,2,4),(4,5),(3,),(4,6,1),(2,3,1),(1,),(2,5))
sage: OrderedMultisetPartitionIntoSets(co).to_tableaux_words()
[[5, 1], [3, 1], [6], [5, 4, 2], [1, 4, 3, 4, 2, 1, 2]]

weight(as_weak_comp=False)
Return a dictionary, with keys being the letters in self.letters() and values being their (positive) fre-
quency.

Alternatively, if as_weak_comp is True, count the number of instances 𝑛𝑖 for each distinct positive integer
𝑖 across all blocks of self. Return as a list [𝑛1, 𝑛2, 𝑛3, ..., 𝑛𝑘], where 𝑘 is the max letter appearing in
self.letters().

EXAMPLES:

sage: c = OrderedMultisetPartitionIntoSets([[6,1],[1,3],[1,3,6]])
sage: c.weight()
{1: 3, 3: 2, 6: 2}
sage: c.weight(as_weak_comp=True)
[3, 0, 2, 0, 0, 2]

class sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets(is_finite=None,
**con-
straints)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.

5.1. Comprehensive Module List 1341

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

parent.Parent

Ordered Multiset Partitions into Sets.

An ordered multiset partition into sets 𝑐 of a multiset 𝑋 is a list of nonempty subsets (not multisets), called the
blocks of 𝑐, whose multi-union is 𝑋 .

The number of blocks of 𝑐 is called its length. The order of 𝑐 is the cardinality of the multiset𝑋 . If, additionally,
𝑋 is a multiset of positive integers, then the size of 𝑐 is the sum of all elements of 𝑋 .

The user may wish to focus on ordered multiset partitions into sets of a given size, or over a given alphabet.
Hence, this class allows a variety of arguments as input.

INPUT:

Expects one or two arguments, with different behaviors resulting:

• One Argument:

– 𝑋 – a dictionary or list or tuple (representing a multiset for 𝑐), or an integer (representing the size of
𝑐)

• Two Arguments:

– 𝐴 – a list (representing allowable letters within blocks of 𝑐), or a positive integer (representing the
maximal allowable letter)

– 𝑛 – a nonnegative integer (the total number of letters within 𝑐)

Optional keyword arguments are as follows: (See corresponding methods in see
OrderedMultisetPartitionIntoSets for more details.)

• weight=X (list or dictionary 𝑋) specifies the multiset for 𝑐

• size=n (integer 𝑛) specifies the size of 𝑐

• alphabet=A (iterable 𝐴) specifies allowable elements for the blocks of 𝑐

• length=k (integer 𝑘) specifies the number of blocks in the partition

• min_length=k (integer 𝑘) specifies minimum number of blocks in the partition

• max_length=k (integer 𝑘) specifies maximum number of blocks in the partition

• order=n (integer 𝑛) specifies the cardinality of the multiset that 𝑐 partitions

• min_order=n (integer 𝑛) specifies minimum number of elements in the partition

• max_order=n (integer 𝑛) specifies maximum number of elements in the partition

EXAMPLES:

Passing one argument to OrderedMultisetPartitionsIntoSets:

There are 5 ordered multiset partitions into sets of the multiset {{1, 1, 4}}:

sage: OrderedMultisetPartitionsIntoSets([1,1,4]).cardinality()
5

Here is the list of them:

sage: OrderedMultisetPartitionsIntoSets([1,1,4]).list()
[[{1}, {1}, {4}], [{1}, {1,4}], [{1}, {4}, {1}], [{1,4}, {1}], [{4}, {1}, {1}]]

By chance, there are also 5 ordered multiset partitions into sets of the integer 3:

1342 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: OrderedMultisetPartitionsIntoSets(3).cardinality()
5

Here is the list of them:

sage: OrderedMultisetPartitionsIntoSets(3).list()
[[{3}], [{1,2}], [{2}, {1}], [{1}, {2}], [{1}, {1}, {1}]]

Passing two arguments to OrderedMultisetPartitionsIntoSets:

There are also 5 ordered multiset partitions into sets of order 2 over the alphabet {1, 4}:

sage: OrderedMultisetPartitionsIntoSets([1, 4], 2)
Ordered Multiset Partitions into Sets of order 2 over alphabet {1, 4}
sage: OrderedMultisetPartitionsIntoSets([1, 4], 2).cardinality()
5

Here is the list of them:

sage: OrderedMultisetPartitionsIntoSets([1, 4], 2).list()
[[{1,4}], [{1}, {1}], [{1}, {4}], [{4}, {1}], [{4}, {4}]]

If no arguments are passed to OrderedMultisetPartitionsIntoSets, then the code returns all ordered mul-
tiset partitions into sets:

sage: OrderedMultisetPartitionsIntoSets()
Ordered Multiset Partitions into Sets
sage: [] in OrderedMultisetPartitionsIntoSets()
True
sage: [[2,3], [1]] in OrderedMultisetPartitionsIntoSets()
True
sage: [['a','b'], ['a']] in OrderedMultisetPartitionsIntoSets()
True
sage: [[-2,3], [3]] in OrderedMultisetPartitionsIntoSets()
True
sage: [[2], [3,3]] in OrderedMultisetPartitionsIntoSets()
False

The following examples show how to test whether or not an object is an ordered multiset partition into sets:

sage: [[3,2],[2]] in OrderedMultisetPartitionsIntoSets()
True
sage: [[3,2],[2]] in OrderedMultisetPartitionsIntoSets(7)
True
sage: [[3,2],[2]] in OrderedMultisetPartitionsIntoSets([2,2,3])
True
sage: [[3,2],[2]] in OrderedMultisetPartitionsIntoSets(5)
False

5.1. Comprehensive Module List 1343

Combinatorics, Release 9.7

Optional keyword arguments

Passing keyword arguments that are incompatible with required requirements results in an error; otherwise, the
collection of ordered multiset partitions into sets is restricted accordingly:

The weight keyword:

This is used to specify which multiset𝑋 is to be considered, if this multiset was not passed as one of the required
arguments for OrderedMultisetPartitionsIntoSets. In principle, it is a dictionary, but weak compositions
are also allowed. For example, the ordered multiset partitions into sets of integer 4 are listed by weight below:

sage: OrderedMultisetPartitionsIntoSets(4, weight=[0,0,0,1])
Ordered Multiset Partitions into Sets of integer 4 with constraint: weight={4: 1}
sage: OrderedMultisetPartitionsIntoSets(4, weight=[0,0,0,1]).list()
[[{4}]]
sage: OrderedMultisetPartitionsIntoSets(4, weight=[1,0,1]).list()
[[{1}, {3}], [{1,3}], [{3}, {1}]]
sage: OrderedMultisetPartitionsIntoSets(4, weight=[0,2]).list()
[[{2}, {2}]]
sage: OrderedMultisetPartitionsIntoSets(4, weight=[0,1,1]).list()
[]
sage: OrderedMultisetPartitionsIntoSets(4, weight=[2,1]).list()
[[{1}, {1}, {2}], [{1}, {1,2}], [{1}, {2}, {1}], [{1,2}, {1}], [{2}, {1}, {1}]]
sage: O1 = OrderedMultisetPartitionsIntoSets(weight=[2,0,1])
sage: O2 = OrderedMultisetPartitionsIntoSets(weight={1:2, 3:1})
sage: O1 == O2
True
sage: OrderedMultisetPartitionsIntoSets(4, weight=[4]).list()
[[{1}, {1}, {1}, {1}]]

The size keyword:

This is used to constrain the sum of entries across all blocks of the ordered multiset partition into sets. (This size
is not pre-determined when alphabet 𝐴 and order 𝑑 are passed as required arguments.) For example, the ordered
multiset partitions into sets of order 3 over the alphabet [1, 2, 4] that have size equal to 5 are as follows:

sage: OMPs = OrderedMultisetPartitionsIntoSets
sage: OMPs([1,2,4], 3, size=5).list()
[[{1,2}, {2}], [{2}, {1,2}], [{2}, {2}, {1}],
[{2}, {1}, {2}], [{1}, {2}, {2}]]

The alphabet option:

This is used to constrain which integers appear across all blocks of the ordered multiset partition into sets. For
example, the ordered multiset partitions into sets of integer 4 are listed for different choices of alphabet below.
Note that alphabet is allowed to be an integer or an iterable:

sage: OMPs = OrderedMultisetPartitionsIntoSets
sage: OMPs(4, alphabet=3).list()
[[{1,3}], [{3}, {1}],
[{1,2}, {1}], [{2}, {2}],
[{2}, {1}, {1}], [{1}, {3}],
[{1}, {1,2}], [{1}, {2}, {1}],
[{1}, {1}, {2}], [{1}, {1}, {1}, {1}]]
sage: OMPs(4, alphabet=3) == OMPs(4, alphabet=[1,2,3])
True

(continues on next page)

1344 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: OMPs(4, alphabet=[3]).list()
[]
sage: OMPs(4, alphabet=[1,3]).list()
[[{1,3}], [{3}, {1}], [{1}, {3}], [{1}, {1}, {1}, {1}]]
sage: OMPs(4, alphabet=[2]).list()
[[{2}, {2}]]
sage: OMPs(4, alphabet=[1,2]).list()
[[{1,2}, {1}], [{2}, {2}], [{2}, {1}, {1}], [{1}, {1,2}],
[{1}, {2}, {1}], [{1}, {1}, {2}], [{1}, {1}, {1}, {1}]]
sage: OMPs(4, alphabet=4).list() == OMPs(4).list()
True

The length, min_length, and max_length options:

These are used to constrain the number of blocks within the ordered multiset partitions into sets. For example,
the ordered multiset partitions into sets of integer 4 of length exactly 2, at least 2, and at most 2 are given by:

sage: OrderedMultisetPartitionsIntoSets(4, length=2).list()
[[{3}, {1}], [{1,2}, {1}], [{2}, {2}], [{1}, {3}], [{1}, {1,2}]]
sage: OrderedMultisetPartitionsIntoSets(4, min_length=3).list()
[[{2}, {1}, {1}], [{1}, {2}, {1}], [{1}, {1}, {2}], [{1}, {1}, {1}, {1}]]
sage: OrderedMultisetPartitionsIntoSets(4, max_length=2).list()
[[{4}], [{1,3}], [{3}, {1}], [{1,2}, {1}], [{2}, {2}], [{1}, {3}],
[{1}, {1,2}]]

The order, min_order, and max_order options:

These are used to constrain the number of elements across all blocks of the ordered multiset partitions into sets.
For example, the ordered multiset partitions into sets of integer 4 are listed by order below:

sage: OrderedMultisetPartitionsIntoSets(4, order=1).list()
[[{4}]]
sage: OrderedMultisetPartitionsIntoSets(4, order=2).list()
[[{1,3}], [{3}, {1}], [{2}, {2}], [{1}, {3}]]
sage: OrderedMultisetPartitionsIntoSets(4, order=3).list()
[[{1,2}, {1}], [{2}, {1}, {1}], [{1}, {1,2}], [{1}, {2}, {1}], [{1}, {1}, {2}]]
sage: OrderedMultisetPartitionsIntoSets(4, order=4).list()
[[{1}, {1}, {1}, {1}]]

Also, here is a use of max_order, giving the ordered multiset partitions into sets of integer 4 with order 1 or 2:

sage: OrderedMultisetPartitionsIntoSets(4, max_order=2).list()
[[{4}], [{1,3}], [{3}, {1}], [{2}, {2}], [{1}, {3}]]

Element
alias of OrderedMultisetPartitionIntoSets

subset(size)
Return a subset of all ordered multiset partitions into sets.

INPUT:

• size – an integer representing a slice of all ordered multiset partitions into sets

The slice alluded to above is taken with respect to length, or to order, or to size, depending on the constraints
of self.

5.1. Comprehensive Module List 1345

Combinatorics, Release 9.7

EXAMPLES:

sage: C = OrderedMultisetPartitionsIntoSets(weight={2:2, 3:1, 5:1})
sage: C.subset(3)
Ordered Multiset Partitions into Sets of multiset {{2, 2, 3, 5}} with␣
→˓constraint: length=3
sage: C = OrderedMultisetPartitionsIntoSets(weight={2:2, 3:1, 5:1}, min_
→˓length=2)
sage: C.subset(3)
Ordered Multiset Partitions into Sets of multiset {{2, 2, 3, 5}} with␣
→˓constraint: length=3
sage: C = OrderedMultisetPartitionsIntoSets(alphabet=[2,3,5])
sage: C.subset(3)
Ordered Multiset Partitions into Sets of order 3 over alphabet {2, 3, 5}
sage: C = OrderedMultisetPartitionsIntoSets(order=5)
sage: C.subset(3)
Ordered Multiset Partitions into Sets of integer 3 with constraint: order=5
sage: C = OrderedMultisetPartitionsIntoSets(alphabet=[2,3,5], order=5, length=3)
sage: C.subset(3)
Ordered Multiset Partitions into Sets of order 3 over alphabet {2, 3, 5} with␣
→˓constraint: length=3
sage: C = OrderedMultisetPartitionsIntoSets()
sage: C.subset(3)
Ordered Multiset Partitions into Sets of integer 3
sage: C.subset(3) == OrderedMultisetPartitionsIntoSets(3)
True

class sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_X(X)
Bases: sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets

Class of ordered multiset partitions into sets of a fixed multiset 𝑋 .

cardinality()
Return the number of ordered partitions of multiset X.

random_element()
Return a random element of self.

This method does not return elements of self with uniform probability, but it does cover all elements. The
scheme is as follows:

• produce a random permutation p of the multiset;

• create blocks of an OMP fat by breaking p after non-ascents;

• take a random element of fat.finer().

EXAMPLES:

sage: OrderedMultisetPartitionsIntoSets([1,1,3]).random_element() # random
[{1}, {1,3}]
sage: OrderedMultisetPartitionsIntoSets([1,1,3]).random_element() # random
[{3}, {1}, {1}]

sage: OMP = OrderedMultisetPartitionsIntoSets([1,1,3,3])
sage: d = {}
sage: for _ in range(1000):
....: x = OMP.random_element()

(continues on next page)

1346 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: d[x] = d.get(x, 0) + 1
sage: d.values() # random
[102, 25, 76, 24, 66, 88, 327, 27, 83, 83, 239, 72, 88]

class sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_X_constraints(X,
**con-
straints)

Bases: sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets

Class of ordered multiset partitions into sets of a fixed multiset 𝑋 satisfying constraints.

class sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_all_constraints(is_finite=None,
**con-
straints)

Bases: sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets

All ordered multiset partitions into sets (with or without constraints).

EXAMPLES:

sage: C = OrderedMultisetPartitionsIntoSets(); C
Ordered Multiset Partitions into Sets
sage: [[1],[1,'a']] in C
True

sage: OrderedMultisetPartitionsIntoSets(weight=[2,0,1], length=2)
Ordered Multiset Partitions into Sets of multiset {{1, 1, 3}} with constraint:␣
→˓length=2

class sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_alph_d(A,
d)

Bases: sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets

Class of ordered multiset partitions into sets of specified order 𝑑 over a fixed alphabet 𝐴.

cardinality()
Return the number of ordered partitions of order self._order on alphabet self._alphabet.

random_element()
Return a random element of self.

This method does not return elements of self with uniform probability, but it does cover all elements. The
scheme is as follows:

• produce a random composition 𝐶;

• choose random subsets of self._alphabet of size 𝑐 for each 𝑐 in 𝐶.

EXAMPLES:

sage: OrderedMultisetPartitionsIntoSets([1,4], 3).random_element() # random
[{4}, {1,4}]
sage: OrderedMultisetPartitionsIntoSets([1,3], 4).random_element() # random
[{1,3}, {1}, {3}]

sage: OMP = OrderedMultisetPartitionsIntoSets([2,3,4], 2)
sage: d = {}
sage: for _ in range(1200):

(continues on next page)

5.1. Comprehensive Module List 1347

Combinatorics, Release 9.7

(continued from previous page)

....: x = OMP.random_element()

....: d[x] = d.get(x, 0) + 1
sage: d.values() # random
[192, 68, 73, 61, 69, 60, 77, 204, 210, 66, 53, 67]

class sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_alph_d_constraints(A,
d,
**con-
straints)

Bases: sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets

Class of ordered multiset partitions into sets of specified order 𝑑 over a fixed alphabet 𝐴 satisfying constraints.

class sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_n(n)
Bases: sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets

Ordered multiset partitions into sets of a fixed integer 𝑛.

cardinality()
Return the number of elements in self.

random_element()
Return a random element of self.

This method does not return elements of self with uniform probability, but it does cover all elements. The
scheme is as follows:

• produce a random composition 𝐶;

• choose a random partition of 𝑐 into distinct parts for each 𝑐 in 𝐶.

EXAMPLES:

sage: OrderedMultisetPartitionsIntoSets(5).random_element() # random
[{1,2}, {1}, {1}]
sage: OrderedMultisetPartitionsIntoSets(5).random_element() # random
[{2}, {1,2}]

sage: OMP = OrderedMultisetPartitionsIntoSets(5)
sage: d = {}
sage: for _ in range(1100):
....: x = OMP.random_element()
....: d[x] = d.get(x, 0) + 1
sage: d.values() # random
[72, 73, 162, 78, 135, 75, 109, 65, 135, 134, 62]

class sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_n_constraints(n,
**con-
straints)

Bases: sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets

Class of ordered multiset partitions into sets of a fixed integer 𝑛 satisfying constraints.

1348 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.138 Non-commutative symmetric functions and quasi-symmetric functions

• Introduction to Quasisymmetric Functions

• Non-Commutative Symmetric Functions (NCSF)

• Quasi-Symmetric Functions (QSym)

• Generic code for bases

5.1.139 Common combinatorial tools

REFERENCES:

sage.combinat.ncsf_qsym.combinatorics.coeff_dab(I, J)
Return the number of standard composition tableaux of shape 𝐼 with descent composition 𝐽 .

INPUT:

• I, J – compositions

OUTPUT:

• An integer

EXAMPLES:

sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_dab
sage: coeff_dab(Composition([2,1]),Composition([2,1]))
1
sage: coeff_dab(Composition([1,1,2]),Composition([1,2,1]))
0

sage.combinat.ncsf_qsym.combinatorics.coeff_ell(J, I)
Returns the coefficient ℓ𝐽,𝐼 as defined in [NCSF].

INPUT:

• J – a composition

• I – a composition refining J

OUTPUT:

• integer

EXAMPLES:

sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_ell
sage: coeff_ell(Composition([1,1,1]), Composition([2,1]))
2
sage: coeff_ell(Composition([2,1]), Composition([3]))
2

sage.combinat.ncsf_qsym.combinatorics.coeff_lp(J, I)
Returns the coefficient 𝑙𝑝𝐽,𝐼 as defined in [NCSF].

INPUT:

• J – a composition

• I – a composition refining J

5.1. Comprehensive Module List 1349

Combinatorics, Release 9.7

OUTPUT:

• integer

EXAMPLES:

sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_lp
sage: coeff_lp(Composition([1,1,1]), Composition([2,1]))
1
sage: coeff_lp(Composition([2,1]), Composition([3]))
1

sage.combinat.ncsf_qsym.combinatorics.coeff_pi(J, I)
Returns the coefficient 𝜋𝐽,𝐼 as defined in [NCSF].

INPUT:

• J – a composition

• I – a composition refining J

OUTPUT:

• integer

EXAMPLES:

sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_pi
sage: coeff_pi(Composition([1,1,1]), Composition([2,1]))
2
sage: coeff_pi(Composition([2,1]), Composition([3]))
6

sage.combinat.ncsf_qsym.combinatorics.coeff_sp(J, I)
Returns the coefficient 𝑠𝑝𝐽,𝐼 as defined in [NCSF].

INPUT:

• J – a composition

• I – a composition refining J

OUTPUT:

• integer

EXAMPLES:

sage: from sage.combinat.ncsf_qsym.combinatorics import coeff_sp
sage: coeff_sp(Composition([1,1,1]), Composition([2,1]))
2
sage: coeff_sp(Composition([2,1]), Composition([3]))
4

sage.combinat.ncsf_qsym.combinatorics.compositions_order(n)
Return the compositions of 𝑛 ordered as defined in [QSCHUR].

Let 𝑆(𝛾) return the composition 𝛾 after sorting. For compositions 𝛼 and 𝛽, we order 𝛼B 𝛽 if

1) 𝑆(𝛼) > 𝑆(𝛽) lexicographically, or

2) 𝑆(𝛼) = 𝑆(𝛽) and 𝛼 > 𝛽 lexicographically.

INPUT:

1350 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• n – a positive integer

OUTPUT:

• A list of the compositions of n sorted into decreasing order by B

EXAMPLES:

sage: from sage.combinat.ncsf_qsym.combinatorics import compositions_order
sage: compositions_order(3)
[[3], [2, 1], [1, 2], [1, 1, 1]]
sage: compositions_order(4)
[[4], [3, 1], [1, 3], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]

sage.combinat.ncsf_qsym.combinatorics.m_to_s_stat(R, I, K)

Return the coefficient of the complete non-commutative symmetric function 𝑆𝐾 in the expansion of the mono-
mial non-commutative symmetric function 𝑀 𝐼 with respect to the complete basis over the ring 𝑅. This is the
coefficient in formula (36) of Tevlin’s paper [Tev2007].

INPUT:

• R – A ring, supposed to be a Q-algebra

• I, K – compositions

OUTPUT:

• The coefficient of 𝑆𝐾 in the expansion of 𝑀 𝐼 in the complete basis of the non-commutative symmetric
functions over R.

EXAMPLES:

sage: from sage.combinat.ncsf_qsym.combinatorics import m_to_s_stat
sage: m_to_s_stat(QQ, Composition([2,1]), Composition([1,1,1]))
-1
sage: m_to_s_stat(QQ, Composition([3]), Composition([1,2]))
-2
sage: m_to_s_stat(QQ, Composition([2,1,2]), Composition([2,1,2]))
8/3

sage.combinat.ncsf_qsym.combinatorics.number_of_SSRCT(content_comp, shape_comp)
The number of semi-standard reverse composition tableaux.

The dual quasisymmetric-Schur functions satisfy a left Pieri rule where 𝑆𝑛𝑑𝑄𝑆𝛾 is a sum over dual
quasisymmetric-Schur functions indexed by compositions which contain the composition 𝛾. The definition of an
SSRCT comes from this rule. The number of SSRCT of content 𝛽 and shape 𝛼 is equal to the number of SSRCT
of content (𝛽2, . . . , 𝛽ℓ) and shape 𝛾 where 𝑑𝑄𝑆𝛼 appears in the expansion of 𝑆𝛽1

𝑑𝑄𝑆𝛾 .

In sage the recording tableau for these objects are called CompositionTableaux.

INPUT:

• content_comp, shape_comp – compositions

OUTPUT:

• An integer

EXAMPLES:

5.1. Comprehensive Module List 1351

Combinatorics, Release 9.7

sage: from sage.combinat.ncsf_qsym.combinatorics import number_of_SSRCT
sage: number_of_SSRCT(Composition([3,1]), Composition([1,3]))
0
sage: number_of_SSRCT(Composition([1,2,1]), Composition([1,3]))
1
sage: number_of_SSRCT(Composition([1,1,2,2]), Composition([3,3]))
2
sage: all(CompositionTableaux(be).cardinality()
....: == sum(number_of_SSRCT(al,be)*binomial(4,len(al))
....: for al in Compositions(4))
....: for be in Compositions(4))
True

sage.combinat.ncsf_qsym.combinatorics.number_of_fCT(content_comp, shape_comp)
Return the number of Immaculate tableaux of shape shape_comp and content content_comp.

See [BBSSZ2012], Definition 3.9, for the notion of an immaculate tableau.

INPUT:

• content_comp, shape_comp – compositions

OUTPUT:

• An integer

EXAMPLES:

sage: from sage.combinat.ncsf_qsym.combinatorics import number_of_fCT
sage: number_of_fCT(Composition([3,1]), Composition([1,3]))
0
sage: number_of_fCT(Composition([1,2,1]), Composition([1,3]))
1
sage: number_of_fCT(Composition([1,1,3,1]), Composition([2,1,3]))
2

5.1.140 Generic code for bases

This is a collection of code that is shared by bases of noncommutative symmetric functions and quasisymmetric func-
tions.

AUTHORS:

• Jason Bandlow

• Franco Saliola

• Chris Berg

class sage.combinat.ncsf_qsym.generic_basis_code.AlgebraMorphism(domain, on_generators,
position=0, codomain=None,
category=None, anti=False)

Bases: sage.modules.with_basis.morphism.ModuleMorphismByLinearity

A class for algebra morphism defined on a free algebra from the image of the generators

class sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

1352 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/modules/sage/modules/with_basis/morphism.html#sage.modules.with_basis.morphism.ModuleMorphismByLinearity
../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

class ElementMethods
Bases: object

degree()
The maximum of the degrees of the homogeneous summands.

See also:

homogeneous_degree()

EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: x.degree()
2
sage: (x^3 + 4*y^2).degree()
6
sage: ((1 + x)^3).degree()
6

sage: F = QuasiSymmetricFunctions(QQ).F()
sage: (x, y) = (F[2], F[3])
sage: x.degree()
2
sage: (x^3 + 4*y^2).degree()
6
sage: ((1 + x)^3).degree()
6

degree_negation()
Return the image of self under the degree negation automorphism of the parent of self.

The degree negation is the automorphism which scales every homogeneous element of degree 𝑘 by
(−1)𝑘 (for all 𝑘).

Calling degree_negation(self) is equivalent to calling self.parent().
degree_negation(self).

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: S = NSym.S()
sage: f = 2*S[2,1] + 4*S[1,1] - 5*S[1,2] - 3*S[[]]
sage: f.degree_negation()
-3*S[] + 4*S[1, 1] + 5*S[1, 2] - 2*S[2, 1]

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: dI = QSym.dualImmaculate()
sage: f = -3*dI[2,1] + 4*dI[2] + 2*dI[1]
sage: f.degree_negation()
-2*dI[1] + 4*dI[2] + 3*dI[2, 1]

Todo: Generalize this to all graded vector spaces?

5.1. Comprehensive Module List 1353

Combinatorics, Release 9.7

duality_pairing(y)
The duality pairing between elements of 𝑁𝑆𝑦𝑚 and elements of 𝑄𝑆𝑦𝑚.

The complete basis is dual to the monomial basis with respect to this pairing.

INPUT:
• y – an element of the dual Hopf algebra of self

OUTPUT:
• The result of pairing self with y.

EXAMPLES:

sage: R = NonCommutativeSymmetricFunctions(QQ).Ribbon()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: R[1,1,2].duality_pairing(F[1,1,2])
1
sage: R[1,2,1].duality_pairing(F[1,1,2])
0

sage: L = NonCommutativeSymmetricFunctions(QQ).Elementary()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: L[1,2].duality_pairing(F[1,2])
0
sage: L[1,1,1].duality_pairing(F[1,2])
1

skew_by(y, side='left')
The operation which is dual to multiplication by y, where y is an element of the dual space of self.

This is calculated through the coproduct of self and the expansion of y in the dual basis.

INPUT:
• y – an element of the dual Hopf algebra of self
• side – (Default=’left’) Either ‘left’ or ‘right’

OUTPUT:
• The result of skewing self by y, on the side side

EXAMPLES:

Skewing an element of NCSF by an element of QSym:

sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: R([2,2,2]).skew_by(F[1,1])
R[1, 1, 2] + R[1, 2, 1] + R[1, 3] + R[2, 1, 1] + 2*R[2, 2] + R[3, 1] + R[4]
sage: R([2,2,2]).skew_by(F[2])
R[1, 1, 2] + R[1, 2, 1] + R[1, 3] + R[2, 1, 1] + 3*R[2, 2] + R[3, 1] + R[4]

Skewing an element of QSym by an element of NCSF:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: R = NonCommutativeSymmetricFunctions(QQ).R()
sage: F = QuasiSymmetricFunctions(QQ).F()
sage: F[3,2].skew_by(R[1,1])
0
sage: F[3,2].skew_by(R[1,1], side='right')
0
sage: F[3,2].skew_by(S[1,1,1], side='right')

(continues on next page)

1354 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

F[2]
sage: F[3,2].skew_by(S[1,2], side='right')
F[2]
sage: F[3,2].skew_by(S[2,1], side='right')
0
sage: F[3,2].skew_by(S[1,1,1])
F[2]
sage: F[3,2].skew_by(S[1,1])
F[1, 2]
sage: F[3,2].skew_by(S[1])
F[2, 2]

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: R = NonCommutativeSymmetricFunctions(QQ).R()
sage: M = QuasiSymmetricFunctions(QQ).M()
sage: M[3,2].skew_by(S[2])
0
sage: M[3,2].skew_by(S[2], side='right')
M[3]
sage: M[3,2].skew_by(S[3])
M[2]
sage: M[3,2].skew_by(S[3], side='right')
0

class ParentMethods
Bases: object

alternating_sum_of_compositions(n)
Alternating sum over compositions of n.

Note that this differs from the method alternating_sum_of_finer_compositions() because the
coefficient of the composition 1𝑛 is positive. This method is used in the expansion of the elementary
generators into the complete generators and vice versa.

INPUT:
• n – a positive integer

OUTPUT:
• The expansion of the complete generator indexed by n into the elementary basis.

EXAMPLES:

sage: L = NonCommutativeSymmetricFunctions(QQ).L()
sage: L.alternating_sum_of_compositions(0)
L[]
sage: L.alternating_sum_of_compositions(1)
L[1]
sage: L.alternating_sum_of_compositions(2)
L[1, 1] - L[2]
sage: L.alternating_sum_of_compositions(3)
L[1, 1, 1] - L[1, 2] - L[2, 1] + L[3]
sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: S.alternating_sum_of_compositions(3)
S[1, 1, 1] - S[1, 2] - S[2, 1] + S[3]

5.1. Comprehensive Module List 1355

Combinatorics, Release 9.7

alternating_sum_of_fatter_compositions(composition)
Return the alternating sum of fatter compositions in a basis of the non-commutative symmetric func-
tions.

INPUT:
• composition – a composition

OUTPUT:
• The alternating sum of the compositions fatter than composition, in the basis self. The alterna-

tion is upon the length of the compositions, and is normalized so that composition has coefficient
1.

EXAMPLES:

sage: NCSF=NonCommutativeSymmetricFunctions(QQ)
sage: elementary = NCSF.elementary()
sage: elementary.alternating_sum_of_fatter_compositions(Composition([2,2,
→˓1]))
L[2, 2, 1] - L[2, 3] - L[4, 1] + L[5]
sage: elementary.alternating_sum_of_fatter_compositions(Composition([1,2]))
L[1, 2] - L[3]

alternating_sum_of_finer_compositions(composition, conjugate=False)
Return the alternating sum of finer compositions in a basis of the non-commutative symmetric func-
tions.

INPUT:
• composition – a composition
• conjugate – (default: False) a boolean

OUTPUT:
• The alternating sum of the compositions finer than composition, in the basis self. The alterna-

tion is upon the length of the compositions, and is normalized so that composition has coefficient
1. If the variable conjugate is set to True, then the conjugate of composition is used instead
of composition.

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: elementary = NCSF.elementary()
sage: elementary.alternating_sum_of_finer_compositions(Composition([2,2,1]))
L[1, 1, 1, 1, 1] - L[1, 1, 2, 1] - L[2, 1, 1, 1] + L[2, 2, 1]
sage: elementary.alternating_sum_of_finer_compositions(Composition([1,2]))
-L[1, 1, 1] + L[1, 2]

counit_on_basis(I)
The counit is defined by sending all elements of positive degree to zero.

EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: S.counit_on_basis([1,3])
0
sage: M = QuasiSymmetricFunctions(QQ).M()
sage: M.counit_on_basis([1,3])
0

degree_negation(element)
Return the image of element under the degree negation automorphism of self.

1356 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The degree negation is the automorphism which scales every homogeneous element of degree 𝑘 by
(−1)𝑘 (for all 𝑘).

INPUT:
• element – element of self

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: S = NSym.S()
sage: f = 2*S[2,1] + 4*S[1,1] - 5*S[1,2] - 3*S[[]]
sage: S.degree_negation(f)
-3*S[] + 4*S[1, 1] + 5*S[1, 2] - 2*S[2, 1]

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: dI = QSym.dualImmaculate()
sage: f = -3*dI[2,1] + 4*dI[2] + 2*dI[1]
sage: dI.degree_negation(f)
-2*dI[1] + 4*dI[2] + 3*dI[2, 1]

Todo: Generalize this to all graded vector spaces?

degree_on_basis(I)
Return the degree of the basis element indexed by 𝐼 .

INPUT:
• I – a composition

OUTPUT:
• The degree of the non-commutative symmetric function basis element of self indexed by I. By

definition, this is the size of the composition I.
EXAMPLES:

sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: R.degree_on_basis(Composition([2,3]))
5
sage: M = QuasiSymmetricFunctions(QQ).Monomial()
sage: M.degree_on_basis(Composition([3,2]))
5
sage: M.degree_on_basis(Composition([]))
0

duality_pairing(x, y)
The duality pairing between elements of 𝑁𝑆𝑦𝑚 and elements of 𝑄𝑆𝑦𝑚.

This is a default implementation that uses self.realizations_of().a_realization() and its
dual basis.

INPUT:
• x – an element of self
• y – an element in the dual basis of self

OUTPUT:
• The result of pairing the function x from self with the function y from the dual basis of self

EXAMPLES:

5.1. Comprehensive Module List 1357

Combinatorics, Release 9.7

sage: R = NonCommutativeSymmetricFunctions(QQ).Ribbon()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: R.duality_pairing(R[1,1,2], F[1,1,2])
1
sage: R.duality_pairing(R[1,2,1], F[1,1,2])
0
sage: F.duality_pairing(F[1,2,1], R[1,1,2])
0

sage: S = NonCommutativeSymmetricFunctions(QQ).Complete()
sage: M = QuasiSymmetricFunctions(QQ).Monomial()
sage: S.duality_pairing(S[1,1,2], M[1,1,2])
1
sage: S.duality_pairing(S[1,2,1], M[1,1,2])
0
sage: M.duality_pairing(M[1,1,2], S[1,1,2])
1
sage: M.duality_pairing(M[1,2,1], S[1,1,2])
0

sage: S = NonCommutativeSymmetricFunctions(QQ).Complete()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: S.duality_pairing(S[1,2], F[1,1,1])
0
sage: S.duality_pairing(S[1,1,1,1], F[4])
1

duality_pairing_by_coercion(x, y)
The duality pairing between elements of NSym and elements of QSym.

This is a default implementation that uses self.realizations_of().a_realization() and its
dual basis.

INPUT:
• x – an element of self
• y – an element in the dual basis of self

OUTPUT:
• The result of pairing the function x from self with the function y from the dual basis of self

EXAMPLES:

sage: L = NonCommutativeSymmetricFunctions(QQ).Elementary()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: L.duality_pairing_by_coercion(L[1,2], F[1,2])
0
sage: F.duality_pairing_by_coercion(F[1,2], L[1,2])
0
sage: L.duality_pairing_by_coercion(L[1,1,1], F[1,2])
1
sage: F.duality_pairing_by_coercion(F[1,2], L[1,1,1])
1

duality_pairing_matrix(basis, degree)
The matrix of scalar products between elements of NSym and elements of QSym.

INPUT:

1358 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• basis – A basis of the dual Hopf algebra
• degree – a non-negative integer

OUTPUT:
• The matrix of scalar products between the basis self and the basis basis in the dual Hopf algebra

in degree degree.
EXAMPLES:

The ribbon basis of NCSF is dual to the fundamental basis of QSym:

sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: R.duality_pairing_matrix(F, 3)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: F.duality_pairing_matrix(R, 3)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

The complete basis of NCSF is dual to the monomial basis of QSym:

sage: S = NonCommutativeSymmetricFunctions(QQ).complete()
sage: M = QuasiSymmetricFunctions(QQ).Monomial()
sage: S.duality_pairing_matrix(M, 3)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: M.duality_pairing_matrix(S, 3)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

The matrix between the ribbon basis of NCSF and the monomial basis of QSym:

sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: M = QuasiSymmetricFunctions(QQ).Monomial()
sage: R.duality_pairing_matrix(M, 3)
[1 -1 -1 1]
[0 1 0 -1]
[0 0 1 -1]
[0 0 0 1]
sage: M.duality_pairing_matrix(R, 3)
[1 0 0 0]
[-1 1 0 0]
[-1 0 1 0]
[1 -1 -1 1]

The matrix between the complete basis of NCSF and the fundamental basis of QSym:

5.1. Comprehensive Module List 1359

Combinatorics, Release 9.7

sage: S = NonCommutativeSymmetricFunctions(QQ).complete()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: S.duality_pairing_matrix(F, 3)
[1 1 1 1]
[0 1 0 1]
[0 0 1 1]
[0 0 0 1]

A base case test:

sage: R.duality_pairing_matrix(M,0)
[1]

one_basis()
Return the empty composition.

OUTPUT:
• The empty composition.

EXAMPLES:

sage: L = NonCommutativeSymmetricFunctions(QQ).L()
sage: parent(L)
<class 'sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.
→˓Elementary_with_category'>
sage: parent(L).one_basis()
[]

skew(x, y, side='left')
Return a function x in self skewed by a function y in the Hopf dual of self.

INPUT:
• x – a non-commutative or quasi-symmetric function; it is an element of self
• y – a quasi-symmetric or non-commutative symmetric function; it is an element of the dual algebra

of self
• side – (default: 'left') either 'left' or 'right'

OUTPUT:
• The result of skewing the element x by the Hopf algebra element y (either from the left or from

the right, as determined by side), written in the basis self.
EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(QQ).complete()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: S.skew(S[2,2,2], F[1,1])
S[1, 1, 2] + S[1, 2, 1] + S[2, 1, 1]
sage: S.skew(S[2,2,2], F[2])
S[1, 1, 2] + S[1, 2, 1] + S[2, 1, 1] + 3*S[2, 2]

sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: R.skew(R[2,2,2], F[1,1])
R[1, 1, 2] + R[1, 2, 1] + R[1, 3] + R[2, 1, 1] + 2*R[2, 2] + R[3, 1] + R[4]
sage: R.skew(R[2,2,2], F[2])
R[1, 1, 2] + R[1, 2, 1] + R[1, 3] + R[2, 1, 1] + 3*R[2, 2] + R[3, 1] + R[4]

1360 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: R = NonCommutativeSymmetricFunctions(QQ).R()
sage: M = QuasiSymmetricFunctions(QQ).M()
sage: M.skew(M[3,2], S[2])
0
sage: M.skew(M[3,2], S[2], side='right')
M[3]
sage: M.skew(M[3,2], S[3])
M[2]
sage: M.skew(M[3,2], S[3], side='right')
0

sum_of_fatter_compositions(composition)
Return the sum of all fatter compositions.

INPUT:
• composition – a composition

OUTPUT:
• the sum of all basis elements which are indexed by compositions fatter (coarser?) than
composition.

EXAMPLES:

sage: L = NonCommutativeSymmetricFunctions(QQ).L()
sage: L.sum_of_fatter_compositions(Composition([2,1]))
L[2, 1] + L[3]
sage: R = NonCommutativeSymmetricFunctions(QQ).R()
sage: R.sum_of_fatter_compositions(Composition([1,3]))
R[1, 3] + R[4]

sum_of_finer_compositions(composition)
Return the sum of all finer compositions.

INPUT:
• composition – a composition

OUTPUT:
• The sum of all basis self elements which are indexed by compositions finer than composition.

EXAMPLES:

sage: L = NonCommutativeSymmetricFunctions(QQ).L()
sage: L.sum_of_finer_compositions(Composition([2,1]))
L[1, 1, 1] + L[2, 1]
sage: R = NonCommutativeSymmetricFunctions(QQ).R()
sage: R.sum_of_finer_compositions(Composition([1,3]))
R[1, 1, 1, 1] + R[1, 1, 2] + R[1, 2, 1] + R[1, 3]

sum_of_partition_rearrangements(par)
Return the sum of all basis elements indexed by compositions which can be sorted to obtain a given
partition.

INPUT:
• par – a partition

OUTPUT:
• The sum of all self basis elements indexed by compositions which are permutations of par

(without multiplicity).
EXAMPLES:

5.1. Comprehensive Module List 1361

Combinatorics, Release 9.7

sage: NCSF=NonCommutativeSymmetricFunctions(QQ)
sage: elementary = NCSF.elementary()
sage: elementary.sum_of_partition_rearrangements(Partition([2,2,1]))
L[1, 2, 2] + L[2, 1, 2] + L[2, 2, 1]
sage: elementary.sum_of_partition_rearrangements(Partition([3,2,1]))
L[1, 2, 3] + L[1, 3, 2] + L[2, 1, 3] + L[2, 3, 1] + L[3, 1, 2] + L[3, 2, 1]
sage: elementary.sum_of_partition_rearrangements(Partition([]))
L[]

super_categories()

class sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct(base,
name=None)

Bases: sage.categories.category_types.Category_over_base_ring

Constructs the class of modules with internal product. This is used to give an internal product structure to the
non-commutative symmetric functions.

EXAMPLES:

sage: from sage.combinat.ncsf_qsym.generic_basis_code import␣
→˓GradedModulesWithInternalProduct
sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: R in GradedModulesWithInternalProduct(QQ)
True

class ElementMethods
Bases: object

internal_product(other)
Return the internal product of two non-commutative symmetric functions.

The internal product on the algebra of non-commutative symmetric functions is adjoint to the internal
coproduct on the algebra of quasisymmetric functions with respect to the duality pairing between these
two algebras. This means, explicitly, that any two non-commutative symmetric functions 𝑓 and 𝑔 and
any quasi-symmetric function ℎ satisfy

⟨𝑓 * 𝑔, ℎ⟩ =
∑︁
𝑖

⟨𝑓, ℎ′𝑖⟩ ⟨𝑔, ℎ′′𝑖 ⟩ ,

where we write ∆×(ℎ) as
∑︀
𝑖 ℎ
′
𝑖⊗ℎ′′𝑖 . Here, 𝑓 *𝑔 denotes the internal product of the non-commutative

symmetric functions 𝑓 and 𝑔.

If 𝑓 and 𝑔 are two homogeneous elements of𝑁𝑆𝑦𝑚 having distinct degrees, then the internal product
𝑓 * 𝑔 is zero.

Explicit formulas can be given for internal products of elements of the complete and the Psi bases.
First, the formula for the Complete basis ([NCSF1] Proposition 5.1): If 𝐼 and 𝐽 are two compositions
of lengths 𝑝 and 𝑞, respectively, then the corresponding Complete homogeneous non-commutative
symmetric functions 𝑆𝐼 and 𝑆𝐽 have internal product

𝑆𝐼 * 𝑆𝐽 =
∑︁

𝑆comp𝑀 ,

where the sum ranges over all 𝑝× 𝑞-matrices𝑀 ∈ N𝑝×𝑞 (with nonnegative integers as entries) whose
row sum vector is 𝐼 (that is, the sum of the entries of the 𝑟-th row is the 𝑟-th part of 𝐼 for all 𝑟) and
whose column sum vector is 𝐽 (that is, the sum of all entries of the 𝑠-th row is the 𝑠-th part of 𝐽 for all
𝑠). Here, for any 𝑀 ∈ N𝑝×𝑞 , we denote by comp𝑀 the composition obtained by reading the entries

1362 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/category_types.html#sage.categories.category_types.Category_over_base_ring

Combinatorics, Release 9.7

of the matrix 𝑀 in the usual order (row by row, proceeding left to right in each row, traversing the
rows from top to bottom).

The formula on the Psi basis ([NCSF2] Lemma 3.10) is more complicated. Let 𝐼 and 𝐽 be two compo-
sitions of lengths 𝑝 and 𝑞, respectively, having the same size |𝐼| = |𝐽 |. We denote by Ψ𝐾 the element
of the Psi basis corresponding to any composition 𝐾.

• If 𝑝 > 𝑞, then Ψ𝐼 *Ψ𝐽 is plainly 0.
• Assume that 𝑝 = 𝑞. Let ̃︀𝛿𝐼,𝐽 denote the integer 1 if the compositions 𝐼 and 𝐽 are permutations of

each other, and the integer 0 otherwise. For every positive integer 𝑖, let 𝑚𝑖 denote the number of
parts of 𝐼 equal to 𝑖. Then, Ψ𝐼 *Ψ𝐽 equals ̃︀𝛿𝐼,𝐽∏︀𝑖>0 𝑖

𝑚𝑖𝑚𝑖!Ψ
𝐼 .

• Now assume that 𝑝 < 𝑞. Write the composition 𝐼 as 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑝). For every nonempty
composition 𝐾 = (𝑘1, 𝑘2, . . . , 𝑘𝑠), denote by Γ𝐾 the non-commutative symmetric function
𝑘1[. . . [[Ψ𝑘1 ,Ψ𝑘2],Ψ𝑘3], . . .Ψ𝑘𝑠]. For any subset 𝐴 of {1, 2, . . . , 𝑞}, let 𝐽𝐴 be the composition
obtained from 𝐽 by removing the 𝑟-th parts for all 𝑟 /∈ 𝐴 (while keeping the 𝑟-th parts for all
𝑟 ∈ 𝐴 in order). Then, Ψ𝐼 *Ψ𝐽 equals the sum of Γ𝐽𝐾1

Γ𝐽𝐾2
· · ·Γ𝐽𝐾𝑝

over all ordered set parti-
tions (𝐾1,𝐾2, . . . ,𝐾𝑝) of {1, 2, . . . , 𝑞} into 𝑝 parts such that each 1 ≤ 𝑘 ≤ 𝑝 satisfies |𝐽𝐾𝑘

| = 𝑖𝑘.
(See OrderedSetPartition() for the meaning of “ordered set partition”.)

Aliases for internal_product() are itensor() and kronecker_product().

INPUT:
• other – another non-commutative symmetric function

OUTPUT:
• The result of taking the internal product of self with other.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: x = S.an_element(); x
2*S[] + 2*S[1] + 3*S[1, 1]
sage: x.internal_product(S[2])
3*S[1, 1]
sage: x.internal_product(S[1])
2*S[1]
sage: S[1,2].internal_product(S[1,2])
S[1, 1, 1] + S[1, 2]

Let us check the duality between the inner product and the inner coproduct in degree 4:

sage: M = QuasiSymmetricFunctions(FiniteField(29)).M()
sage: S = NonCommutativeSymmetricFunctions(FiniteField(29)).S()
sage: def tensor_incopr(f, g, h): # computes \sum_i \left< f, h'_i \right> \
→˓left< g, h''_i \right>
....: result = h.base_ring().zero()
....: h_parent = h.parent()
....: for partition_pair, coeff in h.internal_coproduct().monomial_
→˓coefficients().items():
....: result += coeff * f.duality_pairing(h_parent[partition_
→˓pair[0]]) * g.duality_pairing(h_parent[partition_pair[1]])
....: return result
sage: def testall(n):
....: return all(all(all(tensor_incopr(S[u], S[v], M[w]) == (S[u].
→˓itensor(S[v])).duality_pairing(M[w])
....: for w in Compositions(n))
....: for v in Compositions(n))

(continues on next page)

5.1. Comprehensive Module List 1363

Combinatorics, Release 9.7

(continued from previous page)

....: for u in Compositions(n))
sage: testall(2)
True
sage: testall(3) # long time
True
sage: testall(4) # not tested, too long
True

The internal product on the algebra of non-commutative symmetric functions commutes with the
canonical commutative projection on the symmetric functions:

sage: S = NonCommutativeSymmetricFunctions(ZZ).S()
sage: e = SymmetricFunctions(ZZ).e()
sage: def int_pr_of_S_in_e(I, J):
....: return (S[I].internal_product(S[J])).to_symmetric_function()
sage: all(all(int_pr_of_S_in_e(I, J)
....: == S[I].to_symmetric_function().internal_product(S[J].to_
→˓symmetric_function())
....: for I in Compositions(3))
....: for J in Compositions(3))
True

itensor(other)
Return the internal product of two non-commutative symmetric functions.

The internal product on the algebra of non-commutative symmetric functions is adjoint to the internal
coproduct on the algebra of quasisymmetric functions with respect to the duality pairing between these
two algebras. This means, explicitly, that any two non-commutative symmetric functions 𝑓 and 𝑔 and
any quasi-symmetric function ℎ satisfy

⟨𝑓 * 𝑔, ℎ⟩ =
∑︁
𝑖

⟨𝑓, ℎ′𝑖⟩ ⟨𝑔, ℎ′′𝑖 ⟩ ,

where we write ∆×(ℎ) as
∑︀
𝑖 ℎ
′
𝑖⊗ℎ′′𝑖 . Here, 𝑓 *𝑔 denotes the internal product of the non-commutative

symmetric functions 𝑓 and 𝑔.

If 𝑓 and 𝑔 are two homogeneous elements of𝑁𝑆𝑦𝑚 having distinct degrees, then the internal product
𝑓 * 𝑔 is zero.

Explicit formulas can be given for internal products of elements of the complete and the Psi bases.
First, the formula for the Complete basis ([NCSF1] Proposition 5.1): If 𝐼 and 𝐽 are two compositions
of lengths 𝑝 and 𝑞, respectively, then the corresponding Complete homogeneous non-commutative
symmetric functions 𝑆𝐼 and 𝑆𝐽 have internal product

𝑆𝐼 * 𝑆𝐽 =
∑︁

𝑆comp𝑀 ,

where the sum ranges over all 𝑝× 𝑞-matrices𝑀 ∈ N𝑝×𝑞 (with nonnegative integers as entries) whose
row sum vector is 𝐼 (that is, the sum of the entries of the 𝑟-th row is the 𝑟-th part of 𝐼 for all 𝑟) and
whose column sum vector is 𝐽 (that is, the sum of all entries of the 𝑠-th row is the 𝑠-th part of 𝐽 for all
𝑠). Here, for any 𝑀 ∈ N𝑝×𝑞 , we denote by comp𝑀 the composition obtained by reading the entries
of the matrix 𝑀 in the usual order (row by row, proceeding left to right in each row, traversing the
rows from top to bottom).

The formula on the Psi basis ([NCSF2] Lemma 3.10) is more complicated. Let 𝐼 and 𝐽 be two compo-
sitions of lengths 𝑝 and 𝑞, respectively, having the same size |𝐼| = |𝐽 |. We denote by Ψ𝐾 the element
of the Psi basis corresponding to any composition 𝐾.

1364 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• If 𝑝 > 𝑞, then Ψ𝐼 *Ψ𝐽 is plainly 0.
• Assume that 𝑝 = 𝑞. Let ̃︀𝛿𝐼,𝐽 denote the integer 1 if the compositions 𝐼 and 𝐽 are permutations of

each other, and the integer 0 otherwise. For every positive integer 𝑖, let 𝑚𝑖 denote the number of
parts of 𝐼 equal to 𝑖. Then, Ψ𝐼 *Ψ𝐽 equals ̃︀𝛿𝐼,𝐽∏︀𝑖>0 𝑖

𝑚𝑖𝑚𝑖!Ψ
𝐼 .

• Now assume that 𝑝 < 𝑞. Write the composition 𝐼 as 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑝). For every nonempty
composition 𝐾 = (𝑘1, 𝑘2, . . . , 𝑘𝑠), denote by Γ𝐾 the non-commutative symmetric function
𝑘1[. . . [[Ψ𝑘1 ,Ψ𝑘2],Ψ𝑘3], . . .Ψ𝑘𝑠]. For any subset 𝐴 of {1, 2, . . . , 𝑞}, let 𝐽𝐴 be the composition
obtained from 𝐽 by removing the 𝑟-th parts for all 𝑟 /∈ 𝐴 (while keeping the 𝑟-th parts for all
𝑟 ∈ 𝐴 in order). Then, Ψ𝐼 *Ψ𝐽 equals the sum of Γ𝐽𝐾1

Γ𝐽𝐾2
· · ·Γ𝐽𝐾𝑝

over all ordered set parti-
tions (𝐾1,𝐾2, . . . ,𝐾𝑝) of {1, 2, . . . , 𝑞} into 𝑝 parts such that each 1 ≤ 𝑘 ≤ 𝑝 satisfies |𝐽𝐾𝑘

| = 𝑖𝑘.
(See OrderedSetPartition() for the meaning of “ordered set partition”.)

Aliases for internal_product() are itensor() and kronecker_product().

INPUT:
• other – another non-commutative symmetric function

OUTPUT:
• The result of taking the internal product of self with other.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: x = S.an_element(); x
2*S[] + 2*S[1] + 3*S[1, 1]
sage: x.internal_product(S[2])
3*S[1, 1]
sage: x.internal_product(S[1])
2*S[1]
sage: S[1,2].internal_product(S[1,2])
S[1, 1, 1] + S[1, 2]

Let us check the duality between the inner product and the inner coproduct in degree 4:

sage: M = QuasiSymmetricFunctions(FiniteField(29)).M()
sage: S = NonCommutativeSymmetricFunctions(FiniteField(29)).S()
sage: def tensor_incopr(f, g, h): # computes \sum_i \left< f, h'_i \right> \
→˓left< g, h''_i \right>
....: result = h.base_ring().zero()
....: h_parent = h.parent()
....: for partition_pair, coeff in h.internal_coproduct().monomial_
→˓coefficients().items():
....: result += coeff * f.duality_pairing(h_parent[partition_
→˓pair[0]]) * g.duality_pairing(h_parent[partition_pair[1]])
....: return result
sage: def testall(n):
....: return all(all(all(tensor_incopr(S[u], S[v], M[w]) == (S[u].
→˓itensor(S[v])).duality_pairing(M[w])
....: for w in Compositions(n))
....: for v in Compositions(n))
....: for u in Compositions(n))
sage: testall(2)
True
sage: testall(3) # long time
True
sage: testall(4) # not tested, too long

(continues on next page)

5.1. Comprehensive Module List 1365

Combinatorics, Release 9.7

(continued from previous page)

True

The internal product on the algebra of non-commutative symmetric functions commutes with the
canonical commutative projection on the symmetric functions:

sage: S = NonCommutativeSymmetricFunctions(ZZ).S()
sage: e = SymmetricFunctions(ZZ).e()
sage: def int_pr_of_S_in_e(I, J):
....: return (S[I].internal_product(S[J])).to_symmetric_function()
sage: all(all(int_pr_of_S_in_e(I, J)
....: == S[I].to_symmetric_function().internal_product(S[J].to_
→˓symmetric_function())
....: for I in Compositions(3))
....: for J in Compositions(3))
True

kronecker_product(other)
Return the internal product of two non-commutative symmetric functions.

The internal product on the algebra of non-commutative symmetric functions is adjoint to the internal
coproduct on the algebra of quasisymmetric functions with respect to the duality pairing between these
two algebras. This means, explicitly, that any two non-commutative symmetric functions 𝑓 and 𝑔 and
any quasi-symmetric function ℎ satisfy

⟨𝑓 * 𝑔, ℎ⟩ =
∑︁
𝑖

⟨𝑓, ℎ′𝑖⟩ ⟨𝑔, ℎ′′𝑖 ⟩ ,

where we write ∆×(ℎ) as
∑︀
𝑖 ℎ
′
𝑖⊗ℎ′′𝑖 . Here, 𝑓 *𝑔 denotes the internal product of the non-commutative

symmetric functions 𝑓 and 𝑔.

If 𝑓 and 𝑔 are two homogeneous elements of𝑁𝑆𝑦𝑚 having distinct degrees, then the internal product
𝑓 * 𝑔 is zero.

Explicit formulas can be given for internal products of elements of the complete and the Psi bases.
First, the formula for the Complete basis ([NCSF1] Proposition 5.1): If 𝐼 and 𝐽 are two compositions
of lengths 𝑝 and 𝑞, respectively, then the corresponding Complete homogeneous non-commutative
symmetric functions 𝑆𝐼 and 𝑆𝐽 have internal product

𝑆𝐼 * 𝑆𝐽 =
∑︁

𝑆comp𝑀 ,

where the sum ranges over all 𝑝× 𝑞-matrices𝑀 ∈ N𝑝×𝑞 (with nonnegative integers as entries) whose
row sum vector is 𝐼 (that is, the sum of the entries of the 𝑟-th row is the 𝑟-th part of 𝐼 for all 𝑟) and
whose column sum vector is 𝐽 (that is, the sum of all entries of the 𝑠-th row is the 𝑠-th part of 𝐽 for all
𝑠). Here, for any 𝑀 ∈ N𝑝×𝑞 , we denote by comp𝑀 the composition obtained by reading the entries
of the matrix 𝑀 in the usual order (row by row, proceeding left to right in each row, traversing the
rows from top to bottom).

The formula on the Psi basis ([NCSF2] Lemma 3.10) is more complicated. Let 𝐼 and 𝐽 be two compo-
sitions of lengths 𝑝 and 𝑞, respectively, having the same size |𝐼| = |𝐽 |. We denote by Ψ𝐾 the element
of the Psi basis corresponding to any composition 𝐾.

• If 𝑝 > 𝑞, then Ψ𝐼 *Ψ𝐽 is plainly 0.
• Assume that 𝑝 = 𝑞. Let ̃︀𝛿𝐼,𝐽 denote the integer 1 if the compositions 𝐼 and 𝐽 are permutations of

each other, and the integer 0 otherwise. For every positive integer 𝑖, let 𝑚𝑖 denote the number of
parts of 𝐼 equal to 𝑖. Then, Ψ𝐼 *Ψ𝐽 equals ̃︀𝛿𝐼,𝐽∏︀𝑖>0 𝑖

𝑚𝑖𝑚𝑖!Ψ
𝐼 .

• Now assume that 𝑝 < 𝑞. Write the composition 𝐼 as 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑝). For every nonempty
composition 𝐾 = (𝑘1, 𝑘2, . . . , 𝑘𝑠), denote by Γ𝐾 the non-commutative symmetric function

1366 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

𝑘1[. . . [[Ψ𝑘1 ,Ψ𝑘2],Ψ𝑘3], . . .Ψ𝑘𝑠]. For any subset 𝐴 of {1, 2, . . . , 𝑞}, let 𝐽𝐴 be the composition
obtained from 𝐽 by removing the 𝑟-th parts for all 𝑟 /∈ 𝐴 (while keeping the 𝑟-th parts for all
𝑟 ∈ 𝐴 in order). Then, Ψ𝐼 *Ψ𝐽 equals the sum of Γ𝐽𝐾1

Γ𝐽𝐾2
· · ·Γ𝐽𝐾𝑝

over all ordered set parti-
tions (𝐾1,𝐾2, . . . ,𝐾𝑝) of {1, 2, . . . , 𝑞} into 𝑝 parts such that each 1 ≤ 𝑘 ≤ 𝑝 satisfies |𝐽𝐾𝑘

| = 𝑖𝑘.
(See OrderedSetPartition() for the meaning of “ordered set partition”.)

Aliases for internal_product() are itensor() and kronecker_product().

INPUT:
• other – another non-commutative symmetric function

OUTPUT:
• The result of taking the internal product of self with other.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: x = S.an_element(); x
2*S[] + 2*S[1] + 3*S[1, 1]
sage: x.internal_product(S[2])
3*S[1, 1]
sage: x.internal_product(S[1])
2*S[1]
sage: S[1,2].internal_product(S[1,2])
S[1, 1, 1] + S[1, 2]

Let us check the duality between the inner product and the inner coproduct in degree 4:

sage: M = QuasiSymmetricFunctions(FiniteField(29)).M()
sage: S = NonCommutativeSymmetricFunctions(FiniteField(29)).S()
sage: def tensor_incopr(f, g, h): # computes \sum_i \left< f, h'_i \right> \
→˓left< g, h''_i \right>
....: result = h.base_ring().zero()
....: h_parent = h.parent()
....: for partition_pair, coeff in h.internal_coproduct().monomial_
→˓coefficients().items():
....: result += coeff * f.duality_pairing(h_parent[partition_
→˓pair[0]]) * g.duality_pairing(h_parent[partition_pair[1]])
....: return result
sage: def testall(n):
....: return all(all(all(tensor_incopr(S[u], S[v], M[w]) == (S[u].
→˓itensor(S[v])).duality_pairing(M[w])
....: for w in Compositions(n))
....: for v in Compositions(n))
....: for u in Compositions(n))
sage: testall(2)
True
sage: testall(3) # long time
True
sage: testall(4) # not tested, too long
True

The internal product on the algebra of non-commutative symmetric functions commutes with the
canonical commutative projection on the symmetric functions:

sage: S = NonCommutativeSymmetricFunctions(ZZ).S()
(continues on next page)

5.1. Comprehensive Module List 1367

Combinatorics, Release 9.7

(continued from previous page)

sage: e = SymmetricFunctions(ZZ).e()
sage: def int_pr_of_S_in_e(I, J):
....: return (S[I].internal_product(S[J])).to_symmetric_function()
sage: all(all(int_pr_of_S_in_e(I, J)
....: == S[I].to_symmetric_function().internal_product(S[J].to_
→˓symmetric_function())
....: for I in Compositions(3))
....: for J in Compositions(3))
True

class ParentMethods
Bases: object

internal_product()
The bilinear product inherited from the isomorphism with the descent algebra.

This is constructed by extending the method internal_product_on_basis() bilinearly, if avail-
able, or using the method internal_product_by_coercion().

OUTPUT:
• The internal product map of the algebra the non-commutative symmetric functions.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: S.internal_product
Generic endomorphism of Non-Commutative Symmetric Functions over the␣
→˓Rational Field in the Complete basis
sage: S.internal_product(S[2,2], S[1,2,1])
2*S[1, 1, 1, 1] + S[1, 1, 2] + S[2, 1, 1]
sage: S.internal_product(S[2,2], S[1,2])
0

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: R.internal_product
<bound methodinternal_product_by_coercion ...>
sage: R.internal_product_by_coercion(R[1, 1], R[1,1])
R[2]
sage: R.internal_product(R[2,2], R[1,2])
0

internal_product_on_basis(I, J)
The internal product of the two basis elements indexed by I and J (optional)

INPUT:
• I, J – compositions indexing two elements of the basis of self

Returns the internal product of the corresponding basis elements. If this method is implemented, the
internal product is defined from it by linearity.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: S.internal_product_on_basis([2,2], [1,2,1])

(continues on next page)

1368 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

2*S[1, 1, 1, 1] + S[1, 1, 2] + S[2, 1, 1]
sage: S.internal_product_on_basis([2,2], [2,1])
0

itensor()
The bilinear product inherited from the isomorphism with the descent algebra.

This is constructed by extending the method internal_product_on_basis() bilinearly, if avail-
able, or using the method internal_product_by_coercion().

OUTPUT:
• The internal product map of the algebra the non-commutative symmetric functions.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: S.internal_product
Generic endomorphism of Non-Commutative Symmetric Functions over the␣
→˓Rational Field in the Complete basis
sage: S.internal_product(S[2,2], S[1,2,1])
2*S[1, 1, 1, 1] + S[1, 1, 2] + S[2, 1, 1]
sage: S.internal_product(S[2,2], S[1,2])
0

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: R.internal_product
<bound methodinternal_product_by_coercion ...>
sage: R.internal_product_by_coercion(R[1, 1], R[1,1])
R[2]
sage: R.internal_product(R[2,2], R[1,2])
0

kronecker_product()
The bilinear product inherited from the isomorphism with the descent algebra.

This is constructed by extending the method internal_product_on_basis() bilinearly, if avail-
able, or using the method internal_product_by_coercion().

OUTPUT:
• The internal product map of the algebra the non-commutative symmetric functions.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: S.internal_product
Generic endomorphism of Non-Commutative Symmetric Functions over the␣
→˓Rational Field in the Complete basis
sage: S.internal_product(S[2,2], S[1,2,1])
2*S[1, 1, 1, 1] + S[1, 1, 2] + S[2, 1, 1]
sage: S.internal_product(S[2,2], S[1,2])
0

5.1. Comprehensive Module List 1369

Combinatorics, Release 9.7

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: R.internal_product
<bound methodinternal_product_by_coercion ...>
sage: R.internal_product_by_coercion(R[1, 1], R[1,1])
R[2]
sage: R.internal_product(R[2,2], R[1,2])
0

class Realizations(category, *args)
Bases: sage.categories.realizations.RealizationsCategory

class ParentMethods
Bases: object

internal_product_by_coercion(left, right)
Internal product of left and right.

This is a default implementation that computes the internal product in the realization specified by
self.realization_of().a_realization().

INPUT:
• left – an element of the non-commutative symmetric functions
• right – an element of the non-commutative symmetric functions
OUTPUT:
• The internal product of left and right.
EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: S.internal_product_by_coercion(S[2,1], S[3])
S[2, 1]
sage: S.internal_product_by_coercion(S[2,1], S[4])
0

super_categories()
EXAMPLES:

sage: from sage.combinat.ncsf_qsym.generic_basis_code import␣
→˓GradedModulesWithInternalProduct
sage: GradedModulesWithInternalProduct(ZZ).super_categories()
[Category of graded modules over Integer Ring]

5.1.141 Non-Commutative Symmetric Functions

class sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions(R)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The abstract algebra of non-commutative symmetric functions.

We construct the abstract algebra of non-commutative symmetric functions over the rational numbers:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: NCSF
Non-Commutative Symmetric Functions over the Rational Field

(continues on next page)

1370 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.RealizationsCategory
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

sage: S = NCSF.complete()
sage: R = NCSF.ribbon()
sage: S[2,1]*R[1,2]
S[2, 1, 1, 2] - S[2, 1, 3]

NCSF is the unique free (non-commutative!) graded connected algebra with one generator in each degree:

sage: NCSF.category()
Join of Category of hopf algebras over Rational Field

and Category of graded algebras over Rational Field
and Category of monoids with realizations
and Category of graded coalgebras over Rational Field
and Category of coalgebras over Rational Field with realizations
and Category of cocommutative coalgebras over Rational Field

sage: [S[i].degree() for i in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

We use the Sage standard renaming idiom to get shorter outputs:

sage: NCSF.rename("NCSF")
sage: NCSF
NCSF

NCSF has many representations as a concrete algebra. Each of them has a distinguished basis, and its elements
are expanded in this basis. Here is the Ψ (Psi) representation:

sage: Psi = NCSF.Psi()
sage: Psi
NCSF in the Psi basis

Elements of Psi are linear combinations of basis elements indexed by compositions:

sage: Psi.an_element()
2*Psi[] + 2*Psi[1] + 3*Psi[1, 1]

The basis itself is accessible through:

sage: Psi.basis()
Lazy family (Term map from Compositions of non-negative integers...
sage: Psi.basis().keys()
Compositions of non-negative integers

To construct an element one can therefore do:

sage: Psi.basis()[Composition([2,1,3])]
Psi[2, 1, 3]

As this is rather cumbersome, the following abuses of notation are allowed:

sage: Psi[Composition([2, 1, 3])]
Psi[2, 1, 3]
sage: Psi[[2, 1, 3]]

(continues on next page)

5.1. Comprehensive Module List 1371

Combinatorics, Release 9.7

(continued from previous page)

Psi[2, 1, 3]
sage: Psi[2, 1, 3]
Psi[2, 1, 3]

or even:

sage: Psi[(i for i in [2, 1, 3])]
Psi[2, 1, 3]

Unfortunately, due to a limitation in Python syntax, one cannot use:

sage: Psi[] # not implemented

Instead, you can use:

sage: Psi[[]]
Psi[]

Now, we can construct linear combinations of basis elements:

sage: Psi[2,1,3] + 2 * (Psi[4] + Psi[2,1])
2*Psi[2, 1] + Psi[2, 1, 3] + 2*Psi[4]

Algebra structure

To start with, Psi is a graded algebra, the grading being induced by the size of compositions. The one is the
basis element indexed by the empty composition:

sage: Psi.one()
Psi[]
sage: S.one()
S[]
sage: R.one()
R[]

As we have seen above, the Psi basis is multiplicative; that is multiplication is induced by linearity from the
concatenation of compositions:

sage: Psi[1,3] * Psi[2,1]
Psi[1, 3, 2, 1]
sage: (Psi.one() + 2 * Psi[1,3]) * Psi[2, 4]
2*Psi[1, 3, 2, 4] + Psi[2, 4]

1372 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Hopf algebra structure

Psi is further endowed with a coalgebra structure. The coproduct is an algebra morphism, and therefore deter-
mined by its values on the generators; those are primitive:

sage: Psi[1].coproduct()
Psi[] # Psi[1] + Psi[1] # Psi[]
sage: Psi[2].coproduct()
Psi[] # Psi[2] + Psi[2] # Psi[]

The coproduct, being cocommutative on the generators, is cocommutative everywhere:

sage: Psi[1,2].coproduct()
Psi[] # Psi[1, 2] + Psi[1] # Psi[2] + Psi[1, 2] # Psi[] + Psi[2] # Psi[1]

The algebra and coalgebra structures on Psi combine to form a bialgebra structure, which cooperates with the
grading to form a connected graded bialgebra. Thus, as any connected graded bialgebra, Psi is a Hopf algebra.
Over QQ (or any other Q-algebra), this Hopf algebra Psi is isomorphic to the tensor algebra of its space of
primitive elements.

The antipode is an anti-algebra morphism; in the Psi basis, it sends the generators to their opposites and changes
their sign if they are of odd degree:

sage: Psi[3].antipode()
-Psi[3]
sage: Psi[1,3,2].antipode()
-Psi[2, 3, 1]
sage: Psi[1,3,2].coproduct().apply_multilinear_morphism(lambda be,ga:␣
→˓Psi(be)*Psi(ga).antipode())
0

The counit is defined by sending all elements of positive degree to zero:

sage: S[3].degree(), S[3,1,2].degree(), S.one().degree()
(3, 6, 0)
sage: S[3].counit()
0
sage: S[3,1,2].counit()
0
sage: S.one().counit()
1
sage: (S[3] - 2*S[3,1,2] + 7).counit()
7
sage: (R[3] - 2*R[3,1,2] + 7).counit()
7

It is possible to change the prefix used to display the basis elements using the method print_options(). Say
that for instance one wanted to display the Complete basis as having a prefix H instead of the default S:

sage: H = NCSF.complete()
sage: H.an_element()
2*S[] + 2*S[1] + 3*S[1, 1]
sage: H.print_options(prefix='H')
sage: H.an_element()

(continues on next page)

5.1. Comprehensive Module List 1373

../../../../../../../html/en/reference/structure/sage/structure/indexed_generators.html#sage.structure.indexed_generators.IndexedGenerators.print_options

Combinatorics, Release 9.7

(continued from previous page)

2*H[] + 2*H[1] + 3*H[1, 1]
sage: H.print_options(prefix='S') #restore to 'S'

Concrete representations

NCSF admits the concrete realizations defined in [NCSF1]:

sage: Phi = NCSF.Phi()
sage: Psi = NCSF.Psi()
sage: ribbon = NCSF.ribbon()
sage: complete = NCSF.complete()
sage: elementary = NCSF.elementary()

To change from one basis to another, one simply does:

sage: Phi(Psi[1])
Phi[1]
sage: Phi(Psi[3])
-1/4*Phi[1, 2] + 1/4*Phi[2, 1] + Phi[3]

In general, one can mix up different bases in computations:

sage: Phi[1] * Psi[1]
Phi[1, 1]

Some of the changes of basis are easy to guess:

sage: ribbon(complete[1,3,2])
R[1, 3, 2] + R[1, 5] + R[4, 2] + R[6]

This is the sum of all fatter compositions. Using the usual Möbius function for the boolean lattice, the inverse
change of basis is given by the alternating sum of all fatter compositions:

sage: complete(ribbon[1,3,2])
S[1, 3, 2] - S[1, 5] - S[4, 2] + S[6]

The analogue of the elementary basis is the sum over all finer compositions than the ‘complement’ of the com-
position in the ribbon basis:

sage: Composition([1,3,2]).complement()
[2, 1, 2, 1]
sage: ribbon(elementary([1,3,2]))
R[1, 1, 1, 1, 1, 1] + R[1, 1, 1, 2, 1] + R[2, 1, 1, 1, 1] + R[2, 1, 2, 1]

By Möbius inversion on the composition poset, the ribbon basis element corresponding to a composition 𝐼 is
then the alternating sum over all compositions fatter than the complement composition of 𝐼 in the elementary
basis:

sage: elementary(ribbon[2,1,2,1])
L[1, 3, 2] - L[1, 5] - L[4, 2] + L[6]

1374 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The Φ (Phi) and Ψ bases are computed by changing to and from the Complete basis. The expansion of Ψ basis
is given in Proposition 4.5 of [NCSF1] by the formulae

𝑆𝐼 =
∑︁
𝐽≥𝐼

1

𝜋𝑢(𝐽, 𝐼)
Ψ𝐽

and

Ψ𝐼 =
∑︁
𝐽≥𝐼

(−1)ℓ(𝐽)−ℓ(𝐼)𝑙𝑝(𝐽, 𝐼)𝑆𝐽

where the coefficients 𝜋𝑢(𝐽, 𝐼) and 𝑙𝑝(𝐽, 𝐼) are coefficients in the methods coeff_pi() and coeff_lp() re-
spectively. For example:

sage: Psi(complete[3])
1/6*Psi[1, 1, 1] + 1/3*Psi[1, 2] + 1/6*Psi[2, 1] + 1/3*Psi[3]
sage: complete(Psi[3])
S[1, 1, 1] - 2*S[1, 2] - S[2, 1] + 3*S[3]

The Phi basis is another analogue of the power sum basis from the algebra of symmetric functions and the
expansion in the Complete basis is given in Proposition 4.9 of [NCSF1] by the formulae

𝑆𝐼 =
∑︁
𝐽≥𝐼

1

𝑠𝑝(𝐽, 𝐼)
Φ𝐽

and

Φ𝐼 =
∑︁
𝐽≥𝐼

(−1)ℓ(𝐽)−ℓ(𝐼)
∏︀
𝑖 𝐼𝑖

ℓ(𝐽, 𝐼)
𝑆𝐽

where the coefficients 𝑠𝑝(𝐽, 𝐼) and ℓ(𝐽, 𝐼) are coefficients in the methods coeff_sp() and coeff_ell() re-
spectively. For example:

sage: Phi(complete[3])
1/6*Phi[1, 1, 1] + 1/4*Phi[1, 2] + 1/4*Phi[2, 1] + 1/3*Phi[3]
sage: complete(Phi[3])
S[1, 1, 1] - 3/2*S[1, 2] - 3/2*S[2, 1] + 3*S[3]

Here is how to fetch the conversion morphisms:

sage: f = complete.coerce_map_from(elementary); f
Generic morphism:
From: NCSF in the Elementary basis
To: NCSF in the Complete basis

sage: g = elementary.coerce_map_from(complete); g
Generic morphism:
From: NCSF in the Complete basis
To: NCSF in the Elementary basis

sage: f.category()
Category of homsets of unital magmas and right modules over Rational Field and
left modules over Rational Field

sage: f(elementary[1,2,2])
S[1, 1, 1, 1, 1] - S[1, 1, 1, 2] - S[1, 2, 1, 1] + S[1, 2, 2]
sage: g(complete[1,2,2])
L[1, 1, 1, 1, 1] - L[1, 1, 1, 2] - L[1, 2, 1, 1] + L[1, 2, 2]

(continues on next page)

5.1. Comprehensive Module List 1375

Combinatorics, Release 9.7

(continued from previous page)

sage: h = f*g; h
Composite map:
From: NCSF in the Complete basis
To: NCSF in the Complete basis
Defn: Generic morphism:

From: NCSF in the Complete basis
To: NCSF in the Elementary basis

then
Generic morphism:
From: NCSF in the Elementary basis
To: NCSF in the Complete basis

sage: h(complete[1,3,2])
S[1, 3, 2]

Additional concrete representations

NCSF has some additional bases which appear in the literature:

sage: Monomial = NCSF.Monomial()
sage: Immaculate = NCSF.Immaculate()
sage: dualQuasisymmetric_Schur = NCSF.dualQuasisymmetric_Schur()

The Monomial basis was introduced in [Tev2007] and the Immaculate basis was introduced in [BBSSZ2012].
The Quasisymmetric_Schur were defined in [QSCHUR] and the dual basis is implemented here as
dualQuasisymmetric_Schur. Refer to the documentation for the use and definition of these bases.

Todo:

• implement fundamental, forgotten, and simple (coming from the simple modules of HS_n) bases.

We revert back to the original name from our custom short name NCSF:

sage: NCSF
NCSF
sage: NCSF.rename()
sage: NCSF
Non-Commutative Symmetric Functions over the Rational Field

class Bases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

Category of bases of non-commutative symmetric functions.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: N.Bases()
Category of bases of Non-Commutative Symmetric Functions over the Rational Field
sage: R = N.Ribbon()
sage: R in N.Bases()
True

1376 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

class ElementMethods
Bases: object

bernstein_creation_operator(n)
Return the image of self under the 𝑛-th Bernstein creation operator.

Let 𝑛 be an integer. The 𝑛-th Bernstein creation operator B𝑛 is defined as the endomorphism of
the space 𝑁𝑆𝑦𝑚 of noncommutative symmetric functions which sends every 𝑓 to∑︁

𝑖≥0

(−1)𝑖𝐻𝑛+𝑖𝐹
⊥
1𝑖 ,

where usual notations are in place (the letter𝐻 stands for the complete basis of𝑁𝑆𝑦𝑚, the letter𝐹
stands for the fundamental basis of the algebra𝑄𝑆𝑦𝑚 of quasisymmetric functions, and𝐹⊥1𝑖 means
skewing (skew_by()) by 𝐹1𝑖). Notice that 𝐹1𝑖 is nothing other than the elementary symmetric
function 𝑒𝑖.

This has been introduced in [BBSSZ2012], section 3.1, in analogy to the Bernstein creation
operators on the symmetric functions (bernstein_creation_operator()), and studied fur-
ther in [BBSSZ2012], mainly in the context of immaculate functions (Immaculate). In fact, if
(𝛼1, 𝛼2, . . . , 𝛼𝑚) is an 𝑚-tuple of integers, then

B𝑛𝐼(𝛼1,𝛼2,...,𝛼𝑚) = 𝐼(𝑛,𝛼1,𝛼2,...,𝛼𝑚),

where 𝐼(𝛼1,𝛼2,...,𝛼𝑚) is the immaculate function associated to the 𝑚-tuple (𝛼1, 𝛼2, . . . , 𝛼𝑚) (see
immaculate_function()).

EXAMPLES:

We get the immaculate functions by repeated application of Bernstein creation operators:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: I = NSym.I()
sage: S = NSym.S()
sage: def immaculate_by_bernstein(xs):
....: # immaculate function corresponding to integer
....: # tuple ``xs``, computed by iterated application
....: # of Bernstein creation operators.
....: res = S.one()
....: for i in reversed(xs):
....: res = res.bernstein_creation_operator(i)
....: return res
sage: import itertools
sage: all(immaculate_by_bernstein(p) == I.immaculate_function(p)
....: for p in itertools.product(range(-1, 3), repeat=3))
True

Some examples:

sage: S[3,2].bernstein_creation_operator(-2)
S[2, 1]
sage: S[3,2].bernstein_creation_operator(-1)
S[1, 2, 1] - S[2, 2] - S[3, 1]
sage: S[3,2].bernstein_creation_operator(0)
-S[1, 2, 2] - S[1, 3, 1] + S[2, 2, 1] + S[3, 2]
sage: S[3,2].bernstein_creation_operator(1)
S[1, 3, 2] - S[2, 2, 2] - S[2, 3, 1] + S[3, 2, 1]

(continues on next page)

5.1. Comprehensive Module List 1377

Combinatorics, Release 9.7

(continued from previous page)

sage: S[3,2].bernstein_creation_operator(2)
S[2, 3, 2] - S[3, 2, 2] - S[3, 3, 1] + S[4, 2, 1]

chi()
Return the commutative image of a non-commutative symmetric function.

OUTPUT:
• The commutative image of self. This will be a symmetric function.
EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: x = R.an_element(); x
2*R[] + 2*R[1] + 3*R[1, 1]
sage: x.to_symmetric_function()
2*s[] + 2*s[1] + 3*s[1, 1]
sage: y = N.Phi()[1,3]
sage: y.to_symmetric_function()
h[1, 1, 1, 1] - 3*h[2, 1, 1] + 3*h[3, 1]

expand(n, alphabet='x')
Expand the noncommutative symmetric function into an element of a free algebra in n indetermi-
nates of an alphabet, which by default is 'x'.

INPUT:
• n – a nonnegative integer; the number of variables in the expansion
• alphabet – (default: 'x'); the alphabet in which self is to be expanded
OUTPUT:
• An expansion of self into the n variables specified by alphabet.
EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: S = NSym.S()
sage: S[3].expand(3)
x0^3 + x0^2*x1 + x0^2*x2 + x0*x1^2 + x0*x1*x2
+ x0*x2^2 + x1^3 + x1^2*x2 + x1*x2^2 + x2^3
sage: L = NSym.L()
sage: L[3].expand(3)
x2*x1*x0
sage: L[2].expand(3)
x1*x0 + x2*x0 + x2*x1
sage: L[3].expand(4)
x2*x1*x0 + x3*x1*x0 + x3*x2*x0 + x3*x2*x1
sage: Psi = NSym.Psi()
sage: Psi[2, 1].expand(3)
x0^3 + x0^2*x1 + x0^2*x2 + x0*x1*x0 + x0*x1^2 + x0*x1*x2
+ x0*x2*x0 + x0*x2*x1 + x0*x2^2 - x1*x0^2 - x1*x0*x1
- x1*x0*x2 + x1^2*x0 + x1^3 + x1^2*x2 + x1*x2*x0
+ x1*x2*x1 + x1*x2^2 - x2*x0^2 - x2*x0*x1 - x2*x0*x2
- x2*x1*x0 - x2*x1^2 - x2*x1*x2 + x2^2*x0 + x2^2*x1 + x2^3

One can use a different set of variables by adding an optional argument alphabet=...:

1378 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L[3].expand(4, alphabet="y")
y2*y1*y0 + y3*y1*y0 + y3*y2*y0 + y3*y2*y1

Todo: So far this is only implemented on the elementary basis, and everything else goes through
coercion. Maybe it is worth shortcutting some of the other bases?

left_padded_kronecker_product(x)
Return the left-padded Kronecker product of self and x in the basis of self.

The left-padded Kronecker product is a bilinear map mapping two non-commutative symmetric
functions to another, not necessarily preserving degree. It can be defined as follows: Let * de-
note the internal product (internal_product()) on the space of non-commutative symmetric
functions. For any composition 𝐼 , let 𝑆𝐼 denote the complete homogeneous symmetric function
indexed by 𝐼 . For any compositions 𝛼, 𝛽, 𝛾, let 𝑔𝛾𝛼,𝛽 denote the coefficient of 𝑆𝛾 in the internal
product 𝑆𝛼 *𝑆𝛽 . For every composition 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑘) and every integer 𝑛 > |𝐼|, define the
`n`-completion of `I` to be the composition (𝑛− |𝐼| , 𝑖1, 𝑖2, . . . , 𝑖𝑘); this 𝑛-completion is denoted
by 𝐼[𝑛]. Then, for any compositions 𝛼 and 𝛽 and every integer 𝑛 > |𝛼| + |𝛽|, we can write the
internal product 𝑆𝛼[𝑛] * 𝑆𝛽[𝑛] in the form

𝑆𝛼[𝑛] * 𝑆𝛽[𝑛] =
∑︁
𝛾

𝑔
𝛾[𝑛]
𝛼[𝑛],𝛽[𝑛]𝑆

𝛾[𝑛]

with 𝛾 ranging over all compositions. The coefficients 𝑔𝛾[𝑛]𝛼[𝑛],𝛽[𝑛] are independent on 𝑛. These
coefficients 𝑔𝛾[𝑛]𝛼[𝑛],𝛽[𝑛] are denoted by ̃︀𝑔𝛾𝛼,𝛽 , and the non-commutative symmetric function∑︁

𝛾

̃︀𝑔𝛾𝛼,𝛽𝑆𝛾
is said to be the left-padded Kronecker product of 𝑆𝛼 and 𝑆𝛽 . By bilinearity, this extends to a
definition of a left-padded Kronecker product of any two non-commutative symmetric functions.

The left-padded Kronecker product on the non-commutative symmetric functions lifts the left-
padded Kronecker product on the symmetric functions. More precisely: Let 𝜋 denote the canonical
projection (to_symmetric_function()) from the non-commutative symmetric functions to the
symmetric functions. Then, any two non-commutative symmetric functions 𝑓 and 𝑔 satisfy

𝜋(𝑓*𝑔) = 𝜋(𝑓)*𝜋(𝑔),

where the * on the left-hand side denotes the left-padded Kronecker product on the non-
commutative symmetric functions, and the * on the right-hand side denotes the left-padded Kro-
necker product on the symmetric functions.

INPUT:
• x – element of the ring of non-commutative symmetric functions over the same base ring as
self

OUTPUT:
• the left-padded Kronecker product of self with x (an element of the ring of non-commutative

symmetric functions in the same basis as self)
AUTHORS:
• Darij Grinberg (15 Mar 2014)
EXAMPLES:

5.1. Comprehensive Module List 1379

Combinatorics, Release 9.7

sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: S = NSym.S()
sage: S[2,1].left_padded_kronecker_product(S[3])
S[1, 1, 1, 1] + S[1, 2, 1] + S[2, 1] + S[2, 1, 1, 1] + S[2, 2, 1] + S[3,␣
→˓2, 1]
sage: S[2,1].left_padded_kronecker_product(S[1])
S[1, 1, 1] + S[1, 2, 1] + S[2, 1]
sage: S[1].left_padded_kronecker_product(S[2,1])
S[1, 1, 1] + S[2, 1] + S[2, 1, 1]
sage: S[1,1].left_padded_kronecker_product(S[2])
S[1, 1] + 2*S[1, 1, 1] + S[2, 1, 1]
sage: S[1].left_padded_kronecker_product(S[1,2,1])
S[1, 1, 1, 1] + S[1, 2, 1] + S[1, 2, 1, 1] + S[2, 1, 1]
sage: S[2].left_padded_kronecker_product(S[3])
S[1, 2] + S[2, 1, 1] + S[3, 2]

Taking the left-padded Kronecker product with 1 = 𝑆 is the identity map on the ring of non-
commutative symmetric functions:

sage: all(S[Composition([])].left_padded_kronecker_product(S[lam])
....: == S[lam].left_padded_kronecker_product(S[Composition([])])
....: == S[lam] for i in range(4)
....: for lam in Compositions(i))
True

Here is a rule for the left-padded Kronecker product of 𝑆1 (this is the same as 𝑆(1)) with any com-
plete homogeneous function: Let 𝐼 be a composition. Then, the left-padded Kronecker product
of 𝑆1 and 𝑆𝐼 is

∑︀
𝐾 𝑎𝐾𝑆

𝐾 , where the sum runs over all compositions 𝐾, and the coefficient 𝑎𝐾
is defined as the number of ways to obtain 𝐾 from 𝐼 by one of the following two operations:
• Insert a 1 at the end of 𝐼 .
• Subtract 1 from one of the entries of 𝐼 (and remove the entry if it thus becomes 0), and insert a

1 at the end of 𝐼 .
We check this for compositions of size ≤ 4:

sage: def mults1(I):
....: # Left left-padded Kronecker multiplication by S[1].
....: res = S[I[:] + [1]]
....: for k in range(len(I)):
....: I2 = I[:]
....: if I2[k] == 1:
....: I2 = I2[:k] + I2[k+1:]
....: else:
....: I2[k] -= 1
....: res += S[I2 + [1]]
....: return res
sage: all(mults1(I) == S[1].left_padded_kronecker_product(S[I])
....: for i in range(5) for I in Compositions(i))
True

A similar rule can be made for the left-padded Kronecker product of any complete homogeneous
function with 𝑆1: Let 𝐼 be a composition. Then, the left-padded Kronecker product of 𝑆𝐼 and 𝑆1

is
∑︀
𝐾 𝑏𝐾𝑆

𝐾 , where the sum runs over all compositions 𝐾, and the coefficient 𝑏𝐾 is defined as
the number of ways to obtain 𝐾 from 𝐼 by one of the following two operations:
• Insert a 1 at the front of 𝐼 .

1380 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Subtract 1 from one of the entries of 𝐼 (and remove the entry if it thus becomes 0), and insert a
1 right after this entry.

We check this for compositions of size ≤ 4:

sage: def mults2(I):
....: # Left left-padded Kronecker multiplication by S[1].
....: res = S[[1] + I[:]]
....: for k in range(len(I)):
....: I2 = I[:]
....: i2k = I2[k]
....: if i2k != 1:
....: I2 = I2[:k] + [i2k-1, 1] + I2[k+1:]
....: res += S[I2]
....: return res
sage: all(mults2(I) == S[I].left_padded_kronecker_product(S[1])
....: for i in range(5) for I in Compositions(i))
True

Checking the 𝜋(𝑓*𝑔) = 𝜋(𝑓)*𝜋(𝑔) equality:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: R = NSym.R()
sage: def testpi(n):
....: for I in Compositions(n):
....: for J in Compositions(n):
....: a = R[I].to_symmetric_function()
....: b = R[J].to_symmetric_function()
....: x = a.left_padded_kronecker_product(b)
....: y = R[I].left_padded_kronecker_product(R[J])
....: y = y.to_symmetric_function()
....: if x != y:
....: return False
....: return True
sage: testpi(3)
True

omega_involution()
Return the image of the noncommutative symmetric function self under the omega involution.

The omega involution is defined as the algebra antihomomorphism𝑁𝐶𝑆𝐹 → 𝑁𝐶𝑆𝐹 which, for
every positive integer 𝑛, sends the 𝑛-th complete non-commutative symmetric function 𝑆𝑛 to the
𝑛-th elementary non-commutative symmetric function Λ𝑛. This omega involution is denoted by
𝜔. It can be shown that every composition 𝐼 satisfies

𝜔(𝑆𝐼) = Λ𝐼
𝑟

, 𝜔(Λ𝐼) = 𝑆𝐼
𝑟

, 𝜔(𝑅𝐼) = 𝑅𝐼𝑡 , 𝜔(Φ𝐼) = (−1)|𝐼|−ℓ(𝐼)Φ𝐼
𝑟

, 𝜔(Ψ𝐼) = (−1)|𝐼|−ℓ(𝐼)Ψ𝐼𝑟 ,

where 𝐼𝑟 denotes the reversed composition of 𝐼 , and 𝐼𝑡 denotes the conjugate composition of 𝐼 ,
and ℓ(𝐼) denotes the length of the composition 𝐼 , and standard notations for classical bases of
𝑁𝐶𝑆𝐹 are being used (𝑆 for the complete basis, Λ for the elementary basis, 𝑅 for the ribbon
basis, Φ for that of the power-sums of the second kind, and Ψ for that of the power-sums of the
first kind). More generally, if 𝑓 is a homogeneous element of 𝑁𝐶𝑆𝐹 of degree 𝑛, then

𝜔(𝑓) = (−1)𝑛𝑆(𝑓),

where 𝑆 denotes the antipode of 𝑁𝐶𝑆𝐹 .

5.1. Comprehensive Module List 1381

Combinatorics, Release 9.7

The omega involution 𝜔 is an involution and a coalgebra automorphism of 𝑁𝐶𝑆𝐹 . It is an au-
tomorphism of the graded vector space 𝑁𝐶𝑆𝐹 . If 𝜋 denotes the projection from 𝑁𝐶𝑆𝐹 to the
ring of symmetric functions (to_symmetric_function()), then 𝜋(𝜔(𝑓)) = 𝜔(𝜋(𝑓)) for every
𝑓 ∈ 𝑁𝐶𝑆𝐹 , where the 𝜔 on the right hand side denotes the omega automorphism of 𝑆𝑦𝑚.

The omega involution on 𝑁𝐶𝑆𝐹 is adjoint to the omega involution on 𝑄𝑆𝑦𝑚 by the standard
adjunction between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The omega involution has been denoted by 𝜔 in [LMvW13], section 3.6. See [NCSF1], section
3.1 for the properties of this map.

See also:

omega involution of QSym , psi involution of NCSF, star involution of NCSF.

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: S = NSym.S()
sage: L = NSym.L()
sage: L(S[3,2].omega_involution())
L[2, 3]
sage: L(S[6,3].omega_involution())
L[3, 6]
sage: L(S[1,3].omega_involution())
L[3, 1]
sage: L((S[9,1] - S[8,2] + 2*S[6,4] - 3*S[3] + 4*S[[]]).omega_
→˓involution()) # long time
4*L[] + L[1, 9] - L[2, 8] - 3*L[3] + 2*L[4, 6]
sage: L((S[3,3] - 2*S[2]).omega_involution())
-2*L[2] + L[3, 3]
sage: L(S([4,2]).omega_involution())
L[2, 4]
sage: R = NSym.R()
sage: R([4,2]).omega_involution()
R[1, 2, 1, 1, 1]
sage: R.zero().omega_involution()
0
sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: Phi = NSym.Phi()
sage: Phi([2,1]).omega_involution()
-Phi[1, 2]
sage: Psi = NSym.Psi()
sage: Psi([2,1]).omega_involution()
-Psi[1, 2]
sage: Psi([3,1]).omega_involution()
Psi[1, 3]

Testing the 𝜋(𝜔(𝑓)) = 𝜔(𝜋(𝑓)) relation noticed above:

sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: R = NSym.R()
sage: all(R(I).omega_involution().to_symmetric_function()
....: == R(I).to_symmetric_function().omega_involution()
....: for I in Compositions(4))
True

1382 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The omega involution on 𝑄𝑆𝑦𝑚 is adjoint to the omega involution on 𝑁𝑆𝑦𝑚 with respect to the
duality pairing:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: M = QSym.M()
sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: S = NSym.S()
sage: all(all(M(I).omega_involution().duality_pairing(S(J))
....: == M(I).duality_pairing(S(J).omega_involution())
....: for I in Compositions(2))
....: for J in Compositions(3))
True

psi_involution()
Return the image of the noncommutative symmetric function self under the involution 𝜓.

The involution 𝜓 is defined as the linear map𝑁𝐶𝑆𝐹 → 𝑁𝐶𝑆𝐹 which, for every composition 𝐼 ,
sends the complete noncommutative symmetric function 𝑆𝐼 to the elementary noncommutative
symmetric function Λ𝐼 . It can be shown that every composition 𝐼 satisfies

𝜓(𝑅𝐼) = 𝑅𝐼𝑐 , 𝜓(𝑆𝐼) = Λ𝐼 , 𝜓(Λ𝐼) = 𝑆𝐼 , 𝜓(Φ𝐼) = (−1)|𝐼|−ℓ(𝐼)Φ𝐼

where 𝐼𝑐 denotes the complement of the composition 𝐼 , and ℓ(𝐼) denotes the length of 𝐼 , and where
standard notations for classical bases of𝑁𝐶𝑆𝐹 are being used (𝑆 for the complete basis, Λ for the
elementary basis, Φ for the basis of the power sums of the second kind, and𝑅 for the ribbon basis).
The map 𝜓 is an involution and a graded Hopf algebra automorphism of𝑁𝐶𝑆𝐹 . If 𝜋 denotes the
projection from 𝑁𝐶𝑆𝐹 to the ring of symmetric functions (to_symmetric_function()), then
𝜋(𝜓(𝑓)) = 𝜔(𝜋(𝑓)) for every 𝑓 ∈ 𝑁𝐶𝑆𝐹 , where the 𝜔 on the right hand side denotes the omega
automorphism of 𝑆𝑦𝑚.

The involution 𝜓 of 𝑁𝐶𝑆𝐹 is adjoint to the involution 𝜓 of 𝑄𝑆𝑦𝑚 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The involution 𝜓 has been denoted by 𝜓 in [LMvW13], section 3.6.

See also:

psi involution of QSym , star involution of NCSF.

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: R = NSym.R()
sage: R[3,2].psi_involution()
R[1, 1, 2, 1]
sage: R[6,3].psi_involution()
R[1, 1, 1, 1, 1, 2, 1, 1]
sage: (R[9,1] - R[8,2] + 2*R[2,4] - 3*R[3] + 4*R[[]]).psi_involution()
4*R[] - 3*R[1, 1, 1] + R[1, 1, 1, 1, 1, 1, 1, 1, 2] - R[1, 1, 1, 1, 1, 1,
→˓ 1, 2, 1] + 2*R[1, 2, 1, 1, 1]
sage: (R[3,3] - 2*R[2]).psi_involution()
-2*R[1, 1] + R[1, 1, 2, 1, 1]
sage: R([2,1,1]).psi_involution()
R[1, 3]
sage: S = NSym.S()
sage: S([2,1]).psi_involution()
S[1, 1, 1] - S[2, 1]

(continues on next page)

5.1. Comprehensive Module List 1383

Combinatorics, Release 9.7

(continued from previous page)

sage: S.zero().psi_involution()
0
sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: Phi = NSym.Phi()
sage: Phi([2,1]).psi_involution()
-Phi[2, 1]
sage: Phi([3,1]).psi_involution()
Phi[3, 1]

The Psi basis doesn’t behave as nicely:

sage: Psi = NSym.Psi()
sage: Psi([2,1]).psi_involution()
-Psi[2, 1]
sage: Psi([3,1]).psi_involution()
1/2*Psi[1, 2, 1] - 1/2*Psi[2, 1, 1] + Psi[3, 1]

The involution 𝜓 commutes with the antipode:

sage: all(R(I).psi_involution().antipode()
....: == R(I).antipode().psi_involution()
....: for I in Compositions(4))
True

Testing the 𝜋(𝜓(𝑓)) = 𝜔(𝜋(𝑓)) relation noticed above:

sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: R = NSym.R()
sage: all(R(I).psi_involution().to_symmetric_function()
....: == R(I).to_symmetric_function().omega()
....: for I in Compositions(4))
True

The involution 𝜓 of 𝑄𝑆𝑦𝑚 is adjoint to the involution 𝜓 of 𝑁𝑆𝑦𝑚 with respect to the duality
pairing:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: M = QSym.M()
sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: S = NSym.S()
sage: all(all(M(I).psi_involution().duality_pairing(S(J))
....: == M(I).duality_pairing(S(J).psi_involution())
....: for I in Compositions(2))
....: for J in Compositions(3))
True

star_involution()
Return the image of the noncommutative symmetric function self under the star involution.

The star involution is defined as the algebra antihomomorphism 𝑁𝐶𝑆𝐹 → 𝑁𝐶𝑆𝐹 which, for
every positive integer 𝑛, sends the 𝑛-th complete non-commutative symmetric function 𝑆𝑛 to 𝑆𝑛.
Denoting by 𝑓* the image of an element 𝑓 ∈ 𝑁𝐶𝑆𝐹 under this star involution, it can be shown
that every composition 𝐼 satisfies

(𝑆𝐼)* = 𝑆𝐼
𝑟

, (Λ𝐼)* = Λ𝐼
𝑟

, 𝑅*𝐼 = 𝑅𝐼𝑟 , (Φ𝐼)* = Φ𝐼
𝑟

,

1384 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

where 𝐼𝑟 denotes the reversed composition of 𝐼 , and standard notations for classical bases of
𝑁𝐶𝑆𝐹 are being used (𝑆 for the complete basis, Λ for the elementary basis, 𝑅 for the ribbon
basis, and Φ for that of the power-sums of the second kind). The star involution is an involution
and a coalgebra automorphism of 𝑁𝐶𝑆𝐹 . It is an automorphism of the graded vector space
𝑁𝐶𝑆𝐹 . Under the canonical isomorphism between the 𝑛-th graded component of 𝑁𝐶𝑆𝐹 and
the descent algebra of the symmetric group 𝑆𝑛 (see to_descent_algebra()), the star involution
(restricted to the 𝑛-th graded component) corresponds to the automorphism of the descent algebra
given by 𝑥 ↦→ 𝜔𝑛𝑥𝜔𝑛, where 𝜔𝑛 is the permutation (𝑛, 𝑛 − 1, . . . , 1) ∈ 𝑆𝑛 (written here in
one-line notation). If 𝜋 denotes the projection from 𝑁𝐶𝑆𝐹 to the ring of symmetric functions
(to_symmetric_function()), then 𝜋(𝑓*) = 𝜋(𝑓) for every 𝑓 ∈ 𝑁𝐶𝑆𝐹 .

The star involution on𝑁𝐶𝑆𝐹 is adjoint to the star involution on𝑄𝑆𝑦𝑚 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The star involution has been denoted by 𝜌 in [LMvW13], section 3.6. See [NCSF2], section 2.3
for the properties of this map.

See also:

star involution of QSym , psi involution of NCSF.

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: S = NSym.S()
sage: S[3,2].star_involution()
S[2, 3]
sage: S[6,3].star_involution()
S[3, 6]
sage: (S[9,1] - S[8,2] + 2*S[6,4] - 3*S[3] + 4*S[[]]).star_involution()
4*S[] + S[1, 9] - S[2, 8] - 3*S[3] + 2*S[4, 6]
sage: (S[3,3] - 2*S[2]).star_involution()
-2*S[2] + S[3, 3]
sage: S([4,2]).star_involution()
S[2, 4]
sage: R = NSym.R()
sage: R([4,2]).star_involution()
R[2, 4]
sage: R.zero().star_involution()
0
sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: Phi = NSym.Phi()
sage: Phi([2,1]).star_involution()
Phi[1, 2]

The Psi basis doesn’t behave as nicely:

sage: Psi = NSym.Psi()
sage: Psi([2,1]).star_involution()
Psi[1, 2]
sage: Psi([3,1]).star_involution()
1/2*Psi[1, 1, 2] - 1/2*Psi[1, 2, 1] + Psi[1, 3]

The star involution commutes with the antipode:

5.1. Comprehensive Module List 1385

Combinatorics, Release 9.7

sage: all(R(I).star_involution().antipode()
....: == R(I).antipode().star_involution()
....: for I in Compositions(4))
True

Checking the relation with the descent algebra described above:

sage: def descent_test(n):
....: DA = DescentAlgebra(QQ, n)
....: NSym = NonCommutativeSymmetricFunctions(QQ)
....: S = NSym.S()
....: DAD = DA.D()
....: w_n = DAD(set(range(1, n)))
....: for I in Compositions(n):
....: if not (S[I].star_involution()
....: == w_n * S[I].to_descent_algebra(n) * w_n):
....: return False
....: return True
sage: all(descent_test(i) for i in range(4))
True
sage: all(descent_test(i) for i in range(6)) # long time
True

Testing the 𝜋(𝑓*) = 𝜋(𝑓) relation noticed above:

sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: R = NSym.R()
sage: all(R(I).star_involution().to_symmetric_function()
....: == R(I).to_symmetric_function()
....: for I in Compositions(4))
True

The star involution on𝑄𝑆𝑦𝑚 is adjoint to the star involution on𝑁𝑆𝑦𝑚with respect to the duality
pairing:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: M = QSym.M()
sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: S = NSym.S()
sage: all(all(M(I).star_involution().duality_pairing(S(J))
....: == M(I).duality_pairing(S(J).star_involution())
....: for I in Compositions(2))
....: for J in Compositions(3))
True

to_descent_algebra(n=None)
Return the image of the n-th degree homogeneous component of self in the descent algebra of
𝑆𝑛 over the same base ring as self.

This is based upon the canonical isomorphism from the 𝑛-th degree homogeneous component of
the algebra of noncommutative symmetric functions to the descent algebra of 𝑆𝑛. This isomor-
phism maps the inner product of noncommutative symmetric functions either to the product in the
descent algebra of 𝑆𝑛 or to its opposite (depending on how the latter is defined).

If n is not specified, it will be taken to be the highest homogeneous component of self.

1386 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:
• The image of the n-th homogeneous component of self under the isomorphism into the descent

algebra of 𝑆𝑛 over the same base ring as self.
EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(ZZ).S()
sage: S[2,1].to_descent_algebra(3)
B[2, 1]
sage: (S[1,2,1] - 3 * S[1,1,2]).to_descent_algebra(4)
-3*B[1, 1, 2] + B[1, 2, 1]
sage: S[2,1].to_descent_algebra(2)
0
sage: S[2,1].to_descent_algebra()
B[2, 1]
sage: S.zero().to_descent_algebra().parent()
Descent algebra of 0 over Integer Ring in the subset basis
sage: (S[1,2,1] - 3 * S[1,1,2]).to_descent_algebra(1)
0

to_fqsym()
Return the image of the non-commutative symmetric function self under the morphism 𝜄 :
𝑁𝑆𝑦𝑚→ 𝐹𝑄𝑆𝑦𝑚.

This morphism is the injective algebra homomorphism𝑁𝑆𝑦𝑚→ 𝐹𝑄𝑆𝑦𝑚 that sends each Com-
plete generator 𝑆𝑛 to 𝐹[1,2,...,𝑛]. It is the inclusion map, if we regard both 𝑁𝑆𝑦𝑚 and 𝐹𝑄𝑆𝑦𝑚
as rings of noncommutative power series.

See also:

FreeQuasisymmetricFunctions for a definition of 𝐹𝑄𝑆𝑦𝑚.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: x = 2*R[[]] + 2*R[1] + 3*R[2]
sage: x.to_fqsym()
2*F[] + 2*F[1] + 3*F[1, 2]
sage: R[2,1].to_fqsym()
F[1, 3, 2] + F[3, 1, 2]
sage: x = R.an_element(); x
2*R[] + 2*R[1] + 3*R[1, 1]
sage: x.to_fqsym()
2*F[] + 2*F[1] + 3*F[2, 1]

sage: y = N.Phi()[1,2]
sage: y.to_fqsym()
F[1, 2, 3] - F[1, 3, 2] + F[2, 1, 3] + F[2, 3, 1]
- F[3, 1, 2] - F[3, 2, 1]

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: S[2].to_fqsym()
F[1, 2]
sage: S[1,2].to_fqsym()
F[1, 2, 3] + F[2, 1, 3] + F[2, 3, 1]
sage: S[2,1].to_fqsym()

(continues on next page)

5.1. Comprehensive Module List 1387

Combinatorics, Release 9.7

(continued from previous page)

F[1, 2, 3] + F[1, 3, 2] + F[3, 1, 2]
sage: S[1,2,1].to_fqsym()
F[1, 2, 3, 4] + F[1, 2, 4, 3] + F[1, 4, 2, 3]
+ F[2, 1, 3, 4] + F[2, 1, 4, 3] + F[2, 3, 1, 4]
+ F[2, 3, 4, 1] + F[2, 4, 1, 3] + F[2, 4, 3, 1]
+ F[4, 1, 2, 3] + F[4, 2, 1, 3] + F[4, 2, 3, 1]

to_fsym()
Return the image of self under the natural map to 𝐹𝑆𝑦𝑚.

There is an injective Hopf algebra morphism from 𝑁𝑆𝑦𝑚 to 𝐹𝑆𝑦𝑚 (see
FreeSymmetricFunctions), which maps the ribbon 𝑅𝛼 indexed by a composition 𝛼 to
the sum of all tableaux whose descent composition is 𝛼. If we regard 𝑁𝑆𝑦𝑚 as a Hopf subalge-
bra of 𝐹𝑄𝑆𝑦𝑚 via the morphism 𝜄 : 𝑁𝑆𝑦𝑚 → 𝐹𝑄𝑆𝑦𝑚 (implemented as to_fqsym()), then
this injective morphism is just the inclusion map.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: x = 2*R[[]] + 2*R[1] + 3*R[2]
sage: x.to_fsym()
2*G[] + 2*G[1] + 3*G[12]
sage: R[2,1].to_fsym()
G[12|3]
sage: R[1,2].to_fsym()
G[13|2]
sage: R[2,1,2].to_fsym()
G[12|35|4] + G[125|3|4]
sage: x = R.an_element(); x
2*R[] + 2*R[1] + 3*R[1, 1]
sage: x.to_fsym()
2*G[] + 2*G[1] + 3*G[1|2]

sage: y = N.Phi()[1,2]
sage: y.to_fsym()
-G[1|2|3] - G[12|3] + G[123] + G[13|2]

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: S[2].to_fsym()
G[12]
sage: S[2,1].to_fsym()
G[12|3] + G[123]

to_ncsym()
Return the image of self under the injective algebra homomorphism 𝜅 : 𝑁𝑆𝑦𝑚 → 𝑁𝐶𝑆𝑦𝑚
that fixes the symmetric functions.

As usual, 𝑁𝐶𝑆𝑦𝑚 denotes the ring of symmetric functions in non-commuting variables. Let 𝑆𝑛
denote a generator of the complete basis. The algebra homomorphism 𝜅 : 𝑁𝑆𝑦𝑚→ 𝑁𝐶𝑆𝑦𝑚 is
defined by

𝑆𝑛 ↦→
∑︁
𝐴⊢[𝑛]

𝜆(𝐴)!𝜆(𝐴)!

𝑛!
m𝐴.

1388 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

It has the property that the canonical maps 𝜒 : 𝑁𝐶𝑆𝑦𝑚→ 𝑆𝑦𝑚 and 𝜌 : 𝑁𝑆𝑦𝑚→ 𝑆𝑦𝑚 satisfy
𝜒 ∘ 𝜅 = 𝜌.

Note: A remark in [BRRZ08] makes it clear that the embedding of 𝑁𝑆𝑦𝑚 into 𝑁𝐶𝑆𝑦𝑚 that
preserves the projection into the symmetric functions is not unique. While this seems to be a
natural embedding, any free set of algebraic generators of 𝑁𝑆𝑦𝑚 can be sent to a set of free
elements in 𝑁𝐶𝑆𝑦𝑚 to form another embedding.

See also:

NonCommutativeSymmetricFunctions for a definition of 𝑁𝐶𝑆𝑦𝑚.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: S[2].to_ncsym()
1/2*m{{1}, {2}} + m{{1, 2}}
sage: S[1,2,1].to_ncsym()
1/2*m{{1}, {2}, {3}, {4}} + 1/2*m{{1}, {2}, {3, 4}} + m{{1}, {2, 3}, {4}}
+ m{{1}, {2, 3, 4}} + 1/2*m{{1}, {2, 4}, {3}} + 1/2*m{{1, 2}, {3}, {4}}
+ 1/2*m{{1, 2}, {3, 4}} + m{{1, 2, 3}, {4}} + m{{1, 2, 3, 4}}
+ 1/2*m{{1, 2, 4}, {3}} + 1/2*m{{1, 3}, {2}, {4}} + 1/2*m{{1, 3}, {2, 4}
→˓}
+ 1/2*m{{1, 3, 4}, {2}} + 1/2*m{{1, 4}, {2}, {3}} + m{{1, 4}, {2, 3}}
sage: S[1,2].to_ncsym()
1/2*m{{1}, {2}, {3}} + m{{1}, {2, 3}} + 1/2*m{{1, 2}, {3}}
+ m{{1, 2, 3}} + 1/2*m{{1, 3}, {2}}
sage: S[[]].to_ncsym()
m{}

sage: R = N.ribbon()
sage: x = R.an_element(); x
2*R[] + 2*R[1] + 3*R[1, 1]
sage: x.to_ncsym()
2*m{} + 2*m{{1}} + 3/2*m{{1}, {2}}
sage: R[2,1].to_ncsym()
1/3*m{{1}, {2}, {3}} + 1/6*m{{1}, {2, 3}}
+ 2/3*m{{1, 2}, {3}} + 1/6*m{{1, 3}, {2}}

sage: Phi = N.Phi()
sage: Phi[1,2].to_ncsym()
m{{1}, {2, 3}} + m{{1, 2, 3}}
sage: Phi[1,3].to_ncsym()
-1/4*m{{1}, {2}, {3, 4}} - 1/4*m{{1}, {2, 3}, {4}} + m{{1}, {2, 3, 4}}
+ 1/2*m{{1}, {2, 4}, {3}} - 1/4*m{{1, 2}, {3, 4}} - 1/4*m{{1, 2, 3}, {4}
→˓}
+ m{{1, 2, 3, 4}} + 1/2*m{{1, 2, 4}, {3}} + 1/2*m{{1, 3}, {2, 4}}
- 1/4*m{{1, 3, 4}, {2}} - 1/4*m{{1, 4}, {2, 3}}

to_symmetric_function()
Return the commutative image of a non-commutative symmetric function.

OUTPUT:
• The commutative image of self. This will be a symmetric function.

5.1. Comprehensive Module List 1389

Combinatorics, Release 9.7

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: x = R.an_element(); x
2*R[] + 2*R[1] + 3*R[1, 1]
sage: x.to_symmetric_function()
2*s[] + 2*s[1] + 3*s[1, 1]
sage: y = N.Phi()[1,3]
sage: y.to_symmetric_function()
h[1, 1, 1, 1] - 3*h[2, 1, 1] + 3*h[3, 1]

to_symmetric_group_algebra()
Return the image of a non-commutative symmetric function into the symmetric group algebra
where the ribbon basis element indexed by a composition is associated with the sum of all per-
mutations which have descent set equal to said composition. In compliance with the anti- iso-
morphism between the descent algebra and the non-commutative symmetric functions, we index
descent positions by the reversed composition.

OUTPUT:
• The image of self under the embedding of the 𝑛-th degree homogeneous component of the

non-commutative symmetric functions in the symmetric group algebra of 𝑆𝑛. This can behave
unexpectedly when self is not homogeneous.

EXAMPLES:

sage: R = NonCommutativeSymmetricFunctions(QQ).R()
sage: R[2,1].to_symmetric_group_algebra()
[1, 3, 2] + [2, 3, 1]
sage: R([]).to_symmetric_group_algebra()
[]

verschiebung(n)
Return the image of the noncommutative symmetric function self under the 𝑛-th Verschiebung
operator.

The 𝑛-th Verschiebung operator V𝑛 is defined to be the map from the k-algebra of noncommuta-
tive symmetric functions to itself that sends the complete function 𝑆𝐼 indexed by a composition
𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑘) to 𝑆(𝑖1/𝑛,𝑖2/𝑛,...,𝑖𝑘/𝑛) if all of the numbers 𝑖1, 𝑖2, . . . , 𝑖𝑘 are divisible by 𝑛,
and to 0 otherwise. This operator V𝑛 is a Hopf algebra endomorphism. For every positive integer
𝑟 with 𝑛 | 𝑟, it satisfies

V𝑛(𝑆𝑟) = 𝑆𝑟/𝑛, V𝑛(Λ𝑟) = (−1)𝑟−𝑟/𝑛Λ𝑟/𝑛, V𝑛(Ψ𝑟) = 𝑛Ψ𝑟/𝑛, V𝑛(Φ𝑟) = 𝑛Φ𝑟/𝑛

(where 𝑆𝑟 denotes the 𝑟-th complete non-commutative symmetric function, Λ𝑟 denotes the 𝑟-th el-
ementary non-commutative symmetric function, Ψ𝑟 denotes the 𝑟-th power-sum non-commutative
symmetric function of the first kind, and Φ𝑟 denotes the 𝑟-th power-sum non-commutative sym-
metric function of the second kind). For every positive integer 𝑟 with 𝑛 - 𝑟, it satisfes

V𝑛(𝑆𝑟) = V𝑛(Λ𝑟) = V𝑛(Ψ𝑟) = V𝑛(Φ𝑟) = 0.

The 𝑛-th Verschiebung operator is also called the 𝑛-th Verschiebung endomorphism.

It is a lift of the𝑛-th Verschiebung operator on the ring of symmetric functions (verschiebung())
to the ring of noncommutative symmetric functions.

The action of the 𝑛-th Verschiebung operator can also be described on the ribbon Schur functions.
Namely, every composition 𝐼 of size 𝑛ℓ satisfies

V𝑛(𝑅𝐼) = (−1)ℓ(𝐼)−ℓ(𝐽) ·𝑅𝐽/𝑛,

1390 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

where 𝐽 denotes the meet of the compositions 𝐼 and (𝑛, 𝑛, . . . , 𝑛⏟ ⏞
|𝐼|/𝑛 times

), where ℓ(𝐼) is the length of

𝐼 , and where 𝐽/𝑛 denotes the composition obtained by dividing every entry of 𝐽 by 𝑛. For a
composition 𝐼 of size not divisible by 𝑛, we have V𝑛(𝑅𝐼) = 0.

See also:

frobenius method of QSym , verschiebung method of Sym

INPUT:
• n – a positive integer
OUTPUT:

The result of applying the 𝑛-th Verschiebung operator (on the ring of noncommutative symmetric
functions) to self.

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: S = NSym.S()
sage: S[3,2].verschiebung(2)
0
sage: S[6,4].verschiebung(2)
S[3, 2]
sage: (S[9,1] - S[8,2] + 2*S[6,4] - 3*S[3] + 4*S[[]]).verschiebung(2)
4*S[] + 2*S[3, 2] - S[4, 1]
sage: (S[3,3] - 2*S[2]).verschiebung(3)
S[1, 1]
sage: S([4,2]).verschiebung(1)
S[4, 2]
sage: R = NSym.R()
sage: R([4,2]).verschiebung(2)
R[2, 1]

Being Hopf algebra endomorphisms, the Verschiebung operators commute with the antipode:

sage: all(R(I).verschiebung(2).antipode()
....: == R(I).antipode().verschiebung(2)
....: for I in Compositions(4))
True

They lift the Verschiebung operators of the ring of symmetric functions:

sage: all(S(I).verschiebung(2).to_symmetric_function()
....: == S(I).to_symmetric_function().verschiebung(2)
....: for I in Compositions(4))
True

The Frobenius operators on 𝑄𝑆𝑦𝑚 are adjoint to the Verschiebung operators on 𝑁𝑆𝑦𝑚 with
respect to the duality pairing:

sage: QSym = QuasiSymmetricFunctions(ZZ)
sage: M = QSym.M()
sage: all(all(M(I).frobenius(3).duality_pairing(S(J))
....: == M(I).duality_pairing(S(J).verschiebung(3))
....: for I in Compositions(2))

(continues on next page)

5.1. Comprehensive Module List 1391

Combinatorics, Release 9.7

(continued from previous page)

....: for J in Compositions(3))
True

class ParentMethods
Bases: object

immaculate_function(xs)
Return the immaculate function corresponding to the integer vector xs, written in the basis self.

If 𝛼 is any integer vector – i.e., an element of Z𝑚 for some 𝑚 ∈ N –, the immaculate function
corresponding to 𝛼 is a non-commutative symmetric function denoted by S𝛼. One way to define
this function is by setting

S𝛼 =
∑︁
𝜎∈𝑆𝑚

(−1)𝜎𝑆𝛼1+𝜎(1)−1𝑆𝛼2+𝜎(2)−2 · · ·𝑆𝛼𝑚+𝜎(𝑚)−𝑚,

where 𝛼 is written in the form (𝛼1, 𝛼2, . . . , 𝛼𝑚), and where 𝑆 stands for the complete basis
(Complete).

The immaculate function S𝛼 first appeared in [BBSSZ2012] (where it was defined differently, but
the definition we gave above appeared as Theorem 3.27).

The immaculate functionsS𝛼 for𝛼 running over all compositions (i.e., finite sequences of positive
integers) form a basis of 𝑁𝐶𝑆𝐹 . This is the immaculate basis (Immaculate).

INPUT:
• xs – list (or tuple or any iterable – possibly a composition) of integers
OUTPUT:

The immaculate function S𝑥𝑠 written in the basis self.

EXAMPLES:

Let us first check that, for xs a composition, we get the same as the result of self.
realization_of().I()[xs]:

sage: def test_comp(xs):
....: NSym = NonCommutativeSymmetricFunctions(QQ)
....: I = NSym.I()
....: return I[xs] == I.immaculate_function(xs)
sage: def test_allcomp(n):
....: return all(test_comp(c) for c in Compositions(n))
sage: test_allcomp(1)
True
sage: test_allcomp(2)
True
sage: test_allcomp(3)
True

Now some examples of non-composition immaculate functions:

sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: I = NSym.I()
sage: I.immaculate_function([0, 1])
0
sage: I.immaculate_function([0, 2])
-I[1, 1]

(continues on next page)

1392 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: I.immaculate_function([-1, 1])
-I[]
sage: I.immaculate_function([2, -1])
0
sage: I.immaculate_function([2, 0])
I[2]
sage: I.immaculate_function([2, 0, 1])
0
sage: I.immaculate_function([1, 0, 2])
-I[1, 1, 1]
sage: I.immaculate_function([2, 0, 2])
-I[2, 1, 1]
sage: I.immaculate_function([0, 2, 0, 2])
I[1, 1, 1, 1] + I[1, 2, 1]
sage: I.immaculate_function([2, 0, 2, 0, 2])
I[2, 1, 1, 1, 1] + I[2, 1, 2, 1]

to_symmetric_function()
Morphism to the algebra of symmetric functions.

This is constructed by extending the computation on the basis or by coercion to the complete basis.

OUTPUT:
• The module morphism from the basis self to the symmetric functions which corresponds to

taking a commutative image.
EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: x = R.an_element(); x
2*R[] + 2*R[1] + 3*R[1, 1]
sage: R.to_symmetric_function(x)
2*s[] + 2*s[1] + 3*s[1, 1]
sage: nM = N.Monomial()
sage: nM.to_symmetric_function(nM[3,1])
h[1, 1, 1, 1] - 7/2*h[2, 1, 1] + h[2, 2] + 7/2*h[3, 1] - 2*h[4]

to_symmetric_function_on_basis(I)
The image of the basis element indexed by I under the map to the symmetric functions.

This default implementation does a change of basis and computes the image in the complete basis.

INPUT:
• I – a composition
OUTPUT:
• The image of the non-commutative basis element of self indexed by the composition I under

the map from non-commutative symmetric functions to the symmetric functions. This will be
a symmetric function.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: I = N.Immaculate()
sage: I.to_symmetric_function(I[1,3])
-h[2, 2] + h[3, 1]

(continues on next page)

5.1. Comprehensive Module List 1393

Combinatorics, Release 9.7

(continued from previous page)

sage: I.to_symmetric_function(I[1,2])
0
sage: Phi = N.Phi()
sage: Phi.to_symmetric_function_on_basis([3,1,2])==Phi.to_symmetric_
→˓function(Phi[3,1,2])
True
sage: Phi.to_symmetric_function_on_basis([])
h[]

super_categories()
Return the super categories of the category of bases of the non-commutative symmetric functions.

OUTPUT:
• list

class Complete(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of non-commutative symmetric functions in the Complete basis.

The Complete basis is defined in Definition 3.4 of [NCSF1], where it is denoted by (𝑆𝐼)𝐼 . It is a multi-
plicative basis, and is connected to the elementary generators Λ𝑖 of the ring of non-commutative symmetric
functions by the following relation: Define a non-commutative symmetric function 𝑆𝑛 for every nonnega-
tive integer 𝑛 by the power series identity

∑︁
𝑘≥0

𝑡𝑘𝑆𝑘 =

⎛⎝∑︁
𝑘≥0

(−𝑡)𝑘Λ𝑘

⎞⎠−1 ,
with Λ0 denoting 1. For every composition (𝑖1, 𝑖2, . . . , 𝑖𝑘), we have 𝑆(𝑖1,𝑖2,...,𝑖𝑘) = 𝑆𝑖1𝑆𝑖2 · · ·𝑆𝑖𝑘 .

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: S = NCSF.Complete(); S
Non-Commutative Symmetric Functions over the Rational Field in the Complete␣
→˓basis
sage: S.an_element()
2*S[] + 2*S[1] + 3*S[1, 1]

The following are aliases for this basis:

sage: NCSF.complete()
Non-Commutative Symmetric Functions over the Rational Field in the Complete␣
→˓basis
sage: NCSF.S()
Non-Commutative Symmetric Functions over the Rational Field in the Complete␣
→˓basis

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element in the Complete basis.

psi_involution()
Return the image of the noncommutative symmetric function self under the involution 𝜓.

1394 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

The involution 𝜓 is defined as the linear map𝑁𝐶𝑆𝐹 → 𝑁𝐶𝑆𝐹 which, for every composition 𝐼 ,
sends the complete noncommutative symmetric function 𝑆𝐼 to the elementary noncommutative
symmetric function Λ𝐼 . It can be shown that every composition 𝐼 satisfies

𝜓(𝑅𝐼) = 𝑅𝐼𝑐 , 𝜓(𝑆𝐼) = Λ𝐼 , 𝜓(Λ𝐼) = 𝑆𝐼 , 𝜓(Φ𝐼) = (−1)|𝐼|−ℓ(𝐼)Φ𝐼

where 𝐼𝑐 denotes the complement of the composition 𝐼 , and ℓ(𝐼) denotes the length of 𝐼 , and where
standard notations for classical bases of𝑁𝐶𝑆𝐹 are being used (𝑆 for the complete basis, Λ for the
elementary basis, Φ for the basis of the power sums of the second kind, and𝑅 for the ribbon basis).
The map 𝜓 is an involution and a graded Hopf algebra automorphism of𝑁𝐶𝑆𝐹 . If 𝜋 denotes the
projection from 𝑁𝐶𝑆𝐹 to the ring of symmetric functions (to_symmetric_function()), then
𝜋(𝜓(𝑓)) = 𝜔(𝜋(𝑓)) for every 𝑓 ∈ 𝑁𝐶𝑆𝐹 , where the 𝜔 on the right hand side denotes the omega
automorphism of 𝑆𝑦𝑚.

The involution 𝜓 of 𝑁𝐶𝑆𝐹 is adjoint to the involution 𝜓 of 𝑄𝑆𝑦𝑚 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The involution 𝜓 has been denoted by 𝜓 in [LMvW13], section 3.6.

See also:

psi involution of NCSF, psi involution of QSym , star involution of NCSF.

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: S = NSym.S()
sage: L = NSym.L()
sage: S[3,1].psi_involution()
S[1, 1, 1, 1] - S[1, 2, 1] - S[2, 1, 1] + S[3, 1]
sage: L(S[3,1].psi_involution())
L[3, 1]
sage: S[[]].psi_involution()
S[]
sage: S[1,1].psi_involution()
S[1, 1]
sage: (S[2,1] - 2*S[2]).psi_involution()
-2*S[1, 1] + S[1, 1, 1] + 2*S[2] - S[2, 1]

The implementation at hand is tailored to the complete basis. It is equivalent to the generic im-
plementation via the ribbon basis:

sage: R = NSym.R()
sage: all(R(S[I].psi_involution()) == R(S[I]).psi_involution()
....: for I in Compositions(4))
True

dual()
Return the dual basis to the complete basis of non-commutative symmetric functions. This is the
Monomial basis of quasi-symmetric functions.

OUTPUT:
• The Monomial basis of quasi-symmetric functions.

EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: S.dual()
Quasisymmetric functions over the Rational Field in the Monomial basis

5.1. Comprehensive Module List 1395

Combinatorics, Release 9.7

internal_product_on_basis(I, J)
The internal product of two non-commutative symmetric complete functions.

See internal_product() for a thorough documentation of this operation.

INPUT:
• I, J – compositions

OUTPUT:
• The internal product of the complete non-commutative symmetric function basis elements indexed

by I and J, expressed in the complete basis.
EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: S.internal_product_on_basis([2,2],[1,2,1])
2*S[1, 1, 1, 1] + S[1, 1, 2] + S[2, 1, 1]
sage: S.internal_product_on_basis([2,2],[1,2])
0

to_symmetric_function()
Morphism to the algebra of symmetric functions.

This is constructed by extending the computation on the complete basis.

OUTPUT:
• The module morphism from the basis self to the symmetric functions which corresponds to

taking a commutative image.
EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: S.to_symmetric_function(S[3,1,2])
h[3, 2, 1]
sage: S.to_symmetric_function(S[[]])
h[]

to_symmetric_function_on_basis(I)
The commutative image of a complete element

The commutative image of a basis element is obtained by sorting the indexing composition of the basis
element and the output is in the complete basis of the symmetric functions.

INPUT:
• I – a composition

OUTPUT:
• The commutative image of the complete basis element indexed by I. The result is the complete

symmetric function indexed by the partition obtained by sorting I.
EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(QQ).complete()
sage: S.to_symmetric_function_on_basis([2,1,3])
h[3, 2, 1]
sage: S.to_symmetric_function_on_basis([])
h[]

class Elementary(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

1396 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

The Hopf algebra of non-commutative symmetric functions in the Elementary basis.

The Elementary basis is defined in Definition 3.4 of [NCSF1], where it is denoted by (Λ𝐼)𝐼 . It is a mul-
tiplicative basis, and is obtained from the elementary generators Λ𝑖 of the ring of non-commutative sym-
metric functions through the formula Λ(𝑖1,𝑖2,...,𝑖𝑘) = Λ𝑖1Λ𝑖2 · · ·Λ𝑖𝑘 for every composition (𝑖1, 𝑖2, . . . , 𝑖𝑘).

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: L = NCSF.Elementary(); L
Non-Commutative Symmetric Functions over the Rational Field in the Elementary␣
→˓basis
sage: L.an_element()
2*L[] + 2*L[1] + 3*L[1, 1]

The following are aliases for this basis:

sage: NCSF.elementary()
Non-Commutative Symmetric Functions over the Rational Field in the Elementary␣
→˓basis
sage: NCSF.L()
Non-Commutative Symmetric Functions over the Rational Field in the Elementary␣
→˓basis

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

psi_involution()
Return the image of the noncommutative symmetric function self under the involution 𝜓.

The involution 𝜓 is defined as the linear map𝑁𝐶𝑆𝐹 → 𝑁𝐶𝑆𝐹 which, for every composition 𝐼 ,
sends the complete noncommutative symmetric function 𝑆𝐼 to the elementary noncommutative
symmetric function Λ𝐼 . It can be shown that every composition 𝐼 satisfies

𝜓(𝑅𝐼) = 𝑅𝐼𝑐 , 𝜓(𝑆𝐼) = Λ𝐼 , 𝜓(Λ𝐼) = 𝑆𝐼 , 𝜓(Φ𝐼) = (−1)|𝐼|−ℓ(𝐼)Φ𝐼

where 𝐼𝑐 denotes the complement of the composition 𝐼 , and ℓ(𝐼) denotes the length of 𝐼 , and where
standard notations for classical bases of𝑁𝐶𝑆𝐹 are being used (𝑆 for the complete basis, Λ for the
elementary basis, Φ for the basis of the power sums of the second kind, and𝑅 for the ribbon basis).
The map 𝜓 is an involution and a graded Hopf algebra automorphism of𝑁𝐶𝑆𝐹 . If 𝜋 denotes the
projection from 𝑁𝐶𝑆𝐹 to the ring of symmetric functions (to_symmetric_function()), then
𝜋(𝜓(𝑓)) = 𝜔(𝜋(𝑓)) for every 𝑓 ∈ 𝑁𝐶𝑆𝐹 , where the 𝜔 on the right hand side denotes the omega
automorphism of 𝑆𝑦𝑚.

The involution 𝜓 of 𝑁𝐶𝑆𝐹 is adjoint to the involution 𝜓 of 𝑄𝑆𝑦𝑚 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The involution 𝜓 has been denoted by 𝜓 in [LMvW13], section 3.6.

See also:

psi involution of NCSF, psi involution of QSym , star involution of NCSF.

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: S = NSym.S()
sage: L = NSym.L()

(continues on next page)

5.1. Comprehensive Module List 1397

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

(continued from previous page)

sage: L[3,1].psi_involution()
L[1, 1, 1, 1] - L[1, 2, 1] - L[2, 1, 1] + L[3, 1]
sage: S(L[3,1].psi_involution())
S[3, 1]
sage: L[[]].psi_involution()
L[]
sage: L[1,1].psi_involution()
L[1, 1]
sage: (L[2,1] - 2*L[2]).psi_involution()
-2*L[1, 1] + L[1, 1, 1] + 2*L[2] - L[2, 1]

The implementation at hand is tailored to the elementary basis. It is equivalent to the generic
implementation via the ribbon basis:

sage: R = NSym.R()
sage: all(R(L[I].psi_involution()) == R(L[I]).psi_involution()
....: for I in Compositions(3))
True
sage: all(R(L[I].psi_involution()) == R(L[I]).psi_involution()
....: for I in Compositions(4))
True

star_involution()
Return the image of the noncommutative symmetric function self under the star involution.

The star involution is defined as the algebra antihomomorphism 𝑁𝐶𝑆𝐹 → 𝑁𝐶𝑆𝐹 which, for
every positive integer 𝑛, sends the 𝑛-th complete non-commutative symmetric function 𝑆𝑛 to 𝑆𝑛.
Denoting by 𝑓* the image of an element 𝑓 ∈ 𝑁𝐶𝑆𝐹 under this star involution, it can be shown
that every composition 𝐼 satisfies

(𝑆𝐼)* = 𝑆𝐼
𝑟

, (Λ𝐼)* = Λ𝐼
𝑟

, 𝑅*𝐼 = 𝑅𝐼𝑟 , (Φ𝐼)* = Φ𝐼
𝑟

,

where 𝐼𝑟 denotes the reversed composition of 𝐼 , and standard notations for classical bases of
𝑁𝐶𝑆𝐹 are being used (𝑆 for the complete basis, Λ for the elementary basis, 𝑅 for the ribbon
basis, and Φ for that of the power-sums of the second kind). The star involution is an involution
and a coalgebra automorphism of 𝑁𝐶𝑆𝐹 . It is an automorphism of the graded vector space
𝑁𝐶𝑆𝐹 . Under the canonical isomorphism between the 𝑛-th graded component of 𝑁𝐶𝑆𝐹 and
the descent algebra of the symmetric group 𝑆𝑛 (see to_descent_algebra()), the star involution
(restricted to the 𝑛-th graded component) corresponds to the automorphism of the descent algebra
given by 𝑥 ↦→ 𝜔𝑛𝑥𝜔𝑛, where 𝜔𝑛 is the permutation (𝑛, 𝑛 − 1, . . . , 1) ∈ 𝑆𝑛 (written here in
one-line notation). If 𝜋 denotes the projection from 𝑁𝐶𝑆𝐹 to the ring of symmetric functions
(to_symmetric_function()), then 𝜋(𝑓*) = 𝜋(𝑓) for every 𝑓 ∈ 𝑁𝐶𝑆𝐹 .

The star involution on𝑁𝐶𝑆𝐹 is adjoint to the star involution on𝑄𝑆𝑦𝑚 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The star involution has been denoted by 𝜌 in [LMvW13], section 3.6. See [NCSF2], section 2.3
for the properties of this map.

See also:

star involution of NCSF, psi involution of NCSF, star involution of QSym .

EXAMPLES:

1398 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: L = NSym.L()
sage: L[3,3,2,3].star_involution()
L[3, 2, 3, 3]
sage: L[6,3,3].star_involution()
L[3, 3, 6]
sage: (L[1,9,1] - L[8,2] + 2*L[6,4] - 3*L[3] + 4*L[[]]).star_involution()
4*L[] + L[1, 9, 1] - L[2, 8] - 3*L[3] + 2*L[4, 6]
sage: (L[3,3] - 2*L[2]).star_involution()
-2*L[2] + L[3, 3]
sage: L([4,1]).star_involution()
L[1, 4]

The implementation at hand is tailored to the elementary basis. It is equivalent to the generic
implementation via the complete basis:

sage: S = NSym.S()
sage: all(S(L[I].star_involution()) == S(L[I]).star_involution()
....: for I in Compositions(4))
True

verschiebung(n)
Return the image of the noncommutative symmetric function self under the 𝑛-th Verschiebung
operator.

The 𝑛-th Verschiebung operator V𝑛 is defined to be the map from the k-algebra of noncommuta-
tive symmetric functions to itself that sends the complete function 𝑆𝐼 indexed by a composition
𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑘) to 𝑆(𝑖1/𝑛,𝑖2/𝑛,...,𝑖𝑘/𝑛) if all of the numbers 𝑖1, 𝑖2, . . . , 𝑖𝑘 are divisible by 𝑛,
and to 0 otherwise. This operator V𝑛 is a Hopf algebra endomorphism. For every positive integer
𝑟 with 𝑛 | 𝑟, it satisfies

V𝑛(𝑆𝑟) = 𝑆𝑟/𝑛, V𝑛(Λ𝑟) = (−1)𝑟−𝑟/𝑛Λ𝑟/𝑛, V𝑛(Ψ𝑟) = 𝑛Ψ𝑟/𝑛, V𝑛(Φ𝑟) = 𝑛Φ𝑟/𝑛

(where 𝑆𝑟 denotes the 𝑟-th complete non-commutative symmetric function, Λ𝑟 denotes the 𝑟-th el-
ementary non-commutative symmetric function, Ψ𝑟 denotes the 𝑟-th power-sum non-commutative
symmetric function of the first kind, and Φ𝑟 denotes the 𝑟-th power-sum non-commutative sym-
metric function of the second kind). For every positive integer 𝑟 with 𝑛 - 𝑟, it satisfes

V𝑛(𝑆𝑟) = V𝑛(Λ𝑟) = V𝑛(Ψ𝑟) = V𝑛(Φ𝑟) = 0.

The 𝑛-th Verschiebung operator is also called the 𝑛-th Verschiebung endomorphism.

It is a lift of the𝑛-th Verschiebung operator on the ring of symmetric functions (verschiebung())
to the ring of noncommutative symmetric functions.

The action of the 𝑛-th Verschiebung operator can also be described on the ribbon Schur functions.
Namely, every composition 𝐼 of size 𝑛ℓ satisfies

V𝑛(𝑅𝐼) = (−1)ℓ(𝐼)−ℓ(𝐽) ·𝑅𝐽/𝑛,

where 𝐽 denotes the meet of the compositions 𝐼 and (𝑛, 𝑛, . . . , 𝑛⏟ ⏞
|𝐼|/𝑛 times

), where ℓ(𝐼) is the length of

𝐼 , and where 𝐽/𝑛 denotes the composition obtained by dividing every entry of 𝐽 by 𝑛. For a
composition 𝐼 of size not divisible by 𝑛, we have V𝑛(𝑅𝐼) = 0.

5.1. Comprehensive Module List 1399

Combinatorics, Release 9.7

See also:

verschiebung method of NCSF, frobenius method of QSym , verschiebung method
of Sym

INPUT:
• n – a positive integer
OUTPUT:

The result of applying the 𝑛-th Verschiebung operator (on the ring of noncommutative symmetric
functions) to self.

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: L = NSym.L()
sage: L([4,2]).verschiebung(2)
-L[2, 1]
sage: L([2,4]).verschiebung(2)
-L[1, 2]
sage: L([6]).verschiebung(2)
-L[3]
sage: L([2,1]).verschiebung(3)
0
sage: L([3]).verschiebung(2)
0
sage: L([]).verschiebung(2)
L[]
sage: L([5, 1]).verschiebung(3)
0
sage: L([5, 1]).verschiebung(6)
0
sage: L([5, 1]).verschiebung(2)
0
sage: L([1, 2, 3, 1]).verschiebung(7)
0
sage: L([7]).verschiebung(7)
L[1]
sage: L([1, 2, 3, 1]).verschiebung(5)
0
sage: (L[1] - L[2] + 2*L[3]).verschiebung(1)
L[1] - L[2] + 2*L[3]

I
alias of NonCommutativeSymmetricFunctions.Immaculate

class Immaculate(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The immaculate basis of the non-commutative symmetric functions.

The immaculate basis first appears in Berg, Bergeron, Saliola, Serrano and Zabrocki’s [BBSSZ2012]. It
can be described as the family (S𝛼), where 𝛼 runs over all compositions, and S𝛼 denotes the immaculate
function corresponding to 𝛼 (see immaculate_function()).

1400 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

If 𝛼 is a composition (𝛼1, 𝛼2, . . . , 𝛼𝑚), then

S𝛼 =
∑︁
𝜎∈𝑆𝑚

(−1)𝜎𝑆𝛼1+𝜎(1)−1𝑆𝛼2+𝜎(2)−2 · · ·𝑆𝛼𝑚+𝜎(𝑚)−𝑚.

Warning: This basis contains only the immaculate functions indexed by compositions (i.e., finite
sequences of positive integers). To obtain the remaining immaculate functions (sensu lato), use the
immaculate_function()method. Calling the immaculate basis with a list which is not a composition
will currently return garbage!

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: I = NCSF.I()
sage: I([1,3,2])*I([1])
I[1, 3, 2, 1] + I[1, 3, 3] + I[1, 4, 2] + I[2, 3, 2]
sage: I([1])*I([1,3,2])
I[1, 1, 3, 2] - I[2, 2, 1, 2] - I[2, 2, 2, 1] - I[2, 2, 3] - I[3, 2, 2]
sage: I([1,3])*I([1,1])
I[1, 3, 1, 1] + I[1, 4, 1] + I[2, 3, 1] + I[2, 4]
sage: I([3,1])*I([2,1])
I[3, 1, 2, 1] + I[3, 2, 1, 1] + I[3, 2, 2] + I[3, 3, 1] + I[4, 1, 1, 1] + I[4,␣
→˓1, 2] + 2*I[4, 2, 1] + I[4, 3] + I[5, 1, 1] + I[5, 2]
sage: R = NCSF.ribbon()
sage: I(R[1,3,1])
I[1, 3, 1] + I[2, 2, 1] + I[2, 3] + I[3, 1, 1] + I[3, 2]
sage: R(I(R([2,1,3])))
R[2, 1, 3]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element in the Immaculate basis.

bernstein_creation_operator(n)
Return the image of self under the 𝑛-th Bernstein creation operator.

Let 𝑛 be an integer. The 𝑛-th Bernstein creation operator B𝑛 is defined as the endomorphism of
the space 𝑁𝑆𝑦𝑚 of noncommutative symmetric functions given by

B𝑛𝐼(𝛼1,𝛼2,...,𝛼𝑚) = 𝐼(𝑛,𝛼1,𝛼2,...,𝛼𝑚),

where 𝐼(𝛼1,𝛼2,...,𝛼𝑚) is the immaculate function associated to the 𝑚-tuple (𝛼1, 𝛼2, . . . , 𝛼𝑚) ∈
Z𝑚.

This has been introduced in [BBSSZ2012], section 3.1, in analogy to the Bernstein creation oper-
ators on the symmetric functions.

For more information on the 𝑛-th Bernstein creation operator, see
bernstein_creation_operator().

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: I = NSym.I()

(continues on next page)

5.1. Comprehensive Module List 1401

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

(continued from previous page)

sage: b = I[1,3,2,1]
sage: b.bernstein_creation_operator(3)
I[3, 1, 3, 2, 1]
sage: b.bernstein_creation_operator(5)
I[5, 1, 3, 2, 1]
sage: elt = b + 3*I[4,1,2]
sage: elt.bernstein_creation_operator(1)
I[1, 1, 3, 2, 1] + 3*I[1, 4, 1, 2]

We check that this agrees with the definition on the Complete basis:

sage: S = NSym.S()
sage: S(elt).bernstein_creation_operator(1) == S(elt.bernstein_creation_
→˓operator(1))
True

Check on non-positive values of 𝑛:

sage: I[2,2,2].bernstein_creation_operator(-1)
I[1, 1, 1, 2] + I[1, 1, 2, 1] + I[1, 2, 1, 1] - I[1, 2, 2]
sage: I[2,3,2].bernstein_creation_operator(0)
-I[1, 1, 3, 2] - I[1, 2, 2, 2] - I[1, 2, 3, 1] + I[2, 3, 2]

dual()
Return the dual basis to the Immaculate basis of NCSF.

The basis returned is the dualImmaculate basis of QSym.

OUTPUT:
• The dualImmaculate basis of the quasi-symmetric functions.

EXAMPLES:

sage: I = NonCommutativeSymmetricFunctions(QQ).Immaculate()
sage: I.dual()
Quasisymmetric functions over the Rational Field in the dualImmaculate
basis

L
alias of NonCommutativeSymmetricFunctions.Elementary

class Monomial(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The monomial basis defined in Tevlin’s paper [Tev2007].

The monomial basis is well-defined only when the base ring is a Q-algebra. It is the basis denoted by
(𝑀 𝐼)𝐼 in [Tev2007].

class MultiplicativeBases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

Category of multiplicative bases of non-commutative symmetric functions.

EXAMPLES:

1402 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: N.MultiplicativeBases()
Category of multiplicative bases of Non-Commutative Symmetric Functions over␣
→˓the Rational Field

The complete basis is a multiplicative basis, but the ribbon basis is not:

sage: N.Complete() in N.MultiplicativeBases()
True
sage: N.Ribbon() in N.MultiplicativeBases()
False

class ParentMethods
Bases: object

algebra_generators()
Return the algebra generators of a given multiplicative basis of non-commutative symmetric func-
tions.

OUTPUT:
• The family of generators of the multiplicative basis self.
EXAMPLES:

sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi()
sage: f = Psi.algebra_generators()
sage: f
Lazy family (<lambda>(i))_{i in Positive integers}
sage: f[1], f[2], f[3]
(Psi[1], Psi[2], Psi[3])

algebra_morphism(on_generators, **keywords)
Given a map defined on the generators of the multiplicative basis self, return the algebra mor-
phism that extends this map to the whole algebra of non-commutative symmetric functions.

INPUT:
• on_generators – a function defined on the index set of the generators (that is, on the positive

integers)
• anti – a boolean; defaults to False
• category – a category; defaults to None
OUTPUT:
• The algebra morphism of self which is defined by on_generators in the basis self. When
anti is set to True, an algebra anti-morphism is computed instead of an algebra morphism.

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: Psi = NCSF.Psi()
sage: double = lambda i: Psi[i,i]
sage: f = Psi.algebra_morphism(double, codomain = Psi)
sage: f
Generic endomorphism of Non-Commutative Symmetric Functions over the␣
→˓Rational Field in the Psi basis
sage: f(2*Psi[[]] + 3 * Psi[1,3,2] + Psi[2,4])
2*Psi[] + 3*Psi[1, 1, 3, 3, 2, 2] + Psi[2, 2, 4, 4]
sage: f.category()
Category of endsets of unital magmas and right modules over Rational␣
→˓Field and left modules over Rational Field (continues on next page)

5.1. Comprehensive Module List 1403

Combinatorics, Release 9.7

(continued from previous page)

When extra properties about the morphism are known, one can specify the category of which it is
a morphism:

sage: negate = lambda i: -Psi[i]
sage: f = Psi.algebra_morphism(negate, codomain = Psi, category =␣
→˓GradedHopfAlgebrasWithBasis(QQ))
sage: f
Generic endomorphism of Non-Commutative Symmetric Functions over the␣
→˓Rational Field in the Psi basis
sage: f(2*Psi[[]] + 3 * Psi[1,3,2] + Psi[2,4])
2*Psi[] - 3*Psi[1, 3, 2] + Psi[2, 4]
sage: f.category()
Category of endsets of hopf algebras over Rational Field and graded␣
→˓modules over Rational Field

If anti is true, this returns an anti-algebra morphism:

sage: f = Psi.algebra_morphism(double, codomain = Psi, anti=True)
sage: f
Generic endomorphism of Non-Commutative Symmetric Functions over the␣
→˓Rational Field in the Psi basis
sage: f(2*Psi[[]] + 3 * Psi[1,3,2] + Psi[2,4])
2*Psi[] + 3*Psi[2, 2, 3, 3, 1, 1] + Psi[4, 4, 2, 2]
sage: f.category()
Category of endsets of modules with basis over Rational Field

antipode()
Return the antipode morphism on the basis self.

The antipode of𝑁𝑆𝑦𝑚 is closely related to the omega involution; see omega_involution() for
the latter.

OUTPUT:
• The antipode module map from non-commutative symmetric functions on basis self.
EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: S.antipode
Generic endomorphism of Non-Commutative Symmetric Functions over the␣
→˓Rational Field in the Complete basis

coproduct()
Return the coproduct morphism in the basis self.

OUTPUT:
• The coproduct module map from non-commutative symmetric functions on basis self.
EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: S.coproduct
Generic morphism:
From: Non-Commutative Symmetric Functions over the Rational Field in␣

→˓the Complete basis
(continues on next page)

1404 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

To: Non-Commutative Symmetric Functions over the Rational Field in␣
→˓the Complete basis # Non-Commutative Symmetric Functions over the␣
→˓Rational Field in the Complete basis

product_on_basis(composition1, composition2)
Return the product of two basis elements from the multiplicative basis. Multiplication is just
concatenation on compositions.

INPUT:
• composition1, composition2 – integer compositions
OUTPUT:
• The product of the two non-commutative symmetric functions indexed by composition1 and
composition2 in the multiplicative basis self. This will be again a non-commutative sym-
metric function.

EXAMPLES:

sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi()
sage: Psi[3,1,2] * Psi[4,2] == Psi[3,1,2,4,2]
True
sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: S.product_on_basis(Composition([2,1]), Composition([1,2]))
S[2, 1, 1, 2]

to_symmetric_function()
Morphism to the algebra of symmetric functions.

This is constructed by extending the algebra morphism by the image of the generators.

OUTPUT:
• The module morphism from the basis self to the symmetric functions which corresponds to

taking a commutative image.
EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: S.to_symmetric_function(S[1,3])
h[3, 1]
sage: Phi = N.Phi()
sage: Phi.to_symmetric_function(Phi[1,3])
h[1, 1, 1, 1] - 3*h[2, 1, 1] + 3*h[3, 1]
sage: Psi = N.Psi()
sage: Psi.to_symmetric_function(Psi[1,3])
h[1, 1, 1, 1] - 3*h[2, 1, 1] + 3*h[3, 1]

to_symmetric_function_on_generators(i)
Morphism of the generators to symmetric functions.

This is constructed by coercion to the complete basis and applying the morphism.

OUTPUT:
• The module morphism from the basis self to the symmetric functions which corresponds to

taking a commutative image.
EXAMPLES:

5.1. Comprehensive Module List 1405

Combinatorics, Release 9.7

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: Phi = N.Phi()
sage: Phi.to_symmetric_function_on_generators(3)
h[1, 1, 1] - 3*h[2, 1] + 3*h[3]
sage: Phi.to_symmetric_function_on_generators(0)
h[]
sage: Psi = N.Psi()
sage: Psi.to_symmetric_function_on_generators(3)
h[1, 1, 1] - 3*h[2, 1] + 3*h[3]
sage: L = N.elementary()
sage: L.to_symmetric_function_on_generators(3)
h[1, 1, 1] - 2*h[2, 1] + h[3]

super_categories()
Return the super categories of the category of multiplicative bases of the non-commutative symmetric
functions.

OUTPUT:
• list

class MultiplicativeBasesOnGroupLikeElements(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

Category of multiplicative bases on grouplike elements of non-commutative symmetric functions.

Here, a “multiplicative basis on grouplike elements” means a multiplicative basis whose generators
(𝑓1, 𝑓2, 𝑓3, . . .) satisfy

∆(𝑓𝑖) =

𝑖∑︁
𝑗=0

𝑓𝑗 ⊗ 𝑓𝑖−𝑗

with 𝑓0 = 1. (In other words, the generators are to form a divided power sequence in the sense of a
coalgebra.) This does not mean that the generators are grouplike, but means that the element 1 + 𝑓1 + 𝑓2 +
𝑓3 + · · · in the completion of the ring of non-commutative symmetric functions with respect to the grading
is grouplike.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: N.MultiplicativeBasesOnGroupLikeElements()
Category of multiplicative bases on group like elements of Non-Commutative␣
→˓Symmetric Functions over the Rational Field

The complete basis is a multiplicative basis, but the ribbon basis is not:

sage: N.Complete() in N.MultiplicativeBasesOnGroupLikeElements()
True
sage: N.Ribbon() in N.MultiplicativeBasesOnGroupLikeElements()
False

class ParentMethods
Bases: object

antipode_on_basis(composition)
Return the application of the antipode to a basis element.

INPUT:

1406 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

• composition – a composition
OUTPUT:
• The image of the basis element indexed by composition under the antipode map.
EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(QQ).complete()
sage: S.antipode_on_basis(Composition([2,1]))
-S[1, 1, 1] + S[1, 2]
sage: S[1].antipode() # indirect doctest
-S[1]
sage: S[2].antipode() # indirect doctest
S[1, 1] - S[2]
sage: S[3].antipode() # indirect doctest
-S[1, 1, 1] + S[1, 2] + S[2, 1] - S[3]
sage: S[2,3].coproduct().apply_multilinear_morphism(lambda be,ga:␣
→˓S(be)*S(ga).antipode())
0
sage: S[2,3].coproduct().apply_multilinear_morphism(lambda be,ga: S(be).
→˓antipode()*S(ga))
0

coproduct_on_generators(i)
Return the image of the 𝑖𝑡ℎ generator of the algebra under the coproduct.

INPUT:
• i – a positive integer
OUTPUT:
• The result of applying the coproduct to the 𝑖𝑡ℎ generator of self.
EXAMPLES:

sage: S = NonCommutativeSymmetricFunctions(QQ).complete()
sage: S.coproduct_on_generators(3)
S[] # S[3] + S[1] # S[2] + S[2] # S[1] + S[3] # S[]

super_categories()
Return the super categories of the category of multiplicative bases of group-like elements of the non-
commutative symmetric functions.

OUTPUT:
• list

class MultiplicativeBasesOnPrimitiveElements(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

Category of multiplicative bases of the non-commutative symmetric functions whose generators are prim-
itive elements.

An element 𝑥 of a bialgebra is primitive if ∆(𝑥) = 𝑥⊗1+1⊗𝑥, where ∆ is the coproduct of the bialgebra.

Given a multiplicative basis and knowing the coproducts and antipodes of its generators, one can compute
the coproduct and the antipode of any element, since they are respectively algebra morphisms and anti-
morphisms. See antipode_on_generators() and coproduct_on_generators().

Todo: this could be generalized to any free algebra.

EXAMPLES:

5.1. Comprehensive Module List 1407

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: N.MultiplicativeBasesOnPrimitiveElements()
Category of multiplicative bases on primitive elements of Non-Commutative␣
→˓Symmetric Functions over the Rational Field

The Phi and Psi bases are multiplicative bases whose generators are primitive elements, but the complete
and ribbon bases are not:

sage: N.Phi() in N.MultiplicativeBasesOnPrimitiveElements()
True
sage: N.Psi() in N.MultiplicativeBasesOnPrimitiveElements()
True
sage: N.Complete() in N.MultiplicativeBasesOnPrimitiveElements()
False
sage: N.Ribbon() in N.MultiplicativeBasesOnPrimitiveElements()
False

class ParentMethods
Bases: object

antipode_on_generators(i)
Return the image of a generator of a primitive basis of the non-commutative symmetric functions
under the antipode map.

INPUT:
• i – a positive integer
OUTPUT:
• The image of the 𝑖-th generator of the multiplicative basis self under the antipode of the algebra

of non-commutative symmetric functions.
EXAMPLES:

sage: Psi=NonCommutativeSymmetricFunctions(QQ).Psi()
sage: Psi.antipode_on_generators(2)
-Psi[2]

coproduct_on_generators(i)
Return the image of the 𝑖𝑡ℎ generator of the multiplicative basis self under the coproduct.

INPUT:
• i – a positive integer
OUTPUT:
• The result of applying the coproduct to the 𝑖𝑡ℎ generator of self.
EXAMPLES:

sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi()
sage: Psi.coproduct_on_generators(3)
Psi[] # Psi[3] + Psi[3] # Psi[]

super_categories()
Return the super categories of the category of multiplicative bases of primitive elements of the non-
commutative symmetric functions.

OUTPUT:
• list

1408 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class Phi(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of non-commutative symmetric functions in the Phi basis.

The Phi basis is defined in Definition 3.4 of [NCSF1], where it is denoted by (Φ𝐼)𝐼 . It is a multiplicative
basis, and is connected to the elementary generators Λ𝑖 of the ring of non-commutative symmetric functions
by the following relation: Define a non-commutative symmetric function Φ𝑛 for every positive integer 𝑛
by the power series identity

∑︁
𝑘≥1

𝑡𝑘
1

𝑘
Φ𝑘 = − log

⎛⎝∑︁
𝑘≥0

(−𝑡)𝑘Λ𝑘

⎞⎠ ,

with Λ0 denoting 1. For every composition (𝑖1, 𝑖2, . . . , 𝑖𝑘), we have Φ(𝑖1,𝑖2,...,𝑖𝑘) = Φ𝑖1Φ𝑖2 · · ·Φ𝑖𝑘 .

The Φ-basis is well-defined only when the base ring is a Q-algebra. The elements of the Φ-basis are known
as the “power-sum non-commutative symmetric functions of the second kind”.

The generators Φ𝑛 are related to the (first) Eulerian idempotents in the descent algebras of the symmetric
groups (see [NCSF1], 5.4 for details).

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: Phi = NCSF.Phi(); Phi
Non-Commutative Symmetric Functions over the Rational Field in the Phi basis
sage: Phi.an_element()
2*Phi[] + 2*Phi[1] + 3*Phi[1, 1]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

psi_involution()
Return the image of the noncommutative symmetric function self under the involution 𝜓.

The involution 𝜓 is defined as the linear map𝑁𝐶𝑆𝐹 → 𝑁𝐶𝑆𝐹 which, for every composition 𝐼 ,
sends the complete noncommutative symmetric function 𝑆𝐼 to the elementary noncommutative
symmetric function Λ𝐼 . It can be shown that every composition 𝐼 satisfies

𝜓(𝑅𝐼) = 𝑅𝐼𝑐 , 𝜓(𝑆𝐼) = Λ𝐼 , 𝜓(Λ𝐼) = 𝑆𝐼 , 𝜓(Φ𝐼) = (−1)|𝐼|−ℓ(𝐼)Φ𝐼

where 𝐼𝑐 denotes the complement of the composition 𝐼 , and ℓ(𝐼) denotes the length of 𝐼 , and where
standard notations for classical bases of𝑁𝐶𝑆𝐹 are being used (𝑆 for the complete basis, Λ for the
elementary basis, Φ for the basis of the power sums of the second kind, and𝑅 for the ribbon basis).
The map 𝜓 is an involution and a graded Hopf algebra automorphism of𝑁𝐶𝑆𝐹 . If 𝜋 denotes the
projection from 𝑁𝐶𝑆𝐹 to the ring of symmetric functions (to_symmetric_function()), then
𝜋(𝜓(𝑓)) = 𝜔(𝜋(𝑓)) for every 𝑓 ∈ 𝑁𝐶𝑆𝐹 , where the 𝜔 on the right hand side denotes the omega
automorphism of 𝑆𝑦𝑚.

The involution 𝜓 of 𝑁𝐶𝑆𝐹 is adjoint to the involution 𝜓 of 𝑄𝑆𝑦𝑚 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The involution 𝜓 has been denoted by 𝜓 in [LMvW13], section 3.6.

See also:

psi involution of NCSF, psi involution of QSym , star involution of NCSF.

EXAMPLES:

5.1. Comprehensive Module List 1409

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: Phi = NSym.Phi()
sage: Phi[3,2].psi_involution()
-Phi[3, 2]
sage: Phi[2,2].psi_involution()
Phi[2, 2]
sage: Phi[[]].psi_involution()
Phi[]
sage: (Phi[2,1] - 2*Phi[2]).psi_involution()
2*Phi[2] - Phi[2, 1]
sage: Phi(0).psi_involution()
0

The implementation at hand is tailored to the Phi basis. It is equivalent to the generic implemen-
tation via the ribbon basis:

sage: R = NSym.R()
sage: all(R(Phi[I].psi_involution()) == R(Phi[I]).psi_involution()
....: for I in Compositions(4))
True

star_involution()
Return the image of the noncommutative symmetric function self under the star involution.

The star involution is defined as the algebra antihomomorphism 𝑁𝐶𝑆𝐹 → 𝑁𝐶𝑆𝐹 which, for
every positive integer 𝑛, sends the 𝑛-th complete non-commutative symmetric function 𝑆𝑛 to 𝑆𝑛.
Denoting by 𝑓* the image of an element 𝑓 ∈ 𝑁𝐶𝑆𝐹 under this star involution, it can be shown
that every composition 𝐼 satisfies

(𝑆𝐼)* = 𝑆𝐼
𝑟

, (Λ𝐼)* = Λ𝐼
𝑟

, 𝑅*𝐼 = 𝑅𝐼𝑟 , (Φ𝐼)* = Φ𝐼
𝑟

,

where 𝐼𝑟 denotes the reversed composition of 𝐼 , and standard notations for classical bases of
𝑁𝐶𝑆𝐹 are being used (𝑆 for the complete basis, Λ for the elementary basis, 𝑅 for the ribbon
basis, and Φ for that of the power-sums of the second kind). The star involution is an involution
and a coalgebra automorphism of 𝑁𝐶𝑆𝐹 . It is an automorphism of the graded vector space
𝑁𝐶𝑆𝐹 . Under the canonical isomorphism between the 𝑛-th graded component of 𝑁𝐶𝑆𝐹 and
the descent algebra of the symmetric group 𝑆𝑛 (see to_descent_algebra()), the star involution
(restricted to the 𝑛-th graded component) corresponds to the automorphism of the descent algebra
given by 𝑥 ↦→ 𝜔𝑛𝑥𝜔𝑛, where 𝜔𝑛 is the permutation (𝑛, 𝑛 − 1, . . . , 1) ∈ 𝑆𝑛 (written here in
one-line notation). If 𝜋 denotes the projection from 𝑁𝐶𝑆𝐹 to the ring of symmetric functions
(to_symmetric_function()), then 𝜋(𝑓*) = 𝜋(𝑓) for every 𝑓 ∈ 𝑁𝐶𝑆𝐹 .

The star involution on𝑁𝐶𝑆𝐹 is adjoint to the star involution on𝑄𝑆𝑦𝑚 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The star involution has been denoted by 𝜌 in [LMvW13], section 3.6. See [NCSF2], section 2.3
for the properties of this map.

See also:

star involution of NCSF, psi involution of NCSF, star involution of QSym .

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(QQ)
sage: Phi = NSym.Phi()

(continues on next page)

1410 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Phi[3,1,1,4].star_involution()
Phi[4, 1, 1, 3]
sage: Phi[4,2,1].star_involution()
Phi[1, 2, 4]
sage: (Phi[1,4] - Phi[2,3] + 2*Phi[5,4] - 3*Phi[3] + 4*Phi[[]]).star_
→˓involution()
4*Phi[] - 3*Phi[3] - Phi[3, 2] + Phi[4, 1] + 2*Phi[4, 5]
sage: (Phi[3,3] + 3*Phi[1]).star_involution()
3*Phi[1] + Phi[3, 3]
sage: Phi([2,1]).star_involution()
Phi[1, 2]

The implementation at hand is tailored to the Phi basis. It is equivalent to the generic implemen-
tation via the complete basis:

sage: S = NSym.S()
sage: all(S(Phi[I].star_involution()) == S(Phi[I]).star_involution()
....: for I in Compositions(4))
True

verschiebung(n)
Return the image of the noncommutative symmetric function self under the 𝑛-th Verschiebung
operator.

The 𝑛-th Verschiebung operator V𝑛 is defined to be the map from the k-algebra of noncommuta-
tive symmetric functions to itself that sends the complete function 𝑆𝐼 indexed by a composition
𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑘) to 𝑆(𝑖1/𝑛,𝑖2/𝑛,...,𝑖𝑘/𝑛) if all of the numbers 𝑖1, 𝑖2, . . . , 𝑖𝑘 are divisible by 𝑛,
and to 0 otherwise. This operator V𝑛 is a Hopf algebra endomorphism. For every positive integer
𝑟 with 𝑛 | 𝑟, it satisfies

V𝑛(𝑆𝑟) = 𝑆𝑟/𝑛, V𝑛(Λ𝑟) = (−1)𝑟−𝑟/𝑛Λ𝑟/𝑛, V𝑛(Ψ𝑟) = 𝑛Ψ𝑟/𝑛, V𝑛(Φ𝑟) = 𝑛Φ𝑟/𝑛

(where 𝑆𝑟 denotes the 𝑟-th complete non-commutative symmetric function, Λ𝑟 denotes the 𝑟-th el-
ementary non-commutative symmetric function, Ψ𝑟 denotes the 𝑟-th power-sum non-commutative
symmetric function of the first kind, and Φ𝑟 denotes the 𝑟-th power-sum non-commutative sym-
metric function of the second kind). For every positive integer 𝑟 with 𝑛 - 𝑟, it satisfes

V𝑛(𝑆𝑟) = V𝑛(Λ𝑟) = V𝑛(Ψ𝑟) = V𝑛(Φ𝑟) = 0.

The 𝑛-th Verschiebung operator is also called the 𝑛-th Verschiebung endomorphism.

It is a lift of the𝑛-th Verschiebung operator on the ring of symmetric functions (verschiebung())
to the ring of noncommutative symmetric functions.

The action of the 𝑛-th Verschiebung operator can also be described on the ribbon Schur functions.
Namely, every composition 𝐼 of size 𝑛ℓ satisfies

V𝑛(𝑅𝐼) = (−1)ℓ(𝐼)−ℓ(𝐽) ·𝑅𝐽/𝑛,

where 𝐽 denotes the meet of the compositions 𝐼 and (𝑛, 𝑛, . . . , 𝑛⏟ ⏞
|𝐼|/𝑛 times

), where ℓ(𝐼) is the length of

𝐼 , and where 𝐽/𝑛 denotes the composition obtained by dividing every entry of 𝐽 by 𝑛. For a
composition 𝐼 of size not divisible by 𝑛, we have V𝑛(𝑅𝐼) = 0.

5.1. Comprehensive Module List 1411

Combinatorics, Release 9.7

See also:

verschiebung method of NCSF, frobenius method of QSym , verschiebung method
of Sym

INPUT:
• n – a positive integer
OUTPUT:

The result of applying the 𝑛-th Verschiebung operator (on the ring of noncommutative symmetric
functions) to self.

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: Phi = NSym.Phi()
sage: Phi([4,2]).verschiebung(2)
4*Phi[2, 1]
sage: Phi([2,4]).verschiebung(2)
4*Phi[1, 2]
sage: Phi([6]).verschiebung(2)
2*Phi[3]
sage: Phi([2,1]).verschiebung(3)
0
sage: Phi([3]).verschiebung(2)
0
sage: Phi([]).verschiebung(2)
Phi[]
sage: Phi([5, 1]).verschiebung(3)
0
sage: Phi([5, 1]).verschiebung(6)
0
sage: Phi([5, 1]).verschiebung(2)
0
sage: Phi([1, 2, 3, 1]).verschiebung(7)
0
sage: Phi([7]).verschiebung(7)
7*Phi[1]
sage: Phi([1, 2, 3, 1]).verschiebung(5)
0
sage: (Phi[1] - Phi[2] + 2*Phi[3]).verschiebung(1)
Phi[1] - Phi[2] + 2*Phi[3]

class Psi(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of non-commutative symmetric functions in the Psi basis.

The Psi basis is defined in Definition 3.4 of [NCSF1], where it is denoted by (Ψ𝐼)𝐼 . It is a multiplicative
basis, and is connected to the elementary generators Λ𝑖 of the ring of non-commutative symmetric functions
by the following relation: Define a non-commutative symmetric function Ψ𝑛 for every positive integer 𝑛
by the power series identity

𝑑

𝑑𝑡
𝜎(𝑡) = 𝜎(𝑡) ·

⎛⎝∑︁
𝑘≥1

𝑡𝑘−1Ψ𝑘

⎞⎠ ,

1412 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

where

𝜎(𝑡) =

⎛⎝∑︁
𝑘≥0

(−𝑡)𝑘Λ𝑘

⎞⎠−1

and where Λ0 denotes 1. For every composition (𝑖1, 𝑖2, . . . , 𝑖𝑘), we have Ψ(𝑖1,𝑖2,...,𝑖𝑘) = Ψ𝑖1Ψ𝑖2 · · ·Ψ𝑖𝑘 .

The Ψ-basis is a basis only when the base ring is a Q-algebra (although the Ψ𝐼 can be defined over any base
ring). The elements of the Ψ-basis are known as the “power-sum non-commutative symmetric functions of
the first kind”. The generators Ψ𝑛 correspond to the Dynkin (quasi-)idempotents in the descent algebras of
the symmetric groups (see [NCSF1], 5.2 for details).

Another (equivalent) definition of Ψ𝑛 is

Ψ𝑛 =

𝑛−1∑︁
𝑖=0

(−1)𝑖𝑅1𝑖,𝑛−𝑖,

where 𝑅 denotes the ribbon basis of 𝑁𝐶𝑆𝐹 , and where 1𝑖 stands for 𝑖 repetitions of the integer 1.

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: Psi = NCSF.Psi(); Psi
Non-Commutative Symmetric Functions over the Rational Field in the Psi basis
sage: Psi.an_element()
2*Psi[] + 2*Psi[1] + 3*Psi[1, 1]

Checking the equivalent definition of Ψ𝑛:

sage: def test_psi(n):
....: NCSF = NonCommutativeSymmetricFunctions(ZZ)
....: R = NCSF.R()
....: Psi = NCSF.Psi()
....: a = R.sum([(-1) ** i * R[[1]*i + [n-i]]
....: for i in range(n)])
....: return a == R(Psi[n])
sage: test_psi(2)
True
sage: test_psi(3)
True
sage: test_psi(4)
True

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

verschiebung(n)
Return the image of the noncommutative symmetric function self under the 𝑛-th Verschiebung
operator.

The 𝑛-th Verschiebung operator V𝑛 is defined to be the map from the k-algebra of noncommuta-
tive symmetric functions to itself that sends the complete function 𝑆𝐼 indexed by a composition
𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑘) to 𝑆(𝑖1/𝑛,𝑖2/𝑛,...,𝑖𝑘/𝑛) if all of the numbers 𝑖1, 𝑖2, . . . , 𝑖𝑘 are divisible by 𝑛,
and to 0 otherwise. This operator V𝑛 is a Hopf algebra endomorphism. For every positive integer
𝑟 with 𝑛 | 𝑟, it satisfies

V𝑛(𝑆𝑟) = 𝑆𝑟/𝑛, V𝑛(Λ𝑟) = (−1)𝑟−𝑟/𝑛Λ𝑟/𝑛, V𝑛(Ψ𝑟) = 𝑛Ψ𝑟/𝑛, V𝑛(Φ𝑟) = 𝑛Φ𝑟/𝑛

5.1. Comprehensive Module List 1413

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

(where 𝑆𝑟 denotes the 𝑟-th complete non-commutative symmetric function, Λ𝑟 denotes the 𝑟-th el-
ementary non-commutative symmetric function, Ψ𝑟 denotes the 𝑟-th power-sum non-commutative
symmetric function of the first kind, and Φ𝑟 denotes the 𝑟-th power-sum non-commutative sym-
metric function of the second kind). For every positive integer 𝑟 with 𝑛 - 𝑟, it satisfes

V𝑛(𝑆𝑟) = V𝑛(Λ𝑟) = V𝑛(Ψ𝑟) = V𝑛(Φ𝑟) = 0.

The 𝑛-th Verschiebung operator is also called the 𝑛-th Verschiebung endomorphism.

It is a lift of the𝑛-th Verschiebung operator on the ring of symmetric functions (verschiebung())
to the ring of noncommutative symmetric functions.

The action of the 𝑛-th Verschiebung operator can also be described on the ribbon Schur functions.
Namely, every composition 𝐼 of size 𝑛ℓ satisfies

V𝑛(𝑅𝐼) = (−1)ℓ(𝐼)−ℓ(𝐽) ·𝑅𝐽/𝑛,

where 𝐽 denotes the meet of the compositions 𝐼 and (𝑛, 𝑛, . . . , 𝑛⏟ ⏞
|𝐼|/𝑛 times

), where ℓ(𝐼) is the length of

𝐼 , and where 𝐽/𝑛 denotes the composition obtained by dividing every entry of 𝐽 by 𝑛. For a
composition 𝐼 of size not divisible by 𝑛, we have V𝑛(𝑅𝐼) = 0.

See also:

verschiebung method of NCSF, frobenius method of QSym , verschiebung method
of Sym

INPUT:
• n – a positive integer
OUTPUT:

The result of applying the 𝑛-th Verschiebung operator (on the ring of noncommutative symmetric
functions) to self.

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: Psi = NSym.Psi()
sage: Psi([4,2]).verschiebung(2)
4*Psi[2, 1]
sage: Psi([2,4]).verschiebung(2)
4*Psi[1, 2]
sage: Psi([6]).verschiebung(2)
2*Psi[3]
sage: Psi([2,1]).verschiebung(3)
0
sage: Psi([3]).verschiebung(2)
0
sage: Psi([]).verschiebung(2)
Psi[]
sage: Psi([5, 1]).verschiebung(3)
0
sage: Psi([5, 1]).verschiebung(6)
0
sage: Psi([5, 1]).verschiebung(2)
0
sage: Psi([1, 2, 3, 1]).verschiebung(7)

(continues on next page)

1414 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

0
sage: Psi([7]).verschiebung(7)
7*Psi[1]
sage: Psi([1, 2, 3, 1]).verschiebung(5)
0
sage: (Psi[1] - Psi[2] + 2*Psi[3]).verschiebung(1)
Psi[1] - Psi[2] + 2*Psi[3]

internal_product_on_basis_by_bracketing(I, J)
The internal product of two elements of the Psi basis.

See internal_product() for a thorough documentation of this operation.

This is an implementation using [NCSF2] Lemma 3.10. It is fast when the length of 𝐼 is small, but
can get very slow otherwise. Therefore it is not being used by default for internally multiplying Psi
functions.

INPUT:
• I, J – compositions

OUTPUT:
• The internal product of the elements of the Psi basis of 𝑁𝑆𝑦𝑚 indexed by I and J, expressed in

the Psi basis.
AUTHORS:

• Travis Scrimshaw, 29 Mar 2014
EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: Psi = N.Psi()
sage: Psi.internal_product_on_basis_by_bracketing([2,2],[1,2,1])
0
sage: Psi.internal_product_on_basis_by_bracketing([1,2,1],[2,1,1])
4*Psi[1, 2, 1]
sage: Psi.internal_product_on_basis_by_bracketing([2,1,1],[1,2,1])
4*Psi[2, 1, 1]
sage: Psi.internal_product_on_basis_by_bracketing([1,2,1], [1,1,1,1])
0
sage: Psi.internal_product_on_basis_by_bracketing([3,1], [1,2,1])
-Psi[1, 2, 1] + Psi[2, 1, 1]
sage: Psi.internal_product_on_basis_by_bracketing([1,2,1], [3,1])
0
sage: Psi.internal_product_on_basis_by_bracketing([2,2],[1,2])
0
sage: Psi.internal_product_on_basis_by_bracketing([4], [1,2,1])
-Psi[1, 1, 2] + 2*Psi[1, 2, 1] - Psi[2, 1, 1]

R
alias of NonCommutativeSymmetricFunctions.Ribbon

class Ribbon(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of non-commutative symmetric functions in the Ribbon basis.

The Ribbon basis is defined in Definition 3.12 of [NCSF1], where it is denoted by (𝑅𝐼)𝐼 . It is connected
to the complete basis of the ring of non-commutative symmetric functions by the following relation: For

5.1. Comprehensive Module List 1415

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

every composition 𝐼 , we have

𝑅𝐼 =
∑︁
𝐽

(−1)ℓ(𝐼)−ℓ(𝐽)𝑆𝐽 ,

where the sum is over all compositions 𝐽 which are coarser than 𝐼 and ℓ(𝐼) denotes the length of 𝐼 . (See
the proof of Proposition 4.13 in [NCSF1].)

The elements of the Ribbon basis are commonly referred to as the ribbon Schur functions.

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: R = NCSF.Ribbon(); R
Non-Commutative Symmetric Functions over the Rational Field in the Ribbon basis
sage: R.an_element()
2*R[] + 2*R[1] + 3*R[1, 1]

The following are aliases for this basis:

sage: NCSF.ribbon()
Non-Commutative Symmetric Functions over the Rational Field in the Ribbon basis
sage: NCSF.R()
Non-Commutative Symmetric Functions over the Rational Field in the Ribbon basis

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

star_involution()
Return the image of the noncommutative symmetric function self under the star involution.

The star involution is defined as the algebra antihomomorphism 𝑁𝐶𝑆𝐹 → 𝑁𝐶𝑆𝐹 which, for
every positive integer 𝑛, sends the 𝑛-th complete non-commutative symmetric function 𝑆𝑛 to 𝑆𝑛.
Denoting by 𝑓* the image of an element 𝑓 ∈ 𝑁𝐶𝑆𝐹 under this star involution, it can be shown
that every composition 𝐼 satisfies

(𝑆𝐼)* = 𝑆𝐼
𝑟

, (Λ𝐼)* = Λ𝐼
𝑟

, 𝑅*𝐼 = 𝑅𝐼𝑟 , (Φ𝐼)* = Φ𝐼
𝑟

,

where 𝐼𝑟 denotes the reversed composition of 𝐼 , and standard notations for classical bases of
𝑁𝐶𝑆𝐹 are being used (𝑆 for the complete basis, Λ for the elementary basis, 𝑅 for the ribbon
basis, and Φ for that of the power-sums of the second kind). The star involution is an involution
and a coalgebra automorphism of 𝑁𝐶𝑆𝐹 . It is an automorphism of the graded vector space
𝑁𝐶𝑆𝐹 . Under the canonical isomorphism between the 𝑛-th graded component of 𝑁𝐶𝑆𝐹 and
the descent algebra of the symmetric group 𝑆𝑛 (see to_descent_algebra()), the star involution
(restricted to the 𝑛-th graded component) corresponds to the automorphism of the descent algebra
given by 𝑥 ↦→ 𝜔𝑛𝑥𝜔𝑛, where 𝜔𝑛 is the permutation (𝑛, 𝑛 − 1, . . . , 1) ∈ 𝑆𝑛 (written here in
one-line notation). If 𝜋 denotes the projection from 𝑁𝐶𝑆𝐹 to the ring of symmetric functions
(to_symmetric_function()), then 𝜋(𝑓*) = 𝜋(𝑓) for every 𝑓 ∈ 𝑁𝐶𝑆𝐹 .

The star involution on𝑁𝐶𝑆𝐹 is adjoint to the star involution on𝑄𝑆𝑦𝑚 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The star involution has been denoted by 𝜌 in [LMvW13], section 3.6. See [NCSF2], section 2.3
for the properties of this map.

See also:

star involution of NCSF, star involution of QSym , psi involution of NCSF.

EXAMPLES:

1416 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: R = NSym.R()
sage: R[3,1,4,2].star_involution()
R[2, 4, 1, 3]
sage: R[4,1,2].star_involution()
R[2, 1, 4]
sage: (R[1] - R[2] + 2*R[5,4] - 3*R[3] + 4*R[[]]).star_involution()
4*R[] + R[1] - R[2] - 3*R[3] + 2*R[4, 5]
sage: (R[3,3] - 21*R[1]).star_involution()
-21*R[1] + R[3, 3]
sage: R([14,1]).star_involution()
R[1, 14]

The implementation at hand is tailored to the ribbon basis. It is equivalent to the generic imple-
mentation via the complete basis:

sage: S = NSym.S()
sage: all(S(R[I].star_involution()) == S(R[I]).star_involution()
....: for I in Compositions(4))
True

verschiebung(n)
Return the image of the noncommutative symmetric function self under the 𝑛-th Verschiebung
operator.

The 𝑛-th Verschiebung operator V𝑛 is defined to be the map from the k-algebra of noncommuta-
tive symmetric functions to itself that sends the complete function 𝑆𝐼 indexed by a composition
𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑘) to 𝑆(𝑖1/𝑛,𝑖2/𝑛,...,𝑖𝑘/𝑛) if all of the numbers 𝑖1, 𝑖2, . . . , 𝑖𝑘 are divisible by 𝑛,
and to 0 otherwise. This operator V𝑛 is a Hopf algebra endomorphism. For every positive integer
𝑟 with 𝑛 | 𝑟, it satisfies

V𝑛(𝑆𝑟) = 𝑆𝑟/𝑛, V𝑛(Λ𝑟) = (−1)𝑟−𝑟/𝑛Λ𝑟/𝑛, V𝑛(Ψ𝑟) = 𝑛Ψ𝑟/𝑛, V𝑛(Φ𝑟) = 𝑛Φ𝑟/𝑛

(where 𝑆𝑟 denotes the 𝑟-th complete non-commutative symmetric function, Λ𝑟 denotes the 𝑟-th el-
ementary non-commutative symmetric function, Ψ𝑟 denotes the 𝑟-th power-sum non-commutative
symmetric function of the first kind, and Φ𝑟 denotes the 𝑟-th power-sum non-commutative sym-
metric function of the second kind). For every positive integer 𝑟 with 𝑛 - 𝑟, it satisfes

V𝑛(𝑆𝑟) = V𝑛(Λ𝑟) = V𝑛(Ψ𝑟) = V𝑛(Φ𝑟) = 0.

The 𝑛-th Verschiebung operator is also called the 𝑛-th Verschiebung endomorphism.

It is a lift of the𝑛-th Verschiebung operator on the ring of symmetric functions (verschiebung())
to the ring of noncommutative symmetric functions.

The action of the 𝑛-th Verschiebung operator can also be described on the ribbon Schur functions.
Namely, every composition 𝐼 of size 𝑛ℓ satisfies

V𝑛(𝑅𝐼) = (−1)ℓ(𝐼)−ℓ(𝐽) ·𝑅𝐽/𝑛,

where 𝐽 denotes the meet of the compositions 𝐼 and (𝑛, 𝑛, . . . , 𝑛⏟ ⏞
|𝐼|/𝑛 times

), where ℓ(𝐼) is the length of

𝐼 , and where 𝐽/𝑛 denotes the composition obtained by dividing every entry of 𝐽 by 𝑛. For a
composition 𝐼 of size not divisible by 𝑛, we have V𝑛(𝑅𝐼) = 0.

5.1. Comprehensive Module List 1417

Combinatorics, Release 9.7

See also:

verschiebung method of NCSF, frobenius method of QSym , verschiebung method
of Sym

INPUT:
• n – a positive integer
OUTPUT:

The result of applying the 𝑛-th Verschiebung operator (on the ring of noncommutative symmetric
functions) to self.

EXAMPLES:

sage: NSym = NonCommutativeSymmetricFunctions(ZZ)
sage: R = NSym.R()
sage: R([4,2]).verschiebung(2)
R[2, 1]
sage: R([2,1]).verschiebung(3)
-R[1]
sage: R([3]).verschiebung(2)
0
sage: R([]).verschiebung(2)
R[]
sage: R([5, 1]).verschiebung(3)
-R[2]
sage: R([5, 1]).verschiebung(6)
-R[1]
sage: R([5, 1]).verschiebung(2)
-R[3]
sage: R([1, 2, 3, 1]).verschiebung(7)
-R[1]
sage: R([1, 2, 3, 1]).verschiebung(5)
0
sage: (R[1] - R[2] + 2*R[3]).verschiebung(1)
R[1] - R[2] + 2*R[3]

antipode_on_basis(composition)
Return the application of the antipode to a basis element of the ribbon basis self.

INPUT:
• composition – a composition

OUTPUT:
• The image of the basis element indexed by composition under the antipode map.

EXAMPLES:

sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: R.antipode_on_basis(Composition([2,1]))
-R[2, 1]
sage: R[3,1].antipode() # indirect doctest
R[2, 1, 1]
sage: R[[]].antipode() # indirect doctest
R[]

We check that the implementation of the antipode at hand does not contradict the generic one:

1418 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: all(S(R[I].antipode()) == S(R[I]).antipode()
....: for I in Compositions(4))
True

dual()
Return the dual basis to the ribbon basis of the non-commutative symmetric functions. This is the
Fundamental basis of the quasi-symmetric functions.

OUTPUT:
• The fundamental basis of the quasi-symmetric functions.

EXAMPLES:

sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: R.dual()
Quasisymmetric functions over the Rational Field in the Fundamental basis

product_on_basis(I, J)
Return the product of two ribbon basis elements of the non-commutative symmetric functions.

INPUT:
• I, J – compositions

OUTPUT:
• The product of the ribbon functions indexed by I and J.

EXAMPLES:

sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: R[1,2,1] * R[3,1]
R[1, 2, 1, 3, 1] + R[1, 2, 4, 1]
sage: (R[1,2] + R[3]) * (R[3,1] + R[1,2,1])
R[1, 2, 1, 2, 1] + R[1, 2, 3, 1] + R[1, 3, 2, 1] + R[1, 5, 1] + R[3, 1, 2,␣
→˓1] + R[3, 3, 1] + R[4, 2, 1] + R[6, 1]

to_symmetric_function_on_basis(I)
Return the commutative image of a ribbon basis element of the non-commutative symmetric functions.

INPUT:
• I – a composition

OUTPUT:
• The commutative image of the ribbon basis element indexed by I. This will be expressed as a

symmetric function in the Schur basis.
EXAMPLES:

sage: R = NonCommutativeSymmetricFunctions(QQ).R()
sage: R.to_symmetric_function_on_basis(Composition([3,1,1]))
s[3, 1, 1]
sage: R.to_symmetric_function_on_basis(Composition([4,2,1]))
s[4, 2, 1] + s[5, 1, 1] + s[5, 2]
sage: R.to_symmetric_function_on_basis(Composition([]))
s[]

S
alias of NonCommutativeSymmetricFunctions.Complete

ZL
alias of NonCommutativeSymmetricFunctions.Zassenhaus_left

5.1. Comprehensive Module List 1419

Combinatorics, Release 9.7

ZR
alias of NonCommutativeSymmetricFunctions.Zassenhaus_right

class Zassenhaus_left(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of non-commutative symmetric functions in the left Zassenhaus basis.

This basis is the left-version of the basis defined in Section 2.5.1 of [HLNT09]. It is multiplicative, with
𝑍𝑛 defined as the element of 𝑁𝐶𝑆𝐹𝑛 satisfying the equation

𝜎1 = · · · 𝑒𝑥𝑝(𝑍𝑛) · · · 𝑒𝑥𝑝(𝑍2)𝑒𝑥𝑝(𝑍1),

where

𝜎1 =
∑︁
𝑛≥0

𝑆𝑛.

It can be recursively computed by the formula

𝑆𝑛 =
∑︁
𝜆⊢𝑛

1

𝑚1(𝜆)!𝑚2(𝜆)!𝑚3(𝜆)! · · ·
𝑍𝜆1𝑍𝜆2𝑍𝜆3 · · ·

for all 𝑛 ≥ 0.

class Zassenhaus_right(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of non-commutative symmetric functions in the right Zassenhaus basis.

This basis is defined in Section 2.5.1 of [HLNT09]. It is multiplicative, with 𝑍𝑛 defined as the element of
𝑁𝐶𝑆𝐹𝑛 satisfying the equation

𝜎1 = 𝑒𝑥𝑝(𝑍1)𝑒𝑥𝑝(𝑍2)𝑒𝑥𝑝(𝑍3) · · · 𝑒𝑥𝑝(𝑍𝑛) · · ·

where

𝜎1 =
∑︁
𝑛≥0

𝑆𝑛.

It can be recursively computed by the formula

𝑆𝑛 =
∑︁
𝜆⊢𝑛

1

𝑚1(𝜆)!𝑚2(𝜆)!𝑚3(𝜆)! · · ·
· · ·𝑍𝜆3𝑍𝜆2𝑍𝜆1

for all 𝑛 ≥ 0.

Note that there is a variant (called the “noncommutative power sum symmetric functions of the third kind”)
in Definition 5.26 of [NCSF2] that satisfies:

𝜎1 = 𝑒𝑥𝑝(𝑍1)𝑒𝑥𝑝(𝑍2/2)𝑒𝑥𝑝(𝑍3/3) · · · 𝑒𝑥𝑝(𝑍𝑛/𝑛) · · · .

a_realization()
Gives a realization of the algebra of non-commutative symmetric functions. This particular realization is
the complete basis of non-commutative symmetric functions.

OUTPUT:

• The realization of the non-commutative symmetric functions in the complete basis.

EXAMPLES:

1420 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

sage: NonCommutativeSymmetricFunctions(ZZ).a_realization()
Non-Commutative Symmetric Functions over the Integer Ring in the Complete basis

complete
alias of NonCommutativeSymmetricFunctions.Complete

dQS
alias of NonCommutativeSymmetricFunctions.dualQuasisymmetric_Schur

dYQS
alias of NonCommutativeSymmetricFunctions.dualYoungQuasisymmetric_Schur

dual()
Return the dual to the non-commutative symmetric functions.

OUTPUT:

• The dual of the non-commutative symmetric functions over a ring. This is the algebra of quasi-
symmetric functions over the ring.

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: NCSF.dual()
Quasisymmetric functions over the Rational Field

class dualQuasisymmetric_Schur(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The basis of NCSF dual to the Quasisymmetric-Schur basis of QSym.

The Quasisymmetric_Schur functions are defined in [QSCHUR] (see also Definition 5.1.1 of
[LMvW13]). The dual basis in the algebra of non-commutative symmetric functions is defined by the
following formula:

𝑅𝛼 =
∑︁
𝑇

𝑑𝑄𝑆𝑠ℎ𝑎𝑝𝑒(𝑇),

where the sum is over all standard composition tableaux with descent composition equal to 𝛼. The
Quasisymmetric_Schur basis 𝑄𝑆𝛼 has the property that

𝑠𝜆 =
∑︁

𝑠𝑜𝑟𝑡(𝛼)=𝜆

𝑄𝑆𝛼.

As a consequence the commutative image of a dual Quasisymmetric-Schur element in the algebra of sym-
metric functions (the map defined in the method to_symmetric_function()) is equal to the Schur func-
tion indexed by the decreasing sort of the indexing composition.

See also:

CompositionTableaux, CompositionTableau.

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: dQS = NCSF.dQS()
sage: dQS([1,3,2])*dQS([1])
dQS[1, 2, 4] + dQS[1, 3, 2, 1] + dQS[1, 3, 3] + dQS[3, 2, 2]

(continues on next page)

5.1. Comprehensive Module List 1421

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

(continued from previous page)

sage: dQS([1])*dQS([1,3,2])
dQS[1, 1, 3, 2] + dQS[1, 3, 3] + dQS[1, 4, 2] + dQS[2, 3, 2]
sage: dQS([1,3])*dQS([1,1])
dQS[1, 3, 1, 1] + dQS[1, 4, 1] + dQS[3, 2, 1] + dQS[4, 2]
sage: dQS([3,1])*dQS([2,1])
dQS[1, 1, 4, 1] + dQS[1, 4, 2] + dQS[1, 5, 1] + dQS[2, 4, 1] + dQS[3, 1,
2, 1] + dQS[3, 2, 2] + dQS[3, 3, 1] + dQS[4, 3] + dQS[5, 2]
sage: dQS([1,1]).coproduct()
dQS[] # dQS[1, 1] + dQS[1] # dQS[1] + dQS[1, 1] # dQS[]
sage: dQS([3,3]).coproduct().monomial_coefficients()[(Composition([1,2]),
→˓Composition([1,2]))]
-1
sage: S = NCSF.complete()
sage: dQS(S[1,3,1])
dQS[1, 3, 1] + dQS[1, 4] + dQS[3, 2] + dQS[4, 1] + dQS[5]
sage: S(dQS[1,3,1])
S[1, 3, 1] - S[3, 2] - S[4, 1] + S[5]
sage: s = SymmetricFunctions(QQ).s()
sage: s(S(dQS([2,1,3])).to_symmetric_function())
s[3, 2, 1]

dual()
The dual basis to the dual Quasisymmetric-Schur basis of NCSF.

The basis returned is the Quasisymmetric_Schur basis of QSym.

OUTPUT:
• the Quasisymmetric-Schur basis of the quasi-symmetric functions

EXAMPLES:

sage: dQS=NonCommutativeSymmetricFunctions(QQ).dualQuasisymmetric_Schur()
sage: dQS.dual()
Quasisymmetric functions over the Rational Field in the Quasisymmetric
Schur basis
sage: dQS.duality_pairing_matrix(dQS.dual(),3)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

to_symmetric_function_on_basis(I)
The commutative image of a dual quasi-symmetric Schur element

The commutative image of a basis element is obtained by sorting the indexing composition of the basis
element.

INPUT:
• I – a composition

OUTPUT:
• The commutative image of the dual quasi-Schur basis element indexed by I. The result is the Schur

symmetric function indexed by the partition obtained by sorting I.
EXAMPLES:

1422 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: dQS=NonCommutativeSymmetricFunctions(QQ).dQS()
sage: dQS.to_symmetric_function_on_basis([2,1,3])
s[3, 2, 1]
sage: dQS.to_symmetric_function_on_basis([])
s[]

class dualYoungQuasisymmetric_Schur(NCSF)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The basis of NCSF dual to the Young Quasisymmetric-Schur basis of QSym.

The YoungQuasisymmetric_Schur functions are given in Definition 5.2.1 of [LMvW13]. The dual basis
in the algebra of non-commutative symmetric functions are related by an involution reversing the indexing
composition of the complete expansion of a quasi-Schur basis element. This basis has many of the same
properties as the Quasisymmetric Schur basis and is related to that basis by an algebraic transformation.

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: dYQS = NCSF.dYQS()
sage: dYQS([1,3,2])*dYQS([1])
dYQS[1, 3, 2, 1] + dYQS[1, 3, 3] + dYQS[1, 4, 2] + dYQS[2, 3, 2]
sage: dYQS([1])*dYQS([1,3,2])
dYQS[1, 1, 3, 2] + dYQS[2, 3, 2] + dYQS[3, 3, 1] + dYQS[4, 1, 2]
sage: dYQS([1,3])*dYQS([1,1])
dYQS[1, 3, 1, 1] + dYQS[1, 4, 1] + dYQS[2, 3, 1] + dYQS[2, 4]
sage: dYQS([3,1])*dYQS([2,1])
dYQS[3, 1, 2, 1] + dYQS[3, 2, 2] + dYQS[3, 3, 1] + dYQS[4, 1, 1, 1]
+ dYQS[4, 1, 2] + dYQS[4, 2, 1] + dYQS[4, 3] + dYQS[5, 1, 1]
+ dYQS[5, 2]
sage: dYQS([1,1]).coproduct()
dYQS[] # dYQS[1, 1] + dYQS[1] # dYQS[1] + dYQS[1, 1] # dYQS[]
sage: dYQS([3,3]).coproduct().monomial_coefficients()[(Composition([1,2]),
→˓Composition([2,1]))]
1
sage: S = NCSF.complete()
sage: dYQS(S[1,3,1])
dYQS[1, 3, 1] + dYQS[1, 4] + dYQS[2, 3] + dYQS[4, 1] + dYQS[5]
sage: S(dYQS[1,3,1])
S[1, 3, 1] - S[1, 4] - S[2, 3] + S[5]
sage: s = SymmetricFunctions(QQ).s()
sage: s(S(dYQS([2,1,3])).to_symmetric_function())
s[3, 2, 1]

dual()
The dual basis to the dual Quasisymmetric-Schur basis of NCSF.

The basis returned is the Quasisymmetric_Schur basis of QSym.

OUTPUT:
• the Young Quasisymmetric-Schur basis of quasi-symmetric functions

EXAMPLES:

5.1. Comprehensive Module List 1423

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

sage: dYQS=NonCommutativeSymmetricFunctions(QQ).dualYoungQuasisymmetric_
→˓Schur()
sage: dYQS.dual()
Quasisymmetric functions over the Rational Field in the Young
Quasisymmetric Schur basis
sage: dYQS.duality_pairing_matrix(dYQS.dual(),3)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

to_symmetric_function_on_basis(I)
The commutative image of a dual Young quasi-symmetric Schur element.

The commutative image of a basis element is obtained by sorting the indexing composition of the basis
element.

INPUT:
• I – a composition

OUTPUT:
• The commutative image of the dual Young quasi-Schur basis element indexed by I. The result is

the Schur symmetric function indexed by the partition obtained by sorting I.
EXAMPLES:

sage: dYQS=NonCommutativeSymmetricFunctions(QQ).dYQS()
sage: dYQS.to_symmetric_function_on_basis([2,1,3])
s[3, 2, 1]
sage: dYQS.to_symmetric_function_on_basis([])
s[]

elementary
alias of NonCommutativeSymmetricFunctions.Elementary

monomial
alias of NonCommutativeSymmetricFunctions.Monomial

nM
alias of NonCommutativeSymmetricFunctions.Monomial

ribbon
alias of NonCommutativeSymmetricFunctions.Ribbon

5.1.142 Quasisymmetric functions

REFERENCES:

AUTHOR:

• Jason Bandlow

• Franco Saliola

• Chris Berg

• Darij Grinberg

1424 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions(R)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The Hopf algebra of quasisymmetric functions.

Let 𝑅 be a commutative ring with unity. The 𝑅-algebra of quasi-symmetric functions may be realized as an 𝑅-
subalgebra of the ring of power series in countably many variables𝑅[[𝑥1, 𝑥2, 𝑥3, . . .]]. It consists of those formal
power series 𝑝 which are degree-bounded (i. e., the degrees of all monomials occurring with nonzero coefficient
in 𝑝 are bounded from above, although the bound can depend on 𝑝) and satisfy the following condition: For every
tuple (𝑎1, 𝑎2, . . . , 𝑎𝑚) of positive integers, the coefficient of the monomial 𝑥𝑎1𝑖1 𝑥

𝑎2
𝑖2
· · ·𝑥𝑎𝑚𝑖𝑚 in 𝑝 is the same for

all strictly increasing sequences (𝑖1 < 𝑖2 < · · · < 𝑖𝑚) of positive integers. (In other words, the coefficient of a
monomial in 𝑝 depends only on the sequence of nonzero exponents in the monomial. If “sequence” were to be
replaced by “multiset” here, we would obtain the definition of a symmetric function.)

The𝑅-algebra of quasi-symmetric functions is commonly called QSym𝑅 or occasionally just QSym (when𝑅 is
clear from the context or Z or Q). It is graded by the total degree of the power series. Its homogeneous elements
of degree 𝑘 form a free 𝑅-submodule of rank equal to the number of compositions of 𝑘 (that is, 2𝑘−1 if 𝑘 ≥ 1,
else 1).

The two classical bases of QSym, the monomial basis (𝑀𝐼)𝐼 and the fundamental basis (𝐹𝐼)𝐼 , are indexed by
compositions 𝐼 = (𝐼1, 𝐼2, · · · , 𝐼ℓ) and defined by the formulas:

𝑀𝐼 =
∑︁

1≤𝑖1<𝑖2<···<𝑖ℓ

𝑥𝐼1𝑖1𝑥
𝐼2
𝑖2
· · ·𝑥𝐼ℓ𝑖ℓ

and

𝐹𝐼 =
∑︁

(𝑗1,𝑗2,...,𝑗𝑛)

𝑥𝑗1𝑥𝑗2 · · ·𝑥𝑗𝑛

where in the second equation the sum runs over all weakly increasing 𝑛-tuples (𝑗1, 𝑗2, . . . , 𝑗𝑛) of positive integers
(where 𝑛 is the size of 𝐼) which increase strictly from 𝑗𝑟 to 𝑗𝑟+1 if 𝑟 is a descent of the composition 𝐼 .

These bases are related by the formula

𝐹𝐼 =
∑︀
𝐽≤𝐼𝑀𝐽

where the inequality 𝐽 ≤ 𝐼 indicates that 𝐽 is finer than 𝐼 .

The 𝑅-algebra of quasi-symmetric functions is a Hopf algebra, with the coproduct satisfying

∆𝑀𝐼 =

ℓ∑︁
𝑘=0

𝑀(𝐼1,𝐼2,··· ,𝐼𝑘) ⊗𝑀(𝐼𝑘+1,𝐼𝑘+2,··· ,𝐼ℓ)

for every composition 𝐼 = (𝐼1, 𝐼2, · · · , 𝐼ℓ).

It is possible to define an 𝑅-algebra of quasi-symmetric functions in a finite number of variables as well (but it
is not a bialgebra). These quasi-symmetric functions are actual polynomials then, not just power series.

Chapter 5 of [GriRei18] and Section 11 of [HazWitt1] are devoted to quasi-symmetric functions, as are Mal-
venuto’s thesis [Mal1993] and part of Chapter 7 of [Sta-EC2].

5.1. Comprehensive Module List 1425

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

The implementation of the quasi-symmetric function Hopf algebra

We realize the 𝑅-algebra of quasi-symmetric functions in Sage as a graded Hopf algebra with basis elements
indexed by compositions:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: QSym.category()
Join of Category of hopf algebras over Rational Field

and Category of graded algebras over Rational Field
and Category of commutative algebras over Rational Field
and Category of monoids with realizations
and Category of graded coalgebras over Rational Field
and Category of coalgebras over Rational Field with realizations

The most standard two bases for this 𝑅-algebra are the monomial and fundamental bases, and are accessible by
the M() and F() methods:

sage: M = QSym.M()
sage: F = QSym.F()
sage: M(F[2,1,2])
M[1, 1, 1, 1, 1] + M[1, 1, 1, 2] + M[2, 1, 1, 1] + M[2, 1, 2]
sage: F(M[2,1,2])
F[1, 1, 1, 1, 1] - F[1, 1, 1, 2] - F[2, 1, 1, 1] + F[2, 1, 2]

The product on this space is commutative and is inherited from the product on the realization within the ring of
power series:

sage: M[3]*M[1,1] == M[1,1]*M[3]
True
sage: M[3]*M[1,1]
M[1, 1, 3] + M[1, 3, 1] + M[1, 4] + M[3, 1, 1] + M[4, 1]
sage: F[3]*F[1,1]
F[1, 1, 3] + F[1, 2, 2] + F[1, 3, 1] + F[1, 4] + F[2, 1, 2]
+ F[2, 2, 1] + F[2, 3] + F[3, 1, 1] + F[3, 2] + F[4, 1]
sage: M[3]*F[2]
M[1, 1, 3] + M[1, 3, 1] + M[1, 4] + M[2, 3] + M[3, 1, 1] + M[3, 2]
+ M[4, 1] + M[5]
sage: F[2]*M[3]
F[1, 1, 1, 2] - F[1, 2, 2] + F[2, 1, 1, 1] - F[2, 1, 2] - F[2, 2, 1]
+ F[5]

There is a coproduct on QSym as well, which in the Monomial basis acts by cutting the composition into a left
half and a right half. The coproduct is not co-commutative:

sage: M[1,3,1].coproduct()
M[] # M[1, 3, 1] + M[1] # M[3, 1] + M[1, 3] # M[1] + M[1, 3, 1] # M[]
sage: F[1,3,1].coproduct()
F[] # F[1, 3, 1] + F[1] # F[3, 1] + F[1, 1] # F[2, 1]
+ F[1, 2] # F[1, 1] + F[1, 3] # F[1] + F[1, 3, 1] # F[]

1426 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The duality pairing with non-commutative symmetric functions

These two operations endow the quasi-symmetric functions QSym with the structure of a Hopf algebra. It is
the graded dual Hopf algebra of the non-commutative symmetric functions 𝑁𝐶𝑆𝐹 . Under this duality, the
Monomial basis of QSym is dual to the Complete basis of 𝑁𝐶𝑆𝐹 , and the Fundamental basis of QSym is dual
to the Ribbon basis of 𝑁𝐶𝑆𝐹 (see [MR]).

sage: S = M.dual(); S
Non-Commutative Symmetric Functions over the Rational Field in the Complete basis
sage: M[1,3,1].duality_pairing(S[1,3,1])
1
sage: M.duality_pairing_matrix(S, degree=4)
[1 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]
sage: F.duality_pairing_matrix(S, degree=4)
[1 0 0 0 0 0 0 0]
[1 1 0 0 0 0 0 0]
[1 0 1 0 0 0 0 0]
[1 1 1 1 0 0 0 0]
[1 0 0 0 1 0 0 0]
[1 1 0 0 1 1 0 0]
[1 0 1 0 1 0 1 0]
[1 1 1 1 1 1 1 1]
sage: NCSF = M.realization_of().dual()
sage: R = NCSF.Ribbon()
sage: F.duality_pairing_matrix(R, degree=4)
[1 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]
sage: M.duality_pairing_matrix(R, degree=4)
[1 0 0 0 0 0 0 0]
[-1 1 0 0 0 0 0 0]
[-1 0 1 0 0 0 0 0]
[1 -1 -1 1 0 0 0 0]
[-1 0 0 0 1 0 0 0]
[1 -1 0 0 -1 1 0 0]
[1 0 -1 0 -1 0 1 0]
[-1 1 1 -1 1 -1 -1 1]

Let 𝐻 and 𝐺 be elements of QSym, and ℎ an element of 𝑁𝐶𝑆𝐹 . Then, if we represent the duality pairing with
the mathematical notation [·, ·],

[𝐻𝐺,ℎ] = [𝐻 ⊗𝐺,∆(ℎ)] .

5.1. Comprehensive Module List 1427

Combinatorics, Release 9.7

For example, the coefficient of M[2,1,4,1] in M[1,3]*M[2,1,1] may be computed with the duality pairing:

sage: I, J = Composition([1,3]), Composition([2,1,1])
sage: (M[I]*M[J]).duality_pairing(S[2,1,4,1])
1

And the coefficient of S[1,3] # S[2,1,1] in S[2,1,4,1].coproduct() is equal to this result:

sage: S[2,1,4,1].coproduct()
S[] # S[2, 1, 4, 1] + ... + S[1, 3] # S[2, 1, 1] + ... + S[4, 1] # S[2, 1]

The duality pairing on the tensor space is another way of getting this coefficient, but currently the method
duality_pairing is not defined on the tensor squared space. However, we can extend this functionality by
applying a linear morphism to the terms in the coproduct, as follows:

sage: X = S[2,1,4,1].coproduct()
sage: def linear_morphism(x, y):
....: return x.duality_pairing(M[1,3]) * y.duality_pairing(M[2,1,1])
sage: X.apply_multilinear_morphism(linear_morphism, codomain=ZZ)
1

Similarly, if 𝐻 is an element of QSym and 𝑔 and ℎ are elements of 𝑁𝐶𝑆𝐹 , then

[𝐻, 𝑔ℎ] = [∆(𝐻), 𝑔 ⊗ ℎ].

For example, the coefficient of R[2,3,1] in R[2,1]*R[2,1] is computed with the duality pairing by the fol-
lowing command:

sage: (R[2,1]*R[2,1]).duality_pairing(F[2,3,1])
1
sage: R[2,1]*R[2,1]
R[2, 1, 2, 1] + R[2, 3, 1]

This coefficient should then be equal to the coefficient of F[2,1] # F[2,1] in F[2,3,1].coproduct():

sage: F[2,3,1].coproduct()
F[] # F[2, 3, 1] + ... + F[2, 1] # F[2, 1] + ... + F[2, 3, 1] # F[]

This can also be computed by the duality pairing on the tensor space, as above:

sage: X = F[2,3,1].coproduct()
sage: def linear_morphism(x, y):
....: return x.duality_pairing(R[2,1]) * y.duality_pairing(R[2,1])
sage: X.apply_multilinear_morphism(linear_morphism, codomain=ZZ)
1

1428 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The operation dual to multiplication by a non-commutative symmetric function

Let 𝑔 ∈ 𝑁𝐶𝑆𝐹 and consider the linear endomorphism of 𝑁𝐶𝑆𝐹 defined by left (respectively, right) multipli-
cation by 𝑔. Since there is a duality between QSym and 𝑁𝐶𝑆𝐹 , this linear transformation induces an operator
𝑔⊥ on QSym satisfying

[𝑔⊥(𝐻), ℎ] = [𝐻, 𝑔ℎ].

for any non-commutative symmetric function ℎ.

This is implemented by the method skew_by(). Explicitly, if H is a quasi-symmetric function and g a non-
commutative symmetric function, then H.skew_by(g) and H.skew_by(g, side='right') are expressions
that satisfy, for any non-commutative symmetric function h, the following equalities:

H.skew_by(g).duality_pairing(h) == H.duality_pairing(g*h)
H.skew_by(g, side='right').duality_pairing(h) == H.duality_pairing(h*g)

For example, M[J].skew_by(S[I]) is 0 unless the composition J begins with I and M(J).skew_by(S(I),
side='right') is 0 unless the composition J ends with I. For example:

sage: M[3,2,2].skew_by(S[3])
M[2, 2]
sage: M[3,2,2].skew_by(S[2])
0
sage: M[3,2,2].coproduct().apply_multilinear_morphism(lambda x,y: x.duality_
→˓pairing(S[3])*y)
M[2, 2]
sage: M[3,2,2].skew_by(S[3], side='right')
0
sage: M[3,2,2].skew_by(S[2], side='right')
M[3, 2]

The counit

The counit is defined by sending all elements of positive degree to zero:

sage: M[3].degree(), M[3,1,2].degree(), M.one().degree()
(3, 6, 0)
sage: M[3].counit()
0
sage: M[3,1,2].counit()
0
sage: M.one().counit()
1
sage: (M[3] - 2*M[3,1,2] + 7).counit()
7
sage: (F[3] - 2*F[3,1,2] + 7).counit()
7

5.1. Comprehensive Module List 1429

Combinatorics, Release 9.7

The antipode

The antipode sends the Fundamental basis element indexed by the composition 𝐼 to (−1)|𝐼| times the Funda-
mental basis element indexed by the conjugate composition to 𝐼 (where |𝐼| stands for the size of 𝐼 , that is, the
sum of all entries of 𝐼).

sage: F[3,2,2].antipode()
-F[1, 2, 2, 1, 1]
sage: Composition([3,2,2]).conjugate()
[1, 2, 2, 1, 1]

The antipodes of the Monomial quasisymmetric functions can also be computed easily: Every composition 𝐼
satisfies

𝜔(𝑀𝐼) = (−1)ℓ(𝐼)
∑︁

𝑀𝐽 ,

where the sum ranges over all compositions 𝐽 of |𝐼| which are coarser than the reversed composition 𝐼𝑟 of 𝐼 .
Here, ℓ(𝐼) denotes the length of the composition 𝐼 (that is, the number of its parts).

sage: M[3,2,1].antipode()
-M[1, 2, 3] - M[1, 5] - M[3, 3] - M[6]
sage: M[3,2,2].antipode()
-M[2, 2, 3] - M[2, 5] - M[4, 3] - M[7]

We demonstrate here the defining relation of the antipode:

sage: X = F[3,2,2].coproduct()
sage: X.apply_multilinear_morphism(lambda x,y: x*y.antipode())
0
sage: X.apply_multilinear_morphism(lambda x,y: x.antipode()*y)
0

The relation with symmetric functions

The quasi-symmetric functions are a ring which contain the symmetric functions as a subring. The Monomial
quasi-symmetric functions are related to the monomial symmetric functions by

𝑚𝜆 =
∑︁

sort(𝐼)=𝜆

𝑀𝐼

(where sort(𝐼) denotes the result of sorting the entries of 𝐼 in decreasing order).

There are methods to test if an expression in the quasi-symmetric functions is a symmetric function and, if it is,
send it to an expression in the symmetric functions:

sage: f = M[1,1,2] + M[1,2,1]
sage: f.is_symmetric()
False
sage: g = M[3,1] + M[1,3]
sage: g.is_symmetric()
True
sage: g.to_symmetric_function()
m[3, 1]

1430 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The expansion of the Schur function in terms of the Fundamental quasi-symmetric functions is due to [Ges].
There is one term in the expansion for each standard tableau of shape equal to the partition indexing the Schur
function.

sage: f = F[3,2] + F[2,2,1] + F[2,3] + F[1,3,1] + F[1,2,2]
sage: f.is_symmetric()
True
sage: f.to_symmetric_function()
5*m[1, 1, 1, 1, 1] + 3*m[2, 1, 1, 1] + 2*m[2, 2, 1] + m[3, 1, 1] + m[3, 2]
sage: s = SymmetricFunctions(QQ).s()
sage: s(f.to_symmetric_function())
s[3, 2]

It is also possible to convert a symmetric function to a quasi-symmetric function:

sage: m = SymmetricFunctions(QQ).m()
sage: M(m[3,1,1])
M[1, 1, 3] + M[1, 3, 1] + M[3, 1, 1]
sage: F(s[2,2,1])
F[1, 1, 2, 1] + F[1, 2, 1, 1] + F[1, 2, 2] + F[2, 1, 2] + F[2, 2, 1]

It is possible to experiment with the quasi-symmetric function expansion of other bases, but it is important that
the base ring be the same for both algebras.

sage: R = QQ['t']
sage: Qp = SymmetricFunctions(R).hall_littlewood().Qp()
sage: QSymt = QuasiSymmetricFunctions(R)
sage: Ft = QSymt.F()
sage: Ft(Qp[2,2])
F[1, 2, 1] + t*F[1, 3] + (t+1)*F[2, 2] + t*F[3, 1] + t^2*F[4]

sage: K = QQ['q','t'].fraction_field()
sage: Ht = SymmetricFunctions(K).macdonald().Ht()
sage: Fqt = QuasiSymmetricFunctions(Ht.base_ring()).F()
sage: Fqt(Ht[2,1])
q*t*F[1, 1, 1] + (q+t)*F[1, 2] + (q+t)*F[2, 1] + F[3]

The following will raise an error because the base ring of F is not equal to the base ring of Ht:

sage: F(Ht[2,1])
Traceback (most recent call last):
...
TypeError: do not know how to make x (= McdHt[2, 1]) an element of self␣
→˓(=Quasisymmetric functions over the Rational Field in the Fundamental basis)

5.1. Comprehensive Module List 1431

Combinatorics, Release 9.7

The map to the ring of polynomials

The quasi-symmetric functions can be seen as an inverse limit of a subring of a polynomial ring as the number of
variables increases. Indeed, there exists a projection from the quasi-symmetric functions onto the polynomial ring
𝑅[𝑥1, 𝑥2, . . . , 𝑥𝑛]. This projection is defined by sending the variables 𝑥𝑛+1, 𝑥𝑛+2, · · · to 0, while the remaining
𝑛 variables remain fixed. Note that this projection sends𝑀𝐼 to 0 if the length of the composition 𝐼 is higher than
𝑛.

sage: M[1,3,1].expand(4)
x0*x1^3*x2 + x0*x1^3*x3 + x0*x2^3*x3 + x1*x2^3*x3
sage: F[1,3,1].expand(4)
x0*x1^3*x2 + x0*x1^3*x3 + x0*x1^2*x2*x3 + x0*x1*x2^2*x3 + x0*x2^3*x3 + x1*x2^3*x3
sage: M[1,3,1].expand(2)
0

class Bases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

Category of bases of quasi-symmetric functions.

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: QSym.Bases()
Category of bases of Quasisymmetric functions over the Rational Field

class ElementMethods
Bases: object

Methods common to all elements of QuasiSymmetricFunctions.

dendriform_leq(other)
Return the result of applying the dendriform smaller-or-equal operation to the two quasi-symmetric
functions self and other.

The dendriform smaller-or-equal operation is a binary operation, denoted by ⪯ and written infix,
on the ring of quasi-symmetric functions. It can be defined as a restriction of a binary operation
(denoted by ⪯ and written infix as well) on the ring of formal power series 𝑅[[𝑥1, 𝑥2, 𝑥3, . . .]],
which is defined as follows: If 𝑚 and 𝑛 are two monomials in 𝑥1, 𝑥2, 𝑥3, . . ., then we let 𝑚 ⪯ 𝑛
be the product 𝑚𝑛 if the smallest positive integer 𝑖 for which 𝑥𝑖 occurs in 𝑚 is smaller or equal
to the smallest positive integer 𝑗 for which 𝑥𝑗 occurs in 𝑛 (this is understood to be false when
𝑚 = 1 and 𝑛 ̸= 1, and true when 𝑛 = 1), and we let 𝑚 ⪯ 𝑛 be 0 otherwise. Having thus defined
⪯ on monomials, we extend ⪯ to a binary operation on 𝑅[[𝑥1, 𝑥2, 𝑥3, . . .]] by requiring it to be
continuous (in both inputs) and 𝑅-bilinear. It is easily seen that 𝑄𝑆𝑦𝑚 ⪯ 𝑄𝑆𝑦𝑚 ⊆ 𝑄𝑆𝑦𝑚, so
that ⪯ restricts to a binary operation on 𝑄𝑆𝑦𝑚.

This operation⪯ is related to the dendriform smaller relation≺ (dendriform_less()). Namely,
if we define a binary operation ≻ on 𝑄𝑆𝑦𝑚 by 𝑎 ≻ 𝑏 = 𝑏 ≺ 𝑎, then (𝑄𝑆𝑦𝑚,⪯,≻) is a dendri-
form 𝑅-algebra. Thus, any 𝑎, 𝑏 ∈ 𝑄𝑆𝑦𝑚 satisfy 𝑎 ⪯ 𝑏 = 𝑎𝑏− 𝑏 ≺ 𝑎.

See also:

dendriform_less()

INPUT:
• other – a quasi-symmetric function over the same base ring as self
OUTPUT:

The quasi-symmetric function self ⪯ other, written in the basis of self.

1432 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: M = QSym.M()
sage: M[2, 1].dendriform_leq(M[1, 2])
2*M[2, 1, 1, 2] + M[2, 1, 2, 1] + M[2, 1, 3] + M[2, 2, 2]
+ M[3, 1, 2] + M[3, 2, 1] + M[3, 3]
sage: F = QSym.F()
sage: F[2, 1].dendriform_leq(F[1, 2])
F[2, 1, 1, 2] + F[2, 1, 2, 1] + F[2, 1, 3] + F[2, 2, 1, 1]
+ 2*F[2, 2, 2] + F[2, 3, 1] + F[3, 1, 2] + F[3, 2, 1] + F[3, 3]

dendriform_less(other)
Return the result of applying the dendriform smaller operation to the two quasi-symmetric func-
tions self and other.

The dendriform smaller operation is a binary operation, denoted by ≺ and written infix, on the
ring of quasi-symmetric functions. It can be defined as a restriction of a binary operation (denoted
by ≺ and written infix as well) on the ring of formal power series 𝑅[[𝑥1, 𝑥2, 𝑥3, . . .]], which is
defined as follows: If 𝑚 and 𝑛 are two monomials in 𝑥1, 𝑥2, 𝑥3, . . ., then we let 𝑚 ≺ 𝑛 be the
product 𝑚𝑛 if the smallest positive integer 𝑖 for which 𝑥𝑖 occurs in 𝑚 is smaller than the smallest
positive integer 𝑗 for which 𝑥𝑗 occurs in 𝑛 (this is understood to be false when 𝑚 = 1, and true
when𝑚 ̸= 1 and 𝑛 = 1), and we let𝑚 ≺ 𝑛 be 0 otherwise. Having thus defined≺ on monomials,
we extend ≺ to a binary operation on 𝑅[[𝑥1, 𝑥2, 𝑥3, . . .]] by requiring it to be continuous (in both
inputs) and 𝑅-bilinear. It is easily seen that 𝑄𝑆𝑦𝑚 ≺ 𝑄𝑆𝑦𝑚 ⊆ 𝑄𝑆𝑦𝑚, so that ≺ restricts to a
binary operation on 𝑄𝑆𝑦𝑚.

See also:

dendriform_leq()

INPUT:
• other – a quasi-symmetric function over the same base ring as self
OUTPUT:

The quasi-symmetric function self ≺ other, written in the basis of self.

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: M = QSym.M()
sage: M[2, 1].dendriform_less(M[1, 2])
2*M[2, 1, 1, 2] + M[2, 1, 2, 1] + M[2, 1, 3] + M[2, 2, 2]
sage: F = QSym.F()
sage: F[2, 1].dendriform_less(F[1, 2])
F[1, 1, 2, 1, 1] + F[1, 1, 2, 2] + F[1, 1, 3, 1]
+ F[1, 2, 1, 2] + F[1, 2, 2, 1] + F[1, 2, 3]
+ F[2, 1, 1, 2] + F[2, 1, 2, 1] + F[2, 1, 3] + F[2, 2, 2]

The operation≺ can be used to recursively construct the dual immaculate basis: For every positive
integer𝑚 and every composition 𝐼 , the dual immaculate function dI[𝑚,𝐼] of the composition [𝑚, 𝐼]
(this composition is 𝐼 with 𝑚 prepended to it) is 𝐹[𝑚] ≺ dI𝐼 .

sage: dI = QSym.dI()
sage: dI(F[2]).dendriform_less(dI[1, 2])
dI[2, 1, 2]

We check with the identity element:

5.1. Comprehensive Module List 1433

Combinatorics, Release 9.7

sage: M.one().dendriform_less(M[1,2])
0
sage: M[1,2].dendriform_less(M.one())
M[1, 2]

The operation ≺ is not symmetric, nor if 𝑎 ≺ 𝑏 ̸= 0, then 𝑏 ≺ 𝑎 = 0 (as it would be for a single
monomial):

sage: M[1,2,1].dendriform_less(M[1,2])
M[1, 1, 2, 1, 2] + 2*M[1, 1, 2, 2, 1] + M[1, 1, 2, 3]
+ M[1, 1, 4, 1] + 2*M[1, 2, 1, 1, 2] + M[1, 2, 1, 2, 1]
+ M[1, 2, 1, 3] + M[1, 2, 2, 2] + M[1, 3, 1, 2]
+ M[1, 3, 2, 1] + M[1, 3, 3]
sage: M[1,2].dendriform_less(M[1,2,1])
M[1, 1, 2, 1, 2] + 2*M[1, 1, 2, 2, 1] + M[1, 1, 2, 3]
+ M[1, 1, 4, 1] + M[1, 2, 1, 2, 1] + M[1, 3, 2, 1]

expand(n, alphabet='x')
Expand the quasi-symmetric function into n variables in an alphabet, which by default is 'x'.

INPUT:
• n – A nonnegative integer; the number of variables in the expansion
• alphabet – (default: 'x'); the alphabet in which self is to be expanded
OUTPUT:
• An expansion of self into the n variables specified by alphabet.
EXAMPLES:

sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: F[3].expand(3)
x0^3 + x0^2*x1 + x0*x1^2 + x1^3 + x0^2*x2 + x0*x1*x2 + x1^2*x2 + x0*x2^2␣
→˓+ x1*x2^2 + x2^3
sage: F[2,1].expand(3)
x0^2*x1 + x0^2*x2 + x0*x1*x2 + x1^2*x2

One can use a different set of variable by adding an optional argument alphabet=...

sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: F[3].expand(2,alphabet='y')
y0^3 + y0^2*y1 + y0*y1^2 + y1^3

frobenius(n)
Return the image of the quasi-symmetric function self under the 𝑛-th Frobenius operator.

The 𝑛-th Frobenius operator f𝑛 is defined to be the map from the 𝑅-algebra of quasi-symmetric
functions to itself that sends every symmetric function 𝑃 (𝑥1, 𝑥2, 𝑥3, . . .) to 𝑃 (𝑥𝑛1 , 𝑥

𝑛
2 , 𝑥

𝑛
3 , . . .).

This operator f𝑛 is a Hopf algebra endomorphism, and satisfies

𝑓𝑛𝑀(𝑖1,𝑖2,𝑖3,...) = 𝑀(𝑛𝑖1,𝑛𝑖2,𝑛𝑖3,...)

for every composition (𝑖1, 𝑖2, 𝑖3, . . .) (where 𝑀 means the monomial basis).

The 𝑛-th Frobenius operator is also called the 𝑛-th Frobenius endomorphism. It is not related to
the Frobenius map which connects the ring of symmetric functions with the representation theory
of the symmetric group.

The 𝑛-th Frobenius operator is also the 𝑛-th Adams operator of the Λ-ring of quasi-symmetric
functions over the integers.

1434 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The restriction of the 𝑛-th Frobenius operator to the subring formed by all symmetric functions is,
not unexpectedly, the 𝑛-th Frobenius operator of the ring of symmetric functions.

See also:

Symmetric functions plethysm

INPUT:
• n – a positive integer
OUTPUT:

The result of applying the 𝑛-th Frobenius operator (on the ring of quasi-symmetric functions) to
self.

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(ZZ)
sage: M = QSym.M()
sage: F = QSym.F()
sage: M[3,2].frobenius(2)
M[6, 4]
sage: (M[2,1] - 2*M[3]).frobenius(4)
M[8, 4] - 2*M[12]
sage: M([]).frobenius(3)
M[]
sage: F[1,1].frobenius(2)
F[1, 1, 1, 1] - F[1, 1, 2] - F[2, 1, 1] + F[2, 2]

The Frobenius endomorphisms are multiplicative:

sage: all(all(M(I).frobenius(3) * M(J).frobenius(3)
....: == (M(I) * M(J)).frobenius(3)
....: for I in Compositions(3))
....: for J in Compositions(2))
True

Being Hopf algebra endomorphisms, the Frobenius operators commute with the antipode:

sage: all(M(I).frobenius(4).antipode()
....: == M(I).antipode().frobenius(4)
....: for I in Compositions(3))
True

The restriction of the Frobenius operators to the subring of symmetric functions are the Frobenius
operators of the latter:

sage: e = SymmetricFunctions(ZZ).e()
sage: all(M(e(lam)).frobenius(3)
....: == M(e(lam).frobenius(3))
....: for lam in Partitions(3))
True

internal_coproduct()
Return the inner coproduct of self in the basis of self.

The inner coproduct (also known as the Kronecker coproduct, or as the second comultiplication
on the 𝑅-algebra of quasi-symmetric functions) is an 𝑅-algebra homomorphism ∆× from the 𝑅-

5.1. Comprehensive Module List 1435

Combinatorics, Release 9.7

algebra of quasi-symmetric functions to the tensor square (over 𝑅) of quasi-symmetric functions.
It can be defined in the following two ways:
1. If 𝐼 is a composition, then a (0, 𝐼)-matrix will mean a matrix whose entries are nonnegative

integers such that no row and no column of this matrix is zero, and such that if all the non-zero
entries of the matrix are read (row by row, starting at the topmost row, reading every row from
left to right), then the reading word obtained is 𝐼 . If 𝐴 is a (0, 𝐼)-matrix, then row(𝐴) will
denote the vector of row sums of 𝐴 (regarded as a composition), and column(𝐴) will denote
the vector of column sums of 𝐴 (regarded as a composition).

For every composition 𝐼 , the internal coproduct ∆×(𝑀𝐼) of the 𝐼-th monomial quasisymmetric
function 𝑀𝐼 is the sum ∑︁

𝐴 is a (0,𝐼)-matrix

𝑀row(𝐴) ⊗𝑀column(𝐴).

See Section 11.39 of [HazWitt1].
2. For every permutation 𝑤, let 𝐶(𝑤) denote the descent composition of 𝑤. Then, for any com-

position 𝐼 of size 𝑛, the internal coproduct ∆×(𝐹𝐼) of the 𝐼-th fundamental quasisymmetric
function 𝐹𝐼 is the sum ∑︁

𝜎∈𝑆𝑛,
𝜏∈𝑆𝑛,
𝜏𝜎=𝜋

𝐹𝐶(𝜎) ⊗ 𝐹𝐶(𝜏),

where 𝜋 is any permutation in 𝑆𝑛 having descent composition 𝐼 and where permutations act
from the left and multiply accordingly, so 𝜏𝜎 means first applying 𝜎 and then 𝜏 . See Theorem
4.23 in [Mal1993], but beware of the notations which are apparently different from those in
[HazWitt1].

The restriction of the internal coproduct to the𝑅-algebra of symmetric functions is the well-known
internal coproduct on the symmetric functions.

The method kronecker_coproduct() is a synonym of this one.

EXAMPLES:

Let us compute the internal coproduct of 𝑀21 (which is short for 𝑀[2,1]). The (0, [2, 1])-matrices
are [︀

2 1
]︀
,

[︂
2
1

]︂
,

[︂
2 0
0 1

]︂
, and

[︂
0 2
1 0

]︂
so

∆×(𝑀21) = 𝑀3 ⊗𝑀21 +𝑀21 ⊗𝑀3 +𝑀21 ⊗𝑀21 +𝑀21 ⊗𝑀12.

This is confirmed by the following Sage computation (incidentally demonstrating the non-
cocommutativity of the internal coproduct):

sage: M = QuasiSymmetricFunctions(ZZ).M()
sage: a = M([2,1])
sage: a.internal_coproduct()
M[2, 1] # M[1, 2] + M[2, 1] # M[2, 1] + M[2, 1] # M[3] + M[3] # M[2, 1]

Further examples:

sage: all(M([i]).internal_coproduct() == tensor([M([i]), M([i])])
....: for i in range(1, 4))
True

(continues on next page)

1436 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: M([1, 2]).internal_coproduct()
M[1, 2] # M[1, 2] + M[1, 2] # M[2, 1] + M[1, 2] # M[3] + M[3] # M[1, 2]

The definition of ∆×(𝑀𝐼) in terms of (0, 𝐼)-matrices is not suitable for computation in cases
where the length of 𝐼 is large, but we can use it as a doctest. Here is a naive implementation:

sage: def naive_internal_coproduct_on_M(I):
....: # INPUT: composition I
....: # (not quasi-symmetric function)
....: # OUTPUT: interior coproduct of M_I
....: M = QuasiSymmetricFunctions(ZZ).M()
....: M2 = M.tensor(M)
....: res = M2.zero()
....: l = len(I)
....: n = I.size()
....: for S in Subsets(range(l**2), l):
....: M_list = sorted(S)
....: row_M = [sum([I[M_list.index(l * i + j)]
....: for j in range(l) if
....: l * i + j in S])
....: for i in range(l)]
....: col_M = [sum([I[M_list.index(l * i + j)]
....: for i in range(l) if
....: l * i + j in S])
....: for j in range(l)]
....: if 0 in row_M:
....: first_zero = row_M.index(0)
....: row_M = row_M[:first_zero]
....: if sum(row_M) != n:
....: continue
....: if 0 in col_M:
....: first_zero = col_M.index(0)
....: col_M = col_M[:first_zero]
....: if sum(col_M) != n:
....: continue
....: res += tensor([M(Compositions(n)(row_M)),
....: M(Compositions(n)(col_M))])
....: return res
sage: all(naive_internal_coproduct_on_M(I)
....: == M(I).internal_coproduct()
....: for I in Compositions(3))
True

Todo: Implement this directly on the monomial basis maybe? The (0, 𝐼)-matrices are a pain
to generate from their definition, but maybe there is a good algorithm. If so, the above “further
examples” should be moved to the M-method.

is_symmetric()
Return True if self is an element of the symmetric functions.

This is being tested by looking at the expansion in the Monomial basis and checking if the coeffi-

5.1. Comprehensive Module List 1437

Combinatorics, Release 9.7

cients are the same if the indexing compositions are permutations of each other.

OUTPUT:
• True if self is symmetric. False if self is not symmetric.
EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: F = QSym.Fundamental()
sage: (F[3,2] + F[2,3]).is_symmetric()
False
sage: (F[1, 1, 1, 2] + F[1, 1, 3] + F[1, 3, 1] + F[2, 1, 1, 1] + F[3, 1,␣
→˓1]).is_symmetric()
True
sage: F([]).is_symmetric()
True

kronecker_coproduct()
Return the inner coproduct of self in the basis of self.

The inner coproduct (also known as the Kronecker coproduct, or as the second comultiplication
on the 𝑅-algebra of quasi-symmetric functions) is an 𝑅-algebra homomorphism ∆× from the 𝑅-
algebra of quasi-symmetric functions to the tensor square (over 𝑅) of quasi-symmetric functions.
It can be defined in the following two ways:
1. If 𝐼 is a composition, then a (0, 𝐼)-matrix will mean a matrix whose entries are nonnegative

integers such that no row and no column of this matrix is zero, and such that if all the non-zero
entries of the matrix are read (row by row, starting at the topmost row, reading every row from
left to right), then the reading word obtained is 𝐼 . If 𝐴 is a (0, 𝐼)-matrix, then row(𝐴) will
denote the vector of row sums of 𝐴 (regarded as a composition), and column(𝐴) will denote
the vector of column sums of 𝐴 (regarded as a composition).

For every composition 𝐼 , the internal coproduct ∆×(𝑀𝐼) of the 𝐼-th monomial quasisymmetric
function 𝑀𝐼 is the sum ∑︁

𝐴 is a (0,𝐼)-matrix

𝑀row(𝐴) ⊗𝑀column(𝐴).

See Section 11.39 of [HazWitt1].
2. For every permutation 𝑤, let 𝐶(𝑤) denote the descent composition of 𝑤. Then, for any com-

position 𝐼 of size 𝑛, the internal coproduct ∆×(𝐹𝐼) of the 𝐼-th fundamental quasisymmetric
function 𝐹𝐼 is the sum ∑︁

𝜎∈𝑆𝑛,
𝜏∈𝑆𝑛,
𝜏𝜎=𝜋

𝐹𝐶(𝜎) ⊗ 𝐹𝐶(𝜏),

where 𝜋 is any permutation in 𝑆𝑛 having descent composition 𝐼 and where permutations act
from the left and multiply accordingly, so 𝜏𝜎 means first applying 𝜎 and then 𝜏 . See Theorem
4.23 in [Mal1993], but beware of the notations which are apparently different from those in
[HazWitt1].

The restriction of the internal coproduct to the𝑅-algebra of symmetric functions is the well-known
internal coproduct on the symmetric functions.

The method kronecker_coproduct() is a synonym of this one.

EXAMPLES:

Let us compute the internal coproduct of 𝑀21 (which is short for 𝑀[2,1]). The (0, [2, 1])-matrices

1438 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

are [︀
2 1

]︀
,

[︂
2
1

]︂
,

[︂
2 0
0 1

]︂
, and

[︂
0 2
1 0

]︂
so

∆×(𝑀21) = 𝑀3 ⊗𝑀21 +𝑀21 ⊗𝑀3 +𝑀21 ⊗𝑀21 +𝑀21 ⊗𝑀12.

This is confirmed by the following Sage computation (incidentally demonstrating the non-
cocommutativity of the internal coproduct):

sage: M = QuasiSymmetricFunctions(ZZ).M()
sage: a = M([2,1])
sage: a.internal_coproduct()
M[2, 1] # M[1, 2] + M[2, 1] # M[2, 1] + M[2, 1] # M[3] + M[3] # M[2, 1]

Further examples:

sage: all(M([i]).internal_coproduct() == tensor([M([i]), M([i])])
....: for i in range(1, 4))
True

sage: M([1, 2]).internal_coproduct()
M[1, 2] # M[1, 2] + M[1, 2] # M[2, 1] + M[1, 2] # M[3] + M[3] # M[1, 2]

The definition of ∆×(𝑀𝐼) in terms of (0, 𝐼)-matrices is not suitable for computation in cases
where the length of 𝐼 is large, but we can use it as a doctest. Here is a naive implementation:

sage: def naive_internal_coproduct_on_M(I):
....: # INPUT: composition I
....: # (not quasi-symmetric function)
....: # OUTPUT: interior coproduct of M_I
....: M = QuasiSymmetricFunctions(ZZ).M()
....: M2 = M.tensor(M)
....: res = M2.zero()
....: l = len(I)
....: n = I.size()
....: for S in Subsets(range(l**2), l):
....: M_list = sorted(S)
....: row_M = [sum([I[M_list.index(l * i + j)]
....: for j in range(l) if
....: l * i + j in S])
....: for i in range(l)]
....: col_M = [sum([I[M_list.index(l * i + j)]
....: for i in range(l) if
....: l * i + j in S])
....: for j in range(l)]
....: if 0 in row_M:
....: first_zero = row_M.index(0)
....: row_M = row_M[:first_zero]
....: if sum(row_M) != n:
....: continue
....: if 0 in col_M:
....: first_zero = col_M.index(0)

(continues on next page)

5.1. Comprehensive Module List 1439

Combinatorics, Release 9.7

(continued from previous page)

....: col_M = col_M[:first_zero]

....: if sum(col_M) != n:

....: continue

....: res += tensor([M(Compositions(n)(row_M)),

....: M(Compositions(n)(col_M))])

....: return res
sage: all(naive_internal_coproduct_on_M(I)
....: == M(I).internal_coproduct()
....: for I in Compositions(3))
True

Todo: Implement this directly on the monomial basis maybe? The (0, 𝐼)-matrices are a pain
to generate from their definition, but maybe there is a good algorithm. If so, the above “further
examples” should be moved to the M-method.

omega_involution()
Return the image of the quasisymmetric function self under the omega involution.

The omega involution is defined as the linear map𝑄𝑆𝑦𝑚→ 𝑄𝑆𝑦𝑚which, for every composition
𝐼 , sends the fundamental quasisymmetric function 𝐹𝐼 to 𝐹𝐼𝑡 , where 𝐼𝑡 denotes the conjugate
(conjugate()) of the composition 𝐼 . This map is commonly denoted by 𝜔. It is an algebra
homomorphism and a coalgebra antihomomorphism; it also is an involution and an automorphism
of the graded vector space 𝑄𝑆𝑦𝑚. Also, every composition 𝐼 satisfies

𝜔(𝑀𝐼) = (−1)|𝐼|−ℓ(𝐼)
∑︁

𝑀𝐽 ,

where the sum ranges over all compositions 𝐽 of |𝐼| which are coarser than the reversed compo-
sition 𝐼𝑟 of 𝐼 . Here, ℓ(𝐼) denotes the length of the composition 𝐼 (that is, the number of parts of
𝐼).

If 𝑓 is a homogeneous element of 𝑁𝐶𝑆𝐹 of degree 𝑛, then

𝜔(𝑓) = (−1)𝑛𝑆(𝑓),

where 𝑆 denotes the antipode of 𝑄𝑆𝑦𝑚.

The restriction of 𝜔 to the ring of symmetric functions (which is a subring of 𝑄𝑆𝑦𝑚) is precisely
the omega involution (omega()) of said ring.

The omega involution on 𝑄𝑆𝑦𝑚 is adjoint to the omega involution on 𝑁𝐶𝑆𝐹 by the standard
adjunction between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The omega involution has been denoted by 𝜔 in [LMvW13], section 3.6.

See also:

omega involution on NCSF, psi involution on QSym , star involution on QSym .

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(ZZ)
sage: F = QSym.F()
sage: F[3,2].omega_involution()
F[1, 2, 1, 1]
sage: F[6,3].omega_involution()

(continues on next page)

1440 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

F[1, 1, 2, 1, 1, 1, 1, 1]
sage: (F[9,1] - F[8,2] + 2*F[2,4] - 3*F[3] + 4*F[[]]).omega_involution()
4*F[] - 3*F[1, 1, 1] + 2*F[1, 1, 1, 2, 1] - F[1, 2, 1, 1, 1, 1, 1, 1, 1]␣
→˓+ F[2, 1, 1, 1, 1, 1, 1, 1, 1]
sage: (F[3,3] - 2*F[2]).omega_involution()
-2*F[1, 1] + F[1, 1, 2, 1, 1]
sage: F([2,1,1]).omega_involution()
F[3, 1]
sage: M = QSym.M()
sage: M([2,1]).omega_involution()
-M[1, 2] - M[3]
sage: M.zero().omega_involution()
0

Testing the fact that the restriction of 𝜔 to 𝑆𝑦𝑚 is the omega automorphism of 𝑆𝑦𝑚:

sage: Sym = SymmetricFunctions(ZZ)
sage: e = Sym.e()
sage: all(F(e[lam]).omega_involution() == F(e[lam].omega())
....: for lam in Partitions(4))
True

psi_involution()
Return the image of the quasisymmetric function self under the involution 𝜓.

The involution 𝜓 is defined as the linear map 𝑄𝑆𝑦𝑚 → 𝑄𝑆𝑦𝑚 which, for every composition
𝐼 , sends the fundamental quasisymmetric function 𝐹𝐼 to 𝐹𝐼𝑐 , where 𝐼𝑐 denotes the complement
of the composition 𝐼 . The map 𝜓 is an involution and a graded Hopf algebra automorphism of
𝑄𝑆𝑦𝑚. Its restriction to the ring of symmetric functions coincides with the omega automorphism
of the latter ring.

The involution 𝜓 of 𝑄𝑆𝑦𝑚 is adjoint to the involution 𝜓 of 𝑁𝐶𝑆𝐹 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The involution 𝜓 has been denoted by 𝜓 in [LMvW13], section 3.6.

See also:

psi involution on NCSF, star involution on QSym .

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(ZZ)
sage: F = QSym.F()
sage: F[3,2].psi_involution()
F[1, 1, 2, 1]
sage: F[6,3].psi_involution()
F[1, 1, 1, 1, 1, 2, 1, 1]
sage: (F[9,1] - F[8,2] + 2*F[2,4] - 3*F[3] + 4*F[[]]).psi_involution()
4*F[] - 3*F[1, 1, 1] + F[1, 1, 1, 1, 1, 1, 1, 1, 2] - F[1, 1, 1, 1, 1, 1,
→˓ 1, 2, 1] + 2*F[1, 2, 1, 1, 1]
sage: (F[3,3] - 2*F[2]).psi_involution()
-2*F[1, 1] + F[1, 1, 2, 1, 1]
sage: F([2,1,1]).psi_involution()
F[1, 3]

(continues on next page)

5.1. Comprehensive Module List 1441

Combinatorics, Release 9.7

(continued from previous page)

sage: M = QSym.M()
sage: M([2,1]).psi_involution()
-M[2, 1] - M[3]
sage: M.zero().psi_involution()
0

The involution 𝜓 commutes with the antipode:

sage: all(F(I).psi_involution().antipode()
....: == F(I).antipode().psi_involution()
....: for I in Compositions(4))
True

Testing the fact that the restriction of 𝜓 to 𝑆𝑦𝑚 is the omega automorphism of 𝑆𝑦𝑚:

sage: Sym = SymmetricFunctions(ZZ)
sage: e = Sym.e()
sage: all(F(e[lam]).psi_involution() == F(e[lam].omega())
....: for lam in Partitions(4))
True

star_involution()
Return the image of the quasisymmetric function self under the star involution.

The star involution is defined as the linear map𝑄𝑆𝑦𝑚→ 𝑄𝑆𝑦𝑚which, for every composition 𝐼 ,
sends the monomial quasisymmetric function 𝑀𝐼 to 𝑀𝐼𝑟 . Here, if 𝐼 is a composition, we denote
by 𝐼𝑟 the reversed composition of 𝐼 . Denoting by 𝑓* the image of an element 𝑓 ∈ 𝑄𝑆𝑦𝑚 under
the star involution, it can be shown that every composition 𝐼 satisfies

(𝑀𝐼)
* = 𝑀𝐼𝑟 , (𝐹𝐼)

* = 𝐹𝐼𝑟 ,

where 𝐹𝐼 denotes the fundamental quasisymmetric function corresponding to the composition 𝐼 .
The star involution is an involution, an algebra automorphism and a coalgebra anti-automorphism
of𝑄𝑆𝑦𝑚. It also is an automorphism of the graded vector space𝑄𝑆𝑦𝑚, and is the identity on the
subspace 𝑆𝑦𝑚 of𝑄𝑆𝑦𝑚. It is adjoint to the star involution on𝑁𝐶𝑆𝐹 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The star involution has been denoted by 𝜌 in [LMvW13], section 3.6.

See also:

star involution on NCSF.

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(ZZ)
sage: M = QSym.M()
sage: M[3,2].star_involution()
M[2, 3]
sage: M[6,3].star_involution()
M[3, 6]
sage: (M[9,1] - M[6,2] + 2*M[6,4] - 3*M[3] + 4*M[[]]).star_involution()
4*M[] + M[1, 9] - M[2, 6] - 3*M[3] + 2*M[4, 6]
sage: (M[3,3] - 2*M[2]).star_involution()
-2*M[2] + M[3, 3]

(continues on next page)

1442 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: M([4,2]).star_involution()
M[2, 4]
sage: dI = QSym.dI()
sage: dI([1,2]).star_involution()
-dI[1, 2] + dI[2, 1]
sage: dI.zero().star_involution()
0

The star involution commutes with the antipode:

sage: all(M(I).star_involution().antipode()
....: == M(I).antipode().star_involution()
....: for I in Compositions(4))
True

The star involution is the identity on 𝑆𝑦𝑚:

sage: Sym = SymmetricFunctions(ZZ)
sage: e = Sym.e()
sage: all(M(e(lam)).star_involution() == M(e(lam))
....: for lam in Partitions(4))
True

to_symmetric_function()
Convert a quasi-symmetric function to a symmetric function.

OUTPUT:
• If self is a symmetric function, then return the expansion in the monomial basis. Otherwise

raise an error.
EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: F = QSym.Fundamental()
sage: (F[3,2] + F[2,3]).to_symmetric_function()
Traceback (most recent call last):
...
ValueError: F[2, 3] + F[3, 2] is not a symmetric function
sage: m = SymmetricFunctions(QQ).m()
sage: s = SymmetricFunctions(QQ).s()
sage: F(s[3,1,1]).to_symmetric_function()
6*m[1, 1, 1, 1, 1] + 3*m[2, 1, 1, 1] + m[2, 2, 1] + m[3, 1, 1]
sage: m(s[3,1,1])
6*m[1, 1, 1, 1, 1] + 3*m[2, 1, 1, 1] + m[2, 2, 1] + m[3, 1, 1]

class ParentMethods
Bases: object

Methods common to all bases of QuasiSymmetricFunctions.

Eulerian(n, j, k=None)
Return the Eulerian (quasi)symmetric function 𝑄𝑛,𝑗 in terms of self.

INPUT:
• n – the value 𝑛 or a partition
• j – the number of excedances

5.1. Comprehensive Module List 1443

Combinatorics, Release 9.7

• k – (optional) if specified, determines the number of fixed points of the permutation
EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: M = QSym.M()
sage: M.Eulerian(3, 1)
4*M[1, 1, 1] + 3*M[1, 2] + 3*M[2, 1] + 2*M[3]
sage: M.Eulerian(4, 1, 2)
6*M[1, 1, 1, 1] + 4*M[1, 1, 2] + 4*M[1, 2, 1]
+ 2*M[1, 3] + 4*M[2, 1, 1] + 3*M[2, 2] + 2*M[3, 1] + M[4]
sage: QS = QSym.QS()
sage: QS.Eulerian(4, 2)
2*QS[1, 3] + QS[2, 2] + 2*QS[3, 1] + 3*QS[4]
sage: QS.Eulerian([2, 2, 1], 2)
QS[1, 2, 2] + QS[1, 4] + QS[2, 1, 2] + QS[2, 2, 1]
+ QS[2, 3] + QS[3, 2] + QS[4, 1] + QS[5]
sage: dI = QSym.dI()
sage: dI.Eulerian(5, 2)
-dI[1, 3, 1] - 5*dI[1, 4] + dI[2, 2, 1] + dI[3, 1, 1]
+ 5*dI[3, 2] + 6*dI[4, 1] + 6*dI[5]

from_polynomial(f, check=True)
The quasi-symmetric function expanded in this basis corresponding to the quasi-symmetric poly-
nomial f.

This is a default implementation that computes the expansion in the Monomial basis and converts
to this basis.

INPUT:
• f – a polynomial in finitely many variables over the same base ring as self. It is assumed that

this polynomial is quasi-symmetric.
• check – boolean (default: True), checks whether the polynomial is indeed quasi-symmetric.
OUTPUT:
• quasi-symmetric function
EXAMPLES:

sage: M = QuasiSymmetricFunctions(QQ).Monomial()
sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: P = PolynomialRing(QQ, 'x', 3)
sage: x = P.gens()
sage: f = x[0] + x[1] + x[2]
sage: M.from_polynomial(f)
M[1]
sage: F.from_polynomial(f)
F[1]
sage: f = x[0]**2+x[1]**2+x[2]**2
sage: M.from_polynomial(f)
M[2]
sage: F.from_polynomial(f)
-F[1, 1] + F[2]

If the polynomial is not quasi-symmetric, an error is raised:

sage: f = x[0]^2+x[1]
sage: M.from_polynomial(f)

(continues on next page)

1444 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Traceback (most recent call last):
...
ValueError: x0^2 + x1 is not a quasi-symmetric polynomial
sage: F.from_polynomial(f)
Traceback (most recent call last):
...
ValueError: x0^2 + x1 is not a quasi-symmetric polynomial

super_categories()
Return the super categories of bases of the Quasi-symmetric functions.

OUTPUT:
• a list of categories

E
alias of QuasiSymmetricFunctions.Essential

class Essential(QSym)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of quasi-symmetric functions in the Essential basis.

The Essential quasi-symmetric functions are defined by

𝐸𝐼 =
∑︁
𝐽≥𝐼

𝑀𝐽 =
∑︁

𝑖1≤···≤𝑖𝑘

𝑥𝐼1𝑖1 · · ·𝑥
𝐼𝑘
𝑖𝑘
,

where 𝐼 = (𝐼1, . . . , 𝐼𝑘).

Note: Our convention of ≤ and ≥ of compositions is opposite that of [Hoff2015].

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: E = QSym.E()
sage: M = QSym.M()
sage: E(M[2,2])
E[2, 2] - E[4]
sage: s = SymmetricFunctions(QQ).s()
sage: E(s[3,2])
5*E[1, 1, 1, 1, 1] - 2*E[1, 1, 1, 2] - 2*E[1, 1, 2, 1]
- 2*E[1, 2, 1, 1] + E[1, 2, 2] - 2*E[2, 1, 1, 1]
+ E[2, 1, 2] + E[2, 2, 1]
sage: (1 + E[1])^3
E[] + 3*E[1] + 6*E[1, 1] + 6*E[1, 1, 1] - 3*E[1, 2]
- 3*E[2] - 3*E[2, 1] + E[3]
sage: E[1,2,1].coproduct()
E[] # E[1, 2, 1] + E[1] # E[2, 1] + E[1, 2] # E[1] + E[1, 2, 1] # E[]

The following is an alias for this basis:

sage: QSym.Essential()
Quasisymmetric functions over the Rational Field in the Essential basis

5.1. Comprehensive Module List 1445

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

antipode_on_basis(compo)
Return the result of the antipode applied to a quasi-symmetric Essential basis element.

INPUT:
• compo – composition

OUTPUT:
• The result of the antipode applied to the composition compo, expressed in the Essential basis.

EXAMPLES:

sage: E = QuasiSymmetricFunctions(QQ).E()
sage: E.antipode_on_basis(Composition([2,1]))
E[1, 2] - E[3]
sage: E.antipode_on_basis(Composition([]))
E[]

coproduct_on_basis(compo)
Return the coproduct of a Essential basis element.

Combinatorial rule: deconcatenation.

INPUT:
• compo – composition

OUTPUT:
• The coproduct applied to the Essential quasi-symmetric function indexed by compo, expressed in

the Essential basis.
EXAMPLES:

sage: E = QuasiSymmetricFunctions(QQ).Essential()
sage: E[4,2,3].coproduct()
E[] # E[4, 2, 3] + E[4] # E[2, 3] + E[4, 2] # E[3] + E[4, 2, 3] # E[]
sage: E.coproduct_on_basis(Composition([]))
E[] # E[]

product_on_basis(I, J)
The product on Essential basis elements.

The product of the basis elements indexed by two compositions 𝐼 and 𝐽 is the sum of the basis elements
indexed by compositions𝐾 in the stuffle product (also called the overlapping shuffle product) of 𝐼 and
𝐽 with a coefficient of (−1)ℓ(𝐼)+ℓ(𝐽)−ℓ(𝐾), where ℓ(𝐶) is the length of the composition 𝐶.

INPUT:
• I, J – compositions

OUTPUT:
• The product of the Essential quasi-symmetric functions indexed by I and J, expressed in the Es-

sential basis.
EXAMPLES:

sage: E = QuasiSymmetricFunctions(QQ).E()
sage: c1 = Composition([2])
sage: c2 = Composition([1,3])
sage: E.product_on_basis(c1, c2)
E[1, 2, 3] + E[1, 3, 2] - E[1, 5] + E[2, 1, 3] - E[3, 3]
sage: E.product_on_basis(c1, Composition([]))
E[2]
sage: E.product_on_basis(c1, Composition([3]))
E[2, 3] + E[3, 2] - E[5]

1446 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

F
alias of QuasiSymmetricFunctions.Fundamental

class Fundamental(QSym)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of quasi-symmetric functions in the Fundamental basis.

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: F = QSym.F()
sage: M = QSym.M()
sage: F(M[2,2])
F[1, 1, 1, 1] - F[1, 1, 2] - F[2, 1, 1] + F[2, 2]
sage: s = SymmetricFunctions(QQ).s()
sage: F(s[3,2])
F[1, 2, 2] + F[1, 3, 1] + F[2, 2, 1] + F[2, 3] + F[3, 2]
sage: (1+F[1])^3
F[] + 3*F[1] + 3*F[1, 1] + F[1, 1, 1] + 2*F[1, 2] + 3*F[2] + 2*F[2, 1] + F[3]
sage: F[1,2,1].coproduct()
F[] # F[1, 2, 1] + F[1] # F[2, 1] + F[1, 1] # F[1, 1] + F[1, 2] # F[1] + F[1, 2,
→˓ 1] # F[]

The following is an alias for this basis:

sage: QSym.Fundamental()
Quasisymmetric functions over the Rational Field in the Fundamental basis

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

internal_coproduct()
Return the inner coproduct of self in the Fundamental basis.

The inner coproduct (also known as the Kronecker coproduct, or as the second comultiplication
on the 𝑅-algebra of quasi-symmetric functions) is an 𝑅-algebra homomorphism ∆× from the 𝑅-
algebra of quasi-symmetric functions to the tensor square (over 𝑅) of quasi-symmetric functions.
It can be defined in the following two ways:
1. If 𝐼 is a composition, then a (0, 𝐼)-matrix will mean a matrix whose entries are nonnegative

integers such that no row and no column of this matrix is zero, and such that if all the non-zero
entries of the matrix are read (row by row, starting at the topmost row, reading every row from
left to right), then the reading word obtained is 𝐼 . If 𝐴 is a (0, 𝐼)-matrix, then row(𝐴) will
denote the vector of row sums of 𝐴 (regarded as a composition), and column(𝐴) will denote
the vector of column sums of 𝐴 (regarded as a composition).

For every composition 𝐼 , the internal coproduct ∆×(𝑀𝐼) of the 𝐼-th monomial quasisymmetric
function 𝑀𝐼 is the sum ∑︁

𝐴 is a (0,𝐼)-matrix

𝑀row(𝐴) ⊗𝑀column(𝐴).

See Section 11.39 of [HazWitt1].
2. For every permutation 𝑤, let 𝐶(𝑤) denote the descent composition of 𝑤. Then, for any com-

position 𝐼 of size 𝑛, the internal coproduct ∆×(𝐹𝐼) of the 𝐼-th fundamental quasisymmetric

5.1. Comprehensive Module List 1447

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

function 𝐹𝐼 is the sum ∑︁
𝜎∈𝑆𝑛,
𝜏∈𝑆𝑛,
𝜏𝜎=𝜋

𝐹𝐶(𝜎) ⊗ 𝐹𝐶(𝜏),

where 𝜋 is any permutation in 𝑆𝑛 having descent composition 𝐼 and where permutations act
from the left and multiply accordingly, so 𝜏𝜎 means first applying 𝜎 and then 𝜏 . See Theorem
4.23 in [Mal1993], but beware of the notations which are apparently different from those in
[HazWitt1].

The restriction of the internal coproduct to the𝑅-algebra of symmetric functions is the well-known
internal coproduct on the symmetric functions.

The method kronecker_coproduct() is a synonym of this one.

EXAMPLES:

Let us compute the internal coproduct of 𝑀21 (which is short for 𝑀[2,1]). The (0, [2, 1])-matrices
are [︀

2 1
]︀
,

[︂
2
1

]︂
,

[︂
2 0
0 1

]︂
, and

[︂
0 2
1 0

]︂
so

∆×(𝑀21) = 𝑀3 ⊗𝑀21 +𝑀21 ⊗𝑀3 +𝑀21 ⊗𝑀21 +𝑀21 ⊗𝑀12.

This is confirmed by the following Sage computation (incidentally demonstrating the non-
cocommutativity of the internal coproduct):

sage: M = QuasiSymmetricFunctions(ZZ).M()
sage: a = M([2,1])
sage: a.internal_coproduct()
M[2, 1] # M[1, 2] + M[2, 1] # M[2, 1] + M[2, 1] # M[3] + M[3] # M[2, 1]

Some examples on the Fundamental basis:

sage: F = QuasiSymmetricFunctions(ZZ).F()
sage: F([1,1]).internal_coproduct()
F[1, 1] # F[2] + F[2] # F[1, 1]
sage: F([2]).internal_coproduct()
F[1, 1] # F[1, 1] + F[2] # F[2]
sage: F([3]).internal_coproduct()
F[1, 1, 1] # F[1, 1, 1] + F[1, 2] # F[1, 2] + F[1, 2] # F[2, 1]
+ F[2, 1] # F[1, 2] + F[2, 1] # F[2, 1] + F[3] # F[3]
sage: F([1,2]).internal_coproduct()
F[1, 1, 1] # F[1, 2] + F[1, 2] # F[2, 1] + F[1, 2] # F[3]
+ F[2, 1] # F[1, 1, 1] + F[2, 1] # F[2, 1] + F[3] # F[1, 2]

kronecker_coproduct()
Return the inner coproduct of self in the Fundamental basis.

The inner coproduct (also known as the Kronecker coproduct, or as the second comultiplication
on the 𝑅-algebra of quasi-symmetric functions) is an 𝑅-algebra homomorphism ∆× from the 𝑅-
algebra of quasi-symmetric functions to the tensor square (over 𝑅) of quasi-symmetric functions.
It can be defined in the following two ways:
1. If 𝐼 is a composition, then a (0, 𝐼)-matrix will mean a matrix whose entries are nonnegative

integers such that no row and no column of this matrix is zero, and such that if all the non-zero

1448 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

entries of the matrix are read (row by row, starting at the topmost row, reading every row from
left to right), then the reading word obtained is 𝐼 . If 𝐴 is a (0, 𝐼)-matrix, then row(𝐴) will
denote the vector of row sums of 𝐴 (regarded as a composition), and column(𝐴) will denote
the vector of column sums of 𝐴 (regarded as a composition).

For every composition 𝐼 , the internal coproduct ∆×(𝑀𝐼) of the 𝐼-th monomial quasisymmetric
function 𝑀𝐼 is the sum ∑︁

𝐴 is a (0,𝐼)-matrix

𝑀row(𝐴) ⊗𝑀column(𝐴).

See Section 11.39 of [HazWitt1].
2. For every permutation 𝑤, let 𝐶(𝑤) denote the descent composition of 𝑤. Then, for any com-

position 𝐼 of size 𝑛, the internal coproduct ∆×(𝐹𝐼) of the 𝐼-th fundamental quasisymmetric
function 𝐹𝐼 is the sum ∑︁

𝜎∈𝑆𝑛,
𝜏∈𝑆𝑛,
𝜏𝜎=𝜋

𝐹𝐶(𝜎) ⊗ 𝐹𝐶(𝜏),

where 𝜋 is any permutation in 𝑆𝑛 having descent composition 𝐼 and where permutations act
from the left and multiply accordingly, so 𝜏𝜎 means first applying 𝜎 and then 𝜏 . See Theorem
4.23 in [Mal1993], but beware of the notations which are apparently different from those in
[HazWitt1].

The restriction of the internal coproduct to the𝑅-algebra of symmetric functions is the well-known
internal coproduct on the symmetric functions.

The method kronecker_coproduct() is a synonym of this one.

EXAMPLES:

Let us compute the internal coproduct of 𝑀21 (which is short for 𝑀[2,1]). The (0, [2, 1])-matrices
are [︀

2 1
]︀
,

[︂
2
1

]︂
,

[︂
2 0
0 1

]︂
, and

[︂
0 2
1 0

]︂
so

∆×(𝑀21) = 𝑀3 ⊗𝑀21 +𝑀21 ⊗𝑀3 +𝑀21 ⊗𝑀21 +𝑀21 ⊗𝑀12.

This is confirmed by the following Sage computation (incidentally demonstrating the non-
cocommutativity of the internal coproduct):

sage: M = QuasiSymmetricFunctions(ZZ).M()
sage: a = M([2,1])
sage: a.internal_coproduct()
M[2, 1] # M[1, 2] + M[2, 1] # M[2, 1] + M[2, 1] # M[3] + M[3] # M[2, 1]

Some examples on the Fundamental basis:

sage: F = QuasiSymmetricFunctions(ZZ).F()
sage: F([1,1]).internal_coproduct()
F[1, 1] # F[2] + F[2] # F[1, 1]
sage: F([2]).internal_coproduct()
F[1, 1] # F[1, 1] + F[2] # F[2]
sage: F([3]).internal_coproduct()
F[1, 1, 1] # F[1, 1, 1] + F[1, 2] # F[1, 2] + F[1, 2] # F[2, 1]

(continues on next page)

5.1. Comprehensive Module List 1449

Combinatorics, Release 9.7

(continued from previous page)

+ F[2, 1] # F[1, 2] + F[2, 1] # F[2, 1] + F[3] # F[3]
sage: F([1,2]).internal_coproduct()
F[1, 1, 1] # F[1, 2] + F[1, 2] # F[2, 1] + F[1, 2] # F[3]
+ F[2, 1] # F[1, 1, 1] + F[2, 1] # F[2, 1] + F[3] # F[1, 2]

star_involution()
Return the image of the quasisymmetric function self under the star involution.

The star involution is defined as the linear map𝑄𝑆𝑦𝑚→ 𝑄𝑆𝑦𝑚which, for every composition 𝐼 ,
sends the monomial quasisymmetric function 𝑀𝐼 to 𝑀𝐼𝑟 . Here, if 𝐼 is a composition, we denote
by 𝐼𝑟 the reversed composition of 𝐼 . Denoting by 𝑓* the image of an element 𝑓 ∈ 𝑄𝑆𝑦𝑚 under
the star involution, it can be shown that every composition 𝐼 satisfies

(𝑀𝐼)
* = 𝑀𝐼𝑟 , (𝐹𝐼)

* = 𝐹𝐼𝑟 ,

where 𝐹𝐼 denotes the fundamental quasisymmetric function corresponding to the composition 𝐼 .
The star involution is an involution, an algebra automorphism and a coalgebra anti-automorphism
of𝑄𝑆𝑦𝑚. It also is an automorphism of the graded vector space𝑄𝑆𝑦𝑚, and is the identity on the
subspace 𝑆𝑦𝑚 of𝑄𝑆𝑦𝑚. It is adjoint to the star involution on𝑁𝐶𝑆𝐹 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The star involution has been denoted by 𝜌 in [LMvW13], section 3.6.

See also:

star involution on QSym , star involution on NCSF.

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(ZZ)
sage: F = QSym.F()
sage: F[3,1].star_involution()
F[1, 3]
sage: F[5,3].star_involution()
F[3, 5]
sage: (F[9,1] - F[6,2] + 2*F[6,4] - 3*F[3] + 4*F[[]]).star_involution()
4*F[] + F[1, 9] - F[2, 6] - 3*F[3] + 2*F[4, 6]
sage: (F[3,3] - 2*F[2]).star_involution()
-2*F[2] + F[3, 3]
sage: F([4,2]).star_involution()
F[2, 4]
sage: dI = QSym.dI()
sage: dI([1,2]).star_involution()
-dI[1, 2] + dI[2, 1]
sage: dI.zero().star_involution()
0

Eulerian(n, j, k=None)
Return the Eulerian (quasi)symmetric function 𝑄𝑛,𝑗 (with 𝑛 either an integer or a partition) defined
in [SW2010] in terms of the fundamental quasisymmetric functions. Or, if the optional argument k is
specified, return the function 𝑄𝑛,𝑗,𝑘 defined ibidem.

If 𝑛 and 𝑗 are nonnegative integers, then the Eulerian quasisymmetric function 𝑄𝑛,𝑗 is defined as

𝑄𝑛,𝑗 :=
∑︁
𝜎

𝐹Dex(𝜎),

1450 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

where we sum over all permutations 𝜎 ∈ 𝑆𝑛 such that the number of excedances of 𝜎 is 𝑗, and where
Dex(𝜎) is a composition of 𝑛 defined as follows: Let 𝑆 be the set of all 𝑖 ∈ {1, 2, . . . , 𝑛 − 1} such
that either 𝜎𝑖 > 𝜎𝑖+1 > 𝑖+ 1 or 𝑖 ≥ 𝜎𝑖 > 𝜎𝑖+1 or 𝜎𝑖+1 > 𝑖+ 1 > 𝜎𝑖. Then, Dex(𝜎) is set to be the
composition of 𝑛 whose descent set is 𝑆.

Here, an excedance of a permutation 𝜎 ∈ 𝑆𝑛 means an element 𝑖 ∈ {1, 2, . . . , 𝑛−1} satisfying 𝜎𝑖 > 𝑖.

Similarly we can define a quasisymmetric function 𝑄𝜆,𝑗 for every partition 𝜆 and every nonnegative
integer 𝑗. This differs from 𝑄𝑛,𝑗 only in that the sum is restricted to all permutations 𝜎 ∈ 𝑆𝑛 whose
cycle type is 𝜆 (where 𝑛 = |𝜆|, and where we still require the number of excedances to be 𝑗). The
method at hand allows computing these functions by passing 𝜆 as the n parameter.

Analogously we can define a quasisymmetric function 𝑄𝑛,𝑗,𝑘 for any nonnegative integers 𝑛, 𝑗 and 𝑘
by restricting the sum to all permutations 𝜎 ∈ 𝑆𝑛 that have exactly 𝑘 fixed points (and 𝑗 excedances).
This can be obtained by specifying the optional k argument in this method.

All three versions of Eulerian quasisymmetric functions (𝑄𝑛,𝑗 ,𝑄𝜆,𝑗 and𝑄𝑛,𝑗,𝑘) are actually symmet-
ric functions. See Eulerian().

INPUT:
• n – the nonnegative integer 𝑛 or a partition
• j – the number of excedances
• k – (optional) if specified, determines the number of fixed points of the permutations which are

being summed over
EXAMPLES:

sage: F = QuasiSymmetricFunctions(QQ).F()
sage: F.Eulerian(3, 1)
F[1, 2] + F[2, 1] + 2*F[3]
sage: F.Eulerian(4, 2)
F[1, 2, 1] + 2*F[1, 3] + 3*F[2, 2] + 2*F[3, 1] + 3*F[4]
sage: F.Eulerian(5, 2)
F[1, 1, 2, 1] + F[1, 1, 3] + F[1, 2, 1, 1] + 7*F[1, 2, 2] + 6*F[1, 3, 1] +␣
→˓6*F[1, 4] + 2*F[2, 1, 2] + 7*F[2, 2, 1] + 11*F[2, 3] + F[3, 1, 1] +␣
→˓11*F[3, 2] + 6*F[4, 1] + 6*F[5]
sage: F.Eulerian(4, 0)
F[4]
sage: F.Eulerian(4, 3)
F[4]
sage: F.Eulerian(4, 1, 2)
F[1, 2, 1] + F[1, 3] + 2*F[2, 2] + F[3, 1] + F[4]
sage: F.Eulerian(Partition([2, 2, 1]), 2)
F[1, 1, 2, 1] + F[1, 2, 1, 1] + 2*F[1, 2, 2] + F[1, 3, 1]
+ F[1, 4] + F[2, 1, 2] + 2*F[2, 2, 1] + 2*F[2, 3]
+ 2*F[3, 2] + F[4, 1] + F[5]
sage: F.Eulerian(0, 0)
F[]
sage: F.Eulerian(0, 1)
0
sage: F.Eulerian(1, 0)
F[1]
sage: F.Eulerian(1, 1)
0

antipode_on_basis(compo)
Return the antipode to a Fundamental quasi-symmetric basis element.

5.1. Comprehensive Module List 1451

Combinatorics, Release 9.7

INPUT:
• compo – composition

OUTPUT:
• The result of the antipode applied to the quasi-symmetric Fundamental basis element indexed by
compo.

EXAMPLES:

sage: F = QuasiSymmetricFunctions(QQ).F()
sage: F.antipode_on_basis(Composition([2,1]))
-F[2, 1]

coproduct_on_basis(compo)
Return the coproduct to a Fundamental quasi-symmetric basis element.

Combinatorial rule: quasi-deconcatenation.

INPUT:
• compo – composition

OUTPUT:
• The application of the coproduct to the Fundamental quasi-symmetric function indexed by the

composition compo.
EXAMPLES:

sage: F = QuasiSymmetricFunctions(QQ).Fundamental()
sage: F[4].coproduct()
F[] # F[4] + F[1] # F[3] + F[2] # F[2] + F[3] # F[1] + F[4] # F[]
sage: F[2,1,3].coproduct()
F[] # F[2, 1, 3] + F[1] # F[1, 1, 3] + F[2] # F[1, 3] + F[2, 1] # F[3] +␣
→˓F[2, 1, 1] # F[2] + F[2, 1, 2] # F[1] + F[2, 1, 3] # F[]

dual()
Return the dual basis to the Fundamental basis. This is the ribbon basis of the non-commutative
symmetric functions.

OUTPUT:
• The ribbon basis of the non-commutative symmetric functions.

EXAMPLES:

sage: F = QuasiSymmetricFunctions(QQ).F()
sage: F.dual()
Non-Commutative Symmetric Functions over the Rational Field in the Ribbon␣
→˓basis

class HazewinkelLambda(QSym)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hazewinkel lambda basis of the quasi-symmetric functions.

This basis goes back to [Haz2004], albeit it is indexed in a different way here. It is a multiplicative basis in
a weak sense of this word (the product of any two basis elements is a basis element, but of course not the
one obtained by concatenating the indexing compositions).

In [Haz2004], Hazewinkel showed that the k-algebra QSym is a polynomial algebra. (The proof is correct
but rests upon an unproven claim that the lexicographically largest term of the 𝑛-th shuffle power of a
Lyndon word is the 𝑛-fold concatenation of this Lyndon word with itself, occurring 𝑛! times in that shuffle
power. But this can be deduced from Section 2 of [Rad1979]. See also Chapter 6 of [GriRei18], specifically
Theorem 6.5.13, for a complete proof.) More precisely, he showed that QSym is generated, as a free

1452 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

commutative k-algebra, by the elements 𝜆𝑛(𝑀𝐼), where 𝑛 ranges over the positive integers, and 𝐼 ranges
over all compositions which are Lyndon words and whose entries have gcd 1. Here, 𝜆𝑛 denotes the 𝑛-th
lambda operation as explained in lambda_of_monomial().

Thus, products of these generators form a k-module basis of QSym. We index this basis by compositions
here. More precisely, we define the Hazewinkel lambda basis (HWL𝐼)𝐼 (with 𝐼 ranging over all composi-
tions) as follows:

Let 𝐼 be a composition. Let 𝐼 = 𝐼1𝐼2 . . . 𝐼𝑘 be the Chen-Fox-Lyndon factorization of 𝐼 (see
lyndon_factorization()). For every 𝑗 ∈ {1, 2, . . . , 𝑘}, let 𝑔𝑗 be the gcd of the entries of the Lyn-
don word 𝐼𝑗 , and let 𝐽𝑗 be the result of dividing the entries of 𝐼𝑗 by this gcd. Then, HWL𝐼 is defined to be∏︀𝑘
𝑗=1 𝜆

𝑔𝑗 (𝑀𝐽𝑗).

Todo: The conversion from the M basis to the HWL basis is currently implemented in the naive way
(inverting the base-change matrix in the other direction). This matrix is not triangular (not even after any
permutations of the bases), and there could very well be a faster method (the one given by Hazewinkel?).

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(ZZ)
sage: HWL = QSym.HazewinkelLambda()
sage: M = QSym.M()
sage: M(HWL([2]))
M[1, 1]
sage: M(HWL([1,1]))
2*M[1, 1] + M[2]
sage: M(HWL([1,2]))
M[1, 2]
sage: M(HWL([2,1]))
3*M[1, 1, 1] + M[1, 2] + M[2, 1]
sage: M(HWL(Composition([])))
M[]
sage: HWL(M([1,1]))
HWL[2]
sage: HWL(M(Composition([2])))
HWL[1, 1] - 2*HWL[2]
sage: HWL(M([1]))
HWL[1]

product_on_basis(I, J)
The product on Hazewinkel Lambda basis elements.

The product of the basis elements indexed by two compositions 𝐼 and 𝐽 is the basis element obtained
by concatenating the Lyndon factorizations of the words 𝐼 and 𝐽 , then reordering the Lyndon factors
in nonincreasing order, and finally concatenating them in this order (giving a new composition).

INPUT:
• I, J – compositions

OUTPUT:
• The product of the Hazewinkel Lambda quasi-symmetric functions indexed by I and J, expressed

in the Hazewinkel Lambda basis.
EXAMPLES:

5.1. Comprehensive Module List 1453

Combinatorics, Release 9.7

sage: HWL = QuasiSymmetricFunctions(QQ).HazewinkelLambda()
sage: c1 = Composition([1, 2, 1])
sage: c2 = Composition([2, 1, 3, 2])
sage: HWL.product_on_basis(c1, c2)
HWL[2, 1, 3, 2, 1, 2, 1]
sage: HWL.product_on_basis(c1, Composition([]))
HWL[1, 2, 1]
sage: HWL.product_on_basis(Composition([]), Composition([]))
HWL[]

M
alias of QuasiSymmetricFunctions.Monomial

class Monomial(QSym)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of quasi-symmetric function in the Monomial basis.

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: M = QSym.M()
sage: F = QSym.F()
sage: M(F[2,2])
M[1, 1, 1, 1] + M[1, 1, 2] + M[2, 1, 1] + M[2, 2]
sage: m = SymmetricFunctions(QQ).m()
sage: M(m[3,1,1])
M[1, 1, 3] + M[1, 3, 1] + M[3, 1, 1]
sage: (1+M[1])^3
M[] + 3*M[1] + 6*M[1, 1] + 6*M[1, 1, 1] + 3*M[1, 2] + 3*M[2] + 3*M[2, 1] + M[3]
sage: M[1,2,1].coproduct()
M[] # M[1, 2, 1] + M[1] # M[2, 1] + M[1, 2] # M[1] + M[1, 2, 1] # M[]

The following is an alias for this basis:

sage: QSym.Monomial()
Quasisymmetric functions over the Rational Field in the Monomial basis

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Element methods of the Monomial basis of QuasiSymmetricFunctions.

expand(n, alphabet='x')
Expand the quasi-symmetric function written in the monomial basis in 𝑛 variables.

INPUT:
• n – an integer
• alphabet – (default: 'x') a string
OUTPUT:
• The quasi-symmetric function self expressed in the n variables described by alphabet.

Todo: accept an alphabet as input

EXAMPLES:

1454 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

sage: M = QuasiSymmetricFunctions(QQ).Monomial()
sage: M[4,2].expand(3)
x0^4*x1^2 + x0^4*x2^2 + x1^4*x2^2

One can use a different set of variables by using the optional argument alphabet:

sage: M = QuasiSymmetricFunctions(QQ).Monomial()
sage: M[2,1,1].expand(4,alphabet='y')
y0^2*y1*y2 + y0^2*y1*y3 + y0^2*y2*y3 + y1^2*y2*y3

is_symmetric()
Determine if a quasi-symmetric function, written in the Monomial basis, is symmetric.

This is being tested by looking at the expansion in the Monomial basis and checking if the coeffi-
cients are the same if the indexing compositions are permutations of each other.

OUTPUT:
• True if self is an element of the symmetric functions and False otherwise.
EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: M = QSym.Monomial()
sage: (M[3,2] + M[2,3] + M[4,1]).is_symmetric()
False
sage: (M[3,2] + M[2,3]).is_symmetric()
True
sage: (M[1,2,1] + M[1,1,2]).is_symmetric()
False
sage: (M[1,2,1] + M[1,1,2] + M[2,1,1]).is_symmetric()
True

psi_involution()
Return the image of the quasisymmetric function self under the involution 𝜓.

The involution 𝜓 is defined as the linear map 𝑄𝑆𝑦𝑚 → 𝑄𝑆𝑦𝑚 which, for every composition
𝐼 , sends the fundamental quasisymmetric function 𝐹𝐼 to 𝐹𝐼𝑐 , where 𝐼𝑐 denotes the complement
of the composition 𝐼 . The map 𝜓 is an involution and a graded Hopf algebra automorphism of
𝑄𝑆𝑦𝑚. Its restriction to the ring of symmetric functions coincides with the omega automorphism
of the latter ring.

The involution 𝜓 of 𝑄𝑆𝑦𝑚 is adjoint to the involution 𝜓 of 𝑁𝐶𝑆𝐹 by the standard adjunction
between 𝑁𝐶𝑆𝐹 and 𝑄𝑆𝑦𝑚.

The involution 𝜓 has been denoted by 𝜓 in [LMvW13], section 3.6.

See also:

psi involution on QSym , psi involution on NCSF, star involution on QSym .

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(ZZ)
sage: M = QSym.M()
sage: M[3,2].psi_involution()
-M[3, 2] - M[5]
sage: M[3,1].psi_involution()
M[3, 1] + M[4]

(continues on next page)

5.1. Comprehensive Module List 1455

Combinatorics, Release 9.7

(continued from previous page)

sage: M[3,1,1].psi_involution()
M[3, 1, 1] + M[3, 2] + M[4, 1] + M[5]
sage: M[1,1,1].psi_involution()
M[1, 1, 1] + M[1, 2] + M[2, 1] + M[3]
sage: M[[]].psi_involution()
M[]
sage: M(0).psi_involution()
0
sage: (2*M[[]] - M[3,1] + 4*M[2]).psi_involution()
2*M[] - 4*M[2] - M[3, 1] - M[4]

This particular implementation is tailored to the monomial basis. It is semantically equivalent to
the generic implementation it overshadows:

sage: F = QSym.F()
sage: all(F(M[I].psi_involution()) == F(M[I]).psi_involution()
....: for I in Compositions(3))
True

sage: F = QSym.F()
sage: all(F(M[I].psi_involution()) == F(M[I]).psi_involution()
....: for I in Compositions(4))
True

to_symmetric_function()
Take a quasi-symmetric function, expressed in the monomial basis, and return its symmetric real-
ization, when possible, expressed in the monomial basis of symmetric functions.

OUTPUT:
• If self is a symmetric function, then the expansion in the monomial basis of the symmetric

functions is returned. Otherwise an error is raised.
EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: M = QSym.Monomial()
sage: (M[3,2] + M[2,3] + M[4,1]).to_symmetric_function()
Traceback (most recent call last):
...
ValueError: M[2, 3] + M[3, 2] + M[4, 1] is not a symmetric function
sage: (M[3,2] + M[2,3] + 2*M[4,1] + 2*M[1,4]).to_symmetric_function()
m[3, 2] + 2*m[4, 1]
sage: m = SymmetricFunctions(QQ).m()
sage: M(m[3,1,1]).to_symmetric_function()
m[3, 1, 1]
sage: (M(m[2,1])*M(m[2,1])).to_symmetric_function()-m[2,1]*m[2,1]
0

antipode_on_basis(compo)
Return the result of the antipode applied to a quasi-symmetric Monomial basis element.

INPUT:
• compo – composition

OUTPUT:
• The result of the antipode applied to the composition compo, expressed in the Monomial basis.

1456 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: M = QuasiSymmetricFunctions(QQ).M()
sage: M.antipode_on_basis(Composition([2,1]))
M[1, 2] + M[3]
sage: M.antipode_on_basis(Composition([]))
M[]

coproduct_on_basis(compo)
Return the coproduct of a Monomial basis element.

Combinatorial rule: deconcatenation.

INPUT:
• compo – composition

OUTPUT:
• The coproduct applied to the Monomial quasi-symmetric function indexed by compo, expressed

in the Monomial basis.
EXAMPLES:

sage: M = QuasiSymmetricFunctions(QQ).Monomial()
sage: M[4,2,3].coproduct()
M[] # M[4, 2, 3] + M[4] # M[2, 3] + M[4, 2] # M[3] + M[4, 2, 3] # M[]
sage: M.coproduct_on_basis(Composition([]))
M[] # M[]

dual()
Return the dual basis to the Monomial basis. This is the complete basis of the non-commutative
symmetric functions.

OUTPUT:
• The complete basis of the non-commutative symmetric functions.

EXAMPLES:

sage: M = QuasiSymmetricFunctions(QQ).M()
sage: M.dual()
Non-Commutative Symmetric Functions over the Rational Field in the Complete␣
→˓basis

lambda_of_monomial(I, n)
Return the image of the monomial quasi-symmetric function𝑀𝐼 under the lambda-map 𝜆𝑛, expanded
in the monomial basis.

The ring of quasi-symmetric functions over the integers, QSymZ (and more generally, the ring of
quasi-symmetric functions over any binomial ring) becomes a 𝜆-ring (with the 𝜆-structure inherited
from the ring of formal power series, so that 𝜆𝑖(𝑥𝑗) is 𝑥𝑗 if 𝑖 = 1 and 0 if 𝑖 > 1).

The Adams operations of this 𝜆-ring are the Frobenius endomorphisms f𝑛 (see frobenius() for their
definition). Using these endomorphisms, the 𝜆-operations can be explicitly computed via the formula

exp

(︃
−
∞∑︁
𝑛=1

1

𝑛
f𝑛(𝑥)𝑡𝑛

)︃
=

∞∑︁
𝑗=0

(−1)𝑗𝜆𝑗(𝑥)𝑡𝑗

in the ring of formal power series in a variable 𝑡 over the ring of quasi-symmetric functions. In partic-
ular, every composition 𝐼 = (𝐼1, 𝐼2, · · · , 𝐼ℓ) satisfies

exp

(︃
−
∞∑︁
𝑛=1

1

𝑛
𝑀(𝑛𝐼1,𝑛𝐼2,··· ,𝑛𝐼ℓ)𝑡

𝑛

)︃
=

∞∑︁
𝑗=0

(−1)𝑗𝜆𝑗(𝑀𝐼)𝑡
𝑗

5.1. Comprehensive Module List 1457

Combinatorics, Release 9.7

(corrected version of Remark 2.4 in [Haz2004]).

The quasi-symmetric functions 𝜆𝑖(𝑀𝐼) with 𝑛 ranging over the positive integers and 𝐼 ranging over
the reduced Lyndon compositions (i. e., compositions which are Lyndon words and have the gcd of
their entries equal to 1) form a set of free polynomial generators for QSym. See [GriRei18], Chapter
6, for the proof, and [Haz2004] for a major part of it.

INPUT:
• I – composition
• n – nonnegative integer

OUTPUT:

The quasi-symmetric function 𝜆𝑛(𝑀𝐼), expanded in the monomial basis over the ground ring of self.

EXAMPLES:

sage: M = QuasiSymmetricFunctions(CyclotomicField()).Monomial()
sage: M.lambda_of_monomial([1, 2], 2)
2*M[1, 1, 2, 2] + M[1, 1, 4] + M[1, 2, 1, 2] + M[1, 3, 2] + M[2, 2, 2]
sage: M.lambda_of_monomial([1, 1], 2)
3*M[1, 1, 1, 1] + M[1, 1, 2] + M[1, 2, 1] + M[2, 1, 1]
sage: M = QuasiSymmetricFunctions(Integers(19)).Monomial()
sage: M.lambda_of_monomial([1, 2], 3)
6*M[1, 1, 1, 2, 2, 2] + 3*M[1, 1, 1, 2, 4] + 3*M[1, 1, 1, 4, 2]
+ M[1, 1, 1, 6] + 4*M[1, 1, 2, 1, 2, 2] + 2*M[1, 1, 2, 1, 4]
+ 2*M[1, 1, 2, 2, 1, 2] + 2*M[1, 1, 2, 3, 2] + 4*M[1, 1, 3, 2, 2]
+ 2*M[1, 1, 3, 4] + M[1, 1, 4, 1, 2] + M[1, 1, 5, 2]
+ 2*M[1, 2, 1, 1, 2, 2] + M[1, 2, 1, 1, 4] + M[1, 2, 1, 2, 1, 2]
+ M[1, 2, 1, 3, 2] + 4*M[1, 2, 2, 2, 2] + M[1, 2, 2, 4] + M[1, 2, 4, 2]
+ 2*M[1, 3, 1, 2, 2] + M[1, 3, 1, 4] + M[1, 3, 2, 1, 2] + M[1, 3, 3, 2]
+ M[1, 4, 2, 2] + 3*M[2, 1, 2, 2, 2] + M[2, 1, 2, 4] + M[2, 1, 4, 2]
+ 2*M[2, 2, 1, 2, 2] + M[2, 2, 1, 4] + M[2, 2, 2, 1, 2] + M[2, 2, 3, 2]
+ 2*M[2, 3, 2, 2] + M[2, 3, 4] + M[3, 2, 2, 2]

The map 𝜆0 sends everything to 1:

sage: M = QuasiSymmetricFunctions(ZZ).Monomial()
sage: all(M.lambda_of_monomial(I, 0) == M.one()
....: for I in Compositions(3))
True

The map 𝜆1 is the identity map:

sage: M = QuasiSymmetricFunctions(QQ).Monomial()
sage: all(M.lambda_of_monomial(I, 1) == M(I)
....: for I in Compositions(3))
True
sage: M = QuasiSymmetricFunctions(Integers(5)).Monomial()
sage: all(M.lambda_of_monomial(I, 1) == M(I)
....: for I in Compositions(3))
True
sage: M = QuasiSymmetricFunctions(ZZ).Monomial()
sage: all(M.lambda_of_monomial(I, 1) == M(I)
....: for I in Compositions(3))
True

1458 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

product_on_basis(I, J)
The product on Monomial basis elements.

The product of the basis elements indexed by two compositions 𝐼 and 𝐽 is the sum of the basis elements
indexed by compositions in the stuffle product (also called the overlapping shuffle product) of 𝐼 and 𝐽 .

INPUT:
• I, J – compositions

OUTPUT:
• The product of the Monomial quasi-symmetric functions indexed by I and J, expressed in the

Monomial basis.
EXAMPLES:

sage: M = QuasiSymmetricFunctions(QQ).Monomial()
sage: c1 = Composition([2])
sage: c2 = Composition([1,3])
sage: M.product_on_basis(c1, c2)
M[1, 2, 3] + M[1, 3, 2] + M[1, 5] + M[2, 1, 3] + M[3, 3]
sage: M.product_on_basis(c1, Composition([]))
M[2]

QS
alias of QuasiSymmetricFunctions.Quasisymmetric_Schur

class Quasisymmetric_Schur(QSym)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of quasi-symmetric function in the Quasisymmetric Schur basis.

The basis of Quasisymmetric Schur functions is defined in [QSCHUR] and in Definition 5.1.1 of
[LMvW13]. Don’t mistake them for the completely unrelated quasi-Schur functions of [NCSF1]!

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: QS = QSym.QS()
sage: F = QSym.F()
sage: M = QSym.M()
sage: F(QS[1,2])
F[1, 2]
sage: M(QS[1,2])
M[1, 1, 1] + M[1, 2]
sage: s = SymmetricFunctions(QQ).s()
sage: QS(s[2,1,1])
QS[1, 1, 2] + QS[1, 2, 1] + QS[2, 1, 1]

dual()
The dual basis to the Quasisymmetric Schur basis.

The dual basis to the Quasisymmetric Schur basis is implemented as dual.

OUTPUT:
• the dual Quasisymmetric Schur basis of the non-commutative symmetric functions

EXAMPLES:

sage: QS = QuasiSymmetricFunctions(QQ).Quasisymmetric_Schur()
sage: QS.dual()

(continues on next page)

5.1. Comprehensive Module List 1459

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

(continued from previous page)

Non-Commutative Symmetric Functions over the Rational Field
in the dual Quasisymmetric-Schur basis

YQS
alias of QuasiSymmetricFunctions.Young_Quasisymmetric_Schur

class Young_Quasisymmetric_Schur(QSym)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of quasi-symmetric functions in the Young Quasisymmetric Schur basis.

The basis of Young Quasisymmetric Schur functions is from Definition 5.2.1 of [LMvW13].

This basis is related to the Quasisymmetric Schur basis QS by QS(alpha.reversed()) ==
YQS(alpha).star_involution() .

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: YQS = QSym.YQS()
sage: F = QSym.F()
sage: QS = QSym.QS()
sage: F(YQS[1,2])
F[1, 2]
sage: all(QS(al.reversed())==YQS(al).star_involution() for al in␣
→˓Compositions(5))
True
sage: s = SymmetricFunctions(QQ).s()
sage: YQS(s[2,1,1])
YQS[1, 1, 2] + YQS[1, 2, 1] + YQS[2, 1, 1]

a_realization()
Return the realization of the Monomial basis of the ring of quasi-symmetric functions.

OUTPUT:

• The Monomial basis of quasi-symmetric functions.

EXAMPLES:

sage: QuasiSymmetricFunctions(QQ).a_realization()
Quasisymmetric functions over the Rational Field in the Monomial basis

dI
alias of QuasiSymmetricFunctions.dualImmaculate

dual()
Return the dual Hopf algebra of the quasi-symmetric functions, which is the non-commutative symmetric
functions.

OUTPUT:

• The non-commutative symmetric functions.

EXAMPLES:

1460 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: QSym.dual()
Non-Commutative Symmetric Functions over the Rational Field

class dualImmaculate(QSym)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The dual immaculate basis of the quasi-symmetric functions.

This basis first appears in [BBSSZ2012].

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: dI = QSym.dI()
sage: dI([1,3,2])*dI([1]) # long time (6s on sage.math, 2013)
dI[1, 1, 3, 2] + dI[2, 3, 2]
sage: dI([1,3])*dI([1,1])
dI[1, 1, 1, 3] + dI[1, 1, 4] + dI[1, 2, 3] - dI[1, 3, 2] - dI[1, 4, 1] - dI[1,␣
→˓5] + dI[2, 3, 1] + dI[2, 4]
sage: dI([3,1])*dI([2,1]) # long time (7s on sage.math, 2013)
dI[1, 1, 5] - dI[1, 4, 1, 1] - dI[1, 4, 2] - 2*dI[1, 5, 1] - dI[1, 6] - dI[2, 4,
→˓ 1] - dI[2, 5] - dI[3, 1, 3] + dI[3, 2, 1, 1] + dI[3, 2, 2] + dI[3, 3, 1] +␣
→˓dI[4, 1, 1, 1] + 2*dI[4, 2, 1] + dI[4, 3] + dI[5, 1, 1] + dI[5, 2]
sage: F = QSym.F()
sage: dI(F[1,3,1])
-dI[1, 1, 1, 2] + dI[1, 1, 2, 1] - dI[1, 2, 2] + dI[1, 3, 1]
sage: F(dI(F([2,1,3])))
F[2, 1, 3]

from_polynomial(f, check=True)
Return the quasi-symmetric function in the Monomial basis corresponding to the quasi-symmetric polyno-
mial f.

INPUT:

• f – a polynomial in finitely many variables over the same base ring as self. It is assumed that this
polynomial is quasi-symmetric.

• check – boolean (default: True), checks whether the polynomial is indeed quasi-symmetric.

OUTPUT:

• quasi-symmetric function in the Monomial basis

EXAMPLES:

sage: P = PolynomialRing(QQ, 'x', 3)
sage: x = P.gens()
sage: f = x[0] + x[1] + x[2]
sage: QSym = QuasiSymmetricFunctions(QQ)
sage: QSym.from_polynomial(f)
M[1]

Beware of setting check=False:

5.1. Comprehensive Module List 1461

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

sage: f = x[0] + 2*x[1] + x[2]
sage: QSym.from_polynomial(f, check=True)
Traceback (most recent call last):
...
ValueError: x0 + 2*x1 + x2 is not a quasi-symmetric polynomial
sage: QSym.from_polynomial(f, check=False)
M[1]

To expand the quasi-symmetric function in a basis other than the Monomial basis, the following shorthands
are provided:

sage: M = QSym.Monomial()
sage: f = x[0]**2+x[1]**2+x[2]**2
sage: g = M.from_polynomial(f); g
M[2]
sage: F = QSym.Fundamental()
sage: F(g)
-F[1, 1] + F[2]
sage: F.from_polynomial(f)
-F[1, 1] + F[2]

class phi(QSym)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of quasi-symmetric functions in the 𝜑 basis.

The 𝜑 basis is defined as a rescaled Hopf dual of the Φ basis of the non-commutative symmetric functions
(see Section 3.1 of [BDHMN2017]), where the pairing is

(𝜑𝐼 ,Φ𝐽) = 𝑧𝐼𝛿𝐼,𝐽 ,

where 𝑧𝐼 = 1𝑚1𝑚1!2𝑚2𝑚2! · · · with 𝑚𝑖 being the multiplicity of 𝑖 in the composition 𝐼 . Therefore, we
call these the quasi-symmetric power sums of the second kind.

Using the duality, we can directly define the 𝜑 basis by

𝜑𝐼 =
∑︁
𝐽≻𝐼

𝑧𝐼/𝑠𝑝𝐼,𝐽𝑀𝐽 ,

where 𝑠𝑝𝐼,𝐽 is as defined in [NCSF].

The 𝜑-basis is well-defined only when the base ring is a Q-algebra.

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: phi = QSym.phi(); phi
Quasisymmetric functions over the Rational Field in the phi basis
sage: phi.an_element()
2*phi[] + 2*phi[1] + 3*phi[1, 1]
sage: p = SymmetricFunctions(QQ).p()
sage: phi(p[2,2,1])
phi[1, 2, 2] + phi[2, 1, 2] + phi[2, 2, 1]
sage: all(sum(phi(list(al)) for al in Permutations(la))==phi(p(la)) for la in␣
→˓Partitions(6))
True

(continues on next page)

1462 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

(continued from previous page)

sage: p = SymmetricFunctions(QQ).p()
sage: phi(p[3,2,2])
phi[2, 2, 3] + phi[2, 3, 2] + phi[3, 2, 2]

Checking the equivalent definition of 𝜑𝑛:

sage: def test_phi(n):
....: phi = QuasiSymmetricFunctions(QQ).phi()
....: Phi = NonCommutativeSymmetricFunctions(QQ).Phi()
....: M = matrix([[phi[I].duality_pairing(Phi[J])
....: for I in Compositions(n)]
....: for J in Compositions(n)])
....: def z(J): return J.to_partition().centralizer_size()
....: return M == matrix.diagonal([z(I) for I in Compositions(n)])
sage: all(test_phi(k) for k in range(1,5))
True

class psi(QSym)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Hopf algebra of quasi-symmetric functions in the 𝜓 basis.

The 𝜓 basis is defined as a rescaled Hopf dual of the Ψ basis of the non-commutative symmetric functions
(see Section 3.1 of [BDHMN2017]), where the pairing is

(𝜓𝐼 ,Ψ𝐽) = 𝑧𝐼𝛿𝐼,𝐽 ,

where 𝑧𝐼 = 1𝑚1𝑚1!2𝑚2𝑚2! · · · with 𝑚𝑖 being the multiplicity of 𝑖 in the composition 𝐼 . Therefore, we
call these the quasi-symmetric power sums of the first kind.

Using the duality, we can directly define the 𝜓 basis by

𝜓𝐼 =
∑︁
𝐽≻𝐼

𝑧𝐼/𝜋𝐼,𝐽𝑀𝐽 ,

where 𝜋𝐼,𝐽 is as defined in [NCSF].

The 𝜓-basis is well-defined only when the base ring is a Q-algebra.

EXAMPLES:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: psi = QSym.psi(); psi
Quasisymmetric functions over the Rational Field in the psi basis
sage: psi.an_element()
2*psi[] + 2*psi[1] + 3*psi[1, 1]
sage: p = SymmetricFunctions(QQ).p()
sage: psi(p[2,2,1])
psi[1, 2, 2] + psi[2, 1, 2] + psi[2, 2, 1]
sage: all(sum(psi(list(al)) for al in Permutations(la))==psi(p(la)) for la in␣
→˓Partitions(6))
True
sage: p = SymmetricFunctions(QQ).p()
sage: psi(p[3,2,2])
psi[2, 2, 3] + psi[2, 3, 2] + psi[3, 2, 2]

5.1. Comprehensive Module List 1463

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

Checking the equivalent definition of 𝜓𝑛:

sage: def test_psi(n):
....: psi = QuasiSymmetricFunctions(QQ).psi()
....: Psi = NonCommutativeSymmetricFunctions(QQ).Psi()
....: M = matrix([[psi[I].duality_pairing(Psi[J])
....: for I in Compositions(n)]
....: for J in Compositions(n)])
....: def z(J): return J.to_partition().centralizer_size()
....: return M == matrix.diagonal([z(I) for I in Compositions(n)])
sage: all(test_psi(k) for k in range(1,5))
True

5.1.143 Introduction to Quasisymmetric Functions

In this document we briefly explain the quasisymmetric function bases and related functionality in Sage. We assume
the reader is familiar with the package SymmetricFunctions.

Quasisymmetric functions, denoted 𝑄𝑆𝑦𝑚, form a subring of the power series ring in countably many variables.
𝑄𝑆𝑦𝑚 contains the symmetric functions. These functions first arose in the theory of 𝑃 -partitions. The initial ideas in
this field are attributed to MacMahon, Knuth, Kreweras, Glânffrwd Thomas, Stanley. In 1984, Gessel formalized the
study of quasisymmetric functions and introduced the basis of fundamental quasisymmetric functions [Ges]. In 1995,
Gelfand, Krob, Lascoux, Leclerc, Retakh, and Thibon showed that the ring of quasisymmetric functions is Hopf dual
to the noncommutative symmetric functions [NCSF]. Many results have built on these.

One advantage of working in𝑄𝑆𝑦𝑚 is that many interesting families of symmetric functions have explicit expansions in
fundamental quasisymmetric functions such as Schur functions [Ges], Macdonald polynomials [HHL05], and plethysm
of Schur functions [LW12].

For more background see Wikipedia article Quasisymmetric_function.

To begin, initialize the ring. Below we chose to use the rational numbers Q. Other options include the integers Z and
C:

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: QSym
Quasisymmetric functions over the Rational Field

sage: QSym = QuasiSymmetricFunctions(CC); QSym
Quasisymmetric functions over the Complex Field with 53 bits of precision

sage: QSym = QuasiSymmetricFunctions(ZZ); QSym
Quasisymmetric functions over the Integer Ring

All bases of 𝑄𝑆𝑦𝑚 are indexed by compositions e.g. [3, 1, 1, 4]. The convention is to use capital letters for bases of
𝑄𝑆𝑦𝑚 and lowercase letters for bases of the symmetric functions 𝑆𝑦𝑚. Next set up names for the known bases by
running inject_shorthands(). As with symmetric functions, you do not need to run this command and you could
assign these bases other names.

sage: QSym = QuasiSymmetricFunctions(QQ)
sage: QSym.inject_shorthands()
Defining M as shorthand for Quasisymmetric functions over the Rational Field in the␣
→˓Monomial basis
Defining F as shorthand for Quasisymmetric functions over the Rational Field in the␣
→˓Fundamental basis

(continues on next page)

1464 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Quasisymmetric_function

Combinatorics, Release 9.7

(continued from previous page)

Defining E as shorthand for Quasisymmetric functions over the Rational Field in the␣
→˓Essential basis
Defining dI as shorthand for Quasisymmetric functions over the Rational Field in the␣
→˓dualImmaculate basis
Defining QS as shorthand for Quasisymmetric functions over the Rational Field in the␣
→˓Quasisymmetric Schur basis
Defining YQS as shorthand for Quasisymmetric functions over the Rational Field in the␣
→˓Young Quasisymmetric Schur basis
Defining phi as shorthand for Quasisymmetric functions over the Rational Field in the␣
→˓phi basis
Defining psi as shorthand for Quasisymmetric functions over the Rational Field in the␣
→˓psi basis

Now one can start constructing quasisymmetric functions.

Note: It is best to use variables other than M and F.

sage: x = M[2,1] + M[1,2]
sage: x
M[1, 2] + M[2, 1]

sage: y = 3*M[1,2] + M[3]^2; y
3*M[1, 2] + 2*M[3, 3] + M[6]

sage: F[3,1,3] + 7*F[2,1]
7*F[2, 1] + F[3, 1, 3]

sage: 3*F[2,1,2] + F[3]^2
F[1, 2, 2, 1] + F[1, 2, 3] + 2*F[1, 3, 2] + F[1, 4, 1] + F[1, 5] + 3*F[2, 1, 2]
+ 2*F[2, 2, 2] + 2*F[2, 3, 1] + 2*F[2, 4] + F[3, 2, 1] + 3*F[3, 3] + 2*F[4, 2] + F[5,␣
→˓1] + F[6]

To convert from one basis to another is easy:

sage: z = M[1,2,1]
sage: z
M[1, 2, 1]

sage: F(z)
-F[1, 1, 1, 1] + F[1, 2, 1]

sage: M(F(z))
M[1, 2, 1]

To expand in variables, one can specify a finite size alphabet 𝑥1, 𝑥2, . . . , 𝑥𝑚:

sage: y = M[1,2,1]
sage: y.expand(4)
x0*x1^2*x2 + x0*x1^2*x3 + x0*x2^2*x3 + x1*x2^2*x3

The usual methods on free modules are available such as coefficients, degrees, and the support:

5.1. Comprehensive Module List 1465

Combinatorics, Release 9.7

sage: z = 3*M[1,2]+M[3]^2; z
3*M[1, 2] + 2*M[3, 3] + M[6]

sage: z.coefficient([1,2])
3

sage: z.degree()
6

sage: sorted(z.coefficients())
[1, 2, 3]

sage: sorted(z.monomials(), key=lambda x: x.support())
[M[1, 2], M[3, 3], M[6]]

sage: z.monomial_coefficients()
{[1, 2]: 3, [3, 3]: 2, [6]: 1}

As with the symmetric functions package, the quasisymmetric function 1 has several instantiations. However, the most
obvious way to write 1 leads to an error (this is due to the semantics of python):

sage: M[[]]
M[]
sage: M.one()
M[]
sage: M(1)
M[]
sage: M[[]] == 1
True
sage: M[]
Traceback (most recent call last):
...
SyntaxError: invalid ...

Working with symmetric functions

The quasisymmetric functions are a ring which contains the symmetric functions as a subring. The Monomial qua-
sisymmetric functions are related to the monomial symmetric functions by𝑚𝜆 =

∑︀
sort(𝑐)=𝜆𝑀𝑐, where sort(𝑐) means

the partition obtained by sorting the composition 𝑐:

sage: SymmetricFunctions(QQ).inject_shorthands()
Defining e as shorthand for Symmetric Functions over Rational Field in the elementary␣
→˓basis
Defining f as shorthand for Symmetric Functions over Rational Field in the forgotten␣
→˓basis
Defining h as shorthand for Symmetric Functions over Rational Field in the homogeneous␣
→˓basis
Defining m as shorthand for Symmetric Functions over Rational Field in the monomial basis
Defining p as shorthand for Symmetric Functions over Rational Field in the powersum basis
Defining s as shorthand for Symmetric Functions over Rational Field in the Schur basis

sage: m[2,1]
(continues on next page)

1466 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

m[2, 1]
sage: M(m[2,1])
M[1, 2] + M[2, 1]
sage: M(s[2,1])
2*M[1, 1, 1] + M[1, 2] + M[2, 1]

There are methods to test if an expression 𝑓 in the quasisymmetric functions is a symmetric function:

sage: f = M[1,1,2] + M[1,2,1]
sage: f.is_symmetric()
False
sage: f = M[3,1] + M[1,3]
sage: f.is_symmetric()
True

If 𝑓 is symmetric, there are methods to convert 𝑓 to an expression in the symmetric functions:

sage: f.to_symmetric_function()
m[3, 1]

The expansion of the Schur function in terms of the Fundamental quasisymmetric functions is due to [Ges]. There is
one term in the expansion for each standard tableau of shape equal to the partition indexing the Schur function.

sage: f = F[3,2] + F[2,2,1] + F[2,3] + F[1,3,1] + F[1,2,2]
sage: f.is_symmetric()
True
sage: f.to_symmetric_function()
5*m[1, 1, 1, 1, 1] + 3*m[2, 1, 1, 1] + 2*m[2, 2, 1] + m[3, 1, 1] + m[3, 2]
sage: s(f.to_symmetric_function())
s[3, 2]

It is also possible to convert any symmetric function to the quasisymmetric function expansion in any known basis.
The converse is not true:

sage: M(m[3,1,1])
M[1, 1, 3] + M[1, 3, 1] + M[3, 1, 1]
sage: F(s[2,2,1])
F[1, 1, 2, 1] + F[1, 2, 1, 1] + F[1, 2, 2] + F[2, 1, 2] + F[2, 2, 1]

sage: s(M[2,1])
Traceback (most recent call last):
...
TypeError: do not know how to make x (= M[2, 1]) an element of self

It is possible to experiment with the quasisymmetric function expansion of other bases, but it is important that the base
ring be the same for both algebras.

sage: R = QQ['t']
sage: Qp = SymmetricFunctions(R).hall_littlewood().Qp()
sage: QSymt = QuasiSymmetricFunctions(R)
sage: Ft = QSymt.F()
sage: Ft(Qp[2,2])
F[1, 2, 1] + t*F[1, 3] + (t+1)*F[2, 2] + t*F[3, 1] + t^2*F[4]

5.1. Comprehensive Module List 1467

Combinatorics, Release 9.7

sage: K = QQ['q','t'].fraction_field()
sage: Ht = SymmetricFunctions(K).macdonald().Ht()
sage: Fqt = QuasiSymmetricFunctions(Ht.base_ring()).F()
sage: Fqt(Ht[2,1])
q*t*F[1, 1, 1] + (q+t)*F[1, 2] + (q+t)*F[2, 1] + F[3]

The following will raise an error because the base ring of F is not equal to the base ring of Ht:

sage: F(Ht[2,1])
Traceback (most recent call last):
...
TypeError: do not know how to make x (= McdHt[2, 1]) an element of self (=Quasisymmetric␣
→˓functions over the Rational Field in the Fundamental basis)

QSym is a Hopf algebra

The product on𝑄𝑆𝑦𝑚 is commutative and is inherited from the product by the realization within the polynomial ring:

sage: M[3]*M[1,1] == M[1,1]*M[3]
True
sage: M[3]*M[1,1]
M[1, 1, 3] + M[1, 3, 1] + M[1, 4] + M[3, 1, 1] + M[4, 1]
sage: F[3]*F[1,1]
F[1, 1, 3] + F[1, 2, 2] + F[1, 3, 1] + F[1, 4] + F[2, 1, 2] + F[2, 2, 1] + F[2, 3] + F[3,
→˓ 1, 1] + F[3, 2] + F[4, 1]
sage: M[3]*F[2]
M[1, 1, 3] + M[1, 3, 1] + M[1, 4] + M[2, 3] + M[3, 1, 1] + M[3, 2] + M[4, 1] + M[5]
sage: F[2]*M[3]
F[1, 1, 1, 2] - F[1, 2, 2] + F[2, 1, 1, 1] - F[2, 1, 2] - F[2, 2, 1] + F[5]

There is a coproduct on this ring as well, which in the Monomial basis acts by cutting the composition into a left half
and a right half. The co-product is non-co-commutative:

sage: M[1,3,1].coproduct()
M[] # M[1, 3, 1] + M[1] # M[3, 1] + M[1, 3] # M[1] + M[1, 3, 1] # M[]
sage: F[1,3,1].coproduct()
F[] # F[1, 3, 1] + F[1] # F[3, 1] + F[1, 1] # F[2, 1] + F[1, 2] # F[1, 1] + F[1, 3] #␣
→˓F[1] + F[1, 3, 1] # F[]

The Duality Pairing with Non-Commutative Symmetric Functions

These two operations endow 𝑄𝑆𝑦𝑚 with the structure of a Hopf algebra. It is the dual Hopf algebra of the non-
commutative symmetric functions 𝑁𝐶𝑆𝐹 . Under this duality, the Monomial basis of 𝑄𝑆𝑦𝑚 is dual to the Complete
basis of 𝑁𝐶𝑆𝐹 , and the Fundamental basis of 𝑄𝑆𝑦𝑚 is dual to the Ribbon basis of 𝑁𝐶𝑆𝐹 (see [MR]):

sage: S = M.dual(); S
Non-Commutative Symmetric Functions over the Rational Field in the Complete basis
sage: M[1,3,1].duality_pairing(S[1,3,1])
1
sage: M.duality_pairing_matrix(S, degree=4)
[1 0 0 0 0 0 0 0]

(continues on next page)

1468 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]
sage: F.duality_pairing_matrix(S, degree=4)
[1 0 0 0 0 0 0 0]
[1 1 0 0 0 0 0 0]
[1 0 1 0 0 0 0 0]
[1 1 1 1 0 0 0 0]
[1 0 0 0 1 0 0 0]
[1 1 0 0 1 1 0 0]
[1 0 1 0 1 0 1 0]
[1 1 1 1 1 1 1 1]
sage: NCSF = M.realization_of().dual()
sage: R = NCSF.Ribbon()
sage: F.duality_pairing_matrix(R, degree=4)
[1 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]
sage: M.duality_pairing_matrix(R, degree=4)
[1 0 0 0 0 0 0 0]
[-1 1 0 0 0 0 0 0]
[-1 0 1 0 0 0 0 0]
[1 -1 -1 1 0 0 0 0]
[-1 0 0 0 1 0 0 0]
[1 -1 0 0 -1 1 0 0]
[1 0 -1 0 -1 0 1 0]
[-1 1 1 -1 1 -1 -1 1]

Let 𝐻 and 𝐺 be elements of 𝑄𝑆𝑦𝑚 and ℎ an element of 𝑁𝐶𝑆𝐹 . Then if we represent the duality pairing with the
mathematical notation [·, ·], we have:

[𝐻 ·𝐺, ℎ] = [𝐻 ⊗𝐺,∆(ℎ)].

For example, the coefficient of M[2,1,4,1] in M[1,3]*M[2,1,1] may be computed with the duality pairing:

sage: I, J = Composition([1,3]), Composition([2,1,1])
sage: (M[I]*M[J]).duality_pairing(S[2,1,4,1])
1

And the coefficient of S[1,3] # S[2,1,1] in S[2,1,4,1].coproduct() is equal to this result:

sage: S[2,1,4,1].coproduct()
S[] # S[2, 1, 4, 1] + ... + S[1, 3] # S[2, 1, 1] + ... + S[4, 1] # S[2, 1]

The duality pairing on the tensor space is another way of getting this coefficient, but currently the method

5.1. Comprehensive Module List 1469

Combinatorics, Release 9.7

duality_pairing() is not defined on the tensor squared space. However, we can extend this functionality by applying
a linear morphism to the terms in the coproduct, as follows:

sage: X = S[2,1,4,1].coproduct()
sage: def linear_morphism(x, y):
....: return x.duality_pairing(M[1,3]) * y.duality_pairing(M[2,1,1])
sage: X.apply_multilinear_morphism(linear_morphism, codomain=ZZ)
1

Similarly, if 𝐻 is an element of 𝑄𝑆𝑦𝑚 and 𝑔 and ℎ are elements of 𝑁𝐶𝑆𝐹 , then

[𝐻, 𝑔 · ℎ] = [∆(𝐻), 𝑔 ⊗ ℎ].

For example, the coefficient of R[2,3,1] in R[2,1]*R[2,1] is computed with the duality pairing by the following
command:

sage: (R[2,1]*R[2,1]).duality_pairing(F[2,3,1])
1
sage: R[2,1]*R[2,1]
R[2, 1, 2, 1] + R[2, 3, 1]

This coefficient should then be equal to the coefficient of F[2,1] # F[2,1] in F[2,3,1].coproduct():

sage: F[2,3,1].coproduct()
F[] # F[2, 3, 1] + ... + F[2, 1] # F[2, 1] + ... + F[2, 3, 1] # F[]

This can also be computed by the duality pairing on the tensor space, as above:

sage: X = F[2,3,1].coproduct()
sage: def linear_morphism(x, y):
....: return x.duality_pairing(R[2,1]) * y.duality_pairing(R[2,1])
sage: X.apply_multilinear_morphism(linear_morphism, codomain=ZZ)
1

The Operation Adjoint to Multiplication by a Non-Commutative Symmetric Function

Let 𝑔 ∈ 𝑁𝐶𝑆𝐹 and consider the linear endomorphism of 𝑁𝐶𝑆𝐹 defined by left (respectively, right) multiplication
by 𝑔. Since there is a duality between𝑄𝑆𝑦𝑚 and𝑁𝐶𝑆𝐹 , this linear transformation induces an operator 𝑔⊥ on𝑄𝑆𝑦𝑚
satisfying

[𝑔⊥(𝐻), ℎ] = [𝐻, 𝑔 · ℎ].

for any non-commutative symmetric function ℎ.

This is implemented by the method skew_by(). Explicitly, if H is a quasisymmetric function and g a non-commutative
symmetric function, then H.skew_by(g) and H.skew_by(g, side='right') are expressions that satisfy, for any
non-commutative symmetric function h, the following identities:

H.skew_by(g).duality_pairing(h) == H.duality_pairing(g*h)
H.skew_by(g, side='right').duality_pairing(h) == H.duality_pairing(h*g)

For example, M[J].skew_by(S[I]) is 0 unless the composition 𝐽 begins with 𝐼 and M(J).skew_by(S(I),
side='right') is 0 unless the composition 𝐽 ends with 𝐼:

1470 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: M[3,2,2].skew_by(S[3])
M[2, 2]
sage: M[3,2,2].skew_by(S[2])
0
sage: M[3,2,2].coproduct().apply_multilinear_morphism(lambda x,y: x.duality_
→˓pairing(S[3])*y)
M[2, 2]
sage: M[3,2,2].skew_by(S[3], side='right')
0
sage: M[3,2,2].skew_by(S[2], side='right')
M[3, 2]

The antipode

The antipode sends the Fundamental basis element indexed by the composition 𝐼 to −1 to the size of 𝐼 times the
Fundamental basis element indexed by the conjugate composition to 𝐼:

sage: F[3,2,2].antipode()
-F[1, 2, 2, 1, 1]
sage: Composition([3,2,2]).conjugate()
[1, 2, 2, 1, 1]
sage: M[3,2,2].antipode()
-M[2, 2, 3] - M[2, 5] - M[4, 3] - M[7]

We demonstrate here the defining relation of the antipode:

sage: X = F[3,2,2].coproduct()
sage: X.apply_multilinear_morphism(lambda x,y: x*y.antipode())
0
sage: X.apply_multilinear_morphism(lambda x,y: x.antipode()*y)
0

REFERENCES:

5.1.144 Symmetric functions in non-commuting variables

• Introduction to Symmetric Functions in Non-Commuting Variables

• Bases for NCSym

• Dual Symmetric Functions in Non-Commuting Variables

• Symmetric Functions in Non-Commuting Variables

5.1. Comprehensive Module List 1471

Combinatorics, Release 9.7

5.1.145 Bases for 𝑁𝐶𝑆𝑦𝑚

AUTHORS:

• Travis Scrimshaw (08-04-2013): Initial version

class sage.combinat.ncsym.bases.MultiplicativeNCSymBases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

Category of multiplicative bases of symmetric functions in non-commuting variables.

A multiplicative basis is one for which b𝐴b𝐵 = b𝐴|𝐵 where 𝐴|𝐵 is the pipe() operation on set partitions.

EXAMPLES:

sage: from sage.combinat.ncsym.bases import MultiplicativeNCSymBases
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: MultiplicativeNCSymBases(NCSym)
Category of multiplicative bases of symmetric functions in non-commuting variables␣
→˓over the Rational Field

class ElementMethods
Bases: object

class ParentMethods
Bases: object

product_on_basis(A, B)
The product on basis elements.

The product on a multiplicative basis is given by b𝐴 · b𝐵 = b𝐴|𝐵 .

The bases {e,h,x, cp,p, chi, rho} are all multiplicative.

INPUT:
• A, B – set partitions

OUTPUT:
• an element in the basis self

EXAMPLES:

sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e()
sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h()
sage: x = SymmetricFunctionsNonCommutingVariables(QQ).x()
sage: cp = SymmetricFunctionsNonCommutingVariables(QQ).cp()
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).p()
sage: chi = SymmetricFunctionsNonCommutingVariables(QQ).chi()
sage: rho = SymmetricFunctionsNonCommutingVariables(QQ).rho()
sage: A = SetPartition([[1], [2, 3]])
sage: B = SetPartition([[1], [3], [2,4]])
sage: e.product_on_basis(A, B)
e{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: h.product_on_basis(A, B)
h{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: x.product_on_basis(A, B)
x{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: cp.product_on_basis(A, B)
cp{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: p.product_on_basis(A, B)

(continues on next page)

1472 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

(continued from previous page)

p{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: chi.product_on_basis(A, B)
chi{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: rho.product_on_basis(A, B)
rho{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: e.product_on_basis(A,B)==e(h(e(A))*h(e(B)))
True
sage: h.product_on_basis(A,B)==h(x(h(A))*x(h(B)))
True
sage: x.product_on_basis(A,B)==x(h(x(A))*h(x(B)))
True
sage: cp.product_on_basis(A,B)==cp(p(cp(A))*p(cp(B)))
True
sage: p.product_on_basis(A,B)==p(e(p(A))*e(p(B)))
True

super_categories()
Return the super categories of bases of the Hopf dual of the symmetric functions in non-commuting vari-
ables.

OUTPUT:

• a list of categories

class sage.combinat.ncsym.bases.NCSymBases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

Category of bases of symmetric functions in non-commuting variables.

EXAMPLES:

sage: from sage.combinat.ncsym.bases import NCSymBases
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: NCSymBases(NCSym)
Category of bases of symmetric functions in non-commuting variables over the␣
→˓Rational Field

class ElementMethods
Bases: object

expand(n, alphabet='x')
Expand the symmetric function into n non-commuting variables in an alphabet, which by default is
'x'.

This computation is completed by coercing the element self into the monomial basis and computing
the expansion in the alphabet there.

INPUT:
• n – the number of variables in the expansion
• alphabet – (default: 'x') the alphabet in which self is to be expanded

OUTPUT:
• an expansion of self into the n non-commuting variables specified by alphabet

EXAMPLES:

sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h()
sage: h[[1,3],[2]].expand(3)

(continues on next page)

5.1. Comprehensive Module List 1473

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

(continued from previous page)

2*x0^3 + x0^2*x1 + x0^2*x2 + 2*x0*x1*x0 + x0*x1^2 + x0*x1*x2 + 2*x0*x2*x0
+ x0*x2*x1 + x0*x2^2 + x1*x0^2 + 2*x1*x0*x1 + x1*x0*x2 + x1^2*x0 + 2*x1^3
+ x1^2*x2 + x1*x2*x0 + 2*x1*x2*x1 + x1*x2^2 + x2*x0^2 + x2*x0*x1 +␣
→˓2*x2*x0*x2
+ x2*x1*x0 + x2*x1^2 + 2*x2*x1*x2 + x2^2*x0 + x2^2*x1 + 2*x2^3
sage: x = SymmetricFunctionsNonCommutingVariables(QQ).x()
sage: x[[1,3],[2]].expand(3)
-x0^2*x1 - x0^2*x2 - x0*x1^2 - x0*x1*x2 - x0*x2*x1 - x0*x2^2 - x1*x0^2
- x1*x0*x2 - x1^2*x0 - x1^2*x2 - x1*x2*x0 - x1*x2^2 - x2*x0^2 - x2*x0*x1
- x2*x1*x0 - x2*x1^2 - x2^2*x0 - x2^2*x1

internal_coproduct()
Return the internal coproduct of self.

The internal coproduct is defined on the power sum basis as

p𝐴 ↦→ p𝐴 ⊗ p𝐴

and the map is extended linearly.

OUTPUT:
• an element of the tensor square of the basis of self

EXAMPLES:

sage: x = SymmetricFunctionsNonCommutingVariables(QQ).x()
sage: x[[1,3],[2]].internal_coproduct()
x{{1}, {2}, {3}} # x{{1, 3}, {2}} + x{{1, 3}, {2}} # x{{1}, {2}, {3}}
+ x{{1, 3}, {2}} # x{{1, 3}, {2}}

omega()
Return the involution 𝜔 applied to self.

The involution 𝜔 is defined by

e𝐴 ↦→ h𝐴

and the result is extended linearly.

OUTPUT:
• an element in the same basis as self

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: m = NCSym.m()
sage: m[[1,3],[2]].omega()
-2*m{{1, 2, 3}} - m{{1, 3}, {2}}
sage: p = NCSym.p()
sage: p[[1,3],[2]].omega()
-p{{1, 3}, {2}}
sage: cp = NCSym.cp()
sage: cp[[1,3],[2]].omega()
-2*cp{{1, 2, 3}} - cp{{1, 3}, {2}}
sage: x = NCSym.x()
sage: x[[1,3],[2]].omega()
-2*x{{1}, {2}, {3}} - x{{1, 3}, {2}}

1474 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

to_symmetric_function()
Compute the projection of an element of symmetric function in non-commuting variables to the sym-
metric functions.

The projection of a monomial symmetric function in non-commuting variables indexed by the set
partition A is defined as

m𝐴 ↦→ 𝑚𝜆(𝐴)

∏︁
𝑖

𝑛𝑖(𝜆(𝐴))!

where 𝜆(𝐴) is the partition associated with 𝐴 by taking the sizes of the parts and 𝑛𝑖(𝜇) is the multi-
plicity of 𝑖 in 𝜇. For other bases this map is extended linearly.

OUTPUT:
• an element of the symmetric functions in the monomial basis

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: e = NCSym.e()
sage: h = NCSym.h()
sage: p = NCSym.p()
sage: cp = NCSym.cp()
sage: x = NCSym.x()
sage: cp[[1,3],[2]].to_symmetric_function()
m[2, 1]
sage: x[[1,3],[2]].to_symmetric_function()
-6*m[1, 1, 1] - 2*m[2, 1]
sage: e[[1,3],[2]].to_symmetric_function()
2*e[2, 1]
sage: h[[1,3],[2]].to_symmetric_function()
2*h[2, 1]
sage: p[[1,3],[2]].to_symmetric_function()
p[2, 1]

to_wqsym()
Return the image of self under the canonical inclusion map 𝑁𝐶𝑆𝑦𝑚→𝑊𝑄𝑆𝑦𝑚.

The canonical inclusion map 𝑁𝐶𝑆𝑦𝑚 → 𝑊𝑄𝑆𝑦𝑚 is an injective homomorphism of algebras. It
sends a basis element m𝐴 of𝑁𝐶𝑆𝑦𝑚 to the sum of basis elements M𝑃 of𝑊𝑄𝑆𝑦𝑚, where 𝑃 ranges
over all ordered set partitions that become 𝐴 when the ordering is forgotten. This map is denoted by 𝜃
in [BZ05] (17).

See also:

WordQuasiSymmetricFunctions for a definition of 𝑊𝑄𝑆𝑦𝑚.

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: e = NCSym.e()
sage: h = NCSym.h()
sage: p = NCSym.p()
sage: cp = NCSym.cp()
sage: x = NCSym.x()
sage: m = NCSym.m()
sage: m[[1,3],[2]].to_wqsym()
M[{1, 3}, {2}] + M[{2}, {1, 3}]

(continues on next page)

5.1. Comprehensive Module List 1475

Combinatorics, Release 9.7

(continued from previous page)

sage: x[[1,3],[2]].to_wqsym()
-M[{1}, {2}, {3}] - M[{1}, {2, 3}] - M[{1}, {3}, {2}]
- M[{1, 2}, {3}] - M[{2}, {1}, {3}] - M[{2}, {3}, {1}]
- M[{2, 3}, {1}] - M[{3}, {1}, {2}] - M[{3}, {1, 2}]
- M[{3}, {2}, {1}]
sage: (4*p[[1,3],[2]]-p[[1]]).to_wqsym()
-M[{1}] + 4*M[{1, 2, 3}] + 4*M[{1, 3}, {2}] + 4*M[{2}, {1, 3}]

class ParentMethods
Bases: object

from_symmetric_function(f)
Return the image of the symmetric function f in self.

This is performed by converting to the monomial basis and extending the method
sum_of_partitions() linearly. This is a linear map from the symmetric functions to the
symmetric functions in non-commuting variables that does not preserve the product or coproduct
structure of the Hopf algebra.

See also:

to_symmetric_function()

INPUT:
• f – a symmetric function

OUTPUT:
• an element of self

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: Sym = SymmetricFunctions(QQ)
sage: e = NCSym.e()
sage: elem = Sym.e()
sage: elt = e.from_symmetric_function(elem[2,1,1]); elt
1/12*e{{1}, {2}, {3, 4}} + 1/12*e{{1}, {2, 3}, {4}} + 1/12*e{{1}, {2, 4},
→˓{3}}
+ 1/12*e{{1, 2}, {3}, {4}} + 1/12*e{{1, 3}, {2}, {4}} + 1/12*e{{1, 4}, {2},
→˓ {3}}
sage: elem(elt.to_symmetric_function())
e[2, 1, 1]
sage: e.from_symmetric_function(elem[4])
1/24*e{{1, 2, 3, 4}}
sage: p = NCSym.p()
sage: pow = Sym.p()
sage: elt = p.from_symmetric_function(pow[2,1,1]); elt
1/6*p{{1}, {2}, {3, 4}} + 1/6*p{{1}, {2, 3}, {4}} + 1/6*p{{1}, {2, 4}, {3}}
+ 1/6*p{{1, 2}, {3}, {4}} + 1/6*p{{1, 3}, {2}, {4}} + 1/6*p{{1, 4}, {2},
→˓{3}}
sage: pow(elt.to_symmetric_function())
p[2, 1, 1]
sage: p.from_symmetric_function(pow[4])
p{{1, 2, 3, 4}}
sage: h = NCSym.h()
sage: comp = Sym.complete()
sage: elt = h.from_symmetric_function(comp[2,1,1]); elt

(continues on next page)

1476 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

1/12*h{{1}, {2}, {3, 4}} + 1/12*h{{1}, {2, 3}, {4}} + 1/12*h{{1}, {2, 4},
→˓{3}}
+ 1/12*h{{1, 2}, {3}, {4}} + 1/12*h{{1, 3}, {2}, {4}} + 1/12*h{{1, 4}, {2},
→˓ {3}}
sage: comp(elt.to_symmetric_function())
h[2, 1, 1]
sage: h.from_symmetric_function(comp[4])
1/24*h{{1, 2, 3, 4}}

internal_coproduct()
Compute the internal coproduct of self.

If internal_coproduct_on_basis() is available, construct the internal coproduct mor-
phism from self to self ⊗ self by extending it by linearity. Otherwise, this uses
internal_coproduct_by_coercion(), if available.

OUTPUT:
• an element of the tensor squared of self

EXAMPLES:

sage: cp = SymmetricFunctionsNonCommutingVariables(QQ).cp()
sage: cp.internal_coproduct(cp[[1,3],[2]] - 2*cp[[1]])
-2*cp{{1}} # cp{{1}} + cp{{1, 2, 3}} # cp{{1, 3}, {2}} + cp{{1, 3}, {2}} #␣
→˓cp{{1, 2, 3}}
+ cp{{1, 3}, {2}} # cp{{1, 3}, {2}}

internal_coproduct_by_coercion(x)
Return the internal coproduct by coercing the element to the powersum basis.

INPUT:
• x – an element of self

OUTPUT:
• an element of the tensor squared of self

EXAMPLES:

sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h()
sage: h[[1,3],[2]].internal_coproduct() # indirect doctest
2*h{{1}, {2}, {3}} # h{{1}, {2}, {3}} - h{{1}, {2}, {3}} # h{{1, 3}, {2}}
- h{{1, 3}, {2}} # h{{1}, {2}, {3}} + h{{1, 3}, {2}} # h{{1, 3}, {2}}

internal_coproduct_on_basis(i)
The internal coproduct of the algebra on the basis (optional).

INPUT:
• i – the indices of an element of the basis of self

OUTPUT:
• an element of the tensor squared of self

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: m.internal_coproduct_on_basis(SetPartition([[1,2]]))
m{{1, 2}} # m{{1, 2}}

primitive(A, i=1)
Return the primitive associated to A in self.

5.1. Comprehensive Module List 1477

Combinatorics, Release 9.7

See also:

primitive()

INPUT:
• A – a set partition
• i – a positive integer

OUTPUT:
• an element of self

EXAMPLES:

sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e()
sage: elt = e.primitive(SetPartition([[1,3],[2]])); elt
e{{1, 2}, {3}} - e{{1, 3}, {2}}
sage: elt.coproduct()
e{} # e{{1, 2}, {3}} - e{} # e{{1, 3}, {2}} + e{{1, 2}, {3}} # e{} - e{{1,␣
→˓3}, {2}} # e{}

super_categories()
Return the super categories of bases of the Hopf dual of the symmetric functions in non-commuting vari-
ables.

OUTPUT:

• a list of categories

class sage.combinat.ncsym.bases.NCSymBasis_abstract(R, basis_keys=None, element_class=None,
category=None, prefix=None, names=None,
**kwds)

Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

Abstract base class for a basis of 𝑁𝐶𝑆𝑦𝑚 or its dual.

class sage.combinat.ncsym.bases.NCSymDualBases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

Category of bases of dual symmetric functions in non-commuting variables.

EXAMPLES:

sage: from sage.combinat.ncsym.bases import NCSymDualBases
sage: DNCSym = SymmetricFunctionsNonCommutingVariables(QQ).dual()
sage: NCSymDualBases(DNCSym)
Category of bases of dual symmetric functions in non-commuting variables over the␣
→˓Rational Field

super_categories()
Return the super categories of bases of the Hopf dual of the symmetric functions in non-commuting vari-
ables.

OUTPUT:

• a list of categories

class sage.combinat.ncsym.bases.NCSymOrNCSymDualBases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

Base category for the category of bases of symmetric functions in non-commuting variables or its Hopf dual for
the common code.

1478 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent
../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

class ElementMethods
Bases: object

duality_pairing(other)
Compute the pairing between self and an element other of the dual.

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: m = NCSym.m()
sage: w = m.dual_basis()
sage: elt = m[[1,3],[2]] - 3*m[[1,2],[3]]
sage: elt.duality_pairing(w[[1,3],[2]])
1
sage: elt.duality_pairing(w[[1,2],[3]])
-3
sage: elt.duality_pairing(w[[1,2]])
0
sage: e = NCSym.e()
sage: w[[1,3],[2]].duality_pairing(e[[1,3],[2]])
0

class ParentMethods
Bases: object

counit_on_basis(A)
The counit is defined by sending all elements of positive degree to zero.

INPUT:
• A – a set partition

OUTPUT:
• either the 0 or the 1 of the base ring of self

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: m.counit_on_basis(SetPartition([[1,3], [2]]))
0
sage: m.counit_on_basis(SetPartition([]))
1
sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: w.counit_on_basis(SetPartition([[1,3], [2]]))
0
sage: w.counit_on_basis(SetPartition([]))
1

duality_pairing(x, y)
Compute the pairing between an element of self and an element of the dual.

Carry out this computation by converting x to the m basis and y to the w basis.

INPUT:
• x – an element of symmetric functions in non-commuting variables
• y – an element of the dual of symmetric functions in non-commuting variables

OUTPUT:
• an element of the base ring of self

EXAMPLES:

5.1. Comprehensive Module List 1479

Combinatorics, Release 9.7

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: h = NCSym.h()
sage: w = NCSym.m().dual_basis()
sage: matrix([[h(A).duality_pairing(w(B)) for A in SetPartitions(3)] for B␣
→˓in SetPartitions(3)])
[6 2 2 2 1]
[2 2 1 1 1]
[2 1 2 1 1]
[2 1 1 2 1]
[1 1 1 1 1]
sage: (h[[1,2],[3]] + 3*h[[1,3],[2]]).duality_pairing(2*w[[1,3],[2]] + w[[1,
→˓2,3]] + 2*w[[1,2],[3]])
32

duality_pairing_matrix(basis, degree)
The matrix of scalar products between elements of 𝑁𝐶𝑆𝑦𝑚 and elements of 𝑁𝐶𝑆𝑦𝑚*.

INPUT:
• basis – a basis of the dual Hopf algebra
• degree – a non-negative integer

OUTPUT:
• the matrix of scalar products between the basis self and the basis basis in the dual Hopf algebra

of degree degree
EXAMPLES:

The matrix between the m basis and the w basis:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: m = NCSym.m()
sage: w = NCSym.dual().w()
sage: m.duality_pairing_matrix(w, 3)
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

Similarly for some of the other basis of 𝑁𝐶𝑆𝑦𝑚 and the w basis:

sage: e = NCSym.e()
sage: e.duality_pairing_matrix(w, 3)
[0 0 0 0 1]
[0 0 1 1 1]
[0 1 0 1 1]
[0 1 1 0 1]
[1 1 1 1 1]
sage: p = NCSym.p()
sage: p.duality_pairing_matrix(w, 3)
[1 0 0 0 0]
[1 1 0 0 0]
[1 0 1 0 0]
[1 0 0 1 0]
[1 1 1 1 1]
sage: cp = NCSym.cp()

(continues on next page)

1480 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: cp.duality_pairing_matrix(w, 3)
[1 0 0 0 0]
[1 1 0 0 0]
[0 0 1 0 0]
[1 0 0 1 0]
[1 1 1 1 1]
sage: x = NCSym.x()
sage: w.duality_pairing_matrix(x, 3)
[0 0 0 0 1]
[1 0 -1 -1 1]
[1 -1 0 -1 1]
[1 -1 -1 0 1]
[2 -1 -1 -1 1]

A base case test:

sage: m.duality_pairing_matrix(w, 0)
[1]

one_basis()
Return the index of the basis element containing 1.

OUTPUT:
• The empty set partition

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: m.one_basis()
{}
sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: w.one_basis()
{}

super_categories()
Return the super categories of bases of (the Hopf dual of) the symmetric functions in non-commuting
variables.

OUTPUT:

• a list of categories

5.1.146 Dual Symmetric Functions in Non-Commuting Variables

AUTHORS:

• Travis Scrimshaw (08-04-2013): Initial version

class sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual(R)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The Hopf dual to the symmetric functions in non-commuting variables.

See Section 2.3 of [BZ05] for a study.

5.1. Comprehensive Module List 1481

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

a_realization()
Return the realization of the w basis of self.

EXAMPLES:

sage: SymmetricFunctionsNonCommutingVariables(QQ).dual().a_realization()
Dual symmetric functions in non-commuting variables over the Rational Field in␣
→˓the w basis

dual()
Return the dual Hopf algebra of the dual symmetric functions in non-commuting variables.

EXAMPLES:

sage: NCSymD = SymmetricFunctionsNonCommutingVariables(QQ).dual()
sage: NCSymD.dual()
Symmetric functions in non-commuting variables over the Rational Field

class w(NCSymD)
Bases: sage.combinat.ncsym.bases.NCSymBasis_abstract

The Hopf algebra of symmetric functions in non-commuting variables in the w basis.

EXAMPLES:

sage: NCSymD = SymmetricFunctionsNonCommutingVariables(QQ).dual()
sage: w = NCSymD.w()

We have the embedding 𝜒* of 𝑆𝑦𝑚 into 𝑁𝐶𝑆𝑦𝑚* available as a coercion:

sage: h = SymmetricFunctions(QQ).h()
sage: w(h[2,1])
w{{1}, {2, 3}} + w{{1, 2}, {3}} + w{{1, 3}, {2}}

Similarly we can pull back when we are in the image of 𝜒*:

sage: elt = 3*(w[[1],[2,3]] + w[[1,2],[3]] + w[[1,3],[2]])
sage: h(elt)
3*h[2, 1]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element in the w basis.

expand(n, letter='x')
Expand self written in thew basis in 𝑛2 commuting variables which satisfy the relation 𝑥𝑖𝑗𝑥𝑖𝑘 =
0 for all 𝑖, 𝑗, and 𝑘.

The expansion of an element of the w basis is given by equations (26) and (55) in [HNT06].

INPUT:
• n – an integer
• letter – (default: 'x') a string
OUTPUT:
• The symmetric function of self expressed in the n*n non-commuting variables described by
letter.

REFERENCES:

EXAMPLES:

1482 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: w[[1,3],[2]].expand(4)
x02*x11*x20 + x03*x11*x30 + x03*x22*x30 + x13*x22*x31

One can use a different set of variable by using the optional argument letter:

sage: w[[1,3],[2]].expand(3, letter='y')
y02*y11*y20

is_symmetric()
Determine if a 𝑁𝐶𝑆𝑦𝑚* function, expressed in the w basis, is symmetric.

A function 𝑓 in the w basis is a symmetric function if it is in the image of 𝜒*. That is to say we
have

𝑓 =
∑︁
𝜆

𝑐𝜆
∏︁
𝑖

𝑚𝑖(𝜆)!
∑︁

𝜆(𝐴)=𝜆

w𝐴

where the second sum is over all set partitions 𝐴 whose shape 𝜆(𝐴) is equal to 𝜆 and𝑚𝑖(𝜇) is the
multiplicity of 𝑖 in the partition 𝜇.

OUTPUT:
• True if 𝜆(𝐴) = 𝜆(𝐵) implies the coefficients of w𝐴 and w𝐵 are equal, False otherwise
EXAMPLES:

sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: elt = w.sum_of_partitions([2,1,1])
sage: elt.is_symmetric()
True
sage: elt -= 3*w.sum_of_partitions([1,1])
sage: elt.is_symmetric()
True
sage: w = SymmetricFunctionsNonCommutingVariables(ZZ).dual().w()
sage: elt = w.sum_of_partitions([2,1,1]) / 2
sage: elt.is_symmetric()
False
sage: elt = w[[1,3],[2]]
sage: elt.is_symmetric()
False
sage: elt = w[[1],[2,3]] + w[[1,2],[3]] + 2*w[[1,3],[2]]
sage: elt.is_symmetric()
False

to_symmetric_function()
Take a function in the w basis, and return its symmetric realization, when possible, expressed in
the homogeneous basis of symmetric functions.

OUTPUT:
• If self is a symmetric function, then the expansion in the homogeneous basis of the symmetric

functions is returned. Otherwise an error is raised.
EXAMPLES:

sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: elt = w[[1],[2,3]] + w[[1,2],[3]] + w[[1,3],[2]]
sage: elt.to_symmetric_function()

(continues on next page)

5.1. Comprehensive Module List 1483

Combinatorics, Release 9.7

(continued from previous page)

h[2, 1]
sage: elt = w.sum_of_partitions([2,1,1]) / 2
sage: elt.to_symmetric_function()
1/2*h[2, 1, 1]

antipode_on_basis(A)
Return the antipode applied to the basis element indexed by A.

INPUT:
• A – a set partition

OUTPUT:
• an element in the basis self

EXAMPLES:

sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: w.antipode_on_basis(SetPartition([[1],[2,3]]))
-3*w{{1}, {2}, {3}} + w{{1, 2}, {3}} + w{{1, 3}, {2}}
sage: F = w[[1,3],[5],[2,4]].coproduct()
sage: F.apply_multilinear_morphism(lambda x,y: x.antipode()*y)
0

coproduct_on_basis(A)
Return the coproduct of a w basis element.

The coproduct on the basis element w𝐴 is the sum over tensor product terms w𝐵 ⊗w𝐶 where 𝐵 is
the restriction of 𝐴 to {1, 2, . . . , 𝑘} and 𝐶 is the restriction of 𝐴 to {𝑘 + 1, 𝑘 + 2, . . . , 𝑛}.

INPUT:
• A – a set partition

OUTPUT:
• The coproduct applied to the w dual symmetric function in non-commuting variables indexed by
A expressed in the w basis.

EXAMPLES:

sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: w[[1], [2,3]].coproduct()
w{} # w{{1}, {2, 3}} + w{{1}} # w{{1, 2}}
+ w{{1}, {2}} # w{{1}} + w{{1}, {2, 3}} # w{}
sage: w.coproduct_on_basis(SetPartition([]))
w{} # w{}

dual_basis()
Return the dual basis to the w basis.

The dual basis to the w basis is the monomial basis of the symmetric functions in non-commuting
variables.

OUTPUT:
• the monomial basis of the symmetric functions in non-commuting variables

EXAMPLES:

sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: w.dual_basis()
Symmetric functions in non-commuting variables over the Rational Field in␣
→˓the monomial basis

1484 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

duality_pairing(x, y)
Compute the pairing between an element of self and an element of the dual.

INPUT:
• x – an element of the dual of symmetric functions in non-commuting variables
• y – an element of the symmetric functions in non-commuting variables

OUTPUT:
• an element of the base ring of self

EXAMPLES:

sage: DNCSym = SymmetricFunctionsNonCommutingVariablesDual(QQ)
sage: w = DNCSym.w()
sage: m = w.dual_basis()
sage: matrix([[w(A).duality_pairing(m(B)) for A in SetPartitions(3)] for B␣
→˓in SetPartitions(3)])
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
sage: (w[[1,2],[3]] + 3*w[[1,3],[2]]).duality_pairing(2*m[[1,3],[2]] + m[[1,
→˓2,3]] + 2*m[[1,2],[3]])
8
sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h()
sage: matrix([[w(A).duality_pairing(h(B)) for A in SetPartitions(3)] for B␣
→˓in SetPartitions(3)])
[6 2 2 2 1]
[2 2 1 1 1]
[2 1 2 1 1]
[2 1 1 2 1]
[1 1 1 1 1]
sage: (2*w[[1,3],[2]] + w[[1,2,3]] + 2*w[[1,2],[3]]).duality_pairing(h[[1,
→˓2],[3]] + 3*h[[1,3],[2]])
32

product_on_basis(A, B)
The product on w basis elements.

The product on the w is the dual to the coproduct on the m basis. On the basis w it is defined as

w𝐴w𝐵 =
∑︁
𝑆⊆[𝑛]

w𝐴↑𝑆∪𝐵↑𝑆𝑐

where the sum is over all possible subsets 𝑆 of [𝑛] such that |𝑆| = |𝐴| with a term indexed the union
of 𝐴 ↑𝑆 and 𝐵 ↑𝑆𝑐 . The notation 𝐴 ↑𝑆 represents the unique set partition of the set 𝑆 such that the
standardization is 𝐴. This product is commutative.

INPUT:
• A, B – set partitions

OUTPUT:
• an element of the w basis

EXAMPLES:

sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: A = SetPartition([[1], [2,3]])
sage: B = SetPartition([[1, 2, 3]])

(continues on next page)

5.1. Comprehensive Module List 1485

Combinatorics, Release 9.7

(continued from previous page)

sage: w.product_on_basis(A, B)
w{{1}, {2, 3}, {4, 5, 6}} + w{{1}, {2, 3, 4}, {5, 6}}
+ w{{1}, {2, 3, 5}, {4, 6}} + w{{1}, {2, 3, 6}, {4, 5}}
+ w{{1}, {2, 4}, {3, 5, 6}} + w{{1}, {2, 4, 5}, {3, 6}}
+ w{{1}, {2, 4, 6}, {3, 5}} + w{{1}, {2, 5}, {3, 4, 6}}
+ w{{1}, {2, 5, 6}, {3, 4}} + w{{1}, {2, 6}, {3, 4, 5}}
+ w{{1, 2, 3}, {4}, {5, 6}} + w{{1, 2, 4}, {3}, {5, 6}}
+ w{{1, 2, 5}, {3}, {4, 6}} + w{{1, 2, 6}, {3}, {4, 5}}
+ w{{1, 3, 4}, {2}, {5, 6}} + w{{1, 3, 5}, {2}, {4, 6}}
+ w{{1, 3, 6}, {2}, {4, 5}} + w{{1, 4, 5}, {2}, {3, 6}}
+ w{{1, 4, 6}, {2}, {3, 5}} + w{{1, 5, 6}, {2}, {3, 4}}
sage: B = SetPartition([[1], [2]])
sage: w.product_on_basis(A, B)
3*w{{1}, {2}, {3}, {4, 5}} + 2*w{{1}, {2}, {3, 4}, {5}}
+ 2*w{{1}, {2}, {3, 5}, {4}} + w{{1}, {2, 3}, {4}, {5}}
+ w{{1}, {2, 4}, {3}, {5}} + w{{1}, {2, 5}, {3}, {4}}
sage: w.product_on_basis(A, SetPartition([]))
w{{1}, {2, 3}}

sum_of_partitions(la)
Return the sum over all sets partitions whose shape is la, scaled by

∏︀
𝑖𝑚𝑖! where𝑚𝑖 is the multiplicity

of 𝑖 in la.

INPUT:
• la – an integer partition

OUTPUT:
• an element of self

EXAMPLES:

sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: w.sum_of_partitions([2,1,1])
2*w{{1}, {2}, {3, 4}} + 2*w{{1}, {2, 3}, {4}} + 2*w{{1}, {2, 4}, {3}}
+ 2*w{{1, 2}, {3}, {4}} + 2*w{{1, 3}, {2}, {4}} + 2*w{{1, 4}, {2}, {3}}

to_symmetric_function()
The preimage of 𝜒* in the w basis.

EXAMPLES:

sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: w.to_symmetric_function
Generic morphism:
From: Dual symmetric functions in non-commuting variables over the␣

→˓Rational Field in the w basis
To: Symmetric Functions over Rational Field in the homogeneous basis

1486 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.147 Symmetric Functions in Non-Commuting Variables

AUTHORS:

• Travis Scrimshaw (08-04-2013): Initial version

class sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables(R)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Symmetric functions in non-commutative variables.

The ring of symmetric functions in non-commutative variables, which is not to be confused with the
non-commutative symmetric functions, is the ring of all bounded-degree noncommutative power series
in countably many indeterminates (i.e., elements in 𝑅⟨⟨𝑥1, 𝑥2, 𝑥3, . . .⟩⟩ of bounded degree) which are invariant
with respect to the action of the symmetric group 𝑆∞ on the indices of the indeterminates. It can be regarded
as a direct limit over all 𝑛 → ∞ of rings of 𝑆𝑛-invariant polynomials in 𝑛 non-commuting variables (that is,
𝑆𝑛-invariant elements of 𝑅⟨𝑥1, 𝑥2, . . . , 𝑥𝑛⟩).

This ring is implemented as a Hopf algebra whose basis elements are indexed by set partitions.

Let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑟} be a set partition of the integers [𝑘] := {1, 2, . . . , 𝑘}. This partition 𝐴 determines
an equivalence relation ∼𝐴 on [𝑘], which has 𝑐 ∼𝐴 𝑑 if and only if 𝑐 and 𝑑 are in the same part 𝐴𝑗 of 𝐴. The
monomial basis element m𝐴 indexed by 𝐴 is the sum of monomials 𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑘 such that 𝑖𝑐 = 𝑖𝑑 if and only
if 𝑐 ∼𝐴 𝑑.

The 𝑘-th graded component of the ring of symmetric functions in non-commutative variables has its dimension
equal to the number of set partitions of [𝑘]. (If we work, instead, with finitely many – say, 𝑛 – variables, then its
dimension is equal to the number of set partitions of [𝑘] where the number of parts is at most 𝑛.)

Note: All set partitions are considered standard (i.e., set partitions of [𝑛] for some 𝑛) unless otherwise stated.

REFERENCES:

EXAMPLES:

We begin by first creating the ring of𝑁𝐶𝑆𝑦𝑚 and the bases that are analogues of the usual symmetric functions:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: m = NCSym.m()
sage: e = NCSym.e()
sage: h = NCSym.h()
sage: p = NCSym.p()
sage: m
Symmetric functions in non-commuting variables over the Rational Field in the␣
→˓monomial basis

The basis is indexed by set partitions, so we create a few elements and convert them between these bases:

sage: elt = m(SetPartition([[1,3],[2]])) - 2*m(SetPartition([[1],[2]])); elt
-2*m{{1}, {2}} + m{{1, 3}, {2}}
sage: e(elt)
1/2*e{{1}, {2, 3}} - 2*e{{1, 2}} + 1/2*e{{1, 2}, {3}} - 1/2*e{{1, 2, 3}} - 1/2*e{{1,
→˓ 3}, {2}}
sage: h(elt)
-4*h{{1}, {2}} - 2*h{{1}, {2}, {3}} + 1/2*h{{1}, {2, 3}} + 2*h{{1, 2}}
+ 1/2*h{{1, 2}, {3}} - 1/2*h{{1, 2, 3}} + 3/2*h{{1, 3}, {2}}

(continues on next page)

5.1. Comprehensive Module List 1487

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

sage: p(elt)
-2*p{{1}, {2}} + 2*p{{1, 2}} - p{{1, 2, 3}} + p{{1, 3}, {2}}
sage: m(p(elt))
-2*m{{1}, {2}} + m{{1, 3}, {2}}

sage: elt = p(SetPartition([[1,3],[2]])) - 4*p(SetPartition([[1],[2]])) + 2; elt
2*p{} - 4*p{{1}, {2}} + p{{1, 3}, {2}}
sage: e(elt)
2*e{} - 4*e{{1}, {2}} + e{{1}, {2}, {3}} - e{{1, 3}, {2}}
sage: m(elt)
2*m{} - 4*m{{1}, {2}} - 4*m{{1, 2}} + m{{1, 2, 3}} + m{{1, 3}, {2}}
sage: h(elt)
2*h{} - 4*h{{1}, {2}} - h{{1}, {2}, {3}} + h{{1, 3}, {2}}
sage: p(m(elt))
2*p{} - 4*p{{1}, {2}} + p{{1, 3}, {2}}

There is also a shorthand for creating elements. We note that we must use p[[]] to create the empty set partition
due to python’s syntax.

sage: eltm = m[[1,3],[2]] - 3*m[[1],[2]]; eltm
-3*m{{1}, {2}} + m{{1, 3}, {2}}
sage: elte = e[[1,3],[2]]; elte
e{{1, 3}, {2}}
sage: elth = h[[1,3],[2,4]]; elth
h{{1, 3}, {2, 4}}
sage: eltp = p[[1,3],[2,4]] + 2*p[[1]] - 4*p[[]]; eltp
-4*p{} + 2*p{{1}} + p{{1, 3}, {2, 4}}

There is also a natural projection to the usual symmetric functions by letting the variables commute. This pro-
jection map preserves the product and coproduct structure. We check that Theorem 2.1 of [RS06] holds:

sage: Sym = SymmetricFunctions(QQ)
sage: Sm = Sym.m()
sage: Se = Sym.e()
sage: Sh = Sym.h()
sage: Sp = Sym.p()
sage: eltm.to_symmetric_function()
-6*m[1, 1] + m[2, 1]
sage: Sm(p(eltm).to_symmetric_function())
-6*m[1, 1] + m[2, 1]
sage: elte.to_symmetric_function()
2*e[2, 1]
sage: Se(h(elte).to_symmetric_function())
2*e[2, 1]
sage: elth.to_symmetric_function()
4*h[2, 2]
sage: Sh(m(elth).to_symmetric_function())
4*h[2, 2]
sage: eltp.to_symmetric_function()
-4*p[] + 2*p[1] + p[2, 2]
sage: Sp(e(eltp).to_symmetric_function())
-4*p[] + 2*p[1] + p[2, 2]

1488 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

a_realization()
Return the realization of the powersum basis of self.

OUTPUT:

• The powersum basis of symmetric functions in non-commuting variables.

EXAMPLES:

sage: SymmetricFunctionsNonCommutingVariables(QQ).a_realization()
Symmetric functions in non-commuting variables over the Rational Field in the␣
→˓powersum basis

chi
alias of SymmetricFunctionsNonCommutingVariables.supercharacter

class coarse_powersum(NCSym)
Bases: sage.combinat.ncsym.bases.NCSymBasis_abstract

The Hopf algebra of symmetric functions in non-commuting variables in the cp basis.

This basis was defined in [BZ05] as

cp𝐴 =
∑︁
𝐴≤*𝐵

m𝐵 ,

where we sum over all strict coarsenings of the set partition 𝐴. An alternative description of this basis was
given in [BT13] as

cp𝐴 =
∑︁
𝐴⊆𝐵

m𝐵 ,

where we sum over all set partitions whose arcs are a subset of the arcs of the set partition 𝐴.

Note: In [BZ05], this basis was denoted by q. In [BT13], this basis was called the powersum basis and
denoted by 𝑝. However it is a coarser basis than the usual powersum basis in the sense that it does not
yield the usual powersum basis of the symmetric function under the natural map of letting the variables
commute.

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: cp = NCSym.cp()
sage: cp[[1,3],[2,4]]*cp[[1,2,3]]
cp{{1, 3}, {2, 4}, {5, 6, 7}}
sage: cp[[1,2],[3]].internal_coproduct()
cp{{1, 2}, {3}} # cp{{1, 2}, {3}}
sage: ps = SymmetricFunctions(NCSym.base_ring()).p()
sage: ps(cp[[1,3],[2]].to_symmetric_function())
p[2, 1] - p[3]
sage: ps(cp[[1,2],[3]].to_symmetric_function())
p[2, 1]

cp
alias of SymmetricFunctionsNonCommutingVariables.coarse_powersum

class deformed_coarse_powersum(NCSym, q=2)
Bases: sage.combinat.ncsym.bases.NCSymBasis_abstract

5.1. Comprehensive Module List 1489

Combinatorics, Release 9.7

The Hopf algebra of symmetric functions in non-commuting variables in the 𝜌 basis.

This basis was defined in [BT13] as a 𝑞-deformation of the cp basis:

𝜌𝐴 =
∑︁
𝐴⊆𝐵

1

𝑞nst
𝐴
𝐵−𝐴

m𝐵 ,

where we sum over all set partitions whose arcs are a subset of the arcs of the set partition 𝐴.

INPUT:

• q – (default: 2) the parameter 𝑞

EXAMPLES:

sage: R = QQ['q'].fraction_field()
sage: q = R.gen()
sage: NCSym = SymmetricFunctionsNonCommutingVariables(R)
sage: rho = NCSym.rho(q)

We construct Example 3.1 in [BT13]:

sage: rnode = lambda A: sorted([a[1] for a in A.arcs()], reverse=True)
sage: dimv = lambda A: sorted([a[1]-a[0] for a in A.arcs()], reverse=True)
sage: lst = list(SetPartitions(4))
sage: S = sorted(lst, key=lambda A: (dimv(A), rnode(A)))
sage: m = NCSym.m()
sage: matrix([[m(rho[A])[B] for B in S] for A in S])
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
[0 1 0 0 1 1 0 1 0 0 1 0 0 0 0]
[0 0 1 0 1 0 1 1 0 0 0 0 0 0 1]
[0 0 0 1 0 1 1 1 0 0 0 1 0 0 0]
[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 1 1 0 0]
[0 0 0 0 0 0 0 0 0 1 1 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1/q]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

q()
Return the deformation parameter 𝑞 of self.

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: rho = NCSym.rho(5)
sage: rho.q()
5

sage: R = QQ['q'].fraction_field()
sage: q = R.gen()
sage: NCSym = SymmetricFunctionsNonCommutingVariables(R)

(continues on next page)

1490 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: rho = NCSym.rho(q)
sage: rho.q() == q
True

dual()
Return the dual Hopf algebra of the symmetric functions in non-commuting variables.

EXAMPLES:

sage: SymmetricFunctionsNonCommutingVariables(QQ).dual()
Dual symmetric functions in non-commuting variables over the Rational Field

e
alias of SymmetricFunctionsNonCommutingVariables.elementary

class elementary(NCSym)
Bases: sage.combinat.ncsym.bases.NCSymBasis_abstract

The Hopf algebra of symmetric functions in non-commuting variables in the elementary basis.

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: e = NCSym.e()

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element in the elementary basis of 𝑁𝐶𝑆𝑦𝑚.

omega()
Return the involution 𝜔 applied to self.

The involution 𝜔 on 𝑁𝐶𝑆𝑦𝑚 is defined by 𝜔(e𝐴) = h𝐴.

OUTPUT:
• an element in the basis self
EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: e = NCSym.e()
sage: h = NCSym.h()
sage: elt = e[[1,3],[2]].omega(); elt
2*e{{1}, {2}, {3}} - e{{1, 3}, {2}}
sage: elt.omega()
e{{1, 3}, {2}}
sage: h(elt)
h{{1, 3}, {2}}

to_symmetric_function()
The projection of self to the symmetric functions.

Take a symmetric function in non-commuting variables expressed in the e basis, and return the
projection of expressed in the elementary basis of symmetric functions.

The map 𝜒 : 𝑁𝐶𝑆𝑦𝑚→ 𝑆𝑦𝑚 is given by

e𝐴 ↦→ 𝑒𝜆(𝐴)

∏︁
𝑖

𝜆(𝐴)𝑖!

5.1. Comprehensive Module List 1491

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

where 𝜆(𝐴) is the partition associated with 𝐴 by taking the sizes of the parts.

OUTPUT:
• An element of the symmetric functions in the elementary basis
EXAMPLES:

sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e()
sage: e[[1,3],[2]].to_symmetric_function()
2*e[2, 1]
sage: e[[1],[3],[2]].to_symmetric_function()
e[1, 1, 1]

h
alias of SymmetricFunctionsNonCommutingVariables.homogeneous

class homogeneous(NCSym)
Bases: sage.combinat.ncsym.bases.NCSymBasis_abstract

The Hopf algebra of symmetric functions in non-commuting variables in the homogeneous basis.

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: h = NCSym.h()
sage: h[[1,3],[2,4]]*h[[1,2,3]]
h{{1, 3}, {2, 4}, {5, 6, 7}}
sage: h[[1,2]].coproduct()
h{} # h{{1, 2}} + 2*h{{1}} # h{{1}} + h{{1, 2}} # h{}

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element in the homogeneous basis of 𝑁𝐶𝑆𝑦𝑚.

omega()
Return the involution 𝜔 applied to self.

The involution 𝜔 on 𝑁𝐶𝑆𝑦𝑚 is defined by 𝜔(h𝐴) = e𝐴.

OUTPUT:
• an element in the basis self
EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: h = NCSym.h()
sage: e = NCSym.e()
sage: elt = h[[1,3],[2]].omega(); elt
2*h{{1}, {2}, {3}} - h{{1, 3}, {2}}
sage: elt.omega()
h{{1, 3}, {2}}
sage: e(elt)
e{{1, 3}, {2}}

to_symmetric_function()
The projection of self to the symmetric functions.

Take a symmetric function in non-commuting variables expressed in the h basis, and return the
projection of expressed in the complete basis of symmetric functions.

1492 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

The map 𝜒 : 𝑁𝐶𝑆𝑦𝑚→ 𝑆𝑦𝑚 is given by

h𝐴 ↦→ ℎ𝜆(𝐴)

∏︁
𝑖

𝜆(𝐴)𝑖!

where 𝜆(𝐴) is the partition associated with 𝐴 by taking the sizes of the parts.

OUTPUT:
• An element of the symmetric functions in the complete basis
EXAMPLES:

sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h()
sage: h[[1,3],[2]].to_symmetric_function()
2*h[2, 1]
sage: h[[1],[3],[2]].to_symmetric_function()
h[1, 1, 1]

m
alias of SymmetricFunctionsNonCommutingVariables.monomial

class monomial(NCSym)
Bases: sage.combinat.ncsym.bases.NCSymBasis_abstract

The Hopf algebra of symmetric functions in non-commuting variables in the monomial basis.

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: m = NCSym.m()
sage: m[[1,3],[2]]*m[[1,2]]
m{{1, 3}, {2}, {4, 5}} + m{{1, 3}, {2, 4, 5}} + m{{1, 3, 4, 5}, {2}}
sage: m[[1,3],[2]].coproduct()
m{} # m{{1, 3}, {2}} + m{{1}} # m{{1, 2}} + m{{1, 2}} # m{{1}} + m{{1,
3}, {2}} # m{}

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element in the monomial basis of 𝑁𝐶𝑆𝑦𝑚.

expand(n, alphabet='x')
Expand self written in the monomial basis in 𝑛 non-commuting variables.

INPUT:
• n – an integer
• alphabet – (default: 'x') a string
OUTPUT:
• The symmetric function of self expressed in the n non-commuting variables described by
alphabet.

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial()
sage: m[[1,3],[2]].expand(4)
x0*x1*x0 + x0*x2*x0 + x0*x3*x0 + x1*x0*x1 + x1*x2*x1 + x1*x3*x1
+ x2*x0*x2 + x2*x1*x2 + x2*x3*x2 + x3*x0*x3 + x3*x1*x3 + x3*x2*x3

One can use a different set of variables by using the optional argument alphabet:

5.1. Comprehensive Module List 1493

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

sage: m[[1],[2,3]].expand(3,alphabet='y')
y0*y1^2 + y0*y2^2 + y1*y0^2 + y1*y2^2 + y2*y0^2 + y2*y1^2

to_symmetric_function()
The projection of self to the symmetric functions.

Take a symmetric function in non-commuting variables expressed in the m basis, and return the
projection of expressed in the monomial basis of symmetric functions.

The map 𝜒 : 𝑁𝐶𝑆𝑦𝑚→ 𝑆𝑦𝑚 is defined by

m𝐴 ↦→ 𝑚𝜆(𝐴)

∏︁
𝑖

𝑛𝑖(𝜆(𝐴))!

where 𝜆(𝐴) is the partition associated with 𝐴 by taking the sizes of the parts and 𝑛𝑖(𝜇) is the
multiplicity of 𝑖 in 𝜇.

OUTPUT:
• an element of the symmetric functions in the monomial basis
EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial()
sage: m[[1,3],[2]].to_symmetric_function()
m[2, 1]
sage: m[[1],[3],[2]].to_symmetric_function()
6*m[1, 1, 1]

coproduct_on_basis(A)
Return the coproduct of a monomial basis element.

INPUT:
• A – a set partition

OUTPUT:
• The coproduct applied to the monomial symmetric function in non-commuting variables indexed

by A expressed in the monomial basis.
EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial()
sage: m[[1, 3], [2]].coproduct()
m{} # m{{1, 3}, {2}} + m{{1}} # m{{1, 2}} + m{{1, 2}} # m{{1}} + m{{1, 3},
→˓{2}} # m{}
sage: m.coproduct_on_basis(SetPartition([]))
m{} # m{}
sage: m.coproduct_on_basis(SetPartition([[1,2,3]]))
m{} # m{{1, 2, 3}} + m{{1, 2, 3}} # m{}
sage: m[[1,5],[2,4],[3,7],[6]].coproduct()
m{} # m{{1, 5}, {2, 4}, {3, 7}, {6}} + m{{1}} # m{{1, 5}, {2, 4}, {3, 6}}
+ 2*m{{1, 2}} # m{{1, 3}, {2, 5}, {4}} + m{{1, 2}} # m{{1, 4}, {2, 3}, {5}}
+ 2*m{{1, 2}, {3}} # m{{1, 3}, {2, 4}} + m{{1, 3}, {2}} # m{{1, 4}, {2, 3}}
+ 2*m{{1, 3}, {2, 4}} # m{{1, 2}, {3}} + 2*m{{1, 3}, {2, 5}, {4}} # m{{1,␣
→˓2}}
+ m{{1, 4}, {2, 3}} # m{{1, 3}, {2}} + m{{1, 4}, {2, 3}, {5}} # m{{1, 2}}
+ m{{1, 5}, {2, 4}, {3, 6}} # m{{1}} + m{{1, 5}, {2, 4}, {3, 7}, {6}} # m{}

dual_basis()
Return the dual basis to the monomial basis.

1494 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:
• the w basis of the dual Hopf algebra

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: m.dual_basis()
Dual symmetric functions in non-commuting variables over the Rational Field␣
→˓in the w basis

duality_pairing(x, y)
Compute the pairing between an element of self and an element of the dual.

INPUT:
• x – an element of symmetric functions in non-commuting variables
• y – an element of the dual of symmetric functions in non-commuting variables

OUTPUT:
• an element of the base ring of self

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: m = NCSym.m()
sage: w = m.dual_basis()
sage: matrix([[m(A).duality_pairing(w(B)) for A in SetPartitions(3)] for B␣
→˓in SetPartitions(3)])
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
sage: (m[[1,2],[3]] + 3*m[[1,3],[2]]).duality_pairing(2*w[[1,3],[2]] + w[[1,
→˓2,3]] + 2*w[[1,2],[3]])
8

from_symmetric_function(f)
Return the image of the symmetric function f in self.

This is performed by converting to the monomial basis and extending the method
sum_of_partitions() linearly. This is a linear map from the symmetric functions to the
symmetric functions in non-commuting variables that does not preserve the product or coproduct
structure of the Hopf algebra.

See also:

to_symmetric_function()

INPUT:
• f – an element of the symmetric functions

OUTPUT:
• An element of the m basis

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: mon = SymmetricFunctions(QQ).m()
sage: elt = m.from_symmetric_function(mon[2,1,1]); elt
1/12*m{{1}, {2}, {3, 4}} + 1/12*m{{1}, {2, 3}, {4}} + 1/12*m{{1}, {2, 4},
→˓{3}}

(continues on next page)

5.1. Comprehensive Module List 1495

Combinatorics, Release 9.7

(continued from previous page)

+ 1/12*m{{1, 2}, {3}, {4}} + 1/12*m{{1, 3}, {2}, {4}} + 1/12*m{{1, 4}, {2},
→˓ {3}}
sage: elt.to_symmetric_function()
m[2, 1, 1]
sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e()
sage: elm = SymmetricFunctions(QQ).e()
sage: e(m.from_symmetric_function(elm[4]))
1/24*e{{1, 2, 3, 4}}
sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h()
sage: hom = SymmetricFunctions(QQ).h()
sage: h(m.from_symmetric_function(hom[4]))
1/24*h{{1, 2, 3, 4}}
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).p()
sage: pow = SymmetricFunctions(QQ).p()
sage: p(m.from_symmetric_function(pow[4]))
p{{1, 2, 3, 4}}
sage: p(m.from_symmetric_function(pow[2,1]))
1/3*p{{1}, {2, 3}} + 1/3*p{{1, 2}, {3}} + 1/3*p{{1, 3}, {2}}
sage: p([[1,2]])*p([[1]])
p{{1, 2}, {3}}

Check that 𝜒 ∘ ̃︀𝜒 is the identity on 𝑆𝑦𝑚:

sage: all(m.from_symmetric_function(pow(la)).to_symmetric_function() ==␣
→˓pow(la)
....: for la in Partitions(4))
True

internal_coproduct_on_basis(A)
Return the internal coproduct of a monomial basis element.

The internal coproduct is defined by

∆⊙(m𝐴) =
∑︁

𝐵∧𝐶=𝐴

m𝐵 ⊗m𝐶

where we sum over all pairs of set partitions 𝐵 and 𝐶 whose infimum is 𝐴.

INPUT:
• A – a set partition

OUTPUT:
• an element of the tensor square of the m basis

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial()
sage: m.internal_coproduct_on_basis(SetPartition([[1,3],[2]]))
m{{1, 2, 3}} # m{{1, 3}, {2}} + m{{1, 3}, {2}} # m{{1, 2, 3}} + m{{1, 3},
→˓{2}} # m{{1, 3}, {2}}

product_on_basis(A, B)
The product on monomial basis elements.

The product of the basis elements indexed by two set partitions𝐴 and𝐵 is the sum of the basis elements
indexed by set partitions 𝐶 such that 𝐶 ∧ ([𝑛]|[𝑘]) = 𝐴|𝐵 where 𝑛 = |𝐴| and 𝑘 = |𝐵|. Here 𝐴 ∧ 𝐵
is the infimum of 𝐴 and 𝐵 and 𝐴|𝐵 is the SetPartition.pipe() operation. Equivalently we can

1496 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

describe all 𝐶 as matchings between the parts of 𝐴 and 𝐵 where if 𝑎 ∈ 𝐴 is matched with 𝑏 ∈ 𝐵, we
take 𝑎 ∪ 𝑏 instead of 𝑎 and 𝑏 in 𝐶.

INPUT:
• A, B – set partitions

OUTPUT:
• an element of the m basis

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial()
sage: A = SetPartition([[1], [2,3]])
sage: B = SetPartition([[1], [3], [2,4]])
sage: m.product_on_basis(A, B)
m{{1}, {2, 3}, {4}, {5, 7}, {6}} + m{{1}, {2, 3, 4}, {5, 7}, {6}}
+ m{{1}, {2, 3, 5, 7}, {4}, {6}} + m{{1}, {2, 3, 6}, {4}, {5, 7}}
+ m{{1, 4}, {2, 3}, {5, 7}, {6}} + m{{1, 4}, {2, 3, 5, 7}, {6}}
+ m{{1, 4}, {2, 3, 6}, {5, 7}} + m{{1, 5, 7}, {2, 3}, {4}, {6}}
+ m{{1, 5, 7}, {2, 3, 4}, {6}} + m{{1, 5, 7}, {2, 3, 6}, {4}}
+ m{{1, 6}, {2, 3}, {4}, {5, 7}} + m{{1, 6}, {2, 3, 4}, {5, 7}}
+ m{{1, 6}, {2, 3, 5, 7}, {4}}
sage: B = SetPartition([[1], [2]])
sage: m.product_on_basis(A, B)
m{{1}, {2, 3}, {4}, {5}} + m{{1}, {2, 3, 4}, {5}}
+ m{{1}, {2, 3, 5}, {4}} + m{{1, 4}, {2, 3}, {5}} + m{{1, 4}, {2, 3, 5}}
+ m{{1, 5}, {2, 3}, {4}} + m{{1, 5}, {2, 3, 4}}
sage: m.product_on_basis(A, SetPartition([]))
m{{1}, {2, 3}}

sum_of_partitions(la)
Return the sum over all set partitions whose shape is la with a fixed coefficient 𝐶 defined below.

Fix a partition 𝜆, we define 𝜆! :=
∏︀
𝑖 𝜆𝑖! and 𝜆! :=

∏︀
𝑖𝑚𝑖!. Recall that |𝜆| =

∑︀
𝑖 𝜆𝑖 and 𝑚𝑖 is the

number of parts of length 𝑖 of 𝜆. Thus we defined the coefficient as

𝐶 :=
𝜆!𝜆!

|𝜆|!
.

Hence we can define a lift ̃︀𝜒 from 𝑆𝑦𝑚 to 𝑁𝐶𝑆𝑦𝑚 by

𝑚𝜆 ↦→ 𝐶
∑︁
𝐴

m𝐴

where the sum is over all set partitions whose shape is 𝜆.

INPUT:
• la – an integer partition

OUTPUT:
• an element of the m basis

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: m.sum_of_partitions(Partition([2,1,1]))
1/12*m{{1}, {2}, {3, 4}} + 1/12*m{{1}, {2, 3}, {4}} + 1/12*m{{1}, {2, 4},
→˓{3}}
+ 1/12*m{{1, 2}, {3}, {4}} + 1/12*m{{1, 3}, {2}, {4}} + 1/12*m{{1, 4}, {2},
→˓ {3}}

5.1. Comprehensive Module List 1497

Combinatorics, Release 9.7

p
alias of SymmetricFunctionsNonCommutingVariables.powersum

class powersum(NCSym)
Bases: sage.combinat.ncsym.bases.NCSymBasis_abstract

The Hopf algebra of symmetric functions in non-commuting variables in the powersum basis.

The powersum basis is given by

p𝐴 =
∑︁
𝐴≤𝐵

m𝐵 ,

where we sum over all coarsenings of the set partition 𝐴. If we allow our variables to commute, then p𝐴
goes to the usual powersum symmetric function 𝑝𝜆 whose (integer) partition 𝜆 is the shape of 𝐴.

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: p = NCSym.p()

sage: x = p.an_element()**2; x
4*p{} + 8*p{{1}} + 4*p{{1}, {2}} + 6*p{{1}, {2, 3}}
+ 12*p{{1, 2}} + 6*p{{1, 2}, {3}} + 9*p{{1, 2}, {3, 4}}
sage: x.to_symmetric_function()
4*p[] + 8*p[1] + 4*p[1, 1] + 12*p[2] + 12*p[2, 1] + 9*p[2, 2]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element in the powersum basis of 𝑁𝐶𝑆𝑦𝑚.

to_symmetric_function()
The projection of self to the symmetric functions.

Take a symmetric function in non-commuting variables expressed in the p basis, and return the
projection of expressed in the powersum basis of symmetric functions.

The map 𝜒 : 𝑁𝐶𝑆𝑦𝑚→ 𝑆𝑦𝑚 is given by

p𝐴 ↦→ 𝑝𝜆(𝐴)

where 𝜆(𝐴) is the partition associated with 𝐴 by taking the sizes of the parts.

OUTPUT:
• an element of symmetric functions in the power sum basis
EXAMPLES:

sage: p = SymmetricFunctionsNonCommutingVariables(QQ).p()
sage: p[[1,3],[2]].to_symmetric_function()
p[2, 1]
sage: p[[1],[3],[2]].to_symmetric_function()
p[1, 1, 1]

antipode_on_basis(A)
Return the result of the antipode applied to a powersum basis element.

Let 𝐴 be a set partition. The antipode given in [LM2011] is

𝑆(p𝐴) =
∑︁
𝛾

(−1)ℓ(𝛾)p𝛾[𝐴]

1498 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

where we sum over all ordered set partitions (i.e. set compositions) of [ℓ(𝐴)] and

𝛾[𝐴] = 𝐴↓𝛾1 | · · · |𝐴
↓
𝛾ℓ(𝐴)

is the action of 𝛾 on 𝐴 defined in SetPartition.ordered_set_partition_action().

INPUT:
• A – a set partition

OUTPUT:
• an element in the basis self

EXAMPLES:

sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum()
sage: p.antipode_on_basis(SetPartition([[1], [2,3]]))
p{{1, 2}, {3}}
sage: p.antipode_on_basis(SetPartition([]))
p{}
sage: F = p[[1,3],[5],[2,4]].coproduct()
sage: F.apply_multilinear_morphism(lambda x,y: x.antipode()*y)
0

coproduct_on_basis(A)
Return the coproduct of a monomial basis element.

INPUT:
• A – a set partition

OUTPUT:
• The coproduct applied to the monomial symmetric function in non-commuting variables indexed

by A expressed in the monomial basis.
EXAMPLES:

sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum()
sage: p[[1, 3], [2]].coproduct()
p{} # p{{1, 3}, {2}} + p{{1}} # p{{1, 2}} + p{{1, 2}} # p{{1}} + p{{1, 3},
→˓{2}} # p{}
sage: p.coproduct_on_basis(SetPartition([[1]]))
p{} # p{{1}} + p{{1}} # p{}
sage: p.coproduct_on_basis(SetPartition([]))
p{} # p{}

internal_coproduct_on_basis(A)
Return the internal coproduct of a powersum basis element.

The internal coproduct is defined by

∆⊙(p𝐴) = p𝐴 ⊗ p𝐴

INPUT:
• A – a set partition

OUTPUT:
• an element of the tensor square of self

EXAMPLES:

sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum()
sage: p.internal_coproduct_on_basis(SetPartition([[1,3],[2]]))
p{{1, 3}, {2}} # p{{1, 3}, {2}}

5.1. Comprehensive Module List 1499

Combinatorics, Release 9.7

primitive(A, i=1)
Return the primitive associated to A in self.

Fix some 𝑖 ∈ 𝑆. Let 𝐴 be an atomic set partition of 𝑆, then the primitive 𝑝(𝐴) given in [LM2011] is

𝑝(𝐴) =
∑︁
𝛾

(−1)ℓ(𝛾)−1p𝛾[𝐴]

where we sum over all ordered set partitions of [ℓ(𝐴)] such that 𝑖 ∈ 𝛾1 and 𝛾[𝐴] is the action of
𝛾 on 𝐴 defined in SetPartition.ordered_set_partition_action(). If 𝐴 is not atomic, then
𝑝(𝐴) = 0.

See also:

SetPartition.is_atomic()

INPUT:
• A – a set partition
• i – (default: 1) index in the base set for A specifying which set of primitives this belongs to

OUTPUT:
• an element in the basis self

EXAMPLES:

sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum()
sage: elt = p.primitive(SetPartition([[1,3], [2]])); elt
-p{{1, 2}, {3}} + p{{1, 3}, {2}}
sage: elt.coproduct()
-p{} # p{{1, 2}, {3}} + p{} # p{{1, 3}, {2}} - p{{1, 2}, {3}} # p{} + p{{1,␣
→˓3}, {2}} # p{}
sage: p.primitive(SetPartition([[1], [2,3]]))
0
sage: p.primitive(SetPartition([]))
p{}

rho
alias of SymmetricFunctionsNonCommutingVariables.deformed_coarse_powersum

class supercharacter(NCSym, q=2)
Bases: sage.combinat.ncsym.bases.NCSymBasis_abstract

The Hopf algebra of symmetric functions in non-commuting variables in the supercharacter 𝜒 basis.

This basis was defined in [BT13] as a 𝑞-deformation of the supercharacter basis.

𝜒𝐴 =
∑︁
𝐵

𝜒𝐴(𝐵)m𝐵 ,

where we sum over all set partitions 𝐴 and 𝜒𝐴(𝐵) is the evaluation of the supercharacter 𝜒𝐴 on the super-
class 𝜇𝐵 .

Note: The supercharacters considered in [BT13] are coarser than those considered by Aguiar et. al.

INPUT:

• q – (default: 2) the parameter 𝑞

EXAMPLES:

1500 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: R = QQ['q'].fraction_field()
sage: q = R.gen()
sage: NCSym = SymmetricFunctionsNonCommutingVariables(R)
sage: chi = NCSym.chi(q)
sage: chi[[1,3],[2]]*chi[[1,2]]
chi{{1, 3}, {2}, {4, 5}}
sage: chi[[1,3],[2]].coproduct()
chi{} # chi{{1, 3}, {2}} + (2*q-2)*chi{{1}} # chi{{1}, {2}} +
(3*q-2)*chi{{1}} # chi{{1, 2}} + (2*q-2)*chi{{1}, {2}} # chi{{1}} +
(3*q-2)*chi{{1, 2}} # chi{{1}} + chi{{1, 3}, {2}} # chi{}
sage: chi2 = NCSym.chi()
sage: chi(chi2[[1,2],[3]])
((-q+2)/q)*chi{{1}, {2}, {3}} + 2/q*chi{{1, 2}, {3}}
sage: chi2
Symmetric functions in non-commuting variables over the Fraction Field
of Univariate Polynomial Ring in q over Rational Field in the
supercharacter basis with parameter q=2

q()
Return the deformation parameter 𝑞 of self.

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: chi = NCSym.chi(5)
sage: chi.q()
5

sage: R = QQ['q'].fraction_field()
sage: q = R.gen()
sage: NCSym = SymmetricFunctionsNonCommutingVariables(R)
sage: chi = NCSym.chi(q)
sage: chi.q() == q
True

x
alias of SymmetricFunctionsNonCommutingVariables.x_basis

class x_basis(NCSym)
Bases: sage.combinat.ncsym.bases.NCSymBasis_abstract

The Hopf algebra of symmetric functions in non-commuting variables in the x basis.

This basis is defined in [BHRZ06] by the formula:

x𝐴 =
∑︁
𝐵≤𝐴

𝜇(𝐵,𝐴)p𝐵

and has the following properties:

x𝐴x𝐵 = x𝐴|𝐵 , ∆⊙(x𝐶) =
∑︁

𝐴∨𝐵=𝐶

x𝐴 ⊗ x𝐵 .

EXAMPLES:

5.1. Comprehensive Module List 1501

Combinatorics, Release 9.7

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: x = NCSym.x()
sage: x[[1,3],[2,4]]*x[[1,2,3]]
x{{1, 3}, {2, 4}, {5, 6, 7}}
sage: x[[1,2],[3]].internal_coproduct()
x{{1}, {2}, {3}} # x{{1, 2}, {3}} + x{{1, 2}, {3}} # x{{1}, {2}, {3}} +
x{{1, 2}, {3}} # x{{1, 2}, {3}}

sage.combinat.ncsym.ncsym.matchings(A, B)
Iterate through all matchings of the sets 𝐴 and 𝐵.

EXAMPLES:

sage: from sage.combinat.ncsym.ncsym import matchings
sage: list(matchings([1, 2, 3], [-1, -2]))
[[[1], [2], [3], [-1], [-2]],
[[1], [2], [3, -1], [-2]],
[[1], [2], [3, -2], [-1]],
[[1], [2, -1], [3], [-2]],
[[1], [2, -1], [3, -2]],
[[1], [2, -2], [3], [-1]],
[[1], [2, -2], [3, -1]],
[[1, -1], [2], [3], [-2]],
[[1, -1], [2], [3, -2]],
[[1, -1], [2, -2], [3]],
[[1, -2], [2], [3], [-1]],
[[1, -2], [2], [3, -1]],
[[1, -2], [2, -1], [3]]]

sage.combinat.ncsym.ncsym.nesting(la, nu)
Return the nesting number of la inside of nu.

If we consider a set partition 𝐴 as a set of arcs 𝑖− 𝑗 where 𝑖 and 𝑗 are in the same part of 𝐴. Define

nst𝜈𝜆 = #{𝑖 < 𝑗 < 𝑘 < 𝑙 | 𝑖− 𝑙 ∈ 𝜈, 𝑗 − 𝑘 ∈ 𝜆},

and this corresponds to the number of arcs of 𝜆 strictly contained inside of 𝜈.

EXAMPLES:

sage: from sage.combinat.ncsym.ncsym import nesting
sage: nu = SetPartition([[1,4], [2], [3]])
sage: mu = SetPartition([[1,4], [2,3]])
sage: nesting(set(mu).difference(nu), nu)
1

sage: lst = list(SetPartitions(4))
sage: d = {}
sage: for i, nu in enumerate(lst):
....: for mu in nu.coarsenings():
....: if set(nu.arcs()).issubset(mu.arcs()):
....: d[i, lst.index(mu)] = nesting(set(mu).difference(nu), nu)
sage: matrix(d)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

(continues on next page)

1502 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

5.1.148 Necklaces

The algorithm used in this file comes from

• Sawada, Joe. A fast algorithm to generate necklaces with fixed content, Theoretical Computer Science archive
Volume 301, Issue 1-3 (May 2003) doi:10.1016/S0304-3975(03)00049-5

sage.combinat.necklace.Necklaces(content)
Return the set of necklaces with evaluation content.

A necklace is a list of integers that such that the list is the smallest lexicographic representative of all the cyclic
shifts of the list.

See also:

LyndonWords

INPUT:

• content – a list or tuple of non-negative integers

EXAMPLES:

sage: Necklaces([2,1,1])
Necklaces with evaluation [2, 1, 1]
sage: Necklaces([2,1,1]).cardinality()
3
sage: Necklaces([2,1,1]).first()
[1, 1, 2, 3]
sage: Necklaces([2,1,1]).last()
[1, 2, 1, 3]
sage: Necklaces([2,1,1]).list()
[[1, 1, 2, 3], [1, 1, 3, 2], [1, 2, 1, 3]]
sage: Necklaces([0,2,1,1]).list()
[[2, 2, 3, 4], [2, 2, 4, 3], [2, 3, 2, 4]]
sage: Necklaces([2,0,1,1]).list()
[[1, 1, 3, 4], [1, 1, 4, 3], [1, 3, 1, 4]]

class sage.combinat.necklace.Necklaces_evaluation(content)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

5.1. Comprehensive Module List 1503

https://doi.org/10.1016/S0304-3975(03)00049-5
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

Necklaces with a fixed evaluation (content).

INPUT:

• content – a list or tuple of non-negative integers

cardinality()
Return the number of integer necklaces with the evaluation content.

The formula for the number of necklaces of content 𝛼 a composition of 𝑛 is:∑︁
𝑑|𝑔𝑐𝑑(𝛼)

𝜑(𝑑)

(︂
𝑛/𝑑

𝛼1/𝑑, . . . , 𝛼ℓ/𝑑

)︂
,

where 𝜑(𝑑) is the Euler 𝜑 function.

EXAMPLES:

sage: Necklaces([]).cardinality()
0
sage: Necklaces([2,2]).cardinality()
2
sage: Necklaces([2,3,2]).cardinality()
30
sage: Necklaces([0,3,2]).cardinality()
2

Check to make sure that the count matches up with the number of necklace words generated.

sage: comps = [[],[2,2],[3,2,7],[4,2],[0,4,2],[2,0,4]]+Compositions(4).list()
sage: ns = [Necklaces(comp) for comp in comps]
sage: all(n.cardinality() == len(n.list()) for n in ns)
True

content()
Return the content (or evaluation) of the necklaces.

EXAMPLES:

sage: N = Necklaces([2,2,2])
sage: N.content()
[2, 2, 2]

5.1.149 Non-Decreasing Parking Functions

A non-decreasing parking function of size 𝑛 is a non-decreasing function 𝑓 from {1, . . . , 𝑛} to itself such that for all
𝑖, one has 𝑓(𝑖) ≤ 𝑖.

The number of non-decreasing parking functions of size 𝑛 is the 𝑛-th Catalan number.

The set of non-decreasing parking functions of size 𝑛 is in bijection with the set of Dyck words of size 𝑛.

AUTHORS:

• Florent Hivert (2009-04)

• Christian Stump (2012-11) added pretty printing

1504 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunction(lst)
Bases: sage.structure.element.Element

A non decreasing parking function of size 𝑛 is a non-decreasing function 𝑓 from {1, . . . , 𝑛} to itself such that
for all 𝑖, one has 𝑓(𝑖) ≤ 𝑖.

EXAMPLES:

sage: NonDecreasingParkingFunction([])
[]
sage: NonDecreasingParkingFunction([1])
[1]
sage: NonDecreasingParkingFunction([2])
Traceback (most recent call last):
...
ValueError: [2] is not a non-decreasing parking function
sage: NonDecreasingParkingFunction([1,2])
[1, 2]
sage: NonDecreasingParkingFunction([1,1,2])
[1, 1, 2]
sage: NonDecreasingParkingFunction([1,1,4])
Traceback (most recent call last):
...
ValueError: [1, 1, 4] is not a non-decreasing parking function

classmethod from_dyck_word(dw)
Bijection from Dyck words. It is the inverse of the bijection to_dyck_word(). You can find there the
mathematical definition.

EXAMPLES:

sage: NonDecreasingParkingFunction.from_dyck_word([])
[]
sage: NonDecreasingParkingFunction.from_dyck_word([1,0])
[1]
sage: NonDecreasingParkingFunction.from_dyck_word([1,1,0,0])
[1, 1]
sage: NonDecreasingParkingFunction.from_dyck_word([1,0,1,0])
[1, 2]
sage: NonDecreasingParkingFunction.from_dyck_word([1,0,1,1,0,1,0,0,1,0])
[1, 2, 2, 3, 5]

grade()
Return the length of self.

EXAMPLES:

sage: ndpf = NonDecreasingParkingFunctions(5)
sage: len(ndpf.random_element())
5

to_dyck_word()
Implement the bijection to Dyck words, which is defined as follows. Take a non decreasing parking func-
tion, say [1,1,2,4,5,5], and draw its graph:

5.1. Comprehensive Module List 1505

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

| . 5
_| . 5

___| . . 4
_| 2

| 1
| 1

The corresponding Dyck word [1,1,0,1,0,0,1,0,1,1,0,0] is then read off from the sequence of horizontal and
vertical steps. The converse bijection is from_dyck_word().

EXAMPLES:

sage: NonDecreasingParkingFunction([1,1,2,4,5,5]).to_dyck_word()
[1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0]
sage: NonDecreasingParkingFunction([]).to_dyck_word()
[]
sage: NonDecreasingParkingFunction([1,1,1]).to_dyck_word()
[1, 1, 1, 0, 0, 0]
sage: NonDecreasingParkingFunction([1,2,3]).to_dyck_word()
[1, 0, 1, 0, 1, 0]
sage: NonDecreasingParkingFunction([1,1,3,3,4,6,6]).to_dyck_word()
[1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0]

sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunctions(n=None)
Return the set of Non-Decreasing Parking Functions.

A non-decreasing parking function of size 𝑛 is a non-decreasing function 𝑓 from {1, . . . , 𝑛} to itself such that
for all 𝑖, one has 𝑓(𝑖) ≤ 𝑖.

EXAMPLES:

Here are all the-non decreasing parking functions of size 5:

sage: NonDecreasingParkingFunctions(3).list()
[[1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3]]

If no size is specified, then NonDecreasingParkingFunctions returns the set of all non-decreasing parking func-
tions.

sage: PF = NonDecreasingParkingFunctions(); PF
Non-decreasing parking functions
sage: [] in PF
True
sage: [1] in PF
True
sage: [2] in PF
False
sage: [1,1,3] in PF
True
sage: [1,1,4] in PF
False

If the size 𝑛 is specified, then NonDecreasingParkingFunctions returns the set of all non-decreasing parking
functions of size 𝑛.

1506 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: PF = NonDecreasingParkingFunctions(0)
sage: PF.list()
[[]]
sage: PF = NonDecreasingParkingFunctions(1)
sage: PF.list()
[[1]]
sage: PF = NonDecreasingParkingFunctions(3)
sage: PF.list()
[[1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3]]

sage: PF3 = NonDecreasingParkingFunctions(3); PF3
Non-decreasing parking functions of size 3
sage: [] in PF3
False
sage: [1] in PF3
False
sage: [1,1,3] in PF3
True
sage: [1,1,4] in PF3
False

class sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunctions_all
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

graded_component(n)
Return the graded component.

EXAMPLES:

sage: P = NonDecreasingParkingFunctions()
sage: P.graded_component(4) == NonDecreasingParkingFunctions(4)
True

class sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunctions_n(n)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The combinatorial class of non-decreasing parking functions of size 𝑛.

A non-decreasing parking function of size 𝑛 is a non-decreasing function 𝑓 from {1, . . . , 𝑛} to itself such that
for all 𝑖, one has 𝑓(𝑖) ≤ 𝑖.

The number of non-decreasing parking functions of size 𝑛 is the 𝑛-th Catalan number.

EXAMPLES:

sage: PF = NonDecreasingParkingFunctions(3)
sage: PF.list()
[[1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 3]]
sage: PF = NonDecreasingParkingFunctions(4)
sage: PF.list()
[[1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 1, 4], [1, 1, 2, 2], [1, 1, 2, 3],
→˓ [1, 1, 2, 4], [1, 1, 3, 3], [1, 1, 3, 4], [1, 2, 2, 2], [1, 2, 2, 3], [1, 2, 2,␣
→˓4], [1, 2, 3, 3], [1, 2, 3, 4]]
sage: [NonDecreasingParkingFunctions(i).cardinality() for i in range(10)]

(continues on next page)

5.1. Comprehensive Module List 1507

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]

Warning: The precise order in which the parking function are generated or listed is not fixed, and may
change in the future.

AUTHORS:

• Florent Hivert

Element
alias of NonDecreasingParkingFunction

cardinality()
Return the number of non-decreasing parking functions of size 𝑛.

This number is the 𝑛-th Catalan number.

EXAMPLES:

sage: PF = NonDecreasingParkingFunctions(0)
sage: PF.cardinality()
1
sage: PF = NonDecreasingParkingFunctions(1)
sage: PF.cardinality()
1
sage: PF = NonDecreasingParkingFunctions(3)
sage: PF.cardinality()
5
sage: PF = NonDecreasingParkingFunctions(5)
sage: PF.cardinality()
42

one()
Return the unit of this monoid.

This is the non-decreasing parking function [1, 2, . . . , n].

EXAMPLES:

sage: ndpf = NonDecreasingParkingFunctions(5)
sage: x = ndpf.random_element(); x # random
sage: e = ndpf.one()
sage: x == e*x == x*e
True

random_element()
Return a random parking function of the given size.

EXAMPLES:

sage: ndpf = NonDecreasingParkingFunctions(5)
sage: x = ndpf.random_element(); x # random
[1, 2, 2, 4, 5]
sage: x in ndpf
True

1508 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.non_decreasing_parking_function.is_a(x, n=None)
Check whether a list is a non-decreasing parking function.

If a size 𝑛 is specified, checks if a list is a non-decreasing parking function of size 𝑛.

5.1.150 𝜈-Dyck Words

A class of the 𝜈-Dyck word, see [PRV2017] for details.

AUTHORS:

• Aram Dermenjian (2020-09-26)

This file is based off the class DyckWords written by Mike Hansen, Dan Drake, Florent Hivert, Christian Stump, Mike
Zabrocki, Jean–Baptiste Priez and Travis Scrimshaw

class sage.combinat.nu_dyck_word.NuDyckWord(parent, dw, latex_options=None)
Bases: sage.combinat.combinat.CombinatorialElement

A 𝜈-Dyck word.

Given a lattice path 𝜈 in the Z2 grid starting at the origin (0, 0) consisting of North 𝑁 = (0, 1) and East
𝐸 = (1, 0) steps, a 𝜈-Dyck path is a lattice path in the Z2 grid starting at the origin (0, 0) and ending at the
same coordinate as 𝜈 such that it is weakly above 𝜈. A 𝜈-Dyck word is the representation of a 𝜈-Dyck path where
a North step is represented by a 1 and an East step is represented by a 0.

INPUT:

• k1 – A path for the 𝜈-Dyck word

• k2 – A path for 𝜈

EXAMPLES:

sage: dw = NuDyckWord([1,0,1,0],[1,0,0,1]); dw
[1, 0, 1, 0]
sage: print(dw)
NENE
sage: dw.height()
2

sage: dw = NuDyckWord('1010',[1,0,0,1]); dw
[1, 0, 1, 0]

sage: dw = NuDyckWord('NENE',[1,0,0,1]); dw
[1, 0, 1, 0]

sage: NuDyckWord([1,0,1,0],[1,0,0,1]).pretty_print()
__

_|x
| . .

sage: from sage.combinat.nu_dyck_word import update_ndw_symbols
sage: update_ndw_symbols(0,1)
sage: dw = NuDyckWord('0101001','0110010'); dw
[0, 1, 0, 1, 0, 0, 1]
sage: dw.pp()

__
(continues on next page)

5.1. Comprehensive Module List 1509

Combinatorics, Release 9.7

(continued from previous page)

|x
_| .

_|x .
| . . .
sage: update_ndw_symbols(1,0)

can_mutate(i)
Return True/False based off if mutable at height 𝑖.

Can only mutate if an east step is followed by a north step at height 𝑖.

OUTPUT:

Whether we can mutate at height of 𝑖.

EXAMPLES:

sage: NDW = NuDyckWord('10010100','00000111')
sage: NDW.can_mutate(1)
False
sage: NDW.can_mutate(3)
5

height()
Return the height of self.

The height is the number of north steps.

EXAMPLES:

sage: NuDyckWord('1101110011010010001101111000110000',
....: '1010101010101010101010101010101010').height()
17

heights()
Return the heights of each point on self.

We view the Dyck word as a Dyck path from (0, 0) to (𝑥, 𝑦) in the first quadrant by letting 1’s represent
steps in the direction (0, 1) and 0’s represent steps in the direction (1, 0).

The heights is the sequence of the 𝑦-coordinates of all 𝑥+ 𝑦 lattice points along the path.

EXAMPLES:

sage: NuDyckWord('010','010').heights()
[0, 0, 1, 1]
sage: NuDyckWord('110100','101010').heights()
[0, 1, 2, 2, 3, 3, 3]

horizontal_distance()
Return a list of how far each point is from 𝜈.

EXAMPLES:

sage: NDW = NuDyckWord('10010100','00000111')
sage: NDW.horizontal_distance()
[5, 5, 4, 3, 3, 2, 2, 1, 0]
sage: NDW = NuDyckWord('10010100','00001011')

(continues on next page)

1510 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: NDW.horizontal_distance()
[4, 5, 4, 3, 3, 2, 2, 1, 0]
sage: NDW = NuDyckWord('10011001000','00100101001')
sage: NDW.horizontal_distance()
[2, 4, 3, 2, 3, 5, 4, 3, 3, 2, 1, 0]

latex_options()
Return the latex options for use in the _latex_ function as a dictionary.

The default values are set using the options.

• color – (default: black) the line color.

• line width – (default: 2*``tikz_scale``) value representing the line width.

• nu_options – (default: 'rounded corners=1, color=red, line width=1') str to indicate
what the tikz options should be for path of 𝜈.

• points_color – (default: 'black') str to indicate color points should be drawn with.

• show_grid – (default: True) boolean value to indicate if grid should be shown.

• show_nu – (default: True) boolean value to indicate if 𝜈 should be shown.

• show_points – (default: False) boolean value to indicate if points should be shown on path.

• tikz_scale – (default: 1) scale for use with the tikz package.

EXAMPLES:

sage: NDW = NuDyckWord('010','010')
sage: NDW.latex_options()
{'color': black,
'line width': 2,
'nu_options': rounded corners=1, color=red, line width=1,
'points_color': black,
'show_grid': True,
'show_nu': True,
'show_points': False,
'tikz_scale': 1}

Todo: This should probably be merged into NuDyckWord.options.

length()
Return the length of self.

The length is the total number of steps.

EXAMPLES:

sage: NDW = NuDyckWord('10011001000','00100101001')
sage: NDW.length()
11

mutate(i)
Return a new 𝜈-Dyck Word if possible.

5.1. Comprehensive Module List 1511

Combinatorics, Release 9.7

If at height 𝑖 we have an east step E meeting a north step N then we calculate all horizontal distances from
this point until we find the first point that has the same horizontal distance to 𝜈. We let

• d is everything up until EN (not including EN)

• f be everything between N and the point with the same horizontal distance (including N)

• g is everything after f

See also:

can_mutate()

EXAMPLES:

sage: NDW = NuDyckWord('10010100','00000111')
sage: NDW.mutate(1)
sage: NDW.mutate(3)
[1, 0, 0, 1, 1, 0, 0, 0]

path()
Return the underlying path object.

EXAMPLES:

sage: NDW = NuDyckWord('10011001000','00100101001')
sage: NDW.path()
Path: 10011001000

plot(**kwds)
Plot a 𝜈-Dyck word as a continuous path.

EXAMPLES:

sage: NDW = NuDyckWord('010','010')
sage: NDW.plot()
Graphics object consisting of 1 graphics primitive

points()
Return an iterator for the points on the 𝜈-Dyck path.

EXAMPLES:

sage: list(NuDyckWord('110111001101001000110111100011000',
....: '101010101010101010101010101010101')._path.points())
[(0, 0),
(0, 1),
(0, 2),
(1, 2),
(1, 3),
(1, 4),
(1, 5),
(2, 5),
(3, 5),
(3, 6),
(3, 7),
(4, 7),
(4, 8),

(continues on next page)

1512 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(5, 8),
(6, 8),
(6, 9),
(7, 9),
(8, 9),
(9, 9),
(9, 10),
(9, 11),
(10, 11),
(10, 12),
(10, 13),
(10, 14),
(10, 15),
(11, 15),
(12, 15),
(13, 15),
(13, 16),
(13, 17),
(14, 17),
(15, 17),
(16, 17)]

pp(style=None, labelling=None)
Display a NuDyckWord as a lattice path in the Z2 grid.

If the style is “N-E”, then a cell below the diagonal is indicated by a period, whereas a cell below the
path but above the diagonal is indicated by an x. If a list of labels is included, they are displayed along the
vertical edges of the Dyck path.

INPUT:

• style – (default: None) can either be:

– None to use the option default

– “N-E” to show self as a path of north and east steps, or

• labelling – (if style is “N-E”) a list of labels assigned to the up steps in self.

• underpath – (if style is “N-E”, default: True) If True, an x to show the boxes between 𝜈 and the
𝜈-Dyck Path.

EXAMPLES:

sage: for ND in NuDyckWords('101010'): ND.pretty_print()
__

_| .
_| . .

| . . .
__

___| .
|x . .
| . . .

|x .
_| . .

(continues on next page)

5.1. Comprehensive Module List 1513

Combinatorics, Release 9.7

(continued from previous page)

| . . .

_|x .
|x . .
| . . .

|x x .
|x . .
| . . .

sage: nu = [1,0,1,0,1,0,1,0,1,0,1,0]
sage: ND = NuDyckWord([1,1,1,0,1,0,0,1,1,0,0,0],nu)
sage: ND.pretty_print()

|x x .

___|x . .
_|x x . . .

|x x
|x
|

sage: NuDyckWord([1,1,0,0,1,0],[1,0,1,0,1,0]).pretty_print(
....: labelling=[1,3,2])

__
___| . 2

|x . . 3
| . . . 1

sage: NuDyckWord('1101110011010010001101111000110000',
....: '1010101010101010101010101010101010').pretty_print(
....: labelling=list(range(1,18)))

|x x x . 17

_____|x x . . 16
|x x x x . . . 15
|x x x 14
|x x 13

_|x 12
|x 11

_____| 10
___|x x 9

_|x x x 8
|x x x 7

___|x x 6
|x x x 5
|x x 4
_|x 3

|x 2
| 1

1514 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: NuDyckWord().pretty_print()
.

pretty_print(style=None, labelling=None)
Display a NuDyckWord as a lattice path in the Z2 grid.

If the style is “N-E”, then a cell below the diagonal is indicated by a period, whereas a cell below the
path but above the diagonal is indicated by an x. If a list of labels is included, they are displayed along the
vertical edges of the Dyck path.

INPUT:

• style – (default: None) can either be:

– None to use the option default

– “N-E” to show self as a path of north and east steps, or

• labelling – (if style is “N-E”) a list of labels assigned to the up steps in self.

• underpath – (if style is “N-E”, default: True) If True, an x to show the boxes between 𝜈 and the
𝜈-Dyck Path.

EXAMPLES:

sage: for ND in NuDyckWords('101010'): ND.pretty_print()
__

_| .
_| . .

| . . .
__

___| .
|x . .
| . . .

|x .
_| . .

| . . .

_|x .
|x . .
| . . .

|x x .
|x . .
| . . .

sage: nu = [1,0,1,0,1,0,1,0,1,0,1,0]
sage: ND = NuDyckWord([1,1,1,0,1,0,0,1,1,0,0,0],nu)
sage: ND.pretty_print()

|x x .

___|x . .
_|x x . . .

|x x
|x
|

5.1. Comprehensive Module List 1515

Combinatorics, Release 9.7

sage: NuDyckWord([1,1,0,0,1,0],[1,0,1,0,1,0]).pretty_print(
....: labelling=[1,3,2])

__
___| . 2

|x . . 3
| . . . 1

sage: NuDyckWord('1101110011010010001101111000110000',
....: '1010101010101010101010101010101010').pretty_print(
....: labelling=list(range(1,18)))

|x x x . 17

_____|x x . . 16
|x x x x . . . 15
|x x x 14
|x x 13

_|x 12
|x 11

_____| 10
___|x x 9

_|x x x 8
|x x x 7

___|x x 6
|x x x 5
|x x 4
_|x 3

|x 2
| 1

sage: NuDyckWord().pretty_print()
.

set_latex_options(D)
Set the latex options for use in the _latex_ function.

The default values are set in the __init__ function.

• color – (default: black) the line color.

• line width – (default: 2× tikz_scale) value representing the line width.

• nu_options – (default: 'rounded corners=1, color=red, line width=1') str to indicate
what the tikz options should be for path of 𝜈.

• points_color – (default: 'black') str to indicate color points should be drawn with.

• show_grid – (default: True) boolean value to indicate if grid should be shown.

• show_nu – (default: True) boolean value to indicate if 𝜈 should be shown.

• show_points – (default: False) boolean value to indicate if points should be shown on path.

• tikz_scale – (default: 1) scale for use with the tikz package.

INPUT:

• D – a dictionary with a list of latex parameters to change

EXAMPLES:

1516 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: NDW = NuDyckWord('010','010')
sage: NDW.set_latex_options({"tikz_scale":2})
sage: NDW.set_latex_options({"color":"blue", "show_points":True})

Todo: This should probably be merged into NuDyckWord.options.

width()
Return the width of self.

The width is the number of east steps.

EXAMPLES:

sage: NuDyckWord('110111001101001000110111100011000',
....: '101010101010101010101010101010101').width()
16

widths()
Return the widths of each point on self.

We view the Dyck word as a Dyck path from (0, 0) to (𝑥, 𝑦) in the first quadrant by letting 1’s represent
steps in the direction (0, 1) and 0’s represent steps in the direction (1, 0).

The widths is the sequence of the 𝑥-coordinates of all 𝑥+ 𝑦 lattice points along the path.

EXAMPLES:

sage: NuDyckWord('010','010').widths()
[0, 1, 1, 2]
sage: NuDyckWord('110100','101010').widths()
[0, 0, 0, 1, 1, 2, 3]

class sage.combinat.nu_dyck_word.NuDyckWords(nu=())
Bases: sage.structure.parent.Parent

𝜈-Dyck words.

Given a lattice path 𝜈 in the Z2 grid starting at the origin (0, 0) consisting of North 𝑁 = (0, 1) and East
𝐸 = (1, 0) steps, a 𝜈-Dyck path is a lattice path in the`ZZ^2` grid starting at the origin (0, 0) and ending at
the same coordinate as 𝜈 such that it is weakly above 𝜈. A 𝜈-Dyck word is the representation of a 𝜈-Dyck path
where a North step is represented by a 1 and an East step is represented by a 0.

INPUT:

• nu – the base lattice path.

EXAMPLES:

sage: NDW = NuDyckWords('1010'); NDW
[1, 0, 1, 0] Dyck words
sage: [1,0,1,0] in NDW
True
sage: [1,1,0,0] in NDW
True
sage: [1,0,0,1] in NDW
False
sage: [0,1,0,1] in NDW

(continues on next page)

5.1. Comprehensive Module List 1517

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

False
sage: NDW.cardinality()
2

Element
alias of NuDyckWord

cardinality()
Return the number of 𝜈-Dyck words.

EXAMPLES:

sage: NDW = NuDyckWords('101010'); NDW.cardinality()
5
sage: NDW = NuDyckWords('1010010'); NDW.cardinality()
7
sage: NDW = NuDyckWords('100100100'); NDW.cardinality()
12

options(*get_value, **set_value)
Set and display the options for 𝜈-Dyck words. If no parameters are set, then the function returns a copy of
the options dictionary.

The options to 𝜈-Dyck words can be accessed as the method NuDyckWords.options() of NuDyckWords
and related parent classes.

@OPTIONS

EXAMPLES:

sage: ND = NuDyckWords('101')
sage: ND
[1, 0, 1] Dyck words
sage: ND.options
Current options for NuDyckWords
- ascii_art: pretty_output
- diagram_style: grid
- display: list
- latex_color: black
- latex_line_width_scalar: 2
- latex_nu_options: rounded corners=1, color=red, line width=1
- latex_points_color: black
- latex_show_grid: True
- latex_show_nu: True
- latex_show_points: False
- latex_tikz_scale: 1

See GlobalOptions for more features of these options.

sage.combinat.nu_dyck_word.path_weakly_above_other(path, other)
Test if path is weakly above other.

A path 𝑃 is wealy above another path𝑄 if 𝑃 and𝑄 are the same length and if any prefix of length 𝑛 of𝑄 contains
more North steps than the prefix of length 𝑛 of 𝑃 .

INPUT:

• path – The path to verify is weakly above the other path.

1518 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

• other – The other path to verify is weakly below the path.

OUTPUT:

bool

EXAMPLES:

sage: from sage.combinat.nu_dyck_word import path_weakly_above_other
sage: path_weakly_above_other('1001','0110')
False
sage: path_weakly_above_other('1001','0101')
True
sage: path_weakly_above_other('1111','0101')
False
sage: path_weakly_above_other('111100','0101')
False

sage.combinat.nu_dyck_word.replace_dyck_char(x)
A map sending an opening character ('1', 'N', and '(') to ndw_open_symbol, a closing character ('0', 'E',
and ')') to ndw_close_symbol, and raising an error on any input other than one of the opening or closing
characters.

This is the inverse map of replace_dyck_symbol().

INPUT:

• x – str - A '1', '0', 'N', 'E', '(' or ')'

OUTPUT:

• If x is an opening character, replace x with the constant ndw_open_symbol.

• If x is a closing character, replace x with the constant ndw_close_symbol.

• Raise a ValueError if x is neither an opening nor a closing character.

See also:

replace_dyck_symbol()

EXAMPLES:

sage: from sage.combinat.nu_dyck_word import replace_dyck_char
sage: replace_dyck_char('(')
1
sage: replace_dyck_char(')')
0
sage: replace_dyck_char(1)
Traceback (most recent call last):
...
ValueError

sage.combinat.nu_dyck_word.replace_dyck_symbol(x, open_char='N', close_char='E')
A map sending ndw_open_symbol to open_char and ndw_close_symbol to close_char, and raising an
error on any input other than ndw_open_symbol and ndw_close_symbol. The values of the constants
ndw_open_symbol and ndw_close_symbol are subject to change.

This is the inverse map of replace_dyck_char().

INPUT:

5.1. Comprehensive Module List 1519

Combinatorics, Release 9.7

• x – either ndw_open_symbol or ndw_close_symbol.

• open_char – str (optional) default 'N'

• close_char – str (optional) default 'E'

OUTPUT:

• If x is ndw_open_symbol, replace x with open_char.

• If x is ndw_close_symbol, replace x with close_char.

• If x is neither ndw_open_symbol nor ndw_close_symbol, a ValueError is raised.

See also:

replace_dyck_char()

EXAMPLES:

sage: from sage.combinat.nu_dyck_word import replace_dyck_symbol
sage: replace_dyck_symbol(1)
'N'
sage: replace_dyck_symbol(0)
'E'
sage: replace_dyck_symbol(3)
Traceback (most recent call last):
...
ValueError

sage.combinat.nu_dyck_word.to_word_path(word)
Convert input into a word path over an appropriate alphabet.

Helper function.

INPUT:

• word – word to convert to wordpath

OUTPUT:

• A FiniteWordPath_north_east object.

EXAMPLES:

sage: from sage.combinat.nu_dyck_word import to_word_path
sage: wp = to_word_path('NEENENEN'); wp
Path: 10010101
sage: from sage.combinat.words.paths import FiniteWordPath_north_east
sage: isinstance(wp,FiniteWordPath_north_east)
True
sage: to_word_path('1001')
Path: 1001
sage: to_word_path([0,1,0,0,1,0])
Path: 010010

sage.combinat.nu_dyck_word.update_ndw_symbols(os, cs)
A way to alter the open and close symbols from sage.

INPUT:

• os – the open symbol

1520 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• cs – the close symbol

EXAMPLES:

sage: from sage.combinat.nu_dyck_word import update_ndw_symbols
sage: update_ndw_symbols(0,1)
sage: dw = NuDyckWord('0101001','0110010'); dw
[0, 1, 0, 1, 0, 0, 1]

sage: dw = NuDyckWord('1010110','1001101'); dw
Traceback (most recent call last):
...
ValueError: invalid nu-Dyck word
sage: update_ndw_symbols(1,0)

5.1.151 𝜈-Tamari lattice

A class of the 𝜈-Tamari lattice, see [PRV2017] for details.

These lattices depend on one parameter 𝜈 where 𝜈 is a path of North and East steps.

The elements are nu-Dyck paths which are weakly above 𝜈.

To use the provided functionality, you should import 𝜈-Tamari lattices by typing:

sage: from sage.combinat.nu_tamari_lattice import NuTamariLattice

Then,

sage: NuTamariLattice([1,1,1,0,0,1,1,0])
Finite lattice containing 6 elements
sage: NuTamariLattice([0,0,0,1,1,0,0,1])
Finite lattice containing 40 elements

The classical Tamari lattices and the Generalized Tamari lattices are special cases of this construction and are also
available with this poset:

sage: NuTamariLattice([1,0,1,0,1,0])
Finite lattice containing 5 elements

sage: NuTamariLattice([1,0,0,1,0,0,1,0,0])
Finite lattice containing 12 elements

See also:

For more detailed information see NuTamariLattice(). For more information on the standard Tamari
lattice see sage.combinat.tamari_lattices.TamariLattice(), sage.combinat.tamari_lattices.
GeneralizedTamariLattice()

sage.combinat.nu_tamari_lattice.NuTamariLattice(nu)
Return the 𝜈-Tamari lattice.

INPUT:

• 𝜈 – a list of 0s and 1s or a string of 0s and 1s.

OUTPUT:

5.1. Comprehensive Module List 1521

Combinatorics, Release 9.7

a finite lattice

The elements of the lattice are nu-Dyck paths weakly above 𝜈.

The usual Tamari lattice is the special case where 𝜈 = (𝑁𝐸)ℎ where ℎ is the height.

Other special cases give the 𝑚-Tamari lattices studied in [BMFPR].

EXAMPLES:

sage: from sage.combinat.nu_tamari_lattice import NuTamariLattice
sage: NuTamariLattice([1,0,1,0,0,1,0])
Finite lattice containing 7 elements
sage: NuTamariLattice([1,0,1,0,1,0])
Finite lattice containing 5 elements
sage: NuTamariLattice([1,0,1,0,1,0,1,0])
Finite lattice containing 14 elements
sage: NuTamariLattice([1,0,1,0,1,0,0,0,1])
Finite lattice containing 24 elements

5.1.152 Ordered Rooted Trees

AUTHORS:

• Florent Hivert (2010-2011): initial revision

• Frédéric Chapoton (2010): contributed some methods

class sage.combinat.ordered_tree.LabelledOrderedTree(parent, children, label=None, check=True)
Bases: sage.combinat.abstract_tree.AbstractLabelledClonableTree, sage.combinat.
ordered_tree.OrderedTree

Labelled ordered trees.

A labelled ordered tree is an ordered tree with a label attached at each node.

INPUT:

• children – a list or tuple or more generally any iterable of trees or object convertible to trees

• label – any Sage object (default: None)

EXAMPLES:

sage: x = LabelledOrderedTree([], label = 3); x
3[]
sage: LabelledOrderedTree([x, x, x], label = 2)
2[3[], 3[], 3[]]
sage: LabelledOrderedTree((x, x, x), label = 2)
2[3[], 3[], 3[]]
sage: LabelledOrderedTree([[],[[], []]], label = 3)
3[None[], None[None[], None[]]]

left_right_symmetry()
Return the symmetric tree of self.

The symmetric tree 𝑠(𝑇) of a labelled ordered tree 𝑇 is defined as follows: If 𝑇 is a labelled ordered tree
with children 𝐶1, 𝐶2, . . . , 𝐶𝑘 (listed from left to right), then the symmetric tree 𝑠(𝑇) of 𝑇 is a labelled
ordered tree with children 𝑠(𝐶𝑘), 𝑠(𝐶𝑘−1), . . . , 𝑠(𝐶1) (from left to right), and with the same root label as
𝑇 .

1522 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Tamari_lattice

Combinatorics, Release 9.7

Note: If you have a subclass of LabelledOrderedTree() which also inherits from another subclass of
OrderedTree() which does not come with a labelling, then (depending on the method resolution order)
it might happen that this method gets overridden by an implementation from that other subclass, and thus
forgets about the labels. In this case you need to manually override this method on your subclass.

EXAMPLES:

sage: L2 = LabelledOrderedTree([], label=2)
sage: L3 = LabelledOrderedTree([], label=3)
sage: T23 = LabelledOrderedTree([L2, L3], label=4)
sage: T23.left_right_symmetry()
4[3[], 2[]]
sage: T223 = LabelledOrderedTree([L2, T23], label=17)
sage: T223.left_right_symmetry()
17[4[3[], 2[]], 2[]]
sage: T223.left_right_symmetry().left_right_symmetry() == T223
True

sort_key()
Return a tuple of nonnegative integers encoding the labelled tree self.

The first entry of the tuple is a pair consisting of the number of children of the root and the label of the
root. Then the rest of the tuple is the concatenation of the tuples associated to these children (we view the
children of a tree as trees themselves) from left to right.

This tuple characterizes the labelled tree uniquely, and can be used to sort the labelled ordered trees provided
that the labels belong to a type which is totally ordered.

Warning: This method overrides OrderedTree.sort_key() and returns a result different from
what the latter would return, as it wants to encode the whole labelled tree including its labelling
rather than just the unlabelled tree. Therefore, be careful with using this method on subclasses of
LabelledOrderedTree; under some circumstances they could inherit it from another superclass in-
stead of from OrderedTree, which would cause the method to forget the labelling. See the docstring
of OrderedTree.sort_key().

EXAMPLES:

sage: L2 = LabelledOrderedTree([], label=2)
sage: L3 = LabelledOrderedTree([], label=3)
sage: T23 = LabelledOrderedTree([L2, L3], label=4)
sage: T23.sort_key()
((2, 4), (0, 2), (0, 3))
sage: T32 = LabelledOrderedTree([L3, L2], label=5)
sage: T32.sort_key()
((2, 5), (0, 3), (0, 2))
sage: T23322 = LabelledOrderedTree([T23, T32, L2], label=14)
sage: T23322.sort_key()
((3, 14), (2, 4), (0, 2), (0, 3), (2, 5), (0, 3), (0, 2), (0, 2))

class sage.combinat.ordered_tree.LabelledOrderedTrees(category=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

5.1. Comprehensive Module List 1523

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

This is a parent stub to serve as a factory class for trees with various label constraints.

EXAMPLES:

sage: LOT = LabelledOrderedTrees(); LOT
Labelled ordered trees
sage: x = LOT([], label = 3); x
3[]
sage: x.parent() is LOT
True
sage: y = LOT([x, x, x], label = 2); y
2[3[], 3[], 3[]]
sage: y.parent() is LOT
True

Element
alias of LabelledOrderedTree

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: LabelledOrderedTrees().cardinality()
+Infinity

labelled_trees()
Return the set of labelled trees associated to self.

This is precisely self, because self already is the set of labelled ordered trees.

EXAMPLES:

sage: LabelledOrderedTrees().labelled_trees()
Labelled ordered trees
sage: LOT = LabelledOrderedTrees()
sage: x = LOT([], label = 3)
sage: y = LOT([x, x, x], label = 2)
sage: y.canonical_labelling()
1[2[], 3[], 4[]]

unlabelled_trees()
Return the set of unlabelled trees associated to self.

This is the set of ordered trees, since self is the set of labelled ordered trees.

EXAMPLES:

sage: LabelledOrderedTrees().unlabelled_trees()
Ordered trees

class sage.combinat.ordered_tree.OrderedTree(parent=None, children=None, check=True)
Bases: sage.combinat.abstract_tree.AbstractClonableTree, sage.structure.list_clone.
ClonableList

The class of (ordered rooted) trees.

An ordered tree is constructed from a node, called the root, on which one has grafted a possibly empty list of
trees. There is a total order on the children of a node which is given by the order of the elements in the list. Note

1524 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList

Combinatorics, Release 9.7

that there is no empty ordered tree (so the smallest ordered tree consists of just one node).

INPUT:

One can create a tree from any list (or more generally iterable) of trees or objects convertible to a tree. Alterna-
tively a string is also accepted. The syntax is the same as for printing: children are grouped by square brackets.

EXAMPLES:

sage: x = OrderedTree([])
sage: x1 = OrderedTree([x,x])
sage: x2 = OrderedTree([[],[]])
sage: x1 == x2
True
sage: tt1 = OrderedTree([x,x1,x2])
sage: tt2 = OrderedTree([[], [[], []], x2])
sage: tt1 == tt2
True

sage: OrderedTree([]) == OrderedTree()
True

is_empty()
Return if self is the empty tree.

For ordered trees, this always returns False.

Note: this is different from bool(t) which returns whether t has some child or not.

EXAMPLES:

sage: t = OrderedTrees(4)([[],[[]]])
sage: t.is_empty()
False
sage: bool(t)
True

left_right_symmetry()
Return the symmetric tree of self.

The symmetric tree 𝑠(𝑇) of an ordered tree 𝑇 is defined as follows: If 𝑇 is an ordered tree with children
𝐶1, 𝐶2, . . . , 𝐶𝑘 (listed from left to right), then the symmetric tree 𝑠(𝑇) of 𝑇 is the ordered tree with children
𝑠(𝐶𝑘), 𝑠(𝐶𝑘−1), . . . , 𝑠(𝐶1) (from left to right).

EXAMPLES:

sage: T = OrderedTree([[],[[]]])
sage: T.left_right_symmetry()
[[[]], []]
sage: T = OrderedTree([[], [[], []], [[], [[]]]])
sage: T.left_right_symmetry()
[[[[]], []], [[], []], []]

normalize(inplace=False)
Return the normalized tree of self.

INPUT:

5.1. Comprehensive Module List 1525

Combinatorics, Release 9.7

• inplace – boolean, (default False) if True, then self is modified and nothing returned. Otherwise
the normalized tree is returned.

The normalization of an ordered tree 𝑡 is an ordered tree 𝑠which has the property that 𝑡 and 𝑠 are isomorphic
as unordered rooted trees, and that if two ordered trees 𝑡 and 𝑡′ are isomorphic as unordered rooted trees,
then the normalizations of 𝑡 and 𝑡′ are identical. In other words, normalization is a map from the set of
ordered trees to itself which picks a representative from every equivalence class with respect to the relation
of “being isomorphic as unordered trees”, and maps every ordered tree to the representative chosen from
its class.

This map proceeds recursively by first normalizing every subtree, and then sorting the subtrees according
to the value of the sort_key() method.

Consider the quotient map 𝜋 that sends a planar rooted tree to the associated unordered rooted tree. Nor-
malization is the composite 𝑠 ∘ 𝜋, where 𝑠 is a section of 𝜋.

EXAMPLES:

sage: OT = OrderedTree
sage: ta = OT([[],[[]]])
sage: tb = OT([[[]],[]])
sage: ta.normalize() == tb.normalize()
True
sage: ta == tb
False

An example with inplace normalization:

sage: OT = OrderedTree
sage: ta = OT([[],[[]]])
sage: tb = OT([[[]],[]])
sage: ta.normalize(inplace=True); ta
[[], [[]]]
sage: tb.normalize(inplace=True); tb
[[], [[]]]

plot()
Plot the tree self.

Warning: For a labelled tree, this will fail unless all labels are distinct. For unlabelled trees, some ar-
bitrary labels are chosen. Use _latex_(), view, _ascii_art_() or pretty_print for more faithful
representations of the data of the tree.

EXAMPLES:

sage: p = OrderedTree([[[]],[],[]])
sage: ascii_art(p)
_o__
/ / /

o o o
|
o
sage: p.plot()
Graphics object consisting of 10 graphics primitives

1526 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

1

2

3

4 5

5.1. Comprehensive Module List 1527

Combinatorics, Release 9.7

Now a labelled example:

sage: g = OrderedTree([[],[[]],[]]).canonical_labelling()
sage: ascii_art(g)
_1__
/ / /

2 3 5
|
4

sage: g.plot()
Graphics object consisting of 10 graphics primitives

1

2 3

4

5

sort_key()
Return a tuple of nonnegative integers encoding the ordered tree self.

The first entry of the tuple is the number of children of the root. Then the rest of the tuple is the concatenation
of the tuples associated to these children (we view the children of a tree as trees themselves) from left to
right.

This tuple characterizes the tree uniquely, and can be used to sort the ordered trees.

Note: By default, this method does not encode any extra structure that self might have – e.g., if you were
to define a class EdgeColoredOrderedTreewhich implements edge-colored trees and which inherits from
OrderedTree, then the sort_key() method it would inherit would forget about the colors of the edges

1528 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(and thus would not characterize edge-colored trees uniquely). If you want to preserve extra data, you need
to override this method or use a new method. For instance, on the LabelledOrderedTree subclass, this
method is overridden by a slightly different method, which encodes not only the numbers of children of the
nodes of self, but also their labels. Be careful with using overridden methods, however: If you have (say)
a class BalancedTree which inherits from OrderedTree and which encodes balanced trees, and if you
have another class BalancedLabelledOrderedTree which inherits both from BalancedOrderedTree
and from LabelledOrderedTree, then (depending on the MRO) the default sort_key() method on
BalancedLabelledOrderedTree (unless manually overridden) will be taken either from BalancedTree
or from LabelledOrderedTree, and in the former case will ignore the labelling!

EXAMPLES:

sage: RT = OrderedTree
sage: RT([[],[[]]]).sort_key()
(2, 0, 1, 0)
sage: RT([[[]],[]]).sort_key()
(2, 1, 0, 0)

to_binary_tree_left_branch()
Return a binary tree of size 𝑛 − 1 (where 𝑛 is the size of 𝑡, and where 𝑡 is self) obtained from 𝑡 by the
following recursive rule:

• if 𝑥 is the left brother of 𝑦 in 𝑡, then 𝑥 becomes the left child of 𝑦;

• if 𝑥 is the last child of 𝑦 in 𝑡, then 𝑥 becomes the right child of 𝑦,

and removing the root of 𝑡.

EXAMPLES:

sage: T = OrderedTree([[],[]])
sage: T.to_binary_tree_left_branch()
[[., .], .]
sage: T = OrderedTree([[], [[], []], [[], [[]]]])
sage: T.to_binary_tree_left_branch()
[[[., .], [[., .], .]], [[., .], [., .]]]

to_binary_tree_right_branch()
Return a binary tree of size 𝑛 − 1 (where 𝑛 is the size of 𝑡, and where 𝑡 is self) obtained from 𝑡 by the
following recursive rule:

• if 𝑥 is the right brother of 𝑦 in 𝑡, then`x` becomes the right child of 𝑦;

• if 𝑥 is the first child of 𝑦 in 𝑡, then 𝑥 becomes the left child of 𝑦,

and removing the root of 𝑡.

EXAMPLES:

sage: T = OrderedTree([[],[]])
sage: T.to_binary_tree_right_branch()
[., [., .]]
sage: T = OrderedTree([[], [[], []], [[], [[]]]])
sage: T.to_binary_tree_right_branch()
[., [[., [., .]], [[., [[., .], .]], .]]]

5.1. Comprehensive Module List 1529

Combinatorics, Release 9.7

to_dyck_word()
Return the Dyck path corresponding to self where the maximal height of the Dyck path is the depth of
self .

EXAMPLES:

sage: T = OrderedTree([[],[]])
sage: T.to_dyck_word()
[1, 0, 1, 0]
sage: T = OrderedTree([[],[[]]])
sage: T.to_dyck_word()
[1, 0, 1, 1, 0, 0]
sage: T = OrderedTree([[], [[], []], [[], [[]]]])
sage: T.to_dyck_word()
[1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0]

to_parallelogram_polyomino(bijection=None)
Return a polyomino parallelogram.

INPUT:

• bijection – (default:'Boussicault-Socci') is the name of the bijection to use. Possible values
are 'Boussicault-Socci', 'via dyck and Delest-Viennot'.

EXAMPLES:

sage: T = OrderedTree([[[], [[], [[]]]], [], [[[],[]]], [], []])
sage: T.to_parallelogram_polyomino(bijection='Boussicault-Socci')
[[0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1], [1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,␣
→˓1, 0, 0]]
sage: T = OrderedTree([])
sage: T.to_parallelogram_polyomino()
[[1], [1]]
sage: T = OrderedTree([[]])
sage: T.to_parallelogram_polyomino()
[[0, 1], [1, 0]]
sage: T = OrderedTree([[],[]])
sage: T.to_parallelogram_polyomino()
[[0, 1, 1], [1, 1, 0]]
sage: T = OrderedTree([[[]]])
sage: T.to_parallelogram_polyomino()
[[0, 0, 1], [1, 0, 0]]

to_poset(root_to_leaf=False)
Return the poset obtained by interpreting the tree as a Hasse diagram. The default orientation is from leaves
to root but you can pass root_to_leaf=True to obtain the inverse orientation.

INPUT:

• root_to_leaf – boolean, true if the poset orientation should be from root to leaves. It is false by
default.

EXAMPLES:

sage: t = OrderedTree([])
sage: t.to_poset()
Finite poset containing 1 elements

(continues on next page)

1530 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: p = OrderedTree([[[]],[],[]]).to_poset()
sage: p.height(), p.width()
(3, 3)

If the tree is labelled, we use its labelling to label the poset. Otherwise, we use the poset canonical labelling:

sage: t = OrderedTree([[[]],[],[]]).canonical_labelling().to_poset()
sage: t.height(), t.width()
(3, 3)

to_undirected_graph()
Return the undirected graph obtained from the tree nodes and edges.

The graph is endowed with an embedding, so that it will be displayed correctly.

EXAMPLES:

sage: t = OrderedTree([])
sage: t.to_undirected_graph()
Graph on 1 vertex
sage: t = OrderedTree([[[]],[],[]])
sage: t.to_undirected_graph()
Graph on 5 vertices

If the tree is labelled, we use its labelling to label the graph. This will fail if the labels are not all distinct.
Otherwise, we use the graph canonical labelling which means that two different trees can have the same
graph.

EXAMPLES:

sage: t = OrderedTree([[[]],[],[]])
sage: t.canonical_labelling().to_undirected_graph()
Graph on 5 vertices

class sage.combinat.ordered_tree.OrderedTrees
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Factory for ordered trees

INPUT:

• size – (optional) an integer

OUTPUT:

• the set of all ordered trees (of the given size if specified)

EXAMPLES:

sage: OrderedTrees()
Ordered trees

sage: OrderedTrees(2)
Ordered trees of size 2

5.1. Comprehensive Module List 1531

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

Note: this is a factory class whose constructor returns instances of subclasses.

Note: the fact that OrderedTrees is a class instead of a simple callable is an implementation detail. It could be
changed in the future and one should not rely on it.

leaf()
Return a leaf tree with self as parent

EXAMPLES:

sage: OrderedTrees().leaf()
[]

class sage.combinat.ordered_tree.OrderedTrees_all
Bases: sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets, sage.
combinat.ordered_tree.OrderedTrees

The set of all ordered trees.

EXAMPLES:

sage: OT = OrderedTrees(); OT
Ordered trees
sage: OT.cardinality()
+Infinity

Element
alias of OrderedTree

labelled_trees()
Return the set of labelled trees associated to self

EXAMPLES:

sage: OrderedTrees().labelled_trees()
Labelled ordered trees

unlabelled_trees()
Return the set of unlabelled trees associated to self

EXAMPLES:

sage: OrderedTrees().unlabelled_trees()
Ordered trees

class sage.combinat.ordered_tree.OrderedTrees_size(size)
Bases: sage.combinat.ordered_tree.OrderedTrees

The enumerated sets of binary trees of a given size

EXAMPLES:

sage: S = OrderedTrees(3); S
Ordered trees of size 3
sage: S.cardinality()

(continues on next page)

1532 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

(continued from previous page)

2
sage: S.list()
[[[], []], [[[]]]]

cardinality()
The cardinality of self

This is a Catalan number.

element_class()
The class of the element of self

EXAMPLES:

sage: from sage.combinat.ordered_tree import OrderedTrees_size, OrderedTrees_all
sage: S = OrderedTrees_size(3)
sage: S.element_class is OrderedTrees().element_class
True
sage: S.first().__class__ == OrderedTrees_all().first().__class__
True

random_element()
Return a random OrderedTree with uniform probability.

This method generates a random DyckWord and then uses a bijection between Dyck words and ordered
trees.

EXAMPLES:

sage: OrderedTrees(5).random_element() # random
[[[], []], []]
sage: OrderedTrees(0).random_element()
Traceback (most recent call last):
...
EmptySetError: There are no ordered trees of size 0
sage: OrderedTrees(1).random_element()
[]

5.1.153 Output functions

These are the output functions for latexing and ascii/unicode art versions of partitions and tableaux.

AUTHORS:

• Mike Hansen (?): initial version

• Andrew Mathas (2013-02-14): Added support for displaying conventions and lines, and tableaux of skew parti-
tion, composition, and skew/composition/partition/tableaux tuple shape.

• Travis Scrimshaw (2020-08): Added support for ascii/unicode art

sage.combinat.output.ascii_art_table(data, use_unicode=False, convention='English')
Return an ascii art table of data.

EXAMPLES:

5.1. Comprehensive Module List 1533

Combinatorics, Release 9.7

sage: from sage.combinat.output import ascii_art_table

sage: data = [[None, None, 1], [2, 2], [3,4,5], [None, None, 10], [], [6]]
sage: print(ascii_art_table(data))

+----+
| 1 |

+---+---+----+
| 2 | 2 |
+---+---+----+
| 3 | 4 | 5 |
+---+---+----+

| 10 |
+----+

+---+
| 6 |
+---+
sage: print(ascii_art_table(data, use_unicode=True))

+—-+
| 1 |

+—+—+—-+
| 2 | 2 |
+—+—+—-+
| 3 | 4 | 5 |
+—+—+—-+

| 10 |
+—-+

+—+
| 6 |
+—+

sage: data = [[1, None, 2], [None, 2]]
sage: print(ascii_art_table(data))
+---+ +---+
| 1 | | 2 |
+---+---+---+

| 2 |
+---+

sage: print(ascii_art_table(data, use_unicode=True))
+—+ +—+
| 1 | | 2 |
+—+—+—+

| 2 |
+—+

sage.combinat.output.tex_from_array(array, with_lines=True)
Return a latex string for a two dimensional array of partition, composition or skew composition shape

INPUT:

• array – a list of list

• with_lines – a boolean (default: True) Whether to draw a line to separate the entries in the array.

1534 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Empty rows are allowed; however, such rows should be given as [None] rather than [].

The array is drawn using either the English or French convention following Tableaux.options().

See also:

tex_from_array_tuple()

EXAMPLES:

sage: from sage.combinat.output import tex_from_array
sage: print(tex_from_array([[1,2,3],[4,5]]))
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\cline{1-3}
\lr{1}&\lr{2}&\lr{3}\\\cline{1-3}
\lr{4}&\lr{5}\\\cline{1-2}
\end{array}$}
}
sage: print(tex_from_array([[1,2,3],[4,5]], with_lines=False))
{\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}
→˓}}
\raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\\
\lr{1}&\lr{2}&\lr{3}\\
\lr{4}&\lr{5}\\
\end{array}$}
}
sage: print(tex_from_array([[1,2,3],[4,5,6,7],[8]]))
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\cline{1-3}
\lr{1}&\lr{2}&\lr{3}\\\cline{1-4}
\lr{4}&\lr{5}&\lr{6}&\lr{7}\\\cline{1-4}
\lr{8}\\\cline{1-1}
\end{array}$}
}
sage: print(tex_from_array([[1,2,3],[4,5,6,7],[8]], with_lines=False))
{\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}
→˓}}
\raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\\
\lr{1}&\lr{2}&\lr{3}\\
\lr{4}&\lr{5}&\lr{6}&\lr{7}\\
\lr{8}\\
\end{array}$}
}
sage: print(tex_from_array([[None,None,3],[None,5,6,7],[8]]))
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\cline{3-3}
&&\lr{3}\\\cline{2-4}
&\lr{5}&\lr{6}&\lr{7}\\\cline{1-4}
\lr{8}\\\cline{1-1}
\end{array}$}
}
sage: print(tex_from_array([[None,None,3],[None,5,6,7],[None,8]]))

(continues on next page)

5.1. Comprehensive Module List 1535

Combinatorics, Release 9.7

(continued from previous page)

{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\cline{3-3}
&&\lr{3}\\\cline{2-4}
&\lr{5}&\lr{6}&\lr{7}\\\cline{2-4}
&\lr{8}\\\cline{2-2}
\end{array}$}
}
sage: print(tex_from_array([[None,None,3],[None,5,6,7],[8]], with_lines=False))
{\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}
→˓}}
\raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\\
&&\lr{3}\\
&\lr{5}&\lr{6}&\lr{7}\\
\lr{8}\\
\end{array}$}
}
sage: print(tex_from_array([[None,None,3],[None,5,6,7],[None,8]], with_lines=False))
{\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}
→˓}}
\raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\\
&&\lr{3}\\
&\lr{5}&\lr{6}&\lr{7}\\
&\lr{8}\\
\end{array}$}
}
sage: Tableaux.options.convention="french"
sage: print(tex_from_array([[1,2,3],[4,5]]))
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\cline{1-2}
\lr{4}&\lr{5}\\\cline{1-3}
\lr{1}&\lr{2}&\lr{3}\\\cline{1-3}
\end{array}$}
}
sage: print(tex_from_array([[1,2,3],[4,5]], with_lines=False))
{\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}
→˓}}
\raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\\
\lr{4}&\lr{5}\\
\lr{1}&\lr{2}&\lr{3}\\
\end{array}$}
}
sage: print(tex_from_array([[1,2,3],[4,5,6,7],[8]]))
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\cline{1-1}
\lr{8}\\\cline{1-4}
\lr{4}&\lr{5}&\lr{6}&\lr{7}\\\cline{1-4}
\lr{1}&\lr{2}&\lr{3}\\\cline{1-3}
\end{array}$}
}

(continues on next page)

1536 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: print(tex_from_array([[1,2,3],[4,5,6,7],[8]], with_lines=False))
{\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}
→˓}}
\raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\\
\lr{8}\\
\lr{4}&\lr{5}&\lr{6}&\lr{7}\\
\lr{1}&\lr{2}&\lr{3}\\
\end{array}$}
}
sage: print(tex_from_array([[None,None,3],[None,5,6,7],[8]]))
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\cline{1-1}
\lr{8}\\\cline{1-4}
&\lr{5}&\lr{6}&\lr{7}\\\cline{2-4}
&&\lr{3}\\\cline{3-3}
\end{array}$}
}
sage: print(tex_from_array([[None,None,3],[None,5,6,7],[None,8]]))
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\cline{2-2}
&\lr{8}\\\cline{2-4}
&\lr{5}&\lr{6}&\lr{7}\\\cline{2-4}
&&\lr{3}\\\cline{3-3}
\end{array}$}
}
sage: print(tex_from_array([[None,None,3],[None,5,6,7],[8]], with_lines=False))
{\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}
→˓}}
\raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\\
\lr{8}\\
&\lr{5}&\lr{6}&\lr{7}\\
&&\lr{3}\\
\end{array}$}
}
sage: print(tex_from_array([[None,None,3],[None,5,6,7],[None,8]], with_lines=False))
{\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}
→˓}}
\raisebox{-.6ex}{$\begin{array}[t]{*{4}c}\\
&\lr{8}\\
&\lr{5}&\lr{6}&\lr{7}\\
&&\lr{3}\\
\end{array}$}
}
sage: Tableaux.options._reset()

sage.combinat.output.tex_from_array_tuple(a_tuple, with_lines=True)
Return a latex string for a tuple of two dimensional array of partition, composition or skew composition shape.

INPUT:

• a_tuple – a tuple of lists of lists

5.1. Comprehensive Module List 1537

Combinatorics, Release 9.7

• with_lines – a boolean (default: True) Whether to draw lines to separate the entries in the components
of a_tuple.

See also:

tex_from_array() for the description of each array

EXAMPLES:

sage: from sage.combinat.output import tex_from_array_tuple
sage: print(tex_from_array_tuple([[[1,2,3],[4,5]],[],[[None,6,7],[None,8],[9]]]))
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\cline{1-3}
\lr{1}&\lr{2}&\lr{3}\\\cline{1-3}
\lr{4}&\lr{5}\\\cline{1-2}
\end{array}$},\emptyset,\raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\cline{2-3}
&\lr{6}&\lr{7}\\\cline{2-3}
&\lr{8}\\\cline{1-2}
\lr{9}\\\cline{1-1}
\end{array}$}
}
sage: print(tex_from_array_tuple([[[1,2,3],[4,5]],[],[[None,6,7],[None,8],[9]]],␣
→˓with_lines=False))
{\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}
→˓}}
\raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\\
\lr{1}&\lr{2}&\lr{3}\\
\lr{4}&\lr{5}\\
\end{array}$},\emptyset,\raisebox{-.6ex}{$\begin{array}[b]{*{3}c}\\
&\lr{6}&\lr{7}\\
&\lr{8}\\
\lr{9}\\
\end{array}$}
}
sage: Tableaux.options.convention="french"
sage: print(tex_from_array_tuple([[[1,2,3],[4,5]],[],[[None,6,7],[None,8],[9]]]))
{\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1
→˓$}}}
\raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\cline{1-2}
\lr{4}&\lr{5}\\\cline{1-3}
\lr{1}&\lr{2}&\lr{3}\\\cline{1-3}
\end{array}$},\emptyset,\raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\cline{1-1}
\lr{9}\\\cline{1-2}
&\lr{8}\\\cline{2-3}
&\lr{6}&\lr{7}\\\cline{2-3}
\end{array}$}
}
sage: print(tex_from_array_tuple([[[1,2,3],[4,5]],[],[[None,6,7],[None,8],[9]]],␣
→˓with_lines=False))
{\def\lr#1{\multicolumn{1}{@{\hspace{.6ex}}c@{\hspace{.6ex}}}{\raisebox{-.3ex}{$#1$}
→˓}}
\raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\\
\lr{4}&\lr{5}\\
\lr{1}&\lr{2}&\lr{3}\\

(continues on next page)

1538 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

\end{array}$},\emptyset,\raisebox{-.6ex}{$\begin{array}[t]{*{3}c}\\
\lr{9}\\
&\lr{8}\\
&\lr{6}&\lr{7}\\
\end{array}$}
}
sage: Tableaux.options._reset()

sage.combinat.output.tex_from_skew_array(array, with_lines=False, align='b')
This function creates latex code for a “skew composition” array. That is, for a two dimensional array in which
each row can begin with an arbitrary number None’s and the remaining entries could, in principle, be anything
but probably should be strings or integers of similar width. A row consisting completely of None’s is allowed.

INPUT:

• array – The array

• with_lines – (Default: False) If True lines are drawn, if False they are not

• align – (Default: 'b') Determines the alignment on the latex array environments

EXAMPLES:

sage: array=[[None, 2,3,4],[None,None],[5,6,7,8]]
sage: print(sage.combinat.output.tex_from_skew_array(array))
\raisebox{-.6ex}{$\begin{array}[b]{*{4}c}\\
&\lr{2}&\lr{3}&\lr{4}\\
&\\
\lr{5}&\lr{6}&\lr{7}&\lr{8}\\
\end{array}$}

5.1.154 Parallelogram Polyominoes

The goal of this module is to give some tools to manipulate the parallelogram polyominoes.

class sage.combinat.parallelogram_polyomino.LocalOptions(name='', **options)
Bases: object

This class allow to add local options to an object. LocalOptions is like a dictionary, it has keys and values that
represent options and the values associated to the option. This is useful to decorate an object with some optional
informations.

LocalOptions should be used as follow.

INPUT:

• name – The name of the LocalOptions

• <options>=dict(...) – dictionary specifying an option

The options are specified by keyword arguments with their values being a dictionary which describes the option.
The allowed/expected keys in the dictionary are:

• checker – a function for checking whether a particular value for the option is valid

• default – the default value of the option

5.1. Comprehensive Module List 1539

Combinatorics, Release 9.7

• values – a dictionary of the legal values for this option (this automatically defines the corresponding
checker); this dictionary gives the possible options, as keys, together with a brief description of them

sage: from sage.combinat.parallelogram_polyomino import LocalOptions
sage: o = LocalOptions(
....: 'Name Example',
....: delim=dict(
....: default='b',
....: values={'b':'the option b', 'p':'the option p'}
....:)
....:)
sage: class Ex:
....: options=o
....: def _repr_b(self): return "b"
....: def _repr_p(self): return "p"
....: def __repr__(self): return self.options._dispatch(
....: self, '_repr_','delim'
....:)
sage: e = Ex(); e
b
sage: e.options(delim='p'); e
p

This class is temporary, in the future, this class should be integrated in sage.structure.global_options.py. We
should split global_option in two classes LocalOptions and GlobalOptions.

keys()
Return the list of the options in self.

EXAMPLES:

sage: from sage.combinat.parallelogram_polyomino import (
....: LocalOptions
....:)
sage: o = LocalOptions(
....: "Name Example",
....: tikz_options=dict(
....: default="toto",
....: values=dict(
....: toto="name",
....: x="3"
....:)
....:),
....: display=dict(
....: default="list",
....: values=dict(
....: list="list representation",
....: diagram="diagram representation"
....:)
....:)
....:)
sage: keys=o.keys()
sage: keys.sort()
sage: keys
['display', 'tikz_options']

1540 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.parallelogram_polyomino.ParallelogramPolyomino(parent, value, check=True)
Bases: sage.structure.list_clone.ClonableList

Parallelogram Polyominoes.

A parallelogram polyomino is a finite connected union of cells whose boundary can be decomposed in two paths,
the upper and the lower paths, which are comprised of north and east unit steps and meet only at their starting
and final points.

Parallelogram Polyominoes can be defined with those two paths.

EXAMPLES:

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp
[[0, 1], [1, 0]]

area()
Return the area of the parallelogram polyomino. The area of a parallelogram polyomino is the number of
cells of the parallelogram polyomino.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1],
....: [1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0]
....:]
....:)
sage: pp.area()
13

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.area()
1

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.area()
0

bounce(direction=1)
Return the bounce of the parallelogram polyomino.

Let p be the bounce path of the parallelogram polyomino (bounce_path()). The bounce is defined by:

sum([(1+ floor(i/2))*p[i] for i in range(len(p))])

INPUT:

• direction – the initial direction of the bounce path (see bounce_path() for the definition).

EXAMPLES:

sage: PP = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 1, 1], [1, 1, 0, 0, 1, 0]]
....:)
sage: PP.bounce(direction=1)
6
sage: PP.bounce(direction=0)

(continues on next page)

5.1. Comprehensive Module List 1541

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList

Combinatorics, Release 9.7

(continued from previous page)

7

sage: PP = ParallelogramPolyomino(
....: [
....: [0, 0, 1, 1, 1, 0, 0, 1, 1],
....: [1, 1, 1, 0, 1, 1, 0, 0, 0]
....:]
....:)
sage: PP.bounce(direction=1)
12
sage: PP.bounce(direction=0)
10

sage: PP = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: PP.bounce(direction=1)
1
sage: PP.bounce(direction=0)
1

sage: PP = ParallelogramPolyomino([[1], [1]])
sage: PP.bounce(direction=1)
0
sage: PP.bounce(direction=0)
0

bounce_path(direction=1)
Return the bounce path of the parallelogram polyomino.

The bounce path is a path with two steps (1, 0) and (0, 1).

If ‘direction’ is 1 (resp. 0), the bounce path is the path starting at position (h=1, w=0) (resp. (h=0, w=1))
with initial direction, the vector (0, 1) (resp. (1, 0)), and turning each time the path crosses the perimeter
of the parallelogram polyomino.

The path is coded by a list of integers. Each integer represents the size of the path between two turnings.

You can visualize the two bounce paths by using the following commands.

INPUT:

• direction – the initial direction of the bounce path (see above for the definition).

EXAMPLES:

sage: PP = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 1, 1], [1, 1, 0, 0, 1, 0]]
....:)
sage: PP.bounce_path(direction=1)
[2, 2, 1]
sage: PP.bounce_path(direction=0)
[2, 1, 1, 1]

sage: PP = ParallelogramPolyomino(
....: [
....: [0, 0, 1, 1, 1, 0, 0, 1, 1],
....: [1, 1, 1, 0, 1, 1, 0, 0, 0]

(continues on next page)

1542 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....:]

....:)
sage: PP.bounce_path(direction=1)
[3, 1, 2, 2]
sage: PP.bounce_path(direction=0)
[2, 4, 2]

sage: PP = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 1, 1], [1, 1, 0, 0, 1, 0]]
....:)
sage: PP.set_options(
....: drawing_components=dict(
....: diagram = True
....: , bounce_0 = True
....: , bounce_1 = True
....:)
....:)
sage: view(PP) # not tested

sage: PP = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: PP.bounce_path(direction=1)
[1]
sage: PP.bounce_path(direction=0)
[1]

sage: PP = ParallelogramPolyomino([[1], [1]])
sage: PP.bounce_path(direction=1)
[]
sage: PP.bounce_path(direction=0)
[]

box_is_node(pos)
Return True if the box contains a node in the context of the Aval-Boussicault bijection between parallelo-
gram polyomino and binary tree.

A box is a node if there is no cell on the top of the box in the same column or on the left of the box.in the
same row.

INPUT:

• pos – the [x,y] coordinate of the box.

OUTPUT:

A boolean

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0, 0, 0]]
....:)
sage: pp.set_options(display='drawing')
sage: pp
[1 1 0]
[1 1 1]

(continues on next page)

5.1. Comprehensive Module List 1543

Combinatorics, Release 9.7

(continued from previous page)

[0 1 1]
[0 1 1]
[0 1 1]
sage: pp.box_is_node([2,1])
True
sage: pp.box_is_node([2,0])
False
sage: pp.box_is_node([1,1])
False

box_is_root(box)
Return True if the box contains the root of the tree : it is the top-left box of the parallelogram polyomino.

INPUT:

• box – the x,y coordinate of the cell.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0, 0, 0]]
....:)
sage: pp.box_is_root([0, 0])
True
sage: pp.box_is_root([0, 1])
False

cell_is_inside(w, h)
Determine whether the cell at a given position is inside the parallelogram polyomino.

INPUT:

• w – The x coordinate of the box position.

• h – The y coordinate of the box position.

OUTPUT:

Return 0 if there is no cell at the given position, return 1 if there is a cell.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 1, 0, 0, 1, 1, 0, 1, 1, 1],
....: [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]
....:]
....:)
sage: pp.cell_is_inside(0, 0)
1
sage: pp.cell_is_inside(1, 0)
1
sage: pp.cell_is_inside(0, 1)
0
sage: pp.cell_is_inside(3, 0)
0
sage: pp.cell_is_inside(pp.width()-1,pp.height()-1)

(continues on next page)

1544 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

1
sage: pp.cell_is_inside(pp.width(),pp.height()-1)
0
sage: pp.cell_is_inside(pp.width()-1,pp.height())
0

check()
This method raises an error if the internal data of the class does not represent a parallelogram polyomino.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 0, 1, 0, 1, 0, 1, 1],
....: [1, 0, 1, 1, 0, 0, 1, 0, 0]
....:]
....:)
sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp = ParallelogramPolyomino([[1], [1]])

sage: pp = ParallelogramPolyomino(
....: [[1, 0], [0, 1]]
....:) # indirect doctest
Traceback (most recent call last):
...
ValueError: the lower and upper paths are crossing

sage: pp = ParallelogramPolyomino([[1], [0, 1]]) # indirect doctest
Traceback (most recent call last):
...
ValueError: the lower and upper paths have different sizes (2 != 1)

sage: pp = ParallelogramPolyomino([[1], [0]]) # indirect doctest
Traceback (most recent call last):
...
ValueError: the two paths have distinct ends

sage: pp = ParallelogramPolyomino([[0], [1]]) # indirect doctest
Traceback (most recent call last):
...
ValueError: the two paths have distinct ends

sage: pp = ParallelogramPolyomino([[0], [0]]) # indirect doctest
Traceback (most recent call last):
...
ValueError: the lower or the upper path can...t be equal to [0]

sage: pp = ParallelogramPolyomino([[], [0]]) # indirect doctest
Traceback (most recent call last):
...
ValueError: the lower or the upper path can...t be equal to []

sage: pp = ParallelogramPolyomino([[0], []]) # indirect doctest
(continues on next page)

5.1. Comprehensive Module List 1545

Combinatorics, Release 9.7

(continued from previous page)

Traceback (most recent call last):
...
ValueError: the lower or the upper path can...t be equal to []

sage: pp = ParallelogramPolyomino([[], []]) # indirect doctest
Traceback (most recent call last):
...
ValueError: the lower or the upper path can...t be equal to []

degree_convexity()
Return the degree convexity of a parallelogram polyomino.

A convex polyomino is said to be k-convex if every pair of its cells can be connected by a monotone path
(path with south and east steps) with at most k changes of direction. The degree of convexity of a convex
polyomino P is the smallest integer k such that P is k-convex.

If the parallelogram polyomino is empty, the function return -1.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 0, 1, 0, 1, 0, 1, 1],
....: [1, 0, 1, 1, 0, 0, 1, 0, 0]
....:]
....:)
sage: pp.degree_convexity()
3

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.degree_convexity()
0

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.degree_convexity()
-1

static from_dyck_word(dyck, bijection=None)
Convert a Dyck word to parallelogram polyomino.

INPUT:

• dyck – a Dyck word

• bijection – string or None (default:None) the bijection to use. See to_dyck_word() for more
details.

OUTPUT:

A parallelogram polyomino.

EXAMPLES:

sage: dyck = DyckWord([1, 1, 0, 1, 1, 0, 1, 0, 0, 0])
sage: ParallelogramPolyomino.from_dyck_word(dyck)
[[0, 1, 0, 0, 1, 1], [1, 1, 1, 0, 0, 0]]
sage: ParallelogramPolyomino.from_dyck_word(dyck, bijection='Delest-Viennot')

(continues on next page)

1546 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[0, 1, 0, 0, 1, 1], [1, 1, 1, 0, 0, 0]]
sage: ParallelogramPolyomino.from_dyck_word(dyck, bijection='Delest-Viennot-beta
→˓')
[[0, 0, 1, 0, 1, 1], [1, 1, 1, 0, 0, 0]]

geometry()
Return a pair [h, w] containing the height and the width of the parallelogram polyomino.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [[0, 1, 1, 1, 1], [1, 1, 1, 1, 0]]
....:)
sage: pp.geometry()
[1, 4]

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.geometry()
[1, 1]

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.geometry()
[0, 1]

get_BS_nodes()
Return the list of cells containing node of the left and right planar tree in the Boussicault-Socci bijection.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0, 0, 0]]
....:)
sage: pp.set_options(display='drawing')
sage: pp
[1 1 0]
[1 1 1]
[0 1 1]
[0 1 1]
[0 1 1]
sage: sorted(pp.get_BS_nodes())
[[0, 1], [1, 0], [1, 2], [2, 1], [3, 1], [4, 1]]

You can draw the point inside the parallelogram polyomino by typing (the left nodes are in blue, and the
right node are in red)

sage: pp.set_options(drawing_components=dict(tree=True))
sage: view(pp) # not tested

get_array()
Return an array of 0s and 1s such that the 1s represent the boxes of the parallelogram polyomino.

EXAMPLES:

5.1. Comprehensive Module List 1547

Combinatorics, Release 9.7

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 0, 0, 1, 0, 1, 0, 1],
....: [1, 0, 0, 0, 1, 1, 0, 0, 0]
....:]
....:)
sage: matrix(pp.get_array())
[1 0 0]
[1 0 0]
[1 0 0]
[1 1 1]
[0 1 1]
[0 0 1]

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.get_array()
[[1]]

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.get_array()
[]

get_left_BS_nodes()
Return the list of cells containing node of the left planar tree in the Boussicault-Socci bijection between
parallelogram polyominoes and pair of ordered trees.

OUTPUT:

A list of [row,column] position of cells.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0, 0, 0]]
....:)
sage: pp.set_options(display='drawing')
sage: pp
[1 1 0]
[1 1 1]
[0 1 1]
[0 1 1]
[0 1 1]
sage: sorted(pp.get_left_BS_nodes())
[[0, 1], [2, 1], [3, 1], [4, 1]]

sage: pp = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 0, 0, 1, 1], [1, 0, 1, 1, 0, 0, 0, 0]]
....:)
sage: pp.set_options(display='drawing')
sage: pp
[1 0 0]
[1 1 1]
[0 1 1]
[0 1 1]

(continues on next page)

1548 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0 1 1]
sage: sorted(pp.get_left_BS_nodes())
[]

You can draw the point inside the parallelogram polyomino by typing (the left nodes are in blue, and the
right node are in red)

sage: pp.set_options(drawing_components=dict(tree=True))
sage: view(pp) # not tested

get_node_position_from_box(box_position, direction, nb_crossed_nodes=None)
This function starts from a cell inside a parallelogram polyomino and a direction.

If direction is equal to 0, the function selects the column associated with the y-coordinate of
box_position and then returns the topmost cell of the column that is on the top of box_position (the
cell of box_position is included).

If direction is equal to 1, the function selects the row associated with the x-coordinate of box_position
and then returns the leftmost cell of the row that is on the left of box_position. (the cell of box_position
is included).

This function updates the entry of nb_crossed_nodes. The function increases the entry of
nb_crossed_nodes by the number of boxes that is a node (see box_is_node) located on the top if
direction is 0 (resp. on the left if direction is 1) of box_position (cell at box_position is ex-
cluded).

INPUT:

• box_position – the position of the statring cell.

• direction – the direction (0 or 1).

• nb_crossed_nodes – [0] (default) a list containing just one integer.

OUTPUT:

A [row,column] position of the cell.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 0, 0, 1, 1], [1, 0, 1, 1, 0, 0, 0, 0]]
....:)
sage: matrix(pp.get_array())
[1 0 0]
[1 1 1]
[0 1 1]
[0 1 1]
[0 1 1]
sage: l = [0]
sage: pp.get_node_position_from_box([3, 2], 0, l)
[1, 2]
sage: l
[1]
sage: l = [0]
sage: pp.get_node_position_from_box([3, 2], 1, l)
[3, 1]

(continues on next page)

5.1. Comprehensive Module List 1549

Combinatorics, Release 9.7

(continued from previous page)

sage: l
[1]
sage: l = [0]
sage: pp.get_node_position_from_box([1, 2], 0, l)
[1, 2]
sage: l
[0]
sage: l = [0]
sage: pp.get_node_position_from_box([1, 2], 1, l)
[1, 0]
sage: l
[2]
sage: l = [0]
sage: pp.get_node_position_from_box([3, 1], 0, l)
[1, 1]
sage: l
[2]
sage: l = [0]
sage: pp.get_node_position_from_box([3, 1], 1, l)
[3, 1]
sage: l
[0]

get_options()
Return all the options of the object.

EXAMPLES:

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.get_options()
Current options for ParallelogramPolyominoes_size
- display: 'list'
- drawing_components: {'bounce_0': False,
'bounce_1': False,
'bounce_values': False,
'diagram': True,
'tree': False}
- latex: 'drawing'
- tikz_options: {'color_bounce_0': 'red',
'color_bounce_1': 'blue',
'color_line': 'black',
'color_point': 'black',
'line_size': 1,
'mirror': None,
'point_size': 3.5,
'rotation': 0,
'scale': 1,
'translation': [0, 0]}

get_right_BS_nodes()
Return the list of cells containing node of the right planar tree in the Boussicault-Socci bijection between
parallelogram polyominoes and pair of ordered trees.

EXAMPLES:

1550 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: pp = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0, 0, 0]]
....:)
sage: pp.set_options(display='drawing')
sage: pp
[1 1 0]
[1 1 1]
[0 1 1]
[0 1 1]
[0 1 1]
sage: sorted(pp.get_right_BS_nodes())
[[1, 0], [1, 2]]

sage: pp = ParallelogramPolyomino(
....: [[0, 0, 1, 0, 0, 0, 1, 1], [1, 0, 1, 1, 0, 0, 0, 0]]
....:)
sage: pp.set_options(display='drawing')
sage: pp
[1 0 0]
[1 1 1]
[0 1 1]
[0 1 1]
[0 1 1]
sage: sorted(pp.get_right_BS_nodes())
[[1, 0], [1, 1], [1, 2], [2, 1], [3, 1], [4, 1]]

You can draw the point inside the parallelogram polyomino by typing, (the left nodes are in blue, and the
right node are in red)

sage: pp.set_options(drawing_components=dict(tree=True))
sage: view(pp) # not tested

get_tikz_options()
Return all the tikz options permitting to draw the parallelogram polyomino.

See LocalOption to have more informations about the modification of those options.

EXAMPLES:

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.get_tikz_options()
{'color_bounce_0': 'red',
'color_bounce_1': 'blue',
'color_line': 'black',
'color_point': 'black',
'line_size': 1,
'mirror': None,
'point_size': 3.5,
'rotation': 0,
'scale': 1,
'translation': [0, 0]}

height()
Return the height of the parallelogram polyomino.

5.1. Comprehensive Module List 1551

Combinatorics, Release 9.7

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 1, 0, 0, 1, 1, 0, 1, 1, 1],
....: [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]
....:]
....:)
sage: pp.height()
4

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.height()
1

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.height()
0

heights()
Return a list of heights of the parallelogram polyomino.

Namely, the parallelogram polyomino is split column by column and the method returns the list containing
the sizes of the columns.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 0, 1, 0, 1, 0, 1, 1],
....: [1, 0, 1, 1, 0, 0, 1, 0, 0]
....:]
....:)
sage: pp.heights()
[3, 3, 4, 2]

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.heights()
[1]

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.heights()
[0]

is_flat()
Return whether the two bounce paths join together in the rightmost cell of the bottom row of P.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 0, 1, 0, 1, 0, 1, 1],
....: [1, 0, 1, 1, 0, 0, 1, 0, 0]
....:]
....:)

(continues on next page)

1552 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: pp.is_flat()
False

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.is_flat()
True

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.is_flat()
True

is_k_directed(k)
Return whether the Polyomino Parallelogram is k-directed.

A convex polyomino is said to be k-convex if every pair of its cells can be connected by a monotone path
(path with south and east steps) with at most k changes of direction.

The degree of convexity of a convex polyomino P is the smallest integer k such that P is k-convex.

INPUT:

• k – An non negative integer.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 0, 1, 0, 1, 0, 1, 1],
....: [1, 0, 1, 1, 0, 0, 1, 0, 0]
....:]
....:)
sage: pp.is_k_directed(3)
True
sage: pp.is_k_directed(4)
True
sage: pp.is_k_directed(5)
True
sage: pp.is_k_directed(0)
False
sage: pp.is_k_directed(1)
False
sage: pp.is_k_directed(2)
False

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.is_k_directed(0)
True
sage: pp.is_k_directed(1)
True

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.is_k_directed(0)
True
sage: pp.is_k_directed(1)
True

5.1. Comprehensive Module List 1553

Combinatorics, Release 9.7

lower_heights()
Return the list of heights associated to each vertical step of the parallelogram polyomino’s lower path.

OUTPUT:

A list of integers.

EXAMPLES:

sage: ParallelogramPolyomino([[0, 1], [1, 0]]).lower_heights()
[1]
sage: ParallelogramPolyomino(
....: [[0, 0, 1, 1, 0, 1, 1, 1], [1, 0, 1, 1, 0, 1, 1, 0]]
....:).lower_heights()
[2, 2, 3, 3, 3]

lower_path()
Get the lower path of the parallelogram polyomino.

EXAMPLES:

sage: lower_path = [0, 0, 1, 0, 1, 1]
sage: upper_path = [1, 1, 0, 1, 0, 0]
sage: pp = ParallelogramPolyomino([lower_path, upper_path])
sage: pp.lower_path()
[0, 0, 1, 0, 1, 1]

lower_widths()
Return the list of widths associated to each horizontal step of the parallelogram polyomino’s lower path.

OUTPUT:

A list of integers.

EXAMPLES:

sage: ParallelogramPolyomino([[0, 1], [1, 0]]).lower_widths()
[0]
sage: ParallelogramPolyomino(
....: [[0, 0, 1, 1, 0, 1, 1, 1], [1, 0, 1, 1, 0, 1, 1, 0]]
....:).lower_widths()
[0, 0, 2]

plot()
Return a plot of self.

EXAMPLES:

sage: pp = ParallelogramPolyomino([[0,1],[1,0]])
sage: pp.plot()
Graphics object consisting of 4 graphics primitives
sage: pp.set_options(
....: drawing_components=dict(
....: diagram = True
....: , bounce_0 = True
....: , bounce_1 = True
....: , bounce_values = 0
....:)

(continues on next page)

1554 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....:)
sage: pp.plot()
Graphics object consisting of 7 graphics primitives

reflect()
Return the parallelogram polyomino obtained by switching rows and columns.

EXAMPLES:

sage: pp = ParallelogramPolyomino([[0,0,0,0,1,1,0,1,0,1], [1,0,1,0,0,1,1,0,0,
→˓0]])
sage: pp.heights(), pp.upper_heights()
([4, 3, 2, 3], [0, 1, 3, 3])
sage: pp = pp.reflect()
sage: pp.widths(), pp.lower_widths()
([4, 3, 2, 3], [0, 1, 3, 3])

sage: pp = ParallelogramPolyomino([[0,0,0,1,1], [1,0,0,1,0]])
sage: ascii_art(pp)
*
*
**
sage: ascii_art(pp.reflect())

*

rotate()
Return the parallelogram polyomino obtained by rotation of 180 degrees.

EXAMPLES:

sage: pp = ParallelogramPolyomino([[0,0,0,1,1], [1,0,0,1,0]])
sage: ascii_art(pp)
*
*
**
sage: ascii_art(pp.rotate())
**
*
*

set_options(*get_value, **set_value)
Set new options to the object. See LocalOptions for more info.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 0, 0, 1, 0, 1, 0, 1],
....: [1, 0, 0, 0, 1, 1, 0, 0, 0]
....:]
....:)
sage: pp
[[0, 0, 0, 0, 1, 0, 1, 0, 1], [1, 0, 0, 0, 1, 1, 0, 0, 0]]

(continues on next page)

5.1. Comprehensive Module List 1555

Combinatorics, Release 9.7

(continued from previous page)

sage: pp.set_options(display='drawing')
sage: pp
[1 0 0]
[1 0 0]
[1 0 0]
[1 1 1]
[0 1 1]
[0 0 1]

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: view(PP) # not tested
sage: pp.set_options(
....: drawing_components=dict(
....: diagram = True,
....: bounce_0 = True,
....: bounce_1 = True,
....:)
....:)
sage: view(PP) # not tested

size()
Return the size of the parallelogram polyomino.

The size of a parallelogram polyomino is its half-perimeter.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [[0, 0, 0, 0, 1, 0, 1, 1], [1, 0, 0, 0, 1, 1, 0, 0]]
....:)
sage: pp.size()
8

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.size()
2

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.size()
1

to_binary_tree(bijection=None)
Convert to a binary tree.

INPUT:

• bijection – string or None (default:None) The name of bijection to use for the conversion.
The possible values are None or 'Aval-Boussicault'. The None value is equivalent to
'Aval-Boussicault'.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 1, 0, 1, 0, 1, 0, 1, 1],

(continues on next page)

1556 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: [1, 1, 0, 1, 1, 0, 0, 0, 1, 0]

....:]

....:)
sage: pp.to_binary_tree()
[[., [[., .], [[., [., .]], .]]], [[., .], .]]

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.to_binary_tree()
[., .]

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.to_binary_tree()
.

to_dyck_word(bijection=None)
Convert to a Dyck word.

INPUT:

• bijection – string or None (default:None) The name of the bijection. If it is set to None then
the 'Delest-Viennot' bijection is used. Expected values are None, 'Delest-Viennot', or
'Delest-Viennot-beta'.

OUTPUT:

a Dyck word

EXAMPLES:

sage: pp = ParallelogramPolyomino([[0, 1, 0, 0, 1, 1], [1, 1, 1, 0, 0, 0]])
sage: pp.to_dyck_word()
[1, 1, 0, 1, 1, 0, 1, 0, 0, 0]
sage: pp.to_dyck_word(bijection='Delest-Viennot')
[1, 1, 0, 1, 1, 0, 1, 0, 0, 0]

sage: pp.to_dyck_word(bijection='Delest-Viennot-beta')
[1, 0, 1, 1, 1, 0, 1, 0, 0, 0]

to_ordered_tree(bijection=None)
Return an ordered tree from the parallelogram polyomino.

Different bijections can be specified.

The bijection ‘via dyck and Delest-Viennot’ is the composition of _to_dyck_delest_viennot() and the
classical bijection between dyck paths and ordered trees.

The bijection between Dyck Word and ordered trees is described in [DerZak1980] (See page 12 and 13 and
Figure 3.1).

The bijection ‘Boussicault-Socci’ is described in [BRS2015].

INPUT:

• bijection – string or None (default:None) The name of bijection to use for the conversion. The pos-
sible value are None, 'Boussicault-Socci' or 'via dyck and Delest-Viennot'. The None
value is equivalent to the 'Boussicault-Socci' value.

EXAMPLES:

5.1. Comprehensive Module List 1557

Combinatorics, Release 9.7

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 1, 0, 1, 0, 1, 0, 1, 1],
....: [1, 1, 0, 1, 1, 0, 0, 0, 1, 0]
....:]
....:)
sage: pp.to_ordered_tree()
[[[[[]], [[[]]]]], [[]]]

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.to_ordered_tree()
[[]]

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.to_ordered_tree()
[]

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 1, 0, 1, 0, 1, 0, 1, 1],
....: [1, 1, 0, 1, 1, 0, 0, 0, 1, 0]
....:]
....:)
sage: pp.to_ordered_tree('via dyck and Delest-Viennot')
[[[[]], [[[]], []]], [[]]]

to_tikz()
Return the tikz code of the parallelogram polyomino.

This code is the code present inside a tikz latex environment.

We can modify the output with the options.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [[0,0,0,1,1,0,1,0,0,1,1,1],[1,1,1,0,0,1,1,0,0,1,0,0]]
....:)
sage: print(pp.to_tikz())

\draw[color=black, line width=1] (0.000000, 6.000000) --
(0.000000, 3.000000);
\draw[color=black, line width=1] (6.000000, 2.000000) --

(6.000000, 0.000000);
\draw[color=black, line width=1] (0.000000, 6.000000) --

(3.000000, 6.000000);
\draw[color=black, line width=1] (3.000000, 0.000000) --

(6.000000, 0.000000);
\draw[color=black, line width=1] (1.000000, 6.000000) --

(1.000000, 3.000000);
\draw[color=black, line width=1] (2.000000, 6.000000) --

(2.000000, 2.000000);
\draw[color=black, line width=1] (3.000000, 6.000000) --

(3.000000, 0.000000);
(continues on next page)

1558 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

\draw[color=black, line width=1] (4.000000, 4.000000) --
(4.000000, 0.000000);
\draw[color=black, line width=1] (5.000000, 4.000000) --

(5.000000, 0.000000);
\draw[color=black, line width=1] (0.000000, 5.000000) --

(3.000000, 5.000000);
\draw[color=black, line width=1] (0.000000, 4.000000) --

(5.000000, 4.000000);
\draw[color=black, line width=1] (0.000000, 3.000000) --

(5.000000, 3.000000);
\draw[color=black, line width=1] (2.000000, 2.000000) --

(6.000000, 2.000000);
\draw[color=black, line width=1] (3.000000, 1.000000) --

(6.000000, 1.000000);
sage: pp.set_options(
....: drawing_components=dict(
....: diagram=True,
....: tree=True,
....: bounce_0=True,
....: bounce_1=True
....:)
....:)
sage: print(pp.to_tikz())

\draw[color=black, line width=1] (0.000000, 6.000000) --
(0.000000, 3.000000);
\draw[color=black, line width=1] (6.000000, 2.000000) --

(6.000000, 0.000000);
\draw[color=black, line width=1] (0.000000, 6.000000) --

(3.000000, 6.000000);
\draw[color=black, line width=1] (3.000000, 0.000000) --

(6.000000, 0.000000);
\draw[color=black, line width=1] (1.000000, 6.000000) --

(1.000000, 3.000000);
\draw[color=black, line width=1] (2.000000, 6.000000) --

(2.000000, 2.000000);
\draw[color=black, line width=1] (3.000000, 6.000000) --

(3.000000, 0.000000);
\draw[color=black, line width=1] (4.000000, 4.000000) --

(4.000000, 0.000000);
\draw[color=black, line width=1] (5.000000, 4.000000) --

(5.000000, 0.000000);
\draw[color=black, line width=1] (0.000000, 5.000000) --

(3.000000, 5.000000);
\draw[color=black, line width=1] (0.000000, 4.000000) --

(5.000000, 4.000000);
\draw[color=black, line width=1] (0.000000, 3.000000) --

(5.000000, 3.000000);
\draw[color=black, line width=1] (2.000000, 2.000000) --

(6.000000, 2.000000);
\draw[color=black, line width=1] (3.000000, 1.000000) --

(6.000000, 1.000000);

(continues on next page)

5.1. Comprehensive Module List 1559

Combinatorics, Release 9.7

(continued from previous page)

\draw[color=blue, line width=3] (0.000000, 5.000000) --
(3.000000, 5.000000);
\draw[color=blue, line width=3] (3.000000, 5.000000) --

(3.000000, 2.000000);
\draw[color=blue, line width=3] (3.000000, 2.000000) --

(5.000000, 2.000000);
\draw[color=blue, line width=3] (5.000000, 2.000000) --

(5.000000, 0.000000);
\draw[color=blue, line width=3] (5.000000, 0.000000) --

(6.000000, 0.000000);
\draw[color=red, line width=2] (1.000000, 6.000000) --

(1.000000, 3.000000);
\draw[color=red, line width=2] (1.000000, 3.000000) --

(5.000000, 3.000000);
\draw[color=red, line width=2] (5.000000, 3.000000) --

(5.000000, 0.000000);
\draw[color=red, line width=2] (5.000000, 0.000000) --

(6.000000, 0.000000);
\filldraw[color=black] (0.500000, 4.500000) circle (3.5pt);
\filldraw[color=black] (0.500000, 3.500000) circle (3.5pt);
\filldraw[color=black] (2.500000, 2.500000) circle (3.5pt);
\filldraw[color=black] (3.500000, 1.500000) circle (3.5pt);
\filldraw[color=black] (3.500000, 0.500000) circle (3.5pt);
\filldraw[color=black] (1.500000, 5.500000) circle (3.5pt);
\filldraw[color=black] (2.500000, 5.500000) circle (3.5pt);
\filldraw[color=black] (3.500000, 3.500000) circle (3.5pt);
\filldraw[color=black] (4.500000, 3.500000) circle (3.5pt);
\filldraw[color=black] (5.500000, 1.500000) circle (3.5pt);
\filldraw[color=black] (0.500000, 5.500000) circle (3.5pt);

upper_heights()
Return the list of heights associated to each vertical step of the parallelogram polyomino’s upper path.

OUTPUT:

A list of integers.

EXAMPLES:

sage: ParallelogramPolyomino([[0, 1], [1, 0]]).upper_heights()
[0]
sage: ParallelogramPolyomino(
....: [[0, 0, 1, 1, 0, 1, 1, 1], [1, 0, 1, 1, 0, 1, 1, 0]]
....:).upper_heights()
[0, 1, 1, 2, 2]

upper_path()
Get the upper path of the parallelogram polyomino.

EXAMPLES:

sage: lower_path = [0, 0, 1, 0, 1, 1]
sage: upper_path = [1, 1, 0, 1, 0, 0]
sage: pp = ParallelogramPolyomino([lower_path, upper_path])

(continues on next page)

1560 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: pp.upper_path()
[1, 1, 0, 1, 0, 0]

upper_widths()
Return the list of widths associated to each horizontal step of the parallelogram polyomino’s upper path.

OUTPUT:

A list of integers.

EXAMPLES:

sage: ParallelogramPolyomino([[0, 1], [1, 0]]).upper_widths()
[1]
sage: ParallelogramPolyomino(
....: [[0, 0, 1, 1, 0, 1, 1, 1], [1, 0, 1, 1, 0, 1, 1, 0]]
....:).upper_widths()
[1, 3, 5]

width()
Return the width of the parallelogram polyomino.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 1, 0, 0, 1, 1, 0, 1, 1, 1],
....: [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]
....:]
....:)
sage: pp.width()
6

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.width()
1

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.width()
1

widths()
Return a list of the widths of the parallelogram polyomino.

Namely, the parallelogram polyomino is split row by row and the method returns the list containing the
sizes of the rows.

EXAMPLES:

sage: pp = ParallelogramPolyomino(
....: [
....: [0, 0, 0, 1, 0, 1, 0, 1, 1],
....: [1, 0, 1, 1, 0, 0, 1, 0, 0]
....:]
....:)

(continues on next page)

5.1. Comprehensive Module List 1561

Combinatorics, Release 9.7

(continued from previous page)

sage: pp.widths()
[1, 3, 3, 3, 2]

sage: pp = ParallelogramPolyomino([[0, 1], [1, 0]])
sage: pp.widths()
[1]

sage: pp = ParallelogramPolyomino([[1], [1]])
sage: pp.widths()
[]

sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes = Factory for
parallelogram polyominoes

class sage.combinat.parallelogram_polyomino.ParallelogramPolyominoesFactory
Bases: sage.structure.set_factories.SetFactory

The parallelogram polyominoes factory.

EXAMPLES:

sage: PPS = ParallelogramPolyominoes(size=4)
sage: PPS
Parallelogram polyominoes of size 4

sage: sorted(PPS)
[[[0, 0, 0, 1], [1, 0, 0, 0]],
[[0, 0, 1, 1], [1, 0, 1, 0]],
[[0, 0, 1, 1], [1, 1, 0, 0]],
[[0, 1, 0, 1], [1, 1, 0, 0]],
[[0, 1, 1, 1], [1, 1, 1, 0]]]

sage: PPS = ParallelogramPolyominoes()
sage: PPS
Parallelogram polyominoes
sage: PPS.cardinality()
+Infinity

sage.combinat.parallelogram_polyomino.ParallelogramPolyominoesOptions = Current options
for ParallelogramPolyominoes_size - display: 'list' - drawing_components: {'bounce_0':
False, 'bounce_1': False, 'bounce_values': False, 'diagram': True, 'tree': False} -
latex: 'drawing' - tikz_options: {'color_bounce_0': 'red', 'color_bounce_1': 'blue',
'color_line': 'black', 'color_point': 'black', 'line_size': 1, 'mirror': None,
'point_size': 3.5, 'rotation': 0, 'scale': 1, 'translation': [0, 0]}

This global option contains all the data needed by the Parallelogram classes to draw, display in ASCII, compile
in latex a parallelogram polyomino.

The available options are:

• tikz_options : this option configurate all the information useful to generate TIKZ code. For example, color,
line size, etc . . .

• drawing_components : this option is used to explain to the system which component of the drawing you
want to draw. For example, you can ask to draw some elements of the following list: - the diagram, - the
tree inside the parallelogram polyomino, - the bounce paths inside the parallelogram polyomino, - the value
of the bounce on each square of a bounce path.

1562 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/set_factories.html#sage.structure.set_factories.SetFactory

Combinatorics, Release 9.7

• display : this option is used to configurate the ASCII display. The available options are: - list : (this is the
default value) is used to represent PP as a list containing the upper and lower path. - drawing : this value is
used to explain we want to display an array with the PP drawn inside (with connected 1).

• latex : Same as display. The default is “drawing”.

See ParallelogramPolyomino.get_options() for more details and for an user use of options.

EXAMPLES:

sage: from sage.combinat.parallelogram_polyomino import (
....: ParallelogramPolyominoesOptions
....:)
sage: opt = ParallelogramPolyominoesOptions['tikz_options']
sage: opt
{'color_bounce_0': 'red',
'color_bounce_1': 'blue',
'color_line': 'black',
'color_point': 'black',
'line_size': 1,
'mirror': None,
'point_size': 3.5,
'rotation': 0,
'scale': 1,
'translation': [0, 0]}

class sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_all(policy)
Bases: sage.structure.set_factories.ParentWithSetFactory, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

This class enumerates all the parallelogram polyominoes.

EXAMPLES:

sage: PPS = ParallelogramPolyominoes()
sage: PPS
Parallelogram polyominoes

check_element(el, check)
Check is a given element 𝑒𝑙 is in the set of parallelogram polyominoes.

EXAMPLES:

sage: PPS = ParallelogramPolyominoes()
sage: ParallelogramPolyomino(
....: [[0, 1, 1], [1, 1, 0]]
....:) in PPS # indirect doctest
True

get_options()
Return all the options associated with the set of parallelogram polyominoes.

EXAMPLES:

sage: PPS = ParallelogramPolyominoes()
sage: options = PPS.get_options()
sage: options

(continues on next page)

5.1. Comprehensive Module List 1563

../../../../../../html/en/reference/structure/sage/structure/set_factories.html#sage.structure.set_factories.ParentWithSetFactory
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

(continued from previous page)

Current options for ParallelogramPolyominoes_size
- display: 'list'

...

options = Current options for ParallelogramPolyominoes_size - display: 'list' -
drawing_components: {'bounce_0': False, 'bounce_1': False, 'bounce_values':
False, 'diagram': True, 'tree': False} - latex: 'drawing' - tikz_options:
{'color_bounce_0': 'red', 'color_bounce_1': 'blue', 'color_line': 'black',
'color_point': 'black', 'line_size': 1, 'mirror': None, 'point_size': 3.5,
'rotation': 0, 'scale': 1, 'translation': [0, 0]}

The options for ParallelogramPolyominoes.

set_options(*get_value, **set_value)
Set new options to the object.

EXAMPLES:

sage: PPS = ParallelogramPolyominoes()
sage: PPS.set_options(
....: drawing_components=dict(
....: diagram = True,
....: bounce_0 = True,
....: bounce_1 = True,
....:)
....:)
sage: pp = next(iter(PPS))
sage: view(pp) # not tested

class sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_size(size, policy)
Bases: sage.structure.set_factories.ParentWithSetFactory, sage.structure.
unique_representation.UniqueRepresentation

The parallelogram polyominoes of size 𝑛.

EXAMPLES:

sage: PPS = ParallelogramPolyominoes(4)
sage: PPS
Parallelogram polyominoes of size 4
sage: sorted(PPS)
[[[0, 0, 0, 1], [1, 0, 0, 0]],
[[0, 0, 1, 1], [1, 0, 1, 0]],
[[0, 0, 1, 1], [1, 1, 0, 0]],
[[0, 1, 0, 1], [1, 1, 0, 0]],
[[0, 1, 1, 1], [1, 1, 1, 0]]]

an_element()
Return an element of a parallelogram polyomino of a given size.

EXAMPLES:

sage: PPS = ParallelogramPolyominoes(4)
sage: PPS.an_element() in PPS
True

1564 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/set_factories.html#sage.structure.set_factories.ParentWithSetFactory
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

cardinality()
Return the number of parallelogram polyominoes.

The number of parallelogram polyominoes of size n is given by the Catalan number 𝑐𝑛−1.

EXAMPLES:

sage: ParallelogramPolyominoes(1).cardinality()
1
sage: ParallelogramPolyominoes(2).cardinality()
1
sage: ParallelogramPolyominoes(3).cardinality()
2
sage: ParallelogramPolyominoes(4).cardinality()
5

sage: all(
....: ParallelogramPolyominoes(i).cardinality()
....: == len(list(ParallelogramPolyominoes(i)))
....: for i in range(1,7)
....:)
True

check_element(el, check)
Check is a given element 𝑒𝑙 is in the set of parallelogram polyominoes of a fixed size.

EXAMPLES:

sage: PPS = ParallelogramPolyominoes(3)
sage: ParallelogramPolyomino(
....: [[0, 1, 1], [1, 1, 0]]
....:) in PPS # indirect doctest
True

get_options()
Return all the options associated with all the elements of the set of parallelogram polyominoes with a fixed
size.

EXAMPLES:

sage: pps = ParallelogramPolyominoes(5)
sage: pps.get_options()
Current options for ParallelogramPolyominoes_size
- display: 'list'

...

options = Current options for ParallelogramPolyominoes_size - display: 'list' -
drawing_components: {'bounce_0': False, 'bounce_1': False, 'bounce_values':
False, 'diagram': True, 'tree': False} - latex: 'drawing' - tikz_options:
{'color_bounce_0': 'red', 'color_bounce_1': 'blue', 'color_line': 'black',
'color_point': 'black', 'line_size': 1, 'mirror': None, 'point_size': 3.5,
'rotation': 0, 'scale': 1, 'translation': [0, 0]}

The options for ParallelogramPolyominoes.

set_options(*get_value, **set_value)
Set new options to the object.

EXAMPLES:

5.1. Comprehensive Module List 1565

Combinatorics, Release 9.7

sage: PPS = ParallelogramPolyominoes(3)
sage: PPS.set_options(
....: drawing_components=dict(
....: diagram = True,
....: bounce_0 = True,
....: bounce_1 = True,
....:)
....:)
sage: pp = PPS[0]
sage: view(pp) # not tested

size()
Return the size of the parallelogram polyominoes generated by this parent.

EXAMPLES:

sage: ParallelogramPolyominoes(0).size()
0
sage: ParallelogramPolyominoes(1).size()
1
sage: ParallelogramPolyominoes(5).size()
5

sage.combinat.parallelogram_polyomino.default_tikz_options = {'color_bounce_0': 'red',
'color_bounce_1': 'blue', 'color_line': 'black', 'color_point': 'black', 'line_size':
1, 'mirror': None, 'point_size': 3.5, 'rotation': 0, 'scale': 1, 'translation': [0,
0]}

This is the default TIKZ options.

This option is used to configurate element of a drawing to allow TIKZ code generation.

5.1.155 Parking Functions

INFORMALLY (reference [Beck]):

Imagine a one-way cul-de-sac with 𝑛 parking spots. We will give the first parking spot the number 1, the next one
number 2, etc., down to the last one, number 𝑛. Initially they are all free, but there are 𝑛 cars approaching the street,
and they would all like to park there. To make life interesting, every car has a parking preference, and we record the
preferences in a sequence; For example, if 𝑛 = 3, the sequence (2, 1, 1) means that the first car would like to park at
spot number 2, the second car prefers parking spot number 1, and the last car would also like to part at number 1. The
street is very narrow, so there is no way to back up. Now each car enters the street and approaches its preferred parking
spot; if it is free, it parks there, and if not, it moves down the street to the first available spot. We call a sequence a
parking function (of length 𝑛) if all cars end up finding a parking spot. For example, the sequence (2, 1, 1) is a parking
sequence (of length 3), whereas the sequence (2, 3, 2) is not.

FORMALLY:

A parking function of size 𝑛 is a sequence (𝑎1, . . . , 𝑎𝑛) of positive integers such that if 𝑏1 ≤ 𝑏2 ≤ · · · ≤ 𝑏𝑛 is the
increasing rearrangement of 𝑎1, . . . , 𝑎𝑛, then 𝑏𝑖 ≤ 𝑖.

A parking function of size 𝑛 is a pair (𝐿,𝐷) of two sequences 𝐿 and 𝐷 where 𝐿 is a permutation and 𝐷 is an area
sequence of a Dyck path of size n such that𝐷[𝑖] ≥ 0,𝐷[𝑖+1] ≤ 𝐷[𝑖]+1 and if𝐷[𝑖+1] = 𝐷[𝑖]+1 then𝐿[𝑖+1] > 𝐿[𝑖].

The number of parking functions of size 𝑛 is equal to the number of rooted forests on 𝑛 vertices and is equal to
(𝑛+ 1)𝑛−1.

REFERENCES:

1566 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

AUTHORS:

• used non-decreasing_parking_functions code by Florent Hivert (2009 - 04)

• Dorota Mazur (2012 - 09)

sage.combinat.parking_functions.PF
alias of sage.combinat.parking_functions.ParkingFunction

class sage.combinat.parking_functions.ParkingFunction(parent, lst)
Bases: sage.structure.list_clone.ClonableArray

A Parking Function.

A parking function of size 𝑛 is a sequence (𝑎1, . . . , 𝑎𝑛) of positive integers such that if 𝑏1 ≤ 𝑏2 ≤ · · · ≤ 𝑏𝑛 is
the increasing rearrangement of 𝑎1, . . . , 𝑎𝑛, then 𝑏𝑖 ≤ 𝑖.

A parking function of size 𝑛 is a pair (𝐿,𝐷) of two sequences 𝐿 and 𝐷 where 𝐿 is a permutation and 𝐷 is an
area sequence of a Dyck Path of size 𝑛 such that 𝐷[𝑖] ≥ 0, 𝐷[𝑖+ 1] ≤ 𝐷[𝑖] + 1 and if 𝐷[𝑖+ 1] = 𝐷[𝑖] + 1 then
𝐿[𝑖+ 1] > 𝐿[𝑖].

The number of parking functions of size 𝑛 is equal to the number of rooted forests on 𝑛 vertices and is equal to
(𝑛+ 1)𝑛−1.

INPUT:

• pf – (default: None) a list whose increasing rearrangement satisfies 𝑏𝑖 ≤ 𝑖

• labelling – (default: None) a labelling of the Dyck path

• area_sequence – (default: None) an area sequence of a Dyck path

• labelled_dyck_word – (default: None) a Dyck word with 1’s replaced by labelling

OUTPUT:

A parking function

EXAMPLES:

sage: ParkingFunction([])
[]
sage: ParkingFunction([1])
[1]
sage: ParkingFunction([2])
Traceback (most recent call last):
...
ValueError: [2] is not a parking function
sage: ParkingFunction([1,2])
[1, 2]
sage: ParkingFunction([1,1,2])
[1, 1, 2]
sage: ParkingFunction([1,4,1])
Traceback (most recent call last):
...
ValueError: [1, 4, 1] is not a parking function
sage: ParkingFunction(labelling=[3,1,2], area_sequence=[0,0,1])
[2, 2, 1]
sage: ParkingFunction([2,2,1]).to_labelled_dyck_word()
[3, 0, 1, 2, 0, 0]
sage: ParkingFunction(labelled_dyck_word=[3,0,1,2,0,0])

(continues on next page)

5.1. Comprehensive Module List 1567

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

(continued from previous page)

[2, 2, 1]
sage: ParkingFunction(labelling=[3,1,2], area_sequence=[0,1,1])
Traceback (most recent call last):
...
ValueError: [3, 1, 2] is not a valid labeling of area sequence [0, 1, 1]

area()
Return the area of the labelled Dyck path corresponding to the parking function.

OUTPUT:

• the sum of squares under and over the main diagonal the Dyck Path, corresponding to the parking
function

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.area()
6

sage: ParkingFunction([3,1,1,4]).area()
1
sage: ParkingFunction([4,1,1,1]).area()
3
sage: ParkingFunction([2,1,4,1]).area()
2

cars_permutation()
Return the sequence of cars that take parking spots 1 through 𝑛 and corresponding to the parking function.

For example, cars_permutation(PF) = [2, 4, 5, 6, 3, 1, 7] means that car 2 takes spots 1, car
4 takes spot 2, . . . , car 1 takes spot 6 and car 7 takes spot 7.

OUTPUT:

• the permutation of cars corresponding to the parking function and which is the same size as parking
function

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.cars_permutation()
[2, 4, 5, 6, 3, 1, 7]

sage: ParkingFunction([3,1,1,4]).cars_permutation()
[2, 3, 1, 4]
sage: ParkingFunction([4,1,1,1]).cars_permutation()
[2, 3, 4, 1]
sage: ParkingFunction([2,1,4,1]).cars_permutation()
[2, 1, 4, 3]

characteristic_quasisymmetric_function(q=None, R=Fraction Field of Multivariate Polynomial Ring
in q, t over Rational Field)

Return the characteristic quasisymmetric function of self.

The characteristic function of the Parking Function is the sum over all permutation labellings of the Dyck

1568 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

path 𝑞𝑑𝑖𝑛𝑣(𝑃𝐹)𝐹𝑖𝑑𝑒𝑠(𝑃𝐹) where 𝑖𝑑𝑒𝑠(𝑃𝐹) (ides_composition()) is the descent composition of diagonal
reading word of the parking function.

INPUT:

• q – (default: q = R('q')) a parameter for the generating function power

• R – (default: R = QQ['q','t'].fraction_field()) the base ring to do the calculations over

OUTPUT:

• an element of the quasisymmetric functions over the ring R

EXAMPLES:

sage: R = QQ['q','t'].fraction_field()
sage: (q,t) = R.gens()
sage: cqf = sum(t**PF.area()*PF.characteristic_quasisymmetric_function() for PF␣
→˓in ParkingFunctions(3)); cqf
(q^3+q^2*t+q*t^2+t^3+q*t)*F[1, 1, 1] + (q^2+q*t+t^2+q+t)*F[1, 2] + (q^2+q*t+t^
→˓2+q+t)*F[2, 1] + F[3]
sage: s = SymmetricFunctions(R).s()
sage: s(cqf.to_symmetric_function())
(q^3+q^2*t+q*t^2+t^3+q*t)*s[1, 1, 1] + (q^2+q*t+t^2+q+t)*s[2, 1] + s[3]
sage: s(cqf.to_symmetric_function()).nabla(power = -1)
s[1, 1, 1]

sage: p = ParkingFunction([3, 1, 2])
sage: p.characteristic_quasisymmetric_function()
q*F[2, 1]
sage: pf = ParkingFunction([1,2,7,2,1,2,3,2,1])
sage: pf.characteristic_quasisymmetric_function()
q^2*F[1, 1, 1, 2, 1, 3]

check()
Check that self is a valid parking function.

EXAMPLES:

sage: PF = ParkingFunction([1, 1, 2, 2, 5, 6])
sage: PF.check()

diagonal_composition()
Return the composition of the labelled Dyck path corresponding to the parking function.

For example, touch_composition(PF) = [4, 3] means that the first touch is four diagonal units from
the starting point, and the second is three units further (see [GXZ] p. 2).

OUTPUT:

• the length between the corresponding touch points which of the labelled Dyck path that corresponds
to the parking function

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.touch_composition()
[4, 3]

5.1. Comprehensive Module List 1569

Combinatorics, Release 9.7

sage: ParkingFunction([3,1,1,4]).touch_composition()
[2, 1, 1]
sage: ParkingFunction([4,1,1,1]).touch_composition()
[3, 1]
sage: ParkingFunction([2,1,4,1]).touch_composition()
[3, 1]

diagonal_reading_word()
Return a diagonal word of the labelled Dyck path corresponding to parking function (see [Hag08] p. 75).

OUTPUT:

• returns a word, read diagonally from NE to SW of the pretty print of the labelled Dyck path that
corresponds to self and the same size as self

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.diagonal_reading_word()
[5, 1, 7, 4, 6, 3, 2]

sage: ParkingFunction([1, 1, 1]).diagonal_reading_word()
[3, 2, 1]
sage: ParkingFunction([1, 2, 3]).diagonal_reading_word()
[3, 2, 1]
sage: ParkingFunction([1, 1, 3, 4]).diagonal_reading_word()
[2, 4, 3, 1]

sage: ParkingFunction([1, 1, 1]).diagonal_word()
[3, 2, 1]
sage: ParkingFunction([1, 2, 3]).diagonal_word()
[3, 2, 1]
sage: ParkingFunction([1, 4, 3, 1]).diagonal_word()
[4, 2, 3, 1]

diagonal_word()
Return a diagonal word of the labelled Dyck path corresponding to parking function (see [Hag08] p. 75).

OUTPUT:

• returns a word, read diagonally from NE to SW of the pretty print of the labelled Dyck path that
corresponds to self and the same size as self

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.diagonal_reading_word()
[5, 1, 7, 4, 6, 3, 2]

sage: ParkingFunction([1, 1, 1]).diagonal_reading_word()
[3, 2, 1]
sage: ParkingFunction([1, 2, 3]).diagonal_reading_word()
[3, 2, 1]
sage: ParkingFunction([1, 1, 3, 4]).diagonal_reading_word()
[2, 4, 3, 1]

1570 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: ParkingFunction([1, 1, 1]).diagonal_word()
[3, 2, 1]
sage: ParkingFunction([1, 2, 3]).diagonal_word()
[3, 2, 1]
sage: ParkingFunction([1, 4, 3, 1]).diagonal_word()
[4, 2, 3, 1]

dinv()
Return the number of inversions of a labelled Dyck path corresponding to the parking function (see [Hag08]
p. 74).

Same as the cardinality of dinversion_pairs().

OUTPUT:

• the number of dinversion pairs

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.dinv()
6

sage: ParkingFunction([3,1,1,4]).dinv()
3
sage: ParkingFunction([4,1,1,1]).dinv()
1
sage: ParkingFunction([2,1,4,1]).dinv()
2

dinversion_pairs()
Return the descent inversion pairs of a labelled Dyck path corresponding to the parking function.

OUTPUT:

• the primary and secondary diversion pairs

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.dinversion_pairs()
[(0, 4), (1, 5), (2, 5), (1, 4), (2, 4), (3, 6)]

sage: ParkingFunction([3,1,1,4]).dinversion_pairs()
[(0, 3), (2, 3), (1, 2)]
sage: ParkingFunction([4,1,1,1]).dinversion_pairs()
[(1, 3)]
sage: ParkingFunction([2,1,4,1]).dinversion_pairs()
[(0, 3), (1, 3)]

grade()
Return the length of the parking function.

EXAMPLES:

5.1. Comprehensive Module List 1571

Combinatorics, Release 9.7

sage: PF = ParkingFunction([1, 1, 2, 2, 5, 6])
sage: PF.grade()
6

ides()
Return the descents() sequence of the inverse of the diagonal_reading_word() of self.

Warning: Here we use the standard convention that descent labels start at 1. This behaviour has been
changed in trac ticket #20555.

For example, ides(PF) = [2, 3, 4, 6] means that descents are at the 2nd, 3rd, 4th and 6th positions
in the inverse of the diagonal_reading_word() of the parking function (see [GXZ] p. 2).

OUTPUT:

• the descents sequence of the inverse of the diagonal_reading_word() of the parking function

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.ides()
[2, 3, 4, 6]

sage: ParkingFunction([3,1,1,4]).ides()
[2]
sage: ParkingFunction([4,1,1,1]).ides()
[2, 3]
sage: ParkingFunction([4,3,1,1]).ides()
[3]

ides_composition()
Return the descents_composition() of the inverse of the diagonal_reading_word() of correspond-
ing parking function.

For example, ides_composition(PF) = [4, 2, 1] means that the descents of the inverse of the per-
mutation diagonal_reading_word() of the parking function with word PF are at the 4th and 6th posi-
tions.

OUTPUT:

• the descents composition of the inverse of the diagonal_reading_word() of the parking function

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.ides_composition()
[2, 1, 1, 2, 1]

sage: ParkingFunction([3,1,1,4]).ides_composition()
[2, 2]
sage: ParkingFunction([4,1,1,1]).ides_composition()
[2, 1, 1]
sage: ParkingFunction([4,3,1,1]).ides_composition()
[3, 1]

1572 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/20555

Combinatorics, Release 9.7

jump()
Return the sum of the differences between the parked and preferred parking spots.

See [Shin] p. 18.

OUTPUT:

• the sum of the differences between the parked and preferred parking spots

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.jump()
6

sage: ParkingFunction([3,1,1,4]).jump()
1
sage: ParkingFunction([4,1,1,1]).jump()
3
sage: ParkingFunction([2,1,4,1]).jump()
2

jump_list()
Return the displacements of cars that corresponds to the parking function.

For example, jump_list(PF) = [0, 0, 0, 0, 1, 3, 2] means that car 1 through 4 parked in their
preferred spots, car 5 had to park one spot farther (jumped or was displaced by one spot), car 6 had to jump
3 spots, and car 7 had to jump two spots.

OUTPUT:

• the displacements sequence of parked cars which corresponds to the parking function and which is the
same size as parking function

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.jump_list()
[0, 0, 0, 0, 1, 3, 2]

sage: ParkingFunction([3,1,1,4]).jump_list()
[0, 0, 1, 0]
sage: ParkingFunction([4,1,1,1]).jump_list()
[0, 0, 1, 2]
sage: ParkingFunction([2,1,4,1]).jump_list()
[0, 0, 0, 2]

luck()
Return the number of cars that parked in their preferred parking spots (see [Shin] p. 33).

OUTPUT:

• the number of cars that parked in their preferred parking spots

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.luck()
4

5.1. Comprehensive Module List 1573

Combinatorics, Release 9.7

sage: ParkingFunction([3,1,1,4]).luck()
3
sage: ParkingFunction([4,1,1,1]).luck()
2
sage: ParkingFunction([2,1,4,1]).luck()
3

lucky_cars()
Return the cars that can park in their preferred spots. For example, lucky_cars(PF) = [1, 2, 7]
means that cars 1, 2 and 7 parked in their preferred spots and all the other cars did not.

OUTPUT:

• the cars that can park in their preferred spots

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.lucky_cars()
[1, 2, 3, 4]

sage: ParkingFunction([3,1,1,4]).lucky_cars()
[1, 2, 4]
sage: ParkingFunction([4,1,1,1]).lucky_cars()
[1, 2]
sage: ParkingFunction([2,1,4,1]).lucky_cars()
[1, 2, 3]

parking_permutation()
Return the sequence of parking spots that are taken by cars 1 through 𝑛 and corresponding to the parking
function.

For example, parking_permutation(PF) = [6, 1, 5, 2, 3, 4, 7] means that spot 6 is taken by
car 1, spot 1 by car 2, spot 5 by car 3, spot 2 is taken by car 4, spot 3 is taken by car 5, spot 4 is taken by
car 6 and spot 7 is taken by car 7.

OUTPUT:

• the permutation of parking spots that corresponds to the parking function and which is the same size
as parking function

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.parking_permutation()
[6, 1, 5, 2, 3, 4, 7]

sage: ParkingFunction([3,1,1,4]).parking_permutation()
[3, 1, 2, 4]
sage: ParkingFunction([4,1,1,1]).parking_permutation()
[4, 1, 2, 3]
sage: ParkingFunction([2,1,4,1]).parking_permutation()
[2, 1, 4, 3]

pretty_print(underpath=True)
Displays a parking function as a lattice path consisting of a Dyck path and a labelling with the labels
displayed along the edges of the Dyck path.

1574 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• underpath – if the length of the parking function is less than or equal to 9 then display the labels
under the path if underpath is True otherwise display them to the right of the path (default: True)

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.pretty_print()

_|1x

|7x .
_____|3 . .

|5x x . . .
_|4x

|6x
|2

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.pretty_print(underpath = false)

_| x 1

| x . 7
_____| . . 3

| x x . . . 5
_| x 4

| x 6
| 2

sage: ParkingFunction([3, 1, 1, 4]).pretty_print()
_

_|4
___|1 .

|3x . .
|2 . . .

sage: ParkingFunction([1,1,1]).pretty_print()

|3x x
|2x .
|1 . .

sage: ParkingFunction([4,1,1,1]).pretty_print()
_

_____|1
|4x x .
|3x . .
|2 . . .

sage: ParkingFunction([2,1,4,1]).pretty_print()
_

___|3
_|1x .

|4x . .
(continues on next page)

5.1. Comprehensive Module List 1575

Combinatorics, Release 9.7

(continued from previous page)

|2 . . .

sage: ParkingFunction([2,1,4,1]).pretty_print(underpath = false)
_

___| 3
_| x . 1

| x . . 4
| . . . 2

sage: pf = ParkingFunction([1,2,3,7,3,2,1,2,3,2,1])
sage: pf.pretty_print()

_______| x x x x 4
| x x x x x x x . 9
| x x x x x x . . 5
_| x x x x x . . . 3

| x x x x x 10
| x x x x 8
| x x x 6
_| x x 2

| x x 11
| x 7
| 1

primary_dinversion_pairs()
Return the primary descent inversion pairs of a labelled Dyck path corresponding to the parking function.

OUTPUT:

• the pairs (𝑖, 𝑗) such that 𝑖 < 𝑗, and 𝑖𝑡ℎ area = 𝑗𝑡ℎ area, and 𝑖𝑡ℎ label < 𝑗𝑡ℎ label

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.primary_dinversion_pairs()
[(0, 4), (1, 5), (2, 5)]

sage: ParkingFunction([3,1,1,4]).primary_dinversion_pairs()
[(0, 3), (2, 3)]
sage: ParkingFunction([4,1,1,1]).primary_dinversion_pairs()
[]
sage: ParkingFunction([2,1,4,1]).primary_dinversion_pairs()
[(0, 3)]

secondary_dinversion_pairs()
Return the secondary descent inversion pairs of a labelled Dyck path corresponding to the parking function.

OUTPUT:

• the pairs (𝑖, 𝑗) such that 𝑖 < 𝑗, and 𝑖𝑡ℎ area = 𝑗𝑡ℎ area +1, and 𝑖𝑡ℎ label > 𝑗𝑡ℎ label

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.secondary_dinversion_pairs()

(continues on next page)

1576 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[(1, 4), (2, 4), (3, 6)]

sage: ParkingFunction([3,1,1,4]).secondary_dinversion_pairs()
[(1, 2)]
sage: ParkingFunction([4,1,1,1]).secondary_dinversion_pairs()
[(1, 3)]
sage: ParkingFunction([2,1,4,1]).secondary_dinversion_pairs()
[(1, 3)]

to_NonDecreasingParkingFunction()
Return the non-decreasing parking function which underlies the parking function.

OUTPUT:

• a sorted parking function

See also:

NonDecreasingParkingFunction()

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.to_NonDecreasingParkingFunction()
[1, 1, 2, 2, 5, 5, 6]

sage: ParkingFunction([3,1,1,4]).to_NonDecreasingParkingFunction()
[1, 1, 3, 4]
sage: ParkingFunction([4,1,1,1]).to_NonDecreasingParkingFunction()
[1, 1, 1, 4]
sage: ParkingFunction([2,1,4,1]).to_NonDecreasingParkingFunction()
[1, 1, 2, 4]
sage: ParkingFunction([4,1,2,1]).to_NonDecreasingParkingFunction()
[1, 1, 2, 4]

to_area_sequence()
Return the area sequence of the support Dyck path of the parking function.

OUTPUT:

• the area sequence of the Dyck path

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.to_area_sequence()
[0, 1, 1, 2, 0, 1, 1]

sage: ParkingFunction([3,1,1,4]).to_area_sequence()
[0, 1, 0, 0]
sage: ParkingFunction([4,1,1,1]).to_area_sequence()
[0, 1, 2, 0]
sage: ParkingFunction([2,1,4,1]).to_area_sequence()
[0, 1, 1, 0]

5.1. Comprehensive Module List 1577

Combinatorics, Release 9.7

to_dyck_word()
Return the support Dyck word of the parking function.

OUTPUT:

• the Dyck word of the corresponding parking function

See also:

DyckWord()

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.to_dyck_word()
[1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0]

sage: ParkingFunction([3,1,1,4]).to_dyck_word()
[1, 1, 0, 0, 1, 0, 1, 0]
sage: ParkingFunction([4,1,1,1]).to_dyck_word()
[1, 1, 1, 0, 0, 0, 1, 0]
sage: ParkingFunction([2,1,4,1]).to_dyck_word()
[1, 1, 0, 1, 0, 0, 1, 0]

to_labelled_dyck_word()
Return the labelled Dyck word corresponding to the parking function.

This is a representation of the parking function as a list where the entries of 1 in the Dyck word are replaced
with the corresponding label.

OUTPUT:

• the labelled Dyck word of the corresponding parking function which is twice the size of parking func-
tion word

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.to_labelled_dyck_word()
[2, 6, 0, 4, 5, 0, 0, 0, 3, 7, 0, 1, 0, 0]

sage: ParkingFunction([3,1,1,4]).to_labelled_dyck_word()
[2, 3, 0, 0, 1, 0, 4, 0]
sage: ParkingFunction([4,1,1,1]).to_labelled_dyck_word()
[2, 3, 4, 0, 0, 0, 1, 0]
sage: ParkingFunction([2,1,4,1]).to_labelled_dyck_word()
[2, 4, 0, 1, 0, 0, 3, 0]

to_labelling_area_sequence_pair()
Return a pair consisting of a labelling and an area sequence of a Dyck path which corresponds to the given
parking function.

OUTPUT:

• returns a pair (L, D) where L is a labelling and D is the area sequence of the underlying Dyck path

EXAMPLES:

1578 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.to_labelling_area_sequence_pair()
([2, 6, 4, 5, 3, 7, 1], [0, 1, 1, 2, 0, 1, 1])

sage: ParkingFunction([1, 1, 1]).to_labelling_area_sequence_pair()
([1, 2, 3], [0, 1, 2])
sage: ParkingFunction([1, 2, 3]).to_labelling_area_sequence_pair()
([1, 2, 3], [0, 0, 0])
sage: ParkingFunction([1, 1, 2]).to_labelling_area_sequence_pair()
([1, 2, 3], [0, 1, 1])
sage: ParkingFunction([1, 1, 3, 1]).to_labelling_area_sequence_pair()
([1, 2, 4, 3], [0, 1, 2, 1])

to_labelling_dyck_word_pair()
Return the pair (L, D) where L is a labelling and D is the Dyck word of the parking function.

OUTPUT:

• the pair (L, D), where L is the labelling and D is the Dyck word of the parking function

See also:

DyckWord()

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.to_labelling_dyck_word_pair()
([2, 6, 4, 5, 3, 7, 1], [1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0])

sage: ParkingFunction([3,1,1,4]).to_labelling_dyck_word_pair()
([2, 3, 1, 4], [1, 1, 0, 0, 1, 0, 1, 0])
sage: ParkingFunction([4,1,1,1]).to_labelling_dyck_word_pair()
([2, 3, 4, 1], [1, 1, 1, 0, 0, 0, 1, 0])
sage: ParkingFunction([2,1,4,1]).to_labelling_dyck_word_pair()
([2, 4, 1, 3], [1, 1, 0, 1, 0, 0, 1, 0])

to_labelling_permutation()
Return the labelling of the support Dyck path of the parking function.

OUTPUT:

• the labelling of the Dyck path

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.to_labelling_permutation()
[2, 6, 4, 5, 3, 7, 1]

sage: ParkingFunction([3,1,1,4]).to_labelling_permutation()
[2, 3, 1, 4]
sage: ParkingFunction([4,1,1,1]).to_labelling_permutation()
[2, 3, 4, 1]
sage: ParkingFunction([2,1,4,1]).to_labelling_permutation()
[2, 4, 1, 3]

5.1. Comprehensive Module List 1579

Combinatorics, Release 9.7

touch_composition()
Return the composition of the labelled Dyck path corresponding to the parking function.

For example, touch_composition(PF) = [4, 3] means that the first touch is four diagonal units from
the starting point, and the second is three units further (see [GXZ] p. 2).

OUTPUT:

• the length between the corresponding touch points which of the labelled Dyck path that corresponds
to the parking function

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.touch_composition()
[4, 3]

sage: ParkingFunction([3,1,1,4]).touch_composition()
[2, 1, 1]
sage: ParkingFunction([4,1,1,1]).touch_composition()
[3, 1]
sage: ParkingFunction([2,1,4,1]).touch_composition()
[3, 1]

touch_points()
Return the sequence of touch points which corresponds to the labelled Dyck path after initial step.

For example, touch_points(PF) = [4, 7] means that after the initial step, the path touches the main
diagonal at points (4, 4) and (7, 7).

OUTPUT:

• the sequence of touch points after the initial step of the labelled Dyck path that corresponds to the
parking function

EXAMPLES:

sage: PF = ParkingFunction([6, 1, 5, 2, 2, 1, 5])
sage: PF.touch_points()
[4, 7]

sage: ParkingFunction([3,1,1,4]).touch_points()
[2, 3, 4]
sage: ParkingFunction([4,1,1,1]).touch_points()
[3, 4]
sage: ParkingFunction([2,1,4,1]).touch_points()
[3, 4]

class sage.combinat.parking_functions.ParkingFunctions
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Return the combinatorial class of Parking Functions.

A parking function of size 𝑛 is a sequence (𝑎1, . . . , 𝑎𝑛) of positive integers such that if 𝑏1 ≤ 𝑏2 ≤ · · · ≤ 𝑏𝑛 is
the increasing rearrangement of 𝑎1, . . . , 𝑎𝑛, then 𝑏𝑖 ≤ 𝑖.

A parking function of size 𝑛 is a pair (𝐿,𝐷) of two sequences 𝐿 and 𝐷 where 𝐿 is a permutation and 𝐷 is an
area sequence of a Dyck Path of size n such that 𝐷[𝑖] ≥ 0, 𝐷[𝑖+ 1] ≤ 𝐷[𝑖] + 1 and if 𝐷[𝑖+ 1] = 𝐷[𝑖] + 1 then

1580 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

𝐿[𝑖+ 1] > 𝐿[𝑖].

The number of parking functions of size 𝑛 is equal to the number of rooted forests on 𝑛 vertices and is equal to
(𝑛+ 1)𝑛−1.

EXAMPLES:

Here are all parking functions of size 3:

sage: from sage.combinat.parking_functions import ParkingFunctions
sage: ParkingFunctions(3).list()
[[1, 1, 1], [1, 1, 2], [1, 2, 1], [2, 1, 1], [1, 1, 3], [1, 3, 1],
[3, 1, 1], [1, 2, 2], [2, 1, 2], [2, 2, 1], [1, 2, 3], [1, 3, 2],
[2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

If no size is specified, then ParkingFunctions returns the combinatorial class of all parking functions.

sage: PF = ParkingFunctions(); PF
Parking functions
sage: [] in PF
True
sage: [1] in PF
True
sage: [2] in PF
False
sage: [1,3,1] in PF
True
sage: [1,4,1] in PF
False

If the size 𝑛 is specified, then ParkingFunctions returns the combinatorial class of all parking functions of size
𝑛.

sage: PF = ParkingFunctions(0)
sage: PF.list()
[[]]
sage: PF = ParkingFunctions(1)
sage: PF.list()
[[1]]
sage: PF = ParkingFunctions(3)
sage: PF.list()
[[1, 1, 1], [1, 1, 2], [1, 2, 1], [2, 1, 1], [1, 1, 3],
[1, 3, 1], [3, 1, 1], [1, 2, 2], [2, 1, 2], [2, 2, 1],
[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

sage: PF3 = ParkingFunctions(3); PF3
Parking functions of size 3
sage: [] in PF3
False
sage: [1] in PF3
False
sage: [1,3,1] in PF3
True
sage: [1,4,1] in PF3
False

5.1. Comprehensive Module List 1581

Combinatorics, Release 9.7

class sage.combinat.parking_functions.ParkingFunctions_all
Bases: sage.combinat.parking_functions.ParkingFunctions

Element
alias of ParkingFunction

graded_component(n)
Return the graded component.

EXAMPLES:

sage: PF = ParkingFunctions()
sage: PF.graded_component(4) == ParkingFunctions(4)
True
sage: it = iter(ParkingFunctions()) # indirect doctest
sage: [next(it) for i in range(8)]
[[], [1], [1, 1], [1, 2], [2, 1], [1, 1, 1], [1, 1, 2], [1, 2, 1]]

class sage.combinat.parking_functions.ParkingFunctions_n(n)
Bases: sage.combinat.parking_functions.ParkingFunctions

The combinatorial class of parking functions of size 𝑛.

A parking function of size 𝑛 is a sequence (𝑎1, . . . , 𝑎𝑛) of positive integers such that if 𝑏1 ≤ 𝑏2 ≤ · · · ≤ 𝑏𝑛 is
the increasing rearrangement of 𝑎1, . . . , 𝑎𝑛, then 𝑏𝑖 ≤ 𝑖.

A parking function of size 𝑛 is a pair (𝐿,𝐷) of two sequences 𝐿 and 𝐷 where 𝐿 is a permutation and 𝐷 is an
area sequence of a Dyck Path of size 𝑛 such that 𝐷[𝑖] ≥ 0, 𝐷[𝑖+ 1] ≤ 𝐷[𝑖] + 1 and if 𝐷[𝑖+ 1] = 𝐷[𝑖] + 1 then
𝐿[𝑖+ 1] > 𝐿[𝑖].

The number of parking functions of size 𝑛 is equal to the number of rooted forests on 𝑛 vertices and is equal to
(𝑛+ 1)𝑛−1.

EXAMPLES:

sage: PF = ParkingFunctions(3)
sage: PF.list()
[[1, 1, 1], [1, 1, 2], [1, 2, 1], [2, 1, 1], [1, 1, 3],
[1, 3, 1], [3, 1, 1], [1, 2, 2], [2, 1, 2], [2, 2, 1],
[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

sage: [ParkingFunctions(i).cardinality() for i in range(6)]
[1, 1, 3, 16, 125, 1296]

Warning: The precise order in which the parking function are generated or listed is not fixed, and may
change in the future.

Element
alias of ParkingFunction

cardinality()
Return the number of parking functions of size n.

The cardinality is equal to (𝑛+ 1)𝑛−1.

EXAMPLES:

1582 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: [ParkingFunctions(i).cardinality() for i in range(6)]
[1, 1, 3, 16, 125, 1296]

random_element()
Return a random parking function of size 𝑛.

The algorithm uses a circular parking space with 𝑛 + 1 spots. Then all 𝑛 cars can park and there remains
one empty spot. Spots are then renumbered so that the empty spot is 0.

The probability distribution is uniform on the set of (𝑛+ 1)𝑛−1 parking functions of size 𝑛.

EXAMPLES:

sage: pf = ParkingFunctions(8)
sage: a = pf.random_element(); a # random
[5, 7, 2, 4, 2, 5, 1, 3]
sage: a in pf
True

sage.combinat.parking_functions.from_labelled_dyck_word(LDW)
Return the parking function corresponding to the labelled Dyck word.

INPUT:

• LDW – labelled Dyck word

OUTPUT:

• the parking function corresponding to the labelled Dyck word that is half the size of LDW

EXAMPLES:

sage: from sage.combinat.parking_functions import from_labelled_dyck_word
sage: LDW = [2, 6, 0, 4, 5, 0, 0, 0, 3, 7, 0, 1, 0, 0]
sage: from_labelled_dyck_word(LDW)
[6, 1, 5, 2, 2, 1, 5]

sage: from_labelled_dyck_word([2, 3, 0, 0, 1, 0, 4, 0])
[3, 1, 1, 4]
sage: from_labelled_dyck_word([2, 3, 4, 0, 0, 0, 1, 0])
[4, 1, 1, 1]
sage: from_labelled_dyck_word([2, 4, 0, 1, 0, 0, 3, 0])
[2, 1, 4, 1]

sage.combinat.parking_functions.from_labelling_and_area_sequence(L, D)
Return the parking function corresponding to the labelling area sequence pair.

INPUT:

• L – a labelling permutation

• D – an area sequence for a Dyck word

OUTPUT:

• the parking function corresponding the labelling permutation L and D an area sequence of the corresponding
Dyck path

EXAMPLES:

5.1. Comprehensive Module List 1583

Combinatorics, Release 9.7

sage: from sage.combinat.parking_functions import from_labelling_and_area_sequence
sage: from_labelling_and_area_sequence([2, 6, 4, 5, 3, 7, 1], [0, 1, 1, 2, 0, 1, 1])
[6, 1, 5, 2, 2, 1, 5]

sage: from_labelling_and_area_sequence([1, 2, 3], [0, 1, 2])
[1, 1, 1]
sage: from_labelling_and_area_sequence([1, 2, 3], [0, 0, 0])
[1, 2, 3]
sage: from_labelling_and_area_sequence([1, 2, 3], [0, 1, 1])
[1, 1, 2]
sage: from_labelling_and_area_sequence([1, 2, 4, 3], [0, 1, 2, 1])
[1, 1, 3, 1]

sage.combinat.parking_functions.is_a(x, n=None)
Check whether a list is a parking function.

If a size 𝑛 is specified, checks if a list is a parking function of size 𝑛.

5.1.156 Catalog of Path Tableaux

The path_tableaux object may be used to access examples of various path tableau objects currently implemented
in Sage. Using tab-completion on this object is an easy way to discover and quickly create the path tableaux that are
available (as listed here).

Let <tab> indicate pressing the tab key. So begin by typing path_tableaux.<tab> to the see the currently imple-
mented path tableaux.

• CylindricalDiagram

• DyckPath

• DyckPaths

• FriezePattern

• FriezePatterns

• SemistandardPathTableau

• SemistandardPathTableaux

5.1.157 Dyck Paths

This is an implementation of the abstract base class sage.combinat.path_tableaux.path_tableau.
PathTableau. This is the simplest implementation of a path tableau and is included to provide a convenient test
case and for pedagogical purposes.

In this implementation we have sequences of nonnegative integers. These are required to be the heights Dyck words
(except that we do not require the sequence to start or end at height zero). These are in bijection with skew standard
tableaux with at most two rows. Sequences which start and end at height zero are in bijection with noncrossing perfect
matchings.

AUTHORS:

• Bruce Westbury (2018): initial version

1584 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.path_tableaux.dyck_path.DyckPath(parent, ot, check=True)
Bases: sage.combinat.path_tableaux.path_tableau.PathTableau

An instance is the sequence of nonnegative integers given by the heights of a Dyck word.

INPUT:

• a sequence of nonnegative integers

• a two row standard skew tableau

• a Dyck word

• a noncrossing perfect matching

EXAMPLES:

sage: path_tableaux.DyckPath([0,1,2,1,0])
[0, 1, 2, 1, 0]

sage: w = DyckWord([1,1,0,0])
sage: path_tableaux.DyckPath(w)
[0, 1, 2, 1, 0]

sage: p = PerfectMatching([(1,2), (3,4)])
sage: path_tableaux.DyckPath(p)
[0, 1, 0, 1, 0]

sage: t = Tableau([[1,2,4],[3,5,6]])
sage: path_tableaux.DyckPath(t)
[0, 1, 2, 1, 2, 1, 0]

sage: st = SkewTableau([[None, 1,4],[2,3]])
sage: path_tableaux.DyckPath(st)
[1, 2, 1, 0, 1]

Here we illustrate the slogan that promotion = rotation:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t.to_perfect_matching()
[(0, 5), (1, 4), (2, 3)]

sage: t = t.promotion()
sage: t.to_perfect_matching()
[(0, 3), (1, 2), (4, 5)]

sage: t = t.promotion()
sage: t.to_perfect_matching()
[(0, 1), (2, 5), (3, 4)]

sage: t = t.promotion()
sage: t.to_perfect_matching()
[(0, 5), (1, 4), (2, 3)]

check()
Check that self is a valid path.

EXAMPLES:

5.1. Comprehensive Module List 1585

Combinatorics, Release 9.7

sage: path_tableaux.DyckPath([0,1,0,-1,0]) # indirect doctest
Traceback (most recent call last):
...
ValueError: [0, 1, 0, -1, 0] has a negative entry

sage: path_tableaux.DyckPath([0,1,3,1,0]) # indirect doctest
Traceback (most recent call last):
...
ValueError: [0, 1, 3, 1, 0] is not a Dyck path

descents()
Return the descent set of self.

EXAMPLES:

sage: path_tableaux.DyckPath([0,1,2,1,2,1,0,1,0]).descents()
{3, 6}

is_skew()
Return True if self is skew and False if not.

EXAMPLES:

sage: path_tableaux.DyckPath([0,1,2,1]).is_skew()
False

sage: path_tableaux.DyckPath([1,0,1,2,1]).is_skew()
True

local_rule(i)
This has input a list of objects. This method first takes the list of objects of length three consisting of the
(𝑖− 1)-st, 𝑖-th and (𝑖+ 1)-term and applies the rule. It then replaces the 𝑖-th object by the object returned
by the rule.

EXAMPLES:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t.local_rule(3)
[0, 1, 2, 1, 2, 1, 0]

to_DyckWord()
Converts self to a Dyck word.

EXAMPLES:

sage: c = path_tableaux.DyckPath([0,1,2,1,0])
sage: c.to_DyckWord()
[1, 1, 0, 0]

to_perfect_matching()
Return the perfect matching associated to self.

EXAMPLES:

sage: path_tableaux.DyckPath([0,1,2,1,2,1,0,1,0]).to_perfect_matching()
[(0, 5), (1, 2), (3, 4), (6, 7)]

1586 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

to_tableau()
Return the skew tableau associated to self.

EXAMPLES:

sage: T = path_tableaux.DyckPath([0,1,2,3,2,3])
sage: T.to_tableau()
[[1, 2, 3, 5], [4]]

sage: U = path_tableaux.DyckPath([2,3,2,3])
sage: U.to_tableau()
[[None, None, 1, 3], [2]]

to_word()
Return the word in the alphabet {0, 1} associated to self.

EXAMPLES:

sage: path_tableaux.DyckPath([1,0,1,2,1]).to_word()
[0, 1, 1, 0]

class sage.combinat.path_tableaux.dyck_path.DyckPaths
Bases: sage.combinat.path_tableaux.path_tableau.PathTableaux

The parent class for DyckPath.

Element
alias of DyckPath

5.1.158 Frieze Patterns

This implements the original frieze patterns due to Conway and Coxeter. Such a frieze pattern is considered
as a sequence of nonnegative integers following [CoCo1] and [CoCo2] using sage.combinat.path_tableaux.
path_tableau.

AUTHORS:

• Bruce Westbury (2019): initial version

class sage.combinat.path_tableaux.frieze.FriezePattern
Bases: sage.combinat.path_tableaux.path_tableau.PathTableau

A frieze pattern.

We encode a frieze pattern as a sequence in a fixed ground field.

INPUT:

• fp – a sequence of elements of field

• field – (default: QQ) the ground field

EXAMPLES:

sage: t = path_tableaux.FriezePattern([1,2,1,2,3,1])
sage: path_tableaux.CylindricalDiagram(t)
[0, 1, 2, 1, 2, 3, 1, 0]
[, 0, 1, 1, 3, 5, 2, 1, 0]
[, , 0, 1, 4, 7, 3, 2, 1, 0]

(continues on next page)

5.1. Comprehensive Module List 1587

Combinatorics, Release 9.7

(continued from previous page)

[, , , 0, 1, 2, 1, 1, 1, 1, 0]
[, , , , 0, 1, 1, 2, 3, 4, 1, 0]
[, , , , , 0, 1, 3, 5, 7, 2, 1, 0]
[, , , , , , 0, 1, 2, 3, 1, 1, 1, 0]
[, , , , , , , 0, 1, 2, 1, 2, 3, 1, 0]

sage: TestSuite(t).run()

sage: t = path_tableaux.FriezePattern([1,2,7,5,3,7,4,1])
sage: path_tableaux.CylindricalDiagram(t)
[0, 1, 2, 7, 5, 3, 7, 4, 1, 0]
[, 0, 1, 4, 3, 2, 5, 3, 1, 1, 0]
[, , 0, 1, 1, 1, 3, 2, 1, 2, 1, 0]
[, , , 0, 1, 2, 7, 5, 3, 7, 4, 1, 0]
[, , , , 0, 1, 4, 3, 2, 5, 3, 1, 1, 0]
[, , , , , 0, 1, 1, 1, 3, 2, 1, 2, 1, 0]
[, , , , , , 0, 1, 2, 7, 5, 3, 7, 4, 1, 0]
[, , , , , , , 0, 1, 4, 3, 2, 5, 3, 1, 1, 0]
[, , , , , , , , 0, 1, 1, 1, 3, 2, 1, 2, 1, 0]
[, , , , , , , , , 0, 1, 2, 7, 5, 3, 7, 4, 1, 0]

sage: TestSuite(t).run()

sage: t = path_tableaux.FriezePattern([1,3,4,5,1])
sage: path_tableaux.CylindricalDiagram(t)
[0, 1, 3, 4, 5, 1, 0]
[, 0, 1, 5/3, 7/3, 2/3, 1, 0]
[, , 0, 1, 2, 1, 3, 1, 0]
[, , , 0, 1, 1, 4, 5/3, 1, 0]
[, , , , 0, 1, 5, 7/3, 2, 1, 0]
[, , , , , 0, 1, 2/3, 1, 1, 1, 0]
[, , , , , , 0, 1, 3, 4, 5, 1, 0]

sage: TestSuite(t).run()

This constructs the examples from [HJ18]:

sage: K.<sqrt3> = NumberField(x^2-3)
sage: t = path_tableaux.FriezePattern([1,sqrt3,2,sqrt3,1,1], field=K)
sage: path_tableaux.CylindricalDiagram(t)
[0, 1, sqrt3, 2, sqrt3, 1, 1, ␣
→˓ 0]
[, 0, 1, sqrt3, 2, sqrt3, sqrt3 + 1, ␣
→˓ 1, 0]
[, , 0, 1, sqrt3, 2, sqrt3 + 2, ␣
→˓sqrt3, 1, 0]
[, , , 0, 1, sqrt3, sqrt3 + 2, ␣
→˓ 2, sqrt3, 1, 0]
[, , , , 0, 1, sqrt3 + 1, ␣
→˓sqrt3, 2, sqrt3, 1, 0]
[, , , , , 0, 1, ␣
→˓ 1, sqrt3, 2, sqrt3, 1, 0]

(continues on next page)

1588 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[, , , , , , 0, ␣
→˓ 1, sqrt3 + 1, sqrt3 + 2, sqrt3 + 2, sqrt3 + 1, 1, 0]
[, , , , , , , ␣
→˓ 0, 1, sqrt3, 2, sqrt3, 1, 1, 0]

sage: TestSuite(t).run()

sage: K.<sqrt2> = NumberField(x^2-2)
sage: t = path_tableaux.FriezePattern([1,sqrt2,1,sqrt2,3,2*sqrt2,5,3*sqrt2,1],␣
→˓field=K)
sage: path_tableaux.CylindricalDiagram(t)
[0, 1, sqrt2, 1, sqrt2, 3, 2*sqrt2, 5, 3*sqrt2, ␣
→˓ 1, 0]
[, 0, 1, sqrt2, 3, 5*sqrt2, 7, 9*sqrt2, 11,␣
→˓2*sqrt2, 1, 0]
[, , 0, 1, 2*sqrt2, 7, 5*sqrt2, 13, 8*sqrt2, ␣
→˓ 3, sqrt2, 1, 0]
[, , , 0, 1, 2*sqrt2, 3, 4*sqrt2, 5, ␣
→˓sqrt2, 1, sqrt2, 1, 0]
[, , , , 0, 1, sqrt2, 3, 2*sqrt2, ␣
→˓ 1, sqrt2, 3, 2*sqrt2, 1, 0]
[, , , , , 0, 1, 2*sqrt2, 3, ␣
→˓sqrt2, 3, 5*sqrt2, 7, 2*sqrt2, 1, 0]
[, , , , , , 0, 1, sqrt2, ␣
→˓ 1, 2*sqrt2, 7, 5*sqrt2, 3, sqrt2, 1, 0]
[, , , , , , , 0, 1, ␣
→˓sqrt2, 5, 9*sqrt2, 13, 4*sqrt2, 3, 2*sqrt2, 1, 0]
[, , , , , , , , 0, ␣
→˓ 1, 3*sqrt2, 11, 8*sqrt2, 5, 2*sqrt2, 3, sqrt2, 1, ␣
→˓ 0]
[, , , , , , , , , ␣
→˓ 0, 1, 2*sqrt2, 3, sqrt2, 1, sqrt2, 1, sqrt2, ␣
→˓ 1, 0]
[, , , , , , , , , ␣
→˓ , 0, 1, sqrt2, 1, sqrt2, 3, 2*sqrt2, 5,␣
→˓3*sqrt2, 1, 0]

sage: TestSuite(t).run()

change_ring(R)
Return self as a frieze pattern with coefficients in R assuming there is a canonical coerce map from the
base ring of self to R.

EXAMPLES:

sage: path_tableaux.FriezePattern([1,2,7,5,3,7,4,1]).change_ring(RealField())
[0.000000000000000, 1.00000000000000, ... 4.00000000000000, 1.00000000000000, 0.
→˓000000000000000]

sage: path_tableaux.FriezePattern([1,2,7,5,3,7,4,1]).change_ring(GF(7))
Traceback (most recent call last):
...
TypeError: no base extension defined

5.1. Comprehensive Module List 1589

Combinatorics, Release 9.7

check()
Check that self is a valid frieze pattern.

is_integral()
Return True if all entries of the frieze pattern are positive integers.

EXAMPLES:

sage: path_tableaux.FriezePattern([1,2,7,5,3,7,4,1]).is_integral()
True

sage: path_tableaux.FriezePattern([1,3,4,5,1]).is_integral()
False

is_positive()
Return True if all elements of self are positive.

This implies that all entries of CylindricalDiagram(self) are positive.

Warning: There are orders on all fields. These may not be ordered fields as they may not be compatible
with the field operations. This method is intended to be used with ordered fields only.

EXAMPLES:

sage: path_tableaux.FriezePattern([1,2,7,5,3,7,4,1]).is_positive()
True

sage: path_tableaux.FriezePattern([1,-3,4,5,1]).is_positive()
False

sage: K.<sqrt3> = NumberField(x^2-3)
sage: path_tableaux.FriezePattern([1,sqrt3,1],K).is_positive()
True

is_skew()
Return True if self is skew and False if not.

EXAMPLES:

sage: path_tableaux.FriezePattern([1,2,1,2,3,1]).is_skew()
False

sage: path_tableaux.FriezePattern([2,2,1,2,3,1]).is_skew()
True

local_rule(i)
Return the 𝑖-th local rule on self.

This interprets self as a list of objects. This method first takes the list of objects of length three consisting
of the (𝑖 − 1)-st, 𝑖-th and (𝑖 + 1)-term and applies the rule. It then replaces the 𝑖-th object by the object
returned by the rule.

EXAMPLES:

sage: t = path_tableaux.FriezePattern([1,2,1,2,3,1])
sage: t.local_rule(3)

(continues on next page)

1590 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1, 2, 5, 2, 3, 1]

sage: t = path_tableaux.FriezePattern([1,2,1,2,3,1])
sage: t.local_rule(0)
Traceback (most recent call last):
...
ValueError: 0 is not a valid integer

plot(model='UHP')
Plot the frieze as an ideal hyperbolic polygon.

This is only defined up to isometry of the hyperbolic plane.

We are identifying the boundary of the hyperbolic plane with the real projective line.

The option model must be one of

• 'UHP' - (default) for the upper half plane model

• 'PD' - for the Poincare disk model

• 'KM' - for the Klein model

The hyperboloid model is not an option as this does not implement boundary points.

EXAMPLES:

sage: t = path_tableaux.FriezePattern([1,2,7,5,3,7,4,1])
sage: t.plot()
Graphics object consisting of 18 graphics primitives

sage: t.plot(model='UHP')
Graphics object consisting of 18 graphics primitives

sage: t.plot(model='PD')
Traceback (most recent call last):

(continues on next page)

5.1. Comprehensive Module List 1591

Combinatorics, Release 9.7

(continued from previous page)

...
TypeError: '>' not supported between instances of 'NotANumber' and 'Pi'
sage: t.plot(model='KM')
Graphics object consisting of 18 graphics primitives

triangulation()
Plot a regular polygon with some diagonals.

If self is positive and integral then this will be a triangulation.

0

1

2
3

4

5

6
7

8

9

EXAMPLES:

sage: path_tableaux.FriezePattern([1,2,7,5,3,7,4,1]).triangulation()
Graphics object consisting of 25 graphics primitives

sage: path_tableaux.FriezePattern([1,2,1/7,5,3]).triangulation()
Graphics object consisting of 12 graphics primitives

sage: K.<sqrt2> = NumberField(x^2-2)
sage: path_tableaux.FriezePattern([1,sqrt2,1,sqrt2,3,2*sqrt2,5,3*sqrt2,1],␣
→˓field=K).triangulation()
Graphics object consisting of 24 graphics primitives

width()
Return the width of self.

If the first and last terms of self are 1 then this is the length of self plus two and otherwise is undefined.

EXAMPLES:

sage: path_tableaux.FriezePattern([1,2,1,2,3,1]).width()
8

sage: path_tableaux.FriezePattern([1,2,1,2,3,4]).width() is None
True

1592 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.path_tableaux.frieze.FriezePatterns(field)
Bases: sage.combinat.path_tableaux.path_tableau.PathTableaux

The set of all frieze patterns.

EXAMPLES:

sage: P = path_tableaux.FriezePatterns(QQ)
sage: fp = P((1, 1, 1))
sage: fp
[1]
sage: path_tableaux.CylindricalDiagram(fp)
[1, 1, 1]
[, 1, 2, 1]
[, , 1, 1, 1]

Element
alias of FriezePattern

5.1.159 Path Tableaux

This is an abstract base class for using local rules to construct rectification and the action of the cactus group [Wes2017].

This is a construction of the Henriques-Kamnitzer construction of the action of the cactus group on tensor powers of
a crystal. This is also a generalisation of the Fomin growth rules, which are a version of the operations on standard
tableaux which were previously constructed using jeu de taquin.

The basic operations are rectification, evacuation and promotion. Rectification of standard skew tableaux agrees with
the rectification by jeu de taquin as does evacuation. Promotion agrees with promotion by jeu de taquin on rectangular
tableaux but in general they are different.

REFERENCES:

• [Wes2017]

AUTHORS:

• Bruce Westbury (2018): initial version

class sage.combinat.path_tableaux.path_tableau.CylindricalDiagram(T)
Bases: sage.structure.sage_object.SageObject

Cylindrical growth diagrams.

EXAMPLES:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: path_tableaux.CylindricalDiagram(t)
[0, 1, 2, 3, 2, 1, 0]
[, 0, 1, 2, 1, 0, 1, 0]
[, , 0, 1, 0, 1, 2, 1, 0]
[, , , 0, 1, 2, 3, 2, 1, 0]
[, , , , 0, 1, 2, 1, 0, 1, 0]
[, , , , , 0, 1, 0, 1, 2, 1, 0]
[, , , , , , 0, 1, 2, 3, 2, 1, 0]

pp()
A pretty print utility method.

EXAMPLES:

5.1. Comprehensive Module List 1593

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: path_tableaux.CylindricalDiagram(t).pp()
0 1 2 3 2 1 0
0 1 2 1 0 1 0
0 1 0 1 2 1 0
0 1 2 3 2 1 0
0 1 2 1 0 1 0
0 1 0 1 2 1 0
0 1 2 3 2 1 0

sage: t = path_tableaux.FriezePattern([1,3,4,5,1])
sage: path_tableaux.CylindricalDiagram(t).pp()
0 1 3 4 5 1 0

0 1 5/3 7/3 2/3 1 0
0 1 2 1 3 1 0

0 1 1 4 5/3 1 0
0 1 5 7/3 2 1 0

0 1 2/3 1 1 1 0
0 1 3 4 5 1 0

class sage.combinat.path_tableaux.path_tableau.PathTableau
Bases: sage.structure.list_clone.ClonableArray

This is the abstract base class for a path tableau.

cactus(i, j)
Return the action of the generator 𝑠𝑖,𝑗 of the cactus group on self.

INPUT:

i – a positive integer j – a positive integer weakly greater than i

EXAMPLES:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t.cactus(1,5)
[0, 1, 0, 1, 2, 1, 0]

sage: t.cactus(1,6)
[0, 1, 2, 1, 0, 1, 0]

sage: t.cactus(1,7) == t.evacuation()
True
sage: t.cactus(1,7).cactus(1,6) == t.promotion()
True

commutor(other, verbose=False)
Return the commutor of self with other.

If verbose=True then the function will print the rectangle.

EXAMPLES:

sage: t1 = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t2 = path_tableaux.DyckPath([0,1,2,1,0])
sage: t1.commutor(t2)

(continues on next page)

1594 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

(continued from previous page)

([0, 1, 2, 1, 0], [0, 1, 2, 3, 2, 1, 0])
sage: t1.commutor(t2,verbose=True)
[0, 1, 2, 1, 0]
[1, 2, 3, 2, 1]
[2, 3, 4, 3, 2]
[3, 4, 5, 4, 3]
[2, 3, 4, 3, 2]
[1, 2, 3, 2, 1]
[0, 1, 2, 1, 0]
([0, 1, 2, 1, 0], [0, 1, 2, 3, 2, 1, 0])

dual_equivalence_graph()
Return the graph with vertices the orbit of self and edges given by the action of the cactus group generators.

In most implementations the generators 𝑠𝑖,𝑖+1 will act as the identity operators. The usual dual equivalence
graphs are given by replacing the label 𝑖, 𝑖+ 2 by 𝑖 and removing edges with other labels.

EXAMPLES:

sage: s = path_tableaux.DyckPath([0,1,2,3,2,3,2,1,0])
sage: s.dual_equivalence_graph().adjacency_matrix()
[0 1 1 1 0 1 0 1 1 0 0 0 0 0]
[1 0 1 1 1 1 1 0 1 0 0 1 1 0]
[1 1 0 1 1 1 0 1 0 1 1 1 0 0]
[1 1 1 0 1 0 1 1 1 1 0 1 1 0]
[0 1 1 1 0 0 1 0 0 1 1 0 1 1]
[1 1 1 0 0 0 1 1 1 1 1 0 1 0]
[0 1 0 1 1 1 0 1 0 1 1 1 0 1]
[1 0 1 1 0 1 1 0 1 1 1 1 1 0]
[1 1 0 1 0 1 0 1 0 1 0 1 1 0]
[0 0 1 1 1 1 1 1 1 0 0 1 1 1]
[0 0 1 0 1 1 1 1 0 0 0 1 1 1]
[0 1 1 1 0 0 1 1 1 1 1 0 1 1]
[0 1 0 1 1 1 0 1 1 1 1 1 0 1]
[0 0 0 0 1 0 1 0 0 1 1 1 1 0]
sage: s = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: s.dual_equivalence_graph().edges(sort=True)
[([0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 2, 1, 0], '4,7'),
([0, 1, 0, 1, 0, 1, 0], [0, 1, 2, 1, 0, 1, 0], '2,5'),
([0, 1, 0, 1, 0, 1, 0], [0, 1, 2, 1, 2, 1, 0], '2,7'),
([0, 1, 0, 1, 2, 1, 0], [0, 1, 2, 1, 0, 1, 0], '2,6'),
([0, 1, 0, 1, 2, 1, 0], [0, 1, 2, 1, 2, 1, 0], '1,4'),
([0, 1, 0, 1, 2, 1, 0], [0, 1, 2, 3, 2, 1, 0], '2,7'),
([0, 1, 2, 1, 0, 1, 0], [0, 1, 2, 1, 2, 1, 0], '4,7'),
([0, 1, 2, 1, 0, 1, 0], [0, 1, 2, 3, 2, 1, 0], '3,7'),
([0, 1, 2, 1, 2, 1, 0], [0, 1, 2, 3, 2, 1, 0], '3,6')]

evacuation()
Return the evacuation operator applied to self.

EXAMPLES:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t.evacuation()

(continues on next page)

5.1. Comprehensive Module List 1595

Combinatorics, Release 9.7

(continued from previous page)

[0, 1, 2, 3, 2, 1, 0]

final_shape()
Return the final shape of self.

EXAMPLES:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t.final_shape()
0

initial_shape()
Return the initial shape of self.

EXAMPLES:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t.initial_shape()
0

local_rule(i)
This is the abstract local rule defined in any coboundary category.

This has input a list of objects. This method first takes the list of objects of length three consisting of the
(𝑖− 1)-st, 𝑖-th and (𝑖+ 1)-term and applies the rule. It then replaces the 𝑖-th object by the object returned
by the rule.

EXAMPLES:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t.local_rule(3)
[0, 1, 2, 1, 2, 1, 0]

orbit()
Return the orbit of self under the action of the cactus group.

EXAMPLES:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t.orbit()
{[0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 2, 1, 0],
[0, 1, 2, 1, 0, 1, 0],
[0, 1, 2, 1, 2, 1, 0],
[0, 1, 2, 3, 2, 1, 0]}

promotion()
Return the promotion operator applied to self.

EXAMPLES:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t.promotion()
[0, 1, 2, 1, 0, 1, 0]

size()
Return the size or length of self.

1596 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: t = path_tableaux.DyckPath([0,1,2,3,2,1,0])
sage: t.size()
7

class sage.combinat.path_tableaux.path_tableau.PathTableaux
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The abstract parent class for PathTableau.

5.1.160 Semistandard Tableaux

This is an implementation of the abstract base class sage.combinat.path_tableaux.path_tableau.
PathTableau.

This implementation is for semistandard tableaux, represented as a chain of partitions (essentially, the Gelfand-Tsetlin
pattern). This generalises the jeu de taquin operations of rectification, promotion, evacuation from standard tableaux
to semistandard tableaux. The local rule is the Bender-Knuth involution.

EXAMPLES:

sage: pt = path_tableaux.SemistandardPathTableau([[],[3],[3,2],[3,3,1],[3,3,2,1],[4,3,3,
→˓1,0]])
sage: pt.promotion()
[(), (2,), (3, 1), (3, 2, 1), (4, 3, 1, 0), (4, 3, 3, 1, 0)]
sage: pt.evacuation()
[(), (2,), (4, 0), (4, 2, 0), (4, 3, 1, 0), (4, 3, 3, 1, 0)]

sage: pt = path_tableaux.SemistandardPathTableau([[],[3],[3,2],[3,3,1],[3,3,2,1],[9/2,3,
→˓3,1,0]])
sage: pt.promotion()
[(), (2,), (3, 1), (3, 2, 1), (9/2, 3, 1, 0), (9/2, 3, 3, 1, 0)]
sage: pt.evacuation()
[(), (5/2,), (9/2, 0), (9/2, 2, 0), (9/2, 3, 1, 0), (9/2, 3, 3, 1, 0)]

sage: pt = path_tableaux.SemistandardPathTableau([[],[3],[4,2],[5,4,1]])
sage: path_tableaux.CylindricalDiagram(pt)
[(), (3,), (4, 2), (5, 4, 1)]
[, (), (3,), (5, 2), (5, 4, 1)]
[, , (), (4,), (4, 3), (5, 4, 1)]
[, , , (), (3,), (5, 1), (5, 4, 1)]

sage: pt2 = path_tableaux.SemistandardPathTableau([[3,2],[3,3,1],[3,3,2,1],[4,3,3,1,0]])
sage: pt1 = path_tableaux.SemistandardPathTableau([[],[3],[3,2]])
sage: pt1.commutor(pt2)
([(), (2,), (2, 2), (4, 2, 0)], [(4, 2, 0), (4, 3, 2, 0), (4, 3, 3, 1, 0)])
sage: pt1.commutor(pt2,verbose=True)
[(3, 2), (3, 3, 1), (3, 3, 2, 1), (4, 3, 3, 1, 0)]
[(3,), (3, 2), (3, 2, 2), (4, 3, 2, 0)]
[(), (2,), (2, 2), (4, 2, 0)]

(continues on next page)

5.1. Comprehensive Module List 1597

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

([(), (2,), (2, 2), (4, 2, 0)], [(4, 2, 0), (4, 3, 2, 0), (4, 3, 3, 1, 0)])

sage: st = SkewTableau([[None,None,None,4,4,5,6,7],[None,2,4,6,7,7,7],[None,4,5,8,8,9],
→˓[None,6,7,10],[None,8,8,11],[None],[4]])
sage: pt = path_tableaux.SemistandardPathTableau(st)
sage: bk = [SkewTableau(st.bender_knuth_involution(i+1)) for i in range(10)]
sage: lr = [pt.local_rule(i+1) for i in range(10)]
sage: [r.to_tableau() for r in lr] == bk
True

AUTHORS:

• Bruce Westbury (2020): initial version

class sage.combinat.path_tableaux.semistandard.SemistandardPathTableau(parent, st, check=True)
Bases: sage.combinat.path_tableaux.path_tableau.PathTableau

An instance is a sequence of lists. Usually the entries will be non-negative integers in which case this is the chain
of partitions of a (skew) semistandard tableau. In general the entries are elements of an ordered abelian group;
each list is weakly decreasing and successive lists are interleaved.

INPUT:

Can be any of the following

• a sequence of partitions

• a sequence of lists/tuples

• a semistandard tableau

• a semistandard skew tableau

• a Gelfand-Tsetlin pattern

EXAMPLES:

sage: path_tableaux.SemistandardPathTableau([[],[2],[2,1]])
[(), (2,), (2, 1)]

sage: gt = GelfandTsetlinPattern([[2,1],[2]])
sage: path_tableaux.SemistandardPathTableau(gt)
[(), (2,), (2, 1)]

sage: st = SemistandardTableau([[1,1],[2]])
sage: path_tableaux.SemistandardPathTableau(st)
[(), (2,), (2, 1)]

sage: st = SkewTableau([[1,1],[2]])
sage: path_tableaux.SemistandardPathTableau(st)
[(), (2,), (2, 1)]

sage: st = SkewTableau([[None,1,1],[2]])
sage: path_tableaux.SemistandardPathTableau(st)
[(1,), (3, 0), (3, 1, 0)]

sage: path_tableaux.SemistandardPathTableau([[],[5/2],[7/2,2]])
[(), (5/2,), (7/2, 2)]

(continues on next page)

1598 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: path_tableaux.SemistandardPathTableau([[],[2.5],[3.5,2]])
[(), (2.50000000000000,), (3.50000000000000, 2)]

check()
Check that self is a valid path.

EXAMPLES:

sage: path_tableaux.SemistandardPathTableau([[],[3],[2,2]]) # indirect test
Traceback (most recent call last):
...
ValueError: [(), (3,), (2, 2)] does not satisfy the required inequalities in␣
→˓row 1

sage: path_tableaux.SemistandardPathTableau([[],[3/2],[2,5/2]]) # indirect test
Traceback (most recent call last):
...
ValueError: [(), (3/2,), (2, 5/2)] does not satisfy the required inequalities␣
→˓in row 1

is_integral()
Return True if all entries are non-negative integers.

EXAMPLES:

sage: path_tableaux.SemistandardPathTableau([[],[3],[3,2]]).is_integral()
True
sage: path_tableaux.SemistandardPathTableau([[],[5/2],[7/2,2]]).is_integral()
False
sage: path_tableaux.SemistandardPathTableau([[],[3],[3,-2]]).is_integral()
False

is_skew()
Return True if self is skew.

EXAMPLES:

sage: path_tableaux.SemistandardPathTableau([[],[2]]).is_skew()
False
sage: path_tableaux.SemistandardPathTableau([[2,1]]).is_skew()
True

local_rule(i)
This is the Bender-Knuth involution.

This is implemented by toggling the entries of the 𝑖-th list. The allowed range for i is 0 < i <
len(self)-1 so any row except the first and last can be changed.

EXAMPLES:

sage: pt = path_tableaux.SemistandardPathTableau([[],[3],[3,2],[3,3,1],[3,3,2,
→˓1]])
sage: pt.local_rule(1)
[(), (2,), (3, 2), (3, 3, 1), (3, 3, 2, 1)]

(continues on next page)

5.1. Comprehensive Module List 1599

Combinatorics, Release 9.7

(continued from previous page)

sage: pt.local_rule(2)
[(), (3,), (3, 2), (3, 3, 1), (3, 3, 2, 1)]
sage: pt.local_rule(3)
[(), (3,), (3, 2), (3, 2, 2), (3, 3, 2, 1)]

rectify(inner=None, verbose=False)
Rectify self.

This gives the usual rectification of a skew standard tableau and gives a generalisation to skew semistandard
tableaux. The usual construction uses jeu de taquin but here we use the Bender-Knuth involutions.

EXAMPLES:

sage: st = SkewTableau([[None, None, None, 4],[None,None,1,6],[None,None,5],[2,
→˓3]])
sage: path_tableaux.SemistandardPathTableau(st).rectify()
[(), (1,), (1, 1), (2, 1, 0), (3, 1, 0, 0), (3, 2, 0, 0, 0), (4, 2, 0, 0, 0, 0)]
sage: path_tableaux.SemistandardPathTableau(st).rectify(verbose=True)
[[(3, 2, 2), (3, 3, 2, 0), (3, 3, 2, 1, 0), (3, 3, 2, 2, 0, 0), (4, 3, 2, 2, 0,␣
→˓0, 0), (4, 3, 3, 2, 0, 0, 0, 0), (4, 4, 3, 2, 0, 0, 0, 0, 0)],
[(3, 2), (3, 3, 0), (3, 3, 1, 0), (3, 3, 2, 0, 0), (4, 3, 2, 0, 0, 0), (4, 3, 3,
→˓ 0, 0, 0, 0), (4, 4, 3, 0, 0, 0, 0, 0)],
[(3,), (3, 1), (3, 1, 1), (3, 2, 1, 0), (4, 2, 1, 0, 0), (4, 3, 1, 0, 0, 0), (4,
→˓ 4, 1, 0, 0, 0, 0)],
[(), (1,), (1, 1), (2, 1, 0), (3, 1, 0, 0), (3, 2, 0, 0, 0), (4, 2, 0, 0, 0,␣
→˓0)]]

size()
Return the size or length of self.

EXAMPLES:

sage: path_tableaux.SemistandardPathTableau([[],[3],[3,2],[3,3,1],[3,3,2,1]]).
→˓size()
5

to_pattern()
Convert self to a Gelfand-Tsetlin pattern.

EXAMPLES:

sage: pt = path_tableaux.SemistandardPathTableau([[],[3],[3,2],[3,3,1],[3,3,2,
→˓1],[4,3,3,1]])
sage: pt.to_pattern()
[[4, 3, 3, 1, 0], [3, 3, 2, 1], [3, 3, 1], [3, 2], [3]]

to_tableau()
Convert self to a SemistandardTableau.

The SemistandardSkewTableau is not implemented so this returns a SkewTableau

EXAMPLES:

sage: pt = path_tableaux.SemistandardPathTableau([[],[3],[3,2],[3,3,1],[3,3,2,
→˓1],[4,3,3,1,0]])
sage: pt.to_tableau()

(continues on next page)

1600 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[1, 1, 1, 5], [2, 2, 3], [3, 4, 5], [4]]

class sage.combinat.path_tableaux.semistandard.SemistandardPathTableaux
Bases: sage.combinat.path_tableaux.path_tableau.PathTableaux

The parent class for SemistandardPathTableau.

Element
alias of SemistandardPathTableau

5.1.161 Plane Partitions

AUTHORS:

• Jang Soo Kim (2016): Initial implementation

• Jessica Striker (2016): Added additional methods

sage.combinat.plane_partition.PP
alias of sage.combinat.plane_partition.PlanePartition

class sage.combinat.plane_partition.PlanePartition(parent, PP, check=True)
Bases: sage.structure.list_clone.ClonableArray

A plane partition.

A plane partition is a stack of cubes in the positive orthant.

INPUT:

• PP – a list of lists which represents a tableau

• box_size – (optional) a list [A, B, C] of 3 positive integers, where A, B, C are the lengths of the box in
the 𝑥-axis, 𝑦-axis, 𝑧-axis, respectively; if this is not given, it is determined by the smallest box bounding
PP

OUTPUT:

The plane partition whose tableau representation is PP.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP
Plane partition [[4, 3, 3, 1], [2, 1, 1], [1, 1]]

cells()
Return the list of cells inside self.

EXAMPLES:

sage: PP = PlanePartition([[3,1],[2]])
sage: PP.cells()
[[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 1, 0], [1, 0, 0], [1, 0, 1]]

check()
Check to see that self is a valid plane partition.

EXAMPLES:

5.1. Comprehensive Module List 1601

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.check()

complement(tableau_only=False)
Return the complement of self.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.complement()
Plane partition [[4, 4, 3, 3], [4, 3, 3, 2], [3, 1, 1, 0]]
sage: PP.complement(True)
[[4, 4, 3, 3], [4, 3, 3, 2], [3, 1, 1, 0]]

is_CSPP()
Return whether self is a cyclically symmetric plane partition.

A plane partition is cyclically symmetric if its 𝑥, 𝑦, and 𝑧 tableaux are all equal.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_CSPP()
False
sage: PP = PlanePartition([[3,2,2],[3,1,0],[1,1,0]])
sage: PP.is_CSPP()
True

is_CSSCPP()
Return whether self is a cyclically symmetric and self-complementary plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_CSSCPP()
False
sage: PP = PlanePartition([[4,4,4,1],[3,3,2,1],[3,2,1,1],[3,0,0,0]])
sage: PP.is_CSSCPP()
True

is_CSTCPP()
Return whether self is a cyclically symmetric and transpose-complementary plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_CSTCPP()
False
sage: PP = PlanePartition([[4,4,3,2],[4,3,2,1],[3,2,1,0],[2,1,0,0]])
sage: PP.is_CSTCPP()
True

is_SCPP()
Return whether self is a self-complementary plane partition.

EXAMPLES:

1602 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_SCPP()
False
sage: PP = PlanePartition([[4,4,4,4],[4,4,2,0],[4,2,0,0],[0,0,0,0]])
sage: PP.is_SCPP()
True

is_SPP()
Return whether self is a symmetric plane partition.

A plane partition is symmetric if the corresponding tableau is symmetric about the diagonal.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_SPP()
False
sage: PP = PlanePartition([[3,3,2],[3,3,2],[2,2,2]])
sage: PP.is_SPP()
True
sage: PP = PlanePartition([[3,2,1],[2,0,0]])
sage: PP.is_SPP()
False
sage: PP = PlanePartition([[3,2,0],[2,0,0]])
sage: PP.is_SPP()
True
sage: PP = PlanePartition([[3,2],[2,0],[1,0]])
sage: PP.is_SPP()
False
sage: PP = PlanePartition([[3,2],[2,0],[0,0]])
sage: PP.is_SPP()
True

is_SSCPP()
Return whether self is a symmetric, self-complementary plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_SSCPP()
False
sage: PP = PlanePartition([[4,3,3,2],[3,2,2,1],[3,2,2,1],[2,1,1,0]])
sage: PP.is_SSCPP()
True
sage: PP = PlanePartition([[2,1],[1,0]])
sage: PP.is_SSCPP()
True
sage: PP = PlanePartition([[4,3,2],[3,2,1],[2,1,0]])
sage: PP.is_SSCPP()
True
sage: PP = PlanePartition([[4,2,2,2],[2,2,2,2],[2,2,2,2],[2,2,2,0]])
sage: PP.is_SSCPP()
True

5.1. Comprehensive Module List 1603

Combinatorics, Release 9.7

is_TCPP()
Return whether self is a transpose-complementary plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_TCPP()
False
sage: PP = PlanePartition([[4,4,3,2],[4,4,2,1],[4,2,0,0],[2,0,0,0]])
sage: PP.is_TCPP()
True

is_TSPP()
Return whether self is a totally symmetric plane partition.

A plane partition is totally symmetric if it is both symmetric and cyclically symmetric.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_TSPP()
False
sage: PP = PlanePartition([[3,3,3],[3,3,2],[3,2,1]])
sage: PP.is_TSPP()
True

is_TSSCPP()
Return whether self is a totally symmetric self-complementary plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_TSSCPP()
False
sage: PP = PlanePartition([[4,4,3,2],[4,3,2,1],[3,2,1,0],[2,1,0,0]])
sage: PP.is_TSSCPP()
True

plot(show_box=False, colors=None)
Return a plot of self.

INPUT:

• show_box – boolean (default: False); if True, also shows the visible tiles on the 𝑥𝑦-, 𝑦𝑧-, 𝑧𝑥-planes

• colors – (default: ["white", "lightgray", "darkgray"]) list [A, B, C] of 3 strings repre-
senting colors

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.plot()
Graphics object consisting of 27 graphics primitives

plot3d(colors=None)
Return a 3D-plot of self.

INPUT:

1604 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• colors – (default: ["white", "lightgray", "darkgray"]) list [A, B, C] of 3 strings repre-
senting colors

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.plot3d()
Graphics3d Object

pp(show_box=False)
Return a pretty print of the plane partition.

INPUT:

• show_box – boolean (default: False); if True, also shows the visible tiles on the 𝑥𝑦-, 𝑦𝑧-, 𝑧𝑥-planes

OUTPUT:

A pretty print of the plane partition.

EXAMPLES:

sage: PlanePartition([[4,3,3,1],[2,1,1],[1,1]]).pp()
__
/_\

__/\/_/
__/_\/_\

/_\/_/\/_\
\/__\/\/_/
\/_/_\/_/

\/_/_\
\/_/

sage: PlanePartition([[4,3,3,1],[2,1,1],[1,1]]).pp(True)

/_/_/_\

/_/_/\/_/\
/_/_\/_\/\

/_\/_/\/_\/\
\/__\/\/_/\/
\/_/_\/_/\/
\//_\/
__\/_/

to_tableau()
Return the tableau class of self.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.to_tableau()
[[4, 3, 3, 1], [2, 1, 1], [1, 1]]

transpose(tableau_only=False)
Return the transpose of self.

EXAMPLES:

5.1. Comprehensive Module List 1605

Combinatorics, Release 9.7

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.transpose()
Plane partition [[4, 2, 1], [3, 1, 1], [3, 1, 0], [1, 0, 0]]
sage: PP.transpose(True)
[[4, 2, 1], [3, 1, 1], [3, 1, 0], [1, 0, 0]]

x_tableau()
Return the projection of self in the 𝑥 direction.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.x_tableau()
[[3, 2, 1, 1], [3, 1, 1, 0], [2, 1, 1, 0], [1, 0, 0, 0]]

y_tableau()
Return the projection of self in the 𝑦 direction.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.y_tableau()
[[4, 3, 2], [3, 1, 0], [3, 0, 0], [1, 0, 0]]

z_tableau()
Return the projection of self in the 𝑧 direction.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.z_tableau()
[[4, 3, 3, 1], [2, 1, 1, 0], [1, 1, 0, 0]]

class sage.combinat.plane_partition.PlanePartitions(box_size)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

All plane partitions inside a rectangular box of given side lengths.

INPUT:

• box_size – a triple of positive integers indicating the size of the box containing the plane partition

EXAMPLES:

This will create an instance to manipulate the plane partitions in a 4× 3× 2 box:

sage: P = PlanePartitions((4,3,2))
sage: P
Plane partitions inside a 4 x 3 x 2 box
sage: P.cardinality()
490

See also:

PlanePartition

Element
alias of PlanePartition

1606 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

box()
Return the sizes of the box of the plane partitions of self are contained in.

EXAMPLES:

sage: P = PlanePartitions((4,3,5))
sage: P.box()
(4, 3, 5)

cardinality()
Return the cardinality of self.

The number of plane partitions inside an 𝑎× 𝑏× 𝑐 box is equal to

𝑎∏︁
𝑖=1

𝑏∏︁
𝑗=1

𝑐∏︁
𝑘=1

𝑖+ 𝑗 + 𝑘 − 1

𝑖+ 𝑗 + 𝑘 − 2
.

EXAMPLES:

sage: P = PlanePartitions((4,3,5))
sage: P.cardinality()
116424

random_element()
Return a uniformly random element of self.

ALGORITHM:

This uses the random_order_ideal() method and the natural bijection with plane partitions.

EXAMPLES:

sage: P = PlanePartitions((4,3,5))
sage: p = P.random_element()
sage: p.parent() is P
True

5.1.162 Integer partitions

A partition 𝑝 of a nonnegative integer 𝑛 is a non-increasing list of positive integers (the parts of the partition) with total
sum 𝑛.

A partition can be depicted by a diagram made of rows of cells, where the number of cells in the 𝑖𝑡ℎ row starting from
the top is the 𝑖𝑡ℎ part of the partition.

The coordinate system related to a partition applies from the top to the bottom and from left to right. So, the corners
of the partition [5, 3, 1] are [[0, 4], [1, 2], [2, 0]].

For display options, see Partitions.options.

Note:

• Boxes is a synonym for cells. All methods will use ‘cell’ and ‘cells’ instead of ‘box’ and ‘boxes’.

• Partitions are 0 based with coordinates in the form of (row-index, column-index).

• If given coordinates of the form (r, c), then use Python’s *-operator.

5.1. Comprehensive Module List 1607

Combinatorics, Release 9.7

• Throughout this documentation, for a partition 𝜆 we will denote its conjugate partition by 𝜆′. For more on
conjugate partitions, see Partition.conjugate().

• The comparisons on partitions use lexicographic order.

Note: We use the convention that lexicographic ordering is read from left-to-right. That is to say [1, 3, 7] is smaller
than [2, 3, 4].

AUTHORS:

• Mike Hansen (2007): initial version

• Dan Drake (2009-03-28): deprecate RestrictedPartitions and implement Partitions_parts_in

• Travis Scrimshaw (2012-01-12): Implemented latex function to Partition_class

• Travis Scrimshaw (2012-05-09): Fixed Partitions(-1).list() infinite recursion loop by saying Partitions_n is the
empty set.

• Travis Scrimshaw (2012-05-11): Fixed bug in inner where if the length was longer than the length of the inner
partition, it would include 0’s.

• Andrew Mathas (2012-06-01): Removed deprecated functions and added compatibility with the PartitionTuple
classes. See trac ticket #13072

• Travis Scrimshaw (2012-10-12): Added options. Made Partition_class to the element Partition.
Partitions* are now all in the category framework except PartitionsRestricted (which will eventually
be removed). Cleaned up documentation.

• Matthew Lancellotti (2018-09-14): Added a bunch of “k” methods to Partition.

EXAMPLES:

There are 5 partitions of the integer 4:

sage: Partitions(4).cardinality()
5
sage: Partitions(4).list()
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

We can use the method .first() to get the ‘first’ partition of a number:

sage: Partitions(4).first()
[4]

Using the method .next(p), we can calculate the ‘next’ partition after 𝑝. When we are at the last partition, None will
be returned:

sage: Partitions(4).next([4])
[3, 1]
sage: Partitions(4).next([1,1,1,1]) is None
True

We can use iter to get an object which iterates over the partitions one by one to save memory. Note that when we do
something like for part in Partitions(4) this iterator is used in the background:

1608 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/13072

Combinatorics, Release 9.7

sage: g = iter(Partitions(4))
sage: next(g)
[4]
sage: next(g)
[3, 1]
sage: next(g)
[2, 2]
sage: for p in Partitions(4): print(p)
[4]
[3, 1]
[2, 2]
[2, 1, 1]
[1, 1, 1, 1]

We can add constraints to the type of partitions we want. For example, to get all of the partitions of 4 of length 2, we’d
do the following:

sage: Partitions(4, length=2).list()
[[3, 1], [2, 2]]

Here is the list of partitions of length at least 2 and the list of ones with length at most 2:

sage: Partitions(4, min_length=2).list()
[[3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
sage: Partitions(4, max_length=2).list()
[[4], [3, 1], [2, 2]]

The options min_part and max_part can be used to set constraints on the sizes of all parts. Using max_part, we can
select partitions having only ‘small’ entries. The following is the list of the partitions of 4 with parts at most 2:

sage: Partitions(4, max_part=2).list()
[[2, 2], [2, 1, 1], [1, 1, 1, 1]]

The min_part options is complementary to max_part and selects partitions having only ‘large’ parts. Here is the list
of all partitions of 4 with each part at least 2:

sage: Partitions(4, min_part=2).list()
[[4], [2, 2]]

The options inner and outer can be used to set part-by-part constraints. This is the list of partitions of 4 with [3,
1, 1] as an outer bound (that is, partitions of 4 contained in the partition [3, 1, 1]):

sage: Partitions(4, outer=[3,1,1]).list()
[[3, 1], [2, 1, 1]]

outer sets max_length to the length of its argument. Moreover, the parts of outer may be infinite to clear constraints
on specific parts. Here is the list of the partitions of 4 of length at most 3 such that the second and third part are 1 when
they exist:

sage: Partitions(4, outer=[oo,1,1]).list()
[[4], [3, 1], [2, 1, 1]]

Finally, here are the partitions of 4 with [1,1,1] as an inner bound (i. e., the partitions of 4 containing the partition
[1,1,1]). Note that inner sets min_length to the length of its argument:

5.1. Comprehensive Module List 1609

Combinatorics, Release 9.7

sage: Partitions(4, inner=[1,1,1]).list()
[[2, 1, 1], [1, 1, 1, 1]]

The options min_slope and max_slope can be used to set constraints on the slope, that is on the difference
p[i+1]-p[i] of two consecutive parts. Here is the list of the strictly decreasing partitions of 4:

sage: Partitions(4, max_slope=-1).list()
[[4], [3, 1]]

The constraints can be combined together in all reasonable ways. Here are all the partitions of 11 of length between 2
and 4 such that the difference between two consecutive parts is between −3 and −1:

sage: Partitions(11,min_slope=-3,max_slope=-1,min_length=2,max_length=4).list()
[[7, 4], [6, 5], [6, 4, 1], [6, 3, 2], [5, 4, 2], [5, 3, 2, 1]]

Partition objects can also be created individually with Partition:

sage: Partition([2,1])
[2, 1]

Once we have a partition object, then there are a variety of methods that we can use. For example, we can get the
conjugate of a partition. Geometrically, the conjugate of a partition is the reflection of that partition through its main
diagonal. Of course, this operation is an involution:

sage: Partition([4,1]).conjugate()
[2, 1, 1, 1]
sage: Partition([4,1]).conjugate().conjugate()
[4, 1]

If we create a partition with extra zeros at the end, they will be dropped:

sage: Partition([4,1,0,0])
[4, 1]
sage: Partition([0])
[]
sage: Partition([0,0])
[]

The idea of a partition being followed by infinitely many parts of size 0 is consistent with the get_part method:

sage: p = Partition([5, 2])
sage: p.get_part(0)
5
sage: p.get_part(10)
0

We can go back and forth between the standard and the exponential notations of a partition. The exponential notation
can be padded with extra zeros:

sage: Partition([6,4,4,2,1]).to_exp()
[1, 1, 0, 2, 0, 1]
sage: Partition(exp=[1,1,0,2,0,1])
[6, 4, 4, 2, 1]
sage: Partition([6,4,4,2,1]).to_exp(5)

(continues on next page)

1610 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1, 1, 0, 2, 0, 1]
sage: Partition([6,4,4,2,1]).to_exp(7)
[1, 1, 0, 2, 0, 1, 0]
sage: Partition([6,4,4,2,1]).to_exp(10)
[1, 1, 0, 2, 0, 1, 0, 0, 0, 0]

We can get the (zero-based!) coordinates of the corners of a partition:

sage: Partition([4,3,1]).corners()
[(0, 3), (1, 2), (2, 0)]

We can compute the core and quotient of a partition and build the partition back up from them:

sage: Partition([6,3,2,2]).core(3)
[2, 1, 1]
sage: Partition([7,7,5,3,3,3,1]).quotient(3)
([2], [1], [2, 2, 2])
sage: p = Partition([11,5,5,3,2,2,2])
sage: p.core(3)
[]
sage: p.quotient(3)
([2, 1], [4], [1, 1, 1])
sage: Partition(core=[],quotient=([2, 1], [4], [1, 1, 1]))
[11, 5, 5, 3, 2, 2, 2]

We can compute the 0− 1 sequence and go back and forth:

sage: Partitions().from_zero_one([1, 1, 1, 1, 0, 1, 0])
[5, 4]
sage: all(Partitions().from_zero_one(mu.zero_one_sequence())
....: == mu for n in range(5) for mu in Partitions(n))
True

We can compute the Frobenius coordinates and go back and forth:

sage: Partition([7,3,1]).frobenius_coordinates()
([6, 1], [2, 0])
sage: Partition(frobenius_coordinates=([6,1],[2,0]))
[7, 3, 1]
sage: all(mu == Partition(frobenius_coordinates=mu.frobenius_coordinates())
....: for n in range(12) for mu in Partitions(n))
True

We use the lexicographic ordering:

sage: pl = Partition([4,1,1])
sage: ql = Partitions()([3,3])
sage: pl > ql
True
sage: PL = Partitions()
sage: pl = PL([4,1,1])
sage: ql = PL([3,3])

(continues on next page)

5.1. Comprehensive Module List 1611

Combinatorics, Release 9.7

(continued from previous page)

sage: pl > ql
True

class sage.combinat.partition.OrderedPartitions(n, k)
Bases: sage.combinat.partition.Partitions

The class of ordered partitions of 𝑛. If 𝑘 is specified, then this contains only the ordered partitions of length 𝑘.

An ordered partition of a nonnegative integer 𝑛 means a list of positive integers whose sum is 𝑛. This is the
same as a composition of 𝑛.

Note: It is recommended that you use Compositions() instead as OrderedPartitions() wraps GAP.

EXAMPLES:

sage: OrderedPartitions(3)
Ordered partitions of 3
sage: OrderedPartitions(3).list()
[[3], [2, 1], [1, 2], [1, 1, 1]]
sage: OrderedPartitions(3,2)
Ordered partitions of 3 of length 2
sage: OrderedPartitions(3,2).list()
[[2, 1], [1, 2]]

sage: OrderedPartitions(10,k=2).list()
[[9, 1], [8, 2], [7, 3], [6, 4], [5, 5], [4, 6], [3, 7], [2, 8], [1, 9]]
sage: OrderedPartitions(4).list()
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: OrderedPartitions(3).cardinality()
4
sage: OrderedPartitions(3,2).cardinality()
2
sage: OrderedPartitions(10,2).cardinality()
9
sage: OrderedPartitions(15).cardinality()
16384

list()
Return a list of partitions in self.

EXAMPLES:

sage: OrderedPartitions(3).list()
[[3], [2, 1], [1, 2], [1, 1, 1]]
sage: OrderedPartitions(3,2).list()
[[2, 1], [1, 2]]

1612 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.partition.Partition(parent, mu)
Bases: sage.combinat.combinat.CombinatorialElement

A partition 𝑝 of a nonnegative integer 𝑛 is a non-increasing list of positive integers (the parts of the partition)
with total sum 𝑛.

A partition is often represented as a diagram consisting of cells, or boxes, placed in rows on top of each other
such that the number of cells in the 𝑖𝑡ℎ row, reading from top to bottom, is the 𝑖𝑡ℎ part of the partition. The
rows are left-justified (and become shorter and shorter the farther down one goes). This diagram is called the
Young diagram of the partition, or more precisely its Young diagram in English notation. (French and Russian
notations are variations on this representation.)

The coordinate system related to a partition applies from the top to the bottom and from left to right. So, the
corners of the partition [5, 3, 1] are [[0,4], [1,2], [2,0]].

For display options, see Partitions.options().

Note: Partitions are 0 based with coordinates in the form of (row-index, column-index). For example consider
the partition mu=Partition([4,3,2,2]), the first part is mu[0] (which is 4), the second is mu[1], and so on,
and the upper-left cell in English convention is (0, 0).

A partition can be specified in one of the following ways:

• a list (the default)

• using exponential notation

• by Frobenius coordinates

• specifying its 0− 1 sequence

• specifying the core and the quotient

See the examples below.

EXAMPLES:

Creating partitions though parents:

sage: mu = Partitions(8)([3,2,1,1,1]); mu
[3, 2, 1, 1, 1]
sage: nu = Partition([3,2,1,1,1]); nu
[3, 2, 1, 1, 1]
sage: mu == nu
True
sage: mu is nu
False
sage: mu in Partitions()
True
sage: mu.parent()
Partitions of the integer 8
sage: mu.size()
8
sage: mu.category()
Category of elements of Partitions of the integer 8
sage: nu.parent()
Partitions
sage: nu.category()

(continues on next page)

5.1. Comprehensive Module List 1613

Combinatorics, Release 9.7

(continued from previous page)

Category of elements of Partitions
sage: mu[0]
3
sage: mu[1]
2
sage: mu[2]
1
sage: mu.pp()

**
*
*
*
sage: mu.removable_cells()
[(0, 2), (1, 1), (4, 0)]
sage: mu.down_list()
[[2, 2, 1, 1, 1], [3, 1, 1, 1, 1], [3, 2, 1, 1]]
sage: mu.addable_cells()
[(0, 3), (1, 2), (2, 1), (5, 0)]
sage: mu.up_list()
[[4, 2, 1, 1, 1], [3, 3, 1, 1, 1], [3, 2, 2, 1, 1], [3, 2, 1, 1, 1, 1]]
sage: mu.conjugate()
[5, 2, 1]
sage: mu.dominates(nu)
True
sage: nu.dominates(mu)
True

Creating partitions using Partition:

sage: Partition([3,2,1])
[3, 2, 1]
sage: Partition(exp=[2,1,1])
[3, 2, 1, 1]
sage: Partition(core=[2,1], quotient=[[2,1],[3],[1,1,1]])
[11, 5, 5, 3, 2, 2, 2]
sage: Partition(frobenius_coordinates=([3,2],[4,0]))
[4, 4, 1, 1, 1]
sage: Partitions().from_zero_one([1, 1, 1, 1, 0, 1, 0])
[5, 4]
sage: [2,1] in Partitions()
True
sage: [2,1,0] in Partitions()
True
sage: Partition([1,2,3])
Traceback (most recent call last):
...
ValueError: [1, 2, 3] is not an element of Partitions

Sage ignores trailing zeros at the end of partitions:

sage: Partition([3,2,1,0])
(continues on next page)

1614 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[3, 2, 1]
sage: Partitions()([3,2,1,0])
[3, 2, 1]
sage: Partitions(6)([3,2,1,0])
[3, 2, 1]

add_cell(i, j=None)
Return a partition corresponding to self with a cell added in row i. (This does not change self.)

EXAMPLES:

sage: Partition([3, 2, 1, 1]).add_cell(0)
[4, 2, 1, 1]
sage: cell = [4, 0]; Partition([3, 2, 1, 1]).add_cell(*cell)
[3, 2, 1, 1, 1]

add_horizontal_border_strip(k)
Return a list of all the partitions that can be obtained by adding a horizontal border strip of length k to
self.

EXAMPLES:

sage: Partition([]).add_horizontal_border_strip(0)
[[]]
sage: Partition([3,2,1]).add_horizontal_border_strip(0)
[[3, 2, 1]]
sage: Partition([]).add_horizontal_border_strip(2)
[[2]]
sage: Partition([2,2]).add_horizontal_border_strip(2)
[[4, 2], [3, 2, 1], [2, 2, 2]]
sage: Partition([3,2,2]).add_horizontal_border_strip(2)
[[5, 2, 2], [4, 3, 2], [4, 2, 2, 1], [3, 3, 2, 1], [3, 2, 2, 2]]

add_vertical_border_strip(k)
Return a list of all the partitions that can be obtained by adding a vertical border strip of length k to self.

EXAMPLES:

sage: Partition([]).add_vertical_border_strip(0)
[[]]
sage: Partition([3,2,1]).add_vertical_border_strip(0)
[[3, 2, 1]]
sage: Partition([]).add_vertical_border_strip(2)
[[1, 1]]
sage: Partition([2,2]).add_vertical_border_strip(2)
[[3, 3], [3, 2, 1], [2, 2, 1, 1]]
sage: Partition([3,2,2]).add_vertical_border_strip(2)
[[4, 3, 2], [4, 2, 2, 1], [3, 3, 3], [3, 3, 2, 1], [3, 2, 2, 1, 1]]

addable_cells()
Return a list of the outside corners of the partition self.

An outside corner (also called a cocorner) of a partition 𝜆 is a cell on Z2 which does not belong to the
Young diagram of 𝜆 but can be added to this Young diagram to still form a straight-shape Young diagram.

5.1. Comprehensive Module List 1615

Combinatorics, Release 9.7

The entries of the list returned are pairs of the form (𝑖, 𝑗), where 𝑖 and 𝑗 are the coordinates of the respective
corner. The coordinates are counted from 0.

EXAMPLES:

sage: Partition([2,2,1]).outside_corners()
[(0, 2), (2, 1), (3, 0)]
sage: Partition([2,2]).outside_corners()
[(0, 2), (2, 0)]
sage: Partition([6,3,3,1,1,1]).outside_corners()
[(0, 6), (1, 3), (3, 1), (6, 0)]
sage: Partition([]).outside_corners()
[(0, 0)]

addable_cells_residue(i, l)
Return a list of the outside corners of the partition self having l-residue i.

An outside corner (also called a cocorner) of a partition 𝜆 is a cell on Z2 which does not belong to the
Young diagram of 𝜆 but can be added to this Young diagram to still form a straight-shape Young diagram.
See residue() for the definition of the l-residue.

The entries of the list returned are pairs of the form (𝑖, 𝑗), where 𝑖 and 𝑗 are the coordinates of the respective
corner. The coordinates are counted from 0.

EXAMPLES:

sage: Partition([3,2,1]).outside_corners_residue(0, 3)
[(0, 3), (3, 0)]
sage: Partition([3,2,1]).outside_corners_residue(1, 3)
[(1, 2)]
sage: Partition([3,2,1]).outside_corners_residue(2, 3)
[(2, 1)]

arm_cells(i, j)
Return the list of the cells of the arm of cell (𝑖, 𝑗) in self.

The arm of cell 𝑐 = (𝑖, 𝑗) is the boxes that appear to the right of 𝑐.

The cell coordinates are zero-based, i. e., the northwesternmost cell is (0, 0).

INPUT:

• i, j – two integers

OUTPUT:

A list of pairs of integers

EXAMPLES:

sage: Partition([4,4,3,1]).arm_cells(1,1)
[(1, 2), (1, 3)]

sage: Partition([]).arm_cells(0,0)
Traceback (most recent call last):
...
ValueError: The cell is not in the diagram

arm_length(i, j)
Return the length of the arm of cell (𝑖, 𝑗) in self.

1616 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The arm of cell (𝑖, 𝑗) is the cells that appear to the right of cell (𝑖, 𝑗).

The cell coordinates are zero-based, i. e., the northwesternmost cell is (0, 0).

INPUT:

• i, j – two integers

OUTPUT:

An integer or a ValueError

EXAMPLES:

sage: p = Partition([2,2,1])
sage: p.arm_length(0, 0)
1
sage: p.arm_length(0, 1)
0
sage: p.arm_length(2, 0)
0
sage: Partition([3,3]).arm_length(0, 0)
2
sage: Partition([3,3]).arm_length(*[0,0])
2

arm_lengths(flat=False)
Return a tableau of shape self where each cell is filled with its arm length. The optional boolean parameter
flat provides the option of returning a flat list.

EXAMPLES:

sage: Partition([2,2,1]).arm_lengths()
[[1, 0], [1, 0], [0]]
sage: Partition([2,2,1]).arm_lengths(flat=True)
[1, 0, 1, 0, 0]
sage: Partition([3,3]).arm_lengths()
[[2, 1, 0], [2, 1, 0]]
sage: Partition([3,3]).arm_lengths(flat=True)
[2, 1, 0, 2, 1, 0]

arms_legs_coeff(i, j)
This is a statistic on a cell 𝑐 = (𝑖, 𝑗) in the diagram of partition 𝑝 given by

1− 𝑞𝑎 · 𝑡ℓ+1

1− 𝑞𝑎+1 · 𝑡ℓ

where 𝑎 is the arm length of 𝑐 and ℓ is the leg length of 𝑐.

The coordinates i and j of the cell are understood to be 0-based, so that (0, 0) is the northwesternmost
cell (in English notation).

EXAMPLES:

sage: Partition([3,2,1]).arms_legs_coeff(1,1)
(-t + 1)/(-q + 1)
sage: Partition([3,2,1]).arms_legs_coeff(0,0)
(-q^2*t^3 + 1)/(-q^3*t^2 + 1)
sage: Partition([3,2,1]).arms_legs_coeff(*[0,0])
(-q^2*t^3 + 1)/(-q^3*t^2 + 1)

5.1. Comprehensive Module List 1617

Combinatorics, Release 9.7

atom()
Return a list of the standard tableaux of size self.size() whose atom is equal to self.

EXAMPLES:

sage: Partition([2,1]).atom()
[[[1, 2], [3]]]
sage: Partition([3,2,1]).atom()
[[[1, 2, 3, 6], [4, 5]], [[1, 2, 3], [4, 5], [6]]]

attacking_pairs()
Return a list of the attacking pairs of the Young diagram of self.

A pair of cells (𝑐, 𝑑) of a Young diagram (in English notation) is said to be attacking if one of the following
conditions holds:

1. 𝑐 and 𝑑 lie in the same row with 𝑐 strictly to the west of 𝑑.

2. 𝑐 is in the row immediately to the south of 𝑑, and 𝑐 lies strictly east of 𝑑.

This particular method returns each pair (𝑐, 𝑑) as a tuple, where each of 𝑐 and 𝑑 is given as a tuple (𝑖, 𝑗)
with 𝑖 and 𝑗 zero-based (so 𝑖 = 0 means that the cell lies in the topmost row).

EXAMPLES:

sage: p = Partition([3, 2])
sage: p.attacking_pairs()
[((0, 0), (0, 1)),
((0, 0), (0, 2)),
((0, 1), (0, 2)),
((1, 0), (1, 1)),
((1, 1), (0, 0))]
sage: Partition([]).attacking_pairs()
[]

aut(t=0, q=0)
Return the size of the centralizer of any permutation of cycle type self.

If 𝑚𝑖 is the multiplicity of 𝑖 as a part of 𝑝, this is given by∏︁
𝑖

𝑚𝑖!𝑖
𝑚𝑖 .

Including the optional parameters 𝑡 and 𝑞 gives the 𝑞, 𝑡 analog, which is the former product times

length(𝑝)∏︁
𝑖=1

1− 𝑞𝑝𝑖
1− 𝑡𝑝𝑖

.

See Section 1.3, p. 24, in [Ke1991].

EXAMPLES:

sage: Partition([2,2,1]).centralizer_size()
8
sage: Partition([2,2,2]).centralizer_size()
48
sage: Partition([2,2,1]).centralizer_size(q=2, t=3)
9/16

(continues on next page)

1618 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Partition([]).centralizer_size()
1
sage: Partition([]).centralizer_size(q=2, t=4)
1

beta_numbers(length=None)
Return the set of beta numbers corresponding to self.

The optional argument length specifies the length of the beta set (which must be at least the length of
self).

For more on beta numbers, see frobenius_coordinates().

EXAMPLES:

sage: Partition([4,3,2]).beta_numbers()
[6, 4, 2]
sage: Partition([4,3,2]).beta_numbers(5)
[8, 6, 4, 1, 0]
sage: Partition([]).beta_numbers()
[]
sage: Partition([]).beta_numbers(3)
[2, 1, 0]
sage: Partition([6,4,1,1]).beta_numbers()
[9, 6, 2, 1]
sage: Partition([6,4,1,1]).beta_numbers(6)
[11, 8, 4, 3, 1, 0]
sage: Partition([1,1,1]).beta_numbers()
[3, 2, 1]
sage: Partition([1,1,1]).beta_numbers(4)
[4, 3, 2, 0]

block(e, multicharge=(0,))
Return a dictionary 𝛽 that determines the block associated to the partition self and the
quantum_characteristic() e.

INPUT:

• e – the quantum characteristic

• multicharge – the multicharge (default (0,))

OUTPUT:

• A dictionary giving the multiplicities of the residues in the partition tuple self

In more detail, the value beta[i] is equal to the number of nodes of residue i. This corresponds to the
positive root ∑︁

𝑖∈𝐼
𝛽𝑖𝛼𝑖 ∈ 𝑄+,

a element of the positive root lattice of the corresponding Kac-Moody algebra. See [DJM1998] and
[BK2009] for more details.

This is a useful statistics because two Specht modules for a Hecke algebra of type 𝐴 belong to the same
block if and only if they correspond to same element 𝛽 of the root lattice, given above.

5.1. Comprehensive Module List 1619

Combinatorics, Release 9.7

We return a dictionary because when the quantum characteristic is 0, the Cartan type is 𝐴∞, in which case
the simple roots are indexed by the integers.

EXAMPLES:

sage: Partition([4,3,2]).block(0)
{-2: 1, -1: 2, 0: 2, 1: 2, 2: 1, 3: 1}
sage: Partition([4,3,2]).block(2)
{0: 4, 1: 5}
sage: Partition([4,3,2]).block(2, multicharge=(1,))
{0: 5, 1: 4}
sage: Partition([4,3,2]).block(3)
{0: 3, 1: 3, 2: 3}
sage: Partition([4,3,2]).block(4)
{0: 2, 1: 2, 2: 2, 3: 3}

boundary()
Return the integer coordinates of points on the boundary of self.

For the following description, picture the Ferrer’s diagram of self using the French convention. Recall
that the French convention puts the longest row on the bottom and the shortest row on the top. In addition,
interpret the Ferrer’s diagram as 1 x 1 cells in the Euclidean plane. So if self was the partition [3, 1], the
lower-left vertices of the 1 x 1 cells in the Ferrer’s diagram would be (0, 0), (1, 0), (2, 0), and (0, 1).

The boundary of a partition is the set {NE(𝑑) | ∀𝑑 diagonal}. That is, for every diagonal line 𝑦 = 𝑥 + 𝑏
where 𝑏 ∈ Z, we find the northeasternmost (NE) point on that diagonal which is also in the Ferrer’s diagram.

The boundary will go from bottom-right to top-left.

EXAMPLES:

Consider the partition (1) depicted as a square on a cartesian plane with vertices (0, 0), (1, 0), (1, 1), and
(0, 1). Three of those vertices in the appropriate order form the boundary:

sage: Partition([1]).boundary()
[(1, 0), (1, 1), (0, 1)]

The partition (3, 1) can be visualized as three squares on a cartesian plane. The coordinates of the appro-
priate vertices form the boundary:

sage: Partition([3, 1]).boundary()
[(3, 0), (3, 1), (2, 1), (1, 1), (1, 2), (0, 2)]

See also:

k_rim(). You might have been looking for k_boundary() instead.

cell_poset(orientation='SE')
Return the Young diagram of self as a poset. The optional keyword variable orientation determines
the order relation of the poset.

The poset always uses the set of cells of the Young diagram of self as its ground set. The order relation of
the poset depends on the orientation variable (which defaults to "SE"). Concretely, orientation has
to be specified to one of the strings "NW", "NE", "SW", and "SE", standing for “northwest”, “northeast”,
“southwest” and “southeast”, respectively. If orientation is "SE", then the order relation of the poset
is such that a cell 𝑢 is greater or equal to a cell 𝑣 in the poset if and only if 𝑢 lies weakly southeast of 𝑣
(this means that 𝑢 can be reached from 𝑣 by a sequence of south and east steps; the sequence is allowed to
consist of south steps only, or of east steps only, or even be empty). Similarly the order relation is defined
for the other three orientations. The Young diagram is supposed to be drawn in English notation.

1620 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The elements of the poset are the cells of the Young diagram of self, written as tuples of zero-based
coordinates (so that (3, 7) stands for the 8-th cell of the 4-th row, etc.).

EXAMPLES:

sage: p = Partition([3,3,1])
sage: Q = p.cell_poset(); Q
Finite poset containing 7 elements
sage: sorted(Q)
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0)]
sage: sorted(Q.maximal_elements())
[(1, 2), (2, 0)]
sage: Q.minimal_elements()
[(0, 0)]
sage: sorted(Q.upper_covers((1, 0)))
[(1, 1), (2, 0)]
sage: Q.upper_covers((1, 1))
[(1, 2)]

sage: P = p.cell_poset(orientation="NW"); P
Finite poset containing 7 elements
sage: sorted(P)
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0)]
sage: sorted(P.minimal_elements())
[(1, 2), (2, 0)]
sage: P.maximal_elements()
[(0, 0)]
sage: P.upper_covers((2, 0))
[(1, 0)]
sage: sorted(P.upper_covers((1, 2)))
[(0, 2), (1, 1)]
sage: sorted(P.upper_covers((1, 1)))
[(0, 1), (1, 0)]
sage: sorted([len(P.upper_covers(v)) for v in P])
[0, 1, 1, 1, 1, 2, 2]

sage: R = p.cell_poset(orientation="NE"); R
Finite poset containing 7 elements
sage: sorted(R)
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0)]
sage: R.maximal_elements()
[(0, 2)]
sage: R.minimal_elements()
[(2, 0)]
sage: sorted([len(R.upper_covers(v)) for v in R])
[0, 1, 1, 1, 1, 2, 2]
sage: R.is_isomorphic(P)
False
sage: R.is_isomorphic(P.dual())
False

Linear extensions of p.cell_poset() are in 1-to-1 correspondence with standard Young tableaux of shape
𝑝:

5.1. Comprehensive Module List 1621

Combinatorics, Release 9.7

sage: all(len(p.cell_poset().linear_extensions())
....: == len(p.standard_tableaux())
....: for n in range(8) for p in Partitions(n))
True

This is not the case for northeast orientation:

sage: q = Partition([3, 1])
sage: q.cell_poset(orientation="NE").is_chain()
True

cells()
Return the coordinates of the cells of self.

EXAMPLES:

sage: Partition([2,2]).cells()
[(0, 0), (0, 1), (1, 0), (1, 1)]
sage: Partition([3,2]).cells()
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)]

centralizer_size(t=0, q=0)
Return the size of the centralizer of any permutation of cycle type self.

If 𝑚𝑖 is the multiplicity of 𝑖 as a part of 𝑝, this is given by∏︁
𝑖

𝑚𝑖!𝑖
𝑚𝑖 .

Including the optional parameters 𝑡 and 𝑞 gives the 𝑞, 𝑡 analog, which is the former product times

length(𝑝)∏︁
𝑖=1

1− 𝑞𝑝𝑖
1− 𝑡𝑝𝑖

.

See Section 1.3, p. 24, in [Ke1991].

EXAMPLES:

sage: Partition([2,2,1]).centralizer_size()
8
sage: Partition([2,2,2]).centralizer_size()
48
sage: Partition([2,2,1]).centralizer_size(q=2, t=3)
9/16
sage: Partition([]).centralizer_size()
1
sage: Partition([]).centralizer_size(q=2, t=4)
1

character_polynomial()
Return the character polynomial associated to the partition self.

The character polynomial 𝑞𝜇 associated to a partition 𝜇 is defined by

𝑞𝜇(𝑥1, 𝑥2, . . . , 𝑥𝑘) =↓
∑︁
𝛼⊢𝑘

𝜒𝜇𝛼
1𝑎12𝑎2 · · · 𝑘𝑎𝑘𝑎1!𝑎2! · · · 𝑎𝑘!

𝑘∏︁
𝑖=1

(𝑖𝑥𝑖 − 1)𝑎𝑖

1622 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

where 𝑘 is the size of 𝜇, and 𝑎𝑖 is the multiplicity of 𝑖 in 𝛼.

It is computed in the following manner:

1. Expand the Schur function 𝑠𝜇 in the power-sum basis,

2. Replace each 𝑝𝑖 with 𝑖𝑥𝑖 − 1,

3. Apply the umbral operator ↓ to the resulting polynomial.

EXAMPLES:

sage: Partition([1]).character_polynomial()
x - 1
sage: Partition([1,1]).character_polynomial()
1/2*x0^2 - 3/2*x0 - x1 + 1
sage: Partition([2,1]).character_polynomial()
1/3*x0^3 - 2*x0^2 + 8/3*x0 - x2

components()
Return a list containing the shape of self.

This method exists only for compatibility with PartitionTuples.

EXAMPLES:

sage: Partition([3,2]).components()
[[3, 2]]

conjugacy_class_size()
Return the size of the conjugacy class of the symmetric group indexed by self.

EXAMPLES:

sage: Partition([2,2,2]).conjugacy_class_size()
15
sage: Partition([2,2,1]).conjugacy_class_size()
15
sage: Partition([2,1,1]).conjugacy_class_size()
6

conjugate()
Return the conjugate partition of the partition self. This is also called the associated partition or the
transpose in the literature.

EXAMPLES:

sage: Partition([2,2]).conjugate()
[2, 2]
sage: Partition([6,3,1]).conjugate()
[3, 2, 2, 1, 1, 1]

The conjugate partition is obtained by transposing the Ferrers diagram of the partition (see
ferrers_diagram()):

sage: print(Partition([6,3,1]).ferrers_diagram())

*

(continues on next page)

5.1. Comprehensive Module List 1623

Combinatorics, Release 9.7

(continued from previous page)

sage: print(Partition([6,3,1]).conjugate().ferrers_diagram())

**
**
*
*
*

contains(x)
Return True if x is a partition whose Ferrers diagram is contained in the Ferrers diagram of self.

EXAMPLES:

sage: p = Partition([3,2,1])
sage: p.contains([2,1])
True
sage: all(p.contains(mu) for mu in Partitions(3))
True
sage: all(p.contains(mu) for mu in Partitions(4))
False

content(r, c, multicharge=(0,))
Return the content of the cell at row 𝑟 and column 𝑐.

The content of a cell is 𝑐− 𝑟.

For consistency with partition tuples there is also an optional multicharge argument which is an offset to
the usual content. By setting the multicharge equal to the 0-element of the ring Z/𝑒Z, the corresponding
𝑒-residue will be returned. This is the content modulo 𝑒.

The content (and residue) do not strictly depend on the partition, however, this method is included because
it is often useful in the context of partitions.

EXAMPLES:

sage: Partition([2,1]).content(1,0)
-1
sage: p = Partition([3,2])
sage: sum([p.content(*c) for c in p.cells()])
2

and now we return the 3-residue of a cell:

sage: Partition([2,1]).content(1,0, multicharge=[IntegerModRing(3)(0)])
2

contents_tableau(multicharge=(0,))
Return the tableau which has (k,r,c)-th cell equal to the content multicharge[k] - r + c of the cell.

EXAMPLES:

sage: Partition([2,1]).contents_tableau()
[[0, 1], [-1]]
sage: Partition([3,2,1,1]).contents_tableau().pp()

0 1 2
-1 0

(continues on next page)

1624 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

-2
-3

sage: Partition([3,2,1,1]).contents_tableau([IntegerModRing(3)(0)]).pp()
0 1 2
2 0
1
0

core(length)
Return the length-core of the partition – in the literature the core is commonly referred to as the 𝑘-core,
𝑝-core, 𝑟-core,

The 𝑟-core of a partition 𝜆 can be obtained by repeatedly removing rim hooks of size 𝑟 from (the Young
diagram of) 𝜆 until this is no longer possible. The remaining partition is the core.

EXAMPLES:

sage: Partition([6,3,2,2]).core(3)
[2, 1, 1]
sage: Partition([]).core(3)
[]
sage: Partition([8,7,7,4,1,1,1,1,1]).core(3)
[2, 1, 1]

corners()
Return a list of the corners of the partition self.

A corner of a partition 𝜆 is a cell of the Young diagram of 𝜆which can be removed from the Young diagram
while still leaving a straight shape behind.

The entries of the list returned are pairs of the form (𝑖, 𝑗), where 𝑖 and 𝑗 are the coordinates of the respective
corner. The coordinates are counted from 0.

EXAMPLES:

sage: Partition([3,2,1]).corners()
[(0, 2), (1, 1), (2, 0)]
sage: Partition([3,3,1]).corners()
[(1, 2), (2, 0)]
sage: Partition([]).corners()
[]

corners_residue(i, l)
Return a list of the corners of the partition self having l-residue i.

A corner of a partition 𝜆 is a cell of the Young diagram of 𝜆which can be removed from the Young diagram
while still leaving a straight shape behind. See residue() for the definition of the l-residue.

The entries of the list returned are pairs of the form (𝑖, 𝑗), where 𝑖 and 𝑗 are the coordinates of the respective
corner. The coordinates are counted from 0.

EXAMPLES:

sage: Partition([3,2,1]).corners_residue(0, 3)
[(1, 1)]
sage: Partition([3,2,1]).corners_residue(1, 3)

(continues on next page)

5.1. Comprehensive Module List 1625

Combinatorics, Release 9.7

(continued from previous page)

[(2, 0)]
sage: Partition([3,2,1]).corners_residue(2, 3)
[(0, 2)]

crank()
Return the Dyson crank of self.

The Dyson crank of a partition 𝜆 is defined as follows: If 𝜆 contains at least one 1, then the crank is
𝜇(𝜆) − 𝜔(𝜆), where 𝜔(𝜆) is the number of 1, and 𝜇(𝜆) is the number of parts of 𝜆 larger than 𝜔(𝜆). If 𝜆
contains no 1, then the crank is simply the largest part of 𝜆.

REFERENCES:

• [AG1988]

EXAMPLES:

sage: Partition([]).crank()
0
sage: Partition([3,2,2]).crank()
3
sage: Partition([5,4,2,1,1]).crank()
0
sage: Partition([1,1,1]).crank()
-3
sage: Partition([6,4,4,3]).crank()
6
sage: Partition([6,3,3,1,1]).crank()
1
sage: Partition([6]).crank()
6
sage: Partition([5,1]).crank()
0
sage: Partition([4,2]).crank()
4
sage: Partition([4,1,1]).crank()
-1
sage: Partition([3,3]).crank()
3
sage: Partition([3,2,1]).crank()
1
sage: Partition([3,1,1,1]).crank()
-3
sage: Partition([2,2,2]).crank()
2
sage: Partition([2,2,1,1]).crank()
-2
sage: Partition([2,1,1,1,1]).crank()
-4
sage: Partition([1,1,1,1,1,1]).crank()
-6

defect(e, multicharge=(0,))
Return the e-defect or the e-weight of self.

1626 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The 𝑒-defect is the number of (connected) 𝑒-rim hooks that can be removed from the partition.

The defect of a partition is given by

defect(𝛽) = (Λ, 𝛽)− 1
2 (𝛽, 𝛽),

where Λ =
∑︀
𝑟 Λ𝜅𝑟 for the multicharge (𝜅1, . . . , 𝜅ℓ) and 𝛽 =

∑︀
(𝑟,𝑐) 𝛼(𝑐−𝑟) (mod 𝑒), with the sum being

over the cells in the partition.

INPUT:

• e – the quantum characteristic

• multicharge – the multicharge (default (0,))

OUTPUT:

• a non-negative integer, which is the defect of the block containing the partition self

EXAMPLES:

sage: Partition([4,3,2]).defect(2)
3
sage: Partition([0]).defect(2)
0
sage: Partition([3]).defect(2)
1
sage: Partition([6]).defect(2)
3
sage: Partition([9]).defect(2)
4
sage: Partition([12]).defect(2)
6
sage: Partition([4,3,2]).defect(3)
3
sage: Partition([0]).defect(3)
0
sage: Partition([3]).defect(3)
1
sage: Partition([6]).defect(3)
2
sage: Partition([9]).defect(3)
3
sage: Partition([12]).defect(3)
4

degree(e)
Return the e-th degree of self.

The 𝑒-th degree of a partition 𝜆 is the sum of the 𝑒-th degrees of the standard tableaux of shape 𝜆. The 𝑒-th
degree is the exponent of Φ𝑒(𝑞) in the Gram determinant of the Specht module for a semisimple Iwahori-
Hecke algebra of type 𝐴 with parameter 𝑞.

INPUT:

• e – an integer 𝑒 > 1

OUTPUT:

A non-negative integer.

5.1. Comprehensive Module List 1627

Combinatorics, Release 9.7

EXAMPLES:

sage: Partition([4,3]).degree(2)
28
sage: Partition([4,3]).degree(3)
15
sage: Partition([4,3]).degree(4)
8
sage: Partition([4,3]).degree(5)
13
sage: Partition([4,3]).degree(6)
0
sage: Partition([4,3]).degree(7)
0

Therefore, the Gram determinant of 𝑆(5, 3) when the Hecke parameter 𝑞 is “generic” is

𝑞𝑁Φ2(𝑞)28Φ3(𝑞)15Φ4(𝑞)8Φ5(𝑞)13

for some integer 𝑁 . Compare with prime_degree().

dimension(smaller=None, k=1)
Return the number of paths from the smaller partition to the partition self, where each step consists of
adding a 𝑘-ribbon while keeping a partition.

Note that a 1-ribbon is just a single cell, so this counts paths in the Young graph when 𝑘 = 1.

Note also that the default case (𝑘 = 1 and smaller = []) gives the dimension of the irreducible repre-
sentation of the symmetric group corresponding to self.

INPUT:

• smaller – a partition (default: an empty list [])

• 𝑘 – a positive integer (default: 1)

OUTPUT:

The number of such paths

EXAMPLES:

Looks at the number of ways of getting from [5,4] to the empty partition, removing one cell at a time:

sage: mu = Partition([5,4])
sage: mu.dimension()
42

Same, but removing one 3-ribbon at a time. Note that the 3-core of mu is empty:

sage: mu.dimension(k=3)
3

The 2-core of mu is not the empty partition:

sage: mu.dimension(k=2)
0

Indeed, the 2-core of mu is [1]:

1628 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: mu.dimension(Partition([1]),k=2)
2

ALGORITHM:

Depending on the parameters given, different simplifications occur. When 𝑘 = 1 and smaller is empty,
this function uses the hook formula. When 𝑘 = 1 and smaller is not empty, it uses a formula from [ORV].

When 𝑘 ̸= 1, we first check that both self and smaller have the same 𝑘-core, then use the 𝑘-quotients
and the same algorithm on each of the 𝑘-quotients.

AUTHORS:

• Paul-Olivier Dehaye (2011-06-07)

dominated_partitions(rows=None)
Return a list of the partitions dominated by 𝑛. If rows is specified, then it only returns the ones whose
number of rows is at most rows.

EXAMPLES:

sage: Partition([3,2,1]).dominated_partitions()
[[3, 2, 1], [3, 1, 1, 1], [2, 2, 2], [2, 2, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1,
→˓ 1, 1]]
sage: Partition([3,2,1]).dominated_partitions(rows=3)
[[3, 2, 1], [2, 2, 2]]

dominates(p2)
Return True if self dominates the partition p2. Otherwise it returns False.

EXAMPLES:

sage: p = Partition([3,2])
sage: p.dominates([3,1])
True
sage: p.dominates([2,2])
True
sage: p.dominates([2,1,1])
True
sage: p.dominates([3,3])
False
sage: p.dominates([4])
False
sage: Partition([4]).dominates(p)
False
sage: Partition([]).dominates([1])
False
sage: Partition([]).dominates([])
True
sage: Partition([1]).dominates([])
True

down()
Return a generator for partitions that can be obtained from self by removing a cell.

EXAMPLES:

5.1. Comprehensive Module List 1629

Combinatorics, Release 9.7

sage: [p for p in Partition([2,1,1]).down()]
[[1, 1, 1], [2, 1]]
sage: [p for p in Partition([3,2]).down()]
[[2, 2], [3, 1]]
sage: [p for p in Partition([3,2,1]).down()]
[[2, 2, 1], [3, 1, 1], [3, 2]]

down_list()
Return a list of the partitions that can be obtained from self by removing a cell.

EXAMPLES:

sage: Partition([2,1,1]).down_list()
[[1, 1, 1], [2, 1]]
sage: Partition([3,2]).down_list()
[[2, 2], [3, 1]]
sage: Partition([3,2,1]).down_list()
[[2, 2, 1], [3, 1, 1], [3, 2]]
sage: Partition([]).down_list() #checks :trac:`11435`
[]

dual_equivalence_graph(directed=False, coloring=None)
Return the dual equivalence graph of self.

Two permutations 𝑝 and 𝑞 in the symmetric group 𝑆𝑛 differ by an 𝑖-elementary dual equivalence (or dual
Knuth) relation (where 𝑖 is an integer with 1 < 𝑖 < 𝑛) when the following two conditions are satisfied:

• In the one-line notation of the permutation 𝑝, the letter 𝑖 does not appear inbetween 𝑖− 1 and 𝑖+ 1.

• The permutation 𝑞 is obtained from 𝑝 by switching two of the three letters 𝑖−1, 𝑖, 𝑖+ 1 (in its one-line
notation) – namely, the leftmost and the rightmost one in order of their appearance in 𝑝.

Notice that this is equivalent to the statement that the permutations 𝑝−1 and 𝑞−1 differ by an elementary
Knuth equivalence at positions 𝑖− 1, 𝑖, 𝑖+ 1.

Two standard Young tableaux of shape 𝜆 differ by an 𝑖-elementary dual equivalence relation (of color 𝑖), if
their reading words differ by an 𝑖-elementary dual equivalence relation.

The dual equivalence graph of the partition 𝜆 is the edge-colored graph whose vertices are the standard
Young tableaux of shape 𝜆, and whose edges colored by 𝑖 are given by the 𝑖-elementary dual equivalences.

INPUT:

• directed – (default: False) whether to have the dual equivalence graph be directed (where we have
a directed edge 𝑆 → 𝑇 if 𝑖 appears to the left of 𝑖+ 1 in the reading word of 𝑇 ; otherwise we have the
directed edge 𝑇 → 𝑆)

• coloring – (optional) a function which sends each integer 𝑖 > 1 to a color (as a string, e.g., 'red'
or 'black') to be used when visually representing the resulting graph using dot2tex; the default
choice is 2 -> 'red', 3 -> 'blue', 4 -> 'green', 5 -> 'purple', 6 -> 'brown', 7
-> 'orange', 8 -> 'yellow', anything greater than 8 -> 'black'.

REFERENCES:

• [As2008b]

EXAMPLES:

1630 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: P = Partition([3,1,1])
sage: G = P.dual_equivalence_graph()
sage: G.edges(sort=True)
[([[1, 2, 3], [4], [5]], [[1, 2, 4], [3], [5]], 3),
([[1, 2, 4], [3], [5]], [[1, 2, 5], [3], [4]], 4),
([[1, 2, 4], [3], [5]], [[1, 3, 4], [2], [5]], 2),
([[1, 2, 5], [3], [4]], [[1, 3, 5], [2], [4]], 2),
([[1, 3, 4], [2], [5]], [[1, 3, 5], [2], [4]], 4),
([[1, 3, 5], [2], [4]], [[1, 4, 5], [2], [3]], 3)]
sage: G = P.dual_equivalence_graph(directed=True)
sage: G.edges(sort=True)
[([[1, 2, 4], [3], [5]], [[1, 2, 3], [4], [5]], 3),
([[1, 2, 5], [3], [4]], [[1, 2, 4], [3], [5]], 4),
([[1, 3, 4], [2], [5]], [[1, 2, 4], [3], [5]], 2),
([[1, 3, 5], [2], [4]], [[1, 2, 5], [3], [4]], 2),
([[1, 3, 5], [2], [4]], [[1, 3, 4], [2], [5]], 4),
([[1, 4, 5], [2], [3]], [[1, 3, 5], [2], [4]], 3)]

evaluation()
Return the evaluation of self.

The commutative evaluation, often shortened to evaluation, of a word (we think of a partition as a word
in {1, 2, 3, . . .}) is its image in the free commutative monoid. In other words, this counts how many occur-
rences there are of each letter.

This is also is known as Parikh vector and abelianization and has the same output as to_exp().

EXAMPLES:

sage: Partition([4,3,1,1]).evaluation()
[2, 0, 1, 1]

ferrers_diagram()
Return the Ferrers diagram of self.

EXAMPLES:

sage: mu = Partition([5,5,2,1])
sage: Partitions.options(diagram_str='*', convention="english")
sage: print(mu.ferrers_diagram())

**
*
sage: Partitions.options(diagram_str='#')
sage: print(mu.ferrers_diagram())
#####
#####
##
#
sage: Partitions.options.convention="french"
sage: print(mu.ferrers_diagram())
#
##
#####

(continues on next page)

5.1. Comprehensive Module List 1631

Combinatorics, Release 9.7

(continued from previous page)

#####
sage: print(Partition([]).ferrers_diagram())
-
sage: Partitions.options(diagram_str='-')
sage: print(Partition([]).ferrers_diagram())
(/)
sage: Partitions.options._reset()

frobenius_coordinates()
Return a pair of sequences of Frobenius coordinates aka beta numbers of the partition.

These are two strictly decreasing sequences of nonnegative integers of the same length.

EXAMPLES:

sage: Partition([]).frobenius_coordinates()
([], [])
sage: Partition([1]).frobenius_coordinates()
([0], [0])
sage: Partition([3,3,3]).frobenius_coordinates()
([2, 1, 0], [2, 1, 0])
sage: Partition([9,1,1,1,1,1,1]).frobenius_coordinates()
([8], [6])

frobenius_rank()
Return the Frobenius rank of the partition self.

The Frobenius rank of a partition 𝜆 = (𝜆1, 𝜆2, 𝜆3, · · ·) is defined to be the largest 𝑖 such that 𝜆𝑖 ≥ 𝑖. In
other words, it is the number of cells on the main diagonal of 𝜆. In yet other words, it is the size of the
largest square fitting into the Young diagram of 𝜆.

EXAMPLES:

sage: Partition([]).frobenius_rank()
0
sage: Partition([1]).frobenius_rank()
1
sage: Partition([3,3,3]).frobenius_rank()
3
sage: Partition([9,1,1,1,1,1]).frobenius_rank()
1
sage: Partition([2,1,1,1,1,1]).frobenius_rank()
1
sage: Partition([2,2,1,1,1,1]).frobenius_rank()
2
sage: Partition([3,2]).frobenius_rank()
2
sage: Partition([3,2,2]).frobenius_rank()
2
sage: Partition([8,4,4,4,4]).frobenius_rank()
4
sage: Partition([8,4,1]).frobenius_rank()
2
sage: Partition([3,3,1]).frobenius_rank()
2

1632 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

from_kbounded_to_grassmannian(k)
Maps a 𝑘-bounded partition to a Grassmannian element in the affine Weyl group of type 𝐴(1)

𝑘 .

For details, see the documentation of the method from_kbounded_to_reduced_word() .

EXAMPLES:

sage: p = Partition([2,1,1])
sage: p.from_kbounded_to_grassmannian(2)
[-1 1 1]
[-2 2 1]
[-2 1 2]
sage: p = Partition([])
sage: p.from_kbounded_to_grassmannian(2)
[1 0 0]
[0 1 0]
[0 0 1]

from_kbounded_to_reduced_word(k)
Maps a 𝑘-bounded partition to a reduced word for an element in the affine permutation group.

This uses the fact that there is a bijection between 𝑘-bounded partitions and (𝑘+ 1)-cores and an action of
the affine nilCoxeter algebra of type 𝐴(1)

𝑘 on (𝑘 + 1)-cores as described in [LM2006b].

EXAMPLES:

sage: p = Partition([2,1,1])
sage: p.from_kbounded_to_reduced_word(2)
[2, 1, 2, 0]
sage: p = Partition([3,1])
sage: p.from_kbounded_to_reduced_word(3)
[3, 2, 1, 0]
sage: p.from_kbounded_to_reduced_word(2)
Traceback (most recent call last):
...
ValueError: the partition must be 2-bounded
sage: p = Partition([])
sage: p.from_kbounded_to_reduced_word(2)
[]

garnir_tableau(*cell)
Return the Garnir tableau of shape self corresponding to the cell cell. If cell = (𝑎, 𝑐) then (𝑎+ 1, 𝑐)
must belong to the diagram of self.

The Garnir tableaux play an important role in integral and non-semisimple representation theory because
they determine the “straightening” rules for the Specht modules over an arbitrary ring.

The Garnir tableaux are the “first” non-standard tableaux which arise when you act by simple transpositions.
If (𝑎, 𝑐) is a cell in the Young diagram of a partition, which is not at the bottom of its column, then the
corresponding Garnir tableau has the integers 1, 2, . . . , 𝑛 entered in order from left to right along the rows
of the diagram up to the cell (𝑎, 𝑐− 1), then along the cells (𝑎+ 1, 1) to (𝑎+ 1, 𝑐), then (𝑎, 𝑐) until the end
of row 𝑎 and then continuing from left to right in the remaining positions. The examples below probably
make this clearer!

Note: The function also sets g._garnir_cell, where g is the resulting Garnir tableau, equal to cell

5.1. Comprehensive Module List 1633

Combinatorics, Release 9.7

which is used by some other functions.

EXAMPLES:

sage: g = Partition([5,3,3,2]).garnir_tableau((0,2)); g.pp()
1 2 6 7 8
3 4 5
9 10 11
12 13
sage: g.is_row_strict(); g.is_column_strict()
True
False

sage: Partition([5,3,3,2]).garnir_tableau(0,2).pp()
1 2 6 7 8
3 4 5
9 10 11
12 13
sage: Partition([5,3,3,2]).garnir_tableau(2,1).pp()

1 2 3 4 5
6 7 8
9 12 13
10 11
sage: Partition([5,3,3,2]).garnir_tableau(2,2).pp()
Traceback (most recent call last):
...
ValueError: (row+1, col) must be inside the diagram

See also:

• top_garnir_tableau()

generalized_pochhammer_symbol(a, alpha)
Return the generalized Pochhammer symbol (𝑎)

(𝛼)
𝑠𝑒𝑙𝑓 . This is the product over all cells (𝑖, 𝑗) in self of

𝑎− (𝑖− 1)/𝛼+ 𝑗 − 1.

EXAMPLES:

sage: Partition([2,2]).generalized_pochhammer_symbol(2,1)
12

get_part(i, default=0)
Return the 𝑖𝑡ℎ part of self, or default if it does not exist.

EXAMPLES:

sage: p = Partition([2,1])
sage: p.get_part(0), p.get_part(1), p.get_part(2)
(2, 1, 0)
sage: p.get_part(10,-1)
-1
sage: Partition([]).get_part(0)
0

1634 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

has_k_rectangle(k)
Return True if the Ferrer’s diagram of self contains 𝑘− 𝑖+ 1 rows (or more) of length 𝑖 (exactly) for any
𝑖 in [1, 𝑘].

This is mainly a helper function for is_k_reducible() and is_k_irreducible(), the only difference
between this function and is_k_reducible() being that this function allows any partition as input while
is_k_reducible() requires the input to be 𝑘-bounded.

EXAMPLES:

The partition [1, 1, 1] has at least 2 rows of length 1:

sage: Partition([1, 1, 1]).has_k_rectangle(2)
True

The partition [1, 1, 1] does not have 4 rows of length 1, 3 rows of length 2, 2 rows of length 3, nor 1 row of
length 4:

sage: Partition([1, 1, 1]).has_k_rectangle(4)
False

See also:

is_k_irreducible(), is_k_reducible(), has_rectangle()

has_rectangle(h, w)
Return True if the Ferrer’s diagram of self has h (or more) rows of length w (exactly).

INPUT:

• h – An integer ℎ ≥ 1. The (minimum) height of the rectangle.

• w – An integer 𝑤 ≥ 1. The width of the rectangle.

EXAMPLES:

sage: Partition([3, 3, 3, 3]).has_rectangle(2, 3)
True
sage: Partition([3, 3]).has_rectangle(2, 3)
True
sage: Partition([4, 3]).has_rectangle(2, 3)
False
sage: Partition([3]).has_rectangle(2, 3)
False

See also:

has_k_rectangle()

hook_length(i, j)
Return the length of the hook of cell (𝑖, 𝑗) in self.

The (length of the) hook of cell (𝑖, 𝑗) of a partition 𝜆 is

𝜆𝑖 + 𝜆′𝑗 − 𝑖− 𝑗 + 1

where 𝜆′ is the conjugate partition. In English convention, the hook length is the number of cells horizon-
tally to the right and vertically below the cell (𝑖, 𝑗) (including that cell).

EXAMPLES:

5.1. Comprehensive Module List 1635

Combinatorics, Release 9.7

sage: p = Partition([2,2,1])
sage: p.hook_length(0, 0)
4
sage: p.hook_length(0, 1)
2
sage: p.hook_length(2, 0)
1
sage: Partition([3,3]).hook_length(0, 0)
4
sage: cell = [0,0]; Partition([3,3]).hook_length(*cell)
4

hook_lengths()
Return a tableau of shape self with the cells filled in with the hook lengths.

In each cell, put the sum of one plus the number of cells horizontally to the right and vertically below the
cell (the hook length).

For example, consider the partition [3,2,1] of 6 with Ferrers diagram:

#
#
#

When we fill in the cells with the hook lengths, we obtain:

5 3 1
3 1
1

EXAMPLES:

sage: Partition([2,2,1]).hook_lengths()
[[4, 2], [3, 1], [1]]
sage: Partition([3,3]).hook_lengths()
[[4, 3, 2], [3, 2, 1]]
sage: Partition([3,2,1]).hook_lengths()
[[5, 3, 1], [3, 1], [1]]
sage: Partition([2,2]).hook_lengths()
[[3, 2], [2, 1]]
sage: Partition([5]).hook_lengths()
[[5, 4, 3, 2, 1]]

REFERENCES:

• http://mathworld.wolfram.com/HookLengthFormula.html

hook_polynomial(q, t)
Return the two-variable hook polynomial.

EXAMPLES:

sage: R.<q,t> = PolynomialRing(QQ)
sage: a = Partition([2,2]).hook_polynomial(q,t)
sage: a == (1 - t)*(1 - q*t)*(1 - t^2)*(1 - q*t^2)
True

(continues on next page)

1636 Chapter 5. Comprehensive Module List

http://mathworld.wolfram.com/HookLengthFormula.html

Combinatorics, Release 9.7

(continued from previous page)

sage: a = Partition([3,2,1]).hook_polynomial(q,t)
sage: a == (1 - t)^3*(1 - q*t^2)^2*(1 - q^2*t^3)
True

hook_product(a)
Return the Jack hook-product.

EXAMPLES:

sage: Partition([3,2,1]).hook_product(x)
(2*x + 3)*(x + 2)^2
sage: Partition([2,2]).hook_product(x)
2*(x + 2)*(x + 1)

hooks()
Return a sorted list of the hook lengths in self.

EXAMPLES:

sage: Partition([3,2,1]).hooks()
[5, 3, 3, 1, 1, 1]

initial_column_tableau()
Return the initial column tableau of shape self.

The initial column tableau of shape self is the standard tableau that has the numbers 1 to 𝑛, where 𝑛 is the
size() of self, entered in order from top to bottom and then left to right down the columns of self.

EXAMPLES:

sage: Partition([3,2]).initial_column_tableau()
[[1, 3, 5], [2, 4]]

initial_tableau()
Return the standard tableau which has the numbers 1, 2, . . . , 𝑛where 𝑛 is the size() of self entered
in order from left to right along the rows of each component, where the components are ordered from left
to right.

EXAMPLES:

sage: Partition([3,2,2]).initial_tableau()
[[1, 2, 3], [4, 5], [6, 7]]

inside_corners()
Return a list of the corners of the partition self.

A corner of a partition 𝜆 is a cell of the Young diagram of 𝜆which can be removed from the Young diagram
while still leaving a straight shape behind.

The entries of the list returned are pairs of the form (𝑖, 𝑗), where 𝑖 and 𝑗 are the coordinates of the respective
corner. The coordinates are counted from 0.

EXAMPLES:

sage: Partition([3,2,1]).corners()
[(0, 2), (1, 1), (2, 0)]
sage: Partition([3,3,1]).corners()

(continues on next page)

5.1. Comprehensive Module List 1637

Combinatorics, Release 9.7

(continued from previous page)

[(1, 2), (2, 0)]
sage: Partition([]).corners()
[]

inside_corners_residue(i, l)
Return a list of the corners of the partition self having l-residue i.

A corner of a partition 𝜆 is a cell of the Young diagram of 𝜆which can be removed from the Young diagram
while still leaving a straight shape behind. See residue() for the definition of the l-residue.

The entries of the list returned are pairs of the form (𝑖, 𝑗), where 𝑖 and 𝑗 are the coordinates of the respective
corner. The coordinates are counted from 0.

EXAMPLES:

sage: Partition([3,2,1]).corners_residue(0, 3)
[(1, 1)]
sage: Partition([3,2,1]).corners_residue(1, 3)
[(2, 0)]
sage: Partition([3,2,1]).corners_residue(2, 3)
[(0, 2)]

is_core(k)
Return True if the Partition self is a k-core.

A partition is said to be a `k`-core if it has no hooks of length 𝑘. Equivalently, a partition is said to be a
𝑘-core if it is its own 𝑘-core (where the latter is defined as in core()).

Visually, this can be checked by trying to remove border strips of size 𝑘 from self. If this is not possible,
then self is a 𝑘-core.

EXAMPLES:

In the partition (2, 1), a hook length of 2 does not occur, but a hook length of 3 does:

sage: p = Partition([2, 1])
sage: p.is_core(2)
True
sage: p.is_core(3)
False

sage: q = Partition([12, 8, 5, 5, 2, 2, 1])
sage: q.is_core(4)
False
sage: q.is_core(5)
True
sage: q.is_core(0)
True

See also:

core(), Core

is_empty()
Return True if self is the empty partition.

EXAMPLES:

1638 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Partition([]).is_empty()
True
sage: Partition([2,1,1]).is_empty()
False

is_k_bounded(k)
Return True if the partition self is bounded by k.

EXAMPLES:

sage: Partition([4, 3, 1]).is_k_bounded(4)
True
sage: Partition([4, 3, 1]).is_k_bounded(7)
True
sage: Partition([4, 3, 1]).is_k_bounded(3)
False

is_k_irreducible(k)
Return True if the partition self is k-irreducible.

A 𝑘-bounded partition is 𝑘-irreducible if its Ferrer’s diagram does not contain 𝑘− 𝑖+ 1 rows (or more) of
length 𝑖 (exactly) for every 𝑖 ∈ [1, 𝑘].

(Also, a 𝑘-bounded partition is 𝑘-irreducible if and only if it is not 𝑘-reducible.)

EXAMPLES:

The partition [1, 1, 1] has at least 2 rows of length 1:

sage: Partition([1, 1, 1]).is_k_irreducible(2)
False

The partition [1, 1, 1] does not have 4 rows of length 1, 3 rows of length 2, 2 rows of length 3, nor 1 row of
length 4:

sage: Partition([1, 1, 1]).is_k_irreducible(4)
True

See also:

is_k_reducible(), has_k_rectangle()

is_k_reducible(k)
Return True if the partition self is k-reducible.

A 𝑘-bounded partition is 𝑘-reducible if its Ferrer’s diagram contains 𝑘 − 𝑖 + 1 rows (or more) of length 𝑖
(exactly) for some 𝑖 ∈ [1, 𝑘].

(Also, a 𝑘-bounded partition is 𝑘-reducible if and only if it is not 𝑘-irreducible.)

EXAMPLES:

The partition [1, 1, 1] has at least 2 rows of length 1:

sage: Partition([1, 1, 1]).is_k_reducible(2)
True

The partition [1, 1, 1] does not have 4 rows of length 1, 3 rows of length 2, 2 rows of length 3, nor 1 row of
length 4:

5.1. Comprehensive Module List 1639

Combinatorics, Release 9.7

sage: Partition([1, 1, 1]).is_k_reducible(4)
False

See also:

is_k_irreducible(), has_k_rectangle()

is_regular(e, multicharge=(0,))
Return True is this is an e-regular partition.

A partition is 𝑒-regular if it does not have 𝑒 equal non-zero parts.

EXAMPLES:

sage: Partition([4,3,3,3]).is_regular(2)
False
sage: Partition([4,3,3,3]).is_regular(3)
False
sage: Partition([4,3,3,3]).is_regular(4)
True

is_restricted(e, multicharge=(0,))
Return True is this is an e-restricted partition.

An 𝑒-restricted partition is a partition such that the difference of consecutive parts is always strictly less
than 𝑒, where partitions are considered to have an infinite number of 0 parts. I.e., the last part must be
strictly less than 𝑒.

EXAMPLES:

sage: Partition([4,3,3,2]).is_restricted(2)
False
sage: Partition([4,3,3,2]).is_restricted(3)
True
sage: Partition([4,3,3,2]).is_restricted(4)
True
sage: Partition([4]).is_restricted(4)
False

is_symmetric()
Return True if the partition self equals its own transpose.

EXAMPLES:

sage: Partition([2, 1]).is_symmetric()
True
sage: Partition([3, 1]).is_symmetric()
False

jacobi_trudi()
Return the Jacobi-Trudi matrix of self thought of as a skew partition. See SkewPartition.
jacobi_trudi().

EXAMPLES:

sage: part = Partition([3,2,1])
sage: jt = part.jacobi_trudi(); jt

(continues on next page)

1640 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[h[3] h[1] 0]
[h[4] h[2] h[]]
[h[5] h[3] h[1]]
sage: s = SymmetricFunctions(QQ).schur()
sage: h = SymmetricFunctions(QQ).homogeneous()
sage: h(s(part))
h[3, 2, 1] - h[3, 3] - h[4, 1, 1] + h[5, 1]
sage: jt.det()
h[3, 2, 1] - h[3, 3] - h[4, 1, 1] + h[5, 1]

k_atom(k)
Return a list of the standard tableaux of size self.size() whose k-atom is equal to self.

EXAMPLES:

sage: p = Partition([3,2,1])
sage: p.k_atom(1)
[]
sage: p.k_atom(3)
[[[1, 1, 1, 2, 3], [2]],
[[1, 1, 1, 3], [2, 2]],
[[1, 1, 1, 2], [2], [3]],
[[1, 1, 1], [2, 2], [3]]]
sage: Partition([3,2,1]).k_atom(4)
[[[1, 1, 1, 3], [2, 2]], [[1, 1, 1], [2, 2], [3]]]

k_boundary(k)
Return the skew partition formed by removing the cells of the k-interior, see k_interior().

EXAMPLES:

sage: p = Partition([3,2,1])
sage: p.k_boundary(2)
[3, 2, 1] / [2, 1]
sage: p.k_boundary(3)
[3, 2, 1] / [1]

sage: p = Partition([12,8,5,5,2,2,1])
sage: p.k_boundary(4)
[12, 8, 5, 5, 2, 2, 1] / [8, 5, 2, 2]

k_column_lengths(k)
Return the k-column-shape of the partition self.

This is the ‘column’ analog of k_row_lengths().

EXAMPLES:

sage: Partition([6, 1]).k_column_lengths(2)
[1, 0, 0, 0, 1, 1]

sage: Partition([4, 4, 4, 3, 2]).k_column_lengths(2)
[1, 1, 1, 2]

5.1. Comprehensive Module List 1641

Combinatorics, Release 9.7

See also:

k_row_lengths(), k_boundary(), SkewPartition.row_lengths(), SkewPartition.
column_lengths()

k_conjugate(k)
Return the k-conjugate of self.

The 𝑘-conjugate is the partition that is given by the columns of the 𝑘-skew diagram of the partition.

We can also define the 𝑘-conjugate in the following way. Let 𝑃 denote the bijection from (𝑘 + 1)-cores to
𝑘-bounded partitions. The 𝑘-conjugate of a (𝑘 + 1)-core 𝜆 is

𝜆(𝑘) = 𝑃−1 ((𝑃 (𝜆))′) .

EXAMPLES:

sage: p = Partition([4,3,2,2,1,1])
sage: p.k_conjugate(4)
[3, 2, 2, 1, 1, 1, 1, 1, 1]

k_interior(k)
Return the partition consisting of the cells of self whose hook lengths are greater than k.

EXAMPLES:

sage: p = Partition([3,2,1])
sage: p.hook_lengths()
[[5, 3, 1], [3, 1], [1]]
sage: p.k_interior(2)
[2, 1]
sage: p.k_interior(3)
[1]

sage: p = Partition([])
sage: p.k_interior(3)
[]

k_irreducible(k)
Return the partition with all 𝑟 × (𝑘 + 1− 𝑟) rectangles removed.

If self is a 𝑘-bounded partition, then this method will return the partition where all rectangles of dimension
𝑟 × (𝑘 + 1− 𝑟) for 1 ≤ 𝑟 ≤ 𝑘 have been deleted.

If self is not a 𝑘-bounded partition then the method will raise an error.

INPUT:

• k – a non-negative integer

OUTPUT:

• a partition

EXAMPLES:

sage: Partition([3,2,2,1,1,1]).k_irreducible(4)
[3, 2, 2, 1, 1, 1]
sage: Partition([3,2,2,1,1,1]).k_irreducible(3)
[]

(continues on next page)

1642 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Partition([3,3,3,2,2,2,2,2,1,1,1,1]).k_irreducible(3)
[2, 1]

k_rim(k)
Return the k-rim of self as a list of integer coordinates.

The 𝑘-rim of a partition is the “line between” (or “intersection of”) the 𝑘-boundary and the 𝑘-interior.
(Section 2.3 of [HM2011])

It will be output as an ordered list of integer coordinates, where the origin is (0, 0). It will start at the
top-left of the 𝑘-rim (using French convention) and end at the bottom-right.

EXAMPLES:

Consider the partition (3, 1) split up into its 1-interior and 1-boundary:

The line shown in bold is the 1-rim, and that information is equivalent to the integer coordinates of the
points that occur along that line:

sage: Partition([3, 1]).k_rim(1)
[(3, 0), (2, 0), (2, 1), (1, 1), (0, 1), (0, 2)]

See also:

k_interior(), k_boundary(), boundary()

k_row_lengths(k)
Return the k-row-shape of the partition self.

This is equivalent to taking the 𝑘-boundary of the partition and then returning the row-shape of that. We
do not discard rows of length 0. (Section 2.2 of [LLMS2013])

EXAMPLES:

sage: Partition([6, 1]).k_row_lengths(2)
[2, 1]

sage: Partition([4, 4, 4, 3, 2]).k_row_lengths(2)
[0, 1, 1, 1, 2]

See also:

k_column_lengths(), k_boundary(), SkewPartition.row_lengths(), SkewPartition.
column_lengths()

k_size(k)
Given a partition self and a k, return the size of the 𝑘-boundary.

5.1. Comprehensive Module List 1643

Combinatorics, Release 9.7

This is the same as the length method sage.combinat.core.Core.length() of the sage.combinat.
core.Core object, with the exception that here we don’t require self to be a 𝑘 + 1-core.

EXAMPLES:

sage: Partition([2, 1, 1]).k_size(1)
2
sage: Partition([2, 1, 1]).k_size(2)
3
sage: Partition([2, 1, 1]).k_size(3)
3
sage: Partition([2, 1, 1]).k_size(4)
4

See also:

k_boundary(), SkewPartition.size()

k_skew(k)
Return the 𝑘-skew partition.

The 𝑘-skew diagram of a 𝑘-bounded partition is the skew diagram denoted 𝜆/𝑘 satisfying the conditions:

1. row 𝑖 of 𝜆/𝑘 has length 𝜆𝑖,

2. no cell in 𝜆/𝑘 has hook-length exceeding 𝑘,

3. every square above the diagram of 𝜆/𝑘 has hook length exceeding 𝑘.

REFERENCES:

• [LM2004]

EXAMPLES:

sage: p = Partition([4,3,2,2,1,1])
sage: p.k_skew(4)
[9, 5, 3, 2, 1, 1] / [5, 2, 1]

k_split(k)
Return the k-split of self.

EXAMPLES:

sage: Partition([4,3,2,1]).k_split(3)
[]
sage: Partition([4,3,2,1]).k_split(4)
[[4], [3, 2], [1]]
sage: Partition([4,3,2,1]).k_split(5)
[[4, 3], [2, 1]]
sage: Partition([4,3,2,1]).k_split(6)
[[4, 3, 2], [1]]
sage: Partition([4,3,2,1]).k_split(7)
[[4, 3, 2, 1]]
sage: Partition([4,3,2,1]).k_split(8)
[[4, 3, 2, 1]]

larger_lex(rhs)
Return True if self is larger than rhs in lexicographic order. Otherwise return False.

EXAMPLES:

1644 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p = Partition([3,2])
sage: p.larger_lex([3,1])
True
sage: p.larger_lex([1,4])
True
sage: p.larger_lex([3,2,1])
False
sage: p.larger_lex([3])
True
sage: p.larger_lex([5])
False
sage: p.larger_lex([3,1,1,1,1,1,1,1])
True

leg_cells(i, j)
Return the list of the cells of the leg of cell (𝑖, 𝑗) in self.

The leg of cell 𝑐 = (𝑖, 𝑗) is defined to be the cells below 𝑐 (in English convention).

The cell coordinates are zero-based, i. e., the northwesternmost cell is (0, 0).

INPUT:

• i, j – two integers

OUTPUT:

A list of pairs of integers

EXAMPLES:

sage: Partition([4,4,3,1]).leg_cells(1,1)
[(2, 1)]
sage: Partition([4,4,3,1]).leg_cells(0,1)
[(1, 1), (2, 1)]

sage: Partition([]).leg_cells(0,0)
Traceback (most recent call last):
...
ValueError: The cell is not in the diagram

leg_length(i, j)
Return the length of the leg of cell (𝑖, 𝑗) in self.

The leg of cell 𝑐 = (𝑖, 𝑗) is defined to be the cells below 𝑐 (in English convention).

The cell coordinates are zero-based, i. e., the northwesternmost cell is (0, 0).

INPUT:

• i, j – two integers

OUTPUT:

An integer or a ValueError

EXAMPLES:

sage: p = Partition([2,2,1])
sage: p.leg_length(0, 0)

(continues on next page)

5.1. Comprehensive Module List 1645

Combinatorics, Release 9.7

(continued from previous page)

2
sage: p.leg_length(0,1)
1
sage: p.leg_length(2,0)
0
sage: Partition([3,3]).leg_length(0, 0)
1
sage: cell = [0,0]; Partition([3,3]).leg_length(*cell)
1

leg_lengths(flat=False)
Return a tableau of shape self with each cell filled in with its leg length. The optional boolean parameter
flat provides the option of returning a flat list.

EXAMPLES:

sage: Partition([2,2,1]).leg_lengths()
[[2, 1], [1, 0], [0]]
sage: Partition([2,2,1]).leg_lengths(flat=True)
[2, 1, 1, 0, 0]
sage: Partition([3,3]).leg_lengths()
[[1, 1, 1], [0, 0, 0]]
sage: Partition([3,3]).leg_lengths(flat=True)
[1, 1, 1, 0, 0, 0]

length()
Return the number of parts in self.

EXAMPLES:

sage: Partition([3,2]).length()
2
sage: Partition([2,2,1]).length()
3
sage: Partition([]).length()
0

level()
Return the level of self, which is always 1.

This method exists only for compatibility with PartitionTuples.

EXAMPLES:

sage: Partition([4,3,2]).level()
1

lower_hook(i, j, alpha)
Return the lower hook length of the cell (𝑖, 𝑗) in self. When alpha = 1, this is just the normal hook
length.

The lower hook length of a cell (𝑖, 𝑗) in a partition 𝜅 is defined by

ℎ𝜅*(𝑖, 𝑗) = 𝜅′𝑗 − 𝑖+ 1 + 𝛼(𝜅𝑖 − 𝑗).

EXAMPLES:

1646 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p = Partition([2,1])
sage: p.lower_hook(0,0,1)
3
sage: p.hook_length(0,0)
3
sage: [p.lower_hook(i,j,x) for i,j in p.cells()]
[x + 2, 1, 1]

lower_hook_lengths(alpha)
Return a tableau of shape self with the cells filled in with the lower hook lengths. When alpha = 1,
these are just the normal hook lengths.

The lower hook length of a cell (𝑖, 𝑗) in a partition 𝜅 is defined by

ℎ𝜅*(𝑖, 𝑗) = 𝜅′𝑗 − 𝑖+ 1 + 𝛼(𝜅𝑖 − 𝑗).

EXAMPLES:

sage: Partition([3,2,1]).lower_hook_lengths(x)
[[2*x + 3, x + 2, 1], [x + 2, 1], [1]]
sage: Partition([3,2,1]).lower_hook_lengths(1)
[[5, 3, 1], [3, 1], [1]]
sage: Partition([3,2,1]).hook_lengths()
[[5, 3, 1], [3, 1], [1]]

next()
Return the partition that lexicographically follows self, of the same size. If self is the last partition, then
return False.

EXAMPLES:

sage: next(Partition([4]))
[3, 1]
sage: next(Partition([1,1,1,1]))
False

next_within_bounds(min=[], max=None, partition_type=None)
Get the next partition lexicographically that contains min and is contained in max.

INPUT:

• min – (default [], the empty partition) The ‘minimum partition’ that next_within_bounds(self)
must contain.

• max – (default None) The ‘maximum partition’ that next_within_bounds(self) must be contained
in. If set to None, then there is no restriction.

• partition_type – (default None) The type of partitions allowed. For example, ‘strict’ for strictly
decreasing partitions, or None to allow any valid partition.

EXAMPLES:

sage: m = [1, 1]
sage: M = [3, 2, 1]
sage: Partition([1, 1]).next_within_bounds(min=m, max=M)
[1, 1, 1]
sage: Partition([1, 1, 1]).next_within_bounds(min=m, max=M)

(continues on next page)

5.1. Comprehensive Module List 1647

Combinatorics, Release 9.7

(continued from previous page)

[2, 1]
sage: Partition([2, 1]).next_within_bounds(min=m, max=M)
[2, 1, 1]
sage: Partition([2, 1, 1]).next_within_bounds(min=m, max=M)
[2, 2]
sage: Partition([2, 2]).next_within_bounds(min=m, max=M)
[2, 2, 1]
sage: Partition([2, 2, 1]).next_within_bounds(min=m, max=M)
[3, 1]
sage: Partition([3, 1]).next_within_bounds(min=m, max=M)
[3, 1, 1]
sage: Partition([3, 1, 1]).next_within_bounds(min=m, max=M)
[3, 2]
sage: Partition([3, 2]).next_within_bounds(min=m, max=M)
[3, 2, 1]
sage: Partition([3, 2, 1]).next_within_bounds(min=m, max=M) == None
True

See also:

next()

outer_rim()
Return the outer rim of self.

The outer rim of a partition 𝜆 is defined as the cells which do not belong to 𝜆 and which are adjacent to
cells in 𝜆.

EXAMPLES:

The outer rim of the partition [4, 1] consists of the cells marked with # below:

****#
*####
##

sage: Partition([4,1]).outer_rim()
[(2, 0), (2, 1), (1, 1), (1, 2), (1, 3), (1, 4), (0, 4)]

sage: Partition([2,2,1]).outer_rim()
[(3, 0), (3, 1), (2, 1), (2, 2), (1, 2), (0, 2)]
sage: Partition([2,2]).outer_rim()
[(2, 0), (2, 1), (2, 2), (1, 2), (0, 2)]
sage: Partition([6,3,3,1,1]).outer_rim()
[(5, 0), (5, 1), (4, 1), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), (1, 4), (1, 5),
→˓ (1, 6), (0, 6)]
sage: Partition([]).outer_rim()
[(0, 0)]

outline(variable=None)
Return the outline of the partition self.

This is a piecewise linear function, normalized so that the area under the partition [1] is 2.

INPUT:

• variable – a variable (default: 'x' in the symbolic ring)

1648 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: [Partition([5,4]).outline()(x=i) for i in range(-10,11)]
[10, 9, 8, 7, 6, 5, 6, 5, 6, 5, 4, 3, 2, 3, 4, 5, 6, 7, 8, 9, 10]

sage: Partition([]).outline()
abs(x)

sage: Partition([1]).outline()
abs(x + 1) + abs(x - 1) - abs(x)

sage: y = SR.var("y")
sage: Partition([6,5,1]).outline(variable=y)
abs(y + 6) - abs(y + 5) + abs(y + 4) - abs(y + 3) + abs(y - 1) - abs(y - 2) +␣
→˓abs(y - 3)

outside_corners()
Return a list of the outside corners of the partition self.

An outside corner (also called a cocorner) of a partition 𝜆 is a cell on Z2 which does not belong to the
Young diagram of 𝜆 but can be added to this Young diagram to still form a straight-shape Young diagram.

The entries of the list returned are pairs of the form (𝑖, 𝑗), where 𝑖 and 𝑗 are the coordinates of the respective
corner. The coordinates are counted from 0.

EXAMPLES:

sage: Partition([2,2,1]).outside_corners()
[(0, 2), (2, 1), (3, 0)]
sage: Partition([2,2]).outside_corners()
[(0, 2), (2, 0)]
sage: Partition([6,3,3,1,1,1]).outside_corners()
[(0, 6), (1, 3), (3, 1), (6, 0)]
sage: Partition([]).outside_corners()
[(0, 0)]

outside_corners_residue(i, l)
Return a list of the outside corners of the partition self having l-residue i.

An outside corner (also called a cocorner) of a partition 𝜆 is a cell on Z2 which does not belong to the
Young diagram of 𝜆 but can be added to this Young diagram to still form a straight-shape Young diagram.
See residue() for the definition of the l-residue.

The entries of the list returned are pairs of the form (𝑖, 𝑗), where 𝑖 and 𝑗 are the coordinates of the respective
corner. The coordinates are counted from 0.

EXAMPLES:

sage: Partition([3,2,1]).outside_corners_residue(0, 3)
[(0, 3), (3, 0)]
sage: Partition([3,2,1]).outside_corners_residue(1, 3)
[(1, 2)]
sage: Partition([3,2,1]).outside_corners_residue(2, 3)
[(2, 1)]

plancherel_measure()
Return the probability of self under the Plancherel probability measure on partitions of the same size.

5.1. Comprehensive Module List 1649

Combinatorics, Release 9.7

This probability distribution comes from the uniform distribution on permutations via the Robinson-
Schensted correspondence.

See Wikipedia article Plancherel_measure and Partitions_n.random_element_plancherel().

EXAMPLES:

sage: Partition([]).plancherel_measure()
1
sage: Partition([1]).plancherel_measure()
1
sage: Partition([2]).plancherel_measure()
1/2
sage: [mu.plancherel_measure() for mu in Partitions(3)]
[1/6, 2/3, 1/6]
sage: Partition([5,4]).plancherel_measure()
7/1440

power(k)
Return the cycle type of the 𝑘-th power of any permutation with cycle type self (thus describes the pow-
ermap of symmetric groups).

Equivalent to GAP’s PowerPartition.

EXAMPLES:

sage: p = Partition([5,3])
sage: p.power(1)
[5, 3]
sage: p.power(2)
[5, 3]
sage: p.power(3)
[5, 1, 1, 1]
sage: p.power(4)
[5, 3]

Now let us compare this to the power map on 𝑆8:

sage: G = SymmetricGroup(8)
sage: g = G([(1,2,3,4,5),(6,7,8)])
sage: g
(1,2,3,4,5)(6,7,8)
sage: g^2
(1,3,5,2,4)(6,8,7)
sage: g^3
(1,4,2,5,3)
sage: g^4
(1,5,4,3,2)(6,7,8)

sage: Partition([3,2,1]).power(3)
[2, 1, 1, 1, 1]

pp()
Print the Ferrers diagram.

See ferrers_diagram() for more on the Ferrers diagram.

1650 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Plancherel_measure

Combinatorics, Release 9.7

EXAMPLES:

sage: Partition([5,5,2,1]).pp()

**
*
sage: Partitions.options.convention='French'
sage: Partition([5,5,2,1]).pp()
*
**

sage: Partitions.options._reset()

prime_degree(p)
Return the prime degree for the prime integer``p`` for self.

INPUT:

• p – a prime integer

OUTPUT:

A non-negative integer

The degree of a partition 𝜆 is the sum of the 𝑒-degree() of the standard tableaux of shape 𝜆, for 𝑒 a power
of the prime 𝑝. The prime degree gives the exponent of 𝑝 in the Gram determinant of the integral Specht
module of the symmetric group.

EXAMPLES:

sage: Partition([4,3]).prime_degree(2)
36
sage: Partition([4,3]).prime_degree(3)
15
sage: Partition([4,3]).prime_degree(5)
13
sage: Partition([4,3]).prime_degree(7)
0

Therefore, the Gram determinant of 𝑆(5, 3) when 𝑞 = 1 is 236315513. Compare with degree().

quotient(length)
Return the quotient of the partition – in the literature the quotient is commonly referred to as the 𝑘-quotient,
𝑝-quotient, 𝑟-quotient,

The 𝑟-quotient of a partition 𝜆 is a list of 𝑟 partitions (labelled from 0 to 𝑟−1), constructed in the following
way. Label each cell in the Young diagram of 𝜆 with its content modulo 𝑟. Let𝑅𝑖 be the set of rows ending
in a cell labelled 𝑖, and 𝐶𝑖 be the set of columns ending in a cell labelled 𝑖. Then the 𝑗-th component of the
quotient of 𝜆 is the partition defined by intersecting 𝑅𝑗 with 𝐶𝑗+1. (See Theorem 2.7.37 in [JK1981].)

EXAMPLES:

sage: Partition([7,7,5,3,3,3,1]).quotient(3)
([2], [1], [2, 2, 2])

5.1. Comprehensive Module List 1651

Combinatorics, Release 9.7

reading_tableau()
Return the RSK recording tableau of the reading word of the (standard) tableau 𝑇 labeled down (in English
convention) each column to the shape of self.

For an example of the tableau 𝑇 , consider the partition 𝜆 = (3, 2, 1), then we have:

1 4 6
2 5
3

For more, see RSK().

EXAMPLES:

sage: Partition([3,2,1]).reading_tableau()
[[1, 3, 6], [2, 5], [4]]

removable_cells()
Return a list of the corners of the partition self.

A corner of a partition 𝜆 is a cell of the Young diagram of 𝜆which can be removed from the Young diagram
while still leaving a straight shape behind.

The entries of the list returned are pairs of the form (𝑖, 𝑗), where 𝑖 and 𝑗 are the coordinates of the respective
corner. The coordinates are counted from 0.

EXAMPLES:

sage: Partition([3,2,1]).corners()
[(0, 2), (1, 1), (2, 0)]
sage: Partition([3,3,1]).corners()
[(1, 2), (2, 0)]
sage: Partition([]).corners()
[]

removable_cells_residue(i, l)
Return a list of the corners of the partition self having l-residue i.

A corner of a partition 𝜆 is a cell of the Young diagram of 𝜆which can be removed from the Young diagram
while still leaving a straight shape behind. See residue() for the definition of the l-residue.

The entries of the list returned are pairs of the form (𝑖, 𝑗), where 𝑖 and 𝑗 are the coordinates of the respective
corner. The coordinates are counted from 0.

EXAMPLES:

sage: Partition([3,2,1]).corners_residue(0, 3)
[(1, 1)]
sage: Partition([3,2,1]).corners_residue(1, 3)
[(2, 0)]
sage: Partition([3,2,1]).corners_residue(2, 3)
[(0, 2)]

remove_cell(i, j=None)
Return the partition obtained by removing a cell at the end of row i of self.

EXAMPLES:

1652 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Partition([2,2]).remove_cell(1)
[2, 1]
sage: Partition([2,2,1]).remove_cell(2)
[2, 2]
sage: #Partition([2,2]).remove_cell(0)

sage: Partition([2,2]).remove_cell(1,1)
[2, 1]
sage: #Partition([2,2]).remove_cell(1,0)

remove_horizontal_border_strip(k)
Return the partitions obtained from self by removing an horizontal border strip of length k.

EXAMPLES:

sage: Partition([5,3,1]).remove_horizontal_border_strip(0).list()
[[5, 3, 1]]
sage: Partition([5,3,1]).remove_horizontal_border_strip(1).list()
[[5, 3], [5, 2, 1], [4, 3, 1]]
sage: Partition([5,3,1]).remove_horizontal_border_strip(2).list()
[[5, 2], [5, 1, 1], [4, 3], [4, 2, 1], [3, 3, 1]]
sage: Partition([5,3,1]).remove_horizontal_border_strip(3).list()
[[5, 1], [4, 2], [4, 1, 1], [3, 3], [3, 2, 1]]
sage: Partition([5,3,1]).remove_horizontal_border_strip(4).list()
[[4, 1], [3, 2], [3, 1, 1]]
sage: Partition([5,3,1]).remove_horizontal_border_strip(5).list()
[[3, 1]]
sage: Partition([5,3,1]).remove_horizontal_border_strip(6).list()
[]

The result is returned as an instance of Partitions_with_constraints:

sage: Partition([5,3,1]).remove_horizontal_border_strip(5)
The subpartitions of [5, 3, 1] obtained by removing an horizontal border strip␣
→˓of length 5

residue(r, c, l)
Return the l-residue of the cell at row r and column c.

The ℓ-residue of a cell is 𝑐− 𝑟 modulo ℓ.

This does not strictly depend upon the partition, however, this method is included because it is often useful
in the context of partitions.

EXAMPLES:

sage: Partition([2,1]).residue(1, 0, 3)
2

rim()
Return the rim of self.

The rim of a partition 𝜆 is defined as the cells which belong to 𝜆 and which are adjacent to cells not in 𝜆.

EXAMPLES:

The rim of the partition [5, 5, 2, 1] consists of the cells marked with # below:

5.1. Comprehensive Module List 1653

Combinatorics, Release 9.7

****#
*####
##
#

sage: Partition([5,5,2,1]).rim()
[(3, 0), (2, 0), (2, 1), (1, 1), (1, 2), (1, 3), (1, 4), (0, 4)]

sage: Partition([2,2,1]).rim()
[(2, 0), (1, 0), (1, 1), (0, 1)]
sage: Partition([2,2]).rim()
[(1, 0), (1, 1), (0, 1)]
sage: Partition([6,3,3,1,1]).rim()
[(4, 0), (3, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2), (0, 3), (0, 4), (0, 5)]
sage: Partition([]).rim()
[]

row_standard_tableaux()
Return the row standard tableaux of shape self.

EXAMPLES:

sage: Partition([3,2,2,1]).row_standard_tableaux()
Row standard tableaux of shape [3, 2, 2, 1]

sign()
Return the sign of any permutation with cycle type self.

This function corresponds to a homomorphism from the symmetric group 𝑆𝑛 into the cyclic group of order
2, whose kernel is exactly the alternating group 𝐴𝑛. Partitions of sign 1 are called even partitions while
partitions of sign −1 are called odd.

EXAMPLES:

sage: Partition([5,3]).sign()
1
sage: Partition([5,2]).sign()
-1

Zolotarev’s lemma states that the Legendre symbol
(︁
𝑎
𝑝

)︁
for an integer 𝑎 (mod 𝑝) (𝑝 a prime number), can

be computed as sign(p_a), where sign denotes the sign of a permutation and p_a the permutation of the
residue classes (mod 𝑝) induced by modular multiplication by 𝑎, provided 𝑝 does not divide 𝑎.

We verify this in some examples.

sage: F = GF(11)
sage: a = F.multiplicative_generator();a
2
sage: plist = [int(a*F(x)) for x in range(1,11)]; plist
[2, 4, 6, 8, 10, 1, 3, 5, 7, 9]

This corresponds to the permutation (1, 2, 4, 8, 5, 10, 9, 7, 3, 6) (acting the set {1, 2, ..., 10}) and to the
partition [10].

1654 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p = PermutationGroupElement('(1, 2, 4, 8, 5, 10, 9, 7, 3, 6)')
sage: p.sign()
-1
sage: Partition([10]).sign()
-1
sage: kronecker_symbol(11,2)
-1

Now replace 2 by 3:

sage: plist = [int(F(3*x)) for x in range(1,11)]; plist
[3, 6, 9, 1, 4, 7, 10, 2, 5, 8]
sage: list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: p = PermutationGroupElement('(3,4,8,7,9)')
sage: p.sign()
1
sage: kronecker_symbol(3,11)
1
sage: Partition([5,1,1,1,1,1]).sign()
1

In both cases, Zolotarev holds.

REFERENCES:

• Wikipedia article Zolotarev%27s_lemma

size()
Return the size of self.

EXAMPLES:

sage: Partition([2,2]).size()
4
sage: Partition([3,2,1]).size()
6

standard_tableaux()
Return the standard tableaux of shape self.

EXAMPLES:

sage: Partition([3,2,2,1]).standard_tableaux()
Standard tableaux of shape [3, 2, 2, 1]

suter_diagonal_slide(n, exp=1)
Return the image of self in 𝑌𝑛 under Suter’s diagonal slide 𝜎𝑛, where the notations used are those defined
in [Sut2002].

The set 𝑌𝑛 is defined as the set of all partitions 𝜆 such that the hook length of the (0, 0)-cell (i.e. the
northwestern most cell in English notation) of 𝜆 is less than 𝑛, including the empty partition.

The map 𝜎𝑛 sends a partition (with non-zero entries) (𝜆1, 𝜆2, . . . , 𝜆𝑚) ∈ 𝑌𝑛 to the partition (𝜆2 + 1, 𝜆3 +
1, . . . , 𝜆𝑚 + 1, 1, 1, . . . , 1⏟ ⏞

𝑛−𝑚−𝜆1 ones

). In other words, it pads the partition with trailing zeroes until it has length

𝑛− 𝜆1, then removes its first part, and finally adds 1 to each part.

5.1. Comprehensive Module List 1655

https://en.wikipedia.org/wiki/Zolotarev%27s_lemma

Combinatorics, Release 9.7

By Theorem 2.1 of [Sut2002], the dihedral group 𝐷𝑛 with 2𝑛 elements acts on 𝑌𝑛 by letting the primitive
rotation act as 𝜎𝑛 and the reflection act as conjugation of partitions (conjugate()). This action is faithful
if 𝑛 ≥ 3.

INPUT:

• n – nonnegative integer

• exp – (default: 1) how many times 𝜎𝑛 should be applied

OUTPUT:

The result of applying Suter’s diagonal slide 𝜎𝑛 to self, assuming that self lies in 𝑌𝑛. If the optional
argument exp is set, then the slide 𝜎𝑛 is applied not just once, but exp times (note that exp is allowed to
be negative, since the slide has finite order).

EXAMPLES:

sage: Partition([5,4,1]).suter_diagonal_slide(8)
[5, 2]
sage: Partition([5,4,1]).suter_diagonal_slide(9)
[5, 2, 1]
sage: Partition([]).suter_diagonal_slide(7)
[1, 1, 1, 1, 1, 1]
sage: Partition([]).suter_diagonal_slide(1)
[]
sage: Partition([]).suter_diagonal_slide(7, exp=-1)
[6]
sage: Partition([]).suter_diagonal_slide(1, exp=-1)
[]
sage: P7 = Partitions(7)
sage: all(p == p.suter_diagonal_slide(9, exp=-1).suter_diagonal_slide(9)
....: for p in P7)
True
sage: all(p == p.suter_diagonal_slide(9, exp=3)
....: .suter_diagonal_slide(9, exp=3)
....: .suter_diagonal_slide(9, exp=3)
....: for p in P7)
True
sage: all(p == p.suter_diagonal_slide(9, exp=6)
....: .suter_diagonal_slide(9, exp=6)
....: .suter_diagonal_slide(9, exp=6)
....: for p in P7)
True
sage: all(p == p.suter_diagonal_slide(9, exp=-1)
....: .suter_diagonal_slide(9, exp=1)
....: for p in P7)
True

Check of the assertion in [Sut2002] that 𝜎𝑛
(︀
𝜎𝑛(𝜆′)′

)︀
= 𝜆:

sage: all(p.suter_diagonal_slide(8).conjugate()
....: == p.conjugate().suter_diagonal_slide(8, exp=-1)
....: for p in P7)
True

Check of Claim 1 in [Sut2002]:

1656 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: P5 = Partitions(5)
sage: all(all((p.suter_diagonal_slide(6) in q.suter_diagonal_slide(6).down())
....: or (q.suter_diagonal_slide(6) in p.suter_diagonal_slide(6).
→˓down())
....: for p in q.down())
....: for q in P5)
True

t_completion(t)
Return the t-completion of the partition self.

If 𝜆 = (𝜆1, 𝜆2, 𝜆3, . . .) is a partition and 𝑡 is an integer greater or equal to |𝜆|+𝜆1, then the 𝑡-completion of
𝜆 is defined as the partition (𝑡− |𝜆| , 𝜆1, 𝜆2, 𝜆3, . . .) of 𝑡. This partition is denoted by 𝜆[𝑡] in [BOR2009],
by 𝜆[𝑡] in [BdVO2012], and by 𝜆(𝑡) in [CO2010].

EXAMPLES:

sage: Partition([]).t_completion(0)
[]
sage: Partition([]).t_completion(1)
[1]
sage: Partition([]).t_completion(2)
[2]
sage: Partition([]).t_completion(3)
[3]
sage: Partition([2, 1]).t_completion(5)
[2, 2, 1]
sage: Partition([2, 1]).t_completion(6)
[3, 2, 1]
sage: Partition([4, 2, 2, 1]).t_completion(13)
[4, 4, 2, 2, 1]
sage: Partition([4, 2, 2, 1]).t_completion(19)
[10, 4, 2, 2, 1]
sage: Partition([4, 2, 2, 1]).t_completion(10)
Traceback (most recent call last):
...
ValueError: 10-completion is not defined
sage: Partition([4, 2, 2, 1]).t_completion(5)
Traceback (most recent call last):
...
ValueError: 5-completion is not defined

to_core(k)
Maps the 𝑘-bounded partition self to its corresponding 𝑘 + 1-core.

See also k_skew().

EXAMPLES:

sage: p = Partition([4,3,2,2,1,1])
sage: c = p.to_core(4); c
[9, 5, 3, 2, 1, 1]
sage: type(c)
<class 'sage.combinat.core.Cores_length_with_category.element_class'>
sage: c.to_bounded_partition() == p

(continues on next page)

5.1. Comprehensive Module List 1657

Combinatorics, Release 9.7

(continued from previous page)

True

to_dyck_word(n=None)
Return the n-Dyck word whose corresponding partition is self (or, if n is not specified, the 𝑛-Dyck word
with smallest 𝑛 to satisfy this property).

If𝑤 is an 𝑛-Dyck word (that is, a Dyck word with 𝑛 open symbols and 𝑛 close symbols), then the Dyck path
corresponding to𝑤 can be regarded as a lattice path in the northeastern half of an 𝑛×𝑛-square. The region
to the northeast of this Dyck path can be regarded as a partition. It is called the partition corresponding to
the Dyck word 𝑤. (See to_partition().)

For every partition 𝜆 and every nonnegative integer 𝑛, there exists at most one 𝑛-Dyck word 𝑤 such that
the partition corresponding to 𝑤 is 𝜆 (in fact, such 𝑤 exists if and only if 𝜆𝑖 + 𝑖 ≤ 𝑛 for every 𝑖, where 𝜆
is written in the form (𝜆1, 𝜆2, . . . , 𝜆𝑘) with 𝜆𝑘 > 0). This method computes this 𝑤 for a given 𝜆 and 𝑛. If
𝑛 is not specified, this method computes the 𝑤 for the smallest possible 𝑛 for which such an 𝑤 exists. (The
minimality of 𝑛 means that the partition demarcated by the Dyck path touches the diagonal.)

EXAMPLES:

sage: Partition([2,2]).to_dyck_word()
[1, 1, 0, 0, 1, 1, 0, 0]
sage: Partition([2,2]).to_dyck_word(4)
[1, 1, 0, 0, 1, 1, 0, 0]
sage: Partition([2,2]).to_dyck_word(5)
[1, 1, 1, 0, 0, 1, 1, 0, 0, 0]
sage: Partition([6,3,1]).to_dyck_word()
[1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0]
sage: Partition([]).to_dyck_word()
[]
sage: Partition([]).to_dyck_word(3)
[1, 1, 1, 0, 0, 0]

The partition corresponding to self.dyck_word() is self indeed:

sage: all(p.to_dyck_word().to_partition() == p
....: for p in Partitions(5))
True

to_exp(k=0)
Return a list of the multiplicities of the parts of a partition. Use the optional parameter k to get a return list
of length at least k.

EXAMPLES:

sage: Partition([3,2,2,1]).to_exp()
[1, 2, 1]
sage: Partition([3,2,2,1]).to_exp(5)
[1, 2, 1, 0, 0]

to_exp_dict()
Return a dictionary containing the multiplicities of the parts of self.

EXAMPLES:

1658 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p = Partition([4,2,2,1])
sage: d = p.to_exp_dict()
sage: d[4]
1
sage: d[2]
2
sage: d[1]
1
sage: 5 in d
False

to_list()
Return self as a list.

EXAMPLES:

sage: p = Partition([2,1]).to_list(); p
[2, 1]
sage: type(p)
<class 'list'>

top_garnir_tableau(e, cell)
Return the most dominant standard tableau which dominates the corresponding Garnir tableau and has the
same e-residue.

The Garnir tableau play an important role in integral and non-semisimple representation theory because
they determine the “straightening” rules for the Specht modules. The top Garnir tableaux arise in the graded
representation theory of the symmetric groups and higher level Hecke algebras. They were introduced in
[KMR2012].

If the Garnir node is cell=(r,c) and 𝑚 and 𝑀 are the entries in the cells (r,c) and (r+1,c),
respectively, in the initial tableau then the top e-Garnir tableau is obtained by inserting the numbers
𝑚,𝑚 + 1, . . . ,𝑀 in order from left to right first in the cells in row r+1 which are not in the e-Garnir
belt, then in the cell in rows r and r+1 which are in the Garnir belt and then, finally, in the remaining cells
in row r which are not in the Garnir belt. All other entries in the tableau remain unchanged.

If e = 0, or if there are no e-bricks in either row r or r+1, then the top Garnir tableau is the corresponding
Garnir tableau.

EXAMPLES:

sage: Partition([5,4,3,2]).top_garnir_tableau(2,(0,2)).pp()
1 2 4 5 8
3 6 7 9

10 11 12
13 14

sage: Partition([5,4,3,2]).top_garnir_tableau(3,(0,2)).pp()
1 2 3 4 5
6 7 8 9

10 11 12
13 14

sage: Partition([5,4,3,2]).top_garnir_tableau(4,(0,2)).pp()
1 2 6 7 8
3 4 5 9

10 11 12
(continues on next page)

5.1. Comprehensive Module List 1659

Combinatorics, Release 9.7

(continued from previous page)

13 14
sage: Partition([5,4,3,2]).top_garnir_tableau(0,(0,2)).pp()

1 2 6 7 8
3 4 5 9

10 11 12
13 14

REFERENCES:

• [KMR2012]

up()
Return a generator for partitions that can be obtained from self by adding a cell.

EXAMPLES:

sage: list(Partition([2,1,1]).up())
[[3, 1, 1], [2, 2, 1], [2, 1, 1, 1]]
sage: list(Partition([3,2]).up())
[[4, 2], [3, 3], [3, 2, 1]]
sage: [p for p in Partition([]).up()]
[[1]]

up_list()
Return a list of the partitions that can be formed from self by adding a cell.

EXAMPLES:

sage: Partition([2,1,1]).up_list()
[[3, 1, 1], [2, 2, 1], [2, 1, 1, 1]]
sage: Partition([3,2]).up_list()
[[4, 2], [3, 3], [3, 2, 1]]
sage: Partition([]).up_list()
[[1]]

upper_hook(i, j, alpha)
Return the upper hook length of the cell (𝑖, 𝑗) in self. When alpha = 1, this is just the normal hook
length.

The upper hook length of a cell (𝑖, 𝑗) in a partition 𝜅 is defined by

ℎ*𝜅(𝑖, 𝑗) = 𝜅′𝑗 − 𝑖+ 𝛼(𝜅𝑖 − 𝑗 + 1).

EXAMPLES:

sage: p = Partition([2,1])
sage: p.upper_hook(0,0,1)
3
sage: p.hook_length(0,0)
3
sage: [p.upper_hook(i,j,x) for i,j in p.cells()]
[2*x + 1, x, x]

upper_hook_lengths(alpha)
Return a tableau of shape self with the cells filled in with the upper hook lengths. When alpha = 1,
these are just the normal hook lengths.

1660 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The upper hook length of a cell (𝑖, 𝑗) in a partition 𝜅 is defined by

ℎ*𝜅(𝑖, 𝑗) = 𝜅′𝑗 − 𝑖+ 𝛼(𝜅𝑖 − 𝑗 + 1).

EXAMPLES:

sage: Partition([3,2,1]).upper_hook_lengths(x)
[[3*x + 2, 2*x + 1, x], [2*x + 1, x], [x]]
sage: Partition([3,2,1]).upper_hook_lengths(1)
[[5, 3, 1], [3, 1], [1]]
sage: Partition([3,2,1]).hook_lengths()
[[5, 3, 1], [3, 1], [1]]

weighted_size()
Return the weighted size of self.

The weighted size of a partition 𝜆 is ∑︁
𝑖

𝑖 · 𝜆𝑖,

where 𝜆 = (𝜆0, 𝜆1, 𝜆2, · · ·).

This also the sum of the leg length of every cell in 𝜆, or∑︁
𝑖

(︂
𝜆′𝑖
2

)︂
where 𝜆′ is the conjugate partition of 𝜆.

EXAMPLES:

sage: Partition([2,2]).weighted_size()
2
sage: Partition([3,3,3]).weighted_size()
9
sage: Partition([5,2]).weighted_size()
2
sage: Partition([]).weighted_size()
0

young_subgroup()
Return the corresponding Young, or parabolic, subgroup of the symmetric group.

The Young subgroup of a partition 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆ℓ) of 𝑛 is the group:

𝑆𝜆1
× 𝑆𝜆2

× · · · × 𝑆𝜆ℓ

embedded into 𝑆𝑛 in the standard way (i.e., the 𝑆𝜆𝑖 factor acts on the numbers from 𝜆1+𝜆2+· · ·+𝜆𝑖−1+1
to 𝜆1 + 𝜆2 + · · ·+ 𝜆𝑖).

EXAMPLES:

sage: Partition([4,2]).young_subgroup()
Permutation Group with generators [(), (5,6), (3,4), (2,3), (1,2)]

young_subgroup_generators()
Return an indexing set for the generators of the corresponding Young subgroup. Here the generators cor-
respond to the simple adjacent transpositions 𝑠𝑖 = (𝑖 𝑖+ 1).

EXAMPLES:

5.1. Comprehensive Module List 1661

Combinatorics, Release 9.7

sage: Partition([4,2]).young_subgroup_generators()
[1, 2, 3, 5]
sage: Partition([1,1,1]).young_subgroup_generators()
[]
sage: Partition([2,2]).young_subgroup_generators()
[1, 3]

See also:

young_subgroup()

zero_one_sequence()
Compute the finite 0− 1 sequence of the partition.

The full 0 − 1 sequence is the sequence (infinite in both directions) indicating the steps taken when fol-
lowing the outer rim of the diagram of the partition. We use the convention that in English convention, a 1
corresponds to an East step, and a 0 corresponds to a North step.

Note that every full 0− 1 sequence starts with infinitely many 0’s and ends with infinitely many 1’s.

One place where these arise is in the affine symmetric group where one takes an affine permutation 𝑤
and every 𝑖 such that 𝑤(𝑖) ≤ 0 corresponds to a 1 and 𝑤(𝑖) > 0 corresponds to a 0. See pages 24-
25 of [LLMSSZ2013] for connections to affine Grassmannian elements (note there they use the French
convention for their partitions).

These are also known as path sequences, Maya diagrams, plus-minus diagrams, Comet code [Sta-EC2],
among others.

OUTPUT:

The finite 0−1 sequence is obtained from the full 0−1 sequence by omitting all heading 0’s and trailing 1’s.
The output sequence is finite, starts with a 1 and ends with a 0 (unless it is empty, for the empty partition).
Its length is the sum of the first part of the partition with the length of the partition.

EXAMPLES:

sage: Partition([5,4]).zero_one_sequence()
[1, 1, 1, 1, 0, 1, 0]
sage: Partition([]).zero_one_sequence()
[]
sage: Partition([2]).zero_one_sequence()
[1, 1, 0]

class sage.combinat.partition.Partitions(is_infinite=False)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Partitions(n, **kwargs) returns the combinatorial class of integer partitions of 𝑛 subject to the constraints
given by the keywords.

Valid keywords are: starting, ending, min_part, max_part, max_length, min_length, length,
max_slope, min_slope, inner, outer, parts_in, regular, and restricted. They have the following
meanings:

• starting=p specifies that the partitions should all be less than or equal to 𝑝 in lex order. This argument
cannot be combined with any other (see trac ticket #15467).

• ending=p specifies that the partitions should all be greater than or equal to 𝑝 in lex order. This argument
cannot be combined with any other (see trac ticket #15467).

• length=k specifies that the partitions have exactly 𝑘 parts.

1662 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
https://trac.sagemath.org/15467
https://trac.sagemath.org/15467

Combinatorics, Release 9.7

• min_length=k specifies that the partitions have at least 𝑘 parts.

• min_part=k specifies that all parts of the partitions are at least 𝑘.

• inner=p specifies that the partitions must contain the partition 𝑝.

• outer=p specifies that the partitions be contained inside the partition 𝑝.

• min_slope=k specifies that the partitions have slope at least 𝑘; the slope at position 𝑖 is the difference
between the (𝑖+ 1)-th part and the 𝑖-th part.

• parts_in=S specifies that the partitions have parts in the set 𝑆, which can be any sequence of pairwise
distinct positive integers. This argument cannot be combined with any other (see trac ticket #15467).

• regular=ell specifies that the partitions are ℓ-regular, and can only be combined with the max_length
or max_part, but not both, keywords if 𝑛 is not specified

• restricted=ell specifies that the partitions are ℓ-restricted, and cannot be combined with any other
keywords

The max_* versions, along with inner and ending, work analogously.

Right now, the parts_in, starting, ending, regular, and restricted keyword arguments are mutually
exclusive, both of each other and of other keyword arguments. If you specify, say, parts_in, all other keyword
arguments will be ignored; starting, ending, regular, and restricted work the same way.

EXAMPLES:

If no arguments are passed, then the combinatorial class of all integer partitions is returned:

sage: Partitions()
Partitions
sage: [2,1] in Partitions()
True

If an integer 𝑛 is passed, then the combinatorial class of integer partitions of 𝑛 is returned:

sage: Partitions(3)
Partitions of the integer 3
sage: Partitions(3).list()
[[3], [2, 1], [1, 1, 1]]

If starting=p is passed, then the combinatorial class of partitions greater than or equal to 𝑝 in lexicographic
order is returned:

sage: Partitions(3, starting=[2,1])
Partitions of the integer 3 starting with [2, 1]
sage: Partitions(3, starting=[2,1]).list()
[[2, 1], [1, 1, 1]]

If ending=p is passed, then the combinatorial class of partitions at most 𝑝 in lexicographic order is returned:

sage: Partitions(3, ending=[2,1])
Partitions of the integer 3 ending with [2, 1]
sage: Partitions(3, ending=[2,1]).list()
[[3], [2, 1]]

Using max_slope=-1 yields partitions into distinct parts – each part differs from the next by at least 1. Use a
different max_slope to get parts that differ by, say, 2:

5.1. Comprehensive Module List 1663

https://trac.sagemath.org/15467

Combinatorics, Release 9.7

sage: Partitions(7, max_slope=-1).list()
[[7], [6, 1], [5, 2], [4, 3], [4, 2, 1]]
sage: Partitions(15, max_slope=-1).cardinality()
27

The number of partitions of 𝑛 into odd parts equals the number of partitions into distinct parts. Let’s test that for
𝑛 from 10 to 20:

sage: test = lambda n: Partitions(n, max_slope=-1).cardinality() == Partitions(n,␣
→˓parts_in=[1,3..n]).cardinality()
sage: all(test(n) for n in [10..20])
True

The number of partitions of 𝑛 into distinct parts that differ by at least 2 equals the number of partitions into parts
that equal 1 or 4 modulo 5; this is one of the Rogers-Ramanujan identities:

sage: test = lambda n: Partitions(n, max_slope=-2).cardinality() == Partitions(n,␣
→˓parts_in=([1,6..n] + [4,9..n])).cardinality()
sage: all(test(n) for n in [10..20])
True

Here are some more examples illustrating min_part, max_part, and length:

sage: Partitions(5,min_part=2)
Partitions of the integer 5 satisfying constraints min_part=2
sage: Partitions(5,min_part=2).list()
[[5], [3, 2]]

sage: Partitions(3,max_length=2).list()
[[3], [2, 1]]

sage: Partitions(10, min_part=2, length=3).list()
[[6, 2, 2], [5, 3, 2], [4, 4, 2], [4, 3, 3]]

Some examples using the regular keyword:

sage: Partitions(regular=4)
4-Regular Partitions
sage: Partitions(regular=4, max_length=3)
4-Regular Partitions with max length 3
sage: Partitions(regular=4, max_part=3)
4-Regular 3-Bounded Partitions
sage: Partitions(3, regular=4)
4-Regular Partitions of the integer 3

Some examples using the restricted keyword:

sage: Partitions(restricted=4)
4-Restricted Partitions
sage: Partitions(3, restricted=4)
4-Restricted Partitions of the integer 3

Here are some further examples using various constraints:

1664 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: [x for x in Partitions(4)]
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
sage: [x for x in Partitions(4, length=2)]
[[3, 1], [2, 2]]
sage: [x for x in Partitions(4, min_length=2)]
[[3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
sage: [x for x in Partitions(4, max_length=2)]
[[4], [3, 1], [2, 2]]
sage: [x for x in Partitions(4, min_length=2, max_length=2)]
[[3, 1], [2, 2]]
sage: [x for x in Partitions(4, max_part=2)]
[[2, 2], [2, 1, 1], [1, 1, 1, 1]]
sage: [x for x in Partitions(4, min_part=2)]
[[4], [2, 2]]
sage: [x for x in Partitions(4, outer=[3,1,1])]
[[3, 1], [2, 1, 1]]
sage: [x for x in Partitions(4, outer=[infinity, 1, 1])]
[[4], [3, 1], [2, 1, 1]]
sage: [x for x in Partitions(4, inner=[1,1,1])]
[[2, 1, 1], [1, 1, 1, 1]]
sage: [x for x in Partitions(4, max_slope=-1)]
[[4], [3, 1]]
sage: [x for x in Partitions(4, min_slope=-1)]
[[4], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
sage: [x for x in Partitions(11, max_slope=-1, min_slope=-3, min_length=2, max_
→˓length=4)]
[[7, 4], [6, 5], [6, 4, 1], [6, 3, 2], [5, 4, 2], [5, 3, 2, 1]]
sage: [x for x in Partitions(11, max_slope=-1, min_slope=-3, min_length=2, max_
→˓length=4, outer=[6,5,2])]
[[6, 5], [6, 4, 1], [6, 3, 2], [5, 4, 2]]

Note that if you specify min_part=0, then it will treat the minimum part as being 1 (see trac ticket #13605):

sage: [x for x in Partitions(4, length=3, min_part=0)]
[[2, 1, 1]]
sage: [x for x in Partitions(4, min_length=3, min_part=0)]
[[2, 1, 1], [1, 1, 1, 1]]

Except for very special cases, counting is done by brute force iteration through all the partitions. However
the iteration itself has a reasonable complexity (see IntegerListsLex), which allows for manipulating large
partitions:

sage: Partitions(1000, max_length=1).list()
[[1000]]

In particular, getting the first element is also constant time:

sage: Partitions(30, max_part=29).first()
[29, 1]

Element
alias of Partition

options(*get_value, **set_value)
Sets and displays the global options for elements of the partition, skew partition, and partition tuple classes.

5.1. Comprehensive Module List 1665

https://trac.sagemath.org/13605

Combinatorics, Release 9.7

If no parameters are set, then the function returns a copy of the options dictionary.

The options to partitions can be accessed as the method Partitions.options of Partitions and
related parent classes.

OPTIONS:

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• diagram_str – (default: *) The character used for the cells when printing Ferrers diagrams

• display – (default: list) Specifies how partitions should be printed

– array – alias for diagram

– compact – alias for compact_low

– compact_high – compact form of exp_high

– compact_low – compact form of exp_low

– diagram – as a Ferrers diagram

– exp – alias for exp_low

– exp_high – in exponential form (highest first)

– exp_low – in exponential form (lowest first)

– ferrers_diagram – alias for diagram

– list – displayed as a list

– young_diagram – alias for diagram

• latex – (default: young_diagram) Specifies how partitions should be latexed

– array – alias for diagram

– diagram – latex as a Ferrers diagram

– exp – alias for exp_low

– exp_high – latex as a list in exponential notation (highest first)

– exp_low – as a list latex in exponential notation (lowest first)

– ferrers_diagram – alias for diagram

– list – latex as a list

– young_diagram – latex as a Young diagram

• latex_diagram_str – (default: \ast) The character used for the cells when latexing Ferrers dia-
grams

• notation – alternative name for convention

EXAMPLES:

sage: P = Partition([4,2,2,1])
sage: P
[4, 2, 2, 1]
sage: Partitions.options.display="exp"

(continues on next page)

1666 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: P
1, 2^2, 4
sage: Partitions.options.display="exp_high"
sage: P
4, 2^2, 1

It is also possible to use user defined functions for the display and latex options:

sage: Partitions.options(display=lambda mu: '<%s>' % ','.join('%s'%m for m in␣
→˓mu._list)); P
<4,2,2,1>
sage: Partitions.options(latex=lambda mu: '\\Diagram{%s}' % ','.join('%s'%m for␣
→˓m in mu._list)); latex(P)
\Diagram{4,2,2,1}
sage: Partitions.options(display="diagram", diagram_str="#")
sage: P
####
##
##
#
sage: Partitions.options(diagram_str="*", convention="french")
sage: print(P.ferrers_diagram())
*
**
**

Changing the convention for partitions also changes the convention option for tableaux and vice versa:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T.pp()
4 5
1 2 3

sage: Tableaux.options.convention="english"
sage: print(P.ferrers_diagram())

**
**
*
sage: T.pp()
1 2 3
4 5

sage: Partitions.options._reset()

See GlobalOptions for more features of these options.

subset(*args, **kwargs)
Return self if no arguments are given, otherwise raises a ValueError.

EXAMPLES:

sage: P = Partitions(5, starting=[3,1]); P
Partitions of the integer 5 starting with [3, 1]
sage: P.subset()

(continues on next page)

5.1. Comprehensive Module List 1667

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

(continued from previous page)

Partitions of the integer 5 starting with [3, 1]
sage: P.subset(ending=[3,1])
Traceback (most recent call last):
...
ValueError: Invalid combination of arguments

class sage.combinat.partition.PartitionsGreatestEQ(n, k)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.combinat.
integer_lists.invlex.IntegerListsLex

The class of all (unordered) “restricted” partitions of the integer 𝑛 having all its greatest parts equal to the integer
𝑘.

EXAMPLES:

sage: PartitionsGreatestEQ(10, 2)
Partitions of 10 having greatest part equal to 2
sage: PartitionsGreatestEQ(10, 2).list()
[[2, 2, 2, 2, 2],
[2, 2, 2, 2, 1, 1],
[2, 2, 2, 1, 1, 1, 1],
[2, 2, 1, 1, 1, 1, 1, 1],
[2, 1, 1, 1, 1, 1, 1, 1, 1]]

sage: [4,3,2,1] in PartitionsGreatestEQ(10, 2)
False
sage: [2,2,2,2,2] in PartitionsGreatestEQ(10, 2)
True

The empty partition has no maximal part, but it is contained in the set of partitions with any specified maximal
part:

sage: PartitionsGreatestEQ(0, 2).list()
[[]]

Element
alias of Partition

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: PartitionsGreatestEQ(10, 2).cardinality()
5

options(*get_value, **set_value)
Sets and displays the global options for elements of the partition, skew partition, and partition tuple classes.
If no parameters are set, then the function returns a copy of the options dictionary.

The options to partitions can be accessed as the method Partitions.options of Partitions and
related parent classes.

OPTIONS:

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

1668 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

– English – use the English convention

– French – use the French convention

• diagram_str – (default: *) The character used for the cells when printing Ferrers diagrams

• display – (default: list) Specifies how partitions should be printed

– array – alias for diagram

– compact – alias for compact_low

– compact_high – compact form of exp_high

– compact_low – compact form of exp_low

– diagram – as a Ferrers diagram

– exp – alias for exp_low

– exp_high – in exponential form (highest first)

– exp_low – in exponential form (lowest first)

– ferrers_diagram – alias for diagram

– list – displayed as a list

– young_diagram – alias for diagram

• latex – (default: young_diagram) Specifies how partitions should be latexed

– array – alias for diagram

– diagram – latex as a Ferrers diagram

– exp – alias for exp_low

– exp_high – latex as a list in exponential notation (highest first)

– exp_low – as a list latex in exponential notation (lowest first)

– ferrers_diagram – alias for diagram

– list – latex as a list

– young_diagram – latex as a Young diagram

• latex_diagram_str – (default: \ast) The character used for the cells when latexing Ferrers dia-
grams

• notation – alternative name for convention

EXAMPLES:

sage: P = Partition([4,2,2,1])
sage: P
[4, 2, 2, 1]
sage: Partitions.options.display="exp"
sage: P
1, 2^2, 4
sage: Partitions.options.display="exp_high"
sage: P
4, 2^2, 1

It is also possible to use user defined functions for the display and latex options:

5.1. Comprehensive Module List 1669

Combinatorics, Release 9.7

sage: Partitions.options(display=lambda mu: '<%s>' % ','.join('%s'%m for m in␣
→˓mu._list)); P
<4,2,2,1>
sage: Partitions.options(latex=lambda mu: '\\Diagram{%s}' % ','.join('%s'%m for␣
→˓m in mu._list)); latex(P)
\Diagram{4,2,2,1}
sage: Partitions.options(display="diagram", diagram_str="#")
sage: P
####
##
##
#
sage: Partitions.options(diagram_str="*", convention="french")
sage: print(P.ferrers_diagram())
*
**
**

Changing the convention for partitions also changes the convention option for tableaux and vice versa:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T.pp()
4 5
1 2 3

sage: Tableaux.options.convention="english"
sage: print(P.ferrers_diagram())

**
**
*
sage: T.pp()
1 2 3
4 5

sage: Partitions.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.partition.PartitionsGreatestLE(n, k)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.combinat.
integer_lists.invlex.IntegerListsLex

The class of all (unordered) “restricted” partitions of the integer 𝑛 having parts less than or equal to the integer
𝑘.

EXAMPLES:

sage: PartitionsGreatestLE(10, 2)
Partitions of 10 having parts less than or equal to 2
sage: PartitionsGreatestLE(10, 2).list()
[[2, 2, 2, 2, 2],
[2, 2, 2, 2, 1, 1],
[2, 2, 2, 1, 1, 1, 1],
[2, 2, 1, 1, 1, 1, 1, 1],

(continues on next page)

1670 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

(continued from previous page)

[2, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

sage: [4,3,2,1] in PartitionsGreatestLE(10, 2)
False
sage: [2,2,2,2,2] in PartitionsGreatestLE(10, 2)
True
sage: PartitionsGreatestLE(10, 2).first().parent()
Partitions...

Element
alias of Partition

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: PartitionsGreatestLE(9, 5).cardinality()
23

options(*get_value, **set_value)
Sets and displays the global options for elements of the partition, skew partition, and partition tuple classes.
If no parameters are set, then the function returns a copy of the options dictionary.

The options to partitions can be accessed as the method Partitions.options of Partitions and
related parent classes.

OPTIONS:

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• diagram_str – (default: *) The character used for the cells when printing Ferrers diagrams

• display – (default: list) Specifies how partitions should be printed

– array – alias for diagram

– compact – alias for compact_low

– compact_high – compact form of exp_high

– compact_low – compact form of exp_low

– diagram – as a Ferrers diagram

– exp – alias for exp_low

– exp_high – in exponential form (highest first)

– exp_low – in exponential form (lowest first)

– ferrers_diagram – alias for diagram

– list – displayed as a list

– young_diagram – alias for diagram

• latex – (default: young_diagram) Specifies how partitions should be latexed

5.1. Comprehensive Module List 1671

Combinatorics, Release 9.7

– array – alias for diagram

– diagram – latex as a Ferrers diagram

– exp – alias for exp_low

– exp_high – latex as a list in exponential notation (highest first)

– exp_low – as a list latex in exponential notation (lowest first)

– ferrers_diagram – alias for diagram

– list – latex as a list

– young_diagram – latex as a Young diagram

• latex_diagram_str – (default: \ast) The character used for the cells when latexing Ferrers dia-
grams

• notation – alternative name for convention

EXAMPLES:

sage: P = Partition([4,2,2,1])
sage: P
[4, 2, 2, 1]
sage: Partitions.options.display="exp"
sage: P
1, 2^2, 4
sage: Partitions.options.display="exp_high"
sage: P
4, 2^2, 1

It is also possible to use user defined functions for the display and latex options:

sage: Partitions.options(display=lambda mu: '<%s>' % ','.join('%s'%m for m in␣
→˓mu._list)); P
<4,2,2,1>
sage: Partitions.options(latex=lambda mu: '\\Diagram{%s}' % ','.join('%s'%m for␣
→˓m in mu._list)); latex(P)
\Diagram{4,2,2,1}
sage: Partitions.options(display="diagram", diagram_str="#")
sage: P
####
##
##
#
sage: Partitions.options(diagram_str="*", convention="french")
sage: print(P.ferrers_diagram())
*
**
**

Changing the convention for partitions also changes the convention option for tableaux and vice versa:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T.pp()
4 5

(continues on next page)

1672 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

1 2 3
sage: Tableaux.options.convention="english"
sage: print(P.ferrers_diagram())

**
**
*
sage: T.pp()
1 2 3
4 5

sage: Partitions.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.partition.PartitionsInBox(h, w)
Bases: sage.combinat.partition.Partitions

All partitions which fit in an ℎ× 𝑤 box.

EXAMPLES:

sage: PartitionsInBox(2,2)
Integer partitions which fit in a 2 x 2 box
sage: PartitionsInBox(2,2).list()
[[], [1], [1, 1], [2], [2, 1], [2, 2]]

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: PartitionsInBox(2, 3).cardinality()
10

list()
Return a list of all the partitions inside a box of height ℎ and width 𝑤.

EXAMPLES:

sage: PartitionsInBox(2,2).list()
[[], [1], [1, 1], [2], [2, 1], [2, 2]]
sage: PartitionsInBox(2,3).list()
[[], [1], [1, 1], [2], [2, 1], [2, 2], [3], [3, 1], [3, 2], [3, 3]]

class sage.combinat.partition.Partitions_all
Bases: sage.combinat.partition.Partitions

Class of all partitions.

from_beta_numbers(beta)
Return a partition corresponding to a sequence of beta numbers.

A sequence of beta numbers is a strictly increasing sequence 0 ≤ 𝑏1 < · · · < 𝑏𝑘 of non-negative integers.
The corresponding partition 𝜇 = (𝜇𝑘, . . . , 𝜇1) is given by 𝜇𝑖 = [1, 𝑖) ∖ {𝑏1, . . . , 𝑏𝑖}. This gives a bijection
from the set of partitions with at most 𝑘 non-zero parts to the set of strictly increasing sequences of non-
negative integers of length 𝑘.

EXAMPLES:

5.1. Comprehensive Module List 1673

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

sage: Partitions().from_beta_numbers([0,1,2,4,5,8])
[3, 1, 1]
sage: Partitions().from_beta_numbers([0,2,3,6])
[3, 1, 1]

from_core_and_quotient(core, quotient)
Return a partition from its core and quotient.

Algorithm from mupad-combinat.

EXAMPLES:

sage: Partitions().from_core_and_quotient([2,1], [[2,1],[3],[1,1,1]])
[11, 5, 5, 3, 2, 2, 2]

from_exp(exp)
Return a partition from its list of multiplicities.

EXAMPLES:

sage: Partitions().from_exp([2,2,1])
[3, 2, 2, 1, 1]

from_frobenius_coordinates(frobenius_coordinates)
Return a partition from a pair of sequences of Frobenius coordinates.

EXAMPLES:

sage: Partitions().from_frobenius_coordinates(([],[]))
[]
sage: Partitions().from_frobenius_coordinates(([0],[0]))
[1]
sage: Partitions().from_frobenius_coordinates(([1],[1]))
[2, 1]
sage: Partitions().from_frobenius_coordinates(([6,3,2],[4,1,0]))
[7, 5, 5, 1, 1]

from_zero_one(seq)
Return a partition from its 0− 1 sequence.

The full 0 − 1 sequence is the sequence (infinite in both directions) indicating the steps taken when fol-
lowing the outer rim of the diagram of the partition. We use the convention that in English convention, a 1
corresponds to an East step, and a 0 corresponds to a North step.

Note that every full 0− 1 sequence starts with infinitely many 0’s and ends with infinitely many 1’s.

See also:

Partition.zero_one_sequence()

INPUT:

The input should be a finite sequence of 0’s and 1’s. The heading 0’s and trailing 1’s will be discarded.

EXAMPLES:

sage: Partitions().from_zero_one([])
[]
sage: Partitions().from_zero_one([1,0])

(continues on next page)

1674 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1]
sage: Partitions().from_zero_one([1, 1, 1, 1, 0, 1, 0])
[5, 4]

Heading 0’s and trailing 1’s are correctly handled:

sage: Partitions().from_zero_one([0,0,1,1,1,1,0,1,0,1,1,1])
[5, 4]

subset(size=None, **kwargs)
Return the subset of partitions of a given size and additional keyword arguments.

EXAMPLES:

sage: P = Partitions()
sage: P.subset(4)
Partitions of the integer 4

class sage.combinat.partition.Partitions_all_bounded(k)
Bases: sage.combinat.partition.Partitions

class sage.combinat.partition.Partitions_constraints(*args, **kwds)
Bases: sage.combinat.integer_lists.invlex.IntegerListsLex

For unpickling old constrained Partitions_constraints objects created with sage <= 3.4.1. See
Partitions.

class sage.combinat.partition.Partitions_ending(n, ending_partition)
Bases: sage.combinat.partition.Partitions

All partitions with a given ending.

first()
Return the first partition in self.

EXAMPLES:

sage: Partitions(4, ending=[1,1,1,1]).first()
[4]

next(part)
Return the next partition after part in self.

EXAMPLES:

sage: Partitions(4, ending=[1,1,1,1]).next(Partition([4]))
[3, 1]
sage: Partitions(4, ending=[1,1,1,1]).next(Partition([1,1,1,1])) is None
True

class sage.combinat.partition.Partitions_n(n)
Bases: sage.combinat.partition.Partitions

Partitions of the integer 𝑛.

cardinality(algorithm='flint')
Return the number of partitions of the specified size.

INPUT:

5.1. Comprehensive Module List 1675

Combinatorics, Release 9.7

• algorithm - (default: 'flint')

– 'flint' – use FLINT (currently the fastest)

– 'gap' – use GAP (VERY slow)

– 'pari' – use PARI. Speed seems the same as GAP until 𝑛 is in the thousands, in which case PARI
is faster.

It is possible to associate with every partition of the integer 𝑛 a conjugacy class of permutations in the
symmetric group on 𝑛 points and vice versa. Therefore the number of partitions 𝑝𝑛 is the number of
conjugacy classes of the symmetric group on 𝑛 points.

EXAMPLES:

sage: v = Partitions(5).list(); v
[[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]]
sage: len(v)
7
sage: Partitions(5).cardinality(algorithm='gap')
7
sage: Partitions(5).cardinality(algorithm='pari')
7
sage: number_of_partitions(5, algorithm='flint')
7

sage: Partitions(10).cardinality()
42
sage: Partitions(3).cardinality()
3
sage: Partitions(10).cardinality()
42
sage: Partitions(3).cardinality(algorithm='pari')
3
sage: Partitions(10).cardinality(algorithm='pari')
42
sage: Partitions(40).cardinality()
37338
sage: Partitions(100).cardinality()
190569292

A generating function for 𝑝𝑛 is given by the reciprocal of Euler’s function:

∞∑︁
𝑛=0

𝑝𝑛𝑥
𝑛 =

∞∏︁
𝑘=1

1

1− 𝑥𝑘
.

We use Sage to verify that the first several coefficients do indeed agree:

sage: q = PowerSeriesRing(QQ, 'q', default_prec=9).gen()
sage: prod([(1-q^k)^(-1) for k in range(1,9)]) # partial product of
1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 11*q^6 + 15*q^7 + 22*q^8 + O(q^9)
sage: [Partitions(k).cardinality() for k in range(2,10)]
[2, 3, 5, 7, 11, 15, 22, 30]

Another consistency test for n up to 500:

1676 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: len([n for n in [1..500] if Partitions(n).cardinality() != Partitions(n).
→˓cardinality(algorithm='pari')])
0

For negative inputs, the result is zero (the algorithm is ignored):

sage: Partitions(-5).cardinality()
0

REFERENCES:

• Wikipedia article Partition_(number_theory)

first()
Return the lexicographically first partition of a positive integer 𝑛. This is the partition [n].

EXAMPLES:

sage: Partitions(4).first()
[4]

last()
Return the lexicographically last partition of the positive integer 𝑛. This is the all-ones partition.

EXAMPLES:

sage: Partitions(4).last()
[1, 1, 1, 1]

next(p)
Return the lexicographically next partition after the partition p.

EXAMPLES:

sage: Partitions(4).next([4])
[3, 1]
sage: Partitions(4).next([1,1,1,1]) is None
True

random_element(measure='uniform')
Return a random partitions of 𝑛 for the specified measure.

INPUT:

• measure – 'uniform' or 'Plancherel' (default: 'uniform')

See also:

• random_element_uniform()

• random_element_plancherel()

EXAMPLES:

sage: Partitions(5).random_element() # random
[2, 1, 1, 1]
sage: Partitions(5).random_element(measure='Plancherel') # random
[2, 1, 1, 1]

5.1. Comprehensive Module List 1677

https://en.wikipedia.org/wiki/Partition_(number_theory)

Combinatorics, Release 9.7

random_element_plancherel()
Return a random partition of 𝑛 (for the Plancherel measure).

This probability distribution comes from the uniform distribution on permutations via the Robinson-
Schensted correspondence.

See Wikipedia article Plancherel_measure and Partition.plancherel_measure().

EXAMPLES:

sage: Partitions(5).random_element_plancherel() # random
[2, 1, 1, 1]
sage: Partitions(20).random_element_plancherel() # random
[9, 3, 3, 2, 2, 1]

ALGORITHM:

• insert by Robinson-Schensted a uniform random permutations of n and returns the shape of the re-
sulting tableau. The complexity is 𝑂(𝑛 ln(𝑛)) which is likely optimal. However, the implementation
could be optimized.

AUTHOR:

• Florent Hivert (2009-11-23)

random_element_uniform()
Return a random partition of 𝑛 with uniform probability.

EXAMPLES:

sage: Partitions(5).random_element_uniform() # random
[2, 1, 1, 1]
sage: Partitions(20).random_element_uniform() # random
[9, 3, 3, 2, 2, 1]

ALGORITHM:

• It is a python Implementation of RANDPAR, see [NW1978]. The complexity is unknown, there may
be better algorithms.

Todo: Check in Knuth AOCP4.

• There is also certainly a lot of room for optimizations, see comments in the code.

AUTHOR:

• Florent Hivert (2009-11-23)

subset(**kwargs)
Return a subset of self with the additional optional arguments.

EXAMPLES:

sage: P = Partitions(5); P
Partitions of the integer 5
sage: P.subset(starting=[3,1])
Partitions of the integer 5 starting with [3, 1]

class sage.combinat.partition.Partitions_nk(n, k)
Bases: sage.combinat.partition.Partitions

1678 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Plancherel_measure

Combinatorics, Release 9.7

Partitions of the integer 𝑛 of length equal to 𝑘.

cardinality(algorithm='hybrid')
Return the number of partitions of the specified size with the specified length.

INPUT:

• algorithm – (default: 'hybrid') the algorithm to compute the cardinality and can be one of the
following:

– 'hybrid' - use a hybrid algorithm which uses heuristics to reduce the complexity

– 'gap' - use GAP

EXAMPLES:

sage: v = Partitions(5, length=2).list(); v
[[4, 1], [3, 2]]
sage: len(v)
2
sage: Partitions(5, length=2).cardinality()
2

More generally, the number of partitions of 𝑛 of length 2 is
⌊︀
𝑛
2

⌋︀
:

sage: all(Partitions(n, length=2).cardinality()
....: == n // 2 for n in range(10))
True

The number of partitions of 𝑛 of length 1 is 1 for 𝑛 positive:

sage: all(Partitions(n, length=1).cardinality() == 1
....: for n in range(1, 10))
True

Further examples:

sage: Partitions(5, length=3).cardinality()
2
sage: Partitions(6, length=3).cardinality()
3
sage: Partitions(8, length=4).cardinality()
5
sage: Partitions(8, length=5).cardinality()
3
sage: Partitions(15, length=6).cardinality()
26
sage: Partitions(0, length=0).cardinality()
1
sage: Partitions(0, length=1).cardinality()
0
sage: Partitions(1, length=0).cardinality()
0
sage: Partitions(1, length=4).cardinality()
0

subset(**kwargs)
Return a subset of self with the additional optional arguments.

5.1. Comprehensive Module List 1679

Combinatorics, Release 9.7

EXAMPLES:

sage: P = Partitions(5, length=2); P
Partitions of the integer 5 of length 2
sage: P.subset(max_part=3)
Partitions of the integer 5 satisfying constraints length=2, max_part=3

class sage.combinat.partition.Partitions_parts_in(n, parts)
Bases: sage.combinat.partition.Partitions

Partitions of 𝑛 with parts in a given set 𝑆.

This is invoked indirectly when calling Partitions(n, parts_in=parts), where parts is a list of pairwise
distinct integers.

cardinality()
Return the number of partitions with parts in self. Wraps GAP’s NrRestrictedPartitions.

EXAMPLES:

sage: Partitions(15, parts_in=[2,3,7]).cardinality()
5

If you can use all parts 1 through 𝑛, we’d better get 𝑝(𝑛):

sage: Partitions(20, parts_in=[1..20]).cardinality() == Partitions(20).
→˓cardinality()
True

first()
Return the lexicographically first partition of a positive integer 𝑛 with the specified parts, or None if no
such partition exists.

EXAMPLES:

sage: Partitions(9, parts_in=[3,4]).first()
[3, 3, 3]
sage: Partitions(6, parts_in=[1..6]).first()
[6]
sage: Partitions(30, parts_in=[4,7,8,10,11]).first()
[11, 11, 8]

last()
Return the lexicographically last partition of the positive integer 𝑛 with the specified parts, or None if no
such partition exists.

EXAMPLES:

sage: Partitions(15, parts_in=[2,3]).last()
[3, 2, 2, 2, 2, 2, 2]
sage: Partitions(30, parts_in=[4,7,8,10,11]).last()
[7, 7, 4, 4, 4, 4]
sage: Partitions(10, parts_in=[3,6]).last() is None
True
sage: Partitions(50, parts_in=[11,12,13]).last()
[13, 13, 12, 12]
sage: Partitions(30, parts_in=[4,7,8,10,11]).last()
[7, 7, 4, 4, 4, 4]

1680 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.partition.Partitions_starting(n, starting_partition)
Bases: sage.combinat.partition.Partitions

All partitions with a given start.

first()
Return the first partition in self.

EXAMPLES:

sage: Partitions(3, starting=[2,1]).first()
[2, 1]

next(part)
Return the next partition after part in self.

EXAMPLES:

sage: Partitions(3, starting=[2,1]).next(Partition([2,1]))
[1, 1, 1]

class sage.combinat.partition.Partitions_with_constraints(*args, **kwds)
Bases: sage.combinat.integer_lists.invlex.IntegerListsLex

Partitions which satisfy a set of constraints.

EXAMPLES:

sage: P = Partitions(6, inner=[1,1], max_slope=-1)
sage: list(P)
[[5, 1], [4, 2], [3, 2, 1]]

Element
alias of Partition

options(*get_value, **set_value)
Sets and displays the global options for elements of the partition, skew partition, and partition tuple classes.
If no parameters are set, then the function returns a copy of the options dictionary.

The options to partitions can be accessed as the method Partitions.options of Partitions and
related parent classes.

OPTIONS:

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• diagram_str – (default: *) The character used for the cells when printing Ferrers diagrams

• display – (default: list) Specifies how partitions should be printed

– array – alias for diagram

– compact – alias for compact_low

– compact_high – compact form of exp_high

– compact_low – compact form of exp_low

– diagram – as a Ferrers diagram

– exp – alias for exp_low

5.1. Comprehensive Module List 1681

Combinatorics, Release 9.7

– exp_high – in exponential form (highest first)

– exp_low – in exponential form (lowest first)

– ferrers_diagram – alias for diagram

– list – displayed as a list

– young_diagram – alias for diagram

• latex – (default: young_diagram) Specifies how partitions should be latexed

– array – alias for diagram

– diagram – latex as a Ferrers diagram

– exp – alias for exp_low

– exp_high – latex as a list in exponential notation (highest first)

– exp_low – as a list latex in exponential notation (lowest first)

– ferrers_diagram – alias for diagram

– list – latex as a list

– young_diagram – latex as a Young diagram

• latex_diagram_str – (default: \ast) The character used for the cells when latexing Ferrers dia-
grams

• notation – alternative name for convention

EXAMPLES:

sage: P = Partition([4,2,2,1])
sage: P
[4, 2, 2, 1]
sage: Partitions.options.display="exp"
sage: P
1, 2^2, 4
sage: Partitions.options.display="exp_high"
sage: P
4, 2^2, 1

It is also possible to use user defined functions for the display and latex options:

sage: Partitions.options(display=lambda mu: '<%s>' % ','.join('%s'%m for m in␣
→˓mu._list)); P
<4,2,2,1>
sage: Partitions.options(latex=lambda mu: '\\Diagram{%s}' % ','.join('%s'%m for␣
→˓m in mu._list)); latex(P)
\Diagram{4,2,2,1}
sage: Partitions.options(display="diagram", diagram_str="#")
sage: P
####
##
##
#
sage: Partitions.options(diagram_str="*", convention="french")
sage: print(P.ferrers_diagram())

(continues on next page)

1682 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

*
**
**

Changing the convention for partitions also changes the convention option for tableaux and vice versa:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T.pp()
4 5
1 2 3

sage: Tableaux.options.convention="english"
sage: print(P.ferrers_diagram())

**
**
*
sage: T.pp()
1 2 3
4 5

sage: Partitions.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.partition.RegularPartitions(ell, is_infinite=False)
Bases: sage.combinat.partition.Partitions

Base class for ℓ-regular partitions.

Let ℓ be a positive integer. A partition 𝜆 is ℓ-regular if 𝑚𝑖 < ℓ for all 𝑖, where 𝑚𝑖 is the multiplicity of 𝑖 in 𝜆.

Note: This is conjugate to the notion of ℓ-restricted partitions, where the difference between any two consecutive
parts is < ℓ.

INPUT:

• ell – the positive integer ℓ

• is_infinite – boolean; if the subset of ℓ-regular partitions is infinite

ell()
Return the value ℓ.

EXAMPLES:

sage: P = Partitions(regular=2)
sage: P.ell()
2

class sage.combinat.partition.RegularPartitions_all(ell)
Bases: sage.combinat.partition.RegularPartitions

The class of all ℓ-regular partitions.

INPUT:

• ell – the positive integer ℓ

5.1. Comprehensive Module List 1683

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

See also:

RegularPartitions

class sage.combinat.partition.RegularPartitions_bounded(ell, k)
Bases: sage.combinat.partition.RegularPartitions

The class of ℓ-regular 𝑘-bounded partitions.

INPUT:

• ell – the integer ℓ

• k – integer; the value 𝑘

See also:

RegularPartitions

class sage.combinat.partition.RegularPartitions_n(n, ell)
Bases: sage.combinat.partition.RegularPartitions, sage.combinat.partition.Partitions_n

The class of ℓ-regular partitions of 𝑛.

INPUT:

• n – the integer 𝑛 to partition

• ell – the integer ℓ

See also:

RegularPartitions

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: P = Partitions(5, regular=3)
sage: P.cardinality()
5
sage: P = Partitions(5, regular=6)
sage: P.cardinality()
7
sage: P.cardinality() == Partitions(5).cardinality()
True

class sage.combinat.partition.RegularPartitions_truncated(ell, max_len)
Bases: sage.combinat.partition.RegularPartitions

The class of ℓ-regular partitions with max length 𝑘.

INPUT:

• ell – the integer ℓ

• max_len – integer; the maximum length

See also:

RegularPartitions

max_length()
Return the maximum length of the partitions of self.

EXAMPLES:

1684 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: P = Partitions(regular=4, max_length=3)
sage: P.max_length()
3

class sage.combinat.partition.RestrictedPartitions_all(ell)
Bases: sage.combinat.partition.RestrictedPartitions_generic

The class of all ℓ-restricted partitions.

INPUT:

• ell – the positive integer ℓ

See also:

RestrictedPartitions_generic

class sage.combinat.partition.RestrictedPartitions_generic(ell, is_infinite=False)
Bases: sage.combinat.partition.Partitions

Base class for ℓ-restricted partitions.

Let ℓ be a positive integer. A partition 𝜆 is ℓ-restricted if 𝜆𝑖 − 𝜆𝑖+1 < ℓ for all 𝑖, including rows of length 0.

Note: This is conjugate to the notion of ℓ-regular partitions, where the multiplicity of any parts is at most ℓ.

INPUT:

• ell – the positive integer ℓ

• is_infinite – boolean; if the subset of ℓ-restricted partitions is infinite

ell()
Return the value ℓ.

EXAMPLES:

sage: P = Partitions(restricted=2)
sage: P.ell()
2

class sage.combinat.partition.RestrictedPartitions_n(n, ell)
Bases: sage.combinat.partition.RestrictedPartitions_generic, sage.combinat.partition.
Partitions_n

The class of ℓ-restricted partitions of 𝑛.

INPUT:

• n – the integer 𝑛 to partition

• ell – the integer ℓ

See also:

RestrictedPartitions_generic

cardinality()
Return the cardinality of self.

EXAMPLES:

5.1. Comprehensive Module List 1685

Combinatorics, Release 9.7

sage: P = Partitions(5, restricted=3)
sage: P.cardinality()
5
sage: P = Partitions(5, restricted=6)
sage: P.cardinality()
7
sage: P.cardinality() == Partitions(5).cardinality()
True

sage.combinat.partition.number_of_partitions(n, algorithm='default')
Return the number of partitions of 𝑛 with, optionally, at most 𝑘 parts.

The options of number_of_partitions() are being deprecated trac ticket #13072 in favour of Partitions_n.
cardinality() so that number_of_partitions() can become a stripped down version of the fastest algo-
rithm available (currently this is using FLINT).

INPUT:

• n – an integer

• algorithm – (default: ‘default’) [Will be deprecated except in Partition().cardinality()]

– 'default' – If k is not None, then use Gap (very slow). If k is None, use FLINT.

– 'flint' – use FLINT

EXAMPLES:

sage: v = Partitions(5).list(); v
[[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]]
sage: len(v)
7

The input must be a nonnegative integer or a ValueError is raised.

sage: number_of_partitions(-5)
Traceback (most recent call last):
...
ValueError: n (=-5) must be a nonnegative integer

sage: number_of_partitions(10)
42
sage: number_of_partitions(3)
3
sage: number_of_partitions(10)
42
sage: number_of_partitions(40)
37338
sage: number_of_partitions(100)
190569292
sage: number_of_partitions(100000)
27493510569775696512677516320986352688173429315980054758203125984302147328114964173055050741660736621590157844774296248940493063070200461792764493033510116079342457190155718943509725312466108452006369558934464248716828789832182345009262853831404597021307130674510624419227311238999702284408609370935531629697851569569892196108480158600569421098519

A generating function for the number of partitions 𝑝𝑛 is given by the reciprocal of Euler’s function:

∞∑︁
𝑛=0

𝑝𝑛𝑥
𝑛 =

∞∏︁
𝑘=1

(︂
1

1− 𝑥𝑘

)︂
.

1686 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/13072

Combinatorics, Release 9.7

We use Sage to verify that the first several coefficients do instead agree:

sage: q = PowerSeriesRing(QQ, 'q', default_prec=9).gen()
sage: prod([(1-q^k)^(-1) for k in range(1,9)]) # partial product of
1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 11*q^6 + 15*q^7 + 22*q^8 + O(q^9)
sage: [number_of_partitions(k) for k in range(2,10)]
[2, 3, 5, 7, 11, 15, 22, 30]

REFERENCES:

• Wikipedia article Partition_(number_theory)

sage.combinat.partition.number_of_partitions_length(n, k, algorithm='hybrid')
Return the number of partitions of 𝑛 with length 𝑘.

This is a wrapper for GAP’s NrPartitions function.

EXAMPLES:

sage: from sage.combinat.partition import number_of_partitions_length
sage: number_of_partitions_length(5, 2)
2
sage: number_of_partitions_length(10, 2)
5
sage: number_of_partitions_length(10, 4)
9
sage: number_of_partitions_length(10, 0)
0
sage: number_of_partitions_length(10, 1)
1
sage: number_of_partitions_length(0, 0)
1
sage: number_of_partitions_length(0, 1)
0

5.1.163 Partition/Diagram Algebras

class sage.combinat.partition_algebra.PartitionAlgebraElement_ak
Bases: sage.combinat.partition_algebra.PartitionAlgebraElement_generic

class sage.combinat.partition_algebra.PartitionAlgebraElement_bk
Bases: sage.combinat.partition_algebra.PartitionAlgebraElement_generic

class sage.combinat.partition_algebra.PartitionAlgebraElement_generic
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

class sage.combinat.partition_algebra.PartitionAlgebraElement_pk
Bases: sage.combinat.partition_algebra.PartitionAlgebraElement_generic

class sage.combinat.partition_algebra.PartitionAlgebraElement_prk
Bases: sage.combinat.partition_algebra.PartitionAlgebraElement_generic

class sage.combinat.partition_algebra.PartitionAlgebraElement_rk
Bases: sage.combinat.partition_algebra.PartitionAlgebraElement_generic

class sage.combinat.partition_algebra.PartitionAlgebraElement_sk
Bases: sage.combinat.partition_algebra.PartitionAlgebraElement_generic

5.1. Comprehensive Module List 1687

https://en.wikipedia.org/wiki/Partition_(number_theory)
../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

class sage.combinat.partition_algebra.PartitionAlgebraElement_tk
Bases: sage.combinat.partition_algebra.PartitionAlgebraElement_generic

class sage.combinat.partition_algebra.PartitionAlgebra_ak(R, k, n, name=None)
Bases: sage.combinat.partition_algebra.PartitionAlgebra_generic

EXAMPLES:

sage: from sage.combinat.partition_algebra import *
sage: p = PartitionAlgebra_ak(QQ, 3, 1)
sage: p == loads(dumps(p))
True

class sage.combinat.partition_algebra.PartitionAlgebra_bk(R, k, n, name=None)
Bases: sage.combinat.partition_algebra.PartitionAlgebra_generic

EXAMPLES:

sage: from sage.combinat.partition_algebra import *
sage: p = PartitionAlgebra_bk(QQ, 3, 1)
sage: p == loads(dumps(p))
True

class sage.combinat.partition_algebra.PartitionAlgebra_generic(R, cclass, n, k, name=None,
prefix=None)

Bases: sage.combinat.free_module.CombinatorialFreeModule

EXAMPLES:

sage: from sage.combinat.partition_algebra import *
sage: s = PartitionAlgebra_sk(QQ, 3, 1)
sage: TestSuite(s).run()
sage: s == loads(dumps(s))
True

one_basis()
Return the basis index for the unit of the algebra.

EXAMPLES:

sage: from sage.combinat.partition_algebra import *
sage: s = PartitionAlgebra_sk(ZZ, 3, 1)
sage: len(s.one().support()) # indirect doctest
1

product_on_basis(left, right)
EXAMPLES:

sage: from sage.combinat.partition_algebra import *
sage: s = PartitionAlgebra_sk(QQ, 3, 1)
sage: t12 = s(Set([Set([1,-2]),Set([2,-1]),Set([3,-3])]))
sage: t12^2 == s(1) #indirect doctest
True

class sage.combinat.partition_algebra.PartitionAlgebra_pk(R, k, n, name=None)
Bases: sage.combinat.partition_algebra.PartitionAlgebra_generic

EXAMPLES:

1688 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.partition_algebra import *
sage: p = PartitionAlgebra_pk(QQ, 3, 1)
sage: p == loads(dumps(p))
True

class sage.combinat.partition_algebra.PartitionAlgebra_prk(R, k, n, name=None)
Bases: sage.combinat.partition_algebra.PartitionAlgebra_generic

EXAMPLES:

sage: from sage.combinat.partition_algebra import *
sage: p = PartitionAlgebra_prk(QQ, 3, 1)
sage: p == loads(dumps(p))
True

class sage.combinat.partition_algebra.PartitionAlgebra_rk(R, k, n, name=None)
Bases: sage.combinat.partition_algebra.PartitionAlgebra_generic

EXAMPLES:

sage: from sage.combinat.partition_algebra import *
sage: p = PartitionAlgebra_rk(QQ, 3, 1)
sage: p == loads(dumps(p))
True

class sage.combinat.partition_algebra.PartitionAlgebra_sk(R, k, n, name=None)
Bases: sage.combinat.partition_algebra.PartitionAlgebra_generic

EXAMPLES:

sage: from sage.combinat.partition_algebra import *
sage: p = PartitionAlgebra_sk(QQ, 3, 1)
sage: p == loads(dumps(p))
True

class sage.combinat.partition_algebra.PartitionAlgebra_tk(R, k, n, name=None)
Bases: sage.combinat.partition_algebra.PartitionAlgebra_generic

EXAMPLES:

sage: from sage.combinat.partition_algebra import *
sage: p = PartitionAlgebra_tk(QQ, 3, 1)
sage: p == loads(dumps(p))
True

sage.combinat.partition_algebra.SetPartitionsAk(k)
Return the combinatorial class of set partitions of type 𝐴𝑘.

EXAMPLES:

sage: A3 = SetPartitionsAk(3); A3
Set partitions of {1, ..., 3, -1, ..., -3}

sage: A3.first() #random
{{1, 2, 3, -1, -3, -2}}
sage: A3.last() #random

(continues on next page)

5.1. Comprehensive Module List 1689

Combinatorics, Release 9.7

(continued from previous page)

{{-1}, {-2}, {3}, {1}, {-3}, {2}}
sage: A3.random_element() #random
{{1, 3, -3, -1}, {2, -2}}

sage: A3.cardinality()
203

sage: A2p5 = SetPartitionsAk(2.5); A2p5
Set partitions of {1, ..., 3, -1, ..., -3} with 3 and -3 in the same block
sage: A2p5.cardinality()
52

sage: A2p5.first() #random
{{1, 2, 3, -1, -3, -2}}
sage: A2p5.last() #random
{{-1}, {-2}, {2}, {3, -3}, {1}}
sage: A2p5.random_element() #random
{{-1}, {-2}, {3, -3}, {1, 2}}

class sage.combinat.partition_algebra.SetPartitionsAk_k(k)
Bases: sage.combinat.set_partition.SetPartitions_set

Element
alias of SetPartitionsXkElement

class sage.combinat.partition_algebra.SetPartitionsAkhalf_k(k)
Bases: sage.combinat.set_partition.SetPartitions_set

Element
alias of SetPartitionsXkElement

sage.combinat.partition_algebra.SetPartitionsBk(k)
Return the combinatorial class of set partitions of type 𝐵𝑘.

These are the set partitions where every block has size 2.

EXAMPLES:

sage: B3 = SetPartitionsBk(3); B3
Set partitions of {1, ..., 3, -1, ..., -3} with block size 2

sage: B3.first() #random
{{2, -2}, {1, -3}, {3, -1}}
sage: B3.last() #random
{{1, 2}, {3, -2}, {-3, -1}}
sage: B3.random_element() #random
{{2, -1}, {1, -3}, {3, -2}}

sage: B3.cardinality()
15

sage: B2p5 = SetPartitionsBk(2.5); B2p5
Set partitions of {1, ..., 3, -1, ..., -3} with 3 and -3 in the same block and with␣
→˓block size 2

(continues on next page)

1690 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: B2p5.first() #random
{{2, -1}, {3, -3}, {1, -2}}
sage: B2p5.last() #random
{{1, 2}, {3, -3}, {-1, -2}}
sage: B2p5.random_element() #random
{{2, -2}, {3, -3}, {1, -1}}

sage: B2p5.cardinality()
3

class sage.combinat.partition_algebra.SetPartitionsBk_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsAk_k

cardinality()
Return the number of set partitions in 𝐵𝑘 where 𝑘 is an integer.

This is given by (2k)!! = (2k-1)*(2k-3)*. . . *5*3*1.

EXAMPLES:

sage: SetPartitionsBk(3).cardinality()
15
sage: SetPartitionsBk(2).cardinality()
3
sage: SetPartitionsBk(1).cardinality()
1
sage: SetPartitionsBk(4).cardinality()
105
sage: SetPartitionsBk(5).cardinality()
945

class sage.combinat.partition_algebra.SetPartitionsBkhalf_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsAkhalf_k

cardinality()

sage.combinat.partition_algebra.SetPartitionsIk(k)
Return the combinatorial class of set partitions of type 𝐼𝑘.

These are set partitions with a propagating number of less than 𝑘. Note that the identity set partition
{{1,−1}, . . . , {𝑘,−𝑘}} is not in 𝐼𝑘.

EXAMPLES:

sage: I3 = SetPartitionsIk(3); I3
Set partitions of {1, ..., 3, -1, ..., -3} with propagating number < 3
sage: I3.cardinality()
197

sage: I3.first() #random
{{1, 2, 3, -1, -3, -2}}
sage: I3.last() #random
{{-1}, {-2}, {3}, {1}, {-3}, {2}}
sage: I3.random_element() #random
{{-1}, {-3, -2}, {2, 3}, {1}}

(continues on next page)

5.1. Comprehensive Module List 1691

Combinatorics, Release 9.7

(continued from previous page)

sage: I2p5 = SetPartitionsIk(2.5); I2p5
Set partitions of {1, ..., 3, -1, ..., -3} with 3 and -3 in the same block and␣
→˓propagating number < 3
sage: I2p5.cardinality()
50

sage: I2p5.first() #random
{{1, 2, 3, -1, -3, -2}}
sage: I2p5.last() #random
{{-1}, {-2}, {2}, {3, -3}, {1}}
sage: I2p5.random_element() #random
{{-1}, {-2}, {1, 3, -3}, {2}}

class sage.combinat.partition_algebra.SetPartitionsIk_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsAk_k

cardinality()

class sage.combinat.partition_algebra.SetPartitionsIkhalf_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsAkhalf_k

cardinality()

sage.combinat.partition_algebra.SetPartitionsPRk(k)
Return the combinatorial class of set partitions of type 𝑃𝑅𝑘.

EXAMPLES:

sage: SetPartitionsPRk(3)
Set partitions of {1, ..., 3, -1, ..., -3} with at most 1 positive
and negative entry in each block and that are planar

class sage.combinat.partition_algebra.SetPartitionsPRk_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsRk_k

cardinality()

class sage.combinat.partition_algebra.SetPartitionsPRkhalf_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsRkhalf_k

cardinality()

sage.combinat.partition_algebra.SetPartitionsPk(k)
Return the combinatorial class of set partitions of type 𝑃𝑘.

These are the planar set partitions.

EXAMPLES:

sage: P3 = SetPartitionsPk(3); P3
Set partitions of {1, ..., 3, -1, ..., -3} that are planar
sage: P3.cardinality()
132

sage: P3.first() #random
{{1, 2, 3, -1, -3, -2}}
sage: P3.last() #random
{{-1}, {-2}, {3}, {1}, {-3}, {2}}

(continues on next page)

1692 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: P3.random_element() #random
{{1, 2, -1}, {-3}, {3, -2}}

sage: P2p5 = SetPartitionsPk(2.5); P2p5
Set partitions of {1, ..., 3, -1, ..., -3} with 3 and -3 in the same block and that␣
→˓are planar
sage: P2p5.cardinality()
42

sage: P2p5.first() #random
{{1, 2, 3, -1, -3, -2}}
sage: P2p5.last() #random
{{-1}, {-2}, {2}, {3, -3}, {1}}
sage: P2p5.random_element() #random
{{1, 2, 3, -3}, {-1, -2}}

class sage.combinat.partition_algebra.SetPartitionsPk_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsAk_k

cardinality()

class sage.combinat.partition_algebra.SetPartitionsPkhalf_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsAkhalf_k

cardinality()

sage.combinat.partition_algebra.SetPartitionsRk(k)
Return the combinatorial class of set partitions of type 𝑅𝑘.

EXAMPLES:

sage: SetPartitionsRk(3)
Set partitions of {1, ..., 3, -1, ..., -3} with at most 1 positive
and negative entry in each block

class sage.combinat.partition_algebra.SetPartitionsRk_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsAk_k

cardinality()

class sage.combinat.partition_algebra.SetPartitionsRkhalf_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsAkhalf_k

cardinality()

sage.combinat.partition_algebra.SetPartitionsSk(k)
Return the combinatorial class of set partitions of type 𝑆𝑘.

There is a bijection between these set partitions and the permutations of 1, . . . , 𝑘.

EXAMPLES:

sage: S3 = SetPartitionsSk(3); S3
Set partitions of {1, ..., 3, -1, ..., -3} with propagating number 3
sage: S3.cardinality()
6

sage: S3.list() #random
(continues on next page)

5.1. Comprehensive Module List 1693

Combinatorics, Release 9.7

(continued from previous page)

[{{2, -2}, {3, -3}, {1, -1}},
{{1, -1}, {2, -3}, {3, -2}},
{{2, -1}, {3, -3}, {1, -2}},
{{1, -2}, {2, -3}, {3, -1}},
{{1, -3}, {2, -1}, {3, -2}},
{{1, -3}, {2, -2}, {3, -1}}]
sage: S3.first() #random
{{2, -2}, {3, -3}, {1, -1}}
sage: S3.last() #random
{{1, -3}, {2, -2}, {3, -1}}
sage: S3.random_element() #random
{{1, -3}, {2, -1}, {3, -2}}

sage: S3p5 = SetPartitionsSk(3.5); S3p5
Set partitions of {1, ..., 4, -1, ..., -4} with 4 and -4 in the same block and␣
→˓propagating number 4
sage: S3p5.cardinality()
6

sage: S3p5.list() #random
[{{2, -2}, {3, -3}, {1, -1}, {4, -4}},
{{2, -3}, {1, -1}, {4, -4}, {3, -2}},
{{2, -1}, {3, -3}, {1, -2}, {4, -4}},
{{2, -3}, {1, -2}, {4, -4}, {3, -1}},
{{1, -3}, {2, -1}, {4, -4}, {3, -2}},
{{1, -3}, {2, -2}, {4, -4}, {3, -1}}]
sage: S3p5.first() #random
{{2, -2}, {3, -3}, {1, -1}, {4, -4}}
sage: S3p5.last() #random
{{1, -3}, {2, -2}, {4, -4}, {3, -1}}
sage: S3p5.random_element() #random
{{1, -3}, {2, -2}, {4, -4}, {3, -1}}

class sage.combinat.partition_algebra.SetPartitionsSk_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsAk_k

cardinality()
Return k!.

class sage.combinat.partition_algebra.SetPartitionsSkhalf_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsAkhalf_k

cardinality()

sage.combinat.partition_algebra.SetPartitionsTk(k)
Return the combinatorial class of set partitions of type 𝑇𝑘.

These are planar set partitions where every block is of size 2.

EXAMPLES:

sage: T3 = SetPartitionsTk(3); T3
Set partitions of {1, ..., 3, -1, ..., -3} with block size 2 and that are planar
sage: T3.cardinality()
5

(continues on next page)

1694 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T3.first() #random
{{1, -3}, {2, 3}, {-1, -2}}
sage: T3.last() #random
{{1, 2}, {3, -1}, {-3, -2}}
sage: T3.random_element() #random
{{1, -3}, {2, 3}, {-1, -2}}

sage: T2p5 = SetPartitionsTk(2.5); T2p5
Set partitions of {1, ..., 3, -1, ..., -3} with 3 and -3 in the same block and with␣
→˓block size 2 and that are planar
sage: T2p5.cardinality()
2

sage: T2p5.first() #random
{{2, -2}, {3, -3}, {1, -1}}
sage: T2p5.last() #random
{{1, 2}, {3, -3}, {-1, -2}}

class sage.combinat.partition_algebra.SetPartitionsTk_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsBk_k

cardinality()

class sage.combinat.partition_algebra.SetPartitionsTkhalf_k(k)
Bases: sage.combinat.partition_algebra.SetPartitionsBkhalf_k

cardinality()

class sage.combinat.partition_algebra.SetPartitionsXkElement(parent, s, check=True)
Bases: sage.combinat.set_partition.SetPartition

An element for the classes of SetPartitionXk where X is some letter.

check()
Check to make sure this is a set partition.

EXAMPLES:

sage: A2p5 = SetPartitionsAk(2.5)
sage: x = A2p5.first(); x
{{-3, -2, -1, 1, 2, 3}}
sage: x.check()
sage: y = A2p5.next(x); y
{{-3, 3}, {-2, -1, 1, 2}}
sage: y.check()

sage.combinat.partition_algebra.identity(k)
Return the identity set partition 1, -1, . . . , k, -k

EXAMPLES:

sage: import sage.combinat.partition_algebra as pa
sage: pa.identity(2)
{{2, -2}, {1, -1}}

5.1. Comprehensive Module List 1695

Combinatorics, Release 9.7

sage.combinat.partition_algebra.is_planar(sp)
Return True if the diagram corresponding to the set partition is planar; otherwise, it returns False.

EXAMPLES:

sage: import sage.combinat.partition_algebra as pa
sage: pa.is_planar(pa.to_set_partition([[1,-2],[2,-1]]))
False
sage: pa.is_planar(pa.to_set_partition([[1,-1],[2,-2]]))
True

sage.combinat.partition_algebra.pair_to_graph(sp1, sp2)
Return a graph consisting of the disjoint union of the graphs of set partitions sp1 and sp2 along with edges
joining the bottom row (negative numbers) of sp1 to the top row (positive numbers) of sp2.

The vertices of the graph sp1 appear in the result as pairs (k, 1), whereas the vertices of the graph sp2 appear
as pairs (k, 2).

EXAMPLES:

sage: import sage.combinat.partition_algebra as pa
sage: sp1 = pa.to_set_partition([[1,-2],[2,-1]])
sage: sp2 = pa.to_set_partition([[1,-2],[2,-1]])
sage: g = pa.pair_to_graph(sp1, sp2); g
Graph on 8 vertices

sage: g.vertices(sort=False) #random
[(1, 2), (-1, 1), (-2, 2), (-1, 2), (-2, 1), (2, 1), (2, 2), (1, 1)]
sage: g.edges(sort=False) #random
[((1, 2), (-1, 1), None),
((1, 2), (-2, 2), None),
((-1, 1), (2, 1), None),
((-1, 2), (2, 2), None),
((-2, 1), (1, 1), None),
((-2, 1), (2, 2), None)]

Another example which used to be wrong until trac ticket #15958:

sage: sp3 = pa.to_set_partition([[1, -1], [2], [-2]])
sage: sp4 = pa.to_set_partition([[1], [-1], [2], [-2]])
sage: g = pa.pair_to_graph(sp3, sp4); g
Graph on 8 vertices

sage: g.vertices(sort=True)
[(-2, 1), (-2, 2), (-1, 1), (-1, 2), (1, 1), (1, 2), (2, 1), (2, 2)]
sage: g.edges(sort=True)
[((-2, 1), (2, 2), None), ((-1, 1), (1, 1), None),
((-1, 1), (1, 2), None)]

sage.combinat.partition_algebra.propagating_number(sp)
Return the propagating number of the set partition sp.

The propagating number is the number of blocks with both a positive and negative number.

EXAMPLES:

1696 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/15958

Combinatorics, Release 9.7

sage: import sage.combinat.partition_algebra as pa
sage: sp1 = pa.to_set_partition([[1,-2],[2,-1]])
sage: sp2 = pa.to_set_partition([[1,2],[-2,-1]])
sage: pa.propagating_number(sp1)
2
sage: pa.propagating_number(sp2)
0

sage.combinat.partition_algebra.set_partition_composition(sp1, sp2)
Return a tuple consisting of the composition of the set partitions sp1 and sp2 and the number of components
removed from the middle rows of the graph.

EXAMPLES:

sage: import sage.combinat.partition_algebra as pa
sage: sp1 = pa.to_set_partition([[1,-2],[2,-1]])
sage: sp2 = pa.to_set_partition([[1,-2],[2,-1]])
sage: pa.set_partition_composition(sp1, sp2) == (pa.identity(2), 0)
True

sage.combinat.partition_algebra.to_graph(sp)
Return a graph representing the set partition sp.

EXAMPLES:

sage: import sage.combinat.partition_algebra as pa
sage: g = pa.to_graph(pa.to_set_partition([[1,-2],[2,-1]])); g
Graph on 4 vertices

sage: g.vertices(sort=False) #random
[1, 2, -2, -1]
sage: g.edges(sort=False) #random
[(1, -2, None), (2, -1, None)]

sage.combinat.partition_algebra.to_set_partition(l, k=None)
Convert a list of a list of numbers to a set partitions.

Each list of numbers in the outer list specifies the numbers contained in one of the blocks in the set partition.

If k is specified, then the set partition will be a set partition of 1, . . . , k, -1, . . . , -k. Otherwise, k will default to
the minimum number needed to contain all of the specified numbers.

EXAMPLES:

sage: import sage.combinat.partition_algebra as pa
sage: pa.to_set_partition([[1,-1],[2,-2]]) == pa.identity(2)
True

5.1. Comprehensive Module List 1697

Combinatorics, Release 9.7

5.1.164 Kleshchev partitions

A partition (tuple) 𝜇 is Kleshchev if it can be recursively obtained by adding a sequence of good nodes to the empty
PartitionTuple of the same level() and multicharge. In this way, the set of Kleshchev multipartitions becomes
a realization of a Kashiwara crystal sage.combinat.crystals.crystals for a irreducible integral highest weight
representation of 𝑈𝑞(̂︀sl𝑒).
The Kleshchev multipartitions first appeared in the work of Ariki and Mathas [AM2000] where it was shown that
they index the irreducible representations of the cyclotomic Hecke algebras of type 𝐴 [AK1994]. Soon afterwards
Ariki [Ariki2001] showed that the set of Kleshchev multipartitions naturally label the irreducible representations of
these algebras. As a far reaching generalization of these ideas the Ariki-Brundan-Kleshchev categorification theorem
[Ariki1996] [BK2009] says that these algebras categorify the irreducible integral highest weight representations of the
quantum group 𝑈𝑞(̂︀sl𝑒) of the affine special linear group. Under this categorification, 𝑞 corresponds to the grading
shift on the cyclotomic Hecke algebras, where the grading from the Brundan-Kleshchev graded isomorphism theorem
to the KLR algebras of type 𝐴 [BK2009].

The group algebras of the symmetric group in characteristic 𝑝 are an important special case of the cyclotomic Hecke
algebras of type 𝐴. In this case, depending on your prefer convention, the set of Kleshchev partitions is the set of
`p`-regular or `p`-restricted Partitions. In this case, Kleshchev [Kle1995] proved that the modular branching rules
were given by adding and removing good nodes; see good_cells(). Lascoux, Leclerc and Thibon [LLT1996] no-
ticed that Kleshchev’s branching rules coincided with Kashiwara’s crystal operators for the fundamental representation
of 𝐿(Λ0) of 𝑈𝑞(̂︀sl𝑝) and their celebrated LLT conjecture said that decomposition matrices of the sage.algebras.
iwahori_hecke_algebra.IwahoriHeckeAlgebra of the symmetric group should be computable using the canon-
ical basis of 𝐿(Λ0). This was proved and generalised to all cyclotomic Hecke algebras of type 𝐴 by Ariki [Ariki1996]
and then further generalized to the graded setting by Brundan and Kleshchev [BK2009].

The main class for accessing Kleshchev partition (tuples) is KleshchevPartitions. Unfortunately, just as with the
symmetric group, different authors use different conventions when defining Kleshchev partitions, which depends on
whether you read components from left to right, or right to left, and whether you read the nodes in the partition in
each component from top to bottom or bottom to top. The KleshchevPartitions class supports these four different
conventions:

sage: KleshchevPartitions(2, [0,0], size=2, convention='left regular')[:]
[([1], [1]), ([2], [])]
sage: KleshchevPartitions(2, [0,0], size=2, convention='left restricted')[:]
[([1], [1]), ([], [1, 1])]
sage: KleshchevPartitions(2, [0,0], size=2, convention='right regular')[:]
[([1], [1]), ([], [2])]
sage: KleshchevPartitions(2, [0,0], size=2, convention='right restricted')[:]
[([1], [1]), ([1, 1], [])]

By default, the left restricted convention is used. As a shorthand, LG, LS, RG and RS, respectively, can be used
to specify the convention With the left convention the partition tuples should be ordered with the most dominant
partitions in the partition tuple on the left and with the right convention the most dominant partition is on the right.

The KleshchevPartitions class can automatically convert between these four different conventions:

sage: KPlg = KleshchevPartitions(2, [0,0], size=2, convention='left regular')
sage: KPls = KleshchevPartitions(2, [0,0], size=2, convention='left restricted')
sage: [KPlg(mu) for mu in KPls] # indirect doc test
[([1], [1]), ([2], [])]

AUTHORS:

• Andrew Mathas and Travis Scrimshaw (2018-05-1): Initial version

1698 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/algebras/sage/algebras/iwahori_hecke_algebra.html#sage.algebras.iwahori_hecke_algebra.IwahoriHeckeAlgebra
../../../../../../html/en/reference/algebras/sage/algebras/iwahori_hecke_algebra.html#sage.algebras.iwahori_hecke_algebra.IwahoriHeckeAlgebra

Combinatorics, Release 9.7

class sage.combinat.partition_kleshchev.KleshchevCrystalMixin
Bases: object

Mixin class for the crystal structure of a Kleshchev partition.

Epsilon()
Return 𝜀 of self.

EXAMPLES:

sage: C = crystals.KleshchevPartitions(3, [0,2], convention="left regular")
sage: x = C([[5,4,1],[3,2,1,1]])
sage: x.Epsilon()
3*Lambda[1]

Phi()
Return 𝜑 of self.

EXAMPLES:

sage: C = crystals.KleshchevPartitions(3, [0,2], convention="left regular")
sage: x = C([[5,4,1],[3,2,1,1]])
sage: x.Phi()
3*Lambda[0] + 2*Lambda[1]

epsilon(i)
Return the Kashiwara crystal operator 𝜀𝑖 applied to self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: C = crystals.KleshchevPartitions(3, [0,2], convention="left regular")
sage: x = C([[5,4,1],[3,2,1,1]])
sage: [x.epsilon(i) for i in C.index_set()]
[0, 3, 0]

phi(i)
Return the Kashiwara crystal operator 𝜙𝑖 applied to self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: C = crystals.KleshchevPartitions(3, [0,2], convention="left regular")
sage: x = C([[5,4,1],[3,2,1,1]])
sage: [x.phi(i) for i in C.index_set()]
[3, 2, 0]

weight()
Return the weight of self.

EXAMPLES:

5.1. Comprehensive Module List 1699

Combinatorics, Release 9.7

sage: C = crystals.KleshchevPartitions(3, [0,2], convention="left regular")
sage: x = C([[5,4,1], [3,2,1,1]])
sage: x.weight()
3*Lambda[0] - Lambda[1] - 5*delta
sage: x.Phi() - x.Epsilon()
3*Lambda[0] - Lambda[1]

sage: C = crystals.KleshchevPartitions(3, [0,2], convention="right regular")
sage: y = C([[5,1,1], [4,2,2,1,1]])
sage: y.weight()
6*Lambda[0] - 4*Lambda[1] - 4*delta
sage: y.Phi() - y.Epsilon()
6*Lambda[0] - 4*Lambda[1]

sage: C = crystals.KleshchevPartitions(3, [0,2], convention="left regular")
sage: y = C([[5,1,1], [4,2,2,1,1]])
sage: y.weight()
6*Lambda[0] - 4*Lambda[1] - 4*delta
sage: y.Phi() - y.Epsilon()
6*Lambda[0] - 4*Lambda[1]

class sage.combinat.partition_kleshchev.KleshchevPartition(parent, mu)
Bases: sage.combinat.partition.Partition

Abstract base class for Kleshchev partitions. See KleshchevPartitions.

cogood_cells(i=None)
Return a list of the cells of self that are cogood.

The cogood 𝑖-cell is the ‘last’ conormal 𝑖-cell. As with the conormal cells we can choose to read either up
or down the partition as specified by convention().

INPUT:

• i – (optional) a residue

OUTPUT:

If no residue i is specified then a dictionary of cogood cells is returned, which gives the cogood cells for 0
<= i < e.

EXAMPLES:

sage: KP = KleshchevPartitions(3, convention="regular")
sage: KP([5,4,4,3,2]).cogood_cells()
{0: (1, 4), 1: (4, 2)}
sage: KP([5,4,4,3,2]).cogood_cells(0)
(1, 4)
sage: KP([5,4,4,3,2]).cogood_cells(1)
(4, 2)
sage: KP = KleshchevPartitions(4, convention='restricted')
sage: KP([5,4,4,3,2]).cogood_cells()
{1: (0, 5), 2: (4, 2), 3: (1, 4)}
sage: KP([5,4,4,3,2]).cogood_cells(0)
sage: KP([5,4,4,3,2]).cogood_cells(2)
(4, 2)

1700 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

conormal_cells(i=None)
Return a dictionary of the cells of self which are conormal.

Following [Kle1995], the conormal cells are computed by reading up (or down) the rows of the partition
and marking all of the addable and removable cells of 𝑒-residue 𝑖 and then recursively removing all adjacent
pairs of removable and addable cells (in that order) from this list. The addable 𝑖-cells that remain at the end
of the this process are the conormal 𝑖-cells.

When computing conormal cells you can either read the cells in order from top to bottom (this corresponds
to labeling the simple modules of the symmetric group by regular partitions) or from bottom to top (cor-
responding to labeling the simples by restricted partitions). By default we read down the partition but this
can be changed by setting convention = 'RS'.

INPUT:

• i – (optional) a residue

OUTPUT:

If no residue i is specified then a dictionary of conormal cells is returned, which gives the conormal cells
for 0 <= i < e.

EXAMPLES:

sage: KP = KleshchevPartitions(3, convention="regular")
sage: KP([5,4,4,3,2]).conormal_cells()
{0: [(1, 4)], 1: [(5, 0), (4, 2)]}
sage: KP([5,4,4,3,2]).conormal_cells(0)
[(1, 4)]
sage: KP([5,4,4,3,2]).conormal_cells(1)
[(5, 0), (4, 2)]
sage: KP = KleshchevPartitions(3, convention="restricted")
sage: KP([5,4,4,3,2]).conormal_cells()
{0: [(1, 4), (3, 3)], 2: [(0, 5)]}

good_cell_sequence()
Return a sequence of good nodes from the empty partition to self, or None if no such sequence exists.

EXAMPLES:

sage: KP = KleshchevPartitions(3, convention='regular')
sage: KP([5,4,4,3,2]).good_cell_sequence()
[(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2),
(3, 0), (2, 1), (1, 2), (3, 1), (0, 3), (1, 3),
(2, 2), (3, 2), (4, 0), (4, 1), (0, 4), (2, 3)]
sage: KP = KleshchevPartitions(3, convention='restricted')
sage: KP([5,4,4,3,2]).good_cell_sequence()
[(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0),
(0, 3), (2, 1), (1, 2), (1, 3), (3, 0), (3, 1),
(2, 2), (4, 0), (2, 3), (3, 2), (0, 4), (4, 1)]

good_cells(i=None)
Return a list of the cells of self that are good.

The good 𝑖-cell is the ‘first’ normal 𝑖-cell. As with the normal cells we can choose to read either up or down
the partition as specified by convention().

INPUT:

• i – (optional) a residue

5.1. Comprehensive Module List 1701

Combinatorics, Release 9.7

OUTPUT:

If no residue i is specified then a dictionary of good cells is returned, which gives the good cells for 0 <=
i < e.

EXAMPLES:

sage: KP3 = KleshchevPartitions(3, convention='regular')
sage: KP3([5,4,4,3,2]).good_cells()
{1: (2, 3)}
sage: KP3([5,4,4,3,2]).good_cells(1)
(2, 3)
sage: KP4 = KleshchevPartitions(4, convention='restricted')
sage: KP4([5,4,4,3,2]).good_cells()
{1: (2, 3)}
sage: KP4([5,4,4,3,2]).good_cells(0)
sage: KP4([5,4,4,3,2]).good_cells(1)
(2, 3)

good_residue_sequence()
Return a sequence of good nodes from the empty partition to self, or None if no such sequence exists.

EXAMPLES:

sage: KP = KleshchevPartitions(3, convention='regular')
sage: KP([5,4,4,3,2]).good_residue_sequence()
[0, 2, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 0, 2, 2, 0, 1, 1]
sage: KP = KleshchevPartitions(3, convention='restricted')
sage: KP([5,4,4,3,2]).good_residue_sequence()
[0, 1, 2, 2, 0, 1, 0, 2, 1, 2, 0, 1, 0, 2, 1, 2, 1, 0]

is_regular()
Return True if self is a 𝑒-regular partition tuple.

A partition tuple is 𝑒-regular if we can get to the empty partition tuple by successively removing a sequence
of good cells in the down direction. Equivalently, all partitions are 0-regular and if 𝑒 > 0 then a partition
is 𝑒-regular if no 𝑒 non-zero parts of self are equal.

EXAMPLES:

sage: KP = KleshchevPartitions(2)
sage: KP([2,1,1]).is_regular()
False
sage: KP = KleshchevPartitions(3)
sage: KP([2,1,1]).is_regular()
True
sage: KP([]).is_regular()
True

is_restricted()
Return True if self is an 𝑒-restricted partition tuple.

A partition tuple is 𝑒-restricted if we can get to the empty partition tuple by successively removing a se-
quence of good cells in the up direction. Equivalently, all partitions are 0-restricted and if 𝑒 > 0 then a
partition is 𝑒-restricted if the difference of successive parts of self are always strictly less than 𝑒.

EXAMPLES:

1702 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: KP = KleshchevPartitions(2, convention='regular')
sage: KP([3,1]).is_restricted()
False
sage: KP = KleshchevPartitions(3, convention='regular')
sage: KP([3,1]).is_restricted()
True
sage: KP([]).is_restricted()
True

mullineux_conjugate()
Return the partition tuple that is the Mullineux conjugate of self.

It follows from results in [BK2009], [Mat2015] that if 𝜈 is the Mullineux conjugate of the Kleshchev
partition tuple 𝜇 then the simple module 𝐷𝜈 = (𝐷𝜇)sgn is obtained from 𝐷𝜇 by twisting by the sgn-
automorphism with is the Iwahori-Hecke algebra analogue of tensoring with the one dimensional sign
representation.

EXAMPLES:

sage: KP = KleshchevPartitions(3, convention='regular')
sage: KP([5,4,4,3,2]).mullineux_conjugate()
[9, 7, 1, 1]
sage: KP = KleshchevPartitions(3, convention='restricted')
sage: KP([5,4,4,3,2]).mullineux_conjugate()
[3, 2, 2, 2, 2, 2, 2, 1, 1, 1]
sage: KP = KleshchevPartitions(3, [2], convention='regular')
sage: mc = KP([5,4,4,3,2]).mullineux_conjugate(); mc
[9, 7, 1, 1]
sage: mc.parent().multicharge()
(1,)
sage: KP = KleshchevPartitions(3, [2], convention='restricted')
sage: mc = KP([5,4,4,3,2]).mullineux_conjugate(); mc
[3, 2, 2, 2, 2, 2, 2, 1, 1, 1]
sage: mc.parent().multicharge()
(1,)

normal_cells(i=None)
Return a dictionary of the cells of the partition that are normal.

Following [Kle1995], the normal cells are computed by reading up (or down) the rows of the partition and
marking all of the addable and removable cells of 𝑒-residue 𝑖 and then recursively removing all adjacent
pairs of removable and addable cells (in that order) from this list. The removable 𝑖-cells that remain at the
end of the this process are the normal 𝑖-cells.

When computing normal cells you can either read the cells in order from top to bottom (this corresponds
to labeling the simple modules of the symmetric group by regular partitions) or from bottom to top (cor-
responding to labeling the simples by restricted partitions). By default we read down the partition but this
can be changed by setting convention = 'RS'.

INPUT:

• i – (optional) a residue

OUTPUT:

If no residue i is specified then a dictionary of normal cells is returned, which gives the normal cells for 0
<= i < e.

5.1. Comprehensive Module List 1703

Combinatorics, Release 9.7

EXAMPLES:

sage: KP = KleshchevPartitions(3, convention='regular')
sage: KP([5,4,4,3,2]).normal_cells()
{1: [(2, 3), (0, 4)]}
sage: KP([5,4,4,3,2]).normal_cells(1)
[(2, 3), (0, 4)]
sage: KP = KleshchevPartitions(3, convention='restricted')
sage: KP([5,4,4,3,2]).normal_cells()
{0: [(4, 1)], 2: [(3, 2)]}
sage: KP([5,4,4,3,2]).normal_cells(2)
[(3, 2)]

class sage.combinat.partition_kleshchev.KleshchevPartitionCrystal(parent, mu)
Bases: sage.combinat.partition_kleshchev.KleshchevPartition, sage.combinat.
partition_kleshchev.KleshchevCrystalMixin

Kleshchev partition with the crystal structure.

e(i)
Return the action of 𝑒𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: C = crystals.KleshchevPartitions(3, convention="left regular")
sage: x = C([5,4,1])
sage: x.e(0)
sage: x.e(1)
[5, 4]

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: C = crystals.KleshchevPartitions(3, convention="left regular")
sage: x = C([5,4,1])
sage: x.f(0)
[5, 5, 1]
sage: x.f(1)
sage: x.f(2)
[5, 4, 2]

class sage.combinat.partition_kleshchev.KleshchevPartitionTuple(parent, mu)
Bases: sage.combinat.partition_tuple.PartitionTuple

Abstract base class for Kleshchev partition tuples. See KleshchevPartitions.

cogood_cells(i=None)
Return a list of the cells of the partition that are cogood.

1704 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The cogood 𝑖-cell is the ‘last’ conormal 𝑖-cell. As with the conormal cells we can choose to read either up
or down the partition as specified by convention().

INPUT:

• i – (optional) a residue

OUTPUT:

If no residue i is specified then a dictionary of cogood cells is returned, which gives the cogood cells for 0
<= i < e.

EXAMPLES:

sage: KP = KleshchevPartitions(3, [0,1])
sage: pt = KP([[4, 2], [5, 3, 1]])
sage: pt.cogood_cells()
{0: (1, 2, 1), 1: (1, 3, 0)}
sage: pt.cogood_cells(0)
(1, 2, 1)
sage: KP = KleshchevPartitions(4, [0,1], convention="left regular")
sage: pt = KP([[5, 2, 2], [6, 1, 1]])
sage: pt.cogood_cells()
{1: (0, 0, 5), 2: (1, 3, 0)}
sage: pt.cogood_cells(0) is None
True
sage: pt.cogood_cells(1) is None
False

conormal_cells(i=None)
Return a dictionary of the cells of the partition that are conormal.

Following [Kle1995], the conormal cells are computed by reading up (or down) the rows of the partition
and marking all of the addable and removable cells of 𝑒-residue 𝑖 and then recursively removing all adjacent
pairs of removable and addable cells (in that order) from this list. The addable 𝑖-cells that remain at the end
of the this process are the conormal 𝑖-cells.

When computing conormal cells you can either read the cells in order from top to bottom (this corresponds
to labeling the simple modules of the symmetric group by regular partitions) or from bottom to top (cor-
responding to labeling the simples by restricted partitions). By default we read down the partition but this
can be changed by setting convention = 'RS'.

INPUT:

• i – (optional) a residue

OUTPUT:

If no residue i is specified then a dictionary of conormal cells is returned, which gives the conormal cells
for 0 <= i < e.

EXAMPLES:

sage: KP = KleshchevPartitions(3, [0,1], convention="left regular")
sage: KP([[4, 2], [5, 3, 1]]).conormal_cells()
{0: [(1, 2, 1), (1, 1, 3), (1, 0, 5)],
1: [(1, 3, 0), (0, 2, 0), (0, 1, 2), (0, 0, 4)]}
sage: KP([[4, 2], [5, 3, 1]]).conormal_cells(1)
[(1, 3, 0), (0, 2, 0), (0, 1, 2), (0, 0, 4)]

(continues on next page)

5.1. Comprehensive Module List 1705

Combinatorics, Release 9.7

(continued from previous page)

sage: KP([[4, 2], [5, 3, 1]]).conormal_cells(2)
[]
sage: KP = KleshchevPartitions(3, [0,1], convention="right restricted")
sage: KP([[4, 2], [5, 3, 1]]).conormal_cells(0)
[(1, 0, 5), (1, 1, 3), (1, 2, 1)]

good_cell_sequence()
Return a sequence of good nodes from the empty partition to self.

EXAMPLES:

sage: KP = KleshchevPartitions(3,[0,1])
sage: KP([[4, 2], [5, 3, 1]]).good_cell_sequence()
[(0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), (0, 1, 0),
(1, 1, 0), (1, 1, 1), (1, 0, 2), (1, 2, 0), (0, 0, 2),
(0, 1, 1), (1, 0, 3), (0, 0, 3), (1, 1, 2), (1, 0, 4)]

good_cells(i=None)
Return a list of the cells of the partition tuple which are good.

The good 𝑖-cell is the ‘first’ normal 𝑖-cell. As with the normal cells we can choose to read either up or down
the partition as specified by convention().

INPUT:

• i – (optional) a residue

OUTPUT:

If no residue i is specified then a dictionary of good cells is returned, which gives the good cells for 0 <=
i < e.

EXAMPLES:

sage: KP = KleshchevPartitions(3, [0,1])
sage: pt = KP([[4, 2], [5, 3, 1]])
sage: pt.good_cells()
{2: (1, 0, 4)}
sage: pt.good_cells(2)
(1, 0, 4)
sage: KP = KleshchevPartitions(4, [0,1], convention="left regular")
sage: pt = KP([[5, 2, 2], [6, 2, 1]])
sage: pt.good_cells()
{0: (0, 0, 4), 2: (1, 0, 5), 3: (0, 2, 1)}
sage: pt.good_cells(1) is None
True

good_residue_sequence()
Return a sequence of good nodes from the empty partition to self.

EXAMPLES:

sage: KP = KleshchevPartitions(3, [0,1])
sage: KP([[4, 2], [5, 3, 1]]).good_residue_sequence()
[0, 1, 2, 1, 2, 0, 1, 0, 2, 2, 0, 1, 0, 2, 2]

1706 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

is_regular()
Return True if self is a 𝑒-regular partition tuple.

A partition tuple is 𝑒-regular if we can get to the empty partition tuple by successively removing a sequence
of good cells in the down direction.

EXAMPLES:

sage: KP = KleshchevPartitions(2, [0,2], convention="right restricted")
sage: KP([[3,2,1], [2,1,1]]).is_regular()
False
sage: KP = KleshchevPartitions(4, [0,2], convention="right restricted")
sage: KP([[3,2,1], [2,1,1]]).is_regular()
True
sage: KP([[], []]).is_regular()
True

is_restricted()
Return True if self is an 𝑒-restricted partition tuple.

A partition tuple is 𝑒-restricted if we can get to the empty partition tuple by successively removing a se-
quence of good cells in the up direction.

EXAMPLES:

sage: KP = KleshchevPartitions(2, [0,2], convention="left regular")
sage: KP([[3,2,1], [3,1]]).is_restricted()
False
sage: KP = KleshchevPartitions(3, [0,2], convention="left regular")
sage: KP([[3,2,1], [3,1]]).is_restricted()
True
sage: KP([[], []]).is_restricted()
True

mullineux_conjugate()
Return the partition that is the Mullineux conjugate of self.

It follows from results in [Kle1996] [Bru1998] that if 𝜈 is the Mullineux conjugate of the Kleshchev partition
tuple 𝜇 then the simple module 𝐷𝜈 = (𝐷𝜇)sgn is obtained from 𝐷𝜇 by twisting by the sgn-automorphism
with is the Hecke algebra analogue of tensoring with the one dimensional sign representation.

EXAMPLES:

sage: KP = KleshchevPartitions(3, [0,1])
sage: mc = KP([[4, 2], [5, 3, 1]]).mullineux_conjugate(); mc
([2, 2, 1, 1], [3, 2, 2, 1, 1])
sage: mc.parent()
Kleshchev partitions with e=3 and multicharge=(0,2)

normal_cells(i=None)
Return a dictionary of the removable cells of the partition that are normal.

Following [Kle1995], the normal cells are computed by reading up (or down) the rows of the partition and
marking all of the addable and removable cells of 𝑒-residue 𝑖 and then recursively removing all adjacent
pairs of removable and addable cells (in that order) from this list. The removable 𝑖-cells that remain at the
end of the this process are the normal 𝑖-cells.

When computing normal cells you can either read the cells in order from top to bottom (this corresponds
to labeling the simple modules of the symmetric group by regular partitions) or from bottom to top (cor-

5.1. Comprehensive Module List 1707

Combinatorics, Release 9.7

responding to labeling the simples by restricted partitions). By default we read down the partition but this
can be changed by setting convention = 'RS'.

INPUT:

• i – (optional) a residue

OUTPUT:

If no residue i is specified then a dictionary of normal cells is returned, which gives the normal cells for 0
<= i < e.

EXAMPLES:

sage: KP = KleshchevPartitions(3, [0,1], convention="left restricted")
sage: KP([[4, 2], [5, 3, 1]]).normal_cells()
{2: [(1, 0, 4), (1, 1, 2), (1, 2, 0)]}
sage: KP([[4, 2], [5, 3, 1]]).normal_cells(1)
[]
sage: KP = KleshchevPartitions(3, [0,1], convention="left regular")
sage: KP([[4, 2], [5, 3, 1]]).normal_cells()
{0: [(0, 1, 1), (0, 0, 3)], 2: [(1, 2, 0), (1, 1, 2), (1, 0, 4)]}
sage: KP = KleshchevPartitions(3, [0,1], convention="right regular")
sage: KP([[4, 2], [5, 3, 1]]).normal_cells()
{2: [(1, 2, 0), (1, 1, 2), (1, 0, 4)]}
sage: KP = KleshchevPartitions(3, [0,1], convention="right restricted")
sage: KP([[4, 2], [5, 3, 1]]).normal_cells()
{0: [(0, 0, 3), (0, 1, 1)], 2: [(1, 0, 4), (1, 1, 2), (1, 2, 0)]}

class sage.combinat.partition_kleshchev.KleshchevPartitionTupleCrystal(parent, mu)
Bases: sage.combinat.partition_kleshchev.KleshchevPartitionTuple, sage.combinat.
partition_kleshchev.KleshchevCrystalMixin

Kleshchev partition tuple with the crystal structure.

e(i)
Return the action of 𝑒𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

sage: C = crystals.KleshchevPartitions(3, [0,2], convention="left regular")
sage: x = C([[5,4,1],[3,2,1,1]])
sage: x.e(0)
sage: x.e(1)
([5, 4, 1], [2, 2, 1, 1])

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:

• i – an element of the index set

EXAMPLES:

1708 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: C = crystals.KleshchevPartitions(3, [0,2], convention="left regular")
sage: x = C([[5,4,1],[3,2,1,1]])
sage: x.f(0)
([5, 5, 1], [3, 2, 1, 1])
sage: x.f(1)
([5, 4, 1], [3, 2, 2, 1])
sage: x.f(2)

class sage.combinat.partition_kleshchev.KleshchevPartitions
Bases: sage.combinat.partition_tuple.PartitionTuples

Kleshchev partitions

A partition (tuple) 𝜇 is Kleshchev if it can be recursively obtained by adding a sequence of good nodes to the
empty PartitionTuple of the same level() and multicharge.

There are four different conventions that are used in the literature for Kleshchev partitions, depending on whether
we read partitions from top to bottom (regular) or bottom to top (restricted) and whether we read partition tuples
from left to right or right to left. All of these conventions are supported:

sage: KleshchevPartitions(2, [0,0], size=2, convention='left regular')[:]
[([1], [1]), ([2], [])]
sage: KleshchevPartitions(2, [0,0], size=2, convention='left restricted')[:]
[([1], [1]), ([], [1, 1])]
sage: KleshchevPartitions(2, [0,0], size=2, convention='right regular')[:]
[([1], [1]), ([], [2])]
sage: KleshchevPartitions(2, [0,0], size=2, convention='right restricted')[:]
[([1], [1]), ([1, 1], [])]

By default, the left restricted convention is used. As a shorthand, LG, LS, RG and RS, respectively, can be
used to specify the convention. With the left convention the partition tuples should be ordered with the most
dominant partitions in the partition tuple on the left and with the right convention the most dominant partition
is on the right.

The KleshchevPartitions class will automatically convert between these four different conventions:

sage: KPlg = KleshchevPartitions(2, [0,0], size=2, convention='left regular')
sage: KPls = KleshchevPartitions(2, [0,0], size=2, convention='left restricted')
sage: [KPlg(mu) for mu in KPls]
[([1], [1]), ([2], [])]

EXAMPLES:

sage: sorted(KleshchevPartitions(5,[3,2,1],1, convention='RS'))
[([], [], [1]), ([], [1], []), ([1], [], [])]
sage: sorted(KleshchevPartitions(5, [3,2,1], 1, convention='LS'))
[([], [], [1]), ([], [1], []), ([1], [], [])]
sage: sorted(KleshchevPartitions(5, [3,2,1], 3))
[([], [], [1, 1, 1]),
([], [], [2, 1]),
([], [], [3]),
([], [1], [1, 1]),
([], [1], [2]),
([], [1, 1], [1]),
([], [2], [1]),

(continues on next page)

5.1. Comprehensive Module List 1709

Combinatorics, Release 9.7

(continued from previous page)

([], [3], []),
([1], [], [1, 1]),
([1], [], [2]),
([1], [1], [1]),
([1], [2], []),
([1, 1], [1], []),
([2], [], [1]),
([2], [1], []),
([3], [], [])]
sage: sorted(KleshchevPartitions(5, [3,2,1], 3, convention="left regular"))
[([], [], [1, 1, 1]),
([], [1], [1, 1]),
([], [1], [2]),
([], [1, 1], [1]),
([], [1, 1, 1], []),
([1], [], [1, 1]),
([1], [1], [1]),
([1], [1, 1], []),
([1], [2], []),
([1, 1], [], [1]),
([1, 1], [1], []),
([1, 1, 1], [], []),
([2], [], [1]),
([2], [1], []),
([2, 1], [], []),
([3], [], [])]

REFERENCES:

• [AM2000]

• [Ariki2001]

• [BK2009]

• [Kle2009]

convention()
Return the convention of self.

EXAMPLES:

sage: KP = KleshchevPartitions(4)
sage: KP.convention()
'restricted'
sage: KP = KleshchevPartitions(6, [4], 3, convention="right regular")
sage: KP.convention()
'regular'
sage: KP = KleshchevPartitions(5, [3,0,1], 1)
sage: KP.convention()
'left restricted'
sage: KP = KleshchevPartitions(5, [3,0,1], 1, convention='right regular')
sage: KP.convention()
'right regular'

1710 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

multicharge()
Return the multicharge of self.

EXAMPLES:

sage: KP = KleshchevPartitions(6, [2])
sage: KP.multicharge()
(2,)
sage: KP = KleshchevPartitions(5, [3,0,1], 1, convention='LS')
sage: KP.multicharge()
(3, 0, 1)

class sage.combinat.partition_kleshchev.KleshchevPartitions_all(e, multicharge, convention)
Bases: sage.combinat.partition_kleshchev.KleshchevPartitions

Class of all Kleshchev partitions.

Crystal structure

We consider type 𝐴(1)
𝑒−1 crystals, and let 𝑟 = (𝑟𝑖|𝑟𝑖 ∈ Z/𝑒Z) be a finite sequence of length 𝑘, which is the level,

and 𝜆 =
∑︀
𝑖 Λ𝑟𝑖 . We will model the highest weight 𝑈𝑞(g)-crystal 𝐵(𝜆) by a particular subset of partition tuples

of level 𝑘.

Consider a partition tuple 𝜇 with multicharge 𝑟. We define 𝑒𝑖(𝜇) as the partition tuple obtained after the deletion
of the 𝑖-good cell to 𝜇 and 0 if there is no 𝑖-good cell. We define 𝑓𝑖(𝜇) as the partition tuple obtained by the
addition of the 𝑖-cogood cell to 𝜇 and 0 if there is no 𝑖-good cell.

The crystal𝐵(𝜆) is the crystal generated by the empty partition tuple. We can compute the weight of an element
𝜇 by taking 𝜆−

∑︀𝑛
𝑖=0 𝑐𝑖𝛼𝑖 where 𝑐𝑖 is the number of cells of 𝑛-residue 𝑖 in 𝜇. Partition tuples in the crystal are

known as Kleshchev partitions.

Note: We can describe normal (not restricted) Kleshchev partition tuples in𝐵(𝜆) as partition tuples 𝜇 such that
𝜇
(𝑡)
𝑟𝑡−𝑟𝑡+1+𝑥 < 𝜇

(𝑡+1)
𝑥 for all 𝑥 ≥ 1 and 1 ≤ 𝑡 ≤ 𝑘 − 1.

INPUT:

• e – for type 𝐴(1)
𝑒−1 or 0

• multicharge – the multicharge sequence 𝑟

• convention – (default: 'LS') the reading convention

EXAMPLES:

We first do an example of a level 1 crystal:

sage: C = crystals.KleshchevPartitions(3, [0], convention="left restricted")
sage: C
Kleshchev partitions with e=3
sage: mg = C.highest_weight_vector()
sage: mg
[]
sage: mg.f(0)
[1]
sage: mg.f(1)
sage: mg.f(2)

(continues on next page)

5.1. Comprehensive Module List 1711

Combinatorics, Release 9.7

(continued from previous page)

sage: mg.f_string([0,2,1,0])
[1, 1, 1, 1]
sage: mg.f_string([0,1,2,0])
[2, 2]
sage: GC = C.subcrystal(max_depth=5).digraph()
sage: B = crystals.LSPaths(['A',2,1], [1,0,0])
sage: GB = B.subcrystal(max_depth=5).digraph()
sage: GC.is_isomorphic(GB, edge_labels=True)
True

Now a higher level crystal:

sage: C = crystals.KleshchevPartitions(3, [0,2], convention="right restricted")
sage: mg = C.highest_weight_vector()
sage: mg
([], [])
sage: mg.f(0)
([1], [])
sage: mg.f(2)
([], [1])
sage: mg.f_string([0,1,2,0])
([2, 2], [])
sage: mg.f_string([0,2,1,0])
([1, 1, 1, 1], [])
sage: mg.f_string([2,0,1,0])
([2], [2])
sage: GC = C.subcrystal(max_depth=5).digraph()
sage: B = crystals.LSPaths(['A',2,1], [1,0,1])
sage: GB = B.subcrystal(max_depth=5).digraph()
sage: GC.is_isomorphic(GB, edge_labels=True)
True

The ordering of the residues gives a different representation of the higher level crystals (but it is still isomorphic):

sage: C2 = crystals.KleshchevPartitions(3, [2,0], convention="right restricted")
sage: mg2 = C2.highest_weight_vector()
sage: mg2.f_string([0,1,2,0])
([2], [2])
sage: mg2.f_string([0,2,1,0])
([1, 1, 1], [1])
sage: mg2.f_string([2,0,1,0])
([2, 1], [1])
sage: GC2 = C2.subcrystal(max_depth=5).digraph()
sage: GC.is_isomorphic(GC2, edge_labels=True)
True

REFERENCES:

• [Ariki1996]

• [Ariki2001]

• [Tingley2007]

• [TingleyLN]

1712 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• [Vazirani2002]

class sage.combinat.partition_kleshchev.KleshchevPartitions_size(e, multicharge=(0,), size=0,
convention='RS')

Bases: sage.combinat.partition_kleshchev.KleshchevPartitions

Kleshchev partitions of a fixed size.

Element
alias of KleshchevPartitionTuple

5.1.165 Partition Shifting Algebras

This module contains families of operators that act on partitions or, more generally, integer sequences. In particular,
this includes Young’s raising operators𝑅𝑖𝑗 , which act on integer sequences by adding 1 to the 𝑖-th entry and subtracting
1 to the 𝑗-th entry. A special case is acting on partitions.

AUTHORS:

• Matthew Lancellotti, George H. Seelinger (2018): Initial version

class sage.combinat.partition_shifting_algebras.ShiftingOperatorAlgebra(base_ring=Univariate
Polynomial Ring in t
over Rational Field,
prefix='S')

Bases: sage.combinat.free_module.CombinatorialFreeModule

An algebra of shifting operators.

Let 𝑅 be a commutative ring. The algebra of shifting operators is isomorphic as an 𝑅-algebra to the Laurent
polynomial ring𝑅[𝑥±1 , 𝑥

±
2 , 𝑥

±
3 , . . .]. Moreover, the monomials of the shifting operator algebra act on any integer

sequence 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆ℓ) as follows. Let 𝑆 be our algebra of shifting operators. Then, for any monomial
𝑠 = 𝑥𝑎11 𝑥

𝑎2
2 · · ·𝑥𝑎𝑟𝑟 ∈ 𝑆 where 𝑎𝑖 ∈ Z and 𝑟 ≥ ℓ, we get that 𝑠.𝜆 = (𝜆1 + 𝑎1, 𝜆2 + 𝑎2, . . . , 𝜆𝑟 + 𝑎𝑟) where we

pad 𝜆with 𝑟− ℓ zeros. In particular, we can recover Young’s raising operator,𝑅𝑖𝑗 , for 𝑖 < 𝑗, acting on partitions
by having 𝑥𝑖

𝑥𝑗
act on a partition 𝜆.

One can extend the action of these shifting operators to a basis of symmetric functions, but at the expense of
no longer actually having a well-defined operator. Formally, to extend the action of the shifting operators on a
symmetric function basis 𝐵 = {𝑏𝜆}𝜆, we define an 𝑅-module homomorphism 𝜑 : 𝑅[𝑥±1 , 𝑥

±
2 , . . .] → 𝐵. Then

we compute 𝑥𝑎11 · · ·𝑥𝑎𝑟𝑟 .𝑏𝜆 by first computing (𝑥𝑎11 · · ·𝑥𝑎𝑟𝑟)𝑥𝜆1
1 · · ·𝑥

𝜆ℓ

ℓ and then applying 𝜑 to the result. For
examples of what this looks like with specific bases, see below.

This implementation is consistent with how many references work formally with raising operators. For instance,
see exposition surrounding [BMPS2018] Equation (4.1).

We follow the following convention for creating elements: S(1, 0, -1, 2) is the shifting operator that raises
the first part by 1, lowers the third part by 1, and raises the fourth part by 2.

In addition to acting on partitions (or any integer sequence), the shifting operators can also act on
symmetric functions in a basis 𝐵 when a conversion to 𝐵 has been registered, preferably using
build_and_register_conversion().

For a definition of raising operators, see [BMPS2018] Definition 2.1. See ij() to create operators using the
notation in [BMPS2018].

INPUT:

• base_ring – (default: QQ['t']) the base ring

• prefix – (default: "S") the label for the shifting operators

5.1. Comprehensive Module List 1713

Combinatorics, Release 9.7

EXAMPLES:

sage: S = ShiftingOperatorAlgebra()

sage: elm = S[1, -1, 2]; elm
S(1, -1, 2)
sage: elm([5, 4])
[([6, 3, 2], 1)]

The shifting operator monomials can act on a complete homogeneous symmetric function or a Schur function:

sage: s = SymmetricFunctions(QQ['t']).s()
sage: h = SymmetricFunctions(QQ['t']).h()

sage: elm(s[5, 4])
s[6, 3, 2]
sage: elm(h[5, 4])
h[6, 3, 2]

sage: S[1, -1](s[5, 4])
s[6, 3]
sage: S[1, -1](h[5, 4])
h[6, 3]

In fact, we can extend this action by linearity:

sage: elm = (1 - S[1,-1]) * (1 - S[4])
sage: elm == S([]) - S([1, -1]) - S([4]) + S([5, -1])
True
sage: elm(s[2, 2, 1])
s[2, 2, 1] - s[3, 1, 1] - s[6, 2, 1] + s[7, 1, 1]

sage: elm = (1 - S[1,-1]) * (1 - S[0,1,-1])
sage: elm == 1 - S[0,1,-1] - S[1,-1] + S[1,0,-1]
True
sage: elm(s[2, 2, 1])
s[2, 2, 1] - s[3, 1, 1] + s[3, 2]

The algebra also comes equipped with homomorphisms to various symmetric function bases; these homomor-
phisms are how the action of S on the specific symmetric function bases is implemented:

sage: elm = S([3,1,2]); elm
S(3, 1, 2)
sage: h(elm)
h[3, 2, 1]
sage: s(elm)
0

However, not all homomorphisms are equivalent, so the action is basis dependent:

sage: elm = S([3,2,1]); elm
S(3, 2, 1)
sage: h(elm)
h[3, 2, 1]

(continues on next page)

1714 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: s(elm)
s[3, 2, 1]
sage: s(elm) == s(h(elm))
False

We can also use raising operators to implement the Jacobi-Trudi identity:

sage: op = (1-S[(1,-1)]) * (1-S[(1,0,-1)]) * (1-S[(0,1,-1)])
sage: s(op(h[3,2,1]))
s[3, 2, 1]

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element of a ShiftingOperatorAlgebra.

build_and_register_conversion(support_map, codomain)
Build a module homomorphism from a map sending integer sequences to codomain and registers the result
into Sage’s conversion model.

The intended use is to define a morphism from self to a basis 𝐵 of symmetric functions that will be used
by ShiftingOperatorAlgebra to define the action of the operators on 𝐵.

Note: The actions on the complete homogeneous symmetric functions and on the Schur functions by
morphisms are already registered.

Warning: Because ShiftingOperatorAlgebra inherits from UniqueRepresentation, once you
register a conversion, this will apply to all instances of ShiftingOperatorAlgebra over the same
base ring with the same prefix.

INPUT:

• support_map – a map from integer sequences to codomain

• codomain – the codomain of support_map, usually a basis of symmetric functions

EXAMPLES:

sage: S = ShiftingOperatorAlgebra(QQ)
sage: sym = SymmetricFunctions(QQ)
sage: p = sym.p()
sage: zero_map = lambda part: p.zero()
sage: S.build_and_register_conversion(zero_map, p)
sage: p(2*S([1,0,-1]) + S([2,1,0]) - 3*S([0,1,3]))
0
sage: op = S((1, -1))
sage: op(2*p[4,3] + 5*p[2,2] + 7*p[2]) == p.zero()
True

For a more illustrative example, we can implement a simple (but not mathematically justified!) conversion
on the monomial basis:

5.1. Comprehensive Module List 1715

../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

sage: S = ShiftingOperatorAlgebra(QQ)
sage: sym = SymmetricFunctions(QQ)
sage: m = sym.m()
sage: def supp_map(gamma):
....: gsort = sorted(gamma, reverse=True)
....: return m(gsort) if gsort in Partitions() else m.zero()
sage: S.build_and_register_conversion(supp_map, m)
sage: op = S.ij(0, 1)
sage: op(2*m[4,3] + 5*m[2,2] + 7*m[2]) == 2*m[5, 2] + 5*m[3, 1]
True

ij(i, j)
Return the raising operator 𝑅𝑖𝑗 as notated in [BMPS2018] Definition 2.1.

Shorthand element constructor that allows you to create raising operators using the familiar 𝑅𝑖𝑗 notation
found in [BMPS2018] Definition 2.1, with the exception that indices here are 0-based, not 1-based.

EXAMPLES:

Create the raising operator which raises part 0 and lowers part 2 (indices are 0-based):

sage: R = ShiftingOperatorAlgebra()
sage: R.ij(0, 2)
S(1, 0, -1)

one_basis()
Return the index of the basis element for 1.

EXAMPLES:

sage: S = ShiftingOperatorAlgebra()
sage: S.one_basis()
()

product_on_basis(x, y)
Return the product of basis elements indexed by x and y.

EXAMPLES:

sage: S = ShiftingOperatorAlgebra()
sage: S.product_on_basis((0, 5, 2), (3, 2, -2, 5))
S(3, 7, 0, 5)
sage: S.product_on_basis((1, -2, 0, 3, -6), (-1, 2, 2))
S(0, 0, 2, 3, -6)
sage: S.product_on_basis((1, -2, -2), (-1, 2, 2))
S()

class sage.combinat.partition_shifting_algebras.ShiftingSequenceSpace
Bases: sage.misc.fast_methods.Singleton, sage.structure.parent.Parent

A helper for ShiftingOperatorAlgebra that contains all tuples with entries in Z of finite support with no
trailing 0’s.

EXAMPLES:

sage: from sage.combinat.partition_shifting_algebras import ShiftingSequenceSpace
sage: S = ShiftingSequenceSpace()

(continues on next page)

1716 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.Singleton
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

sage: (1, -1) in S
True
sage: (1, -1, 0, 9) in S
True
sage: [1, -1] in S
False
sage: (0.5, 1) in S
False

check(seq)
Verify that seq is a valid shifting sequence.

If it is not, raise a ValueError.

EXAMPLES:

sage: from sage.combinat.partition_shifting_algebras import␣
→˓ShiftingSequenceSpace
sage: S = ShiftingSequenceSpace()
sage: S.check((1, -1))
sage: S.check((1, -1, 0, 9))
sage: S.check([1, -1])
Traceback (most recent call last):
...
ValueError: invalid index [1, -1]
sage: S.check((0.5, 1))
Traceback (most recent call last):
...
ValueError: invalid index (0.500000000000000, 1)

5.1.166 Partition tuples

A PartitionTuple is a tuple of partitions. That is, an ordered 𝑘-tuple of partitions 𝜇 = (𝜇(1), 𝜇(2), ..., 𝜇(𝑘)). If

𝑛 = |𝜇| = |𝜇(1)|+ |𝜇(2)|+ · · ·+ |𝜇(𝑘)|

then we say that 𝜇 is a 𝑘-partition of 𝑛.

In representation theory partition tuples arise as the natural indexing set for the ordinary irreducible representations of:

• the wreath products of cyclic groups with symmetric groups,

• the Ariki-Koike algebras, or the cyclotomic Hecke algebras of the complex reflection groups of type 𝐺(𝑟, 1, 𝑛),

• the degenerate cyclotomic Hecke algebras of type 𝐺(𝑟, 1, 𝑛).

When these algebras are not semisimple, partition tuples index an important class of modules for the algebras, which
are generalisations of the Specht modules of the symmetric groups.

Tuples of partitions also index the standard basis of the higher level combinatorial Fock spaces. As a consequence,
the combinatorics of partition tuples encapsulates the canonical bases of crystal graphs for the irreducible integrable
highest weight modules of the (quantized) affine special linear groups and the (quantized) affine general linear groups.
By the categorification theorems of Ariki, Varagnolo-Vasserot, Stroppel-Webster and others, in characteristic zero the
degenerate and non-degenerate cyclotomic Hecke algebras, via their Khovanov-Lauda-Rouquier grading, categorify
the canonical bases of the quantum affine special and general linear groups.

5.1. Comprehensive Module List 1717

Combinatorics, Release 9.7

Partitions are naturally in bijection with 1-tuples of partitions. Most of the combinatorial operations defined on par-
titions extend to partition tuples in a meaningful way. For example, the semisimple branching rules for the Specht
modules are described by adding and removing cells from partition tuples and the modular branching rules correspond
to adding and removing good and cogood nodes, which is the underlying combinatorics for the associated crystal
graphs.

A PartitionTuple belongs to PartitionTuples and its derived classes. PartitionTuples is the parent class for
all partitions tuples. Four different classes of tuples of partitions are currently supported:

• PartitionTuples(level=k,size=n) are 𝑘-tuple of partitions of 𝑛.

• PartitionTuples(level=k) are 𝑘-tuple of partitions.

• PartitionTuples(size=n) are tuples of partitions of 𝑛.

• PartitionTuples() are tuples of partitions.

Note: As with Partitions, in sage the cells, or nodes, of partition tuples are 0-based. For example, the (lexico-
graphically) first cell in any non-empty partition tuple is [0, 0, 0].

EXAMPLES:

sage: PartitionTuple([[2,2],[1,1],[2]]).cells()
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (2, 0, 0), (2, 0, 1)]

Note: Many PartitionTuple methods take the individual coordinates (𝑘, 𝑟, 𝑐) as their arguments, here 𝑘 is the
component, 𝑟 is the row index and 𝑐 is the column index. If your coordinates are in the form (k,r,c) then use
Python’s *-operator.

EXAMPLES:

sage: mu=PartitionTuple([[1,1],[2],[2,1]])
sage: [mu.arm_length(*c) for c in mu.cells()]
[0, 0, 1, 0, 1, 0, 0]

Warning: In sage, if mu is a partition tuple then mu[k] most naturally refers to the 𝑘-th component of mu, so we
use the convention of the (𝑘, 𝑟, 𝑐)-th cell in a partition tuple refers to the cell in component 𝑘, row 𝑟, and column 𝑐.
In the literature, the cells of a partition tuple are usually written in the form (𝑟, 𝑐, 𝑘), where 𝑟 is the row index, 𝑐 is
the column index, and 𝑘 is the component index.

REFERENCES:

• [DJM1998]

• [BK2009]

AUTHORS:

• Andrew Mathas (2012-06-01): Initial classes.

EXAMPLES:

First is a finite enumerated set and the remaining classes are infinite enumerated sets:

1718 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: PartitionTuples().an_element()
([1, 1, 1, 1], [2, 1, 1], [3, 1], [4])
sage: PartitionTuples(4).an_element()
([], [1], [2], [3])
sage: PartitionTuples(size=5).an_element()
([1], [1], [1], [1], [1])
sage: PartitionTuples(4,5).an_element()
([1], [], [], [4])
sage: PartitionTuples(3,2)[:]
[([2], [], []),
([1, 1], [], []),
([1], [1], []),
([1], [], [1]),
([], [2], []),
([], [1, 1], []),
([], [1], [1]),
([], [], [2]),
([], [], [1, 1])]
sage: PartitionTuples(2,3).list()
[([3], []),
([2, 1], []),
([1, 1, 1], []),
([2], [1]),
([1, 1], [1]),
([1], [2]),
([1], [1, 1]),
([], [3]),
([], [2, 1]),
([], [1, 1, 1])]

One tuples of partitions are naturally in bijection with partitions and, as far as possible, partition tuples attempts to
identify one tuples with partitions:

sage: Partition([4,3]) == PartitionTuple([[4,3]])
True
sage: Partition([4,3]) == PartitionTuple([4,3])
True
sage: PartitionTuple([4,3])
[4, 3]
sage: Partition([4,3]) in PartitionTuples()
True

Partition tuples come equipped with many of the corresponding methods for partitions. For example, it is possible to
add and remove cells, to conjugate partition tuples, to work with their diagrams, compare partition tuples in dominance
and so:

sage: PartitionTuple([[4,1],[],[2,2,1],[3]]).pp()
**** - ** ***
* **

*
sage: PartitionTuple([[4,1],[],[2,2,1],[3]]).conjugate()
([1, 1, 1], [3, 2], [], [2, 1, 1, 1])
sage: PartitionTuple([[4,1],[],[2,2,1],[3]]).conjugate().pp()

(continues on next page)

5.1. Comprehensive Module List 1719

Combinatorics, Release 9.7

(continued from previous page)

* *** - **
* ** *
* *

*
sage: lam=PartitionTuples(3)([[3,2],[],[1,1,1,1]]); lam
([3, 2], [], [1, 1, 1, 1])
sage: lam.level()
3
sage: lam.size()
9
sage: lam.category()
Category of elements of Partition tuples of level 3
sage: lam.parent()
Partition tuples of level 3
sage: lam[0]
[3, 2]
sage: lam[1]
[]
sage: lam[2]
[1, 1, 1, 1]
sage: lam.pp()

*** - *
** *

*
*

sage: lam.removable_cells()
[(0, 0, 2), (0, 1, 1), (2, 3, 0)]
sage: lam.down_list()
[([2, 2], [], [1, 1, 1, 1]),
([3, 1], [], [1, 1, 1, 1]),
([3, 2], [], [1, 1, 1])]
sage: lam.addable_cells()
[(0, 0, 3), (0, 1, 2), (0, 2, 0), (1, 0, 0), (2, 0, 1), (2, 4, 0)]
sage: lam.up_list()
[([4, 2], [], [1, 1, 1, 1]),
([3, 3], [], [1, 1, 1, 1]),
([3, 2, 1], [], [1, 1, 1, 1]),
([3, 2], [1], [1, 1, 1, 1]),
([3, 2], [], [2, 1, 1, 1]),
([3, 2], [], [1, 1, 1, 1, 1])]
sage: lam.conjugate()
([4], [], [2, 2, 1])
sage: lam.dominates(PartitionTuple([[3],[1],[2,2,1]]))
False
sage: lam.dominates(PartitionTuple([[3],[2],[1,1,1]]))
True

Every partition tuple behaves every much like a tuple of partitions:

sage: mu=PartitionTuple([[4,1],[],[2,2,1],[3]])
sage: [nu for nu in mu]
[[4, 1], [], [2, 2, 1], [3]]

(continues on next page)

1720 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Set([type(nu) for nu in mu])
{<class 'sage.combinat.partition.Partitions_all_with_category.element_class'>}
sage: mu[2][2]
1
sage: mu[3]
[3]
sage: mu.components()
[[4, 1], [], [2, 2, 1], [3]]
sage: mu.components() == [nu for nu in mu]
True
sage: mu[0]
[4, 1]
sage: mu[1]
[]
sage: mu[2]
[2, 2, 1]
sage: mu[2][0]
2
sage: mu[2][1]
2
sage: mu.level()
4
sage: len(mu)
4
sage: mu.cells()
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 0), (2, 0, 0), (2, 0, 1), (2, 1, 0),␣
→˓(2, 1, 1), (2, 2, 0), (3, 0, 0), (3, 0, 1), (3, 0, 2)]
sage: mu.addable_cells()
[(0, 0, 4), (0, 1, 1), (0, 2, 0), (1, 0, 0), (2, 0, 2), (2, 2, 1), (2, 3, 0), (3, 0, 3),␣
→˓(3, 1, 0)]
sage: mu.removable_cells()
[(0, 0, 3), (0, 1, 0), (2, 1, 1), (2, 2, 0), (3, 0, 2)]

Attached to a partition tuple is the corresponding Young, or parabolic, subgroup:

sage: mu.young_subgroup()
Permutation Group with generators [(), (12,13), (11,12), (8,9), (6,7), (3,4), (2,3), (1,
→˓2)]
sage: mu.young_subgroup_generators()
[1, 2, 3, 6, 8, 11, 12]

class sage.combinat.partition_tuple.PartitionTuple(parent, mu)
Bases: sage.combinat.combinat.CombinatorialElement

A tuple of Partition.

A tuple of partition comes equipped with many of methods available to partitions. The level of the Partition-
Tuple is the length of the tuple.

This is an ordered 𝑘-tuple of partitions 𝜇 = (𝜇(1), 𝜇(2), ..., 𝜇(𝑘)). If

𝑛 = |𝜇| = |𝜇(1)|+ |𝜇(2)|+ · · ·+ |𝜇(𝑘)|

then 𝜇 is a 𝑘-partition of 𝑛.

5.1. Comprehensive Module List 1721

Combinatorics, Release 9.7

In representation theory PartitionTuples arise as the natural indexing set for the ordinary irreducible representa-
tions of:

• the wreath products of cyclic groups with symmetric groups

• the Ariki-Koike algebras, or the cyclotomic Hecke algebras of the complex reflection groups of type
𝐺(𝑟, 1, 𝑛)

• the degenerate cyclotomic Hecke algebras of type 𝐺(𝑟, 1, 𝑛)

When these algebras are not semisimple, partition tuples index an important class of modules for the algebras
which are generalisations of the Specht modules of the symmetric groups.

Tuples of partitions also index the standard basis of the higher level combinatorial Fock spaces. As a consequence,
the combinatorics of partition tuples encapsulates the canonical bases of crystal graphs for the irreducible inte-
grable highest weight modules of the (quantized) affine special linear groups and the (quantized) affine general
linear groups. By the categorification theorems of Ariki, Varagnolo-Vasserot, Stroppel-Webster and others, in
characteristic zero the degenerate and non-degenerate cyclotomic Hecke algebras, via their Khovanov-Lauda-
Rouquier grading, categorify the canonical bases of the quantum affine special and general linear groups.

Partitions are naturally in bijection with 1-tuples of partitions. Most of the combinatorial operations defined on
partitions extend to PartitionTuples in a meaningful way. For example, the semisimple branching rules for the
Specht modules are described by adding and removing cells from partition tuples and the modular branching
rules correspond to adding and removing good and cogood nodes, which is the underlying combinatorics for the
associated crystal graphs.

Warning: In the literature, the cells of a partition tuple are usually written in the form (𝑟, 𝑐, 𝑘), where 𝑟 is
the row index, 𝑐 is the column index, and 𝑘 is the component index. In sage, if mu is a partition tuple then
mu[k] most naturally refers to the 𝑘-th component of mu, so we use the convention of the (𝑘, 𝑟, 𝑐)-th cell in
a partition tuple refers to the cell in component 𝑘, row 𝑟, and column 𝑐.

INPUT:

Anything which can reasonably be interpreted as a tuple of partitions. That is, a list or tuple of
partitions or valid input to Partition.

EXAMPLES:

sage: mu=PartitionTuple([[3,2],[2,1],[],[1,1,1,1]]); mu
([3, 2], [2, 1], [], [1, 1, 1, 1])
sage: nu=PartitionTuple(([3,2],[2,1],[],[1,1,1,1])); nu
([3, 2], [2, 1], [], [1, 1, 1, 1])
sage: mu == nu
True
sage: mu is nu
False
sage: mu in PartitionTuples()
True
sage: mu.parent()
Partition tuples

sage: lam=PartitionTuples(3)([[3,2],[],[1,1,1,1]]); lam
([3, 2], [], [1, 1, 1, 1])
sage: lam.level()
3
sage: lam.size()

(continues on next page)

1722 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

9
sage: lam.category()
Category of elements of Partition tuples of level 3
sage: lam.parent()
Partition tuples of level 3
sage: lam[0]
[3, 2]
sage: lam[1]
[]
sage: lam[2]
[1, 1, 1, 1]
sage: lam.pp()

*** - *
** *

*
*

sage: lam.removable_cells()
[(0, 0, 2), (0, 1, 1), (2, 3, 0)]
sage: lam.down_list()
[([2, 2], [], [1, 1, 1, 1]), ([3, 1], [], [1, 1, 1, 1]), ([3, 2], [], [1, 1, 1])]
sage: lam.addable_cells()
[(0, 0, 3), (0, 1, 2), (0, 2, 0), (1, 0, 0), (2, 0, 1), (2, 4, 0)]
sage: lam.up_list()
[([4, 2], [], [1, 1, 1, 1]), ([3, 3], [], [1, 1, 1, 1]), ([3, 2, 1], [], [1, 1, 1,␣
→˓1]), ([3, 2], [1], [1, 1, 1, 1]), ([3, 2], [], [2, 1, 1, 1]), ([3, 2], [], [1, 1,␣
→˓1, 1, 1])]
sage: lam.conjugate()
([4], [], [2, 2, 1])
sage: lam.dominates(PartitionTuple([[3],[1],[2,2,1]]))
False
sage: lam.dominates(PartitionTuple([[3],[2],[1,1,1]]))
True

See also:

• PartitionTuples

• Partitions

Element
alias of sage.combinat.partition.Partition

add_cell(k, r, c)
Return the partition tuple obtained by adding a cell in row r, column c, and component k.

This does not change self.

EXAMPLES:

sage: PartitionTuple([[1,1],[4,3],[2,1,1]]).add_cell(0,0,1)
([2, 1], [4, 3], [2, 1, 1])

addable_cells()
Return a list of the removable cells of this partition tuple.

5.1. Comprehensive Module List 1723

Combinatorics, Release 9.7

All indices are of the form (k, r, c), where r is the row-index, c is the column index and k is the
component.

EXAMPLES:

sage: PartitionTuple([[1,1],[2],[2,1]]).addable_cells()
[(0, 0, 1), (0, 2, 0), (1, 0, 2), (1, 1, 0), (2, 0, 2), (2, 1, 1), (2, 2, 0)]
sage: PartitionTuple([[1,1],[4,3],[2,1,1]]).addable_cells()
[(0, 0, 1), (0, 2, 0), (1, 0, 4), (1, 1, 3), (1, 2, 0), (2, 0, 2), (2, 1, 1),␣
→˓(2, 3, 0)]

arm_length(k, r, c)
Return the length of the arm of cell (k, r, c) in self.

INPUT:

• k – The component

• r – The row

• c – The cell

OUTPUT:

• The arm length as an integer

The arm of cell (k, r, c) is the number of cells in the k-th component which are to the right of the cell
in row r and column c.

EXAMPLES:

sage: PartitionTuple([[],[2,1],[2,2,1],[3]]).arm_length(2,0,0)
1
sage: PartitionTuple([[],[2,1],[2,2,1],[3]]).arm_length(2,0,1)
0
sage: PartitionTuple([[],[2,1],[2,2,1],[3]]).arm_length(2,2,0)
0

block(e, multicharge)
Return a dictionary 𝛽 that determines the block associated to the partition self and the
quantum_characteristic() e.

INPUT:

• e – the quantum characteristic

• multicharge – the multicharge (default (0,))

OUTPUT:

• a dictionary giving the multiplicities of the residues in the partition tuple self

In more detail, the value beta[i] is equal to the number of nodes of residue i. This corresponds to the
positive root ∑︁

𝑖∈𝐼
𝛽𝑖𝛼𝑖 ∈ 𝑄+,

a element of the positive root lattice of the corresponding Kac-Moody algebra. See [DJM1998] and
[BK2009] for more details.

This is a useful statistics because two Specht modules for a cyclotomic Hecke algebra of type 𝐴 belong to
the same block if and only if they correspond to same element 𝛽 of the root lattice, given above.

1724 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

We return a dictionary because when the quantum characteristic is 0, the Cartan type is 𝐴∞, in which case
the simple roots are indexed by the integers.

EXAMPLES:

sage: PartitionTuple([[2,2],[2,2]]).block(0,(0,0))
{-1: 2, 0: 4, 1: 2}
sage: PartitionTuple([[2,2],[2,2]]).block(2,(0,0))
{0: 4, 1: 4}
sage: PartitionTuple([[2,2],[2,2]]).block(2,(0,1))
{0: 4, 1: 4}
sage: PartitionTuple([[2,2],[2,2]]).block(3,(0,2))
{0: 3, 1: 2, 2: 3}
sage: PartitionTuple([[2,2],[2,2]]).block(3,(0,2))
{0: 3, 1: 2, 2: 3}
sage: PartitionTuple([[2,2],[2,2]]).block(3,(3,2))
{0: 3, 1: 2, 2: 3}
sage: PartitionTuple([[2,2],[2,2]]).block(4,(0,0))
{0: 4, 1: 2, 3: 2}

cells()
Return the coordinates of the cells of self. Coordinates are given as (component index, row index, column
index) and are 0 based.

EXAMPLES:

sage: PartitionTuple([[2,1],[1],[1,1,1]]).cells()
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (2, 0, 0), (2, 1, 0), (2, 2, 0)]

components()
Return a list containing the shape of this partition.

This function exists in order to give a uniform way of iterating over the "components" of partition tuples of
level 1 (partitions) and for higher levels.

EXAMPLES:

sage: for t in PartitionTuple([[2,1],[3,2],[3]]).components():
....: print('%s\n' % t.ferrers_diagram())
**
*

**

sage: for t in PartitionTuple([3,2]).components():
....: print('%s\n' % t.ferrers_diagram())

**

conjugate()
Return the conjugate partition tuple of self.

The conjugate partition tuple is obtained by reversing the order of the components and then swapping the
rows and columns in each component.

5.1. Comprehensive Module List 1725

Combinatorics, Release 9.7

EXAMPLES:

sage: PartitionTuple([[2,1],[1],[1,1,1]]).conjugate()
([3], [1], [2, 1])

contains(mu)
Return True if this partition tuple contains 𝜇.

If 𝜆 = (𝜆(1), . . . , 𝜆(𝑙)) and 𝜇 = (𝜇(1), . . . , 𝜇(𝑚)) are two partition tuples then 𝜆 contains 𝜇 if 𝑚 ≤ 𝑙 and
𝜇
(𝑖)
𝑟 ≤ 𝜆(𝑖)𝑟 for 1 ≤ 𝑖 ≤ 𝑚 and 𝑟 ≥ 0.

EXAMPLES:

sage: PartitionTuple([[1,1],[2],[2,1]]).contains(PartitionTuple([[1,1],[2],[2,
→˓1]]))
True

content(k, r, c, multicharge)
Return the content of the cell.

Let 𝑚𝑘 = multicharge[k], then the content of a cell is 𝑚𝑘 + 𝑐− 𝑟.

If the multicharge is a list of integers then it simply offsets the values of the contents in each component.
On the other hand, if the multicharge belongs to Z/𝑒Z then the corresponding 𝑒-residue is returned (that
is, the content mod 𝑒).

As with the content method for partitions, the content of a cell does not technically depend on the partition
tuple, but this method is included because it is often useful.

EXAMPLES:

sage: PartitionTuple([[2,1],[2],[1,1,1]]).content(0,1,0, [0,0,0])
-1
sage: PartitionTuple([[2,1],[2],[1,1,1]]).content(0,1,0, [1,0,0])
0
sage: PartitionTuple([[2,1],[2],[1,1,1]]).content(2,1,0, [0,0,0])
-1

and now we return the 3-residue of a cell:

sage: multicharge = [IntegerModRing(3)(c) for c in [0,0,0]]
sage: PartitionTuple([[2,1],[2],[1,1,1]]).content(0,1,0, multicharge)
2

content_tableau(multicharge)
Return the tableau which has (k,r,c)th entry equal to the content multicharge[k]-r+c of this cell.

As with the content function, by setting the multicharge appropriately the tableau containing the residues
is returned.

EXAMPLES:

sage: PartitionTuple([[2,1],[2],[1,1,1]]).content_tableau([0,0,0])
([[0, 1], [-1]], [[0, 1]], [[0], [-1], [-2]])
sage: PartitionTuple([[2,1],[2],[1,1,1]]).content_tableau([0,0,1]).pp()

0 1 0 1 1
-1 0

-1

1726 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

as with the content function the multicharge can be used to return the tableau containing the residues of the
cells:

sage: multicharge=[IntegerModRing(3)(c) for c in [0,0,1]]
sage: PartitionTuple([[2,1],[2],[1,1,1]]).content_tableau(multicharge).pp()

0 1 0 1 1
2 0

2

corners()
Return a list of the removable cells of this partition tuple.

All indices are of the form (k, r, c), where r is the row-index, c is the column index and k is the
component.

EXAMPLES:

sage: PartitionTuple([[1,1],[2],[2,1]]).removable_cells()
[(0, 1, 0), (1, 0, 1), (2, 0, 1), (2, 1, 0)]
sage: PartitionTuple([[1,1],[4,3],[2,1,1]]).removable_cells()
[(0, 1, 0), (1, 0, 3), (1, 1, 2), (2, 0, 1), (2, 2, 0)]

defect(e, multicharge)
Return the e-defect or the e-weight self.

The 𝑒-defect is the number of (connected) 𝑒-rim hooks that can be removed from the partition.

The defect of a partition tuple is given by

defect(𝛽) = (Λ, 𝛽)− 1
2 (𝛽, 𝛽),

where Λ =
∑︀
𝑟 Λ𝜅𝑟 for the multicharge (𝜅1, . . . , 𝜅ℓ) and 𝛽 =

∑︀
(𝑟,𝑐) 𝛼(𝑐−𝑟) (mod 𝑒), with the sum being

over the cells in the partition.

INPUT:

• e – the quantum characteristic

• multicharge – the multicharge (default (0,))

OUTPUT:

• a non-negative integer, which is the defect of the block containing the partition tuple self

EXAMPLES:

sage: PartitionTuple([[2,2],[2,2]]).defect(0,(0,0))
0
sage: PartitionTuple([[2,2],[2,2]]).defect(2,(0,0))
8
sage: PartitionTuple([[2,2],[2,2]]).defect(2,(0,1))
8
sage: PartitionTuple([[2,2],[2,2]]).defect(3,(0,2))
5
sage: PartitionTuple([[2,2],[2,2]]).defect(3,(0,2))
5
sage: PartitionTuple([[2,2],[2,2]]).defect(3,(3,2))
2
sage: PartitionTuple([[2,2],[2,2]]).defect(4,(0,0))
0

5.1. Comprehensive Module List 1727

Combinatorics, Release 9.7

degree(e)
Return the e-th degree of self.

The 𝑒-th degree is the sum of the degrees of the standard tableaux of shape𝜆. The 𝑒-th degree is the exponent
of Φ𝑒(𝑞) in the Gram determinant of the Specht module for a semisimple cyclotomic Hecke algebra of type
𝐴 with parameter 𝑞.

For this calculation the multicharge (𝜅1, . . . , 𝜅𝑙) is chosen so that 𝜅𝑟+1 − 𝜅𝑟 > 𝑛, where 𝑛 is the size()
of 𝜆 as this ensures that the Hecke algebra is semisimple.

INPUT:

• e – an integer 𝑒 > 1

OUTPUT:

A non-negative integer.

EXAMPLES:

sage: PartitionTuple([[2,1],[2,2]]).degree(2)
532
sage: PartitionTuple([[2,1],[2,2]]).degree(3)
259
sage: PartitionTuple([[2,1],[2,2]]).degree(4)
196
sage: PartitionTuple([[2,1],[2,2]]).degree(5)
105
sage: PartitionTuple([[2,1],[2,2]]).degree(6)
105
sage: PartitionTuple([[2,1],[2,2]]).degree(7)
0

Therefore, the Gram determinant of 𝑆(2, 1|2, 2) when the Hecke parameter 𝑞 is “generic” is

𝑞𝑁Φ2(𝑞)532Φ3(𝑞)259Φ4(𝑞)196Φ5(𝑞)105Φ6(𝑞)105

for some integer 𝑁 . Compare with prime_degree().

diagram()
Return a string for the Ferrers diagram of self.

EXAMPLES:

sage: print(PartitionTuple([[2,1],[3,2],[1,1,1]]).diagram())
** *** *
* ** *

*
sage: print(PartitionTuple([[3,2],[2,1],[],[1,1,1,1]]).diagram())

*** ** - *
** * *

*
*

sage: PartitionTuples.options(convention="french")
sage: print(PartitionTuple([[3,2],[2,1],[],[1,1,1,1]]).diagram())

*
*

** * *
(continues on next page)

1728 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

*** ** - *
sage: PartitionTuples.options._reset()

dominates(mu)
Return True if the PartitionTuple dominates or equals 𝜇 and False otherwise.

Given partition tuples 𝜇 = (𝜇(1), ..., 𝜇(𝑚)) and 𝜈 = (𝜈(1), ..., 𝜈(𝑛)) then 𝜇 dominates 𝜈 if

𝑙−1∑︁
𝑘=1

|𝜇(𝑘)|+
∑︁
𝑟≥1

𝜇(𝑙)
𝑟 ≥

𝑙−1∑︁
𝑘=1

|𝜈(𝑘)|+
∑︁
𝑟≥1

𝜈(𝑙)𝑟

EXAMPLES:

sage: mu=PartitionTuple([[1,1],[2],[2,1]])
sage: nu=PartitionTuple([[1,1],[1,1],[2,1]])
sage: mu.dominates(mu)
True
sage: mu.dominates(nu)
True
sage: nu.dominates(mu)
False
sage: tau=PartitionTuple([[],[2,1],[]])
sage: tau.dominates([[2,1],[],[]])
False
sage: tau.dominates([[],[],[2,1]])
True

down()
Generator (iterator) for the partition tuples that are obtained from self by removing a cell.

EXAMPLES:

sage: [mu for mu in PartitionTuple([[],[3,1],[1,1]]).down()]
[([], [2, 1], [1, 1]), ([], [3], [1, 1]), ([], [3, 1], [1])]
sage: [mu for mu in PartitionTuple([[],[],[]]).down()]
[]

down_list()
Return a list of the partition tuples that can be formed from self by removing a cell.

EXAMPLES:

sage: PartitionTuple([[],[3,1],[1,1]]).down_list()
[([], [2, 1], [1, 1]), ([], [3], [1, 1]), ([], [3, 1], [1])]
sage: PartitionTuple([[],[],[]]).down_list()
[]

ferrers_diagram()
Return a string for the Ferrers diagram of self.

EXAMPLES:

sage: print(PartitionTuple([[2,1],[3,2],[1,1,1]]).diagram())
** *** *
* ** *

(continues on next page)

5.1. Comprehensive Module List 1729

Combinatorics, Release 9.7

(continued from previous page)

*
sage: print(PartitionTuple([[3,2],[2,1],[],[1,1,1,1]]).diagram())

*** ** - *
** * *

*
*

sage: PartitionTuples.options(convention="french")
sage: print(PartitionTuple([[3,2],[2,1],[],[1,1,1,1]]).diagram())

*
*

** * *
*** ** - *

sage: PartitionTuples.options._reset()

garnir_tableau(*cell)
Return the Garnir tableau of shape self corresponding to the cell cell.

If cell = (𝑘, 𝑎, 𝑐) then (𝑘, 𝑎 + 1, 𝑐) must belong to the diagram of the PartitionTuple. If this is not
the case then we return False.

Note: The function also sets g._garnir_cell equal to cell which is used by some other functions.

The Garnir tableaux play an important role in integral and non-semisimple representation theory because
they determine the “straightening” rules for the Specht modules over an arbitrary ring.

The Garnir tableau are the “first” non-standard tableaux which arise when you act by simple transpositions.
If (𝑘, 𝑎, 𝑐) is a cell in the Young diagram of a partition, which is not at the bottom of its column, then the
corresponding Garnir tableau has the integers 1, 2, . . . , 𝑛 entered in order from left to right along the rows
of the diagram up to the cell (𝑘, 𝑎, 𝑐−1), then along the cells (𝑘, 𝑎+1, 1) to (𝑘, 𝑎+1, 𝑐), then (𝑘, 𝑎, 𝑐) until
the end of row 𝑎 and then continuing from left to right in the remaining positions. The examples below
probably make this clearer!

EXAMPLES:

sage: PartitionTuple([[5,3],[2,2],[4,3]]).garnir_tableau((0,0,2)).pp()
1 2 6 7 8 9 10 13 14 15 16
3 4 5 11 12 17 18 19

sage: PartitionTuple([[5,3,3],[2,2],[4,3]]).garnir_tableau((0,0,2)).pp()
1 2 6 7 8 12 13 16 17 18 19
3 4 5 14 15 20 21 22
9 10 11

sage: PartitionTuple([[5,3,3],[2,2],[4,3]]).garnir_tableau((0,1,2)).pp()
1 2 3 4 5 12 13 16 17 18 19
6 7 11 14 15 20 21 22
8 9 10

sage: PartitionTuple([[5,3,3],[2,2],[4,3]]).garnir_tableau((1,0,0)).pp()
1 2 3 4 5 13 14 16 17 18 19
6 7 8 12 15 20 21 22
9 10 11

sage: PartitionTuple([[5,3,3],[2,2],[4,3]]).garnir_tableau((1,0,1)).pp()
1 2 3 4 5 12 15 16 17 18 19
6 7 8 13 14 20 21 22
9 10 11

(continues on next page)

1730 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: PartitionTuple([[5,3,3],[2,2],[4,3]]).garnir_tableau((2,0,1)).pp()
1 2 3 4 5 12 13 16 19 20 21
6 7 8 14 15 17 18 22
9 10 11

sage: PartitionTuple([[5,3,3],[2,2],[4,3]]).garnir_tableau((2,1,1)).pp()
Traceback (most recent call last):
...
ValueError: (comp, row+1, col) must be inside the diagram

See also:

• top_garnir_tableau()

hook_length(k, r, c)
Return the length of the hook of cell (k, r, c) in the partition.

The hook of cell (k, r, c) is defined as the cells to the right or below (in the English convention). If
your coordinates are in the form (k,r,c), use Python’s *-operator.

EXAMPLES:

sage: mu=PartitionTuple([[1,1],[2],[2,1]])
sage: [mu.hook_length(*c) for c in mu.cells()]
[2, 1, 2, 1, 3, 1, 1]

initial_column_tableau()
Return the initial column tableau of shape self.

The initial column tableau of shape 𝜆 is the standard tableau that has the numbers 1 to 𝑛, where 𝑛 is
the size() of 𝜆, entered in order from top to bottom, and then left to right, down the columns of each
component, starting from the rightmost component and working to the left.

EXAMPLES:

sage: PartitionTuple([[3,1],[3,2]]).initial_column_tableau()
([[6, 8, 9], [7]], [[1, 3, 5], [2, 4]])

initial_tableau()
Return the StandardTableauTuple which has the numbers 1, 2, . . . , 𝑛, where 𝑛 is the size() of self,
entered in order from left to right along the rows of each component, where the components are ordered
from left to right.

EXAMPLES:

sage: PartitionTuple([[2,1],[3,2]]).initial_tableau()
([[1, 2], [3]], [[4, 5, 6], [7, 8]])

leg_length(k, r, c)
Return the length of the leg of cell (k, r, c) in self.

INPUT:

• k – The component

• r – The row

• c – The cell

5.1. Comprehensive Module List 1731

Combinatorics, Release 9.7

OUTPUT:

• The leg length as an integer

The leg of cell (k, r, c) is the number of cells in the k-th component which are below the node in row
r and column c.

EXAMPLES:

sage: PartitionTuple([[],[2,1],[2,2,1],[3]]).leg_length(2,0,0)
2
sage: PartitionTuple([[],[2,1],[2,2,1],[3]]).leg_length(2,0,1)
1
sage: PartitionTuple([[],[2,1],[2,2,1],[3]]).leg_length(2,2,0)
0

level()
Return the level of this partition tuple.

The level is the length of the tuple.

EXAMPLES:

sage: PartitionTuple([[2,1,1,0],[2,1]]).level()
2
sage: PartitionTuple([[],[],[2,1,1]]).level()
3

outside_corners()
Return a list of the removable cells of this partition tuple.

All indices are of the form (k, r, c), where r is the row-index, c is the column index and k is the
component.

EXAMPLES:

sage: PartitionTuple([[1,1],[2],[2,1]]).addable_cells()
[(0, 0, 1), (0, 2, 0), (1, 0, 2), (1, 1, 0), (2, 0, 2), (2, 1, 1), (2, 2, 0)]
sage: PartitionTuple([[1,1],[4,3],[2,1,1]]).addable_cells()
[(0, 0, 1), (0, 2, 0), (1, 0, 4), (1, 1, 3), (1, 2, 0), (2, 0, 2), (2, 1, 1),␣
→˓(2, 3, 0)]

pp()
Pretty prints this partition tuple. See diagram().

EXAMPLES:

sage: PartitionTuple([[5,5,2,1],[3,2]]).pp()
***** ***
***** **
**
*

prime_degree(p)

Return the p-th prime degree of self.

The degree of a partition 𝜆 is the sum of the 𝑒-degrees` of the standard tableaux of shape 𝜆 (see
degree()), for 𝑒 a power of the prime 𝑝. The prime degree gives the exponent of 𝑝 in the Gram

1732 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

determinant of the integral Specht module of the symmetric group.

The 𝑝-th degree is the sum of the degrees of the standard tableaux of shape 𝜆. The 𝑝-th degree is
the exponent of 𝑝 in the Gram determinant of a semisimple cyclotomic Hecke algebra of type 𝐴
with parameter 𝑞 = 1.

As with degree(), for this calculation the multicharge (𝜅1, . . . , 𝜅𝑙) is chosen so that 𝜅𝑟+1−𝜅𝑟 >
𝑛, where 𝑛 is the size() of 𝜆 as this ensures that the Hecke algebra is semisimple.

INPUT:

• e – an integer 𝑒 > 1

• multicharge – an 𝑙-tuple of integers, where 𝑙 is the level() of self

OUTPUT:

A non-negative integer

EXAMPLES:

sage: PartitionTuple([[2,1],[2,2]]).prime_degree(2)
728
sage: PartitionTuple([[2,1],[2,2]]).prime_degree(3)
259
sage: PartitionTuple([[2,1],[2,2]]).prime_degree(5)
105
sage: PartitionTuple([[2,1],[2,2]]).prime_degree(7)
0

Therefore, the Gram determinant of 𝑆(2, 1|2, 2) when 𝑞 = 1 is 272832595105. Compare with degree().

removable_cells()
Return a list of the removable cells of this partition tuple.

All indices are of the form (k, r, c), where r is the row-index, c is the column index and k is the
component.

EXAMPLES:

sage: PartitionTuple([[1,1],[2],[2,1]]).removable_cells()
[(0, 1, 0), (1, 0, 1), (2, 0, 1), (2, 1, 0)]
sage: PartitionTuple([[1,1],[4,3],[2,1,1]]).removable_cells()
[(0, 1, 0), (1, 0, 3), (1, 1, 2), (2, 0, 1), (2, 2, 0)]

remove_cell(k, r, c)
Return the partition tuple obtained by removing a cell in row r, column c, and component k.

This does not change self.

EXAMPLES:

sage: PartitionTuple([[1,1],[4,3],[2,1,1]]).remove_cell(0,1,0)
([1], [4, 3], [2, 1, 1])

row_standard_tableaux()
Return the row standard tableau tuples of shape self.

EXAMPLES:

5.1. Comprehensive Module List 1733

Combinatorics, Release 9.7

sage: PartitionTuple([[],[3,2,2,1],[2,2,1],[3]]).row_standard_tableaux()
Row standard tableau tuples of shape ([], [3, 2, 2, 1], [2, 2, 1], [3])

size()
Return the size of a partition tuple.

EXAMPLES:

sage: PartitionTuple([[2,1],[],[2,2]]).size()
7
sage: PartitionTuple([[],[],[1],[3,2,1]]).size()
7

standard_tableaux()
Return the standard tableau tuples of shape self.

EXAMPLES:

sage: PartitionTuple([[],[3,2,2,1],[2,2,1],[3]]).standard_tableaux()
Standard tableau tuples of shape ([], [3, 2, 2, 1], [2, 2, 1], [3])

to_exp(k=0)
Return a tuple of the multiplicities of the parts of a partition.

Use the optional parameter k to get a return list of length at least k.

EXAMPLES:

sage: PartitionTuple([[1,1],[2],[2,1]]).to_exp()
([2], [0, 1], [1, 1])
sage: PartitionTuple([[1,1],[2,2,2,2],[2,1]]).to_exp()
([2], [0, 4], [1, 1])

to_list()
Return self as a list of lists.

EXAMPLES:

sage: PartitionTuple([[1,1],[4,3],[2,1,1]]).to_list()
[[1, 1], [4, 3], [2, 1, 1]]

top_garnir_tableau(e, cell)
Return the most dominant standard tableau which dominates the corresponding Garnir tableau and has the
same residue that has shape self and is determined by e and cell.

The Garnir tableau play an important role in integral and non-semisimple representation theory because
they determine the “straightening” rules for the Specht modules over an arbitrary ring. The top Garnir
tableaux arise in the graded representation theory of the symmetric groups and higher level Hecke algebras.
They were introduced in [KMR2012].

If the Garnir node is cell=(k,r,c) and 𝑚 and 𝑀 are the entries in the cells (k,r,c) and (k,r+1,
c), respectively, in the initial tableau then the top e-Garnir tableau is obtained by inserting the numbers
𝑚,𝑚+ 1, . . . ,𝑀 in order from left to right first in the cells in row r+1 which are not in the e-Garnir belt,
then in the cell in rows r and r+1 which are in the Garnir belt and then, finally, in the remaining cells in
row r which are not in the Garnir belt. All other entries in the tableau remain unchanged.

If e = 0, or if there are no e-bricks in either row r or r+1, then the top Garnir tableau is the corresponding
Garnir tableau.

1734 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: PartitionTuple([[3,3,2],[5,4,3,2]]).top_garnir_tableau(2,(1,0,2)).pp()
1 2 3 9 10 12 13 16
4 5 6 11 14 15 17
7 8 18 19 20

21 22
sage: PartitionTuple([[3,3,2],[5,4,3,2]]).top_garnir_tableau(2,(1,0,1)).pp()

1 2 3 9 10 11 12 13
4 5 6 14 15 16 17
7 8 18 19 20

21 22
sage: PartitionTuple([[3,3,2],[5,4,3,2]]).top_garnir_tableau(3,(1,0,1)).pp()

1 2 3 9 12 13 14 15
4 5 6 10 11 16 17
7 8 18 19 20

21 22

sage: PartitionTuple([[3,3,2],[5,4,3,2]]).top_garnir_tableau(3,(3,0,1)).pp()
Traceback (most recent call last):
...
ValueError: (comp, row+1, col) must be inside the diagram

See also:

• garnir_tableau()

up()
Generator (iterator) for the partition tuples that are obtained from self by adding a cell.

EXAMPLES:

sage: [mu for mu in PartitionTuple([[],[3,1],[1,1]]).up()]
[([1], [3, 1], [1, 1]), ([], [4, 1], [1, 1]), ([], [3, 2], [1, 1]), ([], [3, 1,␣
→˓1], [1, 1]), ([], [3, 1], [2, 1]), ([], [3, 1], [1, 1, 1])]
sage: [mu for mu in PartitionTuple([[],[],[],[]]).up()]
[([1], [], [], []), ([], [1], [], []), ([], [], [1], []), ([], [], [], [1])]

up_list()
Return a list of the partition tuples that can be formed from self by adding a cell.

EXAMPLES:

sage: PartitionTuple([[],[3,1],[1,1]]).up_list()
[([1], [3, 1], [1, 1]), ([], [4, 1], [1, 1]), ([], [3, 2], [1, 1]), ([], [3, 1,␣
→˓1], [1, 1]), ([], [3, 1], [2, 1]), ([], [3, 1], [1, 1, 1])]
sage: PartitionTuple([[],[],[],[]]).up_list()
[([1], [], [], []), ([], [1], [], []), ([], [], [1], []), ([], [], [], [1])]

young_subgroup()
Return the corresponding Young, or parabolic, subgroup of the symmetric group.

EXAMPLES:

sage: PartitionTuple([[2,1],[4,2],[1]]).young_subgroup()
Permutation Group with generators [(), (8,9), (6,7), (5,6), (4,5), (1,2)]

5.1. Comprehensive Module List 1735

Combinatorics, Release 9.7

young_subgroup_generators()
Return an indexing set for the generators of the corresponding Young subgroup.

EXAMPLES:

sage: PartitionTuple([[2,1],[4,2],[1]]).young_subgroup_generators()
[1, 4, 5, 6, 8]

class sage.combinat.partition_tuple.PartitionTuples
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Class of all partition tuples.

For more information about partition tuples, see PartitionTuple.

This is a factory class which returns the appropriate parent based on the values of level, size, and regular

INPUT:

• level – the length of the tuple

• size – the total number of cells

• regular – a positive integer or a tuple of non-negative integers; if an integer, the highest multiplicity an
entry may have in a component plus 1

If a level 𝑘 is specified and regular is a tuple of integers ℓ1, . . . , ℓ𝑘, then this specifies partition tuples 𝜇 such
that 𝜇𝑖 is ℓ𝑖-regular, where 0 here represents∞-regular partitions (equivalently, partitions without restrictions).
If regular is an integer ℓ, then we set ℓ𝑖 = ℓ for all 𝑖.

Element
alias of PartitionTuple

level()
Return the level or None if it is not defined.

EXAMPLES:

sage: PartitionTuples().level() is None
True
sage: PartitionTuples(7).level()
7

options(*get_value, **set_value)
Sets and displays the global options for elements of the partition, skew partition, and partition tuple classes.
If no parameters are set, then the function returns a copy of the options dictionary.

The options to partitions can be accessed as the method Partitions.options of Partitions and
related parent classes.

OPTIONS:

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• diagram_str – (default: *) The character used for the cells when printing Ferrers diagrams

• display – (default: list) Specifies how partitions should be printed

– array – alias for diagram

1736 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

– compact – alias for compact_low

– compact_high – compact form of exp_high

– compact_low – compact form of exp_low

– diagram – as a Ferrers diagram

– exp – alias for exp_low

– exp_high – in exponential form (highest first)

– exp_low – in exponential form (lowest first)

– ferrers_diagram – alias for diagram

– list – displayed as a list

– young_diagram – alias for diagram

• latex – (default: young_diagram) Specifies how partitions should be latexed

– array – alias for diagram

– diagram – latex as a Ferrers diagram

– exp – alias for exp_low

– exp_high – latex as a list in exponential notation (highest first)

– exp_low – as a list latex in exponential notation (lowest first)

– ferrers_diagram – alias for diagram

– list – latex as a list

– young_diagram – latex as a Young diagram

• latex_diagram_str – (default: \ast) The character used for the cells when latexing Ferrers dia-
grams

• notation – alternative name for convention

EXAMPLES:

sage: P = Partition([4,2,2,1])
sage: P
[4, 2, 2, 1]
sage: Partitions.options.display="exp"
sage: P
1, 2^2, 4
sage: Partitions.options.display="exp_high"
sage: P
4, 2^2, 1

It is also possible to use user defined functions for the display and latex options:

sage: Partitions.options(display=lambda mu: '<%s>' % ','.join('%s'%m for m in␣
→˓mu._list)); P
<4,2,2,1>
sage: Partitions.options(latex=lambda mu: '\\Diagram{%s}' % ','.join('%s'%m for␣
→˓m in mu._list)); latex(P)
\Diagram{4,2,2,1}
sage: Partitions.options(display="diagram", diagram_str="#")

(continues on next page)

5.1. Comprehensive Module List 1737

Combinatorics, Release 9.7

(continued from previous page)

sage: P
####
##
##
#
sage: Partitions.options(diagram_str="*", convention="french")
sage: print(P.ferrers_diagram())
*
**
**

Changing the convention for partitions also changes the convention option for tableaux and vice versa:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T.pp()
4 5
1 2 3

sage: Tableaux.options.convention="english"
sage: print(P.ferrers_diagram())

**
**
*
sage: T.pp()
1 2 3
4 5

sage: Partitions.options._reset()

See GlobalOptions for more features of these options.

size()
Return the size or None if it is not defined.

EXAMPLES:

sage: PartitionTuples().size() is None
True
sage: PartitionTuples(size=7).size()
7

class sage.combinat.partition_tuple.PartitionTuples_all
Bases: sage.combinat.partition_tuple.PartitionTuples

Class of partition tuples of a arbitrary level and arbitrary sum.

class sage.combinat.partition_tuple.PartitionTuples_level(level, category=None)
Bases: sage.combinat.partition_tuple.PartitionTuples

Class of partition tuples of a fixed level, but summing to an arbitrary integer.

class sage.combinat.partition_tuple.PartitionTuples_level_size(level, size)
Bases: sage.combinat.partition_tuple.PartitionTuples

Class of partition tuples with a fixed level and a fixed size.

1738 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

cardinality()
Return the number of level-tuples of partitions of size n.

Wraps a pari function call using pari:eta.

EXAMPLES:

sage: PartitionTuples(2,3).cardinality()
10
sage: PartitionTuples(2,8).cardinality()
185

class sage.combinat.partition_tuple.PartitionTuples_size(size)
Bases: sage.combinat.partition_tuple.PartitionTuples

Class of partition tuples of a fixed size, but arbitrary level.

class sage.combinat.partition_tuple.RegularPartitionTuples(regular, **kwds)
Bases: sage.combinat.partition_tuple.PartitionTuples

Abstract base class for ℓ-regular partition tuples.

class sage.combinat.partition_tuple.RegularPartitionTuples_all(regular)
Bases: sage.combinat.partition_tuple.RegularPartitionTuples

Class of ℓ-regular partition tuples.

class sage.combinat.partition_tuple.RegularPartitionTuples_level(level, regular)
Bases: sage.combinat.partition_tuple.PartitionTuples_level

Regular Partition tuples of a fixed level.

INPUT:

• level – a non-negative Integer; the level

• regular – a positive integer or a tuple of non-negative integers; if an integer, the highest multiplicity
an entry may have in a component plus 1 with 0 representing∞-regular (equivalently, partitions without
restrictions)

regular is a tuple of integers (ℓ1, . . . , ℓ𝑘) that specifies partition tuples 𝜇 such that 𝜇𝑖 is ℓ𝑖-regular. If regular
is an integer ℓ, then we set ℓ𝑖 = ℓ for all 𝑖.

EXAMPLES:

sage: RPT = PartitionTuples(level=4, regular=(2,3,0,2))
sage: RPT[:24]
[([], [], [], []),
([1], [], [], []),
([], [1], [], []),
([], [], [1], []),
([], [], [], [1]),
([2], [], [], []),
([1], [1], [], []),
([1], [], [1], []),
([1], [], [], [1]),
([], [2], [], []),
([], [1, 1], [], []),
([], [1], [1], []),
([], [1], [], [1]),

(continues on next page)

5.1. Comprehensive Module List 1739

https://pari.math.u-bordeaux.fr/dochtml/help/eta

Combinatorics, Release 9.7

(continued from previous page)

([], [], [2], []),
([], [], [1, 1], []),
([], [], [1], [1]),
([], [], [], [2]),
([3], [], [], []),
([2, 1], [], [], []),
([2], [1], [], []),
([2], [], [1], []),
([2], [], [], [1]),
([1], [2], [], []),
([1], [1, 1], [], [])]
sage: [[1,1],[3],[5,5,5],[7,2]] in RPT
False
sage: [[3,1],[3],[5,5,5],[7,2]] in RPT
True
sage: [[3,1],[3],[5,5,5]] in RPT
False

class sage.combinat.partition_tuple.RegularPartitionTuples_level_size(level, size, regular)
Bases: sage.combinat.partition_tuple.PartitionTuples_level_size

Class of ℓ-regular partition tuples with a fixed level and a fixed size.

INPUT:

• level – a non-negative Integer; the level

• size – a non-negative Integer; the size

• regular – a positive integer or a tuple of non-negative integers; if an integer, the highest multiplicity
an entry may have in a component plus 1 with 0 representing∞-regular (equivalently, partitions without
restrictions)

regular is a tuple of integers (ℓ1, . . . , ℓ𝑘) that specifies partition tuples 𝜇 such that 𝜇𝑖 is ℓ𝑖-regular. If regular
is an integer ℓ, then we set ℓ𝑖 = ℓ for all 𝑖.

EXAMPLES:

sage: PartitionTuples(level=3, size=7, regular=(2,1,3))[0:24]
[([7], [], []),
([6, 1], [], []),
([5, 2], [], []),
([4, 3], [], []),
([4, 2, 1], [], []),
([6], [], [1]),
([5, 1], [], [1]),
([4, 2], [], [1]),
([3, 2, 1], [], [1]),
([5], [], [2]),
([5], [], [1, 1]),
([4, 1], [], [2]),
([4, 1], [], [1, 1]),
([3, 2], [], [2]),
([3, 2], [], [1, 1]),
([4], [], [3]),
([4], [], [2, 1]),

(continues on next page)

1740 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

([3, 1], [], [3]),
([3, 1], [], [2, 1]),
([3], [], [4]),
([3], [], [3, 1]),
([3], [], [2, 2]),
([3], [], [2, 1, 1]),
([2, 1], [], [4])]

class sage.combinat.partition_tuple.RegularPartitionTuples_size(size, regular)
Bases: sage.combinat.partition_tuple.RegularPartitionTuples

Class of ℓ-regular partition tuples with a fixed size.

5.1.167 Iterators over the partitions of an integer

AUTHOR:

• William Stein (2007-07-28): initial version

• Jonathan Bober (2007-07-28): wrote the program partitions_c.cc that does all the actual heavy lifting.

sage.combinat.partitions.ZS1_iterator(n)
A fast iterator for the partitions of n (in the decreasing lexicographic order) which returns lists and not objects
of type Partition.

This is an implementation of the ZS1 algorithm found in [ZS98].

REFERENCES:

EXAMPLES:

sage: from sage.combinat.partitions import ZS1_iterator
sage: it = ZS1_iterator(4)
sage: next(it)
[4]
sage: type(_)
<class 'list'>

sage.combinat.partitions.ZS1_iterator_nk(n, k)
An iterator for the partitions of n of length at most k (in the decreasing lexicographic order) which returns lists
and not objects of type Partition.

The algorithm is a mild variation on ZS1_iterator(); I would not vow for its speed.

EXAMPLES:

sage: from sage.combinat.partitions import ZS1_iterator_nk
sage: it = ZS1_iterator_nk(4, 3)
sage: next(it)
[4]
sage: type(_)
<class 'list'>

5.1. Comprehensive Module List 1741

Combinatorics, Release 9.7

5.1.168 Perfect matchings

A perfect matching of a set 𝑆 is a partition into 2-element sets. If 𝑆 is the set {1, ..., 𝑛}, it is equivalent to fixpoint-
free involutions. These simple combinatorial objects appear in different domains such as combinatorics of orthogonal
polynomials and of the hyperoctaedral groups (see [MV], [McD] and also [CM]):

AUTHOR:

• Valentin Feray, 2010 : initial version

• Martin Rubey, 2017: inherit from SetPartition, move crossings and nestings to SetPartition

EXAMPLES:

Create a perfect matching:

sage: m = PerfectMatching([('a','e'),('b','c'),('d','f')]);m
[('a', 'e'), ('b', 'c'), ('d', 'f')]

Count its crossings, if the ground set is totally ordered:

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n
[(1, 3), (2, 8), (4, 7), (5, 6)]
sage: n.number_of_crossings()
1

List the perfect matchings of a given ground set:

sage: PerfectMatchings(4).list()
[[(1, 2), (3, 4)], [(1, 3), (2, 4)], [(1, 4), (2, 3)]]

REFERENCES:

class sage.combinat.perfect_matching.PerfectMatching(parent, s, check=True, sort=True)
Bases: sage.combinat.set_partition.SetPartition

A perfect matching.

A perfect matching of a set 𝑋 is a set partition of 𝑋 where all parts have size 2.

A perfect matching can be created from a list of pairs or from a fixed point-free involution as follows:

sage: m = PerfectMatching([('a','e'),('b','c'),('d','f')]);m
[('a', 'e'), ('b', 'c'), ('d', 'f')]
sage: n = PerfectMatching([3,8,1,7,6,5,4,2]);n
[(1, 3), (2, 8), (4, 7), (5, 6)]
sage: isinstance(m,PerfectMatching)
True

The parent, which is the set of perfect matchings of the ground set, is automatically created:

sage: n.parent()
Perfect matchings of {1, 2, 3, 4, 5, 6, 7, 8}

If the ground set is ordered, one can, for example, ask if the matching is non crossing:

sage: PerfectMatching([(1, 4), (2, 3), (5, 6)]).is_noncrossing()
True

1742 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Weingarten_function(d, other=None)
Return the Weingarten function of two pairings.

This function is the value of some integrals over the orthogonal groups 𝑂𝑁 . With the convention of [CM],
the method returns 𝑊𝑔𝑂(𝑑)(𝑜𝑡ℎ𝑒𝑟, 𝑠𝑒𝑙𝑓).

EXAMPLES:

sage: var('N')
N
sage: m = PerfectMatching([(1,3),(2,4)])
sage: n = PerfectMatching([(1,2),(3,4)])
sage: factor(m.Weingarten_function(N,n))
-1/((N + 2)*(N - 1)*N)

loop_type(other=None)
Return the loop type of self.

INPUT:

• other – a perfect matching of the same set of self. (if the second argument is empty, the method
an_element() is called on the parent of the first)

OUTPUT:

If we draw the two perfect matchings simultaneously as edges of a graph, the graph obtained is a union of
cycles of even lengths. The function returns the ordered list of the semi-length of these cycles (considered
as a partition)

EXAMPLES:

sage: m = PerfectMatching([('a','e'),('b','c'),('d','f')])
sage: n = PerfectMatching([('a','b'),('d','f'),('e','c')])
sage: m.loop_type(n)
[2, 1]

loops(other=None)
Return the loops of self.

INPUT:

• other – a perfect matching of the same set of self. (if the second argument is empty, the method
an_element() is called on the parent of the first)

OUTPUT:

If we draw the two perfect matchings simultaneously as edges of a graph, the graph obtained is a union of
cycles of even lengths. The function returns the list of these cycles (each cycle is given as a list).

EXAMPLES:

sage: m = PerfectMatching([('a','e'),('b','c'),('d','f')])
sage: n = PerfectMatching([('a','b'),('d','f'),('e','c')])
sage: loops = m.loops(n)
sage: loops # random
[['a', 'e', 'c', 'b'], ['d', 'f']]

sage: o = PerfectMatching([(1, 7), (2, 4), (3, 8), (5, 6)])
sage: p = PerfectMatching([(1, 6), (2, 7), (3, 4), (5, 8)])

(continues on next page)

5.1. Comprehensive Module List 1743

Combinatorics, Release 9.7

(continued from previous page)

sage: o.loops(p)
[[1, 7, 2, 4, 3, 8, 5, 6]]

loops_iterator(other=None)
Iterate through the loops of self.

INPUT:

• other – a perfect matching of the same set of self. (if the second argument is empty, the method
an_element() is called on the parent of the first)

OUTPUT:

If we draw the two perfect matchings simultaneously as edges of a graph, the graph obtained is a union of
cycles of even lengths. The function returns an iterator for these cycles (each cycle is given as a list).

EXAMPLES:

sage: o = PerfectMatching([(1, 7), (2, 4), (3, 8), (5, 6)])
sage: p = PerfectMatching([(1, 6), (2, 7), (3, 4), (5, 8)])
sage: it = o.loops_iterator(p)
sage: next(it)
[1, 7, 2, 4, 3, 8, 5, 6]
sage: next(it)
Traceback (most recent call last):
...
StopIteration

number_of_loops(other=None)
Return the number of loops of self.

INPUT:

• other – a perfect matching of the same set of self. (if the second argument is empty, the method
an_element() is called on the parent of the first)

OUTPUT:

If we draw the two perfect matchings simultaneously as edges of a graph, the graph obtained is a union of
cycles of even lengths. The function returns their numbers.

EXAMPLES:

sage: m = PerfectMatching([('a','e'),('b','c'),('d','f')])
sage: n = PerfectMatching([('a','b'),('d','f'),('e','c')])
sage: m.number_of_loops(n)
2

partner(x)
Return the element in the same pair than x in the matching self.

EXAMPLES:

sage: m = PerfectMatching([(-3, 1), (2, 4), (-2, 7)])
sage: m.partner(4)
2
sage: n = PerfectMatching([('c','b'),('d','f'),('e','a')])

(continues on next page)

1744 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: n.partner('c')
'b'

standardization()
Return the standardization of self.

See SetPartition.standardization() for details.

EXAMPLES:

sage: n = PerfectMatching([('c','b'),('d','f'),('e','a')])
sage: n.standardization()
[(1, 5), (2, 3), (4, 6)]

to_graph()
Return the graph corresponding to the perfect matching.

OUTPUT:

The realization of self as a graph.

EXAMPLES:

sage: PerfectMatching([[1,3], [4,2]]).to_graph().edges(sort=True, labels=False)
[(1, 3), (2, 4)]
sage: PerfectMatching([[1,4], [3,2]]).to_graph().edges(sort=True, labels=False)
[(1, 4), (2, 3)]
sage: PerfectMatching([]).to_graph().edges(sort=True, labels=False)
[]

to_noncrossing_set_partition()
Return the noncrossing set partition (on half as many elements) corresponding to the perfect matching if
the perfect matching is noncrossing, and otherwise gives an error.

OUTPUT:

The realization of self as a noncrossing set partition.

EXAMPLES:

sage: PerfectMatching([[1,3], [4,2]]).to_noncrossing_set_partition()
Traceback (most recent call last):
...
ValueError: matching must be non-crossing
sage: PerfectMatching([[1,4], [3,2]]).to_noncrossing_set_partition()
{{1, 2}}
sage: PerfectMatching([]).to_noncrossing_set_partition()
{}

class sage.combinat.perfect_matching.PerfectMatchings(s)
Bases: sage.combinat.set_partition.SetPartitions_set

Perfect matchings of a ground set.

INPUT:

• s – an iterable of hashable objects or an integer

5.1. Comprehensive Module List 1745

Combinatorics, Release 9.7

EXAMPLES:

If the argument s is an integer 𝑛, it will be transformed into the set {1, . . . , 𝑛}:

sage: M = PerfectMatchings(6); M
Perfect matchings of {1, 2, 3, 4, 5, 6}
sage: PerfectMatchings([-1, -3, 1, 2])
Perfect matchings of {1, 2, -3, -1}

One can ask for the list, the cardinality or an element of a set of perfect matching:

sage: PerfectMatchings(4).list()
[[(1, 2), (3, 4)], [(1, 3), (2, 4)], [(1, 4), (2, 3)]]
sage: PerfectMatchings(8).cardinality()
105
sage: M = PerfectMatchings(('a', 'e', 'b', 'f', 'c', 'd'))
sage: x = M.an_element()
sage: x # random
[('a', 'c'), ('b', 'e'), ('d', 'f')]
sage: all(PerfectMatchings(i).an_element() in PerfectMatchings(i)
....: for i in range(2,11,2))
True

Element
alias of PerfectMatching

Weingarten_matrix(N)
Return the Weingarten matrix corresponding to the set of PerfectMatchings self.

It is a useful theoretical tool to compute polynomial integrals over the orthogonal group 𝑂𝑁 (see [CM]).

EXAMPLES:

sage: M = PerfectMatchings(4).Weingarten_matrix(var('N'))
sage: N*(N-1)*(N+2)*M.apply_map(factor)
[N + 1 -1 -1]
[-1 N + 1 -1]
[-1 -1 N + 1]

base_set()
Return the base set of self.

EXAMPLES:

sage: PerfectMatchings(3).base_set()
{1, 2, 3}

base_set_cardinality()
Return the cardinality of the base set of self.

EXAMPLES:

sage: PerfectMatchings(3).base_set_cardinality()
3

cardinality()
Return the cardinality of the set of perfect matchings self.

This is 1 * 3 * 5 * ... * (2𝑛− 1), where 2𝑛 is the size of the ground set.

1746 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: PerfectMatchings(8).cardinality()
105
sage: PerfectMatchings([1,2,3,4]).cardinality()
3
sage: PerfectMatchings(3).cardinality()
0
sage: PerfectMatchings([]).cardinality()
1

random_element()
Return a random element of self.

EXAMPLES:

sage: M = PerfectMatchings(('a', 'e', 'b', 'f', 'c', 'd'))
sage: x = M.random_element()
sage: x # random
[('a', 'b'), ('c', 'd'), ('e', 'f')]

5.1.169 Permutations

The Permutations module. Use Permutation? to get information about the Permutation class, and Permutations?
to get information about the combinatorial class of permutations.

Warning: This file defined Permutation which depends upon CombinatorialElement despite it
being deprecated (see trac ticket #13742). This is dangerous. In particular, the Permutation.
_left_to_right_multiply_on_right() method (which can be called through multiplication) disables the in-
put checks (see Permutation()). This should not happen. Do not trust the results.

What does this file define ?

The main part of this file consists in the definition of permutation objects, i.e. the Permutation() method and the
Permutation class. Global options for elements of the permutation class can be set through the Permutations.
options() object.

Below are listed all methods and classes defined in this file.

Methods of Permutations objects

left_action_product() Returns the product of self with another permutation, in which the other per-
mutation is applied first.

right_action_product() Returns the product of self with another permutation, in which self is applied
first.

size() Returns the size of the permutation self.
cycle_string() Returns the disjoint-cycles representation of self as string.
next() Returns the permutation that follows self in lexicographic order (in the same

symmetric group as self).
prev() Returns the permutation that comes directly before self in lexicographic order

(in the same symmetric group as self).
continues on next page

5.1. Comprehensive Module List 1747

https://trac.sagemath.org/13742

Combinatorics, Release 9.7

Table 2 – continued from previous page
to_tableau_by_shape() Returns a tableau of shape shape with the entries in self.
to_cycles() Returns the permutation self as a list of disjoint cycles.
forget_cycles() Return self under the forget cycle map.
to_permutation_group_element()Returns a PermutationGroupElement equal to self.
signature() Returns the signature of the permutation sef.
is_even() Returns True if the permutation self is even, and False otherwise.
to_matrix() Returns a matrix representing the permutation self.
rank() Returns the rank of self in lexicographic ordering (on the symmetric group

containing self).
to_inversion_vector() Returns the inversion vector of a permutation self.
inversions() Returns a list of the inversions of permutation self.
stack_sort() Returns the permutation obtained by sorting self through one stack.
to_digraph() Return a digraph representation of self.
show() Displays the permutation as a drawing.
number_of_inversions() Returns the number of inversions in the permutation self.
noninversions() Returns the k-noninversions in the permutation self.
number_of_noninversions() Returns the number of k-noninversions in the permutation self.
length() Returns the Coxeter length of a permutation self.
inverse() Returns the inverse of a permutation self.
ishift() Returns the i-shift of self.
iswitch() Returns the i-switch of self.
runs() Returns a list of the runs in the permutation self.
longest_increasing_subsequence_length()Returns the length of the longest increasing subsequences of self.
longest_increasing_subsequences()Returns the list of the longest increasing subsequences of self.
longest_increasing_subsequences_number()Returns the number of longest increasing subsequences
cycle_type() Returns the cycle type of self as a partition of len(self).
foata_bijection() Returns the image of the permutation self under the Foata bijection 𝜑.
foata_bijection_inverse() Returns the image of the permutation self under the inverse of the Foata bijec-

tion 𝜑.
fundamental_transformation()Returns the image of the permutation self under the Renyi-Foata-

Schuetzenberger fundamental transformation.
fundamental_transformation_inverse()Returns the image of the permutation self under the inverse of the Renyi-Foata-

Schuetzenberger fundamental transformation.
destandardize() Return destandardization of self with respect to weight and

ordered_alphabet.
to_lehmer_code() Returns the Lehmer code of the permutation self.
to_lehmer_cocode() Returns the Lehmer cocode of self.
reduced_word() Returns the reduced word of the permutation self.
reduced_words() Returns a list of the reduced words of the permutation self.
reduced_words_iterator() An iterator for the reduced words of the permutation self.
reduced_word_lexmin() Returns a lexicographically minimal reduced word of a permutation self.
fixed_points() Returns a list of the fixed points of the permutation self.
number_of_fixed_points() Returns the number of fixed points of the permutation self.
recoils() Returns the list of the positions of the recoils of the permutation self.
number_of_recoils() Returns the number of recoils of the permutation self.
recoils_composition() Returns the composition corresponding to the recoils of self.
descents() Returns the list of the descents of the permutation self.
idescents() Returns a list of the idescents of self.
idescents_signature() Returns the list obtained by mapping each position in self to −1 if it is an

idescent and 1 if it is not an idescent.
continues on next page

1748 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Table 2 – continued from previous page
number_of_descents() Returns the number of descents of the permutation self.
number_of_idescents() Returns the number of idescents of the permutation self.
descents_composition() Returns the composition corresponding to the descents of self.
descent_polynomial() Returns the descent polynomial of the permutation self.
major_index() Returns the major index of the permutation self.
imajor_index() Returns the inverse major index of the permutation self.
to_major_code() Returns the major code of the permutation self.
peaks() Returns a list of the peaks of the permutation self.
number_of_peaks() Returns the number of peaks of the permutation self.
saliances() Returns a list of the saliances of the permutation self.
number_of_saliances() Returns the number of saliances of the permutation self.
bruhat_lequal() Returns True if self is less or equal to p2 in the Bruhat order.
weak_excedences() Returns all the numbers self[i] such that self[i] >= i+1.
bruhat_inversions() Returns the list of inversions of self such that the application of this inversion

to self decrements its number of inversions.
bruhat_inversions_iterator()Returns an iterator over Bruhat inversions of self.
bruhat_succ() Returns a list of the permutations covering self in the Bruhat order.
bruhat_succ_iterator() An iterator for the permutations covering self in the Bruhat order.
bruhat_pred() Returns a list of the permutations covered by self in the Bruhat order.
bruhat_pred_iterator() An iterator for the permutations covered by self in the Bruhat order.
bruhat_smaller() Returns the combinatorial class of permutations smaller than or equal to self

in the Bruhat order.
bruhat_greater() Returns the combinatorial class of permutations greater than or equal to self

in the Bruhat order.
permutohedron_lequal() Returns True if self is less or equal to p2 in the permutohedron order.
permutohedron_succ() Returns a list of the permutations covering self in the permutohedron order.
permutohedron_pred() Returns a list of the permutations covered by self in the permutohedron order.
permutohedron_smaller() Returns a list of permutations smaller than or equal to self in the permutohe-

dron order.
permutohedron_greater() Returns a list of permutations greater than or equal to self in the permutohedron

order.
right_permutohedron_interval_iterator()Returns an iterator over permutations in an interval of the permutohedron order.
right_permutohedron_interval()Returns a list of permutations in an interval of the permutohedron order.
has_pattern() Tests whether the permutation self matches the pattern.
avoids() Tests whether the permutation self avoids the pattern.
pattern_positions() Returns the list of positions where the pattern patt appears in self.
reverse() Returns the permutation obtained by reversing the 1-line notation of self.
complement() Returns the complement of the permutation which is obtained by replacing each

value 𝑥 in the 1-line notation of self with 𝑛− 𝑥+ 1.
permutation_poset() Returns the permutation poset of self.
dict() Returns a dictionary corresponding to the permutation self.
action() Returns the action of the permutation self on a list.
robinson_schensted() Returns the pair of standard tableaux obtained by running the Robinson-

Schensted Algorithm on self.
left_tableau() Returns the left standard tableau after performing the RSK algorithm.
right_tableau() Returns the right standard tableau after performing the RSK algorithm.
increasing_tree() Returns the increasing tree of self.
increasing_tree_shape() Returns the shape of the increasing tree of self.
binary_search_tree() Returns the binary search tree of self.
sylvester_class() Iterates over the equivalence class of self under sylvester congruence

continues on next page

5.1. Comprehensive Module List 1749

Combinatorics, Release 9.7

Table 2 – continued from previous page
RS_partition() Returns the shape of the tableaux obtained by the RSK algorithm.
remove_extra_fixed_points()Returns the permutation obtained by removing any fixed points at the end of

self.
retract_plain() Returns the plain retract of self to a smaller symmetric group 𝑆𝑚.
retract_direct_product() Returns the direct-product retract of self to a smaller symmetric group 𝑆𝑚.
retract_okounkov_vershik() Returns the Okounkov-Vershik retract of self to a smaller symmetric group

𝑆𝑚.
hyperoctahedral_double_coset_type()Returns the coset-type of self as a partition.
binary_search_tree_shape() Returns the shape of the binary search tree of self (a non labelled binary tree).
shifted_concatenation() Returns the right (or left) shifted concatenation of self with a permutation

other.
shifted_shuffle() Returns the shifted shuffle of self with a permutation other.

Other classes defined in this file

Permutations
Permutations_nk
Permutations_mset
Permutations_set
Permutations_msetk
Permutations_setk
Arrangements
Arrangements_msetk
Arrangements_setk
StandardPermutations_all
StandardPermutations_n_abstract
StandardPermutations_n
StandardPermutations_descents
StandardPermutations_recoilsfiner
StandardPermutations_recoilsfatter
StandardPermutations_recoils
StandardPermutations_bruhat_smaller
StandardPermutations_bruhat_greater
CyclicPermutations
CyclicPermutationsOfPartition
StandardPermutations_avoiding_12
StandardPermutations_avoiding_21
StandardPermutations_avoiding_132
StandardPermutations_avoiding_123
StandardPermutations_avoiding_321
StandardPermutations_avoiding_231
StandardPermutations_avoiding_312
StandardPermutations_avoiding_213
StandardPermutations_avoiding_generic
PatternAvoider

Functions defined in this file

1750 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

from_major_code() Returns the permutation corresponding to major code mc.
from_permutation_group_element()Returns a Permutation give a PermutationGroupElement pge.
from_rank() Returns the permutation with the specified lexicographic rank.
from_inversion_vector() Returns the permutation corresponding to inversion vector iv.
from_cycles() Returns the permutation with given disjoint-cycle representation cycles.
from_lehmer_code() Returns the permutation with Lehmer code lehmer.
from_reduced_word() Returns the permutation corresponding to the reduced word rw.
bistochastic_as_sum_of_permutations()Returns a given bistochastic matrix as a nonnegative linear combination of per-

mutations.
bounded_affine_permutation()Returns a partial permutation representing the bounded affine permutation of a

matrix.
descents_composition_list()Returns a list of all the permutations in a given descent class (i. e., having a

given descents composition).
descents_composition_first()Returns the smallest element of a descent class.
descents_composition_last()Returns the largest element of a descent class.
bruhat_lequal() Returns True if p1 is less or equal to p2 in the Bruhat order.
permutohedron_lequal() Returns True if p1 is less or equal to p2 in the permutohedron order.
to_standard() Returns a standard permutation corresponding to the permutation self.

AUTHORS:

• Mike Hansen

• Dan Drake (2008-04-07): allow Permutation() to take lists of tuples

• Sébastien Labbé (2009-03-17): added robinson_schensted_inverse

• Travis Scrimshaw:

– (2012-08-16): to_standard() no longer modifies input

– (2013-01-19): Removed RSK implementation and moved to rsk .

– (2013-07-13): Removed CombinatorialClass and moved permutations to the category framework.

• Darij Grinberg (2013-09-07): added methods; ameliorated trac ticket #14885 by exposing and documenting
methods for global-independent multiplication.

• Travis Scrimshaw (2014-02-05): Made StandardPermutations_n a finite Weyl group to make it more uniform
with SymmetricGroup. Added ability to compute the conjugacy classes.

• Amrutha P, Shriya M, Divya Aggarwal (2022-08-16): Added Multimajor Index.

Classes and methods

class sage.combinat.permutation.Arrangements
Bases: sage.combinat.permutation.Permutations

An arrangement of a multiset mset is an ordered selection without repetitions. It is represented by a list that
contains only elements from mset, but maybe in a different order.

Arrangements returns the combinatorial class of arrangements of the multiset mset that contain k elements.

EXAMPLES:

sage: mset = [1,1,2,3,4,4,5]
sage: Arrangements(mset,2).list()

(continues on next page)

5.1. Comprehensive Module List 1751

https://trac.sagemath.org/14885
../../../../../../html/en/reference/groups/sage/groups/perm_gps/permgroup_named.html#sage.groups.perm_gps.permgroup_named.SymmetricGroup

Combinatorics, Release 9.7

(continued from previous page)

[[1, 1],
[1, 2],
[1, 3],
[1, 4],
[1, 5],
[2, 1],
[2, 3],
[2, 4],
[2, 5],
[3, 1],
[3, 2],
[3, 4],
[3, 5],
[4, 1],
[4, 2],
[4, 3],
[4, 4],
[4, 5],
[5, 1],
[5, 2],
[5, 3],
[5, 4]]
sage: Arrangements(mset,2).cardinality()
22
sage: Arrangements(["c","a","t"], 2).list()
[['c', 'a'], ['c', 't'], ['a', 'c'], ['a', 't'], ['t', 'c'], ['t', 'a']]
sage: Arrangements(["c","a","t"], 3).list()
[['c', 'a', 't'],
['c', 't', 'a'],
['a', 'c', 't'],
['a', 't', 'c'],
['t', 'c', 'a'],
['t', 'a', 'c']]

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: A = Arrangements([1,1,2,3,4,4,5], 2)
sage: A.cardinality()
22

class sage.combinat.permutation.Arrangements_msetk(mset, k)
Bases: sage.combinat.permutation.Arrangements, sage.combinat.permutation.
Permutations_msetk

Arrangements of length 𝑘 of a multiset 𝑀 .

class sage.combinat.permutation.Arrangements_setk(s, k)
Bases: sage.combinat.permutation.Arrangements, sage.combinat.permutation.
Permutations_setk

Arrangements of length 𝑘 of a set 𝑆.

1752 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.permutation.CyclicPermutations(mset)
Bases: sage.combinat.permutation.Permutations_mset

Return the class of all cyclic permutations of mset in cycle notation. These are the same as necklaces.

INPUT:

• mset – A multiset

EXAMPLES:

sage: CyclicPermutations(range(4)).list()
[[0, 1, 2, 3],
[0, 1, 3, 2],
[0, 2, 1, 3],
[0, 2, 3, 1],
[0, 3, 1, 2],
[0, 3, 2, 1]]
sage: CyclicPermutations([1,1,1]).list()
[[1, 1, 1]]

iterator(distinct=False)
EXAMPLES:

sage: CyclicPermutations(range(4)).list() # indirect doctest
[[0, 1, 2, 3],
[0, 1, 3, 2],
[0, 2, 1, 3],
[0, 2, 3, 1],
[0, 3, 1, 2],
[0, 3, 2, 1]]
sage: CyclicPermutations([1,1,1]).list()
[[1, 1, 1]]
sage: CyclicPermutations([1,1,1]).list(distinct=True)
[[1, 1, 1], [1, 1, 1]]

list(distinct=False)
EXAMPLES:

sage: CyclicPermutations(range(4)).list()
[[0, 1, 2, 3],
[0, 1, 3, 2],
[0, 2, 1, 3],
[0, 2, 3, 1],
[0, 3, 1, 2],
[0, 3, 2, 1]]

class sage.combinat.permutation.CyclicPermutationsOfPartition(partition)
Bases: sage.combinat.permutation.Permutations

Combinations of cyclic permutations of each cell of a given partition.

This is the same as a Cartesian product of necklaces.

EXAMPLES:

5.1. Comprehensive Module List 1753

Combinatorics, Release 9.7

sage: CyclicPermutationsOfPartition([[1,2,3,4],[5,6,7]]).list()
[[[1, 2, 3, 4], [5, 6, 7]],
[[1, 2, 4, 3], [5, 6, 7]],
[[1, 3, 2, 4], [5, 6, 7]],
[[1, 3, 4, 2], [5, 6, 7]],
[[1, 4, 2, 3], [5, 6, 7]],
[[1, 4, 3, 2], [5, 6, 7]],
[[1, 2, 3, 4], [5, 7, 6]],
[[1, 2, 4, 3], [5, 7, 6]],
[[1, 3, 2, 4], [5, 7, 6]],
[[1, 3, 4, 2], [5, 7, 6]],
[[1, 4, 2, 3], [5, 7, 6]],
[[1, 4, 3, 2], [5, 7, 6]]]

sage: CyclicPermutationsOfPartition([[1,2,3,4],[4,4,4]]).list()
[[[1, 2, 3, 4], [4, 4, 4]],
[[1, 2, 4, 3], [4, 4, 4]],
[[1, 3, 2, 4], [4, 4, 4]],
[[1, 3, 4, 2], [4, 4, 4]],
[[1, 4, 2, 3], [4, 4, 4]],
[[1, 4, 3, 2], [4, 4, 4]]]

sage: CyclicPermutationsOfPartition([[1,2,3],[4,4,4]]).list()
[[[1, 2, 3], [4, 4, 4]], [[1, 3, 2], [4, 4, 4]]]

sage: CyclicPermutationsOfPartition([[1,2,3],[4,4,4]]).list(distinct=True)
[[[1, 2, 3], [4, 4, 4]],
[[1, 3, 2], [4, 4, 4]],
[[1, 2, 3], [4, 4, 4]],
[[1, 3, 2], [4, 4, 4]]]

class Element
Bases: sage.structure.list_clone.ClonableArray

A cyclic permutation of a partition.

check()
Check that self is a valid element.

EXAMPLES:

sage: CP = CyclicPermutationsOfPartition([[1,2,3,4],[5,6,7]])
sage: elt = CP[0]
sage: elt.check()

iterator(distinct=False)
AUTHORS:

• Robert Miller

EXAMPLES:

sage: CyclicPermutationsOfPartition([[1,2,3,4],[5,6,7]]).list() # indirect␣
→˓doctest
[[[1, 2, 3, 4], [5, 6, 7]],

(continues on next page)

1754 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

(continued from previous page)

[[1, 2, 4, 3], [5, 6, 7]],
[[1, 3, 2, 4], [5, 6, 7]],
[[1, 3, 4, 2], [5, 6, 7]],
[[1, 4, 2, 3], [5, 6, 7]],
[[1, 4, 3, 2], [5, 6, 7]],
[[1, 2, 3, 4], [5, 7, 6]],
[[1, 2, 4, 3], [5, 7, 6]],
[[1, 3, 2, 4], [5, 7, 6]],
[[1, 3, 4, 2], [5, 7, 6]],
[[1, 4, 2, 3], [5, 7, 6]],
[[1, 4, 3, 2], [5, 7, 6]]]

sage: CyclicPermutationsOfPartition([[1,2,3,4],[4,4,4]]).list()
[[[1, 2, 3, 4], [4, 4, 4]],
[[1, 2, 4, 3], [4, 4, 4]],
[[1, 3, 2, 4], [4, 4, 4]],
[[1, 3, 4, 2], [4, 4, 4]],
[[1, 4, 2, 3], [4, 4, 4]],
[[1, 4, 3, 2], [4, 4, 4]]]

sage: CyclicPermutationsOfPartition([[1,2,3],[4,4,4]]).list()
[[[1, 2, 3], [4, 4, 4]], [[1, 3, 2], [4, 4, 4]]]

sage: CyclicPermutationsOfPartition([[1,2,3],[4,4,4]]).list(distinct=True)
[[[1, 2, 3], [4, 4, 4]],
[[1, 3, 2], [4, 4, 4]],
[[1, 2, 3], [4, 4, 4]],
[[1, 3, 2], [4, 4, 4]]]

list(distinct=False)
EXAMPLES:

sage: CyclicPermutationsOfPartition([[1,2,3],[4,4,4]]).list()
[[[1, 2, 3], [4, 4, 4]], [[1, 3, 2], [4, 4, 4]]]
sage: CyclicPermutationsOfPartition([[1,2,3],[4,4,4]]).list(distinct=True)
[[[1, 2, 3], [4, 4, 4]],
[[1, 3, 2], [4, 4, 4]],
[[1, 2, 3], [4, 4, 4]],
[[1, 3, 2], [4, 4, 4]]]

class sage.combinat.permutation.PatternAvoider(parent, patterns)
Bases: sage.combinat.backtrack.GenericBacktracker

EXAMPLES:

sage: from sage.combinat.permutation import PatternAvoider
sage: P = Permutations(4)
sage: p = PatternAvoider(P, [[1,2,3]])
sage: loads(dumps(p))
<sage.combinat.permutation.PatternAvoider object at 0x...>

class sage.combinat.permutation.Permutation(parent, l, check_input=True)
Bases: sage.combinat.combinat.CombinatorialElement

5.1. Comprehensive Module List 1755

Combinatorics, Release 9.7

A permutation.

Converts l to a permutation on {1, 2, . . . , 𝑛}.

INPUT:

• l – Can be any one of the following:

– an instance of Permutation,

– list of integers, viewed as one-line permutation notation. The construction checks that you give an
acceptable entry. To avoid the check, use the check_input option.

– string, expressing the permutation in cycle notation.

– list of tuples of integers, expressing the permutation in cycle notation.

– a PermutationGroupElement

– a pair of two standard tableaux of the same shape. This yields the permutation obtained from the pair
using the inverse of the Robinson-Schensted algorithm.

• check_input (boolean) – whether to check that input is correct. Slows the function down, but en-
sures that nothing bad happens. This is set to True by default.

Warning: Since trac ticket #13742 the input is checked for correctness : it is not accepted unless it actually
is a permutation on {1, . . . , 𝑛}. It means that some Permutation() objects cannot be created anymore
without setting check_input = False, as there is no certainty that its functions can handle them, and this
should be fixed in a much better way ASAP (the functions should be rewritten to handle those cases, and new
tests be added).

Warning: There are two possible conventions for multiplying permutations, and the one currently enabled
in Sage by default is the one which has (𝑝𝑞)(𝑖) = 𝑞(𝑝(𝑖)) for any permutations 𝑝 ∈ 𝑆𝑛 and 𝑞 ∈ 𝑆𝑛 and any
1 ≤ 𝑖 ≤ 𝑛. (This equation looks less strange when the action of permutations on numbers is written from the
right: then it takes the form 𝑖𝑝𝑞 = (𝑖𝑝)𝑞 , which is an associativity law). There is an alternative convention,
which has (𝑝𝑞)(𝑖) = 𝑝(𝑞(𝑖)) instead. The conventions can be switched at runtime using sage.combinat.
permutation.Permutations.options(). It is best for code not to rely on this setting being set to a
particular standard, but rather use the methods left_action_product() and right_action_product()
for multiplying permutations (these methods don’t depend on the setting). See trac ticket #14885 for more
details.

Note: The bruhat* methods refer to the strong Bruhat order. To use the weak Bruhat order, look under
permutohedron*.

EXAMPLES:

sage: Permutation([2,1])
[2, 1]
sage: Permutation([2, 1, 4, 5, 3])
[2, 1, 4, 5, 3]
sage: Permutation('(1,2)')
[2, 1]
sage: Permutation('(1,2)(3,4,5)')
[2, 1, 4, 5, 3]

(continues on next page)

1756 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/13742
https://trac.sagemath.org/14885

Combinatorics, Release 9.7

(continued from previous page)

sage: Permutation(((1,2),(3,4,5)))
[2, 1, 4, 5, 3]
sage: Permutation([(1,2),(3,4,5)])
[2, 1, 4, 5, 3]
sage: Permutation(((1,2)))
[2, 1]
sage: Permutation((1,2))
[2, 1]
sage: Permutation(((1,2),))
[2, 1]
sage: Permutation(((1,),))
[1]
sage: Permutation((1,))
[1]
sage: Permutation(())
[]
sage: Permutation(((),))
[]
sage: p = Permutation((1, 2, 5)); p
[2, 5, 3, 4, 1]
sage: type(p)
<class 'sage.combinat.permutation.StandardPermutations_n_with_category.element_class
→˓'>

Construction from a string in cycle notation:

sage: p = Permutation('(4,5)'); p
[1, 2, 3, 5, 4]

The size of the permutation is the maximum integer appearing; add a 1-cycle to increase this:

sage: p2 = Permutation('(4,5)(10)'); p2
[1, 2, 3, 5, 4, 6, 7, 8, 9, 10]
sage: len(p); len(p2)
5
10

We construct a Permutation from a PermutationGroupElement:

sage: g = PermutationGroupElement([2,1,3])
sage: Permutation(g)
[2, 1, 3]

From a pair of tableaux of the same shape. This uses the inverse of the Robinson-Schensted algorithm:

sage: p = [[1, 4, 7], [2, 5], [3], [6]]
sage: q = [[1, 2, 5], [3, 6], [4], [7]]
sage: P = Tableau(p)
sage: Q = Tableau(q)
sage: Permutation((p, q))
[3, 6, 5, 2, 7, 4, 1]
sage: Permutation([p, q])
[3, 6, 5, 2, 7, 4, 1]

(continues on next page)

5.1. Comprehensive Module List 1757

Combinatorics, Release 9.7

(continued from previous page)

sage: Permutation((P, Q))
[3, 6, 5, 2, 7, 4, 1]
sage: Permutation([P, Q])
[3, 6, 5, 2, 7, 4, 1]

RS_partition()
Return the shape of the tableaux obtained by applying the RSK algorithm to self.

EXAMPLES:

sage: Permutation([1,4,3,2]).RS_partition()
[2, 1, 1]

absolute_length()
Return the absolute length of self

The absolute length is the length of the shortest expression of the element as a product of reflections.

For permutations in the symmetric groups, the absolute length is the size minus the number of its disjoint
cycles.

EXAMPLES:

sage: Permutation([4,2,3,1]).absolute_length()
1

action(a)
Return the action of the permutation self on a list a.

The action of a permutation 𝑝 ∈ 𝑆𝑛 on an 𝑛-element list (𝑎1, 𝑎2, . . . , 𝑎𝑛) is defined to be
(𝑎𝑝(1), 𝑎𝑝(2), . . . , 𝑎𝑝(𝑛)).

EXAMPLES:

sage: p = Permutation([2,1,3])
sage: a = list(range(3))
sage: p.action(a)
[1, 0, 2]
sage: b = [1,2,3,4]
sage: p.action(b)
Traceback (most recent call last):
...
ValueError: len(a) must equal len(self)

sage: q = Permutation([2,3,1])
sage: a = list(range(3))
sage: q.action(a)
[1, 2, 0]

avoids(patt)
Test whether the permutation self avoids the pattern patt.

EXAMPLES:

sage: Permutation([6,2,5,4,3,1]).avoids([4,2,3,1])
False

(continues on next page)

1758 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Permutation([6,1,2,5,4,3]).avoids([4,2,3,1])
True
sage: Permutation([6,1,2,5,4,3]).avoids([3,4,1,2])
True

binary_search_tree(left_to_right=True)
Return the binary search tree associated to self.

If 𝑤 is a word, then the binary search tree associated to 𝑤 is defined as the result of starting with an empty
binary tree, and then inserting the letters of 𝑤 one by one into this tree. Here, the insertion is being done
according to the method binary_search_insert(), and the word 𝑤 is being traversed from left to right.

A permutation is regarded as a word (using one-line notation), and thus a binary search tree associated to
a permutation is defined.

If the optional keyword variable left_to_right is set to False, the word 𝑤 is being traversed from right
to left instead.

EXAMPLES:

sage: Permutation([1,4,3,2]).binary_search_tree()
1[., 4[3[2[., .], .], .]]
sage: Permutation([4,1,3,2]).binary_search_tree()
4[1[., 3[2[., .], .]], .]

By passing the option left_to_right=False one can have the insertion going from right to left:

sage: Permutation([1,4,3,2]).binary_search_tree(False)
2[1[., .], 3[., 4[., .]]]
sage: Permutation([4,1,3,2]).binary_search_tree(False)
2[1[., .], 3[., 4[., .]]]

binary_search_tree_shape(left_to_right=True)
Return the shape of the binary search tree of the permutation (a non labelled binary tree).

EXAMPLES:

sage: Permutation([1,4,3,2]).binary_search_tree_shape()
[., [[[., .], .], .]]
sage: Permutation([4,1,3,2]).binary_search_tree_shape()
[[., [[., .], .]], .]

By passing the option left_to_right=False one can have the insertion going from right to left:

sage: Permutation([1,4,3,2]).binary_search_tree_shape(False)
[[., .], [., [., .]]]
sage: Permutation([4,1,3,2]).binary_search_tree_shape(False)
[[., .], [., [., .]]]

bruhat_greater()
Return the combinatorial class of permutations greater than or equal to self in the Bruhat order (on the
symmetric group containing self).

See bruhat_lequal() for the definition of the Bruhat order.

EXAMPLES:

5.1. Comprehensive Module List 1759

Combinatorics, Release 9.7

sage: Permutation([4,1,2,3]).bruhat_greater().list()
[[4, 1, 2, 3],
[4, 1, 3, 2],
[4, 2, 1, 3],
[4, 2, 3, 1],
[4, 3, 1, 2],
[4, 3, 2, 1]]

bruhat_inversions()
Return the list of inversions of self such that the application of this inversion to self decreases its number
of inversions by exactly 1.

Equivalently, it returns the list of pairs (𝑖, 𝑗) such that 𝑖 < 𝑗, such that 𝑝(𝑖) > 𝑝(𝑗) and such that there
exists no 𝑘 (strictly) between 𝑖 and 𝑗 satisfying 𝑝(𝑖) > 𝑝(𝑘) > 𝑝(𝑗).

EXAMPLES:

sage: Permutation([5,2,3,4,1]).bruhat_inversions()
[[0, 1], [0, 2], [0, 3], [1, 4], [2, 4], [3, 4]]
sage: Permutation([6,1,4,5,2,3]).bruhat_inversions()
[[0, 1], [0, 2], [0, 3], [2, 4], [2, 5], [3, 4], [3, 5]]

bruhat_inversions_iterator()
Return the iterator for the inversions of self such that the application of this inversion to self decreases
its number of inversions by exactly 1.

EXAMPLES:

sage: list(Permutation([5,2,3,4,1]).bruhat_inversions_iterator())
[[0, 1], [0, 2], [0, 3], [1, 4], [2, 4], [3, 4]]
sage: list(Permutation([6,1,4,5,2,3]).bruhat_inversions_iterator())
[[0, 1], [0, 2], [0, 3], [2, 4], [2, 5], [3, 4], [3, 5]]

bruhat_lequal(p2)
Return True if self is less or equal to p2 in the Bruhat order.

The Bruhat order (also called strong Bruhat order or Chevalley order) on the symmetric group 𝑆𝑛 is the
partial order on 𝑆𝑛 determined by the following condition: If 𝑝 is a permutation, and 𝑖 and 𝑗 are two
indices satisfying 𝑝(𝑖) > 𝑝(𝑗) and 𝑖 < 𝑗 (that is, (𝑖, 𝑗) is an inversion of 𝑝 with 𝑖 < 𝑗), then 𝑝 ∘ (𝑖, 𝑗) (the
permutation obtained by first switching 𝑖 with 𝑗 and then applying 𝑝) is smaller than 𝑝 in the Bruhat order.

One can show that a permutation 𝑝 ∈ 𝑆𝑛 is less or equal to a permutation 𝑞 ∈ 𝑆𝑛 in the Bruhat order
if and only if for every 𝑖 ∈ {0, 1, · · · , 𝑛} and 𝑗 ∈ {1, 2, · · · , 𝑛}, the number of the elements among
𝑝(1), 𝑝(2), · · · , 𝑝(𝑗) that are greater than 𝑖 is ≤ to the number of the elements among 𝑞(1), 𝑞(2), · · · , 𝑞(𝑗)
that are greater than 𝑖.

This method assumes that self and p2 are permutations of the same integer 𝑛.

EXAMPLES:

sage: Permutation([2,4,3,1]).bruhat_lequal(Permutation([3,4,2,1]))
True

sage: Permutation([2,1,3]).bruhat_lequal(Permutation([2,3,1]))
True
sage: Permutation([2,1,3]).bruhat_lequal(Permutation([3,1,2]))
True

(continues on next page)

1760 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Permutation([2,1,3]).bruhat_lequal(Permutation([1,2,3]))
False
sage: Permutation([1,3,2]).bruhat_lequal(Permutation([2,1,3]))
False
sage: Permutation([1,3,2]).bruhat_lequal(Permutation([2,3,1]))
True
sage: Permutation([2,3,1]).bruhat_lequal(Permutation([1,3,2]))
False
sage: sorted([len([b for b in Permutations(3) if a.bruhat_lequal(b)])
....: for a in Permutations(3)])
[1, 2, 2, 4, 4, 6]

sage: Permutation([]).bruhat_lequal(Permutation([]))
True

bruhat_pred()
Return a list of the permutations strictly smaller than self in the Bruhat order (on the symmetric group
containing self) such that there is no permutation between one of those and self.

See bruhat_lequal() for the definition of the Bruhat order.

EXAMPLES:

sage: Permutation([6,1,4,5,2,3]).bruhat_pred()
[[1, 6, 4, 5, 2, 3],
[4, 1, 6, 5, 2, 3],
[5, 1, 4, 6, 2, 3],
[6, 1, 2, 5, 4, 3],
[6, 1, 3, 5, 2, 4],
[6, 1, 4, 2, 5, 3],
[6, 1, 4, 3, 2, 5]]

bruhat_pred_iterator()
An iterator for the permutations strictly smaller than self in the Bruhat order (on the symmetric group
containing self) such that there is no permutation between one of those and self.

See bruhat_lequal() for the definition of the Bruhat order.

EXAMPLES:

sage: [x for x in Permutation([6,1,4,5,2,3]).bruhat_pred_iterator()]
[[1, 6, 4, 5, 2, 3],
[4, 1, 6, 5, 2, 3],
[5, 1, 4, 6, 2, 3],
[6, 1, 2, 5, 4, 3],
[6, 1, 3, 5, 2, 4],
[6, 1, 4, 2, 5, 3],
[6, 1, 4, 3, 2, 5]]

bruhat_smaller()
Return the combinatorial class of permutations smaller than or equal to self in the Bruhat order (on the
symmetric group containing self).

See bruhat_lequal() for the definition of the Bruhat order.

EXAMPLES:

5.1. Comprehensive Module List 1761

Combinatorics, Release 9.7

sage: Permutation([4,1,2,3]).bruhat_smaller().list()
[[1, 2, 3, 4],
[1, 2, 4, 3],
[1, 3, 2, 4],
[1, 4, 2, 3],
[2, 1, 3, 4],
[2, 1, 4, 3],
[3, 1, 2, 4],
[4, 1, 2, 3]]

bruhat_succ()
Return a list of the permutations strictly greater than self in the Bruhat order (on the symmetric group
containing self) such that there is no permutation between one of those and self.

See bruhat_lequal() for the definition of the Bruhat order.

EXAMPLES:

sage: Permutation([6,1,4,5,2,3]).bruhat_succ()
[[6, 4, 1, 5, 2, 3],
[6, 2, 4, 5, 1, 3],
[6, 1, 5, 4, 2, 3],
[6, 1, 4, 5, 3, 2]]

bruhat_succ_iterator()
An iterator for the permutations that are strictly greater than self in the Bruhat order (on the symmetric
group containing self) such that there is no permutation between one of those and self.

See bruhat_lequal() for the definition of the Bruhat order.

EXAMPLES:

sage: [x for x in Permutation([6,1,4,5,2,3]).bruhat_succ_iterator()]
[[6, 4, 1, 5, 2, 3],
[6, 2, 4, 5, 1, 3],
[6, 1, 5, 4, 2, 3],
[6, 1, 4, 5, 3, 2]]

complement()
Return the complement of the permutation self.

The complement of a permutation𝑤 ∈ 𝑆𝑛 is defined as the permutation in𝑆𝑛 sending each 𝑖 to 𝑛+1−𝑤(𝑖).

EXAMPLES:

sage: Permutation([1,2,3]).complement()
[3, 2, 1]
sage: Permutation([1, 3, 2]).complement()
[3, 1, 2]

cycle_string(singletons=False)
Return a string of the permutation in cycle notation.

If singletons=True, it includes 1-cycles in the string.

EXAMPLES:

1762 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Permutation([1,2,3]).cycle_string()
'()'
sage: Permutation([2,1,3]).cycle_string()
'(1,2)'
sage: Permutation([2,3,1]).cycle_string()
'(1,2,3)'
sage: Permutation([2,1,3]).cycle_string(singletons=True)
'(1,2)(3)'

cycle_tuples(singletons=True, use_min=True)
Return the permutation self as a list of disjoint cycles.

The cycles are returned in the order of increasing smallest elements, and each cycle is returned as a tuple
which starts with its smallest element.

If singletons=False is given, the list does not contain the singleton cycles.

If use_min=False is given, the cycles are returned in the order of increasing largest (not smallest) ele-
ments, and each cycle starts with its largest element.

EXAMPLES:

sage: Permutation([2,1,3,4]).to_cycles()
[(1, 2), (3,), (4,)]
sage: Permutation([2,1,3,4]).to_cycles(singletons=False)
[(1, 2)]
sage: Permutation([2,1,3,4]).to_cycles(use_min=True)
[(1, 2), (3,), (4,)]
sage: Permutation([2,1,3,4]).to_cycles(use_min=False)
[(4,), (3,), (2, 1)]
sage: Permutation([2,1,3,4]).to_cycles(singletons=False, use_min=False)
[(2, 1)]

sage: Permutation([4,1,5,2,6,3]).to_cycles()
[(1, 4, 2), (3, 5, 6)]
sage: Permutation([4,1,5,2,6,3]).to_cycles(use_min=False)
[(6, 3, 5), (4, 2, 1)]

sage: Permutation([6, 4, 5, 2, 3, 1]).to_cycles()
[(1, 6), (2, 4), (3, 5)]
sage: Permutation([6, 4, 5, 2, 3, 1]).to_cycles(use_min=False)
[(6, 1), (5, 3), (4, 2)]

The algorithm is of complexity 𝑂(𝑛) where 𝑛 is the size of the given permutation.

cycle_type()
Return a partition of len(self) corresponding to the cycle type of self.

This is a non-increasing sequence of the cycle lengths of self.

EXAMPLES:

sage: Permutation([3,1,2,4]).cycle_type()
[3, 1]

decreasing_runs(as_tuple=False)
Decreasing runs of the permutation.

5.1. Comprehensive Module List 1763

Combinatorics, Release 9.7

INPUT:

• as_tuple – boolean (default: False) choice of output format

OUTPUT:

a list of lists or a tuple of tuples

See also:

runs()

EXAMPLES:

sage: s = Permutation([2,8,3,9,6,4,5,1,7])
sage: s.decreasing_runs()
[[2], [8, 3], [9, 6, 4], [5, 1], [7]]
sage: s.decreasing_runs(as_tuple=True)
((2,), (8, 3), (9, 6, 4), (5, 1), (7,))

descent_polynomial()
Return the descent polynomial of the permutation self.

The descent polynomial of a permutation 𝑝 is the product of all the z[p(i)] where i ranges over the
descents of p.

A descent of a permutation p is an integer i such that p(i) > p(i+1).

REFERENCES:

• [GS1984]

EXAMPLES:

sage: Permutation([2,1,3]).descent_polynomial()
z1
sage: Permutation([4,3,2,1]).descent_polynomial()
z1*z2^2*z3^3

Todo: This docstring needs to be fixed. First, the definition does not match the implementation (or the
examples). Second, this doesn’t seem to be defined in [GS1984] (the descent monomial in their (7.23) is
different).

descents(final_descent=False, side='right', positive=False, from_zero=False, index_set=None)
Return the list of the descents of self.

A descent of a permutation 𝑝 is an integer 𝑖 such that 𝑝(𝑖) > 𝑝(𝑖+ 1).

Warning: By default, the descents are returned as elements in the index set, i.e., starting at 1. If you
want them to start at 0, set the keyword from_zero to True.

INPUT:

• final_descent – boolean (default False); if True, the last position of a non-empty permutation is
also considered as a descent

• side – 'right' (default) or 'left'; if 'left', return the descents of the inverse permutation

• positive – boolean (default False); if True, return the positions that are not descents

1764 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• from_zero – boolean (default False); if True, return the positions starting from 0

• index_set – list (default: [1, ..., n-1] where self is a permutation of n); the index set to check
for descents

EXAMPLES:

sage: Permutation([3,1,2]).descents()
[1]
sage: Permutation([1,4,3,2]).descents()
[2, 3]
sage: Permutation([1,4,3,2]).descents(final_descent=True)
[2, 3, 4]
sage: Permutation([1,4,3,2]).descents(index_set=[1,2])
[2]
sage: Permutation([1,4,3,2]).descents(from_zero=True)
[1, 2]

descents_composition()
Return the descent composition of self.

The descent composition of a permutation 𝑝 ∈ 𝑆𝑛 is defined as the composition of 𝑛 whose descent set
equals the descent set of 𝑝. Here, the descent set of 𝑝 is defined as the set of all 𝑖 ∈ {1, 2, . . . , 𝑛 − 1}
satisfying 𝑝(𝑖) > 𝑝(𝑖 + 1). The descent set of a composition 𝑐 = (𝑖1, 𝑖2, . . . , 𝑖𝑘) is defined as the set
{𝑖1, 𝑖1 + 𝑖2, 𝑖1 + 𝑖2 + 𝑖3, . . . , 𝑖1 + 𝑖2 + · · ·+ 𝑖𝑘−1}.

EXAMPLES:

sage: Permutation([1,3,2,4]).descents_composition()
[2, 2]
sage: Permutation([4,1,6,7,2,3,8,5]).descents_composition()
[1, 3, 3, 1]
sage: Permutation([]).descents_composition()
[]

destandardize(weight, ordered_alphabet=None)
Return destandardization of self with respect to weight and ordered_alphabet.

INPUT:

• weight – list or tuple of nonnegative integers that sum to 𝑛 if self is a permutation in 𝑆𝑛.

• ordered_alphabet – (default: None) a list or tuple specifying the ordered alphabet the destandard-
ized word is over

OUTPUT: word over the ordered_alphabet which standardizes to self

Let 𝑤𝑒𝑖𝑔ℎ𝑡 = (𝑤1, 𝑤2, . . . , 𝑤ℓ). Then this methods looks for an increasing sequence of 1, 2, . . . , 𝑤1

and labels all letters in it by 1, then an increasing sequence of 𝑤1 + 1, 𝑤1 + 2, . . . , 𝑤1 + 𝑤2 and labels
all these letters by 2, etc.. If an increasing sequence for the specified weight does not exist, an error is
returned. The output is a word w over the specified ordered alphabet with evaluation weight such that
w.standard_permutation() is self.

EXAMPLES:

sage: p = Permutation([1,2,5,3,6,4])
sage: p.destandardize([3,1,2])
word: 113132
sage: p = Permutation([2,1,3])

(continues on next page)

5.1. Comprehensive Module List 1765

Combinatorics, Release 9.7

(continued from previous page)

sage: p.destandardize([2,1])
Traceback (most recent call last):
...
ValueError: Standardization with weight [2, 1] is not possible!

dict()
Return a dictionary corresponding to the permutation.

EXAMPLES:

sage: p = Permutation([2,1,3])
sage: d = p.dict()
sage: d[1]
2
sage: d[2]
1
sage: d[3]
3

fixed_points()
Return a list of the fixed points of self.

EXAMPLES:

sage: Permutation([1,3,2,4]).fixed_points()
[1, 4]
sage: Permutation([1,2,3,4]).fixed_points()
[1, 2, 3, 4]

foata_bijection()
Return the image of the permutation self under the Foata bijection 𝜑.

The bijection shows that maj (the major index) and inv (the number of inversions) are equidistributed: if
𝜑(𝑃) = 𝑄, then maj(𝑃) = inv(𝑄).

The Foata bijection 𝜑 is a bijection on the set of words with no two equal letters. It can be defined by
induction on the size of the word: Given a word 𝑤1𝑤2 · · ·𝑤𝑛, start with 𝜑(𝑤1) = 𝑤1. At the 𝑖-th step,
if 𝜑(𝑤1𝑤2 · · ·𝑤𝑖) = 𝑣1𝑣2 · · · 𝑣𝑖, we define 𝜑(𝑤1𝑤2 · · ·𝑤𝑖𝑤𝑖+1) by placing 𝑤𝑖+1 on the end of the word
𝑣1𝑣2 · · · 𝑣𝑖 and breaking the word up into blocks as follows. If 𝑤𝑖+1 > 𝑣𝑖, place a vertical line to the right
of each 𝑣𝑘 for which 𝑤𝑖+1 > 𝑣𝑘. Otherwise, if 𝑤𝑖+1 < 𝑣𝑖, place a vertical line to the right of each 𝑣𝑘 for
which 𝑤𝑖+1 < 𝑣𝑘. In either case, place a vertical line at the start of the word as well. Now, within each
block between vertical lines, cyclically shift the entries one place to the right.

For instance, to compute 𝜑([1, 4, 2, 5, 3]), the sequence of words is

• 1,

• |1|4→ 14,

• |14|2→ 412,

• |4|1|2|5→ 4125,

• |4|125|3→ 45123.

So 𝜑([1, 4, 2, 5, 3]) = [4, 5, 1, 2, 3].

See section 2 of [FS1978], and the proof of Proposition 1.4.6 in [EnumComb1].

1766 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

foata_bijection_inverse() for the inverse map.

EXAMPLES:

sage: Permutation([1,2,4,3]).foata_bijection()
[4, 1, 2, 3]
sage: Permutation([2,5,1,3,4]).foata_bijection()
[2, 1, 3, 5, 4]

sage: P = Permutation([2,5,1,3,4])
sage: P.major_index() == P.foata_bijection().number_of_inversions()
True

sage: all(P.major_index() == P.foata_bijection().number_of_inversions()
....: for P in Permutations(4))
True

The example from [FS1978]:

sage: Permutation([7,4,9,2,6,1,5,8,3]).foata_bijection()
[4, 7, 2, 6, 1, 9, 5, 8, 3]

Border cases:

sage: Permutation([]).foata_bijection()
[]
sage: Permutation([1]).foata_bijection()
[1]

foata_bijection_inverse()
Return the image of the permutation self under the inverse of the Foata bijection 𝜑.

See foata_bijection() for the definition of the Foata bijection.

EXAMPLES:

sage: Permutation([4, 1, 2, 3]).foata_bijection()
[1, 2, 4, 3]

forget_cycles()
Return the image of self under the map which forgets cycles.

Consider a permutation 𝜎 written in standard cyclic form:

𝜎 = (𝑎1,1, . . . , 𝑎1,𝑘1)(𝑎2,1, . . . , 𝑎2,𝑘2) · · · (𝑎𝑚,1, . . . , 𝑎𝑚,𝑘𝑚),

where 𝑎1,1 < 𝑎2,1 < · · · < 𝑎𝑚,1 and 𝑎𝑗,1 < 𝑎𝑗,𝑖 for all 1 ≤ 𝑗 ≤ 𝑚 and 2 ≤ 𝑖 ≤ 𝑘𝑗 where we include
cycles of length 1 as well. The image of the forget cycle map 𝜑 is given by

𝜑(𝜎) = [𝑎1,1, . . . , 𝑎1,𝑘1 , 𝑎2,1, . . . , 𝑎2,𝑘2 , . . . , 𝑎𝑚,1, . . . , 𝑎𝑚,𝑘𝑚],

considered as a permutation in 1-line notation.

See also:

fundamental_transformation(), which is a similar map that is defined by instead taking 𝑎𝑗,1 > 𝑎𝑗,𝑖
and is bijective.

5.1. Comprehensive Module List 1767

Combinatorics, Release 9.7

EXAMPLES:

sage: P = Permutations(5)
sage: x = P([1, 5, 3, 4, 2])
sage: x.forget_cycles()
[1, 2, 5, 3, 4]

We select all permutations with a cycle composition of [2, 3, 1] in 𝑆6:

sage: P = Permutations(6)
sage: l = [p for p in P if [len(t) for t in p.to_cycles()] == [1,3,2]]

Next we apply 𝜑 and then take the inverse, and then view the results as a poset under the Bruhat order:

sage: l = [p.forget_cycles().inverse() for p in l]
sage: B = Poset([l, lambda x,y: x.bruhat_lequal(y)])
sage: R.<q> = QQ[]
sage: sum(q^B.rank_function()(x) for x in B)
q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 2*q + 1

We check the statement in [CC2013] that the posets 𝐶[1,3,1,1] and 𝐶[1,3,2] are isomorphic:

sage: l2 = [p for p in P if [len(t) for t in p.to_cycles()] == [1,3,1,1]]
sage: l2 = [p.forget_cycles().inverse() for p in l2]
sage: B2 = Poset([l2, lambda x,y: x.bruhat_lequal(y)])
sage: B.is_isomorphic(B2)
True

See also:

fundamental_transformation().

fundamental_transformation()
Return the image of the permutation self under the Renyi-Foata-Schuetzenberger fundamental transfor-
mation.

The fundamental transformation is a bijection from the set of all permutations of {1, 2, . . . , 𝑛} to itself,
which transforms any such permutation 𝑤 as follows: Write 𝑤 in cycle form, with each cycle starting with
its highest element, and the cycles being sorted in increasing order of their highest elements. Drop the
parentheses in the resulting expression, thus reading it as a one-line notation of a new permutation 𝑢. Then,
𝑢 is the image of 𝑤 under the fundamental transformation.

See [EnumComb1], Proposition 1.3.1.

See also:

fundamental_transformation_inverse() for the inverse map.

forget_cycles() for a similar (but non-bijective) map where each cycle is starting from its lowest ele-
ment.

EXAMPLES:

sage: Permutation([5, 1, 3, 4, 2]).fundamental_transformation()
[3, 4, 5, 2, 1]
sage: Permutations(5)([1, 5, 3, 4, 2]).fundamental_transformation()
[1, 3, 4, 5, 2]
sage: Permutation([8, 4, 7, 2, 9, 6, 5, 1, 3]).fundamental_transformation()
[4, 2, 6, 8, 1, 9, 3, 7, 5]

1768 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Comparison with forget_cycles():

sage: P = Permutation([(1,3,4),(2,5)])
sage: P
[3, 5, 4, 1, 2]
sage: P.forget_cycles()
[1, 3, 4, 2, 5]
sage: P.fundamental_transformation()
[4, 1, 3, 5, 2]

fundamental_transformation_inverse()
Return the image of the permutation self under the inverse of the Renyi-Foata-Schuetzenberger funda-
mental transformation.

The inverse of the fundamental transformation is a bijection from the set of all permutations of {1, 2, . . . , 𝑛}
to itself, which transforms any such permutation 𝑤 as follows: Let 𝐼 = {𝑖1 < 𝑖2 < · · · < 𝑖𝑘} be
the set of all left-to-right maxima of 𝑤 (that is, of all indices 𝑗 such that 𝑤(𝑗) is bigger than each of
𝑤(1), 𝑤(2), . . . , 𝑤(𝑗 − 1)). The image of 𝑤 under the inverse of the fundamental transformation is the
permutation 𝑢 that sends 𝑤(𝑖− 1) to 𝑤(𝑖) for all 𝑖 /∈ 𝐼 (notice that this makes sense, since 1 ∈ 𝐼 whenever
𝑛 > 0), while sending each 𝑤(𝑖𝑝 − 1) (with 𝑝 ≥ 2) to 𝑤(𝑖𝑝−1). Here, we set 𝑖𝑘+1 = 𝑛+ 1.

See [EnumComb1], Proposition 1.3.1.

See also:

fundamental_transformation() for the inverse map.

EXAMPLES:

sage: Permutation([3, 4, 5, 2, 1]).fundamental_transformation_inverse()
[5, 1, 3, 4, 2]
sage: Permutation([4, 2, 6, 8, 1, 9, 3, 7, 5]).fundamental_transformation_
→˓inverse()
[8, 4, 7, 2, 9, 6, 5, 1, 3]

grade()
Return the size of self.

EXAMPLES:

sage: Permutation([3,4,1,2,5]).size()
5

has_pattern(patt)
Test whether the permutation self contains the pattern patt.

EXAMPLES:

sage: Permutation([3,5,1,4,6,2]).has_pattern([1,3,2])
True

hyperoctahedral_double_coset_type()
Return the coset-type of self as a partition.

self must be a permutation of even size 2𝑛. The coset-type determines the double class of the permutation,
that is its image in 𝐻𝑛∖𝑆2𝑛/𝐻𝑛, where 𝐻𝑛 is the 𝑛-th hyperoctahedral group.

The coset-type is determined as follows. Consider the perfect matching {{1, 2}, {3, 4}, . . . , {2𝑛− 1, 2𝑛}}
and its image by self, and draw them simultaneously as edges of a graph whose vertices are labeled by

5.1. Comprehensive Module List 1769

Combinatorics, Release 9.7

1, 2, . . . , 2𝑛. The coset-type is the ordered sequence of the semi-lengths of the cycles of this graph (see
Chapter VII of [Mac1995] for more details, particularly Section VII.2).

EXAMPLES:

sage: Permutation([3, 4, 6, 1, 5, 7, 2, 8]).hyperoctahedral_double_coset_type()
[3, 1]
sage: all(p.hyperoctahedral_double_coset_type() ==
....: p.inverse().hyperoctahedral_double_coset_type()
....: for p in Permutations(4))
True
sage: Permutation([]).hyperoctahedral_double_coset_type()
[]
sage: Permutation([3,1,2]).hyperoctahedral_double_coset_type()
Traceback (most recent call last):
...
ValueError: [3, 1, 2] is a permutation of odd size and has no coset-type

idescents(final_descent=False, from_zero=False)
Return a list of the idescents of self, that is the list of the descents of self’s inverse.

A descent of a permutation p is an integer i such that p(i) > p(i+1).

Warning: By default, the descents are returned as elements in the index set, i.e., starting at 1. If you
want them to start at 0, set the keyword from_zero to True.

INPUT:

• final_descent – boolean (default False); if True, the last position of a non-empty permutation is
also considered as a descent

• from_zero – optional boolean (default False); if False, return the positions starting from 1

EXAMPLES:

sage: Permutation([2,3,1]).idescents()
[1]
sage: Permutation([1,4,3,2]).idescents()
[2, 3]
sage: Permutation([1,4,3,2]).idescents(final_descent=True)
[2, 3, 4]
sage: Permutation([1,4,3,2]).idescents(from_zero=True)
[1, 2]

idescents_signature(final_descent=False)
Return the list obtained as follows: Each position in self is mapped to −1 if it is an idescent and 1 if it is
not an idescent.

See idescents() for a definition of idescents.

With the final_descent option, the last position of a non-empty permutation is also considered as a
descent.

EXAMPLES:

1770 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Permutation([1,4,3,2]).idescents()
[2, 3]
sage: Permutation([1,4,3,2]).idescents_signature()
[1, -1, -1, 1]

imajor_index(final_descent=False)
Return the inverse major index of the permutation self, which is the major index of the inverse of self.

The major index of a permutation 𝑝 is the sum of the descents of 𝑝. Since our permutation indices are
0-based, we need to add the number of descents.

With the final_descent option, the last position of a non-empty permutation is also considered as a
descent.

EXAMPLES:

sage: Permutation([2,1,3]).imajor_index()
1
sage: Permutation([3,4,1,2]).imajor_index()
2
sage: Permutation([4,3,2,1]).imajor_index()
6

increasing_tree(compare=<built-in function min>)
Return the increasing tree associated to self.

EXAMPLES:

sage: Permutation([1,4,3,2]).increasing_tree()
1[., 2[3[4[., .], .], .]]
sage: Permutation([4,1,3,2]).increasing_tree()
1[4[., .], 2[3[., .], .]]

By passing the option compare=max one can have the decreasing tree instead:

sage: Permutation([2,3,4,1]).increasing_tree(max)
4[3[2[., .], .], 1[., .]]
sage: Permutation([2,3,1,4]).increasing_tree(max)
4[3[2[., .], 1[., .]], .]

increasing_tree_shape(compare=<built-in function min>)
Return the shape of the increasing tree associated with the permutation.

EXAMPLES:

sage: Permutation([1,4,3,2]).increasing_tree_shape()
[., [[[., .], .], .]]
sage: Permutation([4,1,3,2]).increasing_tree_shape()
[[., .], [[., .], .]]

By passing the option compare=max one can have the decreasing tree instead:

sage: Permutation([2,3,4,1]).increasing_tree_shape(max)
[[[., .], .], [., .]]
sage: Permutation([2,3,1,4]).increasing_tree_shape(max)
[[[., .], [., .]], .]

5.1. Comprehensive Module List 1771

Combinatorics, Release 9.7

inverse()
Return the inverse of self.

EXAMPLES:

sage: Permutation([3,8,5,10,9,4,6,1,7,2]).inverse()
[8, 10, 1, 6, 3, 7, 9, 2, 5, 4]
sage: Permutation([2, 4, 1, 5, 3]).inverse()
[3, 1, 5, 2, 4]
sage: ~Permutation([2, 4, 1, 5, 3])
[3, 1, 5, 2, 4]

inversions()
Return a list of the inversions of self.

An inversion of a permutation 𝑝 is a pair (𝑖, 𝑗) such that 𝑖 < 𝑗 and 𝑝(𝑖) > 𝑝(𝑗).

EXAMPLES:

sage: Permutation([3,2,4,1,5]).inversions()
[(1, 2), (1, 4), (2, 4), (3, 4)]

is_derangement()
Return if self is a derangement.

A permutation 𝜎 is a derangement if 𝜎 has no fixed points.

EXAMPLES:

sage: P = Permutation([1,4,2,3])
sage: P.is_derangement()
False
sage: P = Permutation([2,3,1])
sage: P.is_derangement()
True

is_even()
Return True if the permutation self is even and False otherwise.

EXAMPLES:

sage: Permutation([1,2,3]).is_even()
True
sage: Permutation([2,1,3]).is_even()
False

ishift(i)
Return the i-shift of self. If an i-shift of self can’t be performed, then self is returned.

An 𝑖-shift can be applied when 𝑖 is not inbetween 𝑖− 1 and 𝑖+ 1. The 𝑖-shift moves 𝑖 to the other side, and
leaves the relative positions of 𝑖 − 1 and 𝑖 + 1 in place. All other entries of the permutations are also left
in place.

EXAMPLES:

Here, 2 is to the left of both 1 and 3. A 2-shift can be applied which moves the 2 to the right and leaves 1
and 3 in their same relative order:

1772 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Permutation([2,1,3]).ishift(2)
[1, 3, 2]

All entries other than 𝑖, 𝑖− 1 and 𝑖+ 1 are unchanged:

sage: Permutation([2,4,1,3]).ishift(2)
[1, 4, 3, 2]

Since 2 is between 1 and 3 in [1,2,3], a 2-shift cannot be applied to [1,2,3]

sage: Permutation([1,2,3]).ishift(2)
[1, 2, 3]

iswitch(i)
Return the i-switch of self. If an i-switch of self can’t be performed, then self is returned.

An 𝑖-switch can be applied when the subsequence of self formed by the entries 𝑖 − 1, 𝑖 and 𝑖 + 1 is
neither increasing nor decreasing. In this case, this subsequence is reversed (i. e., its leftmost element and
its rightmost element switch places), while all other letters of self are kept in place.

EXAMPLES:

Here, 2 is to the left of both 1 and 3. A 2-switch can be applied which moves the 2 to the right and switches
the relative order between 1 and 3:

sage: Permutation([2,1,3]).iswitch(2)
[3, 1, 2]

All entries other than 𝑖− 1, 𝑖 and 𝑖+ 1 are unchanged:

sage: Permutation([2,4,1,3]).iswitch(2)
[3, 4, 1, 2]

Since 2 is between 1 and 3 in [1,2,3], a 2-switch cannot be applied to [1,2,3]

sage: Permutation([1,2,3]).iswitch(2)
[1, 2, 3]

left_action_product(lp)
Return the permutation obtained by composing self with lp in such an order that lp is applied first and
self is applied afterwards.

This is usually denoted by either self * lp or lp * self depending on the conventions used by the
author. If the value of a permutation 𝑝 ∈ 𝑆𝑛 on an integer 𝑖 ∈ {1, 2, · · · , 𝑛} is denoted by 𝑝(𝑖), then this
should be denoted by self * lp in order to have associativity (i.e., in order to have (𝑝 · 𝑞)(𝑖) = 𝑝(𝑞(𝑖))
for all 𝑝, 𝑞 and 𝑖). If, on the other hand, the value of a permutation 𝑝 ∈ 𝑆𝑛 on an integer 𝑖 ∈ {1, 2, · · · , 𝑛}
is denoted by 𝑖𝑝, then this should be denoted by lp * self in order to have associativity (i.e., in order to
have 𝑖𝑝·𝑞 = (𝑖𝑝)𝑞 for all 𝑝, 𝑞 and 𝑖).

EXAMPLES:

sage: p = Permutation([2,1,3])
sage: q = Permutation([3,1,2])
sage: p.left_action_product(q)
[3, 2, 1]
sage: q.left_action_product(p)
[1, 3, 2]

5.1. Comprehensive Module List 1773

Combinatorics, Release 9.7

left_tableau()
Return the left standard tableau after performing the RSK algorithm on self.

EXAMPLES:

sage: Permutation([1,4,3,2]).left_tableau()
[[1, 2], [3], [4]]

length()
Return the Coxeter length of self.

The length of a permutation 𝑝 is given by the number of inversions of 𝑝.

EXAMPLES:

sage: Permutation([5, 1, 3, 4, 2]).length()
6

longest_increasing_subsequence_length()
Return the length of the longest increasing subsequences of self.

EXAMPLES:

sage: Permutation([2,3,1,4]).longest_increasing_subsequence_length()
3
sage: all(i.longest_increasing_subsequence_length() == len(RSK(i)[0][0]) for i␣
→˓in Permutations(5))
True
sage: Permutation([]).longest_increasing_subsequence_length()
0

longest_increasing_subsequences()
Return the list of the longest increasing subsequences of self

A theorem of Schensted ([Sch1961]) states that an increasing subsequence of length 𝑖 ends with the value
entered in the 𝑖-th column of the p-tableau. The algorithm records which column of the p-tableau each
value of the permutation is entered into, creates a digraph to record all increasing subsequences, and reads
the paths from a source to a sink; these are the longest increasing subsequences.

EXAMPLES:

sage: Permutation([2,3,4,1]).longest_increasing_subsequences()
[[2, 3, 4]]
sage: Permutation([5, 7, 1, 2, 6, 4, 3]).longest_increasing_subsequences()
[[1, 2, 6], [1, 2, 4], [1, 2, 3]]

Note: This algorithm could be made faster using a balanced search tree for each column instead of sorted
lists. See discussion on trac ticket #31451.

longest_increasing_subsequences_number()
Return the number of increasing subsequences of maximal length in self.

The list of longest increasing subsequences of a permutation is given by
longest_increasing_subsequences(), and the length of these subsequences is given by
longest_increasing_subsequence_length().

1774 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/31451

Combinatorics, Release 9.7

The algorithm is similar to longest_increasing_subsequences(). Namely, the longest increasing
subsequences are encoded as increasing sequences in a ranked poset from a smallest to a largest element.
Their number can be obtained via dynamic programming : for each 𝑣 in the poset we compute the number
of paths from a smallest element to 𝑣.

EXAMPLES:

sage: sum(p.longest_increasing_subsequences_number() for p in Permutations(8))
120770

sage: p = Permutations(50).random_element()
sage: (len(p.longest_increasing_subsequences()) ==
....: p.longest_increasing_subsequences_number())
True

major_index(final_descent=False)
Return the major index of self.

The major index of a permutation 𝑝 is the sum of the descents of 𝑝. Since our permutation indices are
0-based, we need to add the number of descents.

With the final_descent option, the last position of a non-empty permutation is also considered as a
descent.

EXAMPLES:

sage: Permutation([2,1,3]).major_index()
1
sage: Permutation([3,4,1,2]).major_index()
2
sage: Permutation([4,3,2,1]).major_index()
6

multi_major_index(composition)
Return the multimajor index of this permutation with respect to composition.

INPUT:

• composition – a composition of the size() of this permutation

EXAMPLES:

sage: p = Permutation([5, 6, 2, 1, 3, 7, 4])
sage: p.multi_major_index([3, 2, 2])
[2, 0, 1]
sage: p.multi_major_index([7]) == [p.major_index()]
True
sage: p.multi_major_index([1]*7)
[0, 0, 0, 0, 0, 0, 0]
sage: Permutation([]).multi_major_index([])
[]

REFERENCES:

• [JS2000]

next()
Return the permutation that follows self in lexicographic order on the symmetric group containing self.
If self is the last permutation, then next returns False.

5.1. Comprehensive Module List 1775

Combinatorics, Release 9.7

EXAMPLES:

sage: p = Permutation([1, 3, 2])
sage: next(p)
[2, 1, 3]
sage: p = Permutation([4,3,2,1])
sage: next(p)
False

noninversions(k)
Return the list of all k-noninversions in self.

If 𝑘 is an integer and 𝑝 ∈ 𝑆𝑛 is a permutation, then a 𝑘-noninversion in 𝑝 is defined as a strictly increasing
sequence (𝑖1, 𝑖2, . . . , 𝑖𝑘) of elements of {1, 2, . . . , 𝑛} satisfying 𝑝(𝑖1) < 𝑝(𝑖2) < · · · < 𝑝(𝑖𝑘). (In other
words, a 𝑘-noninversion in 𝑝 can be regarded as a 𝑘-element subset of {1, 2, . . . , 𝑛} on which 𝑝 restricts to
an increasing map.)

EXAMPLES:

sage: p = Permutation([3, 2, 4, 1, 5])
sage: p.noninversions(1)
[[3], [2], [4], [1], [5]]
sage: p.noninversions(2)
[[3, 4], [3, 5], [2, 4], [2, 5], [4, 5], [1, 5]]
sage: p.noninversions(3)
[[3, 4, 5], [2, 4, 5]]
sage: p.noninversions(4)
[]
sage: p.noninversions(5)
[]

number_of_descents(final_descent=False)
Return the number of descents of self.

With the final_descent option, the last position of a non-empty permutation is also considered as a
descent.

EXAMPLES:

sage: Permutation([1,4,3,2]).number_of_descents()
2
sage: Permutation([1,4,3,2]).number_of_descents(final_descent=True)
3

number_of_fixed_points()
Return the number of fixed points of self.

EXAMPLES:

sage: Permutation([1,3,2,4]).number_of_fixed_points()
2
sage: Permutation([1,2,3,4]).number_of_fixed_points()
4

number_of_idescents(final_descent=False)
Return the number of idescents of self.

See idescents() for a definition of idescents.

1776 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

With the final_descent option, the last position of a non-empty permutation is also considered as a
descent.

EXAMPLES:

sage: Permutation([1,4,3,2]).number_of_idescents()
2
sage: Permutation([1,4,3,2]).number_of_idescents(final_descent=True)
3

number_of_inversions()
Return the number of inversions in self.

An inversion of a permutation is a pair of elements (𝑖, 𝑗) with 𝑖 < 𝑗 and 𝑝(𝑖) > 𝑝(𝑗).

REFERENCES:

• http://mathworld.wolfram.com/PermutationInversion.html

EXAMPLES:

sage: Permutation([3, 2, 4, 1, 5]).number_of_inversions()
4
sage: Permutation([1, 2, 6, 4, 7, 3, 5]).number_of_inversions()
6

number_of_noninversions(k)
Return the number of k-noninversions in self.

If 𝑘 is an integer and 𝑝 ∈ 𝑆𝑛 is a permutation, then a 𝑘-noninversion in 𝑝 is defined as a strictly increasing
sequence (𝑖1, 𝑖2, . . . , 𝑖𝑘) of elements of {1, 2, . . . , 𝑛} satisfying 𝑝(𝑖1) < 𝑝(𝑖2) < · · · < 𝑝(𝑖𝑘). (In other
words, a 𝑘-noninversion in 𝑝 can be regarded as a 𝑘-element subset of {1, 2, . . . , 𝑛} on which 𝑝 restricts to
an increasing map.)

The number of 𝑘-noninversions in 𝑝 has been denoted by noninv𝑘(𝑝) in [RSW2011], where conjectures
and results regarding this number have been stated.

EXAMPLES:

sage: p = Permutation([3, 2, 4, 1, 5])
sage: p.number_of_noninversions(1)
5
sage: p.number_of_noninversions(2)
6
sage: p.number_of_noninversions(3)
2
sage: p.number_of_noninversions(4)
0
sage: p.number_of_noninversions(5)
0

The number of 2-noninversions of a permutation 𝑝 ∈ 𝑆𝑛 is
(︀
𝑛
2

)︀
minus its number of inversions:

sage: b = binomial(5, 2)
sage: all(x.number_of_noninversions(2) == b - x.number_of_inversions()
....: for x in Permutations(5))
True

We also check some corner cases:

5.1. Comprehensive Module List 1777

http://mathworld.wolfram.com/PermutationInversion.html

Combinatorics, Release 9.7

sage: all(x.number_of_noninversions(1) == 5 for x in Permutations(5))
True
sage: all(x.number_of_noninversions(0) == 1 for x in Permutations(5))
True
sage: Permutation([]).number_of_noninversions(1)
0
sage: Permutation([]).number_of_noninversions(0)
1
sage: Permutation([2, 1]).number_of_noninversions(3)
0

number_of_peaks()
Return the number of peaks of the permutation self.

A peak of a permutation 𝑝 is an integer 𝑖 such that 𝑝(𝑖− 1) < 𝑝(𝑖) and 𝑝(𝑖) > 𝑝(𝑖+ 1).

EXAMPLES:

sage: Permutation([1,3,2,4,5]).number_of_peaks()
1
sage: Permutation([4,1,3,2,6,5]).number_of_peaks()
2

number_of_recoils()
Return the number of recoils of the permutation self.

EXAMPLES:

sage: Permutation([1,4,3,2]).number_of_recoils()
2

number_of_saliances()
Return the number of saliances of self.

A saliance of a permutation 𝑝 is an integer 𝑖 such that 𝑝(𝑖) > 𝑝(𝑗) for all 𝑗 > 𝑖.

EXAMPLES:

sage: Permutation([2,3,1,5,4]).number_of_saliances()
2
sage: Permutation([5,4,3,2,1]).number_of_saliances()
5

pattern_positions(patt)
Return the list of positions where the pattern patt appears in the permutation self.

EXAMPLES:

sage: Permutation([3,5,1,4,6,2]).pattern_positions([1,3,2])
[[0, 1, 3], [2, 3, 5], [2, 4, 5]]

peaks()
Return a list of the peaks of the permutation self.

A peak of a permutation 𝑝 is an integer 𝑖 such that 𝑝(𝑖− 1) < 𝑝(𝑖) and 𝑝(𝑖) > 𝑝(𝑖+ 1).

EXAMPLES:

1778 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Permutation([1,3,2,4,5]).peaks()
[1]
sage: Permutation([4,1,3,2,6,5]).peaks()
[2, 4]
sage: Permutation([]).peaks()
[]

permutation_poset()
Return the permutation poset of self.

The permutation poset of a permutation 𝑝 is the poset with vertices (𝑖, 𝑝(𝑖)) for 𝑖 = 1, 2, . . . , 𝑛 (where 𝑛 is
the size of 𝑝) and order inherited from Z× Z.

EXAMPLES:

sage: Permutation([3,1,5,4,2]).permutation_poset().cover_relations()
[[(2, 1), (5, 2)],
[(2, 1), (3, 5)],
[(2, 1), (4, 4)],
[(1, 3), (3, 5)],
[(1, 3), (4, 4)]]
sage: Permutation([]).permutation_poset().cover_relations()
[]
sage: Permutation([1,3,2]).permutation_poset().cover_relations()
[[(1, 1), (2, 3)], [(1, 1), (3, 2)]]
sage: Permutation([1,2]).permutation_poset().cover_relations()
[[(1, 1), (2, 2)]]
sage: P = Permutation([1,5,2,4,3])
sage: P.permutation_poset().greene_shape() == P.RS_partition() # This should␣
→˓hold for any P.
True

permutohedron_greater(side='right')
Return a list of permutations greater than or equal to self in the permutohedron order.

By default, the computations are done in the right permutohedron. If you pass the option side='left',
then they will be done in the left permutohedron.

See permutohedron_lequal() for the definition of the permutohedron orders.

EXAMPLES:

sage: Permutation([4,2,1,3]).permutohedron_greater()
[[4, 2, 1, 3], [4, 2, 3, 1], [4, 3, 2, 1]]
sage: Permutation([4,2,1,3]).permutohedron_greater(side='left')
[[4, 2, 1, 3], [4, 3, 1, 2], [4, 3, 2, 1]]

permutohedron_join(other, side='right')
Return the join of the permutations self and other in the right permutohedron order (or, if side is set to
'left', in the left permutohedron order).

The permutohedron orders (see permutohedron_lequal()) are lattices; the join operation refers to this
lattice structure. In more elementary terms, the join of two permutations 𝜋 and𝜓 in the symmetric group𝑆𝑛
is the permutation in 𝑆𝑛 whose set of inversion is the transitive closure of the union of the set of inversions
of 𝜋 with the set of inversions of 𝜓.

5.1. Comprehensive Module List 1779

Combinatorics, Release 9.7

See also:

permutohedron_lequal(), permutohedron_meet().

ALGORITHM:

It is enough to construct the join of any two permutations 𝜋 and𝜓 in 𝑆𝑛 with respect to the right weak order.
(The join of 𝜋 and𝜓 with respect to the left weak order is the inverse of the join of 𝜋−1 and𝜓−1 with respect
to the right weak order.) Start with an empty list 𝑙 (denoted xs in the actual code). For 𝑖 = 1, 2, . . . , 𝑛 (in
this order), we insert 𝑖 into this list in the rightmost possible position such that any letter in {1, 2, ..., 𝑖− 1}
which appears further right than 𝑖 in either 𝜋 or 𝜓 (or both) must appear further right than 𝑖 in the resulting
list. After all numbers are inserted, we are left with a list which is precisely the join of 𝜋 and 𝜓 (in one-line
notation). This algorithm is due to Markowsky, [Mar1994] (Theorem 1 (a)).

AUTHORS:

Viviane Pons and Darij Grinberg, 18 June 2014.

EXAMPLES:

sage: p = Permutation([3,1,2])
sage: q = Permutation([1,3,2])
sage: p.permutohedron_join(q)
[3, 1, 2]
sage: r = Permutation([2,1,3])
sage: r.permutohedron_join(p)
[3, 2, 1]

sage: p = Permutation([3,2,4,1])
sage: q = Permutation([4,2,1,3])
sage: p.permutohedron_join(q)
[4, 3, 2, 1]
sage: r = Permutation([3,1,2,4])
sage: p.permutohedron_join(r)
[3, 2, 4, 1]
sage: q.permutohedron_join(r)
[4, 3, 2, 1]
sage: s = Permutation([1,4,2,3])
sage: s.permutohedron_join(r)
[4, 3, 1, 2]

The universal property of the join operation is satisfied:

sage: def test_uni_join(p, q):
....: j = p.permutohedron_join(q)
....: if not p.permutohedron_lequal(j):
....: return False
....: if not q.permutohedron_lequal(j):
....: return False
....: for r in p.permutohedron_greater():
....: if q.permutohedron_lequal(r) and not j.permutohedron_lequal(r):
....: return False
....: return True
sage: all(test_uni_join(p, q) for p in Permutations(3) for q in␣
→˓Permutations(3))
True

(continues on next page)

1780 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: test_uni_join(Permutation([6, 4, 7, 3, 2, 5, 8, 1]), Permutation([7, 3, 1,
→˓ 2, 5, 4, 6, 8]))
True

Border cases:

sage: p = Permutation([])
sage: p.permutohedron_join(p)
[]
sage: p = Permutation([1])
sage: p.permutohedron_join(p)
[1]

The left permutohedron:

sage: p = Permutation([3,1,2]) sage: q = Permutation([1,3,2]) sage: p.permutohedron_join(q,
side=”left”) [3, 2, 1] sage: r = Permutation([2,1,3]) sage: r.permutohedron_join(p, side=”left”)
[3, 1, 2]

permutohedron_lequal(p2, side='right')
Return True if self is less or equal to p2 in the permutohedron order.

By default, the computations are done in the right permutohedron. If you pass the option side='left',
then they will be done in the left permutohedron.

For every nonnegative integer 𝑛, the right (resp. left) permutohedron order (also called the right (resp. left)
weak order, or the right (resp. left) weak Bruhat order) is a partial order on the symmetric group 𝑆𝑛. It can
be defined in various ways, including the following ones:

• Two permutations 𝑢 and 𝑣 in 𝑆𝑛 satisfy 𝑢 ≤ 𝑣 in the right (resp. left) permutohedron order if and only
if the (Coxeter) length of the permutation 𝑣−1 ∘ 𝑢 (resp. of the permutation 𝑢 ∘ 𝑣−1) equals the length
of 𝑣 minus the length of 𝑢. Here, 𝑝 ∘ 𝑞 means the permutation obtained by applying 𝑞 first and then 𝑝.
(Recall that the Coxeter length of a permutation is its number of inversions.)

• Two permutations 𝑢 and 𝑣 in 𝑆𝑛 satisfy 𝑢 ≤ 𝑣 in the right (resp. left) permutohedron order if and
only if every pair (𝑖, 𝑗) of elements of {1, 2, · · · , 𝑛} such that 𝑖 < 𝑗 and 𝑢−1(𝑖) > 𝑢−1(𝑗) (resp.
𝑢(𝑖) > 𝑢(𝑗)) also satisfies 𝑣−1(𝑖) > 𝑣−1(𝑗) (resp. 𝑣(𝑖) > 𝑣(𝑗)).

• A permutation 𝑣 ∈ 𝑆𝑛 covers a permutation 𝑢 ∈ 𝑆𝑛 in the right (resp. left) permutohedron order if
and only if we have 𝑣 = 𝑢∘(𝑖, 𝑖+1) (resp. 𝑣 = (𝑖, 𝑖+1)∘𝑢) for some 𝑖 ∈ {1, 2, · · · , 𝑛−1} satisfying
𝑢(𝑖) < 𝑢(𝑖+ 1) (resp. 𝑢−1(𝑖) < 𝑢−1(𝑖+ 1)). Here, again, 𝑝 ∘ 𝑞 means the permutation obtained by
applying 𝑞 first and then 𝑝.

The right and the left permutohedron order are mutually isomorphic, with the isomorphism being the map
sending every permutation to its inverse. Each of these orders endows the symmetric group 𝑆𝑛 with the
structure of a graded poset (the rank function being the Coxeter length).

Warning: The permutohedron order is not to be mistaken for the strong Bruhat order
(bruhat_lequal()), despite both orders being occasionally referred to as the Bruhat order.

EXAMPLES:

sage: p = Permutation([3,2,1,4])
sage: p.permutohedron_lequal(Permutation([4,2,1,3]))
False

(continues on next page)

5.1. Comprehensive Module List 1781

Combinatorics, Release 9.7

(continued from previous page)

sage: p.permutohedron_lequal(Permutation([4,2,1,3]), side='left')
True
sage: p.permutohedron_lequal(p)
True

sage: Permutation([2,1,3]).permutohedron_lequal(Permutation([2,3,1]))
True
sage: Permutation([2,1,3]).permutohedron_lequal(Permutation([3,1,2]))
False
sage: Permutation([2,1,3]).permutohedron_lequal(Permutation([1,2,3]))
False
sage: Permutation([1,3,2]).permutohedron_lequal(Permutation([2,1,3]))
False
sage: Permutation([1,3,2]).permutohedron_lequal(Permutation([2,3,1]))
False
sage: Permutation([2,3,1]).permutohedron_lequal(Permutation([1,3,2]))
False
sage: Permutation([2,1,3]).permutohedron_lequal(Permutation([2,3,1]), side='left
→˓')
False
sage: sorted([len([b for b in Permutations(3) if a.permutohedron_lequal(b)])
....: for a in Permutations(3)])
[1, 2, 2, 3, 3, 6]
sage: sorted([len([b for b in Permutations(3) if a.permutohedron_lequal(b,␣
→˓side="left")])
....: for a in Permutations(3)])
[1, 2, 2, 3, 3, 6]

sage: Permutation([]).permutohedron_lequal(Permutation([]))
True

permutohedron_meet(other, side='right')
Return the meet of the permutations self and other in the right permutohedron order (or, if side is set
to 'left', in the left permutohedron order).

The permutohedron orders (see permutohedron_lequal()) are lattices; the meet operation refers to this
lattice structure. It is connected to the join operation by the following simple symmetry property: If 𝜋 and
𝜓 are two permutations 𝜋 and 𝜓 in the symmetric group 𝑆𝑛, and if 𝑤0 denotes the permutation (𝑛, 𝑛 −
1, . . . , 1) ∈ 𝑆𝑛, then

𝜋 ∧ 𝜓 = 𝑤0 ∘ ((𝑤0 ∘ 𝜋) ∨ (𝑤0 ∘ 𝜓)) = ((𝜋 ∘ 𝑤0) ∨ (𝜓 ∘ 𝑤0)) ∘ 𝑤0

and

𝜋 ∨ 𝜓 = 𝑤0 ∘ ((𝑤0 ∘ 𝜋) ∧ (𝑤0 ∘ 𝜓)) = ((𝜋 ∘ 𝑤0) ∧ (𝜓 ∘ 𝑤0)) ∘ 𝑤0,

where ∧ means meet and ∨ means join.

See also:

permutohedron_lequal(), permutohedron_join().

AUTHORS:

Viviane Pons and Darij Grinberg, 18 June 2014.

EXAMPLES:

1782 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p = Permutation([3,1,2])
sage: q = Permutation([1,3,2])
sage: p.permutohedron_meet(q)
[1, 3, 2]
sage: r = Permutation([2,1,3])
sage: r.permutohedron_meet(p)
[1, 2, 3]

sage: p = Permutation([3,2,4,1])
sage: q = Permutation([4,2,1,3])
sage: p.permutohedron_meet(q)
[2, 1, 3, 4]
sage: r = Permutation([3,1,2,4])
sage: p.permutohedron_meet(r)
[3, 1, 2, 4]
sage: q.permutohedron_meet(r)
[1, 2, 3, 4]
sage: s = Permutation([1,4,2,3])
sage: s.permutohedron_meet(r)
[1, 2, 3, 4]

The universal property of the meet operation is satisfied:

sage: def test_uni_meet(p, q):
....: m = p.permutohedron_meet(q)
....: if not m.permutohedron_lequal(p):
....: return False
....: if not m.permutohedron_lequal(q):
....: return False
....: for r in p.permutohedron_smaller():
....: if r.permutohedron_lequal(q) and not r.permutohedron_lequal(m):
....: return False
....: return True
sage: all(test_uni_meet(p, q) for p in Permutations(3) for q in␣
→˓Permutations(3))
True
sage: test_uni_meet(Permutation([6, 4, 7, 3, 2, 5, 8, 1]), Permutation([7, 3, 1,
→˓ 2, 5, 4, 6, 8]))
True

Border cases:

sage: p = Permutation([])
sage: p.permutohedron_meet(p)
[]
sage: p = Permutation([1])
sage: p.permutohedron_meet(p)
[1]

The left permutohedron:

sage: p = Permutation([3,1,2]) sage: q = Permutation([1,3,2]) sage: p.permutohedron_meet(q,
side=”left”) [1, 2, 3] sage: r = Permutation([2,1,3]) sage: r.permutohedron_meet(p, side=”left”)
[2, 1, 3]

5.1. Comprehensive Module List 1783

Combinatorics, Release 9.7

permutohedron_pred(side='right')
Return a list of the permutations strictly smaller than self in the permutohedron order such that there is
no permutation between any of those and self.

By default, the computations are done in the right permutohedron. If you pass the option side='left',
then they will be done in the left permutohedron.

See permutohedron_lequal() for the definition of the permutohedron orders.

EXAMPLES:

sage: p = Permutation([4,2,1,3])
sage: p.permutohedron_pred()
[[2, 4, 1, 3], [4, 1, 2, 3]]
sage: p.permutohedron_pred(side='left')
[[4, 1, 2, 3], [3, 2, 1, 4]]

permutohedron_smaller(side='right')
Return a list of permutations smaller than or equal to self in the permutohedron order.

By default, the computations are done in the right permutohedron. If you pass the option side='left',
then they will be done in the left permutohedron.

See permutohedron_lequal() for the definition of the permutohedron orders.

EXAMPLES:

sage: Permutation([4,2,1,3]).permutohedron_smaller()
[[1, 2, 3, 4],
[1, 2, 4, 3],
[1, 4, 2, 3],
[2, 1, 3, 4],
[2, 1, 4, 3],
[2, 4, 1, 3],
[4, 1, 2, 3],
[4, 2, 1, 3]]

sage: Permutation([4,2,1,3]).permutohedron_smaller(side='left')
[[1, 2, 3, 4],
[1, 3, 2, 4],
[2, 1, 3, 4],
[2, 3, 1, 4],
[3, 1, 2, 4],
[3, 2, 1, 4],
[4, 1, 2, 3],
[4, 2, 1, 3]]

permutohedron_succ(side='right')
Return a list of the permutations strictly greater than self in the permutohedron order such that there is no
permutation between any of those and self.

By default, the computations are done in the right permutohedron. If you pass the option side='left',
then they will be done in the left permutohedron.

See permutohedron_lequal() for the definition of the permutohedron orders.

EXAMPLES:

1784 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p = Permutation([4,2,1,3])
sage: p.permutohedron_succ()
[[4, 2, 3, 1]]
sage: p.permutohedron_succ(side='left')
[[4, 3, 1, 2]]

prev()
Return the permutation that comes directly before self in lexicographic order on the symmetric group
containing self. If self is the first permutation, then it returns False.

EXAMPLES:

sage: p = Permutation([1,2,3])
sage: p.prev()
False
sage: p = Permutation([1,3,2])
sage: p.prev()
[1, 2, 3]

rank()
Return the rank of self in the lexicographic ordering on the symmetric group to which self belongs.

EXAMPLES:

sage: Permutation([1,2,3]).rank()
0
sage: Permutation([1, 2, 4, 6, 3, 5]).rank()
10
sage: perms = Permutations(6).list()
sage: [p.rank() for p in perms] == list(range(factorial(6)))
True

recoils()
Return the list of the positions of the recoils of self.

A recoil of a permutation 𝑝 is an integer 𝑖 such that 𝑖 + 1 appears to the left of 𝑖 in 𝑝. Here, the positions
are being counted starting at 0. (Note that it is the positions, not the recoils themselves, which are being
listed.)

EXAMPLES:

sage: Permutation([1,4,3,2]).recoils()
[2, 3]
sage: Permutation([]).recoils()
[]

recoils_composition()
Return the recoils composition of self.

The recoils composition of a permutation 𝑝 ∈ 𝑆𝑛 is the composition of 𝑛 whose descent set is the set of
the recoils of 𝑝 (not their positions). In other words, this is the descents composition of 𝑝−1.

EXAMPLES:

sage: Permutation([1,3,2,4]).recoils_composition()
[2, 2]

(continues on next page)

5.1. Comprehensive Module List 1785

Combinatorics, Release 9.7

(continued from previous page)

sage: Permutation([]).recoils_composition()
[]

reduced_word()
Return a reduced word of the permutation self.

See reduced_words() for the definition of reduced words and a way to compute them all.

Warning: This does not respect the multiplication convention.

EXAMPLES:

sage: Permutation([3,5,4,6,2,1]).reduced_word()
[2, 1, 4, 3, 2, 4, 3, 5, 4, 5]

Permutation([1]).reduced_word_lexmin()
[]
Permutation([]).reduced_word_lexmin()
[]

reduced_word_lexmin()
Return a lexicographically minimal reduced word of the permutation self.

See reduced_words() for the definition of reduced words and a way to compute them all.

EXAMPLES:

sage: Permutation([3,4,2,1]).reduced_word_lexmin()
[1, 2, 1, 3, 2]

Permutation([1]).reduced_word_lexmin()
[]
Permutation([]).reduced_word_lexmin()
[]

reduced_words()
Return a list of the reduced words of self.

The notion of a reduced word is based on the well-known fact that every permutation can be written as a
product of adjacent transpositions. In more detail: If 𝑛 is a nonnegative integer, we can define the transpo-
sitions 𝑠𝑖 = (𝑖, 𝑖+ 1) ∈ 𝑆𝑛 for all 𝑖 ∈ {1, 2, . . . , 𝑛−1}, and every 𝑝 ∈ 𝑆𝑛 can then be written as a product
𝑠𝑖1𝑠𝑖2 · · · 𝑠𝑖𝑘 for some sequence (𝑖1, 𝑖2, . . . , 𝑖𝑘) of elements of {1, 2, . . . , 𝑛 − 1} (here {1, 2, . . . , 𝑛 − 1}
denotes the empty set when 𝑛 ≤ 1). Fixing a 𝑝, the sequences (𝑖1, 𝑖2, . . . , 𝑖𝑘) of smallest length satisfying
𝑝 = 𝑠𝑖1𝑠𝑖2 · · · 𝑠𝑖𝑘 are called the reduced words of 𝑝. (Their length is the Coxeter length of 𝑝, and can be
computed using length().)

Note that the product of permutations is defined here in such a way that (𝑝𝑞)(𝑖) = 𝑝(𝑞(𝑖)) for all permu-
tations 𝑝 and 𝑞 and each 𝑖 ∈ {1, 2, . . . , 𝑛} (this is the same convention as in left_action_product(),
but not the default semantics of the * operator on permutations in Sage). Thus, for instance, 𝑠2𝑠1 is the
permutation obtained by first transposing 1 with 2 and then transposing 2 with 3.

See also:

reduced_word(), reduced_word_lexmin()

EXAMPLES:

1786 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Permutation([2,1,3]).reduced_words()
[[1]]
sage: Permutation([3,1,2]).reduced_words()
[[2, 1]]
sage: Permutation([3,2,1]).reduced_words()
[[1, 2, 1], [2, 1, 2]]
sage: Permutation([3,2,4,1]).reduced_words()
[[1, 2, 3, 1], [1, 2, 1, 3], [2, 1, 2, 3]]

Permutation([1]).reduced_words()
[[]]
Permutation([]).reduced_words()
[[]]

reduced_words_iterator()
Return an iterator for the reduced words of self.

EXAMPLES:

sage: next(Permutation([5,2,3,4,1]).reduced_words_iterator())
[1, 2, 3, 4, 3, 2, 1]

remove_extra_fixed_points()
Return the permutation obtained by removing any fixed points at the end of self.

However, return [1] rather than [] if self is the identity permutation.

This is mostly a helper method for sage.combinat.schubert_polynomial, where it is used to normal-
ize finitary permutations of {1, 2, 3, . . .}.

EXAMPLES:

sage: Permutation([2,1,3]).remove_extra_fixed_points()
[2, 1]
sage: Permutation([1,2,3,4]).remove_extra_fixed_points()
[1]
sage: Permutation([2,1]).remove_extra_fixed_points()
[2, 1]
sage: Permutation([]).remove_extra_fixed_points()
[1]

See also:

retract_plain()

retract_direct_product(m)
Return the direct-product retract of the permutation self ∈ 𝑆𝑛 to 𝑆𝑚, where 𝑚 ≤ 𝑛. If this retract is
undefined, then None is returned.

If 𝑝 ∈ 𝑆𝑛 is a permutation, and𝑚 is a nonnegative integer less or equal to 𝑛, then the direct-product retract
of 𝑝 to 𝑆𝑚 is defined only if 𝑝([𝑚]) = [𝑚], where [𝑚] denotes the interval {1, 2, . . . ,𝑚}. In this case, it is
defined as the permutation written (𝑝(1), 𝑝(2), . . . , 𝑝(𝑚)) in one-line notation.

EXAMPLES:

sage: Permutation([4,1,2,3,5]).retract_direct_product(4)
[4, 1, 2, 3]

(continues on next page)

5.1. Comprehensive Module List 1787

Combinatorics, Release 9.7

(continued from previous page)

sage: Permutation([4,1,2,3,5]).retract_direct_product(3)

sage: Permutation([1,4,2,3,6,5]).retract_direct_product(5)
sage: Permutation([1,4,2,3,6,5]).retract_direct_product(4)
[1, 4, 2, 3]
sage: Permutation([1,4,2,3,6,5]).retract_direct_product(3)
sage: Permutation([1,4,2,3,6,5]).retract_direct_product(2)
sage: Permutation([1,4,2,3,6,5]).retract_direct_product(1)
[1]
sage: Permutation([1,4,2,3,6,5]).retract_direct_product(0)
[]

sage: all(p.retract_direct_product(3) == p for p in Permutations(3))
True

See also:

retract_plain(), retract_okounkov_vershik()

retract_okounkov_vershik(m)
Return the Okounkov-Vershik retract of the permutation self ∈ 𝑆𝑛 to 𝑆𝑚, where 𝑚 ≤ 𝑛.

If 𝑝 ∈ 𝑆𝑛 is a permutation, and 𝑚 is a nonnegative integer less or equal to 𝑛, then the Okounkov-Vershik
retract of 𝑝 to 𝑆𝑚 is defined as the permutation in 𝑆𝑚 which sends every 𝑖 ∈ {1, 2, . . . ,𝑚} to 𝑝𝑘𝑖(𝑖), where
𝑘𝑖 is the smallest positive integer 𝑘 satisfying 𝑝𝑘(𝑖) ≤ 𝑚.

In other words, the Okounkov-Vershik retract of 𝑝 is the permutation whose disjoint cycle decomposition
is obtained by removing all letters strictly greater than 𝑚 from the decomposition of 𝑝 into disjoint cycles
(and removing all cycles which are emptied in the process).

When 𝑚 = 𝑛 − 1, the Okounkov-Vershik retract (as a map 𝑆𝑛 → 𝑆𝑛−1) is the map ̃︀𝑝𝑛 introduced in
Section 7 of [VO2005], and appears as (3.20) in [CST2010]. In the general case, the Okounkov-Vershik
retract of a permutation in 𝑆𝑛 to 𝑆𝑚 can be obtained by first taking its Okounkov-Vershik retract to 𝑆𝑛−1,
then that of the resulting permutation to 𝑆𝑛−2, etc. until arriving in 𝑆𝑚.

EXAMPLES:

sage: Permutation([4,1,2,3,5]).retract_okounkov_vershik(4)
[4, 1, 2, 3]
sage: Permutation([4,1,2,3,5]).retract_okounkov_vershik(3)
[3, 1, 2]
sage: Permutation([4,1,2,3,5]).retract_okounkov_vershik(2)
[2, 1]
sage: Permutation([4,1,2,3,5]).retract_okounkov_vershik(1)
[1]
sage: Permutation([4,1,2,3,5]).retract_okounkov_vershik(0)
[]

sage: Permutation([1,4,2,3,6,5]).retract_okounkov_vershik(5)
[1, 4, 2, 3, 5]
sage: Permutation([1,4,2,3,6,5]).retract_okounkov_vershik(4)
[1, 4, 2, 3]
sage: Permutation([1,4,2,3,6,5]).retract_okounkov_vershik(3)
[1, 3, 2]
sage: Permutation([1,4,2,3,6,5]).retract_okounkov_vershik(2)

(continues on next page)

1788 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1, 2]
sage: Permutation([1,4,2,3,6,5]).retract_okounkov_vershik(1)
[1]
sage: Permutation([1,4,2,3,6,5]).retract_okounkov_vershik(0)
[]

sage: Permutation([6,5,4,3,2,1]).retract_okounkov_vershik(5)
[1, 5, 4, 3, 2]
sage: Permutation([6,5,4,3,2,1]).retract_okounkov_vershik(4)
[1, 2, 4, 3]

sage: Permutation([1,5,2,6,3,7,4,8]).retract_okounkov_vershik(4)
[1, 3, 2, 4]

sage: all(p.retract_direct_product(3) == p for p in Permutations(3))
True

See also:

retract_plain(), retract_direct_product()

retract_plain(m)
Return the plain retract of the permutation self in 𝑆𝑛 to 𝑆𝑚, where 𝑚 ≤ 𝑛. If this retract is undefined,
then None is returned.

If 𝑝 ∈ 𝑆𝑛 is a permutation, and 𝑚 is a nonnegative integer less or equal to 𝑛, then the plain retract of 𝑝 to
𝑆𝑚 is defined only if every 𝑖 > 𝑚 satisfies 𝑝(𝑖) = 𝑖. In this case, it is defined as the permutation written
(𝑝(1), 𝑝(2), . . . , 𝑝(𝑚)) in one-line notation.

EXAMPLES:

sage: Permutation([4,1,2,3,5]).retract_plain(4)
[4, 1, 2, 3]
sage: Permutation([4,1,2,3,5]).retract_plain(3)

sage: Permutation([1,3,2,4,5,6]).retract_plain(3)
[1, 3, 2]
sage: Permutation([1,3,2,4,5,6]).retract_plain(2)

sage: Permutation([1,2,3,4,5]).retract_plain(1)
[1]
sage: Permutation([1,2,3,4,5]).retract_plain(0)
[]

sage: all(p.retract_plain(3) == p for p in Permutations(3))
True

See also:

retract_direct_product(), retract_okounkov_vershik(), remove_extra_fixed_points()

reverse()
Return the permutation obtained by reversing the list.

EXAMPLES:

5.1. Comprehensive Module List 1789

Combinatorics, Release 9.7

sage: Permutation([3,4,1,2]).reverse()
[2, 1, 4, 3]
sage: Permutation([1,2,3,4,5]).reverse()
[5, 4, 3, 2, 1]

right_action_product(rp)
Return the permutation obtained by composing self with rp in such an order that self is applied first and
rp is applied afterwards.

This is usually denoted by either self * rp or rp * self depending on the conventions used by the
author. If the value of a permutation 𝑝 ∈ 𝑆𝑛 on an integer 𝑖 ∈ {1, 2, · · · , 𝑛} is denoted by 𝑝(𝑖), then this
should be denoted by rp * self in order to have associativity (i.e., in order to have (𝑝 · 𝑞)(𝑖) = 𝑝(𝑞(𝑖))
for all 𝑝, 𝑞 and 𝑖). If, on the other hand, the value of a permutation 𝑝 ∈ 𝑆𝑛 on an integer 𝑖 ∈ {1, 2, · · · , 𝑛}
is denoted by 𝑖𝑝, then this should be denoted by self * rp in order to have associativity (i.e., in order to
have 𝑖𝑝·𝑞 = (𝑖𝑝)𝑞 for all 𝑝, 𝑞 and 𝑖).

EXAMPLES:

sage: p = Permutation([2,1,3])
sage: q = Permutation([3,1,2])
sage: p.right_action_product(q)
[1, 3, 2]
sage: q.right_action_product(p)
[3, 2, 1]

right_permutohedron_interval(other)
Return the list of the permutations belonging to the right permutohedron interval where self is the minimal
element and other the maximal element.

See permutohedron_lequal() for the definition of the permutohedron orders.

EXAMPLES:

sage: Permutation([2, 1, 4, 5, 3]).right_permutohedron_interval(Permutation([2,␣
→˓5, 4, 1, 3]))
[[2, 4, 5, 1, 3], [2, 4, 1, 5, 3], [2, 1, 4, 5, 3], [2, 1, 5, 4, 3], [2, 5, 1,␣
→˓4, 3], [2, 5, 4, 1, 3]]

right_permutohedron_interval_iterator(other)
Return an iterator on the permutations (represented as integer lists) belonging to the right permutohedron
interval where self is the minimal element and other the maximal element.

See permutohedron_lequal() for the definition of the permutohedron orders.

EXAMPLES:

sage: Permutation([2, 1, 4, 5, 3]).right_permutohedron_interval(Permutation([2,␣
→˓5, 4, 1, 3])) # indirect doctest
[[2, 4, 5, 1, 3], [2, 4, 1, 5, 3], [2, 1, 4, 5, 3], [2, 1, 5, 4, 3], [2, 5, 1,␣
→˓4, 3], [2, 5, 4, 1, 3]]

right_tableau()
Return the right standard tableau after performing the RSK algorithm on self.

EXAMPLES:

1790 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Permutation([1,4,3,2]).right_tableau()
[[1, 2], [3], [4]]

robinson_schensted()
Return the pair of standard tableaux obtained by running the Robinson-Schensted algorithm on self.

This can also be done by running RSK() on self (with the optional argument check_standard=True to
return standard Young tableaux).

EXAMPLES:

sage: Permutation([6,2,3,1,7,5,4]).robinson_schensted()
[[[1, 3, 4], [2, 5], [6, 7]], [[1, 3, 5], [2, 6], [4, 7]]]

runs(as_tuple=False)
Return a list of the runs in the nonempty permutation self.

A run in a permutation is defined to be a maximal (with respect to inclusion) nonempty increasing substring
(i. e., contiguous subsequence). For instance, the runs in the permutation [6,1,7,3,4,5,2] are [6], [1,
7], [3,4,5] and [2].

Runs in an empty permutation are not defined.

INPUT:

• as_tuple – boolean (default: False) choice of output format

OUTPUT:

a list of lists or a tuple of tuples

REFERENCES:

• http://mathworld.wolfram.com/PermutationRun.html

EXAMPLES:

sage: Permutation([1,2,3,4]).runs()
[[1, 2, 3, 4]]
sage: Permutation([4,3,2,1]).runs()
[[4], [3], [2], [1]]
sage: Permutation([2,4,1,3]).runs()
[[2, 4], [1, 3]]
sage: Permutation([1]).runs()
[[1]]

The example from above:

sage: Permutation([6,1,7,3,4,5,2]).runs()
[[6], [1, 7], [3, 4, 5], [2]]
sage: Permutation([6,1,7,3,4,5,2]).runs(as_tuple=True)
((6,), (1, 7), (3, 4, 5), (2,))

The number of runs in a nonempty permutation equals its number of descents plus 1:

sage: all(len(p.runs()) == p.number_of_descents() + 1
....: for p in Permutations(6))
True

5.1. Comprehensive Module List 1791

http://mathworld.wolfram.com/PermutationRun.html

Combinatorics, Release 9.7

saliances()
Return a list of the saliances of the permutation self.

A saliance of a permutation 𝑝 is an integer 𝑖 such that 𝑝(𝑖) > 𝑝(𝑗) for all 𝑗 > 𝑖.

EXAMPLES:

sage: Permutation([2,3,1,5,4]).saliances()
[3, 4]
sage: Permutation([5,4,3,2,1]).saliances()
[0, 1, 2, 3, 4]

shifted_concatenation(other, side='right')
Return the right (or left) shifted concatenation of self with a permutation other. These operations are
also known as the Loday-Ronco over and under operations.

INPUT:

• other – a permutation, a list, a tuple, or any iterable representing a permutation.

• side – (default: "right") the string “left” or “right”.

OUTPUT:

If side is "right", the method returns the permutation obtained by concatenating self with the letters
of other incremented by the size of self. This is what is called side / other in [LR0102066], and
denoted as the “over” operation. Otherwise, i. e., when side is "left", the method returns the permutation
obtained by concatenating the letters of other incremented by the size of self with self. This is what
is called side \ other in [LR0102066] (which seems to use the (𝜎𝜋)(𝑖) = 𝜋(𝜎(𝑖)) convention for the
product of permutations).

EXAMPLES:

sage: Permutation([]).shifted_concatenation(Permutation([]), "right")
[]
sage: Permutation([]).shifted_concatenation(Permutation([]), "left")
[]
sage: Permutation([2, 4, 1, 3]).shifted_concatenation(Permutation([3, 1, 2]),
→˓"right")
[2, 4, 1, 3, 7, 5, 6]
sage: Permutation([2, 4, 1, 3]).shifted_concatenation(Permutation([3, 1, 2]),
→˓"left")
[7, 5, 6, 2, 4, 1, 3]

shifted_shuffle(other)
Return the shifted shuffle of two permutations self and other.

INPUT:

• other – a permutation, a list, a tuple, or any iterable representing a permutation.

OUTPUT:

The list of the permutations appearing in the shifted shuffle of the permutations self and other.

EXAMPLES:

sage: Permutation([]).shifted_shuffle(Permutation([]))
[[]]
sage: Permutation([1, 2, 3]).shifted_shuffle(Permutation([1]))

(continues on next page)

1792 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[4, 1, 2, 3], [1, 2, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3]]
sage: Permutation([1, 2]).shifted_shuffle(Permutation([2, 1]))
[[4, 1, 3, 2], [4, 3, 1, 2], [1, 4, 3, 2], [1, 4, 2, 3], [1, 2, 4, 3], [4, 1, 2,
→˓ 3]]
sage: Permutation([1]).shifted_shuffle([1])
[[2, 1], [1, 2]]
sage: len(Permutation([3, 1, 5, 4, 2]).shifted_shuffle(Permutation([2, 1, 4,␣
→˓3])))
126

The shifted shuffle product is associative. We can test this on an admittedly toy example:

sage: all(all(all(sorted(flatten([abs.shifted_shuffle(c)
....: for abs in a.shifted_shuffle(b)]))
....: == sorted(flatten([a.shifted_shuffle(bcs)
....: for bcs in b.shifted_shuffle(c)]))
....: for c in Permutations(2))
....: for b in Permutations(2))
....: for a in Permutations(2))
True

The shifted_shuffle method on permutations gives the same permutations as the shifted_shuffle
method on words (but is faster):

sage: all(all(sorted(p1.shifted_shuffle(p2))
....: == sorted([Permutation(p) for p in
....: Word(p1).shifted_shuffle(Word(p2))])
....: for p2 in Permutations(3))
....: for p1 in Permutations(2))
True

show(representation='cycles', orientation='landscape', **args)
Display the permutation as a drawing.

INPUT:

• representation – different kinds of drawings are available

– "cycles" (default) – the permutation is displayed as a collection of directed cycles

– "braid" – the permutation is displayed as segments linking each element 1, ..., 𝑛 to its image on
a parallel line.

When using this drawing, it is also possible to display the permutation horizontally (orientation
= "landscape", default option) or vertically (orientation = "portrait").

– "chord-diagram" – the permutation is displayed as a directed graph, all of its vertices being
located on a circle.

All additional arguments are forwarded to the show subcalls.

EXAMPLES:

sage: Permutations(20).random_element().show(representation = "cycles")
sage: Permutations(20).random_element().show(representation = "chord-diagram")
sage: Permutations(20).random_element().show(representation = "braid")
sage: Permutations(20).random_element().show(representation = "braid",␣
→˓orientation='portrait') (continues on next page)

5.1. Comprehensive Module List 1793

Combinatorics, Release 9.7

(continued from previous page)

sign()
Return the signature of the permutation self. This is (−1)𝑙, where 𝑙 is the number of inversions of self.

Note: sign() can be used as an alias for signature().

EXAMPLES:

sage: Permutation([4, 2, 3, 1, 5]).signature()
-1
sage: Permutation([1,3,2,5,4]).sign()
1
sage: Permutation([]).sign()
1

signature()
Return the signature of the permutation self. This is (−1)𝑙, where 𝑙 is the number of inversions of self.

Note: sign() can be used as an alias for signature().

EXAMPLES:

sage: Permutation([4, 2, 3, 1, 5]).signature()
-1
sage: Permutation([1,3,2,5,4]).sign()
1
sage: Permutation([]).sign()
1

simion_schmidt(avoid=[1, 2, 3])
Implements the Simion-Schmidt map which sends an arbitrary permutation to a pattern avoiding permuta-
tion, where the permutation pattern is one of four length-three patterns. This method also implements the
bijection between (for example) [1,2,3]- and [1,3,2]-avoiding permutations.

INPUT:

• avoid – one of the patterns [1,2,3], [1,3,2], [3,1,2], [3,2,1].

EXAMPLES:

sage: P = Permutations(6)
sage: p = P([4,5,1,6,3,2])
sage: pl = [[1,2,3], [1,3,2], [3,1,2], [3,2,1]]
sage: for q in pl:
....: s = p.simion_schmidt(q)
....: print("{} {}".format(s, s.has_pattern(q)))
[4, 6, 1, 5, 3, 2] False
[4, 2, 1, 3, 5, 6] False
[4, 5, 3, 6, 2, 1] False
[4, 5, 1, 6, 2, 3] False

1794 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

size()
Return the size of self.

EXAMPLES:

sage: Permutation([3,4,1,2,5]).size()
5

stack_sort()
Return the stack sort of a permutation.

This is another permutation obtained through the process of sorting using one stack. If the result is the
identity permutation, the original permutation is stack-sortable.

See Wikipedia article Stack-sortable_permutation

EXAMPLES:

sage: p = Permutation([2,1,5,3,4,9,7,8,6])
sage: p.stack_sort()
[1, 2, 3, 4, 5, 7, 6, 8, 9]

sage: S5 = Permutations(5)
sage: len([1 for s in S5 if s.stack_sort() == S5.one()])
42

sylvester_class(left_to_right=False)
Iterate over the equivalence class of the permutation self under sylvester congruence.

Sylvester congruence is an equivalence relation on the set 𝑆𝑛 of all permutations of 𝑛. It is defined as
the smallest equivalence relation such that every permutation of the form 𝑢𝑎𝑐𝑣𝑏𝑤 with 𝑢, 𝑣 and 𝑤 being
words and 𝑎, 𝑏 and 𝑐 being letters satisfying 𝑎 ≤ 𝑏 < 𝑐 is equivalent to the permutation 𝑢𝑐𝑎𝑣𝑏𝑤. (Here,
permutations are regarded as words by way of one-line notation.) This definition comes from [HNT2005],
Definition 8, where it is more generally applied to arbitrary words.

The equivalence class of a permutation 𝑝 ∈ 𝑆𝑛 under sylvester congruence is called the sylvester class of
𝑝. It is an interval in the right permutohedron order (see permutohedron_lequal()) on 𝑆𝑛.

This is related to the sylvester_class() method in that the equivalence class of a permutation 𝜋 under
sylvester congruence is the sylvester class of the right-to-left binary search tree of 𝜋. However, the present
method yields permutations, while the method on labelled binary trees yields plain lists.

If the variable left_to_right is set to True, the method instead iterates over the equivalence class of self
with respect to the left sylvester congruence. The left sylvester congruence is easiest to define by saying
that two permutations are equivalent under it if and only if their reverses (reverse()) are equivalent under
(standard) sylvester congruence.

EXAMPLES:

The sylvester class of a permutation in 𝑆5:

sage: p = Permutation([3, 5, 1, 2, 4])
sage: sorted(p.sylvester_class())
[[1, 3, 2, 5, 4],
[1, 3, 5, 2, 4],
[1, 5, 3, 2, 4],
[3, 1, 2, 5, 4],
[3, 1, 5, 2, 4],
[3, 5, 1, 2, 4],

(continues on next page)

5.1. Comprehensive Module List 1795

https://en.wikipedia.org/wiki/Stack-sortable_permutation

Combinatorics, Release 9.7

(continued from previous page)

[5, 1, 3, 2, 4],
[5, 3, 1, 2, 4]]

The sylvester class of a permutation 𝑝 contains 𝑝:

sage: all(p in p.sylvester_class() for p in Permutations(4))
True

Small cases:

sage: list(Permutation([]).sylvester_class())
[[]]

sage: list(Permutation([1]).sylvester_class())
[[1]]

The sylvester classes in 𝑆3:

sage: [sorted(p.sylvester_class()) for p in Permutations(3)]
[[[1, 2, 3]],
[[1, 3, 2], [3, 1, 2]],
[[2, 1, 3]],
[[2, 3, 1]],
[[1, 3, 2], [3, 1, 2]],
[[3, 2, 1]]]

The left sylvester classes in 𝑆3:

sage: [sorted(p.sylvester_class(left_to_right=True)) for p in Permutations(3)]
[[[1, 2, 3]],
[[1, 3, 2]],
[[2, 1, 3], [2, 3, 1]],
[[2, 1, 3], [2, 3, 1]],
[[3, 1, 2]],
[[3, 2, 1]]]

A left sylvester class in 𝑆5:

sage: p = Permutation([4, 2, 1, 5, 3])
sage: sorted(p.sylvester_class(left_to_right=True))
[[4, 2, 1, 3, 5],
[4, 2, 1, 5, 3],
[4, 2, 3, 1, 5],
[4, 2, 3, 5, 1],
[4, 2, 5, 1, 3],
[4, 2, 5, 3, 1],
[4, 5, 2, 1, 3],
[4, 5, 2, 3, 1]]

to_alternating_sign_matrix()
Return a matrix representing the permutation in the AlternatingSignMatrix class.

EXAMPLES:

1796 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: m = Permutation([1,2,3]).to_alternating_sign_matrix(); m
[1 0 0]
[0 1 0]
[0 0 1]
sage: parent(m)
Alternating sign matrices of size 3

to_cycles(singletons=True, use_min=True)
Return the permutation self as a list of disjoint cycles.

The cycles are returned in the order of increasing smallest elements, and each cycle is returned as a tuple
which starts with its smallest element.

If singletons=False is given, the list does not contain the singleton cycles.

If use_min=False is given, the cycles are returned in the order of increasing largest (not smallest) ele-
ments, and each cycle starts with its largest element.

EXAMPLES:

sage: Permutation([2,1,3,4]).to_cycles()
[(1, 2), (3,), (4,)]
sage: Permutation([2,1,3,4]).to_cycles(singletons=False)
[(1, 2)]
sage: Permutation([2,1,3,4]).to_cycles(use_min=True)
[(1, 2), (3,), (4,)]
sage: Permutation([2,1,3,4]).to_cycles(use_min=False)
[(4,), (3,), (2, 1)]
sage: Permutation([2,1,3,4]).to_cycles(singletons=False, use_min=False)
[(2, 1)]

sage: Permutation([4,1,5,2,6,3]).to_cycles()
[(1, 4, 2), (3, 5, 6)]
sage: Permutation([4,1,5,2,6,3]).to_cycles(use_min=False)
[(6, 3, 5), (4, 2, 1)]

sage: Permutation([6, 4, 5, 2, 3, 1]).to_cycles()
[(1, 6), (2, 4), (3, 5)]
sage: Permutation([6, 4, 5, 2, 3, 1]).to_cycles(use_min=False)
[(6, 1), (5, 3), (4, 2)]

The algorithm is of complexity 𝑂(𝑛) where 𝑛 is the size of the given permutation.

to_digraph()
Return a digraph representation of self.

EXAMPLES:

sage: d = Permutation([3, 1, 2]).to_digraph()
sage: d.edges(sort=True, labels=False)
[(1, 3), (2, 1), (3, 2)]
sage: P = Permutations(range(1, 10))
sage: d = Permutation(P.random_element()).to_digraph()
sage: all(c.is_cycle() for c in d.strongly_connected_components_subgraphs())
True

5.1. Comprehensive Module List 1797

Combinatorics, Release 9.7

to_inversion_vector()
Return the inversion vector of self.

The inversion vector of a permutation 𝑝 ∈ 𝑆𝑛 is defined as the vector (𝑣1, 𝑣2, . . . , 𝑣𝑛), where 𝑣𝑖 is the
number of elements larger than 𝑖 that appear to the left of 𝑖 in the permutation 𝑝.

The algorithm is of complexity 𝑂(𝑛 log(𝑛)) where 𝑛 is the size of the given permutation.

EXAMPLES:

sage: Permutation([5,9,1,8,2,6,4,7,3]).to_inversion_vector()
[2, 3, 6, 4, 0, 2, 2, 1, 0]
sage: Permutation([8,7,2,1,9,4,6,5,10,3]).to_inversion_vector()
[3, 2, 7, 3, 4, 3, 1, 0, 0, 0]
sage: Permutation([3,2,4,1,5]).to_inversion_vector()
[3, 1, 0, 0, 0]

to_lehmer_cocode()
Return the Lehmer cocode of the permutation self.

The Lehmer cocode of a permutation 𝑝 is defined as the list (𝑐1, 𝑐2, . . . , 𝑐𝑛), where 𝑐𝑖 is the number of
𝑗 < 𝑖 such that 𝑝(𝑗) > 𝑝(𝑖).

EXAMPLES:

sage: p = Permutation([2,1,3])
sage: p.to_lehmer_cocode()
[0, 1, 0]
sage: q = Permutation([3,1,2])
sage: q.to_lehmer_cocode()
[0, 1, 1]

to_lehmer_code()
Return the Lehmer code of the permutation self.

The Lehmer code of a permutation 𝑝 is defined as the list [𝑐[1], 𝑐[2], ..., 𝑐[𝑛]], where 𝑐[𝑖] is the number of
𝑗 > 𝑖 such that 𝑝(𝑗) < 𝑝(𝑖).

EXAMPLES:

sage: p = Permutation([2,1,3])
sage: p.to_lehmer_code()
[1, 0, 0]
sage: q = Permutation([3,1,2])
sage: q.to_lehmer_code()
[2, 0, 0]

sage: Permutation([1]).to_lehmer_code()
[0]
sage: Permutation([]).to_lehmer_code()
[]

to_major_code(final_descent=False)
Return the major code of the permutation self.

The major code of a permutation 𝑝 is defined as the sequence (𝑚1 −𝑚2,𝑚2 −𝑚3, . . . ,𝑚𝑛), where 𝑚𝑖 is
the major index of the permutation obtained by erasing all letters smaller than 𝑖 from 𝑝.

1798 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

With the final_descent option, the last position of a non-empty permutation is also considered as a
descent. This has an effect on the computation of major indices.

REFERENCES:

• Carlitz, L. q-Bernoulli and Eulerian Numbers. Trans. Amer. Math. Soc. 76 (1954) 332-350. http:
//www.ams.org/journals/tran/1954-076-02/S0002-9947-1954-0060538-2/

• Skandera, M. An Eulerian Partner for Inversions. Sém. Lothar. Combin. 46 (2001) B46d. http:
//www.lehigh.edu/~mas906/papers/partner.ps

EXAMPLES:

sage: Permutation([9,3,5,7,2,1,4,6,8]).to_major_code()
[5, 0, 1, 0, 1, 2, 0, 1, 0]
sage: Permutation([2,8,4,3,6,7,9,5,1]).to_major_code()
[8, 3, 3, 1, 4, 0, 1, 0, 0]

to_matrix()
Return a matrix representing the permutation.

EXAMPLES:

sage: Permutation([1,2,3]).to_matrix()
[1 0 0]
[0 1 0]
[0 0 1]

Alternatively:

sage: matrix(Permutation([1,3,2]))
[1 0 0]
[0 0 1]
[0 1 0]

Notice that matrix multiplication corresponds to permutation multiplication only when the permutation
option mult=’r2l’

sage: Permutations.options.mult='r2l'
sage: p = Permutation([2,1,3])
sage: q = Permutation([3,1,2])
sage: (p*q).to_matrix()
[0 0 1]
[0 1 0]
[1 0 0]
sage: p.to_matrix()*q.to_matrix()
[0 0 1]
[0 1 0]
[1 0 0]
sage: Permutations.options.mult='l2r'
sage: (p*q).to_matrix()
[1 0 0]
[0 0 1]
[0 1 0]

to_permutation_group_element()
Return a PermutationGroupElement equal to self.

5.1. Comprehensive Module List 1799

http://www.ams.org/journals/tran/1954-076-02/S0002-9947-1954-0060538-2/
http://www.ams.org/journals/tran/1954-076-02/S0002-9947-1954-0060538-2/
http://www.lehigh.edu/~mas906/papers/partner.ps
http://www.lehigh.edu/~mas906/papers/partner.ps

Combinatorics, Release 9.7

EXAMPLES:

sage: Permutation([2,1,4,3]).to_permutation_group_element()
(1,2)(3,4)
sage: Permutation([1,2,3]).to_permutation_group_element()
()

to_tableau_by_shape(shape)
Return a tableau of shape shape with the entries in self. The tableau is such that the reading word (i. e.,
the word obtained by reading the tableau row by row, starting from the top row in English notation, with
each row being read from left to right) is self.

EXAMPLES:

sage: Permutation([3,4,1,2,5]).to_tableau_by_shape([3,2])
[[1, 2, 5], [3, 4]]
sage: Permutation([3,4,1,2,5]).to_tableau_by_shape([3,2]).reading_word_
→˓permutation()
[3, 4, 1, 2, 5]

weak_excedences()
Return all the numbers self[i] such that self[i] >= i+1.

EXAMPLES:

sage: Permutation([1,4,3,2,5]).weak_excedences()
[1, 4, 3, 5]

class sage.combinat.permutation.Permutations
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Permutations.

Permutations(n) returns the class of permutations of n, if n is an integer, list, set, or string.

Permutations(n, k) returns the class of length-k partial permutations of n (where n is any of the above
things); k must be a nonnegative integer. A length-𝑘 partial permutation of 𝑛 is defined as a 𝑘-tuple of pairwise
distinct elements of {1, 2, . . . , 𝑛}.

Valid keyword arguments are: ‘descents’, ‘bruhat_smaller’, ‘bruhat_greater’, ‘recoils_finer’, ‘recoils_fatter’, ‘re-
coils’, and ‘avoiding’. With the exception of ‘avoiding’, you cannot specify n or k along with a keyword.

Permutations(descents=(list,n)) returns the class of permutations of 𝑛 with descents in the positions
specified by list. This uses the slightly nonstandard convention that the images of 1, 2, ..., 𝑛 under the per-
mutation are regarded as positions 0, 1, ..., 𝑛 − 1, so for example the presence of 1 in list signifies that the
permutations 𝜋 should satisfy 𝜋(2) > 𝜋(3). Note that list is supposed to be a list of positions of the descents,
not the descents composition. It does not return the class of permutations with descents composition list.

Permutations(bruhat_smaller=p) and Permutations(bruhat_greater=p) return the class of permuta-
tions smaller-or-equal or greater-or-equal, respectively, than the given permutation p in the Bruhat order. (The
Bruhat order is defined in bruhat_lequal(). It is also referred to as the strong Bruhat order.)

Permutations(recoils=p) returns the class of permutations whose recoils composition is p. Unlike the
descents=(list, n) syntax, this actually takes a composition as input.

Permutations(recoils_fatter=p) and Permutations(recoils_finer=p) return the class of permuta-
tions whose recoils composition is fatter or finer, respectively, than the given composition p.

1800 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

Permutations(n, avoiding=P) returns the class of permutations of n avoiding P. Here P may be a single
permutation or a list of permutations; the returned class will avoid all patterns in P.

EXAMPLES:

sage: p = Permutations(3); p
Standard permutations of 3
sage: p.list()
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

sage: p = Permutations(3, 2); p
Permutations of {1,...,3} of length 2
sage: p.list()
[[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]]

sage: p = Permutations(['c', 'a', 't']); p
Permutations of the set ['c', 'a', 't']
sage: p.list()
[['c', 'a', 't'],
['c', 't', 'a'],
['a', 'c', 't'],
['a', 't', 'c'],
['t', 'c', 'a'],
['t', 'a', 'c']]

sage: p = Permutations(['c', 'a', 't'], 2); p
Permutations of the set ['c', 'a', 't'] of length 2
sage: p.list()
[['c', 'a'], ['c', 't'], ['a', 'c'], ['a', 't'], ['t', 'c'], ['t', 'a']]

sage: p = Permutations([1,1,2]); p
Permutations of the multi-set [1, 1, 2]
sage: p.list()
[[1, 1, 2], [1, 2, 1], [2, 1, 1]]

sage: p = Permutations([1,1,2], 2); p
Permutations of the multi-set [1, 1, 2] of length 2
sage: p.list()
[[1, 1], [1, 2], [2, 1]]

sage: p = Permutations(descents=([1], 4)); p
Standard permutations of 4 with descents [1]
sage: p.list()
[[2, 4, 1, 3], [3, 4, 1, 2], [1, 4, 2, 3], [1, 3, 2, 4], [2, 3, 1, 4]]

sage: p = Permutations(bruhat_smaller=[1,3,2,4]); p
Standard permutations that are less than or equal to [1, 3, 2, 4] in the Bruhat␣
→˓order
sage: p.list()
[[1, 2, 3, 4], [1, 3, 2, 4]]

5.1. Comprehensive Module List 1801

Combinatorics, Release 9.7

sage: p = Permutations(bruhat_greater=[4,2,3,1]); p
Standard permutations that are greater than or equal to [4, 2, 3, 1] in the Bruhat␣
→˓order
sage: p.list()
[[4, 2, 3, 1], [4, 3, 2, 1]]

sage: p = Permutations(recoils_finer=[2,1]); p
Standard permutations whose recoils composition is finer than [2, 1]
sage: p.list()
[[3, 1, 2], [1, 2, 3], [1, 3, 2]]

sage: p = Permutations(recoils_fatter=[2,1]); p
Standard permutations whose recoils composition is fatter than [2, 1]
sage: p.list()
[[3, 1, 2], [3, 2, 1], [1, 3, 2]]

sage: p = Permutations(recoils=[2,1]); p
Standard permutations whose recoils composition is [2, 1]
sage: p.list()
[[3, 1, 2], [1, 3, 2]]

sage: p = Permutations(4, avoiding=[1,3,2]); p
Standard permutations of 4 avoiding [[1, 3, 2]]
sage: p.list()
[[4, 1, 2, 3],
[4, 2, 1, 3],
[4, 2, 3, 1],
[4, 3, 1, 2],
[4, 3, 2, 1],
[3, 4, 1, 2],
[3, 4, 2, 1],
[2, 3, 4, 1],
[3, 2, 4, 1],
[1, 2, 3, 4],
[2, 1, 3, 4],
[2, 3, 1, 4],
[3, 1, 2, 4],
[3, 2, 1, 4]]

sage: p = Permutations(5, avoiding=[[3,4,1,2], [4,2,3,1]]); p
Standard permutations of 5 avoiding [[3, 4, 1, 2], [4, 2, 3, 1]]
sage: p.cardinality()
88
sage: p.random_element().parent() is p
True

Element
alias of Permutation

options(*get_value, **set_value)
Set the global options for elements of the permutation class. The defaults are for permutations to be dis-
played in list notation and the multiplication done from left to right (like in GAP) – that is, (𝜋𝜓)(𝑖) =
𝜓(𝜋(𝑖)) for all 𝑖.

1802 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Note: These options have no effect on permutation group elements.

OPTIONS:

• display – (default: list) Specifies how the permutations should be printed

– cycle – the permutations are displayed in cycle notation (i. e., as products of disjoint cycles)

– list – the permutations are displayed in list notation (aka 1-line notation)

– reduced_expression – alias for reduced_word

– reduced_word – the permutations are displayed as reduced words

– singleton – the permutations are displayed in cycle notation with singleton cycles shown as well

– word – alias for reduced_word

• generator_name – (default: s) the letter used in latexing the reduced word

• latex – (default: list) Specifies how the permutations should be latexed

– cycle – latex in cycle notation

– list – latex as a list in one-line notation

– oneline – alias for list

– reduced_expression – alias for reduced_word

– reduced_word – latex as reduced words

– singleton – latex in cycle notation with singleton cycles shown as well

– twoline – latex in two-line notation

– word – alias for reduced_word

• latex_empty_str – (default: 1) The LaTeX representation of a reduced word when said word is
empty

• mult – (default: l2r) The multiplication of permutations

– l2r – left to right: (𝑝1 · 𝑝2)(𝑥) = 𝑝2(𝑝1(𝑥))

– r2l – right to left: (𝑝1 · 𝑝2)(𝑥) = 𝑝1(𝑝2(𝑥))

EXAMPLES:

sage: p213 = Permutation([2,1,3])
sage: p312 = Permutation([3,1,2])
sage: Permutations.options(mult='l2r', display='list')
sage: Permutations.options.display
list
sage: p213
[2, 1, 3]
sage: Permutations.options.display='cycle'
sage: p213
(1,2)
sage: Permutations.options.display='singleton'
sage: p213
(1,2)(3)
sage: Permutations.options.display='list'

5.1. Comprehensive Module List 1803

Combinatorics, Release 9.7

sage: Permutations.options.mult
l2r
sage: p213*p312
[1, 3, 2]
sage: Permutations.options.mult='r2l'
sage: p213*p312
[3, 2, 1]
sage: Permutations.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.permutation.PermutationsNK(s, k)
Bases: sage.combinat.permutation.Permutations_setk

This exists solely for unpickling PermutationsNK objects created with Sage <= 6.3.

class sage.combinat.permutation.Permutations_mset(mset)
Bases: sage.combinat.permutation.Permutations

Permutations of a multiset 𝑀 .

A permutation of a multiset 𝑀 is represented by a list that contains exactly the same elements as 𝑀 (with the
same multiplicities), but possibly in different order. If 𝑀 is a proper set there are |𝑀 |! such permutations.
Otherwise, if the first element appears 𝑘1 times, the second element appears 𝑘2 times and so on, the number of
permutations is |𝑀 |!/(𝑘1!𝑘2! . . .), which is sometimes called a multinomial coefficient.

EXAMPLES:

sage: mset = [1,1,2,2,2]
sage: from sage.combinat.permutation import Permutations_mset
sage: P = Permutations_mset(mset); P
Permutations of the multi-set [1, 1, 2, 2, 2]
sage: sorted(P)
[[1, 1, 2, 2, 2],
[1, 2, 1, 2, 2],
[1, 2, 2, 1, 2],
[1, 2, 2, 2, 1],
[2, 1, 1, 2, 2],
[2, 1, 2, 1, 2],
[2, 1, 2, 2, 1],
[2, 2, 1, 1, 2],
[2, 2, 1, 2, 1],
[2, 2, 2, 1, 1]]
sage: MS = MatrixSpace(GF(2),2,2)
sage: A = MS([1,0,1,1])
sage: rows = A.rows()
sage: rows[0].set_immutable()
sage: rows[1].set_immutable()
sage: P = Permutations_mset(rows); P
Permutations of the multi-set [(1, 0), (1, 1)]
sage: sorted(P)
[[(1, 0), (1, 1)], [(1, 1), (1, 0)]]

class Element
Bases: sage.structure.list_clone.ClonableArray

A permutation of an arbitrary multiset.

1804 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

check()
Verify that self is a valid permutation of the underlying multiset.

EXAMPLES:

sage: S = Permutations(['c','a','c'])
sage: elt = S(['c','c','a'])
sage: elt.check()

cardinality()
Return the cardinality of the set.

EXAMPLES:

sage: Permutations([1,2,2]).cardinality()
3
sage: Permutations([1,1,2,2,2]).cardinality()
10

rank(p)
Return the rank of p in lexicographic order.

INPUT:

• p – a permutation of 𝑀

ALGORITHM:

The algorithm uses the recurrence from the solution to exercise 4 in [Knu2011], Section 7.2.1.2:

rank(𝑝1 . . . 𝑝𝑛) = rank(𝑝2 . . . 𝑝𝑛) +
1

𝑛

(︂
𝑛

𝑛1, . . . , 𝑛𝑡

)︂ 𝑡∑︁
𝑗=1

𝑛𝑗 [𝑥𝑗 < 𝑝1] ,

where 𝑥𝑗 , 𝑛𝑗 are the distinct elements of 𝑝 with their multiplicities, 𝑛 is the sum of 𝑛1, . . . , 𝑛𝑡,
(︀

𝑛
𝑛1,...,𝑛𝑡

)︀
is the multinomial coefficient 𝑛!

𝑛1!...𝑛𝑡!
, and

∑︀𝑡
𝑗=1 𝑛𝑗 [𝑥𝑗 < 𝑝1] means “the number of elements to the right

of the first element that are less than the first element”.

EXAMPLES:

sage: mset = [1, 1, 2, 3, 4, 5, 5, 6, 9]
sage: p = Permutations(mset)
sage: p.rank(list(sorted(mset)))
0
sage: p.rank(list(reversed(sorted(mset)))) == p.cardinality() - 1
True
sage: p.rank([3, 1, 4, 1, 5, 9, 2, 6, 5])
30991

unrank(r)
Return the permutation of 𝑀 having lexicographic rank r.

INPUT:

• r – an integer between 0 and self.cardinality()-1 inclusive

ALGORITHM:

The algorithm is adapted from the solution to exercise 4 in [Knu2011], Section 7.2.1.2.

EXAMPLES:

5.1. Comprehensive Module List 1805

Combinatorics, Release 9.7

sage: mset = [1, 1, 2, 3, 4, 5, 5, 6, 9]
sage: p = Permutations(mset)
sage: p.unrank(30991)
[3, 1, 4, 1, 5, 9, 2, 6, 5]
sage: p.rank(p.unrank(10))
10
sage: p.unrank(0) == list(sorted(mset))
True
sage: p.unrank(p.cardinality()-1) == list(reversed(sorted(mset)))
True

class sage.combinat.permutation.Permutations_msetk(mset, k)
Bases: sage.combinat.permutation.Permutations_mset

Length-𝑘 partial permutations of a multiset.

A length-𝑘 partial permutation of a multiset 𝑀 is represented by a list of length 𝑘 whose entries are elements of
𝑀 , appearing in the list with a multiplicity not higher than their respective multiplicity in 𝑀 .

cardinality()
Return the cardinality of the set.

EXAMPLES:

sage: Permutations([1,2,2],2).cardinality()
3

class sage.combinat.permutation.Permutations_nk(n, k)
Bases: sage.combinat.permutation.Permutations

Length-𝑘 partial permutations of {1, 2, . . . , 𝑛}.

class Element
Bases: sage.structure.list_clone.ClonableArray

A length-𝑘 partial permutation of [𝑛].

check()
Verify that self is a valid length-𝑘 partial permutation of [𝑛].

EXAMPLES:

sage: S = Permutations(4, 2)
sage: elt = S([3, 1])
sage: elt.check()

cardinality()
EXAMPLES:

sage: Permutations(3,0).cardinality()
1
sage: Permutations(3,1).cardinality()
3
sage: Permutations(3,2).cardinality()
6
sage: Permutations(3,3).cardinality()
6

(continues on next page)

1806 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

(continued from previous page)

sage: Permutations(3,4).cardinality()
0

random_element()
EXAMPLES:

sage: s = Permutations(3,2).random_element()
sage: s in Permutations(3,2)
True

class sage.combinat.permutation.Permutations_set(s)
Bases: sage.combinat.permutation.Permutations

Permutations of an arbitrary given finite set.

Here, a “permutation of a finite set 𝑆” means a list of the elements of 𝑆 in which every element of 𝑆 occurs
exactly once. This is not to be confused with bijections from 𝑆 to 𝑆, which are also often called permutations in
literature.

class Element
Bases: sage.structure.list_clone.ClonableArray

A permutation of an arbitrary set.

check()
Verify that self is a valid permutation of the underlying set.

EXAMPLES:

sage: S = Permutations(['c','a','t'])
sage: elt = S(['t','c','a'])
sage: elt.check()

cardinality()
Return the cardinality of the set.

EXAMPLES:

sage: Permutations([1,2,3]).cardinality()
6

random_element()
EXAMPLES:

sage: s = Permutations([1,2,3]).random_element()
sage: s.parent() is Permutations([1,2,3])
True

class sage.combinat.permutation.Permutations_setk(s, k)
Bases: sage.combinat.permutation.Permutations_set

Length-𝑘 partial permutations of an arbitrary given finite set.

Here, a “length-𝑘 partial permutation of a finite set 𝑆” means a list of length 𝑘 whose entries are pairwise distinct
and all belong to 𝑆.

random_element()
EXAMPLES:

5.1. Comprehensive Module List 1807

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

sage: s = Permutations([1,2,4], 2).random_element()
sage: s in Permutations([1,2,4], 2)
True

class sage.combinat.permutation.StandardPermutations_all
Bases: sage.combinat.permutation.Permutations

All standard permutations.

graded_component(n)
Return the graded component.

EXAMPLES:

sage: P = Permutations()
sage: P.graded_component(4) == Permutations(4)
True

class sage.combinat.permutation.StandardPermutations_all_avoiding(a)
Bases: sage.combinat.permutation.StandardPermutations_all

All standard permutations avoiding a set of patterns.

patterns()
Return the patterns avoided by this class of permutations.

EXAMPLES:

sage: P = Permutations(avoiding=[[2,1,3],[1,2,3]])
sage: P.patterns()
([2, 1, 3], [1, 2, 3])

class sage.combinat.permutation.StandardPermutations_avoiding_12(n)
Bases: sage.combinat.permutation.StandardPermutations_avoiding_generic

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: P = Permutations(3, avoiding=[1, 2])
sage: P.cardinality()
1

class sage.combinat.permutation.StandardPermutations_avoiding_123(n)
Bases: sage.combinat.permutation.StandardPermutations_avoiding_generic

cardinality()
EXAMPLES:

sage: Permutations(5, avoiding=[1, 2, 3]).cardinality()
42
sage: len(Permutations(5, avoiding=[1, 2, 3]).list())
42

class sage.combinat.permutation.StandardPermutations_avoiding_132(n)
Bases: sage.combinat.permutation.StandardPermutations_avoiding_generic

1808 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

cardinality()
EXAMPLES:

sage: Permutations(5, avoiding=[1, 3, 2]).cardinality()
42
sage: len(Permutations(5, avoiding=[1, 3, 2]).list())
42

class sage.combinat.permutation.StandardPermutations_avoiding_21(n)
Bases: sage.combinat.permutation.StandardPermutations_avoiding_generic

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: P = Permutations(3, avoiding=[2, 1])
sage: P.cardinality()
1

class sage.combinat.permutation.StandardPermutations_avoiding_213(n)
Bases: sage.combinat.permutation.StandardPermutations_avoiding_generic

cardinality()
EXAMPLES:

sage: Permutations(5, avoiding=[2, 1, 3]).cardinality()
42
sage: len(Permutations(5, avoiding=[2, 1, 3]).list())
42

class sage.combinat.permutation.StandardPermutations_avoiding_231(n)
Bases: sage.combinat.permutation.StandardPermutations_avoiding_generic

cardinality()
EXAMPLES:

sage: Permutations(5, avoiding=[2, 3, 1]).cardinality()
42
sage: len(Permutations(5, avoiding=[2, 3, 1]).list())
42

class sage.combinat.permutation.StandardPermutations_avoiding_312(n)
Bases: sage.combinat.permutation.StandardPermutations_avoiding_generic

cardinality()
EXAMPLES:

sage: Permutations(5, avoiding=[3, 1, 2]).cardinality()
42
sage: len(Permutations(5, avoiding=[3, 1, 2]).list())
42

class sage.combinat.permutation.StandardPermutations_avoiding_321(n)
Bases: sage.combinat.permutation.StandardPermutations_avoiding_generic

cardinality()
EXAMPLES:

5.1. Comprehensive Module List 1809

Combinatorics, Release 9.7

sage: Permutations(5, avoiding=[3, 2, 1]).cardinality()
42
sage: len(Permutations(5, avoiding=[3, 2, 1]).list())
42

class sage.combinat.permutation.StandardPermutations_avoiding_generic(n, a)
Bases: sage.combinat.permutation.StandardPermutations_n_abstract

Generic class for subset of permutations avoiding a set of patterns.

a
self.a is deprecated; use patterns() instead.

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: P = Permutations(3, avoiding=[[2, 1, 3],[1,2,3]])
sage: P.cardinality()
4

patterns()
Return the patterns avoided by this class of permutations.

EXAMPLES:

sage: P = Permutations(3, avoiding=[[2,1,3],[1,2,3]])
sage: P.patterns()
([2, 1, 3], [1, 2, 3])

class sage.combinat.permutation.StandardPermutations_bruhat_greater(p)
Bases: sage.combinat.permutation.Permutations

Permutations of {1, . . . , 𝑛} that are greater than or equal to a permutation 𝑝 in the Bruhat order.

class sage.combinat.permutation.StandardPermutations_bruhat_smaller(p)
Bases: sage.combinat.permutation.Permutations

Permutations of {1, . . . , 𝑛} that are less than or equal to a permutation 𝑝 in the Bruhat order.

class sage.combinat.permutation.StandardPermutations_descents(d, n)
Bases: sage.combinat.permutation.StandardPermutations_n_abstract

Permutations of {1, . . . , 𝑛} with a fixed set of descents.

cardinality()
Return the cardinality of self.

ALGORITHM:

The algorithm described in [Vie1979] is implemented naively.

EXAMPLES:

sage: P = Permutations(descents=([1,0,2], 5))
sage: P.cardinality()
4

first()
Return the first permutation with descents 𝑑.

1810 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: Permutations(descents=([1,0,4,8],12)).first()
[3, 2, 1, 4, 6, 5, 7, 8, 10, 9, 11, 12]

last()
Return the last permutation with descents 𝑑.

EXAMPLES:

sage: Permutations(descents=([1,0,4,8],12)).last()
[12, 11, 8, 9, 10, 4, 5, 6, 7, 1, 2, 3]

class sage.combinat.permutation.StandardPermutations_n(n)
Bases: sage.combinat.permutation.StandardPermutations_n_abstract

Permutations of the set {1, 2, . . . , 𝑛}.

These are also called permutations of size 𝑛, or the elements of the 𝑛-th symmetric group.

Todo: Have a reduced_word() which works in both multiplication conventions.

class Element(parent, l, check_input=True)
Bases: sage.combinat.permutation.Permutation

apply_simple_reflection_left(i)
Return self multiplied by the simple reflection s[i] on the left.

This acts by switching the entries in positions 𝑖 and 𝑖+ 1.

Warning: This ignores the multiplication convention in order to be consistent with other Coxeter
operations in permutations (e.g., computing reduced_word()).

EXAMPLES:

sage: W = Permutations(3)
sage: w = W([2,3,1])
sage: w.apply_simple_reflection_left(1)
[1, 3, 2]
sage: w.apply_simple_reflection_left(2)
[3, 2, 1]

apply_simple_reflection_right(i)
Return self multiplied by the simple reflection s[i] on the right.

This acts by switching the entries 𝑖 and 𝑖+ 1.

Warning: This ignores the multiplication convention in order to be consistent with other Coxeter
operations in permutations (e.g., computing reduced_word()).

EXAMPLES:

5.1. Comprehensive Module List 1811

Combinatorics, Release 9.7

sage: W = Permutations(3)
sage: w = W([2,3,1])
sage: w.apply_simple_reflection_right(1)
[3, 2, 1]
sage: w.apply_simple_reflection_right(2)
[2, 1, 3]

has_left_descent(i, mult=None)
Check if i is a left descent of self.

A left descent of a permutation 𝜋 ∈ 𝑆𝑛 means an index 𝑖 ∈ {1, 2, . . . , 𝑛−1} such that 𝑠𝑖∘𝜋 has smaller
length than 𝜋. Thus, a left descent of 𝜋 is an index 𝑖 ∈ {1, 2, . . . , 𝑛−1} satisfying 𝜋−1(𝑖) > 𝜋−1(𝑖+1).

Warning: The methods descents() and idescents() behave differently than their Weyl group
counterparts. In particular, the indexing is 0-based. This could lead to errors. Instead, construct
the descent set as in the example.

Warning: This ignores the multiplication convention in order to be consistent with other Coxeter
operations in permutations (e.g., computing reduced_word()).

EXAMPLES:

sage: P = Permutations(4)
sage: x = P([3, 2, 4, 1])
sage: (~x).descents()
[1, 2]
sage: [i for i in P.index_set() if x.has_left_descent(i)]
[1, 2]

has_right_descent(i, mult=None)
Check if i is a right descent of self.

A right descent of a permutation 𝜋 ∈ 𝑆𝑛 means an index 𝑖 ∈ {1, 2, . . . , 𝑛 − 1} such that 𝜋 ∘ 𝑠𝑖
has smaller length than 𝜋. Thus, a right descent of 𝜋 is an index 𝑖 ∈ {1, 2, . . . , 𝑛 − 1} satisfying
𝜋(𝑖) > 𝜋(𝑖+ 1).

Warning: The methods descents() and idescents() behave differently than their Weyl group
counterparts. In particular, the indexing is 0-based. This could lead to errors. Instead, construct
the descent set as in the example.

Warning: This ignores the multiplication convention in order to be consistent with other Coxeter
operations in permutations (e.g., computing reduced_word()).

EXAMPLES:

sage: P = Permutations(4)
sage: x = P([3, 2, 4, 1])
sage: x.descents()

(continues on next page)

1812 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1, 3]
sage: [i for i in P.index_set() if x.has_right_descent(i)]
[1, 3]

inverse()
Return the inverse of self.

EXAMPLES:

sage: P = Permutations(4)
sage: w0 = P([4,3,2,1])
sage: w0.inverse() == w0
True
sage: w0.inverse().parent() is P
True
sage: P([3,2,4,1]).inverse()
[4, 2, 1, 3]

algebra(base_ring, category=None)
Return the symmetric group algebra associated to self.

INPUT:

• base_ring – a ring

• category – a category (default: the category of self)

EXAMPLES:

sage: P = Permutations(4)
sage: A = P.algebra(QQ); A
Symmetric group algebra of order 4 over Rational Field

sage: A.category()
Join of Category of coxeter group algebras over Rational Field

and Category of finite group algebras over Rational Field
and Category of finite dimensional cellular algebras with basis over␣

→˓Rational Field
sage: A = P.algebra(QQ, category=Monoids())
sage: A.category()
Category of finite dimensional cellular monoid algebras over Rational Field

as_permutation_group()
Return self as a permutation group.

EXAMPLES:

sage: P = Permutations(4)
sage: PG = P.as_permutation_group()
sage: PG
Symmetric group of order 4! as a permutation group

sage: G = SymmetricGroup(4)
sage: PG is G
True

5.1. Comprehensive Module List 1813

Combinatorics, Release 9.7

cardinality()
Return the number of permutations of size 𝑛, which is 𝑛!.

EXAMPLES:

sage: Permutations(0).cardinality()
1
sage: Permutations(3).cardinality()
6
sage: Permutations(4).cardinality()
24

cartan_type()
Return the Cartan type of self.

The symmetric group 𝑆𝑛 is a Coxeter group of type 𝐴𝑛−1.

EXAMPLES:

sage: A = SymmetricGroup([2,3,7]); A.cartan_type()
['A', 2]
sage: A = SymmetricGroup([]); A.cartan_type()
['A', 0]

codegrees()
Return the codegrees of self.

EXAMPLES:

sage: Permutations(3).codegrees()
(0, 1)
sage: Permutations(7).codegrees()
(0, 1, 2, 3, 4, 5)

conjugacy_class(g)
Return the conjugacy class of g in self.

INPUT:

• g – a partition or an element of self

EXAMPLES:

sage: G = Permutations(5)
sage: g = G([2,3,4,1,5])
sage: G.conjugacy_class(g)
Conjugacy class of cycle type [4, 1] in Standard permutations of 5
sage: G.conjugacy_class(Partition([2, 1, 1, 1]))
Conjugacy class of cycle type [2, 1, 1, 1] in Standard permutations of 5

conjugacy_classes()
Return a list of the conjugacy classes of self.

EXAMPLES:

sage: G = Permutations(4)
sage: G.conjugacy_classes()
[Conjugacy class of cycle type [1, 1, 1, 1] in Standard permutations of 4,

(continues on next page)

1814 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Conjugacy class of cycle type [2, 1, 1] in Standard permutations of 4,
Conjugacy class of cycle type [2, 2] in Standard permutations of 4,
Conjugacy class of cycle type [3, 1] in Standard permutations of 4,
Conjugacy class of cycle type [4] in Standard permutations of 4]

conjugacy_classes_iterator()
Iterate over the conjugacy classes of self.

EXAMPLES:

sage: G = Permutations(4)
sage: list(G.conjugacy_classes_iterator()) == G.conjugacy_classes()
True

conjugacy_classes_representatives()
Return a complete list of representatives of conjugacy classes in self.

Let 𝑆𝑛 be the symmetric group on 𝑛 letters. The conjugacy classes are indexed by partitions 𝜆 of 𝑛. The
ordering of the conjugacy classes is reverse lexicographic order of the partitions.

EXAMPLES:

sage: G = Permutations(5)
sage: G.conjugacy_classes_representatives()
[[1, 2, 3, 4, 5],
[2, 1, 3, 4, 5],
[2, 1, 4, 3, 5],
[2, 3, 1, 4, 5],
[2, 3, 1, 5, 4],
[2, 3, 4, 1, 5],
[2, 3, 4, 5, 1]]

degree()
Return the degree of self.

This is the cardinality 𝑛 of the set self acts on.

EXAMPLES:

sage: Permutations(0).degree()
0
sage: Permutations(1).degree()
1
sage: Permutations(5).degree()
5

degrees()
Return the degrees of self.

These are the degrees of the fundamental invariants of the ring of polynomial invariants.

EXAMPLES:

sage: Permutations(3).degrees()
(2, 3)
sage: Permutations(7).degrees()
(2, 3, 4, 5, 6, 7)

5.1. Comprehensive Module List 1815

Combinatorics, Release 9.7

element_in_conjugacy_classes(nu)
Return a permutation with cycle type nu.

If the size of nu is smaller than the size of permutations in self, then some fixed points are added.

EXAMPLES:

sage: PP = Permutations(5)
sage: PP.element_in_conjugacy_classes([2,2])
[2, 1, 4, 3, 5]

identity()
Return the identity permutation of size 𝑛.

EXAMPLES:

sage: Permutations(4).identity()
[1, 2, 3, 4]
sage: Permutations(0).identity()
[]

index_set()
Return the index set for the descents of the symmetric group self.

This is {1, 2, . . . , 𝑛− 1}, where self is 𝑆𝑛.

EXAMPLES:

sage: P = Permutations(8)
sage: P.index_set()
(1, 2, 3, 4, 5, 6, 7)

one()
Return the identity permutation of size 𝑛.

EXAMPLES:

sage: Permutations(4).identity()
[1, 2, 3, 4]
sage: Permutations(0).identity()
[]

random_element()
EXAMPLES:

sage: s = Permutations(4).random_element(); s # random
[1, 2, 4, 3]
sage: s in Permutations(4)
True

rank(p=None)
Return the rank of self or p depending on input.

If a permutation p is given, return the rank of p in self. Otherwise return the dimension of the underlying
vector space spanned by the (simple) roots.

EXAMPLES:

1816 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: P = Permutations(5)
sage: P.rank()
4

sage: SP3 = Permutations(3)
sage: list(map(SP3.rank, SP3))
[0, 1, 2, 3, 4, 5]
sage: SP0 = Permutations(0)
sage: list(map(SP0.rank, SP0))
[0]

simple_reflection(i)
For 𝑖 in the index set of self (that is, for 𝑖 in {1, 2, . . . , 𝑛 − 1}, where self is 𝑆𝑛), this returns the
elementary transposition 𝑠𝑖 = (𝑖, 𝑖+ 1).

EXAMPLES:

sage: P = Permutations(4)
sage: P.simple_reflection(2)
[1, 3, 2, 4]
sage: P.simple_reflections()
Finite family {1: [2, 1, 3, 4], 2: [1, 3, 2, 4], 3: [1, 2, 4, 3]}

unrank(r)
EXAMPLES:

sage: SP3 = Permutations(3)
sage: l = list(map(SP3.unrank, range(6)))
sage: l == SP3.list()
True
sage: SP0 = Permutations(0)
sage: l = list(map(SP0.unrank, range(1)))
sage: l == SP0.list()
True

class sage.combinat.permutation.StandardPermutations_n_abstract(n, category=None)
Bases: sage.combinat.permutation.Permutations

Abstract base class for subsets of permutations of the set {1, 2, . . . , 𝑛}.

Warning: Anything inheriting from this class should override the __contains__ method.

class sage.combinat.permutation.StandardPermutations_recoils(recoils)
Bases: sage.combinat.permutation.Permutations

Permutations of {1, . . . , 𝑛} with a fixed recoils composition.

class sage.combinat.permutation.StandardPermutations_recoilsfatter(recoils)
Bases: sage.combinat.permutation.Permutations

class sage.combinat.permutation.StandardPermutations_recoilsfiner(recoils)
Bases: sage.combinat.permutation.Permutations

sage.combinat.permutation.bistochastic_as_sum_of_permutations(M, check=True)
Return the positive sum of permutations corresponding to the bistochastic matrix M.

5.1. Comprehensive Module List 1817

Combinatorics, Release 9.7

A stochastic matrix is a matrix with nonnegative real entries such that the sum of the elements of any row is equal
to 1. A bistochastic matrix is a stochastic matrix whose transpose matrix is also stochastic (there are conditions
both on the rows and on the columns).

According to the Birkhoff-von Neumann Theorem, any bistochastic matrix can be written as a convex combina-
tion of permutation matrices, which also means that the polytope of bistochastic matrices is integer.

As a non-bistochastic matrix can obviously not be written as a convex combination of permutations, this theorem
is an equivalence.

This function, given a bistochastic matrix, returns the corresponding decomposition.

INPUT:

• M – A bistochastic matrix

• check (boolean) – set to True (default) to check that the matrix is indeed bistochastic

OUTPUT:

• An element of CombinatorialFreeModule, which is a free 𝐹 -module (where 𝐹 is the ground ring of
the given matrix) whose basis is indexed by the permutations.

Note:

• In this function, we just assume 1 to be any constant : for us a matrix𝑀 is bistochastic if there exists 𝑐 > 0
such that 𝑀/𝑐 is bistochastic.

• You can obtain a sequence of pairs (permutation,coeff), where permutation is a Sage Permutation
instance, and coeff its corresponding coefficient from the result of this function by applying the list
function.

• If you are interested in the matrix corresponding to a Permutation you will be glad to learn about the
Permutation.to_matrix() method.

• The base ring of the matrix can be anything that can be coerced to RR.

See also:

• as_sum_of_permutations() to use this method through the Matrix class.

EXAMPLES:

We create a bistochastic matrix from a convex sum of permutations, then try to deduce the decomposition from
the matrix:

sage: from sage.combinat.permutation import bistochastic_as_sum_of_permutations
sage: L = []
sage: L.append((9,Permutation([4, 1, 3, 5, 2])))
sage: L.append((6,Permutation([5, 3, 4, 1, 2])))
sage: L.append((3,Permutation([3, 1, 4, 2, 5])))
sage: L.append((2,Permutation([1, 4, 2, 3, 5])))
sage: M = sum([c * p.to_matrix() for (c,p) in L])
sage: decomp = bistochastic_as_sum_of_permutations(M)
sage: print(decomp)
2*B[[1, 4, 2, 3, 5]] + 3*B[[3, 1, 4, 2, 5]] + 9*B[[4, 1, 3, 5, 2]] + 6*B[[5, 3, 4,␣
→˓1, 2]]

An exception is raised when the matrix is not positive and bistochastic:

1818 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: M = Matrix([[2,3],[2,2]])
sage: decomp = bistochastic_as_sum_of_permutations(M)
Traceback (most recent call last):
...
ValueError: The matrix is not bistochastic

sage: bistochastic_as_sum_of_permutations(Matrix(GF(7), 2, [2,1,1,2]))
Traceback (most recent call last):
...
ValueError: The base ring of the matrix must have a coercion map to RR

sage: bistochastic_as_sum_of_permutations(Matrix(ZZ, 2, [2,-1,-1,2]))
Traceback (most recent call last):
...
ValueError: The matrix should have nonnegative entries

sage.combinat.permutation.bounded_affine_permutation(A)
Return the bounded affine permutation of a matrix.

The bounded affine permutation of a matrix 𝐴 with entries in 𝑅 is a partial permutation of length 𝑛, where 𝑛 is
the number of columns of 𝐴. The entry in position 𝑖 is the smallest value 𝑗 such that column 𝑖 is in the span of
columns 𝑖+ 1, . . . , 𝑗, over 𝑅, where column indices are taken modulo 𝑛. If column 𝑖 is the zero vector, then the
permutation has a fixed point at 𝑖.

INPUT:

• A – matrix with entries in a ring 𝑅

EXAMPLES:

sage: from sage.combinat.permutation import bounded_affine_permutation
sage: A = Matrix(ZZ, [[1,0,0,0], [0,1,0,0]])
sage: bounded_affine_permutation(A)
[5, 6, 3, 4]

sage: A = Matrix(ZZ, [[0,1,0,1,0], [0,0,1,1,0]])
sage: bounded_affine_permutation(A)
[1, 4, 7, 8, 5]

REFERENCES:

• [KLS2013]

sage.combinat.permutation.bruhat_lequal(p1, p2)
Return True if p1 is less than p2 in the Bruhat order.

Algorithm from mupad-combinat.

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: permutation.bruhat_lequal([2,4,3,1],[3,4,2,1])
True

sage.combinat.permutation.descents_composition_first(dc)
Compute the smallest element of a descent class having a descent composition dc.

EXAMPLES:

5.1. Comprehensive Module List 1819

Combinatorics, Release 9.7

sage: import sage.combinat.permutation as permutation
sage: permutation.descents_composition_first([1,1,3,4,3])
[3, 2, 1, 4, 6, 5, 7, 8, 10, 9, 11, 12]

sage.combinat.permutation.descents_composition_last(dc)
Return the largest element of a descent class having a descent composition dc.

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: permutation.descents_composition_last([1,1,3,4,3])
[12, 11, 8, 9, 10, 4, 5, 6, 7, 1, 2, 3]

sage.combinat.permutation.descents_composition_list(dc)
Return a list of all the permutations that have the descent composition dc.

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: permutation.descents_composition_list([1,2,2])
[[5, 2, 4, 1, 3],
[5, 3, 4, 1, 2],
[4, 3, 5, 1, 2],
[4, 2, 5, 1, 3],
[3, 2, 5, 1, 4],
[2, 1, 5, 3, 4],
[3, 1, 5, 2, 4],
[4, 1, 5, 2, 3],
[5, 1, 4, 2, 3],
[5, 1, 3, 2, 4],
[4, 1, 3, 2, 5],
[3, 1, 4, 2, 5],
[2, 1, 4, 3, 5],
[3, 2, 4, 1, 5],
[4, 2, 3, 1, 5],
[5, 2, 3, 1, 4]]

sage.combinat.permutation.from_cycles(n, cycles, parent=None)
Return the permutation in the 𝑛-th symmetric group whose decomposition into disjoint cycles is cycles.

This function checks that its input is correct (i.e. that the cycles are disjoint and their elements integers among
1...𝑛). It raises an exception otherwise.

Warning: It assumes that the elements are of int type.

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: permutation.from_cycles(4, [[1,2]])
[2, 1, 3, 4]
sage: permutation.from_cycles(4, [[1,2,4]])
[2, 4, 3, 1]
sage: permutation.from_cycles(10, [[3,1],[4,5],[6,8,9]])

(continues on next page)

1820 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[3, 2, 1, 5, 4, 8, 7, 9, 6, 10]
sage: permutation.from_cycles(10, ((2, 5), (6, 1, 3)))
[3, 5, 6, 4, 2, 1, 7, 8, 9, 10]
sage: permutation.from_cycles(4, [])
[1, 2, 3, 4]
sage: permutation.from_cycles(4, [[]])
[1, 2, 3, 4]
sage: permutation.from_cycles(0, [])
[]

Bad input (see trac ticket #13742):

sage: Permutation("(-12,2)(3,4)")
Traceback (most recent call last):
...
ValueError: All elements should be strictly positive integers, and I just found a␣
→˓non-positive one.
sage: Permutation("(1,2)(2,4)")
Traceback (most recent call last):
...
ValueError: an element appears twice in the input
sage: permutation.from_cycles(4, [[1,18]])
Traceback (most recent call last):
...
ValueError: You claimed that this was a permutation on 1...4 but it contains 18

sage.combinat.permutation.from_inversion_vector(iv, parent=None)
Return the permutation corresponding to inversion vector iv.

See 𝑠𝑎𝑔𝑒.𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡.𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛.𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛.𝑡𝑜𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑣𝑒𝑐𝑡𝑜𝑟 for a definition of the inversion vector of
a permutation.

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: permutation.from_inversion_vector([3,1,0,0,0])
[3, 2, 4, 1, 5]
sage: permutation.from_inversion_vector([2,3,6,4,0,2,2,1,0])
[5, 9, 1, 8, 2, 6, 4, 7, 3]
sage: permutation.from_inversion_vector([0])
[1]
sage: permutation.from_inversion_vector([])
[]

sage.combinat.permutation.from_lehmer_code(lehmer, parent=None)
Return the permutation with Lehmer code lehmer.

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: lc = Permutation([2,1,5,4,3]).to_lehmer_code(); lc
[1, 0, 2, 1, 0]
sage: permutation.from_lehmer_code(lc)
[2, 1, 5, 4, 3]

5.1. Comprehensive Module List 1821

https://trac.sagemath.org/13742

Combinatorics, Release 9.7

sage.combinat.permutation.from_major_code(mc, final_descent=False)
Return the permutation with major code mc.

The major code of a permutation is defined in to_major_code().

Warning: This function creates illegal permutations (i.e. Permutation([9]), and this is dangerous as the
Permutation() class is only designed to handle permutations on 1...𝑛. This will have to be changed when
Sage permutations will be able to handle anything, but right now this should be fixed. Be careful with the
results.

Warning: If mc is not a major index of a permutation, then the return value of this method can be anything.
Garbage in, garbage out!

REFERENCES:

• Skandera, M. An Eulerian Partner for Inversions. Sem. Lothar. Combin. 46 (2001) B46d.

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: permutation.from_major_code([5, 0, 1, 0, 1, 2, 0, 1, 0])
[9, 3, 5, 7, 2, 1, 4, 6, 8]
sage: permutation.from_major_code([8, 3, 3, 1, 4, 0, 1, 0, 0])
[2, 8, 4, 3, 6, 7, 9, 5, 1]
sage: Permutation([2,1,6,4,7,3,5]).to_major_code()
[3, 2, 0, 2, 2, 0, 0]
sage: permutation.from_major_code([3, 2, 0, 2, 2, 0, 0])
[2, 1, 6, 4, 7, 3, 5]

sage.combinat.permutation.from_permutation_group_element(pge, parent=None)
Return a Permutation given a PermutationGroupElement pge.

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: pge = PermutationGroupElement([(1,2),(3,4)])
sage: permutation.from_permutation_group_element(pge)
[2, 1, 4, 3]

sage.combinat.permutation.from_rank(n, rank)
Return the permutation of the set {1, ..., 𝑛}with lexicographic rank rank. This is the permutation whose Lehmer
code is the factoradic representation of rank. In particular, the permutation with rank 0 is the identity permuta-
tion.

The permutation is computed without iterating through all of the permutations with lower rank. This makes it
efficient for large permutations.

Note: The variable rank is not checked for being in the interval from 0 to 𝑛! − 1. When outside this interval,
it acts as its residue modulo 𝑛!.

EXAMPLES:

1822 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: import sage.combinat.permutation as permutation
sage: Permutation([3, 6, 5, 4, 2, 1]).rank()
359
sage: [permutation.from_rank(3, i) for i in range(6)]
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
sage: Permutations(6)[10]
[1, 2, 4, 6, 3, 5]
sage: permutation.from_rank(6,10)
[1, 2, 4, 6, 3, 5]

sage.combinat.permutation.from_reduced_word(rw, parent=None)
Return the permutation corresponding to the reduced word rw.

See reduced_words() for a definition of reduced words and the convention on the order of multiplication used.

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: permutation.from_reduced_word([3,2,3,1,2,3,1])
[3, 4, 2, 1]
sage: permutation.from_reduced_word([])
[]

sage.combinat.permutation.permutohedron_lequal(p1, p2, side='right')
Return True if p1 is less than or equal to p2 in the permutohedron order.

By default, the computations are done in the right permutohedron. If you pass the option side='left', then
they will be done in the left permutohedron.

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: permutation.permutohedron_lequal(Permutation([3,2,1,4]),Permutation([4,2,1,
→˓3]))
False
sage: permutation.permutohedron_lequal(Permutation([3,2,1,4]),Permutation([4,2,1,
→˓3]), side='left')
True

sage.combinat.permutation.to_standard(p, key=None)
Return a standard permutation corresponding to the iterable p.

INPUT:

• p – an iterable

• key – (optional) a comparison key for the element x of p

EXAMPLES:

sage: import sage.combinat.permutation as permutation
sage: permutation.to_standard([4,2,7])
[2, 1, 3]
sage: permutation.to_standard([1,2,3])
[1, 2, 3]
sage: permutation.to_standard([])
[]

(continues on next page)

5.1. Comprehensive Module List 1823

Combinatorics, Release 9.7

(continued from previous page)

sage: permutation.to_standard([1,2,3], key=lambda x: -x)
[3, 2, 1]
sage: permutation.to_standard([5,8,2,5], key=lambda x: -x)
[2, 1, 4, 3]

5.1.170 Permutations (Cython file)

This is a nearly-straightforward implementation of what Knuth calls “Algorithm P” in TAOCP 7.2.1.2. The intent is
to be able to enumerate permutation by “plain changes”, or multiplication by adjacent transpositions, as a generator.
This is useful when a class of objects is inherently enumerated by permutations, but it is faster to swap items in a
permutation than construct the next object directly from the next permutation in a list. The backtracking algorithm in
sage/graphs/genus.pyx is an example of this.

The lowest level is implemented as a struct with auxiliary methods. This is because Cython does not allow pointers to
class instances, so a list of these objects is inherently slower than a list of structs. The author prefers ugly code to slow
code.

For those willing to sacrifice a (very small) amount of speed, we provide a class that wraps our struct.

sage.combinat.permutation_cython.left_action_product(S, lp)
Return the permutation obtained by composing a permutation S with a permutation lp in such an order that lp
is applied first and S is applied afterwards.

See also:

sage.combinat.permutation.Permutation.left_action_product()

EXAMPLES:

sage: p = [2,1,3,4]
sage: q = [3,1,2]
sage: from sage.combinat.permutation_cython import left_action_product
sage: left_action_product(p, q)
[3, 2, 1, 4]
sage: left_action_product(q, p)
[1, 3, 2, 4]
sage: q
[3, 1, 2]

sage.combinat.permutation_cython.left_action_same_n(S, lp)
Return the permutation obtained by composing a permutation S with a permutation lp in such an order that lp
is applied first and S is applied afterwards and S and lp are of the same length.

See also:

sage.combinat.permutation.Permutation.left_action_product()

EXAMPLES:

sage: p = [2,1,3]
sage: q = [3,1,2]
sage: from sage.combinat.permutation_cython import left_action_same_n
sage: left_action_same_n(p, q)
[3, 2, 1]
sage: left_action_same_n(q, p)
[1, 3, 2]

1824 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.permutation_cython.map_to_list(l, values, n)
Build a list by mapping the array l using values.

Warning: There is no check of the input data at any point. Using wrong types or values with wrong length
is likely to result in a Sage crash.

INPUT:

• l – array of unsigned int (i.e., type 'I')

• values – tuple; the values of the permutation

• n – int; the length of the array l

OUTPUT:

A list representing the permutation.

EXAMPLES:

sage: from array import array
sage: from sage.combinat.permutation_cython import map_to_list
sage: l = array('I', [0, 1, 0, 3, 3, 0, 1])
sage: map_to_list(l, ('a', 'b', 'c', 'd'), 7)
['a', 'b', 'a', 'd', 'd', 'a', 'b']

sage.combinat.permutation_cython.next_perm(l)
Obtain the next permutation under lex order of l by mutating l.

Algorithm based on: http://marknelson.us/2002/03/01/next-permutation/

INPUT:

• l – array of unsigned int (i.e., type 'I')

Warning: This method mutates the array l.

OUTPUT:

boolean; whether another permutation was obtained

EXAMPLES:

sage: from sage.combinat.permutation_cython import next_perm
sage: from array import array
sage: L = array('I', [1, 1, 2, 3])
sage: while next_perm(L):
....: print(L)
array('I', [1, 1, 3, 2])
array('I', [1, 2, 1, 3])
array('I', [1, 2, 3, 1])
array('I', [1, 3, 1, 2])
array('I', [1, 3, 2, 1])
array('I', [2, 1, 1, 3])
array('I', [2, 1, 3, 1])
array('I', [2, 3, 1, 1])

(continues on next page)

5.1. Comprehensive Module List 1825

http://marknelson.us/2002/03/01/next-permutation/

Combinatorics, Release 9.7

(continued from previous page)

array('I', [3, 1, 1, 2])
array('I', [3, 1, 2, 1])
array('I', [3, 2, 1, 1])

sage.combinat.permutation_cython.permutation_iterator_transposition_list(n)
Returns a list of transposition indices to enumerate the permutations on 𝑛 letters by adjacent transpositions.
Assumes zero-based lists. We artificially limit the argument to 𝑛 < 12 to avoid overflowing 32-bit pointers.
While the algorithm works for larger 𝑛, the user is encouraged to avoid filling anything more than 4GB of memory
with the output of this function.

EXAMPLES:

sage: import sage.combinat.permutation_cython
sage: from sage.combinat.permutation_cython import permutation_iterator_
→˓transposition_list
sage: permutation_iterator_transposition_list(4)
[2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2]
sage: permutation_iterator_transposition_list(200)
Traceback (most recent call last):
...
ValueError: Cowardly refusing to enumerate the permutations on more than 12 letters.
sage: permutation_iterator_transposition_list(1)
[]

sage: # Generate the permutations of [1,2,3,4] fixing 4.
sage: Q = [1,2,3,4]
sage: L = [copy(Q)]
sage: for t in permutation_iterator_transposition_list(3):
....: Q[t], Q[t+1] = Q[t+1], Q[t]
....: L.append(copy(Q))
sage: print(L)
[[1, 2, 3, 4], [1, 3, 2, 4], [3, 1, 2, 4], [3, 2, 1, 4], [2, 3, 1, 4], [2, 1, 3, 4]]

sage.combinat.permutation_cython.right_action_product(S, rp)
Return the permutation obtained by composing a permutation S with a permutation rp in such an order that S is
applied first and rp is applied afterwards.

See also:

sage.combinat.permutation.Permutation.right_action_product()

EXAMPLES:

sage: p = [2,1,3,4]
sage: q = [3,1,2]
sage: from sage.combinat.permutation_cython import right_action_product
sage: right_action_product(p, q)
[1, 3, 2, 4]
sage: right_action_product(q, p)
[3, 2, 1, 4]
sage: q
[3, 1, 2]

sage.combinat.permutation_cython.right_action_same_n(S, rp)
Return the permutation obtained by composing a permutation S with a permutation rp in such an order that S is

1826 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

applied first and rp is applied afterwards and S and rp are of the same length.

See also:

sage.combinat.permutation.Permutation.right_action_product()

EXAMPLES:

sage: p = [2,1,3]
sage: q = [3,1,2]
sage: from sage.combinat.permutation_cython import right_action_same_n
sage: right_action_same_n(p, q)
[1, 3, 2]
sage: right_action_same_n(q, p)
[3, 2, 1]

5.1.171 Posets

Common posets can be accessed through posets.<tab> and are listed in the posets catalog:

• Catalog of posets and lattices

Poset-related classes:

• Finite posets

• Finite lattices and semilattices

• Linear Extensions of Posets

• D-Complete Posets

• Forest Posets

• Mobile posets

• Incidence Algebras

• Cartesian products of Posets

• Möbius Algebras

• Generalized Tamari lattices

• Tamari Interval-posets

• Shard intersection order

If you are looking for Poset-related categories, see Posets, FinitePosets, LatticePosets and
FiniteLatticePosets.

5.1.172 Cartesian products of Posets

AUTHORS:

• Daniel Krenn (2015)

class sage.combinat.posets.cartesian_product.CartesianProductPoset(sets, category, order=None,
**kwargs)

Bases: sage.sets.cartesian_product.CartesianProduct

5.1. Comprehensive Module List 1827

../../../../../../../html/en/reference/categories/sage/categories/category.html#module-sage.categories.category
../../../../../../../html/en/reference/categories/sage/categories/posets.html#sage.categories.posets.Posets
../../../../../../../html/en/reference/categories/sage/categories/finite_posets.html#sage.categories.finite_posets.FinitePosets
../../../../../../../html/en/reference/categories/sage/categories/lattice_posets.html#sage.categories.lattice_posets.LatticePosets
../../../../../../../html/en/reference/categories/sage/categories/finite_lattice_posets.html#sage.categories.finite_lattice_posets.FiniteLatticePosets
../../../../../../../html/en/reference/sets/sage/sets/cartesian_product.html#sage.sets.cartesian_product.CartesianProduct

Combinatorics, Release 9.7

A class implementing Cartesian products of posets (and elements thereof). Compared to CartesianProduct
you are able to specify an order for comparison of the elements.

INPUT:

• sets – a tuple of parents.

• category – a subcategory of Sets().CartesianProducts() & Posets().

• order – a string or function specifying an order less or equal. It can be one of the following:

– 'native' – elements are ordered by their native ordering, i.e., the order the wrapped elements (tuples)
provide.

– 'lex' – elements are ordered lexicographically.

– 'product' – an element is less or equal to another element, if less or equal is true for all its components
(Cartesian projections).

– A function which performs the comparison ≤. It takes two input arguments and outputs a boolean.

Other keyword arguments (kwargs) are passed to the constructor of CartesianProduct.

EXAMPLES:

sage: P = Poset((srange(3), lambda left, right: left <= right))
sage: Cl = cartesian_product((P, P), order='lex')
sage: Cl((1, 1)) <= Cl((2, 0))
True
sage: Cp = cartesian_product((P, P), order='product')
sage: Cp((1, 1)) <= Cp((2, 0))
False
sage: def le_sum(left, right):
....: return (sum(left) < sum(right) or
....: sum(left) == sum(right) and left[0] <= right[0])
sage: Cs = cartesian_product((P, P), order=le_sum)
sage: Cs((1, 1)) <= Cs((2, 0))
True

See also:

CartesianProduct

class Element
Bases: sage.sets.cartesian_product.CartesianProduct.Element

le(left, right)
Test whether left is less than or equal to right.

INPUT:

• left – an element.

• right – an element.

OUTPUT:

A boolean.

Note: This method uses the order defined on creation of this Cartesian product. See
CartesianProductPoset.

1828 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/sets/sage/sets/cartesian_product.html#sage.sets.cartesian_product.CartesianProduct
../../../../../../../html/en/reference/sets/sage/sets/cartesian_product.html#sage.sets.cartesian_product.CartesianProduct
../../../../../../../html/en/reference/sets/sage/sets/cartesian_product.html#sage.sets.cartesian_product.CartesianProduct
../../../../../../../html/en/reference/sets/sage/sets/cartesian_product.html#sage.sets.cartesian_product.CartesianProduct.Element

Combinatorics, Release 9.7

EXAMPLES:

sage: P = posets.ChainPoset(10)
sage: def le_sum(left, right):
....: return (sum(left) < sum(right) or
....: sum(left) == sum(right) and left[0] <= right[0])
sage: C = cartesian_product((P, P), order=le_sum)
sage: C.le(C((1, 6)), C((6, 1)))
True
sage: C.le(C((6, 1)), C((1, 6)))
False
sage: C.le(C((1, 6)), C((6, 6)))
True
sage: C.le(C((6, 6)), C((1, 6)))
False

le_lex(left, right)
Test whether left is lexicographically smaller or equal to right.

INPUT:

• left – an element.

• right – an element.

OUTPUT:

A boolean.

EXAMPLES:

sage: P = Poset((srange(2), lambda left, right: left <= right))
sage: Q = cartesian_product((P, P), order='lex')
sage: T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))]
sage: for a in T:
....: for b in T:
....: assert(Q.le(a, b) == (a <= b))
....: print('%s <= %s = %s' % (a, b, a <= b))
(0, 0) <= (0, 0) = True
(0, 0) <= (1, 1) = True
(0, 0) <= (0, 1) = True
(0, 0) <= (1, 0) = True
(1, 1) <= (0, 0) = False
(1, 1) <= (1, 1) = True
(1, 1) <= (0, 1) = False
(1, 1) <= (1, 0) = False
(0, 1) <= (0, 0) = False
(0, 1) <= (1, 1) = True
(0, 1) <= (0, 1) = True
(0, 1) <= (1, 0) = True
(1, 0) <= (0, 0) = False
(1, 0) <= (1, 1) = True
(1, 0) <= (0, 1) = False
(1, 0) <= (1, 0) = True

le_native(left, right)
Test whether left is smaller or equal to right in the order provided by the elements themselves.

5.1. Comprehensive Module List 1829

Combinatorics, Release 9.7

INPUT:

• left – an element.

• right – an element.

OUTPUT:

A boolean.

EXAMPLES:

sage: P = Poset((srange(2), lambda left, right: left <= right))
sage: Q = cartesian_product((P, P), order='native')
sage: T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))]
sage: for a in T:
....: for b in T:
....: assert(Q.le(a, b) == (a <= b))
....: print('%s <= %s = %s' % (a, b, a <= b))
(0, 0) <= (0, 0) = True
(0, 0) <= (1, 1) = True
(0, 0) <= (0, 1) = True
(0, 0) <= (1, 0) = True
(1, 1) <= (0, 0) = False
(1, 1) <= (1, 1) = True
(1, 1) <= (0, 1) = False
(1, 1) <= (1, 0) = False
(0, 1) <= (0, 0) = False
(0, 1) <= (1, 1) = True
(0, 1) <= (0, 1) = True
(0, 1) <= (1, 0) = True
(1, 0) <= (0, 0) = False
(1, 0) <= (1, 1) = True
(1, 0) <= (0, 1) = False
(1, 0) <= (1, 0) = True

le_product(left, right)
Test whether left is component-wise smaller or equal to right.

INPUT:

• left – an element.

• right – an element.

OUTPUT:

A boolean.

The comparison is True if the result of the comparison in each component is True.

EXAMPLES:

sage: P = Poset((srange(2), lambda left, right: left <= right))
sage: Q = cartesian_product((P, P), order='product')
sage: T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))]
sage: for a in T:
....: for b in T:
....: assert(Q.le(a, b) == (a <= b))

(continues on next page)

1830 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: print('%s <= %s = %s' % (a, b, a <= b))
(0, 0) <= (0, 0) = True
(0, 0) <= (1, 1) = True
(0, 0) <= (0, 1) = True
(0, 0) <= (1, 0) = True
(1, 1) <= (0, 0) = False
(1, 1) <= (1, 1) = True
(1, 1) <= (0, 1) = False
(1, 1) <= (1, 0) = False
(0, 1) <= (0, 0) = False
(0, 1) <= (1, 1) = True
(0, 1) <= (0, 1) = True
(0, 1) <= (1, 0) = False
(1, 0) <= (0, 0) = False
(1, 0) <= (1, 1) = True
(1, 0) <= (0, 1) = False
(1, 0) <= (1, 0) = True

5.1.173 D-Complete Posets

AUTHORS:

• Stefan Grosser (06-2020): initial implementation

class sage.combinat.posets.d_complete.DCompletePoset(hasse_diagram, elements, category, facade,
key)

Bases: sage.combinat.posets.lattices.FiniteJoinSemilattice

A d-complete poset.

D-complete posets are a class of posets introduced by Proctor in [Proc1999]. It includes common families
such as shapes, shifted shapes, and rooted forests. Proctor showed in [PDynk1999] that d-complete posets have
decompositions in irreducible posets, and showed in [Proc2014] that d-complete posets admit a hook-length
formula (see Wikipedia article Hook_length_formula). A complete proof of the hook-length formula can be
found in [KY2019].

EXAMPLES:

sage: from sage.combinat.posets.poset_examples import Posets
sage: P = Posets.DoubleTailedDiamond(2)
sage: TestSuite(P).run()

get_hook(elmt)
Return the hook length of the element elmt.

EXAMPLES:

sage: from sage.combinat.posets.d_complete import DCompletePoset
sage: P = DCompletePoset(DiGraph({0: [1], 1: [2]}))
sage: P.get_hook(1)
2

get_hooks()
Return all the hook lengths as a dictionary.

5.1. Comprehensive Module List 1831

https://en.wikipedia.org/wiki/Hook_length_formula

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.posets.d_complete import DCompletePoset
sage: P = DCompletePoset(DiGraph({0: [1, 2], 1: [3], 2: [3], 3: []}))
sage: P.get_hooks()
{0: 1, 1: 2, 2: 2, 3: 3}
sage: from sage.combinat.posets.poset_examples import Posets
sage: P = DCompletePoset(Posets.YoungDiagramPoset(Partition([3,2,1]))._hasse_
→˓diagram.reverse())
sage: P.get_hooks()
{0: 5, 1: 3, 2: 1, 3: 3, 4: 1, 5: 1}

hook_product()
Return the hook product for the poset.

5.1.174 Mobile posets

class sage.combinat.posets.mobile.MobilePoset(hasse_diagram, elements, category, facade, key,
ribbon=None, check=True)

Bases: sage.combinat.posets.posets.FinitePoset

A mobile poset.

Mobile posets are an extension of d-complete posets which permit a determinant formula for counting linear
extensions. They are formed by having a ribbon poset with d-complete posets ‘hanging’ below it and at most
one d-complete poset above it, known as the anchor. See [GGMM2020] for the definition.

EXAMPLES:

sage: P = posets.MobilePoset(posets.RibbonPoset(7, [1,3]),
....: {1: [posets.YoungDiagramPoset([3, 2], dual=True)],
....: 3: [posets.DoubleTailedDiamond(6)]},
....: anchor=(4, 2, posets.ChainPoset(6)))
sage: len(P._ribbon)
8
sage: P._anchor
(4, 5)

This example is Example 5.9 in [GGMM2020]:

sage: P1 = posets.MobilePoset(posets.RibbonPoset(8, [2,3,4]),
....: {4: [posets.ChainPoset(1)]},
....: anchor=(3, 0, posets.ChainPoset(1)))
sage: sorted([P1._element_to_vertex(i) for i in P1._ribbon])
[0, 1, 2, 6, 7, 9]
sage: P1._anchor
(3, 2)

sage: P2 = posets.MobilePoset(posets.RibbonPoset(15, [1,3,5,7,9,11,13]),
....: {}, anchor=(8, 0, posets.ChainPoset(1)))
sage: sorted(P2._ribbon)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
sage: P2._anchor
(8, (8, 0))

(continues on next page)

1832 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: P2.linear_extensions().cardinality()
21399440939

sage: EP = posets.MobilePoset(posets.ChainPoset(0), {})
Traceback (most recent call last):
...
ValueError: the empty poset is not a mobile poset

anchor()
Return the anchor of the mobile poset.

EXAMPLES:

sage: from sage.combinat.posets.mobile import MobilePoset
sage: M2 = MobilePoset(Poset([[0,1,2,3,4,5,6,7,8],
....: [(1,0),(3,0),(2,1),(2,3),(4,3),(5,4),(7,4),(7,8)]]))
sage: M2.anchor()
(4, 3)
sage: M3 = MobilePoset(Posets.RibbonPoset(5, [1,2]))
sage: M3.anchor() is None
True

ribbon()
Return the ribbon of the mobile poset.

EXAMPLES:

sage: from sage.combinat.posets.mobile import MobilePoset
sage: M3 = MobilePoset(Posets.RibbonPoset(5, [1,2]))
sage: sorted(M3.ribbon())
[1, 2, 3, 4]

5.1.175 Elements of posets, lattices, semilattices, etc.

class sage.combinat.posets.elements.JoinSemilatticeElement(poset, element, vertex)
Bases: sage.combinat.posets.elements.PosetElement

class sage.combinat.posets.elements.LatticePosetElement(poset, element, vertex)
Bases: sage.combinat.posets.elements.MeetSemilatticeElement, sage.combinat.posets.
elements.JoinSemilatticeElement

class sage.combinat.posets.elements.MeetSemilatticeElement(poset, element, vertex)
Bases: sage.combinat.posets.elements.PosetElement

class sage.combinat.posets.elements.PosetElement(poset, element, vertex)
Bases: sage.structure.element.Element

Establish the parent-child relationship between poset and element, where element is associated to the vertex
vertex of the Hasse diagram of the poset.

INPUT:

• poset – a poset object

• element – any object

• vertex – a vertex of the Hasse diagram of the poset

5.1. Comprehensive Module List 1833

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

5.1.176 Forest Posets

AUTHORS:

• Stefan Grosser (06-2020): initial implementation

class sage.combinat.posets.forest.ForestPoset(hasse_diagram, elements, category, facade, key)
Bases: sage.combinat.posets.posets.FinitePoset

A forest poset is a poset where the underlying Hasse diagram and is directed acyclic graph.

5.1.177 Hasse diagrams of posets

antichains() Return all antichains of self, organized as a prefix tree
antichains_iterator() Return an iterator over the antichains of the poset.
are_comparable() Return whether i and j are comparable in the poset
are_incomparable() Return whether i and j are incomparable in the poset
atoms_of_congruence_lattice()Return atoms of the congruence lattice.
bottom() Return the bottom element of the poset, if it exists.
cardinality() Return the number of elements in the poset.
chains() Return all chains of self, organized as a prefix tree.
closed_interval() Return a list of the elements 𝑧 of self such that 𝑥 ≤ 𝑧 ≤ 𝑦.
common_lower_covers() Return the list of all common lower covers of vertices.
common_upper_covers() Return the list of all common upper covers of vertices.
congruence() Return the congruence start “extended” by parts.
congruences_iterator() Return an iterator over all congruences of the lattice.
cover_relations() Return the list of cover relations.
cover_relations_iterator() Iterate over cover relations.
covers() Return True if y covers x and False otherwise.
diamonds() Return the list of diamonds of self.
dual() Return a poset that is dual to the given poset.
find_nonsemidistributive_elements()Check if the lattice is semidistributive or not.
find_nonsemimodular_pair() Return pair of elements showing the lattice is not modular.
find_nontrivial_congruence()Return a pair that generates non-trivial congruence or None if there is not any.
frattini_sublattice() Return the list of elements of the Frattini sublattice of the lattice.
greedy_linear_extensions_iterator()Return an iterator over greedy linear extensions of the Hasse diagram.
has_bottom() Return True if the poset has a unique minimal element.
has_top() Return True if the poset contains a unique maximal element, and False other-

wise.
interval_iterator() Return an iterator of the elements 𝑧 of self such that 𝑥 ≤ 𝑧 ≤ 𝑦.
is_antichain_of_poset() Return True if elms is an antichain of the Hasse diagram and False otherwise.
is_bounded() Return True if the poset contains a unique maximal element and a unique min-

imal element, and False otherwise.
is_chain() Return True if the poset is totally ordered, and False otherwise.
is_complemented() Return an element of the lattice that has no complement.
is_congruence_normal() Return True if the lattice can be constructed from the one-element lattice with

Day doubling constructions of convex subsets.
is_convex_subset() Return True if 𝑆 is a convex subset of the poset, and False otherwise.
is_gequal() Return True if x is greater than or equal to y, and False otherwise.
is_greater_than() Return True if x is greater than but not equal to y, and False otherwise.
is_join_semilattice() Return True if self has a join operation, and False otherwise.
is_lequal() Return True if i is less than or equal to j in the poset, and False otherwise.

continues on next page

1834 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Table 3 – continued from previous page
is_less_than() Return True if x is less than but not equal to y in the poset, and False otherwise.
is_linear_extension() Test if an ordering is a linear extension.
is_linear_interval() Return whether the interval [t_min, t_max] is linear.
is_meet_semilattice() Return True if self has a meet operation, and False otherwise.
is_ranked() Return True if the poset is ranked, and False otherwise.
join_matrix() Return the matrix of joins of self, when self is a join-semilattice; raise an

error otherwise.
kappa() Return the maximum element greater than the element covered by a but not

greater than a.
kappa_dual() Return the minimum element smaller than the element covering a but not smaller

than a.
lequal_matrix() Return a matrix whose (i,j) entry is 1 if i is less than j in the poset, and 0

otherwise; and redefines __lt__ to use the boolean version of this matrix.
linear_extension() Return a linear extension
linear_extensions() Return an iterator over all linear extensions.
lower_covers_iterator() Return the list of elements that are covered by element.
maximal_elements() Return a list of the maximal elements of the poset.
maximal_sublattices() Return maximal sublattices of the lattice.
meet_matrix() Return the matrix of meets of self, when self is a meet-semilattice; raise an

error otherwise.
minimal_elements() Return a list of the minimal elements of the poset.
moebius_function() Return the value of the Möbius function of the poset on the elements i and j.
moebius_function_matrix() Return the matrix of the Möbius function of this poset.
neutral_elements() Return the list of neutral elements of the lattice.
open_interval() Return a list of the elements 𝑧 of self such that 𝑥 < 𝑧 < 𝑦.
order_filter() Return the order filter generated by a list of elements.
order_ideal() Return the order ideal generated by a list of elements.
order_ideal_cardinality() Return the cardinality of the order ideal generated by elements.
orthocomplementations_iterator()Return an iterator over orthocomplementations of the lattice.
prime_elements() Return the join-prime and meet-prime elements of the bounded poset.
principal_congruences_poset()Return the poset of join-irreducibles of the congruence lattice.
principal_order_filter() Return the order filter generated by i.
principal_order_ideal() Return the order ideal generated by 𝑖.
pseudocomplement() Return the pseudocomplement of element, if it exists.
rank() Return the rank of element, or the rank of the poset if element is None. (The

rank of a poset is the length of the longest chain of elements of the poset.)
rank_function() Return the (normalized) rank function of the poset, if it exists.
skeleton() Return the skeleton of the lattice.
sublattices_iterator() Return an iterator over sublattices of the Hasse diagram.
supergreedy_linear_extensions_iterator()Return an iterator over supergreedy linear extensions of the Hasse diagram.
top() Return the top element of the poset, if it exists.
upper_covers_iterator() Return the list of elements that cover element.
vertical_decomposition() Return vertical decomposition of the lattice.

class sage.combinat.posets.hasse_diagram.HasseDiagram(data=None, pos=None, loops=None,
format=None, weighted=None,
data_structure='sparse', vertex_labels=True,
name=None, multiedges=None,
convert_empty_dict_labels_to_None=None,
sparse=True, immutable=False)

Bases: sage.graphs.digraph.DiGraph

5.1. Comprehensive Module List 1835

../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Combinatorics, Release 9.7

The Hasse diagram of a poset. This is just a transitively-reduced, directed, acyclic graph without loops or multiple
edges.

Note: We assume that range(n) is a linear extension of the poset. That is, range(n) is the vertex set and a
topological sort of the digraph.

This should not be called directly, use Poset instead; all type checking happens there.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,2],1:[3],2:[3],3:[]}); H
Hasse diagram of a poset containing 4 elements
sage: TestSuite(H).run()

antichains(element_class=<class 'list'>)
Return all antichains of self, organized as a prefix tree

INPUT:

• element_class – (default:list) an iterable type

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: H = P._hasse_diagram
sage: A = H.antichains()
sage: list(A)
[[], [0], [1], [1, 2], [1, 3], [2], [3], [4]]
sage: A.cardinality()
8
sage: [1,3] in A
True
sage: [1,4] in A
False

antichains_iterator()
Return an iterator over the antichains of the poset.

Note: The algorithm is based on Freese-Jezek-Nation p. 226. It does a depth first search through the set
of all antichains organized in a prefix tree.

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: H = P._hasse_diagram
sage: H.antichains_iterator()
<generator object ...antichains_iterator at ...>
sage: list(H.antichains_iterator())
[[], [4], [3], [2], [1], [1, 3], [1, 2], [0]]

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,2],1:[4],2:[3],3:[4]})
sage: list(H.antichains_iterator())

(continues on next page)

1836 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[], [4], [3], [2], [1], [1, 3], [1, 2], [0]]

sage: H = HasseDiagram({0:[],1:[],2:[]})
sage: list(H.antichains_iterator())
[[], [2], [1], [1, 2], [0], [0, 2], [0, 1], [0, 1, 2]]

sage: H = HasseDiagram({0:[1],1:[2],2:[3],3:[4]})
sage: list(H.antichains_iterator())
[[], [4], [3], [2], [1], [0]]

are_comparable(i, j)
Return whether i and j are comparable in the poset

INPUT:

• i, j – vertices of this Hasse diagram

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: H = P._hasse_diagram
sage: H.are_comparable(1,2)
False
sage: V = H.vertices(sort=True)
sage: [(i,j) for i in V for j in V if H.are_comparable(i,j)]
[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 4), (2, 0), (2, 2),
→˓ (2, 3), (2, 4), (3, 0), (3, 2), (3, 3), (3, 4), (4, 0), (4, 1), (4, 2), (4,␣
→˓3), (4, 4)]

are_incomparable(i, j)
Return whether i and j are incomparable in the poset

INPUT:

• i, j – vertices of this Hasse diagram

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: H = P._hasse_diagram
sage: H.are_incomparable(1,2)
True
sage: V = H.vertices(sort=True)
sage: [(i,j) for i in V for j in V if H.are_incomparable(i,j)]
[(1, 2), (1, 3), (2, 1), (3, 1)]

atoms_of_congruence_lattice()
Return atoms of the congruence lattice.

In other words, return “minimal non-trivial” congruences: A congruence is minimal if the only finer (as
a partition of set of elements) congruence is the trivial congruence where every block contains only one
element.

See also:

congruence()

OUTPUT:

5.1. Comprehensive Module List 1837

Combinatorics, Release 9.7

List of congruences, every congruence as sage.combinat.set_partition.SetPartition

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: N5 = HasseDiagram({0: [1, 2], 1: [4], 2: [3], 3:[4]})
sage: N5.atoms_of_congruence_lattice()
[{{0}, {1}, {2, 3}, {4}}]
sage: Hex = HasseDiagram({0: [1, 2], 1: [3], 2: [4], 3: [5], 4: [5]})
sage: Hex.atoms_of_congruence_lattice()
[{{0}, {1}, {2, 4}, {3}, {5}}, {{0}, {1, 3}, {2}, {4}, {5}}]

ALGORITHM:

Every atom is a join-irreducible. Every join-irreducible of Con(𝐿) is a principal congruence generated by
a meet-irreducible element and the only element covering it (and also by a join-irreducible element and the
only element covered by it). Hence we check those principal congruences to find the minimal ones.

bottom()
Return the bottom element of the poset, if it exists.

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4],4:[]})
sage: P.bottom() is None
True
sage: Q = Poset({0:[1],1:[]})
sage: Q.bottom()
0

cardinality()
Return the number of elements in the poset.

EXAMPLES:

sage: Poset([[1,2,3],[4],[4],[4],[]]).cardinality()
5

chains(element_class=<class 'list'>, exclude=None, conversion=None)
Return all chains of self, organized as a prefix tree.

INPUT:

• element_class – (optional, default: list) an iterable type

• exclude – elements of the poset to be excluded (optional, default: None)

• conversion – (optional, default: None) used to pass the list of elements of the poset in their fixed
order

OUTPUT:

The enumerated set (with a forest structure given by prefix ordering) consisting of all chains of self, each
of which is given as an element_class.

If conversion is given, then the chains are converted to chain of elements of this list.

EXAMPLES:

1838 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: P = posets.PentagonPoset()
sage: H = P._hasse_diagram
sage: A = H.chains()
sage: list(A)
[[], [0], [0, 1], [0, 1, 4], [0, 2], [0, 2, 3], [0, 2, 3, 4], [0, 2, 4], [0, 3],
→˓ [0, 3, 4], [0, 4], [1], [1, 4], [2], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4],␣
→˓[4]]
sage: A.cardinality()
20
sage: [1,3] in A
False
sage: [1,4] in A
True

One can exclude some vertices:

sage: list(H.chains(exclude=[4, 3]))
[[], [0], [0, 1], [0, 2], [1], [2]]

The element_class keyword determines how the chains are being returned:

sage: P = Poset({1: [2, 3], 2: [4]})
sage: list(P._hasse_diagram.chains(element_class=tuple))
[(), (0,), (0, 1), (0, 1, 2), (0, 2), (0, 3), (1,), (1, 2), (2,), (3,)]
sage: list(P._hasse_diagram.chains())
[[], [0], [0, 1], [0, 1, 2], [0, 2], [0, 3], [1], [1, 2], [2], [3]]

(Note that taking the Hasse diagram has renamed the vertices.)

sage: list(P._hasse_diagram.chains(element_class=tuple, exclude=[0]))
[(), (1,), (1, 2), (2,), (3,)]

See also:

antichains()

closed_interval(x, y)
Return a list of the elements 𝑧 of self such that 𝑥 ≤ 𝑧 ≤ 𝑦.

The order is that induced by the ordering in self.linear_extension.

INPUT:

• x – any element of the poset

• y – any element of the poset

Note: The method _precompute_intervals() creates a cache which is used if available, making the
function very fast.

See also:

interval_iterator()

EXAMPLES:

5.1. Comprehensive Module List 1839

Combinatorics, Release 9.7

sage: uc = [[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]]
sage: dag = DiGraph(dict(zip(range(len(uc)),uc)))
sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram(dag)
sage: I = set([2,5,6,4,7])
sage: I == set(H.interval(2,7))
True

common_lower_covers(vertices)
Return the list of all common lower covers of vertices.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1,2], 1: [3], 2: [3], 3: []})
sage: H.common_lower_covers([1, 2])
[0]

sage: from sage.combinat.posets.poset_examples import Posets
sage: H = Posets.YoungDiagramPoset(Partition([3, 2, 2]))._hasse_diagram
sage: H.common_lower_covers([4, 5])
[3]

common_upper_covers(vertices)
Return the list of all common upper covers of vertices.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1,2], 1: [3], 2: [3], 3: []})
sage: H.common_upper_covers([1, 2])
[3]

sage: from sage.combinat.posets.poset_examples import Posets
sage: H = Posets.YoungDiagramPoset(Partition([3, 2, 2]))._hasse_diagram
sage: H.common_upper_covers([4, 5])
[6]

congruence(parts, start=None, stop_pairs=[])
Return the congruence start “extended” by parts.

start is assumed to be a valid congruence of the lattice, and this is not checked.

INPUT:

• parts – a list of lists; congruences to add

• start – a disjoint set; already computed congruence (or None)

• stop_pairs – a list of pairs; list of pairs for stopping computation

OUTPUT:

None, if the congruence generated by start and parts together contains a block that has elements 𝑎, 𝑏 so
that (a, b) is in the list stop_pairs. Otherwise the least congruence that contains a block whose subset
is 𝑝 for every 𝑝 in parts or start, given as sage.sets.disjoint_set.DisjointSet_class.

ALGORITHM:

1840 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/sets/sage/sets/disjoint_set.html#sage.sets.disjoint_set.DisjointSet_class

Combinatorics, Release 9.7

Use the quadrilateral argument from page 120 of [Dav1997].

Basically we take one block from todo-list, search quadrilateral blocks up and down against the block, and
then complete them to closed intervals and add to todo-list.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2], 1: [3], 2: [4], 3: [4]})
sage: cong = H.congruence([[0, 1]]); cong
{{0, 1, 3}, {2, 4}}
sage: H.congruence([[0, 2]], start=cong)
{{0, 1, 2, 3, 4}}

sage: H.congruence([[0, 1]], stop_pairs=[(1, 3)]) is None
True

congruences_iterator()
Return an iterator over all congruences of the lattice.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram('GY@OQ?OW@?O?')
sage: it = H.congruences_iterator(); it
<generator object ...>
sage: sorted([cong.number_of_subsets() for cong in it])
[1, 2, 2, 2, 4, 4, 4, 8]

cover_relations()
Return the list of cover relations.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[2,3], 1:[3,4], 2:[5], 3:[5], 4:[5]})
sage: H.cover_relations()
[(0, 2), (0, 3), (1, 3), (1, 4), (2, 5), (3, 5), (4, 5)]

cover_relations_iterator()
Iterate over cover relations.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[2,3], 1:[3,4], 2:[5], 3:[5], 4:[5]})
sage: list(H.cover_relations_iterator())
[(0, 2), (0, 3), (1, 3), (1, 4), (2, 5), (3, 5), (4, 5)]

covers(x, y)
Return True if y covers x and False otherwise.

EXAMPLES:

sage: Q = Poset([[1,5],[2,6],[3],[4],[],[6,3],[4]])
sage: Q.covers(Q(1),Q(6))
True

(continues on next page)

5.1. Comprehensive Module List 1841

Combinatorics, Release 9.7

(continued from previous page)

sage: Q.covers(Q(1),Q(4))
False

coxeter_transformation(algorithm='cython')
Return the matrix of the Auslander-Reiten translation acting on the Grothendieck group of the derived
category of modules on the poset, in the basis of simple modules.

INPUT:

• algorithm – optional, 'cython' (default) or 'matrix'

This uses either a specific matrix code in Cython, or generic matrices.

See also:

lequal_matrix(), moebius_function_matrix()

EXAMPLES:

sage: P = posets.PentagonPoset()._hasse_diagram
sage: M = P.coxeter_transformation(); M
[0 0 0 0 -1]
[0 0 0 1 -1]
[0 1 0 0 -1]
[-1 1 1 0 -1]
[-1 1 0 1 -1]
sage: P.__dict__['coxeter_transformation'].clear_cache()
sage: P.coxeter_transformation(algorithm="matrix") == M
True

diamonds()
Return the list of diamonds of self.

A diamond is the following subgraph of the Hasse diagram:

z
/ \

x y
\ /
w

Thus each edge represents a cover relation in the Hasse diagram. We represent his as the tuple (𝑤, 𝑥, 𝑦, 𝑧).

OUTPUT:

A tuple with

• a list of all diamonds in the Hasse Diagram,

• a boolean checking that every 𝑤, 𝑥, 𝑦 that form a V, there is a unique element 𝑧, which completes the
diamond.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1,2], 1: [3], 2: [3], 3: []})
sage: H.diamonds()
([(0, 1, 2, 3)], True)

(continues on next page)

1842 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: P = posets.YoungDiagramPoset(Partition([3, 2, 2]))
sage: H = P._hasse_diagram
sage: H.diamonds()
([(0, 1, 3, 4), (3, 4, 5, 6)], False)

dual()
Return a poset that is dual to the given poset.

This means that it has the same elements but opposite order. The elements are renumbered to ensure that
range(n) is a linear extension.

EXAMPLES:

sage: P = posets.IntegerPartitions(4)
sage: H = P._hasse_diagram; H
Hasse diagram of a poset containing 5 elements
sage: H.dual()
Hasse diagram of a poset containing 5 elements

find_nonsemidistributive_elements(meet_or_join)
Check if the lattice is semidistributive or not.

INPUT:

• meet_or_join – string 'meet' or 'join' to decide if to check for join-semidistributivity or meet-
semidistributivity

OUTPUT:

• None if the lattice is semidistributive OR

• tuple (u, e, x, y) such that 𝑢 = 𝑒 ∨ 𝑥 = 𝑒 ∨ 𝑦 but 𝑢 ̸= 𝑒 ∨ (𝑥 ∧ 𝑦) if meet_or_join=='join'
and 𝑢 = 𝑒 ∧ 𝑥 = 𝑒 ∧ 𝑦 but 𝑢 ̸= 𝑒 ∧ (𝑥 ∨ 𝑦) if meet_or_join=='meet'

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1, 2], 1:[3, 4], 2:[4, 5], 3:[6],
....: 4:[6], 5:[6]})
sage: H.find_nonsemidistributive_elements('join') is None
False
sage: H.find_nonsemidistributive_elements('meet') is None
True

find_nonsemimodular_pair(upper)
Return pair of elements showing the lattice is not modular.

INPUT:

• upper, a Boolean – if True, test whether the lattice is upper semimodular; otherwise test whether the
lattice is lower semimodular.

OUTPUT:

None, if the lattice is semimodular. Pair (𝑎, 𝑏) violating semimodularity otherwise.

EXAMPLES:

5.1. Comprehensive Module List 1843

Combinatorics, Release 9.7

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1, 2], 1:[3, 4], 2:[4, 5], 3:[6], 4:[6], 5:[6]})
sage: H.find_nonsemimodular_pair(upper=True) is None
True
sage: H.find_nonsemimodular_pair(upper=False)
(5, 3)

sage: H_ = HasseDiagram(H.reverse().relabel(lambda x: 6-x, inplace=False))
sage: H_.find_nonsemimodular_pair(upper=True)
(3, 1)
sage: H_.find_nonsemimodular_pair(upper=False) is None
True

find_nontrivial_congruence()
Return a pair that generates non-trivial congruence or None if there is not any.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2], 1: [5], 2: [3, 4], 3: [5], 4: [5]})
sage: H.find_nontrivial_congruence()
{{0, 1}, {2, 3, 4, 5}}

sage: H = HasseDiagram({0: [1, 2, 3], 1: [4], 2: [4], 3: [4]})
sage: H.find_nontrivial_congruence() is None
True

ALGORITHM:

See https://www.math.hawaii.edu/~ralph/Preprints/conlat.pdf:

If Θ is a join irreducible element of a Con(𝐿), then there is at least one join-irreducible 𝑗 and one meet-
irreducible 𝑚 such that Θ is both the principal congruence generated by (𝑗*, 𝑗), where 𝑗* is the unique
lower cover of 𝑗, and the principal congruence generated by (𝑚,𝑚*), where 𝑚* is the unique upper cover
of 𝑚.

So, we only check join irreducibles or meet irreducibles, whichever is a smaller set. To optimize more we
stop computation whenever it finds a pair that we know to generate one-element congruence.

frattini_sublattice()
Return the list of elements of the Frattini sublattice of the lattice.

EXAMPLES:

sage: H = posets.PentagonPoset()._hasse_diagram
sage: H.frattini_sublattice()
[0, 4]

greedy_linear_extensions_iterator()
Return an iterator over greedy linear extensions of the Hasse diagram.

A linear extension [𝑒1, 𝑒2, . . . , 𝑒𝑛] is greedy if for every 𝑖 either 𝑒𝑖+1 covers 𝑒𝑖 or all upper covers of 𝑒𝑖 have
at least one lower cover that is not in [𝑒1, 𝑒2, . . . , 𝑒𝑖].

Informally said a linear extension is greedy if it “always goes up when possible” and so has no unnecessary
jumps.

EXAMPLES:

1844 Chapter 5. Comprehensive Module List

https://www.math.hawaii.edu/~ralph/Preprints/conlat.pdf

Combinatorics, Release 9.7

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: N5 = HasseDiagram({0: [1, 2], 2: [3], 1: [4], 3: [4]})
sage: for l in N5.greedy_linear_extensions_iterator():
....: print(l)
[0, 1, 2, 3, 4]
[0, 2, 3, 1, 4]

has_bottom()
Return True if the poset has a unique minimal element.

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4],4:[]})
sage: P.has_bottom()
False
sage: Q = Poset({0:[1],1:[]})
sage: Q.has_bottom()
True

has_top()
Return True if the poset contains a unique maximal element, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4,5],4:[],5:[]})
sage: P.has_top()
False
sage: Q = Poset({0:[1],1:[]})
sage: Q.has_top()
True

interval(x, y)
Return a list of the elements 𝑧 of self such that 𝑥 ≤ 𝑧 ≤ 𝑦.

The order is that induced by the ordering in self.linear_extension.

INPUT:

• x – any element of the poset

• y – any element of the poset

Note: The method _precompute_intervals() creates a cache which is used if available, making the
function very fast.

See also:

interval_iterator()

EXAMPLES:

sage: uc = [[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]]
sage: dag = DiGraph(dict(zip(range(len(uc)),uc)))
sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram(dag)
sage: I = set([2,5,6,4,7])

(continues on next page)

5.1. Comprehensive Module List 1845

Combinatorics, Release 9.7

(continued from previous page)

sage: I == set(H.interval(2,7))
True

interval_iterator(x, y)
Return an iterator of the elements 𝑧 of self such that 𝑥 ≤ 𝑧 ≤ 𝑦.

INPUT:

• x – any element of the poset

• y – any element of the poset

See also:

interval()

Note: This becomes much faster when first calling _leq_storage(), which precomputes the principal
upper ideals.

EXAMPLES:

sage: uc = [[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]]
sage: dag = DiGraph(dict(zip(range(len(uc)),uc)))
sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram(dag)
sage: I = set([2,5,6,4,7])
sage: I == set(H.interval_iterator(2,7))
True

is_antichain_of_poset(elms)
Return True if elms is an antichain of the Hasse diagram and False otherwise.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2, 3], 1: [4], 2: [4], 3: [4]})
sage: H.is_antichain_of_poset([1, 2, 3])
True
sage: H.is_antichain_of_poset([0, 2, 3])
False

is_bounded()
Return True if the poset contains a unique maximal element and a unique minimal element, and False
otherwise.

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4,5],4:[],5:[]})
sage: P.is_bounded()
False
sage: Q = Poset({0:[1],1:[]})
sage: Q.is_bounded()
True

is_chain()
Return True if the poset is totally ordered, and False otherwise.

1846 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: L = Poset({0:[1],1:[2],2:[3],3:[4]})
sage: L.is_chain()
True
sage: V = Poset({0:[1,2]})
sage: V.is_chain()
False

is_complemented()
Return an element of the lattice that has no complement.

If the lattice is complemented, return None.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram

sage: H = HasseDiagram({0:[1, 2], 1:[3], 2:[3], 3:[4]})
sage: H.is_complemented()
1

sage: H = HasseDiagram({0:[1, 2, 3], 1:[4], 2:[4], 3:[4]})
sage: H.is_complemented() is None
True

is_congruence_normal()
Return True if the lattice can be constructed from the one-element lattice with Day doubling constructions
of convex subsets.

Subsets to double does not need to be lower nor upper pseudo-intervals. On the other hand they must be
convex, i.e. doubling a non-convex but municipal subset will give a lattice that returns False from this
function.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram('IX?Q@?AG?OG?W?O@??')
sage: H.is_congruence_normal()
True

The 5-element diamond is the smallest non-example:

sage: H = HasseDiagram({0: [1, 2, 3], 1: [4], 2: [4], 3: [4]})
sage: H.is_congruence_normal()
False

This is done by doubling a non-convex subset:

sage: H = HasseDiagram('OQC?a?@CO?G_C@?GA?O??_??@?BO?A_?G??C??_?@???')
sage: H.is_congruence_normal()
False

ALGORITHM:

See http://www.math.hawaii.edu/~jb/inflation.pdf

5.1. Comprehensive Module List 1847

http://www.math.hawaii.edu/~jb/inflation.pdf

Combinatorics, Release 9.7

is_convex_subset(S)
Return True if 𝑆 is a convex subset of the poset, and False otherwise.

A subset 𝑆 is convex in the poset if 𝑏 ∈ 𝑆 whenever 𝑎, 𝑐 ∈ 𝑆 and 𝑎 ≤ 𝑏 ≤ 𝑐.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: B3 = HasseDiagram({0: [1, 2, 4], 1: [3, 5], 2: [3, 6],
....: 3: [7], 4: [5, 6], 5: [7], 6: [7]})
sage: B3.is_convex_subset([1, 3, 5, 4]) # Also connected
True
sage: B3.is_convex_subset([1, 3, 4]) # Not connected
True

sage: B3.is_convex_subset([0, 1, 2, 3, 6]) # No, 0 < 4 < 6
False
sage: B3.is_convex_subset([0, 1, 2, 7]) # No, 1 < 3 < 7.
False

is_gequal(x, y)
Return True if x is greater than or equal to y, and False otherwise.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: Q = HasseDiagram({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: x,y,z = 0,1,4
sage: Q.is_gequal(x,y)
False
sage: Q.is_gequal(y,x)
False
sage: Q.is_gequal(x,z)
False
sage: Q.is_gequal(z,x)
True
sage: Q.is_gequal(z,y)
True
sage: Q.is_gequal(z,z)
True

is_greater_than(x, y)
Return True if x is greater than but not equal to y, and False otherwise.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: Q = HasseDiagram({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: x,y,z = 0,1,4
sage: Q.is_greater_than(x,y)
False
sage: Q.is_greater_than(y,x)
False
sage: Q.is_greater_than(x,z)
False
sage: Q.is_greater_than(z,x)

(continues on next page)

1848 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

True
sage: Q.is_greater_than(z,y)
True
sage: Q.is_greater_than(z,z)
False

is_join_semilattice()
Return True if self has a join operation, and False otherwise.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,3,2],1:[4],2:[4,5,6],3:[6],4:[7],5:[7],6:[7],7:[]})
sage: H.is_join_semilattice()
True
sage: H = HasseDiagram({0:[2,3],1:[2,3]})
sage: H.is_join_semilattice()
False
sage: H = HasseDiagram({0:[2,3],1:[2,3],2:[4],3:[4]})
sage: H.is_join_semilattice()
False

is_lequal(i, j)
Return True if i is less than or equal to j in the poset, and False otherwise.

Note: If the lequal_matrix() has been computed, then this method is redefined to use the cached data
(see _alternate_is_lequal()).

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: x,y,z = 0, 1, 4
sage: H.is_lequal(x,y)
False
sage: H.is_lequal(y,x)
False
sage: H.is_lequal(x,z)
True
sage: H.is_lequal(y,z)
True
sage: H.is_lequal(z,z)
True

is_less_than(x, y)
Return True if x is less than but not equal to y in the poset, and False otherwise.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: x,y,z = 0, 1, 4
sage: H.is_less_than(x,y)

(continues on next page)

5.1. Comprehensive Module List 1849

Combinatorics, Release 9.7

(continued from previous page)

False
sage: H.is_less_than(y,x)
False
sage: H.is_less_than(x,z)
True
sage: H.is_less_than(y,z)
True
sage: H.is_less_than(z,z)
False

is_linear_extension(lin_ext=None)
Test if an ordering is a linear extension.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,2],1:[3],2:[3],3:[]})
sage: H.is_linear_extension(list(range(4)))
True
sage: H.is_linear_extension([3,2,1,0])
False

is_linear_interval(t_min, t_max)
Return whether the interval [t_min, t_max] is linear.

This means that this interval is a total order.

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: H = P._hasse_diagram
sage: H.is_linear_interval(0, 4)
False
sage: H.is_linear_interval(0, 3)
True
sage: H.is_linear_interval(1, 3)
False
sage: H.is_linear_interval(1, 1)
True

is_meet_semilattice()
Return True if self has a meet operation, and False otherwise.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,3,2],1:[4],2:[4,5,6],3:[6],4:[7],5:[7],6:[7],7:[]})
sage: H.is_meet_semilattice()
True

sage: H = HasseDiagram({0:[1,2],1:[3],2:[3],3:[]})
sage: H.is_meet_semilattice()
True

sage: H = HasseDiagram({0:[2,3],1:[2,3]})
(continues on next page)

1850 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: H.is_meet_semilattice()
False

sage: H = HasseDiagram({0:[1,2],1:[3,4],2:[3,4]})
sage: H.is_meet_semilattice()
False

is_ranked()
Return True if the poset is ranked, and False otherwise.

A poset is ranked if it admits a rank function. For more information about the rank function, see
rank_function() and is_graded().

EXAMPLES:

sage: P = Poset([[1],[2],[3],[4],[]])
sage: P.is_ranked()
True
sage: Q = Poset([[1,5],[2,6],[3],[4],[],[6,3],[4]])
sage: Q.is_ranked()
False

join_matrix()
Return the matrix of joins of self, when self is a join-semilattice; raise an error otherwise.

The (x,y)-entry of this matrix is the join of x and y in self.

This algorithm is modelled after the algorithm of Freese-Jezek-Nation (p217). It can also be found on page
140 of [Gec81].

Note: If self is a join-semilattice, then the return of this method is the same as _join(). Once the matrix
has been computed, it is stored in _join(). Delete this attribute if you want to recompute the matrix.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,3,2],1:[4],2:[4,5,6],3:[6],4:[7],5:[7],6:[7],7:[]})
sage: H.join_matrix()
[0 1 2 3 4 5 6 7]
[1 1 4 7 4 7 7 7]
[2 4 2 6 4 5 6 7]
[3 7 6 3 7 7 6 7]
[4 4 4 7 4 7 7 7]
[5 7 5 7 7 5 7 7]
[6 7 6 6 7 7 6 7]
[7 7 7 7 7 7 7 7]

kappa(a)
Return the maximum element greater than the element covered by a but not greater than a.

Define 𝜅(𝑎) as the maximum element of (↑ 𝑎*) ∖ (↑ 𝑎), where 𝑎* is the element covered by 𝑎. It is always
a meet-irreducible element, if it exists.

5.1. Comprehensive Module List 1851

Combinatorics, Release 9.7

Note: Element a is expected to be join-irreducible, and this is not checked.

INPUT:

• a – a join-irreducible element of the lattice

OUTPUT:

The element 𝜅(𝑎) or None if there is not a unique greatest element with given constraints.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2, 3], 1: [4], 2: [4, 5], 3: [5], 4: [6], 5: [6]}
→˓)
sage: H.kappa(1)
5
sage: H.kappa(2) is None
True

kappa_dual(a)
Return the minimum element smaller than the element covering a but not smaller than a.

Define 𝜅*(𝑎) as the minimum element of (↓ 𝑎*) ∖ (↓ 𝑎), where 𝑎* is the element covering 𝑎. It is always a
join-irreducible element, if it exists.

Note: Element a is expected to be meet-irreducible, and this is not checked.

INPUT:

• a – a join-irreducible element of the lattice

OUTPUT:

The element 𝜅*(𝑎) or None if there is not a unique smallest element with given constraints.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2], 1: [3, 4], 2: [4, 5], 3: [6], 4: [6], 5: [6]}
→˓)
sage: H.kappa_dual(3)
2
sage: H.kappa_dual(4) is None
True

lequal_matrix(boolean=False)
Return a matrix whose (i,j) entry is 1 if i is less than j in the poset, and 0 otherwise; and redefines
__lt__ to use the boolean version of this matrix.

INPUT:

• boolean – optional flag (default False) telling whether to return a matrix with coefficients in F(2)
or in Z

See also:

moebius_function_matrix(), coxeter_transformation()

1852 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: P = Poset([[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]])
sage: H = P._hasse_diagram
sage: M = H.lequal_matrix(); M
[1 1 1 1 1 1 1 1]
[0 1 0 1 0 0 0 1]
[0 0 1 1 1 0 1 1]
[0 0 0 1 0 0 0 1]
[0 0 0 0 1 0 0 1]
[0 0 0 0 0 1 1 1]
[0 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 1]
sage: M.base_ring()
Integer Ring

sage: P = posets.DiamondPoset(6)
sage: H = P._hasse_diagram
sage: M = H.lequal_matrix(boolean=True)
sage: M.base_ring()
Finite Field of size 2

linear_extension()
Return a linear extension

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,2],1:[3],2:[3],3:[]})
sage: H.linear_extension()
[0, 1, 2, 3]

linear_extensions()
Return an iterator over all linear extensions.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,2],1:[3],2:[3],3:[]})
sage: list(H.linear_extensions())
[[0, 1, 2, 3], [0, 2, 1, 3]]

lower_covers_iterator(element)
Return the list of elements that are covered by element.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,3,2],1:[4],2:[4,5,6],3:[6],4:[7],5:[7],6:[7],7:[]})
sage: list(H.lower_covers_iterator(0))
[]
sage: list(H.lower_covers_iterator(4))
[1, 2]

maximal_elements()
Return a list of the maximal elements of the poset.

5.1. Comprehensive Module List 1853

Combinatorics, Release 9.7

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4],4:[]})
sage: P.maximal_elements()
[4]

maximal_sublattices()
Return maximal sublattices of the lattice.

EXAMPLES:

sage: L = posets.PentagonPoset()
sage: ms = L._hasse_diagram.maximal_sublattices()
sage: sorted(ms, key=sorted)
[{0, 1, 2, 4}, {0, 1, 3, 4}, {0, 2, 3, 4}]

meet_matrix()
Return the matrix of meets of self, when self is a meet-semilattice; raise an error otherwise.

The (x,y)-entry of this matrix is the meet of x and y in self.

This algorithm is modelled after the algorithm of Freese-Jezek-Nation (p217). It can also be found on page
140 of [Gec81].

Note: If self is a meet-semilattice, then the return of this method is the same as _meet(). Once the
matrix has been computed, it is stored in _meet(). Delete this attribute if you want to recompute the
matrix.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,3,2],1:[4],2:[4,5,6],3:[6],4:[7],5:[7],6:[7],7:[]})
sage: H.meet_matrix()
[0 0 0 0 0 0 0 0]
[0 1 0 0 1 0 0 1]
[0 0 2 0 2 2 2 2]
[0 0 0 3 0 0 3 3]
[0 1 2 0 4 2 2 4]
[0 0 2 0 2 5 2 5]
[0 0 2 3 2 2 6 6]
[0 1 2 3 4 5 6 7]

REFERENCE:

minimal_elements()
Return a list of the minimal elements of the poset.

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4],4:[]})
sage: P(0) in P.minimal_elements()
True
sage: P(1) in P.minimal_elements()
True
sage: P(2) in P.minimal_elements()
True

1854 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

moebius_function(i, j)
Return the value of the Möbius function of the poset on the elements i and j.

EXAMPLES:

sage: P = Poset([[1,2,3],[4],[4],[4],[]])
sage: H = P._hasse_diagram
sage: H.moebius_function(0,4)
2
sage: for u,v in P.cover_relations_iterator():
....: if P.moebius_function(u,v) != -1:
....: print("Bug in moebius_function!")

moebius_function_matrix(algorithm='cython')
Return the matrix of the Möbius function of this poset.

This returns the matrix over Z whose (x, y) entry is the value of the Möbius function of self evaluated
on x and y, and redefines moebius_function() to use it.

INPUT:

• algorithm – optional, 'recursive', 'matrix' or 'cython' (default)

This uses either the recursive formula, a generic matrix inversion or a specific matrix inversion coded in
Cython.

OUTPUT:

a dense matrix for the algorithm cython, a sparse matrix otherwise

Note: The result is cached in _moebius_function_matrix().

See also:

lequal_matrix(), coxeter_transformation()

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,3,2],1:[4],2:[4,5,6],3:[6],4:[7],5:[7],6:[7],7:[]})
sage: H.moebius_function_matrix()
[1 -1 -1 -1 1 0 1 0]
[0 1 0 0 -1 0 0 0]
[0 0 1 0 -1 -1 -1 2]
[0 0 0 1 0 0 -1 0]
[0 0 0 0 1 0 0 -1]
[0 0 0 0 0 1 0 -1]
[0 0 0 0 0 0 1 -1]
[0 0 0 0 0 0 0 1]

neutral_elements()
Return the list of neutral elements of the lattice.

An element 𝑎 in a lattice is neutral if the sublattice generated by 𝑎, 𝑥 and 𝑦 is distributive for every 𝑥, 𝑦 in
the lattice.

EXAMPLES:

5.1. Comprehensive Module List 1855

Combinatorics, Release 9.7

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2], 1: [4], 2: [3], 3: [4, 5],
....: 4: [6], 5:[6]})
sage: sorted(H.neutral_elements())
[0, 4, 6]

ALGORITHM:

Basically we just check the distributivity against all element pairs 𝑥, 𝑦 to see if element 𝑎 is neutral or not.

If we found that 𝑎, 𝑥, 𝑦 is not a distributive triple, we add all three to list of non-neutral elements. If we
found 𝑎 to be neutral, we add it to list of neutral elements. When testing we skip already found neutral
elements, as they can’t be our 𝑥 or 𝑦.

We skip 𝑎, 𝑥, 𝑦 as trivial if it is a chain. We do that by letting 𝑥 to be a non-comparable to 𝑎; 𝑦 can be any
element.

We first try to found 𝑥 and 𝑦 from elements not yet tested, so that we could get three birds with one stone.

And last, the top and bottom elements are always neutral and need not be tested.

open_interval(x, y)
Return a list of the elements 𝑧 of self such that 𝑥 < 𝑧 < 𝑦.

The order is that induced by the ordering in self.linear_extension.

EXAMPLES:

sage: uc = [[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]]
sage: dag = DiGraph(dict(zip(range(len(uc)),uc)))
sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram(dag)
sage: set([5,6,4]) == set(H.open_interval(2,7))
True
sage: H.open_interval(7,2)
[]

order_filter(elements)
Return the order filter generated by a list of elements.

𝐼 is an order filter if, for any 𝑥 in 𝐼 and 𝑦 such that 𝑦 ≥ 𝑥, then 𝑦 is in 𝐼 .

EXAMPLES:

sage: H = posets.BooleanLattice(4)._hasse_diagram
sage: H.order_filter([3,8])
[3, 7, 8, 9, 10, 11, 12, 13, 14, 15]

order_ideal(elements)
Return the order ideal generated by a list of elements.

𝐼 is an order ideal if, for any 𝑥 in 𝐼 and 𝑦 such that 𝑦 ≤ 𝑥, then 𝑦 is in 𝐼 .

EXAMPLES:

sage: H = posets.BooleanLattice(4)._hasse_diagram
sage: H.order_ideal([7,10])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 10]

1856 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

order_ideal_cardinality(elements)
Return the cardinality of the order ideal generated by elements.

𝐼 is an order ideal if, for any 𝑥 in 𝐼 and 𝑦 such that 𝑦 ≤ 𝑥, then 𝑦 is in 𝐼 .

EXAMPLES:

sage: H = posets.BooleanLattice(4)._hasse_diagram
sage: H.order_ideal_cardinality([7,10])
10

orthocomplementations_iterator()
Return an iterator over orthocomplementations of the lattice.

OUTPUT:

An iterator that gives plain list of integers.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,2], 1:[3,4], 3:[5], 4:[5], 2:[6,7],
....: 6:[8], 7:[8], 5:[9], 8:[9]})
sage: list(H.orthocomplementations_iterator())
[[9, 8, 5, 6, 7, 2, 3, 4, 1, 0], [9, 8, 5, 7, 6, 2, 4, 3, 1, 0]]

ALGORITHM:

As DiamondPoset(2*n+2) has (2𝑛)!/(𝑛!2𝑛) different orthocomplementations, the complexity of listing
all of them is necessarily 𝑂(𝑛!).

An orthocomplemented lattice is self-dual, so that for example orthocomplement of an atom is a coatom.
This function basically just computes list of possible orthocomplementations for every element (i.e. they
must be complements and “duals”), and then tries to fit them all.

prime_elements()
Return the join-prime and meet-prime elements of the bounded poset.

An element 𝑥 of a poset 𝑃 is join-prime if the subposet induced by {𝑦 ∈ 𝑃 | 𝑦 ̸≥ 𝑥} has a top element.
Meet-prime is defined dually.

Note: The poset is expected to be bounded, and this is not checked.

OUTPUT:

A pair (𝑗,𝑚) where 𝑗 is a list of join-prime elements and 𝑚 is a list of meet-prime elements.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2], 1: [3], 2: [4], 3: [4]})
sage: H.prime_elements()
([1, 2], [2, 3])

principal_congruences_poset()
Return the poset of join-irreducibles of the congruence lattice.

OUTPUT:

A pair (𝑃,𝐷) where 𝑃 is a poset and 𝐷 is a dictionary.

5.1. Comprehensive Module List 1857

Combinatorics, Release 9.7

Elements of 𝑃 are pairs (𝑥, 𝑦) such that 𝑥 is an element of the lattice and 𝑦 is an element covering it. In the
poset (𝑎, 𝑏) is less than (𝑐, 𝑑) iff the principal congruence generated by (𝑎, 𝑏) is refinement of the principal
congruence generated by (𝑐, 𝑑).

𝐷 is a dictionary from pairs (𝑥, 𝑦) to the congruence (given as DisjointSet) generated by the pair.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: N5 = HasseDiagram({0: [1, 2], 1: [4], 2: [3], 3: [4]})
sage: P, D = N5.principal_congruences_poset()
sage: P
Finite poset containing 3 elements
sage: P.bottom()
(2, 3)
sage: D[(2, 3)]
{{0}, {1}, {2, 3}, {4}}

principal_order_filter(i)
Return the order filter generated by i.

EXAMPLES:

sage: H = posets.BooleanLattice(4)._hasse_diagram
sage: H.principal_order_filter(2)
[2, 3, 6, 7, 10, 11, 14, 15]

principal_order_ideal(i)
Return the order ideal generated by 𝑖.

EXAMPLES:

sage: H = posets.BooleanLattice(4)._hasse_diagram
sage: H.principal_order_ideal(6)
[0, 2, 4, 6]

pseudocomplement(element)
Return the pseudocomplement of element, if it exists.

The pseudocomplement is the greatest element whose meet with given element is the bottom element. It
may not exist, and then the function returns None.

INPUT:

• element – an element of the lattice.

OUTPUT:

An element of the Hasse diagram, i.e. an integer, or None if the pseudocomplement does not exist.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2], 1: [3], 2: [4], 3: [4]})
sage: H.pseudocomplement(2)
3

sage: H = HasseDiagram({0: [1, 2, 3], 1: [4], 2: [4], 3: [4]})
(continues on next page)

1858 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: H.pseudocomplement(2) is None
True

rank(element=None)
Return the rank of element, or the rank of the poset if element is None. (The rank of a poset is the length
of the longest chain of elements of the poset.)

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,3,2],1:[4],2:[4,5,6],3:[6],4:[7],5:[7],6:[7],7:[]})
sage: H.rank(5)
2
sage: H.rank()
3
sage: Q = HasseDiagram({0:[1,2],1:[3],2:[],3:[]})
sage: Q.rank()
2
sage: Q.rank(1)
1

rank_function()
Return the (normalized) rank function of the poset, if it exists.

A rank function of a poset𝑃 is a function 𝑟 that maps elements of𝑃 to integers and satisfies: 𝑟(𝑥) = 𝑟(𝑦)+1
if 𝑥 covers 𝑦. The function 𝑟 is normalized such that its minimum value on every connected component of
the Hasse diagram of 𝑃 is 0. This determines the function 𝑟 uniquely (when it exists).

OUTPUT:

• a lambda function, if the poset admits a rank function

• None, if the poset does not admit a rank function

EXAMPLES:

sage: P = Poset([[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]])
sage: P.rank_function() is not None
True
sage: P = Poset(([1,2,3,4],[[1,4],[2,3],[3,4]]), facade = True)
sage: P.rank_function() is not None
True
sage: P = Poset(([1,2,3,4,5],[[1,2],[2,3],[3,4],[1,5],[5,4]]), facade = True)
sage: P.rank_function() is not None
False
sage: P = Poset(([1,2,3,4,5,6,7,8],[[1,4],[2,3],[3,4],[5,7],[6,7]]), facade =␣
→˓True)
sage: f = P.rank_function(); f is not None
True
sage: f(5)
0
sage: f(2)
0

skeleton()
Return the skeleton of the lattice.

5.1. Comprehensive Module List 1859

Combinatorics, Release 9.7

The lattice is expected to be pseudocomplemented and non-empty.

The skeleton of the lattice is the subposet induced by those elements that are the pseudocomplement to at
least one element.

OUTPUT:

List of elements such that the subposet induced by them is the skeleton of the lattice.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2], 1: [3, 4], 2: [4],
....: 3: [5], 4: [5]})
sage: H.skeleton()
[5, 2, 0, 3]

sublattices_iterator(elms, min_e)
Return an iterator over sublattices of the Hasse diagram.

INPUT:

• elms – elements already in sublattice; use set() at start

• min_e – smallest new element to add for new sublattices

OUTPUT:

List of sublattices as sets of integers.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2], 1:[3], 2:[3]})
sage: it = H.sublattices_iterator(set(), 0); it
<generator object ...sublattices_iterator at ...>
sage: next(it)
set()
sage: next(it)
{0}

supergreedy_linear_extensions_iterator()
Return an iterator over supergreedy linear extensions of the Hasse diagram.

A linear extension [𝑒1, 𝑒2, . . . , 𝑒𝑛] is supergreedy if, for every 𝑖 and 𝑗 where 𝑖 > 𝑗, 𝑒𝑖 covers 𝑒𝑗 if for every
𝑖 > 𝑘 > 𝑗 at least one lower cover of 𝑒𝑘 is not in [𝑒1, 𝑒2, . . . , 𝑒𝑘].

Informally said a linear extension is supergreedy if it “always goes as high possible, and withdraw so less
as possible”. These are also called depth-first linear extensions.

EXAMPLES:

We show the difference between “only greedy” and supergreedy extensions:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0: [1, 2], 2: [3, 4]})
sage: G_ext = list(H.greedy_linear_extensions_iterator())
sage: SG_ext = list(H.supergreedy_linear_extensions_iterator())
sage: [0, 2, 3, 1, 4] in G_ext
True
sage: [0, 2, 3, 1, 4] in SG_ext

(continues on next page)

1860 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

False

sage: len(SG_ext)
4

top()
Return the top element of the poset, if it exists.

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4,5],4:[],5:[]})
sage: P.top() is None
True
sage: Q = Poset({0:[1],1:[]})
sage: Q.top()
1

upper_covers_iterator(element)
Return the list of elements that cover element.

EXAMPLES:

sage: from sage.combinat.posets.hasse_diagram import HasseDiagram
sage: H = HasseDiagram({0:[1,3,2],1:[4],2:[4,5,6],3:[6],4:[7],5:[7],6:[7],7:[]})
sage: list(H.upper_covers_iterator(0))
[1, 2, 3]
sage: list(H.upper_covers_iterator(7))
[]

vertical_decomposition(return_list=False)
Return vertical decomposition of the lattice.

This is the backend function for vertical decomposition functions of lattices.

The property of being vertically decomposable is defined for lattices. This is not checked, and the function
works with any bounded poset.

INPUT:

• return_list, a boolean. If False (the default), return an element that is not the top neither the
bottom element of the lattice, but is comparable to all elements of the lattice, if the lattice is vertically
decomposable and None otherwise. If True, return list of decomposition elements.

EXAMPLES:

sage: H = posets.BooleanLattice(4)._hasse_diagram
sage: H.vertical_decomposition() is None
True
sage: P = Poset(([1,2,3,6,12,18,36], attrcall("divides")))
sage: P._hasse_diagram.vertical_decomposition()
3
sage: P._hasse_diagram.vertical_decomposition(return_list=True)
[3]

exception sage.combinat.posets.hasse_diagram.LatticeError(fail, x, y)
Bases: ValueError

5.1. Comprehensive Module List 1861

https://docs.python.org/library/exceptions.html#ValueError

Combinatorics, Release 9.7

Helper exception class to forward elements without meet or join to upper level, so that the user will see “No meet
for a and b” instead of “No meet for 1 and 2”.

5.1.178 Incidence Algebras

class sage.combinat.posets.incidence_algebras.IncidenceAlgebra(R, P, prefix='I')
Bases: sage.combinat.free_module.CombinatorialFreeModule

The incidence algebra of a poset.

Let 𝑃 be a poset and 𝑅 be a commutative unital associative ring. The incidence algebra 𝐼𝑃 is the algebra of
functions 𝛼 : 𝑃 × 𝑃 → 𝑅 such that 𝛼(𝑥, 𝑦) = 0 if 𝑥 ̸≤ 𝑦 where multiplication is given by convolution:

(𝛼 * 𝛽)(𝑥, 𝑦) =
∑︁

𝑥≤𝑘≤𝑦

𝛼(𝑥, 𝑘)𝛽(𝑘, 𝑦).

This has a natural basis given by indicator functions for the interval [𝑎, 𝑏], i.e. 𝑋𝑎,𝑏(𝑥, 𝑦) = 𝛿𝑎𝑥𝛿𝑏𝑦 . The incidence
algebra is a unital algebra with the identity given by the Kronecker delta 𝛿(𝑥, 𝑦) = 𝛿𝑥𝑦 . The Möbius function of
𝑃 is another element of 𝐼𝑝 whose inverse is the 𝜁 function of the poset (so 𝜁(𝑥, 𝑦) = 1 for every interval [𝑥, 𝑦]).

Todo: Implement the incidence coalgebra.

REFERENCES:

• Wikipedia article Incidence_algebra

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element of an incidence algebra.

is_unit()
Return if self is a unit.

EXAMPLES:

sage: P = posets.BooleanLattice(2)
sage: I = P.incidence_algebra(QQ)
sage: mu = I.moebius()
sage: mu.is_unit()
True
sage: zeta = I.zeta()
sage: zeta.is_unit()
True
sage: x = mu - I.zeta() + I[2,2]
sage: x.is_unit()
False
sage: y = I.moebius() + I.zeta()
sage: y.is_unit()
True

This depends on the base ring:

sage: I = P.incidence_algebra(ZZ)
sage: y = I.moebius() + I.zeta()

(continues on next page)

1862 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Incidence_algebra
../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

(continued from previous page)

sage: y.is_unit()
False

to_matrix()
Return self as a matrix.

We define a matrix 𝑀𝑥𝑦 = 𝛼(𝑥, 𝑦) for some element 𝛼 ∈ 𝐼𝑃 in the incidence algebra 𝐼𝑃 and we
order the elements 𝑥, 𝑦 ∈ 𝑃 by some linear extension of 𝑃 . This defines an algebra (iso)morphism; in
particular, multiplication in the incidence algebra goes to matrix multiplication.

EXAMPLES:

sage: P = posets.BooleanLattice(2)
sage: I = P.incidence_algebra(QQ)
sage: I.moebius().to_matrix()
[1 -1 -1 1]
[0 1 0 -1]
[0 0 1 -1]
[0 0 0 1]
sage: I.zeta().to_matrix()
[1 1 1 1]
[0 1 0 1]
[0 0 1 1]
[0 0 0 1]

delta()
Return the element 1 in self (which is the Kronecker delta 𝛿(𝑥, 𝑦)).

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: I = P.incidence_algebra(QQ)
sage: I.one()
I[0, 0] + I[1, 1] + I[2, 2] + I[3, 3] + I[4, 4] + I[5, 5]
+ I[6, 6] + I[7, 7] + I[8, 8] + I[9, 9] + I[10, 10]
+ I[11, 11] + I[12, 12] + I[13, 13] + I[14, 14] + I[15, 15]

moebius()
Return the Möbius function of self.

EXAMPLES:

sage: P = posets.BooleanLattice(2)
sage: I = P.incidence_algebra(QQ)
sage: I.moebius()
I[0, 0] - I[0, 1] - I[0, 2] + I[0, 3] + I[1, 1]
- I[1, 3] + I[2, 2] - I[2, 3] + I[3, 3]

one()
Return the element 1 in self (which is the Kronecker delta 𝛿(𝑥, 𝑦)).

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: I = P.incidence_algebra(QQ)

(continues on next page)

5.1. Comprehensive Module List 1863

Combinatorics, Release 9.7

(continued from previous page)

sage: I.one()
I[0, 0] + I[1, 1] + I[2, 2] + I[3, 3] + I[4, 4] + I[5, 5]
+ I[6, 6] + I[7, 7] + I[8, 8] + I[9, 9] + I[10, 10]
+ I[11, 11] + I[12, 12] + I[13, 13] + I[14, 14] + I[15, 15]

poset()
Return the defining poset of self.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: I = P.incidence_algebra(QQ)
sage: I.poset()
Finite lattice containing 16 elements
sage: I.poset() == P
True

product_on_basis(A, B)
Return the product of basis elements indexed by A and B.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: I = P.incidence_algebra(QQ)
sage: I.product_on_basis((1, 3), (3, 11))
I[1, 11]
sage: I.product_on_basis((1, 3), (2, 2))
0

reduced_subalgebra(prefix='R')
Return the reduced incidence subalgebra.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: I = P.incidence_algebra(QQ)
sage: I.reduced_subalgebra()
Reduced incidence algebra of Finite lattice containing 16 elements
over Rational Field

some_elements()
Return a list of elements of self.

EXAMPLES:

sage: P = posets.BooleanLattice(1)
sage: I = P.incidence_algebra(QQ)
sage: Ielts = I.some_elements(); Ielts # random
[2*I[0, 0] + 2*I[0, 1] + 3*I[1, 1],
I[0, 0] - I[0, 1] + I[1, 1],
I[0, 0] + I[0, 1] + I[1, 1]]
sage: [a in I for a in Ielts]
[True, True, True]

zeta()
Return the 𝜁 function in self.

1864 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The 𝜁 function on a poset 𝑃 is given by

𝜁(𝑥, 𝑦) =

{︃
1 𝑥 ≤ 𝑦,
0 𝑥 ̸≤ 𝑦.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: I = P.incidence_algebra(QQ)
sage: I.zeta() * I.moebius() == I.one()
True

class sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra(I, prefix='R')
Bases: sage.combinat.free_module.CombinatorialFreeModule

The reduced incidence algebra of a poset.

The reduced incidence algebra 𝑅𝑃 is a subalgebra of the incidence algebra 𝐼𝑃 where 𝛼(𝑥, 𝑦) = 𝛼(𝑥′, 𝑦′) when
[𝑥, 𝑦] is isomorphic to [𝑥′, 𝑦′] as posets. Thus the delta, Möbius, and zeta functions are all elements of 𝑅𝑃 .

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

An element of a reduced incidence algebra.

is_unit()
Return if self is a unit.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: R = P.incidence_algebra(QQ).reduced_subalgebra()
sage: x = R.an_element()
sage: x.is_unit()
True

lift()
Return the lift of self to the ambient space.

EXAMPLES:

sage: P = posets.BooleanLattice(2)
sage: I = P.incidence_algebra(QQ)
sage: R = I.reduced_subalgebra()
sage: x = R.an_element(); x
2*R[(0, 0)] + 2*R[(0, 1)] + 3*R[(0, 3)]
sage: x.lift()
2*I[0, 0] + 2*I[0, 1] + 2*I[0, 2] + 3*I[0, 3] + 2*I[1, 1]
+ 2*I[1, 3] + 2*I[2, 2] + 2*I[2, 3] + 2*I[3, 3]

to_matrix()
Return self as a matrix.

EXAMPLES:

sage: P = posets.BooleanLattice(2)
sage: R = P.incidence_algebra(QQ).reduced_subalgebra()
sage: mu = R.moebius()

(continues on next page)

5.1. Comprehensive Module List 1865

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

(continued from previous page)

sage: mu.to_matrix()
[1 -1 -1 1]
[0 1 0 -1]
[0 0 1 -1]
[0 0 0 1]

delta()
Return the Kronecker delta function in self.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: R = P.incidence_algebra(QQ).reduced_subalgebra()
sage: R.delta()
R[(0, 0)]

lift()
Return the lift morphism from self to the ambient space.

EXAMPLES:

sage: P = posets.BooleanLattice(2)
sage: R = P.incidence_algebra(QQ).reduced_subalgebra()
sage: R.lift
Generic morphism:
From: Reduced incidence algebra of Finite lattice containing 4 elements over␣

→˓Rational Field
To: Incidence algebra of Finite lattice containing 4 elements over Rational␣

→˓Field
sage: R.an_element() - R.one()
R[(0, 0)] + 2*R[(0, 1)] + 3*R[(0, 3)]
sage: R.lift(R.an_element() - R.one())
I[0, 0] + 2*I[0, 1] + 2*I[0, 2] + 3*I[0, 3] + I[1, 1]
+ 2*I[1, 3] + I[2, 2] + 2*I[2, 3] + I[3, 3]

moebius()
Return the Möbius function of self.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: R = P.incidence_algebra(QQ).reduced_subalgebra()
sage: R.moebius()
R[(0, 0)] - R[(0, 1)] + R[(0, 3)] - R[(0, 7)] + R[(0, 15)]

one_basis()
Return the index of the element 1 in self.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: R = P.incidence_algebra(QQ).reduced_subalgebra()
sage: R.one_basis()
(0, 0)

1866 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

poset()
Return the defining poset of self.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: R = P.incidence_algebra(QQ).reduced_subalgebra()
sage: R.poset()
Finite lattice containing 16 elements
sage: R.poset() == P
True

some_elements()
Return a list of elements of self.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: R = P.incidence_algebra(QQ).reduced_subalgebra()
sage: R.some_elements()
[2*R[(0, 0)] + 2*R[(0, 1)] + 3*R[(0, 3)],
R[(0, 0)] - R[(0, 1)] + R[(0, 3)] - R[(0, 7)] + R[(0, 15)],
R[(0, 0)] + R[(0, 1)] + R[(0, 3)] + R[(0, 7)] + R[(0, 15)]]

zeta()
Return the 𝜁 function in self.

The 𝜁 function on a poset 𝑃 is given by

𝜁(𝑥, 𝑦) =

{︃
1 𝑥 ≤ 𝑦,
0 𝑥 ̸≤ 𝑦.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: R = P.incidence_algebra(QQ).reduced_subalgebra()
sage: R.zeta()
R[(0, 0)] + R[(0, 1)] + R[(0, 3)] + R[(0, 7)] + R[(0, 15)]

5.1.179 Finite lattices and semilattices

This module implements finite (semi)lattices. It defines:

LatticePoset() Construct a lattice.
MeetSemilattice() Construct a meet semi-lattice.
JoinSemilattice() Construct a join semi-lattice.
FiniteLatticePoset A class for finite lattices.
FiniteMeetSemilattice A class for finite meet semilattices.
FiniteJoinSemilattice A class for finite join semilattices.

5.1. Comprehensive Module List 1867

Combinatorics, Release 9.7

List of (semi)lattice methods

Meet and join

meet() Return the meet of given elements.
join() Return the join of given elements.
meet_matrix() Return the matrix of meets of all elements of the meet semi-lattice.
join_matrix() Return the matrix of joins of all elements of the join semi-lattice.

Properties of the lattice

is_distributive() Return True if the lattice is distributive.
is_modular() Return True if the lattice is modular.
is_lower_semimodular() Return True if all elements with common upper cover have a common lower

cover.
is_upper_semimodular() Return True if all elements with common lower cover have a common upper

cover.
is_semidistributive() Return True if the lattice is both join- and meet-semidistributive.
is_join_semidistributive() Return True if the lattice is join-semidistributive.
is_meet_semidistributive() Return True if the lattice is meet-semidistributive.
is_join_distributive() Return True if the lattice is join-distributive.
is_meet_distributive() Return True if the lattice is meet-distributive.
is_atomic() Return True if every element of the lattice can be written as a join of atoms.
is_coatomic() Return True if every element of the lattice can be written as a meet of coatoms.
is_geometric() Return True if the lattice is atomic and upper semimodular.
is_extremal() Return True if the lattice is extremal.
is_complemented() Return True if every element of the lattice has at least one complement.
is_sectionally_complemented()Return True if every interval from the bottom is complemented.
is_cosectionally_complemented()Return True if every interval to the top is complemented.
is_relatively_complemented()Return True if every interval of the lattice is complemented.
is_pseudocomplemented() Return True if every element of the lattice has a (meet-)pseudocomplement.
is_join_pseudocomplemented()Return True if every element of the lattice has a join-pseudocomplement.
is_orthocomplemented() Return True if the lattice has an orthocomplementation.
is_supersolvable() Return True if the lattice is supersolvable.
is_planar() Return True if the lattice has an upward planar drawing.
is_dismantlable() Return True if the lattice is dismantlable.
is_interval_dismantlable() Return True if the lattice is interval dismantlable.
is_sublattice_dismantlable()Return True if the lattice is sublattice dismantlable.
is_stone() Return True if the lattice is a Stone lattice.
is_trim() Return True if the lattice is a trim lattice.
is_vertically_decomposable()Return True if the lattice is vertically decomposable.
is_simple() Return True if the lattice has no nontrivial congruences.
is_isoform() Return True if all congruences of the lattice consists of isoform blocks.
is_uniform() Return True if all congruences of the lattice consists of equal-sized blocks.
is_regular() Return True if all congruences of lattice are determined by any of the congru-

ence blocks.
is_subdirectly_reducible() Return True if the lattice is a sublattice of the product of smaller lattices.
is_constructible_by_doublings()Return True if the lattice is constructible by doublings from the one-element

lattice.
breadth() Return the breadth of the lattice.

1868 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Specific elements

atoms() Return elements covering the bottom element.
coatoms() Return elements covered by the top element.
double_irreducibles() Return double irreducible elements.
join_primes() Return the join prime elements.
meet_primes() Return the meet prime elements.
complements() Return the list of complements of an element, or the dictionary of complements

for all elements.
pseudocomplement() Return the pseudocomplement of an element.
is_modular_element() Return True if given element is modular in the lattice.
is_left_modular_element() Return True if given element is left modular in the lattice.
neutral_elements() Return neutral elements of the lattice.
canonical_joinands() Return the canonical joinands of an element.
canonical_meetands() Return the canonical meetands of an element.

Sublattices

sublattice() Return sublattice generated by list of elements.
submeetsemilattice() Return meet-subsemilattice generated by list of elements.
subjoinsemilattice() Return join-subsemilattice generated by list of elements.
is_sublattice() Return True if the lattice is a sublattice of given lattice.
sublattices() Return all sublattices of the lattice.
sublattices_lattice() Return the lattice of sublattices.
isomorphic_sublattices_iterator()Return an iterator over the sublattices isomorphic to given lattice.
maximal_sublattices() Return maximal sublattices of the lattice.
frattini_sublattice() Return the intersection of maximal sublattices of the lattice.
skeleton() Return the skeleton of the lattice.
center() Return the sublattice of complemented neutral elements.
vertical_decomposition() Return the vertical decomposition of the lattice.

Miscellaneous

moebius_algebra() Return the Möbius algebra of the lattice.
quantum_moebius_algebra() Return the quantum Möbius algebra of the lattice.
vertical_composition() Return ordinal sum of lattices with top/bottom element unified.
day_doubling() Return the lattice with Alan Day’s doubling construction of a subset.
adjunct() Return the adjunct with other lattice.
subdirect_decomposition() Return the subdirect decomposition of the lattice.
congruence() Return the congruence generated by lists of elements.
quotient() Return the quotient lattice by a congruence.
congruences_lattice() Return the lattice of congruences.

class sage.combinat.posets.lattices.FiniteJoinSemilattice(hasse_diagram, elements, category,
facade, key)

Bases: sage.combinat.posets.posets.FinitePoset

We assume that the argument passed to FiniteJoinSemilattice is the poset of a join-semilattice (i.e. a poset with
least upper bound for each pair of elements).

Element
alias of sage.combinat.posets.elements.JoinSemilatticeElement

5.1. Comprehensive Module List 1869

Combinatorics, Release 9.7

coatoms()
Return the list of co-atoms of this (semi)lattice.

A co-atom of a lattice is an element covered by the top element.

EXAMPLES:

sage: L = posets.DivisorLattice(60)
sage: sorted(L.coatoms())
[12, 20, 30]

See also:

• Dual function: atoms()

join(x, y=None)
Return the join of given elements in the lattice.

INPUT:

• x, y – two elements of the (semi)lattice OR

• x – a list or tuple of elements

EXAMPLES:

sage: D = posets.DiamondPoset(5)
sage: D.join(1, 2)
4
sage: D.join(1, 1)
1
sage: D.join(1, 4)
4
sage: D.join(1, 0)
1

Using list of elements as an argument. Join of empty list is the bottom element:

sage: B4=posets.BooleanLattice(4)
sage: B4.join([2,4,8])
14
sage: B4.join([])
0

For non-facade lattices operator + works for join:

sage: L = posets.PentagonPoset(facade=False)
sage: L(1)+L(2)
4

See also:

• Dual function: meet()

join_matrix()
Return a matrix whose (i,j) entry is k, where self.linear_extension()[k] is the join (least upper
bound) of self.linear_extension()[i] and self.linear_extension()[j].

1870 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: P = LatticePoset([[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]], facade = False)
sage: J = P.join_matrix(); J
[0 1 2 3 4 5 6 7]
[1 1 3 3 7 7 7 7]
[2 3 2 3 4 6 6 7]
[3 3 3 3 7 7 7 7]
[4 7 4 7 4 7 7 7]
[5 7 6 7 7 5 6 7]
[6 7 6 7 7 6 6 7]
[7 7 7 7 7 7 7 7]
sage: J[P(4).vertex,P(3).vertex] == P(7).vertex
True
sage: J[P(5).vertex,P(2).vertex] == P(5).vertex
True
sage: J[P(5).vertex,P(2).vertex] == P(2).vertex
False

class sage.combinat.posets.lattices.FiniteLatticePoset(hasse_diagram, elements, category, facade,
key)

Bases: sage.combinat.posets.lattices.FiniteMeetSemilattice, sage.combinat.posets.
lattices.FiniteJoinSemilattice

We assume that the argument passed to FiniteLatticePoset is the poset of a lattice (i.e. a poset with greatest lower
bound and least upper bound for each pair of elements).

Element
alias of sage.combinat.posets.elements.LatticePosetElement

adjunct(other, a, b)
Return the adjunct of the lattice by other on the pair (𝑎, 𝑏).

It is assumed that 𝑎 < 𝑏 but 𝑏 does not cover 𝑎.

The adjunct of a lattice 𝐾 to 𝐿 with respect to pair (𝑎, 𝑏) of 𝐿 is defined such that 𝑥 < 𝑦 if

• 𝑥, 𝑦 ∈ 𝐾 and 𝑥 < 𝑦 in 𝐾,

• 𝑥, 𝑦 ∈ 𝐿 and 𝑥 < 𝑦 in 𝐿,

• 𝑥 ∈ 𝐿, 𝑦 ∈ 𝐾 and 𝑥 ≤ 𝑎 in 𝐿, or

• 𝑥 ∈ 𝐾, 𝑦 ∈ 𝐿 and 𝑏 ≤ 𝑦 in 𝐿.

Informally this can be seen as attaching the lattice 𝐾 to 𝐿 as a new block between 𝑎 and 𝑏. Dismantlable
lattices are exactly those that can be created from chains with this function.

Mathematically, it is only defined when 𝐿 and 𝐾 have no common element; here we force that by giving
them different names in the resulting lattice.

EXAMPLES:

sage: Pnum = posets.PentagonPoset()
sage: Palp = Pnum.relabel(lambda x: chr(ord('a')+x))
sage: PP = Pnum.adjunct(Palp, 0, 3)
sage: PP.atoms()
[(0, 1), (0, 2), (1, 'a')]
sage: PP.coatoms()
[(0, 3), (0, 1)]

5.1. Comprehensive Module List 1871

Combinatorics, Release 9.7

breadth(certificate=False)
Return the breadth of the lattice.

The breadth of a lattice is the largest integer 𝑛 such that any join of elements 𝑥1, 𝑥2, . . . , 𝑥𝑛+1 is join of a
proper subset of 𝑥𝑖.

This can be also characterized by sublattices: a lattice of breadth at least 𝑛 contains a sublattice isomorphic
to the Boolean lattice of 2𝑛 elements.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return the pair (𝑏, 𝑎) where 𝑏 is the breadth and 𝑎 is an antichain such that
the join of 𝑎 differs from the join of any proper subset of 𝑎. If certificate=False return just the
breadth.

EXAMPLES:

sage: D10 = posets.DiamondPoset(10)
sage: D10.breadth()
2

sage: B3 = posets.BooleanLattice(3)
sage: B3.breadth()
3
sage: B3.breadth(certificate=True)
(3, [1, 2, 4])

ALGORITHM:

For a lattice to have breadth at least 𝑛, it must have an 𝑛-element antichain 𝐴 with join 𝑗. Element 𝑗 must
cover at least 𝑛 elements. There must also be 𝑛 − 2 levels of elements between 𝐴 and 𝑗. So we start by
searching elements that could be our 𝑗 and then just check possible antichains 𝐴.

Note: Prior to version 8.1 this function returned just an antichain with certificate=True.

canonical_joinands(e)
Return the canonical joinands of 𝑒.

The canonical joinands of an element 𝑒 in the lattice 𝐿 is the subset 𝑆 ⊆ 𝐿 such that 1) the join of 𝑆 is
𝑒, and 2) if the join of some other subset 𝑆′ of is also 𝑒, then for every element 𝑠 ∈ 𝑆 there is an element
𝑠′ ∈ 𝑆′ such that 𝑠 ≤ 𝑠′.

Informally said this is the set of lowest possible elements with given join. It exists for every element if and
only if the lattice is join-semidistributive. Canonical joinands are always join-irreducibles.

INPUT:

• e – an element of the lattice

OUTPUT:

• canonical joinands as a list, if it exists; if not, None

EXAMPLES:

1872 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [5], 4: [6],
....: 5: [7], 6: [7]})
sage: L.canonical_joinands(7)
[3, 4]

sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [6], 4: [6],
....: 5: [6]})
sage: L.canonical_joinands(6) is None
True

See also:

canonical_meetands()

canonical_meetands(e)
Return the canonical meetands of 𝑒.

The canonical meetands of an element 𝑒 in the lattice 𝐿 is the subset 𝑆 ⊆ 𝐿 such that 1) the meet of 𝑆 is
𝑒, and 2) if the meet of some other subset 𝑆′ of is also 𝑒, then for every element 𝑠 ∈ 𝑆 there is an element
𝑠′ ∈ 𝑆′ such that 𝑠 ≥ 𝑠′.

Informally said this is the set of greatest possible elements with given meet. It exists for every element if
and only if the lattice is meet-semidistributive. Canonical meetands are always meet-irreducibles.

INPUT:

• e – an element of the lattice

OUTPUT:

• canonical meetands as a list, if it exists; if not, None

EXAMPLES:

sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [5, 6], 4: [6],
....: 5: [7], 6: [7]})
sage: L.canonical_meetands(1)
[5, 4]

sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [6], 4: [6],
....: 5: [6]})
sage: L.canonical_meetands(1) is None
True

See also:

canonical_joinands()

center()
Return the center of the lattice.

An element of a lattice is central if it is neutral and has a complement. The subposet induced by central
elements is a center of the lattice. Actually it is a Boolean lattice.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3, 4], 2: [6, 7], 3: [8, 9, 7],
....: 4: [5, 6], 5: [8, 10], 6: [10], 7: [13, 11],
....: 8: [13, 12], 9: [11, 12], 10: [13],

(continues on next page)

5.1. Comprehensive Module List 1873

Combinatorics, Release 9.7

(continued from previous page)

....: 11: [14], 12: [14], 13: [14]})
sage: C = L.center(); C
Finite lattice containing 4 elements
sage: C.cover_relations()
[[1, 2], [1, 12], [2, 14], [12, 14]]

sage: L = posets.DivisorLattice(60)
sage: sorted(L.center().list())
[1, 3, 4, 5, 12, 15, 20, 60]

See also:

neutral_elements(), complements()

complements(element=None)
Return the list of complements of an element in the lattice, or the dictionary of complements for all elements.

Elements 𝑥 and 𝑦 are complements if their meet and join are respectively the bottom and the top element
of the lattice.

INPUT:

• element – an element of the lattice whose complement is returned. If None (default) then dictionary
of complements for all elements having at least one complement is returned.

EXAMPLES:

sage: L = LatticePoset({0:['a','b','c'],'a':[1],'b':[1],'c':[1]})
sage: C = L.complements()

Let us check that ‘a’ and ‘b’ are complements of each other:

sage: 'a' in C['b']
True
sage: 'b' in C['a']
True

Full list of complements:

sage: L.complements() # random order
{0: [1], 1: [0], 'a': ['b', 'c'], 'b': ['c', 'a'], 'c': ['b', 'a']}

sage: L = LatticePoset({0:[1,2],1:[3],2:[3],3:[4]})
sage: L.complements() # random order
{0: [4], 4: [0]}
sage: L.complements(1)
[]

See also:

is_complemented()

congruence(S)
Return the congruence generated by set of sets 𝑆.

A congruence of a lattice is an equivalence relation∼= that is compatible with meet and join; i.e. if 𝑎1 ∼= 𝑎2
and 𝑏1 ∼= 𝑏2, then (𝑎1

1874 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

𝑣𝑒𝑒𝑏1) ∼= (𝑎2
𝑣𝑒𝑒𝑏2) and (𝑎1 ∧ 𝑏1) ∼= (𝑎2 ∧ 𝑏2).

By the congruence generated by set of sets {𝑆1, . . . , 𝑆𝑛} we mean the least congruence ∼= such that for
every 𝑥, 𝑦 ∈ 𝑆𝑖 for some 𝑖 we have 𝑥 ∼= 𝑦.

INPUT:

• S – a list of lists; list of element blocks that the congruence will contain

OUTPUT:

Congruence of the lattice as a sage.combinat.set_partition.SetPartition.

EXAMPLES:

sage: L = posets.DivisorLattice(12)
sage: cong = L.congruence([[1, 3]])
sage: sorted(sorted(c) for c in cong)
[[1, 3], [2, 6], [4, 12]]
sage: L.congruence([[1, 2], [6, 12]])
{{1, 2, 4}, {3, 6, 12}}

sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [4], 4: [5]})
sage: L.congruence([[1, 2]])
{{1, 2}, {3, 4}, {5}}

sage: L = LatticePoset({1: [2, 3], 2: [4, 5, 6], 4: [5], 5: [7, 8],
....: 6: [8], 3: [9], 7: [10], 8: [10], 9:[10]})
sage: cong = L.congruence([[1, 2]])
sage: cong[0]
frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10})

See also:

quotient()

congruences_lattice(labels='congruence')
Return the lattice of congruences.

A congruence of a lattice is a partition of elements to classes compatible with both meet- and join-operation;
see congruence(). Elements of the congruence lattice are congruences ordered by refinement; i.e. if every
class of a congruence Θ is contained in some class of Φ, then Θ ≤ Φ in the congruence lattice.

INPUT:

• labels – a string; the type of elements in the resulting lattice

OUTPUT:

A distributive lattice.

• If labels='congruence', then elements of the result will be congruences given as sage.
combinat.set_partition.SetPartition.

• If labels='integers', result is a lattice on integers isomorphic to the congruence lattice.

EXAMPLES:

sage: N5 = posets.PentagonPoset()
sage: CL = N5.congruences_lattice(); CL

(continues on next page)

5.1. Comprehensive Module List 1875

Combinatorics, Release 9.7

(continued from previous page)

Finite lattice containing 5 elements
sage: CL.atoms()
[{{0}, {1}, {2, 3}, {4}}]
sage: CL.coatoms()
[{{0, 1}, {2, 3, 4}}, {{0, 2, 3}, {1, 4}}]

sage: C4 = posets.ChainPoset(4)
sage: CL = C4.congruences_lattice(labels='integer')
sage: CL.is_isomorphic(posets.BooleanLattice(3))
True

day_doubling(S)
Return the lattice with Alan Day’s doubling construction of subset 𝑆.

The subset 𝑆 is assumed to be convex (i.e. if 𝑎, 𝑐 ∈ 𝑆 and 𝑎 < 𝑏 < 𝑐 in the lattice, then 𝑏 ∈ 𝑆) and
connected (i.e. if 𝑎, 𝑏 ∈ 𝑆 then there is a chain 𝑎 = 𝑒1, 𝑒2, . . . , 𝑒𝑛 = 𝑏 such that 𝑒𝑖 either covers or is
covered by 𝑒𝑖+1).

Alan Day’s doubling construction is a specific extension of the lattice. Here we formulate it in a format
more suitable for computation.

Let 𝐿 be a lattice and 𝑆 a convex subset of it. The resulting lattice 𝐿[𝑆] has elements (𝑒, 0) for each 𝑒 ∈ 𝐿
and (𝑒, 1) for each 𝑒 ∈ 𝑆. If 𝑥 ≤ 𝑦 in 𝐿, then in the new lattice we have

• (𝑥, 0), (𝑥, 1) ≤ (𝑦, 0), (𝑦, 1)

• (𝑥, 0) ≤ (𝑥, 1)

INPUT:

• S – a subset of the lattice

EXAMPLES:

1876 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = LatticePoset({1: ['a', 'b', 2], 'a': ['c'], 'b': ['c', 'd'],
....: 2: [3], 'c': [4], 'd': [4], 3: [4]})
sage: L2 = L.day_doubling(['a', 'b', 'c', 'd']); L2
Finite lattice containing 12 elements
sage: set(L2.upper_covers((1, 0))) == set([(2, 0), ('a', 0), ('b', 0)])
True
sage: set(L2.upper_covers(('b', 0))) == set([('d', 0), ('b', 1), ('c', 0)])
True

See also:

is_constructible_by_doublings()

double_irreducibles()
Return the list of double irreducible elements of this lattice.

A double irreducible element of a lattice is an element covering and covered by exactly one element. In
other words it is neither a meet nor a join of any elements.

EXAMPLES:

sage: L = posets.DivisorLattice(12)
sage: sorted(L.double_irreducibles())
[3, 4]

sage: L = posets.BooleanLattice(3)
sage: L.double_irreducibles()
[]

See also:

meet_irreducibles(), join_irreducibles()

frattini_sublattice()
Return the Frattini sublattice of the lattice.

The Frattini sublattice Φ(𝐿) is the intersection of all proper maximal sublattices of 𝐿. It is also the set
of “non-generators” - if the sublattice generated by set 𝑆 of elements is whole lattice, then also 𝑆 ∖ Φ(𝐿)
generates whole lattice.

EXAMPLES:

sage: L = LatticePoset(([], [[1,2],[1,17],[1,8],[2,3],[2,22],
....: [2,5],[2,7],[17,22],[17,13],[8,7],
....: [8,13],[3,16],[3,9],[22,16],[22,18],
....: [22,10],[5,18],[5,14],[7,9],[7,14],
....: [7,10],[13,10],[16,6],[16,19],[9,19],
....: [18,6],[18,33],[14,33],[10,19],
....: [10,33],[6,4],[19,4],[33,4]]))
sage: sorted(L.frattini_sublattice().list())
[1, 2, 4, 10, 19, 22, 33]

is_atomic(certificate=False)
Return True if the lattice is atomic, and False otherwise.

A lattice is atomic if every element can be written as a join of atoms.

INPUT:

5.1. Comprehensive Module List 1877

../../../../../../../html/en/reference/categories/sage/categories/finite_lattice_posets.html#sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods.meet_irreducibles
../../../../../../../html/en/reference/categories/sage/categories/finite_lattice_posets.html#sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods.join_irreducibles

Combinatorics, Release 9.7

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, e), where 𝑒 is a join-irreducible
element that is not an atom. If certificate=False return True or False.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3, 4], 2: [5], 3:[5], 4:[6], 5:[6]})
sage: L.is_atomic()
True

sage: L = LatticePoset({0: [1, 2], 1: [3], 2: [3], 3:[4]})
sage: L.is_atomic()
False
sage: L.is_atomic(certificate=True)
(False, 4)

Note: See [EnumComb1], Section 3.3 for a discussion of atomic lattices.

See also:

• Dual property: is_coatomic()

• Stronger properties: is_sectionally_complemented()

• Mutually exclusive properties: is_vertically_decomposable()

is_coatomic(certificate=False)
Return True if the lattice is coatomic, and False otherwise.

A lattice is coatomic if every element can be written as a meet of coatoms; i.e. if the dual of the lattice is
atomic.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, e), where 𝑒 is a meet-irreducible
element that is not a coatom. If certificate=False return True or False.

EXAMPLES:

sage: L = posets.BooleanLattice(3)
sage: L.is_coatomic()
True

sage: L = LatticePoset({1: [2], 2: [3, 4], 3: [5], 4:[5]})
sage: L.is_coatomic()
False
sage: L.is_coatomic(certificate=True)
(False, 1)

See also:

1878 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Dual property: is_atomic()

• Stronger properties: is_cosectionally_complemented()

• Mutually exclusive properties: is_vertically_decomposable()

is_complemented(certificate=False)
Return True if the lattice is complemented, and False otherwise.

A lattice is complemented if every element has at least one complement.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, e), where e is an element without
a complement. If certificate=False return True or False.

EXAMPLES:

sage: L = LatticePoset({0: [1, 2, 3], 1: [4], 2: [4], 3: [4]})
sage: L.is_complemented()
True

sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5], 4: [6],
....: 5: [7], 6: [7]})
sage: L.is_complemented()
False
sage: L.is_complemented(certificate=True)
(False, 2)

See also:

• Stronger properties: is_sectionally_complemented(), is_cosectionally_complemented(),
is_orthocomplemented()

• Other: complements()

is_constructible_by_doublings(type)
Return True if the lattice is constructible by doublings, and False otherwise.

We call a lattice doubling constructible if it can be constructed from the one element lattice by a sequence
of Alan Day’s doubling constructions.

Lattices constructible by interval doubling are also called bounded. Lattices constructible by lower and
upper pseudo-interval are called lower bounded and upper bounded. Lattices constructible by any convex
set doubling are called congruence normal.

INPUT:

• type – a string; can be one of the following:

– 'interval' - allow only doublings of an interval

– 'lower' - allow doublings of lower pseudo-interval; that is, a subset of the lattice with a unique
minimal element

– 'upper' - allow doublings of upper pseudo-interval; that is, a subset of the lattice with a unique
maximal element

– 'convex' - allow doubling of any convex set

5.1. Comprehensive Module List 1879

Combinatorics, Release 9.7

– 'any' - allow doubling of any set

EXAMPLES:

The pentagon can be constructed by doubling intervals; the 5-element diamond can not be constructed by
any doublings:

sage: posets.PentagonPoset().is_constructible_by_doublings('interval')
True

sage: posets.DiamondPoset(5).is_constructible_by_doublings('any')
False

After doubling both upper and lower pseudo-interval a lattice is constructible by convex subset doubling:

sage: L = posets.BooleanLattice(2)
sage: L = L.day_doubling([0, 1, 2]) # A lower pseudo-interval
sage: L.is_constructible_by_doublings('interval')
False
sage: L.is_constructible_by_doublings('lower')
True
sage: L = L.day_doubling([(3,0), (1,1), (2,1)]) # An upper pseudo-interval
sage: L.is_constructible_by_doublings('upper')
False
sage: L.is_constructible_by_doublings('convex')
True

An example of a lattice that can be constructed by doublings of a non-convex subsets:

sage: L = LatticePoset(DiGraph('OQC?a?@CO?G_C@?GA?O??_??@?BO?A_?G??C??_?@???'))
sage: L.is_constructible_by_doublings('convex')
False
sage: L.is_constructible_by_doublings('any')
True

See also:

• Stronger properties: is_distributive() (doubling by interval), is_join_semidistributive()
(doubling by lower pseudo-intervals), is_meet_semidistributive() (doubling by upper pseudo-
intervals)

• Mutually exclusive properties: is_simple() (doubling by any set)

• Other: day_doubling()

ALGORITHM:

According to [HOLM2016] a lattice 𝐿 is lower bounded if and only if |Ji(𝐿)| = |Ji(Con 𝐿)|, and so dually
|Mi(𝐿)| = |Mi(Con 𝐿)| in upper bounded lattices. The same reference gives a test for being constructible
by convex or by any subset.

is_cosectionally_complemented(certificate=False)
Return True if the lattice is cosectionally complemented, and False otherwise.

A lattice is cosectionally complemented if all intervals to the top element interpreted as sublattices are
complemented lattices.

INPUT:

1880 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• certificate – (default: False) Whether to return a certificate if the lattice is not cosectionally
complemented.

OUTPUT:

• If certificate=False return True or False. If certificate=True return either (True, None)
or (False, (b, e)), where 𝑏 is an element so that in the sublattice from 𝑏 to the top element has no
complement for element 𝑒.

EXAMPLES:

The smallest sectionally but not cosectionally complemented lattice:

sage: L = LatticePoset({1: [2, 3, 4], 2: [5], 3: [5], 4: [6], 5: [6]})
sage: L.is_sectionally_complemented(), L.is_cosectionally_complemented()
(True, False)

A sectionally and cosectionally but not relatively complemented lattice:

sage: L = LatticePoset(DiGraph('MYi@O?P??D?OG?@?O_?C?Q??O?W?@??O??'))
sage: L.is_sectionally_complemented() and L.is_cosectionally_complemented()
True
sage: L.is_relatively_complemented()
False

Getting a certificate:

sage: L = LatticePoset(DiGraph('HW?@D?Q?GE?G@??'))
sage: L.is_cosectionally_complemented(certificate=True)
(False, (2, 7))

See also:

• Dual property: is_sectionally_complemented()

• Weaker properties: is_complemented(), is_coatomic(), is_regular()

• Stronger properties: is_relatively_complemented()

is_dismantlable(certificate=False)
Return True if the lattice is dismantlable, and False otherwise.

An 𝑛-element lattice 𝐿𝑛 is dismantlable if there is a sublattice chain 𝐿𝑛−1 ⊃ 𝐿𝑛−2,⊃ · · · ,⊃ 𝐿0 so
that every 𝐿𝑖 is a sublattice of 𝐿𝑖+1 with one element less, and 𝐿0 is the empty lattice. In other words, a
dismantlable lattice can be reduced to empty lattice removing doubly irreducible element one by one.

INPUT:

• certificate (boolean) – Whether to return a certificate.

– If certificate = False (default), returns True or False accordingly.

– If certificate = True, returns:

∗ (True, elms) when the lattice is dismantlable, where elms is elements listed in a possible
removing order.

∗ (False, crown) when the lattice is not dismantlable, where crown is a subposet of 2𝑘 ele-
ments 𝑎1, . . . , 𝑎𝑘, 𝑏1, . . . , 𝑏𝑘 with covering relations 𝑎𝑖l𝑏𝑖 and 𝑎𝑖l𝑏𝑖+1 for 𝑖 ∈ [1, . . . , 𝑘−1],
and 𝑎𝑘 l 𝑏1.

EXAMPLES:

5.1. Comprehensive Module List 1881

Combinatorics, Release 9.7

sage: DL12 = LatticePoset((divisors(12), attrcall("divides")))
sage: DL12.is_dismantlable()
True
sage: DL12.is_dismantlable(certificate=True)
(True, [4, 2, 1, 3, 6, 12])

sage: B3 = posets.BooleanLattice(3)
sage: B3.is_dismantlable()
False
sage: B3.is_dismantlable(certificate=True)
(False, Finite poset containing 6 elements)

Every planar lattice is dismantlable. Converse is not true:

sage: L = LatticePoset(([], [[0, 1], [0, 2], [0, 3], [0, 4],
....: [1, 7], [2, 6], [3, 5], [4, 5],
....: [4, 6], [4, 7], [5, 8], [6, 8],
....: [7, 8]]))
sage: L.is_dismantlable()
True
sage: L.is_planar()
False

See also:

• Stronger properties: is_planar()

• Weaker properties: is_sublattice_dismantlable()

is_distributive(certificate=False)
Return True if the lattice is distributive, and False otherwise.

A lattice (𝐿,∨,∧) is distributive if meet distributes over join: 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) for every
𝑥, 𝑦, 𝑧 ∈ 𝐿 just like 𝑥 · (𝑦 + 𝑧) = 𝑥 · 𝑦 + 𝑥 · 𝑧 in normal arithmetic. For duality in lattices it follows that
then also join distributes over meet.

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, (x, y, z)), where 𝑥, 𝑦 and 𝑧 are
elements of the lattice such that 𝑥∧ (𝑦∨ 𝑧) ̸= (𝑥∧ 𝑦)∨ (𝑥∧ 𝑧). If certificate=False return True
or False.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [4], 4: [5]})
sage: L.is_distributive()
True
sage: L = LatticePoset({1: [2, 3, 4], 2: [5], 3: [6], 4: [6], 5: [6]})
sage: L.is_distributive()
False
sage: L.is_distributive(certificate=True)
(False, (5, 3, 2))

See also:

1882 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Weaker properties: is_modular(), is_semidistributive(), is_join_distributive(),
is_meet_distributive(), is_subdirectly_reducible(), is_trim(),
is_constructible_by_doublings() (by interval doubling), is_extremal()

• Stronger properties: is_stone()

is_extremal()
Return True if the lattice is extremal, and False otherwise.

A lattice is extremal if the number of join-irreducibles is equal to the number of meet-irreducibles and to
the number of cover relations in the longest chains.

EXAMPLES:

sage: posets.PentagonPoset().is_extremal()
True

sage: P = LatticePoset(posets.SymmetricGroupWeakOrderPoset(3))
sage: P.is_extremal()
False

See also:

• Stronger properties: is_distributive(), is_trim()

REFERENCES:

• [Mark1992]

is_geometric()
Return True if the lattice is geometric, and False otherwise.

A lattice is geometric if it is both atomic and upper semimodular.

EXAMPLES:

Canonical example is the lattice of partitions of finite set ordered by refinement:

sage: L = posets.SetPartitions(4)
sage: L.is_geometric()
True

Smallest example of geometric lattice that is not modular:

sage: L = LatticePoset(DiGraph('K]?@g@S?q?M?@?@?@?@?@?@??'))
sage: L.is_geometric()
True
sage: L.is_modular()
False

Two non-examples:

sage: L = LatticePoset({1:[2, 3, 4], 2:[5, 6], 3:[5], 4:[6], 5:[7], 6:[7]})
sage: L.is_geometric() # Graded, but not upper semimodular
False
sage: L = posets.ChainPoset(3)
sage: L.is_geometric() # Modular, but not atomic
False

5.1. Comprehensive Module List 1883

Combinatorics, Release 9.7

See also:

• Weaker properties: is_upper_semimodular(), is_relatively_complemented()

is_interval_dismantlable(certificate=False)
Return True if the lattice is interval dismantlable, and False otherwise.

An interval dismantling is a subdivision of a lattice to a principal upper set and a principal lower set.
A lattice is interval dismantlable if it can be decomposed into 1-element lattices by consecutive interval
distmantlings.

A lattice is minimally interval non-dismantlable if it is not interval dismantlable, but all of its sublattices
are interval dismantlable.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• if certificate=False, return only True or False

• if certificate=True, return either

– (True, list) where list is a nested list showing the decomposition; for example list[1][0]
is a lower part of upper part of the lattice when decomposed twice.

– (False, M) where 𝑀 is a minimally interval non-dismantlable sublattice of the lattice.

EXAMPLES:

sage: L1 = LatticePoset({1: [2, 3], 3: [4, 5], 2: [6], 4: [6], 5: [6]})
sage: L1.is_interval_dismantlable()
True

sage: L2 = LatticePoset({1: [2, 3, 4, 5], 2: [6], 3: [6], 4: [6],
....: 5: [6, 7], 6: [8], 7: [9, 10], 8:[10], 9:[10]})
sage: L2.is_interval_dismantlable()
False

To get certificates:

sage: L1.is_interval_dismantlable(certificate=True)
(True, [[[1], [2]], [[[3], [5]], [[4], [6]]]])
sage: L2.is_interval_dismantlable(certificate=True)
(False, Finite lattice containing 5 elements)

See also:

• Stronger properties: is_join_semidistributive(), is_meet_semidistributive()

• Weaker properties: is_sublattice_dismantlable()

is_isoform(certificate=False)
Return True if the lattice is isoform and False otherwise.

A congruence is isoform (or isotype) if all blocks are isomorphic sublattices. A lattice is isoform if it has
only isoform congruences.

INPUT:

1884 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• certificate – (default: False) whether to return a certificate if the lattice is not isoform

OUTPUT:

• If certificate=True return either (True, None) or (False, C), where 𝐶 is a non-isoform con-
gruence as a sage.combinat.set_partition.SetPartition. If certificate=False return
True or False.

EXAMPLES:

sage: L = LatticePoset({1:[2, 3, 4], 2: [5, 6], 3: [6, 7], 4: [7], 5: [8], 6:␣
→˓[8], 7: [8]})
sage: L.is_isoform()
True

Every isoform lattice is (trivially) uniform, but the converse is not true:

sage: L = LatticePoset({1: [2, 3, 6], 2: [4, 5], 3: [5], 4: [9, 8], 5: [7, 8],␣
→˓6: [9], 7: [10], 8: [10], 9: [10]})
sage: L.is_isoform(), L.is_uniform()
(False, True)

sage: L.is_isoform(certificate=True)
(False, {{1, 2, 4, 6, 9}, {3, 5, 7, 8, 10}})

See also:

• Weaker properties: is_uniform()

• Stronger properties: is_simple(), is_relatively_complemented()

• Other: congruence()

is_join_distributive(certificate=False)
Return True if the lattice is join-distributive and False otherwise.

A lattice is join-distributive if every interval from an element to the join of the element’s upper covers is a
distributive lattice. Actually this distributive sublattice is then a Boolean lattice.

They are also called as Dilworth’s lattices and upper locally distributive lattices. They can be characterized
in many other ways, see [Dil1940].

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, e), where 𝑒 is an element such that
the interval from 𝑒 to the meet of upper covers of 𝑒 is not distributive. If certificate=False return
True or False.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5, 7],
....: 4: [6, 7], 5: [8, 9], 6: [9], 7: [9, 10],
....: 8: [11], 9: [11], 10: [11]})
sage: L.is_join_distributive()
True

(continues on next page)

5.1. Comprehensive Module List 1885

Combinatorics, Release 9.7

(continued from previous page)

sage: L = LatticePoset({1: [2], 2: [3, 4], 3: [5], 4: [6],
....: 5: [7], 6: [7]})
sage: L.is_join_distributive()
False
sage: L.is_join_distributive(certificate=True)
(False, 2)

See also:

• Dual property: is_meet_distributive()

• Weaker properties: is_meet_semidistributive(), is_upper_semimodular()

• Stronger properties: is_distributive()

is_join_pseudocomplemented(certificate=False)
Return True if the lattice is join-pseudocomplemented, and False otherwise.

A lattice is join-pseudocomplemented if every element 𝑒 has a join-pseudocomplement 𝑒′, i.e. the least
element such that the join of 𝑒 and 𝑒′ is the top element.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, e), where e is an element without
a join-pseudocomplement. If certificate=False return True or False.

EXAMPLES:

sage: L = LatticePoset({1: [2, 5], 2: [3, 6], 3: [4], 4: [7],
....: 5: [6], 6: [7]})
sage: L.is_join_pseudocomplemented()
True

sage: L = LatticePoset({1: [2, 3], 2: [4, 5, 6], 3: [6], 4: [7],
....: 5: [7], 6: [7]})
sage: L.is_join_pseudocomplemented()
False
sage: L.is_join_pseudocomplemented(certificate=True)
(False, 4)

See also:

• Dual property: is_pseudocomplemented()

• Stronger properties: is_join_semidistributive()

is_join_semidistributive(certificate=False)
Return True if the lattice is join-semidistributive, and False otherwise.

A lattice is join-semidistributive if for all elements 𝑒, 𝑥, 𝑦 in the lattice we have

𝑒 ∨ 𝑥 = 𝑒 ∨ 𝑦 =⇒ 𝑒 ∨ 𝑥 = 𝑒 ∨ (𝑥 ∧ 𝑦)

INPUT:

1886 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, (e, x, y)) such that 𝑒∨𝑥 = 𝑒∨𝑦
but 𝑒 ∨ 𝑥 ̸= 𝑒 ∨ (𝑥 ∧ 𝑦). If certificate=False return True or False.

EXAMPLES:

sage: T4 = posets.TamariLattice(4)
sage: T4.is_join_semidistributive()
True
sage: L = LatticePoset({1:[2, 3], 2:[4, 5], 3:[5, 6],
....: 4:[7], 5:[7], 6:[7]})
sage: L.is_join_semidistributive()
False
sage: L.is_join_semidistributive(certificate=True)
(False, (5, 4, 6))

See also:

• Dual property: is_meet_semidistributive()

• Weaker properties: is_join_pseudocomplemented(), is_interval_dismantlable()

• Stronger properties: is_semidistributive(), is_meet_distributive(),
is_constructible_by_doublings() (by lower pseudo-intervals)

is_left_modular_element(x)
Return True if x is a left modular element and False otherwise.

INPUT:

• x – an element of the lattice

An element 𝑥 in a lattice 𝐿 is left modular if

(𝑦 ∨ 𝑥) ∧ 𝑧 = 𝑦 ∨ (𝑥 ∧ 𝑧)

for every 𝑦 ≤ 𝑧 ∈ 𝐿.

It is enough to check this condition on all cover relations 𝑦 < 𝑧.

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: [i for i in P if P.is_left_modular_element(i)]
[0, 2, 3, 4]

See also:

• Stronger properties: is_modular_element()

is_lower_semimodular(certificate=False)
Return True if the lattice is lower semimodular and False otherwise.

A lattice is lower semimodular if any pair of elements with a common upper cover have also a common
lower cover.

INPUT:

5.1. Comprehensive Module List 1887

Combinatorics, Release 9.7

• certificate – (default: False) Whether to return a certificate if the lattice is not lower semimodular.

OUTPUT:

• If certificate=False return True or False. If certificate=True return either (True, None)
or (False, (a, b)), where 𝑎 and 𝑏 are covered by their join but do no cover their meet.

See Wikipedia article Semimodular_lattice

EXAMPLES:

sage: L = posets.DiamondPoset(5)
sage: L.is_lower_semimodular()
True

sage: L = posets.PentagonPoset()
sage: L.is_lower_semimodular()
False

sage: L = posets.ChainPoset(6)
sage: L.is_lower_semimodular()
True

sage: L = LatticePoset(DiGraph('IS?`?AAOE_@?C?_@??'))
sage: L.is_lower_semimodular(certificate=True)
(False, (4, 2))

See also:

• Dual property: is_upper_semimodular()

• Weaker properties: is_graded()

• Stronger properties: is_modular(), is_meet_distributive()

is_meet_distributive(certificate=False)
Return True if the lattice is meet-distributive and False otherwise.

A lattice is meet-distributive if every interval to an element from the meet of the element’s lower covers is
a distributive lattice. Actually this distributive sublattice is then a Boolean lattice.

They are also called as lower locally distributive lattices. They can be characterized in many other ways,
see [Dil1940].

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, e), where 𝑒 is an element such that
the interval to 𝑒 from the meet of lower covers of 𝑒 is not distributive. If certificate=False return
True or False.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3, 4], 2: [5], 3: [5, 6, 7],
....: 4: [7], 5: [9, 8], 6: [10, 8], 7:
....: [9, 10], 8: [11], 9: [11], 10: [11]})
sage: L.is_meet_distributive()

(continues on next page)

1888 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Semimodular_lattice

Combinatorics, Release 9.7

(continued from previous page)

True

sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [5], 4: [6],
....: 5: [6], 6: [7]})
sage: L.is_meet_distributive()
False
sage: L.is_meet_distributive(certificate=True)
(False, 6)

See also:

• Dual property: is_join_distributive()

• Weaker properties: is_join_semidistributive(), is_lower_semimodular()

• Stronger properties: is_distributive()

is_meet_semidistributive(certificate=False)
Return True if the lattice is meet-semidistributive, and False otherwise.

A lattice is meet-semidistributive if for all elements 𝑒, 𝑥, 𝑦 in the lattice we have

𝑒 ∧ 𝑥 = 𝑒 ∧ 𝑦 =⇒ 𝑒 ∧ 𝑥 = 𝑒 ∧ (𝑥 ∨ 𝑦)

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, (e, x, y)) such that 𝑒∧𝑥 = 𝑒∧𝑦
but 𝑒 ∧ 𝑥 ̸= 𝑒 ∧ (𝑥 ∨ 𝑦). If certificate=False return True or False.

EXAMPLES:

sage: L = LatticePoset({1:[2, 3, 4], 2:[4, 5], 3:[5, 6],
....: 4:[7], 5:[7], 6:[7]})
sage: L.is_meet_semidistributive()
True
sage: L_ = L.dual()
sage: L_.is_meet_semidistributive()
False
sage: L_.is_meet_semidistributive(certificate=True)
(False, (5, 4, 6))

See also:

• Dual property: is_join_semidistributive()

• Weaker properties: is_pseudocomplemented(), is_interval_dismantlable()

• Stronger properties: is_semidistributive(), is_join_distributive(),
is_constructible_by_doublings() (by upper pseudo-intervals)

is_modular(L=None, certificate=False)
Return True if the lattice is modular and False otherwise.

5.1. Comprehensive Module List 1889

Combinatorics, Release 9.7

An element 𝑏 of a lattice is modular if

𝑥 ∨ (𝑎 ∧ 𝑏) = (𝑥 ∨ 𝑎) ∧ 𝑏

for every element 𝑥 ≤ 𝑏 and 𝑎. A lattice is modular if every element is modular. There are other equivalent
definitions, see Wikipedia article Modular_lattice.

With the parameter L this can be used to check that some subset of elements are all modular.

INPUT:

• L – (default: None) a list of elements to check being modular, if L is None, then this checks the entire
lattice

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, (x, a, b)), where 𝑎, 𝑏 and 𝑥 are
elements of the lattice such that 𝑥 < 𝑏 but 𝑥 ∨ (𝑎 ∧ 𝑏) ̸= (𝑥 ∨ 𝑎) ∧ 𝑏. If also 𝐿 is given then 𝑏 in the
certificate will be an element of 𝐿. If certificate=False return True or False.

EXAMPLES:

sage: L = posets.DiamondPoset(5)
sage: L.is_modular()
True

sage: L = posets.PentagonPoset()
sage: L.is_modular()
False

sage: L = LatticePoset({1:[2,3],2:[4,5],3:[5,6],4:[7],5:[7],6:[7]})
sage: L.is_modular(certificate=True)
(False, (2, 6, 4))
sage: [L.is_modular([x]) for x in L]
[True, True, False, True, True, False, True]

See also:

• Weaker properties: is_upper_semimodular(), is_lower_semimodular(),
is_supersolvable()

• Stronger properties: is_distributive()

• Other: is_modular_element()

is_modular_element(x)
Return True if x is a modular element and False otherwise.

INPUT:

• x – an element of the lattice

An element 𝑥 in a lattice 𝐿 is modular if 𝑥 ≤ 𝑏 implies

𝑥 ∨ (𝑎 ∧ 𝑏) = (𝑥 ∨ 𝑎) ∧ 𝑏

for every 𝑎, 𝑏 ∈ 𝐿.

EXAMPLES:

1890 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Modular_lattice

Combinatorics, Release 9.7

sage: L = LatticePoset({1:[2,3],2:[4,5],3:[5,6],4:[7],5:[7],6:[7]})
sage: L.is_modular()
False
sage: [L.is_modular_element(x) for x in L]
[True, True, False, True, True, False, True]

See also:

• Weaker properties: is_left_modular_element()

• Other: is_modular() to check modularity for the full lattice or some set of elements

is_orthocomplemented(unique=False)
Return True if the lattice admits an orthocomplementation, and False otherwise.

An orthocomplementation of a lattice is a function defined for every element 𝑒 and marked as 𝑒⊥ such that
1) they are complements, i.e. 𝑒∨ 𝑒⊥ is the top element and 𝑒∧ 𝑒⊥ is the bottom element, 2) it is involution,
i.e. (𝑒⊥)

⊥
= 𝑒, and 3) it is order-reversing, i.e. if 𝑎 < 𝑏 then 𝑏⊥ < 𝑎⊥.

INPUT:

• unique, a Boolean – If True, return True only if the lattice has exactly one orthocomplementation.
If False (the default), return True when the lattice has at least one orthocomplementation.

EXAMPLES:

sage: D5 = posets.DiamondPoset(5)
sage: D5.is_orthocomplemented()
False

sage: D6 = posets.DiamondPoset(6)
sage: D6.is_orthocomplemented()
True
sage: D6.is_orthocomplemented(unique=True)
False

sage: hexagon = LatticePoset({0:[1, 2], 1:[3], 2:[4], 3:[5], 4:[5]})
sage: hexagon.is_orthocomplemented(unique=True)
True

See also:

• Weaker properties: is_complemented(), is_self_dual()

is_planar()
Return True if the lattice is upward planar, and False otherwise.

A lattice is upward planar if its Hasse diagram has a planar drawing in the R2 plane, in such a way that 𝑥
is strictly below 𝑦 (on the vertical axis) whenever 𝑥 < 𝑦 in the lattice.

Note that the scientific literature on posets often omits “upward” and shortens it to “planar lattice” (e.g.
[GW2014]), which can cause confusion with the notion of graph planarity in graph theory.

Note: Not all lattices which are planar – in the sense of graph planarity – admit such a planar drawing (see
example below).

5.1. Comprehensive Module List 1891

../../../../../../../html/en/reference/categories/sage/categories/finite_posets.html#sage.categories.finite_posets.FinitePosets.ParentMethods.is_self_dual

Combinatorics, Release 9.7

ALGORITHM:

Using the result from [Platt1976], this method returns its result by testing that the Hasse diagram of the
lattice is planar (in the sense of graph theory) when an edge is added between the top and bottom elements.

EXAMPLES:

The Boolean lattice of 23 elements is not upward planar, even if its covering relations graph is planar:

sage: B3 = posets.BooleanLattice(3)
sage: B3.is_planar()
False
sage: G = B3.cover_relations_graph()
sage: G.is_planar()
True

Ordinal product of planar lattices is obviously planar. Same does not apply to Cartesian products:

sage: P = posets.PentagonPoset()
sage: Pc = P.product(P)
sage: Po = P.ordinal_product(P)
sage: Pc.is_planar()
False
sage: Po.is_planar()
True

See also:

• Weaker properties: is_dismantlable()

is_pseudocomplemented(certificate=False)
Return True if the lattice is pseudocomplemented, and False otherwise.

A lattice is (meet-)pseudocomplemented if every element 𝑒 has a pseudocomplement 𝑒⋆, i.e. the greatest
element such that the meet of 𝑒 and 𝑒⋆ is the bottom element.

See Wikipedia article Pseudocomplement.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, e), where e is an element without
a pseudocomplement. If certificate=False return True or False.

EXAMPLES:

sage: L = LatticePoset({1: [2, 5], 2: [3, 6], 3: [4], 4: [7],
....: 5: [6], 6: [7]})
sage: L.is_pseudocomplemented()
True

sage: L = LatticePoset({1: [2, 3], 2: [4, 5, 6], 3: [6], 4: [7],
....: 5: [7], 6: [7]})
sage: L.is_pseudocomplemented()
False

(continues on next page)

1892 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Pseudocomplement

Combinatorics, Release 9.7

(continued from previous page)

sage: L.is_pseudocomplemented(certificate=True)
(False, 3)

See also:

• Dual property: is_join_pseudocomplemented()

• Stronger properties: is_meet_semidistributive()

• Other: pseudocomplement().

ALGORITHM:

According to [Cha92] a lattice is pseudocomplemented if and only if every atom has a pseudocomplement.
So we only check those.

is_regular(certificate=False)
Return True if the lattice is regular and False otherwise.

A congruence of a lattice is regular if it is generated by any of its parts. A lattice is regular if it has only
regular congruences.

INPUT:

• certificate – (default: False) whether to return a certificate if the lattice is not regular

OUTPUT:

• If certificate=True return either (True, None) or (False, (C, p)), where𝐶 is a non-regular
congruence as a sage.combinat.set_partition.SetPartition and 𝑝 is a congruence class of
𝐶 such that the congruence generated by 𝑝 is not 𝐶. If certificate=False return True or False.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [8, 7], 4: [6, 7], 5: [8],␣
→˓6: [9], 7: [9], 8: [9]})
sage: L.is_regular()
True

sage: N5 = posets.PentagonPoset()
sage: N5.is_regular()
False
sage: N5.is_regular(certificate=True)
(False, ({{0}, {1}, {2, 3}, {4}}, [0]))

See also:

• Stronger properties: is_uniform(), is_sectionally_complemented(),
is_cosectionally_complemented()

• Mutually exclusive properties: is_vertically_decomposable()

• Other: congruence()

is_relatively_complemented(certificate=False)
Return True if the lattice is relatively complemented, and False otherwise.

A lattice is relatively complemented if every interval of it is a complemented lattice.

INPUT:

5.1. Comprehensive Module List 1893

Combinatorics, Release 9.7

• certificate – (default: False) Whether to return a certificate if the lattice is not relatively comple-
mented.

OUTPUT:

• If certificate=True return either (True, None) or (False, (a, b, c)), where 𝑏 is the only
element that covers 𝑎 and is covered by 𝑐. If certificate=False return True or False.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3, 4, 8], 2: [5, 6], 3: [5, 7],
....: 4: [6, 7], 5: [9], 6: [9], 7: [9], 8: [9]})
sage: L.is_relatively_complemented()
True

sage: L = posets.PentagonPoset()
sage: L.is_relatively_complemented()
False

Relatively complemented lattice must be both atomic and coatomic. Implication to other direction does not
hold:

sage: L = LatticePoset({0: [1, 2, 3, 4, 5], 1: [6, 7], 2: [6, 8],
....: 3: [7, 8, 9], 4: [9, 11], 5: [9, 10],
....: 6: [10, 11], 7: [12], 8: [12], 9: [12],
....: 10: [12], 11: [12]})
sage: L.is_atomic() and L.is_coatomic()
True
sage: L.is_relatively_complemented()
False

We can also get a non-complemented 3-element interval:

sage: L.is_relatively_complemented(certificate=True)
(False, (1, 6, 11))

See also:

• Weaker properties: is_sectionally_complemented(), is_cosectionally_complemented(),
is_isoform()

• Stronger properties: is_geometric()

is_sectionally_complemented(certificate=False)
Return True if the lattice is sectionally complemented, and False otherwise.

A lattice is sectionally complemented if all intervals from the bottom element interpreted as sublattices are
complemented lattices.

INPUT:

• certificate – (default: False) Whether to return a certificate if the lattice is not sectionally com-
plemented.

OUTPUT:

• If certificate=False return True or False. If certificate=True return either (True, None)
or (False, (t, e)), where 𝑡 is an element so that in the sublattice from the bottom element to 𝑡 has
no complement for element 𝑒.

1894 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

Smallest examples of a complemented but not sectionally complemented lattice and a sectionally comple-
mented but not relatively complemented lattice:

sage: L = posets.PentagonPoset()
sage: L.is_complemented()
True
sage: L.is_sectionally_complemented()
False

sage: L = LatticePoset({0: [1, 2, 3], 1: [4], 2: [4], 3: [5], 4: [5]})
sage: L.is_sectionally_complemented()
True
sage: L.is_relatively_complemented()
False

Getting a certificate:

sage: L = LatticePoset(DiGraph('HYOgC?C@?C?G@??'))
sage: L.is_sectionally_complemented(certificate=True)
(False, (6, 1))

See also:

• Dual property: is_cosectionally_complemented()

• Weaker properties: is_complemented(), is_atomic(), is_regular()

• Stronger properties: is_relatively_complemented()

is_semidistributive()
Return True if the lattice is both join- and meet-semidistributive, and False otherwise.

EXAMPLES:

Tamari lattices are typical examples of semidistributive but not distributive (and hence not modular) lattices:

sage: T4 = posets.TamariLattice(4)
sage: T4.is_semidistributive(), T4.is_distributive()
(True, False)

Smallest non-selfdual example:

sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [5], 4: [6], 5: [7], 6: [7]})
sage: L.is_semidistributive()
True

The diamond is not semidistributive:

sage: L = posets.DiamondPoset(5)
sage: L.is_semidistributive()
False

See also:

• Weaker properties: is_join_semidistributive(), is_meet_semidistributive()

5.1. Comprehensive Module List 1895

Combinatorics, Release 9.7

• Stronger properties: is_distributive()

is_simple(certificate=False)
Return True if the lattice is simple and False otherwise.

A lattice is simple if it has no nontrivial congruences; in other words, for every two distinct elements 𝑎 and
𝑏 the principal congruence generated by (𝑎, 𝑏) has only one component, i.e. the whole lattice.

INPUT:

• certificate – (default: False) whether to return a certificate if the lattice is not simple

OUTPUT:

• If certificate=True return either (True, None) or (False, c), where 𝑐 is a nontrivial congru-
ence as a sage.combinat.set_partition.SetPartition. If certificate=False return True
or False.

EXAMPLES:

sage: posets.DiamondPoset(5).is_simple() # Smallest nontrivial example
True
sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [6], 4: [6], 5: [6]})
sage: L.is_simple()
False
sage: L.is_simple(certificate=True)
(False, {{1, 3}, {2, 4, 5, 6}})

Two more examples. First is a non-simple lattice without any 2-element congruences:

sage: L = LatticePoset({1: [2, 3, 4], 2: [5], 3: [5], 4: [6, 7],
....: 5: [8], 6: [8], 7: [8]})
sage: L.is_simple()
False
sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [6, 7], 4: [8],
....: 5: [8], 6: [8], 7: [8]})
sage: L.is_simple()
True

See also:

• Weaker properties: is_isoform()

• Mutually exclusive properties: is_constructible_by_doublings() (by any set)

• Other: congruence()

is_stone(certificate=False)
Return True if the lattice is a Stone lattice, and False otherwise.

The lattice is expected to be distributive (and hence pseudocomplemented).

A pseudocomplemented lattice is a Stone lattice if

𝑒* ∨ 𝑒** = ⊤

for every element 𝑒 of the lattice, where * is the pseudocomplement and ⊤ is the top element of the lattice.

INPUT:

• certificate – (default: False) whether to return a certificate

1896 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

• If certificate=True return either (True, None) or (False, e) such that 𝑒* ∨ 𝑒** ̸= ⊤. If
certificate=False return True or False.

EXAMPLES:

Divisor lattices are canonical example:

sage: D72 = posets.DivisorLattice(72)
sage: D72.is_stone()
True

A non-example:

sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [4], 4: [5]})
sage: L.is_stone()
False

See also:

• Weaker properties: is_distributive()

is_subdirectly_reducible(certificate=False)
Return True if the lattice is subdirectly reducible.

A lattice 𝑀 is a subdirect product of 𝐾 and 𝐿 if it is a sublattice of 𝐾 × 𝐿. Lattice 𝑀 is subdirectly
reducible if there exists such lattices 𝐾 and 𝐿 so that 𝑀 is not a sublattice of either.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• if certificate=False, return only True or False

• if certificate=True, return either

– (True, (K, L)) such that the lattice is isomorphic to a sublattice of 𝐾 × 𝐿.

– (False, (a, b)), where 𝑎 and 𝑏 are elements that are in the same congruence class for every
nontrivial congruence of the lattice. Special case: If the lattice has zero or one element, return
(False, None).

EXAMPLES:

sage: N5 = posets.PentagonPoset()
sage: N5.is_subdirectly_reducible()
False

sage: hex = LatticePoset({1: [2, 3], 2: [4], 3: [5], 4: [6], 5: [6]})
sage: hex.is_subdirectly_reducible()
True

sage: hex.is_subdirectly_reducible(certificate=True)
(True,
(Finite lattice containing 5 elements, Finite lattice containing 5 elements))

sage: N5.is_subdirectly_reducible(certificate=True)
(continues on next page)

5.1. Comprehensive Module List 1897

Combinatorics, Release 9.7

(continued from previous page)

(False, (2, 3))
sage: res, cert = hex.is_subdirectly_reducible(certificate=True)
sage: cert[0].is_isomorphic(N5)
True

See also:

• Stronger properties: is_distributive(), is_vertically_decomposable()

• Other: subdirect_decomposition()

is_sublattice(other)
Return True if the lattice is a sublattice of other, and False otherwise.

Lattice 𝐾 is a sublattice of 𝐿 if 𝐾 is an (induced) subposet of 𝐿 and closed under meet and join of 𝐿.

Note: This method does not check whether the lattice is a isomorphic (i.e., up to relabeling) sublattice of
other, but only if other directly contains the lattice as an sublattice.

EXAMPLES:

A pentagon sublattice in a non-modular lattice:

sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [5, 6], 4: [7], 5: [7], 6: [7]}
→˓)
sage: N5 = LatticePoset({1: [2, 6], 2: [4], 4: [7], 6: [7]})
sage: N5.is_sublattice(L)
True

This pentagon is a subposet but not closed under join, hence not a sublattice:

sage: N5_ = LatticePoset({1: [2, 3], 2: [4], 3: [7], 4: [7]})
sage: N5_.is_induced_subposet(L)
True
sage: N5_.is_sublattice(L)
False

See also:

isomorphic_sublattices_iterator()

is_sublattice_dismantlable()
Return True if the lattice is sublattice dismantlable, and False otherwise.

A sublattice dismantling is a subdivision of a lattice into two non-empty sublattices. A lattice is sublattice
dismantlable if it can be decomposed into 1-element lattices by consecutive sublattice dismantlings.

EXAMPLES:

The smallest non-example is this (and the dual):

sage: P = Poset({1: [11, 12, 13], 2: [11, 14, 15],
....: 3: [12, 14, 16], 4: [13, 15, 16]})
sage: L = LatticePoset(P.with_bounds())
sage: L.is_sublattice_dismantlable()
False

1898 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Here we adjoin a (double-irreducible-)dismantlable lattice as a part to an interval-dismantlable lattice:

sage: B3 = posets.BooleanLattice(3)
sage: N5 = posets.PentagonPoset()
sage: L = B3.adjunct(N5, 1, 7)
sage: L.is_dismantlable(), L.is_interval_dismantlable()
(False, False)
sage: L.is_sublattice_dismantlable()
True

See also:

• Stronger properties: is_dismantlable(), is_interval_dismantlable()

Todo: Add a certificate-option.

is_supersolvable(certificate=False)
Return True if the lattice is supersolvable, and False otherwise.

A lattice 𝐿 is supersolvable if there exists a maximal chain 𝐶 such that every 𝑥 ∈ 𝐶 is a modular element
in 𝐿. Equivalent definition is that the sublattice generated by 𝐶 and any other chain is distributive.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (False, None) or (True, C), where C is a maximal chain of
modular elements. If certificate=False return True or False.

EXAMPLES:

sage: L = posets.DiamondPoset(5)
sage: L.is_supersolvable()
True

sage: L = posets.PentagonPoset()
sage: L.is_supersolvable()
False

sage: L = LatticePoset({1:[2,3],2:[4,5],3:[5,6],4:[7],5:[7],6:[7]})
sage: L.is_supersolvable()
True
sage: L.is_supersolvable(certificate=True)
(True, [1, 2, 5, 7])
sage: L.is_modular()
False

sage: L = LatticePoset({0: [1, 2, 3, 4], 1: [5, 6, 7],
....: 2: [5, 8, 9], 3: [6, 8, 10], 4: [7, 9, 10],
....: 5: [11], 6: [11], 7: [11], 8: [11],
....: 9: [11], 10: [11]})
sage: L.is_supersolvable()
False

5.1. Comprehensive Module List 1899

Combinatorics, Release 9.7

See also:

• Weaker properties: is_graded()

• Stronger properties: is_modular()

is_trim(certificate=False)
Return whether a lattice is trim.

A lattice is trim if it is extremal and left modular.

This notion is defined in [Thom2006].

INPUT:

• certificate – boolean (default False) whether to return instead a maximum chain of left modular ele-
ments

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: P.is_trim()
True

sage: Q = LatticePoset(posets.SymmetricGroupWeakOrderPoset(3))
sage: Q.is_trim()
False

See also:

• Weaker properties: is_extremal()

• Stronger properties: is_distributive()

REFERENCES:

is_uniform(certificate=False)
Return True if the lattice is uniform and False otherwise.

A congruence is uniform if all blocks have equal number of elements. A lattice is uniform if it has only
uniform congruences.

INPUT:

• certificate – (default: False) whether to return a certificate if the lattice is not uniform

OUTPUT:

• If certificate=True return either (True, None) or (False, C), where 𝐶 is a non-uniform con-
gruence as a sage.combinat.set_partition.SetPartition. If certificate=False return
True or False.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3, 4], 2: [6, 7], 3: [5], 4: [5], 5: [9, 8], 6:␣
→˓[9], 7: [10], 8: [10], 9: [10]})
sage: L.is_uniform()
True

Every uniform lattice is regular, but the converse is not true:

1900 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: N6 = LatticePoset({1: [2, 3, 5], 2: [4], 3: [4], 5: [6], 4: [6]})
sage: N6.is_uniform(), N6.is_regular()
(False, True)

sage: N6.is_uniform(certificate=True)
(False, {{1, 2, 3, 4}, {5, 6}})

See also:

• Weaker properties: is_regular()

• Stronger properties: is_isoform()

• Other: congruence()

is_upper_semimodular(certificate=False)
Return True if the lattice is upper semimodular and False otherwise.

A lattice is upper semimodular if any pair of elements with a common lower cover have also a common
upper cover.

INPUT:

• certificate – (default: False) Whether to return a certificate if the lattice is not upper semimodular.

OUTPUT:

• If certificate=False return True or False. If certificate=True return either (True, None)
or (False, (a, b)), where 𝑎 and 𝑏 covers their meet but are not covered by their join.

See Wikipedia article Semimodular_lattice

EXAMPLES:

sage: L = posets.DiamondPoset(5)
sage: L.is_upper_semimodular()
True

sage: L = posets.PentagonPoset()
sage: L.is_upper_semimodular()
False

sage: L = LatticePoset(posets.IntegerPartitions(4))
sage: L.is_upper_semimodular()
True

sage: L = LatticePoset({1:[2, 3, 4], 2: [5], 3:[5, 6], 4:[6], 5:[7], 6:[7]})
sage: L.is_upper_semimodular(certificate=True)
(False, (4, 2))

See also:

• Dual property: is_lower_semimodular()

• Weaker properties: is_graded()

• Stronger properties: is_modular(), is_join_distributive(), is_geometric()

5.1. Comprehensive Module List 1901

https://en.wikipedia.org/wiki/Semimodular_lattice

Combinatorics, Release 9.7

is_vertically_decomposable(certificate=False)
Return True if the lattice is vertically decomposable, and False otherwise.

A lattice is vertically decomposable if it has an element that is comparable to all elements and is neither
the bottom nor the top element.

Informally said, a lattice is vertically decomposable if it can be seen as two lattices “glued” by unifying the
top element of first lattice to the bottom element of second one.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (False, None) or (True, e), where 𝑒 is an element
that is comparable to all other elements and is neither the bottom nor the top element. If
certificate=False return True or False.

EXAMPLES:

sage: posets.TamariLattice(4).is_vertically_decomposable()
False
sage: L = LatticePoset(([1, 2, 3, 6, 12, 18, 36],
....: attrcall("divides")))
sage: L.is_vertically_decomposable()
True
sage: L.is_vertically_decomposable(certificate=True)
(True, 6)

See also:

• Weaker properties: is_subdirectly_reducible()

• Mutually exclusive properties: is_atomic(), is_coatomic(), is_regular()

• Other: vertical_decomposition()

isomorphic_sublattices_iterator(other)
Return an iterator over the sublattices of the lattice isomorphic to other.

INPUT:

• other – a finite lattice

EXAMPLES:

A non-modular lattice contains a pentagon sublattice:

sage: L = LatticePoset({1: [2, 3], 2: [4, 5], 3: [5, 6], 4: [7], 5: [7], 6: [7]}
→˓)
sage: L.is_modular()
False
sage: N5 = posets.PentagonPoset()
sage: N5_in_L = next(L.isomorphic_sublattices_iterator(N5)); N5_in_L
Finite lattice containing 5 elements
sage: N5_in_L.list()
[1, 3, 6, 4, 7]

A divisor lattice is modular, hence does not contain the pentagon as sublattice, even if it has the pentagon
subposet:

1902 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: D12 = posets.DivisorLattice(12)
sage: D12.has_isomorphic_subposet(N5)
True
sage: list(D12.isomorphic_sublattices_iterator(N5))
[]

See also:

sage.combinat.posets.posets.FinitePoset.isomorphic_subposets_iterator()

Warning: This function will return same sublattice as many times as there are automorphism on it.
This is due to subgraph_search_iterator() returning labelled subgraphs.

join_primes()
Return the join-prime elements of the lattice.

An element 𝑥 of a lattice 𝐿 is join-prime if 𝑥 ≤ 𝑎 ∨ 𝑏 implies 𝑥 ≤ 𝑎 or 𝑥 ≤ 𝑏 for every 𝑎, 𝑏 ∈ 𝐿.

These are also called coprime in some books. Every join-prime is join-irreducible; converse holds if and
only if the lattice is distributive.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5],
....: 4: [6], 5: [7], 6: [7]})
sage: L.join_primes()
[3, 4]

sage: D12 = posets.DivisorLattice(12) # Distributive lattice
sage: D12.join_irreducibles() == D12.join_primes()
True

See also:

• Dual function: meet_primes()

• Other: join_irreducibles()

maximal_sublattices()
Return maximal (proper) sublattices of the lattice.

EXAMPLES:

sage: L = LatticePoset(([], [[1,2],[1,17],[1,8],[2,3],[2,22],
....: [2,5],[2,7],[17,22],[17,13],[8,7],
....: [8,13],[3,16],[3,9],[22,16],[22,18],
....: [22,10],[5,18],[5,14],[7,9],[7,14],
....: [7,10],[13,10],[16,6],[16,19],[9,19],
....: [18,6],[18,33],[14,33],[10,19],
....: [10,33],[6,4],[19,4],[33,4]]))
sage: maxs = L.maximal_sublattices()
sage: len(maxs)
7
sage: sorted(maxs[0].list())
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 18, 19, 22, 33]

5.1. Comprehensive Module List 1903

../../../../../../../html/en/reference/graphs/sage/graphs/generic_graph.html#sage.graphs.generic_graph.GenericGraph.subgraph_search_iterator
../../../../../../../html/en/reference/categories/sage/categories/finite_lattice_posets.html#sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods.join_irreducibles

Combinatorics, Release 9.7

meet_primes()
Return the meet-prime elements of the lattice.

An element 𝑥 of a lattice 𝐿 is meet-prime if 𝑥 ≥ 𝑎 ∧ 𝑏 implies 𝑥 ≥ 𝑎 or 𝑥 ≥ 𝑏 for every 𝑎, 𝑏 ∈ 𝐿.

These are also called just prime in some books. Every meet-prime is meet-irreducible; converse holds if
and only if the lattice is distributive.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5],
....: 4: [6], 5: [7], 6: [7]})
sage: L.meet_primes()
[6, 5]

sage: D12 = posets.DivisorLattice(12)
sage: sorted(D12.meet_primes())
[3, 4, 6]

See also:

• Dual function: join_primes()

• Other: meet_irreducibles()

moebius_algebra(R)
Return the Möbius algebra of self over R.

OUTPUT:

An instance of sage.combinat.posets.moebius_algebra.MoebiusAlgebra.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: L.moebius_algebra(QQ)
Moebius algebra of Finite lattice containing 16 elements over Rational Field

neutral_elements()
Return the list of neutral elements of the lattice.

An element 𝑒 of the lattice𝐿 is neutral if the sublattice generated by 𝑒, 𝑥 and 𝑦 is distributive for all 𝑥, 𝑦 ∈ 𝐿.
It can also be characterized as an element of intersection of maximal distributive sublattices.

EXAMPLES:

sage: L = LatticePoset({1: [2, 3], 2: [6], 3: [4, 5, 6], 4: [8],
....: 5: [7], 6: [7], 7: [8, 9], 8: [10], 9: [10]})
sage: L.neutral_elements()
[1, 3, 8, 10]

quantum_moebius_algebra(q=None)
Return the quantum Möbius algebra of self with parameter q.

INPUT:

• q – (optional) the deformation parameter 𝑞

OUTPUT:

An instance of sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra.

1904 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/finite_lattice_posets.html#sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods.meet_irreducibles

Combinatorics, Release 9.7

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: L.quantum_moebius_algebra()
Quantum Moebius algebra of Finite lattice containing 16 elements
with q=q over Univariate Laurent Polynomial Ring in q over Integer Ring

quotient(congruence, labels='tuple')
Return the quotient lattice by congruence.

Let 𝐿 be a lattice and Θ be a congruence of 𝐿 with congruence classes Θ1,Θ2, The quotient lattice
𝐿/Θ is the lattice with elements {Θ1,Θ2, . . .} and meet and join given by the original lattice. Explicitly,
if 𝑒1 ∈ Θ1 and 𝑒2 ∈ Θ2, such that 𝑒1 ∨ 𝑒2 ∈ Θ3 then Θ1 ∨Θ2 = Θ3 in 𝐿/Θ and similarly for meets.

INPUT:

• congruence – list of lists; a congruence

• labels – string; the elements of the resulting lattice and can be one of the following:

– 'tuple' - elements are tuples of elements of the original lattice

– 'lattice' - elements are sublattices of the original lattice

– 'integer' - elements are labeled by integers

Warning: congruence is expected to be a valid congruence of the lattice. This is not checked.

EXAMPLES:

sage: L = posets.PentagonPoset()
sage: c = L.congruence([[0, 1]])
sage: I = L.quotient(c); I
Finite lattice containing 2 elements
sage: I.top()
(2, 3, 4)
sage: I = L.quotient(c, labels='lattice')
sage: I.top()
Finite lattice containing 3 elements

sage: B3 = posets.BooleanLattice(3)
sage: c = B3.congruence([[0,1]])
sage: B2 = B3.quotient(c, labels='integer')
sage: B2.is_isomorphic(posets.BooleanLattice(2))
True

See also:

congruence()

skeleton()
Return the skeleton of the lattice.

The lattice is expected to be pseudocomplemented.

The skeleton of a pseudocomplemented lattice 𝐿, where * is the pseudocomplementation operation, is the
subposet induced by {𝑒* | 𝑒 ∈ 𝐿}. Actually this poset is a Boolean lattice.

EXAMPLES:

5.1. Comprehensive Module List 1905

Combinatorics, Release 9.7

sage: D12 = posets.DivisorLattice(12)
sage: S = D12.skeleton(); S
Finite lattice containing 4 elements
sage: S.cover_relations()
[[1, 3], [1, 4], [3, 12], [4, 12]]

sage: T4 = posets.TamariLattice(4)
sage: T4.skeleton().is_isomorphic(posets.BooleanLattice(3))
True

See also:

sage.combinat.posets.lattices.FiniteMeetSemilattice.pseudocomplement().

subdirect_decomposition()
Return the subdirect decomposition of the lattice.

The subdirect decomposition of a lattice𝐿 is the list of smaller lattices𝐿1, . . . , 𝐿𝑛 such that𝐿 is a sublattice
of 𝐿1× . . .×𝐿𝑛, none of 𝐿𝑖 can be decomposed further and 𝐿 is not a sublattice of any 𝐿𝑖. (Except when
the list has only one element, i.e. when the lattice is subdirectly irreducible.)

EXAMPLES:

sage: posets.ChainPoset(3).subdirect_decomposition()
[Finite lattice containing 2 elements, Finite lattice containing 2 elements]

sage: L = LatticePoset({1: [2, 4], 2: [3], 3: [6, 7], 4: [5, 7],
....: 5: [9, 8], 6: [9], 7: [9], 8: [10], 9: [10]})
sage: Ldecomp = L.subdirect_decomposition()
sage: [fac.cardinality() for fac in Ldecomp]
[2, 5, 7]
sage: Ldecomp[1].is_isomorphic(posets.PentagonPoset())
True

sublattice(elms)
Return the smallest sublattice containing elements on the given list.

INPUT:

• elms – a list of elements of the lattice.

EXAMPLES:

sage: L = LatticePoset(([], [[1,2],[1,17],[1,8],[2,3],[2,22],[2,5],[2,7],[17,
→˓22],[17,13],[8,7],[8,13],[3,16],[3,9],[22,16],[22,18],[22,10],[5,18],[5,14],
→˓[7,9],[7,14],[7,10],[13,10],[16,6],[16,19],[9,19],[18,6],[18,33],[14,33],[10,
→˓19],[10,33],[6,4],[19,4],[33,4]]))
sage: L.sublattice([14, 13, 22]).list()
[1, 2, 8, 7, 14, 17, 13, 22, 10, 33]

sage: L = posets.BooleanLattice(3)
sage: L.sublattice([3,5,6,7])
Finite lattice containing 8 elements

sublattices()
Return all sublattices of the lattice.

EXAMPLES:

1906 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = LatticePoset({1: [2, 3, 4], 2:[5], 3:[5, 6], 4:[6],
....: 5:[7], 6:[7]})
sage: sublats = L.sublattices(); len(sublats)
54
sage: sublats[3]
Finite lattice containing 4 elements
sage: sublats[3].list()
[1, 2, 3, 5]

sublattices_lattice(labels='lattice')
Return the lattice of sublattices.

Every element of the returned lattice is a sublattice and they are ordered by containment; that is, atoms are
one-element lattices, coatoms are maximal sublattices of the original lattice and so on.

INPUT:

• labels – string; can be one of the following:

– 'lattice' (default) elements of the lattice will be lattices that correspond to sublattices of the
original lattice

– 'tuple' - elements are tuples of elements of the sublattices of the original lattice

– 'integer' - elements are plain integers

EXAMPLES:

sage: D4 = posets.DiamondPoset(4)
sage: sll = D4.sublattices_lattice(labels='tuple')
sage: sll.coatoms() # = maximal sublattices of the original lattice
[(0, 1, 3), (0, 2, 3)]

sage: L = posets.DivisorLattice(12)
sage: sll = L.sublattices_lattice()
sage: L.is_dismantlable() == (len(sll.atoms()) == sll.rank())
True

vertical_composition(other, labels='pairs')
Return the vertical composition of the lattice with other.

Let 𝐿 and 𝐾 be lattices and 𝑏𝐾 the bottom element of 𝐾. The vertical composition of 𝐿 and 𝐾 is the
ordinal sum of 𝐿 and 𝐾 ∖ {𝑏𝐾}. Informally said this is lattices “glued” together with a common element.

Mathematically, it is only defined when 𝐿 and 𝐾 have no common element; here we force that by giving
them different names in the resulting poset.

INPUT:

• other – a lattice

• labels – a string (default 'pairs'); can be one of the following:

– 'pairs' - each element v in this poset will be named (0, v) and each element u in other will
be named (1, u) in the result

– 'integers' - the elements of the result will be relabeled with consecutive integers

EXAMPLES:

5.1. Comprehensive Module List 1907

Combinatorics, Release 9.7

sage: L = LatticePoset({'a': ['b', 'c'], 'b': ['d'], 'c': ['d']})
sage: K = LatticePoset({'e': ['f', 'g'], 'f': ['h'], 'g': ['h']})
sage: M = L.vertical_composition(K)
sage: M.list()
[(0, 'a'), (0, 'b'), (0, 'c'), (0, 'd'), (1, 'f'), (1, 'g'), (1, 'h')]
sage: M.upper_covers((0, 'd'))
[(1, 'f'), (1, 'g')]

sage: C2 = posets.ChainPoset(2)
sage: M3 = posets.DiamondPoset(5)
sage: L = C2.vertical_composition(M3, labels='integers')
sage: L.cover_relations()
[[0, 1], [1, 2], [1, 3], [1, 4], [2, 5], [3, 5], [4, 5]]

See also:

vertical_decomposition(), sage.combinat.posets.posets.FinitePoset.ordinal_sum()

vertical_decomposition(elements_only=False)
Return sublattices from the vertical decomposition of the lattice.

Let 𝑑1, . . . , 𝑑𝑛 be elements (excluding the top and bottom elements) comparable to every element of the
lattice. Let 𝑏 be the bottom element and 𝑡 be the top element. This function returns either a list 𝑑1, . . . , 𝑑𝑛,
or the list of intervals [𝑏, 𝑑1], [𝑑1, 𝑑2], . . . , [𝑑𝑛−1, 𝑑𝑛], [𝑑𝑛, 𝑡] as lattices.

Informally said, this returns the lattice split into parts at every single-element “cutting point”.

INPUT:

• elements_only - if True, return the list of decomposing elements as defined above; if False (the
default), return the list of sublattices so that the lattice is a vertical composition of them.

EXAMPLES:

Number 6 is divided by 1, 2, and 3, and it divides 12, 18 and 36:

sage: L = LatticePoset(([1, 2, 3, 6, 12, 18, 36],
....: attrcall("divides")))
sage: parts = L.vertical_decomposition()
sage: [lat.list() for lat in parts]
[[1, 2, 3, 6], [6, 12, 18, 36]]
sage: L.vertical_decomposition(elements_only=True)
[6]

See also:

vertical_composition(), is_vertically_decomposable()

class sage.combinat.posets.lattices.FiniteMeetSemilattice(hasse_diagram, elements, category,
facade, key)

Bases: sage.combinat.posets.posets.FinitePoset

Note: We assume that the argument passed to MeetSemilattice is the poset of a meet-semilattice (i.e. a poset
with greatest lower bound for each pair of elements).

Element
alias of sage.combinat.posets.elements.MeetSemilatticeElement

1908 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

atoms()
Return the list atoms of this (semi)lattice.

An atom of a lattice is an element covering the bottom element.

EXAMPLES:

sage: L = posets.DivisorLattice(60)
sage: sorted(L.atoms())
[2, 3, 5]

See also:

• Dual function: coatoms()

meet(x, y=None)
Return the meet of given elements in the lattice.

INPUT:

• x, y – two elements of the (semi)lattice OR

• x – a list or tuple of elements

EXAMPLES:

sage: D = posets.DiamondPoset(5)
sage: D.meet(1, 2)
0
sage: D.meet(1, 1)
1
sage: D.meet(1, 0)
0
sage: D.meet(1, 4)
1

Using list of elements as an argument. Meet of empty list is the bottom element:

sage: B4=posets.BooleanLattice(4)
sage: B4.meet([3,5,6])
0
sage: B4.meet([])
15

For non-facade lattices operator * works for meet:

sage: L = posets.PentagonPoset(facade=False)
sage: L(1)*L(2)
0

See also:

• Dual function: join()

meet_matrix()
Return a matrix whose (i,j) entry is k, where self.linear_extension()[k] is the meet (greatest
lower bound) of self.linear_extension()[i] and self.linear_extension()[j].

5.1. Comprehensive Module List 1909

Combinatorics, Release 9.7

EXAMPLES:

sage: P = LatticePoset([[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]], facade = False)
sage: M = P.meet_matrix(); M
[0 0 0 0 0 0 0 0]
[0 1 0 1 0 0 0 1]
[0 0 2 2 2 0 2 2]
[0 1 2 3 2 0 2 3]
[0 0 2 2 4 0 2 4]
[0 0 0 0 0 5 5 5]
[0 0 2 2 2 5 6 6]
[0 1 2 3 4 5 6 7]
sage: M[P(4).vertex,P(3).vertex] == P(0).vertex
True
sage: M[P(5).vertex,P(2).vertex] == P(2).vertex
True
sage: M[P(5).vertex,P(2).vertex] == P(5).vertex
False

pseudocomplement(element)
Return the pseudocomplement of element, if it exists.

The (meet-)pseudocomplement is the greatest element whose meet with given element is the bottom el-
ement. I.e. in a meet-semilattice with bottom element 0̂ the pseudocomplement of an element 𝑒 is the
element 𝑒⋆ such that 𝑒 ∧ 𝑒⋆ = 0̂ and 𝑒′ ≤ 𝑒⋆ if 𝑒 ∧ 𝑒′ = 0̂.

See Wikipedia article Pseudocomplement.

INPUT:

• element – an element of the lattice.

OUTPUT:

An element of the lattice or None if the pseudocomplement does not exist.

EXAMPLES:

The pseudocomplement’s pseudocomplement is not always the original element:

sage: L = LatticePoset({1: [2, 3], 2: [4], 3: [5], 4: [6], 5: [6]})
sage: L.pseudocomplement(2)
5
sage: L.pseudocomplement(5)
4

An element can have complements but no pseudocomplement, or vice versa:

sage: L = LatticePoset({0: [1, 2], 1: [3, 4, 5], 2: [5], 3: [6],
....: 4: [6], 5: [6]})
sage: L.complements(1), L.pseudocomplement(1)
([], 2)
sage: L.complements(2), L.pseudocomplement(2)
([3, 4], None)

See also:

is_pseudocomplemented()

1910 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Pseudocomplement

Combinatorics, Release 9.7

subjoinsemilattice(elms)
Return the smallest join-subsemilattice containing elements on the given list.

INPUT:

• elms – a list of elements of the lattice.

EXAMPLES:

sage: L = posets.DivisorLattice(1000)
sage: L_ = L.subjoinsemilattice([2, 25, 125]); L_
Finite join-semilattice containing 5 elements
sage: sorted(L_.list())
[2, 25, 50, 125, 250]

See also:

• Dual function: submeetsemilattice()

submeetsemilattice(elms)
Return the smallest meet-subsemilattice containing elements on the given list.

INPUT:

• elms – a list of elements of the lattice.

EXAMPLES:

sage: L = posets.DivisorLattice(1000)
sage: L_ = L.submeetsemilattice([200, 250, 125]); L_
Finite meet-semilattice containing 5 elements
sage: L_.list()
[25, 50, 200, 125, 250]

See also:

• Dual function: subjoinsemilattice()

sage.combinat.posets.lattices.JoinSemilattice(data=None, *args, **options)
Construct a join semi-lattice from various forms of input data.

INPUT:

• data, *args, **options – data and options that will be passed down to Poset() to construct a poset that
is also a join semilattice

See also:

Poset(), MeetSemilattice(), LatticePoset()

EXAMPLES:

Using data that defines a poset:

sage: JoinSemilattice([[1,2],[3],[3]])
Finite join-semilattice containing 3 elements

sage: JoinSemilattice([[1,2],[3],[3]], cover_relations = True)
Finite join-semilattice containing 3 elements

Using a previously constructed poset:

5.1. Comprehensive Module List 1911

Combinatorics, Release 9.7

sage: P = Poset([[1,2],[3],[3]])
sage: J = JoinSemilattice(P); J
Finite join-semilattice containing 3 elements
sage: type(J)
<class 'sage.combinat.posets.lattices.FiniteJoinSemilattice_with_category'>

If the data is not a lattice, then an error is raised:

sage: JoinSemilattice({'a': ['b', 'c'], 'b': ['d', 'e'],
....: 'c': ['d', 'e'], 'd': ['f'], 'e': ['f']})
Traceback (most recent call last):
...
LatticeError: no join for b and c

sage.combinat.posets.lattices.LatticePoset(data=None, *args, **options)
Construct a lattice from various forms of input data.

INPUT:

• data, *args, **options – data and options that will be passed down to Poset() to construct a poset that
is also a lattice.

OUTPUT:

An instance of FiniteLatticePoset.

See also:

Posets, FiniteLatticePosets, JoinSemiLattice(), MeetSemiLattice()

EXAMPLES:

Using data that defines a poset:

sage: LatticePoset([[1,2],[3],[3]])
Finite lattice containing 3 elements

sage: LatticePoset([[1,2],[3],[3]], cover_relations = True)
Finite lattice containing 3 elements

Using a previously constructed poset:

sage: P = Poset([[1,2],[3],[3]])
sage: L = LatticePoset(P); L
Finite lattice containing 3 elements
sage: type(L)
<class 'sage.combinat.posets.lattices.FiniteLatticePoset_with_category'>

If the data is not a lattice, then an error is raised:

sage: elms = [1,2,3,4,5,6,7]
sage: rels = [[1,2],[3,4],[4,5],[2,5]]
sage: LatticePoset((elms, rels))
Traceback (most recent call last):
...
ValueError: not a meet-semilattice: no bottom element

Creating a facade lattice:

1912 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/finite_lattice_posets.html#sage.categories.finite_lattice_posets.FiniteLatticePosets

Combinatorics, Release 9.7

sage: L = LatticePoset([[1,2],[3],[3]], facade = True)
sage: L.category()
Category of facade finite enumerated lattice posets
sage: parent(L[0])
Integer Ring
sage: TestSuite(L).run(skip = ['_test_an_element']) # is_parent_of is not yet␣
→˓implemented

sage.combinat.posets.lattices.MeetSemilattice(data=None, *args, **options)
Construct a meet semi-lattice from various forms of input data.

INPUT:

• data, *args, **options – data and options that will be passed down to Poset() to construct a poset that
is also a meet semilattice.

See also:

Poset(), JoinSemilattice(), LatticePoset()

EXAMPLES:

Using data that defines a poset:

sage: MeetSemilattice([[1,2],[3],[3]])
Finite meet-semilattice containing 3 elements

sage: MeetSemilattice([[1,2],[3],[3]], cover_relations = True)
Finite meet-semilattice containing 3 elements

Using a previously constructed poset:

sage: P = Poset([[1,2],[3],[3]])
sage: L = MeetSemilattice(P); L
Finite meet-semilattice containing 3 elements
sage: type(L)
<class 'sage.combinat.posets.lattices.FiniteMeetSemilattice_with_category'>

If the data is not a lattice, then an error is raised:

sage: MeetSemilattice({'a': ['b', 'c'], 'b': ['d', 'e'],
....: 'c': ['d', 'e'], 'd': ['f'], 'e': ['f']})
Traceback (most recent call last):
...
LatticeError: no meet for e and d

5.1.180 Linear Extensions of Posets

This module defines two classes:

• LinearExtensionOfPoset

• LinearExtensionsOfPoset

• LinearExtensionsOfPosetWithHooks

• LinearExtensionsOfForest

5.1. Comprehensive Module List 1913

Combinatorics, Release 9.7

Classes and methods

class sage.combinat.posets.linear_extensions.LinearExtensionOfPoset
Bases: sage.structure.list_clone.ClonableArray

A linear extension of a finite poset 𝑃 of size 𝑛 is a total ordering 𝜋 := 𝜋0𝜋1 . . . 𝜋𝑛−1 of its elements such that
𝑖 < 𝑗 whenever 𝜋𝑖 < 𝜋𝑗 in the poset 𝑃 .

When the elements of 𝑃 are indexed by {1, 2, . . . , 𝑛}, 𝜋 denotes a permutation of the elements of 𝑃 in one-line
notation.

INPUT:

• linear_extension – a list of the elements of 𝑃

• poset – the underlying poset 𝑃

See also:

Poset, LinearExtensionsOfPoset

EXAMPLES:

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]]), linear_extension=True,␣
→˓facade=False)
sage: p = P.linear_extension([1,4,2,3]); p
[1, 4, 2, 3]
sage: p.parent()
The set of all linear extensions of Finite poset containing 4 elements with␣
→˓distinguished linear extension
sage: p[0], p[1], p[2], p[3]
(1, 4, 2, 3)

Following Schützenberger and later Haiman and Malvenuto-Reutenauer, Stanley [Stan2009] defined a promotion
and evacuation operator on any finite poset 𝑃 using operators 𝜏𝑖 on the linear extensions of 𝑃 :

sage: p.promotion()
[1, 2, 3, 4]
sage: Q = p.promotion().to_poset()
sage: Q.cover_relations()
[[1, 3], [1, 4], [2, 3]]
sage: Q == P
True

sage: p.promotion(3)
[1, 4, 2, 3]
sage: Q = p.promotion(3).to_poset()
sage: Q == P
False
sage: Q.cover_relations()
[[1, 2], [1, 4], [3, 4]]

check()
Checks whether self is indeed a linear extension of the underlying poset.

evacuation()
Compute evacuation on the linear extension of a poset.

1914 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

Evacuation on a linear extension 𝜋 of length 𝑛 is defined as 𝜋(𝜏1 · · · 𝜏𝑛−1)(𝜏1 · · · 𝜏𝑛−2) · · · (𝜏1). For more
details see [Stan2009].

See also:

tau(), promotion()

EXAMPLES:

sage: P = Poset(([1,2,3,4,5,6,7], [[1,2],[1,4],[2,3],[2,5],[3,6],[4,7],[5,6]]))
sage: p = P.linear_extension([1,2,3,4,5,6,7])
sage: p.evacuation()
[1, 4, 2, 3, 7, 5, 6]
sage: p.evacuation().evacuation() == p
True

is_greedy()
Return True if the linear extension is greedy.

A linear extension [𝑒1, 𝑒2, . . . , 𝑒𝑛] is greedy if for every 𝑖 either 𝑒𝑖+1 covers 𝑒𝑖 or all upper covers of 𝑒𝑖 have
at least one lower cover that is not in [𝑒1, 𝑒2, . . . , 𝑒𝑖].

Informally said a linear extension is greedy if it “always goes up when possible” and so has no unnecessary
jumps.

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: for l in P.linear_extensions():
....: if not l.is_greedy():
....: print(l)
[0, 2, 1, 3, 4]

jump_count()
Return the number of jumps in the linear extension.

A jump in a linear extension [𝑒1, 𝑒2, . . . , 𝑒𝑛] is a pair (𝑒𝑖, 𝑒𝑖+1) such that 𝑒𝑖+1 does not cover 𝑒𝑖.

See also:

• sage.combinat.posets.posets.FinitePoset.jump_number()

EXAMPLES:

sage: B3 = posets.BooleanLattice(3)
sage: l1 = B3.linear_extension((0, 1, 2, 3, 4, 5, 6, 7))
sage: l1.jump_count()
3
sage: l2 = B3.linear_extension((0, 1, 2, 4, 3, 5, 6, 7))
sage: l2.jump_count()
5

poset()
Return the underlying original poset.

EXAMPLES:

5.1. Comprehensive Module List 1915

Combinatorics, Release 9.7

sage: P = Poset(([1,2,3,4], [[1,2],[2,3],[1,4]]))
sage: p = P.linear_extension([1,2,4,3])
sage: p.poset()
Finite poset containing 4 elements

promotion(i=1)
Compute the (generalized) promotion on the linear extension of a poset.

INPUT:

• i – (default: 1) an integer between 1 and 𝑛− 1, where 𝑛 is the cardinality of the poset

The 𝑖-th generalized promotion operator 𝜕𝑖 on a linear extension 𝜋 is defined as 𝜋𝜏𝑖𝜏𝑖+1 · · · 𝜏𝑛−1, where 𝑛
is the size of the linear extension (or size of the underlying poset).

For more details see [Stan2009].

See also:

tau(), evacuation()

EXAMPLES:

sage: P = Poset(([1,2,3,4,5,6,7], [[1,2],[1,4],[2,3],[2,5],[3,6],[4,7],[5,6]]))
sage: p = P.linear_extension([1,2,3,4,5,6,7])
sage: q = p.promotion(4); q
[1, 2, 3, 5, 6, 4, 7]
sage: p.to_poset() == q.to_poset()
False
sage: p.to_poset().is_isomorphic(q.to_poset())
True

tau(i)
Return the operator 𝜏𝑖 on linear extensions self of a poset.

INPUT:

• 𝑖 – an integer between 1 and 𝑛− 1, where 𝑛 is the cardinality of the poset.

The operator 𝜏𝑖 on a linear extension 𝜋 of a poset 𝑃 interchanges positions 𝑖 and 𝑖+ 1 if the result is again
a linear extension of 𝑃 , and otherwise acts trivially. For more details, see [Stan2009].

EXAMPLES:

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]]), linear_extension=True)
sage: L = P.linear_extensions()
sage: l = L.an_element(); l
[1, 2, 3, 4]
sage: l.tau(1)
[2, 1, 3, 4]
sage: for p in L:
....: for i in range(1,4):
....: print("{} {} {}".format(i, p, p.tau(i)))
1 [1, 2, 3, 4] [2, 1, 3, 4]
2 [1, 2, 3, 4] [1, 2, 3, 4]
3 [1, 2, 3, 4] [1, 2, 4, 3]
1 [2, 1, 3, 4] [1, 2, 3, 4]
2 [2, 1, 3, 4] [2, 1, 3, 4]

(continues on next page)

1916 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

3 [2, 1, 3, 4] [2, 1, 4, 3]
1 [2, 1, 4, 3] [1, 2, 4, 3]
2 [2, 1, 4, 3] [2, 1, 4, 3]
3 [2, 1, 4, 3] [2, 1, 3, 4]
1 [1, 4, 2, 3] [1, 4, 2, 3]
2 [1, 4, 2, 3] [1, 2, 4, 3]
3 [1, 4, 2, 3] [1, 4, 2, 3]
1 [1, 2, 4, 3] [2, 1, 4, 3]
2 [1, 2, 4, 3] [1, 4, 2, 3]
3 [1, 2, 4, 3] [1, 2, 3, 4]

to_poset()
Return the poset associated to the linear extension self.

This method returns the poset obtained from the original poset 𝑃 by relabelling the 𝑖-th element of self
to the 𝑖-th element of the original poset, while keeping the linear extension of the original poset.

For a poset with default linear extension 1, . . . , 𝑛, self can be interpreted as a permutation, and the rela-
belling is done according to the inverse of this permutation.

EXAMPLES:

sage: P = Poset(([1,2,3,4], [[1,2],[1,3],[3,4]]), linear_extension=True,␣
→˓facade=False)
sage: p = P.linear_extension([1,3,4,2])
sage: Q = p.to_poset(); Q
Finite poset containing 4 elements with distinguished linear extension
sage: P == Q
False

The default linear extension remains the same:

sage: list(P)
[1, 2, 3, 4]
sage: list(Q)
[1, 2, 3, 4]

But the relabelling can be seen on cover relations:

sage: P.cover_relations()
[[1, 2], [1, 3], [3, 4]]
sage: Q.cover_relations()
[[1, 2], [1, 4], [2, 3]]

sage: p = P.linear_extension([1,2,3,4])
sage: Q = p.to_poset()
sage: P == Q
True

class sage.combinat.posets.linear_extensions.LinearExtensionsOfForest(poset, facade)
Bases: sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset

Linear extensions such that the poset is a forest.

cardinality()
Use Atkinson’s algorithm to compute the number of linear extensions.

5.1. Comprehensive Module List 1917

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.posets.forest import ForestPoset
sage: from sage.combinat.posets.poset_examples import Posets
sage: P = Poset({0: [2], 1: [2], 2: [3, 4], 3: [], 4: []})
sage: P.linear_extensions().cardinality()
4

sage: Q = Poset({0: [1], 1: [2, 3], 2: [], 3: [], 4: [5, 6], 5: [], 6: []})
sage: Q.linear_extensions().cardinality()
140

class sage.combinat.posets.linear_extensions.LinearExtensionsOfMobile(poset, facade)
Bases: sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset

Linear extensions for a mobile poset.

cardinality()
Return the number of linear extensions by using the determinant formula for counting linear extensions of
mobiles.

EXAMPLES:

sage: from sage.combinat.posets.mobile import MobilePoset
sage: M = MobilePoset(DiGraph([[0,1,2,3,4,5,6,7,8], [(1,0),(3,0),(2,1),(2,3),(4,
....: 3), (5,4),(5,6),(7,4),(7,8)]]))
sage: M.linear_extensions().cardinality()
1098

sage: M1 = posets.RibbonPoset(6, [1,3])
sage: M1.linear_extensions().cardinality()
61

sage: P = posets.MobilePoset(posets.RibbonPoset(7, [1,3]), {1:
....: [posets.YoungDiagramPoset([3, 2], dual=True)], 3: [posets.
→˓DoubleTailedDiamond(6)]},
....: anchor=(4, 2, posets.ChainPoset(6)))
sage: P.linear_extensions().cardinality()
361628701868606400

class sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset(poset, facade)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The set of all linear extensions of a finite poset

INPUT:

• poset – a poset 𝑃 of size 𝑛

• facade – a boolean (default: False)

See also:

• sage.combinat.posets.posets.FinitePoset.linear_extensions()

EXAMPLES:

1918 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: elms = [1,2,3,4]
sage: rels = [[1,3],[1,4],[2,3]]
sage: P = Poset((elms, rels), linear_extension=True)
sage: L = P.linear_extensions(); L
The set of all linear extensions of Finite poset containing 4 elements with␣
→˓distinguished linear extension
sage: L.cardinality()
5
sage: L.list()
[[1, 2, 3, 4], [2, 1, 3, 4], [2, 1, 4, 3], [1, 4, 2, 3], [1, 2, 4, 3]]
sage: L.an_element()
[1, 2, 3, 4]
sage: L.poset()
Finite poset containing 4 elements with distinguished linear extension

Element
alias of LinearExtensionOfPoset

cardinality()
Return the number of linear extensions.

EXAMPLES:

sage: N = Poset({0: [2, 3], 1: [3]})
sage: N.linear_extensions().cardinality()
5

markov_chain_digraph(action='promotion', labeling='identity')
Return the digraph of the action of generalized promotion or tau on self

INPUT:

• action – ‘promotion’ or ‘tau’ (default: ‘promotion’)

• labeling – ‘identity’ or ‘source’ (default: ‘identity’)

Todo:

• generalize this feature by accepting a family of operators as input

• move up in some appropriate category

This method creates a graph with vertices being the linear extensions of a given finite poset and an edge
from 𝜋 to 𝜋′ if 𝜋′ = 𝜋𝜕𝑖 where 𝜕𝑖 is the promotion operator (see promotion()) if action is set to
promotion and 𝜏𝑖 (see tau()) if action is set to tau. The label of the edge is 𝑖 (resp. 𝜋𝑖) if labeling
is set to identity (resp. source).

EXAMPLES:

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]]), linear_extension = True)
sage: L = P.linear_extensions()
sage: G = L.markov_chain_digraph(); G
Looped multi-digraph on 5 vertices
sage: G.vertices(sort=True, key=repr)
[[1, 2, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [2, 1, 3, 4], [2, 1, 4, 3]]
sage: G.edges(sort=True, key=repr)

(continues on next page)

5.1. Comprehensive Module List 1919

Combinatorics, Release 9.7

(continued from previous page)

[([1, 2, 3, 4], [1, 2, 3, 4], 4), ([1, 2, 3, 4], [1, 2, 4, 3], 2), ([1, 2, 3,␣
→˓4], [1, 2, 4, 3], 3),
([1, 2, 3, 4], [2, 1, 4, 3], 1), ([1, 2, 4, 3], [1, 2, 3, 4], 3), ([1, 2, 4, 3],
→˓ [1, 2, 4, 3], 4),
([1, 2, 4, 3], [1, 4, 2, 3], 2), ([1, 2, 4, 3], [2, 1, 3, 4], 1), ([1, 4, 2, 3],
→˓ [1, 2, 3, 4], 1),
([1, 4, 2, 3], [1, 2, 3, 4], 2), ([1, 4, 2, 3], [1, 4, 2, 3], 3), ([1, 4, 2, 3],
→˓ [1, 4, 2, 3], 4),
([2, 1, 3, 4], [1, 2, 4, 3], 1), ([2, 1, 3, 4], [2, 1, 3, 4], 4), ([2, 1, 3, 4],
→˓ [2, 1, 4, 3], 2),
([2, 1, 3, 4], [2, 1, 4, 3], 3), ([2, 1, 4, 3], [1, 4, 2, 3], 1), ([2, 1, 4, 3],
→˓ [2, 1, 3, 4], 2),
([2, 1, 4, 3], [2, 1, 3, 4], 3), ([2, 1, 4, 3], [2, 1, 4, 3], 4)]

sage: G = L.markov_chain_digraph(labeling = 'source')
sage: G.vertices(sort=True, key=repr)
[[1, 2, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [2, 1, 3, 4], [2, 1, 4, 3]]
sage: G.edges(sort=True, key=repr)
[([1, 2, 3, 4], [1, 2, 3, 4], 4), ([1, 2, 3, 4], [1, 2, 4, 3], 2), ([1, 2, 3,␣
→˓4], [1, 2, 4, 3], 3),
([1, 2, 3, 4], [2, 1, 4, 3], 1), ([1, 2, 4, 3], [1, 2, 3, 4], 4), ([1, 2, 4, 3],
→˓ [1, 2, 4, 3], 3),
([1, 2, 4, 3], [1, 4, 2, 3], 2), ([1, 2, 4, 3], [2, 1, 3, 4], 1), ([1, 4, 2, 3],
→˓ [1, 2, 3, 4], 1),
([1, 4, 2, 3], [1, 2, 3, 4], 4), ([1, 4, 2, 3], [1, 4, 2, 3], 2), ([1, 4, 2, 3],
→˓ [1, 4, 2, 3], 3),
([2, 1, 3, 4], [1, 2, 4, 3], 2), ([2, 1, 3, 4], [2, 1, 3, 4], 4), ([2, 1, 3, 4],
→˓ [2, 1, 4, 3], 1),
([2, 1, 3, 4], [2, 1, 4, 3], 3), ([2, 1, 4, 3], [1, 4, 2, 3], 2), ([2, 1, 4, 3],
→˓ [2, 1, 3, 4], 1),
([2, 1, 4, 3], [2, 1, 3, 4], 4), ([2, 1, 4, 3], [2, 1, 4, 3], 3)]

The edges of the graph are by default colored using blue for edge 1, red for edge 2, green for edge 3, and
yellow for edge 4:

sage: view(G) # optional - dot2tex graphviz, not tested (opens external window)

Alternatively, one may get the graph of the action of the tau operator:

sage: G = L.markov_chain_digraph(action='tau'); G
Looped multi-digraph on 5 vertices
sage: G.vertices(sort=True, key=repr)
[[1, 2, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [2, 1, 3, 4], [2, 1, 4, 3]]
sage: G.edges(sort=True, key=repr)
[([1, 2, 3, 4], [1, 2, 3, 4], 2), ([1, 2, 3, 4], [1, 2, 4, 3], 3), ([1, 2, 3,␣
→˓4], [2, 1, 3, 4], 1),
([1, 2, 4, 3], [1, 2, 3, 4], 3), ([1, 2, 4, 3], [1, 4, 2, 3], 2), ([1, 2, 4, 3],
→˓ [2, 1, 4, 3], 1),
([1, 4, 2, 3], [1, 2, 4, 3], 2), ([1, 4, 2, 3], [1, 4, 2, 3], 1), ([1, 4, 2, 3],
→˓ [1, 4, 2, 3], 3),
([2, 1, 3, 4], [1, 2, 3, 4], 1), ([2, 1, 3, 4], [2, 1, 3, 4], 2), ([2, 1, 3, 4],
→˓ [2, 1, 4, 3], 3),

(continues on next page)

1920 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

([2, 1, 4, 3], [1, 2, 4, 3], 1), ([2, 1, 4, 3], [2, 1, 3, 4], 3), ([2, 1, 4, 3],
→˓ [2, 1, 4, 3], 2)]
sage: view(G) # optional - dot2tex graphviz, not tested (opens external window)

See also:

markov_chain_transition_matrix(), promotion(), tau()

markov_chain_transition_matrix(action='promotion', labeling='identity')
Return the transition matrix of the Markov chain for the action of generalized promotion or tau on self

INPUT:

• action – ‘promotion’ or ‘tau’ (default: ‘promotion’)

• labeling – ‘identity’ or ‘source’ (default: ‘identity’)

This method yields the transition matrix of the Markov chain defined by the action of the generalized
promotion operator 𝜕𝑖 (resp. 𝜏𝑖) on the set of linear extensions of a finite poset. Here the transition from
the linear extension 𝜋 to 𝜋′, where 𝜋′ = 𝜋𝜕𝑖 (resp. 𝜋′ = 𝜋𝜏𝑖) is counted with weight 𝑥𝑖 (resp. 𝑥𝜋𝑖

if
labeling is set to source).

EXAMPLES:

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]]), linear_extension = True)
sage: L = P.linear_extensions()
sage: L.markov_chain_transition_matrix()
[-x0 - x1 - x2 x2 x0 + x1 0 0]
[x1 + x2 -x0 - x1 - x2 0 x0 0]
[0 x1 -x0 - x1 0 x0]
[0 x0 0 -x0 - x1 - x2 x1 + x2]
[x0 0 0 x1 + x2 -x0 - x1 - x2]

sage: L.markov_chain_transition_matrix(labeling = 'source')
[-x0 - x1 - x2 x3 x0 + x3 0 0]
[x1 + x2 -x0 - x1 - x3 0 x1 0]
[0 x1 -x0 - x3 0 x1]
[0 x0 0 -x0 - x1 - x2 x0 + x3]
[x0 0 0 x0 + x2 -x0 - x1 - x3]

sage: L.markov_chain_transition_matrix(action = 'tau')
[-x0 - x2 x2 0 x0 0]
[x2 -x0 - x1 - x2 x1 0 x0]
[0 x1 -x1 0 0]
[x0 0 0 -x0 - x2 x2]
[0 x0 0 x2 -x0 - x2]

sage: L.markov_chain_transition_matrix(action = 'tau', labeling = 'source')
[-x0 - x2 x3 0 x1 0]
[x2 -x0 - x1 - x3 x3 0 x1]
[0 x1 -x3 0 0]
[x0 0 0 -x1 - x2 x3]
[0 x0 0 x2 -x1 - x3]

See also:

markov_chain_digraph(), promotion(), tau()

5.1. Comprehensive Module List 1921

Combinatorics, Release 9.7

poset()
Return the underlying original poset.

EXAMPLES:

sage: P = Poset(([1,2,3,4], [[1,2],[2,3],[1,4]]))
sage: L = P.linear_extensions()
sage: L.poset()
Finite poset containing 4 elements

class sage.combinat.posets.linear_extensions.LinearExtensionsOfPosetWithHooks(poset, facade)
Bases: sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset

Linear extensions such that the poset has well-defined hook lengths (i.e., d-complete).

cardinality()
Count the number of linear extensions using a hook-length formula.

EXAMPLES:

sage: from sage.combinat.posets.poset_examples import Posets
sage: P = Posets.YoungDiagramPoset(Partition([3,2]), dual=True)
sage: P.linear_extensions().cardinality()
5

5.1.181 Möbius Algebras

class sage.combinat.posets.moebius_algebra.BasisAbstract(R, basis_keys=None,
element_class=None, category=None,
prefix=None, names=None, **kwds)

Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

Abstract base class for a basis.

class sage.combinat.posets.moebius_algebra.MoebiusAlgebra(R, L)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

The Möbius algebra of a lattice.

Let 𝐿 be a lattice. The Möbius algebra 𝑀𝐿 was originally constructed by Solomon [Solomon67] and has a
natural basis {𝐸𝑥 | 𝑥 ∈ 𝐿} with multiplication given by 𝐸𝑥 · 𝐸𝑦 = 𝐸𝑥∨𝑦 . Moreover this has a basis given by
orthogonal idempotents {𝐼𝑥 | 𝑥 ∈ 𝐿} (so 𝐼𝑥𝐼𝑦 = 𝛿𝑥𝑦𝐼𝑥 where 𝛿 is the Kronecker delta) related to the natural
basis by

𝐼𝑥 =
∑︁
𝑥≤𝑦

𝜇𝐿(𝑥, 𝑦)𝐸𝑦,

where 𝜇𝐿 is the Möbius function of 𝐿.

Note: We use the join ∨ for our multiplication, whereas [Greene73] and [Etienne98] define the Möbius algebra
using the meet ∧. This is done for compatibility with QuantumMoebiusAlgebra.

REFERENCES:

1922 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

class E(M, prefix='E')
Bases: sage.combinat.posets.moebius_algebra.BasisAbstract

The natural basis of a Möbius algebra.

Let 𝐸𝑥 and 𝐸𝑦 be basis elements of 𝑀𝐿 for some lattice 𝐿. Multiplication is given by 𝐸𝑥𝐸𝑦 = 𝐸𝑥∨𝑦 .

one()
Return the element 1 of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: E = L.moebius_algebra(QQ).E()
sage: E.one()
E[0]

product_on_basis(x, y)
Return the product of basis elements indexed by x and y.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: E = L.moebius_algebra(QQ).E()
sage: E.product_on_basis(5, 14)
E[15]
sage: E.product_on_basis(2, 8)
E[10]

class I(M, prefix='I')
Bases: sage.combinat.posets.moebius_algebra.BasisAbstract

The (orthogonal) idempotent basis of a Möbius algebra.

Let 𝐼𝑥 and 𝐼𝑦 be basis elements of 𝑀𝐿 for some lattice 𝐿. Multiplication is given by 𝐼𝑥𝐼𝑦 = 𝛿𝑥𝑦𝐼𝑥 where
𝛿𝑥𝑦 is the Kronecker delta.

one()
Return the element 1 of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: I = L.moebius_algebra(QQ).I()
sage: I.one()
I[0] + I[1] + I[2] + I[3] + I[4] + I[5] + I[6] + I[7] + I[8]
+ I[9] + I[10] + I[11] + I[12] + I[13] + I[14] + I[15]

product_on_basis(x, y)
Return the product of basis elements indexed by x and y.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: I = L.moebius_algebra(QQ).I()
sage: I.product_on_basis(5, 14)
0
sage: I.product_on_basis(2, 2)
I[2]

5.1. Comprehensive Module List 1923

Combinatorics, Release 9.7

a_realization()
Return a particular realization of self (the 𝐵-basis).

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: M = L.moebius_algebra(QQ)
sage: M.a_realization()
Moebius algebra of Finite lattice containing 16 elements
over Rational Field in the natural basis

idempotent
alias of MoebiusAlgebra.I

lattice()
Return the defining lattice of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: M = L.moebius_algebra(QQ)
sage: M.lattice()
Finite lattice containing 16 elements
sage: M.lattice() == L
True

natural
alias of MoebiusAlgebra.E

class sage.combinat.posets.moebius_algebra.MoebiusAlgebraBases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of bases of a Möbius algebra.

INPUT:

• base – a Möbius algebra

class ElementMethods
Bases: object

class ParentMethods
Bases: object

one()
Return the element 1 of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: C = L.quantum_moebius_algebra().C()
sage: all(C.one() * b == b for b in C.basis())
True

product_on_basis(x, y)
Return the product of basis elements indexed by x and y.

EXAMPLES:

1924 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

sage: L = posets.BooleanLattice(4)
sage: C = L.quantum_moebius_algebra().C()
sage: C.product_on_basis(5, 14)
q^3*C[15]
sage: C.product_on_basis(2, 8)
q^4*C[10]

super_categories()
The super categories of self.

EXAMPLES:

sage: from sage.combinat.posets.moebius_algebra import MoebiusAlgebraBases
sage: M = posets.BooleanLattice(4).moebius_algebra(QQ)
sage: bases = MoebiusAlgebraBases(M)
sage: bases.super_categories()
[Category of finite dimensional commutative algebras with basis over Rational␣
→˓Field,
Category of realizations of Moebius algebra of Finite lattice

containing 16 elements over Rational Field]

class sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra(L, q=None)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

The quantum Möbius algebra of a lattice.

Let 𝐿 be a lattice, and we define the quantum Möbius algebra 𝑀𝐿(𝑞) as the algebra with basis {𝐸𝑥 | 𝑥 ∈ 𝐿}
with multiplication given by

𝐸𝑥𝐸𝑦 =
∑︁

𝑧≥𝑎≥𝑥∨𝑦

𝜇𝐿(𝑎, 𝑧)𝑞crk 𝑎𝐸𝑧,

where 𝜇𝐿 is the Möbius function of 𝐿 and crk is the corank function (i.e., crk 𝑎 = rank𝐿− rank a). At 𝑞 = 1,
this reduces to the multiplication formula originally given by Solomon.

class C(M, prefix='C')
Bases: sage.combinat.posets.moebius_algebra.BasisAbstract

The characteristic basis of a quantum Möbius algebra.

The characteristic basis {𝐶𝑥 | 𝑥 ∈ 𝐿} of 𝑀𝐿 for some lattice 𝐿 is defined by

𝐶𝑥 =
∑︁
𝑎≥𝑥

𝑃 (𝐹 𝑥; 𝑞)𝐸𝑎,

where𝐹 𝑥 = {𝑦 ∈ 𝐿 | 𝑦 ≥ 𝑥} is the principal order filter of 𝑥 and 𝑃 (𝐹 𝑥; 𝑞) is the characteristic polynomial
of the (sub)poset 𝐹 𝑥.

class E(M, prefix='E')
Bases: sage.combinat.posets.moebius_algebra.BasisAbstract

The natural basis of a quantum Möbius algebra.

Let 𝐸𝑥 and 𝐸𝑦 be basis elements of 𝑀𝐿 for some lattice 𝐿. Multiplication is given by

𝐸𝑥𝐸𝑦 =
∑︁

𝑧≥𝑎≥𝑥∨𝑦

𝜇𝐿(𝑎, 𝑧)𝑞crk 𝑎𝐸𝑧,

where 𝜇𝐿 is the Möbius function of 𝐿 and crk is the corank function (i.e., crk 𝑎 = rank𝐿− rank a).

5.1. Comprehensive Module List 1925

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

one()
Return the element 1 of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: E = L.quantum_moebius_algebra().E()
sage: all(E.one() * b == b for b in E.basis())
True

product_on_basis(x, y)
Return the product of basis elements indexed by x and y.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: E = L.quantum_moebius_algebra().E()
sage: E.product_on_basis(5, 14)
E[15]
sage: E.product_on_basis(2, 8)
q^2*E[10] + (q-q^2)*E[11] + (q-q^2)*E[14] + (1-2*q+q^2)*E[15]

class KL(M, prefix='KL')
Bases: sage.combinat.posets.moebius_algebra.BasisAbstract

The Kazhdan-Lusztig basis of a quantum Möbius algebra.

The Kazhdan-Lusztig basis {𝐵𝑥 | 𝑥 ∈ 𝐿} of 𝑀𝐿 for some lattice 𝐿 is defined by

𝐵𝑥 =
∑︁
𝑦≥𝑥

𝑃𝑥,𝑦(𝑞)𝐸𝑎,

where 𝑃𝑥,𝑦(𝑞) is the Kazhdan-Lusztig polynomial of 𝐿, following the definition given in [EPW14].

EXAMPLES:

We construct some examples of Proposition 4.5 of [EPW14]:

sage: M = posets.BooleanLattice(4).quantum_moebius_algebra()
sage: KL = M.KL()
sage: KL[4] * KL[5]
(q^2+q^3)*KL[5] + (q+2*q^2+q^3)*KL[7] + (q+2*q^2+q^3)*KL[13]
+ (1+3*q+3*q^2+q^3)*KL[15]
sage: KL[4] * KL[15]
(1+3*q+3*q^2+q^3)*KL[15]
sage: KL[4] * KL[10]
(q+3*q^2+3*q^3+q^4)*KL[14] + (1+4*q+6*q^2+4*q^3+q^4)*KL[15]

a_realization()
Return a particular realization of self (the 𝐵-basis).

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: M = L.quantum_moebius_algebra()
sage: M.a_realization()
Quantum Moebius algebra of Finite lattice containing 16 elements
with q=q over Univariate Laurent Polynomial Ring in q
over Integer Ring in the natural basis

1926 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

characteristic_basis
alias of QuantumMoebiusAlgebra.C

kazhdan_lusztig
alias of QuantumMoebiusAlgebra.KL

lattice()
Return the defining lattice of self.

EXAMPLES:

sage: L = posets.BooleanLattice(4)
sage: M = L.quantum_moebius_algebra()
sage: M.lattice()
Finite lattice containing 16 elements
sage: M.lattice() == L
True

natural
alias of QuantumMoebiusAlgebra.E

5.1.182 Catalog of posets and lattices

Some common posets can be accessed through the posets.<tab> object:

sage: posets.PentagonPoset()
Finite lattice containing 5 elements

Moreover, the set of all posets of order 𝑛 is represented by Posets(n):

sage: Posets(5)
Posets containing 5 elements

The infinite set of all posets can be used to find minimal examples:

sage: for P in Posets():
....: if not P.is_series_parallel():
....: break
sage: P
Finite poset containing 4 elements

Catalog of common posets:

AntichainPoset() Return an antichain on 𝑛 elements.
BooleanLattice() Return the Boolean lattice on 2𝑛 elements.
ChainPoset() Return a chain on 𝑛 elements.
Crown() Return the crown poset on 2𝑛 elements.
DexterSemilattice() Return the Dexter semilattice.
DiamondPoset() Return the lattice of rank two on 𝑛 elements.
DivisorLattice() Return the divisor lattice of an integer.
DoubleTailedDiamond() Return the double tailed diamond poset on 2𝑛+ 2 elements.
IntegerCompositions() Return the poset of integer compositions of 𝑛.
IntegerPartitions() Return the poset of integer partitions of n.
IntegerPartitionsDominanceOrder()Return the lattice of integer partitions on the integer 𝑛 ordered by dominance.

continues on next page

5.1. Comprehensive Module List 1927

Combinatorics, Release 9.7

Table 5 – continued from previous page
MobilePoset() Return the mobile poset formed by the 𝑟𝑖𝑏𝑏𝑜𝑛 with ℎ𝑎𝑛𝑔𝑒𝑟𝑠 below and an

𝑎𝑛𝑐ℎ𝑜𝑟 above.
NoncrossingPartitions() Return the poset of noncrossing partitions of a finite Coxeter group W.
PentagonPoset() Return the Pentagon poset.
PermutationPattern() Return the Permutation pattern poset.
PermutationPatternInterval()Return an interval in the Permutation pattern poset.
PermutationPatternOccurrenceInterval()Return the occurrence poset for a pair of comparable elements in the Permutation

pattern poset.
PowerPoset() Return a power poset.
ProductOfChains() Return a product of chain posets.
RandomLattice() Return a random lattice on 𝑛 elements.
RandomPoset() Return a random poset on 𝑛 elements.
RibbonPoset() Return a ribbon on 𝑛 elements with descents at 𝑑𝑒𝑠𝑐𝑒𝑛𝑡𝑠.
RestrictedIntegerPartitions()Return the poset of integer partitions of 𝑛, ordered by restricted refinement.
SetPartitions() Return the poset of set partitions of the set {1, . . . , 𝑛}.
ShardPoset() Return the shard intersection order.
SSTPoset() Return the poset on semistandard tableaux of shape 𝑠 and largest entry 𝑓 that is

ordered by componentwise comparison.
StandardExample() Return the standard example of a poset with dimension 𝑛.
SymmetricGroupAbsoluteOrderPoset()The poset of permutations with respect to absolute order.
SymmetricGroupBruhatIntervalPoset()The poset of permutations with respect to Bruhat order.
SymmetricGroupBruhatOrderPoset()The poset of permutations with respect to Bruhat order.
SymmetricGroupWeakOrderPoset()The poset of permutations of {1, 2, . . . , 𝑛} with respect to the weak order.
TamariLattice() Return the Tamari lattice.
TetrahedralPoset() Return the Tetrahedral poset with 𝑛− 1 layers based on the input colors.
UpDownPoset() Return the up-down poset on 𝑛 elements.
YoungDiagramPoset() Return the poset of cells in the Young diagram of a partition.
YoungsLattice() Return Young’s Lattice up to rank 𝑛.
YoungsLatticePrincipalOrderIdeal()Return the principal order ideal of the partition 𝑙𝑎𝑚 in Young’s Lattice.
YoungFibonacci() Return the Young-Fibonacci lattice up to rank 𝑛.

Other available posets:

face_lattice() Return the face lattice of a polyhedron.
face_lattice() Return the face lattice of a combinatorial polyhedron.

Constructions

class sage.combinat.posets.poset_examples.Posets
Bases: object

A collection of posets and lattices.

EXAMPLES:

sage: posets.BooleanLattice(3)
Finite lattice containing 8 elements
sage: posets.ChainPoset(3)
Finite lattice containing 3 elements
sage: posets.RandomPoset(17,.15)
Finite poset containing 17 elements

1928 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/base4.html#sage.geometry.polyhedron.base4.Polyhedron_base4.face_lattice
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/combinatorial_polyhedron/base.html#sage.geometry.polyhedron.combinatorial_polyhedron.base.CombinatorialPolyhedron.face_lattice

Combinatorics, Release 9.7

The category of all posets:

sage: Posets()
Category of posets

The enumerated set of all posets on 3 elements, up to an isomorphism:

sage: Posets(3)
Posets containing 3 elements

See also:

Posets, FinitePosets, Poset()

static AntichainPoset(n, facade=None)
Return an antichain (a poset with no comparable elements) containing 𝑛 elements.

INPUT:

• n (an integer) – number of elements

• facade (boolean) – whether to make the returned poset a facade poset (see sage.categories.
facade_sets); the default behaviour is the same as the default behaviour of the Poset() constructor

EXAMPLES:

sage: A = posets.AntichainPoset(6); A
Finite poset containing 6 elements

static BooleanLattice(n, facade=None, use_subsets=False)
Return the Boolean lattice containing 2𝑛 elements.

• n – integer; number of elements will be 2𝑛

• facade – boolean; whether to make the returned poset a facade poset (see sage.categories.
facade_sets); the default behaviour is the same as the default behaviour of the Poset() constructor

• use_subsets – boolean (default: False); if True, then label the elements by subsets of {1, 2, . . . , 𝑛};
otherwise label the elements by 0, 1, 2, . . . , 2𝑛 − 1

EXAMPLES:

sage: posets.BooleanLattice(5)
Finite lattice containing 32 elements

sage: sorted(posets.BooleanLattice(2))
[0, 1, 2, 3]
sage: sorted(posets.BooleanLattice(2, use_subsets=True), key=list)
[{}, {1}, {1, 2}, {2}]

static ChainPoset(n, facade=None)
Return a chain (a totally ordered poset) containing n elements.

• n (an integer) – number of elements.

• facade (boolean) – whether to make the returned poset a facade poset (see sage.categories.
facade_sets); the default behaviour is the same as the default behaviour of the Poset() constructor

EXAMPLES:

5.1. Comprehensive Module List 1929

../../../../../../../html/en/reference/categories/sage/categories/posets.html#sage.categories.posets.Posets
../../../../../../../html/en/reference/categories/sage/categories/finite_posets.html#sage.categories.finite_posets.FinitePosets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets

Combinatorics, Release 9.7

sage: C = posets.ChainPoset(6); C
Finite lattice containing 6 elements
sage: C.linear_extension()
[0, 1, 2, 3, 4, 5]

static CoxeterGroupAbsoluteOrderPoset(W, use_reduced_words=True)
Return the poset of elements of a Coxeter group with respect to absolute order.

INPUT:

• W – a Coxeter group

• use_reduced_words – boolean (default: True); if True, then the elements are labeled by their lexi-
cographically minimal reduced word

EXAMPLES:

sage: W = CoxeterGroup(['B', 3])
sage: posets.CoxeterGroupAbsoluteOrderPoset(W)
Finite poset containing 48 elements

sage: W = WeylGroup(['B', 2], prefix='s')
sage: posets.CoxeterGroupAbsoluteOrderPoset(W, False)
Finite poset containing 8 elements

static Crown(n, facade=None)
Return the crown poset of 2𝑛 elements.

In this poset every element 𝑖 for 0 ≤ 𝑖 ≤ 𝑛 − 1 is covered by elements 𝑖 + 𝑛 and 𝑖 + 𝑛 + 1, except that
𝑛− 1 is covered by 𝑛 and 𝑛+ 1.

INPUT:

• n – number of elements, an integer at least 2

• facade (boolean) – whether to make the returned poset a facade poset (see sage.categories.
facade_sets); the default behaviour is the same as the default behaviour of the Poset() constructor

EXAMPLES:

sage: posets.Crown(3)
Finite poset containing 6 elements

static DexterSemilattice(n)
Return the 𝑛-th Dexter meet-semilattice.

INPUT:

• n – a nonnegative integer (the index)

OUTPUT:

a finite meet-semilattice

The elements of the semilattice are Dyck paths in the (𝑛+ 1× 𝑛)-rectangle.

EXAMPLES:

sage: posets.DexterSemilattice(3)
Finite meet-semilattice containing 5 elements

(continues on next page)

1930 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets

Combinatorics, Release 9.7

(continued from previous page)

sage: P = posets.DexterSemilattice(4); P
Finite meet-semilattice containing 14 elements
sage: len(P.maximal_chains())
15
sage: len(P.maximal_elements())
4
sage: P.chain_polynomial()
q^5 + 19*q^4 + 47*q^3 + 42*q^2 + 14*q + 1

REFERENCES:

• [Cha18]

static DiamondPoset(n, facade=None)
Return the lattice of rank two containing n elements.

INPUT:

• n – number of elements, an integer at least 3

• facade (boolean) – whether to make the returned poset a facade poset (see sage.categories.
facade_sets); the default behaviour is the same as the default behaviour of the Poset() constructor

EXAMPLES:

sage: posets.DiamondPoset(7)
Finite lattice containing 7 elements

static DivisorLattice(n, facade=None)
Return the divisor lattice of an integer.

Elements of the lattice are divisors of 𝑛 and 𝑥 < 𝑦 in the lattice if 𝑥 divides 𝑦.

INPUT:

• n – an integer

• facade (boolean) – whether to make the returned poset a facade poset (see sage.categories.
facade_sets); the default behaviour is the same as the default behaviour of the Poset() constructor

EXAMPLES:

sage: P = posets.DivisorLattice(12)
sage: sorted(P.cover_relations())
[[1, 2], [1, 3], [2, 4], [2, 6], [3, 6], [4, 12], [6, 12]]

sage: P = posets.DivisorLattice(10, facade=False)
sage: P(2) < P(5)
False

static DoubleTailedDiamond(n)
Return a double-tailed diamond of 2𝑛+ 2 elements.

INPUT:

• n – a positive integer

EXAMPLES:

5.1. Comprehensive Module List 1931

../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets

Combinatorics, Release 9.7

sage: P = posets.DoubleTailedDiamond(2); P
Finite d-complete poset containing 6 elements
sage: P.cover_relations()
[[1, 2], [2, 3], [2, 4], [3, 5], [4, 5], [5, 6]]

static IntegerCompositions(n)
Return the poset of integer compositions of the integer n.

A composition of a positive integer 𝑛 is a list of positive integers that sum to 𝑛. The order is reverse
refinement: [𝑝1, 𝑝2, ..., 𝑝𝑙] < [𝑞1, 𝑞2, ..., 𝑞𝑚] if 𝑞 consists of an integer composition of 𝑝1, followed by an
integer composition of 𝑝2, and so on.

EXAMPLES:

sage: P = posets.IntegerCompositions(7); P
Finite poset containing 64 elements
sage: len(P.cover_relations())
192

static IntegerPartitions(n)
Return the poset of integer partitions on the integer n.

A partition of a positive integer 𝑛 is a non-increasing list of positive integers that sum to 𝑛. If 𝑝 and 𝑞 are
integer partitions of 𝑛, then 𝑝 covers 𝑞 if and only if 𝑞 is obtained from 𝑝 by joining two parts of 𝑝 (and
sorting, if necessary).

EXAMPLES:

sage: P = posets.IntegerPartitions(7); P
Finite poset containing 15 elements
sage: len(P.cover_relations())
28

static IntegerPartitionsDominanceOrder(n)
Return the lattice of integer partitions on the integer 𝑛 ordered by dominance.

That is, if 𝑝 = (𝑝1, . . . , 𝑝𝑖) and 𝑞 = (𝑞1, . . . , 𝑞𝑗) are integer partitions of 𝑛, then 𝑝 is greater than 𝑞 if and
only if 𝑝1 + · · ·+ 𝑝𝑘 > 𝑞1 + · · ·+ 𝑞𝑘 for all 𝑘.

INPUT:

• n – a positive integer

EXAMPLES:

sage: P = posets.IntegerPartitionsDominanceOrder(6); P
Finite lattice containing 11 elements
sage: P.cover_relations()
[[[1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1]],
[[2, 1, 1, 1, 1], [2, 2, 1, 1]],
[[2, 2, 1, 1], [2, 2, 2]],
[[2, 2, 1, 1], [3, 1, 1, 1]],
[[2, 2, 2], [3, 2, 1]],
[[3, 1, 1, 1], [3, 2, 1]],
[[3, 2, 1], [3, 3]],
[[3, 2, 1], [4, 1, 1]],
[[3, 3], [4, 2]],

(continues on next page)

1932 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[4, 1, 1], [4, 2]],
[[4, 2], [5, 1]],
[[5, 1], [6]]]

static MobilePoset(ribbon, hangers, anchor=None)
Return a mobile poset with the ribbon ribbon and with hanging d-complete posets specified in hangers
and a d-complete poset attached above, specified in anchor.

INPUT:

• ribbon – a finite poset that is a ribbon

• hangers – a dictionary mapping an element on the ribbon to a list of d-complete posets that it covers

• anchor – (optional) a tuple (ribbon_elmt, anchor_elmt, anchor_poset), where anchor_elmt
covers ribbon_elmt, and anchor_elmt is an acyclic element of anchor_poset

EXAMPLES:

sage: R = Posets.RibbonPoset(5, [1,2])
sage: H = Poset([[5, 6, 7], [(5, 6), (6,7)]])
sage: M = Posets.MobilePoset(R, {3: [H]})
sage: len(M.cover_relations())
7

sage: P = posets.MobilePoset(posets.RibbonPoset(7, [1,3]),
....: {1: [posets.YoungDiagramPoset([3, 2], dual=True)],
....: 3: [posets.DoubleTailedDiamond(6)]},
....: anchor=(4, 2, posets.ChainPoset(6)))
sage: len(P.cover_relations())
33

static NoncrossingPartitions(W)
Return the lattice of noncrossing partitions.

INPUT:

• W – a finite Coxeter group or a Weyl group

EXAMPLES:

sage: W = CoxeterGroup(['A', 3])
sage: posets.NoncrossingPartitions(W)
Finite lattice containing 14 elements

sage: W = WeylGroup(['B', 2], prefix='s')
sage: posets.NoncrossingPartitions(W)
Finite lattice containing 6 elements

static PentagonPoset(facade=None)
Return the Pentagon poset.

INPUT:

• facade (boolean) – whether to make the returned poset a facade poset (see sage.categories.
facade_sets); the default behaviour is the same as the default behaviour of the Poset() constructor

EXAMPLES:

5.1. Comprehensive Module List 1933

../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets

Combinatorics, Release 9.7

sage: P = posets.PentagonPoset(); P
Finite lattice containing 5 elements
sage: P.cover_relations()
[[0, 1], [0, 2], [1, 4], [2, 3], [3, 4]]

static PermutationPattern(n)
Return the poset of permutations under pattern containment up to rank n.

INPUT:

• n – a positive integer

A permutation 𝑢 = 𝑢1 · · ·𝑢𝑛 contains the pattern 𝑣 = 𝑣1 · · · 𝑣𝑚 if there is a (not necessarily consecutive)
subsequence of 𝑢 of length 𝑚 whose entries have the same relative order as 𝑣.

See Wikipedia article Permutation_pattern.

EXAMPLES:

sage: P4 = posets.PermutationPattern(4); P4
Finite poset containing 33 elements
sage: sorted(P4.lower_covers(Permutation([2,4,1,3])))
[[1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]]

See also:

has_pattern()

static PermutationPatternInterval(bottom, top)
Return the poset consisting of an interval in the poset of permutations under pattern containment between
bottom and top.

INPUT:

• bottom, top – permutations where top contains bottom as a pattern

A permutation 𝑢 = 𝑢1 · · ·𝑢𝑛 contains the pattern 𝑣 = 𝑣1 · · · 𝑣𝑚 if there is a (not necessarily consecutive)
subsequence of 𝑢 of length 𝑚 whose entries have the same relative order as 𝑣.

See Wikipedia article Permutation_pattern.

EXAMPLES:

sage: t = Permutation([2,3,1])
sage: b = Permutation([4,6,2,3,5,1])
sage: R = posets.PermutationPatternInterval(t, b); R
Finite poset containing 14 elements
sage: R.moebius_function(R.bottom(),R.top())
-4

See also:

has_pattern(), PermutationPattern()

static PermutationPatternOccurrenceInterval(bottom, top, pos)
Return the poset consisting of an interval in the poset of permutations under pattern containment between
bottom and top, where a specified instance of bottom in top must be maintained.

INPUT:

• bottom, top – permutations where top contains bottom as a pattern

1934 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Permutation_pattern
https://en.wikipedia.org/wiki/Permutation_pattern

Combinatorics, Release 9.7

• pos – a list of indices indicating a distinguished copy of bottom inside top (indexed starting at 0)

For further information (and picture illustrating included example), see [ST2010] .

See Wikipedia article Permutation_pattern.

EXAMPLES:

sage: t = Permutation([3,2,1])
sage: b = Permutation([6,3,4,5,2,1])
sage: A = posets.PermutationPatternOccurrenceInterval(t, b, (0,2,4)); A
Finite poset containing 8 elements

See also:

has_pattern(), PermutationPattern(), PermutationPatternInterval()

static PowerPoset(n)
Return the power poset on 𝑛 element posets.

Elements of the power poset are all posets on the set {0, 1, . . . , 𝑛 − 1} ordered by extension. That is, the
antichain of 𝑛 elements is the bottom and 𝑃𝑎 ≤ 𝑃𝑏 in the power poset if 𝑃𝑏 is an extension of 𝑃𝑎.

These were studied in [Bru1994].

EXAMPLES:

sage: P3 = posets.PowerPoset(3); P3
Finite meet-semilattice containing 19 elements
sage: all(P.is_chain() for P in P3.maximal_elements())
True

static ProductOfChains(chain_lengths, facade=None)
Return a product of chains.

• chain_lengths – A list of nonnegative integers; number of elements in each chain.

• facade – boolean; whether to make the returned poset a facade poset (see sage.categories.
facade_sets); the default behaviour is the same as the default behaviour of the Poset() constructor

EXAMPLES:

sage: P = posets.ProductOfChains([2, 2]); P
Finite lattice containing 4 elements
sage: P.linear_extension()
[(0, 0), (0, 1), (1, 0), (1, 1)]
sage: P.upper_covers((0,0))
[(0, 1), (1, 0)]
sage: P.lower_covers((1,1))
[(0, 1), (1, 0)]

static RandomLattice(n, p, properties=None)
Return a random lattice on n elements.

INPUT:

• n – number of elements, a non-negative integer

• p – a probability, a positive real number less than one

• properties – a list of properties for the lattice. Currently implemented:

– None, no restrictions for lattices to create

5.1. Comprehensive Module List 1935

https://en.wikipedia.org/wiki/Permutation_pattern
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets

Combinatorics, Release 9.7

– 'planar', the lattice has an upward planar drawing

– 'dismantlable' (implicated by 'planar')

– 'distributive' (implicated by 'stone')

– 'stone'

OUTPUT:

A lattice on 𝑛 elements. When properties is None, the probability 𝑝 roughly measures number of cov-
ering relations of the lattice. To create interesting examples, make the probability a little below one, for
example 0.9.

Currently parameter p has no effect only when properties is not None.

Note: Results are reproducible in same Sage version only. Underlying algorithm may change in future
versions.

EXAMPLES:

sage: set_random_seed(0) # Results are reproducible
sage: L = posets.RandomLattice(8, 0.995); L
Finite lattice containing 8 elements
sage: L.cover_relations()
[[7, 6], [7, 3], [7, 1], ..., [5, 4], [2, 4], [1, 4], [0, 4]]
sage: L = posets.RandomLattice(10, 0, properties=['dismantlable'])
sage: L.is_dismantlable()
True

See also:

RandomPoset()

static RandomPoset(n, p)
Generate a random poset on n elements according to a probability p.

INPUT:

• n - number of elements, a non-negative integer

• p - a probability, a real number between 0 and 1 (inclusive)

OUTPUT:

A poset on 𝑛 elements. The probability 𝑝 roughly measures width/height of the output: 𝑝 = 0 always
generates an antichain, 𝑝 = 1 will return a chain. To create interesting examples, keep the probability
small, perhaps on the order of 1/𝑛.

EXAMPLES:

sage: set_random_seed(0) # Results are reproducible
sage: P = posets.RandomPoset(5, 0.3)
sage: P.cover_relations()
[[5, 4], [4, 2], [1, 2]]

See also:

RandomLattice()

1936 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

static RestrictedIntegerPartitions(n)
Return the poset of integer partitions on the integer 𝑛 ordered by restricted refinement.

That is, if 𝑝 and 𝑞 are integer partitions of 𝑛, then 𝑝 covers 𝑞 if and only if 𝑞 is obtained from 𝑝 by joining
two distinct parts of 𝑝 (and sorting, if necessary).

EXAMPLES:

sage: P = posets.RestrictedIntegerPartitions(7); P
Finite poset containing 15 elements
sage: len(P.cover_relations())
17

static RibbonPoset(n, descents)
Return a ribbon poset on n vertices with descents at descents.

INPUT:

• n – the number of vertices

• descents – an iterable; the indices on the ribbon where 𝑦 > 𝑥

EXAMPLES:

sage: R = Posets.RibbonPoset(5, [1,2])
sage: sorted(R.cover_relations())
[[0, 1], [2, 1], [3, 2], [3, 4]]

static SSTPoset(s, f=None)
The lattice poset on semistandard tableaux of shape s and largest entry f that is ordered by componentwise
comparison of the entries.

INPUT:

• s - shape of the tableaux

• f - maximum fill number. This is an optional argument. If no maximal number is given, it will use the
number of cells in the shape.

Note: This is a basic implementation and most certainly not the most efficient.

EXAMPLES:

sage: posets.SSTPoset([2,1])
Finite lattice containing 8 elements

sage: posets.SSTPoset([2,1],4)
Finite lattice containing 20 elements

sage: posets.SSTPoset([2,1],2).cover_relations()
[[[[1, 1], [2]], [[1, 2], [2]]]]

sage: posets.SSTPoset([3,2]).bottom() # long time (6s on sage.math, 2012)
[[1, 1, 1], [2, 2]]

sage: posets.SSTPoset([3,2],4).maximal_elements()
[[[3, 3, 4], [4, 4]]]

5.1. Comprehensive Module List 1937

Combinatorics, Release 9.7

static SetPartitions(n)
Return the lattice of set partitions of the set {1, . . . , 𝑛} ordered by refinement.

INPUT:

• n – a positive integer

EXAMPLES:

sage: posets.SetPartitions(4)
Finite lattice containing 15 elements

static ShardPoset(n)
Return the shard intersection order on permutations of size 𝑛.

This is defined on the set of permutations. To every permutation, one can attach a pre-order, using the
descending runs and their relative positions.

The shard intersection order is given by the implication (or refinement) order on the set of pre-orders defined
from all permutations.

This can also be seen in a geometrical way. Every pre-order defines a cone in a vector space of dimension
𝑛. The shard poset is given by the inclusion of these cones.

See also:

shard_preorder_graph()

EXAMPLES:

sage: P = posets.ShardPoset(4); P # indirect doctest
Finite poset containing 24 elements
sage: P.chain_polynomial()
34*q^4 + 90*q^3 + 79*q^2 + 24*q + 1
sage: P.characteristic_polynomial()
q^3 - 11*q^2 + 23*q - 13
sage: P.zeta_polynomial()
17/3*q^3 - 6*q^2 + 4/3*q
sage: P.is_self_dual()
False

static StandardExample(n, facade=None)
Return the partially ordered set on 2n elements with dimension n.

Let 𝑃 be the poset on {0, 1, 2, . . . , 2𝑛− 1} whose defining relations are that 𝑖 < 𝑗 for every 0 ≤ 𝑖 < 𝑛 ≤
𝑗 < 2𝑛 except when 𝑖+ 𝑛 = 𝑗. The poset 𝑃 is the so-called standard example of a poset with dimension
𝑛.

INPUT:

• n – an integer ≥ 2, dimension of the constructed poset

• facade (boolean) – whether to make the returned poset a facade poset (see sage.categories.
facade_sets); the default behaviour is the same as the default behaviour of the Poset() constructor

OUTPUT:

The standard example of a poset of dimension 𝑛.

EXAMPLES:

1938 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets
../../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#module-sage.categories.facade_sets

Combinatorics, Release 9.7

sage: A = posets.StandardExample(3); A
Finite poset containing 6 elements
sage: A.dimension()
3

REFERENCES:

• [Gar2015]

• [Ros1999]

static SymmetricGroupAbsoluteOrderPoset(n, labels='permutations')
Return the poset of permutations with respect to absolute order.

INPUT:

• n – a positive integer

• label – (default: 'permutations') a label for the elements of the poset returned by the function;
the options are

– 'permutations' - labels the elements are given by their one-line notation

– 'reduced_words' - labels the elements by the lexicographically minimal reduced word

– 'cycles' - labels the elements by their expression as a product of cycles

EXAMPLES:

sage: posets.SymmetricGroupAbsoluteOrderPoset(4)
Finite poset containing 24 elements
sage: posets.SymmetricGroupAbsoluteOrderPoset(3, labels="cycles")
Finite poset containing 6 elements
sage: posets.SymmetricGroupAbsoluteOrderPoset(3, labels="reduced_words")
Finite poset containing 6 elements

static SymmetricGroupBruhatIntervalPoset(start, end)
The poset of permutations with respect to Bruhat order.

INPUT:

• start - list permutation

• end - list permutation (same n, of course)

Note: Must have start <= end.

EXAMPLES:

Any interval is rank symmetric if and only if it avoids these permutations:

sage: P1 = posets.SymmetricGroupBruhatIntervalPoset([1,2,3,4], [3,4,1,2])
sage: P2 = posets.SymmetricGroupBruhatIntervalPoset([1,2,3,4], [4,2,3,1])
sage: ranks1 = [P1.rank(v) for v in P1]
sage: ranks2 = [P2.rank(v) for v in P2]
sage: [ranks1.count(i) for i in sorted(set(ranks1))]
[1, 3, 5, 4, 1]
sage: [ranks2.count(i) for i in sorted(set(ranks2))]
[1, 3, 5, 6, 4, 1]

5.1. Comprehensive Module List 1939

Combinatorics, Release 9.7

static SymmetricGroupBruhatOrderPoset(n)
The poset of permutations with respect to Bruhat order.

EXAMPLES:

sage: posets.SymmetricGroupBruhatOrderPoset(4)
Finite poset containing 24 elements

static SymmetricGroupWeakOrderPoset(n, labels='permutations', side='right')
The poset of permutations of {1, 2, . . . , 𝑛}with respect to the weak order (also known as the permutohedron
order, cf. permutohedron_lequal()).

The optional variable labels (default: "permutations") determines the labelling of the elements if 𝑛 <
10. The optional variable side (default: "right") determines whether the right or the left permutohedron
order is to be used.

EXAMPLES:

sage: posets.SymmetricGroupWeakOrderPoset(4)
Finite poset containing 24 elements

static TamariLattice(n, m=1)
Return the 𝑛-th Tamari lattice.

Using the slope parameter 𝑚, one can also get the 𝑚-Tamari lattices.

INPUT:

• 𝑛 – a nonnegative integer (the index)

• 𝑚 – an optional nonnegative integer (the slope, default to 1)

OUTPUT:

a finite lattice

In the usual case, the elements of the lattice are Dyck paths in the (𝑛 + 1 × 𝑛)-rectangle. For a general
slope 𝑚, the elements are Dyck paths in the (𝑚𝑛+ 1× 𝑛)-rectangle.

See Tamari lattice for mathematical background.

EXAMPLES:

sage: posets.TamariLattice(3)
Finite lattice containing 5 elements

sage: posets.TamariLattice(3, 2)
Finite lattice containing 12 elements

REFERENCES:

• [BMFPR]

static TetrahedralPoset(n, *colors, **labels)
Return the tetrahedral poset based on the input colors.

This method will return the tetrahedral poset with n-1 layers and covering relations based on the input
colors of ‘green’, ‘red’, ‘orange’, ‘silver’, ‘yellow’ and ‘blue’ as defined in [Striker2011]. For particular
color choices, the order ideals of the resulting tetrahedral poset will be isomorphic to known combinatorial
objects.

For example, for the colors ‘blue’, ‘yellow’, ‘orange’, and ‘green’, the order ideals will be in bijection with
alternating sign matrices. For the colors ‘yellow’, ‘orange’, and ‘green’, the order ideals will be in bijection

1940 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Tamari_lattice

Combinatorics, Release 9.7

with semistandard Young tableaux of staircase shape. For the colors ‘red’, ‘orange’, ‘green’, and optionally
‘yellow’, the order ideals will be in bijection with totally symmetric self-complementary plane partitions
in a 2𝑛× 2𝑛× 2𝑛 box.

INPUT:

• n - Defines the number (n-1) of layers in the poset.

• colors - The colors that define the covering relations of the poset. Colors used are ‘green’, ‘red’,
‘yellow’, ‘orange’, ‘silver’, and ‘blue’.

• labels - Keyword variable used to determine whether the poset is labeled with integers or tuples. To
label with integers, the method should be called with labels='integers'. Otherwise, the labeling
will default to tuples.

EXAMPLES:

sage: posets.TetrahedralPoset(4,'green','red','yellow','silver','blue','orange')
Finite poset containing 10 elements

sage: posets.TetrahedralPoset(4,'green','red','yellow','silver','blue','orange',
→˓ labels='integers')
Finite poset containing 10 elements

sage: A = AlternatingSignMatrices(3)
sage: p = A.lattice()
sage: ji = p.join_irreducibles_poset()
sage: tet = posets.TetrahedralPoset(3, 'green','yellow','blue','orange')
sage: ji.is_isomorphic(tet)
True

static UpDownPoset(n, m=1)
Return the up-down poset on 𝑛 elements where every (𝑚+ 1) step is down and the rest are up.

The case where 𝑚 = 1 is sometimes referred to as the zig-zag poset or the fence.

INPUT:

• n - nonnegative integer, number of elements in the poset

• m - nonnegative integer (default 1), how frequently down steps occur

OUTPUT:

The partially ordered set on {0, 1, . . . , 𝑛 − 1} where 𝑖 covers 𝑖 + 1 if 𝑚 divides 𝑖 + 1, and 𝑖 + 1 covers 𝑖
otherwise.

EXAMPLES:

sage: P = posets.UpDownPoset(7, 2); P
Finite poset containing 7 elements
sage: sorted(P.cover_relations())
[[0, 1], [1, 2], [3, 2], [3, 4], [4, 5], [6, 5]]

Fibonacci numbers as the number of antichains of a poset:

sage: [len(posets.UpDownPoset(n).antichains().list()) for n in range(6)]
[1, 2, 3, 5, 8, 13]

static YoungDiagramPoset(lam, dual=False)
Return the poset of cells in the Young diagram of a partition.

5.1. Comprehensive Module List 1941

Combinatorics, Release 9.7

INPUT:

• lam – a partition

• dual – (default: False) determines the orientation of the poset; if True, then it is a join semilattice,
otherwise it is a meet semilattice

EXAMPLES:

sage: P = posets.YoungDiagramPoset(Partition([2, 2])); P
Finite meet-semilattice containing 4 elements

sage: sorted(P.cover_relations())
[[(0, 0), (0, 1)], [(0, 0), (1, 0)], [(0, 1), (1, 1)], [(1, 0), (1, 1)]]

sage: posets.YoungDiagramPoset([3, 2], dual=True)
Finite join-semilattice containing 5 elements

static YoungFibonacci(n)
Return the Young-Fibonacci lattice up to rank 𝑛.

Elements of the (infinite) lattice are words with letters ‘1’ and ‘2’. The covers of a word are the words with
another ‘1’ added somewhere not after the first occurrence of an existing ‘1’ and, additionally, the words
where the first ‘1’ is replaced by a ‘2’. The lattice is truncated to have rank 𝑛.

See Wikipedia article Young-Fibonacci lattice.

EXAMPLES:

sage: Y5 = posets.YoungFibonacci(5); Y5
Finite meet-semilattice containing 20 elements
sage: sorted(Y5.upper_covers(Word('211')))
[word: 1211, word: 2111, word: 221]

static YoungsLattice(n)
Return Young’s Lattice up to rank 𝑛.

In other words, the poset of partitions of size less than or equal to 𝑛 ordered by inclusion.

INPUT:

• n – a positive integer

EXAMPLES:

sage: P = posets.YoungsLattice(3); P
Finite meet-semilattice containing 7 elements
sage: P.cover_relations()
[[[], [1]],
[[1], [1, 1]],
[[1], [2]],
[[1, 1], [1, 1, 1]],
[[1, 1], [2, 1]],
[[2], [2, 1]],
[[2], [3]]]

static YoungsLatticePrincipalOrderIdeal(lam)
Return the principal order ideal of the partition 𝑙𝑎𝑚 in Young’s Lattice.

INPUT:

1942 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Young-Fibonacci lattice

Combinatorics, Release 9.7

• lam – a partition

EXAMPLES:

sage: P = posets.YoungsLatticePrincipalOrderIdeal(Partition([2,2]))
sage: P
Finite lattice containing 6 elements
sage: P.cover_relations()
[[[], [1]],
[[1], [1, 1]],
[[1], [2]],
[[1, 1], [2, 1]],
[[2], [2, 1]],
[[2, 1], [2, 2]]]

sage.combinat.posets.poset_examples.posets
alias of sage.combinat.posets.poset_examples.Posets

5.1.183 Finite posets

This module implements finite partially ordered sets. It defines:

FinitePoset A class for finite posets
FinitePosets_n A class for finite posets up to isomorphism (i.e. unlabeled posets)
Poset() Construct a finite poset from various forms of input data.
is_poset() Return True if a directed graph is acyclic and transitively reduced.

List of Poset methods

Comparing, intervals and relations

is_less_than() Return True if 𝑥 is strictly less than 𝑦 in the poset.
is_greater_than() Return True if 𝑥 is strictly greater than 𝑦 in the poset.
is_lequal() Return True if 𝑥 is less than or equal to 𝑦 in the poset.
is_gequal() Return True if 𝑥 is greater than or equal to 𝑦 in the poset.
compare_elements() Compare two element of the poset.
closed_interval() Return the list of elements in a closed interval of the poset.
open_interval() Return the list of elements in an open interval of the poset.
relations() Return the list of relations in the poset.
relations_iterator() Return an iterator over relations in the poset.
order_filter() Return the upper set generated by elements.
order_ideal() Return the lower set generated by elements.

Covering

5.1. Comprehensive Module List 1943

Combinatorics, Release 9.7

covers() Return True if y covers x.
lower_covers() Return elements covered by given element.
upper_covers() Return elements covering given element.
cover_relations() Return the list of cover relations.
lower_covers_iterator() Return an iterator over elements covered by given element.
upper_covers_iterator() Return an iterator over elements covering given element.
cover_relations_iterator() Return an iterator over cover relations of the poset.
common_upper_covers() Return the list of all common upper covers of the given elements.
common_lower_covers() Return the list of all common lower covers of the given elements.
meet() Return the meet of given elements if it exists; None otherwise.
join() Return the join of given elements if it exists; None otherwise.

Properties of the poset

cardinality() Return the number of elements in the poset.
height() Return the number of elements in a longest chain of the poset.
width() Return the number of elements in a longest antichain of the poset.
relations_number() Return the number of relations in the poset.
dimension() Return the dimension of the poset.
jump_number() Return the jump number of the poset.
magnitude() Return the magnitude of the poset.
has_bottom() Return True if the poset has a unique minimal element.
has_top() Return True if the poset has a unique maximal element.
is_bounded() Return True if the poset has both unique minimal and unique maximal element.
is_chain() Return True if the poset is totally ordered.
is_connected() Return True if the poset is connected.
is_graded() Return True if all maximal chains of the poset has same length.
is_ranked() Return True if the poset has a rank function.
is_rank_symmetric() Return True if the poset is rank symmetric.
is_series_parallel() Return True if the poset can be built by ordinal sums and disjoint unions.
is_greedy() Return True if all greedy linear extensions have equal number of jumps.
is_jump_critical() Return True if removal of any element reduces the jump number.
is_eulerian() Return True if the poset is Eulerian.
is_incomparable_chain_free()Return True if the poset is (m+n)-free.
is_slender() Return True if the poset is slender.
is_sperner() Return True if the poset is Sperner.
is_join_semilattice() Return True is the poset has a join operation.
is_meet_semilattice() Return True if the poset has a meet operation.

Minimal and maximal elements

bottom() Return the bottom element of the poset, if it exists.
top() Return the top element of the poset, if it exists.
maximal_elements() Return the list of the maximal elements of the poset.
minimal_elements() Return the list of the minimal elements of the poset.

New posets from old ones

1944 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

disjoint_union() Return the disjoint union of the poset with other poset.
ordinal_sum() Return the ordinal sum of the poset with other poset.
product() Return the Cartesian product of the poset with other poset.
ordinal_product() Return the ordinal product of the poset with other poset.
rees_product() Return the Rees product of the poset with other poset.
lexicographic_sum() Return the lexicographic sum of posets.
star_product() Return the star product of the poset with other poset.
with_bounds() Return the poset with bottom and top element adjoined.
without_bounds() Return the poset with bottom and top element removed.
dual() Return the dual of the poset.
completion_by_cuts() Return the Dedekind-MacNeille completion of the poset.
intervals_poset() Return the poset of intervals of the poset.
connected_components() Return the connected components of the poset as subposets.
factor() Return the decomposition of the poset as a Cartesian product.
ordinal_summands() Return the ordinal summands of the poset.
subposet() Return the subposet containing elements with partial order induced by this poset.
random_subposet() Return a random subposet that contains each element with given probability.
relabel() Return a copy of this poset with its elements relabelled.
canonical_label() Return copy of the poset canonically (re)labelled to integers.
slant_sum() Return the slant sum poset of two posets.

Chains, antichains & linear intervals

is_chain_of_poset() Return True if elements in the given list are comparable.
is_antichain_of_poset() Return True if elements in the given list are incomparable.
is_linear_interval() Return whether the given interval is a total order.
chains() Return the chains of the poset.
antichains() Return the antichains of the poset.
maximal_chains() Return the maximal chains of the poset.
maximal_antichains() Return the maximal antichains of the poset.
maximal_chains_iterator() Return an iterator over the maximal chains of the poset.
maximal_chain_length() Return the maximum length of maximal chains of the poset.
antichains_iterator() Return an iterator over the antichains of the poset.
random_maximal_chain() Return a random maximal chain.
random_maximal_antichain() Return a random maximal antichain.
linear_intervals_count() Return the enumeration of linear intervals in the poset.

Drawing

show() Display the Hasse diagram of the poset.
plot() Return a Graphic object corresponding the Hasse diagram of the poset.
graphviz_string() Return a representation in the DOT language, ready to render in graphviz.

Comparing posets

is_isomorphic() Return True if both posets are isomorphic.
is_induced_subposet() Return True if given poset is an induced subposet of this poset.

Polynomials

5.1. Comprehensive Module List 1945

Combinatorics, Release 9.7

chain_polynomial() Return the chain polynomial of the poset.
characteristic_polynomial()Return the characteristic polynomial of the poset.
f_polynomial() Return the f-polynomial of the poset.
flag_f_polynomial() Return the flag f-polynomial of the poset.
h_polynomial() Return the h-polynomial of the poset.
flag_h_polynomial() Return the flag h-polynomial of the poset.
order_polynomial() Return the order polynomial of the poset.
zeta_polynomial() Return the zeta polynomial of the poset.
kazhdan_lusztig_polynomial()Return the Kazhdan-Lusztig polynomial of the poset.
coxeter_polynomial() Return the characteristic polynomial of the Coxeter transformation.
degree_polynomial() Return the generating polynomial of degrees of vertices in the Hasse diagram.
p_partition_enumerator() Return a 𝑃 -partition enumerator of the poset.

Polytopes

chain_polytope() Return the chain polytope of the poset.
order_polytope() Return the order polytope of the poset.

Graphs

hasse_diagram() Return the Hasse diagram of the poset as a directed graph.
cover_relations_graph() Return the (undirected) graph of cover relations.
comparability_graph() Return the comparability graph of the poset.
incomparability_graph() Return the incomparability graph of the poset.
frank_network() Return Frank’s network of the poset.
linear_extensions_graph() Return the linear extensions graph of the poset.

Linear extensions

is_linear_extension() Return True if the given list is a linear extension of the poset.
linear_extension() Return a linear extension of the poset.
linear_extensions() Return the enumerated set of all the linear extensions of the poset.
promotion() Return the (extended) promotion on the linear extension of the poset.
evacuation() Return evacuation on the linear extension associated to the poset.
with_linear_extension() Return a copy of self with a different default linear extension.
random_linear_extension() Return a random linear extension.

Matrices

lequal_matrix() Computes the matrix whose (i,j) entry is 1 if self.
linear_extension()[i] < self.linear_extension()[j] and 0
otherwise.

moebius_function() Return the value of Möbius function of given elements in the poset.
moebius_function_matrix() Return a matrix whose (i,j) entry is the value of the Möbius function evaluated

at self.linear_extension()[i] and self.linear_extension()[j].
coxeter_transformation() Return the matrix of the Auslander-Reiten translation acting on the Grothendieck

group of the derived category of modules.
coxeter_smith_form() Return the Smith form of the Coxeter transformation.

Miscellaneous

1946 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sorted() Return given list sorted by the poset.
isomorphic_subposets() Return all subposets isomorphic to another poset.
isomorphic_subposets_iterator()Return an iterator over the subposets isomorphic to another poset.
has_isomorphic_subposet() Return True if the poset contains a subposet isomorphic to another poset.
list() List the elements of the poset.
cuts() Return the cuts of the given poset.
dilworth_decomposition() Return a partition of the points into the minimal number of chains.
greene_shape() Computes the Greene-Kleitman partition aka Greene shape of the poset self.
incidence_algebra() Return the incidence algebra of self.
is_EL_labelling() Return whether f is an EL labelling of the poset.
isomorphic_subposets_iterator()Return an iterator over the subposets isomorphic to another poset.
isomorphic_subposets() Return all subposets isomorphic to another poset.
level_sets() Return elements grouped by maximal number of cover relations from a minimal

element.
order_complex() Return the order complex associated to this poset.
random_order_ideal() Return a random order ideal of self with uniform probability.
rank() Return the rank of an element, or the rank of the poset.
rank_function() Return a rank function of the poset, if it exists.
unwrap() Unwraps an element of this poset.
atkinson() Return the 𝑎-spectrum of a poset whose undirected Hasse diagram is a forest.
spectrum() Return the 𝑎-spectrum of this poset.

Classes and functions

class sage.combinat.posets.posets.FinitePoset(hasse_diagram, elements, category, facade, key)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

A (finite) 𝑛-element poset constructed from a directed acyclic graph.

INPUT:

• hasse_diagram – an instance of FinitePoset, or a DiGraph that is transitively-reduced, acyclic, loop-
free, and multiedge-free.

• elements – an optional list of elements, with element[i] corresponding to vertex i. If elements is
None, then it is set to be the vertex set of the digraph. Note that if this option is set, then elements is
considered as a specified linear extension of the poset and the 𝑙𝑖𝑛𝑒𝑎𝑟𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 attribute is set.

• category – FinitePosets, or a subcategory thereof.

• facade – a boolean or None (default); whether the FinitePoset’s elements should be wrapped to make
them aware of the Poset they belong to.

– If facade = True, the FinitePoset’s elements are exactly those given as input.

– If facade = False, the FinitePoset’s elements will become PosetElement objects.

– If facade = None (default) the expected behaviour is the behaviour of facade = True, unless the
opposite can be deduced from the context (i.e. for instance if a FinitePoset is built from another
FinitePoset, itself built with facade = False)

• key – any hashable value (default: None).

EXAMPLES:

5.1. Comprehensive Module List 1947

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph
../../../../../../../html/en/reference/categories/sage/categories/finite_posets.html#sage.categories.finite_posets.FinitePosets

Combinatorics, Release 9.7

sage: uc = [[2,3], [], [1], [1], [1], [3,4]]
sage: from sage.combinat.posets.posets import FinitePoset
sage: P = FinitePoset(DiGraph(dict([[i,uc[i]] for i in range(len(uc))])),␣
→˓facade=False); P
Finite poset containing 6 elements
sage: P.cover_relations()
[[5, 4], [5, 3], [4, 1], [0, 2], [0, 3], [2, 1], [3, 1]]
sage: TestSuite(P).run()
sage: P.category()
Category of finite enumerated posets
sage: P.__class__
<class 'sage.combinat.posets.posets.FinitePoset_with_category'>

sage: Q = sage.combinat.posets.posets.FinitePoset(P, facade = False); Q
Finite poset containing 6 elements

sage: Q is P
True

We keep the same underlying Hasse diagram, but change the elements:

sage: Q = sage.combinat.posets.posets.FinitePoset(P, elements=[1,2,3,4,5,6],␣
→˓facade=False); Q
Finite poset containing 6 elements with distinguished linear extension
sage: Q.cover_relations()
[[1, 2], [1, 5], [2, 6], [3, 4], [3, 5], [4, 6], [5, 6]]

We test the facade argument:

sage: P = Poset(DiGraph({'a':['b'],'b':['c'],'c':['d']}), facade=False)
sage: P.category()
Category of finite enumerated posets
sage: parent(P[0]) is P
True

sage: Q = Poset(DiGraph({'a':['b'],'b':['c'],'c':['d']}), facade=True)
sage: Q.category()
Category of facade finite enumerated posets
sage: parent(Q[0]) is str
True
sage: TestSuite(Q).run(skip = ['_test_an_element']) # is_parent_of is not yet␣
→˓implemented

Changing a non facade poset to a facade poset:

sage: PQ = Poset(P, facade=True)
sage: PQ.category()
Category of facade finite enumerated posets
sage: parent(PQ[0]) is str
True
sage: PQ is Q
True

Changing a facade poset to a non facade poset:

1948 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: QP = Poset(Q, facade = False)
sage: QP.category()
Category of finite enumerated posets
sage: parent(QP[0]) is QP
True

Conversion to some other software is possible:

sage: P = posets.TamariLattice(3)
sage: libgap(P) # optional - gap_packages
<A poset on 5 points>

sage: P = Poset({1:[2],2:[]})
sage: macaulay2('needsPackage "Posets"') # optional - macaulay2
Posets
sage: macaulay2(P) # optional - macaulay2
Relation Matrix: | 1 1 |

| 0 1 |

Note: A class that inherits from this class needs to define Element. This is the class of the elements that
the inheriting class contains. For example, for this class, FinitePoset, Element is PosetElement. It can
also define _dual_class which is the class of dual posets of this class. E.g. FiniteMeetSemilattice.
_dual_class is FiniteJoinSemilattice.

Element
alias of sage.combinat.posets.elements.PosetElement

antichains(element_constructor=<class 'list'>)
Return the antichains of the poset.

An antichain of a poset is a set of elements of the poset that are pairwise incomparable.

INPUT:

• element_constructor – a function taking an iterable as argument (default: list)

OUTPUT:

The enumerated set (of type PairwiseCompatibleSubsets) of all antichains of the poset, each of which
is given as an element_constructor.

EXAMPLES:

sage: A = posets.PentagonPoset().antichains(); A
Set of antichains of Finite lattice containing 5 elements
sage: list(A)
[[], [0], [1], [1, 2], [1, 3], [2], [3], [4]]
sage: A.cardinality()
8
sage: A[3]
[1, 2]

To get the antichains as, say, sets, one may use the element_constructor option:

sage: list(posets.ChainPoset(3).antichains(element_constructor=set))
[set(), {0}, {1}, {2}]

5.1. Comprehensive Module List 1949

Combinatorics, Release 9.7

To get the antichains of a given size one can currently use:

sage: list(A.elements_of_depth_iterator(2))
[[1, 2], [1, 3]]

Eventually the following syntax will be accepted:

sage: A.subset(size = 2) # todo: not implemented

Note: Internally, this uses sage.combinat.subsets_pairwise.PairwiseCompatibleSubsets and
RecursivelyEnumeratedSet_forest. At this point, iterating through this set is about twice slower
than using antichains_iterator() (tested on posets.AntichainPoset(15)). The algorithm is the
same (depth first search through the tree), but antichains_iterator() manually inlines things which
apparently avoids some infrastructure overhead.

On the other hand, this returns a full featured enumerated set, with containment testing, etc.

See also:

maximal_antichains(), chains()

antichains_iterator()
Return an iterator over the antichains of the poset.

EXAMPLES:

sage: it = posets.PentagonPoset().antichains_iterator(); it
<generator object ...antichains_iterator at ...>
sage: next(it), next(it)
([], [4])

See also:

antichains()

atkinson(a)
Return the 𝑎-spectrum of a poset whose Hasse diagram is cycle-free as an undirected graph.

Given an element 𝑎 in a poset 𝑃 , the 𝑎-spectrum is the list of integers whose 𝑖-th term contains the number
of linear extensions of 𝑃 with element 𝑎 located in the i-th position.

INPUT:

• self – a poset whose Hasse diagram is a forest

• a – an element of the poset

OUTPUT:

The 𝑎-spectrum of this poset, returned as a list.

EXAMPLES:

sage: P = Poset({0: [2], 1: [2], 2: [3, 4], 3: [], 4: []})
sage: P.atkinson(0)
[2, 2, 0, 0, 0]

sage: P = Poset({0: [1], 1: [2, 3], 2: [], 3: [], 4: [5, 6], 5: [], 6: []})
sage: P.atkinson(5)

(continues on next page)

1950 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0, 10, 18, 24, 28, 30, 30]

sage: P = posets.AntichainPoset(10)
sage: P.atkinson(0)
[362880, 362880, 362880, 362880, 362880, 362880, 362880, 362880, 362880, 362880]

Note: This function is the implementation of the algorithm from [At1990].

bottom()
Return the unique minimal element of the poset, if it exists.

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4],4:[]})
sage: P.bottom() is None
True
sage: Q = Poset({0:[1],1:[]})
sage: Q.bottom()
0

See also:

has_bottom(), top()

canonical_label(algorithm=None)
Return the unique poset on the labels {0, . . . , 𝑛− 1} (where 𝑛 is the number of elements in the poset) that
is isomorphic to this poset and invariant in the isomorphism class.

INPUT:

• algorithm – string (optional); a parameter forwarded to underlying graph function to select the algo-
rithm to use

EXAMPLES:

sage: P = Poset((divisors(12), attrcall("divides")), linear_extension=True)
sage: P.list()
[1, 2, 3, 4, 6, 12]
sage: Q = P.canonical_label()
sage: sorted(Q.list())
[0, 1, 2, 3, 4, 5]
sage: Q.is_isomorphic(P)
True

Canonical labeling of (semi)lattice returns (semi)lattice:

sage: D = DiGraph({'a':['b','c']})
sage: P = Poset(D)
sage: ML = MeetSemilattice(D)
sage: P.canonical_label()
Finite poset containing 3 elements
sage: ML.canonical_label()
Finite meet-semilattice containing 3 elements

See also:

5.1. Comprehensive Module List 1951

Combinatorics, Release 9.7

• Canonical labeling of directed graphs: canonical_label()

cardinality()
Return the number of elements in the poset.

EXAMPLES:

sage: Poset([[1,2,3],[4],[4],[4],[]]).cardinality()
5

See also:

degree_polynomial() for a more refined invariant

chain_polynomial()
Return the chain polynomial of the poset.

The coefficient of 𝑞𝑘 is the number of chains of 𝑘 elements in the poset. List of coefficients of this polyno-
mial is also called a f-vector of the poset.

Note: This is not what has been called the chain polynomial in [St1986]. The latter is identical with the
order polynomial in SageMath (order_polynomial()).

See also:

f_polynomial(), order_polynomial()

EXAMPLES:

sage: P = posets.ChainPoset(3)
sage: t = P.chain_polynomial(); t
q^3 + 3*q^2 + 3*q + 1
sage: t(1) == len(list(P.chains()))
True

sage: P = posets.BooleanLattice(3)
sage: P.chain_polynomial()
6*q^4 + 18*q^3 + 19*q^2 + 8*q + 1

sage: P = posets.AntichainPoset(5)
sage: P.chain_polynomial()
5*q + 1

chain_polytope()
Return the chain polytope of the poset self.

The chain polytope of a finite poset 𝑃 is defined as the subset of R𝑃 consisting of all maps 𝑥 : 𝑃 → R
satisfying

𝑥(𝑝) ≥ 0 for all 𝑝 ∈ 𝑃,

and

𝑥(𝑝1) + 𝑥(𝑝2) + . . .+ 𝑥(𝑝𝑘) ≤ 1 for all chains 𝑝1 < 𝑝2 < . . . < 𝑝𝑘 in 𝑃.

This polytope was defined and studied in [St1986].

EXAMPLES:

1952 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/graphs/sage/graphs/generic_graph.html#sage.graphs.generic_graph.GenericGraph.canonical_label

Combinatorics, Release 9.7

sage: P = posets.AntichainPoset(3)
sage: Q = P.chain_polytope();Q
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: P = posets.PentagonPoset()
sage: Q = P.chain_polytope();Q
A 5-dimensional polyhedron in ZZ^5 defined as the convex hull of 8 vertices

chains(element_constructor=<class 'list'>, exclude=None)
Return the chains of the poset.

A chain of a poset is an increasing sequence of distinct elements of the poset.

INPUT:

• element_constructor – a function taking an iterable as argument (optional, default: list)

• exclude – elements of the poset to be excluded (optional, default: None)

OUTPUT:

The enumerated set (of type PairwiseCompatibleSubsets) of all chains of the poset, each of which is
given as an element_constructor.

EXAMPLES:

sage: C = posets.PentagonPoset().chains(); C
Set of chains of Finite lattice containing 5 elements
sage: list(C)
[[], [0], [0, 1], [0, 1, 4], [0, 2], [0, 2, 3], [0, 2, 3, 4], [0, 2, 4], [0, 3],
→˓ [0, 3, 4], [0, 4], [1], [1, 4], [2], [2, 3], [2, 3, 4], [2, 4], [3], [3, 4],␣
→˓[4]]

Exclusion of elements, tuple (instead of list) as constructor:

sage: P = Poset({1: [2, 3], 2: [4], 3: [4, 5]})
sage: list(P.chains(element_constructor=tuple, exclude=[3]))
[(), (1,), (1, 2), (1, 2, 4), (1, 4), (1, 5), (2,), (2, 4), (4,), (5,)]

To get the chains of a given size one can currently use:

sage: list(C.elements_of_depth_iterator(2))
[[0, 1], [0, 2], [0, 3], [0, 4], [1, 4], [2, 3], [2, 4], [3, 4]]

Eventually the following syntax will be accepted:

sage: C.subset(size = 2) # todo: not implemented

See also:

maximal_chains(), antichains()

characteristic_polynomial()
Return the characteristic polynomial of the poset.

The poset is expected to be graded and have a bottom element.

If 𝑃 is a graded poset with rank 𝑛 and a unique minimal element 0̂, then the characteristic polynomial of
𝑃 is defined to be ∑︁

𝑥∈𝑃
𝜇(0̂, 𝑥)𝑞𝑛−𝜌(𝑥) ∈ Z[𝑞],

5.1. Comprehensive Module List 1953

Combinatorics, Release 9.7

where 𝜌 is the rank function, and 𝜇 is the Möbius function of 𝑃 .

See section 3.10 of [EnumComb1].

EXAMPLES:

sage: P = posets.DiamondPoset(5)
sage: P.characteristic_polynomial()
q^2 - 3*q + 2

sage: P = Poset({1: [2, 3], 2: [4], 3: [5], 4: [6], 5: [6], 6: [7]})
sage: P.characteristic_polynomial()
q^4 - 2*q^3 + q

closed_interval(x, y)
Return the list of elements 𝑧 such that 𝑥 ≤ 𝑧 ≤ 𝑦 in the poset.

EXAMPLES:

sage: P = Poset((divisors(1000), attrcall("divides")))
sage: P.closed_interval(2, 100)
[2, 4, 10, 20, 50, 100]

See also:

open_interval()

common_lower_covers(elmts)
Return all of the common lower covers of the elements elmts.

EXAMPLES:

sage: P = Poset({0: [1,2], 1: [3], 2: [3], 3: []})
sage: P.common_lower_covers([1, 2])
[0]

common_upper_covers(elmts)
Return all of the common upper covers of the elements elmts.

EXAMPLES:

sage: P = Poset({0: [1,2], 1: [3], 2: [3], 3: []})
sage: P.common_upper_covers([1, 2])
[3]

comparability_graph()
Return the comparability graph of the poset.

The comparability graph is an undirected graph where vertices are the elements of the poset and there is
an edge between two vertices if they are comparable in the poset.

See Wikipedia article Comparability_graph

EXAMPLES:

sage: Y = Poset({1: [2], 2: [3, 4]})
sage: g = Y.comparability_graph(); g
Comparability graph on 4 vertices
sage: Y.compare_elements(1, 3) is not None

(continues on next page)

1954 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Comparability_graph

Combinatorics, Release 9.7

(continued from previous page)

True
sage: g.has_edge(1, 3)
True

See also:

incomparability_graph(), sage.graphs.comparability

compare_elements(x, y)
Compare 𝑥 and 𝑦 in the poset.

• If 𝑥 < 𝑦, return -1.

• If 𝑥 = 𝑦, return 0.

• If 𝑥 > 𝑦, return 1.

• If 𝑥 and 𝑦 are not comparable, return None.

EXAMPLES:

sage: P = Poset([[1, 2], [4], [3], [4], []])
sage: P.compare_elements(0, 0)
0
sage: P.compare_elements(0, 4)
-1
sage: P.compare_elements(4, 0)
1
sage: P.compare_elements(1, 2) is None
True

completion_by_cuts()
Return the completion by cuts of self.

This is the smallest lattice containing the poset. This is also called the Dedekind-MacNeille completion.

See the Wikipedia article Dedekind-MacNeille completion.

OUTPUT:

• a finite lattice

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: P.completion_by_cuts().is_isomorphic(P)
True

sage: Y = Poset({1: [2], 2: [3, 4]})
sage: trafficsign = LatticePoset({1: [2], 2: [3, 4], 3: [5], 4: [5]})
sage: L = Y.completion_by_cuts()
sage: L.is_isomorphic(trafficsign)
True

sage: P = posets.SymmetricGroupBruhatOrderPoset(3)
sage: Q = P.completion_by_cuts(); Q
Finite lattice containing 7 elements

5.1. Comprehensive Module List 1955

../../../../../../../html/en/reference/graphs/sage/graphs/comparability.html#module-sage.graphs.comparability
https://en.wikipedia.org/wiki/Dedekind-MacNeille completion

Combinatorics, Release 9.7

See also:

cuts(), irreducibles_poset()

connected_components()
Return the connected components of the poset as subposets.

EXAMPLES:

sage: P = Poset({1: [2, 3], 3: [4, 5], 6: [7, 8]})
sage: parts = sorted(P.connected_components(), key=len); parts
[Finite poset containing 3 elements,
Finite poset containing 5 elements]
sage: parts[0].cover_relations()
[[6, 7], [6, 8]]

See also:

disjoint_union(), is_connected()

cover_relations()
Return the list of pairs [x, y] of elements of the poset such that y covers x.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: P.cover_relations()
[[1, 2], [0, 2], [2, 3], [3, 4]]

cover_relations_graph()
Return the (undirected) graph of cover relations.

EXAMPLES:

sage: P = Poset({0: [1, 2], 1: [3], 2: [3]})
sage: G = P.cover_relations_graph(); G
Graph on 4 vertices
sage: G.has_edge(3, 1), G.has_edge(3, 0)
(True, False)

See also:

hasse_diagram()

cover_relations_iterator()
Return an iterator over the cover relations of the poset.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: type(P.cover_relations_iterator())
<class 'generator'>
sage: [z for z in P.cover_relations_iterator()]
[[1, 2], [0, 2], [2, 3], [3, 4]]

covers(x, y)
Return True if y covers x and False otherwise.

Element 𝑦 covers 𝑥 if 𝑥 < 𝑦 and there is no 𝑧 such that 𝑥 < 𝑧 < 𝑦.

EXAMPLES:

1956 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/finite_lattice_posets.html#sage.categories.finite_lattice_posets.FiniteLatticePosets.ParentMethods.irreducibles_poset

Combinatorics, Release 9.7

sage: P = Poset([[1,5], [2,6], [3], [4], [], [6,3], [4]])
sage: P.covers(1, 6)
True
sage: P.covers(1, 4)
False
sage: P.covers(1, 5)
False

coxeter_polynomial()
Return the Coxeter polynomial of the poset.

OUTPUT:

a polynomial in one variable

The output is the characteristic polynomial of the Coxeter transformation. This polynomial only depends
on the derived category of modules on the poset.

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: P.coxeter_polynomial()
x^5 + x^4 + x + 1

sage: p = posets.SymmetricGroupWeakOrderPoset(3)
sage: p.coxeter_polynomial()
x^6 + x^5 - x^3 + x + 1

See also:

coxeter_transformation(), coxeter_smith_form()

coxeter_smith_form(algorithm='singular')
Return the Smith normal form of 𝑥 minus the Coxeter transformation matrix.

INPUT:

• algorithm – optional (default 'singular'), possible values are 'singular', 'sage', 'gap',
'pari', 'maple', 'magma', 'fricas'

Beware that speed depends very much on the choice of algorithm. Sage is rather slow, Singular is faster
and Pari is fast at least for small sizes.

OUTPUT:

• list of polynomials in one variable, each one dividing the next one

The output list is a refinement of the characteristic polynomial of the Coxeter transformation, which is its
product. This list of polynomials only depends on the derived category of modules on the poset.

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: P.coxeter_smith_form()
[1, 1, 1, 1, x^5 + x^4 + x + 1]

sage: P = posets.DiamondPoset(7)
sage: prod(P.coxeter_smith_form()) == P.coxeter_polynomial()
True

5.1. Comprehensive Module List 1957

Combinatorics, Release 9.7

See also:

coxeter_transformation(), coxeter_matrix()

coxeter_transformation()
Return the Coxeter transformation of the poset.

OUTPUT:

a square matrix with integer coefficients

The output is the matrix of the Auslander-Reiten translation acting on the Grothendieck group of the derived
category of modules on the poset, in the basis of simple modules. This matrix is usually called the Coxeter
transformation.

EXAMPLES:

sage: posets.PentagonPoset().coxeter_transformation()
[0 0 0 0 -1]
[0 0 0 1 -1]
[0 1 0 0 -1]
[-1 1 1 0 -1]
[-1 1 0 1 -1]

See also:

coxeter_polynomial(), coxeter_smith_form()

cuts()
Return the list of cuts of the poset self.

A cut is a subset 𝐴 of self such that the set of lower bounds of the set of upper bounds of 𝐴 is exactly 𝐴.

The cuts are computed here using the maximal independent sets in the auxiliary graph defined as 𝑃 × [0, 1]
with an edge from (𝑥, 0) to (𝑦, 1) if and only if 𝑥 ̸≥𝑃 𝑦. See the end of section 4 in [JRJ94].

EXAMPLES:

sage: P = posets.AntichainPoset(3)
sage: Pc = P.cuts()
sage: Pc # random
[frozenset({0}),
frozenset(),
frozenset({0, 1, 2}),
frozenset({2}),
frozenset({1})]
sage: sorted(list(c) for c in Pc)
[[], [0], [0, 1, 2], [1], [2]]

See also:

completion_by_cuts()

degree_polynomial()
Return the generating polynomial of degrees of vertices in self.

This is the sum ∑︁
𝑣∈𝑃

𝑥in(𝑣)𝑦out(𝑣),

where in(v) and out(v) are the number of incoming and outgoing edges at vertex 𝑣 in the Hasse diagram
of 𝑃 .

1958 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Because this polynomial is multiplicative for Cartesian product of posets, it is useful to help see if the poset
can be isomorphic to a Cartesian product.

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: P.degree_polynomial()
x^2 + 3*x*y + y^2

sage: P = posets.BooleanLattice(4)
sage: P.degree_polynomial().factor()
(x + y)^4

See also:

cardinality() for the value at (𝑥, 𝑦) = (1, 1)

diamonds()
Return the list of diamonds of self.

A diamond is the following subgraph of the Hasse diagram:

z
/ \

x y
\ /
w

Thus each edge represents a cover relation in the Hasse diagram. We represent this as the tuple (𝑤, 𝑥, 𝑦, 𝑧).

OUTPUT:

A tuple with

• a list of all diamonds in the Hasse Diagram,

• a boolean checking that every 𝑤, 𝑥, 𝑦 that form a V, there is a unique element 𝑧, which completes the
diamond.

EXAMPLES:

sage: P = Poset({0: [1,2], 1: [3], 2: [3], 3: []})
sage: P.diamonds()
([(0, 1, 2, 3)], True)

sage: P = posets.YoungDiagramPoset(Partition([3, 2, 2]))
sage: P.diamonds()
([((0, 0), (0, 1), (1, 0), (1, 1)), ((1, 0), (1, 1), (2, 0), (2, 1))], False)

dilworth_decomposition()
Return a partition of the points into the minimal number of chains.

According to Dilworth’s theorem, the points of a poset can be partitioned into 𝛼 chains, where 𝛼 is the
cardinality of its largest antichain. This method returns such a partition.

See Wikipedia article Dilworth%27s_theorem.

ALGORITHM:

We build a bipartite graph in which a vertex 𝑣 of the poset is represented by two vertices 𝑣−, 𝑣+. For any
two 𝑢, 𝑣 such that 𝑢 < 𝑣 in the poset we add an edge 𝑣+𝑢−.

5.1. Comprehensive Module List 1959

https://en.wikipedia.org/wiki/Dilworth%27s_theorem

Combinatorics, Release 9.7

A matching in this graph is equivalent to a partition of the poset into chains: indeed, a chain 𝑣1...𝑣𝑘 gives
rise to the matching 𝑣+1 𝑣

−
2 , 𝑣

+
2 𝑣
−
3 , ..., and from a matching one can build the union of chains.

According to Dilworth’s theorem, the number of chains is equal to 𝛼 (the posets’ width).

EXAMPLES:

sage: p = posets.BooleanLattice(4)
sage: p.width()
6
sage: p.dilworth_decomposition() # random
[[7, 6, 4], [11, 3], [12, 8, 0], [13, 9, 1], [14, 10, 2], [15, 5]]

See also:

level_sets() to return elements grouped to antichains.

dimension(certificate, solver, integrality_tolerance=False)
Return the dimension of the Poset.

The (Dushnik-Miller) dimension of a poset is the minimal number of total orders so that the poset is their
“intersection”. More precisely, the dimension of a poset defined on a set𝑋 of points is the smallest integer
𝑛 such that there exist linear extensions 𝑃1, ..., 𝑃𝑛 of 𝑃 satisfying:

𝑢 ≤𝑃 𝑣 if and only if ∀𝑖, 𝑢 ≤𝑃𝑖
𝑣

For more information, see the Wikipedia article Order_dimension.

INPUT:

• certificate (boolean; default:False) – whether to return an integer (the dimension) or a certificate,
i.e. a smallest set of linear extensions.

• solver – (default: None) Specify a Mixed Integer Linear Programming (MILP) solver to be used. If
set to None, the default one is used. For more information on MILP solvers and which default solver
is used, see the method solve of the class MixedIntegerLinearProgram.

• integrality_tolerance – parameter for use with MILP solvers over an inexact base ring; see
MixedIntegerLinearProgram.get_values().

Note: The speed of this function greatly improves when more efficient MILP solvers (e.g. Gurobi, CPLEX)
are installed. See MixedIntegerLinearProgram for more information.

Note: Prior to version 8.3 this returned only realizer with certificate=True. Now it returns a pair
having a realizer as the second element. See trac ticket #25588 for details.

ALGORITHM:

As explained [FT00], the dimension of a poset is equal to the (weak) chromatic number of a hypergraph.
More precisely:

Let 𝑖𝑛𝑐(𝑃) be the set of (ordered) pairs of incomparable elements of 𝑃 , i.e. all 𝑢𝑣 and 𝑣𝑢 such
that 𝑢 ̸≤𝑃 𝑣 and 𝑣 ̸≤𝑃 𝑢. Any linear extension of 𝑃 is a total order on 𝑋 that can be seen as the
union of relations from 𝑃 along with some relations from 𝑖𝑛𝑐(𝑃). Thus, the dimension of 𝑃 is
the smallest number of linear extensions of 𝑃 which cover all points of 𝑖𝑛𝑐(𝑃).

Consequently, 𝑑𝑖𝑚(𝑃) is equal to the chromatic number of the hypergraph ℋ𝑖𝑛𝑐, where ℋ𝑖𝑛𝑐 is
the hypergraph defined on 𝑖𝑛𝑐(𝑃) whose sets are all 𝑆 ⊆ 𝑖𝑛𝑐(𝑃) such that 𝑃 ∪ 𝑆 is not acyclic.

1960 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Order_dimension
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.solve
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram.get_values
../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#sage.numerical.mip.MixedIntegerLinearProgram
https://trac.sagemath.org/25588

Combinatorics, Release 9.7

We solve this problem through a Mixed Integer Linear Program.

The problem is known to be NP-complete.

EXAMPLES:

We create a poset, compute a set of linear extensions and check that we get back the poset from them:

sage: P = Poset([[1,4], [3], [4,5,3], [6], [], [6], []])
sage: P.dimension()
3
sage: dim, L = P.dimension(certificate=True)
sage: L # random -- architecture-dependent
[[0, 2, 4, 5, 1, 3, 6], [2, 5, 0, 1, 3, 4, 6], [0, 1, 2, 3, 5, 6, 4]]
sage: Poset((L[0], lambda x, y: all(l.index(x) < l.index(y) for l in L))) == P
True

According to Schnyder’s theorem, the incidence poset (of height 2) of a graph has dimension ≤ 3 if and
only if the graph is planar:

sage: G = graphs.CompleteGraph(4)
sage: P = Poset(DiGraph({(u,v):[u,v] for u,v,_ in G.edges(sort=True)}))
sage: P.dimension()
3

sage: G = graphs.CompleteBipartiteGraph(3,3)
sage: P = Poset(DiGraph({(u,v):[u,v] for u,v,_ in G.edges(sort=True)}))
sage: P.dimension() # not tested - around 4s with CPLEX
4

disjoint_union(other, labels='pairs')
Return a poset isomorphic to disjoint union (also called direct sum) of the poset with other.

The disjoint union of 𝑃 and 𝑄 is a poset that contains every element and relation from both 𝑃 and 𝑄, and
where every element of 𝑃 is incomparable to every element of 𝑄.

Mathematically, it is only defined when 𝑃 and 𝑄 have no common element; here we force that by giving
them different names in the resulting poset.

INPUT:

• other, a poset.

• labels - (defaults to ‘pairs’) If set to ‘pairs’, each element v in this poset will be named (0,v) and
each element u in other will be named (1,u) in the result. If set to ‘integers’, the elements of the
result will be relabeled with consecutive integers.

EXAMPLES:

sage: P1 = Poset({'a': 'b'})
sage: P2 = Poset({'c': 'd'})
sage: P = P1.disjoint_union(P2); P
Finite poset containing 4 elements
sage: sorted(P.cover_relations())
[[(0, 'a'), (0, 'b')], [(1, 'c'), (1, 'd')]]
sage: P = P1.disjoint_union(P2, labels='integers')
sage: P.cover_relations()
[[2, 3], [0, 1]]

(continues on next page)

5.1. Comprehensive Module List 1961

../../../../../../../html/en/reference/numerical/sage/numerical/mip.html#module-sage.numerical.mip

Combinatorics, Release 9.7

(continued from previous page)

sage: N5 = posets.PentagonPoset(); N5
Finite lattice containing 5 elements
sage: N5.disjoint_union(N5) # Union of lattices is not a lattice
Finite poset containing 10 elements

We show how to get literally direct sum with elements untouched:

sage: P = P1.disjoint_union(P2).relabel(lambda x: x[1])
sage: sorted(P.cover_relations())
[['a', 'b'], ['c', 'd']]

See also:

connected_components()

dual()
Return the dual poset of the given poset.

In the dual of a poset 𝑃 we have 𝑥 ≤ 𝑦 iff 𝑦 ≤ 𝑥 in 𝑃 .

EXAMPLES:

sage: P = Poset({1: [2, 3], 3: [4]})
sage: P.cover_relations()
[[1, 2], [1, 3], [3, 4]]
sage: Q = P.dual()
sage: Q.cover_relations()
[[4, 3], [3, 1], [2, 1]]

Dual of a lattice is a lattice; dual of a meet-semilattice is join-semilattice and vice versa. Also the dual of
a (non-)facade poset is again (non-)facade:

sage: V = MeetSemilattice({1: [2, 3]}, facade=False)
sage: A = V.dual(); A
Finite join-semilattice containing 3 elements
sage: A(2) < A(1)
True

See also:

is_self_dual()

evacuation()
Compute evacuation on the linear extension associated to the poset self.

OUTPUT:

• an isomorphic poset, with the same default linear extension

Evacuation is defined on a poset self of size 𝑛 by applying the evacuation operator
(𝜏1 · · · 𝜏𝑛−1)(𝜏1 · · · 𝜏𝑛−2) · · · (𝜏1), to the default linear extension 𝜋 of self (see evacuation()),
and relabeling self accordingly. For more details see [Stan2009].

EXAMPLES:

1962 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/finite_posets.html#sage.categories.finite_posets.FinitePosets.ParentMethods.is_self_dual

Combinatorics, Release 9.7

sage: P = Poset(([1,2], [[1,2]]), linear_extension=True, facade=False)
sage: P.evacuation()
Finite poset containing 2 elements with distinguished linear extension
sage: P.evacuation() == P
True

sage: P = Poset(([1,2,3,4,5,6,7], [[1,2],[1,4],[2,3],[2,5],[3,6],[4,7],[5,6]]),␣
→˓linear_extension=True, facade=False)
sage: P.list()
[1, 2, 3, 4, 5, 6, 7]
sage: Q = P.evacuation(); Q
Finite poset containing 7 elements with distinguished linear extension
sage: Q.cover_relations()
[[1, 2], [1, 3], [2, 5], [3, 4], [3, 6], [4, 7], [6, 7]]

Note that the results depend on the linear extension associated to the poset:

sage: P = Poset(([1,2,3,4,5,6,7], [[1,2],[1,4],[2,3],[2,5],[3,6],[4,7],[5,6]]))
sage: P.list()
[1, 2, 3, 5, 6, 4, 7]
sage: Q = P.evacuation(); Q
Finite poset containing 7 elements with distinguished linear extension
sage: Q.cover_relations()
[[1, 2], [1, 5], [2, 3], [5, 6], [5, 4], [6, 7], [4, 7]]

Here is an example of a poset where the elements are not labelled by {1, 2, . . . , 𝑛}:

sage: P = Poset((divisors(15), attrcall("divides")), linear_extension = True)
sage: P.list()
[1, 3, 5, 15]
sage: Q = P.evacuation(); Q
Finite poset containing 4 elements with distinguished linear extension
sage: Q.cover_relations()
[[1, 3], [1, 5], [3, 15], [5, 15]]

See also:

• linear_extension()

• with_linear_extension() and the linear_extension option of Poset()

• evacuation()

• promotion()

AUTHOR:

• Anne Schilling (2012-02-18)

f_polynomial()
Return the 𝑓 -polynomial of the poset.

The poset is expected to be bounded.

This is the 𝑓 -polynomial of the order complex of the poset minus its bounds.

The coefficient of 𝑞𝑖 is the number of chains of 𝑖+ 1 elements containing both bounds of the poset.

5.1. Comprehensive Module List 1963

Combinatorics, Release 9.7

Note: This is slightly different from the fPolynomial method in Macaulay2.

EXAMPLES:

sage: P = posets.DiamondPoset(5)
sage: P.f_polynomial()
3*q^2 + q

sage: P = Poset({1: [2, 3], 2: [4], 3: [5], 4: [6], 5: [7], 6: [7]})
sage: P.f_polynomial()
q^4 + 4*q^3 + 5*q^2 + q

See also:

is_bounded(), h_polynomial(), order_complex(), sage.topology.cell_complex.
GenericCellComplex.f_vector()

factor()
Factor the poset as a Cartesian product of smaller posets.

This only works for connected posets for the moment.

The decomposition of a connected poset as a Cartesian product of posets (prime in the sense that they
cannot be written as Cartesian products) is unique up to reordering and isomorphism.

OUTPUT:

a list of posets

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: Q = P*P
sage: Q.factor()
[Finite poset containing 5 elements,
Finite poset containing 5 elements]

sage: P1 = posets.ChainPoset(3)
sage: P2 = posets.ChainPoset(7)
sage: P1.factor()
[Finite lattice containing 3 elements]
sage: (P1 * P2).factor()
[Finite poset containing 7 elements,
Finite poset containing 3 elements]

sage: P = posets.TamariLattice(4)
sage: (P*P).factor()
[Finite poset containing 14 elements,
Finite poset containing 14 elements]

See also:

product()

REFERENCES:

flag_f_polynomial()
Return the flag 𝑓 -polynomial of the poset.

1964 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/topology/sage/topology/cell_complex.html#sage.topology.cell_complex.GenericCellComplex.f_vector
../../../../../../../html/en/reference/topology/sage/topology/cell_complex.html#sage.topology.cell_complex.GenericCellComplex.f_vector

Combinatorics, Release 9.7

The poset is expected to be bounded and ranked.

This is the sum, over all chains containing both bounds, of a monomial encoding the ranks of the elements
of the chain.

More precisely, if𝑃 is a bounded ranked poset, then the flag 𝑓 -polynomial of𝑃 is defined as the polynomial∑︁
𝑝0<𝑝1<...<𝑝𝑘,

𝑝0=min𝑃, 𝑝𝑘=max𝑃

𝑥𝜌(𝑝1)𝑥𝜌(𝑝2) · · ·𝑥𝜌(𝑝𝑘) ∈ Z[𝑥1, 𝑥2, · · · , 𝑥𝑛],

where min𝑃 and max𝑃 are (respectively) the minimum and the maximum of 𝑃 , where 𝜌 is the rank
function of 𝑃 (normalized to satisfy 𝜌(min𝑃) = 0), and where 𝑛 is the rank of max𝑃 . (Note that the
indeterminate 𝑥0 does not actually appear in the polynomial.)

For technical reasons, the polynomial is returned in the slightly larger ring Z[𝑥0, 𝑥1, 𝑥2, · · · , 𝑥𝑛+1] by this
method.

See Wikipedia article h-vector.

EXAMPLES:

sage: P = posets.DiamondPoset(5)
sage: P.flag_f_polynomial()
3*x1*x2 + x2

sage: P = Poset({1: [2, 3], 2: [4], 3: [5], 4: [6], 5: [6]})
sage: fl = P.flag_f_polynomial(); fl
2*x1*x2*x3 + 2*x1*x3 + 2*x2*x3 + x3
sage: q = polygen(ZZ,'q')
sage: fl(q,q,q,q) == P.f_polynomial()
True

sage: P = Poset({1: [2, 3, 4], 2: [5], 3: [5], 4: [5], 5: [6]})
sage: P.flag_f_polynomial()
3*x1*x2*x3 + 3*x1*x3 + x2*x3 + x3

See also:

is_bounded(), flag_h_polynomial()

flag_h_polynomial()
Return the flag ℎ-polynomial of the poset.

The poset is expected to be bounded and ranked.

If 𝑃 is a bounded ranked poset whose maximal element has rank 𝑛 (where the minimal element is set to
have rank 0), then the flag ℎ-polynomial of 𝑃 is defined as the polynomial

𝑛∏︁
𝑘=1

(1− 𝑥𝑘) · 𝑓
(︂

𝑥1
1− 𝑥1

,
𝑥2

1− 𝑥2
, · · · , 𝑥𝑛

1− 𝑥𝑛

)︂
∈ Z[𝑥1, 𝑥2, · · · , 𝑥𝑛],

where 𝑓 is the flag 𝑓 -polynomial of 𝑃 (see flag_f_polynomial()).

For technical reasons, the polynomial is returned in the slightly larger ring Q[𝑥0, 𝑥1, 𝑥2, · · · , 𝑥𝑛+1] by this
method.

See Wikipedia article h-vector.

EXAMPLES:

5.1. Comprehensive Module List 1965

https://en.wikipedia.org/wiki/h-vector
https://en.wikipedia.org/wiki/h-vector

Combinatorics, Release 9.7

sage: P = posets.DiamondPoset(5)
sage: P.flag_h_polynomial()
2*x1*x2 + x2

sage: P = Poset({1: [2, 3], 2: [4], 3: [5], 4: [6], 5: [6]})
sage: fl = P.flag_h_polynomial(); fl
-x1*x2*x3 + x1*x3 + x2*x3 + x3
sage: q = polygen(ZZ,'q')
sage: fl(q,q,q,q) == P.h_polynomial()
True

sage: P = Poset({1: [2, 3, 4], 2: [5], 3: [5], 4: [5], 5: [6]})
sage: P.flag_h_polynomial()
2*x1*x3 + x3

sage: P = posets.ChainPoset(4)
sage: P.flag_h_polynomial()
x3

See also:

is_bounded(), flag_f_polynomial()

frank_network()
Return Frank’s network of the poset.

This is defined in Section 8 of [BF1999].

OUTPUT:

A pair (𝐺, 𝑒), where 𝐺 is Frank’s network of 𝑃 encoded as a DiGraph, and 𝑒 is the cost function on its
edges encoded as a dictionary (indexed by these edges, which in turn are encoded as tuples of 2 vertices).

Note: Frank’s network of 𝑃 is a certain directed graph with 2|𝑃 | + 2 vertices, defined in Section 8 of
[BF1999]. Its set of vertices consists of two vertices (0, 𝑝) and (1, 𝑝) for each element 𝑝 of 𝑃 , as well as
two vertices (−1, 0) and (2, 0). (These notations are not the ones used in [BF1999]; see the table below for
their relation.) The edges are:

• for each 𝑝 in 𝑃 , an edge from (−1, 0) to (0, 𝑝);

• for each 𝑝 in 𝑃 , an edge from (1, 𝑝) to (2, 0);

• for each 𝑝 and 𝑞 in 𝑃 such that 𝑝 ≥ 𝑞, an edge from (0, 𝑝) to (1, 𝑞).

We make this digraph into a network in the sense of flow theory as follows: The vertex (−1, 0) is considered
as the source of this network, and the vertex (2, 0) as the sink. The cost function is defined to be 1 on the
edge from (0, 𝑝) to (1, 𝑝) for each 𝑝 ∈ 𝑃 , and to be 0 on every other edge. The capacity is 1 on each edge.
Here is how to translate this notations into that used in [BF1999]:

our notations [BF1999]
(-1, 0) s
(0, p) x_p
(1, p) y_p
(2, 0) t
a[e] a(e)

EXAMPLES:

1966 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Combinatorics, Release 9.7

sage: ps = [[16,12,14,-13],[[12,14],[14,-13],[12,16],[16,-13]]]
sage: G, e = Poset(ps).frank_network()
sage: G.edges(sort=True)
[((-1, 0), (0, -13), None), ((-1, 0), (0, 12), None), ((-1, 0), (0, 14), None),␣
→˓((-1, 0), (0, 16), None), ((0, -13), (1, -13), None), ((0, -13), (1, 12),␣
→˓None), ((0, -13), (1, 14), None), ((0, -13), (1, 16), None), ((0, 12), (1,␣
→˓12), None), ((0, 14), (1, 12), None), ((0, 14), (1, 14), None), ((0, 16), (1,␣
→˓12), None), ((0, 16), (1, 16), None), ((1, -13), (2, 0), None), ((1, 12), (2,␣
→˓0), None), ((1, 14), (2, 0), None), ((1, 16), (2, 0), None)]
sage: e
{((-1, 0), (0, -13)): 0,
((-1, 0), (0, 12)): 0,
((-1, 0), (0, 14)): 0,
((-1, 0), (0, 16)): 0,
((0, -13), (1, -13)): 1,
((0, -13), (1, 12)): 0,
((0, -13), (1, 14)): 0,
((0, -13), (1, 16)): 0,
((0, 12), (1, 12)): 1,
((0, 14), (1, 12)): 0,
((0, 14), (1, 14)): 1,
((0, 16), (1, 12)): 0,
((0, 16), (1, 16)): 1,
((1, -13), (2, 0)): 0,
((1, 12), (2, 0)): 0,
((1, 14), (2, 0)): 0,
((1, 16), (2, 0)): 0}
sage: qs = [[1,2,3,4,5,6,7,8,9],[[1,3],[3,4],[5,7],[1,9],[2,3]]]
sage: Poset(qs).frank_network()
(Digraph on 20 vertices,
{((-1, 0), (0, 1)): 0,
((-1, 0), (0, 2)): 0,
((-1, 0), (0, 3)): 0,
((-1, 0), (0, 4)): 0,
((-1, 0), (0, 5)): 0,
((-1, 0), (0, 6)): 0,
((-1, 0), (0, 7)): 0,
((-1, 0), (0, 8)): 0,
((-1, 0), (0, 9)): 0,
((0, 1), (1, 1)): 1,
((0, 2), (1, 2)): 1,
((0, 3), (1, 1)): 0,
((0, 3), (1, 2)): 0,
((0, 3), (1, 3)): 1,
((0, 4), (1, 1)): 0,
((0, 4), (1, 2)): 0,
((0, 4), (1, 3)): 0,
((0, 4), (1, 4)): 1,
((0, 5), (1, 5)): 1,
((0, 6), (1, 6)): 1,
((0, 7), (1, 5)): 0,
((0, 7), (1, 7)): 1,
((0, 8), (1, 8)): 1,

(continues on next page)

5.1. Comprehensive Module List 1967

Combinatorics, Release 9.7

(continued from previous page)

((0, 9), (1, 1)): 0,
((0, 9), (1, 9)): 1,
((1, 1), (2, 0)): 0,
((1, 2), (2, 0)): 0,
((1, 3), (2, 0)): 0,
((1, 4), (2, 0)): 0,
((1, 5), (2, 0)): 0,
((1, 6), (2, 0)): 0,
((1, 7), (2, 0)): 0,
((1, 8), (2, 0)): 0,
((1, 9), (2, 0)): 0})

AUTHOR:

• Darij Grinberg (2013-05-09)

ge(x, y)
Return True if 𝑥 is greater than or equal to 𝑦 in the poset, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: P.is_gequal(3, 1)
True
sage: P.is_gequal(2, 2)
True
sage: P.is_gequal(0, 1)
False

See also:

is_greater_than(), is_lequal().

graphviz_string(graph_string='graph', edge_string='--')
Return a representation in the DOT language, ready to render in graphviz.

See http://www.graphviz.org/doc/info/lang.html for more information about graphviz.

EXAMPLES:

sage: P = Poset({'a':['b'],'b':['d'],'c':['d'],'d':['f'],'e':['f'],'f':[]})
sage: print(P.graphviz_string())
graph {
"f";"d";"b";"a";"c";"e";
"f"--"e";"d"--"c";"b"--"a";"d"--"b";"f"--"d";
}

greene_shape()
Return the Greene-Kleitman partition of self.

The Greene-Kleitman partition of a finite poset 𝑃 is the partition (𝑐1 − 𝑐0, 𝑐2 − 𝑐1, 𝑐3 − 𝑐2, . . .), where 𝑐𝑘
is the maximum cardinality of a union of 𝑘 chains of 𝑃 . Equivalently, this is the conjugate of the partition
(𝑎1 − 𝑎0, 𝑎2 − 𝑎1, 𝑎3 − 𝑎2, . . .), where 𝑎𝑘 is the maximum cardinality of a union of 𝑘 antichains of 𝑃 .

See many sources, e. g., [BF1999], for proofs of this equivalence.

EXAMPLES:

1968 Chapter 5. Comprehensive Module List

http://www.graphviz.org/doc/info/lang.html

Combinatorics, Release 9.7

sage: P = Poset([[3,2,1],[[3,1],[2,1]]])
sage: P.greene_shape()
[2, 1]
sage: P = Poset([[1,2,3,4],[[1,4],[2,4],[4,3]]])
sage: P.greene_shape()
[3, 1]
sage: P = Poset([[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22],[[1,
→˓4],[2,4],[4,3]]])
sage: P.greene_shape()
[3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
sage: P = Poset([[],[]])
sage: P.greene_shape()
[]

AUTHOR:

• Darij Grinberg (2013-05-09)

gt(x, y)
Return True if 𝑥 is greater than but not equal to 𝑦 in the poset, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: P.is_greater_than(3, 1)
True
sage: P.is_greater_than(1, 2)
False
sage: P.is_greater_than(3, 3)
False
sage: P.is_greater_than(0, 1)
False

For non-facade posets also > works:

sage: P = Poset({3: [1, 2]}, facade=False)
sage: P(2) > P(3)
True

See also:

is_gequal(), is_less_than().

h_polynomial()
Return the ℎ-polynomial of a bounded poset self.

This is the ℎ-polynomial of the order complex of the poset minus its bounds.

This is related to the 𝑓 -polynomial by a simple change of variables:

ℎ(𝑞) = (1− 𝑞)deg 𝑓𝑓
(︂

𝑞

1− 𝑞

)︂
,

where 𝑓 and ℎ denote the 𝑓 -polynomial and the ℎ-polynomial, respectively.

See Wikipedia article h-vector.

5.1. Comprehensive Module List 1969

https://en.wikipedia.org/wiki/h-vector

Combinatorics, Release 9.7

Warning: This is slightly different from the hPolynomial method in Macaulay2.

EXAMPLES:

sage: P = posets.AntichainPoset(3).order_ideals_lattice()
sage: P.h_polynomial()
q^3 + 4*q^2 + q
sage: P = posets.DiamondPoset(5)
sage: P.h_polynomial()
2*q^2 + q
sage: P = Poset({1: []})
sage: P.h_polynomial()
1

See also:

is_bounded(), f_polynomial(), order_complex(), sage.topology.simplicial_complex.
SimplicialComplex.h_vector()

has_bottom()
Return True if the poset has a unique minimal element, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[3], 1:[3], 2:[3], 3:[4], 4:[]})
sage: P.has_bottom()
False
sage: Q = Poset({0:[1], 1:[]})
sage: Q.has_bottom()
True

See also:

• Dual Property: has_top()

• Stronger properties: is_bounded()

• Other: bottom()

has_isomorphic_subposet(other)
Return True if the poset contains a subposet isomorphic to other.

By subposet we mean that there exist a set X of elements such that self.subposet(X) is isomorphic to
other.

INPUT:

• other – a finite poset

EXAMPLES:

sage: D = Poset({1:[2,3], 2:[4], 3:[4]})
sage: T = Poset({1:[2,3], 2:[4,5], 3:[6,7]})
sage: N5 = posets.PentagonPoset()

sage: N5.has_isomorphic_subposet(T)
False

(continues on next page)

1970 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/topology/sage/topology/simplicial_complex.html#sage.topology.simplicial_complex.SimplicialComplex.h_vector
../../../../../../../html/en/reference/topology/sage/topology/simplicial_complex.html#sage.topology.simplicial_complex.SimplicialComplex.h_vector

Combinatorics, Release 9.7

(continued from previous page)

sage: N5.has_isomorphic_subposet(D)
True

sage: len([P for P in Posets(5) if P.has_isomorphic_subposet(D)])
11

has_top()
Return True if the poset has a unique maximal element, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[3], 1:[3], 2:[3], 3:[4, 5], 4:[], 5:[]})
sage: P.has_top()
False
sage: Q = Poset({0:[3], 1:[3], 2:[3], 3:[4], 4:[]})
sage: Q.has_top()
True

See also:

• Dual Property: has_bottom()

• Stronger properties: is_bounded()

• Other: top()

hasse_diagram()
Return the Hasse diagram of the poset as a Sage DiGraph.

The Hasse diagram is a directed graph where vertices are the elements of the poset and there is an edge
from 𝑢 to 𝑣 whenever 𝑣 covers 𝑢 in the poset.

If dot2tex is installed, then this sets the Hasse diagram’s latex options to use the dot2tex formatting.

EXAMPLES:

sage: P = posets.DivisorLattice(12)
sage: H = P.hasse_diagram(); H
Digraph on 6 vertices
sage: P.cover_relations()
[[1, 2], [1, 3], [2, 4], [2, 6], [3, 6], [4, 12], [6, 12]]
sage: H.edges(sort=True, labels=False)
[(1, 2), (1, 3), (2, 4), (2, 6), (3, 6), (4, 12), (6, 12)]

height(certificate=False)
Return the height (number of elements in a longest chain) of the poset.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return (h, c), where h is the height and c is a chain of maximum cardinality.
If certificate=False return only the height.

EXAMPLES:

5.1. Comprehensive Module List 1971

../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Combinatorics, Release 9.7

sage: P = Poset({0: [1], 2: [3, 4], 4: [5, 6]})
sage: P.height()
3
sage: posets.PentagonPoset().height(certificate=True)
(4, [0, 2, 3, 4])

incidence_algebra(R, prefix='I')
Return the incidence algebra of self over R.

OUTPUT:

An instance of sage.combinat.posets.incidence_algebras.IncidenceAlgebra.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: P.incidence_algebra(QQ)
Incidence algebra of Finite lattice containing 16 elements
over Rational Field

incomparability_graph()
Return the incomparability graph of the poset.

This is the complement of the comparability graph, i.e. an undirected graph where vertices are the elements
of the poset and there is an edge between vertices if they are not comparable in the poset.

EXAMPLES:

sage: Y = Poset({1: [2], 2: [3, 4]})
sage: g = Y.incomparability_graph(); g
Incomparability graph on 4 vertices
sage: Y.compare_elements(1, 3) is not None
True
sage: g.has_edge(1, 3)
False

See also:

comparability_graph()

interval(x, y)
Return a list of the elements 𝑧 such that 𝑥 ≤ 𝑧 ≤ 𝑦.

INPUT:

• x – any element of the poset

• y – any element of the poset

EXAMPLES:

sage: uc = [[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]]
sage: dag = DiGraph(dict(zip(range(len(uc)),uc)))
sage: P = Poset(dag)
sage: I = set(map(P,[2,5,6,4,7]))
sage: I == set(P.interval(2,7))
True

1972 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: dg = DiGraph({"a":["b","c"], "b":["d"], "c":["d"]})
sage: P = Poset(dg, facade = False)
sage: P.interval("a","d")
[a, b, c, d]

intervals_number()
Return the number of relations in the poset.

A relation is a pair of elements 𝑥 and 𝑦 such that 𝑥 ≤ 𝑦 in the poset.

Relations are also often called intervals. The number of intervals is the dimension of the incidence algebra.

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: P.relations_number()
13

sage: posets.TamariLattice(4).relations_number()
68

See also:

relations_iterator(), relations()

intervals_poset()
Return the natural partial order on the set of intervals of the poset.

OUTPUT:

a finite poset

The poset of intervals of a poset 𝑃 has the set of intervals [𝑥, 𝑦] in 𝑃 as elements, endowed with the order
relation defined by [𝑥1, 𝑦1] ≤ [𝑥2, 𝑦2] if and only if 𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2.

This is also called 𝑃 to the power 2, meaning the poset of poset-morphisms from the 2-chain to 𝑃 .

If 𝑃 is a lattice, the result is also a lattice.

EXAMPLES:

sage: P = Poset({0:[1]})
sage: P.intervals_poset()
Finite poset containing 3 elements

sage: P = posets.PentagonPoset()
sage: P.intervals_poset()
Finite lattice containing 13 elements

is_EL_labelling(f, return_raising_chains=False)
Return True if f is an EL labelling of self.

A labelling 𝑓 of the edges of the Hasse diagram of a poset is called an EL labelling (edge lexicographic
labelling) if for any two elements 𝑢 and 𝑣 with 𝑢 ≤ 𝑣,

• there is a unique 𝑓 -raising chain from 𝑢 to 𝑣 in the Hasse diagram, and this chain is lexicographically
first among all chains from 𝑢 to 𝑣.

For more details, see [Bj1980].

INPUT:

5.1. Comprehensive Module List 1973

Combinatorics, Release 9.7

• f – a function taking two elements a and b in self such that b covers a and returning elements in a
totally ordered set.

• return_raising_chains (optional; default:False) if True, returns the set of all raising chains in
self, if possible.

EXAMPLES:

Let us consider a Boolean poset:

sage: P = Poset([[(0,0),(0,1),(1,0),(1,1)],[[(0,0),(0,1)],[(0,0),(1,0)],[(0,1),
→˓(1,1)],[(1,0),(1,1)]]],facade=True)
sage: label = lambda a,b: min(i for i in [0,1] if a[i] != b[i])
sage: P.is_EL_labelling(label)
True
sage: P.is_EL_labelling(label,return_raising_chains=True)
{((0, 0), (0, 1)): [1],
((0, 0), (1, 0)): [0],
((0, 0), (1, 1)): [0, 1],
((0, 1), (1, 1)): [0],
((1, 0), (1, 1)): [1]}

is_antichain_of_poset(elms)
Return True if elms is an antichain of the poset and False otherwise.

Set of elements are an antichain of a poset if they are pairwise incomparable.

EXAMPLES:

sage: P = posets.BooleanLattice(5)
sage: P.is_antichain_of_poset([3, 5, 7])
False
sage: P.is_antichain_of_poset([3, 5, 14])
True

is_bounded()
Return True if the poset is bounded, and False otherwise.

A poset is bounded if it contains both a unique maximal element and a unique minimal element.

EXAMPLES:

sage: P = Poset({0:[3], 1:[3], 2:[3], 3:[4, 5], 4:[], 5:[]})
sage: P.is_bounded()
False
sage: Q = posets.DiamondPoset(5)
sage: Q.is_bounded()
True

See also:

• Weaker properties: has_bottom(), has_top()

• Other: with_bounds(), without_bounds()

is_chain()
Return True if the poset is totally ordered (“chain”), and False otherwise.

EXAMPLES:

1974 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: I = Poset({0:[1], 1:[2], 2:[3], 3:[4]})
sage: I.is_chain()
True

sage: II = Poset({0:[1], 2:[3]})
sage: II.is_chain()
False

sage: V = Poset({0:[1, 2]})
sage: V.is_chain()
False

is_chain_of_poset(elms, ordered=False)
Return True if elms is a chain of the poset, and False otherwise.

Set of elements are a chain of a poset if they are comparable to each other.

INPUT:

• elms – a list or other iterable containing some elements of the poset

• ordered – a Boolean. If True, then return True only if elements in elms are strictly increasing in
the poset; this makes no sense if elms is a set. If False (the default), then elements can be repeated
and be in any order.

EXAMPLES:

sage: P = Poset((divisors(12), attrcall("divides")))
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_chain_of_poset([12, 3])
True
sage: P.is_chain_of_poset({3, 4, 12})
False
sage: P.is_chain_of_poset([12, 3], ordered=True)
False
sage: P.is_chain_of_poset((1, 1, 3))
True
sage: P.is_chain_of_poset((1, 1, 3), ordered=True)
False
sage: P.is_chain_of_poset((1, 3), ordered=True)
True

is_connected()
Return True if the poset is connected, and False otherwise.

A poset is connected if its Hasse diagram is connected.

If a poset is not connected, then it can be divided to parts 𝑆1 and 𝑆2 so that every element of 𝑆1 is incom-
parable to every element of 𝑆2.

EXAMPLES:

sage: P = Poset({1:[2, 3], 3:[4, 5]})
sage: P.is_connected()
True

(continues on next page)

5.1. Comprehensive Module List 1975

Combinatorics, Release 9.7

(continued from previous page)

sage: P = Poset({1:[2, 3], 3:[4, 5], 6:[7, 8]})
sage: P.is_connected()
False

See also:

connected_components()

is_d_complete()
Return True if a poset is d-complete and False otherwise.

See also:

• d_complete

EXAMPLES:

sage: from sage.combinat.posets.posets import FinitePoset
sage: A = Poset({0: [1,2]})
sage: A.is_d_complete()
False

sage: from sage.combinat.posets.poset_examples import Posets
sage: B = Posets.DoubleTailedDiamond(3)
sage: B.is_d_complete()
True

sage: C = Poset({0: [2], 1: [2], 2: [3, 4], 3: [5], 4: [5], 5: [6]})
sage: C.is_d_complete()
False

sage: D = Poset({0: [1, 2], 1: [4], 2: [4], 3: [4]})
sage: D.is_d_complete()
False

sage: P = Posets.YoungDiagramPoset(Partition([3, 2, 2]), dual=True)
sage: P.is_d_complete()
True

is_eulerian(k=None, certificate=False)
Return True if the poset is Eulerian, and False otherwise.

The poset is expected to be graded and bounded.

A poset is Eulerian if every non-trivial interval has the same number of elements of even rank as of odd
rank. A poset is 𝑘-eulerian if every non-trivial interval up to rank 𝑘 is Eulerian.

See Wikipedia article Eulerian_poset.

INPUT:

• k, an integer – only check if the poset is 𝑘-eulerian. If None (the default), check if the poset is Eulerian.

• certificate, a Boolean – (default: False) whether to return a certificate

OUTPUT:

1976 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Eulerian_poset

Combinatorics, Release 9.7

• If certificate=True return either True, None or False, (a, b), where the interval (a, b) is
not Eulerian. If certificate=False return True or False.

EXAMPLES:

sage: P = Poset({0: [1, 2, 3], 1: [4, 5], 2: [4, 6], 3: [5, 6],
....: 4: [7, 8], 5: [7, 8], 6: [7, 8], 7: [9], 8: [9]})
sage: P.is_eulerian()
True
sage: P = Poset({0: [1, 2, 3], 1: [4, 5, 6], 2: [4, 6], 3: [5,6],
....: 4: [7], 5:[7], 6:[7]})
sage: P.is_eulerian()
False

Canonical examples of Eulerian posets are the face lattices of convex polytopes:

sage: P = polytopes.cube().face_lattice()
sage: P.is_eulerian()
True

A poset that is 3- but not 4-eulerian:

sage: P = Poset(DiGraph('MWW@_?W?@_?W??@??O@_?W?@_?W?@??O??')); P
Finite poset containing 14 elements
sage: P.is_eulerian(k=3)
True
sage: P.is_eulerian(k=4)
False

Getting an interval that is not Eulerian:

sage: P = posets.DivisorLattice(12)
sage: P.is_eulerian(certificate=True)
(False, (1, 4))

is_gequal(x, y)
Return True if 𝑥 is greater than or equal to 𝑦 in the poset, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: P.is_gequal(3, 1)
True
sage: P.is_gequal(2, 2)
True
sage: P.is_gequal(0, 1)
False

See also:

is_greater_than(), is_lequal().

is_graded()
Return True if the poset is graded, and False otherwise.

A poset is graded if all its maximal chains have the same length.

5.1. Comprehensive Module List 1977

Combinatorics, Release 9.7

There are various competing definitions for graded posets (see Wikipedia article Graded_poset). This
definition is from section 3.1 of Richard Stanley’s Enumerative Combinatorics, Vol. 1 [EnumComb1].
Some sources call these posets tiered.

Every graded poset is ranked. The converse is true for bounded posets, including lattices.

EXAMPLES:

sage: P = posets.PentagonPoset() # Not even ranked
sage: P.is_graded()
False

sage: P = Poset({1:[2, 3], 3:[4]}) # Ranked, but not graded
sage: P.is_graded()
False

sage: P = Poset({1:[3, 4], 2:[3, 4], 5:[6]})
sage: P.is_graded()
True

sage: P = Poset([[1], [2], [], [4], []])
sage: P.is_graded()
False

See also:

is_ranked(), level_sets()

is_greater_than(x, y)
Return True if 𝑥 is greater than but not equal to 𝑦 in the poset, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: P.is_greater_than(3, 1)
True
sage: P.is_greater_than(1, 2)
False
sage: P.is_greater_than(3, 3)
False
sage: P.is_greater_than(0, 1)
False

For non-facade posets also > works:

sage: P = Poset({3: [1, 2]}, facade=False)
sage: P(2) > P(3)
True

See also:

is_gequal(), is_less_than().

is_greedy(certificate=False)
Return True if the poset is greedy, and False otherwise.

A poset is greedy if every greedy linear extension has the same number of jumps.

INPUT:

1978 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Graded_poset

Combinatorics, Release 9.7

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, (A, B))where𝐴 and𝐵 are greedy
linear extension so that 𝐵 has more jumps. If certificate=False return True or False.

EXAMPLES:

This is not a self-dual property:

sage: W = Poset({1: [3, 4], 2: [4, 5]})
sage: M = W.dual()
sage: W.is_greedy()
True
sage: M.is_greedy()
False

Getting a certificate:

sage: N = Poset({1: [3], 2: [3, 4]})
sage: N.is_greedy(certificate=True)
(False, ([1, 2, 4, 3], [2, 4, 1, 3]))

is_incomparable_chain_free(m, n=None)
Return True if the poset is (𝑚+ 𝑛)-free, and False otherwise.

A poset is (𝑚 + 𝑛)-free if there is no incomparable chains of lengths 𝑚 and 𝑛. Three cases have special
name (see [EnumComb1], exercise 3.15):

• ‘’interval order” is (2 + 2)-free

• ‘’semiorder” (or ‘’unit interval order”) is (1 + 3)-free and (2 + 2)-free

• ‘’weak order” is (1 + 2)-free.

INPUT:

• m, n - positive integers

It is also possible to give a list of integer pairs as argument. See below for an example.

EXAMPLES:

sage: B3 = posets.BooleanLattice(3)
sage: B3.is_incomparable_chain_free(1, 3)
True
sage: B3.is_incomparable_chain_free(2, 2)
False

sage: IP6 = posets.IntegerPartitions(6)
sage: IP6.is_incomparable_chain_free(1, 3)
False
sage: IP6.is_incomparable_chain_free(2, 2)
True

A list of pairs as an argument:

sage: B3.is_incomparable_chain_free([[1, 3], [2, 2]])
False

5.1. Comprehensive Module List 1979

Combinatorics, Release 9.7

We show how to get an incomparable chain pair:

sage: P = posets.PentagonPoset()
sage: chains_1_2 = Poset({0:[], 1:[2]})
sage: incomps = P.isomorphic_subposets(chains_1_2)[0]
sage: sorted(incomps.list()), incomps.cover_relations()
([1, 2, 3], [[2, 3]])

AUTHOR:

• Eric Rowland (2013-05-28)

is_induced_subposet(other)
Return True if the poset is an induced subposet of other, and False otherwise.

A poset 𝑃 is an induced subposet of 𝑄 if every element of 𝑃 is an element of 𝑄, and 𝑥 ≤𝑃 𝑦 iff 𝑥 ≤𝑄 𝑦.
Note that “induced” here has somewhat different meaning compared to that of graphs.

INPUT:

• other, a poset.

Note: This method does not check whether the poset is a isomorphic (i.e., up to relabeling) subposet of
other, but only if other directly contains the poset as an induced subposet. For isomorphic subposets see
has_isomorphic_subposet().

EXAMPLES:

sage: P = Poset({1:[2, 3]})
sage: Q = Poset({1:[2, 4], 2:[3]})
sage: P.is_induced_subposet(Q)
False
sage: R = Poset({0:[1], 1:[3, 4], 3:[5], 4:[2]})
sage: P.is_induced_subposet(R)
True

is_isomorphic(other, **kwds)
Return True if both posets are isomorphic.

EXAMPLES:

sage: P = Poset(([1,2,3],[[1,3],[2,3]]))
sage: Q = Poset(([4,5,6],[[4,6],[5,6]]))
sage: P.is_isomorphic(Q)
True

is_join_semilattice(certificate=False)
Return True if the poset has a join operation, and False otherwise.

A join is the least upper bound for given elements, if it exists.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, (a, b)) where elements 𝑎 and 𝑏
have no least upper bound. If certificate=False return True or False.

1980 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: P = Poset([[1,3,2], [4], [4,5,6], [6], [7], [7], [7], []])
sage: P.is_join_semilattice()
True

sage: P = Poset({1:[3, 4], 2:[3, 4], 3:[5], 4:[5]})
sage: P.is_join_semilattice()
False
sage: P.is_join_semilattice(certificate=True)
(False, (2, 1))

See also:

• Dual property: is_meet_semilattice()

• Stronger properties: is_lattice()

is_jump_critical(certificate=False)
Return True if the poset is jump-critical, and False otherwise.

A poset 𝑃 is jump-critical if every proper subposet has smaller jump number.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, e) so that removing element 𝑒 from
the poset does not decrease the jump number. If certificate=False return True or False.

EXAMPLES:

sage: P = Poset({1: [3, 6], 2: [3, 4, 5], 4: [6, 7], 5: [7]})
sage: P.is_jump_critical()
True

sage: P = posets.PentagonPoset()
sage: P.is_jump_critical()
False
sage: P.is_jump_critical(certificate=True)
(False, 3)

See also:

jump_number()

is_lequal(x, y)
Return True if 𝑥 is less than or equal to 𝑦 in the poset, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: P.is_lequal(2, 4)
True
sage: P.is_lequal(2, 2)
True
sage: P.is_lequal(0, 1)

(continues on next page)

5.1. Comprehensive Module List 1981

../../../../../../../html/en/reference/categories/sage/categories/finite_posets.html#sage.categories.finite_posets.FinitePosets.ParentMethods.is_lattice

Combinatorics, Release 9.7

(continued from previous page)

False
sage: P.is_lequal(3, 2)
False

See also:

is_less_than(), is_gequal().

is_less_than(x, y)
Return True if 𝑥 is less than but not equal to 𝑦 in the poset, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: P.is_less_than(1, 3)
True
sage: P.is_less_than(0, 1)
False
sage: P.is_less_than(2, 2)
False

For non-facade posets also < works:

sage: P = Poset({3: [1, 2]}, facade=False)
sage: P(1) < P(2)
False

See also:

is_lequal(), is_greater_than().

is_linear_extension(l)
Return whether l is a linear extension of self.

INPUT:

• l – a list (or iterable) containing all of the elements of self exactly once

EXAMPLES:

sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_
→˓extension=True)
sage: P.list()
[1, 2, 3, 4, 6, 12]
sage: P.is_linear_extension([1, 2, 4, 3, 6, 12])
True
sage: P.is_linear_extension([1, 2, 4, 6, 3, 12])
False

sage: [p for p in Permutations(list(P)) if P.is_linear_extension(p)]
[[1, 2, 3, 4, 6, 12],
[1, 2, 3, 6, 4, 12],
[1, 2, 4, 3, 6, 12],
[1, 3, 2, 4, 6, 12],
[1, 3, 2, 6, 4, 12]]
sage: list(P.linear_extensions())

(continues on next page)

1982 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[1, 2, 3, 4, 6, 12],
[1, 2, 4, 3, 6, 12],
[1, 3, 2, 4, 6, 12],
[1, 3, 2, 6, 4, 12],
[1, 2, 3, 6, 4, 12]]

Note: This is used and systematically tested in LinearExtensionsOfPosets

See also:

linear_extension(), linear_extensions()

is_linear_interval(x, y)
Return whether the interval [x, y] is linear.

This means that this interval is a total order.

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: P.is_linear_interval(0, 4)
False
sage: P.is_linear_interval(0, 3)
True
sage: P.is_linear_interval(1, 3)
False

is_meet_semilattice(certificate=False)
Return True if the poset has a meet operation, and False otherwise.

A meet is the greatest lower bound for given elements, if it exists.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, (a, b)) where elements 𝑎 and 𝑏
have no greatest lower bound. If certificate=False return True or False.

EXAMPLES:

sage: P = Poset({1:[2, 3, 4], 2:[5, 6], 3:[6], 4:[6, 7]})
sage: P.is_meet_semilattice()
True

sage: Q = P.dual()
sage: Q.is_meet_semilattice()
False

sage: V = posets.IntegerPartitions(5)
sage: V.is_meet_semilattice(certificate=True)
(False, ((2, 2, 1), (3, 1, 1)))

See also:

5.1. Comprehensive Module List 1983

Combinatorics, Release 9.7

• Dual property: is_join_semilattice()

• Stronger properties: is_lattice()

is_parent_of(x)
Return True if x is an element of the poset.

is_rank_symmetric()
Return True if the poset is rank symmetric, and False otherwise.

The poset is expected to be graded and connected.

A poset of rank ℎ (maximal chains have ℎ+ 1 elements) is rank symmetric if the number of elements are
equal in ranks 𝑖 and ℎ− 𝑖 for every 𝑖 in 0, 1, . . . , ℎ.

EXAMPLES:

sage: P = Poset({1:[3, 4, 5], 2:[3, 4, 5], 3:[6], 4:[7], 5:[7]})
sage: P.is_rank_symmetric()
True
sage: P = Poset({1:[2], 2:[3, 4], 3:[5], 4:[5]})
sage: P.is_rank_symmetric()
False

is_ranked()
Return True if the poset is ranked, and False otherwise.

A poset is ranked if there is a function 𝑟 from poset elements to integers so that 𝑟(𝑥) = 𝑟(𝑦) + 1 when 𝑥
covers 𝑦.

Informally said a ranked poset can be “levelized”: every element is on a “level”, and every cover relation
goes only one level up.

EXAMPLES:

sage: P = Poset(([1, 2, 3, 4], [[1, 2], [2, 4], [3, 4]]))
sage: P.is_ranked()
True

sage: P = Poset([[1, 5], [2, 6], [3], [4],[], [6, 3], [4]])
sage: P.is_ranked()
False

See also:

rank_function(), rank(), is_graded()

is_series_parallel()
Return True if the poset is series-parallel, and False otherwise.

A poset is series-parallel if it can be built up from one-element posets using the operations of disjoint
union and ordinal sum. This is also called N-free property: every poset that is not series-parallel contains
a subposet isomorphic to the 4-element N-shaped poset where 𝑎 > 𝑐, 𝑑 and 𝑏 > 𝑑.

Note: Some papers use the term N-free for posets having no N-shaped poset as a cover-preserving sub-
poset. This definition is not used here.

See Wikipedia article Series-parallel partial order.

1984 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/finite_posets.html#sage.categories.finite_posets.FinitePosets.ParentMethods.is_lattice
https://en.wikipedia.org/wiki/Series-parallel partial order

Combinatorics, Release 9.7

EXAMPLES:

sage: VA = Poset({1: [2, 3], 4: [5], 6: [5]})
sage: VA.is_series_parallel()
True
sage: big_N = Poset({1: [2, 4], 2: [3], 4:[7], 5:[6], 6:[7]})
sage: big_N.is_series_parallel()
False

is_slender(certificate=False)
Return True if the poset is slender, and False otherwise.

A finite graded poset is slender if every rank 2 interval contains three or four elements, as defined in
[Stan2009]. (This notion of “slender” is unrelated to the eponymous notion defined by Graetzer and Kelly
in “The Free m-Lattice on the Poset 𝐻”, Order 1 (1984), 47–65.)

This function does not check if the poset is graded or not. Instead it just returns True if the poset does not
contain 5 distinct elements 𝑥, 𝑦, 𝑎, 𝑏 and 𝑐 such that 𝑥l 𝑎, 𝑏, 𝑐l 𝑦 where l is the covering relation.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return either (True, None) or (False, (a, b)) so that the interval [𝑎, 𝑏]
has at least five elements. If certificate=False return True or False.

EXAMPLES:

sage: P = Poset(([1, 2, 3, 4], [[1, 2], [1, 3], [2, 4], [3, 4]]))
sage: P.is_slender()
True
sage: P = Poset(([1,2,3,4,5],[[1,2],[1,3],[1,4],[2,5],[3,5],[4,5]]))
sage: P.is_slender()
False

sage: W = WeylGroup(['A', 2])
sage: G = W.bruhat_poset()
sage: G.is_slender()
True
sage: W = WeylGroup(['A', 3])
sage: G = W.bruhat_poset()
sage: G.is_slender()
True

sage: P = posets.IntegerPartitions(6)
sage: P.is_slender(certificate=True)
(False, ((6,), (3, 2, 1)))

is_sperner()
Return True if the poset is Sperner, and False otherwise.

The poset is expected to be ranked.

A poset is Sperner, if no antichain is larger than the largest rank level (one of the sets of elements of the
same rank) in the poset.

See Wikipedia article Sperner_property_of_a_partially_ordered_set

5.1. Comprehensive Module List 1985

https://en.wikipedia.org/wiki/Sperner_property_of_a_partially_ordered_set

Combinatorics, Release 9.7

See also:

width(), dilworth_decomposition()

EXAMPLES:

sage: posets.SetPartitions(3).is_sperner()
True

sage: P = Poset({0:[3,4,5],1:[5],2:[5]})
sage: P.is_sperner()
False

isomorphic_subposets(other)
Return a list of subposets of self isomorphic to other.

By subposet we mean self.subposet(X) which is isomorphic to other and where X is a subset of
elements of self.

INPUT:

• other – a finite poset

EXAMPLES:

sage: C2 = Poset({0:[1]})
sage: C3 = Poset({'a':['b'], 'b':['c']})
sage: L = sorted(x.cover_relations() for x in C3.isomorphic_subposets(C2))
sage: for x in L: print(x)
[['a', 'b']]
[['a', 'c']]
[['b', 'c']]

sage: D = Poset({1:[2,3], 2:[4], 3:[4]})
sage: N5 = posets.PentagonPoset()
sage: len(N5.isomorphic_subposets(D))
2

Note: If this function takes too much time, try using isomorphic_subposets_iterator().

isomorphic_subposets_iterator(other)
Return an iterator over the subposets of self isomorphic to other.

By subposet we mean self.subposet(X) which is isomorphic to other and where X is a subset of
elements of self.

INPUT:

• other – a finite poset

EXAMPLES:

sage: D = Poset({1:[2,3], 2:[4], 3:[4]})
sage: N5 = posets.PentagonPoset()
sage: for P in N5.isomorphic_subposets_iterator(D):
....: print(P.cover_relations())
[[0, 1], [0, 2], [1, 4], [2, 4]]

(continues on next page)

1986 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[0, 1], [0, 3], [1, 4], [3, 4]]
[[0, 1], [0, 2], [1, 4], [2, 4]]
[[0, 1], [0, 3], [1, 4], [3, 4]]

Warning: This function will return same subposet as many times as there are automorphism on it.
This is due to subgraph_search_iterator() returning labelled subgraphs. On the other hand, this
function does not eat memory like isomorphic_subposets() does.

See also:

sage.combinat.posets.lattices.FiniteLatticePoset.isomorphic_sublattices_iterator().

join(x, y)
Return the join of two elements x, y in the poset if the join exists; and None otherwise.

EXAMPLES:

sage: D = Poset({1:[2,3], 2:[4], 3:[4]})
sage: D.join(2, 3)
4
sage: P = Poset({'e':['b'], 'f':['b', 'c', 'd'], 'g':['c', 'd'],
....: 'b':['a'], 'c':['a']})
sage: P.join('a', 'b')
'a'
sage: P.join('e', 'a')
'a'
sage: P.join('c', 'b')
'a'
sage: P.join('e', 'f')
'b'
sage: P.join('e', 'g')
'a'
sage: P.join('c', 'd') is None
True
sage: P.join('g', 'f') is None
True

jump_number(certificate=False)
Return the jump number of the poset.

A jump in a linear extension [𝑒1, . . . , 𝑒𝑛] of a poset 𝑃 is a pair (𝑒𝑖, 𝑒𝑖+1) so that 𝑒𝑖+1 does not cover 𝑒𝑖 in
𝑃 . The jump number of a poset is the minimal number of jumps in linear extensions of a poset.

INPUT:

• certificate – (default: False) Whether to return a certificate

OUTPUT:

• If certificate=True return a pair (𝑛, 𝑙) where 𝑛 is the jump number and 𝑙 is a linear extension with
𝑛 jumps. If certificate=False return only the jump number.

EXAMPLES:

5.1. Comprehensive Module List 1987

../../../../../../../html/en/reference/graphs/sage/graphs/generic_graph.html#sage.graphs.generic_graph.GenericGraph.subgraph_search_iterator

Combinatorics, Release 9.7

sage: B3 = posets.BooleanLattice(3)
sage: B3.jump_number()
3

sage: N = Poset({1: [3, 4], 2: [3]})
sage: N.jump_number(certificate=True)
(1, [1, 4, 2, 3])

ALGORITHM:

It is known that every poset has a greedy linear extension – an extension [𝑒1, 𝑒2, . . . , 𝑒𝑛] where every 𝑒𝑖+1

is an upper cover of 𝑒𝑖 if that is possible – with the smallest possible number of jumps; see [Sys1987].

Hence it suffices to test only those. We do that by backtracking.

The problem is proven to be NP-complete.

See also:

is_jump_critical()

kazhdan_lusztig_polynomial(x=None, y=None, q=None, canonical_labels=None)
Return the Kazhdan-Lusztig polynomial 𝑃𝑥,𝑦(𝑞) of the poset.

The poset is expected to be ranked.

We follow the definition given in [EPW14]. Let𝐺 denote a graded poset with unique minimal and maximal
elements and 𝜒𝐺 denote the characteristic polynomial of𝐺. Let 𝐼𝑥 and 𝐹 𝑥 denote the principal order ideal
and filter of 𝑥 respectively. Define the Kazhdan-Lusztig polynomial of 𝐺 as the unique polynomial 𝑃𝐺(𝑞)
satisfying the following:

1. If rank𝐺 = 0, then 𝑃𝐺(𝑞) = 1.

2. If rank𝐺 > 0, then deg𝑃𝐺(𝑞) < 1
2 rank𝐺.

3. We have

𝑞rank𝐺𝑃𝐺(𝑞−1) =
∑︁
𝑥∈𝐺

𝜒𝐼𝑥(𝑞)𝑃𝐹𝑥(𝑞).

We then extend this to 𝑃𝑥,𝑦(𝑞) by considering the subposet corresponding to the (closed) interval [𝑥, 𝑦].
We also define 𝑃∅(𝑞) = 0 (so if 𝑥 ̸≤ 𝑦, then 𝑃𝑥,𝑦(𝑞) = 0).

INPUT:

• q – (default: 𝑞 ∈ Z[𝑞]) the indeterminate 𝑞

• x – (default: the minimal element) the element 𝑥

• y – (default: the maximal element) the element 𝑦

• canonical_labels – (optional) for subposets, use the canonical labeling (this can limit recursive
calls for posets with large amounts of symmetry, but producing the labeling takes time); if not specified,
this is True if x and y are both not specified and False otherwise

EXAMPLES:

sage: L = posets.BooleanLattice(3)
sage: L.kazhdan_lusztig_polynomial()
1

1988 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = posets.SymmetricGroupWeakOrderPoset(4)
sage: L.kazhdan_lusztig_polynomial()
1
sage: x = '2314'
sage: y = '3421'
sage: L.kazhdan_lusztig_polynomial(x, y)
-q + 1
sage: L.kazhdan_lusztig_polynomial(x, y, var('t'))
-t + 1

AUTHORS:

• Travis Scrimshaw (27-12-2014)

le(x, y)
Return True if 𝑥 is less than or equal to 𝑦 in the poset, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: P.is_lequal(2, 4)
True
sage: P.is_lequal(2, 2)
True
sage: P.is_lequal(0, 1)
False
sage: P.is_lequal(3, 2)
False

See also:

is_less_than(), is_gequal().

lequal_matrix(ring=Integer Ring, sparse=False)
Compute the matrix whose (i,j) entry is 1 if self.linear_extension()[i] < self.
linear_extension()[j] and 0 otherwise.

INPUT:

• ring – the ring of coefficients (default: ZZ)

• sparse – whether the returned matrix is sparse or not (default: True)

EXAMPLES:

sage: P = Poset([[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]], facade = False)
sage: LEQM = P.lequal_matrix(); LEQM
[1 1 1 1 1 1 1 1]
[0 1 0 1 0 0 0 1]
[0 0 1 1 1 0 1 1]
[0 0 0 1 0 0 0 1]
[0 0 0 0 1 0 0 1]
[0 0 0 0 0 1 1 1]
[0 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 1]
sage: LEQM[1,3]
1

(continues on next page)

5.1. Comprehensive Module List 1989

Combinatorics, Release 9.7

(continued from previous page)

sage: P.linear_extension()[1] < P.linear_extension()[3]
True
sage: LEQM[2,5]
0
sage: P.linear_extension()[2] < P.linear_extension()[5]
False

We now demonstrate the usage of the optional parameters:

sage: P.lequal_matrix(ring=QQ, sparse=False).parent()
Full MatrixSpace of 8 by 8 dense matrices over Rational Field

level_sets()
Return elements grouped by maximal number of cover relations from a minimal element.

This returns a list of lists l such that l[i] is the set of minimal elements of the poset obtained by removing
the elements in l[0], l[1], ..., l[i-1]. (In particular, l[0] is the set of minimal elements of self.)

Every level is an antichain of the poset.

EXAMPLES:

sage: P = Poset({0:[1,2],1:[3],2:[3],3:[]})
sage: P.level_sets()
[[0], [1, 2], [3]]

sage: Q = Poset({0:[1,2], 1:[3], 2:[4], 3:[4]})
sage: Q.level_sets()
[[0], [1, 2], [3], [4]]

See also:

dilworth_decomposition() to return elements grouped to chains.

lexicographic_sum(P)
Return the lexicographic sum using this poset as index.

In the lexicographic sum of posets 𝑃𝑡 by index poset 𝑇 we have 𝑥 ≤ 𝑦 if either 𝑥 ≤ 𝑦 in 𝑃𝑡 for some 𝑡 ∈ 𝑇 ,
or 𝑥 ∈ 𝑃𝑖, 𝑦 ∈ 𝑃𝑗 and 𝑖 ≤ 𝑗 in 𝑇 .

Informally said we substitute every element of 𝑇 by corresponding poset 𝑃𝑡.

Mathematically, it is only defined when all 𝑃𝑡 have no common element; here we force that by giving them
different names in the resulting poset.

disjoint_union() and ordinal_sum() are special cases of lexicographic sum where the index poset is
an (anti)chain. ordinal_product() is a special case where every 𝑃𝑡 is same poset.

INPUT:

• P – dictionary whose keys are elements of this poset, values are posets

EXAMPLES:

sage: N = Poset({1: [3, 4], 2: [4]})
sage: P = {1: posets.PentagonPoset(), 2: N, 3: posets.ChainPoset(3), 4: posets.
→˓AntichainPoset(4)}
sage: NP = N.lexicographic_sum(P); NP

(continues on next page)

1990 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Finite poset containing 16 elements
sage: sorted(NP.minimal_elements())
[(1, 0), (2, 1), (2, 2)]

linear_extension(linear_extension=None, check=True)
Return a linear extension of this poset.

A linear extension of a finite poset 𝑃 of size 𝑛 is a total ordering 𝜋 := 𝜋0𝜋1 . . . 𝜋𝑛−1 of its elements such
that 𝑖 < 𝑗 whenever 𝜋𝑖 < 𝜋𝑗 in the poset 𝑃 .

INPUT:

• linear_extension – (default: None) a list of the elements of self

• check – a boolean (default: True); whether to check that linear_extension is indeed a linear
extension of self.

EXAMPLES:

sage: P = Poset((divisors(15), attrcall("divides")), facade=True)

Without optional argument, the default linear extension of the poset is returned, as a plain list:

sage: P.linear_extension()
[1, 3, 5, 15]

Otherwise, a full-featured linear extension is constructed as an element of P.linear_extensions():

sage: l = P.linear_extension([1,5,3,15]); l
[1, 5, 3, 15]
sage: type(l)
<class 'sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset_with_
→˓category.element_class'>
sage: l.parent()
The set of all linear extensions of Finite poset containing 4 elements

By default, the linear extension is checked for correctness:

sage: l = P.linear_extension([1,3,15,5])
Traceback (most recent call last):
...
ValueError: [1, 3, 15, 5] is not a linear extension of Finite poset containing␣
→˓4 elements

This can be disabled (at your own risks!) with:

sage: P.linear_extension([1,3,15,5], check=False)
[1, 3, 15, 5]

See also:

is_linear_extension(), linear_extensions()

Todo:

• Is it acceptable to have those two features for a single method?

5.1. Comprehensive Module List 1991

Combinatorics, Release 9.7

• In particular, we miss a short idiom to get the default linear extension

linear_extensions(facade=False)
Return the enumerated set of all the linear extensions of this poset.

INPUT:

• facade – a boolean (default: False); whether to return the linear extensions as plain lists

Warning: The facade option is not yet fully functional:

sage: P = Poset((divisors(12), attrcall("divides")), linear_
→˓extension=True)
sage: L = P.linear_extensions(facade=True); L
The set of all linear extensions of Finite poset containing 6 elements␣
→˓with distinguished linear extension
sage: L([1, 2, 3, 4, 6, 12])
Traceback (most recent call last):
...
TypeError: Cannot convert list to sage.structure.element.Element

EXAMPLES:

sage: P = Poset((divisors(12), attrcall("divides")), linear_extension=True)
sage: P.list()
[1, 2, 3, 4, 6, 12]
sage: L = P.linear_extensions(); L
The set of all linear extensions of Finite poset containing 6 elements with␣
→˓distinguished linear extension
sage: l = L.an_element(); l
[1, 2, 3, 4, 6, 12]
sage: L.cardinality()
5
sage: L.list()
[[1, 2, 3, 4, 6, 12],
[1, 2, 4, 3, 6, 12],
[1, 3, 2, 4, 6, 12],
[1, 3, 2, 6, 4, 12],
[1, 2, 3, 6, 4, 12]]

Each element is aware that it is a linear extension of 𝑃 :

sage: type(l.parent())
<class 'sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset_with_
→˓category'>

With facade=True, the elements of L are plain lists instead:

sage: L = P.linear_extensions(facade=True)
sage: l = L.an_element()
sage: type(l)
<class 'list'>

1992 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Warning: In Sage <= 4.8, this function used to return a plain list of lists. To recover the previous
functionality, please use:

sage: L = list(P.linear_extensions(facade=True)); L
[[1, 2, 3, 4, 6, 12],
[1, 2, 4, 3, 6, 12],
[1, 3, 2, 4, 6, 12],
[1, 3, 2, 6, 4, 12],
[1, 2, 3, 6, 4, 12]]
sage: type(L[0])
<class 'list'>

See also:

linear_extension(), is_linear_extension()

linear_extensions_graph()
Return the linear extensions graph of the poset.

Vertices of the graph are linear extensions of the poset. Two vertices are connected by an edge if the linear
extensions differ by only one adjacent transposition.

EXAMPLES:

sage: N = Poset({1: [3, 4], 2: [4]})
sage: G = N.linear_extensions_graph(); G
Graph on 5 vertices
sage: G.neighbors(N.linear_extension([1,2,3,4]))
[[2, 1, 3, 4], [1, 3, 2, 4], [1, 2, 4, 3]]

sage: chevron = Poset({1: [2, 6], 2: [3], 4: [3, 5], 6: [5]})
sage: G = chevron.linear_extensions_graph(); G
Graph on 22 vertices
sage: G.size()
36

linear_intervals_count()
Return the enumeration of linear intervals w.r.t. their cardinality.

An interval is linear if it is a total order.

OUTPUT: list of integers

See also:

is_linear_interval()

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: P.linear_intervals_count()
[5, 5, 2]
sage: P = posets.TamariLattice(4)
sage: P.linear_intervals_count()
[14, 21, 12, 2]

list()
List the elements of the poset. This just returns the result of linear_extension().

5.1. Comprehensive Module List 1993

Combinatorics, Release 9.7

EXAMPLES:

sage: D = Poset({ 0:[1,2], 1:[3], 2:[3,4] }, facade = False)
sage: D.list()
[0, 1, 2, 3, 4]
sage: type(D.list()[0])
<class 'sage.combinat.posets.posets.FinitePoset_with_category.element_class'>

lower_covers(x)
Return the list of lower covers of the element x.

A lower cover of 𝑥 is an element 𝑦 such that 𝑦 < 𝑥 and there is no element 𝑧 so that 𝑦 < 𝑧 < 𝑥.

EXAMPLES:

sage: P = Poset([[1,5], [2,6], [3], [4], [], [6,3], [4]])
sage: P.lower_covers(3)
[2, 5]
sage: P.lower_covers(0)
[]

See also:

upper_covers()

lower_covers_iterator(x)
Return an iterator over the lower covers of the element x.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[]})
sage: l0 = P.lower_covers_iterator(3)
sage: type(l0)
<class 'generator'>
sage: next(l0)
2

lt(x, y)
Return True if 𝑥 is less than but not equal to 𝑦 in the poset, and False otherwise.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: P.is_less_than(1, 3)
True
sage: P.is_less_than(0, 1)
False
sage: P.is_less_than(2, 2)
False

For non-facade posets also < works:

sage: P = Poset({3: [1, 2]}, facade=False)
sage: P(1) < P(2)
False

See also:

is_lequal(), is_greater_than().

1994 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

magnitude()
Return the magnitude of self.

The magnitude is an integer defined as the sum of all Möbius numbers, and can be seen as some kind
of Euler characteristic of the poset. It is additive under disjoint union and multiplicative under Cartesian
product.

REFERENCES:

• [Lein2008] Tom Leinster, The Euler Characteristic of a Category, Documenta Mathematica, Vol. 13
(2008), 21-49 https://www.math.uni-bielefeld.de/documenta/vol-13/02.html

• https://golem.ph.utexas.edu/category/2011/06/the_magnitude_of_an_enriched_c.html

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: P.magnitude()
1

sage: W = SymmetricGroup(4)
sage: P = W.noncrossing_partition_lattice().without_bounds()
sage: P.magnitude()
-4

sage: P = posets.TamariLattice(4).without_bounds()
sage: P.magnitude()
0

See also:

order_complex()

maximal_antichains()
Return the maximal antichains of the poset.

An antichain 𝑎 of poset 𝑃 is maximal if there is no element 𝑒 ∈ 𝑃 ∖ 𝑎 such that 𝑎 ∪ {𝑒} is an antichain.

EXAMPLES:

sage: P = Poset({'a':['b', 'c'], 'b':['d','e']})
sage: [sorted(anti) for anti in P.maximal_antichains()]
[['a'], ['b', 'c'], ['c', 'd', 'e']]

sage: posets.PentagonPoset().maximal_antichains()
[[0], [1, 2], [1, 3], [4]]

See also:

antichains(), maximal_chains()

maximal_chain_length()
Return the maximum length of a maximal chain in the poset.

The length here is the number of vertices.

EXAMPLES:

sage: P = posets.TamariLattice(5)
sage: P.maximal_chain_length()
11

5.1. Comprehensive Module List 1995

https://www.math.uni-bielefeld.de/documenta/vol-13/02.html
https://golem.ph.utexas.edu/category/2011/06/the_magnitude_of_an_enriched_c.html

Combinatorics, Release 9.7

See also:

maximal_chains(), maximal_chains_iterator()

maximal_chains(partial=None)
Return all maximal chains of this poset.

Each chain is listed in increasing order.

INPUT:

• partial – list (optional); if given, the list partial is assumed to be the start of a maximal chain, and
the function will find all maximal chains starting with the elements in partial

This is used in constructing the order complex for the poset.

EXAMPLES:

sage: P = posets.BooleanLattice(3)
sage: P.maximal_chains()
[[0, 1, 3, 7], [0, 1, 5, 7], [0, 2, 3, 7], [0, 2, 6, 7], [0, 4, 5, 7], [0, 4, 6,
→˓ 7]]
sage: P.maximal_chains(partial=[0,2])
[[0, 2, 3, 7], [0, 2, 6, 7]]
sage: Q = posets.ChainPoset(6)
sage: Q.maximal_chains()
[[0, 1, 2, 3, 4, 5]]

See also:

maximal_antichains(), chains()

maximal_chains_iterator(partial=None)
Return an iterator over maximal chains.

Each chain is listed in increasing order.

INPUT:

• partial – list (optional); if given, the list partial is assumed to be the start of a maximal chain, and
the function will yield all maximal chains starting with the elements in partial

EXAMPLES:

sage: P = posets.BooleanLattice(3)
sage: it = P.maximal_chains_iterator()
sage: next(it)
[0, 1, 3, 7]

See also:

antichains_iterator()

maximal_elements()
Return the list of the maximal elements of the poset.

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4],4:[]})
sage: P.maximal_elements()
[4]

1996 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

minimal_elements().

meet(x, y)
Return the meet of two elements x, y in the poset if the meet exists; and None otherwise.

EXAMPLES:

sage: D = Poset({1:[2,3], 2:[4], 3:[4]})
sage: D.meet(2, 3)
1
sage: P = Poset({'a':['b', 'c'], 'b':['e', 'f'], 'c':['f', 'g'],
....: 'd':['f', 'g']})
sage: P.meet('a', 'b')
'a'
sage: P.meet('e', 'a')
'a'
sage: P.meet('c', 'b')
'a'
sage: P.meet('e', 'f')
'b'
sage: P.meet('e', 'g')
'a'
sage: P.meet('c', 'd') is None
True
sage: P.meet('g', 'f') is None
True

minimal_elements()
Return the list of the minimal elements of the poset.

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4],4:[]})
sage: P(0) in P.minimal_elements()
True
sage: P(1) in P.minimal_elements()
True
sage: P(2) in P.minimal_elements()
True

See also:

maximal_elements().

moebius_function(x, y)
Return the value of the Möbius function of the poset on the elements x and y.

EXAMPLES:

sage: P = Poset([[1,2,3],[4],[4],[4],[]])
sage: P.moebius_function(P(0),P(4))
2
sage: sum(P.moebius_function(P(0),v) for v in P)
0
sage: sum(abs(P.moebius_function(P(0),v))

(continues on next page)

5.1. Comprehensive Module List 1997

Combinatorics, Release 9.7

(continued from previous page)

....: for v in P)
6
sage: for u,v in P.cover_relations_iterator():
....: if P.moebius_function(u,v) != -1:
....: print("Bug in moebius_function!")

sage: Q = Poset([[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]])
sage: Q.moebius_function(Q(0),Q(7))
0
sage: Q.moebius_function(Q(0),Q(5))
0
sage: Q.moebius_function(Q(2),Q(7))
2
sage: Q.moebius_function(Q(3),Q(3))
1
sage: sum([Q.moebius_function(Q(0),v) for v in Q])
0

moebius_function_matrix(ring=Integer Ring, sparse=False)
Return a matrix whose (i,j) entry is the value of the Möbius function evaluated at self.
linear_extension()[i] and self.linear_extension()[j].

INPUT:

• ring – the ring of coefficients (default: ZZ)

• sparse – whether the returned matrix is sparse or not (default: True)

EXAMPLES:

sage: P = Poset([[4,2,3],[],[1],[1],[1]])
sage: x,y = (P.linear_extension()[0],P.linear_extension()[1])
sage: P.moebius_function(x,y)
-1
sage: M = P.moebius_function_matrix(); M
[1 -1 -1 -1 2]
[0 1 0 0 -1]
[0 0 1 0 -1]
[0 0 0 1 -1]
[0 0 0 0 1]
sage: M[0,4]
2
sage: M[0,1]
-1

We now demonstrate the usage of the optional parameters:

sage: P.moebius_function_matrix(ring=QQ, sparse=False).parent()
Full MatrixSpace of 5 by 5 dense matrices over Rational Field

open_interval(x, y)
Return the list of elements 𝑧 such that 𝑥 < 𝑧 < 𝑦 in the poset.

EXAMPLES:

1998 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: P = Poset((divisors(1000), attrcall("divides")))
sage: P.open_interval(2, 100)
[4, 10, 20, 50]

See also:

closed_interval()

order_complex(on_ints=False)
Return the order complex associated to this poset.

The order complex is the simplicial complex with vertices equal to the elements of the poset, and faces
given by the chains.

INPUT:

• on_ints – a boolean (default: False)

OUTPUT:

an order complex of type SimplicialComplex

EXAMPLES:

sage: P = posets.BooleanLattice(3)
sage: S = P.order_complex(); S
Simplicial complex with vertex set (0, 1, 2, 3, 4, 5, 6, 7) and 6 facets
sage: S.f_vector()
[1, 8, 19, 18, 6]
sage: S.homology() # S is contractible
{0: 0, 1: 0, 2: 0, 3: 0}
sage: Q = P.subposet([1,2,3,4,5,6])
sage: Q.order_complex().homology() # a circle
{0: 0, 1: Z}

sage: P = Poset((divisors(15), attrcall("divides")), facade = True)
sage: P.order_complex()
Simplicial complex with vertex set (1, 3, 5, 15) and facets {(1, 3, 15), (1, 5,␣
→˓15)}

If on_ints, then the elements of the poset are labelled 0, 1, . . . in the chain complex:

sage: P.order_complex(on_ints=True)
Simplicial complex with vertex set (0, 1, 2, 3) and facets {(0, 1, 3), (0, 2,␣
→˓3)}

order_filter(elements)
Return the order filter generated by the elements of an iterable elements.

𝐼 is an order filter if, for any 𝑥 in 𝐼 and 𝑦 such that 𝑦 ≥ 𝑥, then 𝑦 is in 𝐼 . This is also called upper set or
upset.

EXAMPLES:

sage: P = Poset((divisors(1000), attrcall("divides")))
sage: P.order_filter([20, 25])
[20, 40, 25, 50, 100, 200, 125, 250, 500, 1000]

5.1. Comprehensive Module List 1999

../../../../../../../html/en/reference/topology/sage/topology/simplicial_complex.html#sage.topology.simplicial_complex.SimplicialComplex

Combinatorics, Release 9.7

See also:

order_ideal(), principal_order_filter().

order_ideal(elements)
Return the order ideal generated by the elements of an iterable elements.

𝐼 is an order ideal if, for any 𝑥 in 𝐼 and 𝑦 such that 𝑦 ≤ 𝑥, then 𝑦 is in 𝐼 . This is also called lower set or
downset.

EXAMPLES:

sage: P = Poset((divisors(1000), attrcall("divides")))
sage: P.order_ideal([20, 25])
[1, 2, 4, 5, 10, 20, 25]

See also:

order_filter(), principal_order_ideal().

order_ideal_cardinality(elements)
Return the cardinality of the order ideal generated by elements.

The elements 𝐼 is an order ideal if, for any 𝑥 ∈ 𝐼 and 𝑦 such that 𝑦 ≤ 𝑥, then 𝑦 ∈ 𝐼 .

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: P.order_ideal_cardinality([7,10])
10

order_ideal_plot(elements)
Return a plot of the order ideal generated by the elements of an iterable elements.

𝐼 is an order ideal if, for any 𝑥 in 𝐼 and 𝑦 such that 𝑦 ≤ 𝑥, then 𝑦 is in 𝐼 . This is also called lower set or
downset.

EXAMPLES:

sage: P = Poset((divisors(1000), attrcall("divides")))
sage: P.order_ideal_plot([20, 25])
Graphics object consisting of 41 graphics primitives

order_polynomial()
Return the order polynomial of the poset.

The order polynomial Ω𝑃 (𝑞) of a poset 𝑃 is defined as the unique polynomial 𝑆 such that for each integer
𝑚 ≥ 1, 𝑆(𝑚) is the number of order-preserving maps from 𝑃 to {1, . . . ,𝑚}.

See sections 3.12 and 3.15 of [EnumComb1], and also [St1986].

EXAMPLES:

sage: P = posets.AntichainPoset(3)
sage: P.order_polynomial()
q^3

sage: P = posets.ChainPoset(3)
sage: f = P.order_polynomial(); f
1/6*q^3 + 1/2*q^2 + 1/3*q

(continues on next page)

2000 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/posets.html#sage.categories.posets.Posets.ParentMethods.principal_order_filter
../../../../../../../html/en/reference/categories/sage/categories/posets.html#sage.categories.posets.Posets.ParentMethods.principal_order_ideal

Combinatorics, Release 9.7

(continued from previous page)

sage: [f(i) for i in range(4)]
[0, 1, 4, 10]

See also:

order_polytope()

order_polytope()
Return the order polytope of the poset self.

The order polytope of a finite poset 𝑃 is defined as the subset of R𝑃 consisting of all maps 𝑥 : 𝑃 → R
satisfying

0 ≤ 𝑥(𝑝) ≤ 1 for all 𝑝 ∈ 𝑃,

and

𝑥(𝑝) ≤ 𝑥(𝑞) for all 𝑝, 𝑞 ∈ 𝑃 satisfying 𝑝 < 𝑞.

This polytope was defined and studied in [St1986].

EXAMPLES:

sage: P = posets.AntichainPoset(3)
sage: Q = P.order_polytope();Q
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: P = posets.PentagonPoset()
sage: Q = P.order_polytope();Q
A 5-dimensional polyhedron in ZZ^5 defined as the convex hull of 8 vertices

sage: P = Poset([[1,2,3],[[1,2],[1,3]]])
sage: Q = P.order_polytope()
sage: Q.contains((1,0,0))
False
sage: Q.contains((0,1,1))
True

ordinal_product(other, labels='pairs')
Return the ordinal product of self and other.

The ordinal product of two posets 𝑃 and𝑄 is a partial order on the Cartesian product of the underlying sets
of 𝑃 and 𝑄, defined as follows (see [EnumComb1], p. 284).

In the ordinal product, (𝑝, 𝑞) ≤ (𝑝′, 𝑞′) if either 𝑝 ≤ 𝑝′ or 𝑝 = 𝑝′ and 𝑞 ≤ 𝑞′.

This construction is not symmetric in 𝑃 and 𝑄. Informally said we put a copy of 𝑄 in place of every
element of 𝑃 .

INPUT:

• other – a poset

• labels – either 'integers' or 'pairs' (default); how the resulting poset will be labeled

EXAMPLES:

sage: P1 = Poset((['a', 'b'], [['a', 'b']]))
sage: P2 = Poset((['c', 'd'], [['c', 'd']]))

(continues on next page)

5.1. Comprehensive Module List 2001

Combinatorics, Release 9.7

(continued from previous page)

sage: P = P1.ordinal_product(P2); P
Finite poset containing 4 elements
sage: sorted(P.cover_relations())
[[('a', 'c'), ('a', 'd')], [('a', 'd'), ('b', 'c')],
[('b', 'c'), ('b', 'd')]]

See also:

product(), ordinal_sum()

ordinal_sum(other, labels='pairs')
Return a poset or (semi)lattice isomorphic to ordinal sum of the poset with other.

The ordinal sum of 𝑃 and 𝑄 is a poset that contains every element and relation from both 𝑃 and 𝑄, and
where every element of 𝑃 is smaller than any element of 𝑄.

Mathematically, it is only defined when 𝑃 and 𝑄 have no common element; here we force that by giving
them different names in the resulting poset.

The ordinal sum on lattices is a lattice; resp. for meet- and join-semilattices.

INPUT:

• other, a poset.

• labels - (defaults to ‘pairs’) If set to ‘pairs’, each element v in this poset will be named (0,v) and
each element u in other will be named (1,u) in the result. If set to ‘integers’, the elements of the
result will be relabeled with consecutive integers.

EXAMPLES:

sage: P1 = Poset(([1, 2, 3, 4], [[1, 2], [1, 3], [1, 4]]))
sage: P2 = Poset(([1, 2, 3,], [[2,1], [3,1]]))
sage: P3 = P1.ordinal_sum(P2); P3
Finite poset containing 7 elements
sage: len(P1.maximal_elements())*len(P2.minimal_elements())
6
sage: len(P1.cover_relations()+P2.cover_relations())
5
sage: len(P3.cover_relations()) # Every element of P2 is greater than elements␣
→˓of P1.
11
sage: P3.list() # random
[(0, 1), (0, 2), (0, 4), (0, 3), (1, 2), (1, 3), (1, 1)]
sage: P4 = P1.ordinal_sum(P2, labels='integers')
sage: P4.list() # random
[0, 1, 2, 3, 5, 6, 4]

Return type depends on input types:

sage: P = Poset({1:[2]}); P
Finite poset containing 2 elements
sage: JL = JoinSemilattice({1:[2]}); JL
Finite join-semilattice containing 2 elements
sage: L = LatticePoset({1:[2]}); L
Finite lattice containing 2 elements
sage: P.ordinal_sum(L)

(continues on next page)

2002 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Finite poset containing 4 elements
sage: L.ordinal_sum(JL)
Finite join-semilattice containing 4 elements
sage: L.ordinal_sum(L)
Finite lattice containing 4 elements

See also:

ordinal_summands(), disjoint_union(), sage.combinat.posets.lattices.
FiniteLatticePoset.vertical_composition()

ordinal_summands()
Return the ordinal summands of the poset as subposets.

The ordinal summands of a poset 𝑃 is the longest list of non-empty subposets 𝑃1, . . . , 𝑃𝑛 whose ordinal
sum is 𝑃 . This decomposition is unique.

EXAMPLES:

sage: P = Poset({'a': ['c', 'd'], 'b': ['d'], 'c': ['x', 'y'],
....: 'd': ['x', 'y']})
sage: parts = P.ordinal_summands(); parts
[Finite poset containing 4 elements, Finite poset containing 2 elements]
sage: sorted(parts[0])
['a', 'b', 'c', 'd']
sage: Q = parts[0].ordinal_sum(parts[1])
sage: Q.is_isomorphic(P)
True

See also:

ordinal_sum()

ALGORITHM:

Suppose that a poset 𝑃 is the ordinal sum of posets 𝐿 and 𝑈 . Then 𝑃 contains maximal antichains 𝑙 and
𝑢 such that every element of 𝑢 covers every element of 𝑙; they correspond to maximal elements of 𝐿 and
minimal elements of 𝑈 .

We consider a linear extension 𝑥1, . . . , 𝑥𝑛 of the poset’s elements.

We keep track of the maximal elements of subposet induced by elements 0, . . . , 𝑥𝑖 and minimal elements
of subposet induced by elements 𝑥𝑖+1, . . . , 𝑥𝑛, incrementing 𝑖 one by one. We then check if 𝑙 and 𝑢 fit the
previous description.

p_partition_enumerator(tup, R, weights=None, check=False)
Return a 𝑃 -partition enumerator of self.

Given a total order ≺ on the elements of a finite poset 𝑃 (the order of 𝑃 and the total order ≺ can be
unrelated; in particular, the latter does not have to extend the former), a 𝑃 -partition enumerator is the
quasisymmetric function

∑︀
𝑓

∏︀
𝑝∈𝑃 𝑥𝑓(𝑝), where the first sum is taken over all 𝑃 -partitions 𝑓 .

A 𝑃 -partition is a function 𝑓 : 𝑃 → {1, 2, 3, ...} satisfying the following properties for any two elements
𝑖 and 𝑗 of 𝑃 satisfying 𝑖 <𝑃 𝑗:

• if 𝑖 ≺ 𝑗 then 𝑓(𝑖) ≤ 𝑓(𝑗),

• if 𝑗 ≺ 𝑖 then 𝑓(𝑖) < 𝑓(𝑗).

5.1. Comprehensive Module List 2003

Combinatorics, Release 9.7

The optional argument weights allows constructing a generalized (“weighted”) version of the 𝑃 -partition
enumerator. Namely, weights should be a dictionary whose keys are the elements of P. Then, the gen-
eralized 𝑃 -partition enumerator corresponding to weights weights is

∑︀
𝑓

∏︀
𝑝∈𝑃 𝑥

𝑤(𝑝)
𝑓(𝑝) , where the sum

is again over all 𝑃 -partitions 𝑓 . Here, 𝑤(𝑝) is weights[p]. The classical 𝑃 -partition enumerator is the
particular case obtained when all 𝑝 satisfy 𝑤(𝑝) = 1.

In the language of [Grinb2016a], the generalized 𝑃 -partition enumerator is the quasisymmetric function
Γ (E, 𝑤), whereE is the special double poset (𝑃,<𝑃 ,≺), and where𝑤 is the dictionary weights (regarded
as a function from 𝑃 to the positive integers).

INPUT:

• tup – the tuple containing all elements of 𝑃 (each of them exactly once), in the order dictated by the
total order ≺

• R – a commutative ring

• weights – (optional) a dictionary of positive integers, indexed by elements of 𝑃 ; any missing item
will be understood as 1

OUTPUT:

The 𝑃 -partition enumerator of self according to tup in the algebra 𝑄𝑆𝑦𝑚 of quasisymmetric functions
over the base ring 𝑅.

EXAMPLES:

sage: P = Poset([[1,2,3,4],[[1,4],[2,4],[4,3]]])
sage: FP = P.p_partition_enumerator((3,1,2,4), QQ, check=True); FP
2*M[1, 1, 1, 1] + 2*M[1, 2, 1] + M[2, 1, 1] + M[3, 1]

sage: expansion = FP.expand(5)
sage: xs = expansion.parent().gens()
sage: expansion == sum([xs[a]*xs[b]*xs[c]*xs[d] for a in range(5) for b in␣
→˓range(5) for c in range(5) for d in range(5) if a <= b and c <= b and b < d])
True

sage: P = Poset([[],[]])
sage: FP = P.p_partition_enumerator((), QQ, check=True); FP
M[]

With the weights parameter:

sage: P = Poset([[1,2,3,4],[[1,4],[2,4],[4,3]]])
sage: FP = P.p_partition_enumerator((3,1,2,4), QQ, weights={1: 1, 2: 2, 3: 1,␣
→˓4: 1}, check=True); FP
M[1, 2, 1, 1] + M[1, 3, 1] + M[2, 1, 1, 1] + M[2, 2, 1] + M[3, 1, 1] + M[4, 1]
sage: FP = P.p_partition_enumerator((3,1,2,4), QQ, weights={2: 2}, check=True);␣
→˓FP
M[1, 2, 1, 1] + M[1, 3, 1] + M[2, 1, 1, 1] + M[2, 2, 1] + M[3, 1, 1] + M[4, 1]

sage: P = Poset([['a','b','c'], [['a','b'], ['a','c']]])
sage: FP = P.p_partition_enumerator(('b','c','a'), QQ, weights={'a': 3, 'b': 5,
→˓'c': 7}, check=True); FP
M[3, 5, 7] + M[3, 7, 5] + M[3, 12]

sage: P = Poset([['a','b','c'], [['a','c'], ['b','c']]])
(continues on next page)

2004 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: FP = P.p_partition_enumerator(('b','c','a'), QQ, weights={'a': 3, 'b': 5,
→˓'c': 7}, check=True); FP
M[3, 5, 7] + M[3, 12] + M[5, 3, 7] + M[8, 7]
sage: FP = P.p_partition_enumerator(('a','b','c'), QQ, weights={'a': 3, 'b': 5,
→˓'c': 7}, check=True); FP
M[3, 5, 7] + M[3, 12] + M[5, 3, 7] + M[5, 10] + M[8, 7] + M[15]

plot(label_elements=True, element_labels=None, layout='acyclic', cover_labels=None, **kwds)
Return a Graphic object for the Hasse diagram of the poset.

If the poset is ranked, the plot uses the rank function for the heights of the elements.

INPUT:

• Options to change element look:

– element_colors - a dictionary where keys are colors and values are lists of elements

– element_color - a color for elements not set in element_colors

– element_shape - the shape of elements, like 's' for square; see https://matplotlib.org/api/
markers_api.html for the list

– element_size (default: 200) - the size of elements

– label_elements (default: True) - whether to display element labels

– element_labels (default: None) - a dictionary where keys are elements and values are labels to
show

• Options to change cover relation look:

– cover_colors - a dictionary where keys are colors and values are lists of cover relations given
as pairs of elements

– cover_color - a color for elements not set in cover_colors

– cover_style - style for cover relations: 'solid', 'dashed', 'dotted' or 'dashdot'

– cover_labels - a dictionary, list or function representing labels of the covers of the poset. When
set to None (default) no label is displayed on the edges of the Hasse Diagram.

– cover_labels_background - a background color for cover relations. The default is “white”. To
achieve a transparent background use “transparent”.

• Options to change overall look:

– figsize (default: 8) - size of the whole plot

– title - a title for the plot

– fontsize - fontsize for the title

– border (default: False) - whether to draw a border over the plot

Note: All options of GenericGraph.plot are also available through this function.

EXAMPLES:

This function can be used without any parameters:

5.1. Comprehensive Module List 2005

https://matplotlib.org/api/markers_api.html
https://matplotlib.org/api/markers_api.html
../../../../../../../html/en/reference/graphs/sage/graphs/generic_graph.html#sage.graphs.generic_graph.GenericGraph.plot

Combinatorics, Release 9.7

sage: D12 = posets.DivisorLattice(12)
sage: D12.plot()
Graphics object consisting of 14 graphics primitives

Just the abstract form of the poset; examples of relabeling:

sage: D12.plot(label_elements=False)
Graphics object consisting of 8 graphics primitives
sage: d = {1: 0, 2: 'a', 3: 'b', 4: 'c', 6: 'd', 12: 1}
sage: D12.plot(element_labels=d)
Graphics object consisting of 14 graphics primitives
sage: d = {i:str(factor(i)) for i in D12}
sage: D12.plot(element_labels=d)
Graphics object consisting of 14 graphics primitives

Some settings for coverings:

sage: d = {(a, b): b/a for a, b in D12.cover_relations()}
sage: D12.plot(cover_labels=d, cover_color='gray', cover_style='dotted')
Graphics object consisting of 21 graphics primitives

To emphasize some elements and show some options:

sage: L = LatticePoset({0: [1, 2, 3, 4], 1: [12], 2: [6, 7],
....: 3: [5, 9], 4: [5, 6, 10, 11], 5: [13],
....: 6: [12], 7: [12, 8, 9], 8: [13], 9: [13],
....: 10: [12], 11: [12], 12: [13]})
sage: F = L.frattini_sublattice()
sage: F_internal = [c for c in F.cover_relations() if c in L.cover_relations()]
sage: L.plot(figsize=12, border=True, element_shape='s',
....: element_size=400, element_color='white',
....: element_colors={'blue': F, 'green': L.double_irreducibles()},
....: cover_color='lightgray', cover_colors={'black': F_internal},
....: title='The Frattini\nsublattice in blue', fontsize=10)
Graphics object consisting of 39 graphics primitives

product(other)
Return the Cartesian product of the poset with other.

The Cartesian (or ‘direct’) product of 𝑃 and 𝑄 is defined by (𝑝, 𝑞) ≤ (𝑝′, 𝑞′) iff 𝑝 ≤ 𝑝′ in 𝑃 and 𝑞 ≤ 𝑞′ in
𝑄.

Product of (semi)lattices are returned as a (semi)lattice.

EXAMPLES:

sage: P = posets.ChainPoset(3)
sage: Q = posets.ChainPoset(4)
sage: PQ = P.product(Q) ; PQ
Finite lattice containing 12 elements
sage: len(PQ.cover_relations())
17
sage: Q.product(P).is_isomorphic(PQ)
True

(continues on next page)

2006 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: P = posets.BooleanLattice(2)
sage: Q = P.product(P)
sage: Q.is_isomorphic(posets.BooleanLattice(4))
True

One can also simply use *:

sage: P = posets.ChainPoset(2)
sage: Q = posets.ChainPoset(3)
sage: P*Q
Finite lattice containing 6 elements

See also:

CartesianProductPoset, factor()

promotion(i=1)
Compute the (extended) promotion on the linear extension of the poset self.

INPUT:

• i – an integer between 1 and 𝑛 (default: 1)

OUTPUT:

• an isomorphic poset, with the same default linear extension

The extended promotion is defined on a poset self of size 𝑛 by applying the promotion operator
𝜏𝑖𝜏𝑖+1 · · · 𝜏𝑛−1 to the default linear extension 𝜋 of self (see promotion()), and relabeling self ac-
cordingly. For more details see [Stan2009].

When the elements of the poset self are labelled by {1, 2, . . . , 𝑛}, the linear extension is the identity, and
𝑖 = 1, the above algorithm corresponds to the promotion operator on posets defined by Schützenberger as
follows. Remove 1 from self and replace it by the minimum 𝑗 of all labels covering 1 in the poset. Then,
remove 𝑗 and replace it by the minimum of all labels covering 𝑗, and so on. This process ends when a label
is a local maximum. Place the label 𝑛+ 1 at this vertex. Finally, decrease all labels by 1.

EXAMPLES:

sage: P = Poset(([1,2], [[1,2]]), linear_extension=True, facade=False)
sage: P.promotion()
Finite poset containing 2 elements with distinguished linear extension
sage: P == P.promotion()
True

sage: P = Poset(([1,2,3,4,5,6,7], [[1,2],[1,4],[2,3],[2,5],[3,6],[4,7],[5,6]]))
sage: P.list()
[1, 2, 3, 5, 6, 4, 7]
sage: Q = P.promotion(4); Q
Finite poset containing 7 elements with distinguished linear extension
sage: Q.cover_relations()
[[1, 2], [1, 6], [2, 3], [2, 5], [3, 7], [5, 7], [6, 4]]

Note that if one wants to obtain the promotion defined by Schützenberger’s algorithm directly on the poset,
one needs to make sure the linear extension is the identity:

5.1. Comprehensive Module List 2007

Combinatorics, Release 9.7

sage: P = P.with_linear_extension([1,2,3,4,5,6,7])
sage: P.list()
[1, 2, 3, 4, 5, 6, 7]
sage: Q = P.promotion(4); Q
Finite poset containing 7 elements with distinguished linear extension
sage: Q.cover_relations()
[[1, 2], [1, 6], [2, 3], [2, 4], [3, 5], [4, 5], [6, 7]]
sage: Q = P.promotion()
sage: Q.cover_relations()
[[1, 2], [1, 3], [2, 4], [2, 5], [3, 6], [4, 7], [5, 7]]

Here is an example for a poset not labelled by {1, 2, . . . , 𝑛}:

sage: P = Poset((divisors(30), attrcall("divides")), linear_extension=True)
sage: P.list()
[1, 2, 3, 5, 6, 10, 15, 30]
sage: P.cover_relations()
[[1, 2], [1, 3], [1, 5], [2, 6], [2, 10], [3, 6], [3, 15],
[5, 10], [5, 15], [6, 30], [10, 30], [15, 30]]
sage: Q = P.promotion(4); Q
Finite poset containing 8 elements with distinguished linear extension
sage: Q.cover_relations()
[[1, 2], [1, 3], [1, 6], [2, 5], [2, 15], [3, 5], [3, 10],
[5, 30], [6, 10], [6, 15], [10, 30], [15, 30]]

See also:

• linear_extension()

• with_linear_extension() and the linear_extension option of Poset()

• promotion()

• evacuation()

AUTHOR:

• Anne Schilling (2012-02-18)

random_linear_extension()
Return a random linear extension of the poset.

The distribution is not uniform.

EXAMPLES:

sage: set_random_seed(0) # results are reproduceable
sage: P = posets.BooleanLattice(4)
sage: P.random_linear_extension()
[0, 2, 8, 1, 9, 4, 5, 10, 6, 12, 14, 13, 3, 7, 11, 15]

random_maximal_antichain()
Return a random maximal antichain of the poset.

The distribution is not uniform.

EXAMPLES:

2008 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: set_random_seed(0) # results are reproduceable
sage: P = posets.BooleanLattice(4)
sage: P.random_maximal_antichain()
[1, 8, 2, 4]

random_maximal_chain()
Return a random maximal chain of the poset.

The distribution is not uniform.

EXAMPLES:

sage: set_random_seed(0) # results are reproduceable
sage: P = posets.BooleanLattice(4)
sage: P.random_maximal_chain()
[0, 2, 10, 11, 15]

random_order_ideal(direction='down')
Return a random order ideal with uniform probability.

INPUT:

• direction – 'up', 'down' or 'antichain' (default: 'down')

OUTPUT:

A randomly selected order ideal (or order filter if direction='up', or antichain if
direction='antichain') where all order ideals have equal probability of occurring.

ALGORITHM:

Uses the coupling from the past algorithm described in [Propp1997].

EXAMPLES:

sage: P = posets.BooleanLattice(3)
sage: P.random_order_ideal() # random
[0, 1, 2, 3, 4, 5, 6]
sage: P.random_order_ideal(direction='up') # random
[6, 7]
sage: P.random_order_ideal(direction='antichain') # random
[1, 2]

sage: P = posets.TamariLattice(5)
sage: a = P.random_order_ideal('antichain')
sage: P.is_antichain_of_poset(a)
True
sage: a = P.random_order_ideal('up')
sage: P.is_order_filter(a)
True
sage: a = P.random_order_ideal('down')
sage: P.is_order_ideal(a)
True

random_subposet(p)
Return a random subposet that contains each element with probability p.

EXAMPLES:

5.1. Comprehensive Module List 2009

Combinatorics, Release 9.7

sage: P = posets.BooleanLattice(3)
sage: set_random_seed(0) # Results are reproducible
sage: Q = P.random_subposet(0.5)
sage: Q.cover_relations()
[[0, 2], [0, 5], [2, 3], [3, 7], [5, 7]]

rank(element=None)
Return the rank of an element element in the poset self, or the rank of the poset if element is None.

(The rank of a poset is the length of the longest chain of elements of the poset. This is sometimes called
the length of a poset.)

EXAMPLES:

sage: P = Poset([[1,3,2],[4],[4,5,6],[6],[7],[7],[7],[]], facade = False)
sage: P.rank(5)
2
sage: P.rank()
3
sage: Q = Poset([[1,2],[3],[],[]])

sage: P = posets.SymmetricGroupBruhatOrderPoset(4)
sage: [(v,P.rank(v)) for v in P]
[('1234', 0),
('1243', 1),

...
('4312', 5),
('4321', 6)]

rank_function()
Return the (normalized) rank function of the poset, if it exists.

A rank function of a poset𝑃 is a function 𝑟 that maps elements of𝑃 to integers and satisfies: 𝑟(𝑥) = 𝑟(𝑦)+1
if 𝑥 covers 𝑦. The function 𝑟 is normalized such that its minimum value on every connected component of
the Hasse diagram of 𝑃 is 0. This determines the function 𝑟 uniquely (when it exists).

OUTPUT:

• a lambda function, if the poset admits a rank function

• None, if the poset does not admit a rank function

EXAMPLES:

sage: P = Poset(([1,2,3,4],[[1,4],[2,3],[3,4]]), facade=True)
sage: P.rank_function() is not None
True
sage: P = Poset(([1,2,3,4,5],[[1,2],[2,3],[3,4],[1,5],[5,4]]), facade=True)
sage: P.rank_function() is not None
False
sage: P = Poset(([1,2,3,4,5,6,7,8],[[1,4],[2,3],[3,4],[5,7],[6,7]]),␣
→˓facade=True)
sage: f = P.rank_function(); f is not None
True
sage: f(5)
0

(continues on next page)

2010 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: f(2)
0

rees_product(other)
Return the Rees product of self and other.

This is only defined if both posets are graded.

The underlying set is the set of pairs (𝑝, 𝑞) in the Cartesian product such that rk(𝑝) ≥ rk(𝑞).

This operation was defined by Björner and Welker in [BjWe2005]. Other references are [MBRe2011] and
[LSW2012].

EXAMPLES:

sage: B3 = posets.BooleanLattice(3)
sage: B3t = B3.subposet(list(range(1,8)))
sage: C3 = posets.ChainPoset(3)
sage: D = B3t.rees_product(C3); D
Finite poset containing 12 elements
sage: sorted(D.minimal_elements())
[(1, 0), (2, 0), (4, 0)]
sage: sorted(D.maximal_elements())
[(7, 0), (7, 1), (7, 2)]
sage: D.with_bounds().moebius_function('bottom','top')
2

See also:

product(), ordinal_product(), star_product()

relabel(relabeling=None)
Return a copy of this poset with its elements relabeled.

INPUT:

• relabeling – a function, dictionary, list or tuple

The given function or dictionary must map each (non-wrapped) element of self to some distinct object.
The given list or tuple must be made of distinct objects.

When the input is a list or a tuple, the relabeling uses the total ordering of the elements of the poset given
by list(self).

If no relabeling is given, the poset is relabeled by integers from 0 to 𝑛 − 1 according to one of its linear
extensions. This means that 𝑖 < 𝑗 as integers whenever 𝑖 < 𝑗 in the relabeled poset.

EXAMPLES:

Relabeling using a function:

sage: P = Poset((divisors(12), attrcall("divides")), linear_extension=True)
sage: P.list()
[1, 2, 3, 4, 6, 12]
sage: P.cover_relations()
[[1, 2], [1, 3], [2, 4], [2, 6], [3, 6], [4, 12], [6, 12]]
sage: Q = P.relabel(lambda x: x+1)
sage: Q.list()
[2, 3, 4, 5, 7, 13]

(continues on next page)

5.1. Comprehensive Module List 2011

Combinatorics, Release 9.7

(continued from previous page)

sage: Q.cover_relations()
[[2, 3], [2, 4], [3, 5], [3, 7], [4, 7], [5, 13], [7, 13]]

Relabeling using a dictionary:

sage: P = Poset((divisors(12), attrcall("divides")), linear_extension=True,␣
→˓facade=False)
sage: relabeling = {c.element:i for (i,c) in enumerate(P)}
sage: relabeling
{1: 0, 2: 1, 3: 2, 4: 3, 6: 4, 12: 5}
sage: Q = P.relabel(relabeling)
sage: Q.list()
[0, 1, 2, 3, 4, 5]
sage: Q.cover_relations()
[[0, 1], [0, 2], [1, 3], [1, 4], [2, 4], [3, 5], [4, 5]]

Mind the c.element; this is because the relabeling is applied to the elements of the poset without the
wrapping. Thanks to this convention, the same relabeling function can be used both for facade or non
facade posets.

Relabeling using a list:

sage: P = posets.PentagonPoset()
sage: list(P)
[0, 1, 2, 3, 4]
sage: P.cover_relations()
[[0, 1], [0, 2], [1, 4], [2, 3], [3, 4]]
sage: Q = P.relabel(list('abcde'))
sage: Q.cover_relations()
[['a', 'b'], ['a', 'c'], ['b', 'e'], ['c', 'd'], ['d', 'e']]

Default behaviour is increasing relabeling:

sage: a2 = posets.ChainPoset(2)
sage: P = a2 * a2
sage: Q = P.relabel()
sage: Q.cover_relations()
[[0, 1], [0, 2], [1, 3], [2, 3]]

Relabeling a (semi)lattice gives a (semi)lattice:

sage: P = JoinSemilattice({0: [1]})
sage: P.relabel(lambda n: n+1)
Finite join-semilattice containing 2 elements

Note: As can be seen in the above examples, the default linear extension of Q is that of P after relabeling.
In particular, P and Q share the same internal Hasse diagram.

relations()
Return the list of all relations of the poset.

A relation is a pair of elements 𝑥 and 𝑦 such that 𝑥 ≤ 𝑦 in the poset.

The number of relations is the dimension of the incidence algebra.

2012 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

A list of pairs (each pair is a list), where the first element of the pair is less than or equal to the second
element.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: P.relations()
[[1, 1], [1, 2], [1, 3], [1, 4], [0, 0], [0, 2], [0, 3],
[0, 4], [2, 2], [2, 3], [2, 4], [3, 3], [3, 4], [4, 4]]

See also:

relations_number(), relations_iterator()

AUTHOR:

• Rob Beezer (2011-05-04)

relations_iterator(strict=False)
Return an iterator for all the relations of the poset.

A relation is a pair of elements 𝑥 and 𝑦 such that 𝑥 ≤ 𝑦 in the poset.

INPUT:

• strict – a boolean (default False) if True, returns an iterator over relations 𝑥 < 𝑦, excluding all
relations 𝑥 ≤ 𝑥.

OUTPUT:

A generator that produces pairs (each pair is a list), where the first element of the pair is less than or equal
to the second element.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[4], 4:[]})
sage: it = P.relations_iterator()
sage: type(it)
<class 'generator'>
sage: next(it), next(it)
([1, 1], [1, 2])

sage: P = posets.PentagonPoset()
sage: list(P.relations_iterator(strict=True))
[[0, 1], [0, 2], [0, 4], [0, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

See also:

relations_number(), relations().

AUTHOR:

• Rob Beezer (2011-05-04)

relations_number()
Return the number of relations in the poset.

A relation is a pair of elements 𝑥 and 𝑦 such that 𝑥 ≤ 𝑦 in the poset.

Relations are also often called intervals. The number of intervals is the dimension of the incidence algebra.

EXAMPLES:

5.1. Comprehensive Module List 2013

Combinatorics, Release 9.7

sage: P = posets.PentagonPoset()
sage: P.relations_number()
13

sage: posets.TamariLattice(4).relations_number()
68

See also:

relations_iterator(), relations()

show(label_elements=True, element_labels=None, cover_labels=None, **kwds)
Displays the Hasse diagram of the poset.

INPUT:

• label_elements (default: True) - whether to display element labels

• element_labels (default: None) - a dictionary of element labels

• cover_labels - a dictionary, list or function representing labels of the covers of self. When set to
None (default) no label is displayed on the edges of the Hasse Diagram.

Note: This method also accepts:

• All options of GenericGraph.plot

• All options of Graphics.show

EXAMPLES:

sage: D = Poset({ 0:[1,2], 1:[3], 2:[3,4] })
sage: D.plot(label_elements=False)
Graphics object consisting of 6 graphics primitives
sage: D.show()
sage: elm_labs = {0:'a', 1:'b', 2:'c', 3:'d', 4:'e'}
sage: D.show(element_labels=elm_labs)

One more example with cover labels:

sage: P = posets.PentagonPoset()
sage: P.show(cover_labels=lambda a, b: a - b)

slant_sum(p, element, p_element)
Return the slant sum poset of posets self and p by connecting them with a cover relation (p_element,
element).

Note: The element names of self and p must be distinct.

INPUT:

• p – the poset used for the slant sum

• element – the element of self that is the top of the new cover relation

• p_element – the element of p that is the bottom of the new cover relation

EXAMPLES:

2014 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/graphs/sage/graphs/generic_graph.html#sage.graphs.generic_graph.GenericGraph.plot
../../../../../../../html/en/reference/plotting/sage/plot/graphics.html#sage.plot.graphics.Graphics.show

Combinatorics, Release 9.7

sage: R = posets.RibbonPoset(5, [1,2])
sage: H = Poset([[5, 6, 7], [(5, 6), (6,7)]])
sage: SS = R.slant_sum(H, 3, 7)
sage: all(cr in SS.cover_relations() for cr in R.cover_relations())
True
sage: all(cr in SS.cover_relations() for cr in H.cover_relations())
True
sage: SS.covers(7, 3)
True

sorted(l, allow_incomparable=True, remove_duplicates=False)
Return the list 𝑙 sorted by the poset.

INPUT:

• l – a list of elements of the poset

• allow_incomparable – a Boolean. If True (the default), return incomparable elements in some
order; if False, raise an error if l is not a chain of the poset.

• remove_duplicates - a Boolean. If True, remove duplicates from the output list.

EXAMPLES:

sage: P = posets.DivisorLattice(36)
sage: P.sorted([1, 4, 1, 6, 2, 12]) # Random order for 4 and 6
[1, 1, 2, 4, 6, 12]
sage: P.sorted([1, 4, 1, 6, 2, 12], remove_duplicates=True)
[1, 2, 4, 6, 12]
sage: P.sorted([1, 4, 1, 6, 2, 12], allow_incomparable=False)
Traceback (most recent call last):
...
ValueError: the list contains incomparable elements

sage: P = Poset({7:[1, 5], 1:[2, 6], 5:[3], 6:[3, 4]})
sage: P.sorted([4, 1, 4, 5, 7]) # Random order for 1 and 5
[7, 1, 5, 4, 4]
sage: P.sorted([1, 4, 4, 7], remove_duplicates=True)
[7, 1, 4]
sage: P.sorted([4, 1, 4, 5, 7], allow_incomparable=False)
Traceback (most recent call last):
...
ValueError: the list contains incomparable elements

spectrum(a)
Return the 𝑎-spectrum of this poset.

The 𝑎-spectrum in a poset 𝑃 is the list of integers whose 𝑖-th position contains the number of linear exten-
sions of 𝑃 that have 𝑎 in the 𝑖-th location.

INPUT:

• a – an element of this poset

OUTPUT:

The 𝑎-spectrum of this poset, returned as a list.

EXAMPLES:

5.1. Comprehensive Module List 2015

Combinatorics, Release 9.7

sage: P = posets.ChainPoset(5)
sage: P.spectrum(2)
[0, 0, 1, 0, 0]

sage: P = posets.BooleanLattice(3)
sage: P.spectrum(5)
[0, 0, 0, 4, 12, 16, 16, 0]

sage: P = posets.YoungDiagramPoset(Partition([3,2,1]))
sage: P.spectrum((0,1))
[0, 8, 6, 2, 0, 0]

sage: P = posets.AntichainPoset(4)
sage: P.spectrum(3)
[6, 6, 6, 6]

star_product(other, labels='pairs')
Return a poset isomorphic to the star product of the poset with other.

Both this poset and other are expected to be bounded and have at least two elements.

Let 𝑃 be a poset with top element ⊤𝑃 and 𝑄 be a poset with bottom element ⊥𝑄. The star product of 𝑃
and 𝑄 is the ordinal sum of 𝑃 ∖ ⊤𝑃 and 𝑄 ∖ ⊥𝑄.

Mathematically, it is only defined when 𝑃 and 𝑄 have no common elements; here we force that by giving
them different names in the resulting poset.

INPUT:

• other – a poset.

• labels – (defaults to ‘pairs’) If set to ‘pairs’, each element v in this poset will be named (0, v) and
each element u in other will be named (1, u) in the result. If set to ‘integers’, the elements of the
result will be relabeled with consecutive integers.

EXAMPLES:

This is mostly used to combine two Eulerian posets to third one, and makes sense for graded posets only:

sage: B2 = posets.BooleanLattice(2)
sage: B3 = posets.BooleanLattice(3)
sage: P = B2.star_product(B3); P
Finite poset containing 10 elements
sage: P.is_eulerian()
True

We can get elements as pairs or as integers:

sage: ABC = Poset({'a': ['b'], 'b': ['c']})
sage: XYZ = Poset({'x': ['y'], 'y': ['z']})
sage: ABC.star_product(XYZ).list()
[(0, 'a'), (0, 'b'), (1, 'y'), (1, 'z')]
sage: sorted(ABC.star_product(XYZ, labels='integers'))
[0, 1, 2, 3]

subposet(elements)
Return the poset containing given elements with partial order induced by this poset.

2016 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: P = Poset({'a': ['c', 'd'], 'b': ['d','e'], 'c': ['f'],
....: 'd': ['f'], 'e': ['f']})
sage: Q = P.subposet(['a', 'b', 'f']); Q
Finite poset containing 3 elements
sage: Q.cover_relations()
[['b', 'f'], ['a', 'f']]

A subposet of a non-facade poset is again a non-facade poset:

sage: P = posets.PentagonPoset(facade=False)
sage: Q = P.subposet([0, 1, 2, 4])
sage: Q(1) < Q(2)
False

top()
Return the unique maximal element of the poset, if it exists.

EXAMPLES:

sage: P = Poset({0:[3],1:[3],2:[3],3:[4,5],4:[],5:[]})
sage: P.top() is None
True
sage: Q = Poset({0:[1],1:[]})
sage: Q.top()
1

See also:

has_top(), bottom()

unwrap(element)
Return the element element of the poset self in unwrapped form.

INPUT:

• element – an element of self

EXAMPLES:

sage: P = Poset((divisors(15), attrcall("divides")), facade = False)
sage: x = P.an_element(); x
1
sage: x.parent()
Finite poset containing 4 elements
sage: P.unwrap(x)
1
sage: P.unwrap(x).parent()
Integer Ring

For a non facade poset, this is equivalent to using the .element attribute:

sage: P.unwrap(x) is x.element
True

For a facade poset, this does nothing:

5.1. Comprehensive Module List 2017

Combinatorics, Release 9.7

sage: P = Poset((divisors(15), attrcall("divides")), facade=True)
sage: x = P.an_element()
sage: P.unwrap(x) is x
True

This method is useful in code where we do not know if P is a facade poset or not.

upper_covers(x)
Return the list of upper covers of the element x.

An upper cover of 𝑥 is an element 𝑦 such that 𝑥 < 𝑦 and there is no element 𝑧 so that 𝑥 < 𝑧 < 𝑦.

EXAMPLES:

sage: P = Poset([[1,5], [2,6], [3], [4], [], [6,3], [4]])
sage: P.upper_covers(1)
[2, 6]

See also:

lower_covers()

upper_covers_iterator(x)
Return an iterator over the upper covers of the element x.

EXAMPLES:

sage: P = Poset({0:[2], 1:[2], 2:[3], 3:[]})
sage: type(P.upper_covers_iterator(0))
<class 'generator'>

width(certificate=False)
Return the width of the poset (the size of its longest antichain).

It is computed through a matching in a bipartite graph; see Wikipedia article Dilworth%27s_theorem for
more information. The width is also called Dilworth number.

INPUT:

• certificate – (default: False) whether to return a certificate

OUTPUT:

• If certificate=True return (w, a), where 𝑤 is the width of a poset and 𝑎 is an antichain of maxi-
mum cardinality. If certificate=False return only width of the poset.

EXAMPLES:

sage: P = posets.BooleanLattice(4)
sage: P.width()
6

sage: w, max_achain = P.width(certificate=True)
sage: sorted(max_achain)
[3, 5, 6, 9, 10, 12]

with_bounds(labels=('bottom', 'top'))
Return the poset with bottom and top elements adjoined.

This function adds top and bottom elements to the poset. It will always add elements, it does not check if
the poset already has a bottom or a top element.

2018 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Dilworth%27s_theorem

Combinatorics, Release 9.7

For lattices and semilattices this function returns a lattice.

INPUT:

• labels – A pair of elements to use as a bottom and top element of the poset. Default is strings
'bottom' and 'top'. Either of them can be None, and then a new bottom or top element will not be
added.

EXAMPLES:

sage: V = Poset({0: [1, 2]})
sage: trafficsign = V.with_bounds(); trafficsign
Finite poset containing 5 elements
sage: trafficsign.list()
['bottom', 0, 1, 2, 'top']
sage: trafficsign = V.with_bounds(labels=(-1, -2))
sage: trafficsign.cover_relations()
[[-1, 0], [0, 1], [0, 2], [1, -2], [2, -2]]

sage: Y = V.with_bounds(labels=(-1, None))
sage: Y.cover_relations()
[[-1, 0], [0, 1], [0, 2]]

sage: P = posets.PentagonPoset() # A lattice
sage: P.with_bounds()
Finite lattice containing 7 elements

sage: P = posets.PentagonPoset(facade=False)
sage: P.with_bounds()
Finite lattice containing 7 elements

See also:

without_bounds() for the reverse operation

with_linear_extension(linear_extension)
Return a copy of self with a different default linear extension.

EXAMPLES:

sage: P = Poset((divisors(12), attrcall("divides")), linear_extension=True)
sage: P.cover_relations()
[[1, 2], [1, 3], [2, 4], [2, 6], [3, 6], [4, 12], [6, 12]]
sage: list(P)
[1, 2, 3, 4, 6, 12]
sage: Q = P.with_linear_extension([1,3,2,6,4,12])
sage: list(Q)
[1, 3, 2, 6, 4, 12]
sage: Q.cover_relations()
[[1, 3], [1, 2], [3, 6], [2, 6], [2, 4], [6, 12], [4, 12]]

Note: With the current implementation, this requires relabeling the internal DiGraph which is𝑂(𝑛+𝑚),
where 𝑛 is the number of elements and 𝑚 the number of cover relations.

without_bounds()
Return the poset without its top and bottom elements.

5.1. Comprehensive Module List 2019

../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Combinatorics, Release 9.7

This is useful as an input for the method order_complex().

If there is either no top or no bottom element, this raises a TypeError.

EXAMPLES:

sage: P = posets.PentagonPoset()
sage: Q = P.without_bounds(); Q
Finite poset containing 3 elements
sage: Q.cover_relations()
[[2, 3]]

sage: P = posets.DiamondPoset(5)
sage: Q = P.without_bounds(); Q
Finite poset containing 3 elements
sage: Q.cover_relations()
[]

See also:

with_bounds() for the reverse operation

zeta_polynomial()
Return the zeta polynomial of the poset.

The zeta polynomial of a poset is the unique polynomial 𝑍(𝑞) such that for every integer 𝑚 > 1, 𝑍(𝑚) is
the number of weakly increasing sequences 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑚−1 of elements of the poset.

The polynomial𝑍(𝑞) is integral-valued, but generally does not have integer coefficients. It can be computed
as

𝑍(𝑞) =
∑︁
𝑘≥1

(︂
𝑞 − 2

𝑘 − 1

)︂
𝑐𝑘,

where 𝑐𝑘 is the number of all chains of length 𝑘 in the poset.

For more information, see section 3.12 of [EnumComb1].

In particular, 𝑍(2) is the number of vertices and 𝑍(3) is the number of intervals.

EXAMPLES:

sage: posets.ChainPoset(2).zeta_polynomial()
q
sage: posets.ChainPoset(3).zeta_polynomial()
1/2*q^2 + 1/2*q

sage: P = posets.PentagonPoset()
sage: P.zeta_polynomial()
1/6*q^3 + q^2 - 1/6*q

sage: P = posets.DiamondPoset(5)
sage: P.zeta_polynomial()
3/2*q^2 - 1/2*q

class sage.combinat.posets.posets.FinitePosets_n(n)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The finite enumerated set of all posets on 𝑛 elements, up to an isomorphism.

2020 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

EXAMPLES:

sage: P = Posets(3)
sage: P.cardinality()
5
sage: for p in P: print(p.cover_relations())
[]
[[1, 2]]
[[0, 1], [0, 2]]
[[0, 1], [1, 2]]
[[1, 2], [0, 2]]

cardinality(from_iterator=False)
Return the cardinality of this object.

Note: By default, this returns pre-computed values obtained from the On-Line Encyclopedia of Integer
Sequences (OEIS sequence A000112). To override this, pass the argument from_iterator=True.

EXAMPLES:

sage: P = Posets(3)
sage: P.cardinality()
5
sage: P.cardinality(from_iterator=True)
5

sage.combinat.posets.posets.Poset(data=None, element_labels=None, cover_relations=False,
linear_extension=False, category=None, facade=None, key=None)

Construct a finite poset from various forms of input data.

INPUT:

• data – different input are accepted by this constructor:

1. A two-element list or tuple (E, R), where E is a collection of elements of the poset and R is a collection
of relations x <= y, each represented as a two-element list/tuple/iterable such as [x, y]. The poset
is then the transitive closure of the provided relations. If cover_relations=True, then R is assumed
to contain exactly the cover relations of the poset. If E is empty, then E is taken to be the set of elements
appearing in the relations R.

2. A two-element list or tuple (E, f), where E is the set of elements of the poset and f is a
function such that, for any pair x, y of elements of E, f(x, y) returns whether x <= y. If
cover_relations=True, then f(x, y) should instead return whether x is covered by y.

3. A dictionary of upper covers: data[x] is a list of the elements that cover the element 𝑥 in the poset.

4. A list or tuple of upper covers: data[x] is a list of the elements that cover the element 𝑥 in the poset.

If the set of elements is not a set of consecutive integers starting from zero, then:

– every element must appear in the data, for example in its own entry.

– data must be ordered in the same way as sorted elements.

Warning: If data is a list or tuple of length 2, then it is handled by the case 2 above.

5.1. Comprehensive Module List 2021

https://oeis.org/A000112

Combinatorics, Release 9.7

5. An acyclic, loop-free and multi-edge free DiGraph. If cover_relations is True, then the edges
of the digraph are assumed to correspond to the cover relations of the poset. Otherwise, the cover
relations are computed.

6. A previously constructed poset (the poset itself is returned).

• element_labels – (default: None); an optional list or dictionary of objects that label the poset elements.

• cover_relations – a boolean (default: False); whether the data can be assumed to describe a directed
acyclic graph whose arrows are cover relations; otherwise, the cover relations are first computed.

• linear_extension – a boolean (default: False); whether to use the provided list of elements as default
linear extension for the poset; otherwise a linear extension is computed. If the data is given as the pair (E,
f), then E is taken to be the linear extension.

• facade – a boolean or None (default); whether the Poset()’s elements should be wrapped to make them
aware of the Poset they belong to.

– If facade = True, the Poset()’s elements are exactly those given as input.

– If facade = False, the Poset()’s elements will become PosetElement objects.

– If facade = None (default) the expected behaviour is the behaviour of facade = True, unless the
opposite can be deduced from the context (i.e. for instance if a Poset() is built from another Poset(),
itself built with facade = False)

OUTPUT:

FinitePoset – an instance of the FinitePoset class.

If category is specified, then the poset is created in this category instead of FinitePosets.

See also:

Posets, Posets, FinitePosets

EXAMPLES:

1. Elements and cover relations:

sage: elms = [1,2,3,4,5,6,7]
sage: rels = [[1,2],[3,4],[4,5],[2,5]]
sage: Poset((elms, rels), cover_relations = True, facade = False)
Finite poset containing 7 elements

Elements and non-cover relations:

sage: elms = [1,2,3,4]
sage: rels = [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
sage: P = Poset([elms,rels] ,cover_relations=False); P
Finite poset containing 4 elements
sage: P.cover_relations()
[[1, 2], [2, 3], [3, 4]]

2. Elements and function: the standard permutations of [1, 2, 3, 4] with the Bruhat order:

sage: elms = Permutations(4)
sage: fcn = lambda p,q : p.bruhat_lequal(q)
sage: Poset((elms, fcn))
Finite poset containing 24 elements

With a function that identifies the cover relations: the set partitions of {1, 2, 3} ordered by refinement:

2022 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/finite_posets.html#sage.categories.finite_posets.FinitePosets
../../../../../../../html/en/reference/categories/sage/categories/posets.html#sage.categories.posets.Posets
../../../../../../../html/en/reference/categories/sage/categories/finite_posets.html#sage.categories.finite_posets.FinitePosets

Combinatorics, Release 9.7

sage: elms = SetPartitions(3)
sage: def fcn(A, B):
....: if len(A) != len(B)+1:
....: return False
....: for a in A:
....: if not any(set(a).issubset(b) for b in B):
....: return False
....: return True
sage: Poset((elms, fcn), cover_relations=True)
Finite poset containing 5 elements

3. A dictionary of upper covers:

sage: Poset({'a':['b','c'], 'b':['d'], 'c':['d'], 'd':[]})
Finite poset containing 4 elements

4. A list of upper covers, with range(5) as set of vertices:

sage: Poset([[1,2],[4],[3],[4],[]])
Finite poset containing 5 elements

A list of upper covers, with letters as vertices:

sage: Poset([["a","b"],["b","c"],["c"]])
Finite poset containing 3 elements

A list of upper covers and a dictionary of labels:

sage: elm_labs = {0:"a",1:"b",2:"c",3:"d",4:"e"}
sage: P = Poset([[1,2],[4],[3],[4],[]], elm_labs, facade=False)
sage: P.list()
[a, b, c, d, e]

Warning: The special case where the argument data is a list or tuple of length 2 is handled by the case
2. So you cannot use this method to input a 2-element poset.

5. An acyclic DiGraph.

sage: dag = DiGraph({0:[2,3], 1:[3,4], 2:[5], 3:[5], 4:[5]})
sage: Poset(dag)
Finite poset containing 6 elements

Any directed acyclic graph without loops or multiple edges, as long as cover_relations=False:

sage: dig = DiGraph({0:[2,3], 1:[3,4,5], 2:[5], 3:[5], 4:[5]})
sage: dig.allows_multiple_edges()
False
sage: dig.allows_loops()
False
sage: dig.transitive_reduction() == dig
False
sage: Poset(dig, cover_relations=False)

(continues on next page)

5.1. Comprehensive Module List 2023

Combinatorics, Release 9.7

(continued from previous page)

Finite poset containing 6 elements
sage: Poset(dig, cover_relations=True)
Traceback (most recent call last):
...
ValueError: Hasse diagram is not transitively reduced

Default Linear extension

Every poset 𝑃 obtained with Poset comes equipped with a default linear extension, which is also used for
enumerating its elements. By default, this linear extension is computed, and has no particular significance:

sage: P = Poset((divisors(12), attrcall("divides")))
sage: P.list()
[1, 2, 4, 3, 6, 12]
sage: P.linear_extension()
[1, 2, 4, 3, 6, 12]

You may enforce a specific linear extension using the linear_extension option:

sage: P = Poset((divisors(12), attrcall("divides")), linear_extension=True)
sage: P.list()
[1, 2, 3, 4, 6, 12]
sage: P.linear_extension()
[1, 2, 3, 4, 6, 12]

Depending on popular request, Poset might eventually get modified to always use the provided list of elements
as default linear extension, when it is one.

See also:

FinitePoset.linear_extensions()

Facade posets

When facade = False, the elements of a poset are wrapped so as to make them aware that they belong to that
poset:

sage: P = Poset(DiGraph({'d':['c','b'],'c':['a'],'b':['a']}), facade = False)
sage: d,c,b,a = list(P)
sage: a.parent() is P
True

This allows for comparing elements according to 𝑃 :

sage: c < a
True

However, this may have surprising effects:

sage: my_elements = ['a','b','c','d']
sage: any(x in my_elements for x in P)
False

2024 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

and can be annoying when one wants to manipulate the elements of the poset:

sage: a + b
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Finite poset containing 4 elements
→˓' and 'Finite poset containing 4 elements'
sage: a.element + b.element
'ab'

By default, facade posets are constructed instead:

sage: P = Poset(DiGraph({'d':['c','b'],'c':['a'],'b':['a']}))

In this example, the elements of the poset remain plain strings:

sage: d,c,b,a = list(P)
sage: type(a)
<class 'str'>

Of course, those strings are not aware of 𝑃 . So to compare two such strings, one needs to query 𝑃 :

sage: a < b
True
sage: P.lt(a,b)
False

which models the usual mathematical notation 𝑎 <𝑃 𝑏.

Most operations seem to still work, but at this point there is no guarantee whatsoever:

sage: P.list()
['d', 'c', 'b', 'a']
sage: P.principal_order_ideal('a')
['d', 'c', 'b', 'a']
sage: P.principal_order_ideal('b')
['d', 'b']
sage: P.principal_order_ideal('d')
['d']
sage: TestSuite(P).run()

Warning: DiGraph is used to construct the poset, and the vertices of a DiGraph are converted to plain
Python int’s if they are Integer’s:

sage: G = DiGraph({0:[2,3], 1:[3,4], 2:[5], 3:[5], 4:[5]})
sage: type(G.vertices(sort=True)[0])
<class 'int'>

This is worked around by systematically converting back the vertices of a poset to Integer’s if they are
int’s:
sage: P = Poset((divisors(15), attrcall("divides")), facade = False)
sage: type(P.an_element().element)
<class 'sage.rings.integer.Integer'>

sage: P = Poset((divisors(15), attrcall("divides")), facade=True)
sage: type(P.an_element())
<class 'sage.rings.integer.Integer'>

5.1. Comprehensive Module List 2025

../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph
../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph
../../../../../../../html/en/reference/rings_standard/sage/rings/integer.html#sage.rings.integer.Integer
../../../../../../../html/en/reference/rings_standard/sage/rings/integer.html#sage.rings.integer.Integer

Combinatorics, Release 9.7

This may be abusive:

sage: P = Poset((range(5), operator.le), facade = True)
sage: P.an_element().parent()
Integer Ring

Unique representation

As most parents, Poset have unique representation (see UniqueRepresentation). Namely if two posets are
created from two equal data, then they are not only equal but actually identical:

sage: data1 = [[1,2],[3],[3]]
sage: data2 = [[1,2],[3],[3]]
sage: P1 = Poset(data1)
sage: P2 = Poset(data2)
sage: P1 == P2
True
sage: P1 is P2
True

In situations where this behaviour is not desired, one can use the key option:

sage: P1 = Poset(data1, key = "foo")
sage: P2 = Poset(data2, key = "bar")
sage: P1 is P2
False
sage: P1 == P2
False

key can be any hashable value and is passed down to UniqueRepresentation. It is otherwise ignored by the
poset constructor.

sage.combinat.posets.posets.is_poset(dig)
Return True if a directed graph is acyclic and transitively reduced, and False otherwise.

EXAMPLES:

sage: from sage.combinat.posets.posets import is_poset
sage: dig = DiGraph({0:[2, 3], 1:[3, 4, 5], 2:[5], 3:[5], 4:[5]})
sage: is_poset(dig)
False
sage: is_poset(dig.transitive_reduction())
True

2026 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

5.1.184 𝑞-Analogues

sage.combinat.q_analogues.gaussian_binomial(n, k, q=None, algorithm='auto')
This is an alias of q_binomial().

See q_binomial() for the full documentation.

EXAMPLES:

sage: gaussian_binomial(4,2)
q^4 + q^3 + 2*q^2 + q + 1

sage.combinat.q_analogues.gaussian_multinomial(seq, q=None, binomial_algorithm='auto')
Return the 𝑞-multinomial coefficient.

This is also known as the Gaussian multinomial coefficient, and is defined by(︂
𝑛

𝑘1, 𝑘2, . . . , 𝑘𝑚

)︂
𝑞

=
[𝑛]𝑞!

[𝑘1]𝑞![𝑘2]𝑞! · · · [𝑘𝑚]𝑞!

where 𝑛 = 𝑘1 + 𝑘2 + · · ·+ 𝑘𝑚.

If 𝑞 is unspecified, then the variable is the generator 𝑞 for a univariate polynomial ring over the integers.

INPUT:

• seq – an iterable of the values 𝑘1 to 𝑘𝑚 defined above

• q – (default: None) the variable 𝑞; if None, then use a default variable in Z[𝑞]

• binomial_algorithm – (default: 'auto') the algorithm to use in q_binomial(); see possible values
there

ALGORITHM:

We use the equivalent formula (︂
𝑘1 + · · ·+ 𝑘𝑚
𝑘1, . . . , 𝑘𝑚

)︂
𝑞

=

𝑚∏︁
𝑖=1

(︂∑︀𝑖
𝑗=1 𝑘𝑗

𝑘𝑖

)︂
𝑞

.

EXAMPLES:

sage: from sage.combinat.q_analogues import q_multinomial
sage: q_multinomial([1,2,1])
q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 2*q + 1
sage: q_multinomial([1,2,1], q=1) == multinomial([1,2,1])
True
sage: q_multinomial((3,2)) == q_binomial(5,3)
True
sage: q_multinomial([])
1

sage.combinat.q_analogues.q_binomial(n, k, q=None, algorithm='auto')
Return the 𝑞-binomial coefficient.

This is also known as the Gaussian binomial coefficient, and is defined by(︂
𝑛

𝑘

)︂
𝑞

=
(1− 𝑞𝑛)(1− 𝑞𝑛−1) · · · (1− 𝑞𝑛−𝑘+1)

(1− 𝑞)(1− 𝑞2) · · · (1− 𝑞𝑘)
.

See Wikipedia article Gaussian_binomial_coefficient.

5.1. Comprehensive Module List 2027

https://en.wikipedia.org/wiki/Gaussian_binomial_coefficient

Combinatorics, Release 9.7

If 𝑞 is unspecified, then the variable is the generator 𝑞 for a univariate polynomial ring over the integers.

INPUT:

• n, k – the values 𝑛 and 𝑘 defined above

• q – (default: None) the variable 𝑞; if None, then use a default variable in Z[𝑞]

• algorithm – (default: 'auto') the algorithm to use and can be one of the following:

– 'auto' – automatically choose the algorithm; see the algorithm section below

– 'naive' – use the naive algorithm

– 'cyclotomic' – use cyclotomic algorithm

ALGORITHM:

The naive algorithm uses the product formula. The cyclotomic algorithm uses a product of cyclotomic polyno-
mials (cf. [CH2006]).

When the algorithm is set to 'auto', we choose according to the following rules:

• If q is a polynomial:

When n is small or k is small with respect to n, one uses the naive algorithm. When both n and k are big,
one uses the cyclotomic algorithm.

• If q is in the symbolic ring (or a symbolic subring), one uses the cyclotomic algorithm.

• Otherwise one uses the naive algorithm, unless q is a root of unity, then one uses the cyclotomic algorithm.

EXAMPLES:

By default, the variable is the generator of Z[𝑞]:

sage: from sage.combinat.q_analogues import q_binomial
sage: g = q_binomial(5,1) ; g
q^4 + q^3 + q^2 + q + 1
sage: g.parent()
Univariate Polynomial Ring in q over Integer Ring

The 𝑞-binomial coefficient vanishes unless 0 ≤ 𝑘 ≤ 𝑛:

sage: q_binomial(4,5)
0
sage: q_binomial(5,-1)
0

Other variables can be used, given as third parameter:

sage: p = ZZ['p'].gen()
sage: q_binomial(4,2,p)
p^4 + p^3 + 2*p^2 + p + 1

The third parameter can also be arbitrary values:

sage: q_binomial(5,1,2) == g.subs(q=2)
True
sage: q_binomial(5,1,1)
5
sage: q_binomial(4,2,-1)

(continues on next page)

2028 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

2
sage: q_binomial(4,2,3.14)
152.030056160000
sage: R = GF(25, 't')
sage: t = R.gen(0)
sage: q_binomial(6, 3, t)
2*t + 3

We can also do this for more complicated objects such as matrices or symmetric functions:

sage: q_binomial(4,2,matrix([[2,1],[-1,3]]))
[-6 84]
[-84 78]
sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: q_binomial(4,1, s[2]+s[1])
s[] + s[1] + s[1, 1] + s[1, 1, 1] + 2*s[2] + 4*s[2, 1] + 3*s[2, 1, 1]
+ 4*s[2, 2] + 3*s[2, 2, 1] + s[2, 2, 2] + 3*s[3] + 7*s[3, 1] + 3*s[3, 1, 1]
+ 6*s[3, 2] + 2*s[3, 2, 1] + s[3, 3] + 4*s[4] + 6*s[4, 1] + s[4, 1, 1]
+ 3*s[4, 2] + 3*s[5] + 2*s[5, 1] + s[6]

REFERENCES:

AUTHORS:

• Frédéric Chapoton, David Joyner and William Stein

sage.combinat.q_analogues.q_catalan_number(n, q=None)
Return the 𝑞-Catalan number of index 𝑛.

If 𝑞 is unspecified, then it defaults to using the generator 𝑞 for a univariate polynomial ring over the integers.

There are several 𝑞-Catalan numbers. This procedure returns the one which can be written using the 𝑞-binomial
coefficients.

EXAMPLES:

sage: from sage.combinat.q_analogues import q_catalan_number
sage: q_catalan_number(4)
q^12 + q^10 + q^9 + 2*q^8 + q^7 + 2*q^6 + q^5 + 2*q^4 + q^3 + q^2 + 1
sage: p = ZZ['p'].0
sage: q_catalan_number(4,p)
p^12 + p^10 + p^9 + 2*p^8 + p^7 + 2*p^6 + p^5 + 2*p^4 + p^3 + p^2 + 1

The 𝑞-Catalan number of index 𝑛 is only defined for 𝑛 a nonnegative integer (trac ticket #11411):

sage: q_catalan_number(-2)
Traceback (most recent call last):
...
ValueError: argument (-2) must be a nonnegative integer

sage.combinat.q_analogues.q_factorial(n, q=None)
Return the 𝑞-analogue of the factorial 𝑛!.

This is the product

[1]𝑞[2]𝑞 · · · [𝑛]𝑞 = 1 · (1 + 𝑞) · (1 + 𝑞 + 𝑞2) · · · (1 + 𝑞 + 𝑞2 + · · ·+ 𝑞𝑛−1).

5.1. Comprehensive Module List 2029

https://trac.sagemath.org/11411

Combinatorics, Release 9.7

If 𝑞 is unspecified, then this function defaults to using the generator 𝑞 for a univariate polynomial ring over the
integers.

EXAMPLES:

sage: from sage.combinat.q_analogues import q_factorial
sage: q_factorial(3)
q^3 + 2*q^2 + 2*q + 1
sage: p = ZZ['p'].0
sage: q_factorial(3, p)
p^3 + 2*p^2 + 2*p + 1

The 𝑞-analogue of 𝑛! is only defined for 𝑛 a non-negative integer (trac ticket #11411):

sage: q_factorial(-2)
Traceback (most recent call last):
...
ValueError: argument (-2) must be a nonnegative integer

sage.combinat.q_analogues.q_int(n, q=None)
Return the 𝑞-analogue of the integer 𝑛.

The 𝑞-analogue of the integer 𝑛 is given by

[𝑛]𝑞 =

{︃
1 + 𝑞 + · · ·+ 𝑞𝑛−1, if 𝑛 ≥ 0,

−𝑞−𝑛[−𝑛]𝑞, if 𝑛 ≤ 0.

Consequently, if 𝑞 = 1 then [𝑛]1 = 𝑛 and if 𝑞 ̸= 1 then [𝑛]𝑞 = (𝑞𝑛 − 1)/(𝑞 − 1).

If the argument 𝑞 is not specified then it defaults to the generator 𝑞 of the univariate polynomial ring over the
integers.

EXAMPLES:

sage: from sage.combinat.q_analogues import q_int
sage: q_int(3)
q^2 + q + 1
sage: q_int(-3)
(-q^2 - q - 1)/q^3
sage: p = ZZ['p'].0
sage: q_int(3,p)
p^2 + p + 1
sage: q_int(3/2)
Traceback (most recent call last):
...
ValueError: 3/2 must be an integer

sage.combinat.q_analogues.q_jordan(t, q=None)
Return the 𝑞-Jordan number of 𝑡.

If 𝑞 is the power of a prime number, the output is the number of complete flags in F𝑁𝑞 (where 𝑁 is the size of 𝑡)
stable under a linear nilpotent endomorphism 𝑓𝑡 whose Jordan type is given by 𝑡, i.e. such that for all 𝑖:

dim(ker 𝑓 𝑖𝑡) = 𝑡[0] + · · ·+ 𝑡[𝑖− 1]

If 𝑞 is unspecified, then it defaults to using the generator 𝑞 for a univariate polynomial ring over the integers.

The result is cached.

2030 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/11411

Combinatorics, Release 9.7

INPUT:

• t – an integer partition, or an argument accepted by Partition

• q – (default: None) the variable 𝑞; if None, then use a default variable in Z[𝑞]

EXAMPLES:

sage: from sage.combinat.q_analogues import q_jordan
sage: [q_jordan(mu, 2) for mu in Partitions(5)]
[9765, 1029, 213, 93, 29, 9, 1]
sage: [q_jordan(mu, 2) for mu in Partitions(6)]
[615195, 40635, 5643, 2331, 1491, 515, 147, 87, 47, 11, 1]
sage: q_jordan([3,2,1])
16*q^4 + 24*q^3 + 14*q^2 + 5*q + 1
sage: q_jordan([2,1], x)
2*x + 1

If the partition is trivial (i.e. has only one part), we get the 𝑞-factorial (in this case, the nilpotent endomorphism
is necessarily 0):

sage: from sage.combinat.q_analogues import q_factorial
sage: q_jordan([5]) == q_factorial(5)
True
sage: q_jordan([11], 5) == q_factorial(11, 5)
True

AUTHOR:

• Xavier Caruso (2012-06-29)

sage.combinat.q_analogues.q_multinomial(seq, q=None, binomial_algorithm='auto')
Return the 𝑞-multinomial coefficient.

This is also known as the Gaussian multinomial coefficient, and is defined by(︂
𝑛

𝑘1, 𝑘2, . . . , 𝑘𝑚

)︂
𝑞

=
[𝑛]𝑞!

[𝑘1]𝑞![𝑘2]𝑞! · · · [𝑘𝑚]𝑞!

where 𝑛 = 𝑘1 + 𝑘2 + · · ·+ 𝑘𝑚.

If 𝑞 is unspecified, then the variable is the generator 𝑞 for a univariate polynomial ring over the integers.

INPUT:

• seq – an iterable of the values 𝑘1 to 𝑘𝑚 defined above

• q – (default: None) the variable 𝑞; if None, then use a default variable in Z[𝑞]

• binomial_algorithm – (default: 'auto') the algorithm to use in q_binomial(); see possible values
there

ALGORITHM:

We use the equivalent formula (︂
𝑘1 + · · ·+ 𝑘𝑚
𝑘1, . . . , 𝑘𝑚

)︂
𝑞

=

𝑚∏︁
𝑖=1

(︂∑︀𝑖
𝑗=1 𝑘𝑗

𝑘𝑖

)︂
𝑞

.

EXAMPLES:

5.1. Comprehensive Module List 2031

Combinatorics, Release 9.7

sage: from sage.combinat.q_analogues import q_multinomial
sage: q_multinomial([1,2,1])
q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 2*q + 1
sage: q_multinomial([1,2,1], q=1) == multinomial([1,2,1])
True
sage: q_multinomial((3,2)) == q_binomial(5,3)
True
sage: q_multinomial([])
1

sage.combinat.q_analogues.q_pochhammer(n, a, q=None)
Return the 𝑞-Pochhammer (𝑎; 𝑞)𝑛.

The 𝑞-Pochhammer symbol is defined by

(𝑎; 𝑞)𝑛 =

𝑛−1∏︁
𝑘=0

(1− 𝑎𝑞𝑘)

with (𝑎; 𝑞)0 = 1 for all 𝑎, 𝑞 and 𝑛 ∈ N. By using the identity

(𝑎; 𝑞)𝑛 =
(𝑎; 𝑞)∞

(𝑎𝑞𝑛; 𝑞)∞
,

we can extend the definition to 𝑛 < 0 by

(𝑎; 𝑞)𝑛 =
1

(𝑎𝑞𝑛; 𝑞)−𝑛
=

−𝑛∏︁
𝑘=1

1

1− 𝑎/𝑞𝑘
.

EXAMPLES:

sage: from sage.combinat.q_analogues import q_pochhammer
sage: q_pochhammer(3, 1/7)
6/343*q^3 - 6/49*q^2 - 6/49*q + 6/7
sage: q_pochhammer(3, 3)
-18*q^3 + 6*q^2 + 6*q - 2
sage: q_pochhammer(3, 1)
0

sage: R.<q> = ZZ[]
sage: q_pochhammer(4, q)
q^10 - q^9 - q^8 + 2*q^5 - q^2 - q + 1
sage: q_pochhammer(4, q^2)
q^14 - q^12 - q^11 - q^10 + q^8 + 2*q^7 + q^6 - q^4 - q^3 - q^2 + 1
sage: q_pochhammer(-3, q)
1/(-q^9 + q^7 + q^6 + q^5 - q^4 - q^3 - q^2 + 1)

REFERENCES:

• Wikipedia article Q-Pochhammer_symbol

sage.combinat.q_analogues.q_stirling_number1(n, k, q=None)
Return the (unsigned) 𝑞-Stirling number of the first kind.

This is a 𝑞-analogue of sage.combinat.combinat.stirling_number1() .

INPUT:

2032 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Q-Pochhammer_symbol

Combinatorics, Release 9.7

• n, k – integers with 1 <= k <= n

• q – optional variable (default 𝑞)

OUTPUT: a polynomial in the variable 𝑞

These polynomials satisfy the recurrence

𝑠𝑛,𝑘 = 𝑠𝑛−1,𝑘−1 + [𝑛− 1]𝑞𝑠𝑛−1,𝑘.

EXAMPLES:

sage: from sage.combinat.q_analogues import q_stirling_number1
sage: q_stirling_number1(4,2)
q^3 + 3*q^2 + 4*q + 3

sage: all(stirling_number1(6,k) == q_stirling_number1(6,k)(1)
....: for k in range(1,7))
True

sage: x = polygen(QQ['q'],'x')
sage: S = sum(q_stirling_number1(5,k)*x**k for k in range(1, 6))
sage: factor(S)
x * (x + 1) * (x + q + 1) * (x + q^2 + q + 1) * (x + q^3 + q^2 + q + 1)

REFERENCES:

• [Ca1948]

• [Ca1954]

sage.combinat.q_analogues.q_stirling_number2(n, k, q=None)
Return the (unsigned) 𝑞-Stirling number of the second kind.

This is a 𝑞-analogue of sage.combinat.combinat.stirling_number2().

INPUT:

• n, k – integers with 1 <= k <= n

• q – optional variable (default 𝑞)

OUTPUT: a polynomial in the variable 𝑞

These polynomials satisfy the recurrence

𝑆𝑛,𝑘 = 𝑞𝑘−1𝑆𝑛−1,𝑘−1 + [𝑘]𝑞𝑠𝑛−1,𝑘.

EXAMPLES:

sage: from sage.combinat.q_analogues import q_stirling_number2
sage: q_stirling_number2(4,2)
q^3 + 3*q^2 + 3*q

sage: all(stirling_number2(6,k) == q_stirling_number2(6,k)(1)
....: for k in range(7))
True

REFERENCES:

• [Mil1978]

5.1. Comprehensive Module List 2033

Combinatorics, Release 9.7

sage.combinat.q_analogues.q_subgroups_of_abelian_group(la, mu, q=None, algorithm='birkhoff')
Return the 𝑞-number of subgroups of type mu in a finite abelian group of type la.

INPUT:

• la – type of the ambient group as a Partition

• mu – type of the subgroup as a Partition

• q – (default: None) an indeterminate or a prime number; if None, this defaults to 𝑞 ∈ Z[𝑞]

• algorithm – (default: 'birkhoff') the algorithm to use can be one of the following:

– 'birkhoff – use the Birkhoff formula from [Bu87]

– 'delsarte' – use the formula from [Delsarte48]

OUTPUT:

The number of subgroups of type mu in a group of type la as a polynomial in q.

ALGORITHM:

Let 𝑞 be a prime number and 𝜆 = (𝜆1, . . . , 𝜆𝑙) be a partition. A finite abelian 𝑞-group is of type 𝜆 if it is
isomorphic to

Z/𝑞𝜆1Z× · · · × Z/𝑞𝜆𝑙Z.

The formula from [Bu87] works as follows: Let 𝜆 and 𝜇 be partitions. Let 𝜆′ and 𝜇′ denote the conjugate
partitions to 𝜆 and 𝜇, respectively. The number of subgroups of type 𝜇 in a group of type 𝜆 is given by

𝜇1∏︁
𝑖=1

𝑞𝜇
′
𝑖+1(𝜆

′
𝑖−𝜇

′
𝑖)

(︂
𝜆′𝑖 − 𝜇′𝑖+1

𝜇′𝑖 − 𝜇′𝑖+1

)︂
𝑞

The formula from [Delsarte48] works as follows: Let 𝜆 and 𝜇 be partitions. Let (𝑠1, 𝑠2, . . . , 𝑠𝑙) and
(𝑟1, 𝑟2, . . . , 𝑟𝑘) denote the parts of the partitions conjugate to 𝜆 and 𝜇 respectively. Let

F(𝜉1, . . . , 𝜉𝑘) = 𝜉𝑟21 𝜉
𝑟3
2 · · · 𝜉

𝑟𝑘
𝑘−1

𝑟1−1∏︁
𝑖1=𝑟2

(𝜉1 − 𝑞𝑖1)

𝑟2−1∏︁
𝑖2=𝑟3

(𝜉2 − 𝑞𝑖2) · · ·
𝑟𝑘−1∏︁
𝑖𝑘=0

(𝜉𝑘 − 𝑞−𝑖𝑘).

Then the number of subgroups of type 𝜇 in a group of type 𝜆 is given by

F(𝑞𝑠1 , 𝑞𝑠2 , . . . , 𝑞𝑠𝑘)

F(𝑞𝑟1 , 𝑞𝑟2 , . . . , 𝑞𝑟𝑘)
.

EXAMPLES:

sage: from sage.combinat.q_analogues import q_subgroups_of_abelian_group
sage: q_subgroups_of_abelian_group([1,1], [1])
q + 1
sage: q_subgroups_of_abelian_group([3,3,2,1], [2,1])
q^6 + 2*q^5 + 3*q^4 + 2*q^3 + q^2
sage: R.<t> = QQ[]
sage: q_subgroups_of_abelian_group([5,3,1], [3,1], t)
t^4 + 2*t^3 + t^2
sage: q_subgroups_of_abelian_group([5,3,1], [3,1], 3)
144
sage: q_subgroups_of_abelian_group([1,1,1], [1]) == q_subgroups_of_abelian_group([1,
→˓1,1], [1,1])
True

(continues on next page)

2034 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: q_subgroups_of_abelian_group([5], [3])
1
sage: q_subgroups_of_abelian_group([1], [2])
0
sage: q_subgroups_of_abelian_group([2], [1,1])
0

REFERENCES:

AUTHORS:

• Amritanshu Prasad (2013-06-07): Implemented the Delsarte algorithm

• Tomer Bauer (2013, 2018): Implemented the Birkhoff algorithm and refactoring

sage.combinat.q_analogues.qt_catalan_number(n)
Return the 𝑞, 𝑡-Catalan number of index 𝑛.

EXAMPLES:

sage: from sage.combinat.q_analogues import qt_catalan_number
sage: qt_catalan_number(1)
1
sage: qt_catalan_number(2)
q + t
sage: qt_catalan_number(3)
q^3 + q^2*t + q*t^2 + t^3 + q*t
sage: qt_catalan_number(4)
q^6 + q^5*t + q^4*t^2 + q^3*t^3 + q^2*t^4 + q*t^5 + t^6 + q^4*t + q^3*t^2 + q^2*t^3␣
→˓+ q*t^4 + q^3*t + q^2*t^2 + q*t^3

The 𝑞, 𝑡-Catalan number of index 𝑛 is only defined for 𝑛 a nonnegative integer (trac ticket #11411):

sage: qt_catalan_number(-2)
Traceback (most recent call last):
...
ValueError: argument (-2) must be a nonnegative integer

5.1.185 𝑞-Bernoulli Numbers and Polynomials

sage.combinat.q_bernoulli.q_bernoulli(m, p=None)
Compute Carlitz’s 𝑞-analogue of the Bernoulli numbers.

For every nonnegative integer𝑚, the 𝑞-Bernoulli number 𝛽𝑚 is a rational function of the indeterminate 𝑞 whose
value at 𝑞 = 1 is the usual Bernoulli number 𝐵𝑚.

INPUT:

• 𝑚 – a nonnegative integer

• 𝑝 (default: None) – an optional value for 𝑞

OUTPUT:

A rational function of the indeterminate 𝑞 (if 𝑝 is None)

Otherwise, the rational function is evaluated at 𝑝.

5.1. Comprehensive Module List 2035

https://trac.sagemath.org/11411

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.q_bernoulli import q_bernoulli
sage: q_bernoulli(0)
1
sage: q_bernoulli(1)
-1/(q + 1)
sage: q_bernoulli(2)
q/(q^3 + 2*q^2 + 2*q + 1)
sage: all(q_bernoulli(i)(q=1) == bernoulli(i) for i in range(12))
True

One can evaluate the rational function by giving a second argument:

sage: x = PolynomialRing(GF(2),'x').gen()
sage: q_bernoulli(5,x)
x/(x^6 + x^5 + x + 1)

The function does not accept negative arguments:

sage: q_bernoulli(-1)
Traceback (most recent call last):
...
ValueError: the argument must be a nonnegative integer

REFERENCES:

sage.combinat.q_bernoulli.q_bernoulli_polynomial(m)
Compute Carlitz’s 𝑞-analogue of the Bernoulli polynomials.

For every nonnegative integer 𝑚, the 𝑞-Bernoulli polynomial is a polynomial in one variable 𝑥 with coefficients
in Q(𝑞) whose value at 𝑞 = 1 is the usual Bernoulli polynomial 𝐵𝑚(𝑥).

The original 𝑞-Bernoulli polynomials introduced by Carlitz were polynomials in 𝑞𝑦 with coefficients in Q(𝑞).
This function returns these polynomials but expressed in the variable 𝑥 = (𝑞𝑦 − 1)/(𝑞 − 1). This allows to let
𝑞 = 1 to recover the classical Bernoulli polynomials.

INPUT:

• 𝑚 – a nonnegative integer

OUTPUT:

A polynomial in one variable 𝑥.

EXAMPLES:

sage: from sage.combinat.q_bernoulli import q_bernoulli_polynomial, q_bernoulli
sage: q_bernoulli_polynomial(0)
1
sage: q_bernoulli_polynomial(1)
(2/(q + 1))*x - 1/(q + 1)
sage: x = q_bernoulli_polynomial(1).parent().gen()
sage: all(q_bernoulli_polynomial(i)(q=1)==bernoulli_polynomial(x,i) for i in␣
→˓range(12))
True
sage: all(q_bernoulli_polynomial(i)(x=0)==q_bernoulli(i) for i in range(12))
True

2036 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The function does not accept negative arguments:

sage: q_bernoulli_polynomial(-1)
Traceback (most recent call last):
...
ValueError: the argument must be a nonnegative integer

REFERENCES: [Ca1948], [Ca1954]

5.1.186 Combinatorics quickref

Integer Sequences:

sage: s = oeis([1,3,19,211]); s # optional - internet
0: A000275: Coefficients of a Bessel function (reciprocal of J_0(z)); also pairs of␣
→˓permutations with rise/rise forbidden.
sage: s[0].programs() # optional - internet
[('maple', ...),
('mathematica', ...),
('pari',
0: {a(n) = if(n<0, 0, n!^2 * 4^n * polcoeff(1 / besselj(0, x + x * O(x^(2*n))),␣

→˓2*n))}; /* _Michael Somos_, May 17 2004 */)]

Combinatorial objects:

sage: S = Subsets([1,2,3,4]); S.list(); S.<tab> # not tested
sage: P = Partitions(10000); P.cardinality()
3616...315650422081868605887952568754066420592310556052906916435144
sage: Combinations([1,3,7]).random_element() # random
sage: Compositions(5, max_part = 3).unrank(3)
[2, 2, 1]

sage: DyckWord([1,0,1,0,1,1,0,0]).to_binary_tree()
[., [., [[., .], .]]]
sage: Permutation([3,1,4,2]).robinson_schensted()
[[[1, 2], [3, 4]], [[1, 3], [2, 4]]]
sage: StandardTableau([[1, 4], [2, 5], [3]]).schuetzenberger_involution()
[[1, 3], [2, 4], [5]]

Constructions and Species:

sage: for (p, s) in cartesian_product([P,S]): print((p, s)) # not tested
sage: DisjointUnionEnumeratedSets(Family(lambda n: IntegerVectors(n, 3),␣
→˓NonNegativeIntegers)) # not tested

Words:

sage: Words('abc', 4).list()
[word: aaaa, ..., word: cccc]

sage: Word('aabcacbaa').is_palindrome()
True
sage: WordMorphism('a->ab,b->a').fixed_point('a')
word: abaababaabaababaababaabaababaabaababaaba...

5.1. Comprehensive Module List 2037

Combinatorics, Release 9.7

Polytopes:

sage: points = random_matrix(ZZ, 6, 3, x=7).rows()
sage: L = LatticePolytope(points)
sage: L.npoints(); L.plot3d() # random

Root systems, Coxeter and Weyl groups:

sage: WeylGroup(["B",3]).bruhat_poset()
Finite poset containing 48 elements
sage: RootSystem(["A",2,1]).weight_lattice().plot() # not tested

Crystals:

sage: CrystalOfTableaux(["A",3], shape = [3,2]).some_flashy_feature() # not tested

Symmetric functions and combinatorial Hopf algebras:

sage: Sym = SymmetricFunctions(QQ); Sym.inject_shorthands(verbose=False)
sage: m((h[2,1] * (1 + 3 * p[2,1])) + s[2](s[3]))
3*m[1, 1, 1] + ... + 10*m[5, 1] + 4*m[6]

Discrete groups, Permutation groups:

sage: S = SymmetricGroup(4)
sage: M = PolynomialRing(QQ, 'x0,x1,x2,x3')
sage: M.an_element() * S.an_element()
x0

Graph theory, posets, lattices (Graph Theory, Posets):

sage: Poset({1: [2,3], 2: [4], 3: [4]}).linear_extensions().cardinality()
2

5.1.187 Rankers

sage.combinat.ranker.from_list(l)
Returns a ranker from the list l.

INPUT:

• l - a list

OUTPUT:

• [rank, unrank] - functions

EXAMPLES:

sage: import sage.combinat.ranker as ranker
sage: l = [1,2,3]
sage: r,u = ranker.from_list(l)
sage: r(1)
0
sage: r(3)
2

(continues on next page)

2038 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/groups/sage/groups/groups_catalog.html#sage-groups-groups-catalog
../../../../../../html/en/reference/graphs/index.html#sage-graphs

Combinatorics, Release 9.7

(continued from previous page)

sage: u(2)
3
sage: u(0)
1

sage.combinat.ranker.on_fly()
Returns a pair of enumeration functions rank / unrank.

rank assigns on the fly an integer, starting from 0, to any object passed as argument. The object should be
hashable. unrank is the inverse function; it returns None for indices that have not yet been assigned.

EXAMPLES:

sage: [rank, unrank] = sage.combinat.ranker.on_fly()
sage: rank('a')
0
sage: rank('b')
1
sage: rank('c')
2
sage: rank('a')
0
sage: unrank(2)
'c'
sage: unrank(3)
sage: rank('d')
3
sage: unrank(3)
'd'

Todo: add tests as in combinat::rankers

sage.combinat.ranker.rank_from_list(l)
Return a rank function for the elements of l.

INPUT:

• l – a duplicate free list (or iterable) of hashable objects

OUTPUT:

• a function from the elements of l to 0,...,len(l)

EXAMPLES:

sage: import sage.combinat.ranker as ranker
sage: l = ['a', 'b', 'c']
sage: r = ranker.rank_from_list(l)
sage: r('a')
0
sage: r('c')
2

For non elements a ValueError is raised, as with the usual index method of lists:

5.1. Comprehensive Module List 2039

Combinatorics, Release 9.7

sage: r('blah')
Traceback (most recent call last):
...
ValueError: 'blah' is not in dict

Currently, the rank function is a CallableDict; but this is an implementation detail:

sage: type(r)
<class 'sage.misc.callable_dict.CallableDict'>
sage: r
{'a': 0, 'b': 1, 'c': 2}

With the current implementation, no error is issued in case of duplicate value in l. Instead, the rank function
returns the position of some of the duplicates:

sage: r = ranker.rank_from_list(['a', 'b', 'a', 'c'])
sage: r('a')
2

Constructing the rank function itself is of complexity O(len(l)). Then, each call to the rank function consists
of an essentially constant time dictionary lookup.

sage.combinat.ranker.unrank(L, i)
Return the 𝑖-th element of 𝐿.

INPUT:

• L – a list, tuple, finite enumerated set, . . .

• i – an int or Integer

The purpose of this utility is to give a uniform idiom to recover the 𝑖-th element of an object L, whether L is a
list, tuple (or more generally a collections.abc.Sequence), an enumerated set, some old parent of Sage still
implementing unranking in the method __getitem__, or an iterable (see collections.abc.Iterable). See
trac ticket #15919.

EXAMPLES:

Lists, tuples, and other sequences:

sage: from sage.combinat.ranker import unrank
sage: unrank(['a','b','c'], 2)
'c'
sage: unrank(('a','b','c'), 1)
'b'
sage: unrank(range(3,13,2), 1)
5

Enumerated sets:

sage: unrank(GF(7), 2)
2
sage: unrank(IntegerModRing(29), 10)
10

An iterable:

2040 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/misc/sage/misc/callable_dict.html#sage.misc.callable_dict.CallableDict
../../../../../../html/en/reference/rings_standard/sage/rings/integer.html#sage.rings.integer.Integer
https://docs.python.org/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/library/collections.abc.html#collections.abc.Iterable
https://trac.sagemath.org/15919
https://docs.python.org/library/collections.abc.html#collections.abc.Sequence

Combinatorics, Release 9.7

sage: unrank(NN,4)
4

An iterator:

sage: unrank(('a{}'.format(i) for i in range(20)), 0)
'a0'
sage: unrank(('a{}'.format(i) for i in range(20)), 2)
'a2'

Warning: When unranking an iterator, it returns the i-th element beyond where it is currently at:

sage: from sage.combinat.ranker import unrank
sage: it = iter(range(20))
sage: unrank(it, 2)
2
sage: unrank(it, 2)
5

sage.combinat.ranker.unrank_from_list(l)
Returns an unrank function from a list.

EXAMPLES:

sage: import sage.combinat.ranker as ranker
sage: l = [1,2,3]
sage: u = ranker.unrank_from_list(l)
sage: u(2)
3
sage: u(0)
1

5.1.188 Recognizable Series

Let 𝐴 be an alphabet and 𝐾 a semiring. Then a formal series 𝑆 with coefficients in 𝐾 and indices in the words 𝐴* is
called recognizable if it has a linear representation, i.e., there exists

• a nonnegative integer 𝑛

and there exist

• two vectors left and right of dimension 𝑛 and

• a morphism of monoids 𝜇 from 𝐴* to 𝑛× 𝑛 matrices over 𝐾

such that the coefficient corresponding to a word 𝑤 ∈ 𝐴* equals

left 𝜇(𝑤) right .

Note: Whenever a minimization (minimized()) of a series needs to be computed, it is required that 𝐾 is a field. In
particular, minimization is called before checking if a series is nonzero.

5.1. Comprehensive Module List 2041

Combinatorics, Release 9.7

Warning: As this code is experimental, warnings are thrown when a recognizable series space is created for the
first time in a session (see sage.misc.superseded.experimental).

Various

See also:

k-regular sequence, sage.rings.cfinite_sequence, sage.combinat.binary_recurrence_sequences.

AUTHORS:

• Daniel Krenn (2016, 2021)

ACKNOWLEDGEMENT:

• Daniel Krenn is supported by the Austrian Science Fund (FWF): P 24644-N26.

Classes and Methods

class sage.combinat.recognizable_series.PrefixClosedSet(words)
Bases: object

A prefix-closed set.

Creation of this prefix-closed set is interactive iteratively.

INPUT:

• words – a class of words (instance of Words)

EXAMPLES:

sage: from sage.combinat.recognizable_series import PrefixClosedSet
sage: P = PrefixClosedSet(Words([0, 1], infinite=False)); P
[word:]

sage: P = PrefixClosedSet.create_by_alphabet([0, 1]); P
[word:]

See iterate_possible_additions() for further examples.

add(w, check=True)
Add a word to this prefix-closed set.

INPUT:

• w – a word

• check – boolean (default: True). If set, then it is verified whether all proper prefixes of w are already
in this prefix-closed set.

OUTPUT:

Nothing, but a RuntimeError is raised if the check fails.

EXAMPLES:

2042 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/misc/sage/misc/superseded.html#sage.misc.superseded.experimental
https://docs.python.org/release/3.8.10/library/exceptions.html#exceptions.ValueError

Combinatorics, Release 9.7

sage: from sage.combinat.recognizable_series import PrefixClosedSet
sage: P = PrefixClosedSet.create_by_alphabet([0, 1])
sage: W = P.words
sage: P.add(W([0])); P
[word: , word: 0]
sage: P.add(W([0, 1])); P
[word: , word: 0, word: 01]
sage: P.add(W([1, 1]))
Traceback (most recent call last):
...
ValueError: Cannot add as not all prefixes of 11 are included yet.

classmethod create_by_alphabet(alphabet)
A prefix-closed set

This is a convenience method for the creation of prefix-closed sets by specifying an alphabet.

INPUT:

• alphabet – finite words over this alphabet will used

EXAMPLES:

sage: from sage.combinat.recognizable_series import PrefixClosedSet
sage: P = PrefixClosedSet.create_by_alphabet([0, 1]); P
[word:]

iterate_possible_additions()
Return an iterator over all elements including possible new elements.

OUTPUT:

An iterator

EXAMPLES:

sage: from sage.combinat.recognizable_series import PrefixClosedSet
sage: P = PrefixClosedSet.create_by_alphabet([0, 1]); P
[word:]
sage: for n, p in enumerate(P.iterate_possible_additions()):
....: print('{}?'.format(p))
....: if n in (0, 2, 3, 5):
....: P.add(p)
....: print('...added')
0?
...added
1?
00?
...added
01?
...added
000?
001?
...added
010?
011?

(continues on next page)

5.1. Comprehensive Module List 2043

Combinatorics, Release 9.7

(continued from previous page)

0010?
0011?
sage: P.elements
[word: , word: 0, word: 00, word: 01, word: 001]

Calling the iterator once more, returns all elements:

sage: list(P.iterate_possible_additions())
[word: 0,
word: 1,
word: 00,
word: 01,
word: 000,
word: 001,
word: 010,
word: 011,
word: 0010,
word: 0011]

The method iterate_possible_additions() is roughly equivalent to

sage: list(p + a
....: for p in P.elements
....: for a in P.words.iterate_by_length(1))
[word: 0,
word: 1,
word: 00,
word: 01,
word: 000,
word: 001,
word: 010,
word: 011,
word: 0010,
word: 0011]

However, the above does not allow to add elements during iteration, whereas
iterate_possible_additions() does.

prefix_set()
Return the set of minimal (with respect to prefix ordering) elements of the complement of this prefix closed
set.

See also Proposition 2.3.1 of [BR2010a].

OUTPUT:

A list

EXAMPLES:

sage: from sage.combinat.recognizable_series import PrefixClosedSet
sage: P = PrefixClosedSet.create_by_alphabet([0, 1]); P
[word:]
sage: for n, p in enumerate(P.iterate_possible_additions()):
....: if n in (0, 1, 2, 4, 6):

(continues on next page)

2044 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: P.add(p)
sage: P
[word: , word: 0, word: 1, word: 00, word: 10, word: 000]
sage: P.prefix_set()
[word: 01, word: 11, word: 001, word: 100,
word: 101, word: 0000, word: 0001]

class sage.combinat.recognizable_series.RecognizableSeries(parent, mu, left, right)
Bases: sage.structure.element.ModuleElement

A recognizable series.

• parent – an instance of RecognizableSeriesSpace

• mu – a family of square matrices, all of which have the same dimension. The indices of this family are the
elements of the alphabet. mu may be a list or tuple of the same cardinality as the alphabet as well. See also
mu.

• left – a vector. When evaluating a coefficient, this vector is multiplied from the left to the matrix obtained
from mu applying on a word. See also left.

• right – a vector. When evaluating a coefficient, this vector is multiplied from the right to the matrix
obtained from mu applying on a word. See also right.

When created via the parent RecognizableSeriesSpace, then the following option is available.

EXAMPLES:

sage: Rec = RecognizableSeriesSpace(ZZ, [0, 1])
sage: S = Rec((Matrix([[3, 6], [0, 1]]), Matrix([[0, -6], [1, 5]])),
....: vector([0, 1]), vector([1, 0])).transposed(); S
[1] + 3*[01] + [10] + 5*[11] + 9*[001] + 3*[010] + ...

We can access coefficients by

sage: W = Rec.indices()
sage: S[W([0, 0, 1])]
9

See also:

recognizable series, RecognizableSeriesSpace.

coefficient_of_word(w, multiply_left=True, multiply_right=True)
Return the coefficient to word 𝑤 of this series.

INPUT:

• w – a word over the parent’s alphabet()

• multiply_left – (default: True) a boolean. If False, then multiplication by left is skipped.

• multiply_right – (default: True) a boolean. If False, then multiplication by right is skipped.

OUTPUT:

An element in the parent’s coefficient_ring()

EXAMPLES:

5.1. Comprehensive Module List 2045

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.ModuleElement

Combinatorics, Release 9.7

sage: Rec = RecognizableSeriesSpace(ZZ, [0, 1])
sage: W = Rec.indices()
sage: S = Rec((Matrix([[1, 0], [0, 1]]), Matrix([[0, -1], [1, 2]])),
....: left=vector([0, 1]), right=vector([1, 0]))
sage: S[W(7.digits(2))] # indirect doctest
3

dimension()
Return the dimension of this recognizable series.

EXAMPLES:

sage: Rec = RecognizableSeriesSpace(ZZ, [0, 1])
sage: Rec((Matrix([[1, 0], [0, 1]]), Matrix([[1, 0], [0, 1]])),
....: left=vector([0, 1]), right=vector([1, 0])).dimension()
2

hadamard_product(*args, **kwds)
Return the Hadamard product of this recognizable series and the other recognizable series, i.e., multiply
the two series coefficient-wise.

INPUT:

• other – a RecognizableSeries with the same parent as this recognizable series

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the
operation, if False, then not. If this argument is None, then the default specified by the parent’s
minimize_results is used.

OUTPUT:

A RecognizableSeries

EXAMPLES:

sage: Seq2 = kRegularSequenceSpace(2, ZZ)

sage: E = Seq2((Matrix([[0, 1], [0, 1]]), Matrix([[0, 0], [0, 1]])),
....: vector([1, 0]), vector([1, 1]))
sage: E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...

sage: O = Seq2((Matrix([[0, 0], [0, 1]]), Matrix([[0, 1], [0, 1]])),
....: vector([1, 0]), vector([0, 1]))
sage: O
2-regular sequence 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...

sage: C = Seq2((Matrix([[2, 0], [2, 1]]), Matrix([[0, 1], [-2, 3]])),
....: vector([1, 0]), vector([0, 1]))
sage: C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

sage: CE = C.hadamard_product(E)
sage: CE
2-regular sequence 0, 0, 2, 0, 4, 0, 6, 0, 8, 0, ...
sage: CE.linear_representation()

(continues on next page)

2046 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

((1, 0, 0),
Finite family {0: [0 1 0]

[0 2 0]
[0 2 1],

1: [0 0 0]
[0 0 1]
[0 -2 3]},

(0, 0, 2))

sage: Z = E.hadamard_product(O)
sage: Z
2-regular sequence 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
sage: Z.linear_representation()
((),
Finite family {0: [],

1: []},
())

is_trivial_zero()
Return whether this recognizable series is trivially equal to zero (without any minimization).

EXAMPLES:

sage: Rec = RecognizableSeriesSpace(ZZ, [0, 1])
sage: Rec((Matrix([[1, 0], [0, 1]]), Matrix([[1, 0], [0, 1]])),
....: left=vector([0, 1]), right=vector([1, 0])).is_trivial_zero()
False
sage: Rec((Matrix([[1, 0], [0, 1]]), Matrix([[1, 0], [0, 1]])),
....: left=vector([0, 0]), right=vector([1, 0])).is_trivial_zero()
True
sage: Rec((Matrix([[1, 0], [0, 1]]), Matrix([[1, 0], [0, 1]])),
....: left=vector([0, 1]), right=vector([0, 0])).is_trivial_zero()
True

The following two differ in the coefficient of the empty word:

sage: Rec((Matrix([[0, 0], [0, 0]]), Matrix([[0, 0], [0, 0]])),
....: left=vector([0, 1]), right=vector([1, 0])).is_trivial_zero()
True
sage: Rec((Matrix([[0, 0], [0, 0]]), Matrix([[0, 0], [0, 0]])),
....: left=vector([1, 1]), right=vector([1, 1])).is_trivial_zero()
False

left
When evaluating a coefficient, this vector is multiplied from the left to the matrix obtained from mu applied
on a word.

linear_representation()
Return the linear representation of this series.

OUTPUT:

A triple (left, mu, right) containing the vectors left and right, and the family of matrices mu.

EXAMPLES:

5.1. Comprehensive Module List 2047

Combinatorics, Release 9.7

sage: Rec = RecognizableSeriesSpace(ZZ, [0, 1])
sage: Rec((Matrix([[3, 6], [0, 1]]), Matrix([[0, -6], [1, 5]])),
....: vector([0, 1]), vector([1, 0])
....:).transposed().linear_representation()
((1, 0),
Finite family {0: [3 0]

[6 1],
1: [0 1]

[-6 5]},
(0, 1))

minimized()
Return a recognizable series equivalent to this series, but with a minimized linear representation.

The coefficients of the involved matrices need be in a field. If this is not the case, then the coefficients are
automatically coerced to their fraction field.

OUTPUT:

A RecognizableSeries

ALGORITHM:

This method implements the minimization algorithm presented in Chapter 2 of [BR2010a].

EXAMPLES:

sage: from itertools import islice
sage: Rec = RecognizableSeriesSpace(ZZ, [0, 1])

sage: S = Rec((Matrix([[3, 6], [0, 1]]), Matrix([[0, -6], [1, 5]])),
....: vector([0, 1]), vector([1, 0])).transposed()
sage: S
[1] + 3*[01] + [10] + 5*[11] + 9*[001] + 3*[010]

+ 15*[011] + [100] + 11*[101] + 5*[110] + ...
sage: M = S.minimized()
sage: M.mu[0], M.mu[1], M.left, M.right
(
[3 0] [0 1]
[6 1], [-6 5], (1, 0), (0, 1)
)
sage: all(c == d and v == w
....: for (c, v), (d, w) in islice(zip(iter(S), iter(M)), 20))
True

sage: S = Rec((Matrix([[2, 0], [1, 1]]), Matrix([[2, 0], [2, 1]])),
....: vector([1, 0]), vector([1, 1]))
sage: S
[] + 2*[0] + 2*[1] + 4*[00] + 4*[01] + 4*[10] + 4*[11]

+ 8*[000] + 8*[001] + 8*[010] + ...
sage: M = S.minimized()
sage: M.mu[0], M.mu[1], M.left, M.right
([2], [2], (1), (1))
sage: all(c == d and v == w
....: for (c, v), (d, w) in islice(zip(iter(S), iter(M)), 20))
True

2048 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

mu
When evaluating a coefficient, this is applied on each letter of a word; the result is a matrix. This extends
mu to words over the parent’s alphabet().

right
When evaluating a coefficient, this vector is multiplied from the right to the matrix obtained from mu applied
on a word.

transposed()
Return the transposed series.

OUTPUT:

A RecognizableSeries

Each of the matrices in mu is transposed. Additionally the vectors left and right are switched.

EXAMPLES:

sage: Rec = RecognizableSeriesSpace(ZZ, [0, 1])
sage: S = Rec((Matrix([[3, 6], [0, 1]]), Matrix([[0, -6], [1, 5]])),
....: vector([0, 1]), vector([1, 0])).transposed()
sage: S
[1] + 3*[01] + [10] + 5*[11] + 9*[001] + 3*[010]

+ 15*[011] + [100] + 11*[101] + 5*[110] + ...
sage: S.mu[0], S.mu[1], S.left, S.right
(
[3 0] [0 1]
[6 1], [-6 5], (1, 0), (0, 1)
)
sage: T = S.transposed()
sage: T
[1] + [01] + 3*[10] + 5*[11] + [001] + 3*[010]

+ 5*[011] + 9*[100] + 11*[101] + 15*[110] + ...
sage: T.mu[0], T.mu[1], T.left, T.right
(
[3 6] [0 -6]
[0 1], [1 5], (0, 1), (1, 0)
)

class sage.combinat.recognizable_series.RecognizableSeriesSpace(coefficient_ring, indices,
category, minimize_results)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The space of recognizable series on the given alphabet and with the given coefficients.

INPUT:

• coefficient_ring – a (semi-)ring

• alphabet – a tuple, list or TotallyOrderedFiniteSet. If specified, then the indices are the finite
words over this alphabet. alphabet and indices cannot be specified at the same time.

• indices – a SageMath-parent of finite words over an alphabet. alphabet and indices cannot be specified
at the same time.

• category – (default: None) the category of this space

EXAMPLES:

5.1. Comprehensive Module List 2049

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/sets/sage/sets/totally_ordered_finite_set.html#sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet

Combinatorics, Release 9.7

We create a recognizable series that counts the number of ones in each word:

sage: Rec = RecognizableSeriesSpace(ZZ, [0, 1])
sage: Rec
Space of recognizable series on {0, 1} with coefficients in Integer Ring
sage: Rec((Matrix([[1, 0], [0, 1]]), Matrix([[1, 1], [0, 1]])),
....: vector([1, 0]), vector([0, 1]))
[1] + [01] + [10] + 2*[11] + [001] + [010] + 2*[011] + [100] + 2*[101] + 2*[110] + .
→˓..

All of the following examples create the same space:

sage: Rec1 = RecognizableSeriesSpace(ZZ, [0, 1])
sage: Rec1
Space of recognizable series on {0, 1} with coefficients in Integer Ring
sage: Rec2 = RecognizableSeriesSpace(coefficient_ring=ZZ, alphabet=[0, 1])
sage: Rec2
Space of recognizable series on {0, 1} with coefficients in Integer Ring
sage: Rec3 = RecognizableSeriesSpace(ZZ, indices=Words([0, 1], infinite=False))
sage: Rec3
Space of recognizable series on {0, 1} with coefficients in Integer Ring

See also:

recognizable series, RecognizableSeries.

Element
alias of RecognizableSeries

alphabet()
Return the alphabet of this recognizable series space.

OUTPUT:

A totally ordered set

EXAMPLES:

sage: RecognizableSeriesSpace(ZZ, [0, 1]).alphabet()
{0, 1}

coefficient_ring()
Return the coefficients of this recognizable series space.

OUTPUT:

A (semi-)ring

EXAMPLES:

sage: RecognizableSeriesSpace(ZZ, [0, 1]).coefficient_ring()
Integer Ring

indices()
Return the indices of the recognizable series.

OUTPUT:

The set of finite words over the alphabet

EXAMPLES:

2050 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: RecognizableSeriesSpace(ZZ, [0, 1]).indices()
Finite words over {0, 1}

minimize_results
A boolean indicating whether RecognizableSeries.minimized() is automatically called after perform-
ing operations.

one_hadamard()
Return the identity with respect to the hadamard_product(), i.e. the coefficient-wise multiplication.

OUTPUT:

A RecognizableSeries

EXAMPLES:

sage: Rec = RecognizableSeriesSpace(ZZ, [0, 1])
sage: Rec.one_hadamard()
[] + [0] + [1] + [00] + [01] + [10]

+ [11] + [000] + [001] + [010] + ...

some_elements()
Return some elements of this recognizable series space.

See TestSuite for a typical use case.

OUTPUT:

An iterator

EXAMPLES:

sage: tuple(RecognizableSeriesSpace(ZZ, [0, 1]).some_elements())
([1] + [01] + [10] + 2*[11] + [001] + [010]

+ 2*[011] + [100] + 2*[101] + 2*[110] + ...,
[] + [1] + [11] + [111] + [1111] + [11111] + [111111] + ...,
[] + [0] + [1] + [00] + [10] + [11]

+ [000] - 1*[001] + [100] + [110] + ...,
2*[] - 1*[1] + 2*[10] - 1*[101]

+ 2*[1010] - 1*[10101] + 2*[101010] + ...,
[] + [1] + 6*[00] + [11] - 39*[000] + 5*[001] + 6*[100] + [111]

+ 288*[0000] - 33*[0001] + ...,
-5*[] + ...,
...
210*[] + ...,
2210*[] - 170*[0] + 170*[1] + ...)

sage.combinat.recognizable_series.minimize_result(operation)
A decorator for operations that enables control of automatic minimization on the result.

INPUT:

• operation – a method

OUTPUT:

A method with the following additional argument:

5.1. Comprehensive Module List 2051

../../../../../../html/en/reference/misc/sage/misc/sage_unittest.html#sage.misc.sage_unittest.TestSuite

Combinatorics, Release 9.7

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the operation,
if False, then not. If this argument is None, then the default specified by the parent’s minimize_results
is used.

5.1.189 Restricted growth arrays

These combinatorial objects are in bijection with set partitions.

class sage.combinat.restricted_growth.RestrictedGrowthArrays(n)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

EXAMPLES:

sage: from sage.combinat.restricted_growth import RestrictedGrowthArrays
sage: R = RestrictedGrowthArrays(3)
sage: R == loads(dumps(R))
True
sage: TestSuite(R).run(skip=['_test_an_element',
....: '_test_enumerated_set_contains', '_test_some_elements'])

cardinality()
EXAMPLES:

sage: from sage.combinat.restricted_growth import RestrictedGrowthArrays
sage: R = RestrictedGrowthArrays(6)
sage: R.cardinality()
203

5.1.190 Ribbons

5.1.191 Ribbon Shaped Tableaux

class sage.combinat.ribbon_shaped_tableau.RibbonShapedTableau(parent, t)
Bases: sage.combinat.skew_tableau.SkewTableau

A ribbon shaped tableau.

For the purposes of this class, a ribbon shaped tableau is a skew tableau whose shape is a skew partition which:

• has at least one cell in row 1;

• has at least one cell in column 1;

• has exactly one cell in each of 𝑞 consecutive diagonals, for some nonnegative integer 𝑞.

A ribbon is given by a list of the rows from top to bottom.

EXAMPLES:

sage: x = RibbonShapedTableau([[None, None, None, 2, 3], [None, 1, 4, 5], [3, 2]]);␣
→˓x
[[None, None, None, 2, 3], [None, 1, 4, 5], [3, 2]]
sage: x.pp()
. . . 2 3
. 1 4 5

(continues on next page)

2052 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

3 2
sage: x.shape()
[5, 4, 2] / [3, 1]

The entries labeled by None correspond to the inner partition. Using None is optional; the entries will be shifted
accordingly.

sage: x = RibbonShapedTableau([[2,3],[1,4,5],[3,2]]); x.pp()
. . . 2 3
. 1 4 5
3 2

height()
Return the height of self.

The height is given by the number of rows in the outer partition.

EXAMPLES:

sage: RibbonShapedTableau([[2,3],[1,4,5]]).height()
2

spin()
Return the spin of self.

EXAMPLES:

sage: RibbonShapedTableau([[2,3],[1,4,5]]).spin()
1/2

width()
Return the width of the ribbon.

This is given by the length of the longest row in the outer partition.

EXAMPLES:

sage: RibbonShapedTableau([[2,3],[1,4,5]]).width()
4
sage: RibbonShapedTableau([]).width()
0

class sage.combinat.ribbon_shaped_tableau.RibbonShapedTableaux(category=None)
Bases: sage.combinat.skew_tableau.SkewTableaux

The set of all ribbon shaped tableaux.

Element
alias of RibbonShapedTableau

from_shape_and_word(shape, word)
Return the ribbon corresponding to the given ribbon shape and word.

EXAMPLES:

sage: RibbonShapedTableaux().from_shape_and_word([1,3],[1,3,3,7])
[[None, None, 1], [3, 3, 7]]

5.1. Comprehensive Module List 2053

Combinatorics, Release 9.7

options(*get_value, **set_value)
Sets the global options for elements of the tableau, skew_tableau, and tableau tuple classes. The defaults
are for tableau to be displayed as a list, latexed as a Young diagram using the English convention.

OPTIONS:

• ascii_art – (default: repr) Controls the ascii art output for tableaux

– compact – minimal length ascii art

– repr – display using the diagram string representation

– table – display as a table

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• display – (default: list) Controls the way in which tableaux are printed

– array – alias for diagram

– compact – minimal length string representation

– diagram – display as Young diagram (similar to pp()

– ferrers_diagram – alias for diagram

– list – print tableaux as lists

– young_diagram – alias for diagram

• latex – (default: diagram) Controls the way in which tableaux are latexed

– array – alias for diagram

– diagram – as a Young diagram

– ferrers_diagram – alias for diagram

– list – as a list

– young_diagram – alias for diagram

• notation – alternative name for convention

Note: Changing the convention for tableaux also changes the convention for partitions.

If no parameters are set, then the function returns a copy of the options dictionary.

EXAMPLES:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T
[[1, 2, 3], [4, 5]]
sage: Tableaux.options.display="array"
sage: T
1 2 3
4 5

sage: Tableaux.options.convention="french"
sage: T

(continues on next page)

2054 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

4 5
1 2 3

Changing the convention for tableaux also changes the convention for partitions and vice versa:

sage: P = Partition([3,3,1])
sage: print(P.ferrers_diagram())
*

sage: Partitions.options.convention="english"
sage: print(P.ferrers_diagram())

*
sage: T
1 2 3
4 5

The ASCII art can also be changed:

sage: t = Tableau([[1,2,3],[4,5]])
sage: ascii_art(t)
1 2 3
4 5

sage: Tableaux.options.ascii_art = "table"
sage: ascii_art(t)
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 |
+---+---+
sage: Tableaux.options.ascii_art = "compact"
sage: ascii_art(t)
|1|2|3|
|4|5|
sage: Tableaux.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.ribbon_shaped_tableau.Ribbon_class(parent, t)
Bases: sage.combinat.ribbon_shaped_tableau.RibbonShapedTableau

This exists solely for unpickling Ribbon_class objects.

class sage.combinat.ribbon_shaped_tableau.StandardRibbonShapedTableaux(category=None)
Bases: sage.combinat.skew_tableau.StandardSkewTableaux

The set of all standard ribbon shaped tableaux.

INPUT:

• shape – (optional) the composition shape of the rows

Element
alias of RibbonShapedTableau

5.1. Comprehensive Module List 2055

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

from_permutation(p)
Return a standard ribbon of size len(p) from a permutation p. The lengths of each row are given by the
distance between the descents of the permutation p.

EXAMPLES:

sage: import sage.combinat.ribbon_shaped_tableau as rst
sage: [StandardRibbonShapedTableaux().from_permutation(p) for p in␣
→˓Permutations(3)]
[[[1, 2, 3]],
[[None, 2], [1, 3]],
[[1, 3], [2]],
[[None, 1], [2, 3]],
[[1, 2], [3]],
[[1], [2], [3]]]

from_shape_and_word(shape, word)
Return the ribbon corresponding to the given ribbon shape and word.

EXAMPLES:

sage: StandardRibbonShapedTableaux().from_shape_and_word([2,3],[1,2,3,4,5])
[[None, None, 1, 2], [3, 4, 5]]

options(*get_value, **set_value)
Sets the global options for elements of the tableau, skew_tableau, and tableau tuple classes. The defaults
are for tableau to be displayed as a list, latexed as a Young diagram using the English convention.

OPTIONS:

• ascii_art – (default: repr) Controls the ascii art output for tableaux

– compact – minimal length ascii art

– repr – display using the diagram string representation

– table – display as a table

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• display – (default: list) Controls the way in which tableaux are printed

– array – alias for diagram

– compact – minimal length string representation

– diagram – display as Young diagram (similar to pp()

– ferrers_diagram – alias for diagram

– list – print tableaux as lists

– young_diagram – alias for diagram

• latex – (default: diagram) Controls the way in which tableaux are latexed

– array – alias for diagram

– diagram – as a Young diagram

– ferrers_diagram – alias for diagram

2056 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

– list – as a list

– young_diagram – alias for diagram

• notation – alternative name for convention

Note: Changing the convention for tableaux also changes the convention for partitions.

If no parameters are set, then the function returns a copy of the options dictionary.

EXAMPLES:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T
[[1, 2, 3], [4, 5]]
sage: Tableaux.options.display="array"
sage: T
1 2 3
4 5

sage: Tableaux.options.convention="french"
sage: T
4 5
1 2 3

Changing the convention for tableaux also changes the convention for partitions and vice versa:

sage: P = Partition([3,3,1])
sage: print(P.ferrers_diagram())
*

sage: Partitions.options.convention="english"
sage: print(P.ferrers_diagram())

*
sage: T
1 2 3
4 5

The ASCII art can also be changed:

sage: t = Tableau([[1,2,3],[4,5]])
sage: ascii_art(t)
1 2 3
4 5

sage: Tableaux.options.ascii_art = "table"
sage: ascii_art(t)
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 |
+---+---+
sage: Tableaux.options.ascii_art = "compact"

(continues on next page)

5.1. Comprehensive Module List 2057

Combinatorics, Release 9.7

(continued from previous page)

sage: ascii_art(t)
|1|2|3|
|4|5|
sage: Tableaux.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.ribbon_shaped_tableau.StandardRibbonShapedTableaux_shape(shape)
Bases: sage.combinat.ribbon_shaped_tableau.StandardRibbonShapedTableaux

Class of standard ribbon shaped tableaux of ribbon shape shape.

EXAMPLES:

sage: StandardRibbonShapedTableaux([2,2])
Standard ribbon shaped tableaux of shape [2, 2]
sage: StandardRibbonShapedTableaux([2,2]).first()
[[None, 2, 4], [1, 3]]
sage: StandardRibbonShapedTableaux([2,2]).last()
[[None, 1, 2], [3, 4]]
sage: StandardRibbonShapedTableaux([2,2]).cardinality()
5
sage: StandardRibbonShapedTableaux([2,2]).list()
[[[None, 1, 3], [2, 4]],
[[None, 1, 2], [3, 4]],
[[None, 2, 3], [1, 4]],
[[None, 2, 4], [1, 3]],
[[None, 1, 4], [2, 3]]]
sage: StandardRibbonShapedTableaux([3,2,2]).cardinality()
155

first()
Return the first standard ribbon of self.

EXAMPLES:

sage: StandardRibbonShapedTableaux([2,2]).first()
[[None, 2, 4], [1, 3]]

last()
Return the last standard ribbon of self.

EXAMPLES:

sage: StandardRibbonShapedTableaux([2,2]).last()
[[None, 1, 2], [3, 4]]

2058 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

5.1.192 Ribbon Tableaux

class sage.combinat.ribbon_tableau.MultiSkewTableau(parent, *args, **kwds)
Bases: sage.combinat.combinat.CombinatorialElement

A multi skew tableau which is a tuple of skew tableaux.

EXAMPLES:

sage: s = MultiSkewTableau([[[None,1],[2,3]], [[1,2],[2]]])
sage: s.size()
6
sage: s.weight()
[2, 3, 1]
sage: s.shape()
[[2, 2] / [1], [2, 1] / []]

inversion_pairs()
Return a list of the inversion pairs of self.

EXAMPLES:

sage: s = MultiSkewTableau([[[2,3],[5,5]], [[1,1],[3,3]], [[2],[6]]])
sage: s.inversion_pairs()
[((0, (0, 0)), (1, (0, 0))),
((0, (1, 0)), (1, (0, 1))),
((0, (1, 1)), (1, (0, 0))),
((0, (1, 1)), (1, (1, 1))),
((0, (1, 1)), (2, (0, 0))),
((1, (0, 1)), (2, (0, 0))),
((1, (1, 1)), (2, (0, 0)))]

inversions()
Return the number of inversion pairs of self.

EXAMPLES:

sage: t1 = SkewTableau([[1]])
sage: t2 = SkewTableau([[2]])
sage: MultiSkewTableau([t1,t1]).inversions()
0
sage: MultiSkewTableau([t1,t2]).inversions()
0
sage: MultiSkewTableau([t2,t2]).inversions()
0
sage: MultiSkewTableau([t2,t1]).inversions()
1
sage: s = MultiSkewTableau([[[2,3],[5,5]], [[1,1],[3,3]], [[2],[6]]])
sage: s.inversions()
7

shape()
Return the shape of self.

EXAMPLES:

5.1. Comprehensive Module List 2059

Combinatorics, Release 9.7

sage: s = SemistandardSkewTableaux([[2,2],[1]]).list()
sage: a = MultiSkewTableau([s[0],s[1],s[2]])
sage: a.shape()
[[2, 2] / [1], [2, 2] / [1], [2, 2] / [1]]

size()
Return the size of self, which is the sum of the sizes of the skew tableaux in self.

EXAMPLES:

sage: s = SemistandardSkewTableaux([[2,2],[1]]).list()
sage: a = MultiSkewTableau([s[0],s[1],s[2]])
sage: a.size()
9

weight()
Return the weight of self.

EXAMPLES:

sage: s = SemistandardSkewTableaux([[2,2],[1]]).list()
sage: a = MultiSkewTableau([s[0],s[1],s[2]])
sage: a.weight()
[5, 3, 1]

class sage.combinat.ribbon_tableau.MultiSkewTableaux(category=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Multiskew tableaux.

Element
alias of MultiSkewTableau

class sage.combinat.ribbon_tableau.RibbonTableau(parent, st)
Bases: sage.combinat.skew_tableau.SkewTableau

A ribbon tableau.

A ribbon is a connected skew shape which does not contain any 2× 2 boxes. A ribbon tableau is a skew tableau
whose shape is partitioned into ribbons, each of which is filled with identical entries.

EXAMPLES:

sage: rt = RibbonTableau([[None, 1],[2,3]]); rt
[[None, 1], [2, 3]]
sage: rt.inner_shape()
[1]
sage: rt.outer_shape()
[2, 2]

sage: rt = RibbonTableau([[None, None, 0, 0, 0], [None, 0, 0, 2], [1, 0, 1]]); rt.
→˓pp()
. . 0 0 0
. 0 0 2
1 0 1

2060 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

In the previous example, each ribbon is uniquely determined by a non-zero entry. The 0 entries are used to fill
in the rest of the skew shape.

Note: Sanity checks are not performed; lists can contain any object.

sage: RibbonTableau(expr=[[1,1],[[5],[3,4],[1,2]]])
[[None, 1, 2], [None, 3, 4], [5]]

length()
Return the length of the ribbons into a ribbon tableau.

EXAMPLES:

sage: RibbonTableau([[None, 1],[2,3]]).length()
1
sage: RibbonTableau([[1,0],[2,0]]).length()
2

to_word()
Return a word obtained from a row reading of self.

Warning: Unlike the to_word method on skew tableaux (which are a superclass of this), this method
does not filter out None entries.

EXAMPLES:

sage: R = RibbonTableau([[0, 0, 3, 0], [1, 1, 0], [2, 0, 4]])
sage: R.to_word()
word: 2041100030

class sage.combinat.ribbon_tableau.RibbonTableau_class(parent, st)
Bases: sage.combinat.ribbon_tableau.RibbonTableau

This exists solely for unpickling RibbonTableau_class objects.

class sage.combinat.ribbon_tableau.RibbonTableaux
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Ribbon tableaux.

A ribbon tableau is a skew tableau whose skew shape shape is tiled by ribbons of length length. The weight
weight is calculated from the labels on the ribbons.

Note: Here we impose the condition that the ribbon tableaux are semistandard.

INPUT(Optional):

• shape – skew shape as a list of lists or an object of type SkewPartition

• length – integer, shape is partitioned into ribbons of length length

• weight – list of integers, computed from the values of non-zero entries labeling the ribbons

EXAMPLES:

5.1. Comprehensive Module List 2061

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: RibbonTableaux([[2,1],[]], [1,1,1], 1)
Ribbon tableaux of shape [2, 1] / [] and weight [1, 1, 1] with 1-ribbons

sage: R = RibbonTableaux([[5,4,3],[2,1]], [2,1], 3)
sage: for i in R: i.pp(); print("\n")
. . 0 0 0
. 0 0 2
1 0 1

. . 1 0 0

. 0 0 0
1 0 2

. . 0 0 0

. 1 0 1
2 0 0

REFERENCES:

Element
alias of RibbonTableau

from_expr(l)
Return a RibbonTableau from a MuPAD-Combinat expr for a skew tableau. The first list in expr is the
inner shape of the skew tableau. The second list are the entries in the rows of the skew tableau from bottom
to top.

Provided primarily for compatibility with MuPAD-Combinat.

EXAMPLES:

sage: RibbonTableaux().from_expr([[1,1],[[5],[3,4],[1,2]]])
[[None, 1, 2], [None, 3, 4], [5]]

options(*get_value, **set_value)
Sets the global options for elements of the tableau, skew_tableau, and tableau tuple classes. The defaults
are for tableau to be displayed as a list, latexed as a Young diagram using the English convention.

OPTIONS:

• ascii_art – (default: repr) Controls the ascii art output for tableaux

– compact – minimal length ascii art

– repr – display using the diagram string representation

– table – display as a table

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• display – (default: list) Controls the way in which tableaux are printed

– array – alias for diagram

– compact – minimal length string representation

– diagram – display as Young diagram (similar to pp()

2062 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

– ferrers_diagram – alias for diagram

– list – print tableaux as lists

– young_diagram – alias for diagram

• latex – (default: diagram) Controls the way in which tableaux are latexed

– array – alias for diagram

– diagram – as a Young diagram

– ferrers_diagram – alias for diagram

– list – as a list

– young_diagram – alias for diagram

• notation – alternative name for convention

Note: Changing the convention for tableaux also changes the convention for partitions.

If no parameters are set, then the function returns a copy of the options dictionary.

EXAMPLES:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T
[[1, 2, 3], [4, 5]]
sage: Tableaux.options.display="array"
sage: T
1 2 3
4 5

sage: Tableaux.options.convention="french"
sage: T
4 5
1 2 3

Changing the convention for tableaux also changes the convention for partitions and vice versa:

sage: P = Partition([3,3,1])
sage: print(P.ferrers_diagram())
*

sage: Partitions.options.convention="english"
sage: print(P.ferrers_diagram())

*
sage: T
1 2 3
4 5

The ASCII art can also be changed:

sage: t = Tableau([[1,2,3],[4,5]])
sage: ascii_art(t)

(continues on next page)

5.1. Comprehensive Module List 2063

Combinatorics, Release 9.7

(continued from previous page)

1 2 3
4 5

sage: Tableaux.options.ascii_art = "table"
sage: ascii_art(t)
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 |
+---+---+
sage: Tableaux.options.ascii_art = "compact"
sage: ascii_art(t)
|1|2|3|
|4|5|
sage: Tableaux.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.ribbon_tableau.RibbonTableaux_shape_weight_length(shape, weight, length)
Bases: sage.combinat.ribbon_tableau.RibbonTableaux

Ribbon tableaux of a given shape, weight, and length.

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: RibbonTableaux([[2,1],[]],[1,1,1],1).cardinality()
2
sage: RibbonTableaux([[2,2],[]],[1,1],2).cardinality()
2
sage: RibbonTableaux([[4,3,3],[]],[2,1,1,1],2).cardinality()
5

class sage.combinat.ribbon_tableau.SemistandardMultiSkewTableaux(shape, weight)
Bases: sage.combinat.ribbon_tableau.MultiSkewTableaux

Semistandard multi skew tableaux.

A multi skew tableau is a 𝑘-tuple of skew tableaux of given shape with a specified total weight.

EXAMPLES:

sage: S = SemistandardMultiSkewTableaux([[[2,1],[]], [[2,2],[1]]], [2,2,2]); S
Semistandard multi skew tableaux of shape [[2, 1] / [], [2, 2] / [1]] and weight [2,
→˓ 2, 2]
sage: S.list()
[[[[1, 1], [2]], [[None, 2], [3, 3]]],
[[[1, 2], [2]], [[None, 1], [3, 3]]],
[[[1, 3], [2]], [[None, 2], [1, 3]]],
[[[1, 3], [2]], [[None, 1], [2, 3]]],
[[[1, 1], [3]], [[None, 2], [2, 3]]],
[[[1, 2], [3]], [[None, 2], [1, 3]]],
[[[1, 2], [3]], [[None, 1], [2, 3]]],
[[[2, 2], [3]], [[None, 1], [1, 3]]],

(continues on next page)

2064 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

(continued from previous page)

[[[1, 3], [3]], [[None, 1], [2, 2]]],
[[[2, 3], [3]], [[None, 1], [1, 2]]]]

sage.combinat.ribbon_tableau.cospin_polynomial(part, weight, length)
Return the cospin polynomial associated to part, weight, and length.

EXAMPLES:

sage: from sage.combinat.ribbon_tableau import cospin_polynomial
sage: cospin_polynomial([6,6,6],[4,2],3)
t^4 + t^3 + 2*t^2 + t + 1
sage: cospin_polynomial([3,3,3,2,1], [3,1], 3)
1
sage: cospin_polynomial([3,3,3,2,1], [2,2], 3)
t + 1
sage: cospin_polynomial([3,3,3,2,1], [2,1,1], 3)
t^2 + 2*t + 2
sage: cospin_polynomial([3,3,3,2,1], [1,1,1,1], 3)
t^3 + 3*t^2 + 5*t + 3
sage: cospin_polynomial([5,4,3,2,1,1,1], [2,2,1], 3)
2*t^2 + 6*t + 2
sage: cospin_polynomial([[6]*6, [3,3]], [4,4,2], 3)
3*t^4 + 6*t^3 + 9*t^2 + 5*t + 3

sage.combinat.ribbon_tableau.count_rec(nexts, current, part, weight, length)
INPUT:

• nexts, current, part – skew partitions

• weight – non-negative integer list

• length – integer

sage.combinat.ribbon_tableau.graph_implementation_rec(skp, weight, length, function)

sage.combinat.ribbon_tableau.insertion_tableau(skp, perm, evaluation, tableau, length)
INPUT:

• skp – skew partitions

• perm, evaluation – non-negative integers

• tableau – skew tableau

• length – integer

sage.combinat.ribbon_tableau.list_rec(nexts, current, part, weight, length)
INPUT:

• nexts, current, part – skew partitions

• weight – non-negative integer list

• length – integer

sage.combinat.ribbon_tableau.spin_polynomial(part, weight, length)
Returns the spin polynomial associated to part, weight, and length.

EXAMPLES:

5.1. Comprehensive Module List 2065

Combinatorics, Release 9.7

sage: from sage.combinat.ribbon_tableau import spin_polynomial
sage: spin_polynomial([6,6,6],[4,2],3)
t^6 + t^5 + 2*t^4 + t^3 + t^2
sage: spin_polynomial([6,6,6],[4,1,1],3)
t^6 + 2*t^5 + 3*t^4 + 2*t^3 + t^2
sage: spin_polynomial([3,3,3,2,1], [2,2], 3)
t^(7/2) + t^(5/2)
sage: spin_polynomial([3,3,3,2,1], [2,1,1], 3)
2*t^(7/2) + 2*t^(5/2) + t^(3/2)
sage: spin_polynomial([3,3,3,2,1], [1,1,1,1], 3)
3*t^(7/2) + 5*t^(5/2) + 3*t^(3/2) + sqrt(t)
sage: spin_polynomial([5,4,3,2,1,1,1], [2,2,1], 3)
2*t^(9/2) + 6*t^(7/2) + 2*t^(5/2)
sage: spin_polynomial([[6]*6, [3,3]], [4,4,2], 3)
3*t^9 + 5*t^8 + 9*t^7 + 6*t^6 + 3*t^5

sage.combinat.ribbon_tableau.spin_polynomial_square(part, weight, length)
Returns the spin polynomial associated with part, weight, and length, with the substitution 𝑡→ 𝑡2 made.

EXAMPLES:

sage: from sage.combinat.ribbon_tableau import spin_polynomial_square
sage: spin_polynomial_square([6,6,6],[4,2],3)
t^12 + t^10 + 2*t^8 + t^6 + t^4
sage: spin_polynomial_square([6,6,6],[4,1,1],3)
t^12 + 2*t^10 + 3*t^8 + 2*t^6 + t^4
sage: spin_polynomial_square([3,3,3,2,1], [2,2], 3)
t^7 + t^5
sage: spin_polynomial_square([3,3,3,2,1], [2,1,1], 3)
2*t^7 + 2*t^5 + t^3
sage: spin_polynomial_square([3,3,3,2,1], [1,1,1,1], 3)
3*t^7 + 5*t^5 + 3*t^3 + t
sage: spin_polynomial_square([5,4,3,2,1,1,1], [2,2,1], 3)
2*t^9 + 6*t^7 + 2*t^5
sage: spin_polynomial_square([[6]*6, [3,3]], [4,4,2], 3)
3*t^18 + 5*t^16 + 9*t^14 + 6*t^12 + 3*t^10

sage.combinat.ribbon_tableau.spin_rec(t, nexts, current, part, weight, length)
Routine used for constructing the spin polynomial.

INPUT:

• weight – list of non-negative integers

• length – the length of the ribbons we’re tiling with

• t – the variable

EXAMPLES:

sage: from sage.combinat.ribbon_tableau import spin_rec
sage: sp = SkewPartition
sage: t = ZZ['t'].gen()
sage: spin_rec(t, [], [[[], [3, 3]]], sp([[2, 2, 2], []]), [2], 3)
[t^4]
sage: spin_rec(t, [[0], [t^4]], [[[2, 1, 1, 1, 1], [0, 3]], [[2, 2, 2], [3, 0]]],␣
→˓sp([[2, 2, 2, 2, 1], []]), [2, 1], 3) (continues on next page)

2066 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[t^5]
sage: spin_rec(t, [], [[[], [3, 3, 0]]], sp([[3, 3], []]), [2], 3)
[t^2]
sage: spin_rec(t, [[t^4], [t^3], [t^2]], [[[2, 2, 2], [0, 0, 3]], [[3, 2, 1], [0, 3,
→˓ 0]], [[3, 3], [3, 0, 0]]], sp([[3, 3, 3], []]), [2, 1], 3)
[t^6 + t^4 + t^2]
sage: spin_rec(t, [[t^5], [t^4], [t^6 + t^4 + t^2]], [[[2, 2, 2, 2, 1], [0, 0, 3]],␣
→˓[[3, 3, 1, 1, 1], [0, 3, 0]], [[3, 3, 3], [3, 0, 0]]], sp([[3, 3, 3, 2, 1], []]),␣
→˓[2, 1, 1], 3)
[2*t^7 + 2*t^5 + t^3]

5.1.193 Rigged configurations

Todo: Proofread / point to the main classes rather than the modules?

• Crystal of Rigged Configurations

• Rigged Configurations of \mathcal{B}(\infty)

• Rigged Configurations

• Rigged Configuration Elements

• Tensor Product of Kirillov-Reshetikhin Tableaux

• Tensor Product of Kirillov-Reshetikhin Tableaux Elements

• Kirillov-Reshetikhin Tableaux

• Kleber Trees

• Rigged Partitions

Bijections

• Bijection between rigged configurations and KR tableaux

• Abstract classes for the rigged configuration bijections

• Bijection classes for type A_n^{(1)}

• Bijection classes for type B_n^{(1)}

• Bijection classes for type C_n^{(1)}

• Bijection classes for type D_n^{(1)}

• Bijection classes for type A_{2n-1}^{(2)}.

• Bijection classes for type A_{2n}^{(2)}

• Bijection classes for type A_{2n}^{(2)\dagger}

• Bijection classes for type D_{n+1}^{(2)}

• Bijection classes for type D_4^{(3)}

• Bijection between rigged configurations for B(\infty) and marginally large tableaux

5.1. Comprehensive Module List 2067

Combinatorics, Release 9.7

5.1.194 Abstract classes for the rigged configuration bijections

This file contains two sets of classes, one for the bijection from KR tableaux to rigged configurations and the other for
the reverse bijection. We do this for two reasons, one is because we can store a state in the bijection locally, so we do
not have to constantly pass it around between functions. The other is because it makes the code easier to read in the
*_element.py files.

These classes are not meant to be used by the user and are only supposed to be used internally to perform the bijections
between TensorProductOfKirillovReshetikhinTableaux and RiggedConfigurations.

AUTHORS:

• Travis Scrimshaw (2011-04-15): Initial version

class sage.combinat.rigged_configurations.bij_abstract_class.KRTToRCBijectionAbstract(tp_krt)
Bases: object

Root abstract class for the bijection from KR tableaux to rigged configurations.

This class holds the state of the bijection and generates the next state. This class should never be created directly.

next_state(val)
Build the next state in the bijection.

INPUT:

• val – The value we are adding

run(verbose=False)
Run the bijection from a tensor product of KR tableaux to a rigged configuration.

INPUT:

• tp_krt – A tensor product of KR tableaux

• verbose – (Default: False) Display each step in the bijection

EXAMPLES:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 4, 1],␣
→˓[[2, 1]])
sage: from sage.combinat.rigged_configurations.bij_type_A import␣
→˓KRTToRCBijectionTypeA
sage: KRTToRCBijectionTypeA(KRT(pathlist=[[5,2]])).run()

-1[]-1

1[]1

0[]0

-1[]-1

class sage.combinat.rigged_configurations.bij_abstract_class.RCToKRTBijectionAbstract(RC_element)
Bases: object

Root abstract class for the bijection from rigged configurations to tensor product of Kirillov-Reshetikhin tableaux.

This class holds the state of the bijection and generates the next state. This class should never be created directly.

2068 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

next_state(height)
Build the next state in the bijection.

run(verbose=False, build_graph=False)
Run the bijection from rigged configurations to tensor product of KR tableaux.

INPUT:

• verbose – (default: False) display each step in the bijection

• build_graph – (default: False) build the graph of each step of the bijection

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 1]])
sage: x = RC(partition_list=[[1],[1],[1],[1]])
sage: from sage.combinat.rigged_configurations.bij_type_A import␣
→˓RCToKRTBijectionTypeA
sage: RCToKRTBijectionTypeA(x).run()
[[2], [5]]
sage: bij = RCToKRTBijectionTypeA(x)
sage: bij.run(build_graph=True)
[[2], [5]]
sage: bij._graph
Digraph on 3 vertices

5.1.195 Bijection between rigged configurations for 𝐵(∞) and marginally large
tableaux

AUTHORS:

• Travis Scrimshaw (2015-07-01): Initial version

REFERENCES:

class sage.combinat.rigged_configurations.bij_infinity.FromRCIsomorphism
Bases: sage.categories.morphism.Morphism

Crystal isomorphism of 𝐵(∞) in the rigged configuration model to the tableau model.

class sage.combinat.rigged_configurations.bij_infinity.FromTableauIsomorphism
Bases: sage.categories.morphism.Morphism

Crystal isomorphism of 𝐵(∞) in the tableau model to the rigged configuration model.

class sage.combinat.rigged_configurations.bij_infinity.MLTToRCBijectionTypeB(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_type_B.KRTToRCBijectionTypeB

run()
Run the bijection from a marginally large tableaux to a rigged configuration.

EXAMPLES:

sage: vct = CartanType(['B',4]).as_folding()
sage: RC = crystals.infinity.RiggedConfigurations(vct)
sage: T = crystals.infinity.Tableaux(['B',4])
sage: Psi = T.crystal_morphism({T.module_generators[0]: RC.module_generators[0]}
→˓)
sage: TS = [x.value for x in T.subcrystal(max_depth=4)]

(continues on next page)

5.1. Comprehensive Module List 2069

../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism
../../../../../../../html/en/reference/categories/sage/categories/morphism.html#sage.categories.morphism.Morphism

Combinatorics, Release 9.7

(continued from previous page)

sage: all(Psi(b) == RC(b) for b in TS) # long time # indirect doctest
True

class sage.combinat.rigged_configurations.bij_infinity.MLTToRCBijectionTypeD(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_type_D.KRTToRCBijectionTypeD

run()
Run the bijection from a marginally large tableaux to a rigged configuration.

EXAMPLES:

sage: RC = crystals.infinity.RiggedConfigurations(['D',4])
sage: T = crystals.infinity.Tableaux(['D',4])
sage: Psi = T.crystal_morphism({T.module_generators[0]: RC.module_generators[0]}
→˓)
sage: TS = [x.value for x in T.subcrystal(max_depth=4)]
sage: all(Psi(b) == RC(b) for b in TS) # long time # indirect doctest
True

class sage.combinat.rigged_configurations.bij_infinity.RCToMLTBijectionTypeB(RC_element)
Bases: sage.combinat.rigged_configurations.bij_type_B.RCToKRTBijectionTypeB

run()
Run the bijection from rigged configurations to a marginally large tableau.

EXAMPLES:

sage: vct = CartanType(['B',4]).as_folding()
sage: RC = crystals.infinity.RiggedConfigurations(vct)
sage: T = crystals.infinity.Tableaux(['B',4])
sage: Psi = RC.crystal_morphism({RC.module_generators[0]: T.module_
→˓generators[0]})
sage: RCS = [x.value for x in RC.subcrystal(max_depth=4)]
sage: all(Psi(nu) == T(nu) for nu in RCS) # long time # indirect doctest
True

class sage.combinat.rigged_configurations.bij_infinity.RCToMLTBijectionTypeD(RC_element)
Bases: sage.combinat.rigged_configurations.bij_type_D.RCToKRTBijectionTypeD

run()
Run the bijection from rigged configurations to a marginally large tableau.

EXAMPLES:

sage: RC = crystals.infinity.RiggedConfigurations(['D',4])
sage: T = crystals.infinity.Tableaux(['D',4])
sage: Psi = RC.crystal_morphism({RC.module_generators[0]: T.module_
→˓generators[0]})
sage: RCS = [x.value for x in RC.subcrystal(max_depth=4)]
sage: all(Psi(nu) == T(nu) for nu in RCS) # long time # indirect doctest
True

2070 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.196 Bijection classes for type 𝐴
(1)
𝑛

Part of the (internal) classes which run the bijection between rigged configurations and tensor products of Kirillov-
Reshetikhin tableaux of type 𝐴(1)

𝑛 .

AUTHORS:

• Travis Scrimshaw (2011-04-15): Initial version

class sage.combinat.rigged_configurations.bij_type_A.KRTToRCBijectionTypeA(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_abstract_class.KRTToRCBijectionAbstract

Specific implementation of the bijection from KR tableaux to rigged configurations for type 𝐴(1)
𝑛 .

next_state(val)
Build the next state for type 𝐴(1)

𝑛 .

EXAMPLES:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 4, 1],␣
→˓[[2,1]])
sage: from sage.combinat.rigged_configurations.bij_type_A import␣
→˓KRTToRCBijectionTypeA
sage: bijection = KRTToRCBijectionTypeA(KRT(pathlist=[[4,3]]))
sage: bijection.cur_path.insert(0, [])
sage: bijection.cur_dims.insert(0, [0, 1])
sage: bijection.cur_path[0].insert(0, [3])
sage: bijection.next_state(3)

class sage.combinat.rigged_configurations.bij_type_A.RCToKRTBijectionTypeA(RC_element)
Bases: sage.combinat.rigged_configurations.bij_abstract_class.RCToKRTBijectionAbstract

Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type
𝐴

(1)
𝑛 .

next_state(height)
Build the next state for type 𝐴(1)

𝑛 .

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 1]])
sage: from sage.combinat.rigged_configurations.bij_type_A import␣
→˓RCToKRTBijectionTypeA
sage: bijection = RCToKRTBijectionTypeA(RC(partition_list=[[1],[1],[1],[1]]))
sage: bijection.next_state(1)
5

5.1. Comprehensive Module List 2071

Combinatorics, Release 9.7

5.1.197 Bijection classes for type 𝐴
(2)†
2𝑛

Part of the (internal) classes which runs the bijection between rigged configurations and KR tableaux of type 𝐴(2)†
2𝑛 .

AUTHORS:

• Travis Scrimshaw (2012-12-21): Initial version

class sage.combinat.rigged_configurations.bij_type_A2_dual.KRTToRCBijectionTypeA2Dual(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_type_C.KRTToRCBijectionTypeC

Specific implementation of the bijection from KR tableaux to rigged configurations for type 𝐴(2)†
2𝑛 .

This inherits from type 𝐶(1)
𝑛 because we use the same methods in some places.

next_state(val)
Build the next state for type 𝐴(2)†

2𝑛 .

class sage.combinat.rigged_configurations.bij_type_A2_dual.RCToKRTBijectionTypeA2Dual(RC_element)
Bases: sage.combinat.rigged_configurations.bij_type_C.RCToKRTBijectionTypeC

Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type
𝐴

(2)†
2𝑛 .

next_state(height)
Build the next state for type 𝐴(2)†

2𝑛 .

5.1.198 Bijection classes for type 𝐴
(2)
2𝑛

Part of the (internal) classes which runs the bijection between rigged configurations and KR tableaux of type 𝐴(2)
2𝑛 .

AUTHORS:

• Travis Scrimshaw (2012-12-21): Initial version

class sage.combinat.rigged_configurations.bij_type_A2_even.KRTToRCBijectionTypeA2Even(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_type_C.KRTToRCBijectionTypeC

Specific implementation of the bijection from KR tableaux to rigged configurations for type 𝐴(2)
2𝑛 .

This inherits from type 𝐶(1)
𝑛 because we use the same methods in some places.

next_state(val)
Build the next state for type 𝐴(2)

2𝑛 .

class sage.combinat.rigged_configurations.bij_type_A2_even.RCToKRTBijectionTypeA2Even(RC_element)
Bases: sage.combinat.rigged_configurations.bij_type_C.RCToKRTBijectionTypeC

Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type
𝐴

(2)
2𝑛 .

next_state(height)
Build the next state for type 𝐴(2)

2𝑛 .

2072 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.199 Bijection classes for type 𝐴
(2)
2𝑛−1.

Part of the (internal) classes which runs the bijection between rigged configurations and KR tableaux of type 𝐴(2)
2𝑛−1.

AUTHORS:

• Travis Scrimshaw (2012-12-21): Initial version

class sage.combinat.rigged_configurations.bij_type_A2_odd.KRTToRCBijectionTypeA2Odd(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_type_A.KRTToRCBijectionTypeA

Specific implementation of the bijection from KR tableaux to rigged configurations for type 𝐴(2)
2𝑛−1.

This inherits from type 𝐴(1)
𝑛 because we use the same methods in some places.

next_state(val)
Build the next state for type 𝐴(2)

2𝑛−1.

class sage.combinat.rigged_configurations.bij_type_A2_odd.RCToKRTBijectionTypeA2Odd(RC_element)
Bases: sage.combinat.rigged_configurations.bij_type_A.RCToKRTBijectionTypeA

Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type
𝐴

(2)
2𝑛−1.

next_state(height)
Build the next state for type 𝐴(2)

2𝑛−1.

5.1.200 Bijection classes for type 𝐵
(1)
𝑛

Part of the (internal) classes which runs the bijection between rigged configurations and KR tableaux of type 𝐵(1)
𝑛 .

AUTHORS:

• Travis Scrimshaw (2012-12-21): Initial version

class sage.combinat.rigged_configurations.bij_type_B.KRTToRCBijectionTypeB(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_type_C.KRTToRCBijectionTypeC

Specific implementation of the bijection from KR tableaux to rigged configurations for type 𝐵(1)
𝑛 .

next_state(val)
Build the next state for type 𝐵(1)

𝑛 .

other_outcome(rc, pos_val, width_n)
Do the other case (𝑄𝑆) possibility.

This arises from the ambiguity when we found a singular string at the max width in 𝜈(𝑛). We had first
attempted case (𝑆), and if that resulted in an invalid rigged configuration, we now finish the bijection using
case (𝑄𝑆).

EXAMPLES:

sage: RC = RiggedConfigurations(['B',3,1], [[2,1],[1,2]])
sage: rc = RC(partition_list=[[2,1], [2,1,1], [5,1]])
sage: t = rc.to_tensor_product_of_kirillov_reshetikhin_tableaux()
sage: t.to_rigged_configuration() == rc # indirect doctest
True

5.1. Comprehensive Module List 2073

Combinatorics, Release 9.7

run(verbose=False)
Run the bijection from a tensor product of KR tableaux to a rigged configuration.

INPUT:

• tp_krt – A tensor product of KR tableaux

• verbose – (Default: False) Display each step in the bijection

EXAMPLES:

sage: from sage.combinat.rigged_configurations.bij_type_B import␣
→˓KRTToRCBijectionTypeB
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['B', 3, 1],␣
→˓[[2, 1]])
sage: KRTToRCBijectionTypeB(KRT(pathlist=[[0,3]])).run()

0[]0

-1[]-1
-1[]-1

0[]0

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['B', 3, 1],␣
→˓[[3, 1]])
sage: KRTToRCBijectionTypeB(KRT(pathlist=[[-2,3,1]])).run()

(/)

-1[]-1

0[]0

class sage.combinat.rigged_configurations.bij_type_B.RCToKRTBijectionTypeB(RC_element)
Bases: sage.combinat.rigged_configurations.bij_type_C.RCToKRTBijectionTypeC

Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type
𝐵

(1)
𝑛 .

next_state(height)
Build the next state for type 𝐵(1)

𝑛 .

run(verbose=False, build_graph=False)
Run the bijection from rigged configurations to tensor product of KR tableaux for type 𝐵(1)

𝑛 .

INPUT:

• verbose – (default: False) display each step in the bijection

• build_graph – (default: False) build the graph of each step of the bijection

EXAMPLES:

sage: RC = RiggedConfigurations(['B', 3, 1], [[2, 1]])
sage: from sage.combinat.rigged_configurations.bij_type_B import␣
→˓RCToKRTBijectionTypeB
sage: RCToKRTBijectionTypeB(RC(partition_list=[[1],[1,1],[1]])).run()

(continues on next page)

2074 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[3], [0]]

sage: RC = RiggedConfigurations(['B', 3, 1], [[3, 1]])
sage: x = RC(partition_list=[[],[1],[1]])
sage: RCToKRTBijectionTypeB(x).run()
[[1], [3], [-2]]
sage: bij = RCToKRTBijectionTypeB(x)
sage: bij.run(build_graph=True)
[[1], [3], [-2]]
sage: bij._graph
Digraph on 6 vertices

5.1.201 Bijection classes for type 𝐶
(1)
𝑛

Part of the (internal) classes which runs the bijection between rigged configurations and KR tableaux of type 𝐶(1)
𝑛 .

AUTHORS:

• Travis Scrimshaw (2012-12-21): Initial version

class sage.combinat.rigged_configurations.bij_type_C.KRTToRCBijectionTypeC(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_type_A.KRTToRCBijectionTypeA

Specific implementation of the bijection from KR tableaux to rigged configurations for type 𝐶(1)
𝑛 .

This inherits from type 𝐴(1)
𝑛 because we use the same methods in some places.

next_state(val)
Build the next state for type 𝐶(1)

𝑛 .

class sage.combinat.rigged_configurations.bij_type_C.RCToKRTBijectionTypeC(RC_element)
Bases: sage.combinat.rigged_configurations.bij_type_A.RCToKRTBijectionTypeA

Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type
𝐶

(1)
𝑛 .

next_state(height)
Build the next state for type 𝐶(1)

𝑛 .

5.1.202 Bijection classes for type 𝐷
(1)
𝑛

Part of the (internal) classes which runs the bijection between rigged configurations and KR tableaux of type 𝐷(1)
𝑛 .

AUTHORS:

• Travis Scrimshaw (2011-04-15): Initial version

class sage.combinat.rigged_configurations.bij_type_D.KRTToRCBijectionTypeD(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_type_A.KRTToRCBijectionTypeA

Specific implementation of the bijection from KR tableaux to rigged configurations for type 𝐷(1)
𝑛 .

This inherits from type 𝐴(1)
𝑛 because we use the same methods in some places.

5.1. Comprehensive Module List 2075

Combinatorics, Release 9.7

doubling_map()
Perform the doubling map of the rigged configuration at the current state of the bijection.

This is the map 𝐵(Λ) →˓ 𝐵(2Λ) which doubles each of the rigged partitions and updates the vacancy
numbers accordingly.

halving_map()
Perform the halving map of the rigged configuration at the current state of the bijection.

This is the inverse map to 𝐵(Λ) →˓ 𝐵(2Λ) which halves each of the rigged partitions and updates the
vacancy numbers accordingly.

next_state(val)
Build the next state for type 𝐷(1)

𝑛 .

run(verbose=False)
Run the bijection from a tensor product of KR tableaux to a rigged configuration for type 𝐷(1)

𝑛 .

INPUT:

• tp_krt – A tensor product of KR tableaux

• verbose – (Default: False) Display each step in the bijection

EXAMPLES:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1],␣
→˓[[2,1]])
sage: from sage.combinat.rigged_configurations.bij_type_D import␣
→˓KRTToRCBijectionTypeD
sage: KRTToRCBijectionTypeD(KRT(pathlist=[[-3,2]])).run()

-1[]-1

2[]2

-1[]-1

-1[]-1

class sage.combinat.rigged_configurations.bij_type_D.RCToKRTBijectionTypeD(RC_element)
Bases: sage.combinat.rigged_configurations.bij_type_A.RCToKRTBijectionTypeA

Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type
𝐷

(1)
𝑛 .

doubling_map()
Perform the doubling map of the rigged configuration at the current state of the bijection.

This is the map 𝐵(Λ) →˓ 𝐵(2Λ) which doubles each of the rigged partitions and updates the vacancy
numbers accordingly.

halving_map()
Perform the halving map of the rigged configuration at the current state of the bijection.

This is the inverse map to 𝐵(Λ) →˓ 𝐵(2Λ) which halves each of the rigged partitions and updates the
vacancy numbers accordingly.

next_state(height)
Build the next state for type 𝐷(1)

𝑛 .

2076 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

run(verbose=False, build_graph=False)
Run the bijection from rigged configurations to tensor product of KR tableaux for type 𝐷(1)

𝑛 .

INPUT:

• verbose – (default: False) display each step in the bijection

• build_graph – (default: False) build the graph of each step of the bijection

EXAMPLES:

sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 1]])
sage: x = RC(partition_list=[[1],[1],[1],[1]])
sage: from sage.combinat.rigged_configurations.bij_type_D import␣
→˓RCToKRTBijectionTypeD
sage: RCToKRTBijectionTypeD(x).run()
[[2], [-3]]
sage: bij = RCToKRTBijectionTypeD(x)
sage: bij.run(build_graph=True)
[[2], [-3]]
sage: bij._graph
Digraph on 3 vertices

5.1.203 Bijection classes for type 𝐷
(2)
𝑛+1

Part of the (internal) classes which runs the bijection between rigged configurations and KR tableaux of type 𝐷(2)
𝑛+1.

AUTHORS:

• Travis Scrimshaw (2011-04-15): Initial version

class sage.combinat.rigged_configurations.bij_type_D_twisted.KRTToRCBijectionTypeDTwisted(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_type_D.KRTToRCBijectionTypeD, sage.
combinat.rigged_configurations.bij_type_A2_even.KRTToRCBijectionTypeA2Even

Specific implementation of the bijection from KR tableaux to rigged configurations for type 𝐷(2)
𝑛+1.

This inherits from type 𝐶(1)
𝑛 and 𝐷(1)

𝑛 because we use the same methods in some places.

next_state(val)
Build the next state for type 𝐷(2)

𝑛+1.

run(verbose=False)
Run the bijection from a tensor product of KR tableaux to a rigged configuration for type 𝐷(2)

𝑛+1.

INPUT:

• tp_krt – A tensor product of KR tableaux

• verbose – (Default: False) Display each step in the bijection

EXAMPLES:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 2],␣
→˓[[3,1]])
sage: from sage.combinat.rigged_configurations.bij_type_D_twisted import␣
→˓KRTToRCBijectionTypeDTwisted
sage: KRTToRCBijectionTypeDTwisted(KRT(pathlist=[[-1,3,2]])).run()

(continues on next page)

5.1. Comprehensive Module List 2077

Combinatorics, Release 9.7

(continued from previous page)

-1[]-1

0[]0

1[]1

class sage.combinat.rigged_configurations.bij_type_D_twisted.RCToKRTBijectionTypeDTwisted(RC_element)
Bases: sage.combinat.rigged_configurations.bij_type_D.RCToKRTBijectionTypeD, sage.
combinat.rigged_configurations.bij_type_A2_even.RCToKRTBijectionTypeA2Even

Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type
𝐷

(2)
𝑛+1.

next_state(height)
Build the next state for type 𝐷(2)

𝑛+1.

run(verbose=False, build_graph=False)
Run the bijection from rigged configurations to tensor product of KR tableaux for type 𝐷(2)

𝑛+1.

INPUT:

• verbose – (default: False) display each step in the bijection

• build_graph – (default: False) build the graph of each step of the bijection

EXAMPLES:

sage: RC = RiggedConfigurations(['D', 4, 2], [[3, 1]])
sage: x = RC(partition_list=[[],[1],[1]])
sage: from sage.combinat.rigged_configurations.bij_type_D_twisted import␣
→˓RCToKRTBijectionTypeDTwisted
sage: RCToKRTBijectionTypeDTwisted(x).run()
[[1], [3], [-2]]
sage: bij = RCToKRTBijectionTypeDTwisted(x)
sage: bij.run(build_graph=True)
[[1], [3], [-2]]
sage: bij._graph
Digraph on 6 vertices

5.1.204 Bijection classes for type 𝐷
(3)
4

Part of the (internal) classes which runs the bijection between rigged configurations and KR tableaux of type 𝐷(3)
4 .

AUTHORS:

• Travis Scrimshaw (2014-09-10): Initial version

class sage.combinat.rigged_configurations.bij_type_D_tri.KRTToRCBijectionTypeDTri(tp_krt)
Bases: sage.combinat.rigged_configurations.bij_type_A.KRTToRCBijectionTypeA

Specific implementation of the bijection from KR tableaux to rigged configurations for type 𝐷(3)
4 .

This inherits from type 𝐴(1)
𝑛 because we use the same methods in some places.

next_state(val)
Build the next state for type 𝐷(3)

4 .

2078 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.rigged_configurations.bij_type_D_tri.RCToKRTBijectionTypeDTri(RC_element)
Bases: sage.combinat.rigged_configurations.bij_type_A.RCToKRTBijectionTypeA

Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type
𝐷

(3)
4 .

next_state(height)
Build the next state for type 𝐷(3)

4 .

5.1.205 Bijection between rigged configurations and KR tableaux

Functions which are big switch statements to create the bijection class of the correct type.

AUTHORS:

• Travis Scrimshaw (2011-04-15): Initial version

• Travis Scrimshaw (2012-12-21): Added all non-exceptional bijection types

• Travis Scrimshaw (2014-09-10): Added type 𝐷(3)
4

sage.combinat.rigged_configurations.bijection.KRTToRCBijection(tp_krt)
Return the correct KR tableaux to rigged configuration bijection helper class.

sage.combinat.rigged_configurations.bijection.RCToKRTBijection(rigged_configuration_elt)
Return the correct rigged configuration to KR tableaux bijection helper class.

5.1.206 Kleber Trees

A Kleber tree is a tree of weights generated by Kleber’s algorithm [Kleber1]. The nodes correspond to the weights in
the positive Weyl chamber obtained by subtracting a (non-zero) positive root. The edges are labeled by the coefficients
of the roots of the difference.

AUTHORS:

• Travis Scrimshaw (2011-05-03): Initial version

• Travis Scrimshaw (2013-02-13): Added support for virtual trees and improved LATEX output

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import KleberTree
sage: KleberTree(['A', 3, 1], [[3,2], [2,1], [1,1], [1,1]])
Kleber tree of Cartan type ['A', 3, 1] and B = ((3, 2), (2, 1), (1, 1), (1, 1))
sage: KleberTree(['D', 4, 1], [[2,2]])
Kleber tree of Cartan type ['D', 4, 1] and B = ((2, 2),)

class sage.combinat.rigged_configurations.kleber_tree.KleberTree(cartan_type, B, classical_ct)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The tree that is generated by Kleber’s algorithm.

A Kleber tree is a tree of weights generated by Kleber’s algorithm [Kleber1]. It is used to generate the set of all
admissible rigged configurations for the simply-laced affine types 𝐴(1)

𝑛 , 𝐷(1)
𝑛 , 𝐸(1)

6 , 𝐸(1)
7 , and 𝐸(1)

8 .

See also:

There is a modified version for non-simply-laced affine types at VirtualKleberTree.

5.1. Comprehensive Module List 2079

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

The nodes correspond to the weights in the positive Weyl chamber obtained by subtracting a (non-zero) positive
root. The edges are labeled by the coefficients of the roots, and 𝑋 is a child of 𝑌 if 𝑌 is the root else if the edge
label of 𝑌 to its parent 𝑍 is greater (in every component) than the label from 𝑋 to 𝑌 .

For a Kleber tree, one needs to specify an affine (simply-laced) Cartan type and a sequence of pairs (𝑟, 𝑠), where
𝑠 is any positive integer and 𝑟 is a node in the Dynkin diagram. Each (𝑟, 𝑠) can be viewed as a rectangle of width
𝑠 and height 𝑟.

INPUT:

• cartan_type – an affine simply-laced Cartan type

• B – a list of dimensions of rectangles by [𝑟, 𝑐] where 𝑟 is the number of rows and 𝑐 is the number of columns

REFERENCES:

EXAMPLES:

Simply-laced example:

sage: from sage.combinat.rigged_configurations.kleber_tree import KleberTree
sage: KT = KleberTree(['A', 3, 1], [[3,2], [1,1]])
sage: KT.list()
[Kleber tree node with weight [1, 0, 2] and upwards edge root [0, 0, 0],
Kleber tree node with weight [0, 0, 1] and upwards edge root [1, 1, 1]]
sage: KT = KleberTree(['A', 3, 1], [[3,2], [2,1], [1,1], [1,1]])
sage: KT.cardinality()
10
sage: KT = KleberTree(['D', 4, 1], [[2,2]])
sage: KT.cardinality()
3
sage: KT = KleberTree(['D', 4, 1], [[4,5]])
sage: KT.cardinality()
1

From [Kleber2]:

sage: KT = KleberTree(['E', 6, 1], [[4, 2]]) # long time (9s on sage.math, 2012)
sage: KT.cardinality() # long time
12

We check that relabelled types work (trac ticket #16876):

sage: ct = CartanType(['A',3,1]).relabel(lambda x: x+2)
sage: kt = KleberTree(ct, [[3,1],[5,1]])
sage: list(kt)
[Kleber tree node with weight [1, 0, 1] and upwards edge root [0, 0, 0],
Kleber tree node with weight [0, 0, 0] and upwards edge root [1, 1, 1]]
sage: kt = KleberTree(['A',3,1], [[1,1],[3,1]])
sage: list(kt)
[Kleber tree node with weight [1, 0, 1] and upwards edge root [0, 0, 0],
Kleber tree node with weight [0, 0, 0] and upwards edge root [1, 1, 1]]

Element
alias of KleberTreeNode

breadth_first_iter()
Iterate over all nodes in the tree following a breadth-first traversal.

2080 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/16876

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import KleberTree
sage: KT = KleberTree(['A', 3, 1], [[2, 2], [2, 3]])
sage: for x in KT.breadth_first_iter(): x
Kleber tree node with weight [0, 5, 0] and upwards edge root [0, 0, 0]
Kleber tree node with weight [1, 3, 1] and upwards edge root [0, 1, 0]
Kleber tree node with weight [0, 3, 0] and upwards edge root [1, 2, 1]
Kleber tree node with weight [2, 1, 2] and upwards edge root [0, 1, 0]
Kleber tree node with weight [1, 1, 1] and upwards edge root [0, 1, 0]
Kleber tree node with weight [0, 1, 0] and upwards edge root [1, 2, 1]

cartan_type()
Return the Cartan type of this Kleber tree.

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import KleberTree
sage: KT = KleberTree(['A', 3, 1], [[1,1]])
sage: KT.cartan_type()
['A', 3, 1]

depth_first_iter()
Iterate (recursively) over the nodes in the tree following a depth-first traversal.

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import KleberTree
sage: KT = KleberTree(['A', 3, 1], [[2, 2], [2, 3]])
sage: for x in KT.depth_first_iter(): x
Kleber tree node with weight [0, 5, 0] and upwards edge root [0, 0, 0]
Kleber tree node with weight [1, 3, 1] and upwards edge root [0, 1, 0]
Kleber tree node with weight [2, 1, 2] and upwards edge root [0, 1, 0]
Kleber tree node with weight [0, 3, 0] and upwards edge root [1, 2, 1]
Kleber tree node with weight [1, 1, 1] and upwards edge root [0, 1, 0]
Kleber tree node with weight [0, 1, 0] and upwards edge root [1, 2, 1]

digraph()
Return a DiGraph representation of this Kleber tree.

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import KleberTree
sage: KT = KleberTree(['D', 4, 1], [[2, 2]])
sage: KT.digraph()
Digraph on 3 vertices

latex_options(**options)
Return the current latex options if no arguments are passed, otherwise set the corresponding latex option.

OPTIONS:

• hspace – (default: 2.5) the horizontal spacing of the tree nodes

• vspace – (default: x) the vertical spacing of the tree nodes, here x is the minimum of −2.5 or −.75𝑛
where 𝑛 is the rank of the classical type

• edge_labels – (default: True) display edge labels

5.1. Comprehensive Module List 2081

Combinatorics, Release 9.7

• use_vector_notation – (default: False) display edge labels using vector notation instead of a
linear combination

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import KleberTree
sage: KT = KleberTree(['D', 3, 1], [[2,1], [2,1]])
sage: KT.latex_options(vspace=-4, use_vector_notation=True)
sage: sorted(KT.latex_options().items())
[('edge_labels', True), ('hspace', 2.5), ('use_vector_notation', True), ('vspace
→˓', -4)]

plot(**options)
Return the plot of self as a directed graph.

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import KleberTree
sage: KT = KleberTree(['D', 4, 1], [[2, 2]])
sage: print(KT.plot())
Graphics object consisting of 8 graphics primitives

class sage.combinat.rigged_configurations.kleber_tree.KleberTreeNode(parent_obj, node_weight,
dominant_root,
parent_node=None)

Bases: sage.structure.element.Element

A node in the Kleber tree.

This class is meant to be used internally by the Kleber tree class and should not be created directly by the user.

For more on the Kleber tree and the nodes, see KleberTree.

The dominating root is the up_root which is the difference between the parent node’s weight and this node’s
weight.

INPUT:

• parent_obj – The parent object of this element

• node_weight – The weight of this node

• dominant_root – The dominating root

• parent_node – (default:None) The parent node of this node

depth()
Return the depth of this node in the tree.

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import KleberTree
sage: RS = RootSystem(['A', 2])
sage: WS = RS.weight_lattice()
sage: R = RS.root_lattice()
sage: KT = KleberTree(['A', 2, 1], [[1,1]])
sage: n = KT(WS.sum_of_terms([(1,5), (2,2)]), R.zero())
sage: n.depth
0
sage: n2 = KT(WS.sum_of_terms([(1,5), (2,2)]), R.zero(), n)

(continues on next page)

2082 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

(continued from previous page)

sage: n2.depth
1

multiplicity()
Return the multiplicity of self.

The multiplicity of a node 𝑥 of depth 𝑑 weight 𝜆 in a simply-laced Kleber tree is equal to:

∏︁
𝑖>0

∏︁
𝑎∈𝐼

(︂
𝑝
(𝑎)
𝑖 +𝑚

(𝑎)
𝑖

𝑝
(𝑎)
𝑖

)︂

Recall that

𝑚
(𝑎)
𝑖 =

(︁
𝜆(𝑖−1) − 2𝜆(𝑖) + 𝜆(𝑖+1) | Λ𝑎

)︁
,

𝑝
(𝑎)
𝑖 =

(︁
𝛼𝑎 | 𝜆(𝑖)

)︁
−
∑︁
𝑗>𝑖

(𝑗 − 𝑖)𝐿(𝑎)
𝑗 ,

where 𝜆(𝑖) is the weight node at depth 𝑖 in the path to 𝑥 from the root and we set 𝜆(𝑗) = 𝜆 for all 𝑗 ≥ 𝑑.

Note that 𝑚(𝑎)
𝑖 = 0 for all 𝑖 > 𝑑.

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import KleberTree
sage: KT = KleberTree(['A',3,1], [[3,2],[2,1],[1,1],[1,1]])
sage: for x in KT: x, x.multiplicity()
(Kleber tree node with weight [2, 1, 2] and upwards edge root [0, 0, 0], 1)
(Kleber tree node with weight [3, 0, 1] and upwards edge root [0, 1, 1], 1)
(Kleber tree node with weight [0, 2, 2] and upwards edge root [1, 0, 0], 1)
(Kleber tree node with weight [1, 0, 3] and upwards edge root [1, 1, 0], 2)
(Kleber tree node with weight [1, 1, 1] and upwards edge root [1, 1, 1], 4)
(Kleber tree node with weight [0, 0, 2] and upwards edge root [2, 2, 1], 2)
(Kleber tree node with weight [2, 0, 0] and upwards edge root [0, 1, 1], 2)
(Kleber tree node with weight [0, 0, 2] and upwards edge root [1, 1, 0], 1)
(Kleber tree node with weight [0, 1, 0] and upwards edge root [1, 1, 1], 2)
(Kleber tree node with weight [0, 1, 0] and upwards edge root [0, 0, 1], 1)

class sage.combinat.rigged_configurations.kleber_tree.KleberTreeTypeA2Even(cartan_type, B)
Bases: sage.combinat.rigged_configurations.kleber_tree.VirtualKleberTree

Kleber tree for types 𝐴(2)
2𝑛 and 𝐴(2)†

2𝑛 .

Note that here for𝐴(2)
2𝑛 we use 𝛾𝑎 in place of 𝛾𝑎 in constructing the virtual Kleber tree, and so we end up selecting

all nodes since 𝛾𝑎 = 1 for all 𝑎 ∈ 𝐼 . For type 𝐴(2)†
2𝑛 , we have 𝛾𝑎 = 1 for all 𝑎 ∈ 𝐼 .

See also:

VirtualKleberTree

breadth_first_iter(all_nodes=False)
Iterate over all nodes in the tree following a breadth-first traversal.

INPUT:

• all_nodes – (default: False) if True, output all nodes in the tree

EXAMPLES:

5.1. Comprehensive Module List 2083

Combinatorics, Release 9.7

sage: from sage.combinat.rigged_configurations.kleber_tree import␣
→˓VirtualKleberTree
sage: KT = VirtualKleberTree(['A', 4, 2], [[2,1]])
sage: for x in KT.breadth_first_iter(): x
Kleber tree node with weight [0, 2, 0] and upwards edge root [0, 0, 0]
Kleber tree node with weight [1, 0, 1] and upwards edge root [0, 1, 0]
Kleber tree node with weight [0, 0, 0] and upwards edge root [1, 2, 1]
sage: for x in KT.breadth_first_iter(True): x
Kleber tree node with weight [0, 2, 0] and upwards edge root [0, 0, 0]
Kleber tree node with weight [1, 0, 1] and upwards edge root [0, 1, 0]
Kleber tree node with weight [0, 0, 0] and upwards edge root [1, 2, 1]

depth_first_iter(all_nodes=False)
Iterate (recursively) over the nodes in the tree following a depth-first traversal.

INPUT:

• all_nodes – (default: False) if True, output all nodes in the tree

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import␣
→˓VirtualKleberTree
sage: KT = VirtualKleberTree(['A', 4, 2], [[2,1]])
sage: for x in KT.depth_first_iter(): x
Kleber tree node with weight [0, 2, 0] and upwards edge root [0, 0, 0]
Kleber tree node with weight [1, 0, 1] and upwards edge root [0, 1, 0]
Kleber tree node with weight [0, 0, 0] and upwards edge root [1, 2, 1]
sage: for x in KT.depth_first_iter(True): x
Kleber tree node with weight [0, 2, 0] and upwards edge root [0, 0, 0]
Kleber tree node with weight [1, 0, 1] and upwards edge root [0, 1, 0]
Kleber tree node with weight [0, 0, 0] and upwards edge root [1, 2, 1]

class sage.combinat.rigged_configurations.kleber_tree.VirtualKleberTree(cartan_type, B)
Bases: sage.combinat.rigged_configurations.kleber_tree.KleberTree

A virtual Kleber tree.

We can use a modified version of the Kleber algorithm called the virtual Kleber algorithm [OSS03] to compute
all admissible rigged configurations for non-simply-laced types. This uses the following embeddings into the
simply-laced types:

𝐶(1)
𝑛 , 𝐴

(2)
2𝑛 , 𝐴

(2)†
2𝑛 , 𝐷

(2)
𝑛+1 →˓ 𝐴

(1)
2𝑛−1

𝐴
(2)
2𝑛−1, 𝐵

(1)
𝑛 →˓ 𝐷

(1)
𝑛+1

𝐸
(2)
6 , 𝐹

(1)
4 →˓ 𝐸

(1)
6

𝐷
(3)
4 , 𝐺

(1)
2 →˓ 𝐷

(1)
4

One then selects the subset of admissible nodes which are translates of the virtual requirements. In the graph,
the selected nodes are indicated by brackets [].

Note: Because these are virtual nodes, all information is given in the corresponding simply-laced type.

See also:

For more on the Kleber algorithm, see KleberTree.

2084 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

REFERENCES:

INPUT:

• cartan_type – an affine non-simply-laced Cartan type

• B – a list of dimensions of rectangles by [𝑟, 𝑐] where 𝑟 is the number of rows and 𝑐 is the number of columns

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import VirtualKleberTree
sage: KT = VirtualKleberTree(['C', 4, 1], [[2,2]])
sage: KT.cardinality()
3
sage: KT.base_tree().cardinality()
6
sage: KT = VirtualKleberTree(['C', 4, 1], [[4,5]])
sage: KT.cardinality()
1
sage: KT = VirtualKleberTree(['D', 5, 2], [[2,1], [1,1]])
sage: KT.cardinality()
8
sage: KT = VirtualKleberTree(CartanType(['A', 4, 2]).dual(), [[1,1], [2,2]])
sage: KT.cardinality()
15

base_tree()
Return the underlying virtual Kleber tree associated to self.

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import␣
→˓VirtualKleberTree
sage: KT = VirtualKleberTree(['C', 4, 1], [[2,2]])
sage: KT.base_tree()
Kleber tree of Cartan type ['A', 7, 1] and B = ((2, 2), (6, 2))

breadth_first_iter(all_nodes=False)
Iterate over all nodes in the tree following a breadth-first traversal.

INPUT:

• all_nodes – (default: False) if True, output all nodes in the tree

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import␣
→˓VirtualKleberTree
sage: KT = VirtualKleberTree(['C', 2, 1], [[1,1], [2,1]])
sage: for x in KT.breadth_first_iter(): x
Kleber tree node with weight [1, 2, 1] and upwards edge root [0, 0, 0]
Kleber tree node with weight [1, 0, 1] and upwards edge root [0, 1, 0]
sage: for x in KT.breadth_first_iter(True): x
Kleber tree node with weight [1, 2, 1] and upwards edge root [0, 0, 0]
Kleber tree node with weight [0, 2, 0] and upwards edge root [1, 1, 1]
Kleber tree node with weight [1, 0, 1] and upwards edge root [0, 1, 0]

depth_first_iter(all_nodes=False)
Iterate (recursively) over the nodes in the tree following a depth-first traversal.

5.1. Comprehensive Module List 2085

Combinatorics, Release 9.7

INPUT:

• all_nodes – (default: False) if True, output all nodes in the tree

EXAMPLES:

sage: from sage.combinat.rigged_configurations.kleber_tree import␣
→˓VirtualKleberTree
sage: KT = VirtualKleberTree(['C', 2, 1], [[1,1], [2,1]])
sage: for x in KT.depth_first_iter(): x
Kleber tree node with weight [1, 2, 1] and upwards edge root [0, 0, 0]
Kleber tree node with weight [1, 0, 1] and upwards edge root [0, 1, 0]
sage: for x in KT.depth_first_iter(True): x
Kleber tree node with weight [1, 2, 1] and upwards edge root [0, 0, 0]
Kleber tree node with weight [0, 2, 0] and upwards edge root [1, 1, 1]
Kleber tree node with weight [1, 0, 1] and upwards edge root [0, 1, 0]

5.1.207 Kirillov-Reshetikhin Tableaux

Kirillov-Reshetikhin tableaux are rectangular tableaux with 𝑟 rows and 𝑠 columns that naturally arise under the bi-
jection between rigged configurations and tableaux [RigConBijection]. They are in bijection with the elements of the
Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠 under the (inverse) filling map [OSS13] [SS2015]. They do not have to satisfy the
semistandard row or column restrictions. These tensor products are the result from the bijection from rigged configu-
rations [RigConBijection].

For more information, see KirillovReshetikhinTableaux and TensorProductOfKirillovReshetikhinTableaux.

AUTHORS:

• Travis Scrimshaw (2012-01-03): Initial version

• Travis Scrimshaw (2012-11-14): Added bijection to KR crystals

REFERENCES:

class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxBn(cartan_type, r, s)
Bases: sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeHorizonal

Kirillov-Reshetkhin tableaux 𝐵𝑛,𝑠 of type 𝐵(1)
𝑛 .

Element
alias of KRTableauxSpinElement

from_kirillov_reshetikhin_crystal(krc)
Construct an element of self from the Kirillov-Reshetikhin crystal element krc.

EXAMPLES:

sage: KR = crystals.KirillovReshetikhin(['B',3,1], 3, 3, model='KR')
sage: C = crystals.KirillovReshetikhin(['B',3,1], 3, 3, model='KN')
sage: krc = C.module_generators[1].f_string([3,2,3,1,3,3]); krc
[++-, [[2], [0], [-3]]]
sage: KR.from_kirillov_reshetikhin_crystal(krc)
[[1, 1, 2], [2, 2, -3], [-3, -3, -1]]

class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxDTwistedSpin(cartan_type, r,
s)

Bases: sage.combinat.rigged_configurations.kr_tableaux.KRTableauxRectangle

2086 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Kirillov-Reshetikhin tableaux 𝐵𝑟,𝑠 of type 𝐷(2)
𝑛 with 𝑟 = 𝑛.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D', 4, 2], 1, 1, model='KR')
sage: KRT.cardinality()
8
sage: KRC = crystals.KirillovReshetikhin(['D', 4, 2], 1, 1, model='KN')
sage: KRT.cardinality() == KRC.cardinality()
True

Element
alias of KRTableauxSpinElement

class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxRectangle(cartan_type, r, s)
Bases: sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux

Kirillov-Reshetkhin tableaux 𝐵𝑟,𝑠 whose module generator is a single 𝑟 × 𝑠 rectangle.

These are Kirillov-Reshetkhin tableaux 𝐵𝑟,𝑠 of type:

• 𝐴(1)
𝑛 for all 1 ≤ 𝑟 ≤ 𝑛,

• 𝐶(1)
𝑛 when 𝑟 = 𝑛.

from_kirillov_reshetikhin_crystal(krc)
Construct a KirillovReshetikhinTableauxElement.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR')
sage: C = crystals.KirillovReshetikhin(['A',4,1], 2, 1, model='KN')
sage: krc = C(4,3); krc
[[3], [4]]
sage: KRT.from_kirillov_reshetikhin_crystal(krc)
[[3], [4]]

class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpin(cartan_type, r, s)
Bases: sage.combinat.rigged_configurations.kr_tableaux.KRTableauxRectangle

Kirillov-Reshetikhin tableaux 𝐵𝑟,𝑠 of type 𝐷(1)
𝑛 with 𝑟 = 𝑛, 𝑛− 1.

Element
alias of KRTableauxSpinElement

class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpinElement(parent, list,
**options)

Bases: sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement

Kirillov-Reshetikhin tableau for spinors.

Here we are in the embedding 𝐵(Λ𝑛) →˓ 𝐵(2Λ𝑛), so 𝑒𝑖 and 𝑓𝑖 act by 𝑒2𝑖 and 𝑓2𝑖 respectively for all 𝑖 ̸= 0. We
do this so our columns are full width (as opposed to half width and/or uses a ± representation).

classical_weight()
Return the classical weight of self.

EXAMPLES:

5.1. Comprehensive Module List 2087

Combinatorics, Release 9.7

sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 4, 1, model='KR')
sage: KRT.module_generators[0].classical_weight()
(1/2, 1/2, 1/2, 1/2)

e(i)
Calculate the action of 𝑒𝑖 on self.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 4, 1, model='KR')
sage: KRT(-1, -4, 3, 2).e(1)
[[1], [3], [-4], [-2]]
sage: KRT(-1, -4, 3, 2).e(3)

epsilon(i)
Compute 𝜀𝑖 of self.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 4, 1, model='KR')
sage: KRT(-1, -4, 3, 2).epsilon(1)
1
sage: KRT(-1, -4, 3, 2).epsilon(3)
0

f(i)
Calculate the action of 𝑓𝑖 on self.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 4, 1, model='KR')
sage: KRT(-1, -4, 3, 2).f(1)
sage: KRT(-1, -4, 3, 2).f(3)
[[2], [4], [-3], [-1]]

left_split()
Return the image of self under the left column splitting map.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 4, 3, model='KR')
sage: elt = KRT(-3,-4,2,1,-3,-4,2,1,-2,-4,3,1); elt.pp()
1 1 1
2 2 3
-4 -4 -4
-3 -3 -2
sage: elt.left_split().pp()

1 (X) 1 1
2 2 3
-4 -4 -4
-3 -3 -2

phi(i)
Compute 𝜙𝑖 of self.

EXAMPLES:

2088 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 4, 1, model='KR')
sage: KRT(-1, -4, 3, 2).phi(1)
0
sage: KRT(-1, -4, 3, 2).phi(3)
1

to_array(rows=True)
Return a 2-dimensional array representation of this Kirillov-Reshetikhin element.

If the output is in rows, then it outputs the top row first (in the English convention) from left to right.

For example: if the reading word is [2, 1, 4, 3], so as a 2× 2 tableau:

1 3
2 4

we output [[1, 3], [2, 4]].

If the output is in columns, then it outputs the leftmost column first with the bottom element first. In other
words this parses the reading word into its columns.

Continuing with the previous example, the output would be [[2, 1], [4, 3]].

INPUT:

• rows – (Default: True) Set to True if the resulting array is by row, otherwise it is by column.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 4, 3, model='KR')
sage: elt = KRT(-3,-4,2,1,-3,-4,2,1,-2,-4,3,1)
sage: elt.to_array()
[[1, 1, 1], [2, 2, 3], [-4, -4, -4], [-3, -3, -2]]
sage: elt.to_array(False)
[[-3, -4, 2, 1], [-3, -4, 2, 1], [-2, -4, 3, 1]]

class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeBox(cartan_type, r, s)
Bases: sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeVertical

Kirillov-Reshetikhin tableaux 𝐵𝑟,𝑠 of type:

• 𝐴(2)
2𝑛 for all 𝑟 ≤ 𝑛,

• 𝐷(2)
𝑛+1 for all 𝑟 < 𝑛,

• 𝐷(3)
4 for 𝑟 = 1.

class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeFromRC(cartan_type, r, s)
Bases: sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux

Kirillov-Reshetikhin tableaux 𝐵𝑟,𝑠 constructed from rigged configurations under the bijection Φ.

Warning: The Kashiwara-Nakashima version is not implemented due to the non-trivial multiplicities of
classical components, so classical_decomposition() does not work.

Element
alias of KRTableauxTypeFromRCElement

5.1. Comprehensive Module List 2089

Combinatorics, Release 9.7

module_generators()
The module generators of self.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,3], 2, 1, model='KR')
sage: KRT.module_generators
([[1], [2]], [[1], [0]], [[1], [E]], [[E], [E]])

class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeFromRCElement(parent,
list,
**op-
tions)

Bases: sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement

A Kirillov-Reshetikhin tableau constructed from rigged configurations under the bijection Φ.

e(i)
Perform the action of 𝑒𝑖 on self.

Todo: Implement a direct action of 𝑒0 without moving to rigged configurations.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,3], 2, 1, model='KR')
sage: KRT.module_generators[0].e(0)
[[2], [E]]

epsilon(i)
Compute 𝜀𝑖 of self.

Todo: Implement a direct action of 𝜖0 without moving to KR crystals.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,3], 2, 2, model='KR')
sage: KRT.module_generators[0].epsilon(0)
6

f(i)
Perform the action of 𝑓𝑖 on self.

Todo: Implement a direct action of 𝑓0 without moving to rigged configurations.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,3], 2, 1, model='KR')
sage: KRT.module_generators[0].f(0)
sage: KRT.module_generators[3].f(0)
[[1], [0]]

phi(i)
Compute 𝜙𝑖 of self.

2090 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Todo: Compute 𝜑0 without moving to KR crystals.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,3], 2, 2, model='KR')
sage: KRT.module_generators[0].phi(0)
0

class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeHorizonal(cartan_type, r,
s)

Bases: sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux

Kirillov-Reshetikhin tableaux 𝐵𝑟,𝑠 of type:

• 𝐶(1)
𝑛 for 1 ≤ 𝑟 < 𝑛,

• 𝐴(2)†
2𝑛 for 1 ≤ 𝑟 ≤ 𝑛.

from_kirillov_reshetikhin_crystal(krc)
Construct an element of self from the Kirillov-Reshetikhin crystal element krc.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['C',4,1], 2, 3, model='KR')
sage: C = crystals.KirillovReshetikhin(['C',4,1], 2, 3, model='KN')
sage: krc = C(4,3); krc
[[3], [4]]
sage: KRT.from_kirillov_reshetikhin_crystal(krc)
[[3, -2, 1], [4, -1, 2]]

class sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeVertical(cartan_type, r,
s)

Bases: sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux

Kirillov-Reshetkihn tableaux 𝐵𝑟,𝑠 of type:

• 𝐷(1)
𝑛 for all 1 ≤ 𝑟 < 𝑛− 1,

• 𝐵(1)
𝑛 for all 1 ≤ 𝑟 < 𝑛,

• 𝐴(2)
2𝑛−1 for all 1 ≤ 𝑟 ≤ 𝑛.

from_kirillov_reshetikhin_crystal(krc)
Construct an element of self from the Kirillov-Reshetikhin crystal element krc.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KR')
sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KN')
sage: krc = C(4,3); krc
[[3], [4]]
sage: KRT.from_kirillov_reshetikhin_crystal(krc)
[[3, -2, 1], [4, -1, 2]]

class sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux(cartan_type,
r, s)

Bases: sage.combinat.crystals.tensor_product.CrystalOfWords

Kirillov-Reshetikhin tableaux.

5.1. Comprehensive Module List 2091

Combinatorics, Release 9.7

Kirillov-Reshetikhin tableaux are rectangular tableaux with 𝑟 rows and 𝑠 columns that naturally arise under the
bijection between rigged configurations and tableaux [RigConBijection]. They are in bijection with the elements
of the Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠 under the (inverse) filling map.

Whenever 𝐵𝑟,𝑠 ∼= 𝐵(𝑠Λ𝑟) as a classical crystal (which is the case for 𝐵𝑟,𝑠 in type 𝐴(1)
𝑛 , 𝐵𝑛,𝑠 in type 𝐶(1)

𝑛 and
𝐷

(2)
𝑛+1, 𝐵𝑛,𝑠 and 𝐵𝑛−1,𝑠 in type 𝐷(1)

𝑛) then the filling map is trivial.

For 𝐵𝑟,𝑠 in:

• type 𝐷(1)
𝑛 when 𝑟 ≤ 𝑛− 2,

• type 𝐵(1)
𝑛 when 𝑟 < 𝑛,

• type 𝐴(2)
2𝑛−1 for all 𝑟,

the filling map is defined in [OSS2011].

For the spinor cases in type 𝐷(1)
𝑛 , the crystal 𝐵𝑘,𝑠 where 𝑘 = 𝑛 − 1, 𝑛, is isomorphic as a classical crystal to

𝐵(𝑠Λ𝑘), and here we consider the Kirillov-Reshetikhin tableaux as living in𝐵(2𝑠Λ𝑘) under the natural doubling
map. In this case, the crystal operators 𝑒𝑖 and 𝑓𝑖 act as 𝑒2𝑖 and 𝑓2𝑖 respectively. See [BijectionDn].

For the spinor case in type 𝐵(1)
𝑛 , the crystal 𝐵𝑛,𝑠, we consider the images under the natural doubling map into

𝐵𝑛,2𝑠. The classical components of this crystal are now given by removing 2 × 2 boxes. The filling map is the
same as below (see the non-spin type 𝐶(1)

𝑛).

For 𝐵𝑟,𝑠 in:

• type 𝐶(1)
𝑛 when 𝑟 < 𝑛,

• type 𝐴(2)†
2𝑛 for all 𝑟,

the filling map is given as follows. Suppose we are considering the (classically) highest weight element in the
classical component 𝐵(𝜆). Then we fill it in with the horizontal dominoes [̄𝚤, 𝑖] in the 𝑖-th row from the top (in
English notation) and reordering the columns so that they are increasing. Recall from above that𝐵𝑛,𝑠 ∼= 𝐵(𝑠Λ𝑛)

in type 𝐶(1)
𝑛 .

For 𝐵𝑟,𝑠 in:

• type 𝐴(2)
2𝑛 for all 𝑟,

• type 𝐷(2)
𝑛+1 when 𝑟 < 𝑛,

• type 𝐷(3)
4 when 𝑟 = 1,

the filling map is the same as given in [OSS2011] except for the rightmost column which is given by the column
[1, 2, . . . , 𝑘, ∅, . . . ∅] where 𝑘 = (𝑟 + 𝑥− 1)/2 in Step 3 of [OSS2011].

For the spinor case in type 𝐷(2)
𝑛+1, the crystal 𝐵𝑛,𝑠, we define the filling map in the same way as in type 𝐷(1)

𝑛 .

Note: The filling map and classical decompositions in non-spinor cases can be classified by how the special
node 0 connects with the corresponding classical diagram.

The classical crystal structure is given by the usual Kashiwara-Nakashima tableaux rules. That is to embed this
into 𝐵(Λ1)⊗𝑛𝑠 by using the reading word and then applying the classical crystal operator. The affine crystal
structure is given by converting to the corresponding KR crystal element, performing the affine crystal operator,
and pulling back to a KR tableau.

For more information about the bijection between rigged configurations and tensor products of Kirillov-
Reshetikhin tableaux, see TensorProductOfKirillovReshetikhinTableaux.

2092 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Note: The tableaux for all non-simply-laced types are provably correct if the bijection with rigged
configurations holds. Therefore this is currently only proven for 𝐵𝑟,1 or 𝐵1,𝑠 and in general for types 𝐴(1)

𝑛

and 𝐷(1)
𝑛 .

INPUT:

• cartan_type – the Cartan type

• r – the Dynkin diagram index (typically the number of rows)

• s – the number of columns

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR')
sage: elt = KRT(4, 3); elt
[[3], [4]]

sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 2, 1, model='KR')
sage: elt = KRT(-1, 1); elt
[[1], [-1]]

We can create highest weight crystals from a given shape or weight:

sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KR')
sage: KRT.module_generator(shape=[1,1])
[[1, 1], [2, -1]]
sage: KRT.module_generator(column_shape=[2])
[[1, 1], [2, -1]]
sage: WS = RootSystem(['D',4,1]).weight_space()
sage: KRT.module_generator(weight=WS.sum_of_terms([[0,-2],[2,1]]))
[[1, 1], [2, -1]]
sage: WSC = RootSystem(['D',4]).weight_space()
sage: KRT.module_generator(classical_weight=WSC.fundamental_weight(2))
[[1, 1], [2, -1]]

We can go between KashiwaraNakashimaTableaux() and KirillovReshetikhinTableaux elements:

sage: KRCrys = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KN')
sage: KRTab = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KR')
sage: elt = KRCrys(3, 2); elt
[[2], [3]]
sage: k = KRTab(elt); k
[[2, 1], [3, -1]]
sage: KRCrys(k)
[[2], [3]]

We check that the classical weights in the classical decompositions agree in a few different type:

sage: KRCrys = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KN')
sage: KRTab = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KR')
sage: all(t.classical_weight() == KRCrys(t).classical_weight() for t in KRTab)
True
sage: KRCrys = crystals.KirillovReshetikhin(['B', 3, 1], 2, 2, model='KN')

(continues on next page)

5.1. Comprehensive Module List 2093

Combinatorics, Release 9.7

(continued from previous page)

sage: KRTab = crystals.KirillovReshetikhin(['B', 3, 1], 2, 2, model='KR')
sage: all(t.classical_weight() == KRCrys(t).classical_weight() for t in KRTab)
True
sage: KRCrys = crystals.KirillovReshetikhin(['C', 3, 1], 2, 2, model='KN')
sage: KRTab = crystals.KirillovReshetikhin(['C', 3, 1], 2, 2, model='KR')
sage: all(t.classical_weight() == KRCrys(t).classical_weight() for t in KRTab)
True
sage: KRCrys = crystals.KirillovReshetikhin(['D', 4, 2], 2, 2, model='KN')
sage: KRTab = crystals.KirillovReshetikhin(['D', 4, 2], 2, 2, model='KR')
sage: all(t.classical_weight() == KRCrys(t).classical_weight() for t in KRTab)
True
sage: KRCrys = crystals.KirillovReshetikhin(['A', 4, 2], 2, 2, model='KN')
sage: KRTab = crystals.KirillovReshetikhin(['A', 4, 2], 2, 2, model='KR')
sage: all(t.classical_weight() == KRCrys(t).classical_weight() for t in KRTab)
True

Element
alias of KirillovReshetikhinTableauxElement

classical_decomposition()
Return the classical crystal decomposition of self.

EXAMPLES:

sage: crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KR').classical_
→˓decomposition()
The crystal of tableaux of type ['D', 4] and shape(s) [[], [1, 1], [2, 2]]

from_kirillov_reshetikhin_crystal(krc)
Construct an element of self from the Kirillov-Reshetikhin crystal element krc.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR')
sage: C = crystals.KirillovReshetikhin(['A',4,1], 2, 1, model='KN')
sage: krc = C(4,3); krc
[[3], [4]]
sage: KRT.from_kirillov_reshetikhin_crystal(krc)
[[3], [4]]

kirillov_reshetikhin_crystal()
Return the corresponding KR crystal in the Kashiwara-Nakashima model.

EXAMPLES:

sage: crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR').kirillov_
→˓reshetikhin_crystal()
Kirillov-Reshetikhin crystal of type ['A', 4, 1] with (r,s)=(2,1)

module_generator(i=None, **options)
Return the specified module generator.

INPUT:

• i – the index of the module generator

We can also get a module generator by using one of the following optional arguments:

2094 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• shape – the associated shape

• column_shape – the shape given as columns (a column of length 𝑘 correspond to a classical weight
𝜔𝑘)

• weight – the weight

• classical_weight – the classical weight

If no arguments are specified, then return the unique module generator of classical weight 𝑠Λ𝑟.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D', 4, 1], 2, 2, model='KR')
sage: KRT.module_generator(1)
[[1, 1], [2, -1]]
sage: KRT.module_generator(shape=[1,1])
[[1, 1], [2, -1]]
sage: KRT.module_generator(column_shape=[2])
[[1, 1], [2, -1]]
sage: WS = RootSystem(['D',4,1]).weight_space()
sage: KRT.module_generator(weight=WS.sum_of_terms([[0,-2],[2,1]]))
[[1, 1], [2, -1]]
sage: WSC = RootSystem(['D',4]).weight_space()
sage: KRT.module_generator(classical_weight=WSC.fundamental_weight(2))
[[1, 1], [2, -1]]
sage: KRT.module_generator()
[[1, 1], [2, 2]]

sage: KRT = crystals.KirillovReshetikhin(['A', 3, 1], 2, 2, model='KR')
sage: KRT.module_generator()
[[1, 1], [2, 2]]

r()
Return the value 𝑟 for this tableaux class which corresponds to the number of rows.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR')
sage: KRT.r()
2

s()
Return the value 𝑠 for this tableaux class which corresponds to the number of columns.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 1, model='KR')
sage: KRT.s()
1

tensor(*crystals, **options)
Return the tensor product of self with crystals.

If crystals is a list of (a tensor product of) KR tableaux, this returns a
TensorProductOfKirillovReshetikhinTableaux.

EXAMPLES:

5.1. Comprehensive Module List 2095

Combinatorics, Release 9.7

sage: K = crystals.KirillovReshetikhin(['A', 3, 1], 2, 2, model='KR')
sage: TP = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 3, 1], [[1,
→˓3],[3,1]])
sage: K.tensor(TP, K)
Tensor product of Kirillov-Reshetikhin tableaux of type ['A', 3, 1]
and factor(s) ((2, 2), (1, 3), (3, 1), (2, 2))

sage: C = crystals.KirillovReshetikhin(['A',3,1], 3, 1, model='KN')
sage: K.tensor(K, C)
Full tensor product of the crystals
[Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and shape (2, 2),
Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and shape (2, 2),
Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(3,1)]

class sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement(parent,
list,
**op-
tions)

Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement

A Kirillov-Reshetikhin tableau.

For more information, see KirillovReshetikhinTableaux and TensorProductOfKirillovReshetikhinTableaux.

classical_weight()
Return the classical weight of self.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR')
sage: elt = KRT(3,2,-1,1); elt
[[2, 1], [3, -1]]
sage: elt.classical_weight()
(0, 1, 1, 0)

e(i)
Perform the action of 𝑒𝑖 on self.

Todo: Implement a direct action of 𝑒0 without moving to KR crystals.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR')
sage: KRT.module_generators[0].e(0)
[[-2, 1], [-1, -1]]

epsilon(i)
Compute 𝜀𝑖 of self.

Todo: Implement a direct action of 𝜀0 without moving to KR crystals.

EXAMPLES:

2096 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR')
sage: KRT.module_generators[0].epsilon(0)
2

f(i)
Perform the action of 𝑓𝑖 on self.

Todo: Implement a direct action of 𝑓0 without moving to KR crystals.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR')
sage: KRT.module_generators[0].f(0)
[[1, 1], [2, -1]]

left_split()
Return the image of self under the left column splitting map.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KR')
sage: mg = KRT.module_generators[1]; mg.pp()
1 -2 1
2 -1 2

sage: ls = mg.left_split(); ls.pp()
1 (X) -2 1
2 -1 2

sage: ls.parent()
Tensor product of Kirillov-Reshetikhin tableaux of type ['D', 4, 1] and␣
→˓factor(s) ((2, 1), (2, 2))

phi(i)
Compute 𝜙𝑖 of self.

Todo: Compute 𝜙0 without moving to KR crystals.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR')
sage: KRT.module_generators[0].phi(0)
2

pp()
Pretty print self.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 2, model='KR')
sage: elt = KRT(2, 1, 4, 3); elt
[[1, 3], [2, 4]]
sage: elt.pp()
1 3
2 4

5.1. Comprehensive Module List 2097

Combinatorics, Release 9.7

right_split()
Return the image of self under the right column splitting map.

Let * denote the Lusztig involution, and ls as the left splitting map. The right splitting map is
defined as rs := * ∘ ls ∘ *.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KR')
sage: mg = KRT.module_generators[1]; mg.pp()
1 -2 1
2 -1 2

sage: ls = mg.right_split(); ls.pp()
-2 1 (X) 1
-1 2 2
sage: ls.parent()
Tensor product of Kirillov-Reshetikhin tableaux of type ['D', 4, 1] and␣
→˓factor(s) ((2, 2), (2, 1))

to_array(rows=True)
Return a 2-dimensional array representation of this Kirillov-Reshetikhin element.

If the output is in rows, then it outputs the top row first (in the English convention) from left to right.

For example: if the reading word is [2, 1, 4, 3], so as a 2× 2 tableau:

1 3
2 4

we output [[1, 3], [2, 4]].

If the output is in columns, then it outputs the leftmost column first with the bottom element first. In other
words this parses the reading word into its columns.

Continuing with the previous example, the output would be [[2, 1], [4, 3]].

INPUT:

• rows – (Default: True) Set to True if the resulting array is by row, otherwise it is by column.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 2, model='KR')
sage: elt = KRT(2, 1, 4, 3)
sage: elt.to_array()
[[1, 3], [2, 4]]
sage: elt.to_array(False)
[[2, 1], [4, 3]]

to_classical_highest_weight(index_set=None)
Return the classical highest weight element corresponding to self.

INPUT:

• index_set – (Default: None) Return the highest weight with respect to the index set. If None is
passed in, then this uses the classical index set.

OUTPUT:

A pair [H, f_str] where H is the highest weight element and f_str is a list of 𝑎𝑖 of 𝑓𝑎𝑖 needed to reach
H.

2098 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: KRTab = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR')
sage: elt = KRTab(3,2,-1,1); elt
[[2, 1], [3, -1]]
sage: elt.to_classical_highest_weight()
[[[1, 1], [2, -1]], [1, 2]]

to_kirillov_reshetikhin_crystal()
Construct a KashiwaraNakashimaTableaux() element from self.

We construct the Kirillov-Reshetikhin crystal element as follows:

1. Determine the shape 𝜆 of the KR crystal from the weight.

2. Determine a path 𝑒𝑖1𝑒𝑖2 · · · 𝑒𝑖𝑘 to the highest weight.

3. Apply 𝑓𝑖𝑘 · · · 𝑓𝑖2𝑓𝑖1 to a highest weight KR crystal of shape 𝜆.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR')
sage: elt = KRT(3,2,-1,1); elt
[[2, 1], [3, -1]]
sage: elt.to_kirillov_reshetikhin_crystal()
[[2], [3]]

to_tableau()
Return a Tableau object of self.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['A', 4, 1], 2, 2, model='KR')
sage: elt = KRT(2, 1, 4, 3); elt
[[1, 3], [2, 4]]
sage: t = elt.to_tableau(); t
[[1, 3], [2, 4]]
sage: type(t)
<class 'sage.combinat.tableau.Tableaux_all_with_category.element_class'>

weight()
Return the weight of self.

EXAMPLES:

sage: KR = crystals.KirillovReshetikhin(['D',4,1], 2, 2, model='KR')
sage: KR.module_generators[1].weight()
-2*Lambda[0] + Lambda[2]

5.1. Comprehensive Module List 2099

Combinatorics, Release 9.7

5.1.208 Crystal of Rigged Configurations

AUTHORS:

• Travis Scrimshaw (2010-09-26): Initial version

We only consider the highest weight crystal structure, not the Kirillov-Reshetikhin structure, and we extend this to
symmetrizable types.

class sage.combinat.rigged_configurations.rc_crystal.CrystalOfNonSimplyLacedRC(vct, wt,
WLR)

Bases: sage.combinat.rigged_configurations.rc_crystal.CrystalOfRiggedConfigurations

Highest weight crystal of rigged configurations in non-simply-laced type.

Element
alias of sage.combinat.rigged_configurations.rigged_configuration_element.
RCHWNonSimplyLacedElement

from_virtual(vrc)
Convert vrc in the virtual crystal into a rigged configuration of the original Cartan type.

INPUT:

• vrc – a virtual rigged configuration

EXAMPLES:

sage: La = RootSystem(['C', 3]).weight_lattice().fundamental_weights()
sage: vct = CartanType(['C', 3]).as_folding()
sage: RC = crystals.RiggedConfigurations(vct, La[2])
sage: elt = RC(partition_list=[[0], [1], [1]])
sage: elt == RC.from_virtual(RC.to_virtual(elt))
True

to_virtual(rc)
Convert rc into a rigged configuration in the virtual crystal.

INPUT:

• rc – a rigged configuration element

EXAMPLES:

sage: La = RootSystem(['C', 3]).weight_lattice().fundamental_weights()
sage: vct = CartanType(['C', 3]).as_folding()
sage: RC = crystals.RiggedConfigurations(vct, La[2])
sage: elt = RC(partition_list=[[], [1], [1]]); elt

(/)

0[]0

-1[]-1

sage: RC.to_virtual(elt)

(/)

(continues on next page)

2100 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

0[]0

-2[][]-2

0[]0

(/)

virtual()
Return the corresponding virtual crystal.

EXAMPLES:

sage: La = RootSystem(['C', 2, 1]).weight_lattice().fundamental_weights()
sage: vct = CartanType(['C', 2, 1]).as_folding()
sage: RC = crystals.RiggedConfigurations(vct, La[0])
sage: RC
Crystal of rigged configurations of type ['C', 2, 1] and weight Lambda[0]
sage: RC.virtual
Crystal of rigged configurations of type ['A', 3, 1] and weight 2*Lambda[0]

class sage.combinat.rigged_configurations.rc_crystal.CrystalOfRiggedConfigurations(wt,
WLR)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

A highest weight crystal of rigged configurations.

The crystal structure for finite simply-laced types is given in [CrysStructSchilling06]. These were then shown to
be the crystal operators in all finite types in [SS2015], all simply-laced and a large class of foldings of simply-
laced types in [SS2015II], and all symmetrizable types (uniformly) in [SS2017].

INPUT:

• cartan_type – (optional) a Cartan type or a Cartan type given as a folding

• wt – the highest weight vector in the weight lattice

EXAMPLES:

For simplicity, we display the rigged configurations horizontally:

sage: RiggedConfigurations.options.display='horizontal'

We start with a simply-laced finite type:

sage: La = RootSystem(['A', 2]).weight_lattice().fundamental_weights()
sage: RC = crystals.RiggedConfigurations(La[1] + La[2])
sage: mg = RC.highest_weight_vector()
sage: mg.f_string([1,2])
0[]0 0[]-1
sage: mg.f_string([1,2,2])
0[]0 -2[][]-2
sage: mg.f_string([1,2,2,2])
sage: mg.f_string([2,1,1,2])
-1[][]-1 -1[][]-1

(continues on next page)

5.1. Comprehensive Module List 2101

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

sage: RC.cardinality()
8
sage: T = crystals.Tableaux(['A', 2], shape=[2,1])
sage: RC.digraph().is_isomorphic(T.digraph(), edge_labels=True)
True

We construct a non-simply-laced affine type:

sage: La = RootSystem(['C', 3]).weight_lattice().fundamental_weights()
sage: RC = crystals.RiggedConfigurations(La[2])
sage: mg = RC.highest_weight_vector()
sage: mg.f_string([2,3])
(/) 1[]1 -1[]-1
sage: T = crystals.Tableaux(['C', 3], shape=[1,1])
sage: RC.digraph().is_isomorphic(T.digraph(), edge_labels=True)
True

We can construct rigged configurations using a diagram folding of a simply-laced type. This yields an equivalent
but distinct crystal:

sage: vct = CartanType(['C', 3]).as_folding()
sage: RC = crystals.RiggedConfigurations(vct, La[2])
sage: mg = RC.highest_weight_vector()
sage: mg.f_string([2,3])
(/) 0[]0 -1[]-1
sage: T = crystals.Tableaux(['C', 3], shape=[1,1])
sage: RC.digraph().is_isomorphic(T.digraph(), edge_labels=True)
True

We reset the global options:

sage: RiggedConfigurations.options._reset()

REFERENCES:

• [SS2015]

• [SS2015II]

• [SS2017]

Element
alias of sage.combinat.rigged_configurations.rigged_configuration_element.
RCHighestWeightElement

options(*get_value, **set_value)
Sets and displays the options for rigged configurations. If no parameters are set, then the function returns
a copy of the options dictionary.

The options to partitions can be accessed as the method RiggedConfigurations.options of
RiggedConfigurations.

OPTIONS:

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

2102 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

– French – use the French convention

• display – (default: vertical) Specifies how rigged configurations should be printed

– horizontal – displayed horizontally

– vertical – displayed vertically

• element_ascii_art – (default: True) display using the repr option element_ascii_art

• half_width_boxes_type_B – (default: True) display the last rigged partition in affine type B as
half width boxes

• notation – alternative name for convention

EXAMPLES:

sage: RC = RiggedConfigurations(['A',3,1], [[2,2],[1,1],[1,1]])
sage: elt = RC(partition_list=[[3,1], [3], [1]])
sage: elt

-3[][][]-3
-1[]-1

1[][][]1

-1[]-1

sage: RiggedConfigurations.options(display="horizontal", convention="french")
sage: elt
-1[]-1 1[][][]1 -1[]-1
-3[][][]-3

Changing the convention for rigged configurations also changes the convention option for tableaux and
vice versa:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T.pp()
4 5
1 2 3

sage: Tableaux.options.convention="english"
sage: elt
-3[][][]-3 1[][][]1 -1[]-1
-1[]-1
sage: T.pp()
1 2 3
4 5

sage: RiggedConfigurations.options._reset()

See GlobalOptions for more features of these options.

weight_lattice_realization()
Return the weight lattice realization used to express the weights of elements in self.

EXAMPLES:

5.1. Comprehensive Module List 2103

../../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

sage: La = RootSystem(['A', 2, 1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: RC = crystals.RiggedConfigurations(La[0])
sage: RC.weight_lattice_realization()
Extended weight lattice of the Root system of type ['A', 2, 1]

5.1.209 Rigged Configurations of ℬ(∞)

AUTHORS:

• Travis Scrimshaw (2013-04-16): Initial version

class sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfNonSimplyLacedRC(vct)
Bases: sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfRiggedConfigurations

Rigged configurations for ℬ(∞) in non-simply-laced types.

class Element(parent, rigged_partitions=[], **options)
Bases: sage.combinat.rigged_configurations.rigged_configuration_element.
RCNonSimplyLacedElement

A rigged configuration in ℬ(∞) in non-simply-laced types.

weight()
Return the weight of self.

EXAMPLES:

sage: vct = CartanType(['C', 3]).as_folding()
sage: RC = crystals.infinity.RiggedConfigurations(vct)
sage: elt = RC(partition_list=[[1],[1,1],[1]], rigging_list=[[0],[-1,-1],
→˓[0]])
sage: elt.weight()
(-1, -1, 0)

sage: vct = CartanType(['F', 4, 1]).as_folding()
sage: RC = crystals.infinity.RiggedConfigurations(vct)
sage: mg = RC.highest_weight_vector()
sage: elt = mg.f_string([1,0,3,4,2,2]); ascii_art(elt)
-1[]-1 0[]1 -2[][]-2 0[]1 -1[]-1
sage: wt = elt.weight(); wt
-Lambda[0] + Lambda[1] - 2*Lambda[2] + 3*Lambda[3] - Lambda[4] - delta
sage: al = RC.weight_lattice_realization().simple_roots()
sage: wt == -(al[0] + al[1] + 2*al[2] + al[3] + al[4])
True

from_virtual(vrc)
Convert vrc in the virtual crystal into a rigged configuration of the original Cartan type.

INPUT:

• vrc – a virtual rigged configuration

EXAMPLES:

2104 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: vct = CartanType(['C', 2]).as_folding()
sage: RC = crystals.infinity.RiggedConfigurations(vct)
sage: elt = RC(partition_list=[[3],[2]], rigging_list=[[-2],[0]])
sage: vrc_elt = RC.to_virtual(elt)
sage: ret = RC.from_virtual(vrc_elt); ret

-3[][][]-2

-1[][]0

sage: ret == elt
True

to_virtual(rc)
Convert rc into a rigged configuration in the virtual crystal.

INPUT:

• rc – a rigged configuration element

EXAMPLES:

sage: vct = CartanType(['C', 2]).as_folding()
sage: RC = crystals.infinity.RiggedConfigurations(vct)
sage: mg = RC.highest_weight_vector()
sage: elt = mg.f_string([1,2,2,1,1]); elt

-3[][][]-2

-1[][]0

sage: velt = RC.to_virtual(elt); velt

-3[][][]-2

-2[][][][]0

-3[][][]-2

sage: velt.parent()
The infinity crystal of rigged configurations of type ['A', 3]

virtual()
Return the corresponding virtual crystal.

EXAMPLES:

sage: vct = CartanType(['C', 3]).as_folding()
sage: RC = crystals.infinity.RiggedConfigurations(vct)
sage: RC
The infinity crystal of rigged configurations of type ['C', 3]
sage: RC.virtual
The infinity crystal of rigged configurations of type ['A', 5]

class sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfRiggedConfigurations(cartan_type)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.

5.1. Comprehensive Module List 2105

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

parent.Parent

Rigged configuration model for ℬ(∞).

The crystal is generated by the empty rigged configuration with the same crystal structure given by the highest
weight model except we remove the condition that the resulting rigged configuration needs to be valid when
applying 𝑓𝑎.

INPUT:

• cartan_type – a Cartan type

EXAMPLES:

For simplicity, we display all of the rigged configurations horizontally:

sage: RiggedConfigurations.options(display='horizontal')

We begin with a simply-laced finite type:

sage: RC = crystals.infinity.RiggedConfigurations(['A', 3]); RC
The infinity crystal of rigged configurations of type ['A', 3]

sage: RC.options(display='horizontal')

sage: mg = RC.highest_weight_vector(); mg
(/) (/) (/)
sage: elt = mg.f_string([2,1,3,2]); elt
0[]0 -2[]-1 0[]0

-2[]-1
sage: elt.e(1)
sage: elt.e(3)
sage: mg.f_string([2,1,3,2]).e(2)
-1[]-1 0[]1 -1[]-1
sage: mg.f_string([2,3,2,1,3,2])
0[]0 -3[][]-1 -1[][]-1

-2[]-1

Next we consider a non-simply-laced finite type:

sage: RC = crystals.infinity.RiggedConfigurations(['C', 3])
sage: mg = RC.highest_weight_vector()
sage: mg.f_string([2,1,3,2])
0[]0 -1[]0 0[]0

-1[]-1
sage: mg.f_string([2,3,2,1,3,2])
0[]-1 -1[][]-1 -1[][]0

-1[]0

We can construct rigged configurations using a diagram folding of a simply-laced type. This yields an equivalent
but distinct crystal:

sage: vct = CartanType(['C', 3]).as_folding()
sage: VRC = crystals.infinity.RiggedConfigurations(vct)
sage: mg = VRC.highest_weight_vector()
sage: mg.f_string([2,1,3,2])
0[]0 -2[]-1 0[]0

(continues on next page)

2106 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

-2[]-1
sage: mg.f_string([2,3,2,1,3,2])
-1[]-1 -2[][][]-1 -1[][]0

sage: G = RC.subcrystal(max_depth=5).digraph()
sage: VG = VRC.subcrystal(max_depth=5).digraph()
sage: G.is_isomorphic(VG, edge_labels=True)
True

We can also construct 𝐵(∞) using rigged configurations in affine types:

sage: RC = crystals.infinity.RiggedConfigurations(['A', 3, 1])
sage: mg = RC.highest_weight_vector()
sage: mg.f_string([0,1,2,3,0,1,3])
-1[]0 -1[]-1 1[]1 -1[][]-1
-1[]0 -1[]-1

sage: RC = crystals.infinity.RiggedConfigurations(['C', 3, 1])
sage: mg = RC.highest_weight_vector()
sage: mg.f_string([1,2,3,0,1,2,3,3,0])
-2[][]-1 0[]1 0[]0 -4[][][]-2

0[]0 0[]-1

sage: RC = crystals.infinity.RiggedConfigurations(['A', 6, 2])
sage: mg = RC.highest_weight_vector()
sage: mg.f_string([1,2,3,0,1,2,3,3,0])
0[]-1 0[]1 0[]0 -4[][][]-2
0[]-1 0[]1 0[]-1

We reset the global options:

sage: RiggedConfigurations.options._reset()

class Element(parent, rigged_partitions=[], **options)
Bases: sage.combinat.rigged_configurations.rigged_configuration_element.
RiggedConfigurationElement

A rigged configuration in ℬ(∞) in simply-laced types.

weight()
Return the weight of self.

EXAMPLES:

sage: RC = crystals.infinity.RiggedConfigurations(['A', 3, 1])
sage: elt = RC(partition_list=[[1,1]]*4, rigging_list=[[1,1], [0,0], [0,0],␣
→˓[-1,-1]])
sage: elt.weight()
-2*delta

options(*get_value, **set_value)
Sets and displays the options for rigged configurations. If no parameters are set, then the function returns
a copy of the options dictionary.

The options to partitions can be accessed as the method RiggedConfigurations.options of

5.1. Comprehensive Module List 2107

Combinatorics, Release 9.7

RiggedConfigurations.

OPTIONS:

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• display – (default: vertical) Specifies how rigged configurations should be printed

– horizontal – displayed horizontally

– vertical – displayed vertically

• element_ascii_art – (default: True) display using the repr option element_ascii_art

• half_width_boxes_type_B – (default: True) display the last rigged partition in affine type B as
half width boxes

• notation – alternative name for convention

EXAMPLES:

sage: RC = RiggedConfigurations(['A',3,1], [[2,2],[1,1],[1,1]])
sage: elt = RC(partition_list=[[3,1], [3], [1]])
sage: elt

-3[][][]-3
-1[]-1

1[][][]1

-1[]-1

sage: RiggedConfigurations.options(display="horizontal", convention="french")
sage: elt
-1[]-1 1[][][]1 -1[]-1
-3[][][]-3

Changing the convention for rigged configurations also changes the convention option for tableaux and
vice versa:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T.pp()
4 5
1 2 3

sage: Tableaux.options.convention="english"
sage: elt
-3[][][]-3 1[][][]1 -1[]-1
-1[]-1
sage: T.pp()
1 2 3
4 5

sage: RiggedConfigurations.options._reset()

See GlobalOptions for more features of these options.

2108 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

weight_lattice_realization()
Return the weight lattice realization used to express the weights of elements in self.

EXAMPLES:

sage: RC = crystals.infinity.RiggedConfigurations(['A', 2, 1])
sage: RC.weight_lattice_realization()
Extended weight lattice of the Root system of type ['A', 2, 1]

5.1.210 Rigged Configuration Elements

A rigged configuration element is a sequence of RiggedPartition objects.

AUTHORS:

• Travis Scrimshaw (2010-09-26): Initial version

• Travis Scrimshaw (2012-10-25): Added virtual rigged configurations

class sage.combinat.rigged_configurations.rigged_configuration_element.KRRCNonSimplyLacedElement(parent,
rigged_partitions=[],
**op-
tions)

Bases: sage.combinat.rigged_configurations.rigged_configuration_element.
KRRiggedConfigurationElement, sage.combinat.rigged_configurations.
rigged_configuration_element.RCNonSimplyLacedElement

𝑈 ′𝑞(g) rigged configurations in non-simply-laced types.

cc()
Compute the cocharge statistic.

Computes the cocharge statistic [OSS03] on this rigged configuration (𝜈, 𝐽) by computing the cocharge as
a virtual rigged configuration (𝜈, 𝐽) and then using the identity 𝑐𝑐(𝜈, 𝐽) = 𝛾0𝑐𝑐(𝜈, 𝐽).

EXAMPLES:

sage: RC = RiggedConfigurations(['C', 3, 1], [[2,1], [1,1]])
sage: RC(partition_list=[[1,1],[2,1],[1,1]]).cocharge()
1

cocharge()
Compute the cocharge statistic.

Computes the cocharge statistic [OSS03] on this rigged configuration (𝜈, 𝐽) by computing the cocharge as
a virtual rigged configuration (𝜈, 𝐽) and then using the identity 𝑐𝑐(𝜈, 𝐽) = 𝛾0𝑐𝑐(𝜈, 𝐽).

EXAMPLES:

sage: RC = RiggedConfigurations(['C', 3, 1], [[2,1], [1,1]])
sage: RC(partition_list=[[1,1],[2,1],[1,1]]).cocharge()
1

e(a)
Return the action of 𝑒𝑎 on self.

This works by lifting into the virtual configuration, then applying

𝑒𝑣𝑎 =
∏︁
𝑗∈𝜄(𝑎)

𝑒
𝛾𝑗
𝑗

5.1. Comprehensive Module List 2109

Combinatorics, Release 9.7

and pulling back.

EXAMPLES:

sage: RC = RiggedConfigurations(['A',6,2], [[1,1]]*7)
sage: elt = RC(partition_list=[[1]*5,[2,1,1],[3,2]])
sage: elt.e(3)

0[]0
0[]0
0[]0
0[]0
0[]0

0[][]0
1[]1
1[]1

1[][]1
1[]0

f(a)
Return the action of 𝑓𝑎 on self.

This works by lifting into the virtual configuration, then applying

𝑓𝑣𝑎 =
∏︁
𝑗∈𝜄(𝑎)

𝑓
𝛾𝑗
𝑗

and pulling back.

EXAMPLES:

sage: RC = RiggedConfigurations(['A',6,2], [[1,1]]*7)
sage: elt = RC(partition_list=[[1]*5,[2,1,1],[2,1]], rigging_list=[[0]*5,[0,1,
→˓1],[1,0]])
sage: elt.f(3)

0[]0
0[]0
0[]0
0[]0
0[]0

1[][]1
1[]1
1[]1

-1[][][]-1
0[][]0

class sage.combinat.rigged_configurations.rigged_configuration_element.KRRCSimplyLacedElement(parent,
rigged_partitions=[],
**op-
tions)

Bases: sage.combinat.rigged_configurations.rigged_configuration_element.
KRRiggedConfigurationElement

2110 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

𝑈 ′𝑞(g) rigged configurations in simply-laced types.

cc()
Compute the cocharge statistic of self.

Computes the cocharge statistic [CrysStructSchilling06] on this rigged configuration (𝜈, 𝐽). The cocharge
statistic is defined as:

𝑐𝑐(𝜈, 𝐽) =
1

2

∑︁
𝑎,𝑏∈𝐼0

∑︁
𝑗,𝑘>0

(𝛼𝑎 | 𝛼𝑏) min(𝑗, 𝑘)𝑚
(𝑎)
𝑗 𝑚

(𝑏)
𝑘 +

∑︁
𝑎∈𝐼

∑︁
𝑖>0

⃒⃒⃒
𝐽 (𝑎,𝑖)

⃒⃒⃒
.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [2,1], [1,1]])
sage: RC(partition_list=[[1], [1], []]).cocharge()
1

charge()
Compute the charge statistic of self.

Let 𝐵 denote a set of rigged configurations. The charge 𝑐 of a rigged configuration 𝑏 is computed as

𝑐(𝑏) = max(𝑐𝑐(𝑏) | 𝑏 ∈ 𝐵)− 𝑐𝑐(𝑏).

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [2,1], [1,1]])
sage: RC(partition_list=[[],[],[]]).charge()
2
sage: RC(partition_list=[[1], [1], []]).charge()
1

cocharge()
Compute the cocharge statistic of self.

Computes the cocharge statistic [CrysStructSchilling06] on this rigged configuration (𝜈, 𝐽). The cocharge
statistic is defined as:

𝑐𝑐(𝜈, 𝐽) =
1

2

∑︁
𝑎,𝑏∈𝐼0

∑︁
𝑗,𝑘>0

(𝛼𝑎 | 𝛼𝑏) min(𝑗, 𝑘)𝑚
(𝑎)
𝑗 𝑚

(𝑏)
𝑘 +

∑︁
𝑎∈𝐼

∑︁
𝑖>0

⃒⃒⃒
𝐽 (𝑎,𝑖)

⃒⃒⃒
.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [2,1], [1,1]])
sage: RC(partition_list=[[1], [1], []]).cocharge()
1

class sage.combinat.rigged_configurations.rigged_configuration_element.KRRCTypeA2DualElement(parent,
rigged_partitions=[],
**op-
tions)

Bases: sage.combinat.rigged_configurations.rigged_configuration_element.
KRRCNonSimplyLacedElement

𝑈 ′𝑞(g) rigged configurations in type 𝐴(2)†
2𝑛 .

cc()
Compute the cocharge statistic.

5.1. Comprehensive Module List 2111

Combinatorics, Release 9.7

Computes the cocharge statistic [RigConBijection] on this rigged configuration (𝜈, 𝐽). The cocharge statis-
tic is computed as:

𝑐𝑐(𝜈, 𝐽) =
1

2

∑︁
𝑎∈𝐼0

∑︁
𝑖>0

𝑡∨𝑎𝑚
(𝑎)
𝑖

⎛⎝∑︁
𝑗>0

min(𝑖, 𝑗)𝐿
(𝑎)
𝑗 − 𝑝

(𝑎)
𝑖

⎞⎠+
∑︁
𝑎∈𝐼

𝑡∨𝑎
∑︁
𝑖>0

⃒⃒⃒
𝐽 (𝑎,𝑖)

⃒⃒⃒
.

EXAMPLES:

sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[1,1],[2,2]])
sage: sc = RC.cartan_type().as_folding().scaling_factors()
sage: all(mg.cocharge() * sc[0] == mg.to_virtual_configuration().cocharge()
....: for mg in RC.module_generators)
True

cocharge()
Compute the cocharge statistic.

Computes the cocharge statistic [RigConBijection] on this rigged configuration (𝜈, 𝐽). The cocharge statis-
tic is computed as:

𝑐𝑐(𝜈, 𝐽) =
1

2

∑︁
𝑎∈𝐼0

∑︁
𝑖>0

𝑡∨𝑎𝑚
(𝑎)
𝑖

⎛⎝∑︁
𝑗>0

min(𝑖, 𝑗)𝐿
(𝑎)
𝑗 − 𝑝

(𝑎)
𝑖

⎞⎠+
∑︁
𝑎∈𝐼

𝑡∨𝑎
∑︁
𝑖>0

⃒⃒⃒
𝐽 (𝑎,𝑖)

⃒⃒⃒
.

EXAMPLES:

sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[1,1],[2,2]])
sage: sc = RC.cartan_type().as_folding().scaling_factors()
sage: all(mg.cocharge() * sc[0] == mg.to_virtual_configuration().cocharge()
....: for mg in RC.module_generators)
True

epsilon(a)
Return the value of 𝜀𝑎 of self.

Here we need to modify the usual definition by 𝜀′𝑛 := 2𝜀𝑛.

EXAMPLES:

sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[1,1], [2,2]])
sage: def epsilon(x, i):
....: x = x.e(i)
....: eps = 0
....: while x is not None:
....: x = x.e(i)
....: eps = eps + 1
....: return eps
sage: all(epsilon(rc, 2) == rc.epsilon(2) for rc in RC)
True

phi(a)
Return the value of 𝜙𝑎 of self.

Here we need to modify the usual definition by 𝜙′𝑛 := 2𝜙𝑛.

EXAMPLES:

2112 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[1,1], [2,2]])
sage: def phi(x, i):
....: x = x.f(i)
....: ph = 0
....: while x is not None:
....: x = x.f(i)
....: ph = ph + 1
....: return ph
sage: all(phi(rc, 2) == rc.phi(2) for rc in RC)
True

class sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement(parent,
rigged_partitions=[],
**op-
tions)

Bases: sage.combinat.rigged_configurations.rigged_configuration_element.
RiggedConfigurationElement

𝑈 ′𝑞(g) rigged configurations.

EXAMPLES:

We can go between rigged configurations and tensor products of tensor products of KR tableaux:

sage: RC = RiggedConfigurations(['D', 4, 1], [[1,1], [2,1]])
sage: rc_elt = RC(partition_list=[[1], [1,1], [1], [1]])
sage: tp_krtab = rc_elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(); tp_
→˓krtab
[[-2]] (X) [[1], [2]]
sage: tp_krcrys = rc_elt.to_tensor_product_of_kirillov_reshetikhin_crystals(); tp_
→˓krcrys
[[[-2]], [[1], [2]]]
sage: tp_krcrys == tp_krtab.to_tensor_product_of_kirillov_reshetikhin_crystals()
True
sage: RC(tp_krcrys) == rc_elt
True
sage: RC(tp_krtab) == rc_elt
True
sage: tp_krtab.to_rigged_configuration() == rc_elt
True

check()
Make sure all of the riggings are less than or equal to the vacancy number.

classical_weight()
Return the classical weight of self.

The classical weight Λ of a rigged configuration is

Λ =
∑︁
𝑎∈𝐼

∑︁
𝑖>0

𝑖𝐿
(𝑎)
𝑖 Λ𝑎 −

∑︁
𝑎∈𝐼

∑︁
𝑖>0

𝑖𝑚
(𝑎)
𝑖 𝛼𝑎.

EXAMPLES:

sage: RC = RiggedConfigurations(['D',4,1], [[2,2]])
sage: elt = RC(partition_list=[[2],[2,1],[1],[1]])

(continues on next page)

5.1. Comprehensive Module List 2113

Combinatorics, Release 9.7

(continued from previous page)

sage: elt.classical_weight()
(0, 1, 1, 0)

This agrees with the corresponding classical weight as KR tableaux:

sage: krt = elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(); krt
[[2, 1], [3, -1]]
sage: krt.classical_weight() == elt.classical_weight()
True

complement_rigging(reverse_factors=False)
Apply the complement rigging morphism 𝜃 to self.

Consider a highest weight rigged configuration (𝜈, 𝐽), the complement rigging morphism 𝜃 : 𝑅𝐶(𝐿) →
𝑅𝐶(𝐿) is given by sending (𝜈, 𝐽) ↦→ (𝜈, 𝐽 ′), where 𝐽 ′ is obtained by taking the coriggings 𝑥′ = 𝑝

(𝑎)
𝑖 − 𝑥,

and then extending as a crystal morphism. (The name comes from taking the complement partition for the
riggings in a 𝑚(𝑎)

𝑖 × 𝑝
(𝑎)
𝑖 box.)

INPUT:

• reverse_factors – (default: False) if True, then this returns an element in 𝑅𝐶(𝐵′) where 𝐵′ is
the tensor factors of self in reverse order

EXAMPLES:

sage: RC = RiggedConfigurations(['D',4,1], [[1,1],[2,2]])
sage: mg = RC.module_generators[-1]
sage: ascii_art(mg)
1[][]1 0[][]0 0[][]0 0[][]0

0[][]0
sage: ascii_art(mg.complement_rigging())
1[][]0 0[][]0 0[][]0 0[][]0

0[][]0

sage: lw = mg.to_lowest_weight([1,2,3,4])[0]
sage: ascii_art(lw)
-1[][]-1 0[][]0 0[][]0 0[][]0
-1[]-1 0[][]0 0[]0 0[]0
-1[]-1 0[]0

0[]0
sage: ascii_art(lw.complement_rigging())
-1[][][]-1 0[][][]0 0[][][]0 0[][][]0
-1[]-1 0[][][]0
sage: lw.complement_rigging() == mg.complement_rigging().to_lowest_weight([1,2,
→˓3,4])[0]
True

sage: mg.complement_rigging(True).parent()
Rigged configurations of type ['D', 4, 1] and factor(s) ((2, 2), (1, 1))

We check that the Lusztig involution (under the modification of also mapping to the highest weight element)
intertwines with the complement map 𝜃 (that reverses the tensor factors) under the bijection Φ:

2114 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2], [2, 1], [1, 2]])
sage: for mg in RC.module_generators: # long time
....: y = mg.to_tensor_product_of_kirillov_reshetikhin_tableaux()
....: hw = y.lusztig_involution().to_highest_weight([1,2,3,4])[0]
....: c = mg.complement_rigging(True)
....: hwc = c.to_tensor_product_of_kirillov_reshetikhin_tableaux()
....: assert hw == hwc

delta(return_b=False)
Return the image of self under the left box removal map 𝛿.

The map 𝛿 : 𝑅𝐶(𝐵𝑟,1 ⊗ 𝐵) → 𝑅𝐶(𝐵𝑟−1,1 ⊗ 𝐵) (if 𝑟 = 1, then we remove the left-most factor) is the
basic map in the bijection Φ between rigged configurations and tensor products of Kirillov-Reshetikhin
tableaux. For more information, see to_tensor_product_of_kirillov_reshetikhin_tableaux().
We can extend 𝛿 when the left-most factor is not a single column by precomposing with a left_split().

Note: Due to the special nature of the bijection for the spinor cases in types 𝐷(1)
𝑛 , 𝐵(1)

𝑛 , and 𝐴(2)
2𝑛−1, this

map is not defined in these cases.

INPUT:

• return_b – (default: False) whether to return the resulting letter from 𝛿

OUTPUT:

The resulting rigged configuration or if return_b is True, then a tuple of the resulting rigged configuration
and the letter.

EXAMPLES:

sage: RC = RiggedConfigurations(['C',4,1], [[3,2]])
sage: mg = RC.module_generators[-1]
sage: ascii_art(mg)
0[][]0 0[][]0 0[][]0 0[]0

0[][]0 0[][]0 0[]0
0[][]0 0[]0

sage: ascii_art(mg.left_box())
0[]0 0[][]0 0[][]0 0[]0

0[]0 0[][]0 0[]0
sage: x,b = mg.left_box(True)
sage: b
-1
sage: b.parent()
The crystal of letters for type ['C', 4]

e(a)
Return the action of the crystal operator 𝑒𝑎 on self.

For the classical operators, this implements the method defined in [CrysStructSchilling06]. For 𝑒0, this
converts the class to a tensor product of KR tableaux and does the corresponding 𝑒0 and pulls back.

Todo: Implement 𝑒0 without appealing to tensor product of KR tableaux.

INPUT:

5.1. Comprehensive Module List 2115

Combinatorics, Release 9.7

• a – the index of the partition to remove a box

OUTPUT:

The resulting rigged configuration element.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2,1]])
sage: elt = RC(partition_list=[[1], [1], [1], [1]])
sage: elt.e(3)
sage: elt.e(1)

(/)

0[]0

0[]0

-1[]-1

epsilon(a)
Return 𝜀𝑎 of self.

EXAMPLES:

sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]])
sage: I = RC.index_set()
sage: matrix([[mg.epsilon(i) for i in I] for mg in RC.module_generators])
[4 0 0 0 0]
[3 0 0 0 0]
[2 0 0 0 0]

f(a)
Return the action of the crystal operator 𝑓𝑎 on self.

For the classical operators, this implements the method defined in [CrysStructSchilling06]. For 𝑓0, this
converts the class to a tensor product of KR tableaux and does the corresponding 𝑓0 and pulls back.

Todo: Implement 𝑓0 without appealing to tensor product of KR tableaux.

INPUT:

• a – the index of the partition to add a box

OUTPUT:

The resulting rigged configuration element.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2,1]])
sage: elt = RC(partition_list=[[1], [1], [1], [1]])
sage: elt.f(1)
sage: elt.f(2)

0[]0
(continues on next page)

2116 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

-1[]-1
-1[]-1

1[]1

-1[]-1

left_box(return_b=False)
Return the image of self under the left box removal map 𝛿.

The map 𝛿 : 𝑅𝐶(𝐵𝑟,1 ⊗ 𝐵) → 𝑅𝐶(𝐵𝑟−1,1 ⊗ 𝐵) (if 𝑟 = 1, then we remove the left-most factor) is the
basic map in the bijection Φ between rigged configurations and tensor products of Kirillov-Reshetikhin
tableaux. For more information, see to_tensor_product_of_kirillov_reshetikhin_tableaux().
We can extend 𝛿 when the left-most factor is not a single column by precomposing with a left_split().

Note: Due to the special nature of the bijection for the spinor cases in types 𝐷(1)
𝑛 , 𝐵(1)

𝑛 , and 𝐴(2)
2𝑛−1, this

map is not defined in these cases.

INPUT:

• return_b – (default: False) whether to return the resulting letter from 𝛿

OUTPUT:

The resulting rigged configuration or if return_b is True, then a tuple of the resulting rigged configuration
and the letter.

EXAMPLES:

sage: RC = RiggedConfigurations(['C',4,1], [[3,2]])
sage: mg = RC.module_generators[-1]
sage: ascii_art(mg)
0[][]0 0[][]0 0[][]0 0[]0

0[][]0 0[][]0 0[]0
0[][]0 0[]0

sage: ascii_art(mg.left_box())
0[]0 0[][]0 0[][]0 0[]0

0[]0 0[][]0 0[]0
sage: x,b = mg.left_box(True)
sage: b
-1
sage: b.parent()
The crystal of letters for type ['C', 4]

left_column_box()
Return the image of self under the left column box splitting map 𝛾.

Consider the map 𝛾 : 𝑅𝐶(𝐵𝑟,1 ⊗ 𝐵) → 𝑅𝐶(𝐵1,1 ⊗ 𝐵𝑟−1,1 ⊗ 𝐵) for 𝑟 > 1, which is a natural strict
classical crystal injection. On rigged configurations, the map 𝛾 adds a singular string of length 1 to 𝜈(𝑎).

We can extend 𝛾 when the left-most factor is not a single column by precomposing with a left_split().

EXAMPLES:

5.1. Comprehensive Module List 2117

Combinatorics, Release 9.7

sage: RC = RiggedConfigurations(['C',3,1], [[3,1], [2,1]])
sage: mg = RC.module_generators[-1]
sage: ascii_art(mg)
0[]0 0[][]0 0[]0

0[]0 0[]0
sage: ascii_art(mg.left_column_box())
0[]0 0[][]0 0[]0
0[]0 0[]0 0[]0

0[]0

sage: RC = RiggedConfigurations(['C',3,1], [[2,1], [1,1], [3,1]])
sage: mg = RC.module_generators[7]
sage: ascii_art(mg)
1[]0 0[][]0 0[]0

0[]0 0[]0
sage: ascii_art(mg.left_column_box())
1[]1 0[][]0 0[]0
1[]0 0[]0 0[]0

left_split()
Return the image of self under the left column splitting map 𝛽.

Consider the map 𝛽 : 𝑅𝐶(𝐵𝑟,𝑠 ⊗ 𝐵) → 𝑅𝐶(𝐵𝑟,1 ⊗ 𝐵𝑟,𝑠−1 ⊗ 𝐵) for 𝑠 > 1 which is a natural classical
crystal injection. On rigged configurations, the map 𝛽 does nothing (except possibly changing the vacancy
numbers).

EXAMPLES:

sage: RC = RiggedConfigurations(['C',4,1], [[3,3]])
sage: mg = RC.module_generators[-1]
sage: ascii_art(mg)
0[][]0 0[][]0 0[][]0 0[]0

0[][]0 0[][]0 0[]0
0[][]0 0[]0

sage: ascii_art(mg.left_split())
0[][]0 0[][]0 1[][]0 0[]0

0[][]0 1[][]0 0[]0
1[][]0 0[]0

phi(a)
Return 𝜙𝑎 of self.

EXAMPLES:

sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]])
sage: I = RC.index_set()
sage: matrix([[mg.phi(i) for i in I] for mg in RC.module_generators])
[0 0 2 0 0]
[1 0 1 0 0]
[2 0 0 0 0]

right_column_box()
Return the image of self under the right column box splitting map 𝛾*.

Consider the map 𝛾* : 𝑅𝐶(𝐵 ⊗ 𝐵𝑟,1) → 𝑅𝐶(𝐵 ⊗ 𝐵𝑟−1,1 ⊗ 𝐵1,1) for 𝑟 > 1, which is a natural strict
classical crystal injection. On rigged configurations, the map 𝛾 adds a string of length 1 with rigging 0 to

2118 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

𝜈(𝑎) for all 𝑎 < 𝑟 to a classically highest weight element and extended as a classical crystal morphism.

We can extend 𝛾* when the right-most factor is not a single column by precomposing with a
right_split().

EXAMPLES:

sage: RC = RiggedConfigurations(['C',3,1], [[2,1], [1,1], [3,1]])
sage: mg = RC.module_generators[7]
sage: ascii_art(mg)
1[]0 0[][]0 0[]0

0[]0 0[]0
sage: ascii_art(mg.right_column_box())
1[]0 0[][]0 0[]0
1[]0 0[]0 0[]0

0[]0

right_split()
Return the image of self under the right column splitting map 𝛽*.

Let 𝜃 denote the complement rigging map which reverses the tensor factors and 𝛽 denote the left
splitting map, we define the right splitting map by 𝛽* := 𝜃 ∘ 𝛽 ∘ 𝜃.

EXAMPLES:

sage: RC = RiggedConfigurations(['C',4,1], [[3,3]])
sage: mg = RC.module_generators[-1]
sage: ascii_art(mg)
0[][]0 0[][]0 0[][]0 0[]0

0[][]0 0[][]0 0[]0
0[][]0 0[]0

sage: ascii_art(mg.right_split())
0[][]0 0[][]0 1[][]1 0[]0

0[][]0 1[][]1 0[]0
1[][]1 0[]0

sage: RC = RiggedConfigurations(['D',4,1], [[2,2],[1,2]])
sage: elt = RC(partition_list=[[3,1], [2,2,1], [2,1], [2]])
sage: ascii_art(elt)
-1[][][]-1 0[][]0 -1[][]-1 1[][]1
0[]0 0[][]0 -1[]-1

0[]0
sage: ascii_art(elt.right_split())
-1[][][]-1 0[][]0 -1[][]-1 1[][]1
1[]0 0[][]0 -1[]-1

0[]0

We check that the bijection commutes with the right splitting map:

sage: RC = RiggedConfigurations(['A', 3, 1], [[1,1], [2,2]])
sage: all(rc.right_split().to_tensor_product_of_kirillov_reshetikhin_tableaux()
....: == rc.to_tensor_product_of_kirillov_reshetikhin_tableaux().right_
→˓split() for rc in RC)
True

to_tensor_product_of_kirillov_reshetikhin_crystals(display_steps=False, build_graph=False)
Return the corresponding tensor product of Kirillov-Reshetikhin crystals.

5.1. Comprehensive Module List 2119

Combinatorics, Release 9.7

This is a composition of the map to a tensor product of KR tableaux, and then to a tensor product of KR
crystals.

INPUT:

• display_steps – (default: False) boolean which indicates if we want to print each step in the algo-
rithm

• build_graph – (default: False) boolean which indicates if we want to construct and return a graph
of the bijection whose vertices are rigged configurations obtained at each step and edges are labeled
by either the return value of 𝛿 or the doubling/halving map

EXAMPLES:

sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]])
sage: elt = RC(partition_list=[[2], [2,2], [1], [1]])
sage: krc = elt.to_tensor_product_of_kirillov_reshetikhin_crystals(); krc
[[[2, 3], [3, -2]]]

We can recover the rigged configuration:

sage: ret = RC(krc); ret

0[][]0

-2[][]-2
-2[][]-2

0[]0

0[]0

sage: elt == ret
True

We can also construct and display a graph of the bijection as follows:

sage: ret, G = elt.to_tensor_product_of_kirillov_reshetikhin_crystals(build_
→˓graph=True)
sage: view(G) # not tested

to_tensor_product_of_kirillov_reshetikhin_tableaux(display_steps=False, build_graph=False)
Perform the bijection from this rigged configuration to a tensor product of Kirillov-Reshetikhin tableaux
given in [RigConBijection] for single boxes and with [BijectionLRT] and [BijectionDn] for multiple
columns and rows.

Note: This is only proven to be a bijection in types 𝐴(1)
𝑛 and 𝐷(1)

𝑛 , as well as
⨂︀

𝑖𝐵
𝑟𝑖,1 and

⨂︀
𝑖𝐵

1,𝑠𝑖 for
general affine types.

INPUT:

• display_steps – (default: False) boolean which indicates if we want to print each step in the algo-
rithm

• build_graph – (default: False) boolean which indicates if we want to construct and return a graph
of the bijection whose vertices are rigged configurations obtained at each step and edges are labeled
by either the return value of 𝛿 or the doubling/halving map

2120 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

• The tensor product of KR tableaux element corresponding to this rigged configuration.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]])
sage: RC(partition_list=[[2], [2,2], [2], [2]]).to_tensor_product_of_kirillov_
→˓reshetikhin_tableaux()
[[3, 3], [5, 5]]
sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]])
sage: elt = RC(partition_list=[[2], [2,2], [1], [1]])
sage: tp_krt = elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(); tp_krt
[[2, 3], [3, -2]]

This is invertible by calling to_rigged_configuration():

sage: ret = tp_krt.to_rigged_configuration(); ret

0[][]0

-2[][]-2
-2[][]-2

0[]0

0[]0

sage: elt == ret
True

To view the steps of the bijection in the output, run with the display_steps=True option:

sage: elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(True)
====================
...
====================

0[]0

-2[][]-2
0[]0

0[]0

0[]0

[[3, 2]]

...
[[2, 3], [3, -2]]

We can also construct and display a graph of the bijection as follows:

5.1. Comprehensive Module List 2121

Combinatorics, Release 9.7

sage: ret, G = elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(build_
→˓graph=True)
sage: view(G) # not tested

weight()
Return the weight of self.

EXAMPLES:

sage: RC = RiggedConfigurations(['E', 6, 1], [[2,2]])
sage: [x.weight() for x in RC.module_generators]
[-4*Lambda[0] + 2*Lambda[2], -2*Lambda[0] + Lambda[2], 0]
sage: KR = crystals.KirillovReshetikhin(['E',6,1], 2,2)
sage: [x.weight() for x in KR.module_generators] # long time
[0, -2*Lambda[0] + Lambda[2], -4*Lambda[0] + 2*Lambda[2]]

sage: RC = RiggedConfigurations(['D', 6, 1], [[4,2]])
sage: [x.weight() for x in RC.module_generators]
[-4*Lambda[0] + 2*Lambda[4], -4*Lambda[0] + Lambda[2] + Lambda[4],
-2*Lambda[0] + Lambda[4], -4*Lambda[0] + 2*Lambda[2],
-2*Lambda[0] + Lambda[2], 0]

class sage.combinat.rigged_configurations.rigged_configuration_element.RCHWNonSimplyLacedElement(parent,
rigged_partitions=[],
**op-
tions)

Bases: sage.combinat.rigged_configurations.rigged_configuration_element.
RCNonSimplyLacedElement

Rigged configurations in highest weight crystals.

check()
Make sure all of the riggings are less than or equal to the vacancy number.

f(a)
Return the action of 𝑓𝑎 on self.

This works by lifting into the virtual configuration, then applying

𝑓𝑣𝑎 =
∏︁
𝑗∈𝜄(𝑎)

𝑓
𝛾𝑗
𝑗

and pulling back.

EXAMPLES:

sage: La = RootSystem(['C',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: vct = CartanType(['C',2,1]).as_folding()
sage: RC = crystals.RiggedConfigurations(vct, La[0])
sage: elt = RC(partition_list=[[1,1],[2],[2]])
sage: elt.f(0)
sage: ascii_art(elt.f(1))
0[]0 0[][]0 -1[][]-1
0[]0 -1[]-1
sage: elt.f(2)

2122 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

weight()
Return the weight of self.

EXAMPLES:

sage: La = RootSystem(['C',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: vct = CartanType(['C',2,1]).as_folding()
sage: B = crystals.RiggedConfigurations(vct, La[0])
sage: mg = B.module_generators[0]
sage: mg.f_string([0,1,2]).weight()
2*Lambda[1] - Lambda[2] - delta

class sage.combinat.rigged_configurations.rigged_configuration_element.RCHighestWeightElement(parent,
rigged_partitions=[],
**op-
tions)

Bases: sage.combinat.rigged_configurations.rigged_configuration_element.
RiggedConfigurationElement

Rigged configurations in highest weight crystals.

check()
Make sure all of the riggings are less than or equal to the vacancy number.

f(a)
Return the action of the crystal operator 𝑓𝑎 on self.

This implements the method defined in [CrysStructSchilling06] which finds the value 𝑘 which is the length
of the string with the smallest nonpositive rigging of largest length. Then it adds a box from a string of
length 𝑘 in the 𝑎-th rigged partition, keeping all colabels fixed and decreasing the new label by one. If
no such string exists, then it adds a new string of length 1 with label −1. If any of the resulting vacancy
numbers are larger than the labels (i.e. it is an invalid rigged configuration), then 𝑓𝑎 is undefined.

INPUT:

• a – the index of the partition to add a box

OUTPUT:

The resulting rigged configuration element.

EXAMPLES:

sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: RC = crystals.RiggedConfigurations(['A',2,1], La[0])
sage: elt = RC(partition_list=[[1,1],[1],[2]])
sage: elt.f(0)

-2[][]-2
-1[]-1

1[]1

0[][]0

sage: elt.f(1)

(continues on next page)

5.1. Comprehensive Module List 2123

Combinatorics, Release 9.7

(continued from previous page)

0[]0
0[]0

-1[]-1
-1[]-1

0[][]0

sage: elt.f(2)

weight()
Return the weight of self.

EXAMPLES:

sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: B = crystals.RiggedConfigurations(['A',2,1], La[0])
sage: mg = B.module_generators[0]
sage: mg.f_string([0,1,2,0]).weight()
-Lambda[0] + Lambda[1] + Lambda[2] - 2*delta

class sage.combinat.rigged_configurations.rigged_configuration_element.RCNonSimplyLacedElement(parent,
rigged_partitions=[],
**op-
tions)

Bases: sage.combinat.rigged_configurations.rigged_configuration_element.
RiggedConfigurationElement

Rigged configuration elements for non-simply-laced types.

e(a)
Return the action of 𝑒𝑎 on self.

This works by lifting into the virtual configuration, then applying

𝑒𝑣𝑎 =
∏︁
𝑗∈𝜄(𝑎)

𝑒
𝛾𝑗
𝑗

and pulling back.

EXAMPLES:

sage: vct = CartanType(['C',2,1]).as_folding()
sage: RC = crystals.infinity.RiggedConfigurations(vct)
sage: elt = RC(partition_list=[[2],[1,1],[2]], rigging_list=[[-1],[-1,-1],[-1]])
sage: ascii_art(elt.e(0))
0[]0 -2[]-1 -2[][]-1

-2[]-1
sage: ascii_art(elt.e(1))
-3[][]-2 0[]1 -3[][]-2
sage: ascii_art(elt.e(2))
-2[][]-1 -2[]-1 0[]0

-2[]-1

f(a)
Return the action of 𝑓𝑎 on self.

2124 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

This works by lifting into the virtual configuration, then applying

𝑓𝑣𝑎 =
∏︁
𝑗∈𝜄(𝑎)

𝑓
𝛾𝑗
𝑗

and pulling back.

EXAMPLES:

sage: vct = CartanType(['C',2,1]).as_folding()
sage: RC = crystals.infinity.RiggedConfigurations(vct)
sage: elt = RC(partition_list=[[2],[1,1],[2]], rigging_list=[[-1],[-1,-1],[-1]])
sage: ascii_art(elt.f(0))
-4[][][]-2 -2[]-1 -2[][]-1

-2[]-1
sage: ascii_art(elt.f(1))
-1[][]0 -2[][]-2 -1[][]0

-2[]-1
sage: ascii_art(elt.f(2))
-2[][]-1 -2[]-1 -4[][][]-2

-2[]-1

to_virtual_configuration()
Return the corresponding rigged configuration in the virtual crystal.

EXAMPLES:

sage: RC = RiggedConfigurations(['C',2,1], [[1,2],[1,1],[2,1]])
sage: elt = RC(partition_list=[[3],[2]]); elt

0[][][]0

0[][]0
sage: elt.to_virtual_configuration()

0[][][]0

0[][][][]0

0[][][]0

class sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement(parent,
rigged_partitions=[],
**op-
tions)

Bases: sage.structure.list_clone.ClonableArray

A rigged configuration for simply-laced types.

For more information on rigged configurations, see RiggedConfigurations. For rigged configurations for
non-simply-laced types, use RCNonSimplyLacedElement.

Typically to create a specific rigged configuration, the user will pass in the optional argument partition_list
and if the user wants to specify the rigging values, give the optional argument rigging_list as well. If
rigging_list is not passed, the rigging values are set to the corresponding vacancy numbers.

INPUT:

• parent – the parent of this element

5.1. Comprehensive Module List 2125

../../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

• rigged_partitions – a list of rigged partitions

There are two optional arguments to explicitly construct a rigged configuration. The first is partition_list
which gives a list of partitions, and the second is rigging_listwhich is a list of corresponding lists of riggings.
If only partition_list is specified, then it sets the rigging equal to the calculated vacancy numbers.

If we are constructing a rigged configuration from a rigged configuration (say of another type) and we don’t want
to recompute the vacancy numbers, we can use the use_vacancy_numbers to avoid the recomputation.

EXAMPLES:

Type 𝐴(1)
𝑛 examples:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]])
sage: RC(partition_list=[[2], [2, 2], [2], [2]])

0[][]0

-2[][]-2
-2[][]-2

2[][]2

-2[][]-2

sage: RC = RiggedConfigurations(['A', 4, 1], [[1, 1], [1, 1]])
sage: RC(partition_list=[[], [], [], []])

(/)

(/)

(/)

(/)

Type 𝐷(1)
𝑛 examples:

sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]])
sage: RC(partition_list=[[3], [3,2], [4], [3]])

-1[][][]-1

1[][][]1
0[][]0

-3[][][][]-3

-1[][][]-1

sage: RC = RiggedConfigurations(['D', 4, 1], [[1, 1], [2, 1]])
sage: RC(partition_list=[[1], [1,1], [1], [1]])

1[]1
(continues on next page)

2126 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

0[]0
0[]0

0[]0

0[]0

sage: elt = RC(partition_list=[[1], [1,1], [1], [1]], rigging_list=[[0], [0,0], [0],
→˓ [0]]); elt

1[]0

0[]0
0[]0

0[]0

0[]0

sage: from sage.combinat.rigged_configurations.rigged_partition import␣
→˓RiggedPartition
sage: RC2 = RiggedConfigurations(['D', 5, 1], [[2, 1], [3, 1]])
sage: l = [RiggedPartition()] + list(elt)
sage: ascii_art(RC2(*l))
(/) 1[]0 0[]0 0[]0 0[]0

0[]0
sage: ascii_art(RC2(*l, use_vacancy_numbers=True))
(/) 1[]0 0[]0 0[]0 0[]0

0[]0

check()
Check the rigged configuration is properly defined.

There is nothing to check here.

EXAMPLES:

sage: RC = crystals.infinity.RiggedConfigurations(['A', 4])
sage: b = RC.module_generators[0].f_string([1,2,1,1,2,4,2,3,3,2])
sage: b.check()

e(a)
Return the action of the crystal operator 𝑒𝑎 on self.

This implements the method defined in [CrysStructSchilling06] which finds the value 𝑘 which is the length
of the string with the smallest negative rigging of smallest length. Then it removes a box from a string of
length 𝑘 in the 𝑎-th rigged partition, keeping all colabels fixed and increasing the new label by one. If no
such string exists, then 𝑒𝑎 is undefined.

This method can also be used when the underlying Cartan matrix is a Borcherds-Cartan matrix. In this case,
then method of [SS2018] is used, where the new label is increased by half of the 𝑎-th diagonal entry of the
underlying Borcherds-Cartan matrix. This method will also return None if 𝑎 is imaginary and the smallest
rigging in the 𝑎-th rigged partition is not exactly half of the 𝑎-th diagonal entry of the Borcherds-Cartan

5.1. Comprehensive Module List 2127

Combinatorics, Release 9.7

matrix.

INPUT:

• a – the index of the partition to remove a box

OUTPUT:

The resulting rigged configuration element.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2,1]])
sage: elt = RC(partition_list=[[1], [1], [1], [1]])
sage: elt.e(3)
sage: elt.e(1)

(/)

0[]0

0[]0

-1[]-1

sage: A = CartanMatrix([[-2,-1],[-1,-2]], borcherds=True)
sage: RC = crystals.infinity.RiggedConfigurations(A)
sage: nu0 = RC(partition_list=[[],[]])
sage: nu = nu0.f_string([1,0,0,0])
sage: ascii_art(nu.e(0))
5[]3 4[]3
5[]1

epsilon(a)
Return 𝜀𝑎 of self.

Let 𝑥ℓ be the smallest string of 𝜈(𝑎) or 0 if 𝜈(𝑎) = ∅, then we have 𝜀𝑎 = −min(0, 𝑥ℓ).

EXAMPLES:

sage: La = RootSystem(['B',2]).weight_lattice().fundamental_weights()
sage: RC = crystals.RiggedConfigurations(La[1]+La[2])
sage: I = RC.index_set()
sage: matrix([[rc.epsilon(i) for i in I] for rc in RC[:4]])
[0 0]
[1 0]
[0 1]
[0 2]

f(a)
Return the action of the crystal operator 𝑓𝑎 on self.

This implements the method defined in [CrysStructSchilling06] which finds the value 𝑘 which is the length
of the string with the smallest nonpositive rigging of largest length. Then it adds a box from a string of
length 𝑘 in the 𝑎-th rigged partition, keeping all colabels fixed and decreasing the new label by one. If no
such string exists, then it adds a new string of length 1 with label −1. However we need to modify the
definition to work for 𝐵(∞) by removing the condition that the resulting rigged configuration is valid.

2128 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

This method can also be used when the underlying Cartan matrix is a Borcherds-Cartan matrix. In this
case, then method of [SS2018] is used, where the new label is decreased by half of the 𝑎-th diagonal entry
of the underlying Borcherds-Cartan matrix.

INPUT:

• a – the index of the partition to add a box

OUTPUT:

The resulting rigged configuration element.

EXAMPLES:

sage: RC = crystals.infinity.RiggedConfigurations(['A', 3])
sage: nu0 = RC.module_generators[0]
sage: nu0.f(2)

(/)

-2[]-1

(/)

sage: A = CartanMatrix([[-2,-1],[-1,-2]], borcherds=True)
sage: RC = crystals.infinity.RiggedConfigurations(A)
sage: nu0 = RC(partition_list=[[],[]])
sage: nu = nu0.f_string([1,0,0,0])
sage: ascii_art(nu.f(0))
9[]7 6[]5
9[]5
9[]3
9[]1

nu()
Return the list 𝜈 of rigged partitions of this rigged configuration element.

OUTPUT:

The 𝜈 array as a list.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]])
sage: RC(partition_list=[[2], [2,2], [2], [2]]).nu()
[0[][]0
, -2[][]-2
-2[][]-2
, 2[][]2
, -2[][]-2
]

partition_rigging_lists()
Return the list of partitions and the associated list of riggings of self.

EXAMPLES:

5.1. Comprehensive Module List 2129

Combinatorics, Release 9.7

sage: RC = RiggedConfigurations(['A',3,1], [[1,2],[2,2]])
sage: rc = RC(partition_list=[[2],[1],[1]], rigging_list=[[-1],[0],[-1]]); rc

-1[][]-1

1[]0

-1[]-1

sage: rc.partition_rigging_lists()
[[[2], [1], [1]], [[-1], [0], [-1]]]

phi(a)
Return 𝜙𝑎 of self.

Let 𝑥ℓ be the smallest string of 𝜈(𝑎) or 0 if 𝜈(𝑎) = ∅, then we have 𝜀𝑎 = 𝑝
(𝑎)
∞ −min(0, 𝑥ℓ).

EXAMPLES:

sage: La = RootSystem(['B',2]).weight_lattice().fundamental_weights()
sage: RC = crystals.RiggedConfigurations(La[1]+La[2])
sage: I = RC.index_set()
sage: matrix([[rc.phi(i) for i in I] for rc in RC[:4]])
[1 1]
[0 3]
[0 2]
[1 1]

vacancy_number(a, i)
Return the vacancy number 𝑝(𝑎)𝑖 .

INPUT:

• a – the index of the rigged partition

• i – the row of the rigged partition

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]])
sage: elt = RC(partition_list=[[1], [2,1], [1], []])
sage: elt.vacancy_number(2, 3)
-2
sage: elt.vacancy_number(2, 2)
-2
sage: elt.vacancy_number(2, 1)
-1

sage: RC = RiggedConfigurations(['D',4,1], [[2,1], [2,1]])
sage: x = RC(partition_list=[[3], [3,1,1], [2], [3,1]]); ascii_art(x)
-1[][][]-1 1[][][]1 0[][]0 -3[][][]-3

0[]0 -1[]-1
0[]0

sage: x.vacancy_number(2,2)
1

2130 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.211 Rigged Configurations

AUTHORS:

• Travis Scrimshaw (2010-09-26): Initial version

sage.combinat.rigged_configurations.rigged_configurations.KirillovReshetikhinCrystal(cartan_type,
r, s)

Return the KR crystal 𝐵𝑟,𝑠 using rigged configurations.

This is the rigged configuration 𝑅𝐶(𝐵𝑟,𝑠) or 𝑅𝐶(𝐿) with 𝐿 = (𝐿
(𝑎)
𝑖) and 𝐿(𝑎)

𝑖 = 𝛿𝑎,𝑟𝛿𝑖,𝑠.

EXAMPLES:

sage: K1 = crystals.kirillov_reshetikhin.RiggedConfigurations(['A',6,2], 2, 1)
sage: K2 = crystals.kirillov_reshetikhin.LSPaths(['A',6,2], 2, 1)
sage: K1.digraph().is_isomorphic(K2.digraph(), edge_labels=True)
True

class sage.combinat.rigged_configurations.rigged_configurations.RCNonSimplyLaced(cartan_type,
dims)

Bases: sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations

Rigged configurations in non-simply-laced types.

These are rigged configurations which lift to virtual rigged configurations in a simply-laced type.

For more on rigged configurations, see RiggedConfigurations.

Element
alias of sage.combinat.rigged_configurations.rigged_configuration_element.
KRRCNonSimplyLacedElement

from_virtual(vrc)
Convert vrc in the virtual crystal into a rigged configuration of the original Cartan type.

INPUT:

• vrc – a virtual rigged configuration

EXAMPLES:

sage: RC = RiggedConfigurations(['C',2,1], [[1,2],[1,1],[2,1]])
sage: elt = RC(partition_list=[[3],[2]])
sage: vrc_elt = RC.to_virtual(elt)
sage: ret = RC.from_virtual(vrc_elt); ret

0[][][]0

0[][]0
sage: ret == elt
True

kleber_tree()
Return the underlying (virtual) Kleber tree used to generate all highest weight rigged configurations.

EXAMPLES:

5.1. Comprehensive Module List 2131

Combinatorics, Release 9.7

sage: RC = RiggedConfigurations(['C',3,1], [[1,1], [2,1]])
sage: RC.kleber_tree()
Virtual Kleber tree of Cartan type ['C', 3, 1] and B = ((1, 1), (2, 1))

module_generators()
Module generators for this set of rigged configurations.

Iterate over the highest weight rigged configurations by moving through the KleberTree and then setting
appropriate values of the partitions.

EXAMPLES:

sage: RC = RiggedConfigurations(['C', 3, 1], [[1,2]])
sage: for x in RC.module_generators: x

(/)

(/)

(/)

0[][]0

0[][]0

0[]0

sage: RC = RiggedConfigurations(['D',4,3], [[1,1]])
sage: RC.module_generators
(

0[]0
(/) 0[]0

(/) 0[]0
,

)

to_virtual(rc)
Convert rc into a rigged configuration in the virtual crystal.

INPUT:

• rc – a rigged configuration element

EXAMPLES:

sage: RC = RiggedConfigurations(['C',2,1], [[1,2],[1,1],[2,1]])
sage: elt = RC(partition_list=[[3],[2]]); elt

0[][][]0

0[][]0
(continues on next page)

2132 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: velt = RC.to_virtual(elt); velt

0[][][]0

0[][][][]0

0[][][]0
sage: velt.parent()
Rigged configurations of type ['A', 3, 1] and factor(s) ((1, 2), (3, 2), (1, 1),
→˓ (3, 1), (2, 2))

virtual()
Return the corresponding virtual crystal.

EXAMPLES:

sage: RC = RiggedConfigurations(['C',2,1], [[1,2],[1,1],[2,1]])
sage: RC
Rigged configurations of type ['C', 2, 1] and factor(s) ((1, 2), (1, 1), (2, 1))
sage: RC.virtual
Rigged configurations of type ['A', 3, 1] and factor(s) ((1, 2), (3, 2), (1, 1),
→˓ (3, 1), (2, 2))

class sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Dual(cartan_type,
dims)

Bases: sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Even

Rigged configurations of type 𝐴(2)†
2𝑛 .

For more on rigged configurations, see RiggedConfigurations.

EXAMPLES:

sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[1,2],[1,1],[2,1]])
sage: RC
Rigged configurations of type ['BC', 2, 2]^* and factor(s) ((1, 2), (1, 1), (2, 1))
sage: RC.cardinality()
750
sage: RC.virtual
Rigged configurations of type ['A', 3, 1] and factor(s) ((1, 2), (3, 2), (1, 1), (3,
→˓ 1), (2, 1), (2, 1))
sage: RC = RiggedConfigurations(CartanType(['A',2,2]).dual(), [[1,1]])
sage: RC.cardinality()
3
sage: RC = RiggedConfigurations(CartanType(['A',2,2]).dual(), [[1,2],[1,1]])
sage: TestSuite(RC).run() # long time
sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[2,1]])
sage: TestSuite(RC).run() # long time

Element
alias of sage.combinat.rigged_configurations.rigged_configuration_element.
KRRCTypeA2DualElement

from_virtual(vrc)
Convert vrc in the virtual crystal into a rigged configuration of the original Cartan type.

5.1. Comprehensive Module List 2133

Combinatorics, Release 9.7

INPUT:

• vrc – a virtual rigged configuration element

EXAMPLES:

sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[2,2]])
sage: elt = RC(partition_list=[[1],[1]])
sage: velt = RC.to_virtual(elt)
sage: ret = RC.from_virtual(velt); ret

-1[]-1

1[]1

sage: ret == elt
True

module_generators()

Module generators for rigged configurations of type 𝐴(2)†
2𝑛 .

Iterate over the highest weight rigged configurations by moving through the KleberTree and then setting
appropriate values of the partitions. This also skips rigged configurations where 𝑃 (𝑛)

𝑖 < 1 when 𝑖 is odd.

EXAMPLES:

sage: RC = RiggedConfigurations(CartanType(['A', 4, 2]).dual(), [[1,1]])
sage: for x in RC.module_generators: x

(/)

(/)

to_virtual(rc)
Convert rc into a rigged configuration in the virtual crystal.

INPUT:

• rc – a rigged configuration element

EXAMPLES:

sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[2,2]])
sage: elt = RC(partition_list=[[1],[1]]); elt

-1[]-1

1[]1

sage: velt = RC.to_virtual(elt); velt

-1[]-1

2[]2

-1[]-1

(continues on next page)

2134 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: velt.parent()
Rigged configurations of type ['A', 3, 1] and factor(s) ((2, 2), (2, 2))

class sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Even(cartan_type,
dims)

Bases: sage.combinat.rigged_configurations.rigged_configurations.RCNonSimplyLaced

Rigged configurations for type 𝐴(2)
2𝑛 .

For more on rigged configurations, see RiggedConfigurations.

EXAMPLES:

sage: RC = RiggedConfigurations(['A',4,2], [[2,1], [1,2]])
sage: RC.cardinality()
150
sage: RC = RiggedConfigurations(['A',2,2], [[1,1]])
sage: RC.cardinality()
3
sage: RC = RiggedConfigurations(['A',2,2], [[1,2],[1,1]])
sage: TestSuite(RC).run() # long time
sage: RC = RiggedConfigurations(['A',4,2], [[2,1]])
sage: TestSuite(RC).run() # long time

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: RC = RiggedConfigurations(['A',4,2], [[1,1], [2,2]])
sage: RC.cardinality()
250

from_virtual(vrc)
Convert vrc in the virtual crystal into a rigged configuration of the original Cartan type.

INPUT:

• vrc – a virtual rigged configuration element

EXAMPLES:

sage: RC = RiggedConfigurations(['A',4,2], [[2,2]])
sage: elt = RC(partition_list=[[1],[1]])
sage: velt = RC.to_virtual(elt)
sage: ret = RC.from_virtual(velt); ret

-1[]-1

1[]1

sage: ret == elt
True

to_virtual(rc)
Convert rc into a rigged configuration in the virtual crystal.

5.1. Comprehensive Module List 2135

Combinatorics, Release 9.7

INPUT:

• rc – a rigged configuration element

EXAMPLES:

sage: RC = RiggedConfigurations(['A',4,2], [[2,2]])
sage: elt = RC(partition_list=[[1],[1]]); elt

-1[]-1

1[]1

sage: velt = RC.to_virtual(elt); velt

-1[]-1

2[]2

-1[]-1

sage: velt.parent()
Rigged configurations of type ['A', 3, 1] and factor(s) ((2, 2), (2, 2))

virtual()
Return the corresponding virtual crystal.

EXAMPLES:

sage: RC = RiggedConfigurations(['A',4,2], [[1,2],[1,1],[2,1]])
sage: RC
Rigged configurations of type ['BC', 2, 2] and factor(s) ((1, 2), (1, 1), (2,␣
→˓1))
sage: RC.virtual
Rigged configurations of type ['A', 3, 1] and factor(s) ((1, 2), (3, 2), (1, 1),
→˓ (3, 1), (2, 1), (2, 1))

class sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations(cartan_type,
B)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Rigged configurations as 𝑈 ′𝑞(g)-crystals.

Let 𝐼 denote the classical index set associated to the Cartan type of the rigged configurations. A rigged con-
figuration of multiplicity array 𝐿(𝑎)

𝑖 and dominant weight Λ is a sequence of partitions {𝜈(𝑎) | 𝑎 ∈ 𝐼} such
that ∑︁

𝐼×Z>0

𝑖𝑚
(𝑎)
𝑖 𝛼𝑎 =

∑︁
𝐼×Z>0

𝑖𝐿
(𝑎)
𝑖 Λ𝑎 − Λ

where 𝛼𝑎 is a simple root, Λ𝑎 is a fundamental weight, and𝑚(𝑎)
𝑖 is the number of rows of length 𝑖 in the partition

𝜈(𝑎).

Each partition 𝜈(𝑎), in the sequence also comes with a sequence of statistics 𝑝(𝑎)𝑖 called vacancy numbers and a
weakly decreasing sequence 𝐽 (𝑎)

𝑖 of length𝑚(𝑎)
𝑖 called riggings. Vacancy numbers are computed based upon the

2136 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

partitions and 𝐿(𝑎)
𝑖 , and the riggings must satisfy max 𝐽

(𝑎)
𝑖 ≤ 𝑝

(𝑎)
𝑖 . We call such a partition a rigged partition.

For more, see [RigConBijection] [CrysStructSchilling06] [BijectionLRT].

Rigged configurations form combinatorial objects first introduced by Kerov, Kirillov and Reshetikhin that arose
from studies of statistical mechanical models using the Bethe Ansatz. They are sequences of rigged partitions.
A rigged partition is a partition together with a label associated to each part that satisfy certain constraints. The
labels are also called riggings.

Rigged configurations exist for all affine Kac-Moody Lie algebras. See for example [HKOTT2002]. In Sage
they are specified by providing a Cartan type and a list of rectangular shapes 𝐵. The list of all (highest weight)
rigged configurations for given 𝐵 is computed via the (virtual) Kleber algorithm (see also KleberTree and
VirtualKleberTree).

Rigged configurations in simply-laced types all admit a classical crystal structure [CrysStructSchilling06]. For
non-simply-laced types, the crystal is given by using virtual rigged configurations [OSS03]. The highest weight
rigged configurations are those where all riggings are nonnegative. The list of all rigged configurations is com-
puted from the highest weight ones using the crystal operators.

Rigged configurations are conjecturally in bijection with TensorProductOfKirillovReshetikhinTableaux
of non-exceptional affine types where the list 𝐵 corresponds to the tensor factors 𝐵𝑟,𝑠. The bijection has been
proven in types 𝐴(1)

𝑛 and 𝐷(1)
𝑛 and when the only non-zero entries of 𝐿(𝑎)

𝑖 are either only 𝐿(𝑎)
1 or only 𝐿(1)

𝑖

(corresponding to single columns or rows respectively) [RigConBijection], [BijectionLRT], [BijectionDn].

KR crystals are implemented in Sage, see KirillovReshetikhinCrystal(), however, in the bijection with
rigged configurations a different realization of the elements in the crystal are obtained, which are coined KR
tableaux, see KirillovReshetikhinTableaux. For more details see [OSS2011].

Note: All non-simply-laced rigged configurations have not been proven to give rise to aligned virtual crystals
(i.e. have the correct crystal structure or isomorphic as affine crystals to the tensor product of KR tableaux).

INPUT:

• cartan_type – a Cartan type

• B – a list of positive integer tuples (𝑟, 𝑠) corresponding to the tensor factors in the bijection with tensor
product of Kirillov-Reshetikhin tableaux or equivalently the sequence of width 𝑠 and height 𝑟 rectangles

REFERENCES:

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [1, 2], [1, 1]])
sage: RC
Rigged configurations of type ['A', 3, 1] and factor(s) ((3, 2), (1, 2), (1, 1))

sage: RC = RiggedConfigurations(['A', 3, 1], [[2,1]]); RC
Rigged configurations of type ['A', 3, 1] and factor(s) ((2, 1),)
sage: RC.cardinality()
6
sage: len(RC.list()) == RC.cardinality()
True
sage: RC.list() # random
[

0[]0
(/) (/) (/) -1[]-1 -1[]-1

-1[]-1
(continues on next page)

5.1. Comprehensive Module List 2137

Combinatorics, Release 9.7

(continued from previous page)

(/) -1[]-1 0[]0 0[]0 1[]1 -1[]-1

(/) (/) -1[]-1 (/) -1[]-1 0[]0
, , , , ,

]

A rigged configuration element with all riggings equal to the vacancy numbers can be created as follows:

sage: RC = RiggedConfigurations(['A', 3, 1], [[3,2], [2,1], [1,1], [1,1]]); RC
Rigged configurations of type ['A', 3, 1] and factor(s) ((3, 2), (2, 1), (1, 1), (1,
→˓ 1))
sage: elt = RC(partition_list=[[1],[],[]]); elt

0[]0

(/)

(/)

If on the other hand we also want to specify the riggings, this can be achieved as follows:

sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [1, 2], [1, 1]])
sage: RC(partition_list=[[2],[2],[2]])

1[][]1

0[][]0

0[][]0
sage: RC(partition_list=[[2],[2],[2]], rigging_list=[[0],[0],[0]])

1[][]0

0[][]0

0[][]0

A larger example:

sage: RC = RiggedConfigurations(['D', 7, 1], [[3,3],[5,2],[4,3],[2,3],[4,4],[3,1],
→˓[1,4],[2,2]])
sage: elt = RC(partition_list=[[2],[3,2,1],[2,2,1,1],[2,2,1,1,1,1],[3,2,1,1,1,1],[2,
→˓1,1],[2,2]],
....: rigging_list=[[2],[1,0,0],[4,1,2,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,
→˓0],[0,0]])
sage: elt

3[][]2

1[][][]1
2[][]0
1[]0

(continues on next page)

2138 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

4[][]4
4[][]1
3[]2
3[]1

2[][]1
2[][]0
0[]0
0[]0
0[]0
0[]0

0[][][]0
2[][]1
0[]0
0[]0
0[]0
0[]0

0[][]0
0[]0
0[]0

0[][]0
0[][]0

To obtain the KR tableau under the bijection between rigged configurations and KR tableaux, we can type the
following. This example was checked against Reiho Sakamoto’s Mathematica program on rigged configurations:

sage: output = elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(); output
[[1, 1, 1], [2, 3, 3], [3, 4, -5]] (X) [[1, 1], [2, 2], [3, 3], [5, -6], [6, -5]]␣
→˓(X)
[[1, 1, 2], [2, 2, 3], [3, 3, 7], [4, 4, -7]] (X) [[1, 1, 1], [2, 2, 2]] (X)
[[1, 1, 1, 3], [2, 2, 3, 4], [3, 3, 4, 5], [4, 4, 5, 6]] (X) [[1], [2], [3]] (X)␣
→˓[[1, 1, 1, 1]] (X) [[1, 1], [2, 2]]
sage: elt.to_tensor_product_of_kirillov_reshetikhin_tableaux().to_rigged_
→˓configuration() == elt
True
sage: output.to_rigged_configuration().to_tensor_product_of_kirillov_reshetikhin_
→˓tableaux() == output
True

We can also convert between rigged configurations and tensor products of KR crystals:

sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 1]])
sage: elt = RC(partition_list=[[1],[1,1],[1],[1]])
sage: tp_krc = elt.to_tensor_product_of_kirillov_reshetikhin_crystals(); tp_krc
[[]]
sage: ret = RC(tp_krc)
sage: ret == elt
True

5.1. Comprehensive Module List 2139

Combinatorics, Release 9.7

sage: RC = RiggedConfigurations(['D', 4, 1], [[4,1], [3,3]])
sage: KR1 = crystals.KirillovReshetikhin(['D', 4, 1], 4, 1)
sage: KR2 = crystals.KirillovReshetikhin(['D', 4, 1], 3, 3)
sage: T = crystals.TensorProduct(KR1, KR2)
sage: t = T[1]; t
[[++++, []], [+++-, [[1], [2], [4], [-4]]]]
sage: ret = RC(t)
sage: ret.to_tensor_product_of_kirillov_reshetikhin_crystals()
[[++++, []], [+++-, [[1], [2], [4], [-4]]]]

Element
alias of sage.combinat.rigged_configurations.rigged_configuration_element.
KRRCSimplyLacedElement

classically_highest_weight_vectors()
Return the classically highest weight elements of self.

fermionic_formula(q=None, only_highest_weight=False, weight=None)
Return the fermionic formula associated to self.

Given a set of rigged configurations 𝑅𝐶(𝜆, 𝐿), the fermionic formula is defined as:

𝑀(𝜆, 𝐿; 𝑞) =
∑︁
(𝜈,𝐽)

𝑞𝑐𝑐(𝜈,𝐽)

where we sum over all (classically highest weight) rigged configurations of weight 𝜆 where 𝑐𝑐 is the
cocharge statistic. This is known to reduce to

𝑀(𝜆, 𝐿; 𝑞) =
∑︁
𝜈

𝑞𝑐𝑐(𝜈)
∏︁

(𝑎,𝑖)∈𝐼×Z

[︃
𝑝
(𝑎)
𝑖 +𝑚

(𝑎)
𝑖

𝑚
(𝑎)
𝑖

]︃
𝑞

.

The generating function of 𝑀(𝜆, 𝐿; 𝑞) in the weight algebra subsumes all fermionic formulas:

𝑀(𝐿; 𝑞) =
∑︁
𝜆∈𝑃

𝑀(𝜆, 𝐿; 𝑞)𝜆.

This is conjecturally equal to the one dimensional configuration sum of the corresponding tensor
product of Kirillov-Reshetikhin crystals, see [HKOTT2002]. This has been proven in general for type 𝐴(1)

𝑛

[BijectionLRT], single factors 𝐵𝑟,𝑠 in type 𝐷(1)
𝑛 [OSS2011] with the result from [Sakamoto13], as well as

for a tensor product of single columns [OSS2003], [BijectionDn] or a tensor product of single rows [OSS03]
for all non-exceptional types.

INPUT:

• q – the variable 𝑞

• only_highest_weight – use only the classically highest weight rigged configurations

• weight – return the fermionic formula 𝑀(𝜆, 𝐿; 𝑞) where 𝜆 is the classical weight weight

REFERENCES:

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 2, 1], [[1,1], [1,1]])
sage: RC.fermionic_formula()
B[-2*Lambda[1] + 2*Lambda[2]] + (q+1)*B[-Lambda[1]]
+ (q+1)*B[Lambda[1] - Lambda[2]] + B[2*Lambda[1]]

(continues on next page)

2140 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

+ B[-2*Lambda[2]] + (q+1)*B[Lambda[2]]
sage: t = QQ['t'].gen(0)
sage: RC.fermionic_formula(t)
B[-2*Lambda[1] + 2*Lambda[2]] + (t+1)*B[-Lambda[1]]
+ (t+1)*B[Lambda[1] - Lambda[2]] + B[2*Lambda[1]]
+ B[-2*Lambda[2]] + (t+1)*B[Lambda[2]]
sage: La = RC.weight_lattice_realization().classical().fundamental_weights()
sage: RC.fermionic_formula(weight=La[2])
q + 1
sage: RC.fermionic_formula(only_highest_weight=True, weight=La[2])
q

Only using the highest weight elements on other types:

sage: RC = RiggedConfigurations(['A', 3, 1], [[3,1], [2,2]])
sage: RC.fermionic_formula(only_highest_weight=True)
q*B[Lambda[1] + Lambda[2]] + B[2*Lambda[2] + Lambda[3]]
sage: RC = RiggedConfigurations(['D', 4, 1], [[3,1], [4,1], [2,1]])
sage: RC.fermionic_formula(only_highest_weight=True)
(q^4+q^3+q^2)*B[Lambda[1]] + (q^2+q)*B[Lambda[1] + Lambda[2]]
+ q*B[Lambda[1] + 2*Lambda[3]] + q*B[Lambda[1] + 2*Lambda[4]]
+ B[Lambda[2] + Lambda[3] + Lambda[4]] + (q^3+2*q^2+q)*B[Lambda[3] + Lambda[4]]
sage: RC = RiggedConfigurations(['E', 6, 1], [[2,2]])
sage: RC.fermionic_formula(only_highest_weight=True)
q^2*B[0] + q*B[Lambda[2]] + B[2*Lambda[2]]
sage: RC = RiggedConfigurations(['B', 3, 1], [[3,1], [2,2]])
sage: RC.fermionic_formula(only_highest_weight=True) # long time
q*B[Lambda[1] + Lambda[2] + Lambda[3]] + q^2*B[Lambda[1]
+ Lambda[3]] + (q^2+q)*B[Lambda[2] + Lambda[3]] + B[2*Lambda[2]
+ Lambda[3]] + (q^3+q^2)*B[Lambda[3]]
sage: RC = RiggedConfigurations(['C', 3, 1], [[3,1], [2,2]])
sage: RC.fermionic_formula(only_highest_weight=True) # long time
(q^3+q^2)*B[Lambda[1] + Lambda[2]] + q*B[Lambda[1] + 2*Lambda[2]]
+ (q^2+q)*B[2*Lambda[1] + Lambda[3]] + B[2*Lambda[2] + Lambda[3]]
+ (q^4+q^3+q^2)*B[Lambda[3]]
sage: RC = RiggedConfigurations(['D', 4, 2], [[3,1], [2,2]])
sage: RC.fermionic_formula(only_highest_weight=True) # long time
(q^2+q)*B[Lambda[1] + Lambda[2] + Lambda[3]] + (q^5+2*q^4+q^3)*B[Lambda[1]
+ Lambda[3]] + (q^3+q^2)*B[2*Lambda[1] + Lambda[3]] + (q^4+q^3+q^2)*B[Lambda[2]
+ Lambda[3]] + B[2*Lambda[2] + Lambda[3]] + (q^6+q^5+q^4)*B[Lambda[3]]
sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[1,1],[2,2]])
sage: RC.fermionic_formula(only_highest_weight=True)
(q^3+q^2)*B[Lambda[1]] + (q^2+q)*B[Lambda[1] + 2*Lambda[2]]
+ B[Lambda[1] + 4*Lambda[2]] + q*B[3*Lambda[1]] + q*B[4*Lambda[2]]

kleber_tree()
Return the underlying Kleber tree used to generate all highest weight rigged configurations.

EXAMPLES:

sage: RC = RiggedConfigurations(['A',3,1], [[1,1], [2,1]])
sage: RC.kleber_tree()
Kleber tree of Cartan type ['A', 3, 1] and B = ((1, 1), (2, 1))

5.1. Comprehensive Module List 2141

Combinatorics, Release 9.7

module_generators()
Module generators for this set of rigged configurations.

Iterate over the highest weight rigged configurations by moving through the KleberTree and then setting
appropriate values of the partitions.

EXAMPLES:

sage: RC = RiggedConfigurations(['D', 4, 1], [[2,1]])
sage: for x in RC.module_generators: x

(/)

(/)

(/)

(/)

0[]0

0[]0
0[]0

0[]0

0[]0

options(*get_value, **set_value)
Sets and displays the options for rigged configurations. If no parameters are set, then the function returns
a copy of the options dictionary.

The options to partitions can be accessed as the method RiggedConfigurations.options of
RiggedConfigurations.

OPTIONS:

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• display – (default: vertical) Specifies how rigged configurations should be printed

– horizontal – displayed horizontally

– vertical – displayed vertically

• element_ascii_art – (default: True) display using the repr option element_ascii_art

• half_width_boxes_type_B – (default: True) display the last rigged partition in affine type B as
half width boxes

• notation – alternative name for convention

EXAMPLES:

2142 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: RC = RiggedConfigurations(['A',3,1], [[2,2],[1,1],[1,1]])
sage: elt = RC(partition_list=[[3,1], [3], [1]])
sage: elt

-3[][][]-3
-1[]-1

1[][][]1

-1[]-1

sage: RiggedConfigurations.options(display="horizontal", convention="french")
sage: elt
-1[]-1 1[][][]1 -1[]-1
-3[][][]-3

Changing the convention for rigged configurations also changes the convention option for tableaux and
vice versa:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T.pp()
4 5
1 2 3

sage: Tableaux.options.convention="english"
sage: elt
-3[][][]-3 1[][][]1 -1[]-1
-1[]-1
sage: T.pp()
1 2 3
4 5

sage: RiggedConfigurations.options._reset()

See GlobalOptions for more features of these options.

tensor(*crystals, **options)
Return the tensor product of self with crystals.

If crystals is a list of rigged configurations of the same Cartan type, then this returns a new
RiggedConfigurations.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 3, 1], [[2,1],[1,3]])
sage: RC2 = RiggedConfigurations(['A', 3, 1], [[1,1], [3,3]])
sage: RC.tensor(RC2, RC2)
Rigged configurations of type ['A', 3, 1]
and factor(s) ((2, 1), (1, 3), (1, 1), (3, 3), (1, 1), (3, 3))

sage: K = crystals.KirillovReshetikhin(['A', 3, 1], 2, 2, model='KR')
sage: RC.tensor(K)
Full tensor product of the crystals
[Rigged configurations of type ['A', 3, 1] and factor(s) ((2, 1), (1, 3)),
Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and shape (2, 2)]

5.1. Comprehensive Module List 2143

../../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

tensor_product_of_kirillov_reshetikhin_crystals()
Return the corresponding tensor product of Kirillov-Reshetikhin crystals.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 3, 1], [[3,1],[2,2]])
sage: RC.tensor_product_of_kirillov_reshetikhin_crystals()
Full tensor product of the crystals
[Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(3,1),
Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(2,2)]

tensor_product_of_kirillov_reshetikhin_tableaux()
Return the corresponding tensor product of Kirillov-Reshetikhin tableaux.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [1, 2]])
sage: RC.tensor_product_of_kirillov_reshetikhin_tableaux()
Tensor product of Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and␣
→˓factor(s) ((3, 2), (1, 2))

5.1.212 Rigged Partitions

Class and methods of the rigged partition which are used by the rigged configuration class. This is an internal class
used by the rigged configurations and KR tableaux during the bijection, and is not to be used by the end-user.

We hold the partitions as an 1-dim array of positive integers where each value corresponds to the length of the row.
This is the shape of the partition which can be accessed by the regular index.

The data for the vacancy number is also stored in a 1-dim array which each entry corresponds to the row of the tableau,
and similarly for the partition values.

AUTHORS:

• Travis Scrimshaw (2010-09-26): Initial version

Todo: Convert this to using multiplicities 𝑚𝑖 (perhaps with a dictionary?)?

class sage.combinat.rigged_configurations.rigged_partition.RiggedPartition
Bases: sage.structure.sage_object.SageObject

The RiggedPartition class which is the data structure of a rigged (i.e. marked or decorated) Young diagram of a
partition.

Note that this class as a stand-alone object does not make sense since the vacancy numbers are calculated using
the entire rigged configuration. For more, see RiggedConfigurations.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]])
sage: RP = RC(partition_list=[[2],[2,2],[2,1],[2]])[2]
sage: RP
0[][]0
-1[]-1

get_num_cells_to_column(end_column, t=1)
Get the number of cells in all columns before the end_column.

2144 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

INPUT:

• end_column – The index of the column to end at

• t – The scaling factor

OUTPUT:

• The number of cells

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]])
sage: RP = RC(partition_list=[[2],[2,2],[2,1],[2]])[2]
sage: RP.get_num_cells_to_column(1)
2
sage: RP.get_num_cells_to_column(2)
3
sage: RP.get_num_cells_to_column(3)
3
sage: RP.get_num_cells_to_column(3, 2)
5

insert_cell(max_width)
Insert a cell given at a singular value as long as its less than the specified width.

Note that insert_cell() does not update riggings or vacancy numbers, but it does prepare the space for
them. Returns the width of the row we inserted at.

INPUT:

• max_width – The maximum width (i.e. row length) that we can insert the cell at

OUTPUT:

• The width of the row we inserted at.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]])
sage: RP = RC(partition_list=[[2],[2,2],[2,1],[2]])[2]
sage: RP.insert_cell(2)
2
sage: RP
0[][][]None

-1[]-1

remove_cell(row, num_cells=1)
Removes a cell at the specified row.

Note that remove_cell() does not set/update the vacancy numbers or the riggings, but guarantees that
the location has been allocated in the returned index.

INPUT:

• row – the row to remove the cell from

• num_cells – (default: 1) the number of cells to remove

OUTPUT:

• The location of the newly constructed row or None if unable to remove row or if deleted a row.

5.1. Comprehensive Module List 2145

Combinatorics, Release 9.7

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]])
sage: RP = RC(partition_list=[[2],[2,2],[2,1],[2]])[2]
sage: RP.remove_cell(0)
0
sage: RP
None[]None

-1[]-1

rigging

vacancy_numbers

class sage.combinat.rigged_configurations.rigged_partition.RiggedPartitionTypeB
Bases: sage.combinat.rigged_configurations.rigged_partition.RiggedPartition

Rigged partitions for type𝐵(1)
𝑛 which has special printing rules which comes from the fact that the 𝑛-th partition

can have columns of width 1
2 .

5.1.213 Tensor Product of Kirillov-Reshetikhin Tableaux

A tensor product of KirillovReshetikhinTableaux which are tableaux of 𝑟 rows and 𝑠 columns which naturally
arise in the bijection between rigged configurations and tableaux and which are in bijection with the elements of the
Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠, see KirillovReshetikhinCrystal().

AUTHORS:

• Travis Scrimshaw (2010-09-26): Initial version

EXAMPLES:

Type 𝐴(1)
𝑛 examples:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[3,1], [2,
→˓1]])
sage: KRT
Tensor product of Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and factor(s) ((3,␣
→˓1), (2, 1))
sage: KRT.cardinality()
24
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[1,1], [2,1],
→˓ [3,1]])
sage: KRT
Tensor product of Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and factor(s) ((1,␣
→˓1), (2, 1), (3, 1))
sage: len(KRT.module_generators)
5
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[1,1], [2,1],
→˓ [3,1]])
sage: KRT.cardinality()
96

Type 𝐷(1)
𝑛 examples:

2146 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1], [[1, 1], [2,
→˓ 1], [1, 1]])
sage: KRT
Tensor product of Kirillov-Reshetikhin tableaux of type ['D', 4, 1] and factor(s) ((1,␣
→˓1), (2, 1), (1, 1))
sage: T = KRT(pathlist=[[1], [-2, 2], [1]])
sage: T
[[1]] (X) [[2], [-2]] (X) [[1]]
sage: T2 = KRT(pathlist=[[1], [2, -2], [1]])
sage: T2
[[1]] (X) [[-2], [2]] (X) [[1]]
sage: T == T2
False

class sage.combinat.rigged_configurations.tensor_product_kr_tableaux.HighestWeightTensorKRT(tp_krt)
Bases: sage.structure.unique_representation.UniqueRepresentation

Class so we do not have to build the module generators for TensorProductOfKirillovReshetikhinTableaux
at initialization.

Warning: This class is for internal use only!

cardinality()
Return the cardinality of self, which is the number of highest weight elements.

EXAMPLES:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D',4,1], [[2,
→˓2]])
sage: from sage.combinat.rigged_configurations.tensor_product_kr_tableaux␣
→˓import HighestWeightTensorKRT
sage: HW = HighestWeightTensorKRT(KRT)
sage: HW.cardinality()
3
sage: len(HW)
3
sage: len(KRT.module_generators)
3

class sage.combinat.rigged_configurations.tensor_product_kr_tableaux.TensorProductOfKirillovReshetikhinTableaux(cartan_type,
B)

Bases: sage.combinat.crystals.tensor_product.FullTensorProductOfRegularCrystals

A tensor product of KirillovReshetikhinTableaux.

Through the bijection with rigged configurations, the tableaux that are produced in all nonexceptional types are
all of rectangular shapes and do not necessarily obey the usual strict increase in columns and weak increase in
rows. The relation between the elements of the Kirillov-Reshetikhin crystal, given by the Kashiwara-Nakashima
tableaux, and the Kirillov-Reshetikhin tableaux is given by a filling map.

Note: The tableaux for all non-simply-laced types are provably correct if the bijection with rigged
configurations holds. Therefore this is currently only proven for 𝐵𝑟,1 or 𝐵1,𝑠 and in general for types 𝐴(1)

𝑛

5.1. Comprehensive Module List 2147

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

and 𝐷(1)
𝑛 .

For more information see [OSS2011] and KirillovReshetikhinTableaux.

For more information on KR crystals, see sage.combinat.crystals.kirillov_reshetikhin.

INPUT:

• cartan_type – a Cartan type

• B – an (ordered) list of pairs (𝑟, 𝑠) which give the dimension of a rectangle with 𝑟 rows and 𝑠 columns and
corresponds to a Kirillov-Reshetikhin tableaux factor of 𝐵𝑟,𝑠.

REFERENCES:

EXAMPLES:

We can go between tensor products of KR crystals and rigged configurations:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[3,1],
→˓[2,2]])
sage: tp_krt = KRT(pathlist=[[3,2,1],[3,2,3,2]]); tp_krt
[[1], [2], [3]] (X) [[2, 2], [3, 3]]
sage: RC = RiggedConfigurations(['A',3,1], [[3,1],[2,2]])
sage: rc_elt = tp_krt.to_rigged_configuration(); rc_elt

-2[][]-2

0[][]0

(/)

sage: tp_krc = tp_krt.to_tensor_product_of_kirillov_reshetikhin_crystals(); tp_krc
[[[1], [2], [3]], [[2, 2], [3, 3]]]
sage: KRT(tp_krc) == tp_krt
True
sage: rc_elt == tp_krt.to_rigged_configuration()
True
sage: KR1 = crystals.KirillovReshetikhin(['A',3,1], 3,1)
sage: KR2 = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: T = crystals.TensorProduct(KR1, KR2)
sage: t = T(KR1(3,2,1), KR2(3,2,3,2))
sage: KRT(t) == tp_krt
True
sage: t == tp_krc
True

We can get the highest weight elements by using the attribute module_generators:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[3,1],␣
→˓[2,1]])
sage: list(KRT.module_generators)
[[[1], [2], [3]] (X) [[1], [2]], [[1], [3], [4]] (X) [[1], [2]]]

To create elements directly (i.e. not passing in KR tableaux elements), there is the pathlist option will receive a
list of lists which contain the reversed far-eastern reading word of the tableau. That is to say, in English notation,
the word obtain from reading bottom-to-top, left-to-right.

2148 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[3,2],␣
→˓[1,2], [2,1]])
sage: elt = KRT(pathlist=[[3, 2, 1, 4, 2, 1], [1, 3], [3, 1]])
sage: elt.pp()
1 1 (X) 1 3 (X) 1
2 2 3
3 4

One can still create elements in the same way as tensor product of crystals:

sage: K1 = crystals.KirillovReshetikhin(['A',3,1], 3, 2, model='KR')
sage: K2 = crystals.KirillovReshetikhin(['A',3,1], 1, 2, model='KR')
sage: K3 = crystals.KirillovReshetikhin(['A',3,1], 2, 1, model='KR')
sage: eltlong = KRT(K1(3, 2, 1, 4, 2, 1), K2(1, 3), K3(3, 1))
sage: eltlong == elt
True

Element
alias of sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.
TensorProductOfKirillovReshetikhinTableauxElement

rigged_configurations()
Return the corresponding set of rigged configurations.

EXAMPLES:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[1,
→˓3], [2,1]])
sage: KRT.rigged_configurations()
Rigged configurations of type ['A', 3, 1] and factor(s) ((1, 3), (2, 1))

tensor(*crystals, **options)
Return the tensor product of self with crystals.

If crystals is a list of (a tensor product of) KR tableaux, this returns a
TensorProductOfKirillovReshetikhinTableaux.

EXAMPLES:

sage: TP = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 3, 1], [[1,
→˓3],[3,1]])
sage: K = crystals.KirillovReshetikhin(['A', 3, 1], 2, 2, model='KR')
sage: TP.tensor(K, TP)
Tensor product of Kirillov-Reshetikhin tableaux of type ['A', 3, 1]
and factor(s) ((1, 3), (3, 1), (2, 2), (1, 3), (3, 1))

sage: C = crystals.KirillovReshetikhin(['A',3,1], 3, 1, model='KN')
sage: TP.tensor(K, C)
Full tensor product of the crystals
[Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and shape (1, 3),
Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and shape (3, 1),
Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and shape (2, 2),
Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(3,1)]

tensor_product_of_kirillov_reshetikhin_crystals()
Return the corresponding tensor product of Kirillov-Reshetikhin crystals.

5.1. Comprehensive Module List 2149

Combinatorics, Release 9.7

EXAMPLES:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[3,
→˓1],[2,2]])
sage: KRT.tensor_product_of_kirillov_reshetikhin_crystals()
Full tensor product of the crystals [Kirillov-Reshetikhin crystal of type ['A',␣
→˓3, 1] with (r,s)=(3,1),
Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(2,2)]

5.1.214 Tensor Product of Kirillov-Reshetikhin Tableaux Elements

A tensor product of KirillovReshetikhinTableauxElement.

AUTHORS:

• Travis Scrimshaw (2010-09-26): Initial version

class sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.TensorProductOfKirillovReshetikhinTableauxElement(parent,
list=[[]],
**op-
tions)

Bases: sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement

An element in a tensor product of Kirillov-Reshetikhin tableaux.

For more on tensor product of Kirillov-Reshetikhin tableaux, see TensorProductOfKirillovReshetikhinTableaux.

The most common way to construct an element is to specify the option pathlist which is a list of lists which
will be used to generate the individual factors of KirillovReshetikhinTableauxElement.

EXAMPLES:

Type 𝐴(1)
𝑛 examples:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 3, 1], [[1,1],
→˓ [2,1], [1,1], [2,1], [2,1], [2,1]])
sage: T = KRT(pathlist=[[2], [4,1], [3], [4,2], [3,1], [2,1]])
sage: T
[[2]] (X) [[1], [4]] (X) [[3]] (X) [[2], [4]] (X) [[1], [3]] (X) [[1], [2]]
sage: T.to_rigged_configuration()

0[][]0
1[]1

1[][]0
1[]0
1[]0

0[][]0

sage: T = KRT(pathlist=[[1], [2,1], [1], [4,1], [3,1], [2,1]])
sage: T
[[1]] (X) [[1], [2]] (X) [[1]] (X) [[1], [4]] (X) [[1], [3]] (X) [[1], [2]]
sage: T.to_rigged_configuration()

(/)
(continues on next page)

2150 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

1[]0
1[]0

0[]0

Type 𝐷(1)
𝑛 examples:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1], [[1,1],
→˓ [1,1], [1,1], [1,1]])
sage: T = KRT(pathlist=[[-1], [-1], [1], [1]])
sage: T
[[-1]] (X) [[-1]] (X) [[1]] (X) [[1]]
sage: T.to_rigged_configuration()

0[][]0
0[][]0

0[][]0
0[][]0

0[][]0

0[][]0

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1], [[2,1],
→˓ [1,1], [1,1], [1,1]])
sage: T = KRT(pathlist=[[3,2], [1], [-1], [1]])
sage: T
[[2], [3]] (X) [[1]] (X) [[-1]] (X) [[1]]
sage: T.to_rigged_configuration()

0[]0
0[]0
0[]0

0[]0
0[]0
0[]0

1[]0

1[]0

sage: T.to_rigged_configuration().to_tensor_product_of_kirillov_reshetikhin_
→˓tableaux()
[[2], [3]] (X) [[1]] (X) [[-1]] (X) [[1]]

classical_weight()
Return the classical weight of self.

EXAMPLES:

5.1. Comprehensive Module List 2151

Combinatorics, Release 9.7

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D',4,1], [[2,
→˓2]])
sage: elt = KRT(pathlist=[[3,2,-1,1]]); elt
[[2, 1], [3, -1]]
sage: elt.classical_weight()
(0, 1, 1, 0)
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[2,
→˓2],[1,3]])
sage: elt = KRT(pathlist=[[2,1,3,2],[1,4,4]]); elt
[[1, 2], [2, 3]] (X) [[1, 4, 4]]
sage: elt.classical_weight()
(2, 2, 1, 2)

left_split()
Return the image of self under the left column splitting map.

EXAMPLES:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[2,
→˓2],[1,3]])
sage: elt = KRT(pathlist=[[2,1,3,2],[1,4,4]]); elt.pp()
1 2 (X) 1 4 4
2 3

sage: elt.left_split().pp()
1 (X) 2 (X) 1 4 4
2 3

lusztig_involution()
Return the result of the classical Lusztig involution on self.

EXAMPLES:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[2,
→˓2],[1,3]])
sage: elt = KRT(pathlist=[[2,1,3,2],[1,4,4]])
sage: li = elt.lusztig_involution(); li
[[1, 1, 4]] (X) [[2, 3], [3, 4]]
sage: li.parent()
Tensor product of Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and␣
→˓factor(s) ((1, 3), (2, 2))

pp()
Pretty print self.

EXAMPLES:

sage: TPKRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',4,1],␣
→˓[[2,2],[3,1],[3,3]])
sage: TPKRT.module_generators[0].pp()
1 1 (X) 1 (X) 1 1 1
2 2 2 2 2 2

3 3 3 3

right_split()
Return the image of self under the right column splitting map.

2152 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[2,
→˓2],[1,3]])
sage: elt = KRT(pathlist=[[2,1,3,2],[1,4,4]]); elt.pp()
1 2 (X) 1 4 4
2 3

sage: elt.right_split().pp()
1 2 (X) 1 4 (X) 4
2 3

Let * denote the Lusztig involution, we check that * ∘ ls ∘ * = rs:

sage: all(x.lusztig_involution().left_split().lusztig_involution() == x.right_
→˓split() for x in KRT)
True

to_rigged_configuration(display_steps=False)
Perform the bijection from self to a rigged configuration which is described in [RigConBijection],
[BijectionLRT], and [BijectionDn].

Note: This is only proven to be a bijection in types 𝐴(1)
𝑛 and 𝐷(1)

𝑛 , as well as
⨂︀

𝑖𝐵
𝑟𝑖,1 and

⨂︀
𝑖𝐵

1,𝑠𝑖 for
general affine types.

INPUT:

• display_steps – (default: False) Boolean which indicates if we want to output each step in the
algorithm.

OUTPUT:

The rigged configuration corresponding to self.

EXAMPLES:

Type 𝐴(1)
𝑛 example:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 3, 1],␣
→˓[[2,1], [2,1], [2,1]])
sage: T = KRT(pathlist=[[4, 2], [3, 1], [2, 1]])
sage: T
[[2], [4]] (X) [[1], [3]] (X) [[1], [2]]
sage: T.to_rigged_configuration()

0[]0

1[]1
1[]0

0[]0

Type 𝐷(1)
𝑛 example:

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1],␣
→˓[[2,2]])
sage: T = KRT(pathlist=[[2,1,4,3]])

(continues on next page)

5.1. Comprehensive Module List 2153

Combinatorics, Release 9.7

(continued from previous page)

sage: T
[[1, 3], [2, 4]]
sage: T.to_rigged_configuration()

0[]0

-1[]-1
-1[]-1

0[]0

(/)

Type 𝐷(1)
𝑛 spinor example:

sage: CP = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 5, 1], [[5,
→˓1],[2,1],[1,1],[1,1],[1,1]])
sage: elt = CP(pathlist=[[-2,-5,4,3,1],[-1,2],[1],[1],[1]])
sage: elt
[[1], [3], [4], [-5], [-2]] (X) [[2], [-1]] (X) [[1]] (X) [[1]] (X) [[1]]
sage: elt.to_rigged_configuration()

2[][]1

0[][]0
0[]0

0[][]0
0[]0

0[]0

0[][]0

This is invertible by calling to_tensor_product_of_kirillov_reshetikhin_tableaux():

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1],␣
→˓[[2,2]])
sage: T = KRT(pathlist=[[2,1,4,3]])
sage: rc = T.to_rigged_configuration()
sage: ret = rc.to_tensor_product_of_kirillov_reshetikhin_tableaux(); ret
[[1, 3], [2, 4]]
sage: ret == T
True

to_tensor_product_of_kirillov_reshetikhin_crystals()
Return a tensor product of Kirillov-Reshetikhin crystals corresponding to self.

This works by performing the filling map on each individual factor. For more on the filling map, see
KirillovReshetikhinTableaux.

EXAMPLES:

2154 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D',4,1], [[1,
→˓1],[2,2]])
sage: elt = KRT(pathlist=[[-1],[-1,2,-1,1]]); elt
[[-1]] (X) [[2, 1], [-1, -1]]
sage: tp_krc = elt.to_tensor_product_of_kirillov_reshetikhin_crystals(); tp_krc
[[[-1]], [[2], [-1]]]

We can recover the original tensor product of KR tableaux:

sage: ret = KRT(tp_krc); ret
[[-1]] (X) [[2, 1], [-1, -1]]
sage: ret == elt
True

5.1.215 Root Systems

Quickref

• T = CartanType(["A", 3]), T.is_finite() – Cartan types

• T.dynkin_diagram(), DynkinDiagram(["G",2]) – Dynkin diagrams

• T.cartan_matrix(), CartanMatrix(["F",4]) – Cartan matrices

• RootSystem(T).weight_lattice() – Root systems

• WeylGroup(["B", 6, 1]).simple_reflections() – Affine Weyl groups

• WeylCharacterRing(["D", 4]) – Weyl character rings

Introductory material

• Root Systems – This overview

• CartanType – An introduction to Cartan types

• RootSystem – An introduction to root systems

• Tutorial: visualizing root systems – A root system visualization tutorial

• The Lie Methods and Related Combinatorics thematic tutorial

Related material

• Crystals – Crystals

5.1. Comprehensive Module List 2155

../../../../../thematic_tutorials/lie.html

Combinatorics, Release 9.7

Cartan datum

• Cartan types

• Dynkin diagrams

• Cartan matrices

• Coxeter Matrices

• Coxeter Types

Root systems

• Root Systems

• Tutorial: visualizing root systems

• Root lattice realizations

• Group algebras of root lattice realizations

• Weight lattice realizations

• Root lattices and root spaces

• Weight lattices and weight spaces

• Ambient lattices and ambient spaces

Coxeter groups

• Coxeter Groups

• Weyl Groups

• Extended Affine Weyl Groups

• Fundamental Group of an Extended Affine Weyl Group

• Braid Move Calculator

• Braid Orbit

See also:

The categories CoxeterGroups and WeylGroups

Finite reflection groups

• Finite complex reflection groups

• Finite real reflection groups

See also:

The category ComplexReflectionGroups

2156 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/coxeter_groups.html#sage.categories.coxeter_groups.CoxeterGroups
../../../../../../../html/en/reference/categories/sage/categories/weyl_groups.html#sage.categories.weyl_groups.WeylGroups
../../../../../../../html/en/reference/categories/sage/categories/complex_reflection_groups.html#sage.categories.complex_reflection_groups.ComplexReflectionGroups

Combinatorics, Release 9.7

Representation theory

• Weyl Character Rings

• Fusion Rings

• Integrable Representations of Affine Lie Algebras

• Branching Rules

• Hecke algebra representations

• Nonsymmetric Macdonald polynomials

Root system data and code for specific families of Cartan types

• Root system data for affine Cartan types

• Root system data for dual Cartan types

• Root system data for folded Cartan types

• Root system data for reducible Cartan types

• Root system data for relabelled Cartan types

• Root system data for Cartan types with marked nodes

Root system data and code for specific Cartan types

• Root system data for type A

• Root system data for type B

• Root system data for type C

• Root system data for type D

• Root system data for type E

• Root system data for type F

• Root system data for type G

• Root system data for type H

• Root system data for type I

• Root system data for (untwisted) type A affine

• Root system data for (untwisted) type B affine

• Root system data for (untwisted) type C affine

• Root system data for (untwisted) type D affine

• Root system data for (untwisted) type E affine

• Root system data for (untwisted) type F affine

• Root system data for (untwisted) type G affine

• Root system data for type BC affine

• Root system data for super type A

5.1. Comprehensive Module List 2157

Combinatorics, Release 9.7

• Root system data for type A infinity

5.1.216 Ambient lattices and ambient spaces

class sage.combinat.root_system.ambient_space.AmbientSpace(root_system, base_ring,
index_set=None)

Bases: sage.combinat.free_module.CombinatorialFreeModule

Abstract class for ambient spaces

All subclasses should implement a class method smallest_base_ring taking a Cartan type as input, and a
method dimension working on a partially initialized instance with just root_system as attribute. There is no
safe default implementation for the later, so none is provided.

EXAMPLES:

sage: AL = RootSystem(['A',2]).ambient_lattice()

Note: This is only used so far for finite root systems.

Caveat: Most of the ambient spaces currently have a basis indexed by 0, . . . , 𝑛, unlike the usual mathematical
convention:

sage: e = AL.basis()
sage: e[0], e[1], e[2]
((1, 0, 0), (0, 1, 0), (0, 0, 1))

This will be cleaned up!

See also:

• sage.combinat.root_system.type_A.AmbientSpace

• sage.combinat.root_system.type_B.AmbientSpace

• sage.combinat.root_system.type_C.AmbientSpace

• sage.combinat.root_system.type_D.AmbientSpace

• sage.combinat.root_system.type_E.AmbientSpace

• sage.combinat.root_system.type_F.AmbientSpace

• sage.combinat.root_system.type_G.AmbientSpace

• sage.combinat.root_system.type_dual.AmbientSpace

• sage.combinat.root_system.type_affine.AmbientSpace

Element
alias of AmbientSpaceElement

coroot_lattice()
EXAMPLES:

sage: e = RootSystem(["A", 3]).ambient_lattice()
sage: e.coroot_lattice()
Ambient lattice of the Root system of type ['A', 3]

2158 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

dimension()
Return the dimension of this ambient space.

EXAMPLES:

sage: from sage.combinat.root_system.ambient_space import AmbientSpace
sage: e = RootSystem(['F',4]).ambient_space()
sage: AmbientSpace.dimension(e)
Traceback (most recent call last):
...
NotImplementedError

from_vector_notation(weight, style='lattice')
INPUT:

• weight - a vector or tuple representing a weight

Returns an element of self. If the weight lattice is not of full rank, it coerces it into the weight lattice,
or its ambient space by orthogonal projection. This arises in two cases: for SL(r+1), the weight lattice is
contained in a hyperplane of codimension one in the ambient, space, and for types E6 and E7, the weight
lattice is contained in a subspace of codimensions 2 or 3, respectively.

If style=”coroots” and the data is a tuple of integers, it is assumed that the data represent a linear combination
of fundamental weights. If style=”coroots”, and the root lattice is not of full rank in the ambient space, it is
projected into the subspace corresponding to the semisimple derived group. This arises with Cartan type
A, E6 and E7.

EXAMPLES:

sage: RootSystem("A2").ambient_space().from_vector_notation((1,0,0))
(1, 0, 0)
sage: RootSystem("A2").ambient_space().from_vector_notation([1,0,0])
(1, 0, 0)
sage: RootSystem("A2").ambient_space().from_vector_notation((1,0),style="coroots
→˓")
(2/3, -1/3, -1/3)

fundamental_weight(i)
Returns the fundamental weight Λ𝑖 in self

In several of the ambient spaces, it is more convenient to construct all fundamental weights at once.
To support this, we provide this default implementation of fundamental_weight using the method
fundamental_weights. Beware that this will cause a loop if neither fundamental_weight nor
fundamental_weights is implemented.

EXAMPLES:

sage: e = RootSystem(['F',4]).ambient_space()
sage: e.fundamental_weight(3)
(3/2, 1/2, 1/2, 1/2)

sage: e = RootSystem(['G',2]).ambient_space()
sage: e.fundamental_weight(1)
(1, 0, -1)

sage: e = RootSystem(['E',6]).ambient_space()
sage: e.fundamental_weight(3)
(-1/2, 1/2, 1/2, 1/2, 1/2, -5/6, -5/6, 5/6)

5.1. Comprehensive Module List 2159

Combinatorics, Release 9.7

reflection(root, coroot=None)
EXAMPLES:

sage: e = RootSystem(["A", 3]).ambient_lattice()
sage: a = e.simple_root(0); a
(-1, 0, 0, 0)
sage: b = e.simple_root(1); b
(1, -1, 0, 0)
sage: s_a = e.reflection(a)
sage: s_a(b)
(0, -1, 0, 0)

simple_coroot(i)
Returns the i-th simple coroot, as an element of this space

EXAMPLES:

sage: R = RootSystem(["A",3])
sage: L = R.ambient_lattice()
sage: L.simple_coroot(1)
(1, -1, 0, 0)
sage: L.simple_coroot(2)
(0, 1, -1, 0)
sage: L.simple_coroot(3)
(0, 0, 1, -1)

classmethod smallest_base_ring(cartan_type=None)
Return the smallest ground ring over which the ambient space can be realized.

This class method will get called with the Cartan type as input. This default implementation returns Q;
subclasses should override it as appropriate.

EXAMPLES:

sage: e = RootSystem(['F',4]).ambient_space()
sage: e.smallest_base_ring()
Rational Field

to_ambient_space_morphism()
Return the identity map on self.

This is present for uniformity of use; the corresponding method for abstract root and weight lattices/spaces,
is not trivial.

EXAMPLES:

sage: P = RootSystem(['A',2]).ambient_space()
sage: f = P.to_ambient_space_morphism()
sage: p = P.an_element()
sage: p
(2, 2, 3)
sage: f(p)
(2, 2, 3)
sage: f(p)==p
True

2160 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.root_system.ambient_space.AmbientSpaceElement
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

associated_coroot()
EXAMPLES:

sage: e = RootSystem(['F',4]).ambient_space()
sage: a = e.simple_root(0); a
(1/2, -1/2, -1/2, -1/2)
sage: a.associated_coroot()
(1, -1, -1, -1)

coerce_to_e6()
For type E7 or E8, orthogonally projects an element of the root lattice into the E6 root lattice. This operation
on weights corresponds to intersection with the semisimple subgroup E6.

EXAMPLES:

sage: [b.coerce_to_e6() for b in RootSystem("E8").ambient_space().basis()]
[(1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1/3, 1/3, -
→˓1/3),
(0, 0, 0, 0, 0, 1/3, 1/3, -1/3), (0, 0, 0, 0, 0, -1/3, -1/3, 1/3)]

coerce_to_e7()
For type E8, this orthogonally projects the given element of the E8 root lattice into the E7 root lattice. This
operation on weights corresponds to intersection with the semisimple subgroup E7.

EXAMPLES:

sage: [b.coerce_to_e7() for b in RootSystem("E8").ambient_space().basis()]
[(1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 0, 1/2, -1/2), (0, 0, 0, 0, 0, 0, -1/2, 1/2)]

coerce_to_sl()
For type [‘A’,r], this coerces the element of the ambient space into the root space by orthogonal projection.
The root space has codimension one and corresponds to the Lie algebra of SL(r+1,CC), whereas the full
weight space corresponds to the Lie algebra of GL(r+1,CC). So this operation corresponds to multiplication
by a (possibly fractional) power of the determinant to give a weight determinant one.

EXAMPLES:

sage: [fw.coerce_to_sl() for fw in RootSystem("A2").ambient_space().fundamental_
→˓weights()]
[(2/3, -1/3, -1/3), (1/3, 1/3, -2/3)]
sage: L = RootSystem("A2xA3").ambient_space()
sage: L([1,2,3,4,5,0,0]).coerce_to_sl()
(-1, 0, 1, 7/4, 11/4, -9/4, -9/4)

dot_product(lambdacheck)
The scalar product with elements of the coroot lattice embedded in the ambient space.

EXAMPLES:

5.1. Comprehensive Module List 2161

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

sage: e = RootSystem(['A',2]).ambient_space()
sage: a = e.simple_root(0); a
(-1, 0, 0)
sage: a.inner_product(a)
2

inner_product(lambdacheck)
The scalar product with elements of the coroot lattice embedded in the ambient space.

EXAMPLES:

sage: e = RootSystem(['A',2]).ambient_space()
sage: a = e.simple_root(0); a
(-1, 0, 0)
sage: a.inner_product(a)
2

is_positive_root()
EXAMPLES:

sage: R = RootSystem(['A',3]).ambient_space()
sage: r=R.simple_root(1)+R.simple_root(2)
sage: r.is_positive_root()
True
sage: r=R.simple_root(1)-R.simple_root(2)
sage: r.is_positive_root()
False

scalar(lambdacheck)
The scalar product with elements of the coroot lattice embedded in the ambient space.

EXAMPLES:

sage: e = RootSystem(['A',2]).ambient_space()
sage: a = e.simple_root(0); a
(-1, 0, 0)
sage: a.inner_product(a)
2

to_ambient()
Map self to the ambient space.

This exists for uniformity. Its analogue for root and weight lattice realizations, is not trivial.

EXAMPLES:

sage: v = CartanType(['C',3]).root_system().ambient_space().an_element(); v
(2, 2, 3)
sage: v.to_ambient()
(2, 2, 3)

2162 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.217 Associahedron

Todo:

• fix adjacency matrix

• edit graph method to get proper vertex labellings

• UniqueRepresentation?

AUTHORS:

• Christian Stump

sage.combinat.root_system.associahedron.Associahedra(base_ring, ambient_dim, backend='ppl')
Construct a parent class of Associahedra according to backend.

See also:

Associahedra_base.

class sage.combinat.root_system.associahedron.Associahedra_base
Bases: object

Base class of parent of Associahedra of specified dimension

EXAMPLES:

sage: from sage.combinat.root_system.associahedron import Associahedra
sage: parent = Associahedra(QQ,2,'ppl'); parent
Polyhedra in QQ^2
sage: type(parent)
<class 'sage.combinat.root_system.associahedron.Associahedra_ppl_with_category'>
sage: parent(['A',2])
Generalized associahedron of type ['A', 2] with 5 vertices

Importantly, the parent knows the dimension of the ambient space. If you try to construct an associahedron of a
different dimension, a ValueError is raised:

sage: parent(['A',3])
Traceback (most recent call last):
...
ValueError: V-representation data requires a list of length ambient_dim

class sage.combinat.root_system.associahedron.Associahedra_cdd(base_ring, ambient_dim,
backend)

Bases: sage.combinat.root_system.associahedron.Associahedra_base, sage.geometry.
polyhedron.parent.Polyhedra_QQ_cdd

Element
alias of Associahedron_class_cdd

class sage.combinat.root_system.associahedron.Associahedra_field(base_ring, ambient_dim,
backend)

Bases: sage.combinat.root_system.associahedron.Associahedra_base, sage.geometry.
polyhedron.parent.Polyhedra_field

Element
alias of Associahedron_class_field

5.1. Comprehensive Module List 2163

../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/parent.html#sage.geometry.polyhedron.parent.Polyhedra_QQ_cdd
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/parent.html#sage.geometry.polyhedron.parent.Polyhedra_QQ_cdd
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/parent.html#sage.geometry.polyhedron.parent.Polyhedra_field
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/parent.html#sage.geometry.polyhedron.parent.Polyhedra_field

Combinatorics, Release 9.7

class sage.combinat.root_system.associahedron.Associahedra_normaliz(base_ring, ambient_dim,
backend)

Bases: sage.combinat.root_system.associahedron.Associahedra_base, sage.geometry.
polyhedron.parent.Polyhedra_QQ_normaliz

Element
alias of Associahedron_class_normaliz

class sage.combinat.root_system.associahedron.Associahedra_polymake(base_ring, ambient_dim,
backend)

Bases: sage.combinat.root_system.associahedron.Associahedra_base, sage.geometry.
polyhedron.parent.Polyhedra_polymake

Element
alias of Associahedron_class_polymake

class sage.combinat.root_system.associahedron.Associahedra_ppl(base_ring, ambient_dim,
backend)

Bases: sage.combinat.root_system.associahedron.Associahedra_base, sage.geometry.
polyhedron.parent.Polyhedra_QQ_ppl

Element
alias of Associahedron_class_ppl

sage.combinat.root_system.associahedron.Associahedron(cartan_type, backend='ppl')
Construct an associahedron.

The generalized associahedron is a polytopal complex with vertices in one-to-one correspondence with clusters
in the cluster complex, and with edges between two vertices if and only if the associated two clusters intersect in
codimension 1.

The associahedron of type𝐴𝑛 is one way to realize the classical associahedron as defined in the Wikipedia article
Associahedron.

A polytopal realization of the associahedron can be found in [CFZ2002]. The implementation is based on
[CFZ2002], Theorem 1.5, Remark 1.6, and Corollary 1.9.

INPUT:

• cartan_type – a cartan type according to sage.combinat.root_system.cartan_type.
CartanTypeFactory

• backend – string ('ppl'); the backend to use; see sage.geometry.polyhedron.constructor.
Polyhedron()

EXAMPLES:

sage: Asso = polytopes.associahedron(['A',2]); Asso
Generalized associahedron of type ['A', 2] with 5 vertices

sage: sorted(Asso.Hrepresentation(), key=repr)
[An inequality (-1, 0) x + 1 >= 0,
An inequality (0, -1) x + 1 >= 0,
An inequality (0, 1) x + 1 >= 0,
An inequality (1, 0) x + 1 >= 0,
An inequality (1, 1) x + 1 >= 0]

sage: Asso.Vrepresentation()
(A vertex at (1, -1), A vertex at (1, 1), A vertex at (-1, 1),
A vertex at (-1, 0), A vertex at (0, -1))

(continues on next page)

2164 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/parent.html#sage.geometry.polyhedron.parent.Polyhedra_QQ_normaliz
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/parent.html#sage.geometry.polyhedron.parent.Polyhedra_QQ_normaliz
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/parent.html#sage.geometry.polyhedron.parent.Polyhedra_polymake
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/parent.html#sage.geometry.polyhedron.parent.Polyhedra_polymake
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/parent.html#sage.geometry.polyhedron.parent.Polyhedra_QQ_ppl
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/parent.html#sage.geometry.polyhedron.parent.Polyhedra_QQ_ppl
https://en.wikipedia.org/wiki/Associahedron
https://en.wikipedia.org/wiki/Associahedron

Combinatorics, Release 9.7

(continued from previous page)

sage: polytopes.associahedron(['B',2])
Generalized associahedron of type ['B', 2] with 6 vertices

The two pictures of [CFZ2002] can be recovered with:

sage: Asso = polytopes.associahedron(['A',3]); Asso
Generalized associahedron of type ['A', 3] with 14 vertices
sage: Asso.plot() # long time
Graphics3d Object

sage: Asso = polytopes.associahedron(['B',3]); Asso
Generalized associahedron of type ['B', 3] with 20 vertices
sage: Asso.plot() # long time
Graphics3d Object

class sage.combinat.root_system.associahedron.Associahedron_class_base(parent, Vrep, Hrep,
cartan_type=None,
**kwds)

Bases: object

The base class of the Python class of an associahedron

You should use the Associahedron() convenience function to construct associahedra from the Cartan type.

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: polytopes.associahedron(['A',3]).cartan_type()
['A', 3]

vertices_in_root_space()
Return the vertices of self as elements in the root space.

EXAMPLES:

sage: Asso = polytopes.associahedron(['A',2])
sage: Asso.vertices()
(A vertex at (1, -1), A vertex at (1, 1),
A vertex at (-1, 1), A vertex at (-1, 0),
A vertex at (0, -1))

sage: Asso.vertices_in_root_space()
(alpha[1] - alpha[2], alpha[1] + alpha[2], -alpha[1] + alpha[2],
-alpha[1], -alpha[2])

class sage.combinat.root_system.associahedron.Associahedron_class_cdd(parent, Vrep, Hrep,
cartan_type=None,
**kwds)

Bases: sage.combinat.root_system.associahedron.Associahedron_class_base, sage.geometry.
polyhedron.backend_cdd.Polyhedron_QQ_cdd

5.1. Comprehensive Module List 2165

../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_cdd.html#sage.geometry.polyhedron.backend_cdd.Polyhedron_QQ_cdd
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_cdd.html#sage.geometry.polyhedron.backend_cdd.Polyhedron_QQ_cdd

Combinatorics, Release 9.7

class sage.combinat.root_system.associahedron.Associahedron_class_field(parent, Vrep, Hrep,
cartan_type=None,
**kwds)

Bases: sage.combinat.root_system.associahedron.Associahedron_class_base, sage.geometry.
polyhedron.backend_field.Polyhedron_field

class sage.combinat.root_system.associahedron.Associahedron_class_normaliz(parent, Vrep,
Hrep, car-
tan_type=None,
**kwds)

Bases: sage.combinat.root_system.associahedron.Associahedron_class_base, sage.geometry.
polyhedron.backend_normaliz.Polyhedron_QQ_normaliz

class sage.combinat.root_system.associahedron.Associahedron_class_polymake(parent, Vrep,
Hrep, car-
tan_type=None,
**kwds)

Bases: sage.combinat.root_system.associahedron.Associahedron_class_base, sage.geometry.
polyhedron.backend_polymake.Polyhedron_polymake

class sage.combinat.root_system.associahedron.Associahedron_class_ppl(parent, Vrep, Hrep,
cartan_type=None,
**kwds)

Bases: sage.combinat.root_system.associahedron.Associahedron_class_base, sage.geometry.
polyhedron.backend_ppl.Polyhedron_QQ_ppl

5.1.218 Braid Move Calculator

AUTHORS:

• Dinakar Muthiah (2014-06-03): initial version

class sage.combinat.root_system.braid_move_calculator.BraidMoveCalculator(coxeter_group)
Bases: object

Helper class to compute braid moves.

chain_of_reduced_words(start_word, end_word)
Compute the chain of reduced words from stard_word to end_word.

INPUT:

• start_word, end_word – two reduced expressions for the long word

EXAMPLES:

sage: from sage.combinat.root_system.braid_move_calculator import␣
→˓BraidMoveCalculator
sage: W = CoxeterGroup(['A',5])
sage: B = BraidMoveCalculator(W)
sage: B.chain_of_reduced_words((1,2,1,3,2,1,4,3,2,1,5,4,3,2,1), # not tested
....: (5,4,5,3,4,5,2,3,4,5,1,2,3,4,5))

put_in_front(k, input_word)
Return a list of reduced words starting with input_word and ending with a reduced word whose first letter
is k.

There still remains an issue with 0 indices.

2166 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_field.html#sage.geometry.polyhedron.backend_field.Polyhedron_field
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_field.html#sage.geometry.polyhedron.backend_field.Polyhedron_field
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_normaliz.html#sage.geometry.polyhedron.backend_normaliz.Polyhedron_QQ_normaliz
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_normaliz.html#sage.geometry.polyhedron.backend_normaliz.Polyhedron_QQ_normaliz
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_polymake.html#sage.geometry.polyhedron.backend_polymake.Polyhedron_polymake
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_polymake.html#sage.geometry.polyhedron.backend_polymake.Polyhedron_polymake
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_ppl.html#sage.geometry.polyhedron.backend_ppl.Polyhedron_QQ_ppl
../../../../../../../html/en/reference/discrete_geometry/sage/geometry/polyhedron/backend_ppl.html#sage.geometry.polyhedron.backend_ppl.Polyhedron_QQ_ppl

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.root_system.braid_move_calculator import␣
→˓BraidMoveCalculator
sage: W = CoxeterGroup(['C',3])
sage: B = BraidMoveCalculator(W)
sage: B.put_in_front(2, (3, 2, 3, 1, 2, 3, 1, 2, 1))
((3, 2, 3, 1, 2, 3, 1, 2, 1),
(3, 2, 3, 1, 2, 1, 3, 2, 1),
(3, 2, 3, 2, 1, 2, 3, 2, 1),
(2, 3, 2, 3, 1, 2, 3, 2, 1))
sage: B.put_in_front(1, (3, 2, 3, 1, 2, 3, 1, 2, 1))
((3, 2, 3, 1, 2, 3, 1, 2, 1),
(3, 2, 1, 3, 2, 3, 1, 2, 1),
(3, 2, 1, 3, 2, 3, 2, 1, 2),
(3, 2, 1, 2, 3, 2, 3, 1, 2),
(3, 1, 2, 1, 3, 2, 3, 1, 2),
(1, 3, 2, 1, 3, 2, 3, 1, 2))
sage: B.put_in_front(1, (1, 3, 2, 3, 2, 1, 2, 3, 2))
((1, 3, 2, 3, 2, 1, 2, 3, 2),)

5.1.219 Braid Orbit

Cython function to compute the orbit of the braid moves on a reduced word.

sage.combinat.root_system.braid_orbit.BraidOrbit(word, rels)
Return the orbit of word by all replacements given by rels.

INPUT:

• word – list of integers

• rels – list of pairs (A, B), where A and B are lists of integers the same length

EXAMPLES:

sage: from sage.combinat.root_system.braid_orbit import BraidOrbit
sage: word = [1,2,1,3,2,1]
sage: rels = [[[2, 1, 2], [1, 2, 1]], [[3, 1], [1, 3]], [[3, 2, 3], [2, 3, 2]]]
sage: sorted(BraidOrbit(word, rels))
[(1, 2, 1, 3, 2, 1),
(1, 2, 3, 1, 2, 1),
(1, 2, 3, 2, 1, 2),
(1, 3, 2, 1, 3, 2),
(1, 3, 2, 3, 1, 2),
(2, 1, 2, 3, 2, 1),
(2, 1, 3, 2, 1, 3),
(2, 1, 3, 2, 3, 1),
(2, 3, 1, 2, 1, 3),
(2, 3, 1, 2, 3, 1),
(2, 3, 2, 1, 2, 3),
(3, 1, 2, 1, 3, 2),
(3, 1, 2, 3, 1, 2),
(3, 2, 1, 2, 3, 2),
(3, 2, 1, 3, 2, 3),

(continues on next page)

5.1. Comprehensive Module List 2167

Combinatorics, Release 9.7

(continued from previous page)

(3, 2, 3, 1, 2, 3)]
sage: len(_)
16

5.1.220 Branching Rules

class sage.combinat.root_system.branching_rules.BranchingRule(R, S, f, name='default',
intermediate_types=[],
intermediate_names=[])

Bases: sage.structure.sage_object.SageObject

A class for branching rules.

Rtype()
In a branching rule R => S, returns the Cartan Type of the ambient group R.

EXAMPLES:

sage: branching_rule("A3","A2","levi").Rtype()
['A', 3]

Stype()
In a branching rule R => S, returns the Cartan Type of the subgroup S.

EXAMPLES:

sage: branching_rule("A3","A2","levi").Stype()
['A', 2]

branch(chi, style=None)
INPUT:

• chi – A character of the WeylCharacterRing with Cartan type self.Rtype().

Returns the branched character.

EXAMPLES:

sage: G2=WeylCharacterRing("G2",style="coroots")
sage: chi=G2(1,1); chi.degree()
64
sage: b=G2.maximal_subgroup("A2"); b
extended branching rule G2 => A2
sage: b.branch(chi)
A2(0,1) + A2(1,0) + A2(0,2) + 2*A2(1,1) + A2(2,0) + A2(1,2) + A2(2,1)
sage: A2=WeylCharacterRing("A2",style="coroots"); A2
The Weyl Character Ring of Type A2 with Integer Ring coefficients
sage: chi.branch(A2,rule=b)
A2(0,1) + A2(1,0) + A2(0,2) + 2*A2(1,1) + A2(2,0) + A2(1,2) + A2(2,1)

describe(verbose=False, debug=False, no_r=False)
Describes how extended roots restrict under self.

EXAMPLES:

2168 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

sage: branching_rule("G2","A2","extended").describe()

3
O=<=O---O
1 2 0
G2~

root restrictions G2 => A2:

O---O
1 2
A2

0 => 2
2 => 1

For more detailed information use verbose=True

In this example, 0 is the affine root, that is, the negative of the highest root, for ”𝐺2”. If 𝑖 => 𝑗 is
printed, this means that the i-th simple (or affine) root of the ambient group restricts to the j-th simple root
of the subgroup. For reference the Dynkin diagrams are also printed. The extended Dynkin diagram of
the ambient group is printed if the affine root restricts to a simple root. More information is printed if the
parameter 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 is true.

sage.combinat.root_system.branching_rules.branch_weyl_character(chi, R, S, rule='default')
A branching rule describes the restriction of representations from a Lie group or algebra 𝐺 to a subgroup 𝐻 .
See for example, R. C. King, Branching rules for classical Lie groups using tensor and spinor methods. J. Phys.
A 8 (1975), 429-449, Howe, Tan and Willenbring, Stable branching rules for classical symmetric pairs, Trans.
Amer. Math. Soc. 357 (2005), no. 4, 1601-1626, McKay and Patera, Tables of Dimensions, Indices and
Branching Rules for Representations of Simple Lie Algebras (Marcel Dekker, 1981), and Fauser, Jarvis, King
and Wybourne, New branching rules induced by plethysm. J. Phys. A 39 (2006), no. 11, 2611–2655. If 𝐻 ⊂ 𝐺
we will write 𝐺⇒ 𝐻 to denote the branching rule, which is a homomorphism of WeylCharacterRings.

INPUT:

• chi – a character of 𝐺

• R – the Weyl Character Ring of 𝐺

• S – the Weyl Character Ring of 𝐻

• rule – an element of the BranchingRule class or one (most usually) a keyword such as:

– "levi"

– "automorphic"

– "symmetric"

– "extended"

– "orthogonal_sum"

– "tensor"

– "triality"

– "miscellaneous"

5.1. Comprehensive Module List 2169

Combinatorics, Release 9.7

The BranchingRule class is a wrapper for functions from the weight lattice of𝐺 to the weight lattice of𝐻 . An
instance of this class encodes an embedding of 𝐻 into 𝐺. The usual way to specify an embedding is to supply a
keyword, which tells Sage to use one of the built-in rules. We will discuss these first.

To explain the predefined rules, we survey the most important branching rules. These may be classified into
several cases, and once this is understood, the detailed classification can be read off from the Dynkin diagrams.
Dynkin classified the maximal subgroups of Lie groups in Mat. Sbornik N.S. 30(72):349-462 (1952).

We will list give predefined rules that cover most cases where the branching rule is to a maximal subgroup.
For convenience, we also give some branching rules to subgroups that are not maximal. For example, a Levi
subgroup may or may not be maximal.

For example, there is a “levi” branching rule defined from 𝑆𝐿(5) (with Cartan type 𝐴4) to 𝑆𝐿(4) (with Cartan
type 𝐴3), so we may compute the branching rule as follows:

EXAMPLES:

sage: A3=WeylCharacterRing("A3",style="coroots")
sage: A2=WeylCharacterRing("A2",style="coroots")
sage: [A3(fw).branch(A2,rule="levi") for fw in A3.fundamental_weights()]
[A2(0,0) + A2(1,0), A2(0,1) + A2(1,0), A2(0,0) + A2(0,1)]

In this case the Levi branching rule is the default branching rule so we may omit the specification rule=”levi”.

If a subgroup is not maximal, you may specify a branching rule by finding a chain of intermediate subgroups.
For this purpose, branching rules may be multiplied as in the following example.

EXAMPLES:

sage: A4=WeylCharacterRing("A4",style="coroots")
sage: A2=WeylCharacterRing("A2",style="coroots")
sage: br=branching_rule("A4","A3")*branching_rule("A3","A2")
sage: A4(1,0,0,0).branch(A2,rule=br)
2*A2(0,0) + A2(1,0)

You may try omitting the rule if it is “obvious”. Default rules are provided for the following cases:

𝐴2𝑠 ⇒ 𝐵𝑠,

𝐴2𝑠−1 ⇒ 𝐶𝑠,

𝐴2*𝑠−1 ⇒ 𝐷𝑠.

The above default rules correspond to embedding the group 𝑆𝑂(2𝑠 + 1), 𝑆𝑝(2𝑠) or 𝑆𝑂(2𝑠) into the corre-
sponding general or special linear group by the standard representation. Default rules are also specified for the
following cases:

𝐵𝑠+1 ⇒ 𝐷𝑠,

𝐷𝑠 ⇒ 𝐵𝑠.

These correspond to the embedding of 𝑂(𝑛) into 𝑂(𝑛+ 1) where 𝑛 = 2𝑠 or 2𝑠+ 1. Finally, the branching rule
for the embedding of a Levi subgroup is also implemented as a default rule.

EXAMPLES:

sage: A1 = WeylCharacterRing("A1", style="coroots")
sage: A2 = WeylCharacterRing("A2", style="coroots")
sage: D4 = WeylCharacterRing("D4", style="coroots")
sage: B3 = WeylCharacterRing("B3", style="coroots")

(continues on next page)

2170 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: B4 = WeylCharacterRing("B4", style="coroots")
sage: A6 = WeylCharacterRing("A6", style="coroots")
sage: A7 = WeylCharacterRing("A7", style="coroots")
sage: def try_default_rule(R,S): return [R(f).branch(S) for f in R.fundamental_
→˓weights()]
sage: try_default_rule(A2,A1)
[A1(0) + A1(1), A1(0) + A1(1)]
sage: try_default_rule(D4,B3)
[B3(0,0,0) + B3(1,0,0), B3(1,0,0) + B3(0,1,0), B3(0,0,1), B3(0,0,1)]
sage: try_default_rule(B4,D4)
[D4(0,0,0,0) + D4(1,0,0,0), D4(1,0,0,0) + D4(0,1,0,0),
D4(0,1,0,0) + D4(0,0,1,1), D4(0,0,1,0) + D4(0,0,0,1)]
sage: try_default_rule(A7,D4)
[D4(1,0,0,0), D4(0,1,0,0), D4(0,0,1,1), D4(0,0,2,0) + D4(0,0,0,2),
D4(0,0,1,1),
D4(0,1,0,0),
D4(1,0,0,0)]
sage: try_default_rule(A6,B3)
[B3(1,0,0), B3(0,1,0), B3(0,0,2), B3(0,0,2), B3(0,1,0), B3(1,0,0)]

If a default rule is not known, you may cue Sage as to what the Lie group embedding is by supplying a rule from
the list of predefined rules. We will treat these next.

Levi Type

These can be read off from the Dynkin diagram. If removing a node from the Dynkin diagram produces another
Dynkin diagram, there is a branching rule. A Levi subgroup may or may not be maximal. If it is maximal, there
may or may not be a built-in branching rule for but you may obtain the Levi branching rule by first branching to
a suitable maximal subgroup. For these rules use the option rule="levi":

𝐴𝑟 ⇒ 𝐴𝑟−1

𝐵𝑟 ⇒ 𝐴𝑟−1

𝐵𝑟 ⇒ 𝐵𝑟−1

𝐶𝑟 ⇒ 𝐴𝑟−1

𝐶𝑟 ⇒ 𝐶𝑟−1

𝐷𝑟 ⇒ 𝐴𝑟−1

𝐷𝑟 ⇒ 𝐷𝑟−1

𝐸𝑟 ⇒ 𝐴𝑟−1 𝑟 = 7, 8

𝐸𝑟 ⇒ 𝐷𝑟−1 𝑟 = 6, 7, 8

𝐸𝑟 ⇒ 𝐸𝑟−1

𝐹4 ⇒ 𝐵3

𝐹4 ⇒ 𝐶3

𝐺2 ⇒ 𝐴1(short root)
Not all Levi subgroups are maximal subgroups. If the Levi is not maximal there may or may not be a prepro-
grammed rule="levi" for it. If there is not, the branching rule may still be obtained by going through an in-
termediate subgroup that is maximal using rule=”extended”. Thus the other Levi branching rule from𝐺2 ⇒ 𝐴1

corresponding to the long root is available by first branching 𝐺2 ⇒ 𝐴2 then 𝐴2 ⇒ 𝐴1. Similarly the branching
rules to the Levi subgroup:

𝐸𝑟 ⇒ 𝐴𝑟−1 𝑟 = 6, 7, 8

5.1. Comprehensive Module List 2171

Combinatorics, Release 9.7

may be obtained by first branching 𝐸6 ⇒ 𝐴5 ×𝐴1, 𝐸7 ⇒ 𝐴7 or 𝐸8 ⇒ 𝐴8.

EXAMPLES:

sage: A1 = WeylCharacterRing("A1")
sage: A2 = WeylCharacterRing("A2")
sage: A3 = WeylCharacterRing("A3")
sage: A4 = WeylCharacterRing("A4")
sage: A5 = WeylCharacterRing("A5")
sage: B2 = WeylCharacterRing("B2")
sage: B3 = WeylCharacterRing("B3")
sage: B4 = WeylCharacterRing("B4")
sage: C2 = WeylCharacterRing("C2")
sage: C3 = WeylCharacterRing("C3")
sage: D3 = WeylCharacterRing("D3")
sage: D4 = WeylCharacterRing("D4")
sage: G2 = WeylCharacterRing("G2")
sage: F4 = WeylCharacterRing("F4",style="coroots")
sage: E6=WeylCharacterRing("E6",style="coroots")
sage: E7=WeylCharacterRing("E7",style="coroots")
sage: D5=WeylCharacterRing("D5",style="coroots")
sage: D6=WeylCharacterRing("D6",style="coroots")
sage: [B3(w).branch(A2,rule="levi") for w in B3.fundamental_weights()]
[A2(0,0,0) + A2(1,0,0) + A2(0,0,-1),
A2(0,0,0) + A2(1,0,0) + A2(1,1,0) + A2(1,0,-1) + A2(0,-1,-1) + A2(0,0,-1),
A2(-1/2,-1/2,-1/2) + A2(1/2,-1/2,-1/2) + A2(1/2,1/2,-1/2) + A2(1/2,1/2,1/2)]

The last example must be understood as follows. The representation of 𝐵3 being branched is spin, which is not
a representation of 𝑆𝑂(7) but of its double cover spin(7). The group 𝐴2 is really GL(3) and the double cover of
𝑆𝑂(7) induces a cover of 𝐺𝐿(3) that is trivial over 𝑆𝐿(3) but not over the center of 𝐺𝐿(3). The weight lattice
for this 𝐺𝐿(3) consists of triples (𝑎, 𝑏, 𝑐) of half integers such that 𝑎− 𝑏 and 𝑏− 𝑐 are in Z, and this is reflected
in the last decomposition.

sage: [C3(w).branch(A2,rule="levi") for w in C3.fundamental_weights()]
[A2(1,0,0) + A2(0,0,-1),
A2(1,1,0) + A2(1,0,-1) + A2(0,-1,-1),
A2(-1,-1,-1) + A2(1,-1,-1) + A2(1,1,-1) + A2(1,1,1)]
sage: [D4(w).branch(A3,rule="levi") for w in D4.fundamental_weights()]
[A3(1,0,0,0) + A3(0,0,0,-1),
A3(0,0,0,0) + A3(1,1,0,0) + A3(1,0,0,-1) + A3(0,0,-1,-1),
A3(1/2,-1/2,-1/2,-1/2) + A3(1/2,1/2,1/2,-1/2),
A3(-1/2,-1/2,-1/2,-1/2) + A3(1/2,1/2,-1/2,-1/2) + A3(1/2,1/2,1/2,1/2)]
sage: [B3(w).branch(B2,rule="levi") for w in B3.fundamental_weights()]
[2*B2(0,0) + B2(1,0), B2(0,0) + 2*B2(1,0) + B2(1,1), 2*B2(1/2,1/2)]
sage: C3 = WeylCharacterRing(['C',3])
sage: [C3(w).branch(C2,rule="levi") for w in C3.fundamental_weights()]
[2*C2(0,0) + C2(1,0),
C2(0,0) + 2*C2(1,0) + C2(1,1),
C2(1,0) + 2*C2(1,1)]
sage: [D5(w).branch(D4,rule="levi") for w in D5.fundamental_weights()]
[2*D4(0,0,0,0) + D4(1,0,0,0),
D4(0,0,0,0) + 2*D4(1,0,0,0) + D4(1,1,0,0),
D4(1,0,0,0) + 2*D4(1,1,0,0) + D4(1,1,1,0),
D4(1/2,1/2,1/2,-1/2) + D4(1/2,1/2,1/2,1/2),

(continues on next page)

2172 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

D4(1/2,1/2,1/2,-1/2) + D4(1/2,1/2,1/2,1/2)]
sage: G2(1,0,-1).branch(A1,rule="levi")
A1(1,0) + A1(1,-1) + A1(0,-1)
sage: E6=WeylCharacterRing("E6",style="coroots")
sage: D5=WeylCharacterRing("D5",style="coroots")
sage: fw = E6.fundamental_weights()
sage: [E6(fw[i]).branch(D5,rule="levi") for i in [1,2,6]]
[D5(0,0,0,0,0) + D5(0,0,0,0,1) + D5(1,0,0,0,0),
D5(0,0,0,0,0) + D5(0,0,0,1,0) + D5(0,0,0,0,1) + D5(0,1,0,0,0),
D5(0,0,0,0,0) + D5(0,0,0,1,0) + D5(1,0,0,0,0)]
sage: E7=WeylCharacterRing("E7",style="coroots")
sage: A3xA3xA1=WeylCharacterRing("A3xA3xA1",style="coroots")
sage: E7(1,0,0,0,0,0,0).branch(A3xA3xA1,rule="extended") # long time (0.7s)
A3xA3xA1(0,0,1,0,0,1,1) + A3xA3xA1(0,1,0,0,1,0,0) + A3xA3xA1(1,0,0,1,0,0,1) +
A3xA3xA1(1,0,1,0,0,0,0) + A3xA3xA1(0,0,0,1,0,1,0) + A3xA3xA1(0,0,0,0,0,0,2)

sage: fw = E7.fundamental_weights()
sage: [E7(fw[i]).branch(D6,rule="levi") for i in [1,2,7]] # long time (0.3s)
[3*D6(0,0,0,0,0,0) + 2*D6(0,0,0,0,1,0) + D6(0,1,0,0,0,0),
3*D6(0,0,0,0,0,1) + 2*D6(1,0,0,0,0,0) + 2*D6(0,0,1,0,0,0) + D6(1,0,0,0,1,0),
D6(0,0,0,0,0,1) + 2*D6(1,0,0,0,0,0)]
sage: D7=WeylCharacterRing("D7",style="coroots")
sage: E8=WeylCharacterRing("E8",style="coroots")
sage: D7=WeylCharacterRing("D7",style="coroots")
sage: E8(1,0,0,0,0,0,0,0).branch(D7,rule="levi") # long time (7s)
3*D7(0,0,0,0,0,0,0) + 2*D7(0,0,0,0,0,1,0) + 2*D7(0,0,0,0,0,0,1) + 2*D7(1,0,0,0,0,0,
→˓0)
+ D7(0,1,0,0,0,0,0) + 2*D7(0,0,1,0,0,0,0) + D7(0,0,0,1,0,0,0) + D7(1,0,0,0,0,1,0)␣
→˓+ D7(1,0,0,0,0,0,1) + D7(2,0,0,0,0,0,0)
sage: E8(0,0,0,0,0,0,0,1).branch(D7,rule="levi") # long time (0.6s)
D7(0,0,0,0,0,0,0) + D7(0,0,0,0,0,1,0) + D7(0,0,0,0,0,0,1) + 2*D7(1,0,0,0,0,0,0) +␣
→˓D7(0,1,0,0,0,0,0)
sage: [F4(fw).branch(B3,rule="levi") for fw in F4.fundamental_weights()] # long␣
→˓time (1s)
[B3(0,0,0) + 2*B3(1/2,1/2,1/2) + 2*B3(1,0,0) + B3(1,1,0),
B3(0,0,0) + 6*B3(1/2,1/2,1/2) + 5*B3(1,0,0) + 7*B3(1,1,0) + 3*B3(1,1,1)
+ 6*B3(3/2,1/2,1/2) + 2*B3(3/2,3/2,1/2) + B3(2,0,0) + 2*B3(2,1,0) + B3(2,1,1),
3*B3(0,0,0) + 6*B3(1/2,1/2,1/2) + 4*B3(1,0,0) + 3*B3(1,1,0) + B3(1,1,1) + 2*B3(3/2,
→˓1/2,1/2),
3*B3(0,0,0) + 2*B3(1/2,1/2,1/2) + B3(1,0,0)]
sage: [F4(fw).branch(C3,rule="levi") for fw in F4.fundamental_weights()] # long␣
→˓time (1s)
[3*C3(0,0,0) + 2*C3(1,1,1) + C3(2,0,0),
3*C3(0,0,0) + 6*C3(1,1,1) + 4*C3(2,0,0) + 2*C3(2,1,0) + 3*C3(2,2,0) + C3(2,2,2) +␣
→˓C3(3,1,0) + 2*C3(3,1,1),
2*C3(1,0,0) + 3*C3(1,1,0) + C3(2,0,0) + 2*C3(2,1,0) + C3(2,1,1),
2*C3(1,0,0) + C3(1,1,0)]
sage: A1xA1 = WeylCharacterRing("A1xA1")
sage: [A3(hwv).branch(A1xA1,rule="levi") for hwv in A3.fundamental_weights()]
[A1xA1(1,0,0,0) + A1xA1(0,0,1,0),
A1xA1(1,1,0,0) + A1xA1(1,0,1,0) + A1xA1(0,0,1,1),
A1xA1(1,1,1,0) + A1xA1(1,0,1,1)]
sage: A1xB1=WeylCharacterRing("A1xB1",style="coroots")

(continues on next page)

5.1. Comprehensive Module List 2173

Combinatorics, Release 9.7

(continued from previous page)

sage: [B3(x).branch(A1xB1,rule="levi") for x in B3.fundamental_weights()]
[2*A1xB1(1,0) + A1xB1(0,2),
3*A1xB1(0,0) + 2*A1xB1(1,2) + A1xB1(2,0) + A1xB1(0,2),
A1xB1(1,1) + 2*A1xB1(0,1)]

Automorphic Type

If the Dynkin diagram has a symmetry, then there is an automorphism that is a special case of a branching rule.
There is also an exotic “triality” automorphism of 𝐷4 having order 3. Use rule="automorphic" (or for 𝐷4

rule="triality"):

𝐴𝑟 ⇒ 𝐴𝑟

𝐷𝑟 ⇒ 𝐷𝑟

𝐸6 ⇒ 𝐸6

EXAMPLES:

sage: [A3(chi).branch(A3,rule="automorphic") for chi in A3.fundamental_weights()]
[A3(0,0,0,-1), A3(0,0,-1,-1), A3(0,-1,-1,-1)]
sage: [D4(chi).branch(D4,rule="automorphic") for chi in D4.fundamental_weights()]
[D4(1,0,0,0), D4(1,1,0,0), D4(1/2,1/2,1/2,1/2), D4(1/2,1/2,1/2,-1/2)]

Here is an example with 𝐷4 triality:

sage: [D4(chi).branch(D4,rule="triality") for chi in D4.fundamental_weights()]
[D4(1/2,1/2,1/2,-1/2), D4(1,1,0,0), D4(1/2,1/2,1/2,1/2), D4(1,0,0,0)]

Symmetric Type

Related to the automorphic type, when 𝐺 admits an outer automorphism (usually of degree 2) we may consider
the branching rule to the isotropy subgroup 𝐻 . Outer automorphisms correspond to symmetries of the Dynkin
diagram. For such isotropy subgroups use rule="symmetric". We may thus obtain the following branching
rules.

𝐴2𝑟 ⇒ 𝐵𝑟

𝐴2𝑟−1 ⇒ 𝐶𝑟

𝐴2𝑟−1 ⇒ 𝐷𝑟

𝐷𝑟 ⇒ 𝐵𝑟−1

𝐸6 ⇒ 𝐹4

𝐸6 ⇒ 𝐶4

𝐷4 ⇒ 𝐺2

The last branching rule, 𝐷4 ⇒ 𝐺2 is not to a maximal subgroup since 𝐷4 ⇒ 𝐵3 ⇒ 𝐺2, but it is included for
convenience.

In some cases, two outer automorphisms that differ by an inner automorphism may have different fixed subgroups.
Thus, while the Dynkin diagram of 𝐸6 has a single involutory automorphism, there are two involutions of the
group (differing by an inner automorphism) with fixed subgroups 𝐹4 and 𝐶4. Similarly 𝑆𝐿(2𝑟), of Cartan type
𝐴2𝑟−1, has subgroups 𝑆𝑂(2𝑟) and 𝑆𝑝(2𝑟), both fixed subgroups of outer automorphisms that differ from each
other by an inner automorphism.

2174 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

In many cases the Dynkin diagram of 𝐻 can be obtained by folding the Dynkin diagram of 𝐺.

EXAMPLES:

sage: [w.branch(B2,rule="symmetric") for w in [A4(1,0,0,0,0),A4(1,1,0,0,0),A4(1,1,1,
→˓0,0),A4(2,0,0,0,0)]]
[B2(1,0), B2(1,1), B2(1,1), B2(0,0) + B2(2,0)]
sage: [A5(w).branch(C3,rule="symmetric") for w in A5.fundamental_weights()]
[C3(1,0,0), C3(0,0,0) + C3(1,1,0), C3(1,0,0) + C3(1,1,1), C3(0,0,0) + C3(1,1,0),␣
→˓C3(1,0,0)]
sage: [A5(w).branch(D3,rule="symmetric") for w in A5.fundamental_weights()]
[D3(1,0,0), D3(1,1,0), D3(1,1,-1) + D3(1,1,1), D3(1,1,0), D3(1,0,0)]
sage: [D4(x).branch(B3,rule="symmetric") for x in D4.fundamental_weights()]
[B3(0,0,0) + B3(1,0,0), B3(1,0,0) + B3(1,1,0), B3(1/2,1/2,1/2), B3(1/2,1/2,1/2)]
sage: [D4(x).branch(G2,rule="symmetric") for x in D4.fundamental_weights()]
[G2(0,0,0) + G2(1,0,-1), 2*G2(1,0,-1) + G2(2,-1,-1), G2(0,0,0) + G2(1,0,-1), G2(0,0,
→˓0) + G2(1,0,-1)]
sage: [E6(fw).branch(F4,rule="symmetric") for fw in E6.fundamental_weights()] #␣
→˓long time (4s)
[F4(0,0,0,0) + F4(0,0,0,1),
F4(0,0,0,1) + F4(1,0,0,0),
F4(0,0,0,1) + F4(1,0,0,0) + F4(0,0,1,0),
F4(1,0,0,0) + 2*F4(0,0,1,0) + F4(1,0,0,1) + F4(0,1,0,0),
F4(0,0,0,1) + F4(1,0,0,0) + F4(0,0,1,0),
F4(0,0,0,0) + F4(0,0,0,1)]
sage: E6=WeylCharacterRing("E6",style="coroots")
sage: C4=WeylCharacterRing("C4",style="coroots")
sage: chi = E6(1,0,0,0,0,0); chi.degree()
27
sage: chi.branch(C4,rule="symmetric")
C4(0,1,0,0)

Extended Type

If removing a node from the extended Dynkin diagram results in a Dynkin diagram, then there is a branching
rule. Use rule="extended" for these. We will also use this classification for some rules that are not of this
type, mainly involving type 𝐵, such as 𝐷6 ⇒ 𝐵3 ×𝐵3.

Here is the extended Dynkin diagram for 𝐷6:

0 6
O O
| |
| |

O---O---O---O---O
1 2 3 4 6

Removing the node 3 results in an embedding 𝐷3 ×𝐷3 ⇒ 𝐷6. This corresponds to the embedding 𝑆𝑂(6) ×
𝑆𝑂(6)⇒ 𝑆𝑂(12), and is of extended type. On the other hand the embedding 𝑆𝑂(5)×𝑆𝑂(7)⇒ 𝑆𝑂(12) (e.g.
𝐵2 ×𝐵3 ⇒ 𝐷6) cannot be explained this way but for uniformity is implemented under rule="extended".

5.1. Comprehensive Module List 2175

Combinatorics, Release 9.7

The following rules are implemented as special cases of rule="extended":

𝐸6 ⇒ 𝐴5 ×𝐴1, 𝐴2 ×𝐴2 ×𝐴2

𝐸7 ⇒ 𝐴7, 𝐷6 ×𝐴1, 𝐴3 ×𝐴3 ×𝐴1

𝐸8 ⇒ 𝐴8, 𝐷8, 𝐸7 ×𝐴1, 𝐴4 ×𝐴4, 𝐷5 ×𝐴3, 𝐸6 ×𝐴2

𝐹4 ⇒ 𝐵4, 𝐶3 ×𝐴1, 𝐴2 ×𝐴2, 𝐴3 ×𝐴1

𝐺2 ⇒ 𝐴1 ×𝐴1

Note that 𝐸8 has only a limited number of representations of reasonably low degree.

EXAMPLES:

sage: [B3(x).branch(D3,rule="extended") for x in B3.fundamental_weights()]
[D3(0,0,0) + D3(1,0,0),
D3(1,0,0) + D3(1,1,0),
D3(1/2,1/2,-1/2) + D3(1/2,1/2,1/2)]
sage: [G2(w).branch(A2, rule="extended") for w in G2.fundamental_weights()]
[A2(0,0,0) + A2(1/3,1/3,-2/3) + A2(2/3,-1/3,-1/3),
A2(1/3,1/3,-2/3) + A2(2/3,-1/3,-1/3) + A2(1,0,-1)]
sage: [F4(fw).branch(B4,rule="extended") for fw in F4.fundamental_weights()] # long␣
→˓time (2s)
[B4(1/2,1/2,1/2,1/2) + B4(1,1,0,0),
B4(1,1,0,0) + B4(1,1,1,0) + B4(3/2,1/2,1/2,1/2) + B4(3/2,3/2,1/2,1/2) + B4(2,1,1,
→˓0),
B4(1/2,1/2,1/2,1/2) + B4(1,0,0,0) + B4(1,1,0,0) + B4(1,1,1,0) + B4(3/2,1/2,1/2,1/
→˓2),
B4(0,0,0,0) + B4(1/2,1/2,1/2,1/2) + B4(1,0,0,0)]

sage: E6 = WeylCharacterRing("E6", style="coroots")
sage: A2xA2xA2 = WeylCharacterRing("A2xA2xA2",style="coroots")
sage: A5xA1 = WeylCharacterRing("A5xA1",style="coroots")
sage: G2 = WeylCharacterRing("G2", style="coroots")
sage: A1xA1 = WeylCharacterRing("A1xA1", style="coroots")
sage: F4 = WeylCharacterRing("F4",style="coroots")
sage: A3xA1 = WeylCharacterRing("A3xA1", style="coroots")
sage: A2xA2 = WeylCharacterRing("A2xA2", style="coroots")
sage: A1xC3 = WeylCharacterRing("A1xC3",style="coroots")
sage: E6(1,0,0,0,0,0).branch(A5xA1,rule="extended") # (0.7s)
A5xA1(0,0,0,1,0,0) + A5xA1(1,0,0,0,0,1)
sage: E6(1,0,0,0,0,0).branch(A2xA2xA2, rule="extended") # (0.7s)
A2xA2xA2(0,1,1,0,0,0) + A2xA2xA2(1,0,0,0,0,1) + A2xA2xA2(0,0,0,1,1,0)
sage: E7 = WeylCharacterRing("E7",style="coroots")
sage: A7 = WeylCharacterRing("A7",style="coroots")
sage: E7(1,0,0,0,0,0,0).branch(A7,rule="extended")
A7(0,0,0,1,0,0,0) + A7(1,0,0,0,0,0,1)
sage: D6xA1 = WeylCharacterRing("D6xA1",style="coroots")
sage: E7(1,0,0,0,0,0,0).branch(D6xA1,rule="extended")
D6xA1(0,0,0,0,1,0,1) + D6xA1(0,1,0,0,0,0,0) + D6xA1(0,0,0,0,0,0,2)
sage: A5xA2 = WeylCharacterRing("A5xA2",style="coroots")
sage: E7(1,0,0,0,0,0,0).branch(A5xA2,rule="extended")
A5xA2(0,0,0,1,0,1,0) + A5xA2(0,1,0,0,0,0,1) + A5xA2(1,0,0,0,1,0,0) + A5xA2(0,0,0,0,
→˓0,1,1)
sage: E8 = WeylCharacterRing("E8",style="coroots")
sage: D8 = WeylCharacterRing("D8",style="coroots")

(continues on next page)

2176 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: A8 = WeylCharacterRing("A8",style="coroots")
sage: E8(0,0,0,0,0,0,0,1).branch(D8,rule="extended") # long time (0.56s)
D8(0,0,0,0,0,0,1,0) + D8(0,1,0,0,0,0,0,0)
sage: E8(0,0,0,0,0,0,0,1).branch(A8,rule="extended") # long time (0.73s)
A8(0,0,0,0,0,1,0,0) + A8(0,0,1,0,0,0,0,0) + A8(1,0,0,0,0,0,0,1)
sage: F4(1,0,0,0).branch(A1xC3,rule="extended") # (0.05s)
A1xC3(1,0,0,1) + A1xC3(2,0,0,0) + A1xC3(0,2,0,0)
sage: G2(0,1).branch(A1xA1, rule="extended")
A1xA1(2,0) + A1xA1(3,1) + A1xA1(0,2)
sage: F4(0,0,0,1).branch(A2xA2, rule="extended") # (0.4s)
A2xA2(0,1,0,1) + A2xA2(1,0,1,0) + A2xA2(0,0,1,1)
sage: F4(0,0,0,1).branch(A3xA1,rule="extended") # (0.34s)
A3xA1(0,0,0,0) + A3xA1(0,0,1,1) + A3xA1(0,1,0,0) + A3xA1(1,0,0,1) + A3xA1(0,0,0,2)
sage: D4=WeylCharacterRing("D4",style="coroots")
sage: D2xD2=WeylCharacterRing("D2xD2",style="coroots") # We get D4 => A1xA1xA1xA1␣
→˓by remembering that A1xA1 = D2.
sage: [D4(fw).branch(D2xD2, rule="extended") for fw in D4.fundamental_weights()]
[D2xD2(1,1,0,0) + D2xD2(0,0,1,1),
D2xD2(2,0,0,0) + D2xD2(0,2,0,0) + D2xD2(1,1,1,1) + D2xD2(0,0,2,0) + D2xD2(0,0,0,2),
D2xD2(1,0,0,1) + D2xD2(0,1,1,0),
D2xD2(1,0,1,0) + D2xD2(0,1,0,1)]

Orthogonal Sum

Using rule="orthogonal_sum", for 𝑛 = 𝑎+ 𝑏+ 𝑐+ · · ·, you can get any branching rule

𝑆𝑂(𝑛)⇒ 𝑆𝑂(𝑎)× 𝑆𝑂(𝑏)× 𝑆𝑂(𝑐)× · · · ,
𝑆𝑝(2𝑛)⇒ 𝑆𝑝(2𝑎)× 𝑆𝑝(2𝑏)× 𝑆𝑝(2𝑐)𝑥× · · · ,

where 𝑂(𝑎) is type 𝐷𝑟 for 𝑎 = 2𝑟 or 𝐵𝑟 for 𝑎 = 2𝑟 + 1 and 𝑆𝑝(2𝑟) is type 𝐶𝑟. In some cases these are also of
extended type, as in the case 𝐷3 ×𝐷3 ⇒ 𝐷6 discussed above. But in other cases, for example 𝐵3 ×𝐵3 ⇒ 𝐷7,
they are not of extended type.

Tensor

There are branching rules:

𝐴𝑟𝑠−1 ⇒ 𝐴𝑟−1 ×𝐴𝑠−1,
𝐵2𝑟𝑠+𝑟+𝑠 ⇒ 𝐵𝑟 ×𝐵𝑠,
𝐷2𝑟𝑠+𝑠 ⇒ 𝐵𝑟 ×𝐷𝑠,

𝐷2𝑟𝑠 ⇒ 𝐷𝑟 ×𝐷𝑠,

𝐷2𝑟𝑠 ⇒ 𝐶𝑟 × 𝐶𝑠,
𝐶2𝑟𝑠+𝑠 ⇒ 𝐵𝑟 × 𝐶𝑠,
𝐶2𝑟𝑠 ⇒ 𝐶𝑟 ×𝐷𝑠.

corresponding to the tensor product homomorphism. For type 𝐴, the homomorphism is 𝐺𝐿(𝑟) × 𝐺𝐿(𝑠) ⇒
𝐺𝐿(𝑟𝑠). For the classical types, the relevant fact is that if 𝑉,𝑊 are orthogonal or symplectic spaces, that is,
spaces endowed with symmetric or skew-symmetric bilinear forms, then 𝑉 ⊗𝑊 is also an orthogonal space (if
𝑉 and 𝑊 are both orthogonal or both symplectic) or symplectic (if one of 𝑉 and 𝑊 is orthogonal and the other
symplectic).

5.1. Comprehensive Module List 2177

Combinatorics, Release 9.7

The corresponding branching rules are obtained using rule="tensor".

EXAMPLES:

sage: A5=WeylCharacterRing("A5", style="coroots")
sage: A2xA1=WeylCharacterRing("A2xA1", style="coroots")
sage: [A5(hwv).branch(A2xA1, rule="tensor") for hwv in A5.fundamental_weights()]
[A2xA1(1,0,1),
A2xA1(0,1,2) + A2xA1(2,0,0),
A2xA1(1,1,1) + A2xA1(0,0,3),
A2xA1(1,0,2) + A2xA1(0,2,0),
A2xA1(0,1,1)]
sage: B4=WeylCharacterRing("B4",style="coroots")
sage: B1xB1=WeylCharacterRing("B1xB1",style="coroots")
sage: [B4(f).branch(B1xB1,rule="tensor") for f in B4.fundamental_weights()]
[B1xB1(2,2),
B1xB1(2,0) + B1xB1(2,4) + B1xB1(4,2) + B1xB1(0,2),
B1xB1(2,0) + B1xB1(2,2) + B1xB1(2,4) + B1xB1(4,2) + B1xB1(4,4) + B1xB1(6,0) +␣
→˓B1xB1(0,2) + B1xB1(0,6),
B1xB1(1,3) + B1xB1(3,1)]
sage: D4=WeylCharacterRing("D4",style="coroots")
sage: C2xC1=WeylCharacterRing("C2xC1",style="coroots")
sage: [D4(f).branch(C2xC1,rule="tensor") for f in D4.fundamental_weights()]
[C2xC1(1,0,1),
C2xC1(0,1,2) + C2xC1(2,0,0) + C2xC1(0,0,2),
C2xC1(1,0,1),
C2xC1(0,1,0) + C2xC1(0,0,2)]
sage: C3=WeylCharacterRing("C3",style="coroots")
sage: B1xC1=WeylCharacterRing("B1xC1",style="coroots")
sage: [C3(f).branch(B1xC1,rule="tensor") for f in C3.fundamental_weights()]
[B1xC1(2,1), B1xC1(2,2) + B1xC1(4,0), B1xC1(4,1) + B1xC1(0,3)]

Symmetric Power

The 𝑘-th symmetric and exterior power homomorphisms map

𝐺𝐿(𝑛)⇒ 𝐺𝐿

(︂(︂
𝑛+ 𝑘 − 1

𝑘

)︂)︂
×𝐺𝐿

(︂(︂
𝑛

𝑘

)︂)︂
.

The corresponding branching rules are not implemented but a special case is. The 𝑘-th symmetric power homo-
morphism 𝑆𝐿(2)⇒ 𝐺𝐿(𝑘+1) has its image inside of 𝑆𝑂(2𝑟+1) if 𝑘 = 2𝑟 and inside of 𝑆𝑝(2𝑟) if 𝑘 = 2𝑟−1.
Hence there are branching rules:

𝐵𝑟 ⇒ 𝐴1

𝐶𝑟 ⇒ 𝐴1

and these may be obtained using the rule “symmetric_power”.

EXAMPLES:

sage: A1=WeylCharacterRing("A1",style="coroots")
sage: B3=WeylCharacterRing("B3",style="coroots")
sage: C3=WeylCharacterRing("C3",style="coroots")
sage: [B3(fw).branch(A1,rule="symmetric_power") for fw in B3.fundamental_weights()]

(continues on next page)

2178 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[A1(6), A1(2) + A1(6) + A1(10), A1(0) + A1(6)]
sage: [C3(fw).branch(A1,rule="symmetric_power") for fw in C3.fundamental_weights()]
[A1(5), A1(4) + A1(8), A1(3) + A1(9)]

Miscellaneous

Use rule="miscellaneous" for the following embeddings of maximal subgroups, all involving exceptional
groups.

𝐵3 ⇒ 𝐺2,

𝐸6 ⇒ 𝐺2,

𝐸6 ⇒ 𝐴2,

𝐹4 ⇒ 𝐺2 ×𝐴1,

𝐸6 ⇒ 𝐺2 ×𝐴2,

𝐸7 ⇒ 𝐺2 × 𝐶3,

𝐸7 ⇒ 𝐹4 ×𝐴1,

𝐸7 ⇒ 𝐴1 ×𝐴1,

𝐸7 ⇒ 𝐺2 ×𝐴1,

𝐸8 ⇒ 𝐺2 × 𝐹4.

𝐸8 ⇒ 𝐴2×𝐴1.

𝐸8 ⇒ 𝐵2.

Except for those embeddings available by rule="extended", these are the only embeddings of these groups as
maximal subgroups. There may be other embeddings besides these. For example, there are other more obvious
embeddings of 𝐴2 and 𝐺2 into 𝐸6. However the embeddings in this table are characterized as embeddings
as maximal subgroups. Regarding the embeddings of 𝐴2 and 𝐺2 in 𝐸6, the embeddings in question may be
characterized by the condition that the 27-dimensional representations of 𝐸6 restrict irreducibly to 𝐴2 or 𝐺2.
Since 𝐺2 has a subgroup isomorphic to 𝐴2, it is worth mentioning that the composite branching rules:

branching_rule("E6","G2","miscellaneous")*branching_rule("G2","A2","extended")
branching_rule("E6","A2","miscellaneous")

are distinct.

These embeddings are described more completely (with references to the literature) in the thematic tutorial at:

https://doc.sagemath.org/html/en/thematic_tutorials/lie.html

EXAMPLES:

sage: G2 = WeylCharacterRing("G2")
sage: [fw1, fw2, fw3] = B3.fundamental_weights()
sage: B3(fw1+fw3).branch(G2, rule="miscellaneous")
G2(1,0,-1) + G2(2,-1,-1) + G2(2,0,-2)
sage: E6 = WeylCharacterRing("E6",style="coroots")
sage: G2 = WeylCharacterRing("G2",style="coroots")
sage: E6(1,0,0,0,0,0).branch(G2,"miscellaneous")
G2(2,0)
sage: A2=WeylCharacterRing("A2",style="coroots")
sage: E6(1,0,0,0,0,0).branch(A2,rule="miscellaneous")

(continues on next page)

5.1. Comprehensive Module List 2179

https://doc.sagemath.org/html/en/thematic_tutorials/lie.html

Combinatorics, Release 9.7

(continued from previous page)

A2(2,2)
sage: E6(0,1,0,0,0,0).branch(A2,rule="miscellaneous")
A2(1,1) + A2(1,4) + A2(4,1)
sage: E6(0,0,0,0,0,2).branch(G2,"miscellaneous") # long time (0.59s)
G2(0,0) + G2(2,0) + G2(1,1) + G2(0,2) + G2(4,0)
sage: F4=WeylCharacterRing("F4",style="coroots")
sage: G2xA1=WeylCharacterRing("G2xA1",style="coroots")
sage: F4(0,0,1,0).branch(G2xA1,rule="miscellaneous")
G2xA1(1,0,0) + G2xA1(1,0,2) + G2xA1(1,0,4) + G2xA1(1,0,6) + G2xA1(0,1,4) + G2xA1(2,
→˓0,2) + G2xA1(0,0,2) + G2xA1(0,0,6)
sage: E6 = WeylCharacterRing("E6",style="coroots")
sage: A2xG2 = WeylCharacterRing("A2xG2",style="coroots")
sage: E6(1,0,0,0,0,0).branch(A2xG2,rule="miscellaneous")
A2xG2(0,1,1,0) + A2xG2(2,0,0,0)
sage: E7=WeylCharacterRing("E7",style="coroots")
sage: G2xC3=WeylCharacterRing("G2xC3",style="coroots")
sage: E7(0,1,0,0,0,0,0).branch(G2xC3,rule="miscellaneous") # long time (1.84s)
G2xC3(1,0,1,0,0) + G2xC3(1,0,1,1,0) + G2xC3(0,1,0,0,1) + G2xC3(2,0,1,0,0) + G2xC3(0,
→˓0,1,1,0)
sage: F4xA1=WeylCharacterRing("F4xA1",style="coroots")
sage: E7(0,0,0,0,0,0,1).branch(F4xA1,"miscellaneous")
F4xA1(0,0,0,1,1) + F4xA1(0,0,0,0,3)
sage: A1xA1=WeylCharacterRing("A1xA1",style="coroots")
sage: E7(0,0,0,0,0,0,1).branch(A1xA1,rule="miscellaneous")
A1xA1(2,5) + A1xA1(4,1) + A1xA1(6,3)
sage: A2=WeylCharacterRing("A2",style="coroots")
sage: E7(0,0,0,0,0,0,1).branch(A2,rule="miscellaneous")
A2(0,6) + A2(6,0)
sage: G2xA1=WeylCharacterRing("G2xA1",style="coroots")
sage: E7(1,0,0,0,0,0,0).branch(G2xA1,rule="miscellaneous")
G2xA1(1,0,4) + G2xA1(0,1,0) + G2xA1(2,0,2) + G2xA1(0,0,2)
sage: E8 = WeylCharacterRing("E8",style="coroots")
sage: G2xF4 = WeylCharacterRing("G2xF4",style="coroots")
sage: E8(0,0,0,0,0,0,0,1).branch(G2xF4,rule="miscellaneous") # long time (0.76s)
G2xF4(1,0,0,0,0,1) + G2xF4(0,1,0,0,0,0) + G2xF4(0,0,1,0,0,0)
sage: E8=WeylCharacterRing("E8",style="coroots")
sage: A1xA2=WeylCharacterRing("A1xA2",style="coroots")
sage: E8(0,0,0,0,0,0,0,1).branch(A1xA2,rule="miscellaneous") # long time (0.76s)
A1xA2(2,0,0) + A1xA2(2,2,2) + A1xA2(4,0,3) + A1xA2(4,3,0) + A1xA2(6,1,1) + A1xA2(0,
→˓1,1)
sage: B2=WeylCharacterRing("B2",style="coroots")
sage: E8(0,0,0,0,0,0,0,1).branch(B2,rule="miscellaneous") # long time (0.53s)
B2(0,2) + B2(0,6) + B2(3,2)

2180 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

A1 maximal subgroups of exceptional groups

There are seven cases where the exceptional group 𝐺2, 𝐹4, 𝐸7 or 𝐸8 contains a maximal subgroup of type
𝐴1. These are tabulated in Theorem 1 of Testerman, The construction of the maximal A1’s in the exceptional
algebraic groups, Proc. Amer. Math. Soc. 116 (1992), no. 3, 635-644. The names of these branching rules are
roman numerals referring to the seven cases of her Theorem 1. Use these branching rules as in the following
examples.

EXAMPLES:

sage: A1=WeylCharacterRing("A1",style="coroots")
sage: G2=WeylCharacterRing("G2",style="coroots")
sage: F4=WeylCharacterRing("F4",style="coroots")
sage: E7=WeylCharacterRing("E7",style="coroots")
sage: E8=WeylCharacterRing("E8",style="coroots")
sage: [G2(f).branch(A1,rule="i") for f in G2.fundamental_weights()]
[A1(6), A1(2) + A1(10)]
sage: F4(1,0,0,0).branch(A1,rule="ii")
A1(2) + A1(10) + A1(14) + A1(22)
sage: E7(0,0,0,0,0,0,1).branch(A1,rule="iii")
A1(9) + A1(17) + A1(27)
sage: E7(0,0,0,0,0,0,1).branch(A1,rule="iv")
A1(5) + A1(11) + A1(15) + A1(21)
sage: E8(0,0,0,0,0,0,0,1).branch(A1,rule="v") # long time (0.6s)
A1(2) + A1(14) + A1(22) + A1(26) + A1(34) + A1(38) + A1(46) + A1(58)
sage: E8(0,0,0,0,0,0,0,1).branch(A1,rule="vi") # long time (0.6s)
A1(2) + A1(10) + A1(14) + A1(18) + A1(22) + A1(26) + A1(28) + A1(34) + A1(38) +␣
→˓A1(46)
sage: E8(0,0,0,0,0,0,0,1).branch(A1,rule="vii") # long time (0.6s)
A1(2) + A1(6) + A1(10) + A1(14) + A1(16) + A1(18) + 2*A1(22) + A1(26) + A1(28) +␣
→˓A1(34) + A1(38)

Branching Rules From Plethysms

Nearly all branching rules 𝐺 ⇒ 𝐻 where 𝐺 is of type 𝐴, 𝐵, 𝐶 or 𝐷 are covered by the preceding rules. The
function branching_rule_from_plethysm() covers the remaining cases.

This is a general rule that includes any branching rule from types 𝐴, 𝐵, 𝐶, or 𝐷 as a special case. Thus it could
be used in place of the above rules and would give the same results. However it is most useful when branching
from 𝐺 to a maximal subgroup 𝐻 such that rank(𝐻) < rank(𝐺)− 1.

We consider a homomorphism𝐻 ⇒ 𝐺where𝐺 is one of 𝑆𝐿(𝑟+1), 𝑆𝑂(2𝑟+1), 𝑆𝑝(2𝑟) or 𝑆𝑂(2𝑟). The func-
tion branching_rule_from_plethysm() produces the corresponding branching rule. The main ingredient is
the character 𝜒 of the representation of 𝐻 that is the homomorphism to 𝐺𝐿(𝑟 + 1), 𝐺𝐿(2𝑟 + 1) or 𝐺𝐿(2𝑟).

This rule is so powerful that it contains the other rules implemented above as special cases. First let us consider
the symmetric fifth power representation of 𝑆𝐿(2).

sage: A1=WeylCharacterRing("A1",style="coroots")
sage: chi=A1([5])
sage: chi.degree()
6
sage: chi.frobenius_schur_indicator()
-1

5.1. Comprehensive Module List 2181

Combinatorics, Release 9.7

This confirms that the character has degree 6 and is symplectic, so it corresponds to a homomorphism 𝑆𝐿(2)⇒
𝑆𝑝(6), and there is a corresponding branching rule 𝐶3 ⇒ 𝐴1.

sage: C3 = WeylCharacterRing("C3",style="coroots")
sage: sym5rule = branching_rule_from_plethysm(chi,"C3")
sage: [C3(hwv).branch(A1,rule=sym5rule) for hwv in C3.fundamental_weights()]
[A1(5), A1(4) + A1(8), A1(3) + A1(9)]

This is identical to the results we would obtain using rule="symmetric_power". The next example gives a
branching not available by other standard rules.

sage: G2 = WeylCharacterRing("G2",style="coroots")
sage: D7 = WeylCharacterRing("D7",style="coroots")
sage: ad=G2(0,1); ad.degree(); ad.frobenius_schur_indicator()
14
1
sage: spin = D7(0,0,0,0,0,1,0); spin.degree()
64
sage: spin.branch(G2, rule=branching_rule_from_plethysm(ad, "D7"))
G2(1,1)

We have confirmed that the adjoint representation of 𝐺2 gives a homomorphism into 𝑆𝑂(14), and that the
pullback of the one of the two 64 dimensional spin representations to 𝑆𝑂(14) is an irreducible representation of
𝐺2.

We do not actually have to create the character or its parent WeylCharacterRing to create the branching rule:

sage: b = branching_rule("C7","C3(0,0,1)","plethysm"); b
plethysm (along C3(0,0,1)) branching rule C7 => C3

Isomorphic Type

Although not usually referred to as a branching rule, the effects of the accidental isomorphisms may be handled
using rule="isomorphic":

𝐵2 ⇒ 𝐶2

𝐶2 ⇒ 𝐵2

𝐴3 ⇒ 𝐷3

𝐷3 ⇒ 𝐴3

𝐷2 ⇒ 𝐴1 ⇒ 𝐴1

𝐵1 ⇒ 𝐴1

𝐶1 ⇒ 𝐴1

EXAMPLES:

sage: B2 = WeylCharacterRing("B2")
sage: C2 = WeylCharacterRing("C2")
sage: [B2(x).branch(C2, rule="isomorphic") for x in B2.fundamental_weights()]
[C2(1,1), C2(1,0)]
sage: [C2(x).branch(B2, rule="isomorphic") for x in C2.fundamental_weights()]
[B2(1/2,1/2), B2(1,0)]
sage: D3 = WeylCharacterRing("D3")

(continues on next page)

2182 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: A3 = WeylCharacterRing("A3")
sage: [A3(x).branch(D3,rule="isomorphic") for x in A3.fundamental_weights()]
[D3(1/2,1/2,1/2), D3(1,0,0), D3(1/2,1/2,-1/2)]
sage: [D3(x).branch(A3,rule="isomorphic") for x in D3.fundamental_weights()]
[A3(1/2,1/2,-1/2,-1/2), A3(1/4,1/4,1/4,-3/4), A3(3/4,-1/4,-1/4,-1/4)]

Here 𝐴3(𝑥, 𝑦, 𝑧, 𝑤) can be understood as a representation of 𝑆𝐿(4). The weights 𝑥, 𝑦, 𝑧, 𝑤 and 𝑥 + 𝑡, 𝑦 +
𝑡, 𝑧 + 𝑡, 𝑤 + 𝑡 represent the same representation of 𝑆𝐿(4) - though not of 𝐺𝐿(4) - since 𝐴3(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 +
𝑡, 𝑤 + 𝑡) is the same as 𝐴3(𝑥, 𝑦, 𝑧, 𝑤) tensored with det𝑡. So as a representation of 𝑆𝐿(4), A3(1/4,1/4,1/4,
-3/4) is the same as A3(1,1,1,0). The exterior square representation 𝑆𝐿(4) ⇒ 𝐺𝐿(6) admits an invariant
symmetric bilinear form, so is a representation 𝑆𝐿(4)⇒ 𝑆𝑂(6) that lifts to an isomorphism 𝑆𝐿(4)⇒ Spin(6).
Conversely, there are two isomorphisms 𝑆𝑂(6)⇒ 𝑆𝐿(4), of which we’ve selected one.

In cases like this you might prefer style="coroots":

sage: A3 = WeylCharacterRing("A3",style="coroots")
sage: D3 = WeylCharacterRing("D3",style="coroots")
sage: [D3(fw) for fw in D3.fundamental_weights()]
[D3(1,0,0), D3(0,1,0), D3(0,0,1)]
sage: [D3(fw).branch(A3,rule="isomorphic") for fw in D3.fundamental_weights()]
[A3(0,1,0), A3(0,0,1), A3(1,0,0)]
sage: D2 = WeylCharacterRing("D2", style="coroots")
sage: A1xA1 = WeylCharacterRing("A1xA1", style="coroots")
sage: [D2(fw).branch(A1xA1,rule="isomorphic") for fw in D2.fundamental_weights()]
[A1xA1(1,0), A1xA1(0,1)]

Branching From a Reducible WeylCharacterRing

If the Cartan Type of R is reducible, we may project a character onto any of the components, or any combina-
tion of components. The rule to project on the first component is specified by the string "proj1", the rule to
project on the second component is "proj2". To project on the first and third components, use
``"proj13" and so on.

EXAMPLES:

sage: A2xG2=WeylCharacterRing("A2xG2",style="coroots")
sage: A2=WeylCharacterRing("A2",style="coroots")
sage: G2=WeylCharacterRing("G2",style="coroots")
sage: A2xG2(1,0,1,0).branch(A2,rule="proj1")
7*A2(1,0)
sage: A2xG2(1,0,1,0).branch(G2,rule="proj2")
3*G2(1,0)
sage: A2xA2xG2=WeylCharacterRing("A2xA2xG2",style="coroots")
sage: A2xA2xG2(0,1,1,1,0,1).branch(A2xG2,rule="proj13")
8*A2xG2(0,1,0,1)

A more general way of specifying a branching rule from a reducible type is to supply a list of rules, one com-
ponent rule for each component type in the root system. In the following example, we branch the fundamental
representations of𝐷4 down to𝐴1×𝐴1×𝐴1×𝐴1 through the intermediate group𝐷2×𝐷2. We use multiplica-
tive notation to compose the branching rules. There is no need to construct the intermediate WeylCharacterRing
with type 𝐷2 ×𝐷2.

EXAMPLES:

5.1. Comprehensive Module List 2183

Combinatorics, Release 9.7

sage: D4 = WeylCharacterRing("D4",style="coroots")
sage: A1xA1xA1xA1 = WeylCharacterRing("A1xA1xA1xA1",style="coroots")
sage: b = branching_rule("D2","A1xA1","isomorphic")
sage: br = branching_rule("D4","D2xD2","extended")*branching_rule("D2xD2",
→˓"A1xA1xA1xA1",[b,b])
sage: [D4(fw).branch(A1xA1xA1xA1,rule=br) for fw in D4.fundamental_weights()]
[A1xA1xA1xA1(1,1,0,0) + A1xA1xA1xA1(0,0,1,1),
A1xA1xA1xA1(1,1,1,1) + A1xA1xA1xA1(2,0,0,0) + A1xA1xA1xA1(0,2,0,0) + A1xA1xA1xA1(0,
→˓0,2,0) + A1xA1xA1xA1(0,0,0,2),
A1xA1xA1xA1(1,0,0,1) + A1xA1xA1xA1(0,1,1,0),
A1xA1xA1xA1(1,0,1,0) + A1xA1xA1xA1(0,1,0,1)]

In the list of rules to be supplied in branching from a reducible root system, we may use two key words “omit”
and “identity”. The term “omit” means that we omit one factor, projecting onto the remaining factors. The term
“identity” is supplied when the irreducible factor Cartan Types of both the target and the source are the same, and
the component branching rule is to be the identity map. For example, we have projection maps from 𝐴3×𝐴2 to
𝐴3 and 𝐴2, and the corresponding branching may be accomplished as follows. In this example the same could
be accomplished using rule="proj2".

EXAMPLES:

sage: A3xA2=WeylCharacterRing("A3xA2",style="coroots")
sage: A3=WeylCharacterRing("A3",style="coroots")
sage: chi = A3xA2(0,1,0,1,0)
sage: chi.branch(A3,rule=["identity","omit"])
3*A3(0,1,0)
sage: A2=WeylCharacterRing("A2",style="coroots")
sage: chi.branch(A2,rule=["omit","identity"])
6*A2(1,0)

Yet another way of branching from a reducible root system with repeated Cartan types is to embed along the
diagonal. The branching rule is equivalent to the tensor product, as the example shows:

sage: G2=WeylCharacterRing("G2",style="coroots")
sage: G2xG2=WeylCharacterRing("G2xG2",style="coroots")
sage: G2=WeylCharacterRing("G2",style="coroots")
sage: G2xG2(1,0,0,1).branch(G2,rule="diagonal")
G2(1,0) + G2(2,0) + G2(1,1)
sage: G2xG2(1,0,0,1).branch(G2,rule="diagonal") == G2(1,0)*G2(0,1)
True

Writing Your Own (Branching) Rules

Suppose you want to branch from a group𝐺 to a subgroup𝐻 . Arrange the embedding so that a Cartan subalgebra
𝑈 of𝐻 is contained in a Cartan subalgebra 𝑇 of𝐺. There is thus a mapping from the weight spaces Lie(𝑇)* ⇒
Lie(𝑈)*. Two embeddings will produce identical branching rules if they differ by an element of the Weyl group
of 𝐻 .

The rule is this map Lie(𝑇)*, which is G.space(), to Lie(𝑈)*, which is H.space(), which you may implement
as a function. As an example, let us consider how to implement the branching rule 𝐴3 ⇒ 𝐶2. Here 𝐻 = 𝐶2 =
𝑆𝑝(4) embedded as a subgroup in 𝐴3 = 𝐺𝐿(4). The Cartan subalgebra 𝑈 consists of diagonal matrices with
eigenvalues 𝑢1, 𝑢2,−𝑢2,−𝑢1. The C2.space() is the two dimensional vector spaces consisting of the linear
functionals 𝑢1 and 𝑢2 on 𝑈 . On the other hand Lie(𝑇) is R4. A convenient way to see the restriction is to think

2184 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

of it as the adjoint of the map (𝑢1, 𝑢2) ↦→ (𝑢1, 𝑢2,−𝑢2,−𝑢1), that is, (𝑥0, 𝑥1, 𝑥2, 𝑥3) ⇒ (𝑥0 − 𝑥3, 𝑥1 − 𝑥2).
Hence we may encode the rule as follows:

def rule(x):
return [x[0]-x[3],x[1]-x[2]]

or simply:

rule = lambda x: [x[0]-x[3],x[1]-x[2]]

We may now make and use the branching rule as follows.

EXAMPLES:

sage: br = BranchingRule("A3", "C2", lambda x: [x[0]-x[3],x[1]-x[2]], "homemade");␣
→˓br
homemade branching rule A3 => C2
sage: [A3,C2]=[WeylCharacterRing(x,style="coroots") for x in ["A3","C2"]]
sage: A3(0,1,0).branch(C2,rule=br)
C2(0,0) + C2(0,1)

sage.combinat.root_system.branching_rules.branching_rule(Rtype, Stype, rule='default')
Creates a branching rule.

INPUT:

• R – the Weyl Character Ring of 𝐺

• S – the Weyl Character Ring of 𝐻

• rule – a string describing the branching rule as a map from the weight space of 𝑆 to the weight space of
𝑅.

If the rule parameter is omitted, in some cases, a default rule is supplied. See branch_weyl_character().

EXAMPLES:

sage: rule = branching_rule(CartanType("A3"),CartanType("C2"),"symmetric")
sage: [rule(x) for x in WeylCharacterRing("A3").fundamental_weights()]
[[1, 0], [1, 1], [1, 0]]

sage.combinat.root_system.branching_rules.branching_rule_from_plethysm(chi, cartan_type,
return_matrix=False)

Create the branching rule of a plethysm.

INPUT:

• chi – the character of an irreducible representation 𝜋 of a group 𝐺

• cartan_type – a classical Cartan type (𝐴,`B`,`C` or 𝐷).

It is assumed that the image of the irreducible representation pi naturally has its image in the group 𝐺.

Returns a branching rule for this plethysm.

EXAMPLES:

The adjoint representation 𝑆𝐿(3)→ 𝐺𝐿(8) factors through 𝑆𝑂(8). The branching rule in question will describe
how representations of 𝑆𝑂(8) composed with this homomorphism decompose into irreducible characters of
𝑆𝐿(3):

5.1. Comprehensive Module List 2185

Combinatorics, Release 9.7

sage: A2 = WeylCharacterRing("A2")
sage: A2 = WeylCharacterRing("A2", style="coroots")
sage: ad = A2.adjoint_representation(); ad
A2(1,1)
sage: ad.degree()
8
sage: ad.frobenius_schur_indicator()
1

This confirms that 𝑎𝑑 has degree 8 and is orthogonal, hence factors through 𝑆𝑂(8) which is type 𝐷4:

sage: br = branching_rule_from_plethysm(ad,"D4")
sage: D4 = WeylCharacterRing("D4")
sage: [D4(f).branch(A2,rule = br) for f in D4.fundamental_weights()]
[A2(1,1), A2(0,3) + A2(1,1) + A2(3,0), A2(1,1), A2(1,1)]

sage.combinat.root_system.branching_rules.get_branching_rule(Rtype, Stype, rule='default')
Creates a branching rule.

INPUT:

• R – the Weyl Character Ring of 𝐺

• S – the Weyl Character Ring of 𝐻

• rule – a string describing the branching rule as a map from the weight space of 𝑆 to the weight space of
𝑅.

If the rule parameter is omitted, in some cases, a default rule is supplied. See branch_weyl_character().

EXAMPLES:

sage: rule = branching_rule(CartanType("A3"),CartanType("C2"),"symmetric")
sage: [rule(x) for x in WeylCharacterRing("A3").fundamental_weights()]
[[1, 0], [1, 1], [1, 0]]

sage.combinat.root_system.branching_rules.maximal_subgroups(ct, mode='print_rules')
Given a classical Cartan type (of rank less than or equal to 8) this prints the Cartan types of maximal subgroups,
with a method of obtaining the branching rule. The string to the right of the colon in the output is a command to
create a branching rule.

INPUT:

• ct – a classical irreducible Cartan type

Returns a list of maximal subgroups of ct.

EXAMPLES:

sage: from sage.combinat.root_system.branching_rules import maximal_subgroups
sage: maximal_subgroups("D4")
B3:branching_rule("D4","B3","symmetric")
A2:branching_rule("D4","A2(1,1)","plethysm")
A1xC2:branching_rule("D4","C1xC2","tensor")*branching_rule("C1xC2","A1xC2",
→˓[branching_rule("C1","A1","isomorphic"),"identity"])
A1xA1xA1xA1:branching_rule("D4","D2xD2","orthogonal_sum")*branching_rule("D2xD2",
→˓"A1xA1xA1xA1",[branching_rule("D2","A1xA1","isomorphic"),branching_rule("D2",
→˓"A1xA1","isomorphic")])

2186 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

maximal_subgroups()

5.1.221 Cartan matrices

AUTHORS:

• Travis Scrimshaw (2012-04-22): Nicolas M. Thiery moved matrix creation to CartanType to prepare
cartan_matrix() for deprecation.

• Christian Stump, Travis Scrimshaw (2013-04-13): Created CartanMatrix.

• Ben Salisbury (2018-08-07): Added Borcherds-Cartan matrices.

class sage.combinat.root_system.cartan_matrix.CartanMatrix
Bases: sage.matrix.matrix_integer_sparse.Matrix_integer_sparse, sage.combinat.
root_system.cartan_type.CartanType_abstract

A (generalized) Cartan matrix.

A matrix𝐴 = (𝑎𝑖𝑗)𝑖,𝑗∈𝐼 for some index set 𝐼 is a generalized Cartan matrix if it satisfies the following properties:

• 𝑎𝑖𝑖 = 2 for all 𝑖,

• 𝑎𝑖𝑗 ≤ 0 for all 𝑖 ̸= 𝑗,

• 𝑎𝑖𝑗 = 0 if and only if 𝑎𝑗𝑖 = 0 for all 𝑖 ̸= 𝑗.

Additionally some reference assume that a Cartan matrix is symmetrizable (see is_symmetrizable()). How-
ever following Kac, we do not make that assumption here.

An even, integral Borcherds–Cartan matrix is an integral matrix 𝐴 = (𝑎𝑖𝑗)𝑖,𝑗∈𝐼 for some countable index set 𝐼
which satisfies the following properties:

• 𝑎𝑖𝑖 ∈ {2} ∪ 2Z<0 for all 𝑖,

• 𝑎𝑖𝑗 ≤ 0 for all 𝑖 ̸= 𝑗,

• 𝑎𝑖𝑗 = 0 if and only if 𝑎𝑗𝑖 = 0 for all 𝑖 ̸= 𝑗.

INPUT:

Can be anything which is accepted by CartanType or a matrix.

If given a matrix, one can also use the keyword cartan_type when giving a matrix to explicitly state the type.
Otherwise this will try to check the input matrix against possible standard types of Cartan matrices. To disable
this check, use the keyword cartan_type_check = False.

If one wants to initialize a Borcherds-Cartan matrix using matrix data, use the keyword borcherds=True. To
specify the diagonal entries of corresponding to a Cartan type (a Cartan matrix is treated as matrix data), use
borcherds with a list of the diagonal entries.

EXAMPLES:

sage: CartanMatrix(['A', 4])
[2 -1 0 0]
[-1 2 -1 0]
[0 -1 2 -1]
[0 0 -1 2]
sage: CartanMatrix(['B', 6])
[2 -1 0 0 0 0]

(continues on next page)

5.1. Comprehensive Module List 2187

../../../../../../../html/en/reference/matrices/sage/matrix/matrix_integer_sparse.html#sage.matrix.matrix_integer_sparse.Matrix_integer_sparse

Combinatorics, Release 9.7

(continued from previous page)

[-1 2 -1 0 0 0]
[0 -1 2 -1 0 0]
[0 0 -1 2 -1 0]
[0 0 0 -1 2 -1]
[0 0 0 0 -2 2]
sage: CartanMatrix(['C', 4])
[2 -1 0 0]
[-1 2 -1 0]
[0 -1 2 -2]
[0 0 -1 2]
sage: CartanMatrix(['D', 6])
[2 -1 0 0 0 0]
[-1 2 -1 0 0 0]
[0 -1 2 -1 0 0]
[0 0 -1 2 -1 -1]
[0 0 0 -1 2 0]
[0 0 0 -1 0 2]
sage: CartanMatrix(['E',6])
[2 0 -1 0 0 0]
[0 2 0 -1 0 0]
[-1 0 2 -1 0 0]
[0 -1 -1 2 -1 0]
[0 0 0 -1 2 -1]
[0 0 0 0 -1 2]
sage: CartanMatrix(['E',7])
[2 0 -1 0 0 0 0]
[0 2 0 -1 0 0 0]
[-1 0 2 -1 0 0 0]
[0 -1 -1 2 -1 0 0]
[0 0 0 -1 2 -1 0]
[0 0 0 0 -1 2 -1]
[0 0 0 0 0 -1 2]
sage: CartanMatrix(['E', 8])
[2 0 -1 0 0 0 0 0]
[0 2 0 -1 0 0 0 0]
[-1 0 2 -1 0 0 0 0]
[0 -1 -1 2 -1 0 0 0]
[0 0 0 -1 2 -1 0 0]
[0 0 0 0 -1 2 -1 0]
[0 0 0 0 0 -1 2 -1]
[0 0 0 0 0 0 -1 2]
sage: CartanMatrix(['F', 4])
[2 -1 0 0]
[-1 2 -1 0]
[0 -2 2 -1]
[0 0 -1 2]

This is different from MuPAD-Combinat, due to different node convention?

sage: CartanMatrix(['G', 2])
[2 -3]
[-1 2]

(continues on next page)

2188 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: CartanMatrix(['A',1,1])
[2 -2]
[-2 2]
sage: CartanMatrix(['A', 3, 1])
[2 -1 0 -1]
[-1 2 -1 0]
[0 -1 2 -1]
[-1 0 -1 2]
sage: CartanMatrix(['B', 3, 1])
[2 0 -1 0]
[0 2 -1 0]
[-1 -1 2 -1]
[0 0 -2 2]
sage: CartanMatrix(['C', 3, 1])
[2 -1 0 0]
[-2 2 -1 0]
[0 -1 2 -2]
[0 0 -1 2]
sage: CartanMatrix(['D', 4, 1])
[2 0 -1 0 0]
[0 2 -1 0 0]
[-1 -1 2 -1 -1]
[0 0 -1 2 0]
[0 0 -1 0 2]
sage: CartanMatrix(['E', 6, 1])
[2 0 -1 0 0 0 0]
[0 2 0 -1 0 0 0]
[-1 0 2 0 -1 0 0]
[0 -1 0 2 -1 0 0]
[0 0 -1 -1 2 -1 0]
[0 0 0 0 -1 2 -1]
[0 0 0 0 0 -1 2]
sage: CartanMatrix(['E', 7, 1])
[2 -1 0 0 0 0 0 0]
[-1 2 0 -1 0 0 0 0]
[0 0 2 0 -1 0 0 0]
[0 -1 0 2 -1 0 0 0]
[0 0 -1 -1 2 -1 0 0]
[0 0 0 0 -1 2 -1 0]
[0 0 0 0 0 -1 2 -1]
[0 0 0 0 0 0 -1 2]
sage: CartanMatrix(['E', 8, 1])
[2 0 0 0 0 0 0 0 -1]
[0 2 0 -1 0 0 0 0 0]
[0 0 2 0 -1 0 0 0 0]
[0 -1 0 2 -1 0 0 0 0]
[0 0 -1 -1 2 -1 0 0 0]
[0 0 0 0 -1 2 -1 0 0]
[0 0 0 0 0 -1 2 -1 0]
[0 0 0 0 0 0 -1 2 -1]
[-1 0 0 0 0 0 0 -1 2]
sage: CartanMatrix(['F', 4, 1])

(continues on next page)

5.1. Comprehensive Module List 2189

Combinatorics, Release 9.7

(continued from previous page)

[2 -1 0 0 0]
[-1 2 -1 0 0]
[0 -1 2 -1 0]
[0 0 -2 2 -1]
[0 0 0 -1 2]
sage: CartanMatrix(['G', 2, 1])
[2 0 -1]
[0 2 -3]
[-1 -1 2]

Examples of Borcherds-Cartan matrices:

sage: CartanMatrix([[2,-1],[-1,-2]], borcherds=True)
[2 -1]
[-1 -2]
sage: CartanMatrix('B3', borcherds=[-4,-6,2])
[-4 -1 0]
[-1 -6 -1]
[0 -2 2]

Note: Since this is a matrix, row() and column() will return the standard row and column respec-
tively. To get the row with the indices as in Dynkin diagrams/Cartan types, use row_with_indices() and
column_with_indices() respectively.

cartan_matrix()
Return the Cartan matrix of self.

EXAMPLES:

sage: CartanMatrix(['C',3]).cartan_matrix()
[2 -1 0]
[-1 2 -2]
[0 -1 2]

cartan_type()
Return the Cartan type of self or self if unknown.

EXAMPLES:

sage: C = CartanMatrix(['A',4,1])
sage: C.cartan_type()
['A', 4, 1]

If the Cartan type is unknown:

sage: C = CartanMatrix([[2,-1,-2], [-1,2,-1], [-2,-1,2]])
sage: C.cartan_type()
[2 -1 -2]
[-1 2 -1]
[-2 -1 2]

column_with_indices(j)
Return the 𝑗𝑡ℎ column (𝑎𝑖,𝑗)𝑖 of self as a container (or iterator) of tuples (𝑖, 𝑎𝑖,𝑗)

2190 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: M = CartanMatrix(['B',4])
sage: [(i,a) for (i,a) in M.column_with_indices(3)]
[(3, 2), (2, -1), (4, -2)]

coxeter_diagram()
Construct the Coxeter diagram of self.

See also:

CartanType_abstract.coxeter_diagram()

EXAMPLES:

sage: cm = CartanMatrix([[2,-5,0],[-2,2,-1],[0,-1,2]])
sage: G = cm.coxeter_diagram(); G
Graph on 3 vertices
sage: G.edges(sort=True)
[(0, 1, +Infinity), (1, 2, 3)]
sage: ct = CartanType([['A',2,2], ['B',3]])
sage: ct.coxeter_diagram()
Graph on 5 vertices
sage: ct.cartan_matrix().coxeter_diagram() == ct.coxeter_diagram()
True

coxeter_matrix()
Return the Coxeter matrix for self.

See also:

CartanType_abstract.coxeter_matrix()

EXAMPLES:

sage: cm = CartanMatrix([[2,-5,0],[-2,2,-1],[0,-1,2]])
sage: cm.coxeter_matrix()
[1 -1 2]
[-1 1 3]
[2 3 1]
sage: ct = CartanType([['A',2,2], ['B',3]])
sage: ct.coxeter_matrix()
[1 -1 2 2 2]
[-1 1 2 2 2]
[2 2 1 3 2]
[2 2 3 1 4]
[2 2 2 4 1]
sage: ct.cartan_matrix().coxeter_matrix() == ct.coxeter_matrix()
True

dual()
Return the dual Cartan matrix of self, which is obtained by taking the transpose.

EXAMPLES:

sage: ct = CartanType(['C',3])
sage: M = CartanMatrix(ct); M

(continues on next page)

5.1. Comprehensive Module List 2191

Combinatorics, Release 9.7

(continued from previous page)

[2 -1 0]
[-1 2 -2]
[0 -1 2]
sage: M.dual()
[2 -1 0]
[-1 2 -1]
[0 -2 2]
sage: M.dual() == CartanMatrix(ct.dual())
True
sage: M.dual().cartan_type() == ct.dual()
True

An example with arbitrary Cartan matrices:

sage: cm = CartanMatrix([[2,-5], [-2, 2]]); cm
[2 -5]
[-2 2]
sage: cm.dual()
[2 -2]
[-5 2]
sage: cm.dual() == CartanMatrix(cm.transpose())
True
sage: cm.dual().dual() == cm
True

dynkin_diagram()
Return the Dynkin diagram corresponding to self.

EXAMPLES:

sage: C = CartanMatrix(['A',2])
sage: C.dynkin_diagram()
O---O
1 2
A2
sage: C = CartanMatrix(['F',4,1])
sage: C.dynkin_diagram()
O---O---O=>=O---O
0 1 2 3 4
F4~
sage: C = CartanMatrix([[2,-4],[-4,2]])
sage: C.dynkin_diagram()
Dynkin diagram of rank 2

indecomposable_blocks()
Return a tuple of all indecomposable blocks of self.

EXAMPLES:

sage: M = CartanMatrix(['A',2])
sage: M.indecomposable_blocks()
(
[2 -1]
[-1 2]

(continues on next page)

2192 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

)
sage: M = CartanMatrix([['A',2,1],['A',3,1]])
sage: M.indecomposable_blocks()
(
[2 -1 0 -1]
[-1 2 -1 0] [2 -1 -1]
[0 -1 2 -1] [-1 2 -1]
[-1 0 -1 2], [-1 -1 2]
)

index_set()
Return the index set of self.

EXAMPLES:

sage: C = CartanMatrix(['A',1,1])
sage: C.index_set()
(0, 1)
sage: C = CartanMatrix(['E',6])
sage: C.index_set()
(1, 2, 3, 4, 5, 6)

is_affine()
Return True if self is an affine type or False otherwise.

A generalized Cartan matrix is affine if all of its indecomposable blocks are either finite (see is_finite())
or have zero determinant with all proper principal minors positive.

EXAMPLES:

sage: M = CartanMatrix(['C',4])
sage: M.is_affine()
False
sage: M = CartanMatrix(['D',4,1])
sage: M.is_affine()
True
sage: M = CartanMatrix([[2, -4], [-3, 2]])
sage: M.is_affine()
False

is_crystallographic()
Implements CartanType_abstract.is_crystallographic().

A Cartan matrix is crystallographic if it is symmetrizable.

EXAMPLES:

sage: CartanMatrix(['F',4]).is_crystallographic()
True

is_finite()
Return True if self is a finite type or False otherwise.

A generalized Cartan matrix is finite if the determinant of all its principal submatrices (see
principal_submatrices()) is positive. Such matrices have a positive definite symmetrized matrix.
Note that a finite matrix may consist of multiple blocks of Cartan matrices each having finite Cartan type.

5.1. Comprehensive Module List 2193

Combinatorics, Release 9.7

EXAMPLES:

sage: M = CartanMatrix(['C',4])
sage: M.is_finite()
True
sage: M = CartanMatrix(['D',4,1])
sage: M.is_finite()
False
sage: M = CartanMatrix([[2, -4], [-3, 2]])
sage: M.is_finite()
False

is_hyperbolic(compact=False)
Return if True if self is a (compact) hyperbolic type or False otherwise.

An indecomposable generalized Cartan matrix is hyperbolic if it has negative determinant and if any proper
connected subdiagram of its Dynkin diagram is of finite or affine type. It is compact hyperbolic if any proper
connected subdiagram has finite type.

INPUT:

• compact – if True, check if matrix is compact hyperbolic

EXAMPLES:

sage: M = CartanMatrix([[2,-2,0],[-2,2,-1],[0,-1,2]])
sage: M.is_hyperbolic()
True
sage: M.is_hyperbolic(compact=True)
False
sage: M = CartanMatrix([[2,-3],[-3,2]])
sage: M.is_hyperbolic()
True
sage: M = CartanMatrix(['C',4])
sage: M.is_hyperbolic()
False

is_indecomposable()
Return if self is an indecomposable matrix or False otherwise.

EXAMPLES:

sage: M = CartanMatrix(['A',5])
sage: M.is_indecomposable()
True
sage: M = CartanMatrix([[2,-1,0],[-1,2,0],[0,0,2]])
sage: M.is_indecomposable()
False

is_indefinite()
Return if self is an indefinite type or False otherwise.

EXAMPLES:

sage: M = CartanMatrix([[2,-3],[-3,2]])
sage: M.is_indefinite()
True

(continues on next page)

2194 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: M = CartanMatrix("A2")
sage: M.is_indefinite()
False

is_lorentzian()
Return True if self is a Lorentzian type or False otherwise.

A generalized Cartan matrix is Lorentzian if it has negative determinant and exactly one negative eigen-
value.

EXAMPLES:

sage: M = CartanMatrix([[2,-3],[-3,2]])
sage: M.is_lorentzian()
True
sage: M = CartanMatrix([[2,-1],[-1,2]])
sage: M.is_lorentzian()
False

is_simply_laced()
Implements CartanType_abstract.is_simply_laced().

A Cartan matrix is simply-laced if all non diagonal entries are 0 or −1.

EXAMPLES:

sage: cm = CartanMatrix([[2, -1, -1, -1], [-1, 2, -1, -1], [-1, -1, 2, -1], [-1,
→˓ -1, -1, 2]])
sage: cm.is_simply_laced()
True

matrix_space(nrows=None, ncols=None, sparse=None)
Return a matrix space over the integers.

INPUT:

• nrows - number of rows

• ncols - number of columns

• sparse - (boolean) sparseness

EXAMPLES:

sage: cm = CartanMatrix(['A', 3])
sage: cm.matrix_space()
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring
sage: cm.matrix_space(2, 2)
Full MatrixSpace of 2 by 2 sparse matrices over Integer Ring
sage: cm[:2,1:] # indirect doctest
[-1 0]
[2 -1]

principal_submatrices(proper=False)
Return a list of all principal submatrices of self.

INPUT:

• proper – if True, return only proper submatrices

5.1. Comprehensive Module List 2195

Combinatorics, Release 9.7

EXAMPLES:

sage: M = CartanMatrix(['A',2])
sage: M.principal_submatrices()
[

[2 -1]
[], [2], [2], [-1 2]
]
sage: M.principal_submatrices(proper=True)
[[], [2], [2]]

rank()
Return the rank of self.

EXAMPLES:

sage: CartanMatrix(['C',3]).rank()
3
sage: CartanMatrix(["A2","B2","F4"]).rank()
8

reflection_group(type='matrix')
Return the reflection group corresponding to self.

EXAMPLES:

sage: C = CartanMatrix(['A',3])
sage: C.reflection_group()
Weyl Group of type ['A', 3] (as a matrix group acting on the root space)

relabel(relabelling)
Return the relabelled Cartan matrix.

EXAMPLES:

sage: CM = CartanMatrix(['C',3])
sage: R = CM.relabel({1:0, 2:4, 3:1}); R
[2 0 -1]
[0 2 -1]
[-1 -2 2]
sage: R.index_set()
(0, 1, 4)
sage: CM
[2 -1 0]
[-1 2 -2]
[0 -1 2]

root_space()
Return the root space corresponding to self.

EXAMPLES:

sage: C = CartanMatrix(['A',3])
sage: C.root_space()
Root space over the Rational Field of the Root system of type ['A', 3]

2196 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

root_system()
Return the root system corresponding to self.

EXAMPLES:

sage: C = CartanMatrix(['A',3])
sage: C.root_system()
Root system of type ['A', 3]

row_with_indices(i)
Return the 𝑖𝑡ℎ row (𝑎𝑖,𝑗)𝑗 of self as a container (or iterator) of tuples (𝑗, 𝑎𝑖,𝑗)

EXAMPLES:

sage: M = CartanMatrix(['C',4])
sage: [(i,a) for (i,a) in M.row_with_indices(3)]
[(3, 2), (2, -1), (4, -2)]

subtype(index_set)
Return a subtype of self given by index_set.

A subtype can be considered the Dynkin diagram induced from the Dynkin diagram of self by index_set.

EXAMPLES:

sage: C = CartanMatrix(['F',4])
sage: S = C.subtype([1,2,3])
sage: S
[2 -1 0]
[-1 2 -1]
[0 -2 2]
sage: S.index_set()
(1, 2, 3)

symmetrized_matrix()
Return the symmetrized matrix of self if symmetrizable.

EXAMPLES:

sage: cm = CartanMatrix(['B',4,1])
sage: cm.symmetrized_matrix()
[4 0 -2 0 0]
[0 4 -2 0 0]
[-2 -2 4 -2 0]
[0 0 -2 4 -2]
[0 0 0 -2 2]

symmetrizer()
Return the symmetrizer of self.

EXAMPLES:

sage: cm = CartanMatrix([[2,-5],[-2,2]])
sage: cm.symmetrizer()
Finite family {0: 2, 1: 5}

5.1. Comprehensive Module List 2197

Combinatorics, Release 9.7

sage.combinat.root_system.cartan_matrix.find_cartan_type_from_matrix(CM)
Find a Cartan type by direct comparison of Dynkin diagrams given from the generalized Cartan matrix CM and
return None if not found.

INPUT:

• CM – a generalized Cartan matrix

EXAMPLES:

sage: from sage.combinat.root_system.cartan_matrix import find_cartan_type_from_
→˓matrix
sage: CM = CartanMatrix([[2,-1,-1], [-1,2,-1], [-1,-1,2]])
sage: find_cartan_type_from_matrix(CM)
['A', 2, 1]
sage: CM = CartanMatrix([[2,-1,0], [-1,2,-2], [0,-1,2]])
sage: find_cartan_type_from_matrix(CM)
['C', 3] relabelled by {1: 0, 2: 1, 3: 2}
sage: CM = CartanMatrix([[2,-1,-2], [-1,2,-1], [-2,-1,2]])
sage: find_cartan_type_from_matrix(CM)

sage.combinat.root_system.cartan_matrix.is_borcherds_cartan_matrix(M)
Return True if M is an even, integral Borcherds-Cartan matrix. For a definition of such a matrix, see
CartanMatrix.

EXAMPLES:

sage: from sage.combinat.root_system.cartan_matrix import is_borcherds_cartan_matrix
sage: M = Matrix([[2,-1],[-1,2]])
sage: is_borcherds_cartan_matrix(M)
True
sage: N = Matrix([[2,-1],[-1,0]])
sage: is_borcherds_cartan_matrix(N)
False
sage: O = Matrix([[2,-1],[-1,-2]])
sage: is_borcherds_cartan_matrix(O)
True
sage: O = Matrix([[2,-1],[-1,-3]])
sage: is_borcherds_cartan_matrix(O)
False

sage.combinat.root_system.cartan_matrix.is_generalized_cartan_matrix(M)
Return True if M is a generalized Cartan matrix. For a definition of a generalized Cartan matrix, see
CartanMatrix.

EXAMPLES:

sage: from sage.combinat.root_system.cartan_matrix import is_generalized_cartan_
→˓matrix
sage: M = matrix([[2,-1,-2], [-1,2,-1], [-2,-1,2]])
sage: is_generalized_cartan_matrix(M)
True
sage: M = matrix([[2,-1,-2], [-1,2,-1], [0,-1,2]])
sage: is_generalized_cartan_matrix(M)
False
sage: M = matrix([[1,-1,-2], [-1,2,-1], [-2,-1,2]])

(continues on next page)

2198 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: is_generalized_cartan_matrix(M)
False

A non-symmetrizable example:

sage: M = matrix([[2,-1,-2], [-1,2,-1], [-1,-1,2]])
sage: is_generalized_cartan_matrix(M)
True

5.1.222 Cartan types

Todo: Why does sphinx complain if I use sections here?

Introduction

Loosely speaking, Dynkin diagrams (or equivalently Cartan matrices) are graphs which are used to classify root sys-
tems, Coxeter and Weyl groups, Lie algebras, Lie groups, crystals, etc. up to an isomorphism. Cartan types are a
standard set of names for those Dynkin diagrams (see Wikipedia article Dynkin_diagram).

Let us consider, for example, the Cartan type 𝐴4:

sage: T = CartanType(['A', 4])
sage: T
['A', 4]

It is the name of the following Dynkin diagram:

sage: DynkinDiagram(T)
O---O---O---O
1 2 3 4
A4

Note: For convenience, the following shortcuts are available:

sage: DynkinDiagram(['A',4])
O---O---O---O
1 2 3 4
A4
sage: DynkinDiagram('A4')
O---O---O---O
1 2 3 4
A4
sage: T.dynkin_diagram()
O---O---O---O
1 2 3 4
A4

See DynkinDiagram for how to further manipulate Dynkin diagrams.

From this data (the Cartan datum), one can construct the associated root system:

5.1. Comprehensive Module List 2199

https://en.wikipedia.org/wiki/Dynkin_diagram

Combinatorics, Release 9.7

sage: RootSystem(T)
Root system of type ['A', 4]

The associated Weyl group of 𝐴𝑛 is the symmetric group 𝑆𝑛+1:

sage: W = WeylGroup(T)
sage: W
Weyl Group of type ['A', 4] (as a matrix group acting on the ambient space)
sage: W.cardinality()
120

while the Lie algebra is 𝑠𝑙𝑛+1, and the Lie group 𝑆𝐿𝑛+1 (TODO: illustrate this once this is implemented).

One may also construct crystals associated to various Dynkin diagrams. For example:

sage: C = crystals.Letters(T)
sage: C
The crystal of letters for type ['A', 4]
sage: C.list()
[1, 2, 3, 4, 5]

sage: C = crystals.Tableaux(T, shape=[2])
sage: C
The crystal of tableaux of type ['A', 4] and shape(s) [[2]]
sage: C.cardinality()
15

Here is a sample of all the finite irreducible crystallographic Cartan types:

sage: CartanType.samples(finite = True, crystallographic = True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D',␣
→˓5],
['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2]]

One can also get latex representations of the crystallographic Cartan types and their corresponding Dynkin diagrams:

sage: [latex(ct) for ct in CartanType.samples(crystallographic=True)]
[A_{1}, A_{5}, B_{1}, B_{5}, C_{1}, C_{5}, D_{2}, D_{3}, D_{5},
E_6, E_7, E_8, F_4, G_2,
A_{1}^{(1)}, A_{5}^{(1)}, B_{1}^{(1)}, B_{5}^{(1)}, C_{1}^{(1)}, C_{5}^{(1)}, D_{3}^
→˓{(1)}, D_{5}^{(1)},
E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, F_4^{(1)}, G_2^{(1)},
BC_{1}^{(2)}, BC_{5}^{(2)},
B_{5}^{(1)\vee}, C_{4}^{(1)\vee}, F_4^{(1)\vee}, G_2^{(1)\vee}, BC_{1}^{(2)\vee}, BC_{5}
→˓^{(2)\vee}]
sage: view([DynkinDiagram(ct) for ct in CartanType.samples(crystallographic=True)]) #␣
→˓not tested

Non-crystallographic Cartan types are also partially supported:

sage: CartanType.samples(finite = True, crystallographic = False)
[['I', 5], ['H', 3], ['H', 4]]

In Sage, a Cartan type is used as a database of type-specific information and algorithms (see e.g. sage.combinat.
root_system.type_A). This database includes how to construct the Dynkin diagram, the ambient space for the root

2200 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

system (see Wikipedia article Root_system), and further mathematical properties:

sage: T.is_finite(), T.is_simply_laced(), T.is_affine(), T.is_crystallographic()
(True, True, False, True)

In particular, a Sage Cartan type is endowed with a fixed choice of labels for the nodes of the Dynkin diagram. This
choice follows the conventions of Nicolas Bourbaki, Lie Groups and Lie Algebras: Chapter 4-6, Elements of Mathe-
matics, Springer (2002). ISBN 978-3540426509. For example:

sage: T = CartanType(['D', 4])
sage: DynkinDiagram(T)

O 4
|
|

O---O---O
1 2 3
D4

sage: E6 = CartanType(['E',6])
sage: DynkinDiagram(E6)

O 2
|
|

O---O---O---O---O
1 3 4 5 6
E6

Note: The direction of the arrows is the opposite (i.e. the transpose) of Bourbaki’s convention, but agrees with Kac’s.

For example, in type 𝐶2, we have:

sage: C2 = DynkinDiagram(['C',2]); C2
O=<=O
1 2
C2
sage: C2.cartan_matrix()
[2 -2]
[-1 2]

However Bourbaki would have the Cartan matrix as:[︂
2 −1
−2 2

]︂
.

If desired, other node labelling conventions can be achieved. For example the Kac labelling for type𝐸6 can be obtained
via:

sage: E6.relabel({1:1,2:6,3:2,4:3,5:4,6:5}).dynkin_diagram()
O 6
|
|

O---O---O---O---O
1 2 3 4 5
E6 relabelled by {1: 1, 2: 6, 3: 2, 4: 3, 5: 4, 6: 5}

5.1. Comprehensive Module List 2201

https://en.wikipedia.org/wiki/Root_system

Combinatorics, Release 9.7

Contributions implementing other conventions are very welcome.

Another option is to build from scratch a new Dynkin diagram. The architecture has been designed to make it fairly
easy to add other labelling conventions. In particular, we strived at choosing type free algorithms whenever possible,
so in principle most features should remain available even with custom Cartan types. This has not been used much yet,
so some rough corners certainly remain.

Here, we construct the hyperbolic example of Exercise 4.9 p. 57 of Kac, Infinite Dimensional Lie Algebras. We start
with an empty Dynkin diagram, and add a couple nodes:

sage: g = DynkinDiagram()
sage: g.add_vertices([1,2,3])

Note that the diagonal of the Cartan matrix is already initialized:

sage: g.cartan_matrix()
[2 0 0]
[0 2 0]
[0 0 2]

Then we add a couple edges:

sage: g.add_edge(1,2,2)
sage: g.add_edge(1,3)
sage: g.add_edge(2,3)

and we get the desired Cartan matrix:

sage: g.cartan_matrix()
[2 0 0]
[0 2 0]
[0 0 2]

Oops, the Cartan matrix did not change! This is because it is cached for efficiency (see cached_method). In general,
a Dynkin diagram should not be modified after having been used.

Warning: this is not checked currently

Todo: add a method set_mutable() as, say, for matrices

Here, we can work around this by clearing the cache:

sage: delattr(g, 'cartan_matrix')

Now we get the desired Cartan matrix:

sage: g.cartan_matrix()
[2 -1 -1]
[-2 2 -1]
[-1 -1 2]

Note that backward edges have been automatically added:

2202 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: g.edges(sort=True)
[(1, 2, 2), (1, 3, 1), (2, 1, 1), (2, 3, 1), (3, 1, 1), (3, 2, 1)]

Reducible Cartan types

Reducible Cartan types can be specified by passing a sequence or list of irreducible Cartan types:

sage: CartanType(['A',2],['B',2])
A2xB2
sage: CartanType([['A',2],['B',2]])
A2xB2
sage: CartanType(['A',2],['B',2]).is_reducible()
True

or using the following short hand notation:

sage: CartanType("A2xB2")
A2xB2
sage: CartanType("A2","B2") == CartanType("A2xB2")
True

Degenerate cases

When possible, type 𝐼𝑛 is automatically converted to the isomorphic crystallographic Cartan types (any reason not to
do so?):

sage: CartanType(["I",1])
A1xA1
sage: CartanType(["I",3])
['A', 2]
sage: CartanType(["I",4])
['C', 2]
sage: CartanType(["I",6])
['G', 2]

The Dynkin diagrams for types 𝐵1, 𝐶1, 𝐷2, and 𝐷3 are isomorphic to that for 𝐴1, 𝐴1, 𝐴1×𝐴1, and 𝐴3, respectively.
However their natural ambient space realizations (stemming from the corresponding infinite families of Lie groups)
are different. Therefore, the Cartan types are considered as distinct:

sage: CartanType(['B',1])
['B', 1]
sage: CartanType(['C',1])
['C', 1]
sage: CartanType(['D',2])
['D', 2]
sage: CartanType(['D',3])
['D', 3]

5.1. Comprehensive Module List 2203

Combinatorics, Release 9.7

Affine Cartan types

For affine types, we use the usual conventions for affine Coxeter groups: each affine type is either untwisted (that is
arise from the natural affinisation of a finite Cartan type):

sage: CartanType(["A", 4, 1]).dynkin_diagram()
0
O-----------+
| |
| |
O---O---O---O
1 2 3 4
A4~
sage: CartanType(["B", 4, 1]).dynkin_diagram()

O 0
|
|

O---O---O=>=O
1 2 3 4
B4~

or dual thereof:

sage: CartanType(["B", 4, 1]).dual().dynkin_diagram()
O 0
|
|

O---O---O=<=O
1 2 3 4
B4~*

or is of type ̃︂𝐵𝐶𝑛 (which yields an irreducible, but nonreduced root system):

sage: CartanType(["BC", 4, 2]).dynkin_diagram()
O=<=O---O---O=<=O
0 1 2 3 4
BC4~

This includes the two degenerate cases:

sage: CartanType(["A", 1, 1]).dynkin_diagram()
O<=>O
0 1
A1~
sage: CartanType(["BC", 1, 2]).dynkin_diagram()

4
O=<=O
0 1
BC1~

For the user convenience, Kac’s notations for twisted affine types are automatically translated into the previous ones:

sage: CartanType(["A", 9, 2])
['B', 5, 1]^*

(continues on next page)

2204 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: CartanType(["A", 9, 2]).dynkin_diagram()
O 0
|
|

O---O---O---O=<=O
1 2 3 4 5
B5~*
sage: CartanType(["A", 10, 2]).dynkin_diagram()
O=<=O---O---O---O=<=O
0 1 2 3 4 5
BC5~
sage: CartanType(["D", 5, 2]).dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
C4~*
sage: CartanType(["D", 4, 3]).dynkin_diagram()

3
O=>=O---O
2 1 0
G2~* relabelled by {0: 0, 1: 2, 2: 1}
sage: CartanType(["E", 6, 2]).dynkin_diagram()
O---O---O=<=O---O
0 1 2 3 4
F4~*

Additionally one can set the notation option to use Kac’s notation:

sage: CartanType.options['notation'] = 'Kac'
sage: CartanType(["A", 9, 2])
['A', 9, 2]
sage: CartanType(["A", 9, 2]).dynkin_diagram()

O 0
|
|

O---O---O---O=<=O
1 2 3 4 5
A9^2
sage: CartanType(["A", 10, 2]).dynkin_diagram()
O=<=O---O---O---O=<=O
0 1 2 3 4 5
A10^2
sage: CartanType(["D", 5, 2]).dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
D5^2
sage: CartanType(["D", 4, 3]).dynkin_diagram()

3
O=>=O---O
2 1 0
D4^3
sage: CartanType(["E", 6, 2]).dynkin_diagram()
O---O---O=<=O---O

(continues on next page)

5.1. Comprehensive Module List 2205

Combinatorics, Release 9.7

(continued from previous page)

0 1 2 3 4
E6^2
sage: CartanType.options['notation'] = 'BC'

Infinite Cartan types

There are minimal implementations of the Cartan types 𝐴∞ and 𝐴+∞. In sage 𝑜𝑜 is the same as +𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦, so 𝑁𝑁
and 𝑍𝑍 are used to differentiate between the 𝐴+∞ and 𝐴∞ root systems:

sage: CartanType(['A', NN])
['A', NN]
sage: print(CartanType(['A', NN]).ascii_art())
O---O---O---O---O---O---O---..
0 1 2 3 4 5 6
sage: CartanType(['A', ZZ])
['A', ZZ]
sage: print(CartanType(['A', ZZ]).ascii_art())
..---O---O---O---O---O---O---O---..

-3 -2 -1 0 1 2 3

There are also the following shorthands:

sage: CartanType("Aoo")
['A', ZZ]
sage: CartanType("A+oo")
['A', NN]

Abstract classes for Cartan types

• CartanType_abstract

• CartanType_crystallographic

• CartanType_simply_laced

• CartanType_simple

• CartanType_finite

• CartanType_affine (see also Root system data for affine Cartan types)

• sage.combinat.root_system.cartan_type.CartanType

• Root system data for dual Cartan types

• Root system data for reducible Cartan types

• Root system data for relabelled Cartan types

Concrete classes for Cartan types

• CartanType_standard

• CartanType_standard_finite

• CartanType_standard_affine

• CartanType_standard_untwisted_affine

2206 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Type specific data

The data essentially consists of a description of the Dynkin/Coxeter diagram and, when relevant, of the natural embed-
ding of the root system in an Euclidean space. Everything else is reconstructed from this data.

• Root system data for type A

• Root system data for type B

• Root system data for type C

• Root system data for type D

• Root system data for type E

• Root system data for type F

• Root system data for type G

• Root system data for type H

• Root system data for type I

• Root system data for super type A

• Root system data for type Q

• Root system data for (untwisted) type A affine

• Root system data for (untwisted) type B affine

• Root system data for (untwisted) type C affine

• Root system data for (untwisted) type D affine

• Root system data for (untwisted) type E affine

• Root system data for (untwisted) type F affine

• Root system data for (untwisted) type G affine

• Root system data for type BC affine

• Root system data for type A infinity

Todo: Should those indexes come before the introduction?

sage.combinat.root_system.cartan_type.CartanType(*args)
Cartan types

Todo: Why does sphinx complain if I use sections here?

Introduction

Loosely speaking, Dynkin diagrams (or equivalently Cartan matrices) are graphs which are used to classify root
systems, Coxeter and Weyl groups, Lie algebras, Lie groups, crystals, etc. up to an isomorphism. Cartan types
are a standard set of names for those Dynkin diagrams (see Wikipedia article Dynkin_diagram).

Let us consider, for example, the Cartan type 𝐴4:

sage: T = CartanType(['A', 4])
sage: T
['A', 4]

5.1. Comprehensive Module List 2207

https://en.wikipedia.org/wiki/Dynkin_diagram

Combinatorics, Release 9.7

It is the name of the following Dynkin diagram:

sage: DynkinDiagram(T)
O---O---O---O
1 2 3 4
A4

Note: For convenience, the following shortcuts are available:

sage: DynkinDiagram(['A',4])
O---O---O---O
1 2 3 4
A4
sage: DynkinDiagram('A4')
O---O---O---O
1 2 3 4
A4
sage: T.dynkin_diagram()
O---O---O---O
1 2 3 4
A4

See DynkinDiagram for how to further manipulate Dynkin diagrams.

From this data (the Cartan datum), one can construct the associated root system:

sage: RootSystem(T)
Root system of type ['A', 4]

The associated Weyl group of 𝐴𝑛 is the symmetric group 𝑆𝑛+1:

sage: W = WeylGroup(T)
sage: W
Weyl Group of type ['A', 4] (as a matrix group acting on the ambient space)
sage: W.cardinality()
120

while the Lie algebra is 𝑠𝑙𝑛+1, and the Lie group 𝑆𝐿𝑛+1 (TODO: illustrate this once this is implemented).

One may also construct crystals associated to various Dynkin diagrams. For example:

sage: C = crystals.Letters(T)
sage: C
The crystal of letters for type ['A', 4]
sage: C.list()
[1, 2, 3, 4, 5]

sage: C = crystals.Tableaux(T, shape=[2])
sage: C
The crystal of tableaux of type ['A', 4] and shape(s) [[2]]
sage: C.cardinality()
15

Here is a sample of all the finite irreducible crystallographic Cartan types:

2208 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: CartanType.samples(finite = True, crystallographic = True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D
→˓', 5],
['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2]]

One can also get latex representations of the crystallographic Cartan types and their corresponding Dynkin dia-
grams:

sage: [latex(ct) for ct in CartanType.samples(crystallographic=True)]
[A_{1}, A_{5}, B_{1}, B_{5}, C_{1}, C_{5}, D_{2}, D_{3}, D_{5},
E_6, E_7, E_8, F_4, G_2,
A_{1}^{(1)}, A_{5}^{(1)}, B_{1}^{(1)}, B_{5}^{(1)}, C_{1}^{(1)}, C_{5}^{(1)}, D_{3}
→˓^{(1)}, D_{5}^{(1)},
E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, F_4^{(1)}, G_2^{(1)},
BC_{1}^{(2)}, BC_{5}^{(2)},
B_{5}^{(1)\vee}, C_{4}^{(1)\vee}, F_4^{(1)\vee}, G_2^{(1)\vee}, BC_{1}^{(2)\vee},␣
→˓BC_{5}^{(2)\vee}]
sage: view([DynkinDiagram(ct) for ct in CartanType.samples(crystallographic=True)])
→˓# not tested

Non-crystallographic Cartan types are also partially supported:

sage: CartanType.samples(finite = True, crystallographic = False)
[['I', 5], ['H', 3], ['H', 4]]

In Sage, a Cartan type is used as a database of type-specific information and algorithms (see e.g. sage.
combinat.root_system.type_A). This database includes how to construct the Dynkin diagram, the ambient
space for the root system (see Wikipedia article Root_system), and further mathematical properties:

sage: T.is_finite(), T.is_simply_laced(), T.is_affine(), T.is_crystallographic()
(True, True, False, True)

In particular, a Sage Cartan type is endowed with a fixed choice of labels for the nodes of the Dynkin diagram.
This choice follows the conventions of Nicolas Bourbaki, Lie Groups and Lie Algebras: Chapter 4-6, Elements
of Mathematics, Springer (2002). ISBN 978-3540426509. For example:

sage: T = CartanType(['D', 4])
sage: DynkinDiagram(T)

O 4
|
|

O---O---O
1 2 3
D4

sage: E6 = CartanType(['E',6])
sage: DynkinDiagram(E6)

O 2
|
|

O---O---O---O---O
1 3 4 5 6
E6

5.1. Comprehensive Module List 2209

https://en.wikipedia.org/wiki/Root_system

Combinatorics, Release 9.7

Note: The direction of the arrows is the opposite (i.e. the transpose) of Bourbaki’s convention, but agrees with
Kac’s.

For example, in type 𝐶2, we have:

sage: C2 = DynkinDiagram(['C',2]); C2
O=<=O
1 2
C2
sage: C2.cartan_matrix()
[2 -2]
[-1 2]

However Bourbaki would have the Cartan matrix as:[︂
2 −1
−2 2

]︂
.

If desired, other node labelling conventions can be achieved. For example the Kac labelling for type 𝐸6 can be
obtained via:

sage: E6.relabel({1:1,2:6,3:2,4:3,5:4,6:5}).dynkin_diagram()
O 6
|
|

O---O---O---O---O
1 2 3 4 5
E6 relabelled by {1: 1, 2: 6, 3: 2, 4: 3, 5: 4, 6: 5}

Contributions implementing other conventions are very welcome.

Another option is to build from scratch a new Dynkin diagram. The architecture has been designed to make it
fairly easy to add other labelling conventions. In particular, we strived at choosing type free algorithms whenever
possible, so in principle most features should remain available even with custom Cartan types. This has not been
used much yet, so some rough corners certainly remain.

Here, we construct the hyperbolic example of Exercise 4.9 p. 57 of Kac, Infinite Dimensional Lie Algebras. We
start with an empty Dynkin diagram, and add a couple nodes:

sage: g = DynkinDiagram()
sage: g.add_vertices([1,2,3])

Note that the diagonal of the Cartan matrix is already initialized:

sage: g.cartan_matrix()
[2 0 0]
[0 2 0]
[0 0 2]

Then we add a couple edges:

sage: g.add_edge(1,2,2)
sage: g.add_edge(1,3)
sage: g.add_edge(2,3)

2210 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

and we get the desired Cartan matrix:

sage: g.cartan_matrix()
[2 0 0]
[0 2 0]
[0 0 2]

Oops, the Cartan matrix did not change! This is because it is cached for efficiency (see cached_method). In
general, a Dynkin diagram should not be modified after having been used.

Warning: this is not checked currently

Todo: add a method set_mutable() as, say, for matrices

Here, we can work around this by clearing the cache:

sage: delattr(g, 'cartan_matrix')

Now we get the desired Cartan matrix:

sage: g.cartan_matrix()
[2 -1 -1]
[-2 2 -1]
[-1 -1 2]

Note that backward edges have been automatically added:

sage: g.edges(sort=True)
[(1, 2, 2), (1, 3, 1), (2, 1, 1), (2, 3, 1), (3, 1, 1), (3, 2, 1)]

Reducible Cartan types

Reducible Cartan types can be specified by passing a sequence or list of irreducible Cartan types:

sage: CartanType(['A',2],['B',2])
A2xB2
sage: CartanType([['A',2],['B',2]])
A2xB2
sage: CartanType(['A',2],['B',2]).is_reducible()
True

or using the following short hand notation:

sage: CartanType("A2xB2")
A2xB2
sage: CartanType("A2","B2") == CartanType("A2xB2")
True

5.1. Comprehensive Module List 2211

Combinatorics, Release 9.7

Degenerate cases

When possible, type 𝐼𝑛 is automatically converted to the isomorphic crystallographic Cartan types (any reason
not to do so?):

sage: CartanType(["I",1])
A1xA1
sage: CartanType(["I",3])
['A', 2]
sage: CartanType(["I",4])
['C', 2]
sage: CartanType(["I",6])
['G', 2]

The Dynkin diagrams for types 𝐵1, 𝐶1, 𝐷2, and 𝐷3 are isomorphic to that for 𝐴1, 𝐴1, 𝐴1 × 𝐴1, and 𝐴3, re-
spectively. However their natural ambient space realizations (stemming from the corresponding infinite families
of Lie groups) are different. Therefore, the Cartan types are considered as distinct:

sage: CartanType(['B',1])
['B', 1]
sage: CartanType(['C',1])
['C', 1]
sage: CartanType(['D',2])
['D', 2]
sage: CartanType(['D',3])
['D', 3]

Affine Cartan types

For affine types, we use the usual conventions for affine Coxeter groups: each affine type is either untwisted (that
is arise from the natural affinisation of a finite Cartan type):

sage: CartanType(["A", 4, 1]).dynkin_diagram()
0
O-----------+
| |
| |
O---O---O---O
1 2 3 4
A4~
sage: CartanType(["B", 4, 1]).dynkin_diagram()

O 0
|
|

O---O---O=>=O
1 2 3 4
B4~

or dual thereof:

sage: CartanType(["B", 4, 1]).dual().dynkin_diagram()
O 0
|

(continues on next page)

2212 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

|
O---O---O=<=O
1 2 3 4
B4~*

or is of type ̃︂𝐵𝐶𝑛 (which yields an irreducible, but nonreduced root system):

sage: CartanType(["BC", 4, 2]).dynkin_diagram()
O=<=O---O---O=<=O
0 1 2 3 4
BC4~

This includes the two degenerate cases:

sage: CartanType(["A", 1, 1]).dynkin_diagram()
O<=>O
0 1
A1~
sage: CartanType(["BC", 1, 2]).dynkin_diagram()
4

O=<=O
0 1
BC1~

For the user convenience, Kac’s notations for twisted affine types are automatically translated into the previous
ones:

sage: CartanType(["A", 9, 2])
['B', 5, 1]^*
sage: CartanType(["A", 9, 2]).dynkin_diagram()

O 0
|
|

O---O---O---O=<=O
1 2 3 4 5
B5~*
sage: CartanType(["A", 10, 2]).dynkin_diagram()
O=<=O---O---O---O=<=O
0 1 2 3 4 5
BC5~
sage: CartanType(["D", 5, 2]).dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
C4~*
sage: CartanType(["D", 4, 3]).dynkin_diagram()
3

O=>=O---O
2 1 0
G2~* relabelled by {0: 0, 1: 2, 2: 1}
sage: CartanType(["E", 6, 2]).dynkin_diagram()
O---O---O=<=O---O
0 1 2 3 4
F4~*

5.1. Comprehensive Module List 2213

Combinatorics, Release 9.7

Additionally one can set the notation option to use Kac’s notation:

sage: CartanType.options['notation'] = 'Kac'
sage: CartanType(["A", 9, 2])
['A', 9, 2]
sage: CartanType(["A", 9, 2]).dynkin_diagram()

O 0
|
|

O---O---O---O=<=O
1 2 3 4 5
A9^2
sage: CartanType(["A", 10, 2]).dynkin_diagram()
O=<=O---O---O---O=<=O
0 1 2 3 4 5
A10^2
sage: CartanType(["D", 5, 2]).dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
D5^2
sage: CartanType(["D", 4, 3]).dynkin_diagram()
3

O=>=O---O
2 1 0
D4^3
sage: CartanType(["E", 6, 2]).dynkin_diagram()
O---O---O=<=O---O
0 1 2 3 4
E6^2
sage: CartanType.options['notation'] = 'BC'

Infinite Cartan types

There are minimal implementations of the Cartan types 𝐴∞ and 𝐴+∞. In sage 𝑜𝑜 is the same as +𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑦, so
𝑁𝑁 and 𝑍𝑍 are used to differentiate between the 𝐴+∞ and 𝐴∞ root systems:

sage: CartanType(['A', NN])
['A', NN]
sage: print(CartanType(['A', NN]).ascii_art())
O---O---O---O---O---O---O---..
0 1 2 3 4 5 6
sage: CartanType(['A', ZZ])
['A', ZZ]
sage: print(CartanType(['A', ZZ]).ascii_art())
..---O---O---O---O---O---O---O---..

-3 -2 -1 0 1 2 3

There are also the following shorthands:

sage: CartanType("Aoo")
['A', ZZ]
sage: CartanType("A+oo")
['A', NN]

2214 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Abstract classes for Cartan types

• CartanType_abstract

• CartanType_crystallographic

• CartanType_simply_laced

• CartanType_simple

• CartanType_finite

• CartanType_affine (see also Root system data for affine Cartan types)

• sage.combinat.root_system.cartan_type.CartanType

• Root system data for dual Cartan types

• Root system data for reducible Cartan types

• Root system data for relabelled Cartan types

Concrete classes for Cartan types

• CartanType_standard

• CartanType_standard_finite

• CartanType_standard_affine

• CartanType_standard_untwisted_affine

Type specific data

The data essentially consists of a description of the Dynkin/Coxeter diagram and, when relevant, of the natural
embedding of the root system in an Euclidean space. Everything else is reconstructed from this data.

• Root system data for type A

• Root system data for type B

• Root system data for type C

• Root system data for type D

• Root system data for type E

• Root system data for type F

• Root system data for type G

• Root system data for type H

• Root system data for type I

• Root system data for super type A

• Root system data for type Q

• Root system data for (untwisted) type A affine

• Root system data for (untwisted) type B affine

• Root system data for (untwisted) type C affine

• Root system data for (untwisted) type D affine

• Root system data for (untwisted) type E affine

• Root system data for (untwisted) type F affine

5.1. Comprehensive Module List 2215

Combinatorics, Release 9.7

• Root system data for (untwisted) type G affine

• Root system data for type BC affine

• Root system data for type A infinity

Todo: Should those indexes come before the introduction?

class sage.combinat.root_system.cartan_type.CartanTypeFactory
Bases: sage.structure.sage_object.SageObject

classmethod color(i)
Default color scheme for the vertices of a Dynkin diagram (and associated objects)

EXAMPLES:

sage: CartanType.color(1)
'blue'
sage: CartanType.color(2)
'red'
sage: CartanType.color(3)
'green'

The default color is black:

sage: CartanType.color(0)
'black'

Negative indices get the same color as their positive counterparts:

sage: CartanType.color(-1)
'blue'
sage: CartanType.color(-2)
'red'
sage: CartanType.color(-3)
'green'

options(*get_value, **set_value)
Sets and displays the options for Cartan types. If no parameters are set, then the function returns a copy of
the options dictionary.

The options to partitions can be accessed as the method CartanType.options of CartanType.

OPTIONS:

• dual_latex – (default: \vee) The latex used for dual CartanTypes when latexing

• dual_str – (default: *) The string used for dual Cartan types when printing

• latex_marked – (default: True) Indicate in the latex output if a Cartan type has been marked

• latex_relabel – (default: True) Indicate in the latex output if a Cartan type has been relabelled

• mark_special_node – (default: none) Make the special nodes

– both – both in latex and printing

– latex – only in latex

– none – no markup

2216 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

– printing – only in printing

• marked_node_str – (default: X) The string used to indicate a marked node when printing

• notation – (default: Stembridge) Specifies which notation Cartan types should use when printed

– BC – alias for Stembridge

– Kac – use Kac’s notation

– Stembridge – use Stembridge’s notation

– tilde – alias for Stembridge

– twisted – alias for Kac

• special_node_str – (default: @) The string used to indicate which node is special when printing

EXAMPLES:

sage: ct = CartanType(['D',5,2]); ct
['C', 4, 1]^*
sage: ct.dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
C4~*
sage: latex(ct)
C_{4}^{(1)\vee}
sage: CartanType.options(dual_str='#', dual_latex='\\ast',)
sage: ct
['C', 4, 1]^#
sage: ct.dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
C4~#
sage: latex(ct)
C_{4}^{(1)\ast}
sage: CartanType.options(notation='kac', mark_special_node='both')
sage: ct
['D', 5, 2]
sage: ct.dynkin_diagram()
@=<=O---O---O=>=O
0 1 2 3 4
D5^2
sage: latex(ct)
D_{5}^{(2)}

For type 𝐴(2)†
2𝑛 , the dual string/latex options are automatically overridden:

sage: dct = CartanType(['A',8,2]).dual(); dct
['A', 8, 2]^+
sage: latex(dct)
A_{8}^{(2)\dagger}
sage: dct.dynkin_diagram()
@=>=O---O---O=>=O
0 1 2 3 4
A8^2+
sage: CartanType.options._reset()

5.1. Comprehensive Module List 2217

Combinatorics, Release 9.7

See GlobalOptions for more features of these options.

samples(finite=None, affine=None, crystallographic=None)
Return a sample of the available Cartan types.

INPUT:

• finite – a boolean or None (default: None)

• affine – a boolean or None (default: None)

• crystallographic – a boolean or None (default: None)

The sample contains all the exceptional finite and affine Cartan types, as well as typical representatives of
the infinite families.

EXAMPLES:

sage: CartanType.samples()
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3],
→˓ ['D', 5],
['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['I', 5], ['H', 3], ['H', 4],
['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1],
['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1],
['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2],␣
→˓['BC', 5, 2],
['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, [
→˓'BC', 5, 2]^*]

The finite, affine and crystallographic options allow respectively for restricting to (non) finite, (non) affine,
and (non) crystallographic Cartan types:

sage: CartanType.samples(finite=True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3],
→˓ ['D', 5],
['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['I', 5], ['H', 3], ['H', 4]]

sage: CartanType.samples(affine=True)
[['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1],
['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1],
['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2],␣
→˓['BC', 5, 2],
['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, [
→˓'BC', 5, 2]^*]

sage: CartanType.samples(crystallographic=True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3],
→˓ ['D', 5],
['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2],
['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1],
['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1],
['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2],␣
→˓['BC', 5, 2],
['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, [
→˓'BC', 5, 2]^*]

(continues on next page)

2218 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

(continued from previous page)

sage: CartanType.samples(crystallographic=False)
[['I', 5], ['H', 3], ['H', 4]]

Todo: add some reducible Cartan types (suggestions?)

class sage.combinat.root_system.cartan_type.CartanType_abstract
Bases: object

Abstract class for Cartan types

Subclasses should implement:

• dynkin_diagram()

• cartan_matrix()

• is_finite()

• is_affine()

• is_irreducible()

as_folding(folding_of=None, sigma=None)
Return self realized as a folded Cartan type.

For finite and affine types, this is realized by the Dynkin diagram foldings:

𝐶
(1)
𝑛 , 𝐴

(2)
2𝑛 , 𝐴

(2)†
2𝑛 , 𝐷

(2)
𝑛+1 →˓ 𝐴

(1)
2𝑛−1,

𝐴
(2)
2𝑛−1, 𝐵

(1)
𝑛 →˓ 𝐷

(1)
𝑛+1,

𝐸
(2)
6 , 𝐹

(1)
4 →˓ 𝐸

(1)
6 ,

𝐷
(3)
4 , 𝐺

(1)
2 →˓ 𝐷

(1)
4 ,

𝐶𝑛 →˓ 𝐴2𝑛−1,
𝐵𝑛 →˓ 𝐷𝑛+1,
𝐹4 →˓ 𝐸6,
𝐺2 →˓ 𝐷4.

For general types, this returns self as a folded type of self with 𝜎 as the identity map.

For more information on these foldings and folded Cartan types, see sage.combinat.root_system.
type_folded.CartanTypeFolded .

If the optional inputs folding_of and sigma are specified, then this returns the folded Cartan type of
self in folding_of given by the automorphism sigma.

EXAMPLES:

sage: CartanType(['B', 3, 1]).as_folding()
['B', 3, 1] as a folding of ['D', 4, 1]
sage: CartanType(['F', 4]).as_folding()
['F', 4] as a folding of ['E', 6]
sage: CartanType(['BC', 3, 2]).as_folding()
['BC', 3, 2] as a folding of ['A', 5, 1]
sage: CartanType(['D', 4, 3]).as_folding()
['G', 2, 1]^* relabelled by {0: 0, 1: 2, 2: 1} as a folding of ['D', 4, 1]

coxeter_diagram()
Return the Coxeter diagram for self.

5.1. Comprehensive Module List 2219

Combinatorics, Release 9.7

EXAMPLES:

sage: CartanType(['B',3]).coxeter_diagram()
Graph on 3 vertices
sage: CartanType(['A',3]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 3)]
sage: CartanType(['B',3]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4)]
sage: CartanType(['G',2]).coxeter_diagram().edges(sort=True)
[(1, 2, 6)]
sage: CartanType(['F',4]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4), (3, 4, 3)]

coxeter_matrix()
Return the Coxeter matrix for self.

EXAMPLES:

sage: CartanType(['A', 4]).coxeter_matrix()
[1 3 2 2]
[3 1 3 2]
[2 3 1 3]
[2 2 3 1]

coxeter_type()
Return the Coxeter type for self.

EXAMPLES:

sage: CartanType(['A', 4]).coxeter_type()
Coxeter type of ['A', 4]

dual()
Return the dual Cartan type, possibly just as a formal dual.

EXAMPLES:

sage: CartanType(['A',3]).dual()
['A', 3]
sage: CartanType(["B", 3]).dual()
['C', 3]
sage: CartanType(['C',2]).dual()
['B', 2]
sage: CartanType(['D',4]).dual()
['D', 4]
sage: CartanType(['E',8]).dual()
['E', 8]
sage: CartanType(['F',4]).dual()
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}

index_set()
Return the index set for self.

This is the list of the nodes of the associated Coxeter or Dynkin diagram.

EXAMPLES:

2220 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: CartanType(['A', 3, 1]).index_set()
(0, 1, 2, 3)
sage: CartanType(['D', 4]).index_set()
(1, 2, 3, 4)
sage: CartanType(['A', 7, 2]).index_set()
(0, 1, 2, 3, 4)
sage: CartanType(['A', 7, 2]).index_set()
(0, 1, 2, 3, 4)
sage: CartanType(['A', 6, 2]).index_set()
(0, 1, 2, 3)
sage: CartanType(['D', 6, 2]).index_set()
(0, 1, 2, 3, 4, 5)
sage: CartanType(['E', 6, 1]).index_set()
(0, 1, 2, 3, 4, 5, 6)
sage: CartanType(['E', 6, 2]).index_set()
(0, 1, 2, 3, 4)
sage: CartanType(['A', 2, 2]).index_set()
(0, 1)
sage: CartanType(['G', 2, 1]).index_set()
(0, 1, 2)
sage: CartanType(['F', 4, 1]).index_set()
(0, 1, 2, 3, 4)

is_affine()
Return whether self is affine.

EXAMPLES:

sage: CartanType(['A', 3]).is_affine()
False
sage: CartanType(['A', 3, 1]).is_affine()
True

is_atomic()
This method is usually equivalent to is_reducible(), except for the Cartan type 𝐷2.

𝐷2 is not a standard Cartan type. It is equivalent to type 𝐴1 ×𝐴1 which is reducible; however the isomor-
phism from its ambient space (for the orthogonal group of degree 4) to that of 𝐴1 ×𝐴1 is non trivial, and
it is useful to have it.

From a programming point of view its implementation is more similar to the irreducible types, and so the
method is_atomic() is supplied.

EXAMPLES:

sage: CartanType("D2").is_atomic()
True
sage: CartanType("D2").is_irreducible()
False

is_compound()
A short hand for not is_atomic().

is_crystallographic()
Return whether this Cartan type is crystallographic.

This returns False by default. Derived class should override this appropriately.

5.1. Comprehensive Module List 2221

Combinatorics, Release 9.7

EXAMPLES:

sage: [[t, t.is_crystallographic()] for t in CartanType.samples(finite=True)]
[[['A', 1], True], [['A', 5], True],
[['B', 1], True], [['B', 5], True],
[['C', 1], True], [['C', 5], True],
[['D', 2], True], [['D', 3], True], [['D', 5], True],
[['E', 6], True], [['E', 7], True], [['E', 8], True],
[['F', 4], True], [['G', 2], True],
[['I', 5], False], [['H', 3], False], [['H', 4], False]]

is_finite()
Return whether this Cartan type is finite.

EXAMPLES:

sage: from sage.combinat.root_system.cartan_type import CartanType_abstract
sage: C = CartanType_abstract()
sage: C.is_finite()
Traceback (most recent call last):
...
NotImplementedError: <abstract method is_finite at ...>

sage: CartanType(['A',4]).is_finite()
True
sage: CartanType(['A',4, 1]).is_finite()
False

is_implemented()
Check whether the Cartan datum for self is actually implemented.

EXAMPLES:

sage: CartanType(["A",4,1]).is_implemented()
True
sage: CartanType(['H',3]).is_implemented()
True

is_irreducible()
Report whether this Cartan type is irreducible (i.e. simple). This should be overridden in any subclass.

This returns False by default. Derived class should override this appropriately.

EXAMPLES:

sage: from sage.combinat.root_system.cartan_type import CartanType_abstract
sage: C = CartanType_abstract()
sage: C.is_irreducible()
False

is_reducible()
Report whether the root system is reducible (i.e. not simple), that is whether it can be factored as a product
of root systems.

EXAMPLES:

2222 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: CartanType("A2xB3").is_reducible()
True
sage: CartanType(['A',2]).is_reducible()
False

is_simply_laced()
Return whether this Cartan type is simply laced.

This returns False by default. Derived class should override this appropriately.

EXAMPLES:

sage: [[t, t.is_simply_laced()] for t in CartanType.samples()]
[[['A', 1], True], [['A', 5], True],
[['B', 1], True], [['B', 5], False],
[['C', 1], True], [['C', 5], False],
[['D', 2], True], [['D', 3], True], [['D', 5], True],
[['E', 6], True], [['E', 7], True], [['E', 8], True],
[['F', 4], False], [['G', 2], False], [['I', 5], False], [['H', 3], False], [[
→˓'H', 4], False],
[['A', 1, 1], False], [['A', 5, 1], True],
[['B', 1, 1], False], [['B', 5, 1], False],
[['C', 1, 1], False], [['C', 5, 1], False],
[['D', 3, 1], True], [['D', 5, 1], True],
[['E', 6, 1], True], [['E', 7, 1], True], [['E', 8, 1], True],
[['F', 4, 1], False], [['G', 2, 1], False],
[['BC', 1, 2], False], [['BC', 5, 2], False],
[['B', 5, 1]^*, False], [['C', 4, 1]^*, False], [['F', 4, 1]^*, False], [['G',␣
→˓2, 1]^*, False],
[['BC', 1, 2]^*, False], [['BC', 5, 2]^*, False]]

marked_nodes(marked_nodes)
Return a Cartan type with the nodes marked_nodes marked.

INPUT:

• marked_nodes – a list of nodes to mark

EXAMPLES:

sage: CartanType(['F',4]).marked_nodes([1, 3]).dynkin_diagram()
X---O=>=X---O
1 2 3 4
F4 with nodes (1, 3) marked

options(*get_value, **set_value)
Sets and displays the options for Cartan types. If no parameters are set, then the function returns a copy of
the options dictionary.

The options to partitions can be accessed as the method CartanType.options of CartanType.

OPTIONS:

• dual_latex – (default: \vee) The latex used for dual CartanTypes when latexing

• dual_str – (default: *) The string used for dual Cartan types when printing

• latex_marked – (default: True) Indicate in the latex output if a Cartan type has been marked

5.1. Comprehensive Module List 2223

Combinatorics, Release 9.7

• latex_relabel – (default: True) Indicate in the latex output if a Cartan type has been relabelled

• mark_special_node – (default: none) Make the special nodes

– both – both in latex and printing

– latex – only in latex

– none – no markup

– printing – only in printing

• marked_node_str – (default: X) The string used to indicate a marked node when printing

• notation – (default: Stembridge) Specifies which notation Cartan types should use when printed

– BC – alias for Stembridge

– Kac – use Kac’s notation

– Stembridge – use Stembridge’s notation

– tilde – alias for Stembridge

– twisted – alias for Kac

• special_node_str – (default: @) The string used to indicate which node is special when printing

EXAMPLES:

sage: ct = CartanType(['D',5,2]); ct
['C', 4, 1]^*
sage: ct.dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
C4~*
sage: latex(ct)
C_{4}^{(1)\vee}
sage: CartanType.options(dual_str='#', dual_latex='\\ast',)
sage: ct
['C', 4, 1]^#
sage: ct.dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
C4~#
sage: latex(ct)
C_{4}^{(1)\ast}
sage: CartanType.options(notation='kac', mark_special_node='both')
sage: ct
['D', 5, 2]
sage: ct.dynkin_diagram()
@=<=O---O---O=>=O
0 1 2 3 4
D5^2
sage: latex(ct)
D_{5}^{(2)}

For type 𝐴(2)†
2𝑛 , the dual string/latex options are automatically overridden:

2224 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: dct = CartanType(['A',8,2]).dual(); dct
['A', 8, 2]^+
sage: latex(dct)
A_{8}^{(2)\dagger}
sage: dct.dynkin_diagram()
@=>=O---O---O=>=O
0 1 2 3 4
A8^2+
sage: CartanType.options._reset()

See GlobalOptions for more features of these options.

rank()
Return the rank of self.

This is the number of nodes of the associated Coxeter or Dynkin diagram.

EXAMPLES:

sage: CartanType(['A', 4]).rank()
4
sage: CartanType(['A', 7, 2]).rank()
5
sage: CartanType(['I', 8]).rank()
2

relabel(relabelling)
Return a relabelled copy of this Cartan type.

INPUT:

• relabelling – a function (or a list or dictionary)

OUTPUT:

an isomorphic Cartan type obtained by relabelling the nodes of the Dynkin diagram. Namely, the node
with label i is relabelled f(i) (or, by f[i] if f is a list or dictionary).

EXAMPLES:

sage: CartanType(['F',4]).relabel({ 1:4, 2:3, 3:2, 4:1 }).dynkin_diagram()
O---O=>=O---O
4 3 2 1
F4 relabelled by {1: 4, 2: 3, 3: 2, 4: 1}

root_system()
Return the root system associated to self.

EXAMPLES:

sage: CartanType(['A',4]).root_system()
Root system of type ['A', 4]

subtype(index_set)
Return a subtype of self given by index_set.

A subtype can be considered the Dynkin diagram induced from the Dynkin diagram of self by index_set.

EXAMPLES:

5.1. Comprehensive Module List 2225

../../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

sage: ct = CartanType(['A',6,2])
sage: ct.dynkin_diagram()
O=<=O---O=<=O
0 1 2 3
BC3~
sage: ct.subtype([1,2,3])
['C', 3]

type()
Return the type of self, or None if unknown.

This method should be overridden in any subclass.

EXAMPLES:

sage: from sage.combinat.root_system.cartan_type import CartanType_abstract
sage: C = CartanType_abstract()
sage: C.type() is None
True

class sage.combinat.root_system.cartan_type.CartanType_affine
Bases: sage.combinat.root_system.cartan_type.CartanType_simple, sage.combinat.
root_system.cartan_type.CartanType_crystallographic

An abstract class for simple affine Cartan types

AmbientSpace
alias of sage.combinat.root_system.type_affine.AmbientSpace

a()
Return the unique minimal non trivial annihilating linear combination of 𝛼∨0 , 𝛼∨, . . . , 𝛼∨ with nonnegative
coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the columns
of the Cartan matrix with non-negative coefficients).

Throw an error if the existence or uniqueness does not hold

FIXME: the current implementation assumes that the Cartan matrix is indexed by [0, 1, ...], in the same
order as the index set.

EXAMPLES:

sage: RootSystem(['C',2,1]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 1}
sage: RootSystem(['D',4,1]).cartan_type().a()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
sage: RootSystem(['F',4,1]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 3, 3: 4, 4: 2}
sage: RootSystem(['BC',4,2]).cartan_type().a()
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}

a is a shortcut for col_annihilator:

sage: RootSystem(['BC',4,2]).cartan_type().col_annihilator()
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}

acheck(m=None)
Return the unique minimal non trivial annihilating linear combination of 𝛼0, 𝛼1, . . . , 𝛼𝑛 with nonnegative
coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the rows of

2226 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

the Cartan matrix with non-negative coefficients).

Throw an error if the existence of uniqueness does not hold

The optional argument m is for internal use only.

EXAMPLES:

sage: RootSystem(['C',2,1]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 1}
sage: RootSystem(['D',4,1]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
sage: RootSystem(['F',4,1]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 3, 3: 2, 4: 1}
sage: RootSystem(['BC',4,2]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}

acheck is a shortcut for row_annihilator:

sage: RootSystem(['BC',4,2]).cartan_type().row_annihilator()
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}

FIXME:

• The current implementation assumes that the Cartan matrix is indexed by [0, 1, ...], in the same order
as the index set.

• This really should be a method of CartanMatrix.

basic_untwisted()
Return the basic untwisted Cartan type associated with this affine Cartan type.

Given an affine type 𝑋(𝑟)
𝑛 , the basic untwisted type is 𝑋𝑛. In other words, it is the classical Cartan type

that is twisted to obtain self.

EXAMPLES:

sage: CartanType(['A', 1, 1]).basic_untwisted()
['A', 1]
sage: CartanType(['A', 3, 1]).basic_untwisted()
['A', 3]
sage: CartanType(['B', 3, 1]).basic_untwisted()
['B', 3]
sage: CartanType(['E', 6, 1]).basic_untwisted()
['E', 6]
sage: CartanType(['G', 2, 1]).basic_untwisted()
['G', 2]

sage: CartanType(['A', 2, 2]).basic_untwisted()
['A', 2]
sage: CartanType(['A', 4, 2]).basic_untwisted()
['A', 4]
sage: CartanType(['A', 11, 2]).basic_untwisted()
['A', 11]
sage: CartanType(['D', 5, 2]).basic_untwisted()
['D', 5]
sage: CartanType(['E', 6, 2]).basic_untwisted()
['E', 6]

(continues on next page)

5.1. Comprehensive Module List 2227

Combinatorics, Release 9.7

(continued from previous page)

sage: CartanType(['D', 4, 3]).basic_untwisted()
['D', 4]

c()
Returns the family (c_i)_i of integer coefficients defined by 𝑐𝑖 = 𝑚𝑎𝑥(1, 𝑎𝑖/𝑎

𝑣𝑒𝑒𝑖) (see e.g. [FSS07] p. 3)

FIXME: the current implementation assumes that the Cartan matrix is indexed by [0, 1, ...], in the same
order as the index set.

EXAMPLES:

sage: RootSystem(['C',2,1]).cartan_type().c()
Finite family {0: 1, 1: 2, 2: 1}
sage: RootSystem(['D',4,1]).cartan_type().c()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1}
sage: RootSystem(['F',4,1]).cartan_type().c()
Finite family {0: 1, 1: 1, 2: 1, 3: 2, 4: 2}
sage: RootSystem(['BC',4,2]).cartan_type().c()
Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 1}

REFERENCES:

classical()
Return the classical Cartan type associated with this affine Cartan type.

EXAMPLES:

sage: CartanType(['A', 1, 1]).classical()
['A', 1]
sage: CartanType(['A', 3, 1]).classical()
['A', 3]
sage: CartanType(['B', 3, 1]).classical()
['B', 3]

sage: CartanType(['A', 2, 2]).classical()
['C', 1]
sage: CartanType(['BC', 1, 2]).classical()
['C', 1]
sage: CartanType(['A', 4, 2]).classical()
['C', 2]
sage: CartanType(['BC', 2, 2]).classical()
['C', 2]
sage: CartanType(['A', 10, 2]).classical()
['C', 5]
sage: CartanType(['BC', 5, 2]).classical()
['C', 5]

sage: CartanType(['D', 5, 2]).classical()
['B', 4]
sage: CartanType(['E', 6, 1]).classical()
['E', 6]
sage: CartanType(['G', 2, 1]).classical()
['G', 2]
sage: CartanType(['E', 6, 2]).classical()

(continues on next page)

2228 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
sage: CartanType(['D', 4, 3]).classical()
['G', 2]

We check that classical(), sage.combinat.root_system.cartan_type.
CartanType_crystallographic.dynkin_diagram(), and special_node() are consistent:

sage: for ct in CartanType.samples(affine = True):
....: g1 = ct.classical().dynkin_diagram()
....: g2 = ct.dynkin_diagram()
....: g2.delete_vertex(ct.special_node())
....: assert g1.vertices(sort=True) == g2.vertices(sort=True)
....: assert g1.edges(sort=True) == g2.edges(sort=True)

col_annihilator()
Return the unique minimal non trivial annihilating linear combination of 𝛼∨0 , 𝛼∨, . . . , 𝛼∨ with nonnegative
coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the columns
of the Cartan matrix with non-negative coefficients).

Throw an error if the existence or uniqueness does not hold

FIXME: the current implementation assumes that the Cartan matrix is indexed by [0, 1, ...], in the same
order as the index set.

EXAMPLES:

sage: RootSystem(['C',2,1]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 1}
sage: RootSystem(['D',4,1]).cartan_type().a()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
sage: RootSystem(['F',4,1]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 3, 3: 4, 4: 2}
sage: RootSystem(['BC',4,2]).cartan_type().a()
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}

a is a shortcut for col_annihilator:

sage: RootSystem(['BC',4,2]).cartan_type().col_annihilator()
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}

is_affine()
EXAMPLES:

sage: CartanType(['A', 3, 1]).is_affine()
True

is_finite()
EXAMPLES:

sage: CartanType(['A', 3, 1]).is_finite()
False

is_untwisted_affine()
Return whether self is untwisted affine

5.1. Comprehensive Module List 2229

Combinatorics, Release 9.7

A Cartan type is untwisted affine if it is the canonical affine extension of some finite type. Every affine type
is either untwisted affine, dual thereof, or of type BC.

EXAMPLES:

sage: CartanType(['A', 3, 1]).is_untwisted_affine()
True
sage: CartanType(['A', 3, 1]).dual().is_untwisted_affine() # this one is self␣
→˓dual!
True
sage: CartanType(['B', 3, 1]).dual().is_untwisted_affine()
False
sage: CartanType(['BC', 3, 2]).is_untwisted_affine()
False

other_affinization()
Return the other affinization of the same classical type.

EXAMPLES:

sage: CartanType(["A", 3, 1]).other_affinization()
['A', 3, 1]
sage: CartanType(["B", 3, 1]).other_affinization()
['C', 3, 1]^*
sage: CartanType(["C", 3, 1]).dual().other_affinization()
['B', 3, 1]

Is this what we want?:

sage: CartanType(["BC", 3, 2]).dual().other_affinization()
['B', 3, 1]

row_annihilator(m=None)
Return the unique minimal non trivial annihilating linear combination of 𝛼0, 𝛼1, . . . , 𝛼𝑛 with nonnegative
coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the rows of
the Cartan matrix with non-negative coefficients).

Throw an error if the existence of uniqueness does not hold

The optional argument m is for internal use only.

EXAMPLES:

sage: RootSystem(['C',2,1]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 1}
sage: RootSystem(['D',4,1]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
sage: RootSystem(['F',4,1]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 3, 3: 2, 4: 1}
sage: RootSystem(['BC',4,2]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}

acheck is a shortcut for row_annihilator:

sage: RootSystem(['BC',4,2]).cartan_type().row_annihilator()
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}

FIXME:

2230 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• The current implementation assumes that the Cartan matrix is indexed by [0, 1, ...], in the same order
as the index set.

• This really should be a method of CartanMatrix.

special_node()
Return a special node of the Dynkin diagram.

A special node is a node of the Dynkin diagram such that pruning it yields a Dynkin diagram for the
associated classical type (see classical()).

This method returns the label of some special node. This is usually 0 in the standard conventions.

EXAMPLES:

sage: CartanType(['A', 3, 1]).special_node()
0

The choice is guaranteed to be consistent with the indexing of the nodes of the classical Dynkin diagram:

sage: CartanType(['A', 3, 1]).index_set()
(0, 1, 2, 3)
sage: CartanType(['A', 3, 1]).classical().index_set()
(1, 2, 3)

special_nodes()
Return the set of special nodes of the affine Dynkin diagram.

EXAMPLES:

sage: CartanType(['A',3,1]).special_nodes()
(0, 1, 2, 3)
sage: CartanType(['C',2,1]).special_nodes()
(0, 2)
sage: CartanType(['D',4,1]).special_nodes()
(0, 1, 3, 4)
sage: CartanType(['E',6,1]).special_nodes()
(0, 1, 6)
sage: CartanType(['D',3,2]).special_nodes()
(0, 2)
sage: CartanType(['A',4,2]).special_nodes()
(0,)

translation_factors()
Returns the translation factors for self. Those are the smallest factors 𝑡𝑖 such that the translation by 𝑡𝑖𝛼𝑖
maps the fundamental polygon to another polygon in the alcove picture.

OUTPUT: a dictionary from self.index_set() to Z (or Q for affine type 𝐵𝐶)

Those coefficients are all 1 for dual untwisted, and in particular for simply laced. They coincide with the
usual 𝑐𝑖 coefficients (see c()) for untwisted and dual thereof. See the discussion below for affine type𝐵𝐶.

Note: one usually realizes the alcove picture in the coweight lattice, with translations by coroots; in that
case, one will use the translation factors for the dual Cartan type.

FIXME: the current implementation assumes that the Cartan matrix is indexed by [0, 1, ...], in the same
order as the index set.

EXAMPLES:

5.1. Comprehensive Module List 2231

Combinatorics, Release 9.7

sage: CartanType(['C',2,1]).translation_factors()
Finite family {0: 1, 1: 2, 2: 1}
sage: CartanType(['C',2,1]).dual().translation_factors()
Finite family {0: 1, 1: 1, 2: 1}
sage: CartanType(['D',4,1]).translation_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1}
sage: CartanType(['F',4,1]).translation_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 2, 4: 2}
sage: CartanType(['BC',4,2]).translation_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1/2}

We proceed with systematic tests taken from MuPAD-Combinat’s testsuite:

sage: list(CartanType(["A", 1, 1]).translation_factors())
[1, 1]
sage: list(CartanType(["A", 5, 1]).translation_factors())
[1, 1, 1, 1, 1, 1]
sage: list(CartanType(["B", 5, 1]).translation_factors())
[1, 1, 1, 1, 1, 2]
sage: list(CartanType(["C", 5, 1]).translation_factors())
[1, 2, 2, 2, 2, 1]
sage: list(CartanType(["D", 5, 1]).translation_factors())
[1, 1, 1, 1, 1, 1]
sage: list(CartanType(["E", 6, 1]).translation_factors())
[1, 1, 1, 1, 1, 1, 1]
sage: list(CartanType(["E", 7, 1]).translation_factors())
[1, 1, 1, 1, 1, 1, 1, 1]
sage: list(CartanType(["E", 8, 1]).translation_factors())
[1, 1, 1, 1, 1, 1, 1, 1, 1]
sage: list(CartanType(["F", 4, 1]).translation_factors())
[1, 1, 1, 2, 2]
sage: list(CartanType(["G", 2, 1]).translation_factors())
[1, 3, 1]
sage: list(CartanType(["A", 2, 2]).translation_factors())
[1, 1/2]
sage: list(CartanType(["A", 2, 2]).dual().translation_factors())
[1/2, 1]
sage: list(CartanType(["A", 10, 2]).translation_factors())
[1, 1, 1, 1, 1, 1/2]
sage: list(CartanType(["A", 10, 2]).dual().translation_factors())
[1/2, 1, 1, 1, 1, 1]
sage: list(CartanType(["A", 9, 2]).translation_factors())
[1, 1, 1, 1, 1, 1]
sage: list(CartanType(["D", 5, 2]).translation_factors())
[1, 1, 1, 1, 1]
sage: list(CartanType(["D", 4, 3]).translation_factors())
[1, 1, 1]
sage: list(CartanType(["E", 6, 2]).translation_factors())
[1, 1, 1, 1, 1]

We conclude with a discussion of the appropriate value for affine type 𝐵𝐶. Let us consider the alcove
picture realized in the weight lattice. It is obtained by taking the level-1 affine hyperplane in the weight
lattice, and projecting it along Λ0:

2232 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: R = RootSystem(["BC",2,2])
sage: alpha = R.weight_space().simple_roots()
sage: alphacheck = R.coroot_space().simple_roots()
sage: Lambda = R.weight_space().fundamental_weights()

Here are the levels of the fundamental weights:

sage: Lambda[0].level(), Lambda[1].level(), Lambda[2].level()
(1, 2, 2)

So the “center” of the fundamental polygon at level 1 is:

sage: O = Lambda[0]
sage: O.level()
1

We take the projection 𝜔1 at level 0 of Λ1 as unit vector on the 𝑥-axis, and the projection 𝜔2 at level 0 of
Λ2 as unit vector of the 𝑦-axis:

sage: omega1 = Lambda[1]-2*Lambda[0]
sage: omega2 = Lambda[2]-2*Lambda[0]
sage: omega1.level(), omega2.level()
(0, 0)

The projections of the simple roots can be read off:

sage: alpha[0]
2*Lambda[0] - Lambda[1]
sage: alpha[1]
-2*Lambda[0] + 2*Lambda[1] - Lambda[2]
sage: alpha[2]
-2*Lambda[1] + 2*Lambda[2]

Namely 𝛼0 = −𝜔1, 𝛼1 = 2𝜔1 − 𝜔2 and 𝛼2 = −2𝜔1 + 2𝜔2.

The reflection hyperplane defined by 𝛼∨0 goes through the points 𝑂 + 1/2𝜔1 and 𝑂 + 1/2𝜔2:

sage: (O+(1/2)*omega1).scalar(alphacheck[0])
0
sage: (O+(1/2)*omega2).scalar(alphacheck[0])
0

Hence, the fundamental alcove is the triangle (𝑂,𝑂+ 1/2𝜔1, 𝑂+ 1/2𝜔2). By successive reflections, one
can tile the full plane. This induces a tiling of the full plane by translates of the fundamental polygon.

Todo: Add the picture here, once root system plots in the weight lattice will be implemented. In the mean
time, the reader may look up the dual picture on Figure 2 of [HST09] which was produced by MuPAD-
Combinat.

From this picture, one can read that translations by 𝛼0, 𝛼1, and 1/2𝛼2 map the fundamental polygon to
translates of it in the alcove picture, and are smallest with this property. Hence, the translation factors for
affine type 𝐵𝐶 are 𝑡0 = 1, 𝑡1 = 1, 𝑡2 = 1/2:

5.1. Comprehensive Module List 2233

Combinatorics, Release 9.7

sage: CartanType(['BC',2,2]).translation_factors()
Finite family {0: 1, 1: 1, 2: 1/2}

REFERENCES:

class sage.combinat.root_system.cartan_type.CartanType_crystallographic
Bases: sage.combinat.root_system.cartan_type.CartanType_abstract

An abstract class for crystallographic Cartan types.

ascii_art(label='lambda x: x', node=None)
Return an ascii art representation of the Dynkin diagram.

INPUT:

• label – (default: the identity) a relabeling function for the nodes

• node – (optional) a function which returns the character for a node

EXAMPLES:

sage: cartan_type = CartanType(['B',5,1])
sage: print(cartan_type.ascii_art())

O 0
|
|

O---O---O---O=>=O
1 2 3 4 5

The label option is useful to visualize various statistics on the nodes of the Dynkin diagram:

sage: a = cartan_type.col_annihilator(); a
Finite family {0: 1, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2}
sage: print(CartanType(['B',5,1]).ascii_art(label=a.__getitem__))

O 1
|
|

O---O---O---O=>=O
1 2 2 2 2

cartan_matrix()
Return the Cartan matrix associated with self.

EXAMPLES:

sage: CartanType(['A',4]).cartan_matrix()
[2 -1 0 0]
[-1 2 -1 0]
[0 -1 2 -1]
[0 0 -1 2]

coxeter_diagram()
Return the Coxeter diagram for self.

This implementation constructs it from the Dynkin diagram.

See also:

CartanType_abstract.coxeter_diagram()

2234 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: CartanType(['A',3]).coxeter_diagram()
Graph on 3 vertices
sage: CartanType(['A',3]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 3)]
sage: CartanType(['B',3]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4)]
sage: CartanType(['G',2]).coxeter_diagram().edges(sort=True)
[(1, 2, 6)]
sage: CartanType(['F',4]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4), (3, 4, 3)]
sage: CartanType(['A',2,2]).coxeter_diagram().edges(sort=True)
[(0, 1, +Infinity)]

dynkin_diagram()
Return the Dynkin diagram associated with self.

EXAMPLES:

sage: CartanType(['A',4]).dynkin_diagram()
O---O---O---O
1 2 3 4
A4

Note: Derived subclasses should typically implement this as a cached method.

index_set_bipartition()
Return a bipartition {𝐿,𝑅} of the vertices of the Dynkin diagram.

For 𝑖 and 𝑗 both in 𝐿 (or both in 𝑅), the simple reflections 𝑠𝑖 and 𝑠𝑗 commute.

Of course, the Dynkin diagram should be bipartite. This is always the case for all finite types.

EXAMPLES:

sage: CartanType(['A',5]).index_set_bipartition()
({1, 3, 5}, {2, 4})

sage: CartanType(['A',2,1]).index_set_bipartition()
Traceback (most recent call last):
...
ValueError: the Dynkin diagram must be bipartite

is_crystallographic()
Implements CartanType_abstract.is_crystallographic() by returning True.

EXAMPLES:

sage: CartanType(['A', 3, 1]).is_crystallographic()
True

symmetrizer()

Return the symmetrizer of the Cartan matrix of self.

5.1. Comprehensive Module List 2235

Combinatorics, Release 9.7

A Cartan matrix𝑀 is symmetrizable if there exists a non trivial diagonal matrix𝐷 such that𝐷𝑀
is a symmetric matrix, that is 𝐷𝑀 = 𝑀 𝑡𝐷. In that case, 𝐷 is unique, up to a scalar factor for
each connected component of the Dynkin diagram.

This method computes the unique minimal such𝐷 with positive integral coefficients. If𝐷 exists,
it is returned as a family. Otherwise None is returned.

The coefficients are coerced to base_ring.

EXAMPLES:

sage: CartanType(["B",5]).symmetrizer()
Finite family {1: 2, 2: 2, 3: 2, 4: 2, 5: 1}

Here is a neat trick to visualize it better:

sage: T = CartanType(["B",5])
sage: print(T.ascii_art(T.symmetrizer().__getitem__))
O---O---O---O=>=O
2 2 2 2 1

sage: T = CartanType(["BC",5, 2])
sage: print(T.ascii_art(T.symmetrizer().__getitem__))
O=<=O---O---O---O=<=O
1 2 2 2 2 4

Here is the symmetrizer of some reducible Cartan types:

sage: T = CartanType(["D", 2])
sage: print(T.ascii_art(T.symmetrizer().__getitem__))
O O
1 1

sage: T = CartanType(["B",5],["BC",5, 2])
sage: print(T.ascii_art(T.symmetrizer().__getitem__))
O---O---O---O=>=O
2 2 2 2 1
O=<=O---O---O---O=<=O
1 2 2 2 2 4

Property: up to an overall scalar factor, this gives the norm
of the simple roots in the ambient space::

sage: T = CartanType(["C",5])
sage: print(T.ascii_art(T.symmetrizer().__getitem__))
O---O---O---O=<=O
1 1 1 1 2

sage: alpha = RootSystem(T).ambient_space().simple_roots()
sage: print(T.ascii_art(lambda i: alpha[i].scalar(alpha[i])))
O---O---O---O=<=O
2 2 2 2 4

class sage.combinat.root_system.cartan_type.CartanType_decorator(ct)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
sage_object.SageObject, sage.combinat.root_system.cartan_type.CartanType_abstract

2236 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

Concrete base class for Cartan types that decorate another Cartan type.

index_set()
EXAMPLES:

sage: ct = CartanType(['F', 4, 1]).dual()
sage: ct.index_set()
(0, 1, 2, 3, 4)

is_affine()
EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.is_affine()
False

is_crystallographic()
EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.is_crystallographic()
True

is_finite()
EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.is_finite()
True

is_irreducible()
EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.is_irreducible()
True

rank()
EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.rank()
2

class sage.combinat.root_system.cartan_type.CartanType_finite
Bases: sage.combinat.root_system.cartan_type.CartanType_abstract

An abstract class for simple affine Cartan types.

is_affine()
EXAMPLES:

sage: CartanType(["A", 3]).is_affine()
False

is_finite()
EXAMPLES:

5.1. Comprehensive Module List 2237

Combinatorics, Release 9.7

sage: CartanType(["A", 3]).is_finite()
True

class sage.combinat.root_system.cartan_type.CartanType_simple
Bases: sage.combinat.root_system.cartan_type.CartanType_abstract

An abstract class for simple Cartan types.

is_irreducible()
Return whether self is irreducible, which is True.

EXAMPLES:

sage: CartanType(['A', 3]).is_irreducible()
True

class sage.combinat.root_system.cartan_type.CartanType_simple_finite
Bases: object

class sage.combinat.root_system.cartan_type.CartanType_simply_laced
Bases: sage.combinat.root_system.cartan_type.CartanType_crystallographic

An abstract class for simply laced Cartan types.

dual()
Simply laced Cartan types are self-dual, so return self.

EXAMPLES:

sage: CartanType(["A", 3]).dual()
['A', 3]
sage: CartanType(["A", 3, 1]).dual()
['A', 3, 1]
sage: CartanType(["D", 3]).dual()
['D', 3]
sage: CartanType(["D", 4, 1]).dual()
['D', 4, 1]
sage: CartanType(["E", 6]).dual()
['E', 6]
sage: CartanType(["E", 6, 1]).dual()
['E', 6, 1]

is_simply_laced()
Return whether self is simply laced, which is True.

EXAMPLES:

sage: CartanType(['A',3,1]).is_simply_laced()
True
sage: CartanType(['A',2]).is_simply_laced()
True

class sage.combinat.root_system.cartan_type.CartanType_standard
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
sage_object.SageObject

class sage.combinat.root_system.cartan_type.CartanType_standard_affine(letter, n, affine=1)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard , sage.combinat.
root_system.cartan_type.CartanType_affine

2238 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

A concrete class for affine simple Cartan types.

index_set()
Implements CartanType_abstract.index_set().

The index set for all standard affine Cartan types is of the form {0, . . . , 𝑛}.

EXAMPLES:

sage: CartanType(['A', 5, 1]).index_set()
(0, 1, 2, 3, 4, 5)

rank()

Return the rank of self which for type 𝑋(1)
𝑛 is 𝑛+ 1.

EXAMPLES:

sage: CartanType(['A', 4, 1]).rank()
5
sage: CartanType(['B', 4, 1]).rank()
5
sage: CartanType(['C', 3, 1]).rank()
4
sage: CartanType(['D', 4, 1]).rank()
5
sage: CartanType(['E', 6, 1]).rank()
7
sage: CartanType(['E', 7, 1]).rank()
8
sage: CartanType(['F', 4, 1]).rank()
5
sage: CartanType(['G', 2, 1]).rank()
3
sage: CartanType(['A', 2, 2]).rank()
2
sage: CartanType(['A', 6, 2]).rank()
4
sage: CartanType(['A', 7, 2]).rank()
5
sage: CartanType(['D', 5, 2]).rank()
5
sage: CartanType(['E', 6, 2]).rank()
5
sage: CartanType(['D', 4, 3]).rank()
3

special_node()
Implement CartanType_abstract.special_node().

With the standard labelling conventions, 0 is always a special node.

EXAMPLES:

sage: CartanType(['A', 3, 1]).special_node()
0

5.1. Comprehensive Module List 2239

Combinatorics, Release 9.7

type()
Return the type of self.

EXAMPLES:

sage: CartanType(['A', 4, 1]).type()
'A'

class sage.combinat.root_system.cartan_type.CartanType_standard_finite(letter, n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard , sage.combinat.
root_system.cartan_type.CartanType_finite

A concrete base class for the finite standard Cartan types.

This includes for example 𝐴3, 𝐷4, or 𝐸8.

affine()
Return the corresponding untwisted affine Cartan type.

EXAMPLES:

sage: CartanType(['A',3]).affine()
['A', 3, 1]

coxeter_number()
Return the Coxeter number associated with self.

The Coxeter number is the order of a Coxeter element of the corresponding Weyl group.

See Bourbaki, Lie Groups and Lie Algebras V.6.1 or Wikipedia article Coxeter_element for more informa-
tion.

EXAMPLES:

sage: CartanType(['A',4]).coxeter_number()
5
sage: CartanType(['B',4]).coxeter_number()
8
sage: CartanType(['C',4]).coxeter_number()
8

dual_coxeter_number()
Return the Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['A',4]).dual_coxeter_number()
5
sage: CartanType(['B',4]).dual_coxeter_number()
7
sage: CartanType(['C',4]).dual_coxeter_number()
5

index_set()
Implements CartanType_abstract.index_set().

The index set for all standard finite Cartan types is of the form {1, . . . , 𝑛}. (See type_I for a slight abuse
of this).

EXAMPLES:

2240 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Coxeter_element

Combinatorics, Release 9.7

sage: CartanType(['A', 5]).index_set()
(1, 2, 3, 4, 5)

opposition_automorphism()
Returns the opposition automorphism

The opposition automorphism is the automorphism 𝑖 ↦→ 𝑖* of the vertices Dynkin diagram such that, for
𝑤0 the longest element of the Weyl group, and any simple root 𝛼𝑖, one has 𝛼𝑖* = −𝑤0(𝛼𝑖).

The automorphism is returned as a Family.

EXAMPLES:

sage: ct = CartanType(['A', 5])
sage: ct.opposition_automorphism()
Finite family {1: 5, 2: 4, 3: 3, 4: 2, 5: 1}

sage: ct = CartanType(['D', 4])
sage: ct.opposition_automorphism()
Finite family {1: 1, 2: 2, 3: 3, 4: 4}

sage: ct = CartanType(['D', 5])
sage: ct.opposition_automorphism()
Finite family {1: 1, 2: 2, 3: 3, 4: 5, 5: 4}

sage: ct = CartanType(['C', 4])
sage: ct.opposition_automorphism()
Finite family {1: 1, 2: 2, 3: 3, 4: 4}

rank()
Return the rank of self which for type 𝑋𝑛 is 𝑛.

EXAMPLES:

sage: CartanType(['A', 3]).rank()
3
sage: CartanType(['B', 3]).rank()
3
sage: CartanType(['C', 3]).rank()
3
sage: CartanType(['D', 4]).rank()
4
sage: CartanType(['E', 6]).rank()
6

type()
Returns the type of self.

EXAMPLES:

sage: CartanType(['A', 4]).type()
'A'
sage: CartanType(['A', 4, 1]).type()
'A'

5.1. Comprehensive Module List 2241

Combinatorics, Release 9.7

class sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine(letter, n,
affine=1)

Bases: sage.combinat.root_system.cartan_type.CartanType_standard_affine

A concrete class for the standard untwisted affine Cartan types.

basic_untwisted()
Return the basic_untwisted Cartan type associated with this affine Cartan type.

Given an affine type 𝑋(𝑟)
𝑛 , the basic_untwisted type is 𝑋𝑛. In other words, it is the classical Cartan type

that is twisted to obtain self.

EXAMPLES:

sage: CartanType(['A', 1, 1]).basic_untwisted()
['A', 1]
sage: CartanType(['A', 3, 1]).basic_untwisted()
['A', 3]
sage: CartanType(['B', 3, 1]).basic_untwisted()
['B', 3]
sage: CartanType(['E', 6, 1]).basic_untwisted()
['E', 6]
sage: CartanType(['G', 2, 1]).basic_untwisted()
['G', 2]

classical()
Return the classical Cartan type associated with self.

EXAMPLES:

sage: CartanType(['A', 3, 1]).classical()
['A', 3]
sage: CartanType(['B', 3, 1]).classical()
['B', 3]
sage: CartanType(['C', 3, 1]).classical()
['C', 3]
sage: CartanType(['D', 4, 1]).classical()
['D', 4]
sage: CartanType(['E', 6, 1]).classical()
['E', 6]
sage: CartanType(['F', 4, 1]).classical()
['F', 4]
sage: CartanType(['G', 2, 1]).classical()
['G', 2]

is_untwisted_affine()
Implement CartanType_affine.is_untwisted_affine() by returning True.

EXAMPLES:

sage: CartanType(['B', 3, 1]).is_untwisted_affine()
True

class sage.combinat.root_system.cartan_type.SuperCartanType_standard
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
sage_object.SageObject

2242 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

options(*get_value, **set_value)
Sets and displays the options for Cartan types. If no parameters are set, then the function returns a copy of
the options dictionary.

The options to partitions can be accessed as the method CartanType.options of CartanType.

OPTIONS:

• dual_latex – (default: \vee) The latex used for dual CartanTypes when latexing

• dual_str – (default: *) The string used for dual Cartan types when printing

• latex_marked – (default: True) Indicate in the latex output if a Cartan type has been marked

• latex_relabel – (default: True) Indicate in the latex output if a Cartan type has been relabelled

• mark_special_node – (default: none) Make the special nodes

– both – both in latex and printing

– latex – only in latex

– none – no markup

– printing – only in printing

• marked_node_str – (default: X) The string used to indicate a marked node when printing

• notation – (default: Stembridge) Specifies which notation Cartan types should use when printed

– BC – alias for Stembridge

– Kac – use Kac’s notation

– Stembridge – use Stembridge’s notation

– tilde – alias for Stembridge

– twisted – alias for Kac

• special_node_str – (default: @) The string used to indicate which node is special when printing

EXAMPLES:

sage: ct = CartanType(['D',5,2]); ct
['C', 4, 1]^*
sage: ct.dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
C4~*
sage: latex(ct)
C_{4}^{(1)\vee}
sage: CartanType.options(dual_str='#', dual_latex='\\ast',)
sage: ct
['C', 4, 1]^#
sage: ct.dynkin_diagram()
O=<=O---O---O=>=O
0 1 2 3 4
C4~#
sage: latex(ct)
C_{4}^{(1)\ast}
sage: CartanType.options(notation='kac', mark_special_node='both')
sage: ct

(continues on next page)

5.1. Comprehensive Module List 2243

Combinatorics, Release 9.7

(continued from previous page)

['D', 5, 2]
sage: ct.dynkin_diagram()
@=<=O---O---O=>=O
0 1 2 3 4
D5^2
sage: latex(ct)
D_{5}^{(2)}

For type 𝐴(2)†
2𝑛 , the dual string/latex options are automatically overridden:

sage: dct = CartanType(['A',8,2]).dual(); dct
['A', 8, 2]^+
sage: latex(dct)
A_{8}^{(2)\dagger}
sage: dct.dynkin_diagram()
@=>=O---O---O=>=O
0 1 2 3 4
A8^2+
sage: CartanType.options._reset()

See GlobalOptions for more features of these options.

5.1.223 Coxeter Groups

sage.combinat.root_system.coxeter_group.CoxeterGroup(data, implementation='reflection',
base_ring=None, index_set=None)

Return an implementation of the Coxeter group given by data.

INPUT:

• data – a Cartan type (or coercible into; see CartanType) or a Coxeter matrix or graph

• implementation – (default: 'reflection') can be one of the following:

– 'permutation' - as a permutation representation

– 'matrix' - as a Weyl group (as a matrix group acting on the root space); if this is not implemented,
this uses the “reflection” implementation

– 'coxeter3' - using the coxeter3 package

– 'reflection' - as elements in the reflection representation; see CoxeterMatrixGroup

• base_ring – (optional) the base ring for the 'reflection' implementation

• index_set – (optional) the index set for the 'reflection' implementation

EXAMPLES:

Now assume that data represents a Cartan type. If implementation is not specified, the reflection representa-
tion is returned:

sage: W = CoxeterGroup(["A",2])
sage: W
Finite Coxeter group over Integer Ring with Coxeter matrix:
[1 3]
[3 1]

(continues on next page)

2244 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

(continued from previous page)

sage: W = CoxeterGroup(["A",3,1]); W
Coxeter group over Integer Ring with Coxeter matrix:
[1 3 2 3]
[3 1 3 2]
[2 3 1 3]
[3 2 3 1]

sage: W = CoxeterGroup(['H',3]); W
Finite Coxeter group over Number Field in a with defining polynomial x^2 - 5 with a␣
→˓= 2.236067977499790? with Coxeter matrix:
[1 3 2]
[3 1 5]
[2 5 1]

We now use the implementation option:

sage: W = CoxeterGroup(["A",2], implementation = "permutation") # optional - gap3
sage: W # optional - gap3
Permutation Group with generators [(1,4)(2,3)(5,6), (1,3)(2,5)(4,6)]
sage: W.category() # optional - gap3
Join of Category of finite enumerated permutation groups

and Category of finite weyl groups
and Category of well generated finite irreducible complex reflection groups

sage: W = CoxeterGroup(["A",2], implementation="matrix")
sage: W
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)

sage: W = CoxeterGroup(["H",3], implementation="matrix")
sage: W
Finite Coxeter group over Number Field in a with defining polynomial x^2 - 5 with a␣
→˓= 2.236067977499790? with Coxeter matrix:
[1 3 2]
[3 1 5]
[2 5 1]

sage: W = CoxeterGroup(["H",3], implementation="reflection")
sage: W
Finite Coxeter group over Number Field in a with defining polynomial x^2 - 5 with a␣
→˓= 2.236067977499790? with Coxeter matrix:
[1 3 2]
[3 1 5]
[2 5 1]

sage: W = CoxeterGroup(["A",4,1], implementation="permutation")
Traceback (most recent call last):
...
ValueError: the type must be finite

sage: W = CoxeterGroup(["A",4], implementation="chevie"); W # optional - gap3
Irreducible real reflection group of rank 4 and type A4

5.1. Comprehensive Module List 2245

Combinatorics, Release 9.7

We use the different options for the “reflection” implementation:

sage: W = CoxeterGroup(["H",3], implementation="reflection", base_ring=RR)
sage: W
Finite Coxeter group over Real Field with 53 bits of precision with Coxeter matrix:
[1 3 2]
[3 1 5]
[2 5 1]
sage: W = CoxeterGroup([[1,10],[10,1]], implementation="reflection", index_set=['a',
→˓'b'], base_ring=SR)
sage: W
Finite Coxeter group over Symbolic Ring with Coxeter matrix:
[1 10]
[10 1]

5.1.224 Coxeter Matrices

class sage.combinat.root_system.coxeter_matrix.CoxeterMatrix(parent, data, coxeter_type,
index_set)

Bases: sage.combinat.root_system.coxeter_type.CoxeterType

A Coxeter matrix.

A Coxeter matrix 𝑀 = (𝑚𝑖𝑗)𝑖,𝑗∈𝐼 is a matrix encoding a Coxeter system (𝑊,𝑆), where the relations are given
by (𝑠𝑖𝑠𝑗)

𝑚𝑖𝑗 . Thus 𝑀 is symmetric and has entries in {1, 2, 3, . . . ,∞} with 𝑚𝑖𝑗 = 1 if and only if 𝑖 = 𝑗.

We represent𝑚𝑖𝑗 =∞ by any number𝑚𝑖𝑗 ≤ −1. In particular, we can construct a bilinear form𝐵 = (𝑏𝑖𝑗)𝑖,𝑗∈𝐼
from 𝑀 by

𝑏𝑖𝑗 =

{︃
𝑚𝑖𝑗 𝑚𝑖𝑗 < 0 (i.e., 𝑚𝑖𝑗 =∞),

− cos
(︁

𝜋
𝑚𝑖𝑗

)︁
otherwise.

EXAMPLES:

sage: CoxeterMatrix(['A', 4])
[1 3 2 2]
[3 1 3 2]
[2 3 1 3]
[2 2 3 1]
sage: CoxeterMatrix(['B', 4])
[1 3 2 2]
[3 1 3 2]
[2 3 1 4]
[2 2 4 1]
sage: CoxeterMatrix(['C', 4])
[1 3 2 2]
[3 1 3 2]
[2 3 1 4]
[2 2 4 1]
sage: CoxeterMatrix(['D', 4])
[1 3 2 2]
[3 1 3 3]
[2 3 1 2]

(continues on next page)

2246 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[2 3 2 1]

sage: CoxeterMatrix(['E', 6])
[1 2 3 2 2 2]
[2 1 2 3 2 2]
[3 2 1 3 2 2]
[2 3 3 1 3 2]
[2 2 2 3 1 3]
[2 2 2 2 3 1]

sage: CoxeterMatrix(['F', 4])
[1 3 2 2]
[3 1 4 2]
[2 4 1 3]
[2 2 3 1]

sage: CoxeterMatrix(['G', 2])
[1 6]
[6 1]

By default, entries representing∞ are given by −1 in the Coxeter matrix:

sage: G = Graph([(0,1,None), (1,2,4), (0,2,oo)])
sage: CoxeterMatrix(G)
[1 3 -1]
[3 1 4]
[-1 4 1]

It is possible to give a number ≤ −1 to represent an infinite label:

sage: CoxeterMatrix([[1,-1],[-1,1]])
[1 -1]
[-1 1]
sage: CoxeterMatrix([[1,-3/2],[-3/2,1]])
[1 -3/2]
[-3/2 1]

bilinear_form(R=None)
Return the bilinear form of self.

EXAMPLES:

sage: CoxeterType(['A', 2, 1]).bilinear_form()
[1 -1/2 -1/2]
[-1/2 1 -1/2]
[-1/2 -1/2 1]
sage: CoxeterType(['H', 3]).bilinear_form()
[1 -1/2 0]
[-1/2 1 1/2*E(5)^2 + 1/2*E(5)^3]
[0 1/2*E(5)^2 + 1/2*E(5)^3 1]
sage: C = CoxeterMatrix([[1,-1,-1],[-1,1,-1],[-1,-1,1]])
sage: C.bilinear_form()
[1 -1 -1]

(continues on next page)

5.1. Comprehensive Module List 2247

Combinatorics, Release 9.7

(continued from previous page)

[-1 1 -1]
[-1 -1 1]

coxeter_graph()
Return the Coxeter graph of self.

EXAMPLES:

sage: C = CoxeterMatrix(['A',3])
sage: C.coxeter_graph()
Graph on 3 vertices

sage: C = CoxeterMatrix([['A',3],['A',1]])
sage: C.coxeter_graph()
Graph on 4 vertices

coxeter_matrix()
Return the Coxeter matrix of self.

EXAMPLES:

sage: CoxeterMatrix(['C',3]).coxeter_matrix()
[1 3 2]
[3 1 4]
[2 4 1]

coxeter_type()
Return the Coxeter type of self or self if unknown.

EXAMPLES:

sage: C = CoxeterMatrix(['A',4,1])
sage: C.coxeter_type()
Coxeter type of ['A', 4, 1]

If the Coxeter type is unknown:

sage: C = CoxeterMatrix([[1,3,4], [3,1,-1], [4,-1,1]])
sage: C.coxeter_type()
[1 3 4]
[3 1 -1]
[4 -1 1]

index_set()
Return the index set of self.

EXAMPLES:

sage: C = CoxeterMatrix(['A',1,1])
sage: C.index_set()
(0, 1)
sage: C = CoxeterMatrix(['E',6])
sage: C.index_set()
(1, 2, 3, 4, 5, 6)

2248 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

is_affine()
Return if self is an affine type or False if unknown.

EXAMPLES:

sage: M = CoxeterMatrix(['C',4])
sage: M.is_affine()
False
sage: M = CoxeterMatrix(['D',4,1])
sage: M.is_affine()
True
sage: M = CoxeterMatrix([[1, 3],[3,1]])
sage: M.is_affine()
False
sage: M = CoxeterMatrix([[1, -1, 7], [-1, 1, 3], [7, 3, 1]])
sage: M.is_affine()
False

is_crystallographic()
Return whether self is crystallographic.

A Coxeter matrix is crystallographic if all non-diagonal entries are either 2, 3, 4, or 6.

EXAMPLES:

sage: CoxeterMatrix(['F',4]).is_crystallographic()
True
sage: CoxeterMatrix(['H',3]).is_crystallographic()
False

is_finite()
Return if self is a finite type or False if unknown.

EXAMPLES:

sage: M = CoxeterMatrix(['C',4])
sage: M.is_finite()
True
sage: M = CoxeterMatrix(['D',4,1])
sage: M.is_finite()
False
sage: M = CoxeterMatrix([[1, -1], [-1, 1]])
sage: M.is_finite()
False

is_irreducible()
Return whether self is irreducible.

A Coxeter matrix is irreducible if the Coxeter graph is connected.

EXAMPLES:

sage: CoxeterMatrix([['F',4],['A',1]]).is_irreducible()
False
sage: CoxeterMatrix(['H',3]).is_irreducible()
True

5.1. Comprehensive Module List 2249

Combinatorics, Release 9.7

is_simply_laced()
Return if self is simply-laced.

A Coxeter matrix is simply-laced if all non-diagonal entries are either 2 or 3.

EXAMPLES:

sage: cm = CoxeterMatrix([[1,3,3,3], [3,1,3,3], [3,3,1,3], [3,3,3,1]])
sage: cm.is_simply_laced()
True

rank()
Return the rank of self.

EXAMPLES:

sage: CoxeterMatrix(['C',3]).rank()
3
sage: CoxeterMatrix(["A2","B2","F4"]).rank()
8

relabel(relabelling)
Return a relabelled copy of this Coxeter matrix.

INPUT:

• relabelling – a function (or dictionary)

OUTPUT:

an isomorphic Coxeter type obtained by relabelling the nodes of the Coxeter graph. Namely, the node with
label i is relabelled f(i) (or, by f[i] if f is a dictionary).

EXAMPLES:

sage: CoxeterMatrix(['F',4]).relabel({ 1:2, 2:3, 3:4, 4:1})
[1 4 2 3]
[4 1 3 2]
[2 3 1 2]
[3 2 2 1]
sage: CoxeterMatrix(['F',4]).relabel(lambda x: x+1 if x<4 else 1)
[1 4 2 3]
[4 1 3 2]
[2 3 1 2]
[3 2 2 1]

classmethod samples(finite=None, affine=None, crystallographic=None, higher_rank=None)
Return a sample of the available Coxeter types.

INPUT:

• finite – (default: None) a boolean or None

• affine – (default: None) a boolean or None

• crystallographic – (default: None) a boolean or None

• higher_rank – (default: None) a boolean or None

The sample contains all the exceptional finite and affine Coxeter types, as well as typical representatives of
the infinite families.

2250 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Here the higher_rank term denotes non-finite, non-affine, Coxeter groups (including hyperbolic types).

Todo: Implement the hyperbolic and compact hyperbolic in the samples.

EXAMPLES:

sage: [CM.coxeter_type() for CM in CoxeterMatrix.samples()]
[
Coxeter type of ['A', 1], Coxeter type of ['A', 5],

Coxeter type of ['B', 5], Coxeter type of ['D', 4],

Coxeter type of ['D', 5], Coxeter type of ['E', 6],

Coxeter type of ['E', 7], Coxeter type of ['E', 8],

Coxeter type of ['F', 4], Coxeter type of ['H', 3],

Coxeter type of ['H', 4], Coxeter type of ['I', 10],

Coxeter type of ['A', 2, 1], Coxeter type of ['B', 5, 1],

Coxeter type of ['C', 5, 1], Coxeter type of ['D', 5, 1],

Coxeter type of ['E', 6, 1], Coxeter type of ['E', 7, 1],

Coxeter type of ['E', 8, 1], Coxeter type of ['F', 4, 1],

[1 -1 -1]
[-1 1 -1]

Coxeter type of ['G', 2, 1], Coxeter type of ['A', 1, 1], [-1 -1 1],

[1 -2 3 2]
[1 2 3] [-2 1 2 3]
[2 1 7] [3 2 1 -8]
[3 7 1], [2 3 -8 1]
]

The finite, affine and crystallographic options allow respectively for restricting to (non) finite, (non) affine,
and (non) crystallographic Cartan types:

sage: [CM.coxeter_type() for CM in CoxeterMatrix.samples(finite=True)]
[Coxeter type of ['A', 1], Coxeter type of ['A', 5],
Coxeter type of ['B', 5], Coxeter type of ['D', 4],
Coxeter type of ['D', 5], Coxeter type of ['E', 6],
Coxeter type of ['E', 7], Coxeter type of ['E', 8],
Coxeter type of ['F', 4], Coxeter type of ['H', 3],
Coxeter type of ['H', 4], Coxeter type of ['I', 10]]

sage: [CM.coxeter_type() for CM in CoxeterMatrix.samples(affine=True)]
[Coxeter type of ['A', 2, 1], Coxeter type of ['B', 5, 1],
Coxeter type of ['C', 5, 1], Coxeter type of ['D', 5, 1],
Coxeter type of ['E', 6, 1], Coxeter type of ['E', 7, 1],

(continues on next page)

5.1. Comprehensive Module List 2251

Combinatorics, Release 9.7

(continued from previous page)

Coxeter type of ['E', 8, 1], Coxeter type of ['F', 4, 1],
Coxeter type of ['G', 2, 1], Coxeter type of ['A', 1, 1]]

sage: [CM.coxeter_type() for CM in CoxeterMatrix.samples(crystallographic=True)]
[Coxeter type of ['A', 1], Coxeter type of ['A', 5],
Coxeter type of ['B', 5], Coxeter type of ['D', 4],
Coxeter type of ['D', 5], Coxeter type of ['E', 6],
Coxeter type of ['E', 7], Coxeter type of ['E', 8],
Coxeter type of ['F', 4], Coxeter type of ['A', 2, 1],
Coxeter type of ['B', 5, 1], Coxeter type of ['C', 5, 1],
Coxeter type of ['D', 5, 1], Coxeter type of ['E', 6, 1],
Coxeter type of ['E', 7, 1], Coxeter type of ['E', 8, 1],
Coxeter type of ['F', 4, 1], Coxeter type of ['G', 2, 1]]

sage: CoxeterMatrix.samples(crystallographic=False)
[

[1 3 2 2]
[1 3 2] [3 1 3 2] [1 -1 -1] [1 2 3]
[3 1 5] [2 3 1 5] [1 10] [1 -1] [-1 1 -1] [2 1 7]
[2 5 1], [2 2 5 1], [10 1], [-1 1], [-1 -1 1], [3 7 1],

[1 -2 3 2]
[-2 1 2 3]
[3 2 1 -8]
[2 3 -8 1]
]

Todo: add some reducible Coxeter types (suggestions?)

sage.combinat.root_system.coxeter_matrix.check_coxeter_matrix(m)
Check if m represents a generalized Coxeter matrix and raise and error if not.

EXAMPLES:

sage: from sage.combinat.root_system.coxeter_matrix import check_coxeter_matrix
sage: m = matrix([[1,3,2],[3,1,-1],[2,-1,1]])
sage: check_coxeter_matrix(m)

sage: m = matrix([[1,3],[3,1],[2,-1]])
sage: check_coxeter_matrix(m)
Traceback (most recent call last):
...
ValueError: not a square matrix

sage: m = matrix([[1,3,2],[3,1,-1],[2,-1,2]])
sage: check_coxeter_matrix(m)
Traceback (most recent call last):
...
ValueError: the matrix diagonal is not all 1

sage: m = matrix([[1,3,3],[3,1,-1],[2,-1,1]])
(continues on next page)

2252 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: check_coxeter_matrix(m)
Traceback (most recent call last):
...
ValueError: the matrix is not symmetric

sage: m = matrix([[1,3,1/2],[3,1,-1],[1/2,-1,1]])
sage: check_coxeter_matrix(m)
Traceback (most recent call last):
...
ValueError: invalid Coxeter label 1/2

sage: m = matrix([[1,3,1],[3,1,-1],[1,-1,1]])
sage: check_coxeter_matrix(m)
Traceback (most recent call last):
...
ValueError: invalid Coxeter label 1

sage.combinat.root_system.coxeter_matrix.coxeter_matrix_as_function(t)
Return the Coxeter matrix, as a function.

INPUT:

• t – a Cartan type

EXAMPLES:

sage: from sage.combinat.root_system.coxeter_matrix import coxeter_matrix_as_
→˓function
sage: f = coxeter_matrix_as_function(['A',4])
sage: matrix([[f(i,j) for j in range(1,5)] for i in range(1,5)])
[1 3 2 2]
[3 1 3 2]
[2 3 1 3]
[2 2 3 1]

sage.combinat.root_system.coxeter_matrix.recognize_coxeter_type_from_matrix(coxeter_matrix,
index_set)

Return the Coxeter type of coxeter_matrix if known, otherwise return None.

EXAMPLES:

Some infinite ones:

sage: C = CoxeterMatrix([[1,3,2],[3,1,-1],[2,-1,1]])
sage: C.is_finite() # indirect doctest
False
sage: C = CoxeterMatrix([[1,-1,-1],[-1,1,-1],[-1,-1,1]])
sage: C.is_finite() # indirect doctest
False

Some finite ones:

sage: m = matrix(CoxeterMatrix(['D', 4]))
sage: CoxeterMatrix(m).is_finite() # indirect doctest
True

(continues on next page)

5.1. Comprehensive Module List 2253

Combinatorics, Release 9.7

(continued from previous page)

sage: m = matrix(CoxeterMatrix(['H', 4]))
sage: CoxeterMatrix(m).is_finite() # indirect doctest
True

sage: CoxeterMatrix(CoxeterType(['A',10]).coxeter_graph()).coxeter_type()
Coxeter type of ['A', 10]
sage: CoxeterMatrix(CoxeterType(['B',10]).coxeter_graph()).coxeter_type()
Coxeter type of ['B', 10]
sage: CoxeterMatrix(CoxeterType(['C',10]).coxeter_graph()).coxeter_type()
Coxeter type of ['B', 10]
sage: CoxeterMatrix(CoxeterType(['D',10]).coxeter_graph()).coxeter_type()
Coxeter type of ['D', 10]
sage: CoxeterMatrix(CoxeterType(['E',6]).coxeter_graph()).coxeter_type()
Coxeter type of ['E', 6]
sage: CoxeterMatrix(CoxeterType(['E',7]).coxeter_graph()).coxeter_type()
Coxeter type of ['E', 7]
sage: CoxeterMatrix(CoxeterType(['E',8]).coxeter_graph()).coxeter_type()
Coxeter type of ['E', 8]
sage: CoxeterMatrix(CoxeterType(['F',4]).coxeter_graph()).coxeter_type()
Coxeter type of ['F', 4]
sage: CoxeterMatrix(CoxeterType(['G',2]).coxeter_graph()).coxeter_type()
Coxeter type of ['G', 2]
sage: CoxeterMatrix(CoxeterType(['H',3]).coxeter_graph()).coxeter_type()
Coxeter type of ['H', 3]
sage: CoxeterMatrix(CoxeterType(['H',4]).coxeter_graph()).coxeter_type()
Coxeter type of ['H', 4]
sage: CoxeterMatrix(CoxeterType(['I',100]).coxeter_graph()).coxeter_type()
Coxeter type of ['I', 100]

Some affine graphs:

sage: CoxeterMatrix(CoxeterType(['A',1,1]).coxeter_graph()).coxeter_type()
Coxeter type of ['A', 1, 1]
sage: CoxeterMatrix(CoxeterType(['A',10,1]).coxeter_graph()).coxeter_type()
Coxeter type of ['A', 10, 1]
sage: CoxeterMatrix(CoxeterType(['B',10,1]).coxeter_graph()).coxeter_type()
Coxeter type of ['B', 10, 1]
sage: CoxeterMatrix(CoxeterType(['C',10,1]).coxeter_graph()).coxeter_type()
Coxeter type of ['C', 10, 1]
sage: CoxeterMatrix(CoxeterType(['D',10,1]).coxeter_graph()).coxeter_type()
Coxeter type of ['D', 10, 1]
sage: CoxeterMatrix(CoxeterType(['E',6,1]).coxeter_graph()).coxeter_type()
Coxeter type of ['E', 6, 1]
sage: CoxeterMatrix(CoxeterType(['E',7,1]).coxeter_graph()).coxeter_type()
Coxeter type of ['E', 7, 1]
sage: CoxeterMatrix(CoxeterType(['E',8,1]).coxeter_graph()).coxeter_type()
Coxeter type of ['E', 8, 1]
sage: CoxeterMatrix(CoxeterType(['F',4,1]).coxeter_graph()).coxeter_type()
Coxeter type of ['F', 4, 1]
sage: CoxeterMatrix(CoxeterType(['G',2,1]).coxeter_graph()).coxeter_type()
Coxeter type of ['G', 2, 1]

2254 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.225 Coxeter Types

class sage.combinat.root_system.coxeter_type.CoxeterType
Bases: sage.structure.sage_object.SageObject

Abstract class for Coxeter types.

bilinear_form(R=None)
Return the bilinear form over R associated to self.

INPUT:

• R – (default: universal cyclotomic field) a ring used to compute the bilinear form

EXAMPLES:

sage: CoxeterType(['A', 2, 1]).bilinear_form()
[1 -1/2 -1/2]
[-1/2 1 -1/2]
[-1/2 -1/2 1]
sage: CoxeterType(['H', 3]).bilinear_form()
[1 -1/2 0]
[-1/2 1 1/2*E(5)^2 + 1/2*E(5)^3]
[0 1/2*E(5)^2 + 1/2*E(5)^3 1]
sage: C = CoxeterMatrix([[1,-1,-1],[-1,1,-1],[-1,-1,1]])
sage: C.bilinear_form()
[1 -1 -1]
[-1 1 -1]
[-1 -1 1]

coxeter_graph()
Return the Coxeter graph associated to self.

EXAMPLES:

sage: CoxeterType(['A', 3]).coxeter_graph()
Graph on 3 vertices
sage: CoxeterType(['A', 3, 1]).coxeter_graph()
Graph on 4 vertices

coxeter_matrix()
Return the Coxeter matrix associated to self.

EXAMPLES:

sage: CoxeterType(['A', 3]).coxeter_matrix()
[1 3 2]
[3 1 3]
[2 3 1]
sage: CoxeterType(['A', 3, 1]).coxeter_matrix()
[1 3 2 3]
[3 1 3 2]
[2 3 1 3]
[3 2 3 1]

index_set()
Return the index set for self.

5.1. Comprehensive Module List 2255

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

This is the list of the nodes of the associated Coxeter graph.

EXAMPLES:

sage: CoxeterType(['A', 3, 1]).index_set()
(0, 1, 2, 3)
sage: CoxeterType(['D', 4]).index_set()
(1, 2, 3, 4)
sage: CoxeterType(['A', 7, 2]).index_set()
(0, 1, 2, 3, 4)
sage: CoxeterType(['A', 7, 2]).index_set()
(0, 1, 2, 3, 4)
sage: CoxeterType(['A', 6, 2]).index_set()
(0, 1, 2, 3)
sage: CoxeterType(['D', 6, 2]).index_set()
(0, 1, 2, 3, 4, 5)
sage: CoxeterType(['E', 6, 1]).index_set()
(0, 1, 2, 3, 4, 5, 6)
sage: CoxeterType(['E', 6, 2]).index_set()
(0, 1, 2, 3, 4)
sage: CoxeterType(['A', 2, 2]).index_set()
(0, 1)
sage: CoxeterType(['G', 2, 1]).index_set()
(0, 1, 2)
sage: CoxeterType(['F', 4, 1]).index_set()
(0, 1, 2, 3, 4)

is_affine()
Return whether self is affine.

EXAMPLES:

sage: CoxeterType(['A', 3]).is_affine()
False
sage: CoxeterType(['A', 3, 1]).is_affine()
True

is_crystallographic()
Return whether self is crystallographic.

This returns False by default. Derived class should override this appropriately.

EXAMPLES:

sage: [[t, t.is_crystallographic()] for t in CartanType.samples(finite=True)]
[[['A', 1], True], [['A', 5], True],
[['B', 1], True], [['B', 5], True],
[['C', 1], True], [['C', 5], True],
[['D', 2], True], [['D', 3], True], [['D', 5], True],
[['E', 6], True], [['E', 7], True], [['E', 8], True],
[['F', 4], True], [['G', 2], True],
[['I', 5], False], [['H', 3], False], [['H', 4], False]]

is_finite()
Return whether self is finite.

EXAMPLES:

2256 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: CoxeterType(['A',4]).is_finite()
True
sage: CoxeterType(['A',4, 1]).is_finite()
False

is_simply_laced()
Return whether self is simply laced.

This returns False by default. Derived class should override this appropriately.

EXAMPLES:

sage: [[t, t.is_simply_laced()] for t in CartanType.samples()]
[[['A', 1], True], [['A', 5], True],
[['B', 1], True], [['B', 5], False],
[['C', 1], True], [['C', 5], False],
[['D', 2], True], [['D', 3], True], [['D', 5], True],
[['E', 6], True], [['E', 7], True], [['E', 8], True],
[['F', 4], False], [['G', 2], False],
[['I', 5], False], [['H', 3], False], [['H', 4], False],
[['A', 1, 1], False], [['A', 5, 1], True],
[['B', 1, 1], False], [['B', 5, 1], False],
[['C', 1, 1], False], [['C', 5, 1], False],
[['D', 3, 1], True], [['D', 5, 1], True],
[['E', 6, 1], True], [['E', 7, 1], True], [['E', 8, 1], True],
[['F', 4, 1], False], [['G', 2, 1], False],
[['BC', 1, 2], False], [['BC', 5, 2], False],
[['B', 5, 1]^*, False], [['C', 4, 1]^*, False],
[['F', 4, 1]^*, False], [['G', 2, 1]^*, False],
[['BC', 1, 2]^*, False], [['BC', 5, 2]^*, False]]

rank()
Return the rank of self.

This is the number of nodes of the associated Coxeter graph.

EXAMPLES:

sage: CoxeterType(['A', 4]).rank()
4
sage: CoxeterType(['A', 7, 2]).rank()
5
sage: CoxeterType(['I', 8]).rank()
2

classmethod samples(finite=None, affine=None, crystallographic=None)
Return a sample of the available Coxeter types.

INPUT:

• finite – a boolean or None (default: None)

• affine – a boolean or None (default: None)

• crystallographic – a boolean or None (default: None)

The sample contains all the exceptional finite and affine Coxeter types, as well as typical representatives of
the infinite families.

5.1. Comprehensive Module List 2257

Combinatorics, Release 9.7

EXAMPLES:

sage: CoxeterType.samples()
[Coxeter type of ['A', 1], Coxeter type of ['A', 5],
Coxeter type of ['B', 1], Coxeter type of ['B', 5],
Coxeter type of ['C', 1], Coxeter type of ['C', 5],
Coxeter type of ['D', 4], Coxeter type of ['D', 5],
Coxeter type of ['E', 6], Coxeter type of ['E', 7],
Coxeter type of ['E', 8], Coxeter type of ['F', 4],
Coxeter type of ['H', 3], Coxeter type of ['H', 4],
Coxeter type of ['I', 10], Coxeter type of ['A', 2, 1],
Coxeter type of ['B', 5, 1], Coxeter type of ['C', 5, 1],
Coxeter type of ['D', 5, 1], Coxeter type of ['E', 6, 1],
Coxeter type of ['E', 7, 1], Coxeter type of ['E', 8, 1],
Coxeter type of ['F', 4, 1], Coxeter type of ['G', 2, 1],
Coxeter type of ['A', 1, 1]]

The finite, affine and crystallographic options allow respectively for restricting to (non) finite, (non) affine,
and (non) crystallographic Cartan types:

sage: CoxeterType.samples(finite=True)
[Coxeter type of ['A', 1], Coxeter type of ['A', 5],
Coxeter type of ['B', 1], Coxeter type of ['B', 5],
Coxeter type of ['C', 1], Coxeter type of ['C', 5],
Coxeter type of ['D', 4], Coxeter type of ['D', 5],
Coxeter type of ['E', 6], Coxeter type of ['E', 7],
Coxeter type of ['E', 8], Coxeter type of ['F', 4],
Coxeter type of ['H', 3], Coxeter type of ['H', 4],
Coxeter type of ['I', 10]]

sage: CoxeterType.samples(affine=True)
[Coxeter type of ['A', 2, 1], Coxeter type of ['B', 5, 1],
Coxeter type of ['C', 5, 1], Coxeter type of ['D', 5, 1],
Coxeter type of ['E', 6, 1], Coxeter type of ['E', 7, 1],
Coxeter type of ['E', 8, 1], Coxeter type of ['F', 4, 1],
Coxeter type of ['G', 2, 1], Coxeter type of ['A', 1, 1]]

sage: CoxeterType.samples(crystallographic=True)
[Coxeter type of ['A', 1], Coxeter type of ['A', 5],
Coxeter type of ['B', 1], Coxeter type of ['B', 5],
Coxeter type of ['C', 1], Coxeter type of ['C', 5],
Coxeter type of ['D', 4], Coxeter type of ['D', 5],
Coxeter type of ['E', 6], Coxeter type of ['E', 7],
Coxeter type of ['E', 8], Coxeter type of ['F', 4],
Coxeter type of ['A', 2, 1], Coxeter type of ['B', 5, 1],
Coxeter type of ['C', 5, 1], Coxeter type of ['D', 5, 1],
Coxeter type of ['E', 6, 1], Coxeter type of ['E', 7, 1],
Coxeter type of ['E', 8, 1], Coxeter type of ['F', 4, 1],
Coxeter type of ['G', 2, 1], Coxeter type of ['A', 1, 1]]

sage: CoxeterType.samples(crystallographic=False)
[Coxeter type of ['H', 3],
Coxeter type of ['H', 4],
Coxeter type of ['I', 10]]

2258 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Todo: add some reducible Coxeter types (suggestions?)

class sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType(cartan_type)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.combinat.
root_system.coxeter_type.CoxeterType

A Coxeter type associated to a Cartan type.

cartan_type()
Return the Cartan type used to construct self.

EXAMPLES:

sage: C = CoxeterType(['C',3])
sage: C.cartan_type()
['C', 3]

component_types()
A list of Coxeter types making up the reducible type.

EXAMPLES:

sage: CoxeterType(['A',2],['B',2]).component_types()
[Coxeter type of ['A', 2], Coxeter type of ['B', 2]]

sage: CoxeterType('A4xB3').component_types()
[Coxeter type of ['A', 4], Coxeter type of ['B', 3]]

sage: CoxeterType(['A', 2]).component_types()
Traceback (most recent call last):
...
ValueError: component types only defined for reducible types

coxeter_graph()
Return the Coxeter graph of self.

EXAMPLES:

sage: C = CoxeterType(['H',3])
sage: C.coxeter_graph().edges(sort=True)
[(1, 2, 3), (2, 3, 5)]

coxeter_matrix()
Return the Coxeter matrix associated to self.

EXAMPLES:

sage: C = CoxeterType(['H',3])
sage: C.coxeter_matrix()
[1 3 2]
[3 1 5]
[2 5 1]

index_set()
Return the index set of self.

EXAMPLES:

5.1. Comprehensive Module List 2259

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

sage: C = CoxeterType(['A', 4])
sage: C.index_set()
(1, 2, 3, 4)

is_affine()
Return if self is an affine type.

EXAMPLES:

sage: C = CoxeterType(['F', 4, 1])
sage: C.is_affine()
True

is_crystallographic()
Return if self is crystallographic.

EXAMPLES:

sage: C = CoxeterType(['C', 3])
sage: C.is_crystallographic()
True

sage: C = CoxeterType(['H', 3])
sage: C.is_crystallographic()
False

is_finite()
Return if self is a finite type.

EXAMPLES:

sage: C = CoxeterType(['E', 6])
sage: C.is_finite()
True

is_irreducible()
Return if self is irreducible.

EXAMPLES:

sage: C = CoxeterType(['A', 5])
sage: C.is_irreducible()
True

sage: C = CoxeterType('B3xB3')
sage: C.is_irreducible()
False

is_reducible()
Return if self is reducible.

EXAMPLES:

sage: C = CoxeterType(['A', 5])
sage: C.is_reducible()
False

(continues on next page)

2260 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: C = CoxeterType('A2xA2')
sage: C.is_reducible()
True

is_simply_laced()
Return if self is simply-laced.

EXAMPLES:

sage: C = CoxeterType(['A', 5])
sage: C.is_simply_laced()
True

sage: C = CoxeterType(['B', 3])
sage: C.is_simply_laced()
False

rank()
Return the rank of self.

EXAMPLES:

sage: C = CoxeterType(['I', 16])
sage: C.rank()
2

relabel(relabelling)
Return a relabelled copy of self.

EXAMPLES:

sage: ct = CoxeterType(['A',2])
sage: ct.relabel({1:-1, 2:-2})
Coxeter type of ['A', 2] relabelled by {1: -1, 2: -2}

type()
Return the type of self.

EXAMPLES:

sage: C = CoxeterType(['A', 4])
sage: C.type()
'A'

5.1. Comprehensive Module List 2261

Combinatorics, Release 9.7

5.1.226 Dynkin diagrams

AUTHORS:

• Travis Scrimshaw (2012-04-22): Nicolas M. Thiery moved Cartan matrix creation to here and I cached results
for speed.

• Travis Scrimshaw (2013-06-11): Changed inputs of Dynkin diagrams to handle other Dynkin diagrams and
graphs. Implemented remaining Cartan type methods.

• Christian Stump, Travis Scrimshaw (2013-04-11): Added Cartan matrix as possible input for Dynkin diagrams.

sage.combinat.root_system.dynkin_diagram.DynkinDiagram(*args, **kwds)
Return the Dynkin diagram corresponding to the input.

INPUT:

The input can be one of the following:

• empty to obtain an empty Dynkin diagram

• a Cartan type

• a Cartan matrix

• a Cartan matrix and an indexing set

One can also input an indexing set by passing a tuple using the optional argument index_set.

The edge multiplicities are encoded as edge labels. For the corresponding Cartan matrices, this uses the conven-
tion in Hong and Kang, Kac, Fulton and Harris, and crystals. This is the opposite convention in Bourbaki and
Wikipedia’s Dynkin diagram (Wikipedia article Dynkin_diagram). That is for 𝑖 ̸= 𝑗:

i <--k-- j <==> a_ij = -k
<==> -scalar(coroot[i], root[j]) = k
<==> multiple arrows point from the longer root

to the shorter one

For example, in type 𝐶2, we have:

sage: C2 = DynkinDiagram(['C',2]); C2
O=<=O
1 2
C2
sage: C2.cartan_matrix()
[2 -2]
[-1 2]

However Bourbaki would have the Cartan matrix as:[︂
2 −1
−2 2

]︂
.

EXAMPLES:

sage: DynkinDiagram(['A', 4])
O---O---O---O
1 2 3 4
A4

(continues on next page)

2262 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Dynkin_diagram

Combinatorics, Release 9.7

(continued from previous page)

sage: DynkinDiagram(['A',1],['A',1])
O
1
O
2
A1xA1

sage: R = RootSystem("A2xB2xF4")
sage: DynkinDiagram(R)
O---O
1 2
O=>=O
3 4
O---O=>=O---O
5 6 7 8
A2xB2xF4

sage: R = RootSystem("A2xB2xF4")
sage: CM = R.cartan_matrix(); CM
[2 -1| 0 0| 0 0 0 0]
[-1 2| 0 0| 0 0 0 0]
[-----+-----+-----------]
[0 0| 2 -1| 0 0 0 0]
[0 0|-2 2| 0 0 0 0]
[-----+-----+-----------]
[0 0| 0 0| 2 -1 0 0]
[0 0| 0 0|-1 2 -1 0]
[0 0| 0 0| 0 -2 2 -1]
[0 0| 0 0| 0 0 -1 2]
sage: DD = DynkinDiagram(CM); DD
O---O
1 2
O=>=O
3 4
O---O=>=O---O
5 6 7 8
A2xB2xF4
sage: DD.cartan_matrix()
[2 -1 0 0 0 0 0 0]
[-1 2 0 0 0 0 0 0]
[0 0 2 -1 0 0 0 0]
[0 0 -2 2 0 0 0 0]
[0 0 0 0 2 -1 0 0]
[0 0 0 0 -1 2 -1 0]
[0 0 0 0 0 -2 2 -1]
[0 0 0 0 0 0 -1 2]

We can also create Dynkin diagrams from arbitrary Cartan matrices:

sage: C = CartanMatrix([[2, -3], [-4, 2]])
sage: DynkinDiagram(C)
Dynkin diagram of rank 2

(continues on next page)

5.1. Comprehensive Module List 2263

Combinatorics, Release 9.7

(continued from previous page)

sage: C.index_set()
(0, 1)
sage: CI = CartanMatrix([[2, -3], [-4, 2]], [3, 5])
sage: DI = DynkinDiagram(CI)
sage: DI.index_set()
(3, 5)
sage: CII = CartanMatrix([[2, -3], [-4, 2]])
sage: DII = DynkinDiagram(CII, ('y', 'x'))
sage: DII.index_set()
('x', 'y')

See also:

CartanType() for a general discussion on Cartan types and in particular node labeling conventions.

class sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class(t=None, index_set=None,
odd_isotropic_roots=[],
**options)

Bases: sage.graphs.digraph.DiGraph, sage.combinat.root_system.cartan_type.
CartanType_abstract

A Dynkin diagram.

See also:

DynkinDiagram()

INPUT:

• t – a Cartan type, Cartan matrix, or None

EXAMPLES:

sage: DynkinDiagram(['A', 3])
O---O---O
1 2 3
A3
sage: C = CartanMatrix([[2, -3], [-4, 2]])
sage: DynkinDiagram(C)
Dynkin diagram of rank 2
sage: C.dynkin_diagram().cartan_matrix() == C
True

add_edge(i, j, label=1)
EXAMPLES:

sage: from sage.combinat.root_system.dynkin_diagram import DynkinDiagram_class
sage: d = DynkinDiagram_class(CartanType(['A',3]))
sage: sorted(d.edges(sort=True))
[]
sage: d.add_edge(2, 3)
sage: sorted(d.edges(sort=True))
[(2, 3, 1), (3, 2, 1)]

static an_instance()
Returns an example of Dynkin diagram

EXAMPLES:

2264 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/graphs/sage/graphs/digraph.html#sage.graphs.digraph.DiGraph

Combinatorics, Release 9.7

sage: from sage.combinat.root_system.dynkin_diagram import DynkinDiagram_class
sage: g = DynkinDiagram_class.an_instance()
sage: g
Dynkin diagram of rank 3
sage: g.cartan_matrix()
[2 -1 -1]
[-2 2 -1]
[-1 -1 2]

cartan_matrix()
Returns the Cartan matrix for this Dynkin diagram

EXAMPLES:

sage: DynkinDiagram(['C',3]).cartan_matrix()
[2 -1 0]
[-1 2 -2]
[0 -1 2]

cartan_type()
EXAMPLES:

sage: DynkinDiagram("A2","B2","F4").cartan_type()
A2xB2xF4

column(j)
Returns the 𝑗𝑡ℎ column (𝑎𝑖,𝑗)𝑖 of the Cartan matrix corresponding to this Dynkin diagram, as a container
(or iterator) of tuples (𝑖, 𝑎𝑖,𝑗)

EXAMPLES:

sage: g = DynkinDiagram(["B",4])
sage: [(i,a) for (i,a) in g.column(3)]
[(3, 2), (2, -1), (4, -2)]

coxeter_diagram()
Construct the Coxeter diagram of self.

See also:

CartanType_abstract.coxeter_diagram()

EXAMPLES:

sage: cm = CartanMatrix([[2,-5,0],[-2,2,-1],[0,-1,2]])
sage: D = cm.dynkin_diagram()
sage: G = D.coxeter_diagram(); G
Graph on 3 vertices
sage: G.edges(sort=True)
[(0, 1, +Infinity), (1, 2, 3)]

sage: ct = CartanType([['A',2,2], ['B',3]])
sage: ct.coxeter_diagram()
Graph on 5 vertices
sage: ct.dynkin_diagram().coxeter_diagram() == ct.coxeter_diagram()
True

5.1. Comprehensive Module List 2265

Combinatorics, Release 9.7

dual()
Returns the dual Dynkin diagram, obtained by reversing all edges.

EXAMPLES:

sage: D = DynkinDiagram(['C',3])
sage: D.edges(sort=True)
[(1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 2)]
sage: D.dual()
O---O=>=O
1 2 3
B3
sage: D.dual().edges(sort=True)
[(1, 2, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1)]
sage: D.dual() == DynkinDiagram(['B',3])
True

dynkin_diagram()
EXAMPLES:

sage: DynkinDiagram(['C',3]).dynkin_diagram()
O---O=<=O
1 2 3
C3

index_set()
EXAMPLES:

sage: DynkinDiagram(['C',3]).index_set()
(1, 2, 3)
sage: DynkinDiagram("A2","B2","F4").index_set()
(1, 2, 3, 4, 5, 6, 7, 8)

is_affine()
Check if self corresponds to an affine root system.

EXAMPLES:

sage: CartanType(['F',4]).dynkin_diagram().is_affine()
False
sage: D = DynkinDiagram(CartanMatrix([[2, -4], [-3, 2]]))
sage: D.is_affine()
False

is_crystallographic()
Implements CartanType_abstract.is_crystallographic()

A Dynkin diagram always corresponds to a crystallographic root system.

EXAMPLES:

sage: CartanType(['F',4]).dynkin_diagram().is_crystallographic()
True

is_finite()
Check if self corresponds to a finite root system.

EXAMPLES:

2266 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: CartanType(['F',4]).dynkin_diagram().is_finite()
True
sage: D = DynkinDiagram(CartanMatrix([[2, -4], [-3, 2]]))
sage: D.is_finite()
False

is_irreducible()
Check if self corresponds to an irreducible root system.

EXAMPLES:

sage: CartanType(['F',4]).dynkin_diagram().is_irreducible()
True
sage: CM = CartanMatrix([[2,-6],[-4,2]])
sage: CM.dynkin_diagram().is_irreducible()
True
sage: CartanType("A2xB3").dynkin_diagram().is_irreducible()
False
sage: CM = CartanMatrix([[2,-6,0],[-4,2,0],[0,0,2]])
sage: CM.dynkin_diagram().is_irreducible()
False

odd_isotropic_roots()
Return the odd isotropic roots of self.

EXAMPLES:

sage: g = DynkinDiagram(['A',4])
sage: g.odd_isotropic_roots()
()
sage: g = DynkinDiagram(['A',[4,3]])
sage: g.odd_isotropic_roots()
(0,)

rank()
Returns the index set for this Dynkin diagram

EXAMPLES:

sage: DynkinDiagram(['C',3]).rank()
3
sage: DynkinDiagram("A2","B2","F4").rank()
8

relabel(*args, **kwds)
Return the relabelled Dynkin diagram of self.

INPUT: see relabel()

There is one difference: the default value for inplace is False instead of True.

EXAMPLES:

sage: D = DynkinDiagram(['C',3])
sage: D.relabel({1:0, 2:4, 3:1})
O---O=<=O

(continues on next page)

5.1. Comprehensive Module List 2267

../../../../../../../html/en/reference/graphs/sage/graphs/generic_graph.html#sage.graphs.generic_graph.GenericGraph.relabel

Combinatorics, Release 9.7

(continued from previous page)

0 4 1
C3 relabelled by {1: 0, 2: 4, 3: 1}
sage: D
O---O=<=O
1 2 3
C3

sage: _ = D.relabel({1:0, 2:4, 3:1}, inplace=True)
sage: D
O---O=<=O
0 4 1
C3 relabelled by {1: 0, 2: 4, 3: 1}

sage: D = DynkinDiagram(['A', [1,2]])
sage: Dp = D.relabel({-1:4, 0:-3, 1:3, 2:2})
sage: Dp
O---X---O---O
4 -3 3 2
A1|2 relabelled by {-1: 4, 0: -3, 1: 3, 2: 2}
sage: Dp.odd_isotropic_roots()
(-3,)

sage: D = DynkinDiagram(['D', 5])
sage: G, perm = D.relabel(range(5), return_map=True)
sage: G

O 4
|
|

O---O---O---O
0 1 2 3
D5 relabelled by {1: 0, 2: 1, 3: 2, 4: 3, 5: 4}
sage: perm
{1: 0, 2: 1, 3: 2, 4: 3, 5: 4}

sage: perm = D.relabel(range(5), return_map=True, inplace=True)
sage: D

O 4
|
|

O---O---O---O
0 1 2 3
D5 relabelled by {1: 0, 2: 1, 3: 2, 4: 3, 5: 4}
sage: perm
{1: 0, 2: 1, 3: 2, 4: 3, 5: 4}

row(i)
Returns the 𝑖𝑡ℎ row (𝑎𝑖,𝑗)𝑗 of the Cartan matrix corresponding to this Dynkin diagram, as a container (or
iterator) of tuples (𝑗, 𝑎𝑖,𝑗)

EXAMPLES:

sage: g = DynkinDiagram(["C",4])
(continues on next page)

2268 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: [(i,a) for (i,a) in g.row(3)]
[(3, 2), (2, -1), (4, -2)]

subtype(index_set)
Return a subtype of self given by index_set.

A subtype can be considered the Dynkin diagram induced from the Dynkin diagram of self by index_set.

EXAMPLES:

sage: D = DynkinDiagram(['A',6,2]); D
O=<=O---O=<=O
0 1 2 3
BC3~
sage: D.subtype([1,2,3])
Dynkin diagram of rank 3

symmetrizer()
Return the symmetrizer of the corresponding Cartan matrix.

EXAMPLES:

sage: d = DynkinDiagram()
sage: d.add_edge(1,2,3)
sage: d.add_edge(2,3)
sage: d.add_edge(3,4,3)
sage: d.symmetrizer()
Finite family {1: 9, 2: 3, 3: 3, 4: 1}

sage.combinat.root_system.dynkin_diagram.precheck(t, letter=None, length=None, affine=None,
n_ge=None, n=None)

EXAMPLES:

sage: from sage.combinat.root_system.dynkin_diagram import precheck
sage: ct = CartanType(['A',4])
sage: precheck(ct, letter='C')
Traceback (most recent call last):
...
ValueError: t[0] must be = 'C'
sage: precheck(ct, affine=1)
Traceback (most recent call last):
...
ValueError: t[2] must be = 1
sage: precheck(ct, length=3)
Traceback (most recent call last):
...
ValueError: len(t) must be = 3
sage: precheck(ct, n=3)
Traceback (most recent call last):
...
ValueError: t[1] must be = 3
sage: precheck(ct, n_ge=5)
Traceback (most recent call last):

(continues on next page)

5.1. Comprehensive Module List 2269

Combinatorics, Release 9.7

(continued from previous page)

...
ValueError: t[1] must be >= 5

5.1.227 Hecke algebra representations

class sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors(T,
T_Y=None,
nor-
mal-
ized=True)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
sage_object.SageObject

A class for the family of eigenvectors of the 𝑌 Cherednik operators for a module over a (Double) Affine Hecke
algebra

INPUT:

• T – a family (𝑇𝑖)𝑖∈𝐼 implementing the action of the generators of an affine Hecke algebra on self. The
intertwiner operators are built from these.

• T_Y – a family (𝑇𝑌𝑖)𝑖∈𝐼 implementing the action of the generators of an affine Hecke algebra on self. By
default, this is T. But this can be used to get the action of the full Double Affine Hecke Algebra. The 𝑌
operators are built from the T_Y.

This returns a function 𝜇 ↦→ 𝐸𝜇 which uses intertwining operators to calculate recursively eigenvectors 𝐸𝜇 for
the action of the torus of the affine Hecke algebra with eigenvalue given by 𝑓 . Namely:

𝐸𝜇.𝑌
𝜆∨

= 𝑓(𝜆∨, 𝜇)𝐸𝜇

Assumptions:

• seed(mu) initializes the recurrence by returning an appropriate eigenvector 𝐸𝜇 for 𝜇 trivial enough. For
example, for nonsymmetric Macdonald polynomials seed(mu) returns the monomial 𝑋𝜇 for a minuscule
weight 𝜇.

• 𝑓 is almost equivariant. Namely, 𝑓(𝜆∨, 𝜇) = 𝑓(𝜆∨𝑠𝑖, 𝑡𝑤𝑖𝑠𝑡(𝜇, 𝑖)) whenever 𝑖 is a descent of 𝜇.

• 𝑡𝑤𝑖𝑠𝑡(𝜇, 𝑖) maps 𝜇 closer to the dominant chamber whenever 𝑖 is a descent of 𝜇.

Todo: Add tests for the above assumptions, and also that the classical operators 𝑇1, . . . , 𝑇𝑛 from 𝑇 and 𝑇𝑌
coincide.

Y()
Return the Cherednik operators.

EXAMPLES:

sage: W = WeylGroup(["B",2])
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
sage: E.Y()
Lazy family (...)_{i in Coroot lattice of the Root system of type ['B', 2, 1]}

2270 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

affine_lift(mu)
Lift the index \mu to a space admitting an action of the affine Weyl group.

INPUT:

• mu – an element 𝜇 of the indexing set

In this space, one should have first_descent and apply_simple_reflection act properly.

EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
sage: w = W.an_element(); w
123
sage: E.affine_lift(w)
121

affine_retract(mu)
Retract 𝜇 from a space admitting an action of the affine Weyl group.

EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
sage: w = W.an_element(); w
123
sage: E.affine_retract(E.affine_lift(w)) == w
True

cartan_type()
Return Cartan type of self.

EXAMPLES:

sage: W = WeylGroup(["B",3])
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
sage: E.cartan_type()
['B', 3, 1]

sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).cartan_type()
['B', 2, 1]

domain()
The module on which the affine Hecke algebra acts.

EXAMPLES:

5.1. Comprehensive Module List 2271

Combinatorics, Release 9.7

sage: W = WeylGroup(["B",3])
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
sage: E.domain()
Algebra of Weyl Group of type ['B', 3] (as a matrix group acting on the ambient␣
→˓space) over Multivariate Polynomial Ring in q1, q2 over Rational Field

eigenvalue(mu, l)
Return the eigenvalue of 𝑌𝜆∨ on 𝐸𝜇 computed by applying 𝑌𝜆∨ on 𝐸𝜇.

INPUT:

• mu – the index 𝜇 of an eigenvector, or a tentative eigenvector

• l – the index 𝜆∨ of a Cherednik operator in self.Y_index_set()

This default implementation applies explicitly 𝑌𝜇 to 𝐸𝜆.

EXAMPLES:

sage: W = WeylGroup(["B",2])
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
sage: w0 = W.long_element()
sage: Y = E.Y()
sage: alphacheck = Y.keys().simple_roots()
sage: E.eigenvalue(w0, alphacheck[1])
q1/(-q2)
sage: E.eigenvalue(w0, alphacheck[2])
q1/(-q2)
sage: E.eigenvalue(w0, alphacheck[0])
q2^2/q1^2

The following checks that all 𝐸𝑤 are eigenvectors, with eigenvalue given by Lemma 7.5 of [HST2008]
(checked for 𝐴2, 𝐴3):

sage: Pcheck = Y.keys()
sage: Wcheck = Pcheck.weyl_group()
sage: P0check = Pcheck.classical()
sage: def height(root):
....: return sum(P0check(root).coefficients())
sage: def eigenvalue(w, mu):
....: return (-q2/q1)^height(Wcheck.from_reduced_word(w.reduced_word()).
→˓action(mu))
sage: all(E.eigenvalue(w, a) == eigenvalue(w, a) for w in E.keys() for a in Y.
→˓keys().simple_roots()) # long time (2.5s)
True

eigenvalues(mu)
Return the eigenvalues of 𝑌𝛼0 , . . . , 𝑌𝛼𝑛 on 𝐸𝜇.

INPUT:

2272 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• mu – the index 𝜇 of an eigenvector or a tentative eigenvector

EXAMPLES:

sage: W = WeylGroup(["B",2])
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
sage: w0 = W.long_element()
sage: E.eigenvalues(w0)
[q2^2/q1^2, q1/(-q2), q1/(-q2)]
sage: w = W.an_element()
sage: E.eigenvalues(w)
[(-q2)/q1, (-q2^2)/(-q1^2), q1^3/(-q2^3)]

hecke_parameters(i)
Return the Hecke parameters for index i.

EXAMPLES:

sage: W = WeylGroup(["B",3])
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True)
sage: E = T.Y_eigenvectors()
sage: E.hecke_parameters(1)
(q1, q2)
sage: E.hecke_parameters(2)
(q1, q2)
sage: E.hecke_parameters(0)
(q1, q2)

keys()
The index set for the eigenvectors.

By default, this assumes that the eigenvectors span the full affine Hecke algebra module and that the eigen-
vectors have the same indexing as the basis of this module.

EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
sage: E.keys()
Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space)

recursion(mu)
Return the indices used in the recursion.

INPUT:

• mu – the index 𝜇 of an eigenvector

EXAMPLES:

5.1. Comprehensive Module List 2273

Combinatorics, Release 9.7

sage: W = WeylGroup(["A",3])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
sage: w0 = W.long_element()
sage: E.recursion(w0)
[]
sage: w = W.an_element(); w
123
sage: E.recursion(w)
[1, 2, 1]

seed(mu)
Return the eigenvector for 𝜇 minuscule.

INPUT:

• mu – an element 𝜇 of the indexing set

OUTPUT: an element of T.domain()

This default implementation returns the monomial indexed by 𝜇.

EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1, q2)
sage: E.seed(W.long_element())
123121

twist(mu, i)
Act by 𝑠𝑖 on 𝜇.

By default, this calls the method apply_simple_reflection.

EXAMPLES:

sage: W = WeylGroup(["B",3])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True)
sage: E = T.Y_eigenvectors()
sage: w = W.an_element(); w
123
sage: E.twist(w,1)
1231

2274 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation(domain,
on_basis,
car-
tan_type,
q1,
q2,
q=1,
side='right')

Bases: sage.misc.fast_methods.WithEqualityById, sage.structure.sage_object.SageObject

A representation of an (affine) Hecke algebra given by the action of the 𝑇 generators

Let 𝐹𝑖 be a family of operators implementing an action of the operators (𝑇𝑖)𝑖∈𝐼 of the Hecke algebra on some
vector space domain, given by their action on the basis of domain. This constructs the family of operators
(𝐹𝑤)𝑤∈𝑊 describing the action of all elements of the basis (𝑇𝑤)𝑤∈𝑊 of the Hecke algebra. This is achieved by
linearity on the first argument, and applying recursively the 𝐹𝑖 along a reduced word for 𝑤 = 𝑠𝑖1 · · · 𝑠𝑖𝑘 :

𝐹𝑤(𝑥) = 𝐹𝑖𝑘 ∘ · · · ∘ 𝐹𝑖1(𝑥).

INPUT:

• domain – a vector space

• f – a function f(l,i) taking a basis element 𝑙 of domain and an index 𝑖, and returning 𝐹𝑖
• cartan_type – The Cartan type of the Hecke algebra

• q1,q2 – The eigenvalues of the generators 𝑇 of the Hecke algebra

• side – “left” or “right” (default: “right”) whether this is a left or right representation

EXAMPLES:

sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = WeylGroup(["A",3]).algebra(QQ)
sage: H = KW.demazure_lusztig_operators(q1,q2); H
A representation of the (q1, q2)-Hecke algebra of type ['A', 3, 1]
on Algebra of Weyl Group of type ['A', 3]
(as a matrix group acting on the ambient space)
over Rational Field

Among other things, it implements the 𝑇𝑤 operators, their inverses and compositions thereof:

sage: H.Tw((1,2))
Generic endomorphism of Algebra of Weyl Group of type ['A', 3]
(as a matrix group acting on the ambient space) over Rational Field

and the Cherednik operators 𝑌 𝜆∨ :

sage: H.Y()
Lazy family (...)_{i in Coroot lattice of the Root system of type ['A', 3, 1]}

REFERENCES:

• [HST2008]

Ti_inverse_on_basis(x, i)
The 𝑇−1𝑖 operators, on basis elements

INPUT:

5.1. Comprehensive Module List 2275

../../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

• x – the index of a basis element

• i – the index of a generator

EXAMPLES:

sage: W = WeylGroup("A3")
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: rho = KW.demazure_lusztig_operators(q1,q2)
sage: w = W.an_element()
sage: rho.Ti_inverse_on_basis(w, 1)
-1/q2*1231 + ((q1+q2)/(q1*q2))*123

Ti_on_basis(x, i)
The 𝑇𝑖 operators, on basis elements.

INPUT:

• x – the index of a basis element

• i – the index of a generator

EXAMPLES:

sage: W = WeylGroup("A3")
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: rho = KW.demazure_lusztig_operators(q1,q2)
sage: w = W.an_element()
sage: rho.Ti_on_basis(w,1)
q1*1231

Tw(word, signs=None, scalar=None)
Return 𝑇𝑤.

INPUT:

• word – a word 𝑖1, . . . , 𝑖𝑘 for some element 𝑤 of the Weyl group. See straighten_word() for how
this word can be specified.

• signs – a list 𝜖1, . . . , 𝜖𝑘 of the same length as word with 𝜖𝑖 = ±1 or None for 1, . . . , 1 (default: None)

• scalar – an element 𝑐 of the base ring or None for 1 (default: None)

OUTPUT:

a module morphism implementing

𝑇𝑤 = 𝑇𝑖𝑘 ∘ · · · ∘ 𝑇𝑖1

in left action notation; that is 𝑇𝑖1 is applied first, then 𝑇𝑖2 , etc.

More generally, if scalar or signs is specified, the morphism implements

𝑐𝑇 𝜖𝑘𝑖𝑘 ∘ · · · ∘ 𝑇
𝜖𝑘
𝑖1
.

EXAMPLES:

2276 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: W = WeylGroup("A3")
sage: W.element_class._repr_=lambda x: ('e' if not x.reduced_word()
....: else "".join(str(i) for i in x.reduced_word()))
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: x = KW.an_element(); x
123 + 3*32 + 2*3 + e

sage: T = KW.demazure_lusztig_operators(q1,q2)
sage: T12 = T.Tw((1,2))
sage: T12(KW.one())
q1^2*12

This is 𝑇2 ∘ 𝑇1:

sage: T[2](T[1](KW.one()))
q1^2*12
sage: T[1](T[2](KW.one()))
q1^2*21
sage: T12(x) == T[2](T[1](x))
True

Now with signs and scalar coefficient we construct 3𝑇2 ∘ 𝑇−11 :

sage: phi = T.Tw((1,2), (-1,1), 3)
sage: phi(KW.one())
((-3*q1)/q2)*12 + ((3*q1+3*q2)/q2)*2
sage: phi(T[1](x)) == 3*T[2](x)
True

For debugging purposes, one can recover the input data:

sage: phi.word
(1, 2)
sage: phi.signs
(-1, 1)
sage: phi.scalar
3

Tw_inverse(word)
Return 𝑇−1𝑤 .

This is essentially a shorthand for Tw() with all minus signs.

Todo: Add an example where 𝑇𝑖 ̸= 𝑇−1𝑖

EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: W.element_class._repr_ = lambda x: "".join(str(i) for i in x.reduced_
→˓word())
sage: KW = W.algebra(QQ)

(continues on next page)

5.1. Comprehensive Module List 2277

Combinatorics, Release 9.7

(continued from previous page)

sage: rho = KW.demazure_lusztig_operators(1, -1)
sage: x = KW.monomial(W.an_element()); x
123
sage: word = [1,2]
sage: rho.Tw(word)(x)
12312
sage: rho.Tw_inverse(word)(x)
12321

sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: rho = KW.demazure_lusztig_operators(q1, q2)
sage: x = KW.monomial(W.an_element()); x
123
sage: rho.Tw_inverse(word)(x)
1/q2^2*12321 + ((-q1-q2)/(q1*q2^2))*1231 + ((-q1-q2)/(q1*q2^2))*1232 + ((q1^
→˓2+2*q1*q2+q2^2)/(q1^2*q2^2))*123
sage: rho.Tw(word)(_)
123

Y(base_ring=Integer Ring)
Return the Cherednik operators 𝑌 for this representation of an affine Hecke algebra.

INPUT:

• self – a representation of an affine Hecke algebra

• base_ring – the base ring of the coroot lattice

This is a family of operators indexed by the coroot lattice for this Cartan type. In practice this is currently
indexed instead by the affine coroot lattice, even if this indexing is not one to one, in order to allow for
𝑌 [𝛼∨0].

EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: rho = KW.demazure_lusztig_operators(q2, q1)
sage: Y = rho.Y(); Y
Lazy family (...(i))_{i in Coroot lattice of the Root system of type ['A', 3,␣
→˓1]}

Y_eigenvectors()
Return the family of eigenvectors for the Cherednik operators 𝑌 of this representation of an affine Hecke
algebra.

INPUT:

• self – a representation of an affine Hecke algebra

• base_ring – the base ring of the coroot lattice

EXAMPLES:

2278 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: W = WeylGroup(["B",2])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: rho = KW.demazure_lusztig_operators(q1, q2, affine=True)
sage: E = rho.Y_eigenvectors()
sage: E.keys()
Weyl Group of type ['B', 2] (as a matrix group acting on the ambient space)
sage: w0 = W.long_element()

To set the recurrence up properly, one often needs to customize the CherednikOperatorsEigenvectors.
affine_lift() and CherednikOperatorsEigenvectors.affine_retract() methods. This would
usually be done by subclassing CherednikOperatorsEigenvectors; here we just override the methods
directly.

In this particular case, we multiply by 𝑤0 to take into account that 𝑤0 is the seed for the recursion:

sage: E.affine_lift = w0._mul_
sage: E.affine_retract = w0._mul_

sage: E[w0]
2121
sage: E.eigenvalues(E[w0])
[q2^2/q1^2, q1/(-q2), q1/(-q2)]

This step is taken care of automatically if one instead calls the specialization sage.coxeter_groups.
CoxeterGroups.Algebras.demazure_lusztig_eigenvectors().

Now we can compute all eigenvectors:

sage: [E[w] for w in W]
[2121 - 121 - 212 + 12 + 21 - 1 - 2 + ,
-2121 + 212,
(q2/(q1-q2))*2121 + (q2/(-q1+q2))*121 + (q2/(-q1+q2))*212 - 12 + ((-q2)/(-
→˓q1+q2))*21 + 2,
((-q2^2)/(-q1^2+q1*q2-q2^2))*2121 - 121 + (q2^2/(-q1^2+q1*q2-q2^2))*212 + 21,
((-q1^2-q2^2)/(q1^2-q1*q2+q2^2))*2121 + ((-q1^2-q2^2)/(-q1^2+q1*q2-q2^2))*121␣
→˓+ ((-q2^2)/(-q1^2+q1*q2-q2^2))*212 + (q2^2/(-q1^2+q1*q2-q2^2))*12 - 21 + 1,
2121,
(q2/(-q1+q2))*2121 + ((-q2)/(-q1+q2))*121 - 212 + 12,
-2121 + 121]

Y_lambdacheck(lambdacheck)
Return the Cherednik operators 𝑌 𝜆∨ for this representation of an affine Hecke algebra.

INPUT:

• lambdacheck – an element of the coroot lattice for this Cartan type

EXAMPLES:

sage: W = WeylGroup(["B",2])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2'].fraction_field()

(continues on next page)

5.1. Comprehensive Module List 2279

Combinatorics, Release 9.7

(continued from previous page)

sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)

We take 𝑞2 and 𝑞1 as eigenvalues to match with the notations of [HST2008]

sage: rho = KW.demazure_lusztig_operators(q2, q1)
sage: L = rho.Y().keys()
sage: alpha = L.simple_roots()
sage: Y0 = rho.Y_lambdacheck(alpha[0])
sage: Y1 = rho.Y_lambdacheck(alpha[1])
sage: Y2 = rho.Y_lambdacheck(alpha[2])

sage: x = KW.monomial(W.an_element()); x
12
sage: Y1(x)
((-q1^2-2*q1*q2-q2^2)/(-q2^2))*2121 + ((q1^3+q1^2*q2+q1*q2^2+q2^3)/(-q1*q2^
→˓2))*121 + ((q1^2+q1*q2)/(-q2^2))*212 + ((-q1^2)/(-q2^2))*12
sage: Y2(x)
((-q1^4-q1^3*q2-q1*q2^3-q2^4)/(-q1^3*q2))*2121 + ((q1^3+q1^2*q2+q1*q2^2+q2^3)/(-
→˓q1^2*q2))*121 + (q2^3/(-q1^3))*12
sage: Y1(Y2(x))
((q1*q2+q2^2)/q1^2)*212 + ((-q2)/q1)*12
sage: Y2(Y1(x))
((q1*q2+q2^2)/q1^2)*212 + ((-q2)/q1)*12

The 𝑌 operators commute:

sage: Y0(Y1(x)) - Y1(Y0(x))
0
sage: Y2(Y1(x)) - Y1(Y2(x))
0

In the classical root lattice, 𝛼0 + 𝛼1 + 𝛼2 = 0:

sage: Y0(Y1(Y2(x)))
12

Lemma 7.2 of [HST2008]:

sage: w0 = KW.monomial(W.long_element())
sage: rho.Tw(0)(w0)
q2
sage: rho.Tw_inverse(1)(w0)
1/q2*212
sage: rho.Tw_inverse(2)(w0)
1/q2*121

Lemma 7.5 of [HST2008]:

sage: Y0(w0)
q1^2/q2^2*2121
sage: Y1(w0)
(q2/(-q1))*2121

(continues on next page)

2280 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Y2(w0)
(q2/(-q1))*2121

Todo: Add more tests

Add tests in type BC affine where the null coroot 𝛿∨ can have non trivial coefficient in term of 𝛼0

See also:

• [HST2008] for the formula in terms of 𝑞1, 𝑞2

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: from sage.combinat.root_system.hecke_algebra_representation import␣
→˓HeckeAlgebraRepresentation
sage: KW = SymmetricGroup(3).algebra(QQ)
sage: action = lambda x,i: KW.monomial(x.apply_simple_reflection(i, side="right
→˓"))
sage: H = HeckeAlgebraRepresentation(KW, action, CartanType(["A",2]), 1, -1)
sage: H.cartan_type()
['A', 2]

sage: H = WeylGroup(["A",3]).algebra(QQ).demazure_lusztig_operators(-1,1)
sage: H.cartan_type()
['A', 3, 1]

domain()
Return the domain of self.

EXAMPLES:

sage: H = WeylGroup(["A",3]).algebra(QQ).demazure_lusztig_operators(-1,1)
sage: H.domain()
Algebra of Weyl Group of type ['A', 3] (as a matrix group acting on the ambient␣
→˓space) over Rational Field

on_basis(x, word, signs=None, scalar=None)
Action of product of 𝑇𝑖 and 𝑇−1𝑖 on x.

INPUT:

• x – the index of a basis element

• word – word of indices of generators

• signs – (default: None) sequence of signs of same length as word; determines which operators are
supposed to be taken as inverses.

• scalar – (default: None) scalar to multiply the answer by

EXAMPLES:

5.1. Comprehensive Module List 2281

Combinatorics, Release 9.7

sage: from sage.combinat.root_system.hecke_algebra_representation import␣
→˓HeckeAlgebraRepresentation
sage: W = SymmetricGroup(3)
sage: domain = W.algebra(QQ)
sage: action = lambda x,i: domain.monomial(x.apply_simple_reflection(i, side=
→˓"right"))
sage: rho = HeckeAlgebraRepresentation(domain, action, CartanType(["A",2]), 1, -
→˓1)

sage: rho.on_basis(W.one(), (1,2,1))
(1,3)

sage: word = (1,2)
sage: u = W.from_reduced_word(word)
sage: for w in W: assert rho.on_basis(w, word) == domain.monomial(w*u)

The next example tests the signs:

sage: W = WeylGroup("A3")
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: rho = KW.demazure_lusztig_operators(q1,q2)
sage: w = W.an_element(); w
123
sage: rho.on_basis(w, (1,), signs=(-1,))
-1/q2*1231 + ((q1+q2)/(q1*q2))*123
sage: rho.on_basis(w, (1,), signs=(1,))
q1*1231
sage: rho.on_basis(w, (1,1), signs=(1,-1))
123
sage: rho.on_basis(w, (1,1), signs=(-1,1))
123

parameters(i)
Return 𝑞1, 𝑞2 such that (𝑇𝑖 − 𝑞1)(𝑇𝑖 − 𝑞2) = 0.

EXAMPLES:

sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = WeylGroup(["A",3]).algebra(QQ)
sage: H = KW.demazure_lusztig_operators(q1,q2)
sage: H.parameters(1)
(q1, q2)

sage: H = KW.demazure_lusztig_operators(1,-1)
sage: H.parameters(1)
(1, -1)

Todo: At this point, this method is constant. It’s meant as a starting point for implementing parameters

2282 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

depending on the node 𝑖 of the Dynkin diagram.

straighten_word(word)
Return a tuple of indices of generators after some straightening.

INPUT:

• word – a list/tuple of indices of generators, the index of a generator, or an object with a reduced word
method

OUTPUT: a tuple of indices of generators

EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: H = W.algebra(QQ).demazure_lusztig_operators(-1,1)
sage: H.straighten_word(1)
(1,)
sage: H.straighten_word((2,1))
(2, 1)
sage: H.straighten_word([2,1])
(2, 1)
sage: H.straighten_word(W.an_element())
(1, 2, 3)

5.1.228 Integrable Representations of Affine Lie Algebras

class sage.combinat.root_system.integrable_representations.IntegrableRepresentation(Lam)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
category_object.CategoryObject

An irreducible integrable highest weight representation of an affine Lie algebra.

INPUT:

• Lam – a dominant weight in an extended weight lattice of affine type

REFERENCES:

• [Ka1990]

If Λ is a dominant integral weight for an affine root system, there exists a unique integrable representation 𝑉 = 𝑉Λ
of highest weight Λ. If 𝜇 is another weight, let𝑚(𝜇) denote the multiplicity of the weight 𝜇 in this representation.
The set supp(𝑉) of 𝜇 such that 𝑚(𝜇) > 0 is contained in the paraboloid

(Λ + 𝜌|Λ + 𝜌)− (𝜇+ 𝜌|𝜇+ 𝜌) ≥ 0

where (|) is the invariant inner product on the weight lattice and 𝜌 is the Weyl vector. Moreover if 𝑚(𝜇) > 0
then 𝜇 ∈ supp(𝑉) differs from Λ by an element of the root lattice ([Ka1990], Propositions 11.3 and 11.4).

Let 𝛿 be the nullroot, which is the lowest positive imaginary root. Then by [Ka1990], Proposition 11.3 or Corol-
lary 11.9, for fixed 𝜇 the function 𝑚(𝜇− 𝑘𝛿) is a monotone increasing function of 𝑘. It is useful to take 𝜇 to be
such that this function is nonzero if and only if 𝑘 ≥ 0. Therefore we make the following definition. If 𝜇 is such
that 𝑚(𝜇) ̸= 0 but 𝑚(𝜇+ 𝛿) = 0 then 𝜇 is called maximal.

Since 𝛿 is fixed under the action of the affine Weyl group, and since the weight multiplicities are Weyl group
invariant, the function 𝑘 ↦→ 𝑚(𝜇 − 𝑘𝛿) is unchanged if 𝜇 is replaced by an equivalent weight. Therefore in
tabulating these functions, we may assume that 𝜇 is dominant. There are only a finite number of dominant
maximal weights.

5.1. Comprehensive Module List 2283

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/category_object.html#sage.structure.category_object.CategoryObject
../../../../../../../html/en/reference/structure/sage/structure/category_object.html#sage.structure.category_object.CategoryObject

Combinatorics, Release 9.7

Since every nonzero weight multiplicity appears in the string 𝜇 − 𝑘𝛿 for one of the finite number of dominant
maximal weights 𝜇, it is important to be able to compute these. We may do this as follows.

EXAMPLES:

sage: Lambda = RootSystem(['A',3,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: IntegrableRepresentation(Lambda[1]+Lambda[2]+Lambda[3]).print_strings()
2*Lambda[0] + Lambda[2]: 4 31 161 665 2380 7658 22721 63120 166085 417295 1007601␣
→˓2349655
Lambda[0] + 2*Lambda[1]: 2 18 99 430 1593 5274 16005 45324 121200 308829 754884␣
→˓1779570
Lambda[0] + 2*Lambda[3]: 2 18 99 430 1593 5274 16005 45324 121200 308829 754884␣
→˓1779570
Lambda[1] + Lambda[2] + Lambda[3]: 1 10 60 274 1056 3601 11199 32354 88009 227555␣
→˓563390 1343178
3*Lambda[2] - delta: 3 21 107 450 1638 5367 16194 45687 121876 310056 757056 1783324
sage: Lambda = RootSystem(['D',4,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: IntegrableRepresentation(Lambda[0]+Lambda[1]).print_strings() ␣
→˓ # long time
Lambda[0] + Lambda[1]: 1 10 62 293 1165 4097 13120 38997 109036 289575 735870␣
→˓1799620
Lambda[3] + Lambda[4] - delta: 3 25 136 590 2205 7391 22780 65613 178660 463842␣
→˓1155717 2777795

In this example, we construct the extended weight lattice of Cartan type 𝐴(1)
3 , then define Lambda to be the

fundamental weights (Λ𝑖)𝑖∈𝐼 . We find there are 5 maximal dominant weights in irreducible representation of
highest weight Λ1 + Λ2 + Λ3, and we determine their strings.

It was shown in [KacPeterson] that each string is the set of Fourier coefficients of a modular form.

Every weight 𝜇 such that the weight multiplicity 𝑚(𝜇) is nonzero has the form

Λ− 𝑛0𝛼0 − 𝑛1𝛼1 − · · · ,

where the 𝑛𝑖 are nonnegative integers. This is represented internally as a tuple (𝑛0, 𝑛1, 𝑛2, . . .). If you want an
individual multiplicity you use the method m() and supply it with this tuple:

sage: Lambda = RootSystem(['C',2,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(2*Lambda[0]); V
Integrable representation of ['C', 2, 1] with highest weight 2*Lambda[0]
sage: V.m((3,5,3))
18

The IntegrableRepresentation class has methods to_weight() and from_weight() to convert between
this internal representation and the weight lattice:

sage: delta = V.weight_lattice().null_root()
sage: V.to_weight((4,3,2))
-3*Lambda[0] + 6*Lambda[1] - Lambda[2] - 4*delta
sage: V.from_weight(-3*Lambda[0] + 6*Lambda[1] - Lambda[2] - 4*delta)
(4, 3, 2)

2284 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

To get more values, use the depth parameter:

sage: L0 = RootSystem(["A",1,1]).weight_lattice(extended=true).fundamental_
→˓weight(0); L0
Lambda[0]
sage: IntegrableRepresentation(4*L0).print_strings(depth=20)
4*Lambda[0]: 1 1 3 6 13 23 44 75 131 215 354 561 889 1368 2097 3153 4712 6936 10151␣
→˓14677
2*Lambda[0] + 2*Lambda[1] - delta: 1 2 5 10 20 36 66 112 190 310 501 788 1230 1880␣
→˓2850 4256 6303 9222 13396 19262
4*Lambda[1] - 2*delta: 1 2 6 11 23 41 75 126 215 347 561 878 1368 2082 3153 4690␣
→˓6936 10121 14677 21055

An example in type 𝐶(1)
2 :

sage: Lambda = RootSystem(['C',2,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(2*Lambda[0])
sage: V.print_strings() # long time
2*Lambda[0]: 1 2 9 26 77 194 477 1084 2387 5010 10227 20198
Lambda[0] + Lambda[2] - delta: 1 5 18 55 149 372 872 1941 4141 8523 17005 33019
2*Lambda[1] - delta: 1 4 15 44 122 304 721 1612 3469 7176 14414 28124
2*Lambda[2] - 2*delta: 2 7 26 72 194 467 1084 2367 5010 10191 20198 38907

Examples for twisted affine types:

sage: Lambda = RootSystem(["A",2,2]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: IntegrableRepresentation(Lambda[0]).strings()
{Lambda[0]: [1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56]}
sage: Lambda = RootSystem(['G',2,1]).dual.weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(Lambda[0]+Lambda[1]+Lambda[2])
sage: V.print_strings() # long time
6*Lambdacheck[0]: 4 28 100 320 944 2460 6064 14300 31968 69020 144676 293916
3*Lambdacheck[0] + Lambdacheck[1]: 2 16 58 192 588 1568 3952 9520 21644 47456␣
→˓100906 207536
4*Lambdacheck[0] + Lambdacheck[2]: 4 22 84 276 800 2124 5288 12470 28116 61056␣
→˓128304 261972
2*Lambdacheck[1] - deltacheck: 2 8 32 120 354 980 2576 6244 14498 32480 69776 145528
Lambdacheck[0] + Lambdacheck[1] + Lambdacheck[2]: 1 6 26 94 294 832 2184 5388 12634␣
→˓28390 61488 128976
2*Lambdacheck[0] + 2*Lambdacheck[2]: 2 12 48 164 492 1344 3428 8256 18960 41844␣
→˓89208 184512
3*Lambdacheck[2] - deltacheck: 4 16 60 208 592 1584 4032 9552 21728 47776 101068␣
→˓207888
sage: Lambda = RootSystem(['A',6,2]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(Lambda[0]+2*Lambda[1])
sage: V.print_strings() # long time
5*Lambda[0]: 3 42 378 2508 13707 64650 272211 1045470 3721815 12425064 39254163␣
→˓118191378
3*Lambda[0] + Lambda[2]: 1 23 234 1690 9689 47313 204247 800029 2893198 9786257␣
→˓31262198 95035357

(continues on next page)

5.1. Comprehensive Module List 2285

Combinatorics, Release 9.7

(continued from previous page)

Lambda[0] + 2*Lambda[1]: 1 14 154 1160 6920 34756 153523 612354 2248318 7702198␣
→˓24875351 76341630
Lambda[0] + Lambda[1] + Lambda[3] - 2*delta: 6 87 751 4779 25060 113971 464842␣
→˓1736620 6034717 19723537 61152367 181068152
Lambda[0] + 2*Lambda[2] - 2*delta: 3 54 499 3349 18166 84836 353092 1341250 4725259␣
→˓15625727 48938396 146190544
Lambda[0] + 2*Lambda[3] - 4*delta: 15 195 1539 9186 45804 200073 789201 2866560␣
→˓9723582 31120281 94724550 275919741

branch(i=None, weyl_character_ring=None, sequence=None, depth=5)
Return the branching rule on self.

Removing any node from the extended Dynkin diagram of the affine Lie algebra results in the Dynkin
diagram of a classical Lie algebra, which is therefore a Lie subalgebra. For example removing the 0 node
from the Dynkin diagram of type [X, r, 1] produces the classical Dynkin diagram of [X, r].

Thus for each 𝑖 in the index set, we may restrict self to the corresponding classical subalgebra. Of course
self is an infinite dimensional representation, but each weight 𝜇 is assigned a grading by the number of
times the simple root 𝛼𝑖 appears in Λ−𝜇. Thus the branched representation is graded and we get sequence
of finite-dimensional representations which this method is able to compute.

OPTIONAL:

• i – (default: 0) an element of the index set

• weyl_character_ring – a WeylCharacterRing

• sequence – a dictionary

• depth – (default: 5) an upper bound for 𝑘 determining how many terms to give

In the default case where 𝑖 = 0, you do not need to specify anything else, though you may want to increase
the depth if you need more terms.

EXAMPLES:

sage: Lambda = RootSystem(['A',2,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(2*Lambda[0])
sage: b = V.branch(); b
[A2(0,0),
A2(1,1),
A2(0,0) + 2*A2(1,1) + A2(2,2),
2*A2(0,0) + 2*A2(0,3) + 4*A2(1,1) + 2*A2(3,0) + 2*A2(2,2),
4*A2(0,0) + 3*A2(0,3) + 10*A2(1,1) + 3*A2(3,0) + A2(1,4) + 6*A2(2,2) + A2(4,1),
6*A2(0,0) + 9*A2(0,3) + 20*A2(1,1) + 9*A2(3,0) + 3*A2(1,4) + 12*A2(2,2) +␣
→˓3*A2(4,1) + A2(3,3)]

If the parameter weyl_character_ring is omitted, the ring may be recovered as the parent of one of the
branched coefficients:

sage: A2 = b[0].parent(); A2
The Weyl Character Ring of Type A2 with Integer Ring coefficients

If 𝑖 is not zero then you should specify the WeylCharacterRing that you are branching to. This is deter-
mined by the Dynkin diagram:

2286 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Lambda = RootSystem(['B',3,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(Lambda[0])
sage: V.cartan_type().dynkin_diagram()

O 0
|
|

O---O=>=O
1 2 3
B3~

In this example, we observe that removing the 𝑖 = 2 node from the Dynkin diagram produces a reducible
diagram of type A1xA1xA1. Thus we have a branching to sl(2)× sl(2)× sl(2):

sage: A1xA1xA1 = WeylCharacterRing("A1xA1xA1",style="coroots")
sage: V.branch(i=2,weyl_character_ring=A1xA1xA1)
[A1xA1xA1(1,0,0),
A1xA1xA1(0,1,2),
A1xA1xA1(1,0,0) + A1xA1xA1(1,2,0) + A1xA1xA1(1,0,2),
A1xA1xA1(2,1,2) + A1xA1xA1(0,1,0) + 2*A1xA1xA1(0,1,2),
3*A1xA1xA1(1,0,0) + 2*A1xA1xA1(1,2,0) + A1xA1xA1(1,2,2) + 2*A1xA1xA1(1,0,2) +␣
→˓A1xA1xA1(1,0,4) + A1xA1xA1(3,0,0),
A1xA1xA1(2,1,0) + 3*A1xA1xA1(2,1,2) + 2*A1xA1xA1(0,1,0) + 5*A1xA1xA1(0,1,2) +␣
→˓A1xA1xA1(0,1,4) + A1xA1xA1(0,3,2)]

If the nodes of the two Dynkin diagrams are not in the same order, you must specify an additional parameter,
sequence which gives a dictionary to the affine Dynkin diagram to the classical one.

EXAMPLES:

sage: Lambda = RootSystem(['F',4,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(Lambda[0])
sage: V.cartan_type().dynkin_diagram()
O---O---O=>=O---O
0 1 2 3 4
F4~
sage: A1xC3=WeylCharacterRing("A1xC3",style="coroots")
sage: A1xC3.dynkin_diagram()
O
1
O---O=<=O
2 3 4
A1xC3

Observe that removing the 𝑖 = 1 node from the F4~ Dynkin diagram gives the A1xC3 diagram, but the
roots are in a different order. The nodes 0, 2, 3, 4 of F4~ correspond to 1, 4, 3, 2 of A1xC3 and so we
encode this in a dictionary:

sage: V.branch(i=1,weyl_character_ring=A1xC3,sequence={0:1,2:4,3:3,4:2}) # long␣
→˓time
[A1xC3(1,0,0,0),
A1xC3(0,0,0,1),
A1xC3(1,0,0,0) + A1xC3(1,2,0,0),

(continues on next page)

5.1. Comprehensive Module List 2287

Combinatorics, Release 9.7

(continued from previous page)

A1xC3(2,0,0,1) + A1xC3(0,0,0,1) + A1xC3(0,1,1,0),
2*A1xC3(1,0,0,0) + A1xC3(1,0,1,0) + 2*A1xC3(1,2,0,0) + A1xC3(1,0,2,0) +␣
→˓A1xC3(3,0,0,0),
2*A1xC3(2,0,0,1) + A1xC3(2,1,1,0) + A1xC3(0,1,0,0) + 3*A1xC3(0,0,0,1) +␣
→˓2*A1xC3(0,1,1,0) + A1xC3(0,2,0,1)]

The branch method gives a way of computing the graded dimension of the integrable representation:

sage: Lambda = RootSystem("A1~").weight_lattice(extended=true).fundamental_
→˓weights()
sage: V=IntegrableRepresentation(Lambda[0])
sage: r = [x.degree() for x in V.branch(depth=15)]; r
[1, 3, 4, 7, 13, 19, 29, 43, 62, 90, 126, 174, 239, 325, 435, 580]
sage: oeis(r) # optional␣
→˓-- internet
0: A029552: Expansion of phi(x) / f(-x) in powers of x where phi(), f() are␣
→˓Ramanujan theta functions.

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: Lambda = RootSystem(['F',4,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(Lambda[0])
sage: V.cartan_type()
['F', 4, 1]

coxeter_number()
Return the Coxeter number of the Cartan type of self.

The Coxeter number is defined in [Ka1990] Chapter 6, and commonly denoted ℎ.

EXAMPLES:

sage: Lambda = RootSystem(['F',4,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(Lambda[0])
sage: V.coxeter_number()
12

dominant_maximal_weights()
Return the dominant maximal weights of self.

A weight 𝜇 is maximal if it has nonzero multiplicity but 𝜇+𝛿 has multiplicity zero. There are a finite num-
ber of dominant maximal weights. Indeed, [Ka1990] Proposition 12.6 shows that the dominant maximal
weights are in bijection with the classical weights in 𝑘 · 𝐹 where 𝐹 is the fundamental alcove and 𝑘 is the
level. The construction used in this method is based on that Proposition.

EXAMPLES:

sage: Lambda = RootSystem(['C',3,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: IntegrableRepresentation(2*Lambda[0]).dominant_maximal_weights()

(continues on next page)

2288 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(2*Lambda[0],
Lambda[0] + Lambda[2] - delta,
2*Lambda[1] - delta,
Lambda[1] + Lambda[3] - 2*delta,
2*Lambda[2] - 2*delta,
2*Lambda[3] - 3*delta)

dual_coxeter_number()
Return the dual Coxeter number of the Cartan type of self.

The dual Coxeter number is defined in [Ka1990] Chapter 6, and commonly denoted ℎ∨.

EXAMPLES:

sage: Lambda = RootSystem(['F',4,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(Lambda[0])
sage: V.dual_coxeter_number()
9

from_weight(mu)
Return the tuple (𝑛0, 𝑛1, ...) such that mu equals Λ−

∑︀
𝑖∈𝐼 𝑛𝑖𝛼𝑖 in self, where Λ is the highest weight of

self.

EXAMPLES:

sage: Lambda = RootSystem(['A',2,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(2*Lambda[2])
sage: V.to_weight((1,0,0))
-2*Lambda[0] + Lambda[1] + 3*Lambda[2] - delta
sage: delta = V.weight_lattice().null_root()
sage: V.from_weight(-2*Lambda[0] + Lambda[1] + 3*Lambda[2] - delta)
(1, 0, 0)

highest_weight()
Returns the highest weight of self.

EXAMPLES:

sage: Lambda = RootSystem(['D',4,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: IntegrableRepresentation(Lambda[0]+2*Lambda[2]).highest_weight()
Lambda[0] + 2*Lambda[2]

level()
Return the level of self.

The level of a highest weight representation 𝑉Λ is defined as (Λ|𝛿) See [Ka1990] section 12.4.

EXAMPLES:

sage: Lambda = RootSystem(['G',2,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: [IntegrableRepresentation(Lambda[i]).level() for i in [0,1,2]]
[1, 1, 2]

5.1. Comprehensive Module List 2289

Combinatorics, Release 9.7

m(n)
Return the multiplicity of the weight 𝜇 in self, where 𝜇 = Λ−

∑︀
𝑖 𝑛𝑖𝛼𝑖.

INPUT:

• n – a tuple representing a weight 𝜇.

EXAMPLES:

sage: Lambda = RootSystem(['E',6,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(Lambda[0])
sage: u = V.highest_weight() - V.weight_lattice().null_root()
sage: V.from_weight(u)
(1, 1, 2, 2, 3, 2, 1)
sage: V.m(V.from_weight(u))
6

modular_characteristic(mu=None)
Return the modular characteristic of self.

The modular characteristic is a rational number introduced by Kac and Peterson [KacPeterson], required
to interpret the string functions as Fourier coefficients of modular forms. See [Ka1990] Section 12.7. Let
𝑘 be the level, and let ℎ∨ be the dual Coxeter number. Then

𝑚Λ =
|Λ + 𝜌|2

2(𝑘 + ℎ∨)
− |𝜌|

2

2ℎ∨

If 𝜇 is a weight, then

𝑚Λ,𝜇 = 𝑚Λ −
|𝜇|2

2𝑘
.

OPTIONAL:

• mu – a weight; or alternatively:

• n – a tuple representing a weight 𝜇.

If no optional parameter is specified, this returns 𝑚Λ. If mu is specified, it returns 𝑚Λ,𝜇. You may use the
tuple n to specify 𝜇. If you do this, 𝜇 is Λ−

∑︀
𝑖 𝑛𝑖𝛼𝑖.

EXAMPLES:

sage: Lambda = RootSystem(['A',1,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(3*Lambda[0]+2*Lambda[1])
sage: [V.modular_characteristic(x) for x in V.dominant_maximal_weights()]
[11/56, -1/280, 111/280]

mult(mu)
Return the weight multiplicity of mu.

INPUT:

• mu – an element of the weight lattice

EXAMPLES:

2290 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = RootSystem("B3~").weight_lattice(extended=True)
sage: Lambda = L.fundamental_weights()
sage: delta = L.null_root()
sage: W = L.weyl_group(prefix="s")
sage: [s0,s1,s2,s3] = W.simple_reflections()
sage: V = IntegrableRepresentation(Lambda[0])
sage: V.mult(Lambda[2]-2*delta)
3
sage: V.mult(Lambda[2]-Lambda[1])
0
sage: weights = [w.action(Lambda[1]-4*delta) for w in [s1,s2,s0*s1*s2*s3]]
sage: weights
[-Lambda[1] + Lambda[2] - 4*delta,
Lambda[1] - 4*delta,
-Lambda[1] + Lambda[2] - 4*delta]
sage: [V.mult(mu) for mu in weights]
[35, 35, 35]

print_strings(depth=12)
Print the strings of self.

See also:

strings()

EXAMPLES:

sage: Lambda = RootSystem(['A',1,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(2*Lambda[0])
sage: V.print_strings(depth=25)
2*Lambda[0]: 1 1 3 5 10 16 28 43 70 105 161 236 350 501 722 1016 1431 1981 2741␣
→˓3740 5096 6868 9233 12306 16357
2*Lambda[1] - delta: 1 2 4 7 13 21 35 55 86 130 196 287 420 602 858 1206 1687␣
→˓2331 3206 4368 5922 7967 10670 14193 18803

root_lattice()
Return the root lattice associated to self.

EXAMPLES:

sage: V=IntegrableRepresentation(RootSystem(['F',4,1]).weight_
→˓lattice(extended=true).fundamental_weight(0))
sage: V.root_lattice()
Root lattice of the Root system of type ['F', 4, 1]

s(n, i)
Return the action of the i-th simple reflection on the internal representation of weights by tuples n in self.

EXAMPLES:

sage: V = IntegrableRepresentation(RootSystem(['A',2,1]).weight_
→˓lattice(extended=true).fundamental_weight(0))
sage: [V.s((0,0,0),i) for i in V._index_set]
[(1, 0, 0), (0, 0, 0), (0, 0, 0)]

5.1. Comprehensive Module List 2291

Combinatorics, Release 9.7

string(max_weight, depth=12)
Return the list of multiplicities 𝑚(Λ− 𝑘𝛿) in self, where Λ is max_weight and 𝑘 runs from 0 to depth.

INPUT:

• max_weight – a dominant maximal weight

• depth – (default: 12) the maximum value of 𝑘

EXAMPLES:

sage: Lambda = RootSystem(['A',2,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(2*Lambda[0])
sage: V.string(2*Lambda[0])
[1, 2, 8, 20, 52, 116, 256, 522, 1045, 1996, 3736, 6780]
sage: V.string(Lambda[1] + Lambda[2])
[0, 1, 4, 12, 32, 77, 172, 365, 740, 1445, 2736, 5041]

strings(depth=12)
Return the set of dominant maximal weights of self, together with the string coefficients for each.

OPTIONAL:

• depth – (default: 12) a parameter indicating how far to push computations

EXAMPLES:

sage: Lambda = RootSystem(['A',1,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(2*Lambda[0])
sage: S = V.strings(depth=25)
sage: for k in S:
....: print("{}: {}".format(k, ' '.join(str(x) for x in S[k])))
2*Lambda[0]: 1 1 3 5 10 16 28 43 70 105 161 236 350 501 722 1016 1431 1981 2741␣
→˓3740 5096 6868 9233 12306 16357
2*Lambda[1] - delta: 1 2 4 7 13 21 35 55 86 130 196 287 420 602 858 1206 1687␣
→˓2331 3206 4368 5922 7967 10670 14193 18803

to_dominant(n)
Return the dominant weight in self equivalent to n under the affine Weyl group.

EXAMPLES:

sage: Lambda = RootSystem(['A',2,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(3*Lambda[0])
sage: n = V.to_dominant((13,11,7)); n
(4, 3, 3)
sage: V.to_weight(n)
Lambda[0] + Lambda[1] + Lambda[2] - 4*delta

to_weight(n)
Return the weight associated to the tuple n in self.

If n is the tuple (𝑛1, 𝑛2, . . .), then the associated weight is Λ −
∑︀
𝑖 𝑛𝑖𝛼𝑖, where Λ is the weight of the

representation.

INPUT:

2292 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• n – a tuple representing a weight

EXAMPLES:

sage: Lambda = RootSystem(['A',2,1]).weight_lattice(extended=true).fundamental_
→˓weights()
sage: V = IntegrableRepresentation(2*Lambda[2])
sage: V.to_weight((1,0,0))
-2*Lambda[0] + Lambda[1] + 3*Lambda[2] - delta

weight_lattice()
Return the weight lattice associated to self.

EXAMPLES:

sage: V=IntegrableRepresentation(RootSystem(['E',6,1]).weight_
→˓lattice(extended=true).fundamental_weight(0))
sage: V.weight_lattice()
Extended weight lattice of the Root system of type ['E', 6, 1]

5.1.229 Nonsymmetric Macdonald polynomials

AUTHORS:

• Anne Schilling and Nicolas M. Thiéry (2013): initial version

ACKNOWLEDGEMENTS:

The initial version of this code (together with root_lattice_realization_algebras.Algebras and
hecke_algebra_representation.HeckeAlgebraRepresentation) was written by Anne Schilling and Nicolas
M. Thiery during the ICERM Semester Program on “Automorphic Forms, Combinatorial Representation Theory and
Multiple Dirichlet Series” (January 28, 2013 - May 3, 2013) with the help of Dan Bump, Ben Brubaker, Bogdan Ion,
Dan Orr, Arun Ram, Siddhartha Sahi, and Mark Shimozono. Special thanks go to Bogdan Ion and Mark Shimozono
for their patient explanations and hand computations to check the code.

class sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials(KL,
q,
q1,
q2,
nor-
mal-
ized)

Bases: sage.combinat.root_system.hecke_algebra_representation.
CherednikOperatorsEigenvectors

Nonsymmetric Macdonald polynomials

INPUT:

• KL – an affine Cartan type or the group algebra of a realization of the affine weight lattice

• q, q1, q2 – parameters in the base ring of the group algebra (default: q, q1, q2)

• normalized – a boolean (default: True) whether to normalize the result to have leading coefficient 1

This implementation covers all reduced affine root systems. The polynomials are constructed recursively by the
application of intertwining operators.

Todo:

5.1. Comprehensive Module List 2293

Combinatorics, Release 9.7

• Non-reduced case (Koornwinder polynomials).

• Non-equal parameters for the affine Hecke algebra.

• Choice of convention (dominant/anti-dominant, . . .).

• More uniform implementation of the 𝑇∨0 operator.

• Optimizations, in particular in the calculation of the eigenvalues for the recursion.

EXAMPLES:

We construct the family of nonsymmetric Macdonald polynomials in three variables in type 𝐴:

sage: E = NonSymmetricMacdonaldPolynomials(["A",2,1])

They are constructed as elements of the group algebra of the classical weight lattice 𝐿0 (or one of its realizations,
such as the ambient space, which is used here) and indexed by elements of 𝐿0:

sage: L0 = E.keys(); L0
Ambient space of the Root system of type ['A', 2]

Here is the nonsymmetric Macdonald polynomial with leading term [2, 0, 1]:

sage: E[L0([2,0,1])]
((-q*q1-q*q2)/(-q*q1-q2))*B[(1, 1, 1)] + ((-q1-q2)/(-q*q1-q2))*B[(2, 1, 0)] + B[(2,␣
→˓0, 1)]

It can be seen as a polynomial (or in general a Laurent polynomial) by interpreting each term as an exponent
vector. The parameter 𝑞 is the exponential of the null (co)root, whereas 𝑞1 and 𝑞2 are the two eigenvalues of each
generator 𝑇𝑖 of the affine Hecke algebra (see the background section for details).

By setting 𝑞1 = 𝑡, 𝑞2 = −1 and using the root_lattice_realization_algebras.Algebras.
ElementMethods.expand() method, we recover the nonsymmetric Macdonald polynomial as computed by
[HHL06]’s combinatorial formula:

sage: K = QQ['q,t'].fraction_field()
sage: q,t = K.gens()
sage: E = NonSymmetricMacdonaldPolynomials(["A",2,1], q=q, q1=t, q2=-1)
sage: vars = K['x0,x1,x2'].gens()
sage: E[L0([2,0,1])].expand(vars)
(t - 1)/(q*t - 1)*x0^2*x1 + x0^2*x2 + (q*t - q)/(q*t - 1)*x0*x1*x2

sage: from sage.combinat.sf.ns_macdonald import E
sage: E([2,0,1])
(t - 1)/(q*t - 1)*x0^2*x1 + x0^2*x2 + (q*t - q)/(q*t - 1)*x0*x1*x2

Here is a type 𝐺(1)
2 nonsymmetric Macdonald polynomial:

sage: E = NonSymmetricMacdonaldPolynomials(["G",2,1])
sage: L0 = E.keys()
sage: omega = L0.fundamental_weights()
sage: E[omega[2]-omega[1]]
((-q*q1^3*q2-q*q1^2*q2^2)/(q*q1^4-q2^4))*B[(0, 0, 0)] + B[(1, -1, 0)] + ((-q1*q2^3-
→˓q2^4)/(q*q1^4-q2^4))*B[(1, 0, -1)]

Many more examples are given after the background section.

2294 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

• sage.combinat.sf.ns_macdonald.E()

• SymmetricFunctions.macdonald()

Background

The polynomial module

The nonsymmetric Macdonald polynomials are a distinguished basis of the “polynomial” module of the affine
Hecke algebra. Given:

- a ground ring `K`, which contains the input parameters `q, q_1, q_2`
- an affine root system, specified by a Cartan type `C`
- a realization `L` of the weight lattice of type `C`

the polynomial module is the group algebra 𝐾[𝐿0] of the classical weight lattice 𝐿0 with coefficients in 𝐾. It is
isomorphic to the Laurent polynomial ring over 𝐾 generated by the formal exponentials of any basis of 𝐿0.

In our running example 𝐿 is the ambient space of type 𝐶(1)
2 :

sage: K = QQ['q,q1,q2'].fraction_field()
sage: q, q1, q2 = K.gens()
sage: C = CartanType(["C",2,1])
sage: L = RootSystem(C).ambient_space(); L
Ambient space of the Root system of type ['C', 2, 1]

sage: L.simple_roots()
Finite family {0: -2*e[0] + e['delta'], 1: e[0] - e[1], 2: 2*e[1]}
sage: omega = L.fundamental_weights(); omega
Finite family {0: e['deltacheck'], 1: e[0] + e['deltacheck'], 2: e[0] + e[1] + e[
→˓'deltacheck']}

sage: L0 = L.classical(); L0
Ambient space of the Root system of type ['C', 2]
sage: KL0 = L0.algebra(K); KL0
Algebra of the Ambient space of the Root system of type ['C', 2]
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field

Affine Hecke algebra

The affine Hecke algebra is generated by elements 𝑇𝑖 for i in the set of affine Dynkin nodes. They satisfy the
same braid relations as the simple reflections 𝑠𝑖 of the affine Weyl group. The 𝑇𝑖 satisfy the quadratic relation

(𝑇𝑖 − 𝑞1) ∘ (𝑇𝑖 − 𝑞2) = 0,

where 𝑞1 and 𝑞2 are the input parameters. Some of the representation theory requires that 𝑞1 and 𝑞2 satisfy
additional relations; typically one uses the specializations 𝑞1 = 𝑢 and 𝑞2 = −1/𝑢 or 𝑞1 = 𝑡 and 𝑞2 = −1). This
can be achieved by constructing an appropriate field and passing 𝑞1 and 𝑞2 appropriately; see the examples. In
principle, the parameter(s) could further depend on i; this is not yet implemented but the code has been designed
in such a way that this feature is easy to add.

5.1. Comprehensive Module List 2295

Combinatorics, Release 9.7

Demazure-Lusztig operators

The i-th Demazure-Lusztig operator is an operator on 𝐾[𝐿] which interpolates between the reflection 𝑠𝑖
and the Demazure operator 𝜋𝑖 (see root_lattice_realization.RootLatticeRealization.Algebras.
ParentMethods.demazure_lusztig_operators()).:

sage: KL = L.algebra(K); KL
Algebra of the Ambient space of the Root system of type ['C', 2, 1]
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field
sage: T = KL.demazure_lusztig_operators(q1, q2)
sage: x = KL.monomial(omega[1]); x
B[e[0] + e['deltacheck']]
sage: T[2](x)
q1*B[e[0] + e['deltacheck']]
sage: T[1](x)
(q1+q2)*B[e[0] + e['deltacheck']] + q1*B[e[1] + e['deltacheck']]
sage: T[0](x)
q1*B[e[0] + e['deltacheck']]

The affine Hecke algebra acts on 𝐾[𝐿] by letting the generators 𝑇𝑖 act by the Demazure-
Lusztig operators. The class sage.combinat.root_system.hecke_algebra_representation.
HeckeAlgebraRepresentation implements some simple generic features for representations of affine
Hecke algebras defined by the action of their 𝑇 -generators.:

sage: T
A representation of the (q1, q2)-Hecke algebra of type ['C', 2, 1] on Algebra of␣
→˓the Ambient space of the Root system of type ['C', 2, 1] over Fraction Field of␣
→˓Multivariate Polynomial Ring in q, q1, q2 over Rational Field
sage: type(T)
<class 'sage.combinat.root_system.hecke_algebra_representation.
→˓HeckeAlgebraRepresentation'>
sage: T._test_relations() # long time (1.3s)

Here we construct the operator 𝑞1𝑇−12 ∘ 𝑇−11 𝑇0 from a signed reduced word:

sage: T.Tw([0,1,2],[1,-1,-1], q1^2)
Generic endomorphism of Algebra of the Ambient space of the Root system of type ['C
→˓', 2, 1]
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field

(note the reversal of the word). Inverses are computed using the quadratic relation.

Cherednik operators

The affine Hecke algebra contains elements𝑌𝜆 indexed by the coroot lattice. Their action on𝐾[𝐿] is implemented
in Sage:

sage: Y = T.Y(); Y
Lazy family (...)_{i in Coroot lattice of the Root system of type ['C', 2, 1]}
sage: alphacheck = Y.keys().simple_roots()
sage: Y1 = Y[alphacheck[1]]
sage: Y1(x)
((q1^2+2*q1*q2+q2^2)/(-q1*q2))*B[e[0] + e['deltacheck']]

(continues on next page)

2296 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

+ ((-q1^2-2*q1*q2-q2^2)/(-q2^2))*B[-e[1] + e['deltacheck']]
+ ((-q1^2-q1*q2)/(-q2^2))*B[2*e[0] - e[1] - e['delta']
+ e['deltacheck']] + ((q1^3+q1^2*q2)/(-q2^3))*B[e[0] - e['delta']
+ e['deltacheck']] + ((q1^3+q1^2*q2)/(-q2^3))*B[e[0] - 2*e[1] - e['delta']
+ e['deltacheck']] + ((q1+q2)/(-q2))*B[e[1] + e['deltacheck']]
+ ((q1^3+2*q1^2*q2+q1*q2^2)/(-q2^3))*B[-e[1] - e['delta'] + e['deltacheck']]
+ ((q1^3+q1^2*q2)/(-q2^3))*B[2*e[0] - e[1] - 2*e['delta'] + e['deltacheck']]
+ ((q1^3+2*q1^2*q2+q1*q2^2)/(-q2^3))*B[-e[0] - e['delta'] + e['deltacheck']]
+ ((q1^3+2*q1^2*q2+q1*q2^2)/(-q2^3))*B[e[0] - 2*e['delta'] + e['deltacheck']]
+ ((q1^3+q1^2*q2)/(-q2^3))*B[3*e[0] - 3*e['delta'] + e['deltacheck']]
+ ((q1^3+q1^2*q2)/(-q2^3))*B[-e[0] - 2*e[1] - e['delta'] + e['deltacheck']]
+ ((q1^3+q1^2*q2)/(-q2^3))*B[e[0] - 2*e[1] - 2*e['delta'] + e['deltacheck']]
+ (q1^3/(-q2^3))*B[3*e[0] - 2*e[1] - 3*e['delta'] + e['deltacheck']]

The Cherednik operators span a Laurent polynomial ring inside the affine Hecke algebra; namely 𝜆 ↦→
𝑌𝜆 is a group isomorphism from the classical root lattice (viewed additively) to the affine Hecke algebra
(viewed multiplicatively). In practice, 𝑌𝜆 is constructed by computing combinatorially its signed reduced word
(and an overall scalar factor) using the periodic orientation of the alcove model in the coweight lattice (see
hecke_algebra_representation.HeckeAlgebraRepresentation.Y_lambdacheck()):

sage: Lcheck = L.root_system.coweight_lattice()
sage: w = Lcheck.reduced_word_of_translation(Lcheck(alphacheck[1])); w
[0, 2, 1, 0, 2, 1]
sage: Lcheck.signs_of_alcovewalk(w)
[1, -1, 1, -1, 1, 1]

Level zero representation of the affine Hecke algebra

The action of the affine Hecke algebra on 𝐾[𝐿] induces an action on 𝐾[𝐿0]: the action of 𝑇𝑖 on
𝑋𝜆 for 𝜆 a classical weight in 𝐿0 is obtained by embedding the weight at level zero in the affine
weight lattice (see weight_lattice_realizations.WeightLatticeRealizations.ParentMethods.
embed_at_level()) applying the Demazure-Lusztig operator there, and projecting from 𝐾[𝐿] →
𝐾[𝐿0] mapping the exponential of 𝛿 to 𝑞 (see root_lattice_realization_algebras.Algebras.
ParentMethods.q_project()). This is implemented in root_lattice_realization_algebras.
Algebras.ParentMethods.demazure_lusztig_operators_on_classical():

sage: T = KL.demazure_lusztig_operators_on_classical(q, q1,q2)
sage: omega = L0.fundamental_weights()
sage: x = KL0.monomial(omega[1])
sage: T[0](x)
(-q*q2)*B[(-1, 0)]

For classical nodes these are the usual Demazure-Lusztig operators:

sage: T[1](x)
(q1+q2)*B[(1, 0)] + q1*B[(0, 1)]

5.1. Comprehensive Module List 2297

Combinatorics, Release 9.7

Nonsymmetric Macdonald polynomials

We can now finally define the nonsymmetric Macdonald polynomials. Because the Cherednik operators commute
(and there is no radical), they can be simultaneously diagonalized; namely, 𝐾[𝐿0] admits a 𝐾-basis of joint
eigenvectors for the 𝑌𝜆. For 𝜇 ∈ 𝐿0, the nonsymmetric Macdonald polynomial 𝐸𝜇 is the unique eigenvector of
the family of Cherednik operators 𝑌𝜆 having 𝜇 as leading term:

sage: E = NonSymmetricMacdonaldPolynomials(KL, q, q1, q2); E
The family of the Macdonald polynomials of type ['C', 2, 1] with parameters q, q1,␣
→˓q2

Or for short:

sage: E = NonSymmetricMacdonaldPolynomials(C)

Recursive construction of the nonsymmetric Macdonald polynomials

The generators 𝑇𝑖 of the affine Hecke algebra almost skew commute with the Cherednik operators. More pre-
cisely, one can deform them into the so-called intertwining operators:

𝜏𝑖 = 𝑇𝑖 − (𝑞1 + 𝑞2)
𝑌 𝑎−1𝑖

1− 𝑌 𝑎𝑖
.

(where 𝑎 = 1 except for 𝑖 = 0 in type 𝐵𝐶 where 𝑎 = 𝑎0 = 2) which satisfy the following skew commutation
relations:

𝜏𝑖𝑌𝜆 = 𝜏𝑖𝑌𝑠𝑖𝜆 .

If 𝑠𝑖𝜇 ̸= 𝜇, applying 𝜏𝑖 on an eigenvector𝐸𝜇 produces a new eigenvector (essentially𝐸𝑠𝑖𝜇) with a distinct eigen-
value. It follows that the eigenvectors indexed by an affine Weyl orbit of weights, may be recursively computed
from a single weight in the orbit.

In the case at hand, there is a little complication: namely, the simple reflections 𝑠𝑖 acting at level 0 do not act
transitively on classical weights; in fact the orbits for the classical Weyl group and for the affine Weyl group
are the same. Thus, one can construct the nonsymmetric Macdonald polynomials for all weights from those for
the classical dominant weights, but one is lacking a creation operator to construct the nonsymmetric Macdonald
polynomials for dominant weights.

Twisted Demazure-Lusztig operators

To compensate for this, one needs to consider another affinization of the action of the classical Demazure-Lusztig
operators 𝑇1, . . . , 𝑇𝑛, which gives rise to the double affine Hecke algebra. Following Cherednik, one adds an-
other operator 𝑇∨0 implemented in: root_lattice_realization_algebras.Algebras.ParentMethods.
T0_check_on_basis(). See also: root_lattice_realization_algebras.Algebras.ParentMethods.
twisted_demazure_lusztig_operators().

Depending on the type (untwisted or not), this is a representation of the affine Hecke algebra for another affiniza-
tion of the classical Cartan type. The corresponding action of the affine Weyl group – which is used to compute
the recursion on 𝜇 – occurs in the corresponding weight lattice realization:

sage: E.L()
Ambient space of the Root system of type ['C', 2, 1]
sage: E.L_prime()

(continues on next page)

2298 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Coambient space of the Root system of type ['B', 2, 1]
sage: E.L_prime().classical()
Ambient space of the Root system of type ['C', 2]

See L_prime() and cartan_type.CartanType_affine.other_affinization().

REFERENCES:

More examples

We show how to create the nonsymmetric Macdonald polynomials in two different ways and check that they are
the same:

sage: K = QQ['q,u'].fraction_field()
sage: q, u = K.gens()
sage: E = NonSymmetricMacdonaldPolynomials(['D',3,1], q, u, -1/u)
sage: omega = E.keys().fundamental_weights()
sage: E[omega[1]+omega[3]]
((-q*u^2+q)/(-q*u^4+1))*B[(1/2, -1/2, 1/2)] + ((-q*u^2+q)/(-q*u^4+1))*B[(1/2, 1/2, -
→˓1/2)] + B[(3/2, 1/2, 1/2)]

sage: KL = RootSystem(["D",3,1]).ambient_space().algebra(K)
sage: P = NonSymmetricMacdonaldPolynomials(KL, q, u, -1/u)
sage: E[omega[1]+omega[3]] == P[omega[1]+omega[3]]
True
sage: E[E.keys()((0,1,-1))]
((-q*u^2+q)/(-q*u^2+1))*B[(0, 0, 0)] + ((-u^2+1)/(-q*u^2+1))*B[(1, 1, 0)]
+ ((-u^2+1)/(-q*u^2+1))*B[(1, 0, -1)] + B[(0, 1, -1)]

In type 𝐴, there is also a combinatorial implementation of the nonsymmetric Macdonald polynomials in terms
of augmented diagram fillings as in [HHL06]. See sage.combinat.sf.ns_macdonald.E(). First we check
that these polynomials are indeed eigenvectors of the Cherednik operators:

sage: K = QQ['q,t'].fraction_field()
sage: q,t = K.gens()
sage: q1 = t; q2 = -1
sage: KL = RootSystem(["A",2,1]).ambient_space().algebra(K)
sage: KL0 = KL.classical()
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
sage: omega = E.keys().fundamental_weights()
sage: w = omega[1]
sage: import sage.combinat.sf.ns_macdonald as NS
sage: p = NS.E([1,0,0]); p
x0
sage: pp = KL0.from_polynomial(p)
sage: E.eigenvalues(KL0.from_polynomial(p))
[t, (-1)/(-q*t^2), t]

sage: def eig(l): return E.eigenvalues(KL0.from_polynomial(NS.E(l)))

sage: eig([1,0,0])
[t, (-1)/(-q*t^2), t]

(continues on next page)

5.1. Comprehensive Module List 2299

Combinatorics, Release 9.7

(continued from previous page)

sage: eig([2,0,0])
[q*t, (-1)/(-q^2*t^2), t]
sage: eig([3,0,0])
[q^2*t, (-1)/(-q^3*t^2), t]
sage: eig([2,0,4])
[(-1)/(-q^3*t), 1/(q^2*t), q^4*t^2]

Next we check explicitly that they agree with the current implementation:

sage: K = QQ['q','t'].fraction_field()
sage: q,t = K.gens()
sage: KL = RootSystem(["A",1,1]).ambient_lattice().algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t, -1)
sage: L0 = E.keys()
sage: KL0 = KL.classical()
sage: P = K['x0,x1']
sage: def EE(weight): return E[L0(weight)].expand(P.gens())
sage: import sage.combinat.sf.ns_macdonald as NS
sage: EE([0,0])
1
sage: NS.E([0,0])
1
sage: EE([1,0])
x0
sage: NS.E([1,0])
x0
sage: EE([0,1])
(t - 1)/(q*t - 1)*x0 + x1
sage: NS.E([0,1])
(t - 1)/(q*t - 1)*x0 + x1

sage: NS.E([2,0])
x0^2 + (q*t - q)/(q*t - 1)*x0*x1
sage: EE([2,0])
x0^2 + (q*t - q)/(q*t - 1)*x0*x1

The same, directly in the ambient lattice with several shifts:

sage: E[L0([2,0])]
((-q*t+q)/(-q*t+1))*B[(1, 1)] + B[(2, 0)]
sage: E[L0([1,-1])]
((-q*t+q)/(-q*t+1))*B[(0, 0)] + B[(1, -1)]
sage: E[L0([0,-2])]
((-q*t+q)/(-q*t+1))*B[(-1, -1)] + B[(0, -2)]

Systematic checks with Sage’s implementation of [HHL06]:

sage: assert all(EE([x,y]) == NS.E([x,y]) for d in range(5) for x,y in␣
→˓IntegerVectors(d,2))

With the current implementation, we can compute nonsymmetric Macdonald polynomials for any type, for ex-
ample for type 𝐸(1)

6 :

2300 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: K=QQ['q,u'].fraction_field()
sage: q, u = K.gens()
sage: KL = RootSystem(["E",6,1]).weight_space(extended=True).algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q,u,-1/u)
sage: L0 = E.keys()

sage: E[L0.fundamental_weight(1).weyl_action([2,4,3,2,1])]
((-u^2+1)/(-q*u^16+1))*B[-Lambda[1] + Lambda[3]] + ((-u^2+1)/(-q*u^
→˓16+1))*B[Lambda[1]]
+ B[-Lambda[2] + Lambda[5]] + ((-u^2+1)/(-q*u^16+1))*B[Lambda[2] - Lambda[4] +␣
→˓Lambda[5]]
+ ((-u^2+1)/(-q*u^16+1))*B[-Lambda[3] + Lambda[4]]

sage: E[L0.fundamental_weight(2).weyl_action([2,5,3,4,2])] # long time (6s)
((-q^2*u^20+q^2*u^18+q*u^2-q)/(-q^2*u^32+2*q*u^16-1))*B[0]
+ B[Lambda[1] - Lambda[3] + Lambda[4] - Lambda[5] + Lambda[6]]
+ ((-u^2+1)/(-q*u^16+1))*B[Lambda[1] - Lambda[3] + Lambda[5]]
+ ((-q*u^20+q*u^18+u^2-1)/(-q^2*u^32+2*q*u^16-1))*B[-Lambda[2] + Lambda[4]]
+ ((-q*u^20+q*u^18+u^2-1)/(-q^2*u^32+2*q*u^16-1))*B[Lambda[2]]
+ ((u^4-2*u^2+1)/(q^2*u^32-2*q*u^16+1))*B[Lambda[3] - Lambda[4] + Lambda[5]]
+ ((-u^2+1)/(-q*u^16+1))*B[Lambda[3] - Lambda[5] + Lambda[6]]

sage: E[L0.fundamental_weight(1)+L0.fundamental_weight(6)] # long time (13s)
((q^2*u^10-q^2*u^8-q^2*u^2+q^2)/(q^2*u^26-q*u^16-q*u^10+1))*B[0]
+ ((-q*u^2+q)/(-q*u^10+1))*B[Lambda[1] - Lambda[2] + Lambda[6]]
+ ((-q*u^2+q)/(-q*u^10+1))*B[Lambda[1] + Lambda[2] - Lambda[4] + Lambda[6]]
+ ((-q*u^2+q)/(-q*u^10+1))*B[Lambda[1] - Lambda[3] + Lambda[4] - Lambda[5] +␣
→˓Lambda[6]]
+ ((-q*u^2+q)/(-q*u^10+1))*B[Lambda[1] - Lambda[3] + Lambda[5]] + B[Lambda[1] +␣
→˓Lambda[6]]
+ ((-q*u^2+q)/(-q*u^10+1))*B[-Lambda[2] + Lambda[4]] + ((-q*u^2+q)/(-q*u^
→˓10+1))*B[Lambda[2]]
+ ((-q*u^2+q)/(-q*u^10+1))*B[Lambda[3] - Lambda[4] + Lambda[5]]
+ ((-q*u^2+q)/(-q*u^10+1))*B[Lambda[3] - Lambda[5] + Lambda[6]]

We test various other types:

sage: K=QQ['q,u'].fraction_field()
sage: q, u = K.gens()
sage: KL = RootSystem(["A",5,2]).ambient_space().algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, u, -1/u)
sage: L0 = E.keys()
sage: E[L0.fundamental_weight(2)]
((-q*u^2+q)/(-q*u^8+1))*B[(0, 0, 0)] + B[(1, 1, 0)]
sage: E[L0((0,-1,1))] # long time (1.5s)
((-q^2*u^10+q^2*u^8-q*u^6+q*u^4+q*u^2+u^2-q-1)/(-q^3*u^12+q^2*u^8+q*u^4-1))*B[(0, 0,
→˓ 0)]
+ ((-u^2+1)/(-q*u^4+1))*B[(1, -1, 0)]
+ ((u^6-u^4-u^2+1)/(q^3*u^12-q^2*u^8-q*u^4+1))*B[(1, 1, 0)]
+ ((u^4-2*u^2+1)/(q^3*u^12-q^2*u^8-q*u^4+1))*B[(1, 0, -1)]
+ ((q^2*u^12-q^2*u^10-u^2+1)/(q^3*u^12-q^2*u^8-q*u^4+1))*B[(1, 0, 1)] + B[(0, -1,␣
→˓1)]
+ ((-u^2+1)/(-q^2*u^8+1))*B[(0, 1, -1)] + ((-u^2+1)/(-q^2*u^8+1))*B[(0, 1, 1)]

(continues on next page)

5.1. Comprehensive Module List 2301

Combinatorics, Release 9.7

(continued from previous page)

sage: K=QQ['q,u'].fraction_field()
sage: q, u = K.gens()
sage: KL = RootSystem(["E",6,2]).ambient_space().algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q,u,-1/u)
sage: L0 = E.keys()
sage: E[L0.fundamental_weight(4)] # long time (5s)
((-q^3*u^20+q^3*u^18+q^2*u^2-q^2)/(-q^3*u^28+q^2*u^22+q*u^6-1))*B[(0, 0, 0, 0)]
+ ((-q*u^2+q)/(-q*u^6+1))*B[(1/2, 1/2, -1/2, -1/2)] + ((-q*u^2+q)/(-q*u^6+1))*B[(1/
→˓2, 1/2, -1/2, 1/2)]
+ ((-q*u^2+q)/(-q*u^6+1))*B[(1/2, 1/2, 1/2, -1/2)] + ((-q*u^2+q)/(-q*u^6+1))*B[(1/2,
→˓ 1/2, 1/2, 1/2)]
+ ((q*u^2-q)/(q*u^6-1))*B[(1, 0, 0, 0)] + B[(1, 1, 0, 0)] + ((-q*u^2+q)/(-q*u^
→˓6+1))*B[(0, 1, 0, 0)]
sage: E[L0((1,-1,0,0))] # long time (23s)
((q^3*u^18-q^3*u^16+q*u^4-q^2*u^2-2*q*u^2+q^2+q)/(q^3*u^18-q^2*u^12-q*u^6+1))*B[(0,␣
→˓0, 0, 0)]
+ ((-q^3*u^18+q^3*u^16+q*u^2-q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(1/2, -1/2, -1/2, -
→˓1/2)]
+ ((-q^3*u^18+q^3*u^16+q*u^2-q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(1/2, -1/2, -1/2, 1/
→˓2)]
+ ((q^3*u^18-q^3*u^16-q*u^2+q)/(q^3*u^18-q^2*u^12-q*u^6+1))*B[(1/2, -1/2, 1/2, -1/
→˓2)]
+ ((q^3*u^18-q^3*u^16-q*u^2+q)/(q^3*u^18-q^2*u^12-q*u^6+1))*B[(1/2, -1/2, 1/2, 1/2)]
+ ((q*u^8-q*u^6-q*u^2+q)/(q^3*u^18-q^2*u^12-q*u^6+1))*B[(1/2, 1/2, -1/2, -1/2)]
+ ((q*u^8-q*u^6-q*u^2+q)/(q^3*u^18-q^2*u^12-q*u^6+1))*B[(1/2, 1/2, -1/2, 1/2)]
+ ((-q*u^8+q*u^6+q*u^2-q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(1/2, 1/2, 1/2, -1/2)]
+ ((-q*u^8+q*u^6+q*u^2-q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(1/2, 1/2, 1/2, 1/2)]
+ ((-q^2*u^18+q^2*u^16-q*u^8+q*u^6+q*u^2+u^2-q-1)/(-q^3*u^18+q^2*u^12+q*u^6-
→˓1))*B[(1, 0, 0, 0)]
+ B[(1, -1, 0, 0)] + ((-u^2+1)/(-q^2*u^12+1))*B[(1, 1, 0, 0)] + ((-u^2+1)/(-q^2*u^
→˓12+1))*B[(1, 0, -1, 0)]
+ ((u^2-1)/(q^2*u^12-1))*B[(1, 0, 1, 0)] + ((-u^2+1)/(-q^2*u^12+1))*B[(1, 0, 0, -1)]
+ ((-u^2+1)/(-q^2*u^12+1))*B[(1, 0, 0, 1)] + ((-q*u^2+q)/(-q*u^6+1))*B[(0, -1, 0,␣
→˓0)]
+ ((-q*u^4+2*q*u^2-q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(0, 1, 0, 0)]
+ ((-q*u^4+2*q*u^2-q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(0, 0, -1, 0)]
+ ((-q*u^4+2*q*u^2-q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(0, 0, 1, 0)]
+ ((-q*u^4+2*q*u^2-q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(0, 0, 0, -1)]
+ ((-q*u^4+2*q*u^2-q)/(-q^3*u^18+q^2*u^12+q*u^6-1))*B[(0, 0, 0, 1)]

Next we test a twisted type (checked against Maple computation by Bogdan Ion for 𝑞1 = 𝑡2 and 𝑞2 = −1):

sage: E = NonSymmetricMacdonaldPolynomials(["A",5,2])
sage: omega = E.keys()

sage: E[omega[1]]
B[(1, 0, 0)]

sage: E[-omega[1]]
B[(-1, 0, 0)] + ((q*q1^6+q*q1^5*q2+q1*q2^5+q2^6)/(q^3*q1^6+q^2*q1^5*q2+q*q1*q2^5+q2^
→˓6))*B[(1, 0, 0)] + ((q1+q2)/(q*q1+q2))*B[(0, -1, 0)] + ((q1+q2)/(q*q1+q2))*B[(0,␣
→˓1, 0)] + ((q1+q2)/(q*q1+q2))*B[(0, 0, -1)] + ((q1+q2)/(q*q1+q2))*B[(0, 0, 1)](continues on next page)

2302 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: E[omega[2]]
((-q1*q2^3-q2^4)/(q*q1^4-q2^4))*B[(1, 0, 0)] + B[(0, 1, 0)]

sage: E[-omega[2]]
((q^2*q1^7+q^2*q1^6*q2-q1*q2^6-q2^7)/(q^3*q1^7-q^2*q1^5*q2^2+q*q1^2*q2^5-q2^
→˓7))*B[(1, 0, 0)] + B[(0, -1, 0)]
+ ((q*q1^5*q2^2+q*q1^4*q2^3-q1*q2^6-q2^7)/(q^3*q1^7-q^2*q1^5*q2^2+q*q1^2*q2^5-q2^
→˓7))*B[(0, 1, 0)]
+ ((-q1*q2-q2^2)/(q*q1^2-q2^2))*B[(0, 0, -1)] + ((q1*q2+q2^2)/(-q*q1^2+q2^2))*B[(0,␣
→˓0, 1)]

sage: E[-omega[1]-omega[2]]
((q^3*q1^6+q^3*q1^5*q2+2*q^2*q1^6+3*q^2*q1^5*q2-q^2*q1^4*q2^2-2*q^2*q1^3*q2^3-q*q1^
→˓5*q2-2*q*q1^4*q2^2+q*q1^3*q2^3+2*q*q1^2*q2^4-q*q1*q2^5-q*q2^6+q1^3*q2^3+q1^2*q2^4-
→˓2*q1*q2^5-2*q2^6)/(q^4*q1^6+q^3*q1^5*q2-q^3*q1^4*q2^2+q*q1^2*q2^4-q*q1*q2^5-q2^
→˓6))*B[(0, 0, 0)] + B[(-1, -1, 0)] + ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^
→˓2*q1^3*q2+q*q1*q2^3+q2^4))*B[(-1, 1, 0)] + ((q1+q2)/(q*q1+q2))*B[(-1, 0, -1)] +␣
→˓((-q1-q2)/(-q*q1-q2))*B[(-1, 0, 1)] + ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^
→˓4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, -1, 0)] + ((q^2*q1^6+q^2*q1^5*q2+q*q1^5*q2-
→˓q*q1^3*q2^3-q1^5*q2-q1^4*q2^2+q1^3*q2^3+q1^2*q2^4-q1*q2^5-q2^6)/(q^4*q1^6+q^3*q1^
→˓5*q2-q^3*q1^4*q2^2+q*q1^2*q2^4-q*q1*q2^5-q2^6))*B[(1, 1, 0)] + ((q*q1^4+2*q*q1^
→˓3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^
→˓3+q2^4))*B[(1, 0, -1)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^
→˓3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, 0, 1)] + ((q1+q2)/
→˓(q*q1+q2))*B[(0, -1, -1)] + ((q1+q2)/(q*q1+q2))*B[(0, -1, 1)] + ((q*q1^4+2*q*q1^
→˓3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^
→˓3+q2^4))*B[(0, 1, -1)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^
→˓3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, 1)]

sage: E[omega[1]-omega[2]]
((q^3*q1^7+q^3*q1^6*q2-q*q1*q2^6-q*q2^7)/(q^3*q1^7-q^2*q1^5*q2^2+q*q1^2*q2^5-q2^
→˓7))*B[(0, 0, 0)] + B[(1, -1, 0)]
+ ((q*q1^5*q2^2+q*q1^4*q2^3-q1*q2^6-q2^7)/(q^3*q1^7-q^2*q1^5*q2^2+q*q1^2*q2^5-q2^
→˓7))*B[(1, 1, 0)] + ((-q1*q2-q2^2)/(q*q1^2-q2^2))*B[(1, 0, -1)]
+ ((q1*q2+q2^2)/(-q*q1^2+q2^2))*B[(1, 0, 1)]

sage: E[omega[3]]
((-q1*q2^2-q2^3)/(-q*q1^3-q2^3))*B[(1, 0, 0)] + ((-q1*q2^2-q2^3)/(-q*q1^3-q2^
→˓3))*B[(0, 1, 0)] + B[(0, 0, 1)]

sage: E[-omega[3]]
((q*q1^4*q2+q*q1^3*q2^2-q1*q2^4-q2^5)/(-q^2*q1^5-q2^5))*B[(1, 0, 0)] + ((q*q1^
→˓4*q2+q*q1^3*q2^2-q1*q2^4-q2^5)/(-q^2*q1^5-q2^5))*B[(0, 1, 0)]
+ B[(0, 0, -1)] + ((-q1*q2^4-q2^5)/(-q^2*q1^5-q2^5))*B[(0, 0, 1)]

5.1. Comprehensive Module List 2303

Combinatorics, Release 9.7

Comparison with the energy function of crystals

Next we test that the nonsymmetric Macdonald polynomials at 𝑡 = 0 match with the one-dimensional configu-
ration sums involving Kirillov-Reshetikhin crystals for various types. See [LNSSS12]:

sage: K = QQ['q,t'].fraction_field()
sage: q,t = K.gens()
sage: KL = RootSystem(["A",5,2]).ambient_space().algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t, -1)
sage: omega = E.keys().fundamental_weights()
sage: E[-omega[1]].map_coefficients(lambda x:x.subs(t=0))
B[(-1, 0, 0)] + B[(1, 0, 0)] + B[(0, -1, 0)] + B[(0, 1, 0)] + B[(0, 0, -1)] + B[(0,␣
→˓0, 1)]
sage: E[-omega[2]].map_coefficients(lambda x:x.subs(t=0)) # long time (3s)
(q+2)*B[(0, 0, 0)] + B[(-1, -1, 0)] + B[(-1, 1, 0)] + B[(-1, 0, -1)]
+ B[(-1, 0, 1)] + B[(1, -1, 0)] + B[(1, 1, 0)] + B[(1, 0, -1)] + B[(1, 0, 1)]
+ B[(0, -1, -1)] + B[(0, -1, 1)] + B[(0, 1, -1)] + B[(0, 1, 1)]

sage: KL = RootSystem(["C",3,1]).ambient_space().algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t,-1)
sage: omega = E.keys().fundamental_weights()
sage: E[-omega[2]].map_coefficients(lambda x:x.subs(t=0)) # long time (5s)
2*B[(0, 0, 0)] + B[(-1, -1, 0)] + B[(-1, 1, 0)] + B[(-1, 0, -1)]
+ B[(-1, 0, 1)] + B[(1, -1, 0)] + B[(1, 1, 0)] + B[(1, 0, -1)] + B[(1, 0, 1)]
+ B[(0, -1, -1)] + B[(0, -1, 1)] + B[(0, 1, -1)] + B[(0, 1, 1)]

sage: R = RootSystem(['C',3,1])
sage: KL = R.weight_lattice(extended=True).algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t,-1)
sage: omega = E.keys().fundamental_weights()
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: E[-2*omega[1]].map_coefficients(lambda x:x.subs(t=0)) == LS.one_dimensional_
→˓configuration_sum(q) # long time (15s)
True
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1]+La[2])
sage: E[-omega[1]-omega[2]].map_coefficients(lambda x:x.subs(t=0)) == LS.one_
→˓dimensional_configuration_sum(q) # long time (45s)
True

sage: R = RootSystem(['C',2,1])
sage: KL = R.weight_lattice(extended=True).algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t,-1)
sage: omega = E.keys().fundamental_weights()
sage: La = R.weight_space().basis()
sage: for d in range(1,3): # long time (10s)
....: for x,y in IntegerVectors(d,2):
....: weight = x*La[1]+y*La[2]
....: weight0 = -x*omega[1]-y*omega[2]
....: LS = crystals.ProjectedLevelZeroLSPaths(weight)
....: assert E[weight0].map_coefficients(lambda x:x.subs(t=0)) == LS.one_
→˓dimensional_configuration_sum(q)

2304 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: R = RootSystem(['B',3,1])
sage: KL = R.weight_lattice(extended=True).algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t,-1)
sage: omega = E.keys().fundamental_weights()
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: E[-2*omega[1]].map_coefficients(lambda x:x.subs(t=0)) == LS.one_dimensional_
→˓configuration_sum(q) # long time (23s)
True
sage: B = crystals.KirillovReshetikhin(['B',3,1],1,1)
sage: T = crystals.TensorProduct(B,B)
sage: T.one_dimensional_configuration_sum(q) == LS.one_dimensional_configuration_
→˓sum(q) # long time (2s)
True

sage: R = RootSystem(['BC',3,2])
sage: KL = R.weight_lattice(extended=True).algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t,-1)
sage: omega = E.keys().fundamental_weights()
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: E[-2*omega[1]].map_coefficients(lambda x:x.subs(t=0)) == LS.one_dimensional_
→˓configuration_sum(q) # long time (21s)
True

sage: R = RootSystem(CartanType(['BC',3,2]).dual())
sage: KL = R.weight_space(extended=True).algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t,-1)
sage: omega = E.keys().fundamental_weights()
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: g = E[-2*omega[1]].map_coefficients(lambda x:x.subs(t=0)) # long time (30s)
sage: f = LS.one_dimensional_configuration_sum(q) # long time (1.5s)
sage: P = g.support()[0].parent() # long time
sage: B = P.algebra(q.parent()) # long time
sage: sum(p[1]*B(P(p[0])) for p in f) == g # long time
True

sage: C = CartanType(['G',2,1])
sage: R = RootSystem(C.dual())
sage: K = QQ['q,t'].fraction_field()
sage: q,t = K.gens()
sage: KL = R.weight_lattice(extended=True).algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t,-1)
sage: omega = E.keys().fundamental_weights()
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: E[-2*omega[1]].map_coefficients(lambda x:x.subs(t=0)) == LS.one_dimensional_
→˓configuration_sum(q) # not tested, long time (20s)
True
sage: LS = crystals.ProjectedLevelZeroLSPaths(La[1]+La[2])
sage: E[-omega[1]-omega[2]].map_coefficients(lambda x:x.subs(t=0)) == LS.one_
→˓dimensional_configuration_sum(q) # not tested, long time (23s) (continues on next page)

5.1. Comprehensive Module List 2305

Combinatorics, Release 9.7

(continued from previous page)

True

The next test breaks if the energy is not scaled by the translation factor for dual type 𝐺(1)
2 :

sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1]+La[2])
sage: E[-2*omega[1]-omega[2]].map_coefficients(lambda x:x.subs(t=0)) == LS.one_
→˓dimensional_configuration_sum(q) # not tested, very long time (100s)
True

sage: R = RootSystem(['D',4,1])
sage: KL = R.weight_lattice(extended=True).algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL, q, t,-1)
sage: omega = E.keys().fundamental_weights()
sage: La = R.weight_space().basis()
sage: for d in range(1,2): # long time (41s)
....: for a,b,c,d in IntegerVectors(d,4):
....: weight = a*La[1]+b*La[2]+c*La[3]+d*La[4]
....: weight0 = -a*omega[1]-b*omega[2]-c*omega[3]-d*omega[4]
....: LS = crystals.ProjectedLevelZeroLSPaths(weight)
....: assert E[weight0].map_coefficients(lambda x:x.subs(t=0)) == LS.one_
→˓dimensional_configuration_sum(q)

Todo: add his notes in latex

sage: K = QQ['q,q1,q2'].fraction_field()
sage: q,q1,q2=K.gens()
sage: L = RootSystem(["A",4,2]).ambient_space()
sage: L.cartan_type()
['BC', 2, 2]
sage: L.null_root()
2*e['delta']
sage: L.simple_roots()
Finite family {0: -e[0] + e['delta'], 1: e[0] - e[1], 2: 2*e[1]}
sage: KL = L.algebra(K)
sage: KL0 = KL.classical()
sage: L0 = L.classical()
sage: L0.cartan_type()
['C', 2]

sage: E = NonSymmetricMacdonaldPolynomials(KL, q=q,q1=q1,q2=q2)
sage: E.keys()
Ambient space of the Root system of type ['C', 2]
sage: E.keys().simple_roots()
Finite family {1: (1, -1), 2: (0, 2)}
sage: omega = E.keys().fundamental_weights()

sage: E[0*omega[1]]
B[(0, 0)]
sage: E[omega[1]]
((-q*q1*q2^3-q*q2^4)/(q^2*q1^4-q2^4))*B[(0, 0)] + B[(1, 0)]

(continues on next page)

2306 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: E[2*omega[2]] # long time # not checked against Bogdan's notes, but a␣
→˓good self-consistency test
((-q^12*q1^6-q^12*q1^5*q2+2*q^10*q1^5*q2+5*q^10*q1^4*q2^2+3*q^10*q1^3*q2^3+2*q^8*q1^
→˓5*q2+4*q^8*q1^4*q2^2+q^8*q1^3*q2^3-q^8*q1^2*q2^4+q^8*q1*q2^5+q^8*q2^6-q^6*q1^3*q2^
→˓3+q^6*q1^2*q2^4+4*q^6*q1*q2^5+2*q^6*q2^6+q^4*q1^3*q2^3+3*q^4*q1^2*q2^4+4*q^
→˓4*q1*q2^5+2*q^4*q2^6)/(-q^12*q1^6-q^10*q1^5*q2-q^8*q1^3*q2^3+q^6*q1^4*q2^2-q^6*q1^
→˓2*q2^4+q^4*q1^3*q2^3+q^2*q1*q2^5+q2^6))*B[(0, 0)] + ((q^7*q1^2*q2+2*q^7*q1*q2^2+q^
→˓7*q2^3+q^5*q1^2*q2+2*q^5*q1*q2^2+q^5*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^
→˓3))*B[(-1, 0)] + ((-q^6*q1*q2-q^6*q2^2)/(q^6*q1^2-q2^2))*B[(-1, -1)] + ((q^6*q1^
→˓2*q2+2*q^6*q1*q2^2+q^6*q2^3+q^4*q1^2*q2+2*q^4*q1*q2^2+q^4*q2^3)/(-q^8*q1^3-q^6*q1^
→˓2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 1)] + ((-q^3*q1*q2-q^3*q2^2)/(q^6*q1^2-q2^2))*B[(-
→˓1, 2)] + ((q^7*q1^3+q^7*q1^2*q2-q^7*q1*q2^2-q^7*q2^3-2*q^5*q1^2*q2-4*q^5*q1*q2^2-
→˓2*q^5*q2^3-2*q^3*q1^2*q2-4*q^3*q1*q2^2-2*q^3*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^
→˓2*q1*q2^2-q2^3))*B[(1, 0)] + ((q^6*q1^2*q2+2*q^6*q1*q2^2+q^6*q2^3+q^4*q1^2*q2+2*q^
→˓4*q1*q2^2+q^4*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(1, -1)] + ((q^
→˓8*q1^3+q^8*q1^2*q2+q^6*q1^3+q^6*q1^2*q2-q^6*q1*q2^2-q^6*q2^3-2*q^4*q1^2*q2-4*q^
→˓4*q1*q2^2-2*q^4*q2^3-q^2*q1^2*q2-3*q^2*q1*q2^2-2*q^2*q2^3)/(q^8*q1^3+q^6*q1^2*q2-
→˓q^2*q1*q2^2-q2^3))*B[(1, 1)] + ((q^5*q1^2+q^5*q1*q2-q^3*q1*q2-q^3*q2^2-q*q1*q2-
→˓q*q2^2)/(q^6*q1^2-q2^2))*B[(1, 2)] + ((-q^6*q1^2-q^6*q1*q2+q^4*q1*q2+q^4*q2^2+q^
→˓2*q1*q2+q^2*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 0)] + ((-q^3*q1*q2-q^3*q2^2)/(q^6*q1^2-
→˓q2^2))*B[(2, -1)] + ((-q^5*q1^2-q^5*q1*q2+q^3*q1*q2+q^3*q2^2+q*q1*q2+q*q2^2)/(-q^
→˓6*q1^2+q2^2))*B[(2, 1)] + B[(2, 2)] + ((q^7*q1^2*q2+2*q^7*q1*q2^2+q^7*q2^3+q^5*q1^
→˓2*q2+2*q^5*q1*q2^2+q^5*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(0, -1)]␣
→˓+ ((q^7*q1^3+q^7*q1^2*q2-q^7*q1*q2^2-q^7*q2^3-2*q^5*q1^2*q2-4*q^5*q1*q2^2-2*q^
→˓5*q2^3-2*q^3*q1^2*q2-4*q^3*q1*q2^2-2*q^3*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-
→˓q2^3))*B[(0, 1)] + ((q^6*q1^2+q^6*q1*q2-q^4*q1*q2-q^4*q2^2-q^2*q1*q2-q^2*q2^2)/(q^
→˓6*q1^2-q2^2))*B[(0, 2)]
sage: E.recursion(2*omega[2])
[0, 1, 0, 2, 1, 0, 2, 1, 0]

Some tests that the 𝑇 s are implemented properly by hand defining the 𝑌 s in terms of them:

sage: T = E._T_Y
sage: Ye1 = T.Tw((1,2,1,0), scalar = (-1/(q1*q2))^2)
sage: Ye2 = T.Tw((2,1,0,1), signs = (1,1,1,-1), scalar = (-1/(q1*q2)))
sage: Yalpha0 = T.Tw((0,1,2,1), signs = (-1,-1,-1,-1), scalar = q^-1*(-q1*q2)^2)
sage: Yalpha1 = T.Tw((1,2,0,1,2,0), signs=(1,1,-1,1,-1,1), scalar = -1/(q1*q2))
sage: Yalpha2 = T.Tw((2,1,0,1,2,1,0,1), signs = (1,1,1,-1,1,1,1,-1), scalar = (1/
→˓(q1*q2))^2)

sage: Ye1(KL0.one())
q1^2/q2^2*B[(0, 0)]
sage: Ye2(KL0.one())
((-q1)/q2)*B[(0, 0)]

sage: Yalpha0(KL0.one())
q2^2/(q*q1^2)*B[(0, 0)]
sage: Yalpha1(KL0.one())
((-q1)/q2)*B[(0, 0)]
sage: Yalpha2(KL0.one())
q1^2/q2^2*B[(0, 0)]

5.1. Comprehensive Module List 2307

Combinatorics, Release 9.7

Testing the 𝑌 s directly:

sage: Y = E.Y()
sage: Y.keys()
Coroot lattice of the Root system of type ['BC', 2, 2]
sage: alpha = Y.keys().simple_roots()
sage: L(alpha[0])
-2*e[0] + e['deltacheck']
sage: L(alpha[1])
e[0] - e[1]
sage: L(alpha[2])
e[1]

sage: Y[alpha[0]].word
(0, 1, 2, 1)
sage: Y[alpha[0]].signs
(-1, -1, -1, -1)
sage: Y[alpha[0]].scalar # mind that Sage's q is the usual q^{1/2}
q1^2*q2^2/q
sage: Y[alpha[0]](KL0.one())
q2^2/(q*q1^2)*B[(0, 0)]

sage: Y[alpha[1]].word
(1, 2, 0, 1, 2, 0)
sage: Y[alpha[1]].signs
(1, 1, -1, 1, -1, 1)
sage: Y[alpha[1]].scalar
1/(-q1*q2)

sage: Y[alpha[2]].word # Bogdan says it should be the square of that; do we need␣
→˓to take translation factors into account or not?
(2, 1, 0, 1)
sage: Y[alpha[2]].signs
(1, 1, 1, -1)
sage: Y[alpha[2]].scalar
1/(-q1*q2)

Checking the provided nonsymmetric Macdonald polynomial:

sage: E10 = KL0.monomial(L0((1,0))) + KL0(q*(1-(-q1/q2)) / (1-q^2*(-q1/q2)^4))
sage: E10 == E[omega[1]]
True
sage: E.eigenvalues(E10) # not checked
[q*q1^2/q2^2, q2^3/(-q^2*q1^3), q1/(-q2)]

Checking T0check:

sage: T0check_on_basis = KL.T0_check_on_basis(q1,q2, convention="dominant")
sage: T0check_on_basis.phi # note: this is in fact a0 phi
(2, 0)
sage: T0check_on_basis.v # what to match it with?
(1,)
sage: T0check_on_basis.j # what to match it with?
2

(continues on next page)

2308 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T0check_on_basis(KL0.basis().keys().zero())
((-q1^2)/q2)*B[(1, 0)]

sage: T0check = E._T[0]
sage: T0check(KL0.one())
((-q1^2)/q2)*B[(1, 0)]

Systematic tests of nonsymmetric Macdonald polynomials in type 𝐴(1)
1 , in the weight lattice. Each time, we

specify the eigenvalues for the action of 𝑌𝛼0
, and 𝑌𝛼1

:

sage: K = QQ['q','t'].fraction_field()
sage: q,t = K.gens()
sage: KL = RootSystem(["A",1,1]).weight_lattice(extended=True).algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t, -1)
sage: omega = E.keys().fundamental_weights()

sage: x = E[0*omega[1]]; x
B[0]
sage: E.eigenvalues(x)
[1/(q*t), t]
sage: x.is_one()
True
sage: x.parent()
Algebra of the Weight lattice of the Root system of type ['A', 1]
over Fraction Field of Multivariate Polynomial Ring in q, t over Rational Field

sage: E[omega[1]]
B[Lambda[1]]
sage: E.eigenvalues(_)
[t, 1/(q*t)]
sage: E[2*omega[1]]
((-q*t+q)/(-q*t+1))*B[0] + B[2*Lambda[1]]
sage: E.eigenvalues(_)
[q*t, 1/(q^2*t)]
sage: E[3*omega[1]]
((-q^2*t+q^2)/(-q^2*t+1))*B[-Lambda[1]] + ((-q^2*t+q^2-q*t+q)/(-q^
→˓2*t+1))*B[Lambda[1]] + B[3*Lambda[1]]
sage: E.eigenvalues(_)
[q^2*t, 1/(q^3*t)]
sage: E[4*omega[1]]
((q^5*t^2-q^5*t+q^4*t^2-2*q^4*t+q^3*t^2+q^4-2*q^3*t+q^3-q^2*t+q^2)/(q^5*t^2-q^3*t-q^
→˓2*t+1))*B[0] + ((-q^3*t+q^3)/(-q^3*t+1))*B[-2*Lambda[1]] + ((-q^3*t+q^3-q^2*t+q^2-
→˓q*t+q)/(-q^3*t+1))*B[2*Lambda[1]] + B[4*Lambda[1]]
sage: E.eigenvalues(_)
[q^3*t, 1/(q^4*t)]
sage: E[6*omega[1]]
((-q^12*t^3+q^12*t^2-q^11*t^3+2*q^11*t^2-2*q^10*t^3-q^11*t+4*q^10*t^2-2*q^9*t^3-2*q^
→˓10*t+5*q^9*t^2-2*q^8*t^3-4*q^9*t+6*q^8*t^2-q^7*t^3+q^9-5*q^8*t+5*q^7*t^2-q^6*t^
→˓3+q^8-6*q^7*t+4*q^6*t^2+2*q^7-5*q^6*t+2*q^5*t^2+2*q^6-4*q^5*t+q^4*t^2+2*q^5-2*q^
→˓4*t+q^4-q^3*t+q^3)/(-q^12*t^3+q^9*t^2+q^8*t^2+q^7*t^2-q^5*t-q^4*t-q^3*t+1))*B[0]␣
→˓+ ((-q^5*t+q^5)/(-q^5*t+1))*B[-4*Lambda[1]] + ((q^9*t^2-q^9*t+q^8*t^2-2*q^8*t+q^
→˓7*t^2+q^8-2*q^7*t+q^6*t^2+q^7-2*q^6*t+q^5*t^2+q^6-2*q^5*t+q^5-q^4*t+q^4)/(q^9*t^2-
→˓q^5*t-q^4*t+1))*B[-2*Lambda[1]] + ((q^9*t^2-q^9*t+q^8*t^2-2*q^8*t+2*q^7*t^2+q^8-
→˓3*q^7*t+2*q^6*t^2+q^7-4*q^6*t+2*q^5*t^2+2*q^6-4*q^5*t+q^4*t^2+2*q^5-3*q^4*t+q^3*t^
→˓2+2*q^4-2*q^3*t+q^3-q^2*t+q^2)/(q^9*t^2-q^5*t-q^4*t+1))*B[2*Lambda[1]] + ((q^5*t-
→˓q^5+q^4*t-q^4+q^3*t-q^3+q^2*t-q^2+q*t-q)/(q^5*t-1))*B[4*Lambda[1]] +␣
→˓B[6*Lambda[1]]

(continues on next page)

5.1. Comprehensive Module List 2309

Combinatorics, Release 9.7

(continued from previous page)

sage: E.eigenvalues(_)
[q^5*t, 1/(q^6*t)]
sage: E[-omega[1]]
B[-Lambda[1]] + ((-t+1)/(-q*t+1))*B[Lambda[1]]
sage: E.eigenvalues(_)
[(-1)/(-q^2*t), q*t]

As expected, 𝑒−𝜔 is not an eigenvector:

sage: E.eigenvalues(KL.classical().monomial(-omega[1]))
Traceback (most recent call last):
...
AssertionError

We proceed by comparing against the examples from the appendix of [HHL06] in type 𝐴(1)
2 :

sage: K = QQ['q','t'].fraction_field()
sage: q,t = K.gens()
sage: KL = RootSystem(["A",2,1]).ambient_space().algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t, -1)
sage: L0 = E.keys()
sage: omega = L0.fundamental_weights()
sage: P = K['x0,x1,x2']
sage: def EE(weight): return E[L0(weight)].expand(P.gens())

sage: EE([0,0,0])
1
sage: EE([1,0,0])
x0
sage: EE([0,1,0])
(t - 1)/(q*t^2 - 1)*x0 + x1
sage: EE([0,0,1])
(t - 1)/(q*t - 1)*x0 + (t - 1)/(q*t - 1)*x1 + x2
sage: EE([1,1,0])
x0*x1
sage: EE([1,0,1])
(t - 1)/(q*t^2 - 1)*x0*x1 + x0*x2
sage: EE([0,1,1])
(t - 1)/(q*t - 1)*x0*x1 + (t - 1)/(q*t - 1)*x0*x2 + x1*x2
sage: EE([2,0,0])
x0^2 + (q*t - q)/(q*t - 1)*x0*x1 + (q*t - q)/(q*t - 1)*x0*x2

sage: EE([0,2,0])
(t - 1)/(q^2*t^2 - 1)*x0^2 + (q^2*t^3 - q^2*t^2 + q*t^2 - 2*q*t + q - t + 1)/(q^3*t^
→˓3 - q^2*t^2 - q*t + 1)*x0*x1 + x1^2 + (q*t^2 - 2*q*t + q)/(q^3*t^3 - q^2*t^2 -␣
→˓q*t + 1)*x0*x2 + (q*t - q)/(q*t - 1)*x1*x2

Systematic checks with Sage’s implementation of [HHL06]:

sage: import sage.combinat.sf.ns_macdonald as NS
sage: assert all(EE([x,y,z]) == NS.E([x,y,z]) for d in range(5) for x,y,z in␣
→˓IntegerVectors(d,3)) # long time (9s)

2310 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

We check that we get eigenvectors for generic 𝑞1, 𝑞2:

sage: K = QQ['q,q1,q2'].fraction_field()
sage: q,q1,q2 = K.gens()
sage: KL = RootSystem(["A",2,1]).ambient_space().algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
sage: L0 = E.keys()
sage: omega = L0.fundamental_weights()
sage: E[2*omega[2]]
((-q*q1-q*q2)/(-q*q1-q2))*B[(1, 2, 1)] + ((-q*q1-q*q2)/(-q*q1-q2))*B[(2, 1, 1)] +␣
→˓B[(2, 2, 0)]
sage: for d in range(4): # long time (9s)
....: for weight in IntegerVectors(d,3).map(list).map(L0):
....: eigenvalues = E.eigenvalues(E[L0(weight)])

Some type 𝐶 calculations:

sage: K = QQ['q','t'].fraction_field()
sage: q, t = K.gens()
sage: KL = RootSystem(["C",2,1]).ambient_space().algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t, -1)
sage: L0 = E.keys()
sage: omega = L0.fundamental_weights()
sage: E[0*omega[1]]
B[(0, 0)]
sage: E.eigenvalues(_) # checked for i=0 with previous calculation
[1/(q*t^3), t, t]
sage: E[omega[1]]
B[(1, 0)]
sage: E.eigenvalues(_) # not checked
[t, 1/(q*t^3), t]

sage: E[-omega[1]] # consistent with before refactoring
B[(-1, 0)] + ((-t+1)/(-q*t+1))*B[(1, 0)] + ((-t+1)/(-q*t+1))*B[(0, -1)] + ((t-1)/
→˓(q*t-1))*B[(0, 1)]
sage: E.eigenvalues(_) # not checked
[(-1)/(-q^2*t^3), q*t, t]
sage: E[-omega[1]+omega[2]] # consistent with before refactoring
((-t+1)/(-q*t^3+1))*B[(1, 0)] + B[(0, 1)]
sage: E.eigenvalues(_) # not checked
[t, q*t^3, (-1)/(-q*t^2)]
sage: E[omega[1]-omega[2]] # consistent with before refactoring
((-t+1)/(-q*t^2+1))*B[(1, 0)] + B[(0, -1)] + ((-t+1)/(-q*t^2+1))*B[(0, 1)]
sage: E.eigenvalues(_) # not checked
[1/(q^2*t^3), 1/(q*t), q*t^2]

sage: E[-omega[2]]
((-q^2*t^4+q^2*t^3-q*t^3+2*q*t^2-q*t+t-1)/(-q^3*t^4+q^2*t^3+q*t-1))*B[(0, 0)] + B[(-
→˓1, -1)] + ((-t+1)/(-q*t+1))*B[(-1, 1)] + ((t-1)/(q*t-1))*B[(1, -1)] + ((-q*t^
→˓4+q*t^3+t-1)/(-q^3*t^4+q^2*t^3+q*t-1))*B[(1, 1)]
sage: E.eigenvalues(_) # not checked # long time (1s)
[1/(q^3*t^3), t, q*t]
sage: E[-omega[2]].map_coefficients(lambda c: c.subs(t=0)) # checking against␣
→˓crystals

(continues on next page)

5.1. Comprehensive Module List 2311

Combinatorics, Release 9.7

(continued from previous page)

B[(0, 0)] + B[(-1, -1)] + B[(-1, 1)] + B[(1, -1)] + B[(1, 1)]

sage: E[2*omega[2]]
((-q^6*t^7+q^6*t^6-q^5*t^6+2*q^5*t^5-q^4*t^5-q^5*t^3+3*q^4*t^4-3*q^4*t^3+q^3*t^4+q^
→˓4*t^2-2*q^3*t^2+q^3*t-q^2*t+q^2)/(-q^6*t^7+q^5*t^6+q^4*t^4+q^3*t^4-q^3*t^3-q^2*t^
→˓3-q*t+1))*B[(0, 0)] + ((-q^3*t^2+q^3*t)/(-q^3*t^3+1))*B[(-1, -1)] + ((-q^3*t^
→˓3+2*q^3*t^2-q^3*t)/(-q^4*t^4+q^3*t^3+q*t-1))*B[(-1, 1)] + ((-q^3*t^3+2*q^3*t^2-q^
→˓3*t)/(-q^4*t^4+q^3*t^3+q*t-1))*B[(1, -1)] + ((-q^4*t^4+q^4*t^3-q^3*t^3+2*q^3*t^2-
→˓q^2*t^3-q^3*t+2*q^2*t^2-q^2*t+q*t-q)/(-q^4*t^4+q^3*t^3+q*t-1))*B[(1, 1)] + ((q*t-
→˓q)/(q*t-1))*B[(2, 0)] + B[(2, 2)] + ((-q*t+q)/(-q*t+1))*B[(0, 2)]
sage: E.eigenvalues(_) # not checked
[q^3*t^3, t, (-1)/(-q^2*t^2)]

The following computations were calculated by hand:

sage: KL0 = KL.classical()
sage: E11 = KL0.sum_of_terms([[L0([1,1]), 1], [L0([0,0]), (-q*t^2 + q*t)/(1-q*t^
→˓3)]])
sage: E11 == E[omega[2]]
True
sage: E.eigenvalues(E11)
[q*t^3, t, (-1)/(-q*t^2)]

sage: E1m1 = KL0.sum_of_terms([[L0([1,-1]), 1], [L0([1,1]), (1-t)/(1-q*t^2)],␣
→˓[L0([0,0]), q*t*(1-t)/(1-q*t^2)]])
sage: E1m1 == E[2*omega[1]-omega[2]]
True
sage: E.eigenvalues(E1m1)
[1/(q*t), 1/(q^2*t^3), q*t^2]

Now we present an example for a twisted affine root system. The results are eigenvectors:

sage: K = QQ['q','t'].fraction_field()
sage: q, t = K.gens()
sage: KL = RootSystem("C2~*").ambient_space().algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, t, -1)
sage: omega = E.keys().fundamental_weights()
sage: E[0*omega[1]]
B[(0, 0)]
sage: E.eigenvalues(_)
[1/(q*t^2), t, t]
sage: E[omega[1]]
((-q*t+q)/(-q*t^2+1))*B[(0, 0)] + B[(1, 0)]
sage: E.eigenvalues(_)
[q*t^2, 1/(q^2*t^3), t]

sage: E[-omega[1]]
((-q*t+q-t+1)/(-q^2*t+1))*B[(0, 0)] + B[(-1, 0)] + ((-t+1)/(-q^2*t+1))*B[(1, 0)] +␣
→˓((-t+1)/(-q^2*t+1))*B[(0, -1)] + ((t-1)/(q^2*t-1))*B[(0, 1)]
sage: E.eigenvalues(_)
[(-1)/(-q^3*t^2), q^2*t, t]
sage: E[-omega[1]+omega[2]]

(continues on next page)

2312 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

B[(-1/2, 1/2)] + ((-t+1)/(-q^2*t^3+1))*B[(1/2, -1/2)] + ((-q*t^3+q*t^2-t+1)/(-q^2*t^
→˓3+1))*B[(1/2, 1/2)]
sage: E.eigenvalues(_)
[(-1)/(-q^2*t^2), q^2*t^3, (-1)/(-q*t)]
sage: E[omega[1]-omega[2]]
B[(1/2, -1/2)] + ((-t+1)/(-q*t^2+1))*B[(1/2, 1/2)]
sage: E.eigenvalues(_)
[t, 1/(q^2*t^3), q*t^2]

Type BC, comparison with calculations with Maple by Bogdan Ion:

sage: K = QQ['q','t'].fraction_field()
sage: q,t = K.gens()
sage: def to_SR(x): return x.expand([SR.var('x%s'%i) for i in range(1,x.parent().
→˓basis().keys().dimension()+1)]).subs(q=SR.var('q'), t=SR.var('t'))
sage: var('x1,x2,x3')
(x1, x2, x3)

sage: E = NonSymmetricMacdonaldPolynomials(["BC",2,2], q=q, q1=t^2,q2=-1)
sage: omega=E.keys().fundamental_weights()
sage: expected = (t-1)*(t+1)*(2+q^4+2*q^2-2*t^2-2*q^2*t^2-t^4*q^2-q^4*t^4+t^4-3*q^
→˓6*t^6-2*q^4*t^6+2*q^6*t^8+2*q^4*t^8+t^10*q^8)*q^4/((q^2*t^3-1)*(q^2*t^3+1)*(t*q-
→˓1)*(t*q+1)*(t^2*q^3+1)*(t^2*q^3-1))+(t-1)^2*(t+1)^2*(2*q^2+q^4+2+q^4*t^2)*q^3*x1/
→˓((t^2*q^3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1))+(t-1)^2*(t+1)^2*(q^2+1)*q^5/((t^2*q^
→˓3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1)*x1)+(t-1)^2*(t+1)^2*(q^2+1)*q^4*x2/((t^2*q^
→˓3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1)*x1)+(t-1)^2*(t+1)^2*(2*q^2+q^4+2+q^4*t^2)*q^3*x2/
→˓((t^2*q^3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1))+(t-1)^2*(t+1)^2*(q^2+1)*q^5/((t^2*q^
→˓3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1)*x2)+x1^2*x2^2+(t-1)*(t+1)*(-2*q^2-q^4-2+2*q^2*t^
→˓2+t^2+q^6*t^4+q^4*t^4)*q^2*x2*x1/((t^2*q^3+1)*(t^2*q^3-1)*(t*q-1)*(t*q+1))+(t-
→˓1)*(t+1)*(q^2+1+q^4*t^2)*q*x2^2*x1/((t^2*q^3-1)*(t^2*q^3+1))+(t-1)*(t+1)*q^3*x1^2/
→˓((t^2*q^3-1)*(t^2*q^3+1)*x2)+(t-1)*(t+1)*(q^2+1+q^4*t^2)*q*x2*x1^2/((t^2*q^3-
→˓1)*(t^2*q^3+1))+(t-1)*(t+1)*q^6/((t^2*q^3+1)*(t^2*q^3-1)*x1*x2)+(t-1)*(t+1)*(q^
→˓2+1+q^4*t^2)*q^2*x1^2/((t^2*q^3-1)*(t^2*q^3+1))+(t-1)*(t+1)*(q^2+1+q^4*t^2)*q^
→˓2*x2^2/((t^2*q^3-1)*(t^2*q^3+1))+(t-1)*(t+1)*q^3*x2^2/((t^2*q^3-1)*(t^2*q^
→˓3+1)*x1)+(t-1)^2*(t+1)^2*(q^2+1)*q^4*x1/((t^2*q^3+1)*(t^2*q^3-1)*(t*q-
→˓1)*(t*q+1)*x2)
sage: to_SR(E[2*omega[2]]) - expected # long time (3.5s)
0

sage: E = NonSymmetricMacdonaldPolynomials(["BC",3,2], q=q, q1=t^2,q2=-1)
sage: omega=E.keys().fundamental_weights()
sage: mu = -3*omega[1] + 3*omega[2] - omega[3]; mu
(-1, 2, -1)
sage: expected = (t-1)^2*(t+1)^2*(3*q^2+q^4+1+t^2*q^4+q^2*t^2-3*t^4*q^2-5*t^6*q^
→˓4+2*t^8*q^4-4*t^8*q^6-q^8*t^10+2*t^10*q^6-2*q^8*t^12+t^14*q^8-t^14*q^10+q^10*t^
→˓16+q^8*t^16+q^10*t^18+t^18*q^12)*x2*x1/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-
→˓1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(q^2*t^
→˓6+2*t^6*q^4-q^4*t^4+t^4*q^2-q^2*t^2+t^2-2-q^2)*q^2*x1/((t^3*q^2-1)*(t^3*q^
→˓2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)^2*(t+1)^2*(-q^2-1+t^4*q^2-
→˓q^4*t^4+2*t^6*q^4)*x1^2/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^
→˓3*t^5+1))+(t+1)*(t-1)*x2^2*x3/((t*q-1)*(t*q+1)*x1)+(t-1)^2*(t+1)^2*(3*q^2+q^4+2+t^
→˓2*q^4+2*q^2*t^2-4*t^4*q^2+q^4*t^4-6*t^6*q^4+t^8*q^4-4*t^8*q^6-q^8*t^10+t^10*q^6-
→˓3*q^8*t^12-2*t^14*q^10+2*t^14*q^8+2*q^10*t^16+q^8*t^16+t^18*q^12+2*q^10*t^
→˓18)*q*x2/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-
→˓1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(1+q^4+2*q^2+t^2*q^4-3*t^4*q^2+q^2*t^6-5*t^6*q^
→˓4+3*t^8*q^4-4*t^8*q^6+2*t^10*q^6-q^8*t^12-t^14*q^10+t^14*q^8+q^10*t^16+t^18*q^
→˓12)*x3*x1/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-
→˓1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(2*q^2+1+q^4+t^2*q^4-t^2+q^2*t^2-4*t^4*q^2+q^4*t^
→˓4+q^2*t^6-5*t^6*q^4+3*t^8*q^4-4*t^8*q^6+2*t^10*q^6+q^6*t^12-2*q^8*t^12-2*t^14*q^
→˓10+2*t^14*q^8+q^10*t^16+t^18*q^12)*q*x3/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-
→˓1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(1+t^2+t^
→˓4*q^2)*q*x3*x2^2/((t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1))+(t-1)^2*(t+1)^2*(-q^2-
→˓2-q^2*t^2+t^4-q^4*t^4-t^4*q^2+3*q^2*t^6-t^6*q^4-t^8*q^6+t^8*q^4+t^10*q^4+2*q^6*t^
→˓12-q^8*t^12+t^14*q^8)*q*x3*x2*x1/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^
→˓5-1)*(q^3*t^5+1))+(t-1)*(t+1)*x1^2/((q^3*t^5-1)*(q^3*t^5+1)*x3*x2)+(t-1)*(t+1)*(-
→˓q^2-1+t^4*q^2-q^4*t^4+2*t^6*q^4)*x2^2/((t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-
→˓1))+(t-1)*(t+1)*(t^3*q-1)*(t^3*q+1)*x3*x2^2*x1/((t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^
→˓3*q^2-1))+(t-1)^2*(t+1)^2*(q^2+1)*q*x1/((t*q+1)*(t*q-1)*(q^3*t^5+1)*(q^3*t^5-
→˓1)*x3*x2)+(t-1)^2*(t+1)^2*(t^3*q-1)*(t^3*q+1)*x3*x2*x1^2/((t^3*q^2-1)*(t^3*q^
→˓2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1))+(t-1)^2*(t+1)^2*q^3*x3/
→˓((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x1*x2)+(t-1)*(t+1)*(-1-q^2+q^2*t^2+t^
→˓10*q^6)*q*x2/((t*q+1)*(t*q-1)*(q^3*t^5+1)*(q^3*t^5-1)*x3*x1)+x2^2/(x1*x3)+(t-
→˓1)*(t+1)*q*x2^2/((t*q-1)*(t*q+1)*x3)+(t-1)^3*(t+1)^3*(1+t^2+t^4*q^2)*q*x2*x1^2/
→˓((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1))+(t-1)^2*(t+1)^
→˓2*q*x1^2/((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t-1)^2*(t+1)^2*(q^2*t^
→˓6+2*t^6*q^4-q^4*t^4+t^4*q^2-q^2*t^2+t^2-2-q^2)*q^3/((t^3*q^2-1)*(t^3*q^
→˓2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)*(t+1)*(q^2+2-t^2+q^4*t^4-t^
→˓4*q^2-3*t^6*q^4+t^8*q^4-2*t^10*q^6-q^8*t^12+q^6*t^12+q^8*t^16+q^10*t^16)*q^2*x2/
→˓((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x1)+(t-1)^
→˓2*(t+1)^2*(q^2+1)*q^2/((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3*x2)+(t-
→˓1)*(t+1)*(1+q^4+2*q^2-2*q^2*t^2+t^4*q^6-q^4*t^4-3*q^6*t^6-t^6*q^4+2*t^8*q^6-t^
→˓10*q^6-q^8*t^10-t^14*q^10+t^14*q^8+2*q^10*t^16)*x2/((t^3*q^2-1)*(t^3*q^
→˓2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t-1)^2*(t+1)^2*(-q^2-2-q^2*t^2-
→˓q^4*t^4+2*t^6*q^4+t^10*q^6+q^8*t^12+t^14*q^8)*q^3/((t^3*q^2-1)*(t^3*q^
→˓2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x1)+(t-1)^2*(t+1)^2*(-1-q^2-q^2*t^
→˓2+t^2+t^4*q^2-q^4*t^4+2*t^6*q^4)*q^2*x3/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-
→˓1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)*(t+1)*q*x2^2/((t*q-1)*(t*q+1)*x1)+(t-1)^
→˓2*(t+1)^2*(1+t^2+t^4*q^2)*q*x2^2*x1/((t*q-1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1))+(t-
→˓1)^2*(t+1)^2*q*x1^2/((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)^2*(t+1)^
→˓2*(-1-q^4-2*q^2-t^2*q^4-q^2*t^2+t^4*q^2-t^4*q^6-2*q^4*t^4+3*t^6*q^4-q^6*t^6-t^8*q^
→˓8+t^8*q^6+2*t^10*q^6-q^10*t^12+3*q^8*t^12+2*t^14*q^10)*x3*x2/((t^3*q^2-1)*(t^3*q^
→˓2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1))+(t-1)*(t+1)*(q^2+1-t^2+q^4*t^4-t^
→˓4*q^2+q^2*t^6-3*t^6*q^4+t^8*q^4-t^10*q^6+q^6*t^12-q^8*t^12+q^10*t^16)*q^2*x3/((t^
→˓3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x1)+(t-1)*(t+1)*(-1-
→˓q^2+q^2*t^2+t^10*q^6)*q^2/((t*q-1)*(t*q+1)*(q^3*t^5+1)*(q^3*t^5-1)*x1*x3)+(t-
→˓1)*(t+1)*(1+q^4+2*q^2-3*q^2*t^2+t^4*q^6-q^4*t^4-3*q^6*t^6-t^6*q^4+t^8*q^4+2*t^8*q^
→˓6-t^10*q^6+t^14*q^8-t^14*q^10+q^10*t^16)*x1/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-
→˓1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t-1)^2*(t+1)^2*(3*q^2+q^4+2+q^2*t^2-t^2+t^2*q^4-
→˓6*t^4*q^2+q^4*t^4-7*t^6*q^4+q^2*t^6+3*t^8*q^4-4*t^8*q^6+t^10*q^4+3*t^10*q^6-q^8*t^
→˓12-t^14*q^10+t^14*q^8+q^8*t^16+q^10*t^18)*q*x1/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-
→˓1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(-q^2-2-q^
→˓2*t^2-q^4*t^4+2*t^6*q^4+t^10*q^6+q^6*t^12+t^14*q^8)*q*x2*x1/((t^3*q^2-1)*(t^3*q^
→˓2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t+1)*(t-1)*x2^2*x1/((t*q-
→˓1)*(t*q+1)*x3)+(t-1)^3*(t+1)^3*(1+t^2+t^4*q^2)*q*x3*x1^2/((t^3*q^2-1)*(t^3*q^
→˓2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1))+(t-1)*(t+1)*q^3/((q^3*t^5+1)*(q^3*t^
→˓5-1)*x1*x2*x3)+(t-1)^2*(t+1)^2*(3+3*q^2+q^4+2*q^2*t^2-t^2+t^2*q^4-6*t^4*q^2+q^4*t^
→˓4-8*t^6*q^4+q^2*t^6+2*t^8*q^4-4*t^8*q^6+t^10*q^4+2*t^10*q^6-2*q^8*t^12-t^14*q^
→˓10+t^14*q^8+q^8*t^16+q^10*t^16+2*q^10*t^18)*q^2/((q^3*t^5+1)*(q^3*t^5-1)*(t*q-
→˓1)*(t*q+1)*(t^3*q^2+1)*(t^3*q^2-1)*(t^2*q-1)*(t^2*q+1))+(t-1)^2*(t+1)^2*(-q^4-2*q^
→˓2-1-t^2*q^4-t^4*q^6+2*q^6*t^6+t^6*q^4+t^10*q^6+q^8*t^12+t^14*q^10)*q/((t^3*q^2-
→˓1)*(t^3*q^2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t-1)^2*(t+1)^2*(-1-q^
→˓2-q^2*t^2+t^2+t^4*q^2-q^4*t^4+2*t^6*q^4)*q*x3*x1/((t^3*q^2-1)*(t^3*q^
→˓2+1)*(t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)^2*(t+1)^2*x2*x1^2/
→˓((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x3)+(t-1)^2*(t+1)^2*x3*x1^2/
→˓((t*q+1)*(t*q-1)*(q^3*t^5-1)*(q^3*t^5+1)*x2)+(t-1)^2*(t+1)^2*q^4/((t*q+1)*(t*q-
→˓1)*(q^3*t^5+1)*(q^3*t^5-1)*x1*x2)+(t-1)^2*(t+1)^2*(-q^2-1-q^2*t^2-q^4*t^4+t^6*q^
→˓4+t^10*q^6+q^8*t^12+t^14*q^10)*q*x3*x2/((t^3*q^2-1)*(t^3*q^2+1)*(t*q+1)*(t*q-
→˓1)*(q^3*t^5-1)*(q^3*t^5+1)*x1)

(continues on next page)

5.1. Comprehensive Module List 2313

Combinatorics, Release 9.7

(continued from previous page)

sage: to_SR(E[mu]) - expected # long time (20s)
0

sage: E = NonSymmetricMacdonaldPolynomials(["BC",1,2], q=q, q1=t^2,q2=-1)
sage: omega=E.keys().fundamental_weights()
sage: mu = -4*omega[1]; mu
(-4)
sage: expected = (t-1)*(t+1)*(-1+q^2*t^2-q^2-3*q^10-7*q^26*t^8+5*t^2*q^6-q^16-3*q^
→˓4+4*t^10*q^30-4*t^6*q^22-10*q^20*t^6+2*q^32*t^10-3*q^6-4*q^8+q^34*t^10-4*t^8*q^24-
→˓2*q^12-q^14+2*q^22*t^10+4*q^26*t^10+4*q^28*t^10+t^6*q^30-2*q^32*t^8-2*t^8*q^
→˓22+2*q^24*t^10-q^20*t^2-2*t^6*q^12+t^8*q^14+2*t^4*q^24-4*t^8*q^30+2*t^8*q^20-9*t^
→˓6*q^16+3*q^26*t^6+q^28*t^6+3*t^2*q^4+2*q^18*t^8-6*t^6*q^14+4*t^4*q^22-2*q^24*t^
→˓6+3*t^2*q^12+7*t^4*q^20-t^2*q^16+11*q^18*t^4-2*t^2*q^18+9*q^16*t^4-t^4*q^6+6*q^
→˓8*t^2+5*q^10*t^2-6*q^28*t^8+q^12*t^4+8*t^4*q^14-10*t^6*q^18-q^4*t^4+q^16*t^8-2*t^
→˓4*q^8)/((t*q^4-1)*(t*q^4+1)*(q^7*t^2-1)*(q^7*t^2+1)*(t*q^3-1)*(t*q^3+1)*(q^5*t^
→˓2+1)*(q^5*t^2-1))+(q^2+1)*(q^4+1)*(t-1)*(t+1)*(-1+q^2*t^2-q^2+t^2*q^6-q^4+t^6*q^
→˓22+3*q^10*t^4+t^2-q^8-2*t^8*q^24+q^22*t^10+q^26*t^10-2*t^8*q^22+q^24*t^10-4*t^6*q^
→˓12-2*t^8*q^20-3*t^6*q^16+2*t^2*q^4-t^6*q^10-2*t^6*q^14+t^8*q^12-t^2*q^12+2*q^16*t^
→˓4+q^8*t^2-q^10*t^2+3*q^12*t^4+2*t^4*q^14+t^6*q^18-2*q^4*t^4+q^16*t^8+q^20*t^
→˓10)*q*x1/((t*q^4-1)*(t*q^4+1)*(q^7*t^2-1)*(q^7*t^2+1)*(t*q^3-1)*(t*q^3+1)*(q^5*t^
→˓2+1)*(q^5*t^2-1))+(q^2+1)*(q^4+1)*(t-1)*(t+1)*(1+q^8+q^4+q^2-q^8*t^2-2*t^2*q^4-t^
→˓2*q^6+t^2*q^12-t^2+t^4*q^6-2*q^16*t^4-t^4*q^14-2*q^12*t^4+t^6*q^12+t^6*q^16+t^6*q^
→˓18+t^6*q^14)*q/((t*q^4-1)*(t*q^4+1)*(q^7*t^2-1)*(q^7*t^2+1)*(t*q^3-1)*(t*q^
→˓3+1)*x1)+(t-1)*(t+1)*(-1-q^2-q^6-q^4-q^8+t^2*q^4-t^2*q^14+t^2*q^6-q^10*t^2+q^8*t^
→˓2-t^2*q^12+q^12*t^4+q^10*t^4+q^16*t^4+2*t^4*q^14)*(q^4+1)/((q^7*t^2+1)*(q^7*t^2-
→˓1)*(t*q^4-1)*(t*q^4+1)*x1^2)+(t-1)*(t+1)*(q^4+1)*(q^2+1)*q/((t*q^4-1)*(t*q^
→˓4+1)*x1^3)+(q^4+1)*(t-1)*(t+1)*(1+q^6+q^8+q^2+q^4-q^2*t^2-3*t^2*q^4+q^10*t^2+t^
→˓2*q^12-2*t^2*q^6-q^8*t^2-2*q^16*t^4+q^4*t^4+t^4*q^6-q^10*t^4-2*q^12*t^4-2*t^4*q^
→˓14+t^6*q^12+t^6*q^18+2*t^6*q^16+t^6*q^14)*x1^2/((t*q^4-1)*(t*q^4+1)*(q^7*t^2-
→˓1)*(q^7*t^2+1)*(t*q^3-1)*(t*q^3+1))+(t-1)*(t+1)*(-1-t^2*q^6+t^2+t^4*q^8)*(q^
→˓4+1)*(q^2+1)*q*x1^3/((q^7*t^2+1)*(q^7*t^2-1)*(t*q^4-1)*(t*q^4+1))+1/x1^4+(t-
→˓1)*(t+1)*x1^4/((t*q^4-1)*(t*q^4+1))
sage: to_SR(E[mu]) - expected
0

Type 𝐵𝐶 dual, comparison with hand calculations by Bogdan Ion:

sage: K = QQ['q,q1,q2'].fraction_field()
sage: q,q1,q2 = K.gens()
sage: ct = CartanType(["BC",2,2]).dual()
sage: E = NonSymmetricMacdonaldPolynomials(ct, q=q, q1=q1, q2=q2)
sage: KL = E.domain(); KL
Algebra of the Ambient space of the Root system of type ['B', 2]
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational Field
sage: alpha = E.keys().simple_roots(); alpha
Finite family {1: (1, -1), 2: (0, 1)}
sage: omega=E.keys().fundamental_weights(); omega
Finite family {1: (1, 0), 2: (1/2, 1/2)}
sage: epsilon = E.keys().basis(); epsilon
Finite family {0: (1, 0), 1: (0, 1)}

Note: Sage’s 𝑞 is the usual 𝑞2:

2314 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: E.L().null_root()
e['delta']
sage: E.L().null_coroot()
2*e['deltacheck']

Some eigenvectors:

sage: E[0*omega[1]]
B[(0, 0)]
sage: E[omega[1]]
((-q^2*q1^3*q2-q^2*q1^2*q2^2)/(q^2*q1^4-q2^4))*B[(0, 0)] + B[(1, 0)]
sage: Eomega1 = KL.one() * (q^2*(-q1/q2)^2*(1-(-q1/q2))) / (1-q^2*(-q1/q2)^4) + KL.
→˓monomial(omega[1])
sage: E[omega[1]] == Eomega1
True

Checking the 𝑌 s:

sage: Y = E.Y()
sage: alphacheck = Y.keys().simple_roots()
sage: Y0 = Y[alphacheck[0]]
sage: Y1 = Y[alphacheck[1]]
sage: Y2 = Y[alphacheck[2]]

sage: Y0.word, Y0.signs, Y0.scalar
((0, 1, 2, 1, 0, 1, 2, 1), (-1, -1, -1, -1, -1, -1, -1, -1), q1^4*q2^4/q^2)
sage: Y1.word, Y1.signs, Y1.scalar
((1, 2, 0, 1, 2, 0), (1, 1, -1, 1, -1, 1), 1/(-q1*q2))
sage: Y2.word, Y2.signs, Y2.scalar
((2, 1, 0, 1), (1, 1, 1, -1), 1/(-q1*q2))

sage: E.eigenvalues(0*omega[1])
[q2^4/(q^2*q1^4), q1/(-q2), q1/(-q2)]

Checking the 𝑇 and 𝑇−1 s:

sage: T = E._T_Y
sage: Tinv0 = T.Tw_inverse([0])
sage: Tinv1 = T.Tw_inverse([1])
sage: Tinv2 = T.Tw_inverse([2])

sage: for x in [0*epsilon[0], -epsilon[0], -epsilon[1], epsilon[0], epsilon[1]]:
....: x = KL.monomial(x)
....: assert Tinv0(T[0](x)) == x and T[0](Tinv0(x)) == x
....: assert Tinv1(T[1](x)) == x and T[1](Tinv1(x)) == x
....: assert Tinv2(T[2](x)) == x and T[2](Tinv2(x)) == x

sage: start = E[omega[1]]; start
((-q^2*q1^3*q2-q^2*q1^2*q2^2)/(q^2*q1^4-q2^4))*B[(0, 0)] + B[(1, 0)]
sage: Tinv1(Tinv2(Tinv1(Tinv0(Tinv1(Tinv2(Tinv1(Tinv0(start)))))))) * (q1*q2)^4/q^2␣
→˓== Y0(start)
True
sage: Y0(start) == q^2*q1^4/q2^4 * start
True

5.1. Comprehensive Module List 2315

Combinatorics, Release 9.7

Checking the relation between the 𝑌 s:

sage: q^2 * Y0(Y1(Y1(Y2(Y2(start))))) == start
True
sage: for x in [0*epsilon[0], -epsilon[0], -epsilon[1], epsilon[0], epsilon[1]]:
....: x = KL.monomial(x)
....: assert q^2 * Y0(Y1(Y1(Y2(Y2(start))))) == start

KL0()
Return the group algebra where the nonsymmetric Macdonald polynomials live.

EXAMPLES:

sage: NonSymmetricMacdonaldPolynomials("B2~").KL0()
Algebra of the Ambient space of the Root system of type ['B', 2]
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational␣
→˓Field
sage: NonSymmetricMacdonaldPolynomials("B2~*").KL0()
Algebra of the Ambient space of the Root system of type ['C', 2]
over Fraction Field of Multivariate Polynomial Ring in q, q1, q2 over Rational␣
→˓Field

L()
Return the affinization of the classical weight space.

EXAMPLES:

sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).L()
Ambient space of the Root system of type ['B', 2, 1]

L0()
Return the space indexing the monomials of the nonsymmetric Macdonald polynomials.

EXAMPLES:

sage: NonSymmetricMacdonaldPolynomials("B2~").L0()
Ambient space of the Root system of type ['B', 2]
sage: NonSymmetricMacdonaldPolynomials("B2~*").L0()
Ambient space of the Root system of type ['C', 2]

L_check()
Return the other affinization of the classical weight space.

Todo: should this just return 𝐿 in the simply laced case?

EXAMPLES:

sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).L_check()
Coambient space of the Root system of type ['C', 2, 1]
sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).L_check().classical()
Ambient space of the Root system of type ['B', 2]

L_prime()
The affine space where classical weights are lifted for the recursion.

Also the parent of 𝜌′.

2316 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

In the twisted case, this is the affinization of the classical ambient space:

sage: NonSymmetricMacdonaldPolynomials("B2~*").L()
Ambient space of the Root system of type ['B', 2, 1]^*
sage: NonSymmetricMacdonaldPolynomials("B2~*").L().classical()
Ambient space of the Root system of type ['C', 2]

sage: NonSymmetricMacdonaldPolynomials("B2~*").L_prime()
Ambient space of the Root system of type ['B', 2, 1]^*
sage: NonSymmetricMacdonaldPolynomials("B2~*").L_prime().classical()
Ambient space of the Root system of type ['C', 2]

In the untwisted case, this is the other affinization of the classical ambient space:

sage: NonSymmetricMacdonaldPolynomials("B2~").L()
Ambient space of the Root system of type ['B', 2, 1]
sage: NonSymmetricMacdonaldPolynomials("B2~").L().classical()
Ambient space of the Root system of type ['B', 2]

sage: NonSymmetricMacdonaldPolynomials("B2~").L_prime()
Coambient space of the Root system of type ['C', 2, 1]
sage: NonSymmetricMacdonaldPolynomials("B2~").L_prime().classical()
Ambient space of the Root system of type ['B', 2]

For simply laced, the two affinizations coincide:

sage: NonSymmetricMacdonaldPolynomials("A2~").L()
Ambient space of the Root system of type ['A', 2, 1]
sage: NonSymmetricMacdonaldPolynomials("A2~").L().classical()
Ambient space of the Root system of type ['A', 2]

sage: NonSymmetricMacdonaldPolynomials("A2~").L_prime()
Coambient space of the Root system of type ['A', 2, 1]
sage: NonSymmetricMacdonaldPolynomials("A2~").L_prime().classical()
Ambient space of the Root system of type ['A', 2]

Note: do we want the coambient space of type 𝐴(1)
2 instead?

For type BC:

sage: NonSymmetricMacdonaldPolynomials(["BC",3,2]).L_prime()
Ambient space of the Root system of type ['BC', 3, 2]

Q_to_Qcheck()
The reindexing of the index set of the Y’s by the coroot lattice.

EXAMPLES:

sage: E = NonSymmetricMacdonaldPolynomials("C2~")
sage: alphacheck = E.Y().keys().simple_roots()
sage: E.Q_to_Qcheck(alphacheck[0])
alphacheck[0] - alphacheck[2]

(continues on next page)

5.1. Comprehensive Module List 2317

Combinatorics, Release 9.7

(continued from previous page)

sage: E.Q_to_Qcheck(alphacheck[1])
alphacheck[1]
sage: E.Q_to_Qcheck(alphacheck[2])
alphacheck[2]

sage: x = alphacheck[1] + 2*alphacheck[2]
sage: x.parent()
Root lattice of the Root system of type ['B', 2, 1]
sage: E.Q_to_Qcheck(x)
alphacheck[1] + 2*alphacheck[2]
sage: _.parent()
Coroot lattice of the Root system of type ['C', 2, 1]

Y()
Return the family of 𝑌 operators whose eigenvectors are the nonsymmetric Macdonald polynomials.

EXAMPLES:

sage: NonSymmetricMacdonaldPolynomials("C2~").Y()
Lazy family (<lambda>(i))_{i in Root lattice of the Root system of type ['B', 2,
→˓ 1]}
sage: _.keys().classical()
Root lattice of the Root system of type ['B', 2]

sage: NonSymmetricMacdonaldPolynomials("C2~*").Y()
Lazy family (<...Y_lambdacheck...>(i))_{i in Coroot lattice of the Root system␣
→˓of type ['C', 2, 1]^*}
sage: _.keys().classical()
Root lattice of the Root system of type ['C', 2]

sage: NonSymmetricMacdonaldPolynomials(["BC", 3, 2]).Y()
Lazy family (<...Y_lambdacheck...>(i))_{i in Coroot lattice of the Root system␣
→˓of type ['BC', 3, 2]}
sage: _.keys().classical()
Root lattice of the Root system of type ['B', 3]

affine_lift(mu)
Return the affinization of 𝜇 in 𝐿′.

INPUT:

• mu – a classical weight 𝜇

See also:

• hecke_algebra_representation.CherednikOperatorsEigenvectors.affine_lift()

• affine_retract()

• L_prime()

EXAMPLES:

In the untwisted case, this is the other affinization at level 1:

2318 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: E = NonSymmetricMacdonaldPolynomials("B2~")
sage: L0 = E.keys(); L0
Ambient space of the Root system of type ['B', 2]
sage: omega = L0.fundamental_weights()
sage: E.affine_lift(omega[1])
e[0] + e['deltacheck']
sage: E.affine_lift(omega[1]).parent()
Coambient space of the Root system of type ['C', 2, 1]

In the twisted case, this is the usual affinization at level 1:

sage: E = NonSymmetricMacdonaldPolynomials("B2~*")
sage: L0 = E.keys(); L0
Ambient space of the Root system of type ['C', 2]
sage: omega = L0.fundamental_weights()
sage: E.affine_lift(omega[1])
e[0] + e['deltacheck']
sage: E.affine_lift(omega[1]).parent()
Ambient space of the Root system of type ['B', 2, 1]^*

affine_retract(mu)
Retract the affine weight 𝜇 into a classical weight.

INPUT:

• mu – an affine weight 𝜇 in 𝐿′

See also:

• hecke_algebra_representation.HeckeAlgebraRepresentation.affine_retract()

• affine_lift()

• L_prime()

EXAMPLES:

sage: E = NonSymmetricMacdonaldPolynomials("B2~")
sage: L0 = E.keys(); L0
Ambient space of the Root system of type ['B', 2]
sage: omega = L0.fundamental_weights()
sage: E.affine_lift(omega[1])
e[0] + e['deltacheck']
sage: E.affine_retract(E.affine_lift(omega[1]))
(1, 0)

cartan_type()
Return Cartan type of self.

EXAMPLES:

sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).cartan_type()
['B', 2, 1]

eigenvalue_experimental(mu, l)
Return the eigenvalue of 𝑌 𝜆∨ acting on the macdonald polynomial 𝐸𝜇.

5.1. Comprehensive Module List 2319

Combinatorics, Release 9.7

INPUT:

• mu – the index 𝜇 of an eigenvector

• 𝑙 – an index 𝜆∨ of some 𝑌

Note:

• This method is currently not used; most tests below even test the naive method. They are left here as
a basis for a future implementation.

• This is actually equivariant, as long as 𝑠𝑖 does not fix 𝜆.

• This method is only really needed for 𝜆∨ = 𝛼∨𝑖 with 𝑖 = 0, ..., 𝑛.

See Corollary 6.11 of [Haiman06].

EXAMPLES:

sage: K = QQ['q,t'].fraction_field()
sage: q,t = K.gens()
sage: q1 = t
sage: q2 = -1
sage: KL = RootSystem(["A",1,1]).ambient_space().algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
sage: L0 = E.keys()
sage: E.eigenvalues(L0([0,0])) # Checked by hand by Mark and Arun
[1/(q*t), t]
sage: alpha = E.Y().keys().simple_roots()
sage: E.eigenvalue_experimental(L0([0,0]), alpha[0]) # todo: not implemented
1/(q*t)
sage: E.eigenvalue_experimental(L0([0,0]), alpha[1])
t

Some examples of eigenvalues (not mathematically checked!!!):

sage: E.eigenvalues(L0([1,0]))
[t, 1/(q*t)]
sage: E.eigenvalues(L0([0,1]))
[1/(q^2*t), q*t]
sage: E.eigenvalues(L0([1,1]))
[1/(q*t), t]
sage: E.eigenvalues(L0([2,1]))
[t, 1/(q*t)]
sage: E.eigenvalues(L0([-1,1]))
[(-1)/(-q^3*t), q^2*t]
sage: E.eigenvalues(L0([-2,1]))
[(-1)/(-q^4*t), q^3*t]
sage: E.eigenvalues(L0([-2,0]))
[(-1)/(-q^3*t), q^2*t]

Some type 𝐵 examples:

sage: K = QQ['q,t'].fraction_field()
sage: q,t = K.gens()
sage: q1 = t

(continues on next page)

2320 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: q2 = -1
sage: L = RootSystem(["B",2,1]).ambient_space()
sage: KL = L.algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
sage: L0 = E.keys()
sage: alpha = L.simple_coroots()
sage: E.eigenvalue(L0((0,0)), alpha[0]) # not checked # not tested
q/t
sage: E.eigenvalue(L0((1,0)), alpha[1]) # What Mark got by hand # not tested
q
sage: E.eigenvalue(L0((1,0)), alpha[2]) # not checked # not tested
t
sage: E.eigenvalue(L0((1,0)), alpha[0]) # not checked # not tested
1

sage: L = RootSystem("B2~*").ambient_space()
sage: KL = L.algebra(K)
sage: E = NonSymmetricMacdonaldPolynomials(KL,q, q1, q2)
sage: L0 = E.keys()
sage: alpha = L.simple_coroots()
sage: E.eigenvalue(L0((0,0)), alpha[0]) # assuming Mark's calculation is correct,
→˓ one should get # not tested
1/(q*t^2)

The expected value can more or less be read off from equation (37), Corollary 6.15 of [Haiman06]

Todo:

• Use proposition 6.9 of [Haiman06] to check the action of the 𝑌 s on monomials.

• Generalize to any 𝑞1, 𝑞2.

• Check claim by Mark: all scalar products should occur in the finite weight lattice, with alpha 0 being
the appropriate projection of the affine alpha 0. Question: can this be emulated by being at level 0?

rho_prime()
Return the level 0 sum of the classical fundamental weights in 𝐿′.

See also:

L_prime()

EXAMPLES:

Untwisted case:

sage: NonSymmetricMacdonaldPolynomials("B2~").rho_prime() # CHECKME
3/2*e[0] + 1/2*e[1]
sage: NonSymmetricMacdonaldPolynomials("B2~").rho_prime().parent()
Coambient space of the Root system of type ['C', 2, 1]

Twisted case:

sage: NonSymmetricMacdonaldPolynomials("B2~*").rho_prime() # CHECKME
2*e[0] + e[1]

(continues on next page)

5.1. Comprehensive Module List 2321

Combinatorics, Release 9.7

(continued from previous page)

sage: NonSymmetricMacdonaldPolynomials("B2~*").rho_prime().parent()
Ambient space of the Root system of type ['B', 2, 1]^*

seed(mu)
Return 𝐸𝜇 for 𝜇 minuscule, i.e. in the fundamental alcove.

INPUT:

• mu – the index 𝜇 of an eigenvector

EXAMPLES:

sage: E = NonSymmetricMacdonaldPolynomials(["A",2,1])
sage: omega = E.keys().fundamental_weights()
sage: E.seed(omega[1])
B[(1, 0, 0)]

symmetric_macdonald_polynomial(mu)
Return the symmetric Macdonald polynomial indexed by 𝜇.

INPUT:

• mu – a dominant weight 𝜇

Warning: The result is Weyl-symmetric only for Hecke parameters of the form 𝑞1 = 𝑣 and 𝑞2 = −1/𝑣.
In general the value of 𝑣 below, should be the square root of−𝑞1/𝑞2, but the use of 𝑞1 = 𝑡 and 𝑞2 = −1
results in nonintegral powers of 𝑡.

EXAMPLES:

sage: K = QQ['q,v,t'].fraction_field()
sage: q,v,t = K.gens()
sage: E = NonSymmetricMacdonaldPolynomials(['A',2,1], q, v, -1/v)
sage: om = E.L0().fundamental_weights()
sage: E.symmetric_macdonald_polynomial(om[2])
B[(1, 1, 0)] + B[(1, 0, 1)] + B[(0, 1, 1)]
sage: E.symmetric_macdonald_polynomial(2*om[1])
((q*v^2+v^2-q-1)/(q*v^2-1))*B[(1, 1, 0)] + ((q*v^2+v^2-q-1)/(q*v^2-1))*B[(1, 0,␣
→˓1)] + B[(2, 0, 0)] + ((q*v^2+v^2-q-1)/(q*v^2-1))*B[(0, 1, 1)] + B[(0, 2, 0)]␣
→˓+ B[(0, 0, 2)]
sage: f = E.symmetric_macdonald_polynomial(E.L0()((2,1,0))); f
((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(1, 1, 1)] + B[(1, 2, 0)] + B[(1, 0,␣
→˓2)] + B[(2, 1, 0)] + B[(2, 0, 1)] + B[(0, 1, 2)] + B[(0, 2, 1)]

We compare with the type 𝐴 Macdonald polynomials coming from symmetric functions:

sage: P = SymmetricFunctions(K).macdonald().P()
sage: g = P[2,1].expand(3); g
x0^2*x1 + x0*x1^2 + x0^2*x2 + (2*q*t^2 - q*t - q + t^2 + t - 2)/(q*t^2 -␣
→˓1)*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2
sage: fe = f.expand(g.parent().gens()); fe
x0^2*x1 + x0*x1^2 + x0^2*x2 + (2*q*v^4 - q*v^2 - q + v^4 + v^2 - 2)/(q*v^4 -␣
→˓1)*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2
sage: g.map_coefficients(lambda x: x.subs(t=v*v)) == fe

(continues on next page)

2322 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

True

sage: E = NonSymmetricMacdonaldPolynomials(['C',3,1], q, v, -1/v)
sage: om = E.L0().fundamental_weights()
sage: E.symmetric_macdonald_polynomial(om[1]+om[2])
B[(-2, -1, 0)] + B[(-2, 1, 0)] + B[(-2, 0, -1)] + B[(-2, 0, 1)] + ((4*q^3*v^
→˓14+2*q^2*v^14-2*q^3*v^12+2*q^2*v^12-2*q^3*v^10+q*v^12-5*q^2*v^10-5*q*v^4+q^
→˓2*v^2-2*v^4+2*q*v^2-2*v^2+2*q+4)/(q^3*v^14-q^2*v^10-q*v^4+1))*B[(-1, 0, 0)] +␣
→˓B[(-1, -2, 0)] + ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(-1, -1, -1)] +␣
→˓((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(-1, -1, 1)] + ((2*q*v^4+v^4-q*v^
→˓2+v^2-q-2)/(q*v^4-1))*B[(-1, 1, -1)] + ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-
→˓1))*B[(-1, 1, 1)] + B[(-1, 2, 0)] + B[(-1, 0, -2)] + B[(-1, 0, 2)] + ((4*q^
→˓3*v^14+2*q^2*v^14-2*q^3*v^12+2*q^2*v^12-2*q^3*v^10+q*v^12-5*q^2*v^10-5*q*v^
→˓4+q^2*v^2-2*v^4+2*q*v^2-2*v^2+2*q+4)/(q^3*v^14-q^2*v^10-q*v^4+1))*B[(1, 0,␣
→˓0)] + B[(1, -2, 0)] + ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(1, -1, -1)]␣
→˓+ ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-1))*B[(1, -1, 1)] + ((2*q*v^4+v^4-q*v^
→˓2+v^2-q-2)/(q*v^4-1))*B[(1, 1, -1)] + ((2*q*v^4+v^4-q*v^2+v^2-q-2)/(q*v^4-
→˓1))*B[(1, 1, 1)] + B[(1, 2, 0)] + B[(1, 0, -2)] + B[(1, 0, 2)] + B[(2, -1,␣
→˓0)] + B[(2, 1, 0)] + B[(2, 0, -1)] + B[(2, 0, 1)] + B[(0, -2, -1)] + B[(0, -2,
→˓ 1)] + ((-4*q^3*v^14-2*q^2*v^14+2*q^3*v^12-2*q^2*v^12+2*q^3*v^10-q*v^12+5*q^
→˓2*v^10+5*q*v^4-q^2*v^2+2*v^4-2*q*v^2+2*v^2-2*q-4)/(-q^3*v^14+q^2*v^10+q*v^4-
→˓1))*B[(0, -1, 0)] + B[(0, -1, -2)] + B[(0, -1, 2)] + ((-4*q^3*v^14-2*q^2*v^
→˓14+2*q^3*v^12-2*q^2*v^12+2*q^3*v^10-q*v^12+5*q^2*v^10+5*q*v^4-q^2*v^2+2*v^4-
→˓2*q*v^2+2*v^2-2*q-4)/(-q^3*v^14+q^2*v^10+q*v^4-1))*B[(0, 1, 0)] + B[(0, 1, -
→˓2)] + B[(0, 1, 2)] + B[(0, 2, -1)] + B[(0, 2, 1)] + ((4*q^3*v^14+2*q^2*v^14-
→˓2*q^3*v^12+2*q^2*v^12-2*q^3*v^10+q*v^12-5*q^2*v^10-5*q*v^4+q^2*v^2-2*v^
→˓4+2*q*v^2-2*v^2+2*q+4)/(q^3*v^14-q^2*v^10-q*v^4+1))*B[(0, 0, -1)] + ((4*q^3*v^
→˓14+2*q^2*v^14-2*q^3*v^12+2*q^2*v^12-2*q^3*v^10+q*v^12-5*q^2*v^10-5*q*v^4+q^
→˓2*v^2-2*v^4+2*q*v^2-2*v^2+2*q+4)/(q^3*v^14-q^2*v^10-q*v^4+1))*B[(0, 0, 1)]

An example for type 𝐺:

sage: E = NonSymmetricMacdonaldPolynomials(['G',2,1], q, v, -1/v)
sage: om = E.L0().fundamental_weights()
sage: E.symmetric_macdonald_polynomial(2*om[1])
((3*q^6*v^22+3*q^5*v^22-3*q^6*v^20+q^4*v^22-4*q^5*v^20+q^4*v^18-q^5*v^16+q^3*v^
→˓18-2*q^4*v^16+q^5*v^14-q^3*v^16+q^4*v^14-4*q^4*v^12+q^2*v^14+q^5*v^10-8*q^3*v^
→˓12+4*q^4*v^10-4*q^2*v^12+8*q^3*v^10-q*v^12-q^4*v^8+4*q^2*v^10-q^2*v^8+q^3*v^6-
→˓q*v^8+2*q^2*v^6-q^3*v^4+q*v^6-q^2*v^4+4*q*v^2-q^2+3*v^2-3*q-3)/(q^6*v^22-q^
→˓5*v^20-q^4*v^12-q^3*v^12+q^3*v^10+q^2*v^10+q*v^2-1))*B[(0, 0, 0)] + ((q*v^2+v^
→˓2-q-1)/(q*v^2-1))*B[(-2, 1, 1)] + B[(-2, 2, 0)] + B[(-2, 0, 2)] + ((-q*v^2-v^
→˓2+q+1)/(-q*v^2+1))*B[(-1, -1, 2)] + ((2*q^4*v^12+2*q^3*v^12-2*q^4*v^10-2*q^
→˓3*v^10+q^2*v^8-q^3*v^6+q*v^8-2*q^2*v^6+q^3*v^4-q*v^6+q^2*v^4-2*q*v^2-2*v^
→˓2+2*q+2)/(q^4*v^12-q^3*v^10-q*v^2+1))*B[(-1, 1, 0)] + ((-q*v^2-v^2+q+1)/(-q*v^
→˓2+1))*B[(-1, 2, -1)] + ((2*q^4*v^12+2*q^3*v^12-2*q^4*v^10-2*q^3*v^10+q^2*v^8-
→˓q^3*v^6+q*v^8-2*q^2*v^6+q^3*v^4-q*v^6+q^2*v^4-2*q*v^2-2*v^2+2*q+2)/(q^4*v^12-
→˓q^3*v^10-q*v^2+1))*B[(-1, 0, 1)] + ((-q*v^2-v^2+q+1)/(-q*v^2+1))*B[(1, -2,␣
→˓1)] + ((-2*q^4*v^12-2*q^3*v^12+2*q^4*v^10+2*q^3*v^10-q^2*v^8+q^3*v^6-q*v^
→˓8+2*q^2*v^6-q^3*v^4+q*v^6-q^2*v^4+2*q*v^2+2*v^2-2*q-2)/(-q^4*v^12+q^3*v^
→˓10+q*v^2-1))*B[(1, -1, 0)] + ((-q*v^2-v^2+q+1)/(-q*v^2+1))*B[(1, 1, -2)] + ((-
→˓2*q^4*v^12-2*q^3*v^12+2*q^4*v^10+2*q^3*v^10-q^2*v^8+q^3*v^6-q*v^8+2*q^2*v^6-q^
→˓3*v^4+q*v^6-q^2*v^4+2*q*v^2+2*v^2-2*q-2)/(-q^4*v^12+q^3*v^10+q*v^2-1))*B[(1,␣
→˓0, -1)] + B[(2, -2, 0)] + ((q*v^2+v^2-q-1)/(q*v^2-1))*B[(2, -1, -1)] + B[(2,␣
→˓0, -2)] + B[(0, -2, 2)] + ((-2*q^4*v^12-2*q^3*v^12+2*q^4*v^10+2*q^3*v^10-q^
→˓2*v^8+q^3*v^6-q*v^8+2*q^2*v^6-q^3*v^4+q*v^6-q^2*v^4+2*q*v^2+2*v^2-2*q-2)/(-q^
→˓4*v^12+q^3*v^10+q*v^2-1))*B[(0, -1, 1)] + ((2*q^4*v^12+2*q^3*v^12-2*q^4*v^10-
→˓2*q^3*v^10+q^2*v^8-q^3*v^6+q*v^8-2*q^2*v^6+q^3*v^4-q*v^6+q^2*v^4-2*q*v^2-2*v^
→˓2+2*q+2)/(q^4*v^12-q^3*v^10-q*v^2+1))*B[(0, 1, -1)] + B[(0, 2, -2)]

(continues on next page)

5.1. Comprehensive Module List 2323

Combinatorics, Release 9.7

(continued from previous page)

twist(mu, i)
Act by 𝑠𝑖 on the affine weight 𝜇.

This calls simple_reflection; which is semantically the same as the default implementation.

EXAMPLES:

sage: W = WeylGroup(["B",3])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word())
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True)
sage: E = T.Y_eigenvectors()
sage: w = W.an_element(); w
123
sage: E.twist(w,1)
1231

5.1.230 Pieri Factors

class sage.combinat.root_system.pieri_factors.PieriFactors
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An abstract class for sets of Pieri factors, used for constructing Stanley symmetric functions. The set of Pieri
factors for a given type can be realized as an order ideal of the Bruhat order poset generated by a certain set of
maximal elements.

See also:

• WeylGroups.ParentMethods.pieri_factors()

• WeylGroups.ElementMethods.stanley_symmetric_function()

EXAMPLES:

sage: W = WeylGroup(['A',4])
sage: PF = W.pieri_factors()
sage: PF.an_element().reduced_word()
[4, 3, 2, 1]
sage: Waff = WeylGroup(['A',4,1])
sage: PFaff = Waff.pieri_factors()
sage: Waff.from_reduced_word(PF.an_element().reduced_word()) in PFaff
True

sage: W = WeylGroup(['B',3,1])
sage: PF = W.pieri_factors()
sage: W.from_reduced_word([2,3,2]) in PF.elements()
True
sage: PF.cardinality()
47

(continues on next page)

2324 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/categories/sage/categories/weyl_groups.html#sage.categories.weyl_groups.WeylGroups.ParentMethods.pieri_factors
../../../../../../../html/en/reference/categories/sage/categories/weyl_groups.html#sage.categories.weyl_groups.WeylGroups.ElementMethods.stanley_symmetric_function

Combinatorics, Release 9.7

(continued from previous page)

sage: W = WeylGroup(['C',3,1])
sage: PF = W.pieri_factors()
sage: PF.generating_series()
6*z^6 + 14*z^5 + 18*z^4 + 15*z^3 + 9*z^2 + 4*z + 1
sage: sorted(w.reduced_word() for w in PF if w.length() == 2)
[[0, 1], [1, 0], [1, 2], [2, 0], [2, 1],
[2, 3], [3, 0], [3, 1], [3, 2]]

REFERENCES:

• [FoSta1994]

• [BH1994]

• [Lam1996]

• [Lam2008]

• [LSS2009]

• [Pon2010]

default_weight()
Return the function 𝑖 ↦→ 𝑧𝑖, where 𝑧 is the generator of QQ['z'].

EXAMPLES:

sage: W = WeylGroup(["A", 3, 1])
sage: weight = W.pieri_factors().default_weight()
sage: weight(1)
z
sage: weight(5)
z^5

elements()
Return the elements of self.

Those are constructed as the elements below the maximal elements of self in Bruhat order.

OUTPUT: a RecursivelyEnumeratedSet_generic object

EXAMPLES:

sage: PF = WeylGroup(['A',3]).pieri_factors()
sage: sorted(w.reduced_word() for w in PF.elements())
[[], [1], [2], [2, 1], [3], [3, 1], [3, 2], [3, 2, 1]]

See also:

maximal_elements()

Todo: Possibly remove this method and instead have this class inherit from
RecursivelyEnumeratedSet_generic.

generating_series(weight=None)
Return a length generating series for the elements of self.

EXAMPLES:

5.1. Comprehensive Module List 2325

Combinatorics, Release 9.7

sage: PF = WeylGroup(['C',3,1]).pieri_factors()
sage: PF.generating_series()
6*z^6 + 14*z^5 + 18*z^4 + 15*z^3 + 9*z^2 + 4*z + 1

sage: PF = WeylGroup(['B',4]).pieri_factors()
sage: PF.generating_series()
z^7 + 6*z^6 + 14*z^5 + 18*z^4 + 15*z^3 + 9*z^2 + 4*z + 1

max_length()
Return the maximal length of a Pieri factor.

EXAMPLES:

In type A and A affine, this is 𝑛:

sage: WeylGroup(['A',5]).pieri_factors().max_length()
5
sage: WeylGroup(['A',5,1]).pieri_factors().max_length()
5

In type B and B affine, this is 2𝑛− 1:

sage: WeylGroup(['B',5,1]).pieri_factors().max_length()
9
sage: WeylGroup(['B',5]).pieri_factors().max_length()
9

In type C affine this is 2𝑛:

sage: WeylGroup(['C',5,1]).pieri_factors().max_length()
10

In type D affine this is 2𝑛− 2:

sage: WeylGroup(['D',5,1]).pieri_factors().max_length()
8

class sage.combinat.root_system.pieri_factors.PieriFactors_affine_type
Bases: sage.combinat.root_system.pieri_factors.PieriFactors

maximal_elements()
Return the maximal elements of self with respect to Bruhat order.

The current implementation is via a conjectural type-free formula. Use
maximal_elements_combinatorial() for proven type-specific implementations. To compare
type-free and type-specific (combinatorial) implementations, use method _test_maximal_elements().

EXAMPLES:

sage: W = WeylGroup(['A',4,1])
sage: PF = W.pieri_factors()
sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
[[0, 4, 3, 2], [1, 0, 4, 3], [2, 1, 0, 4], [3, 2, 1, 0], [4, 3, 2, 1]]

sage: W = WeylGroup(RootSystem(["C",3,1]).weight_space())
sage: PF = W.pieri_factors()

(continues on next page)

2326 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
[[0, 1, 2, 3, 2, 1], [1, 0, 1, 2, 3, 2], [1, 2, 3, 2, 1, 0],
[2, 1, 0, 1, 2, 3], [2, 3, 2, 1, 0, 1], [3, 2, 1, 0, 1, 2]]

sage: W = WeylGroup(RootSystem(["B",3,1]).weight_space())
sage: PF = W.pieri_factors()
sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
[[0, 2, 3, 2, 0], [1, 0, 2, 3, 2], [1, 2, 3, 2, 1],
[2, 1, 0, 2, 3], [2, 3, 2, 1, 0], [3, 2, 1, 0, 2]]

sage: W = WeylGroup(['D',4,1])
sage: PF = W.pieri_factors()
sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
[[0, 2, 4, 3, 2, 0], [1, 0, 2, 4, 3, 2], [1, 2, 4, 3, 2, 1],
[2, 1, 0, 2, 4, 3], [2, 4, 3, 2, 1, 0], [3, 2, 1, 0, 2, 3],
[4, 2, 1, 0, 2, 4], [4, 3, 2, 1, 0, 2]]

class sage.combinat.root_system.pieri_factors.PieriFactors_finite_type
Bases: sage.combinat.root_system.pieri_factors.PieriFactors

The Pieri factors of finite type A are the restriction of the Pieri factors of affine type A to finite permutations
(under the canonical embedding of finite type A into the affine Weyl group), and the Pieri factors of finite type
B are the restriction of the Pieri factors of affine type C. The finite type D Pieri factors are (weakly) conjectured
to be the restriction of the Pieri factors of affine type D.

maximal_elements()
The current algorithm uses the fact that the maximal Pieri factors of affine type A,B,C, or D either contain
a finite Weyl group element, or contain an affine Weyl group element whose reflection by 𝑠0 gets a finite
Weyl group element, and that either of these finite group elements will serve as a maximal element for finite
Pieri factors. A better algorithm is desirable.

EXAMPLES:

sage: PF = WeylGroup(['A',5]).pieri_factors()
sage: [v.reduced_word() for v in PF.maximal_elements()]
[[5, 4, 3, 2, 1]]

sage: WeylGroup(['B',4]).pieri_factors().maximal_elements()
[
[-1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
]

class sage.combinat.root_system.pieri_factors.PieriFactors_type_A(W)
Bases: sage.combinat.root_system.pieri_factors.PieriFactors_finite_type

The set of Pieri factors for finite type A.

This is the set of elements of the Weyl group that have a reduced word that is strictly decreasing. This may also
be viewed as the restriction of affine type A Pieri factors to finite Weyl group elements.

maximal_elements_combinatorial()
Return the maximal Pieri factors, using the type A combinatorial description.

5.1. Comprehensive Module List 2327

Combinatorics, Release 9.7

EXAMPLES:

sage: W = WeylGroup(['A',4])
sage: PF = W.pieri_factors()
sage: PF.maximal_elements_combinatorial()[0].reduced_word()
[4, 3, 2, 1]

stanley_symm_poly_weight(w)
EXAMPLES:

sage: W = WeylGroup(['A',4])
sage: PF = W.pieri_factors()
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([3,1]))
0

class sage.combinat.root_system.pieri_factors.PieriFactors_type_A_affine(W, min_length,
max_length,
min_support,
max_support)

Bases: sage.combinat.root_system.pieri_factors.PieriFactors_affine_type

The set of Pieri factors for type A affine, that is the set of elements of the Weyl Group which are cyclically
decreasing.

Those are used for constructing (affine) Stanley symmetric functions.

The Pieri factors are in bijection with the proper subsets of the index_set. The bijection is given by the support.
Namely, let 𝑓 be a Pieri factor, and 𝑟𝑒𝑑 a reduced word for 𝑓 . No simple reflection appears twice in red, and the
support 𝑆 of 𝑟𝑒𝑑 (that is the 𝑖 such that 𝑠𝑖 appears in 𝑟𝑒𝑑) does not depend on the reduced word).

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: WeylGroup(["A", 3, 1]).pieri_factors().cardinality()
15

generating_series(weight=None)
Return a length generating series for the elements of self.

EXAMPLES:

sage: W = WeylGroup(["A", 3, 1])
sage: W.pieri_factors().cardinality()
15
sage: W.pieri_factors().generating_series()
4*z^3 + 6*z^2 + 4*z + 1

maximal_elements_combinatorial()
Return the maximal Pieri factors, using the affine type A combinatorial description.

EXAMPLES:

sage: W = WeylGroup(['A',4,1])
sage: PF = W.pieri_factors()
sage: [w.reduced_word() for w in PF.maximal_elements_combinatorial()]
[[3, 2, 1, 0], [2, 1, 0, 4], [1, 0, 4, 3], [0, 4, 3, 2], [4, 3, 2, 1]]

2328 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

stanley_symm_poly_weight(w)
Weight used in computing (affine) Stanley symmetric polynomials for affine type A.

EXAMPLES:

sage: W = WeylGroup(['A',5,1])
sage: PF = W.pieri_factors()
sage: PF.stanley_symm_poly_weight(W.one())
0
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([5,4,2,1,0]))
0

subset(length)
Return the subset of the elements of self of length length.

INPUT:

• length – a non-negative integer

EXAMPLES:

sage: PF = WeylGroup(["A", 3, 1]).pieri_factors(); PF
Pieri factors for Weyl Group of type ['A', 3, 1] (as a matrix group acting on␣
→˓the root space)
sage: PF3 = PF.subset(length = 2)
sage: PF3.cardinality()
6

class sage.combinat.root_system.pieri_factors.PieriFactors_type_B(W)
Bases: sage.combinat.root_system.pieri_factors.PieriFactors_finite_type

The type B finite Pieri factors are realized as the set of elements that have a reduced word that is a subword of
12...(𝑛−1)𝑛(𝑛−1)...21. They are the restriction of the type C affine Pieri factors to the set of finite Weyl group
elements under the usual embedding.

maximal_elements_combinatorial()
Return the maximal Pieri factors, using the type B combinatorial description.

EXAMPLES:

sage: PF = WeylGroup(['B',4]).pieri_factors()
sage: PF.maximal_elements_combinatorial()[0].reduced_word()
[1, 2, 3, 4, 3, 2, 1]

stanley_symm_poly_weight(w)
Weight used in computing Stanley symmetric polynomials of type 𝐵.

The weight for finite type B is the number of components of the support of an element minus the number
of occurrences of 𝑛 in a reduced word.

EXAMPLES:

sage: W = WeylGroup(['B',5])
sage: PF = W.pieri_factors()
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([3,1,5]))
2
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([3,4,5]))
0

(continues on next page)

5.1. Comprehensive Module List 2329

Combinatorics, Release 9.7

(continued from previous page)

sage: PF.stanley_symm_poly_weight(W.from_reduced_word([1,2,3,4,5,4]))
0

class sage.combinat.root_system.pieri_factors.PieriFactors_type_B_affine(W)
Bases: sage.combinat.root_system.pieri_factors.PieriFactors_affine_type

The type B affine Pieri factors are realized as the order ideal (in Bruhat order) generated by the following elements:

• cyclic rotations of the element with reduced word 234...(𝑛 − 1)𝑛(𝑛 − 1)...3210, except for 123...𝑛...320
and 023...𝑛...321.

• 123...(𝑛− 1)𝑛(𝑛− 1)...321

• 023...(𝑛− 1)𝑛(𝑛− 1)...320

EXAMPLES:

sage: W = WeylGroup(['B',4,1])
sage: PF = W.pieri_factors()
sage: W.from_reduced_word([2,3,4,3,2,1,0]) in PF.maximal_elements()
True
sage: W.from_reduced_word([0,2,3,4,3,2,1]) in PF.maximal_elements()
False
sage: W.from_reduced_word([1,0,2,3,4,3,2]) in PF.maximal_elements()
True
sage: W.from_reduced_word([0,2,3,4,3,2,0]) in PF.maximal_elements()
True
sage: W.from_reduced_word([0,2,0]) in PF
True

maximal_elements_combinatorial()
Return the maximal Pieri factors, using the affine type B combinatorial description.

EXAMPLES:

sage: W = WeylGroup(['B',4,1])
sage: [u.reduced_word() for u in W.pieri_factors().maximal_elements_
→˓combinatorial()]
[[1, 0, 2, 3, 4, 3, 2], [2, 1, 0, 2, 3, 4, 3], [3, 2, 1, 0, 2, 3, 4], [4, 3, 2,␣
→˓1, 0, 2, 3], [3, 4, 3, 2, 1, 0, 2], [2, 3, 4, 3, 2, 1, 0], [1, 2, 3, 4, 3, 2,␣
→˓1], [0, 2, 3, 4, 3, 2, 0]]

stanley_symm_poly_weight(w)
Return the weight of a Pieri factor to be used in the definition of Stanley symmetric functions.

For type B, this weight involves the number of components of the complement of the support of an element,
where we consider 0 and 1 to be one node – if 1 is in the support, then we pretend 0 in the support, and vice
versa. We also consider 0 and 1 to be one node for the purpose of counting components of the complement
(as if the Dynkin diagram were that of type C). Let n be the rank of the affine Weyl group in question (if
type ['B',k,1] then we have n = k+1). Let chi(v.length() < n-1) be the indicator function that is
1 if the length of v is smaller than n-1, and 0 if the length of v is greater than or equal to n-1. If we call
c'(v) the number of components of the complement of the support of v, then the type B weight is given
by weight = c'(v) - chi(v.length() < n-1).

EXAMPLES:

2330 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: W = WeylGroup(['B',5,1])
sage: PF = W.pieri_factors()
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([0,3]))
1
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([0,1,3]))
1
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([2,3]))
1
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([2,3,4,5]))
0
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([0,5]))
0
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([2,4,5,4,3,0]))
-1
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([4,5,4,3,0]))
0

class sage.combinat.root_system.pieri_factors.PieriFactors_type_C_affine(W)
Bases: sage.combinat.root_system.pieri_factors.PieriFactors_affine_type

The type C affine Pieri factors are realized as the order ideal (in Bruhat order) generated by cyclic rotations of
the element with unique reduced word 123...(𝑛− 1)𝑛(𝑛− 1)...3210.

EXAMPLES:

sage: W = WeylGroup(['C',3,1])
sage: PF = W.pieri_factors()
sage: sorted([u.reduced_word() for u in PF.maximal_elements()], key=str)
[[0, 1, 2, 3, 2, 1], [1, 0, 1, 2, 3, 2], [1, 2, 3, 2, 1, 0],
[2, 1, 0, 1, 2, 3], [2, 3, 2, 1, 0, 1], [3, 2, 1, 0, 1, 2]]

maximal_elements_combinatorial()
Return the maximal Pieri factors, using the affine type C combinatorial description.

EXAMPLES:

sage: PF = WeylGroup(['C',3,1]).pieri_factors()
sage: [w.reduced_word() for w in PF.maximal_elements_combinatorial()]
[[0, 1, 2, 3, 2, 1], [1, 0, 1, 2, 3, 2], [2, 1, 0, 1, 2, 3], [3, 2, 1, 0, 1, 2],
→˓ [2, 3, 2, 1, 0, 1], [1, 2, 3, 2, 1, 0]]

stanley_symm_poly_weight(w)
Return the weight of a Pieri factor to be used in the definition of Stanley symmetric functions.

For type C, this weight is the number of connected components of the support (the indices appearing in a
reduced word) of an element.

EXAMPLES:

sage: W = WeylGroup(['C',5,1])
sage: PF = W.pieri_factors()
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([1,3]))
2
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([1,3,2,0]))
1
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([5,3,0]))

(continues on next page)

5.1. Comprehensive Module List 2331

Combinatorics, Release 9.7

(continued from previous page)

3
sage: PF.stanley_symm_poly_weight(W.one())
0

class sage.combinat.root_system.pieri_factors.PieriFactors_type_D_affine(W)
Bases: sage.combinat.root_system.pieri_factors.PieriFactors_affine_type

The type D affine Pieri factors are realized as the order ideal (in Bruhat order) generated by the following ele-
ments:

• cyclic rotations of the element with reduced word 234...(𝑛− 2)𝑛(𝑛− 1)(𝑛− 2)...3210 such that 1 and 0
are always adjacent and (n-1) and n are always adjacent.

• 123...(𝑛− 2)𝑛(𝑛− 1)(𝑛− 2)...321

• 023...(𝑛− 2)𝑛(𝑛− 1)(𝑛− 2)...320

• 𝑛(𝑛− 2)...2102...(𝑛− 2)𝑛

• (𝑛− 1)(𝑛− 2)...2102...(𝑛− 2)(𝑛− 1)

EXAMPLES:

sage: W = WeylGroup(['D',5,1])
sage: PF = W.pieri_factors()
sage: W.from_reduced_word([3,2,1,0]) in PF
True
sage: W.from_reduced_word([0,3,2,1]) in PF
False
sage: W.from_reduced_word([0,1,3,2]) in PF
True
sage: W.from_reduced_word([2,0,1,3]) in PF
True
sage: sorted([u.reduced_word() for u in PF.maximal_elements()], key=str)
[[0, 2, 3, 5, 4, 3, 2, 0], [1, 0, 2, 3, 5, 4, 3, 2], [1, 2, 3, 5, 4, 3, 2, 1],
[2, 1, 0, 2, 3, 5, 4, 3], [2, 3, 5, 4, 3, 2, 1, 0], [3, 2, 1, 0, 2, 3, 5, 4],
[3, 5, 4, 3, 2, 1, 0, 2], [4, 3, 2, 1, 0, 2, 3, 4], [5, 3, 2, 1, 0, 2, 3, 5],
[5, 4, 3, 2, 1, 0, 2, 3]]

maximal_elements_combinatorial()
Return the maximal Pieri factors, using the affine type D combinatorial description.

EXAMPLES:

sage: W = WeylGroup(['D',5,1])
sage: PF = W.pieri_factors()
sage: set(PF.maximal_elements_combinatorial()) == set(PF.maximal_elements())
True

stanley_symm_poly_weight(w)
Return the weight of 𝑤, to be used in the definition of Stanley symmetric functions.

INPUT:

• w – a Pieri factor for this type

For type𝐷, this weight involves the number of components of the complement of the support of an element,
where we consider 0 and 1 to be one node – if 1 is in the support, then we pretend 0 in the support, and vice

2332 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

versa. Similarly with 𝑛 − 1 and 𝑛. We also consider 0 and 1, 𝑛 − 1 and 𝑛 to be one node for the purpose
of counting components of the complement (as if the Dynkin diagram were that of type 𝐶).

Type D Stanley symmetric polynomial weights are still conjectural. The given weight comes from condi-
tions on elements of the affine Fomin-Stanley subalgebra, but work is needed to show this weight is correct
for affine Stanley symmetric functions – see [LSS2009, Pon2010]_ for details.

EXAMPLES:

sage: W = WeylGroup(['D', 5, 1])
sage: PF = W.pieri_factors()
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([5,2,1]))
0
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([5,2,1,0]))
0
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([5,2]))
1
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([]))
0

sage: W = WeylGroup(['D',7,1])
sage: PF = W.pieri_factors()
sage: PF.stanley_symm_poly_weight(W.from_reduced_word([2,4,6]))
2

5.1.231 Tutorial: visualizing root systems

Root systems encode the positions of collections of hyperplanes in space, and form the fundamental combinatorial
data underlying Coxeter and Weyl groups, Lie algebras and groups, etc. The theory can be a bit intimidating at first
because of the many technical gadgets (roots, coroots, weights, . . .). Vizualizing them goes a long way toward building
a geometric intuition.

This tutorial starts from simple plots and guides you all the way to advanced plots with your own combinatorial data
drawn on top of it.

See also:

• Root systems – An overview of root systems in Sage

• RootLatticeRealizations.ParentMethods.plot() – the main plotting function, with pointers to all the
subroutines

First plots

In this first plot, we draw the root system for type 𝐴2 in the ambient space. It is generated from two hyperplanes at a
120 degree angle:

sage: L = RootSystem(["A",2]).ambient_space()
sage: L.plot()
Graphics object consisting of 13 graphics primitives

Each of those hyperplane 𝐻𝛼∨
𝑖

is described by a linear form 𝛼∨𝑖 called simple coroot. To each such hyperplane corre-
sponds a reflection along a vector called root. In this picture, the reflections are orthogonal and the two simple roots
𝛼1 and 𝛼2 are vectors which are normal to the reflection hyperplanes. The same color code is used uniformly: blue for

5.1. Comprehensive Module List 2333

Combinatorics, Release 9.7

α1α2 Λ1Λ2

Hα ∨
1

Hα ∨
2

1, red for 2, green for 3, . . . (see CartanType.color()). The fundamental weights, Λ1 and Λ2 form the dual basis of
the coroots.

The two reflections generate a group of order six which is nothing but the usual symmetric group 𝑆3, in its natural
action by permutations of the coordinates of the ambient space. Wait, but the ambient space should be of dimension 3
then? That’s perfectly right. Here is the full picture in 3D:

sage: L = RootSystem(["A",2]).ambient_space()
sage: L.plot(projection=False)
Graphics3d Object

However in this space, the line (1, 1, 1) is fixed by the action of the group. Therefore, the so called barycentric projection
orthogonal to (1, 1, 1) gives a convenient 2D picture which contains all the essential information. The same projection
is used by default in type 𝐺2:

sage: L = RootSystem(["G",2]).ambient_space()
sage: L.plot(reflection_hyperplanes="all")
Graphics object consisting of 21 graphics primitives

The group is now the dihedral group of order 12, generated by the two reflections 𝑠1 and 𝑠2. The picture displays
the hyperplanes for all 12 reflections of the group. Those reflections delimit 12 chambers which are in one to one
correspondence with the elements of the group. The fundamental chamber, which is grayed out, is associated with the
identity of the group.

2334 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

α1

α2

Λ1

Λ2

Hα ∨
1

Hα ∨
2

Hα ∨
1 + 3α ∨

2

Hα ∨
1 +α ∨

2

H2α ∨
1 + 3α ∨

2

Hα ∨
1 + 2α ∨

2

Warning: The fundamental chamber is currently plotted as the cone generated by the fundamental weights. As
can be seen on the previous 3D picture this is not quite correct if the fundamental weights do not span the space.

Another caveat is that some plotting features may require manipulating elements with rational coordinates which
will fail if one is working in, say, the weight lattice. It is therefore recommended to use the root, weight, or ambient
spaces for plotting purposes rather than their lattice counterparts.

Coming back to the symmetric group, here is the picture in the weight space, with all roots and all reflection hyperplanes;
remark that, unlike in the ambient space, a root is not necessarily orthogonal to its corresponding reflection hyperplane:

sage: L = RootSystem(["A",2]).weight_space()
sage: L.plot(roots="all", reflection_hyperplanes="all").show(figsize=15)

Note: Setting a larger figure size as above can help reduce the overlap between the text labels when the figure gets
crowded.

α1

α2

α1 +α2−α1

−α2

−α1 −α2

Λ1

Λ2

Hα ∨
1

Hα ∨
2

Hα ∨
1 +α ∨

2

One can further customize which roots to display, as in the following example showing the positive roots in the weight
space for type [‘G’,2], labelled by their coordinates in the root lattice:

5.1. Comprehensive Module List 2335

Combinatorics, Release 9.7

sage: Q = RootSystem(["G",2]).root_space()
sage: L = RootSystem(["G",2]).ambient_space()
sage: L.plot(roots=list(Q.positive_roots()), fundamental_weights=False)
Graphics object consisting of 17 graphics primitives

α1

α2

α1 +α2

3α1 +α2

2α1 +α2

3α1 + 2α2

Hα ∨
1

Hα ∨
2

One can also customize the projection by specifying a function. Here, we display all the roots for type 𝐸8 using the
projection from its eight dimensional ambient space onto 3D described on Wikipedia%27s E8 3D picture:

sage: M = matrix([[0., -0.556793440452, 0.19694925177, -0.19694925177, 0.0805477263944, -
→˓0.385290876171, 0., 0.385290876171],
....: [0.180913155536, 0., 0.160212955043, 0.160212955043, 0., 0.
→˓0990170516545, 0.766360424875, 0.0990170516545],
....: [0.338261212718, 0, 0, -0.338261212718, 0.672816364803, 0.171502564281,
→˓ 0, -0.171502564281]])
sage: L = RootSystem(["E",8]).ambient_space()
sage: L.dimension()
8
sage: L.plot(roots="all", reflection_hyperplanes=False, projection=lambda v: M*vector(v),
→˓ labels=False) # long time
Graphics3d Object

The projection function should be linear or affine, and return a vector with rational coordinates. The rationale for the
later constraint is to allow for using the PPL exact library for manipulating polytopes. Indeed exact calculations give

2336 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/File:E8_3D.png

Combinatorics, Release 9.7

cleaner pictures (adjacent objects, intersection with the bounding box, . . .). Besides the interface to PPL is indeed
currently faster than that for CDD, and it is likely to become even more so.

Exercise

Draw all finite root systems in 2D, using the canonical projection onto their Coxeter plane. See Stembridge’s page.

Alcoves and chambers

We now draw the root system for type 𝐺2, with its alcoves (in finite type, those really are the chambers) and the
corresponding elements of the Weyl group. We enlarge a bit the bounding box to make sure everything fits in the
picture:

sage: RootSystem(["G",2]).ambient_space().plot(alcoves=True, alcove_labels=True,␣
→˓bounding_box=5)
Graphics object consisting of 37 graphics primitives

α1

α2

Λ1

Λ2

Hα ∨
1

Hα ∨
2

1

s1

s2

s12

s21

s121

s212

s1212

s2121

s12121

s21212

s212121

The same picture in 3D, for type 𝐵3:

sage: RootSystem(["B",3]).ambient_space().plot(alcoves=True, alcove_labels=True)
Graphics3d Object

5.1. Comprehensive Module List 2337

http://www.math.lsa.umich.edu/~jrs/coxplane.html

Combinatorics, Release 9.7

Exercise

Can you spot the fundamental chamber? The fundamental weights? The simple roots? The longest element of the
Weyl group?

Alcove pictures for affine types

We now draw the usual alcove picture for affine type 𝐴(1)
2 :

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: L.plot() # long time
Graphics object consisting of 160 graphics primitives

α0

α1α2

Λ0

Λ1Λ2 Hα ∨
0

Hα ∨
1

Hα ∨
2

This picture is convenient because it is low dimensional and contains most of the relevant information. Beside, by
choosing the ambient space, the elements of the Weyl group act as orthogonal affine maps. In particular, reflections are
usual (affine) orthogonal reflections. However this is in fact only a slice of the real picture: the Weyl group actually acts
by linear maps on the full ambient space. Those maps stabilize the so-called level 𝑙 hyperplanes, and we are visualizing
here what’s happening at level 1. Here is the full picture in 3D:

sage: L.plot(bounding_box=[[-3,3],[-3,3],[-1,1]], affine=False) # long time
Graphics3d Object

In fact, in type 𝐴, this really is a picture in 4D, but as usual the barycentric projection kills the boring extra dimension
for us.

It’s usually more readable to only draw the intersection of the reflection hyperplanes with the level 1 hyperplane:

sage: L.plot(affine=False, level=1) # long time
Graphics3d Object

Such 3D pictures are useful to better understand technicalities, like the fact that the fundamental weights do not neces-
sarily all live at level 1:

sage: L = RootSystem(["G",2,1]).ambient_space()
sage: L.plot(affine=False, level=1)
Graphics3d Object

2338 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1. Comprehensive Module List 2339

Combinatorics, Release 9.7

Note: Such pictures may tend to be a bit flat, and it may be helpful to play with the aspect_ratio and more generally
with the various options of the show() method:

sage: p = L.plot(affine=False, level=1)
sage: p.show(aspect_ratio=[1,1,2], frame=False)

Exercise

Draw the alcove picture at level 1, and compare the position of the fundamental weights and the vertices of the
fundamental alcove.

As for finite root systems, the alcoves are indexed by the elements of the Weyl group𝑊 . Two alcoves indexed by 𝑢 and
𝑣 respectively share a wall if 𝑢 and 𝑣 are neighbors in the right Cayley graph: 𝑢 = 𝑣𝑠𝑖; the color of that wall is given
by 𝑖:

sage: L = RootSystem(["C",2,1]).ambient_space()
sage: L.plot(coroots="simple", alcove_labels=True) # long time
Graphics object consisting of 216 graphics primitives

α0

α1

α2

α ∨
0

α ∨
1

α ∨
2

Λ0 Λ1

Λ2

Hα ∨
0

Hα ∨
1

Hα ∨
2

1 s0

s1

s2

s01

s10

s12

s20

s21

s010

s012

s101

s120

s121

s201

s210

s212

s0120

s0121

s1010

s1012

s1201

s1210

s2010

s2012

s2101

s2120

s2121

s01201

s10120

s10121

s12010

s12012

s12101

s20120

s20121

s21010

s21012

s21201

s21210

s012012

s101201

s120120

s120121

s121010

s121012

s201201

s210120

s210121

s212010

s212012

s212101

s0120121s1201201

s1210120

s1210121

s2012012

s2101201

s2120120

s2120121

s2121010

s2121012

s12012012

s12101201

s20120121s21201201

s21210120

s21210121

s120120121

s212012012

s212101201

s2120120121

Even 2D pictures of the rank 1 + 1 cases can give some food for thought. Here, we draw the root lattice, with the
positive roots of small height in the root poset:

sage: L = RootSystem(["A",1,1]).root_lattice()
sage: seed = L.simple_roots()
sage: succ = attrcall("pred")
sage: positive_roots = RecursivelyEnumeratedSet(seed, succ, structure='graded')
sage: it = iter(positive_roots)
sage: first_positive_roots = [next(it) for i in range(10)]
sage: L.plot(roots=first_positive_roots, affine=False, alcoves=False)
Graphics object consisting of 24 graphics primitives

Exercises

2340 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/plot3d/sage/plot/plot3d/base.html#sage.plot.plot3d.base.Graphics3d.show

Combinatorics, Release 9.7

α0

α1

α0 + 2α1

2α0 +α1

3α0 + 2α1

2α0 + 3α1

3α0 + 4α1

4α0 + 3α1

5α0 + 4α1

4α0 + 5α1

Hα ∨
0

Hα ∨
1

1. Use the same trick to draw the reflection hyperplanes in the weight lattice for the coroots of small height. Add
the indexing of the alcoves by elements of the Weyl group. See below for a solution.

2. Draw the positive roots in the weight lattice and in the extended weight lattice.

3. Draw the reflection hyperplanes in the root lattice

4. Recreate John Stembridge’s “Sandwich” arrangement pictures by choosing appropriate coroots for the reflec-
tion hyperplanes.

Here is a polished solution for the first exercise:

sage: L = RootSystem(["A",1,1]).weight_space()
sage: seed = L.simple_coroots()
sage: succ = attrcall("pred")
sage: positive_coroots = RecursivelyEnumeratedSet(seed, succ, structure='graded')
sage: it = iter(positive_coroots)
sage: first_positive_coroots = [next(it) for i in range(20)]
sage: p = L.plot(fundamental_chamber=True, reflection_hyperplanes=first_positive_coroots,
....: affine=False, alcove_labels=1,
....: bounding_box=[[-9,9],[-1,2]],
....: projection=lambda x: matrix([[1,-1],[1,1]])*vector(x))
sage: p.show(figsize=20) # long time

Higher dimension affine pictures

We now do some plots for rank 4 affine types, at level 1. The space is tiled by the alcoves, each of which is a 3D
simplex:

sage: L = RootSystem(["A",3,1]).ambient_space()
sage: L.plot(reflection_hyperplanes=False, bounding_box=85/100) # long time
Graphics3d Object

It is recommended to use a small bounding box here, for otherwise the number of simplices grows quicker than what
Sage can handle smoothly. It can help to specify explicitly which alcoves to visualize. Here is the fundamental alcove,
specified by an element of the Weyl group:

5.1. Comprehensive Module List 2341

http://www.math.lsa.umich.edu/~jrs/archive.html

Combinatorics, Release 9.7

sage: W = L.weyl_group()
sage: L.plot(reflection_hyperplanes=False, alcoves=[W.one()], bounding_box=2)
Graphics3d Object

and the fundamental polygon, specified by the coordinates of its center in the root lattice:

sage: W = L.weyl_group()
sage: L.plot(reflection_hyperplanes=False, alcoves=[[0,0]], bounding_box=2)
Graphics3d Object

Finally, we draw the alcoves in the classical fundamental chambers, using that those are indexed by the elements of
the Weyl group having no other left descent than 0. In order to see the inner structure, we only draw the wireframe
of the facets of the alcoves. Specifying the wireframe option requires a more flexible syntax for plots which will be
explained later on in this tutorial:

sage: L = RootSystem(["B",3,1]).ambient_space()
sage: W = L.weyl_group()
sage: alcoves = [~w for d in range(12) for w in W.affine_grassmannian_elements_of_given_
→˓length(d)]
sage: p = L.plot_fundamental_chamber("classical")
sage: p += L.plot_alcoves(alcoves=alcoves, wireframe=True)
sage: p += L.plot_fundamental_weights()

(continues on next page)

2342 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: p.show(frame=False)

Exercises

1. Draw the fundamental alcove in the ambient space, just by itself (no reflection hyperplane, root, . . .). The
automorphism group of the Dynkin diagram for 𝐴(1)

3 (a cycle of length 4) is the dihedral group. Visualize the
corresponding symmetries of the fundamental alcove.

2. Draw the fundamental alcoves for the other rank 4 affine types, and recover the automorphism groups of their
Dynkin diagram from the pictures.

5.1. Comprehensive Module List 2343

Combinatorics, Release 9.7

Drawing on top of a root system plot

The root system plots have been designed to be used as wallpaper on top of which to draw more information. In the
following example, we draw an alcove walk, specified by a word of indices of simple reflections, on top of the weight
lattice in affine type 𝐴2,1:

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: w1 = [0,2,1,2,0,2,1,0,2,1,2,1,2,0,2,0,1,2,0]
sage: L.plot(alcove_walk=w1, bounding_box=6) # long time
Graphics object consisting of 535 graphics primitives

α0

α1α2

Λ0

Λ1Λ2 Hα ∨
0

Hα ∨
1

Hα ∨
2

Now, what about drawing several alcove walks, and specifying some colors? A single do-it-all plot method would be
cumbersome; so instead, it is actually built on top of many methods (see the list below) that can be called independently
and combined at will:

sage: L.plot_roots() + L.plot_reflection_hyperplanes()
Graphics object consisting of 12 graphics primitives

3 2 1 1 2 3

3

2

1

1

2

3

α0

α1α2 Hα ∨
0

Hα ∨
1

Hα ∨
2

Note: By default the axes are disabled in root system plots since they tend to pollute the picture. Annoyingly they
come back when combining them. Here is a workaround:

2344 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p = L.plot_roots() + L.plot_reflection_hyperplanes()
sage: p.axes(False)
sage: p
Graphics object consisting of 12 graphics primitives

α0

α1α2 Hα ∨
0

Hα ∨
1

Hα ∨
2

In order to specify common information for all the pieces of a root system plot (choice of projection, bounding box,
color code for the index set, . . .), the easiest is to create an option object using plot_parse_options(), and pass it
down to each piece. We use this to plot our two walks:

sage: plot_options = L.plot_parse_options(bounding_box=[[-2,5],[-2,6]])
sage: w2 = [2,1,2,0,2,0,2,1,2,0,1,2,1,2,1,0,1,2,0,2,0,1,2,0,2]
sage: p = L.plot_alcoves(plot_options=plot_options) # long time
sage: p += L.plot_alcove_walk(w1, color="green", plot_options=plot_options) # long time
sage: p += L.plot_alcove_walk(w2, color="orange", plot_options=plot_options) # long time
sage: p # long time
Graphics object consisting of ... graphics primitives

2 1 1 2 3 4 5

2

1

1

2

3

4

5

6

And another with some foldings:

sage: p += L.plot_alcove_walk([0,1,2,0,2,0,1,2,0,1],
....: foldings=[False, False, True, False, False, False, True,␣
→˓False, True, False], (continues on next page)

5.1. Comprehensive Module List 2345

Combinatorics, Release 9.7

(continued from previous page)

....: color="purple")
sage: p.axes(False)
sage: p.show(figsize=20)

Here we show a weight at level 0 and the reduced word implementing the translation by this weight:

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: P = RootSystem(["A",2,1]).weight_space(extended=True)
sage: Lambda = P.fundamental_weights()
sage: t = 6*Lambda[1] - 2*Lambda[2] - 4*Lambda[0]
sage: walk = L.reduced_word_of_translation(L(t))
sage: plot_options = L.plot_parse_options(bounding_box=[[-2,5],[-2,5]])
sage: p = L.plot(plot_options=plot_options) # long time
sage: p += L.plot_alcove_walk(walk, color="green", plot_options=plot_options) # long time
sage: p += plot_options.family_of_vectors({t: L(t)}) # long time
sage: plot_options.finalize(p) # long time
Graphics object consisting of ... graphics primitives
sage: p # long time
Graphics object consisting of ... graphics primitives

α0

α1α2

Λ0

Λ1Λ2 Hα ∨
0

Hα ∨
1

Hα ∨
2

−4Λ0 + 6Λ1 − 2Λ2

Note that the coloring of the translated alcove does not match with that of the fundamental alcove: the translation
actually lives in the extended Weyl group and is the composition of the simple reflections indexed by the alcove walk

2346 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

together with a rotation implementing an automorphism of the Dynkin diagram.

We conclude with a rank 3 + 1 alcove walk:

sage: L = RootSystem(["B",3,1]).ambient_space()
sage: w3 = [0,2,1,3,2,0,2,1,0,2,3,1,2,1,3,2,0,2,0,1,2,0]
sage: L.plot_fundamental_weights() + L.plot_reflection_hyperplanes(bounding_box=2) + L.
→˓plot_alcove_walk(w3)
Graphics3d Object

Exercise

1. Draw the tiling of 3D space by the fundamental polygons for types A,B,C,D. Hints: use the wireframe option
of RootLatticeRealizations.ParentMethods.plot_alcoves() and the color option of plot() to
only draw the alcove facets indexed by 0.

Solution

sage: L = RootSystem(["A",3,1]).ambient_space()
sage: alcoves = cartesian_product([[0,1],[0,1],[0,1]])
sage: color = lambda i: "black" if i==0 else None
sage: L.plot_alcoves(alcoves=alcoves, color=color, bounding_box=10,wireframe=True).
→˓show(frame=False) # long time

5.1. Comprehensive Module List 2347

Combinatorics, Release 9.7

Hand drawing on top of a root system plot (aka Coxeter graph paper)

Taken from John Stembridge’s excellent data archive:

“If you’ve ever worked with affine reflection groups, you’ve probably wasted lots of time drawing the reflecting hyper-
planes of the rank 2 groups on scraps of paper. You may also have wished you had pads of graph paper with these lines
drawn in for you. If so, you’ve come to the right place. Behold! Coxeter graph paper!”.

Now you can create your own customized color Coxeter graph paper:

sage: L = RootSystem(["C",2,1]).ambient_space()
sage: p = L.plot(bounding_box=[[-8,9],[-5,7]], coroots="simple") # long time (10 s)
sage: p # long time
Graphics object consisting of ... graphics primitives

α0

α1

α2

α ∨
0

α ∨
1

α ∨
2

Λ0 Λ1

Λ2

Hα ∨
0

Hα ∨
1

Hα ∨
2

By default Sage’s plot are bitmap pictures which would come out ugly if printed on paper. Instead, we recommend
saving the picture in postscript or svg before printing it:

sage: p.save("C21paper.eps") # not tested

Note: Drawing pictures with a large number of alcoves is currently somewhat ridiculously slow. This is due to the
use of generic code that works uniformly in all dimension rather than taylor-made code for 2D. Things should improve

2348 Chapter 5. Comprehensive Module List

http://www.math.lsa.umich.edu/~jrs/archive.html

Combinatorics, Release 9.7

with the fast interface to the PPL library (see e.g. trac ticket #12553).

Drawing custom objects on top of a root system plot

So far so good. Now, what if one wants to draw, on top of a root system plot, some object for which there is no
preexisting plot method? Again, the plot_options object come in handy, as it can be used to compute appropriate
coordinates. Here we draw the permutohedron, that is the Cayley graph of the symmetric group 𝑊 , by positioning
each element 𝑤 at 𝑤(𝜌), where 𝜌 is in the fundamental alcove:

sage: L = RootSystem(["A",2]).ambient_space()
sage: rho = L.rho()
sage: plot_options = L.plot_parse_options()
sage: W = L.weyl_group()
sage: g = W.cayley_graph(side="right")
sage: positions = {w: plot_options.projection(w.action(rho)) for w in W}
sage: p = L.plot_alcoves()
sage: p += g.plot(pos = positions, vertex_size=0,
....: color_by_label=plot_options.color)
sage: p.axes(False)
sage: p
Graphics object consisting of 30 graphics primitives

[1 0 0]
[0 1 0]
[0 0 1]

[0 0 1]
[1 0 0]
[0 1 0]

[0 1 0]
[0 0 1]
[1 0 0]

[0 1 0]
[1 0 0]
[0 0 1]

[1 0 0]
[0 0 1]
[0 1 0]

[0 0 1]
[0 1 0]
[1 0 0]

Todo: Could we have nice LATEX labels in this graph?

The same picture for 𝐴3 gives a nice 3D permutohedron:

sage: L = RootSystem(["A",3]).ambient_space()
sage: rho = L.rho()
sage: plot_options = L.plot_parse_options()
sage: W = L.weyl_group()
sage: g = W.cayley_graph(side="right")
sage: positions = {w: plot_options.projection(w.action(rho)) for w in W}
sage: p = L.plot_roots()
sage: p += g.plot3d(pos3d=positions, color_by_label=plot_options.color)

(continues on next page)

5.1. Comprehensive Module List 2349

https://trac.sagemath.org/12553

Combinatorics, Release 9.7

(continued from previous page)

sage: p
Graphics3d Object

Exercises

1. Locate the identity element of 𝑊 in the previous picture

2. Rotate the picture appropriately to highlight the various symmetries of the permutohedron.

3. Make a function out of the previous example, and explore the Cayley graphs of all rank 2 and 3 Weyl groups.

4. Draw the root poset for type 𝐵2 and 𝐵3

5. Draw the root poset for type 𝐸8 to recover the picture from Wikipedia article File:E8_3D.png

Similarly, we display a crystal graph by positioning each element according to its weight:

sage: C = crystals.Tableaux(["A",2], shape=[4,2])
sage: L = C.weight_lattice_realization()
sage: plot_options = L.plot_parse_options()

sage: g = C.digraph()
sage: positions = {x: plot_options.projection(x.weight()) for x in C}
sage: p = L.plot()
sage: p += g.plot(pos=positions,
....: color_by_label=plot_options.color, vertex_size=0)
sage: p.axes(False)
sage: p.show(figsize=15)

Note: In the above picture, many pairs of tableaux have the same weight and are thus superposed (look for example
near the center). Some more layout logic would be needed to separate those nodes properly, but the foundations are
laid firmly and uniformly across all types of root systems for writing such extensions.

Here is an analogue picture in 3D:

2350 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/File:E8_3D.png

Combinatorics, Release 9.7

α1α2 Λ1Λ2

Hα ∨
1

Hα ∨
2

[[1, 2, 3, 3], [2, 3]]

[[1, 1, 2, 3], [2, 2]]

[[1, 2, 2, 3], [3, 3]]

[[1, 1, 1, 3], [3, 3]]

[[1, 1, 1, 2], [2, 3]]

[[1, 1, 1, 1], [2, 2]]

[[1, 1, 3, 3], [3, 3]]

[[2, 2, 3, 3], [3, 3]]

[[1, 1, 2, 3], [2, 3]]

[[1, 2, 2, 2], [3, 3]]

[[1, 1, 2, 2], [2, 2]]

[[1, 2, 2, 3], [2, 3]]

[[1, 1, 1, 2], [3, 3]]

[[1, 1, 1, 1], [2, 3]]

[[1, 1, 2, 3], [3, 3]]

[[1, 1, 3, 3], [2, 2]]

[[1, 1, 1, 3], [2, 2]]

[[2, 2, 2, 3], [3, 3]]

[[1, 1, 2, 2], [2, 3]]

[[1, 2, 3, 3], [3, 3]]

[[1, 2, 2, 2], [2, 3]]

[[1, 1, 1, 3], [2, 3]]

[[1, 1, 1, 1], [3, 3]]

[[1, 1, 2, 2], [3, 3]]

[[1, 1, 3, 3], [2, 3]]

[[1, 1, 1, 2], [2, 2]]

[[2, 2, 2, 2], [3, 3]]

sage: C = crystals.Tableaux(["A",3], shape=[3,2,1])
sage: L = C.weight_lattice_realization()
sage: plot_options = L.plot_parse_options()
sage: g = C.digraph()
sage: positions = {x:plot_options.projection(x.weight()) for x in C}
sage: p = L.plot(reflection_hyperplanes=False, fundamental_weights=False)
sage: p += g.plot3d(pos3d=positions, vertex_labels=True,
....: color_by_label=plot_options.color, edge_labels=True)
sage: p
Graphics3d Object

Exercise

Explore the previous picture and notice how the edges of the crystal graph are parallel to the simple roots.

Enjoy and please post your best pictures on the Sage-Combinat wiki.

class sage.combinat.root_system.plot.PlotOptions(space, projection=True, bounding_box=3,
color=<bound method CartanTypeFactory.color of
<class
'sage.combinat.root_system.cartan_type.CartanTypeFactory'>>,
labels=True, level=None, affine=None,
arrowsize=5)

Bases: object

A class for plotting options for root lattice realizations.

See also:

• RootLatticeRealizations.ParentMethods.plot() for a description of the plotting options

• Tutorial: visualizing root systems for a tutorial on root system plotting

color(i)
Return the color to be used for objects indexed by 𝑖.

INPUT:

• i – an index

5.1. Comprehensive Module List 2351

http://wiki.sagemath.org/combinat/CoolPictures

Combinatorics, Release 9.7

See also:

index_of_object()

EXAMPLES:

sage: L = RootSystem(["A",2]).root_lattice()
sage: options = L.plot_parse_options(labels=False)
sage: alpha = L.simple_roots()
sage: options.color(1)
'blue'
sage: options.color(2)
'red'
sage: for alpha in L.roots():
....: print("{} {}".format(alpha, options.color(alpha)))
alpha[1] blue
alpha[2] red
alpha[1] + alpha[2] black
-alpha[1] black
-alpha[2] black
-alpha[1] - alpha[2] black

cone(rays=[], lines=[], color='black', thickness=1, alpha=1, wireframe=False, label=None,
draw_degenerate=True, as_polyhedron=False)

Return the cone generated by the given rays and lines.

INPUT:

• rays, lines – lists of elements of the root lattice realization (default: [])

• color – a color (default: "black")

• alpha – a number in the interval [0, 1] (default: 1) the desired transparency

• label – an object to be used as for this cone. The label itself will be constructed by calling latex()
or repr() on the object depending on the graphics backend.

• draw_degenerate – a boolean (default: True) whether to draw cones with a degenerate intersection
with the bounding box

• as_polyhedron – a boolean (default: False) whether to return the result as a polyhedron, without
clipping it to the bounding box, and without making a plot out of it (for testing purposes)

OUTPUT:

A graphic object, a polyhedron, or 0.

EXAMPLES:

sage: L = RootSystem(["A",2]).root_lattice()
sage: options = L.plot_parse_options()
sage: alpha = L.simple_roots()
sage: p = options.cone(rays=[alpha[1]], lines=[alpha[2]], color='green',␣
→˓label=2)
sage: p
Graphics object consisting of 2 graphics primitives
sage: list(p)
[Polygon defined by 4 points,
Text '2' at the point (3.15...,3.15...)]

(continues on next page)

2352 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.latex
https://docs.python.org/library/functions.html#repr

Combinatorics, Release 9.7

(continued from previous page)

sage: options.cone(rays=[alpha[1]], lines=[alpha[2]], color='green', label=2,␣
→˓as_polyhedron=True)
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 1 vertex, 1␣
→˓ray, 1 line

An empty result, being outside of the bounding box:

sage: options = L.plot_parse_options(labels=True, bounding_box=[[-10,-9]]*2)
sage: options.cone(rays=[alpha[1]], lines=[alpha[2]], color='green', label=2)
0

Test that the options are properly passed down:

sage: L = RootSystem(["A",2]).root_lattice()
sage: options = L.plot_parse_options()
sage: p = options.cone(rays=[alpha[1]+alpha[2]], color='green', label=2,␣
→˓thickness=4, alpha=.5)
sage: list(p)
[Line defined by 2 points, Text '2' at the point (3.15...,3.15...)]
sage: sorted(p[0].options().items())
[('alpha', 0.500000000000000), ('legend_color', None),
('legend_label', None), ('rgbcolor', 'green'), ('thickness', 4),
('zorder', 1)]

This method is tested indirectly but extensively by the various plot methods of root lattice realizations.

empty(*args)
Return an empty plot.

EXAMPLES:

sage: L = RootSystem(["A",2]).root_lattice()
sage: options = L.plot_parse_options(labels=True)

This currently returns int(0):

sage: options.empty()
0

This is not a plot, so may cause some corner cases. On the other hand, 0 behaves as a fast neutral element,
which is important given the typical idioms used in the plotting code:

sage: p = point([0,0])
sage: p + options.empty() is p
True

family_of_vectors(vectors)
Return a plot of a family of vectors.

INPUT:

• vectors – family or vectors in self

The vectors are labelled by their index.

EXAMPLES:

5.1. Comprehensive Module List 2353

Combinatorics, Release 9.7

sage: L = RootSystem(["A",2]).root_lattice()
sage: options = L.plot_parse_options()
sage: alpha = L.simple_roots()
sage: p = options.family_of_vectors(alpha); p
Graphics object consisting of 4 graphics primitives
sage: list(p)
[Arrow from (0.0,0.0) to (1.0,0.0),
Text '1' at the point (1.05,0.0),
Arrow from (0.0,0.0) to (0.0,1.0),
Text '2' at the point (0.0,1.05)]

Handling of colors and labels:

sage: color=lambda i: "purple" if i==1 else None
sage: options = L.plot_parse_options(labels=False, color=color)
sage: p = options.family_of_vectors(alpha)
sage: list(p)
[Arrow from (0.0,0.0) to (1.0,0.0)]
sage: p[0].options()['rgbcolor']
'purple'

Matplotlib emits a warning for arrows of length 0 and draws nothing anyway. So we do not draw them at
all:

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: options = L.plot_parse_options()
sage: Lambda = L.fundamental_weights()
sage: p = options.family_of_vectors(Lambda); p
Graphics object consisting of 5 graphics primitives
sage: list(p)
[Text '0' at the point (0.0,0.0),
Arrow from (0.0,0.0) to (0.5,0.86602451838...),
Text '1' at the point (0.525,0.909325744308...),
Arrow from (0.0,0.0) to (-0.5,0.86602451838...),
Text '2' at the point (-0.525,0.909325744308...)]

finalize(G)
Finalize a root system plot.

INPUT:

• G – a root system plot or 0

This sets the aspect ratio to 1 and remove the axes. This should be called by all the user-level plotting
methods of root systems. This will become mostly obsolete when customization options won’t be lost
anymore upon addition of graphics objects and there will be a proper empty object for 2D and 3D plots.

EXAMPLES:

sage: L = RootSystem(["B",2,1]).ambient_space()
sage: options = L.plot_parse_options()
sage: p = L.plot_roots(plot_options=options)
sage: p += L.plot_coroots(plot_options=options)
sage: p.axes()
True

(continues on next page)

2354 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: p = options.finalize(p)
sage: p.axes()
False
sage: p.aspect_ratio()
1.0

sage: options = L.plot_parse_options(affine=False)
sage: p = L.plot_roots(plot_options=options)
sage: p += point([[1,1,0]])
sage: p = options.finalize(p)
sage: p.aspect_ratio()
[1.0, 1.0, 1.0]

If the input is 0, this returns an empty graphics object:

sage: type(options.finalize(0))
<class 'sage.plot.plot3d.base.Graphics3dGroup'>

sage: options = L.plot_parse_options()
sage: type(options.finalize(0))
<class 'sage.plot.graphics.Graphics'>
sage: list(options.finalize(0))
[]

in_bounding_box(x)
Return whether x is in the bounding box.

INPUT:

• x – an element of the root lattice realization

This method is currently one of the bottlenecks, and therefore cached.

EXAMPLES:

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: options = L.plot_parse_options()
sage: alpha = L.simple_roots()
sage: options.in_bounding_box(alpha[1])
True
sage: options.in_bounding_box(3*alpha[1])
False

index_of_object(i)
Try to return the node of the Dynkin diagram indexing the object 𝑖.

OUTPUT: a node of the Dynkin diagram or None

EXAMPLES:

sage: L = RootSystem(["A",3]).root_lattice()
sage: alpha = L.simple_roots()
sage: omega = RootSystem(["A",3]).weight_lattice().fundamental_weights()
sage: options = L.plot_parse_options(labels=False)
sage: options.index_of_object(3)

(continues on next page)

5.1. Comprehensive Module List 2355

Combinatorics, Release 9.7

(continued from previous page)

3
sage: options.index_of_object(alpha[1])
1
sage: options.index_of_object(omega[2])
2
sage: options.index_of_object(omega[2]+omega[3])
sage: options.index_of_object(30)
sage: options.index_of_object("bla")

intersection_at_level_1(x)
Return x scaled at the appropriate level, if level is set; otherwise return x.

INPUT:

• x – an element of the root lattice realization

EXAMPLES:

sage: L = RootSystem(["A",2,1]).weight_space()
sage: options = L.plot_parse_options()
sage: options.intersection_at_level_1(L.rho())
1/3*Lambda[0] + 1/3*Lambda[1] + 1/3*Lambda[2]

sage: options = L.plot_parse_options(affine=False, level=2)
sage: options.intersection_at_level_1(L.rho())
2/3*Lambda[0] + 2/3*Lambda[1] + 2/3*Lambda[2]

When level is not set, x is returned:

sage: options = L.plot_parse_options(affine=False)
sage: options.intersection_at_level_1(L.rho())
Lambda[0] + Lambda[1] + Lambda[2]

projection(v)
Return the projection of v.

INPUT:

• x – an element of the root lattice realization

OUTPUT:

An immutable vector with integer or rational coefficients.

EXAMPLES:

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: options = L.plot_parse_options()
sage: options.projection(L.rho())
(0, 989/571)

sage: options = L.plot_parse_options(projection=False)
sage: options.projection(L.rho())
(2, 1, 0)

reflection_hyperplane(coroot, as_polyhedron=False)
Return a plot of the reflection hyperplane indexed by this coroot.

2356 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• coroot – a coroot

EXAMPLES:

sage: L = RootSystem(["B",2]).weight_space()
sage: alphacheck = L.simple_coroots()
sage: options = L.plot_parse_options()
sage: H = options.reflection_hyperplane(alphacheck[1]); H
Graphics object consisting of 2 graphics primitives

Todo: Display the periodic orientation by adding a + and a − sign close to the label. Typically by using
the associated root to shift a bit from the vertex upon which the hyperplane label is attached.

text(label, position, rgbcolor=(0, 0, 0))
Return text widget with label label at position position

INPUT:

• label – a string, or a Sage object upon which latex will be called

• position – a position

• rgbcolor – the color as an RGB tuple

EXAMPLES:

sage: L = RootSystem(["A",2]).root_lattice()
sage: options = L.plot_parse_options()
sage: list(options.text("coucou", [0,1]))
[Text 'coucou' at the point (0.0,1.0)]
sage: list(options.text(L.simple_root(1), [0,1]))
[Text 'α_{1}' at the point (0.0,1.0)]
sage: list(options.text(L.simple_root(2), [1,0], rgbcolor=(1,0.5,0)))
[Text 'α_{2}' at the point (1.0,0.0)]

sage: options = RootSystem(["A",2]).root_lattice().plot_parse_
→˓options(labels=False)
sage: options.text("coucou", [0,1])
0

sage: options = RootSystem(["B",3]).root_lattice().plot_parse_options()
sage: print(options.text("coucou", [0,1,2]).x3d_str())
<Transform translation='0 1 2'>
<Shape><Text string='coucou' solid='true'/><Appearance><Material diffuseColor=
→˓'0.0 0.0 0.0' shininess='1.0' specularColor='0.0 0.0 0.0'/></Appearance></
→˓Shape>

</Transform>

thickness(i)
Return the thickness to be used for lines indexed by 𝑖.

INPUT:

• i – an index

5.1. Comprehensive Module List 2357

Combinatorics, Release 9.7

See also:

index_of_object()

EXAMPLES:

sage: L = RootSystem(["A",2,1]).root_lattice()
sage: options = L.plot_parse_options(labels=False)
sage: alpha = L.simple_roots()
sage: options.thickness(0)
2
sage: options.thickness(1)
1
sage: options.thickness(2)
1
sage: for alpha in L.simple_roots():
....: print("{} {}".format(alpha, options.thickness(alpha)))
alpha[0] 2
alpha[1] 1
alpha[2] 1

sage.combinat.root_system.plot.barycentric_projection_matrix(n, angle=0)
Returns a family of 𝑛+ 1 vectors evenly spaced in a real vector space of dimension 𝑛

Those vectors are of norm 1, the scalar product between any two vector is 1/𝑛, thus the distance between two
tips is constant.

The family is built recursively and uniquely determined by the following property: the last vector is
(0, . . . , 0,−1), and the projection of the first 𝑛 vectors in dimension 𝑛 − 1, after appropriate rescaling to norm
1, retrieves the family for 𝑛− 1.

OUTPUT:

A matrix with 𝑛+ 1 columns of height 𝑛 with rational or symbolic coefficients.

EXAMPLES:

One vector in dimension 0:

sage: from sage.combinat.root_system.root_lattice_realizations import barycentric_
→˓projection_matrix
sage: m = barycentric_projection_matrix(0); m
[]
sage: matrix(QQ,0,1).nrows()
0
sage: matrix(QQ,0,1).ncols()
1

Two vectors in dimension 1:

sage: barycentric_projection_matrix(1)
[1 -1]

Three vectors in dimension 2:

sage: barycentric_projection_matrix(2)
[1/2*sqrt(3) -1/2*sqrt(3) 0]
[1/2 1/2 -1]

2358 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Four vectors in dimension 3:

sage: m = barycentric_projection_matrix(3); m
[1/3*sqrt(3)*sqrt(2) -1/3*sqrt(3)*sqrt(2) 0 ␣
→˓0]
[1/3*sqrt(2) 1/3*sqrt(2) -2/3*sqrt(2) ␣
→˓0]
[1/3 1/3 1/3 -
→˓1]

The columns give four vectors that sum up to zero:

sage: sum(m.columns())
(0, 0, 0)

and have regular mutual angles:

sage: m.transpose()*m
[1 -1/3 -1/3 -1/3]
[-1/3 1 -1/3 -1/3]
[-1/3 -1/3 1 -1/3]
[-1/3 -1/3 -1/3 1]

Here is a plot of them:

sage: sum(arrow((0,0,0),x) for x in m.columns())
Graphics3d Object

For 2D drawings of root systems, it is desirable to rotate the result to match with the usual conventions:

sage: barycentric_projection_matrix(2, angle=2*pi/3)
[1/2 -1 1/2]
[1/2*sqrt(3) 0 -1/2*sqrt(3)]

5.1.232 Finite complex reflection groups

Let 𝑉 be a finite-dimensional complex vector space. A reflection of 𝑉 is an operator 𝑟 ∈ GL(𝑉) that has finite order
and fixes pointwise a hyperplane in 𝑉 .

For more definitions and classification types of finite complex reflection groups, see Wikipedia article Com-
plex_reflection_group.

The point of entry to work with reflection groups is ReflectionGroup()which can be used with finite Cartan-Killing
types:

sage: ReflectionGroup(['A',2]) # optional - gap3
Irreducible real reflection group of rank 2 and type A2
sage: ReflectionGroup(['F',4]) # optional - gap3
Irreducible real reflection group of rank 4 and type F4
sage: ReflectionGroup(['H',3]) # optional - gap3
Irreducible real reflection group of rank 3 and type H3

or with Shephard-Todd types:

5.1. Comprehensive Module List 2359

https://en.wikipedia.org/wiki/Complex_reflection_group
https://en.wikipedia.org/wiki/Complex_reflection_group

Combinatorics, Release 9.7

sage: ReflectionGroup((1,1,3)) # optional - gap3
Irreducible real reflection group of rank 2 and type A2
sage: ReflectionGroup((2,1,3)) # optional - gap3
Irreducible real reflection group of rank 3 and type B3
sage: ReflectionGroup((3,1,3)) # optional - gap3
Irreducible complex reflection group of rank 3 and type G(3,1,3)
sage: ReflectionGroup((4,2,3)) # optional - gap3
Irreducible complex reflection group of rank 3 and type G(4,2,3)
sage: ReflectionGroup(4) # optional - gap3
Irreducible complex reflection group of rank 2 and type ST4
sage: ReflectionGroup(31) # optional - gap3
Irreducible complex reflection group of rank 4 and type ST31

Also reducible types are allowed using concatenation:

sage: ReflectionGroup(['A',3],(4,2,3)) # optional - gap3
Reducible complex reflection group of rank 6 and type A3 x G(4,2,3)

Some special cases also occur, among them are:

sage: W = ReflectionGroup((2,2,2)); W # optional - gap3
Reducible real reflection group of rank 2 and type A1 x A1
sage: W = ReflectionGroup((2,2,3)); W # optional - gap3
Irreducible real reflection group of rank 3 and type A3

Warning: Uses the GAP3 package Chevie which is available as an experimental package (installed by sage -i
gap3) or to download by hand from Jean Michel’s website.

A guided tour

We start with the example type 𝐵2:

sage: W = ReflectionGroup(['B',2]); W # optional - gap3
Irreducible real reflection group of rank 2 and type B2

Most importantly, observe that the group elements are usually represented by permutations of the roots:

sage: for w in W: print(w) # optional - gap3
()
(1,3)(2,6)(5,7)
(1,5)(2,4)(6,8)
(1,7,5,3)(2,4,6,8)
(1,3,5,7)(2,8,6,4)
(2,8)(3,7)(4,6)
(1,7)(3,5)(4,8)
(1,5)(2,6)(3,7)(4,8)

This has the drawback that one can hardly see anything. Usually, one would look at elements with either of the following
methods:

2360 Chapter 5. Comprehensive Module List

http://webusers.imj-prg.fr/~jean.michel/gap3/

Combinatorics, Release 9.7

sage: for w in W: w.reduced_word() # optional - gap3
[]
[2]
[1]
[1, 2]
[2, 1]
[2, 1, 2]
[1, 2, 1]
[1, 2, 1, 2]

sage: for w in W: w.reduced_word_in_reflections() # optional - gap3
[]
[2]
[1]
[1, 2]
[1, 4]
[3]
[4]
[1, 3]

sage: for w in W: w.reduced_word(); w.to_matrix(); print("") # optional - gap3
[]
[1 0]
[0 1]

[2]
[1 1]
[0 -1]

[1]
[-1 0]
[2 1]

[1, 2]
[-1 -1]
[2 1]

[2, 1]
[1 1]
[-2 -1]

[2, 1, 2]
[1 0]
[-2 -1]

[1, 2, 1]
[-1 -1]
[0 1]

[1, 2, 1, 2]
[-1 0]
[0 -1]

5.1. Comprehensive Module List 2361

Combinatorics, Release 9.7

The standard references for actions of complex reflection groups have the matrices acting on the right, so:

sage: W.simple_reflection(1).to_matrix() # optional - gap3
[-1 0]
[2 1]

sends the simple root 𝛼0, or (1,0) in vector notation, to its negative, while sending 𝛼1 to 2𝛼0 + 𝛼1.

Todo:

• properly provide root systems for real reflection groups

• element class should be unique to be able to work with large groups without creating elements multiple times

• is_shephard_group, is_generalized_coxeter_group

• exponents and coexponents

• coinvariant ring:

– fake degrees from Torsten Hoge

– operation of linear characters on all characters

– harmonic polynomials

• linear forms for hyperplanes

• field of definition

• intersection lattice and characteristic polynomial:

X = [alpha(t) for t in W.distinguished_reflections()]
X = Matrix(CF,X).transpose()
Y = Matroid(X)

• linear characters

• permutation pi on irreducibles

• hyperplane orbits (76.13 in Gap Manual)

• improve invariant_form with a code similar to the one in reflection_group_real.py

• add a method reflection_to_root or distinguished_reflection_to_positive_root

• diagrams in ASCII-art (76.15)

• standard (BMR) presentations

• character table directly from Chevie

• GenericOrder (76.20), TorusOrder (76.21)

• correct fundamental invariants for 𝐺34, check the others

• copy hardcoded data (degrees, invariants, braid relations. . .) into sage

• add other hardcoded data from the tables in chevie (location is SAGEDIR/local/gap3/gap-jm5-2015-02-
01/gap3/pkg/chevie/tbl): basic derivations, discriminant, . . .

• transfer code for reduced_word_in_reflections into Gap4 or Sage

• list of reduced words for an element

• list of reduced words in reflections for an element

2362 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Hurwitz action?

• is_crystallographic() should be hardcoded

AUTHORS:

• Christian Stump (2015): initial version

class sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup(W_types, in-
dex_set=None,
hyper-
plane_index_set=None,
reflec-
tion_index_set=None)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.groups.perm_gps.
permgroup.PermutationGroup_generic

A complex reflection group given as a permutation group.

See also:

ReflectionGroup()

class Element
Bases: sage.combinat.root_system.reflection_group_element.
ComplexReflectionGroupElement

conjugacy_class()
Return the conjugacy class of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: for w in W: sorted(w.conjugacy_class()) # optional - gap3
[()]
[(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)]
[(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)]
[(1,2,6)(3,4,5), (1,6,2)(3,5,4)]
[(1,2,6)(3,4,5), (1,6,2)(3,5,4)]
[(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)]

conjugacy_class_representative()
Return a representative of the conjugacy class of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: for w in W: # optional - gap3
....: print('%s %s'%(w.reduced_word(), w.conjugacy_class_
→˓representative().reduced_word())) # optional - gap3
[] []
[2] [1]
[1] [1]
[1, 2] [1, 2]
[2, 1] [1, 2]
[1, 2, 1] [1]

reflection_length(in_unitary_group=False)
Return the reflection length of self.

5.1. Comprehensive Module List 2363

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/groups/sage/groups/perm_gps/permgroup.html#sage.groups.perm_gps.permgroup.PermutationGroup_generic
../../../../../../../html/en/reference/groups/sage/groups/perm_gps/permgroup.html#sage.groups.perm_gps.permgroup.PermutationGroup_generic

Combinatorics, Release 9.7

This is the minimal numbers of reflections needed to obtain self.

INPUT:
• in_unitary_group – (default: False) if True, the reflection length is computed in the unitary

group which is the dimension of the move space of self
EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 2, 2]

sage: W = ReflectionGroup((2,1,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 1, 2, 2, 2]

sage: W = ReflectionGroup((2,2,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 2]

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

apply_vector_field(f, vf=None)
Returns a rational function obtained by applying the vector field vf to the rational function f.

If vf is not given, the primitive vector field is used.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: for x in W.primitive_vector_field()[0].parent().gens(): # optional - gap3
....: print(W.apply_vector_field(x))
3*x1/(6*x0^2 - 6*x0*x1 - 12*x1^2)
1/(6*x0^2 - 6*x0*x1 - 12*x1^2)

braid_relations()
Return the braid relations of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.braid_relations() # optional - gap3
[[[1, 2, 1], [2, 1, 2]]]

sage: W = ReflectionGroup((2,1,3)) # optional - gap3
sage: W.braid_relations() # optional - gap3
[[[1, 2, 1, 2], [2, 1, 2, 1]], [[1, 3], [3, 1]], [[2, 3, 2], [3, 2, 3]]]

sage: W = ReflectionGroup((2,2,3)) # optional - gap3
sage: W.braid_relations() # optional - gap3
[[[1, 2, 1], [2, 1, 2]], [[1, 3], [3, 1]], [[2, 3, 2], [3, 2, 3]]]

cartan_matrix()
Return the Cartan matrix associated with self.

2364 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

If self is crystallographic, the returned Cartan matrix is an instance of CartanMatrix, and a normal
matrix otherwise.

Let 𝑠1, . . . , 𝑠𝑛 be a set of reflections which generate self with associated simple roots 𝑠1, . . . , 𝑠𝑛 and
simple coroots 𝑠∨𝑖 . Then the Cartan matrix 𝐶 = (𝑐𝑖𝑗) is given by 𝑠∨𝑖 (𝑠𝑗). The Cartan matrix completely
determines the reflection representation if the 𝑠𝑖 are linearly independent.

EXAMPLES:

sage: ReflectionGroup(['A',4]).cartan_matrix() # optional - gap3
[2 -1 0 0]
[-1 2 -1 0]
[0 -1 2 -1]
[0 0 -1 2]

sage: ReflectionGroup(['H',4]).cartan_matrix() # optional - gap3
[2 E(5)^2 + E(5)^3 0 0]
[E(5)^2 + E(5)^3 2 -1 0]
[0 -1 2 -1]
[0 0 -1 2]

sage: ReflectionGroup(4).cartan_matrix() # optional - gap3
[-2*E(3) - E(3)^2 E(3)^2]
[-E(3)^2 -2*E(3) - E(3)^2]

sage: ReflectionGroup((4,2,2)).cartan_matrix() # optional - gap3
[2 -2*E(4) -2]
[E(4) 2 1 - E(4)]
[-1 1 + E(4) 2]

codegrees()
Return the codegrees of self ordered within each irreducible component of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.codegrees() # optional - gap3
(2, 1, 0)

sage: W = ReflectionGroup((2,1,4)) # optional - gap3
sage: W.codegrees() # optional - gap3
(6, 4, 2, 0)

sage: W = ReflectionGroup((4,1,4)) # optional - gap3
sage: W.codegrees() # optional - gap3
(12, 8, 4, 0)

sage: W = ReflectionGroup((4,2,4)) # optional - gap3
sage: W.codegrees() # optional - gap3
(12, 8, 4, 0)

sage: W = ReflectionGroup((4,4,4)) # optional - gap3
sage: W.codegrees() # optional - gap3
(8, 8, 4, 0)

(continues on next page)

5.1. Comprehensive Module List 2365

Combinatorics, Release 9.7

(continued from previous page)

sage: W = ReflectionGroup((1,1,4), (3,1,2)) # optional - gap3
sage: W.codegrees() # optional - gap3
(2, 1, 0, 3, 0)

sage: W = ReflectionGroup((1,1,4), (6,1,12), 23) # optional - gap3 #␣
→˓fails in GAP3
sage: W.codegrees() # optional - gap3
(2, 1, 0, 66, 60, 54, 48, 42, 36, 30, 24, 18, 12, 6, 0, 8, 4, 0)

conjugacy_classes()
Return the conjugacy classes of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: for C in W.conjugacy_classes(): sorted(C) # optional - gap3
[()]
[(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)]
[(1,2,6)(3,4,5), (1,6,2)(3,5,4)]

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: sum(len(C) for C in W.conjugacy_classes()) == W.cardinality() # optional -
→˓ gap3
True

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: sum(len(C) for C in W.conjugacy_classes()) == W.cardinality() # optional -
→˓ gap3
True

sage: W = ReflectionGroup(23) # optional - gap3
sage: sum(len(C) for C in W.conjugacy_classes()) == W.cardinality() # optional -
→˓ gap3
True

conjugacy_classes_representatives()
Return the shortest representatives of the conjugacy classes of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: [w.reduced_word() for w in W.conjugacy_classes_representatives()] #␣
→˓optional - gap3
[[], [1], [1, 2]]

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: [w.reduced_word() for w in W.conjugacy_classes_representatives()] #␣
→˓optional - gap3
[[], [1], [1, 3], [1, 2], [1, 3, 2]]

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: [w.reduced_word() for w in W.conjugacy_classes_representatives()] #␣
→˓optional - gap3

(continues on next page)

2366 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[], [1], [1, 1], [2, 1, 2, 1], [2, 1, 2, 1, 1],
[2, 1, 1, 2, 1, 1], [2], [1, 2], [1, 1, 2]]

sage: W = ReflectionGroup(23) # optional - gap3
sage: [w.reduced_word() for w in W.conjugacy_classes_representatives()] #␣
→˓optional - gap3

[[],
[1],
[1, 2],
[1, 3],
[2, 3],
[1, 2, 3],
[1, 2, 1, 2],
[1, 2, 1, 2, 3],
[1, 2, 1, 2, 3, 2, 1, 2, 3],
[1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3]]

coxeter_number(chi=None)
Return the Coxeter number associated to the irreducible character chi of the reflection group self.

The Coxeter number of a complex reflection group 𝑊 is the trace in a character 𝜒 of
∑︀
𝑡(𝐼𝑑− 𝑡), where 𝑡

runs over all reflections. The result is always an integer.

When 𝜒 is the reflection representation, the Coxeter number is equal to 𝑁+𝑁*

𝑛 where 𝑁 is the number
of reflections, 𝑁* is the number of reflection hyperplanes, and 𝑛 is the rank of 𝑊 . If 𝑊 is further well-
generated, the Coxeter number is equal to the highest degree d_n and to the order of a Coxeter element 𝑐 of
𝑊 .

EXAMPLES:

sage: W = ReflectionGroup(["H",4]) # optional - gap3
sage: W.coxeter_number() # optional - gap3
30
sage: all(W.coxeter_number(chi).is_integer() # optional - gap3
....: for chi in W.irreducible_characters())
True
sage: W = ReflectionGroup(14) # optional - gap3
sage: W.coxeter_number() # optional - gap3
24

degrees()
Return the degrees of self ordered within each irreducible component of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.degrees() # optional - gap3
(2, 3, 4)

sage: W = ReflectionGroup((2,1,4)) # optional - gap3
sage: W.degrees() # optional - gap3
(2, 4, 6, 8)

sage: W = ReflectionGroup((4,1,4)) # optional - gap3
(continues on next page)

5.1. Comprehensive Module List 2367

Combinatorics, Release 9.7

(continued from previous page)

sage: W.degrees() # optional - gap3
(4, 8, 12, 16)

sage: W = ReflectionGroup((4,2,4)) # optional - gap3
sage: W.degrees() # optional - gap3
(4, 8, 8, 12)

sage: W = ReflectionGroup((4,4,4)) # optional - gap3
sage: W.degrees() # optional - gap3
(4, 4, 8, 12)

Examples of reducible types:

sage: W = ReflectionGroup((1,1,4), (3,1,2)); W # optional - gap3
Reducible complex reflection group of rank 5 and type A3 x G(3,1,2)
sage: W.degrees() # optional - gap3
(2, 3, 4, 3, 6)

sage: W = ReflectionGroup((1,1,4), (6,1,12), 23) # optional - gap3 #␣
→˓fails in GAP3
sage: W.degrees() # optional - gap3
(2, 3, 4, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 2, 6, 10)

discriminant()
Return the discriminant of self in the polynomial ring on which the group acts.

This is the product ∏︁
𝐻

𝛼𝑒𝐻𝐻 ,

where 𝛼𝐻 is the linear form of the hyperplane 𝐻 and 𝑒𝐻 is its stabilizer order.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: W.discriminant() # optional - gap3
x0^6 - 3*x0^5*x1 - 3/4*x0^4*x1^2 + 13/2*x0^3*x1^3
- 3/4*x0^2*x1^4 - 3*x0*x1^5 + x1^6

sage: W = ReflectionGroup(['B',2]) # optional - gap3
sage: W.discriminant() # optional - gap3
x0^6*x1^2 - 6*x0^5*x1^3 + 13*x0^4*x1^4 - 12*x0^3*x1^5 + 4*x0^2*x1^6

discriminant_in_invariant_ring(invariants=None)
Return the discriminant of self in the invariant ring.

This is the function 𝑓 in the invariants such that 𝑓(𝐹1(𝑥), . . . , 𝐹𝑛(𝑥)) is the discriminant.

EXAMPLES:

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: W.discriminant_in_invariant_ring() # optional - gap3
6*t0^3*t1^2 - 18*t0^4*t2 + 9*t1^4 - 36*t0*t1^2*t2 + 24*t0^2*t2^2 - 8*t2^3

(continues on next page)

2368 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: W = ReflectionGroup(['B',3]) # optional - gap3
sage: W.discriminant_in_invariant_ring() # optional - gap3
-t0^2*t1^2*t2 + 16*t0^3*t2^2 + 2*t1^3*t2 - 36*t0*t1*t2^2 + 108*t2^3

sage: W = ReflectionGroup(['H',3]) # optional - gap3
sage: W.discriminant_in_invariant_ring() # long time # optional - gap3
(-829*E(5) - 1658*E(5)^2 - 1658*E(5)^3 - 829*E(5)^4)*t0^15
+ (213700*E(5) + 427400*E(5)^2 + 427400*E(5)^3 + 213700*E(5)^4)*t0^12*t1
+ (-22233750*E(5) - 44467500*E(5)^2 - 44467500*E(5)^3 - 22233750*E(5)^4)*t0^
→˓9*t1^2
+ (438750*E(5) + 877500*E(5)^2 + 877500*E(5)^3 + 438750*E(5)^4)*t0^10*t2
+ (1162187500*E(5) + 2324375000*E(5)^2 + 2324375000*E(5)^3 + 1162187500*E(5)^
→˓4)*t0^6*t1^3
+ (-74250000*E(5) - 148500000*E(5)^2 - 148500000*E(5)^3 - 74250000*E(5)^4)*t0^
→˓7*t1*t2
+ (-28369140625*E(5) - 56738281250*E(5)^2 - 56738281250*E(5)^3 -␣
→˓28369140625*E(5)^4)*t0^3*t1^4
+ (1371093750*E(5) + 2742187500*E(5)^2 + 2742187500*E(5)^3 + 1371093750*E(5)^
→˓4)*t0^4*t1^2*t2
+ (1191796875*E(5) + 2383593750*E(5)^2 + 2383593750*E(5)^3 + 1191796875*E(5)^
→˓4)*t0^5*t2^2
+ (175781250000*E(5) + 351562500000*E(5)^2 + 351562500000*E(5)^3 +␣
→˓175781250000*E(5)^4)*t1^5
+ (131835937500*E(5) + 263671875000*E(5)^2 + 263671875000*E(5)^3 +␣
→˓131835937500*E(5)^4)*t0*t1^3*t2
+ (-100195312500*E(5) - 200390625000*E(5)^2 - 200390625000*E(5)^3 -␣
→˓100195312500*E(5)^4)*t0^2*t1*t2^2
+ (395507812500*E(5) + 791015625000*E(5)^2 + 791015625000*E(5)^3 +␣
→˓395507812500*E(5)^4)*t2^3

distinguished_reflection(i)
Return the i-th distinguished reflection of self.

These are the reflections in self acting on the complement of the fixed hyperplane 𝐻 as exp(2𝜋𝑖/𝑛),
where 𝑛 is the order of the reflection subgroup fixing 𝐻 .

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.distinguished_reflection(1) # optional - gap3
(1,4)(2,3)(5,6)
sage: W.distinguished_reflection(2) # optional - gap3
(1,3)(2,5)(4,6)
sage: W.distinguished_reflection(3) # optional - gap3
(1,5)(2,4)(3,6)

sage: W = ReflectionGroup((3,1,1),hyperplane_index_set=['a']) # optional -␣
→˓gap3
sage: W.distinguished_reflection('a') # optional - gap3
(1,2,3)

sage: W = ReflectionGroup((1,1,3),(3,1,2)) # optional - gap3
sage: for i in range(W.number_of_reflection_hyperplanes()): # optional - gap3

(continues on next page)

5.1. Comprehensive Module List 2369

Combinatorics, Release 9.7

(continued from previous page)

....: W.distinguished_reflection(i+1) # optional - gap3
(1,6)(2,5)(7,8)
(1,5)(2,7)(6,8)
(3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30)
(3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,27)(24,28)(25,26)(29,
→˓30)
(1,7)(2,6)(5,8)
(3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,27)(21,29)(22,23)(24,
→˓26)
(4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29)
(3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,30)(18,27)(20,22)(25,
→˓28)

distinguished_reflections()
Return a finite family containing the distinguished reflections of self indexed by
hyperplane_index_set().

These are the reflections in self acting on the complement of the fixed hyperplane 𝐻 as exp(2𝜋𝑖/𝑛),
where 𝑛 is the order of the reflection subgroup fixing 𝐻 .

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.distinguished_reflections() # optional - gap3
Finite family {1: (1,4)(2,3)(5,6), 2: (1,3)(2,5)(4,6), 3: (1,5)(2,4)(3,6)}

sage: W = ReflectionGroup((1,1,3),hyperplane_index_set=['a','b','c']) #␣
→˓optional - gap3
sage: W.distinguished_reflections() # optional - gap3
Finite family {'a': (1,4)(2,3)(5,6), 'b': (1,3)(2,5)(4,6), 'c': (1,5)(2,4)(3,6)}

sage: W = ReflectionGroup((3,1,1)) # optional - gap3
sage: W.distinguished_reflections() # optional - gap3
Finite family {1: (1,2,3)}

sage: W = ReflectionGroup((1,1,3),(3,1,2)) # optional - gap3
sage: W.distinguished_reflections() # optional - gap3
Finite family {1: (1,6)(2,5)(7,8), 2: (1,5)(2,7)(6,8),
3: (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30),
4: (3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,27)(24,28)(25,
→˓26)(29,30),
5: (1,7)(2,6)(5,8),
6: (3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,27)(21,29)(22,
→˓23)(24,26),
7: (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29),
8: (3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,30)(18,27)(20,
→˓22)(25,28)}

fake_degrees()
Return the list of the fake degrees associated to self.

The fake degrees are 𝑞-versions of the degree of the character. In particular, they sum to Hilbert series of
the coinvariant algebra of self.

2370 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Note: The ordering follows the one in Chevie and is not compatible with the current implementation of
irredubile_characters().

EXAMPLES:

sage: W = ReflectionGroup(12) # optional - gap3
sage: W.fake_degrees() # optional - gap3
[1, q^12, q^11 + q, q^8 + q^4, q^7 + q^5, q^6 + q^4 + q^2,
q^10 + q^8 + q^6, q^9 + q^7 + q^5 + q^3]

sage: W = ReflectionGroup(["H",4]) # optional - gap3
sage: W.cardinality() # optional - gap3
14400
sage: sum(fdeg.subs(q=1)**2 for fdeg in W.fake_degrees()) # optional - gap3
14400

fundamental_invariants()
Return the fundamental invariants of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.fundamental_invariants() # optional - gap3
(-2*x0^2 + 2*x0*x1 - 2*x1^2, 6*x0^2*x1 - 6*x0*x1^2)

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: W.fundamental_invariants() # optional - gap3
(x0^3 + x1^3, x0^3*x1^3)

hyperplane_index_set()
Return the index set of the hyperplanes of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
(1, 2, 3, 4, 5, 6)
sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=[1,3,'asdf',7,9,11])
→˓# optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
(1, 3, 'asdf', 7, 9, 11)
sage: W = ReflectionGroup((1,1,4),hyperplane_index_set=('a','b','c','d','e','f
→˓')) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
('a', 'b', 'c', 'd', 'e', 'f')

independent_roots()
Return a collection of simple roots generating the underlying vector space of self.

For well-generated groups, these are all simple roots. Otherwise, a linearly independent subset of the simple
roots is chosen.

EXAMPLES:

5.1. Comprehensive Module List 2371

Combinatorics, Release 9.7

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.independent_roots() # optional - gap3
Finite family {1: (1, 0), 2: (0, 1)}

sage: W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.simple_roots() # optional - gap3
Finite family {1: (1, 0, 0), 2: (-E(4), 1, 0), 3: (-1, 1, 0), 4: (0, -1, 1)}
sage: W.independent_roots() # optional - gap3
Finite family {1: (1, 0, 0), 2: (-E(4), 1, 0), 4: (0, -1, 1)}

index_set()
Return the index set of the simple reflections of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.index_set() # optional - gap3
(1, 2, 3)
sage: W = ReflectionGroup((1,1,4), index_set=[1,3,'asdf']) # optional - gap3
sage: W.index_set() # optional - gap3
(1, 3, 'asdf')
sage: W = ReflectionGroup((1,1,4), index_set=('a', 'b', 'c')) # optional -␣
→˓gap3
sage: W.index_set() # optional - gap3
('a', 'b', 'c')

invariant_form(brute_force=False)
Return the form that is invariant under the action of self.

This is unique only up to a global scalar on the irreducible components.

INPUT:

• brute_force – if True, the computation is done by applying the Reynolds operator; this is, the
invariant form of 𝑒𝑖 and 𝑒𝑗 is computed as the sum ⟨𝑤(𝑒𝑖), 𝑤(𝑒𝑗)⟩, where ⟨·, ·⟩ is the standard scalar
product

EXAMPLES:

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: F = W.invariant_form(); F # optional - gap3
[1 -1/2 0]
[-1/2 1 -1/2]
[0 -1/2 1]

To check that this is indeed the invariant form, see:

sage: S = W.simple_reflections() # optional - gap3
sage: all(F == S[i].matrix()*F*S[i].matrix().transpose() for i in W.index_
→˓set()) # optional - gap3
True

sage: W = ReflectionGroup(['B',3]) # optional - gap3
sage: F = W.invariant_form(); F # optional - gap3
[1 -1 0]
[-1 2 -1]

(continues on next page)

2372 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0 -1 2]
sage: w = W.an_element().to_matrix() # optional - gap3
sage: w * F * w.transpose().conjugate() == F # optional - gap3
True

sage: S = W.simple_reflections() # optional - gap3
sage: all(F == S[i].matrix()*F*S[i].matrix().transpose() for i in W.index_
→˓set()) # optional - gap3
True

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: F = W.invariant_form(); F # optional - gap3
[1 0]
[0 1]

sage: S = W.simple_reflections() # optional - gap3
sage: all(F == S[i].matrix()*F*S[i].matrix().transpose().conjugate() for i in␣
→˓W.index_set()) # optional - gap3
True

It also worked for badly generated groups:

sage: W = ReflectionGroup(7) # optional - gap3
sage: W.is_well_generated() # optional - gap3
False

sage: F = W.invariant_form(); F # optional - gap3
[1 0]
[0 1]
sage: S = W.simple_reflections() # optional - gap3
sage: all(F == S[i].matrix()*F*S[i].matrix().transpose().conjugate() for i in␣
→˓W.index_set()) # optional - gap3
True

And also for reducible types:

sage: W = ReflectionGroup(['B',3],(4,2,3),4,7); W # optional - gap3
Reducible complex reflection group of rank 10 and type B3 x G(4,2,3) x ST4 x ST7
sage: F = W.invariant_form(); S = W.simple_reflections() # optional - gap3
sage: all(F == S[i].matrix()*F*S[i].matrix().transpose().conjugate() for i in␣
→˓W.index_set()) # optional - gap3
True

invariant_form_standardization()
Return the transformation of the space that turns the invariant form of self into the standard scalar product.

Let 𝐼 be the invariant form of a complex reflection group, and let 𝐴 be the Hermitian matrix such that
𝐴2 = 𝐼 . The matrix 𝐴 defines a change of basis such that the identity matrix is the invariant form. Indeed,
we have

(𝐴−1𝑥𝐴)ℐ(𝐴−1𝑦𝐴)* = 𝐴−1𝑥𝐼𝑦*𝐴−1 = 𝐴−1𝐼𝐴−1 = ℐ,

where ℐ is the identity matrix.

EXAMPLES:

5.1. Comprehensive Module List 2373

Combinatorics, Release 9.7

sage: W = ReflectionGroup((4,2,5)) # optional - gap3
sage: I = W.invariant_form() # optional - gap3
sage: A = W.invariant_form_standardization() # optional - gap3
sage: A^2 == I # optional - gap3
True

irreducible_components()
Return a list containing the irreducible components of self as finite reflection groups.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.irreducible_components() # optional - gap3
[Irreducible real reflection group of rank 2 and type A2]

sage: W = ReflectionGroup((1,1,3),(2,1,3)) # optional - gap3
sage: W.irreducible_components() # optional - gap3
[Irreducible real reflection group of rank 2 and type A2,
Irreducible real reflection group of rank 3 and type B3]

is_crystallographic()
Return True if self is crystallographic.

This is, if the field of definition is the rational field.

Todo: Make this more robust and do not use the matrix representation of the simple reflections.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)); W # optional - gap3
Irreducible real reflection group of rank 2 and type A2
sage: W.is_crystallographic() # optional - gap3
True

sage: W = ReflectionGroup((2,1,3)); W # optional - gap3
Irreducible real reflection group of rank 3 and type B3
sage: W.is_crystallographic() # optional - gap3
True

sage: W = ReflectionGroup(23); W # optional - gap3
Irreducible real reflection group of rank 3 and type H3
sage: W.is_crystallographic() # optional - gap3
False

sage: W = ReflectionGroup((3,1,3)); W # optional - gap3
Irreducible complex reflection group of rank 3 and type G(3,1,3)
sage: W.is_crystallographic() # optional - gap3
False

sage: W = ReflectionGroup((4,2,2)); W # optional - gap3
Irreducible complex reflection group of rank 2 and type G(4,2,2)
sage: W.is_crystallographic() # optional - gap3
False

2374 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

jacobian_of_fundamental_invariants(invs=None)
Return the matrix [𝜕𝑥𝑖𝐹𝑗], where invs are are any polynomials 𝐹1, . . . , 𝐹𝑛 in 𝑥1, . . . , 𝑥𝑛.

INPUT:

• invs – (default: the fundamental invariants) the polynomials 𝐹1, . . . , 𝐹𝑛

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: W.fundamental_invariants() # optional - gap3
(-2*x0^2 + 2*x0*x1 - 2*x1^2, 6*x0^2*x1 - 6*x0*x1^2)

sage: W.jacobian_of_fundamental_invariants() # optional - gap3
[-4*x0 + 2*x1 2*x0 - 4*x1]
[12*x0*x1 - 6*x1^2 6*x0^2 - 12*x0*x1]

number_of_irreducible_components()
Return the number of irreducible components of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.number_of_irreducible_components() # optional - gap3
1

sage: W = ReflectionGroup((1,1,3),(2,1,3)) # optional - gap3
sage: W.number_of_irreducible_components() # optional - gap3
2

primitive_vector_field(invs=None)
Return the primitive vector field of self is irreducible and well-generated.

The primitive vector field is given as the coefficients (being rational functions) in the basis 𝜕𝑥1 , . . . , 𝜕𝑥𝑛 .

This is the partial derivation along the unique invariant of degree given by the Coxeter number. It can be
computed as the row of the inverse of the Jacobian given by the highest degree.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: W.primitive_vector_field() # optional - gap3
(3*x1/(6*x0^2 - 6*x0*x1 - 12*x1^2), 1/(6*x0^2 - 6*x0*x1 - 12*x1^2))

rank()
Return the rank of self.

This is the dimension of the underlying vector space.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.rank() # optional - gap3
2
sage: W = ReflectionGroup((2,1,3)) # optional - gap3
sage: W.rank() # optional - gap3
3
sage: W = ReflectionGroup((4,1,3)) # optional - gap3

(continues on next page)

5.1. Comprehensive Module List 2375

Combinatorics, Release 9.7

(continued from previous page)

sage: W.rank() # optional - gap3
3
sage: W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.rank() # optional - gap3
3

reflection(i)
Return the i-th reflection of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.reflection(1) # optional - gap3
(1,4)(2,3)(5,6)
sage: W.reflection(2) # optional - gap3
(1,3)(2,5)(4,6)
sage: W.reflection(3) # optional - gap3
(1,5)(2,4)(3,6)

sage: W = ReflectionGroup((3,1,1),reflection_index_set=['a','b']) # optional -
→˓ gap3
sage: W.reflection('a') # optional - gap3
(1,2,3)
sage: W.reflection('b') # optional - gap3
(1,3,2)

reflection_character()
Return the reflection characters of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.reflection_character() # optional - gap3
[2, 0, -1]

reflection_eigenvalues(w, is_class_representative=False)
Return the reflection eigenvalue of w in self.

INPUT:

• is_class_representative – boolean (default True) whether to compute instead on the conjugacy
class representative.

See also:

reflection_eigenvalues_family()

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: for w in W: # optional - gap3
....: print('%s %s'%(w.reduced_word(), W.reflection_eigenvalues(w))) #␣
→˓optional - gap3
[] [0, 0]
[2] [1/2, 0]
[1] [1/2, 0]

(continues on next page)

2376 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1, 2] [1/3, 2/3]
[2, 1] [1/3, 2/3]
[1, 2, 1] [1/2, 0]

reflection_eigenvalues_family()
Return the reflection eigenvalues of self as a finite family indexed by the class representatives of self.

OUTPUT:

• list with entries 𝑘/𝑛 representing the eigenvalue 𝜁𝑘𝑛.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.reflection_eigenvalues_family() # optional - gap3
Finite family {(): [0, 0], (1,4)(2,3)(5,6): [1/2, 0], (1,6,2)(3,5,4): [1/3, 2/
→˓3]}

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: reflection_eigenvalues = W.reflection_eigenvalues_family() # optional -
→˓ gap3
sage: for elt in sorted(reflection_eigenvalues.keys()): # optional - gap3
....: print('%s %s'%(elt, reflection_eigenvalues[elt])) # optional - gap3
() [0, 0]
(1,3,9)(2,4,10)(6,11,17)(8,12,18)(14,19,23)(15,16,20)(21,22,24) [1/3, 0]
(1,3,9)(2,16,24)(4,20,21)(5,7,13)(6,12,23)(8,19,17)(10,15,22)(11,18,14) [1/3, 1/
→˓3]
(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,20)(23,24) [1/
→˓2, 0]
(1,7,3,13,9,5)(2,8,16,19,24,17)(4,14,20,11,21,18)(6,15,12,22,23,10) [1/6, 2/3]
(1,9,3)(2,10,4)(6,17,11)(8,18,12)(14,23,19)(15,20,16)(21,24,22) [2/3, 0]
(1,9,3)(2,20,22)(4,15,24)(5,7,13)(6,18,19)(8,23,11)(10,16,21)(12,14,17) [1/3, 2/
→˓3]
(1,9,3)(2,24,16)(4,21,20)(5,13,7)(6,23,12)(8,17,19)(10,22,15)(11,14,18) [2/3, 2/
→˓3]
(1,13,9,7,3,5)(2,14,24,18,16,11)(4,6,21,23,20,12)(8,22,17,15,19,10) [1/3, 5/6]

sage: W = ReflectionGroup(23) # optional - gap3
sage: reflection_eigenvalues = W.reflection_eigenvalues_family() # optional -
→˓ gap3
sage: for elt in sorted(reflection_eigenvalues.keys()): # optional - gap3
....: print('%s %s'%(elt, reflection_eigenvalues[elt])) # optional - gap3
() [0, 0, 0]
(1,8,4)(2,21,3)(5,10,11)(6,18,17)(7,9,12)(13,14,15)(16,23,19)(20,25,26)(22,24,
→˓27)(28,29,30) [1/3, 2/3, 0]
(1,16)(2,5)(4,7)(6,9)(8,10)(11,13)(12,14)(17,20)(19,22)(21,24)(23,25)(26,28)(27,
→˓29) [1/2, 0, 0]
(1,16)(2,9)(3,18)(4,10)(5,6)(7,8)(11,14)(12,13)(17,24)(19,25)(20,21)(22,23)(26,
→˓29)(27,28) [1/2, 1/2, 0]
(1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,
→˓28)(14,29)(15,30) [1/2, 1/2, 1/2]
(1,19,20,2,7)(3,6,11,13,9)(4,5,17,22,16)(8,12,15,14,10)(18,21,26,28,24)(23,27,
→˓30,29,25) [1/5, 4/5, 0]
(1,20,7,19,2)(3,11,9,6,13)(4,17,16,5,22)(8,15,10,12,14)(18,26,24,21,28)(23,30,
→˓25,27,29) [2/5, 3/5, 0] (continues on next page)

5.1. Comprehensive Module List 2377

Combinatorics, Release 9.7

(continued from previous page)

(1,23,26,29,22,16,8,11,14,7)(2,10,4,9,18,17,25,19,24,3)(5,21,27,30,28,20,6,12,
→˓15,13) [1/10, 1/2, 9/10]
(1,24,17,16,9,2)(3,12,13,18,27,28)(4,21,29,19,6,14)(5,25,26,20,10,11)(7,23,30,
→˓22,8,15) [1/6, 1/2, 5/6]
(1,29,8,7,26,16,14,23,22,11)(2,9,25,3,4,17,24,10,18,19)(5,30,6,13,27,20,15,21,
→˓28,12) [3/10, 1/2, 7/10]

reflection_hyperplane(i, as_linear_functional=False, with_order=False)
Return the i-th reflection hyperplane of self.

The i-th reflection hyperplane corresponds to the i distinguished reflection.

INPUT:

• i – an index in the index set

• as_linear_functionals – (default:False) flag whether to return the hyperplane or its linear func-
tional in the basis dual to the given root basis

EXAMPLES:

sage: W = ReflectionGroup((2,1,2)) # optional - gap3
sage: W.reflection_hyperplane(3) # optional - gap3
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0]

One can ask for the result as a linear form:

sage: W.reflection_hyperplane(3, True) # optional - gap3
(0, 1)

reflection_hyperplanes(as_linear_functionals=False, with_order=False)
Return the list of all reflection hyperplanes of self, either as a codimension 1 space, or as its linear func-
tional.

INPUT:

• as_linear_functionals – (default:False) flag whether to return the hyperplane or its linear func-
tional in the basis dual to the given root basis

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: for H in W.reflection_hyperplanes(): H # optional - gap3
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 2]
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 1/2]
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 -1]

sage: for H in W.reflection_hyperplanes(as_linear_functionals=True): H #␣
→˓optional - gap3

(continues on next page)

2378 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(1, -1/2)
(1, -2)
(1, 1)

sage: W = ReflectionGroup((2,1,2)) # optional - gap3
sage: for H in W.reflection_hyperplanes(): H # optional - gap3
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 1]
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 1/2]
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0]
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[0 1]

sage: for H in W.reflection_hyperplanes(as_linear_functionals=True): H #␣
→˓optional - gap3
(1, -1)
(1, -2)
(0, 1)
(1, 0)

sage: for H in W.reflection_hyperplanes(as_linear_functionals=True, with_
→˓order=True): H # optional - gap3
((1, -1), 2)
((1, -2), 2)
((0, 1), 2)
((1, 0), 2)

reflection_index_set()
Return the index set of the reflections of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
(1, 2, 3, 4, 5, 6)
sage: W = ReflectionGroup((1,1,4), reflection_index_set=[1,3,'asdf',7,9,11])
→˓# optional - gap3
sage: W.reflection_index_set() # optional - gap3
(1, 3, 'asdf', 7, 9, 11)
sage: W = ReflectionGroup((1,1,4), reflection_index_set=('a','b','c','d','e','f
→˓')) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
('a', 'b', 'c', 'd', 'e', 'f')

reflections()
Return a finite family containing the reflections of self, indexed by self.reflection_index_set().

5.1. Comprehensive Module List 2379

Combinatorics, Release 9.7

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.reflections() # optional - gap3
Finite family {1: (1,4)(2,3)(5,6), 2: (1,3)(2,5)(4,6), 3: (1,5)(2,4)(3,6)}

sage: W = ReflectionGroup((1,1,3),reflection_index_set=['a','b','c']) #␣
→˓optional - gap3
sage: W.reflections() # optional - gap3
Finite family {'a': (1,4)(2,3)(5,6), 'b': (1,3)(2,5)(4,6), 'c': (1,5)(2,4)(3,6)}

sage: W = ReflectionGroup((3,1,1)) # optional - gap3
sage: W.reflections() # optional - gap3
Finite family {1: (1,2,3), 2: (1,3,2)}

sage: W = ReflectionGroup((1,1,3),(3,1,2)) # optional - gap3
sage: W.reflections() # optional - gap3
Finite family {1: (1,6)(2,5)(7,8), 2: (1,5)(2,7)(6,8),

3: (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,
→˓28,30),

4: (3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,
→˓27)(24,28)(25,26)(29,30),

5: (1,7)(2,6)(5,8),
6: (3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,

→˓27)(21,29)(22,23)(24,26),
7: (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,

→˓25)(23,24,29),
8: (3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,

→˓30)(18,27)(20,22)(25,28),
9: (3,15,9)(4,16,10)(12,23,17)(14,24,18)(20,29,25)(21,26,22)(27,

→˓30,28),
10: (4,27,21)(10,28,22)(11,19,13)(12,20,14)(16,30,26)(17,25,

→˓18)(23,29,24)}

roots()
Return all roots corresponding to all reflections of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.roots() # optional - gap3
[(1, 0), (0, 1), (1, 1), (-1, 0), (0, -1), (-1, -1)]

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: W.roots() # optional - gap3
[(1, 0), (-1, 1), (E(3), 0), (-E(3), 1), (0, 1), (1, -1),
(0, E(3)), (1, -E(3)), (E(3)^2, 0), (-E(3)^2, 1),
(E(3), -1), (E(3), -E(3)), (0, E(3)^2), (1, -E(3)^2),
(-1, E(3)), (-E(3), E(3)), (E(3)^2, -1), (E(3)^2, -E(3)),
(E(3), -E(3)^2), (-E(3)^2, E(3)), (-1, E(3)^2),
(-E(3), E(3)^2), (E(3)^2, -E(3)^2), (-E(3)^2, E(3)^2)]

sage: W = ReflectionGroup((4,2,2)) # optional - gap3
sage: W.roots() # optional - gap3

(continues on next page)

2380 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[(1, 0), (-E(4), 1), (-1, 1), (-1, 0), (E(4), 1), (1, 1),
(0, -E(4)), (E(4), -1), (E(4), E(4)), (0, E(4)),
(E(4), -E(4)), (0, 1), (1, -E(4)), (1, -1), (0, -1),
(1, E(4)), (-E(4), 0), (-1, E(4)), (E(4), 0), (-E(4), E(4)),
(-E(4), -1), (-E(4), -E(4)), (-1, -E(4)), (-1, -1)]

sage: W = ReflectionGroup((1,1,4), (3,1,2)) # optional - gap3
sage: W.roots() # optional - gap3
[(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),
(0, 0, 0, 1, 0), (0, 0, 0, -1, 1), (1, 1, 0, 0, 0),
(0, 1, 1, 0, 0), (1, 1, 1, 0, 0), (-1, 0, 0, 0, 0),
(0, -1, 0, 0, 0), (0, 0, -1, 0, 0), (-1, -1, 0, 0, 0),
(0, -1, -1, 0, 0), (-1, -1, -1, 0, 0), (0, 0, 0, E(3), 0),
(0, 0, 0, -E(3), 1), (0, 0, 0, 0, 1), (0, 0, 0, 1, -1),
(0, 0, 0, 0, E(3)), (0, 0, 0, 1, -E(3)), (0, 0, 0, E(3)^2, 0),
(0, 0, 0, -E(3)^2, 1), (0, 0, 0, E(3), -1), (0, 0, 0, E(3), -E(3)),
(0, 0, 0, 0, E(3)^2), (0, 0, 0, 1, -E(3)^2), (0, 0, 0, -1, E(3)),
(0, 0, 0, -E(3), E(3)), (0, 0, 0, E(3)^2, -1),
(0, 0, 0, E(3)^2, -E(3)), (0, 0, 0, E(3), -E(3)^2),
(0, 0, 0, -E(3)^2, E(3)), (0, 0, 0, -1, E(3)^2),
(0, 0, 0, -E(3), E(3)^2), (0, 0, 0, E(3)^2, -E(3)^2),
(0, 0, 0, -E(3)^2, E(3)^2)]

series()
Return the series of the classification type to which self belongs.

For real reflection groups, these are the Cartan-Killing classification types
“A”,”B”,”C”,”D”,”E”,”F”,”G”,”H”,”I”, and for complx non-real reflection groups these are the Shephard-
Todd classification type “ST”.

EXAMPLES:

sage: ReflectionGroup((1,1,3)).series() # optional - gap3
['A']
sage: ReflectionGroup((3,1,3)).series() # optional - gap3
['ST']

set_reflection_representation(refl_repr=None)
Set the reflection representation of self.

INPUT:

• refl_repr – a dictionary representing the matrices of the generators of self with keys given by the
index set, or None to reset to the default reflection representation

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: for w in W: w.to_matrix(); print("-----") # optional - gap3
[1 0]
[0 1]

[1 1]
[0 -1]

(continues on next page)

5.1. Comprehensive Module List 2381

Combinatorics, Release 9.7

(continued from previous page)

[-1 0]
[1 1]

[-1 -1]
[1 0]

[0 1]
[-1 -1]

[0 -1]
[-1 0]

sage: W.set_reflection_representation({1: matrix([[0,1,0],[1,0,0],[0,0,1]]), 2:␣
→˓matrix([[1,0,0],[0,0,1],[0,1,0]])}) # optional - gap3
sage: for w in W: w.to_matrix(); print("-----") # optional - gap3
[1 0 0]
[0 1 0]
[0 0 1]

[1 0 0]
[0 0 1]
[0 1 0]

[0 1 0]
[1 0 0]
[0 0 1]

[0 0 1]
[1 0 0]
[0 1 0]

[0 1 0]
[0 0 1]
[1 0 0]

[0 0 1]
[0 1 0]
[1 0 0]

sage: W.set_reflection_representation() # optional - gap3

simple_coroot(i)
Return the simple root with index i.

EXAMPLES:

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: W.simple_coroot(1) # optional - gap3
(2, -1, 0)

simple_coroots()
Return the simple coroots of self.

2382 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

These are the coroots corresponding to the simple reflections.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.simple_coroots() # optional - gap3
Finite family {1: (2, -1), 2: (-1, 2)}

sage: W = ReflectionGroup((1,1,4), (2,1,2)) # optional - gap3
sage: W.simple_coroots() # optional - gap3
Finite family {1: (2, -1, 0, 0, 0), 2: (-1, 2, -1, 0, 0), 3: (0, -1, 2, 0, 0),␣
→˓4: (0, 0, 0, 2, -2), 5: (0, 0, 0, -1, 2)}

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: W.simple_coroots() # optional - gap3
Finite family {1: (-2*E(3) - E(3)^2, 0), 2: (-1, 1)}

sage: W = ReflectionGroup((1,1,4), (3,1,2)) # optional - gap3
sage: W.simple_coroots() # optional - gap3
Finite family {1: (2, -1, 0, 0, 0), 2: (-1, 2, -1, 0, 0), 3: (0, -1, 2, 0, 0),␣
→˓4: (0, 0, 0, -2*E(3) - E(3)^2, 0), 5: (0, 0, 0, -1, 1)}

simple_reflection(i)
Return the i-th simple reflection of self.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.simple_reflection(1) # optional - gap3
(1,4)(2,3)(5,6)
sage: W.simple_reflections() # optional - gap3
Finite family {1: (1,4)(2,3)(5,6), 2: (1,3)(2,5)(4,6)}

simple_root(i)
Return the simple root with index i.

EXAMPLES:

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: W.simple_root(1) # optional - gap3
(1, 0, 0)
sage: W.simple_root(2) # optional - gap3
(0, 1, 0)
sage: W.simple_root(3) # optional - gap3
(0, 0, 1)

simple_roots()
Return the simple roots of self.

These are the roots corresponding to the simple reflections.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.simple_roots() # optional - gap3
Finite family {1: (1, 0), 2: (0, 1)}

(continues on next page)

5.1. Comprehensive Module List 2383

Combinatorics, Release 9.7

(continued from previous page)

sage: W = ReflectionGroup((1,1,4), (2,1,2)) # optional - gap3
sage: W.simple_roots() # optional - gap3
Finite family {1: (1, 0, 0, 0, 0), 2: (0, 1, 0, 0, 0), 3: (0, 0, 1, 0, 0), 4:␣
→˓(0, 0, 0, 1, 0), 5: (0, 0, 0, 0, 1)}

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: W.simple_roots() # optional - gap3
Finite family {1: (1, 0), 2: (-1, 1)}

sage: W = ReflectionGroup((1,1,4), (3,1,2)) # optional - gap3
sage: W.simple_roots() # optional - gap3
Finite family {1: (1, 0, 0, 0, 0), 2: (0, 1, 0, 0, 0), 3: (0, 0, 1, 0, 0), 4:␣
→˓(0, 0, 0, 1, 0), 5: (0, 0, 0, -1, 1)}

class sage.combinat.root_system.reflection_group_complex.IrreducibleComplexReflectionGroup(W_types,
in-
dex_set=None,
hy-
per-
plane_index_set=None,
re-
flec-
tion_index_set=None)

Bases: sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup

class Element
Bases: sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup.
Element

is_coxeter_element(which_primitive=1, is_class_representative=False)
Return True if self is a Coxeter element.

This is, whether self has an eigenvalue that is a primitive ℎ-th root of unity.

INPUT:
• which_primitive – (default:1) for which power of the first primitive h-th root of unity to look

as a reflection eigenvalue for a regular element
• is_class_representative – boolean (default True) whether to compute instead on the con-

jugacy class representative
See also:

coxeter_element() coxeter_elements()

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: for w in W: # optional - gap3
....: print('%s %s'%(w.reduced_word(), w.is_coxeter_element())) #␣
→˓optional - gap3
[] False
[2] False
[1] False
[1, 2] True
[2, 1] True

(continues on next page)

2384 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1, 2, 1] False

is_h_regular(is_class_representative=False)
Return whether self is regular.

This is if self has an eigenvector with eigenvalueℎ and which does not lie in any reflection hyperplane.
Here, ℎ denotes the Coxeter number.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: for w in W: # optional - gap3
....: print('%s %s'%(w.reduced_word(), w.is_h_regular())) # optional -
→˓ gap3
[] False
[2] False
[1] False
[1, 2] True
[2, 1] True
[1, 2, 1] False

is_regular(h, is_class_representative=False)
Return whether self is regular.

This is, if self has an eigenvector with eigenvalue of order h and which does not lie in any reflection
hyperplane.

INPUT:
• h – the order of the eigenvalue
• is_class_representative – boolean (default True) whether to compute instead on the con-

jugacy class representative
EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: h = W.coxeter_number() # optional - gap3
sage: for w in W: # optional - gap3
....: print("{} {}".format(w.reduced_word(), w.is_regular(h)))
[] False
[2] False
[1] False
[1, 2] True
[2, 1] True
[1, 2, 1] False

sage: W = ReflectionGroup(23); h = W.coxeter_number() # optional - gap3
sage: for w in W: # optional - gap3
....: if w.is_regular(h): # optional - gap3
....: w.reduced_word() # optional - gap3
[1, 2, 3]
[2, 1, 3]
[1, 3, 2]
[3, 2, 1]
[2, 1, 2, 3, 2]
[2, 3, 2, 1, 2]

(continues on next page)

5.1. Comprehensive Module List 2385

Combinatorics, Release 9.7

(continued from previous page)

[1, 2, 1, 2, 3, 2, 1]
[1, 2, 3, 2, 1, 2, 1]
[1, 2, 1, 2, 3, 2, 1, 2, 3]
[2, 1, 2, 1, 3, 2, 1, 2, 3]
[2, 1, 2, 3, 2, 1, 2, 1, 3]
[1, 2, 3, 2, 1, 2, 1, 3, 2]
[3, 2, 1, 2, 1, 3, 2, 1, 2]
[1, 2, 1, 2, 1, 3, 2, 1, 2]
[2, 3, 2, 1, 2, 1, 3, 2, 1]
[2, 1, 2, 1, 3, 2, 1, 2, 1]
[2, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3]
[1, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3]
[1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 3]
[1, 2, 1, 2, 3, 2, 1, 2, 1, 3, 2]
[1, 2, 3, 2, 1, 2, 1, 3, 2, 1, 2]
[2, 1, 2, 3, 2, 1, 2, 1, 3, 2, 1]
[2, 1, 2, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3]
[1, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3]

Check that trac ticket #25478 is fixed:

sage: W = ReflectionGroup(["A",5]) # optional - gap3
sage: w = W.from_reduced_word([1,2,3,5]) # optional - gap3
sage: w.is_regular(4) # optional - gap3
False
sage: W = ReflectionGroup(["A",3]) # optional - gap3
sage: len([w for w in W if w.is_regular(w.order())]) # optional - gap3
18

sage.combinat.root_system.reflection_group_complex.multi_partitions(n, S, i=None)
Return all vectors as lists of the same length as S whose standard inner product with S equals n.

EXAMPLES:

sage: from sage.combinat.root_system.reflection_group_complex import multi_
→˓partitions
sage: multi_partitions(10, [2,3,3,4])
[[5, 0, 0, 0],
[3, 0, 0, 1],
[2, 2, 0, 0],
[2, 1, 1, 0],
[2, 0, 2, 0],
[1, 0, 0, 2],
[0, 2, 0, 1],
[0, 1, 1, 1],
[0, 0, 2, 1]]

sage.combinat.root_system.reflection_group_complex.power(f, k)
Return 𝑓𝑘 and caching all intermediate results.

Speeds the computation if one has to compute 𝑓𝑘’s for many values of 𝑘.

EXAMPLES:

2386 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/25478

Combinatorics, Release 9.7

sage: P.<x,y,z> = PolynomialRing(QQ)
sage: f = -2*x^2 + 2*x*y - 2*y^2 + 2*y*z - 2*z^2
sage: all(f^k == power(f,k) for k in range(20))
True

5.1.233 Finite real reflection groups

Let 𝑉 be a finite-dimensional real vector space. A reflection of 𝑉 is an operator 𝑟 ∈ GL(𝑉) that has order 2 and fixes
pointwise a hyperplane in 𝑉 . In the present implementation, finite real reflection groups are tied with a root system.

Finite real reflection groups with root systems have been classified according to finite Cartan-Killing types.
For more definitions and classification types of finite complex reflection groups, see Wikipedia article Com-
plex_reflection_group.

The point of entry to work with reflection groups is ReflectionGroup()which can be used with finite Cartan-Killing
types:

sage: ReflectionGroup(['A',2]) # optional - gap3
Irreducible real reflection group of rank 2 and type A2
sage: ReflectionGroup(['F',4]) # optional - gap3
Irreducible real reflection group of rank 4 and type F4
sage: ReflectionGroup(['H',3]) # optional - gap3
Irreducible real reflection group of rank 3 and type H3

AUTHORS:

• Christian Stump (initial version 2011–2015)

Warning: Uses the GAP3 package Chevie which is available as an experimental package (installed by sage -i
gap3) or to download by hand from Jean Michel’s website.

class sage.combinat.root_system.reflection_group_real.IrreducibleRealReflectionGroup(W_types,
in-
dex_set=None,
hy-
per-
plane_index_set=None,
re-
flec-
tion_index_set=None)

Bases: sage.combinat.root_system.reflection_group_real.RealReflectionGroup, sage.
combinat.root_system.reflection_group_complex.IrreducibleComplexReflectionGroup

class Element
Bases: sage.combinat.root_system.reflection_group_real.RealReflectionGroup.
Element, sage.combinat.root_system.reflection_group_complex.
IrreducibleComplexReflectionGroup.Element

5.1. Comprehensive Module List 2387

https://en.wikipedia.org/wiki/Complex_reflection_group
https://en.wikipedia.org/wiki/Complex_reflection_group
http://webusers.imj-prg.fr/~jean.michel/gap3/

Combinatorics, Release 9.7

class sage.combinat.root_system.reflection_group_real.RealReflectionGroup(W_types,
index_set=None,
hyper-
plane_index_set=None,
reflec-
tion_index_set=None)

Bases: sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup

A real reflection group given as a permutation group.

See also:

ReflectionGroup()

class Element
Bases: sage.combinat.root_system.reflection_group_element.
RealReflectionGroupElement, sage.combinat.root_system.reflection_group_complex.
ComplexReflectionGroup.Element

left_coset_representatives()
Return the left coset representatives of self.

See also:

right_coset_representatives()

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: for w in W: # optional - gap3
....: lcr = w.left_coset_representatives() # optional - gap3
....: print("%s %s"%(w.reduced_word(), # optional - gap3
....: [v.reduced_word() for v in lcr])) # optional -␣
→˓gap3
[] [[], [2], [1], [1, 2], [2, 1], [1, 2, 1]]
[2] [[], [2], [1]]
[1] [[], [1], [2, 1]]
[1, 2] [[]]
[2, 1] [[]]
[1, 2, 1] [[], [2], [1, 2]]

right_coset_representatives()
Return the right coset representatives of self.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: for w in W: # optional - gap3
....: rcr = w.right_coset_representatives() # optional - gap3
....: print("%s %s"%(w.reduced_word(), # optional - gap3
....: [v.reduced_word() for v in rcr])) # optional -␣
→˓gap3
[] [[], [2], [1], [2, 1], [1, 2], [1, 2, 1]]
[2] [[], [2], [1]]
[1] [[], [1], [1, 2]]
[1, 2] [[]]
[2, 1] [[]]
[1, 2, 1] [[], [2], [2, 1]]

2388 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

almost_positive_roots()
Return the almost positive roots of self.

EXAMPLES:

sage: W = ReflectionGroup(['A',3], ['B',2]) # optional - gap3
sage: W.almost_positive_roots() # optional - gap3
[(-1, 0, 0, 0, 0),
(0, -1, 0, 0, 0),
(0, 0, -1, 0, 0),
(0, 0, 0, -1, 0),
(0, 0, 0, 0, -1),
(1, 0, 0, 0, 0),
(0, 1, 0, 0, 0),
(0, 0, 1, 0, 0),
(0, 0, 0, 1, 0),
(0, 0, 0, 0, 1),
(1, 1, 0, 0, 0),
(0, 1, 1, 0, 0),
(0, 0, 0, 1, 1),
(1, 1, 1, 0, 0),
(0, 0, 0, 2, 1)]

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: W.almost_positive_roots() # optional - gap3
[(-1, 0, 0),
(0, -1, 0),
(0, 0, -1),
(1, 0, 0),
(0, 1, 0),
(0, 0, 1),
(1, 1, 0),
(0, 1, 1),
(1, 1, 1)]

bipartite_index_set()
Return the bipartite index set of a real reflection group.

EXAMPLES:

sage: W = ReflectionGroup(["A",5]) # optional - gap3
sage: W.bipartite_index_set() # optional - gap3
[[1, 3, 5], [2, 4]]

sage: W = ReflectionGroup(["A",5],index_set=['a','b','c','d','e']) # optional -
→˓ gap3
sage: W.bipartite_index_set() # optional - gap3
[['a', 'c', 'e'], ['b', 'd']]

cartan_type()
Return the Cartan type of self.

EXAMPLES:

5.1. Comprehensive Module List 2389

Combinatorics, Release 9.7

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: W.cartan_type() # optional - gap3
['A', 3]

sage: W = ReflectionGroup(['A',3], ['B',3]) # optional - gap3
sage: W.cartan_type() # optional - gap3
A3xB3 relabelled by {1: 3, 2: 2, 3: 1}

coxeter_diagram()
Return the Coxeter diagram associated to self.

EXAMPLES:

sage: G = ReflectionGroup(['B',3]) # optional - gap3
sage: sorted(G.coxeter_diagram().edges(labels=True)) # optional - gap3
[(1, 2, 4), (2, 3, 3)]

coxeter_matrix()
Return the Coxeter matrix associated to self.

EXAMPLES:

sage: G = ReflectionGroup(['A',3]) # optional - gap3
sage: G.coxeter_matrix() # optional - gap3
[1 3 2]
[3 1 3]
[2 3 1]

fundamental_weight(i)
Return the fundamental weight with index i.

EXAMPLES:

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: [W.fundamental_weight(i) for i in W.index_set()] # optional - gap3
[(3/4, 1/2, 1/4), (1/2, 1, 1/2), (1/4, 1/2, 3/4)]

fundamental_weights()
Return the fundamental weights of self in terms of the simple roots.

The fundamental weights are defined by 𝑠𝑗(𝜔𝑖) = 𝜔𝑖 − 𝛿𝑖=𝑗𝛼𝑗 for the simple reflection 𝑠𝑗 with corre-
sponding simple roots 𝛼𝑗 .

In other words, the transpose Cartan matrix sends the weight basis to the root basis. Observe again that the
action here is defined as a right action, see the example below.

EXAMPLES:

sage: W = ReflectionGroup(['A',3], ['B',2]) # optional - gap3
sage: W.fundamental_weights() # optional - gap3
Finite family {1: (3/4, 1/2, 1/4, 0, 0), 2: (1/2, 1, 1/2, 0, 0), 3: (1/4, 1/2,␣
→˓3/4, 0, 0), 4: (0, 0, 0, 1, 1/2), 5: (0, 0, 0, 1, 1)}

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: W.fundamental_weights() # optional - gap3
Finite family {1: (3/4, 1/2, 1/4), 2: (1/2, 1, 1/2), 3: (1/4, 1/2, 3/4)}

(continues on next page)

2390 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: S = W.simple_reflections() # optional - gap3
sage: N = W.fundamental_weights() # optional - gap3
sage: for i in W.index_set(): # optional - gap3
....: for j in W.index_set(): # optional - gap3
....: print("{} {} {} {}".format(i, j, N[i], N[i]*S[j].to_matrix()))
1 1 (3/4, 1/2, 1/4) (-1/4, 1/2, 1/4)
1 2 (3/4, 1/2, 1/4) (3/4, 1/2, 1/4)
1 3 (3/4, 1/2, 1/4) (3/4, 1/2, 1/4)
2 1 (1/2, 1, 1/2) (1/2, 1, 1/2)
2 2 (1/2, 1, 1/2) (1/2, 0, 1/2)
2 3 (1/2, 1, 1/2) (1/2, 1, 1/2)
3 1 (1/4, 1/2, 3/4) (1/4, 1/2, 3/4)
3 2 (1/4, 1/2, 3/4) (1/4, 1/2, 3/4)
3 3 (1/4, 1/2, 3/4) (1/4, 1/2, -1/4)

iteration(algorithm='breadth', tracking_words=True)
Return an iterator going through all elements in self.

INPUT:

• algorithm (default: 'breadth') – must be one of the following:

– 'breadth' - iterate over in a linear extension of the weak order

– 'depth' - iterate by a depth-first-search

– 'parabolic' - iterate by using parabolic subgroups

• tracking_words (default: True) – whether or not to keep track of the reduced words and store them
in _reduced_word

Note: The fastest iteration is the parabolic iteration and the depth first algorithm without tracking words
is second. In particular, 'depth' is ~1.5x faster than 'breadth'.

Note: The 'parabolic' iteration does not track words and requires keeping the subgroup corresponding
to 𝐼 ∖ {𝑖} in memory (for each 𝑖 individually).

EXAMPLES:

sage: W = ReflectionGroup(["B",2]) # optional - gap3

sage: for w in W.iteration("breadth",True): # optional - gap3
....: print("%s %s"%(w, w._reduced_word)) # optional - gap3
() []
(1,3)(2,6)(5,7) [1]
(1,5)(2,4)(6,8) [0]
(1,7,5,3)(2,4,6,8) [0, 1]
(1,3,5,7)(2,8,6,4) [1, 0]
(2,8)(3,7)(4,6) [1, 0, 1]
(1,7)(3,5)(4,8) [0, 1, 0]
(1,5)(2,6)(3,7)(4,8) [0, 1, 0, 1]

(continues on next page)

5.1. Comprehensive Module List 2391

Combinatorics, Release 9.7

(continued from previous page)

sage: for w in W.iteration("depth", False): w # optional - gap3
()
(1,3)(2,6)(5,7)
(1,5)(2,4)(6,8)
(1,3,5,7)(2,8,6,4)
(1,7)(3,5)(4,8)
(1,7,5,3)(2,4,6,8)
(2,8)(3,7)(4,6)
(1,5)(2,6)(3,7)(4,8)

positive_roots()
Return the positive roots of self.

EXAMPLES:

sage: W = ReflectionGroup(['A',3], ['B',2]) # optional - gap3
sage: W.positive_roots() # optional - gap3
[(1, 0, 0, 0, 0),
(0, 1, 0, 0, 0),
(0, 0, 1, 0, 0),
(0, 0, 0, 1, 0),
(0, 0, 0, 0, 1),
(1, 1, 0, 0, 0),
(0, 1, 1, 0, 0),
(0, 0, 0, 1, 1),
(1, 1, 1, 0, 0),
(0, 0, 0, 2, 1)]

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: W.positive_roots() # optional - gap3
[(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 1, 1)]

reflection_to_positive_root(r)
Return the positive root orthogonal to the given reflection.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: for r in W.reflections(): # optional - gap3
....: print(W.reflection_to_positive_root(r))
(1, 0)
(0, 1)
(1, 1)

right_coset_representatives(J)
Return the right coset representatives of self for the parabolic subgroup generated by the simple reflections
in J.

EXAMPLES:

sage: W = ReflectionGroup(["A",3]) # optional - gap3
sage: for J in Subsets([1,2,3]): W.right_coset_representatives(J) # optional -
→˓ gap3

(continues on next page)

2392 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[(), (2,5)(3,9)(4,6)(8,11)(10,12), (1,4)(2,8)(3,5)(7,10)(9,11),
(1,7)(2,4)(5,6)(8,10)(11,12), (1,2,10)(3,6,5)(4,7,8)(9,12,11),
(1,4,6)(2,3,11)(5,8,9)(7,10,12), (1,6,4)(2,11,3)(5,9,8)(7,12,10),
(1,7)(2,6)(3,9)(4,5)(8,12)(10,11),
(1,10,2)(3,5,6)(4,8,7)(9,11,12), (1,2,3,12)(4,5,10,11)(6,7,8,9),
(1,5,9,10)(2,12,8,6)(3,4,7,11), (1,6)(2,9)(3,8)(5,11)(7,12),
(1,8)(2,7)(3,6)(4,10)(9,12), (1,10,9,5)(2,6,8,12)(3,11,7,4),
(1,12,3,2)(4,11,10,5)(6,9,8,7), (1,3)(2,12)(4,10)(5,11)(6,8)(7,9),
(1,5,12)(2,9,4)(3,10,8)(6,7,11), (1,8,11)(2,5,7)(3,12,4)(6,10,9),
(1,11,8)(2,7,5)(3,4,12)(6,9,10), (1,12,5)(2,4,9)(3,8,10)(6,11,7),
(1,3,7,9)(2,11,6,10)(4,8,5,12), (1,9,7,3)(2,10,6,11)(4,12,5,8),
(1,11)(3,10)(4,9)(5,7)(6,12), (1,9)(2,8)(3,7)(4,11)(5,10)(6,12)]

[(), (2,5)(3,9)(4,6)(8,11)(10,12), (1,4)(2,8)(3,5)(7,10)(9,11),
(1,2,10)(3,6,5)(4,7,8)(9,12,11), (1,4,6)(2,3,11)(5,8,9)(7,10,12),
(1,6,4)(2,11,3)(5,9,8)(7,12,10), (1,2,3,12)(4,5,10,11)(6,7,8,9),
(1,5,9,10)(2,12,8,6)(3,4,7,11), (1,6)(2,9)(3,8)(5,11)(7,12),
(1,3)(2,12)(4,10)(5,11)(6,8)(7,9),
(1,5,12)(2,9,4)(3,10,8)(6,7,11), (1,3,7,9)(2,11,6,10)(4,8,5,12)]

[(), (2,5)(3,9)(4,6)(8,11)(10,12), (1,7)(2,4)(5,6)(8,10)(11,12),
(1,4,6)(2,3,11)(5,8,9)(7,10,12),
(1,7)(2,6)(3,9)(4,5)(8,12)(10,11),
(1,10,2)(3,5,6)(4,8,7)(9,11,12), (1,2,3,12)(4,5,10,11)(6,7,8,9),
(1,10,9,5)(2,6,8,12)(3,11,7,4), (1,12,3,2)(4,11,10,5)(6,9,8,7),
(1,8,11)(2,5,7)(3,12,4)(6,10,9), (1,12,5)(2,4,9)(3,8,10)(6,11,7),
(1,11)(3,10)(4,9)(5,7)(6,12)]

[(), (1,4)(2,8)(3,5)(7,10)(9,11), (1,7)(2,4)(5,6)(8,10)(11,12),
(1,2,10)(3,6,5)(4,7,8)(9,12,11), (1,6,4)(2,11,3)(5,9,8)(7,12,10),
(1,10,2)(3,5,6)(4,8,7)(9,11,12), (1,5,9,10)(2,12,8,6)(3,4,7,11),
(1,8)(2,7)(3,6)(4,10)(9,12), (1,12,3,2)(4,11,10,5)(6,9,8,7),
(1,3)(2,12)(4,10)(5,11)(6,8)(7,9),
(1,11,8)(2,7,5)(3,4,12)(6,9,10), (1,9,7,3)(2,10,6,11)(4,12,5,8)]

[(), (2,5)(3,9)(4,6)(8,11)(10,12), (1,4,6)(2,3,11)(5,8,9)(7,10,12),
(1,2,3,12)(4,5,10,11)(6,7,8,9)]

[(), (1,4)(2,8)(3,5)(7,10)(9,11), (1,2,10)(3,6,5)(4,7,8)(9,12,11),
(1,6,4)(2,11,3)(5,9,8)(7,12,10), (1,5,9,10)(2,12,8,6)(3,4,7,11),
(1,3)(2,12)(4,10)(5,11)(6,8)(7,9)]

[(), (1,7)(2,4)(5,6)(8,10)(11,12), (1,10,2)(3,5,6)(4,8,7)(9,11,12),
(1,12,3,2)(4,11,10,5)(6,9,8,7)]

[()]

root_to_reflection(root)
Return the reflection along the given root.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: for beta in W.roots(): W.root_to_reflection(beta) # optional - gap3
(1,4)(2,3)(5,6)
(1,3)(2,5)(4,6)
(1,5)(2,4)(3,6)
(1,4)(2,3)(5,6)
(1,3)(2,5)(4,6)
(1,5)(2,4)(3,6)

5.1. Comprehensive Module List 2393

Combinatorics, Release 9.7

simple_root_index(i)
Return the index of the simple root 𝛼𝑖.

This is the position of 𝛼𝑖 in the list of simple roots.

EXAMPLES:

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: [W.simple_root_index(i) for i in W.index_set()] # optional - gap3
[0, 1, 2]

sage.combinat.root_system.reflection_group_real.ReflectionGroup(*args, **kwds)
Construct a finite (complex or real) reflection group as a Sage permutation group by fetching the permutation
representation of the generators from chevie’s database.

INPUT:

can be one or multiple of the following:

• a triple (𝑟, 𝑝, 𝑛) with 𝑝 divides 𝑟, which denotes the group 𝐺(𝑟, 𝑝, 𝑛)

• an integer between 4 and 37, which denotes an exceptional irreducible complex reflection group

• a finite Cartan-Killing type

EXAMPLES:

Finite reflection groups can be constructed from

Cartan-Killing classification types:

sage: W = ReflectionGroup(['A',3]); W # optional - gap3
Irreducible real reflection group of rank 3 and type A3

sage: W = ReflectionGroup(['H',4]); W # optional - gap3
Irreducible real reflection group of rank 4 and type H4

sage: W = ReflectionGroup(['I',5]); W # optional - gap3
Irreducible real reflection group of rank 2 and type I2(5)

the complex infinite family 𝐺(𝑟, 𝑝, 𝑛) with 𝑝 divides 𝑟:

sage: W = ReflectionGroup((1,1,4)); W # optional - gap3
Irreducible real reflection group of rank 3 and type A3

sage: W = ReflectionGroup((2,1,3)); W # optional - gap3
Irreducible real reflection group of rank 3 and type B3

Chevalley-Shepard-Todd exceptional classification types:

sage: W = ReflectionGroup(23); W # optional - gap3
Irreducible real reflection group of rank 3 and type H3

Cartan types and matrices:

sage: ReflectionGroup(CartanType(['A',2])) # optional - gap3
Irreducible real reflection group of rank 2 and type A2

sage: ReflectionGroup(CartanType((['A',2],['A',2]))) # optional - gap3
(continues on next page)

2394 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Reducible real reflection group of rank 4 and type A2 x A2

sage: C = CartanMatrix(['A',2]) # optional - gap3
sage: ReflectionGroup(C) # optional - gap3
Irreducible real reflection group of rank 2 and type A2

multiples of the above:

sage: W = ReflectionGroup(['A',2],['B',2]); W # optional - gap3
Reducible real reflection group of rank 4 and type A2 x B2

sage: W = ReflectionGroup(['A',2],4); W # optional - gap3
Reducible complex reflection group of rank 4 and type A2 x ST4

sage: W = ReflectionGroup((4,2,2),4); W # optional - gap3
Reducible complex reflection group of rank 4 and type G(4,2,2) x ST4

sage.combinat.root_system.reflection_group_real.is_chevie_available()
Test whether the GAP3 Chevie package is available.

EXAMPLES:

sage: from sage.combinat.root_system.reflection_group_real import is_chevie_
→˓available
sage: is_chevie_available() # random
False
sage: is_chevie_available() in [True, False]
True

5.1.234 Group algebras of root lattice realizations

class sage.combinat.root_system.root_lattice_realization_algebras.Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

The category of group algebras of root lattice realizations.

This includes typically weight rings (group algebras of weight lattices).

class ElementMethods
Bases: object

acted_upon(w)
Implements the action of w on self.

INPUT:
• w – an element of the Weyl group acting on the underlying weight lattice realization

EXAMPLES:

sage: L = RootSystem(["A",3]).ambient_space()
sage: W = L.weyl_group()
sage: M = L.algebra(QQ['q','t'])
sage: m = M.an_element(); m # TODO: investigate why we don't get something␣
→˓more interesting
B[(2, 2, 3, 0)]

(continues on next page)

5.1. Comprehensive Module List 2395

../../../../../../../html/en/reference/categories/sage/categories/algebra_functor.html#sage.categories.algebra_functor.AlgebrasCategory

Combinatorics, Release 9.7

(continued from previous page)

sage: m = (m+1)^2; m
B[(0, 0, 0, 0)] + 2*B[(2, 2, 3, 0)] + B[(4, 4, 6, 0)]
sage: w = W.an_element(); w.reduced_word()
[1, 2, 3]
sage: m.acted_upon(w)
B[(0, 0, 0, 0)] + 2*B[(0, 2, 2, 3)] + B[(0, 4, 4, 6)]

expand(alphabet)
Expand self into variables in the alphabet.

INPUT:
• alphabet – a non empty list/tuple of (invertible) variables in a ring to expand in

EXAMPLES:

sage: L = RootSystem(["A",2]).ambient_lattice()
sage: KL = L.algebra(QQ)
sage: p = KL.an_element() + KL.sum_of_monomials(L.some_elements()); p
B[(1, 0, 0)] + B[(1, -1, 0)] + B[(1, 1, 0)] + 2*B[(2, 2, 3)] + B[(0, 1, -1)]
sage: F = LaurentPolynomialRing(QQ, 'x,y,z')
sage: p.expand(F.gens())
2*x^2*y^2*z^3 + x*y + x + y*z^-1 + x*y^-1

class ParentMethods
Bases: object

T0_check_on_basis(q1, q2, convention='antidominant')
Return the 𝑇∨0 operator acting on the basis.

This implements the formula for 𝑇0′ in Section 6.12 of [Haiman06].

REFERENCES:

Warning: The current implementation probably returns just nonsense, if the convention is not
“dominant”.

EXAMPLES:

sage: K = QQ['q1,q2'].fraction_field()
sage: q1,q2 = K.gens()

sage: L = RootSystem(["A",1,1]).ambient_space()
sage: L0 = L.classical()
sage: KL = L.algebra(K)
sage: some_weights = L.fundamental_weights()
sage: f = KL.T0_check_on_basis(q1,q2, convention="dominant")
sage: f(L0.zero())
(q1+q2)*B[(0, 0)] + q1*B[(1, -1)]

sage: L = RootSystem(["A",3,1]).ambient_space()
sage: L0 = L.classical()
sage: KL = L.algebra(K)
sage: some_weights = L0.fundamental_weights()
sage: f = KL.T0_check_on_basis(q1,q2, convention="dominant")

(continues on next page)

2396 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: f(L0.zero()) # not checked
(q1+q2)*B[(0, 0, 0, 0)] + q1^3/q2^2*B[(1, 0, 0, -1)]

The following results have not been checked:

sage: for x in some_weights:
....: print("{} : {}".format(x, f(x)))
(1, 0, 0, 0) : q1*B[(1, 0, 0, 0)]
(1, 1, 0, 0) : q1*B[(1, 1, 0, 0)]
(1, 1, 1, 0) : q1*B[(1, 1, 1, 0)]

Some examples for type 𝐵(1)
2 dual:

sage: L = RootSystem("B2~*").ambient_space()
sage: L0 = L.classical()
sage: e = L.basis()
sage: K = QQ['q,u'].fraction_field()
sage: q,u = K.gens()
sage: q1 = u
sage: q2 = -1/u
sage: KL = L.algebra(K)
sage: KL0 = KL.classical()
sage: f = KL.T0_check_on_basis(q1,q2, convention="dominant")
sage: T = KL.twisted_demazure_lusztig_operators(q1,q2, convention="dominant
→˓")

Direct calculation:

sage: T.Tw(0)(KL0.monomial(L0([0,0])))
((u^2-1)/u)*B[(0, 0)] + u^3*B[(1, 1)]
sage: KL.T0_check_on_basis(q1,q2, convention="dominant")(L0([0,0]))
((u^2-1)/u)*B[(0, 0)] + u^3*B[(1, 1)]

Step by step calculation, comparing by hand with Mark Shimozono:

sage: res = T.Tw(2)(KL0.monomial(L0([0,0]))); res
u*B[(0, 0)]
sage: res = res * KL0.monomial(L0([-1,1])); res
u*B[(-1, 1)]
sage: res = T.Tw_inverse(1)(res); res
(u^2-1)*B[(0, 0)] + u^2*B[(1, -1)]
sage: res = T.Tw_inverse(2)(res); res
((u^2-1)/u)*B[(0, 0)] + u^3*B[(1, 1)]

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: A = RootSystem(["A",2,1]).ambient_space().algebra(QQ)
sage: A.cartan_type()
['A', 2, 1]
sage: A = RootSystem(["B",2]).weight_space().algebra(QQ)

(continues on next page)

5.1. Comprehensive Module List 2397

Combinatorics, Release 9.7

(continued from previous page)

sage: A.cartan_type()
['B', 2]

classical()
Return the group algebra of the corresponding classical lattice.

EXAMPLES:

sage: KL = RootSystem(["A",2,1]).ambient_space().algebra(QQ)
sage: KL.classical()
Algebra of the Ambient space of the Root system of type ['A', 2] over␣
→˓Rational Field

demazure_lusztig_operator_on_basis(weight, i, q1, q2, convention='antidominant')
Return the result of applying the 𝑖-th Demazure-Lusztig operator on weight.

INPUT:
• weight – an element 𝜆 of the weight lattice
• i – an element of the index set
• q1,q2 – two elements of the ground ring
• convention – “antidominant”, “bar”, or “dominant” (default: “antidominant”)

See demazure_lusztig_operators() for the details.

EXAMPLES:

sage: L = RootSystem(["A",1]).ambient_space()
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KL = L.algebra(K)
sage: KL.demazure_lusztig_operator_on_basis(L((2,2)), 1, q1, q2)
q1*B[(2, 2)]
sage: KL.demazure_lusztig_operator_on_basis(L((3,0)), 1, q1, q2)
(q1+q2)*B[(1, 2)] + (q1+q2)*B[(2, 1)] + (q1+q2)*B[(3, 0)] + q1*B[(0, 3)]
sage: KL.demazure_lusztig_operator_on_basis(L((0,3)), 1, q1, q2)
(-q1-q2)*B[(1, 2)] + (-q1-q2)*B[(2, 1)] + (-q2)*B[(3, 0)]

At 𝑞1 = 1 and 𝑞2 = 0 we recover the action of the isobaric divided differences 𝜋𝑖:

sage: KL.demazure_lusztig_operator_on_basis(L((2,2)), 1, 1, 0)
B[(2, 2)]
sage: KL.demazure_lusztig_operator_on_basis(L((3,0)), 1, 1, 0)
B[(1, 2)] + B[(2, 1)] + B[(3, 0)] + B[(0, 3)]
sage: KL.demazure_lusztig_operator_on_basis(L((0,3)), 1, 1, 0)
-B[(1, 2)] - B[(2, 1)]

Or 1− 𝜋𝑖 for bar=True:

sage: KL.demazure_lusztig_operator_on_basis(L((2,2)), 1, 1, 0, convention=
→˓"bar")
0
sage: KL.demazure_lusztig_operator_on_basis(L((3,0)), 1, 1, 0, convention=
→˓"bar")
-B[(1, 2)] - B[(2, 1)] - B[(0, 3)]

(continues on next page)

2398 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: KL.demazure_lusztig_operator_on_basis(L((0,3)), 1, 1, 0, convention=
→˓"bar")
B[(1, 2)] + B[(2, 1)] + B[(0, 3)]

At 𝑞1 = 1 and 𝑞2 = −1 we recover the action of the simple reflection 𝑠𝑖:

sage: KL.demazure_lusztig_operator_on_basis(L((2,2)), 1, 1, -1)
B[(2, 2)]
sage: KL.demazure_lusztig_operator_on_basis(L((3,0)), 1, 1, -1)
B[(0, 3)]
sage: KL.demazure_lusztig_operator_on_basis(L((0,3)), 1, 1, -1)
B[(3, 0)]

demazure_lusztig_operator_on_classical_on_basis(weight, i, q, q1, q2,
convention='antidominant')

Return the result of applying the 𝑖-th Demazure-Lusztig operator on the classical weight weight em-
bedded at level 0.

INPUT:
• weight – a classical weight 𝜆
• i – an element of the index set
• q1,q2 – two elements of the ground ring
• convention – “antidominant”, “bar”, or “dominant” (default: “antidominant”)

See demazure_lusztig_operators() for the details.

Todo:
• Optimize the code to only do the embedding/projection for T_0
• Add an option to specify at which level one wants to work. Currently this is level 0.

EXAMPLES:

sage: L = RootSystem(["A",1,1]).ambient_space()
sage: L0 = L.classical()
sage: K = QQ['q,q1,q2']
sage: q, q1, q2 = K.gens()
sage: KL = L.algebra(K)
sage: KL0 = L0.algebra(K)

These operators coincide with the usual Demazure-Lusztig operators:

sage: KL.demazure_lusztig_operator_on_classical_on_basis(L0((2,2)), 1, q,␣
→˓q1, q2)
q1*B[(2, 2)]
sage: KL0.demazure_lusztig_operator_on_basis(L0((2,2)), 1, q1, q2)
q1*B[(2, 2)]

sage: KL.demazure_lusztig_operator_on_classical_on_basis(L0((3,0)), 1, q,␣
→˓q1, q2)
(q1+q2)*B[(1, 2)] + (q1+q2)*B[(2, 1)] + (q1+q2)*B[(3, 0)] + q1*B[(0, 3)]
sage: KL0.demazure_lusztig_operator_on_basis(L0((3,0)), 1, q1, q2)
(q1+q2)*B[(1, 2)] + (q1+q2)*B[(2, 1)] + (q1+q2)*B[(3, 0)] + q1*B[(0, 3)]

except that we now have an action of 𝑇0, which introduces some 𝑞 s:

5.1. Comprehensive Module List 2399

Combinatorics, Release 9.7

sage: KL.demazure_lusztig_operator_on_classical_on_basis(L0((2,2)), 0, q,␣
→˓q1, q2)
q1*B[(2, 2)]
sage: KL.demazure_lusztig_operator_on_classical_on_basis(L0((3,0)), 0, q,␣
→˓q1, q2)
(-q^2*q1-q^2*q2)*B[(1, 2)] + (-q*q1-q*q2)*B[(2, 1)] + (-q^3*q2)*B[(0, 3)]

demazure_lusztig_operators(q1, q2, convention='antidominant')
Return the Demazure-Lusztig operators acting on self.

INPUT:
• q1,q2 – two elements of the ground ring
• convention – “antidominant”, “bar”, or “dominant” (default: “antidominant”)

If 𝑅 is the parent weight ring, the Demazure-Lusztig operator 𝑇𝑖 is the linear map
𝑅 → 𝑅 obtained by interpolating between the isobaric divided difference operator 𝜋𝑖 (see
isobaric_divided_difference_on_basis()) and the simple reflection 𝑠𝑖.

(𝑞1 + 𝑞2)𝜋𝑖 − 𝑞2𝑠𝑖

The Demazure-Lusztig operators give the usual representation of the operator 𝑇𝑖 of the (affine) Hecke
algebra with eigenvalues 𝑞1 and 𝑞2 associated to the Weyl group.

Several variants are available to match with various conventions used in the literature:
• “bar” replaces 𝜋𝑖 in the formula above by 𝜋𝑖 = (1− 𝜋𝑖).
• “dominant” conjugates the operator by 𝑥𝜆 ↦→ 𝑥−𝜆.

The names dominant and antidominant for the conventions were chosen with regards to the nonsym-
metric Macdonald polynomials. The 𝑌 operators for the Macdonald polynomials in the “dominant”
convention satisfy 𝑌𝜆 = 𝑇𝑡𝜆 for 𝜆 dominant. This is also the convention used in [Haiman06]. For the
“antidominant” convention, 𝑌𝜆 = 𝑇𝑡𝜆 with 𝜆 antidominant.

See also:

• demazure_lusztig_operator_on_basis().
• NonSymmetricMacdonaldPolynomials.

REFERENCES:

EXAMPLES:

sage: L = RootSystem(["A",1]).ambient_space()
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KL = L.algebra(K)
sage: T = KL.demazure_lusztig_operators(q1, q2)
sage: Tbar = KL.demazure_lusztig_operators(q1, q2, convention="bar")
sage: Tdominant = KL.demazure_lusztig_operators(q1, q2, convention="dominant
→˓")
sage: x = KL.monomial(L((3,0)))
sage: T[1](x)
(q1+q2)*B[(1, 2)] + (q1+q2)*B[(2, 1)] + (q1+q2)*B[(3, 0)] + q1*B[(0, 3)]
sage: Tbar[1](x)
(-q1-q2)*B[(1, 2)] + (-q1-q2)*B[(2, 1)] + (-q1-2*q2)*B[(0, 3)]
sage: Tbar[1](x) + T[1](x)
(q1+q2)*B[(3, 0)] + (-2*q2)*B[(0, 3)]
sage: Tdominant[1](x)
(-q1-q2)*B[(1, 2)] + (-q1-q2)*B[(2, 1)] + (-q2)*B[(0, 3)]

(continues on next page)

2400 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Tdominant.Tw_inverse(1)(KL.monomial(-L.simple_root(1)))
((-q1-q2)/(q1*q2))*B[(0, 0)] - 1/q2*B[(1, -1)]

We repeat similar computation in the affine setting:

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KL = L.algebra(K)
sage: T = KL.demazure_lusztig_operators(q1, q2)
sage: Tbar = KL.demazure_lusztig_operators(q1, q2, convention="bar")
sage: Tdominant = KL.demazure_lusztig_operators(q1, q2, convention="dominant
→˓")
sage: e = L.basis()
sage: x = KL.monomial(3*e[0])
sage: T[1](x)
(q1+q2)*B[e[0] + 2*e[1]] + (q1+q2)*B[2*e[0] + e[1]] + (q1+q2)*B[3*e[0]] +␣
→˓q1*B[3*e[1]]
sage: Tbar[1](x)
(-q1-q2)*B[e[0] + 2*e[1]] + (-q1-q2)*B[2*e[0] + e[1]] + (-q1-2*q2)*B[3*e[1]]
sage: Tbar[1](x) + T[1](x)
(q1+q2)*B[3*e[0]] + (-2*q2)*B[3*e[1]]
sage: Tdominant[1](x)
(-q1-q2)*B[e[0] + 2*e[1]] + (-q1-q2)*B[2*e[0] + e[1]] + (-q2)*B[3*e[1]]
sage: Tdominant.Tw_inverse(1)(KL.monomial(-L.simple_root(1)))
((-q1-q2)/(q1*q2))*B[0] - 1/q2*B[e[0] - e[1]]

One can obtain iterated operators by passing a reduced word or an element of the Weyl group:

sage: T[1,2](x)
(q1^2+2*q1*q2+q2^2)*B[e[0] + e[1] + e[2]] +
(q1^2+2*q1*q2+q2^2)*B[e[0] + 2*e[1]] +
(q1^2+q1*q2)*B[e[0] + 2*e[2]] + (q1^2+2*q1*q2+q2^2)*B[2*e[0] + e[1]] +
(q1^2+q1*q2)*B[2*e[0] + e[2]] + (q1^2+q1*q2)*B[3*e[0]] +
(q1^2+q1*q2)*B[e[1] + 2*e[2]] + (q1^2+q1*q2)*B[2*e[1] + e[2]] +
(q1^2+q1*q2)*B[3*e[1]] + q1^2*B[3*e[2]]

and use that to check, for example, the braid relations:

sage: T[1,2,1](x) - T[2,1,2](x)
0

The operators satisfy the relations of the affine Hecke algebra with parameters 𝑞1, 𝑞2:

sage: T._test_relations()
sage: Tdominant._test_relations()
sage: Tbar._test_relations() #-q2,q1+2*q2 # todo: not implemented: set␣
→˓the appropriate eigenvalues!

And the 𝑇 are basically the inverses of the 𝑇 s:

5.1. Comprehensive Module List 2401

Combinatorics, Release 9.7

sage: Tinv = KL.demazure_lusztig_operators(2/q1+1/q2,-1/q1,convention="bar")
sage: [Tinv[1](T[1](x))-x for x in KL.some_elements()]
[0, 0, 0, 0, 0, 0, 0]

We check that Λ1 − Λ0 is an eigenvector for the 𝑌 s in affine type:

sage: K = QQ['q,q1,q2'].fraction_field()
sage: q,q1,q2=K.gens()
sage: L = RootSystem(["A",2,1]).ambient_space()
sage: L0 = L.classical()
sage: Lambda = L.fundamental_weights()
sage: alphacheck = L0.simple_coroots()
sage: KL = L.algebra(K)
sage: T = KL.demazure_lusztig_operators(q1, q2, convention="dominant")
sage: Y = T.Y()
sage: alphacheck = Y.keys().alpha() # alpha of coroot lattice is alphacheck
sage: alphacheck
Finite family {0: alphacheck[0], 1: alphacheck[1], 2: alphacheck[2]}
sage: x = KL.monomial(Lambda[1]-Lambda[0]); x
B[e[0]]

In fact it is not exactly an eigenvector, but the extra ‘delta` term is to be interpreted as a 𝑞 parameter:

sage: Y[alphacheck[0]](KL.one())
q2^2/q1^2*B[0]
sage: Y[alphacheck[1]](x)
((-q2^2)/(-q1^2))*B[e[0] - e['delta']]
sage: Y[alphacheck[2]](x)
(q1/(-q2))*B[e[0]]
sage: KL.q_project(Y[alphacheck[1]](x),q)
((-q2^2)/(-q*q1^2))*B[(1, 0, 0)]

sage: KL.q_project(x, q)
B[(1, 0, 0)]
sage: KL.q_project(Y[alphacheck[0]](x),q)
((-q*q1)/q2)*B[(1, 0, 0)]
sage: KL.q_project(Y[alphacheck[1]](x),q)
((-q2^2)/(-q*q1^2))*B[(1, 0, 0)]
sage: KL.q_project(Y[alphacheck[2]](x),q)
(q1/(-q2))*B[(1, 0, 0)]

We now check systematically that the Demazure-Lusztig operators satisfy the relations of the Iwahori-
Hecke algebra:

sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: for cartan_type in CartanType.samples(crystallographic=True): # long␣
→˓time 12s
....: L = RootSystem(cartan_type).root_lattice()
....: KL = L.algebra(K)
....: T = KL.demazure_lusztig_operators(q1,q2)
....: T._test_relations()

(continues on next page)

2402 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: for cartan_type in CartanType.samples(crystallographic=True): # long␣
→˓time 12s
....: L = RootSystem(cartan_type).weight_lattice()
....: KL = L.algebra(K)
....: T = KL.demazure_lusztig_operators(q1,q2)
....: T._test_relations()

Recall that the Demazure-Lusztig operators are only defined when all monomials belong to the weight
lattice. Thus, in the group algebra of the ambient space, we need to specify explicitly the elements on
which to run the tests:

sage: for cartan_type in CartanType.samples(crystallographic=True): # long␣
→˓time 12s
....: L = RootSystem(cartan_type).ambient_space()
....: KL = L.algebra(K)
....: weight_lattice = RootSystem(cartan_type).weight_lattice(extended=L.
→˓is_extended())
....: elements = [KL.monomial(L(weight)) for weight in weight_lattice.
→˓some_elements()]
....: T = KL.demazure_lusztig_operators(q1,q2)
....: T._test_relations(elements=elements)

demazure_lusztig_operators_on_classical(q, q1, q2, convention='antidominant')
Return the Demazure-Lusztig operators acting at level 1 on self.classical().

INPUT:
• q,q1,q2 – three elements of the ground ring
• convention – “antidominant”, “bar”, or “dominant” (default: “antidominant”)

Let𝐾𝐿 be the group algebra of an affine weight lattice realization𝐿. The Demazure-Lusztig operators
for 𝐾𝐿 act on the group algebra of the corresponding classical weight lattice by embedding it at level
1, and projecting back.

See also:

• demazure_lusztig_operators().
• demazure_lusztig_operator_on_classical_on_basis().
• q_project()

EXAMPLES:

sage: L = RootSystem(["A",1,1]).ambient_space()
sage: K = QQ['q,q1,q2'].fraction_field()
sage: q, q1, q2 = K.gens()
sage: KL = L.algebra(K)
sage: KL0 = KL.classical()
sage: L0 = KL0.basis().keys()
sage: T = KL.demazure_lusztig_operators_on_classical(q, q1, q2)

sage: x = KL0.monomial(L0((3,0))); x
B[(3, 0)]

For 𝑇1, . . . we recover the usual Demazure-Lusztig operators:

sage: T[1](x)
(q1+q2)*B[(1, 2)] + (q1+q2)*B[(2, 1)] + (q1+q2)*B[(3, 0)] + q1*B[(0, 3)]

5.1. Comprehensive Module List 2403

Combinatorics, Release 9.7

For 𝑇0, we can note that, in the projection, 𝛿 is mapped to 𝑞:

sage: T[0](x)
(-q^2*q1-q^2*q2)*B[(1, 2)] + (-q*q1-q*q2)*B[(2, 1)] + (-q^3*q2)*B[(0, 3)]

Note that there is no translation part, and in particular 1 is an eigenvector for all 𝑇𝑖’s:

sage: T[0](KL0.one())
q1*B[(0, 0)]
sage: T[1](KL0.one())
q1*B[(0, 0)]

sage: Y = T.Y()
sage: alphacheck=Y.keys().simple_roots()
sage: Y[alphacheck[0]](KL0.one())
((-q2)/(q*q1))*B[(0, 0)]

Matching with Ion Bogdan’s hand calculations from 3/15/2013:

sage: L = RootSystem(["A",1,1]).weight_space(extended=True)
sage: K = QQ['q,u'].fraction_field()
sage: q, u = K.gens()
sage: KL = L.algebra(K)
sage: KL0 = KL.classical()
sage: L0 = KL0.basis().keys()
sage: omega = L0.fundamental_weights()
sage: T = KL.demazure_lusztig_operators_on_classical(q, u, -1/u, convention=
→˓"dominant")
sage: Y = T.Y()
sage: alphacheck = Y.keys().simple_roots()

sage: Ydelta = Y[Y.keys().null_root()]
sage: Ydelta.word, Ydelta.signs, Ydelta.scalar
((), (), 1/q)

sage: Y1 = Y[alphacheck[1]]
sage: Y1.word, Y1.signs, Y1.scalar # This is T_0 T_1 (T_1 acts first, then␣
→˓T_0); Ion gets T_1 T_0
((1, 0), (1, 1), 1)

sage: Y0 = Y[alphacheck[0]]
sage: Y0.word, Y0.signs, Y0.scalar # This is 1/q T_1^-1 T_0^-1
((0, 1), (-1, -1), 1/q)

Note that the following computations use the “dominant” convention:

sage: T0 = T.Tw(0)
sage: T0(KL0.monomial(omega[1]))
q*u*B[-Lambda[1]] + ((u^2-1)/u)*B[Lambda[1]]
sage: T0(KL0.monomial(2*omega[1]))
((q*u^2-q)/u)*B[0] + q^2*u*B[-2*Lambda[1]] + ((u^2-1)/u)*B[2*Lambda[1]]

sage: T0(KL0.monomial(-omega[1]))
1/(q*u)*B[Lambda[1]]

(continues on next page)

2404 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T0(KL0.monomial(-2*omega[1]))
((-u^2+1)/(q*u))*B[0] + 1/(q^2*u)*B[2*Lambda[1]]

demazure_operators()
Return the Demazure operators acting on self.

The 𝑖-th Demazure operator is defined by:

𝜋𝑖 =
1− 𝑒−𝛼𝑖𝑠𝑖
1− 𝑒−𝛼𝑖

It acts on 𝑒𝜆, for 𝜆 a weight, by:

𝜋𝑖𝑒
𝜆 =

𝑒𝜆 − 𝑒−𝛼𝑖+𝑠𝑖𝜆

1− 𝑒−𝛼𝑖

This matches with Lascoux’ definition [Lascoux2003] of 𝜋𝑖, and with the 𝑖-th Demazure operator of
[Kumar1987], which also works for general Kac-Moody types.

REFERENCES:

EXAMPLES:

We compute some Schur functions, as images of dominant monomials under the action of the maximal
isobaric divided difference ∆𝑤0 :

sage: L = RootSystem(["A",2]).ambient_lattice()
sage: KL = L.algebra(QQ)
sage: w0 = tuple(L.weyl_group().long_element().reduced_word())
sage: pi = KL.demazure_operators()
sage: pi0 = pi[w0]
sage: pi0(KL.monomial(L((2,1))))
2*B[(1, 1, 1)] + B[(1, 2, 0)] + B[(1, 0, 2)] + B[(2, 1, 0)] + B[(2, 0, 1)]␣
→˓+ B[(0, 1, 2)] + B[(0, 2, 1)]

Let us make the result into an actual polynomial:

sage: P = QQ['x,y,z']
sage: pi0(KL.monomial(L((2,1)))).expand(P.gens())
x^2*y + x*y^2 + x^2*z + 2*x*y*z + y^2*z + x*z^2 + y*z^2

This is indeed a Schur function:

sage: s = SymmetricFunctions(QQ).s()
sage: s[2,1].expand(3, P.variable_names())
x^2*y + x*y^2 + x^2*z + 2*x*y*z + y^2*z + x*z^2 + y*z^2

Let us check this systematically on Schur functions of degree 6:

sage: for p in Partitions(6, max_length=3).list():
....: assert s.monomial(p).expand(3, P.variable_names()) == pi0(KL.
→˓monomial(L(tuple(p)))).expand(P.gens())

We check systematically that these operators satisfy the Iwahori-Hecke algebra relations:

5.1. Comprehensive Module List 2405

Combinatorics, Release 9.7

sage: for cartan_type in CartanType.samples(crystallographic=True): # long␣
→˓time 12s
....: L = RootSystem(cartan_type).weight_lattice()
....: KL = L.algebra(QQ)
....: T = KL.demazure_operators()
....: T._test_relations()

sage: L = RootSystem(['A',1,1]).weight_lattice()
sage: KL = L.algebra(QQ)
sage: T = KL.demazure_operators()
sage: T._test_relations()

Warning: The Demazure operators are only defined if all the elements in the support have integral
scalar products with the coroots (basically, they are in the weight lattice). Otherwise an error is
raised:
sage: L = RootSystem(CartanType(["G",2]).dual()).ambient_space()
sage: KL = L.algebra(QQ)
sage: pi = KL.demazure_operators()
sage: pi[1](KL.monomial(L([0,0,1])))
Traceback (most recent call last):
...
ValueError: the weight does not have an integral scalar product with the␣
→˓coroot

divided_difference_on_basis(weight, i)
Return the result of applying the 𝑖-th divided difference on weight.

INPUT:
• weight – a weight
• i – an element of the index set

Todo: type free definition (Viviane’s definition uses that we are in the ambient space)

EXAMPLES:

sage: L = RootSystem(["A",1]).ambient_space()
sage: KL = L.algebra(QQ)
sage: KL.divided_difference_on_basis(L((2,2)), 1) # todo: not implemented
0
sage: KL.divided_difference_on_basis(L((3,0)), 1) # todo: not implemented
B[(2, 0)] + B[(1, 1)] + B[(0, 2)]
sage: KL.divided_difference_on_basis(L((0,3)), 1) # todo: not implemented
-B[(2, 0)] - B[(1, 1)] - B[(0, 2)]

In type 𝐴 and in the ambient lattice, we recover the usual action of divided differences polynomials:

sage: x,y = QQ['x,y'].gens()
sage: d = lambda p: (p - p(y,x)) / (x-y)
sage: d(x^2*y^2)
0

(continues on next page)

2406 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: d(x^3)
x^2 + x*y + y^2
sage: d(y^3)
-x^2 - x*y - y^2

from_polynomial(p)
Construct an element of self from a polynomial 𝑝.

INPUT:
• p – a polynomial

EXAMPLES:

sage: L = RootSystem(["A",2]).ambient_lattice()
sage: KL = L.algebra(QQ)
sage: x,y,z = QQ['x,y,z'].gens()
sage: KL.from_polynomial(x)
B[(1, 0, 0)]
sage: KL.from_polynomial(x^2*y + 2*y - z)
B[(2, 1, 0)] + 2*B[(0, 1, 0)] - B[(0, 0, 1)]

Todo: make this work for Laurent polynomials too

isobaric_divided_difference_on_basis(weight, i)
Return the result of applying the 𝑖-th isobaric divided difference on weight.

INPUT:
• weight – a weight
• i – an element of the index set

See also:

demazure_operators()

EXAMPLES:

sage: L = RootSystem(["A",1]).ambient_space()
sage: KL = L.algebra(QQ)
sage: KL.isobaric_divided_difference_on_basis(L((2,2)), 1)
B[(2, 2)]
sage: KL.isobaric_divided_difference_on_basis(L((3,0)), 1)
B[(1, 2)] + B[(2, 1)] + B[(3, 0)] + B[(0, 3)]
sage: KL.isobaric_divided_difference_on_basis(L((0,3)), 1)
-B[(1, 2)] - B[(2, 1)]

In type𝐴 and in the ambient lattice, we recover the usual action of divided differences on polynomials:

sage: x,y = QQ['x,y'].gens()
sage: d = lambda p: (x*p - (x*p)(y,x)) / (x-y)
sage: d(x^2*y^2)
x^2*y^2
sage: d(x^3)
x^3 + x^2*y + x*y^2 + y^3
sage: d(y^3)
-x^2*y - x*y^2

5.1. Comprehensive Module List 2407

Combinatorics, Release 9.7

REFERENCES:

q_project(x, q)
Implement the 𝑞-projection morphism from self to the group algebra of the classical space.

INPUT:
• x – an element of the group algebra of self
• q – an element of the ground ring

This is an algebra morphism mapping 𝛿 to 𝑞 and 𝑋𝑏 to its classical counterpart for the other elements
𝑏 of the basis of the realization.

EXAMPLES:

sage: K = QQ['q'].fraction_field()
sage: q = K.gen()
sage: KL = RootSystem(["A",2,1]).ambient_space().algebra(K)
sage: L = KL.basis().keys()
sage: e = L.basis()
sage: x = KL.an_element() + KL.monomial(4*e[1] + 3*e[2] + e['deltacheck'] -␣
→˓2*e['delta']); x
B[2*e[0] + 2*e[1] + 3*e[2]] + B[4*e[1] + 3*e[2] - 2*e['delta'] + e[
→˓'deltacheck']]
sage: KL.q_project(x, q)
B[(2, 2, 3)] + 1/q^2*B[(0, 4, 3)]

sage: KL = RootSystem(["BC",3,2]).ambient_space().algebra(K)
sage: L = KL.basis().keys()
sage: e = L.basis()
sage: x = KL.an_element() + KL.monomial(4*e[1] + 3*e[2] + e['deltacheck'] -␣
→˓2*e['delta']); x
B[2*e[0] + 2*e[1] + 3*e[2]] + B[4*e[1] + 3*e[2] - 2*e['delta'] + e[
→˓'deltacheck']]
sage: KL.q_project(x, q)
B[(2, 2, 3)] + 1/q^2*B[(0, 4, 3)]

Warning: Recall that the null root, usually denoted 𝛿, is in fact a[0]\delta in Sage’s notation, in
order to avoid half integer coefficients (this only makes a difference in type BC). Similarly, what’s
usually denoted 𝑞 is in fact q^a[0] in Sage’s notations, to avoid manipulating square roots:

sage: KL.q_project(KL.monomial(L.null_root()),q)
q^2*B[(0, 0, 0)]

q_project_on_basis(l, q)
Return the monomial 𝑐 * 𝑐𝑙(𝑙) in the group algebra of the classical lattice.

INPUT:
• l – an element of the root lattice realization
• q – an element of the ground ring

Here, 𝑐𝑙(𝑙) is the projection of 𝑙 in the classical lattice, and 𝑐 is the coefficient of 𝑙 in 𝛿.

See also:

q_project_on_basis()

EXAMPLES:

2408 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: K = QQ['q'].fraction_field()
sage: q = K.gen()
sage: KL = RootSystem(["A",2,1]).ambient_space().algebra(K)
sage: L = KL.basis().keys()
sage: e = L.basis()
sage: KL.q_project_on_basis(4*e[1] + 3*e[2] + e['deltacheck'] - 2*e['delta
→˓'], q)
1/q^2*B[(0, 4, 3)]

some_elements()
Return some elements of the algebra self.

EXAMPLES:

sage: A = RootSystem(["A",2,1]).ambient_space().algebra(QQ)
sage: A.some_elements()
[B[2*e[0] + 2*e[1] + 3*e[2]],
B[-e[0] + e[2] + e['delta']],
B[e[0] - e[1]],
B[e[1] - e[2]],
B[e['deltacheck']],
B[e[0] + e['deltacheck']],
B[e[0] + e[1] + e['deltacheck']]]

sage: A = RootSystem(["B",2]).weight_space().algebra(QQ)
sage: A.some_elements()
[B[2*Lambda[1] + 2*Lambda[2]],
B[2*Lambda[1] - 2*Lambda[2]],
B[-Lambda[1] + 2*Lambda[2]],
B[Lambda[1]],
B[Lambda[2]]]

twisted_demazure_lusztig_operator_on_basis(weight, i, q1, q2, convention='antidominant')
Return the twisted Demazure-Lusztig operator acting on the basis.

INPUT:
• weight – an element 𝜆 of the weight lattice
• i – an element of the index set
• q1,q2 – two elements of the ground ring
• convention – “antidominant”, “bar”, or “dominant” (default: “antidominant”)

See also:

twisted_demazure_lusztig_operators()

EXAMPLES:

sage: L = RootSystem(["A",3,1]).ambient_space()
sage: e = L.basis()
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KL = L.algebra(K)
sage: Lambda = L.classical().fundamental_weights()
sage: KL.twisted_demazure_lusztig_operator_on_basis(Lambda[1]+2*Lambda[2],␣
→˓1, q1, q2, convention="dominant")
(-q2)*B[(2, 3, 0, 0)]

(continues on next page)

5.1. Comprehensive Module List 2409

Combinatorics, Release 9.7

(continued from previous page)

sage: KL.twisted_demazure_lusztig_operator_on_basis(Lambda[1]+2*Lambda[2],␣
→˓2, q1, q2, convention="dominant")
(-q1-q2)*B[(3, 1, 1, 0)] + (-q2)*B[(3, 0, 2, 0)]
sage: KL.twisted_demazure_lusztig_operator_on_basis(Lambda[1]+2*Lambda[2],␣
→˓3, q1, q2, convention="dominant")
q1*B[(3, 2, 0, 0)]
sage: KL.twisted_demazure_lusztig_operator_on_basis(Lambda[1]+2*Lambda[2],␣
→˓0, q1, q2, convention="dominant")
((q1*q2+q2^2)/q1)*B[(1, 2, 1, 1)] + ((q1*q2+q2^2)/q1)*B[(1, 2, 2, 0)] + q2^
→˓2/q1*B[(1, 2, 0, 2)]
+ ((q1^2+2*q1*q2+q2^2)/q1)*B[(2, 1, 1, 1)] + ((q1^2+2*q1*q2+q2^2)/q1)*B[(2,␣
→˓1, 2, 0)]
+ ((q1*q2+q2^2)/q1)*B[(2, 1, 0, 2)] + ((q1^2+2*q1*q2+q2^2)/q1)*B[(2, 2, 1,␣
→˓0)] + ((q1*q2+q2^2)/q1)*B[(2, 2, 0, 1)]

twisted_demazure_lusztig_operators(q1, q2, convention='antidominant')
Return the twisted Demazure-Lusztig operators acting on self.

INPUT:
• q1,q2 – two elements of the ground ring
• convention – “antidominant”, “bar”, or “dominant” (default: “antidominant”)

Warning:

• the code is currently only tested for 𝑞1𝑞2 = −1

• only the “dominant” convention is functional for 𝑖 = 0

For 𝑇1, . . . , 𝑇𝑛, these operators are the usual Demazure-Lusztig operators. On the other hand, the
operator 𝑇0 is twisted:

sage: L = RootSystem(["A",3,1]).ambient_space()
sage: e = L.basis()
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KL = L.algebra(K)
sage: T = KL.twisted_demazure_lusztig_operators(q1, q2, convention="dominant
→˓")
sage: T._test_relations()

Todo: Choose a good set of Cartan Type to run on. Rank >4 is too big. But 𝐶1 and 𝐵1 are boring.

We now check systematically that those operators satisfy the relations of the Iwahori-Hecke algebra:

sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: for cartan_type in CartanType.samples(affine=True,␣
→˓crystallographic=True): # long time 12s
....: if cartan_type.rank() > 4: continue
....: if cartan_type.type() == 'BC': continue
....: KL = RootSystem(cartan_type).weight_lattice().algebra(K)

(continues on next page)

2410 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: T = KL.twisted_demazure_lusztig_operators(q1, q2, convention=
→˓"dominant")
....: T._test_relations()

Todo: Investigate why 𝑇∨0 currently does not satisfy the quadratic relation in type 𝐵𝐶. This should
hopefully be fixed when 𝑇∨0 will have a more uniform implementation:

sage: cartan_type = CartanType(["BC",1,2])
sage: KL = RootSystem(cartan_type).weight_lattice().algebra(K)
sage: T = KL.twisted_demazure_lusztig_operators(q1,q2, convention="dominant
→˓")
sage: T._test_relations()
Traceback (most recent call last):
... tester.assertTrue(Ti(Ti(x,i,-q2),i,-q1).is_zero()) ...
AssertionError: False is not true

Comparison with T0:

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: e = L.basis()
sage: K = QQ['t,q'].fraction_field()
sage: t,q = K.gens()
sage: q1 = t
sage: q2 = -1
sage: KL = L.algebra(K)
sage: L0 = L.classical()
sage: T = KL.demazure_lusztig_operators(q1,q2, convention="dominant")
sage: def T0(*l0): return KL.q_project(T[0].on_basis()(L.embed_at_
→˓level(L0(l0), 1)), q)
sage: T0_check_on_basis = KL.T0_check_on_basis(q1, q2, convention="dominant
→˓")
sage: def T0c(*l0): return T0_check_on_basis(L0(l0))

sage: T0(0,0,1) # not double checked
((-t+1)/q)*B[(1, 0, 0)] + 1/q^2*B[(2, 0, -1)]
sage: T0c(0,0,1)
(t^2-t)*B[(1, 0, 0)] + (t^2-t)*B[(1, 1, -1)] + t^2*B[(2, 0, -1)] + (t-
→˓1)*B[(0, 0, 1)]

5.1.235 Root lattice realizations

class sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations(base,
name=None)

Bases: sage.categories.category_types.Category_over_base_ring

The category of root lattice realizations over a given base ring

A root lattice realization 𝐿 over a base ring 𝑅 is a free module (or vector space if 𝑅 is a field) endowed with an
embedding of the root lattice of some root system.

5.1. Comprehensive Module List 2411

../../../../../../../html/en/reference/categories/sage/categories/category_types.html#sage.categories.category_types.Category_over_base_ring

Combinatorics, Release 9.7

Typical root lattice realizations over Z include the root lattice, weight lattice, and ambient lattice. Typical root
lattice realizations over Q include the root space, weight space, and ambient space.

To describe the embedding, a root lattice realization must implement a method simple_root() returning for
each 𝑖 in the index set the image of the simple root 𝛼𝑖 under the embedding.

A root lattice realization must further implement a method on elements scalar(), computing the scalar product
with elements of the coroot lattice or coroot space.

Using those, this category provides tools for reflections, roots, the Weyl group and its action, . . .

See also:

• RootSystem

• WeightLatticeRealizations

• RootSpace

• WeightSpace

• AmbientSpace

EXAMPLES:

Here, we consider the root system of type 𝐴7, and embed the root lattice element 𝑥 = 𝛼2 + 2𝛼6 in several root
lattice realizations:

sage: R = RootSystem(["A",7])
sage: alpha = R.root_lattice().simple_roots()
sage: x = alpha[2] + 2 * alpha[5]

sage: L = R.root_space()
sage: L(x)
alpha[2] + 2*alpha[5]

sage: L = R.weight_lattice()
sage: L(x)
-Lambda[1] + 2*Lambda[2] - Lambda[3] - 2*Lambda[4] + 4*Lambda[5] - 2*Lambda[6]

sage: L = R.ambient_space()
sage: L(x)
(0, 1, -1, 0, 2, -2, 0, 0)

We embed the root space element 𝑥 = 𝛼2 + 1/2𝛼6 in several root lattice realizations:

sage: alpha = R.root_space().simple_roots()
sage: x = alpha[2] + 1/2 * alpha[5]

sage: L = R.weight_space()
sage: L(x)
-Lambda[1] + 2*Lambda[2] - Lambda[3] - 1/2*Lambda[4] + Lambda[5] - 1/2*Lambda[6]

sage: L = R.ambient_space()
sage: L(x)
(0, 1, -1, 0, 1/2, -1/2, 0, 0)

Of course, one can’t embed the root space in the weight lattice:

2412 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = R.weight_lattice()
sage: L(x)
Traceback (most recent call last):
...
TypeError: do not know how to make x (= alpha[2] + 1/2*alpha[5]) an element of self␣
→˓(=Weight lattice of the Root system of type ['A', 7])

If 𝐾1 is a subring of 𝐾2, then one could in theory have an embedding from the root space over 𝐾1 to any root
lattice realization over 𝐾2; this is not implemented:

sage: K1 = QQ
sage: K2 = QQ['q']
sage: L = R.weight_space(K2)

sage: alpha = R.root_space(K2).simple_roots()
sage: L(alpha[1])
2*Lambda[1] - Lambda[2]

sage: alpha = R.root_space(K1).simple_roots()
sage: L(alpha[1])
Traceback (most recent call last):
...
TypeError: do not know how to make x (= alpha[1]) an element of self (=Weight space␣
→˓over the Univariate Polynomial Ring in q over Rational Field of the Root system␣
→˓of type ['A', 7])

By a slight abuse, the embedding of the root lattice is not actually required to be faithful. Typically for an affine
root system, the null root of the root lattice is killed in the non extended weight lattice:

sage: R = RootSystem(["A", 3, 1])
sage: delta = R.root_lattice().null_root()
sage: L = R.weight_lattice()
sage: L(delta)
0

Algebras
alias of sage.combinat.root_system.root_lattice_realization_algebras.Algebras

class ElementMethods
Bases: object

affine_orbit()
The orbit of self under the dot or affine action of the Weyl group.

EXAMPLES:

sage: L = RootSystem(['A', 2]).ambient_lattice()
sage: sorted(L.rho().dot_orbit()) # the output order is not␣
→˓specified
[(-2, 1, 4), (-2, 3, 2), (2, -1, 2),
(2, 1, 0), (0, -1, 4), (0, 3, 0)]

sage: L = RootSystem(['B',2]).weight_lattice()
sage: sorted(L.fundamental_weights()[1].dot_orbit()) # the output order␣
→˓is not specified

(continues on next page)

5.1. Comprehensive Module List 2413

Combinatorics, Release 9.7

(continued from previous page)

[-4*Lambda[1], -4*Lambda[1] + 4*Lambda[2],
-3*Lambda[1] - 2*Lambda[2], -3*Lambda[1] + 4*Lambda[2],
Lambda[1], Lambda[1] - 6*Lambda[2],
2*Lambda[1] - 6*Lambda[2], 2*Lambda[1] - 2*Lambda[2]]

We compare the dot action orbit to the regular orbit:

sage: L = RootSystem(['A', 3]).weight_lattice()
sage: len(L.rho().dot_orbit())
24
sage: len((-L.rho()).dot_orbit())
1
sage: La = L.fundamental_weights()
sage: len(La[1].dot_orbit())
24
sage: len(La[1].orbit())
4
sage: len((-L.rho() + La[1]).dot_orbit())
4
sage: len(La[2].dot_orbit())
24
sage: len(La[2].orbit())
6
sage: len((-L.rho() + La[2]).dot_orbit())
6

associated_coroot()
Returns the coroot associated to this root

EXAMPLES:

sage: alpha = RootSystem(["A", 3]).root_space().simple_roots()
sage: alpha[1].associated_coroot()
alphacheck[1]

associated_reflection()
Given a positive root self, returns a reduced word for the reflection orthogonal to self.

Since the answer is cached, it is a tuple instead of a list.

EXAMPLES:

sage: RootSystem(['C',3]).root_lattice().simple_root(3).weyl_action([1,2]).
→˓associated_reflection()
(1, 2, 3, 2, 1)
sage: RootSystem(['C',3]).root_lattice().simple_root(2).associated_
→˓reflection()
(2,)

descents(index_set=None, positive=False)
Returns the descents of pt

EXAMPLES:

2414 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: space=RootSystem(['A',5]).weight_space()
sage: alpha=space.simple_roots()
sage: (alpha[1]+alpha[2]+alpha[4]).descents()
[3, 5]

dot_action(w, inverse=False)
Act on self by w using the dot or affine action.

Let 𝑤 be an element of the Weyl group. The dot action or affine action is given by:

𝑤 ∙ 𝜆 = 𝑤(𝜆+ 𝜌)− 𝜌,

where 𝜌 is the sum of the fundamental weights.

INPUT:
• w – an element of a Coxeter or Weyl group of the same Cartan type, or a tuple or a list (such as a

reduced word) of elements from the index set
• inverse – a boolean (default: False); whether to act by the inverse element

EXAMPLES:

sage: P = RootSystem(['B',3]).weight_lattice()
sage: La = P.fundamental_weights()
sage: mu = La[1] + 2*La[2] - 3*La[3]
sage: mu.dot_action([1])
-3*Lambda[1] + 4*Lambda[2] - 3*Lambda[3]
sage: mu.dot_action([3])
Lambda[1] + Lambda[3]
sage: mu.dot_action([1,2,3])
-4*Lambda[1] + Lambda[2] + 3*Lambda[3]

We check that the origin of this action is at −𝜌:

sage: all((-P.rho()).dot_action([i]) == -P.rho()
....: for i in P.index_set())
True

REFERENCES:
• Wikipedia article Affine_action

dot_orbit()
The orbit of self under the dot or affine action of the Weyl group.

EXAMPLES:

sage: L = RootSystem(['A', 2]).ambient_lattice()
sage: sorted(L.rho().dot_orbit()) # the output order is not␣
→˓specified
[(-2, 1, 4), (-2, 3, 2), (2, -1, 2),
(2, 1, 0), (0, -1, 4), (0, 3, 0)]

sage: L = RootSystem(['B',2]).weight_lattice()
sage: sorted(L.fundamental_weights()[1].dot_orbit()) # the output order␣
→˓is not specified
[-4*Lambda[1], -4*Lambda[1] + 4*Lambda[2],
-3*Lambda[1] - 2*Lambda[2], -3*Lambda[1] + 4*Lambda[2],

(continues on next page)

5.1. Comprehensive Module List 2415

https://en.wikipedia.org/wiki/Affine_action

Combinatorics, Release 9.7

(continued from previous page)

Lambda[1], Lambda[1] - 6*Lambda[2],
2*Lambda[1] - 6*Lambda[2], 2*Lambda[1] - 2*Lambda[2]]

We compare the dot action orbit to the regular orbit:

sage: L = RootSystem(['A', 3]).weight_lattice()
sage: len(L.rho().dot_orbit())
24
sage: len((-L.rho()).dot_orbit())
1
sage: La = L.fundamental_weights()
sage: len(La[1].dot_orbit())
24
sage: len(La[1].orbit())
4
sage: len((-L.rho() + La[1]).dot_orbit())
4
sage: len(La[2].dot_orbit())
24
sage: len(La[2].orbit())
6
sage: len((-L.rho() + La[2]).dot_orbit())
6

extraspecial_pair()
Return the extraspecial pair of self under the ordering defined by positive_roots_by_height().

The extraspecial pair of a positive root 𝛾 with some total ordering < of the root lattice that respects
height is the pair of positive roots (𝛼, 𝛽) such that 𝛾 = 𝛼+ 𝛽 and 𝛼 is as small as possible.

EXAMPLES:

sage: Q = RootSystem(['G', 2]).root_lattice()
sage: Q.highest_root().extraspecial_pair()
(alpha[2], 3*alpha[1] + alpha[2])

first_descent(index_set=None, positive=False)
Returns the first descent of pt

One can use the index_set option to restrict to the parabolic subgroup indexed by index_set.

EXAMPLES:

sage: space=RootSystem(['A',5]).weight_space()
sage: alpha=space.simple_roots()
sage: (alpha[1]+alpha[2]+alpha[4]).first_descent()
3
sage: (alpha[1]+alpha[2]+alpha[4]).first_descent([1,2,5])
5
sage: (alpha[1]+alpha[2]+alpha[4]).first_descent([1,2,5,3,4])
5

greater()
Returns the elements in the orbit of self which are greater than self in the weak order.

EXAMPLES:

2416 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = RootSystem(['A',3]).ambient_lattice()
sage: e = L.basis()
sage: e[2].greater()
[(0, 0, 1, 0), (0, 0, 0, 1)]
sage: len(L.rho().greater())
24
sage: len((-L.rho()).greater())
1
sage: sorted([len(x.greater()) for x in L.rho().orbit()])
[1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 8, 8, 8, 8, 12, 12, 12, 24]

has_descent(i, positive=False)
Test if self has a descent at position 𝑖, that is if self is on the strict negative side of the 𝑖𝑡ℎ simple
reflection hyperplane.

If positive if True, tests if it is on the strict positive side instead.

EXAMPLES:

sage: space=RootSystem(['A',5]).weight_space()
sage: alpha=RootSystem(['A',5]).weight_space().simple_roots()
sage: [alpha[i].has_descent(1) for i in space.index_set()]
[False, True, False, False, False]
sage: [(-alpha[i]).has_descent(1) for i in space.index_set()]
[True, False, False, False, False]
sage: [alpha[i].has_descent(1, True) for i in space.index_set()]
[True, False, False, False, False]
sage: [(-alpha[i]).has_descent(1, True) for i in space.index_set()]
[False, True, False, False, False]
sage: (alpha[1]+alpha[2]+alpha[4]).has_descent(3)
True
sage: (alpha[1]+alpha[2]+alpha[4]).has_descent(1)
False
sage: (alpha[1]+alpha[2]+alpha[4]).has_descent(1, True)
True

height()
Return the height of self.

The height of a root 𝛼 =
∑︀
𝑖 𝑎𝑖𝛼𝑖 is defined to be ℎ(𝛼) :=

∑︀
𝑖 𝑎𝑖.

EXAMPLES:

sage: Q = RootSystem(['G', 2]).root_lattice()
sage: Q.highest_root().height()
5

is_dominant(index_set=None, positive=True)
Returns whether self is dominant.

This is done with respect to the subrootsystem indicated by the subset of Dynkin nodes index_set. If
index_set is None then the entire Dynkin node set is used. If positive is False then the dominance
condition is replaced by antidominance.

EXAMPLES:

5.1. Comprehensive Module List 2417

Combinatorics, Release 9.7

sage: L = RootSystem(['A',2]).ambient_lattice()
sage: Lambda = L.fundamental_weights()
sage: [x.is_dominant() for x in Lambda]
[True, True]
sage: [x.is_dominant(positive=False) for x in Lambda]
[False, False]
sage: (Lambda[1]-Lambda[2]).is_dominant()
False
sage: (-Lambda[1]+Lambda[2]).is_dominant()
False
sage: (Lambda[1]-Lambda[2]).is_dominant([1])
True
sage: (Lambda[1]-Lambda[2]).is_dominant([2])
False
sage: [x.is_dominant() for x in L.roots()]
[False, True, False, False, False, False]
sage: [x.is_dominant(positive=False) for x in L.roots()]
[False, False, False, False, True, False]

is_dominant_weight()
Test whether self is a dominant element of the weight lattice.

EXAMPLES:

sage: L = RootSystem(['A',2]).ambient_lattice()
sage: Lambda = L.fundamental_weights()
sage: [x.is_dominant() for x in Lambda]
[True, True]
sage: (3*Lambda[1]+Lambda[2]).is_dominant()
True
sage: (Lambda[1]-Lambda[2]).is_dominant()
False
sage: (-Lambda[1]+Lambda[2]).is_dominant()
False

Tests that the scalar products with the coroots are all nonnegative integers. For example, if 𝑥 is the
sum of a dominant element of the weight lattice plus some other element orthogonal to all coroots,
then the implementation correctly reports 𝑥 to be a dominant weight:

sage: x = Lambda[1] + L([-1,-1,-1])
sage: x.is_dominant_weight()
True

is_imaginary_root()
Return True if self is an imaginary root.

A root 𝛼 is imaginary if it is not 𝑊 conjugate to a simple root where 𝑊 is the corresponding Weyl
group.

EXAMPLES:

sage: Q = RootSystem(['B',2,1]).root_lattice()
sage: alpha = Q.simple_roots()
sage: alpha[0].is_imaginary_root()
False

(continues on next page)

2418 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: elt = alpha[0] + alpha[1] + 2*alpha[2]
sage: elt.is_imaginary_root()
True

is_long_root()
Return True if self is a long (real) root.

EXAMPLES:

sage: Q = RootSystem(['B',2,1]).root_lattice()
sage: alpha = Q.simple_roots()
sage: alpha[0].is_long_root()
True
sage: alpha[1].is_long_root()
True
sage: alpha[2].is_long_root()
False

is_parabolic_root(index_set)
Supposing that self is a root, is it in the parabolic subsystem with Dynkin nodes index_set?

INPUT:
• index_set – the Dynkin node set of the parabolic subsystem.

Todo: This implementation is only valid in the root or weight lattice

EXAMPLES:

sage: alpha = RootSystem(['A',3]).root_lattice().from_vector(vector([1,1,
→˓0]))
sage: alpha.is_parabolic_root([1,3])
False
sage: alpha.is_parabolic_root([1,2])
True
sage: alpha.is_parabolic_root([2])
False

is_real_root()
Return True if self is a real root.

A root 𝛼 is real if it is 𝑊 conjugate to a simple root where 𝑊 is the corresponding Weyl group.

EXAMPLES:

sage: Q = RootSystem(['B',2,1]).root_lattice()
sage: alpha = Q.simple_roots()
sage: alpha[0].is_real_root()
True
sage: elt = alpha[0] + alpha[1] + 2*alpha[2]
sage: elt.is_real_root()
False

is_short_root()
Return True if self is a short (real) root.

5.1. Comprehensive Module List 2419

Combinatorics, Release 9.7

Returns False unless the parent is an irreducible root system of finite type having two root lengths and
self is of the shorter length. There is no check of whether self is actually a root.

EXAMPLES:

sage: Q = RootSystem(['C',2]).root_lattice()
sage: al = Q.simple_root(1).weyl_action([1,2]); al
alpha[1] + alpha[2]
sage: al.is_short_root()
True
sage: bt = Q.simple_root(2).weyl_action([2,1,2]); bt
-2*alpha[1] - alpha[2]
sage: bt.is_short_root()
False
sage: RootSystem(['A',2]).root_lattice().simple_root(1).is_short_root()
False

An example in affine type:

sage: Q = RootSystem(['B',2,1]).root_lattice()
sage: alpha = Q.simple_roots()
sage: alpha[0].is_short_root()
False
sage: alpha[1].is_short_root()
False
sage: alpha[2].is_short_root()
True

level()
EXAMPLES:

sage: L = RootSystem(['A',2,1]).weight_lattice()
sage: L.rho().level()
3

norm_squared()
Return the norm squared of self with respect to the symmetric form.

EXAMPLES:

sage: Q = RootSystem(['B',2,1]).root_lattice()
sage: alpha = Q.simple_roots()
sage: alpha[1].norm_squared()
4
sage: alpha[2].norm_squared()
2
sage: elt = alpha[0] - 3*alpha[1] + alpha[2]
sage: elt.norm_squared()
50
sage: elt = alpha[0] + alpha[1] + 2*alpha[2]
sage: elt.norm_squared()
0
sage: Q = RootSystem(CartanType(['A',4,2]).dual()).root_lattice()
sage: Qc = RootSystem(['A',4,2]).coroot_lattice()
sage: alpha = Q.simple_roots()

(continues on next page)

2420 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: alphac = Qc.simple_roots()
sage: elt = alpha[0] + 2*alpha[1] + 2*alpha[2]
sage: eltc = alphac[0] + 2*alphac[1] + 2*alphac[2]
sage: elt.norm_squared()
0
sage: eltc.norm_squared()
0

orbit()
The orbit of self under the action of the Weyl group.

EXAMPLES:

𝜌 is a regular element whose orbit is in bijection with the Weyl group. In particular, it has 6 elements
for the symmetric group 𝑆3:

sage: L = RootSystem(["A", 2]).ambient_lattice()
sage: sorted(L.rho().orbit()) # the output order is not␣
→˓specified
[(1, 2, 0), (1, 0, 2), (2, 1, 0),
(2, 0, 1), (0, 1, 2), (0, 2, 1)]

sage: L = RootSystem(["A", 3]).weight_lattice()
sage: len(L.rho().orbit())
24
sage: len(L.fundamental_weights()[1].orbit())
4
sage: len(L.fundamental_weights()[2].orbit())
6

pred(index_set=None)
Return the immediate predecessors of self for the weak order.

INPUT:
• index_set - a subset (as a list or iterable) of the nodes of the Dynkin diagram; (default: None for

all of them)
If index_set is specified, the successors for the corresponding parabolic subsystem are returned.

EXAMPLES:

sage: L = RootSystem(['A',3]).weight_lattice()
sage: Lambda = L.fundamental_weights()
sage: Lambda[1].pred()
[]
sage: L.rho().pred()
[]
sage: (-L.rho()).pred()
[Lambda[1] - 2*Lambda[2] - Lambda[3], -2*Lambda[1] + Lambda[2] -␣
→˓2*Lambda[3], -Lambda[1] - 2*Lambda[2] + Lambda[3]]
sage: (-L.rho()).pred(index_set=[1])
[Lambda[1] - 2*Lambda[2] - Lambda[3]]

reduced_word(index_set=None, positive=True)
Returns a reduced word for the inverse of the shortest Weyl group element that sends the vector self
into the dominant chamber.

5.1. Comprehensive Module List 2421

Combinatorics, Release 9.7

With the index_set optional parameter, this is done with respect to the corresponding parabolic
subgroup.

If positive is False, use the antidominant chamber instead.

EXAMPLES:

sage: space=RootSystem(['A',5]).weight_space()
sage: alpha=RootSystem(['A',5]).weight_space().simple_roots()
sage: alpha[1].reduced_word()
[2, 3, 4, 5]
sage: alpha[1].reduced_word([1,2])
[2]

reflection(root, use_coroot=False)
Reflects self across the hyperplane orthogonal to root.

If use_coroot is True, root is interpreted as a coroot.

EXAMPLES:

sage: R = RootSystem(['C',4])
sage: weight_lattice = R.weight_lattice()
sage: mu = weight_lattice.from_vector(vector([0,0,1,2]))
sage: coroot_lattice = R.coroot_lattice()
sage: alphavee = coroot_lattice.from_vector(vector([0,0,1,1]))
sage: mu.reflection(alphavee, use_coroot=True)
6*Lambda[2] - 5*Lambda[3] + 2*Lambda[4]
sage: root_lattice = R.root_lattice()
sage: beta = root_lattice.from_vector(vector([0,1,1,0]))
sage: mu.reflection(beta)
Lambda[1] - Lambda[2] + 3*Lambda[4]

scalar(lambdacheck)
Implement the natural pairing with the coroot lattice.

INPUT:
• self – an element of a root lattice realization
• lambdacheck – an element of the coroot lattice or coroot space

OUTPUT: the scalar product of self and lambdacheck

EXAMPLES:

sage: L = RootSystem(['A',4]).root_lattice()
sage: alpha = L.simple_roots()
sage: alphacheck = L.simple_coroots()
sage: alpha[1].scalar(alphacheck[1])
2
sage: alpha[1].scalar(alphacheck[2])
-1
sage: matrix([[alpha[i].scalar(alphacheck[j])
....: for i in L.index_set()]
....: for j in L.index_set()])
[2 -1 0 0]
[-1 2 -1 0]
[0 -1 2 -1]
[0 0 -1 2]

2422 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

simple_reflection(i)
Returns the image of self by the 𝑖-th simple reflection.

EXAMPLES:

sage: alpha = RootSystem(["A", 3]).root_lattice().alpha()
sage: alpha[1].simple_reflection(2)
alpha[1] + alpha[2]

sage: Q = RootSystem(['A', 3, 1]).weight_lattice(extended = True)
sage: Lambda = Q.fundamental_weights()
sage: L = Lambda[0] + Q.null_root()
sage: L.simple_reflection(0)
-Lambda[0] + Lambda[1] + Lambda[3]

simple_reflections()
The images of self by all the simple reflections

EXAMPLES:

sage: alpha = RootSystem(["A", 3]).root_lattice().alpha()
sage: alpha[1].simple_reflections()
[-alpha[1], alpha[1] + alpha[2], alpha[1]]

smaller()
Returns the elements in the orbit of self which are smaller than self in the weak order.

EXAMPLES:

sage: L = RootSystem(['A',3]).ambient_lattice()
sage: e = L.basis()
sage: e[2].smaller()
[(0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)]
sage: len(L.rho().smaller())
1
sage: len((-L.rho()).smaller())
24
sage: sorted([len(x.smaller()) for x in L.rho().orbit()])
[1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 8, 8, 8, 8, 12, 12, 12, 24]

succ(index_set=None)
Return the immediate successors of self for the weak order.

INPUT:
• index_set - a subset (as a list or iterable) of the nodes of the Dynkin diagram; (default: None for

all of them)
If index_set is specified, the successors for the corresponding parabolic subsystem are returned.

EXAMPLES:

sage: L = RootSystem(['A',3]).weight_lattice()
sage: Lambda = L.fundamental_weights()
sage: Lambda[1].succ()
[-Lambda[1] + Lambda[2]]
sage: L.rho().succ()
[-Lambda[1] + 2*Lambda[2] + Lambda[3], 2*Lambda[1] - Lambda[2] +␣
→˓2*Lambda[3], Lambda[1] + 2*Lambda[2] - Lambda[3]]

(continues on next page)

5.1. Comprehensive Module List 2423

Combinatorics, Release 9.7

(continued from previous page)

sage: (-L.rho()).succ()
[]
sage: L.rho().succ(index_set=[1])
[-Lambda[1] + 2*Lambda[2] + Lambda[3]]
sage: L.rho().succ(index_set=[2])
[2*Lambda[1] - Lambda[2] + 2*Lambda[3]]

symmetric_form(alpha)
Return the symmetric form of self with alpha.

Consider the simple roots 𝛼𝑖 and let (𝑏𝑖𝑗)𝑖𝑗 denote the symmetrized Cartan matrix (𝑎𝑖𝑗)𝑖𝑗 , we have

(𝛼𝑖|𝛼𝑗) = 𝑏𝑖𝑗

and extended bilinearly. See Chapter 6 in Kac, Infinite Dimensional Lie Algebras for more details.

EXAMPLES:

sage: Q = RootSystem(['B',2,1]).root_lattice()
sage: alpha = Q.simple_roots()
sage: alpha[1].symmetric_form(alpha[0])
0
sage: alpha[1].symmetric_form(alpha[1])
4
sage: elt = alpha[0] - 3*alpha[1] + alpha[2]
sage: elt.symmetric_form(alpha[1])
-14
sage: elt.symmetric_form(alpha[0]+2*alpha[2])
14
sage: Q = RootSystem(CartanType(['A',4,2]).dual()).root_lattice()
sage: Qc = RootSystem(['A',4,2]).coroot_lattice()
sage: alpha = Q.simple_roots()
sage: alphac = Qc.simple_roots()
sage: elt = alpha[0] + 2*alpha[1] + 2*alpha[2]
sage: eltc = alphac[0] + 2*alphac[1] + 2*alphac[2]
sage: elt.symmetric_form(alpha[1])
0
sage: eltc.symmetric_form(alphac[1])
0

to_ambient()
Map self to the ambient space.

EXAMPLES:

sage: alpha = CartanType(['B',4]).root_system().root_lattice().an_element();
→˓ alpha
2*alpha[1] + 2*alpha[2] + 3*alpha[3]
sage: alpha.to_ambient()
(2, 0, 1, -3)
sage: mu = CartanType(['B',4]).root_system().weight_lattice().an_element();␣
→˓mu
2*Lambda[1] + 2*Lambda[2] + 3*Lambda[3]
sage: mu.to_ambient()

(continues on next page)

2424 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(7, 5, 3, 0)
sage: v = CartanType(['B',4]).root_system().ambient_space().an_element(); v
(2, 2, 3, 0)
sage: v.to_ambient()
(2, 2, 3, 0)
sage: alphavee = CartanType(['B',4]).root_system().coroot_lattice().an_
→˓element(); alphavee
2*alphacheck[1] + 2*alphacheck[2] + 3*alphacheck[3]
sage: alphavee.to_ambient()
(2, 0, 1, -3)

to_classical()
Map self to the classical lattice/space.

Only makes sense for affine type.

EXAMPLES:

sage: R = CartanType(['A',3,1]).root_system()
sage: alpha = R.root_lattice().an_element(); alpha
2*alpha[0] + 2*alpha[1] + 3*alpha[2]
sage: alb = alpha.to_classical(); alb
alpha[2] - 2*alpha[3]
sage: alb.parent()
Root lattice of the Root system of type ['A', 3]
sage: v = R.ambient_space().an_element(); v
2*e[0] + 2*e[1] + 3*e[2]
sage: v.to_classical()
(2, 2, 3, 0)

to_dominant_chamber(index_set=None, positive=True, reduced_word=False)
Returns the unique dominant element in the Weyl group orbit of the vector self.

If positive is False, returns the antidominant orbit element.

With the index_set optional parameter, this is done with respect to the corresponding parabolic
subgroup.

If reduced_word is True, returns the 2-tuple (weight, direction) where weight is the
(anti)dominant orbit element and direction is a reduced word for the Weyl group element sending
weight to self.

Warning: In infinite type, an orbit may not contain a dominant element. In this case the function
may go into an infinite loop.

For affine root systems, errors are generated if the orbit does not contain the requested kind of rep-
resentative. If the input vector is of positive (resp. negative) level, then there is a dominant (resp.
antidominant) element in its orbit but not an antidominant (resp. dominant) one. If the vector is of
level zero, then there are neither dominant nor antidominant orbit representatives, except for mul-
tiples of the null root, which are themselves both dominant and antidominant orbit representatives.

EXAMPLES:

5.1. Comprehensive Module List 2425

Combinatorics, Release 9.7

sage: space=RootSystem(['A',5]).weight_space()
sage: alpha=RootSystem(['A',5]).weight_space().simple_roots()
sage: alpha[1].to_dominant_chamber()
Lambda[1] + Lambda[5]
sage: alpha[1].to_dominant_chamber([1,2])
Lambda[1] + Lambda[2] - Lambda[3]
sage: wl=RootSystem(['A',2,1]).weight_lattice(extended=True)
sage: mu=wl.from_vector(vector([1,-3,0]))
sage: mu.to_dominant_chamber(positive=False, reduced_word = True)
(-Lambda[1] - Lambda[2] - delta, [0, 2])

sage: R = RootSystem(['A',1,1])
sage: rl = R.root_lattice()
sage: nu = rl.zero()
sage: nu.to_dominant_chamber()
0
sage: nu.to_dominant_chamber(positive=False)
0
sage: mu = rl.from_vector(vector([0,1]))
sage: mu.to_dominant_chamber()
Traceback (most recent call last):
...
ValueError: alpha[1] is not in the orbit of the fundamental chamber
sage: mu.to_dominant_chamber(positive=False)
Traceback (most recent call last):
...
ValueError: alpha[1] is not in the orbit of the negative of the fundamental␣
→˓chamber

to_dual_type_cospace()
Map self to the dual type cospace.

For example, if self is in the root lattice of type [′𝐵′, 2], send it to the coroot lattice of type [′𝐶 ′, 2].

EXAMPLES:

sage: v = CartanType(['C',3]).root_system().weight_lattice().an_element(); v
2*Lambda[1] + 2*Lambda[2] + 3*Lambda[3]
sage: w = v.to_dual_type_cospace(); w
2*Lambdacheck[1] + 2*Lambdacheck[2] + 3*Lambdacheck[3]
sage: w.parent()
Coweight lattice of the Root system of type ['B', 3]

to_simple_root(reduced_word=False)
Return (the index of) a simple root in the orbit of the positive root self.

INPUT:
• self – a positive root
• reduced_word – a boolean (default: False)

OUTPUT:
• The index 𝑖 of a simple root 𝛼𝑖. If reduced_word is True, this returns instead a pair (i, word),

where word is a sequence of reflections mapping 𝛼𝑖 up the root poset to self.
EXAMPLES:

2426 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = RootSystem(["A",3]).root_lattice()
sage: positive_roots = L.positive_roots()
sage: for alpha in sorted(positive_roots):
....: print("{} {}".format(alpha, alpha.to_simple_root()))
alpha[1] 1
alpha[1] + alpha[2] 2
alpha[1] + alpha[2] + alpha[3] 3
alpha[2] 2
alpha[2] + alpha[3] 3
alpha[3] 3
sage: for alpha in sorted(positive_roots):
....: print("{} {}".format(alpha, alpha.to_simple_root(reduced_
→˓word=True)))
alpha[1] (1, ())
alpha[1] + alpha[2] (2, (1,))
alpha[1] + alpha[2] + alpha[3] (3, (1, 2))
alpha[2] (2, ())
alpha[2] + alpha[3] (3, (2,))
alpha[3] (3, ())

ALGORITHM:

This method walks from self down to the antidominant chamber by applying successively the simple
reflection given by the first descent. Since self is a positive root, each step goes down the root poset,
and one must eventually cross a simple root 𝛼𝑖.

See also:

• first_descent()
• to_dominant_chamber()

Warning: The behavior is not specified if the input is not a positive root. For a finite root system,
this is currently caught (albeit with a not perfect message):

sage: alpha = L.simple_roots()
sage: (2*alpha[1]).to_simple_root()
Traceback (most recent call last):
...
ValueError: -2*alpha[1] - 2*alpha[2] - 2*alpha[3] is not a positive root

For an infinite root system, this method may run into an infinite recursion if the input is not a
positive root.

translation(x)

INPUT:
• self - an element 𝑡 at level 0
• x - an element of the same space

Returns 𝑥 translated by 𝑡, that is 𝑥+ 𝑙𝑒𝑣𝑒𝑙(𝑥)𝑡

EXAMPLES:

sage: L = RootSystem(['A',2,1]).weight_lattice()
sage: alpha = L.simple_roots()

(continues on next page)

5.1. Comprehensive Module List 2427

Combinatorics, Release 9.7

(continued from previous page)

sage: Lambda = L.fundamental_weights()
sage: t = alpha[2]

Let us look at the translation of an element of level 1:

sage: Lambda[1].level()
1
sage: t.translation(Lambda[1])
-Lambda[0] + 2*Lambda[2]
sage: Lambda[1] + t
-Lambda[0] + 2*Lambda[2]

and of an element of level 0:

sage: alpha [1].level()
0
sage: t.translation(alpha [1])
-Lambda[0] + 2*Lambda[1] - Lambda[2]
sage: alpha[1] + 0*t
-Lambda[0] + 2*Lambda[1] - Lambda[2]

The arguments are given in this seemingly unnatural order to make it easy to construct the translation
function:

sage: f = t.translation
sage: f(Lambda[1])
-Lambda[0] + 2*Lambda[2]

weyl_action(element, inverse=False)
Act on self by an element of the Coxeter or Weyl group.

INPUT:
• element – an element of a Coxeter or Weyl group of the same Cartan type, or a tuple or a list

(such as a reduced word) of elements from the index set
• inverse – a boolean (default: False); whether to act by the inverse element

EXAMPLES:

sage: wl = RootSystem(['A',3]).weight_lattice()
sage: mu = wl.from_vector(vector([1,0,-2]))
sage: mu
Lambda[1] - 2*Lambda[3]
sage: mudom, rw = mu.to_dominant_chamber(positive=False, reduced_word =␣
→˓True)
sage: mudom, rw
(-Lambda[2] - Lambda[3], [1, 2])

Acting by a (reduced) word:

sage: mudom.weyl_action(rw)
Lambda[1] - 2*Lambda[3]
sage: mu.weyl_action(rw, inverse = True)
-Lambda[2] - Lambda[3]

2428 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Acting by an element of the Coxeter or Weyl group on a vector in its own lattice of definition (imple-
mented by matrix multiplication on a vector):

sage: w = wl.weyl_group().from_reduced_word([1, 2])
sage: mudom.weyl_action(w)
Lambda[1] - 2*Lambda[3]

Acting by an element of an isomorphic Coxeter or Weyl group (implemented by the action of a corre-
sponding reduced word):

sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([1, 2])
sage: wl.weyl_group() == W
False
sage: mudom.weyl_action(w)
Lambda[1] - 2*Lambda[3]

weyl_stabilizer(index_set=None)
Returns the subset of Dynkin nodes whose reflections fix self.

If index_set is not None, only consider nodes in this set. Note that if self is dominant or antidom-
inant, then its stabilizer is the parabolic subgroup defined by the returned node set.

EXAMPLES:

sage: wl = RootSystem(['A',2,1]).weight_lattice(extended = True)
sage: al = wl.null_root()
sage: al.weyl_stabilizer()
[0, 1, 2]
sage: wl = RootSystem(['A',4]).weight_lattice()
sage: mu = wl.from_vector(vector([1,1,0,0]))
sage: mu.weyl_stabilizer()
[3, 4]
sage: mu.weyl_stabilizer(index_set = [1,2,3])
[3]

class ParentMethods
Bases: object

a_long_simple_root()
Returns a long simple root, corresponding to the highest outgoing edge in the Dynkin diagram.

Caveat: this may be break in affine type 𝐴(2)
2𝑛

Caveat: meaningful/broken for non irreducible?

TODO: implement CartanType.nodes_by_length as in MuPAD-Combinat (using Cartan-
Type.symmetrizer), and use it here.

almost_positive_roots()
Returns the almost positive roots of self

These are the positive roots together with the simple negative roots.

See also:

almost_positive_root_decomposition(), tau_plus_minus()

EXAMPLES:

5.1. Comprehensive Module List 2429

Combinatorics, Release 9.7

sage: L = RootSystem(['A',2]).root_lattice()
sage: L.almost_positive_roots()
[-alpha[1], alpha[1], alpha[1] + alpha[2], -alpha[2], alpha[2]]

almost_positive_roots_decomposition()
Returns the decomposition of the almost positive roots of self

This is the list of the orbits of the almost positive roots under the action of the dihedral group generated
by the operators 𝜏+ and 𝜏−.

See also:

• almost_positive_roots()
• tau_plus_minus()

EXAMPLES:

sage: RootSystem(['A',2]).root_lattice().almost_positive_roots_
→˓decomposition()
[[-alpha[1], alpha[1], alpha[1] + alpha[2], alpha[2], -alpha[2]]]

sage: RootSystem(['B',2]).root_lattice().almost_positive_roots_
→˓decomposition()
[[-alpha[1], alpha[1], alpha[1] + 2*alpha[2]], [-alpha[2], alpha[2],␣
→˓alpha[1] + alpha[2]]]

sage: RootSystem(['D',4]).root_lattice().almost_positive_roots_
→˓decomposition()
[[-alpha[1], alpha[1], alpha[1] + alpha[2], alpha[2] + alpha[3] + alpha[4]],
[-alpha[2], alpha[2], alpha[1] + alpha[2] + alpha[3] + alpha[4], alpha[1]␣
→˓+ 2*alpha[2] + alpha[3] + alpha[4]],
[-alpha[3], alpha[3], alpha[2] + alpha[3], alpha[1] + alpha[2] + alpha[4]],
[-alpha[4], alpha[4], alpha[2] + alpha[4], alpha[1] + alpha[2] + alpha[3]]]

alpha()
Returns the family (𝛼𝑖)𝑖∈𝐼 of the simple roots, with the extra feature that, for simple irreducible root
systems, 𝛼0 yields the opposite of the highest root.

EXAMPLES:

sage: alpha = RootSystem(["A",2]).root_lattice().alpha()
sage: alpha[1]
alpha[1]
sage: alpha[0]
-alpha[1] - alpha[2]

alphacheck()
Return the family (𝛼∨𝑖)𝑖∈𝐼 of the simple coroots, with the extra feature that, for simple irreducible root
systems, 𝛼∨0 yields the coroot associated to the opposite of the highest root (caveat: for non-simply-
laced root systems, this is not the opposite of the highest coroot!).

EXAMPLES:

sage: alphacheck = RootSystem(["A",2]).ambient_space().alphacheck()
sage: alphacheck
Finite family {1: (1, -1, 0), 2: (0, 1, -1)}

2430 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Here is now 𝛼∨0 :
(-1, 0, 1)

Todo: add a non simply laced example

Finally, here is an affine example:

sage: RootSystem(["A",2,1]).weight_space().alphacheck()
Finite family {0: alphacheck[0], 1: alphacheck[1], 2: alphacheck[2]}

sage: RootSystem(["A",3]).ambient_space().alphacheck()
Finite family {1: (1, -1, 0, 0), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1)}

basic_imaginary_roots()
Return the basic imaginary roots of self.

The basic imaginary roots 𝛿 are the set of imaginary roots in −𝐶∨ where 𝐶 is the dominant chamber
(i.e., ⟨𝛽, 𝛼∨𝑖 ⟩ ≤ 0 for all 𝑖 ∈ 𝐼). All imaginary roots are 𝑊 -conjugate to a simple imaginary root.

EXAMPLES:

sage: RootSystem(['A', 2]).root_lattice().basic_imaginary_roots()
()
sage: Q = RootSystem(['A', 2, 1]).root_lattice()
sage: Q.basic_imaginary_roots()
(alpha[0] + alpha[1] + alpha[2],)
sage: delta = Q.basic_imaginary_roots()[0]
sage: all(delta.scalar(Q.simple_coroot(i)) <= 0 for i in Q.index_set())
True

cartan_type()
EXAMPLES:

sage: r = RootSystem(['A',4]).root_space()
sage: r.cartan_type()
['A', 4]

classical()
Return the corresponding root/weight/ambient lattice/space.

EXAMPLES:

sage: RootSystem(["A",4,1]).root_lattice().classical()
Root lattice of the Root system of type ['A', 4]
sage: RootSystem(["A",4,1]).weight_lattice().classical()
Weight lattice of the Root system of type ['A', 4]
sage: RootSystem(["A",4,1]).ambient_space().classical()
Ambient space of the Root system of type ['A', 4]

cohighest_root()
Returns the associated coroot of the highest root.

Note: this is usually not the highest coroot.

EXAMPLES:

5.1. Comprehensive Module List 2431

Combinatorics, Release 9.7

sage: RootSystem(['A', 3]).ambient_space().cohighest_root()
(1, 0, 0, -1)

coroot_lattice()
Returns the coroot lattice.

EXAMPLES:

sage: RootSystem(['A',2]).root_lattice().coroot_lattice()
Coroot lattice of the Root system of type ['A', 2]

coroot_space(base_ring=Rational Field)
Return the coroot space over base_ring.

INPUT:
• base_ring – a ring (default: Q)

EXAMPLES:

sage: RootSystem(['A',2]).root_lattice().coroot_space()
Coroot space over the Rational Field of the Root system of type ['A', 2]

sage: RootSystem(['A',2]).root_lattice().coroot_space(QQ['q'])
Coroot space over the Univariate Polynomial Ring in q over Rational Field␣
→˓of the Root system of type ['A', 2]

dual_type_cospace()
Returns the cospace of dual type.

For example, if invoked on the root lattice of type [′𝐵′, 2], returns the coroot lattice of type [′𝐶 ′, 2].

Warning: Not implemented for ambient spaces.

EXAMPLES:

sage: CartanType(['B',2]).root_system().root_lattice().dual_type_cospace()
Coroot lattice of the Root system of type ['C', 2]
sage: CartanType(['F',4]).root_system().coweight_lattice().dual_type_
→˓cospace()
Weight lattice of the Root system of type ['F', 4] relabelled by {1: 4, 2:␣
→˓3, 3: 2, 4: 1}

dynkin_diagram()
EXAMPLES:

sage: r = RootSystem(['A',4]).root_space()
sage: r.dynkin_diagram()
O---O---O---O
1 2 3 4
A4

fundamental_weights_from_simple_roots()
Return the fundamental weights.

This is computed from the simple roots by using the inverse of the Cartan matrix. This method is
therefore only valid for finite types and if this realization of the root lattice is large enough to contain

2432 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

them.

EXAMPLES:

In the root space, we retrieve the inverse of the Cartan matrix:

sage: L = RootSystem(["B",3]).root_space()
sage: L.fundamental_weights_from_simple_roots()
Finite family {1: alpha[1] + alpha[2] + alpha[3],

2: alpha[1] + 2*alpha[2] + 2*alpha[3],
3: 1/2*alpha[1] + alpha[2] + 3/2*alpha[3]}

sage: ~L.cartan_type().cartan_matrix()
[1 1 1/2]
[1 2 1]
[1 2 3/2]

In the weight lattice and the ambient space, we retrieve the fundamental weights:

sage: L = RootSystem(["B",3]).weight_lattice()
sage: L.fundamental_weights_from_simple_roots()
Finite family {1: Lambda[1], 2: Lambda[2], 3: Lambda[3]}

sage: L = RootSystem(["B",3]).ambient_space()
sage: L.fundamental_weights()
Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1/2, 1/2, 1/2)}
sage: L.fundamental_weights_from_simple_roots()
Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1/2, 1/2, 1/2)}

However the fundamental weights do not belong to the root lattice:

sage: L = RootSystem(["B",3]).root_lattice()
sage: L.fundamental_weights_from_simple_roots()
Traceback (most recent call last):
...
ValueError: The fundamental weights do not live in this realization of the␣
→˓root lattice

Beware of the usual 𝐺𝐿𝑛 vs 𝑆𝐿𝑛 catch in type 𝐴:

sage: L = RootSystem(["A",3]).ambient_space()
sage: L.fundamental_weights()
Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (1, 1, 1, 0)}
sage: L.fundamental_weights_from_simple_roots()
Finite family {1: (3/4, -1/4, -1/4, -1/4), 2: (1/2, 1/2, -1/2, -1/2), 3: (1/
→˓4, 1/4, 1/4, -3/4)}

sage: L = RootSystem(["A",3]).ambient_lattice()
sage: L.fundamental_weights_from_simple_roots()
Traceback (most recent call last):
...
ValueError: The fundamental weights do not live in this realization of the␣
→˓root lattice

generalized_nonnesting_partition_lattice(m, facade=False)
Return the lattice of 𝑚-nonnesting partitions

5.1. Comprehensive Module List 2433

Combinatorics, Release 9.7

This has been defined by Athanasiadis, see chapter 5 of [Arm06].

INPUT:
• 𝑚 – integer

See also:

nonnesting_partition_lattice()

EXAMPLES:

sage: R = RootSystem(['A', 2])
sage: RS = R.root_lattice()
sage: P = RS.generalized_nonnesting_partition_lattice(2); P
Finite lattice containing 12 elements
sage: P.coxeter_transformation()**20 == 1
True

highest_root()
Returns the highest root (for an irreducible finite root system)

EXAMPLES:

sage: RootSystem(['A',4]).ambient_space().highest_root()
(1, 0, 0, 0, -1)

sage: RootSystem(['E',6]).weight_space().highest_root()
Lambda[2]

index_set()
EXAMPLES:

sage: r = RootSystem(['A',4]).root_space()
sage: r.index_set()
(1, 2, 3, 4)

long_roots()
Return a list of the long roots of self.

EXAMPLES:

sage: L = RootSystem(['B',3]).root_lattice()
sage: sorted(L.long_roots())
[-alpha[1], -alpha[1] - 2*alpha[2] - 2*alpha[3],
-alpha[1] - alpha[2], -alpha[1] - alpha[2] - 2*alpha[3],
alpha[1], alpha[1] + alpha[2],
alpha[1] + alpha[2] + 2*alpha[3],
alpha[1] + 2*alpha[2] + 2*alpha[3], -alpha[2],
-alpha[2] - 2*alpha[3], alpha[2], alpha[2] + 2*alpha[3]]

negative_roots()
Returns the negative roots of self.

EXAMPLES:

sage: L = RootSystem(['A', 2]).weight_lattice()
sage: sorted(L.negative_roots())
[-2*Lambda[1] + Lambda[2], -Lambda[1] - Lambda[2], Lambda[1] - 2*Lambda[2]]

2434 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Algorithm: negate the positive roots

nonnesting_partition_lattice(facade=False)
Return the lattice of nonnesting partitions

This is the lattice of order ideals of the root poset.

This has been defined by Postnikov, see Remark 2 in [Reiner97].

See also:

generalized_nonnesting_partition_lattice(), root_poset()

EXAMPLES:

sage: R = RootSystem(['A', 3])
sage: RS = R.root_lattice()
sage: P = RS.nonnesting_partition_lattice(); P
Finite lattice containing 14 elements
sage: P.coxeter_transformation()**10 == 1
True

sage: R = RootSystem(['B', 3])
sage: RS = R.root_lattice()
sage: P = RS.nonnesting_partition_lattice(); P
Finite lattice containing 20 elements
sage: P.coxeter_transformation()**7 == 1
True

REFERENCES:

nonparabolic_positive_root_sum(index_set=None)
Return the sum of positive roots not in a parabolic subsystem.

The conventions for index_set are as in nonparabolic_positive_roots().

EXAMPLES:

sage: Q = RootSystem(['A',3]).root_lattice()
sage: Q.nonparabolic_positive_root_sum((1,2))
alpha[1] + 2*alpha[2] + 3*alpha[3]
sage: Q.nonparabolic_positive_root_sum()
0
sage: Q.nonparabolic_positive_root_sum(())
3*alpha[1] + 4*alpha[2] + 3*alpha[3]

nonparabolic_positive_roots(index_set=None)
Return the positive roots of self that are not in the parabolic subsystem indicated by index_set.

If index_set is None, as in positive_roots() it is assumed to be the entire Dynkin node set. Then
the parabolic subsystem consists of all positive roots and the empty list is returned.

EXAMPLES:

sage: L = RootSystem(['A',3]).root_lattice()
sage: L.nonparabolic_positive_roots()
[]
sage: sorted(L.nonparabolic_positive_roots((1,2)))
[alpha[1] + alpha[2] + alpha[3], alpha[2] + alpha[3], alpha[3]]

(continues on next page)

5.1. Comprehensive Module List 2435

Combinatorics, Release 9.7

(continued from previous page)

sage: sorted(L.nonparabolic_positive_roots(()))
[alpha[1], alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3], alpha[2],␣
→˓alpha[2] + alpha[3], alpha[3]]

null_coroot()
Returns the null coroot of self.

The null coroot is the smallest non trivial positive coroot which is orthogonal to all simple roots. It
exists for any affine root system.

EXAMPLES:

sage: RootSystem(['C',2,1]).root_lattice().null_coroot()
alphacheck[0] + alphacheck[1] + alphacheck[2]
sage: RootSystem(['D',4,1]).root_lattice().null_coroot()
alphacheck[0] + alphacheck[1] + 2*alphacheck[2] + alphacheck[3] +␣
→˓alphacheck[4]
sage: RootSystem(['F',4,1]).root_lattice().null_coroot()
alphacheck[0] + 2*alphacheck[1] + 3*alphacheck[2] + 2*alphacheck[3] +␣
→˓alphacheck[4]

null_root()
Returns the null root of self. The null root is the smallest non trivial positive root which is orthogonal
to all simple coroots. It exists for any affine root system.

EXAMPLES:

sage: RootSystem(['C',2,1]).root_lattice().null_root()
alpha[0] + 2*alpha[1] + alpha[2]
sage: RootSystem(['D',4,1]).root_lattice().null_root()
alpha[0] + alpha[1] + 2*alpha[2] + alpha[3] + alpha[4]
sage: RootSystem(['F',4,1]).root_lattice().null_root()
alpha[0] + 2*alpha[1] + 3*alpha[2] + 4*alpha[3] + 2*alpha[4]

plot(roots='simple', coroots=False, reflection_hyperplanes='simple', fundamental_weights=None,
fundamental_chamber=None, alcoves=None, alcove_labels=False, alcove_walk=None,
**options)

Return a picture of this root lattice realization.

INPUT:
• roots – which roots to display, if any. Can be one of the following:

– "simple" – The simple roots (the default)
– "classical" – Not yet implemented
– "all" – Only works in the finite case
– A list or tuple of roots
– False

• coroots – which coroots to display, if any. Can be one of the following:
– "simple" – The simple coroots (the default)
– "classical" – Not yet implemented
– "all" – Only works in the finite case
– A list or tuple of coroots
– False

• fundamental_weights – a boolean or None (default: None) whether to display the fundamental
weights. If None, the fundamental weights are drawn if available.

2436 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• reflection_hyperplanes – which reflection hyperplanes to display, if any. Can be one of the
following:
– "simple" – The simple roots
– "classical" – Not yet implemented
– "all" – Only works in the finite case
– A list or tuple of roots
– False (the default)

• fundamental_chamber – whether and how to draw the fundamental chamber. Can be one of the
following:
– A boolean – Set to True to draw the fundamental chamber
– "classical" – Draw the classical fundamental chamber
– None – (the default) The fundamental chamber is drawn except in the root lattice where this is

not yet implemented. For affine types the classical fundamental chamber is drawn instead.
• alcoves – one of the following (default: True):

– A boolean – Whether to display the alcoves
– A list of alcoves – The alcoves to be drawn. Each alcove is specified by the coordinates of its

center in the root lattice (affine type only). Otherwise the alcoves that intersect the bounding
box are drawn.

• alcove_labels – one of the following (default: False):
– A boolean – Whether to display the elements of the Weyl group indexing the alcoves. This

currently requires to also set the alcoves option.
– A number 𝑙 – The label is drawn at level 𝑙 (affine type only), which only makes sense if affine

is False.
• bounding_box – a rational number or a list of pairs thereof (default: 3)

Specifies a bounding box, in the coordinate system for this plot, in which to plot alcoves and other
infinite objects. If the bounding box is a number 𝑎, then the bounding box is of the form [−𝑎, 𝑎]
in all directions. Beware that there can be some border effects and the returned graphic is not
necessarily strictly contained in the bounding box.

• alcove_walk – an alcove walk or None (default: None)

The alcove walk is described by a list (or iterable) of vertices of the Dynkin diagram which specifies
which wall is crossed at each step, starting from the fundamental alcove.

• projection – one of the following (default: True):
– True – The default projection for the root lattice realization is used.
– False – No projection is used.
– barycentric – A barycentric projection is used.
– A function – If a function is specified, it should implement a linear (or affine) map taking as

input an element of this root lattice realization and returning its desired coordinates in the plot,
as a vector with rational coordinates.

• color – a function mapping vertices of the Dynkin diagram to colors (default: "black" for 0,
"blue" for 1, "red" for 2, "green" for 3)

This is used to set the color for the simple roots, fundamental weights, reflection hyperplanes,
alcove facets, etc. If the color is None, the object is not drawn.

• labels – a boolean (default: True) whether to display labels on the simple roots, fundamental
weights, etc.

EXAMPLES:

sage: L = RootSystem(["A",2,1]).ambient_space().plot() # long time

See also:

• plot_parse_options()
• plot_roots(), plot_coroots()
• plot_fundamental_weights()

5.1. Comprehensive Module List 2437

Combinatorics, Release 9.7

• plot_fundamental_chamber()
• plot_reflection_hyperplanes()
• plot_alcoves()
• plot_alcove_walk()
• plot_ls_paths()
• plot_mv_polytope()
• plot_crystal()

plot_alcove_walk(word, start=None, foldings=None, color='orange', **options)
Plot an alcove walk.

INPUT:
• word – a list of elements of the index set
• foldings – a list of booleans or None (default: None)
• start – an element of this space (default: None for 𝜌)
• **options – plotting options

See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

EXAMPLES:

An alcove walk of type 𝐴(1)
2 :

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: w1 = [0,2,1,2,0,2,1,0,2,1,2,1,2,0,2,0,1,2,0]
sage: p = L.plot_alcoves(bounding_box=5) # long time (5s)
sage: p += L.plot_alcove_walk(w1) # long time
sage: p # long time
Graphics object consisting of 375 graphics primitives

The same plot with another alcove walk:

sage: w2 = [2,1,2,0,2,0,2,1,2,0,1,2,1,2,1,0,1,2,0,2,0,1,2,0,2]
sage: p += L.plot_alcove_walk(w2, color="orange") # long time

And another with some foldings:

sage: pic = L.plot_alcoves(bounding_box=3) # long time
sage: pic += L.plot_alcove_walk([0,1,2,0,2,0,1,2,0,1], # long time (3s)
....: foldings = [False, False, True, False, False,␣
→˓False, True, False, True, False],
....: color="green"); pic
Graphics object consisting of 155 graphics primitives

plot_alcoves(alcoves=True, alcove_labels=False, wireframe=False, **options)
Plot the alcoves and optionally their labels.

INPUT:
• alcoves – a list of alcoves or True (default: True)
• alcove_labels – a boolean or a number specifying at which level to put the label (default:
False)

• **options – Plotting options
See also:

• plot() for a description of the plotting options

2438 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Tutorial: visualizing root systems for a tutorial on root system plotting, and in particular how the
alcoves can be specified.

EXAMPLES:

2D plots:

sage: RootSystem(["B",2,1]).ambient_space().plot_alcoves() ␣
→˓ # long time (3s)
Graphics object consisting of 228 graphics primitives

3D plots:

sage: RootSystem(["A",2,1]).weight_space() .plot_alcoves(affine=False) ␣
→˓ # long time (3s)
Graphics3d Object
sage: RootSystem(["G",2,1]).ambient_space().plot_alcoves(affine=False,␣
→˓level=1) # long time (3s)
Graphics3d Object

Here we plot a single alcove:

sage: L = RootSystem(["A",3,1]).ambient_space()
sage: W = L.weyl_group()
sage: L.plot(alcoves=[W.one()], reflection_hyperplanes=False, bounding_
→˓box=2)
Graphics3d Object

plot_bounding_box(**options)
Plot the bounding box.

INPUT:
• **options – Plotting options

This is mostly for testing purposes.

See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

EXAMPLES:

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: L.plot_bounding_box()
Graphics object consisting of 1 graphics primitive

plot_coroots(collection='simple', **options)
Plot the (simple/classical) coroots of this root lattice.

INPUT:
• collection – which coroots to display. Can be one of the following:

– "simple" (the default)
– "classical"
– "all"

• **options – Plotting options
See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

5.1. Comprehensive Module List 2439

Combinatorics, Release 9.7

EXAMPLES:

sage: RootSystem(["B",3]).ambient_space().plot_coroots()
Graphics3d Object

plot_crystal(crystal, plot_labels=True, label_color='black', edge_labels=False, circle_size=0.06,
circle_thickness=1.6, **options)

Plot a finite crystal.

INPUT:
• crystal – the finite crystal to plot
• plot_labels – (default: True) can be one of the following:

– True - use the latex labels
– 'circles' - use circles for multiplicity up to 4; if the multiplicity is larger, then it uses the

multiplicity
– 'multiplicities' - use the multiplicities

• label_color – (default: 'black') the color of the labels
• edge_labels – (default: False) if True, then draw in the edge label
• circle_size – (default: 0.06) the size of the circles
• circle_thickness – (default: 1.6) the thinkness of the extra rings of circles
• **options – plotting options

See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

EXAMPLES:

sage: L = RootSystem(['A',2]).ambient_space()
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: L.plot_crystal(C, plot_labels='multiplicities')
Graphics object consisting of 15 graphics primitives
sage: C = crystals.Tableaux(['A',2], shape=[8,4])
sage: p = L.plot_crystal(C, plot_labels='circles')
sage: p.show(figsize=15)

A 3-dimensional example:

sage: L = RootSystem(['B',3]).ambient_space()
sage: C = crystals.Tableaux(['B',3], shape=[2,1])
sage: L.plot_crystal(C, plot_labels='circles', edge_labels=True) # long time
Graphics3d Object

plot_fundamental_chamber(style='normal', **options)
Plot the (classical) fundamental chamber.

INPUT:
• style – "normal" or "classical" (default: "normal")
• **options – Plotting options

See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

EXAMPLES:

2D plots:

2440 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: RootSystem(["B",2]).ambient_space().plot_fundamental_chamber()
Graphics object consisting of 1 graphics primitive
sage: RootSystem(["B",2,1]).ambient_space().plot_fundamental_chamber()
Graphics object consisting of 1 graphics primitive
sage: RootSystem(["B",2,1]).ambient_space().plot_fundamental_chamber(
→˓"classical")
Graphics object consisting of 1 graphics primitive

3D plots:

sage: RootSystem(["A",3,1]).weight_space() .plot_fundamental_chamber()
Graphics3d Object
sage: RootSystem(["B",3,1]).ambient_space().plot_fundamental_chamber()
Graphics3d Object

This feature is currently not available in the root lattice/space:

sage: list(RootSystem(["A",2]).root_lattice().plot_fundamental_chamber())
Traceback (most recent call last):
...
TypeError: classical fundamental chamber not yet available in the root␣
→˓lattice

plot_fundamental_weights(**options)
Plot the fundamental weights of this root lattice.

INPUT:
• **options – Plotting options

See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

EXAMPLES:

sage: RootSystem(["B",3]).ambient_space().plot_fundamental_weights()
Graphics3d Object

plot_hedron(**options)
Plot the polyhedron whose vertices are given by the orbit of 𝜌.

In type 𝐴, this is the usual permutohedron.

See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

EXAMPLES:

sage: RootSystem(["A",2]).ambient_space().plot_hedron()
Graphics object consisting of 8 graphics primitives
sage: RootSystem(["A",3]).ambient_space().plot_hedron()
Graphics3d Object
sage: RootSystem(["B",3]).ambient_space().plot_hedron()
Graphics3d Object
sage: RootSystem(["C",3]).ambient_space().plot_hedron()

(continues on next page)

5.1. Comprehensive Module List 2441

Combinatorics, Release 9.7

(continued from previous page)

Graphics3d Object
sage: RootSystem(["D",3]).ambient_space().plot_hedron()
Graphics3d Object

Surprise: polyhedra of large dimension know how to project themselves nicely:

sage: RootSystem(["F",4]).ambient_space().plot_hedron() # long time
Graphics3d Object

plot_ls_paths(paths, plot_labels=None, colored_labels=True, **options)
Plot LS paths.

INPUT:
• paths – a finite crystal or list of LS paths
• plot_labels – (default: None) the distance to plot the LS labels from the endpoint of the path;

set to None to not display the labels
• colored_labels – (default: True) if True, then color the labels the same color as the LS path
• **options – plotting options

See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

EXAMPLES:

sage: B = crystals.LSPaths(['A',2], [1,1])
sage: L = RootSystem(['A',2]).ambient_space()
sage: L.plot_fundamental_weights() + L.plot_ls_paths(B)
Graphics object consisting of 14 graphics primitives

This also works in 3 dimensions:

sage: B = crystals.LSPaths(['B',3], [2,0,0])
sage: L = RootSystem(['B',3]).ambient_space()
sage: L.plot_ls_paths(B)
Graphics3d Object

plot_mv_polytope(mv_polytope, mark_endpoints=True, circle_size=0.06, circle_thickness=1.6,
wireframe='blue', fill='green', alpha=1, **options)

Plot an MV polytope.

INPUT:
• mv_polytope – an MV polytope
• mark_endpoints – (default: True) mark the endpoints of the MV polytope
• circle_size – (default: 0.06) the size of the circles
• circle_thickness – (default: 1.6) the thinkness of the extra rings of circles
• wireframe – (default: 'blue') color to draw the wireframe of the polytope with
• fill – (default: 'green') color to fill the polytope with
• alpha – (default: 1) the alpha value (opacity) of the fill
• **options – plotting options

See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

EXAMPLES:

2442 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: B = crystals.infinity.MVPolytopes(['C',2])
sage: L = RootSystem(['C',2]).ambient_space()
sage: p = B.highest_weight_vector().f_string([1,2,1,2])
sage: L.plot_fundamental_weights() + L.plot_mv_polytope(p)
Graphics object consisting of 14 graphics primitives

This also works in 3 dimensions:

sage: B = crystals.infinity.MVPolytopes(['A',3])
sage: L = RootSystem(['A',3]).ambient_space()
sage: p = B.highest_weight_vector().f_string([2,1,3,2])
sage: L.plot_mv_polytope(p)
Graphics3d Object

plot_parse_options(**args)
Return an option object to be used for root system plotting.

EXAMPLES:

sage: L = RootSystem(["A",2,1]).ambient_space()
sage: options = L.plot_parse_options()
sage: options
<sage.combinat.root_system.plot.PlotOptions object at ...>

See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

plot_reflection_hyperplanes(collection='simple', **options)
Plot the simple reflection hyperplanes.

INPUT:
• collection – which reflection hyperplanes to display. Can be one of the following:

– "simple" (the default)
– "classical"
– "all"

• **options – Plotting options
See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

EXAMPLES:

sage: RootSystem(["A",2,1]).ambient_space().plot_reflection_hyperplanes()
Graphics object consisting of 6 graphics primitives
sage: RootSystem(["G",2,1]).ambient_space().plot_reflection_hyperplanes()
Graphics object consisting of 6 graphics primitives
sage: RootSystem(["A",3]).weight_space().plot_reflection_hyperplanes()
Graphics3d Object
sage: RootSystem(["B",3]).ambient_space().plot_reflection_hyperplanes()
Graphics3d Object
sage: RootSystem(["A",3,1]).weight_space().plot_reflection_hyperplanes()
Graphics3d Object
sage: RootSystem(["B",3,1]).ambient_space().plot_reflection_hyperplanes()

(continues on next page)

5.1. Comprehensive Module List 2443

Combinatorics, Release 9.7

(continued from previous page)

Graphics3d Object
sage: RootSystem(["A",2,1]).weight_space().plot_reflection_
→˓hyperplanes(affine=False, level=1)
Graphics3d Object
sage: RootSystem(["A",2]).root_lattice().plot_reflection_hyperplanes()
Graphics object consisting of 4 graphics primitives

Todo: Provide an option for transparency?

plot_roots(collection='simple', **options)
Plot the (simple/classical) roots of this root lattice.

INPUT:
• collection – which roots to display can be one of the following:

– "simple" (the default)
– "classical"
– "all"

• **options – Plotting options
See also:

• plot() for a description of the plotting options
• Tutorial: visualizing root systems for a tutorial on root system plotting

EXAMPLES:

sage: RootSystem(["B",3]).ambient_space().plot_roots()
Graphics3d Object
sage: RootSystem(["B",3]).ambient_space().plot_roots("all")
Graphics3d Object

positive_imaginary_roots()
Return the positive imaginary roots of self.

EXAMPLES:

sage: L = RootSystem(['A',3]).root_lattice()
sage: L.positive_imaginary_roots()
()

sage: L = RootSystem(['A',3,1]).root_lattice()
sage: PIR = L.positive_imaginary_roots(); PIR
Positive imaginary roots of type ['A', 3, 1]
sage: [PIR.unrank(i) for i in range(5)]
[alpha[0] + alpha[1] + alpha[2] + alpha[3],
2*alpha[0] + 2*alpha[1] + 2*alpha[2] + 2*alpha[3],
3*alpha[0] + 3*alpha[1] + 3*alpha[2] + 3*alpha[3],
4*alpha[0] + 4*alpha[1] + 4*alpha[2] + 4*alpha[3],
5*alpha[0] + 5*alpha[1] + 5*alpha[2] + 5*alpha[3]]

positive_real_roots()
Return the positive real roots of self.

EXAMPLES:

2444 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = RootSystem(['A',3]).root_lattice()
sage: sorted(L.positive_real_roots())
[alpha[1], alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3],
alpha[2], alpha[2] + alpha[3], alpha[3]]

sage: L = RootSystem(['A',3,1]).root_lattice()
sage: PRR = L.positive_real_roots(); PRR
Positive real roots of type ['A', 3, 1]
sage: [PRR.unrank(i) for i in range(10)]
[alpha[1],
alpha[2],
alpha[3],
alpha[1] + alpha[2],
alpha[2] + alpha[3],
alpha[1] + alpha[2] + alpha[3],
alpha[0] + 2*alpha[1] + alpha[2] + alpha[3],
alpha[0] + alpha[1] + 2*alpha[2] + alpha[3],
alpha[0] + alpha[1] + alpha[2] + 2*alpha[3],
alpha[0] + 2*alpha[1] + 2*alpha[2] + alpha[3]]

sage: Q = RootSystem(['A',4,2]).root_lattice()
sage: PR = Q.positive_roots()
sage: [PR.unrank(i) for i in range(5)]
[alpha[1],
alpha[2],
alpha[1] + alpha[2],
2*alpha[1] + alpha[2],
alpha[0] + alpha[1] + alpha[2]]

sage: Q = RootSystem(['D',3,2]).root_lattice()
sage: PR = Q.positive_roots()
sage: [PR.unrank(i) for i in range(5)]
[alpha[1],
alpha[2],
alpha[1] + 2*alpha[2],
alpha[1] + alpha[2],
alpha[0] + alpha[1] + 2*alpha[2]]

positive_roots(index_set=None)
Return the positive roots of self.

If index_set is not None, returns the positive roots of the parabolic subsystem with simple roots in
index_set.

Algorithm for finite type: generate them from the simple roots by applying successive reflections
toward the positive chamber.

EXAMPLES:

sage: L = RootSystem(['A',3]).root_lattice()
sage: sorted(L.positive_roots())
[alpha[1], alpha[1] + alpha[2],
alpha[1] + alpha[2] + alpha[3], alpha[2],
alpha[2] + alpha[3], alpha[3]]

(continues on next page)

5.1. Comprehensive Module List 2445

Combinatorics, Release 9.7

(continued from previous page)

sage: sorted(L.positive_roots((1,2)))
[alpha[1], alpha[1] + alpha[2], alpha[2]]
sage: sorted(L.positive_roots(()))
[]

sage: L = RootSystem(['A',3,1]).root_lattice()
sage: PR = L.positive_roots(); PR
Disjoint union of Family (Positive real roots of type ['A', 3, 1],

Positive imaginary roots of type ['A', 3, 1])
sage: [PR.unrank(i) for i in range(10)]
[alpha[1],
alpha[2],
alpha[3],
alpha[1] + alpha[2],
alpha[2] + alpha[3],
alpha[1] + alpha[2] + alpha[3],
alpha[0] + 2*alpha[1] + alpha[2] + alpha[3],
alpha[0] + alpha[1] + 2*alpha[2] + alpha[3],
alpha[0] + alpha[1] + alpha[2] + 2*alpha[3],
alpha[0] + 2*alpha[1] + 2*alpha[2] + alpha[3]]

positive_roots_by_height(increasing=True)
Returns a list of positive roots in increasing order by height.

If increasing is False, returns them in decreasing order.

Warning: Raise an error if the Cartan type is not finite.

EXAMPLES:

sage: L = RootSystem(['C',2]).root_lattice()
sage: L.positive_roots_by_height()
[alpha[2], alpha[1], alpha[1] + alpha[2], 2*alpha[1] + alpha[2]]
sage: L.positive_roots_by_height(increasing = False)
[2*alpha[1] + alpha[2], alpha[1] + alpha[2], alpha[2], alpha[1]]

sage: L = RootSystem(['A',2,1]).root_lattice()
sage: L.positive_roots_by_height()
Traceback (most recent call last):
...
NotImplementedError: Only implemented for finite Cartan type

positive_roots_nonparabolic(index_set=None)
Returns the set of positive roots outside the parabolic subsystem with Dynkin node set index_set.

INPUT:
• index_set – (default:None) the Dynkin node set of the parabolic subsystem. It should be a tuple.

The default value implies the entire Dynkin node set
EXAMPLES:

sage: lattice = RootSystem(['A',3]).root_lattice()
sage: sorted(lattice.positive_roots_nonparabolic((1,3)), key=str)

(continues on next page)

2446 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3], alpha[2], alpha[2] +␣
→˓alpha[3]]
sage: sorted(lattice.positive_roots_nonparabolic((2,3)), key=str)
[alpha[1], alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3]]
sage: lattice.positive_roots_nonparabolic()
[]
sage: lattice.positive_roots_nonparabolic((1,2,3))
[]

Warning: This returns an error if the Cartan type is not finite.

positive_roots_nonparabolic_sum(index_set=None)
Returns the sum of positive roots outside the parabolic subsystem with Dynkin node set index_set.

INPUT:
• index_set – (default:None) the Dynkin node set of the parabolic subsystem. It should be a tuple.

The default value implies the entire Dynkin node set
EXAMPLES:

sage: lattice = RootSystem(['A',3]).root_lattice()
sage: lattice.positive_roots_nonparabolic_sum((1,3))
2*alpha[1] + 4*alpha[2] + 2*alpha[3]
sage: lattice.positive_roots_nonparabolic_sum((2,3))
3*alpha[1] + 2*alpha[2] + alpha[3]
sage: lattice.positive_roots_nonparabolic_sum(())
3*alpha[1] + 4*alpha[2] + 3*alpha[3]
sage: lattice.positive_roots_nonparabolic_sum()
0
sage: lattice.positive_roots_nonparabolic_sum((1,2,3))
0

Warning: This returns an error if the Cartan type is not finite.

positive_roots_parabolic(index_set=None)
Return the set of positive roots for the parabolic subsystem with Dynkin node set index_set.

INPUT:
• index_set – (default:None) the Dynkin node set of the parabolic subsystem. It should be a tuple.

The default value implies the entire Dynkin node set
EXAMPLES:

sage: lattice = RootSystem(['A',3]).root_lattice()
sage: sorted(lattice.positive_roots_parabolic((1,3)), key=str)
[alpha[1], alpha[3]]
sage: sorted(lattice.positive_roots_parabolic((2,3)), key=str)
[alpha[2], alpha[2] + alpha[3], alpha[3]]
sage: sorted(lattice.positive_roots_parabolic(), key=str)
[alpha[1], alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3], alpha[2],␣
→˓alpha[2] + alpha[3], alpha[3]]

5.1. Comprehensive Module List 2447

Combinatorics, Release 9.7

Warning: This returns an error if the Cartan type is not finite.

projection(root, coroot=None, to_negative=True)
Returns the projection along the root, and across the hyperplane define by coroot, as a function 𝜋 from
self to self. 𝜋 is a half-linear map which stabilizes the negative half space, and acts by reflection on
the positive half space.

If to_negative is False, then this project onto the positive half space instead.

EXAMPLES:

sage: space = RootSystem(['A',2]).weight_lattice()
sage: x=space.simple_roots()[1]
sage: y=space.simple_coroots()[1]
sage: pi = space.projection(x,y)
sage: x
2*Lambda[1] - Lambda[2]
sage: pi(x)
-2*Lambda[1] + Lambda[2]
sage: pi(-x)
-2*Lambda[1] + Lambda[2]
sage: pi = space.projection(x,y,False)
sage: pi(-x)
2*Lambda[1] - Lambda[2]

reflection(root, coroot=None)
Returns the reflection along the root, and across the hyperplane define by coroot, as a function from
self to self.

EXAMPLES:

sage: space = RootSystem(['A',2]).weight_lattice()
sage: x=space.simple_roots()[1]
sage: y=space.simple_coroots()[1]
sage: s = space.reflection(x,y)
sage: x
2*Lambda[1] - Lambda[2]
sage: s(x)
-2*Lambda[1] + Lambda[2]
sage: s(-x)
2*Lambda[1] - Lambda[2]

root_poset(restricted=False, facade=False)
Returns the (restricted) root poset associated to self.

The elements are given by the positive roots (resp. non-simple, positive roots), and 𝛼 ≤ 𝛽 iff 𝛽 −𝛼 is
a non-negative linear combination of simple roots.

INPUT:
• restricted – (default:False) if True, only non-simple roots are considered.
• facade – (default:False) passes facade option to the poset generator.

EXAMPLES:

sage: Phi = RootSystem(['A',1]).root_poset(); Phi
Finite poset containing 1 elements

(continues on next page)

2448 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Phi.cover_relations()
[]

sage: Phi = RootSystem(['A',2]).root_poset(); Phi
Finite poset containing 3 elements

sage: sorted(Phi.cover_relations(), key=str)
[[alpha[1], alpha[1] + alpha[2]], [alpha[2], alpha[1] + alpha[2]]]

sage: Phi = RootSystem(['A',3]).root_poset(restricted=True); Phi
Finite poset containing 3 elements
sage: sorted(Phi.cover_relations(), key=str)
[[alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3]], [alpha[2] +␣
→˓alpha[3], alpha[1] + alpha[2] + alpha[3]]]

sage: Phi = RootSystem(['B',2]).root_poset(); Phi
Finite poset containing 4 elements
sage: sorted(Phi.cover_relations(), key=str)
[[alpha[1] + alpha[2], alpha[1] + 2*alpha[2]],
[alpha[1], alpha[1] + alpha[2]],
[alpha[2], alpha[1] + alpha[2]]]

roots()
Return the roots of self.

EXAMPLES:

sage: RootSystem(['A',2]).ambient_lattice().roots()
[(1, -1, 0), (1, 0, -1), (0, 1, -1), (-1, 1, 0), (-1, 0, 1), (0, -1, 1)]

This matches with Wikipedia article Root_systems:

sage: for T in CartanType.samples(finite = True, crystallographic = True):
....: print("%s %3s %3s"%(T, len(RootSystem(T).root_lattice().roots()),␣
→˓len(RootSystem(T).weight_lattice().roots())))
['A', 1] 2 2
['A', 5] 30 30
['B', 1] 2 2
['B', 5] 50 50
['C', 1] 2 2
['C', 5] 50 50
['D', 2] 4 4
['D', 3] 12 12
['D', 5] 40 40
['E', 6] 72 72
['E', 7] 126 126
['E', 8] 240 240
['F', 4] 48 48
['G', 2] 12 12

Todo: The result should be an enumerated set, and handle infinite root systems.

5.1. Comprehensive Module List 2449

https://en.wikipedia.org/wiki/Root_systems

Combinatorics, Release 9.7

s()
Return the family (𝑠𝑖)𝑖∈𝐼 of the simple reflections of this root system.

EXAMPLES:

sage: r = RootSystem(["A", 2]).root_lattice()
sage: s = r.simple_reflections()
sage: s[1](r.simple_root(1))
-alpha[1]

short_roots()
Return a list of the short roots of self.

EXAMPLES:

sage: L = RootSystem(['B',3]).root_lattice()
sage: sorted(L.short_roots())
[-alpha[1] - alpha[2] - alpha[3],
alpha[1] + alpha[2] + alpha[3],
-alpha[2] - alpha[3],
alpha[2] + alpha[3],
-alpha[3],
alpha[3]]

simple_coroot(i)
Returns the 𝑖𝑡ℎ simple coroot.

EXAMPLES:

sage: RootSystem(['A',2]).root_lattice().simple_coroot(1)
alphacheck[1]

simple_coroots()
Returns the family (𝛼∨𝑖)𝑖∈𝐼 of the simple coroots.

EXAMPLES:

sage: alphacheck = RootSystem(['A',3]).root_lattice().simple_coroots()
sage: [alphacheck[i] for i in [1, 2, 3]]
[alphacheck[1], alphacheck[2], alphacheck[3]]

simple_projection(i, to_negative=True)
Returns the projection along the 𝑖𝑡ℎ simple root, and across the hyperplane define by the 𝑖𝑡ℎ simple
coroot, as a function from self to self.

INPUT:
• i - i is in self’s index set

EXAMPLES:

sage: space = RootSystem(['A',2]).weight_lattice()
sage: x = space.simple_roots()[1]
sage: pi = space.simple_projection(1)
sage: x
2*Lambda[1] - Lambda[2]
sage: pi(x)
-2*Lambda[1] + Lambda[2]

(continues on next page)

2450 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: pi(-x)
-2*Lambda[1] + Lambda[2]
sage: pi = space.simple_projection(1,False)
sage: pi(-x)
2*Lambda[1] - Lambda[2]

simple_projections(to_negative=True)
Returns the family (𝑠𝑖)𝑖∈𝐼 of the simple projections of this root system

EXAMPLES:

sage: space = RootSystem(['A',2]).weight_lattice()
sage: pi = space.simple_projections()
sage: x = space.simple_roots()
sage: pi[1](x[2])
-Lambda[1] + 2*Lambda[2]

simple_reflection(i)
Returns the 𝑖𝑡ℎ simple reflection, as a function from self to self.

INPUT:
• i - i is in self’s index set

EXAMPLES:

sage: space = RootSystem(['A',2]).ambient_lattice()
sage: s = space.simple_reflection(1)
sage: x = space.simple_roots()[1]
sage: x
(1, -1, 0)
sage: s(x)
(-1, 1, 0)

simple_reflections()
Return the family (𝑠𝑖)𝑖∈𝐼 of the simple reflections of this root system.

EXAMPLES:

sage: r = RootSystem(["A", 2]).root_lattice()
sage: s = r.simple_reflections()
sage: s[1](r.simple_root(1))
-alpha[1]

simple_root(i)
Returns the 𝑖𝑡ℎ simple root.

This should be overridden by any subclass, and typically implemented as a cached method for effi-
ciency.

EXAMPLES:

sage: r = RootSystem(["A",3]).root_lattice()
sage: r.simple_root(1)
alpha[1]

simple_roots()
Returns the family (𝛼𝑖)𝑖∈𝐼 of the simple roots.

5.1. Comprehensive Module List 2451

Combinatorics, Release 9.7

EXAMPLES:

sage: alpha = RootSystem(["A",3]).root_lattice().simple_roots()
sage: [alpha[i] for i in [1,2,3]]
[alpha[1], alpha[2], alpha[3]]

simple_roots_tilde()
Return the family (�̃�𝑖)𝑖∈𝐼 of the simple roots.

INPUT:
• self – an affine root lattice realization

The �̃�𝑖 give the embedding of the root lattice of the other affinization of the same classical root lattice
into this root lattice (space?).

This uses the fact that 𝛼𝑖 = �̃�𝑖 for 𝑖 not a special node, and that

𝛿 =
∑︁

𝑎𝑖𝛼𝑖 =
∑︁

𝑏𝑖�̃�𝑖

EXAMPLES:

In simply laced cases, this is boring:

sage: RootSystem(["A",3, 1]).root_lattice().simple_roots_tilde()
Finite family {0: alpha[0], 1: alpha[1], 2: alpha[2], 3: alpha[3]}

This was checked by hand:

sage: RootSystem(["C",2,1]).coroot_lattice().simple_roots_tilde()
Finite family {0: alphacheck[0] - alphacheck[2], 1: alphacheck[1], 2:␣
→˓alphacheck[2]}
sage: RootSystem(["B",2,1]).coroot_lattice().simple_roots_tilde()
Finite family {0: alphacheck[0] - alphacheck[1], 1: alphacheck[1], 2:␣
→˓alphacheck[2]}

What about type BC?

some_elements()
Return some elements of this root lattice realization

EXAMPLES:

sage: L = RootSystem(["A",2]).weight_lattice()
sage: L.some_elements()
[2*Lambda[1] + 2*Lambda[2], 2*Lambda[1] - Lambda[2], -Lambda[1] +␣
→˓2*Lambda[2], Lambda[1], Lambda[2]]
sage: L = RootSystem(["A",2]).root_lattice()
sage: L.some_elements()
[2*alpha[1] + 2*alpha[2], alpha[1], alpha[2]]

tau_epsilon_operator_on_almost_positive_roots(J)
The 𝜏𝜖 operator on almost positive roots

Given a subset 𝐽 of non adjacent vertices of the Dynkin diagram, this constructs the operator on the
almost positive roots which fixes the negative simple roots 𝛼𝑖 for 𝑖 not in 𝐽 , and acts otherwise by:

𝜏+(𝛽) = (
∏︁
𝑖∈𝐽

𝑠𝑖)(𝛽)

See Equation (1.2) of [CFZ2002].

2452 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: L = RootSystem(['A',4]).root_lattice()
sage: tau = L.tau_epsilon_operator_on_almost_positive_roots([1,3])
sage: alpha = L.simple_roots()

The action on a negative simple root not in 𝐽 :

sage: tau(-alpha[2])
-alpha[2]

The action on a negative simple root in 𝐽 :

sage: tau(-alpha[1])
alpha[1]

The action on all almost positive roots:

sage: for root in L.almost_positive_roots():
....: print('tau({:<41}) = {}'.format(str(root), tau(root)))
tau(-alpha[1]) = alpha[1]
tau(alpha[1]) = -alpha[1]
tau(alpha[1] + alpha[2]) = alpha[2] + alpha[3]
tau(alpha[1] + alpha[2] + alpha[3]) = alpha[2]
tau(alpha[1] + alpha[2] + alpha[3] + alpha[4]) = alpha[2] + alpha[3] +␣
→˓alpha[4]
tau(-alpha[2]) = -alpha[2]
tau(alpha[2]) = alpha[1] + alpha[2] +␣
→˓alpha[3]
tau(alpha[2] + alpha[3]) = alpha[1] + alpha[2]
tau(alpha[2] + alpha[3] + alpha[4]) = alpha[1] + alpha[2] +␣
→˓alpha[3] + alpha[4]
tau(-alpha[3]) = alpha[3]
tau(alpha[3]) = -alpha[3]
tau(alpha[3] + alpha[4]) = alpha[4]
tau(-alpha[4]) = -alpha[4]
tau(alpha[4]) = alpha[3] + alpha[4]

This method works on any root lattice realization:

sage: L = RootSystem(['B',3]).ambient_space()
sage: tau = L.tau_epsilon_operator_on_almost_positive_roots([1,3])
sage: for root in L.almost_positive_roots():
....: print('tau({:<41}) = {}'.format(str(root), tau(root)))
tau((-1, 1, 0)) = (1, -1, 0)
tau((1, 0, 0)) = (0, 1, 0)
tau((1, -1, 0)) = (-1, 1, 0)
tau((1, 1, 0)) = (1, 1, 0)
tau((1, 0, -1)) = (0, 1, 1)
tau((1, 0, 1)) = (0, 1, -1)
tau((0, -1, 1)) = (0, -1, 1)
tau((0, 1, 0)) = (1, 0, 0)
tau((0, 1, -1)) = (1, 0, 1)
tau((0, 1, 1)) = (1, 0, -1)

(continues on next page)

5.1. Comprehensive Module List 2453

Combinatorics, Release 9.7

(continued from previous page)

tau((0, 0, -1)) = (0, 0, 1)
tau((0, 0, 1)) = (0, 0, -1)

See also:

tau_plus_minus()

tau_plus_minus()
Returns the 𝜏+ and 𝜏− piecewise linear operators on self

Those operators are induced by the bipartition {𝐿,𝑅} of the simple roots of self, and stabilize the
almost positive roots. Namely, 𝜏+ fixes the negative simple roots 𝛼𝑖 for 𝑖 in 𝑅, and acts otherwise by:

𝜏+(𝛽) = (
∏︁
𝑖∈𝐿

𝑠𝑖)(𝛽)

𝜏− acts analogously, with 𝐿 and 𝑅 interchanged.

Those operators are used to construct the associahedron, a polytopal realization of the cluster complex
(see Associahedron).

See also:

tau_epsilon_operator_on_almost_positive_roots()

EXAMPLES:

We explore the example of [CFZ2002] Eq.(1.3):

sage: S = RootSystem(['A',2]).root_lattice()
sage: taup, taum = S.tau_plus_minus()
sage: for beta in S.almost_positive_roots(): print("{} , {} , {}".
→˓format(beta, taup(beta), taum(beta)))
-alpha[1] , alpha[1] , -alpha[1]
alpha[1] , -alpha[1] , alpha[1] + alpha[2]
alpha[1] + alpha[2] , alpha[2] , alpha[1]
-alpha[2] , -alpha[2] , alpha[2]
alpha[2] , alpha[1] + alpha[2] , -alpha[2]

to_ambient_space_morphism()
Return the morphism to the ambient space.

EXAMPLES:

sage: CartanType(['B',2]).root_system().root_lattice().to_ambient_space_
→˓morphism()
Generic morphism:
From: Root lattice of the Root system of type ['B', 2]
To: Ambient space of the Root system of type ['B', 2]
sage: CartanType(['B',2]).root_system().coroot_lattice().to_ambient_space_
→˓morphism()
Generic morphism:
From: Coroot lattice of the Root system of type ['B', 2]
To: Ambient space of the Root system of type ['B', 2]
sage: CartanType(['B',2]).root_system().weight_lattice().to_ambient_space_
→˓morphism()
Generic morphism:

(continues on next page)

2454 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

From: Weight lattice of the Root system of type ['B', 2]
To: Ambient space of the Root system of type ['B', 2]

weyl_group(prefix=None)
Returns the Weyl group associated to self.

EXAMPLES:

sage: RootSystem(['F',4]).ambient_space().weyl_group()
Weyl Group of type ['F', 4] (as a matrix group acting on the ambient space)
sage: RootSystem(['F',4]).root_space().weyl_group()
Weyl Group of type ['F', 4] (as a matrix group acting on the root space)

super_categories()
EXAMPLES:

sage: from sage.combinat.root_system.root_lattice_realizations import␣
→˓RootLatticeRealizations
sage: RootLatticeRealizations(QQ).super_categories()
[Category of vector spaces with basis over Rational Field]

5.1.236 Root lattices and root spaces

class sage.combinat.root_system.root_space.RootSpace(root_system, base_ring)
Bases: sage.combinat.free_module.CombinatorialFreeModule

The root space of a root system over a given base ring

INPUT:

• root_system - a root system

• base_ring: a ring 𝑅

The root space (or lattice if base_ring is Z) of a root system is the formal free module
⨁︀

𝑖𝑅𝛼𝑖 generated by
the simple roots (𝛼𝑖)𝑖∈𝐼 of the root system.

This class is also used for coroot spaces (or lattices).

See also:

• RootSystem()

• RootSystem.root_lattice() and RootSystem.root_space()

• RootLatticeRealizations()

Todo: standardize the variable used for the root space in the examples (P?)

Element
alias of RootSpaceElement

simple_root()
Return the basis element indexed by i.

INPUT:

• i – an element of the index set

5.1. Comprehensive Module List 2455

Combinatorics, Release 9.7

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.monomial('a')
B['a']

F.monomial is in fact (almost) a map:

sage: F.monomial
Term map from {'a', 'b', 'c'} to Free module generated by {'a', 'b', 'c'} over␣
→˓Rational Field

to_ambient_space_morphism()
The morphism from self to its associated ambient space.

EXAMPLES:

sage: CartanType(['A',2]).root_system().root_lattice().to_ambient_space_
→˓morphism()
Generic morphism:
From: Root lattice of the Root system of type ['A', 2]
To: Ambient space of the Root system of type ['A', 2]

to_coroot_space_morphism()
Returns the nu map to the coroot space over the same base ring, using the symmetrizer of the Cartan matrix

It does not map the root lattice to the coroot lattice, but has the property that any root is mapped to some
scalar multiple of its associated coroot.

EXAMPLES:

sage: R = RootSystem(['A',3]).root_space()
sage: alpha = R.simple_roots()
sage: f = R.to_coroot_space_morphism()
sage: f(alpha[1])
alphacheck[1]
sage: f(alpha[1]+alpha[2])
alphacheck[1] + alphacheck[2]

sage: R = RootSystem(['A',3]).root_lattice()
sage: alpha = R.simple_roots()
sage: f = R.to_coroot_space_morphism()
sage: f(alpha[1])
alphacheck[1]
sage: f(alpha[1]+alpha[2])
alphacheck[1] + alphacheck[2]

sage: S = RootSystem(['G',2]).root_space()
sage: alpha = S.simple_roots()
sage: f = S.to_coroot_space_morphism()
sage: f(alpha[1])
alphacheck[1]
sage: f(alpha[1]+alpha[2])
alphacheck[1] + 3*alphacheck[2]

2456 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.root_system.root_space.RootSpaceElement
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

associated_coroot()
Returns the coroot associated to this root

OUTPUT:

An element of the coroot space over the same base ring; in particular the result is in the coroot lattice
whenever self is in the root lattice.

EXAMPLES:

sage: L = RootSystem(["B", 3]).root_space()
sage: alpha = L.simple_roots()
sage: alpha[1].associated_coroot()
alphacheck[1]
sage: alpha[1].associated_coroot().parent()
Coroot space over the Rational Field of the Root system of type ['B', 3]

sage: L.highest_root()
alpha[1] + 2*alpha[2] + 2*alpha[3]
sage: L.highest_root().associated_coroot()
alphacheck[1] + 2*alphacheck[2] + alphacheck[3]

sage: alpha = RootSystem(["B", 3]).root_lattice().simple_roots()
sage: alpha[1].associated_coroot()
alphacheck[1]
sage: alpha[1].associated_coroot().parent()
Coroot lattice of the Root system of type ['B', 3]

is_positive_root()
Checks whether an element in the root space lies in the nonnegative cone spanned by the simple roots.

EXAMPLES:

sage: R=RootSystem(['A',3,1]).root_space()
sage: B=R.basis()
sage: w=B[0]+B[3]
sage: w.is_positive_root()
True
sage: w=B[1]-B[2]
sage: w.is_positive_root()
False

max_coroot_le()
Returns the highest positive coroot whose associated root is less than or equal to self.

INPUT:

• self – an element of the nonnegative integer span of simple roots.

Returns None for the zero element.

Really self is an element of a coroot lattice and this method returns the highest root whose associated
coroot is <= self.

5.1. Comprehensive Module List 2457

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

Warning: This implementation only handles finite Cartan types

EXAMPLES:

sage: root_lattice = RootSystem(['C',2]).root_lattice()
sage: root_lattice.from_vector(vector([1,1])).max_coroot_le()
alphacheck[1] + 2*alphacheck[2]
sage: root_lattice.from_vector(vector([2,1])).max_coroot_le()
alphacheck[1] + 2*alphacheck[2]
sage: root_lattice = RootSystem(['B',2]).root_lattice()
sage: root_lattice.from_vector(vector([1,1])).max_coroot_le()
2*alphacheck[1] + alphacheck[2]
sage: root_lattice.from_vector(vector([1,2])).max_coroot_le()
2*alphacheck[1] + alphacheck[2]

sage: root_lattice.zero().max_coroot_le() is None
True
sage: root_lattice.from_vector(vector([-1,0])).max_coroot_le()
Traceback (most recent call last):
...
ValueError: -alpha[1] is not in the positive cone of roots
sage: root_lattice = RootSystem(['A',2,1]).root_lattice()
sage: root_lattice.simple_root(1).max_coroot_le()
Traceback (most recent call last):
...
NotImplementedError: Only implemented for finite Cartan type

max_quantum_element()
Returns a reduced word for the longest element of the Weyl group whose shortest path in the quantum
Bruhat graph to the identity, has sum of quantum coroots at most self.

INPUT:

• self – an element of the nonnegative integer span of simple roots.

Really self is an element of a coroot lattice.

Warning: This implementation only handles finite Cartan types

EXAMPLES:

sage: Qvee = RootSystem(['C',2]).coroot_lattice()
sage: Qvee.from_vector(vector([1,2])).max_quantum_element()
[2, 1, 2, 1]
sage: Qvee.from_vector(vector([1,1])).max_quantum_element()
[1, 2, 1]
sage: Qvee.from_vector(vector([0,2])).max_quantum_element()
[2]

quantum_root()
Returns True if self is a quantum root and False otherwise.

INPUT:

2458 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• self – an element of the nonnegative integer span of simple roots.

A root 𝛼 is a quantum root if ℓ(𝑠𝛼) = ⟨2𝜌, 𝛼∨⟩−1 where ℓ is the length function, 𝑠𝛼 is the reflection across
the hyperplane orthogonal to 𝛼, and 2𝜌 is the sum of positive roots.

Warning: This implementation only handles finite Cartan types and assumes that self is a root.

Todo: Rename to is_quantum_root

EXAMPLES:

sage: Q = RootSystem(['C',2]).root_lattice()
sage: positive_roots = Q.positive_roots()
sage: for x in sorted(positive_roots):
....: print("{} {}".format(x, x.quantum_root()))
alpha[1] True
alpha[1] + alpha[2] False
2*alpha[1] + alpha[2] True
alpha[2] True

scalar(lambdacheck)
The scalar product between the root lattice and the coroot lattice.

EXAMPLES:

sage: L = RootSystem(['B',4]).root_lattice()
sage: alpha = L.simple_roots()
sage: alphacheck = L.simple_coroots()
sage: alpha[1].scalar(alphacheck[1])
2
sage: alpha[1].scalar(alphacheck[2])
-1

The scalar products between the roots and coroots are given by the Cartan matrix:

sage: matrix([[alpha[i].scalar(alphacheck[j])
....: for i in L.index_set()]
....: for j in L.index_set()])
[2 -1 0 0]
[-1 2 -1 0]
[0 -1 2 -1]
[0 0 -2 2]

sage: L.cartan_type().cartan_matrix()
[2 -1 0 0]
[-1 2 -1 0]
[0 -1 2 -1]
[0 0 -2 2]

to_ambient()
Map self to the ambient space.

EXAMPLES:

5.1. Comprehensive Module List 2459

Combinatorics, Release 9.7

sage: alpha = CartanType(['B',2]).root_system().root_lattice().an_element();␣
→˓alpha
2*alpha[1] + 2*alpha[2]
sage: alpha.to_ambient()
(2, 0)
sage: alphavee = CartanType(['B',2]).root_system().coroot_lattice().an_
→˓element(); alphavee
2*alphacheck[1] + 2*alphacheck[2]
sage: alphavee.to_ambient()
(2, 2)

5.1.237 Root systems

See Root Systems for an overview.

class sage.combinat.root_system.root_system.RootSystem(cartan_type, as_dual_of=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
sage_object.SageObject

A class for root systems.

EXAMPLES:

We construct the root system for type 𝐵3:

sage: R=RootSystem(['B',3]); R
Root system of type ['B', 3]

R models the root system abstractly. It comes equipped with various realizations of the root and weight lattices,
where all computations take place. Let us play first with the root lattice:

sage: space = R.root_lattice()
sage: space
Root lattice of the Root system of type ['B', 3]

This is the free Z-module
⨁︀

𝑖 Z.𝛼𝑖 spanned by the simple roots:

sage: space.base_ring()
Integer Ring
sage: list(space.basis())
[alpha[1], alpha[2], alpha[3]]

Let us do some computations with the simple roots:

sage: alpha = space.simple_roots()
sage: alpha[1] + alpha[2]
alpha[1] + alpha[2]

There is a canonical pairing between the root lattice and the coroot lattice:

sage: R.coroot_lattice()
Coroot lattice of the Root system of type ['B', 3]

2460 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

We construct the simple coroots, and do some computations (see comments about duality below for some caveat):

sage: alphacheck = space.simple_coroots()
sage: list(alphacheck)
[alphacheck[1], alphacheck[2], alphacheck[3]]

We can carry over the same computations in any of the other realizations of the root lattice, like the root space⨁︀
𝑖Q.𝛼𝑖, the weight lattice

⨁︀
𝑖 Z.Λ𝑖, the weight space

⨁︀
𝑖Q.Λ𝑖. For example:

sage: space = R.weight_space()
sage: space
Weight space over the Rational Field of the Root system of type ['B', 3]

sage: space.base_ring()
Rational Field
sage: list(space.basis())
[Lambda[1], Lambda[2], Lambda[3]]

sage: alpha = space.simple_roots()
sage: alpha[1] + alpha[2]
Lambda[1] + Lambda[2] - 2*Lambda[3]

The fundamental weights are the dual basis of the coroots:

sage: Lambda = space.fundamental_weights()
sage: Lambda[1]
Lambda[1]

sage: alphacheck = space.simple_coroots()
sage: list(alphacheck)
[alphacheck[1], alphacheck[2], alphacheck[3]]

sage: [Lambda[i].scalar(alphacheck[1]) for i in space.index_set()]
[1, 0, 0]
sage: [Lambda[i].scalar(alphacheck[2]) for i in space.index_set()]
[0, 1, 0]
sage: [Lambda[i].scalar(alphacheck[3]) for i in space.index_set()]
[0, 0, 1]

Let us use the simple reflections. In the weight space, they work as in the number game: firing the node 𝑖 on an
element 𝑥 adds 𝑐 times the simple root 𝛼𝑖, where 𝑐 is the coefficient of 𝑖 in 𝑥:

sage: s = space.simple_reflections()
sage: Lambda[1].simple_reflection(1)
-Lambda[1] + Lambda[2]
sage: Lambda[2].simple_reflection(1)
Lambda[2]
sage: Lambda[3].simple_reflection(1)
Lambda[3]
sage: (-2*Lambda[1] + Lambda[2] + Lambda[3]).simple_reflection(1)
2*Lambda[1] - Lambda[2] + Lambda[3]

It can be convenient to manipulate the simple reflections themselves:

5.1. Comprehensive Module List 2461

Combinatorics, Release 9.7

sage: s = space.simple_reflections()
sage: s[1](Lambda[1])
-Lambda[1] + Lambda[2]
sage: s[1](Lambda[2])
Lambda[2]
sage: s[1](Lambda[3])
Lambda[3]

Ambient spaces

The root system may also come equipped with an ambient space. This is aQ-module, endowed with its canonical
Euclidean scalar product, which admits simultaneous embeddings of the (extended) weight and the (extended)
coweight lattice, and therefore the root and the coroot lattice. This is implemented on a type by type basis for
the finite crystallographic root systems following Bourbaki’s conventions and is extended to the affine cases.
Coefficients permitting, this is also available as an ambient lattice.

See also:

ambient_space() and ambient_lattice() for details

In finite type 𝐴, we recover the natural representation of the symmetric group as group of permutation matrices:

sage: RootSystem(["A",2]).ambient_space().weyl_group().simple_reflections()
Finite family {1: [0 1 0]

[1 0 0]
[0 0 1],

2: [1 0 0]
[0 0 1]
[0 1 0]}

In type 𝐵, 𝐶, and 𝐷, we recover the natural representation of the Weyl group as groups of signed permutation
matrices:

sage: RootSystem(["B",3]).ambient_space().weyl_group().simple_reflections()
Finite family {1: [0 1 0]

[1 0 0]
[0 0 1],

2: [1 0 0]
[0 0 1]
[0 1 0],

3: [1 0 0]
[0 1 0]
[0 0 -1]}

In (untwisted) affine types 𝐴, . . . , 𝐷, one can recover from the ambient space the affine permutation representa-
tion, in window notation. Let us consider the ambient space for affine type 𝐴:

sage: L = RootSystem(["A",2,1]).ambient_space(); L
Ambient space of the Root system of type ['A', 2, 1]

Define the “identity” by an appropriate vector at level −3:

sage: e = L.basis(); Lambda = L.fundamental_weights()
sage: id = e[0] + 2*e[1] + 3*e[2] - 3*Lambda[0]

2462 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The corresponding permutation is obtained by projecting it onto the classical ambient space:

sage: L.classical()
Ambient space of the Root system of type ['A', 2]
sage: L.classical()(id)
(1, 2, 3)

Here is the orbit of the identity under the action of the finite group:

sage: W = L.weyl_group()
sage: S3 = [w.action(id) for w in W.classical()]
sage: [L.classical()(x) for x in S3]
[(1, 2, 3), (3, 1, 2), (2, 3, 1), (2, 1, 3), (1, 3, 2), (3, 2, 1)]

And the action of 𝑠0 on these yields:

sage: s = W.simple_reflections()
sage: [L.classical()(s[0].action(x)) for x in S3]
[(0, 2, 4), (-1, 1, 6), (-2, 3, 5), (0, 1, 5), (-1, 3, 4), (-2, 2, 6)]

We can also plot various components of the ambient spaces:

sage: L = RootSystem(['A',2]).ambient_space()
sage: L.plot()
Graphics object consisting of 13 graphics primitives

For more on plotting, see Tutorial: visualizing root systems.

Dual root systems

The root system is aware of its dual root system:

sage: R.dual
Dual of root system of type ['B', 3]

R.dual is really the root system of type 𝐶3:

sage: R.dual.cartan_type()
['C', 3]

And the coroot lattice that we have been manipulating before is really implemented as the root lattice of the dual
root system:

sage: R.dual.root_lattice()
Coroot lattice of the Root system of type ['B', 3]

In particular, the coroots for the root lattice are in fact the roots of the coroot lattice:

sage: list(R.root_lattice().simple_coroots())
[alphacheck[1], alphacheck[2], alphacheck[3]]
sage: list(R.coroot_lattice().simple_roots())
[alphacheck[1], alphacheck[2], alphacheck[3]]
sage: list(R.dual.root_lattice().simple_roots())
[alphacheck[1], alphacheck[2], alphacheck[3]]

5.1. Comprehensive Module List 2463

Combinatorics, Release 9.7

The coweight lattice and space are defined similarly. Note that, to limit confusion, all the output have been
tweaked appropriately.

See also:

• sage.combinat.root_system

• RootSpace

• WeightSpace

• AmbientSpace

• RootLatticeRealizations

• WeightLatticeRealizations

ambient_lattice()
Return the ambient lattice for this root_system.

This is the ambient space, over Z.

See also:

• ambient_space()

• root_lattice()

• weight_lattice()

EXAMPLES:

sage: RootSystem(['A',4]).ambient_lattice()
Ambient lattice of the Root system of type ['A', 4]
sage: RootSystem(['A',4,1]).ambient_lattice()
Ambient lattice of the Root system of type ['A', 4, 1]

Except in type A, only an ambient space can be realized:

sage: RootSystem(['B',4]).ambient_lattice()
sage: RootSystem(['C',4]).ambient_lattice()
sage: RootSystem(['D',4]).ambient_lattice()
sage: RootSystem(['E',6]).ambient_lattice()
sage: RootSystem(['F',4]).ambient_lattice()
sage: RootSystem(['G',2]).ambient_lattice()

ambient_space(base_ring=Rational Field)
Return the usual ambient space for this root_system.

INPUT:

• base_ring – a base ring (default: Q)

This is a base_ring-module, endowed with its canonical Euclidean scalar product, which admits simulta-
neous embeddings into the weight and the coweight lattice, and therefore the root and the coroot lattice, and
preserves scalar products between elements of the coroot lattice and elements of the root or weight lattice
(and dually).

There is no mechanical way to define the ambient space just from the Cartan matrix. Instead it is constructed
from hard coded type by type data, according to the usual Bourbaki conventions. Such data is provided for
all the finite (crystallographic) types. From this data, ambient spaces can be built as well for dual types,

2464 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

reducible types and affine types. When no data is available, or if the base ring is not large enough, None is
returned.

Warning: for affine types

See also:

• The section on ambient spaces in RootSystem

• ambient_lattice()

• AmbientSpace

• AmbientSpace

• root_space()

• weight:space()

EXAMPLES:

sage: RootSystem(['A',4]).ambient_space()
Ambient space of the Root system of type ['A', 4]

sage: RootSystem(['B',4]).ambient_space()
Ambient space of the Root system of type ['B', 4]

sage: RootSystem(['C',4]).ambient_space()
Ambient space of the Root system of type ['C', 4]

sage: RootSystem(['D',4]).ambient_space()
Ambient space of the Root system of type ['D', 4]

sage: RootSystem(['E',6]).ambient_space()
Ambient space of the Root system of type ['E', 6]

sage: RootSystem(['F',4]).ambient_space()
Ambient space of the Root system of type ['F', 4]

sage: RootSystem(['G',2]).ambient_space()
Ambient space of the Root system of type ['G', 2]

An alternative base ring can be provided as an option:

sage: e = RootSystem(['B',3]).ambient_space(RR)
sage: TestSuite(e).run()

It should contain the smallest ring over which the ambient space can be defined (Z in type𝐴 orQ otherwise).
Otherwise None is returned:

sage: RootSystem(['B',2]).ambient_space(ZZ)

The base ring should also be totally ordered. In practice, only Z and Q are really supported at this point,
but you are welcome to experiment:

5.1. Comprehensive Module List 2465

Combinatorics, Release 9.7

sage: e = RootSystem(['G',2]).ambient_space(RR)
sage: TestSuite(e).run()
Failure in _test_root_lattice_realization:
Traceback (most recent call last):
...
AssertionError: 2.00000000000000 != 2.00000000000000
--
The following tests failed: _test_root_lattice_realization

cartan_matrix()
EXAMPLES:

sage: RootSystem(['A',3]).cartan_matrix()
[2 -1 0]
[-1 2 -1]
[0 -1 2]

cartan_type()
Returns the Cartan type of the root system.

EXAMPLES:

sage: R = RootSystem(['A',3])
sage: R.cartan_type()
['A', 3]

coambient_space(base_ring=Rational Field)
Return the coambient space for this root system.

This is the ambient space of the dual root system.

See also:

• ambient_space()

EXAMPLES:

sage: L = RootSystem(["B",2]).ambient_space(); L
Ambient space of the Root system of type ['B', 2]
sage: coL = RootSystem(["B",2]).coambient_space(); coL
Coambient space of the Root system of type ['B', 2]

The roots and coroots are interchanged:

sage: coL.simple_roots()
Finite family {1: (1, -1), 2: (0, 2)}
sage: L.simple_coroots()
Finite family {1: (1, -1), 2: (0, 2)}

sage: coL.simple_coroots()
Finite family {1: (1, -1), 2: (0, 1)}
sage: L.simple_roots()
Finite family {1: (1, -1), 2: (0, 1)}

coroot_lattice()
Returns the coroot lattice associated to self.

2466 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: RootSystem(['A',3]).coroot_lattice()
Coroot lattice of the Root system of type ['A', 3]

coroot_space(base_ring=Rational Field)
Returns the coroot space associated to self.

EXAMPLES:

sage: RootSystem(['A',3]).coroot_space()
Coroot space over the Rational Field of the Root system of type ['A', 3]

coweight_lattice(extended=False)
Returns the coweight lattice associated to self.

This is the weight lattice of the dual root system.

See also:

• coweight_space()

• weight_space(), weight_lattice()

• WeightSpace

EXAMPLES:

sage: RootSystem(['A',3]).coweight_lattice()
Coweight lattice of the Root system of type ['A', 3]

sage: RootSystem(['A',3,1]).coweight_lattice(extended = True)
Extended coweight lattice of the Root system of type ['A', 3, 1]

coweight_space(base_ring=Rational Field, extended=False)
Returns the coweight space associated to self.

This is the weight space of the dual root system.

See also:

• coweight_lattice()

• weight_space(), weight_lattice()

• WeightSpace

EXAMPLES:

sage: RootSystem(['A',3]).coweight_space()
Coweight space over the Rational Field of the Root system of type ['A', 3]

sage: RootSystem(['A',3,1]).coweight_space(extended=True)
Extended coweight space over the Rational Field of the Root system of type ['A',
→˓ 3, 1]

dynkin_diagram()
Returns the Dynkin diagram of the root system.

EXAMPLES:

5.1. Comprehensive Module List 2467

Combinatorics, Release 9.7

sage: R = RootSystem(['A',3])
sage: R.dynkin_diagram()
O---O---O
1 2 3
A3

index_set()
EXAMPLES:

sage: RootSystem(['A',3]).index_set()
(1, 2, 3)

is_finite()
Returns True if self is a finite root system.

EXAMPLES:

sage: RootSystem(["A",3]).is_finite()
True
sage: RootSystem(["A",3,1]).is_finite()
False

is_irreducible()
Returns True if self is an irreducible root system.

EXAMPLES:

sage: RootSystem(['A', 3]).is_irreducible()
True
sage: RootSystem("A2xB2").is_irreducible()
False

root_lattice()
Returns the root lattice associated to self.

EXAMPLES:

sage: RootSystem(['A',3]).root_lattice()
Root lattice of the Root system of type ['A', 3]

root_poset(restricted=False, facade=False)
Returns the (restricted) root poset associated to self.

The elements are given by the positive roots (resp. non-simple, positive roots), and 𝛼 ≤ 𝛽 iff 𝛽 − 𝛼 is a
non-negative linear combination of simple roots.

INPUT:

• restricted – (default:False) if True, only non-simple roots are considered.

• facade – (default:False) passes facade option to the poset generator.

EXAMPLES:

sage: Phi = RootSystem(['A',2]).root_poset(); Phi
Finite poset containing 3 elements
sage: sorted(Phi.cover_relations(), key=str)
[[alpha[1], alpha[1] + alpha[2]], [alpha[2], alpha[1] + alpha[2]]]

(continues on next page)

2468 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Phi = RootSystem(['A',3]).root_poset(restricted=True); Phi
Finite poset containing 3 elements
sage: sorted(Phi.cover_relations(), key=str)
[[alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3]], [alpha[2] + alpha[3],␣
→˓alpha[1] + alpha[2] + alpha[3]]]

sage: Phi = RootSystem(['B',2]).root_poset(); Phi
Finite poset containing 4 elements
sage: Phi.cover_relations()
[[alpha[2], alpha[1] + alpha[2]], [alpha[1], alpha[1] + alpha[2]], [alpha[1] +␣
→˓alpha[2], alpha[1] + 2*alpha[2]]]

root_space(base_ring=Rational Field)
Returns the root space associated to self.

EXAMPLES:

sage: RootSystem(['A',3]).root_space()
Root space over the Rational Field of the Root system of type ['A', 3]

weight_lattice(extended=False)
Returns the weight lattice associated to self.

See also:

• weight_space()

• coweight_space(), coweight_lattice()

• WeightSpace

EXAMPLES:

sage: RootSystem(['A',3]).weight_lattice()
Weight lattice of the Root system of type ['A', 3]

sage: RootSystem(['A',3,1]).weight_space(extended = True)
Extended weight space over the Rational Field of the Root system of type ['A',␣
→˓3, 1]

weight_space(base_ring=Rational Field, extended=False)
Returns the weight space associated to self.

See also:

• weight_lattice()

• coweight_space(), coweight_lattice()

• WeightSpace

EXAMPLES:

5.1. Comprehensive Module List 2469

Combinatorics, Release 9.7

sage: RootSystem(['A',3]).weight_space()
Weight space over the Rational Field of the Root system of type ['A', 3]

sage: RootSystem(['A',3,1]).weight_space(extended = True)
Extended weight space over the Rational Field of the Root system of type ['A',␣
→˓3, 1]

sage.combinat.root_system.root_system.WeylDim(ct, coeffs)
The Weyl Dimension Formula.

INPUT:

• type - a Cartan type

• coeffs - a list of nonnegative integers

The length of the list must equal the rank type[1]. A dominant weight hwv is constructed by summing the
fundamental weights with coefficients from this list. The dimension of the irreducible representation of the
semisimple complex Lie algebra with highest weight vector hwv is returned.

EXAMPLES:

For 𝑆𝑂(7), the Cartan type is 𝐵3, so:

sage: WeylDim(['B',3],[1,0,0]) # standard representation of SO(7)
7
sage: WeylDim(['B',3],[0,1,0]) # exterior square
21
sage: WeylDim(['B',3],[0,0,1]) # spin representation of spin(7)
8
sage: WeylDim(['B',3],[1,0,1]) # sum of the first and third fundamental weights
48
sage: [WeylDim(['F',4],x) for x in ([1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1])]
[52, 1274, 273, 26]
sage: [WeylDim(['E', 6], x) for x in ([0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0,
→˓ 0, 0, 0, 1], [0, 0, 0, 0, 0, 2], [0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0], [1, 0,␣
→˓0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [2, 0, 0, 0, 0, 0])]
[1, 78, 27, 351, 351, 351, 27, 650, 351]

5.1.238 Root system data for super type A

class sage.combinat.root_system.type_super_A.AmbientSpace(root_system, base_ring,
index_set=None)

Bases: sage.combinat.root_system.ambient_space.AmbientSpace

The ambient space for (super) type 𝐴(𝑚|𝑛).

EXAMPLES:

sage: R = RootSystem(['A', [2,1]])
sage: AL = R.ambient_space(); AL
Ambient space of the Root system of type ['A', [2, 1]]
sage: AL.basis()
Finite family {-3: (1, 0, 0, 0, 0),
-2: (0, 1, 0, 0, 0),

(continues on next page)

2470 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

-1: (0, 0, 1, 0, 0),
1: (0, 0, 0, 1, 0),
2: (0, 0, 0, 0, 1)}

class Element
Bases: sage.combinat.root_system.ambient_space.AmbientSpaceElement

associated_coroot()
Return the coroot associated to self.

EXAMPLES:

sage: L = RootSystem(['A', [3,2]]).ambient_space()
sage: al = L.simple_roots()
sage: al[-1].associated_coroot()
(0, 0, 1, -1, 0, 0, 0)
sage: al[0].associated_coroot()
(0, 0, 0, 1, -1, 0, 0)
sage: al[1].associated_coroot()
(0, 0, 0, 0, -1, 1, 0)

sage: a = al[-1] + al[0] + al[1]; a
(0, 0, 1, 0, 0, -1, 0)
sage: a.associated_coroot()
(0, 0, 1, 0, -2, 1, 0)
sage: h = L.simple_coroots()
sage: h[-1] + h[0] + h[1]
(0, 0, 1, 0, -2, 1, 0)

sage: (al[-1] + al[0] + al[2]).associated_coroot()
(0, 0, 1, 0, -1, -1, 1)

dot_product(lambdacheck)
The scalar product with elements of the coroot lattice embedded in the ambient space.

EXAMPLES:

sage: L = RootSystem(['A', [2,1]]).ambient_space()
sage: a = L.simple_roots()
sage: matrix([[a[i].inner_product(a[j]) for j in L.index_set()] for i in L.
→˓index_set()])
[2 -1 0 0]
[-1 2 -1 0]
[0 -1 0 1]
[0 0 1 -2]

has_descent(i, positive=False)
Test if self has a descent at position 𝑖, that is if self is on the strict negative side of the 𝑖𝑡ℎ simple
reflection hyperplane.

If positive is True, tests if it is on the strict positive side instead.

EXAMPLES:

5.1. Comprehensive Module List 2471

Combinatorics, Release 9.7

sage: L = RootSystem(['A', [2,1]]).ambient_space()
sage: al = L.simple_roots()
sage: [al[i].has_descent(1) for i in L.index_set()]
[False, False, True, False]
sage: [(-al[i]).has_descent(1) for i in L.index_set()]
[False, False, False, True]
sage: [al[i].has_descent(1, True) for i in L.index_set()]
[False, False, False, True]
sage: [(-al[i]).has_descent(1, True) for i in L.index_set()]
[False, False, True, False]
sage: (al[-2] + al[0] + al[1]).has_descent(-1)
True
sage: (al[-2] + al[0] + al[1]).has_descent(1)
False
sage: (al[-2] + al[0] + al[1]).has_descent(1, positive=True)
True
sage: all(all(not la.has_descent(i) for i in L.index_set())
....: for la in L.fundamental_weights())
True

inner_product(lambdacheck)
The scalar product with elements of the coroot lattice embedded in the ambient space.

EXAMPLES:

sage: L = RootSystem(['A', [2,1]]).ambient_space()
sage: a = L.simple_roots()
sage: matrix([[a[i].inner_product(a[j]) for j in L.index_set()] for i in L.
→˓index_set()])
[2 -1 0 0]
[-1 2 -1 0]
[0 -1 0 1]
[0 0 1 -2]

is_dominant_weight()
Test whether self is a dominant element of the weight lattice.

EXAMPLES:

sage: L = RootSystem(['A',2]).ambient_lattice()
sage: Lambda = L.fundamental_weights()
sage: [x.is_dominant() for x in Lambda]
[True, True]
sage: (3*Lambda[1]+Lambda[2]).is_dominant()
True
sage: (Lambda[1]-Lambda[2]).is_dominant()
False
sage: (-Lambda[1]+Lambda[2]).is_dominant()
False

Tests that the scalar products with the coroots are all nonnegative integers. For example, if 𝑥 is the
sum of a dominant element of the weight lattice plus some other element orthogonal to all coroots,
then the implementation correctly reports 𝑥 to be a dominant weight:

2472 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: x = Lambda[1] + L([-1,-1,-1])
sage: x.is_dominant_weight()
True

scalar(lambdacheck)
The scalar product with elements of the coroot lattice embedded in the ambient space.

EXAMPLES:

sage: L = RootSystem(['A', [2,1]]).ambient_space()
sage: a = L.simple_roots()
sage: matrix([[a[i].inner_product(a[j]) for j in L.index_set()] for i in L.
→˓index_set()])
[2 -1 0 0]
[-1 2 -1 0]
[0 -1 0 1]
[0 0 1 -2]

dimension()
Return the dimension of this ambient space.

EXAMPLES:

sage: e = RootSystem(['A', [4,2]]).ambient_space()
sage: e.dimension()
8

fundamental_weight(i)
Return the fundamental weight Λ𝑖 of self.

EXAMPLES:

sage: L = RootSystem(['A', [3,2]]).ambient_space()
sage: L.fundamental_weight(-1)
(1, 1, 1, 0, 0, 0, 0)
sage: L.fundamental_weight(0)
(1, 1, 1, 1, 0, 0, 0)
sage: L.fundamental_weight(2)
(1, 1, 1, 1, -1, -1, -2)
sage: list(L.fundamental_weights())
[(1, 0, 0, 0, 0, 0, 0),
(1, 1, 0, 0, 0, 0, 0),
(1, 1, 1, 0, 0, 0, 0),
(1, 1, 1, 1, 0, 0, 0),
(1, 1, 1, 1, -1, -2, -2),
(1, 1, 1, 1, -1, -1, -2)]

sage: L = RootSystem(['A', [2,3]]).ambient_space()
sage: La = L.fundamental_weights()
sage: al = L.simple_roots()
sage: I = L.index_set()
sage: matrix([[al[i].scalar(La[j]) for i in I] for j in I])
[1 0 0 0 0 0]
[0 1 0 0 0 0]

(continues on next page)

5.1. Comprehensive Module List 2473

Combinatorics, Release 9.7

(continued from previous page)

[0 0 1 0 0 0]
[0 0 0 -1 0 0]
[0 0 0 0 -1 0]
[0 0 0 0 0 -1]

highest_root()
Return the highest root of self.

EXAMPLES:

sage: e = RootSystem(['A', [4,2]]).ambient_lattice()
sage: e.highest_root()
(1, 0, 0, 0, 0, 0, 0, -1)

negative_even_roots()
Return the negative even roots of self.

EXAMPLES:

sage: e = RootSystem(['A', [2,1]]).ambient_lattice()
sage: e.negative_even_roots()
[(0, -1, 1, 0, 0), (-1, 0, 1, 0, 0),
(-1, 1, 0, 0, 0), (0, 0, 0, -1, 1)]

negative_odd_roots()
Return the negative odd roots of self.

EXAMPLES:

sage: e = RootSystem(['A', [2,1]]).ambient_lattice()
sage: e.negative_odd_roots()
[(0, 0, -1, 1, 0),
(0, 0, -1, 0, 1),
(0, -1, 0, 1, 0),
(0, -1, 0, 0, 1),
(-1, 0, 0, 1, 0),
(-1, 0, 0, 0, 1)]

negative_roots()
Return the negative roots of self.

EXAMPLES:

sage: e = RootSystem(['A', [2,1]]).ambient_lattice()
sage: e.negative_roots()
[(0, -1, 1, 0, 0),
(-1, 0, 1, 0, 0),
(-1, 1, 0, 0, 0),
(0, 0, 0, -1, 1),
(0, 0, -1, 1, 0),
(0, 0, -1, 0, 1),
(0, -1, 0, 1, 0),
(0, -1, 0, 0, 1),
(-1, 0, 0, 1, 0),
(-1, 0, 0, 0, 1)]

2474 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

positive_even_roots()
Return the positive even roots of self.

EXAMPLES:

sage: e = RootSystem(['A', [2,1]]).ambient_lattice()
sage: e.positive_even_roots()
[(0, 1, -1, 0, 0), (1, 0, -1, 0, 0),
(1, -1, 0, 0, 0), (0, 0, 0, 1, -1)]

positive_odd_roots()
Return the positive odd roots of self.

EXAMPLES:

sage: e = RootSystem(['A', [2,1]]).ambient_lattice()
sage: e.positive_odd_roots()
[(0, 0, 1, -1, 0),
(0, 0, 1, 0, -1),
(0, 1, 0, -1, 0),
(0, 1, 0, 0, -1),
(1, 0, 0, -1, 0),
(1, 0, 0, 0, -1)]

positive_roots()
Return the positive roots of self.

EXAMPLES:

sage: e = RootSystem(['A', [2,1]]).ambient_lattice()
sage: e.positive_roots()
[(0, 1, -1, 0, 0),
(1, 0, -1, 0, 0),
(1, -1, 0, 0, 0),
(0, 0, 0, 1, -1),
(0, 0, 1, -1, 0),
(0, 0, 1, 0, -1),
(0, 1, 0, -1, 0),
(0, 1, 0, 0, -1),
(1, 0, 0, -1, 0),
(1, 0, 0, 0, -1)]

simple_coroot(i)
Return the simple coroot ℎ𝑖 of self.

EXAMPLES:

sage: L = RootSystem(['A', [3,2]]).ambient_space()
sage: L.simple_coroot(-2)
(0, 1, -1, 0, 0, 0, 0)
sage: L.simple_coroot(0)
(0, 0, 0, 1, -1, 0, 0)
sage: L.simple_coroot(2)
(0, 0, 0, 0, 0, -1, 1)
sage: list(L.simple_coroots())
[(1, -1, 0, 0, 0, 0, 0),

(continues on next page)

5.1. Comprehensive Module List 2475

Combinatorics, Release 9.7

(continued from previous page)

(0, 1, -1, 0, 0, 0, 0),
(0, 0, 1, -1, 0, 0, 0),
(0, 0, 0, 1, -1, 0, 0),
(0, 0, 0, 0, -1, 1, 0),
(0, 0, 0, 0, 0, -1, 1)]

simple_root(i)
Return the 𝑖-th simple root of self.

EXAMPLES:

sage: e = RootSystem(['A', [2,1]]).ambient_lattice()
sage: list(e.simple_roots())
[(1, -1, 0, 0, 0), (0, 1, -1, 0, 0),
(0, 0, 1, -1, 0), (0, 0, 0, 1, -1)]

classmethod smallest_base_ring(cartan_type=None)
Return the smallest base ring the ambient space can be defined upon.

See also:

smallest_base_ring()

EXAMPLES:

sage: e = RootSystem(['A', [3,1]]).ambient_space()
sage: e.smallest_base_ring()
Integer Ring

class sage.combinat.root_system.type_super_A.CartanType(m, n)
Bases: sage.combinat.root_system.cartan_type.SuperCartanType_standard

Cartan Type 𝐴(𝑚|𝑛).

See also:

CartanType()

AmbientSpace
alias of AmbientSpace

ascii_art(label=<function CartanType.<lambda> at 0x7f874983b940>, node=None)
Return an ascii art representation of the Dynkin diagram.

EXAMPLES:

sage: t = CartanType(['A', [3,2]])
sage: print(t.ascii_art())
O---O---O---X---O---O
-3 -2 -1 0 1 2
sage: t = CartanType(['A', [3,7]])
sage: print(t.ascii_art())
O---O---O---X---O---O---O---O---O---O---O
-3 -2 -1 0 1 2 3 4 5 6 7

sage: t = CartanType(['A', [0,7]])
sage: print(t.ascii_art())

(continues on next page)

2476 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

X---O---O---O---O---O---O---O
0 1 2 3 4 5 6 7
sage: t = CartanType(['A', [0,0]])
sage: print(t.ascii_art())
X
0
sage: t = CartanType(['A', [5,0]])
sage: print(t.ascii_art())
O---O---O---O---O---X
-5 -4 -3 -2 -1 0

cartan_matrix()
Return the Cartan matrix associated to self.

EXAMPLES:

sage: ct = CartanType(['A', [2,3]])
sage: ct.cartan_matrix()
[2 -1 0 0 0 0]
[-1 2 -1 0 0 0]
[0 -1 0 1 0 0]
[0 0 -1 2 -1 0]
[0 0 0 -1 2 -1]
[0 0 0 0 -1 2]

dual()
Return dual of self.

EXAMPLES:

sage: CartanType(['A', [2,3]]).dual()
['A', [2, 3]]

dynkin_diagram()
Return the Dynkin diagram of super type A.

EXAMPLES:

sage: a = CartanType(['A', [4,2]]).dynkin_diagram()
sage: a
O---O---O---O---X---O---O
-4 -3 -2 -1 0 1 2
A4|2
sage: a.edges(sort=True)
[(-4, -3, 1), (-3, -4, 1), (-3, -2, 1), (-2, -3, 1),
(-2, -1, 1), (-1, -2, 1), (-1, 0, 1), (0, -1, 1),
(0, 1, 1), (1, 0, -1), (1, 2, 1), (2, 1, 1)]

index_set()
Return the index set of self.

EXAMPLES:

sage: CartanType(['A', [2,3]]).index_set()
(-2, -1, 0, 1, 2, 3)

5.1. Comprehensive Module List 2477

Combinatorics, Release 9.7

is_affine()
Return whether self is affine or not.

EXAMPLES:

sage: CartanType(['A', [2,3]]).is_affine()
False

is_finite()
Return whether self is finite or not.

EXAMPLES:

sage: CartanType(['A', [2,3]]).is_finite()
True

is_irreducible()
Return whether self is irreducible, which is True.

EXAMPLES:

sage: CartanType(['A', [3,4]]).is_irreducible()
True

relabel(relabelling)
Return a relabelled copy of this Cartan type.

INPUT:

• relabelling – a function (or a list or dictionary)

OUTPUT:

an isomorphic Cartan type obtained by relabelling the nodes of the Dynkin diagram. Namely, the node
with label i is relabelled f(i) (or, by f[i] if f is a list or dictionary).

EXAMPLES:

sage: ct = CartanType(['A', [1,2]])
sage: ct.dynkin_diagram()
O---X---O---O
-1 0 1 2
A1|2
sage: f={1:2,2:1,0:0,-1:-1}
sage: ct.relabel(f)
['A', [1, 2]] relabelled by {-1: -1, 0: 0, 1: 2, 2: 1}
sage: ct.relabel(f).dynkin_diagram()
O---X---O---O
-1 0 2 1
A1|2 relabelled by {-1: -1, 0: 0, 1: 2, 2: 1}

root_system()
Return root system of self.

EXAMPLES:

sage: CartanType(['A', [2,3]]).root_system()
Root system of type ['A', [2, 3]]

2478 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

symmetrizer()
Return symmetrizing matrix for self.

EXAMPLES:

sage: CartanType(['A', [2,3]]).symmetrizer()
Finite family {-2: 1, -1: 1, 0: 1, 1: -1, 2: -1, 3: -1}

type()
Return type of self.

EXAMPLES:

sage: CartanType(['A', [2,3]]).type()
'A'

5.1.239 Root system data for type A

class sage.combinat.root_system.type_A.AmbientSpace(root_system, base_ring, index_set=None)
Bases: sage.combinat.root_system.ambient_space.AmbientSpace

EXAMPLES:

sage: R = RootSystem(["A",3])
sage: e = R.ambient_space(); e
Ambient space of the Root system of type ['A', 3]
sage: TestSuite(e).run()

By default, this ambient space uses the barycentric projection for plotting:

sage: L = RootSystem(["A",2]).ambient_space()
sage: e = L.basis()
sage: L._plot_projection(e[0])
(1/2, 989/1142)
sage: L._plot_projection(e[1])
(-1, 0)
sage: L._plot_projection(e[2])
(1/2, -989/1142)
sage: L = RootSystem(["A",3]).ambient_space()
sage: l = L.an_element(); l
(2, 2, 3, 0)
sage: L._plot_projection(l)
(0, -1121/1189, 7/3)

See also:

• sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.
ParentMethods._plot_projection()

det(k=1)
returns the vector (1, . . . ,1) which in the [‘A’,r] weight lattice, interpreted as a weight of GL(r+1,CC) is the
determinant. If the optional parameter k is given, returns (k, . . . ,k), the k-th power of the determinant.

EXAMPLES:

5.1. Comprehensive Module List 2479

Combinatorics, Release 9.7

sage: e = RootSystem(['A',3]).ambient_space()
sage: e.det(1/2)
(1/2, 1/2, 1/2, 1/2)

dimension()
EXAMPLES:

sage: e = RootSystem(["A",3]).ambient_space()
sage: e.dimension()
4

fundamental_weight(i)
EXAMPLES:

sage: e = RootSystem(['A',3]).ambient_lattice()
sage: e.fundamental_weights()
Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (1, 1, 1, 0)}

highest_root()
EXAMPLES:

sage: e = RootSystem(['A',3]).ambient_lattice()
sage: e.highest_root()
(1, 0, 0, -1)

negative_roots()
EXAMPLES:

sage: e = RootSystem(['A',3]).ambient_lattice()
sage: e.negative_roots()
[(-1, 1, 0, 0),
(-1, 0, 1, 0),
(-1, 0, 0, 1),
(0, -1, 1, 0),
(0, -1, 0, 1),
(0, 0, -1, 1)]

positive_roots()
EXAMPLES:

sage: e = RootSystem(['A',3]).ambient_lattice()
sage: e.positive_roots()
[(1, -1, 0, 0),
(1, 0, -1, 0),
(0, 1, -1, 0),
(1, 0, 0, -1),
(0, 1, 0, -1),
(0, 0, 1, -1)]

root(i, j)
Note that indexing starts at 0.

EXAMPLES:

2480 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: e = RootSystem(['A',3]).ambient_lattice()
sage: e.root(0,1)
(1, -1, 0, 0)

simple_root(i)
EXAMPLES:

sage: e = RootSystem(['A',3]).ambient_lattice()
sage: e.simple_roots()
Finite family {1: (1, -1, 0, 0), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1)}

classmethod smallest_base_ring(cartan_type=None)
Returns the smallest base ring the ambient space can be defined upon

See also:

smallest_base_ring()

EXAMPLES:

sage: e = RootSystem(["A",3]).ambient_space()
sage: e.smallest_base_ring()
Integer Ring

class sage.combinat.root_system.type_A.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_finite, sage.
combinat.root_system.cartan_type.CartanType_simply_laced , sage.combinat.root_system.
cartan_type.CartanType_simple

Cartan Type 𝐴𝑛
See also:

CartanType()

AmbientSpace
alias of AmbientSpace

PieriFactors
alias of sage.combinat.root_system.pieri_factors.PieriFactors_type_A

ascii_art(label=<function CartanType.<lambda> at 0x7f8749826a60>, node=None)
Return an ascii art representation of the Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['A',0]).ascii_art())
sage: print(CartanType(['A',1]).ascii_art())
O
1
sage: print(CartanType(['A',3]).ascii_art())
O---O---O
1 2 3
sage: print(CartanType(['A',12]).ascii_art())
O---O---O---O---O---O---O---O---O---O---O---O
1 2 3 4 5 6 7 8 9 10 11 12
sage: print(CartanType(['A',5]).ascii_art(label = lambda x: x+2))
O---O---O---O---O

(continues on next page)

5.1. Comprehensive Module List 2481

Combinatorics, Release 9.7

(continued from previous page)

3 4 5 6 7
sage: print(CartanType(['A',5]).ascii_art(label = lambda x: x-2))
O---O---O---O---O
-1 0 1 2 3

coxeter_number()
Return the Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['A',4]).coxeter_number()
5

dual_coxeter_number()
Return the dual Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['A',4]).dual_coxeter_number()
5

dynkin_diagram()
Returns the Dynkin diagram of type A.

EXAMPLES:

sage: a = CartanType(['A',3]).dynkin_diagram()
sage: a
O---O---O
1 2 3
A3
sage: a.edges(sort=True)
[(1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 1)]

5.1.240 Root system data for (untwisted) type A affine

class sage.combinat.root_system.type_A_affine.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine

EXAMPLES:

sage: ct = CartanType(['A',4,1])
sage: ct
['A', 4, 1]
sage: ct._repr_(compact = True)
'A4~'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
False
sage: ct.is_affine()
True

(continues on next page)

2482 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: ct.is_untwisted_affine()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
True
sage: ct.classical()
['A', 4]
sage: ct.dual()
['A', 4, 1]

sage: ct = CartanType(['A', 1, 1])
sage: ct.is_simply_laced()
False
sage: ct.dual()
['A', 1, 1]

PieriFactors
alias of sage.combinat.root_system.pieri_factors.PieriFactors_type_A_affine

ascii_art(label=<function CartanType.<lambda> at 0x7f874989bdc0>, node=None)
Return an ascii art representation of the extended Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['A',3,1]).ascii_art())
0
O-------+
| |
| |
O---O---O
1 2 3

sage: print(CartanType(['A',5,1]).ascii_art(label = lambda x: x+2))
2
O---------------+
| |
| |
O---O---O---O---O
3 4 5 6 7

sage: print(CartanType(['A',1,1]).ascii_art())
O<=>O
0 1

sage: print(CartanType(['A',1,1]).ascii_art(label = lambda x: x+2))
O<=>O
2 3

dual()
Type 𝐴1

1 is self dual despite not being simply laced.

EXAMPLES:

5.1. Comprehensive Module List 2483

Combinatorics, Release 9.7

sage: CartanType(['A',1,1]).dual()
['A', 1, 1]

dynkin_diagram()
Returns the extended Dynkin diagram for affine type A.

EXAMPLES:

sage: a = CartanType(['A',3,1]).dynkin_diagram()
sage: a
0
O-------+
| |
| |
O---O---O
1 2 3
A3~
sage: a.edges(sort=True)
[(0, 1, 1),
(0, 3, 1),
(1, 0, 1),
(1, 2, 1),
(2, 1, 1),
(2, 3, 1),
(3, 0, 1),
(3, 2, 1)]

sage: a = DynkinDiagram(['A',1,1])
sage: a
O<=>O
0 1
A1~
sage: a.edges(sort=True)
[(0, 1, 2), (1, 0, 2)]

5.1.241 Root system data for type A infinity

class sage.combinat.root_system.type_A_infinity.CartanType(index_set)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard , sage.combinat.
root_system.cartan_type.CartanType_simple

The Cartan type 𝐴∞.

We use NN and ZZ to explicitly differentiate between the 𝐴+∞ and 𝐴∞ root systems, respectively. While oo is
the same as +Infinity in Sage, it is used as an alias for ZZ.

ascii_art(label=<function CartanType.<lambda> at 0x7f874983bca0>, node=None)
Return an ascii art representation of the extended Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['A', ZZ]).ascii_art())
..---O---O---O---O---O---O---O---..

-3 -2 -1 0 1 2 3
(continues on next page)

2484 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: print(CartanType(['A', NN]).ascii_art())
O---O---O---O---O---O---O---..
0 1 2 3 4 5 6

dual()
Simply laced Cartan types are self-dual, so return self.

EXAMPLES:

sage: CartanType(["A", NN]).dual()
['A', NN]
sage: CartanType(["A", ZZ]).dual()
['A', ZZ]

index_set()
Return the index set for the Cartan type self.

The index set for all standard finite Cartan types is of the form {1, . . . , 𝑛}. (See type_I for a slight abuse
of this).

EXAMPLES:

sage: CartanType(['A', NN]).index_set()
Non negative integer semiring
sage: CartanType(['A', ZZ]).index_set()
Integer Ring

is_affine()
Return False because self is not (untwisted) affine.

EXAMPLES:

sage: CartanType(['A', NN]).is_affine()
False
sage: CartanType(['A', ZZ]).is_affine()
False

is_crystallographic()
Return False because self is not crystallographic.

EXAMPLES:

sage: CartanType(['A', NN]).is_crystallographic()
True
sage: CartanType(['A', ZZ]).is_crystallographic()
True

is_finite()
Return True because self is not finite.

EXAMPLES:

sage: CartanType(['A', NN]).is_finite()
False
sage: CartanType(['A', ZZ]).is_finite()
False

5.1. Comprehensive Module List 2485

Combinatorics, Release 9.7

is_simply_laced()
Return True because self is simply laced.

EXAMPLES:

sage: CartanType(['A', NN]).is_simply_laced()
True
sage: CartanType(['A', ZZ]).is_simply_laced()
True

is_untwisted_affine()
Return False because self is not (untwisted) affine.

EXAMPLES:

sage: CartanType(['A', NN]).is_untwisted_affine()
False
sage: CartanType(['A', ZZ]).is_untwisted_affine()
False

rank()
Return the rank of self which for type 𝑋𝑛 is 𝑛.

EXAMPLES:

sage: CartanType(['A', NN]).rank()
+Infinity
sage: CartanType(['A', ZZ]).rank()
+Infinity

As this example shows, the rank is slightly ambiguous because the root systems of type [′𝐴′, 𝑁𝑁] and type
[′𝐴′, 𝑍𝑍] have the same rank. Instead, it is better ot use index_set() to differentiate between these two
root systems.

type()
Return the type of self.

EXAMPLES:

sage: CartanType(['A', NN]).type()
'A'
sage: CartanType(['A', ZZ]).type()
'A'

5.1.242 Root system data for type B

class sage.combinat.root_system.type_B.AmbientSpace(root_system, base_ring, index_set=None)
Bases: sage.combinat.root_system.ambient_space.AmbientSpace

dimension()
EXAMPLES:

sage: e = RootSystem(['B',3]).ambient_space()
sage: e.dimension()
3

2486 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

fundamental_weight(i)
EXAMPLES:

sage: RootSystem(['B',3]).ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1/2, 1/2, 1/2)}

negative_roots()
EXAMPLES:

sage: RootSystem(['B',3]).ambient_space().negative_roots()
[(-1, 1, 0),
(-1, -1, 0),
(-1, 0, 1),
(-1, 0, -1),
(0, -1, 1),
(0, -1, -1),
(-1, 0, 0),
(0, -1, 0),
(0, 0, -1)]

positive_roots()
EXAMPLES:

sage: RootSystem(['B',3]).ambient_space().positive_roots()
[(1, -1, 0),
(1, 1, 0),
(1, 0, -1),
(1, 0, 1),
(0, 1, -1),
(0, 1, 1),
(1, 0, 0),
(0, 1, 0),
(0, 0, 1)]

root(i, j)
Note that indexing starts at 0.

EXAMPLES:

sage: e = RootSystem(['B',3]).ambient_space()
sage: e.root(0,1)
(1, -1, 0)

simple_root(i)
EXAMPLES:

sage: e = RootSystem(['B',4]).ambient_space()
sage: e.simple_roots()
Finite family {1: (1, -1, 0, 0), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1), 4: (0, 0,␣
→˓0, 1)}
sage: e.positive_roots()
[(1, -1, 0, 0),
(1, 1, 0, 0),
(1, 0, -1, 0),
(1, 0, 1, 0),

(continues on next page)

5.1. Comprehensive Module List 2487

Combinatorics, Release 9.7

(continued from previous page)

(1, 0, 0, -1),
(1, 0, 0, 1),
(0, 1, -1, 0),
(0, 1, 1, 0),
(0, 1, 0, -1),
(0, 1, 0, 1),
(0, 0, 1, -1),
(0, 0, 1, 1),
(1, 0, 0, 0),
(0, 1, 0, 0),
(0, 0, 1, 0),
(0, 0, 0, 1)]
sage: e.fundamental_weights()
Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (1, 1, 1, 0), 4: (1/2, 1/2,␣
→˓1/2, 1/2)}

class sage.combinat.root_system.type_B.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_finite, sage.combinat.
root_system.cartan_type.CartanType_simple, sage.combinat.root_system.cartan_type.
CartanType_crystallographic

EXAMPLES:

sage: ct = CartanType(['B',4])
sage: ct
['B', 4]
sage: ct._repr_(compact = True)
'B4'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
True
sage: ct.is_affine()
False
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
False
sage: ct.affine()
['B', 4, 1]
sage: ct.dual()
['C', 4]

sage: ct = CartanType(['B',1])
sage: ct.is_simply_laced()
True
sage: ct.affine()
['B', 1, 1]

AmbientSpace
alias of AmbientSpace

2488 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

PieriFactors
alias of sage.combinat.root_system.pieri_factors.PieriFactors_type_B

ascii_art(label=<function CartanType.<lambda> at 0x7f874982b4c0>, node=None)
Return an ascii art representation of the Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['B',1]).ascii_art())
O
1
sage: print(CartanType(['B',2]).ascii_art())
O=>=O
1 2
sage: print(CartanType(['B',5]).ascii_art(label = lambda x: x+2))
O---O---O---O=>=O
3 4 5 6 7

coxeter_number()
Return the Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['B',4]).coxeter_number()
8

dual()
Types B and C are in duality:

EXAMPLES:

sage: CartanType(["C", 3]).dual()
['B', 3]

dual_coxeter_number()
Return the dual Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['B',4]).dual_coxeter_number()
7

dynkin_diagram()
Returns a Dynkin diagram for type B.

EXAMPLES:

sage: b = CartanType(['B',3]).dynkin_diagram()
sage: b
O---O=>=O
1 2 3
B3
sage: b.edges(sort=True)
[(1, 2, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1)]

sage: b = CartanType(['B',1]).dynkin_diagram()
sage: b

(continues on next page)

5.1. Comprehensive Module List 2489

Combinatorics, Release 9.7

(continued from previous page)

O
1
B1
sage: b.edges(sort=True)
[]

5.1.243 Root system data for type BC affine

class sage.combinat.root_system.type_BC_affine.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_affine

EXAMPLES:

sage: ct = CartanType(['BC',4,2])
sage: ct
['BC', 4, 2]
sage: ct._repr_(compact = True)
'BC4~'
sage: ct.dynkin_diagram()
O=<=O---O---O=<=O
0 1 2 3 4
BC4~

sage: ct.is_irreducible()
True
sage: ct.is_finite()
False
sage: ct.is_affine()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
False
sage: ct.classical()
['C', 4]

sage: dual = ct.dual()
sage: dual.dynkin_diagram()
O=>=O---O---O=>=O
0 1 2 3 4
BC4~*

sage: dual.special_node()
0
sage: dual.classical().dynkin_diagram()
O---O---O=>=O
1 2 3 4
B4

sage: CartanType(['BC',1,2]).dynkin_diagram()
4

(continues on next page)

2490 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

O=<=O
0 1
BC1~

ascii_art(label=<function CartanType.<lambda> at 0x7f874983f670>, node=None)
Return a ascii art representation of the extended Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['BC',2,2]).ascii_art())
O=<=O=<=O
0 1 2
sage: print(CartanType(['BC',3,2]).ascii_art())
O=<=O---O=<=O
0 1 2 3
sage: print(CartanType(['BC',5,2]).ascii_art(label = lambda x: x+2))
O=<=O---O---O---O=<=O
2 3 4 5 6 7

sage: print(CartanType(['BC',1,2]).ascii_art(label = lambda x: x+2))
4

O=<=O
2 3

basic_untwisted()
Return the basic untwisted Cartan type associated with this affine Cartan type.

Given an affine type 𝑋(𝑟)
𝑛 , the basic untwisted type is 𝑋𝑛. In other words, it is the classical Cartan type

that is twisted to obtain self.

EXAMPLES:

sage: CartanType(['A', 2, 2]).basic_untwisted()
['A', 2]
sage: CartanType(['A', 4, 2]).basic_untwisted()
['A', 4]
sage: CartanType(['BC', 4, 2]).basic_untwisted()
['A', 8]

classical()
Returns the classical Cartan type associated with self

sage: CartanType([“BC”, 3, 2]).classical() [‘C’, 3]

dynkin_diagram()
Returns the extended Dynkin diagram for affine type BC.

EXAMPLES:

sage: c = CartanType(['BC',3,2]).dynkin_diagram()
sage: c
O=<=O---O=<=O
0 1 2 3
BC3~
sage: c.edges(sort=True)

(continues on next page)

5.1. Comprehensive Module List 2491

Combinatorics, Release 9.7

(continued from previous page)

[(0, 1, 1), (1, 0, 2), (1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 2)]

sage: c = CartanType(["A", 6, 2]).dynkin_diagram() # should be the same as␣
→˓above; did fail at some point!
sage: c
O=<=O---O=<=O
0 1 2 3
BC3~
sage: c.edges(sort=True)
[(0, 1, 1), (1, 0, 2), (1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 2)]

sage: c = CartanType(['BC',2,2]).dynkin_diagram()
sage: c
O=<=O=<=O
0 1 2
BC2~
sage: c.edges(sort=True)
[(0, 1, 1), (1, 0, 2), (1, 2, 1), (2, 1, 2)]

sage: c = CartanType(['BC',1,2]).dynkin_diagram()
sage: c
4

O=<=O
0 1
BC1~
sage: c.edges(sort=True)
[(0, 1, 1), (1, 0, 4)]

5.1.244 Root system data for (untwisted) type B affine

class sage.combinat.root_system.type_B_affine.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine

EXAMPLES:

sage: ct = CartanType(['B',4,1])
sage: ct
['B', 4, 1]
sage: ct._repr_(compact = True)
'B4~'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
False
sage: ct.is_affine()
True
sage: ct.is_untwisted_affine()
True
sage: ct.is_crystallographic()
True

(continues on next page)

2492 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: ct.is_simply_laced()
False
sage: ct.classical()
['B', 4]
sage: ct.dual()
['B', 4, 1]^*
sage: ct.dual().is_untwisted_affine()
False

PieriFactors
alias of sage.combinat.root_system.pieri_factors.PieriFactors_type_B_affine

ascii_art(label=<function CartanType.<lambda> at 0x7f87498a53a0>, node=None)
Return an ascii art representation of the extended Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['B',3,1]).ascii_art())
O 0
|
|

O---O=>=O
1 2 3

sage: print(CartanType(['B',5,1]).ascii_art(label = lambda x: x+2))
O 2
|
|

O---O---O---O=>=O
3 4 5 6 7

sage: print(CartanType(['B',2,1]).ascii_art(label = lambda x: x+2))
O=>=O=<=O
2 4 3
sage: print(CartanType(['B',1,1]).ascii_art(label = lambda x: x+2))
O<=>O
2 3

dynkin_diagram()
Return the extended Dynkin diagram for affine type 𝐵.

EXAMPLES:

sage: b = CartanType(['B',3,1]).dynkin_diagram()
sage: b

O 0
|
|

O---O=>=O
1 2 3
B3~
sage: b.edges(sort=True)
[(0, 2, 1), (1, 2, 1), (2, 0, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1)]

(continues on next page)

5.1. Comprehensive Module List 2493

Combinatorics, Release 9.7

(continued from previous page)

sage: b = CartanType(['B',2,1]).dynkin_diagram(); b
O=>=O=<=O
0 2 1
B2~
sage: b.edges(sort=True)
[(0, 2, 2), (1, 2, 2), (2, 0, 1), (2, 1, 1)]

sage: b = CartanType(['B',1,1]).dynkin_diagram(); b
O<=>O
0 1
B1~
sage: b.edges(sort=True)
[(0, 1, 2), (1, 0, 2)]

5.1.245 Root system data for type C

class sage.combinat.root_system.type_C.AmbientSpace(root_system, base_ring, index_set=None)
Bases: sage.combinat.root_system.ambient_space.AmbientSpace

EXAMPLES:

sage: e = RootSystem(['C',2]).ambient_space(); e
Ambient space of the Root system of type ['C', 2]

One cannot construct the ambient lattice because the fundamental coweights have rational coefficients:

sage: e.smallest_base_ring()
Rational Field

sage: RootSystem(['B',2]).ambient_space().fundamental_weights()
Finite family {1: (1, 0), 2: (1/2, 1/2)}

dimension()
EXAMPLES:

sage: e = RootSystem(['C',3]).ambient_space()
sage: e.dimension()
3

fundamental_weight(i)
EXAMPLES:

sage: RootSystem(['C',3]).ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1, 1, 1)}

negative_roots()
EXAMPLES:

sage: RootSystem(['C',3]).ambient_space().negative_roots()
[(-1, 1, 0),
(-1, 0, 1),
(0, -1, 1),

(continues on next page)

2494 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(-1, -1, 0),
(-1, 0, -1),
(0, -1, -1),
(-2, 0, 0),
(0, -2, 0),
(0, 0, -2)]

positive_roots()
EXAMPLES:

sage: RootSystem(['C',3]).ambient_space().positive_roots()
[(1, 1, 0),
(1, 0, 1),
(0, 1, 1),
(1, -1, 0),
(1, 0, -1),
(0, 1, -1),
(2, 0, 0),
(0, 2, 0),
(0, 0, 2)]

root(i, j, p1, p2)
Note that indexing starts at 0.

EXAMPLES:

sage: e = RootSystem(['C',3]).ambient_space()
sage: e.root(0, 1, 1, 1)
(-1, -1, 0)

simple_root(i)
EXAMPLES:

sage: RootSystem(['C',3]).ambient_space().simple_roots()
Finite family {1: (1, -1, 0), 2: (0, 1, -1), 3: (0, 0, 2)}

class sage.combinat.root_system.type_C.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_finite, sage.combinat.
root_system.cartan_type.CartanType_simple, sage.combinat.root_system.cartan_type.
CartanType_crystallographic

EXAMPLES:

sage: ct = CartanType(['C',4])
sage: ct
['C', 4]
sage: ct._repr_(compact = True)
'C4'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
True
sage: ct.is_crystallographic()

(continues on next page)

5.1. Comprehensive Module List 2495

Combinatorics, Release 9.7

(continued from previous page)

True
sage: ct.is_simply_laced()
False
sage: ct.affine()
['C', 4, 1]
sage: ct.dual()
['B', 4]

sage: ct = CartanType(['C',1])
sage: ct.is_simply_laced()
True
sage: ct.affine()
['C', 1, 1]

AmbientSpace
alias of AmbientSpace

ascii_art(label=<function CartanType.<lambda> at 0x7f87498483a0>, node=None)
Return a ascii art representation of the extended Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['C',1]).ascii_art())
O
1
sage: print(CartanType(['C',2]).ascii_art())
O=<=O
1 2
sage: print(CartanType(['C',3]).ascii_art())
O---O=<=O
1 2 3
sage: print(CartanType(['C',5]).ascii_art(label = lambda x: x+2))
O---O---O---O=<=O
3 4 5 6 7

coxeter_number()
Return the Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['C',4]).coxeter_number()
8

dual()
Types B and C are in duality:

EXAMPLES:

sage: CartanType(["C", 3]).dual()
['B', 3]

dual_coxeter_number()
Return the dual Coxeter number associated with self.

EXAMPLES:

2496 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: CartanType(['C',4]).dual_coxeter_number()
5

dynkin_diagram()
Returns a Dynkin diagram for type C.

EXAMPLES:

sage: c = CartanType(['C',3]).dynkin_diagram()
sage: c
O---O=<=O
1 2 3
C3
sage: c.edges(sort=True)
[(1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 2)]

sage: b = CartanType(['C',1]).dynkin_diagram()
sage: b
O
1
C1
sage: b.edges(sort=True)
[]

5.1.246 Root system data for (untwisted) type C affine

class sage.combinat.root_system.type_C_affine.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine

EXAMPLES:

sage: ct = CartanType(['C',4,1])
sage: ct
['C', 4, 1]
sage: ct._repr_(compact = True)
'C4~'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
False
sage: ct.is_affine()
True
sage: ct.is_untwisted_affine()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
False
sage: ct.classical()
['C', 4]
sage: ct.dual()

(continues on next page)

5.1. Comprehensive Module List 2497

Combinatorics, Release 9.7

(continued from previous page)

['C', 4, 1]^*
sage: ct.dual().is_untwisted_affine()
False

PieriFactors
alias of sage.combinat.root_system.pieri_factors.PieriFactors_type_C_affine

ascii_art(label=<function CartanType.<lambda> at 0x7f87498a58b0>, node=None)
Return a ascii art representation of the extended Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['C',5,1]).ascii_art(label = lambda x: x+2))
O=>=O---O---O---O=<=O
2 3 4 5 6 7

sage: print(CartanType(['C',3,1]).ascii_art())
O=>=O---O=<=O
0 1 2 3

sage: print(CartanType(['C',2,1]).ascii_art())
O=>=O=<=O
0 1 2

sage: print(CartanType(['C',1,1]).ascii_art())
O<=>O
0 1

dynkin_diagram()
Returns the extended Dynkin diagram for affine type C.

EXAMPLES:

sage: c = CartanType(['C',3,1]).dynkin_diagram()
sage: c
O=>=O---O=<=O
0 1 2 3
C3~
sage: c.edges(sort=True)
[(0, 1, 2), (1, 0, 1), (1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 2)]

5.1.247 Root system data for type D

class sage.combinat.root_system.type_D.AmbientSpace(root_system, base_ring, index_set=None)
Bases: sage.combinat.root_system.ambient_space.AmbientSpace

dimension()
EXAMPLES:

sage: e = RootSystem(['D',3]).ambient_space()
sage: e.dimension()
3

2498 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

fundamental_weight(i)
EXAMPLES:

sage: RootSystem(['D',4]).ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (1/2, 1/2, 1/2, -1/2), 4:␣
→˓(1/2, 1/2, 1/2, 1/2)}

negative_roots()
EXAMPLES:

sage: RootSystem(['D',4]).ambient_space().negative_roots()
[(-1, 1, 0, 0),
(-1, 0, 1, 0),
(0, -1, 1, 0),
(-1, 0, 0, 1),
(0, -1, 0, 1),
(0, 0, -1, 1),
(-1, -1, 0, 0),
(-1, 0, -1, 0),
(0, -1, -1, 0),
(-1, 0, 0, -1),
(0, -1, 0, -1),
(0, 0, -1, -1)]

positive_roots()
EXAMPLES:

sage: RootSystem(['D',4]).ambient_space().positive_roots()
[(1, 1, 0, 0),
(1, 0, 1, 0),
(0, 1, 1, 0),
(1, 0, 0, 1),
(0, 1, 0, 1),
(0, 0, 1, 1),
(1, -1, 0, 0),
(1, 0, -1, 0),
(0, 1, -1, 0),
(1, 0, 0, -1),
(0, 1, 0, -1),
(0, 0, 1, -1)]

root(i, j, p1, p2)
Note that indexing starts at 0.

EXAMPLES:

sage: e = RootSystem(['D',3]).ambient_space()
sage: e.root(0, 1, 1, 1)
(-1, -1, 0)
sage: e.root(0, 0, 1, 1)
(-1, 0, 0)

simple_root(i)
EXAMPLES:

5.1. Comprehensive Module List 2499

Combinatorics, Release 9.7

sage: RootSystem(['D',4]).ambient_space().simple_roots()
Finite family {1: (1, -1, 0, 0), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1), 4: (0, 0,␣
→˓1, 1)}

class sage.combinat.root_system.type_D.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_finite, sage.combinat.
root_system.cartan_type.CartanType_simply_laced

EXAMPLES:

sage: ct = CartanType(['D',4])
sage: ct
['D', 4]
sage: ct._repr_(compact = True)
'D4'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
True
sage: ct.dual()
['D', 4]
sage: ct.affine()
['D', 4, 1]

sage: ct = CartanType(['D',2])
sage: ct.is_irreducible()
False
sage: ct.dual()
['D', 2]
sage: ct.affine()
Traceback (most recent call last):
...
ValueError: ['D', 2, 1] is not a valid Cartan type

AmbientSpace
alias of AmbientSpace

ascii_art(label=<function CartanType.<lambda> at 0x7f8749848dc0>, node=None)
Return a ascii art representation of the extended Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['D',3]).ascii_art())
O 3
|
|
O---O
1 2
sage: print(CartanType(['D',4]).ascii_art())

(continues on next page)

2500 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

O 4
|
|

O---O---O
1 2 3
sage: print(CartanType(['D',4]).ascii_art(label = lambda x: x+2))

O 6
|
|

O---O---O
3 4 5
sage: print(CartanType(['D',6]).ascii_art(label = lambda x: x+2))

O 8
|
|

O---O---O---O---O
3 4 5 6 7

coxeter_number()
Return the Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['D',4]).coxeter_number()
6

dual_coxeter_number()
Return the dual Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['D',4]).dual_coxeter_number()
6

dynkin_diagram()
Returns a Dynkin diagram for type D.

EXAMPLES:

sage: d = CartanType(['D',5]).dynkin_diagram(); d
O 5
|
|

O---O---O---O
1 2 3 4
D5
sage: d.edges(sort=True)
[(1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 1), (3, 4, 1), (3, 5, 1), (4, 3, 1),␣
→˓(5, 3, 1)]

sage: d = CartanType(['D',4]).dynkin_diagram(); d
O 4
|
|

(continues on next page)

5.1. Comprehensive Module List 2501

Combinatorics, Release 9.7

(continued from previous page)

O---O---O
1 2 3
D4
sage: d.edges(sort=True)
[(1, 2, 1), (2, 1, 1), (2, 3, 1), (2, 4, 1), (3, 2, 1), (4, 2, 1)]

sage: d = CartanType(['D',3]).dynkin_diagram(); d
O 3
|
|
O---O
1 2
D3
sage: d.edges(sort=True)
[(1, 2, 1), (1, 3, 1), (2, 1, 1), (3, 1, 1)]

sage: d = CartanType(['D',2]).dynkin_diagram(); d
O O
1 2
D2
sage: d.edges(sort=True)
[]

is_atomic()
Implements CartanType_abstract.is_atomic()

𝐷2 is atomic, like all 𝐷𝑛, despite being non irreducible.

EXAMPLES:

sage: CartanType(["D",2]).is_atomic()
True
sage: CartanType(["D",2]).is_irreducible()
False

5.1.248 Root system data for (untwisted) type D affine

class sage.combinat.root_system.type_D_affine.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine,
sage.combinat.root_system.cartan_type.CartanType_simply_laced

EXAMPLES:

sage: ct = CartanType(['D',4,1])
sage: ct
['D', 4, 1]
sage: ct._repr_(compact = True)
'D4~'

sage: ct.is_irreducible()
True

(continues on next page)

2502 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: ct.is_finite()
False
sage: ct.is_affine()
True
sage: ct.is_untwisted_affine()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
True
sage: ct.classical()
['D', 4]
sage: ct.dual()
['D', 4, 1]

PieriFactors
alias of sage.combinat.root_system.pieri_factors.PieriFactors_type_D_affine

ascii_art(label=<function CartanType.<lambda> at 0x7f87498a5dc0>, node=None)
Return an ascii art representation of the extended Dynkin diagram.

dynkin_diagram()
Returns the extended Dynkin diagram for affine type D.

EXAMPLES:

sage: d = CartanType(['D', 6, 1]).dynkin_diagram()
sage: d

0 O O 6
| |
| |

O---O---O---O---O
1 2 3 4 5
D6~
sage: d.edges(sort=True)
[(0, 2, 1), (1, 2, 1), (2, 0, 1), (2, 1, 1), (2, 3, 1),
(3, 2, 1), (3, 4, 1), (4, 3, 1), (4, 5, 1), (4, 6, 1), (5, 4, 1), (6, 4, 1)]

sage: d = CartanType(['D', 4, 1]).dynkin_diagram()
sage: d

O 4
|
|

O---O---O
1 |2 3

|
O 0

D4~
sage: d.edges(sort=True)
[(0, 2, 1),
(1, 2, 1),
(2, 0, 1),
(2, 1, 1),
(2, 3, 1),

(continues on next page)

5.1. Comprehensive Module List 2503

Combinatorics, Release 9.7

(continued from previous page)

(2, 4, 1),
(3, 2, 1),
(4, 2, 1)]

sage: d = CartanType(['D', 3, 1]).dynkin_diagram()
sage: d
0
O-------+
| |
| |
O---O---O
3 1 2
D3~
sage: d.edges(sort=True)
[(0, 2, 1), (0, 3, 1), (1, 2, 1), (1, 3, 1), (2, 0, 1), (2, 1, 1), (3, 0, 1),␣
→˓(3, 1, 1)]

5.1.249 Root system data for type E

class sage.combinat.root_system.type_E.AmbientSpace(root_system, baseRing)
Bases: sage.combinat.root_system.ambient_space.AmbientSpace

The lattice behind E6, E7, or E8. The computations are based on Bourbaki, Groupes et Algèbres de Lie, Ch.
4,5,6 (planche V-VII).

dimension()
EXAMPLES:

sage: e = RootSystem(['E',6]).ambient_space()
sage: e.dimension()
8

fundamental_weights()
EXAMPLES:

sage: e = RootSystem(['E',6]).ambient_space()
sage: e.fundamental_weights()
Finite family {1: (0, 0, 0, 0, 0, -2/3, -2/3, 2/3), 2: (1/2, 1/2, 1/2, 1/2, 1/2,
→˓ -1/2, -1/2, 1/2), 3: (-1/2, 1/2, 1/2, 1/2, 1/2, -5/6, -5/6, 5/6), 4: (0, 0,␣
→˓1, 1, 1, -1, -1, 1), 5: (0, 0, 0, 1, 1, -2/3, -2/3, 2/3), 6: (0, 0, 0, 0, 1, -
→˓1/3, -1/3, 1/3)}

negative_roots()
The negative roots.

EXAMPLES:

sage: e = RootSystem(['E',6]).ambient_space()
sage: e.negative_roots()
[(-1, -1, 0, 0, 0, 0, 0, 0),
(-1, 0, -1, 0, 0, 0, 0, 0),
(-1, 0, 0, -1, 0, 0, 0, 0),

(continues on next page)

2504 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(-1, 0, 0, 0, -1, 0, 0, 0),
(0, -1, -1, 0, 0, 0, 0, 0),
(0, -1, 0, -1, 0, 0, 0, 0),
(0, -1, 0, 0, -1, 0, 0, 0),
(0, 0, -1, -1, 0, 0, 0, 0),
(0, 0, -1, 0, -1, 0, 0, 0),
(0, 0, 0, -1, -1, 0, 0, 0),
(1, -1, 0, 0, 0, 0, 0, 0),
(1, 0, -1, 0, 0, 0, 0, 0),
(1, 0, 0, -1, 0, 0, 0, 0),
(1, 0, 0, 0, -1, 0, 0, 0),
(0, 1, -1, 0, 0, 0, 0, 0),
(0, 1, 0, -1, 0, 0, 0, 0),
(0, 1, 0, 0, -1, 0, 0, 0),
(0, 0, 1, -1, 0, 0, 0, 0),
(0, 0, 1, 0, -1, 0, 0, 0),
(0, 0, 0, 1, -1, 0, 0, 0),
(-1/2, -1/2, -1/2, -1/2, -1/2, 1/2, 1/2, -1/2),
(-1/2, -1/2, -1/2, 1/2, 1/2, 1/2, 1/2, -1/2),
(-1/2, -1/2, 1/2, -1/2, 1/2, 1/2, 1/2, -1/2),
(-1/2, -1/2, 1/2, 1/2, -1/2, 1/2, 1/2, -1/2),
(-1/2, 1/2, -1/2, -1/2, 1/2, 1/2, 1/2, -1/2),
(-1/2, 1/2, -1/2, 1/2, -1/2, 1/2, 1/2, -1/2),
(-1/2, 1/2, 1/2, -1/2, -1/2, 1/2, 1/2, -1/2),
(-1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, -1/2),
(1/2, -1/2, -1/2, -1/2, 1/2, 1/2, 1/2, -1/2),
(1/2, -1/2, -1/2, 1/2, -1/2, 1/2, 1/2, -1/2),
(1/2, -1/2, 1/2, -1/2, -1/2, 1/2, 1/2, -1/2),
(1/2, -1/2, 1/2, 1/2, 1/2, 1/2, 1/2, -1/2),
(1/2, 1/2, -1/2, -1/2, -1/2, 1/2, 1/2, -1/2),
(1/2, 1/2, -1/2, 1/2, 1/2, 1/2, 1/2, -1/2),
(1/2, 1/2, 1/2, -1/2, 1/2, 1/2, 1/2, -1/2),
(1/2, 1/2, 1/2, 1/2, -1/2, 1/2, 1/2, -1/2)]

positive_roots()
These are the roots positive w.r. to lexicographic ordering of the basis elements (e1<. . .<e4).

EXAMPLES:

sage: e = RootSystem(['E',6]).ambient_space()
sage: e.positive_roots()
[(1, 1, 0, 0, 0, 0, 0, 0),
(1, 0, 1, 0, 0, 0, 0, 0),
(1, 0, 0, 1, 0, 0, 0, 0),
(1, 0, 0, 0, 1, 0, 0, 0),
(0, 1, 1, 0, 0, 0, 0, 0),
(0, 1, 0, 1, 0, 0, 0, 0),
(0, 1, 0, 0, 1, 0, 0, 0),
(0, 0, 1, 1, 0, 0, 0, 0),
(0, 0, 1, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 1, 0, 0, 0),
(-1, 1, 0, 0, 0, 0, 0, 0),
(-1, 0, 1, 0, 0, 0, 0, 0),

(continues on next page)

5.1. Comprehensive Module List 2505

Combinatorics, Release 9.7

(continued from previous page)

(-1, 0, 0, 1, 0, 0, 0, 0),
(-1, 0, 0, 0, 1, 0, 0, 0),
(0, -1, 1, 0, 0, 0, 0, 0),
(0, -1, 0, 1, 0, 0, 0, 0),
(0, -1, 0, 0, 1, 0, 0, 0),
(0, 0, -1, 1, 0, 0, 0, 0),
(0, 0, -1, 0, 1, 0, 0, 0),
(0, 0, 0, -1, 1, 0, 0, 0),
(1/2, 1/2, 1/2, 1/2, 1/2, -1/2, -1/2, 1/2),
(1/2, 1/2, 1/2, -1/2, -1/2, -1/2, -1/2, 1/2),
(1/2, 1/2, -1/2, 1/2, -1/2, -1/2, -1/2, 1/2),
(1/2, 1/2, -1/2, -1/2, 1/2, -1/2, -1/2, 1/2),
(1/2, -1/2, 1/2, 1/2, -1/2, -1/2, -1/2, 1/2),
(1/2, -1/2, 1/2, -1/2, 1/2, -1/2, -1/2, 1/2),
(1/2, -1/2, -1/2, 1/2, 1/2, -1/2, -1/2, 1/2),
(1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 1/2),
(-1/2, 1/2, 1/2, 1/2, -1/2, -1/2, -1/2, 1/2),
(-1/2, 1/2, 1/2, -1/2, 1/2, -1/2, -1/2, 1/2),
(-1/2, 1/2, -1/2, 1/2, 1/2, -1/2, -1/2, 1/2),
(-1/2, 1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 1/2),
(-1/2, -1/2, 1/2, 1/2, 1/2, -1/2, -1/2, 1/2),
(-1/2, -1/2, 1/2, -1/2, -1/2, -1/2, -1/2, 1/2),
(-1/2, -1/2, -1/2, 1/2, -1/2, -1/2, -1/2, 1/2),
(-1/2, -1/2, -1/2, -1/2, 1/2, -1/2, -1/2, 1/2)]
sage: e.rho()
(0, 1, 2, 3, 4, -4, -4, 4)
sage: E8 = RootSystem(['E',8])
sage: e = E8.ambient_space()
sage: e.negative_roots()
[(-1, -1, 0, 0, 0, 0, 0, 0),
(-1, 0, -1, 0, 0, 0, 0, 0),
(-1, 0, 0, -1, 0, 0, 0, 0),
(-1, 0, 0, 0, -1, 0, 0, 0),
(-1, 0, 0, 0, 0, -1, 0, 0),
(-1, 0, 0, 0, 0, 0, -1, 0),
(-1, 0, 0, 0, 0, 0, 0, -1),
(0, -1, -1, 0, 0, 0, 0, 0),
(0, -1, 0, -1, 0, 0, 0, 0),
(0, -1, 0, 0, -1, 0, 0, 0),
(0, -1, 0, 0, 0, -1, 0, 0),
(0, -1, 0, 0, 0, 0, -1, 0),
(0, -1, 0, 0, 0, 0, 0, -1),
(0, 0, -1, -1, 0, 0, 0, 0),
(0, 0, -1, 0, -1, 0, 0, 0),
(0, 0, -1, 0, 0, -1, 0, 0),
(0, 0, -1, 0, 0, 0, -1, 0),
(0, 0, -1, 0, 0, 0, 0, -1),
(0, 0, 0, -1, -1, 0, 0, 0),
(0, 0, 0, -1, 0, -1, 0, 0),
(0, 0, 0, -1, 0, 0, -1, 0),
(0, 0, 0, -1, 0, 0, 0, -1),
(0, 0, 0, 0, -1, -1, 0, 0),

(continues on next page)

2506 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(0, 0, 0, 0, -1, 0, -1, 0),
(0, 0, 0, 0, -1, 0, 0, -1),
(0, 0, 0, 0, 0, -1, -1, 0),
(0, 0, 0, 0, 0, -1, 0, -1),
(0, 0, 0, 0, 0, 0, -1, -1),
(1, -1, 0, 0, 0, 0, 0, 0),
(1, 0, -1, 0, 0, 0, 0, 0),
(1, 0, 0, -1, 0, 0, 0, 0),
(1, 0, 0, 0, -1, 0, 0, 0),
(1, 0, 0, 0, 0, -1, 0, 0),
(1, 0, 0, 0, 0, 0, -1, 0),
(1, 0, 0, 0, 0, 0, 0, -1),
(0, 1, -1, 0, 0, 0, 0, 0),
(0, 1, 0, -1, 0, 0, 0, 0),
(0, 1, 0, 0, -1, 0, 0, 0),
(0, 1, 0, 0, 0, -1, 0, 0),
(0, 1, 0, 0, 0, 0, -1, 0),
(0, 1, 0, 0, 0, 0, 0, -1),
(0, 0, 1, -1, 0, 0, 0, 0),
(0, 0, 1, 0, -1, 0, 0, 0),
(0, 0, 1, 0, 0, -1, 0, 0),
(0, 0, 1, 0, 0, 0, -1, 0),
(0, 0, 1, 0, 0, 0, 0, -1),
(0, 0, 0, 1, -1, 0, 0, 0),
(0, 0, 0, 1, 0, -1, 0, 0),
(0, 0, 0, 1, 0, 0, -1, 0),
(0, 0, 0, 1, 0, 0, 0, -1),
(0, 0, 0, 0, 1, -1, 0, 0),
(0, 0, 0, 0, 1, 0, -1, 0),
(0, 0, 0, 0, 1, 0, 0, -1),
(0, 0, 0, 0, 0, 1, -1, 0),
(0, 0, 0, 0, 0, 1, 0, -1),
(0, 0, 0, 0, 0, 0, 1, -1),
(-1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2),
(-1/2, -1/2, -1/2, -1/2, -1/2, 1/2, 1/2, -1/2),
(-1/2, -1/2, -1/2, -1/2, 1/2, -1/2, 1/2, -1/2),
(-1/2, -1/2, -1/2, -1/2, 1/2, 1/2, -1/2, -1/2),
(-1/2, -1/2, -1/2, 1/2, -1/2, -1/2, 1/2, -1/2),
(-1/2, -1/2, -1/2, 1/2, -1/2, 1/2, -1/2, -1/2),
(-1/2, -1/2, -1/2, 1/2, 1/2, -1/2, -1/2, -1/2),
(-1/2, -1/2, -1/2, 1/2, 1/2, 1/2, 1/2, -1/2),
(-1/2, -1/2, 1/2, -1/2, -1/2, -1/2, 1/2, -1/2),
(-1/2, -1/2, 1/2, -1/2, -1/2, 1/2, -1/2, -1/2),
(-1/2, -1/2, 1/2, -1/2, 1/2, -1/2, -1/2, -1/2),
(-1/2, -1/2, 1/2, -1/2, 1/2, 1/2, 1/2, -1/2),
(-1/2, -1/2, 1/2, 1/2, -1/2, -1/2, -1/2, -1/2),
(-1/2, -1/2, 1/2, 1/2, -1/2, 1/2, 1/2, -1/2),
(-1/2, -1/2, 1/2, 1/2, 1/2, -1/2, 1/2, -1/2),
(-1/2, -1/2, 1/2, 1/2, 1/2, 1/2, -1/2, -1/2),
(-1/2, 1/2, -1/2, -1/2, -1/2, -1/2, 1/2, -1/2),
(-1/2, 1/2, -1/2, -1/2, -1/2, 1/2, -1/2, -1/2),
(-1/2, 1/2, -1/2, -1/2, 1/2, -1/2, -1/2, -1/2),

(continues on next page)

5.1. Comprehensive Module List 2507

Combinatorics, Release 9.7

(continued from previous page)

(-1/2, 1/2, -1/2, -1/2, 1/2, 1/2, 1/2, -1/2),
(-1/2, 1/2, -1/2, 1/2, -1/2, -1/2, -1/2, -1/2),
(-1/2, 1/2, -1/2, 1/2, -1/2, 1/2, 1/2, -1/2),
(-1/2, 1/2, -1/2, 1/2, 1/2, -1/2, 1/2, -1/2),
(-1/2, 1/2, -1/2, 1/2, 1/2, 1/2, -1/2, -1/2),
(-1/2, 1/2, 1/2, -1/2, -1/2, -1/2, -1/2, -1/2),
(-1/2, 1/2, 1/2, -1/2, -1/2, 1/2, 1/2, -1/2),
(-1/2, 1/2, 1/2, -1/2, 1/2, -1/2, 1/2, -1/2),
(-1/2, 1/2, 1/2, -1/2, 1/2, 1/2, -1/2, -1/2),
(-1/2, 1/2, 1/2, 1/2, -1/2, -1/2, 1/2, -1/2),
(-1/2, 1/2, 1/2, 1/2, -1/2, 1/2, -1/2, -1/2),
(-1/2, 1/2, 1/2, 1/2, 1/2, -1/2, -1/2, -1/2),
(-1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, -1/2),
(1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 1/2, -1/2),
(1/2, -1/2, -1/2, -1/2, -1/2, 1/2, -1/2, -1/2),
(1/2, -1/2, -1/2, -1/2, 1/2, -1/2, -1/2, -1/2),
(1/2, -1/2, -1/2, -1/2, 1/2, 1/2, 1/2, -1/2),
(1/2, -1/2, -1/2, 1/2, -1/2, -1/2, -1/2, -1/2),
(1/2, -1/2, -1/2, 1/2, -1/2, 1/2, 1/2, -1/2),
(1/2, -1/2, -1/2, 1/2, 1/2, -1/2, 1/2, -1/2),
(1/2, -1/2, -1/2, 1/2, 1/2, 1/2, -1/2, -1/2),
(1/2, -1/2, 1/2, -1/2, -1/2, -1/2, -1/2, -1/2),
(1/2, -1/2, 1/2, -1/2, -1/2, 1/2, 1/2, -1/2),
(1/2, -1/2, 1/2, -1/2, 1/2, -1/2, 1/2, -1/2),
(1/2, -1/2, 1/2, -1/2, 1/2, 1/2, -1/2, -1/2),
(1/2, -1/2, 1/2, 1/2, -1/2, -1/2, 1/2, -1/2),
(1/2, -1/2, 1/2, 1/2, -1/2, 1/2, -1/2, -1/2),
(1/2, -1/2, 1/2, 1/2, 1/2, -1/2, -1/2, -1/2),
(1/2, -1/2, 1/2, 1/2, 1/2, 1/2, 1/2, -1/2),
(1/2, 1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2),
(1/2, 1/2, -1/2, -1/2, -1/2, 1/2, 1/2, -1/2),
(1/2, 1/2, -1/2, -1/2, 1/2, -1/2, 1/2, -1/2),
(1/2, 1/2, -1/2, -1/2, 1/2, 1/2, -1/2, -1/2),
(1/2, 1/2, -1/2, 1/2, -1/2, -1/2, 1/2, -1/2),
(1/2, 1/2, -1/2, 1/2, -1/2, 1/2, -1/2, -1/2),
(1/2, 1/2, -1/2, 1/2, 1/2, -1/2, -1/2, -1/2),
(1/2, 1/2, -1/2, 1/2, 1/2, 1/2, 1/2, -1/2),
(1/2, 1/2, 1/2, -1/2, -1/2, -1/2, 1/2, -1/2),
(1/2, 1/2, 1/2, -1/2, -1/2, 1/2, -1/2, -1/2),
(1/2, 1/2, 1/2, -1/2, 1/2, -1/2, -1/2, -1/2),
(1/2, 1/2, 1/2, -1/2, 1/2, 1/2, 1/2, -1/2),
(1/2, 1/2, 1/2, 1/2, -1/2, -1/2, -1/2, -1/2),
(1/2, 1/2, 1/2, 1/2, -1/2, 1/2, 1/2, -1/2),
(1/2, 1/2, 1/2, 1/2, 1/2, -1/2, 1/2, -1/2),
(1/2, 1/2, 1/2, 1/2, 1/2, 1/2, -1/2, -1/2)]
sage: e.rho()
(0, 1, 2, 3, 4, 5, 6, 23)

root(i1, i2=None, i3=None, i4=None, i5=None, i6=None, i7=None, i8=None, p1=0, p2=0, p3=0, p4=0,
p5=0, p6=0, p7=0, p8=0)

Compute an element of the underlying lattice, using the specified elements of the standard basis, with signs
dictated by the corresponding ‘pi’ arguments. We rely on the caller to provide the correct arguments. This is
typically used to generate roots, although the generated elements need not be roots themselves. We assume

2508 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

that if one of the indices is not given, the rest are not as well. This should work for E6, E7, E8.

EXAMPLES:

sage: e = RootSystem(['E',6]).ambient_space()
sage: [e.root(i, j, p3=1) for i in range(e.n) for j in range(i+1, e.n)]
[(1, 1, 0, 0, 0, 0, 0, 0),
(1, 0, 1, 0, 0, 0, 0, 0),
(1, 0, 0, 1, 0, 0, 0, 0),
(1, 0, 0, 0, 1, 0, 0, 0),
(1, 0, 0, 0, 0, 1, 0, 0),
(1, 0, 0, 0, 0, 0, 1, 0),
(1, 0, 0, 0, 0, 0, 0, 1),
(0, 1, 1, 0, 0, 0, 0, 0),
(0, 1, 0, 1, 0, 0, 0, 0),
(0, 1, 0, 0, 1, 0, 0, 0),
(0, 1, 0, 0, 0, 1, 0, 0),
(0, 1, 0, 0, 0, 0, 1, 0),
(0, 1, 0, 0, 0, 0, 0, 1),
(0, 0, 1, 1, 0, 0, 0, 0),
(0, 0, 1, 0, 1, 0, 0, 0),
(0, 0, 1, 0, 0, 1, 0, 0),
(0, 0, 1, 0, 0, 0, 1, 0),
(0, 0, 1, 0, 0, 0, 0, 1),
(0, 0, 0, 1, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 1, 0, 0),
(0, 0, 0, 1, 0, 0, 1, 0),
(0, 0, 0, 1, 0, 0, 0, 1),
(0, 0, 0, 0, 1, 1, 0, 0),
(0, 0, 0, 0, 1, 0, 1, 0),
(0, 0, 0, 0, 1, 0, 0, 1),
(0, 0, 0, 0, 0, 1, 1, 0),
(0, 0, 0, 0, 0, 1, 0, 1),
(0, 0, 0, 0, 0, 0, 1, 1)]

simple_root(i)

There are computed as what Bourbaki calls the Base: a1 = e2-e3, a2 = e3-e4, a3 = e4, a4 = 1/2*(e1-
e2-e3-e4)

EXAMPLES:

sage: LE6 = RootSystem(['E',6]).ambient_space()
sage: LE6.simple_roots()
Finite family {1: (1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2, 1/2), 2: (1, 1, 0,␣
→˓0, 0, 0, 0, 0), 3: (-1, 1, 0, 0, 0, 0, 0, 0), 4: (0, -1, 1, 0, 0, 0, 0, 0),␣
→˓5: (0, 0, -1, 1, 0, 0, 0, 0), 6: (0, 0, 0, -1, 1, 0, 0, 0)}

class sage.combinat.root_system.type_E.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_finite, sage.combinat.
root_system.cartan_type.CartanType_simple, sage.combinat.root_system.cartan_type.
CartanType_simply_laced

EXAMPLES:

5.1. Comprehensive Module List 2509

Combinatorics, Release 9.7

sage: ct = CartanType(['E',6])
sage: ct
['E', 6]
sage: ct._repr_(compact = True)
'E6'
sage: ct.is_irreducible()
True
sage: ct.is_finite()
True
sage: ct.is_affine()
False
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
True
sage: ct.affine()
['E', 6, 1]
sage: ct.dual()
['E', 6]

AmbientSpace
alias of AmbientSpace

ascii_art(label=<function CartanType.<lambda> at 0x7f8749853790>, node=None)
Return a ascii art representation of the extended Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['E',6]).ascii_art(label = lambda x: x+2))
O 4
|
|

O---O---O---O---O
3 5 6 7 8
sage: print(CartanType(['E',7]).ascii_art(label = lambda x: x+2))

O 4
|
|

O---O---O---O---O---O
3 5 6 7 8 9
sage: print(CartanType(['E',8]).ascii_art(label = lambda x: x+1))

O 3
|
|

O---O---O---O---O---O---O
2 4 5 6 7 8 9

coxeter_number()
Return the Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['E',6]).coxeter_number()
12

(continues on next page)

2510 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: CartanType(['E',7]).coxeter_number()
18
sage: CartanType(['E',8]).coxeter_number()
30

dual_coxeter_number()
Return the dual Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['E',6]).dual_coxeter_number()
12
sage: CartanType(['E',7]).dual_coxeter_number()
18
sage: CartanType(['E',8]).dual_coxeter_number()
30

dynkin_diagram()
Returns a Dynkin diagram for type E.

EXAMPLES:

sage: e = CartanType(['E',6]).dynkin_diagram()
sage: e

O 2
|
|

O---O---O---O---O
1 3 4 5 6
E6
sage: e.edges(sort=True)
[(1, 3, 1), (2, 4, 1), (3, 1, 1), (3, 4, 1), (4, 2, 1), (4, 3, 1), (4, 5, 1),␣
→˓(5, 4, 1), (5, 6, 1), (6, 5, 1)]
sage: e = CartanType(['E',7]).dynkin_diagram()
sage: e

O 2
|
|

O---O---O---O---O---O
1 3 4 5 6 7
E7
sage: e.edges(sort=True)
[(1, 3, 1), (2, 4, 1), (3, 1, 1), (3, 4, 1), (4, 2, 1),
(4, 3, 1), (4, 5, 1), (5, 4, 1), (5, 6, 1), (6, 5, 1),
(6, 7, 1), (7, 6, 1)]
sage: e = CartanType(['E',8]).dynkin_diagram()
sage: e

O 2
|
|

O---O---O---O---O---O---O
1 3 4 5 6 7 8
E8

(continues on next page)

5.1. Comprehensive Module List 2511

Combinatorics, Release 9.7

(continued from previous page)

sage: e.edges(sort=True)
[(1, 3, 1), (2, 4, 1), (3, 1, 1), (3, 4, 1), (4, 2, 1),
(4, 3, 1), (4, 5, 1), (5, 4, 1), (5, 6, 1), (6, 5, 1),
(6, 7, 1), (7, 6, 1), (7, 8, 1), (8, 7, 1)]

5.1.250 Root system data for (untwisted) type E affine

class sage.combinat.root_system.type_E_affine.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine,
sage.combinat.root_system.cartan_type.CartanType_simply_laced

EXAMPLES:

sage: ct = CartanType(['E',6,1])
sage: ct
['E', 6, 1]
sage: ct._repr_(compact = True)
'E6~'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
False
sage: ct.is_affine()
True
sage: ct.is_untwisted_affine()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
True
sage: ct.classical()
['E', 6]
sage: ct.dual()
['E', 6, 1]

ascii_art(label=<function CartanType.<lambda> at 0x7f8749853c10>, node=None)
Return an ascii art representation of the extended Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['E',6,1]).ascii_art(label = lambda x: x+2))
O 2
|
|
O 4
|
|

O---O---O---O---O
3 5 6 7 8
sage: print(CartanType(['E',7,1]).ascii_art(label = lambda x: x+2))

O 4
(continues on next page)

2512 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

|
|

O---O---O---O---O---O---O
2 3 5 6 7 8 9
sage: print(CartanType(['E',8,1]).ascii_art(label = lambda x: x-3))

O -1
|
|

O---O---O---O---O---O---O---O
-2 0 1 2 3 4 5 -3

dynkin_diagram()
Returns the extended Dynkin diagram for affine type E.

EXAMPLES:

sage: e = CartanType(['E', 6, 1]).dynkin_diagram()
sage: e

O 0
|
|
O 2
|
|

O---O---O---O---O
1 3 4 5 6
E6~
sage: e.edges(sort=True)
[(0, 2, 1),
(1, 3, 1),
(2, 0, 1),
(2, 4, 1),
(3, 1, 1),
(3, 4, 1),
(4, 2, 1),
(4, 3, 1),
(4, 5, 1),
(5, 4, 1),
(5, 6, 1),
(6, 5, 1)]

sage: e = CartanType(['E', 7, 1]).dynkin_diagram()
sage: e

O 2
|
|

O---O---O---O---O---O---O
0 1 3 4 5 6 7
E7~
sage: e.edges(sort=True)
[(0, 1, 1), (1, 0, 1), (1, 3, 1), (2, 4, 1), (3, 1, 1), (3, 4, 1),
(4, 2, 1), (4, 3, 1), (4, 5, 1), (5, 4, 1), (5, 6, 1),
(6, 5, 1), (6, 7, 1), (7, 6, 1)]

(continues on next page)

5.1. Comprehensive Module List 2513

Combinatorics, Release 9.7

(continued from previous page)

sage: e = CartanType(['E', 8, 1]).dynkin_diagram()
sage: e

O 2
|
|

O---O---O---O---O---O---O---O
1 3 4 5 6 7 8 0
E8~
sage: e.edges(sort=True)
[(0, 8, 1), (1, 3, 1), (2, 4, 1), (3, 1, 1), (3, 4, 1),
(4, 2, 1), (4, 3, 1), (4, 5, 1), (5, 4, 1), (5, 6, 1),
(6, 5, 1), (6, 7, 1), (7, 6, 1), (7, 8, 1), (8, 0, 1), (8, 7, 1)]

5.1.251 Root system data for type F

class sage.combinat.root_system.type_F.AmbientSpace(root_system, base_ring)
Bases: sage.combinat.root_system.ambient_space.AmbientSpace

The lattice behind 𝐹4. The computations are based on Bourbaki, Groupes et Algèbres de Lie, Ch. 4,5,6 (planche
VIII).

dimension()
Return the dimension of self.

EXAMPLES:

sage: e = RootSystem(['F',4]).ambient_space()
sage: e.dimension()
4

fundamental_weights()
Return the fundamental weights of self.

EXAMPLES:

sage: e = RootSystem(['F',4]).ambient_space()
sage: e.fundamental_weights()
Finite family {1: (1, 1, 0, 0), 2: (2, 1, 1, 0), 3: (3/2, 1/2, 1/2, 1/2), 4: (1,
→˓ 0, 0, 0)}

negative_roots()
Return the negative roots.

EXAMPLES:

sage: e = RootSystem(['F',4]).ambient_space()
sage: e.negative_roots()
[(-1, 0, 0, 0),
(0, -1, 0, 0),
(0, 0, -1, 0),
(0, 0, 0, -1),
(-1, -1, 0, 0),
(-1, 0, -1, 0),

(continues on next page)

2514 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(-1, 0, 0, -1),
(0, -1, -1, 0),
(0, -1, 0, -1),
(0, 0, -1, -1),
(-1, 1, 0, 0),
(-1, 0, 1, 0),
(-1, 0, 0, 1),
(0, -1, 1, 0),
(0, -1, 0, 1),
(0, 0, -1, 1),
(-1/2, -1/2, -1/2, -1/2),
(-1/2, -1/2, -1/2, 1/2),
(-1/2, -1/2, 1/2, -1/2),
(-1/2, -1/2, 1/2, 1/2),
(-1/2, 1/2, -1/2, -1/2),
(-1/2, 1/2, -1/2, 1/2),
(-1/2, 1/2, 1/2, -1/2),
(-1/2, 1/2, 1/2, 1/2)]

positive_roots()
Return the positive roots.

These are the roots which are positive with respect to the lexicographic ordering of the basis elements
(𝜖1 < 𝜖2 < 𝜖3 < 𝜖4).

EXAMPLES:

sage: e = RootSystem(['F',4]).ambient_space()
sage: e.positive_roots()
[(1, 0, 0, 0),
(0, 1, 0, 0),
(0, 0, 1, 0),
(0, 0, 0, 1),
(1, 1, 0, 0),
(1, 0, 1, 0),
(1, 0, 0, 1),
(0, 1, 1, 0),
(0, 1, 0, 1),
(0, 0, 1, 1),
(1, -1, 0, 0),
(1, 0, -1, 0),
(1, 0, 0, -1),
(0, 1, -1, 0),
(0, 1, 0, -1),
(0, 0, 1, -1),
(1/2, 1/2, 1/2, 1/2),
(1/2, 1/2, 1/2, -1/2),
(1/2, 1/2, -1/2, 1/2),
(1/2, 1/2, -1/2, -1/2),
(1/2, -1/2, 1/2, 1/2),
(1/2, -1/2, 1/2, -1/2),
(1/2, -1/2, -1/2, 1/2),
(1/2, -1/2, -1/2, -1/2)]

(continues on next page)

5.1. Comprehensive Module List 2515

Combinatorics, Release 9.7

(continued from previous page)

sage: e.rho()
(11/2, 5/2, 3/2, 1/2)

root(i, j=None, k=None, l=None, p1=0, p2=0, p3=0, p4=0)
Compute a root from base elements of the underlying lattice. The arguments specify the basis elements
and the signs. Sadly, the base elements are indexed zero-based. We assume that if one of the indices is not
given, the rest are not as well.

EXAMPLES:

sage: e = RootSystem(['F',4]).ambient_space()
sage: [e.root(i,j,p2=1) for i in range(e.n) for j in range(i+1,e.n)]
[(1, -1, 0, 0), (1, 0, -1, 0), (1, 0, 0, -1), (0, 1, -1, 0), (0, 1, 0, -1), (0,␣
→˓0, 1, -1)]

simple_root(i)
Return the 𝑖-th simple root.

It is computed according to what Bourbaki calls the Base:

𝛼1 = 𝜖2 − 𝜖3, 𝛼2 = 𝜖3 − 𝜖4, 𝛼3 = 𝜖4, 𝛼4 =
1

2
(𝜖1 − 𝜖2 − 𝜖3 − 𝜖4) .

EXAMPLES:

sage: e = RootSystem(['F',4]).ambient_space()
sage: e.simple_roots()
Finite family {1: (0, 1, -1, 0), 2: (0, 0, 1, -1), 3: (0, 0, 0, 1), 4: (1/2, -1/
→˓2, -1/2, -1/2)}

class sage.combinat.root_system.type_F.CartanType
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_finite, sage.combinat.
root_system.cartan_type.CartanType_simple, sage.combinat.root_system.cartan_type.
CartanType_crystallographic

EXAMPLES:

sage: ct = CartanType(['F',4])
sage: ct
['F', 4]
sage: ct._repr_(compact = True)
'F4'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
False
sage: ct.dual()
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
sage: ct.affine()
['F', 4, 1]

2516 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

AmbientSpace
alias of AmbientSpace

ascii_art(label=<function CartanType.<lambda> at 0x7f874985b8b0>, node=None)
Return an ascii art representation of the extended Dynkin diagram.

EXAMPLES:

sage: print(CartanType(['F',4]).ascii_art(label = lambda x: x+2))
O---O=>=O---O
3 4 5 6
sage: print(CartanType(['F',4]).ascii_art(label = lambda x: x-2))
O---O=>=O---O
-1 0 1 2

coxeter_number()
Return the Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['F',4]).coxeter_number()
12

dual()
Return the dual Cartan type.

This uses that 𝐹4 is self-dual up to relabelling.

EXAMPLES:

sage: F4 = CartanType(['F',4])
sage: F4.dual()
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}

sage: F4.dynkin_diagram()
O---O=>=O---O
1 2 3 4
F4
sage: F4.dual().dynkin_diagram()
O---O=>=O---O
4 3 2 1
F4 relabelled by {1: 4, 2: 3, 3: 2, 4: 1}

dual_coxeter_number()
Return the dual Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['F',4]).dual_coxeter_number()
9

dynkin_diagram()
Returns a Dynkin diagram for type F.

EXAMPLES:

sage: f = CartanType(['F',4]).dynkin_diagram()
sage: f

(continues on next page)

5.1. Comprehensive Module List 2517

Combinatorics, Release 9.7

(continued from previous page)

O---O=>=O---O
1 2 3 4
F4
sage: f.edges(sort=True)
[(1, 2, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1), (3, 4, 1), (4, 3, 1)]

5.1.252 Root system data for (untwisted) type F affine

class sage.combinat.root_system.type_F_affine.CartanType
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine

EXAMPLES:

sage: ct = CartanType(['F',4,1])
sage: ct
['F', 4, 1]
sage: ct._repr_(compact = True)
'F4~'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
False
sage: ct.is_affine()
True
sage: ct.is_untwisted_affine()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
False
sage: ct.classical()
['F', 4]
sage: ct.dual()
['F', 4, 1]^*
sage: ct.dual().is_untwisted_affine()
False

ascii_art(label=<function CartanType.<lambda> at 0x7f874985bdc0>, node=None)
Returns a ascii art representation of the extended Dynkin diagram

EXAMPLES:

sage: print(CartanType(['F',4,1]).ascii_art(label = lambda x: x+2))
O---O---O=>=O---O
2 3 4 5 6

dynkin_diagram()
Returns the extended Dynkin diagram for affine type F.

EXAMPLES:

2518 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: f = CartanType(['F', 4, 1]).dynkin_diagram()
sage: f
O---O---O=>=O---O
0 1 2 3 4
F4~
sage: f.edges(sort=True)
[(0, 1, 1), (1, 0, 1), (1, 2, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1), (3, 4, 1),␣
→˓(4, 3, 1)]

5.1.253 Root system data for type G

class sage.combinat.root_system.type_G.AmbientSpace(root_system, base_ring, index_set=None)
Bases: sage.combinat.root_system.ambient_space.AmbientSpace

EXAMPLES:

sage: e = RootSystem(['G',2]).ambient_space(); e
Ambient space of the Root system of type ['G', 2]

One can not construct the ambient lattice because the simple coroots have rational coefficients:

sage: e.simple_coroots()
Finite family {1: (0, 1, -1), 2: (1/3, -2/3, 1/3)}
sage: e.smallest_base_ring()
Rational Field

By default, this ambient space uses the barycentric projection for plotting:

sage: L = RootSystem(["G",2]).ambient_space()
sage: e = L.basis()
sage: L._plot_projection(e[0])
(1/2, 989/1142)
sage: L._plot_projection(e[1])
(-1, 0)
sage: L._plot_projection(e[2])
(1/2, -989/1142)
sage: L = RootSystem(["A",3]).ambient_space()
sage: l = L.an_element(); l
(2, 2, 3, 0)
sage: L._plot_projection(l)
(0, -1121/1189, 7/3)

See also:

• sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.
ParentMethods._plot_projection()

dimension()
EXAMPLES:

sage: e = RootSystem(['G',2]).ambient_space()
sage: e.dimension()
3

5.1. Comprehensive Module List 2519

Combinatorics, Release 9.7

fundamental_weights()
EXAMPLES:

sage: CartanType(['G',2]).root_system().ambient_space().fundamental_weights()
Finite family {1: (1, 0, -1), 2: (2, -1, -1)}

negative_roots()
EXAMPLES:

sage: CartanType(['G',2]).root_system().ambient_space().negative_roots()
[(0, -1, 1), (-1, 2, -1), (-1, 1, 0), (-1, 0, 1), (-1, -1, 2), (-2, 1, 1)]

positive_roots()
EXAMPLES:

sage: CartanType(['G',2]).root_system().ambient_space().positive_roots()
[(0, 1, -1), (1, -2, 1), (1, -1, 0), (1, 0, -1), (1, 1, -2), (2, -1, -1)]

simple_root(i)
EXAMPLES:

sage: CartanType(['G',2]).root_system().ambient_space().simple_roots()
Finite family {1: (0, 1, -1), 2: (1, -2, 1)}

class sage.combinat.root_system.type_G.CartanType
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_finite, sage.combinat.
root_system.cartan_type.CartanType_simple, sage.combinat.root_system.cartan_type.
CartanType_crystallographic

EXAMPLES:

sage: ct = CartanType(['G',2])
sage: ct
['G', 2]
sage: ct._repr_(compact = True)
'G2'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
False
sage: ct.dual()
['G', 2] relabelled by {1: 2, 2: 1}
sage: ct.affine()
['G', 2, 1]

AmbientSpace
alias of AmbientSpace

ascii_art(label=<function CartanType.<lambda> at 0x7f87497e1820>, node=None)
Return an ascii art representation of the Dynkin diagram.

EXAMPLES:

2520 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: print(CartanType(['G',2]).ascii_art(label=lambda x: x+2))
3

O=<=O
3 4

coxeter_number()
Return the Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['G',2]).coxeter_number()
6

dual()
Return the dual Cartan type.

This uses that 𝐺2 is self-dual up to relabelling.

EXAMPLES:

sage: G2 = CartanType(['G',2])
sage: G2.dual()
['G', 2] relabelled by {1: 2, 2: 1}

sage: G2.dynkin_diagram()
3

O=<=O
1 2
G2
sage: G2.dual().dynkin_diagram()
3

O=<=O
2 1
G2 relabelled by {1: 2, 2: 1}

dual_coxeter_number()
Return the dual Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['G',2]).dual_coxeter_number()
4

dynkin_diagram()
Returns a Dynkin diagram for type G.

EXAMPLES:

sage: g = CartanType(['G',2]).dynkin_diagram()
sage: g
3

O=<=O
1 2
G2
sage: g.edges(sort=True)
[(1, 2, 1), (2, 1, 3)]

5.1. Comprehensive Module List 2521

Combinatorics, Release 9.7

5.1.254 Root system data for (untwisted) type G affine

class sage.combinat.root_system.type_G_affine.CartanType
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine

EXAMPLES:

sage: ct = CartanType(['G',2,1])
sage: ct
['G', 2, 1]
sage: ct._repr_(compact = True)
'G2~'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
False
sage: ct.is_affine()
True
sage: ct.is_untwisted_affine()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
False
sage: ct.classical()
['G', 2]
sage: ct.dual()
['G', 2, 1]^*
sage: ct.dual().is_untwisted_affine()
False

ascii_art(label=<function CartanType.<lambda> at 0x7f87497e1dc0>, node=None)
Returns an ascii art representation of the Dynkin diagram

EXAMPLES:

sage: print(CartanType(['G',2,1]).ascii_art(label = lambda x: x+2))
3

O=<=O---O
3 4 2

dynkin_diagram()
Returns the extended Dynkin diagram for type G.

EXAMPLES:

sage: g = CartanType(['G',2,1]).dynkin_diagram()
sage: g
3

O=<=O---O
1 2 0
G2~
sage: g.edges(sort=True)
[(0, 2, 1), (1, 2, 1), (2, 0, 1), (2, 1, 3)]

2522 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.255 Root system data for type H

class sage.combinat.root_system.type_H.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_finite, sage.combinat.
root_system.cartan_type.CartanType_simple

EXAMPLES:

sage: ct = CartanType(['H',3])
sage: ct
['H', 3]
sage: ct._repr_(compact = True)
'H3'
sage: ct.rank()
3

sage: ct.is_irreducible()
True
sage: ct.is_finite()
True
sage: ct.is_affine()
False
sage: ct.is_crystallographic()
False
sage: ct.is_simply_laced()
False

coxeter_diagram()
Returns a Coxeter diagram for type H.

EXAMPLES:

sage: ct = CartanType(['H',3])
sage: ct.coxeter_diagram()
Graph on 3 vertices
sage: ct.coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 5)]
sage: ct.coxeter_matrix()
[1 3 2]
[3 1 5]
[2 5 1]

sage: ct = CartanType(['H',4])
sage: ct.coxeter_diagram()
Graph on 4 vertices
sage: ct.coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 3), (3, 4, 5)]
sage: ct.coxeter_matrix()
[1 3 2 2]
[3 1 3 2]
[2 3 1 5]
[2 2 5 1]

coxeter_number()
Return the Coxeter number associated with self.

5.1. Comprehensive Module List 2523

Combinatorics, Release 9.7

EXAMPLES:

sage: CartanType(['H',3]).coxeter_number()
10
sage: CartanType(['H',4]).coxeter_number()
30

5.1.256 Root system data for type I

class sage.combinat.root_system.type_I.CartanType(n)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_finite, sage.combinat.
root_system.cartan_type.CartanType_simple

EXAMPLES:

sage: ct = CartanType(['I',5])
sage: ct
['I', 5]
sage: ct._repr_(compact = True)
'I5'
sage: ct.rank()
2
sage: ct.index_set()
(1, 2)

sage: ct.is_irreducible()
True
sage: ct.is_finite()
True
sage: ct.is_affine()
False
sage: ct.is_crystallographic()
False
sage: ct.is_simply_laced()
False

coxeter_diagram()
Returns the Coxeter matrix for this type.

EXAMPLES:

sage: ct = CartanType(['I', 4])
sage: ct.coxeter_diagram()
Graph on 2 vertices
sage: ct.coxeter_diagram().edges(sort=True)
[(1, 2, 4)]
sage: ct.coxeter_matrix()
[1 4]
[4 1]

coxeter_number()
Return the Coxeter number associated with self.

EXAMPLES:

2524 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: CartanType(['I',3]).coxeter_number()
3
sage: CartanType(['I',12]).coxeter_number()
12

index_set()
Type 𝐼2(𝑝) is indexed by {1, 2}.

EXAMPLES:

sage: CartanType(['I', 5]).index_set()
(1, 2)

rank()
Type 𝐼2(𝑝) is of rank 2.

EXAMPLES:

sage: CartanType(['I', 5]).rank()
2

5.1.257 Root system data for type Q

class sage.combinat.root_system.type_Q.CartanType(m)
Bases: sage.combinat.root_system.cartan_type.CartanType_standard_finite

Cartan Type 𝑄𝑛
See also:

CartanType()

dual()
Return dual of self.

EXAMPLES:

sage: Q = CartanType(['Q',3])
sage: Q.dual()
['Q', 3]

index_set()
Return the index set for Cartan type Q.

The index set for type Q is of the form {−𝑛, . . . ,−1, 1, . . . , 𝑛}.

EXAMPLES:

sage: CartanType(['Q', 3]).index_set()
(1, 2, -2, -1)

is_irreducible()
Return whether this Cartan type is irreducible.

EXAMPLES:

5.1. Comprehensive Module List 2525

Combinatorics, Release 9.7

sage: Q = CartanType(['Q',3])
sage: Q.is_irreducible()
True

is_simply_laced()
Return whether this Cartan type is simply-laced.

EXAMPLES:

sage: Q = CartanType(['Q',3])
sage: Q.is_simply_laced()
True

root_system()
Return the root system of self.

EXAMPLES:

sage: Q = CartanType(['Q',3])
sage: Q.root_system()
Root system of type ['A', 2]

5.1.258 Root system data for affine Cartan types

class sage.combinat.root_system.type_affine.AmbientSpace(root_system, base_ring)
Bases: sage.combinat.free_module.CombinatorialFreeModule

Ambient space for affine types.

This is constructed from the data in the corresponding classical ambient space. Namely, this space is obtained by
adding two elements 𝛿 and 𝛿∨ to the basis of the classical ambient space, and by endowing it with the canonical
scalar product.

The coefficient of an element in 𝛿∨, thus its scalar product with 𝛿∨ gives its level, and dually for the colevel. The
canonical projection onto the classical ambient space (by killing 𝛿 and 𝛿∨) maps the simple roots (except 𝛼0)
onto the corresponding classical simple roots, and similarly for the coroots, fundamental weights, . . . Altogether,
this uniquely determines the embedding of the root, coroot, weight, and coweight lattices. See simple_root()
and fundamental_weight() for the details.

Warning: In type 𝐵𝐶, the null root is in fact:

sage: R = RootSystem(["BC",3,2]).ambient_space()
sage: R.null_root()
2*e['delta']

Warning: In the literature one often considers a larger affine ambient space obtained from the classical
ambient space by adding four dimensions, namely for the fundamental weight Λ0 the fundamental coweight
Λ∨0 , the null root 𝛿, and the null coroot 𝑐 (aka central element). In this larger ambient space, the scalar product
is degenerate: ⟨𝛿, 𝛿⟩ = 0 and similarly for the null coroot.

In the current implementation, Λ0 and the null coroot are identified:

2526 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = RootSystem([“A”,3,1]).ambient_space() sage: Lambda = L.fundamental_weights()
sage: Lambda[0] e[‘deltacheck’] sage: L.null_coroot() e[‘deltacheck’]

Therefore the scalar product of the null coroot with itself differs from the larger ambient space:

sage: L.null_coroot().scalar(L.null_coroot())
1

In general, scalar products between two elements that do not live on “opposite sides” won’t necessarily match.

EXAMPLES:

sage: R = RootSystem(["A",3,1])
sage: e = R.ambient_space(); e
Ambient space of the Root system of type ['A', 3, 1]
sage: TestSuite(e).run()

Systematic checks on all affine types:

sage: for ct in CartanType.samples(affine=True, crystallographic=True):
....: if ct.classical().root_system().ambient_space() is not None:
....: print(ct)
....: L = ct.root_system().ambient_space()
....: assert L
....: TestSuite(L).run()
['A', 1, 1]
['A', 5, 1]
['B', 1, 1]
['B', 5, 1]
['C', 1, 1]
['C', 5, 1]
['D', 3, 1]
['D', 5, 1]
['E', 6, 1]
['E', 7, 1]
['E', 8, 1]
['F', 4, 1]
['G', 2, 1]
['BC', 1, 2]
['BC', 5, 2]
['B', 5, 1]^*
['C', 4, 1]^*
['F', 4, 1]^*
['G', 2, 1]^*
['BC', 1, 2]^*
['BC', 5, 2]^*

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

associated_coroot()
Return the coroot associated to self.

INPUT:
• self – a root

5.1. Comprehensive Module List 2527

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

EXAMPLES:

sage: alpha = RootSystem(['C',2,1]).ambient_space().simple_roots()
sage: alpha
Finite family {0: -2*e[0] + e['delta'], 1: e[0] - e[1], 2: 2*e[1]}
sage: alpha[0].associated_coroot()
-e[0] + e['deltacheck']
sage: alpha[1].associated_coroot()
e[0] - e[1]
sage: alpha[2].associated_coroot()
e[1]

inner_product(other)
Implement the canonical inner product of self with other.

EXAMPLES:

sage: e = RootSystem(['B',3,1]).ambient_space()
sage: B = e.basis()
sage: matrix([[x.inner_product(y) for x in B] for y in B])
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
sage: x = e.an_element(); x
2*e[0] + 2*e[1] + 3*e[2]
sage: x.inner_product(x)
17

scalar() is an alias for this method:

sage: x.scalar(x)
17

Todo: Lift to CombinatorialFreeModule.Element as canonical_inner_product

scalar(other)
Implement the canonical inner product of self with other.

EXAMPLES:

sage: e = RootSystem(['B',3,1]).ambient_space()
sage: B = e.basis()
sage: matrix([[x.inner_product(y) for x in B] for y in B])
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
sage: x = e.an_element(); x
2*e[0] + 2*e[1] + 3*e[2]
sage: x.inner_product(x)
17

2528 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

scalar() is an alias for this method:

sage: x.scalar(x)
17

Todo: Lift to CombinatorialFreeModule.Element as canonical_inner_product

coroot_lattice()
EXAMPLES:

sage: RootSystem(["A",3,1]).ambient_lattice().coroot_lattice()
Ambient lattice of the Root system of type ['A', 3, 1]

Todo: Factor out this code with the classical ambient space.

fundamental_weight(i)

Return the fundamental weight Λ𝑖 in this ambient space.

It is constructed by taking the corresponding fundamental weight of the classical ambient space
(or 0 for Λ0) and raising it to the appropriate level by adding a suitable multiple of 𝛿∨.

EXAMPLES:

sage: RootSystem(['A',3,1]).ambient_space().fundamental_weight(2)
e[0] + e[1] + e['deltacheck']
sage: RootSystem(['A',3,1]).ambient_space().fundamental_weights()
Finite family {0: e['deltacheck'], 1: e[0] + e['deltacheck'],

2: e[0] + e[1] + e['deltacheck'], 3: e[0] + e[1] + e[2] +␣
→˓e['deltacheck']}
sage: RootSystem(['A',3]).ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (1, 1, 1, 0)}
sage: RootSystem(['A',3,1]).weight_lattice().fundamental_weights().
→˓map(attrcall("level"))
Finite family {0: 1, 1: 1, 2: 1, 3: 1}

sage: RootSystem(['B',3,1]).ambient_space().fundamental_weights()
Finite family {0: e['deltacheck'], 1: e[0] + e['deltacheck'],

2: e[0] + e[1] + 2*e['deltacheck'], 3: 1/2*e[0] + 1/
→˓2*e[1] + 1/2*e[2] + e['deltacheck']}
sage: RootSystem(['B',3]).ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1/2, 1/2, 1/2)}
sage: RootSystem(['B',3,1]).weight_lattice().fundamental_weights().
→˓map(attrcall("level"))
Finite family {0: 1, 1: 1, 2: 2, 3: 1}

In type 𝐵𝐶 dual, the coefficient of ‘delta^vee’ is the level divided by 2 to take into account that the null
coroot is 2𝛿∨:

sage: R = CartanType(['BC',3,2]).dual().root_system()
sage: R.ambient_space().fundamental_weights()

(continues on next page)

5.1. Comprehensive Module List 2529

Combinatorics, Release 9.7

(continued from previous page)

Finite family {0: e['deltacheck'], 1: e[0] + e['deltacheck'],
2: e[0] + e[1] + e['deltacheck'],
3: 1/2*e[0] + 1/2*e[1] + 1/2*e[2] + 1/2*e['deltacheck']}

sage: R.weight_lattice().fundamental_weights().map(attrcall("level"))
Finite family {0: 2, 1: 2, 2: 2, 3: 1}
sage: R.ambient_space().null_coroot()
2*e['deltacheck']

By a slight naming abuse this function also accepts "delta" as
input so that it can be used to implement the embedding from
the extended weight lattice::

sage: RootSystem(['A',3,1]).ambient_space().fundamental_weight("delta")
e['delta']

is_extended()
Return whether this is a realization of the extended weight lattice: yes!

See also:

• sage.combinat.root_system.weight_space.WeightSpace

• sage.combinat.root_system.weight_lattice_realizations.
WeightLatticeRealizations.ParentMethods.is_extended()

EXAMPLES:

sage: RootSystem(['A',3,1]).ambient_space().is_extended()
True

simple_coroot(i)
Return the 𝑖-th simple coroot 𝛼∨𝑖 of this affine ambient space.

EXAMPLES:

sage: RootSystem(["A",3,1]).ambient_space().simple_coroot(1)
e[0] - e[1]

It is built as the coroot associated to the simple root 𝛼𝑖:

sage: RootSystem(["B",3,1]).ambient_space().simple_roots()
Finite family {0: -e[0] - e[1] + e['delta'], 1: e[0] - e[1], 2: e[1] - e[2], 3:␣
→˓e[2]}
sage: RootSystem(["B",3,1]).ambient_space().simple_coroots()
Finite family {0: -e[0] - e[1] + e['deltacheck'], 1: e[0] - e[1], 2: e[1] -␣
→˓e[2], 3: 2*e[2]}

Todo: Factor out this code with the classical ambient space.

simple_root(i)
Return the 𝑖-th simple root of this affine ambient space.

EXAMPLES:

2530 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

It is built straightforwardly from the corresponding simple root 𝛼𝑖 in the classical ambient space:

sage: RootSystem(["A",3,1]).ambient_space().simple_root(1)
e[0] - e[1]

For the special node (typically 𝑖 = 0), 𝛼0 is built from the other simple roots using the column annihilator
of the Cartan matrix and adding 𝛿, where 𝛿 is the null root:

sage: RootSystem(["A",3]).ambient_space().simple_roots()
Finite family {1: (1, -1, 0, 0), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1)}
sage: RootSystem(["A",3,1]).ambient_space().simple_roots()
Finite family {0: -e[0] + e[3] + e['delta'], 1: e[0] - e[1], 2: e[1] - e[2], 3:␣
→˓e[2] - e[3]}

Here is a twisted affine example:

sage: RootSystem(CartanType(["B",3,1]).dual()).ambient_space().simple_roots()
Finite family {0: -e[0] - e[1] + e['delta'], 1: e[0] - e[1], 2: e[1] - e[2], 3:␣
→˓2*e[2]}

In fact 𝛿 is really 1/𝑎0 times the null root (see the discussion in WeightSpace) but this only makes a
difference in type 𝐵𝐶:

sage: L = RootSystem(CartanType(["BC",3,2])).ambient_space()
sage: L.simple_roots()
Finite family {0: -e[0] + e['delta'], 1: e[0] - e[1], 2: e[1] - e[2], 3: 2*e[2]}
sage: L.null_root()
2*e['delta']

Note: An alternative would have been to use the default implementation of the simple roots as linear
combinations of the fundamental weights. However, as in type 𝐴𝑛 it is preferable to take a slight variant to
avoid rational coefficient (the usual 𝐺𝐿𝑛 vs 𝑆𝐿𝑛 issue).

See also:

• simple_root()

• WeightSpace

• CartanType.col_annihilator()

• null_root()

classmethod smallest_base_ring(cartan_type)
Return the smallest base ring the ambient space can be defined on.

This is the smallest base ring for the associated classical ambient space.

See also:

smallest_base_ring()

EXAMPLES:

sage: cartan_type = CartanType(["A",3,1])
sage: cartan_type.AmbientSpace.smallest_base_ring(cartan_type)

(continues on next page)

5.1. Comprehensive Module List 2531

Combinatorics, Release 9.7

(continued from previous page)

Integer Ring
sage: cartan_type = CartanType(["B",3,1])
sage: cartan_type.AmbientSpace.smallest_base_ring(cartan_type)
Rational Field

5.1.259 Root system data for dual Cartan types

class sage.combinat.root_system.type_dual.AmbientSpace(root_system, base_ring, index_set=None)
Bases: sage.combinat.root_system.ambient_space.AmbientSpace

Ambient space for a dual finite Cartan type.

It is constructed in the canonical way from the ambient space of the original Cartan type by switching the roles
of simple roots, fundamental weights, etc.

Note: Recall that, for any finite Cartan type, and in particular the a simply laced one, the dual Cartan type is
constructed as another preexisting Cartan type. Furthermore the ambient space for an affine type is constructed
from the ambient space for its classical type. Thus this code is not actually currently used.

It is kept for cross-checking and for reference in case it could become useful, e.g., for dual of general Kac-Moody
types.

For the doctests, we need to explicitly create a dual type. Subsequently, since reconstruction of the dual of type
𝐹4 is the relabelled Cartan type, pickling fails on the TestSuite run.

EXAMPLES:

sage: ct = sage.combinat.root_system.type_dual.CartanType(CartanType(['F',4]))
sage: L = ct.root_system().ambient_space(); L
Ambient space of the Root system of type ['F', 4]^*
sage: TestSuite(L).run(skip=["_test_elements","_test_pickling"])

dimension()
Return the dimension of this ambient space.

See also:

sage.combinat.root_system.ambient_space.AmbientSpace.dimension()

EXAMPLES:

sage: ct = sage.combinat.root_system.type_dual.CartanType(CartanType(['F',4]))
sage: L = ct.root_system().ambient_space()
sage: L.dimension()
4

fundamental_weights()
Return the fundamental weights.

They are computed from the simple roots by inverting the Cartan matrix. This is acceptable since this is
only about ambient spaces for finite Cartan types. Also, we do not have to worry about the usual 𝐺𝐿𝑛 vs
𝑆𝐿𝑛 catch because type 𝐴 is self dual.

An alternative would have been to start from the fundamental coweights in the dual ambient space, but
those are not yet implemented.

2532 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: ct = sage.combinat.root_system.type_dual.CartanType(CartanType(['F',4]))
sage: L = ct.root_system().ambient_space()
sage: L.fundamental_weights()
Finite family {1: (1, 1, 0, 0), 2: (2, 1, 1, 0), 3: (3, 1, 1, 1), 4: (2, 0, 0,␣
→˓0)}

Note that this ambient space is isomorphic, but not equal, to that obtained by constructing 𝐹4 dual by
relabelling:

sage: ct = CartanType(['F',4]).dual(); ct
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
sage: ct.root_system().ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0, 0), 2: (3/2, 1/2, 1/2, 1/2), 3: (2, 1, 1, 0), 4: (1,
→˓ 1, 0, 0)}

simple_root(i)
Return the i-th simple root.

It is constructed by looking up the corresponding simple coroot in the ambient space for the dual Cartan
type.

EXAMPLES:

sage: ct = sage.combinat.root_system.type_dual.CartanType(CartanType(['F',4]))
sage: ct.root_system().ambient_space().simple_root(1)
(0, 1, -1, 0)

sage: ct.root_system().ambient_space().simple_roots()
Finite family {1: (0, 1, -1, 0), 2: (0, 0, 1, -1), 3: (0, 0, 0, 2), 4: (1, -1, -
→˓1, -1)}

sage: ct.dual().root_system().ambient_space().simple_coroots()
Finite family {1: (0, 1, -1, 0), 2: (0, 0, 1, -1), 3: (0, 0, 0, 2), 4: (1, -1, -
→˓1, -1)}

Note that this ambient space is isomorphic, but not equal, to that obtained by constructing 𝐹4 dual by
relabelling:

sage: ct = CartanType(['F',4]).dual(); ct
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
sage: ct.root_system().ambient_space().simple_roots()
Finite family {1: (1/2, -1/2, -1/2, -1/2), 2: (0, 0, 0, 1), 3: (0, 0, 1, -1),␣
→˓4: (0, 1, -1, 0)}

class sage.combinat.root_system.type_dual.CartanType(type)
Bases: sage.combinat.root_system.cartan_type.CartanType_decorator, sage.combinat.
root_system.cartan_type.CartanType_crystallographic

A class for dual Cartan types.

The dual of a (crystallographic) Cartan type is a Cartan type with the same index set, but all arrows reversed in
the Dynkin diagram (otherwise said, the Cartan matrix is transposed). It shares a lot of properties in common
with its dual. In particular, the Weyl group is isomorphic to that of the dual as a Coxeter group.

EXAMPLES:

5.1. Comprehensive Module List 2533

Combinatorics, Release 9.7

For all finite Cartan types, and in particular the simply laced ones, the dual Cartan type is given by another
preexisting Cartan type:

sage: CartanType(['A',4]).dual()
['A', 4]
sage: CartanType(['B',4]).dual()
['C', 4]
sage: CartanType(['C',4]).dual()
['B', 4]
sage: CartanType(['F',4]).dual()
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}

So to exercise this class we consider some non simply laced affine Cartan types and also create explicitly 𝐹 *4 as
a dual cartan type:

sage: from sage.combinat.root_system.type_dual import CartanType as CartanTypeDual
sage: F4d = CartanTypeDual(CartanType(['F',4])); F4d
['F', 4]^*
sage: G21d = CartanType(['G',2,1]).dual(); G21d
['G', 2, 1]^*

They share many properties with their original Cartan types:

sage: F4d.is_irreducible()
True
sage: F4d.is_crystallographic()
True
sage: F4d.is_simply_laced()
False
sage: F4d.is_finite()
True
sage: G21d.is_finite()
False
sage: F4d.is_affine()
False
sage: G21d.is_affine()
True

Note: F4d is pickled by construction as F4.dual() hence the above failure.

ascii_art(label=<function CartanType.<lambda> at 0x7f87497e8670>, node=None)
Return an ascii art representation of this Cartan type

(by hacking the ascii art representation of the dual Cartan type)

EXAMPLES:

sage: print(CartanType(["B", 3, 1]).dual().ascii_art())
O 0
|
|

O---O=<=O
1 2 3

(continues on next page)

2534 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: print(CartanType(["C", 4, 1]).dual().ascii_art())
O=<=O---O---O=>=O
0 1 2 3 4
sage: print(CartanType(["G", 2, 1]).dual().ascii_art())
3

O=>=O---O
1 2 0
sage: print(CartanType(["F", 4, 1]).dual().ascii_art())
O---O---O=<=O---O
0 1 2 3 4
sage: print(CartanType(["BC", 4, 2]).dual().ascii_art())
O=>=O---O---O=>=O
0 1 2 3 4

dual()
EXAMPLES:

sage: ct = CartanType(['F', 4, 1]).dual()
sage: ct.dual()
['F', 4, 1]

dynkin_diagram()
EXAMPLES:

sage: ct = CartanType(['F', 4, 1]).dual()
sage: ct.dynkin_diagram()
O---O---O=<=O---O
0 1 2 3 4
F4~*

class sage.combinat.root_system.type_dual.CartanType_affine(type)
Bases: sage.combinat.root_system.type_dual.CartanType, sage.combinat.root_system.
cartan_type.CartanType_affine

basic_untwisted()
Return the basic untwisted Cartan type associated with this affine Cartan type.

Given an affine type 𝑋(𝑟)
𝑛 , the basic untwisted type is 𝑋𝑛. In other words, it is the classical Cartan type

that is twisted to obtain self.

EXAMPLES:

sage: CartanType(['A', 7, 2]).basic_untwisted()
['A', 7]
sage: CartanType(['E', 6, 2]).basic_untwisted()
['E', 6]
sage: CartanType(['D', 4, 3]).basic_untwisted()
['D', 4]

classical()
Return the classical Cartan type associated with self (which should be affine).

EXAMPLES:

5.1. Comprehensive Module List 2535

Combinatorics, Release 9.7

sage: CartanType(['A',3,1]).dual().classical()
['A', 3]
sage: CartanType(['B',3,1]).dual().classical()
['C', 3]
sage: CartanType(['F',4,1]).dual().classical()
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
sage: CartanType(['BC',4,2]).dual().classical()
['B', 4]

special_node()
Implement CartanType_affine.special_node()

The special node of the dual of an affine type 𝑇 is the special node of 𝑇 .

EXAMPLES:

sage: CartanType(['A',3,1]).dual().special_node()
0
sage: CartanType(['B',3,1]).dual().special_node()
0
sage: CartanType(['F',4,1]).dual().special_node()
0
sage: CartanType(['BC',4,2]).dual().special_node()
0

class sage.combinat.root_system.type_dual.CartanType_finite(type)
Bases: sage.combinat.root_system.type_dual.CartanType, sage.combinat.root_system.
cartan_type.CartanType_finite

AmbientSpace
alias of AmbientSpace

5.1.260 Extended Affine Weyl Groups

AUTHORS:

• Daniel Bump (2012): initial version

• Daniel Orr (2012): initial version

• Anne Schilling (2012): initial version

• Mark Shimozono (2012): initial version

• Nicolas M. Thiery (2012): initial version

• Mark Shimozono (2013): twisted affine root systems, multiple realizations, GL_n

sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup(cartan_type,
gen-
eral_linear=None,
**print_options)

The extended affine Weyl group.

INPUT:

• cartan_type – An affine or finite Cartan type (a finite Cartan type is an abbreviation for its untwisted
affinization)

2536 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• general_linear – (default: None) If True and cartan_type indicates untwisted type A, returns the
universal central extension

• print_options – Special instructions for printing elements (see below)

Mnemonics

• “P” – subgroup of translations

• “Pv” – subgroup of translations in a dual form

• “W0” – classical Weyl group

• “W” – affine Weyl group

• “F” – fundamental group of length zero elements

There are currently six realizations: “PW0”, “W0P, “WF”, “FW”, “PvW0”, and “W0Pv”.

“PW0” means the semidirect product of “P” with “W0” acting from the right. “W0P” is similar but with “W0”
acting from the left. “WF” is the semidirect product of “W” with “F” acting from the right, etc.

Recognized arguments for print_options are:

• print_tuple – True or False (default: False) If True, elements are printed (𝑎, 𝑏), otherwise as 𝑎 * 𝑏

• affine – Prefix for simple reflections in the affine Weyl group

• classical – Prefix for simple reflections in the classical Weyl group

• translation – Prefix for the translation elements

• fundamental – Prefix for the elements of the fundamental group

These options are not mutable.

The extended affine Weyl group was introduced in the following references.

REFERENCES:

• [Ka1990]

Notation

• 𝑅 – An irreducible affine root system

• 𝐼 – Set of nodes of the Dynkin diagram of 𝑅

• 𝑅0 – The classical subsystem of 𝑅

• 𝐼0 – Set of nodes of the Dynkin diagram of 𝑅0

• 𝐸 – Extended affine Weyl group of type 𝑅

• 𝑊 – Affine Weyl group of type 𝑅

• 𝑊0 – finite (classical) Weyl group (of type 𝑅0)

• 𝑀 – translation lattice for 𝑊

• 𝐿 – translation lattice for 𝐸

• 𝐹 – Fundamental subgroup of 𝐸 (the length zero elements)

• 𝑃 – Finite weight lattice

5.1. Comprehensive Module List 2537

Combinatorics, Release 9.7

• 𝑄 – Finite root lattice

• 𝑃∨ – Finite coweight lattice

• 𝑄∨ – Finite coroot lattice

Translation lattices

The styles “PW0” and “W0P” use the following lattices:

• Untwisted affine: 𝐿 = 𝑃∨, 𝑀 = 𝑄∨

• Dual of untwisted affine: 𝐿 = 𝑃 , 𝑀 = 𝑄

• 𝐵𝐶𝑛 (𝐴(2)
2𝑛): 𝐿 = 𝑀 = 𝑃

• Dual of 𝐵𝐶𝑛 (𝐴(2)†
2𝑛): 𝐿 = 𝑀 = 𝑃∨

The styles “PvW0” and “W0Pv” use the following lattices:

• Untwisted affine: The weight lattice of the dual finite Cartan type.

• Dual untwisted affine: The same as for “PW0” and “W0P”.

For mixed affine type (𝐴(2)
2𝑛 , aka 𝐵𝐶𝑛, and their affine duals) the styles “PvW0” and “W0Pv” are not imple-

mented.

Finite and affine Weyl groups 𝑊0 and 𝑊

The finite Weyl group 𝑊0 is generated by the simple reflections 𝑠𝑖 for 𝑖 ∈ 𝐼0 where 𝑠𝑖 is the reflection across a
suitable hyperplane 𝐻𝑖 through the origin in the real span 𝑉 of the lattice 𝑀 .

𝑅 specifies another (affine) hyperplane 𝐻0. The affine Weyl group 𝑊 is generated by 𝑊0 and the reflection 𝑆0

across 𝐻0.

Extended affine Weyl group 𝐸

The complement in 𝑉 of the set 𝐻 of hyperplanes obtained from the 𝐻𝑖 by the action of 𝑊 , has connected
components called alcoves. 𝑊 acts freely and transitively on the set of alcoves. After the choice of a certain
alcove (the fundamental alcove), there is an induced bijection from 𝑊 to the set of alcoves under which the
identity in 𝑊 maps to the fundamental alcove.

Then 𝐿 is the largest sublattice of 𝑉 , whose translations stabilize the set of alcoves.

There are isomorphisms

𝑊 ∼= 𝑀 o𝑊0
∼= 𝑊0 n𝑀

𝐸 ∼= 𝐿o𝑊0
∼= 𝑊0 n 𝐿

2538 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Fundamental group of affine Dynkin automorphisms

Since 𝐿 acts on the set of alcoves, the group 𝐹 = 𝐿/𝑀 may be viewed as a subgroup of the symmetries of the
fundamental alcove or equivalently the symmetries of the affine Dynkin diagram. 𝐹 acts on the set of alcoves
and hence on 𝑊 . Conjugation by an element of 𝐹 acts on 𝑊 by permuting the indices of simple reflections.

There are isomorphisms

𝐸 ∼= 𝐹 n𝑊 ∼= 𝑊 o 𝐹

An affine Dynkin node is special if it is conjugate to the zero node under some affine Dynkin automorphism.

There is a bijection 𝑖 ↦→ 𝜋𝑖 from the set of special nodes to the group 𝐹 , where 𝜋𝑖 is the unique element of 𝐹
that sends 0 to 𝑖. When 𝐿 = 𝑃 (resp. 𝐿 = 𝑃∨) the element 𝜋𝑖 is induced (under the isomorphism 𝐹 ∼= 𝐿/𝑀)
by addition of the coset of the 𝑖-th fundamental weight (resp. coweight).

The length function of the Coxeter group𝑊 may be extended to 𝐸 by ℓ(𝑤𝜋) = ℓ(𝑤) where 𝑤 ∈𝑊 and 𝜋 ∈ 𝐹 .
This is the number of hyperplanes in𝐻 separating the fundamental alcove from its image by𝑤𝜋 (or equivalently
𝑤).

It is known that if 𝐺 is the compact Lie group of adjoint type with root system 𝑅0 then 𝐹 is isomorphic to the
fundamental group of 𝐺, or to the center of its simply-connected covering group. That is why we call 𝐹 the
fundamental group.

In the future we may want to build an element of the group from an appropriate linear map f on some of the root
lattice realizations for this Cartan type: W.from_endomorphism(f).

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(["A",2,1]); E
Extended affine Weyl group of type ['A', 2, 1]
sage: type(E)
<class 'sage.combinat.root_system.extended_affine_weyl_group.
→˓ExtendedAffineWeylGroup_Class_with_category'>

sage: PW0=E.PW0(); PW0
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of␣
→˓Multiplicative form of Coweight lattice of the Root system of type ['A', 2] acted␣
→˓upon by Weyl Group of type ['A', 2] (as a matrix group acting on the coweight␣
→˓lattice)

sage: W0P = E.W0P(); W0P
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of␣
→˓Weyl Group of type ['A', 2] (as a matrix group acting on the coweight lattice)␣
→˓acting on Multiplicative form of Coweight lattice of the Root system of type ['A',
→˓ 2]

sage: PvW0 = E.PvW0(); PvW0
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of␣
→˓Multiplicative form of Weight lattice of the Root system of type ['A', 2] acted␣
→˓upon by Weyl Group of type ['A', 2] (as a matrix group acting on the weight␣
→˓lattice)

sage: W0Pv = E.W0Pv(); W0Pv
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of␣
→˓Weyl Group of type ['A', 2] (as a matrix group acting on the weight lattice)␣
→˓acting on Multiplicative form of Weight lattice of the Root system of type ['A',␣
→˓2] (continues on next page)

5.1. Comprehensive Module List 2539

Combinatorics, Release 9.7

(continued from previous page)

sage: WF = E.WF(); WF
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of␣
→˓Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root lattice)␣
→˓acted upon by Fundamental group of type ['A', 2, 1]

sage: FW = E.FW(); FW
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product of␣
→˓Fundamental group of type ['A', 2, 1] acting on Weyl Group of type ['A', 2, 1]␣
→˓(as a matrix group acting on the root lattice)

When the realizations are constructed from each other as above, there are built-in coercions between them.

sage: F = E.fundamental_group()
sage: x = WF.from_reduced_word([0,1,2]) * WF(F(2)); x
S0*S1*S2 * pi[2]
sage: FW(x)
pi[2] * S1*S2*S0
sage: W0P(x)
s1*s2*s1 * t[-2*Lambdacheck[1] - Lambdacheck[2]]
sage: PW0(x)
t[Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2*s1
sage: PvW0(x)
t[Lambda[1] + 2*Lambda[2]] * s1*s2*s1

The translation lattice and its distinguished basis are obtained from E:

sage: L = E.lattice(); L
Coweight lattice of the Root system of type ['A', 2]
sage: b = E.lattice_basis(); b
Finite family {1: Lambdacheck[1], 2: Lambdacheck[2]}

Translation lattice elements can be coerced into any realization:

sage: PW0(b[1]-b[2])
t[Lambdacheck[1] - Lambdacheck[2]]
sage: FW(b[1]-b[2])
pi[2] * S0*S1

The dual form of the translation lattice and its basis are similarly obtained:

sage: Lv = E.dual_lattice(); Lv
Weight lattice of the Root system of type ['A', 2]
sage: bv = E.dual_lattice_basis(); bv
Finite family {1: Lambda[1], 2: Lambda[2]}
sage: FW(bv[1]-bv[2])
pi[2] * S0*S1

The abstract fundamental group is accessed from E:

sage: F = E.fundamental_group(); F
Fundamental group of type ['A', 2, 1]

Its elements are indexed by the set of special nodes of the affine Dynkin diagram:

2540 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: E.cartan_type().special_nodes()
(0, 1, 2)
sage: F.special_nodes()
(0, 1, 2)
sage: [F(i) for i in F.special_nodes()]
[pi[0], pi[1], pi[2]]

There is a coercion from the fundamental group into each realization:

sage: F(2)
pi[2]
sage: WF(F(2))
pi[2]
sage: W0P(F(2))
s2*s1 * t[-Lambdacheck[1]]
sage: W0Pv(F(2))
s2*s1 * t[-Lambda[1]]

Using E one may access the classical and affine Weyl groups and their morphisms into each realization:

sage: W0 = E.classical_weyl(); W0
Weyl Group of type ['A', 2] (as a matrix group acting on the coweight lattice)
sage: v = W0.from_reduced_word([1,2,1]); v
s1*s2*s1
sage: PW0(v)
s1*s2*s1
sage: WF(v)
S1*S2*S1
sage: W = E.affine_weyl(); W
Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root lattice)
sage: w = W.from_reduced_word([2,1,0]); w
S2*S1*S0
sage: WF(w)
S2*S1*S0
sage: PW0(w)
t[Lambdacheck[1] - 2*Lambdacheck[2]] * s1

Note that for untwisted affine type, the dual form of the classical Weyl group is isomorphic to the usual one, but
acts on a different lattice and is therefore different to sage:

sage: W0v = E.dual_classical_weyl(); W0v
Weyl Group of type ['A', 2] (as a matrix group acting on the weight lattice)
sage: v = W0v.from_reduced_word([1,2])
sage: x = PvW0(v); x
s1*s2
sage: y = PW0(v); y
s1*s2
sage: x.parent() == y.parent()
False

However, because there is a coercion from PvW0 to PW0, the elements x and y compare as equal:

sage: x == y
True

5.1. Comprehensive Module List 2541

Combinatorics, Release 9.7

An element can be created directly from a reduced word:

sage: PW0.from_reduced_word([2,1,0])
t[Lambdacheck[1] - 2*Lambdacheck[2]] * s1

Here is a demonstration of the printing options:

sage: E = ExtendedAffineWeylGroup(["A",2,1], affine="sx", classical="Sx",
→˓translation="x",fundamental="pix")
sage: PW0 = E.PW0()
sage: y = PW0(E.lattice_basis()[1])
sage: y
x[Lambdacheck[1]]
sage: FW = E.FW()
sage: FW(y)
pix[1] * sx2*sx1
sage: PW0.an_element()
x[2*Lambdacheck[1] + 2*Lambdacheck[2]] * Sx1*Sx2

Todo:

• Implement a “slow” action of 𝐸 on any affine root or weight lattice realization.

• Implement the level 𝑚 actions of 𝐸 and 𝑊 on the lattices of finite type.

• Implement the relevant methods from the usual affine Weyl group

• Implementation by matrices: style “M”.

• Use case: implement the Hecke algebra on top of this

The semidirect product construction in sage currently only admits multiplicative groups. Therefore for the styles
involving “P” and “Pv”, one must convert the additive group of translations 𝐿 into a multiplicative group by
applying the sage.groups.group_exp.GroupExp functor.

The general linear case

The general linear group is not semisimple. Sage can build its extended affine Weyl group:

sage: E = ExtendedAffineWeylGroup(['A',2,1], general_linear=True); E
Extended affine Weyl group of GL(3)

If the Cartan type is ['A', n-1, 1] and the parameter general_linear is not True, the extended affine Weyl
group that is built will be for 𝑆𝐿𝑛, not 𝐺𝐿𝑛. But if general_linear is True, let 𝑊𝑎 and 𝑊𝑒 be the affine and
extended affine Weyl groups. We make the following nonstandard definition: the extended affine Weyl group
𝑊𝑒(𝐺𝐿𝑛) is defined by

𝑊𝑒(𝐺𝐿𝑛) = 𝑃 (𝐺𝐿𝑛) o𝑊

where 𝑊 is the finite Weyl group (the symmetric group 𝑆𝑛) and 𝑃 (𝐺𝐿𝑛) is the weight lattice of 𝐺𝐿𝑛, which is
usually identified with the lattice Z𝑛 of 𝑛-tuples of integers:

sage: PW0 = E.PW0(); PW0
Extended affine Weyl group of GL(3) realized by Semidirect product of␣
→˓Multiplicative form of Ambient space of the Root system of type ['A', 2] acted␣
→˓upon by Weyl Group of type ['A', 2] (as a matrix group acting on the ambient␣
→˓space)

(continues on next page)

2542 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/groups/sage/groups/group_exp.html#sage.groups.group_exp.GroupExp

Combinatorics, Release 9.7

(continued from previous page)

sage: PW0.an_element()
t[(2, 2, 3)] * s1*s2

There is an isomorphism

𝑊𝑒(𝐺𝐿𝑛) = Zn𝑊𝑎

where the group of integers Z (with generator 𝜋) acts on 𝑊𝑎 by

𝜋 𝑠𝑖 𝜋
−1 = 𝑠𝑖+1

and the indices of the simple reflections are taken modulo 𝑛:

sage: FW = E.FW(); FW
Extended affine Weyl group of GL(3) realized by Semidirect product of Fundamental␣
→˓group of GL(3) acting on Weyl Group of type ['A', 2, 1] (as a matrix group acting␣
→˓on the root lattice)
sage: FW.an_element()
pi[5] * S0*S1*S2

We regard Z as the fundamental group of affine type 𝐺𝐿𝑛:

sage: F = E.fundamental_group(); F
Fundamental group of GL(3)
sage: F.special_nodes()
Integer Ring

sage: x = FW.from_fundamental(F(10)); x
pi[10]
sage: x*x
pi[20]
sage: E.PvW0()(x*x)
t[(7, 7, 6)] * s2*s1

class sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class(cartan_type,
gen-
eral_linear,
**print_options)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The parent-with-realization class of an extended affine Weyl group.

class ExtendedAffineWeylGroupFW(E)
Bases: sage.groups.group_semidirect_product.GroupSemidirectProduct, sage.misc.
bindable_class.BindableClass

Extended affine Weyl group, realized as the semidirect product of the affine Weyl group by the fundamental
group.

INPUT:

• 𝐸 – A parent with realization in ExtendedAffineWeylGroup_Class

EXAMPLES:

5.1. Comprehensive Module List 2543

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProduct
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

sage: ExtendedAffineWeylGroup(['A',2,1]).FW()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Fundamental group of type ['A', 2, 1] acting on Weyl Group of type ['A', 2,
→˓ 1] (as a matrix group acting on the root lattice)

Element
alias of ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFWElement

from_affine_weyl(w)
Return the image of 𝑤 under the map of the affine Weyl group into the right (affine Weyl group) factor
in the “FW” style.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1],print_tuple=True)
sage: E.FW().from_affine_weyl(E.affine_weyl().from_reduced_word([0,2,1]))
(pi[0], S0*S2*S1)

from_fundamental(f)
Return the image of the fundamental group element 𝑓 into self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1],print_tuple=True)
sage: E.FW().from_fundamental(E.fundamental_group()(2))
(pi[2], 1)

simple_reflections()
Return the family of simple reflections of self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1],print_tuple=True).FW().simple_
→˓reflections()
Finite family {0: (pi[0], S0), 1: (pi[0], S1), 2: (pi[0], S2)}

class ExtendedAffineWeylGroupFWElement
Bases: sage.groups.group_semidirect_product.GroupSemidirectProductElement

The element class for the “FW” realization.

action_on_affine_roots(beta)
Act by self on the affine root lattice element beta.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1],affine="s")
sage: x = E.FW().an_element(); x
pi[2] * s0*s1*s2
sage: v = RootSystem(['A',2,1]).root_lattice().an_element(); v
2*alpha[0] + 2*alpha[1] + 3*alpha[2]
sage: x.action_on_affine_roots(v)
alpha[0] + alpha[1]

has_descent(i, side='right', positive=False)
Return whether self has descent at 𝑖.

INPUT:

2544 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProductElement

Combinatorics, Release 9.7

• 𝑖 – an affine Dynkin index.
OPTIONAL:

• side – ‘left’ or ‘right’ (default: ‘right’)
• positive – True or False (default: False)

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: x = E.FW().an_element(); x
pi[2] * S0*S1*S2
sage: [(i, x.has_descent(i)) for i in E.cartan_type().index_set()]
[(0, False), (1, False), (2, True)]

to_affine_weyl_right()
Project self to the right (affine Weyl group) factor in the “FW” style.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: x = E.FW().from_translation(E.lattice_basis()[1]); x
pi[1] * S2*S1
sage: x.to_affine_weyl_right()
S2*S1

to_fundamental_group()
Return the projection of self to the fundamental group in the “FW” style.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: x = E.FW().from_translation(E.lattice_basis()[2]); x
pi[2] * S1*S2
sage: x.to_fundamental_group()
pi[2]

class ExtendedAffineWeylGroupPW0(E)
Bases: sage.groups.group_semidirect_product.GroupSemidirectProduct, sage.misc.
bindable_class.BindableClass

Extended affine Weyl group, realized as the semidirect product of the translation lattice by the finite Weyl
group.

INPUT:

• 𝐸 – A parent with realization in ExtendedAffineWeylGroup_Class

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).PW0()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Multiplicative form of Coweight lattice of the Root system of type ['A',␣
→˓2] acted upon by Weyl Group of type ['A', 2] (as a matrix group acting on the␣
→˓coweight lattice)

Element
alias of ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0Element

S0()
Return the affine simple reflection.

5.1. Comprehensive Module List 2545

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProduct
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

EXAMPLES:

sage: ExtendedAffineWeylGroup(['B',2]).PW0().S0()
t[Lambdacheck[2]] * s2*s1*s2

from_classical_weyl(w)
Return the image of 𝑤 under the homomorphism of the classical Weyl group into self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup("A3",print_tuple=True)
sage: E.PW0().from_classical_weyl(E.classical_weyl().from_reduced_word([1,
→˓2]))
(t[0], s1*s2)

from_translation(la)
Map the translation lattice element la into self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1], translation="tau", print_tuple␣
→˓= True)
sage: la = E.lattice().an_element(); la
2*Lambdacheck[1] + 2*Lambdacheck[2]
sage: E.PW0().from_translation(la)
(tau[2*Lambdacheck[1] + 2*Lambdacheck[2]], 1)

simple_reflection(i)
Return the 𝑖-th simple reflection in self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup("G2")
sage: [(i, E.PW0().simple_reflection(i)) for i in E.cartan_type().index_
→˓set()]
[(0, t[Lambdacheck[2]] * s2*s1*s2*s1*s2), (1, s1), (2, s2)]

simple_reflections()
Return a family for the simple reflections of self.

EXAMPLES:

sage: ExtendedAffineWeylGroup("A3").PW0().simple_reflections()
Finite family {0: t[Lambdacheck[1] + Lambdacheck[3]] * s1*s2*s3*s2*s1, 1:␣
→˓s1, 2: s2, 3: s3}

class ExtendedAffineWeylGroupPW0Element
Bases: sage.groups.group_semidirect_product.GroupSemidirectProductElement

The element class for the “PW0” realization.

action(la)
Return the action of self on an element la of the translation lattice.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1]); PW0=E.PW0()
sage: x = PW0.an_element(); x

(continues on next page)

2546 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProductElement

Combinatorics, Release 9.7

(continued from previous page)

t[2*Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2
sage: la = E.lattice().an_element(); la
2*Lambdacheck[1] + 2*Lambdacheck[2]
sage: x.action(la)
-2*Lambdacheck[1] + 4*Lambdacheck[2]

has_descent(i, side='right', positive=False)
Return whether self has 𝑖 as a descent.

INPUT:
• 𝑖 – an affine Dynkin node

OPTIONAL:
• side – ‘left’ or ‘right’ (default: ‘right’)
• positive – True or False (default: False)

EXAMPLES:

sage: w = ExtendedAffineWeylGroup(['A',4,2]).PW0().from_reduced_word([0,1]);
→˓ w
t[Lambda[1]] * s1*s2
sage: w.has_descent(0, side='left')
True

to_classical_weyl()
Return the image of self under the homomorphism that projects to the classical Weyl group factor
after rewriting it in either style “PW0” or “W0P”.

EXAMPLES:

sage: s = ExtendedAffineWeylGroup(['A',2,1]).PW0().S0(); s
t[Lambdacheck[1] + Lambdacheck[2]] * s1*s2*s1
sage: s.to_classical_weyl()
s1*s2*s1

to_translation_left()
The image of self under the map that projects to the translation lattice factor after factoring it to the
left as in style “PW0”.

EXAMPLES:

sage: s = ExtendedAffineWeylGroup(['A',2,1]).PW0().S0(); s
t[Lambdacheck[1] + Lambdacheck[2]] * s1*s2*s1
sage: s.to_translation_left()
Lambdacheck[1] + Lambdacheck[2]

class ExtendedAffineWeylGroupPvW0(E)
Bases: sage.groups.group_semidirect_product.GroupSemidirectProduct, sage.misc.
bindable_class.BindableClass

Extended affine Weyl group, realized as the semidirect product of the dual form of the translation lattice by
the finite Weyl group.

INPUT:

• 𝐸 – A parent with realization in ExtendedAffineWeylGroup_Class

EXAMPLES:

5.1. Comprehensive Module List 2547

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProduct
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

sage: ExtendedAffineWeylGroup(['A',2,1]).PvW0()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Multiplicative form of Weight lattice of the Root system of type ['A', 2]␣
→˓acted upon by Weyl Group of type ['A', 2] (as a matrix group acting on the␣
→˓weight lattice)

Element
alias of ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0Element

from_dual_classical_weyl(w)
Return the image of 𝑤 under the homomorphism of the dual form of the classical Weyl group into
self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1],print_tuple=True)
sage: E.PvW0().from_dual_classical_weyl(E.dual_classical_weyl().from_
→˓reduced_word([1,2]))
(t[0], s1*s2)

from_dual_translation(la)
Map the dual translation lattice element la into self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1], translation="tau", print_tuple␣
→˓= True)
sage: la = E.dual_lattice().an_element(); la
2*Lambda[1] + 2*Lambda[2]
sage: E.PvW0().from_dual_translation(la)
(tau[2*Lambda[1] + 2*Lambda[2]], 1)

simple_reflections()
Return a family for the simple reflections of self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',3,1]).PvW0().simple_reflections()
Finite family {0: t[Lambda[1] + Lambda[3]] * s1*s2*s3*s2*s1, 1: s1, 2: s2,␣
→˓3: s3}

class ExtendedAffineWeylGroupPvW0Element
Bases: sage.groups.group_semidirect_product.GroupSemidirectProductElement

The element class for the “PvW0” realization.

dual_action(la)
Return the action of self on an element la of the dual version of the translation lattice.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: x = E.PvW0().an_element(); x
t[2*Lambda[1] + 2*Lambda[2]] * s1*s2
sage: la = E.dual_lattice().an_element(); la
2*Lambda[1] + 2*Lambda[2]

(continues on next page)

2548 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProductElement

Combinatorics, Release 9.7

(continued from previous page)

sage: x.dual_action(la)
-2*Lambda[1] + 4*Lambda[2]

has_descent(i, side='right', positive=False)
Return whether self has 𝑖 as a descent.

INPUT:
• 𝑖 - an affine Dynkin index

OPTIONAL:
• side – ‘left’ or ‘right’ (default: ‘right’)
• positive – True or False (default: False)

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',4,2])
sage: w = E.PvW0().from_reduced_word([0,1]); w
t[Lambda[1]] * s1*s2
sage: [(i, w.has_descent(i, side='left')) for i in E.cartan_type().index_
→˓set()]
[(0, True), (1, False), (2, False)]

to_dual_classical_weyl()
Return the image of self under the homomorphism that projects to the dual classical Weyl group
factor after rewriting it in either style “PvW0” or “W0Pv”.

EXAMPLES:

sage: s = ExtendedAffineWeylGroup(['A',2,1]).PvW0().simple_reflection(0); s
t[Lambda[1] + Lambda[2]] * s1*s2*s1
sage: s.to_dual_classical_weyl()
s1*s2*s1

to_dual_translation_left()
The image of self under the map that projects to the dual translation lattice factor after factoring it
to the left as in style “PvW0”.

EXAMPLES:

sage: s = ExtendedAffineWeylGroup(['A',2,1]).PvW0().simple_reflection(0); s
t[Lambda[1] + Lambda[2]] * s1*s2*s1
sage: s.to_dual_translation_left()
Lambda[1] + Lambda[2]

class ExtendedAffineWeylGroupW0P(E)
Bases: sage.groups.group_semidirect_product.GroupSemidirectProduct, sage.misc.
bindable_class.BindableClass

Extended affine Weyl group, realized as the semidirect product of the finite Weyl group by the translation
lattice.

INPUT:

• 𝐸 – A parent with realization in ExtendedAffineWeylGroup_Class

EXAMPLES:

5.1. Comprehensive Module List 2549

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProduct
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

sage: ExtendedAffineWeylGroup(['A',2,1]).W0P()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Weyl Group of type ['A', 2] (as a matrix group acting on the coweight␣
→˓lattice) acting on Multiplicative form of Coweight lattice of the Root system␣
→˓of type ['A', 2]

Element
alias of ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PElement

S0()
Return the zero-th simple reflection in style “W0P”.

EXAMPLES:

sage: ExtendedAffineWeylGroup(["A",3,1]).W0P().S0()
s1*s2*s3*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[3]]

from_classical_weyl(w)
Return the image of the classical Weyl group element 𝑤 in self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1],print_tuple=True)
sage: E.W0P().from_classical_weyl(E.classical_weyl().from_reduced_word([2,
→˓1]))
(s2*s1, t[0])

from_translation(la)
Return the image of the lattice element la in self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1],print_tuple=True)
sage: E.W0P().from_translation(E.lattice().an_element())
(1, t[2*Lambdacheck[1] + 2*Lambdacheck[2]])

simple_reflection(i)
Return the 𝑖-th simple reflection in self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1]); W0P = E.W0P()
sage: [(i, W0P.simple_reflection(i)) for i in E.cartan_type().index_set()]
[(0, s1*s2*s3*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[3]]), (1, s1), (2,␣
→˓s2), (3, s3)]

simple_reflections()
Return the family of simple reflections.

EXAMPLES:

sage: ExtendedAffineWeylGroup(["A",3,1]).W0P().simple_reflections()
Finite family {0: s1*s2*s3*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[3]], 1:␣
→˓s1, 2: s2, 3: s3}

class ExtendedAffineWeylGroupW0PElement
Bases: sage.groups.group_semidirect_product.GroupSemidirectProductElement

2550 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProductElement

Combinatorics, Release 9.7

The element class for the W0P realization.

has_descent(i, side='right', positive=False)
Return whether self has 𝑖 as a descent.

INPUT:
• 𝑖 - an index.

OPTIONAL:
• side - ‘left’ or ‘right’ (default: ‘right’)
• positive - True or False (default: False)

EXAMPLES:

sage: W0P = ExtendedAffineWeylGroup(['A',4,2]).W0P()
sage: w = W0P.from_reduced_word([0,1]); w
s1*s2 * t[Lambda[1] - Lambda[2]]
sage: w.has_descent(0, side='left')
True

to_classical_weyl()
Project self into the classical Weyl group.

EXAMPLES:

sage: x = ExtendedAffineWeylGroup(['A',2,1]).W0P().simple_reflection(0); x
s1*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[2]]
sage: x.to_classical_weyl()
s1*s2*s1

to_translation_right()
Project onto the right (translation) factor in the “W0P” style.

EXAMPLES:

sage: x = ExtendedAffineWeylGroup(['A',2,1]).W0P().simple_reflection(0); x
s1*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[2]]
sage: x.to_translation_right()
-Lambdacheck[1] - Lambdacheck[2]

class ExtendedAffineWeylGroupW0Pv(E)
Bases: sage.groups.group_semidirect_product.GroupSemidirectProduct, sage.misc.
bindable_class.BindableClass

Extended affine Weyl group, realized as the semidirect product of the finite Weyl group, acting on the dual
form of the translation lattice.

INPUT:

• 𝐸 – A parent with realization in ExtendedAffineWeylGroup_Class

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).W0Pv()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Weyl Group of type ['A', 2] (as a matrix group acting on the weight␣
→˓lattice) acting on Multiplicative form of Weight lattice of the Root system␣
→˓of type ['A', 2]

Element
alias of ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PvElement

5.1. Comprehensive Module List 2551

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProduct
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

from_dual_classical_weyl(w)
Return the image of 𝑤 under the homomorphism of the dual form of the classical Weyl group into
self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1],print_tuple=True)
sage: E.W0Pv().from_dual_classical_weyl(E.dual_classical_weyl().from_
→˓reduced_word([1,2]))
(s1*s2, t[0])

from_dual_translation(la)
Map the dual translation lattice element la into self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1], translation="tau", print_tuple␣
→˓= True)
sage: la = E.dual_lattice().an_element(); la
2*Lambda[1] + 2*Lambda[2]
sage: E.W0Pv().from_dual_translation(la)
(1, tau[2*Lambda[1] + 2*Lambda[2]])

simple_reflections()
Return a family for the simple reflections of self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',3,1]).W0Pv().simple_reflections()
Finite family {0: s1*s2*s3*s2*s1 * t[-Lambda[1] - Lambda[3]], 1: s1, 2: s2,␣
→˓3: s3}

class ExtendedAffineWeylGroupW0PvElement
Bases: sage.groups.group_semidirect_product.GroupSemidirectProductElement

The element class for the “W0Pv” realization.

dual_action(la)
Return the action of self on an element la of the dual version of the translation lattice.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: x = E.W0Pv().an_element(); x
s1*s2 * t[2*Lambda[1] + 2*Lambda[2]]
sage: la = E.dual_lattice().an_element(); la
2*Lambda[1] + 2*Lambda[2]
sage: x.dual_action(la)
-8*Lambda[1] + 4*Lambda[2]

has_descent(i, side='right', positive=False)
Return whether self has 𝑖 as a descent.

INPUT:
• 𝑖 - an affine Dynkin index

OPTIONAL:
• side - ‘left’ or ‘right’ (default: ‘right’)
• positive - True or False (default: False)

2552 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProductElement

Combinatorics, Release 9.7

EXAMPLES:

sage: w = ExtendedAffineWeylGroup(['A',4,2]).W0Pv().from_reduced_word([0,
→˓1]); w
s1*s2 * t[Lambda[1] - Lambda[2]]
sage: w.has_descent(0, side='left')
True

to_dual_classical_weyl()
Return the image of self under the homomorphism that projects to the dual classical Weyl group
factor after rewriting it in either style “PvW0” or “W0Pv”.

EXAMPLES:

sage: s = ExtendedAffineWeylGroup(['A',2,1]).W0Pv().simple_reflection(0); s
s1*s2*s1 * t[-Lambda[1] - Lambda[2]]
sage: s.to_dual_classical_weyl()
s1*s2*s1

to_dual_translation_right()
The image of self under the map that projects to the dual translation lattice factor after factoring it
to the right as in style “W0Pv”.

EXAMPLES:

sage: s = ExtendedAffineWeylGroup(['A',2,1]).W0Pv().simple_reflection(0); s
s1*s2*s1 * t[-Lambda[1] - Lambda[2]]
sage: s.to_dual_translation_right()
-Lambda[1] - Lambda[2]

class ExtendedAffineWeylGroupWF(E)
Bases: sage.groups.group_semidirect_product.GroupSemidirectProduct, sage.misc.
bindable_class.BindableClass

Extended affine Weyl group, realized as the semidirect product of the affine Weyl group by the fundamental
group.

INPUT:

• 𝐸 – A parent with realization in ExtendedAffineWeylGroup_Class

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).WF()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root␣
→˓lattice) acted upon by Fundamental group of type ['A', 2, 1]

Element
alias of ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWFElement

from_affine_weyl(w)
Return the image of the affine Weyl group element 𝑤 in self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['C',2,1],print_tuple=True)
sage: E.WF().from_affine_weyl(E.affine_weyl().from_reduced_word([1,2,1,0]))
(S1*S2*S1*S0, pi[0])

5.1. Comprehensive Module List 2553

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProduct
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass
../../../../../../../html/en/reference/misc/sage/misc/bindable_class.html#sage.misc.bindable_class.BindableClass

Combinatorics, Release 9.7

from_fundamental(f)
Return the image of 𝑓 under the homomorphism from the fundamental group into the right (funda-
mental group) factor in “WF” style.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['E',6,1],print_tuple=True); WF = E.WF();␣
→˓F = E.fundamental_group()
sage: [(x,WF.from_fundamental(x)) for x in F]
[(pi[0], (1, pi[0])), (pi[1], (1, pi[1])), (pi[6], (1, pi[6]))]

simple_reflections()
Return the family of simple reflections.

EXAMPLES:

sage: ExtendedAffineWeylGroup(["A",3,1],affine="r").WF().simple_
→˓reflections()
Finite family {0: r0, 1: r1, 2: r2, 3: r3}

class ExtendedAffineWeylGroupWFElement
Bases: sage.groups.group_semidirect_product.GroupSemidirectProductElement

Element class for the “WF” realization.

bruhat_le(x)
Return whether self is less than or equal to 𝑥 in the Bruhat order.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1],affine="s", print_tuple=True);␣
→˓WF=E.WF()
sage: r = E.affine_weyl().from_reduced_word
sage: v = r([1,0])
sage: w = r([1,2,0])
sage: v.bruhat_le(w)
True
sage: vv = WF.from_affine_weyl(v); vv
(s1*s0, pi[0])
sage: ww = WF.from_affine_weyl(w); ww
(s1*s2*s0, pi[0])
sage: vv.bruhat_le(ww)
True
sage: f = E.fundamental_group()(2); f
pi[2]
sage: ff = WF.from_fundamental(f); ff
(1, pi[2])
sage: vv.bruhat_le(ww*ff)
False
sage: (vv*ff).bruhat_le(ww*ff)
True

has_descent(i, side='right', positive=False)
Return whether self has 𝑖 as a descent.

INPUT:
• 𝑖 – an affine Dynkin index

OPTIONAL:

2554 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/groups/sage/groups/group_semidirect_product.html#sage.groups.group_semidirect_product.GroupSemidirectProductElement

Combinatorics, Release 9.7

• side – ‘left’ or ‘right’ (default: ‘right’)
• positive – True or False (default: False)

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: x = E.WF().an_element(); x
S0*S1*S2 * pi[2]
sage: [(i, x.has_descent(i)) for i in E.cartan_type().index_set()]
[(0, True), (1, False), (2, False)]

to_affine_weyl_left()
Project self to the left (affine Weyl group) factor in the “WF” style.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: x = E.WF().from_translation(E.lattice_basis()[1]); x
S0*S2 * pi[1]
sage: x.to_affine_weyl_left()
S0*S2

to_fundamental_group()
Project self to the right (fundamental group) factor in the “WF” style.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: x = E.WF().from_translation(E.lattice_basis()[1]); x
S0*S2 * pi[1]
sage: x.to_fundamental_group()
pi[1]

FW()
Realizes self in “FW”-style.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).FW()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Fundamental group of type ['A', 2, 1] acting on Weyl Group of type ['A', 2,
→˓ 1] (as a matrix group acting on the root lattice)

PW0()
Realizes self in “PW0”-style.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).PW0()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Multiplicative form of Coweight lattice of the Root system of type ['A',␣
→˓2] acted upon by Weyl Group of type ['A', 2] (as a matrix group acting on the␣
→˓coweight lattice)

PW0_to_WF_func(x)
Implements coercion from style “PW0” to “WF”.

EXAMPLES:

5.1. Comprehensive Module List 2555

Combinatorics, Release 9.7

sage: E = ExtendedAffineWeylGroup(["A", 2, 1])
sage: x = E.PW0().an_element(); x
t[2*Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2
sage: E.PW0_to_WF_func(x)
S0*S1*S2*S0*S1*S0

Warning: This function cannot use coercion, because it is used to define the coercion maps.

PvW0()
Realizes self in “PvW0”-style.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).PvW0()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Multiplicative form of Weight lattice of the Root system of type ['A', 2]␣
→˓acted upon by Weyl Group of type ['A', 2] (as a matrix group acting on the␣
→˓weight lattice)

class Realizations(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of the realizations of an extended affine Weyl group

class ElementMethods
Bases: object

action(la)
Action of self on a lattice element la.

INPUT:
• self – an element of the extended affine Weyl group
• la – an element of the translation lattice of the extended affine Weyl group, the lattice denoted

by the mnemonic “P” in the documentation for ExtendedAffineWeylGroup().
EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1],affine="s")
sage: x = E.FW().an_element(); x
pi[2] * s0*s1*s2
sage: la = E.lattice().an_element(); la
2*Lambdacheck[1] + 2*Lambdacheck[2]
sage: x.action(la)
5*Lambdacheck[1] - 3*Lambdacheck[2]
sage: E = ExtendedAffineWeylGroup(['C',2,1],affine="s")
sage: x = E.PW0().from_translation(E.lattice_basis()[1])
sage: x.action(E.lattice_basis()[2])
Lambdacheck[1] + Lambdacheck[2]

Warning: Must be implemented by style “PW0”.

action_on_affine_roots(beta)
Act by self on the affine root lattice element beta.

2556 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: beta = E.cartan_type().root_system().root_lattice().an_element();␣
→˓beta
2*alpha[0] + 2*alpha[1] + 3*alpha[2]
sage: x = E.FW().an_element(); x
pi[2] * S0*S1*S2
sage: x.action_on_affine_roots(beta)
alpha[0] + alpha[1]

Warning: Must be implemented by style “FW”.

alcove_walk_signs()
Return a signed alcove walk for self.

INPUT:
• An element self of the extended affine Weyl group.
OUTPUT:
• A 3-tuple (𝑔, rw, signs).
ALGORITHM:

The element self can be uniquely written self = 𝑔 * 𝑤 where 𝑔 has length zero and 𝑤 is an
element of the nonextended affine Weyl group. Let 𝑤 have reduced word rw. Starting with 𝑔
and applying simple reflections from rw, one obtains a sequence of extended affine Weyl group
elements (that is, alcoves) and simple roots. The signs give the sequence of sides on which the
alcoves lie, relative to the face indicated by the simple roots.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1]); FW=E.FW()
sage: w = FW.from_reduced_word([0,2,1,3,0])*FW.from_fundamental(1); w
pi[1] * S3*S1*S2*S0*S3
sage: w.alcove_walk_signs()
(pi[1], [3, 1, 2, 0, 3], [-1, 1, -1, -1, 1])

apply_simple_projection(i, side='right', length_increasing=True)
Return the product of self by the simple reflection 𝑠𝑖 if that product is of greater length than
self and otherwise return self.

INPUT:
• self – an element of the extended affine Weyl group
• 𝑖 – a Dynkin node (index of a simple reflection 𝑠𝑖)
• side – ‘right’ or ‘left’ (default: ‘right’) according to which side of self the reflection 𝑠𝑖 should

be multiplied
• length_increasing – True or False (default True). If False do the above with the word

“greater” replaced by “less”.
EXAMPLES:

sage: x = ExtendedAffineWeylGroup(['A',3,1]).WF().an_element(); x
S0*S1*S2*S3 * pi[3]
sage: x.apply_simple_projection(1)
S0*S1*S2*S3*S0 * pi[3]

(continues on next page)

5.1. Comprehensive Module List 2557

Combinatorics, Release 9.7

(continued from previous page)

sage: x.apply_simple_projection(1, length_increasing=False)
S0*S1*S2*S3 * pi[3]

apply_simple_reflection(i, side='right')
Apply the 𝑖-th simple reflection to self.

EXAMPLES:

sage: x = ExtendedAffineWeylGroup(['A',3,1]).WF().an_element(); x
S0*S1*S2*S3 * pi[3]
sage: x.apply_simple_reflection(1)
S0*S1*S2*S3*S0 * pi[3]
sage: x.apply_simple_reflection(0, side='left')
S1*S2*S3 * pi[3]

bruhat_le(x)
Return whether self <= 𝑥 in Bruhat order.

INPUT:
• self – an element of the extended affine Weyl group
• 𝑥 – another element with the same parent as self
EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1],print_tuple=True); WF=E.WF()
sage: W = E.affine_weyl()
sage: v = W.from_reduced_word([2,1,0])
sage: w = W.from_reduced_word([2,0,1,0])
sage: v.bruhat_le(w)
True
sage: vx = WF.from_affine_weyl(v); vx
(S2*S1*S0, pi[0])
sage: wx = WF.from_affine_weyl(w); wx
(S2*S0*S1*S0, pi[0])
sage: vx.bruhat_le(wx)
True
sage: F = E.fundamental_group()
sage: f = WF.from_fundamental(F(2))
sage: vx.bruhat_le(wx*f)
False
sage: (vx*f).bruhat_le(wx*f)
True

Warning: Must be implemented by “WF”.

coset_representative(index_set, side='right')
Return the minimum length representative in the coset of self with respect to the subgroup gen-
erated by the reflections given by index_set.

INPUT:
• self – an element of the extended affine Weyl group
• index_set – a subset of the set of Dynkin nodes
• side – ‘right’ or ‘left’ (default: ‘right’) the side on which the subgroup acts
EXAMPLES:

2558 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: E = ExtendedAffineWeylGroup(['A',3,1]); WF = E.WF()
sage: b = E.lattice_basis()
sage: I0 = E.cartan_type().classical().index_set()
sage: [WF.from_translation(x).coset_representative(index_set=I0) for x␣
→˓in b]
[pi[1], pi[2], pi[3]]

dual_action(la)
Action of self on a dual lattice element la.

INPUT:
• self – an element of the extended affine Weyl group
• la – an element of the dual translation lattice of the extended affine Weyl group, the lattice

denoted by the mnemonic “Pv” in the documentation for ExtendedAffineWeylGroup().
EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1],affine="s")
sage: x = E.FW().an_element(); x
pi[2] * s0*s1*s2
sage: la = E.dual_lattice().an_element(); la
2*Lambda[1] + 2*Lambda[2]
sage: x.dual_action(la)
5*Lambda[1] - 3*Lambda[2]
sage: E = ExtendedAffineWeylGroup(['C',2,1],affine="s")
sage: x = E.PvW0().from_dual_translation(E.dual_lattice_basis()[1])
sage: x.dual_action(E.dual_lattice_basis()[2])
Lambda[1] + Lambda[2]

Warning: Must be implemented by style “PvW0”.

face_data(i)
Return a description of one of the bounding hyperplanes of the alcove of an extended affine Weyl
group element.

INPUT:
• self – An element of the extended affine Weyl group
• 𝑖 – an affine Dynkin node
OUTPUT:
• A 2-tuple (𝑚,𝛽) defined as follows.
ALGORITHM:

Each element of the extended affine Weyl group corresponds to an alcove, and each alcove has a
face for each affine Dynkin node. Given the data of self and 𝑖, let the extended affine Weyl group
element self act on the affine simple root 𝛼𝑖, yielding a real affine root, which can be expressed
uniquely as

“𝑠𝑒𝑙𝑓“ · 𝛼𝑖 = 𝑚𝛿 + 𝛽

where 𝑚 is an integer (the height of the 𝑖-th bounding hyperplane of the alcove of self) and 𝛽 is
a classical root (the normal vector for the hyperplane which points towards the alcove).

EXAMPLES:

5.1. Comprehensive Module List 2559

Combinatorics, Release 9.7

sage: x = ExtendedAffineWeylGroup(['A',2,1]).PW0().an_element(); x
t[2*Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2
sage: x.face_data(0)
(-1, alpha[1])

first_descent(side='right', positive=False, index_set=None)
Return the first descent of self.

INPUT:
• side – ‘left’ or ‘right’ (default: ‘right’)
• positive – True or False (default: False)
• index_set – an optional subset of Dynkin nodes
If index_set is not None, then the descent must be in the index_set.

EXAMPLES:

sage: x = ExtendedAffineWeylGroup(['A',3,1]).WF().an_element(); x
S0*S1*S2*S3 * pi[3]
sage: x.first_descent()
0
sage: x.first_descent(side='left')
0
sage: x.first_descent(positive=True)
1
sage: x.first_descent(side='left',positive=True)
1

has_descent(i, side='right', positive=False)
Return whether self * 𝑠𝑖 < self where 𝑠𝑖 is the 𝑖-th simple reflection in the realized group.

INPUT:
• i – an affine Dynkin index
OPTIONAL:
• side – ‘right’ or ‘left’ (default: ‘right’)
• positive – True or False (default: False)
If side``='left' then the reflection acts on the left. If ``positive = True
then the inequality is reversed.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1]); WF=E.WF()
sage: F = E.fundamental_group()
sage: x = WF.an_element(); x
S0*S1*S2*S3 * pi[3]
sage: I = E.cartan_type().index_set()
sage: [(i, x.has_descent(i)) for i in I]
[(0, True), (1, False), (2, False), (3, False)]
sage: [(i, x.has_descent(i,side='left')) for i in I]
[(0, True), (1, False), (2, False), (3, False)]
sage: [(i, x.has_descent(i,positive=True)) for i in I]
[(0, False), (1, True), (2, True), (3, True)]

Warning: This method is abstract because it is used in the recursive coercions between
“PW0” and “WF” and other methods use this coercion.

2560 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

is_affine_grassmannian()
Return whether self is affine Grassmannian.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1]); PW0=E.PW0()
sage: F = E.fundamental_group()
sage: [(x,PW0.from_fundamental(x).is_affine_grassmannian()) for x in F]
[(pi[0], True), (pi[1], True), (pi[2], True)]
sage: b = E.lattice_basis()
sage: [(-x,PW0.from_translation(-x).is_affine_grassmannian()) for x in b]
[(-Lambdacheck[1], True), (-Lambdacheck[2], True)]

is_grassmannian(index_set, side='right')
Return whether self is of minimum length in its coset with respect to the subgroup generated by
the reflections of index_set.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0=E.PW0()
sage: x = PW0.from_translation(E.lattice_basis()[1]); x
t[Lambdacheck[1]]
sage: I = E.cartan_type().index_set()
sage: [(i, x.is_grassmannian(index_set=[i])) for i in I]
[(0, True), (1, False), (2, True), (3, True)]
sage: [(i, x.is_grassmannian(index_set=[i], side='left')) for i in I]
[(0, False), (1, True), (2, True), (3, True)]

is_translation()
Return whether self is a translation element or not.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1]); FW=E.FW()
sage: F = E.fundamental_group()
sage: FW.from_affine_weyl(E.affine_weyl().from_reduced_word([1,2,1,0])).
→˓is_translation()
True
sage: FW.from_translation(E.lattice_basis()[1]).is_translation()
True
sage: FW.simple_reflection(0).is_translation()
False

length()
Return the length of self in the Coxeter group sense.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0=E.PW0()
sage: I0 = E.cartan_type().classical().index_set()
sage: [PW0.from_translation(E.lattice_basis()[i]).length() for i in I0]
[3, 4, 3]

to_affine_grassmannian()
Return the unique affine Grassmannian element in the same coset of self with respect to the finite
Weyl group acting on the right.

5.1. Comprehensive Module List 2561

Combinatorics, Release 9.7

EXAMPLES:

sage: elts = ExtendedAffineWeylGroup(['A',2,1]).PW0().some_elements()
sage: [(x, x.to_affine_grassmannian()) for x in elts]
[(t[2*Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2, t[2*Lambdacheck[1] +␣
→˓2*Lambdacheck[2]] * s1*s2*s1)]

to_affine_weyl_left()
Return the projection of self to the affine Weyl group on the left, after factorizing using the style
“WF”.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0 = E.PW0()
sage: b = E.lattice_basis()
sage: [(x,PW0.from_translation(x).to_affine_weyl_left()) for x in b]
[(Lambdacheck[1], S0*S3*S2), (Lambdacheck[2], S0*S3*S1*S0),␣
→˓(Lambdacheck[3], S0*S1*S2)]

Warning: Must be implemented in style “WF”.

to_affine_weyl_right()
Return the projection of self to the affine Weyl group on the right, after factorizing using the
style “FW”.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0=E.PW0()
sage: b = E.lattice_basis()
sage: [(x,PW0.from_translation(x).to_affine_weyl_right()) for x in b]
[(Lambdacheck[1], S3*S2*S1), (Lambdacheck[2], S2*S3*S1*S2),␣
→˓(Lambdacheck[3], S1*S2*S3)]

Warning: Must be implemented in style “FW”.

to_classical_weyl()
Return the image of self under the homomorphism to the classical Weyl group.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',3,1]).WF().simple_reflection(0).to_
→˓classical_weyl()
s1*s2*s3*s2*s1

Warning: Must be implemented in style “PW0”.

to_dual_classical_weyl()
Return the image of self under the homomorphism to the dual form of the classical Weyl group.

EXAMPLES:

2562 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: x = ExtendedAffineWeylGroup(['A',3,1]).WF().simple_reflection(0).
→˓to_dual_classical_weyl(); x
s1*s2*s3*s2*s1
sage: x.parent()
Weyl Group of type ['A', 3] (as a matrix group acting on the weight␣
→˓lattice)

Warning: Must be implemented in style “PvW0”.

to_dual_translation_left()
Return the projection of self to the dual translation lattice after factorizing it to the left using the
style “PvW0”.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',3,1]).PvW0().simple_reflection(0).to_
→˓dual_translation_left()
Lambda[1] + Lambda[3]

Warning: Must be implemented in style “PvW0”.

to_dual_translation_right()
Return the projection of self to the dual translation lattice after factorizing it to the right using
the style “W0Pv”.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',3,1]).PW0().simple_reflection(0).to_
→˓dual_translation_right()
-Lambda[1] - Lambda[3]

Warning: Must be implemented in style “W0Pv”.

to_fundamental_group()
Return the image of self under the homomorphism to the fundamental group.

EXAMPLES:

sage: PW0 = ExtendedAffineWeylGroup(['A',3,1]).PW0()
sage: b = PW0.realization_of().lattice_basis()
sage: [(x, PW0.from_translation(x).to_fundamental_group()) for x in b]
[(Lambdacheck[1], pi[1]), (Lambdacheck[2], pi[2]), (Lambdacheck[3],␣
→˓pi[3])]

Warning: Must be implemented in style “WF”.

to_translation_left()
Return the projection of self to the translation lattice after factorizing it to the left using the style

5.1. Comprehensive Module List 2563

Combinatorics, Release 9.7

“PW0”.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',3,1]).PW0().simple_reflection(0).to_
→˓translation_left()
Lambdacheck[1] + Lambdacheck[3]

Warning: Must be implemented in style “PW0”.

to_translation_right()
Return the projection of self to the translation lattice after factorizing it to the right using the
style “W0P”.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',3,1]).PW0().simple_reflection(0).to_
→˓translation_right()
-Lambdacheck[1] - Lambdacheck[3]

Warning: Must be implemented in style “W0P”.

class ParentMethods
Bases: object

from_affine_weyl(w)
Return the image of 𝑤 under the homomorphism from the affine Weyl group into self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0=E.PW0()
sage: W = E.affine_weyl()
sage: w = W.from_reduced_word([2,1,3,0])
sage: x = PW0.from_affine_weyl(w); x
t[Lambdacheck[1] - 2*Lambdacheck[2] + Lambdacheck[3]] * s3*s1
sage: FW = E.FW()
sage: y = FW.from_affine_weyl(w); y
S2*S3*S1*S0
sage: FW(x) == y
True

Warning: Must be implemented in style “WF” and “FW”.

from_classical_weyl(w)
Return the image of 𝑤 from the finite Weyl group into self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1]); PW0=E.PW0()
sage: W0 = E.classical_weyl()
sage: w = W0.from_reduced_word([2,1,3])

(continues on next page)

2564 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: y = PW0.from_classical_weyl(w); y
s2*s3*s1
sage: y.parent() == PW0
True
sage: y.to_classical_weyl() == w
True
sage: W0P = E.W0P()
sage: z = W0P.from_classical_weyl(w); z
s2*s3*s1
sage: z.parent() == W0P
True
sage: W0P(y) == z
True
sage: FW = E.FW()
sage: x = FW.from_classical_weyl(w); x
S2*S3*S1
sage: x.parent() == FW
True
sage: FW(y) == x
True
sage: FW(z) == x
True

Warning: Must be implemented in style “PW0” and “W0P”.

from_dual_classical_weyl(w)
Return the image of 𝑤 from the finite Weyl group of dual form into self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1]); PvW0 = E.PvW0()
sage: W0v = E.dual_classical_weyl()
sage: w = W0v.from_reduced_word([2,1,3])
sage: y = PvW0.from_dual_classical_weyl(w); y
s2*s3*s1
sage: y.parent() == PvW0
True
sage: y.to_dual_classical_weyl() == w
True
sage: x = E.FW().from_dual_classical_weyl(w); x
S2*S3*S1
sage: PvW0(x) == y
True

Warning: Must be implemented in style “PvW0” and “W0Pv”.

from_dual_translation(la)
Return the image of la under the homomorphism of the dual version of the translation lattice into
self.

5.1. Comprehensive Module List 2565

Combinatorics, Release 9.7

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1]); PvW0 = E.PvW0()
sage: bv = E.dual_lattice_basis(); bv
Finite family {1: Lambda[1], 2: Lambda[2]}
sage: x = PvW0.from_dual_translation(2*bv[1]-bv[2]); x
t[2*Lambda[1] - Lambda[2]]
sage: FW = E.FW()
sage: y = FW.from_dual_translation(2*bv[1]-bv[2]); y
S0*S2*S0*S1
sage: FW(x) == y
True

from_fundamental(x)
Return the image of 𝑥 under the homomorphism from the fundamental group into self.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',3,1])
sage: PW0=E.PW0()
sage: F = E.fundamental_group()
sage: Is = F.special_nodes()
sage: [(i, PW0.from_fundamental(F(i))) for i in Is]
[(0, 1), (1, t[Lambdacheck[1]] * s1*s2*s3), (2, t[Lambdacheck[2]] *␣
→˓s2*s3*s1*s2), (3, t[Lambdacheck[3]] * s3*s2*s1)]
sage: [(i, E.W0P().from_fundamental((F(i)))) for i in Is]
[(0, 1), (1, s1*s2*s3 * t[-Lambdacheck[3]]), (2, s2*s3*s1*s2 * t[-
→˓Lambdacheck[2]]), (3, s3*s2*s1 * t[-Lambdacheck[1]])]
sage: [(i, E.WF().from_fundamental(F(i))) for i in Is]
[(0, 1), (1, pi[1]), (2, pi[2]), (3, pi[3])]

Warning: This method must be implemented by the “WF” and “FW” realizations.

from_reduced_word(word)
Converts an affine or finite reduced word into a group element.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).PW0().from_reduced_word([1,0,1,
→˓2])
t[-Lambdacheck[1] + 2*Lambdacheck[2]]

from_translation(la)
Return the element of translation by la in self.

INPUT:
• self – a realization of the extended affine Weyl group
• la – an element of the translation lattice
In the notation of the documentation for ExtendedAffineWeylGroup(), la must be an element
of “P”.

EXAMPLES:

2566 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: E = ExtendedAffineWeylGroup(['A',2,1]); PW0=E.PW0()
sage: b = E.lattice_basis(); b
Finite family {1: Lambdacheck[1], 2: Lambdacheck[2]}
sage: x = PW0.from_translation(2*b[1]-b[2]); x
t[2*Lambdacheck[1] - Lambdacheck[2]]
sage: FW = E.FW()
sage: y = FW.from_translation(2*b[1]-b[2]); y
S0*S2*S0*S1
sage: FW(x) == y
True

Since the implementation as a semidirect product requires wrapping the lattice group to make it
multiplicative, we cannot declare that this map is a morphism for sage Groups().

Warning: This method must be implemented by the “PW0” and “W0P” realizations.

simple_reflection(i)
Return the 𝑖-th simple reflection in self.

INPUT:
• self – a realization of the extended affine Weyl group
• 𝑖 – An affine Dynkin node
EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',3,1]).PW0().simple_reflection(0)
t[Lambdacheck[1] + Lambdacheck[3]] * s1*s2*s3*s2*s1
sage: ExtendedAffineWeylGroup(['C',2,1]).WF().simple_reflection(0)
S0
sage: ExtendedAffineWeylGroup(['D',3,2]).PvW0().simple_reflection(1)
s1

simple_reflections()
Return a family from the set of affine Dynkin nodes to the simple reflections in the realization of
the extended affine Weyl group.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',3,1]).W0P().simple_reflections()
Finite family {0: s1*s2*s3*s2*s1 * t[-Lambdacheck[1] - Lambdacheck[3]],␣
→˓1: s1, 2: s2, 3: s3}
sage: ExtendedAffineWeylGroup(['A',3,1]).WF().simple_reflections()
Finite family {0: S0, 1: S1, 2: S2, 3: S3}
sage: ExtendedAffineWeylGroup(['A',3,1], print_tuple=True).FW().simple_
→˓reflections()
Finite family {0: (pi[0], S0), 1: (pi[0], S1), 2: (pi[0], S2), 3: (pi[0],
→˓ S3)}
sage: ExtendedAffineWeylGroup(['A',3,1],fundamental="f",print_
→˓tuple=True).FW().simple_reflections()
Finite family {0: (f[0], S0), 1: (f[0], S1), 2: (f[0], S2), 3: (f[0],␣
→˓S3)}
sage: ExtendedAffineWeylGroup(['A',3,1]).PvW0().simple_reflections()
Finite family {0: t[Lambda[1] + Lambda[3]] * s1*s2*s3*s2*s1, 1: s1, 2:␣
→˓s2, 3: s3}

5.1. Comprehensive Module List 2567

Combinatorics, Release 9.7

super_categories()
EXAMPLES:

sage: R = ExtendedAffineWeylGroup(['A',2,1]).Realizations(); R
Category of realizations of Extended affine Weyl group of type ['A', 2, 1]
sage: R.super_categories()
[Category of associative inverse realizations of unital magmas]

W0P()
Realizes self in “W0P”-style.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).W0P()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Weyl Group of type ['A', 2] (as a matrix group acting on the coweight␣
→˓lattice) acting on Multiplicative form of Coweight lattice of the Root system␣
→˓of type ['A', 2]

W0Pv()
Realizes self in “W0Pv”-style.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).W0Pv()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Weyl Group of type ['A', 2] (as a matrix group acting on the weight␣
→˓lattice) acting on Multiplicative form of Weight lattice of the Root system␣
→˓of type ['A', 2]

WF()
Realizes self in “WF”-style.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).WF()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root␣
→˓lattice) acted upon by Fundamental group of type ['A', 2, 1]

WF_to_PW0_func(x)
Coercion from style “WF” to “PW0”.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(["A", 2, 1])
sage: x = E.WF().an_element(); x
S0*S1*S2 * pi[2]
sage: E.WF_to_PW0_func(x)
t[Lambdacheck[1] + 2*Lambdacheck[2]] * s1*s2*s1

Warning: Since this is used to define some coercion maps it cannot itself use coercion.

a_realization()
Return the default realization of an extended affine Weyl group.

2568 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).a_realization()
Extended affine Weyl group of type ['A', 2, 1] realized by Semidirect product␣
→˓of Multiplicative form of Coweight lattice of the Root system of type ['A',␣
→˓2] acted upon by Weyl Group of type ['A', 2] (as a matrix group acting on the␣
→˓coweight lattice)

affine_weyl()
Return the affine Weyl group of self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).affine_weyl()
Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root lattice)
sage: ExtendedAffineWeylGroup(['A',5,2]).affine_weyl()
Weyl Group of type ['B', 3, 1]^* (as a matrix group acting on the root lattice)
sage: ExtendedAffineWeylGroup(['A',4,2]).affine_weyl()
Weyl Group of type ['BC', 2, 2] (as a matrix group acting on the root lattice)
sage: ExtendedAffineWeylGroup(CartanType(['A',4,2]).dual()).affine_weyl()
Weyl Group of type ['BC', 2, 2]^* (as a matrix group acting on the root lattice)

cartan_type()
The Cartan type of self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(["D",3,2]).cartan_type()
['C', 2, 1]^*

classical_weyl()
Return the classical Weyl group of self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).classical_weyl()
Weyl Group of type ['A', 2] (as a matrix group acting on the coweight lattice)
sage: ExtendedAffineWeylGroup(['A',5,2]).classical_weyl()
Weyl Group of type ['C', 3] (as a matrix group acting on the weight lattice)
sage: ExtendedAffineWeylGroup(['A',4,2]).classical_weyl()
Weyl Group of type ['C', 2] (as a matrix group acting on the weight lattice)
sage: ExtendedAffineWeylGroup(CartanType(['A',4,2]).dual()).classical_weyl()
Weyl Group of type ['C', 2] (as a matrix group acting on the coweight lattice)

classical_weyl_to_affine(w)
The image of 𝑤 under the homomorphism from the classical Weyl group into the affine Weyl group.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: W0 = E.classical_weyl()
sage: w = W0.from_reduced_word([1,2]); w
s1*s2
sage: v = E.classical_weyl_to_affine(w); v
S1*S2

5.1. Comprehensive Module List 2569

Combinatorics, Release 9.7

dual_classical_weyl()
Return the dual version of the classical Weyl group of self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).dual_classical_weyl()
Weyl Group of type ['A', 2] (as a matrix group acting on the weight lattice)
sage: ExtendedAffineWeylGroup(['A',5,2]).dual_classical_weyl()
Weyl Group of type ['C', 3] (as a matrix group acting on the weight lattice)

dual_classical_weyl_to_affine(w)
The image of 𝑤 under the homomorphism from the dual version of the classical Weyl group into the affine
Weyl group.

EXAMPLES:

sage: E = ExtendedAffineWeylGroup(['A',2,1])
sage: W0v = E.dual_classical_weyl()
sage: w = W0v.from_reduced_word([1,2]); w
s1*s2
sage: v = E.dual_classical_weyl_to_affine(w); v
S1*S2

dual_lattice()
Return the dual version of the translation lattice for self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).dual_lattice()
Weight lattice of the Root system of type ['A', 2]
sage: ExtendedAffineWeylGroup(['A',5,2]).dual_lattice()
Weight lattice of the Root system of type ['C', 3]

dual_lattice_basis()
Return the distinguished basis of the dual version of the translation lattice for self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).dual_lattice_basis()
Finite family {1: Lambda[1], 2: Lambda[2]}
sage: ExtendedAffineWeylGroup(['A',5,2]).dual_lattice_basis()
Finite family {1: Lambda[1], 2: Lambda[2], 3: Lambda[3]}

exp_dual_lattice()
Return the multiplicative version of the dual version of the translation lattice for self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).exp_dual_lattice()
Multiplicative form of Weight lattice of the Root system of type ['A', 2]

exp_lattice()
Return the multiplicative version of the translation lattice for self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).exp_lattice()
Multiplicative form of Coweight lattice of the Root system of type ['A', 2]

2570 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

fundamental_group()
Return the abstract fundamental group.

EXAMPLES:

sage: F = ExtendedAffineWeylGroup(['D',5,1]).fundamental_group(); F
Fundamental group of type ['D', 5, 1]
sage: [a for a in F]
[pi[0], pi[1], pi[4], pi[5]]

group_generators()
Return a set of generators for the default realization of self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).group_generators()
(t[Lambdacheck[1]], t[Lambdacheck[2]], s1, s2)

lattice()
Return the translation lattice for self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).lattice()
Coweight lattice of the Root system of type ['A', 2]
sage: ExtendedAffineWeylGroup(['A',5,2]).lattice()
Weight lattice of the Root system of type ['C', 3]
sage: ExtendedAffineWeylGroup(['A',4,2]).lattice()
Weight lattice of the Root system of type ['C', 2]
sage: ExtendedAffineWeylGroup(CartanType(['A',4,2]).dual()).lattice()
Coweight lattice of the Root system of type ['B', 2]
sage: ExtendedAffineWeylGroup(CartanType(['A',2,1]), general_linear=True).
→˓lattice()
Ambient space of the Root system of type ['A', 2]

lattice_basis()
Return the distinguished basis of the translation lattice for self.

EXAMPLES:

sage: ExtendedAffineWeylGroup(['A',2,1]).lattice_basis()
Finite family {1: Lambdacheck[1], 2: Lambdacheck[2]}
sage: ExtendedAffineWeylGroup(['A',5,2]).lattice_basis()
Finite family {1: Lambda[1], 2: Lambda[2], 3: Lambda[3]}
sage: ExtendedAffineWeylGroup(['A',4,2]).lattice_basis()
Finite family {1: Lambda[1], 2: Lambda[2]}
sage: ExtendedAffineWeylGroup(CartanType(['A',4,2]).dual()).lattice_basis()
Finite family {1: Lambdacheck[1], 2: Lambdacheck[2]}

5.1. Comprehensive Module List 2571

Combinatorics, Release 9.7

5.1.261 Fundamental Group of an Extended Affine Weyl Group

AUTHORS:

• Mark Shimozono (2013) initial version

class sage.combinat.root_system.fundamental_group.FundamentalGroupElement(parent, x)
Bases: sage.structure.element.MultiplicativeGroupElement

This should not be called directly

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: x = FundamentalGroupOfExtendedAffineWeylGroup(['A',4,1], prefix="f").an_
→˓element()
sage: TestSuite(x).run()

act_on_affine_lattice(wt)
Act by self on the element wt of an affine root/weight lattice realization.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1])
sage: wt = RootSystem(F.cartan_type()).weight_lattice().an_element(); wt
2*Lambda[0] + 2*Lambda[1] + 3*Lambda[2]
sage: F(3).act_on_affine_lattice(wt)
2*Lambda[0] + 3*Lambda[1] + 2*Lambda[3]

Warning: Doesn’t work on ambient spaces.

act_on_affine_weyl(w)
Act by self on the element 𝑤 of the affine Weyl group.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1])
sage: W = WeylGroup(F.cartan_type(),prefix="s")
sage: w = W.from_reduced_word([2,3,0])
sage: F(1).act_on_affine_weyl(w).reduced_word()
[3, 0, 1]

inverse()
Return the inverse element of self.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1])
sage: F(1).inverse()

(continues on next page)

2572 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.MultiplicativeGroupElement

Combinatorics, Release 9.7

(continued from previous page)

pi[3]
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['E',6,1], prefix="f")
sage: F(1).inverse()
f[6]

value()
Return the special node which indexes the special automorphism self.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',4,1], prefix="f")
sage: F.special_nodes()
(0, 1, 2, 3, 4)
sage: x = F(4); x
f[4]
sage: x.value()
4

class sage.combinat.root_system.fundamental_group.FundamentalGroupGL(cartan_type, prefix='pi')
Bases: sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class

Fundamental group of 𝐺𝐿𝑛. It is just the integers with extra privileges.

Element
alias of FundamentalGroupGLElement

action(i)
The action of the 𝑖-th automorphism on the affine Dynkin node set.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_
→˓linear=True)
sage: F.action(4)(2)
0
sage: F.action(-4)(2)
1

an_element()
An element of self.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_linear=True).
→˓an_element()
pi[5]

dual_node(i)
The node whose special automorphism is inverse to that of 𝑖.

EXAMPLES:

5.1. Comprehensive Module List 2573

Combinatorics, Release 9.7

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_
→˓linear=True)
sage: F.dual_node(2)
-2

family()
The family associated with the set of special nodes.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: fam = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_
→˓linear=True).family() # indirect doctest
sage: fam
Lazy family (<lambda>(i))_{i in Integer Ring}
sage: fam[-3]
-3

group_generators()
Return group generators for self.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_linear=True).
→˓group_generators()
(pi[1],)

one()
Return the identity element of the fundamental group.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_linear=True).
→˓one()
pi[0]

product(x, y)
Return the product of 𝑥 and 𝑦.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_
→˓linear=True)
sage: F.special_nodes()
Integer Ring
sage: F(2)*F(3)

(continues on next page)

2574 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

pi[5]
sage: F(1)*F(3)^(-1)
pi[-2]

reduced_word(i)
A reduced word for the finite permutation part of the special automorphism indexed by 𝑖.

More precisely, return a reduced word for the finite Weyl group element 𝑢 where 𝑖-th automorphism (ex-
pressed in the extended affine Weyl group) has the form 𝑡𝑢 where 𝑡 is a translation element.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_
→˓linear=True)
sage: F.reduced_word(10)
(1, 2)

some_elements()
Return some elements of self.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_linear=True).
→˓some_elements()
[pi[-2], pi[2], pi[5]]

class sage.combinat.root_system.fundamental_group.FundamentalGroupGLElement(parent, x)
Bases: sage.combinat.root_system.fundamental_group.FundamentalGroupElement

act_on_classical_ambient(wt)
Act by self on the classical ambient weight vector wt.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_
→˓linear=True)
sage: f = F.an_element(); f
pi[5]
sage: la = F.cartan_type().classical().root_system().ambient_space().an_
→˓element(); la
(2, 2, 3)
sage: f.act_on_classical_ambient(la)
(2, 3, 2)

sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup(cartan_type,
pre-
fix='pi',
gen-
eral_linear=None)

Factory for the fundamental group of an extended affine Weyl group.

5.1. Comprehensive Module List 2575

Combinatorics, Release 9.7

INPUT:

• cartan_type – a Cartan type that is either affine or finite, with the latter being a shorthand for the untwisted
affinization

• prefix (default: ‘pi’) – string that labels the elements of the group

• general_linear – (default: None, meaning False) In untwisted type A, if True, use the universal central
extension

Fundamental group

Associated to each affine Cartan type �̃� is an extended affine Weyl group𝐸. Its subgroup of length-zero elements
is called the fundamental group𝐹 . The group𝐹 can be identified with a subgroup of the group of automorphisms
of the affine Dynkin diagram. As such, every element of 𝐹 can be viewed as a permutation of the set 𝐼 of affine
Dynkin nodes.

Let 0 ∈ 𝐼 be the distinguished affine node; it is the one whose removal produces the associated finite Cartan type
(call it𝑋). A node 𝑖 ∈ 𝐼 is called special if some automorphism of the affine Dynkin diagram, sends 0 to 𝑖. The
node 0 is always special due to the identity automorphism. There is a bijection of the set of special nodes with
the fundamental group. We denote the image of 𝑖 by 𝜋𝑖. The structure of 𝐹 is determined as follows.

• �̃� is untwisted – 𝐹 is isomorphic to 𝑃∨/𝑄∨ where 𝑃∨ and𝑄∨ are the coweight and coroot lattices of type
𝑋 . The group 𝑃∨/𝑄∨ consists of the cosets 𝜔∨𝑖 + 𝑄∨ for special nodes 𝑖, where 𝜔∨0 = 0 by convention.
In this case the special nodes 𝑖 are the cominuscule nodes, the ones such that 𝜔∨𝑖 (𝛼𝑗) is 0 or 1 for all
𝑗 ∈ 𝐼0 = 𝐼 ∖ {0}. For 𝑖 special, addition by 𝜔∨𝑖 +𝑄∨ permutes 𝑃∨/𝑄∨ and therefore permutes the set of
special nodes. This permutation extends uniquely to an automorphism of the affine Dynkin diagram.

• �̃� is dual untwisted – (that is, the dual of �̃� is untwisted) 𝐹 is isomorphic to 𝑃/𝑄 where 𝑃 and 𝑄 are the
weight and root lattices of type𝑋 . The group 𝑃/𝑄 consists of the cosets 𝜔𝑖+𝑄 for special nodes 𝑖, where
𝜔0 = 0 by convention. In this case the special nodes 𝑖 are the minuscule nodes, the ones such that 𝛼∨𝑗 (𝜔𝑖)
is 0 or 1 for all 𝑗 ∈ 𝐼0. For 𝑖 special, addition by 𝜔𝑖 +𝑄 permutes 𝑃/𝑄 and therefore permutes the set of
special nodes. This permutation extends uniquely to an automorphism of the affine Dynkin diagram.

• �̃� is mixed – (that is, not of the above two types) 𝐹 is the trivial group.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1]); F
Fundamental group of type ['A', 3, 1]
sage: F.cartan_type().dynkin_diagram()
0
O-------+
| |
| |
O---O---O
1 2 3
A3~
sage: F.special_nodes()
(0, 1, 2, 3)
sage: F(1)^2
pi[2]
sage: F(1)*F(2)
pi[3]

(continues on next page)

2576 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: F(3)^(-1)
pi[1]

sage: F = FundamentalGroupOfExtendedAffineWeylGroup("B3"); F
Fundamental group of type ['B', 3, 1]
sage: F.cartan_type().dynkin_diagram()

O 0
|
|

O---O=>=O
1 2 3
B3~
sage: F.special_nodes()
(0, 1)

sage: F = FundamentalGroupOfExtendedAffineWeylGroup("C2"); F
Fundamental group of type ['C', 2, 1]
sage: F.cartan_type().dynkin_diagram()
O=>=O=<=O
0 1 2
C2~
sage: F.special_nodes()
(0, 2)

sage: F = FundamentalGroupOfExtendedAffineWeylGroup("D4"); F
Fundamental group of type ['D', 4, 1]
sage: F.cartan_type().dynkin_diagram()

O 4
|
|

O---O---O
1 |2 3

|
O 0

D4~
sage: F.special_nodes()
(0, 1, 3, 4)
sage: (F(4), F(4)^2)
(pi[4], pi[0])

sage: F = FundamentalGroupOfExtendedAffineWeylGroup("D5"); F
Fundamental group of type ['D', 5, 1]
sage: F.cartan_type().dynkin_diagram()

0 O O 5
| |
| |

O---O---O---O
1 2 3 4
D5~
sage: F.special_nodes()
(0, 1, 4, 5)
sage: (F(5), F(5)^2, F(5)^3, F(5)^4)

(continues on next page)

5.1. Comprehensive Module List 2577

Combinatorics, Release 9.7

(continued from previous page)

(pi[5], pi[1], pi[4], pi[0])
sage: F = FundamentalGroupOfExtendedAffineWeylGroup("E6"); F
Fundamental group of type ['E', 6, 1]
sage: F.cartan_type().dynkin_diagram()

O 0
|
|
O 2
|
|

O---O---O---O---O
1 3 4 5 6
E6~
sage: F.special_nodes()
(0, 1, 6)
sage: F(1)^2
pi[6]

sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['D',4,2]); F
Fundamental group of type ['C', 3, 1]^*
sage: F.cartan_type().dynkin_diagram()
O=<=O---O=>=O
0 1 2 3
C3~*
sage: F.special_nodes()
(0, 3)

We also implement a fundamental group for𝐺𝐿𝑛. It is defined to be the group of integers, which is the covering
group of the fundamental group Z/nZ for affine 𝑆𝐿𝑛:

sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_linear=True);
→˓ F
Fundamental group of GL(3)
sage: x = F.an_element(); x
pi[5]
sage: x*x
pi[10]
sage: x.inverse()
pi[-5]
sage: wt = F.cartan_type().classical().root_system().ambient_space().an_element();␣
→˓wt
(2, 2, 3)
sage: x.act_on_classical_ambient(wt)
(2, 3, 2)
sage: w = WeylGroup(F.cartan_type(),prefix="s").an_element(); w
s0*s1*s2
sage: x.act_on_affine_weyl(w)
s2*s0*s1

2578 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class(cartan_type,
pre-
fix,
fi-
nite=True)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The group of length zero elements in the extended affine Weyl group.

Element
alias of FundamentalGroupElement

action(i)
Return a function which permutes the affine Dynkin node set by the 𝑖-th special automorphism.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1])
sage: [[(i, j, F.action(i)(j)) for j in F.index_set()] for i in F.special_
→˓nodes()]
[[(0, 0, 0), (0, 1, 1), (0, 2, 2)], [(1, 0, 1), (1, 1, 2), (1, 2, 0)], [(2, 0,␣
→˓2), (2, 1, 0), (2, 2, 1)]]
sage: G = FundamentalGroupOfExtendedAffineWeylGroup(['D',4,1])
sage: [[(i, j, G.action(i)(j)) for j in G.index_set()] for i in G.special_
→˓nodes()]
[[(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3), (0, 4, 4)], [(1, 0, 1), (1, 1, 0),
→˓ (1, 2, 2), (1, 3, 4), (1, 4, 3)], [(3, 0, 3), (3, 1, 4), (3, 2, 2), (3, 3,␣
→˓0), (3, 4, 1)], [(4, 0, 4), (4, 1, 3), (4, 2, 2), (4, 3, 1), (4, 4, 0)]]

an_element()
Return an element of self.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: FundamentalGroupOfExtendedAffineWeylGroup(['A',4,1],prefix="f").an_
→˓element()
f[4]

cartan_type()
The Cartan type of self.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1]).cartan_type()
['A', 3, 1]

dual_node(i)
Return the node that indexes the inverse of the 𝑖-th element.

EXAMPLES:

5.1. Comprehensive Module List 2579

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',4,1])
sage: [(i, F.dual_node(i)) for i in F.special_nodes()]
[(0, 0), (1, 4), (2, 3), (3, 2), (4, 1)]
sage: G = FundamentalGroupOfExtendedAffineWeylGroup(['E',6,1])
sage: [(i, G.dual_node(i)) for i in G.special_nodes()]
[(0, 0), (1, 6), (6, 1)]
sage: H = FundamentalGroupOfExtendedAffineWeylGroup(['D',5,1])
sage: [(i, H.dual_node(i)) for i in H.special_nodes()]
[(0, 0), (1, 1), (4, 5), (5, 4)]

group_generators()
Return a tuple of generators of the fundamental group.

Warning: This returns the entire group, a necessary behavior because it is used in __iter__().

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: FundamentalGroupOfExtendedAffineWeylGroup(['E',6,1],prefix="f").group_
→˓generators()
Finite family {0: f[0], 1: f[1], 6: f[6]}

index_set()
The node set of the affine Cartan type of self.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1]).index_set()
(0, 1, 2)

one()
Return the identity element of the fundamental group.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1])
sage: F.one()
pi[0]

product(x, y)
Return the product of 𝑥 and 𝑦.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1])

(continues on next page)

2580 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: F.special_nodes()
(0, 1, 2, 3)
sage: F(2)*F(3)
pi[1]
sage: F(1)*F(3)^(-1)
pi[2]

reduced_word(i)
Return a reduced word for the finite Weyl group element associated with the 𝑖-th special automorphism.

More precisely, for each special node 𝑖, self.reduced_word(i) is a reduced word for the element 𝑣 in
the finite Weyl group such that in the extended affine Weyl group, the 𝑖-th special automorphism is equal
to 𝑡𝑣 where 𝑡 is a translation element.

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1])
sage: [(i, F.reduced_word(i)) for i in F.special_nodes()]
[(0, ()), (1, (1, 2, 3)), (2, (2, 1, 3, 2)), (3, (3, 2, 1))]

special_nodes()
Return the special nodes of self.

See sage.combinat.root_system.cartan_type.special_nodes().

EXAMPLES:

sage: from sage.combinat.root_system.fundamental_group import␣
→˓FundamentalGroupOfExtendedAffineWeylGroup
sage: FundamentalGroupOfExtendedAffineWeylGroup(['D',4,1]).special_nodes()
(0, 1, 3, 4)
sage: FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1]).special_nodes()
(0, 1, 2)
sage: FundamentalGroupOfExtendedAffineWeylGroup(['C',3,1]).special_nodes()
(0, 3)
sage: FundamentalGroupOfExtendedAffineWeylGroup(['D',4,2]).special_nodes()
(0, 3)
sage: FundamentalGroupOfExtendedAffineWeylGroup(['A',2,1], general_linear=True).
→˓special_nodes()
Integer Ring

5.1.262 Root system data for folded Cartan types

AUTHORS:

• Travis Scrimshaw (2013-01-12) - Initial version

class sage.combinat.root_system.type_folded.CartanTypeFolded(cartan_type, folding_of, orbit)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
sage_object.SageObject

A Cartan type realized from a (Dynkin) diagram folding.

5.1. Comprehensive Module List 2581

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

Given a Cartan type 𝑋 , we say �̂� is a folded Cartan type of 𝑋 if there exists a diagram folding of the Dynkin
diagram of �̂� onto 𝑋 .

A folding of a simply-laced Dynkin diagram𝐷 with index set 𝐼 is an automorphism 𝜎 of𝐷 where all nodes any
orbit of 𝜎 are not connected. The resulting Dynkin diagram �̂� is induced by 𝐼/𝜎 where we identify edges in �̂�
which are not incident and add a 𝑘-edge if we identify 𝑘 incident edges and the arrow is pointing towards the
indicent note. We denote the index set of �̂� by 𝐼 , and by abuse of notation, we denote the folding by 𝜎.

We also have scaling factors 𝛾𝑖 for 𝑖 ∈ 𝐼 and defined as the unique numbers such that the map Λ𝑗 ↦→
𝛾𝑗
∑︀
𝑖∈𝜎−1(𝑗) Λ𝑖 is the smallest proper embedding of the weight lattice of 𝑋 to �̂� .

If the Cartan type is simply laced, the default folding is the one induced from the identity map on 𝐷.

If 𝑋 is affine type, the default embeddings we consider here are:

𝐶
(1)
𝑛 , 𝐴

(2)
2𝑛 , 𝐴

(2)†
2𝑛 , 𝐷

(2)
𝑛+1 →˓ 𝐴

(1)
2𝑛−1,

𝐴
(2)
2𝑛−1, 𝐵

(1)
𝑛 →˓ 𝐷

(1)
𝑛+1,

𝐸
(2)
6 , 𝐹

(1)
4 →˓ 𝐸

(1)
6 ,

𝐷
(3)
4 , 𝐺

(1)
2 →˓ 𝐷

(1)
4 ,

and were chosen based on virtual crystals. In particular, the diagram foldings extend to crystal morphisms
and gives a realization of Kirillov-Reshetikhin crystals for non-simply-laced types as simply-laced types. See
[OSShimo03] and [FOS2009] for more details. Here we can compute 𝛾𝑖 = max(𝑐)/𝑐𝑖 where (𝑐𝑖)𝑖 are the
translation factors of the root system. In a more type-dependent way, we can define 𝛾𝑖 as follows:

1. There exists a unique arrow (multiple bond) in 𝑋 .

a. Suppose the arrow points towards 0. Then 𝛾𝑖 = 1 for all 𝑖 ∈ 𝐼 .

b. Otherwise 𝛾𝑖 is the order of 𝜎 for all 𝑖 in the connected component of 0 after removing the arrow, else
𝛾𝑖 = 1.

2. There is not a unique arrow. Thus �̂� = 𝐴
(1)
2𝑛−1 and 𝛾𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑛−1. If 𝑖 ∈ {0, 𝑛}, then 𝛾𝑖 = 2

if the arrow incident to 𝑖 points away and is 1 otherwise.

We note that 𝛾𝑖 only depends upon 𝑋 .

If the Cartan type is finite, then we consider the classical foldings/embeddings induced by the above affine fold-
ings/embeddings:

𝐶𝑛 →˓ 𝐴2𝑛−1,

𝐵𝑛 →˓ 𝐷𝑛+1,

𝐹4 →˓ 𝐸6,

𝐺2 →˓ 𝐷4.

For more information on Cartan types, see sage.combinat.root_system.cartan_type.

Other foldings may be constructed by passing in an optional folding_of second argument. See below.

INPUT:

• cartan_type – the Cartan type 𝑋 to create the folded type

• folding_of – the Cartan type �̂� which 𝑋 is a folding of

• orbit – the orbit of the Dynkin diagram automorphism 𝜎 given as a list of lists where the 𝑎-th list corre-
sponds to the 𝑎-th entry in 𝐼 or a dictionary with keys in 𝐼 and values as lists

Note: If 𝑋 is an affine type, we assume the special node is fixed under 𝜎.

EXAMPLES:

2582 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: fct = CartanType(['C',4,1]).as_folding(); fct
['C', 4, 1] as a folding of ['A', 7, 1]
sage: fct.scaling_factors()
Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 2}
sage: fct.folding_orbit()
Finite family {0: (0,), 1: (1, 7), 2: (2, 6), 3: (3, 5), 4: (4,)}

A simply laced Cartan type can be considered as a virtual type of itself:

sage: fct = CartanType(['A',4,1]).as_folding(); fct
['A', 4, 1] as a folding of ['A', 4, 1]
sage: fct.scaling_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1}
sage: fct.folding_orbit()
Finite family {0: (0,), 1: (1,), 2: (2,), 3: (3,), 4: (4,)}

Finite types:

sage: fct = CartanType(['C',4]).as_folding(); fct
['C', 4] as a folding of ['A', 7]
sage: fct.scaling_factors()
Finite family {1: 1, 2: 1, 3: 1, 4: 2}
sage: fct.folding_orbit()
Finite family {1: (1, 7), 2: (2, 6), 3: (3, 5), 4: (4,)}

sage: fct = CartanType(['F',4]).dual().as_folding(); fct
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1} as a folding of ['E', 6]
sage: fct.scaling_factors()
Finite family {1: 1, 2: 1, 3: 2, 4: 2}
sage: fct.folding_orbit()
Finite family {1: (1, 6), 2: (3, 5), 3: (4,), 4: (2,)}

REFERENCES:

• Wikipedia article Dynkin_diagram#Folding

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: fct = CartanType(['C', 4, 1]).as_folding()
sage: fct.cartan_type()
['C', 4, 1]

folding_of()
Return the Cartan type of the virtual space.

EXAMPLES:

sage: fct = CartanType(['C', 4, 1]).as_folding()
sage: fct.folding_of()
['A', 7, 1]

folding_orbit()
Return the orbits under the automorphism 𝜎 as a dictionary (of tuples).

5.1. Comprehensive Module List 2583

https://en.wikipedia.org/wiki/Dynkin_diagram#Folding

Combinatorics, Release 9.7

EXAMPLES:

sage: fct = CartanType(['C', 4, 1]).as_folding()
sage: fct.folding_orbit()
Finite family {0: (0,), 1: (1, 7), 2: (2, 6), 3: (3, 5), 4: (4,)}

scaling_factors()
Return the scaling factors of self.

EXAMPLES:

sage: fct = CartanType(['C', 4, 1]).as_folding()
sage: fct.scaling_factors()
Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 2}
sage: fct = CartanType(['BC', 4, 2]).as_folding()
sage: fct.scaling_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 2}
sage: fct = CartanType(['BC', 4, 2]).dual().as_folding()
sage: fct.scaling_factors()
Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 1}
sage: CartanType(['BC', 4, 2]).relabel({0:4, 1:3, 2:2, 3:1, 4:0}).as_folding().
→˓scaling_factors()
Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 1}

5.1.263 Root system data for Cartan types with marked nodes

class sage.combinat.root_system.type_marked.AmbientSpace(root_system, base_ring, index_set=None)
Bases: sage.combinat.root_system.ambient_space.AmbientSpace

Ambient space for a marked finite Cartan type.

It is constructed in the canonical way from the ambient space of the original Cartan type.

EXAMPLES:

sage: L = CartanType(["F",4]).marked_nodes([1,3]).root_system().ambient_space(); L
Ambient space of the Root system of type ['F', 4] with nodes (1, 3) marked
sage: TestSuite(L).run()

dimension()
Return the dimension of this ambient space.

See also:

sage.combinat.root_system.ambient_space.AmbientSpace.dimension()

EXAMPLES:

sage: L = CartanType(["F",4]).marked_nodes([1,3]).root_system().ambient_space()
sage: L.dimension()
4

fundamental_weight(i)
Return the i-th fundamental weight.

It is constructed by looking up the corresponding simple coroot in the ambient space for the original Cartan
type.

2584 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: L = CartanType(["F",4]).marked_nodes([1,3]).root_system().ambient_space()
sage: L.fundamental_weight(1)
(1, 1, 0, 0)
sage: L.fundamental_weights()
Finite family {1: (1, 1, 0, 0), 2: (2, 1, 1, 0),

3: (3/2, 1/2, 1/2, 1/2), 4: (1, 0, 0, 0)}

simple_root(i)
Return the i-th simple root.

It is constructed by looking up the corresponding simple coroot in the ambient space for the original Cartan
type.

EXAMPLES:

sage: L = CartanType(["F",4]).marked_nodes([1,3]).root_system().ambient_space()
sage: L.simple_root(1)
(0, 1, -1, 0)
sage: L.simple_roots()
Finite family {1: (0, 1, -1, 0), 2: (0, 0, 1, -1),

3: (0, 0, 0, 1), 4: (1/2, -1/2, -1/2, -1/2)}
sage: L.simple_coroots()
Finite family {1: (0, 1, -1, 0), 2: (0, 0, 1, -1),

3: (0, 0, 0, 2), 4: (1, -1, -1, -1)}

class sage.combinat.root_system.type_marked.CartanType(ct, marked_nodes)
Bases: sage.combinat.root_system.cartan_type.CartanType_decorator

A class for Cartan types with marked nodes.

INPUT:

• ct – a Cartan type

• marked_nodes – a list of marked nodes

EXAMPLES:

We take the Cartan type 𝐵4:

sage: T = CartanType(['B',4])
sage: T.dynkin_diagram()
O---O---O=>=O
1 2 3 4
B4

And mark some of its nodes:

sage: T = T.marked_nodes([2,3])
sage: T.dynkin_diagram()
O---X---X=>=O
1 2 3 4
B4 with nodes (2, 3) marked

Markings are not additive:

5.1. Comprehensive Module List 2585

Combinatorics, Release 9.7

sage: T.marked_nodes([1,4]).dynkin_diagram()
X---O---O=>=X
1 2 3 4
B4 with nodes (1, 4) marked

And trivial relabelling are honoured nicely:

sage: T = T.marked_nodes([])
sage: T.dynkin_diagram()
O---O---O=>=O
1 2 3 4
B4

ascii_art(label=<function CartanType.<lambda> at 0x7f87497bae50>, node=None)
Return an ascii art representation of this Cartan type.

EXAMPLES:

sage: print(CartanType(["G", 2]).marked_nodes([2]).ascii_art())
3

O=<=X
1 2
sage: print(CartanType(["B", 3, 1]).marked_nodes([0, 3]).ascii_art())

X 0
|
|

O---O=>=X
1 2 3
sage: print(CartanType(["F", 4, 1]).marked_nodes([0, 2]).ascii_art())
X---O---X=>=O---O
0 1 2 3 4

dual()
Implements sage.combinat.root_system.cartan_type.CartanType_abstract.dual(), using
that taking the dual and marking nodes are commuting operations.

EXAMPLES:

sage: T = CartanType(["BC",3, 2])
sage: T.marked_nodes([1,3]).dual().dynkin_diagram()
O=>=X---O=>=X
0 1 2 3
BC3~* with nodes (1, 3) marked
sage: T.dual().marked_nodes([1,3]).dynkin_diagram()
O=>=X---O=>=X
0 1 2 3
BC3~* with nodes (1, 3) marked

dynkin_diagram()
Return the Dynkin diagram for this Cartan type.

EXAMPLES:

sage: CartanType(["G", 2]).marked_nodes([2]).dynkin_diagram()
3

(continues on next page)

2586 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

O=<=X
1 2
G2 with node 2 marked

marked_nodes(marked_nodes)
Return self with nodes marked_nodes marked.

EXAMPLES:

sage: ct = CartanType(['A',12])
sage: m = ct.marked_nodes([1,4,6,7,8,12]); m
['A', 12] with nodes (1, 4, 6, 7, 8, 12) marked
sage: m.marked_nodes([2])
['A', 12] with node 2 marked
sage: m.marked_nodes([]) is ct
True

relabel(relabelling)
Return the relabelling of self.

EXAMPLES:

sage: T = CartanType(["BC",3, 2])
sage: T.marked_nodes([1,3]).relabel(lambda x: x+2).dynkin_diagram()
O=<=X---O=<=X
2 3 4 5
BC3~ relabelled by {0: 2, 1: 3, 2: 4, 3: 5} with nodes (3, 5) marked
sage: T.relabel(lambda x: x+2).marked_nodes([3,5]).dynkin_diagram()
O=<=X---O=<=X
2 3 4 5
BC3~ relabelled by {0: 2, 1: 3, 2: 4, 3: 5} with nodes (3, 5) marked

type()
Return the type of self or None if unknown.

EXAMPLES:

sage: ct = CartanType(['F', 4]).marked_nodes([1,3])
sage: ct.type()
'F'

class sage.combinat.root_system.type_marked.CartanType_affine(ct, marked_nodes)
Bases: sage.combinat.root_system.type_marked.CartanType, sage.combinat.root_system.
cartan_type.CartanType_affine

basic_untwisted()
Return the basic untwisted Cartan type associated with this affine Cartan type.

Given an affine type 𝑋(𝑟)
𝑛 , the basic untwisted type is 𝑋𝑛. In other words, it is the classical Cartan type

that is twisted to obtain self.

EXAMPLES:

sage: CartanType(['A', 7, 2]).marked_nodes([1,3]).basic_untwisted()
['A', 7] with nodes (1, 3) marked

(continues on next page)

5.1. Comprehensive Module List 2587

Combinatorics, Release 9.7

(continued from previous page)

sage: CartanType(['D', 4, 3]).marked_nodes([0,2]).basic_untwisted()
['D', 4] with node 2 marked

classical()
Return the classical Cartan type associated with self.

EXAMPLES:

sage: T = CartanType(['A',4,1]).marked_nodes([0,2,4])
sage: T.dynkin_diagram()
0
X-----------+
| |
| |
O---X---O---X
1 2 3 4
A4~ with nodes (0, 2, 4) marked

sage: T0 = T.classical()
sage: T0
['A', 4] with nodes (2, 4) marked
sage: T0.dynkin_diagram()
O---X---O---X
1 2 3 4
A4 with nodes (2, 4) marked

is_untwisted_affine()
Implement CartanType_affine.is_untwisted_affine().

A marked Cartan type is untwisted affine if the original is.

EXAMPLES:

sage: CartanType(['B', 3, 1]).marked_nodes([1,3]).is_untwisted_affine()
True

special_node()
Return the special node of the Cartan type.

See also:

special_node()

It is the special node of the non-marked Cartan type..

EXAMPLES:

sage: CartanType(['B', 3, 1]).marked_nodes([1,3]).special_node()
0

class sage.combinat.root_system.type_marked.CartanType_finite(ct, marked_nodes)
Bases: sage.combinat.root_system.type_marked.CartanType, sage.combinat.root_system.
cartan_type.CartanType_finite

AmbientSpace
alias of AmbientSpace

2588 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

affine()
Return the affine Cartan type associated with self.

EXAMPLES:

sage: B4 = CartanType(['B',4]).marked_nodes([1,3])
sage: B4.dynkin_diagram()
X---O---X=>=O
1 2 3 4
B4 with nodes (1, 3) marked
sage: B4.affine().dynkin_diagram()

O 0
|
|

X---O---X=>=O
1 2 3 4
B4~ with nodes (1, 3) marked

5.1.264 Root system data for reducible Cartan types

class sage.combinat.root_system.type_reducible.AmbientSpace(root_system, base_ring,
index_set=None)

Bases: sage.combinat.root_system.ambient_space.AmbientSpace

EXAMPLES:

sage: RootSystem("A2xB2").ambient_space()
Ambient space of the Root system of type A2xB2

ambient_spaces()
Returns a list of the irreducible Cartan types of which the given reducible Cartan type is a product.

EXAMPLES:

sage: RootSystem("A2xB2").ambient_space().ambient_spaces()
[Ambient space of the Root system of type ['A', 2],
Ambient space of the Root system of type ['B', 2]]

cartan_type()
EXAMPLES:

sage: RootSystem("A2xB2").ambient_space().cartan_type()
A2xB2

component_types()
EXAMPLES:

sage: RootSystem("A2xB2").ambient_space().component_types()
[['A', 2], ['B', 2]]

dimension()
EXAMPLES:

sage: RootSystem("A2xB2").ambient_space().dimension()
5

5.1. Comprehensive Module List 2589

Combinatorics, Release 9.7

fundamental_weights()
EXAMPLES:

sage: RootSystem("A2xB2").ambient_space().fundamental_weights()
Finite family {1: (1, 0, 0, 0, 0), 2: (1, 1, 0, 0, 0), 3: (0, 0, 0, 1, 0), 4:␣
→˓(0, 0, 0, 1/2, 1/2)}

inject_weights(i, v)
Produces the corresponding element of the lattice.

INPUT:

• i - an integer in range(self.components)

• v - a vector in the i-th component weight lattice

EXAMPLES:

sage: V = RootSystem("A2xB2").ambient_space()
sage: [V.inject_weights(i,V.ambient_spaces()[i].fundamental_weights()[1]) for i␣
→˓in range(2)]
[(1, 0, 0, 0, 0), (0, 0, 0, 1, 0)]
sage: [V.inject_weights(i,V.ambient_spaces()[i].fundamental_weights()[2]) for i␣
→˓in range(2)]
[(1, 1, 0, 0, 0), (0, 0, 0, 1/2, 1/2)]

negative_roots()
EXAMPLES:

sage: RootSystem("A1xA2").ambient_space().negative_roots()
[(-1, 1, 0, 0, 0), (0, 0, -1, 1, 0), (0, 0, -1, 0, 1), (0, 0, 0, -1, 1)]

positive_roots()
EXAMPLES:

sage: RootSystem("A1xA2").ambient_space().positive_roots()
[(1, -1, 0, 0, 0), (0, 0, 1, -1, 0), (0, 0, 1, 0, -1), (0, 0, 0, 1, -1)]

simple_coroot(i)
EXAMPLES:

sage: A = RootSystem("A1xB2").ambient_space()
sage: A.simple_coroot(2)
(0, 0, 1, -1)
sage: A.simple_coroots()
Finite family {1: (1, -1, 0, 0), 2: (0, 0, 1, -1), 3: (0, 0, 0, 2)}

simple_root(i)
EXAMPLES:

sage: A = RootSystem("A1xB2").ambient_space()
sage: A.simple_root(2)
(0, 0, 1, -1)
sage: A.simple_roots()
Finite family {1: (1, -1, 0, 0), 2: (0, 0, 1, -1), 3: (0, 0, 0, 1)}

2590 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.root_system.type_reducible.CartanType(types)
Bases: sage.structure.sage_object.SageObject, sage.combinat.root_system.cartan_type.
CartanType_abstract

A class for reducible Cartan types.

Reducible root systems are ones that can be factored as direct products. Strictly speaking type𝐷2 (corresponding
to orthogonal groups of degree 4) is reducible since it is isomorphic to 𝐴1 × 𝐴1. However type 𝐷2 is not built
using this class for our purposes.

INPUT:

• types – a list of simple Cartan types

EXAMPLES:

sage: t1, t2 = [CartanType(x) for x in (['A',1], ['B',2])]
sage: CartanType([t1, t2])
A1xB2
sage: t = CartanType("A2xB2")

A reducible Cartan type is finite (resp. crystallographic, simply laced) if all its components are:

sage: t.is_finite()
True
sage: t.is_crystallographic()
True
sage: t.is_simply_laced()
False

This is implemented by inserting the appropriate abstract super classes (see _add_abstract_superclass()):

sage: t.__class__.mro()
[<class 'sage.combinat.root_system.type_reducible.CartanType_with_superclass'>,
→˓<class 'sage.combinat.root_system.type_reducible.CartanType'>, <class 'sage.
→˓structure.sage_object.SageObject'>, <class 'sage.combinat.root_system.cartan_type.
→˓CartanType_finite'>, <class 'sage.combinat.root_system.cartan_type.CartanType_
→˓crystallographic'>, <class 'sage.combinat.root_system.cartan_type.CartanType_
→˓abstract'>, <class 'object'>]

The index set of the reducible Cartan type is obtained by relabelling successively the nodes of the Dynkin dia-
grams of the components by 1,2,. . . :

sage: t = CartanType(["A",4], ["BC",5,2], ["C",3])
sage: t.index_set()
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

sage: t.dynkin_diagram()
O---O---O---O
1 2 3 4
O=<=O---O---O---O=<=O
5 6 7 8 9 10
O---O=<=O
11 12 13
A4xBC5~xC3

5.1. Comprehensive Module List 2591

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

AmbientSpace
alias of AmbientSpace

ascii_art(label=<function CartanType.<lambda> at 0x7f87497cd3a0>, node=None)
Return an ascii art representation of this reducible Cartan type.

EXAMPLES:

sage: print(CartanType("F4xA2").ascii_art(label = lambda x: x+2))
O---O=>=O---O
3 4 5 6
O---O
7 8

sage: print(CartanType(["BC",5,2], ["A",4]).ascii_art())
O=<=O---O---O---O=<=O
1 2 3 4 5 6
O---O---O---O
7 8 9 10

sage: print(CartanType(["A",4], ["BC",5,2], ["C",3]).ascii_art())
O---O---O---O
1 2 3 4
O=<=O---O---O---O=<=O
5 6 7 8 9 10
O---O=<=O
11 12 13

cartan_matrix(subdivide=True)
Return the Cartan matrix associated with self. By default the Cartan matrix is a subdivided block matrix
showing the reducibility but the subdivision can be suppressed with the option subdivide = False.

EXAMPLES:

sage: ct = CartanType("A2","B2")
sage: ct.cartan_matrix()
[2 -1| 0 0]
[-1 2| 0 0]
[-----+-----]
[0 0| 2 -1]
[0 0|-2 2]
sage: ct.cartan_matrix(subdivide=False)
[2 -1 0 0]
[-1 2 0 0]
[0 0 2 -1]
[0 0 -2 2]
sage: ct.index_set() == ct.cartan_matrix().index_set()
True

component_types()
A list of Cartan types making up the reducible type.

EXAMPLES:

sage: CartanType(['A',2],['B',2]).component_types()
[['A', 2], ['B', 2]]

2592 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

coxeter_diagram()
Return the Coxeter diagram for self.

EXAMPLES:

sage: cd = CartanType("A2xB2xF4").coxeter_diagram()
sage: cd
Graph on 8 vertices
sage: cd.edges(sort=True)
[(1, 2, 3), (3, 4, 4), (5, 6, 3), (6, 7, 4), (7, 8, 3)]

sage: CartanType("F4xA2").coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4), (3, 4, 3), (5, 6, 3)]

sage: cd = CartanType("A1xH3").coxeter_diagram(); cd
Graph on 4 vertices
sage: cd.edges(sort=True)
[(2, 3, 3), (3, 4, 5)]

dual()
EXAMPLES:

sage: CartanType("A2xB2").dual()
A2xC2

dynkin_diagram()
Returns a Dynkin diagram for type reducible.

EXAMPLES:

sage: dd = CartanType("A2xB2xF4").dynkin_diagram()
sage: dd
O---O
1 2
O=>=O
3 4
O---O=>=O---O
5 6 7 8
A2xB2xF4
sage: dd.edges(sort=True)
[(1, 2, 1), (2, 1, 1), (3, 4, 2), (4, 3, 1), (5, 6, 1), (6, 5, 1), (6, 7, 2),␣
→˓(7, 6, 1), (7, 8, 1), (8, 7, 1)]

sage: CartanType("F4xA2").dynkin_diagram()
O---O=>=O---O
1 2 3 4
O---O
5 6
F4xA2

index_set()
Implements CartanType_abstract.index_set().

For the moment, the index set is always of the form {1, . . . , 𝑛}.

EXAMPLES:

5.1. Comprehensive Module List 2593

Combinatorics, Release 9.7

sage: CartanType("A2","A1").index_set()
(1, 2, 3)

is_affine()
Report that this reducible Cartan type is not affine

EXAMPLES:

sage: CartanType(['A',2],['B',2]).is_affine()
False

is_finite()
EXAMPLES:

sage: ct1 = CartanType(['A',2],['B',2])
sage: ct1.is_finite()
True
sage: ct2 = CartanType(['A',2],['B',2,1])
sage: ct2.is_finite()
False

is_irreducible()
Report that this Cartan type is not irreducible.

EXAMPLES:

sage: ct = CartanType(['A',2],['B',2])
sage: ct.is_irreducible()
False

rank()
Returns the rank of self.

EXAMPLES:

sage: CartanType("A2","A1").rank()
3

type()
Returns “reducible” since the type is reducible.

EXAMPLES:

sage: CartanType(['A',2],['B',2]).type()
'reducible'

2594 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.265 Root system data for relabelled Cartan types

class sage.combinat.root_system.type_relabel.AmbientSpace(root_system, base_ring,
index_set=None)

Bases: sage.combinat.root_system.ambient_space.AmbientSpace

Ambient space for a relabelled finite Cartan type.

It is constructed in the canonical way from the ambient space of the original Cartan type, by relabelling the
simple roots, fundamental weights, etc.

EXAMPLES:

sage: cycle = {1:2, 2:3, 3:4, 4:1}
sage: L = CartanType(["F",4]).relabel(cycle).root_system().ambient_space(); L
Ambient space of the Root system of type ['F', 4] relabelled by {1: 2, 2: 3, 3: 4,␣
→˓4: 1}
sage: TestSuite(L).run()

dimension()
Return the dimension of this ambient space.

See also:

sage.combinat.root_system.ambient_space.AmbientSpace.dimension()

EXAMPLES:

sage: cycle = {1:2, 2:3, 3:4, 4:1}
sage: L = CartanType(["F",4]).relabel(cycle).root_system().ambient_space()
sage: L.dimension()
4

fundamental_weight(i)
Return the i-th fundamental weight.

It is constructed by looking up the corresponding simple coroot in the ambient space for the original Cartan
type.

EXAMPLES:

sage: cycle = {1:2, 2:3, 3:4, 4:1}
sage: L = CartanType(["F",4]).relabel(cycle).root_system().ambient_space()
sage: K = CartanType(["F",4]).root_system().ambient_space()
sage: K.fundamental_weights()
Finite family {1: (1, 1, 0, 0), 2: (2, 1, 1, 0), 3: (3/2, 1/2, 1/2, 1/2), 4: (1,
→˓ 0, 0, 0)}
sage: L.fundamental_weight(1)
(1, 0, 0, 0)
sage: L.fundamental_weights()
Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (2, 1, 1, 0), 4: (3/2, 1/2,␣
→˓1/2, 1/2)}

simple_root(i)
Return the i-th simple root.

It is constructed by looking up the corresponding simple coroot in the ambient space for the original Cartan
type.

5.1. Comprehensive Module List 2595

Combinatorics, Release 9.7

EXAMPLES:

sage: cycle = {1:2, 2:3, 3:4, 4:1}
sage: L = CartanType(["F",4]).relabel(cycle).root_system().ambient_space()
sage: K = CartanType(["F",4]).root_system().ambient_space()
sage: K.simple_roots()
Finite family {1: (0, 1, -1, 0), 2: (0, 0, 1, -1), 3: (0, 0, 0, 1), 4: (1/2, -1/
→˓2, -1/2, -1/2)}
sage: K.simple_coroots()
Finite family {1: (0, 1, -1, 0), 2: (0, 0, 1, -1), 3: (0, 0, 0, 2), 4: (1, -1, -
→˓1, -1)}
sage: L.simple_root(1)
(1/2, -1/2, -1/2, -1/2)

sage: L.simple_roots()
Finite family {1: (1/2, -1/2, -1/2, -1/2), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1),␣
→˓4: (0, 0, 0, 1)}

sage: L.simple_coroots()
Finite family {1: (1, -1, -1, -1), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1), 4: (0, 0,
→˓ 0, 2)}

class sage.combinat.root_system.type_relabel.CartanType(type, relabelling)
Bases: sage.combinat.root_system.cartan_type.CartanType_decorator

A class for relabelled Cartan types.

ascii_art(label=<function CartanType.<lambda> at 0x7f87497d50d0>, node=None)
Return an ascii art representation of this Cartan type.

EXAMPLES:

sage: print(CartanType(["G", 2]).relabel({1:2,2:1}).ascii_art())
3

O=<=O
2 1
sage: print(CartanType(["B", 3, 1]).relabel([1,3,2,0]).ascii_art())

O 1
|
|

O---O=>=O
3 2 0
sage: print(CartanType(["F", 4, 1]).relabel(lambda n: 4-n).ascii_art())
O---O---O=>=O---O
4 3 2 1 0

coxeter_diagram()
Return the Coxeter diagram for self.

EXAMPLES:

sage: ct = CartanType(['H', 3]).relabel({1:3,2:2,3:1})
sage: G = ct.coxeter_diagram(); G
Graph on 3 vertices
sage: G.edges(sort=True)
[(1, 2, 5), (2, 3, 3)]

2596 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

dual()
Implements sage.combinat.root_system.cartan_type.CartanType_abstract.dual(), using
that taking the dual and relabelling are commuting operations.

EXAMPLES:

sage: T = CartanType(["BC",3, 2])
sage: cycle = {1:2, 2:3, 3:0, 0:1}
sage: T.relabel(cycle).dual().dynkin_diagram()
O=>=O---O=>=O
1 2 3 0
BC3~* relabelled by {0: 1, 1: 2, 2: 3, 3: 0}
sage: T.dual().relabel(cycle).dynkin_diagram()
O=>=O---O=>=O
1 2 3 0
BC3~* relabelled by {0: 1, 1: 2, 2: 3, 3: 0}

dynkin_diagram()
Returns the Dynkin diagram for this Cartan type.

EXAMPLES:

sage: CartanType(["G", 2]).relabel({1:2,2:1}).dynkin_diagram()
3

O=<=O
2 1
G2 relabelled by {1: 2, 2: 1}

index_set()
EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.index_set()
(1, 2)

type()
Return the type of self or None if unknown.

EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.type()
'G'

class sage.combinat.root_system.type_relabel.CartanType_affine(type, relabelling)
Bases: sage.combinat.root_system.type_relabel.CartanType, sage.combinat.root_system.
cartan_type.CartanType_affine

basic_untwisted()
Return the basic untwisted Cartan type associated with this affine Cartan type.

Given an affine type 𝑋(𝑟)
𝑛 , the basic untwisted type is 𝑋𝑛. In other words, it is the classical Cartan type

that is twisted to obtain self.

EXAMPLES:

5.1. Comprehensive Module List 2597

Combinatorics, Release 9.7

sage: ct = CartanType(['A', 5, 2]).relabel({0:1, 1:0, 2:2, 3:3})
sage: ct.basic_untwisted()
['A', 5]

classical()
Return the classical Cartan type associated with self.

EXAMPLES:

sage: A41 = CartanType(['A',4,1])
sage: A41.dynkin_diagram()
0
O-----------+
| |
| |
O---O---O---O
1 2 3 4
A4~

sage: T = A41.relabel({0:1, 1:2, 2:3, 3:4, 4:0})
sage: T
['A', 4, 1] relabelled by {0: 1, 1: 2, 2: 3, 3: 4, 4: 0}
sage: T.dynkin_diagram()
1
O-----------+
| |
| |
O---O---O---O
2 3 4 0
A4~ relabelled by {0: 1, 1: 2, 2: 3, 3: 4, 4: 0}

sage: T0 = T.classical()
sage: T0
['A', 4] relabelled by {1: 2, 2: 3, 3: 4, 4: 0}
sage: T0.dynkin_diagram()
O---O---O---O
2 3 4 0
A4 relabelled by {1: 2, 2: 3, 3: 4, 4: 0}

is_untwisted_affine()
Implement CartanType_affine.is_untwisted_affine()

A relabelled Cartan type is untwisted affine if the original is.

EXAMPLES:

sage: CartanType(['B', 3, 1]).relabel({1:2, 2:3, 3:0, 0:1}).is_untwisted_
→˓affine()
True

special_node()
Returns a special node of the Dynkin diagram

See also:

special_node()

2598 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

It is obtained by relabelling of the special node of the non relabelled Dynkin diagram.

EXAMPLES:

sage: CartanType(['B', 3, 1]).special_node()
0
sage: CartanType(['B', 3, 1]).relabel({1:2, 2:3, 3:0, 0:1}).special_node()
1

class sage.combinat.root_system.type_relabel.CartanType_finite(type, relabelling)
Bases: sage.combinat.root_system.type_relabel.CartanType, sage.combinat.root_system.
cartan_type.CartanType_finite

AmbientSpace
alias of AmbientSpace

affine()
Return the affine Cartan type associated with self.

EXAMPLES:

sage: B4 = CartanType(['B',4])
sage: B4.dynkin_diagram()
O---O---O=>=O
1 2 3 4
B4
sage: B4.affine().dynkin_diagram()

O 0
|
|

O---O---O=>=O
1 2 3 4
B4~

If possible, this reuses the original label for the special node:

sage: T = B4.relabel({1:2, 2:3, 3:4, 4:1}); T.dynkin_diagram()
O---O---O=>=O
2 3 4 1
B4 relabelled by {1: 2, 2: 3, 3: 4, 4: 1}
sage: T.affine().dynkin_diagram()

O 0
|
|

O---O---O=>=O
2 3 4 1
B4~ relabelled by {0: 0, 1: 2, 2: 3, 3: 4, 4: 1}

Otherwise, it chooses a label for the special_node in 0, 1, ...:

sage: T = B4.relabel({1:0, 2:1, 3:2, 4:3}); T.dynkin_diagram()
O---O---O=>=O
0 1 2 3
B4 relabelled by {1: 0, 2: 1, 3: 2, 4: 3}
sage: T.affine().dynkin_diagram()

O 4
(continues on next page)

5.1. Comprehensive Module List 2599

Combinatorics, Release 9.7

(continued from previous page)

|
|

O---O---O=>=O
0 1 2 3
B4~ relabelled by {0: 4, 1: 0, 2: 1, 3: 2, 4: 3}

This failed before trac ticket #13724:

sage: ct = CartanType(["G",2]).dual(); ct
['G', 2] relabelled by {1: 2, 2: 1}
sage: ct.affine()
['G', 2, 1] relabelled by {0: 0, 1: 2, 2: 1}

sage: ct = CartanType(["F",4]).dual(); ct
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
sage: ct.affine()
['F', 4, 1] relabelled by {0: 0, 1: 4, 2: 3, 3: 2, 4: 1}

Check that we don’t inadvertently change the internal relabelling of ct:

sage: ct
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}

5.1.266 Weight lattice realizations

class sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations(base,
name=None)

Bases: sage.categories.category_types.Category_over_base_ring

The category of weight lattice realizations over a given base ring

A weight lattice realization 𝐿 over a base ring 𝑅 is a free module (or vector space if 𝑅 is a field) endowed with
an embedding of the root lattice of some root system. By restriction, this embedding defines an embedding of
the root lattice of this root system, which makes 𝐿 a root lattice realization.

Typical weight lattice realizations over Z include the weight lattice, and ambient lattice. Typical weight lattice
realizations over Q include the weight space, and ambient space.

To describe the embedding, a weight lattice realization must implement a method fundamental_weight`(i)
returning for each `i() in the index set the image of the fundamental weight Λ𝑖 under the embedding.

In order to be a proper root lattice realization, a weight lattice realization should also implement the scalar product
with the coroot lattice; on the other hand, the embedding of the simple roots is given for free.

See also:

• RootSystem

• RootLatticeRealizations

• WeightSpace

• AmbientSpace

EXAMPLES:

2600 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/13724
../../../../../../../html/en/reference/categories/sage/categories/category_types.html#sage.categories.category_types.Category_over_base_ring

Combinatorics, Release 9.7

Here, we consider the root system of type 𝐴7, and embed the weight lattice element 𝑥 = Λ1 + 2Λ3 in several
root lattice realizations:

sage: R = RootSystem(["A",7])
sage: Lambda = R.weight_lattice().fundamental_weights()
sage: x = Lambda[2] + 2 * Lambda[5]

sage: L = R.weight_space()
sage: L(x)
Lambda[2] + 2*Lambda[5]

sage: L = R.ambient_lattice()
sage: L(x)
(3, 3, 2, 2, 2, 0, 0, 0)

We embed the weight space element 𝑥 = Λ1 + 1/2Λ3 in the ambient space:

sage: Lambda = R.weight_space().fundamental_weights()
sage: x = Lambda[2] + 1/2 * Lambda[5]

sage: L = R.ambient_space()
sage: L(x)
(3/2, 3/2, 1/2, 1/2, 1/2, 0, 0, 0)

Of course, one can’t embed the weight space in the ambient lattice:

sage: L = R.ambient_lattice()
sage: L(x)
Traceback (most recent call last):
...
TypeError: do not know how to make x (= Lambda[2] + 1/2*Lambda[5]) an element of␣
→˓self (=Ambient lattice of the Root system of type ['A', 7])

If 𝐾1 is a subring of 𝐾2, then one could in theory have an embedding from the weight space over 𝐾1 to any
weight lattice realization over 𝐾2; this is not implemented:

sage: K1 = QQ
sage: K2 = QQ['q']
sage: L = R.ambient_space(K2)

sage: Lambda = R.weight_space(K2).fundamental_weights()
sage: L(Lambda[1])
(1, 0, 0, 0, 0, 0, 0, 0)

sage: Lambda = R.weight_space(K1).fundamental_weights()
sage: L(Lambda[1])
Traceback (most recent call last):
...
TypeError: do not know how to make x (= Lambda[1]) an element of self (=Ambient␣
→˓space of the Root system of type ['A', 7])

class ElementMethods
Bases: object

5.1. Comprehensive Module List 2601

Combinatorics, Release 9.7

symmetric_form(la)
Return the symmetric form of self with la.

Return the pairing (|) on the weight lattice. See Chapter 6 in Kac, Infinite Dimensional Lie Algebras
for more details.

Warning: For affine root systems, if you are not working in the extended weight lattice/space,
this may return incorrect results.

EXAMPLES:

sage: P = RootSystem(['C',2]).weight_lattice()
sage: al = P.simple_roots()
sage: al[1].symmetric_form(al[1])
2
sage: al[1].symmetric_form(al[2])
-2
sage: al[2].symmetric_form(al[1])
-2
sage: Q = RootSystem(['C',2]).root_lattice()
sage: alQ = Q.simple_roots()
sage: all(al[i].symmetric_form(al[j]) == alQ[i].symmetric_form(alQ[j])
....: for i in P.index_set() for j in P.index_set())
True

sage: P = RootSystem(['C',2,1]).weight_lattice(extended=True)
sage: al = P.simple_roots()
sage: al[1].symmetric_form(al[1])
2
sage: al[1].symmetric_form(al[2])
-2
sage: al[1].symmetric_form(al[0])
-2
sage: al[0].symmetric_form(al[1])
-2
sage: Q = RootSystem(['C',2,1]).root_lattice()
sage: alQ = Q.simple_roots()
sage: all(al[i].symmetric_form(al[j]) == alQ[i].symmetric_form(alQ[j])
....: for i in P.index_set() for j in P.index_set())
True
sage: La = P.basis()
sage: [La['delta'].symmetric_form(al) for al in P.simple_roots()]
[0, 0, 0]
sage: [La[0].symmetric_form(al) for al in P.simple_roots()]
[1, 0, 0]

sage: P = RootSystem(['C',2,1]).weight_lattice()
sage: Q = RootSystem(['C',2,1]).root_lattice()
sage: al = P.simple_roots()
sage: alQ = Q.simple_roots()
sage: all(al[i].symmetric_form(al[j]) == alQ[i].symmetric_form(alQ[j])
....: for i in P.index_set() for j in P.index_set())
True

2602 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The result of (Λ0|𝛼0) should be 1, however we get 0 because we are not working in the extended weight
lattice:

sage: La = P.basis()
sage: [La[0].symmetric_form(al) for al in P.simple_roots()]
[0, 0, 0]

to_weight_space(base_ring=None)
Map self to the weight space.

Warning: Implemented for finite Cartan type.

EXAMPLES:

sage: b = CartanType(['B',2]).root_system().ambient_space().from_
→˓vector(vector([1,-2])); b
(1, -2)
sage: b.to_weight_space()
3*Lambda[1] - 4*Lambda[2]
sage: b = CartanType(['B',2]).root_system().ambient_space().from_
→˓vector(vector([1/2,0])); b
(1/2, 0)
sage: b.to_weight_space()
1/2*Lambda[1]
sage: b.to_weight_space(ZZ)
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer
sage: b = CartanType(['G',2]).root_system().ambient_space().from_
→˓vector(vector([4,-5,1])); b
(4, -5, 1)
sage: b.to_weight_space()
-6*Lambda[1] + 5*Lambda[2]

class ParentMethods
Bases: object

dynkin_diagram_automorphism_of_alcove_morphism(f)
Return the Dynkin diagram automorphism induced by an alcove morphism

INPUT:
• f - a linear map from self to self which preserves alcoves

This method returns the Dynkin diagram automorphism for the decomposition 𝑓 = 𝑑𝑤 (see
reduced_word_of_alcove_morphism()), as a dictionary mapping elements of the index set to it-
self.

EXAMPLES:

sage: R = RootSystem(["A",2,1]).weight_lattice()
sage: alpha = R.simple_roots()
sage: Lambda = R.fundamental_weights()

Translations by elements of the root lattice induce a trivial Dynkin diagram automorphism:

5.1. Comprehensive Module List 2603

Combinatorics, Release 9.7

sage: R.dynkin_diagram_automorphism_of_alcove_morphism(alpha[0].translation)
{0: 0, 1: 1, 2: 2}
sage: R.dynkin_diagram_automorphism_of_alcove_morphism(alpha[1].translation)
{0: 0, 1: 1, 2: 2}
sage: R.dynkin_diagram_automorphism_of_alcove_morphism(alpha[2].translation)
{0: 0, 1: 1, 2: 2}

This is no more the case for translations by general elements of the (classical) weight lattice at level 0:

sage: omega1 = Lambda[1] - Lambda[0]
sage: omega2 = Lambda[2] - Lambda[0]

sage: R.dynkin_diagram_automorphism_of_alcove_morphism(omega1.translation)
{0: 1, 1: 2, 2: 0}
sage: R.dynkin_diagram_automorphism_of_alcove_morphism(omega2.translation)
{0: 2, 1: 0, 2: 1}

sage: R = RootSystem(['C',2,1]).weight_lattice()
sage: alpha = R.simple_roots()
sage: R.dynkin_diagram_automorphism_of_alcove_morphism(alpha[1].translation)
{0: 2, 1: 1, 2: 0}

sage: R = RootSystem(['D',5,1]).weight_lattice()
sage: Lambda = R.fundamental_weights()
sage: omega1 = Lambda[1] - Lambda[0]
sage: omega2 = Lambda[2] - 2*Lambda[0]
sage: R.dynkin_diagram_automorphism_of_alcove_morphism(omega1.translation)
{0: 1, 1: 0, 2: 2, 3: 3, 4: 5, 5: 4}
sage: R.dynkin_diagram_automorphism_of_alcove_morphism(omega2.translation)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5}

Algorithm: computes 𝑤 of the decomposition, and see how 𝑓 ∘ 𝑤−1 permutes the simple roots.

embed_at_level(x, level=1)
Embed the classical weight 𝑥 in the level level hyperplane

This is achieved by translating the straightforward embedding of 𝑥 by 𝑐Λ0 for 𝑐 some appropriate
scalar.

INPUT:
• x – an element of the corresponding classical weight/ambient lattice
• level – an integer or element of the base ring (default: 1)

EXAMPLES:

sage: L = RootSystem(["B",3,1]).weight_space()
sage: L0 = L.classical()
sage: alpha = L0.simple_roots()
sage: omega = L0.fundamental_weights()
sage: L.embed_at_level(omega[1], 1)
Lambda[1]
sage: L.embed_at_level(omega[2], 1)
-Lambda[0] + Lambda[2]
sage: L.embed_at_level(omega[3], 1)
Lambda[3]

(continues on next page)

2604 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: L.embed_at_level(alpha[1], 1)
Lambda[0] + 2*Lambda[1] - Lambda[2]

fundamental_weight(i)
Returns the 𝑖𝑡ℎ fundamental weight

INPUT:
• i – an element of the index set

By a slight notational abuse, for an affine type this method should also accept "delta" as input, and
return the image of 𝛿 of the extended weight lattice in this realization.

This should be overridden by any subclass, and typically be implemented as a cached method for
efficiency.

EXAMPLES:

sage: L = RootSystem(["A",3]).ambient_lattice()
sage: L.fundamental_weight(1)
(1, 0, 0, 0)

sage: L = RootSystem(["A",3,1]).weight_lattice(extended=True)
sage: L.fundamental_weight(1)
Lambda[1]
sage: L.fundamental_weight("delta")
delta

fundamental_weights()
Returns the family (Λ𝑖)𝑖∈𝐼 of the fundamental weights.

EXAMPLES:

sage: e = RootSystem(['A',3]).ambient_lattice()
sage: f = e.fundamental_weights()
sage: [f[i] for i in [1,2,3]]
[(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0)]

is_extended()
Return whether this is a realization of the extended weight lattice

See also:

sage.combinat.root_system.weight_space.WeightSpace

EXAMPLES:

sage: RootSystem(["A",3,1]).weight_lattice().is_extended()
False
sage: RootSystem(["A",3,1]).weight_lattice(extended=True).is_extended()
True

This method is irrelevant for finite root systems, since the weight lattice need not be extended to ensure
that the root lattice embeds faithfully:

sage: RootSystem(["A",3]).weight_lattice().is_extended()
False

5.1. Comprehensive Module List 2605

Combinatorics, Release 9.7

reduced_word_of_alcove_morphism(f)
Return the reduced word of an alcove morphism.

INPUT:
• f – a linear map from self to self which preserves alcoves

Let 𝐴 be the fundamental alcove. This returns a reduced word 𝑖1, . . . , 𝑖𝑘 such that the affine Weyl
group element 𝑤 = 𝑠𝑖1 ∘ · · · ∘ 𝑠𝑖𝑘 maps the alcove 𝑓(𝐴) back to 𝐴. In other words, the alcove walk
𝑖1, . . . , 𝑖𝑘 brings the fundamental alcove to the corresponding translated alcove.

Let us throw in a bit of context to explain the main use case. It is customary to realize the alcove picture
in the coroot or coweight lattice𝑅∨. The extended affine Weyl group is then the group of linear maps on
𝑅∨ which preserve the alcoves. By [Kac “Infinite-dimensional Lie algebra”, Proposition 6.5] the affine
Weyl group is the semidirect product of the associated finite Weyl group and the group of translations
in the coroot lattice (the extended affine Weyl group uses the coweight lattice instead). In other words,
an element of the extended affine Weyl group admits a unique decomposition of the form:

𝑓 = 𝑑𝑤,

where 𝑤 is in the Weyl group, and 𝑑 is a function which maps the fundamental alcove to itself. As 𝑑
permutes the walls of the fundamental alcove, it permutes accordingly the corresponding simple roots,
which induces an automorphism of the Dynkin diagram.

This method returns a reduced word for 𝑤, whereas the method
dynkin_diagram_automorphism_of_alcove_morphism() returns 𝑑 as a permutation of the
nodes of the Dynkin diagram.

Nota bene: recall that the coroot (resp. coweight) lattice is implemented as the root (resp weight)
lattice of the dual root system. Hence, this method is implemented for weight lattice realizations, but
in practice is most of the time used on the dual side.

EXAMPLES:

We start with type 𝐴 which is simply laced; hence we do not have to worry about the distinction
between the weight and coweight lattice:

sage: R = RootSystem(["A",2,1]).weight_lattice()
sage: alpha = R.simple_roots()
sage: Lambda = R.fundamental_weights()

We consider first translations by elements of the root lattice:

sage: R.reduced_word_of_alcove_morphism(alpha[0].translation)
[1, 2, 1, 0]
sage: R.reduced_word_of_alcove_morphism(alpha[1].translation)
[0, 2, 0, 1]
sage: R.reduced_word_of_alcove_morphism(alpha[2].translation)
[0, 1, 0, 2]

We continue with translations by elements of the classical weight lattice, embedded at level 0:
sage: omega1 = Lambda[1] - Lambda[0] sage: omega2 = Lambda[2] - Lambda[0]

sage: R.reduced_word_of_alcove_morphism(omega1.translation) [0, 2] sage:
R.reduced_word_of_alcove_morphism(omega2.translation) [0, 1]

The following tests ensure that the code agrees with the tables in Kashiwara’s private notes on affine
quantum algebras (2008).

reduced_word_of_translation(t)
Given an element of the root lattice, this returns a reduced word 𝑖1, . . . , 𝑖𝑘 such that the Weyl group
element 𝑠𝑖1 ∘ · · · ∘ 𝑠𝑖𝑘 implements the “translation” where 𝑥maps to 𝑥+ 𝑙𝑒𝑣𝑒𝑙(𝑥) * 𝑡. In other words,

2606 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

the alcove walk 𝑖1, . . . , 𝑖𝑘 brings the fundamental alcove to the corresponding translated alcove.

Note: There are some technical conditions for 𝑡 to actually be a translation; those are not tested
(TODO: detail).

EXAMPLES:

sage: R = RootSystem(["A",2,1]).weight_lattice()
sage: alpha = R.simple_roots()
sage: R.reduced_word_of_translation(alpha[1])
[0, 2, 0, 1]
sage: R.reduced_word_of_translation(alpha[2])
[0, 1, 0, 2]
sage: R.reduced_word_of_translation(alpha[0])
[1, 2, 1, 0]

sage: R = RootSystem(['D',5,1]).weight_lattice()
sage: Lambda = R.fundamental_weights()
sage: omega1 = Lambda[1] - Lambda[0]
sage: omega2 = Lambda[2] - 2*Lambda[0]
sage: R.reduced_word_of_translation(omega1)
[0, 2, 3, 4, 5, 3, 2, 0]
sage: R.reduced_word_of_translation(omega2)
[0, 2, 1, 3, 2, 4, 3, 5, 3, 2, 1, 4, 3, 2]

A non simply laced case:

sage: R = RootSystem(["C",2,1]).weight_lattice()
sage: Lambda = R.fundamental_weights()
sage: c = R.cartan_type().translation_factors()
sage: c
Finite family {0: 1, 1: 2, 2: 1}
sage: R.reduced_word_of_translation((Lambda[1]-Lambda[0]) * c[1])
[0, 1, 2, 1]
sage: R.reduced_word_of_translation((Lambda[2]-Lambda[0]) * c[2])
[0, 1, 0]

See also _test_reduced_word_of_translation().

Todo:
• Add a picture in the doc
• Add a method which, given an element of the classical weight lattice, constructs the appropriate

value for t

rho()
EXAMPLES:

sage: RootSystem(['A',3]).ambient_lattice().rho()
(3, 2, 1, 0)

rho_classical()
Return the embedding at level 0 of 𝜌 of the classical lattice.

5.1. Comprehensive Module List 2607

Combinatorics, Release 9.7

EXAMPLES:

sage: RootSystem(['C',4,1]).weight_lattice().rho_classical()
-4*Lambda[0] + Lambda[1] + Lambda[2] + Lambda[3] + Lambda[4]
sage: L = RootSystem(['D',4,1]).weight_lattice()
sage: L.rho_classical().scalar(L.null_coroot())
0

Warning: In affine type BC dual, this does not live in the weight lattice:

sage: L = CartanType(["BC",2,2]).dual().root_system().weight_space()
sage: L.rho_classical()
-3/2*Lambda[0] + Lambda[1] + Lambda[2]
sage: L = CartanType(["BC",2,2]).dual().root_system().weight_lattice()
sage: L.rho_classical()
Traceback (most recent call last):
...
ValueError: 5 is not divisible by 2

signs_of_alcovewalk(walk)
Let walk = [𝑖1, . . . , 𝑖𝑛] denote an alcove walk starting from the fundamental alcove 𝑦0, crossing at step
1 the wall 𝑖1, and so on.

For each 𝑘, set 𝑤𝑘 = 𝑠𝑖1 ∘ 𝑠𝑖𝑘 , and denote by 𝑦𝑘 = 𝑤𝑘(𝑦0) the alcove reached after 𝑘 steps. Then, 𝑦𝑘
is obtained recursively from 𝑦𝑘−1 by applying the following reflection:

𝑦𝑘 = 𝑠𝑤𝑘−1𝛼𝑖𝑘
𝑦𝑘−1.

The step is said positive if 𝑤𝑘−1𝛼𝑖𝑘 is a negative root (considering 𝑤𝑘−1 as element of the classical
Weyl group and 𝛼𝑖𝑘 as a classical root) and negative otherwise. The algorithm implemented here use
the equivalent property:

.. MATH:: \langle w_{k-1}^{-1} \rho_0, \alpha^\vee_{i_k}\rangle > 0

Where 𝜌0 is the sum of the classical fundamental weights embedded at level 0 in this space (see
rho_classical()), and 𝛼∨𝑖𝑘 is the simple coroot associated to 𝛼𝑖𝑘 .

This function returns a list of the form [+1,+1,−1, ...], where the 𝑘𝑡ℎ entry denotes whether the 𝑘𝑡ℎ
step was positive or negative.

See equation 3.4, of Ram: Alcove walks . . . , arXiv math/0601343v1

EXAMPLES:

sage: L = RootSystem(['C',2,1]).weight_lattice()
sage: L.signs_of_alcovewalk([1,2,0,1,2,1,2,0,1,2])
[-1, -1, 1, -1, 1, 1, 1, 1, 1, 1]

sage: L = RootSystem(['A',2,1]).weight_lattice()
sage: L.signs_of_alcovewalk([0,1,2,1,2,0,1,2,0,1,2,0])
[1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1]

sage: L = RootSystem(['B',2,1]).coweight_lattice()
sage: L.signs_of_alcovewalk([0,1,2,0,1,2])
[1, -1, 1, -1, 1, 1]

2608 Chapter 5. Comprehensive Module List

https://arxiv.org/abs/math/0601343v1

Combinatorics, Release 9.7

Warning: This method currently does not work in the weight lattice for type BC dual because 𝜌0
does not live in this lattice (but an integral multiple of it would do the job as well).

simple_root(i)
Returns the 𝑖-th simple root

This default implementation takes the 𝑖-th simple root in the weight lattice and embeds it in self.

EXAMPLES:

Since all the weight lattice realizations in Sage currently implement a simple_root method, we have to
call this one by hand:

sage: from sage.combinat.root_system.weight_lattice_realizations import␣
→˓WeightLatticeRealizations
sage: simple_root = WeightLatticeRealizations(QQ).parent_class.simple_root.f
sage: L = RootSystem("A3").ambient_space()
sage: simple_root(L, 1)
(1, -1, 0, 0)
sage: simple_root(L, 2)
(0, 1, -1, 0)
sage: simple_root(L, 3)
(1, 1, 2, 0)

Note that this last root differs from the one implemented in L by a multiple of the vector (1,1,1,1):

sage: L.simple_roots()
Finite family {1: (1, -1, 0, 0), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1)}

This is a harmless artefact of the 𝑆𝐿 versus 𝐺𝐿 interpretation of type 𝐴; see the thematic tutorial on
Lie Methods and Related Combinatorics in Sage for details.

weyl_dimension(highest_weight)
Return the dimension of the highest weight representation of highest weight highest_weight.

EXAMPLES:

sage: RootSystem(['A',3]).ambient_lattice().weyl_dimension([2,1,0,0])
20
sage: P = RootSystem(['C',2]).weight_lattice()
sage: La = P.basis()
sage: P.weyl_dimension(La[1]+La[2])
16

sage: type(RootSystem(['A',3]).ambient_lattice().weyl_dimension([2,1,0,0]))
<class 'sage.rings.integer.Integer'>

super_categories()
EXAMPLES:

sage: from sage.combinat.root_system.weight_lattice_realizations import␣
→˓WeightLatticeRealizations
sage: WeightLatticeRealizations(QQ).super_categories()
[Category of root lattice realizations over Rational Field]

5.1. Comprehensive Module List 2609

Combinatorics, Release 9.7

5.1.267 Weight lattices and weight spaces

class sage.combinat.root_system.weight_space.WeightSpace(root_system, base_ring, extended)
Bases: sage.combinat.free_module.CombinatorialFreeModule

INPUT:

• root_system – a root system

• base_ring – a ring 𝑅

• extended – a boolean (default: False)

The weight space (or lattice if base_ring is Z) of a root system is the formal free module
⨁︀

𝑖𝑅Λ𝑖 generated
by the fundamental weights (Λ𝑖)𝑖∈𝐼 of the root system.

This class is also used for coweight spaces (or lattices).

See also:

• RootSystem()

• RootSystem.weight_lattice() and RootSystem.weight_space()

• WeightLatticeRealizations()

EXAMPLES:

sage: Q = RootSystem(['A', 3]).weight_lattice(); Q
Weight lattice of the Root system of type ['A', 3]
sage: Q.simple_roots()
Finite family {1: 2*Lambda[1] - Lambda[2], 2: -Lambda[1] + 2*Lambda[2] - Lambda[3],␣
→˓3: -Lambda[2] + 2*Lambda[3]}

sage: Q = RootSystem(['A', 3, 1]).weight_lattice(); Q
Weight lattice of the Root system of type ['A', 3, 1]
sage: Q.simple_roots()
Finite family {0: 2*Lambda[0] - Lambda[1] - Lambda[3],

1: -Lambda[0] + 2*Lambda[1] - Lambda[2],
2: -Lambda[1] + 2*Lambda[2] - Lambda[3],
3: -Lambda[0] - Lambda[2] + 2*Lambda[3]}

For infinite types, the Cartan matrix is singular, and therefore the embedding of the root lattice is not faithful:

sage: sum(Q.simple_roots())
0

In particular, the null root is zero:

sage: Q.null_root()
0

This can be compensated by extending the basis of the weight space and slightly deforming the simple roots to
make them linearly independent, without affecting the scalar product with the coroots. This feature is currently
only implemented for affine types. In that case, if extended is set, then the basis of the weight space is extended
by an element 𝛿:

2610 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Q = RootSystem(['A', 3, 1]).weight_lattice(extended = True); Q
Extended weight lattice of the Root system of type ['A', 3, 1]
sage: Q.basis().keys()
{0, 1, 2, 3, 'delta'}

And the simple root 𝛼0 associated to the special node is deformed as follows:

sage: Q.simple_roots()
Finite family {0: 2*Lambda[0] - Lambda[1] - Lambda[3] + delta,

1: -Lambda[0] + 2*Lambda[1] - Lambda[2],
2: -Lambda[1] + 2*Lambda[2] - Lambda[3],
3: -Lambda[0] - Lambda[2] + 2*Lambda[3]}

Now, the null root is nonzero:

sage: Q.null_root()
delta

Warning: By a slight notational abuse, the extra basis element used to extend the fundamental weights is
called \delta in the current implementation. However, in the literature, \delta usually denotes instead
the null root. Most of the time, those two objects coincide, but not for type 𝐵𝐶 (aka. 𝐴(2)

2𝑛). Therefore we
currently have:

sage: Q = RootSystem(["A",4,2]).weight_lattice(extended=True)
sage: Q.simple_root(0)
2*Lambda[0] - Lambda[1] + delta
sage: Q.null_root()
2*delta

whereas, with the standard notations from the literature, one would expect to get respectively 2Λ0−Λ1+1/2𝛿
and 𝛿.

Other than this notational glitch, the implementation remains correct for type 𝐵𝐶.

The notations may get improved in a subsequent version, which might require changing the index of the extra
basis element. To guarantee backward compatibility in code not included in Sage, it is recommended to use
the following idiom to get that index:

sage: F = Q.basis_extension(); F
Finite family {'delta': delta}
sage: index = F.keys()[0]; index
'delta'

Then, for example, the coefficient of an element of the extended weight lattice on that basis element can be
recovered with:
sage: Q.null_root()[index]
2

Element
alias of WeightSpaceElement

basis_extension()
Return the basis elements used to extend the fundamental weights

EXAMPLES:

5.1. Comprehensive Module List 2611

Combinatorics, Release 9.7

sage: Q = RootSystem(["A",3,1]).weight_lattice()
sage: Q.basis_extension()
Family ()

sage: Q = RootSystem(["A",3,1]).weight_lattice(extended=True)
sage: Q.basis_extension()
Finite family {'delta': delta}

This method is irrelevant for finite types:

sage: Q = RootSystem(["A",3]).weight_lattice()
sage: Q.basis_extension()
Family ()

fundamental_weight(i)
Returns the 𝑖-th fundamental weight

INPUT:

• i – an element of the index set or "delta"

By a slight notational abuse, for an affine type this method also accepts "delta" as input, and returns the
image of 𝛿 of the extended weight lattice in this realization.

See also:

fundamental_weight()

EXAMPLES:

sage: Q = RootSystem(["A",3]).weight_lattice()
sage: Q.fundamental_weight(1)
Lambda[1]

sage: Q = RootSystem(["A",3,1]).weight_lattice(extended=True)
sage: Q.fundamental_weight(1)
Lambda[1]
sage: Q.fundamental_weight("delta")
delta

is_extended()
Return whether this is an extended weight lattice.

See also:

is_extended()

EXAMPLES:

sage: RootSystem(["A",3,1]).weight_lattice().is_extended()
False
sage: RootSystem(["A",3,1]).weight_lattice(extended=True).is_extended()
True

simple_root(j)
Returns the 𝑗𝑡ℎ simple root

EXAMPLES:

2612 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = RootSystem(["C",4]).weight_lattice()
sage: L.simple_root(3)
-Lambda[2] + 2*Lambda[3] - Lambda[4]

Its coefficients are given by the corresponding column of the Cartan matrix:

sage: L.cartan_type().cartan_matrix()[:,2]
[0]
[-1]
[2]
[-1]

Here are all simple roots:

sage: L.simple_roots()
Finite family {1: 2*Lambda[1] - Lambda[2],

2: -Lambda[1] + 2*Lambda[2] - Lambda[3],
3: -Lambda[2] + 2*Lambda[3] - Lambda[4],
4: -2*Lambda[3] + 2*Lambda[4]}

For the extended weight lattice of an affine type, the simple root associated to the special node is deformed
by adding 𝛿, where 𝛿 is the null root:

sage: L = RootSystem(["C",4,1]).weight_lattice(extended=True)
sage: L.simple_root(0)
2*Lambda[0] - 2*Lambda[1] + delta

In fact 𝛿 is really 1/𝑎0 times the null root (see the discussion in WeightSpace) but this only makes a
difference in type 𝐵𝐶:

sage: L = RootSystem(CartanType(["BC",4,2])).weight_lattice(extended=True)
sage: L.simple_root(0)
2*Lambda[0] - Lambda[1] + delta
sage: L.null_root()
2*delta

See also:

• simple_root()

• CartanType.col_annihilator()

to_ambient_space_morphism()
The morphism from self to its associated ambient space.

EXAMPLES:

sage: CartanType(['A',2]).root_system().weight_lattice().to_ambient_space_
→˓morphism()
Generic morphism:
From: Weight lattice of the Root system of type ['A', 2]
To: Ambient space of the Root system of type ['A', 2]

5.1. Comprehensive Module List 2613

Combinatorics, Release 9.7

Warning: Implemented only for finite Cartan type.

class sage.combinat.root_system.weight_space.WeightSpaceElement
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

is_dominant()
Checks whether an element in the weight space lies in the positive cone spanned by the basis elements
(fundamental weights).

EXAMPLES:

sage: W = RootSystem(['A',3]).weight_space()
sage: Lambda = W.basis()
sage: w = Lambda[1]+Lambda[3]
sage: w.is_dominant()
True
sage: w = Lambda[1]-Lambda[2]
sage: w.is_dominant()
False

In the extended affine weight lattice, ‘delta’ is orthogonal to the positive coroots, so adding or subtracting
it should not effect dominance

sage: P = RootSystem(['A',2,1]).weight_lattice(extended=true)
sage: Lambda = P.fundamental_weights()
sage: delta = P.null_root()
sage: w = Lambda[1]-delta
sage: w.is_dominant()
True

scalar(lambdacheck)
The canonical scalar product between the weight lattice and the coroot lattice.

Todo:

• merge with_apply_multi_module_morphism

• allow for any root space / lattice

• define properly the return type (depends on the base rings of the two spaces)

• make this robust for extended weight lattices (𝑖 might be “delta”)

EXAMPLES:

sage: L = RootSystem(["C",4,1]).weight_lattice()
sage: Lambda = L.fundamental_weights()
sage: alphacheck = L.simple_coroots()
sage: Lambda[1].scalar(alphacheck[1])
1
sage: Lambda[1].scalar(alphacheck[2])
0

The fundamental weights and the simple coroots are dual bases:

2614 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

sage: matrix([[Lambda[i].scalar(alphacheck[j])
....: for i in L.index_set()]
....: for j in L.index_set()])
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

Note that the scalar product is not yet implemented between the weight space and the coweight space; in
any cases, that won’t be the job of this method:

sage: R = RootSystem(["A",3])
sage: alpha = R.weight_space().roots()
sage: alphacheck = R.coweight_space().roots()
sage: alpha[1].scalar(alphacheck[1])
Traceback (most recent call last):
...
ValueError: -Lambdacheck[1] + 2*Lambdacheck[2] - Lambdacheck[3] is not in the␣
→˓coroot space

to_ambient()
Maps self to the ambient space.

EXAMPLES:

sage: mu = CartanType(['B',2]).root_system().weight_lattice().an_element(); mu
2*Lambda[1] + 2*Lambda[2]
sage: mu.to_ambient()
(3, 1)

Warning: Only implemented in finite Cartan type. Does not work for coweight lattices because there
is no implemented map from the coweight lattice to the ambient space.

to_weight_space()
Map self to the weight space.

Since 𝑠𝑒𝑙𝑓.𝑝𝑎𝑟𝑒𝑛𝑡() is the weight space, this map just returns self. This overrides the generic method in
𝑊𝑒𝑖𝑔ℎ𝑡𝑆𝑝𝑎𝑐𝑒𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠.

EXAMPLES:

sage: mu = CartanType(['A',2]).root_system().weight_lattice().an_element(); mu
2*Lambda[1] + 2*Lambda[2]
sage: mu.to_weight_space()
2*Lambda[1] + 2*Lambda[2]

5.1. Comprehensive Module List 2615

Combinatorics, Release 9.7

5.1.268 Weyl Character Rings

class sage.combinat.root_system.weyl_characters.WeightRing(parent, prefix)
Bases: sage.combinat.free_module.CombinatorialFreeModule

The weight ring, which is the group algebra over a weight lattice.

A Weyl character may be regarded as an element of the weight ring. In fact, an element of the weight ring is an
element of the Weyl character ring if and only if it is invariant under the action of the Weyl group.

The advantage of the weight ring over the Weyl character ring is that one may conduct calculations in the weight
ring that involve sums of weights that are not Weyl group invariant.

EXAMPLES:

sage: A2 = WeylCharacterRing(['A',2])
sage: a2 = WeightRing(A2)
sage: wd = prod(a2(x/2)-a2(-x/2) for x in a2.space().positive_roots()); wd
a2(-1,1,0) - a2(-1,0,1) - a2(1,-1,0) + a2(1,0,-1) + a2(0,-1,1) - a2(0,1,-1)
sage: chi = A2([5,3,0]); chi
A2(5,3,0)
sage: a2(chi)
a2(1,2,5) + 2*a2(1,3,4) + 2*a2(1,4,3) + a2(1,5,2) + a2(2,1,5)
+ 2*a2(2,2,4) + 3*a2(2,3,3) + 2*a2(2,4,2) + a2(2,5,1) + 2*a2(3,1,4)
+ 3*a2(3,2,3) + 3*a2(3,3,2) + 2*a2(3,4,1) + a2(3,5,0) + a2(3,0,5)
+ 2*a2(4,1,3) + 2*a2(4,2,2) + 2*a2(4,3,1) + a2(4,4,0) + a2(4,0,4)
+ a2(5,1,2) + a2(5,2,1) + a2(5,3,0) + a2(5,0,3) + a2(0,3,5)
+ a2(0,4,4) + a2(0,5,3)
sage: a2(chi)*wd
-a2(-1,3,6) + a2(-1,6,3) + a2(3,-1,6) - a2(3,6,-1) - a2(6,-1,3) + a2(6,3,-1)
sage: sum((-1)^w.length()*a2([6,3,-1]).weyl_group_action(w) for w in a2.space().
→˓weyl_group())
-a2(-1,3,6) + a2(-1,6,3) + a2(3,-1,6) - a2(3,6,-1) - a2(6,-1,3) + a2(6,3,-1)
sage: a2(chi)*wd == sum((-1)^w.length()*a2([6,3,-1]).weyl_group_action(w) for w in␣
→˓a2.space().weyl_group())
True

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

A class for weight ring elements.

cartan_type()
Return the Cartan type.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: a2([0,1,0]).cartan_type()
['A', 2]

character()
Assuming that self is invariant under the Weyl group, this will express it as a linear combination of
characters. If self is not Weyl group invariant, this method will not terminate.

EXAMPLES:

2616 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

sage: A2 = WeylCharacterRing(['A',2])
sage: a2 = WeightRing(A2)
sage: W = a2.space().weyl_group()
sage: mu = a2(2,1,0)
sage: nu = sum(mu.weyl_group_action(w) for w in W) ; nu
a2(1,2,0) + a2(1,0,2) + a2(2,1,0) + a2(2,0,1) + a2(0,1,2) + a2(0,2,1)
sage: nu.character()
-2*A2(1,1,1) + A2(2,1,0)

demazure(w, debug=False)
Return the result of applying the Demazure operator 𝜕𝑤 to self.

INPUT:
• w – a Weyl group element, or its reduced word

If 𝑤 = 𝑠𝑖 is a simple reflection, the operation 𝜕𝑤 sends the weight 𝜆 to

𝜆− 𝑠𝑖 · 𝜆+ 𝛼𝑖
1 + 𝛼𝑖

,

where the numerator is divisible the denominator in the weight ring. This is extended by multiplica-
tivity to all 𝑤 in the Weyl group.

EXAMPLES:

sage: B2 = WeylCharacterRing("B2",style="coroots")
sage: b2 = WeightRing(B2)
sage: b2(1,0).demazure([1])
b2(1,0) + b2(-1,2)
sage: b2(1,0).demazure([2])
b2(1,0)
sage: r = b2(1,0).demazure([1,2]); r
b2(1,0) + b2(-1,2)
sage: r.demazure([1])
b2(1,0) + b2(-1,2)
sage: r.demazure([2])
b2(0,0) + b2(1,0) + b2(1,-2) + b2(-1,2)

demazure_lusztig(i, v)
Return the result of applying the Demazure-Lusztig operator 𝑇𝑖 to self.

INPUT:
• i – an element of the index set (or a reduced word or Weyl group element)
• v – an element of the base ring

If 𝑅 is the parent WeightRing, the Demazure-Lusztig operator 𝑇𝑖 is the linear map 𝑅→ 𝑅 that sends
(for a weight 𝜆) 𝑅(𝜆) to

(𝑅(𝛼𝑖)− 1)−1
(︀
𝑅(𝜆)−𝑅(𝑠𝑖𝜆)− 𝑣(𝑅(𝜆)−𝑅(𝛼𝑖 + 𝑠𝑖𝜆))

)︀
where the numerator is divisible by the denominator in 𝑅. The Demazure-Lusztig operators give a
representation of the Iwahori–Hecke algebra associated to the Weyl group. See

• Lusztig, Equivariant 𝐾-theory and representations of Hecke algebras, Proc. Amer. Math. Soc.
94 (1985), no. 2, 337-342.

• Cherednik, Nonsymmetric Macdonald polynomials. IMRN 10, 483-515 (1995).
In the examples, we confirm the braid and quadratic relations for type 𝐵2.

EXAMPLES:

5.1. Comprehensive Module List 2617

Combinatorics, Release 9.7

sage: P.<v> = PolynomialRing(QQ)
sage: B2 = WeylCharacterRing("B2",style="coroots",base_ring=P); b2 = B2.
→˓ambient()
sage: def T1(f): return f.demazure_lusztig(1,v)
sage: def T2(f): return f.demazure_lusztig(2,v)
sage: T1(T2(T1(T2(b2(1,-1)))))
(v^2-v)*b2(0,-1) + v^2*b2(-1,1)
sage: [T1(T1(f))==(v-1)*T1(f)+v*f for f in [b2(0,0), b2(1,0), b2(2,3)]]
[True, True, True]
sage: [T1(T2(T1(T2(b2(i,j))))) == T2(T1(T2(T1(b2(i,j))))) for i in [-2..2]␣
→˓for j in [-1,1]]
[True, True, True, True, True, True, True, True, True, True]

Instead of an index 𝑖 one may use a reduced word or Weyl group element:

sage: b2(1,0).demazure_lusztig([2,1],v)==T2(T1(b2(1,0)))
True
sage: W = B2.space().weyl_group(prefix="s")
sage: [s1,s2]=W.simple_reflections()
sage: b2(1,0).demazure_lusztig(s2*s1,v)==T2(T1(b2(1,0)))
True

scale(k)
Multiply a weight by 𝑘.

The operation is extended by linearity to the weight ring.

INPUT:
• k – a nonzero integer

EXAMPLES:

sage: g2 = WeylCharacterRing("G2",style="coroots").ambient()
sage: g2(2,3).scale(2)
g2(4,6)

shift(mu)
Add 𝜇 to any weight.

Extended by linearity to the weight ring.

INPUT:
• mu – a weight

EXAMPLES:

sage: g2 = WeylCharacterRing("G2",style="coroots").ambient()
sage: [g2(1,2).shift(fw) for fw in g2.fundamental_weights()]
[g2(2,2), g2(1,3)]

weyl_group_action(w)
Return the action of the Weyl group element w on self.

EXAMPLES:

sage: G2 = WeylCharacterRing(['G',2])
sage: g2 = WeightRing(G2)
sage: L = g2.space()

(continues on next page)

2618 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: [fw1, fw2] = L.fundamental_weights()
sage: sum(g2(fw2).weyl_group_action(w) for w in L.weyl_group())
2*g2(-2,1,1) + 2*g2(-1,-1,2) + 2*g2(-1,2,-1) + 2*g2(1,-2,1) + 2*g2(1,1,-2)␣
→˓+ 2*g2(2,-1,-1)

cartan_type()
Return the Cartan type.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: WeightRing(A2).cartan_type()
['A', 2]

fundamental_weights()
Return the fundamental weights.

EXAMPLES:

sage: WeightRing(WeylCharacterRing("G2")).fundamental_weights()
Finite family {1: (1, 0, -1), 2: (2, -1, -1)}

one_basis()
Return the index of 1.

EXAMPLES:

sage: A3 = WeylCharacterRing("A3")
sage: WeightRing(A3).one_basis()
(0, 0, 0, 0)
sage: WeightRing(A3).one()
a3(0,0,0,0)

parent()
Return the parent Weyl character ring.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: a2.parent()
The Weyl Character Ring of Type A2 with Integer Ring coefficients
sage: a2.parent() == A2
True

positive_roots()
Return the positive roots.

EXAMPLES:

sage: WeightRing(WeylCharacterRing("G2")).positive_roots()
[(0, 1, -1), (1, -2, 1), (1, -1, 0), (1, 0, -1), (1, 1, -2), (2, -1, -1)]

product_on_basis(a, b)
Return the product of basis elements indexed by a and b.

EXAMPLES:

5.1. Comprehensive Module List 2619

Combinatorics, Release 9.7

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: a2(1,0,0) * a2(0,1,0) # indirect doctest
a2(1,1,0)

simple_roots()
Return the simple roots.

EXAMPLES:

sage: WeightRing(WeylCharacterRing("G2")).simple_roots()
Finite family {1: (0, 1, -1), 2: (1, -2, 1)}

some_elements()
Return some elements of self.

EXAMPLES:

sage: A3 = WeylCharacterRing("A3")
sage: a3 = WeightRing(A3)
sage: a3.some_elements()
[a3(1,0,0,0), a3(1,1,0,0), a3(1,1,1,0)]

space()
Return the weight space realization associated to self.

EXAMPLES:

sage: E8 = WeylCharacterRing(['E',8])
sage: e8 = WeightRing(E8)
sage: e8.space()
Ambient space of the Root system of type ['E', 8]

weyl_character_ring()
Return the parent Weyl Character Ring.

A synonym for self.parent().

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: a2.weyl_character_ring()
The Weyl Character Ring of Type A2 with Integer Ring coefficients

wt_repr(wt)
Return a string representing the irreducible character with highest weight vector wt.

Uses coroot notation if the associated Weyl character ring is defined with style="coroots".

EXAMPLES:

sage: G2 = WeylCharacterRing("G2")
sage: [G2.ambient().wt_repr(x) for x in G2.fundamental_weights()]
['g2(1,0,-1)', 'g2(2,-1,-1)']
sage: G2 = WeylCharacterRing("G2",style="coroots")
sage: [G2.ambient().wt_repr(x) for x in G2.fundamental_weights()]
['g2(1,0)', 'g2(0,1)']

2620 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.root_system.weyl_characters.WeylCharacterRing(ct, base_ring=Integer Ring,
prefix=None, style='lattice',
k=None, conjugate=False,
cyclotomic_order=None)

Bases: sage.combinat.free_module.CombinatorialFreeModule

A class for rings of Weyl characters.

Let 𝐾 be a compact Lie group, which we assume is semisimple and simply-connected. Its complexified Lie
algebra 𝐿 is the Lie algebra of a complex analytic Lie group 𝐺. The following three categories are equivalent:
finite-dimensional representations of𝐾; finite-dimensional representations of 𝐿; and finite-dimensional analytic
representations of 𝐺. In every case, there is a parametrization of the irreducible representations by their highest
weight vectors. For this theory of Weyl, see (for example):

• Adams, Lectures on Lie groups

• Broecker and Tom Dieck, Representations of Compact Lie groups

• Bump, Lie Groups

• Fulton and Harris, Representation Theory

• Goodman and Wallach, Representations and Invariants of the Classical Groups

• Hall, Lie Groups, Lie Algebras and Representations

• Humphreys, Introduction to Lie Algebras and their representations

• Procesi, Lie Groups

• Samelson, Notes on Lie Algebras

• Varadarajan, Lie groups, Lie algebras, and their representations

• Zhelobenko, Compact Lie Groups and their Representations.

Computations that you can do with these include computing their weight multiplicities, products (thus decompos-
ing the tensor product of a representation into irreducibles) and branching rules (restriction to a smaller group).

There is associated with 𝐾, 𝐿 or 𝐺 as above a lattice, the weight lattice, whose elements (called weights) are
characters of a Cartan subgroup or subalgebra. There is an action of the Weyl group 𝑊 on the lattice, and
elements of a fixed fundamental domain for 𝑊 , the positive Weyl chamber, are called dominant. There is for
each representation a unique highest dominant weight that occurs with nonzero multiplicity with respect to a
certain partial order, and it is called the highest weight vector.

EXAMPLES:

sage: L = RootSystem("A2").ambient_space()
sage: [fw1,fw2] = L.fundamental_weights()
sage: R = WeylCharacterRing(['A',2], prefix="R")
sage: [R(1),R(fw1),R(fw2)]
[R(0,0,0), R(1,0,0), R(1,1,0)]

Here R(1), R(fw1), and R(fw2) are irreducible representations with highest weight vectors 0, Λ1, and Λ2

respectively (the first two fundamental weights).

For type 𝐴 (also 𝐺2, 𝐹4, 𝐸6 and 𝐸7) we will take as the weight lattice not the weight lattice of the semisim-
ple group, but for a larger one. For type 𝐴, this means we are concerned with the representation theory of
𝐾 = 𝑈(𝑛) or 𝐺 = 𝐺𝐿(𝑛,C) rather than 𝑆𝑈(𝑛) or 𝑆𝑈(𝑛,C). This is useful since the representation theory
of 𝐺𝐿(𝑛) is ubiquitous, and also since we may then represent the fundamental weights (in sage.combinat.
root_system.root_system) by vectors with integer entries. If you are only interested in 𝑆𝐿(3), say, use
WeylCharacterRing(['A',2]) as above but be aware that R([a,b,c]) and R([a+1,b+1,c+1]) represent
the same character of 𝑆𝐿(3) since R([1,1,1]) is the determinant.

5.1. Comprehensive Module List 2621

Combinatorics, Release 9.7

For more information, see the thematic tutorial Lie Methods and Related Combinatorics in Sage, available at:

https://doc.sagemath.org/html/en/thematic_tutorials/lie.html

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

A class for Weyl characters.

adams_operation(r)
Return the 𝑟-th Adams operation of self.

INPUT:
• r – a positive integer

This is a virtual character, whose weights are the weights of self, each multiplied by 𝑟.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: A2(1,1,0).adams_operation(3)
A2(2,2,2) - A2(3,2,1) + A2(3,3,0)

branch(S, rule='default')
Return the restriction of the character to the subalgebra.

If no rule is specified, we will try to specify one.

INPUT:
• S – a Weyl character ring for a Lie subgroup or subalgebra
• rule – a branching rule

See branch_weyl_character() for more information about branching rules.

EXAMPLES:

sage: B3 = WeylCharacterRing(['B',3])
sage: A2 = WeylCharacterRing(['A',2])
sage: [B3(w).branch(A2,rule="levi") for w in B3.fundamental_weights()]
[A2(0,0,0) + A2(1,0,0) + A2(0,0,-1),
A2(0,0,0) + A2(1,0,0) + A2(1,1,0) + A2(1,0,-1) + A2(0,-1,-1) + A2(0,0,-1),
A2(-1/2,-1/2,-1/2) + A2(1/2,-1/2,-1/2) + A2(1/2,1/2,-1/2) + A2(1/2,1/2,1/2)]

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: A2([1,0,0]).cartan_type()
['A', 2]

degree()
Return the degree of self.

This is the dimension of the associated module.

EXAMPLES:

sage: B3 = WeylCharacterRing(['B',3])
sage: [B3(x).degree() for x in B3.fundamental_weights()]
[7, 21, 8]

2622 Chapter 5. Comprehensive Module List

https://doc.sagemath.org/html/en/thematic_tutorials/lie.html
../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

dual()
The involution that replaces a representation with its contragredient. (For Fusion rings, this is the
conjugation map.)

EXAMPLES:

sage: A3 = WeylCharacterRing("A3", style="coroots")
sage: A3(1,0,0)^2
A3(0,1,0) + A3(2,0,0)
sage: (A3(1,0,0)^2).dual()
A3(0,1,0) + A3(0,0,2)

exterior_power(k)
Return the 𝑘-th exterior power of self.

INPUT:
• k – a nonnegative integer

The algorithm is based on the identity 𝑘𝑒𝑘 =
∑︀𝑘
𝑟=1(−1)𝑘−1𝑝𝑘𝑒𝑘−𝑟 relating the power-sum and el-

ementary symmetric polynomials. Applying this to the eigenvalues of an element of the parent Lie
group in the representation self, the 𝑒𝑘 become exterior powers and the 𝑝𝑘 become Adams operations,
giving an efficient recursive implementation.

EXAMPLES:

sage: B3 = WeylCharacterRing("B3",style="coroots")
sage: spin = B3(0,0,1)
sage: spin.exterior_power(6)
B3(1,0,0) + B3(0,1,0)

exterior_square()
Return the exterior square of the character.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2",style="coroots")
sage: A2(1,0).exterior_square()
A2(0,1)

frobenius_schur_indicator()
Return:

• 1 if the representation is real (orthogonal)
• −1 if the representation is quaternionic (symplectic)
• 0 if the representation is complex (not self dual)

The Frobenius-Schur indicator of a character𝜒 of a compact group𝐺 is the Haar integral over the group
of 𝜒(𝑔2). Its value is 1, -1 or 0. This method computes it for irreducible characters of compact Lie
groups by checking whether the symmetric and exterior square characters contain the trivial character.

Todo: Try to compute this directly without actually calculating the full symmetric and exterior
squares.

EXAMPLES:

sage: B2 = WeylCharacterRing("B2",style="coroots")
sage: B2(1,0).frobenius_schur_indicator()
1

(continues on next page)

5.1. Comprehensive Module List 2623

Combinatorics, Release 9.7

(continued from previous page)

sage: B2(0,1).frobenius_schur_indicator()
-1

highest_weight()
This method is only available for basis elements. Returns the parametrizing dominant weight of an
irreducible character.

EXAMPLES:

sage: G2 = WeylCharacterRing("G2", style="coroots")
sage: [x.highest_weight() for x in [G2(1,0),G2(0,1)]]
[(1, 0, -1), (2, -1, -1)]

inner_product(other)
Compute the inner product with another character.

The irreducible characters are an orthonormal basis with respect to the usual inner product of charac-
ters, interpreted as functions on a compact Lie group, by Schur orthogonality.

INPUT:
• other – another character

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: [f1,f2] = A2.fundamental_weights()
sage: r1 = A2(f1)*A2(f2); r1
A2(1,1,1) + A2(2,1,0)
sage: r2 = A2(f1)^3; r2
A2(1,1,1) + 2*A2(2,1,0) + A2(3,0,0)
sage: r1.inner_product(r2)
3

invariant_degree()
Return the multiplicity of the trivial representation in self.

Multiplicities of other irreducibles may be obtained using multiplicity().

EXAMPLES:

sage: A2 = WeylCharacterRing("A2",style="coroots")
sage: rep = A2(1,0)^2*A2(0,1)^2; rep
2*A2(0,0) + A2(0,3) + 4*A2(1,1) + A2(3,0) + A2(2,2)
sage: rep.invariant_degree()
2

is_irreducible()
Return whether self is an irreducible character.

EXAMPLES:

sage: B3 = WeylCharacterRing(['B',3])
sage: [B3(x).is_irreducible() for x in B3.fundamental_weights()]
[True, True, True]
sage: sum(B3(x) for x in B3.fundamental_weights()).is_irreducible()
False

2624 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

multiplicity(other)
Return the multiplicity of the irreducible other in self.

INPUT:
• other – an irreducible character

EXAMPLES:

sage: B2 = WeylCharacterRing("B2",style="coroots")
sage: rep = B2(1,1)^2; rep
B2(0,0) + B2(1,0) + 2*B2(0,2) + B2(2,0) + 2*B2(1,2) + B2(0,4) + B2(3,0) +␣
→˓B2(2,2)
sage: rep.multiplicity(B2(0,2))
2

symmetric_power(k)
Return the 𝑘-th symmetric power of self.

INPUT:
• 𝑘 – a nonnegative integer

The algorithm is based on the identity 𝑘ℎ𝑘 =
∑︀𝑘
𝑟=1 𝑝𝑘ℎ𝑘−𝑟 relating the power-sum and complete

symmetric polynomials. Applying this to the eigenvalues of an element of the parent Lie group in the
representation self, the ℎ𝑘 become symmetric powers and the 𝑝𝑘 become Adams operations, giving
an efficient recursive implementation.

EXAMPLES:

sage: B3 = WeylCharacterRing("B3",style="coroots")
sage: spin = B3(0,0,1)
sage: spin.symmetric_power(6)
B3(0,0,0) + B3(0,0,2) + B3(0,0,4) + B3(0,0,6)

symmetric_square()
Return the symmetric square of the character.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2",style="coroots")
sage: A2(1,0).symmetric_square()
A2(2,0)

weight_multiplicities()
Return the dictionary of weight multiplicities for the Weyl character self.

The character does not have to be irreducible.

EXAMPLES:

sage: B2 = WeylCharacterRing("B2",style="coroots")
sage: B2(0,1).weight_multiplicities()
{(-1/2, -1/2): 1, (-1/2, 1/2): 1, (1/2, -1/2): 1, (1/2, 1/2): 1}

adjoint_representation()
Return the adjoint representation as an element of the WeylCharacterRing.

EXAMPLES:

5.1. Comprehensive Module List 2625

Combinatorics, Release 9.7

sage: G2 = WeylCharacterRing("G2",style="coroots")
sage: G2.adjoint_representation()
G2(0,1)

affine_reflect(wt, k=0)
INPUT:

• wt – a weight

• k – (optional) a positive integer

Returns the reflection of wt in the hyperplane 𝜃. Optionally shifts by a multiple 𝑘.

EXAMPLES:

sage: B22 = FusionRing("B2",2)
sage: fw = B22.fundamental_weights(); fw
Finite family {1: (1, 0), 2: (1/2, 1/2)}
sage: [B22.affine_reflect(x,2) for x in fw]
[(2, 1), (3/2, 3/2)]

ambient()
Return the weight ring of self.

EXAMPLES:

sage: WeylCharacterRing("A2").ambient()
The Weight ring attached to The Weyl Character Ring of Type A2 with Integer␣
→˓Ring coefficients

base_ring()
Return the base ring of self.

EXAMPLES:

sage: R = WeylCharacterRing(['A',3], base_ring = CC); R.base_ring()
Complex Field with 53 bits of precision

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: WeylCharacterRing("A2").cartan_type()
['A', 2]

char_from_weights(mdict)
Construct a Weyl character from an invariant linear combination of weights.

INPUT:

• mdict – a dictionary mapping weights to coefficients, and representing a linear combination of weights
which shall be invariant under the action of the Weyl group

OUTPUT: the corresponding Weyl character

EXAMPLES:

2626 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: A2 = WeylCharacterRing("A2")
sage: v = A2._space([3,1,0]); v
(3, 1, 0)
sage: d = dict([(x,1) for x in v.orbit()]); d
{(1, 3, 0): 1,
(1, 0, 3): 1,
(3, 1, 0): 1,
(3, 0, 1): 1,
(0, 1, 3): 1,
(0, 3, 1): 1}
sage: A2.char_from_weights(d)
-A2(2,1,1) - A2(2,2,0) + A2(3,1,0)

demazure_character(hwv, word, debug=False)
Compute the Demazure character.

INPUT:

• hwv – a (usually dominant) weight

• word – a Weyl group word

Produces the Demazure character with highest weight hwv and word as an element of the weight ring. Only
available if style="coroots". The Demazure operators are also available as methods of WeightRing
elements, and as methods of crystals. Given a CrystalOfTableaux with given highest weight vector, the
Demazure method on the crystal will give the equivalent of this method, except that the Demazure character
of the crystal is given as a sum of monomials instead of an element of the WeightRing.

See WeightRing.Element.demazure() and sage.categories.classical_crystals.
ClassicalCrystals.ParentMethods.demazure_character()

EXAMPLES:

sage: A2 = WeylCharacterRing("A2",style="coroots")
sage: h = sum(A2.fundamental_weights()); h
(2, 1, 0)
sage: A2.demazure_character(h,word=[1,2])
a2(0,0) + a2(-2,1) + a2(2,-1) + a2(1,1) + a2(-1,2)
sage: A2.demazure_character((1,1),word=[1,2])
a2(0,0) + a2(-2,1) + a2(2,-1) + a2(1,1) + a2(-1,2)

dot_reduce(a)
Auxiliary function for product_on_basis().

Return a pair [𝜖, 𝑏] where 𝑏 is a dominant weight and 𝜖 is 0, 1 or -1. To describe 𝑏, let 𝑤 be an element of
the Weyl group such that 𝑤(𝑎+ 𝜌) is dominant. If 𝑤(𝑎+ 𝜌)− 𝜌 is dominant, then 𝜖 is the sign of 𝑤 and 𝑏
is 𝑤(𝑎+ 𝜌)− 𝜌. Otherwise, 𝜖 is zero.

INPUT:

• a – a weight

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: weights = sorted(A2(2,1,0).weight_multiplicities().keys(), key=str);␣
→˓weights
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)]

(continues on next page)

5.1. Comprehensive Module List 2627

../../../../../../../html/en/reference/categories/sage/categories/classical_crystals.html#sage.categories.classical_crystals.ClassicalCrystals.ParentMethods.demazure_character
../../../../../../../html/en/reference/categories/sage/categories/classical_crystals.html#sage.categories.classical_crystals.ClassicalCrystals.ParentMethods.demazure_character

Combinatorics, Release 9.7

(continued from previous page)

sage: [A2.dot_reduce(x) for x in weights]
[[0, (0, 0, 0)], [-1, (1, 1, 1)], [-1, (1, 1, 1)], [1, (1, 1, 1)], [0, (0, 0,␣
→˓0)], [0, (0, 0, 0)], [1, (2, 1, 0)]]

dynkin_diagram()
Return the Dynkin diagram of self.

EXAMPLES:

sage: WeylCharacterRing("E7").dynkin_diagram()
O 2
|
|

O---O---O---O---O---O
1 3 4 5 6 7
E7

extended_dynkin_diagram()
Return the extended Dynkin diagram, which is the Dynkin diagram of the corresponding untwisted affine
type.

EXAMPLES:

sage: WeylCharacterRing("E7").extended_dynkin_diagram()
O 2
|
|

O---O---O---O---O---O---O
0 1 3 4 5 6 7
E7~

fundamental_weights()
Return the fundamental weights.

EXAMPLES:

sage: WeylCharacterRing("G2").fundamental_weights()
Finite family {1: (1, 0, -1), 2: (2, -1, -1)}

highest_root()
Return the highest root.

EXAMPLES:

sage: WeylCharacterRing("G2").highest_root()
(2, -1, -1)

irr_repr(hwv)
Return a string representing the irreducible character with highest weight vector hwv.

EXAMPLES:

sage: B3 = WeylCharacterRing("B3")
sage: [B3.irr_repr(v) for v in B3.fundamental_weights()]
['B3(1,0,0)', 'B3(1,1,0)', 'B3(1/2,1/2,1/2)']

(continues on next page)

2628 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: B3 = WeylCharacterRing("B3", style="coroots")
sage: [B3.irr_repr(v) for v in B3.fundamental_weights()]
['B3(1,0,0)', 'B3(0,1,0)', 'B3(0,0,1)']

level(wt)
Return the level of the weight, defined to be the value of the weight on the coroot associated with the highest
root.

EXAMPLES:

sage: R = FusionRing("F4",2); [R.level(x) for x in R.fundamental_weights()]
[2, 3, 2, 1]
sage: [CartanType("F4~").dual().a()[x] for x in [1..4]]
[2, 3, 2, 1]

lift()
The embedding of self into its weight ring.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: A2.lift
Generic morphism:
From: The Weyl Character Ring of Type A2 with Integer Ring coefficients
To: The Weight ring attached to The Weyl Character Ring of Type A2 with␣

→˓Integer Ring coefficients

sage: x = -A2(2,1,1) - A2(2,2,0) + A2(3,1,0)
sage: A2.lift(x)
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)

As a shortcut, you may also do:

sage: x.lift()
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)

Or even:

sage: a2 = WeightRing(A2)
sage: a2(x)
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)

lift_on_basis(irr)
Expand the basis element indexed by the weight irr into the weight ring of self.

INPUT:

• irr – a dominant weight

This is used to implement lift().

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: v = A2._space([2,1,0]); v
(2, 1, 0)

(continues on next page)

5.1. Comprehensive Module List 2629

Combinatorics, Release 9.7

(continued from previous page)

sage: A2.lift_on_basis(v)
2*a2(1,1,1) + a2(1,2,0) + a2(1,0,2) + a2(2,1,0) + a2(2,0,1) + a2(0,1,2) + a2(0,
→˓2,1)

This is consistent with the analogous calculation with symmetric Schur functions:

sage: s = SymmetricFunctions(QQ).s()
sage: s[2,1].expand(3)
x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2

maximal_subgroup(ct)
Return a branching rule or a list of branching rules.

INPUT:

• ct – the Cartan type of a maximal subgroup of self.

In rare cases where there is more than one maximal subgroup (up to outer automorphisms) with the given
Cartan type, the function returns a list of branching rules.

EXAMPLES:

sage: WeylCharacterRing("E7").maximal_subgroup("A2")
miscellaneous branching rule E7 => A2
sage: WeylCharacterRing("E7").maximal_subgroup("A1")
[iii branching rule E7 => A1, iv branching rule E7 => A1]

For more information, see the related method maximal_subgroups().

maximal_subgroups()
This method is only available if the Cartan type of self is irreducible and of rank no greater than 8. This
method produces a list of the maximal subgroups of self, up to (possibly outer) automorphisms. Each
line in the output gives the Cartan type of a maximal subgroup followed by a command that creates the
branching rule.

EXAMPLES:

sage: WeylCharacterRing("E6").maximal_subgroups()
D5:branching_rule("E6","D5","levi")
C4:branching_rule("E6","C4","symmetric")
F4:branching_rule("E6","F4","symmetric")
A2:branching_rule("E6","A2","miscellaneous")
G2:branching_rule("E6","G2","miscellaneous")
A2xG2:branching_rule("E6","A2xG2","miscellaneous")
A1xA5:branching_rule("E6","A1xA5","extended")
A2xA2xA2:branching_rule("E6","A2xA2xA2","extended")

Note that there are other embeddings of (for example𝐴2 into𝐸6 as nonmaximal subgroups. These embed-
dings may be constructed by composing branching rules through various subgroups.

Once you know which maximal subgroup you are interested in, to create the branching rule, you may either
paste the command to the right of the colon from the above output onto the command line, or alternatively
invoke the related method maximal_subgroup():

sage: branching_rule("E6","G2","miscellaneous")
miscellaneous branching rule E6 => G2

(continues on next page)

2630 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: WeylCharacterRing("E6").maximal_subgroup("G2")
miscellaneous branching rule E6 => G2

It is believed that the list of maximal subgroups is complete, except that some subgroups may be not be
invariant under outer automorphisms. It is reasonable to want a list of maximal subgroups that is complete
up to conjugation, but to obtain such a list you may have to apply outer automorphisms. The group of outer
automorphisms modulo inner automorphisms is isomorphic to the group of symmetries of the Dynkin
diagram, and these are available as branching rules. The following example shows that while a branching
rule from𝐷4 to𝐴1×𝐶2 is supplied, another different one may be obtained by composing it with the triality
automorphism of 𝐷4:

sage: [D4,A1xC2]=[WeylCharacterRing(x,style="coroots") for x in ["D4","A1xC2"]]
sage: fw = D4.fundamental_weights()
sage: b = D4.maximal_subgroup("A1xC2")
sage: [D4(fw).branch(A1xC2,rule=b) for fw in D4.fundamental_weights()]
[A1xC2(1,1,0),
A1xC2(2,0,0) + A1xC2(2,0,1) + A1xC2(0,2,0),
A1xC2(1,1,0),
A1xC2(2,0,0) + A1xC2(0,0,1)]
sage: b1 = branching_rule("D4","D4","triality")*b
sage: [D4(fw).branch(A1xC2,rule=b1) for fw in D4.fundamental_weights()]
[A1xC2(1,1,0),
A1xC2(2,0,0) + A1xC2(2,0,1) + A1xC2(0,2,0),
A1xC2(2,0,0) + A1xC2(0,0,1),
A1xC2(1,1,0)]

one_basis()
Return the index of 1 in self.

EXAMPLES:

sage: WeylCharacterRing("A3").one_basis()
(0, 0, 0, 0)
sage: WeylCharacterRing("A3").one()
A3(0,0,0,0)

positive_roots()
Return the positive roots.

EXAMPLES:

sage: WeylCharacterRing("G2").positive_roots()
[(0, 1, -1), (1, -2, 1), (1, -1, 0), (1, 0, -1), (1, 1, -2), (2, -1, -1)]

product_on_basis(a, b)
Compute the tensor product of two irreducible representations a and b.

EXAMPLES:

sage: D4 = WeylCharacterRing(['D',4])
sage: spin_plus = D4(1/2,1/2,1/2,1/2)
sage: spin_minus = D4(1/2,1/2,1/2,-1/2)
sage: spin_plus * spin_minus # indirect doctest
D4(1,0,0,0) + D4(1,1,1,0)

(continues on next page)

5.1. Comprehensive Module List 2631

Combinatorics, Release 9.7

(continued from previous page)

sage: spin_minus * spin_plus
D4(1,0,0,0) + D4(1,1,1,0)

Uses the Brauer-Klimyk method.

rank()
Return the rank.

EXAMPLES:

sage: WeylCharacterRing("G2").rank()
2

retract()
The partial inverse map from the weight ring into self.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: A2.retract
Generic morphism:
From: The Weight ring attached to The Weyl Character Ring of Type A2 with␣

→˓Integer Ring coefficients
To: The Weyl Character Ring of Type A2 with Integer Ring coefficients

sage: v = A2._space([3,1,0]); v
(3, 1, 0)
sage: chi = a2.sum_of_monomials(v.orbit()); chi
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)
sage: A2.retract(chi)
-A2(2,1,1) - A2(2,2,0) + A2(3,1,0)

The input should be invariant:

sage: A2.retract(a2.monomial(v))
Traceback (most recent call last):
...
ValueError: multiplicity dictionary may not be Weyl group invariant

As a shortcut, you may use conversion:

sage: A2(chi)
-A2(2,1,1) - A2(2,2,0) + A2(3,1,0)
sage: A2(a2.monomial(v))
Traceback (most recent call last):
...
ValueError: multiplicity dictionary may not be Weyl group invariant

simple_coroots()
Return the simple coroots.

EXAMPLES:

2632 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: WeylCharacterRing("G2").simple_coroots()
Finite family {1: (0, 1, -1), 2: (1/3, -2/3, 1/3)}

simple_roots()
Return the simple roots.

EXAMPLES:

sage: WeylCharacterRing("G2").simple_roots()
Finite family {1: (0, 1, -1), 2: (1, -2, 1)}

some_elements()
Return some elements of self.

EXAMPLES:

sage: WeylCharacterRing("A3").some_elements()
[A3(1,0,0,0), A3(1,1,0,0), A3(1,1,1,0)]

space()
Return the weight space associated to self.

EXAMPLES:

sage: WeylCharacterRing(['E',8]).space()
Ambient space of the Root system of type ['E', 8]

sage.combinat.root_system.weyl_characters.irreducible_character_freudenthal(hwv,
debug=False)

Return the dictionary of multiplicities for the irreducible character with highest weight 𝜆.

The weight multiplicities are computed by the Freudenthal multiplicity formula. The algorithm is based on re-
cursion relation that is stated, for example, in Humphrey’s book on Lie Algebras. The multiplicities are invariant
under the Weyl group, so to compute them it would be sufficient to compute them for the weights in the positive
Weyl chamber. However after some testing it was found to be faster to compute every weight using the recursion,
since the use of the Weyl group is expensive in its current implementation.

INPUT:

• hwv – a dominant weight in a weight lattice.

• L – the ambient space

EXAMPLES:

sage: WeylCharacterRing("A2")(2,1,0).weight_multiplicities() # indirect doctest
{(1, 1, 1): 2, (1, 2, 0): 1, (1, 0, 2): 1, (2, 1, 0): 1,
(2, 0, 1): 1, (0, 1, 2): 1, (0, 2, 1): 1}

5.1. Comprehensive Module List 2633

Combinatorics, Release 9.7

5.1.269 Fusion Rings

class sage.combinat.root_system.fusion_ring.FusionRing(ct, base_ring=Integer Ring, prefix=None,
style='lattice', k=None, conjugate=False,
cyclotomic_order=None)

Bases: sage.combinat.root_system.weyl_characters.WeylCharacterRing

Return the Fusion Ring (Verlinde Algebra) of level k.

INPUT:

• ct – the Cartan type of a simple (finite-dimensional) Lie algebra

• k – a nonnegative integer

• conjugate – (default False) set True to obtain the complex conjugate ring

• cyclotomic_order – (default computed depending on ct and k)

The cyclotomic order is an integer 𝑁 such that all computations will return elements of the cyclotomic field of
𝑁 -th roots of unity. Normally you will never need to change this but consider changing it if root_of_unity()
ever returns None.

This algebra has a basis (sometimes called primary fields but here called simple objects) indexed by the weights
of level ≤ 𝑘. These arise as the fusion algebras of Wess-Zumino-Witten (WZW) conformal field theories,
or as Grothendieck groups of tilting modules for quantum groups at roots of unity. The FusionRing class is
implemented as a variant of the WeylCharacterRing.

REFERENCES:

• [BaKi2001] Chapter 3

• [DFMS1996] Chapter 16

• [EGNO2015] Chapter 8

• [Feingold2004]

• [Fuchs1994]

• [Row2006]

• [Walton1990]

• [Wan2010]

EXAMPLES:

sage: A22 = FusionRing("A2",2)
sage: [f1, f2] = A22.fundamental_weights()
sage: M = [A22(x) for x in [0*f1, 2*f1, 2*f2, f1+f2, f2, f1]]
sage: [M[3] * x for x in M]
[A22(1,1),
A22(0,1),
A22(1,0),
A22(0,0) + A22(1,1),
A22(0,1) + A22(2,0),
A22(1,0) + A22(0,2)]

You may assign your own labels to the basis elements. In the next example, we create the 𝑆𝑂(5) fusion ring of
level 2, check the weights of the basis elements, then assign new labels to them while injecting them into the
global namespace:

2634 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: B22 = FusionRing("B2", 2)
sage: b = [B22(x) for x in B22.get_order()]; b
[B22(0,0), B22(1,0), B22(0,1), B22(2,0), B22(1,1), B22(0,2)]
sage: [x.weight() for x in b]
[(0, 0), (1, 0), (1/2, 1/2), (2, 0), (3/2, 1/2), (1, 1)]
sage: B22.fusion_labels(['I0','Y1','X','Z','Xp','Y2'], inject_variables=True)
sage: b = [B22(x) for x in B22.get_order()]; b
[I0, Y1, X, Z, Xp, Y2]
sage: [(x, x.weight()) for x in b]
[(I0, (0, 0)),
(Y1, (1, 0)),
(X, (1/2, 1/2)),
(Z, (2, 0)),
(Xp, (3/2, 1/2)),
(Y2, (1, 1))]
sage: X * Y1
X + Xp
sage: Z * Z
I0

A fixed order of the basis keys is available with get_order(). This is the order used by methods such as
s_matrix(). You may use CombinatorialFreeModule.set_order() to reorder the basis:

sage: B22.set_order([x.weight() for x in [I0,Y1,Y2,X,Xp,Z]])
sage: [B22(x) for x in B22.get_order()]
[I0, Y1, Y2, X, Xp, Z]

To reset the labels, you may run fusion_labels() with no parameter:

sage: B22.fusion_labels()
sage: [B22(x) for x in B22.get_order()]
[B22(0,0), B22(1,0), B22(0,2), B22(0,1), B22(1,1), B22(2,0)]

To reset the order to the default, simply set it to the list of basis element keys:

sage: B22.set_order(B22.basis().keys().list())
sage: [B22(x) for x in B22.get_order()]
[B22(0,0), B22(1,0), B22(0,1), B22(2,0), B22(1,1), B22(0,2)]

The fusion ring has a number of methods that reflect its role as the Grothendieck ring of a modular tensor category
(MTC). These include twist methods Element.twist() and Element.ribbon() for its elements related to the
ribbon structure, and the S-matrix s_ij().

There are two natural normalizations of the S-matrix. Both are explained in Chapter 3 of [BaKi2001]. The one
that is computed by the method s_matrix(), or whose individual entries are computed by s_ij() is denoted 𝑠
in [BaKi2001]. It is not unitary.

The unitary S-matrix is 𝑠 = 𝐷−1/2𝑠 where

𝐷 =
∑︁
𝑉

𝑑𝑖(𝑉)2.

The sum is over all simple objects 𝑉 with 𝑑𝑖(𝑉) the quantum dimension. We will call quantity 𝐷 the global
quantum dimension and

√
𝐷 the total quantum order. They are computed by global_q_dimension() and

total_q_order(). The unitary S-matrix 𝑠may be obtained using s_matrix()with the option unitary=True.

5.1. Comprehensive Module List 2635

Combinatorics, Release 9.7

Let us check the Verlinde formula, which is [DFMS1996] (16.3). This famous identity states that

𝑁𝑘
𝑖𝑗 =

∑︁
𝑙

𝑠(𝑖, ℓ) 𝑠(𝑗, ℓ) 𝑠(𝑘, ℓ)

𝑠(𝐼, ℓ)
,

where 𝑁𝑘
𝑖𝑗 are the fusion coefficients, i.e. the structure constants of the fusion ring, and I is the unit object. The

S-matrix has the property that if 𝑖* denotes the dual object of 𝑖, implemented in Sage as i.dual(), then

𝑠(𝑖*, 𝑗) = 𝑠(𝑖, 𝑗*) = 𝑠(𝑖, 𝑗).

This is equation (16.5) in [DFMS1996]. Thus with 𝑁𝑖𝑗𝑘 = 𝑁𝑘*
𝑖𝑗 the Verlinde formula is equivalent to

𝑁𝑖𝑗𝑘 =
∑︁
𝑙

𝑠(𝑖, ℓ) 𝑠(𝑗, ℓ) 𝑠(𝑘, ℓ)

𝑠(𝐼, ℓ)
,

In this formula 𝑠 is the normalized unitary S-matrix denoted 𝑠 in [BaKi2001]. We may define a function that
corresponds to the right-hand side, except using 𝑠 instead of 𝑠:

sage: def V(i,j,k):
....: R = i.parent()
....: return sum(R.s_ij(i,l) * R.s_ij(j,l) * R.s_ij(k,l) / R.s_ij(R.one(),l)
....: for l in R.basis())

This does not produce self.N_ijk(i,j,k) exactly, because of the missing normalization factor. The following
code to check the Verlinde formula takes this into account:

sage: def test_verlinde(R):
....: b0 = R.one()
....: c = R.global_q_dimension()
....: return all(V(i,j,k) == c * R.N_ijk(i,j,k) for i in R.basis()
....: for j in R.basis() for k in R.basis())

Every fusion ring should pass this test:

sage: test_verlinde(FusionRing("A2",1))
True
sage: test_verlinde(FusionRing("B4",2)) # long time (.56s)
True

As an exercise, the reader may verify the examples in Section 5.3 of [RoStWa2009]. Here we check the example
of the Ising modular tensor category, which is related to the BPZ minimal model 𝑀(4, 3) or to an 𝐸8 coset
model. See [DFMS1996] Sections 7.4.2 and 18.4.1. [RoStWa2009] Example 5.3.4 tells us how to construct it
as the conjugate of the 𝐸8 level 2 FusionRing:

sage: I = FusionRing("E8",2,conjugate=True)
sage: I.fusion_labels(["i0","p","s"],inject_variables=True)
sage: b = I.basis().list(); b
[i0, p, s]
sage: [[x*y for x in b] for y in b]
[[i0, p, s], [p, i0, s], [s, s, i0 + p]]
sage: [x.twist() for x in b]
[0, 1, 1/8]
sage: [x.ribbon() for x in b]
[1, -1, zeta128^8]

(continues on next page)

2636 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: [I.r_matrix(i, j, k) for (i,j,k) in [(s,s,i0), (p,p,i0), (p,s,s), (s,p,s), (s,
→˓s,p)]]
[-zeta128^56, -1, -zeta128^32, -zeta128^32, zeta128^24]
sage: I.r_matrix(s, s, i0) == I.root_of_unity(-1/8)
True
sage: I.global_q_dimension()
4
sage: I.total_q_order()
2
sage: [x.q_dimension()^2 for x in b]
[1, 1, 2]
sage: I.s_matrix()
[1 1 -zeta128^48 + zeta128^16]
[1 1 zeta128^48 - zeta128^16]
[-zeta128^48 + zeta128^16 zeta128^48 - zeta128^16 0]
sage: I.s_matrix().apply_map(lambda x:x^2)
[1 1 2]
[1 1 2]
[2 2 0]

The term modular tensor category refers to the fact that associated with the category there is a projective repre-
sentation of the modular group 𝑆𝐿(2,Z). We recall that this group is generated by

𝑆 =

(︂
−1

1

)︂
, 𝑇 =

(︂
1 1

1

)︂
subject to the relations (𝑆𝑇)3 = 𝑆2, 𝑆2𝑇 = 𝑇𝑆2, and 𝑆4 = 𝐼 . Let 𝑠 be the normalized S-matrix, and 𝑡 the
diagonal matrix whose entries are the twists of the simple objects. Let 𝑠 the unitary S-matrix and 𝑡 the matrix of
twists, and 𝐶 the conjugation matrix conj_matrix(). Let

𝐷+ =
∑︁
𝑖

𝑑2𝑖 𝜃𝑖, 𝐷− = 𝑑2𝑖 𝜃
−1
𝑖 ,

where 𝑑𝑖 and 𝜃𝑖 are the quantum dimensions and twists of the simple objects. Let 𝑐 be the Virasoro central
charge, a rational number that is computed in virasoro_central_charge(). It is known that√︃

𝐷+

𝐷−
= 𝑒𝑖𝜋𝑐/4.

It is proved in [BaKi2001] Equation (3.1.17) that

(𝑠𝑡)3 = 𝑒𝑖𝜋𝑐/4𝑠2, 𝑠2 = 𝐶, 𝐶2 = 1, 𝐶𝑡 = 𝑡𝐶.

Therefore 𝑆 ↦→ 𝑠, 𝑇 ↦→ 𝑡 is a projective representation of 𝑆𝐿(2,Z). Let us confirm these identities for the
Fibonacci MTC FusionRing("G2", 1):

sage: R = FusionRing("G2",1)
sage: S = R.s_matrix(unitary=True)
sage: T = R.twists_matrix()
sage: C = R.conj_matrix()
sage: c = R.virasoro_central_charge(); c
14/5
sage: (S*T)^3 == R.root_of_unity(c/4) * S^2

(continues on next page)

5.1. Comprehensive Module List 2637

Combinatorics, Release 9.7

(continued from previous page)

True
sage: S^2 == C
True
sage: C*T == T*C
True

D_minus()
Return

∑︀
𝑑2𝑖 𝜃
−1
𝑖 where 𝑖 runs through the simple objects, 𝑑𝑖 is the quantum dimension and 𝜃𝑖 is the twist.

This is denoted 𝑝− in [BaKi2001] Chapter 3.

EXAMPLES:

sage: E83 = FusionRing("E8",3,conjugate=True)
sage: [Dp,Dm] = [E83.D_plus(), E83.D_minus()]
sage: Dp*Dm == E83.global_q_dimension()
True
sage: c = E83.virasoro_central_charge(); c
-248/11
sage: Dp*Dm == E83.global_q_dimension()
True

D_plus()
Return

∑︀
𝑑2𝑖 𝜃𝑖 where 𝑖 runs through the simple objects, 𝑑𝑖 is the quantum dimension and 𝜃𝑖 is the twist.

This is denoted 𝑝+ in [BaKi2001] Chapter 3.

EXAMPLES:

sage: B31 = FusionRing("B3",1)
sage: Dp = B31.D_plus(); Dp
2*zeta48^13 - 2*zeta48^5
sage: Dm = B31.D_minus(); Dm
-2*zeta48^3
sage: Dp*Dm == B31.global_q_dimension()
True
sage: c = B31.virasoro_central_charge(); c
7/2
sage: Dp/Dm == B31.root_of_unity(c/2)
True

class Element
Bases: sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element

A class for FusionRing elements.

is_simple_object()
Determine whether self is a simple object of the fusion ring.

EXAMPLES:

sage: A22 = FusionRing("A2", 2)
sage: x = A22(1,0); x
A22(1,0)
sage: x.is_simple_object()
True

(continues on next page)

2638 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: x^2
A22(0,1) + A22(2,0)
sage: (x^2).is_simple_object()
False

q_dimension()
Return the quantum dimension as an element of the cyclotomic field of the 2ℓ-th roots of unity, where
𝑙 = 𝑚(𝑘+ ℎ∨) with 𝑚 = 1, 2, 3 depending on whether type is simply, doubly or triply laced, 𝑘 is the
level and ℎ∨ is the dual Coxeter number.

EXAMPLES:

sage: B22 = FusionRing("B2",2)
sage: [(b.q_dimension())^2 for b in B22.basis()]
[1, 4, 5, 1, 5, 4]

ribbon()
Return the twist or ribbon element of self.

If ℎ is the rational number modulo 2 produced by self.twist(), this method produces 𝑒𝑖𝜋ℎ.

See also:

An additive version of this is available as twist().

EXAMPLES:

sage: F = FusionRing("A1",3)
sage: [x.twist() for x in F.basis()]
[0, 3/10, 4/5, 3/2]
sage: [x.ribbon() for x in F.basis()]
[1, zeta40^6, zeta40^12 - zeta40^8 + zeta40^4 - 1, -zeta40^10]
sage: [F.root_of_unity(x) for x in [0, 3/10, 4/5, 3/2]]
[1, zeta40^6, zeta40^12 - zeta40^8 + zeta40^4 - 1, -zeta40^10]

twist(reduced=True)
Return a rational number ℎ such that 𝜃 = 𝑒𝑖𝜋ℎ is the twist of self. The quantity 𝑒𝑖𝜋ℎ is also available
using ribbon().

This method is only available for simple objects. If 𝜆 is the weight of the object, then ℎ = ⟨𝜆, 𝜆+ 2𝜌⟩,
where 𝜌 is half the sum of the positive roots. As in [Row2006], this requires normalizing the invariant
bilinear form so that ⟨𝛼, 𝛼⟩ = 2 for short roots.

INPUT:
• reduced – (default: True) boolean; if True then return the twist reduced modulo 2

EXAMPLES:

sage: G21 = FusionRing("G2", 1)
sage: [x.twist() for x in G21.basis()]
[0, 4/5]
sage: [G21.root_of_unity(x.twist()) for x in G21.basis()]
[1, zeta60^14 - zeta60^4]
sage: zeta60 = G21.field().gen()
sage: zeta60^((4/5)*(60/2))
zeta60^14 - zeta60^4

(continues on next page)

5.1. Comprehensive Module List 2639

Combinatorics, Release 9.7

(continued from previous page)

sage: F42 = FusionRing("F4", 2)
sage: [x.twist() for x in F42.basis()]
[0, 18/11, 2/11, 12/11, 4/11]

sage: E62 = FusionRing("E6", 2)
sage: [x.twist() for x in E62.basis()]
[0, 26/21, 12/7, 8/21, 8/21, 26/21, 2/3, 4/7, 2/3]

weight()
Return the parametrizing dominant weight in the level 𝑘 alcove.

This method is only available for basis elements.

EXAMPLES:

sage: A21 = FusionRing("A2",1)
sage: [x.weight() for x in A21.basis().list()]
[(0, 0, 0), (2/3, -1/3, -1/3), (1/3, 1/3, -2/3)]

N_ijk(elt_i, elt_j, elt_k)
Return the symmetric fusion coefficient 𝑁𝑖𝑗𝑘.

INPUT:

• elt_i, elt_j, elt_k – elements of the fusion basis

This is the same as𝑁𝑘*
𝑖𝑗 , where𝑁𝑘

𝑖𝑗 are the structure coefficients of the ring (see Nk_ij()), and 𝑘* denotes
the dual element. The coefficient 𝑁𝑖𝑗𝑘 is unchanged under permutations of the three basis vectors.

EXAMPLES:

sage: G23 = FusionRing("G2", 3)
sage: G23.fusion_labels("g")
sage: b = G23.basis().list(); b
[g0, g1, g2, g3, g4, g5]
sage: [(x,y,z) for x in b for y in b for z in b if G23.N_ijk(x,y,z) > 1]
[(g3, g3, g3), (g3, g3, g4), (g3, g4, g3), (g4, g3, g3)]
sage: all(G23.N_ijk(x,y,z)==G23.N_ijk(y,z,x) for x in b for y in b for z in b)
True
sage: all(G23.N_ijk(x,y,z)==G23.N_ijk(y,x,z) for x in b for y in b for z in b)
True

Nk_ij(elt_i, elt_j, elt_k)
Return the fusion coefficient 𝑁𝑘

𝑖𝑗 .

These are the structure coefficients of the fusion ring, so

𝑖 * 𝑗 =
∑︁
𝑘

𝑁𝑘
𝑖𝑗𝑘.

EXAMPLES:

sage: A22 = FusionRing("A2", 2)
sage: b = A22.basis().list()
sage: all(x*y == sum(A22.Nk_ij(x,y,k)*k for k in b) for x in b for y in b)
True

2640 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

conj_matrix()
Return the conjugation matrix, which is the permutation matrix for the conjugation (dual) operation on
basis elements.

EXAMPLES:

sage: FusionRing("A2",1).conj_matrix()
[1 0 0]
[0 0 1]
[0 1 0]

field()
Return a cyclotomic field large enough to contain the 2ℓ-th roots of unity, as well as all the S-matrix entries.

EXAMPLES:

sage: FusionRing("A2",2).field()
Cyclotomic Field of order 60 and degree 16
sage: FusionRing("B2",2).field()
Cyclotomic Field of order 40 and degree 16

fusion_l()
Return the product ℓ = 𝑚𝑔(𝑘 + ℎ∨), where 𝑚𝑔 denotes the square of the ratio of the lengths of long to
short roots of the underlying Lie algebra, 𝑘 denotes the level of the FusionRing, and ℎ∨ denotes the dual
Coxeter number of the underlying Lie algebra.

This value is used to define the associated root 2ℓ-th of unity 𝑞 = 𝑒𝑖𝜋/ℓ.

EXAMPLES:

sage: B22 = FusionRing('B2',2)
sage: B22.fusion_l()
10
sage: D52 = FusionRing('D5',2)
sage: D52.fusion_l()
10

fusion_labels(labels=None, inject_variables=False)
Set the labels of the basis.

INPUT:

• labels – (default: None) a list of strings or string

• inject_variables – (default: False) if True, then inject the variable names into the global names-
pace; note that this could override objects already defined

If labels is a list, the length of the list must equal the number of basis elements. These become the names
of the basis elements.

If labels is a string, this is treated as a prefix and a list of names is generated.

If labels is None, then this resets the labels to the default.

EXAMPLES:

sage: A13 = FusionRing("A1", 3)
sage: A13.fusion_labels("x")
sage: fb = list(A13.basis()); fb

(continues on next page)

5.1. Comprehensive Module List 2641

Combinatorics, Release 9.7

(continued from previous page)

[x0, x1, x2, x3]
sage: Matrix([[x*y for y in A13.basis()] for x in A13.basis()])
[x0 x1 x2 x3]
[x1 x0 + x2 x1 + x3 x2]
[x2 x1 + x3 x0 + x2 x1]
[x3 x2 x1 x0]

We give an example where the variables are injected into the global namespace:

sage: A13.fusion_labels("y", inject_variables=True)
sage: y0
y0
sage: y0.parent() is A13
True

We reset the labels to the default:

sage: A13.fusion_labels()
sage: fb
[A13(0), A13(1), A13(2), A13(3)]
sage: y0
A13(0)

fusion_level()
Return the level 𝑘 of self.

EXAMPLES:

sage: B22 = FusionRing('B2',2)
sage: B22.fusion_level()
2

get_order()
Return the weights of the basis vectors in a fixed order.

You may change the order of the basis using CombinatorialFreeModule.set_order()

EXAMPLES:

sage: A14 = FusionRing("A1",4)
sage: w = A14.get_order(); w
[(0, 0), (1/2, -1/2), (1, -1), (3/2, -3/2), (2, -2)]
sage: A14.set_order([w[k] for k in [0,4,1,3,2]])
sage: [A14(x) for x in A14.get_order()]
[A14(0), A14(4), A14(1), A14(3), A14(2)]

Warning: This duplicates get_order() from CombinatorialFreeModule except the result is not
cached. Caching of CombinatorialFreeModule.get_order() causes inconsistent results after call-
ing CombinatorialFreeModule.set_order().

global_q_dimension()
Return

∑︀
𝑑2𝑖 , where the sum is over all simple objects and 𝑑𝑖 is the quantum dimension. It is a positive real

number.

2642 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: FusionRing("E6",1).global_q_dimension()
3

r_matrix(i, j, k)
Return the R-matrix entry corresponding to the subobject k in the tensor product of i with j.

Warning: This method only gives complete information when 𝑁𝑘
𝑖𝑗 = 1 (an important special case).

Tables of MTC including R-matrices may be found in Section 5.3 of [RoStWa2009] and in [Bond2007].

The R-matrix is a homomorphism 𝑖⊗𝑗 → 𝑗⊗ 𝑖. This may be hard to describe since the object 𝑖⊗𝑗 may be
reducible. However if 𝑘 is a simple subobject of 𝑖⊗ 𝑗 it is also a subobject of 𝑗 ⊗ 𝑖. If we fix embeddings
𝑘 → 𝑖⊗ 𝑗, 𝑘 → 𝑗 ⊗ 𝑖 we may ask for the scalar automorphism of 𝑘 induced by the R-matrix. This method
computes that scalar. It is possible to adjust the set of embeddings 𝑘 → 𝑖⊗ 𝑗 (called a gauge) so that this
scalar equals

±

√︃
𝜃𝑘
𝜃𝑖𝜃𝑗

.

If 𝑖 ̸= 𝑗, the gauge may be used to control the sign of the square root. But if 𝑖 = 𝑗 then we must be careful
about the sign. These cases are computed by a formula of [BDGRTW2019], Proposition 2.3.

EXAMPLES:

sage: I = FusionRing("E8", 2, conjugate=True) # Ising MTC
sage: I.fusion_labels(["i0","p","s"], inject_variables=True)
sage: I.r_matrix(s,s,i0) == I.root_of_unity(-1/8)
True
sage: I.r_matrix(p,p,i0)
-1
sage: I.r_matrix(p,s,s) == I.root_of_unity(-1/2)
True
sage: I.r_matrix(s,p,s) == I.root_of_unity(-1/2)
True
sage: I.r_matrix(s,s,p) == I.root_of_unity(3/8)
True

root_of_unity(r)
Return 𝑒𝑖𝜋𝑟 as an element of self.field() if possible.

INPUT:

• r – a rational number

EXAMPLES:

sage: A11 = FusionRing("A1",1)
sage: A11.field()
Cyclotomic Field of order 24 and degree 8
sage: [A11.root_of_unity(2/x) for x in [1..7]]
[1, -1, zeta24^4 - 1, zeta24^6, None, zeta24^4, None]

s_ij(elt_i, elt_j)
Return the element of the S-matrix of this fusion ring corresponding to the given elements.

5.1. Comprehensive Module List 2643

Combinatorics, Release 9.7

This is computed using the formula

𝑠𝑖,𝑗 =
1

𝜃𝑖𝜃𝑗

∑︁
𝑘

𝑁 𝑗
𝑖𝑘𝑑𝑘𝜃𝑘,

where 𝜃𝑘 is the twist and 𝑑𝑘 is the quantum dimension. See [Row2006] Equation (2.2) or [EGNO2015]
Proposition 8.13.8.

INPUT:

• elt_i, elt_j – elements of the fusion basis

EXAMPLES:

sage: G21 = FusionRing("G2", 1)
sage: b = G21.basis()
sage: [G21.s_ij(x, y) for x in b for y in b]
[1, -zeta60^14 + zeta60^6 + zeta60^4, -zeta60^14 + zeta60^6 + zeta60^4, -1]

s_matrix(unitary=False)
Return the S-matrix of this fusion ring.

OPTIONAL:

• unitary – (default: False) set to True to obtain the unitary S-matrix

Without the unitary parameter, this is the matrix denoted ̃︀𝑠 in [BaKi2001].

EXAMPLES:

sage: D91 = FusionRing("D9", 1)
sage: D91.s_matrix()
[1 1 1 1]
[1 1 -1 -1]
[1 -1 -zeta136^34 zeta136^34]
[1 -1 zeta136^34 -zeta136^34]
sage: S = D91.s_matrix(unitary=True); S
[1/2 1/2 1/2 1/2]
[1/2 1/2 -1/2 -1/2]
[1/2 -1/2 -1/2*zeta136^34 1/2*zeta136^34]
[1/2 -1/2 1/2*zeta136^34 -1/2*zeta136^34]
sage: S*S.conjugate()
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

some_elements()
Return some elements of self.

EXAMPLES:

sage: D41 = FusionRing('D4', 1)
sage: D41.some_elements()
[D41(1,0,0,0), D41(0,0,1,0), D41(0,0,0,1)]

total_q_order()
Return the positive square root of self.global_q_dimension() as an element of self.field().

EXAMPLES:

2644 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: F = FusionRing("G2",1)
sage: tqo=F.total_q_order(); tqo
zeta60^15 - zeta60^11 - zeta60^9 + 2*zeta60^3 + zeta60
sage: tqo.is_real_positive()
True
sage: tqo^2 == F.global_q_dimension()
True

twists_matrix()
Return a diagonal matrix describing the twist corresponding to each simple object in the FusionRing.

EXAMPLES:

sage: B21=FusionRing("B2",1)
sage: [x.twist() for x in B21.basis().list()]
[0, 1, 5/8]
sage: [B21.root_of_unity(x.twist()) for x in B21.basis().list()]
[1, -1, zeta32^10]
sage: B21.twists_matrix()
[1 0 0]
[0 -1 0]
[0 0 zeta32^10]

virasoro_central_charge()
Return the Virasoro central charge of the WZW conformal field theory associated with the Fusion Ring.

If g is the corresponding semisimple Lie algebra, this is

𝑘 dim g

𝑘 + ℎ∨
,

where 𝑘 is the level and ℎ∨ is the dual Coxeter number. See [DFMS1996] Equation (15.61).

Let 𝑑𝑖 and 𝜃𝑖 be the quantum dimensions and twists of the simple objects. By Proposition 2.3 in
[RoStWa2009], there exists a rational number 𝑐 such that 𝐷+/

√
𝐷 = 𝑒𝑖𝜋𝑐/4, where 𝐷+ =

∑︀
𝑑2𝑖 𝜃𝑖 is

computed in D_plus() and 𝐷 =
∑︀
𝑑2𝑖 > 0 is computed by global_q_dimension(). Squaring this

identity and remembering that 𝐷+𝐷− = 𝐷 gives

𝐷+/𝐷− = 𝑒𝑖𝜋𝑐/2.

EXAMPLES:

sage: R = FusionRing("A1", 2)
sage: c = R.virasoro_central_charge(); c
3/2
sage: Dp = R.D_plus(); Dp
2*zeta32^6
sage: Dm = R.D_minus(); Dm
-2*zeta32^10
sage: Dp / Dm == R.root_of_unity(c/2)
True

5.1. Comprehensive Module List 2645

Combinatorics, Release 9.7

5.1.270 Weyl Groups

AUTHORS:

• Daniel Bump (2008): initial version

• Mike Hansen (2008): initial version

• Anne Schilling (2008): initial version

• Nicolas Thiery (2008): initial version

• Volker Braun (2013): LibGAP-based matrix groups

EXAMPLES:

More examples on Weyl Groups should be added here. . .

The Cayley graph of the Weyl Group of type [‘A’, 3]:

sage: w = WeylGroup(['A',3])
sage: d = w.cayley_graph(); d
Digraph on 24 vertices
sage: d.show3d(color_by_label=True, edge_size=0.01, vertex_size=0.03)

The Cayley graph of the Weyl Group of type [‘D’, 4]:

sage: w = WeylGroup(['D',4])
sage: d = w.cayley_graph(); d
Digraph on 192 vertices
sage: d.show3d(color_by_label=True, edge_size=0.01, vertex_size=0.03) #long time (less␣
→˓than one minute)

class sage.combinat.root_system.weyl_group.ClassicalWeylSubgroup(domain, prefix)
Bases: sage.combinat.root_system.weyl_group.WeylGroup_gens

A class for Classical Weyl Subgroup of an affine Weyl Group

EXAMPLES:

sage: G = WeylGroup(["A",3,1]).classical()
sage: G
Parabolic Subgroup of the Weyl Group of type ['A', 3, 1] (as a matrix group acting␣
→˓on the root space)
sage: G.category()
Category of finite irreducible weyl groups
sage: G.cardinality()
24
sage: G.index_set()
(1, 2, 3)
sage: TestSuite(G).run()

Todo: implement:

• Parabolic subrootsystems

• Parabolic subgroups with a set of nodes as argument

2646 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

cartan_type()
EXAMPLES:

sage: WeylGroup(['A',3,1]).classical().cartan_type()
['A', 3]
sage: WeylGroup(['A',3,1]).classical().index_set()
(1, 2, 3)

Note: won’t be needed, once the lattice will be a parabolic sub root system

simple_reflections()
EXAMPLES:

sage: WeylGroup(['A',2,1]).classical().simple_reflections()
Finite family {1: [1 0 0]

[1 -1 1]
[0 0 1],

2: [1 0 0]
[0 1 0]
[1 1 -1]}

Note: won’t be needed, once the lattice will be a parabolic sub root system

weyl_group(prefix='hereditary')
Return the Weyl group associated to the parabolic subgroup.

EXAMPLES:

sage: WeylGroup(['A',4,1]).classical().weyl_group()
Weyl Group of type ['A', 4, 1] (as a matrix group acting on the root space)
sage: WeylGroup(['C',4,1]).classical().weyl_group()
Weyl Group of type ['C', 4, 1] (as a matrix group acting on the root space)
sage: WeylGroup(['E',8,1]).classical().weyl_group()
Weyl Group of type ['E', 8, 1] (as a matrix group acting on the root space)

sage.combinat.root_system.weyl_group.WeylGroup(x, prefix=None, implementation='matrix')
Returns the Weyl group of the root system defined by the Cartan type (or matrix) ct.

INPUT:

• x - a root system or a Cartan type (or matrix)

OPTIONAL:

• prefix – changes the representation of elements from matrices to products of simple reflections

• implementation – one of the following: * 'matrix' - as matrices acting on a root system *
"permutation" - as a permutation group acting on the roots

EXAMPLES:

The following constructions yield the same result, namely a weight lattice and its corresponding Weyl group:

sage: G = WeylGroup(['F',4])
sage: L = G.domain()

or alternatively and equivalently:

5.1. Comprehensive Module List 2647

Combinatorics, Release 9.7

sage: L = RootSystem(['F',4]).ambient_space()
sage: G = L.weyl_group()
sage: W = WeylGroup(L)

Either produces a weight lattice, with access to its roots and weights.

sage: G = WeylGroup(['F',4])
sage: G.order()
1152
sage: [s1,s2,s3,s4] = G.simple_reflections()
sage: w = s1*s2*s3*s4; w
[1/2 1/2 1/2 1/2]
[-1/2 1/2 1/2 -1/2]
[1/2 1/2 -1/2 -1/2]
[1/2 -1/2 1/2 -1/2]
sage: type(w) == G.element_class
True
sage: w.order()
12
sage: w.length() # length function on Weyl group
4

The default representation of Weyl group elements is as matrices. If you prefer, you may specify a prefix, in
which case the elements are represented as products of simple reflections.

sage: W=WeylGroup("C3",prefix="s")
sage: [s1,s2,s3]=W.simple_reflections() # lets Sage parse its own output
sage: s2*s1*s2*s3
s1*s2*s3*s1
sage: s2*s1*s2*s3 == s1*s2*s3*s1
True
sage: (s2*s3)^2==(s3*s2)^2
True
sage: (s1*s2*s3*s1).matrix()
[0 0 -1]
[0 1 0]
[1 0 0]

sage: L = G.domain()
sage: fw = L.fundamental_weights(); fw
Finite family {1: (1, 1, 0, 0), 2: (2, 1, 1, 0), 3: (3/2, 1/2, 1/2, 1/2), 4: (1, 0,␣
→˓0, 0)}
sage: rho = sum(fw); rho
(11/2, 5/2, 3/2, 1/2)
sage: w.action(rho) # action of G on weight lattice
(5, -1, 3, 2)

We can also do the same for arbitrary Cartan matrices:

sage: cm = CartanMatrix([[2,-5,0],[-2,2,-1],[0,-1,2]])
sage: W = WeylGroup(cm)
sage: W.gens()
(

(continues on next page)

2648 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[-1 5 0] [1 0 0] [1 0 0]
[0 1 0] [2 -1 1] [0 1 0]
[0 0 1], [0 0 1], [0 1 -1]
)
sage: s0,s1,s2 = W.gens()
sage: s1*s2*s1
[1 0 0]
[2 0 -1]
[2 -1 0]
sage: s2*s1*s2
[1 0 0]
[2 0 -1]
[2 -1 0]
sage: s0*s1*s0*s2*s0
[9 0 -5]
[2 0 -1]
[0 1 -1]

Same Cartan matrix, but with a prefix to display using simple reflections:

sage: W = WeylGroup(cm, prefix='s')
sage: s0,s1,s2 = W.gens()
sage: s0*s2*s1
s2*s0*s1
sage: (s1*s2)^3
1
sage: (s0*s1)^5
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1
sage: s0*s1*s2*s1*s2
s2*s0*s1
sage: s0*s1*s2*s0*s2
s0*s1*s0

class sage.combinat.root_system.weyl_group.WeylGroupElement(parent, g, check=False)
Bases: sage.groups.matrix_gps.group_element.MatrixGroupElement_gap

Class for a Weyl Group elements

action(v)
Return the action of self on the vector v.

EXAMPLES:

sage: W = WeylGroup(['A',2])
sage: s = W.simple_reflections()
sage: v = W.domain()([1,0,0])
sage: s[1].action(v)
(0, 1, 0)

sage: W = WeylGroup(RootSystem(['A',2]).root_lattice())
sage: s = W.simple_reflections()
sage: alpha = W.domain().simple_roots()
sage: s[1].action(alpha[1])
-alpha[1]

(continues on next page)

5.1. Comprehensive Module List 2649

../../../../../../../html/en/reference/groups/sage/groups/matrix_gps/group_element.html#sage.groups.matrix_gps.group_element.MatrixGroupElement_gap

Combinatorics, Release 9.7

(continued from previous page)

sage: W=WeylGroup(['A',2,1])
sage: alpha = W.domain().simple_roots()
sage: s = W.simple_reflections()
sage: s[1].action(alpha[1])
-alpha[1]
sage: s[1].action(alpha[0])
alpha[0] + alpha[1]

apply_simple_reflection(i, side='right')

domain()
Returns the ambient lattice associated with self.

EXAMPLES:

sage: W = WeylGroup(['A',2])
sage: s1 = W.simple_reflection(1)
sage: s1.domain()
Ambient space of the Root system of type ['A', 2]

has_descent(i, positive=False, side='right')
Test if self has a descent at position i.

An element 𝑤 has a descent in position 𝑖 if 𝑤 is on the strict negative side of the 𝑖𝑡ℎ simple reflection
hyperplane.

If positive is True, tests if it is on the strict positive side instead.

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: s = W.simple_reflections()
sage: [W.one().has_descent(i) for i in W.domain().index_set()]
[False, False, False]
sage: [s[1].has_descent(i) for i in W.domain().index_set()]
[True, False, False]
sage: [s[2].has_descent(i) for i in W.domain().index_set()]
[False, True, False]
sage: [s[3].has_descent(i) for i in W.domain().index_set()]
[False, False, True]
sage: [s[3].has_descent(i, True) for i in W.domain().index_set()]
[True, True, False]
sage: W = WeylGroup(['A',3,1])
sage: s = W.simple_reflections()
sage: [W.one().has_descent(i) for i in W.domain().index_set()]
[False, False, False, False]
sage: [s[0].has_descent(i) for i in W.domain().index_set()]
[True, False, False, False]
sage: w = s[0] * s[1]
sage: [w.has_descent(i) for i in W.domain().index_set()]
[False, True, False, False]
sage: [w.has_descent(i, side = "left") for i in W.domain().index_set()]
[True, False, False, False]
sage: w = s[0] * s[2]

(continues on next page)

2650 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: [w.has_descent(i) for i in W.domain().index_set()]
[True, False, True, False]
sage: [w.has_descent(i, side = "left") for i in W.domain().index_set()]
[True, False, True, False]

sage: W = WeylGroup(['A',3])
sage: W.one().has_descent(0)
True
sage: W.w0.has_descent(0)
False

has_left_descent(i)
Test if self has a left descent at position i.

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: s = W.simple_reflections()
sage: [W.one().has_left_descent(i) for i in W.domain().index_set()]
[False, False, False]
sage: [s[1].has_left_descent(i) for i in W.domain().index_set()]
[True, False, False]
sage: [s[2].has_left_descent(i) for i in W.domain().index_set()]
[False, True, False]
sage: [s[3].has_left_descent(i) for i in W.domain().index_set()]
[False, False, True]
sage: [(s[3]*s[2]).has_left_descent(i) for i in W.domain().index_set()]
[False, False, True]

has_right_descent(i)
Test if self has a right descent at position i.

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: s = W.simple_reflections()
sage: [W.one().has_right_descent(i) for i in W.domain().index_set()]
[False, False, False]
sage: [s[1].has_right_descent(i) for i in W.domain().index_set()]
[True, False, False]
sage: [s[2].has_right_descent(i) for i in W.domain().index_set()]
[False, True, False]
sage: [s[3].has_right_descent(i) for i in W.domain().index_set()]
[False, False, True]
sage: [(s[3]*s[2]).has_right_descent(i) for i in W.domain().index_set()]
[False, True, False]

to_matrix()
Return self as a matrix.

EXAMPLES:

sage: G = WeylGroup(['A',2])
sage: s1 = G.simple_reflection(1)

(continues on next page)

5.1. Comprehensive Module List 2651

Combinatorics, Release 9.7

(continued from previous page)

sage: s1.to_matrix() == s1.matrix()
True

to_permutation()
A first approximation of to_permutation . . .

This assumes types A,B,C,D on the ambient lattice

This further assume that the basis is indexed by 0,1,. . . and returns a permutation of (5,4,2,3,1) (beuargl),
as a tuple

to_permutation_string()
EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: s = W.simple_reflections()
sage: (s[1]*s[2]*s[3]).to_permutation_string()
'2341'

class sage.combinat.root_system.weyl_group.WeylGroup_gens(domain, prefix)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.groups.
matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap

EXAMPLES:

sage: G = WeylGroup(['B',3])
sage: TestSuite(G).run()
sage: cm = CartanMatrix([[2,-5,0],[-2,2,-1],[0,-1,2]])
sage: W = WeylGroup(cm)
sage: TestSuite(W).run() # long time

Element
alias of WeylGroupElement

cartan_type()
Returns the CartanType associated to self.

EXAMPLES:

sage: G = WeylGroup(['F',4])
sage: G.cartan_type()
['F', 4]

character_table()
Returns the character table as a matrix

Each row is an irreducible character. For larger tables you may preface this with a command such as
gap.eval(“SizeScreen([120,40])”) in order to widen the screen.

EXAMPLES:

sage: WeylGroup(['A',3]).character_table()
CT1

2 3 2 2 . 3
3 1 . . 1 .

(continues on next page)

2652 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/groups/sage/groups/matrix_gps/finitely_generated.html#sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap
../../../../../../../html/en/reference/groups/sage/groups/matrix_gps/finitely_generated.html#sage.groups.matrix_gps.finitely_generated.FinitelyGeneratedMatrixGroup_gap

Combinatorics, Release 9.7

(continued from previous page)

1a 4a 2a 3a 2b

X.1 1 -1 -1 1 1
X.2 3 1 -1 . -1
X.3 2 . . -1 2
X.4 3 -1 1 . -1
X.5 1 1 1 1 1

classical()
If self is a Weyl group from an affine Cartan Type, this give the classical parabolic subgroup of self.

Caveat: we assume that 0 is a special node of the Dynkin diagram

TODO: extract parabolic subgroup method

EXAMPLES:

sage: G = WeylGroup(['A',3,1])
sage: G.classical()
Parabolic Subgroup of the Weyl Group of type ['A', 3, 1]
(as a matrix group acting on the root space)
sage: WeylGroup(['A',3]).classical()
Traceback (most recent call last):
...
ValueError: classical subgroup only defined for affine types

domain()
Returns the domain of the element of self, that is the root lattice realization on which they act.

EXAMPLES:

sage: G = WeylGroup(['F',4])
sage: G.domain()
Ambient space of the Root system of type ['F', 4]
sage: G = WeylGroup(['A',3,1])
sage: G.domain()
Root space over the Rational Field of the Root system of type ['A', 3, 1]

from_morphism(f)

index_set()
Returns the index set of self.

EXAMPLES:

sage: G = WeylGroup(['F',4])
sage: G.index_set()
(1, 2, 3, 4)
sage: G = WeylGroup(['A',3,1])
sage: G.index_set()
(0, 1, 2, 3)

long_element_hardcoded()
Returns the long Weyl group element (hardcoded data)

Do we really want to keep it? There is a generic implementation which works in all cases. The hardcoded
should have a better complexity (for large classical types), but there is a cache, so does this really matter?

5.1. Comprehensive Module List 2653

Combinatorics, Release 9.7

EXAMPLES:

sage: types = [['A',5],['B',3],['C',3],['D',4],['G',2],['F',4],['E',6]]
sage: [WeylGroup(t).long_element().length() for t in types]
[15, 9, 9, 12, 6, 24, 36]
sage: all(WeylGroup(t).long_element() == WeylGroup(t).long_element_hardcoded()␣
→˓for t in types) # long time (17s on sage.math, 2011)
True

morphism_matrix(f)

one()
Returns the unit element of the Weyl group

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: e = W.one(); e
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: type(e) == W.element_class
True

reflections()
Return the reflections of self.

The reflections of a Coxeter group 𝑊 are the conjugates of the simple reflections. They are in bijection
with the positive roots, for given a positive root, we may have the reflection in the hyperplane orthogonal to
it. This method returns a family indexed by the positive roots taking values in the reflections. This requires
self to be a finite Weyl group.

Note: Prior to trac ticket #20027, the reflections were the keys of the family and the values were the
positive roots.

EXAMPLES:

sage: W = WeylGroup("B2", prefix="s")
sage: refdict = W.reflections(); refdict
Finite family {(1, -1): s1, (0, 1): s2, (1, 1): s2*s1*s2, (1, 0): s1*s2*s1}
sage: [r+refdict[r].action(r) for r in refdict.keys()]
[(0, 0), (0, 0), (0, 0), (0, 0)]

sage: W = WeylGroup(['A',2,1], prefix="s")
sage: W.reflections()
Lazy family (real root to reflection(i))_{i in

Positive real roots of type ['A', 2, 1]}

simple_reflection(i)
Returns the 𝑖𝑡ℎ simple reflection.

EXAMPLES:

2654 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/20027

Combinatorics, Release 9.7

sage: G = WeylGroup(['F',4])
sage: G.simple_reflection(1)
[1 0 0 0]
[0 0 1 0]
[0 1 0 0]
[0 0 0 1]
sage: W=WeylGroup(['A',2,1])
sage: W.simple_reflection(1)
[1 0 0]
[1 -1 1]
[0 0 1]

simple_reflections()
Returns the simple reflections of self, as a family.

EXAMPLES:

There are the simple reflections for the symmetric group:

sage: W=WeylGroup(['A',2])
sage: s = W.simple_reflections(); s
Finite family {1: [0 1 0]
[1 0 0]
[0 0 1], 2: [1 0 0]
[0 0 1]
[0 1 0]}

As a special feature, for finite irreducible root systems, s[0] gives the reflection along the highest root:

sage: s[0]
[0 0 1]
[0 1 0]
[1 0 0]

We now look at some further examples:

sage: W=WeylGroup(['A',2,1])
sage: W.simple_reflections()
Finite family {0: [-1 1 1]
[0 1 0]
[0 0 1], 1: [1 0 0]
[1 -1 1]
[0 0 1], 2: [1 0 0]
[0 1 0]
[1 1 -1]}
sage: W = WeylGroup(['F',4])
sage: [s1,s2,s3,s4] = W.simple_reflections()
sage: w = s1*s2*s3*s4; w
[1/2 1/2 1/2 1/2]
[-1/2 1/2 1/2 -1/2]
[1/2 1/2 -1/2 -1/2]
[1/2 -1/2 1/2 -1/2]
sage: s4^2 == W.one()
True

(continues on next page)

5.1. Comprehensive Module List 2655

Combinatorics, Release 9.7

(continued from previous page)

sage: type(w) == W.element_class
True

unit()
Returns the unit element of the Weyl group

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: e = W.one(); e
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: type(e) == W.element_class
True

class sage.combinat.root_system.weyl_group.WeylGroup_permutation(cartan_type, prefix)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.groups.perm_gps.
permgroup.PermutationGroup_generic

A Weyl group given as a permutation group.

class Element
Bases: sage.combinat.root_system.reflection_group_element.
RealReflectionGroupElement

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: W = WeylGroup(['A',4], implementation="permutation")
sage: W.cartan_type()
['A', 4]

distinguished_reflections()
Return the reflections of self.

EXAMPLES:

sage: W = WeylGroup(['B',2], implementation="permutation")
sage: W.distinguished_reflections()
Finite family {1: (1,5)(2,4)(6,8), 2: (1,3)(2,6)(5,7),

3: (2,8)(3,7)(4,6), 4: (1,7)(3,5)(4,8)}

independent_roots()
Return the simple roots of self.

EXAMPLES:

sage: W = WeylGroup(['A',4], implementation="permutation")
sage: W.simple_roots()
Finite family {1: (1, 0, 0, 0), 2: (0, 1, 0, 0),

3: (0, 0, 1, 0), 4: (0, 0, 0, 1)}

2656 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/groups/sage/groups/perm_gps/permgroup.html#sage.groups.perm_gps.permgroup.PermutationGroup_generic
../../../../../../../html/en/reference/groups/sage/groups/perm_gps/permgroup.html#sage.groups.perm_gps.permgroup.PermutationGroup_generic

Combinatorics, Release 9.7

index_set()
Return the index set of self.

EXAMPLES:

sage: W = WeylGroup(['A',4], implementation="permutation")
sage: W.index_set()
(1, 2, 3, 4)

iteration(algorithm='breadth', tracking_words=True)
Return an iterator going through all elements in self.

INPUT:

• algorithm (default: 'breadth') – must be one of the following:

– 'breadth' - iterate over in a linear extension of the weak order

– 'depth' - iterate by a depth-first-search

• tracking_words (default: True) – whether or not to keep track of the reduced words and store them
in _reduced_word

Note: The fastest iteration is the depth first algorithm without tracking words. In particular, 'depth' is
~1.5x faster.

EXAMPLES:

sage: W = WeylGroup(["B",2], implementation="permutation")

sage: for w in W.iteration("breadth",True):
....: print("%s %s"%(w, w._reduced_word))
() []
(1,3)(2,6)(5,7) [1]
(1,5)(2,4)(6,8) [0]
(1,7,5,3)(2,4,6,8) [0, 1]
(1,3,5,7)(2,8,6,4) [1, 0]
(2,8)(3,7)(4,6) [1, 0, 1]
(1,7)(3,5)(4,8) [0, 1, 0]
(1,5)(2,6)(3,7)(4,8) [0, 1, 0, 1]

sage: for w in W.iteration("depth", False): w
()
(1,3)(2,6)(5,7)
(1,5)(2,4)(6,8)
(1,3,5,7)(2,8,6,4)
(1,7)(3,5)(4,8)
(1,7,5,3)(2,4,6,8)
(2,8)(3,7)(4,6)
(1,5)(2,6)(3,7)(4,8)

number_of_reflections()
Return the number of reflections in self.

EXAMPLES:

5.1. Comprehensive Module List 2657

Combinatorics, Release 9.7

sage: W = WeylGroup(['D',4], implementation="permutation")
sage: W.number_of_reflections()
12

positive_roots()
Return the positive roots of self.

EXAMPLES:

sage: W = WeylGroup(['C',3], implementation="permutation")
sage: W.positive_roots()
((1, 0, 0),
(0, 1, 0),
(0, 0, 1),
(1, 1, 0),
(0, 1, 1),
(0, 2, 1),
(1, 1, 1),
(2, 2, 1),
(1, 2, 1))

rank()
Return the rank of self.

EXAMPLES:

sage: W = WeylGroup(['A',4], implementation="permutation")
sage: W.rank()
4

reflection_index_set()
Return the index set of reflections of self.

EXAMPLES:

sage: W = WeylGroup(['A',3], implementation="permutation")
sage: W.reflection_index_set()
(1, 2, 3, 4, 5, 6)

reflections()
Return the reflections of self.

EXAMPLES:

sage: W = WeylGroup(['B',2], implementation="permutation")
sage: W.distinguished_reflections()
Finite family {1: (1,5)(2,4)(6,8), 2: (1,3)(2,6)(5,7),

3: (2,8)(3,7)(4,6), 4: (1,7)(3,5)(4,8)}

roots()
Return the roots of self.

EXAMPLES:

sage: W = WeylGroup(['G',2], implementation="permutation")
sage: W.roots()

(continues on next page)

2658 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

((1, 0),
(0, 1),
(1, 1),
(3, 1),
(2, 1),
(3, 2),
(-1, 0),
(0, -1),
(-1, -1),
(-3, -1),
(-2, -1),
(-3, -2))

simple_reflection(i)
Return the i-th simple reflection of self.

EXAMPLES:

sage: W = WeylGroup(['A',4], implementation="permutation")
sage: W.simple_reflection(1)
(1,11)(2,5)(6,8)(9,10)(12,15)(16,18)(19,20)
sage: W.simple_reflections()
Finite family {1: (1,11)(2,5)(6,8)(9,10)(12,15)(16,18)(19,20),

2: (1,5)(2,12)(3,6)(7,9)(11,15)(13,16)(17,19),
3: (2,6)(3,13)(4,7)(5,8)(12,16)(14,17)(15,18),
4: (3,7)(4,14)(6,9)(8,10)(13,17)(16,19)(18,20)}

simple_root_index(i)
Return the index of the simple root 𝛼𝑖.

This is the position of 𝛼𝑖 in the list of simple roots.

EXAMPLES:

sage: W = WeylGroup(['A',3], implementation="permutation")
sage: [W.simple_root_index(i) for i in W.index_set()]
[0, 1, 2]

simple_roots()
Return the simple roots of self.

EXAMPLES:

sage: W = WeylGroup(['A',4], implementation="permutation")
sage: W.simple_roots()
Finite family {1: (1, 0, 0, 0), 2: (0, 1, 0, 0),

3: (0, 0, 1, 0), 4: (0, 0, 0, 1)}

5.1. Comprehensive Module List 2659

Combinatorics, Release 9.7

5.1.271 Rooted (Unordered) Trees

AUTHORS:

• Florent Hivert (2011): initial version

class sage.combinat.rooted_tree.LabelledRootedTree(parent, children, label=None, check=True)
Bases: sage.combinat.abstract_tree.AbstractLabelledClonableTree, sage.combinat.
rooted_tree.RootedTree

Labelled rooted trees.

A labelled rooted tree is a rooted tree with a label attached at each node.

More formally: The labelled rooted trees are an inductive datatype defined as follows: A labelled rooted tree is
a multiset of labelled rooted trees, endowed with a label (which can be any object, including None). The trees
that belong to this multiset are said to be the children of the tree. (Notice that the labels of these children may
and may not be of the same type as the label of the tree). A labelled rooted tree which has no children (so the
only information it carries is its label) is said to be a leaf.

Every labelled rooted tree gives rise to an unlabelled rooted tree (RootedTree) by forgetting the labels. (This is
implemented as a conversion.)

INPUT:

• children – a list or tuple or more generally any iterable of trees or objects convertible to trees

• label – any hashable Sage object (default is None)

EXAMPLES:

sage: x = LabelledRootedTree([], label = 3); x
3[]
sage: LabelledRootedTree([x, x, x], label = 2)
2[3[], 3[], 3[]]
sage: LabelledRootedTree((x, x, x), label = 2)
2[3[], 3[], 3[]]
sage: LabelledRootedTree([[],[[], []]], label = 3)
3[None[], None[None[], None[]]]

Children are reordered using the value of the sort_key() method:

sage: y = LabelledRootedTree([], label = 5); y
5[]
sage: xyy2 = LabelledRootedTree((x, y, y), label = 2); xyy2
2[3[], 5[], 5[]]
sage: yxy2 = LabelledRootedTree((y, x, y), label = 2); yxy2
2[3[], 5[], 5[]]
sage: xyy2 == yxy2
True

Converting labelled into unlabelled rooted trees by forgetting the labels, and back (the labels are initialized as
None):

sage: yxy2crude = RootedTree(yxy2); yxy2crude
[[], [], []]
sage: LabelledRootedTree(yxy2crude)
None[None[], None[], None[]]

2660 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sort_key()
Return a tuple of nonnegative integers encoding the labelled rooted tree self.

The first entry of the tuple is a pair consisting of the number of children of the root and the label of the
root. Then the rest of the tuple is obtained as follows: List the tuples corresponding to all children (we are
regarding the children themselves as trees). Order this list (not the tuples!) in lexicographically increasing
order, and flatten it into a single tuple.

This tuple characterizes the labelled rooted tree uniquely, and can be used to sort the labelled rooted trees
provided that the labels belong to a type which is totally ordered.

Note: The tree self must be normalized before calling this method (see normalize()). This doesn’t
matter unless you are inside the clone() context manager, because outside of it every rooted tree is already
normalized.

Note: This method overrides RootedTree.sort_key() and returns a result different from what the
latter would return, as it wants to encode the whole labelled tree including its labelling rather than just
the unlabelled tree. Therefore, be careful with using this method on subclasses of RootedOrderedTree;
under some circumstances they could inherit it from another superclass instead of from RootedTree, which
would cause the method to forget the labelling. See the docstrings of RootedTree.sort_key() and sage.
combinat.ordered_tree.OrderedTree.sort_key().

EXAMPLES:

sage: LRT = LabelledRootedTrees(); LRT
Labelled rooted trees
sage: x = LRT([], label = 3); x
3[]
sage: x.sort_key()
((0, 3),)
sage: y = LRT([x, x, x], label = 2); y
2[3[], 3[], 3[]]
sage: y.sort_key()
((3, 2), (0, 3), (0, 3), (0, 3))
sage: LRT.an_element().sort_key()
((3, 'alpha'), (0, 3), (1, 5), (0, None), (2, 42), (0, 3), (0, 3))
sage: lb = RootedTrees()([[],[[], []]]).canonical_labelling()
sage: lb.sort_key()
((2, 1), (0, 2), (2, 3), (0, 4), (0, 5))

class sage.combinat.rooted_tree.LabelledRootedTrees
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

This is a parent stub to serve as a factory class for labelled rooted trees.

EXAMPLES:

sage: LRT = LabelledRootedTrees(); LRT
Labelled rooted trees
sage: x = LRT([], label = 3); x
3[]
sage: x.parent() is LRT

(continues on next page)

5.1. Comprehensive Module List 2661

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

True
sage: y = LRT([x, x, x], label = 2); y
2[3[], 3[], 3[]]
sage: y.parent() is LRT
True

Todo: Add the possibility to restrict the labels to a fixed set.

class sage.combinat.rooted_tree.LabelledRootedTrees_all(category=None)
Bases: sage.combinat.rooted_tree.LabelledRootedTrees

Class of all (unordered) labelled rooted trees.

See LabelledRootedTree for a definition.

Element
alias of LabelledRootedTree

labelled_trees()
Return the set of labelled trees associated to self.

EXAMPLES:

sage: LabelledRootedTrees().labelled_trees()
Labelled rooted trees

unlabelled_trees()
Return the set of unlabelled trees associated to self.

EXAMPLES:

sage: LabelledRootedTrees().unlabelled_trees()
Rooted trees

class sage.combinat.rooted_tree.RootedTree(parent=None, children=[], check=True)
Bases: sage.combinat.abstract_tree.AbstractClonableTree, sage.structure.list_clone.
NormalizedClonableList

The class for unordered rooted trees.

The unordered rooted trees are an inductive datatype defined as follows: An unordered rooted tree is a multiset
of unordered rooted trees. The trees that belong to this multiset are said to be the children of the tree. The tree
that has no children is called a leaf.

The labelled rooted trees (LabelledRootedTree) form a subclass of this class; they carry additional data.

One can create a tree from any list (or more generally iterable) of trees or objects convertible to a tree.

EXAMPLES:

sage: RootedTree([])
[]
sage: RootedTree([[], [[]]])
[[], [[]]]
sage: RootedTree([[[]], []])
[[], [[]]]

(continues on next page)

2662 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.NormalizedClonableList
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.NormalizedClonableList

Combinatorics, Release 9.7

(continued from previous page)

sage: O = OrderedTree([[[]], []]); O
[[[]], []]
sage: RootedTree(O) # this is O with the ordering forgotten
[[], [[]]]

One can also enter any small rooted tree (“small” meaning that no vertex has more than 15 children) by using
a simple numerical encoding of rooted trees, namely, the from_hexacode() function. (This function actually
parametrizes ordered trees, and here we make it parametrize unordered trees by forgetting the ordering.)

sage: from sage.combinat.abstract_tree import from_hexacode
sage: RT = RootedTrees()
sage: from_hexacode('32001010', RT)
[[[]], [[]], [[], []]]

Note: Unlike an ordered tree, an (unordered) rooted tree is a multiset (rather than a list) of children.
That is, two ordered trees which differ from each other by switching the order of children are equal to each
other as (unordered) rooted trees. Internally, rooted trees are encoded as sage.structure.list_clone.
NormalizedClonableList instances, and instead of storing their children as an actual multiset, they store
their children as a list which is sorted according to their sort_key() value. This is as good as storing them
as multisets, since the sort_key() values are sortable and distinguish different (unordered) trees. However, if
you wish to define a subclass of RootedTree which implements rooted trees with extra structure (say, a class
of edge-colored rooted trees, or a class of rooted trees with a cyclic order on the list of children), then the inher-
ited sort_key() method will no longer distinguish different trees (and, as a consequence, equal trees will be
regarded as distinct). Thus, you will have to override the method by one that does distinguish different trees.

graft_list(other)
Return the list of trees obtained by grafting other on self.

Here grafting means that one takes the disjoint union of self and other, chooses a node of self, and
adds the root of other to the list of children of this node. The root of the resulting tree is the root of self.
(This can be done for each node of self; this method returns the list of all results.)

This is useful for free pre-Lie algebras.

EXAMPLES:

sage: RT = RootedTree
sage: x = RT([])
sage: y = RT([x, x])
sage: x.graft_list(x)
[[[]]]
sage: l = y.graft_list(x); l
[[[], [], []], [[], [[]]], [[], [[]]]]
sage: [parent(i) for i in l]
[Rooted trees, Rooted trees, Rooted trees]

graft_on_root(other)
Return the tree obtained by grafting other on the root of self.

Here grafting means that one takes the disjoint union of self and other, and adds the root of other to
the list of children of self. The root of the resulting tree is the root of self.

This is useful for free Nap algebras.

EXAMPLES:

5.1. Comprehensive Module List 2663

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.NormalizedClonableList
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.NormalizedClonableList

Combinatorics, Release 9.7

sage: RT = RootedTree
sage: x = RT([])
sage: y = RT([x, x])
sage: x.graft_on_root(x)
[[]]
sage: y.graft_on_root(x)
[[], [], []]
sage: x.graft_on_root(y)
[[[], []]]

is_empty()
Return if self is the empty tree.

For rooted trees, this always returns False.

Note: This is not the same as bool(t), which returns whether t has some child or not.

EXAMPLES:

sage: t = RootedTrees(4)([[],[[]]])
sage: t.is_empty()
False
sage: bool(t)
True
sage: t = RootedTrees(1)([])
sage: t.is_empty()
False
sage: bool(t)
False

normalize()
Normalize self.

This function is at the core of the implementation of rooted (unordered) trees. The underlying structure is
provided by ordered rooted trees. Every rooted tree is represented by a normalized element in the set of its
planar embeddings.

There should be no need to call normalize directly as it is called automatically upon creation and cloning
or modification (by NormalizedClonableList).

The normalization has a recursive definition. It means first that every sub-tree is itself normalized, and also
that sub-trees are sorted. Here the sort is performed according to the values of the sort_key() method.

EXAMPLES:

sage: RT = RootedTree
sage: RT([[],[[]]]) == RT([[[]],[]]) # indirect doctest
True
sage: rt1 = RT([[],[[]]])
sage: rt2 = RT([[[]],[]])
sage: rt1 is rt2
False
sage: rt1 == rt2
True

(continues on next page)

2664 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: rt1._get_list() == rt2._get_list()
True

single_graft(x, grafting_function, path_prefix=())
Graft subtrees of 𝑥 on self using the given function.

Let 𝑥1, 𝑥2, . . . , 𝑥𝑝 be the children of the root of 𝑥. For each 𝑖, the subtree of 𝑥 comprising all descendants
of 𝑥𝑖 is joined by a new edge to the vertex of self specified by the 𝑖-th path in the grafting function (i.e.,
by the path grafting_function[i]).

The number of vertices of the result is the sum of the numbers of vertices of self and 𝑥minus one, because
the root of 𝑥 is not used.

This is used to define the product of the Grossman-Larson algebras.

INPUT:

• 𝑥 – a rooted tree

• grafting_function – a list of paths in self

• path_prefix – optional tuple (default ())

The path_prefix argument is only used for internal recursion.

EXAMPLES:

sage: LT = LabelledRootedTrees()
sage: y = LT([LT([],label='b')], label='a')
sage: x = LT([LT([],label='d')], label='c')
sage: y.single_graft(x,[(0,)])
a[b[d[]]]
sage: t = LT([LT([],label='b'),LT([],label='c')], label='a')
sage: s = LT([LT([],label='d'),LT([],label='e')], label='f')
sage: t.single_graft(s,[(0,),(1,)])
a[b[d[]], c[e[]]]

sort_key()
Return a tuple of nonnegative integers encoding the rooted tree self.

The first entry of the tuple is the number of children of the root. Then the rest of the tuple is obtained as
follows: List the tuples corresponding to all children (we are regarding the children themselves as trees).
Order this list (not the tuples!) in lexicographically increasing order, and flatten it into a single tuple.

This tuple characterizes the rooted tree uniquely, and can be used to sort the rooted trees.

Note: The tree self must be normalized before calling this method (see normalize()). This doesn’t
matter unless you are inside the clone() context manager, because outside of it every rooted tree is already
normalized.

Note: By default, this method does not encode any extra structure that self might have. If you
have a subclass inheriting from RootedTree which allows for some extra structure, you need to over-
ride sort_key() in order to preserve this structure (for example, the LabelledRootedTree class
does this in LabelledRootedTree.sort_key()). See the note in the docstring of sage.combinat.
ordered_tree.OrderedTree.sort_key() for a pitfall.

5.1. Comprehensive Module List 2665

Combinatorics, Release 9.7

EXAMPLES:

sage: RT = RootedTree
sage: RT([[],[[]]]).sort_key()
(2, 0, 1, 0)
sage: RT([[[]],[]]).sort_key()
(2, 0, 1, 0)

class sage.combinat.rooted_tree.RootedTrees
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Factory class for rooted trees.

INPUT:

• size – (optional) an integer

OUTPUT:

the set of all rooted trees (of the given size size if specified)

EXAMPLES:

sage: RootedTrees()
Rooted trees

sage: RootedTrees(2)
Rooted trees with 2 nodes

class sage.combinat.rooted_tree.RootedTrees_all
Bases: sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets, sage.
combinat.rooted_tree.RootedTrees

Class of all (unordered, unlabelled) rooted trees.

See RootedTree for a definition.

Element
alias of RootedTree

labelled_trees()
Return the set of labelled trees associated to self.

EXAMPLES:

sage: RootedTrees().labelled_trees()
Labelled rooted trees

As a consequence:

sage: lb = RootedTrees()([[],[[], []]]).canonical_labelling()
sage: lb
1[2[], 3[4[], 5[]]]
sage: lb.__class__
<class 'sage.combinat.rooted_tree.LabelledRootedTrees_all_with_category.element_
→˓class'>
sage: lb.parent()
Labelled rooted trees

2666 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

leaf()
Return a leaf tree with self as parent.

EXAMPLES:

sage: RootedTrees().leaf()
[]

unlabelled_trees()
Return the set of unlabelled trees associated to self.

EXAMPLES:

sage: RootedTrees().unlabelled_trees()
Rooted trees

class sage.combinat.rooted_tree.RootedTrees_size(n)
Bases: sage.combinat.rooted_tree.RootedTrees

The enumerated set of rooted trees with a given number of nodes.

The number of nodes of a rooted tree is defined recursively: The number of nodes of a rooted tree with 𝑎 children
is 𝑎 plus the sum of the number of nodes of each of these children.

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: RootedTrees(1).cardinality()
1
sage: RootedTrees(3).cardinality()
2

check_element(el, check=True)
Check that a given tree actually belongs to self.

This just checks the number of vertices.

EXAMPLES:

sage: RT3 = RootedTrees(3)
sage: RT3([[],[]]) # indirect doctest
[[], []]
sage: RT3([[],[],[]]) # indirect doctest
Traceback (most recent call last):
...
ValueError: wrong number of nodes

element_class()

sage.combinat.rooted_tree.number_of_rooted_trees(n)
Return the number of rooted trees with 𝑛 nodes.

Compute the number 𝑎(𝑛) of rooted trees with 𝑛 nodes using the recursive formula ([SL000081]):

𝑎(𝑛+ 1) =
1

𝑛

𝑛∑︁
𝑘=1

⎛⎝∑︁
𝑑|𝑘

𝑑𝑎(𝑑)

⎞⎠ 𝑎(𝑛− 𝑘 + 1)

EXAMPLES:

5.1. Comprehensive Module List 2667

Combinatorics, Release 9.7

sage: from sage.combinat.rooted_tree import number_of_rooted_trees
sage: [number_of_rooted_trees(i) for i in range(10)]
[0, 1, 1, 2, 4, 9, 20, 48, 115, 286]

REFERENCES:

5.1.272 Robinson-Schensted-Knuth correspondence

AUTHORS:

• Travis Scrimshaw (2012-12-07): Initial version

• Chaman Agrawal (2019-06-24): Refactoring on the Rule class

• Matthew Lancellotti (2018): initial version of super RSK

• Jianping Pan, Wencin Poh, Anne Schilling (2020-08-31): initial version of RuleStar

Introduction

The Robinson-Schensted-Knuth (RSK) correspondence is most naturally stated as a bijection between generalized per-
mutations (also known as two-line arrays, biwords, . . .) and pairs of semi-standard Young tableaux (𝑃,𝑄) of identical
shape.

The basic operation in the RSK correspondence is a row insertion 𝑃 ← 𝑘 (where 𝑃 is a given semi-standard Young
tableau, and 𝑘 is an integer). Different insertion algorithms have been implemented for the RSK correspondence and
can be specified as an argument in the function call.

EXAMPLES:

We can perform RSK and its inverse map on a variety of objects:

sage: p = Tableau([[1,2,2],[2]]); q = Tableau([[1,3,3],[2]])
sage: gp = RSK_inverse(p, q); gp
[[1, 2, 3, 3], [2, 1, 2, 2]]
sage: RSK(*gp) # RSK of a biword
[[[1, 2, 2], [2]], [[1, 3, 3], [2]]]
sage: RSK([2,3,2,1,2,3]) # Robinson-Schensted of a word
[[[1, 2, 2, 3], [2], [3]], [[1, 2, 5, 6], [3], [4]]]
sage: RSK([2,3,2,1,2,3], insertion=RSK.rules.EG) # Edelman-Greene
[[[1, 2, 3], [2, 3], [3]], [[1, 2, 6], [3, 5], [4]]]
sage: m = RSK_inverse(p, q, 'matrix'); m # output as matrix
[0 1]
[1 0]
[0 2]
sage: RSK(m) # RSK of a matrix
[[[1, 2, 2], [2]], [[1, 3, 3], [2]]]

2668 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Insertions currently available

The following insertion algorithms for RSK correspondence are currently available:

• RSK insertion (RuleRSK).

• Edelman-Greene insertion (RuleEG), an algorithm defined in [EG1987] Definition 6.20 (where it is referred to
as Coxeter-Knuth insertion).

• Hecke RSK algorithm (RuleHecke) , defined using the Hecke insertion studied in [BKSTY06] (but using rows
instead of columns).

• Dual RSK insertion (RuleDualRSK).

• CoRSK insertion (RuleCoRSK), defined in [GR2018v5sol].

• Super RSK insertion (RuleSuperRSK), a combination of row and column insertions defined in [Muth2019].

• Star insertion (RuleStar), defined in [MPPS2020].

Implementing your own insertion rule

The functions RSK() and RSK_inverse() are written so that it is easy to implement insertion algorithms you come
across in your research.

To implement your own insertion algorithm, you first need to import the base class for a rule:

sage: from sage.combinat.rsk import Rule

Using the Rule class as parent class for your insertion rule, first implement the insertion and the reverse insertion
algorithm for RSK() and RSK_inverse() respectively (as methods forward_rule and backward_rule). If your
insertion algorithm uses the same forward and backward rules as RuleRSK, differing only in how an entry is inserted
into a row, then this is not necessary, and it suffices to merely implement the insertion and reverse_insertion
methods.

For more information, see Rule.

REFERENCES:

class sage.combinat.rsk.InsertionRules
Bases: object

Catalog of rules for RSK-like insertion algorithms.

EG
alias of RuleEG

Hecke
alias of RuleHecke

RSK
alias of RuleRSK

Star
alias of RuleStar

coRSK
alias of RuleCoRSK

dualRSK
alias of RuleDualRSK

5.1. Comprehensive Module List 2669

Combinatorics, Release 9.7

superRSK
alias of RuleSuperRSK

sage.combinat.rsk.RSK(obj1=None, obj2=None, insertion=<class 'sage.combinat.rsk.RuleRSK'>,
check_standard=False, **options)

Perform the Robinson-Schensted-Knuth (RSK) correspondence.

The Robinson-Schensted-Knuth (RSK) correspondence (also known as the RSK algorithm) is most naturally
stated as a bijection between generalized permutations (also known as two-line arrays, biwords, . . .) and pairs of
semi-standard Young tableaux (𝑃,𝑄) of identical shape. The tableau 𝑃 is known as the insertion tableau, and
𝑄 is known as the recording tableau.

The basic operation is known as row insertion 𝑃 ← 𝑘 (where 𝑃 is a given semi-standard Young tableau, and 𝑘
is an integer). Row insertion is a recursive algorithm which starts by setting 𝑘0 = 𝑘, and in its 𝑖-th step inserts
the number 𝑘𝑖 into the 𝑖-th row of 𝑃 (we start counting the rows at 0) by replacing the first integer greater than
𝑘𝑖 in the row by 𝑘𝑖 and defines 𝑘𝑖+1 as the integer that has been replaced. If no integer greater than 𝑘𝑖 exists in
the 𝑖-th row, then 𝑘𝑖 is simply appended to the row and the algorithm terminates at this point.

A generalized permutation (or biword) is a list ((𝑗0, 𝑘0), (𝑗1, 𝑘1), . . . , (𝑗ℓ−1, 𝑘ℓ−1)) of pairs such that the letters
𝑗0, 𝑗1, . . . , 𝑗ℓ−1 are weakly increasing (that is, 𝑗0 ≤ 𝑗1 ≤ · · · ≤ 𝑗ℓ−1), whereas the letters 𝑘𝑖 satisfy 𝑘𝑖 ≤ 𝑘𝑖+1

whenever 𝑗𝑖 = 𝑗𝑖+1. The ℓ-tuple (𝑗0, 𝑗1, . . . , 𝑗ℓ−1) is called the top line of this generalized permutation, whereas
the ℓ-tuple (𝑘0, 𝑘1, . . . , 𝑘ℓ−1) is called its bottom line.

Now the RSK algorithm, applied to a generalized permutation 𝑝 = ((𝑗0, 𝑘0), (𝑗1, 𝑘1), . . . , (𝑗ℓ−1, 𝑘ℓ−1)) (en-
coded as a lexicographically sorted list of pairs) starts by initializing two semi-standard tableaux 𝑃0 and 𝑄0 as
empty tableaux. For each nonnegative integer 𝑡 starting at 0, take the pair (𝑗𝑡, 𝑘𝑡) from 𝑝 and set𝑃𝑡+1 = 𝑃𝑡 ← 𝑘𝑡,
and define 𝑄𝑡+1 by adding a new box filled with 𝑗𝑡 to the tableau 𝑄𝑡 at the same location the row insertion on
𝑃𝑡 ended (that is to say, adding a new box with entry 𝑗𝑡 such that 𝑃𝑡+1 and 𝑄𝑡+1 have the same shape). The
iterative process stops when 𝑡 reaches the size of 𝑝, and the pair (𝑃𝑡, 𝑄𝑡) at this point is the image of 𝑝 under the
Robinson-Schensted-Knuth correspondence.

This correspondence has been introduced in [Knu1970], where it has been referred to as “Construction A”.

For more information, see Chapter 7 in [Sta-EC2].

We also note that integer matrices are in bijection with generalized permutations. Furthermore, we can convert
any word 𝑤 (and, in particular, any permutation) to a generalized permutation by considering the top row to be
(1, 2, . . . , 𝑛) where 𝑛 is the length of 𝑤.

The optional argument insertion allows to specify an alternative insertion procedure to be used instead of the
standard Robinson-Schensted-Knuth insertion.

INPUT:

• obj1, obj2 – can be one of the following:

– a word in an ordered alphabet (in this case, obj1 is said word, and obj2 is None)

– an integer matrix

– two lists of equal length representing a generalized permutation (namely, the lists (𝑗0, 𝑗1, . . . , 𝑗ℓ−1)
and (𝑘0, 𝑘1, . . . , 𝑘ℓ−1) represent the generalized permutation ((𝑗0, 𝑘0), (𝑗1, 𝑘1), . . . , (𝑗ℓ−1, 𝑘ℓ−1)))

– any object which has a method _rsk_iter() which returns an iterator over the object represented as
generalized permutation or a pair of lists (in this case, obj1 is said object, and obj2 is None).

• insertion – (default: RSK.rules.RSK) the following types of insertion are currently supported:

– RSK.rules.RSK (or 'RSK') – Robinson-Schensted-Knuth insertion (RuleRSK)

– RSK.rules.EG (or 'EG') – Edelman-Greene insertion (only for reduced words of permuta-
tions/elements of a type 𝐴 Coxeter group) (RuleEG)

2670 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

– RSK.rules.Hecke (or 'hecke') – Hecke insertion (only guaranteed for generalized permutations
whose top row is strictly increasing) (RuleHecke)

– RSK.rules.dualRSK (or 'dualRSK') – Dual RSK insertion (only for strict biwords) (RuleDualRSK)

– RSK.rules.coRSK (or 'coRSK') – CoRSK insertion (only for strict cobiwords) (RuleCoRSK)

– RSK.rules.superRSK (or 'super') – Super RSK insertion (only for restricted super biwords)
(RuleSuperRSK)

– RSK.rules.Star (or 'Star') – ⋆-insertion (only for fully commutative words in the 0-Hecke
monoid) (RuleStar)

• check_standard – (default: False) check if either of the resulting tableaux is a standard tableau, and if
so, typecast it as such

For precise information about constraints on the input and output, as well as the definition of the algorithm (if it
is not standard RSK), see the particular Rule class.

EXAMPLES:

If we only input one row, it is understood that the top row should be (1, 2, . . . , 𝑛):

sage: RSK([3,3,2,4,1])
[[[1, 3, 4], [2], [3]], [[1, 2, 4], [3], [5]]]
sage: RSK(Word([3,3,2,4,1]))
[[[1, 3, 4], [2], [3]], [[1, 2, 4], [3], [5]]]
sage: RSK(Word([2,3,3,2,1,3,2,3]))
[[[1, 2, 2, 3, 3], [2, 3], [3]], [[1, 2, 3, 6, 8], [4, 7], [5]]]

We can provide a generalized permutation:

sage: RSK([1, 2, 2, 2], [2, 1, 1, 2])
[[[1, 1, 2], [2]], [[1, 2, 2], [2]]]
sage: RSK(Word([1,1,3,4,4]), [1,4,2,1,3])
[[[1, 1, 3], [2], [4]], [[1, 1, 4], [3], [4]]]
sage: RSK([1,3,3,4,4], Word([6,2,2,1,7]))
[[[1, 2, 7], [2], [6]], [[1, 3, 4], [3], [4]]]

We can provide a matrix:

sage: RSK(matrix([[0,1],[2,1]]))
[[[1, 1, 2], [2]], [[1, 2, 2], [2]]]

We can also provide something looking like a matrix:

sage: RSK([[0,1],[2,1]])
[[[1, 1, 2], [2]], [[1, 2, 2], [2]]]

There is also RSK_inverse() which performs the inverse of the bijection on a pair of semistandard tableaux.
We note that the inverse function takes 2 separate tableaux as inputs, so to compose with RSK(), we need to use
the python * on the output:

sage: RSK_inverse(*RSK([1, 2, 2, 2], [2, 1, 1, 2]))
[[1, 2, 2, 2], [2, 1, 1, 2]]
sage: P,Q = RSK([1, 2, 2, 2], [2, 1, 1, 2])
sage: RSK_inverse(P, Q)
[[1, 2, 2, 2], [2, 1, 1, 2]]

5.1. Comprehensive Module List 2671

Combinatorics, Release 9.7

sage.combinat.rsk.RSK_inverse(p, q, output='array', insertion=<class 'sage.combinat.rsk.RuleRSK'>)
Return the generalized permutation corresponding to the pair of tableaux (𝑝, 𝑞) under the inverse of the Robinson-
Schensted-Knuth correspondence.

For more information on the bijection, see RSK().

INPUT:

• p, q – two semi-standard tableaux of the same shape, or (in the case when Hecke insertion is used) an
increasing tableau and a set-valued tableau of the same shape (see the note below for the format of the
set-valued tableau)

• output – (default: 'array') if q is semi-standard:

– 'array' – as a two-line array (i.e. generalized permutation or biword)

– 'matrix' – as an integer matrix

and if q is standard, we can also have the output:

– 'word' – as a word

and additionally if p is standard, we can also have the output:

– 'permutation' – as a permutation

• insertion – (default: RSK.rules.RSK) the insertion algorithm used in the bijection. Currently the fol-
lowing are supported:

– RSK.rules.RSK (or 'RSK') – Robinson-Schensted-Knuth insertion (RuleRSK)

– RSK.rules.EG (or 'EG') – Edelman-Greene insertion (only for reduced words of permuta-
tions/elements of a type 𝐴 Coxeter group) (RuleEG)

– RSK.rules.Hecke (or 'hecke') – Hecke insertion (only guaranteed for generalized permutations
whose top row is strictly increasing) (RuleHecke)

– RSK.rules.dualRSK (or 'dualRSK') – Dual RSK insertion (only for strict biwords) (RuleDualRSK)

– RSK.rules.coRSK (or 'coRSK') – CoRSK insertion (only for strict cobiwords) (RuleCoRSK)

– RSK.rules.superRSK (or 'super') – Super RSK insertion (only for restricted super biwords)
(RuleSuperRSK)

– RSK.rules.Star (or 'Star') – ⋆-insertion (only for fully commutative words in the 0-Hecke
monoid) (RuleStar)

For precise information about constraints on the input and output, see the particular Rule class.

Note: In the case of Hecke insertion, the input variable q should be a set-valued tableau, encoded as a tableau
whose entries are strictly increasing tuples of positive integers. Each such tuple encodes the set of its entries.

EXAMPLES:

If both p and q are standard:

sage: t1 = Tableau([[1, 2, 5], [3], [4]])
sage: t2 = Tableau([[1, 2, 3], [4], [5]])
sage: RSK_inverse(t1, t2)
[[1, 2, 3, 4, 5], [1, 4, 5, 3, 2]]
sage: RSK_inverse(t1, t2, 'word')
word: 14532

(continues on next page)

2672 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: RSK_inverse(t1, t2, 'matrix')
[1 0 0 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[0 0 1 0 0]
[0 1 0 0 0]
sage: RSK_inverse(t1, t2, 'permutation')
[1, 4, 5, 3, 2]
sage: RSK_inverse(t1, t1, 'permutation')
[1, 4, 3, 2, 5]
sage: RSK_inverse(t2, t2, 'permutation')
[1, 2, 5, 4, 3]
sage: RSK_inverse(t2, t1, 'permutation')
[1, 5, 4, 2, 3]

If the first tableau is semistandard:

sage: p = Tableau([[1,2,2],[3]]); q = Tableau([[1,2,4],[3]])
sage: ret = RSK_inverse(p, q); ret
[[1, 2, 3, 4], [1, 3, 2, 2]]
sage: RSK_inverse(p, q, 'word')
word: 1322

In general:

sage: p = Tableau([[1,2,2],[2]]); q = Tableau([[1,3,3],[2]])
sage: RSK_inverse(p, q)
[[1, 2, 3, 3], [2, 1, 2, 2]]
sage: RSK_inverse(p, q, 'matrix')
[0 1]
[1 0]
[0 2]

Using Hecke insertion:

sage: w = [5, 4, 3, 1, 4, 2, 5, 5]
sage: pq = RSK(w, insertion=RSK.rules.Hecke)
sage: RSK_inverse(*pq, insertion=RSK.rules.Hecke, output='list')
[5, 4, 3, 1, 4, 2, 5, 5]

Note: The constructor of Tableau accepts not only semistandard tableaux, but also arbitrary lists that are
fillings of a partition diagram. (And such lists are used, e.g., for the set-valued tableau q that is passed to
RSK_inverse(p, q, insertion='hecke').) The user is responsible for ensuring that the tableaux passed
to RSK_inverse are of the right types (semistandard, standard, increasing, set-valued as needed).

class sage.combinat.rsk.Rule
Bases: sage.structure.unique_representation.UniqueRepresentation

Generic base class for an insertion rule for an RSK-type correspondence.

An instance of this class should implement a method insertion() (which can be applied to a letter j and
a list r, and modifies r in place by “bumping” j into it appropriately; it then returns the bumped-out entry
or None if no such entry exists) and a method reverse_insertion() (which does the same but for reverse

5.1. Comprehensive Module List 2673

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

bumping). It may also implement _backward_format_output() and _forward_format_output() if the
RSK correspondence should return something other than (semi)standard tableaux (in the forward direction)
and matrices or biwords (in the backward direction). The to_pairs() method should also be overridden if
the input for the (forward) RSK correspondence is not the usual kind of biwords (i.e., pairs of two 𝑛-tuples
[𝑎1, 𝑎2, . . . , 𝑎𝑛] and [𝑏1, 𝑏2, . . . , 𝑏𝑛] satisfying (𝑎1, 𝑏1) ≤ (𝑎2, 𝑏2) ≤ · · · ≤ (𝑎𝑛, 𝑏𝑛) in lexicographic order).
Finally, it forward_rule() and backward_rule() have to be overridden if the overall structure of the RSK
correspondence differs from that of classical RSK (see, e.g., the case of Hecke insertion, in which a letter bumped
into a row may change a different row).

backward_rule(p, q, output)
Return the generalized permutation obtained by applying reverse insertion to a pair of tableaux (p, q).

INPUT:

• p, q – two tableaux of the same shape.

• output – (default: 'array') if q is semi-standard:

– 'array' – as a two-line array (i.e. generalized permutation or biword)

– 'matrix' – as an integer matrix

and if q is standard, we can also have the output:

– 'word' – as a word

and additionally if p is standard, we can also have the output:

– 'permutation' – as a permutation

EXAMPLES:

sage: from sage.combinat.rsk import RuleRSK
sage: t1 = Tableau([[1, 3, 4], [2], [3]])
sage: t2 = Tableau([[1, 2, 4], [3], [5]])
sage: RuleRSK().backward_rule(t1, t2, 'array')
[[1, 2, 3, 4, 5], [3, 3, 2, 4, 1]]
sage: t1 = Tableau([[1, 1, 1, 3, 7]])
sage: t2 = Tableau([[1, 2, 3, 4, 5]])
sage: RuleRSK().backward_rule(t1, t2, 'array')
[[1, 2, 3, 4, 5], [1, 1, 1, 3, 7]]
sage: t1 = Tableau([[1, 3], [3], [6], [7]])
sage: t2 = Tableau([[1, 4], [2], [3], [5]])
sage: RuleRSK().backward_rule(t1, t2, 'array')
[[1, 2, 3, 4, 5], [7, 6, 3, 3, 1]]

forward_rule(obj1, obj2, check_standard=False, check=True)
Return a pair of tableaux obtained by applying forward insertion to the generalized permutation [obj1,
obj2].

INPUT:

• obj1, obj2 – can be one of the following ways to represent a generalized permutation (or, equiva-
lently, biword):

– two lists obj1 and obj2 of equal length, to be interpreted as the top row and the bottom row of
the biword

– a matrix obj1 of nonnegative integers, to be interpreted as the generalized permutation in matrix
form (in this case, obj2 is None)

2674 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

– a word obj1 in an ordered alphabet, to be interpreted as the bottom row of the biword (in this
case, obj2 is None; the top row of the biword is understood to be (1, 2, . . . , 𝑛) by default)

– any object obj1 which has a method _rsk_iter(), as long as this method returns an iterator
yielding pairs of numbers, which then are interperted as top entries and bottom entries in the
biword (in this case, obj2 is None)

• check_standard – (default: False) check if either of the resulting tableaux is a standard tableau,
and if so, typecast it as such

• check – (default: True) whether to check that obj1 and obj2 actually define a valid biword

EXAMPLES:

sage: from sage.combinat.rsk import RuleRSK
sage: RuleRSK().forward_rule([3,3,2,4,1], None)
[[[1, 3, 4], [2], [3]], [[1, 2, 4], [3], [5]]]
sage: RuleRSK().forward_rule([1, 1, 1, 3, 7], None)
[[[1, 1, 1, 3, 7]], [[1, 2, 3, 4, 5]]]
sage: RuleRSK().forward_rule([7, 6, 3, 3, 1], None)
[[[1, 3], [3], [6], [7]], [[1, 4], [2], [3], [5]]]

to_pairs(obj1=None, obj2=None, check=True)
Given a valid input for the RSK algorithm, such as two 𝑛-tuples obj1 = [𝑎1, 𝑎2, . . . , 𝑎𝑛] and obj2 =
[𝑏1, 𝑏2, . . . , 𝑏𝑛] forming a biword (i.e., satisfying 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑛, and if 𝑎𝑖 = 𝑎𝑖+1, then 𝑏𝑖 ≤ 𝑏𝑖+1),
or a matrix (“generalized permutation”), or a single word, return the array [(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎𝑛, 𝑏𝑛)].

INPUT:

• obj1, obj2 – anything representing a biword (see the doc of forward_rule() for the encodings
accepted).

• check – (default: True) whether to check that obj1 and obj2 actually define a valid biword.

EXAMPLES:

sage: from sage.combinat.rsk import Rule
sage: list(Rule().to_pairs([1, 2, 2, 2], [2, 1, 1, 2]))
[(1, 2), (2, 1), (2, 1), (2, 2)]
sage: m = Matrix(ZZ, 3, 2, [0,1,1,0,0,2]) ; m
[0 1]
[1 0]
[0 2]
sage: list(Rule().to_pairs(m))
[(1, 2), (2, 1), (3, 2), (3, 2)]

class sage.combinat.rsk.RuleCoRSK
Bases: sage.combinat.rsk.RuleRSK

Rule for coRSK insertion.

CoRSK insertion differs from classical RSK insertion in the following ways:

• The input (in terms of biwords) is no longer a biword, but rather a strict cobiword – i.e., a pair of two
lists [𝑎1, 𝑎2, . . . , 𝑎𝑛] and [𝑏1, 𝑏2, . . . , 𝑏𝑛] that satisfy the strict inequalities (𝑎1, 𝑏1)̃︀<(𝑎2, 𝑏2)̃︀< · · · ̃︀<(𝑎𝑛, 𝑏𝑛),
where the binary relation ̃︀< on pairs of integers is defined by having (𝑢1, 𝑣1)̃︀<(𝑢2, 𝑣2) if and only if either
𝑢1 < 𝑢2 or (𝑢1 = 𝑢2 and 𝑣1 > 𝑣2). In terms of matrices, this means that the input is not an arbitrary matrix
with nonnegative integer entries, but rather a {0, 1}-matrix (i.e., a matrix whose entries are 0’s and 1’s).

5.1. Comprehensive Module List 2675

Combinatorics, Release 9.7

• The output still consists of two tableaux (𝑃,𝑄) of equal shapes, but rather than both of them being semis-
tandard, now 𝑄 is row-strict (i.e., its transpose is semistandard) while 𝑃 is semistandard.

Bumping proceeds in the same way as for RSK insertion.

The RSK and coRSK algorithms agree for permutation matrices.

For more information, see Section A.4 in [Ful1997] (specifically, construction (1d)) or the second solution to
Exercise 2.7.12(a) in [GR2018v5sol].

EXAMPLES:

sage: RSK([1,2,5,3,1], insertion = RSK.rules.coRSK)
[[[1, 1, 3], [2], [5]], [[1, 2, 3], [4], [5]]]
sage: RSK(Word([2,3,3,2,1,3,2,3]), insertion = RSK.rules.coRSK)
[[[1, 2, 2, 3, 3], [2, 3], [3]], [[1, 2, 3, 6, 8], [4, 7], [5]]]
sage: RSK(Word([3,3,2,4,1]), insertion = RSK.rules.coRSK)
[[[1, 3, 4], [2], [3]], [[1, 2, 4], [3], [5]]]
sage: from sage.combinat.rsk import to_matrix
sage: RSK(to_matrix([1, 1, 3, 3, 4], [3, 2, 2, 1, 3]), insertion = RSK.rules.coRSK)
[[[1, 2, 3], [2], [3]], [[1, 3, 4], [1], [3]]]

Using coRSK insertion with a {0, 1}-matrix:

sage: RSK(matrix([[0,1],[1,0]]), insertion = RSK.rules.coRSK)
[[[1], [2]], [[1], [2]]]

We can also give it something looking like a matrix:

sage: RSK([[0,1],[1,0]], insertion = RSK.rules.coRSK)
[[[1], [2]], [[1], [2]]]

We can also use the inverse correspondence:

sage: RSK_inverse(*RSK([1, 2, 2, 2], [2, 3, 2, 1],
....: insertion=RSK.rules.coRSK),insertion=RSK.rules.coRSK)
[[1, 2, 2, 2], [2, 3, 2, 1]]
sage: P,Q = RSK([1, 2, 2, 2], [2, 3, 2, 1],insertion=RSK.rules.coRSK)
sage: RSK_inverse(P, Q, insertion=RSK.rules.coRSK)
[[1, 2, 2, 2], [2, 3, 2, 1]]

When applied to two standard tableaux, backwards coRSK insertion behaves identically to the usual backwards
RSK insertion:

sage: t1 = Tableau([[1, 2, 5], [3], [4]])
sage: t2 = Tableau([[1, 2, 3], [4], [5]])
sage: RSK_inverse(t1, t2, insertion=RSK.rules.coRSK)
[[1, 2, 3, 4, 5], [1, 4, 5, 3, 2]]
sage: RSK_inverse(t1, t2, 'word', insertion=RSK.rules.coRSK)
word: 14532
sage: RSK_inverse(t1, t2, 'matrix', insertion=RSK.rules.coRSK)
[1 0 0 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[0 0 1 0 0]
[0 1 0 0 0]

(continues on next page)

2676 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: RSK_inverse(t1, t2, 'permutation', insertion=RSK.rules.coRSK)
[1, 4, 5, 3, 2]
sage: RSK_inverse(t1, t1, 'permutation', insertion=RSK.rules.coRSK)
[1, 4, 3, 2, 5]
sage: RSK_inverse(t2, t2, 'permutation', insertion=RSK.rules.coRSK)
[1, 2, 5, 4, 3]
sage: RSK_inverse(t2, t1, 'permutation', insertion=RSK.rules.coRSK)
[1, 5, 4, 2, 3]

For coRSK, the first tableau is semistandard while the second tableau is transpose semistandard:

sage: p = Tableau([[1,2,2],[5]]); q = Tableau([[1,2,4],[3]])
sage: ret = RSK_inverse(p, q, insertion=RSK.rules.coRSK); ret
[[1, 2, 3, 4], [1, 5, 2, 2]]
sage: RSK_inverse(p, q, 'word', insertion=RSK.rules.coRSK)
word: 1522

backward_rule(p, q, output)
Return the strict cobiword obtained by applying reverse coRSK insertion to a pair of tableaux (p, q).

INPUT:

• p, q – two tableaux of the same shape

• output – (default: 'array') if q is row-strict:

– 'array' – as a two-line array (i.e. strict cobiword)

– 'matrix' – as a {0, 1}-matrix

and if q is standard, we can have the output:

– 'word' – as a word

and additionally if p is standard, we can also have the output:

– 'permutation' – as a permutation

EXAMPLES:

sage: from sage.combinat.rsk import RuleCoRSK
sage: t1 = Tableau([[1, 1, 2], [2, 3], [4]])
sage: t2 = Tableau([[1, 4, 5], [1, 4], [2]])
sage: RuleCoRSK().backward_rule(t1, t2, 'array')
[[1, 1, 2, 4, 4, 5], [4, 2, 1, 3, 1, 2]]

to_pairs(obj1=None, obj2=None, check=True)
Given a valid input for the coRSK algorithm, such as two 𝑛-tuples obj1 = [𝑎1, 𝑎2, . . . , 𝑎𝑛] and obj2
= [𝑏1, 𝑏2, . . . , 𝑏𝑛] forming a strict cobiword (i.e., satisfying 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑛, and if 𝑎𝑖 =
𝑎𝑖+1, then 𝑏𝑖 > 𝑏𝑖+1), or a {0, 1}-matrix (“rook placement”), or a single word, return the array
[(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎𝑛, 𝑏𝑛)].

INPUT:

• obj1, obj2 – anything representing a strict cobiword (see the doc of forward_rule() for the en-
codings accepted)

• check – (default: True) whether to check that obj1 and obj2 actually define a valid strict cobiword

EXAMPLES:

5.1. Comprehensive Module List 2677

Combinatorics, Release 9.7

sage: from sage.combinat.rsk import RuleCoRSK
sage: list(RuleCoRSK().to_pairs([1, 2, 2, 2], [2, 3, 2, 1]))
[(1, 2), (2, 3), (2, 2), (2, 1)]
sage: RuleCoRSK().to_pairs([1, 2, 2, 2], [1, 2, 3, 3])
Traceback (most recent call last):
...
ValueError: invalid strict cobiword
sage: m = Matrix(ZZ, 3, 2, [0,1,1,1,0,1]) ; m
[0 1]
[1 1]
[0 1]
sage: list(RuleCoRSK().to_pairs(m))
[(1, 2), (2, 2), (2, 1), (3, 2)]
sage: m = Matrix(ZZ, 3, 2, [0,1,1,0,0,2]) ; m
[0 1]
[1 0]
[0 2]
sage: RuleCoRSK().to_pairs(m)
Traceback (most recent call last):
...
ValueError: coRSK requires a {0, 1}-matrix

class sage.combinat.rsk.RuleDualRSK
Bases: sage.combinat.rsk.Rule

Rule for dual RSK insertion.

Dual RSK insertion differs from classical RSK insertion in the following ways:

• The input (in terms of biwords) is no longer an arbitrary biword, but rather a strict biword (i.e., a pair of
two lists [𝑎1, 𝑎2, . . . , 𝑎𝑛] and [𝑏1, 𝑏2, . . . , 𝑏𝑛] that satisfy the strict inequalities (𝑎1, 𝑏1) < (𝑎2, 𝑏2) < · · · <
(𝑎𝑛, 𝑏𝑛) in lexicographic order). In terms of matrices, this means that the input is not an arbitrary matrix
with nonnegative integer entries, but rather a {0, 1}-matrix (i.e., a matrix whose entries are 0’s and 1’s).

• The output still consists of two tableaux (𝑃,𝑄) of equal shapes, but rather than both of them being semis-
tandard, now 𝑃 is row-strict (i.e., its transpose is semistandard) while 𝑄 is semistandard.

• The main difference is in the way bumping works. Namely, when a number 𝑘𝑖 is inserted into the 𝑖-th row
of 𝑃 , it bumps out the first integer greater or equal to 𝑘𝑖 in this row (rather than greater than 𝑘𝑖).

The RSK and dual RSK algorithms agree for permutation matrices.

For more information, see Chapter 7, Section 14 in [Sta-EC2] (where dual RSK is called RSK*) or the third
solution to Exercise 2.7.12(a) in [GR2018v5sol].

EXAMPLES:

sage: RSK([3,3,2,4,1], insertion=RSK.rules.dualRSK)
[[[1, 4], [2], [3], [3]], [[1, 4], [2], [3], [5]]]
sage: RSK(Word([3,3,2,4,1]), insertion=RSK.rules.dualRSK)
[[[1, 4], [2], [3], [3]], [[1, 4], [2], [3], [5]]]
sage: RSK(Word([2,3,3,2,1,3,2,3]), insertion=RSK.rules.dualRSK)
[[[1, 2, 3], [2, 3], [2, 3], [3]], [[1, 2, 8], [3, 6], [4, 7], [5]]]

Using dual RSK insertion with a strict biword:

2678 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: RSK([1,1,2,4,4,5],[2,4,1,1,3,2], insertion=RSK.rules.dualRSK)
[[[1, 2], [1, 3], [2, 4]], [[1, 1], [2, 4], [4, 5]]]
sage: RSK([1,1,2,3,3,4,5],[1,3,2,1,3,3,2], insertion=RSK.rules.dualRSK)
[[[1, 2, 3], [1, 2], [3], [3]], [[1, 1, 3], [2, 4], [3], [5]]]
sage: RSK([1, 2, 2, 2], [2, 1, 2, 4], insertion=RSK.rules.dualRSK)
[[[1, 2, 4], [2]], [[1, 2, 2], [2]]]
sage: RSK(Word([1,1,3,4,4]), [1,4,2,1,3], insertion=RSK.rules.dualRSK)
[[[1, 2, 3], [1], [4]], [[1, 1, 4], [3], [4]]]
sage: RSK([1,3,3,4,4], Word([6,1,2,1,7]), insertion=RSK.rules.dualRSK)
[[[1, 2, 7], [1], [6]], [[1, 3, 4], [3], [4]]]

Using dual RSK insertion with a {0, 1}-matrix:

sage: RSK(matrix([[0,1],[1,1]]), insertion=RSK.rules.dualRSK)
[[[1, 2], [2]], [[1, 2], [2]]]

We can also give it something looking like a matrix:

sage: RSK([[0,1],[1,1]], insertion=RSK.rules.dualRSK)
[[[1, 2], [2]], [[1, 2], [2]]]

Let us now call the inverse correspondence:

sage: RSK_inverse(*RSK([1, 2, 2, 2], [2, 1, 2, 3],
....: insertion=RSK.rules.dualRSK),insertion=RSK.rules.dualRSK)
[[1, 2, 2, 2], [2, 1, 2, 3]]
sage: P,Q = RSK([1, 2, 2, 2], [2, 1, 2, 3],insertion=RSK.rules.dualRSK)
sage: RSK_inverse(P, Q, insertion=RSK.rules.dualRSK)
[[1, 2, 2, 2], [2, 1, 2, 3]]

When applied to two standard tableaux, reverse dual RSK insertion behaves identically to the usual reverse RSK
insertion:

sage: t1 = Tableau([[1, 2, 5], [3], [4]])
sage: t2 = Tableau([[1, 2, 3], [4], [5]])
sage: RSK_inverse(t1, t2, insertion=RSK.rules.dualRSK)
[[1, 2, 3, 4, 5], [1, 4, 5, 3, 2]]
sage: RSK_inverse(t1, t2, 'word', insertion=RSK.rules.dualRSK)
word: 14532
sage: RSK_inverse(t1, t2, 'matrix', insertion=RSK.rules.dualRSK)
[1 0 0 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[0 0 1 0 0]
[0 1 0 0 0]
sage: RSK_inverse(t1, t2, 'permutation', insertion=RSK.rules.dualRSK)
[1, 4, 5, 3, 2]
sage: RSK_inverse(t1, t1, 'permutation', insertion=RSK.rules.dualRSK)
[1, 4, 3, 2, 5]
sage: RSK_inverse(t2, t2, 'permutation', insertion=RSK.rules.dualRSK)
[1, 2, 5, 4, 3]
sage: RSK_inverse(t2, t1, 'permutation', insertion=RSK.rules.dualRSK)
[1, 5, 4, 2, 3]

5.1. Comprehensive Module List 2679

Combinatorics, Release 9.7

Let us check that forward and backward dual RSK are mutually inverse when the first tableau is merely transpose
semistandard:

sage: p = Tableau([[1,2,2],[1]]); q = Tableau([[1,2,4],[3]])
sage: ret = RSK_inverse(p, q, insertion=RSK.rules.dualRSK); ret
[[1, 2, 3, 4], [1, 2, 1, 2]]
sage: RSK_inverse(p, q, 'word', insertion=RSK.rules.dualRSK)
word: 1212

In general for dual RSK:

sage: p = Tableau([[1,1,2],[1]]); q = Tableau([[1,3,3],[2]])
sage: RSK_inverse(p, q, insertion=RSK.rules.dualRSK)
[[1, 2, 3, 3], [1, 1, 1, 2]]
sage: RSK_inverse(p, q, 'matrix', insertion=RSK.rules.dualRSK)
[1 0]
[1 0]
[1 1]

insertion(j, r)
Insert the letter j from the second row of the biword into the row 𝑟 using dual RSK insertion, if there is
bumping to be done.

The row 𝑟 is modified in place if bumping occurs. The bumped-out entry, if it exists, is returned.

EXAMPLES:

sage: from sage.combinat.rsk import RuleDualRSK
sage: r = [1, 3, 4, 5]
sage: j = RuleDualRSK().insertion(4, r); j
4
sage: r
[1, 3, 4, 5]
sage: r = [1, 2, 3, 6, 7]
sage: j = RuleDualRSK().insertion(4, r); j
6
sage: r
[1, 2, 3, 4, 7]
sage: r = [1, 3]
sage: j = RuleDualRSK().insertion(4, r); j is None
True
sage: r
[1, 3]

reverse_insertion(x, row)
Reverse bump the row row of the current insertion tableau with the number x using dual RSK insertion.

The row row is modified in place. The bumped-out entry is returned.

EXAMPLES:

sage: from sage.combinat.rsk import RuleDualRSK
sage: r = [1, 2, 4, 6, 7]
sage: x = RuleDualRSK().reverse_insertion(6, r); r
[1, 2, 4, 6, 7]
sage: x

(continues on next page)

2680 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

6
sage: r = [1, 2, 4, 5, 7]
sage: x = RuleDualRSK().reverse_insertion(6, r); r
[1, 2, 4, 6, 7]
sage: x
5

to_pairs(obj1=None, obj2=None, check=True)
Given a valid input for the dual RSK algorithm, such as two 𝑛-tuples obj1 = [𝑎1, 𝑎2, . . . , 𝑎𝑛] and
obj2 = [𝑏1, 𝑏2, . . . , 𝑏𝑛] forming a strict biword (i.e., satisfying 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑛, and if
𝑎𝑖 = 𝑎𝑖+1, then 𝑏𝑖 < 𝑏𝑖+1) or a {0, 1}-matrix (“rook placement”), or a single word, return the array
[(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎𝑛, 𝑏𝑛)].

INPUT:

• obj1, obj2 – anything representing a strict biword (see the doc of forward_rule() for the encod-
ings accepted)

• check – (default: True) whether to check that obj1 and obj2 actually define a valid strict biword

EXAMPLES:

sage: from sage.combinat.rsk import RuleDualRSK
sage: list(RuleDualRSK().to_pairs([1, 2, 2, 2], [2, 1, 2, 3]))
[(1, 2), (2, 1), (2, 2), (2, 3)]
sage: RuleDualRSK().to_pairs([1, 2, 2, 2], [1, 2, 3, 3])
Traceback (most recent call last):
...
ValueError: invalid strict biword
sage: m = Matrix(ZZ, 3, 2, [0,1,1,1,0,1]) ; m
[0 1]
[1 1]
[0 1]
sage: list(RuleDualRSK().to_pairs(m))
[(1, 2), (2, 1), (2, 2), (3, 2)]
sage: m = Matrix(ZZ, 3, 2, [0,1,1,0,0,2]) ; m
[0 1]
[1 0]
[0 2]
sage: RuleDualRSK().to_pairs(m)
Traceback (most recent call last):
...
ValueError: dual RSK requires a {0, 1}-matrix

class sage.combinat.rsk.RuleEG
Bases: sage.combinat.rsk.Rule

Rule for Edelman-Greene insertion.

For a reduced word of a permutation (i.e., an element of a type 𝐴 Coxeter group), one can use Edelman-Greene
insertion, an algorithm defined in [EG1987] Definition 6.20 (where it is referred to as Coxeter-Knuth insertion).
The Edelman-Greene insertion is similar to the standard row insertion except that (using the notations in the
documentation of RSK()) if 𝑘𝑖 and 𝑘𝑖 + 1 both exist in row 𝑖, we only set 𝑘𝑖+1 = 𝑘𝑖 + 1 and continue.

EXAMPLES:

Let us reproduce figure 6.4 in [EG1987]:

5.1. Comprehensive Module List 2681

Combinatorics, Release 9.7

sage: RSK([2,3,2,1,2,3], insertion=RSK.rules.EG)
[[[1, 2, 3], [2, 3], [3]], [[1, 2, 6], [3, 5], [4]]]

Some more examples:

sage: a = [2, 1, 2, 3, 2]
sage: pq = RSK(a, insertion=RSK.rules.EG); pq
[[[1, 2, 3], [2, 3]], [[1, 3, 4], [2, 5]]]
sage: RSK(RSK_inverse(*pq, insertion=RSK.rules.EG, output='matrix'),
....: insertion=RSK.rules.EG)
[[[1, 2, 3], [2, 3]], [[1, 3, 4], [2, 5]]]
sage: RSK_inverse(*pq, insertion=RSK.rules.EG)
[[1, 2, 3, 4, 5], [2, 1, 2, 3, 2]]

The RSK algorithm (RSK()) built using the Edelman-Greene insertion rule RuleEG is a bijection from reduced
words of permutations/elements of a type 𝐴 Coxeter group to pairs consisting of an increasing tableau and a
standard tableau of the same shape (see [EG1987] Theorem 6.25). The inverse of this bijection is obtained using
RSK_inverse(). If the optional parameter output = 'permutation' is set in RSK_inverse(), then the
function returns not the reduced word itself but the permutation (of smallest possible size) whose reduced word
it is (although the order of the letters is reverse to the usual Sage convention):

sage: w = RSK_inverse(*pq, insertion=RSK.rules.EG, output='permutation'); w
[4, 3, 1, 2]
sage: list(reversed(a)) in w.reduced_words()
True

insertion(j, r)
Insert the letter j from the second row of the biword into the row 𝑟 using Edelman-Greene insertion, if
there is bumping to be done.

The row 𝑟 is modified in place if bumping occurs. The bumped-out entry, if it exists, is returned.

EXAMPLES:

sage: from sage.combinat.rsk import RuleEG
sage: qr, r = [1,2,3,4,5], [3,3,2,4,8]
sage: j = RuleEG().insertion(9, r)
sage: j is None
True
sage: qr, r = [1,2,3,4,5], [2,3,4,5,8]
sage: j = RuleEG().insertion(3, r); r
[2, 3, 4, 5, 8]
sage: j
4
sage: qr, r = [1,2,3,4,5], [2,3,5,5,8]
sage: j = RuleEG().insertion(3, r); r
[2, 3, 3, 5, 8]
sage: j
5

reverse_insertion(x, row)
Reverse bump the row row of the current insertion tableau with the number x.

The row row is modified in place. The bumped-out entry is returned.

EXAMPLES:

2682 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.rsk import RuleEG
sage: r = [1,1,1,2,3,3]
sage: x = RuleEG().reverse_insertion(3, r); r
[1, 1, 1, 2, 3, 3]
sage: x
2

class sage.combinat.rsk.RuleHecke
Bases: sage.combinat.rsk.Rule

Rule for Hecke insertion.

The Hecke RSK algorithm is similar to the classical RSK algorithm, but is defined using the Hecke insertion
introduced in in [BKSTY06] (but using rows instead of columns). It is not clear in what generality it works; thus,
following [BKSTY06], we shall assume that our biword 𝑝 has top row (1, 2, . . . , 𝑛) (or, at least, has its top row
strictly increasing).

The Hecke RSK algorithm returns a pair of an increasing tableau and a set-valued standard
tableau. If 𝑝 = ((𝑗0, 𝑘0), (𝑗1, 𝑘1), . . . , (𝑗ℓ−1, 𝑘ℓ−1)), then the algorithm recursively constructs pairs
(𝑃0, 𝑄0), (𝑃1, 𝑄1), . . . , (𝑃ℓ, 𝑄ℓ) of tableaux. The construction of 𝑃𝑡+1 and 𝑄𝑡+1 from 𝑃𝑡, 𝑄𝑡, 𝑗𝑡 and 𝑘𝑡
proceeds as follows: Set 𝑖 = 𝑗𝑡, 𝑥 = 𝑘𝑡, 𝑃 = 𝑃𝑡 and 𝑄 = 𝑄𝑡. We are going to insert 𝑥 into the increasing
tableau 𝑃 and update the set-valued “recording tableau” 𝑄 accordingly. As in the classical RSK algorithm, we
first insert 𝑥 into row 1 of 𝑃 , then into row 2 of the resulting tableau, and so on, until the construction terminates.
The details are different: Suppose we are inserting 𝑥 into row 𝑅 of 𝑃 . If (Case 1) there exists an entry 𝑦 in row
𝑅 such that 𝑥 < 𝑦, then let 𝑦 be the minimal such entry. We replace this entry 𝑦 with 𝑥 if the result is still an
increasing tableau; in either subcase, we then continue recursively, inserting 𝑦 into the next row of 𝑃 . If, on the
other hand, (Case 2) no such 𝑦 exists, then we append 𝑥 to the end of 𝑅 if the result is an increasing tableau
(Subcase 2.1), and otherwise (Subcase 2.2) do nothing. Furthermore, in Subcase 2.1, we add the box that we
have just filled with 𝑥 in 𝑃 to the shape of 𝑄, and fill it with the one-element set {𝑖}. In Subcase 2.2, we find
the bottommost box of the column containing the rightmost box of row 𝑅, and add 𝑖 to the entry of 𝑄 in this
box (this entry is a set, since 𝑄 is set-valued). In either subcase, we terminate the recursion, and set 𝑃𝑡+1 = 𝑃
and 𝑄𝑡+1 = 𝑄.

Notice that set-valued tableaux are encoded as tableaux whose entries are tuples of positive integers; each such
tuple is strictly increasing and encodes a set (namely, the set of its entries).

EXAMPLES:

As an example of Hecke insertion, we reproduce Example 2.1 in arXiv 0801.1319v2:

sage: w = [5, 4, 1, 3, 4, 2, 5, 1, 2, 1, 4, 2, 4]
sage: P,Q = RSK(w, insertion=RSK.rules.Hecke); [P,Q]
[[[1, 2, 4, 5], [2, 4, 5], [3, 5], [4], [5]],
[[(1,), (4,), (5,), (7,)],
[(2,), (9,), (11, 13)],
[(3,), (12,)],
[(6,)],
[(8, 10)]]]

sage: wp = RSK_inverse(P, Q, insertion=RSK.rules.Hecke,
....: output='list'); wp
[5, 4, 1, 3, 4, 2, 5, 1, 2, 1, 4, 2, 4]
sage: wp == w
True

backward_rule(p, q, output)
Return the generalized permutation obtained by applying reverse Hecke insertion to a pair of tableaux (p,
q).

5.1. Comprehensive Module List 2683

https://arxiv.org/abs/0801.1319v2

Combinatorics, Release 9.7

INPUT:

• p, q – two tableaux of the same shape

• output – (default: 'array') if q is semi-standard:

• 'array' – as a two-line array (i.e. generalized permutation or biword)

and if q is standard set-valued, we can have the output:

• 'word' – as a word

• 'list' – as a list

EXAMPLES:

sage: from sage.combinat.rsk import RuleHecke
sage: t1 = Tableau([[1, 4], [2], [3]])
sage: t2 = Tableau([[(1, 2), (4,)], [(3,)], [(5,)]])
sage: RuleHecke().backward_rule(t1, t2, 'array')
[[1, 2, 3, 4, 5], [3, 3, 2, 4, 1]]
sage: t1 = Tableau([[1, 4], [2, 3]])
sage: t2 = Tableau([[(1, 2), (4,)], [(3,)], [(5,)]])
sage: RuleHecke().backward_rule(t1, t2, 'array')
Traceback (most recent call last):
...
ValueError: p(=[[1, 4], [2, 3]]) and
q(=[[(1, 2), (4,)], [(3,)], [(5,)]]) must have the same shape

forward_rule(obj1, obj2, check_standard=False)
Return a pair of tableaux obtained by applying Hecke insertion to the generalized permutation [obj1,
obj2].

INPUT:

• obj1, obj2 – can be one of the following ways to represent a generalized permutation (or, equiva-
lently, biword):

– two lists obj1 and obj2 of equal length, to be interpreted as the top row and the bottom row of
the biword

– a word obj1 in an ordered alphabet, to be interpreted as the bottom row of the biword (in this
case, obj2 is None; the top row of the biword is understood to be (1, 2, . . . , 𝑛) by default)

• check_standard – (default: False) check if either of the resulting tableaux is a standard tableau,
and if so, typecast it as such

EXAMPLES:

sage: from sage.combinat.rsk import RuleHecke
sage: p, q = RuleHecke().forward_rule([3,3,2,4,1], None);p
[[1, 4], [2], [3]]
sage: q
[[(1, 2), (4,)], [(3,)], [(5,)]]
sage: isinstance(p, SemistandardTableau)
True
sage: isinstance(q, Tableau)
True

2684 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

insertion(j, ir, r, p)
Insert the letter j from the second row of the biword into the row 𝑟 of the increasing tableau 𝑝 using Hecke
insertion, provided that 𝑟 is the 𝑖𝑟-th row of 𝑝, and provided that there is bumping to be done.

The row 𝑟 is modified in place if bumping occurs. The bumped-out entry, if it exists, is returned.

EXAMPLES:

sage: from sage.combinat.rsk import RuleHecke
sage: from bisect import bisect_right
sage: p, q, r = [], [], [3,3,8,8,8,9]
sage: j, ir = 8, 1
sage: j1 = RuleHecke().insertion(j, ir, r, p)
sage: j1 == r[bisect_right(r, j)]
True

reverse_insertion(i, x, row, p)
Reverse bump the row row of the current insertion tableau p with the number x, provided that row is the
𝑖-th row of 𝑝.

The row row is modified in place. The bumped-out entry is returned.

EXAMPLES:

sage: from sage.combinat.rsk import RuleHecke
sage: from bisect import bisect_left
sage: r = [2,3,3,4,8,9]
sage: x, i, p = 9, 1, [1, 2]
sage: x1 = RuleHecke().reverse_insertion(i, x, r, p)
sage: x1 == r[bisect_left(r,x) - 1]
True

class sage.combinat.rsk.RuleRSK
Bases: sage.combinat.rsk.Rule

Rule for the classical Robinson-Schensted-Knuth insertion.

See RSK() for the definition of this operation.

EXAMPLES:

sage: RSK([1, 2, 2, 2], [2, 1, 1, 2], insertion=RSK.rules.RSK)
[[[1, 1, 2], [2]], [[1, 2, 2], [2]]]
sage: p = Tableau([[1,2,2],[2]]); q = Tableau([[1,3,3],[2]])
sage: RSK_inverse(p, q, insertion=RSK.rules.RSK)
[[1, 2, 3, 3], [2, 1, 2, 2]]

insertion(j, r)
Insert the letter j from the second row of the biword into the row 𝑟 using classical Schensted insertion, if
there is bumping to be done.

The row 𝑟 is modified in place if bumping occurs. The bumped-out entry, if it exists, is returned.

EXAMPLES:

sage: from sage.combinat.rsk import RuleRSK
sage: qr, r = [1,2,3,4,5], [3,3,2,4,8]
sage: j = RuleRSK().insertion(9, r)

(continues on next page)

5.1. Comprehensive Module List 2685

Combinatorics, Release 9.7

(continued from previous page)

sage: j is None
True
sage: qr, r = [1,2,3,4,5], [3,3,2,4,8]
sage: j = RuleRSK().insertion(3, r)
sage: j
4

reverse_insertion(x, row)
Reverse bump the row row of the current insertion tableau with the number x.

The row row is modified in place. The bumped-out entry is returned.

EXAMPLES:

sage: from sage.combinat.rsk import RuleRSK
sage: r = [2,3,3,4,8]
sage: x = RuleRSK().reverse_insertion(4, r); r
[2, 3, 4, 4, 8]
sage: x
3

class sage.combinat.rsk.RuleStar
Bases: sage.combinat.rsk.Rule

Rule for ⋆-insertion.

The ⋆-insertion is similar to the classical RSK algorithm and is defined in [MPPS2020]. The bottom row of the
increasing Hecke biword is a word in the 0-Hecke monoid that is fully commutative. When inserting a letter 𝑥
into a row 𝑅, there are three cases:

• Case 1: If 𝑅 is empty or 𝑥 > max(𝑅), append 𝑥 to row 𝑅 and terminate.

• Case 2: Otherwise if 𝑥 is not in 𝑅, locate the smallest 𝑦 in 𝑅 with 𝑦 > 𝑥. Bump 𝑦 with 𝑥 and insert 𝑦 into
the next row.

• Case 3: Otherwise, if 𝑥 is in 𝑅, locate the smallest 𝑦 in 𝑅 with 𝑦 ≤ 𝑥 and interval [𝑦, 𝑥] contained in 𝑅.
Row 𝑅 remains unchanged and 𝑦 is to be inserted into the next row.

The ⋆-insertion returns a pair consisting a conjugate of a semistandard tableau and a semistandard tableau. It is
a bijection from the collection of all increasing Hecke biwords whose bottom row is a fully commutative word
to pairs (P, Q) of tableaux of the same shape such that P is conjugate semistandard, Q is semistandard and the
row reading word of P is fully commutative [MPPS2020].

EXAMPLES:

As an example of ⋆-insertion, we reproduce Example 28 in [MPPS2020]:

sage: from sage.combinat.rsk import RuleStar
sage: p,q = RuleStar().forward_rule([1,1,2,2,4,4], [1,3,2,4,2,4])
sage: ascii_art(p, q)
1 2 4 1 1 2
1 4 2 4
3 4

sage: line1,line2 = RuleStar().backward_rule(p, q)
sage: line1,line2
([1, 1, 2, 2, 4, 4], [1, 3, 2, 4, 2, 4])
sage: RSK_inverse(p, q, output='DecreasingHeckeFactorization', insertion='Star')

(continues on next page)

2686 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(4, 2)()(4, 2)(3, 1)

sage: from sage.combinat.crystals.fully_commutative_stable_grothendieck import␣
→˓DecreasingHeckeFactorization
sage: h = DecreasingHeckeFactorization([[4, 2], [], [4, 2], [3, 1]])
sage: RSK_inverse(*RSK(h,insertion='Star'),insertion='Star',
....: output='DecreasingHeckeFactorization')
(4, 2)()(4, 2)(3, 1)
sage: p,q = RSK(h, insertion='Star')
sage: ascii_art(p, q)
1 2 4 1 1 2
1 4 2 4
3 4
sage: RSK_inverse(p, q, insertion='Star')
[[1, 1, 2, 2, 4, 4], [1, 3, 2, 4, 2, 4]]
sage: f = RSK_inverse(p, q, output='DecreasingHeckeFactorization', insertion='Star')
sage: f == h
True

Warning: When output is set to 'DecreasingHeckeFactorization', the inverse of ⋆-insertion of
(𝑃,𝑄) returns a decreasing factorization whose number of factors is the maximum entry of 𝑄:

sage: from sage.combinat.crystals.fully_commutative_stable_grothendieck import␣
→˓DecreasingHeckeFactorization
sage: h1 = DecreasingHeckeFactorization([[],[3,1],[1]]); h1
()(3, 1)(1)
sage: P,Q = RSK(h1, insertion='Star')
sage: ascii_art(P, Q)

1 3 1 2
1 2

sage: h2 = RSK_inverse(P, Q, insertion='Star',
....: output='DecreasingHeckeFactorization'); h2
(3, 1)(1)

backward_rule(p, q, output='array')
Return the increasing Hecke biword obtained by applying reverse ⋆-insertion to a pair of tableaux (p, q).

INPUT:

• p, q – two tableaux of the same shape, where p is the conjugate of a semistandard tableau, whose
reading word is fully commutative and q is a semistandard tableau.

• output – (default: 'array') if q is semi-standard:

– 'array' – as a two-line array (i.e. generalized permutation or biword) that is an increasing Hecke
biword

– 'DecreasingHeckeFactorization' – as a decreasing factorization in the 0-Hecke monoid

and if q is standard:

– 'word' – as a (possibly non-reduced) word in the 0-Hecke monoid

5.1. Comprehensive Module List 2687

Combinatorics, Release 9.7

Warning: When output is ‘DecreasingHeckeFactorization’, the number of factors in the output is the
largest number in obj1.

EXAMPLES:

sage: from sage.combinat.rsk import RuleStar
sage: p,q = RuleStar().forward_rule([1,1,2,2,4,4], [1,3,2,4,2,4])
sage: ascii_art(p, q)
1 2 4 1 1 2
1 4 2 4
3 4

sage: line1,line2 = RuleStar().backward_rule(p, q); line1,line2
([1, 1, 2, 2, 4, 4], [1, 3, 2, 4, 2, 4])
sage: RuleStar().backward_rule(p, q, output = 'DecreasingHeckeFactorization')
(4, 2)()(4, 2)(3, 1)

forward_rule(obj1, obj2=None, check_braid=True)
Return a pair of tableaux obtained by applying forward insertion to the increasing Hecke biword [obj1,
obj2].

INPUT:

• obj1, obj2 – can be one of the following ways to represent a biword (or, equivalently, an increasing
0-Hecke factorization) that is fully commutative:

– two lists obj1 and obj2 of equal length, to be interpreted as the top row and the bottom row of
the biword.

– a word obj1 in an ordered alphabet, to be interpreted as the bottom row of the biword (in this
case, obj2 is None; the top row of the biword is understood to be (1, 2, . . . , 𝑛) by default).

– a DecreasingHeckeFactorization obj1, the whose increasing Hecke biword will be interpreted as
the bottom row; the top row is understood to be the indices of the factors for each letter in this
biword.

• check_braid – (default: True) indicator to validate that input is associated to a fully commutative
word in the 0-Hecke monoid, validation is performed if set to True; otherwise, this validation is ig-
nored.

EXAMPLES:

sage: from sage.combinat.rsk import RuleStar
sage: p,q = RuleStar().forward_rule([1,1,2,3,3], [2,3,3,1,3]); p,q
([[1, 3], [2, 3], [2]], [[1, 1], [2, 3], [3]])
sage: p,q = RuleStar().forward_rule([2,3,3,1,3]); p,q
([[1, 3], [2, 3], [2]], [[1, 2], [3, 5], [4]])
sage: p,q = RSK([1,1,2,3,3], [2,3,3,1,3], insertion=RSK.rules.Star); p,q
([[1, 3], [2, 3], [2]], [[1, 1], [2, 3], [3]])

sage: from sage.combinat.crystals.fully_commutative_stable_grothendieck import␣
→˓DecreasingHeckeFactorization
sage: h = DecreasingHeckeFactorization([[3, 1], [3], [3, 2]])
sage: p,q = RSK(h, insertion=RSK.rules.Star); p,q
([[1, 3], [2, 3], [2]], [[1, 1], [2, 3], [3]])

insertion(b, r)
Insert the letter b from the second row of the biword into the row r using ⋆-insertion defined in [MPPS2020].

2688 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The row 𝑟 is modified in place if bumping occurs and 𝑏 is not in row 𝑟. The bumped-out entry, if it exists,
is returned.

EXAMPLES:

sage: from sage.combinat.rsk import RuleStar
sage: RuleStar().insertion(3, [1,2,4,5])
4
sage: RuleStar().insertion(3, [1,2,3,5])
1
sage: RuleStar().insertion(6, [1,2,3,5]) is None
True

reverse_insertion(x, r)
Reverse bump the row r of the current insertion tableau p with number x, provided that r is the i-th row
of p.

The row r is modified in place. The bumped-out entry is returned.

EXAMPLES:

sage: from sage.combinat.rsk import RuleStar
sage: RuleStar().reverse_insertion(4, [1,2,3,5])
3
sage: RuleStar().reverse_insertion(1, [1,2,3,5])
3
sage: RuleStar().reverse_insertion(5, [1,2,3,5])
5

class sage.combinat.rsk.RuleSuperRSK
Bases: sage.combinat.rsk.RuleRSK

Rule for super RSK insertion.

Super RSK is based on 𝜖-insertion, a combination of row and column classical RSK insertion.

Super RSK insertion differs from the classical RSK insertion in the following ways:

• The input (in terms of biwords) is no longer an arbitrary biword, but rather a restricted super biword (i.e.,
a pair of two lists [𝑎1, 𝑎2, . . . , 𝑎𝑛] and [𝑏1, 𝑏2, . . . , 𝑏𝑛] that contains entries with even and odd parity and
pairs with mixed parity entries do not repeat).

• The output still consists of two tableaux (𝑃,𝑄) of equal shapes, but rather than both of them being semis-
tandard, now they are semistandard super tableaux.

• The main difference is in the way bumping works. Instead of having only row bumping super RSK uses
𝜖-insertion, a combination of classical RSK bumping along the rows and a dual RSK like bumping (i.e.
when a number 𝑘𝑖 is inserted into the 𝑖-th row of 𝑃 , it bumps out the first integer greater or equal to 𝑘𝑖 in
the column) along the column.

EXAMPLES:

sage: RSK([1], [1], insertion='superRSK')
[[[1]], [[1]]]
sage: RSK([1, 2], [1, 3], insertion='superRSK')
[[[1, 3]], [[1, 2]]]
sage: RSK([1, 2, 3], [1, 3, "3p"], insertion='superRSK')
[[[1, 3], [3']], [[1, 2], [3]]]
sage: RSK([1, 3, "3p", "2p"], insertion='superRSK')

(continues on next page)

5.1. Comprehensive Module List 2689

Combinatorics, Release 9.7

(continued from previous page)

[[[1, 3', 3], [2']], [[1', 1, 2'], [2]]]
sage: RSK(["1p", "2p", 2, 2, "3p", "3p", 3, 3],
....: ["1p", 1, "2p", 2, "3p", "3p", "3p", 3], insertion='superRSK')
[[[1', 2, 3', 3], [1, 3'], [2'], [3']], [[1', 2, 3', 3], [2', 3'], [2], [3]]]
sage: P = SemistandardSuperTableau([[1, '3p', 3], ['2p']])
sage: Q = SemistandardSuperTableau([['1p', 1, '2p'], [2]])
sage: RSK_inverse(P, Q, insertion=RSK.rules.superRSK)
[[1', 1, 2', 2], [1, 3, 3', 2']]

We apply super RSK on Example 5.1 in [Muth2019]:

sage: P,Q = RSK(["1p", "2p", 2, 2, "3p", "3p", 3, 3],
....: ["3p", 1, 2, 3, "3p", "3p", "2p", "1p"], insertion='superRSK')
sage: (P, Q)
([[1', 2', 3', 3], [1, 2, 3'], [3']], [[1', 2, 2, 3'], [2', 3, 3], [3']])
sage: ascii_art((P, Q))
(1' 2' 3' 3 1' 2 2 3')
(1 2 3' 2' 3 3)
(3' , 3')
sage: RSK_inverse(P, Q, insertion=RSK.rules.superRSK)
[[1', 2', 2, 2, 3', 3', 3, 3], [3', 1, 2, 3, 3', 3', 2', 1']]

Example 6.1 in [Muth2019]:

sage: P,Q = RSK(["1p", "2p", 2, 2, "3p", "3p", 3, 3],
....: ["3p", 1, 2, 3, "3p", "3p", "2p", "1p"], insertion='superRSK')
sage: ascii_art((P, Q))
(1' 2' 3' 3 1' 2 2 3')
(1 2 3' 2' 3 3)
(3' , 3')
sage: RSK_inverse(P, Q, insertion=RSK.rules.superRSK)
[[1', 2', 2, 2, 3', 3', 3, 3], [3', 1, 2, 3, 3', 3', 2', 1']]

sage: P,Q = RSK(["1p", 1, "2p", 2, "3p", "3p", "3p", 3],
....: [3, "2p", 3, 2, "3p", "3p", "1p", 2], insertion='superRSK')
sage: ascii_art((P, Q))
(1' 2 2 3' 1' 2' 3' 3)
(2' 3 3 1 2 3')
(3' , 3')
sage: RSK_inverse(P, Q, insertion=RSK.rules.superRSK)
[[1', 1, 2', 2, 3', 3', 3', 3], [3, 2', 3, 2, 3', 3', 1', 2]]

Let us now call the inverse correspondence:

sage: P, Q = RSK([1, 2, 2, 2], [2, 1, 2, 3],
....: insertion=RSK.rules.superRSK)
sage: RSK_inverse(P, Q, insertion=RSK.rules.superRSK)
[[1, 2, 2, 2], [2, 1, 2, 3]]

When applied to two tableaux with only even parity elements, reverse super RSK insertion behaves identically
to the usual reversel RSK insertion:

2690 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: t1 = Tableau([[1, 2, 5], [3], [4]])
sage: t2 = Tableau([[1, 2, 3], [4], [5]])
sage: RSK_inverse(t1, t2, insertion=RSK.rules.RSK)
[[1, 2, 3, 4, 5], [1, 4, 5, 3, 2]]
sage: t1 = SemistandardSuperTableau([[1, 2, 5], [3], [4]])
sage: t2 = SemistandardSuperTableau([[1, 2, 3], [4], [5]])
sage: RSK_inverse(t1, t2, insertion=RSK.rules.superRSK)
[[1, 2, 3, 4, 5], [1, 4, 5, 3, 2]]

backward_rule(p, q, output='array')
Return the restricted super biword obtained by applying reverse super RSK insertion to a pair of tableaux
(p, q).

INPUT:

• p, q – two tableaux of the same shape

• output – (default: 'array') if q is row-strict:

– 'array' – as a two-line array (i.e. restricted super biword)

and if q is standard, we can have the output:

– 'word' – as a word

EXAMPLES:

sage: from sage.combinat.rsk import RuleSuperRSK
sage: t1 = SemistandardSuperTableau([['1p', '3p', '4p'], [2], [3]])
sage: t2 = SemistandardSuperTableau([[1, 2, 4], [3], [5]])
sage: RuleSuperRSK().backward_rule(t1, t2, 'array')
[[1, 2, 3, 4, 5], [4', 3, 3', 2, 1']]
sage: t1 = SemistandardSuperTableau([[1, 3], ['3p']])
sage: t2 = SemistandardSuperTableau([[1, 2], [3]])
sage: RuleSuperRSK().backward_rule(t1, t2, 'array')
[[1, 2, 3], [1, 3, 3']]

forward_rule(obj1, obj2, check_standard=False, check=True)
Return a pair of tableaux obtained by applying forward insertion to the restricted super biword [obj1,
obj2].

INPUT:

• obj1, obj2 – can be one of the following ways to represent a generalized permutation (or, equiva-
lently, biword):

– two lists obj1 and obj2 of equal length, to be interpreted as the top row and the bottom row of
the biword

– a word obj1 in an ordered alphabet, to be interpreted as the bottom row of the biword (in this
case, obj2 is None; the top row of the biword is understood to be (1, 2, . . . , 𝑛) by default)

– any object obj1 which has a method _rsk_iter(), as long as this method returns an iterator
yielding pairs of numbers, which then are interperted as top entries and bottom entries in the
biword (in this case, obj2 is None)

• check_standard – (default: False) check if either of the resulting tableaux is a standard super
tableau, and if so, typecast it as such

• check – (default: True) whether to check that obj1 and obj2 actually define a valid restricted super
biword

5.1. Comprehensive Module List 2691

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.rsk import RuleSuperRSK
sage: p, q = RuleSuperRSK().forward_rule([1, 2], [1, 3]); p
[[1, 3]]
sage: q
[[1, 2]]
sage: isinstance(p, SemistandardSuperTableau)
True
sage: isinstance(q, SemistandardSuperTableau)
True

insertion(j, r, epsilon=0)
Insert the letter j from the second row of the biword into the row r using dual RSK insertion or classical
Schensted insertion depending on the value of epsilon, if there is bumping to be done.

The row 𝑟 is modified in place if bumping occurs. The bumped-out entry, if it exists, is returned.

EXAMPLES:

sage: from sage.combinat.rsk import RuleSuperRSK
sage: from bisect import bisect_left, bisect_right
sage: r = [1, 3, 3, 3, 4]
sage: j = 3
sage: j, y_pos = RuleSuperRSK().insertion(j, r, epsilon=0); r
[1, 3, 3, 3, 3]
sage: j
4
sage: y_pos
4
sage: r = [1, 3, 3, 3, 4]
sage: j = 3
sage: j, y_pos = RuleSuperRSK().insertion(j, r, epsilon=1); r
[1, 3, 3, 3, 4]
sage: j
3
sage: y_pos
1

reverse_insertion(x, row, epsilon=0)
Reverse bump the row row of the current insertion tableau with the number x using dual RSK insertion or
classical Schensted insertion depending on the value of 𝑒𝑝𝑠𝑖𝑙𝑜𝑛.

The row row is modified in place. The bumped-out entry is returned along with the bumped position.

EXAMPLES:

sage: from sage.combinat.rsk import RuleSuperRSK
sage: from bisect import bisect_left, bisect_right
sage: r = [1, 3, 3, 3, 4]
sage: j = 2
sage: j, y = RuleSuperRSK().reverse_insertion(j, r, epsilon=0); r
[2, 3, 3, 3, 4]
sage: j
1
sage: y

(continues on next page)

2692 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

0
sage: r = [1, 3, 3, 3, 4]
sage: j = 3
sage: j, y = RuleSuperRSK().reverse_insertion(j, r, epsilon=0); r
[3, 3, 3, 3, 4]
sage: j
1
sage: y
0
sage: r = [1, 3, 3, 3, 4]
sage: j = (3)
sage: j, y = RuleSuperRSK().reverse_insertion(j, r, epsilon=1); r
[1, 3, 3, 3, 4]
sage: j
3
sage: y
3

to_pairs(obj1=None, obj2=None, check=True)
Given a valid input for the super RSK algorithm, such as two 𝑛-tuples obj1 = [𝑎1, 𝑎2, . . . , 𝑎𝑛] and obj2
= [𝑏1, 𝑏2, . . . , 𝑏𝑛] forming a restricted super biword (i.e., entries with even and odd parity and no repetition
of corresponding pairs with mixed parity entries) return the array [(𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎𝑛, 𝑏𝑛)].

INPUT:

• obj1, obj2 – anything representing a restricted super biword (see the doc of forward_rule() for
the encodings accepted)

• check – (default: True) whether to check that obj1 and obj2 actually define a valid restricted super
biword

EXAMPLES:

sage: from sage.combinat.rsk import RuleSuperRSK
sage: list(RuleSuperRSK().to_pairs([2, '1p', 1],[1, 1, '1p']))
[(2, 1), (1', 1), (1, 1')]
sage: list(RuleSuperRSK().to_pairs([1, '1p', '2p']))
[(1', 1), (1, 1'), (2', 2')]
sage: list(RuleSuperRSK().to_pairs([1, 1], ['1p', '1p']))
Traceback (most recent call last):
...
ValueError: invalid restricted superbiword

sage.combinat.rsk.robinson_schensted_knuth(obj1=None, obj2=None, insertion=<class
'sage.combinat.rsk.RuleRSK'>, check_standard=False,
**options)

Perform the Robinson-Schensted-Knuth (RSK) correspondence.

The Robinson-Schensted-Knuth (RSK) correspondence (also known as the RSK algorithm) is most naturally
stated as a bijection between generalized permutations (also known as two-line arrays, biwords, . . .) and pairs of
semi-standard Young tableaux (𝑃,𝑄) of identical shape. The tableau 𝑃 is known as the insertion tableau, and
𝑄 is known as the recording tableau.

The basic operation is known as row insertion 𝑃 ← 𝑘 (where 𝑃 is a given semi-standard Young tableau, and 𝑘
is an integer). Row insertion is a recursive algorithm which starts by setting 𝑘0 = 𝑘, and in its 𝑖-th step inserts
the number 𝑘𝑖 into the 𝑖-th row of 𝑃 (we start counting the rows at 0) by replacing the first integer greater than

5.1. Comprehensive Module List 2693

Combinatorics, Release 9.7

𝑘𝑖 in the row by 𝑘𝑖 and defines 𝑘𝑖+1 as the integer that has been replaced. If no integer greater than 𝑘𝑖 exists in
the 𝑖-th row, then 𝑘𝑖 is simply appended to the row and the algorithm terminates at this point.

A generalized permutation (or biword) is a list ((𝑗0, 𝑘0), (𝑗1, 𝑘1), . . . , (𝑗ℓ−1, 𝑘ℓ−1)) of pairs such that the letters
𝑗0, 𝑗1, . . . , 𝑗ℓ−1 are weakly increasing (that is, 𝑗0 ≤ 𝑗1 ≤ · · · ≤ 𝑗ℓ−1), whereas the letters 𝑘𝑖 satisfy 𝑘𝑖 ≤ 𝑘𝑖+1

whenever 𝑗𝑖 = 𝑗𝑖+1. The ℓ-tuple (𝑗0, 𝑗1, . . . , 𝑗ℓ−1) is called the top line of this generalized permutation, whereas
the ℓ-tuple (𝑘0, 𝑘1, . . . , 𝑘ℓ−1) is called its bottom line.

Now the RSK algorithm, applied to a generalized permutation 𝑝 = ((𝑗0, 𝑘0), (𝑗1, 𝑘1), . . . , (𝑗ℓ−1, 𝑘ℓ−1)) (en-
coded as a lexicographically sorted list of pairs) starts by initializing two semi-standard tableaux 𝑃0 and 𝑄0 as
empty tableaux. For each nonnegative integer 𝑡 starting at 0, take the pair (𝑗𝑡, 𝑘𝑡) from 𝑝 and set𝑃𝑡+1 = 𝑃𝑡 ← 𝑘𝑡,
and define 𝑄𝑡+1 by adding a new box filled with 𝑗𝑡 to the tableau 𝑄𝑡 at the same location the row insertion on
𝑃𝑡 ended (that is to say, adding a new box with entry 𝑗𝑡 such that 𝑃𝑡+1 and 𝑄𝑡+1 have the same shape). The
iterative process stops when 𝑡 reaches the size of 𝑝, and the pair (𝑃𝑡, 𝑄𝑡) at this point is the image of 𝑝 under the
Robinson-Schensted-Knuth correspondence.

This correspondence has been introduced in [Knu1970], where it has been referred to as “Construction A”.

For more information, see Chapter 7 in [Sta-EC2].

We also note that integer matrices are in bijection with generalized permutations. Furthermore, we can convert
any word 𝑤 (and, in particular, any permutation) to a generalized permutation by considering the top row to be
(1, 2, . . . , 𝑛) where 𝑛 is the length of 𝑤.

The optional argument insertion allows to specify an alternative insertion procedure to be used instead of the
standard Robinson-Schensted-Knuth insertion.

INPUT:

• obj1, obj2 – can be one of the following:

– a word in an ordered alphabet (in this case, obj1 is said word, and obj2 is None)

– an integer matrix

– two lists of equal length representing a generalized permutation (namely, the lists (𝑗0, 𝑗1, . . . , 𝑗ℓ−1)
and (𝑘0, 𝑘1, . . . , 𝑘ℓ−1) represent the generalized permutation ((𝑗0, 𝑘0), (𝑗1, 𝑘1), . . . , (𝑗ℓ−1, 𝑘ℓ−1)))

– any object which has a method _rsk_iter() which returns an iterator over the object represented as
generalized permutation or a pair of lists (in this case, obj1 is said object, and obj2 is None).

• insertion – (default: RSK.rules.RSK) the following types of insertion are currently supported:

– RSK.rules.RSK (or 'RSK') – Robinson-Schensted-Knuth insertion (RuleRSK)

– RSK.rules.EG (or 'EG') – Edelman-Greene insertion (only for reduced words of permuta-
tions/elements of a type 𝐴 Coxeter group) (RuleEG)

– RSK.rules.Hecke (or 'hecke') – Hecke insertion (only guaranteed for generalized permutations
whose top row is strictly increasing) (RuleHecke)

– RSK.rules.dualRSK (or 'dualRSK') – Dual RSK insertion (only for strict biwords) (RuleDualRSK)

– RSK.rules.coRSK (or 'coRSK') – CoRSK insertion (only for strict cobiwords) (RuleCoRSK)

– RSK.rules.superRSK (or 'super') – Super RSK insertion (only for restricted super biwords)
(RuleSuperRSK)

– RSK.rules.Star (or 'Star') – ⋆-insertion (only for fully commutative words in the 0-Hecke
monoid) (RuleStar)

• check_standard – (default: False) check if either of the resulting tableaux is a standard tableau, and if
so, typecast it as such

2694 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

For precise information about constraints on the input and output, as well as the definition of the algorithm (if it
is not standard RSK), see the particular Rule class.

EXAMPLES:

If we only input one row, it is understood that the top row should be (1, 2, . . . , 𝑛):

sage: RSK([3,3,2,4,1])
[[[1, 3, 4], [2], [3]], [[1, 2, 4], [3], [5]]]
sage: RSK(Word([3,3,2,4,1]))
[[[1, 3, 4], [2], [3]], [[1, 2, 4], [3], [5]]]
sage: RSK(Word([2,3,3,2,1,3,2,3]))
[[[1, 2, 2, 3, 3], [2, 3], [3]], [[1, 2, 3, 6, 8], [4, 7], [5]]]

We can provide a generalized permutation:

sage: RSK([1, 2, 2, 2], [2, 1, 1, 2])
[[[1, 1, 2], [2]], [[1, 2, 2], [2]]]
sage: RSK(Word([1,1,3,4,4]), [1,4,2,1,3])
[[[1, 1, 3], [2], [4]], [[1, 1, 4], [3], [4]]]
sage: RSK([1,3,3,4,4], Word([6,2,2,1,7]))
[[[1, 2, 7], [2], [6]], [[1, 3, 4], [3], [4]]]

We can provide a matrix:

sage: RSK(matrix([[0,1],[2,1]]))
[[[1, 1, 2], [2]], [[1, 2, 2], [2]]]

We can also provide something looking like a matrix:

sage: RSK([[0,1],[2,1]])
[[[1, 1, 2], [2]], [[1, 2, 2], [2]]]

There is also RSK_inverse() which performs the inverse of the bijection on a pair of semistandard tableaux.
We note that the inverse function takes 2 separate tableaux as inputs, so to compose with RSK(), we need to use
the python * on the output:

sage: RSK_inverse(*RSK([1, 2, 2, 2], [2, 1, 1, 2]))
[[1, 2, 2, 2], [2, 1, 1, 2]]
sage: P,Q = RSK([1, 2, 2, 2], [2, 1, 1, 2])
sage: RSK_inverse(P, Q)
[[1, 2, 2, 2], [2, 1, 1, 2]]

sage.combinat.rsk.robinson_schensted_knuth_inverse(p, q, output='array', insertion=<class
'sage.combinat.rsk.RuleRSK'>)

Return the generalized permutation corresponding to the pair of tableaux (𝑝, 𝑞) under the inverse of the Robinson-
Schensted-Knuth correspondence.

For more information on the bijection, see RSK().

INPUT:

• p, q – two semi-standard tableaux of the same shape, or (in the case when Hecke insertion is used) an
increasing tableau and a set-valued tableau of the same shape (see the note below for the format of the
set-valued tableau)

• output – (default: 'array') if q is semi-standard:

– 'array' – as a two-line array (i.e. generalized permutation or biword)

5.1. Comprehensive Module List 2695

Combinatorics, Release 9.7

– 'matrix' – as an integer matrix

and if q is standard, we can also have the output:

– 'word' – as a word

and additionally if p is standard, we can also have the output:

– 'permutation' – as a permutation

• insertion – (default: RSK.rules.RSK) the insertion algorithm used in the bijection. Currently the fol-
lowing are supported:

– RSK.rules.RSK (or 'RSK') – Robinson-Schensted-Knuth insertion (RuleRSK)

– RSK.rules.EG (or 'EG') – Edelman-Greene insertion (only for reduced words of permuta-
tions/elements of a type 𝐴 Coxeter group) (RuleEG)

– RSK.rules.Hecke (or 'hecke') – Hecke insertion (only guaranteed for generalized permutations
whose top row is strictly increasing) (RuleHecke)

– RSK.rules.dualRSK (or 'dualRSK') – Dual RSK insertion (only for strict biwords) (RuleDualRSK)

– RSK.rules.coRSK (or 'coRSK') – CoRSK insertion (only for strict cobiwords) (RuleCoRSK)

– RSK.rules.superRSK (or 'super') – Super RSK insertion (only for restricted super biwords)
(RuleSuperRSK)

– RSK.rules.Star (or 'Star') – ⋆-insertion (only for fully commutative words in the 0-Hecke
monoid) (RuleStar)

For precise information about constraints on the input and output, see the particular Rule class.

Note: In the case of Hecke insertion, the input variable q should be a set-valued tableau, encoded as a tableau
whose entries are strictly increasing tuples of positive integers. Each such tuple encodes the set of its entries.

EXAMPLES:

If both p and q are standard:

sage: t1 = Tableau([[1, 2, 5], [3], [4]])
sage: t2 = Tableau([[1, 2, 3], [4], [5]])
sage: RSK_inverse(t1, t2)
[[1, 2, 3, 4, 5], [1, 4, 5, 3, 2]]
sage: RSK_inverse(t1, t2, 'word')
word: 14532
sage: RSK_inverse(t1, t2, 'matrix')
[1 0 0 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[0 0 1 0 0]
[0 1 0 0 0]
sage: RSK_inverse(t1, t2, 'permutation')
[1, 4, 5, 3, 2]
sage: RSK_inverse(t1, t1, 'permutation')
[1, 4, 3, 2, 5]
sage: RSK_inverse(t2, t2, 'permutation')
[1, 2, 5, 4, 3]
sage: RSK_inverse(t2, t1, 'permutation')
[1, 5, 4, 2, 3]

2696 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

If the first tableau is semistandard:

sage: p = Tableau([[1,2,2],[3]]); q = Tableau([[1,2,4],[3]])
sage: ret = RSK_inverse(p, q); ret
[[1, 2, 3, 4], [1, 3, 2, 2]]
sage: RSK_inverse(p, q, 'word')
word: 1322

In general:

sage: p = Tableau([[1,2,2],[2]]); q = Tableau([[1,3,3],[2]])
sage: RSK_inverse(p, q)
[[1, 2, 3, 3], [2, 1, 2, 2]]
sage: RSK_inverse(p, q, 'matrix')
[0 1]
[1 0]
[0 2]

Using Hecke insertion:

sage: w = [5, 4, 3, 1, 4, 2, 5, 5]
sage: pq = RSK(w, insertion=RSK.rules.Hecke)
sage: RSK_inverse(*pq, insertion=RSK.rules.Hecke, output='list')
[5, 4, 3, 1, 4, 2, 5, 5]

Note: The constructor of Tableau accepts not only semistandard tableaux, but also arbitrary lists that are
fillings of a partition diagram. (And such lists are used, e.g., for the set-valued tableau q that is passed to
RSK_inverse(p, q, insertion='hecke').) The user is responsible for ensuring that the tableaux passed
to RSK_inverse are of the right types (semistandard, standard, increasing, set-valued as needed).

sage.combinat.rsk.to_matrix(t, b)
Return the integer matrix corresponding to a two-line array.

INPUT:

• t – the top row of the array

• b – the bottom row of the array

OUTPUT:

An𝑚×𝑛-matrix (where𝑚 and 𝑛 are the maximum entries in 𝑡 and 𝑏 respectively) whose (𝑖, 𝑗)-th entry, for any
𝑖 and 𝑗, is the number of all positions 𝑘 satisfying 𝑡𝑘 = 𝑖 and 𝑏𝑘 = 𝑗.

EXAMPLES:

sage: from sage.combinat.rsk import to_matrix
sage: to_matrix([1, 1, 3, 3, 4], [2, 3, 1, 1, 3])
[0 1 1]
[0 0 0]
[2 0 0]
[0 0 1]

5.1. Comprehensive Module List 2697

Combinatorics, Release 9.7

5.1.273 Schubert Polynomials

See Wikipedia article Schubert_polynomial and SymmetricFunctions.com. Schubert polynomials are representatives
of cohomology classes in flag varieties. In 𝑛 variables, they are indexed by permutations 𝑤 ∈ 𝑆𝑛. They also form a
basis for the coinvariant ring of the 𝑆𝑛 action on Z[𝑥1, 𝑥2, . . . , 𝑥𝑛].

EXAMPLES:

sage: X = SchubertPolynomialRing(ZZ)
sage: w = [1,2,5,4,3]; # a list representing an element of `S_5`
sage: X(w)
X[1, 2, 5, 4, 3]

This can be expanded in terms of polynomial variables:

sage: X(w).expand()
x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2
+ x0*x2^2 + x1*x2^2 + x0^2*x3 + x0*x1*x3 + x1^2*x3
+ x0*x2*x3 + x1*x2*x3 + x2^2*x3

We can also convert back from polynomial variables. For example, the longest permutation is a single term. In 𝑆5, this
is the element (in one line notation) 𝑤0 = 54321:

sage: w0 = [5,4,3,2,1]
sage: R.<x0, x1, x2, x3, x4> = PolynomialRing(ZZ)
sage: Sw0 = X(x0^4*x1^3*x2^2*x3); Sw0
X[5, 4, 3, 2, 1]

The polynomials also have the property that if the indexing permutation 𝑤 is multiplied by a simple transposition
𝑠𝑖 = (𝑖, 𝑖+1) such that the length of𝑤 is more than the length of𝑤𝑠𝑖, then the Schubert polynomial of the permutation
𝑤𝑠𝑖 is computed by applying the divided difference operator divided_difference() to the polynomial indexed by
𝑤. For example, applying the divided difference operator 𝜕2 to the Schubert polynomial S𝑤0

:

sage: Sw0.divided_difference(2)
X[5, 3, 4, 2, 1]

We can also check the properties listed in Wikipedia article Schubert_polynomial:

sage: X([1,2,3,4,5]) # the identity in one-line notation
X[1]
sage: X([1,3,2,4,5]).expand() # the transposition swapping 2 and 3
x0 + x1
sage: X([2,4,5,3,1]).expand()
x0^2*x1^2*x2*x3 + x0^2*x1*x2^2*x3 + x0*x1^2*x2^2*x3

sage: w = [4,5,1,2,3]
sage: s = SymmetricFunctions(QQ).schur()
sage: s[3,3].expand(2)
x0^3*x1^3
sage: X(w).expand()
x0^3*x1^3

sage.combinat.schubert_polynomial.SchubertPolynomialRing(R)
Return the Schubert polynomial ring over R on the X basis.

This is the basis made of the Schubert polynomials.

2698 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Schubert_polynomial
https://www.symmetricfunctions.com/schubert.htm#schubert
https://en.wikipedia.org/wiki/Schubert_polynomial

Combinatorics, Release 9.7

EXAMPLES:

sage: X = SchubertPolynomialRing(ZZ); X
Schubert polynomial ring with X basis over Integer Ring
sage: TestSuite(X).run()
sage: X(1)
X[1]
sage: X([1,2,3])*X([2,1,3])
X[2, 1]
sage: X([2,1,3])*X([2,1,3])
X[3, 1, 2]
sage: X([2,1,3])+X([3,1,2,4])
X[2, 1] + X[3, 1, 2]
sage: a = X([2,1,3])+X([3,1,2,4])
sage: a^2
X[3, 1, 2] + 2*X[4, 1, 2, 3] + X[5, 1, 2, 3, 4]

class sage.combinat.schubert_polynomial.SchubertPolynomialRing_xbasis(R)
Bases: sage.combinat.free_module.CombinatorialFreeModule

EXAMPLES:

sage: X = SchubertPolynomialRing(QQ)
sage: X == loads(dumps(X))
True

Element
alias of SchubertPolynomial_class

one_basis()
Return the index of the unit of this algebra.

EXAMPLES:

sage: X = SchubertPolynomialRing(QQ)
sage: X.one() # indirect doctest
X[1]

product_on_basis(left, right)
EXAMPLES:

sage: p1 = Permutation([3,2,1])
sage: p2 = Permutation([2,1,3])
sage: X = SchubertPolynomialRing(QQ)
sage: X.product_on_basis(p1,p2)
X[4, 2, 1, 3]

some_elements()
Return some elements.

EXAMPLES:

sage: X = SchubertPolynomialRing(QQ)
sage: X.some_elements()
[X[1], X[1] + 2*X[2, 1], -X[3, 2, 1] + X[4, 2, 1, 3]]

5.1. Comprehensive Module List 2699

Combinatorics, Release 9.7

class sage.combinat.schubert_polynomial.SchubertPolynomial_class
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

divided_difference(i, algorithm='sage')
Return the i-th divided difference operator, applied to self.

Here, i can be either a permutation or a positive integer.

INPUT:

• i – permutation or positive integer

• algorithm – (default: 'sage') either 'sage' or 'symmetrica'; this determines which software is
called for the computation

OUTPUT:

The result of applying the i-th divided difference operator to self.

If 𝑖 is a positive integer, then the 𝑖-th divided difference operator 𝛿𝑖 is the linear operator sending each
polynomial 𝑓 = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) (in 𝑛 ≥ 𝑖+ 1 variables) to the polynomial

𝑓 − 𝑓𝑖
𝑥𝑖 − 𝑥𝑖+1

, where 𝑓𝑖 = 𝑓(𝑥1, 𝑥2, ..., 𝑥𝑖−1, 𝑥𝑖+1, 𝑥𝑖, 𝑥𝑖+1, ..., 𝑥𝑛).

If 𝜎 is a permutation in the 𝑛-th symmetric group, then the 𝜎-th divided difference operator 𝛿𝜎 is the
composition 𝛿𝑖1𝛿𝑖2 · · · 𝛿𝑖𝑘 , where 𝜎 = 𝑠𝑖1 ∘ 𝑠𝑖2 ∘ · · · ∘ 𝑠𝑖𝑘 is any reduced expression for 𝜎 (the precise
choice of reduced expression is immaterial).

Note: The expand()method results in a polynomial in 𝑛 variables named x0, x1, ..., x(n-1) rather
than 𝑥1, 𝑥2, . . . , 𝑥𝑛. The variable named xi corresponds to 𝑥𝑖+1. Thus, self.divided_difference(i)
involves the variables x(i-1) and xi getting switched (in the numerator).

EXAMPLES:

sage: X = SchubertPolynomialRing(ZZ)
sage: a = X([3,2,1])
sage: a.divided_difference(1)
X[2, 3, 1]
sage: a.divided_difference([3,2,1])
X[1]
sage: a.divided_difference(5)
0

Any divided difference of 0 is 0:

sage: X.zero().divided_difference(2)
0

This is compatible when a permutation is given as input:

sage: a = X([3,2,4,1])
sage: a.divided_difference([2,3,1])
0
sage: a.divided_difference(1).divided_difference(2)
0

2700 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Combinatorics, Release 9.7

sage: a = X([4,3,2,1])
sage: a.divided_difference([2,3,1])
X[3, 2, 4, 1]
sage: a.divided_difference(1).divided_difference(2)
X[3, 2, 4, 1]
sage: a.divided_difference([4,1,3,2])
X[1, 4, 2, 3]
sage: b = X([4, 1, 3, 2])
sage: b.divided_difference(1).divided_difference(2)
X[1, 3, 4, 2]
sage: b.divided_difference(1).divided_difference(2).divided_difference(3)
X[1, 3, 2]
sage: b.divided_difference(1).divided_difference(2).divided_difference(3).
→˓divided_difference(2)
X[1]
sage: b.divided_difference(1).divided_difference(2).divided_difference(3).
→˓divided_difference(3)
0
sage: b.divided_difference(1).divided_difference(2).divided_difference(1)
0

expand()
EXAMPLES:

sage: X = SchubertPolynomialRing(ZZ)
sage: X([2,1,3]).expand()
x0
sage: [X(p).expand() for p in Permutations(3)]
[1, x0 + x1, x0, x0*x1, x0^2, x0^2*x1]

multiply_variable(i)
Return the Schubert polynomial obtained by multiplying self by the variable 𝑥𝑖.

EXAMPLES:

sage: X = SchubertPolynomialRing(ZZ)
sage: a = X([3,2,4,1])
sage: a.multiply_variable(0)
X[4, 2, 3, 1]
sage: a.multiply_variable(1)
X[3, 4, 2, 1]
sage: a.multiply_variable(2)
X[3, 2, 5, 1, 4] - X[3, 4, 2, 1] - X[4, 2, 3, 1]
sage: a.multiply_variable(3)
X[3, 2, 4, 5, 1]

scalar_product(x)
Return the standard scalar product of self and x.

EXAMPLES:

sage: X = SchubertPolynomialRing(ZZ)
sage: a = X([3,2,4,1])
sage: a.scalar_product(a)

(continues on next page)

5.1. Comprehensive Module List 2701

Combinatorics, Release 9.7

(continued from previous page)

0
sage: b = X([4,3,2,1])
sage: b.scalar_product(a)
X[1, 3, 4, 6, 2, 5]
sage: Permutation([1, 3, 4, 6, 2, 5, 7]).to_lehmer_code()
[0, 1, 1, 2, 0, 0, 0]
sage: s = SymmetricFunctions(ZZ).schur()
sage: c = s([2,1,1])
sage: b.scalar_product(a).expand()
x0^2*x1*x2 + x0*x1^2*x2 + x0*x1*x2^2 + x0^2*x1*x3 + x0*x1^2*x3 + x0^2*x2*x3 +␣
→˓3*x0*x1*x2*x3 + x1^2*x2*x3 + x0*x2^2*x3 + x1*x2^2*x3 + x0*x1*x3^2 + x0*x2*x3^
→˓2 + x1*x2*x3^2
sage: c.expand(4)
x0^2*x1*x2 + x0*x1^2*x2 + x0*x1*x2^2 + x0^2*x1*x3 + x0*x1^2*x3 + x0^2*x2*x3 +␣
→˓3*x0*x1*x2*x3 + x1^2*x2*x3 + x0*x2^2*x3 + x1*x2^2*x3 + x0*x1*x3^2 + x0*x2*x3^
→˓2 + x1*x2*x3^2

5.1.274 Set Partitions

AUTHORS:

• Mike Hansen

• MuPAD-Combinat developers (for algorithms and design inspiration).

• Travis Scrimshaw (2013-02-28): Removed CombinatorialClass and added entry point through
SetPartition.

• Martin Rubey (2017-10-10): Cleanup, add crossings and nestings, add random generation.

This module defines a class for immutable partitioning of a set. For mutable version see DisjointSet().

class sage.combinat.set_partition.AbstractSetPartition
Bases: sage.structure.list_clone.ClonableArray

Methods of set partitions which are independent of the base set

base_set()
Return the base set of self, which is the union of all parts of self.

EXAMPLES:

sage: SetPartition([[1], [2,3], [4]]).base_set()
{1, 2, 3, 4}
sage: SetPartition([[1,2,3,4]]).base_set()
{1, 2, 3, 4}
sage: SetPartition([]).base_set()
{}

base_set_cardinality()
Return the cardinality of the base set of self, which is the sum of the sizes of the parts of self.

This is also known as the size (sometimes the weight) of a set partition.

EXAMPLES:

2702 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_set.html#sage.sets.disjoint_set.DisjointSet
../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

sage: SetPartition([[1], [2,3], [4]]).base_set_cardinality()
4
sage: SetPartition([[1,2,3,4]]).base_set_cardinality()
4

coarsenings()
Return a list of coarsenings of self.

See also:

refinements()

EXAMPLES:

sage: SetPartition([[1,3],[2,4]]).coarsenings()
[{{1, 2, 3, 4}}, {{1, 3}, {2, 4}}]
sage: SetPartition([[1],[2,4],[3]]).coarsenings()
[{{1, 2, 3, 4}},
{{1, 2, 4}, {3}},
{{1, 3}, {2, 4}},
{{1}, {2, 3, 4}},
{{1}, {2, 4}, {3}}]
sage: SetPartition([]).coarsenings()
[{}]

conjugate()
An involution exchanging singletons and circular adjacencies.

This method implements the definition of the conjugate of a set partition defined in [Cal2005].

INPUT:

• self – a set partition of an ordered set

OUTPUT:

• a set partition

EXAMPLES:

sage: SetPartition([[1,6,7],[2,8],[3,4,5]]).conjugate()
{{1, 4, 7}, {2, 8}, {3}, {5}, {6}}
sage: all(sp.conjugate().conjugate()==sp for sp in SetPartitions([1,3,5,7]))
True
sage: SetPartition([]).conjugate()
{}

inf(other)
The product of the set partitions self and other.

The product of two set partitions 𝐵 and 𝐶 is defined as the set partition whose parts are the nonempty
intersections between each part of 𝐵 and each part of 𝐶. This product is also the infimum of 𝐵 and 𝐶
in the classical set partition lattice (that is, the coarsest set partition which is finer than each of 𝐵 and 𝐶).
Consequently, inf acts as an alias for this method.

See also:

sup()

EXAMPLES:

5.1. Comprehensive Module List 2703

Combinatorics, Release 9.7

sage: x = SetPartition([[1,2], [3,5,4]])
sage: y = SetPartition(((3,1,2), (5,4)))
sage: x * y
{{1, 2}, {3}, {4, 5}}

sage: S = SetPartitions(4)
sage: sp1 = S([[2,3,4], [1]])
sage: sp2 = S([[1,3], [2,4]])
sage: s = S([[2,4], [3], [1]])
sage: sp1.inf(sp2) == s
True

max_block_size()
The maximum block size of the diagram.

EXAMPLES:

sage: from sage.combinat.diagram_algebras import PartitionDiagram,␣
→˓PartitionDiagrams
sage: pd = PartitionDiagram([[1,-3,-5],[2,4],[3,-1,-2],[5],[-4]])
sage: pd.max_block_size()
3
sage: sorted(d.max_block_size() for d in PartitionDiagrams(2))
[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4]
sage: sorted(sp.max_block_size() for sp in SetPartitions(3))
[1, 2, 2, 2, 3]

standard_form()
Return self as a list of lists.

When the ground set is totally ordered, the elements of each block are listed in increasing order.

This is not related to standard set partitions (which simply means set partitions of [𝑛] = {1, 2, . . . , 𝑛} for
some integer 𝑛) or standardization (standardization()).

EXAMPLES:

sage: [x.standard_form() for x in SetPartitions(4, [2,2])]
[[[1, 2], [3, 4]], [[1, 4], [2, 3]], [[1, 3], [2, 4]]]

sup(t)
Return the supremum of self and t in the classical set partition lattice.

The supremum of two set partitions 𝐵 and 𝐶 is obtained as the transitive closure of the relation which
relates 𝑖 to 𝑗 if and only if 𝑖 and 𝑗 are in the same part in at least one of the set partitions 𝐵 and 𝐶.

See also:

__mul__()

EXAMPLES:

sage: S = SetPartitions(4)
sage: sp1 = S([[2,3,4], [1]])
sage: sp2 = S([[1,3], [2,4]])
sage: s = S([[1,2,3,4]])
sage: sp1.sup(sp2) == s
True

2704 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.set_partition.SetPartition(parent, s, check=True)
Bases: sage.combinat.set_partition.AbstractSetPartition

A partition of a set.

A set partition 𝑝 of a set 𝑆 is a partition of 𝑆 into subsets called parts and represented as a set of sets. By
extension, a set partition of a nonnegative integer 𝑛 is the set partition of the integers from 1 to 𝑛. The number
of set partitions of 𝑛 is called the 𝑛-th Bell number.

There is a natural integer partition associated with a set partition, namely the nonincreasing sequence of sizes of
all its parts.

There is a classical lattice associated with all set partitions of 𝑛. The infimum of two set partitions is the set
partition obtained by intersecting all the parts of both set partitions. The supremum is obtained by transitive
closure of the relation 𝑖 related to 𝑗 if and only if they are in the same part in at least one of the set partitions.

We will use terminology from partitions, in particular the length of a set partition 𝐴 = {𝐴1, . . . , 𝐴𝑘} is the
number of parts of 𝐴 and is denoted by |𝐴| := 𝑘. The size of 𝐴 is the cardinality of 𝑆. We will also sometimes
use the notation [𝑛] := {1, 2, . . . , 𝑛}.

EXAMPLES:

There are 5 set partitions of the set {1, 2, 3}:

sage: SetPartitions(3).cardinality()
5

Here is the list of them:

sage: SetPartitions(3).list()
[{{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}, {{1}, {2}, {3}}]

There are 6 set partitions of {1, 2, 3, 4} whose underlying partition is [2, 1, 1]:

sage: SetPartitions(4, [2,1,1]).list()
[{{1}, {2, 4}, {3}},
{{1}, {2}, {3, 4}},
{{1, 4}, {2}, {3}},
{{1, 3}, {2}, {4}},
{{1, 2}, {3}, {4}},
{{1}, {2, 3}, {4}}]

Since trac ticket #14140, we can create a set partition directly by SetPartition, which creates the base set by
taking the union of the parts passed in:

sage: s = SetPartition([[1,3],[2,4]]); s
{{1, 3}, {2, 4}}
sage: s.parent()
Set partitions

apply_permutation(p)
Apply p to the underlying set of self.

INPUT:

• p – a permutation

EXAMPLES:

5.1. Comprehensive Module List 2705

https://trac.sagemath.org/14140

Combinatorics, Release 9.7

sage: x = SetPartition([[1,2], [3,5,4]])
sage: p = Permutation([2,1,4,5,3])
sage: x.apply_permutation(p)
{{1, 2}, {3, 4, 5}}
sage: q = Permutation([3,2,1,5,4])
sage: x.apply_permutation(q)
{{1, 4, 5}, {2, 3}}

sage: m = PerfectMatching([(1,4),(2,6),(3,5)])
sage: m.apply_permutation(Permutation([4,1,5,6,3,2]))
[(1, 2), (3, 5), (4, 6)]

arcs()
Return self as a list of arcs.

Assuming that the blocks are sorted, the arcs are the pairs of consecutive elements in the blocks.

EXAMPLES:

sage: A = SetPartition([[1],[2,3],[4]])
sage: A.arcs()
[(2, 3)]
sage: B = SetPartition([[1,3,6,7],[2,5],[4]])
sage: B.arcs()
[(1, 3), (3, 6), (6, 7), (2, 5)]

cardinality()
Return the len of self

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: len(IncreasingArrays()([1,2,3]))
3

check()
Check that we are a valid set partition.

EXAMPLES:

sage: S = SetPartitions(4)
sage: s = S([[1, 3], [2, 4]])
sage: s.check()

closers()
Return the maximal elements of the blocks.

EXAMPLES:

sage: P = SetPartition([[1,2,4,7],[3,9],[5,6,10,11,13],[8],[12]])
sage: P.closers()
[7, 8, 9, 12, 13]

crossings()
Return the crossing arcs of a set partition on a totally ordered set.

OUTPUT:

2706 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

We place the elements of the ground set in order on a line and draw the set partition by linking consecutive
elements of each block in the upper half-plane. This function returns a list of the pairs of crossing lines (as
a line correspond to a pair, it returns a list of pairs of pairs).

EXAMPLES:

sage: p = SetPartition([[1,4],[2,5,7],[3,6]])
sage: p.crossings()
[((1, 4), (2, 5)), ((1, 4), (3, 6)), ((2, 5), (3, 6)), ((3, 6), (5, 7))]

crossings_iterator()
Return the crossing arcs of a set partition on a totally ordered set.

OUTPUT:

We place the elements of the ground set in order on a line and draw the set partition by linking consecutive
elements of each block in the upper half-plane. This function returns an iterator over the pairs of crossing
lines (as a line correspond to a pair, the iterator produces pairs of pairs).

EXAMPLES:

sage: p = SetPartition([[1,4],[2,5,7],[3,6]])
sage: next(p.crossings_iterator())
((1, 4), (2, 5))

is_atomic()
Return if self is an atomic set partition.

A (standard) set partition 𝐴 can be split if there exist 𝑗 < 𝑖 such that max(𝐴𝑗) < min(𝐴𝑖) where 𝐴 is
ordered by minimal elements. This means we can write 𝐴 = 𝐵|𝐶 for some nonempty set partitions 𝐵 and
𝐶. We call a set partition atomic if it cannot be split and is nonempty. Here, the pipe symbol | is as defined
in method pipe().

EXAMPLES:

sage: SetPartition([[1,3], [2]]).is_atomic()
True
sage: SetPartition([[1,3], [2], [4]]).is_atomic()
False
sage: SetPartition([[1], [2,4], [3]]).is_atomic()
False
sage: SetPartition([[1,2,3,4]]).is_atomic()
True
sage: SetPartition([[1, 4], [2], [3]]).is_atomic()
True
sage: SetPartition([]).is_atomic()
False

is_noncrossing()
Check if self is noncrossing.

OUTPUT:

We place the elements of the ground set in order on a line and draw the set partition by linking consecutive
elements of each block in the upper half-plane. This function returns True if the picture obtained this way
has no crossings.

EXAMPLES:

5.1. Comprehensive Module List 2707

Combinatorics, Release 9.7

sage: p = SetPartition([[1,4],[2,5,7],[3,6]])
sage: p.is_noncrossing()
False

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n
[(1, 3), (2, 8), (4, 7), (5, 6)]
sage: n.is_noncrossing()
False
sage: PerfectMatching([(1, 4), (2, 3), (5, 6)]).is_noncrossing()
True

is_nonnesting()
Return if self is nonnesting or not.

OUTPUT:

We place the elements of the ground set in order on a line and draw the set partition by linking consecutive
elements of each block in the upper half-plane. This function returns True if the picture obtained this way
has no nestings.

EXAMPLES:

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n
[(1, 3), (2, 8), (4, 7), (5, 6)]
sage: n.is_nonnesting()
False
sage: PerfectMatching([(1, 3), (2, 5), (4, 6)]).is_nonnesting()
True

latex_options()
Return the latex options for use in the _latex_ function as a dictionary. The default values are set using
the global options.

Options can be found in set_latex_options()

EXAMPLES:

sage: SP = SetPartition([[1,6], [3,5,4]]); SP.latex_options()
{'angle': 0,
'color': 'black',
'fill': False,
'plot': None,
'radius': '1cm',
'show_labels': True,
'tikz_scale': 1}

nestings()
Return the nestings of self.

OUTPUT:

We place the elements of the ground set in order on a line and draw the set partition by linking consecutive
elements of each block in the upper half-plane. This function returns the list of the pairs of nesting lines
(as a line correspond to a pair, it returns a list of pairs of pairs).

EXAMPLES:

2708 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: m = PerfectMatching([(1, 6), (2, 7), (3, 5), (4, 8)])
sage: m.nestings()
[((1, 6), (3, 5)), ((2, 7), (3, 5))]

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n
[(1, 3), (2, 8), (4, 7), (5, 6)]
sage: n.nestings()
[((2, 8), (4, 7)), ((2, 8), (5, 6)), ((4, 7), (5, 6))]

nestings_iterator()
Iterate over the nestings of self.

OUTPUT:

We place the elements of the ground set in order on a line and draw the set partition by linking consecutive
elements of each block in the upper half-plane. This function returns an iterator over the pairs of nesting
lines (as a line correspond to a pair, the iterator produces pairs of pairs).

EXAMPLES:

sage: n = PerfectMatching([(1, 6), (2, 7), (3, 5), (4, 8)])
sage: it = n.nestings_iterator()
sage: next(it)
((1, 6), (3, 5))
sage: next(it)
((2, 7), (3, 5))
sage: next(it)
Traceback (most recent call last):
...
StopIteration

number_of_crossings()
Return the number of crossings.

OUTPUT:

We place the elements of the ground set in order on a line and draw the set partition by linking consecutive
elements of each block in the upper half-plane. This function returns the number the pairs of crossing lines.

EXAMPLES:

sage: p = SetPartition([[1,4],[2,5,7],[3,6]])
sage: p.number_of_crossings()
4

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n
[(1, 3), (2, 8), (4, 7), (5, 6)]
sage: n.number_of_crossings()
1

number_of_nestings()
Return the number of nestings of self.

OUTPUT:

We place the elements of the ground set in order on a line and draw the set partition by linking consecutive
elements of each block in the upper half-plane. This function returns the number the pairs of nesting lines.

5.1. Comprehensive Module List 2709

Combinatorics, Release 9.7

EXAMPLES:

sage: n = PerfectMatching([3,8,1,7,6,5,4,2]); n
[(1, 3), (2, 8), (4, 7), (5, 6)]
sage: n.number_of_nestings()
3

openers()
Return the minimal elements of the blocks.

EXAMPLES:

sage: P = SetPartition([[1,2,4,7],[3,9],[5,6,10,11,13],[8],[12]])
sage: P.openers()
[1, 3, 5, 8, 12]

ordered_set_partition_action(s)
Return the action of an ordered set partition s on self.

Let 𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝑘} be a set partition of some set 𝑆 and 𝑠 be an ordered set partition (i.e., set
composition) of a subset of [𝑘]. Let 𝐴↓ denote the standardization of 𝐴, and 𝐴{𝑖1,𝑖2,...,𝑖𝑚} denote the sub-
partition {𝐴𝑖1 , 𝐴𝑖2 , . . . , 𝐴𝑖𝑚} for any subset {𝑖1, . . . , 𝑖𝑚} of {1, . . . , 𝑘}. We define the set partition 𝑠(𝐴)
by

𝑠(𝐴) = 𝐴↓𝑠1 |𝐴
↓
𝑠2 | · · · |𝐴

↓
𝑠𝑞 .

where 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑞). Here, the pipe symbol | is as defined in method pipe().

This is 𝑠[𝐴] in section 2.3 in [LM2011].

INPUT:

• s – an ordered set partition with base set a subset of {1, . . . , 𝑘}

EXAMPLES:

sage: A = SetPartition([[1], [2,4], [3]])
sage: s = OrderedSetPartition([[1,3], [2]])
sage: A.ordered_set_partition_action(s)
{{1}, {2}, {3, 4}}
sage: s = OrderedSetPartition([[2,3], [1]])
sage: A.ordered_set_partition_action(s)
{{1, 3}, {2}, {4}}

We create Figure 1 in [LM2011] (we note that there is a typo in the lower-left corner of the table in the
published version of the paper, whereas the arXiv version gives the correct partition):

sage: A = SetPartition([[1,3], [2,9], [4,5,8], [7]])
sage: B = SetPartition([[1,3], [2,8], [4,5,6], [7]])
sage: C = SetPartition([[1,5], [2,8], [3,4,6], [7]])
sage: s = OrderedSetPartition([[1,3], [2]])
sage: t = OrderedSetPartition([[2], [3,4]])
sage: u = OrderedSetPartition([[1], [2,3,4]])
sage: A.ordered_set_partition_action(s)
{{1, 2}, {3, 4, 5}, {6, 7}}
sage: A.ordered_set_partition_action(t)
{{1, 2}, {3, 4, 6}, {5}}

(continues on next page)

2710 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: A.ordered_set_partition_action(u)
{{1, 2}, {3, 8}, {4, 5, 7}, {6}}
sage: B.ordered_set_partition_action(s)
{{1, 2}, {3, 4, 5}, {6, 7}}
sage: B.ordered_set_partition_action(t)
{{1, 2}, {3, 4, 5}, {6}}
sage: B.ordered_set_partition_action(u)
{{1, 2}, {3, 8}, {4, 5, 6}, {7}}
sage: C.ordered_set_partition_action(s)
{{1, 4}, {2, 3, 5}, {6, 7}}
sage: C.ordered_set_partition_action(t)
{{1, 2}, {3, 4, 5}, {6}}
sage: C.ordered_set_partition_action(u)
{{1, 2}, {3, 8}, {4, 5, 6}, {7}}

REFERENCES:

• [LM2011]

pipe(other)
Return the pipe of the set partitions self and other.

The pipe of two set partitions is defined as follows:

For any integer 𝑘 and any subset 𝐼 of Z, let 𝐼 + 𝑘 denote the subset of Z obtained by adding 𝑘 to every
element of 𝑘.

If 𝐵 and 𝐶 are set partitions of [𝑛] and [𝑚], respectively, then the pipe of 𝐵 and 𝐶 is defined as the set
partition

{𝐵1, 𝐵2, . . . , 𝐵𝑏, 𝐶1 + 𝑛,𝐶2 + 𝑛, . . . , 𝐶𝑐 + 𝑛}

of [𝑛+𝑚], where 𝐵 = {𝐵1, 𝐵2, . . . , 𝐵𝑏} and 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑐}. This pipe is denoted by 𝐵|𝐶.

EXAMPLES:

sage: SetPartition([[1,3],[2,4]]).pipe(SetPartition([[1,3],[2]]))
{{1, 3}, {2, 4}, {5, 7}, {6}}
sage: SetPartition([]).pipe(SetPartition([[1,2],[3,5],[4]]))
{{1, 2}, {3, 5}, {4}}
sage: SetPartition([[1,2],[3,5],[4]]).pipe(SetPartition([]))
{{1, 2}, {3, 5}, {4}}
sage: SetPartition([[1,2],[3]]).pipe(SetPartition([[1]]))
{{1, 2}, {3}, {4}}

plot(angle=None, color='black', base_set_dict=None)
Return a plot of self.

INPUT:

• angle – (default: 𝜋/4) the angle at which the arcs take off (if angle is negative, the arcs are drawn
below the horizontal line)

• color – (default: 'black') color of the arcs

• base_set_dict – (optional) dictionary with keys elements of base_set() and values as integer or
float

EXAMPLES:

5.1. Comprehensive Module List 2711

Combinatorics, Release 9.7

sage: p = SetPartition([[1,10,11],[2,3,7],[4,5,6],[8,9]])
sage: p.plot()
Graphics object consisting of 29 graphics primitives

1 2 3 4 5 6 7 8 9 10 11

sage: p = SetPartition([[1,3,4],[2,5]])
sage: print(p.plot().description())
Point set defined by 1 point(s): [(0.0, 0.0)]
Point set defined by 1 point(s): [(1.0, 0.0)]
Point set defined by 1 point(s): [(2.0, 0.0)]
Point set defined by 1 point(s): [(3.0, 0.0)]
Point set defined by 1 point(s): [(4.0, 0.0)]
Text '1' at the point (0.0,-0.1)
Text '2' at the point (1.0,-0.1)
Text '3' at the point (2.0,-0.1)
Text '4' at the point (3.0,-0.1)
Text '5' at the point (4.0,-0.1)
Arc with center (1.0,-1.0) radii (1.41421356237...,1.41421356237...)
angle 0.0 inside the sector (0.785398163397...,2.35619449019...)

Arc with center (2.5,-0.5) radii (0.70710678118...,0.70710678118...)
angle 0.0 inside the sector (0.785398163397...,2.35619449019...)

Arc with center (2.5,-1.5) radii (2.1213203435...,2.1213203435...)
angle 0.0 inside the sector (0.785398163397...,2.35619449019...)

(continues on next page)

2712 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: p = SetPartition([['a','c'],['b','d'],['e']])
sage: print(p.plot().description())
Point set defined by 1 point(s): [(0.0, 0.0)]
Point set defined by 1 point(s): [(1.0, 0.0)]
Point set defined by 1 point(s): [(2.0, 0.0)]
Point set defined by 1 point(s): [(3.0, 0.0)]
Point set defined by 1 point(s): [(4.0, 0.0)]
Text 'a' at the point (0.0,-0.1)
Text 'b' at the point (1.0,-0.1)
Text 'c' at the point (2.0,-0.1)
Text 'd' at the point (3.0,-0.1)
Text 'e' at the point (4.0,-0.1)
Arc with center (1.0,-1.0) radii (1.41421356237...,1.41421356237...)
angle 0.0 inside the sector (0.785398163397...,2.35619449019...)

Arc with center (2.0,-1.0) radii (1.41421356237...,1.41421356237...)
angle 0.0 inside the sector (0.785398163397...,2.35619449019...)
sage: p = SetPartition([['a','c'],['b','d'],['e']])
sage: print(p.plot(base_set_dict={'a':0,'b':1,'c':2,'d':-2.3,'e':5.4}).
→˓description())
Point set defined by 1 point(s): [(-2.3, 0.0)]
Point set defined by 1 point(s): [(0.0, 0.0)]
Point set defined by 1 point(s): [(1.0, 0.0)]
Point set defined by 1 point(s): [(2.0, 0.0)]
Point set defined by 1 point(s): [(5.4, 0.0)]
Text 'a' at the point (0.0,-0.1)
Text 'b' at the point (1.0,-0.1)
Text 'c' at the point (2.0,-0.1)
Text 'd' at the point (-2.3,-0.1)
Text 'e' at the point (5.4,-0.1)
Arc with center (-0.6...,-1.65) radii (2.3334523779...,2.3334523779...)
angle 0.0 inside the sector (0.785398163397...,2.35619449019...)

Arc with center (1.0,-1.0) radii (1.4142135623...,1.4142135623...)
angle 0.0 inside the sector (0.785398163397...,2.35619449019...)

refinements()
Return a list of refinements of self.

See also:

coarsenings()

EXAMPLES:

sage: SetPartition([[1,3],[2,4]]).refinements()
[{{1, 3}, {2, 4}},
{{1, 3}, {2}, {4}},
{{1}, {2, 4}, {3}},
{{1}, {2}, {3}, {4}}]
sage: SetPartition([[1],[2,4],[3]]).refinements()
[{{1}, {2, 4}, {3}}, {{1}, {2}, {3}, {4}}]
sage: SetPartition([]).refinements()
[{}]

5.1. Comprehensive Module List 2713

Combinatorics, Release 9.7

restriction(I)
Return the restriction of self to a subset I (which is given as a set or list or any other iterable).

EXAMPLES:

sage: A = SetPartition([[1], [2,3]])
sage: A.restriction([1,2])
{{1}, {2}}
sage: A.restriction([2,3])
{{2, 3}}
sage: A.restriction([])
{}
sage: A.restriction([4])
{}

set_latex_options(**kwargs)
Set the latex options for use in the _latex_ function

• tikz_scale – (default: 1) scale for use with tikz package

• plot – (default: None) None returns the set notation, linear returns a linear plot, cyclic returns a
cyclic plot

• color – (default: 'black') the arc colors

• fill – (default: False) if True then fills color, else you can pass in a color to alter the fill color -
only works with cyclic plot

• show_labels – (default: True) if True shows labels - only works with plots

• radius – (default: "1cm") radius of circle for cyclic plot - only works with cyclic plot

• angle – (default: 0) angle for linear plot

EXAMPLES:

sage: SP = SetPartition([[1,6], [3,5,4]])
sage: SP.set_latex_options(tikz_scale=2,plot='linear',fill=True,color='blue',
→˓angle=45)
sage: SP.set_latex_options(plot='cyclic')
sage: SP.latex_options()
{'angle': 45,
'color': 'blue',
'fill': True,
'plot': 'cyclic',
'radius': '1cm',
'show_labels': True,
'tikz_scale': 2}

shape()
Return the integer partition whose parts are the sizes of the sets in self.

EXAMPLES:

sage: S = SetPartitions(5)
sage: x = S([[1,2], [3,5,4]])
sage: x.shape()
[3, 2]
sage: y = S([[2], [3,1], [5,4]])

(continues on next page)

2714 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: y.shape()
[2, 2, 1]

shape_partition()
Return the integer partition whose parts are the sizes of the sets in self.

EXAMPLES:

sage: S = SetPartitions(5)
sage: x = S([[1,2], [3,5,4]])
sage: x.shape()
[3, 2]
sage: y = S([[2], [3,1], [5,4]])
sage: y.shape()
[2, 2, 1]

size()
Return the cardinality of the base set of self, which is the sum of the sizes of the parts of self.

This is also known as the size (sometimes the weight) of a set partition.

EXAMPLES:

sage: SetPartition([[1], [2,3], [4]]).base_set_cardinality()
4
sage: SetPartition([[1,2,3,4]]).base_set_cardinality()
4

standardization()
Return the standardization of self.

Given a set partition 𝐴 = {𝐴1, . . . , 𝐴𝑛} of an ordered set 𝑆, the standardization of 𝐴 is the set partition
of {1, 2, . . . , |𝑆|} obtained by replacing the elements of the parts of 𝐴 by the integers 1, 2, . . . , |𝑆| in such
a way that their relative order is preserved (i. e., the smallest element in the whole set partition is replaced
by 1, the next-smallest by 2, and so on).

EXAMPLES:

sage: SetPartition([[4], [1, 3]]).standardization()
{{1, 2}, {3}}
sage: SetPartition([[4], [6, 3]]).standardization()
{{1, 3}, {2}}
sage: SetPartition([]).standardization()
{}
sage: SetPartition([('c','b'),('d','f'),('e','a')]).standardization()
{{1, 5}, {2, 3}, {4, 6}}

strict_coarsenings()
Return all strict coarsenings of self.

Strict coarsening is the binary relation on set partitions defined as the transitive-and-reflexive closure of the
relation≺ defined as follows: For two set partitions 𝐴 and 𝐵, we have 𝐴 ≺ 𝐵 if there exist parts 𝐴𝑖, 𝐴𝑗 of
𝐴 such that max(𝐴𝑖) < min(𝐴𝑗) and 𝐵 = 𝐴 ∖ {𝐴𝑖, 𝐴𝑗} ∪ {𝐴𝑖 ∪𝐴𝑗}.

EXAMPLES:

5.1. Comprehensive Module List 2715

Combinatorics, Release 9.7

sage: A = SetPartition([[1],[2,3],[4]])
sage: A.strict_coarsenings()
[{{1}, {2, 3}, {4}}, {{1, 2, 3}, {4}}, {{1, 4}, {2, 3}},
{{1}, {2, 3, 4}}, {{1, 2, 3, 4}}]
sage: SetPartition([[1],[2,4],[3]]).strict_coarsenings()
[{{1}, {2, 4}, {3}}, {{1, 2, 4}, {3}}, {{1, 3}, {2, 4}}]
sage: SetPartition([]).strict_coarsenings()
[{}]

to_partition()
Return the integer partition whose parts are the sizes of the sets in self.

EXAMPLES:

sage: S = SetPartitions(5)
sage: x = S([[1,2], [3,5,4]])
sage: x.shape()
[3, 2]
sage: y = S([[2], [3,1], [5,4]])
sage: y.shape()
[2, 2, 1]

to_permutation()
Convert a set partition of {1, ..., 𝑛} to a permutation by considering the blocks of the partition as cycles.

The cycles are such that the number of excedences is maximised, that is, each cycle is of the form
(𝑎1, 𝑎2, ..., 𝑎𝑘) with 𝑎1 < 𝑎2 < ... < 𝑎𝑘.

EXAMPLES:

sage: s = SetPartition([[1,3],[2,4]])
sage: s.to_permutation()
[3, 4, 1, 2]

to_restricted_growth_word(bijection='blocks')
Convert a set partition of {1, ..., 𝑛} to a word of length 𝑛 with letters in the non-negative integers such that
each letter is at most 1 larger than all the letters before.

INPUT:

• bijection (default: blocks) – defines the map from set partitions to restricted growth functions.
These are currently:

– blocks: to_restricted_growth_word_blocks().

– intertwining: to_restricted_growth_word_intertwining().

OUTPUT:

A restricted growth word.

See also:

SetPartitions.from_restricted_growth_word()

EXAMPLES:

sage: P = SetPartition([[1,4],[2,8],[3,5,6,9],[7]])
sage: P.to_restricted_growth_word()

(continues on next page)

2716 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0, 1, 2, 0, 2, 2, 3, 1, 2]

sage: P.to_restricted_growth_word("intertwining")
[0, 1, 2, 2, 1, 0, 3, 3, 2]

sage: P = SetPartition([[1,2,4,7],[3,9],[5,6,10,11,13],[8],[12]])
sage: P.to_restricted_growth_word()
[0, 0, 1, 0, 2, 2, 0, 3, 1, 2, 2, 4, 2]

sage: P.to_restricted_growth_word("intertwining")
[0, 0, 1, 1, 2, 0, 1, 3, 3, 3, 0, 4, 1]

to_restricted_growth_word_blocks()
Convert a set partition of {1, ..., 𝑛} to a word of length 𝑛 with letters in the non-negative integers such that
each letter is at most 1 larger than all the letters before.

The word is obtained by sorting the blocks by their minimal element and setting the letters at the positions
of the elements in the 𝑖-th block to 𝑖.

OUTPUT:

• a restricted growth word.

See also:

to_restricted_growth_word() SetPartitions.from_restricted_growth_word()

EXAMPLES:

sage: P = SetPartition([[1,4],[2,8],[3,5,6,9],[7]])
sage: P.to_restricted_growth_word_blocks()
[0, 1, 2, 0, 2, 2, 3, 1, 2]

to_restricted_growth_word_intertwining()
Convert a set partition of {1, ..., 𝑛} to a word of length 𝑛 with letters in the non-negative integers such that
each letter is at most 1 larger than all the letters before.

The 𝑖-th letter of the word is the numbers of crossings of the arc (or half-arc) in the extended arc diagram
ending at 𝑖, with arcs (or half-arcs) beginning at a smaller element and ending at a larger element.

OUTPUT:

• a restricted growth word.

See also:

to_restricted_growth_word() SetPartitions.from_restricted_growth_word()

EXAMPLES:

sage: P = SetPartition([[1,4],[2,8],[3,5,6,9],[7]])
sage: P.to_restricted_growth_word_intertwining()
[0, 1, 2, 2, 1, 0, 3, 3, 2]

to_rook_placement(bijection='arcs')
Return a set of pairs defining a placement of non-attacking rooks on a triangular board.

The cells of the board corresponding to a set partition of {1, ..., 𝑛} are the pairs (𝑖, 𝑗) with 0 < 𝑖 < 𝑗 <
𝑛+ 1.

5.1. Comprehensive Module List 2717

Combinatorics, Release 9.7

INPUT:

• bijection (default: arcs) – defines the bijection from set partitions to rook placements. These are
currently:

– arcs: arcs()

– gamma: to_rook_placement_gamma()

– rho: to_rook_placement_rho()

– psi: to_rook_placement_psi()

See also:

SetPartitions.from_rook_placement()

EXAMPLES:

sage: P = SetPartition([[1,2,4,7],[3,9],[5,6,10,11,13],[8],[12]])
sage: P.to_rook_placement()
[(1, 2), (2, 4), (4, 7), (3, 9), (5, 6), (6, 10), (10, 11), (11, 13)]
sage: P.to_rook_placement("gamma")
[(1, 4), (3, 5), (4, 6), (5, 8), (7, 11), (8, 9), (10, 12), (12, 13)]
sage: P.to_rook_placement("rho")
[(1, 2), (2, 6), (3, 4), (4, 10), (5, 9), (6, 7), (10, 11), (11, 13)]
sage: P.to_rook_placement("psi")
[(1, 2), (2, 6), (3, 4), (5, 9), (6, 7), (7, 10), (9, 11), (11, 13)]

to_rook_placement_gamma()
Return the rook diagram obtained by placing rooks according to Wachs and White’s bijection gamma.

Note that our index convention differs from the convention in [WW1991]: regarding the rook board as a
lower-right triangular grid, we refer with (𝑖, 𝑗) to the cell in the 𝑖-th column from the right and the 𝑗-th row
from the top.

The algorithm proceeds as follows: non-attacking rooks are placed beginning at the left column. If 𝑛+1−𝑖
is an opener, column 𝑖 remains empty. Otherwise, we place a rook into column 𝑖, such that the number of
cells below the rook, which are not yet attacked by another rook, equals the index of the block to which
𝑛+ 1− 𝑖 belongs.

OUTPUT:

A list of coordinates.

See also:

• to_rook_placement()

• SetPartitions.from_rook_placement()

• SetPartitions.from_rook_placement_gamma()

EXAMPLES:

sage: P = SetPartition([[1,4],[2,8],[3,5,6,9],[7]])
sage: P.to_rook_placement_gamma()
[(1, 3), (2, 7), (4, 5), (5, 6), (6, 9)]

Figure 5 in [WW1991]:

2718 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: P = SetPartition([[1,2,4,7],[3,9],[5,6,10,11,13],[8],[12]])
sage: r = P.to_rook_placement_gamma(); r
[(1, 4), (3, 5), (4, 6), (5, 8), (7, 11), (8, 9), (10, 12), (12, 13)]

to_rook_placement_psi()
Return the rook diagram obtained by placing rooks according to Yip’s bijection psi.

OUTPUT:

A list of coordinates.

See also:

• to_rook_placement()

• SetPartitions.from_rook_placement()

• SetPartitions.from_rook_placement_psi()

EXAMPLES:

Example 36 (arXiv version: Example 4.5) in [Yip2018]:

sage: P = SetPartition([[1, 5], [2], [3, 8, 9], [4], [6, 7]])
sage: P.to_rook_placement_psi()
[(1, 7), (3, 8), (4, 5), (7, 9)]

Note that the columns corresponding to the minimal elements of the blocks remain empty.

to_rook_placement_rho()
Return the rook diagram obtained by placing rooks according to Wachs and White’s bijection rho.

Note that our index convention differs from the convention in [WW1991]: regarding the rook board as a
lower-right triangular grid, we refer with (𝑖, 𝑗) to the cell in the 𝑖-th column from the right and the 𝑗-th row
from the top.

The algorithm proceeds as follows: non-attacking rooks are placed beginning at the top row. The columns
corresponding to the closers of the set partition remain empty. Let 𝑟𝑠𝑗 be the number of closers which are
larger than 𝑗 and whose block is before the block of 𝑗.

We then place a rook into row 𝑗, such that the number of cells to the left of the rook, which are not yet
attacked by another rook and are not in a column corresponding to a closer, equals 𝑟𝑠𝑗 , unless there are not
enough cells in this row available, in which case the row remains empty.

One can show that the precisely those rows which correspond to openers of the set partition remain empty.

OUTPUT:

A list of coordinates.

See also:

• to_rook_placement()

• SetPartitions.from_rook_placement()

• SetPartitions.from_rook_placement_rho()

EXAMPLES:

5.1. Comprehensive Module List 2719

Combinatorics, Release 9.7

sage: P = SetPartition([[1,4],[2,8],[3,5,6,9],[7]])
sage: P.to_rook_placement_rho()
[(1, 5), (2, 6), (3, 4), (5, 9), (6, 8)]

Figure 6 in [WW1991]:

sage: P = SetPartition([[1,2,4,7],[3,9],[5,6,10,11,13],[8],[12]])
sage: r = P.to_rook_placement_rho(); r
[(1, 2), (2, 6), (3, 4), (4, 10), (5, 9), (6, 7), (10, 11), (11, 13)]

sage: sorted(P.closers() + [i for i, _ in r]) == list(range(1,14))
True
sage: sorted(P.openers() + [j for _, j in r]) == list(range(1,14))
True

class sage.combinat.set_partition.SetPartitions
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An (unordered) partition of a set 𝑆 is a set of pairwise disjoint nonempty subsets with union 𝑆, and is represented
by a sorted list of such subsets.

SetPartitions(s) returns the class of all set partitions of the set s, which can be given as a set or a string; if
a string, each character is considered an element.

SetPartitions(n), where n is an integer, returns the class of all set partitions of the set {1, 2, . . . , 𝑛}.

You may specify a second argument 𝑘. If 𝑘 is an integer, SetPartitions returns the class of set partitions
into 𝑘 parts; if it is an integer partition, SetPartitions returns the class of set partitions whose block sizes
correspond to that integer partition.

The Bell number 𝐵𝑛, named in honor of Eric Temple Bell, is the number of different partitions of a set with 𝑛
elements.

EXAMPLES:

sage: S = [1,2,3,4]
sage: SetPartitions(S, 2)
Set partitions of {1, 2, 3, 4} with 2 parts
sage: SetPartitions([1,2,3,4], [3,1]).list()
[{{1}, {2, 3, 4}}, {{1, 2, 3}, {4}}, {{1, 2, 4}, {3}}, {{1, 3, 4}, {2}}]
sage: SetPartitions(7, [3,3,1]).cardinality()
70

In strings, repeated letters are not considered distinct as of trac ticket #14140:

sage: SetPartitions('abcde').cardinality()
52
sage: SetPartitions('aabcd').cardinality()
15

REFERENCES:

• Wikipedia article Partition_of_a_set

Element
alias of SetPartition

2720 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
https://trac.sagemath.org/14140
https://en.wikipedia.org/wiki/Partition_of_a_set

Combinatorics, Release 9.7

from_arcs(arcs, n)
Return the coarsest set partition of {1, ..., 𝑛} such that any two elements connected by an arc are in the
same block.

INPUT:

• n – an integer specifying the size of the set partition to be produced.

• arcs – a list of pairs specifying which elements are in the same block.

See also:

• from_rook_placement()

• SetPartition.to_rook_placement()

• SetPartition.arcs()

EXAMPLES:

sage: SetPartitions().from_arcs([(2,3)], 5)
{{1}, {2, 3}, {4}, {5}}

from_restricted_growth_word(w, bijection='blocks')
Convert a word of length 𝑛 with letters in the non-negative integers such that each letter is at most 1 larger
than all the letters before to a set partition of {1, ..., 𝑛}.

INPUT:

• w – a restricted growth word.

• bijection (default: blocks) – defines the map from restricted growth functions to set partitions.
These are currently:

– blocks: .

– intertwining: from_restricted_growth_word_intertwining().

OUTPUT:

A set partition.

See also:

SetPartition.to_restricted_growth_word()

EXAMPLES:

sage: SetPartitions().from_restricted_growth_word([0, 1, 2, 0, 2, 2, 3, 1, 2])
{{1, 4}, {2, 8}, {3, 5, 6, 9}, {7}}

sage: SetPartitions().from_restricted_growth_word([0, 0, 1, 0, 2, 2, 0, 3, 1, 2,
→˓ 2, 4, 2])
{{1, 2, 4, 7}, {3, 9}, {5, 6, 10, 11, 13}, {8}, {12}}

sage: SetPartitions().from_restricted_growth_word([0, 0, 1, 0, 2, 2, 0, 3, 1, 2,
→˓ 2, 4, 2], "intertwining")
{{1, 2, 6, 7, 9}, {3, 4}, {5, 10, 13}, {8, 11}, {12}}

from_restricted_growth_word_blocks(w)
Convert a word of length 𝑛 with letters in the non-negative integers such that each letter is at most 1 larger
than all the letters before to a set partition of {1, ..., 𝑛}.

5.1. Comprehensive Module List 2721

Combinatorics, Release 9.7

w[i] is the index of the block containing i+1 when sorting the blocks by their minimal element.

INPUT:

• w – a restricted growth word.

OUTPUT:

A set partition.

See also:

from_restricted_growth_word() SetPartition.to_restricted_growth_word()

EXAMPLES:

sage: SetPartitions().from_restricted_growth_word_blocks([0, 0, 1, 0, 2, 2, 0,␣
→˓3, 1, 2, 2, 4, 2])
{{1, 2, 4, 7}, {3, 9}, {5, 6, 10, 11, 13}, {8}, {12}}

from_restricted_growth_word_intertwining(w)
Convert a word of length 𝑛 with letters in the non-negative integers such that each letter is at most 1 larger
than all the letters before to a set partition of {1, ..., 𝑛}.

The 𝑖-th letter of the word is the numbers of crossings of the arc (or half-arc) in the extended arc diagram
ending at 𝑖, with arcs (or half-arcs) beginning at a smaller element and ending at a larger element.

INPUT:

• w – a restricted growth word.

OUTPUT:

A set partition.

See also:

from_restricted_growth_word() SetPartition.to_restricted_growth_word()

EXAMPLES:

sage: SetPartitions().from_restricted_growth_word_intertwining([0, 0, 1, 0, 2,␣
→˓2, 0, 3, 1, 2, 2, 4, 2])
{{1, 2, 6, 7, 9}, {3, 4}, {5, 10, 13}, {8, 11}, {12}}

from_rook_placement(rooks, bijection='arcs', n=None)
Convert a rook placement of the triangular grid to a set partition of {1, ..., 𝑛}.

If n is not given, it is first checked whether it can be determined from the parent, otherwise it is the maximal
occurring integer in the set of rooks.

INPUT:

• rooks – a list of pairs (𝑖, 𝑗) satisfying 0 < 𝑖 < 𝑗 < 𝑛+ 1.

• bijection (default: arcs) – defines the map from rook placements to set partitions. These are
currently:

– arcs: from_arcs().

– gamma: from_rook_placement_gamma().

– rho: from_rook_placement_rho().

– psi: from_rook_placement_psi().

2722 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• n – (optional) the size of the ground set.

See also:

SetPartition.to_rook_placement()

EXAMPLES:

sage: SetPartitions(9).from_rook_placement([[1,4],[2,8],[3,5],[5,6],[6,9]])
{{1, 4}, {2, 8}, {3, 5, 6, 9}, {7}}

sage: SetPartitions(13).from_rook_placement([[12,13],[10,12],[8,9],[7,11],[5,8],
→˓[4,6],[3,5],[1,4]], "gamma")
{{1, 2, 4, 7}, {3, 9}, {5, 6, 10, 11, 13}, {8}, {12}}

from_rook_placement_gamma(rooks, n)
Return the set partition of {1, ..., 𝑛} corresponding to the given rook placement by applying Wachs and
White’s bijection gamma.

Note that our index convention differs from the convention in [WW1991]: regarding the rook board as a
lower-right triangular grid, we refer with (𝑖, 𝑗) to the cell in the 𝑖-th column from the right and the 𝑗-th row
from the top.

INPUT:

• n – an integer specifying the size of the set partition to be produced.

• rooks – a list of pairs (𝑖, 𝑗) such that 0 < 𝑖 < 𝑗 < 𝑛+ 1.

OUTPUT:

A set partition.

See also:

• from_rook_placement()

• SetPartition.to_rook_placement()

• SetPartition.to_rook_placement_gamma()

EXAMPLES:

Figure 5 in [WW1991] concerns the following rook placement:

sage: r = [(1, 4), (3, 5), (4, 6), (5, 8), (7, 11), (8, 9), (10, 12), (12, 13)]

Note that the rook (1, 4), translated into Wachs and White’s convention, is a rook in row 4 from the top and
column 13 from the left. The corresponding set partition is:

sage: SetPartitions().from_rook_placement_gamma(r, 13)
{{1, 2, 4, 7}, {3, 9}, {5, 6, 10, 11, 13}, {8}, {12}}

from_rook_placement_psi(rooks, n)
Return the set partition of {1, ..., 𝑛} corresponding to the given rook placement by applying Yip’s bijection
psi.

INPUT:

• n – an integer specifying the size of the set partition to be produced.

• rooks – a list of pairs (𝑖, 𝑗) such that 0 < 𝑖 < 𝑗 < 𝑛+ 1.

5.1. Comprehensive Module List 2723

Combinatorics, Release 9.7

OUTPUT:

A set partition.

See also:

• from_rook_placement()

• SetPartition.to_rook_placement()

• SetPartition.to_rook_placement_psi()

EXAMPLES:

Example 36 (arXiv version: Example 4.5) in [Yip2018] concerns the following rook placement:

sage: r = [(4,5), (1,7), (3, 8), (7,9)]
sage: SetPartitions().from_rook_placement_psi(r, 9)
{{1, 5}, {2}, {3, 8, 9}, {4}, {6, 7}}

from_rook_placement_rho(rooks, n)
Return the set partition of {1, ..., 𝑛} corresponding to the given rook placement by applying Wachs and
White’s bijection rho.

Note that our index convention differs from the convention in [WW1991]: regarding the rook board as a
lower-right triangular grid, we refer with (𝑖, 𝑗) to the cell in the 𝑖-th column from the right and the 𝑗-th row
from the top.

INPUT:

• n – an integer specifying the size of the set partition to be produced.

• rooks – a list of pairs (𝑖, 𝑗) such that 0 < 𝑖 < 𝑗 < 𝑛+ 1.

OUTPUT:

A set partition.

See also:

• from_rook_placement()

• SetPartition.to_rook_placement()

• SetPartition.to_rook_placement_rho()

EXAMPLES:

Figure 5 in [WW1991] concerns the following rook placement:

sage: r = [(1, 2), (2, 6), (3, 4), (4, 10), (5, 9), (6, 7), (10, 11), (11, 13)]

Note that the rook (1, 2), translated into Wachs and White’s convention, is a rook in row 2 from the top and
column 13 from the left. The corresponding set partition is:

sage: SetPartitions().from_rook_placement_rho(r, 13)
{{1, 2, 4, 7}, {3, 9}, {5, 6, 10, 11, 13}, {8}, {12}}

is_less_than(s, t)
Check if 𝑠 < 𝑡 in the refinement ordering on set partitions.

This means that 𝑠 is a refinement of 𝑡 and satisfies 𝑠 ̸= 𝑡.

2724 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

A set partition 𝑠 is said to be a refinement of a set partition 𝑡 of the same set if and only if each part of 𝑠 is
a subset of a part of 𝑡.

EXAMPLES:

sage: S = SetPartitions(4)
sage: s = S([[1,3],[2,4]])
sage: t = S([[1],[2],[3],[4]])
sage: S.is_less_than(t, s)
True
sage: S.is_less_than(s, t)
False
sage: S.is_less_than(s, s)
False

is_strict_refinement(s, t)
Return True if s is a strict refinement of t and satisfies 𝑠 ̸= 𝑡.

A set partition 𝑠 is said to be a strict refinement of a set partition 𝑡 of the same set if and only if one can
obtain 𝑡 from 𝑠 by repeatedly combining pairs of parts whose convex hulls don’t intersect (i. e., whenever
we are combining two parts, the maximum of each of them should be smaller than the minimum of the
other).

EXAMPLES:

sage: S = SetPartitions(4)
sage: s = S([[1],[2],[3],[4]])
sage: t = S([[1,3],[2,4]])
sage: u = S([[1,2,3,4]])
sage: S.is_strict_refinement(s, t)
True
sage: S.is_strict_refinement(t, u)
False
sage: A = SetPartition([[1,3],[2,4]])
sage: B = SetPartition([[1,2,3,4]])
sage: S.is_strict_refinement(s, A)
True
sage: S.is_strict_refinement(t, B)
False

lt(s, t)
Check if 𝑠 < 𝑡 in the refinement ordering on set partitions.

This means that 𝑠 is a refinement of 𝑡 and satisfies 𝑠 ̸= 𝑡.

A set partition 𝑠 is said to be a refinement of a set partition 𝑡 of the same set if and only if each part of 𝑠 is
a subset of a part of 𝑡.

EXAMPLES:

sage: S = SetPartitions(4)
sage: s = S([[1,3],[2,4]])
sage: t = S([[1],[2],[3],[4]])
sage: S.is_less_than(t, s)
True
sage: S.is_less_than(s, t)
False

(continues on next page)

5.1. Comprehensive Module List 2725

Combinatorics, Release 9.7

(continued from previous page)

sage: S.is_less_than(s, s)
False

class sage.combinat.set_partition.SetPartitions_all
Bases: sage.combinat.set_partition.SetPartitions

All set partitions.

subset(size=None, **kwargs)
Return the subset of set partitions of a given size and additional keyword arguments.

EXAMPLES:

sage: P = SetPartitions()
sage: P.subset(4)
Set partitions of {1, 2, 3, 4}

class sage.combinat.set_partition.SetPartitions_set(s)
Bases: sage.combinat.set_partition.SetPartitions

Set partitions of a fixed set 𝑆.

base_set()
Return the base set of self.

EXAMPLES:

sage: SetPartitions(3).base_set()
{1, 2, 3}

sage: sorted(SetPartitions(["a", "b", "c"]).base_set())
['a', 'b', 'c']

base_set_cardinality()
Return the cardinality of the base set of self.

EXAMPLES:

sage: SetPartitions(3).base_set_cardinality()
3

cardinality()
Return the number of set partitions of the set 𝑆.

The cardinality is given by the 𝑛-th Bell number where 𝑛 is the number of elements in the set 𝑆.

EXAMPLES:

sage: SetPartitions([1,2,3,4]).cardinality()
15
sage: SetPartitions(3).cardinality()
5
sage: SetPartitions(3,2).cardinality()
3
sage: SetPartitions([]).cardinality()
1

2726 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

random_element()
Return a random set partition.

This is a very naive implementation of Knuths outline in F3B, 7.2.1.5.

EXAMPLES:

sage: S = SetPartitions(10)
sage: s = S.random_element()
sage: s.parent() is S
True
sage: assert s in S, s

sage: S = SetPartitions(["a", "b", "c"])
sage: s = S.random_element()
sage: s.parent() is S
True
sage: assert s in S, s

class sage.combinat.set_partition.SetPartitions_setn(s, k)
Bases: sage.combinat.set_partition.SetPartitions_set

Set partitions with a given number of blocks.

cardinality()
The Stirling number of the second kind is the number of partitions of a set of size 𝑛 into 𝑘 blocks.

EXAMPLES:

sage: SetPartitions(5, 3).cardinality()
25
sage: stirling_number2(5,3)
25

n
self.n is deprecated; use number_of_blocks() instead.

number_of_blocks()
Return the number of blocks of the set partitions in self.

EXAMPLES:

sage: SetPartitions(5, 3).number_of_blocks()
3

random_element()
Return a random set partition of self.

See https://mathoverflow.net/questions/141999.

EXAMPLES:

sage: S = SetPartitions(10, 4)
sage: s = S.random_element()
sage: s.parent() is S
True
sage: assert s in S, s

(continues on next page)

5.1. Comprehensive Module List 2727

https://mathoverflow.net/questions/141999

Combinatorics, Release 9.7

(continued from previous page)

sage: S = SetPartitions(["a", "b", "c"], 2)
sage: s = S.random_element()
sage: s.parent() is S
True
sage: assert s in S, s

class sage.combinat.set_partition.SetPartitions_setparts(s, parts)
Bases: sage.combinat.set_partition.SetPartitions_set

Set partitions with fixed partition sizes corresponding to an integer partition 𝜆.

cardinality()
Return the cardinality of self.

This algorithm counts for each block of the partition the number of ways to fill it using values from the
set. Then, for each distinct value 𝑣 of block size, we divide the result by the number of ways to arrange the
blocks of size 𝑣 in the set partition.

For example, if we want to count the number of set partitions of size 13 having [3,3,3,2,2] as underlying
partition we compute the number of ways to fill each block of the partition, which is

(︀
13
3

)︀(︀
10
3

)︀(︀
7
3

)︀(︀
4
2

)︀(︀
2
2

)︀
and as we have three blocks of size 3 and two blocks of size 2, we divide the result by 3!2! which gives us
600600.

EXAMPLES:

sage: SetPartitions(3, [2,1]).cardinality()
3
sage: SetPartitions(13, Partition([3,3,3,2,2])).cardinality()
600600

parts
self.parts is deprecated; use shape() instead.

random_element()
Return a random set partition of self.

ALGORITHM:

Based on the cardinality method. For each block size 𝑘𝑖, we choose a uniformly random subset 𝑋𝑖 ⊆ 𝑆𝑖
of size 𝑘𝑖 of the elements 𝑆𝑖 that have not yet been selected. Thus, we define 𝑆𝑖+1 = 𝑆𝑖 ∖𝑋𝑖 with 𝑆𝑖 = 𝑆
being the defining set. This is not yet proven to be uniformly distributed, but numerical tests show this is
likely uniform.

EXAMPLES:

sage: S = SetPartitions(10, [4,3,2,1])
sage: s = S.random_element()
sage: s.parent() is S
True
sage: assert s in S, s

sage: S = SetPartitions(["a", "b", "c", "d"], [2,2])
sage: s = S.random_element()
sage: s.parent() is S
True
sage: assert s in S, s

2728 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

shape()
Return the partition of block sizes of the set partitions in self.

EXAMPLES:

sage: SetPartitions(5, [2,2,1]).shape()
[2, 2, 1]

sage.combinat.set_partition.cyclic_permutations_of_set_partition(set_part)
Return all combinations of cyclic permutations of each cell of the set partition.

AUTHORS:

• Robert L. Miller

EXAMPLES:

sage: from sage.combinat.set_partition import cyclic_permutations_of_set_partition
sage: cyclic_permutations_of_set_partition([[1,2,3,4],[5,6,7]])
[[[1, 2, 3, 4], [5, 6, 7]],
[[1, 2, 4, 3], [5, 6, 7]],
[[1, 3, 2, 4], [5, 6, 7]],
[[1, 3, 4, 2], [5, 6, 7]],
[[1, 4, 2, 3], [5, 6, 7]],
[[1, 4, 3, 2], [5, 6, 7]],
[[1, 2, 3, 4], [5, 7, 6]],
[[1, 2, 4, 3], [5, 7, 6]],
[[1, 3, 2, 4], [5, 7, 6]],
[[1, 3, 4, 2], [5, 7, 6]],
[[1, 4, 2, 3], [5, 7, 6]],
[[1, 4, 3, 2], [5, 7, 6]]]

sage.combinat.set_partition.cyclic_permutations_of_set_partition_iterator(set_part)
Iterates over all combinations of cyclic permutations of each cell of the set partition.

AUTHORS:

• Robert L. Miller

EXAMPLES:

sage: from sage.combinat.set_partition import cyclic_permutations_of_set_partition_
→˓iterator
sage: list(cyclic_permutations_of_set_partition_iterator([[1,2,3,4],[5,6,7]]))
[[[1, 2, 3, 4], [5, 6, 7]],
[[1, 2, 4, 3], [5, 6, 7]],
[[1, 3, 2, 4], [5, 6, 7]],
[[1, 3, 4, 2], [5, 6, 7]],
[[1, 4, 2, 3], [5, 6, 7]],
[[1, 4, 3, 2], [5, 6, 7]],
[[1, 2, 3, 4], [5, 7, 6]],
[[1, 2, 4, 3], [5, 7, 6]],
[[1, 3, 2, 4], [5, 7, 6]],
[[1, 3, 4, 2], [5, 7, 6]],
[[1, 4, 2, 3], [5, 7, 6]],
[[1, 4, 3, 2], [5, 7, 6]]]

5.1. Comprehensive Module List 2729

Combinatorics, Release 9.7

5.1.275 Ordered Set Partitions

AUTHORS:

• Mike Hansen

• MuPAD-Combinat developers (for algorithms and design inspiration)

• Travis Scrimshaw (2013-02-28): Removed CombinatorialClass and added entry point through
OrderedSetPartition.

class sage.combinat.set_partition_ordered.OrderedSetPartition(parent, s)
Bases: sage.structure.list_clone.ClonableArray

An ordered partition of a set.

An ordered set partition 𝑝 of a set 𝑠 is a list of pairwise disjoint nonempty subsets of 𝑠 such that the union of
these subsets is 𝑠. These subsets are called the parts of the partition. We represent an ordered set partition as a
list of sets. By extension, an ordered set partition of a nonnegative integer 𝑛 is the set partition of the integers
from 1 to 𝑛. The number of ordered set partitions of 𝑛 is called the 𝑛-th ordered Bell number.

There is a natural integer composition associated with an ordered set partition, that is the sequence of sizes of all
its parts in order.

The number 𝑇𝑛 of ordered set partitions of {1, 2, . . . , 𝑛} is the so-called 𝑛-th Fubini number (also known as the
𝑛-th ordered Bell number; see Wikipedia article Ordered Bell number). Its exponential generating function is∑︁

𝑛

𝑇𝑛
𝑛!
𝑥𝑛 =

1

2− 𝑒𝑥
.

(See sequence OEIS sequence A000670 in OEIS.)

INPUT:

• parts – an object or iterable that defines an ordered set partition (e.g., a list of pairwise disjoint sets) or a
packed word (e.g., a list of letters on some alphabet). If there is ambiguity and if the input should be treated
as a packed word, the keyword from_word should be used.

EXAMPLES:

There are 13 ordered set partitions of {1, 2, 3}:

sage: OrderedSetPartitions(3).cardinality()
13

Here is the list of them:

sage: OrderedSetPartitions(3).list()
[[{1}, {2}, {3}],
[{1}, {3}, {2}],
[{2}, {1}, {3}],
[{3}, {1}, {2}],
[{2}, {3}, {1}],
[{3}, {2}, {1}],
[{1}, {2, 3}],
[{2}, {1, 3}],
[{3}, {1, 2}],
[{1, 2}, {3}],
[{1, 3}, {2}],
[{2, 3}, {1}],
[{1, 2, 3}]]

2730 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray
https://en.wikipedia.org/wiki/Ordered Bell number
https://oeis.org/A000670

Combinatorics, Release 9.7

There are 12 ordered set partitions of {1, 2, 3, 4} whose underlying composition is [1, 2, 1]:

sage: OrderedSetPartitions(4,[1,2,1]).list()
[[{1}, {2, 3}, {4}],
[{1}, {2, 4}, {3}],
[{1}, {3, 4}, {2}],
[{2}, {1, 3}, {4}],
[{2}, {1, 4}, {3}],
[{3}, {1, 2}, {4}],
[{4}, {1, 2}, {3}],
[{3}, {1, 4}, {2}],
[{4}, {1, 3}, {2}],
[{2}, {3, 4}, {1}],
[{3}, {2, 4}, {1}],
[{4}, {2, 3}, {1}]]

Since trac ticket #14140, we can create an ordered set partition directly by OrderedSetPartition which creates
the parent object by taking the union of the partitions passed in. However it is recommended and (marginally)
faster to create the parent first and then create the ordered set partition from that.

sage: s = OrderedSetPartition([[1,3],[2,4]]); s
[{1, 3}, {2, 4}]
sage: s.parent()
Ordered set partitions of {1, 2, 3, 4}

We can construct the ordered set partition from a word, which we consider as packed:

sage: OrderedSetPartition([2,4,1,2])
[{3}, {1, 4}, {2}]
sage: OrderedSetPartition(from_word=[2,4,1,2])
[{3}, {1, 4}, {2}]
sage: OrderedSetPartition(from_word='bdab')
[{3}, {1, 4}, {2}]

REFERENCES:

Wikipedia article Ordered_partition_of_a_set

base_set()
Return the base set of self, which is the union of all parts of self.

EXAMPLES:

sage: OrderedSetPartition([[1], [2,3], [4]]).base_set()
{1, 2, 3, 4}
sage: OrderedSetPartition([[1,2,3,4]]).base_set()
{1, 2, 3, 4}
sage: OrderedSetPartition([]).base_set()
{}

base_set_cardinality()
Return the cardinality of the base set of self, which is the sum of the sizes of the parts of self.

This is also known as the size (sometimes the weight) of an ordered set partition.

EXAMPLES:

5.1. Comprehensive Module List 2731

https://trac.sagemath.org/14140
https://en.wikipedia.org/wiki/Ordered_partition_of_a_set

Combinatorics, Release 9.7

sage: OrderedSetPartition([[1], [2,3], [4]]).base_set_cardinality()
4
sage: OrderedSetPartition([[1,2,3,4]]).base_set_cardinality()
4

static bottom_up_osp(X, comp)
Return the ordered set partition obtained by listing the elements of the set X in increasing order, and placing
bars between some of them according to the integer composition comp (namely, the bars are placed in such
a way that the lengths of the resulting blocks are exactly the entries of comp).

INPUT:

• X – a finite set (or list or tuple)

• comp – a composition whose sum is the size of X (can be given as a list or tuple or composition)

EXAMPLES:

sage: buo = OrderedSetPartition.bottom_up_osp
sage: buo(Set([1, 4, 7, 9]), [2, 1, 1])
[{1, 4}, {7}, {9}]
sage: buo(Set([1, 4, 7, 9]), [1, 3])
[{1}, {4, 7, 9}]
sage: buo(Set([1, 4, 7, 9]), [1, 1, 1, 1])
[{1}, {4}, {7}, {9}]
sage: buo(range(8), [1, 4, 2, 1])
[{0}, {1, 2, 3, 4}, {5, 6}, {7}]
sage: buo([], [])
[]

check()
Check that we are a valid ordered set partition.

EXAMPLES:

sage: OS = OrderedSetPartitions(4)
sage: s = OS([[1, 3], [2, 4]])
sage: s.check()

complement()
Return the complement of the ordered set partition self.

This assumes that self is an ordered set partition of an interval of Z.

Let (𝑃1, 𝑃2, . . . , 𝑃𝑘) be an ordered set partition of some interval 𝐼 of Z. Let 𝜔 be the unique strictly
decreasing bijection 𝐼 → 𝐼 . Then, the complement of (𝑃1, 𝑃2, . . . , 𝑃𝑘) is defined to be the ordered set
partition (𝜔(𝑃1), 𝜔(𝑃2), . . . , 𝜔(𝑃𝑘)).

EXAMPLES:

sage: OrderedSetPartition([[1, 2], [3]]).complement()
[{2, 3}, {1}]
sage: OrderedSetPartition([[1, 3], [2]]).complement()
[{1, 3}, {2}]
sage: OrderedSetPartition([[2, 3]]).complement()
[{2, 3}]
sage: OrderedSetPartition([[1, 5], [2, 3], [4]]).complement()

(continues on next page)

2732 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[{1, 5}, {3, 4}, {2}]
sage: OrderedSetPartition([[-1], [-2], [1, 2], [0]]).complement()
[{1}, {2}, {-2, -1}, {0}]
sage: OrderedSetPartition([]).complement()
[]

fatten(grouping)
Return the ordered set partition fatter than self, obtained by grouping together consecutive parts according
to the integer composition grouping.

See finer() for the definition of “fatter”.

INPUT:

• grouping – a composition whose sum is the length of self

EXAMPLES:

Let us start with the ordered set partition:

sage: c = OrderedSetPartition([[2, 5], [1], [3, 4]])

With grouping equal to (1, . . . , 1), 𝑐 is left unchanged:

sage: c.fatten(Composition([1,1,1]))
[{2, 5}, {1}, {3, 4}]

With grouping equal to (ℓ) where ℓ is the length of 𝑐, this yields the coarsest ordered set partition above
𝑐:

sage: c.fatten(Composition([3]))
[{1, 2, 3, 4, 5}]

Other values for grouping yield (all the) other ordered set partitions coarser than 𝑐:

sage: c.fatten(Composition([2,1]))
[{1, 2, 5}, {3, 4}]
sage: c.fatten(Composition([1,2]))
[{2, 5}, {1, 3, 4}]

fatter()
Return the set of ordered set partitions which are fatter than self.

See finer() for the definition of “fatter”.

EXAMPLES:

sage: C = OrderedSetPartition([[2, 5], [1], [3, 4]]).fatter()
sage: C.cardinality()
4
sage: sorted(C)
[[{1, 2, 3, 4, 5}],
[{1, 2, 5}, {3, 4}],
[{2, 5}, {1, 3, 4}],
[{2, 5}, {1}, {3, 4}]]

(continues on next page)

5.1. Comprehensive Module List 2733

Combinatorics, Release 9.7

(continued from previous page)

sage: OrderedSetPartition([[4, 9], [-1, 2]]).fatter().list()
[[{4, 9}, {-1, 2}], [{-1, 2, 4, 9}]]

Some extreme cases:

sage: list(OrderedSetPartition([[5]]).fatter())
[[{5}]]
sage: list(Composition([]).fatter())
[[]]
sage: sorted(OrderedSetPartition([[1], [2], [3], [4]]).fatter())
[[{1, 2, 3, 4}],
[{1, 2, 3}, {4}],
[{1, 2}, {3, 4}],
[{1, 2}, {3}, {4}],
[{1}, {2, 3, 4}],
[{1}, {2, 3}, {4}],
[{1}, {2}, {3, 4}],
[{1}, {2}, {3}, {4}]]

finer()
Return the set of ordered set partitions which are finer than self.

See is_finer() for the definition of “finer”.

EXAMPLES:

sage: C = OrderedSetPartition([[1, 3], [2]]).finer()
sage: C.cardinality()
3
sage: C.list()
[[{1}, {3}, {2}], [{3}, {1}, {2}], [{1, 3}, {2}]]

sage: OrderedSetPartition([]).finer()
{[]}

sage: W = OrderedSetPartition([[4, 9], [-1, 2]])
sage: W.finer().list()
[[{9}, {4}, {2}, {-1}],
[{9}, {4}, {-1}, {2}],
[{9}, {4}, {-1, 2}],
[{4}, {9}, {2}, {-1}],
[{4}, {9}, {-1}, {2}],
[{4}, {9}, {-1, 2}],
[{4, 9}, {2}, {-1}],
[{4, 9}, {-1}, {2}],
[{4, 9}, {-1, 2}]]

is_finer(co2)
Return True if the ordered set partition self is finer than the ordered set partition co2; otherwise, return
False.

If 𝐴 and 𝐵 are two ordered set partitions of the same set, then 𝐴 is said to be finer than 𝐵 if 𝐵 can be
obtained from 𝐴 by (repeatedly) merging consecutive parts. In this case, we say that 𝐵 is fatter than 𝐴.

EXAMPLES:

2734 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: A = OrderedSetPartition([[1, 3], [2]])
sage: B = OrderedSetPartition([[1], [3], [2]])
sage: A.is_finer(B)
False
sage: B.is_finer(A)
True
sage: C = OrderedSetPartition([[3], [1], [2]])
sage: A.is_finer(C)
False
sage: C.is_finer(A)
True
sage: OrderedSetPartition([[2], [5], [1], [4]]).is_
→˓finer(OrderedSetPartition([[2, 5], [1, 4]]))
True
sage: OrderedSetPartition([[5], [2], [1], [4]]).is_
→˓finer(OrderedSetPartition([[2, 5], [1, 4]]))
True
sage: OrderedSetPartition([[2], [1], [5], [4]]).is_
→˓finer(OrderedSetPartition([[2, 5], [1, 4]]))
False
sage: OrderedSetPartition([[2, 5, 1], [4]]).is_finer(OrderedSetPartition([[2,␣
→˓5], [1, 4]]))
False

is_strongly_finer(co2)
Return True if the ordered set partition self is strongly finer than the ordered set partition co2; otherwise,
return False.

If 𝐴 and 𝐵 are two ordered set partitions of the same set, then 𝐴 is said to be strongly finer than 𝐵 if 𝐵
can be obtained from 𝐴 by (repeatedly) merging consecutive parts, provided that every time we merge two
consecutive parts 𝐶𝑖 and 𝐶𝑖+1, we have max𝐶𝑖 < min𝐶𝑖+1. In this case, we say that 𝐵 is strongly fatter
than 𝐴.

EXAMPLES:

sage: A = OrderedSetPartition([[1, 3], [2]])
sage: B = OrderedSetPartition([[1], [3], [2]])
sage: A.is_strongly_finer(B)
False
sage: B.is_strongly_finer(A)
True
sage: C = OrderedSetPartition([[3], [1], [2]])
sage: A.is_strongly_finer(C)
False
sage: C.is_strongly_finer(A)
False
sage: OrderedSetPartition([[2], [5], [1], [4]]).is_strongly_
→˓finer(OrderedSetPartition([[2, 5], [1, 4]]))
True
sage: OrderedSetPartition([[5], [2], [1], [4]]).is_strongly_
→˓finer(OrderedSetPartition([[2, 5], [1, 4]]))
False
sage: OrderedSetPartition([[2], [1], [5], [4]]).is_strongly_
→˓finer(OrderedSetPartition([[2, 5], [1, 4]]))

(continues on next page)

5.1. Comprehensive Module List 2735

Combinatorics, Release 9.7

(continued from previous page)

False
sage: OrderedSetPartition([[2, 5, 1], [4]]).is_strongly_
→˓finer(OrderedSetPartition([[2, 5], [1, 4]]))
False

length()
Return the number of parts of self.

EXAMPLES:

sage: OS = OrderedSetPartitions(4)
sage: s = OS([[1, 3], [2, 4]])
sage: s.length()
2

number_of_inversions()
Return the number of inversions in self.

An inversion of an ordered set partition with blocks [𝐵1, 𝐵2, . . . , 𝐵𝑘] is a pair of letters 𝑖 and 𝑗 with 𝑖 < 𝑗
such that 𝑖 is minimal in 𝐵𝑚, 𝑗 ∈ 𝐵𝑙, and 𝑙 < 𝑚.

REFERENCES:

• [Wilson2016]

EXAMPLES:

sage: OrderedSetPartition([{2,5},{4,6},{1,3}]).number_of_inversions()
5
sage: OrderedSetPartition([{1,3,8},{2,4},{5,6,7}]).number_of_inversions()
3

reversed()
Return the reversal of the ordered set partition self.

The reversal of an ordered set partition (𝑃1, 𝑃2, . . . , 𝑃𝑘) is defined to be the ordered set partition
(𝑃𝑘, 𝑃𝑘−1, . . . , 𝑃1).

EXAMPLES:

sage: OrderedSetPartition([[1, 3], [2]]).reversed()
[{2}, {1, 3}]
sage: OrderedSetPartition([[1, 5], [2, 4]]).reversed()
[{2, 4}, {1, 5}]
sage: OrderedSetPartition([[-1], [-2], [3, 4], [0]]).reversed()
[{0}, {3, 4}, {-2}, {-1}]
sage: OrderedSetPartition([]).reversed()
[]

size()
Return the cardinality of the base set of self, which is the sum of the sizes of the parts of self.

This is also known as the size (sometimes the weight) of an ordered set partition.

EXAMPLES:

2736 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: OrderedSetPartition([[1], [2,3], [4]]).base_set_cardinality()
4
sage: OrderedSetPartition([[1,2,3,4]]).base_set_cardinality()
4

strongly_fatter()
Return the set of ordered set partitions which are strongly fatter than self.

See strongly_finer() for the definition of “strongly fatter”.

EXAMPLES:

sage: C = OrderedSetPartition([[2, 5], [1], [3, 4]]).strongly_fatter()
sage: C.cardinality()
2
sage: sorted(C)
[[{2, 5}, {1, 3, 4}],
[{2, 5}, {1}, {3, 4}]]

sage: OrderedSetPartition([[4, 9], [-1, 2]]).strongly_fatter().list()
[[{4, 9}, {-1, 2}]]

Some extreme cases:

sage: list(OrderedSetPartition([[5]]).strongly_fatter())
[[{5}]]
sage: list(OrderedSetPartition([]).strongly_fatter())
[[]]
sage: sorted(OrderedSetPartition([[1], [2], [3], [4]]).strongly_fatter())
[[{1, 2, 3, 4}],
[{1, 2, 3}, {4}],
[{1, 2}, {3, 4}],
[{1, 2}, {3}, {4}],
[{1}, {2, 3, 4}],
[{1}, {2, 3}, {4}],
[{1}, {2}, {3, 4}],
[{1}, {2}, {3}, {4}]]
sage: sorted(OrderedSetPartition([[1], [3], [2], [4]]).strongly_fatter())
[[{1, 3}, {2, 4}],
[{1, 3}, {2}, {4}],
[{1}, {3}, {2, 4}],
[{1}, {3}, {2}, {4}]]
sage: sorted(OrderedSetPartition([[4], [1], [5], [3]]).strongly_fatter())
[[{4}, {1, 5}, {3}], [{4}, {1}, {5}, {3}]]

strongly_finer()
Return the set of ordered set partitions which are strongly finer than self.

See is_strongly_finer() for the definition of “strongly finer”.

EXAMPLES:

sage: C = OrderedSetPartition([[1, 3], [2]]).strongly_finer()
sage: C.cardinality()
2

(continues on next page)

5.1. Comprehensive Module List 2737

Combinatorics, Release 9.7

(continued from previous page)

sage: C.list()
[[{1}, {3}, {2}], [{1, 3}, {2}]]

sage: OrderedSetPartition([]).strongly_finer()
{[]}

sage: W = OrderedSetPartition([[4, 9], [-1, 2]])
sage: W.strongly_finer().list()
[[{4}, {9}, {-1}, {2}],
[{4}, {9}, {-1, 2}],
[{4, 9}, {-1}, {2}],
[{4, 9}, {-1, 2}]]

static sum(osps)
Return the concatenation of the given ordered set partitions osps (provided they have no elements in com-
mon).

INPUT:

• osps – a list (or iterable) of ordered set partitions

EXAMPLES:

sage: OrderedSetPartition.sum([OrderedSetPartition([[4, 1], [3]]),␣
→˓OrderedSetPartition([[7], [2]]), OrderedSetPartition([[5, 6]])])
[{1, 4}, {3}, {7}, {2}, {5, 6}]

Any iterable can be provided as input:

sage: Composition.sum([OrderedSetPartition([[2*i,2*i+1]]) for i in [4,1,3]])
[{8, 9}, {2, 3}, {6, 7}]

Empty inputs are handled gracefully:

sage: OrderedSetPartition.sum([]) == OrderedSetPartition([])
True

to_composition()
Return the integer composition whose parts are the sizes of the sets in self.

EXAMPLES:

sage: S = OrderedSetPartitions(5)
sage: x = S([[3,5,4], [1, 2]])
sage: x.to_composition()
[3, 2]
sage: y = S([[3,1], [2], [5,4]])
sage: y.to_composition()
[2, 1, 2]

to_packed_word()
Return the packed word on alphabet {1, 2, 3, . . .} corresponding to self.

A packed word on alphabet {1, 2, 3, . . .} is any word whose maximum letter is the same as its total number
of distinct letters. Let𝑃 be an ordered set partition of a set𝑋 . The corresponding packed word𝑤1𝑤2 · · ·𝑤𝑛
is constructed by having letter 𝑤𝑖 = 𝑗 if the 𝑖-th smallest entry in 𝑋 occurs in the 𝑗-th block of 𝑃 .

2738 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

Word.to_ordered_set_partition()

Warning: This assumes there is a total order on the underlying set (self._base_set).

EXAMPLES:

sage: S = OrderedSetPartitions()
sage: x = S([[3,5], [2], [1,4,6]])
sage: x.to_packed_word()
word: 321313
sage: x = S([['a', 'c', 'e'], ['b', 'd']])
sage: x.to_packed_word()
word: 12121

class sage.combinat.set_partition_ordered.OrderedSetPartitions(s)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Return the combinatorial class of ordered set partitions of s.

The optional argument c, if specified, restricts the parts of the partition to have certain sizes (the entries of c).

EXAMPLES:

sage: OS = OrderedSetPartitions([1,2,3,4]); OS
Ordered set partitions of {1, 2, 3, 4}
sage: OS.cardinality()
75
sage: OS.first()
[{1}, {2}, {3}, {4}]
sage: OS.last()
[{1, 2, 3, 4}]
sage: OS.random_element().parent() is OS
True

sage: OS = OrderedSetPartitions([1,2,3,4], [2,2]); OS
Ordered set partitions of {1, 2, 3, 4} into parts of size [2, 2]
sage: OS.cardinality()
6
sage: OS.first()
[{1, 2}, {3, 4}]
sage: OS.last()
[{3, 4}, {1, 2}]
sage: OS.list()
[[{1, 2}, {3, 4}],
[{1, 3}, {2, 4}],
[{1, 4}, {2, 3}],
[{2, 3}, {1, 4}],
[{2, 4}, {1, 3}],
[{3, 4}, {1, 2}]]

5.1. Comprehensive Module List 2739

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: OS = OrderedSetPartitions("cat")
sage: OS # random
Ordered set partitions of {'a', 't', 'c'}
sage: sorted(OS.list(), key=str)
[[{'a', 'c', 't'}],
[{'a', 'c'}, {'t'}],
[{'a', 't'}, {'c'}],
[{'a'}, {'c', 't'}],
[{'a'}, {'c'}, {'t'}],
[{'a'}, {'t'}, {'c'}],
[{'c', 't'}, {'a'}],
[{'c'}, {'a', 't'}],
[{'c'}, {'a'}, {'t'}],
[{'c'}, {'t'}, {'a'}],
[{'t'}, {'a', 'c'}],
[{'t'}, {'a'}, {'c'}],
[{'t'}, {'c'}, {'a'}]]

Element
alias of OrderedSetPartition

from_finite_word(w)
Return the unique ordered set partition of {1, 2, . . . , 𝑛} corresponding to a word 𝑤 of length 𝑛.

See also:

Word.to_ordered_set_partition()

EXAMPLES:

sage: A = OrderedSetPartitions().from_finite_word('abcabcabd'); A
[{1, 4, 7}, {2, 5, 8}, {3, 6}, {9}]
sage: B = OrderedSetPartitions().from_finite_word([1,2,3,1,2,3,1,2,4])
sage: A == B
True

class sage.combinat.set_partition_ordered.OrderedSetPartitions_all
Bases: sage.combinat.set_partition_ordered.OrderedSetPartitions

Ordered set partitions of {1, . . . , 𝑛} for all 𝑛 ∈ Z≥0.

class Element(parent, s)
Bases: sage.combinat.set_partition_ordered.OrderedSetPartition

subset(size=None, **kwargs)
Return the subset of ordered set partitions of a given size and additional keyword arguments.

EXAMPLES:

sage: P = OrderedSetPartitions()
sage: P.subset(4)
Ordered set partitions of {1, 2, 3, 4}

class sage.combinat.set_partition_ordered.OrderedSetPartitions_s(s)
Bases: sage.combinat.set_partition_ordered.OrderedSetPartitions

Class of ordered partitions of a set 𝑆.

2740 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

cardinality()
EXAMPLES:

sage: OrderedSetPartitions(0).cardinality()
1
sage: OrderedSetPartitions(1).cardinality()
1
sage: OrderedSetPartitions(2).cardinality()
3
sage: OrderedSetPartitions(3).cardinality()
13
sage: OrderedSetPartitions([1,2,3]).cardinality()
13
sage: OrderedSetPartitions(4).cardinality()
75
sage: OrderedSetPartitions(5).cardinality()
541

class sage.combinat.set_partition_ordered.OrderedSetPartitions_scomp(s, comp)
Bases: sage.combinat.set_partition_ordered.OrderedSetPartitions

cardinality()
Return the cardinality of self.

The number of ordered set partitions of a set of length 𝑘 with composition shape 𝜇 is equal to

𝑘!∏︀
𝜇𝑖 ̸=0 𝜇𝑖!

.

EXAMPLES:

sage: OrderedSetPartitions(5,[2,3]).cardinality()
10
sage: OrderedSetPartitions(0, []).cardinality()
1
sage: OrderedSetPartitions(0, [0]).cardinality()
1
sage: OrderedSetPartitions(0, [0,0]).cardinality()
1
sage: OrderedSetPartitions(5, [2,0,3]).cardinality()
10

class sage.combinat.set_partition_ordered.OrderedSetPartitions_sn(s, n)
Bases: sage.combinat.set_partition_ordered.OrderedSetPartitions

cardinality()
Return the cardinality of self.

The number of ordered partitions of a set of size 𝑛 into 𝑘 parts is equal to 𝑘!𝑆(𝑛, 𝑘) where 𝑆(𝑛, 𝑘) denotes
the Stirling number of the second kind.

EXAMPLES:

sage: OrderedSetPartitions(4,2).cardinality()
14
sage: OrderedSetPartitions(4,1).cardinality()
1

5.1. Comprehensive Module List 2741

Combinatorics, Release 9.7

class sage.combinat.set_partition_ordered.SplitNK(s, comp)
Bases: sage.combinat.set_partition_ordered.OrderedSetPartitions_scomp

5.1.276 Symmetric Functions

• Introduction to Symmetric Functions

• Symmetric Functions

• Symmetric functions, with their multiple realizations

• Classical symmetric functions

• Schur symmetric functions

• Monomial symmetric functions

• Multiplicative symmetric functions

• Elementary symmetric functions

• Homogeneous symmetric functions

• Power sum symmetric functions

• Characters of the symmetric group as bases of the symmetric functions

• Orthogonal Symmetric Functions

• Symplectic Symmetric Functions

• Generic dual bases symmetric functions

• Symmetric functions defined by orthogonality and triangularity

• Kostka-Foulkes Polynomials

• Hall-Littlewood Polynomials

• Hecke Character Basis

• Jack Symmetric Functions

• k-Schur Functions

• Quotient of symmetric function space by ideal generated by Hall-Littlewood symmetric functions

• LLT symmetric functions

• Macdonald Polynomials

• Non-symmetric Macdonald Polynomials

• Witt symmetric functions

2742 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.277 Characters of the symmetric group as bases of the symmetric functions

Just as the Schur functions are the irreducible characters of 𝐺𝑙𝑛 and form a basis of the symmetric functions, the
irreducible symmetric group character basis are the irreducible characters of of 𝑆𝑛 when the group is realized as the
permutation matrices.

REFERENCES:

class sage.combinat.sf.character.generic_character(Sym, basis_name=None, prefix=None,
graded=True)

Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

class sage.combinat.sf.character.induced_trivial_character_basis(Sym, pfix)
Bases: sage.combinat.sf.character.generic_character

The induced trivial symmetric group character basis of the symmetric functions.

This is a basis of the symmetric functions that has the property that self(la).
character_to_frobenius_image(n) is equal to h([n-sum(la)]+la).

It has the property that the (outer) structure constants are the analogue of the stable Kronecker coefficients on
the complete basis.

This basis is introduced in [OZ2015].

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: h = Sym.h()
sage: ht = SymmetricFunctions(QQ).ht()
sage: st = SymmetricFunctions(QQ).st()
sage: ht(s[2,1])
ht[1, 1] + ht[2, 1] - ht[3]
sage: s(ht[2,1])
s[1] - 2*s[1, 1] - 2*s[2] + s[2, 1] + s[3]
sage: ht(h[2,1])
ht[1] + 2*ht[1, 1] + ht[2, 1]
sage: h(ht[2,1])
h[1] - 2*h[1, 1] + h[2, 1]
sage: st(ht[2,1])
st[] + 2*st[1] + st[1, 1] + 2*st[2] + st[2, 1] + st[3]
sage: ht(st[2,1])
ht[1] - ht[1, 1] + ht[2, 1] - ht[3]
sage: ht[2]*ht[1,1]
ht[1, 1] + 2*ht[1, 1, 1] + ht[2, 1, 1]
sage: h[4,2].kronecker_product(h[4,1,1])
h[2, 2, 1, 1] + 2*h[3, 1, 1, 1] + h[4, 1, 1]
sage: s(st[2,1])
3*s[1] - 2*s[1, 1] - 2*s[2] + s[2, 1]
sage: st(s[2,1])
st[] + 3*st[1] + 2*st[1, 1] + 2*st[2] + st[2, 1]
sage: st[2]*st[1]
st[1] + st[1, 1] + st[2] + st[2, 1] + st[3]
sage: s[4,2].kronecker_product(s[5,1])
s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2] + s[5, 1]

5.1. Comprehensive Module List 2743

Combinatorics, Release 9.7

class sage.combinat.sf.character.irreducible_character_basis(Sym, pfix)
Bases: sage.combinat.sf.character.generic_character

The irreducible symmetric group character basis of the symmetric functions.

This is a basis of the symmetric functions that has the property that self(la).
character_to_frobenius_image(n) is equal to s([n-sum(la)]+la).

It should also have the property that the (outer) structure constants are the analogue of the stable Kronecker
coefficients on the Schur basis.

This basis is introduced in [OZ2015].

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: h = Sym.h()
sage: ht = SymmetricFunctions(QQ).ht()
sage: st = SymmetricFunctions(QQ).st()
sage: st(ht[2,1])
st[] + 2*st[1] + st[1, 1] + 2*st[2] + st[2, 1] + st[3]
sage: ht(st[2,1])
ht[1] - ht[1, 1] + ht[2, 1] - ht[3]
sage: s(st[2,1])
3*s[1] - 2*s[1, 1] - 2*s[2] + s[2, 1]
sage: st(s[2,1])
st[] + 3*st[1] + 2*st[1, 1] + 2*st[2] + st[2, 1]
sage: st[2]*st[1]
st[1] + st[1, 1] + st[2] + st[2, 1] + st[3]
sage: s[4,2].kronecker_product(s[5,1])
s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2] + s[5, 1]
sage: st[1,1,1].counit()
-1
sage: all(sum(c*st(la)*st(mu).antipode() for
....: ((la,mu),c) in st(ga).coproduct())==st(st(ga).counit())
....: for ga in Partitions(3))
True

5.1.278 Classical symmetric functions

class sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical(Sym, basis_name=None,
prefix=None,
graded=True)

Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

The class of classical symmetric functions.

Todo: delete this class once all coercions will be handled by Sage’s coercion model

class Element
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

A symmetric function.

2744 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.sf.classical.init()
Set up the conversion functions between the classical bases.

EXAMPLES:

sage: from sage.combinat.sf.classical import init
sage: sage.combinat.sf.classical.conversion_functions = {}
sage: init()
sage: sage.combinat.sf.classical.conversion_functions[('Schur', 'powersum')]
<built-in function t_SCHUR_POWSYM_symmetrica>

The following checks if the bug described in trac ticket #15312 is fixed.

sage: change = sage.combinat.sf.classical.conversion_functions[('powersum', 'Schur
→˓')]
sage: hideme = change({Partition([1]*47):ZZ(1)}) # long time
sage: change({Partition([2,2]):QQ(1)})
s[1, 1, 1, 1] - s[2, 1, 1] + 2*s[2, 2] - s[3, 1] + s[4]

5.1.279 Generic dual bases symmetric functions

class sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual(dual_basis, scalar, scalar_name='',
basis_name=None, prefix=None)

Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical

Generic dual basis of a basis of symmetric functions.

INPUT:

• dual_basis – a basis of the ring of symmetric functions

• scalar – A function 𝑧 on partitions which determines the scalar product on the power sum basis by
⟨𝑝𝜇, 𝑝𝜇⟩ = 𝑧(𝜇). (Independently on the function chosen, the power sum basis will always be orthogo-
nal; the function scalar only determines the norms of the basis elements.) This defaults to the function
zee defined in sage.combinat.sf.sfa, that is, the function is defined by:

𝜆 ↦→
∞∏︁
𝑖=1

𝑚𝑖(𝜆)!𝑖𝑚𝑖(𝜆)‘,

where𝑚𝑖(𝜆) means the number of times 𝑖 appears in 𝜆. This default function gives the standard Hall scalar
product on the ring of symmetric functions.

• scalar_name – (default: the empty string) a string giving a description of the scalar product specified by
the parameter scalar

• basis_name – (optional) a string to serve as name for the basis to be generated (such as “forgotten” in “the
forgotten basis”); don’t set it to any of the already existing basis names (such as homogeneous, monomial,
forgotten, etc.).

• prefix – (default: 'd' and the prefix for dual_basis) a string to use as the symbol for the basis

OUTPUT:

The basis of the ring of symmetric functions dual to the basis dual_basis with respect to the scalar product
determined by scalar.

EXAMPLES:

5.1. Comprehensive Module List 2745

https://trac.sagemath.org/15312

Combinatorics, Release 9.7

sage: e = SymmetricFunctions(QQ).e()
sage: f = e.dual_basis(prefix = "m", basis_name="Forgotten symmetric functions"); f
Symmetric Functions over Rational Field in the Forgotten symmetric functions basis
sage: TestSuite(f).run(elements = [f[1,1]+2*f[2], f[1]+3*f[1,1]])
sage: TestSuite(f).run() # long time (11s on sage.math, 2011)

This class defines canonical coercions between self and self^*, as follow:

Lookup for the canonical isomorphism from self to 𝑃 (=powersum), and build the adjoint isomorphism from
𝑃 * to self^*. Since 𝑃 is self-adjoint for this scalar product, derive an isomorphism from 𝑃 to self^*, and
by composition with the above get an isomorphism from self to self^* (and similarly for the isomorphism
self^* to self).

This should be striped down to just (auto?) defining canonical isomorphism by adjunction (as in MuPAD-
Combinat), and let the coercion handle the rest.

Inversions may not be possible if the base ring is not a field:

sage: m = SymmetricFunctions(ZZ).m()
sage: h = m.dual_basis(lambda x: 1)
sage: h[2,1]
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

By transitivity, this defines indirect coercions to and from all other bases:

sage: s = SymmetricFunctions(QQ['t'].fraction_field()).s()
sage: t = QQ['t'].fraction_field().gen()
sage: zee_hl = lambda x: x.centralizer_size(t=t)
sage: S = s.dual_basis(zee_hl)
sage: S(s([2,1]))
(-t/(t^5-2*t^4+t^3-t^2+2*t-1))*d_s[1, 1, 1] + ((-t^2-1)/(t^5-2*t^4+t^3-t^2+2*t-
→˓1))*d_s[2, 1] + (-t/(t^5-2*t^4+t^3-t^2+2*t-1))*d_s[3]

class Element(A, dictionary=None, dual=None)
Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical.Element

An element in the dual basis.

INPUT:

At least one of the following must be specified. The one (if any) which is not provided will be computed.

• dictionary – an internal dictionary for the monomials and coefficients of self

• dual – self as an element of the dual basis.

dual()
Return self in the dual basis.

OUTPUT:
• the element self expanded in the dual basis to self.parent()

EXAMPLES:

sage: m = SymmetricFunctions(QQ).monomial()
sage: zee = sage.combinat.sf.sfa.zee
sage: h = m.dual_basis(scalar=zee)

(continues on next page)

2746 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: a = h([2,1])
sage: a.parent()
Dual basis to Symmetric Functions over Rational Field in the monomial basis
sage: a.dual()
3*m[1, 1, 1] + 2*m[2, 1] + m[3]

expand(n, alphabet='x')
Expand the symmetric function self as a symmetric polynomial in n variables.

INPUT:
• n – a nonnegative integer
• alphabet – (default: 'x') a variable for the expansion

OUTPUT:

A monomial expansion of self in the 𝑛 variables labelled by alphabet.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).monomial()
sage: zee = sage.combinat.sf.sfa.zee
sage: h = m.dual_basis(zee)
sage: a = h([2,1])+h([3])
sage: a.expand(2)
2*x0^3 + 3*x0^2*x1 + 3*x0*x1^2 + 2*x1^3
sage: a.dual().expand(2)
2*x0^3 + 3*x0^2*x1 + 3*x0*x1^2 + 2*x1^3
sage: a.expand(2,alphabet='y')
2*y0^3 + 3*y0^2*y1 + 3*y0*y1^2 + 2*y1^3
sage: a.expand(2,alphabet='x,y')
2*x^3 + 3*x^2*y + 3*x*y^2 + 2*y^3
sage: h([1]).expand(0)
0
sage: (3*h([])).expand(0)
3

omega()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of sym-
metric functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th
elementary symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric func-
tion). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the
omega involution. It sends the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive
integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes
the conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 =
elementary, ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

omega_involution() is a synonym for the omega() method.

OUTPUT:
• the result of applying omega to self

5.1. Comprehensive Module List 2747

Combinatorics, Release 9.7

EXAMPLES:

sage: m = SymmetricFunctions(QQ).monomial()
sage: zee = sage.combinat.sf.sfa.zee
sage: h = m.dual_basis(zee)
sage: hh = SymmetricFunctions(QQ).homogeneous()
sage: hh([2,1]).omega()
h[1, 1, 1] - h[2, 1]
sage: h([2,1]).omega()
d_m[1, 1, 1] - d_m[2, 1]

omega_involution()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of sym-
metric functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th
elementary symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric func-
tion). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the
omega involution. It sends the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive
integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes
the conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 =
elementary, ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

omega_involution() is a synonym for the omega() method.

OUTPUT:
• the result of applying omega to self

EXAMPLES:

sage: m = SymmetricFunctions(QQ).monomial()
sage: zee = sage.combinat.sf.sfa.zee
sage: h = m.dual_basis(zee)
sage: hh = SymmetricFunctions(QQ).homogeneous()
sage: hh([2,1]).omega()
h[1, 1, 1] - h[2, 1]
sage: h([2,1]).omega()
d_m[1, 1, 1] - d_m[2, 1]

scalar(x)
Return the standard scalar product of self and x.

INPUT:
• x – element of the symmetric functions

OUTPUT:
• the scalar product between x and self

EXAMPLES:

sage: m = SymmetricFunctions(QQ).monomial()
sage: zee = sage.combinat.sf.sfa.zee
sage: h = m.dual_basis(scalar=zee)
sage: a = h([2,1])

(continues on next page)

2748 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: a.scalar(a)
2

scalar_hl(x)
Return the Hall-Littlewood scalar product of self and x.

INPUT:
• x – element of the same dual basis as self

OUTPUT:
• the Hall-Littlewood scalar product between x and self

EXAMPLES:

sage: m = SymmetricFunctions(QQ).monomial()
sage: zee = sage.combinat.sf.sfa.zee
sage: h = m.dual_basis(scalar=zee)
sage: a = h([2,1])
sage: a.scalar_hl(a)
(-t - 2)/(t^4 - 2*t^3 + 2*t - 1)

product(left, right)
Return product of left and right.

Multiplication is done by performing the multiplication in the dual basis of self and then converting back
to self.

INPUT:

• left, right – elements of self

OUTPUT:

• the product of left and right in the basis self

EXAMPLES:

sage: m = SymmetricFunctions(QQ).monomial()
sage: zee = sage.combinat.sf.sfa.zee
sage: h = m.dual_basis(scalar=zee)
sage: a = h([2])
sage: b = a*a; b # indirect doctest
d_m[2, 2]
sage: b.dual()
6*m[1, 1, 1, 1] + 4*m[2, 1, 1] + 3*m[2, 2] + 2*m[3, 1] + m[4]

transition_matrix(basis, n)
Returns the transition matrix between the 𝑛𝑡ℎ homogeneous components of self and basis.

INPUT:

• basis – a target basis of the ring of symmetric functions

• n – nonnegative integer

OUTPUT:

• A transition matrix from self to basis for the elements of degree n. The indexing order of the rows
and columns is the order of Partitions(n).

EXAMPLES:

5.1. Comprehensive Module List 2749

Combinatorics, Release 9.7

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: e = Sym.elementary()
sage: f = e.dual_basis()
sage: f.transition_matrix(s, 5)
[1 -1 0 1 0 -1 1]
[-2 1 1 -1 -1 1 0]
[-2 2 -1 -1 1 0 0]
[3 -1 -1 1 0 0 0]
[3 -2 1 0 0 0 0]
[-4 1 0 0 0 0 0]
[1 0 0 0 0 0 0]
sage: Partitions(5).list()
[[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1]]
sage: s(f[2,2,1])
s[3, 2] - 2*s[4, 1] + 3*s[5]
sage: e.transition_matrix(s, 5).inverse().transpose()
[1 -1 0 1 0 -1 1]
[-2 1 1 -1 -1 1 0]
[-2 2 -1 -1 1 0 0]
[3 -1 -1 1 0 0 0]
[3 -2 1 0 0 0 0]
[-4 1 0 0 0 0 0]
[1 0 0 0 0 0 0]

5.1.280 Elementary symmetric functions

class sage.combinat.sf.elementary.SymmetricFunctionAlgebra_elementary(Sym)
Bases: sage.combinat.sf.multiplicative.SymmetricFunctionAlgebra_multiplicative

A class for methods for the elementary basis of the symmetric functions.

INPUT:

• self – an elementary basis of the symmetric functions

• Sym – an instance of the ring of symmetric functions

class Element
Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical.Element

expand(n, alphabet='x')
Expand the symmetric function self as a symmetric polynomial in n variables.

INPUT:
• n – a nonnegative integer
• alphabet – (default: 'x') a variable for the expansion

OUTPUT:

A monomial expansion of self in the 𝑛 variables labelled by alphabet.

EXAMPLES:

sage: e = SymmetricFunctions(QQ).e()
sage: e([2,1]).expand(3)
x0^2*x1 + x0*x1^2 + x0^2*x2 + 3*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2

(continues on next page)

2750 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: e([1,1,1]).expand(2)
x0^3 + 3*x0^2*x1 + 3*x0*x1^2 + x1^3
sage: e([3]).expand(2)
0
sage: e([2]).expand(3)
x0*x1 + x0*x2 + x1*x2
sage: e([3]).expand(4,alphabet='x,y,z,t')
x*y*z + x*y*t + x*z*t + y*z*t
sage: e([3]).expand(4,alphabet='y')
y0*y1*y2 + y0*y1*y3 + y0*y2*y3 + y1*y2*y3
sage: e([]).expand(2)
1
sage: e([]).expand(0)
1
sage: (3*e([])).expand(0)
3

exponential_specialization(t=None, q=1)
Return the exponential specialization of a symmetric function (when 𝑞 = 1), or the 𝑞-exponential
specialization (when 𝑞 ̸= 1).

The exponential specialization 𝑒𝑥 at 𝑡 is a𝐾-algebra homomorphism from the𝐾-algebra of symmetric
functions to another 𝐾-algebra 𝑅. It is defined whenever the base ring 𝐾 is a Q-algebra and 𝑡 is an
element of 𝑅. The easiest way to define it is by specifying its values on the powersum symmetric
functions to be 𝑝1 = 𝑡 and 𝑝𝑛 = 0 for 𝑛 > 1. Equivalently, on the homogeneous functions it is given
by 𝑒𝑥(ℎ𝑛) = 𝑡𝑛/𝑛!; see Proposition 7.8.4 of [EnumComb2].

By analogy, the 𝑞-exponential specialization is a 𝐾-algebra homomorphism from the 𝐾-algebra of
symmetric functions to another 𝐾-algebra 𝑅 that depends on two elements 𝑡 and 𝑞 of 𝑅 for which the
elements 1 − 𝑞𝑖 for all positive integers 𝑖 are invertible. It can be defined by specifying its values on
the complete homogeneous symmetric functions to be

𝑒𝑥𝑞(ℎ𝑛) = 𝑡𝑛/[𝑛]𝑞!,

where [𝑛]𝑞! is the 𝑞-factorial. Equivalently, for 𝑞 ̸= 1 and a homogeneous symmetric function 𝑓 of
degree 𝑛, we have

𝑒𝑥𝑞(𝑓) = (1− 𝑞)𝑛𝑡𝑛𝑝𝑠𝑞(𝑓),

where 𝑝𝑠𝑞(𝑓) is the stable principal specialization of 𝑓 (see principal_specialization()). (See
(7.29) in [EnumComb2].)

The limit of 𝑒𝑥𝑞 as 𝑞 → 1 is 𝑒𝑥.

INPUT:
• t (default: None) – the value to use for 𝑡; the default is to create a ring of polynomials in t.
• q (default: 1) – the value to use for 𝑞. If q is None, then a ring (or fraction field) of polynomials

in q is created.
EXAMPLES:

sage: e = SymmetricFunctions(QQ).e()
sage: x = e[3,2]
sage: x.exponential_specialization()
1/12*t^5
sage: x = 5*e[2] + 3*e[1] + 1

(continues on next page)

5.1. Comprehensive Module List 2751

Combinatorics, Release 9.7

(continued from previous page)

sage: x.exponential_specialization(t=var("t"), q=var("q"))
5*q*t^2/(q + 1) + 3*t + 1

omega()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of sym-
metric functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th
elementary symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric func-
tion). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the
omega involution. It sends the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive
integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes
the conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 =
elementary, ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

omega_involution() is a synonym for the omega() method.

EXAMPLES:

sage: e = SymmetricFunctions(QQ).e()
sage: a = e([2,1]); a
e[2, 1]
sage: a.omega()
e[1, 1, 1] - e[2, 1]

sage: h = SymmetricFunctions(QQ).h()
sage: h(e([2,1]).omega())
h[2, 1]

omega_involution()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of sym-
metric functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th
elementary symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric func-
tion). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the
omega involution. It sends the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive
integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes
the conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 =
elementary, ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

omega_involution() is a synonym for the omega() method.

EXAMPLES:

2752 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: e = SymmetricFunctions(QQ).e()
sage: a = e([2,1]); a
e[2, 1]
sage: a.omega()
e[1, 1, 1] - e[2, 1]

sage: h = SymmetricFunctions(QQ).h()
sage: h(e([2,1]).omega())
h[2, 1]

principal_specialization(n=+ Infinity, q=None)
Return the principal specialization of a symmetric function.

The principal specialization of order𝑛 at 𝑞 is the ring homomorphism 𝑝𝑠𝑛,𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for 𝑖 ∈ {1, . . . , 𝑛} and 𝑥𝑖 ↦→ 0 for
𝑖 > 𝑛. Here, 𝑞 is a given element of 𝑅, and we assume that the variables of our symmetric functions
are 𝑥1, 𝑥2, 𝑥3, (To be more precise, 𝑝𝑠𝑛,𝑞 is a 𝐾-algebra homomorphism, where 𝐾 is the base
ring.) See Section 7.8 of [EnumComb2].

The stable principal specialization at 𝑞 is the ring homomorphism 𝑝𝑠𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for all 𝑖. This is well-defined only if the
resulting infinite sums converge; thus, in particular, setting 𝑞 = 1 in the stable principal specialization
is an invalid operation.

INPUT:
• n (default: infinity) – a nonnegative integer or infinity, specifying whether to compute the

principal specialization of order n or the stable principal specialization.
• q (default: None) – the value to use for 𝑞; the default is to create a ring of polynomials in q (or a

field of rational functions in q) over the given coefficient ring.
We use the formulas from Proposition 7.8.3 of [EnumComb2] (using Gaussian binomial coefficients(︀
𝑢
𝑣

)︀
𝑞
):

𝑝𝑠𝑛,𝑞(𝑒𝜆) =
∏︁
𝑖

𝑞(
𝜆𝑖
2)
(︂
𝑛

𝜆𝑖

)︂
𝑞

,

𝑝𝑠𝑛,1(𝑒𝜆) =
∏︁
𝑖

(︂
𝑛

𝜆𝑖

)︂
,

𝑝𝑠𝑞(𝑒𝜆) =
∏︁
𝑖

𝑞(
𝜆𝑖
2)/

𝜆𝑖∏︁
𝑗=1

(1− 𝑞𝑗).

EXAMPLES:

sage: e = SymmetricFunctions(QQ).e()
sage: x = e[3,1]
sage: x.principal_specialization(3)
q^5 + q^4 + q^3
sage: x = 5*e[1,1,1] + 3*e[2,1] + 1
sage: x.principal_specialization(3)
5*q^6 + 18*q^5 + 36*q^4 + 44*q^3 + 36*q^2 + 18*q + 6

By default, we return a rational functions in 𝑞. Sometimes it is better to obtain an element of the
symbolic ring:

5.1. Comprehensive Module List 2753

Combinatorics, Release 9.7

sage: x.principal_specialization(q=var("q"))
-3*q/((q^2 - 1)*(q - 1)^2) - 5/(q - 1)^3 + 1

verschiebung(n)
Return the image of the symmetric function self under the 𝑛-th Verschiebung operator.

The 𝑛-th Verschiebung operator V𝑛 is defined to be the unique algebra endomorphism 𝑉 of the ring
of symmetric functions that satisfies 𝑉 (ℎ𝑟) = ℎ𝑟/𝑛 for every positive integer 𝑟 divisible by 𝑛, and
satisfies 𝑉 (ℎ𝑟) = 0 for every positive integer 𝑟 not divisible by 𝑛. This operator V𝑛 is a Hopf algebra
endomorphism. For every nonnegative integer 𝑟 with 𝑛 | 𝑟, it satisfies

V𝑛(ℎ𝑟) = ℎ𝑟/𝑛, V𝑛(𝑝𝑟) = 𝑛𝑝𝑟/𝑛, V𝑛(𝑒𝑟) = (−1)𝑟−𝑟/𝑛𝑒𝑟/𝑛

(where ℎ is the complete homogeneous basis, 𝑝 is the powersum basis, and 𝑒 is the elementary basis).
For every nonnegative integer 𝑟 with 𝑛 - 𝑟, it satisfes

V𝑛(ℎ𝑟) = V𝑛(𝑝𝑟) = V𝑛(𝑒𝑟) = 0.

The 𝑛-th Verschiebung operator is also called the 𝑛-th Verschiebung endomorphism. Its name derives
from the Verschiebung (German for “shift”) endomorphism of the Witt vectors.

The 𝑛-th Verschiebung operator is adjoint to the 𝑛-th Frobenius operator (see frobenius() for its
definition) with respect to the Hall scalar product (scalar()).

The action of the 𝑛-th Verschiebung operator on the Schur basis can also be computed explicitly. The
following (probably clumsier than necessary) description can be obtained by solving exercise 7.61 in
Stanley [STA].

Let 𝜆 be a partition. Let 𝑛 be a positive integer. If the 𝑛-core of 𝜆 is nonempty, then V𝑛(𝑠𝜆) = 0.
Otherwise, the following method computes V𝑛(𝑠𝜆): Write the partition 𝜆 in the form (𝜆1, 𝜆2, ..., 𝜆𝑛𝑠)
for some nonnegative integer 𝑠. (If 𝑛 does not divide the length of 𝜆, then this is achieved by adding
trailing zeroes to 𝜆.) Set 𝛽𝑖 = 𝜆𝑖 + 𝑛𝑠 − 𝑖 for every 𝑠 ∈ {1, 2, . . . , 𝑛𝑠}. Then, (𝛽1, 𝛽2, ..., 𝛽𝑛𝑠) is
a strictly decreasing sequence of nonnegative integers. Stably sort the list (1, 2, . . . , 𝑛𝑠) in order of
(weakly) increasing remainder of −1− 𝛽𝑖 modulo 𝑛. Let 𝜉 be the sign of the permutation that is used
for this sorting. Let 𝜓 be the sign of the permutation that is used to stably sort the list (1, 2, . . . , 𝑛𝑠)
in order of (weakly) increasing remainder of 𝑖− 1 modulo 𝑛. (Notice that 𝜓 = (−1)𝑛(𝑛−1)𝑠(𝑠−1)/4.)
Then, V𝑛(𝑠𝜆) = 𝜉𝜓

∏︀𝑛−1
𝑖=0 𝑠𝜆(𝑖) , where (𝜆(0), 𝜆(1), . . . , 𝜆(𝑛−1)) is the 𝑛-quotient of 𝜆.

INPUT:
• n – a positive integer

OUTPUT:

The result of applying the 𝑛-th Verschiebung operator (on the ring of symmetric functions) to self.

EXAMPLES:

sage: Sym = SymmetricFunctions(ZZ)
sage: e = Sym.e()
sage: e[3].verschiebung(2)
0
sage: e[4].verschiebung(4)
-e[1]

The Verschiebung endomorphisms are multiplicative:

sage: all(all(e(lam).verschiebung(2) * e(mu).verschiebung(2)
....: == (e(lam) * e(mu)).verschiebung(2)

(continues on next page)

2754 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: for mu in Partitions(4))

....: for lam in Partitions(4))
True

coproduct_on_generators(i)
Returns the coproduct on self[i].

INPUT:

• self – an elementary basis of the symmetric functions

• i – a nonnegative integer

OUTPUT:

• returns the coproduct on the elementary generator 𝑒(𝑖)

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: e = Sym.elementary()
sage: e.coproduct_on_generators(2)
e[] # e[2] + e[1] # e[1] + e[2] # e[]
sage: e.coproduct_on_generators(0)
e[] # e[]

5.1.281 Hall-Littlewood Polynomials

Notation used in the definitions follows mainly [Mac1995].

class sage.combinat.sf.hall_littlewood.HallLittlewood(Sym, t='t')
Bases: sage.structure.unique_representation.UniqueRepresentation

The family of Hall-Littlewood symmetric function bases.

The Hall-Littlewood symmetric functions are a family of symmetric functions that depend on a parameter 𝑡.

INPUT:

By default the parameter for these functions is 𝑡, and whatever the parameter is, it must be in the base ring.

EXAMPLES:

sage: SymmetricFunctions(QQ).hall_littlewood(1)
Hall-Littlewood polynomials with t=1 over Rational Field
sage: SymmetricFunctions(QQ['t'].fraction_field()).hall_littlewood()
Hall-Littlewood polynomials over Fraction Field of Univariate Polynomial Ring in t␣
→˓over Rational Field

P()
Return the algebra of symmetric functions in the Hall-Littlewood 𝑃 basis. This is the same as the𝐻𝐿 basis
in John Stembridge’s SF examples file.

INPUT:

• self – a class of Hall-Littlewood symmetric function bases

OUTPUT:

The class of the Hall-Littlewood 𝑃 basis.

5.1. Comprehensive Module List 2755

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P(); HLP
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Hall-Littlewood P basis
sage: SP = Sym.hall_littlewood(t=-1).P(); SP
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Hall-Littlewood P with t=-1 basis
sage: s = Sym.schur()
sage: s(HLP([2,1]))
(-t^2-t)*s[1, 1, 1] + s[2, 1]

The Hall-Littlewood polynomials in the 𝑃 basis at 𝑡 = 0 are the Schur functions:

sage: Sym = SymmetricFunctions(QQ)
sage: HLP = Sym.hall_littlewood(t=0).P()
sage: s = Sym.schur()
sage: s(HLP([2,1])) == s([2,1])
True

The Hall-Littlewood polynomials in the 𝑃 basis at 𝑡 = 1 are the monomial symmetric functions:

sage: Sym = SymmetricFunctions(QQ)
sage: HLP = Sym.hall_littlewood(t=1).P()
sage: m = Sym.monomial()
sage: m(HLP([2,2,1])) == m([2,2,1])
True

We end with some examples of coercions between:

1. Hall-Littlewood 𝑃 basis.

2. Hall-Littlewood polynomials in the 𝑄 basis

3. Hall-Littlewood polynomials in the 𝑄′ basis (via the Schurs)

4. Classical symmetric functions

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQp = Sym.hall_littlewood().Qp()
sage: s = Sym.schur()
sage: p = Sym.power()
sage: HLP(HLQ([2])) # indirect doctest
(-t+1)*HLP[2]
sage: HLP(HLQp([2]))
t*HLP[1, 1] + HLP[2]
sage: HLP(s([2]))
t*HLP[1, 1] + HLP[2]
sage: HLP(p([2]))
(t-1)*HLP[1, 1] + HLP[2]
sage: s = HLQp.symmetric_function_ring().s()
sage: HLQp.transition_matrix(s,3)
[1 0 0]

(continues on next page)

2756 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[t 1 0]
[t^3 t^2 + t 1]
sage: s.transition_matrix(HLP,3)
[1 t t^3]
[0 1 t^2 + t]
[0 0 1]

The method sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element.
hl_creation_operator() is a creation operator for the 𝑄 basis:

sage: HLQp[1].hl_creation_operator([3]).hl_creation_operator([3])
HLQp[3, 3, 1]

Transitions between bases with the parameter 𝑡 specialized:

sage: Sym = SymmetricFunctions(FractionField(QQ['y','z']))
sage: (y,z) = Sym.base_ring().gens()
sage: HLy = Sym.hall_littlewood(t=y)
sage: HLz = Sym.hall_littlewood(t=z)
sage: Qpy = HLy.Qp()
sage: Qpz = HLz.Qp()
sage: s = Sym.schur()
sage: s(Qpy[3,1] + z*Qpy[2,2])
z*s[2, 2] + (y*z+1)*s[3, 1] + (y^2*z+y)*s[4]
sage: s(Qpy[3,1] + y*Qpz[2,2])
y*s[2, 2] + (y*z+1)*s[3, 1] + (y*z^2+y)*s[4]
sage: s(Qpy[3,1] + y*Qpy[2,2])
y*s[2, 2] + (y^2+1)*s[3, 1] + (y^3+y)*s[4]

sage: Qy = HLy.Q()
sage: Qz = HLz.Q()
sage: Py = HLy.P()
sage: Pz = HLz.P()
sage: Pz(Qpy[2,1])
(y*z^3+z^2+z)*HLP[1, 1, 1] + (y*z+1)*HLP[2, 1] + y*HLP[3]
sage: Pz(Qz[2,1])
(z^2-2*z+1)*HLP[2, 1]
sage: Qz(Py[2])
((-y+z)/(z^3-z^2-z+1))*HLQ[1, 1] + (1/(-z+1))*HLQ[2]
sage: Qy(Pz[2])
((y-z)/(y^3-y^2-y+1))*HLQ[1, 1] + (1/(-y+1))*HLQ[2]
sage: Qy.hall_littlewood_family() == HLy
True
sage: Qy.hall_littlewood_family() == HLz
False
sage: Qz.symmetric_function_ring() == Qy.symmetric_function_ring()
True

sage: Sym = SymmetricFunctions(FractionField(QQ['q']))
sage: q = Sym.base_ring().gen()
sage: HL = Sym.hall_littlewood(t=q)
sage: HLQp = HL.Qp()

(continues on next page)

5.1. Comprehensive Module List 2757

Combinatorics, Release 9.7

(continued from previous page)

sage: HLQ = HL.Q()
sage: HLP = HL.P()
sage: s = Sym.schur()
sage: s(HLQp[3,2].plethysm((1-q)*s[1]))/(1-q)^2
(-q^5-q^4)*s[1, 1, 1, 1, 1] + (q^3+q^2)*s[2, 1, 1, 1] - q*s[2, 2, 1] - q*s[3, 1,
→˓ 1] + s[3, 2]
sage: s(HLP[3,2])
(-q^5-q^4)*s[1, 1, 1, 1, 1] + (q^3+q^2)*s[2, 1, 1, 1] - q*s[2, 2, 1] - q*s[3, 1,
→˓ 1] + s[3, 2]

The 𝑃 and 𝑄-Schur at 𝑡 = −1 indexed by strict partitions are a basis for the space algebraically generated
by the odd power sum symmetric functions:

sage: Sym = SymmetricFunctions(FractionField(QQ['q']))
sage: SP = Sym.hall_littlewood(t=-1).P()
sage: SQ = Sym.hall_littlewood(t=-1).Q()
sage: p = Sym.power()
sage: SP(SQ[3,2,1])
8*HLP[3, 2, 1]
sage: SP(SQ[2,2,1])
0
sage: p(SP[3,2,1])
1/45*p[1, 1, 1, 1, 1, 1] - 1/9*p[3, 1, 1, 1] - 1/9*p[3, 3] + 1/5*p[5, 1]
sage: SP(p[3,3])
-4*HLP[3, 2, 1] + 2*HLP[4, 2] - 2*HLP[5, 1] + HLP[6]
sage: SQ(SQ[1]*SQ[3] -2*(1-q)*SQ[4])
HLQ[3, 1] + 2*q*HLQ[4]

Q()
Returns the algebra of symmetric functions in Hall-Littlewood 𝑄 basis. This is the same as the 𝑄 basis in
John Stembridge’s SF examples file.

More extensive examples can be found in the documentation for the Hall-Littlewood 𝑃 basis.

INPUT:

• self – a class of Hall-Littlewood symmetric function bases

OUTPUT:

• returns the class of the Hall-Littlewood 𝑄 basis

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLQ = Sym.hall_littlewood().Q(); HLQ
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Hall-Littlewood Q basis
sage: SQ = SymmetricFunctions(QQ).hall_littlewood(t=-1).Q(); SQ
Symmetric Functions over Rational Field in the Hall-Littlewood Q with t=-1 basis

Qp()
Returns the algebra of symmetric functions in Hall-Littlewood 𝑄′ (Qp) basis. This is dual to the Hall-
Littlewood 𝑃 basis with respect to the standard scalar product.

More extensive examples can be found in the documentation for the Hall-Littlewood P basis.

2758 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• self – a class of Hall-Littlewood symmetric function bases

OUTPUT:

• returns the class of the Hall-Littlewood 𝑄𝑝-basis

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLQp = Sym.hall_littlewood().Qp(); HLQp
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Hall-Littlewood Qp basis

base_ring()
Returns the base ring of the symmetric functions where the Hall-Littlewood symmetric functions live

INPUT:

• self – a class of Hall-Littlewood symmetric function bases

OUTPUT:

The base ring of the symmetric functions.

EXAMPLES:

sage: HL = SymmetricFunctions(QQ['t'].fraction_field()).hall_littlewood(t=1)
sage: HL.base_ring()
Fraction Field of Univariate Polynomial Ring in t over Rational Field

symmetric_function_ring()
The ring of symmetric functions associated to the class of Hall-Littlewood symmetric functions

INPUT:

• self – a class of Hall-Littlewood symmetric function bases

OUTPUT:

• returns the ring of symmetric functions

EXAMPLES:

sage: HL = SymmetricFunctions(FractionField(QQ['t'])).hall_littlewood()
sage: HL.symmetric_function_ring()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field

class sage.combinat.sf.hall_littlewood.HallLittlewood_generic(hall_littlewood)
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

A class with methods for working with Hall-Littlewood symmetric functions which are common to all bases.

INPUT:

• self – a Hall-Littlewood symmetric function basis

• hall_littlewood – a class of Hall-Littlewood bases

class Element
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

Methods for elements of a Hall-Littlewood basis that are common to all bases.

5.1. Comprehensive Module List 2759

Combinatorics, Release 9.7

expand(n, alphabet='x')
Expands the symmetric function as a symmetric polynomial in n variables.

INPUT:
• self – an element of a Hall-Littlewood basis
• n – a positive integer
• alphabet – a string representing a variable name (default: ‘x’)

OUTPUT:
• returns a symmetric polynomial of self in n variables

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQp = Sym.hall_littlewood().Qp()
sage: HLP([2]).expand(2)
x0^2 + (-t + 1)*x0*x1 + x1^2
sage: HLQ([2]).expand(2)
(-t + 1)*x0^2 + (t^2 - 2*t + 1)*x0*x1 + (-t + 1)*x1^2
sage: HLQp([2]).expand(2)
x0^2 + x0*x1 + x1^2
sage: HLQp([2]).expand(2, 'y')
y0^2 + y0*y1 + y1^2
sage: HLQp([2]).expand(1)
x^2

scalar(x, zee=None)
Returns standard scalar product between self and x.

This is the default implementation that converts both self and x into Schur functions and performs
the scalar product that basis.

The Hall-Littlewood 𝑃 basis is dual to the 𝑄𝑝 basis with respect to this scalar product.

INPUT:
• self – an element of a Hall-Littlewood basis
• x – another symmetric element of the symmetric functions

OUTPUT:
• returns the scalar product between self and x

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQp = Sym.hall_littlewood().Qp()
sage: HLP([2]).scalar(HLQp([2]))
1
sage: HLP([2]).scalar(HLQp([1,1]))
0
sage: HLP([2]).scalar(HLQ([2]), lambda mu: mu.centralizer_size(t = HLP.t))
1
sage: HLP([2]).scalar(HLQ([1,1]), lambda mu: mu.centralizer_size(t = HLP.t))
0

scalar_hl(x, t=None)
Returns the Hall-Littlewood (with parameter t) scalar product of self and x.

2760 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The Hall-Littlewood scalar product is defined in Macdonald’s book [Mac1995]. The power sum basis
is orthogonal and ⟨𝑝𝜇, 𝑝𝜇⟩ = 𝑧𝜇

∏︀
𝑖 1/(1− 𝑡𝜇𝑖)

The Hall-Littlewood 𝑃 basis is dual to the 𝑄 basis with respect to this scalar product.

INPUT:
• self – an element of a Hall-Littlewood basis
• x – another symmetric element of the symmetric functions
• t – an optional parameter, if this parameter is not specified then the value of the t from the basis

is used in the calculation
OUTPUT:

• returns the Hall-Littlewood scalar product between self and x
EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLP([2]).scalar_hl(HLQ([2]))
1
sage: HLP([2]).scalar_hl(HLQ([1,1]))
0
sage: HLQ([2]).scalar_hl(HLQ([2]))
-t + 1
sage: HLQ([2]).scalar_hl(HLQ([1,1]))
0
sage: HLP([2]).scalar_hl(HLP([2]))
-1/(t - 1)

hall_littlewood_family()
The family of Hall-Littlewood bases associated to self

INPUT:

• self – a Hall-Littlewood symmetric function basis

OUTPUT:

• returns the class of Hall-Littlewood bases

EXAMPLES:

sage: HLP = SymmetricFunctions(FractionField(QQ['t'])).hall_littlewood(1).P()
sage: HLP.hall_littlewood_family()
Hall-Littlewood polynomials with t=1 over Fraction Field of Univariate␣
→˓Polynomial Ring in t over Rational Field

product(left, right)
Multiply an element of the Hall-Littlewood symmetric function basis self and another symmetric function

Convert to the Schur basis, do the multiplication there, and convert back to self basis.

INPUT:

• self – a Hall-Littlewood symmetric function basis

• left – an element of the basis self

• right – another symmetric function

OUTPUT:

5.1. Comprehensive Module List 2761

Combinatorics, Release 9.7

the product of left and right expanded in the basis self

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLP([2])^2 # indirect doctest
(t+1)*HLP[2, 2] + (-t+1)*HLP[3, 1] + HLP[4]

sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQ([2])^2 # indirect doctest
HLQ[2, 2] + (-t+1)*HLQ[3, 1] + (-t+1)*HLQ[4]

sage: HLQp = Sym.hall_littlewood().Qp()
sage: HLQp([2])^2 # indirect doctest
HLQp[2, 2] + (-t+1)*HLQp[3, 1] + (-t+1)*HLQp[4]

transition_matrix(basis, n)
Returns the transitions matrix between self and basis for the homogeneous component of degree n.

INPUT:

• self – a Hall-Littlewood symmetric function basis

• basis – another symmetric function basis

• n – a non-negative integer representing the degree

OUTPUT:

• Returns a 𝑟 × 𝑟 matrix of elements of the base ring of self where 𝑟 is the number of partitions of n.
The entry corresponding to row 𝜇, column 𝜈 is the coefficient of basis (𝜈) in self (𝜇)

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: s = Sym.schur()
sage: HLP.transition_matrix(s, 4)
[1 -t 0 t^2 -t^3]
[0 1 -t -t t^3 + t^2]
[0 0 1 -t t^3]
[0 0 0 1 -t^3 - t^2 - t]
[0 0 0 0 1]
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQ.transition_matrix(s,3)
[-t + 1 t^2 - t ␣
→˓ -t^3 + t^2]
[0 t^2 - 2*t + 1 -t^4 +␣
→˓t^3 + t^2 - t]
[0 0 -t^6 + t^5 + t^4␣
→˓- t^2 - t + 1]
sage: HLQp = Sym.hall_littlewood().Qp()
sage: HLQp.transition_matrix(s,3)
[1 0 0]
[t 1 0]
[t^3 t^2 + t 1]

2762 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.sf.hall_littlewood.HallLittlewood_p(hall_littlewood)
Bases: sage.combinat.sf.hall_littlewood.HallLittlewood_generic

A class representing the Hall-Littlewood 𝑃 basis of symmetric functions

class Element
Bases: sage.combinat.sf.hall_littlewood.HallLittlewood_generic.Element

class sage.combinat.sf.hall_littlewood.HallLittlewood_q(hall_littlewood)
Bases: sage.combinat.sf.hall_littlewood.HallLittlewood_generic

The 𝑄 basis is defined as a normalization of the 𝑃 basis.

INPUT:

• self – an instance of the Hall-Littlewood 𝑃 basis

• hall_littlewood – a class for the family of Hall-Littlewood bases

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: Q = Sym.hall_littlewood().Q()
sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_
→˓prod']) # products are too expensive, long time (3s on sage.math, 2012)
sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]]) # long␣
→˓time (depends on previous)

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQp = Sym.hall_littlewood().Qp()
sage: s = Sym.schur(); p = Sym.power()
sage: HLQ(HLP([2,1]) + HLP([3]))
(1/(t^2-2*t+1))*HLQ[2, 1] - (1/(t-1))*HLQ[3]
sage: HLQ(HLQp([2])) # indirect doctest
(t/(t^3-t^2-t+1))*HLQ[1, 1] - (1/(t-1))*HLQ[2]
sage: HLQ(s([2]))
(t/(t^3-t^2-t+1))*HLQ[1, 1] - (1/(t-1))*HLQ[2]
sage: HLQ(p([2]))
(1/(t^2-1))*HLQ[1, 1] - (1/(t-1))*HLQ[2]

class Element
Bases: sage.combinat.sf.hall_littlewood.HallLittlewood_generic.Element

class sage.combinat.sf.hall_littlewood.HallLittlewood_qp(hall_littlewood)
Bases: sage.combinat.sf.hall_littlewood.HallLittlewood_generic

The Hall-Littlewood 𝑄𝑝 basis is calculated through the symmetrica library (see the function
HallLittlewood_qp._to_s()).

INPUT:

• self – an instance of the Hall-Littlewood 𝑃 basis

• hall_littlewood – a class for the family of Hall-Littlewood bases

EXAMPLES:

5.1. Comprehensive Module List 2763

Combinatorics, Release 9.7

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: Qp = Sym.hall_littlewood().Q()
sage: TestSuite(Qp).run(skip=['_test_passociativity', '_test_distributivity', '_
→˓test_prod']) # products are too expensive, long time (3s on sage.math, 2012)
sage: TestSuite(Qp).run(elements = [Qp.t*Qp[1,1]+Qp[2], Qp[1]+(1+Qp.t)*Qp[1,1]]) #␣
→˓long time (depends on previous)

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQp = Sym.hall_littlewood().Qp()
sage: s = Sym.schur(); p = Sym.power()
sage: HLQp(HLP([2])) # indirect doctest
-t*HLQp[1, 1] + (t^2+1)*HLQp[2]
sage: HLQp(s(HLQ([2]))) # work around bug reported in ticket #12969
(t^2-t)*HLQp[1, 1] + (-t^3+t^2-t+1)*HLQp[2]
sage: HLQp(s([2]))
HLQp[2]
sage: HLQp(p([2]))
-HLQp[1, 1] + (t+1)*HLQp[2]
sage: s = HLQp.symmetric_function_ring().s()
sage: HLQp.transition_matrix(s,3)
[1 0 0]
[t 1 0]
[t^3 t^2 + t 1]
sage: s.transition_matrix(HLP,3)
[1 t t^3]
[0 1 t^2 + t]
[0 0 1]

class Element
Bases: sage.combinat.sf.hall_littlewood.HallLittlewood_generic.Element

5.1.282 Hecke Character Basis

The basis of symmetric functions given by characters of the Hecke algebra (of type 𝐴).

AUTHORS:

• Travis Scrimshaw (2017-08): Initial version

class sage.combinat.sf.hecke.HeckeCharacter(sym, q='q')
Bases: sage.combinat.sf.multiplicative.SymmetricFunctionAlgebra_multiplicative

Basis of the symmetric functions that gives the characters of the Hecke algebra in analogy to the Frobenius
formula for the symmetric group.

Consider the Hecke algebra 𝐻𝑛(𝑞) with quadratic relations

𝑇 2
𝑖 = (𝑞 − 1)𝑇𝑖 + 𝑞.

Let 𝜇 be a partition of 𝑛 with length ℓ. The character 𝜒 of a 𝐻𝑛(𝑞)-representation is completely determined by
the elements 𝑇𝛾𝜇 , where

𝛾𝜇 = (𝜇1, . . . , 1)(𝜇2 + 𝜇1, . . . , 1 + 𝜇1) · · · (𝑛, . . . , 1 +
∑︁
𝑖<ℓ

𝜇𝑖),

2764 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(written in cycle notation). We define a basis of the symmetric functions by

𝑞𝜇 =
∑︁
𝜆⊢𝑛

𝜒𝜆(𝑇𝛾𝜇)𝑠𝜆.

INPUT:

• sym – the ring of symmetric functions

• q – (default: 'q') the parameter 𝑞

EXAMPLES:

sage: q = ZZ['q'].fraction_field().gen()
sage: Sym = SymmetricFunctions(q.parent())
sage: qbar = Sym.hecke_character(q)
sage: qbar[2] * qbar[3] * qbar[3,1]
qbar[3, 3, 2, 1]

sage: s = Sym.s()
sage: s(qbar([2]))
-s[1, 1] + q*s[2]
sage: s(qbar([4]))
-s[1, 1, 1, 1] + q*s[2, 1, 1] - q^2*s[3, 1] + q^3*s[4]
sage: qbar(s[2])
(1/(q+1))*qbar[1, 1] + (1/(q+1))*qbar[2]
sage: qbar(s[1,1])
(q/(q+1))*qbar[1, 1] - (1/(q+1))*qbar[2]

sage: s(qbar[2,1])
-s[1, 1, 1] + (q-1)*s[2, 1] + q*s[3]
sage: qbar(s[2,1])
(q/(q^2+q+1))*qbar[1, 1, 1] + ((q-1)/(q^2+q+1))*qbar[2, 1]
- (1/(q^2+q+1))*qbar[3]

We compute character tables for Hecke algebras, which correspond to the transition matrix from the 𝑞 basis to
the Schur basis:

sage: qbar.transition_matrix(s, 1)
[1]
sage: qbar.transition_matrix(s, 2)
[q -1]
[1 1]
sage: qbar.transition_matrix(s, 3)
[q^2 -q 1]
[q q - 1 -1]
[1 2 1]
sage: qbar.transition_matrix(s, 4)
[q^3 -q^2 0 q -1]
[q^2 q^2 - q -q -q + 1 1]
[q^2 q^2 - 2*q q^2 + 1 -2*q + 1 1]
[q 2*q - 1 q - 1 q - 2 -1]
[1 3 2 3 1]

We can do computations with a specialized 𝑞 to a generic element of the base ring. We compute some examples
with 𝑞 = 2:

5.1. Comprehensive Module List 2765

Combinatorics, Release 9.7

sage: qbar = Sym.qbar(q=2)
sage: s = Sym.schur()
sage: qbar(s[2,1])
2/7*qbar[1, 1, 1] + 1/7*qbar[2, 1] - 1/7*qbar[3]
sage: s(qbar[2,1])
-s[1, 1, 1] + s[2, 1] + 2*s[3]

REFERENCES:

• [Ram1991]

• [RR1997]

coproduct_on_generators(r)
Return the coproduct on the generator 𝑞𝑟 of self.

Define the coproduct on 𝑞𝑟 by

∆(𝑞𝑟) = 𝑞0 ⊗ 𝑞𝑟 + (𝑞 − 1)
𝑟−1∑︁
𝑗=1

𝑞𝑗 ⊗ 𝑞𝑟−𝑗 + 𝑞𝑟 ⊗ 𝑞0.

EXAMPLES:

sage: q = ZZ['q'].fraction_field().gen()
sage: Sym = SymmetricFunctions(q.parent())
sage: qbar = Sym.hecke_character()
sage: s = Sym.s()
sage: qbar[2].coproduct()
qbar[] # qbar[2] + (q-1)*qbar[1] # qbar[1] + qbar[2] # qbar[]

5.1.283 Homogeneous symmetric functions

By this we mean the basis formed of the complete homogeneous symmetric functions ℎ𝜆, not an arbitrary graded basis.

class sage.combinat.sf.homogeneous.SymmetricFunctionAlgebra_homogeneous(Sym)
Bases: sage.combinat.sf.multiplicative.SymmetricFunctionAlgebra_multiplicative

A class of methods specific to the homogeneous basis of symmetric functions.

INPUT:

• self – a homogeneous basis of symmetric functions

• Sym – an instance of the ring of symmetric functions

class Element
Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical.Element

expand(n, alphabet='x')
Expand the symmetric function self as a symmetric polynomial in n variables.

INPUT:
• n – a nonnegative integer
• alphabet – (default: 'x') a variable for the expansion

OUTPUT:

A monomial expansion of self in the 𝑛 variables labelled by alphabet.

EXAMPLES:

2766 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: h = SymmetricFunctions(QQ).h()
sage: h([3]).expand(2)
x0^3 + x0^2*x1 + x0*x1^2 + x1^3
sage: h([1,1,1]).expand(2)
x0^3 + 3*x0^2*x1 + 3*x0*x1^2 + x1^3
sage: h([2,1]).expand(3)
x0^3 + 2*x0^2*x1 + 2*x0*x1^2 + x1^3 + 2*x0^2*x2 + 3*x0*x1*x2 + 2*x1^2*x2 +␣
→˓2*x0*x2^2 + 2*x1*x2^2 + x2^3
sage: h([3]).expand(2,alphabet='y')
y0^3 + y0^2*y1 + y0*y1^2 + y1^3
sage: h([3]).expand(2,alphabet='x,y')
x^3 + x^2*y + x*y^2 + y^3
sage: h([3]).expand(3,alphabet='x,y,z')
x^3 + x^2*y + x*y^2 + y^3 + x^2*z + x*y*z + y^2*z + x*z^2 + y*z^2 + z^3
sage: (h([]) + 2*h([1])).expand(3)
2*x0 + 2*x1 + 2*x2 + 1
sage: h([1]).expand(0)
0
sage: (3*h([])).expand(0)
3

exponential_specialization(t=None, q=1)
Return the exponential specialization of a symmetric function (when 𝑞 = 1), or the 𝑞-exponential
specialization (when 𝑞 ̸= 1).

The exponential specialization 𝑒𝑥 at 𝑡 is a𝐾-algebra homomorphism from the𝐾-algebra of symmetric
functions to another 𝐾-algebra 𝑅. It is defined whenever the base ring 𝐾 is a Q-algebra and 𝑡 is an
element of 𝑅. The easiest way to define it is by specifying its values on the powersum symmetric
functions to be 𝑝1 = 𝑡 and 𝑝𝑛 = 0 for 𝑛 > 1. Equivalently, on the homogeneous functions it is given
by 𝑒𝑥(ℎ𝑛) = 𝑡𝑛/𝑛!; see Proposition 7.8.4 of [EnumComb2].

By analogy, the 𝑞-exponential specialization is a 𝐾-algebra homomorphism from the 𝐾-algebra of
symmetric functions to another 𝐾-algebra 𝑅 that depends on two elements 𝑡 and 𝑞 of 𝑅 for which the
elements 1 − 𝑞𝑖 for all positive integers 𝑖 are invertible. It can be defined by specifying its values on
the complete homogeneous symmetric functions to be

𝑒𝑥𝑞(ℎ𝑛) = 𝑡𝑛/[𝑛]𝑞!,

where [𝑛]𝑞! is the 𝑞-factorial. Equivalently, for 𝑞 ̸= 1 and a homogeneous symmetric function 𝑓 of
degree 𝑛, we have

𝑒𝑥𝑞(𝑓) = (1− 𝑞)𝑛𝑡𝑛𝑝𝑠𝑞(𝑓),

where 𝑝𝑠𝑞(𝑓) is the stable principal specialization of 𝑓 (see principal_specialization()). (See
(7.29) in [EnumComb2].)

The limit of 𝑒𝑥𝑞 as 𝑞 → 1 is 𝑒𝑥.

INPUT:
• t (default: None) – the value to use for 𝑡; the default is to create a ring of polynomials in t.
• q (default: 1) – the value to use for 𝑞. If q is None, then a ring (or fraction field) of polynomials

in q is created.
EXAMPLES:

5.1. Comprehensive Module List 2767

Combinatorics, Release 9.7

sage: h = SymmetricFunctions(QQ).h()
sage: x = h[5,3]
sage: x.exponential_specialization()
1/720*t^8
sage: factorial(5)*factorial(3)
720

sage: x = 5*h[1,1,1] + 3*h[2,1] + 1
sage: x.exponential_specialization()
13/2*t^3 + 1

We also support the 𝑞-exponential_specialization:

sage: factor(h[3].exponential_specialization(q=var("q"), t=var("t")))
t^3/((q^2 + q + 1)*(q + 1))

omega()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of sym-
metric functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th
elementary symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric func-
tion). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the
omega involution. It sends the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive
integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes
the conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 =
elementary, ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

omega_involution() is a synonym for the omega() method.

OUTPUT:
• the image of self under the omega automorphism

EXAMPLES:

sage: h = SymmetricFunctions(QQ).h()
sage: a = h([2,1]); a
h[2, 1]
sage: a.omega()
h[1, 1, 1] - h[2, 1]
sage: e = SymmetricFunctions(QQ).e()
sage: e(h([2,1]).omega())
e[2, 1]

omega_involution()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of sym-
metric functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th
elementary symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric func-
tion). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the

2768 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

omega involution. It sends the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive
integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes
the conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 =
elementary, ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

omega_involution() is a synonym for the omega() method.

OUTPUT:
• the image of self under the omega automorphism

EXAMPLES:

sage: h = SymmetricFunctions(QQ).h()
sage: a = h([2,1]); a
h[2, 1]
sage: a.omega()
h[1, 1, 1] - h[2, 1]
sage: e = SymmetricFunctions(QQ).e()
sage: e(h([2,1]).omega())
e[2, 1]

principal_specialization(n=+ Infinity, q=None)
Return the principal specialization of a symmetric function.

The principal specialization of order𝑛 at 𝑞 is the ring homomorphism 𝑝𝑠𝑛,𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for 𝑖 ∈ {1, . . . , 𝑛} and 𝑥𝑖 ↦→ 0 for
𝑖 > 𝑛. Here, 𝑞 is a given element of 𝑅, and we assume that the variables of our symmetric functions
are 𝑥1, 𝑥2, 𝑥3, (To be more precise, 𝑝𝑠𝑛,𝑞 is a 𝐾-algebra homomorphism, where 𝐾 is the base
ring.) See Section 7.8 of [EnumComb2].

The stable principal specialization at 𝑞 is the ring homomorphism 𝑝𝑠𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for all 𝑖. This is well-defined only if the
resulting infinite sums converge; thus, in particular, setting 𝑞 = 1 in the stable principal specialization
is an invalid operation.

INPUT:
• n (default: infinity) – a nonnegative integer or infinity, specifying whether to compute the

principal specialization of order n or the stable principal specialization.
• q (default: None) – the value to use for 𝑞; the default is to create a ring of polynomials in q (or a

field of rational functions in q) over the given coefficient ring.
We use the formulas from Proposition 7.8.3 of [EnumComb2] (using Gaussian binomial coefficients(︀
𝑢
𝑣

)︀
𝑞
):

𝑝𝑠𝑛,𝑞(ℎ𝜆) =
∏︁
𝑖

(︂
𝑛+ 𝜆𝑖 − 1

𝜆𝑖

)︂
𝑞

,

𝑝𝑠𝑛,1(ℎ𝜆) =
∏︁
𝑖

(︂
𝑛+ 𝜆𝑖 − 1

𝜆𝑖

)︂
,

𝑝𝑠𝑞(ℎ𝜆) = 1/
∏︁
𝑖

𝜆𝑖∏︁
𝑗=1

(1− 𝑞𝑗).

EXAMPLES:

5.1. Comprehensive Module List 2769

Combinatorics, Release 9.7

sage: h = SymmetricFunctions(QQ).h()
sage: x = h[2,1]
sage: x.principal_specialization(3)
q^6 + 2*q^5 + 4*q^4 + 4*q^3 + 4*q^2 + 2*q + 1
sage: x = 3*h[2] + 2*h[1] + 1
sage: x.principal_specialization(3, q=var("q"))
2*(q^3 - 1)/(q - 1) + 3*(q^4 - 1)*(q^3 - 1)/((q^2 - 1)*(q - 1)) + 1

coproduct_on_generators(i)
Return the coproduct on ℎ𝑖.

INPUT:

• self – a homogeneous basis of symmetric functions

• i – a nonnegative integer

OUTPUT:

• the sum
∑︀𝑖
𝑟=0 ℎ𝑟 ⊗ ℎ𝑖−𝑟

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: h = Sym.homogeneous()
sage: h.coproduct_on_generators(2)
h[] # h[2] + h[1] # h[1] + h[2] # h[]
sage: h.coproduct_on_generators(0)
h[] # h[]

5.1.284 Jack Symmetric Functions

Jack’s symmetric functions appear in [Ma1995] Chapter VI, section 10. Zonal polynomials are the subject of [Ma1995]
Chapter VII. The parameter 𝛼 in that reference is the parameter 𝑡 in this implementation in sage.

REFERENCES:

class sage.combinat.sf.jack.Jack(Sym, t='t')
Bases: sage.structure.unique_representation.UniqueRepresentation

The family of Jack symmetric functions including the 𝑃 , 𝑄, 𝐽 , 𝑄𝑝 bases. The default parameter is t.

INPUT:

• self – the family of Jack symmetric function bases

• Sym – a ring of symmetric functions

• t – an optional parameter (default : ‘t’)

EXAMPLES:

sage: SymmetricFunctions(FractionField(QQ['t'])).jack()
Jack polynomials over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field
sage: SymmetricFunctions(QQ).jack(1)
Jack polynomials with t=1 over Rational Field

2770 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

J()
Returns the algebra of Jack polynomials in the 𝐽 basis.

INPUT:

• self – the family of Jack symmetric function bases

OUTPUT: the 𝐽 basis of the Jack symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JJ = Sym.jack().J(); JJ
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Jack J basis
sage: Sym = SymmetricFunctions(QQ)
sage: Sym.jack(t=-1).J()
Symmetric Functions over Rational Field in the Jack J with t=-1 basis

At 𝑡 = 1, the Jack polynomials in the 𝐽 basis are scalar multiples of the Schur functions with the scalar
given by a Partition’s hook_product() method at 1:

sage: Sym = SymmetricFunctions(QQ)
sage: JJ = Sym.jack(t=1).J()
sage: s = Sym.schur()
sage: p = Partition([3,2,1,1])
sage: s(JJ(p)) == p.hook_product(1)*s(p) # long time (4s on sage.math, 2012)
True

At 𝑡 = 2, the Jack polynomials in the 𝐽 basis are scalar multiples of the zonal polynomials with the scalar
given by a Partition’s hook_product() method at 2.

sage: Sym = SymmetricFunctions(QQ)
sage: JJ = Sym.jack(t=2).J()
sage: Z = Sym.zonal()
sage: p = Partition([2,2,1])
sage: Z(JJ(p)) == p.hook_product(2)*Z(p)
True

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JJ = Sym.jack().J()
sage: JP = Sym.jack().P()
sage: JJ(sum(JP(p) for p in Partitions(3)))
1/6*JackJ[1, 1, 1] + (1/(t+2))*JackJ[2, 1] + (1/2/(t^2+3/2*t+1/2))*JackJ[3]

sage: s = Sym.schur()
sage: JJ(s([3])) # indirect doctest
((1/6*t^2-1/2*t+1/3)/(t^2+3*t+2))*JackJ[1, 1, 1] + ((t-1)/(t^2+5/
→˓2*t+1))*JackJ[2, 1] + (1/2/(t^2+3/2*t+1/2))*JackJ[3]
sage: JJ(s([2,1]))
((1/3*t-1/3)/(t+2))*JackJ[1, 1, 1] + (1/(t+2))*JackJ[2, 1]
sage: JJ(s([1,1,1]))
1/6*JackJ[1, 1, 1]

P()
Returns the algebra of Jack polynomials in the 𝑃 basis.

5.1. Comprehensive Module List 2771

Combinatorics, Release 9.7

INPUT:

• self – the family of Jack symmetric function bases

OUTPUT:

• the 𝑃 basis of the Jack symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JP = Sym.jack().P(); JP
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Jack P basis
sage: Sym.jack(t=-1).P()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Jack P with t=-1 basis

At 𝑡 = 1, the Jack polynomials in the 𝑃 basis are the Schur symmetric functions.

sage: Sym = SymmetricFunctions(QQ)
sage: JP = Sym.jack(t=1).P()
sage: s = Sym.schur()
sage: s(JP([2,2,1]))
s[2, 2, 1]
sage: JP(s([2,2,1]))
JackP[2, 2, 1]
sage: JP([2,1])^2
JackP[2, 2, 1, 1] + JackP[2, 2, 2] + JackP[3, 1, 1, 1] + 2*JackP[3, 2, 1] +␣
→˓JackP[3, 3] + JackP[4, 1, 1] + JackP[4, 2]

At 𝑡 = 2, the Jack polynomials in the 𝑃 basis are the zonal polynomials.

sage: Sym = SymmetricFunctions(QQ)
sage: JP = Sym.jack(t=2).P()
sage: Z = Sym.zonal()
sage: Z(JP([2,2,1]))
Z[2, 2, 1]
sage: JP(Z[2, 2, 1])
JackP[2, 2, 1]
sage: JP([2])^2
64/45*JackP[2, 2] + 16/21*JackP[3, 1] + JackP[4]
sage: Z([2])^2
64/45*Z[2, 2] + 16/21*Z[3, 1] + Z[4]

sage: Sym = SymmetricFunctions(QQ['a','b'].fraction_field())
sage: (a,b) = Sym.base_ring().gens()
sage: Jacka = Sym.jack(t=a)
sage: Jackb = Sym.jack(t=b)
sage: m = Sym.monomial()
sage: JPa = Jacka.P()
sage: JPb = Jackb.P()
sage: m(JPa[2,1])
(6/(a+2))*m[1, 1, 1] + m[2, 1]
sage: m(JPb[2,1])

(continues on next page)

2772 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(6/(b+2))*m[1, 1, 1] + m[2, 1]
sage: m(a*JPb([2,1]) + b*JPa([2,1]))
((6*a^2+6*b^2+12*a+12*b)/(a*b+2*a+2*b+4))*m[1, 1, 1] + (a+b)*m[2, 1]
sage: JPa(JPb([2,1]))
((6*a-6*b)/(a*b+2*a+2*b+4))*JackP[1, 1, 1] + JackP[2, 1]

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JQ = Sym.jack().Q()
sage: JP = Sym.jack().P()
sage: JJ = Sym.jack().J()

sage: JP(JQ([2,1]))
((1/2*t+1)/(t^3+1/2*t^2))*JackP[2, 1]
sage: JP(JQ([3]))
((1/3*t^2+1/2*t+1/6)/t^3)*JackP[3]
sage: JP(JQ([1,1,1]))
(6/(t^3+3*t^2+2*t))*JackP[1, 1, 1]

sage: JP(JJ([3]))
(2*t^2+3*t+1)*JackP[3]
sage: JP(JJ([2,1]))
(t+2)*JackP[2, 1]
sage: JP(JJ([1,1,1]))
6*JackP[1, 1, 1]

sage: s = Sym.schur()
sage: JP(s([2,1]))
((2*t-2)/(t+2))*JackP[1, 1, 1] + JackP[2, 1]
sage: s(_)
s[2, 1]

Q()
Returns the algebra of Jack polynomials in the 𝑄 basis.

INPUT:

• self – the family of Jack symmetric function bases

OUTPUT:

• the 𝑄 basis of the Jack symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JQ = Sym.jack().Q(); JQ
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Jack Q basis
sage: Sym = SymmetricFunctions(QQ)
sage: Sym.jack(t=-1).Q()
Symmetric Functions over Rational Field in the Jack Q with t=-1 basis

5.1. Comprehensive Module List 2773

Combinatorics, Release 9.7

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JQ = Sym.jack().Q()
sage: JP = Sym.jack().P()
sage: JQ(sum(JP(p) for p in Partitions(3)))
(1/6*t^3+1/2*t^2+1/3*t)*JackQ[1, 1, 1] + ((2*t^3+t^2)/(t+2))*JackQ[2, 1] + (3*t^
→˓3/(t^2+3/2*t+1/2))*JackQ[3]

sage: s = Sym.schur()
sage: JQ(s([3])) # indirect doctest
(1/6*t^3-1/2*t^2+1/3*t)*JackQ[1, 1, 1] + ((2*t^3-2*t^2)/(t+2))*JackQ[2, 1] +␣
→˓(3*t^3/(t^2+3/2*t+1/2))*JackQ[3]
sage: JQ(s([2,1]))
(1/3*t^3-1/3*t)*JackQ[1, 1, 1] + ((2*t^3+t^2)/(t+2))*JackQ[2, 1]
sage: JQ(s([1,1,1]))
(1/6*t^3+1/2*t^2+1/3*t)*JackQ[1, 1, 1]

Qp()
Returns the algebra of Jack polynomials in the𝑄𝑝, which is dual to the 𝑃 basis with respect to the standard
scalar product.

INPUT:

• self – the family of Jack symmetric function bases

OUTPUT:

• the 𝑄′ basis of the Jack symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JP = Sym.jack().P()
sage: JQp = Sym.jack().Qp(); JQp
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Jack Qp basis
sage: a = JQp([2])
sage: a.scalar(JP([2]))
1
sage: a.scalar(JP([1,1]))
0
sage: JP(JQp([2])) # todo: missing auto normalization
((t-1)/(t+1))*JackP[1, 1] + JackP[2]
sage: JP._normalize(JP(JQp([2])))
((t-1)/(t+1))*JackP[1, 1] + JackP[2]

base_ring()
Returns the base ring of the symmetric functions in which the Jack symmetric functions live

INPUT:

• self – the family of Jack symmetric function bases

OUTPUT:

• the base ring of the symmetric functions ring of self

EXAMPLES:

2774 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: J2 = SymmetricFunctions(QQ).jack(t=2)
sage: J2.base_ring()
Rational Field

symmetric_function_ring()
Returns the base ring of the symmetric functions of the Jack symmetric function bases

INPUT:

• self – the family of Jack symmetric function bases

OUTPUT:

• the symmetric functions ring of self

EXAMPLES:

sage: Jacks = SymmetricFunctions(FractionField(QQ['t'])).jack()
sage: Jacks.symmetric_function_ring()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field

class sage.combinat.sf.jack.JackPolynomials_generic(jack)
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

A class of methods which are common to all Jack bases of the symmetric functions

INPUT:

• self – a Jack basis of the symmetric functions

• jack – a family of Jack symmetric function bases

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JP = Sym.jack().P(); JP.base_ring()
Fraction Field of Univariate Polynomial Ring in t over Rational Field
sage: Sym = SymmetricFunctions(QQ)
sage: JP = Sym.jack(t=2).P(); JP.base_ring()
Rational Field

class Element
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

scalar_jack(x, t=None)
A scalar product where the power sums are orthogonal and ⟨𝑝𝜇, 𝑝𝜇⟩ = 𝑧𝜇𝑡

𝑙𝑒𝑛𝑔𝑡ℎ(𝜇)

INPUT:
• self – an element of a Jack basis of the symmetric functions
• x – an element of the symmetric functions
• t – an optional parameter (default [None uses the parameter from] the basis)

OUTPUT:
• returns the Jack scalar product between x and self

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JP = Sym.jack().P()
sage: JQ = Sym.jack().Q()

(continues on next page)

5.1. Comprehensive Module List 2775

Combinatorics, Release 9.7

(continued from previous page)

sage: p = Partitions(3).list()
sage: matrix([[JP(a).scalar_jack(JQ(b)) for a in p] for b in p])
[1 0 0]
[0 1 0]
[0 0 1]

c1(part)
Returns the 𝑡-Jack scalar product between J(part) and P(part).

INPUT:

• self – a Jack basis of the symmetric functions

• part – a partition

• t – an optional parameter (default: uses the parameter 𝑡 from the Jack basis)

OUTPUT:

• a polynomial in the parameter t which is equal to the scalar product of J(part) and P(part)

EXAMPLES:

sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
sage: JP.c1(Partition([2,1]))
t + 2

c2(part)
Returns the 𝑡-Jack scalar product between J(part) and Q(part).

INPUT:

• self – a Jack basis of the symmetric functions

• part – a partition

• t – an optional parameter (default: uses the parameter 𝑡 from the Jack basis)

OUTPUT:

• a polynomial in the parameter t which is equal to the scalar product of J(part) and Q(part)

EXAMPLES:

sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
sage: JP.c2(Partition([2,1]))
2*t^3 + t^2

coproduct_by_coercion(elt)
Returns the coproduct of the element elt by coercion to the Schur basis.

INPUT:

• self – a Jack symmetric function basis

• elt – an instance of this basis

OUTPUT:

• The coproduct acting on elt, the result is an element of the tensor squared of the Jack symmetric
function basis

EXAMPLES:

2776 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
sage: Sym.jack().P()[2,2].coproduct() #indirect doctest
JackP[] # JackP[2, 2] + (2/(t+1))*JackP[1] # JackP[2, 1] + ((8*t+4)/(t^3+4*t^
→˓2+5*t+2))*JackP[1, 1] # JackP[1, 1] + JackP[2] # JackP[2] + (2/(t+1))*JackP[2,
→˓ 1] # JackP[1] + JackP[2, 2] # JackP[]

jack_family()
Returns the family of Jack bases associated to the basis self

INPUT:

• self – a Jack basis of the symmetric functions

OUTPUT:

• the family of Jack symmetric functions associated to self

EXAMPLES:

sage: JackP = SymmetricFunctions(QQ).jack(t=2).P()
sage: JackP.jack_family()
Jack polynomials with t=2 over Rational Field

product(left, right)
The product of two Jack symmetric functions is done by multiplying the elements in the 𝑃 basis and then
expressing the elements in the basis self.

INPUT:

• self – a Jack basis of the symmetric functions

• left, right – symmetric function elements

OUTPUT:

the product of left and right expanded in the basis self

EXAMPLES:

sage: JJ = SymmetricFunctions(FractionField(QQ['t'])).jack().J()
sage: JJ([1])^2 # indirect doctest
(t/(t+1))*JackJ[1, 1] + (1/(t+1))*JackJ[2]
sage: JJ([2])^2
(t^2/(t^2+3/2*t+1/2))*JackJ[2, 2] + (4/3*t/(t^2+4/3*t+1/3))*JackJ[3, 1] + ((1/
→˓6*t+1/6)/(t^2+5/6*t+1/6))*JackJ[4]
sage: JQ = SymmetricFunctions(FractionField(QQ['t'])).jack().Q()
sage: JQ([1])^2 # indirect doctest
JackQ[1, 1] + (2/(t+1))*JackQ[2]
sage: JQ([2])^2
JackQ[2, 2] + (2/(t+1))*JackQ[3, 1] + ((t+1)/(t^2+5/6*t+1/6))*JackQ[4]

class sage.combinat.sf.jack.JackPolynomials_j(jack)
Bases: sage.combinat.sf.jack.JackPolynomials_generic

The 𝐽 basis is a defined as a normalized form of the 𝑃 basis

INPUT:

• self – an instance of the Jack 𝑃 basis of the symmetric functions

• jack – a family of Jack symmetric function bases

5.1. Comprehensive Module List 2777

Combinatorics, Release 9.7

EXAMPLES:

sage: J = SymmetricFunctions(FractionField(QQ['t'])).jack().J()
sage: TestSuite(J).run(skip=['_test_associativity', '_test_distributivity', '_test_
→˓prod']) # products are too expensive
sage: TestSuite(J).run(elements = [J.t*J[1,1]+J[2], J[1]+(1+J.t)*J[1,1]]) # long␣
→˓time (3s on sage.math, 2012)

class Element
Bases: sage.combinat.sf.jack.JackPolynomials_generic.Element

class sage.combinat.sf.jack.JackPolynomials_p(jack)
Bases: sage.combinat.sf.jack.JackPolynomials_generic

The 𝑃 basis is uni-triangularly related to the monomial basis and orthogonal with respect to the Jack scalar
product.

INPUT:

• self – an instance of the Jack 𝑃 basis of the symmetric functions

• jack – a family of Jack symmetric function bases

EXAMPLES:

sage: P = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
sage: TestSuite(P).run(skip=['_test_associativity', '_test_distributivity', '_test_
→˓prod']) # products are too expensive
sage: TestSuite(P).run(elements = [P.t*P[1,1]+P[2], P[1]+(1+P.t)*P[1,1]])

class Element
Bases: sage.combinat.sf.jack.JackPolynomials_generic.Element

scalar_jack(x, t=None)
The scalar product on the symmetric functions where the power sums are orthogonal and ⟨𝑝𝜇, 𝑝𝜇⟩ =
𝑧𝜇𝑡

𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑢) where the t parameter from the Jack symmetric function family.

INPUT:
• self – an element of the Jack 𝑃 basis
• x – an element of the 𝑃 basis

EXAMPLES:

sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
sage: l = [JP(p) for p in Partitions(3)]
sage: matrix([[a.scalar_jack(b) for a in l] for b in l])
[3*t^3/(t^2 + 3/2*t + 1/2) 0 ␣
→˓ 0]
[0 (2*t^3 + t^2)/(t + 2) ␣
→˓ 0]
[0 0 1/6*t^3 + 1/2*t^2 + 1/
→˓3*t]

product(left, right)
The product of two Jack symmetric functions is done by multiplying the elements in the monomial basis
and then expressing the elements the basis self.

INPUT:

• self – a Jack basis of the symmetric functions

2778 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• left, right – symmetric function elements

OUTPUT:

the product of left and right expanded in the basis self

EXAMPLES:

sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
sage: m = JP.symmetric_function_ring().m()
sage: JP([1])^2 # indirect doctest
(2*t/(t+1))*JackP[1, 1] + JackP[2]
sage: m(_)
2*m[1, 1] + m[2]
sage: JP = SymmetricFunctions(QQ).jack(t=2).P()
sage: JP([2,1])^2
125/63*JackP[2, 2, 1, 1] + 25/12*JackP[2, 2, 2] + 25/18*JackP[3, 1, 1, 1] + 12/
→˓5*JackP[3, 2, 1] + 4/3*JackP[3, 3] + 4/3*JackP[4, 1, 1] + JackP[4, 2]
sage: m(_)
45*m[1, 1, 1, 1, 1, 1] + 51/2*m[2, 1, 1, 1, 1] + 29/2*m[2, 2, 1, 1] + 33/4*m[2,␣
→˓2, 2] + 9*m[3, 1, 1, 1] + 5*m[3, 2, 1] + 2*m[3, 3] + 2*m[4, 1, 1] + m[4, 2]

scalar_jack_basis(part1, part2=None)
Returns the scalar product of 𝑃 (𝑝𝑎𝑟𝑡1) and 𝑃 (𝑝𝑎𝑟𝑡2).

This is equation (10.16) of [Mc1995] on page 380.

INPUT:

• self – an instance of the Jack 𝑃 basis of the symmetric functions

• part1 – a partition

• part2 – an optional partition (default : None)

OUTPUT:

• the scalar product between 𝑃 (𝑝𝑎𝑟𝑡1) and 𝑃 (𝑝𝑎𝑟𝑡2) (or itself if 𝑝𝑎𝑟𝑡2 is None)

REFERENCES:

EXAMPLES:

sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
sage: JJ = SymmetricFunctions(FractionField(QQ['t'])).jack().J()
sage: JP.scalar_jack_basis(Partition([2,1]), Partition([1,1,1]))
0
sage: JP._normalize_coefficients(JP.scalar_jack_basis(Partition([3,2,1]),␣
→˓Partition([3,2,1])))
(6*t^6 + 10*t^5 + 11/2*t^4 + t^3)/(t^3 + 11/2*t^2 + 10*t + 6)
sage: JJ(JP[3,2,1]).scalar_jack(JP[3,2,1])
(6*t^6 + 10*t^5 + 11/2*t^4 + t^3)/(t^3 + 11/2*t^2 + 10*t + 6)

With a single argument, takes 𝑝𝑎𝑟𝑡2 = 𝑝𝑎𝑟𝑡1:

sage: JP.scalar_jack_basis(Partition([2,1]), Partition([2,1]))
(2*t^3 + t^2)/(t + 2)
sage: JJ(JP[2,1]).scalar_jack(JP[2,1])
(2*t^3 + t^2)/(t + 2)

5.1. Comprehensive Module List 2779

Combinatorics, Release 9.7

class sage.combinat.sf.jack.JackPolynomials_q(jack)
Bases: sage.combinat.sf.jack.JackPolynomials_generic

The 𝑄 basis is defined as a normalized form of the 𝑃 basis

INPUT:

• self – an instance of the Jack 𝑄 basis of the symmetric functions

• jack – a family of Jack symmetric function bases

EXAMPLES:

sage: Q = SymmetricFunctions(FractionField(QQ['t'])).jack().Q()
sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_
→˓prod']) # products are too expensive
sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]]) # long␣
→˓time (3s on sage.math, 2012)

class Element
Bases: sage.combinat.sf.jack.JackPolynomials_generic.Element

class sage.combinat.sf.jack.JackPolynomials_qp(jack)
Bases: sage.combinat.sf.jack.JackPolynomials_generic

The 𝑄𝑝 basis is the dual basis to the 𝑃 basis with respect to the standard scalar product

INPUT:

• self – an instance of the Jack 𝑄𝑝 basis of the symmetric functions

• jack – a family of Jack symmetric function bases

EXAMPLES:

sage: Qp = SymmetricFunctions(FractionField(QQ['t'])).jack().Qp()
sage: TestSuite(Qp).run(skip=['_test_associativity', '_test_distributivity', '_test_
→˓prod']) # products are too expensive
sage: TestSuite(Qp).run(elements = [Qp.t*Qp[1,1]+Qp[2], Qp[1]+(1+Qp.t)*Qp[1,1]]) #␣
→˓long time (3s on sage.math, 2012)

class Element
Bases: sage.combinat.sf.jack.JackPolynomials_generic.Element

coproduct_by_coercion(elt)
Returns the coproduct of the element elt by coercion to the Schur basis.

INPUT:

• elt – an instance of the Qp basis

OUTPUT:

• The coproduct acting on elt, the result is an element of the tensor squared of the Qp symmetric function
basis

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
sage: JQp = Sym.jack().Qp()
sage: JQp[2,2].coproduct() #indirect doctest
JackQp[] # JackQp[2, 2] + (2*t/(t+1))*JackQp[1] # JackQp[2, 1] + JackQp[1, 1] #␣
→˓JackQp[1, 1] + ((2*t^3+4*t^2)/(t^3+5/2*t^2+2*t+1/2))*JackQp[2] # JackQp[2] +␣
→˓(2*t/(t+1))*JackQp[2, 1] # JackQp[1] + JackQp[2, 2] # JackQp[]

(continues on next page)

2780 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

product(left, right)
The product of two Jack symmetric functions is done by multiplying the elements in the monomial basis
and then expressing the elements the basis self.

INPUT:

• self – an instance of the Jack 𝑄𝑝 basis of the symmetric functions

• left, right – symmetric function elements

OUTPUT:

the product of left and right expanded in the basis self

EXAMPLES:

sage: JQp = SymmetricFunctions(FractionField(QQ['t'])).jack().Qp()
sage: h = JQp.symmetric_function_ring().h()
sage: JQp([1])^2 # indirect doctest
JackQp[1, 1] + (2/(t+1))*JackQp[2]
sage: h(_)
h[1, 1]
sage: JQp = SymmetricFunctions(QQ).jack(t=2).Qp()
sage: h = SymmetricFunctions(QQ).h()
sage: JQp([2,1])^2
JackQp[2, 2, 1, 1] + 2/3*JackQp[2, 2, 2] + 2/3*JackQp[3, 1, 1, 1] + 48/
→˓35*JackQp[3, 2, 1] + 28/75*JackQp[3, 3] + 128/225*JackQp[4, 1, 1] + 28/
→˓75*JackQp[4, 2]
sage: h(_)
h[2, 2, 1, 1] - 6/5*h[3, 2, 1] + 9/25*h[3, 3]

class sage.combinat.sf.jack.SymmetricFunctionAlgebra_zonal(Sym)
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

Returns the algebra of zonal polynomials.

INPUT:

• self – a zonal basis of the symmetric functions

• Sym – a ring of the symmetric functions

EXAMPLES:

sage: Z = SymmetricFunctions(QQ).zonal()
sage: Z([2])^2
64/45*Z[2, 2] + 16/21*Z[3, 1] + Z[4]
sage: Z = SymmetricFunctions(QQ).zonal()
sage: TestSuite(Z).run(skip=['_test_associativity', '_test_distributivity', '_test_
→˓prod']) # products are too expensive
sage: TestSuite(Z).run(elements = [Z[1,1]+Z[2], Z[1]+2*Z[1,1]])

class Element
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

scalar_zonal(x)
The zonal scalar product has the power sum basis and the zonal symmetric functions are orthogonal.
In particular, ⟨𝑝𝜇, 𝑝𝜇⟩ = 𝑧𝜇2𝑙𝑒𝑛𝑔𝑡ℎ(𝜇).

5.1. Comprehensive Module List 2781

Combinatorics, Release 9.7

INPUT:
• self – an element of the zonal basis
• x – an element of the symmetric function

OUTPUT:
• the scalar product between self and x

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: Z = Sym.zonal()
sage: parts = Partitions(3).list()
sage: matrix([[Z(a).scalar_zonal(Z(b)) for a in parts] for b in parts])
[16/5 0 0]
[0 5 0]
[0 0 4]
sage: p = Z.symmetric_function_ring().power()
sage: matrix([[Z(p(a)).scalar_zonal(p(b)) for a in parts] for b in parts])
[6 0 0]
[0 8 0]
[0 0 48]

product(left, right)
The product of two zonal symmetric functions is done by multiplying the elements in the monomial basis
and then expressing the elements in the basis self.

INPUT:

• self – a zonal basis of the symmetric functions

• left, right – symmetric function elements

OUTPUT:

the product of left and right expanded in the basis self

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: Z = Sym.zonal()
sage: JP = Sym.jack(t=1).P()
sage: Z([2])*Z([3]) # indirect doctest
192/175*Z[3, 2] + 32/45*Z[4, 1] + Z[5]
sage: Z([2])*JP([2])
10/27*Z[2, 1, 1] + 64/45*Z[2, 2] + 23/21*Z[3, 1] + Z[4]
sage: JP = Sym.jack(t=2).P()
sage: Z([2])*JP([2])
64/45*Z[2, 2] + 16/21*Z[3, 1] + Z[4]

sage.combinat.sf.jack.c1(part, t)
Returns the 𝑡-Jack scalar product between J(part) and P(part).

INPUT:

• part – a partition

• t – an optional parameter (default: uses the parameter 𝑡 from the Jack basis)

OUTPUT:

• a polynomial in the parameter t which is equal to the scalar product of J(part) and P(part)

2782 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.sf.jack import c1
sage: t = QQ['t'].gen()
sage: [c1(p,t) for p in Partitions(3)]
[2*t^2 + 3*t + 1, t + 2, 6]

sage.combinat.sf.jack.c2(part, t)
Returns the t-Jack scalar product between J(part) and Q(part).

INPUT:

• self – a Jack basis of the symmetric functions

• part – a partition

• t – an optional parameter (default: uses the parameter 𝑡 from the Jack basis)

OUTPUT:

• a polynomial in the parameter t which is equal to the scalar product of J(part) and Q(part)

EXAMPLES:

sage: from sage.combinat.sf.jack import c2
sage: t = QQ['t'].gen()
sage: [c2(p,t) for p in Partitions(3)]
[6*t^3, 2*t^3 + t^2, t^3 + 3*t^2 + 2*t]

sage.combinat.sf.jack.normalize_coefficients(self, c)
If our coefficient ring is the field of fractions over a univariate polynomial ring over the rationals, then we should
clear both the numerator and denominator of the denominators of their coefficients.

INPUT:

• self – a Jack basis of the symmetric functions

• c – a coefficient in the base ring of self

OUTPUT:

• divide numerator and denominator by the greatest common divisor

EXAMPLES:

sage: JP = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
sage: t = JP.base_ring().gen()
sage: a = 2/(1/2*t+1/2)
sage: JP._normalize_coefficients(a)
4/(t + 1)
sage: a = 1/(1/3+1/6*t)
sage: JP._normalize_coefficients(a)
6/(t + 2)
sage: a = 24/(4*t^2 + 12*t + 8)
sage: JP._normalize_coefficients(a)
6/(t^2 + 3*t + 2)

sage.combinat.sf.jack.part_scalar_jack(part1, part2, t)
Returns the Jack scalar product between p(part1) and p(part2) where 𝑝 is the power-sum basis.

INPUT:

5.1. Comprehensive Module List 2783

Combinatorics, Release 9.7

• part1, part2 – two partitions

• t – a parameter

OUTPUT:

• returns the scalar product between the power sum indexed by part1 and part2

EXAMPLES:

sage: Q.<t> = QQ[]
sage: from sage.combinat.sf.jack import part_scalar_jack
sage: matrix([[part_scalar_jack(p1,p2,t) for p1 in Partitions(4)] for p2 in␣
→˓Partitions(4)])
[4*t 0 0 0 0]
[0 3*t^2 0 0 0]
[0 0 8*t^2 0 0]
[0 0 0 4*t^3 0]
[0 0 0 0 24*t^4]

5.1.285 Quotient of symmetric function space by ideal generated by Hall-Littlewood
symmetric functions

The quotient of symmetric functions by the ideal generated by the Hall-Littlewood P symmetric functions indexed by
partitions with first part greater than 𝑘. When 𝑡 = 1 this space is the quotient of the symmetric functions by the ideal
generated by the monomial symmetric functions indexed by partitions with first part greater than 𝑘.

AUTHORS:

• Chris Berg (2012-12-01)

• Mike Zabrocki - 𝑘-bounded Hall Littlewood P and dual 𝑘-Schur functions (2012-12-02)

class sage.combinat.sf.k_dual.AffineSchurFunctions(kBoundedRing)
Bases: sage.combinat.sf.k_dual.KBoundedQuotientBasis

This basis is dual to the 𝑘-Schur functions at 𝑡 = 1. This realization follows the monomial expansion given by
Lam [Lam2006].

REFERENCES:

class sage.combinat.sf.k_dual.DualkSchurFunctions(kBoundedRing)
Bases: sage.combinat.sf.k_dual.KBoundedQuotientBasis

This basis is dual to the 𝑘-Schur functions. The expansion is given in Section 4.12 of [LLMSSZ]. When 𝑡 = 1
this basis is equal to the AffineSchurFunctions and that basis is more efficient in this case.

REFERENCES:

class sage.combinat.sf.k_dual.KBoundedQuotient(Sym, k, t='t')
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Initialization of the ring of Symmetric functions modulo the ideal of monomial symmetric functions which are
indexed by partitions whose first part is greater than 𝑘.

INPUT:

• Sym – an element of class sage.combinat.sf.sf.SymmetricFunctions

• k – a positive integer

2784 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

• R – a ring

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: Q = Sym.kBoundedQuotient(3,t=1)
sage: Q
3-Bounded Quotient of Symmetric Functions over Rational Field with t=1
sage: km = Q.km()
sage: km
3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 3-
→˓bounded monomial basis
sage: F = Q.affineSchur()
sage: F(km(F[3,1,1])) == F[3,1,1]
True
sage: km(F(km([3,2]))) == km[3,2]
True
sage: F[3,2].lift()
m[1, 1, 1, 1, 1] + m[2, 1, 1, 1] + m[2, 2, 1] + m[3, 1, 1] + m[3, 2]
sage: F[2,1]*F[2,1]
2*F3[1, 1, 1, 1, 1, 1] + 4*F3[2, 1, 1, 1, 1] + 4*F3[2, 2, 1, 1] + 4*F3[2, 2, 2] +␣
→˓2*F3[3, 1, 1, 1] + 4*F3[3, 2, 1] + 2*F3[3, 3]
sage: F[1,2]
Traceback (most recent call last):
...
ValueError: [1, 2] is not an element of 3-Bounded Partitions
sage: F[4,2]
Traceback (most recent call last):
...
ValueError: [4, 2] is not an element of 3-Bounded Partitions
sage: km[2,1]*km[2,1]
4*m3[2, 2, 1, 1] + 6*m3[2, 2, 2] + 2*m3[3, 2, 1] + 2*m3[3, 3]
sage: HLPk = Q.kHallLittlewoodP()
sage: HLPk[2,1]*HLPk[2,1]
4*HLP3[2, 2, 1, 1] + 6*HLP3[2, 2, 2] + 2*HLP3[3, 2, 1] + 2*HLP3[3, 3]
sage: dks = Q.dual_k_Schur()
sage: dks[2,1]*dks[2,1]
2*dks3[1, 1, 1, 1, 1, 1] + 4*dks3[2, 1, 1, 1, 1] + 4*dks3[2, 2, 1, 1] + 4*dks3[2, 2,
→˓ 2] + 2*dks3[3, 1, 1, 1] + 4*dks3[3, 2, 1] + 2*dks3[3, 3]

sage: Q = Sym.kBoundedQuotient(3)
Traceback (most recent call last):
...
TypeError: unable to convert 't' to a rational
sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
sage: Q = Sym.kBoundedQuotient(3)
sage: km = Q.km()
sage: F = Q.affineSchur()
sage: F(km(F[3,1,1])) == F[3,1,1]
True
sage: km(F(km([3,2]))) == km[3,2]
True
sage: dks = Q.dual_k_Schur()
sage: HLPk = Q.kHallLittlewoodP()

(continues on next page)

5.1. Comprehensive Module List 2785

Combinatorics, Release 9.7

(continued from previous page)

sage: dks(HLPk(dks[3,1,1])) == dks[3,1,1]
True
sage: km(dks(km([3,2]))) == km[3,2]
True
sage: dks[2,1]*dks[2,1]
(t^3+t^2)*dks3[1, 1, 1, 1, 1, 1] + (2*t^2+2*t)*dks3[2, 1, 1, 1, 1] + (t^
→˓2+2*t+1)*dks3[2, 2, 1, 1] + (t^2+2*t+1)*dks3[2, 2, 2] + (t+1)*dks3[3, 1, 1, 1] +␣
→˓(2*t+2)*dks3[3, 2, 1] + (t+1)*dks3[3, 3]

AffineGrothendieckPolynomial(la, m)
Returns the affine Grothendieck polynomial indexed by the partition la. Because this belongs to the com-
pletion of the algebra, and hence is an infinite sum, it computes only up to those symmetric functions of
degree at most m. See _AffineGrothendieckPolynomial() for the code.

INPUT:

• la – A 𝑘-bounded partition

• m – An integer

EXAMPLES:

sage: Q = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1)
sage: Q.AffineGrothendieckPolynomial([2,1],4)
2*m3[1, 1, 1] - 8*m3[1, 1, 1, 1] + m3[2, 1] - 3*m3[2, 1, 1] - m3[2, 2]

F()
The affine Schur basis of the 𝑘-bounded quotient of symmetric functions, indexed by 𝑘-bounded parti-
tions. This is also equal to the affine Stanley symmetric functions (see WeylGroups.ElementMethods.
stanley_symmetric_function()) indexed by an affine Grassmannian permutation.

EXAMPLES:

sage: SymmetricFunctions(QQ).kBoundedQuotient(2,t=1).affineSchur()
2-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 2-
→˓bounded affine Schur basis

a_realization()
Returns a particular realization of self (the basis of 𝑘-bounded monomials if 𝑡 = 1 and the basis of
𝑘-bounded Hall-Littlewood functions otherwise).

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: Q = Sym.kBoundedQuotient(3,t=1)
sage: Q.a_realization()
3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 3-
→˓bounded monomial basis
sage: Q = Sym.kBoundedQuotient(3,t=2)
sage: Q.a_realization()
3-Bounded Quotient of Symmetric Functions over Rational Field with t=2 in the 3-
→˓bounded Hall-Littlewood P basis

affineSchur()
The affine Schur basis of the 𝑘-bounded quotient of symmetric functions, indexed by 𝑘-bounded parti-
tions. This is also equal to the affine Stanley symmetric functions (see WeylGroups.ElementMethods.

2786 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/weyl_groups.html#sage.categories.weyl_groups.WeylGroups.ElementMethods.stanley_symmetric_function
../../../../../../../html/en/reference/categories/sage/categories/weyl_groups.html#sage.categories.weyl_groups.WeylGroups.ElementMethods.stanley_symmetric_function
../../../../../../../html/en/reference/categories/sage/categories/weyl_groups.html#sage.categories.weyl_groups.WeylGroups.ElementMethods.stanley_symmetric_function
../../../../../../../html/en/reference/categories/sage/categories/weyl_groups.html#sage.categories.weyl_groups.WeylGroups.ElementMethods.stanley_symmetric_function

Combinatorics, Release 9.7

stanley_symmetric_function()) indexed by an affine Grassmannian permutation.

EXAMPLES:

sage: SymmetricFunctions(QQ).kBoundedQuotient(2,t=1).affineSchur()
2-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 2-
→˓bounded affine Schur basis

ambient()
Returns the Symmetric Functions over the same ring as self. This is needed to realize our ring as a
quotient.

an_element()
Returns an element of the quotient ring of 𝑘-bounded symmetric functions. This method is here to make
the TestSuite run properly.

EXAMPLES:

sage: Q = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1)
sage: Q.an_element()
2*m3[] + 2*m3[1] + 3*m3[2]

dks()
The dual 𝑘-Schur basis of the 𝑘-bounded quotient of symmetric functions, indexed by 𝑘-bounded partitions.
At 𝑡 = 1 this is also equal to the affine Schur basis and calculations will be faster using elements in the
affineSchur() basis.

EXAMPLES:

sage: SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(2).dual_k_
→˓Schur()
2-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate␣
→˓Polynomial Ring in t over Rational Field in the dual 2-Schur basis

dual_k_Schur()
The dual 𝑘-Schur basis of the 𝑘-bounded quotient of symmetric functions, indexed by 𝑘-bounded partitions.
At 𝑡 = 1 this is also equal to the affine Schur basis and calculations will be faster using elements in the
affineSchur() basis.

EXAMPLES:

sage: SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(2).dual_k_
→˓Schur()
2-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate␣
→˓Polynomial Ring in t over Rational Field in the dual 2-Schur basis

kHLP()
The Hall-Littlewood P basis of the 𝑘-bounded quotient of symmetric functions, indexed by 𝑘-bounded
partitions. At 𝑡 = 1 this basis is equal to the 𝑘-bounded monomial basis and calculations will be faster
using elements in the 𝑘-bounded monomial basis (see kmonomial()).

EXAMPLES:

sage: SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(2).
→˓kHallLittlewoodP()
2-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate␣
→˓Polynomial Ring in t over Rational Field in the 2-bounded Hall-Littlewood P␣
→˓basis

5.1. Comprehensive Module List 2787

../../../../../../../html/en/reference/categories/sage/categories/weyl_groups.html#sage.categories.weyl_groups.WeylGroups.ElementMethods.stanley_symmetric_function
../../../../../../../html/en/reference/categories/sage/categories/weyl_groups.html#sage.categories.weyl_groups.WeylGroups.ElementMethods.stanley_symmetric_function

Combinatorics, Release 9.7

kHallLittlewoodP()
The Hall-Littlewood P basis of the 𝑘-bounded quotient of symmetric functions, indexed by 𝑘-bounded
partitions. At 𝑡 = 1 this basis is equal to the 𝑘-bounded monomial basis and calculations will be faster
using elements in the 𝑘-bounded monomial basis (see kmonomial()).

EXAMPLES:

sage: SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(2).
→˓kHallLittlewoodP()
2-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate␣
→˓Polynomial Ring in t over Rational Field in the 2-bounded Hall-Littlewood P␣
→˓basis

km()
The monomial basis of the 𝑘-bounded quotient of symmetric functions, indexed by 𝑘-bounded partitions.

EXAMPLES:

sage: SymmetricFunctions(QQ).kBoundedQuotient(2,t=1).kmonomial()
2-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 2-
→˓bounded monomial basis

kmonomial()
The monomial basis of the 𝑘-bounded quotient of symmetric functions, indexed by 𝑘-bounded partitions.

EXAMPLES:

sage: SymmetricFunctions(QQ).kBoundedQuotient(2,t=1).kmonomial()
2-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 2-
→˓bounded monomial basis

lift(la)
Gives the lift map from the quotient ring of 𝑘-bounded symmetric functions to the symmetric functions.
This method is here to make the TestSuite run properly.

INPUT:

• la – A 𝑘-bounded partition

OUTPUT:

• The monomial element or a Hall-Littlewood P element of the symmetric functions indexed by
the partition la.

EXAMPLES:

sage: Q = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1)
sage: Q.lift([2,1])
m[2, 1]
sage: Q = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3)
sage: Q.lift([2,1])
HLP[2, 1]

one()
Returns the unit of the quotient ring of 𝑘-bounded symmetric functions. This method is here to make the
TestSuite run properly.

EXAMPLES:

2788 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Q = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1)
sage: Q.one()
m3[]

realizations()
A list of realizations of the 𝑘-bounded quotient.

EXAMPLES:

sage: kQ = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3)
sage: kQ.realizations()
[3-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate␣
→˓Polynomial Ring in t over Rational Field in the 3-bounded monomial basis, 3-
→˓Bounded Quotient of Symmetric Functions over Fraction Field of Univariate␣
→˓Polynomial Ring in t over Rational Field in the 3-bounded Hall-Littlewood P␣
→˓basis, 3-Bounded Quotient of Symmetric Functions over Fraction Field of␣
→˓Univariate Polynomial Ring in t over Rational Field in the 3-bounded affine␣
→˓Schur basis, 3-Bounded Quotient of Symmetric Functions over Fraction Field of␣
→˓Univariate Polynomial Ring in t over Rational Field in the dual 3-Schur basis]
sage: HLP = kQ.ambient().hall_littlewood().P()
sage: all(rzn(HLP[3,2,1]).lift() == HLP[3,2,1] for rzn in kQ.realizations())
True
sage: kQ = SymmetricFunctions(QQ).kBoundedQuotient(3,1)
sage: kQ.realizations()
[3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the␣
→˓3-bounded monomial basis, 3-Bounded Quotient of Symmetric Functions over␣
→˓Rational Field with t=1 in the 3-bounded Hall-Littlewood P basis, 3-Bounded␣
→˓Quotient of Symmetric Functions over Rational Field with t=1 in the 3-bounded␣
→˓affine Schur basis, 3-Bounded Quotient of Symmetric Functions over Rational␣
→˓Field with t=1 in the dual 3-Schur basis]
sage: m = kQ.ambient().m()
sage: all(rzn(m[3,2,1]).lift() == m[3,2,1] for rzn in kQ.realizations())
True

retract(la)
Gives the retract map from the symmetric functions to the quotient ring of 𝑘-bounded symmetric functions.
This method is here to make the TestSuite run properly.

INPUT:

• la – A partition

OUTPUT:

• The monomial element of the 𝑘-bounded quotient indexed by la.

EXAMPLES:

sage: Q = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1)
sage: Q.retract([2,1])
m3[2, 1]

class sage.combinat.sf.k_dual.KBoundedQuotientBases(base)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of bases for the 𝑘-bounded subspace of symmetric functions.

5.1. Comprehensive Module List 2789

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

class ElementMethods
Bases: object

class ParentMethods
Bases: object

ambient()
Returns the symmetric functions.

EXAMPLES:

sage: km = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).km()
sage: km.ambient()
Symmetric Functions over Rational Field

antipode(element)
Return the antipode of element via lifting to the symmetric functions and then retracting into the
𝑘-bounded quotient basis.

INPUT:
• element – an element in a basis of the ring of symmetric functions

EXAMPLES:

sage: dks3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).dual_k_Schur()
sage: dks3[3,2].antipode()
-dks3[1, 1, 1, 1, 1]
sage: km = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).km()
sage: km[3,2].antipode()
m3[3, 2]
sage: km.antipode(km[3,2])
m3[3, 2]
sage: m = SymmetricFunctions(QQ).m()
sage: m[3,2].antipode()
m[3, 2] + 2*m[5]

sage: km = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3).
→˓km()
sage: km[1,1,1,1].antipode()
(t^3-3*t^2+3*t)*m3[1, 1, 1, 1] + (-t^2+2*t)*m3[2, 1, 1] + t*m3[2, 2] +␣
→˓t*m3[3, 1]
sage: kHP = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3).
→˓kHLP()
sage: kHP[2,2].antipode()
(t^9-t^6-t^5+t^2)*HLP3[1, 1, 1, 1] + (t^6-t^3-t^2+t)*HLP3[2, 1, 1] + (t^5-t^
→˓2+1)*HLP3[2, 2] + (t^4-t)*HLP3[3, 1]
sage: dks = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3).
→˓dks()
sage: dks[2,2].antipode()
dks3[2, 2]
sage: dks[3,2].antipode()
-t^2*dks3[1, 1, 1, 1, 1] + (t^2-1)*dks3[2, 2, 1] + (-t^5+t)*dks3[3, 2]

coproduct(element)
Return the coproduct of element via lifting to the symmetric functions and then returning to the 𝑘-
bounded quotient basis. This method is implemented for all 𝑡 but is (weakly) conjectured to not be

2790 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

the correct operation for arbitrary 𝑡 because the coproduct on dual-𝑘-Schur functions does not have a
positive expansion.

INPUT:
• element – an element in a basis of the ring of symmetric functions

EXAMPLES:

sage: Q3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1)
sage: km = Q3.km()
sage: km[3,2].coproduct()
m3[] # m3[3, 2] + m3[2] # m3[3] + m3[3] # m3[2] + m3[3, 2] # m3[]
sage: dks3 = Q3.dual_k_Schur()
sage: dks3[2,2].coproduct()
dks3[] # dks3[2, 2] + dks3[1] # dks3[2, 1] + dks3[1, 1] # dks3[1, 1] +␣
→˓dks3[2] # dks3[2] + dks3[2, 1] # dks3[1] + dks3[2, 2] # dks3[]

sage: Q3t = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3)
sage: km = Q3t.km()
sage: km[3,2].coproduct()
m3[] # m3[3, 2] + m3[2] # m3[3] + m3[3] # m3[2] + m3[3, 2] # m3[]
sage: dks = Q3t.dks()
sage: dks[2,1,1].coproduct()
dks3[] # dks3[2, 1, 1] + (-t+1)*dks3[1] # dks3[1, 1, 1] + dks3[1] # dks3[2,␣
→˓1] + (-t+1)*dks3[1, 1] # dks3[1, 1] + dks3[1, 1] # dks3[2] + (-
→˓t+1)*dks3[1, 1, 1] # dks3[1] + dks3[2] # dks3[1, 1] + dks3[2, 1] #␣
→˓dks3[1] + dks3[2, 1, 1] # dks3[]
sage: kHLP = Q3t.kHLP()
sage: kHLP[2,1].coproduct()
HLP3[] # HLP3[2, 1] + (-t^2+1)*HLP3[1] # HLP3[1, 1] + HLP3[1] # HLP3[2] + (-
→˓t^2+1)*HLP3[1, 1] # HLP3[1] + HLP3[2] # HLP3[1] + HLP3[2, 1] # HLP3[]
sage: km.coproduct(km[3,2])
m3[] # m3[3, 2] + m3[2] # m3[3] + m3[3] # m3[2] + m3[3, 2] # m3[]

counit(element)
Return the counit of element.

The counit is the constant term of element.

INPUT:
• element – an element in a basis

EXAMPLES:

sage: km = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3).
→˓km()
sage: f = 2*km[2,1] - 3*km([])
sage: f.counit()
-3
sage: km.counit(f)
-3

degree_on_basis(b)
Return the degree of the basis element indexed by b.

INPUT:
• b – a partition

EXAMPLES:

5.1. Comprehensive Module List 2791

Combinatorics, Release 9.7

sage: F = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).affineSchur()
sage: F.degree_on_basis(Partition([3,2]))
5

indices()
The set of 𝑘-bounded partitions of all non-negative integers.

EXAMPLES:

sage: km = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).km()
sage: km.indices()
3-Bounded Partitions

lift(la)
Implements the lift map from the basis self to the monomial basis of symmetric functions.

INPUT:
• la – A 𝑘-bounded partition.

OUTPUT:
• A symmetric function in the monomial basis.

EXAMPLES:

sage: F = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).affineSchur()
sage: F.lift([3,1])
m[1, 1, 1, 1] + m[2, 1, 1] + m[2, 2] + m[3, 1]
sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
sage: dks = Sym.kBoundedQuotient(3).dual_k_Schur()
sage: dks.lift([3,1])
t^5*HLP[1, 1, 1, 1] + t^2*HLP[2, 1, 1] + t*HLP[2, 2] + HLP[3, 1]
sage: dks = Sym.kBoundedQuotient(3,t=1).dual_k_Schur()
sage: dks.lift([3,1])
m[1, 1, 1, 1] + m[2, 1, 1] + m[2, 2] + m[3, 1]

one_basis()
Return the basis element indexing 1.

EXAMPLES:

sage: F = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).affineSchur()
sage: F.one() # indirect doctest
F3[]

product(x, y)
Returns the product of two elements x and y.

INPUT:
• x, y – Elements of the 𝑘-bounded quotient of symmetric functions.

OUTPUT:
• A 𝑘-bounded symmetric function in the dual 𝑘-Schur function basis

EXAMPLES:

sage: dks3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).dual_k_Schur()
sage: dks3.product(dks3[2,1],dks3[1,1])
2*dks3[1, 1, 1, 1, 1] + 2*dks3[2, 1, 1, 1] + 2*dks3[2, 2, 1] + dks3[3, 1,␣
→˓1] + dks3[3, 2]
sage: dks3.product(dks3[2,1]+dks3[1], dks3[1,1])

(continues on next page)

2792 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

dks3[1, 1, 1] + 2*dks3[1, 1, 1, 1, 1] + dks3[2, 1] + 2*dks3[2, 1, 1, 1] +␣
→˓2*dks3[2, 2, 1] + dks3[3, 1, 1] + dks3[3, 2]
sage: dks3.product(dks3[2,1]+dks3[1], dks3([]))
dks3[1] + dks3[2, 1]
sage: dks3.product(dks3([]), dks3([]))
dks3[]
sage: dks3.product(dks3([]), dks3([4,1]))
Traceback (most recent call last):
...
TypeError: do not know how to make x (= [4, 1]) an element of self (=3-
→˓Bounded Quotient of Symmetric Functions over Rational Field with t=1 in␣
→˓the dual 3-Schur basis)

sage: dks3 = SymmetricFunctions(QQ['t'].fraction_field()).
→˓kBoundedQuotient(3).dual_k_Schur()
sage: dks3.product(dks3[2,1],dks3[1,1])
(t^2+t)*dks3[1, 1, 1, 1, 1] + (t+1)*dks3[2, 1, 1, 1] + (t+1)*dks3[2, 2, 1]␣
→˓+ dks3[3, 1, 1] + dks3[3, 2]
sage: dks3.product(dks3[2,1]+dks3[1], dks3[1,1])
dks3[1, 1, 1] + (t^2+t)*dks3[1, 1, 1, 1, 1] + dks3[2, 1] + (t+1)*dks3[2, 1,␣
→˓1, 1] + (t+1)*dks3[2, 2, 1] + dks3[3, 1, 1] + dks3[3, 2]
sage: dks3.product(dks3[2,1]+dks3[1], dks3([]))
dks3[1] + dks3[2, 1]
sage: dks3.product(dks3([]), dks3([]))
dks3[]

sage: F = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).affineSchur()
sage: F.product(F[2,1],F[1,1])
2*F3[1, 1, 1, 1, 1] + 2*F3[2, 1, 1, 1] + 2*F3[2, 2, 1] + F3[3, 1, 1] + F3[3,
→˓ 2]
sage: F.product(F[2,1]+F[1], F[1,1])
F3[1, 1, 1] + 2*F3[1, 1, 1, 1, 1] + F3[2, 1] + 2*F3[2, 1, 1, 1] + 2*F3[2, 2,
→˓ 1] + F3[3, 1, 1] + F3[3, 2]
sage: F.product(F[2,1]+F[1], F([]))
F3[1] + F3[2, 1]
sage: F.product(F([]), F([]))
F3[]
sage: F.product(F([]), F([4,1]))
Traceback (most recent call last):
...
TypeError: do not know how to make x (= [4, 1]) an element of self (=3-
→˓Bounded Quotient of Symmetric Functions over Rational Field with t=1 in␣
→˓the 3-bounded affine Schur basis)

sage: F = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3).
→˓affineSchur()
sage: F.product(F[2,1],F[1,1])
2*F3[1, 1, 1, 1, 1] + 2*F3[2, 1, 1, 1] + 2*F3[2, 2, 1] + F3[3, 1, 1] + F3[3,
→˓ 2]
sage: F.product(F[2,1],F[2])
(t^4+t^3-2*t^2+1)*F3[1, 1, 1, 1, 1] + (-t^2+t+1)*F3[2, 1, 1, 1] + (-t^
→˓2+t+2)*F3[2, 2, 1] + (t+1)*F3[3, 1, 1] + (t+1)*F3[3, 2] (continues on next page)

5.1. Comprehensive Module List 2793

Combinatorics, Release 9.7

(continued from previous page)

sage: F.product(F[2,1]+F[1], F[1,1])
F3[1, 1, 1] + 2*F3[1, 1, 1, 1, 1] + F3[2, 1] + 2*F3[2, 1, 1, 1] + 2*F3[2, 2,
→˓ 1] + F3[3, 1, 1] + F3[3, 2]
sage: F.product(F[2,1]+F[1], F([]))
F3[1] + F3[2, 1]
sage: F.product(F([]), F([]))
F3[]

sage: km = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).km()
sage: km.product(km[2,1],km[2,1])
4*m3[2, 2, 1, 1] + 6*m3[2, 2, 2] + 2*m3[3, 2, 1] + 2*m3[3, 3]
sage: Q3 = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3)
sage: km = Q3.km()
sage: km.product(km[2,1],km[2,1])
(t^5+7*t^4-8*t^3-28*t^2+47*t-19)*m3[1, 1, 1, 1, 1, 1] + (t^4-3*t^3-9*t^
→˓2+23*t-12)*m3[2, 1, 1, 1, 1] + (-t^3-3*t^2+11*t-3)*m3[2, 2, 1, 1] + (-t^
→˓2+5*t+2)*m3[2, 2, 2] + (6*t-6)*m3[3, 1, 1, 1] + (3*t-1)*m3[3, 2, 1] +␣
→˓(t+1)*m3[3, 3]
sage: dks = Q3.dual_k_Schur()
sage: km.product(dks[2,1],dks[1,1])
20*m3[1, 1, 1, 1, 1] + 9*m3[2, 1, 1, 1] + 4*m3[2, 2, 1] + 2*m3[3, 1, 1] +␣
→˓m3[3, 2]

retract(la)
Gives the retract map from the symmetric functions to the quotient ring of 𝑘-bounded symmetric
functions. This method is here to make the TestSuite run properly.

INPUT:
• la – A partition

OUTPUT:
• The monomial element of the 𝑘-bounded quotient indexed by la.

EXAMPLES:

sage: Q = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1)
sage: Q.retract([2,1])
m3[2, 1]

super_categories()
The super categories of self.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ['t'])
sage: from sage.combinat.sf.k_dual import KBoundedQuotientBases
sage: Q = Sym.kBoundedQuotient(3,t=1)
sage: KQB = KBoundedQuotientBases(Q)
sage: KQB.super_categories()
[Category of realizations of 3-Bounded Quotient of Symmetric Functions over␣
→˓Univariate Polynomial Ring in t over Rational Field with t=1,
Join of Category of graded hopf algebras with basis over Univariate Polynomial␣
→˓Ring in t over Rational Field

and Category of quotients of algebras over Univariate Polynomial Ring in t␣
→˓over Rational Field

(continues on next page)

2794 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

and Category of quotients of graded modules with basis over Univariate␣
→˓Polynomial Ring in t over Rational Field]

class sage.combinat.sf.k_dual.KBoundedQuotientBasis(kBoundedRing, prefix)
Bases: sage.combinat.free_module.CombinatorialFreeModule

Abstract base class for the bases of the 𝑘-bounded quotient.

class sage.combinat.sf.k_dual.kMonomial(kBoundedRing)
Bases: sage.combinat.sf.k_dual.KBoundedQuotientBasis

The basis of monomial symmetric functions indexed by partitions with first part less than or equal to 𝑘.

lift(la)
Implements the lift function on the monomial basis. Given a 𝑘-bounded partition la, the lift will return the
corresponding monomial basis element.

INPUT:

• la – A 𝑘-bounded partition

OUTPUT:

• A monomial symmetric function.

EXAMPLES:

sage: km = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).km()
sage: km.lift(Partition([3,1]))
m[3, 1]
sage: km.lift([])
m[]
sage: km.lift(Partition([4,1]))
Traceback (most recent call last):
...
TypeError: do not know how to make x (= [4, 1]) an element of self (=3-Bounded␣
→˓Quotient of Symmetric Functions over Rational Field with t=1 in the 3-bounded␣
→˓monomial basis)

retract(la)
Implements the retract function on the monomial basis. Given a partition la, the retract will return the
corresponding 𝑘-bounded monomial basis element if la is 𝑘-bounded; zero otherwise.

INPUT:

• la – A partition

OUTPUT:

• A 𝑘-bounded monomial symmetric function in the 𝑘-quotient of symmetric functions.

EXAMPLES:

sage: km = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).km()
sage: km.retract(Partition([3,1]))
m3[3, 1]
sage: km.retract(Partition([4,1]))
0
sage: km.retract([])

(continues on next page)

5.1. Comprehensive Module List 2795

Combinatorics, Release 9.7

(continued from previous page)

m3[]
sage: m = SymmetricFunctions(QQ).m()
sage: km(m[3, 1])
m3[3, 1]
sage: km(m[4, 1])
0

sage: km = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3).km()
sage: km.retract(Partition([3,1]))
m3[3, 1]
sage: km.retract(Partition([4,1]))
(t^4+t^3-9*t^2+11*t-4)*m3[1, 1, 1, 1, 1] + (-3*t^2+6*t-3)*m3[2, 1, 1, 1] + (-t^
→˓2+3*t-2)*m3[2, 2, 1] + (2*t-2)*m3[3, 1, 1] + (t-1)*m3[3, 2]
sage: m = SymmetricFunctions(FractionField(QQ['t'])).m()
sage: km(m[3, 1])
m3[3, 1]
sage: km(m[4, 1])
(t^4+t^3-9*t^2+11*t-4)*m3[1, 1, 1, 1, 1] + (-3*t^2+6*t-3)*m3[2, 1, 1, 1] + (-t^
→˓2+3*t-2)*m3[2, 2, 1] + (2*t-2)*m3[3, 1, 1] + (t-1)*m3[3, 2]

class sage.combinat.sf.k_dual.kbounded_HallLittlewoodP(kBoundedRing)
Bases: sage.combinat.sf.k_dual.KBoundedQuotientBasis

The basis of P Hall-Littlewood symmetric functions indexed by partitions with first part less than or equal to 𝑘.

lift(la)
Implements the lift function on the Hall-Littlewood P basis. Given a 𝑘-bounded partition la, the lift will
return the corresponding Hall-Littlewood P basis element.

INPUT:

• la – A 𝑘-bounded partition

OUTPUT:

• A Hall-Littlewood symmetric function.

EXAMPLES:

sage: kHLP = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3).
→˓kHallLittlewoodP()
sage: kHLP.lift(Partition([3,1]))
HLP[3, 1]
sage: kHLP.lift([])
HLP[]
sage: kHLP.lift(Partition([4,1]))
Traceback (most recent call last):
...
TypeError: do not know how to make x (= [4, 1]) an element of self (=3-Bounded␣
→˓Quotient of Symmetric Functions over Fraction Field of Univariate Polynomial␣
→˓Ring in t over Rational Field in the 3-bounded Hall-Littlewood P basis)

retract(la)
Implements the retract function on the Hall-Littlewood P basis. Given a partition la, the retract will return
the corresponding 𝑘-bounded Hall-Littlewood P basis element if la is 𝑘-bounded; zero otherwise.

INPUT:

2796 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• la – A partition

OUTPUT:

• A 𝑘-bounded Hall-Littlewood P symmetric function in the 𝑘-quotient of symmetric functions.

EXAMPLES:

sage: kHLP = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3).
→˓kHallLittlewoodP()
sage: kHLP.retract(Partition([3,1]))
HLP3[3, 1]
sage: kHLP.retract(Partition([4,1]))
0
sage: kHLP.retract([])
HLP3[]
sage: m = kHLP.realization_of().ambient().m()
sage: kHLP(m[2,2])
(t^4-t^3-t+1)*HLP3[1, 1, 1, 1] + (t-1)*HLP3[2, 1, 1] + HLP3[2, 2]

5.1.286 Kostka-Foulkes Polynomials

Based on the algorithms in John Stembridge’s SF package for Maple which can be found at http://www.math.lsa.umich.
edu/~jrs/maple.html .

sage.combinat.sf.kfpoly.KostkaFoulkesPolynomial(mu, nu, t=None)
Returns the Kostka-Foulkes polynomial 𝐾𝜇,𝜈(𝑡).

INPUT:

• mu, nu – partitions

• t – an optional parameter (default: None)

OUTPUT:

• the Koskta-Foulkes polynomial indexed by partitions mu and nu and evaluated at the parameter t. If t is
None the resulting polynomial is in the polynomial ring Z[′𝑡′].

EXAMPLES:

sage: KostkaFoulkesPolynomial([2,2],[2,2])
1
sage: KostkaFoulkesPolynomial([2,2],[4])
0
sage: KostkaFoulkesPolynomial([2,2],[1,1,1,1])
t^4 + t^2
sage: KostkaFoulkesPolynomial([2,2],[2,1,1])
t
sage: q = PolynomialRing(QQ,'q').gen()
sage: KostkaFoulkesPolynomial([2,2],[2,1,1],q)
q

sage.combinat.sf.kfpoly.compat(n, mu, nu)
Generate all possible partitions of 𝑛 that can precede 𝜇, 𝜈 in a rigging sequence.

INPUT:

• n – a positive integer

5.1. Comprehensive Module List 2797

http://www.math.lsa.umich.edu/~jrs/maple.html
http://www.math.lsa.umich.edu/~jrs/maple.html

Combinatorics, Release 9.7

• mu, nu – partitions

OUTPUT:

• a list of partitions

EXAMPLES:

sage: from sage.combinat.sf.kfpoly import *
sage: compat(4, [1], [2,1])
[[1, 1, 1, 1], [2, 1, 1], [2, 2], [3, 1], [4]]
sage: compat(3, [1], [2,1])
[[1, 1, 1], [2, 1], [3]]
sage: compat(2, [1], [])
[[2]]
sage: compat(3, [1], [])
[[2, 1], [3]]
sage: compat(3, [2], [1])
[[3]]
sage: compat(4, [1,1], [])
[[2, 2], [3, 1], [4]]
sage: compat(4, [2], [])
[[4]]

sage.combinat.sf.kfpoly.dom(mup, snu)
Return True if sum(mu[:i+1]) >= snu[i] for all 0 <= i < len(snu); otherwise, it returns False.

INPUT:

• mup – a partition conjugate to mu

• snu – a sequence of positive integers

OUTPUT:

• a boolean value

EXAMPLES:

sage: from sage.combinat.sf.kfpoly import *
sage: dom([3,2,1],[2,4,5])
True
sage: dom([3,2,1],[2,4,7])
False
sage: dom([3,2,1],[2,6,5])
False
sage: dom([3,2,1],[4,4,4])
False

sage.combinat.sf.kfpoly.kfpoly(mu, nu, t=None)
Return the Kostka-Foulkes polynomial 𝐾𝜇,𝜈(𝑡) by generating all rigging sequences for the shape 𝜇, and then
selecting those of content 𝜈.

INPUT:

• mu, nu – partitions

• t – an optional parameter (default: None)

OUTPUT:

2798 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• the Koskta-Foulkes polynomial indexed by partitions mu and nu and evaluated at the parameter t. If t is
None the resulting polynomial is in the polynomial ring Z[′𝑡′].

EXAMPLES:

sage: from sage.combinat.sf.kfpoly import kfpoly
sage: kfpoly([2,2], [2,1,1])
t
sage: kfpoly([4], [2,1,1])
t^3
sage: kfpoly([4], [2,2])
t^2
sage: kfpoly([1,1,1,1], [2,2])
0

sage.combinat.sf.kfpoly.riggings(part)
Generate all possible rigging sequences for a fixed partition part.

INPUT:

• part – a partition

OUTPUT:

• a list of riggings associated to the partition part

EXAMPLES:

sage: from sage.combinat.sf.kfpoly import *
sage: riggings([3])
[[[1, 1, 1]], [[2, 1]], [[3]]]
sage: riggings([2,1])
[[[2, 1], [1]], [[3], [1]]]
sage: riggings([1,1,1])
[[[3], [2], [1]]]
sage: riggings([2,2])
[[[2, 2], [1, 1]], [[3, 1], [1, 1]], [[4], [1, 1]], [[4], [2]]]
sage: riggings([2,2,2])
[[[3, 3], [2, 2], [1, 1]],
[[4, 2], [2, 2], [1, 1]],
[[5, 1], [2, 2], [1, 1]],
[[6], [2, 2], [1, 1]],
[[5, 1], [3, 1], [1, 1]],
[[6], [3, 1], [1, 1]],
[[6], [4], [2]]]

sage.combinat.sf.kfpoly.schur_to_hl(mu, t=None)
Return a dictionary corresponding to 𝑠𝜇 in Hall-Littlewood 𝑃 basis.

INPUT:

• mu – a partition

• t – an optional parameter (default: the generator from Z[′𝑡′])

OUTPUT:

• a dictionary with the coefficients 𝐾𝜇𝜈(𝑡) for 𝜈 smaller in dominance order than 𝜇

EXAMPLES:

5.1. Comprehensive Module List 2799

Combinatorics, Release 9.7

sage: from sage.combinat.sf.kfpoly import *
sage: schur_to_hl([1,1,1])
{[1, 1, 1]: 1}
sage: a = schur_to_hl([2,1])
sage: for mc in sorted(a.items()): print(mc)
([1, 1, 1], t^2 + t)
([2, 1], 1)
sage: a = schur_to_hl([3])
sage: for mc in sorted(a.items()): print(mc)
([1, 1, 1], t^3)
([2, 1], t)
([3], 1)
sage: a = schur_to_hl([4])
sage: for mc in sorted(a.items()): print(mc)
([1, 1, 1, 1], t^6)
([2, 1, 1], t^3)
([2, 2], t^2)
([3, 1], t)
([4], 1)
sage: a = schur_to_hl([3,1])
sage: for mc in sorted(a.items()): print(mc)
([1, 1, 1, 1], t^5 + t^4 + t^3)
([2, 1, 1], t^2 + t)
([2, 2], t)
([3, 1], 1)
sage: a = schur_to_hl([2,2])
sage: for mc in sorted(a.items()): print(mc)
([1, 1, 1, 1], t^4 + t^2)
([2, 1, 1], t)
([2, 2], 1)
sage: a = schur_to_hl([2,1,1])
sage: for mc in sorted(a.items()): print(mc)
([1, 1, 1, 1], t^3 + t^2 + t)
([2, 1, 1], 1)
sage: a = schur_to_hl([1,1,1,1])
sage: for mc in sorted(a.items()): print(mc)
([1, 1, 1, 1], 1)
sage: a = schur_to_hl([2,2,2])
sage: for mc in sorted(a.items()): print(mc)
([1, 1, 1, 1, 1, 1], t^9 + t^7 + t^6 + t^5 + t^3)
([2, 1, 1, 1, 1], t^4 + t^2)
([2, 2, 1, 1], t)
([2, 2, 2], 1)

sage.combinat.sf.kfpoly.weight(rg, t=None)
Return the weight of a rigging.

INPUT:

• rg – a rigging, a list of partitions

• t – an optional parameter, (default: the generator from Z[′𝑡′])

OUTPUT:

• a polynomial in the parameter t

2800 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.sf.kfpoly import weight
sage: weight([[2,1], [1]])
1
sage: weight([[3], [1]])
t^2 + t
sage: weight([[2,1], [3]])
t^4
sage: weight([[2, 2], [1, 1]])
1
sage: weight([[3, 1], [1, 1]])
t
sage: weight([[4], [1, 1]], 2)
16
sage: weight([[4], [2]], t=2)
4

5.1.287 LLT symmetric functions

REFERENCES:

class sage.combinat.sf.llt.LLT_class(Sym, k, t='t')
Bases: sage.structure.unique_representation.UniqueRepresentation

A class for working with LLT symmetric functions.

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: L3 = Sym.llt(3); L3
level 3 LLT polynomials over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field
sage: L3.cospin([3,2,1])
(t+1)*m[1, 1] + m[2]
sage: HC3 = L3.hcospin(); HC3
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the level 3 LLT cospin basis
sage: m = Sym.monomial()
sage: m(HC3[1,1])
(t+1)*m[1, 1] + m[2]

We require that the parameter 𝑡 must be in the base ring:

sage: Symxt = SymmetricFunctions(QQ['x','t'].fraction_field())
sage: (x,t) = Symxt.base_ring().gens()
sage: LLT3x = Symxt.llt(3,t=x)
sage: LLT3 = Symxt.llt(3)
sage: HS3x = LLT3x.hspin()
sage: HS3t = LLT3.hspin()
sage: s = Symxt.schur()
sage: s(HS3x[2,1])
s[2, 1] + x*s[3]
sage: s(HS3t[2,1])

(continues on next page)

5.1. Comprehensive Module List 2801

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

(continued from previous page)

s[2, 1] + t*s[3]
sage: HS3x(HS3t[2,1])
HSp3[2, 1] + (-x+t)*HSp3[3]
sage: s(HS3x(HS3t[2,1]))
s[2, 1] + t*s[3]
sage: LLT3t2 = Symxt.llt(3,t=2)
sage: HC3t2 = LLT3t2.hcospin()
sage: HS3x(HC3t2[3,1])
2*HSp3[3, 1] + (-2*x+1)*HSp3[4]

base_ring()
Returns the base ring of self.

INPUT:

• self – a family of LLT symmetric functions bases

OUTPUT:

• returns the base ring of the symmetric function ring associated to self

EXAMPLES:

sage: SymmetricFunctions(FractionField(QQ['t'])).llt(3).base_ring()
Fraction Field of Univariate Polynomial Ring in t over Rational Field

cospin(skp)
Calculate a single instance of the cospin symmetric functions.

These are the functions defined in [LLT1997] equation (26).

INPUT:

• self – a family of LLT symmetric functions bases

• skp – a partition or a list of partitions or a list of skew partitions

OUTPUT:

the monomial expansion of the LLT symmetric function cospin functions indexed by skp

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: L3 = Sym.llt(3)
sage: L3.cospin([2,1])
m[1]
sage: L3.cospin([3,2,1])
(t+1)*m[1, 1] + m[2]
sage: s = Sym.schur()
sage: s(L3.cospin([[2],[1],[2]]))
t^4*s[2, 2, 1] + t^3*s[3, 1, 1] + (t^3+t^2)*s[3, 2] + (t^2+t)*s[4, 1] + s[5]

hcospin()
Returns the HCospin basis. This basis is defined [LLT1997] equation (27).

INPUT:

• self – a family of LLT symmetric functions bases

OUTPUT:

2802 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• returns the h-cospin basis of the LLT symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HCosp3 = Sym.llt(3).hcospin(); HCosp3
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the level 3 LLT cospin basis
sage: HCosp3([1])^2
1/t*HCosp3[1, 1] + ((t-1)/t)*HCosp3[2]

sage: s = Sym.schur()
sage: HCosp3(s([2]))
HCosp3[2]
sage: HCosp3(s([1,1]))
1/t*HCosp3[1, 1] - 1/t*HCosp3[2]
sage: s(HCosp3([2,1]))
t*s[2, 1] + s[3]

hspin()
Returns the HSpin basis. This basis is defined [LLT1997] equation (28).

INPUT:

• self – a family of LLT symmetric functions bases

OUTPUT:

• returns the h-spin basis of the LLT symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HSp3 = Sym.llt(3).hspin(); HSp3
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the level 3 LLT spin basis
sage: HSp3([1])^2
HSp3[1, 1] + (-t+1)*HSp3[2]

sage: s = Sym.schur()
sage: HSp3(s([2]))
HSp3[2]
sage: HSp3(s([1,1]))
HSp3[1, 1] - t*HSp3[2]
sage: s(HSp3([2,1]))
s[2, 1] + t*s[3]

level()
Returns the level of self.

INPUT:

• self – a family of LLT symmetric functions bases

OUTPUT:

• the level is the parameter of 𝑘 in the basis

EXAMPLES:

5.1. Comprehensive Module List 2803

Combinatorics, Release 9.7

sage: SymmetricFunctions(FractionField(QQ['t'])).llt(3).level()
3

spin_square(skp)
Calculate a single instance of a spin squared LLT symmetric function associated with a partition, list of
partitions, or a list of skew partitions.

This family of symmetric functions is defined in [LT2000] equation (43).

INPUT:

• self – a family of LLT symmetric functions bases

• skp – a partition of a list of partitions or a list of skew partitions

OUTPUT:

the monomial expansion of the LLT symmetric function spin-square functions indexed by skp

EXAMPLES:

sage: L3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3)
sage: L3.spin_square([2,1])
t*m[1]
sage: L3.spin_square([3,2,1])
(t^3+t)*m[1, 1] + t^3*m[2]
sage: L3.spin_square([[1],[1],[1]])
(t^6+2*t^4+2*t^2+1)*m[1, 1, 1] + (t^6+t^4+t^2)*m[2, 1] + t^6*m[3]
sage: L3.spin_square([[[2,2],[1]],[[2,1],[]]])
(2*t^4+3*t^2+1)*m[1, 1, 1, 1] + (t^4+t^2)*m[2, 1, 1] + t^4*m[2, 2]

symmetric_function_ring()
The symmetric function algebra associated to the family of LLT symmetric function bases

INPUT:

• self – a family of LLT symmetric functions bases

OUTPUT:

• returns the symmetric function ring associated to self.

EXAMPLES:

sage: L3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3)
sage: L3.symmetric_function_ring()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field

class sage.combinat.sf.llt.LLT_cospin(llt)
Bases: sage.combinat.sf.llt.LLT_generic

A class of methods for the h-cospin LLT basis of the symmetric functions.

INPUT:

• self – an instance of the LLT hcospin basis

• llt – a family of LLT symmetric function bases

class Element
Bases: sage.combinat.sf.llt.LLT_generic.Element

2804 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.sf.llt.LLT_generic(llt, prefix)
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

A class of methods which are common to both the hspin and hcospin of the LLT symmetric functions.

INPUT:

• self – an instance of the LLT hspin or hcospin basis

• llt – a family of LLT symmetric functions

EXAMPLES:

sage: SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the level 3 LLT spin basis
sage: SymmetricFunctions(QQ).llt(3,t=2).hspin()
Symmetric Functions over Rational Field in the level 3 LLT spin with t=2 basis
sage: QQz = FractionField(QQ['z']); z = QQz.gen()
sage: SymmetricFunctions(QQz).llt(3,t=z).hspin()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in z over␣
→˓Rational Field in the level 3 LLT spin with t=z basis

class Element
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

level()
Returns the level of self.

INPUT:

• self – an instance of the LLT hspin or hcospin basis

OUTPUT:

• returns the level associated to the basis self.

EXAMPLES:

sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
sage: HSp3.level()
3

llt_family()
The family of the llt bases of the symmetric functions.

INPUT:

• self – an instance of the LLT hspin or hcospin basis

OUTPUT:

• returns an instance of the family of LLT bases associated to self.

EXAMPLES:

sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
sage: HSp3.llt_family()
level 3 LLT polynomials over Fraction Field of Univariate Polynomial Ring in t␣
→˓over Rational Field

5.1. Comprehensive Module List 2805

Combinatorics, Release 9.7

product(left, right)
Convert to the monomial basis, do the multiplication there, and convert back to the basis self.

INPUT:

• self – an instance of the LLT hspin or hcospin basis

• left, right – elements of the symmetric functions

OUTPUT:

the product of left and right expanded in the basis self

EXAMPLES:

sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
sage: HSp3.product(HSp3([1]), HSp3([2]))
HSp3[2, 1] + (-t+1)*HSp3[3]
sage: HCosp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hcospin()
sage: HCosp3.product(HCosp3([1]), HSp3([2]))
1/t*HCosp3[2, 1] + ((t-1)/t)*HCosp3[3]

class sage.combinat.sf.llt.LLT_spin(llt)
Bases: sage.combinat.sf.llt.LLT_generic

A class of methods for the h-spin LLT basis of the symmetric functions.

INPUT:

• self – an instance of the LLT hcospin basis

• llt – a family of LLT symmetric function bases

class Element
Bases: sage.combinat.sf.llt.LLT_generic.Element

5.1.288 Macdonald Polynomials

Notation used in the definitions follows mainly [Mac1995].

The integral forms of the bases 𝐻 and 𝐻𝑡 do not appear in Macdonald’s book. They correspond to the two bases
𝐻𝜇[𝑋; 𝑞, 𝑡] =

∑︀
𝜈 𝐾𝜈𝜇(𝑞, 𝑡)𝑠𝜇[𝑋] and �̃�𝜇[𝑋; 𝑞, 𝑡] = 𝑡𝑛(𝜇)

∑︀
𝜈 𝐾𝜈𝜇(𝑞, 1/𝑡)𝑠𝜈 [𝑋] where 𝐾𝜇𝜈(𝑞, 𝑡) are the Macdon-

ald 𝑞, 𝑡-Koskta coefficients.

The𝐻𝑡 in this case is short for �̃� and is the basis which is the graded Frobenius image of the Garsia-Haiman modules
[GH1993].

REFERENCES:

• [Mac1995]

class sage.combinat.sf.macdonald.Macdonald(Sym, q='q', t='t')
Bases: sage.structure.unique_representation.UniqueRepresentation

Macdonald Symmetric functions including𝑃 ,𝑄, 𝐽 ,𝐻 ,𝐻𝑡 bases also including the S basis which is the plethystic
transformation of the Schur basis (that which is dual to the Schur basis with respect to the Macdonald 𝑞, 𝑡-scalar
product)

INPUT:

• self – a family of Macdonald symmetric function bases

EXAMPLES:

2806 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

sage: t = QQ['t'].gen(); SymmetricFunctions(QQ['t'].fraction_field()).macdonald(q=t,
→˓t=1)
Macdonald polynomials with q=t and t=1 over Fraction Field of Univariate Polynomial␣
→˓Ring in t over Rational Field
sage: Sym = SymmetricFunctions(FractionField(QQ['t'])).macdonald()
Traceback (most recent call last):
...
TypeError: unable to evaluate 'q' in Fraction Field of Univariate Polynomial Ring␣
→˓in t over Rational Field

H()
Returns the Macdonald polynomials on the H basis. When the 𝐻 basis is expanded on the Schur basis, the
coefficients are the 𝑞𝑡-Kostka numbers.

INPUT:

• self – a family of Macdonald symmetric function bases

OUTPUT:

• returns the 𝐻 Macdonald basis of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: H = Sym.macdonald().H(); H
Symmetric Functions over Fraction Field of Multivariate Polynomial Ring in q, t␣
→˓over Rational Field in the Macdonald H basis
sage: s = Sym.schur()
sage: s(H([2]))
q*s[1, 1] + s[2]
sage: s(H([1,1]))
s[1, 1] + t*s[2]

Coercions to/from the Schur basis are implemented:

sage: H = Sym.macdonald().H()
sage: s = Sym.schur()
sage: H(s([2]))
(q/(q*t-1))*McdH[1, 1] - (1/(q*t-1))*McdH[2]

Ht()
Returns the Macdonald polynomials on the 𝐻𝑡 basis. The elements of the 𝐻𝑡 basis are eigenvectors of the
𝑛𝑎𝑏𝑙𝑎 operator. When expanded on the Schur basis, the coefficients are the modified 𝑞𝑡-Kostka numbers.

INPUT:

• self – a family of Macdonald symmetric function bases

OUTPUT:

• returns the 𝐻𝑡 Macdonald basis of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: Ht = Sym.macdonald().Ht(); Ht
Symmetric Functions over Fraction Field of Multivariate Polynomial Ring in q, t␣
→˓over Rational Field in the Macdonald Ht basis

(continues on next page)

5.1. Comprehensive Module List 2807

Combinatorics, Release 9.7

(continued from previous page)

sage: [Ht(p).nabla() for p in Partitions(3)]
[q^3*McdHt[3], q*t*McdHt[2, 1], t^3*McdHt[1, 1, 1]]

sage: s = Sym.schur()
sage: from sage.combinat.sf.macdonald import qt_kostka
sage: q,t = Ht.base_ring().gens()
sage: s(Ht([2,1]))
q*t*s[1, 1, 1] + (q+t)*s[2, 1] + s[3]
sage: qt_kostka([1,1,1],[2,1]).subs(t=1/t)*t^Partition([2,1]).weighted_size()
q*t
sage: qt_kostka([2,1],[2,1]).subs(t=1/t)*t^Partition([2,1]).weighted_size()
q + t
sage: qt_kostka([3],[2,1]).subs(t=1/t)*t^Partition([2,1]).weighted_size()
1

Coercions to/from the Schur basis are implemented:

sage: Ht = Sym.macdonald().Ht()
sage: s = Sym.schur()
sage: Ht(s([2,1]))
(q/(q*t^2-t^3-q^2+q*t))*McdHt[1, 1, 1] + ((-q^2-q*t-t^2)/(q^2*t^2-q^3-t^
→˓3+q*t))*McdHt[2, 1] + (t/(-q^3+q^2*t+q*t-t^2))*McdHt[3]
sage: Ht(s([2]))
((-q)/(-q+t))*McdHt[1, 1] + (t/(-q+t))*McdHt[2]

J()
Returns the Macdonald polynomials on the 𝐽 basis also known as the integral form of the Macdonald
polynomials. These are scalar multiples of both the 𝑃 and 𝑄 bases. When expressed in the 𝑃 or 𝑄 basis,
the scaling coefficients are polynomials in 𝑞 and 𝑡 rather than rational functions.

The 𝐽 basis is calculated using determinantal formulas of Lapointe-Lascoux-Morse giving the action on
the S-basis [LLM1998].

INPUT:

• self – a family of Macdonald symmetric function bases

OUTPUT:

• returns the 𝐽 Macdonald basis of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: J = Sym.macdonald().J(); J
Symmetric Functions over Fraction Field of Multivariate Polynomial Ring in q, t␣
→˓over Rational Field in the Macdonald J basis
sage: P = Sym.macdonald().P()
sage: Q = Sym.macdonald().Q()
sage: P(J([2]))
(q*t^2-q*t-t+1)*McdP[2]
sage: P(J([1,1]))
(t^3-t^2-t+1)*McdP[1, 1]
sage: Q(J([2]))
(q^3-q^2-q+1)*McdQ[2]

(continues on next page)

2808 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Q(J([1,1]))
(q^2*t-q*t-q+1)*McdQ[1, 1]

Coercions from the 𝑄 and 𝐽 basis (proportional) and to/from the Schur basis are implemented:

sage: P = Sym.macdonald().P()
sage: Q = Sym.macdonald().Q()
sage: J = Sym.macdonald().J()
sage: s = Sym.schur()

sage: J(P([2]))
(1/(q*t^2-q*t-t+1))*McdJ[2]

sage: J(Q([2]))
(1/(q^3-q^2-q+1))*McdJ[2]

sage: s(J([2]))
(-q*t+t^2+q-t)*s[1, 1] + (q*t^2-q*t-t+1)*s[2]
sage: J(s([2]))
((q-t)/(q*t^4-q*t^3-q*t^2-t^3+q*t+t^2+t-1))*McdJ[1, 1] + (1/(q*t^2-q*t-
→˓t+1))*McdJ[2]

P()
Returns Macdonald polynomials in 𝑃 basis. The 𝑃 basis is defined here as a normalized form of the 𝐽
basis.

INPUT:

• self – a family of Macdonald symmetric function bases

OUTPUT:

• returns the 𝑃 Macdonald basis of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: P = Sym.macdonald().P(); P
Symmetric Functions over Fraction Field of Multivariate Polynomial Ring in q, t␣
→˓over Rational Field in the Macdonald P basis
sage: P[2]
McdP[2]

The 𝑃 Macdonald basis is upper triangularly related to the monomial symmetric functions and are orthog-
onal with respect to the 𝑞𝑡-Hall scalar product:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: P = Sym.macdonald().P(); P
Symmetric Functions over Fraction Field of Multivariate Polynomial Ring in q, t␣
→˓over Rational Field in the Macdonald P basis
sage: m = Sym.monomial()
sage: P.transition_matrix(m,2)
[1 (q*t - q + t - 1)/(q*t - 1)]
[0 1]

(continues on next page)

5.1. Comprehensive Module List 2809

Combinatorics, Release 9.7

(continued from previous page)

sage: P([1,1]).scalar_qt(P([2]))
0
sage: P([2]).scalar_qt(P([2]))
(-q^3 + q^2 + q - 1)/(-q*t^2 + q*t + t - 1)
sage: P([1,1]).scalar_qt(P([1,1]))
(-q^2*t + q*t + q - 1)/(-t^3 + t^2 + t - 1)

When 𝑞 = 0, the Macdonald polynomials on the 𝑃 basis are the same as the Hall-Littlewood polynomials
on the 𝑃 basis.

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: P = Sym.macdonald(q=0).P(); P
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Macdonald P with q=0 basis
sage: P([2])^2
(t+1)*McdP[2, 2] + (-t+1)*McdP[3, 1] + McdP[4]
sage: HLP = Sym.hall_littlewood().P()
sage: HLP([2])^2
(t+1)*HLP[2, 2] + (-t+1)*HLP[3, 1] + HLP[4]

Coercions from the 𝑄 and 𝐽 basis (proportional) are implemented:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: P = Sym.macdonald().P()
sage: Q = Sym.macdonald().Q()
sage: J = Sym.macdonald().J()
sage: s = Sym.schur()

sage: P(Q([2]))
((q*t^2-q*t-t+1)/(q^3-q^2-q+1))*McdP[2]
sage: P(Q([2,1]))
((-q*t^4+2*q*t^3-q*t^2+t^2-2*t+1)/(-q^4*t+2*q^3*t-q^2*t+q^2-2*q+1))*McdP[2, 1]

sage: P(J([2]))
(q*t^2-q*t-t+1)*McdP[2]
sage: P(J([2,1]))
(-q*t^4+2*q*t^3-q*t^2+t^2-2*t+1)*McdP[2, 1]

By transitivity, one get coercions from the classical bases:

sage: P(s([2]))
((q-t)/(q*t-1))*McdP[1, 1] + McdP[2]
sage: P(s([2,1]))
((q*t-t^2+q-t)/(q*t^2-1))*McdP[1, 1, 1] + McdP[2, 1]

sage: Sym = SymmetricFunctions(QQ['x','y','z'].fraction_field())
sage: (x,y,z) = Sym.base_ring().gens()
sage: Macxy = Sym.macdonald(q=x,t=y)
sage: Macyz = Sym.macdonald(q=y,t=z)
sage: Maczx = Sym.macdonald(q=z,t=x)
sage: P1 = Macxy.P()
sage: P2 = Macyz.P()

(continues on next page)

2810 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: P3 = Maczx.P()
sage: m(P1[2,1])
((-2*x*y^2+x*y-y^2+x-y+2)/(-x*y^2+1))*m[1, 1, 1] + m[2, 1]
sage: m(P2[2,1])
((-2*y*z^2+y*z-z^2+y-z+2)/(-y*z^2+1))*m[1, 1, 1] + m[2, 1]
sage: m(P1(P2(P3[2,1])))
((-2*x^2*z-x^2+x*z-x+z+2)/(-x^2*z+1))*m[1, 1, 1] + m[2, 1]
sage: P1(P2[2])
((-x*y^2+2*x*y*z-y^2*z-x+2*y-z)/(x*y^2*z-x*y-y*z+1))*McdP[1, 1] + McdP[2]
sage: m(z*P1[2]+x*P2[2])
((x^2*y^2*z+x*y^2*z^2-x^2*y^2+x^2*y*z-x*y*z^2+y^2*z^2-x^2*y-2*x*y*z-y*z^2+x*y-
→˓y*z+x+z)/(x*y^2*z-x*y-y*z+1))*m[1, 1] + (x+z)*m[2]

Q()
Returns the Macdonald polynomials on the 𝑄 basis. These are dual to the Macdonald polynomials on the
P basis with respect to the 𝑞𝑡-Hall scalar product. The 𝑄 basis is defined to be a normalized form of the 𝐽
basis.

INPUT:

• self – a family of Macdonald symmetric function bases

OUTPUT:

• returns the 𝑄 Macdonald basis of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: Q = Sym.macdonald().Q(); Q
Symmetric Functions over Fraction Field of Multivariate Polynomial Ring in q, t␣
→˓over Rational Field in the Macdonald Q basis
sage: P = Sym.macdonald().P()
sage: Q([2]).scalar_qt(P([2]))
1
sage: Q([2]).scalar_qt(P([1,1]))
0
sage: Q([1,1]).scalar_qt(P([2]))
0
sage: Q([1,1]).scalar_qt(P([1,1]))
1
sage: Q(P([2]))
((q^3-q^2-q+1)/(q*t^2-q*t-t+1))*McdQ[2]
sage: Q(P([1,1]))
((q^2*t-q*t-q+1)/(t^3-t^2-t+1))*McdQ[1, 1]

Coercions from the 𝑃 and 𝐽 basis (proportional) are implemented:

sage: P = Sym.macdonald().P()
sage: Q = Sym.macdonald().Q()
sage: J = Sym.macdonald().J()
sage: s = Sym.schur()

sage: Q(J([2]))
(q^3-q^2-q+1)*McdQ[2]

5.1. Comprehensive Module List 2811

Combinatorics, Release 9.7

sage: Q(P([2]))
((q^3-q^2-q+1)/(q*t^2-q*t-t+1))*McdQ[2]
sage: P(Q(P([2])))
McdP[2]
sage: Q(P(Q([2])))
McdQ[2]

By transitivity, one gets coercions from the classical bases:

sage: Q(s([2]))
((q^2-q*t-q+t)/(t^3-t^2-t+1))*McdQ[1, 1] + ((q^3-q^2-q+1)/(q*t^2-q*t-
→˓t+1))*McdQ[2]

S()
Returns the modified Schur functions defined by the plethystic substitution 𝑆𝜇 = 𝑠𝜇[𝑋(1 − 𝑡)/(1 − 𝑞)].
When the Macdonald polynomials in the J basis are expressed in terms of the modified Schur functions at
𝑞 = 0, the coefficients are 𝑞𝑡-Kostka numbers.

INPUT:

• self – a family of Macdonald symmetric function bases

OUTPUT:

• returns the 𝑆 Macdonald basis of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: S = Sym.macdonald().S(); S
Symmetric Functions over Fraction Field of Multivariate Polynomial Ring in q, t␣
→˓over Rational Field in the Macdonald S basis
sage: p = Sym.power()
sage: p(S[2,1])
((1/3*t^3-t^2+t-1/3)/(q^3-3*q^2+3*q-1))*p[1, 1, 1] + ((-1/3*t^3+1/3)/(q^3-
→˓1))*p[3]
sage: J = Sym.macdonald().J()
sage: S(J([2]))
(q^3-q^2-q+1)*McdS[2]
sage: S(J([1,1]))
(q^2*t-q*t-q+1)*McdS[1, 1] + (q^2-q*t-q+t)*McdS[2]
sage: S = Sym.macdonald(q=0).S()
sage: S(J[1,1])
McdS[1, 1] + t*McdS[2]
sage: S(J[2])
q*McdS[1, 1] + McdS[2]
sage: p(S[2,1])
(-1/3*t^3+t^2-t+1/3)*p[1, 1, 1] + (1/3*t^3-1/3)*p[3]

sage: from sage.combinat.sf.macdonald import qt_kostka
sage: qt_kostka([2],[1,1])
t
sage: qt_kostka([1,1],[2])
q

Coercions to/from the Schur basis are implemented:

2812 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: S = Sym.macdonald().S()
sage: s = Sym.schur()
sage: S(s([2]))
((q^2-q*t-q+t)/(t^3-t^2-t+1))*McdS[1, 1] + ((-q^2*t+q*t+q-1)/(-t^3+t^2+t-
→˓1))*McdS[2]
sage: s(S([1,1]))
((-q*t^2+q*t+t-1)/(-q^3+q^2+q-1))*s[1, 1] + ((q*t-t^2-q+t)/(-q^3+q^2+q-1))*s[2]

base_ring()
Returns the base ring of the symmetric functions where the Macdonald symmetric functions live

INPUT:

• self – a family of Macdonald symmetric function bases

OUTPUT:

• the base ring associated to the corresponding symmetric function ring

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ['q'].fraction_field())
sage: Mac = Sym.macdonald(t=0)
sage: Mac.base_ring()
Fraction Field of Univariate Polynomial Ring in q over Rational Field

symmetric_function_ring()
Returns the base ring of the symmetric functions where the Macdonald symmetric functions live

INPUT:

• self – a family of Macdonald symmetric function bases

OUTPUT:

• the symmetric function ring associated to the Macdonald bases

EXAMPLES:

sage: Mac = SymmetricFunctions(QQ['q'].fraction_field()).macdonald(t=0)
sage: Mac.symmetric_function_ring()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in q over␣
→˓Rational Field

class sage.combinat.sf.macdonald.MacdonaldPolynomials_generic(macdonald)
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

A class for methods for one of the Macdonald bases of the symmetric functions

INPUT:

• self – a Macdonald basis

• macdonald – a family of Macdonald symmetric function bases

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q,t'])); Sym.rename("Sym"); Sym
Sym
sage: Sym.macdonald().P()
Sym in the Macdonald P basis

(continues on next page)

5.1. Comprehensive Module List 2813

Combinatorics, Release 9.7

(continued from previous page)

sage: Sym.macdonald(t=2).P()
Sym in the Macdonald P with t=2 basis
sage: Sym.rename()

class Element
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

nabla(q=None, t=None, power=1)
Return the value of the nabla operator applied to self.

The eigenvectors of the nabla operator are the Macdonald polynomials in the 𝐻𝑡 basis. For more
information see: [BGHT1999].

The operator nabla acts on symmetric functions and has the Macdonald 𝐻𝑡 basis as eigenfunctions
and the eigenvalues are 𝑞𝑛(𝜇′)𝑡𝑛(𝜇) where 𝑛(𝜇) =

∑︀
𝑖(𝑖− 1)𝜇𝑖 and 𝜇′ is the conjugate shape of 𝜇.

If the parameter power is an integer then it calculates nabla to that integer. The default value of power
is 1.

INPUT:
• self – an element of a Macdonald basis
• q, t – optional parameters to specialize
• power – an integer (default: 1)

OUTPUT:
• returns the symmetric function of ∇ acting on self

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: P = Sym.macdonald().P()
sage: P([1,1]).nabla()
((q^2*t+q*t^2-2*t)/(q*t-1))*McdP[1, 1] + McdP[2]
sage: P([1,1]).nabla(t=1)
((q^2*t+q*t-t-1)/(q*t-1))*McdP[1, 1] + McdP[2]
sage: H = Sym.macdonald().H()
sage: H([1,1]).nabla()
t*McdH[1, 1] + (-t^2+1)*McdH[2]
sage: H([1,1]).nabla(q=1)
((t^2+q-t-1)/(q*t-1))*McdH[1, 1] + ((-t^3+t^2+t-1)/(q*t-1))*McdH[2]
sage: H(0).nabla()
0
sage: H([2,2,1]).nabla(t=1/H.t)
((-q^2)/(-t^4))*McdH[2, 2, 1]
sage: H([2,2,1]).nabla(t=1/H.t,power=-1)
((-t^4)/(-q^2))*McdH[2, 2, 1]

c1(part)
Returns the qt-Hall scalar product between J(part) and P(part).

INPUT:

• self – a Macdonald basis

• part – a partition

OUTPUT:

• returns the 𝑞𝑡-Hall scalar product between J(part) and P(part)

2814 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: P = Sym.macdonald().P()
sage: P.c1(Partition([2,1]))
-q^4*t + 2*q^3*t - q^2*t + q^2 - 2*q + 1

c2(part)
Returns the 𝑞𝑡-Hall scalar product between J(part) and Q(part).

INPUT:

• self – a Macdonald basis

• part – a partition

OUTPUT:

• returns the 𝑞𝑡-Hall scalar product between J(part) and Q(part)

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: P = Sym.macdonald().P()
sage: P.c2(Partition([2,1]))
-q*t^4 + 2*q*t^3 - q*t^2 + t^2 - 2*t + 1

macdonald_family()
Returns the family of Macdonald bases associated to the basis self

INPUT:

• self – a Macdonald basis

OUTPUT:

• the family of Macdonald symmetric functions associated to self

EXAMPLES:

sage: MacP = SymmetricFunctions(QQ['q'].fraction_field()).macdonald(t=0).P()
sage: MacP.macdonald_family()
Macdonald polynomials with t=0 over Fraction Field of Univariate Polynomial␣
→˓Ring in q over Rational Field

product(left, right)
Multiply an element of the Macdonald symmetric function basis self and another symmetric function

Convert to the Schur basis, do the multiplication there, and convert back to self basis.

INPUT:

• self – a Macdonald symmetric function basis

• left – an element of the basis self

• right – another symmetric function

OUTPUT:

the product of left and right expanded in the basis self

EXAMPLES:

5.1. Comprehensive Module List 2815

Combinatorics, Release 9.7

sage: Mac = SymmetricFunctions(FractionField(QQ['q','t'])).macdonald()
sage: H = Mac.H()
sage: J = Mac.J()
sage: P = Mac.P()
sage: Q = Mac.Q()
sage: Ht = Mac.Ht()
sage: J([1])^2 #indirect doctest
((q-1)/(q*t-1))*McdJ[1, 1] + ((t-1)/(q*t-1))*McdJ[2]
sage: J.product(J[1], J[2])
((-q^2+1)/(-q^2*t+1))*McdJ[2, 1] + ((-t+1)/(-q^2*t+1))*McdJ[3]
sage: H.product(H[1], H[2])
((q^2-1)/(q^2*t-1))*McdH[2, 1] + ((-t+1)/(-q^2*t+1))*McdH[3]
sage: P.product(P[1], P[2])
((-q^3*t^2+q*t^2+q^2-1)/(-q^3*t^2+q^2*t+q*t-1))*McdP[2, 1] + McdP[3]
sage: Q.product(Q[1],Q[2])
McdQ[2, 1] + ((q^2*t-q^2+q*t-q+t-1)/(q^2*t-1))*McdQ[3]
sage: Ht.product(Ht[1],Ht[2])
((q^2-1)/(q^2-t))*McdHt[2, 1] + ((t-1)/(-q^2+t))*McdHt[3]

class sage.combinat.sf.macdonald.MacdonaldPolynomials_h(macdonald)
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic

The 𝐻 basis is defined as 𝐻𝜇 =
∑︀
𝜆𝐾𝜆𝜇(𝑞, 𝑡)𝑠𝜆 where 𝐾𝜆𝜇(𝑞, 𝑡) are the Macdonald Kostka coefficients.

In this implementation, it is calculated by using the Macdonald𝐻𝑡 basis and substituting 𝑡→ 1/𝑡 and multiplying
by 𝑡𝑛(𝜇).

INPUT:

• self – a Macdonald 𝐻 basis

• macdonald – a family of Macdonald bases

class Element
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic.Element

class sage.combinat.sf.macdonald.MacdonaldPolynomials_ht(macdonald)
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic

The 𝐻𝑡 basis is defined as �̃�𝜇 = 𝑡𝑛(𝜇)
∑︀
𝜆𝐾𝜆𝜇(𝑞, 𝑡−1)𝑠𝜆 where 𝐾𝜆𝜇(𝑞, 𝑡) are the Macdonald (𝑞, 𝑡)-Kostka

coefficients and 𝑛(𝜇) =
∑︀
𝑖(𝑖− 1)𝜇𝑖.

It is implemented here by using a Pieri formula due to F. Bergeron and M. Haiman [BH2013].

INPUT:

• self – a Macdonald 𝐻𝑡 basis

• macdonald – a family of Macdonald bases

class Element
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic.Element

nabla(q=None, t=None, power=1)
Returns the value of the nabla operator applied to self. The eigenvectors of the 𝑛𝑎𝑏𝑙𝑎 operator are
the Macdonald polynomials in the 𝐻𝑡 basis. For more information see: [BGHT1999].

The operator 𝑛𝑎𝑏𝑙𝑎 acts on symmetric functions and has the Macdonald 𝐻𝑡 basis as eigenfunctions
and the eigenvalues are 𝑞𝑛(𝜇′)𝑡𝑛(𝜇) where 𝑛(𝜇) =

∑︀
𝑖(𝑖− 1)𝜇𝑖.

2816 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

If the parameter power is an integer then it calculates nabla to that integer. The default value of power
is 1.

INPUT:
• self – an element of the Macdonald 𝐻𝑡 basis
• q, t – optional parameters to specialize
• power – an integer (default: 1)

OUTPUT:
• returns the symmetric function of ∇ acting on self

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: Ht = Sym.macdonald().Ht()
sage: t = Ht.t; q = Ht.q
sage: s = Sym.schur()
sage: a = sum(Ht(p) for p in Partitions(3))
sage: Ht(0).nabla()
0
sage: a.nabla() == t^3*Ht([1,1,1])+q*t*Ht([2,1]) + q^3*Ht([3])
True
sage: a.nabla(t=3) == 27*Ht([1,1,1])+3*q*Ht([2,1]) + q^3*Ht([3])
True
sage: a.nabla(q=3) == t^3*Ht([1,1,1])+3*t*Ht([2,1]) + 27*Ht([3])
True
sage: Ht[2,1].nabla(power=-1)
1/(q*t)*McdHt[2, 1]
sage: Ht[2,1].nabla(power=4)
q^4*t^4*McdHt[2, 1]
sage: s(a.nabla(q=3))
(t^6+27*q^3+3*q*t^2)*s[1, 1, 1] + (t^5+t^4+27*q^2+3*q*t+3*t^2+27*q)*s[2, 1]␣
→˓+ (t^3+3*t+27)*s[3]
sage: Ht = Sym.macdonald(q=3).Ht()
sage: a = sum(Ht(p) for p in Partitions(3))
sage: s(a.nabla())
(t^6+9*t^2+729)*s[1, 1, 1] + (t^5+t^4+3*t^2+9*t+324)*s[2, 1] + (t^
→˓3+3*t+27)*s[3]

class sage.combinat.sf.macdonald.MacdonaldPolynomials_j(macdonald)
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic

The 𝐽 basis is calculated using determinantal formulas of Lapointe-Lascoux-Morse giving the action on the
𝑆-basis.

INPUT:

• self – a Macdonald 𝐽 basis

• macdonald – a family of Macdonald bases

class Element
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic.Element

class sage.combinat.sf.macdonald.MacdonaldPolynomials_p(macdonald)
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic

The 𝑃 basis is defined here as the 𝐽 basis times a normalizing coefficient 𝑐2.

INPUT:

5.1. Comprehensive Module List 2817

Combinatorics, Release 9.7

• self – a Macdonald 𝑃 basis

• macdonald – a family of Macdonald bases

class Element
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic.Element

scalar_qt_basis(part1, part2=None)
Returns the scalar product of 𝑃 (𝑝𝑎𝑟𝑡1) and 𝑃 (𝑝𝑎𝑟𝑡2) This scalar product formula is given in equation
(4.11) p.323 and (6.19) p.339 of Macdonald’s book [Mac1995].

INPUT:

• self – a Macdonald 𝑃 basis

• part1, part2 – partitions

OUTPUT:

• returns the scalar product of P(part1) and P(part2)

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: P = Sym.macdonald().P()
sage: P.scalar_qt_basis(Partition([2,1]), Partition([1,1,1]))
0
sage: f = P.scalar_qt_basis(Partition([3,2,1]), Partition([3,2,1]))
sage: factor(f.numerator())
(q - 1)^3 * (q^2*t - 1)^2 * (q^3*t^2 - 1)
sage: factor(f.denominator())
(t - 1)^3 * (q*t^2 - 1)^2 * (q^2*t^3 - 1)

With a single argument, takes 𝑝𝑎𝑟𝑡2 = 𝑝𝑎𝑟𝑡1:

sage: P.scalar_qt_basis(Partition([2,1]), Partition([2,1]))
(-q^4*t + 2*q^3*t - q^2*t + q^2 - 2*q + 1)/(-q*t^4 + 2*q*t^3 - q*t^2 + t^2 -␣
→˓2*t + 1)

class sage.combinat.sf.macdonald.MacdonaldPolynomials_q(macdonald)
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic

The 𝑄 basis is defined here as the 𝐽 basis times a normalizing coefficient.

INPUT:

• self – a Macdonald 𝑄 basis

• macdonald – a family of Macdonald bases

class Element
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic.Element

class sage.combinat.sf.macdonald.MacdonaldPolynomials_s(macdonald)
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic

An implementation of the basis 𝑠𝜆[(1− 𝑡)𝑋/(1− 𝑞)]

This is perhaps misnamed as a ‘Macdonald’ basis for the symmetric functions but is used in the calculation of the
Macdonald 𝐽 basis (see method ‘creation’ below) but does use both of the two parameters and can be specialized
to 𝑠𝜆[(1− 𝑡)𝑋] and 𝑠𝜆[𝑋/(1− 𝑡)].

INPUT:

2818 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• self – a Macdonald 𝑆 basis

• macdonald – a family of Macdonald bases

class Element
Bases: sage.combinat.sf.macdonald.MacdonaldPolynomials_generic.Element

creation(k)
This function is a creation operator for the J-basis for which the action is known on the ‘Macdonald’
S-basis by formula from [LLM1998].

INPUT:
• self – an element of the Macdonald 𝑆 basis
• k – a positive integer

OUTPUT:
• returns the column adding operator on the 𝐽 basis on self

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: S = Sym.macdonald().S()
sage: a = S(1)
sage: a.creation(1)
(-q+1)*McdS[1]
sage: a.creation(2)
(q^2*t-q*t-q+1)*McdS[1, 1] + (q^2-q*t-q+t)*McdS[2]

product(left, right)
The multiplication of the modified Schur functions behaves the same as the multiplication of the Schur
functions.

INPUT:

• self – a Macdonald 𝑆 basis

• left, right – a symmetric functions

OUTPUT:

the product of left and right

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: S = Sym.macdonald().S()
sage: S([2])^2 #indirect doctest
McdS[2, 2] + McdS[3, 1] + McdS[4]

sage.combinat.sf.macdonald.c1(part, q, t)
This function returns the qt-Hall scalar product between J(part) and P(part).

This coefficient is 𝑐𝜆 in equation (8.1’) p. 352 of Macdonald’s book [Mac1995].

INPUT:

• part – a partition

• q, t – parameters

OUTPUT:

• returns a polynomial of the scalar product between the 𝐽 and 𝑃 bases

EXAMPLES:

5.1. Comprehensive Module List 2819

Combinatorics, Release 9.7

sage: from sage.combinat.sf.macdonald import c1
sage: R.<q,t> = QQ[]
sage: c1(Partition([2,1]),q,t)
-q^4*t + 2*q^3*t - q^2*t + q^2 - 2*q + 1
sage: c1(Partition([1,1]),q,t)
q^2*t - q*t - q + 1

sage.combinat.sf.macdonald.c2(part, q, t)
This function returns the qt-Hall scalar product between J(part) and Q(part).

This coefficient is 𝑐𝜆 in equation (8.1) p. 352 of Macdonald’s book [Mac1995].

INPUT:

• part – a partition

• q, t – parameters

OUTPUT:

• returns a polynomial of the scalar product between the 𝐽 and 𝑃 bases

EXAMPLES:

sage: from sage.combinat.sf.macdonald import c2
sage: R.<q,t> = QQ[]
sage: c2(Partition([1,1]),q,t)
t^3 - t^2 - t + 1
sage: c2(Partition([2,1]),q,t)
-q*t^4 + 2*q*t^3 - q*t^2 + t^2 - 2*t + 1

sage.combinat.sf.macdonald.cmunu(mu, nu)
Return the coefficient of �̃�𝜈 in ℎ⊥𝑟 �̃�𝜇.

Proposition 5 of F. Bergeron and M. Haiman [BH2013] states

𝑐𝜇𝜈 =
∑︁
𝛼←𝜈

𝑐𝜇𝛼𝑐𝛼𝜈𝐵𝛼/𝜈/𝐵𝜇/𝜈

where 𝑐𝜇𝜈 is the coefficient of �̃�𝜈 in ℎ⊥𝑟 �̃�𝜇 and 𝐵𝜇/𝜈 is the bi-exponent generator implemented in the function
sage.combinat.sf.macdonald.Bmu().

INPUT:

• mu, nu – partitions with nu contained in mu

OUTPUT:

• an element of the fraction field of polynomials in 𝑞 and 𝑡

EXAMPLES:

sage: from sage.combinat.sf.macdonald import cmunu
sage: cmunu(Partition([2,1]),Partition([1]))
q + t + 1
sage: cmunu(Partition([2,2]),Partition([1,1]))
(-q^3 - q^2 + q*t + t)/(-q + t)
sage: Sym = SymmetricFunctions(QQ['q','t'].fraction_field())
sage: h = Sym.h()
sage: Ht = Sym.macdonald().Ht()

(continues on next page)

2820 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: all(Ht[2,2].skew_by(h[r]).coefficient(nu)
....: == cmunu(Partition([2,2]),nu)
....: for r in range(1,5) for nu in Partitions(4-r))
True

sage.combinat.sf.macdonald.cmunu1(mu, nu)
Return the coefficient of �̃�𝜈 in ℎ⊥1 �̃�𝜇.

INPUT:

• mu, nu – partitions with nu precedes mu

OUTPUT:

• an element of the fraction field of polynomials in 𝑞 and 𝑡

EXAMPLES:

sage: from sage.combinat.sf.macdonald import cmunu1
sage: cmunu1(Partition([2,1]),Partition([2]))
(-t^2 + q)/(q - t)
sage: cmunu1(Partition([2,1]),Partition([1,1]))
(-q^2 + t)/(-q + t)
sage: Sym = SymmetricFunctions(QQ['q','t'].fraction_field())
sage: h = Sym.h()
sage: Ht = Sym.macdonald().Ht()
sage: all(Ht[3,2,1].skew_by(h[1]).coefficient(nu)
....: == cmunu1(Partition([3,2,1]),nu)
....: for nu in Partition([3,2,1]).down_list())
True

sage.combinat.sf.macdonald.qt_kostka(lam, mu)
Returns the 𝐾𝜆𝜇(𝑞, 𝑡) by computing the change of basis from the Macdonald H basis to the Schurs.

INPUT:

• lam, mu – partitions of the same size

OUTPUT:

• returns the 𝑞, 𝑡-Kostka polynomial indexed by the partitions lam and mu

EXAMPLES:

sage: from sage.combinat.sf.macdonald import qt_kostka
sage: qt_kostka([2,1,1],[1,1,1,1])
t^3 + t^2 + t
sage: qt_kostka([1,1,1,1],[2,1,1])
q
sage: qt_kostka([1,1,1,1],[3,1])
q^3
sage: qt_kostka([1,1,1,1],[1,1,1,1])
1
sage: qt_kostka([2,1,1],[2,2])
q^2*t + q*t + q
sage: qt_kostka([2,2],[2,2])
q^2*t^2 + 1

(continues on next page)

5.1. Comprehensive Module List 2821

Combinatorics, Release 9.7

(continued from previous page)

sage: qt_kostka([4],[3,1])
t
sage: qt_kostka([2,2],[3,1])
q^2*t + q
sage: qt_kostka([3,1],[2,1,1])
q*t^3 + t^2 + t
sage: qt_kostka([2,1,1],[2,1,1])
q*t^2 + q*t + 1
sage: qt_kostka([2,1],[1,1,1,1])
0

5.1.289 Monomial symmetric functions

class sage.combinat.sf.monomial.SymmetricFunctionAlgebra_monomial(Sym)
Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical

A class for methods related to monomial symmetric functions

INPUT:

• self – a monomial symmetric function basis

• Sym – an instance of the ring of the symmetric functions

class Element
Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical.Element

expand(n, alphabet='x')
Expand the symmetric function self as a symmetric polynomial in n variables.

INPUT:
• n – a nonnegative integer
• alphabet – (default: 'x') a variable for the expansion

OUTPUT:

A monomial expansion of self in the 𝑛 variables labelled by alphabet.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: m([2,1]).expand(3)
x0^2*x1 + x0*x1^2 + x0^2*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2
sage: m([1,1,1]).expand(2)
0
sage: m([2,1]).expand(3,alphabet='z')
z0^2*z1 + z0*z1^2 + z0^2*z2 + z1^2*z2 + z0*z2^2 + z1*z2^2
sage: m([2,1]).expand(3,alphabet='x,y,z')
x^2*y + x*y^2 + x^2*z + y^2*z + x*z^2 + y*z^2
sage: m([1]).expand(0)
0
sage: (3*m([])).expand(0)
3

exponential_specialization(t=None, q=1)
Return the exponential specialization of a symmetric function (when 𝑞 = 1), or the 𝑞-exponential
specialization (when 𝑞 ̸= 1).

2822 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The exponential specialization 𝑒𝑥 at 𝑡 is a𝐾-algebra homomorphism from the𝐾-algebra of symmetric
functions to another 𝐾-algebra 𝑅. It is defined whenever the base ring 𝐾 is a Q-algebra and 𝑡 is an
element of 𝑅. The easiest way to define it is by specifying its values on the powersum symmetric
functions to be 𝑝1 = 𝑡 and 𝑝𝑛 = 0 for 𝑛 > 1. Equivalently, on the homogeneous functions it is given
by 𝑒𝑥(ℎ𝑛) = 𝑡𝑛/𝑛!; see Proposition 7.8.4 of [EnumComb2].

By analogy, the 𝑞-exponential specialization is a 𝐾-algebra homomorphism from the 𝐾-algebra of
symmetric functions to another 𝐾-algebra 𝑅 that depends on two elements 𝑡 and 𝑞 of 𝑅 for which the
elements 1 − 𝑞𝑖 for all positive integers 𝑖 are invertible. It can be defined by specifying its values on
the complete homogeneous symmetric functions to be

𝑒𝑥𝑞(ℎ𝑛) = 𝑡𝑛/[𝑛]𝑞!,

where [𝑛]𝑞! is the 𝑞-factorial. Equivalently, for 𝑞 ̸= 1 and a homogeneous symmetric function 𝑓 of
degree 𝑛, we have

𝑒𝑥𝑞(𝑓) = (1− 𝑞)𝑛𝑡𝑛𝑝𝑠𝑞(𝑓),

where 𝑝𝑠𝑞(𝑓) is the stable principal specialization of 𝑓 (see principal_specialization()). (See
(7.29) in [EnumComb2].)

The limit of 𝑒𝑥𝑞 as 𝑞 → 1 is 𝑒𝑥.

INPUT:
• t (default: None) – the value to use for 𝑡; the default is to create a ring of polynomials in t.
• q (default: 1) – the value to use for 𝑞. If q is None, then a ring (or fraction field) of polynomials

in q is created.
EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: (m[3]+m[2,1]+m[1,1,1]).exponential_specialization()
1/6*t^3

sage: x = 5*m[1,1,1] + 3*m[2,1] + 1
sage: x.exponential_specialization()
5/6*t^3 + 1

We also support the 𝑞-exponential_specialization:

sage: factor(m[3].exponential_specialization(q=var("q"), t=var("t")))
(q - 1)^2*t^3/(q^2 + q + 1)

principal_specialization(n=+ Infinity, q=None)
Return the principal specialization of a symmetric function.

The principal specialization of order𝑛 at 𝑞 is the ring homomorphism 𝑝𝑠𝑛,𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for 𝑖 ∈ {1, . . . , 𝑛} and 𝑥𝑖 ↦→ 0 for
𝑖 > 𝑛. Here, 𝑞 is a given element of 𝑅, and we assume that the variables of our symmetric functions
are 𝑥1, 𝑥2, 𝑥3, (To be more precise, 𝑝𝑠𝑛,𝑞 is a 𝐾-algebra homomorphism, where 𝐾 is the base
ring.) See Section 7.8 of [EnumComb2].

The stable principal specialization at 𝑞 is the ring homomorphism 𝑝𝑠𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for all 𝑖. This is well-defined only if the
resulting infinite sums converge; thus, in particular, setting 𝑞 = 1 in the stable principal specialization
is an invalid operation.

INPUT:

5.1. Comprehensive Module List 2823

Combinatorics, Release 9.7

• n (default: infinity) – a nonnegative integer or infinity, specifying whether to compute the
principal specialization of order n or the stable principal specialization.

• q (default: None) – the value to use for 𝑞; the default is to create a ring of polynomials in q (or a
field of rational functions in q) over the given coefficient ring.

For q=1 and finite n we use the formula from Proposition 7.8.3 of [EnumComb2]:

𝑝𝑠𝑛,1(𝑚𝜆) =

(︂
𝑛

ℓ(𝜆)

)︂(︂
ℓ(𝜆)

𝑚1(𝜆),𝑚2(𝜆), . . .

)︂
,

where ℓ(𝜆) denotes the length of 𝜆.

In all other cases, we convert to complete homogeneous symmetric functions.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: x = m[3,1]
sage: x.principal_specialization(3)
q^7 + q^6 + q^5 + q^3 + q^2 + q

sage: x = 5*m[2] + 3*m[1] + 1
sage: x.principal_specialization(3, q=var("q"))
-10*(q^3 - 1)*q/(q - 1) + 5*(q^3 - 1)^2/(q - 1)^2 + 3*(q^3 - 1)/(q - 1) + 1

antipode_by_coercion(element)
The antipode of element via coercion to and from the power-sum basis or the Schur basis (depending on
whether the power sums really form a basis over the given ground ring).

INPUT:

• element – element in a basis of the ring of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.monomial()
sage: m[3,2].antipode()
m[3, 2] + 2*m[5]
sage: m.antipode_by_coercion(m[3,2])
m[3, 2] + 2*m[5]

sage: Sym = SymmetricFunctions(ZZ)
sage: m = Sym.monomial()
sage: m[3,2].antipode()
m[3, 2] + 2*m[5]
sage: m.antipode_by_coercion(m[3,2])
m[3, 2] + 2*m[5]

Todo: Is there a not too difficult way to get the power-sum computations to work over any ring, not just
one with coercion from Q?

from_polynomial(f, check=True)
Return the symmetric function in the monomial basis corresponding to the polynomial f.

INPUT:

• self – a monomial symmetric function basis

2824 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• f – a polynomial in finitely many variables over the same base ring as self. It is assumed that this
polynomial is symmetric.

• check – boolean (default: True), checks whether the polynomial is indeed symmetric

OUTPUT:

• This function converts a symmetric polynomial 𝑓 in a polynomial ring in finitely many variables to a
symmetric function in the monomial basis of the ring of symmetric functions over the same base ring.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: P = PolynomialRing(QQ, 'x', 3)
sage: x = P.gens()
sage: f = x[0] + x[1] + x[2]
sage: m.from_polynomial(f)
m[1]
sage: f = x[0]**2+x[1]**2+x[2]**2
sage: m.from_polynomial(f)
m[2]
sage: f = x[0]^2+x[1]
sage: m.from_polynomial(f)
Traceback (most recent call last):
...
ValueError: x0^2 + x1 is not a symmetric polynomial
sage: f = (m[2,1]+m[1,1]).expand(3)
sage: m.from_polynomial(f)
m[1, 1] + m[2, 1]
sage: f = (2*m[2,1]+m[1,1]+3*m[3]).expand(3)
sage: m.from_polynomial(f)
m[1, 1] + 2*m[2, 1] + 3*m[3]

from_polynomial_exp(p)
Conversion from polynomial in exponential notation

INPUT:

• self – a monomial symmetric function basis

• p – a multivariate polynomial over the same base ring as self

OUTPUT:

• This returns a symmetric function by mapping each monomial of 𝑝with exponents exp into𝑚𝜆 where
𝜆 is the partition with exponential notation exp.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: P = PolynomialRing(QQ,'x',5)
sage: x = P.gens()

The exponential notation of the partition (5, 5, 5, 3, 1, 1) is:

sage: Partition([5,5,5,3,1,1]).to_exp()
[2, 0, 1, 0, 3]

Therefore, the monomial:

5.1. Comprehensive Module List 2825

Combinatorics, Release 9.7

sage: f = x[0]^2 * x[2] * x[4]^3

is mapped to:

sage: m.from_polynomial_exp(f)
m[5, 5, 5, 3, 1, 1]

Furthermore, this function is linear:

sage: f = 3 * x[3] + 2 * x[0]^2 * x[2] * x[4]^3
sage: m.from_polynomial_exp(f)
3*m[4] + 2*m[5, 5, 5, 3, 1, 1]

See also:

Partition(), Partition.to_exp()

product(left, right)
Return the product of left and right.

• left, right – symmetric functions written in the monomial basis self.

OUTPUT:

• the product of left and right, expanded in the monomial basis, as a dictionary whose keys are
partitions and whose values are the coefficients of these partitions (more precisely, their respective
monomial symmetric functions) in the product.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: a = m([2,1])
sage: a^2
4*m[2, 2, 1, 1] + 6*m[2, 2, 2] + 2*m[3, 2, 1] + 2*m[3, 3] + 2*m[4, 1, 1] + m[4,␣
→˓2]

sage: QQx.<x> = QQ['x']
sage: m = SymmetricFunctions(QQx).m()
sage: a = m([2,1])+x
sage: 2*a # indirect doctest
2*x*m[] + 2*m[2, 1]
sage: a^2
x^2*m[] + 2*x*m[2, 1] + 4*m[2, 2, 1, 1] + 6*m[2, 2, 2] + 2*m[3, 2, 1] + 2*m[3,␣
→˓3] + 2*m[4, 1, 1] + m[4, 2]

5.1.290 Multiplicative symmetric functions

A realization ℎ of the ring of symmetric functions is multiplicative if for a partition 𝜆 = (𝜆1, 𝜆2, . . .) we have ℎ𝜆 =
ℎ𝜆1

ℎ𝜆2
· · ·.

class sage.combinat.sf.multiplicative.SymmetricFunctionAlgebra_multiplicative(Sym, ba-
sis_name=None,
prefix=None,
graded=True)

Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical

2826 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The class of multiplicative bases of the ring of symmetric functions.

A realization 𝑞 of the ring of symmetric functions is multiplicative if for a partition 𝜆 = (𝜆1, 𝜆2, . . .) we have
𝑞𝜆 = 𝑞𝜆1𝑞𝜆2 · · · (with 𝑞0 meaning 1).

Examples of multiplicative realizations are the elementary symmetric basis, the complete homogeneous basis,
the powersum basis (if the base ring is a Q-algebra), and the Witt basis (but not the Schur basis or the monomial
basis).

coproduct_on_basis(mu)
Return the coproduct on a basis element for multiplicative bases.

INPUT:

• mu – a partition

OUTPUT:

• the image of self[mu] under comultiplication; this is an element of the tensor square of self

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: p = Sym.powersum()
sage: p.coproduct_on_basis([2,1])
p[] # p[2, 1] + p[1] # p[2] + p[2] # p[1] + p[2, 1] # p[]

sage: e = Sym.elementary()
sage: e.coproduct_on_basis([3,1])
e[] # e[3, 1] + e[1] # e[2, 1] + e[1] # e[3] + e[1, 1] # e[2] + e[2] # e[1, 1]␣
→˓+ e[2, 1] # e[1] + e[3] # e[1] + e[3, 1] # e[]

sage: h = Sym.homogeneous()
sage: h.coproduct_on_basis([3,1])
h[] # h[3, 1] + h[1] # h[2, 1] + h[1] # h[3] + h[1, 1] # h[2] + h[2] # h[1, 1]␣
→˓+ h[2, 1] # h[1] + h[3] # h[1] + h[3, 1] # h[]

product_on_basis(left, right)
Return the product of left and right.

INPUT:

• left, right – partitions

OUTPUT:

• an element of self

EXAMPLES:

sage: e = SymmetricFunctions(QQ).e()
sage: e([2,1])^2 # indirect doctest
e[2, 2, 1, 1]

sage: h = SymmetricFunctions(QQ).h()
sage: h([2,1])^2
h[2, 2, 1, 1]

5.1. Comprehensive Module List 2827

Combinatorics, Release 9.7

sage: p = SymmetricFunctions(QQ).p()
sage: p([2,1])^2
p[2, 2, 1, 1]

sage: QQx.<x> = QQ[]
sage: p = SymmetricFunctions(QQx).p()
sage: (x*p([2]))^2
x^2*p[2, 2]

sage: TestSuite(p).run() # to silence sage -coverage

5.1.291 𝑘-Schur Functions

class sage.combinat.sf.new_kschur.KBoundedSubspace(Sym, k, t='t')
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

This class implements the subspace of the ring of symmetric functions spanned by {𝑠𝜆[𝑋/(1 − 𝑡)]}𝜆1≤𝑘 =

{𝑠(𝑘)𝜆 [𝑋; 𝑡]}𝜆1≤𝑘 over the base ring Q[𝑡]. When 𝑡 = 1, this space is in fact a subring of the ring of symmetric
functions generated by the complete homogeneous symmetric functions ℎ𝑖 for 1 ≤ 𝑖 ≤ 𝑘.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: KB = Sym.kBoundedSubspace(3,1); KB
3-bounded Symmetric Functions over Rational Field with t=1

sage: Sym = SymmetricFunctions(QQ['t'])
sage: KB = Sym.kBoundedSubspace(3); KB
3-bounded Symmetric Functions over Univariate Polynomial Ring in t over Rational␣
→˓Field

The 𝑘-Schur function basis can be constructed as follows:

sage: ks = KB.kschur(); ks
3-bounded Symmetric Functions over Univariate Polynomial Ring in t over Rational␣
→˓Field in the 3-Schur basis

K_kschur()
Return the 𝑘-bounded basis called the K-𝑘-Schur basis.

See [Morse11] and [LamSchillingShimozono10].

REFERENCES:

EXAMPLES:

sage: kB = SymmetricFunctions(QQ).kBoundedSubspace(3,1)
sage: g = kB.K_kschur()
sage: g
3-bounded Symmetric Functions over Rational Field with t=1 in the K-3-Schur␣
→˓basis
sage: kB = SymmetricFunctions(QQ['t']).kBoundedSubspace(3)
sage: g = kB.K_kschur()

(continues on next page)

2828 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

Traceback (most recent call last):
...
ValueError: This basis only exists for t=1

khomogeneous()
The homogeneous basis of this algebra.

See also:

kHomogeneous()

EXAMPLES:

sage: kh3 = SymmetricFunctions(QQ).kBoundedSubspace(3,1).khomogeneous()
sage: TestSuite(kh3).run()

kschur()
The 𝑘-Schur basis of this algebra.

See also:

kSchur()

EXAMPLES:

sage: ks3 = SymmetricFunctions(QQ).kBoundedSubspace(3,1).kschur()
sage: TestSuite(ks3).run()

ksplit()
The 𝑘-split basis of this algebra.

See also:

kSplit()

EXAMPLES:

sage: ksp3 = SymmetricFunctions(QQ).kBoundedSubspace(3,1).ksplit()
sage: TestSuite(ksp3).run()

realizations()
A list of realizations of this algebra.

EXAMPLES:

sage: SymmetricFunctions(QQ).kBoundedSubspace(3,1).realizations()
[3-bounded Symmetric Functions over Rational Field with t=1 in the 3-Schur␣
→˓basis,
3-bounded Symmetric Functions over Rational Field with t=1 in the 3-split␣
→˓basis,
3-bounded Symmetric Functions over Rational Field with t=1 in the 3-bounded␣
→˓homogeneous basis,
3-bounded Symmetric Functions over Rational Field with t=1 in the K-3-Schur␣
→˓basis]
sage: SymmetricFunctions(QQ['t']).kBoundedSubspace(3).realizations()
[3-bounded Symmetric Functions over Univariate Polynomial Ring in t over␣
→˓Rational Field in the 3-Schur basis,
3-bounded Symmetric Functions over Univariate Polynomial Ring in t over␣
→˓Rational Field in the 3-split basis] (continues on next page)

5.1. Comprehensive Module List 2829

Combinatorics, Release 9.7

(continued from previous page)

retract(sym)
Return the retract of sym from the ring of symmetric functions to self.

INPUT:

• sym – a symmetric function

OUTPUT:

• the analogue of the symmetric function in the 𝑘-bounded subspace (if possible)

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: KB = Sym.kBoundedSubspace(3,1); KB
3-bounded Symmetric Functions over Rational Field with t=1
sage: KB.retract(s[2]+s[3])
ks3[2] + ks3[3]
sage: KB.retract(s[2,1,1])
Traceback (most recent call last):
...
ValueError: s[2, 1, 1] is not in the image

class sage.combinat.sf.new_kschur.KBoundedSubspaceBases(base, t='t')
Bases: sage.categories.realizations.Category_realization_of_parent

The category of bases for the 𝑘-bounded subspace of symmetric functions.

class ElementMethods
Bases: object

expand(*args, **kwargs)
Return the monomial expansion of self in 𝑛 variables.

INPUT:
• n – positive integer

OUTPUT: monomial expansion of self in 𝑛 variables

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: ks = Sym.kschur(3,1)
sage: ks[3,1].expand(2)
x0^4 + 2*x0^3*x1 + 2*x0^2*x1^2 + 2*x0*x1^3 + x1^4
sage: s = Sym.schur()
sage: ks[3,1].expand(2) == s(ks[3,1]).expand(2)
True

sage: Sym = SymmetricFunctions(QQ['t'])
sage: ks = Sym.kschur(3)
sage: f = ks[3,2]-ks[1]
sage: f.expand(2)
t^2*x0^5 + (t^2 + t)*x0^4*x1 + (t^2 + t + 1)*x0^3*x1^2 + (t^2 + t + 1)*x0^
→˓2*x1^3 + (t^2 + t)*x0*x1^4 + t^2*x1^5 - x0 - x1

2830 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

hl_creation_operator(nu, t=None)
This is the vertex operator that generalizes Jing’s operator.

It is a linear operator that raises the degree by |𝜈|. This creation operator is a t-analogue of multipli-
cation by s(nu) .

See also:

Proposition 5 in [SZ2001].

INPUT:
• nu – a partition or a list of integers
• t – (default: None, in which case t is used) an element of the base ring

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: ks = Sym.kschur(4)
sage: s = Sym.schur()
sage: s(ks([3,1,1]).hl_creation_operator([1]))
(t-1)*s[2, 2, 1, 1] + t^2*s[3, 1, 1, 1] + (t^3+t^2-t)*s[3, 2, 1] + (t^3-t^
→˓2)*s[3, 3] + (t^4+t^3)*s[4, 1, 1] + t^4*s[4, 2] + t^5*s[5, 1]
sage: ks([3,1,1]).hl_creation_operator([1])
(t-1)*ks4[2, 2, 1, 1] + t^2*ks4[3, 1, 1, 1] + t^3*ks4[3, 2, 1] + (t^3-t^
→˓2)*ks4[3, 3] + t^4*ks4[4, 1, 1]

sage: Sym = SymmetricFunctions(QQ)
sage: ks = Sym.kschur(4,t=1)
sage: ks([3,1,1]).hl_creation_operator([1])
ks4[3, 1, 1, 1] + ks4[3, 2, 1] + ks4[4, 1, 1]

is_schur_positive(*args, **kwargs)
Return whether self is Schur positive.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: ks = Sym.kschur(3,1)
sage: f = ks[3,2]+ks[1]
sage: f.is_schur_positive()
True
sage: f = ks[3,2]-ks[1]
sage: f.is_schur_positive()
False

sage: Sym = SymmetricFunctions(QQ['t'])
sage: ks = Sym.kschur(3)
sage: f = ks[3,2]+ks[1]
sage: f.is_schur_positive()
True
sage: f = ks[3,2]-ks[1]
sage: f.is_schur_positive()
False

omega()
Return the 𝜔 operator on self.

At 𝑡 = 1, 𝜔 maps the 𝑘-Schur function 𝑠(𝑘)𝜆 to 𝑠(𝑘)
𝜆(𝑘) , where 𝜆(𝑘) is the 𝑘-conjugate of the partition 𝜆.

5.1. Comprehensive Module List 2831

Combinatorics, Release 9.7

See also:

k_conjugate().

For generic 𝑡, 𝜔 sends 𝑠(𝑘)𝜆 [𝑋; 𝑡] to 𝑡𝑑𝑠(𝑘)
𝜆(𝑘) [𝑋; 1/𝑡], where 𝑑 is the size of the core of 𝜆 minus the size

of 𝜆. Most of the time, this result is not in the 𝑘-bounded subspace.

See also:

omega_t_inverse().

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: ks = Sym.kschur(3,1)
sage: ks[2,2,1,1].omega()
ks3[2, 2, 2]
sage: kh = Sym.khomogeneous(3)
sage: kh[3].omega()
h3[1, 1, 1] - 2*h3[2, 1] + h3[3]

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: ks = Sym.kschur(3)
sage: ks[3,1,1].omega()
Traceback (most recent call last):
...
ValueError: t*s[2, 1, 1, 1] + s[3, 1, 1] is not in the image

omega_t_inverse()
Return the map 𝑡→ 1/𝑡 composed with 𝜔 on self.

Unlike the map omega(), the result of omega_t_inverse() lives in the 𝑘-bounded subspace and
hence will return an element even for generic 𝑡. For 𝑡 = 1, omega() and omega_t_inverse() return
the same result.

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: ks = Sym.kschur(3)
sage: ks[3,1,1].omega_t_inverse()
1/t*ks3[2, 1, 1, 1]
sage: ks[3,2].omega_t_inverse()
1/t^2*ks3[1, 1, 1, 1, 1]

scalar(x, zee=None)
Return standard scalar product between self and x.

INPUT:
• x – element of the ring of symmetric functions over the same base ring as self
• zee – an optional function on partitions giving the value for the scalar product between 𝑝𝜇 and 𝑝𝜇

(default is to use the standard zee() function)
See also:

scalar()

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ['t'])
sage: ks3 = Sym.kschur(3)

(continues on next page)

2832 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: ks3[3,2,1].scalar(ks3[2,2,2])
t^3 + t
sage: dks3 = Sym.kBoundedQuotient(3).dks()
sage: [ks3[3,2,1].scalar(dks3(la)) for la in Partitions(6, max_part=3)]
[0, 1, 0, 0, 0, 0, 0]
sage: dks3 = Sym.kBoundedQuotient(3,t=1).dks()
sage: [ks3[2,2,2].scalar(dks3(la)) for la in Partitions(6, max_part=3)]
[0, t - 1, 0, 1, 0, 0, 0]
sage: ks3 = Sym.kschur(3,t=1)
sage: [ks3[2,2,2].scalar(dks3(la)) for la in Partitions(6, max_part=3)]
[0, 0, 0, 1, 0, 0, 0]
sage: kH = Sym.khomogeneous(4)
sage: kH([2,2,1]).scalar(ks3[2,2,1])
3

class ParentMethods
Bases: object

an_element()
Return an element of self.

EXAMPLES:

sage: SymmetricFunctions(QQ['t']).kschur(3).an_element()
2*ks3[] + 2*ks3[1] + 3*ks3[2]

antipode(element)
Return the antipode on self by lifting to the space of symmetric functions, computing the antipode,
and then converting to self.parent(). This is only the antipode for 𝑡 = 1 and for other values of 𝑡
the result may not be in the space where the 𝑘-Schur functions live.

INPUT:
• element – an element in a basis of the ring of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: ks3 = Sym.kschur(3,1)
sage: ks3[3,2].antipode()
-ks3[1, 1, 1, 1, 1]
sage: ks3.antipode(ks3[3,2])
-ks3[1, 1, 1, 1, 1]

coproduct(element)
Return the coproduct operation on element.

The coproduct is first computed on the homogeneous basis if 𝑡 = 1 and on the Hall-Littlewood Qp
basis otherwise. The result is computed then converted to the tensor squared of self.parent().

INPUT:
• element – an element in a basis of the ring of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: ks3 = Sym.kschur(3,1)
sage: ks3[2,1].coproduct()

(continues on next page)

5.1. Comprehensive Module List 2833

Combinatorics, Release 9.7

(continued from previous page)

ks3[] # ks3[2, 1] + ks3[1] # ks3[1, 1] + ks3[1] # ks3[2] + ks3[1, 1] #␣
→˓ks3[1] + ks3[2] # ks3[1] + ks3[2, 1] # ks3[]
sage: h3 = Sym.khomogeneous(3)
sage: h3[2,1].coproduct()
h3[] # h3[2, 1] + h3[1] # h3[1, 1] + h3[1] # h3[2] + h3[1, 1] # h3[1] +␣
→˓h3[2] # h3[1] + h3[2, 1] # h3[]
sage: ks3t = SymmetricFunctions(FractionField(QQ['t'])).kschur(3)
sage: ks3t[2,1].coproduct()
ks3[] # ks3[2, 1] + ks3[1] # ks3[1, 1] + ks3[1] # ks3[2] + ks3[1, 1] #␣
→˓ks3[1] + ks3[2] # ks3[1] + ks3[2, 1] # ks3[]
sage: ks3t[3,1].coproduct()
ks3[] # ks3[3, 1] + ks3[1] # ks3[2, 1] + (t+1)*ks3[1] # ks3[3] + ks3[1, 1]
→˓# ks3[2] + ks3[2] # ks3[1, 1]
+ (t+1)*ks3[2] # ks3[2] + ks3[2, 1] # ks3[1] + (t+1)*ks3[3] # ks3[1] +␣
→˓ks3[3, 1] # ks3[]
sage: h3.coproduct(h3[2,1])
h3[] # h3[2, 1] + h3[1] # h3[1, 1] + h3[1] # h3[2] + h3[1, 1] # h3[1] +␣
→˓h3[2] # h3[1] + h3[2, 1] # h3[]

counit(element)
Return the counit of element.

The counit is the constant term of element.

INPUT:
• element – an element in a basis of the ring of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: ks3 = Sym.kschur(3,1)
sage: f = 2*ks3[2,1] + 3*ks3[[]]
sage: f.counit()
3
sage: ks3.counit(f)
3

degree_on_basis(b)
Return the degree of the basis element indexed by 𝑏.

INPUT:
• b – a partition

EXAMPLES:

sage: ks3 = SymmetricFunctions(QQ).kschur(3,1)
sage: ks3.degree_on_basis(Partition([3,2]))
5

one_basis()
Return the basis element indexing 1.

EXAMPLES:

sage: ks3 = SymmetricFunctions(QQ).kschur(3,1)
sage: ks3.one() # indirect doctest
ks3[]

2834 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

transition_matrix(other, n)
Return the degree n transition matrix between self and other.

INPUT:
• other – a basis in the ring of symmetric functions
• n – a positive integer

The entry in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column is the coefficient obtained by writing the 𝑖𝑡ℎ element of the
basis of self in terms of the basis other, and extracting the 𝑗𝑡ℎ coefficient.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ); s = Sym.schur()
sage: ks3 = Sym.kschur(3,1)
sage: ks3.transition_matrix(s,5)
[1 1 1 0 0 0 0]
[0 1 0 1 0 0 0]
[0 0 1 0 1 0 0]
[0 0 0 1 0 1 0]
[0 0 0 0 1 1 1]

sage: Sym = SymmetricFunctions(QQ['t'])
sage: s = Sym.schur()
sage: ks = Sym.kschur(3)
sage: ks.transition_matrix(s,5)
[t^2 t 1 0 0 0 0]
[0 t 0 1 0 0 0]
[0 0 t 0 1 0 0]
[0 0 0 t 0 1 0]
[0 0 0 0 t^2 t 1]

super_categories()
The super categories of self.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ['t'])
sage: from sage.combinat.sf.new_kschur import KBoundedSubspaceBases
sage: KB = Sym.kBoundedSubspace(3)
sage: KBB = KBoundedSubspaceBases(KB); KBB
Category of k bounded subspace bases of 3-bounded Symmetric Functions over␣
→˓Univariate Polynomial Ring in t over Rational Field
sage: KBB.super_categories()
[Category of realizations of 3-bounded Symmetric Functions over Univariate␣
→˓Polynomial Ring in t over Rational Field,
Join of Category of graded coalgebras with basis over Univariate Polynomial␣
→˓Ring in t over Rational Field

and Category of subobjects of filtered modules with basis over Univariate␣
→˓Polynomial Ring in t over Rational Field]

class sage.combinat.sf.new_kschur.K_kSchur(kBoundedRing)
Bases: sage.combinat.free_module.CombinatorialFreeModule

This class implements the basis of the 𝑘-bounded subspace called the K-𝑘-Schur basis.

See [Morse2011], [LamSchillingShimozono2010].

REFERENCES:

5.1. Comprehensive Module List 2835

Combinatorics, Release 9.7

K_k_Schur_non_commutative_variables(la)
Return the K-𝑘-Schur function, as embedded inside the affine zero Hecke algebra.

INPUT:

• la – A 𝑘-bounded Partition

OUTPUT:

• An element of the affine zero Hecke algebra.

EXAMPLES:

sage: g = SymmetricFunctions(QQ).kBoundedSubspace(3,1).K_kschur()
sage: g.K_k_Schur_non_commutative_variables([2,1])
T[3,1,0] + T[1,2,0] + T[3,2,0] + T[0,1,0] + T[2,0,1] + T[0,3,0] + T[2,0,3] +␣
→˓T[0,3,1] + T[2,3,2] + T[2,3,1] + T[3,1,2] + T[1,2,1] - T[2,0] - T[3,1]
sage: g.K_k_Schur_non_commutative_variables([])
1
sage: g.K_k_Schur_non_commutative_variables([4,1])
Traceback (most recent call last):
...
ValueError: Partition should be 3-bounded

homogeneous_basis_noncommutative_variables_zero_Hecke(la)
Return the homogeneous basis element indexed by la, viewed as an element inside the affine zero Hecke
algebra. For the code, see method _homogeneous_basis.

INPUT:

• la – A 𝑘-bounded partition

OUTPUT:

• An element of the affine zero Hecke algebra.

EXAMPLES:

sage: g = SymmetricFunctions(QQ).kBoundedSubspace(3,1).K_kschur()
sage: g.homogeneous_basis_noncommutative_variables_zero_Hecke([2,1])
T[2,1,0] + T[3,1,0] + T[1,2,0] + T[3,2,0] + T[0,1,0] + T[2,0,1] + T[1,0,3] +␣
→˓T[0,3,0] + T[2,0,3] + T[0,3,2] + T[0,3,1] + T[2,3,2] + T[3,2,1] + T[2,3,1] +␣
→˓T[3,1,2] + T[1,2,1] - T[1,0] - 2*T[2,0] - T[0,3] - T[3,2] - 2*T[3,1] - T[2,1]
sage: g.homogeneous_basis_noncommutative_variables_zero_Hecke([])
1

lift(x)
Return the lift of a 𝑘-bounded symmetric function.

INPUT:

• x – An expression in the K-𝑘-Schur basis. Equivalently, x can be a 𝑘-bounded partition (then x
corresponds to the basis element indexed by x)

OUTPUT:

• A symmetric function.

EXAMPLES:

2836 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: g = SymmetricFunctions(QQ).kBoundedSubspace(3,1).K_kschur()
sage: g.lift([2,1])
h[2] + h[2, 1] - h[3]
sage: g.lift([])
h[]
sage: g.lift([4,1])
Traceback (most recent call last):
...
TypeError: do not know how to make x (= [4, 1]) an element of self (=3-bounded␣
→˓Symmetric Functions over Rational Field with t=1 in the K-3-Schur basis)

product(x, y)
Return the product of the two K-𝑘-Schur functions.

INPUT:

• x, y – elements of the 𝑘-bounded subspace, in the K-𝑘-Schur basis.

OUTPUT:

• An element of the 𝑘-bounded subspace, in the K-𝑘-Schur basis

EXAMPLES:

sage: g = SymmetricFunctions(QQ).kBoundedSubspace(3,1).K_kschur()
sage: g.product(g([2,1]), g[1])
-2*Kks3[2, 1] + Kks3[2, 1, 1] + Kks3[2, 2]
sage: g.product(g([2,1]), g([]))
Kks3[2, 1]

retract(x)
Return the retract of a symmetric function.

INPUT:

• x – A symmetric function.

OUTPUT:

• A 𝑘-bounded symmetric function in the K-𝑘-Schur basis.

EXAMPLES:

sage: g = SymmetricFunctions(QQ).kBoundedSubspace(3,1).K_kschur()
sage: m = SymmetricFunctions(QQ).m()
sage: g.retract(m[2,1])
-2*Kks3[1] + 4*Kks3[1, 1] - 2*Kks3[1, 1, 1] - Kks3[2] + Kks3[2, 1]
sage: g.retract(m([]))
Kks3[]

class sage.combinat.sf.new_kschur.kHomogeneous(kBoundedRing)
Bases: sage.combinat.free_module.CombinatorialFreeModule

Space of 𝑘-bounded homogeneous symmetric functions.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: kH = Sym.khomogeneous(3)

(continues on next page)

5.1. Comprehensive Module List 2837

Combinatorics, Release 9.7

(continued from previous page)

sage: kH[2]
h3[2]
sage: kH[2].lift()
h[2]

class sage.combinat.sf.new_kschur.kSchur(kBoundedRing)
Bases: sage.combinat.free_module.CombinatorialFreeModule

Space of 𝑘-Schur functions.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ['t'])
sage: KB = Sym.kBoundedSubspace(3); KB
3-bounded Symmetric Functions over Univariate Polynomial Ring in t over Rational␣
→˓Field

The 𝑘-Schur function basis can be constructed as follows:

sage: ks3 = KB.kschur(); ks3
3-bounded Symmetric Functions over Univariate Polynomial Ring in t over Rational␣
→˓Field in the 3-Schur basis

We can convert to any basis of the ring of symmetric functions and, whenever it makes sense, also the other way
round:

sage: s = Sym.schur()
sage: s(ks3([3,2,1]))
s[3, 2, 1] + t*s[4, 1, 1] + t*s[4, 2] + t^2*s[5, 1]
sage: t = Sym.base_ring().gen()
sage: ks3(s([3, 2, 1]) + t*s([4, 1, 1]) + t*s([4, 2]) + t^2*s([5, 1]))
ks3[3, 2, 1]
sage: s(ks3[2, 1, 1])
s[2, 1, 1] + t*s[3, 1]
sage: ks3(s[2, 1, 1] + t*s[3, 1])
ks3[2, 1, 1]

𝑘-Schur functions are indexed by partitions with first part ≤ 𝑘. Constructing a 𝑘-Schur function for a larger
partition raises an error:

sage: ks3([4,3,2,1]) #
Traceback (most recent call last):
...
TypeError: do not know how to make x (= [4, 3, 2, 1]) an element of self (=3-
→˓bounded Symmetric Functions over Univariate Polynomial Ring in t over Rational␣
→˓Field in the 3-Schur basis)

Similarly, attempting to convert a function that is not in the linear span of the 𝑘-Schur functions raises an error:

sage: ks3(s([4]))
Traceback (most recent call last):
...
ValueError: s[4] is not in the image

2838 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Note that the product of 𝑘-Schur functions is not guaranteed to be in the space spanned by the 𝑘-Schurs. In gen-
eral, we only have that a 𝑘-Schur times a 𝑗-Schur function is in the (𝑘+𝑗)-bounded subspace. The multiplication
of two 𝑘-Schur functions thus generally returns the product of the lift of the functions to the ambient symmetric
function space. If the result happens to lie in the 𝑘-bounded subspace, then the result is cast into the 𝑘-Schur
basis:

sage: ks2 = Sym.kBoundedSubspace(2).kschur()
sage: ks2[1] * ks2[1]
ks2[1, 1] + ks2[2]
sage: ks2[1] * ks2[2]
s[2, 1] + s[3]

Because the target space of the product of a 𝑘-Schur and a 𝑗-Schur has several possibilities, the product of a
𝑘-Schur and 𝑗-Schur function is not implemented for distinct 𝑘 and 𝑗. Let us show how to get around this
‘manually’:

sage: ks3 = Sym.kBoundedSubspace(3).kschur()
sage: ks2([2,1]) * ks3([3,1])
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: '2-bounded Symmetric Functions over␣
→˓Univariate Polynomial Ring in t over Rational Field in the 2-Schur basis' and '3-
→˓bounded Symmetric Functions over Univariate Polynomial Ring in t over Rational␣
→˓Field in the 3-Schur basis'

The workaround:

sage: f = s(ks2([2,1])) * s(ks3([3,1])); f # Convert to Schur functions first and␣
→˓multiply there.
s[3, 2, 1, 1] + s[3, 2, 2] + (t+1)*s[3, 3, 1] + s[4, 1, 1, 1]
+ (2*t+2)*s[4, 2, 1] + (t^2+t+1)*s[4, 3] + (2*t+1)*s[5, 1, 1]
+ (t^2+2*t+1)*s[5, 2] + (t^2+2*t)*s[6, 1] + t^2*s[7]

or:

sage: f = ks2[2,1].lift() * ks3[3,1].lift()
sage: ks5 = Sym.kBoundedSubspace(5).kschur()
sage: ks5(f) # The product of a 'ks2' with a 'ks3' is a 'ks5'.
ks5[3, 2, 1, 1] + ks5[3, 2, 2] + (t+1)*ks5[3, 3, 1] + ks5[4, 1, 1, 1]
+ (t+2)*ks5[4, 2, 1] + (t^2+t+1)*ks5[4, 3] + (t+1)*ks5[5, 1, 1] + ks5[5, 2]

For other technical reasons, taking powers of 𝑘-Schur functions is not implemented, even when the answer is
still in the 𝑘-bounded subspace:

sage: ks2([1])^2
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for ^: '2-bounded Symmetric Functions over␣
→˓Univariate Polynomial Ring in t over Rational Field in the 2-Schur basis' and
→˓'Integer Ring'

Todo: Get rid of said technical “reasons”.

5.1. Comprehensive Module List 2839

Combinatorics, Release 9.7

However, at 𝑡 = 1, the product of 𝑘-Schur functions is in the span of the 𝑘-Schur functions always. Below are
some examples at 𝑡 = 1

sage: ks3 = Sym.kBoundedSubspace(3, t=1).kschur(); ks3
3-bounded Symmetric Functions over Univariate Polynomial Ring in t over Rational␣
→˓Field with t=1 in the 3-Schur basis
sage: s = SymmetricFunctions(ks3.base_ring()).schur()
sage: ks3(s([3]))
ks3[3]
sage: s(ks3([3,2,1]))
s[3, 2, 1] + s[4, 1, 1] + s[4, 2] + s[5, 1]
sage: ks3([2,1])^2 # taking powers works for t=1
ks3[2, 2, 1, 1] + ks3[2, 2, 2] + ks3[3, 1, 1, 1]

product_on_basis(left, right)
Take the product of two 𝑘-Schur functions.

If 𝑡 ̸= 1, then take the product by lifting to the Schur functions and then retracting back into the 𝑘-bounded
subspace (if possible).

If 𝑡 = 1, then the product calls _product_on_basis_via_rectangles().

INPUT:

• left, right – partitions

OUTPUT:

• an element of the 𝑘-Schur functions

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ['t'])
sage: ks3 = Sym.kschur(3,1)
sage: kH = Sym.khomogeneous(3)
sage: ks3(kH[2,1,1])
ks3[2, 1, 1] + ks3[2, 2] + ks3[3, 1]
sage: ks3([])*kH[2,1,1]
ks3[2, 1, 1] + ks3[2, 2] + ks3[3, 1]
sage: ks3([3,3,3,2,2,1,1,1])^2
ks3[3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1]
sage: ks3([3,3,3,2,2,1,1,1])*ks3([2,2,2,2,2,1,1,1,1])
ks3[3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1]
sage: ks3([2,2,1,1,1,1])*ks3([2,2,2,1,1,1,1])
ks3[2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] + ks3[2, 2, 2, 2, 2, 2, 1, 1, 1, 1,␣
→˓1, 1]
sage: ks3[2,1]^2
ks3[2, 2, 1, 1] + ks3[2, 2, 2] + ks3[3, 1, 1, 1]
sage: ks3 = Sym.kschur(3)
sage: ks3[2,1]*ks3[2,1]
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1,␣
→˓1] + s[4, 2]

class sage.combinat.sf.new_kschur.kSplit(kBoundedRing)
Bases: sage.combinat.free_module.CombinatorialFreeModule

The 𝑘-split basis of the space of 𝑘-bounded-symmetric functions

Fix k a positive integer and t an element of the base ring.

2840 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The 𝑘-split functions are a basis for the space of 𝑘-bounded symmetric functions that also have the bases

{𝑄′𝜆[𝑋; 𝑡]}𝜆1≤𝑘 = {𝑠(𝑘)𝜆 [𝑋; 𝑡]}𝜆1≤𝑘

where 𝑄′𝜆[𝑋; 𝑡] are the Hall-Littlewood symmetric functions (using the notation of [MAC]) and 𝑠(𝑘)𝜆 [𝑋; 𝑡] are
the 𝑘-Schur functions. If 𝑡 is not a root of unity, then

{𝑠𝜆[𝑋/(1− 𝑡)]}𝜆1≤𝑘

is also a basis of this space.

The 𝑘-split basis has the property that 𝑄′𝜆[𝑋; 𝑡] expands positively in the 𝑘-split basis and the 𝑘-split basis
conjecturally expands positively in the 𝑘-Schur functions. See [LLMSSZ] p. 81.

The 𝑘-split basis is defined recursively using the Hall-Littlewood creation operator defined in [SZ2001]. If a
partition la is the concatenation (as lists) of a partition mu and nu where mu has maximal hook length equal to
k then ksp(la) = ksp(nu).hl_creation_operator(mu). If the hook length of la is less than or equal to
k, then ksp(la) is equal to the Schur function indexed by la.

EXAMPLES:

sage: Symt = SymmetricFunctions(QQ['t'].fraction_field())
sage: kBS3 = Symt.kBoundedSubspace(3)
sage: ks3 = kBS3.kschur()
sage: ksp3 = kBS3.ksplit()
sage: ks3(ksp3[2,1,1])
ks3[2, 1, 1] + t*ks3[2, 2]
sage: ksp3(ks3[2,1,1])
ksp3[2, 1, 1] - t*ksp3[2, 2]
sage: ksp3[2,1]*ksp3[1]
s[2, 1, 1] + s[2, 2] + s[3, 1]
sage: ksp3[2,1].hl_creation_operator([1])
t*ksp3[2, 1, 1] + (-t^2+t)*ksp3[2, 2]

sage: Qp = Symt.hall_littlewood().Qp()
sage: ksp3(Qp[3,2,1])
ksp3[3, 2, 1] + t*ksp3[3, 3]

sage: kBS4 = Symt.kBoundedSubspace(4)
sage: ksp4 = kBS4.ksplit()
sage: ksp4(ksp3([3,2,1]))
ksp4[3, 2, 1] - t*ksp4[3, 3] + t*ksp4[4, 1, 1]
sage: ks4 = kBS4.kschur()
sage: ks4(ksp4[3,2,2,1])
ks4[3, 2, 2, 1] + t*ks4[3, 3, 1, 1] + t*ks4[3, 3, 2]

5.1.292 Non-symmetric Macdonald Polynomials

class sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling(l, pi=None)
Bases: sage.combinat.combinat.CombinatorialObject

EXAMPLES:

5.1. Comprehensive Module List 2841

Combinatorics, Release 9.7

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a == loads(dumps(a))
True
sage: pi = Permutation([2,3,1]).to_permutation_group_element()
sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]],pi)
sage: a == loads(dumps(a))
True

are_attacking(i, j, ii, jj)
Return True if the boxes (i,j) and (ii,jj) in self are attacking.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: all(a.are_attacking(i,j,ii,jj) for (i,j),(ii,jj) in a.attacking_boxes())
True
sage: a.are_attacking(1,1,3,2)
False

attacking_boxes()
Return a list of pairs of boxes in self that are attacking.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.attacking_boxes()[:5]
[((1, 1), (2, 1)),
((1, 1), (3, 1)),
((1, 1), (6, 1)),
((1, 1), (2, 0)),
((1, 1), (3, 0))]

boxes()
Return a list of the coordinates of the boxes of self, including the ‘basement row’.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.boxes()
[(1, 1),
(1, 2),
(2, 1),
(3, 1),
(3, 2),
(3, 3),
(6, 1),
(6, 2),
(1, 0),
(2, 0),
(3, 0),
(4, 0),
(5, 0),
(6, 0)]

coeff(q, t)
Return the coefficient in front of self in the HHL formula for the expansion of the non-symmetric Mac-

2842 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

donald polynomial E(self.shape()).

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: q,t = var('q,t')
sage: a.coeff(q,t)
(t - 1)^4/((q^2*t^3 - 1)^2*(q*t^2 - 1)^2)

coeff_integral(q, t)
Return the coefficient in front of self in the HHL formula for the expansion of the integral non-symmetric
Macdonald polynomial E(self.shape())

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: q,t = var('q,t')
sage: a.coeff_integral(q,t)
(q^2*t^3 - 1)^2*(q*t^2 - 1)^2*(t - 1)^4

coinv()
Return self’s co-inversion statistic.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.coinv()
2

descents()
Return a list of the descents of self.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.descents()
[(1, 2), (3, 2)]

inv()
Return self’s inversion statistic.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.inv()
15

inversions()
Return a list of the inversions of self.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.inversions()[:5]
[((6, 2), (3, 2)),
((1, 2), (6, 1)),
((1, 2), (3, 1)),

(continues on next page)

5.1. Comprehensive Module List 2843

Combinatorics, Release 9.7

(continued from previous page)

((1, 2), (2, 1)),
((6, 1), (3, 1))]
sage: len(a.inversions())
25

is_non_attacking()
Return True if self is non-attacking.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.is_non_attacking()
True
sage: a = AugmentedLatticeDiagramFilling([[1, 1, 1], [2, 3], [3]])
sage: a.is_non_attacking()
False
sage: a = AugmentedLatticeDiagramFilling([[2,2],[1]])
sage: a.is_non_attacking()
False
sage: pi = Permutation([2,1]).to_permutation_group_element()
sage: a = AugmentedLatticeDiagramFilling([[2,2],[1]],pi)
sage: a.is_non_attacking()
True

maj()
Return the major index of self.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.maj()
3

permuted_filling(sigma)
EXAMPLES:

sage: pi=Permutation([2,1,4,3]).to_permutation_group_element()
sage: fill=[[2],[1,2,3],[],[3,1]]
sage: AugmentedLatticeDiagramFilling(fill).permuted_filling(pi)
[[2, 1], [1, 2, 1, 4], [4], [3, 4, 2]]

reading_order()
Return a list of coordinates of the boxes in self, starting from the top right, and reading from right to left.

Note that this includes the ‘basement row’ of self.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.reading_order()
[(3, 3),
(6, 2),
(3, 2),
(1, 2),
(6, 1),

(continues on next page)

2844 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(3, 1),
(2, 1),
(1, 1),
(6, 0),
(5, 0),
(4, 0),
(3, 0),
(2, 0),
(1, 0)]

reading_word()
Return the reading word of self, obtained by reading the boxes entries of self from right to left, starting
in the upper right.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.reading_word()
word: 25465321

shape()
Return the shape of self.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.shape()
[2, 1, 3, 0, 0, 2]

weight()
Return the weight of self.

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a.weight()
[1, 2, 1, 1, 2, 1]

sage.combinat.sf.ns_macdonald.E(mu, q=None, t=None, pi=None)
Return the non-symmetric Macdonald polynomial in type A corresponding to a shape mu, with basement per-
muted according to pi.

Note that if both 𝑞 and 𝑡 are specified, then they must have the same parent.

REFERENCE:

• J. Haglund, M. Haiman, N. Loehr. A combinatorial formula for non-symmetric Macdonald polynomials.
arXiv math/0601693v3.

See also:

NonSymmetricMacdonaldPolynomials for a type free implementation where the polynomials are constructed
recursively by the application of intertwining operators.

EXAMPLES:

5.1. Comprehensive Module List 2845

https://arxiv.org/abs/math/0601693v3

Combinatorics, Release 9.7

sage: from sage.combinat.sf.ns_macdonald import E
sage: E([0,0,0])
1
sage: E([1,0,0])
x0
sage: E([0,1,0])
(t - 1)/(q*t^2 - 1)*x0 + x1
sage: E([0,0,1])
(t - 1)/(q*t - 1)*x0 + (t - 1)/(q*t - 1)*x1 + x2
sage: E([1,1,0])
x0*x1
sage: E([1,0,1])
(t - 1)/(q*t^2 - 1)*x0*x1 + x0*x2
sage: E([0,1,1])
(t - 1)/(q*t - 1)*x0*x1 + (t - 1)/(q*t - 1)*x0*x2 + x1*x2
sage: E([2,0,0])
x0^2 + (q*t - q)/(q*t - 1)*x0*x1 + (q*t - q)/(q*t - 1)*x0*x2
sage: E([0,2,0])
(t - 1)/(q^2*t^2 - 1)*x0^2 + (q^2*t^3 - q^2*t^2 + q*t^2 - 2*q*t + q - t + 1)/(q^3*t^
→˓3 - q^2*t^2 - q*t + 1)*x0*x1 + x1^2 + (q*t^2 - 2*q*t + q)/(q^3*t^3 - q^2*t^2 -␣
→˓q*t + 1)*x0*x2 + (q*t - q)/(q*t - 1)*x1*x2

sage.combinat.sf.ns_macdonald.E_integral(mu, q=None, t=None, pi=None)
Return the integral form for the non-symmetric Macdonald polynomial in type A corresponding to a shape mu.

Note that if both q and t are specified, then they must have the same parent.

REFERENCE:

• J. Haglund, M. Haiman, N. Loehr. A combinatorial formula for non-symmetric Macdonald polynomials.
arXiv math/0601693v3.

EXAMPLES:

sage: from sage.combinat.sf.ns_macdonald import E_integral
sage: E_integral([0,0,0])
1
sage: E_integral([1,0,0])
(-t + 1)*x0
sage: E_integral([0,1,0])
(-q*t^2 + 1)*x0 + (-t + 1)*x1
sage: E_integral([0,0,1])
(-q*t + 1)*x0 + (-q*t + 1)*x1 + (-t + 1)*x2
sage: E_integral([1,1,0])
(t^2 - 2*t + 1)*x0*x1
sage: E_integral([1,0,1])
(q*t^3 - q*t^2 - t + 1)*x0*x1 + (t^2 - 2*t + 1)*x0*x2
sage: E_integral([0,1,1])
(q^2*t^3 + q*t^4 - q*t^3 - q*t^2 - q*t - t^2 + t + 1)*x0*x1 + (q*t^2 - q*t - t +␣
→˓1)*x0*x2 + (t^2 - 2*t + 1)*x1*x2
sage: E_integral([2,0,0])
(t^2 - 2*t + 1)*x0^2 + (q^2*t^2 - q^2*t - q*t + q)*x0*x1 + (q^2*t^2 - q^2*t - q*t +␣
→˓q)*x0*x2
sage: E_integral([0,2,0])
(q^2*t^3 - q^2*t^2 - t + 1)*x0^2 + (q^4*t^3 - q^3*t^2 - q^2*t + q*t^2 - q*t + q - t␣
→˓+ 1)*x0*x1 + (t^2 - 2*t + 1)*x1^2 + (q^4*t^3 - q^3*t^2 - q^2*t + q)*x0*x2 + (q^
→˓2*t^2 - q^2*t - q*t + q)*x1*x2

(continues on next page)

2846 Chapter 5. Comprehensive Module List

https://arxiv.org/abs/math/0601693v3

Combinatorics, Release 9.7

(continued from previous page)

sage.combinat.sf.ns_macdonald.Ht(mu, q=None, t=None, pi=None)
Return the symmetric Macdonald polynomial using the Haiman, Haglund, and Loehr formula.

Note that if both 𝑞 and 𝑡 are specified, then they must have the same parent.

REFERENCE:

• J. Haglund, M. Haiman, N. Loehr. A combinatorial formula for non-symmetric Macdonald polynomials.
arXiv math/0601693v3.

EXAMPLES:

sage: from sage.combinat.sf.ns_macdonald import Ht
sage: HHt = SymmetricFunctions(QQ['q','t'].fraction_field()).macdonald().Ht()
sage: Ht([0,0,1])
x0 + x1 + x2
sage: HHt([1]).expand(3)
x0 + x1 + x2
sage: Ht([0,0,2])
x0^2 + (q + 1)*x0*x1 + x1^2 + (q + 1)*x0*x2 + (q + 1)*x1*x2 + x2^2
sage: HHt([2]).expand(3)
x0^2 + (q + 1)*x0*x1 + x1^2 + (q + 1)*x0*x2 + (q + 1)*x1*x2 + x2^2

class sage.combinat.sf.ns_macdonald.LatticeDiagram(l, copy=True)
Bases: sage.combinat.combinat.CombinatorialObject

a(i, j)
Return the length of the arm of the box (i,j) in self.

EXAMPLES:

sage: a = LatticeDiagram([3,1,2,4,3,0,4,2,3])
sage: a.a(5,2)
3

arm(i, j)
Return the arm of the box (i,j) in self.

EXAMPLES:

sage: a = LatticeDiagram([3,1,2,4,3,0,4,2,3])
sage: a.arm(5,2)
[(1, 2), (3, 2), (8, 1)]

arm_left(i, j)
Return the left arm of the box (i,j) in self.

EXAMPLES:

sage: a = LatticeDiagram([3,1,2,4,3,0,4,2,3])
sage: a.arm_left(5,2)
[(1, 2), (3, 2)]

arm_right(i, j)
Return the right arm of the box (i,j) in self.

EXAMPLES:

5.1. Comprehensive Module List 2847

https://arxiv.org/abs/math/0601693v3

Combinatorics, Release 9.7

sage: a = LatticeDiagram([3,1,2,4,3,0,4,2,3])
sage: a.arm_right(5,2)
[(8, 1)]

boxes()
EXAMPLES:

sage: a = LatticeDiagram([3,0,2])
sage: a.boxes()
[(1, 1), (1, 2), (1, 3), (3, 1), (3, 2)]
sage: a = LatticeDiagram([2, 1, 3, 0, 0, 2])
sage: a.boxes()
[(1, 1), (1, 2), (2, 1), (3, 1), (3, 2), (3, 3), (6, 1), (6, 2)]

boxes_same_and_lower_right(ii, jj)
Return a list of the boxes of self that are in row jj but not identical with (ii, jj), or lie in the row jj
- 1 (the row directly below jj; this might be the basement) and strictly to the right of (ii, jj).

EXAMPLES:

sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: a = a.shape()
sage: a.boxes_same_and_lower_right(1,1)
[(2, 1), (3, 1), (6, 1), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0)]
sage: a.boxes_same_and_lower_right(1,2)
[(3, 2), (6, 2), (2, 1), (3, 1), (6, 1)]
sage: a.boxes_same_and_lower_right(3,3)
[(6, 2)]
sage: a.boxes_same_and_lower_right(2,3)
[(3, 3), (3, 2), (6, 2)]

flip()
Return the flip of self, where flip is defined as follows. Let r = max(self). Then self.flip()[i] =
r - self[i].

EXAMPLES:

sage: a = LatticeDiagram([3,0,2])
sage: a.flip()
[0, 3, 1]

l(i, j)
Return self[i] - j.

EXAMPLES:

sage: a = LatticeDiagram([3,1,2,4,3,0,4,2,3])
sage: a.l(5,2)
1

leg(i, j)
Return the leg of the box (i,j) in self.

EXAMPLES:

2848 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: a = LatticeDiagram([3,1,2,4,3,0,4,2,3])
sage: a.leg(5,2)
[(5, 3)]

size()
Return the number of boxes in self.

EXAMPLES:

sage: a = LatticeDiagram([3,1,2,4,3,0,4,2,3])
sage: a.size()
22

class sage.combinat.sf.ns_macdonald.NonattackingBacktracker(shape, pi=None)
Bases: sage.combinat.backtrack.GenericBacktracker

EXAMPLES:

sage: from sage.combinat.sf.ns_macdonald import NonattackingBacktracker
sage: n = NonattackingBacktracker(LatticeDiagram([0,1,2]))
sage: n._ending_position
(3, 2)
sage: n._initial_state
(2, 1)

get_next_pos(ii, jj)
EXAMPLES:

sage: from sage.combinat.sf.ns_macdonald import NonattackingBacktracker
sage: a = AugmentedLatticeDiagramFilling([[1,6],[2],[3,4,2],[],[],[5,5]])
sage: n = NonattackingBacktracker(a.shape())
sage: n.get_next_pos(1, 1)
(2, 1)
sage: n.get_next_pos(6, 1)
(1, 2)
sage: n = NonattackingBacktracker(LatticeDiagram([2,2,2]))
sage: n.get_next_pos(3, 1)
(1, 2)

sage.combinat.sf.ns_macdonald.NonattackingFillings(shape, pi=None)
Returning the finite set of nonattacking fillings of a given shape.

EXAMPLES:

sage: NonattackingFillings([0,1,2])
Nonattacking fillings of [0, 1, 2]
sage: NonattackingFillings([0,1,2]).list()
[[[1], [2, 1], [3, 2, 1]],
[[1], [2, 1], [3, 2, 2]],
[[1], [2, 1], [3, 2, 3]],
[[1], [2, 1], [3, 3, 1]],
[[1], [2, 1], [3, 3, 2]],
[[1], [2, 1], [3, 3, 3]],
[[1], [2, 2], [3, 1, 1]],
[[1], [2, 2], [3, 1, 2]],

(continues on next page)

5.1. Comprehensive Module List 2849

Combinatorics, Release 9.7

(continued from previous page)

[[1], [2, 2], [3, 1, 3]],
[[1], [2, 2], [3, 3, 1]],
[[1], [2, 2], [3, 3, 2]],
[[1], [2, 2], [3, 3, 3]]]

class sage.combinat.sf.ns_macdonald.NonattackingFillings_shape(shape, pi=None)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

EXAMPLES:

sage: n = NonattackingFillings([0,1,2])
sage: n == loads(dumps(n))
True

flip()
Return the nonattacking fillings of the flipped shape.

EXAMPLES:

sage: NonattackingFillings([0,1,2]).flip()
Nonattacking fillings of [2, 1, 0]

5.1.293 Orthogonal Symmetric Functions

AUTHORS:

• Travis Scrimshaw (2013-11-10): Initial version

class sage.combinat.sf.orthogonal.SymmetricFunctionAlgebra_orthogonal(Sym)
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

The orthogonal symmetric function basis (or orthogonal basis, to be short).

The orthogonal basis {𝑜𝜆} where 𝜆 is taken over all partitions is defined by the following change of basis with
the Schur functions:

𝑠𝜆 =
∑︁
𝜇

(︃∑︁
𝜈∈𝐻

𝑐𝜆𝜇𝜈

)︃
𝑜𝜇

where 𝐻 is the set of all partitions with even-width rows and 𝑐𝜆𝜇𝜈 is the usual Littlewood-Richardson (LR)
coefficients. By the properties of LR coefficients, this can be shown to be a upper unitriangular change of basis.

Note: This is only a filtered basis, not aZ-graded basis. However this does respect the induced (Z/2Z)-grading.

INPUT:

• Sym – an instance of the ring of the symmetric functions

REFERENCES:

• [ChariKleber2000]

• [KoikeTerada1987]

• [ShimozonoZabrocki2006]

2850 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

EXAMPLES:

Here are the first few orthogonal symmetric functions, in various bases:

sage: Sym = SymmetricFunctions(QQ)
sage: o = Sym.o()
sage: e = Sym.e()
sage: h = Sym.h()
sage: p = Sym.p()
sage: s = Sym.s()
sage: m = Sym.m()

sage: p(o([1]))
p[1]
sage: m(o([1]))
m[1]
sage: e(o([1]))
e[1]
sage: h(o([1]))
h[1]
sage: s(o([1]))
s[1]

sage: p(o([2]))
-p[] + 1/2*p[1, 1] + 1/2*p[2]
sage: m(o([2]))
-m[] + m[1, 1] + m[2]
sage: e(o([2]))
-e[] + e[1, 1] - e[2]
sage: h(o([2]))
-h[] + h[2]
sage: s(o([2]))
-s[] + s[2]

sage: p(o([3]))
-p[1] + 1/6*p[1, 1, 1] + 1/2*p[2, 1] + 1/3*p[3]
sage: m(o([3]))
-m[1] + m[1, 1, 1] + m[2, 1] + m[3]
sage: e(o([3]))
-e[1] + e[1, 1, 1] - 2*e[2, 1] + e[3]
sage: h(o([3]))
-h[1] + h[3]
sage: s(o([3]))
-s[1] + s[3]

sage: Sym = SymmetricFunctions(ZZ)
sage: o = Sym.o()
sage: e = Sym.e()
sage: h = Sym.h()
sage: s = Sym.s()
sage: m = Sym.m()
sage: p = Sym.p()
sage: m(o([4]))
-m[1, 1] + m[1, 1, 1, 1] - m[2] + m[2, 1, 1] + m[2, 2] + m[3, 1] + m[4]

(continues on next page)

5.1. Comprehensive Module List 2851

Combinatorics, Release 9.7

(continued from previous page)

sage: e(o([4]))
-e[1, 1] + e[1, 1, 1, 1] + e[2] - 3*e[2, 1, 1] + e[2, 2] + 2*e[3, 1] - e[4]
sage: h(o([4]))
-h[2] + h[4]
sage: s(o([4]))
-s[2] + s[4]

Some examples of conversions the other way:

sage: o(h[3])
o[1] + o[3]
sage: o(e[3])
o[1, 1, 1]
sage: o(m[2,1])
o[1] - 2*o[1, 1, 1] + o[2, 1]
sage: o(p[3])
o[1, 1, 1] - o[2, 1] + o[3]

Some multiplication:

sage: o([2]) * o([1,1])
o[1, 1] + o[2] + o[2, 1, 1] + o[3, 1]
sage: o([2,1,1]) * o([2])
o[1, 1] + o[1, 1, 1, 1] + 2*o[2, 1, 1] + o[2, 2] + o[2, 2, 1, 1]
+ o[3, 1] + o[3, 1, 1, 1] + o[3, 2, 1] + o[4, 1, 1]
sage: o([1,1]) * o([2,1])
o[1] + o[1, 1, 1] + 2*o[2, 1] + o[2, 1, 1, 1] + o[2, 2, 1]
+ o[3] + o[3, 1, 1] + o[3, 2]

Examples of the Hopf algebra structure:

sage: o([1]).antipode()
-o[1]
sage: o([2]).antipode()
-o[] + o[1, 1]
sage: o([1]).coproduct()
o[] # o[1] + o[1] # o[]
sage: o([2]).coproduct()
o[] # o[] + o[] # o[2] + o[1] # o[1] + o[2] # o[]
sage: o([1]).counit()
0
sage: o.one().counit()
1

2852 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.294 Symmetric functions defined by orthogonality and triangularity

One characterization of Schur functions is that they are upper triangularly related to the monomial symmetric functions
and orthogonal with respect to the Hall scalar product. We can use the class SymmetricFunctionAlgebra_orthotriang
to obtain the Schur functions from this definition.

sage: from sage.combinat.sf.sfa import zee
sage: from sage.combinat.sf.orthotriang import SymmetricFunctionAlgebra_orthotriang
sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.m()
sage: s = SymmetricFunctionAlgebra_orthotriang(Sym, m, zee, 's', 'Schur functions')
sage: s([2,1])^2
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4,␣
→˓2]

sage: s2 = SymmetricFunctions(QQ).s()
sage: s2([2,1])^2
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4,␣
→˓2]

class sage.combinat.sf.orthotriang.SymmetricFunctionAlgebra_orthotriang(Sym, base, scalar,
prefix, basis_name,
leading_coeff=None)

Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

Initialization of the symmetric function algebra defined via orthotriangular rules.

INPUT:

• self – a basis determined by an orthotriangular definition

• Sym – ring of symmetric functions

• base – an instance of a basis of the ring of symmetric functions (e.g. the Schur functions)

• scalar – a function zee on partitions. The function zee determines the scalar product on the power sum
basis with normalization ⟨𝑝𝜇, 𝑝𝜇⟩ = zee(𝜇).

• prefix – the prefix used to display the basis

• basis_name – the name used for the basis

Note: The base ring is required to be a Q-algebra for this method to be usable, since the scalar product is defined
by its values on the power sum basis.

EXAMPLES:

sage: from sage.combinat.sf.sfa import zee
sage: from sage.combinat.sf.orthotriang import SymmetricFunctionAlgebra_orthotriang
sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.m()
sage: s = SymmetricFunctionAlgebra_orthotriang(Sym, m, zee, 's', 'Schur'); s
Symmetric Functions over Rational Field in the Schur basis

class Element
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

5.1. Comprehensive Module List 2853

Combinatorics, Release 9.7

product(left, right)
Return left * right by converting both to the base and then converting back to self.

INPUT:

• self – a basis determined by an orthotriangular definition

• left, right – elements in self

OUTPUT:

• the expansion of the product of left and right in the basis self.

EXAMPLES:

sage: from sage.combinat.sf.sfa import zee
sage: from sage.combinat.sf.orthotriang import SymmetricFunctionAlgebra_
→˓orthotriang
sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.m()
sage: s = SymmetricFunctionAlgebra_orthotriang(Sym, m, zee, 's', 'Schur␣
→˓functions')
sage: s([1])*s([2,1]) #indirect doctest
s[2, 1, 1] + s[2, 2] + s[3, 1]

5.1.295 Power sum symmetric functions

class sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power(Sym)
Bases: sage.combinat.sf.multiplicative.SymmetricFunctionAlgebra_multiplicative

A class for methods associated to the power sum basis of the symmetric functions

INPUT:

• self – the power sum basis of the symmetric functions

• Sym – an instance of the ring of symmetric functions

class Element
Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical.Element

adams_operation(n)
Return the image of the symmetric function self under the 𝑛-th Frobenius operator.

The 𝑛-th Frobenius operator f𝑛 is defined to be the map from the ring of symmetric functions to itself
that sends every symmetric function 𝑃 (𝑥1, 𝑥2, 𝑥3, . . .) to 𝑃 (𝑥𝑛1 , 𝑥

𝑛
2 , 𝑥

𝑛
3 , . . .). This operator f𝑛 is a

Hopf algebra endomorphism, and satisfies

f𝑛𝑚(𝜆1,𝜆2,𝜆3,...) = 𝑚(𝑛𝜆1,𝑛𝜆2,𝑛𝜆3,...)

for every partition (𝜆1, 𝜆2, 𝜆3, . . .) (where 𝑚 means the monomial basis). Moreover, f𝑛(𝑝𝑟) = 𝑝𝑛𝑟
for every positive integer 𝑟 (where 𝑝𝑘 denotes the 𝑘-th powersum symmetric function).

The 𝑛-th Frobenius operator is also called the 𝑛-th Frobenius endomorphism. It is not related to the
Frobenius map which connects the ring of symmetric functions with the representation theory of the
symmetric group.

The 𝑛-th Frobenius operator is also the 𝑛-th Adams operator of the Λ-ring of symmetric functions over
the integers.

2854 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The 𝑛-th Frobenius operator can also be described via plethysm: Every symmetric function 𝑃 satisfies
f𝑛(𝑃) = 𝑝𝑛 ∘𝑃 = 𝑃 ∘ 𝑝𝑛, where 𝑝𝑛 is the 𝑛-th powersum symmetric function, and ∘ denotes (outer)
plethysm.

INPUT:
• n – a positive integer

OUTPUT:

The result of applying the 𝑛-th Frobenius operator (on the ring of symmetric functions) to self.

EXAMPLES:

sage: Sym = SymmetricFunctions(ZZ)
sage: p = Sym.p()
sage: p[3].frobenius(2)
p[6]
sage: p[4,2,1].frobenius(3)
p[12, 6, 3]
sage: p([]).frobenius(4)
p[]
sage: p[3].frobenius(1)
p[3]
sage: (p([3]) - p([2]) + p([])).frobenius(3)
p[] - p[6] + p[9]

See also:

plethysm()

eval_at_permutation_roots(rho)
Evaluate at eigenvalues of a permutation matrix.

Evaluate an element of the power sum basis at the eigenvalues of a permutation matrix with cycle
structure 𝜌.

This function evaluates an element at the roots of unity

Ξ𝜌1 ,Ξ𝜌2 , . . . ,Ξ𝜌ℓ

where

Ξ𝑚 = 1, 𝜁𝑚, 𝜁
2
𝑚, . . . , 𝜁

𝑚−1
𝑚

and 𝜁𝑚 is an 𝑚 root of unity. These roots of unity represent the eigenvalues of permutation matrix
with cycle structure 𝜌.

INPUT:
• rho – a partition or a list of non-negative integers

OUTPUT:
• an element of the base ring

EXAMPLES:

sage: p = SymmetricFunctions(QQ).p()
sage: p([3,3]).eval_at_permutation_roots([6])
0
sage: p([3,3]).eval_at_permutation_roots([3])
9
sage: p([3,3]).eval_at_permutation_roots([1])

(continues on next page)

5.1. Comprehensive Module List 2855

Combinatorics, Release 9.7

(continued from previous page)

1
sage: p([3,3]).eval_at_permutation_roots([3,3])
36
sage: p([3,3]).eval_at_permutation_roots([1,1,1,1,1])
25
sage: (p[1]+p[2]+p[3]).eval_at_permutation_roots([3,2])
5

expand(n, alphabet='x')
Expand the symmetric function self as a symmetric polynomial in n variables.

INPUT:
• n – a nonnegative integer
• alphabet – (default: 'x') a variable for the expansion

OUTPUT:

A monomial expansion of self in the 𝑛 variables labelled by alphabet.

EXAMPLES:

sage: p = SymmetricFunctions(QQ).p()
sage: a = p([2])
sage: a.expand(2)
x0^2 + x1^2
sage: a.expand(3, alphabet=['a','b','c'])
a^2 + b^2 + c^2
sage: p([2,1,1]).expand(2)
x0^4 + 2*x0^3*x1 + 2*x0^2*x1^2 + 2*x0*x1^3 + x1^4
sage: p([7]).expand(4)
x0^7 + x1^7 + x2^7 + x3^7
sage: p([7]).expand(4,alphabet='t')
t0^7 + t1^7 + t2^7 + t3^7
sage: p([7]).expand(4,alphabet='x,y,z,t')
x^7 + y^7 + z^7 + t^7
sage: p(1).expand(4)
1
sage: p(0).expand(4)
0
sage: (p([]) + 2*p([1])).expand(3)
2*x0 + 2*x1 + 2*x2 + 1
sage: p([1]).expand(0)
0
sage: (3*p([])).expand(0)
3

exponential_specialization(t=None, q=1)
Return the exponential specialization of a symmetric function (when 𝑞 = 1), or the 𝑞-exponential
specialization (when 𝑞 ̸= 1).

The exponential specialization 𝑒𝑥 at 𝑡 is a𝐾-algebra homomorphism from the𝐾-algebra of symmetric
functions to another 𝐾-algebra 𝑅. It is defined whenever the base ring 𝐾 is a Q-algebra and 𝑡 is an
element of 𝑅. The easiest way to define it is by specifying its values on the powersum symmetric
functions to be 𝑝1 = 𝑡 and 𝑝𝑛 = 0 for 𝑛 > 1. Equivalently, on the homogeneous functions it is given
by 𝑒𝑥(ℎ𝑛) = 𝑡𝑛/𝑛!; see Proposition 7.8.4 of [EnumComb2].

2856 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

By analogy, the 𝑞-exponential specialization is a 𝐾-algebra homomorphism from the 𝐾-algebra of
symmetric functions to another 𝐾-algebra 𝑅 that depends on two elements 𝑡 and 𝑞 of 𝑅 for which the
elements 1 − 𝑞𝑖 for all positive integers 𝑖 are invertible. It can be defined by specifying its values on
the complete homogeneous symmetric functions to be

𝑒𝑥𝑞(ℎ𝑛) = 𝑡𝑛/[𝑛]𝑞!,

where [𝑛]𝑞! is the 𝑞-factorial. Equivalently, for 𝑞 ̸= 1 and a homogeneous symmetric function 𝑓 of
degree 𝑛, we have

𝑒𝑥𝑞(𝑓) = (1− 𝑞)𝑛𝑡𝑛𝑝𝑠𝑞(𝑓),

where 𝑝𝑠𝑞(𝑓) is the stable principal specialization of 𝑓 (see principal_specialization()). (See
(7.29) in [EnumComb2].)

The limit of 𝑒𝑥𝑞 as 𝑞 → 1 is 𝑒𝑥.

INPUT:
• t (default: None) – the value to use for 𝑡; the default is to create a ring of polynomials in t.
• q (default: 1) – the value to use for 𝑞. If q is None, then a ring (or fraction field) of polynomials

in q is created.
EXAMPLES:

sage: p = SymmetricFunctions(QQ).p()
sage: x = p[8,7,3,1]
sage: x.exponential_specialization()
0
sage: x = p[3] + 5*p[1,1] + 2*p[1] + 1
sage: x.exponential_specialization(t=var("t"))
5*t^2 + 2*t + 1

We also support the 𝑞-exponential_specialization:

sage: factor(p[3].exponential_specialization(q=var("q"), t=var("t")))
(q - 1)^2*t^3/(q^2 + q + 1)

frobenius(n)
Return the image of the symmetric function self under the 𝑛-th Frobenius operator.

The 𝑛-th Frobenius operator f𝑛 is defined to be the map from the ring of symmetric functions to itself
that sends every symmetric function 𝑃 (𝑥1, 𝑥2, 𝑥3, . . .) to 𝑃 (𝑥𝑛1 , 𝑥

𝑛
2 , 𝑥

𝑛
3 , . . .). This operator f𝑛 is a

Hopf algebra endomorphism, and satisfies

f𝑛𝑚(𝜆1,𝜆2,𝜆3,...) = 𝑚(𝑛𝜆1,𝑛𝜆2,𝑛𝜆3,...)

for every partition (𝜆1, 𝜆2, 𝜆3, . . .) (where 𝑚 means the monomial basis). Moreover, f𝑛(𝑝𝑟) = 𝑝𝑛𝑟
for every positive integer 𝑟 (where 𝑝𝑘 denotes the 𝑘-th powersum symmetric function).

The 𝑛-th Frobenius operator is also called the 𝑛-th Frobenius endomorphism. It is not related to the
Frobenius map which connects the ring of symmetric functions with the representation theory of the
symmetric group.

The 𝑛-th Frobenius operator is also the 𝑛-th Adams operator of the Λ-ring of symmetric functions over
the integers.

The 𝑛-th Frobenius operator can also be described via plethysm: Every symmetric function 𝑃 satisfies
f𝑛(𝑃) = 𝑝𝑛 ∘𝑃 = 𝑃 ∘ 𝑝𝑛, where 𝑝𝑛 is the 𝑛-th powersum symmetric function, and ∘ denotes (outer)
plethysm.

INPUT:

5.1. Comprehensive Module List 2857

Combinatorics, Release 9.7

• n – a positive integer
OUTPUT:

The result of applying the 𝑛-th Frobenius operator (on the ring of symmetric functions) to self.

EXAMPLES:

sage: Sym = SymmetricFunctions(ZZ)
sage: p = Sym.p()
sage: p[3].frobenius(2)
p[6]
sage: p[4,2,1].frobenius(3)
p[12, 6, 3]
sage: p([]).frobenius(4)
p[]
sage: p[3].frobenius(1)
p[3]
sage: (p([3]) - p([2]) + p([])).frobenius(3)
p[] - p[6] + p[9]

See also:

plethysm()

omega()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of sym-
metric functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th
elementary symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric func-
tion). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the
omega involution. It sends the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive
integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes
the conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 =
elementary, ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

omega_involution() is a synonym for the omega() method.

OUTPUT:
• the image of self under the omega automorphism

EXAMPLES:

sage: p = SymmetricFunctions(QQ).p()
sage: a = p([2,1]); a
p[2, 1]
sage: a.omega()
-p[2, 1]
sage: p([]).omega()
p[]
sage: p(0).omega()
0
sage: p = SymmetricFunctions(ZZ).p()

(continues on next page)

2858 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: (p([3,1,1]) - 2 * p([2,1])).omega()
2*p[2, 1] + p[3, 1, 1]

omega_involution()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of sym-
metric functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th
elementary symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric func-
tion). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the
omega involution. It sends the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive
integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes
the conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 =
elementary, ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

omega_involution() is a synonym for the omega() method.

OUTPUT:
• the image of self under the omega automorphism

EXAMPLES:

sage: p = SymmetricFunctions(QQ).p()
sage: a = p([2,1]); a
p[2, 1]
sage: a.omega()
-p[2, 1]
sage: p([]).omega()
p[]
sage: p(0).omega()
0
sage: p = SymmetricFunctions(ZZ).p()
sage: (p([3,1,1]) - 2 * p([2,1])).omega()
2*p[2, 1] + p[3, 1, 1]

principal_specialization(n=+ Infinity, q=None)
Return the principal specialization of a symmetric function.

The principal specialization of order𝑛 at 𝑞 is the ring homomorphism 𝑝𝑠𝑛,𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for 𝑖 ∈ {1, . . . , 𝑛} and 𝑥𝑖 ↦→ 0 for
𝑖 > 𝑛. Here, 𝑞 is a given element of 𝑅, and we assume that the variables of our symmetric functions
are 𝑥1, 𝑥2, 𝑥3, (To be more precise, 𝑝𝑠𝑛,𝑞 is a 𝐾-algebra homomorphism, where 𝐾 is the base
ring.) See Section 7.8 of [EnumComb2].

The stable principal specialization at 𝑞 is the ring homomorphism 𝑝𝑠𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for all 𝑖. This is well-defined only if the
resulting infinite sums converge; thus, in particular, setting 𝑞 = 1 in the stable principal specialization
is an invalid operation.

INPUT:
• n (default: infinity) – a nonnegative integer or infinity, specifying whether to compute the

principal specialization of order n or the stable principal specialization.

5.1. Comprehensive Module List 2859

Combinatorics, Release 9.7

• q (default: None) – the value to use for 𝑞; the default is to create a ring of polynomials in q (or a
field of rational functions in q) over the given coefficient ring.

We use the formulas from Proposition 7.8.3 of [EnumComb2]:

𝑝𝑠𝑛,𝑞(𝑝𝜆) =
∏︁
𝑖

(1− 𝑞𝑛𝜆𝑖)/(1− 𝑞𝜆𝑖),

𝑝𝑠𝑛,1(𝑝𝜆) = 𝑛ℓ(𝜆),

𝑝𝑠𝑞(𝑝𝜆) = 1/
∏︁
𝑖

(1− 𝑞𝜆𝑖),

where ℓ(𝜆) denotes the length of 𝜆, and where the products range from 𝑖 = 1 to 𝑖 = ℓ(𝜆).

EXAMPLES:

sage: p = SymmetricFunctions(QQ).p()
sage: x = p[8,7,3,1]
sage: x.principal_specialization(3, q=var("q"))
(q^24 - 1)*(q^21 - 1)*(q^9 - 1)/((q^8 - 1)*(q^7 - 1)*(q - 1))

sage: x = 5*p[1,1,1] + 3*p[2,1] + 1
sage: x.principal_specialization(3, q=var("q"))
5*(q^3 - 1)^3/(q - 1)^3 + 3*(q^6 - 1)*(q^3 - 1)/((q^2 - 1)*(q - 1)) + 1

By default, we return a rational function in 𝑞:

sage: x.principal_specialization(3)
8*q^6 + 18*q^5 + 36*q^4 + 38*q^3 + 36*q^2 + 18*q + 9

If n is not given we return the stable principal specialization:

sage: x.principal_specialization(q=var("q"))
3/((q^2 - 1)*(q - 1)) - 5/(q - 1)^3 + 1

scalar(x, zee=None)
Return the standard scalar product of self and x.

INPUT:
• x – a power sum symmetric function
• zee – (default: uses standard zee function) optional input specifying the scalar product on the

power sum basis with normalization ⟨𝑝𝜇, 𝑝𝜇⟩ = zee(𝜇). zee should be a function on partitions.
Note that the power-sum symmetric functions are orthogonal under this scalar product. With the default
value of zee, the value of ⟨𝑝𝜆, 𝑝𝜆⟩ is given by the size of the centralizer in 𝑆𝑛 of a permutation of cycle
type 𝜆.

OUTPUT:
• the standard scalar product between self and x, or, if the optional parameter zee is specified,

then the scalar product with respect to the normalization ⟨𝑝𝜇, 𝑝𝜇⟩ = zee(𝜇) with the power sum
basis elements being orthogonal

EXAMPLES:

sage: p = SymmetricFunctions(QQ).p()
sage: p4 = Partitions(4)
sage: matrix([[p(a).scalar(p(b)) for a in p4] for b in p4])
[4 0 0 0 0]
[0 3 0 0 0]

(continues on next page)

2860 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[0 0 8 0 0]
[0 0 0 4 0]
[0 0 0 0 24]
sage: p(0).scalar(p(1))
0
sage: p(1).scalar(p(2))
2

sage: zee = lambda x : 1
sage: matrix([[p[la].scalar(p[mu], zee) for la in Partitions(3)] for mu in␣
→˓Partitions(3)])
[1 0 0]
[0 1 0]
[0 0 1]

verschiebung(n)
Return the image of the symmetric function self under the 𝑛-th Verschiebung operator.

The 𝑛-th Verschiebung operator V𝑛 is defined to be the unique algebra endomorphism 𝑉 of the ring
of symmetric functions that satisfies 𝑉 (ℎ𝑟) = ℎ𝑟/𝑛 for every positive integer 𝑟 divisible by 𝑛, and
satisfies 𝑉 (ℎ𝑟) = 0 for every positive integer 𝑟 not divisible by 𝑛. This operator V𝑛 is a Hopf algebra
endomorphism. For every nonnegative integer 𝑟 with 𝑛 | 𝑟, it satisfies

V𝑛(ℎ𝑟) = ℎ𝑟/𝑛, V𝑛(𝑝𝑟) = 𝑛𝑝𝑟/𝑛, V𝑛(𝑒𝑟) = (−1)𝑟−𝑟/𝑛𝑒𝑟/𝑛

(where ℎ is the complete homogeneous basis, 𝑝 is the powersum basis, and 𝑒 is the elementary basis).
For every nonnegative integer 𝑟 with 𝑛 - 𝑟, it satisfes

V𝑛(ℎ𝑟) = V𝑛(𝑝𝑟) = V𝑛(𝑒𝑟) = 0.

The 𝑛-th Verschiebung operator is also called the 𝑛-th Verschiebung endomorphism. Its name derives
from the Verschiebung (German for “shift”) endomorphism of the Witt vectors.

The 𝑛-th Verschiebung operator is adjoint to the 𝑛-th Frobenius operator (see frobenius() for its
definition) with respect to the Hall scalar product (scalar()).

The action of the 𝑛-th Verschiebung operator on the Schur basis can also be computed explicitly. The
following (probably clumsier than necessary) description can be obtained by solving exercise 7.61 in
Stanley’s [STA].

Let 𝜆 be a partition. Let 𝑛 be a positive integer. If the 𝑛-core of 𝜆 is nonempty, then V𝑛(𝑠𝜆) = 0. Oth-
erwise, the following method computes V𝑛(𝑠𝜆): Write the partition 𝜆 in the form (𝜆1, 𝜆2, . . . , 𝜆𝑛𝑠)
for some nonnegative integer 𝑠. (If 𝑛 does not divide the length of 𝜆, then this is achieved by adding
trailing zeroes to 𝜆.) Set 𝛽𝑖 = 𝜆𝑖 + 𝑛𝑠 − 𝑖 for every 𝑠 ∈ {1, 2, . . . , 𝑛𝑠}. Then, (𝛽1, 𝛽2, . . . , 𝛽𝑛𝑠) is
a strictly decreasing sequence of nonnegative integers. Stably sort the list (1, 2, . . . , 𝑛𝑠) in order of
(weakly) increasing remainder of −1− 𝛽𝑖 modulo 𝑛. Let 𝜉 be the sign of the permutation that is used
for this sorting. Let 𝜓 be the sign of the permutation that is used to stably sort the list (1, 2, . . . , 𝑛𝑠)
in order of (weakly) increasing remainder of 𝑖− 1 modulo 𝑛. (Notice that 𝜓 = (−1)𝑛(𝑛−1)𝑠(𝑠−1)/4.)
Then, V𝑛(𝑠𝜆) = 𝜉𝜓

∏︀𝑛−1
𝑖=0 𝑠𝜆(𝑖) , where (𝜆(0), 𝜆(1), . . . , 𝜆(𝑛−1)) is the 𝑛-quotient of 𝜆.

INPUT:
• n – a positive integer

OUTPUT:

The result of applying the 𝑛-th Verschiebung operator (on the ring of symmetric functions) to self.

EXAMPLES:

5.1. Comprehensive Module List 2861

Combinatorics, Release 9.7

sage: Sym = SymmetricFunctions(ZZ)
sage: p = Sym.p()
sage: p[3].verschiebung(2)
0
sage: p[4].verschiebung(4)
4*p[1]

The Verschiebung endomorphisms are multiplicative:

sage: all(all(p(lam).verschiebung(2) * p(mu).verschiebung(2)
....: == (p(lam) * p(mu)).verschiebung(2)
....: for mu in Partitions(4))
....: for lam in Partitions(4))
True

Testing the adjointness between the Frobenius operators f𝑛 and the Verschiebung operators V𝑛:

sage: Sym = SymmetricFunctions(QQ)
sage: p = Sym.p()
sage: all(all(p(lam).verschiebung(2).scalar(p(mu))
....: == p(lam).scalar(p(mu).frobenius(2))
....: for mu in Partitions(2))
....: for lam in Partitions(4))
True

antipode_on_basis(partition)
Return the antipode of self[partition].

The antipode on the generator 𝑝𝑖 (for 𝑖 > 0) is −𝑝𝑖, and the antipode on 𝑝𝜇 is (−1)𝑙𝑒𝑛𝑔𝑡ℎ(𝜇)𝑝𝜇.

INPUT:

• self – the power sum basis of the symmetric functions

• partition – a partition

OUTPUT:

• the result of the antipode on self(partition)

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: p = Sym.p()
sage: p.antipode_on_basis([2])
-p[2]
sage: p.antipode_on_basis([3])
-p[3]
sage: p.antipode_on_basis([2,2])
p[2, 2]
sage: p.antipode_on_basis([])
p[]

bottom_schur_function(partition, degree=None)
Return the least-degree component of s[partition], where s denotes the Schur basis of the symmetric
functions, and the grading is not the usual grading on the symmetric functions but rather the grading which
gives every 𝑝𝑖 degree 1.

2862 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

This least-degree component has its degree equal to the Frobenius rank of partition, while the degree
with respect to the usual grading is still the size of partition.

This method requires the base ring to be a (commutative) Q-algebra. This restriction is unavoidable, since
the least-degree component (in general) has noninteger coefficients in all classical bases of the symmetric
functions.

The optional keyword degree allows taking any homogeneous component rather than merely the least-
degree one. Specifically, if degree is set, then the degree-th component will be returned.

REFERENCES:

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: p = Sym.p()
sage: p.bottom_schur_function([2,2,1])
-1/6*p[3, 2] + 1/4*p[4, 1]
sage: p.bottom_schur_function([2,1])
-1/3*p[3]
sage: p.bottom_schur_function([3])
1/3*p[3]
sage: p.bottom_schur_function([1,1,1])
1/3*p[3]
sage: p.bottom_schur_function(Partition([1,1,1]))
1/3*p[3]
sage: p.bottom_schur_function([2,1], degree=1)
-1/3*p[3]
sage: p.bottom_schur_function([2,1], degree=2)
0
sage: p.bottom_schur_function([2,1], degree=3)
1/3*p[1, 1, 1]
sage: p.bottom_schur_function([2,2,1], degree=3)
1/8*p[2, 2, 1] - 1/6*p[3, 1, 1]

coproduct_on_generators(i)
Return coproduct on generators for power sums 𝑝𝑖 (for 𝑖 > 0).

The elements 𝑝𝑖 are primitive elements.

INPUT:

• self – the power sum basis of the symmetric functions

• i – a positive integer

OUTPUT:

• the result of the coproduct on the generator 𝑝(𝑖)

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: p = Sym.powersum()
sage: p.coproduct_on_generators(2)
p[] # p[2] + p[2] # p[]

eval_at_permutation_roots_on_generators(k, rho)
Evaluate 𝑝𝑘 at eigenvalues of permutation matrix.

5.1. Comprehensive Module List 2863

Combinatorics, Release 9.7

This function evaluates a symmetric function p([k]) at the eigenvalues of a permutation matrix with cycle
structure \rho.

This function evaluates a 𝑝𝑘 at the roots of unity

Ξ𝜌1 ,Ξ𝜌2 , . . . ,Ξ𝜌ℓ

where

Ξ𝑚 = 1, 𝜁𝑚, 𝜁
2
𝑚, . . . , 𝜁

𝑚−1
𝑚

and 𝜁𝑚 is an 𝑚 root of unity. This is characterized by 𝑝𝑘[𝐴,𝐵] = 𝑝𝑘[𝐴] + 𝑝𝑘[𝐵] and 𝑝𝑘[Ξ𝑚] = 0 unless
𝑚 divides 𝑘 and 𝑝𝑟𝑚[Ξ𝑚] = 𝑚.

INPUT:

• k – a non-negative integer

• rho – a partition or a list of non-negative integers

OUTPUT:

• an element of the base ring

EXAMPLES:

sage: p = SymmetricFunctions(QQ).p()
sage: p.eval_at_permutation_roots_on_generators(3, [6])
0
sage: p.eval_at_permutation_roots_on_generators(3, [3])
3
sage: p.eval_at_permutation_roots_on_generators(3, [1])
1
sage: p.eval_at_permutation_roots_on_generators(3, [3,3])
6
sage: p.eval_at_permutation_roots_on_generators(3, [1,1,1,1,1])
5

5.1.296 Schur symmetric functions

class sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur(Sym)
Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical

A class for methods related to the Schur symmetric function basis

INPUT:

• self – a Schur symmetric function basis

• Sym – an instance of the ring of the symmetric functions

class Element
Bases: sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical.Element

expand(n, alphabet='x')
Expand the symmetric function self as a symmetric polynomial in n variables.

INPUT:
• n – a nonnegative integer
• alphabet – (default: 'x') a variable for the expansion

2864 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

A monomial expansion of self in the 𝑛 variables labelled by alphabet.

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: a = s([2,1])
sage: a.expand(2)
x0^2*x1 + x0*x1^2
sage: a.expand(3)
x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2
sage: a.expand(4)
x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2 + x0^
→˓2*x3 + 2*x0*x1*x3 + x1^2*x3 + 2*x0*x2*x3 + 2*x1*x2*x3 + x2^2*x3 + x0*x3^2␣
→˓+ x1*x3^2 + x2*x3^2
sage: a.expand(2, alphabet='y')
y0^2*y1 + y0*y1^2
sage: a.expand(2, alphabet=['a','b'])
a^2*b + a*b^2
sage: s([1,1,1,1]).expand(3)
0
sage: (s([]) + 2*s([1])).expand(3)
2*x0 + 2*x1 + 2*x2 + 1
sage: s([1]).expand(0)
0
sage: (3*s([])).expand(0)
3

exponential_specialization(t=None, q=1)
Return the exponential specialization of a symmetric function (when 𝑞 = 1), or the 𝑞-exponential
specialization (when 𝑞 ̸= 1).

The exponential specialization 𝑒𝑥 at 𝑡 is a𝐾-algebra homomorphism from the𝐾-algebra of symmetric
functions to another 𝐾-algebra 𝑅. It is defined whenever the base ring 𝐾 is a Q-algebra and 𝑡 is an
element of 𝑅. The easiest way to define it is by specifying its values on the powersum symmetric
functions to be 𝑝1 = 𝑡 and 𝑝𝑛 = 0 for 𝑛 > 1. Equivalently, on the homogeneous functions it is given
by 𝑒𝑥(ℎ𝑛) = 𝑡𝑛/𝑛!; see Proposition 7.8.4 of [EnumComb2].

By analogy, the 𝑞-exponential specialization is a 𝐾-algebra homomorphism from the 𝐾-algebra of
symmetric functions to another 𝐾-algebra 𝑅 that depends on two elements 𝑡 and 𝑞 of 𝑅 for which the
elements 1 − 𝑞𝑖 for all positive integers 𝑖 are invertible. It can be defined by specifying its values on
the complete homogeneous symmetric functions to be

𝑒𝑥𝑞(ℎ𝑛) = 𝑡𝑛/[𝑛]𝑞!,

where [𝑛]𝑞! is the 𝑞-factorial. Equivalently, for 𝑞 ̸= 1 and a homogeneous symmetric function 𝑓 of
degree 𝑛, we have

𝑒𝑥𝑞(𝑓) = (1− 𝑞)𝑛𝑡𝑛𝑝𝑠𝑞(𝑓),

where 𝑝𝑠𝑞(𝑓) is the stable principal specialization of 𝑓 (see principal_specialization()). (See
(7.29) in [EnumComb2].)

The limit of 𝑒𝑥𝑞 as 𝑞 → 1 is 𝑒𝑥.

INPUT:
• t (default: None) – the value to use for 𝑡; the default is to create a ring of polynomials in t.

5.1. Comprehensive Module List 2865

Combinatorics, Release 9.7

• q (default: 1) – the value to use for 𝑞. If q is None, then a ring (or fraction field) of polynomials
in q is created.

We use the formula in the proof of Corollary 7.21.6 of [EnumComb2]

𝑒𝑥𝑞(𝑠𝜆) = 𝑡|𝜆|𝑞
∑︀

𝑖(𝑖−1)𝜆𝑖/
∏︁
𝑢∈𝜆

(1 + 𝑞 + 𝑞2 + · · ·+ 𝑞ℎ(𝑢)−1)

where ℎ(𝑢) is the hook length of a cell 𝑢 in 𝜆.

As a limit case, we obtain a formula for 𝑞 = 1

𝑒𝑥1(𝑠𝜆) = 𝑓𝜆𝑡|𝜆|/|𝜆|!

where 𝑓𝜆 is the number of standard Young tableaux of shape 𝜆.

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: x = s[5,3]
sage: x.exponential_specialization()
1/1440*t^8

sage: x = 5*s[1,1,1] + 3*s[2,1] + 1
sage: x.exponential_specialization()
11/6*t^3 + 1

We also support the 𝑞-exponential_specialization:

sage: factor(s[3].exponential_specialization(q=var("q"), t=var("t")))
t^3/((q^2 + q + 1)*(q + 1))

omega()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of sym-
metric functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th
elementary symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric func-
tion). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the
omega involution. It sends the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive
integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes
the conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 =
elementary, ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

omega_involution() is a synonym for the omega() method.

OUTPUT:
• the image of self under the omega automorphism

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s([2,1]).omega()
s[2, 1]
sage: s([2,1,1]).omega()
s[3, 1]

2866 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

omega_involution()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of sym-
metric functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th
elementary symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric func-
tion). It furthermore is a Hopf algebra endomorphism and an involution, and it is also known as the
omega involution. It sends the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive
integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes
the conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 =
elementary, ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

omega_involution() is a synonym for the omega() method.

OUTPUT:
• the image of self under the omega automorphism

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s([2,1]).omega()
s[2, 1]
sage: s([2,1,1]).omega()
s[3, 1]

principal_specialization(n=+ Infinity, q=None)
Return the principal specialization of a symmetric function.

The principal specialization of order𝑛 at 𝑞 is the ring homomorphism 𝑝𝑠𝑛,𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for 𝑖 ∈ {1, . . . , 𝑛} and 𝑥𝑖 ↦→ 0 for
𝑖 > 𝑛. Here, 𝑞 is a given element of 𝑅, and we assume that the variables of our symmetric functions
are 𝑥1, 𝑥2, 𝑥3, (To be more precise, 𝑝𝑠𝑛,𝑞 is a 𝐾-algebra homomorphism, where 𝐾 is the base
ring.) See Section 7.8 of [EnumComb2].

The stable principal specialization at 𝑞 is the ring homomorphism 𝑝𝑠𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for all 𝑖. This is well-defined only if the
resulting infinite sums converge; thus, in particular, setting 𝑞 = 1 in the stable principal specialization
is an invalid operation.

INPUT:
• n (default: infinity) – a nonnegative integer or infinity, specifying whether to compute the

principal specialization of order n or the stable principal specialization.
• q (default: None) – the value to use for 𝑞; the default is to create a ring of polynomials in q (or a

field of rational functions in q) over the given coefficient ring.
For 𝑞 = 1 we use the formula from Corollary 7.21.4 of [EnumComb2]:

𝑝𝑠𝑛,1(𝑠𝜆) =
∏︁
𝑢∈𝜆

(𝑛+ 𝑐(𝑢))/ℎ(𝑢),

where ℎ(𝑢) is the hook length of a cell 𝑢 in 𝜆, and where 𝑐(𝑢) is the content of a cell 𝑢 in 𝜆.

For 𝑛 = 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 we use the formula from Corollary 7.21.3 of [EnumComb2]

𝑝𝑠𝑞(𝑠𝜆) = 𝑞
∑︀

𝑖(𝑖−1)𝜆𝑖/
∏︁
𝑢∈𝜆

(1− 𝑞ℎ(𝑢)).

5.1. Comprehensive Module List 2867

Combinatorics, Release 9.7

Otherwise, we use the formula from Theorem 7.21.2 of [EnumComb2],

𝑝𝑠𝑛,𝑞(𝑠𝜆) = 𝑞
∑︀

𝑖(𝑖−1)𝜆𝑖

∏︁
𝑢∈𝜆

(1− 𝑞𝑛+𝑐(𝑢))/(1− 𝑞ℎ(𝑢)).

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: x = s[2]
sage: x.principal_specialization(3)
q^4 + q^3 + 2*q^2 + q + 1

sage: x = 3*s[2,2] + 2*s[1] + 1
sage: x.principal_specialization(3, q=var("q"))
3*(q^4 - 1)*(q^3 - 1)*q^2/((q^2 - 1)*(q - 1)) + 2*(q^3 - 1)/(q - 1) + 1

sage: x.principal_specialization(q=var("q"))
-2/(q - 1) + 3*q^2/((q^3 - 1)*(q^2 - 1)^2*(q - 1)) + 1

scalar(x, zee=None)
Return the standard scalar product between self and 𝑥.

Note that the Schur functions are self-dual with respect to this scalar product. They are also lower-
triangularly related to the monomial symmetric functions with respect to this scalar product.

INPUT:
• x – element of the ring of symmetric functions over the same base ring as self
• zee – an optional function on partitions giving the value for the scalar product between the power-

sum symmetric function 𝑝𝜇 and itself (the default value is the standard zee() function)
OUTPUT:

• the scalar product between self and x
EXAMPLES:

sage: s = SymmetricFunctions(ZZ).s()
sage: a = s([2,1])
sage: b = s([1,1,1])
sage: c = 2*s([1,1,1])
sage: d = a + b
sage: a.scalar(a)
1
sage: b.scalar(b)
1
sage: b.scalar(a)
0
sage: b.scalar(c)
2
sage: c.scalar(c)
4
sage: d.scalar(a)
1
sage: d.scalar(b)
1
sage: d.scalar(c)
2

2868 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: m = SymmetricFunctions(ZZ).monomial()
sage: p4 = Partitions(4)
sage: l = [[s(p).scalar(m(q)) for q in p4] for p in p4]
sage: matrix(l)
[1 0 0 0 0]
[-1 1 0 0 0]
[0 -1 1 0 0]
[1 -1 -1 1 0]
[-1 2 1 -3 1]

verschiebung(n)
Return the image of the symmetric function self under the 𝑛-th Verschiebung operator.

The 𝑛-th Verschiebung operator V𝑛 is defined to be the unique algebra endomorphism 𝑉 of the ring
of symmetric functions that satisfies 𝑉 (ℎ𝑟) = ℎ𝑟/𝑛 for every positive integer 𝑟 divisible by 𝑛, and
satisfies 𝑉 (ℎ𝑟) = 0 for every positive integer 𝑟 not divisible by 𝑛. This operator V𝑛 is a Hopf algebra
endomorphism. For every nonnegative integer 𝑟 with 𝑛 | 𝑟, it satisfies

V𝑛(ℎ𝑟) = ℎ𝑟/𝑛, V𝑛(𝑝𝑟) = 𝑛𝑝𝑟/𝑛, V𝑛(𝑒𝑟) = (−1)𝑟−𝑟/𝑛𝑒𝑟/𝑛

(where ℎ is the complete homogeneous basis, 𝑝 is the powersum basis, and 𝑒 is the elementary basis).
For every nonnegative integer 𝑟 with 𝑛 - 𝑟, it satisfes

V𝑛(ℎ𝑟) = V𝑛(𝑝𝑟) = V𝑛(𝑒𝑟) = 0.

The 𝑛-th Verschiebung operator is also called the 𝑛-th Verschiebung endomorphism. Its name derives
from the Verschiebung (German for “shift”) endomorphism of the Witt vectors.

The 𝑛-th Verschiebung operator is adjoint to the 𝑛-th Frobenius operator (see frobenius() for its
definition) with respect to the Hall scalar product (scalar()).

The action of the 𝑛-th Verschiebung operator on the Schur basis can also be computed explicitly. The
following (probably clumsier than necessary) description can be obtained by solving exercise 7.61 in
Stanley’s [STA].

Let 𝜆 be a partition. Let 𝑛 be a positive integer. If the 𝑛-core of 𝜆 is nonempty, then V𝑛(𝑠𝜆) = 0. Oth-
erwise, the following method computes V𝑛(𝑠𝜆): Write the partition 𝜆 in the form (𝜆1, 𝜆2, . . . , 𝜆𝑛𝑠)
for some nonnegative integer 𝑠. (If 𝑛 does not divide the length of 𝜆, then this is achieved by adding
trailing zeroes to 𝜆.) Set 𝛽𝑖 = 𝜆𝑖 + 𝑛𝑠 − 𝑖 for every 𝑠 ∈ {1, 2, . . . , 𝑛𝑠}. Then, (𝛽1, 𝛽2, . . . , 𝛽𝑛𝑠) is
a strictly decreasing sequence of nonnegative integers. Stably sort the list (1, 2, . . . , 𝑛𝑠) in order of
(weakly) increasing remainder of −1− 𝛽𝑖 modulo 𝑛. Let 𝜉 be the sign of the permutation that is used
for this sorting. Let 𝜓 be the sign of the permutation that is used to stably sort the list (1, 2, . . . , 𝑛𝑠)
in order of (weakly) increasing remainder of 𝑖− 1 modulo 𝑛. (Notice that 𝜓 = (−1)𝑛(𝑛−1)𝑠(𝑠−1)/4.)
Then, V𝑛(𝑠𝜆) = 𝜉𝜓

∏︀𝑛−1
𝑖=0 𝑠𝜆(𝑖) , where (𝜆(0), 𝜆(1), . . . , 𝜆(𝑛−1)) is the 𝑛-quotient of 𝜆.

INPUT:
• n – a positive integer

OUTPUT:

The result of applying the 𝑛-th Verschiebung operator (on the ring of symmetric functions) to self.

EXAMPLES:

sage: Sym = SymmetricFunctions(ZZ)
sage: s = Sym.s()
sage: s[5].verschiebung(2)
0

(continues on next page)

5.1. Comprehensive Module List 2869

Combinatorics, Release 9.7

(continued from previous page)

sage: s[6].verschiebung(6)
s[1]
sage: s[6,3].verschiebung(3)
s[2, 1] + s[3]
sage: s[6,3,1].verschiebung(2)
-s[3, 2]
sage: s[3,2,1].verschiebung(1)
s[3, 2, 1]
sage: s([]).verschiebung(1)
s[]
sage: s([]).verschiebung(4)
s[]

coproduct_on_basis(mu)
Returns the coproduct of self(mu).

Here self is the basis of Schur functions in the ring of symmetric functions.

INPUT:

• self – a Schur symmetric function basis

• mu – a partition

OUTPUT:

• the image of the mu-th Schur function under the comultiplication of the Hopf algebra of symmetric
functions; this is an element of the tensor square of the Schur basis

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: s.coproduct_on_basis([2])
s[] # s[2] + s[1] # s[1] + s[2] # s[]

product_on_basis(left, right)
Return the product of left and right.

INPUT:

• self – a Schur symmetric function basis

• left, right – partitions

OUTPUT:

• an element of the Schur basis, the product of left and right

2870 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.297 Symplectic Symmetric Functions

AUTHORS:

• Travis Scrimshaw (2013-11-10): Initial version

class sage.combinat.sf.symplectic.SymmetricFunctionAlgebra_symplectic(Sym)
Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

The symplectic symmetric function basis (or symplectic basis, to be short).

The symplectic basis {𝑠𝑝𝜆} where 𝜆 is taken over all partitions is defined by the following change of basis with
the Schur functions:

𝑠𝜆 =
∑︁
𝜇

(︃∑︁
𝜈∈𝑉

𝑐𝜆𝜇𝜈

)︃
𝑠𝑝𝜇

where 𝑉 is the set of all partitions with even-height columns and 𝑐𝜆𝜇𝜈 is the usual Littlewood-Richardson (LR)
coefficients. By the properties of LR coefficients, this can be shown to be a upper unitriangular change of basis.

Note: This is only a filtered basis, not aZ-graded basis. However this does respect the induced (Z/2Z)-grading.

INPUT:

• Sym – an instance of the ring of the symmetric functions

REFERENCES:

EXAMPLES:

Here are the first few symplectic symmetric functions, in various bases:

sage: Sym = SymmetricFunctions(QQ)
sage: sp = Sym.sp()
sage: e = Sym.e()
sage: h = Sym.h()
sage: p = Sym.p()
sage: s = Sym.s()
sage: m = Sym.m()

sage: p(sp([1]))
p[1]
sage: m(sp([1]))
m[1]
sage: e(sp([1]))
e[1]
sage: h(sp([1]))
h[1]
sage: s(sp([1]))
s[1]

sage: p(sp([2]))
1/2*p[1, 1] + 1/2*p[2]
sage: m(sp([2]))
m[1, 1] + m[2]
sage: e(sp([2]))

(continues on next page)

5.1. Comprehensive Module List 2871

Combinatorics, Release 9.7

(continued from previous page)

e[1, 1] - e[2]
sage: h(sp([2]))
h[2]
sage: s(sp([2]))
s[2]

sage: p(sp([3]))
1/6*p[1, 1, 1] + 1/2*p[2, 1] + 1/3*p[3]
sage: m(sp([3]))
m[1, 1, 1] + m[2, 1] + m[3]
sage: e(sp([3]))
e[1, 1, 1] - 2*e[2, 1] + e[3]
sage: h(sp([3]))
h[3]
sage: s(sp([3]))
s[3]

sage: Sym = SymmetricFunctions(ZZ)
sage: sp = Sym.sp()
sage: e = Sym.e()
sage: h = Sym.h()
sage: s = Sym.s()
sage: m = Sym.m()
sage: p = Sym.p()
sage: m(sp([4]))
m[1, 1, 1, 1] + m[2, 1, 1] + m[2, 2] + m[3, 1] + m[4]
sage: e(sp([4]))
e[1, 1, 1, 1] - 3*e[2, 1, 1] + e[2, 2] + 2*e[3, 1] - e[4]
sage: h(sp([4]))
h[4]
sage: s(sp([4]))
s[4]

Some examples of conversions the other way:

sage: sp(h[3])
sp[3]
sage: sp(e[3])
sp[1] + sp[1, 1, 1]
sage: sp(m[2,1])
-sp[1] - 2*sp[1, 1, 1] + sp[2, 1]
sage: sp(p[3])
sp[1, 1, 1] - sp[2, 1] + sp[3]

Some multiplication:

sage: sp([2]) * sp([1,1])
sp[1, 1] + sp[2] + sp[2, 1, 1] + sp[3, 1]
sage: sp([2,1,1]) * sp([2])
sp[1, 1] + sp[1, 1, 1, 1] + 2*sp[2, 1, 1] + sp[2, 2] + sp[2, 2, 1, 1]
+ sp[3, 1] + sp[3, 1, 1, 1] + sp[3, 2, 1] + sp[4, 1, 1]
sage: sp([1,1]) * sp([2,1])

(continues on next page)

2872 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sp[1] + sp[1, 1, 1] + 2*sp[2, 1] + sp[2, 1, 1, 1] + sp[2, 2, 1]
+ sp[3] + sp[3, 1, 1] + sp[3, 2]

Examples of the Hopf algebra structure:

sage: sp([1]).antipode()
-sp[1]
sage: sp([2]).antipode()
sp[] + sp[1, 1]
sage: sp([1]).coproduct()
sp[] # sp[1] + sp[1] # sp[]
sage: sp([2]).coproduct()
sp[] # sp[2] + sp[1] # sp[1] + sp[2] # sp[]
sage: sp([1]).counit()
0
sage: sp.one().counit()
1

5.1.298 Symmetric functions, with their multiple realizations

class sage.combinat.sf.sf.SymmetricFunctions(R)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The abstract algebra of commutative symmetric functions

Symmetric Functions in Sage

Author: Jason Bandlow, Anne Schilling, Nicolas M. Thiery, Mike Zabrocki

This document is an introduction to working with symmetric function theory in Sage. It is not intended to be an
introduction to the theory of symmetric functions ([MAC] and [STA], Chapter 7, are two excellent references.)
The reader is also expected to be familiar with Sage.

The algebra of symmetric functions

The algebra of symmetric functions is the unique free commutative graded connected algebra over the given
ring, with one generator in each degree. It can also be thought of as the inverse limit (in the category of graded
algebras) of the algebra of symmetric polynomials in 𝑛 variables as 𝑛 → ∞. Sage allows us to construct the
algebra of symmetric functions over any ring. We will use a base ring of rational numbers in these first examples:

sage: Sym = SymmetricFunctions(QQ)
sage: Sym
Symmetric Functions over Rational Field

Sage knows certain categorical information about this algebra:

sage: Sym.category()
Join of Category of hopf algebras over Rational Field

and Category of graded algebras over Rational Field
and Category of commutative algebras over Rational Field

(continues on next page)

5.1. Comprehensive Module List 2873

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

and Category of monoids with realizations
and Category of graded coalgebras over Rational Field
and Category of coalgebras over Rational Field with realizations
and Category of cocommutative coalgebras over Rational Field

Notice that Sym is an abstract algebra. This reflects the fact that there are multiple natural bases. To work with
specific elements, we need a realization of this algebra. In practice, this means we need to specify a basis.

An example basis - power sums

Here is an example of how one might use the power sum realization:

sage: p = Sym.powersum()
sage: p
Symmetric Functions over Rational Field in the powersum basis

p now represents the realization of the symmetric function algebra on the power sum basis. The basis itself is
accessible through:

sage: p.basis()
Lazy family (Term map from Partitions to Symmetric Functions over Rational Field in␣
→˓the powersum basis(i))_{i in Partitions}
sage: p.basis().keys()
Partitions

This last line means that p.basis() is an association between the set of Partitions and the basis elements of the
algebra p. To construct a specific element one can therefore do:

sage: p.basis()[Partition([2,1,1])]
p[2, 1, 1]

As this is rather cumbersome, realizations of the symmetric function algebra allow for the following abuses of
notation:

sage: p[Partition([2, 1, 1])]
p[2, 1, 1]
sage: p[[2, 1, 1]]
p[2, 1, 1]
sage: p[2, 1, 1]
p[2, 1, 1]

or even:

sage: p[(i for i in [2, 1, 1])]
p[2, 1, 1]

In the special case of the empty partition, due to a limitation in Python syntax, one cannot use:

sage: p[] # todo: not implemented

Please use instead:

2874 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p[[]]
p[]

Note: When elements are constructed using the p[something] syntax , an error will be raised if the input
cannot be interpreted as a partition. This is not the case when p.basis() is used:

sage: p['something']
Traceback (most recent call last):
...
ValueError: all parts of 'something' should be nonnegative integers
sage: p.basis()['something']
p'something'

Elements of p are linear combinations of such compositions:

sage: p.an_element()
2*p[] + 2*p[1] + 3*p[2]

Algebra structure

Algebraic combinations of basis elements can be entered in a natural way:

sage: p[2,1,1] + 2 * p[1] * (p[4] + p[2,1])
3*p[2, 1, 1] + 2*p[4, 1]

Let us explore the other operations of p. We can ask for the mathematical properties of p:

sage: p.categories()
[Category of graded bases of Symmetric Functions over Rational Field,
Category of filtered bases of Symmetric Functions over Rational Field,
Category of bases of Symmetric Functions over Rational Field,
Category of graded hopf algebras with basis over Rational Field,
...]

To start with, p is a graded algebra, the grading being induced by the size of the partitions. Due to this, the one
is the basis element indexed by the empty partition:

sage: p.one()
p[]

The p basis is multiplicative; that is, multiplication is induced by linearity from the (nonincreasingly sorted)
concatenation of partitions:

sage: p[3,1] * p[2,1]
p[3, 2, 1, 1]

sage: (p.one() + 2 * p[3,1]) * p[4, 2]
p[4, 2] + 2*p[4, 3, 2, 1]

5.1. Comprehensive Module List 2875

Combinatorics, Release 9.7

The classical bases

In addition to the power sum basis, other classical bases of the symmetric function algebra include the elementary,
complete homogeneous, monomial, and Schur bases:

sage: e = Sym.elementary()
sage: h = Sym.homogeneous()
sage: m = Sym.monomial()
sage: s = Sym.schur()

These and others can be defined all at once with the single command:

sage: Sym.inject_shorthands()
Defining e as shorthand for Symmetric Functions over Rational Field in the␣
→˓elementary basis
Defining f as shorthand for Symmetric Functions over Rational Field in the␣
→˓forgotten basis
Defining h as shorthand for Symmetric Functions over Rational Field in the␣
→˓homogeneous basis
Defining m as shorthand for Symmetric Functions over Rational Field in the monomial␣
→˓basis
Defining p as shorthand for Symmetric Functions over Rational Field in the powersum␣
→˓basis
Defining s as shorthand for Symmetric Functions over Rational Field in the Schur␣
→˓basis

We can then do conversions from one basis to another:

sage: s(p[2,1])
-s[1, 1, 1] + s[3]

sage: m(p[3])
m[3]
sage: m(p[3,2])
m[3, 2] + m[5]

For computations which mix bases, Sage will return a result with respect to a single (not necessarily predictable)
basis:

sage: p[2] * s[2] - m[4]
1/2*p[2, 1, 1] + 1/2*p[2, 2] - p[4]

sage: p(m[1] * (e[3]*s[2] + 1))
p[1] + 1/12*p[1, 1, 1, 1, 1, 1] - 1/6*p[2, 1, 1, 1, 1] - 1/4*p[2, 2, 1, 1] + 1/
→˓6*p[3, 1, 1, 1] + 1/6*p[3, 2, 1]

The one for different bases such as the power sum and Schur function is the same:

sage: s.one() == p.one()
True

2876 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Basic computations

In this section, we explore some of the many methods that can be applied to an arbitrary symmetric function:

sage: f = s[2]^2; f
s[2, 2] + s[3, 1] + s[4]

For more methods than discussed here, create a symmetric function as above, and use f.<tab>.

Representation theory of the symmetric group

The Schur functions 𝑠𝜆 can also be interpreted as irreducible characters of the symmetric group 𝑆𝑛, where 𝑛
is the size of the partition 𝜆. Since the Schur functions of degree 𝑛 form a basis of the symmetric functions
of degree 𝑛, it follows that an arbitrary symmetric function (homogeneous of degree 𝑛) may be interpreted as a
function on the symmetric group. In this interpretation the power sum symmetric function 𝑝𝜆 is the characteristic
function of the conjugacy class with shape 𝜆, multiplied by the order of the centralizer of an element. Hence the
irreducible characters can be computed as follows:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: p = Sym.power()
sage: P = Partitions(5).list()
sage: P = [P[i] for i in range(len(P)-1,-1,-1)]
sage: M = matrix([[s[P[i]].scalar(p[P[j]]) for j in range(len(P))] for i in␣
→˓range(len(P))])
sage: M
[1 -1 1 1 -1 -1 1]
[4 -2 0 1 1 0 -1]
[5 -1 1 -1 -1 1 0]
[6 0 -2 0 0 0 1]
[5 1 1 -1 1 -1 0]
[4 2 0 1 -1 0 -1]
[1 1 1 1 1 1 1]

We can indeed check that this agrees with the character table of 𝑆5:

sage: SymmetricGroup(5).character_table() == M
True

In this interpretation of symmetric functions as characters on the symmetric group, the multiplication and co-
multiplication are interpreted as induction (from 𝑆𝑛 × 𝑆𝑚 to 𝑆𝑛+𝑚) and restriction, respectively. The Schur
functions can also be interpreted as characters of 𝐺𝐿𝑛, see Partitions and Schur functions.

The omega involution

The 𝜔 involution is the linear extension of the map which sends 𝑒𝜆 to ℎ𝜆:

sage: h(f)
h[2, 2]
sage: e(f.omega())
e[2, 2]

5.1. Comprehensive Module List 2877

../../../../../thematic_tutorials/lie/lie_basics.html#partitions-and-schur-polynomials

Combinatorics, Release 9.7

The Hall scalar product

The Hall scalar product on the algebra of symmetric functions makes the Schur functions into an orthonormal
basis:

sage: f.scalar(f)
3

Skewing

Skewing is the adjoint operation to multiplication with respect to this scalar product:

sage: f.skew_by(s[1])
2*s[2, 1] + 2*s[3]

In general, s[la].skew_by(s[mu]) is the symmetric function typically denoted 𝑠𝜆∖𝜇 or 𝑠𝜆/𝜇.

Expanding into variables

We can expand a symmetric function into a symmetric polynomial in a specified number of variables:

sage: f.expand(2)
x0^4 + 2*x0^3*x1 + 3*x0^2*x1^2 + 2*x0*x1^3 + x1^4

See the documentation for expand for more examples.

The Kronecker product

As in the section on the Representation theory of the symmetric group, a symmetric function may be considered
as a class function on the symmetric group where the elements 𝑝𝜇/𝑧𝜇 are the indicators of a permutation having
cycle structure 𝜇. The Kronecker product of two symmetric functions corresponds to the pointwise product of
these class functions.

Since the Schur functions are the irreducible characters of the symmetric group under this identification, the
Kronecker product of two Schur functions corresponds to the internal tensor product of two irreducible symmetric
group representations.

Under this identification, the Kronecker product of 𝑝𝜇/𝑧𝜇 and 𝑝𝜈/𝑧𝜈 is 𝑝𝜇/𝑧𝜇 if 𝜇 = 𝜈, and the result is equal
to 0 otherwise.

internal_product, kronecker_product, inner_tensor and itensor are different names for the same
function.

sage: f.kronecker_product(f)
s[1, 1, 1, 1] + 3*s[2, 1, 1] + 4*s[2, 2] + 5*s[3, 1] + 3*s[4]

2878 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Plethysm

The plethysm of symmetric functions is the operation corresponding to composition of representations of the
general linear group. See [STA] Chapter 7, Appendix 2 for details.

sage: s[2].plethysm(s[2])
s[2, 2] + s[4]

Plethysm can also be written as a composition of functions:

sage: s[2](s[2])
s[2, 2] + s[4]

If the coefficient ring contains degree 1 elements, these are handled properly by plethysm:

sage: R.<t> = QQ[]; s = SymmetricFunctions(R).schur()
sage: s[2]((1-t)*s[1])
(t^2-t)*s[1, 1] + (-t+1)*s[2]

See the documentation for plethysm for more information.

Inner plethysm

The operation of inner plethysm f.inner_plethysm(g) models the composition of the 𝑆𝑛 representation rep-
resented by 𝑔 with the 𝐺𝐿𝑚 representation whose character is 𝑓 . See the documentation of inner_plethysm,
[ST94] or [STA], exercise 7.74 solutions for more information:

sage: s = SymmetricFunctions(QQ).schur()
sage: f = s[2]^2
sage: f.inner_plethysm(s[2])
s[2]

Hopf algebra structure

The ring of symmetric functions is further endowed with a coalgebra structure. The coproduct is an algebra
morphism, and therefore determined by its values on the generators; the power sum generators are primitive:

sage: p[1].coproduct()
p[] # p[1] + p[1] # p[]
sage: p[2].coproduct()
p[] # p[2] + p[2] # p[]

The coproduct, being cocommutative on the generators, is cocommutative everywhere:

sage: p[2, 1].coproduct()
p[] # p[2, 1] + p[1] # p[2] + p[2] # p[1] + p[2, 1] # p[]

This coproduct, along with the counit which sends every symmetric function to its 0-th homogeneous component,
makes the ring of symmetric functions into a graded connected bialgebra. It is known that every graded connected
bialgebra has an antipode. For the ring of symmetric functions, the antipode can be characterized explicitly: The
antipode is an anti-algebra morphism (thus an algebra morphism, since our algebra is commutative) which sends
𝑝𝜆 to (−1)length(𝜆)𝑝𝜆 for every partition 𝜆. Thus, in particular, it sends the generators on the p basis to their
opposites:

5.1. Comprehensive Module List 2879

Combinatorics, Release 9.7

sage: p[3].antipode()
-p[3]
sage: p[3,2,1].antipode()
-p[3, 2, 1]

The graded connected bialgebra of symmetric functions over a Q-algebra has a rather simply-understood struc-
ture: It is (isomorphic to) the symmetric algebra of its space of primitives (which is spanned by the power-sum
symmetric functions).

Here are further examples:

sage: f = s[2]^2
sage: f.antipode()
s[1, 1, 1, 1] + s[2, 1, 1] + s[2, 2]
sage: f.coproduct()
s[] # s[2, 2] + s[] # s[3, 1] + s[] # s[4] + 2*s[1] # s[2, 1] + 2*s[1] # s[3] + s[1,
→˓ 1] # s[1, 1]
+ s[1, 1] # s[2] + s[2] # s[1, 1] + 3*s[2] # s[2] + 2*s[2, 1] # s[1] + s[2, 2] #␣
→˓s[] + 2*s[3] # s[1]
+ s[3, 1] # s[] + s[4] # s[]
sage: f.coproduct().apply_multilinear_morphism(lambda x,y: x*y.antipode())
0

Transformations of symmetric functions

There are many methods in Sage which make it easy to manipulate symmetric functions. For example, if we
have some function which acts on partitions (say, conjugation), it is a simple matter to apply it to the support of
a symmetric function. Here is an example:

sage: conj = lambda mu: mu.conjugate()
sage: f = h[4] + 2*h[3,1]
sage: f.map_support(conj)
h[1, 1, 1, 1] + 2*h[2, 1, 1]

We can also easily modify the coefficients:

sage: def foo(mu, coeff): return mu.conjugate(), -coeff
sage: f.map_item(foo)
-h[1, 1, 1, 1] - 2*h[2, 1, 1]

See also map_coefficients.

There are also methods for building functions directly:

sage: s.sum_of_monomials(mu for mu in Partitions(3))
s[1, 1, 1] + s[2, 1] + s[3]
sage: s.sum_of_monomials(Partitions(3))
s[1, 1, 1] + s[2, 1] + s[3]
sage: s.sum_of_terms((mu, mu[0]) for mu in Partitions(3))
s[1, 1, 1] + 2*s[2, 1] + 3*s[3]

These are the preferred way to build elements within a program; the result will usually be faster than using sum().
It also guarantees that empty sums yields the zero of s (see also s.sum).

Note also that it is a good idea to use:

2880 Chapter 5. Comprehensive Module List

https://docs.python.org/library/functions.html#sum

Combinatorics, Release 9.7

sage: s.one()
s[]
sage: s.zero()
0

instead of s(1) and s(0) within programs where speed is important, in order to prevent unnecessary coercions.

Different base rings

Depending on the base ring, the different realizations of the symmetric function algebra may not span the same
space:

sage: SZ = SymmetricFunctions(ZZ)
sage: p = SZ.power(); s = SZ.schur()
sage: p(s[1,1,1])
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

Because of this, some functions may not behave as expected when working over the integers, even though they
make mathematical sense:

sage: s[1,1,1].plethysm(s[1,1,1])
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

It is possible to work over different base rings simultaneously:

sage: s = SymmetricFunctions(QQ).schur()
sage: p = SymmetricFunctions(QQ).power()
sage: sz = SymmetricFunctions(ZZ).schur(); sz._prefix = 'sz'
sage: pz = SymmetricFunctions(ZZ).power(); pz._prefix = 'pz'
sage: p(sz[1,1,1])
1/6*p[1, 1, 1] - 1/2*p[2, 1] + 1/3*p[3]
sage: sz(1/6*p[1, 1, 1] - 1/2*p[2, 1] + 1/3*p[3])
sz[1, 1, 1]

As shown in this example, if you are working over multiple base rings simultaneously, it is a good idea to change
the prefix in some cases, so that you can tell from the output which realization your result is in.

Let us change the notation back for the remainder of this tutorial:

sage: sz._prefix = 's'
sage: pz._prefix = 'p'

One can also use the Sage standard renaming idiom to get shorter outputs:

sage: Sym = SymmetricFunctions(QQ)
sage: Sym.rename("Sym")
sage: Sym
Sym
sage: Sym.rename()

5.1. Comprehensive Module List 2881

Combinatorics, Release 9.7

And we name it back:

sage: Sym.rename("Symmetric Functions over Rational Field"); Sym
Symmetric Functions over Rational Field

Other bases

There are two additional basis of the symmetric functions which are not considered as classical bases:

• forgotten basis

• Witt basis

The forgotten basis is the dual basis of the elementary symmetric functions basis with respect to the Hall scalar
product. The Witt basis can be constructed by

∞∏︁
𝑑=1

(1− 𝑤𝑑𝑡𝑑)−1 =

∞∑︁
𝑛=0

ℎ𝑛𝑡
𝑛

where 𝑡 is a formal variable.

There are further bases of the ring of symmetric functions, in general over fields with parameters such as 𝑞 and
𝑡:

• Hall-Littlewood bases

• Jack bases

• Macdonald bases

• 𝑘-Schur functions

• Hecke character basis

We briefly demonstrate how to access these bases. For more information, see the documentation of the individual
bases.

The Jack polynomials can be obtained as:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: Jack = Sym.jack()
sage: P = Jack.P(); J = Jack.J(); Q = Jack.Q()
sage: J(P[2,1])
(1/(t+2))*JackJ[2, 1]

The parameter 𝑡 can be specialized as follows:

sage: Sym = SymmetricFunctions(QQ)
sage: Jack = Sym.jack(t = 1)
sage: P = Jack.P(); J = Jack.J(); Q = Jack.Q()
sage: J(P[2,1])
1/3*JackJ[2, 1]

Similarly one can access the Hall-Littlewood and Macdonald polynomials, etc:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: Mcd = Sym.macdonald()
sage: P = Mcd.P(); J = Mcd.J(); Q = Mcd.Q()

(continues on next page)

2882 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: J(P[2,1])
(1/(-q*t^4+2*q*t^3-q*t^2+t^2-2*t+1))*McdJ[2, 1]

We can also construct the 𝑞 basis that can be used to determine character tables for Hecke algebras (with quadratic
relation 𝑇 2

𝑖 = (1− 𝑞)𝑇𝑖 + 𝑞):

sage: Sym = SymmetricFunctions(ZZ['q'].fraction_field())
sage: qbar = Sym.hecke_character()
sage: s = Sym.s()
sage: s(qbar[2,1])
-s[1, 1, 1] + (q-1)*s[2, 1] + q*s[3]

𝑘-Schur functions

The 𝑘-Schur functions live in the 𝑘-bounded subspace of the ring of symmetric functions. It is possible to
compute in the 𝑘-bounded subspace directly:

sage: Sym = SymmetricFunctions(QQ)
sage: ks = Sym.kschur(3,1)
sage: f = ks[2,1]*ks[2,1]; f
ks3[2, 2, 1, 1] + ks3[2, 2, 2] + ks3[3, 1, 1, 1]

or to lift to the ring of symmetric functions:

sage: f.lift()
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] +␣
→˓s[4, 2]

However, it is not always possible to convert a symmetric function to the 𝑘-bounded subspace:

sage: s = Sym.schur()
sage: ks(s[2,1,1])
Traceback (most recent call last):
...
ValueError: s[2, 1, 1] is not in the image

The 𝑘-Schur functions are more generally defined with a parameter 𝑡 and they are a basis of the subspace spanned
by the Hall-Littlewood Qp symmetric functions indexed by partitions whose first part is less than or equal to 𝑘:

sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
sage: SymS3 = Sym.kBoundedSubspace(3) # default t='t'
sage: ks = SymS3.kschur()
sage: Qp = Sym.hall_littlewood().Qp()
sage: ks(Qp[2,1,1,1])
ks3[2, 1, 1, 1] + (t^2+t)*ks3[2, 2, 1] + (t^3+t^2)*ks3[3, 1, 1] + t^4*ks3[3, 2]

The subspace spanned by the 𝑘-Schur functions with a parameter 𝑡 are not known to form a natural algebra.
However it is known that the product of a 𝑘-Schur function and an ℓ-Schur function is in the linear span of the
𝑘 + ℓ-Schur functions:

sage: ks(ks[2,1]*ks[1,1])
Traceback (most recent call last):

(continues on next page)

5.1. Comprehensive Module List 2883

Combinatorics, Release 9.7

(continued from previous page)

...
ValueError: s[2, 1, 1, 1] + s[2, 2, 1] + s[3, 1, 1] + s[3, 2] is not in the image
sage: ks[2,1]*ks[1,1]
s[2, 1, 1, 1] + s[2, 2, 1] + s[3, 1, 1] + s[3, 2]
sage: ks6 = Sym.kBoundedSubspace(6).kschur()
sage: ks6(ks[3,1,1]*ks[3])
ks6[3, 3, 1, 1] + ks6[4, 2, 1, 1] + (t+1)*ks6[4, 3, 1] + t*ks6[4, 4]
+ ks6[5, 1, 1, 1] + ks6[5, 2, 1] + t*ks6[5, 3] + ks6[6, 1, 1]

The 𝑘-split basis is a second basis of the ring spanned by the 𝑘-Schur functions with a parameter 𝑡. The 𝑘-split
basis has the property that 𝑄′𝜆[𝑋; 𝑡] expands positively in the 𝑘-split basis and the 𝑘-split basis conjecturally
expands positively in the 𝑘-Schur functions. The definition can be found in [LLMSSZ] p. 81.:

sage: ksp3 = SymS3.ksplit()
sage: ksp3(Qp[2,1,1,1])
ksp3[2, 1, 1, 1] + t^2*ksp3[2, 2, 1] + (t^3+t^2)*ksp3[3, 1, 1] + t^4*ksp3[3, 2]
sage: [ks(ksp3(la)) for la in sorted(ksp3(Qp[2,1,1,1]).support())]
[ks3[2, 1, 1, 1] + t*ks3[2, 2, 1], ks3[2, 2, 1], ks3[3, 1, 1], ks3[3, 2]]

dual 𝑘-Schur functions

The dual space to the subspace spanned by the 𝑘-Schur functions is most naturally realized as a quotient of the
ring of symmetric functions by an ideal. When 𝑡 = 1 the ideal is generated by the monomial symmetric functions
indexed by partitions whose first part is greater than 𝑘.:

sage: Sym = SymmetricFunctions(QQ)
sage: SymQ3 = Sym.kBoundedQuotient(3,t=1)
sage: km = SymQ3.kmonomial()
sage: km[2,1]*km[2,1]
4*m3[2, 2, 1, 1] + 6*m3[2, 2, 2] + 2*m3[3, 2, 1] + 2*m3[3, 3]
sage: F = SymQ3.affineSchur()
sage: F[2,1]*F[2,1]
2*F3[1, 1, 1, 1, 1, 1] + 4*F3[2, 1, 1, 1, 1] + 4*F3[2, 2, 1, 1] + 4*F3[2, 2, 2]
+ 2*F3[3, 1, 1, 1] + 4*F3[3, 2, 1] + 2*F3[3, 3]

When 𝑡 is not equal to 1, the subspace spanned by the 𝑘-Schur functions is realized as a quotient of the ring of
symmetric functions by the ideal generated by the Hall-Littlewood symmetric functions in the P basis indexed
by partitions with first part greater than 𝑘.:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: SymQ3 = Sym.kBoundedQuotient(3)
sage: kHLP = SymQ3.kHallLittlewoodP()
sage: kHLP[2,1]*kHLP[2,1]
(t^2+2*t+1)*HLP3[2, 2, 1, 1] + (t^3+2*t^2+2*t+1)*HLP3[2, 2, 2]
+ (-t^4-t^3+t+1)*HLP3[3, 1, 1, 1] + (-t^2+t+2)*HLP3[3, 2, 1] + (t+1)*HLP3[3, 3]
sage: HLP = Sym.hall_littlewood().P()
sage: kHLP(HLP[3,1])
HLP3[3, 1]
sage: kHLP(HLP[4])
0

2884 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

In this space, the basis which is dual to the 𝑘-Schur functions conjecturally expands positively in the 𝑘-bounded
Hall-Littlewood functions and has positive structure coefficients.:

sage: dks = SymQ3.dual_k_Schur()
sage: kHLP(dks[2,2])
(t^4+t^2)*HLP3[1, 1, 1, 1] + t*HLP3[2, 1, 1] + HLP3[2, 2]
sage: dks[2,1]*dks[1,1]
(t^2+t)*dks3[1, 1, 1, 1, 1] + (t+1)*dks3[2, 1, 1, 1] + (t+1)*dks3[2, 2, 1]
+ dks3[3, 1, 1] + dks3[3, 2]

At 𝑡 = 1 the 𝑘-bounded Hall-Littlewood basis is equal to the 𝑘-bounded monomial basis and the dual 𝑘-Schur
elements are equal to the affine Schur basis. The 𝑘-bounded monomial basis and affine Schur functions are faster
and should be used instead of the 𝑘-bounded Hall-Littlewood P basis and dual 𝑘-Schur functions when 𝑡 = 1.:

sage: SymQ3 = Sym.kBoundedQuotient(3,t=1)
sage: dks = SymQ3.dual_k_Schur()
sage: F = SymQ3.affineSchur()
sage: F[3,1]==dks[3,1]
True

Implementing new bases

In order to implement a new symmetric function basis, Sage will need to know at a minimum how to change
back and forth between at least one other basis (although they do not necessarily have to be the same basis). All
of the standard functions associated with the basis will have a default implementation (although a more specific
implementation may be more efficient).

To present an idea of how this is done, we will create here the example of how to implement the basis 𝑠𝜇[𝑋(1−𝑡)].

To begin, we import the class sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic(). Our new
basis will inherit all of the default methods from this class:

sage: from sage.combinat.sf.sfa import SymmetricFunctionAlgebra_generic as SFA_
→˓generic

Now the basis we are creating has a parameter 𝑡which is possible to specialize. In this example we will convert to
and from the Schur basis. For this we implement methods _self_to_s and _s_to_self. By registering these
two functions as coercions, Sage then knows automatically how it possible to change between any two bases for
which there is a path of changes of bases.

sage: from sage.categories.morphism import SetMorphism
sage: class SFA_st(SFA_generic):
....: def __init__(self, Sym, t):
....: SFA_generic.__init__(self, Sym, basis_name=
....: "Schur functions with a plethystic substitution of X -> X(1-t)",
....: prefix='st')
....: self._s = Sym.s()
....: self.t = Sym.base_ring()(t)
....: cat = HopfAlgebras(Sym.base_ring()).WithBasis()
....: self.register_coercion(
....: SetMorphism(Hom(self._s, self, cat), self._s_to_self))
....: self._s.register_coercion(
....: SetMorphism(Hom(self, self._s, cat), self._self_to_s))
....: def _s_to_self(self, f):

(continues on next page)

5.1. Comprehensive Module List 2885

Combinatorics, Release 9.7

(continued from previous page)

....: # f is a Schur function and the output is in the st basis

....: return self._from_dict(f.theta_qt(0,self.t)._monomial_coefficients)

....: def _self_to_s(self, f):

....: # f is in the st basis and the output is in the Schur basis

....: return self._s.sum(cmu*self._s(mu).theta_qt(self.t,0) for mu,cmu in f)

....: class Element(SFA_generic.Element):

....: pass

An instance of this basis is created by calling it with a symmetric function ring Sym and a parameter t which
is in the base ring of Sym. The Element class inherits all of the methods from sage.combinat.sf.sfa.
SymmetricFunctionAlgebra_generic_Element.

In the reference [MAC] on page 354, this basis is denoted 𝑆𝜆(𝑥; 𝑡) and the change of basis coefficients of the
Macdonald J basis are the coefficients 𝐾𝜆𝜇(𝑞, 𝑡). Here is an example of its use:

sage: QQqt = QQ['q','t'].fraction_field()
sage: (q,t) = QQqt.gens()
sage: st = SFA_st(SymmetricFunctions(QQqt),t)
sage: st
Symmetric Functions over Fraction Field of Multivariate Polynomial
Ring in q, t over Rational Field in the Schur functions with a
plethystic substitution of X -> X(1-t) basis
sage: st[2,1] * st[1]
st[2, 1, 1] + st[2, 2] + st[3, 1]
sage: st([2]).coproduct()
st[] # st[2] + st[1] # st[1] + st[2] # st[]
sage: J = st.symmetric_function_ring().macdonald().J()
sage: st(J[2,1])
q*st[1, 1, 1] + (q*t+1)*st[2, 1] + t*st[3]

Acknowledgements

The design is heavily inspired from the implementation of symmetric functions in MuPAD-Combinat (see
[HT04] and [FD06]).

REFERENCES:

Further tests

Todo:

• Introduce fields with degree 1 elements as in MuPAD-Combinat, to get proper plethysm.

• Use UniqueRepresentation to get rid of all the manual cache handling for the bases

• Devise a mechanism so that pickling bases of symmetric functions pickles the coercions which have a cache.

Schur()
The Schur basis of the Symmetric Functions

EXAMPLES:

2886 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: SymmetricFunctions(QQ).schur()
Symmetric Functions over Rational Field in the Schur basis

Witt(coerce_h=True, coerce_e=False, coerce_p=False)
The Witt basis of the symmetric functions.

EXAMPLES:

sage: SymmetricFunctions(QQ).witt()
Symmetric Functions over Rational Field in the Witt basis
sage: SymmetricFunctions(QQ).witt(coerce_p=True)
Symmetric Functions over Rational Field in the Witt basis
sage: SymmetricFunctions(QQ).witt(coerce_h=False, coerce_e=True, coerce_p=True)
Symmetric Functions over Rational Field in the Witt basis

a_realization()
Return a particular realization of self (the Schur basis).

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: Sym.a_realization()
Symmetric Functions over Rational Field in the Schur basis

complete()
The complete basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).complete()
Symmetric Functions over Rational Field in the homogeneous basis

e()
The elementary basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).elementary()
Symmetric Functions over Rational Field in the elementary basis

elementary()
The elementary basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).elementary()
Symmetric Functions over Rational Field in the elementary basis

f()
The forgotten basis of the Symmetric Functions (or the basis dual to the elementary basis with respect to
the Hall scalar product).

EXAMPLES:

sage: SymmetricFunctions(QQ).forgotten()
Symmetric Functions over Rational Field in the forgotten basis

5.1. Comprehensive Module List 2887

Combinatorics, Release 9.7

forgotten()
The forgotten basis of the Symmetric Functions (or the basis dual to the elementary basis with respect to
the Hall scalar product).

EXAMPLES:

sage: SymmetricFunctions(QQ).forgotten()
Symmetric Functions over Rational Field in the forgotten basis

from_polynomial(f)
Converts a symmetric polynomial f to a symmetric function.

INPUT:

• f – a symmetric polynomial

This function converts a symmetric polynomial 𝑓 in a polynomial ring in finitely many variables to a sym-
metric function in the monomial basis of the ring of symmetric functions over the same base ring.

EXAMPLES:

sage: P = PolynomialRing(QQ, 'x', 3)
sage: x = P.gens()
sage: f = x[0] + x[1] + x[2]
sage: S = SymmetricFunctions(QQ)
sage: S.from_polynomial(f)
m[1]

sage: f = x[0] + 2*x[1] + x[2]
sage: S.from_polynomial(f)
Traceback (most recent call last):
...
ValueError: x0 + 2*x1 + x2 is not a symmetric polynomial

h()
The complete basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).complete()
Symmetric Functions over Rational Field in the homogeneous basis

hall_littlewood(t='t')
Returns the entry point for the various Hall-Littlewood bases.

INPUT:

• t – parameter

Hall-Littlewood symmetric functions including bases 𝑃 , 𝑄, 𝑄𝑝. The Hall-Littlewood 𝑃 and 𝑄 functions
at 𝑡 = −1 are the Schur-P and Schur-Q functions when indexed by strict partitions.

The parameter 𝑡 must be in the base ring of parent.

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: P = Sym.hall_littlewood().P(); P
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Hall-Littlewood P basis

(continues on next page)

2888 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: P[2]
HLP[2]
sage: Q = Sym.hall_littlewood().Q(); Q
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Hall-Littlewood Q basis
sage: Q[2]
HLQ[2]
sage: Qp = Sym.hall_littlewood().Qp(); Qp
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Hall-Littlewood Qp basis
sage: Qp[2]
HLQp[2]

hecke_character(q='q')
The basis of symmetric functions that determines the character tables for Hecke algebras.

EXAMPLES:

sage: SymmetricFunctions(ZZ['q'].fraction_field()).hecke_character()
Symmetric Functions over
Fraction Field of Univariate Polynomial Ring in q over Integer Ring
in the Hecke character with q=q basis
sage: SymmetricFunctions(QQ).hecke_character(1/2)
Symmetric Functions over Rational Field in the Hecke character with q=1/2 basis

homogeneous()
The complete basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).complete()
Symmetric Functions over Rational Field in the homogeneous basis

ht()
The induced trivial character basis of the Symmetric Functions.

The trivial character of

𝑆𝑛−|𝜆| × 𝑆𝜆1
× 𝑆𝜆2

× · · · × 𝑆𝜆ℓ(𝜆)

induced to the group 𝑆𝑛 is a symmetric function in the eigenvalues of a permutation matrix. This basis is
that character.

It has the property that if the element indexed by the partition 𝜆 is evaluated at the roots of a permutation
of cycle structure 𝜌 then the value is the coefficient

⟨︀
ℎ(𝑛−|𝜆|,𝜆), 𝑝𝜌

⟩︀
.

In terms of methods that are implemented in Sage, if n is a sufficiently large integer, then ht(lam).
character_to_frobenius_image(n) is equal the complete function indexed by [n-sum(lam)]+lam.

This basis is introduced in [OZ2015].

See also:

character_to_frobenius_image(), eval_at_permutation_roots()

EXAMPLES:

5.1. Comprehensive Module List 2889

Combinatorics, Release 9.7

sage: SymmetricFunctions(QQ).induced_trivial_character()
Symmetric Functions over Rational Field in the induced trivial symmetric group␣
→˓character basis
sage: ht = SymmetricFunctions(QQ).ht()
sage: h = SymmetricFunctions(QQ).h()
sage: h(ht([3,2]).character_to_frobenius_image(9))
h[4, 3, 2]
sage: h(ht([3,2]).character_to_frobenius_image(7))
h[3, 2, 2]
sage: h(ht([3,2]).character_to_frobenius_image(5))
h[3, 2]
sage: h(ht([3,2]).character_to_frobenius_image(4))
0
sage: p = SymmetricFunctions(QQ).p()
sage: [h([4,1]).scalar(p(rho)) for rho in Partitions(5)]
[0, 1, 0, 2, 1, 3, 5]
sage: [ht([1]).eval_at_permutation_roots(rho) for rho in Partitions(5)]
[0, 1, 0, 2, 1, 3, 5]

induced_trivial_character()
The induced trivial character basis of the Symmetric Functions.

The trivial character of

𝑆𝑛−|𝜆| × 𝑆𝜆1
× 𝑆𝜆2

× · · · × 𝑆𝜆ℓ(𝜆)

induced to the group 𝑆𝑛 is a symmetric function in the eigenvalues of a permutation matrix. This basis is
that character.

It has the property that if the element indexed by the partition 𝜆 is evaluated at the roots of a permutation
of cycle structure 𝜌 then the value is the coefficient

⟨︀
ℎ(𝑛−|𝜆|,𝜆), 𝑝𝜌

⟩︀
.

In terms of methods that are implemented in Sage, if n is a sufficiently large integer, then ht(lam).
character_to_frobenius_image(n) is equal the complete function indexed by [n-sum(lam)]+lam.

This basis is introduced in [OZ2015].

See also:

character_to_frobenius_image(), eval_at_permutation_roots()

EXAMPLES:

sage: SymmetricFunctions(QQ).induced_trivial_character()
Symmetric Functions over Rational Field in the induced trivial symmetric group␣
→˓character basis
sage: ht = SymmetricFunctions(QQ).ht()
sage: h = SymmetricFunctions(QQ).h()
sage: h(ht([3,2]).character_to_frobenius_image(9))
h[4, 3, 2]
sage: h(ht([3,2]).character_to_frobenius_image(7))
h[3, 2, 2]
sage: h(ht([3,2]).character_to_frobenius_image(5))
h[3, 2]
sage: h(ht([3,2]).character_to_frobenius_image(4))
0
sage: p = SymmetricFunctions(QQ).p()

(continues on next page)

2890 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: [h([4,1]).scalar(p(rho)) for rho in Partitions(5)]
[0, 1, 0, 2, 1, 3, 5]
sage: [ht([1]).eval_at_permutation_roots(rho) for rho in Partitions(5)]
[0, 1, 0, 2, 1, 3, 5]

irreducible_symmetric_group_character()
The irreducible 𝑆𝑛 character basis of the Symmetric Functions.

This basis has the property that if the element indexed by the partition 𝜆 is evaluated at the roots of a
permutation of cycle structure 𝜌 then the value is the irreducible character 𝜒(|𝜌|−|𝜆|,𝜆)(𝜌).

In terms of methods that are implemented in Sage, if n is a sufficiently large integer, then st(lam).
character_to_frobenius_image(n) is equal the Schur function indexed by [n-sum(lam)]+lam.

This basis is introduced in [OZ2015].

See also:

character_to_frobenius_image(), eval_at_permutation_roots()

EXAMPLES:

sage: SymmetricFunctions(QQ).irreducible_symmetric_group_character()
Symmetric Functions over Rational Field in the irreducible symmetric group␣
→˓character basis
sage: st = SymmetricFunctions(QQ).st()
sage: s = SymmetricFunctions(QQ).s()
sage: s(st([3,2]).character_to_frobenius_image(9))
s[4, 3, 2]
sage: s(st([3,2]).character_to_frobenius_image(7))
0
sage: s(st([3,2]).character_to_frobenius_image(6))
-s[2, 2, 2]
sage: list(SymmetricGroup(5).character_table()[-2])
[4, 2, 0, 1, -1, 0, -1]
sage: list(reversed([st([1]).eval_at_permutation_roots(rho)
....: for rho in Partitions(5)]))
[4, 2, 0, 1, -1, 0, -1]

jack(t='t')
Returns the entry point for the various Jack bases.

INPUT:

• t – parameter

Jack symmetric functions including bases 𝑃 , 𝑄, 𝑄𝑝.

The parameter 𝑡 must be in the base ring of parent.

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: JP = Sym.jack().P(); JP
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Jack P basis
sage: JQ = Sym.jack().Q(); JQ
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Jack Q basis (continues on next page)

5.1. Comprehensive Module List 2891

Combinatorics, Release 9.7

(continued from previous page)

sage: JJ = Sym.jack().J(); JJ
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Jack J basis
sage: JQp = Sym.jack().Qp(); JQp
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the Jack Qp basis

kBoundedQuotient(k, t='t')
Returns the 𝑘-bounded quotient space of the ring of symmetric functions.

INPUT:

• k - a positive integer

The quotient of the ring of symmetric functions . . .

See also:

sage.combinat.sf.k_dual.KBoundedQuotient()

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: KQ = Sym.kBoundedQuotient(3); KQ
Traceback (most recent call last):
...
TypeError: unable to convert 't' to a rational
sage: KQ = Sym.kBoundedQuotient(3,t=1); KQ
3-Bounded Quotient of Symmetric Functions over Rational Field with t=1
sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
sage: KQ = Sym.kBoundedQuotient(3); KQ
3-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate␣
→˓Polynomial Ring in t over Rational Field

kBoundedSubspace(k, t='t')
Return the 𝑘-bounded subspace of the ring of symmetric functions.

INPUT:

• k - a positive integer

• t a formal parameter; 𝑡 = 1 yields a subring

The subspace of the ring of symmetric functions spanned by {𝑠𝜆[𝑋/(1 − 𝑡)]}𝜆1≤𝑘 = {𝑠(𝑘)𝜆 [𝑋, 𝑡]}𝜆1≤𝑘
over the base ring Q[𝑡]. When 𝑡 = 1, this space is in fact a subalgebra of the ring of symmetric functions
generated by the complete homogeneous symmetric functions ℎ𝑖 for 1 ≤ 𝑖 ≤ 𝑘.

See also:

sage.combinat.sf.new_kschur.KBoundedSubspace()

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: KB = Sym.kBoundedSubspace(3,1); KB
3-bounded Symmetric Functions over Rational Field with t=1

sage: Sym = SymmetricFunctions(QQ['t'])
sage: Sym.kBoundedSubspace(3)

(continues on next page)

2892 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

3-bounded Symmetric Functions over Univariate Polynomial Ring in t over␣
→˓Rational Field

sage: Sym = SymmetricFunctions(QQ['z'])
sage: z = Sym.base_ring().gens()[0]
sage: Sym.kBoundedSubspace(3,t=z)
3-bounded Symmetric Functions over Univariate Polynomial Ring in z over␣
→˓Rational Field with t=z

khomogeneous(k)
Returns the homogeneous symmetric functions in the 𝑘-bounded subspace.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: kh = Sym.khomogeneous(4)
sage: kh[3]*kh[4]
h4[4, 3]
sage: kh[4].lift()
h[4]

kschur(k, t='t')
Returns the 𝑘-Schur functions.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: ks = Sym.kschur(3,1)
sage: ks[2]*ks[2]
ks3[2, 2] + ks3[3, 1]
sage: ks[2,1,1].lift()
s[2, 1, 1] + s[3, 1]

sage: Sym = SymmetricFunctions(QQ['t'])
sage: ks = Sym.kschur(3)
sage: ks[2,2,1].lift()
s[2, 2, 1] + t*s[3, 2]

ksplit(k, t='t')
Return the 𝑘-split basis of the 𝑘-bounded subspace.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: ksp = Sym.ksplit(3,1)
sage: ksp[2]*ksp[2]
ksp3[2, 2] + ksp3[3, 1]
sage: ksp[2,1,1].lift()
s[2, 1, 1] + s[2, 2] + s[3, 1]

sage: Sym = SymmetricFunctions(QQ['t'])
sage: ksp = Sym.ksplit(3)
sage: ksp[2,1,1].lift()
s[2, 1, 1] + t*s[2, 2] + t*s[3, 1]

5.1. Comprehensive Module List 2893

Combinatorics, Release 9.7

llt(k, t='t')
The LLT symmetric functions.

INPUT:

• k – a positive integer indicating the level

• t – a parameter (default: 𝑡)

LLT polynomials in ℎ𝑠𝑝𝑖𝑛 and ℎ𝑐𝑜𝑠𝑝𝑖𝑛 bases.

EXAMPLES:

sage: llt3 = SymmetricFunctions(QQ['t'].fraction_field()).llt(3); llt3
level 3 LLT polynomials over Fraction Field of Univariate Polynomial Ring in t␣
→˓over Rational Field
sage: llt3.hspin()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the level 3 LLT spin basis
sage: llt3.hcospin()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the level 3 LLT cospin basis
sage: llt3.hcospin()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over␣
→˓Rational Field in the level 3 LLT cospin basis

m()
The monomial basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).monomial()
Symmetric Functions over Rational Field in the monomial basis

macdonald(q='q', t='t')
Returns the entry point for the various Macdonald bases.

INPUT:

• q, t – parameters

Macdonald symmetric functions including bases 𝑃 , 𝑄, 𝐽 , 𝐻 , 𝐻𝑡. This also contains the 𝑆 basis which is
dual to the Schur basis with respect to the 𝑞, 𝑡 scalar product.

The parameters 𝑞 and 𝑡 must be in the base_ring of parent.

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: P = Sym.macdonald().P(); P
Symmetric Functions over Fraction Field of Multivariate Polynomial Ring in q, t␣
→˓over Rational Field in the Macdonald P basis
sage: P[2]
McdP[2]
sage: Q = Sym.macdonald().Q(); Q
Symmetric Functions over Fraction Field of Multivariate Polynomial Ring in q, t␣
→˓over Rational Field in the Macdonald Q basis
sage: S = Sym.macdonald().S()
sage: s = Sym.schur()

(continues on next page)

2894 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: matrix([[S(la).scalar_qt(s(mu)) for la in Partitions(3)] for mu in␣
→˓Partitions(3)])
[1 0 0]
[0 1 0]
[0 0 1]
sage: H = Sym.macdonald().H()
sage: s(H[2,2])
q^2*s[1, 1, 1, 1] + (q^2*t+q*t+q)*s[2, 1, 1] + (q^2*t^2+1)*s[2, 2] + (q*t^
→˓2+q*t+t)*s[3, 1] + t^2*s[4]

sage: Sym = SymmetricFunctions(QQ['z','q'].fraction_field())
sage: (z,q) = Sym.base_ring().gens()
sage: Hzq = Sym.macdonald(q=z,t=q).H()
sage: H1z = Sym.macdonald(q=1,t=z).H()
sage: s = Sym.schur()
sage: s(H1z([2,2]))
s[1, 1, 1, 1] + (2*z+1)*s[2, 1, 1] + (z^2+1)*s[2, 2] + (z^2+2*z)*s[3, 1] + z^
→˓2*s[4]
sage: s(Hzq[2,2])
z^2*s[1, 1, 1, 1] + (z^2*q+z*q+z)*s[2, 1, 1] + (z^2*q^2+1)*s[2, 2] + (z*q^
→˓2+z*q+q)*s[3, 1] + q^2*s[4]
sage: s(H1z(Hzq[2,2]))
z^2*s[1, 1, 1, 1] + (z^2*q+z*q+z)*s[2, 1, 1] + (z^2*q^2+1)*s[2, 2] + (z*q^
→˓2+z*q+q)*s[3, 1] + q^2*s[4]

monomial()
The monomial basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).monomial()
Symmetric Functions over Rational Field in the monomial basis

o()
The orthogonal basis of the symmetric functions.

See also:

SymmetricFunctionAlgebra_orthogonal

EXAMPLES:

sage: SymmetricFunctions(QQ).orthogonal()
Symmetric Functions over Rational Field in the orthogonal basis

orthogonal()
The orthogonal basis of the symmetric functions.

See also:

SymmetricFunctionAlgebra_orthogonal

EXAMPLES:

sage: SymmetricFunctions(QQ).orthogonal()
Symmetric Functions over Rational Field in the orthogonal basis

5.1. Comprehensive Module List 2895

Combinatorics, Release 9.7

p()
The power sum basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).powersum()
Symmetric Functions over Rational Field in the powersum basis

power()
The power sum basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).powersum()
Symmetric Functions over Rational Field in the powersum basis

powersum()
The power sum basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).powersum()
Symmetric Functions over Rational Field in the powersum basis

qbar(q='q')
The basis of symmetric functions that determines the character tables for Hecke algebras.

EXAMPLES:

sage: SymmetricFunctions(ZZ['q'].fraction_field()).hecke_character()
Symmetric Functions over
Fraction Field of Univariate Polynomial Ring in q over Integer Ring
in the Hecke character with q=q basis
sage: SymmetricFunctions(QQ).hecke_character(1/2)
Symmetric Functions over Rational Field in the Hecke character with q=1/2 basis

register_isomorphism(morphism, only_conversion=False)
Register an isomorphism between two bases of self, as a canonical coercion (unless the optional keyword
only_conversion is set to True, in which case the isomorphism is registered as conversion only).

EXAMPLES:

We override the canonical coercion from the Schur basis to the powersum basis by a (stupid!) map 𝑠𝜆 ↦→
2𝑝𝜆.

sage: Sym = SymmetricFunctions(QQ['zorglub']) # make sure we are not going to␣
→˓screw up later tests
sage: s = Sym.s(); p = Sym.p().dual_basis()
sage: phi = s.module_morphism(diagonal = lambda t: 2, codomain = p)
sage: phi(s[2, 1])
2*d_p[2, 1]
sage: Sym.register_isomorphism(phi)
sage: p(s[2,1])
2*d_p[2, 1]

The map is supposed to implement the canonical isomorphism between the two bases. Otherwise, the
results will be mathematically wrong, as above. Use with care!

2896 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

s()
The Schur basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).schur()
Symmetric Functions over Rational Field in the Schur basis

schur()
The Schur basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).schur()
Symmetric Functions over Rational Field in the Schur basis

sp()
The symplectic basis of the symmetric functions.

See also:

SymmetricFunctionAlgebra_symplectic

EXAMPLES:

sage: SymmetricFunctions(QQ).symplectic()
Symmetric Functions over Rational Field in the symplectic basis

st()
The irreducible 𝑆𝑛 character basis of the Symmetric Functions.

This basis has the property that if the element indexed by the partition 𝜆 is evaluated at the roots of a
permutation of cycle structure 𝜌 then the value is the irreducible character 𝜒(|𝜌|−|𝜆|,𝜆)(𝜌).

In terms of methods that are implemented in Sage, if n is a sufficiently large integer, then st(lam).
character_to_frobenius_image(n) is equal the Schur function indexed by [n-sum(lam)]+lam.

This basis is introduced in [OZ2015].

See also:

character_to_frobenius_image(), eval_at_permutation_roots()

EXAMPLES:

sage: SymmetricFunctions(QQ).irreducible_symmetric_group_character()
Symmetric Functions over Rational Field in the irreducible symmetric group␣
→˓character basis
sage: st = SymmetricFunctions(QQ).st()
sage: s = SymmetricFunctions(QQ).s()
sage: s(st([3,2]).character_to_frobenius_image(9))
s[4, 3, 2]
sage: s(st([3,2]).character_to_frobenius_image(7))
0
sage: s(st([3,2]).character_to_frobenius_image(6))
-s[2, 2, 2]
sage: list(SymmetricGroup(5).character_table()[-2])
[4, 2, 0, 1, -1, 0, -1]
sage: list(reversed([st([1]).eval_at_permutation_roots(rho)

(continues on next page)

5.1. Comprehensive Module List 2897

Combinatorics, Release 9.7

(continued from previous page)

....: for rho in Partitions(5)]))
[4, 2, 0, 1, -1, 0, -1]

symplectic()
The symplectic basis of the symmetric functions.

See also:

SymmetricFunctionAlgebra_symplectic

EXAMPLES:

sage: SymmetricFunctions(QQ).symplectic()
Symmetric Functions over Rational Field in the symplectic basis

w(coerce_h=True, coerce_e=False, coerce_p=False)
The Witt basis of the symmetric functions.

EXAMPLES:

sage: SymmetricFunctions(QQ).witt()
Symmetric Functions over Rational Field in the Witt basis
sage: SymmetricFunctions(QQ).witt(coerce_p=True)
Symmetric Functions over Rational Field in the Witt basis
sage: SymmetricFunctions(QQ).witt(coerce_h=False, coerce_e=True, coerce_p=True)
Symmetric Functions over Rational Field in the Witt basis

witt(coerce_h=True, coerce_e=False, coerce_p=False)
The Witt basis of the symmetric functions.

EXAMPLES:

sage: SymmetricFunctions(QQ).witt()
Symmetric Functions over Rational Field in the Witt basis
sage: SymmetricFunctions(QQ).witt(coerce_p=True)
Symmetric Functions over Rational Field in the Witt basis
sage: SymmetricFunctions(QQ).witt(coerce_h=False, coerce_e=True, coerce_p=True)
Symmetric Functions over Rational Field in the Witt basis

zonal()
The zonal basis of the Symmetric Functions

EXAMPLES:

sage: SymmetricFunctions(QQ).zonal()
Symmetric Functions over Rational Field in the zonal basis

class sage.combinat.sf.sf.SymmetricaConversionOnBasis(t, domain, codomain)
Bases: object

Initialization of self.

INPUT:

• t – a function taking a monomial in CombinatorialFreeModule(QQ, Partitions()), and returning a
(partition, coefficient) list.

• domain, codomain – parents

2898 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Construct a function mapping a partition to an element of codomain.

This is a temporary quick hack to wrap around the existing symmetrica conversions, without changing their
specs.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ['x'])
sage: p = Sym.p(); s = Sym.s()
sage: def t(x) : [(p,c)] = x; return [(p,2*c), (p.conjugate(), c)]
sage: f = sage.combinat.sf.sf.SymmetricaConversionOnBasis(t, p, s)
sage: f(Partition([3,1]))
s[2, 1, 1] + 2*s[3, 1]

5.1.299 Symmetric Functions

For a comprehensive tutorial on how to use symmetric functions in Sage

See also:

SymmetricFunctions()

We define the algebra of symmetric functions in the Schur and elementary bases:

sage: s = SymmetricFunctions(QQ).schur()
sage: e = SymmetricFunctions(QQ).elementary()

Each is actually a graded Hopf algebra whose basis is indexed by integer partitions:

sage: s.category()
Category of graded bases of Symmetric Functions over Rational Field
sage: s.basis().keys()
Partitions

Let us compute with some elements in different bases:

sage: f1 = s([2,1]); f1
s[2, 1]
sage: f2 = e(f1); f2 # basis conversion
e[2, 1] - e[3]
sage: f1 == f2
True
sage: f1.expand(3, alphabet=['x','y','z'])
x^2*y + x*y^2 + x^2*z + 2*x*y*z + y^2*z + x*z^2 + y*z^2
sage: f2.expand(3, alphabet=['x','y','z'])
x^2*y + x*y^2 + x^2*z + 2*x*y*z + y^2*z + x*z^2 + y*z^2

sage: m = SymmetricFunctions(QQ).monomial()
sage: m([3,1])
m[3, 1]
sage: m(4) # This is the constant 4, not the partition 4.
4*m[]
sage: m([4]) # This is the partition 4.
m[4]

(continues on next page)

5.1. Comprehensive Module List 2899

Combinatorics, Release 9.7

(continued from previous page)

sage: 3*m([3,1])-1/2*m([4])
3*m[3, 1] - 1/2*m[4]

sage: p = SymmetricFunctions(QQ).power()
sage: f = p(3)
sage: f
3*p[]
sage: f.parent()
Symmetric Functions over Rational Field in the powersum basis
sage: f + p([3,2])
3*p[] + p[3, 2]

One can convert symmetric functions to symmetric polynomials and vice versa:

sage: Sym = SymmetricFunctions(QQ)
sage: p = Sym.powersum()
sage: h = Sym.homogeneous()
sage: f = h[2,1] + 2*p[3,1]
sage: poly = f.expand(3); poly
2*x0^4 + 2*x0^3*x1 + 2*x0*x1^3 + 2*x1^4 + 2*x0^3*x2 + 2*x1^3*x2 + 2*x0*x2^3 + 2*x1*x2^3␣
→˓+ 2*x2^4
+ x0^3 + 2*x0^2*x1 + 2*x0*x1^2 + x1^3 + 2*x0^2*x2 + 3*x0*x1*x2 + 2*x1^2*x2 + 2*x0*x2^2 +␣
→˓2*x1*x2^2 + x2^3
sage: Sym.from_polynomial(poly)
3*m[1, 1, 1] + 2*m[2, 1] + m[3] + 2*m[3, 1] + 2*m[4]
sage: Sym.from_polynomial(poly) == f
True
sage: g = h[1,1,1,1]
sage: poly = g.expand(3)
sage: Sym.from_polynomial(poly) == g
False

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: h = Sym.h()
sage: p = Sym.p()
sage: e = Sym.e()
sage: m = Sym.m()
sage: a = s([3,1])
sage: s(a)
s[3, 1]
sage: h(a)
h[3, 1] - h[4]
sage: p(a)
1/8*p[1, 1, 1, 1] + 1/4*p[2, 1, 1] - 1/8*p[2, 2] - 1/4*p[4]
sage: e(a)
e[2, 1, 1] - e[2, 2] - e[3, 1] + e[4]
sage: m(a)
3*m[1, 1, 1, 1] + 2*m[2, 1, 1] + m[2, 2] + m[3, 1]
sage: a.expand(4)
x0^3*x1 + x0^2*x1^2 + x0*x1^3 + x0^3*x2 + 2*x0^2*x1*x2 + 2*x0*x1^2*x2 + x1^3*x2 + x0^
→˓2*x2^2 + 2*x0*x1*x2^2 + x1^2*x2^2 + x0*x2^3 + x1*x2^3 + x0^3*x3 + 2*x0^2*x1*x3 +␣
→˓2*x0*x1^2*x3 + x1^3*x3 + 2*x0^2*x2*x3 + 3*x0*x1*x2*x3 + 2*x1^2*x2*x3 + 2*x0*x2^2*x3 +␣
→˓2*x1*x2^2*x3 + x2^3*x3 + x0^2*x3^2 + 2*x0*x1*x3^2 + x1^2*x3^2 + 2*x0*x2*x3^2 +␣
→˓2*x1*x2*x3^2 + x2^2*x3^2 + x0*x3^3 + x1*x3^3 + x2*x3^3

(continues on next page)

2900 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Here are further examples:

sage: h(m([1]))
h[1]
sage: h(m([2]) +m([1,1]))
h[2]
sage: h(m([3]) + m([2,1]) + m([1,1,1]))
h[3]
sage: h(m([4]) + m([3,1]) + m([2,2]) + m([2,1,1]) + m([1,1,1,1]))
h[4]
sage: k = 5
sage: h(sum([m(part) for part in Partitions(k)]))
h[5]
sage: k = 10
sage: h(sum([m(part) for part in Partitions(k)]))
h[10]

sage: P3 = Partitions(3)
sage: P3.list()
[[3], [2, 1], [1, 1, 1]]
sage: m = SymmetricFunctions(QQ).monomial()
sage: f = sum([m(p) for p in P3])
sage: m.get_print_style()
'lex'
sage: f
m[1, 1, 1] + m[2, 1] + m[3]
sage: m.set_print_style('length')
sage: f
m[3] + m[2, 1] + m[1, 1, 1]
sage: m.set_print_style('maximal_part')
sage: f
m[1, 1, 1] + m[2, 1] + m[3]
sage: m.set_print_style('lex')

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: m = Sym.m()
sage: m([3])*s([2,1])
2*m[3, 1, 1, 1] + m[3, 2, 1] + 2*m[4, 1, 1] + m[4, 2] + m[5, 1]
sage: s(m([3])*s([2,1]))
s[2, 1, 1, 1, 1] - s[2, 2, 2] - s[3, 3] + s[5, 1]
sage: s(s([2,1])*m([3]))
s[2, 1, 1, 1, 1] - s[2, 2, 2] - s[3, 3] + s[5, 1]
sage: e = Sym.e()
sage: e([4])*e([3])*e([1])
e[4, 3, 1]

sage: s = SymmetricFunctions(QQ).s()
sage: z = s([2,1]) + s([1,1,1])
sage: z.coefficient([2,1])

(continues on next page)

5.1. Comprehensive Module List 2901

Combinatorics, Release 9.7

(continued from previous page)

1
sage: z.length()
2
sage: sorted(z.support())
[[1, 1, 1], [2, 1]]
sage: z.degree()
3

AUTHORS:

• Mike Hansen (2007-06-15)

• Nicolas M. Thiery (partial refactoring)

• Mike Zabrocki, Anne Schilling (2012)

• Darij Grinberg (2013) Sym over rings that are not characteristic 0

class sage.combinat.sf.sfa.FilteredSymmetricFunctionsBases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of filtered bases of the ring of symmetric functions.

super_categories()
The super categories of self.

EXAMPLES:

sage: from sage.combinat.sf.sfa import FilteredSymmetricFunctionsBases
sage: Sym = SymmetricFunctions(QQ)
sage: bases = FilteredSymmetricFunctionsBases(Sym)
sage: bases.super_categories()
[Category of bases of Symmetric Functions over Rational Field,
Category of commutative filtered hopf algebras with basis over Rational Field]

class sage.combinat.sf.sfa.GradedSymmetricFunctionsBases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of graded bases of the ring of symmetric functions.

These are further required to have the property that the basis element indexed by the empty partition is 1.

class ElementMethods
Bases: object

degree_negation()
Return the image of self under the degree negation automorphism of the ring of symmetric functions.

The degree negation is the automorphism which scales every homogeneous element of degree 𝑘 by
(−1)𝑘 (for all 𝑘).

Calling degree_negation(self) is equivalent to calling self.parent().
degree_negation(self).

EXAMPLES:

sage: Sym = SymmetricFunctions(ZZ)
sage: m = Sym.monomial()
sage: f = 2*m[2,1] + 4*m[1,1] - 5*m[1] - 3*m[[]]
sage: f.degree_negation()

(continues on next page)

2902 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent
../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

(continued from previous page)

-3*m[] + 5*m[1] + 4*m[1, 1] - 2*m[2, 1]
sage: x = m.zero().degree_negation(); x
0
sage: parent(x) is m
True

degree_zero_coefficient()
Return the degree zero coefficient of self.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.monomial()
sage: f = 2*m[2,1] + 3*m[[]]
sage: f.degree_zero_coefficient()
3

class ParentMethods
Bases: object

antipode_by_coercion(element)
The antipode of element.

INPUT:
• element – element in a basis of the ring of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: p = Sym.p()
sage: s = Sym.s()
sage: e = Sym.e()
sage: h = Sym.h()
sage: (h([]) + h([1])).antipode() # indirect doctest
h[] - h[1]
sage: (s([]) + s([1]) + s[2]).antipode()
s[] - s[1] + s[1, 1]
sage: (p([2]) + p([3])).antipode()
-p[2] - p[3]
sage: (e([2]) + e([3])).antipode()
e[1, 1] - e[1, 1, 1] - e[2] + 2*e[2, 1] - e[3]
sage: f = Sym.f()
sage: f([3,2,1]).antipode()
-f[3, 2, 1] - 4*f[3, 3] - 2*f[4, 2] - 2*f[5, 1] - 6*f[6]

The antipode is an involution:

sage: Sym = SymmetricFunctions(ZZ)
sage: s = Sym.s()
sage: all(s[u].antipode().antipode() == s[u] for u in Partitions(4))
True

The antipode is an algebra homomorphism:

5.1. Comprehensive Module List 2903

Combinatorics, Release 9.7

sage: Sym = SymmetricFunctions(FiniteField(23))
sage: h = Sym.h()
sage: all(all((s[u] * s[v]).antipode() == s[u].antipode() * s[v].
→˓antipode()
....: for u in Partitions(3))
....: for v in Partitions(3))
True

counit(element)
Return the counit of element.

The counit is the constant term of element.

INPUT:
• element – element in a basis of the ring of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.monomial()
sage: f = 2*m[2,1] + 3*m[[]]
sage: f.counit()
3

degree_negation(element)
Return the image of element under the degree negation automorphism of the ring of symmetric func-
tions.

The degree negation is the automorphism which scales every homogeneous element of degree 𝑘 by
(−1)𝑘 (for all 𝑘).

INPUT:
• element – symmetric function written in self

EXAMPLES:

sage: Sym = SymmetricFunctions(ZZ)
sage: m = Sym.monomial()
sage: f = 2*m[2,1] + 4*m[1,1] - 5*m[1] - 3*m[[]]
sage: m.degree_negation(f)
-3*m[] + 5*m[1] + 4*m[1, 1] - 2*m[2, 1]

super_categories()
The super categories of self.

EXAMPLES:

sage: from sage.combinat.sf.sfa import GradedSymmetricFunctionsBases
sage: Sym = SymmetricFunctions(QQ)
sage: bases = GradedSymmetricFunctionsBases(Sym)
sage: bases.super_categories()
[Category of filtered bases of Symmetric Functions over Rational Field,
Category of commutative graded hopf algebras with basis over Rational Field]

class sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic(Sym, basis_name=None, prefix=None,
graded=True)

Bases: sage.combinat.free_module.CombinatorialFreeModule

Abstract base class for symmetric function algebras.

2904 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Todo: Most of the methods in this class are generic (manipulations of morphisms, . . .) and should be generalized
(or removed)

Element
alias of SymmetricFunctionAlgebra_generic_Element

basis_name()
Return the name of the basis of self.

This is used for output and, for the classical bases of symmetric functions, to connect this basis with Sym-
metrica.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: s.basis_name()
'Schur'
sage: p = Sym.p()
sage: p.basis_name()
'powersum'
sage: h = Sym.h()
sage: h.basis_name()
'homogeneous'
sage: e = Sym.e()
sage: e.basis_name()
'elementary'
sage: m = Sym.m()
sage: m.basis_name()
'monomial'
sage: f = Sym.f()
sage: f.basis_name()
'forgotten'

coproduct_by_coercion(elt)
Return the coproduct of the element elt by coercion to the Schur basis.

INPUT:

• elt – an instance of this basis

OUTPUT:

• The image of elt under the comultiplication (=coproduct) of the coalgebra of symmetric functions.
The result is an element of the tensor squared of the basis self.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: m[3,1,1].coproduct()
m[] # m[3, 1, 1] + m[1] # m[3, 1] + m[1, 1] # m[3] + m[3] # m[1, 1] + m[3, 1] #␣
→˓m[1] + m[3, 1, 1] # m[]
sage: m.coproduct_by_coercion(m[2,1])
m[] # m[2, 1] + m[1] # m[2] + m[2] # m[1] + m[2, 1] # m[]
sage: m.coproduct_by_coercion(m[2,1]) == m([2,1]).coproduct()
True

(continues on next page)

5.1. Comprehensive Module List 2905

Combinatorics, Release 9.7

(continued from previous page)

sage: McdH = SymmetricFunctions(QQ['q','t'].fraction_field()).macdonald().H()
sage: McdH[2,1].coproduct()
McdH[] # McdH[2, 1] + ((q^2*t-1)/(q*t-1))*McdH[1] # McdH[1, 1] + ((q*t^2-1)/
→˓(q*t-1))*McdH[1] # McdH[2] + ((q^2*t-1)/(q*t-1))*McdH[1, 1] # McdH[1] + ((q*t^
→˓2-1)/(q*t-1))*McdH[2] # McdH[1] + McdH[2, 1] # McdH[]
sage: HLQp = SymmetricFunctions(QQ['t'].fraction_field()).hall_littlewood().Qp()
sage: HLQp[2,1].coproduct()
HLQp[] # HLQp[2, 1] + HLQp[1] # HLQp[1, 1] + HLQp[1] # HLQp[2] + HLQp[1, 1] #␣
→˓HLQp[1] + HLQp[2] # HLQp[1] + HLQp[2, 1] # HLQp[]
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: LLT = Sym.llt(3)
sage: LLT.cospin([3,2,1]).coproduct()
(t+1)*m[] # m[1, 1] + m[] # m[2] + (t+1)*m[1] # m[1] + (t+1)*m[1, 1] # m[] +␣
→˓m[2] # m[]
sage: f = SymmetricFunctions(ZZ).f()
sage: f[3].coproduct()
f[] # f[3] + f[3] # f[]
sage: f[3,2,1].coproduct()
f[] # f[3, 2, 1] + f[1] # f[3, 2] + f[2] # f[3, 1] + f[2, 1] # f[3] + f[3] #␣
→˓f[2, 1] + f[3, 1] # f[2] + f[3, 2] # f[1] + f[3, 2, 1] # f[]

dual_basis(scalar=None, scalar_name='', basis_name=None, prefix=None)
Return the dual basis of self with respect to the scalar product scalar.

INPUT:

• scalar – A function zee from partitions to the base ring which specifies the scalar product by
⟨𝑝𝜆, 𝑝𝜆⟩ = zee(𝜆). (Independently on the function chosen, the power sum basis will always be or-
thogonal; the function scalar only determines the norms of the basis elements.) If scalar is None,
then the standard (Hall) scalar product is used.

• scalar_name – name of the scalar function

• prefix – prefix used to display the basis

EXAMPLES:

The duals of the elementary symmetric functions with respect to the Hall scalar product are the forgotten
symmetric functions.

sage: e = SymmetricFunctions(QQ).e()
sage: f = e.dual_basis(prefix='f'); f
Dual basis to Symmetric Functions over Rational Field in the elementary basis␣
→˓with respect to the Hall scalar product
sage: f([2,1])^2
4*f[2, 2, 1, 1] + 6*f[2, 2, 2] + 2*f[3, 2, 1] + 2*f[3, 3] + 2*f[4, 1, 1] + f[4,␣
→˓2]
sage: f([2,1]).scalar(e([2,1]))
1
sage: f([2,1]).scalar(e([1,1,1]))
0

Since the power-sum symmetric functions are orthogonal, their duals with respect to the Hall scalar product
are scalar multiples of themselves.

2906 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p = SymmetricFunctions(QQ).p()
sage: q = p.dual_basis(prefix='q'); q
Dual basis to Symmetric Functions over Rational Field in the powersum basis␣
→˓with respect to the Hall scalar product
sage: q([2,1])^2
4*q[2, 2, 1, 1]
sage: p([2,1]).scalar(q([2,1]))
1
sage: p([2,1]).scalar(q([1,1,1]))
0

from_polynomial(poly, check=True)
Convert polynomial to a symmetric function in the monomial basis and then to the basis self.

INPUT:

• poly – a symmetric polynomial

• check – (default: True) boolean, specifies whether the computation checks that the polynomial is
indeed symmetric

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: h = Sym.homogeneous()
sage: f = (h([]) + h([2,1]) + h([3])).expand(3)
sage: h.from_polynomial(f)
h[] + h[2, 1] + h[3]
sage: s = Sym.s()
sage: g = (s([]) + s([2,1])).expand(3); g
x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2 + 1
sage: s.from_polynomial(g)
s[] + s[2, 1]

get_print_style()
Return the value of the current print style for self.

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s.get_print_style()
'lex'
sage: s.set_print_style('length')
sage: s.get_print_style()
'length'
sage: s.set_print_style('lex')

prefix()
Return the prefix on the elements of self.

EXAMPLES:

sage: schur = SymmetricFunctions(QQ).schur()
sage: schur([3,2,1])
s[3, 2, 1]
sage: schur.prefix()
's'

5.1. Comprehensive Module List 2907

Combinatorics, Release 9.7

product_by_coercion(left, right)
Return the product of elements left and right by coercion to the Schur basis.

INPUT:

• left, right – instances of this basis

OUTPUT:

• the product of left and right expressed in the basis self

EXAMPLES:

sage: p = SymmetricFunctions(QQ).p()
sage: p.product_by_coercion(p[3,1,1], p[2,2])
p[3, 2, 2, 1, 1]
sage: m = SymmetricFunctions(QQ).m()
sage: m.product_by_coercion(m[2,1],m[1,1]) == m[2,1]*m[1,1]
True

set_print_style(ps)
Set the value of the current print style to ps.

INPUT:

• ps – a string specifying the printing style

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s.get_print_style()
'lex'
sage: s.set_print_style('length')
sage: s.get_print_style()
'length'
sage: s.set_print_style('lex')

symmetric_function_ring()
Return the family of symmetric functions associated to the basis self.

OUTPUT:

• returns an instance of the ring of symmetric functions

EXAMPLES:

sage: schur = SymmetricFunctions(QQ).schur()
sage: schur.symmetric_function_ring()
Symmetric Functions over Rational Field
sage: power = SymmetricFunctions(QQ['t']).power()
sage: power.symmetric_function_ring()
Symmetric Functions over Univariate Polynomial Ring in t over Rational Field

transition_matrix(basis, n)
Return the transition matrix between self and basis for the homogeneous component of degree n.

INPUT:

• basis – a basis of the ring of symmetric functions

• n – a nonnegative integer

2908 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

• a matrix of coefficients giving the expansion of the homogeneous degree-𝑛 elements of self in the
degree-𝑛 elements of basis

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: m = SymmetricFunctions(QQ).m()
sage: s.transition_matrix(m,5)
[1 1 1 1 1 1 1]
[0 1 1 2 2 3 4]
[0 0 1 1 2 3 5]
[0 0 0 1 1 3 6]
[0 0 0 0 1 2 5]
[0 0 0 0 0 1 4]
[0 0 0 0 0 0 1]
sage: s.transition_matrix(m,1)
[1]
sage: s.transition_matrix(m,0)
[1]

sage: p = SymmetricFunctions(QQ).p()
sage: s.transition_matrix(p, 4)
[1/4 1/3 1/8 1/4 1/24]
[-1/4 0 -1/8 1/4 1/8]
[0 -1/3 1/4 0 1/12]
[1/4 0 -1/8 -1/4 1/8]
[-1/4 1/3 1/8 -1/4 1/24]
sage: StoP = s.transition_matrix(p,4)
sage: a = s([3,1])+5*s([1,1,1,1])-s([4])
sage: a
5*s[1, 1, 1, 1] + s[3, 1] - s[4]
sage: mon = sorted(a.support())
sage: coeffs = [a[i] for i in mon]
sage: coeffs
[5, 1, -1]
sage: mon
[[1, 1, 1, 1], [3, 1], [4]]
sage: cm = matrix([[-1,1,0,0,5]])
sage: cm * StoP
[-7/4 4/3 3/8 -5/4 7/24]
sage: p(a)
7/24*p[1, 1, 1, 1] - 5/4*p[2, 1, 1] + 3/8*p[2, 2] + 4/3*p[3, 1] - 7/4*p[4]

sage: h = SymmetricFunctions(QQ).h()
sage: e = SymmetricFunctions(QQ).e()
sage: s.transition_matrix(m,7) == h.transition_matrix(s,7).transpose()
True

sage: h.transition_matrix(m, 7) == h.transition_matrix(m, 7).transpose()
True

5.1. Comprehensive Module List 2909

Combinatorics, Release 9.7

sage: h.transition_matrix(e, 7) == e.transition_matrix(h, 7)
True

sage: p.transition_matrix(s, 5)
[1 -1 0 1 0 -1 1]
[1 0 -1 0 1 0 -1]
[1 -1 1 0 -1 1 -1]
[1 1 -1 0 -1 1 1]
[1 0 1 -2 1 0 1]
[1 2 1 0 -1 -2 -1]
[1 4 5 6 5 4 1]

sage: e.transition_matrix(m,7) == e.transition_matrix(m,7).transpose()
True

class sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

Class of generic elements for the symmetric function algebra.

arithmetic_product(x)
Return the arithmetic product of self and x in the basis of self.

The arithmetic product is a binary operation � on the ring of symmetric functions which is bilinear in its
two arguments and satisfies

𝑝𝜆 � 𝑝𝜇 =
∏︁

𝑖≥1,𝑗≥1

𝑝
gcd(𝜆𝑖,𝜇𝑗)

lcm(𝜆𝑖,𝜇𝑗)

for any two partitions 𝜆 = (𝜆1, 𝜆2, 𝜆3, . . .) and 𝜇 = (𝜇1, 𝜇2, 𝜇3, . . .) (where 𝑝𝜈 denotes the power-sum
symmetric function indexed by the partition 𝜈, and 𝑝𝑖 denotes the 𝑖-th power-sum symmetric function).
This is enough to define the arithmetic product if the base ring is torsion-free as a Z-module; for all other
cases the arithmetic product is uniquely determined by requiring it to be functorial in the base ring. See
http://mathoverflow.net/questions/138148/ for a discussion of this arithmetic product.

If 𝑓 and 𝑔 are two symmetric functions which are homogeneous of degrees 𝑎 and 𝑏, respectively, then 𝑓�𝑔
is homogeneous of degree 𝑎𝑏.

The arithmetic product is commutative and associative and has unity 𝑒1 = 𝑝1 = ℎ1.

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

OUTPUT:

Arithmetic product of self with x; this is a symmetric function over the same base ring as self.

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s([2]).arithmetic_product(s([2]))
s[1, 1, 1, 1] + 2*s[2, 2] + s[4]
sage: s([2]).arithmetic_product(s([1,1]))
s[2, 1, 1] + s[3, 1]

The symmetric function e[1] is the unity for the arithmetic product:

2910 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/modules/sage/modules/with_basis/indexed_element.html#sage.modules.with_basis.indexed_element.IndexedFreeModuleElement
http://mathoverflow.net/questions/138148/

Combinatorics, Release 9.7

sage: e = SymmetricFunctions(ZZ).e()
sage: all(e([1]).arithmetic_product(e(q)) == e(q) for q in Partitions(4))
True

The arithmetic product is commutative:

sage: e = SymmetricFunctions(FiniteField(19)).e()
sage: m = SymmetricFunctions(FiniteField(19)).m()
sage: all(all(e(p).arithmetic_product(m(q)) == m(q).arithmetic_product(e(p))
→˓# long time (26s on sage.math, 2013)
....: for q in Partitions(4))
....: for p in Partitions(4))
True

Note: The currently existing implementation of this function is technically unsatisfactory. It distinguishes
the case when the base ring is a Q-algebra (in which case the arithmetic product can be easily computed
using the power sum basis) from the case where it isn’t. In the latter, it does a computation using universal
coefficients, again distinguishing the case when it is able to compute the “corresponding” basis of the
symmetric function algebra over Q (using the corresponding_basis_over hack) from the case when it
isn’t (in which case it transforms everything into the Schur basis, which is slow).

bernstein_creation_operator(n)
Return the image of self under the 𝑛-th Bernstein creation operator.

Let 𝑛 be an integer. The 𝑛-th Bernstein creation operator B𝑛 is defined as the endomorphism of the space
𝑆𝑦𝑚 of symmetric functions which sends every 𝑓 to∑︁

𝑖≥0

(−1)𝑖ℎ𝑛+𝑖𝑒
⊥
𝑖 ,

where usual notations are in place (ℎ stands for the complete homogeneous symmetric functions, 𝑒 for the
elementary ones, and 𝑒⊥𝑖 means skewing (skew_by()) by 𝑒𝑖).

This has been studied in [BBSSZ2012], section 2.2, where the following rule is given for computing B𝑛

on a Schur function: If (𝛼1, 𝛼2, . . . , 𝛼𝑛) is an 𝑛-tuple of integers (positive or not), then

B𝑛𝑠(𝛼1,𝛼2,...,𝛼𝑛) = 𝑠(𝑛,𝛼1,𝛼2,...,𝛼𝑛).

Here, 𝑠(𝛼1,𝛼2,...,𝛼𝑛) is the “Schur function” associated to the 𝑛-tuple (𝛼1, 𝛼2, . . . , 𝛼𝑛), and defined by
literally applying the Jacobi-Trudi identity, i.e., by

𝑠(𝛼1,𝛼2,...,𝛼𝑛) = det ((ℎ𝛼𝑖−𝑖+𝑗)𝑖,𝑗=1,2,...,𝑛) .

This notion of a Schur function clearly extends the classical notion of Schur function corresponding to a
partition, but is easily reduced to the latter (in fact, for any 𝑛-tuple 𝛼 of integers, one easily sees that 𝑠𝛼 is
either 0 or minus-plus a Schur function corresponding to a partition; and it is easy to determine which of
these is the case and find the partition by a combinatorial algorithm).

EXAMPLES:

Let us check that what this method computes agrees with the definition:

sage: Sym = SymmetricFunctions(ZZ)
sage: e = Sym.e()

(continues on next page)

5.1. Comprehensive Module List 2911

Combinatorics, Release 9.7

(continued from previous page)

sage: h = Sym.h()
sage: s = Sym.s()
sage: def bernstein_creation_by_def(n, f):
....: # `n`-th Bernstein creation operator applied to `f`
....: # computed according to its definition.
....: res = f.parent().zero()
....: if not f:
....: return res
....: max_degree = max(sum(m) for m, c in f)
....: for i in range(max_degree + 1):
....: if n + i >= 0:
....: res += (-1) ** i * h[n + i] * f.skew_by(e[i])
....: return res
sage: all(bernstein_creation_by_def(n, s[l]) == s[l].bernstein_creation_
→˓operator(n)
....: for n in range(-2, 3) for l in Partitions(4))
True
sage: all(bernstein_creation_by_def(n, s[l]) == s[l].bernstein_creation_
→˓operator(n)
....: for n in range(-3, 4) for l in Partitions(3))
True
sage: all(bernstein_creation_by_def(n, e[l]) == e[l].bernstein_creation_
→˓operator(n)
....: for n in range(-3, 4) for k in range(3) for l in Partitions(k))
True

Some examples:

sage: s[3,2].bernstein_creation_operator(3)
s[3, 3, 2]
sage: s[3,2].bernstein_creation_operator(1)
-s[2, 2, 2]
sage: h[3,2].bernstein_creation_operator(-2)
h[2, 1]
sage: h[3,2].bernstein_creation_operator(-1)
h[2, 1, 1] - h[2, 2] - h[3, 1]
sage: h[3,2].bernstein_creation_operator(0)
-h[3, 1, 1] + h[3, 2]
sage: h[3,2].bernstein_creation_operator(1)
-h[2, 2, 2] + h[3, 2, 1]
sage: h[3,2].bernstein_creation_operator(2)
-h[3, 3, 1] + h[4, 2, 1]

character_to_frobenius_image(n)
Interpret self as a 𝐺𝐿𝑛 character and then take the Frobenius image of this character of the permutation
matrices 𝑆𝑛 which naturally sit inside of 𝐺𝐿𝑛.

To know the value of this character at a permutation of cycle structure 𝜌 the symmetric function self is
evaluated at the eigenvalues of a permutation of cycle structure 𝜌. The Frobenius image is then defined as∑︀
𝜌⊢𝑛 𝑓 [Ξ𝜌]𝑝𝜌/𝑧𝜌.

See also:

eval_at_permutation_roots()

2912 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• n – a non-negative integer to interpret self as a character of 𝐺𝐿𝑛
OUTPUT:

• a symmetric function of degree n

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s([1,1]).character_to_frobenius_image(5)
s[3, 1, 1] + s[4, 1]
sage: s([2,1]).character_to_frobenius_image(5)
s[2, 2, 1] + 2*s[3, 1, 1] + 2*s[3, 2] + 3*s[4, 1] + s[5]
sage: s([2,2,2]).character_to_frobenius_image(3)
s[3]
sage: s([2,2,2]).character_to_frobenius_image(4)
s[2, 2] + 2*s[3, 1] + 2*s[4]
sage: s([2,2,2]).character_to_frobenius_image(5)
2*s[2, 2, 1] + s[3, 1, 1] + 4*s[3, 2] + 3*s[4, 1] + 2*s[5]

degree()
Return the degree of self (which is defined to be 0 for the zero element).

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1]) + 3
sage: z.degree()
4
sage: s(1).degree()
0
sage: s(0).degree()
0

derivative_with_respect_to_p1(n=1)
Return the symmetric function obtained by taking the derivative of self with respect to the power-sum
symmetric function 𝑝1 when the expansion of self in the power-sum basis is considered as a polynomial
in 𝑝𝑘’s (with 𝑘 ≥ 1).

This is the same as skewing self by the first power-sum symmetric function 𝑝1.

INPUT:

• n – (default: 1) nonnegative integer which determines which power of the derivative is taken

EXAMPLES:

sage: p = SymmetricFunctions(QQ).p()
sage: a = p([1,1,1])
sage: a.derivative_with_respect_to_p1()
3*p[1, 1]
sage: a.derivative_with_respect_to_p1(1)
3*p[1, 1]
sage: a.derivative_with_respect_to_p1(2)
6*p[1]
sage: a.derivative_with_respect_to_p1(3)
6*p[]

5.1. Comprehensive Module List 2913

Combinatorics, Release 9.7

sage: s = SymmetricFunctions(QQ).s()
sage: s([3]).derivative_with_respect_to_p1()
s[2]
sage: s([2,1]).derivative_with_respect_to_p1()
s[1, 1] + s[2]
sage: s([1,1,1]).derivative_with_respect_to_p1()
s[1, 1]
sage: s(0).derivative_with_respect_to_p1()
0
sage: s(1).derivative_with_respect_to_p1()
0
sage: s([1]).derivative_with_respect_to_p1()
s[]

Let us check that taking the derivative with respect to p[1] is equivalent to skewing by p[1]:

sage: p1 = s([1])
sage: all(s(lam).derivative_with_respect_to_p1()
....: == s(lam).skew_by(p1) for lam in Partitions(4))
True

eval_at_permutation_roots(rho)
Evaluate at eigenvalues of a permutation matrix.

Evaluate a symmetric function at the eigenvalues of a permutation matrix whose cycle structure is rho.
This computation is computed by coercing to the power sum basis where the value may be computed on
the generators.

This function evaluates an element at the roots of unity

Ξ𝜌1 ,Ξ𝜌2 , . . . ,Ξ𝜌ℓ

where

Ξ𝑚 = 1, 𝜁𝑚, 𝜁
2
𝑚, . . . , 𝜁

𝑚−1
𝑚

and 𝜁𝑚 is an 𝑚 root of unity. These roots of unity represent the eigenvalues of permutation matrix with
cycle structure 𝜌.

INPUT:

• rho – a partition or a list of non-negative integers

OUTPUT:

• an element of the base ring

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s([3,3]).eval_at_permutation_roots([6])
0
sage: s([3,3]).eval_at_permutation_roots([3])
1
sage: s([3,3]).eval_at_permutation_roots([1])
0
sage: s([3,3]).eval_at_permutation_roots([3,3])

(continues on next page)

2914 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

4
sage: s([3,3]).eval_at_permutation_roots([1,1,1,1,1])
175
sage: (s[1]+s[2]+s[3]).eval_at_permutation_roots([3,2])
2

expand(n, alphabet='x')
Expand the symmetric function self as a symmetric polynomial in n variables.

INPUT:

• n – a nonnegative integer

• alphabet – (default: 'x') a variable for the expansion

OUTPUT:

A monomial expansion of self in the 𝑛 variables labelled x0, x1, . . . , x{n-1} (or just x if 𝑛 = 1), where
x is alphabet.

EXAMPLES:

sage: J = SymmetricFunctions(QQ).jack(t=2).J()
sage: J([2,1]).expand(3)
4*x0^2*x1 + 4*x0*x1^2 + 4*x0^2*x2 + 6*x0*x1*x2 + 4*x1^2*x2 + 4*x0*x2^2 +␣
→˓4*x1*x2^2
sage: (2*J([2])).expand(0)
0
sage: (3*J([])).expand(0)
3

exponential_specialization(t=None, q=1)
Return the exponential specialization of a symmetric function (when 𝑞 = 1), or the 𝑞-exponential special-
ization (when 𝑞 ̸= 1).

The exponential specialization 𝑒𝑥 at 𝑡 is a 𝐾-algebra homomorphism from the 𝐾-algebra of symmetric
functions to another𝐾-algebra𝑅. It is defined whenever the base ring𝐾 is a Q-algebra and 𝑡 is an element
of 𝑅. The easiest way to define it is by specifying its values on the powersum symmetric functions to be
𝑝1 = 𝑡 and 𝑝𝑛 = 0 for 𝑛 > 1. Equivalently, on the homogeneous functions it is given by 𝑒𝑥(ℎ𝑛) = 𝑡𝑛/𝑛!;
see Proposition 7.8.4 of [EnumComb2].

By analogy, the 𝑞-exponential specialization is a 𝐾-algebra homomorphism from the 𝐾-algebra of sym-
metric functions to another𝐾-algebra𝑅 that depends on two elements 𝑡 and 𝑞 of𝑅 for which the elements
1 − 𝑞𝑖 for all positive integers 𝑖 are invertible. It can be defined by specifying its values on the complete
homogeneous symmetric functions to be

𝑒𝑥𝑞(ℎ𝑛) = 𝑡𝑛/[𝑛]𝑞!,

where [𝑛]𝑞! is the 𝑞-factorial. Equivalently, for 𝑞 ̸= 1 and a homogeneous symmetric function 𝑓 of degree
𝑛, we have

𝑒𝑥𝑞(𝑓) = (1− 𝑞)𝑛𝑡𝑛𝑝𝑠𝑞(𝑓),

where 𝑝𝑠𝑞(𝑓) is the stable principal specialization of 𝑓 (see principal_specialization()). (See (7.29)
in [EnumComb2].)

The limit of 𝑒𝑥𝑞 as 𝑞 → 1 is 𝑒𝑥.

INPUT:

5.1. Comprehensive Module List 2915

Combinatorics, Release 9.7

• t (default: None) – the value to use for 𝑡; the default is to create a ring of polynomials in t.

• q (default: 1) – the value to use for 𝑞. If q is None, then a ring (or fraction field) of polynomials in q
is created.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: (m[2,1]+m[1,1]).exponential_specialization()
1/2*t^2
sage: (m[2,1]+m[1,1]).exponential_specialization(q=1)
1/2*t^2
sage: m[1,1].exponential_specialization(q=None)
(q/(q + 1))*t^2
sage: Qq = PolynomialRing(QQ, "q"); q = Qq.gen()
sage: m[1,1].exponential_specialization(q=q)
(q/(q + 1))*t^2
sage: Qt = PolynomialRing(QQ, "t"); t = Qt.gen()
sage: m[1,1].exponential_specialization(t=t)
1/2*t^2
sage: Qqt = PolynomialRing(QQ, ["q", "t"]); q, t = Qqt.gens()
sage: m[1,1].exponential_specialization(q=q, t=t)
q*t^2/(q + 1)

sage: x = m[3]+m[2,1]+m[1,1,1]
sage: d = x.homogeneous_degree()
sage: var("q t")
(q, t)
sage: factor((x.principal_specialization()*(1-q)^d*t^d))
t^3/((q^2 + q + 1)*(q + 1))
sage: factor(x.exponential_specialization(q=q, t=t))
t^3/((q^2 + q + 1)*(q + 1))

frobenius(n)
Return the image of the symmetric function self under the 𝑛-th Frobenius operator.

The 𝑛-th Frobenius operator f𝑛 is defined to be the map from the ring of symmetric functions to itself that
sends every symmetric function 𝑃 (𝑥1, 𝑥2, 𝑥3, . . .) to 𝑃 (𝑥𝑛1 , 𝑥

𝑛
2 , 𝑥

𝑛
3 , . . .). This operator f𝑛 is a Hopf algebra

endomorphism, and satisfies

f𝑛𝑚(𝜆1,𝜆2,𝜆3,...) = 𝑚(𝑛𝜆1,𝑛𝜆2,𝑛𝜆3,...)

for every partition (𝜆1, 𝜆2, 𝜆3, . . .) (where 𝑚 means the monomial basis). Moreover, f𝑛(𝑝𝑟) = 𝑝𝑛𝑟 for
every positive integer 𝑟 (where 𝑝𝑘 denotes the 𝑘-th powersum symmetric function).

The 𝑛-th Frobenius operator is also called the 𝑛-th Frobenius endomorphism. It is not related to the Frobe-
nius map which connects the ring of symmetric functions with the representation theory of the symmetric
group.

The 𝑛-th Frobenius operator is also the 𝑛-th Adams operator of the Λ-ring of symmetric functions over the
integers.

The 𝑛-th Frobenius operator can also be described via plethysm: Every symmetric function 𝑃 satisfies
f𝑛(𝑃) = 𝑝𝑛 ∘ 𝑃 = 𝑃 ∘ 𝑝𝑛, where 𝑝𝑛 is the 𝑛-th powersum symmetric function, and ∘ denotes (outer)
plethysm.

INPUT:

• n – a positive integer

2916 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

The result of applying the 𝑛-th Frobenius operator (on the ring of symmetric functions) to self.

EXAMPLES:

sage: Sym = SymmetricFunctions(ZZ)
sage: p = Sym.p()
sage: h = Sym.h()
sage: s = Sym.s()
sage: m = Sym.m()
sage: s[3].frobenius(2)
-s[3, 3] + s[4, 2] - s[5, 1] + s[6]
sage: m[4,2,1].frobenius(3)
m[12, 6, 3]
sage: p[4,2,1].frobenius(3)
p[12, 6, 3]
sage: h[4].frobenius(2)
h[4, 4] - 2*h[5, 3] + 2*h[6, 2] - 2*h[7, 1] + 2*h[8]

The Frobenius endomorphisms are multiplicative:

sage: all(all(s(lam).frobenius(3) * s(mu).frobenius(3) # long time
....: == (s(lam) * s(mu)).frobenius(3)
....: for mu in Partitions(3))
....: for lam in Partitions(3))
True
sage: all(all(m(lam).frobenius(2) * m(mu).frobenius(2)
....: == (m(lam) * m(mu)).frobenius(2)
....: for mu in Partitions(4))
....: for lam in Partitions(4))
True
sage: all(all(p(lam).frobenius(2) * p(mu).frobenius(2)
....: == (p(lam) * p(mu)).frobenius(2)
....: for mu in Partitions(3))
....: for lam in Partitions(4))
True

Being Hopf algebra endomorphisms, the Frobenius operators commute with the antipode:

sage: all(p(lam).frobenius(4).antipode()
....: == p(lam).antipode().frobenius(4)
....: for lam in Partitions(3))
True

Testing the f𝑛(𝑃) = 𝑝𝑛 ∘ 𝑃 = 𝑃 ∘ 𝑝𝑛 equality (over Q, since plethysm is currently not defined over Z in
Sage):

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: p = Sym.p()
sage: all(s(lam).frobenius(3) == s(lam).plethysm(p[3])
....: == s(p[3].plethysm(s(lam)))
....: for lam in Partitions(4))
True

5.1. Comprehensive Module List 2917

Combinatorics, Release 9.7

By Exercise 7.61 in Stanley’s EC2 [STA] (see the errata on his website), f𝑛(ℎ𝑚) is a linear combination of
Schur polynomials (of straight shapes) using coefficients 0, 1 and −1 only; moreover, all partitions whose
Schur polynomials occur with coefficient ̸= 0 in this combination have empty 𝑛-cores. Let us check this
on examples:

sage: all(all(all((coeff == -1 or coeff == 1)
....: and lam.core(n) == Partition([])
....: for lam, coeff in s([m]).frobenius(n))
....: for n in range(2, 4))
....: for m in range(4))
True

See also:

plethysm()

Todo: This method is fast on the monomial and the powersum bases, while all other bases get converted
to the monomial basis. For most bases, this is probably the quickest way to do, but at least the Schur basis
should have a better option. (Quoting from Stanley’s EC2 [STA]: “D. G. Duncan, J. London Math. Soc. 27
(1952), 235-236, or Y. M. Chen, A. M. Garsia, and J. B. Remmel, Contemp. Math. 34 (1984), 109-153”.)

hl_creation_operator(nu, t=None)
This is the vertex operator that generalizes Jing’s operator.

It is a linear operator that raises the degree by |𝜈|. This creation operator is a t-analogue of multiplication
by s(nu) .

See also:

Proposition 5 in [SZ2001].

INPUT:

• nu – a partition or a list of integers

• t – (default: None, in which case t is used) an element of the base ring

REFERENCES:

EXAMPLES:

sage: s = SymmetricFunctions(QQ['t']).s()
sage: s([2]).hl_creation_operator([3,2])
s[3, 2, 2] + t*s[3, 3, 1] + t*s[4, 2, 1] + t^2*s[4, 3] + t^2*s[5, 2]

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLQp = Sym.hall_littlewood().Qp()
sage: s = Sym.s()
sage: HLQp(s([2]).hl_creation_operator([2]).hl_creation_operator([3]))
HLQp[3, 2, 2]
sage: s([2,2]).hl_creation_operator([2,1])
t*s[2, 2, 2, 1] + t^2*s[3, 2, 1, 1] + t^2*s[3, 2, 2] + t^3*s[3, 3, 1] + t^3*s[4,
→˓ 2, 1] + t^4*s[4, 3]
sage: s(1).hl_creation_operator([2,1,1])
s[2, 1, 1]
sage: s(0).hl_creation_operator([2,1,1])
0

(continues on next page)

2918 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: s([3,2]).hl_creation_operator([2,1,1])
(t^2-t)*s[2, 2, 2, 2, 1] + t^3*s[3, 2, 2, 1, 1]
+ (t^3-t^2)*s[3, 2, 2, 2] + t^3*s[3, 3, 1, 1, 1]
+ t^4*s[3, 3, 2, 1] + t^3*s[4, 2, 1, 1, 1] + t^4*s[4, 2, 2, 1]
+ 2*t^4*s[4, 3, 1, 1] + t^5*s[4, 3, 2] + t^5*s[4, 4, 1]
+ t^4*s[5, 2, 1, 1] + t^5*s[5, 3, 1]
sage: s([3,2]).hl_creation_operator([-2])
(-t^2+t)*s[1, 1, 1] + (-t^2+1)*s[2, 1]
sage: s([3,2]).hl_creation_operator(-2)
Traceback (most recent call last):
...
ValueError: nu must be a list of integers
sage: s = SymmetricFunctions(FractionField(ZZ['t'])).schur()
sage: s[2].hl_creation_operator([3])
s[3, 2] + t*s[4, 1] + t^2*s[5]

inner_plethysm(x)
Return the inner plethysm of self with x.

Whenever 𝑅 is a Q-algebra, and 𝑓 and 𝑔 are two symmetric functions over 𝑅 such that the constant term
of 𝑓 is zero, the inner plethysm of 𝑓 with 𝑔 is a symmetric function over 𝑅, and the degree of this sym-
metric function is the same as the degree of 𝑔. We will denote the inner plethysm of 𝑓 with 𝑔 by 𝑓{𝑔}
(in contrast to the notation of outer plethysm which is generally denoted 𝑓 [𝑔]); in Sage syntax, it is f.
inner_plethysm(g).

First we describe the axiomatic definition of the operation; see below for a representation-theoretic inter-
pretation. In the following equations, we denote the outer product (i.e., the standard product on the ring of
symmetric functions, product()) by · and the Kronecker product (itensor()) by *).

(𝑓 + 𝑔){ℎ} = 𝑓{ℎ}+ 𝑔{ℎ}
(𝑓 · 𝑔){ℎ} = (𝑓{ℎ}) * (𝑔{ℎ})
𝑝𝑘{𝑓 + 𝑔} = 𝑝𝑘{𝑓}+ 𝑝𝑘{𝑔}

where 𝑝𝑘 is the 𝑘-th power-sum symmetric function for every 𝑘 > 0.

Let 𝜎 be a permutation of cycle type 𝜇 and let 𝜇𝑘 be the cycle type of 𝜎𝑘. Then,

𝑝𝑘{𝑝𝜇/𝑧𝜇} =
∑︁

𝜈:𝜈𝑘=𝜇

𝑝𝜈/𝑧𝜈

Since (𝑝𝜇/𝑧𝜇)𝜇 is a basis for the symmetric functions, these four formulas define the symmetric function
operation 𝑓{𝑔} for any symmetric functions 𝑓 and 𝑔 (where 𝑓 has constant term 0) by expanding 𝑓 in the
power sum basis and 𝑔 in the dual basis 𝑝𝜇/𝑧𝜇.

See also:

itensor(), partition_power(), plethysm()

This operation admits a representation-theoretic interpretation in the case where 𝑓 is a Schur function 𝑠𝜆
and 𝑔 is a homogeneous degree 𝑛 symmetric function with nonnegative integral coefficients in the Schur
basis. The symmetric function 𝑓{𝑔} is the Frobenius image of the𝑆𝑛-representation constructed as follows.

The assumptions on 𝑔 imply that 𝑔 is the Frobenius image of a representation 𝜌 of the symmetric group 𝑆𝑛:

𝜌 : 𝑆𝑛 → 𝐺𝐿𝑁 .

5.1. Comprehensive Module List 2919

Combinatorics, Release 9.7

If the degree 𝑁 of this representation is greater than or equal to the number of parts of 𝜆, then 𝑓 , which
denotes 𝑠𝜆, corresponds to the character of some irreducible 𝐺𝐿𝑁 -representation, say

𝜎 : 𝐺𝐿𝑁 → 𝐺𝐿𝑀 .

The composition 𝜎 ∘ 𝜌 : 𝑆𝑛 → 𝐺𝐿𝑀 is a representation of 𝑆𝑛 whose Frobenius image is precisely 𝑓{𝑔}.

If 𝑁 is less than the number of parts of 𝜆, then 𝑓{𝑔} is 0 by definition.

When 𝑓 is a symmetric function with constant term ̸= 0, the inner plethysm 𝑓{𝑔} isn’t well-defined in
the ring of symmetric functions. Indeed, it is not clear how to define 1{𝑔}. The most sensible way to get
around this probably is defining it as the infinite sum ℎ0 +ℎ1 +ℎ2 + · · · (where ℎ𝑖 means the 𝑖-th complete
homogeneous symmetric function) in the completion of this ring with respect to its grading. This is how
[SchaThi1994] defines 1{𝑔}. The present method, however, sets it to be the sum of ℎ𝑖 over all 𝑖 for which
the 𝑖-th homogeneous component of 𝑔 is nonzero. This is rather a hack than a reasonable definition. Use
with caution!

Note: If a symmetric function 𝑔 is written in the form 𝑔 = 𝑔0 + 𝑔1 + 𝑔2 + · · · with each 𝑔𝑖 homogeneous
of degree 𝑖, then 𝑓{𝑔} = 𝑓{𝑔0}+ 𝑓{𝑔1}+ 𝑓{𝑔2}+ · · · for every 𝑓 with constant term 0. But in general,
inner plethysm is not linear in the second variable.

REFERENCES:

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

OUTPUT:

• an element of symmetric functions in the parent of self

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: p = Sym.power()
sage: h = Sym.complete()
sage: s([2,1]).inner_plethysm(s([1,1,1]))
0
sage: s([2]).inner_plethysm(s([2,1]))
s[2, 1] + s[3]
sage: s([1,1]).inner_plethysm(s([2,1]))
s[1, 1, 1]
sage: s[2,1].inner_tensor(s[2,1])
s[1, 1, 1] + s[2, 1] + s[3]

sage: f = s([2,1]) + 2*s([3,1])
sage: f.itensor(f)
s[1, 1, 1] + s[2, 1] + 4*s[2, 1, 1] + 4*s[2, 2] + s[3] + 4*s[3, 1] + 4*s[4]
sage: s(h([1,1]).inner_plethysm(f))
s[1, 1, 1] + s[2, 1] + 4*s[2, 1, 1] + 4*s[2, 2] + s[3] + 4*s[3, 1] + 4*s[4]

sage: s([]).inner_plethysm(s([1,1]) + 2*s([2,1])+s([3]))
s[2] + s[3]
sage: [s([]).inner_plethysm(s(la)) for la in Partitions(4)]
[s[4], s[4], s[4], s[4], s[4]]

(continues on next page)

2920 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: s([3]).inner_plethysm(s([]))
s[]
sage: s[1,1,1,1].inner_plethysm(s[2,1])
0
sage: s[1,1,1,1].inner_plethysm(2*s[2,1])
s[3]

sage: p[3].inner_plethysm(p[3])
0
sage: p[3,3].inner_plethysm(p[3])
0
sage: p[3].inner_plethysm(p[1,1,1])
p[1, 1, 1] + 2*p[3]
sage: p[4].inner_plethysm(p[1,1,1,1]/24)
1/24*p[1, 1, 1, 1] + 1/4*p[2, 1, 1] + 1/8*p[2, 2] + 1/4*p[4]
sage: p[3,3].inner_plethysm(p[1,1,1])
6*p[1, 1, 1] + 12*p[3]

inner_tensor(x)
Return the internal (tensor) product of self and x in the basis of self.

The internal tensor product can be defined as the linear extension of the definition on power sums 𝑝𝜆 *𝑝𝜇 =
𝛿𝜆,𝜇𝑧𝜆𝑝𝜆, where 𝑧𝜆 = (1𝑟1𝑟1!)(2𝑟2𝑟2!) · · · for 𝜆 = (1𝑟12𝑟2 · · ·) and where * denotes the internal tensor
product. The internal tensor product is also known as the Kronecker product, or as the second multiplication
on the ring of symmetric functions.

Note that the internal product of any two homogeneous symmetric functions of equal degrees is a homoge-
neous symmetric function of the same degree. On the other hand, the internal product of two homogeneous
symmetric functions of distinct degrees is 0.

Note: The internal product is sometimes referred to as “inner product” in the literature, but unfortunately
this name is shared by a different operation, namely the Hall inner product (see scalar()).

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

OUTPUT:

• the internal product of self with x (an element of the ring of symmetric functions in the same basis
as self)

The methods itensor(), internal_product(), kronecker_product(), inner_tensor() are all
synonyms.

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: a = s([2,1])
sage: b = s([3])
sage: a.itensor(b)
s[2, 1]
sage: c = s([3,2,1])
sage: c.itensor(c)

(continues on next page)

5.1. Comprehensive Module List 2921

Combinatorics, Release 9.7

(continued from previous page)

s[1, 1, 1, 1, 1, 1] + 2*s[2, 1, 1, 1, 1] + 3*s[2, 2, 1, 1] + 2*s[2, 2, 2]
+ 4*s[3, 1, 1, 1] + 5*s[3, 2, 1] + 2*s[3, 3] + 4*s[4, 1, 1]
+ 3*s[4, 2] + 2*s[5, 1] + s[6]

There are few quantitative results pertaining to Kronecker products in general, which makes their compu-
tation so difficult. Let us test a few of them in different bases.

The Kronecker product of any homogeneous symmetric function 𝑓 of degree 𝑛 with the 𝑛-th complete
homogeneous symmetric function h[n] (a.k.a. s[n]) is 𝑓 :

sage: h = SymmetricFunctions(ZZ).h()
sage: all(h([5]).itensor(h(p)) == h(p) for p in Partitions(5))
True

The Kronecker product of a Schur function 𝑠𝜆 with the 𝑛-th elementary symmetric function e[n], where
𝑛 = |𝜆|, is 𝑠𝜆′ (where 𝜆′ is the conjugate partition of 𝜆):

sage: F = CyclotomicField(12)
sage: s = SymmetricFunctions(F).s()
sage: e = SymmetricFunctions(F).e()
sage: all(e([5]).itensor(s(p)) == s(p.conjugate()) for p in Partitions(5))
True

The Kronecker product is commutative:

sage: e = SymmetricFunctions(FiniteField(19)).e()
sage: m = SymmetricFunctions(FiniteField(19)).m()
sage: all(all(e(p).itensor(m(q)) == m(q).itensor(e(p)) for q in Partitions(4)␣
→˓)
....: for p in Partitions(4))
True

sage: F = FractionField(QQ['q','t'])
sage: mq = SymmetricFunctions(F).macdonald().Q()
sage: mh = SymmetricFunctions(F).macdonald().H()
sage: all(all(mq(p).itensor(mh(r)) == mh(r).itensor(mq(p)) # long time
....: for r in Partitions(4))
....: for p in Partitions(3))
True

Let us check (on examples) Proposition 5.2 of Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, “Non-
commutative symmetric functions”, arXiv hep-th/9407124, for 𝑟 = 2:

sage: e = SymmetricFunctions(FiniteField(29)).e()
sage: s = SymmetricFunctions(FiniteField(29)).s()
sage: m = SymmetricFunctions(FiniteField(29)).m()
sage: def tensor_copr(u, v, w): # computes \mu ((u \otimes v) * \Delta(w)) with
....: # * meaning Kronecker product and \mu meaning␣
→˓the
....: # usual multiplication.
....: result = w.parent().zero()
....: for partition_pair, coeff in w.coproduct():
....: result += coeff * w.parent()(u).itensor(partition_pair[0]) * w.
→˓parent()(v).itensor(partition_pair[1])

(continues on next page)

2922 Chapter 5. Comprehensive Module List

https://arxiv.org/abs/hep-th/9407124

Combinatorics, Release 9.7

(continued from previous page)

....: return result
sage: all(all(all(tensor_copr(e[u], s[v], m[w]) # long time
....: == (e[u] * s[v]).itensor(m[w])
....: for w in Partitions(5))
....: for v in Partitions(2))
....: for u in Partitions(3))
True

Some examples from Briand, Orellana, Rosas, “The stability of the Kronecker products of Schur functions.”
arXiv 0907.4652:

sage: s = SymmetricFunctions(ZZ).s()
sage: s[2,2].itensor(s[2,2])
s[1, 1, 1, 1] + s[2, 2] + s[4]
sage: s[3,2].itensor(s[3,2])
s[2, 1, 1, 1] + s[2, 2, 1] + s[3, 1, 1] + s[3, 2] + s[4, 1] + s[5]
sage: s[4,2].itensor(s[4,2])
s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[4, 1, 1] + 2*s[4, 2] + s[5, 1] +␣
→˓s[6]

An example from p. 220 of Thibon, “Hopf algebras of symmetric functions and tensor products of sym-
metric group representations”, International Journal of Algebra and Computation, 1991:

sage: s = SymmetricFunctions(QQbar).s()
sage: s[2,1].itensor(s[2,1])
s[1, 1, 1] + s[2, 1] + s[3]

Note: The currently existing implementation of this function is technically unsatisfactory. It distinguishes
the case when the base ring is a Q-algebra (in which case the Kronecker product can be easily computed
using the power sum basis) from the case where it isn’t. In the latter, it does a computation using universal
coefficients, again distinguishing the case when it is able to compute the “corresponding” basis of the
symmetric function algebra over Q (using the corresponding_basis_over hack) from the case when it
isn’t (in which case it transforms everything into the Schur basis, which is slow).

internal_coproduct()
Return the inner coproduct of self in the basis of self.

The inner coproduct (also known as the Kronecker coproduct, as the internal coproduct, or as the second
comultiplication on the ring of symmetric functions) is a ring homomorphism ∆× from the ring of symmet-
ric functions to the tensor product (over the base ring) of this ring with itself. It is uniquely characterized
by the formula

∆×(ℎ𝑛) =
∑︁
𝜆⊢𝑛

𝑠𝜆 ⊗ 𝑠𝜆 =
∑︁
𝜆⊢𝑛

ℎ𝜆 ⊗𝑚𝜆 =
∑︁
𝜆⊢𝑛

𝑚𝜆 ⊗ ℎ𝜆,

where 𝜆 ⊢ 𝑛 means 𝜆 is a partition of 𝑛, and 𝑛 is any nonnegative integer. It also satisfies

∆×(𝑝𝑛) = 𝑝𝑛 ⊗ 𝑝𝑛

for any positive integer 𝑛. If the base ring is a Q-algebra, it also satisfies

∆×(ℎ𝑛) =
∑︁
𝜆⊢𝑛

𝑧−1𝜆 𝑝𝜆 ⊗ 𝑝𝜆,

5.1. Comprehensive Module List 2923

https://arxiv.org/abs/0907.4652

Combinatorics, Release 9.7

where

𝑧𝜆 =

∞∏︁
𝑖=1

𝑖𝑚𝑖(𝜆)𝑚𝑖(𝜆)!

with 𝑚𝑖(𝜆) meaning the number of appearances of 𝑖 in 𝜆 (see zee()).

The method kronecker_coproduct() is a synonym of internal_coproduct().

EXAMPLES:

sage: s = SymmetricFunctions(ZZ).s()
sage: a = s([2,1])
sage: a.internal_coproduct()
s[1, 1, 1] # s[2, 1] + s[2, 1] # s[1, 1, 1] + s[2, 1] # s[2, 1] + s[2, 1] #␣
→˓s[3] + s[3] # s[2, 1]

sage: e = SymmetricFunctions(QQ).e()
sage: b = e([2])
sage: b.internal_coproduct()
e[1, 1] # e[2] + e[2] # e[1, 1] - 2*e[2] # e[2]

The internal coproduct is adjoint to the internal product with respect to the Hall inner product: Any three
symmetric functions 𝑓 , 𝑔 and ℎ satisfy ⟨𝑓*𝑔, ℎ⟩ =

∑︀
𝑖⟨𝑓, ℎ′𝑖⟩⟨𝑔, ℎ′′𝑖 ⟩, where we write ∆×(ℎ) as

∑︀
𝑖 ℎ
′
𝑖⊗ℎ′′𝑖 .

Let us check this in degree 4:

sage: e = SymmetricFunctions(FiniteField(29)).e()
sage: s = SymmetricFunctions(FiniteField(29)).s()
sage: m = SymmetricFunctions(FiniteField(29)).m()
sage: def tensor_incopr(f, g, h): # computes \sum_i \left< f, h'_i \right> \left
→˓< g, h''_i \right>
....: result = h.base_ring().zero()
....: for partition_pair, coeff in h.internal_coproduct():
....: result += coeff * h.parent()(f).scalar(partition_pair[0]) * h.
→˓parent()(g).scalar(partition_pair[1])
....: return result
sage: all(all(all(tensor_incopr(e[u], s[v], m[w]) == (e[u].itensor(s[v])).
→˓scalar(m[w]) # long time (10s on sage.math, 2013)
....: for w in Partitions(5))
....: for v in Partitions(2))
....: for u in Partitions(3))
True

Let us check the formulas for ∆×(ℎ𝑛) and ∆×(𝑝𝑛) given in the description of this method:

sage: e = SymmetricFunctions(QQ).e()
sage: p = SymmetricFunctions(QQ).p()
sage: h = SymmetricFunctions(QQ).h()
sage: s = SymmetricFunctions(QQ).s()
sage: all(s(h([n])).internal_coproduct() == sum([tensor([s(lam), s(lam)]) for␣
→˓lam in Partitions(n)])
....: for n in range(6))
True
sage: all(h([n]).internal_coproduct() == sum([tensor([h(lam), h(m(lam))]) for␣
→˓lam in Partitions(n)])
....: for n in range(6))

(continues on next page)

2924 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

True
sage: all(factorial(n) * h([n]).internal_coproduct()
....: == sum([lam.conjugacy_class_size() * tensor([h(p(lam)), h(p(lam))])
....: for lam in Partitions(n)])
....: for n in range(6))
True

internal_product(x)
Return the internal (tensor) product of self and x in the basis of self.

The internal tensor product can be defined as the linear extension of the definition on power sums 𝑝𝜆 *𝑝𝜇 =
𝛿𝜆,𝜇𝑧𝜆𝑝𝜆, where 𝑧𝜆 = (1𝑟1𝑟1!)(2𝑟2𝑟2!) · · · for 𝜆 = (1𝑟12𝑟2 · · ·) and where * denotes the internal tensor
product. The internal tensor product is also known as the Kronecker product, or as the second multiplication
on the ring of symmetric functions.

Note that the internal product of any two homogeneous symmetric functions of equal degrees is a homoge-
neous symmetric function of the same degree. On the other hand, the internal product of two homogeneous
symmetric functions of distinct degrees is 0.

Note: The internal product is sometimes referred to as “inner product” in the literature, but unfortunately
this name is shared by a different operation, namely the Hall inner product (see scalar()).

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

OUTPUT:

• the internal product of self with x (an element of the ring of symmetric functions in the same basis
as self)

The methods itensor(), internal_product(), kronecker_product(), inner_tensor() are all
synonyms.

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: a = s([2,1])
sage: b = s([3])
sage: a.itensor(b)
s[2, 1]
sage: c = s([3,2,1])
sage: c.itensor(c)
s[1, 1, 1, 1, 1, 1] + 2*s[2, 1, 1, 1, 1] + 3*s[2, 2, 1, 1] + 2*s[2, 2, 2]
+ 4*s[3, 1, 1, 1] + 5*s[3, 2, 1] + 2*s[3, 3] + 4*s[4, 1, 1]
+ 3*s[4, 2] + 2*s[5, 1] + s[6]

There are few quantitative results pertaining to Kronecker products in general, which makes their compu-
tation so difficult. Let us test a few of them in different bases.

The Kronecker product of any homogeneous symmetric function 𝑓 of degree 𝑛 with the 𝑛-th complete
homogeneous symmetric function h[n] (a.k.a. s[n]) is 𝑓 :

sage: h = SymmetricFunctions(ZZ).h()
sage: all(h([5]).itensor(h(p)) == h(p) for p in Partitions(5))
True

5.1. Comprehensive Module List 2925

Combinatorics, Release 9.7

The Kronecker product of a Schur function 𝑠𝜆 with the 𝑛-th elementary symmetric function e[n], where
𝑛 = |𝜆|, is 𝑠𝜆′ (where 𝜆′ is the conjugate partition of 𝜆):

sage: F = CyclotomicField(12)
sage: s = SymmetricFunctions(F).s()
sage: e = SymmetricFunctions(F).e()
sage: all(e([5]).itensor(s(p)) == s(p.conjugate()) for p in Partitions(5))
True

The Kronecker product is commutative:

sage: e = SymmetricFunctions(FiniteField(19)).e()
sage: m = SymmetricFunctions(FiniteField(19)).m()
sage: all(all(e(p).itensor(m(q)) == m(q).itensor(e(p)) for q in Partitions(4)␣
→˓)
....: for p in Partitions(4))
True

sage: F = FractionField(QQ['q','t'])
sage: mq = SymmetricFunctions(F).macdonald().Q()
sage: mh = SymmetricFunctions(F).macdonald().H()
sage: all(all(mq(p).itensor(mh(r)) == mh(r).itensor(mq(p)) # long time
....: for r in Partitions(4))
....: for p in Partitions(3))
True

Let us check (on examples) Proposition 5.2 of Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, “Non-
commutative symmetric functions”, arXiv hep-th/9407124, for 𝑟 = 2:

sage: e = SymmetricFunctions(FiniteField(29)).e()
sage: s = SymmetricFunctions(FiniteField(29)).s()
sage: m = SymmetricFunctions(FiniteField(29)).m()
sage: def tensor_copr(u, v, w): # computes \mu ((u \otimes v) * \Delta(w)) with
....: # * meaning Kronecker product and \mu meaning␣
→˓the
....: # usual multiplication.
....: result = w.parent().zero()
....: for partition_pair, coeff in w.coproduct():
....: result += coeff * w.parent()(u).itensor(partition_pair[0]) * w.
→˓parent()(v).itensor(partition_pair[1])
....: return result
sage: all(all(all(tensor_copr(e[u], s[v], m[w]) # long time
....: == (e[u] * s[v]).itensor(m[w])
....: for w in Partitions(5))
....: for v in Partitions(2))
....: for u in Partitions(3))
True

Some examples from Briand, Orellana, Rosas, “The stability of the Kronecker products of Schur functions.”
arXiv 0907.4652:

sage: s = SymmetricFunctions(ZZ).s()
sage: s[2,2].itensor(s[2,2])
s[1, 1, 1, 1] + s[2, 2] + s[4]

(continues on next page)

2926 Chapter 5. Comprehensive Module List

https://arxiv.org/abs/hep-th/9407124
https://arxiv.org/abs/0907.4652

Combinatorics, Release 9.7

(continued from previous page)

sage: s[3,2].itensor(s[3,2])
s[2, 1, 1, 1] + s[2, 2, 1] + s[3, 1, 1] + s[3, 2] + s[4, 1] + s[5]
sage: s[4,2].itensor(s[4,2])
s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[4, 1, 1] + 2*s[4, 2] + s[5, 1] +␣
→˓s[6]

An example from p. 220 of Thibon, “Hopf algebras of symmetric functions and tensor products of sym-
metric group representations”, International Journal of Algebra and Computation, 1991:

sage: s = SymmetricFunctions(QQbar).s()
sage: s[2,1].itensor(s[2,1])
s[1, 1, 1] + s[2, 1] + s[3]

Note: The currently existing implementation of this function is technically unsatisfactory. It distinguishes
the case when the base ring is a Q-algebra (in which case the Kronecker product can be easily computed
using the power sum basis) from the case where it isn’t. In the latter, it does a computation using universal
coefficients, again distinguishing the case when it is able to compute the “corresponding” basis of the
symmetric function algebra over Q (using the corresponding_basis_over hack) from the case when it
isn’t (in which case it transforms everything into the Schur basis, which is slow).

is_schur_positive()
Return True if and only if self is Schur positive.

If 𝑠 is the space of Schur functions over self’s base ring, then this is the same as self._is_positive(s).

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: a = s([2,1]) + s([3])
sage: a.is_schur_positive()
True
sage: a = s([2,1]) - s([3])
sage: a.is_schur_positive()
False

sage: QQx = QQ['x']
sage: s = SymmetricFunctions(QQx).s()
sage: x = QQx.gen()
sage: a = (1+x)*s([2,1])
sage: a.is_schur_positive()
True
sage: a = (1-x)*s([2,1])
sage: a.is_schur_positive()
False
sage: s(0).is_schur_positive()
True
sage: s(1+x).is_schur_positive()
True

itensor(x)
Return the internal (tensor) product of self and x in the basis of self.

The internal tensor product can be defined as the linear extension of the definition on power sums 𝑝𝜆 *𝑝𝜇 =

5.1. Comprehensive Module List 2927

Combinatorics, Release 9.7

𝛿𝜆,𝜇𝑧𝜆𝑝𝜆, where 𝑧𝜆 = (1𝑟1𝑟1!)(2𝑟2𝑟2!) · · · for 𝜆 = (1𝑟12𝑟2 · · ·) and where * denotes the internal tensor
product. The internal tensor product is also known as the Kronecker product, or as the second multiplication
on the ring of symmetric functions.

Note that the internal product of any two homogeneous symmetric functions of equal degrees is a homoge-
neous symmetric function of the same degree. On the other hand, the internal product of two homogeneous
symmetric functions of distinct degrees is 0.

Note: The internal product is sometimes referred to as “inner product” in the literature, but unfortunately
this name is shared by a different operation, namely the Hall inner product (see scalar()).

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

OUTPUT:

• the internal product of self with x (an element of the ring of symmetric functions in the same basis
as self)

The methods itensor(), internal_product(), kronecker_product(), inner_tensor() are all
synonyms.

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: a = s([2,1])
sage: b = s([3])
sage: a.itensor(b)
s[2, 1]
sage: c = s([3,2,1])
sage: c.itensor(c)
s[1, 1, 1, 1, 1, 1] + 2*s[2, 1, 1, 1, 1] + 3*s[2, 2, 1, 1] + 2*s[2, 2, 2]
+ 4*s[3, 1, 1, 1] + 5*s[3, 2, 1] + 2*s[3, 3] + 4*s[4, 1, 1]
+ 3*s[4, 2] + 2*s[5, 1] + s[6]

There are few quantitative results pertaining to Kronecker products in general, which makes their compu-
tation so difficult. Let us test a few of them in different bases.

The Kronecker product of any homogeneous symmetric function 𝑓 of degree 𝑛 with the 𝑛-th complete
homogeneous symmetric function h[n] (a.k.a. s[n]) is 𝑓 :

sage: h = SymmetricFunctions(ZZ).h()
sage: all(h([5]).itensor(h(p)) == h(p) for p in Partitions(5))
True

The Kronecker product of a Schur function 𝑠𝜆 with the 𝑛-th elementary symmetric function e[n], where
𝑛 = |𝜆|, is 𝑠𝜆′ (where 𝜆′ is the conjugate partition of 𝜆):

sage: F = CyclotomicField(12)
sage: s = SymmetricFunctions(F).s()
sage: e = SymmetricFunctions(F).e()
sage: all(e([5]).itensor(s(p)) == s(p.conjugate()) for p in Partitions(5))
True

The Kronecker product is commutative:

2928 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: e = SymmetricFunctions(FiniteField(19)).e()
sage: m = SymmetricFunctions(FiniteField(19)).m()
sage: all(all(e(p).itensor(m(q)) == m(q).itensor(e(p)) for q in Partitions(4)␣
→˓)
....: for p in Partitions(4))
True

sage: F = FractionField(QQ['q','t'])
sage: mq = SymmetricFunctions(F).macdonald().Q()
sage: mh = SymmetricFunctions(F).macdonald().H()
sage: all(all(mq(p).itensor(mh(r)) == mh(r).itensor(mq(p)) # long time
....: for r in Partitions(4))
....: for p in Partitions(3))
True

Let us check (on examples) Proposition 5.2 of Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, “Non-
commutative symmetric functions”, arXiv hep-th/9407124, for 𝑟 = 2:

sage: e = SymmetricFunctions(FiniteField(29)).e()
sage: s = SymmetricFunctions(FiniteField(29)).s()
sage: m = SymmetricFunctions(FiniteField(29)).m()
sage: def tensor_copr(u, v, w): # computes \mu ((u \otimes v) * \Delta(w)) with
....: # * meaning Kronecker product and \mu meaning␣
→˓the
....: # usual multiplication.
....: result = w.parent().zero()
....: for partition_pair, coeff in w.coproduct():
....: result += coeff * w.parent()(u).itensor(partition_pair[0]) * w.
→˓parent()(v).itensor(partition_pair[1])
....: return result
sage: all(all(all(tensor_copr(e[u], s[v], m[w]) # long time
....: == (e[u] * s[v]).itensor(m[w])
....: for w in Partitions(5))
....: for v in Partitions(2))
....: for u in Partitions(3))
True

Some examples from Briand, Orellana, Rosas, “The stability of the Kronecker products of Schur functions.”
arXiv 0907.4652:

sage: s = SymmetricFunctions(ZZ).s()
sage: s[2,2].itensor(s[2,2])
s[1, 1, 1, 1] + s[2, 2] + s[4]
sage: s[3,2].itensor(s[3,2])
s[2, 1, 1, 1] + s[2, 2, 1] + s[3, 1, 1] + s[3, 2] + s[4, 1] + s[5]
sage: s[4,2].itensor(s[4,2])
s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[4, 1, 1] + 2*s[4, 2] + s[5, 1] +␣
→˓s[6]

An example from p. 220 of Thibon, “Hopf algebras of symmetric functions and tensor products of sym-
metric group representations”, International Journal of Algebra and Computation, 1991:

sage: s = SymmetricFunctions(QQbar).s()
(continues on next page)

5.1. Comprehensive Module List 2929

https://arxiv.org/abs/hep-th/9407124
https://arxiv.org/abs/0907.4652

Combinatorics, Release 9.7

(continued from previous page)

sage: s[2,1].itensor(s[2,1])
s[1, 1, 1] + s[2, 1] + s[3]

Note: The currently existing implementation of this function is technically unsatisfactory. It distinguishes
the case when the base ring is a Q-algebra (in which case the Kronecker product can be easily computed
using the power sum basis) from the case where it isn’t. In the latter, it does a computation using universal
coefficients, again distinguishing the case when it is able to compute the “corresponding” basis of the
symmetric function algebra over Q (using the corresponding_basis_over hack) from the case when it
isn’t (in which case it transforms everything into the Schur basis, which is slow).

kronecker_coproduct()
Return the inner coproduct of self in the basis of self.

The inner coproduct (also known as the Kronecker coproduct, as the internal coproduct, or as the second
comultiplication on the ring of symmetric functions) is a ring homomorphism ∆× from the ring of symmet-
ric functions to the tensor product (over the base ring) of this ring with itself. It is uniquely characterized
by the formula

∆×(ℎ𝑛) =
∑︁
𝜆⊢𝑛

𝑠𝜆 ⊗ 𝑠𝜆 =
∑︁
𝜆⊢𝑛

ℎ𝜆 ⊗𝑚𝜆 =
∑︁
𝜆⊢𝑛

𝑚𝜆 ⊗ ℎ𝜆,

where 𝜆 ⊢ 𝑛 means 𝜆 is a partition of 𝑛, and 𝑛 is any nonnegative integer. It also satisfies

∆×(𝑝𝑛) = 𝑝𝑛 ⊗ 𝑝𝑛

for any positive integer 𝑛. If the base ring is a Q-algebra, it also satisfies

∆×(ℎ𝑛) =
∑︁
𝜆⊢𝑛

𝑧−1𝜆 𝑝𝜆 ⊗ 𝑝𝜆,

where

𝑧𝜆 =

∞∏︁
𝑖=1

𝑖𝑚𝑖(𝜆)𝑚𝑖(𝜆)!

with 𝑚𝑖(𝜆) meaning the number of appearances of 𝑖 in 𝜆 (see zee()).

The method kronecker_coproduct() is a synonym of internal_coproduct().

EXAMPLES:

sage: s = SymmetricFunctions(ZZ).s()
sage: a = s([2,1])
sage: a.internal_coproduct()
s[1, 1, 1] # s[2, 1] + s[2, 1] # s[1, 1, 1] + s[2, 1] # s[2, 1] + s[2, 1] #␣
→˓s[3] + s[3] # s[2, 1]

sage: e = SymmetricFunctions(QQ).e()
sage: b = e([2])
sage: b.internal_coproduct()
e[1, 1] # e[2] + e[2] # e[1, 1] - 2*e[2] # e[2]

The internal coproduct is adjoint to the internal product with respect to the Hall inner product: Any three
symmetric functions 𝑓 , 𝑔 and ℎ satisfy ⟨𝑓*𝑔, ℎ⟩ =

∑︀
𝑖⟨𝑓, ℎ′𝑖⟩⟨𝑔, ℎ′′𝑖 ⟩, where we write ∆×(ℎ) as

∑︀
𝑖 ℎ
′
𝑖⊗ℎ′′𝑖 .

Let us check this in degree 4:

2930 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: e = SymmetricFunctions(FiniteField(29)).e()
sage: s = SymmetricFunctions(FiniteField(29)).s()
sage: m = SymmetricFunctions(FiniteField(29)).m()
sage: def tensor_incopr(f, g, h): # computes \sum_i \left< f, h'_i \right> \left
→˓< g, h''_i \right>
....: result = h.base_ring().zero()
....: for partition_pair, coeff in h.internal_coproduct():
....: result += coeff * h.parent()(f).scalar(partition_pair[0]) * h.
→˓parent()(g).scalar(partition_pair[1])
....: return result
sage: all(all(all(tensor_incopr(e[u], s[v], m[w]) == (e[u].itensor(s[v])).
→˓scalar(m[w]) # long time (10s on sage.math, 2013)
....: for w in Partitions(5))
....: for v in Partitions(2))
....: for u in Partitions(3))
True

Let us check the formulas for ∆×(ℎ𝑛) and ∆×(𝑝𝑛) given in the description of this method:

sage: e = SymmetricFunctions(QQ).e()
sage: p = SymmetricFunctions(QQ).p()
sage: h = SymmetricFunctions(QQ).h()
sage: s = SymmetricFunctions(QQ).s()
sage: all(s(h([n])).internal_coproduct() == sum([tensor([s(lam), s(lam)]) for␣
→˓lam in Partitions(n)])
....: for n in range(6))
True
sage: all(h([n]).internal_coproduct() == sum([tensor([h(lam), h(m(lam))]) for␣
→˓lam in Partitions(n)])
....: for n in range(6))
True
sage: all(factorial(n) * h([n]).internal_coproduct()
....: == sum([lam.conjugacy_class_size() * tensor([h(p(lam)), h(p(lam))])
....: for lam in Partitions(n)])
....: for n in range(6))
True

kronecker_product(x)
Return the internal (tensor) product of self and x in the basis of self.

The internal tensor product can be defined as the linear extension of the definition on power sums 𝑝𝜆 *𝑝𝜇 =
𝛿𝜆,𝜇𝑧𝜆𝑝𝜆, where 𝑧𝜆 = (1𝑟1𝑟1!)(2𝑟2𝑟2!) · · · for 𝜆 = (1𝑟12𝑟2 · · ·) and where * denotes the internal tensor
product. The internal tensor product is also known as the Kronecker product, or as the second multiplication
on the ring of symmetric functions.

Note that the internal product of any two homogeneous symmetric functions of equal degrees is a homoge-
neous symmetric function of the same degree. On the other hand, the internal product of two homogeneous
symmetric functions of distinct degrees is 0.

Note: The internal product is sometimes referred to as “inner product” in the literature, but unfortunately
this name is shared by a different operation, namely the Hall inner product (see scalar()).

INPUT:

5.1. Comprehensive Module List 2931

Combinatorics, Release 9.7

• x – element of the ring of symmetric functions over the same base ring as self

OUTPUT:

• the internal product of self with x (an element of the ring of symmetric functions in the same basis
as self)

The methods itensor(), internal_product(), kronecker_product(), inner_tensor() are all
synonyms.

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: a = s([2,1])
sage: b = s([3])
sage: a.itensor(b)
s[2, 1]
sage: c = s([3,2,1])
sage: c.itensor(c)
s[1, 1, 1, 1, 1, 1] + 2*s[2, 1, 1, 1, 1] + 3*s[2, 2, 1, 1] + 2*s[2, 2, 2]
+ 4*s[3, 1, 1, 1] + 5*s[3, 2, 1] + 2*s[3, 3] + 4*s[4, 1, 1]
+ 3*s[4, 2] + 2*s[5, 1] + s[6]

There are few quantitative results pertaining to Kronecker products in general, which makes their compu-
tation so difficult. Let us test a few of them in different bases.

The Kronecker product of any homogeneous symmetric function 𝑓 of degree 𝑛 with the 𝑛-th complete
homogeneous symmetric function h[n] (a.k.a. s[n]) is 𝑓 :

sage: h = SymmetricFunctions(ZZ).h()
sage: all(h([5]).itensor(h(p)) == h(p) for p in Partitions(5))
True

The Kronecker product of a Schur function 𝑠𝜆 with the 𝑛-th elementary symmetric function e[n], where
𝑛 = |𝜆|, is 𝑠𝜆′ (where 𝜆′ is the conjugate partition of 𝜆):

sage: F = CyclotomicField(12)
sage: s = SymmetricFunctions(F).s()
sage: e = SymmetricFunctions(F).e()
sage: all(e([5]).itensor(s(p)) == s(p.conjugate()) for p in Partitions(5))
True

The Kronecker product is commutative:

sage: e = SymmetricFunctions(FiniteField(19)).e()
sage: m = SymmetricFunctions(FiniteField(19)).m()
sage: all(all(e(p).itensor(m(q)) == m(q).itensor(e(p)) for q in Partitions(4)␣
→˓)
....: for p in Partitions(4))
True

sage: F = FractionField(QQ['q','t'])
sage: mq = SymmetricFunctions(F).macdonald().Q()
sage: mh = SymmetricFunctions(F).macdonald().H()
sage: all(all(mq(p).itensor(mh(r)) == mh(r).itensor(mq(p)) # long time
....: for r in Partitions(4))

(continues on next page)

2932 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: for p in Partitions(3))
True

Let us check (on examples) Proposition 5.2 of Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, “Non-
commutative symmetric functions”, arXiv hep-th/9407124, for 𝑟 = 2:

sage: e = SymmetricFunctions(FiniteField(29)).e()
sage: s = SymmetricFunctions(FiniteField(29)).s()
sage: m = SymmetricFunctions(FiniteField(29)).m()
sage: def tensor_copr(u, v, w): # computes \mu ((u \otimes v) * \Delta(w)) with
....: # * meaning Kronecker product and \mu meaning␣
→˓the
....: # usual multiplication.
....: result = w.parent().zero()
....: for partition_pair, coeff in w.coproduct():
....: result += coeff * w.parent()(u).itensor(partition_pair[0]) * w.
→˓parent()(v).itensor(partition_pair[1])
....: return result
sage: all(all(all(tensor_copr(e[u], s[v], m[w]) # long time
....: == (e[u] * s[v]).itensor(m[w])
....: for w in Partitions(5))
....: for v in Partitions(2))
....: for u in Partitions(3))
True

Some examples from Briand, Orellana, Rosas, “The stability of the Kronecker products of Schur functions.”
arXiv 0907.4652:

sage: s = SymmetricFunctions(ZZ).s()
sage: s[2,2].itensor(s[2,2])
s[1, 1, 1, 1] + s[2, 2] + s[4]
sage: s[3,2].itensor(s[3,2])
s[2, 1, 1, 1] + s[2, 2, 1] + s[3, 1, 1] + s[3, 2] + s[4, 1] + s[5]
sage: s[4,2].itensor(s[4,2])
s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[4, 1, 1] + 2*s[4, 2] + s[5, 1] +␣
→˓s[6]

An example from p. 220 of Thibon, “Hopf algebras of symmetric functions and tensor products of sym-
metric group representations”, International Journal of Algebra and Computation, 1991:

sage: s = SymmetricFunctions(QQbar).s()
sage: s[2,1].itensor(s[2,1])
s[1, 1, 1] + s[2, 1] + s[3]

Note: The currently existing implementation of this function is technically unsatisfactory. It distinguishes
the case when the base ring is a Q-algebra (in which case the Kronecker product can be easily computed
using the power sum basis) from the case where it isn’t. In the latter, it does a computation using universal
coefficients, again distinguishing the case when it is able to compute the “corresponding” basis of the
symmetric function algebra over Q (using the corresponding_basis_over hack) from the case when it
isn’t (in which case it transforms everything into the Schur basis, which is slow).

5.1. Comprehensive Module List 2933

https://arxiv.org/abs/hep-th/9407124
https://arxiv.org/abs/0907.4652

Combinatorics, Release 9.7

left_padded_kronecker_product(x)
Return the left-padded Kronecker product of self and x in the basis of self.

The left-padded Kronecker product is a bilinear map mapping two symmetric functions to another, not nec-
essarily preserving degree. It can be defined as follows: Let * denote the Kronecker product (itensor())
on the space of symmetric functions. For any partitions 𝛼, 𝛽, 𝛾, let 𝑔𝛾𝛼,𝛽 denote the coefficient of the
complete homogeneous symmetric function ℎ𝛾 in the Kronecker product ℎ𝛼 * ℎ𝛽 . For every partition
𝜆 = (𝜆1, 𝜆2, 𝜆3, . . .) and every integer 𝑛 > |𝜆| + 𝜆1, let 𝜆[𝑛] denote the 𝑛-completion of 𝜆 (this is the
partition (𝑛 − |𝜆| , 𝜆1, 𝜆2, 𝜆3, . . .); see t_completion()). Then, for any partitions 𝛼 and 𝛽 and every
integer 𝑛 ≥ |𝛼|+ |𝛽|+ 𝛼1 + 𝛽1, we can write the Kronecker product ℎ𝛼[𝑛] * ℎ𝛽[𝑛] in the form

ℎ𝛼[𝑛] * ℎ𝛽[𝑛] =
∑︁
𝛾

𝑔
𝛾[𝑛]
𝛼[𝑛],𝛽[𝑛]ℎ𝛾[𝑛]

with 𝛾 ranging over all partitions. The coefficients 𝑔𝛾[𝑛]𝛼[𝑛],𝛽[𝑛] are independent on 𝑛. These coefficients
𝑔
𝛾[𝑛]
𝛼[𝑛],𝛽[𝑛] are denoted by 𝑔𝛾𝛼,𝛽 , and the symmetric function∑︁

𝛾

𝑔𝛾𝛼,𝛽ℎ𝛾

is said to be the left-padded Kronecker product of ℎ𝛼 and ℎ𝛽 . By bilinearity, this extends to a definition of
a left-padded Kronecker product of any two symmetric functions.

This notion of left-padded Kronecker product can be lifted to the non-commutative symmetric functions
(left_padded_kronecker_product()).

Warning: Do not mistake this product for the reduced Kronecker product
(reduced_kronecker_product()), which uses the Schur functions instead of the complete
homogeneous functions in its definition.

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

OUTPUT:

• the left-padded Kronecker product of self with x (an element of the ring of symmetric functions in
the same basis as self)

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: h = Sym.h()
sage: h[2,1].left_padded_kronecker_product(h[3])
h[1, 1, 1, 1] + h[2, 1] + h[2, 1, 1] + h[2, 1, 1, 1] + h[2, 2, 1] + h[3, 2, 1]
sage: h[2,1].left_padded_kronecker_product(h[1])
h[1, 1, 1] + h[2, 1] + h[2, 1, 1]
sage: h[1].left_padded_kronecker_product(h[2,1])
h[1, 1, 1] + h[2, 1] + h[2, 1, 1]
sage: h[1,1].left_padded_kronecker_product(h[2])
h[1, 1] + 2*h[1, 1, 1] + h[2, 1, 1]
sage: h[1].left_padded_kronecker_product(h[2,1,1])
h[1, 1, 1, 1] + 2*h[2, 1, 1] + h[2, 1, 1, 1]
sage: h[2].left_padded_kronecker_product(h[3])
h[2, 1] + h[2, 1, 1] + h[3, 2]

2934 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Taking the left-padded Kronecker product with 1 = ℎ∅ is the identity map on the ring of symmetric func-
tions:

sage: all(h[Partition([])].left_padded_kronecker_product(h[lam])
....: == h[lam] for i in range(4)
....: for lam in Partitions(i))
True

Here is a rule for the left-padded Kronecker product of ℎ1 (this is the same as ℎ(1)) with any complete
homogeneous function: Let 𝜆 be a partition. Then, the left-padded Kronecker product of ℎ1 and ℎ𝜆 is∑︀
𝜇 𝑎𝜇ℎ𝜇, where the sum runs over all partitions 𝜇, and the coefficient 𝑎𝜇 is defined as the number of ways

to obtain 𝜇 from 𝜆 by one of the following two operations:

• Insert a 1 into 𝜆.

• Subtract 1 from one of the entries of 𝜆 (and remove the entry if it thus becomes 0), and insert a 1 into
𝜆.

We check this for partitions of size ≤ 4:

sage: def mults1(I):
....: # Left-padded Kronecker multiplication by h[1].
....: res = h[I[:] + [1]]
....: for k in range(len(I)):
....: I2 = I[:]
....: if I2[k] == 1:
....: I2 = I2[:k] + I2[k+1:]
....: else:
....: I2[k] -= 1
....: res += h[sorted(I2 + [1], reverse=True)]
....: return res
sage: all(mults1(I) == h[1].left_padded_kronecker_product(h[I])
....: == h[I].left_padded_kronecker_product(h[1])
....: for i in range(5) for I in Partitions(i))
True

The left-padded Kronecker product is commutative:

sage: all(h[lam].left_padded_kronecker_product(h[mu])
....: == h[mu].left_padded_kronecker_product(h[lam])
....: for lam in Partitions(3) for mu in Partitions(3))
True

nabla(q=None, t=None, power=1)
Return the value of the nabla operator applied to self.

The eigenvectors of the nabla operator are the Macdonald polynomials in the Ht basis.

If the parameter power is an integer then it calculates nabla to that integer. The default value of power is
1.

INPUT:

• q, t – optional parameters (default: None, in which case q and t are used)

• power – (default: 1) an integer indicating how many times to apply the operator ∇. Negative values
of power indicate powers of ∇−1.

EXAMPLES:

5.1. Comprehensive Module List 2935

Combinatorics, Release 9.7

sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: p = Sym.power()
sage: p([1,1]).nabla()
(-1/2*q*t+1/2*q+1/2*t+1/2)*p[1, 1] + (1/2*q*t-1/2*q-1/2*t+1/2)*p[2]
sage: p([2,1]).nabla(q=1)
(-t-1)*p[1, 1, 1] + t*p[2, 1]
sage: p([2]).nabla(q=1)*p([1]).nabla(q=1)
(-t-1)*p[1, 1, 1] + t*p[2, 1]
sage: s = Sym.schur()
sage: s([2,1]).nabla()
(-q^3*t-q^2*t^2-q*t^3)*s[1, 1, 1] + (-q^2*t-q*t^2)*s[2, 1]
sage: s([1,1,1]).nabla()
(q^3+q^2*t+q*t^2+t^3+q*t)*s[1, 1, 1] + (q^2+q*t+t^2+q+t)*s[2, 1] + s[3]
sage: s([1,1,1]).nabla(t=1)
(q^3+q^2+2*q+1)*s[1, 1, 1] + (q^2+2*q+2)*s[2, 1] + s[3]
sage: s(0).nabla()
0
sage: s(1).nabla()
s[]
sage: s([2,1]).nabla(power=-1)
((-q-t)/(q^2*t^2))*s[2, 1] + ((q^2+q*t+t^2)/(-q^3*t^3))*s[3]
sage: (s([2])+s([3])).nabla()
(-q*t)*s[1, 1] + (q^3*t^2+q^2*t^3)*s[1, 1, 1] + q^2*t^2*s[2, 1]

omega()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of symmetric
functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th elementary
symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric function). It furthermore
is a Hopf algebra endomorphism and an involution, and it is also known as the omega involution. It sends
the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes the
conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 = elementary,
ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

The default implementation converts to the Schur basis, then performs the automorphism and changes back.

omega_involution() is a synonym for the omega() method.

EXAMPLES:

sage: J = SymmetricFunctions(QQ).jack(t=1).P()
sage: a = J([2,1]) + J([1,1,1])
sage: a.omega()
JackP[2, 1] + JackP[3]
sage: J(0).omega()
0
sage: J(1).omega()
JackP[]

The forgotten symmetric functions are the images of the monomial symmetric functions under omega:

2936 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Sym = SymmetricFunctions(ZZ)
sage: m = Sym.m()
sage: f = Sym.f()
sage: all(f(lam) == m(lam).omega() for lam in Partitions(3))
True
sage: all(m(lam) == f(lam).omega() for lam in Partitions(3))
True

omega_involution()
Return the image of self under the omega automorphism.

The omega automorphism is defined to be the unique algebra endomorphism 𝜔 of the ring of symmetric
functions that satisfies 𝜔(𝑒𝑘) = ℎ𝑘 for all positive integers 𝑘 (where 𝑒𝑘 stands for the 𝑘-th elementary
symmetric function, and ℎ𝑘 stands for the 𝑘-th complete homogeneous symmetric function). It furthermore
is a Hopf algebra endomorphism and an involution, and it is also known as the omega involution. It sends
the power-sum symmetric function 𝑝𝑘 to (−1)𝑘−1𝑝𝑘 for every positive integer 𝑘.

The images of some bases under the omega automorphism are given by

𝜔(𝑒𝜆) = ℎ𝜆, 𝜔(ℎ𝜆) = 𝑒𝜆, 𝜔(𝑝𝜆) = (−1)|𝜆|−ℓ(𝜆)𝑝𝜆, 𝜔(𝑠𝜆) = 𝑠𝜆′ ,

where 𝜆 is any partition, where ℓ(𝜆) denotes the length (length()) of the partition 𝜆, where 𝜆′ denotes the
conjugate partition (conjugate()) of 𝜆, and where the usual notations for bases are used (𝑒 = elementary,
ℎ = complete homogeneous, 𝑝 = powersum, 𝑠 = Schur).

The default implementation converts to the Schur basis, then performs the automorphism and changes back.

omega_involution() is a synonym for the omega() method.

EXAMPLES:

sage: J = SymmetricFunctions(QQ).jack(t=1).P()
sage: a = J([2,1]) + J([1,1,1])
sage: a.omega()
JackP[2, 1] + JackP[3]
sage: J(0).omega()
0
sage: J(1).omega()
JackP[]

The forgotten symmetric functions are the images of the monomial symmetric functions under omega:

sage: Sym = SymmetricFunctions(ZZ)
sage: m = Sym.m()
sage: f = Sym.f()
sage: all(f(lam) == m(lam).omega() for lam in Partitions(3))
True
sage: all(m(lam) == f(lam).omega() for lam in Partitions(3))
True

omega_qt(q=None, t=None)
Return the image of self under the 𝑞, 𝑡-deformed omega automorphism which sends 𝑝𝑘 to (−1)𝑘−1 · 1−𝑞

𝑘

1−𝑡𝑘 ·
𝑝𝑘 for all positive integers 𝑘.

In general, this is well-defined outside of the powersum basis only if the base ring is a Q-algebra.

If 𝑞 = 𝑡, then this is the omega automorphism (omega()).

5.1. Comprehensive Module List 2937

Combinatorics, Release 9.7

INPUT:

• q, t – parameters (default: None, in which case 'q' and 't' are used)

EXAMPLES:

sage: QQqt = QQ['q,t'].fraction_field()
sage: q,t = QQqt.gens()
sage: p = SymmetricFunctions(QQqt).p()
sage: p[5].omega_qt()
((-q^5+1)/(-t^5+1))*p[5]
sage: p[5].omega_qt(q,t)
((-q^5+1)/(-t^5+1))*p[5]
sage: p([2]).omega_qt(q,t)
((q^2-1)/(-t^2+1))*p[2]
sage: p([2,1]).omega_qt(q,t)
((-q^3+q^2+q-1)/(t^3-t^2-t+1))*p[2, 1]
sage: p([3,2]).omega_qt(5,q)
-(2976/(q^5-q^3-q^2+1))*p[3, 2]
sage: p(0).omega_qt()
0
sage: p(1).omega_qt()
p[]
sage: H = SymmetricFunctions(QQqt).macdonald().H()
sage: H([1,1]).omega_qt()
((2*q^2-2*q*t-2*q+2*t)/(t^3-t^2-t+1))*McdH[1, 1] + ((q-1)/(t-1))*McdH[2]
sage: H([1,1]).omega_qt(q,t)
((2*q^2-2*q*t-2*q+2*t)/(t^3-t^2-t+1))*McdH[1, 1] + ((q-1)/(t-1))*McdH[2]
sage: H([1,1]).omega_qt(t,q)
((-t^3+t^2+t-1)/(-q^3+q^2+q-1))*McdH[2]
sage: Sym = SymmetricFunctions(FractionField(QQ['q','t']))
sage: S = Sym.macdonald().S()
sage: S([1,1]).omega_qt()
((q^2-q*t-q+t)/(t^3-t^2-t+1))*McdS[1, 1] + ((-q^2*t+q*t+q-1)/(-t^3+t^2+t-
→˓1))*McdS[2]
sage: s = Sym.schur()
sage: s(S([1,1]).omega_qt())
s[2]

plethysm(x, include=None, exclude=None)
Return the outer plethysm of self with x.

This is implemented only over base rings which are Q-algebras. (To compute outer plethysms over general
binomial rings, change bases to the fraction field.)

The outer plethysm of 𝑓 with 𝑔 is commonly denoted by 𝑓 [𝑔] or by 𝑓 ∘ 𝑔. It is an algebra map in 𝑓 , but not
(generally) in 𝑔.

By default, the degree one elements are taken to be the generators for the self’s base ring. This setting
can be modified by specifying the include and exclude keywords.

INPUT:

• x – a symmetric function over the same base ring as self

• include – a list of variables to be treated as degree one elements instead of the default degree one
elements

• exclude – a list of variables to be excluded from the default degree one elements

2938 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: h = Sym.h()
sage: s (h([3])(h([2])))
s[2, 2, 2] + s[4, 2] + s[6]
sage: p = Sym.p()
sage: p([3])(s([2,1]))
1/3*p[3, 3, 3] - 1/3*p[9]
sage: e = Sym.e()
sage: e([3])(e([2]))
e[3, 3] + e[4, 1, 1] - 2*e[4, 2] - e[5, 1] + e[6]

sage: R.<t> = QQ[]
sage: s = SymmetricFunctions(R).s()
sage: a = s([3])
sage: f = t*s([2])
sage: a(f)
t^3*s[2, 2, 2] + t^3*s[4, 2] + t^3*s[6]
sage: f(a)
t*s[4, 2] + t*s[6]
sage: s(0).plethysm(s[1])
0
sage: s(1).plethysm(s[1])
s[]
sage: s(1).plethysm(s(0))
s[]

Sage also handles plethysm of tensor products of symmetric functions:

sage: s = SymmetricFunctions(QQ).s()
sage: X = tensor([s[1],s[[]]])
sage: Y = tensor([s[[]],s[1]])
sage: s[1,1,1](X+Y)
s[] # s[1, 1, 1] + s[1] # s[1, 1] + s[1, 1] # s[1] + s[1, 1, 1] # s[]
sage: s[1,1,1](X*Y)
s[1, 1, 1] # s[3] + s[2, 1] # s[2, 1] + s[3] # s[1, 1, 1]

One can use this to work with symmetric functions in two sets of commuting variables. For example, we
verify the Cauchy identities (in degree 5):

sage: m = SymmetricFunctions(QQ).m()
sage: P5 = Partitions(5)
sage: sum(s[mu](X)*s[mu](Y) for mu in P5) == sum(m[mu](X)*h[mu](Y) for mu in P5)
True
sage: sum(s[mu](X)*s[mu.conjugate()](Y) for mu in P5) == sum(m[mu](X)*e[mu](Y)␣
→˓for mu in P5)
True

See also:

frobenius()

5.1. Comprehensive Module List 2939

Combinatorics, Release 9.7

principal_specialization(n=+ Infinity, q=None)
Return the principal specialization of a symmetric function.

The principal specialization of order 𝑛 at 𝑞 is the ring homomorphism 𝑝𝑠𝑛,𝑞 from the ring of symmetric
functions to another commutative ring 𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for 𝑖 ∈ {1, . . . , 𝑛} and 𝑥𝑖 ↦→ 0 for 𝑖 >
𝑛. Here, 𝑞 is a given element of 𝑅, and we assume that the variables of our symmetric functions are
𝑥1, 𝑥2, 𝑥3, (To be more precise, 𝑝𝑠𝑛,𝑞 is a 𝐾-algebra homomorphism, where 𝐾 is the base ring.) See
Section 7.8 of [EnumComb2].

The stable principal specialization at 𝑞 is the ring homomorphism 𝑝𝑠𝑞 from the ring of symmetric functions
to another commutative ring𝑅 given by 𝑥𝑖 ↦→ 𝑞𝑖−1 for all 𝑖. This is well-defined only if the resulting infinite
sums converge; thus, in particular, setting 𝑞 = 1 in the stable principal specialization is an invalid operation.

INPUT:

• n (default: infinity) – a nonnegative integer or infinity, specifying whether to compute the prin-
cipal specialization of order n or the stable principal specialization.

• q (default: None) – the value to use for 𝑞; the default is to create a ring of polynomials in q (or a field
of rational functions in q) over the given coefficient ring.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: x = m[1,1]
sage: x.principal_specialization(3)
q^3 + q^2 + q

By default we return a rational function in q. Sometimes it is better to obtain an element of the symbolic
ring:

sage: h = SymmetricFunctions(QQ).h()
sage: (h[3]+h[2]).principal_specialization(q=var("q"))
1/((q^2 - 1)*(q - 1)) - 1/((q^3 - 1)*(q^2 - 1)*(q - 1))

In case q is in the base ring, it must be passed explicitly:

sage: R = QQ['q,t']
sage: Ht = SymmetricFunctions(R).macdonald().Ht()
sage: Ht[2].principal_specialization()
Traceback (most recent call last):
...
ValueError: the variable q is in the base ring, pass it explicitly

sage: Ht[2].principal_specialization(q=R("q"))
(q^2 + 1)/(q^3 - q^2 - q + 1)

Note that the principal specialization can be obtained as a plethysm:

sage: R = QQ['q'].fraction_field()
sage: s = SymmetricFunctions(R).s()
sage: one = s.one()
sage: q = R("q")
sage: f = s[3,2,2]
sage: f.principal_specialization(q=q) == f(one/(1-q)).coefficient([])
True

(continues on next page)

2940 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: f.principal_specialization(n=4, q=q) == f(one*(1-q^4)/(1-q)).
→˓coefficient([])
True

reduced_kronecker_product(x)
Return the reduced Kronecker product of self and x in the basis of self.

The reduced Kronecker product is a bilinear map mapping two symmetric functions to another, not neces-
sarily preserving degree. It can be defined as follows: Let * denote the Kronecker product (itensor())
on the space of symmetric functions. For any partitions 𝛼, 𝛽, 𝛾, let 𝑔𝛾𝛼,𝛽 denote the coefficient of the Schur
function 𝑠𝛾 in the Kronecker product 𝑠𝛼 * 𝑠𝛽 (this is called a Kronecker coefficient). For every partition
𝜆 = (𝜆1, 𝜆2, 𝜆3, . . .) and every integer 𝑛 > |𝜆| + 𝜆1, let 𝜆[𝑛] denote the 𝑛-completion of 𝜆 (this is the
partition (𝑛 − |𝜆| , 𝜆1, 𝜆2, 𝜆3, . . .); see t_completion()). Then, Theorem 1.2 of [BOR2009] shows that
for any partitions 𝛼 and 𝛽 and every integer 𝑛 ≥ |𝛼|+ |𝛽|+ 𝛼1 + 𝛽1, we can write the Kronecker product
𝑠𝛼[𝑛] * 𝑠𝛽[𝑛] in the form

𝑠𝛼[𝑛] * 𝑠𝛽[𝑛] =
∑︁
𝛾

𝑔
𝛾[𝑛]
𝛼[𝑛],𝛽[𝑛]𝑠𝛾[𝑛]

with 𝛾 ranging over all partitions. The coefficients 𝑔𝛾[𝑛]𝛼[𝑛],𝛽[𝑛] are independent on 𝑛. These coefficients
𝑔
𝛾[𝑛]
𝛼[𝑛],𝛽[𝑛] are denoted by 𝑔𝛾𝛼,𝛽 , and the symmetric function∑︁

𝛾

𝑔𝛾𝛼,𝛽𝑠𝛾

is said to be the reduced Kronecker product of 𝑠𝛼 and 𝑠𝛽 . By bilinearity, this extends to a definition of a
reduced Kronecker product of any two symmetric functions.

The definition of the reduced Kronecker product goes back to Murnaghan, and has recently been studied
in [BOR2009], [BdVO2012] and other places (our notation 𝑔𝛾𝛼,𝛽 appears in these two sources).

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

OUTPUT:

• the reduced Kronecker product of self with x (an element of the ring of symmetric functions in the
same basis as self)

EXAMPLES:

The example from page 2 of [BOR2009]:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: s[2].reduced_kronecker_product(s[2])
s[] + s[1] + s[1, 1] + s[1, 1, 1] + 2*s[2] + 2*s[2, 1] + s[2, 2] + s[3] + s[3,␣
→˓1] + s[4]

Taking the reduced Kronecker product with 1 = 𝑠∅ is the identity map on the ring of symmetric functions:

sage: all(s[Partition([])].reduced_kronecker_product(s[lam])
....: == s[lam] for i in range(4)
....: for lam in Partitions(i))
True

5.1. Comprehensive Module List 2941

Combinatorics, Release 9.7

While reduced Kronecker products are hard to compute in general, there is a rule for taking reduced Kro-
necker products with 𝑠1. Namely, for every partition 𝜆, the reduced Kronecker product of 𝑠𝜆 with 𝑠1 is∑︀
𝜇 𝑎𝜇𝑠𝜇, where the sum runs over all partitions 𝜇, and the coefficient 𝑎𝜇 is defined as the number of ways

to obtain 𝜇 from 𝜆 by one of the following three operations:

• Add an addable cell (addable_cells()) to 𝜆.

• Remove a removable cell (removable_cells()) from 𝜆.

• First remove a removable cell from 𝜆, then add an addable cell to the resulting Young diagram.

This is, in fact, Proposition 5.15 of [CO2010] in an elementary wording. We check this for partitions of
size ≤ 4:

sage: def mults1(lam):
....: # Reduced Kronecker multiplication by s[1], according
....: # to [CO2010]_.
....: res = s.zero()
....: for mu in lam.up_list():
....: res += s(mu)
....: for mu in lam.down_list():
....: res += s(mu)
....: for nu in mu.up_list():
....: res += s(nu)
....: return res
sage: all(mults1(lam) == s[1].reduced_kronecker_product(s[lam])
....: for i in range(5) for lam in Partitions(i))
True

Here is the example on page 3 of Christian Gutschwager’s arXiv 0912.4411v3:

sage: s[1,1].reduced_kronecker_product(s[2])
s[1] + 2*s[1, 1] + s[1, 1, 1] + s[2] + 2*s[2, 1] + s[2, 1, 1] + s[3] + s[3, 1]

Example 39 from F. D. Murnaghan, “The analysis of the Kronecker product of irreducible representations
of the symmetric group”, American Journal of Mathematics, Vol. 60, No. 3, Jul. 1938:

sage: s[3].reduced_kronecker_product(s[2,1])
s[1] + 2*s[1, 1] + 2*s[1, 1, 1] + s[1, 1, 1, 1] + 2*s[2] + 5*s[2, 1] + 4*s[2, 1,
→˓ 1]
+ s[2, 1, 1, 1] + 3*s[2, 2] + 2*s[2, 2, 1] + 2*s[3] + 5*s[3, 1] + 3*s[3, 1, 1]
+ 3*s[3, 2] + s[3, 2, 1] + 2*s[4] + 3*s[4, 1] + s[4, 1, 1] + s[4, 2] + s[5]
+ s[5, 1]

Todo: This implementation of the reduced Kronecker product is painfully slow.

restrict_degree(d, exact=True)
Return the degree d component of self.

INPUT:

• d – positive integer, degree of the terms to be returned

• exact – boolean, if True, returns the terms of degree exactly d, otherwise returns all terms of degree
less than or equal to d

OUTPUT:

2942 Chapter 5. Comprehensive Module List

https://arxiv.org/abs/0912.4411v3

Combinatorics, Release 9.7

• the homogeneous component of self of degree d

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: z.restrict_degree(2)
0
sage: z.restrict_degree(1)
s[1]
sage: z.restrict_degree(3)
s[1, 1, 1] + s[2, 1]
sage: z.restrict_degree(3, exact=False)
s[1] + s[1, 1, 1] + s[2, 1]
sage: z.restrict_degree(0)
0

restrict_partition_lengths(l, exact=True)
Return the terms of self labelled by partitions of length l.

INPUT:

• l – nonnegative integer

• exact – boolean, defaulting to True

OUTPUT:

• if True, returns the terms labelled by partitions of length precisely l; otherwise returns all terms
labelled by partitions of length less than or equal to l

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: z.restrict_partition_lengths(2)
s[2, 1]
sage: z.restrict_partition_lengths(0)
0
sage: z.restrict_partition_lengths(2, exact = False)
s[1] + s[2, 1] + s[4]

restrict_parts(n)
Return the terms of self labelled by partitions 𝜆 with 𝜆1 ≤ 𝑛.

INPUT:

• n – positive integer, to restrict the parts of the partitions of the terms to be returned

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: z.restrict_parts(2)
s[1] + s[1, 1, 1] + s[2, 1]
sage: z.restrict_parts(1)
s[1] + s[1, 1, 1]

scalar(x, zee=None)
Return the standard scalar product between self and x.

5.1. Comprehensive Module List 2943

Combinatorics, Release 9.7

This is also known as the “Hall inner product” or the “Hall scalar product”.

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

• zee – an optional function on partitions giving the value for the scalar product between 𝑝𝜇 and 𝑝𝜇
(default is to use the standard zee() function)

This is the default implementation that converts both self and x into either Schur functions (if zee is not
specified) or power-sum functions (if zee is specified) and performs the scalar product in that basis.

EXAMPLES:

sage: e = SymmetricFunctions(QQ).e()
sage: h = SymmetricFunctions(QQ).h()
sage: m = SymmetricFunctions(QQ).m()
sage: p4 = Partitions(4)
sage: matrix([[e(a).scalar(h(b)) for a in p4] for b in p4])
[0 0 0 0 1]
[0 0 0 1 4]
[0 0 1 2 6]
[0 1 2 5 12]
[1 4 6 12 24]
sage: matrix([[h(a).scalar(e(b)) for a in p4] for b in p4])
[0 0 0 0 1]
[0 0 0 1 4]
[0 0 1 2 6]
[0 1 2 5 12]
[1 4 6 12 24]
sage: matrix([[m(a).scalar(e(b)) for a in p4] for b in p4])
[-1 2 1 -3 1]
[0 1 0 -2 1]
[0 0 1 -2 1]
[0 0 0 -1 1]
[0 0 0 0 1]
sage: matrix([[m(a).scalar(h(b)) for a in p4] for b in p4])
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

sage: p = SymmetricFunctions(QQ).p()
sage: m(p[3,2]).scalar(p[3,2], zee=lambda mu: 2**mu.length())
4
sage: m(p[3,2]).scalar(p[2,2,1], lambda mu: 1)
0
sage: m[3,2].scalar(h[3,2], zee=lambda mu: 2**mu.length())
2/3

scalar_hl(x, t=None)
Return the 𝑡-deformed standard Hall-Littlewood scalar product of self and x.

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

2944 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• t – parameter (default: None, in which case t is used)

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: a = s([2,1])
sage: sp = a.scalar_t(a); sp
(-t^2 - 1)/(t^5 - 2*t^4 + t^3 - t^2 + 2*t - 1)
sage: sp.parent()
Fraction Field of Univariate Polynomial Ring in t over Rational Field

scalar_jack(x, t=None)
Return the Jack-scalar product between self and x.

This scalar product is defined so that the power sum elements 𝑝𝜇 are orthogonal and ⟨𝑝𝜇, 𝑝𝜇⟩ = 𝑧𝜇𝑡
ℓ(𝜇),

where ℓ(𝜇) denotes the length of 𝜇.

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

• t – an optional parameter (default: None in which case t is used)

EXAMPLES:

sage: p = SymmetricFunctions(QQ['t']).power()
sage: matrix([[p(mu).scalar_jack(p(nu)) for nu in Partitions(4)] for mu in␣
→˓Partitions(4)])
[4*t 0 0 0 0]
[0 3*t^2 0 0 0]
[0 0 8*t^2 0 0]
[0 0 0 4*t^3 0]
[0 0 0 0 24*t^4]
sage: matrix([[p(mu).scalar_jack(p(nu),2) for nu in Partitions(4)] for mu in␣
→˓Partitions(4)])
[8 0 0 0 0]
[0 12 0 0 0]
[0 0 32 0 0]
[0 0 0 32 0]
[0 0 0 0 384]
sage: JQ = SymmetricFunctions(QQ['t'].fraction_field()).jack().Q()
sage: matrix([[JQ(mu).scalar_jack(JQ(nu)) for nu in Partitions(3)] for mu in␣
→˓Partitions(3)])
[(1/3*t^2 + 1/2*t + 1/6)/t^3 0 ␣
→˓ 0]
[0 (1/2*t + 1)/(t^3 + 1/2*t^2) ␣
→˓ 0]
[0 0 6/(t^3 + 3*t^2 +␣
→˓2*t)]

scalar_qt(x, q=None, t=None)
Return the 𝑞, 𝑡-deformed standard Hall-Littlewood scalar product of self and x.

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

• q, t – parameters (default: None in which case q and t are used)

5.1. Comprehensive Module List 2945

Combinatorics, Release 9.7

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: a = s([2,1])
sage: sp = a.scalar_qt(a); factor(sp)
(t - 1)^-3 * (q - 1) * (t^2 + t + 1)^-1 * (q^2*t^2 - q*t^2 + q^2 - 2*q*t + t^2 -
→˓ q + 1)
sage: sp.parent()
Fraction Field of Multivariate Polynomial Ring in q, t over Rational Field
sage: a.scalar_qt(a,q=0)
(-t^2 - 1)/(t^5 - 2*t^4 + t^3 - t^2 + 2*t - 1)
sage: a.scalar_qt(a,t=0)
-q^3 + 2*q^2 - 2*q + 1
sage: a.scalar_qt(a,5,7) # q=5 and t=7
490/1539
sage: (x,y) = var('x,y')
sage: a.scalar_qt(a,q=x,t=y)
1/3*(x^3 - 1)/(y^3 - 1) + 2/3*(x - 1)^3/(y - 1)^3
sage: Rn = QQ['q','t','y','z'].fraction_field()
sage: (q,t,y,z) = Rn.gens()
sage: Mac = SymmetricFunctions(Rn).macdonald(q=y,t=z)
sage: a = Mac._sym.schur()([2,1])
sage: factor(Mac.P()(a).scalar_qt(Mac.Q()(a),q,t))
(t - 1)^-3 * (q - 1) * (t^2 + t + 1)^-1 * (q^2*t^2 - q*t^2 + q^2 - 2*q*t + t^2 -
→˓ q + 1)
sage: factor(Mac.P()(a).scalar_qt(Mac.Q()(a)))
(z - 1)^-3 * (y - 1) * (z^2 + z + 1)^-1 * (y^2*z^2 - y*z^2 + y^2 - 2*y*z + z^2 -
→˓ y + 1)

scalar_t(x, t=None)
Return the 𝑡-deformed standard Hall-Littlewood scalar product of self and x.

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

• t – parameter (default: None, in which case t is used)

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: a = s([2,1])
sage: sp = a.scalar_t(a); sp
(-t^2 - 1)/(t^5 - 2*t^4 + t^3 - t^2 + 2*t - 1)
sage: sp.parent()
Fraction Field of Univariate Polynomial Ring in t over Rational Field

skew_by(x)
Return the result of skewing self by x. (Skewing by x is the endomorphism (as additive group) of the ring
of symmetric functions adjoint to multiplication by x with respect to the Hall inner product.)

INPUT:

• x – element of the ring of symmetric functions over the same base ring as self

EXAMPLES:

2946 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: s = SymmetricFunctions(QQ).s()
sage: s([3,2]).skew_by(s([2]))
s[2, 1] + s[3]
sage: s([3,2]).skew_by(s([1,1,1]))
0
sage: s([3,2,1]).skew_by(s([2,1]))
s[1, 1, 1] + 2*s[2, 1] + s[3]

sage: p = SymmetricFunctions(QQ).powersum()
sage: p([4,3,3,2,2,1]).skew_by(p([2,1]))
4*p[4, 3, 3, 2]
sage: zee = sage.combinat.sf.sfa.zee
sage: zee([4,3,3,2,2,1])/zee([4,3,3,2])
4
sage: s(0).skew_by(s([1]))
0
sage: s(1).skew_by(s([1]))
0
sage: s([]).skew_by(s([]))
s[]
sage: s([]).skew_by(s[1])
0

theta(a)
Return the image of self under the theta endomorphism which sends 𝑝𝑘 to 𝑎 ·𝑝𝑘 for every positive integer
𝑘.

In general, this is well-defined outside of the powersum basis only if the base ring is a Q-algebra.

INPUT:

• a – an element of the base ring

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s([2,1]).theta(2)
2*s[1, 1, 1] + 6*s[2, 1] + 2*s[3]
sage: p = SymmetricFunctions(QQ).p()
sage: p([2]).theta(2)
2*p[2]
sage: p(0).theta(2)
0
sage: p(1).theta(2)
p[]

theta_qt(q=None, t=None)
Return the image of self under the 𝑞, 𝑡-deformed theta endomorphism which sends 𝑝𝑘 to 1−𝑞𝑘

1−𝑡𝑘 · 𝑝𝑘 for all
positive integers 𝑘.

In general, this is well-defined outside of the powersum basis only if the base ring is a Q-algebra.

INPUT:

• q, t – parameters (default: None, in which case ‘q’ and ‘t’ are used)

EXAMPLES:

5.1. Comprehensive Module List 2947

Combinatorics, Release 9.7

sage: QQqt = QQ['q,t'].fraction_field()
sage: q,t = QQqt.gens()
sage: p = SymmetricFunctions(QQqt).p()
sage: p([2]).theta_qt(q,t)
((-q^2+1)/(-t^2+1))*p[2]
sage: p([2,1]).theta_qt(q,t)
((q^3-q^2-q+1)/(t^3-t^2-t+1))*p[2, 1]
sage: p(0).theta_qt(q=1,t=3)
0
sage: p([2,1]).theta_qt(q=2,t=3)
3/16*p[2, 1]
sage: s = p.realization_of().schur()
sage: s([3]).theta_qt(q=0)*(1-t)*(1-t^2)*(1-t^3)
t^3*s[1, 1, 1] + (t^2+t)*s[2, 1] + s[3]
sage: p(1).theta_qt()
p[]

verschiebung(n)
Return the image of the symmetric function self under the 𝑛-th Verschiebung operator.

The 𝑛-th Verschiebung operator V𝑛 is defined to be the unique algebra endomorphism 𝑉 of the ring of
symmetric functions that satisfies 𝑉 (ℎ𝑟) = ℎ𝑟/𝑛 for every positive integer 𝑟 divisible by 𝑛, and satisfies
𝑉 (ℎ𝑟) = 0 for every positive integer 𝑟 not divisible by 𝑛. This operator V𝑛 is a Hopf algebra endomor-
phism. For every nonnegative integer 𝑟 with 𝑛 | 𝑟, it satisfies

V𝑛(ℎ𝑟) = ℎ𝑟/𝑛, V𝑛(𝑝𝑟) = 𝑛𝑝𝑟/𝑛, V𝑛(𝑒𝑟) = (−1)𝑟−𝑟/𝑛𝑒𝑟/𝑛

(where ℎ is the complete homogeneous basis, 𝑝 is the powersum basis, and 𝑒 is the elementary basis). For
every nonnegative integer 𝑟 with 𝑛 - 𝑟, it satisfes

V𝑛(ℎ𝑟) = V𝑛(𝑝𝑟) = V𝑛(𝑒𝑟) = 0.

The 𝑛-th Verschiebung operator is also called the 𝑛-th Verschiebung endomorphism. Its name derives from
the Verschiebung (German for “shift”) endomorphism of the Witt vectors.

The 𝑛-th Verschiebung operator is adjoint to the 𝑛-th Frobenius operator (see frobenius() for its defini-
tion) with respect to the Hall scalar product (scalar()).

The action of the 𝑛-th Verschiebung operator on the Schur basis can also be computed explicitly. The fol-
lowing (probably clumsier than necessary) description can be obtained by solving exercise 7.61 in Stanley’s
[STA].

Let 𝜆 be a partition. Let 𝑛 be a positive integer. If the 𝑛-core of 𝜆 is nonempty, then V𝑛(𝑠𝜆) = 0.
Otherwise, the following method computes V𝑛(𝑠𝜆): Write the partition 𝜆 in the form (𝜆1, 𝜆2, . . . , 𝜆𝑛𝑠)
for some nonnegative integer 𝑠. (If 𝑛 does not divide the length of 𝜆, then this is achieved by adding
trailing zeroes to 𝜆.) Set 𝛽𝑖 = 𝜆𝑖 + 𝑛𝑠 − 𝑖 for every 𝑠 ∈ {1, 2, . . . , 𝑛𝑠}. Then, (𝛽1, 𝛽2, . . . , 𝛽𝑛𝑠) is a
strictly decreasing sequence of nonnegative integers. Stably sort the list (1, 2, . . . , 𝑛𝑠) in order of (weakly)
increasing remainder of −1 − 𝛽𝑖 modulo 𝑛. Let 𝜉 be the sign of the permutation that is used for this
sorting. Let 𝜓 be the sign of the permutation that is used to stably sort the list (1, 2, . . . , 𝑛𝑠) in order of
(weakly) increasing remainder of 𝑖−1 modulo 𝑛. (Notice that 𝜓 = (−1)𝑛(𝑛−1)𝑠(𝑠−1)/4.) Then, V𝑛(𝑠𝜆) =

𝜉𝜓
∏︀𝑛−1
𝑖=0 𝑠𝜆(𝑖) , where (𝜆(0), 𝜆(1), . . . , 𝜆(𝑛−1)) is the 𝑛-quotient of 𝜆.

INPUT:

• n – a positive integer

OUTPUT:

2948 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The result of applying the 𝑛-th Verschiebung operator (on the ring of symmetric functions) to self.

EXAMPLES:

sage: Sym = SymmetricFunctions(ZZ)
sage: p = Sym.p()
sage: h = Sym.h()
sage: s = Sym.s()
sage: m = Sym.m()
sage: s[3].verschiebung(2)
0
sage: s[3].verschiebung(3)
s[1]
sage: p[3].verschiebung(3)
3*p[1]
sage: m[3,2,1].verschiebung(3)
-18*m[1, 1] - 3*m[2]
sage: p[3,2,1].verschiebung(3)
0
sage: h[4].verschiebung(2)
h[2]
sage: p[2].verschiebung(2)
2*p[1]
sage: m[3,2,1].verschiebung(6)
12*m[1]

The Verschiebung endomorphisms are multiplicative:

sage: all(all(s(lam).verschiebung(2) * s(mu).verschiebung(2)
....: == (s(lam) * s(mu)).verschiebung(2)
....: for mu in Partitions(4))
....: for lam in Partitions(4))
True

Being Hopf algebra endomorphisms, the Verschiebung operators commute with the antipode:

sage: all(p(lam).verschiebung(3).antipode()
....: == p(lam).antipode().verschiebung(3)
....: for lam in Partitions(6))
True

Testing the adjointness between the Frobenius operators f𝑛 and the Verschiebung operators V𝑛:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: p = Sym.p()
sage: all(all(s(lam).verschiebung(2).scalar(p(mu))
....: == s(lam).scalar(p(mu).frobenius(2))
....: for mu in Partitions(3))
....: for lam in Partitions(6))
True

class sage.combinat.sf.sfa.SymmetricFunctionsBases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of bases of the ring of symmetric functions.

5.1. Comprehensive Module List 2949

../../../../../../../html/en/reference/categories/sage/categories/realizations.html#sage.categories.realizations.Category_realization_of_parent

Combinatorics, Release 9.7

INPUT:

• self – a category of bases for the symmetric functions

• base – ring of symmetric functions

class ParentMethods
Bases: object

Eulerian(n, j, k=None)
Return the Eulerian symmetric function 𝑄𝑛,𝑗 (with 𝑛 either an integer or a partition) or 𝑄𝑛,𝑗,𝑘 (if the
optional argument k is specified) in terms of the basis self.

It is known that the Eulerian quasisymmetric functions are in fact symmetric functions [SW2010]. For
more information, see QuasiSymmetricFunctions.Fundamental.Eulerian(), which accepts the
same syntax as this method.

INPUT:
• n – the nonnegative integer 𝑛 or a partition
• j – the number of excedances
• k – (optional) if specified, determines the number of fixed points of the permutations which are

being summed over
EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.m()
sage: m.Eulerian(3, 1)
4*m[1, 1, 1] + 3*m[2, 1] + 2*m[3]
sage: h = Sym.h()
sage: h.Eulerian(4, 2)
h[2, 2] + h[3, 1] + h[4]
sage: s = Sym.s()
sage: s.Eulerian(5, 2)
s[2, 2, 1] + s[3, 1, 1] + 5*s[3, 2] + 6*s[4, 1] + 6*s[5]
sage: s.Eulerian([2,2,1], 2)
s[2, 2, 1] + s[3, 2] + s[4, 1] + s[5]
sage: s.Eulerian(5, 2, 2)
s[3, 2] + s[4, 1] + s[5]

We check Equation (5.4) in [SW2010]:

sage: h.Eulerian([6], 3)
h[3, 2, 1] - h[4, 1, 1] + 2*h[4, 2] + h[5, 1]
sage: s.Eulerian([6], 3)
s[3, 2, 1] + s[3, 3] + 3*s[4, 2] + 3*s[5, 1] + 3*s[6]

carlitz_shareshian_wachs(n, d, s, comparison=None)
Return the Carlitz-Shareshian-Wachs symmetric function 𝑋𝑛,𝑑,𝑠 (if comparison is None), or 𝑈𝑛,𝑑,𝑠
(if comparison is -1), or 𝑉𝑛,𝑑,𝑠 (if comparison is 0), or 𝑊𝑛,𝑑,𝑠 (if comparison is 1) written in the
basis self. These functions are defined below.

The Carlitz-Shareshian-Wachs symmetric functions have been introduced in [GriRei18], Exercise
2.9.11, as refinements of a certain particular case of chromatic quasisymmetric functions defined by
Shareshian and Wachs. Their definitions are as follows:

Let 𝑛, 𝑑 and 𝑠 be three nonnegative integers. Let 𝑊 (𝑛, 𝑑, 𝑠) denote the set of all 𝑛-tuples
(𝑤1, 𝑤2, . . . , 𝑤𝑛) of positive integers having the property that there exist precisely 𝑑 elements 𝑖 of
{1, 2, . . . , 𝑛− 1} satisfying 𝑤𝑖 > 𝑤𝑖+1, and precisely 𝑠 elements 𝑖 of {1, 2, . . . , 𝑛− 1} satisfying

2950 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

𝑤𝑖 = 𝑤𝑖+1. For every 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) ∈𝑊 (𝑛, 𝑑, 𝑠), let 𝑥𝑤 be the monomial 𝑥𝑤1𝑥𝑤2 · · ·𝑥𝑤𝑛 .
We then define the power series 𝑋𝑛,𝑑,𝑠 by

𝑋𝑛,𝑑,𝑠 =
∑︁

𝑤∈𝑊 (𝑛,𝑑,𝑠)

𝑥𝑤.

This is a symmetric function (according to [GriRei18], Exercise 2.9.11(b)), and for 𝑠 = 0 equals the
𝑡𝑑-coefficient of the descent enumerator of Smirnov words of length 𝑛 (an example of a chromatic
quasisymmetric function which happens to be symmetric – see [ShaWach2014], Example 2.5).

Assume that 𝑛 > 0. Then, we can define three further power series as follows:

𝑈𝑛,𝑑,𝑠 =
∑︁

𝑤1<𝑤𝑛

𝑥𝑤; 𝑉𝑛,𝑑,𝑠 =
∑︁

𝑤1=𝑤𝑛

𝑥𝑤; 𝑊𝑛,𝑑,𝑠 =
∑︁

𝑤1>𝑤𝑛

𝑥𝑤,

where all three sums range over 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) ∈ 𝑊 (𝑛, 𝑑, 𝑠). These three power series
𝑈𝑛,𝑑,𝑠, 𝑉𝑛,𝑑,𝑠 and𝑊𝑛,𝑑,𝑠 are symmetric functions as well ([GriRei18], Exercise 2.9.11(c)). Their sum
is 𝑋𝑛,𝑑,𝑠.

REFERENCES:

INPUT:
• n – a nonnegative integer
• d – a nonnegative integer
• s – a nonnegative integer
• comparison (default: None) – a variable which can take the forms None, -1, 0 and 1

OUTPUT:

The Carlitz-Shareshian-Wachs symmetric function 𝑋𝑛,𝑑,𝑠 (if comparison is None), or 𝑈𝑛,𝑑,𝑠 (if
comparison is -1), or 𝑉𝑛,𝑑,𝑠 (if comparison is 0), or 𝑊𝑛,𝑑,𝑠 (if comparison is 1) written in the
basis self.

EXAMPLES:

The power series 𝑋𝑛,𝑑,𝑠:

sage: Sym = SymmetricFunctions(ZZ)
sage: m = Sym.m()
sage: m.carlitz_shareshian_wachs(3, 2, 1)
0
sage: m.carlitz_shareshian_wachs(3, 1, 1)
m[2, 1]
sage: m.carlitz_shareshian_wachs(3, 2, 0)
m[1, 1, 1]
sage: m.carlitz_shareshian_wachs(3, 0, 2)
m[3]
sage: m.carlitz_shareshian_wachs(3, 1, 0)
4*m[1, 1, 1] + m[2, 1]
sage: m.carlitz_shareshian_wachs(3, 0, 1)
m[2, 1]
sage: m.carlitz_shareshian_wachs(3, 0, 0)
m[1, 1, 1]
sage: m.carlitz_shareshian_wachs(5, 2, 2)
m[2, 2, 1] + m[3, 1, 1]
sage: m.carlitz_shareshian_wachs(1, 0, 0)
m[1]
sage: m.carlitz_shareshian_wachs(0, 0, 0)
m[]

5.1. Comprehensive Module List 2951

Combinatorics, Release 9.7

The power series 𝑈𝑛,𝑑,𝑠:

sage: m.carlitz_shareshian_wachs(3, 2, 1, comparison=-1)
0
sage: m.carlitz_shareshian_wachs(3, 1, 1, comparison=-1)
0
sage: m.carlitz_shareshian_wachs(3, 2, 0, comparison=-1)
0
sage: m.carlitz_shareshian_wachs(3, 0, 2, comparison=-1)
0
sage: m.carlitz_shareshian_wachs(3, 1, 0, comparison=-1)
2*m[1, 1, 1]
sage: m.carlitz_shareshian_wachs(3, 0, 1, comparison=-1)
m[2, 1]
sage: m.carlitz_shareshian_wachs(3, 0, 0, comparison=-1)
m[1, 1, 1]
sage: m.carlitz_shareshian_wachs(5, 2, 2, comparison=-1)
0
sage: m.carlitz_shareshian_wachs(4, 2, 0, comparison=-1)
3*m[1, 1, 1, 1]
sage: m.carlitz_shareshian_wachs(1, 0, 0, comparison=-1)
0

The power series 𝑉𝑛,𝑑,𝑠:

sage: m.carlitz_shareshian_wachs(3, 2, 1, comparison=0)
0
sage: m.carlitz_shareshian_wachs(3, 1, 1, comparison=0)
0
sage: m.carlitz_shareshian_wachs(3, 2, 0, comparison=0)
0
sage: m.carlitz_shareshian_wachs(3, 0, 2, comparison=0)
m[3]
sage: m.carlitz_shareshian_wachs(3, 1, 0, comparison=0)
m[2, 1]
sage: m.carlitz_shareshian_wachs(3, 0, 1, comparison=0)
0
sage: m.carlitz_shareshian_wachs(3, 0, 0, comparison=0)
0
sage: m.carlitz_shareshian_wachs(5, 2, 2, comparison=0)
0
sage: m.carlitz_shareshian_wachs(4, 2, 0, comparison=0)
m[2, 1, 1]
sage: m.carlitz_shareshian_wachs(1, 0, 0, comparison=0)
m[1]

The power series 𝑊𝑛,𝑑,𝑠:

sage: m.carlitz_shareshian_wachs(3, 2, 1, comparison=1)
0
sage: m.carlitz_shareshian_wachs(3, 1, 1, comparison=1)
m[2, 1]
sage: m.carlitz_shareshian_wachs(3, 2, 0, comparison=1)
m[1, 1, 1]

(continues on next page)

2952 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: m.carlitz_shareshian_wachs(3, 0, 2, comparison=1)
0
sage: m.carlitz_shareshian_wachs(3, 1, 0, comparison=1)
2*m[1, 1, 1]
sage: m.carlitz_shareshian_wachs(3, 0, 1, comparison=1)
0
sage: m.carlitz_shareshian_wachs(3, 0, 0, comparison=1)
0
sage: m.carlitz_shareshian_wachs(5, 2, 2, comparison=1)
m[2, 2, 1] + m[3, 1, 1]
sage: m.carlitz_shareshian_wachs(4, 2, 0, comparison=1)
8*m[1, 1, 1, 1] + 2*m[2, 1, 1] + m[2, 2]
sage: m.carlitz_shareshian_wachs(1, 0, 0, comparison=1)
0

corresponding_basis_over(R)
Return the realization of symmetric functions corresponding to self but over the base ring R. Only
works when self is one of the classical bases, not one of the 𝑞, 𝑡-dependent ones. In the latter case,
None is returned instead.

INPUT:
• R – a commutative ring

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.monomial()
sage: m.corresponding_basis_over(ZZ)
Symmetric Functions over Integer Ring in the monomial basis

sage: Sym = SymmetricFunctions(CyclotomicField())
sage: s = Sym.schur()
sage: s.corresponding_basis_over(Integers(13))
Symmetric Functions over Ring of integers modulo 13 in the Schur basis

sage: P = ZZ['q','t']
sage: Sym = SymmetricFunctions(P)
sage: mj = Sym.macdonald().J()
sage: mj.corresponding_basis_over(Integers(13))

Todo: This function is an ugly hack using strings. It should be rewritten as soon as the bases of
SymmetricFunctions are put on a more robust and systematic footing.

degree_on_basis(b)
Return the degree of the basis element indexed by b.

INPUT:
• self – a basis of the symmetric functions
• b – a partition

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ['q,t'].fraction_field())
sage: m = Sym.monomial()

(continues on next page)

5.1. Comprehensive Module List 2953

Combinatorics, Release 9.7

(continued from previous page)

sage: m.degree_on_basis(Partition([3,2]))
5
sage: P = Sym.macdonald().P()
sage: P.degree_on_basis(Partition([]))
0

formal_series_ring()
Return the completion of all formal linear combinations of self with finite linear combinations in
each homogeneous degree (computed lazily).

EXAMPLES:

sage: s = SymmetricFunctions(ZZ).s()
sage: L = s.formal_series_ring()
sage: L
Lazy completion of Symmetric Functions over Integer Ring in the Schur basis

gessel_reutenauer(lam)
Return the Gessel-Reutenauer symmetric function corresponding to the partition lam written in the
basis self.

Let 𝜆 be a partition. The Gessel-Reutenauer symmetric function GR𝜆 corresponding to 𝜆 is the sym-
metric function denoted𝐿𝜆 in [GR1993] and in Exercise 7.89 of [STA] and denotedGR𝜆 in Definition
6.6.34 of [GriRei18]. It is also called the higher Lie character, for instance in [Sch2003b]. It can be
defined in several ways:

• It is the sum of the monomials x𝑤 over all words𝑤 over the alphabet {1, 2, 3, . . .}which have CFL
type 𝜆. Here, the monomial x𝑤 for a word 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑘) is defined as 𝑥𝑤1

𝑥𝑤2
· · ·𝑥𝑤𝑘

,
and the CFL type of a word 𝑤 is defined as the partition obtained by sorting (in decreasing order)
the lengths of the factors in the Lyndon factorization (lyndon_factorization()) of 𝑤. The
fact that this power series GR𝜆 is symmetric is not obvious.

• It is the sum of the fundamental quasisymmetric functions 𝐹Des𝜎 over all permutations 𝜎
that have cycle type 𝜆. See sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.
Fundamental for the definition of fundamental quasisymmetric functions, and cycle_type()
for that of cycle type. For a permutation 𝜎, we use Des𝜎 to denote the descent composition
(descents_composition()) of 𝜎. Again, this definition does not make the symmetry of GR𝜆

obvious.
• For every positive integer 𝑛, we have

GR(𝑛) =
1

𝑛

∑︁
𝑑|𝑛

𝜇(𝑑)𝑝
𝑛/𝑑
𝑑 ,

where 𝑝𝑑 denotes the 𝑑-th power-sum symmetric function. This GR(𝑛) is also denoted by 𝐿𝑛,
and is called the Lie character. Now, the higher Lie character GR𝜆 is defined as the product:

ℎ𝑚1 [𝐿1] · ℎ𝑚2 [𝐿2] · ℎ𝑚3 [𝐿3] · · · ,

where 𝑚𝑖 denotes the multiplicity of the part 𝑖 in 𝜆, and where the square brackets stand for
plethysm (plethysm()). This definition makes the symmetry (but not the integrality!) of GR𝜆

obvious.
The equivalences of these three definitions are proven in [GR1993] Sections 2-3. (See also [GriRei18]
Subsection 6.6.2 for the equivalence of the first two definitions and further formulas.)

GR𝜆 has further significance in representations afforded by the tensor algebra 𝑇 (𝑉) of a finite dimen-
sional vector space. The Poincaré-Birkhoff-Witt theorem describes the universal enveloping algebra
of a Lie algebra. It gives a decomposition of the degree-𝑛 component 𝑇𝑛(𝑉) of 𝑇 (𝑉) into 𝐺𝐿(𝑉)

2954 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

representations indexed by partitions. The higher Lie characters are the symmetric group 𝑆𝑛 characters
corresponding to this decomposition via Schur-Weyl duality.

Another important question, Thrall’s problem (see e.g. [Sch2003b]) asks, for 𝜆 a partition of 𝑛, can
we combinatorially interpret the coefficients 𝛼𝜆𝜇 in the Schur-expansion of GR𝜆:

GR𝜆 =
∑︁
𝜇⊢𝑛

𝛼𝜆𝜇𝑠𝜇.

INPUT:
• lam – a partition or a positive integer (in the latter case, it is understood to mean the partition
[lam])

OUTPUT:

The Gessel-Reutenauer symmetric function GR𝜆, where 𝜆 is lam, expanded in the basis self.

EXAMPLES:

The first few values of GR(𝑛) = 𝐿𝑛:

sage: Sym = SymmetricFunctions(ZZ)
sage: h = Sym.h()
sage: h.gessel_reutenauer(1)
h[1]
sage: h.gessel_reutenauer(2)
h[1, 1] - h[2]
sage: h.gessel_reutenauer(3)
h[2, 1] - h[3]
sage: h.gessel_reutenauer(4)
h[2, 1, 1] - h[2, 2]
sage: h.gessel_reutenauer(5)
h[2, 1, 1, 1] - h[2, 2, 1] - h[3, 1, 1] + h[3, 2] + h[4, 1] - h[5]
sage: h.gessel_reutenauer(6)
h[2, 1, 1, 1, 1] - h[2, 2, 1, 1] - h[2, 2, 2]
- 2*h[3, 1, 1, 1] + 5*h[3, 2, 1] - 2*h[3, 3] + h[4, 1, 1]
- h[4, 2] - h[5, 1] + h[6]

Gessel-Reutenauer functions indexed by partitions:

sage: h.gessel_reutenauer([2, 1])
h[1, 1, 1] - h[2, 1]
sage: h.gessel_reutenauer([2, 2])
h[1, 1, 1, 1] - 3*h[2, 1, 1] + 2*h[2, 2] + h[3, 1] - h[4]

The Gessel-Reutenauer functions are Schur-positive:

sage: s = Sym.s()
sage: s.gessel_reutenauer([2, 1])
s[1, 1, 1] + s[2, 1]
sage: s.gessel_reutenauer([2, 2, 1])
s[1, 1, 1, 1, 1] + s[2, 1, 1, 1] + s[2, 2, 1] + s[3, 2]

They do not form a basis, as the following example (from [GR1993] p. 201) shows:

sage: s.gessel_reutenauer([4]) == s.gessel_reutenauer([2, 1, 1])
True

5.1. Comprehensive Module List 2955

Combinatorics, Release 9.7

They also go by the name higher Lie character:

sage: s.higher_lie_character([2, 2, 1]) == s.gessel_reutenauer([2, 2, 1])
True

Of the above three equivalent definitions of GR𝜆, we use the third one for computations. Let us check
that the second one gives the same results:

sage: QSym = QuasiSymmetricFunctions(ZZ)
sage: F = QSym.F() # fundamental basis
sage: def GR_def2(lam): # `\mathbf{GR}_\lambda`
....: n = lam.size()
....: r = F.sum_of_monomials([sigma.descents_composition()
....: for sigma in Permutations(n)
....: if sigma.cycle_type() == lam])
....: return r.to_symmetric_function()
sage: all(GR_def2(lam) == h.gessel_reutenauer(lam)
....: for n in range(5) for lam in Partitions(n))
True

And the first one, too (assuming symmetry):

sage: m = Sym.m()
sage: def GR_def1(lam): # `\mathbf{GR}_\lambda`
....: n = lam.size()
....: Permus_mset = sage.combinat.permutation.Permutations_mset
....: def coeff_of_m_mu_in_result(mu):
....: words_to_check = Permus_mset([i for (i, l) in enumerate(mu)
....: for _ in range(l)])
....: return sum((1 for w in words_to_check if
....: Partition(list(reversed(sorted([len(v) for v in␣
→˓Word(w).lyndon_factorization()]))))
....: == lam))
....: r = m.sum_of_terms([(mu, coeff_of_m_mu_in_result(mu))
....: for mu in Partitions(n)],
....: distinct=True)
....: return r
sage: all(GR_def1(lam) == h.gessel_reutenauer(lam)
....: for n in range(5) for lam in Partitions(n))
True

Note: The currently existing implementation of this function is technically unsatisfactory. It dis-
tinguishes the case when the base ring is a Q-algebra from the case where it isn’t. In the lat-
ter, it does a computation using universal coefficients, again distinguishing the case when it is
able to compute the “corresponding” basis of the symmetric function algebra over Q (using the
corresponding_basis_over hack) from the case when it isn’t (in which case it transforms every-
thing into the Schur basis, which is slow).

higher_lie_character(lam)
Return the Gessel-Reutenauer symmetric function corresponding to the partition lam written in the
basis self.

Let 𝜆 be a partition. The Gessel-Reutenauer symmetric function GR𝜆 corresponding to 𝜆 is the sym-
metric function denoted𝐿𝜆 in [GR1993] and in Exercise 7.89 of [STA] and denotedGR𝜆 in Definition

2956 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

6.6.34 of [GriRei18]. It is also called the higher Lie character, for instance in [Sch2003b]. It can be
defined in several ways:

• It is the sum of the monomials x𝑤 over all words𝑤 over the alphabet {1, 2, 3, . . .}which have CFL
type 𝜆. Here, the monomial x𝑤 for a word 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑘) is defined as 𝑥𝑤1

𝑥𝑤2
· · ·𝑥𝑤𝑘

,
and the CFL type of a word 𝑤 is defined as the partition obtained by sorting (in decreasing order)
the lengths of the factors in the Lyndon factorization (lyndon_factorization()) of 𝑤. The
fact that this power series GR𝜆 is symmetric is not obvious.

• It is the sum of the fundamental quasisymmetric functions 𝐹Des𝜎 over all permutations 𝜎
that have cycle type 𝜆. See sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.
Fundamental for the definition of fundamental quasisymmetric functions, and cycle_type()
for that of cycle type. For a permutation 𝜎, we use Des𝜎 to denote the descent composition
(descents_composition()) of 𝜎. Again, this definition does not make the symmetry of GR𝜆

obvious.
• For every positive integer 𝑛, we have

GR(𝑛) =
1

𝑛

∑︁
𝑑|𝑛

𝜇(𝑑)𝑝
𝑛/𝑑
𝑑 ,

where 𝑝𝑑 denotes the 𝑑-th power-sum symmetric function. This GR(𝑛) is also denoted by 𝐿𝑛,
and is called the Lie character. Now, the higher Lie character GR𝜆 is defined as the product:

ℎ𝑚1
[𝐿1] · ℎ𝑚2

[𝐿2] · ℎ𝑚3
[𝐿3] · · · ,

where 𝑚𝑖 denotes the multiplicity of the part 𝑖 in 𝜆, and where the square brackets stand for
plethysm (plethysm()). This definition makes the symmetry (but not the integrality!) of GR𝜆

obvious.
The equivalences of these three definitions are proven in [GR1993] Sections 2-3. (See also [GriRei18]
Subsection 6.6.2 for the equivalence of the first two definitions and further formulas.)

GR𝜆 has further significance in representations afforded by the tensor algebra 𝑇 (𝑉) of a finite dimen-
sional vector space. The Poincaré-Birkhoff-Witt theorem describes the universal enveloping algebra
of a Lie algebra. It gives a decomposition of the degree-𝑛 component 𝑇𝑛(𝑉) of 𝑇 (𝑉) into 𝐺𝐿(𝑉)
representations indexed by partitions. The higher Lie characters are the symmetric group 𝑆𝑛 characters
corresponding to this decomposition via Schur-Weyl duality.

Another important question, Thrall’s problem (see e.g. [Sch2003b]) asks, for 𝜆 a partition of 𝑛, can
we combinatorially interpret the coefficients 𝛼𝜆𝜇 in the Schur-expansion of GR𝜆:

GR𝜆 =
∑︁
𝜇⊢𝑛

𝛼𝜆𝜇𝑠𝜇.

INPUT:
• lam – a partition or a positive integer (in the latter case, it is understood to mean the partition
[lam])

OUTPUT:

The Gessel-Reutenauer symmetric function GR𝜆, where 𝜆 is lam, expanded in the basis self.

EXAMPLES:

The first few values of GR(𝑛) = 𝐿𝑛:

sage: Sym = SymmetricFunctions(ZZ)
sage: h = Sym.h()
sage: h.gessel_reutenauer(1)
h[1]
sage: h.gessel_reutenauer(2)

(continues on next page)

5.1. Comprehensive Module List 2957

Combinatorics, Release 9.7

(continued from previous page)

h[1, 1] - h[2]
sage: h.gessel_reutenauer(3)
h[2, 1] - h[3]
sage: h.gessel_reutenauer(4)
h[2, 1, 1] - h[2, 2]
sage: h.gessel_reutenauer(5)
h[2, 1, 1, 1] - h[2, 2, 1] - h[3, 1, 1] + h[3, 2] + h[4, 1] - h[5]
sage: h.gessel_reutenauer(6)
h[2, 1, 1, 1, 1] - h[2, 2, 1, 1] - h[2, 2, 2]
- 2*h[3, 1, 1, 1] + 5*h[3, 2, 1] - 2*h[3, 3] + h[4, 1, 1]
- h[4, 2] - h[5, 1] + h[6]

Gessel-Reutenauer functions indexed by partitions:

sage: h.gessel_reutenauer([2, 1])
h[1, 1, 1] - h[2, 1]
sage: h.gessel_reutenauer([2, 2])
h[1, 1, 1, 1] - 3*h[2, 1, 1] + 2*h[2, 2] + h[3, 1] - h[4]

The Gessel-Reutenauer functions are Schur-positive:

sage: s = Sym.s()
sage: s.gessel_reutenauer([2, 1])
s[1, 1, 1] + s[2, 1]
sage: s.gessel_reutenauer([2, 2, 1])
s[1, 1, 1, 1, 1] + s[2, 1, 1, 1] + s[2, 2, 1] + s[3, 2]

They do not form a basis, as the following example (from [GR1993] p. 201) shows:

sage: s.gessel_reutenauer([4]) == s.gessel_reutenauer([2, 1, 1])
True

They also go by the name higher Lie character:

sage: s.higher_lie_character([2, 2, 1]) == s.gessel_reutenauer([2, 2, 1])
True

Of the above three equivalent definitions of GR𝜆, we use the third one for computations. Let us check
that the second one gives the same results:

sage: QSym = QuasiSymmetricFunctions(ZZ)
sage: F = QSym.F() # fundamental basis
sage: def GR_def2(lam): # `\mathbf{GR}_\lambda`
....: n = lam.size()
....: r = F.sum_of_monomials([sigma.descents_composition()
....: for sigma in Permutations(n)
....: if sigma.cycle_type() == lam])
....: return r.to_symmetric_function()
sage: all(GR_def2(lam) == h.gessel_reutenauer(lam)
....: for n in range(5) for lam in Partitions(n))
True

And the first one, too (assuming symmetry):

2958 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: m = Sym.m()
sage: def GR_def1(lam): # `\mathbf{GR}_\lambda`
....: n = lam.size()
....: Permus_mset = sage.combinat.permutation.Permutations_mset
....: def coeff_of_m_mu_in_result(mu):
....: words_to_check = Permus_mset([i for (i, l) in enumerate(mu)
....: for _ in range(l)])
....: return sum((1 for w in words_to_check if
....: Partition(list(reversed(sorted([len(v) for v in␣
→˓Word(w).lyndon_factorization()]))))
....: == lam))
....: r = m.sum_of_terms([(mu, coeff_of_m_mu_in_result(mu))
....: for mu in Partitions(n)],
....: distinct=True)
....: return r
sage: all(GR_def1(lam) == h.gessel_reutenauer(lam)
....: for n in range(5) for lam in Partitions(n))
True

Note: The currently existing implementation of this function is technically unsatisfactory. It dis-
tinguishes the case when the base ring is a Q-algebra from the case where it isn’t. In the lat-
ter, it does a computation using universal coefficients, again distinguishing the case when it is
able to compute the “corresponding” basis of the symmetric function algebra over Q (using the
corresponding_basis_over hack) from the case when it isn’t (in which case it transforms every-
thing into the Schur basis, which is slow).

is_commutative()
Return whether this symmetric function algebra is commutative.

INPUT:
• self – a basis of the symmetric functions

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s.is_commutative()
True

is_field(proof=True)
Return whether self is a field. (It is not.)

INPUT:
• self – a basis of the symmetric functions
• proof – an optional argument (default value: True)

EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s.is_field()
False

is_integral_domain(proof=True)
Return whether self is an integral domain. (It is if and only if the base ring is an integral domain.)

INPUT:
• self – a basis of the symmetric functions

5.1. Comprehensive Module List 2959

Combinatorics, Release 9.7

• proof – an optional argument (default value: True)
EXAMPLES:

sage: s = SymmetricFunctions(QQ).s()
sage: s.is_integral_domain()
True

The following doctest is disabled pending trac ticket #15475:

sage: s = SymmetricFunctions(Zmod(14)).s() # not tested
sage: s.is_integral_domain() # not tested
False

lehrer_solomon(lam)
Return the Lehrer-Solomon symmetric function (also known as the Whitney homology character) cor-
responding to the partition lam written in the basis self.

Let 𝜆 ⊢ 𝑛 be a partition. The Lehrer-Solomon symmetric function LS𝜆 corresponding to 𝜆 is the
Frobenius characteristic of the representation denoted Ind𝑆𝑛

𝑍𝜆
(𝜉𝜆) in Theorem 4.5 of [LS1986] or 𝑊𝜆

in Theorem 2.7 of [HR2017]. It was first computed as a symmetric function in [Sun1994].

It is the symmetric group representation corresponding to a summand of the Whitney homology of the
set partition lattice. The summand comes from the orbit of set partitions with block sizes corresponding
to 𝜆 (after reordering appropriately).

It can be computed using Sundaram’s plethystic formula (see [Sun1994] Theorem 1.8):

LS𝜆 =
∏︁

odd 𝑗≥1

ℎ𝑚𝑗
[𝜋𝑗]

∏︁
even 𝑗≥2

𝑒𝑚𝑗
[𝜋𝑗],

where ℎ𝑚𝑗
are complete homogeneous symmetric functions, 𝑒𝑚𝑗

are elementary symmetric
functions, and 𝜋𝑗 are the images of the Gessel-Reutenauer symmetric function GR(𝑗) (see
gessel_reutenauer()) under the involution 𝜔 (i.e. omega_involution()):

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: pi_2 = (s.gessel_reutenauer(2)).omega_involution()
sage: pi_1 = (s.gessel_reutenauer(1)).omega_involution()
sage: s.lehrer_solomon([2,1]) == pi_2 * pi_1 # since h_1, e_1 are␣
→˓plethystic identities
True

Note that this also gives the 𝑆𝑛-equivariant structure of the Orlik-Solomon algebra of the braid ar-
rangement (also known as the type-𝐴 reflection arrangement).

The representation corresponding to LS𝜆 exhibits representation stability [Chu2012], and a sharp
bound is given in [HR2017].

INPUT:
• lam – a partition or a positive integer (in the latter case, it is understood to mean the partition
[lam])

OUTPUT:

The Lehrer-Solomon symmetric function LS𝜆, where 𝜆 is lam, expanded in the basis self.

EXAMPLES:

The first few values of LS(𝑛):

2960 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/15475

Combinatorics, Release 9.7

sage: Sym = SymmetricFunctions(ZZ)
sage: h = Sym.h()
sage: h.lehrer_solomon(1)
h[1]
sage: h.lehrer_solomon(2)
h[2]
sage: h.lehrer_solomon(3)
h[2, 1] - h[3]
sage: h.lehrer_solomon(4)
h[2, 1, 1] - h[2, 2]
sage: h.lehrer_solomon(5)
h[2, 1, 1, 1] - h[2, 2, 1] - h[3, 1, 1] + h[3, 2] + h[4, 1] - h[5]

The whitney_homology_character() method is an alias:

sage: Sym = SymmetricFunctions(ZZ)
sage: s = Sym.schur()
sage: s.lehrer_solomon([2, 2, 1]) == s.whitney_homology_character([2, 2, 1])
True

Lehrer-Solomon functions indexed by partitions:

sage: h.lehrer_solomon([2, 1])
h[2, 1]
sage: h.lehrer_solomon([2, 2])
h[3, 1] - h[4]

The Lehrer-Solomon functions are Schur-positive:

sage: s = Sym.s()
sage: s.lehrer_solomon([2, 1])
s[2, 1] + s[3]
sage: s.lehrer_solomon([2, 2, 1])
s[3, 1, 1] + s[3, 2] + s[4, 1]
sage: s.lehrer_solomon([4, 1])
s[2, 1, 1, 1] + s[2, 2, 1] + 2*s[3, 1, 1] + s[3, 2] + s[4, 1]

one_basis()
Return the empty partition, as per AlgebrasWithBasis.ParentMethods.one_basis

INPUT:
• self – a basis of the ring of symmetric functions

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
sage: s = Sym.s()
sage: s.one_basis()
[]
sage: Q = Sym.hall_littlewood().Q()
sage: Q.one_basis()
[]

Todo: generalize to Modules.Graded.Connected.ParentMethods

5.1. Comprehensive Module List 2961

Combinatorics, Release 9.7

skew_schur(x)
Return the skew Schur function indexed by x in self.

INPUT:
• x – a skew partition

EXAMPLES:

sage: sp = SkewPartition([[5,3,3,1], [3,2,1]])
sage: s = SymmetricFunctions(QQ).s()
sage: s.skew_schur(sp)
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 3*s[3, 2, 1]
+ s[3, 3] + 2*s[4, 1, 1] + 2*s[4, 2] + s[5, 1]

sage: e = SymmetricFunctions(QQ).e()
sage: ess = e.skew_schur(sp); ess
e[2, 1, 1, 1, 1] - e[2, 2, 1, 1] - e[3, 1, 1, 1] + e[3, 2, 1]
sage: ess == e(s.skew_schur(sp))
True

whitney_homology_character(lam)
Return the Lehrer-Solomon symmetric function (also known as the Whitney homology character) cor-
responding to the partition lam written in the basis self.

Let 𝜆 ⊢ 𝑛 be a partition. The Lehrer-Solomon symmetric function LS𝜆 corresponding to 𝜆 is the
Frobenius characteristic of the representation denoted Ind𝑆𝑛

𝑍𝜆
(𝜉𝜆) in Theorem 4.5 of [LS1986] or 𝑊𝜆

in Theorem 2.7 of [HR2017]. It was first computed as a symmetric function in [Sun1994].

It is the symmetric group representation corresponding to a summand of the Whitney homology of the
set partition lattice. The summand comes from the orbit of set partitions with block sizes corresponding
to 𝜆 (after reordering appropriately).

It can be computed using Sundaram’s plethystic formula (see [Sun1994] Theorem 1.8):

LS𝜆 =
∏︁

odd 𝑗≥1

ℎ𝑚𝑗
[𝜋𝑗]

∏︁
even 𝑗≥2

𝑒𝑚𝑗
[𝜋𝑗],

where ℎ𝑚𝑗
are complete homogeneous symmetric functions, 𝑒𝑚𝑗

are elementary symmetric
functions, and 𝜋𝑗 are the images of the Gessel-Reutenauer symmetric function GR(𝑗) (see
gessel_reutenauer()) under the involution 𝜔 (i.e. omega_involution()):

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: pi_2 = (s.gessel_reutenauer(2)).omega_involution()
sage: pi_1 = (s.gessel_reutenauer(1)).omega_involution()
sage: s.lehrer_solomon([2,1]) == pi_2 * pi_1 # since h_1, e_1 are␣
→˓plethystic identities
True

Note that this also gives the 𝑆𝑛-equivariant structure of the Orlik-Solomon algebra of the braid ar-
rangement (also known as the type-𝐴 reflection arrangement).

The representation corresponding to LS𝜆 exhibits representation stability [Chu2012], and a sharp
bound is given in [HR2017].

INPUT:
• lam – a partition or a positive integer (in the latter case, it is understood to mean the partition
[lam])

2962 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

The Lehrer-Solomon symmetric function LS𝜆, where 𝜆 is lam, expanded in the basis self.

EXAMPLES:

The first few values of LS(𝑛):

sage: Sym = SymmetricFunctions(ZZ)
sage: h = Sym.h()
sage: h.lehrer_solomon(1)
h[1]
sage: h.lehrer_solomon(2)
h[2]
sage: h.lehrer_solomon(3)
h[2, 1] - h[3]
sage: h.lehrer_solomon(4)
h[2, 1, 1] - h[2, 2]
sage: h.lehrer_solomon(5)
h[2, 1, 1, 1] - h[2, 2, 1] - h[3, 1, 1] + h[3, 2] + h[4, 1] - h[5]

The whitney_homology_character() method is an alias:

sage: Sym = SymmetricFunctions(ZZ)
sage: s = Sym.schur()
sage: s.lehrer_solomon([2, 2, 1]) == s.whitney_homology_character([2, 2, 1])
True

Lehrer-Solomon functions indexed by partitions:

sage: h.lehrer_solomon([2, 1])
h[2, 1]
sage: h.lehrer_solomon([2, 2])
h[3, 1] - h[4]

The Lehrer-Solomon functions are Schur-positive:

sage: s = Sym.s()
sage: s.lehrer_solomon([2, 1])
s[2, 1] + s[3]
sage: s.lehrer_solomon([2, 2, 1])
s[3, 1, 1] + s[3, 2] + s[4, 1]
sage: s.lehrer_solomon([4, 1])
s[2, 1, 1, 1] + s[2, 2, 1] + 2*s[3, 1, 1] + s[3, 2] + s[4, 1]

super_categories()
The super categories of self.

EXAMPLES:

sage: from sage.combinat.sf.sfa import SymmetricFunctionsBases
sage: Sym = SymmetricFunctions(QQ)
sage: bases = SymmetricFunctionsBases(Sym)
sage: bases.super_categories()
[Category of realizations of Symmetric Functions over Rational Field,
Category of commutative hopf algebras with basis over Rational Field,

(continues on next page)

5.1. Comprehensive Module List 2963

Combinatorics, Release 9.7

(continued from previous page)

Join of Category of realizations of hopf algebras over Rational Field
and Category of graded algebras over Rational Field
and Category of graded coalgebras over Rational Field]

sage.combinat.sf.sfa.is_SymmetricFunction(x)
Checks whether x is a symmetric function.

EXAMPLES:

sage: from sage.combinat.sf.sfa import is_SymmetricFunction
sage: s = SymmetricFunctions(QQ).s()
sage: is_SymmetricFunction(2)
False
sage: is_SymmetricFunction(s(2))
True
sage: is_SymmetricFunction(s([2,1]))
True

sage.combinat.sf.sfa.is_SymmetricFunctionAlgebra(x)
Checks whether x is a symmetric function algebra.

EXAMPLES:

sage: from sage.combinat.sf.sfa import is_SymmetricFunctionAlgebra
sage: is_SymmetricFunctionAlgebra(5)
False
sage: is_SymmetricFunctionAlgebra(ZZ)
False
sage: is_SymmetricFunctionAlgebra(SymmetricFunctions(ZZ).schur())
True
sage: is_SymmetricFunctionAlgebra(SymmetricFunctions(QQ).e())
True
sage: is_SymmetricFunctionAlgebra(SymmetricFunctions(QQ).macdonald(q=1,t=1).P())
True
sage: is_SymmetricFunctionAlgebra(SymmetricFunctions(FractionField(QQ['q','t'])).
→˓macdonald().P())
True

sage.combinat.sf.sfa.zee(part)
Return the size of the centralizer of any permutation of cycle type part.

Note that the size of the centralizer is the inner product between p(part) and itself, where 𝑝 is the power-sum
symmetric functions.

INPUT:

• part – an integer partition (for example, [2,1,1])

OUTPUT:

• the integer
∏︀
𝑖 𝑖
𝑚𝑖(𝑝𝑎𝑟𝑡)𝑚𝑖(𝑝𝑎𝑟𝑡)! where 𝑚𝑖(𝑝𝑎𝑟𝑡) is the number of parts in the partition part equal to 𝑖

EXAMPLES:

sage: from sage.combinat.sf.sfa import zee
sage: zee([2,1,1])
4

2964 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.300 Witt symmetric functions

class sage.combinat.sf.witt.SymmetricFunctionAlgebra_witt(Sym, coerce_h=True, coerce_e=False,
coerce_p=False)

Bases: sage.combinat.sf.multiplicative.SymmetricFunctionAlgebra_multiplicative

The Witt symmetric function basis (or Witt basis, to be short).

The Witt basis of the ring of symmetric functions is denoted by (𝑥𝜆) in [HazWitt1], section 9.63, and by (𝑞𝜆)
in [DoranIV1996]. We will denote this basis by (𝑤𝜆) (which is precisely how it is denoted in [GriRei18],
Exercise 2.9.3(d)). It is a multiplicative basis (meaning that 𝑤∅ = 1 and that every partition 𝜆 satisfies
𝑤𝜆 = 𝑤𝜆1

𝑤𝜆2
𝑤𝜆3
· · ·, where 𝑤𝑖 means 𝑤(𝑖) for every nonnegative integer 𝑖).

This basis can be defined in various ways. Probably the most well-known one is using the equation
∞∏︁
𝑑=1

(1− 𝑤𝑑𝑡𝑑)−1 =

∞∑︁
𝑛=0

ℎ𝑛𝑡
𝑛

where 𝑡 is a formal variable and ℎ𝑛 are the complete homogeneous symmetric functions, extended to 0 by ℎ0 = 1.
This equation allows one to uniquely determine the functions 𝑤1, 𝑤2, 𝑤3, . . . by recursion; one consequently
extends the definition to all 𝑤𝜆 by requiring multiplicativity.

A way to rewrite the above equation without power series is:

ℎ𝑛 =
∑︁
𝜆⊢𝑛

𝑤𝜆

for all nonnegative integers 𝑛, where 𝜆 ⊢ 𝑛 means that 𝜆 is a partition of 𝑛.

A similar equation (which is easily seen to be equivalent to the former) is

𝑒𝑛 =
∑︁
𝜆

(−1)𝑛−ℓ(𝜆)𝑤𝜆,

with the sum running only over strict partitions 𝜆 of 𝑛 this time. This equation can also be used to recursively
define the 𝑤𝑛. Furthermore, every positive integer 𝑛 satisfies

𝑝𝑛 =
∑︁
𝑑|𝑛

𝑑𝑤
𝑛/𝑑
𝑑 ,

and this can be used to define the 𝑤𝑛 recursively over any ring which is torsion-free as a Z-module. While
these equations all yield easy formulas for classical bases of the ring of symmetric functions in terms of the Witt
symmetric functions, it seems difficult to obtain explicit formulas in the other direction.

The Witt symmetric functions owe their name to the fact that the ring of symmetric functions can be viewed as
the coordinate ring of the group scheme of Witt vectors, and the Witt symmetric functions are the functions that
send a Witt vector to its components (whereas the powersum symmetric functions send a Witt vector to its ghost
components). Details can be found in [HazWitt1] or section 3.2 of [BorWi2004].

INPUT:

• Sym – an instance of the ring of the symmetric functions.

• coerce_h – (default: True) a boolean that determines whether the transition maps between the Witt basis
and the complete homogeneous basis will be cached and registered as coercions.

• coerce_e – (default: False) a boolean that determines whether the transition maps between the Witt basis
and the elementary symmetric basis will be cached and registered as coercions.

• coerce_p – (default: False) a boolean that determines whether the transition maps between the Witt basis
and the powersum basis will be cached and registered as coercions (or conversions, if the base ring is not a
Q-algebra).

5.1. Comprehensive Module List 2965

Combinatorics, Release 9.7

REFERENCES:

EXAMPLES:

Here are the first few Witt symmetric functions, in various bases:

sage: Sym = SymmetricFunctions(QQ)
sage: w = Sym.w()
sage: e = Sym.e()
sage: h = Sym.h()
sage: p = Sym.p()
sage: s = Sym.s()
sage: m = Sym.m()

sage: p(w([1]))
p[1]
sage: m(w([1]))
m[1]
sage: e(w([1]))
e[1]
sage: h(w([1]))
h[1]
sage: s(w([1]))
s[1]

sage: p(w([2]))
-1/2*p[1, 1] + 1/2*p[2]
sage: m(w([2]))
-m[1, 1]
sage: e(w([2]))
-e[2]
sage: h(w([2]))
-h[1, 1] + h[2]
sage: s(w([2]))
-s[1, 1]

sage: p(w([3]))
-1/3*p[1, 1, 1] + 1/3*p[3]
sage: m(w([3]))
-2*m[1, 1, 1] - m[2, 1]
sage: e(w([3]))
-e[2, 1] + e[3]
sage: h(w([3]))
-h[2, 1] + h[3]
sage: s(w([3]))
-s[2, 1]

sage: Sym = SymmetricFunctions(ZZ)
sage: w = Sym.w()
sage: e = Sym.e()
sage: h = Sym.h()
sage: s = Sym.s()
sage: m = Sym.m()
sage: p = Sym.p()

(continues on next page)

2966 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: m(w([4]))
-9*m[1, 1, 1, 1] - 4*m[2, 1, 1] - 2*m[2, 2] - m[3, 1]
sage: e(w([4]))
-e[2, 1, 1] + e[3, 1] - e[4]
sage: h(w([4]))
-h[1, 1, 1, 1] + 2*h[2, 1, 1] - h[2, 2] - h[3, 1] + h[4]
sage: s(w([4]))
-s[1, 1, 1, 1] - s[2, 1, 1] - s[2, 2] - s[3, 1]

Some examples of conversions the other way:

sage: w(h[3])
w[1, 1, 1] + w[2, 1] + w[3]
sage: w(e[3])
-w[2, 1] + w[3]
sage: w(m[2,1])
2*w[2, 1] - 3*w[3]
sage: w(p[3])
w[1, 1, 1] + 3*w[3]

Antipodes:

sage: w([1]).antipode()
-w[1]
sage: w([2]).antipode()
-w[1, 1] - w[2]

The following holds for all odd 𝑖 and is easily proven by induction:

sage: all(w([i]).antipode() == -w([i]) for i in range(1, 10, 2))
True

The Witt basis does not allow for simple expressions for comultiplication and antipode in general (this is related
to the fact that the sum of two Witt vectors isn’t easily described in terms of the components). Therefore, most
computations with Witt symmetric functions, as well as conversions and coercions, pass through the complete
homogeneous symmetric functions by default. However, one can also use the elementary symmetric functions
instead, or (if the base ring is aQ-algebra) the powersum symmetric functions. This is what the optional keyword
variables coerce_e, coerce_h and coerce_p are for. These variables do not affect the results of the (non-
underscored) methods of self, but they affect the speed of the computations (the more of these variables are set
to True, the faster these are) and the size of the cache (the more of these variables are set to True, the bigger the
cache). Let us check that the results are the same no matter to what the variables are set:

sage: Sym = SymmetricFunctions(QQ)
sage: p = Sym.p()
sage: wh = Sym.w()
sage: we = Sym.w(coerce_h=False, coerce_e=True)
sage: wp = Sym.w(coerce_h=False, coerce_p=True)
sage: all(p(wh(lam)) == p(we(lam)) == p(wp(lam)) for lam in Partitions(4))
True
sage: all (wh(p(lam)).monomial_coefficients()
....: == we(p(lam)).monomial_coefficients()
....: == wp(p(lam)).monomial_coefficients() for lam in Partitions(4))
True

5.1. Comprehensive Module List 2967

Combinatorics, Release 9.7

coproduct(elt)
Return the coproduct of the element elt.

INPUT:

• elt – a symmetric function written in this basis

OUTPUT:

• The coproduct acting on elt; the result is an element of the tensor squared of the basis self

EXAMPLES:

sage: w = SymmetricFunctions(QQ).w()
sage: w[2].coproduct()
w[] # w[2] - w[1] # w[1] + w[2] # w[]
sage: w.coproduct(w[2])
w[] # w[2] - w[1] # w[1] + w[2] # w[]
sage: w[2,1].coproduct()
w[] # w[2, 1] - w[1] # w[1, 1] + w[1] # w[2] - w[1, 1] # w[1] + w[2] # w[1] +␣
→˓w[2, 1] # w[]
sage: w.coproduct(w[2,1])
w[] # w[2, 1] - w[1] # w[1, 1] + w[1] # w[2] - w[1, 1] # w[1] + w[2] # w[1] +␣
→˓w[2, 1] # w[]

from_other_uncached(u)
Return an element u of another basis of the ring of symmetric functions, expanded in the Witt basis self.
The result is the same as self(u), but the from_other_uncached method does not precompute a cache
with transition matrices. Thus, from_other_uncached is faster when u is sparse.

INPUT:

• u – an element of self.realization_of()

OUTPUT:

• the expansion of u in the Witt basis self

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: p = Sym.p()
sage: w = Sym.w()
sage: a = p([3,2]) - p([4,1]) + 27 * p([3])
sage: w.from_other_uncached(a) == w(a)
True

Here’s a verification of an obvious fact that would take long with regular coercion:

sage: fouc = w.from_other_uncached
sage: fouc(p([15]))
w[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + 3*w[3, 3, 3, 3, 3] + 5*w[5, 5,␣
→˓5] + 15*w[15]
sage: fouc(p([15])) * fouc(p([14])) == fouc(p([15, 14]))
True

Other bases:

2968 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: e = Sym.e()
sage: h = Sym.h()
sage: s = Sym.s()
sage: all(fouc(e(lam)) == w(e(lam)) for lam in Partitions(5))
True
sage: all(fouc(h(lam)) == w(h(lam)) for lam in Partitions(5))
True
sage: all(fouc(p(lam)) == w(p(lam)) for lam in Partitions(5))
True
sage: all(fouc(s(lam)) == w(s(lam)) for lam in Partitions(5))
True

verschiebung(n)
Return the image of the symmetric function self under the 𝑛-th Verschiebung operator.

The 𝑛-th Verschiebung operator V𝑛 is defined to be the unique algebra endomorphism 𝑉 of the ring of
symmetric functions that satisfies 𝑉 (ℎ𝑟) = ℎ𝑟/𝑛 for every positive integer 𝑟 divisible by 𝑛, and satisfies
𝑉 (ℎ𝑟) = 0 for every positive integer 𝑟 not divisible by 𝑛. This operator V𝑛 is a Hopf algebra endomor-
phism. For every nonnegative integer 𝑟 with 𝑛 | 𝑟, it satisfies

V𝑛(ℎ𝑟) = ℎ𝑟/𝑛, V𝑛(𝑝𝑟) = 𝑛𝑝𝑟/𝑛, V𝑛(𝑒𝑟) = (−1)𝑟−𝑟/𝑛𝑒𝑟/𝑛, V𝑛(𝑤𝑟) = 𝑤𝑟/𝑛,

(where ℎ is the complete homogeneous basis, 𝑝 is the powersum basis, 𝑒 is the elementary basis, and 𝑤 is
the Witt basis). For every nonnegative integer 𝑟 with 𝑛 - 𝑟, it satisfes

V𝑛(ℎ𝑟) = V𝑛(𝑝𝑟) = V𝑛(𝑒𝑟) = V𝑛(𝑤𝑟) = 0.

The 𝑛-th Verschiebung operator is also called the 𝑛-th Verschiebung endomorphism. Its name derives from
the Verschiebung (German for “shift”) endomorphism of the Witt vectors.

The 𝑛-th Verschiebung operator is adjoint to the 𝑛-th Frobenius operator (see frobenius() for its defini-
tion) with respect to the Hall scalar product (scalar()).

The action of the 𝑛-th Verschiebung operator on the Schur basis can also be computed explicitly. The fol-
lowing (probably clumsier than necessary) description can be obtained by solving exercise 7.61 in Stanley’s
[STA].

Let 𝜆 be a partition. Let 𝑛 be a positive integer. If the 𝑛-core of 𝜆 is nonempty, then V𝑛(𝑠𝜆) = 0.
Otherwise, the following method computes V𝑛(𝑠𝜆): Write the partition 𝜆 in the form (𝜆1, 𝜆2, . . . , 𝜆𝑛𝑠)
for some nonnegative integer 𝑠. (If 𝑛 does not divide the length of 𝜆, then this is achieved by adding
trailing zeroes to 𝜆.) Set 𝛽𝑖 = 𝜆𝑖 + 𝑛𝑠 − 𝑖 for every 𝑠 ∈ {1, 2, . . . , 𝑛𝑠}. Then, (𝛽1, 𝛽2, . . . , 𝛽𝑛𝑠) is a
strictly decreasing sequence of nonnegative integers. Stably sort the list (1, 2, . . . , 𝑛𝑠) in order of (weakly)
increasing remainder of −1 − 𝛽𝑖 modulo 𝑛. Let 𝜉 be the sign of the permutation that is used for this
sorting. Let 𝜓 be the sign of the permutation that is used to stably sort the list (1, 2, . . . , 𝑛𝑠) in order of
(weakly) increasing remainder of 𝑖−1 modulo 𝑛. (Notice that 𝜓 = (−1)𝑛(𝑛−1)𝑠(𝑠−1)/4.) Then, V𝑛(𝑠𝜆) =

𝜉𝜓
∏︀𝑛−1
𝑖=0 𝑠𝜆(𝑖) , where (𝜆(0), 𝜆(1), . . . , 𝜆(𝑛−1)) is the 𝑛-quotient of 𝜆.

INPUT:

• n – a positive integer

OUTPUT:

The result of applying the 𝑛-th Verschiebung operator (on the ring of symmetric functions) to self.

EXAMPLES:

5.1. Comprehensive Module List 2969

Combinatorics, Release 9.7

sage: Sym = SymmetricFunctions(ZZ)
sage: w = Sym.w()
sage: w[3].verschiebung(2)
0
sage: w[4].verschiebung(4)
w[1]

5.1.301 Shard intersection order

This file builds a combinatorial version of the shard intersection order of type A (in the classification of finite Coxeter
groups). This is a lattice on the set of permutations, closely related to noncrossing partitions and the weak order.

For technical reasons, the elements of the posets are not permutations, but can be easily converted from and to permu-
tations:

sage: from sage.combinat.shard_order import ShardPosetElement
sage: p0 = Permutation([1,3,4,2])
sage: e0 = ShardPosetElement(p0); e0
(1, 3, 4, 2)
sage: Permutation(list(e0)) == p0
True

See also:

A general implementation for all finite Coxeter groups is available as shard_poset()

REFERENCES:

class sage.combinat.shard_order.ShardPosetElement(p)
Bases: tuple

An element of the shard poset.

This is basically a permutation with extra stored arguments:

• p – the permutation itself as a tuple

• runs – the decreasing runs as a tuple of tuples

• run_indices – a list integer -> index of the run

• dpg – the transitive closure of the shard preorder graph

• spg – the transitive reduction of the shard preorder graph

These elements can easily be converted from and to permutations:

sage: from sage.combinat.shard_order import ShardPosetElement
sage: p0 = Permutation([1,3,4,2])
sage: e0 = ShardPosetElement(p0); e0
(1, 3, 4, 2)
sage: Permutation(list(e0)) == p0
True

sage.combinat.shard_order.shard_poset(n)
Return the shard intersection order on permutations of size 𝑛.

This is defined on the set of permutations. To every permutation, one can attach a pre-order, using the descending
runs and their relative positions.

2970 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/categories/sage/categories/finite_coxeter_groups.html#sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods.shard_poset

Combinatorics, Release 9.7

The shard intersection order is given by the implication (or refinement) order on the set of pre-orders defined
from all permutations.

This can also be seen in a geometrical way. Every pre-order defines a cone in a vector space of dimension 𝑛.
The shard poset is given by the inclusion of these cones.

See also:

shard_preorder_graph()

EXAMPLES:

sage: P = posets.ShardPoset(4); P # indirect doctest
Finite poset containing 24 elements
sage: P.chain_polynomial()
34*q^4 + 90*q^3 + 79*q^2 + 24*q + 1
sage: P.characteristic_polynomial()
q^3 - 11*q^2 + 23*q - 13
sage: P.zeta_polynomial()
17/3*q^3 - 6*q^2 + 4/3*q
sage: P.is_self_dual()
False

sage.combinat.shard_order.shard_preorder_graph(runs)
Return the preorder attached to a tuple of decreasing runs.

This is a directed graph, whose vertices correspond to the runs.

There is an edge from a run 𝑅 to a run 𝑆 if 𝑅 is before 𝑆 in the list of runs and the two intervals defined by the
initial and final indices of 𝑅 and 𝑆 overlap.

This only depends on the initial and final indices of the runs. For this reason, this input can also be given in that
shorten way.

INPUT:

• a tuple of tuples, the runs of a permutation, or

• a tuple of pairs (𝑖, 𝑗), each one standing for a run from 𝑖 to 𝑗.

OUTPUT:

a directed graph, with vertices labelled by integers

EXAMPLES:

sage: from sage.combinat.shard_order import shard_preorder_graph
sage: s = Permutation([2,8,3,9,6,4,5,1,7])
sage: def cut(lr):
....: return tuple((r[0], r[-1]) for r in lr)
sage: shard_preorder_graph(cut(s.decreasing_runs()))
Digraph on 5 vertices
sage: s = Permutation([9,4,3,2,8,6,5,1,7])
sage: P = shard_preorder_graph(s.decreasing_runs())
sage: P.is_isomorphic(digraphs.TransitiveTournament(3))
True

5.1. Comprehensive Module List 2971

Combinatorics, Release 9.7

5.1.302 Shifted primed tableaux

AUTHORS:

• Kirill Paramonov (2017-08-18): initial implementation

• Chaman Agrawal (2019-08-12): add parameter to allow primed diagonal entry

class sage.combinat.shifted_primed_tableau.CrystalElementShiftedPrimedTableau(parent, T,
skew=None,
check=True,
prepro-
cessed=False)

Bases: sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau

Class for elements of crystals.ShiftedPrimedTableau.

e(ind)
Compute the action of the crystal operator 𝑒𝑖 on a shifted primed tableau using cases from the papers
[HPS2017] and [AO2018].

INPUT:

• ind – an element in the index set of the crystal

OUTPUT:

Primed tableau or None.

EXAMPLES:

sage: SPT = ShiftedPrimedTableaux([5,4,2])
sage: t = SPT([[1,1,1,'2p','3p'], [2,'3p',3,3],[3,4]])
sage: t.pp()
1 1 1 2' 3'

2 3' 3 3
3 4

sage: s = t.e(2)
sage: s.pp()
1 1 1 2' 3'

2 2 3 3
3 4

sage: t == s.f(2)
True

sage: SPT = ShiftedPrimedTableaux([2,1])
sage: t = SPT([[2,'3p'],[3]])
sage: t.e(-1).pp()
1 3'

3
sage: t.e(1).pp()
1 3'

3
sage: t.e(2).pp()
2 2

3

sage: r = SPT([[2, 2],[3]])
(continues on next page)

2972 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: r.e(-1).pp()
1 2

3
sage: r.e(1).pp()
1 2

3
sage: r.e(2) is None
True

sage: r = SPT([[1,'3p'],[3]])
sage: r.e(-1) is None
True
sage: r.e(1) is None
True
sage: r.e(2).pp()
1 2'

3
sage: r = SPT([[1,'2p'],[3]])
sage: r.e(-1).pp()
1 1

3
sage: r.e(1) is None
True
sage: r.e(2).pp()
1 2'

2
sage: t = SPT([[2,'3p'],[3]])
sage: t.e(-1).e(2).e(2).e(-1) == t.e(2).e(1).e(1).e(2)
True
sage: t.e(-1).e(2).e(2).e(-1).pp()
1 1

2
sage: all(t.e(-1).e(2).e(2).e(-1).e(i) is None for i in {-1, 1, 2})
True

sage: SPT = ShiftedPrimedTableaux([4])
sage: t = SPT([[2,2,2,2]])
sage: t.e(-1).pp()
1 2 2 2
sage: t.e(1).pp()
1 2 2 2
sage: t.e(-1).e(-1) is None
True
sage: t.e(1).e(1).pp()
1 1 2 2

f(ind)
Compute the action of the crystal operator 𝑓𝑖 on a shifted primed tableau using cases from the papers
[HPS2017] and [AO2018].

INPUT:

• ind – element in the index set of the crystal

5.1. Comprehensive Module List 2973

Combinatorics, Release 9.7

OUTPUT:

Primed tableau or None.

EXAMPLES:

sage: SPT = ShiftedPrimedTableaux([5,4,2])
sage: t = SPT([[1,1,1,1,'3p'],[2,2,2,'3p'],[3,3]])
sage: t.pp()
1 1 1 1 3'

2 2 2 3'
3 3

sage: s = t.f(2)
sage: s is None
True

sage: t = SPT([[1,1,1,'2p','3p'],[2,2,3,3],[3,4]])
sage: t.pp()
1 1 1 2' 3'

2 2 3 3
3 4

sage: s = t.f(2)
sage: s.pp()
1 1 1 2' 3'

2 3' 3 3
3 4

sage: SPT = ShiftedPrimedTableaux([2,1])
sage: t = SPT([[1,1],[2]])
sage: t.f(-1).pp()
1 2'

2
sage: t.f(1).pp()
1 2'

2
sage: t.f(2).pp()
1 1

3

sage: r = SPT([[1,'2p'],[2]])
sage: r.f(-1) is None
True
sage: r.f(1) is None
True
sage: r.f(2).pp()
1 2'

3

sage: r = SPT([[1,1],[3]])
sage: r.f(-1).pp()
1 2'

3
sage: r.f(1).pp()
1 2

(continues on next page)

2974 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

3
sage: r.f(2) is None
True

sage: r = SPT([[1,2],[3]])
sage: r.f(-1).pp()
2 2

3
sage: r.f(1).pp()
2 2

3
sage: r.f(2) is None
True

sage: t = SPT([[1,1],[2]])
sage: t.f(-1).f(2).f(2).f(-1) == t.f(2).f(1).f(-1).f(2)
True
sage: t.f(-1).f(2).f(2).f(-1).pp()
2 3'

3
sage: all(t.f(-1).f(2).f(2).f(-1).f(i) is None for i in {-1, 1, 2})
True

sage: SPT = ShiftedPrimedTableaux([4])
sage: t = SPT([[1,1,1,1]])
sage: t.f(-1).pp()
1 1 1 2'
sage: t.f(1).pp()
1 1 1 2
sage: t.f(-1).f(-1) is None
True
sage: t.f(1).f(-1).pp()
1 1 2' 2
sage: t.f(1).f(1).pp()
1 1 2 2
sage: t.f(1).f(1).f(-1).pp()
1 2' 2 2
sage: t.f(1).f(1).f(1).pp()
1 2 2 2
sage: t.f(1).f(1).f(1).f(-1).pp()
2 2 2 2
sage: t.f(1).f(1).f(1).f(1).pp()
2 2 2 2
sage: t.f(1).f(1).f(1).f(1).f(-1) is None
True

is_highest_weight(index_set=None)
Return whether self is a highest weight element of the crystal.

An element is highest weight if it vanishes under all crystal operators 𝑒𝑖.

EXAMPLES:

5.1. Comprehensive Module List 2975

Combinatorics, Release 9.7

sage: SPT = ShiftedPrimedTableaux([5,4,2])
sage: t = SPT([(1, 1, 1, 1, 1), (2, 2, 2, "3p"), (3, 3)])
sage: t.is_highest_weight()
True

sage: SPT = ShiftedPrimedTableaux([5,4])
sage: s = SPT([(1, 1, 1, 1, 1), (2, 2, "3p", 3)])
sage: s.is_highest_weight(index_set=[1])
True

reading_word()
Return the reading word of self.

The reading word of a shifted primed tableau is constructed as follows:

1. List all primed entries in the tableau, column by column, in decreasing order within each column,
moving from the rightmost column to the left, and with all the primes removed (i.e. all entries are
increased by half a unit).

2. Then list all unprimed entries, row by row, in increasing order within each row, moving from the
bottommost row to the top.

EXAMPLES:

sage: SPT = ShiftedPrimedTableaux([4,2])
sage: t = SPT([[1,'2p',2,2],[2,'3p']])
sage: t.reading_word()
[3, 2, 2, 1, 2, 2]

weight()
Return the weight of self.

The weight of a shifted primed tableau is defined to be the vector with 𝑖-th component equal to the number
of entries 𝑖 and 𝑖′ in the tableau.

EXAMPLES:

sage: t = ShiftedPrimedTableau([[1,'2p',2,2],[2,'3p']])
sage: t.weight()
(1, 4, 1)

class sage.combinat.shifted_primed_tableau.PrimedEntry(entry=None, double=None)
Bases: sage.structure.sage_object.SageObject

The class of entries in shifted primed tableaux.

An entry in a shifted primed tableau is an element in the alphabet {1′ < 1 < 2′ < 2 < · · · < 𝑛′ < 𝑛}.
The difference between two elements 𝑖 and 𝑖 − 1 counts as a whole unit, whereas the difference between 𝑖 and
𝑖′ counts as half a unit. Internally, we represent an unprimed element 𝑥 as 2𝑥 and the primed elements as the
corresponding odd integer that respects the total order.

INPUT:

• entry – a half integer or a string of an integer possibly ending in p or '

• double – the doubled value

decrease_half()
Decrease self by half a unit.

2976 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

decrease_one()
Decrease self by one unit.

increase_half()
Increase self by half a unit.

increase_one()
Increase self by one unit.

integer()
Return the corresponding integer 𝑖 for primed entries of the form 𝑖 or 𝑖′.

is_primed()
Checks if self is a primed element.

is_unprimed()
Checks if self is an unprimed element.

primed()
Prime self if it is an unprimed element.

unprimed()
Unprime self if it is a primed element.

class sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau(parent, T, skew=None,
check=True,
preprocessed=False)

Bases: sage.structure.list_clone.ClonableArray

A shifted primed tableau.

A primed tableau is a tableau of shifted shape in the alphabet 𝑋 ′ = {1′ < 1 < 2′ < 2 < · · · < 𝑛′ < 𝑛} such
that

1. the entries are weakly increasing along rows and columns;

2. a row cannot have two repeated primed elements, and a column cannot have two repeated non-primed
elements;

Skew shape of the shifted primed tableaux is specified either with an optional argument skew or with None
entries.

Primed entries in the main diagonal can be allowed with the optional boolean parameter
primed_diagonal``(default: ``False).

EXAMPLES:

sage: T = ShiftedPrimedTableaux([4,2])
sage: T([[1,"2'","3'",3],[2,"3'"]])[1]
(2, 3')
sage: t = ShiftedPrimedTableau([[1,"2p",2.5,3],[2,2.5]])
sage: t[1]
(2, 3')
sage: ShiftedPrimedTableau([["2p",2,3],["2p","3p"],[2]], skew=[2,1])
[(None, None, 2', 2, 3), (None, 2', 3'), (2,)]
sage: ShiftedPrimedTableau([[None,None,"2p"],[None,"2p"]])
[(None, None, 2'), (None, 2')]
sage: T = ShiftedPrimedTableaux([4,2], primed_diagonal=True)
sage: T([[1,"2'","3'",3],["2'","3'"]])[1] # With primed diagonal entry
(2', 3')

5.1. Comprehensive Module List 2977

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

check()
Check that self is a valid primed tableau.

EXAMPLES:

sage: T = ShiftedPrimedTableaux([4,2])
sage: t = T([[1,'2p',2,2],[2,'3p']])
sage: t.check()
sage: s = ShiftedPrimedTableau([["2p",2,3],["2p"],[2]],skew=[2,1])
sage: s.check()
sage: t = T([['1p','2p',2,2],[2,'3p']])
Traceback (most recent call last):
...
ValueError: [['1p', '2p', 2, 2], [2, '3p']] is not an element of
Shifted Primed Tableaux of shape [4, 2]

sage: T = ShiftedPrimedTableaux([4,2], primed_diagonal=True)
sage: t = T([['1p','2p',2,2],[2,'3p']]) # primed_diagonal allowed
sage: t.check()
sage: t = T([['1p','1p',2,2],[2,'3p']])
Traceback (most recent call last):
...
ValueError: [['1p', '1p', 2, 2], [2, '3p']] is not an element of
Shifted Primed Tableaux of shape [4, 2] and maximum entry 6

is_standard()
Return True if the entries of self are in bijection with positive primed integers 1′, 1, 2′, . . . , 𝑛.

EXAMPLES:

sage: ShiftedPrimedTableau([["1'", 1, "2'"], [2, "3'"]],
....: primed_diagonal=True).is_standard()
True
sage: ShiftedPrimedTableau([["1'", 1, 2], ["2'", "3'"]],
....: primed_diagonal=True).is_standard()
True
sage: ShiftedPrimedTableau([["1'", 1, 1], ["2'", 2]],
....: primed_diagonal=True).is_standard()
False
sage: ShiftedPrimedTableau([[1, "2'"], [2]]).is_standard()
False
sage: s = ShiftedPrimedTableau([[None, None,"1p","2p",2],[None,"1"]])
sage: s.is_standard()
True

max_entry()
Return the minimum unprimed letter 𝑥 > 𝑦 for all 𝑦 in self.

EXAMPLES:

sage: Tab = ShiftedPrimedTableau([(1,1,'2p','3p'),(2,2)])
sage: Tab.max_entry()
3

pp()
Pretty print self.

2978 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: t = ShiftedPrimedTableau([[1,'2p',2,2],[2,'3p']])
sage: t.pp()
1 2' 2 2

2 3'
sage: t = ShiftedPrimedTableau([[10,'11p',11,11],[11,'12']])
sage: t.pp()
10 11' 11 11

11 12
sage: s = ShiftedPrimedTableau([['2p',2,3],['2p']],skew=[2,1])
sage: s.pp()
. . 2' 2 3

. 2'

restrict(n)
Return the restriction of the shifted tableau to all the numbers less than or equal to n.

Note: If only the outer shape of the restriction, rather than the whole restriction, is needed, then the
faster method restriction_outer_shape() is preferred. Similarly if only the skew shape is needed,
use restriction_shape().

EXAMPLES:

sage: t = ShiftedPrimedTableau([[1,'2p',2,2],[2,'3p']])
sage: t.restrict(2).pp()
1 2' 2 2

2

sage: t.restrict("2p").pp()
1 2'

sage: s = ShiftedPrimedTableau([["2p",2,3],["2p"]], skew=[2,1])
sage: s.restrict(2).pp()
. . 2' 2

. 2'
sage: s.restrict(1.5).pp()
. . 2'

. 2'

restriction_outer_shape(n)
Return the outer shape of the restriction of the shifted tableau self to 𝑛.

If 𝑇 is a (skew) shifted tableau and 𝑛 is a half-integer, then the restriction of 𝑇 to 𝑛 is defined as the (skew)
shifted tableau obtained by removing all cells filled with entries greater than 𝑛 from 𝑇 .

This method computes merely the outer shape of the restriction. For the restriction itself, use restrict().

EXAMPLES:

sage: s = ShiftedPrimedTableau([["2p",2,3],["2p"]], skew=[2,1])
sage: s.pp()
. . 2' 2 3

. 2'
(continues on next page)

5.1. Comprehensive Module List 2979

Combinatorics, Release 9.7

(continued from previous page)

sage: s.restriction_outer_shape(2)
[4, 2]
sage: s.restriction_outer_shape("2p")
[3, 2]

restriction_shape(n)
Return the skew shape of the restriction of the skew tableau self to n.

If 𝑇 is a shifted tableau and 𝑛 is a half-integer, then the restriction of 𝑇 to 𝑛 is defined as the (skew) shifted
tableau obtained by removing all cells filled with entries greater than 𝑛 from 𝑇 .

This method computes merely the skew shape of the restriction. For the restriction itself, use restrict().

EXAMPLES:

sage: s = ShiftedPrimedTableau([["2p",2,3],["2p"]], skew=[2,1])
sage: s.pp()
. . 2' 2 3

. 2'

sage: s.restriction_shape(2)
[4, 2] / [2, 1]

shape()
Return the shape of the underlying partition of self.

EXAMPLES:

sage: t = ShiftedPrimedTableau([[1,'2p',2,2],[2,'3p']])
sage: t.shape()
[4, 2]
sage: s = ShiftedPrimedTableau([["2p",2,3],["2p"]],skew=[2,1])
sage: s.shape()
[5, 2] / [2, 1]

to_chain()
Return the chain of partitions corresponding to the (skew) shifted tableau self, interlaced by one of the
colours 1 is the added cell is on the diagonal, 2 if an ordinary entry is added and 3 if a primed entry is
added.

EXAMPLES:

sage: s = ShiftedPrimedTableau([(1, 2, 3.5, 5, 6.5), (3, 5.5)])
sage: s.pp()
1 2 4' 5 7'

3 6'

sage: s.to_chain()
[[], 1, [1], 2, [2], 1, [2, 1], 3, [3, 1], 2, [4, 1], 3, [4, 2], 3, [5, 2]]

sage: s = ShiftedPrimedTableau([(1, 3.5), (2.5,), (6,)], skew=[2,1])
sage: s.pp()
. . 1 4'

. 3'
(continues on next page)

2980 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

6

sage: s.to_chain()
[[2, 1], 2, [3, 1], 0, [3, 1], 3, [3, 2], 3, [4, 2], 0, [4, 2], 1, [4, 2, 1]]

weight()
Return the weight of self.

The weight of a shifted primed tableau is defined to be the vector with 𝑖-th component equal to the number
of entries 𝑖 and 𝑖′ in the tableau.

EXAMPLES:

sage: t = ShiftedPrimedTableau([['2p',2,2],[2,'3p']], skew=[1])
sage: t.weight()
(0, 4, 1)

class sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux(skew=None,
primed_diagonal=False)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Returns the combinatorial class of shifted primed tableaux subject to the constraints given by the arguments.

A primed tableau is a tableau of shifted shape on the alphabet 𝑋 ′ = {1′ < 1 < 2′ < 2 < · · · < 𝑛′ < 𝑛} such
that

1. the entries are weakly increasing along rows and columns

2. a row cannot have two repeated primed entries, and a column cannot have two repeated non-primed entries

INPUT:

Valid optional keywords:

• shape – the (outer skew) shape of tableaux

• weight – the weight of tableaux

• max_entry – the maximum entry of tableaux

• skew – the inner skew shape of tableaux

• primed_diagonal – allow primed entries in main diagonal of tableaux

The weight of a tableau is defined to be the vector with 𝑖-th component equal to the number of entries 𝑖 and 𝑖′
in the tableau. The sum of the coordinates in the weight vector must be equal to the number of entries in the
partition.

The shape and skew must be strictly decreasing partitions. The primed_diagonal is a boolean (default:
False).

EXAMPLES:

sage: SPT = ShiftedPrimedTableaux(weight=(1,2,2), shape=[3,2]); SPT
Shifted Primed Tableaux of weight (1, 2, 2) and shape [3, 2]
sage: SPT.list()
[[(1, 2, 2), (3, 3)],
[(1, 2', 3'), (2, 3)],
[(1, 2', 3'), (2, 3')],

(continues on next page)

5.1. Comprehensive Module List 2981

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

[(1, 2', 2), (3, 3)]]
sage: SPT = ShiftedPrimedTableaux(weight=(1,2,2), shape=[3,2],
....: primed_diagonal=True); SPT
Shifted Primed Tableaux of weight (1, 2, 2) and shape [3, 2]
sage: SPT.list()
[[(1, 2, 2), (3, 3)],
[(1, 2, 2), (3', 3)],
[(1, 2', 3'), (2, 3)],
[(1, 2', 3'), (2, 3')],
[(1, 2', 3'), (2', 3)],
[(1, 2', 3'), (2', 3')],
[(1, 2', 2), (3, 3)],
[(1, 2', 2), (3', 3)],
[(1', 2, 2), (3, 3)],
[(1', 2, 2), (3', 3)],
[(1', 2', 3'), (2, 3)],
[(1', 2', 3'), (2, 3')],
[(1', 2', 3'), (2', 3)],
[(1', 2', 3'), (2', 3')],
[(1', 2', 2), (3, 3)],
[(1', 2', 2), (3', 3)]]
sage: SPT = ShiftedPrimedTableaux(weight=(1,2)); SPT
Shifted Primed Tableaux of weight (1, 2)
sage: list(SPT)
[[(1, 2, 2)], [(1, 2', 2)], [(1, 2'), (2,)]]
sage: SPT = ShiftedPrimedTableaux(weight=(1,2), primed_diagonal=True)
sage: list(SPT)
[[(1, 2, 2)],
[(1, 2', 2)],
[(1', 2, 2)],
[(1', 2', 2)],
[(1, 2'), (2,)],
[(1, 2'), (2',)],
[(1', 2'), (2,)],
[(1', 2'), (2',)]]
sage: SPT = ShiftedPrimedTableaux([3,2], max_entry=2); SPT
Shifted Primed Tableaux of shape [3, 2] and maximum entry 2
sage: list(SPT)
[[(1, 1, 1), (2, 2)], [(1, 1, 2'), (2, 2)]]
sage: SPT = ShiftedPrimedTableaux([3,2], max_entry=2,
....: primed_diagonal=True)
sage: list(SPT)
[[(1, 1, 1), (2, 2)],
[(1, 1, 1), (2', 2)],
[(1', 1, 1), (2, 2)],
[(1', 1, 1), (2', 2)],
[(1, 1, 2'), (2, 2)],
[(1, 1, 2'), (2', 2)],
[(1', 1, 2'), (2, 2)],
[(1', 1, 2'), (2', 2)]]

See also:

2982 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• ShiftedPrimedTableau

Element
alias of ShiftedPrimedTableau

options(*get_value, **set_value)
Sets the global options for elements of the tableau, skew_tableau, and tableau tuple classes. The defaults
are for tableau to be displayed as a list, latexed as a Young diagram using the English convention.

OPTIONS:

• ascii_art – (default: repr) Controls the ascii art output for tableaux

– compact – minimal length ascii art

– repr – display using the diagram string representation

– table – display as a table

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• display – (default: list) Controls the way in which tableaux are printed

– array – alias for diagram

– compact – minimal length string representation

– diagram – display as Young diagram (similar to pp()

– ferrers_diagram – alias for diagram

– list – print tableaux as lists

– young_diagram – alias for diagram

• latex – (default: diagram) Controls the way in which tableaux are latexed

– array – alias for diagram

– diagram – as a Young diagram

– ferrers_diagram – alias for diagram

– list – as a list

– young_diagram – alias for diagram

• notation – alternative name for convention

Note: Changing the convention for tableaux also changes the convention for partitions.

If no parameters are set, then the function returns a copy of the options dictionary.

EXAMPLES:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T
[[1, 2, 3], [4, 5]]
sage: Tableaux.options.display="array"
sage: T

(continues on next page)

5.1. Comprehensive Module List 2983

Combinatorics, Release 9.7

(continued from previous page)

1 2 3
4 5

sage: Tableaux.options.convention="french"
sage: T
4 5
1 2 3

Changing the convention for tableaux also changes the convention for partitions and vice versa:

sage: P = Partition([3,3,1])
sage: print(P.ferrers_diagram())
*

sage: Partitions.options.convention="english"
sage: print(P.ferrers_diagram())

*
sage: T
1 2 3
4 5

The ASCII art can also be changed:

sage: t = Tableau([[1,2,3],[4,5]])
sage: ascii_art(t)
1 2 3
4 5

sage: Tableaux.options.ascii_art = "table"
sage: ascii_art(t)
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 |
+---+---+
sage: Tableaux.options.ascii_art = "compact"
sage: ascii_art(t)
|1|2|3|
|4|5|
sage: Tableaux.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux_all(skew=None,
primed_diagonal=False)

Bases: sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux

The class of all shifted primed tableaux.

class sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux_shape(shape,
max_entry=None,
skew=None,
primed_diagonal=False)

Bases: sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux

2984 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

Shifted primed tableaux of a fixed shape.

Shifted primed tableaux admit a type𝐴𝑛 classical crystal structure with highest weights corresponding to a given
shape.

The list of module generators consists of all elements of the crystal with nonincreasing weight entries.

The crystal is constructed following operations described in [HPS2017] and [AO2018].

The optional primed_diagonal allows primed entries in the main diagonal of all the Shifted primed tableaux
of a fixed shape. If the max_entry is None then max_entry is set to the total number of entries in the tableau if
primed_diagonal is True.

EXAMPLES:

sage: ShiftedPrimedTableaux([4,3,1], max_entry=4)
Shifted Primed Tableaux of shape [4, 3, 1] and maximum entry 4
sage: ShiftedPrimedTableaux([4,3,1], max_entry=4).cardinality()
384

We compute some of the crystal structure:

sage: SPTC = crystals.ShiftedPrimedTableaux([3,2], 3)
sage: T = SPTC.module_generators[-1]
sage: T
[(1, 1, 2'), (2, 3')]
sage: T.f(2)
[(1, 1, 3'), (2, 3')]
sage: len(SPTC.module_generators)
7
sage: SPTC[0]
[(1, 1, 1), (2, 2)]
sage: SPTC.cardinality()
24

We compare this implementation with the 𝑞(𝑛)-crystal on (tensor products) of letters:

sage: tableau_crystal = crystals.ShiftedPrimedTableaux([4,1], 3)
sage: tableau_digraph = tableau_crystal.digraph()
sage: c = crystals.Letters(['Q', 3])
sage: tensor_crystal = tensor([c]*5)
sage: u = tensor_crystal(c(1), c(1), c(1), c(2), c(1))
sage: subcrystal = tensor_crystal.subcrystal(generators=[u],
....: index_set=[1,2,-1])
sage: tensor_digraph = subcrystal.digraph()
sage: tensor_digraph.is_isomorphic(tableau_digraph, edge_labels=True)
True

If we allow primed entries in the main diagonal:

sage: ShiftedPrimedTableaux([4,3,1], max_entry=4,
....: primed_diagonal=True)
Shifted Primed Tableaux of shape [4, 3, 1] and maximum entry 4
sage: ShiftedPrimedTableaux([4,3,1], max_entry=4,
....: primed_diagonal=True).cardinality()
3072

(continues on next page)

5.1. Comprehensive Module List 2985

Combinatorics, Release 9.7

(continued from previous page)

sage: SPTC = ShiftedPrimedTableaux([3,2], max_entry=3,
....: primed_diagonal=True)
sage: T = SPTC[-1]
sage: T
[(1', 2', 2), (3', 3)]
sage: SPTC[0]
[(1, 1, 1), (2, 2)]
sage: SPTC.cardinality()
96

module_generators()
Return the generators of self as a crystal.

shape()
Return the shape of the shifted tableaux self.

class sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux_weight(weight, skew=None,
primed_diagonal=False)

Bases: sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux

Shifted primed tableaux of fixed weight.

EXAMPLES:

sage: ShiftedPrimedTableaux(weight=(2,3,1))
Shifted Primed Tableaux of weight (2, 3, 1)
sage: ShiftedPrimedTableaux(weight=(2,3,1)).cardinality()
17
sage: SPT = ShiftedPrimedTableaux(weight=(2,3,1), primed_diagonal=True)
sage: SPT.cardinality()
64
sage: T = ShiftedPrimedTableaux(weight=(3,2), primed_diagonal=True)
sage: T[:5]
[[(1, 1, 1, 2, 2)],
[(1, 1, 1, 2', 2)],
[(1', 1, 1, 2, 2)],
[(1', 1, 1, 2', 2)],
[(1, 1, 1, 2), (2,)]]
sage: T.cardinality()
16

class sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux_weight_shape(weight, shape,
skew=None,
primed_diagonal=False)

Bases: sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux

Shifted primed tableaux of the fixed weight and shape.

EXAMPLES:

sage: ShiftedPrimedTableaux([4,2,1], weight=(2,3,2))
Shifted Primed Tableaux of weight (2, 3, 2) and shape [4, 2, 1]
sage: ShiftedPrimedTableaux([4,2,1], weight=(2,3,2)).cardinality()
4
sage: T = ShiftedPrimedTableaux([4,2,1], weight=(2,3,2),

(continues on next page)

2986 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: primed_diagonal=True)
sage: T[:6]
[[(1, 1, 2, 2), (2, 3'), (3,)],
[(1, 1, 2, 2), (2, 3'), (3',)],
[(1, 1, 2, 2), (2', 3'), (3,)],
[(1, 1, 2, 2), (2', 3'), (3',)],
[(1, 1, 2', 3), (2, 2), (3,)],
[(1, 1, 2', 3), (2, 2), (3',)]]
sage: T.cardinality()
32

5.1.303 Shuffle product of iterables

The shuffle product of two sequences of lengths𝑚 and𝑛 is a sum over the
(︀
𝑚+𝑛
𝑛

)︀
ways of interleaving the two sequences.

That could be defined inductively by:

(𝑎𝑛)𝑛>0 d (𝑏𝑚)𝑚>0 = 𝑎0 · ((𝑎𝑛)𝑛>1 d (𝑏𝑚)𝑚>0) + 𝑏0 · ((𝑎𝑛)𝑛>0 d (𝑏𝑚)𝑚>1)

with (𝑎𝑛) and (𝑏𝑚) two non-empty sequences and if one of them is empty then the product is equals to the other.

The shuffle product has been introduced by S. Eilenberg and S. Mac Lane in 1953 [EilLan53].

EXAMPLES:

sage: from sage.combinat.shuffle import ShuffleProduct
sage: list(ShuffleProduct([1,2], ["a", "b", "c"]))
[[1, 2, 'a', 'b', 'c'],
['a', 1, 2, 'b', 'c'],
[1, 'a', 2, 'b', 'c'],
['a', 'b', 1, 2, 'c'],
['a', 1, 'b', 2, 'c'],
[1, 'a', 'b', 2, 'c'],
['a', 'b', 'c', 1, 2],
['a', 'b', 1, 'c', 2],
['a', 1, 'b', 'c', 2],
[1, 'a', 'b', 'c', 2]]

References:

Author:

• Jean-Baptiste Priez

class sage.combinat.shuffle.SetShuffleProduct(l1, l2, element_constructor=None)
Bases: sage.combinat.shuffle.ShuffleProduct_abstract

The union of all possible shuffle products of two sets of iterables.

EXAMPLES:

sage: from sage.combinat.shuffle import SetShuffleProduct
sage: sorted(SetShuffleProduct({(1,), (2,3)}, {(4,5), (6,)}))
[[1, 4, 5],
[1, 6],

(continues on next page)

5.1. Comprehensive Module List 2987

Combinatorics, Release 9.7

(continued from previous page)

[2, 3, 4, 5],
[2, 3, 6],
[2, 4, 3, 5],
[2, 4, 5, 3],
[2, 6, 3],
[4, 1, 5],
[4, 2, 3, 5],
[4, 2, 5, 3],
[4, 5, 1],
[4, 5, 2, 3],
[6, 1],
[6, 2, 3]]

cardinality()
The cardinality is defined by the sum of the cardinality of all shuffles. That means by a sum of binomials.

class sage.combinat.shuffle.ShuffleProduct(l1, l2, element_constructor=None)
Bases: sage.combinat.shuffle.ShuffleProduct_abstract

Shuffle product of two iterables.

EXAMPLES:

sage: from sage.combinat.shuffle import ShuffleProduct
sage: list(ShuffleProduct("abc", "de", element_constructor="".join))
['abcde',
'adbce',
'dabce',
'abdce',
'adebc',
'daebc',
'deabc',
'adbec',
'dabec',
'abdec']
sage: list(ShuffleProduct("", "de", element_constructor="".join))
['de']

cardinality()
Return the number of shuffles of 𝑙1 and 𝑙2, respectively of lengths 𝑚 and 𝑛, which is

(︀
𝑚+𝑛
𝑛

)︀
.

class sage.combinat.shuffle.ShuffleProduct_abstract(l1, l2, element_constructor=None)
Bases: sage.structure.parent.Parent

Abstract base class for shuffle products.

class sage.combinat.shuffle.ShuffleProduct_overlapping(w1, w2, element_constructor=None,
add=<built-in function add>)

Bases: sage.combinat.shuffle.ShuffleProduct_abstract

The overlapping shuffle product of the two words w1 and w2.

If 𝑢 and 𝑣 are two words whose letters belong to an additive monoid or to another kind of alphabet on which
addition is well-defined, then the overlapping shuffle product of 𝑢 and 𝑣 is a certain multiset of words defined as
follows: Let 𝑎 and 𝑏 be the lengths of 𝑢 and 𝑣, respectively. Let 𝐴 be the set {(0, 1), (0, 2), · · · , (0, 𝑎)}, and let
𝐵 be the set {(1, 1), (1, 2), · · · , (1, 𝑏)}. Notice that the sets 𝐴 and 𝐵 are disjoint. We can make 𝐴 and 𝐵 into
posets by setting (𝑘, 𝑖) ≤ (𝑘, 𝑗) for all 𝑘 ∈ {0, 1} and 𝑖 ≤ 𝑗. Then, 𝐴 ∪ 𝐵 becomes a poset by disjoint union

2988 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(we don’t set (0, 𝑖) ≤ (1, 𝑖)). Let 𝑝 be the map from 𝐴 ∪ 𝐵 to the set of all letters which sends every (0, 𝑖) to
the 𝑖-th letter of 𝑢, and every (1, 𝑗) to the 𝑗-th letter of 𝑣. For every nonnegative integer 𝑐 and every surjective
map 𝑓 : 𝐴 ∪ 𝐵 → {1, 2, · · · , 𝑐} for which both restrictions 𝑓 |𝐴 and 𝑓 |𝐵 are strictly increasing, let 𝑤(𝑓) be
the length-𝑐 word such that for every 1 ≤ 𝑘 ≤ 𝑐, the 𝑘-th letter of 𝑤(𝑓) equals

∑︀
𝑗∈𝑓−1(𝑘) 𝑝(𝑗) (this sum always

has either one or two addends). The overlapping shuffle product of 𝑢 and 𝑣 is then the multiset of all 𝑤(𝑓) with
𝑐 ranging over all nonnegative integers and 𝑓 ranging over the surjective maps 𝑓 : 𝐴 ∪ 𝐵 → {1, 2, · · · , 𝑐} for
which both restrictions 𝑓 |𝐴 and 𝑓 |𝐵 are strictly increasing.

If one restricts 𝑐 to a particular fixed nonnegative integer, then the multiset is instead called the overlapping
shuffle product with precisely `a + b - c` overlaps. This is nonempty only if max{𝑎, 𝑏} ≤ 𝑐 ≤ 𝑎+ 𝑏.

If 𝑐 = 𝑎+ 𝑏, then the overlapping shuffle product with precisely 𝑎+ 𝑏− 𝑐 overlaps is plainly the shuffle product
(ShuffleProduct_w1w2).

INPUT:

• w1, w2 – iterables

• element_constructor – (default: the parent of w1) the function used to construct the output

• add – (default: +) the addition function

EXAMPLES:

sage: from sage.combinat.shuffle import ShuffleProduct_overlapping
sage: w, u = [[2, 9], [9, 1]]
sage: S = ShuffleProduct_overlapping(w, u)
sage: sorted(S)
[[2, 9, 1, 9],
[2, 9, 9, 1],
[2, 9, 9, 1],
[2, 9, 10],
[2, 18, 1],
[9, 1, 2, 9],
[9, 2, 1, 9],
[9, 2, 9, 1],
[9, 2, 10],
[9, 3, 9],
[11, 1, 9],
[11, 9, 1],
[11, 10]]
sage: A = [{1,2}, {3,4}]
sage: B = [{2,3}, {4,5,6}]
sage: S = ShuffleProduct_overlapping(A, B, add=lambda X,Y: X.union(Y))
sage: list(S)
[[{1, 2}, {3, 4}, {2, 3}, {4, 5, 6}],
[{1, 2}, {2, 3}, {3, 4}, {4, 5, 6}],
[{1, 2}, {2, 3}, {4, 5, 6}, {3, 4}],
[{2, 3}, {1, 2}, {3, 4}, {4, 5, 6}],
[{2, 3}, {1, 2}, {4, 5, 6}, {3, 4}],
[{2, 3}, {4, 5, 6}, {1, 2}, {3, 4}],
[{1, 2, 3}, {3, 4}, {4, 5, 6}],
[{1, 2}, {2, 3, 4}, {4, 5, 6}],
[{1, 2, 3}, {4, 5, 6}, {3, 4}],
[{1, 2}, {2, 3}, {3, 4, 5, 6}],
[{2, 3}, {1, 2, 4, 5, 6}, {3, 4}],

(continues on next page)

5.1. Comprehensive Module List 2989

Combinatorics, Release 9.7

(continued from previous page)

[{2, 3}, {1, 2}, {3, 4, 5, 6}],
[{1, 2, 3}, {3, 4, 5, 6}]]

class sage.combinat.shuffle.ShuffleProduct_overlapping_r(w1, w2, r, element_constructor=None,
add=<built-in function add>)

Bases: sage.combinat.shuffle.ShuffleProduct_abstract

The overlapping shuffle product of the two words w1 and w2 with precisely r overlaps.

See ShuffleProduct_overlapping for a definition.

EXAMPLES:

sage: from sage.combinat.shuffle import ShuffleProduct_overlapping_r
sage: w, u = map(Words(range(20)), [[2, 9], [9, 1]])
sage: S = ShuffleProduct_overlapping_r(w,u,1)
sage: list(S)
[word: 11,9,1,
word: 2,18,1,
word: 11,1,9,
word: 2,9,10,
word: 939,
word: 9,2,10]

5.1.304 Sidon sets and their generalizations, Sidon 𝑔-sets

AUTHORS:

• Martin Raum (07-25-2011)

sage.combinat.sidon_sets.sidon_sets(N, g=1)
Return the set of all Sidon-𝑔 sets that have elements less than or equal to 𝑁 .

A Sidon-𝑔 set is a set of positive integers 𝐴 ⊂ [1, 𝑁] such that any integer 𝑀 can be obtain at most 𝑔 times as
sums of unordered pairs of elements of 𝐴 (the two elements are not necessary distinct):

#{(𝑎𝑖, 𝑎𝑗)|𝑎𝑖, 𝑎𝑗 ∈ 𝐴, 𝑎𝑖 + 𝑎𝑗 = 𝑀,𝑎𝑖 ≤ 𝑎𝑗} ≤ 𝑔

INPUT:

• 𝑁 – A positive integer.

• 𝑔 – A positive integer (default: 1).

OUTPUT:

• A Sage set with categories whose element are also set of integers.

EXAMPLES:

sage: S = sidon_sets(3, 2)
sage: sorted(S, key=str)
[{1, 2, 3}, {1, 2}, {1, 3}, {1}, {2, 3}, {2}, {3}, {}]
sage: S.cardinality()
8
sage: S.category()
Category of finite enumerated sets

(continues on next page)

2990 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: sid = S.an_element()
sage: sid
{2}
sage: sid.category()
Category of finite enumerated sets

sage.combinat.sidon_sets.sidon_sets_rec(N, g=1)
Return the set of all Sidon-𝑔 sets that have elements less than or equal to 𝑁 without checking the arguments.
This internal function should not be call directly by user.

5.1.305 Similarity class types of matrices with entries in a finite field

The notion of a matrix conjugacy class type was introduced by J. A. Green in [Green55], in the context of computing
the irreducible characters of finite general linear groups. The class types are equivalence classes of similarity classes
of square matrices with entries in a finite field which, roughly speaking, have the same qualitative properties.

For example, all similarity classes of the same class type have centralizers of the same cardinality and the same degrees
of elementary divisors. Qualitative properties of similarity classes such as semisimplicity and regularity descend to
class types.

The most important feature of similarity class types is that, for any 𝑛, the number of similarity class types of 𝑛 × 𝑛
matrices is independent of 𝑞. This makes it possible to perform many combinatorial calculations treating 𝑞 as a formal
variable.

In order to define similarity class types, recall that similarity classes of 𝑛 × 𝑛 matrices with entries in F𝑞 correspond
to functions

𝑐 : IrrF𝑞[𝑡] → Λ

such that ∑︁
𝑓∈IrrF𝑞[𝑡]

|𝑐(𝑓)|deg 𝑓 = 𝑛,

where we denote the set of irreducible monic polynomials in F𝑞[𝑡] by IrrF𝑞[𝑡], the set of all partitions by Λ, and the
size of 𝜆 ∈ Λ by |𝜆|.

Similarity classes indexed by functions 𝑐1 and 𝑐2 as above are said to be of the same type if there exists a degree-
preserving self-bijection 𝜎 of IrrF𝑞[𝑡] such that 𝑐2 = 𝑐1 ∘ 𝜎. Thus, the type of 𝑐 remembers only the degrees of the
polynomials (and not the polynomials themselves) for which 𝑐 takes a certain value 𝜆. Replacing each irreducible
polynomial of degree 𝑑 for which 𝑐 takes a non-trivial value 𝜆 by the pair (𝑑, 𝜆), we obtain a multiset of such pairs.
Clearly, 𝑐1 and 𝑐2 have the same type if and only if these multisets are equal. Thus a similarity class type may be viewed
as a multiset of pairs of the form (𝑑, 𝜆).

For 2× 2 matrices there are four types:

sage: for tau in SimilarityClassTypes(2):
....: print(tau)
[[1, [1]], [1, [1]]]
[[1, [2]]]
[[1, [1, 1]]]
[[2, [1]]]

These four types correspond to the regular split semisimple matrices, the non-semisimple matrices, the central matrices
and the irreducible matrices respectively.

5.1. Comprehensive Module List 2991

Combinatorics, Release 9.7

For any matrix 𝐴 in a given similarity class type, it is possible to calculate the number elements in the similarity class
of 𝐴, the dimension of the algebra of matrices in 𝑀𝑛(𝐴) that commute with 𝐴, and the cardinality of the subgroup of
𝐺𝐿𝑛(F𝑞) that commute with 𝐴. For each similarity class type, it is also possible to compute the number of classes
of that type (and hence, the total number of matrices of that type). All these calculations treat the cardinality 𝑞 of the
finite field as a formal variable:

sage: M = SimilarityClassType([[1, [1]], [1, [1]]])
sage: M.class_card()
q^2 + q
sage: M.centralizer_algebra_dim()
2
sage: M.centralizer_group_card()
q^2 - 2*q + 1
sage: M.number_of_classes()
1/2*q^2 - 1/2*q
sage: M.number_of_matrices()
1/2*q^4 - 1/2*q^2

We now describe two applications of similarity class types.

We say that an 𝑛× 𝑛 matrix has rational canonical form type 𝜆 for some partition 𝜆 of 𝑛 if the diagonal blocks in the
rational canonical form have sizes given by the parts of 𝜆. Thus the matrices with rational canonical type (𝑛) are the
regular ones, while the matrices with rational canonical type (1𝑛) are the central ones.

Using similarity class types, it becomes easy to get a formula for the number of matrices with a given rational canonical
type:

sage: def matrices_with_rcf(la):
....: return sum([tau.number_of_matrices() for tau in filter(lambda tau:tau.rcf()==la,
→˓ SimilarityClassTypes(la.size()))])
sage: matrices_with_rcf(Partition([2,1]))
q^6 + q^5 + q^4 - q^3 - q^2 - q

Similarity class types can also be used to calculate the number of simultaneous similarity classes of 𝑘-tuples of 𝑛× 𝑛
matrices with entries in F𝑞 by using Burnside’s lemma:

sage: from sage.combinat.similarity_class_type import order_of_general_linear_group,␣
→˓centralizer_algebra_dim
sage: q = ZZ['q'].gen()
sage: def simultaneous_similarity_classes(n,k):
....: return SimilarityClassTypes(n).sum(lambda la: q**(k*centralizer_algebra_
→˓dim(la)), invertible = True)/order_of_general_linear_group(n)
sage: simultaneous_similarity_classes(3, 2)
q^10 + q^8 + 2*q^7 + 2*q^6 + 2*q^5 + q^4

Similarity class types can be used to compute the coefficients of generating functions coming from the cycle index type
techniques of Kung and Stong (see Morrison [Morrison06]).

They can also be used to compute the number of invariant subspaces for a matrix over a finite field of any given
dimension. For this we use the elegant recursive formula of Ramaré [R17] (see also [PR22]).

Along with the results of [PSS13], similarity class types can be used to calculate the number of similarity classes of
matrices of order 𝑛 with entries in a principal ideal local ring of length two with residue field of cardinality 𝑞 with
centralizer of any given cardinality up to 𝑛 = 4. Among these, the classes which are selftranspose can also be counted:

2992 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.similarity_class_type import matrix_centralizer_cardinalities_
→˓length_two
sage: list(matrix_centralizer_cardinalities_length_two(3))
[(q^6 - 3*q^5 + 3*q^4 - q^3, 1/6*q^6 - 1/2*q^5 + 1/3*q^4),
(q^6 - 2*q^5 + q^4, q^5 - q^4),
(q^8 - 3*q^7 + 3*q^6 - q^5, 1/2*q^5 - q^4 + 1/2*q^3),
(q^8 - 2*q^7 + q^6, q^4 - q^3),
(q^10 - 2*q^9 + 2*q^7 - q^6, q^4 - q^3),
(q^8 - q^7 - q^6 + q^5, 1/2*q^5 - q^4 + 1/2*q^3),
(q^6 - q^5 - q^4 + q^3, 1/2*q^6 - 1/2*q^5),
(q^6 - q^5, q^4),
(q^10 - 2*q^9 + q^8, q^3),
(q^8 - 2*q^7 + q^6, q^4 - q^3),
(q^8 - q^7, q^3 + q^2),
(q^12 - 3*q^11 + 3*q^10 - q^9, 1/6*q^4 - 1/2*q^3 + 1/3*q^2),
(q^12 - 2*q^11 + q^10, q^3 - q^2),
(q^14 - 2*q^13 + 2*q^11 - q^10, q^3 - q^2),
(q^12 - q^11 - q^10 + q^9, 1/2*q^4 - 1/2*q^3),
(q^12 - q^11, q^2),
(q^14 - 2*q^13 + q^12, q^2),
(q^18 - q^17 - q^16 + q^14 + q^13 - q^12, q^2),
(q^12 - q^9, 1/3*q^4 - 1/3*q^2),
(q^6 - q^3, 1/3*q^6 - 1/3*q^4)]

REFERENCES:

AUTHOR:

• Amritanshu Prasad (2013-07-18): initial implementation

• Amritanshu Prasad (2013-09-09): added functions for similarity classes over rings of length two

• Amritanshu Prasad (2022-07-31): added computation of similarity class type of a given matrix and invariant
subspace generating function

class sage.combinat.similarity_class_type.PrimarySimilarityClassType(parent, deg, par)
Bases: sage.structure.element.Element

A primary similarity class type is a pair consisting of a partition and a positive integer.

For a partition 𝜆 and a positive integer 𝑑, the primary similarity class type (𝑑, 𝜆) represents similarity classes of
square matrices of order |𝜆| · 𝑑 with entries in a finite field of order 𝑞 which correspond to the F𝑞[𝑡]-module

F𝑞[𝑡]

𝑝(𝑡)𝜆1
⊕

F𝑞[𝑡]

𝑝(𝑡)𝜆2
⊕ · · ·

for some irreducible polynomial 𝑝(𝑡) of degree 𝑑.

centralizer_algebra_dim()
Return the dimension of the algebra of matrices which commute with a matrix of type self.

For a partition (𝑑, 𝜆) this dimension is given by 𝑑(𝜆1 + 3𝜆2 + 5𝜆3 + · · ·).

EXAMPLES:

sage: PT = PrimarySimilarityClassType(2, [3, 2, 1])
sage: PT.centralizer_algebra_dim()
28

5.1. Comprehensive Module List 2993

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

centralizer_group_card(q=None)
Return the cardinality of the centralizer group of a matrix of type self in a field of order q.

INPUT:

• q – an integer or an indeterminate

EXAMPLES:

sage: PT = PrimarySimilarityClassType(1, [])
sage: PT.centralizer_group_card()
1
sage: PT = PrimarySimilarityClassType(2, [1, 1])
sage: PT.centralizer_group_card()
q^8 - q^6 - q^4 + q^2

degree()
Return degree of self.

EXAMPLES:

sage: PT = PrimarySimilarityClassType(2, [3, 2, 1])
sage: PT.degree()
2

invariant_subspace_generating_function(q=None, t=None)
Return the invariant subspace generating function of self.

INPUT:

• q – (optional) an integer or an inderminate

• t – (optional) an indeterminate

EXAMPLES:

sage: PrimarySimilarityClassType(1, [2, 2]).invariant_subspace_generating_
→˓function()
t^4 + (q + 1)*t^3 + (q^2 + q + 1)*t^2 + (q + 1)*t + 1

partition()
Return partition corresponding to self.

EXAMPLES:

sage: PT = PrimarySimilarityClassType(2, [3, 2, 1])
sage: PT.partition()
[3, 2, 1]

size()
Return the size of self.

EXAMPLES:

sage: PT = PrimarySimilarityClassType(2, [3, 2, 1])
sage: PT.size()
12

statistic(func, q=None)
Return 𝑛𝜆(𝑞𝑑) where 𝑛𝜆 is the value returned by func upon input 𝜆, if self is (𝑑, 𝜆).

2994 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: PT = PrimarySimilarityClassType(2, [3, 1])
sage: q = ZZ['q'].gen()
sage: PT.statistic(lambda la:q**la.size(), q = q)
q^8

class sage.combinat.similarity_class_type.PrimarySimilarityClassTypes(n, min)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

All primary similarity class types of size n whose degree is greater than that of min or whose degree is that of
min and whose partition is less than of min in lexicographic order.

A primary similarity class type of size 𝑛 is a pair (𝜆, 𝑑) consisting of a partition 𝜆 and a positive integer 𝑑 such
that |𝜆|𝑑 = 𝑛.

INPUT:

• n – a positive integer

• min – a primary matrix type of size n

EXAMPLES:

If min is not specified, then the class of all primary similarity class types of size n is created:

sage: PTC = PrimarySimilarityClassTypes(2)
sage: for PT in PTC:
....: print(PT)
[1, [2]]
[1, [1, 1]]
[2, [1]]

If min is specified, then the class consists of only those primary similarity class types whose degree is greater
than that of min or whose degree is that of min and whose partition is less than of min in lexicographic order:

sage: PTC = PrimarySimilarityClassTypes(2, min = PrimarySimilarityClassType(1, [1,␣
→˓1]))
sage: for PT in PTC:
....: print(PT)
[1, [1, 1]]
[2, [1]]

Element
alias of PrimarySimilarityClassType

size()
Return size of elements of self.

The size of a primary similarity class type (𝑑, 𝜆) is 𝑑|𝜆|.

EXAMPLES:

sage: PTC = PrimarySimilarityClassTypes(2)
sage: PTC.size()
2

class sage.combinat.similarity_class_type.SimilarityClassType(parent, tau)
Bases: sage.combinat.combinat.CombinatorialElement

5.1. Comprehensive Module List 2995

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

A similarity class type.

A matrix type is a multiset of primary similarity class types.

INPUT:

• tau – a list of primary similarity class types or a square matrix over a finite field

EXAMPLES:

sage: tau1 = SimilarityClassType([[3, [3, 2, 1]], [2, [2, 1]]]); tau1
[[2, [2, 1]], [3, [3, 2, 1]]]

sage: SimilarityClassType(Matrix(GF(2), [[1,1],[0,1]]))
[[1, [2]]]

as_partition_dictionary()
Return a dictionary whose keys are the partitions of types occurring in self and the value at the key 𝜆 is
the partition formed by sorting the degrees of primary types with partition 𝜆.

EXAMPLES:

sage: tau = SimilarityClassType([[1, [1]], [1, [1]]])
sage: tau.as_partition_dictionary()
{[1]: [1, 1]}

centralizer_algebra_dim()
Return the dimension of the algebra of matrices which commute with a matrix of type self.

EXAMPLES:

sage: tau = SimilarityClassType([[1, [1]], [1, [1]]])
sage: tau.centralizer_algebra_dim()
2

centralizer_group_card(q=None)
Return the cardinality of the group of matrices in 𝐺𝐿𝑛(F𝑞) which commute with a matrix of type self.

INPUT:

• q – an integer or an indeterminate

EXAMPLES:

sage: tau = SimilarityClassType([[1, [1]], [1, [1]]])
sage: tau.centralizer_group_card()
q^2 - 2*q + 1

class_card(q=None)
Return the number of matrices in each similarity class of type self.

INPUT:

• q – an integer or an indeterminate

EXAMPLES:

sage: tau = SimilarityClassType([[1, [1, 1, 1, 1]]])
sage: tau.class_card()
1

(continues on next page)

2996 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: tau = SimilarityClassType([[1, [1]], [1, [1]]])
sage: tau.class_card()
q^2 + q

invariant_subspace_generating_function(q=None, t=None)
Return the invariant subspace generating function of self.

The invariant subspace generating function is the function is the polynomial∑︁
𝑗≥0

𝑎𝑗(𝑞)𝑡
𝑗 ,

where 𝑎𝑗(𝑞) denotes the number of 𝑗-dimensional invariant subspaces of dimensiona 𝑗 for any matrix with
the similarity class type self with entries in a field of order 𝑞.

EXAMPLES:

sage: SimilarityClassType([[1, [2, 2]]]).invariant_subspace_generating_
→˓function()
t^4 + (q + 1)*t^3 + (q^2 + q + 1)*t^2 + (q + 1)*t + 1
sage: A = Matrix(GF(2),[(0, 1, 0, 0), (0, 1, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0)])
sage: SimilarityClassType(A).invariant_subspace_generating_function()
t^4 + 1

is_regular()
Return True if every primary type in self has partition with one part.

EXAMPLES:

sage: tau = SimilarityClassType([[2, [1]], [1, [3]]])
sage: tau.is_regular()
True
sage: tau = SimilarityClassType([[2, [1, 1]], [1, [3]]])
sage: tau.is_regular()
False

is_semisimple()
Return True if every primary similarity class type in self has all parts equal to 1.

EXAMPLES:

sage: tau = SimilarityClassType([[2, [1, 1]], [1, [1]]])
sage: tau.is_semisimple()
True
sage: tau = SimilarityClassType([[2, [1, 1]], [1, [2]]])
sage: tau.is_semisimple()
False

number_of_classes(invertible=False, q=None)
Return the number of similarity classes of matrices of type self.

INPUT:

• invertible – Boolean; return number of invertible classes if set to True

• q – An integer or an indeterminate

EXAMPLES:

5.1. Comprehensive Module List 2997

Combinatorics, Release 9.7

sage: tau = SimilarityClassType([[1, [1]], [1, [1]]])
sage: tau.number_of_classes()
1/2*q^2 - 1/2*q

number_of_matrices(invertible=False, q=None)
Return the number of matrices of type self.

INPUT:

• invertible – A boolean; return the number of invertible matrices if set

EXAMPLES:

sage: tau = SimilarityClassType([[1, [1]]])
sage: tau.number_of_matrices()
q
sage: tau.number_of_matrices(invertible = True)
q - 1
sage: tau = SimilarityClassType([[1, [1]], [1, [1]]])
sage: tau.number_of_matrices()
1/2*q^4 - 1/2*q^2

rcf()
Return the partition corresponding to the rational canonical form of a matrix of type self.

EXAMPLES:

sage: tau = SimilarityClassType([[2, [1, 1, 1]], [1, [3, 2]]])
sage: tau.rcf()
[5, 4, 2]

size()
Return the sum of the sizes of the primary parts of self.

EXAMPLES:

sage: tau = SimilarityClassType([[3, [3, 2, 1]], [2, [2, 1]]])
sage: tau.size()
24

statistic(func, q=None)
Return ∏︁

(𝑑,𝜆)∈𝜏

𝑛𝜆(𝑞𝑑)

where 𝑛𝜆(𝑞) is the value returned by func on the input 𝜆.

INPUT:

• func – a function that takes a partition to a polynomial in q

• q – an integer or an indeterminate

EXAMPLES:

sage: tau = SimilarityClassType([[1, [1]], [1, [2, 1]], [2, [1, 1]]])
sage: from sage.combinat.similarity_class_type import fq

(continues on next page)

2998 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: tau.statistic(lambda la: prod([fq(m) for m in la.to_exp()]))
(q^9 - 3*q^8 + 2*q^7 + 2*q^6 - 4*q^5 + 4*q^4 - 2*q^3 - 2*q^2 + 3*q - 1)/q^9
sage: q = ZZ['q'].gen()
sage: tau.statistic(lambda la: q**la.size(), q = q)
q^8

class sage.combinat.similarity_class_type.SimilarityClassTypes(n, min)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Class of all similarity class types of size n with all primary matrix types greater than or equal to the primary
matrix type min.

A similarity class type is a multiset of primary matrix types.

INPUT:

• n – a non-negative integer

• min – a primary similarity class type

EXAMPLES:

If min is not specified, then the class of all matrix types of size n is constructed:

sage: M = SimilarityClassTypes(2)
sage: for tau in M:
....: print(tau)
[[1, [1]], [1, [1]]]
[[1, [2]]]
[[1, [1, 1]]]
[[2, [1]]]

If min is specified, then the class consists of only those similarity class types which are multisets of primary
matrix types which either have size greater than that of min, or if they have size equal to that of min, then they
occur after min in the iterator for PrimarySimilarityClassTypes(n), where n is the size of min:

sage: M = SimilarityClassTypes(2, min = [1, [1, 1]])
sage: for tau in M:
....: print(tau)
[[1, [1, 1]]]
[[2, [1]]]

Element
alias of SimilarityClassType

size()
Return size of self.

EXAMPLES:

sage: tau = SimilarityClassType([[3, [3, 2, 1]], [2, [2, 1]]])
sage: tau.parent().size()
24

sum(stat, sumover='matrices', invertible=False, q=None)
Return the sum of a local statistic over all types.

5.1. Comprehensive Module List 2999

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

Given a set of functions 𝑛𝜆(𝑞) (these could be polynomials or rational functions in 𝑞, for each similarity
class type 𝜏 define

𝑛𝜏 (𝑞) =
∏︁

(𝑑,𝜆)∈𝜏

𝑛𝜆(𝑞𝑑).

This function returns ∑︁
𝑛𝜏(𝑔)(𝑞)

where 𝜏(𝑔) denotes the type of a matrix 𝑔, and the sum is over all 𝑛 × 𝑛 matrices if sumover is set to
"matrices", is over all 𝑛×𝑛 similarity classes if sumover is set to "classes", and over all 𝑛×𝑛 types
if sumover is set to "types". If invertible is set to True, then the sum is only over invertible matrices
or classes.

INPUT:

• stat – a function which takes partitions and returns a function of q

• sumover – can be one of the following:

– "matrices"

– "classes"

– "types"

• q – an integer or an indeterminate

OUTPUT:

A function of q.

EXAMPLES:

sage: M = SimilarityClassTypes(2)
sage: M.sum(lambda la:1)
q^4
sage: M.sum(lambda la:1, invertible = True)
q^4 - q^3 - q^2 + q
sage: M.sum(lambda la:1, sumover = "classes")
q^2 + q
sage: M.sum(lambda la:1, sumover = "classes", invertible = True)
q^2 - 1

Burside’s lemma can be used to calculate the number of similarity classes of matrices:

sage: from sage.combinat.similarity_class_type import centralizer_algebra_dim,␣
→˓order_of_general_linear_group
sage: q = ZZ['q'].gen()
sage: M.sum(lambda la:q**centralizer_algebra_dim(la), invertible = True)/order_
→˓of_general_linear_group(2)
q^2 + q

sage.combinat.similarity_class_type.centralizer_algebra_dim(la)
Return the dimension of the centralizer algebra in 𝑀𝑛(F𝑞) of a nilpotent matrix whose Jordan blocks are given
by la.

EXAMPLES:

3000 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.similarity_class_type import centralizer_algebra_dim
sage: centralizer_algebra_dim(Partition([2, 1]))
5

Note: If it is a list, la is expected to be sorted in decreasing order.

sage.combinat.similarity_class_type.centralizer_group_cardinality(la, q=None)
Return the cardinality of the centralizer group in 𝐺𝐿𝑛(F𝑞) of a nilpotent matrix whose Jordan blocks are given
by la.

INPUT:

• lambda – a partition

• q – an integer or an indeterminate

OUTPUT:

A polynomial function of q.

EXAMPLES:

sage: from sage.combinat.similarity_class_type import centralizer_group_cardinality
sage: q = ZZ['q'].gen()
sage: centralizer_group_cardinality(Partition([2, 1]))
q^5 - 2*q^4 + q^3

sage.combinat.similarity_class_type.dictionary_from_generator(gen)
Given a generator for a list of pairs (𝑐, 𝑓), construct a dictionary whose keys are the distinct values for 𝑐 and
whose value at 𝑐 is the sum of 𝑓 over all pairs of the form (𝑐′, 𝑓) such that 𝑐 = 𝑐′.

EXAMPLES:

sage: from sage.combinat.similarity_class_type import dictionary_from_generator
sage: dictionary_from_generator(((x // 2, x) for x in range(10)))
{0: 1, 1: 5, 2: 9, 3: 13, 4: 17}

It also works with lists:

sage: dictionary_from_generator([(x // 2, x) for x in range(10)])
{0: 1, 1: 5, 2: 9, 3: 13, 4: 17}

Note: Since the generator is first converted to a list, memory usage could be high.

sage.combinat.similarity_class_type.ext_orbit_centralizers(input_data, q=None,
selftranspose=False)

Generate pairs consisting of centralizer cardinalities of orbits in Ext1(𝑀,𝑀) for the action of Aut(𝑀,𝑀),
where 𝑀 is the F𝑞[𝑡]-module constructed from input and their frequencies.

INPUT:

• input_data – input for input_parsing()

• q – (default: 𝑞) an integer or an indeterminate

• selftranspose – (default: False) boolean stating if we only want selftranspose type

5.1. Comprehensive Module List 3001

Combinatorics, Release 9.7

sage.combinat.similarity_class_type.ext_orbits(input_data, q=None, selftranspose=False)
Return the number of orbits in Ext1(𝑀,𝑀) for the action of Aut(𝑀,𝑀), where 𝑀 is the F𝑞[𝑡]-module con-
structed from input_data.

INPUT:

• input_data – input for input_parsing()

• q – (default: 𝑞) an integer or an indeterminate

• selftranspose – (default: False) boolean stating if we only want selftranspose type

sage.combinat.similarity_class_type.fq(n, q=None)
Return (1− 𝑞−1)(1− 𝑞−2) · · · (1− 𝑞−𝑛).

INPUT:

• n – a non-negative integer

• q – an integer or an indeterminate

OUTPUT:

A rational function in q.

EXAMPLES:

sage: from sage.combinat.similarity_class_type import fq
sage: fq(0)
1
sage: fq(3)
(q^6 - q^5 - q^4 + q^2 + q - 1)/q^6

sage.combinat.similarity_class_type.input_parsing(data)
Recognize and return the intended type of input.

sage.combinat.similarity_class_type.invariant_subspace_generating_function(la, q=None,
t=None)

Return the invariant subspace generating function of a nilpotent matrix with Jordan block sizes given by la.

INPUT:

• la – a partition

• q – (optional) an integer or an inderminate

• t – (optional) an indeterminate

OUTPUT:

A polynomial in t whose coefficients are polynomials in q.

EXAMPLES:

sage: from sage.combinat.similarity_class_type import invariant_subspace_generating_
→˓function
sage: invariant_subspace_generating_function([2,2])
t^4 + (q + 1)*t^3 + (q^2 + q + 1)*t^2 + (q + 1)*t + 1

sage.combinat.similarity_class_type.matrix_centralizer_cardinalities(n, q=None,
invertible=False)

Generate pairs consisting of centralizer cardinalities of matrices over a finite field and their frequencies.

3002 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.similarity_class_type.matrix_centralizer_cardinalities_length_two(n, q=None,
selftrans-
pose=False,
invert-
ible=False)

Generate pairs consisting of centralizer cardinalities of matrices over a principal ideal local ring of length two
with residue field of order q and their frequencies.

INPUT:

• n – the order

• q – (default: 𝑞) an integer or an indeterminate

• selftranspose – (default: False) boolean stating if we only want selftranspose type

• invertible – (default: False) boolean stating if we only want invertible type

sage.combinat.similarity_class_type.matrix_similarity_classes(n, q=None, invertible=False)
Return the number of matrix similarity classes over a finite field of order q.

sage.combinat.similarity_class_type.matrix_similarity_classes_length_two(n, q=None,
selftranspose=False,
invertible=False)

Return the number of similarity classes of matrices of order n with entries in a principal ideal local ring of length
two.

INPUT:

• n – the order

• q – (default: 𝑞) an integer or an indeterminate

• selftranspose – (default: False) boolean stating if we only want selftranspose type

• invertible – (default: False) boolean stating if we only want invertible type

EXAMPLES:

We can generate Table 6 of [PSS13]:

sage: from sage.combinat.similarity_class_type import matrix_similarity_classes_
→˓length_two
sage: matrix_similarity_classes_length_two(2)
q^4 + q^3 + q^2
sage: matrix_similarity_classes_length_two(2, invertible = True)
q^4 - q
sage: matrix_similarity_classes_length_two(3)
q^6 + q^5 + 2*q^4 + q^3 + 2*q^2
sage: matrix_similarity_classes_length_two(3, invertible = true)
q^6 - q^3 + 2*q^2 - 2*q
sage: matrix_similarity_classes_length_two(4)
q^8 + q^7 + 3*q^6 + 3*q^5 + 5*q^4 + 3*q^3 + 3*q^2
sage: matrix_similarity_classes_length_two(4, invertible = True)
q^8 + q^6 - q^5 + 2*q^4 - 2*q^3 + 2*q^2 - 3*q

And also Table 7:

sage: matrix_similarity_classes_length_two(2, selftranspose = True)
q^4 + q^3 + q^2

(continues on next page)

5.1. Comprehensive Module List 3003

Combinatorics, Release 9.7

(continued from previous page)

sage: matrix_similarity_classes_length_two(2, selftranspose = True, invertible =␣
→˓True)
q^4 - q
sage: matrix_similarity_classes_length_two(3, selftranspose = True)
q^6 + q^5 + 2*q^4 + q^3
sage: matrix_similarity_classes_length_two(3, selftranspose = True, invertible =␣
→˓True)
q^6 - q^3
sage: matrix_similarity_classes_length_two(4, selftranspose = True)
q^8 + q^7 + 3*q^6 + 3*q^5 + 3*q^4 + q^3 + q^2
sage: matrix_similarity_classes_length_two(4, selftranspose = True, invertible =␣
→˓True)
q^8 + q^6 - q^5 - q

sage.combinat.similarity_class_type.order_of_general_linear_group(n, q=None)
Return the cardinality of the group of 𝑛× 𝑛 invertible matrices with entries in a field of order q.

INPUT:

• n – a non-negative integer

• q – an integer or an indeterminate

EXAMPLES:

sage: from sage.combinat.similarity_class_type import order_of_general_linear_group
sage: order_of_general_linear_group(0)
1
sage: order_of_general_linear_group(2)
q^4 - q^3 - q^2 + q

sage.combinat.similarity_class_type.primitives(n, invertible=False, q=None)
Return the number of similarity classes of simple matrices of order n with entries in a finite field of order q. This
is the same as the number of irreducible polynomials of degree 𝑑.

If invertible is True, then only the number of similarity classes of invertible matrices is returned.

Note: All primitive classes are invertible unless n is 1.

INPUT:

• n – a positive integer

• invertible – boolean; if set, only number of non-zero classes is returned

• q – an integer or an indeterminate

OUTPUT:

• a rational function of the variable q

EXAMPLES:

sage: from sage.combinat.similarity_class_type import primitives
sage: primitives(1)
q
sage: primitives(1, invertible = True)

(continues on next page)

3004 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

q - 1
sage: primitives(4)
1/4*q^4 - 1/4*q^2
sage: primitives(4, invertible = True)
1/4*q^4 - 1/4*q^2

5.1.306 sine-Gordon Y-system plotter

This class builds the triangulations associated to sine-Gordon and reduced sine-Gordon Y-systems as constructed in
[NS].

AUTHORS:

• Salvatore Stella (2014-07-18): initial version

EXAMPLES:

A reduced sine-Gordon example with 3 generations:

sage: Y = SineGordonYsystem('A',(6,4,3)); Y
A sine-Gordon Y-system of type A with defining integer tuple (6, 4, 3)
sage: Y.plot() #not tested

The same integer tuple but for the non-reduced case:

sage: Y = SineGordonYsystem('D',(6,4,3)); Y
A sine-Gordon Y-system of type D with defining integer tuple (6, 4, 3)
sage: Y.plot() #not tested

Todo: The code for plotting is extremely slow.

REFERENCES:

class sage.combinat.sine_gordon.SineGordonYsystem(X, na)
Bases: sage.structure.sage_object.SageObject

A class to model a (reduced) sine-Gordon Y-system

Note that the generations, together with all integer tuples, in this implementation are numbered from 0 while in
[NS] they are numbered from 1

INPUT:

• X – the type of the Y-system to construct (either ‘A’ or ‘D’)

• na – the tuple of positive integers defining the Y-system with na[0] > 2

See [NS]

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3)); Y
A sine-Gordon Y-system of type A with defining integer tuple (6, 4, 3)
sage: Y.intervals()
(((0, 0, 'R'),),
((0, 17, 'L'),

(continues on next page)

5.1. Comprehensive Module List 3005

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

(continued from previous page)

(17, 34, 'L'),
...
(104, 105, 'R'),
(105, 0, 'R')))

sage: Y.triangulation()
((17, 89),
(17, 72),
(34, 72),
...
(102, 105),
(103, 105))
sage: Y.plot() #not tested

F()
Return the number of generations in self.

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.F()
3

intervals()
Return, divided by generation, the list of intervals used to construct the initial triangulation.

Each such interval is a triple (p, q, X) where p and q are the two extremal vertices of the interval and X
is the type of the interval (one of ‘L’, ‘R’, ‘NL’, ‘NR’).

ALGORITHM:

The algorithm used here is the one described in section 5.1 of [NS]. The only difference is that we get rid
of the special case of the first generation by treating the whole disk as a type ‘R’ interval.

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.intervals()
(((0, 0, 'R'),),
((0, 17, 'L'),
(17, 34, 'L'),

...
(104, 105, 'R'),
(105, 0, 'R')))

na()
Return the sequence of the integers 𝑛𝑎 defining self.

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.na()
(6, 4, 3)

pa()
Return the sequence of integers p_a, i.e. the total number of intervals of types ‘NL’ and ‘NR’ in the (a+1)-
th generation.

3006 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.pa()
(1, 6, 25)

plot(**kwds)
Plot the initial triangulation associated to self.

INPUT:

• radius - the radius of the disk; by default the length of the circle is the number of vertices

• points_color - the color of the vertices; default ‘black’

• points_size - the size of the vertices; default 7

• triangulation_color - the color of the arcs; default ‘black’

• triangulation_thickness - the thickness of the arcs; default 0.5

• shading_color - the color of the shading used on neuter intervals; default ‘lightgray’

• reflections_color - the color of the reflection axes; default ‘blue’

• reflections_thickness - the thickness of the reflection axes; default 1

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.plot() # long time 2s
Graphics object consisting of 219 graphics primitives

qa()
Return the sequence of integers q_a, i.e. the total number of intervals of types ‘L’ and ‘R’ in the (a+1)-th
generation.

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.qa()
(6, 25, 81)

r()
Return the number of vertices in the polygon realizing self.

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.r()
106

rk()
Return the sequence of integers r^{(k)}, i.e. the width of an interval of type ‘L’ or ‘R’ in the k-th gener-
ation.

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.rk()
(106, 17, 4)

5.1. Comprehensive Module List 3007

Combinatorics, Release 9.7

triangulation()
Return the initial triangulation of the polygon realizing self as a tuple of pairs of vertices.

Warning: In type ‘D’ the returned triangulation does NOT contain the two radii.

ALGORITHM:

We implement the four cases described by Figure 14 in [NS].

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.triangulation()
((17, 89),
(17, 72),

...
(102, 105),
(103, 105))

type()
Return the type of self.

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.type()
'A'

vertices()
Return the vertices of the polygon realizing self as the ring of integers modulo self.r().

EXAMPLES:

sage: Y = SineGordonYsystem('A',(6,4,3))
sage: Y.vertices()
Ring of integers modulo 106

5.1.307 Six Vertex Model

class sage.combinat.six_vertex_model.SixVertexConfiguration
Bases: sage.structure.list_clone.ClonableArray

A configuration in the six vertex model.

check()
Check if self is a valid 6 vertex configuration.

EXAMPLES:

sage: M = SixVertexModel(3, boundary_conditions='ice')
sage: M[0].check()

energy(epsilon)
Return the energy of the configuration.

3008 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

The energy of a configuration 𝜈 is defined as

𝐸(𝜈) = 𝑛0𝜖0 + 𝑛1𝜖1 + · · ·+ 𝑛5𝜖5

where 𝑛𝑖 is the number of vertices of type 𝑖 and 𝜖𝑖 is the 𝑖-th energy constant.

Note: We number our configurations as:

0. LR

1. LU

2. LD

3. UD

4. UR

5. RD

which differs from Wikipedia article Ice-type_model.

EXAMPLES:

sage: M = SixVertexModel(3, boundary_conditions='ice')
sage: nu = M[2]; nu

^ ^ ^
| | |

--> # -> # <- # <--
^ | ^
| V |

--> # <- # -> # <--
| ^ |
V | V

--> # -> # <- # <--
| | |
V V V

sage: nu.energy([1,2,1,2,1,2])
15

A KDP energy:

sage: nu.energy([1,1,0,1,0,1])
7

A Rys 𝐹 energy:

sage: nu.energy([0,1,1,0,1,1])
4

The zero field assumption:

sage: nu.energy([1,2,3,1,3,2])
15

plot(color='sign')
Return a plot of self.

INPUT:

5.1. Comprehensive Module List 3009

https://en.wikipedia.org/wiki/Ice-type_model

Combinatorics, Release 9.7

• color – can be any of the following:

– 4 - use 4 colors: black, red, blue, and green with each corresponding to up, right, down, and left
respectively

– 2 - use 2 colors: red for horizontal, blue for vertical arrows

– 'sign' - use red for right and down arrows, blue for left and up arrows

– a list of 4 colors for each direction

– a function which takes a direction and a boolean corresponding to the sign

EXAMPLES:

sage: M = SixVertexModel(2, boundary_conditions='ice')
sage: print(M[0].plot().description())
Arrow from (-1.0,0.0) to (0.0,0.0)
Arrow from (-1.0,1.0) to (0.0,1.0)
Arrow from (0.0,0.0) to (0.0,-1.0)
Arrow from (0.0,0.0) to (1.0,0.0)
Arrow from (0.0,1.0) to (0.0,0.0)
Arrow from (0.0,1.0) to (0.0,2.0)
Arrow from (1.0,0.0) to (1.0,-1.0)
Arrow from (1.0,0.0) to (1.0,1.0)
Arrow from (1.0,1.0) to (0.0,1.0)
Arrow from (1.0,1.0) to (1.0,2.0)
Arrow from (2.0,0.0) to (1.0,0.0)
Arrow from (2.0,1.0) to (1.0,1.0)

to_signed_matrix()
Return the signed matrix of self.

The signed matrix corresponding to a six vertex configuration is given by 0 if there is a cross flow, a 1 if
the outward arrows are vertical and −1 if the outward arrows are horizontal.

EXAMPLES:

sage: M = SixVertexModel(3, boundary_conditions='ice')
sage: [x.to_signed_matrix() for x in M]
[
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 -1 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1], [0 1 0], [0 1 0], [0 0 1], [1 0 0], [0 1 0], [1 0 0]
]

class sage.combinat.six_vertex_model.SixVertexModel(n, m, boundary_conditions)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The six vertex model.

We model a configuration by indicating which configuration by the following six configurations which are de-
termined by the two outgoing arrows in the Up, Right, Down, Left directions:

1. LR:

|
V

(continues on next page)

3010 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

<-- # -->
^
|

2. LU:

^
|

<-- # <--
^
|

3. LD:

|
V

<-- # <--
|
V

4. UD:

^
|

--> # <--
|
V

5. UR:

^
|

--> # -->
^
|

6. RD:

|
V

--> # -->
|
V

INPUT:

• n – the number of rows

• m – (optional) the number of columns, if not specified, then the number of columns is the number of rows

• boundary_conditions – (optional) a quadruple of tuples whose entries are either:

– True for an inward arrow,

– False for an outward arrow, or

– None for no boundary condition.

5.1. Comprehensive Module List 3011

Combinatorics, Release 9.7

There are also the following predefined boundary conditions:

– 'ice' - The top and bottom boundary conditions are outward and the left and right boundary condi-
tions are inward; this gives the square ice model. Also called domain wall boundary conditions.

– 'domain wall' - Same as 'ice'.

– 'alternating' - The boundary conditions alternate between inward and outward.

– 'free' - There are no boundary conditions.

EXAMPLES:

Here are the six types of vertices that can be created:

sage: M = SixVertexModel(1)
sage: list(M)
[

| ^ | ^ ^ |
V | V | | V

<-- # --> <-- # <-- <-- # <-- --> # <-- --> # --> --> # -->
^ ^ | | ^ |
| , | , V , V , | , V

]

When using the square ice model, it is known that the number of configurations is equal to the number of alter-
nating sign matrices:

sage: M = SixVertexModel(1, boundary_conditions='ice')
sage: len(M)
1
sage: M = SixVertexModel(4, boundary_conditions='ice')
sage: len(M)
42
sage: all(len(SixVertexModel(n, boundary_conditions='ice'))
....: == AlternatingSignMatrices(n).cardinality() for n in range(1, 7))
True

An example with a specified non-standard boundary condition and non-rectangular shape:

sage: M = SixVertexModel(2, 1, [[None], [True,True], [None], [None,None]])
sage: list(M)
[

^ ^ | ^
| | V |

<-- # <-- <-- # <-- <-- # <-- --> # <--
^ ^ | |
| | V V

<-- # <-- --> # <-- <-- # <-- <-- # <--
^ | | |
| , V , V , V

]

REFERENCES:

• Wikipedia article Vertex_model

• Wikipedia article Ice-type_model

3012 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Vertex_model
https://en.wikipedia.org/wiki/Ice-type_model

Combinatorics, Release 9.7

Element
alias of SixVertexConfiguration

boundary_conditions()
Return the boundary conditions of self.

EXAMPLES:

sage: M = SixVertexModel(2, boundary_conditions='ice')
sage: M.boundary_conditions()
((False, False), (True, True), (False, False), (True, True))

partition_function(beta, epsilon)
Return the partition function of self.

The partition function of a 6 vertex model is defined by:

𝑍 =
∑︁
𝜈

𝑒−𝛽𝐸(𝜈)

where we sum over all configurations and 𝐸 is the energy function. The constant 𝛽 is known as the inverse
temperature and is equal to 1/𝑘𝐵𝑇 where 𝑘𝐵 is Boltzmann’s constant and 𝑇 is the system’s temperature.

INPUT:

• beta – the inverse temperature constant 𝛽

• epsilon – the energy constants, see energy()

EXAMPLES:

sage: M = SixVertexModel(3, boundary_conditions='ice')
sage: M.partition_function(2, [1,2,1,2,1,2])
e^(-24) + 2*e^(-28) + e^(-30) + 2*e^(-32) + e^(-36)

REFERENCES:

Wikipedia article Partition_function_(statistical_mechanics)

class sage.combinat.six_vertex_model.SquareIceModel(n)
Bases: sage.combinat.six_vertex_model.SixVertexModel

The square ice model.

The square ice model is a 6 vertex model on an 𝑛 × 𝑛 grid with the boundary conditions that the top and
bottom boundaries are pointing outward and the left and right boundaries are pointing inward. These boundary
conditions are also called domain wall boundary conditions.

Configurations of the 6 vertex model with domain wall boundary conditions are in bijection with alternating sign
matrices.

class Element
Bases: sage.combinat.six_vertex_model.SixVertexConfiguration

An element in the square ice model.

to_alternating_sign_matrix()
Return an alternating sign matrix of self.

See also:

to_signed_matrix()

EXAMPLES:

5.1. Comprehensive Module List 3013

https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)

Combinatorics, Release 9.7

sage: M = SixVertexModel(4, boundary_conditions='ice')
sage: M[6].to_alternating_sign_matrix()
[1 0 0 0]
[0 0 0 1]
[0 0 1 0]
[0 1 0 0]
sage: M[7].to_alternating_sign_matrix()
[0 1 0 0]
[1 -1 1 0]
[0 1 -1 1]
[0 0 1 0]

from_alternating_sign_matrix(asm)
Return a configuration from the alternating sign matrix asm.

EXAMPLES:

sage: M = SixVertexModel(3, boundary_conditions='ice')
sage: asm = AlternatingSignMatrix([[0,1,0],[1,-1,1],[0,1,0]])
sage: M.from_alternating_sign_matrix(asm)

^ ^ ^
| | |

--> # -> # <- # <--
^ | ^
| V |

--> # <- # -> # <--
| ^ |
V | V

--> # -> # <- # <--
| | |
V V V

5.1.308 Skew Partitions

A skew partition skp of size 𝑛 is a pair of partitions [𝑝1, 𝑝2] where 𝑝1 is a partition of the integer 𝑛1, 𝑝2 is a partition
of the integer 𝑛2, 𝑝2 is an inner partition of 𝑝1, and 𝑛 = 𝑛1 − 𝑛2. We say that 𝑝1 and 𝑝2 are respectively the inner and
outer partitions of skp.

A skew partition can be depicted by a diagram made of rows of cells, in the same way as a partition. Only the cells of
the outer partition 𝑝1 which are not in the inner partition 𝑝2 appear in the picture. For example, this is the diagram of
the skew partition [[5,4,3,1],[3,3,1]].

sage: print(SkewPartition([[5,4,3,1],[3,3,1]]).diagram())
**
*

**
*

A skew partition can be connected, which can easily be described in graphic terms: for each pair of consecutive rows,
there are at least two cells (one in each row) which have a common edge. This is the diagram of the connected skew
partition [[5,4,3,1],[3,1]]:

3014 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: print(SkewPartition([[5,4,3,1],[3,1]]).diagram())
**

*
sage: SkewPartition([[5,4,3,1],[3,1]]).is_connected()
True

The first example of a skew partition is not a connected one.

Applying a reflection with respect to the main diagonal yields the diagram of the conjugate skew partition, here [[4,
3,3,2,1],[3,3,2]]:

sage: SkewPartition([[5,4,3,1],[3,3,1]]).conjugate()
[4, 3, 3, 2, 1] / [3, 2, 2]
sage: print(SkewPartition([[5,4,3,1],[3,3,1]]).conjugate().diagram())

*
*
*

**
*

The outer corners of a skew partition are the corners of its outer partition. The inner corners are the internal corners of
the outer partition when the inner partition is taken off. Shown below are the coordinates of the inner and outer corners.

sage: SkewPartition([[5,4,3,1],[3,3,1]]).outer_corners()
[(0, 4), (1, 3), (2, 2), (3, 0)]
sage: SkewPartition([[5,4,3,1],[3,3,1]]).inner_corners()
[(0, 3), (2, 1), (3, 0)]

EXAMPLES:

There are 9 skew partitions of size 3, with no empty row nor empty column:

sage: SkewPartitions(3).cardinality()
9
sage: SkewPartitions(3).list()
[[3] / [],
[2, 1] / [],
[3, 1] / [1],
[2, 2] / [1],
[3, 2] / [2],
[1, 1, 1] / [],
[2, 2, 1] / [1, 1],
[2, 1, 1] / [1],
[3, 2, 1] / [2, 1]]

There are 4 connected skew partitions of size 3:

sage: SkewPartitions(3, overlap=1).cardinality()
4
sage: SkewPartitions(3, overlap=1).list()
[[3] / [], [2, 1] / [], [2, 2] / [1], [1, 1, 1] / []]

This is the conjugate of the skew partition [[4,3,1], [2]]

5.1. Comprehensive Module List 3015

Combinatorics, Release 9.7

sage: SkewPartition([[4,3,1], [2]]).conjugate()
[3, 2, 2, 1] / [1, 1]

Geometrically, we just applied a reflection with respect to the main diagonal on the diagram of the partition. Of course,
this operation is an involution:

sage: SkewPartition([[4,3,1],[2]]).conjugate().conjugate()
[4, 3, 1] / [2]

The jacobi_trudi() method computes the Jacobi-Trudi matrix. See [Mac1995] for a definition and discussion.

sage: SkewPartition([[4,3,1],[2]]).jacobi_trudi()
[h[2] h[] 0]
[h[5] h[3] h[]]
[h[6] h[4] h[1]]

This example shows how to compute the corners of a skew partition.

sage: SkewPartition([[4,3,1],[2]]).inner_corners()
[(0, 2), (1, 0)]
sage: SkewPartition([[4,3,1],[2]]).outer_corners()
[(0, 3), (1, 2), (2, 0)]

AUTHORS:

• Mike Hansen: Initial version

• Travis Scrimshaw (2013-02-11): Factored out CombinatorialClass

class sage.combinat.skew_partition.SkewPartition(parent, skp)
Bases: sage.combinat.combinat.CombinatorialElement

A skew partition.

A skew partition of shape 𝜆/𝜇 is the Young diagram from the partition 𝜆 and removing the partition 𝜇 from the
upper-left corner in English convention.

cell_poset(orientation='SE')
Return the Young diagram of self as a poset. The optional keyword variable orientation determines
the order relation of the poset.

The poset always uses the set of cells of the Young diagram of self as its ground set. The order relation of
the poset depends on the orientation variable (which defaults to "SE"). Concretely, orientation has
to be specified to one of the strings "NW", "NE", "SW", and "SE", standing for “northwest”, “northeast”,
“southwest” and “southeast”, respectively. If orientation is "SE", then the order relation of the poset
is such that a cell 𝑢 is greater or equal to a cell 𝑣 in the poset if and only if 𝑢 lies weakly southeast of 𝑣
(this means that 𝑢 can be reached from 𝑣 by a sequence of south and east steps; the sequence is allowed to
consist of south steps only, or of east steps only, or even be empty). Similarly the order relation is defined
for the other three orientations. The Young diagram is supposed to be drawn in English notation.

The elements of the poset are the cells of the Young diagram of self, written as tuples of zero-based
coordinates (so that (3, 7) stands for the 8-th cell of the 4-th row, etc.).

EXAMPLES:

sage: p = SkewPartition([[3,3,1], [2,1]])
sage: Q = p.cell_poset(); Q
Finite poset containing 4 elements

(continues on next page)

3016 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: sorted(Q)
[(0, 2), (1, 1), (1, 2), (2, 0)]
sage: sorted(Q.maximal_elements())
[(1, 2), (2, 0)]
sage: sorted(Q.minimal_elements())
[(0, 2), (1, 1), (2, 0)]
sage: sorted(Q.upper_covers((1, 1)))
[(1, 2)]
sage: sorted(Q.upper_covers((0, 2)))
[(1, 2)]

sage: P = p.cell_poset(orientation="NW"); P
Finite poset containing 4 elements
sage: sorted(P)
[(0, 2), (1, 1), (1, 2), (2, 0)]
sage: sorted(P.minimal_elements())
[(1, 2), (2, 0)]
sage: sorted(P.maximal_elements())
[(0, 2), (1, 1), (2, 0)]
sage: sorted(P.upper_covers((1, 2)))
[(0, 2), (1, 1)]

sage: R = p.cell_poset(orientation="NE"); R
Finite poset containing 4 elements
sage: sorted(R)
[(0, 2), (1, 1), (1, 2), (2, 0)]
sage: R.maximal_elements()
[(0, 2)]
sage: R.minimal_elements()
[(2, 0)]
sage: R.upper_covers((2, 0))
[(1, 1)]
sage: sorted([len(R.upper_covers(v)) for v in R])
[0, 1, 1, 1]

cells()
Return the coordinates of the cells of self. Coordinates are given as (row-index, column-index) and
are 0 based.

EXAMPLES:

sage: SkewPartition([[4, 3, 1], [2]]).cells()
[(0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0)]
sage: SkewPartition([[4, 3, 1], []]).cells()
[(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0)]
sage: SkewPartition([[2], []]).cells()
[(0, 0), (0, 1)]

column_lengths()
Return the column lengths of self.

EXAMPLES:

5.1. Comprehensive Module List 3017

Combinatorics, Release 9.7

sage: SkewPartition([[3,2,1],[1,1]]).column_lengths()
[1, 2, 1]
sage: SkewPartition([[5,2,2,2],[2,1]]).column_lengths()
[2, 3, 1, 1, 1]

columns_intersection_set()
Return the set of cells in the columns of the outer shape of self which columns intersect the skew diagram
of self.

EXAMPLES:

sage: skp = SkewPartition([[3,2,1],[2,1]])
sage: cells = Set([(0,0), (0, 1), (0,2), (1, 0), (1, 1), (2, 0)])
sage: skp.columns_intersection_set() == cells
True

conjugate()
Return the conjugate of the skew partition skp.

EXAMPLES:

sage: SkewPartition([[3,2,1],[2]]).conjugate()
[3, 2, 1] / [1, 1]

diagram()
Return the Ferrers diagram of self.

EXAMPLES:

sage: print(SkewPartition([[5,4,3,1],[3,3,1]]).ferrers_diagram())
**
*

**
*
sage: print(SkewPartition([[5,4,3,1],[3,1]]).diagram())

**

*
sage: SkewPartitions.options(diagram_str='#', convention="French")
sage: print(SkewPartition([[5,4,3,1],[3,1]]).diagram())
#
###
###
##

sage: SkewPartitions.options._reset()

ferrers_diagram()
Return the Ferrers diagram of self.

EXAMPLES:

sage: print(SkewPartition([[5,4,3,1],[3,3,1]]).ferrers_diagram())
**
*

(continues on next page)

3018 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

**
*
sage: print(SkewPartition([[5,4,3,1],[3,1]]).diagram())

**

*
sage: SkewPartitions.options(diagram_str='#', convention="French")
sage: print(SkewPartition([[5,4,3,1],[3,1]]).diagram())
#
###
###
##

sage: SkewPartitions.options._reset()

frobenius_rank()
Return the Frobenius rank of the skew partition self.

The Frobenius rank of a skew partition 𝜆/𝜇 can be defined in various ways. The quickest one is probably
the following: Writing 𝜆 as (𝜆1, 𝜆2, · · · , 𝜆𝑁), and writing 𝜇 as (𝜇1, 𝜇2, · · · , 𝜇𝑁), we define the Frobenius
rank of 𝜆/𝜇 to be the number of all 1 ≤ 𝑖 ≤ 𝑁 such that

𝜆𝑖 − 𝑖 ̸∈ {𝜇1 − 1, 𝜇2 − 2, · · · , 𝜇𝑁 −𝑁}.

In other words, the Frobenius rank of 𝜆/𝜇 is the number of rows in the Jacobi-Trudi matrix of 𝜆/𝜇 which
don’t contain ℎ0. Further definitions have been considered in [Sta2002] (where Frobenius rank is just being
called rank).

If 𝜇 is the empty shape, then the Frobenius rank of 𝜆/𝜇 is just the usual Frobenius rank of the partition 𝜆
(see frobenius_rank()).

EXAMPLES:

sage: SkewPartition([[8,8,7,4], [4,1,1]]).frobenius_rank()
4
sage: SkewPartition([[2,1], [1]]).frobenius_rank()
2
sage: SkewPartition([[2,1,1], [1]]).frobenius_rank()
2
sage: SkewPartition([[2,1,1], [1,1]]).frobenius_rank()
2
sage: SkewPartition([[5,4,3,2], [2,1,1]]).frobenius_rank()
3
sage: SkewPartition([[4,2,1], [3,1,1]]).frobenius_rank()
2
sage: SkewPartition([[4,2,1], [3,2,1]]).frobenius_rank()
1

If the inner shape is empty, then the Frobenius rank of the skew partition is just the standard Frobenius rank
of the partition:

sage: all(SkewPartition([lam, Partition([])]).frobenius_rank()
....: == lam.frobenius_rank() for i in range(6)
....: for lam in Partitions(i))
True

5.1. Comprehensive Module List 3019

Combinatorics, Release 9.7

If the inner and outer shapes are equal, then the Frobenius rank is zero:

sage: all(SkewPartition([lam, lam]).frobenius_rank() == 0
....: for i in range(6) for lam in Partitions(i))
True

inner()
Return the inner partition of self.

EXAMPLES:

sage: SkewPartition([[3,2,1],[1,1]]).inner()
[1, 1]

inner_corners()
Return a list of the inner corners of self.

EXAMPLES:

sage: SkewPartition([[4, 3, 1], [2]]).inner_corners()
[(0, 2), (1, 0)]
sage: SkewPartition([[4, 3, 1], []]).inner_corners()
[(0, 0)]

is_connected()
Return True if self is a connected skew partition.

A skew partition is said to be connected if for each pair of consecutive rows, there are at least two cells (one
in each row) which have a common edge.

EXAMPLES:

sage: SkewPartition([[5,4,3,1],[3,3,1]]).is_connected()
False
sage: SkewPartition([[5,4,3,1],[3,1]]).is_connected()
True

is_overlap(n)
Return True if the overlap of self is at most n.

See also:

overlap()

EXAMPLES:

sage: SkewPartition([[5,4,3,1],[3,1]]).is_overlap(1)
True

is_ribbon()
Return True if and only if self is a ribbon.

This means that if it has exactly one cell in each of 𝑞 consecutive diagonals for some nonnegative integer 𝑞.

EXAMPLES:

sage: P = SkewPartition([[4,4,3,3],[3,2,2]])
sage: P.pp()

*
(continues on next page)

3020 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

**
*

sage: P.is_ribbon()
True

sage: P = SkewPartition([[4,3,3],[1,1]])
sage: P.pp()

**

sage: P.is_ribbon()
False

sage: P = SkewPartition([[4,4,3,2],[3,2,2]])
sage: P.pp()

*
**
*

**
sage: P.is_ribbon()
False

sage: P = SkewPartition([[4,4,3,3],[4,2,2,1]])
sage: P.pp()

**
*
**
sage: P.is_ribbon()
True

sage: P = SkewPartition([[4,4,3,3],[4,2,2]])
sage: P.pp()

**
*

sage: P.is_ribbon()
True

sage: SkewPartition([[2,2,1],[2,2,1]]).is_ribbon()
True

jacobi_trudi()
Return the Jacobi-Trudi matrix of self.

EXAMPLES:

sage: SkewPartition([[3,2,1],[2,1]]).jacobi_trudi()
[h[1] 0 0]
[h[3] h[1] 0]
[h[5] h[3] h[1]]

(continues on next page)

5.1. Comprehensive Module List 3021

Combinatorics, Release 9.7

(continued from previous page)

sage: SkewPartition([[4,3,2],[2,1]]).jacobi_trudi()
[h[2] h[] 0]
[h[4] h[2] h[]]
[h[6] h[4] h[2]]

k_conjugate(k)
Return the 𝑘-conjugate of the skew partition.

EXAMPLES:

sage: SkewPartition([[3,2,1],[2,1]]).k_conjugate(3)
[2, 1, 1, 1, 1] / [2, 1]
sage: SkewPartition([[3,2,1],[2,1]]).k_conjugate(4)
[2, 2, 1, 1] / [2, 1]
sage: SkewPartition([[3,2,1],[2,1]]).k_conjugate(5)
[3, 2, 1] / [2, 1]

outer()
Return the outer partition of self.

EXAMPLES:

sage: SkewPartition([[3,2,1],[1,1]]).outer()
[3, 2, 1]

outer_corners()
Return a list of the outer corners of self.

EXAMPLES:

sage: SkewPartition([[4, 3, 1], [2]]).outer_corners()
[(0, 3), (1, 2), (2, 0)]

overlap()
Return the overlap of self.

The overlap of two consecutive rows in a skew partition is the number of pairs of cells (one in each row)
that share a common edge. This number can be positive, zero, or negative.

The overlap of a skew partition is the minimum of the overlap of the consecutive rows, or infinity in the
case of at most one row. If the overlap is positive, then the skew partition is called connected.

EXAMPLES:

sage: SkewPartition([[],[]]).overlap()
+Infinity
sage: SkewPartition([[1],[]]).overlap()
+Infinity
sage: SkewPartition([[10],[]]).overlap()
+Infinity
sage: SkewPartition([[10],[2]]).overlap()
+Infinity
sage: SkewPartition([[10,1],[2]]).overlap()
-1
sage: SkewPartition([[10,10],[1]]).overlap()
9

3022 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

pieri_macdonald_coeffs()
Computation of the coefficients which appear in the Pieri formula for Macdonald polynomials given in his
book (Chapter 6.6 formula 6.24(ii))

EXAMPLES:

sage: SkewPartition([[3,2,1],[2,1]]).pieri_macdonald_coeffs()
1
sage: SkewPartition([[3,2,1],[2,2]]).pieri_macdonald_coeffs()
(q^2*t^3 - q^2*t - t^2 + 1)/(q^2*t^3 - q*t^2 - q*t + 1)
sage: SkewPartition([[3,2,1],[2,2,1]]).pieri_macdonald_coeffs()
(q^6*t^8 - q^6*t^6 - q^4*t^7 - q^5*t^5 + q^4*t^5 - q^3*t^6 + q^5*t^3 + 2*q^3*t^
→˓4 + q*t^5 - q^3*t^2 + q^2*t^3 - q*t^3 - q^2*t - t^2 + 1)/(q^6*t^8 - q^5*t^7 -␣
→˓q^5*t^6 - q^4*t^6 + q^3*t^5 + 2*q^3*t^4 + q^3*t^3 - q^2*t^2 - q*t^2 - q*t + 1)
sage: SkewPartition([[3,3,2,2],[3,2,2,1]]).pieri_macdonald_coeffs()
(q^5*t^6 - q^5*t^5 + q^4*t^6 - q^4*t^5 - q^4*t^3 + q^4*t^2 - q^3*t^3 - q^2*t^4␣
→˓+ q^3*t^2 + q^2*t^3 - q*t^4 + q*t^3 + q*t - q + t - 1)/(q^5*t^6 - q^4*t^5 - q^
→˓3*t^4 - q^3*t^3 + q^2*t^3 + q^2*t^2 + q*t - 1)

pp()
Pretty-print self.

EXAMPLES:

sage: SkewPartition([[5,4,3,1],[3,3,1]]).pp()
**
*

**
*

quotient(k)
The quotient map extended to skew partitions.

EXAMPLES:

sage: SkewPartition([[3, 3, 2, 1], [2, 1]]).quotient(2)
[[3] / [], [] / []]

row_lengths()
Return the row lengths of self.

EXAMPLES:

sage: SkewPartition([[3,2,1],[1,1]]).row_lengths()
[2, 1, 1]

rows_intersection_set()
Return the set of cells in the rows of the outer shape of self which rows intersect the skew diagram of
self.

EXAMPLES:

sage: skp = SkewPartition([[3,2,1],[2,1]])
sage: cells = Set([(0,0), (0, 1), (0,2), (1, 0), (1, 1), (2, 0)])
sage: skp.rows_intersection_set() == cells
True

5.1. Comprehensive Module List 3023

Combinatorics, Release 9.7

size()
Return the size of self.

EXAMPLES:

sage: SkewPartition([[3,2,1],[1,1]]).size()
4

to_dag(format='string')
Return a directed acyclic graph corresponding to the skew partition self.

The directed acyclic graph corresponding to a skew partition 𝑝 is the digraph whose vertices are the cells
of 𝑝, and whose edges go from each cell to its lower and right neighbors (in English notation).

INPUT:

• format – either 'string' or 'tuple' (default: 'string'); determines whether the vertices of the
resulting dag will be strings or 2-tuples of coordinates

EXAMPLES:

sage: dag = SkewPartition([[3, 3, 1], [1, 1]]).to_dag()
sage: dag.edges(sort=True)
[('0,1', '0,2', None),
('0,1', '1,1', None),
('0,2', '1,2', None),
('1,1', '1,2', None)]
sage: dag.vertices(sort=True)
['0,1', '0,2', '1,1', '1,2', '2,0']
sage: dag = SkewPartition([[3, 2, 1], [1, 1]]).to_dag(format="tuple")
sage: dag.edges(sort=True)
[((0, 1), (0, 2), None), ((0, 1), (1, 1), None)]
sage: dag.vertices(sort=True)
[(0, 1), (0, 2), (1, 1), (2, 0)]

to_list()
Return self as a list of lists.

EXAMPLES:

sage: s = SkewPartition([[4,3,1],[2]])
sage: s.to_list()
[[4, 3, 1], [2]]
sage: type(s.to_list())
<class 'list'>

class sage.combinat.skew_partition.SkewPartitions(is_infinite=False)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Skew partitions.

Warning: The iterator of this class only yields skew partitions which are reduced, in the sense that there
are no empty rows before the last nonempty row, and there are no empty columns before the last nonempty
column.

EXAMPLES:

3024 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: SkewPartitions(4)
Skew partitions of 4
sage: SkewPartitions(4).cardinality()
28
sage: SkewPartitions(row_lengths=[2,1,2])
Skew partitions with row lengths [2, 1, 2]
sage: SkewPartitions(4, overlap=2)
Skew partitions of 4 with a minimum overlap of 2
sage: SkewPartitions(4, overlap=2).list()
[[4] / [], [2, 2] / []]

Element
alias of SkewPartition

from_row_and_column_length(rowL, colL)
Construct a partition from its row lengths and column lengths.

INPUT:

• rowL – A composition or a list of positive integers

• colL – A composition or a list of positive integers

OUTPUT:

• If it exists the unique skew-partitions with row lengths rowL and column lengths colL.

• Raise a ValueError if rowL and colL are not compatible.

EXAMPLES:

sage: S = SkewPartitions()
sage: print(S.from_row_and_column_length([3,1,2,2],[2,3,1,1,1]).diagram())

*

**
**
sage: S.from_row_and_column_length([],[])
[] / []
sage: S.from_row_and_column_length([1],[1])
[1] / []
sage: S.from_row_and_column_length([2,1],[2,1])
[2, 1] / []
sage: S.from_row_and_column_length([1,2],[1,2])
[2, 2] / [1]
sage: S.from_row_and_column_length([1,2],[1,3])
Traceback (most recent call last):
...
ValueError: Sum mismatch : [1, 2] and [1, 3]
sage: S.from_row_and_column_length([3,2,1,2],[2,3,1,1,1])
Traceback (most recent call last):
...
ValueError: Incompatible row and column length : [3, 2, 1, 2] and [2, 3, 1, 1,␣
→˓1]

5.1. Comprehensive Module List 3025

Combinatorics, Release 9.7

Warning: If some rows and columns have length zero, there is no way to retrieve unambiguously the
skew partition. We therefore raise a ValueError. For examples here are two skew partitions with the
same row and column lengths:

sage: skp1 = SkewPartition([[2,2],[2,2]])
sage: skp2 = SkewPartition([[2,1],[2,1]])
sage: skp1.row_lengths(), skp1.column_lengths()
([0, 0], [0, 0])
sage: skp2.row_lengths(), skp2.column_lengths()
([0, 0], [0, 0])
sage: SkewPartitions().from_row_and_column_length([0,0], [0,0])
Traceback (most recent call last):
...
ValueError: row and column length must be positive

options(*get_value, **set_value)
Sets and displays the options for elements of the skew partition classes. If no parameters are set, then the
function returns a copy of the options dictionary.

The options to skew partitions can be accessed as the method SkewPartitions.options of
SkewPartitions and related parent classes.

OPTIONS:

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• diagram_str – (default: *) The character used for the cells when printing Ferrers diagrams

• display – (default: quotient) Specifies how skew partitions should be printed

– array – alias for diagram

– diagram – as a skew Ferrers diagram

– ferrers_diagram – alias for diagram

– lists – displayed as a pair of lists

– pair – alias for lists

– quotient – displayed as a quotient of partitions

– young_diagram – alias for diagram

• latex – (default: young_diagram) Specifies how skew partitions should be latexed

– array – alias for diagram

– diagram – latex as a skew Ferrers diagram

– ferrers_diagram – alias for diagram

– marked – latex as a partition where the skew shape is marked

– young_diagram – latex as a skew Young diagram

• latex_diagram_str – (default: \ast) The character used for the cells when latexing Ferrers dia-
grams

3026 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• latex_marking_str – (default: X) The character used to marked the deleted cells when latexing
marked partitions

• notation – alternative name for convention

EXAMPLES:

sage: SP = SkewPartition([[4,2,2,1], [3, 1, 1]])
sage: SP
[4, 2, 2, 1] / [3, 1, 1]
sage: SkewPartitions.options.display="lists"
sage: SP
[[4, 2, 2, 1], [3, 1, 1]]

Changing the convention for skew partitions also changes the convention option for partitions and
tableaux and vice versa:

sage: SkewPartitions.options(display="diagram", convention='French')
sage: SP
*
*
*
*

sage: T = Tableau([[1,2,3],[4,5]])
sage: T.pp()
4 5
1 2 3

sage: P = Partition([4, 2, 2, 1])
sage: P.pp()
*
**
**

sage: Tableaux.options.convention="english"
sage: SP

*
*
*

*
sage: T.pp()
1 2 3
4 5

sage: SkewPartitions.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.skew_partition.SkewPartitions_all
Bases: sage.combinat.skew_partition.SkewPartitions

Class of all skew partitions.

class sage.combinat.skew_partition.SkewPartitions_n(n, overlap)
Bases: sage.combinat.skew_partition.SkewPartitions

The set of skew partitions of n with overlap at least overlap and no empty row.

INPUT:

5.1. Comprehensive Module List 3027

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

• n – a non-negative integer

• overlap – an integer (default: 0)

Caveat: this set is stable under conjugation only for overlap equal to 0 or 1. What exactly happens for negative
overlaps is not yet well specified and subject to change (we may want to introduce vertical overlap constraints as
well).

Todo: As is, this set is essentially the composition of Compositions(n) (which give the row lengths) and
SkewPartition(n, row_lengths=...), and one would want to “inherit” list and cardinality from this com-
position.

cardinality()
Return the number of skew partitions of the integer 𝑛 (with given overlap, if specified; and with no empty
rows before the last row).

EXAMPLES:

sage: SkewPartitions(0).cardinality()
1
sage: SkewPartitions(4).cardinality()
28
sage: SkewPartitions(5).cardinality()
87
sage: SkewPartitions(4, overlap=1).cardinality()
9
sage: SkewPartitions(5, overlap=1).cardinality()
20
sage: s = SkewPartitions(5, overlap=-1)
sage: s.cardinality() == len(s.list())
True

class sage.combinat.skew_partition.SkewPartitions_rowlengths(co, overlap)
Bases: sage.combinat.skew_partition.SkewPartitions

All skew partitions with given row lengths.

sage.combinat.skew_partition.row_lengths_aux(skp)
EXAMPLES:

sage: from sage.combinat.skew_partition import row_lengths_aux
sage: row_lengths_aux([[5,4,3,1],[3,3,1]])
[2, 1, 2]
sage: row_lengths_aux([[5,4,3,1],[3,1]])
[2, 3]

3028 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.309 Skew Tableaux

AUTHORS:

• Mike Hansen: Initial version

• Travis Scrimshaw, Arthur Lubovsky (2013-02-11): Factored out CombinatorialClass

class sage.combinat.skew_tableau.SemistandardSkewTableaux(category=None)
Bases: sage.combinat.skew_tableau.SkewTableaux

Semistandard skew tableaux.

This class can be initialized with several optional variables: the size of the skew tableaux (as a nameless integer
variable), their shape (as a nameless skew partition variable), their weight (weight(), as a nameless second
variable after either the size or the shape) and their maximum entry (as an optional keyword variable called
max_entry, unless the weight has been specified). If neither the weight nor the maximum entry is specified, the
maximum entry defaults to the size of the tableau.

Note that “maximum entry” does not literally mean the highest entry; instead it is just an upper bound that no
entry is allowed to surpass.

EXAMPLES:

The (infinite) class of all semistandard skew tableaux:

sage: SemistandardSkewTableaux()
Semistandard skew tableaux

The (still infinite) class of all semistandard skew tableaux with maximum entry 2:

sage: SemistandardSkewTableaux(max_entry=2)
Semistandard skew tableaux with maximum entry 2

The class of all semistandard skew tableaux of given size 3 and maximum entry 3:

sage: SemistandardSkewTableaux(3)
Semistandard skew tableaux of size 3 and maximum entry 3

To set a different maximum entry:

sage: SemistandardSkewTableaux(3, max_entry = 7)
Semistandard skew tableaux of size 3 and maximum entry 7

Specifying a shape:

sage: SemistandardSkewTableaux([[2,1],[]])
Semistandard skew tableaux of shape [2, 1] / [] and maximum entry 3

Specifying both a shape and a maximum entry:

sage: S = SemistandardSkewTableaux([[2,1],[1]], max_entry = 3); S
Semistandard skew tableaux of shape [2, 1] / [1] and maximum entry 3
sage: S.list()
[[[None, 1], [1]],
[[None, 2], [1]],
[[None, 1], [2]],
[[None, 3], [1]],

(continues on next page)

5.1. Comprehensive Module List 3029

Combinatorics, Release 9.7

(continued from previous page)

[[None, 1], [3]],
[[None, 2], [2]],
[[None, 3], [2]],
[[None, 2], [3]],
[[None, 3], [3]]]

sage: for n in range(5):
....: print("{} {}".format(n, len(SemistandardSkewTableaux([[2,2,1],[1]], max_
→˓entry = n))))
0 0
1 0
2 1
3 9
4 35

Specifying a shape and a weight:

sage: SemistandardSkewTableaux([[2,1],[]],[2,1])
Semistandard skew tableaux of shape [2, 1] / [] and weight [2, 1]

(the maximum entry is redundant in this case and thus is ignored).

Specifying a size and a weight:

sage: SemistandardSkewTableaux(3, [2,1])
Semistandard skew tableaux of size 3 and weight [2, 1]

Warning: If the shape is not specified, the iterator of this class yields only skew tableaux whose shape
is reduced, in the sense that there are no empty rows before the last nonempty row, and there are no empty
columns before the last nonempty column. (Otherwise it would go on indefinitely.)

Warning: This class acts as a factory. The resulting classes are mainly useful for iteration. Do not rely on
their containment tests, as they are not correct, e. g.:

sage: SkewTableau([[None]]) in SemistandardSkewTableaux(2)
True

class sage.combinat.skew_tableau.SemistandardSkewTableaux_all(max_entry)
Bases: sage.combinat.skew_tableau.SemistandardSkewTableaux

Class of all semistandard skew tableaux, possibly with a given maximum entry.

class sage.combinat.skew_tableau.SemistandardSkewTableaux_shape(p, max_entry)
Bases: sage.combinat.skew_tableau.SemistandardSkewTableaux

Class of semistandard skew tableaux of a fixed skew shape 𝜆/𝜇 with a given max entry.

A semistandard skew tableau with max entry 𝑖 is required to have all its entries less or equal to 𝑖. It is not required
to actually contain an entry 𝑖.

INPUT:

• p – A skew partition

3030 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• max_entry – The max entry; defaults to the size of p.

Warning: Input is not checked; please use SemistandardSkewTableaux to ensure the options are properly
parsed.

cardinality()
EXAMPLES:

sage: SemistandardSkewTableaux([[2,1],[]]).cardinality()
8
sage: SemistandardSkewTableaux([[2,1],[]], max_entry=2).cardinality()
2

class sage.combinat.skew_tableau.SemistandardSkewTableaux_shape_weight(p, mu)
Bases: sage.combinat.skew_tableau.SemistandardSkewTableaux

Class of semistandard skew tableaux of a fixed skew shape 𝜆/𝜈 and weight 𝜇.

class sage.combinat.skew_tableau.SemistandardSkewTableaux_size(n, max_entry)
Bases: sage.combinat.skew_tableau.SemistandardSkewTableaux

Class of all semistandard skew tableaux of a fixed size 𝑛, possibly with a given maximum entry.

cardinality()
EXAMPLES:

sage: SemistandardSkewTableaux(2).cardinality()
8

class sage.combinat.skew_tableau.SemistandardSkewTableaux_size_weight(n, mu)
Bases: sage.combinat.skew_tableau.SemistandardSkewTableaux

Class of semistandard tableaux of a fixed size 𝑛 and weight 𝜇.

cardinality()
EXAMPLES:

sage: SemistandardSkewTableaux(2,[1,1]).cardinality()
4

class sage.combinat.skew_tableau.SkewTableau(parent, st)
Bases: sage.structure.list_clone.ClonableList

A skew tableau.

Note that Sage by default uses the English convention for partitions and tableaux. To change this, see Tableaux.
options().

EXAMPLES:

sage: st = SkewTableau([[None, 1],[2,3]]); st
[[None, 1], [2, 3]]
sage: st.inner_shape()
[1]
sage: st.outer_shape()
[2, 2]

5.1. Comprehensive Module List 3031

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList

Combinatorics, Release 9.7

The expr form of a skew tableau consists of the inner partition followed by a list of the entries in each row from
bottom to top:

sage: SkewTableau(expr=[[1,1],[[5],[3,4],[1,2]]])
[[None, 1, 2], [None, 3, 4], [5]]

The chain form of a skew tableau consists of a list of partitions 𝜆1, 𝜆2, . . . ,, such that all cells in 𝜆𝑖+1 that are
not in 𝜆𝑖 have entry 𝑖:

sage: SkewTableau(chain=[[2], [2, 1], [3, 1], [4, 3, 2, 1]])
[[None, None, 2, 3], [1, 3, 3], [3, 3], [3]]

bender_knuth_involution(k, rows=None, check=True)
Return the image of self under the 𝑘-th Bender–Knuth involution, assuming self is a skew semistandard
tableau.

Let 𝑇 be a tableau, then a lower free `k` in `T` means a cell of 𝑇 which is filled with the integer 𝑘 and whose
direct lower neighbor is not filled with the integer 𝑘 + 1 (in particular, this lower neighbor might not exist
at all). Let an upper free `k + 1` in `T` mean a cell of 𝑇 which is filled with the integer 𝑘 + 1 and whose
direct upper neighbor is not filled with the integer 𝑘 (in particular, this neighbor might not exist at all). It is
clear that for any row 𝑟 of 𝑇 , the lower free 𝑘’s and the upper free 𝑘 + 1’s in 𝑟 together form a contiguous
interval or 𝑟.

The `k`-th Bender–Knuth switch at row `i` changes the entries of the cells in this interval in such a way
that if it used to have 𝑎 entries of 𝑘 and 𝑏 entries of 𝑘 + 1, it will now have 𝑏 entries of 𝑘 and 𝑎 entries of
𝑘 + 1. For fixed 𝑘, the 𝑘-th Bender–Knuth switches for different 𝑖 commute. The composition of the 𝑘-th
Bender–Knuth switches for all rows is called the `k`-th Bender–Knuth involution. This is used to show that
the Schur functions defined by semistandard (skew) tableaux are symmetric functions.

INPUT:

• k – an integer

• rows – (Default None) When set to None, the method computes the 𝑘-th Bender–Knuth involution as
defined above. When an iterable, this computes the composition of the 𝑘-th Bender–Knuth switches at
row 𝑖 over all 𝑖 in rows. When set to an integer 𝑖, the method computes the 𝑘-th Bender–Knuth switch
at row 𝑖. Note the indexing of the rows starts with 1.

• check – (Default: True) Check to make sure self is semistandard. Set to False to avoid this check.

OUTPUT:

The image of self under either the 𝑘-th Bender–Knuth involution, the 𝑘-th Bender–Knuth switch at a
certain row, or the composition of such switches, as detailed in the INPUT section.

EXAMPLES:

sage: t = SkewTableau([[None,None,None,4,4,5,6,7],[None,2,4,6,7,7,7],
....: [None,4,5,8,8,9],[None,6,7,10],[None,8,8,11],[None],[4]])
sage: t
[[None, None, None, 4, 4, 5, 6, 7], [None, 2, 4, 6, 7, 7, 7],
[None, 4, 5, 8, 8, 9], [None, 6, 7, 10], [None, 8, 8, 11], [None], [4]]
sage: t.bender_knuth_involution(1)
[[None, None, None, 4, 4, 5, 6, 7], [None, 1, 4, 6, 7, 7, 7],
[None, 4, 5, 8, 8, 9], [None, 6, 7, 10], [None, 8, 8, 11], [None], [4]]
sage: t.bender_knuth_involution(4)
[[None, None, None, 4, 5, 5, 6, 7], [None, 2, 4, 6, 7, 7, 7],
[None, 5, 5, 8, 8, 9], [None, 6, 7, 10], [None, 8, 8, 11], [None], [5]]

(continues on next page)

3032 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: t.bender_knuth_involution(5)
[[None, None, None, 4, 4, 5, 6, 7], [None, 2, 4, 5, 7, 7, 7],
[None, 4, 6, 8, 8, 9], [None, 5, 7, 10], [None, 8, 8, 11], [None], [4]]
sage: t.bender_knuth_involution(6)
[[None, None, None, 4, 4, 5, 6, 6], [None, 2, 4, 6, 6, 7, 7],
[None, 4, 5, 8, 8, 9], [None, 6, 7, 10], [None, 8, 8, 11], [None], [4]]
sage: t.bender_knuth_involution(666) == t
True
sage: t.bender_knuth_involution(4, 2) == t
True
sage: t.bender_knuth_involution(4, 3)
[[None, None, None, 4, 4, 5, 6, 7], [None, 2, 4, 6, 7, 7, 7],
[None, 5, 5, 8, 8, 9], [None, 6, 7, 10], [None, 8, 8, 11], [None], [4]]

The Bender–Knuth involution is an involution:

sage: t = SkewTableau([[None,3,4,4],[None,6,10],[7,7,11],[18]])
sage: all(t.bender_knuth_involution(k).bender_knuth_involution(k)
....: == t for k in range(1,4))
True

The same for the single switches:

sage: all(t.bender_knuth_involution(k, j).bender_knuth_involution(k, j)
....: == t for k in range(1,5) for j in range(1, 5))
True

Locality of the Bender–Knuth involutions:

sage: all(t.bender_knuth_involution(k).bender_knuth_involution(l)
....: == t.bender_knuth_involution(l).bender_knuth_involution(k)
....: for k in range(1,5) for l in range(1,5) if abs(k - l) > 1)
True

AUTHORS:

• Darij Grinberg (2013-05-14)

cells()
Return the cells in self.

EXAMPLES:

sage: s = SkewTableau([[None,1,2],[3],[6]])
sage: s.cells()
[(0, 1), (0, 2), (1, 0), (2, 0)]

cells_by_content(c)
Return the coordinates of the cells in self with content c.

EXAMPLES:

sage: s = SkewTableau([[None,1,2],[3,4,5],[6]])
sage: s.cells_by_content(0)
[(1, 1)]

(continues on next page)

5.1. Comprehensive Module List 3033

Combinatorics, Release 9.7

(continued from previous page)

sage: s.cells_by_content(1)
[(0, 1), (1, 2)]
sage: s.cells_by_content(2)
[(0, 2)]
sage: s.cells_by_content(-1)
[(1, 0)]
sage: s.cells_by_content(-2)
[(2, 0)]

cells_containing(i)
Return the list of cells in which the letter i appears in the tableau self. The list is ordered with cells
appearing from left to right.

Cells are given as pairs of coordinates (𝑎, 𝑏), where both rows and columns are counted from 0 (so 𝑎 = 0
means the cell lies in the leftmost column of the tableau, etc.).

EXAMPLES:

sage: t = SkewTableau([[None,None,3],[None,3,5],[4,5]])
sage: t.cells_containing(5)
[(2, 1), (1, 2)]
sage: t.cells_containing(4)
[(2, 0)]
sage: t.cells_containing(2)
[]

sage: t = SkewTableau([[None,None,None,None],[None,4,5],[None,5,6],[None,9],
→˓[None]])
sage: t.cells_containing(2)
[]
sage: t.cells_containing(4)
[(1, 1)]
sage: t.cells_containing(5)
[(2, 1), (1, 2)]

sage: SkewTableau([]).cells_containing(3)
[]

sage: SkewTableau([[None,None],[None]]).cells_containing(3)
[]

check()
Check that self is a valid skew tableau. This is currently far too liberal, and only checks some trivial
things.

EXAMPLES:

sage: t = SkewTableau([[None,1,1],[2]])
sage: t.check()

sage: t = SkewTableau([[None, None, 1], [2, 4], [], [3, 4, 5]])
Traceback (most recent call last):
...
TypeError: a skew tableau cannot have an empty list for a row

(continues on next page)

3034 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: s = SkewTableau([[1, None, None],[2, None],[3]])
Traceback (most recent call last):
...
TypeError: not a valid skew tableau

conjugate()
Return the conjugate of self.

EXAMPLES:

sage: SkewTableau([[None,1],[2,3]]).conjugate()
[[None, 2], [1, 3]]

entries_by_content(c)
Return the entries in self with content c.

EXAMPLES:

sage: s = SkewTableau([[None,1,2],[3,4,5],[6]])
sage: s.entries_by_content(0)
[4]
sage: s.entries_by_content(1)
[1, 5]
sage: s.entries_by_content(2)
[2]
sage: s.entries_by_content(-1)
[3]
sage: s.entries_by_content(-2)
[6]

evaluation()
Return the weight (aka evaluation) of the tableau self. Trailing zeroes are omitted when returning the
weight.

The weight of a skew tableau 𝑇 is the sequence (𝑎1, 𝑎2, 𝑎3, . . .), where 𝑎𝑘 is the number of entries of 𝑇
equal to 𝑘. This sequence contains only finitely many nonzero entries.

The weight of a skew tableau 𝑇 is the same as the weight of the reading word of 𝑇 , for any reading order.

evaluation() is a synonym for this method.

EXAMPLES:

sage: SkewTableau([[1,2],[3,4]]).weight()
[1, 1, 1, 1]

sage: SkewTableau([[None,2],[None,4],[None,5],[None]]).weight()
[0, 1, 0, 1, 1]

sage: SkewTableau([]).weight()
[]

sage: SkewTableau([[None,None,None],[None]]).weight()
[]

(continues on next page)

5.1. Comprehensive Module List 3035

Combinatorics, Release 9.7

(continued from previous page)

sage: SkewTableau([[None,3,4],[None,6,7],[4,8],[5,13],[6],[7]]).weight()
[0, 0, 1, 2, 1, 2, 2, 1, 0, 0, 0, 0, 1]

filling()
Return a list of the non-empty entries in self.

EXAMPLES:

sage: t = SkewTableau([[None,1],[2,3]])
sage: t.filling()
[[1], [2, 3]]

inner_shape()
Return the inner shape of self.

EXAMPLES:

sage: SkewTableau([[None,1,2],[None,3],[4]]).inner_shape()
[1, 1]
sage: SkewTableau([[1,2],[3,4],[7]]).inner_shape()
[]
sage: SkewTableau([[None,None,None,2,3],[None,1],[None],[2]]).inner_shape()
[3, 1, 1]

inner_size()
Return the size of the inner shape of self.

EXAMPLES:

sage: SkewTableau([[None, 2, 4], [None, 3], [1]]).inner_size()
2
sage: SkewTableau([[None, 2], [1, 3]]).inner_size()
1

is_k_tableau(k)
Checks whether self is a valid skew weak 𝑘-tableau.

EXAMPLES:

sage: t = SkewTableau([[None,2,3],[2,3],[3]])
sage: t.is_k_tableau(3)
True
sage: t = SkewTableau([[None,1,3],[2,2],[3]])
sage: t.is_k_tableau(3)
False

is_ribbon()
Return True if and only if the shape of self is a ribbon, that is, if it has exactly one cell in each of 𝑞
consecutive diagonals for some nonnegative integer 𝑞.

EXAMPLES:

sage: S = SkewTableau([[None, None, 1, 2],[None, None, 3],[1, 3, 4]])
sage: S.pp()

(continues on next page)

3036 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

. . 1 2

. . 3
1 3 4

sage: S.is_ribbon()
True

sage: S = SkewTableau([[None, 1, 1, 2],[None, 2, 3],[1, 3, 4]])
sage: S.pp()
. 1 1 2
. 2 3
1 3 4

sage: S.is_ribbon()
False

sage: S = SkewTableau([[None, None, 1, 2],[None, None, 3],[1]])
sage: S.pp()
. . 1 2
. . 3
1

sage: S.is_ribbon()
False

sage: S = SkewTableau([[None, None, None, None],[None, None, 3],[1, 2, 4]])
sage: S.pp()
. . . .
. . 3
1 2 4

sage: S.is_ribbon()
True

sage: S = SkewTableau([[None, None, None, None],[None, None, 3],[None, 2, 4]])
sage: S.pp()
. . . .
. . 3
. 2 4

sage: S.is_ribbon()
True

sage: S = SkewTableau([[None, None],[None]])
sage: S.pp()
. .
.

sage: S.is_ribbon()
True

is_semistandard()
Return True if self is a semistandard skew tableau and False otherwise.

EXAMPLES:

sage: SkewTableau([[None, 2, 2], [1, 3]]).is_semistandard()
True
sage: SkewTableau([[None, 2], [2, 4]]).is_semistandard()

(continues on next page)

5.1. Comprehensive Module List 3037

Combinatorics, Release 9.7

(continued from previous page)

True
sage: SkewTableau([[None, 3], [2, 4]]).is_semistandard()
True
sage: SkewTableau([[None, 2], [1, 2]]).is_semistandard()
False
sage: SkewTableau([[None, 2, 3]]).is_semistandard()
True
sage: SkewTableau([[None, 3, 2]]).is_semistandard()
False
sage: SkewTableau([[None, 2, 3], [1, 4]]).is_semistandard()
True
sage: SkewTableau([[None, 2, 3], [1, 2]]).is_semistandard()
False
sage: SkewTableau([[None, 2, 3], [None, None, 4]]).is_semistandard()
False

is_standard()
Return True if self is a standard skew tableau and False otherwise.

EXAMPLES:

sage: SkewTableau([[None, 2], [1, 3]]).is_standard()
True
sage: SkewTableau([[None, 2], [2, 4]]).is_standard()
False
sage: SkewTableau([[None, 3], [2, 4]]).is_standard()
False
sage: SkewTableau([[None, 2], [2, 4]]).is_standard()
False

outer_shape()
Return the outer shape of self.

EXAMPLES:

sage: SkewTableau([[None,1,2],[None,3],[4]]).outer_shape()
[3, 2, 1]

outer_size()
Return the size of the outer shape of self.

EXAMPLES:

sage: SkewTableau([[None, 2, 4], [None, 3], [1]]).outer_size()
6
sage: SkewTableau([[None, 2], [1, 3]]).outer_size()
4

pp()
Return a pretty print string of the tableau.

EXAMPLES:

sage: SkewTableau([[None,2,3],[None,4],[5]]).pp()
. 2 3

(continues on next page)

3038 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

. 4
5

rectify(algorithm=None)
Return a StandardTableau, SemistandardTableau, or just Tableau formed by applying the jeu de
taquin process to self.

See page 15 of [Ful1997].

INPUT:

• algorithm – optional: if set to 'jdt', rectifies by jeu de taquin; if set to 'schensted', rectifies by
Schensted insertion of the reading word; otherwise, guesses which will be faster.

EXAMPLES:

sage: S = SkewTableau([[None,1],[2,3]])
sage: S.rectify()
[[1, 3], [2]]
sage: T = SkewTableau([[None, None, None, 4],[None,None,1,6],[None,None,5],[2,
→˓3]])
sage: T.rectify()
[[1, 3, 4, 6], [2, 5]]
sage: T.rectify(algorithm='jdt')
[[1, 3, 4, 6], [2, 5]]
sage: T.rectify(algorithm='schensted')
[[1, 3, 4, 6], [2, 5]]
sage: T.rectify(algorithm='spaghetti')
Traceback (most recent call last):
...
ValueError: algorithm must be 'jdt', 'schensted', or None

restrict(n)
Return the restriction of the (semi)standard skew tableau to all the numbers less than or equal to n.

Note: If only the outer shape of the restriction, rather than the whole restriction, is needed, then the
faster method restriction_outer_shape() is preferred. Similarly if only the skew shape is needed,
use restriction_shape().

EXAMPLES:

sage: SkewTableau([[None,1],[2],[3]]).restrict(2)
[[None, 1], [2]]
sage: SkewTableau([[None,1],[2],[3]]).restrict(1)
[[None, 1]]
sage: SkewTableau([[None,1],[1],[2]]).restrict(1)
[[None, 1], [1]]

restriction_outer_shape(n)
Return the outer shape of the restriction of the semistandard skew tableau self to 𝑛.

If 𝑇 is a semistandard skew tableau and 𝑛 is a nonnegative integer, then the restriction of 𝑇 to 𝑛 is defined
as the (semistandard) skew tableau obtained by removing all cells filled with entries greater than 𝑛 from 𝑇 .

This method computes merely the outer shape of the restriction. For the restriction itself, use restrict().

5.1. Comprehensive Module List 3039

Combinatorics, Release 9.7

EXAMPLES:

sage: SkewTableau([[None,None],[2,3],[3,4]]).restriction_outer_shape(3)
[2, 2, 1]
sage: SkewTableau([[None,2],[None],[4],[5]]).restriction_outer_shape(2)
[2, 1]
sage: T = SkewTableau([[None,None,3,5],[None,4,4],[17]])
sage: T.restriction_outer_shape(0)
[2, 1]
sage: T.restriction_outer_shape(2)
[2, 1]
sage: T.restriction_outer_shape(3)
[3, 1]
sage: T.restriction_outer_shape(4)
[3, 3]
sage: T.restriction_outer_shape(19)
[4, 3, 1]

restriction_shape(n)
Return the skew shape of the restriction of the semistandard skew tableau self to n.

If 𝑇 is a semistandard skew tableau and 𝑛 is a nonnegative integer, then the restriction of 𝑇 to 𝑛 is defined
as the (semistandard) skew tableau obtained by removing all cells filled with entries greater than 𝑛 from 𝑇 .

This method computes merely the skew shape of the restriction. For the restriction itself, use restrict().

EXAMPLES:

sage: SkewTableau([[None,None],[2,3],[3,4]]).restriction_shape(3)
[2, 2, 1] / [2]
sage: SkewTableau([[None,2],[None],[4],[5]]).restriction_shape(2)
[2, 1] / [1, 1]
sage: T = SkewTableau([[None,None,3,5],[None,4,4],[17]])
sage: T.restriction_shape(0)
[2, 1] / [2, 1]
sage: T.restriction_shape(2)
[2, 1] / [2, 1]
sage: T.restriction_shape(3)
[3, 1] / [2, 1]
sage: T.restriction_shape(4)
[3, 3] / [2, 1]

shape()
Return the shape of self.

EXAMPLES:

sage: SkewTableau([[None,1,2],[None,3],[4]]).shape()
[3, 2, 1] / [1, 1]

shuffle(t2)
Shuffle the standard tableaux self and t2.

Let t1 = self. The shape of t2 must extend the shape of t1, that is, self.outer_shape() == t2.
inner_shape(). Then this function computes the pair of tableaux (t2_new, t1_new) obtained by using
jeu de taquin slides to move the boxes of t2 behind the boxes of self.

3040 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The entries of t2_new are obtained by performing successive inwards jeu de taquin slides on t2 in the
order indicated by the entries of t1, from largest to smallest. The entries of t1 then slide outwards one by
one and land in the squares vacated successively by t2, forming t1_new.

Note: Equivalently, the entries of t1_new are obtained by performing outer jeu de taquin slides on t1 in the
order indicated by the entries of t2, from smallest to largest. In this case the entries of t2 slide backwards
and fill the squares successively vacated by t1 and so form t2_new. (This is not how the algorithm is
implemented.)

INPUT:

• self, t2 – a pair of standard SkewTableaux with self.outer_shape() == t2.inner_shape()

OUTPUT:

• t2_new, t1_new – a pair of standard SkewTableaux with t2_new.outer_shape() == t1_new.
inner_shape()

EXAMPLES:

sage: t1 = SkewTableau([[None, 1, 2], [3, 4]])
sage: t2 = SkewTableau([[None, None, None, 3], [None, None, 4], [1, 2, 5]])
sage: (t2_new, t1_new) = t1.shuffle(t2)
sage: t1_new
[[None, None, None, 2], [None, None, 1], [None, 3, 4]]
sage: t2_new
[[None, 2, 3], [1, 4], [5]]
sage: t1_new.outer_shape() == t2.outer_shape()
True
sage: t2_new.inner_shape() == t1.inner_shape()
True

Shuffling is an involution:

sage: t1 = SkewTableau([[None, 1, 2], [3, 4]])
sage: t2 = SkewTableau([[None, None, None, 3], [None, None, 4], [1, 2, 5]])
sage: sh = lambda x,y : x.shuffle(y)
sage: (t1, t2) == sh(*sh(t1, t2))
True

Both tableaux must be standard:

sage: t1 = SkewTableau([[None, 1, 2], [2, 4]])
sage: t2 = SkewTableau([[None, None, None, 3], [None, None, 4], [1, 2, 5]])
sage: t1.shuffle(t2)
Traceback (most recent call last):
...
ValueError: the tableaux must be standard
sage: t1 = SkewTableau([[None, 1, 2], [3, 4]])
sage: t2 = SkewTableau([[None, None, None, 3], [None, None, 4], [1, 2, 6]])
sage: t1.shuffle(t2)
Traceback (most recent call last):
...
ValueError: the tableaux must be standard

The shapes (not just the nonempty cells) must be adjacent:

5.1. Comprehensive Module List 3041

Combinatorics, Release 9.7

sage: t1 = SkewTableau([[None, None, None], [1]])
sage: t2 = SkewTableau([[None], [None], [1]])
sage: t1.shuffle(t2)
Traceback (most recent call last):
...
ValueError: the shapes must be adjacent

size()
Return the number of cells in self.

EXAMPLES:

sage: SkewTableau([[None, 2, 4], [None, 3], [1]]).size()
4
sage: SkewTableau([[None, 2], [1, 3]]).size()
3

slide(corner=None, return_vacated=False)
Apply a jeu de taquin slide to self on the specified inner corner and return the resulting tableau.

If no corner is given, the topmost inner corner is chosen.

The optional parameter return_vacated=True causes the output to be the pair (t, (i, j)) where t
is the new tableau and (i, j) are the coordinates of the vacated square.

See [Ful1997] p12-13.

EXAMPLES:

sage: st = SkewTableau([[None, None, None, None, 2], [None, None, None, None,␣
→˓6], [None, 2, 4, 4], [2, 3, 6], [5, 5]])
sage: st.slide((2, 0))
[[None, None, None, None, 2], [None, None, None, None, 6], [2, 2, 4, 4], [3, 5,␣
→˓6], [5]]
sage: st2 = SkewTableau([[None, None, 3], [None, 2, 4], [1, 5]])
sage: st2.slide((1, 0), True)
([[None, None, 3], [1, 2, 4], [5]], (2, 1))

standardization(check=True)
Return the standardization of self, assuming self is a semistandard skew tableau.

The standardization of a semistandard skew tableau 𝑇 is the standard skew tableau st(𝑇) of the same shape
as 𝑇 whose reversed reading word is the standardization of the reversed reading word of 𝑇 .

The standardization of a word 𝑤 can be formed by replacing all 1’s in 𝑤 by 1, 2, . . . , 𝑘1 from left to right,
all 2’s in 𝑤 by 𝑘1 + 1, 𝑘1 + 2, . . . , 𝑘2, and repeating for all letters that appear in 𝑤. See also Word.
standard_permutation().

INPUT:

• check – (Default: True) Check to make sure self is semistandard. Set to False to avoid this check.

EXAMPLES:

sage: t = SkewTableau([[None,None,3,4,7,19],[None,4,4,8],[None,5,16,17],[None],
→˓[2],[3]])
sage: t.standardization()
[[None, None, 3, 6, 8, 12], [None, 4, 5, 9], [None, 7, 10, 11], [None], [1],␣
→˓[2]]

3042 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Standard skew tableaux are fixed under standardization:

sage: p = Partition([4,3,3,2])
sage: q = Partitions(3).random_element()
sage: all((t == t.standardization() for t in StandardSkewTableaux([p, q])))
True

The reading word of the standardization is the standardization of the reading word:

sage: t = SkewTableau([[None,3,4,4],[None,6,10],[7,7,11],[18]])
sage: t.to_word().standard_permutation() == t.standardization().to_permutation()
True

to_chain(max_entry=None)
Return the chain of partitions corresponding to the (semi)standard skew tableau self.

The optional keyword parameter max_entry can be used to customize the length of the chain. Specifically,
if this parameter is set to a nonnegative integer n, then the chain is constructed from the positions of the
letters 1, 2, . . . , 𝑛 in the tableau.

EXAMPLES:

sage: SkewTableau([[None,1],[2],[3]]).to_chain()
[[1], [2], [2, 1], [2, 1, 1]]
sage: SkewTableau([[None,1],[1],[2]]).to_chain()
[[1], [2, 1], [2, 1, 1]]
sage: SkewTableau([[None,1],[1],[2]]).to_chain(max_entry=2)
[[1], [2, 1], [2, 1, 1]]
sage: SkewTableau([[None,1],[1],[2]]).to_chain(max_entry=3)
[[1], [2, 1], [2, 1, 1], [2, 1, 1]]
sage: SkewTableau([[None,1],[1],[2]]).to_chain(max_entry=1)
[[1], [2, 1]]
sage: SkewTableau([[None,None,2],[None,3],[None,5]]).to_chain(max_entry=6)
[[2, 1, 1], [2, 1, 1], [3, 1, 1], [3, 2, 1], [3, 2, 1], [3, 2, 2], [3, 2, 2]]
sage: SkewTableau([]).to_chain()
[[]]
sage: SkewTableau([]).to_chain(max_entry=1)
[[], []]

to_expr()
The first list in a result corresponds to the inner partition of the skew shape. The second list is a list of the
rows in the skew tableau read from the bottom up.

Provided for compatibility with MuPAD-Combinat. In MuPAD-Combinat, if t is a skew tableau, then
to_expr gives the same result as expr(t) would give in MuPAD-Combinat.

EXAMPLES:

sage: SkewTableau([[None,1,1,3],[None,2,2],[1]]).to_expr()
[[1, 1], [[1], [2, 2], [1, 1, 3]]]
sage: SkewTableau([]).to_expr()
[[], []]

to_list()
Return a (mutable) list representation of self.

EXAMPLES:

5.1. Comprehensive Module List 3043

Combinatorics, Release 9.7

sage: stlist = [[None, None, 3], [None, 1, 3], [2, 2]]
sage: st = SkewTableau(stlist)
sage: st.to_list()
[[None, None, 3], [None, 1, 3], [2, 2]]
sage: st.to_list() == stlist
True

to_permutation()
Return a permutation with the entries of self obtained by reading self row by row, from the bot-
tommost to the topmost row, with each row being read from left to right, in English convention. See
to_word_by_row().

EXAMPLES:

sage: SkewTableau([[None,2],[3,4],[None],[1]]).to_permutation()
[1, 3, 4, 2]
sage: SkewTableau([[None,2],[None,4],[1],[3]]).to_permutation()
[3, 1, 4, 2]
sage: SkewTableau([[None]]).to_permutation()
[]

to_ribbon(check_input=True)
Return self as a ribbon-shaped tableau (RibbonShapedTableau), provided that the shape of self is a
ribbon.

INPUT:

• check_input – (default: True) whether or not to check that self indeed has ribbon shape

EXAMPLES:

sage: SkewTableau([[None,1],[2,3]]).to_ribbon()
[[None, 1], [2, 3]]

to_tableau()
Returns a tableau with the same filling. This only works if the inner shape of the skew tableau has size zero.

EXAMPLES:

sage: SkewTableau([[1,2],[3,4]]).to_tableau()
[[1, 2], [3, 4]]

to_word()
Return a word obtained from a row reading of self.

This is the word obtained by concatenating the rows from the bottommost one (in English notation) to the
topmost one.

EXAMPLES:

sage: s = SkewTableau([[None,1],[2,3]])
sage: s.pp()
. 1
2 3

sage: s.to_word_by_row()
word: 231
sage: s = SkewTableau([[None, 2, 4], [None, 3], [1]])

(continues on next page)

3044 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: s.pp()
. 2 4
. 3
1

sage: s.to_word_by_row()
word: 1324

to_word_by_column()
Return the word obtained from a column reading of the skew tableau.

This is the word obtained by concatenating the columns from the rightmost one (in English notation) to the
leftmost one.

EXAMPLES:

sage: s = SkewTableau([[None,1],[2,3]])
sage: s.pp()
. 1
2 3

sage: s.to_word_by_column()
word: 132

sage: s = SkewTableau([[None, 2, 4], [None, 3], [1]])
sage: s.pp()
. 2 4
. 3
1
sage: s.to_word_by_column()
word: 4231

to_word_by_row()
Return a word obtained from a row reading of self.

This is the word obtained by concatenating the rows from the bottommost one (in English notation) to the
topmost one.

EXAMPLES:

sage: s = SkewTableau([[None,1],[2,3]])
sage: s.pp()
. 1
2 3

sage: s.to_word_by_row()
word: 231
sage: s = SkewTableau([[None, 2, 4], [None, 3], [1]])
sage: s.pp()
. 2 4
. 3
1

sage: s.to_word_by_row()
word: 1324

weight()
Return the weight (aka evaluation) of the tableau self. Trailing zeroes are omitted when returning the
weight.

5.1. Comprehensive Module List 3045

Combinatorics, Release 9.7

The weight of a skew tableau 𝑇 is the sequence (𝑎1, 𝑎2, 𝑎3, . . .), where 𝑎𝑘 is the number of entries of 𝑇
equal to 𝑘. This sequence contains only finitely many nonzero entries.

The weight of a skew tableau 𝑇 is the same as the weight of the reading word of 𝑇 , for any reading order.

evaluation() is a synonym for this method.

EXAMPLES:

sage: SkewTableau([[1,2],[3,4]]).weight()
[1, 1, 1, 1]

sage: SkewTableau([[None,2],[None,4],[None,5],[None]]).weight()
[0, 1, 0, 1, 1]

sage: SkewTableau([]).weight()
[]

sage: SkewTableau([[None,None,None],[None]]).weight()
[]

sage: SkewTableau([[None,3,4],[None,6,7],[4,8],[5,13],[6],[7]]).weight()
[0, 0, 1, 2, 1, 2, 2, 1, 0, 0, 0, 0, 1]

class sage.combinat.skew_tableau.SkewTableau_class(parent, st)
Bases: sage.combinat.skew_tableau.SkewTableau

This exists solely for unpickling SkewTableau_class objects.

class sage.combinat.skew_tableau.SkewTableaux(category=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Class of all skew tableaux.

Element
alias of SkewTableau

from_chain(chain)
Return the tableau corresponding to the chain of partitions.

EXAMPLES:

sage: SkewTableaux().from_chain([[1,1],[2,1],[3,1],[3,2],[3,3],[3,3,1]])
[[None, 1, 2], [None, 3, 4], [5]]

from_expr(expr)
Return a SkewTableau from a MuPAD-Combinat expr for a skew tableau.

The first list in expr is the inner shape of the skew tableau. The second list are the entries in the rows of
the skew tableau from bottom to top.

Provided primarily for compatibility with MuPAD-Combinat.

EXAMPLES:

sage: SkewTableaux().from_expr([[1,1],[[5],[3,4],[1,2]]])
[[None, 1, 2], [None, 3, 4], [5]]

3046 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

from_shape_and_word(shape, word)
Return the skew tableau corresponding to the skew partition shape and the word word obtained from the
row reading.

EXAMPLES:

sage: t = SkewTableau([[None, 1, 3], [None, 2], [4]])
sage: shape = t.shape()
sage: word = t.to_word()
sage: SkewTableaux().from_shape_and_word(shape, word)
[[None, 1, 3], [None, 2], [4]]

options(*get_value, **set_value)
Sets the global options for elements of the tableau, skew_tableau, and tableau tuple classes. The defaults
are for tableau to be displayed as a list, latexed as a Young diagram using the English convention.

OPTIONS:

• ascii_art – (default: repr) Controls the ascii art output for tableaux

– compact – minimal length ascii art

– repr – display using the diagram string representation

– table – display as a table

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• display – (default: list) Controls the way in which tableaux are printed

– array – alias for diagram

– compact – minimal length string representation

– diagram – display as Young diagram (similar to pp()

– ferrers_diagram – alias for diagram

– list – print tableaux as lists

– young_diagram – alias for diagram

• latex – (default: diagram) Controls the way in which tableaux are latexed

– array – alias for diagram

– diagram – as a Young diagram

– ferrers_diagram – alias for diagram

– list – as a list

– young_diagram – alias for diagram

• notation – alternative name for convention

Note: Changing the convention for tableaux also changes the convention for partitions.

If no parameters are set, then the function returns a copy of the options dictionary.

EXAMPLES:

5.1. Comprehensive Module List 3047

Combinatorics, Release 9.7

sage: T = Tableau([[1,2,3],[4,5]])
sage: T
[[1, 2, 3], [4, 5]]
sage: Tableaux.options.display="array"
sage: T
1 2 3
4 5

sage: Tableaux.options.convention="french"
sage: T
4 5
1 2 3

Changing the convention for tableaux also changes the convention for partitions and vice versa:

sage: P = Partition([3,3,1])
sage: print(P.ferrers_diagram())
*

sage: Partitions.options.convention="english"
sage: print(P.ferrers_diagram())

*
sage: T
1 2 3
4 5

The ASCII art can also be changed:

sage: t = Tableau([[1,2,3],[4,5]])
sage: ascii_art(t)
1 2 3
4 5

sage: Tableaux.options.ascii_art = "table"
sage: ascii_art(t)
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 |
+---+---+
sage: Tableaux.options.ascii_art = "compact"
sage: ascii_art(t)
|1|2|3|
|4|5|
sage: Tableaux.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.skew_tableau.StandardSkewTableaux(category=None)
Bases: sage.combinat.skew_tableau.SkewTableaux

Standard skew tableaux.

EXAMPLES:

3048 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

sage: S = StandardSkewTableaux(); S
Standard skew tableaux
sage: S.cardinality()
+Infinity

sage: S = StandardSkewTableaux(2); S
Standard skew tableaux of size 2
sage: S.cardinality()
4

sage: StandardSkewTableaux([[3, 2, 1], [1, 1]]).list()
[[[None, 2, 3], [None, 4], [1]],
[[None, 1, 2], [None, 3], [4]],
[[None, 1, 2], [None, 4], [3]],
[[None, 1, 3], [None, 4], [2]],
[[None, 1, 4], [None, 3], [2]],
[[None, 1, 4], [None, 2], [3]],
[[None, 1, 3], [None, 2], [4]],
[[None, 2, 4], [None, 3], [1]]]

class sage.combinat.skew_tableau.StandardSkewTableaux_all
Bases: sage.combinat.skew_tableau.StandardSkewTableaux

Class of all standard skew tableaux.

class sage.combinat.skew_tableau.StandardSkewTableaux_shape(skp)
Bases: sage.combinat.skew_tableau.StandardSkewTableaux

Standard skew tableaux of a fixed skew shape 𝜆/𝜇.

cardinality()
Return the number of standard skew tableaux with shape of the skew partition skp. This uses a formula
due to Aitken (see Cor. 7.16.3 of [Sta-EC2]).

EXAMPLES:

sage: StandardSkewTableaux([[3, 2, 1], [1, 1]]).cardinality()
8

class sage.combinat.skew_tableau.StandardSkewTableaux_size(n)
Bases: sage.combinat.skew_tableau.StandardSkewTableaux

Standard skew tableaux of a fixed size 𝑛.

cardinality()
EXAMPLES:

sage: StandardSkewTableaux(1).cardinality()
1
sage: StandardSkewTableaux(2).cardinality()
4
sage: StandardSkewTableaux(3).cardinality()
24
sage: StandardSkewTableaux(4).cardinality()
194

5.1. Comprehensive Module List 3049

Combinatorics, Release 9.7

5.1.310 Functions that compute some of the sequences in Sloane’s tables

EXAMPLES:

Type sloane.[tab] to see a list of the sequences that are defined.

sage: a = sloane.A000005; a
The integer sequence tau(n), which is the number of divisors of n.
sage: a(1)
1
sage: a(6)
4
sage: a(100)
9

Type d._eval?? to see how the function that computes an individual term of the sequence is implemented.

The input must be a positive integer:

sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1/3)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer

You can also change how a sequence prints:

sage: a = sloane.A000005; a
The integer sequence tau(n), which is the number of divisors of n.
sage: a.rename('(..., tau(n), ...)')
sage: a
(..., tau(n), ...)
sage: a.reset_name()
sage: a
The integer sequence tau(n), which is the number of divisors of n.

See also:

• If you want to get more informations relative to a sequence (references, links, examples, programs, . . .), you can
use the On-Line Encyclopedia of Integer Sequences provided by the OEIS module.

• If you plan to do a lot of automatic searches for subsequences, you should consider installing
SloaneEncyclopedia, a local partial copy of the OEIS.

AUTHORS:

• William Stein: framework

• Jaap Spies: most sequences

• Nick Alexander: updated framework

class sage.combinat.sloane_functions.A000001
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of groups of order 𝑛.

3050 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/databases/sage/databases/oeis.html#module-sage.databases.oeis
../../../../../../html/en/reference/databases/sage/databases/sloane.html#module-sage.databases.sloane

Combinatorics, Release 9.7

INPUT:

• n – positive integer

OUTPUT: integer

EXAMPLES:

sage: a = sloane.A000001;a
Number of groups of order n.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
1
sage: a(2)
1
sage: a(9)
2
sage: a.list(16)
[1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14]
sage: a(60)
13

AUTHORS:

• Jaap Spies (2007-02-04)

class sage.combinat.sloane_functions.A000004
Bases: sage.combinat.sloane_functions.SloaneSequence

The zero sequence.

INPUT:

• n - non negative integer

EXAMPLES:

sage: a = sloane.A000004; a
The zero sequence.
sage: a(1)
0
sage: a(2007)
0
sage: a.list(12)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

AUTHORS:

• Jaap Spies (2006-12-10)

class sage.combinat.sloane_functions.A000005
Bases: sage.combinat.sloane_functions.SloaneSequence

The sequence 𝑡𝑎𝑢(𝑛), which is the number of divisors of 𝑛.

This sequence is also denoted 𝑑(𝑛) (also called 𝜏(𝑛) or 𝜎0(𝑛)), the number of divisors of 𝑛.

INPUT:

5.1. Comprehensive Module List 3051

Combinatorics, Release 9.7

• n - positive integer

EXAMPLES:

sage: d = sloane.A000005; d
The integer sequence tau(n), which is the number of divisors of n.
sage: d(1)
1
sage: d(6)
4
sage: d(51)
4
sage: d(100)
9
sage: d(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: d.list(10)
[1, 2, 2, 3, 2, 4, 2, 4, 3, 4]

AUTHORS:

• Jaap Spies (2006-12-10)

• William Stein (2007-01-08)

class sage.combinat.sloane_functions.A000007
Bases: sage.combinat.sloane_functions.SloaneSequence

The characteristic function of 0: 𝑎(𝑛) = 0𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000007;a
The characteristic function of 0: a(n) = 0^n.
sage: a(0)
1
sage: a(2)
0
sage: a(12)
0
sage: a.list(12)
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

AUTHORS:

• Jaap Spies (2007-01-12)

class sage.combinat.sloane_functions.A000008
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of ways of making change for n cents using coins of 1, 2, 5, 10 cents.

3052 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000008;a
Number of ways of making change for n cents using coins of 1, 2, 5, 10 cents.
sage: a(0)
1
sage: a(1)
1
sage: a(13)
16
sage: a.list(14)
[1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16]

AUTHOR:

• J. Gaski (2009-05-29)

class sage.combinat.sloane_functions.A000009
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of partitions of 𝑛 into odd parts.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000009;a
Number of partitions of n into odd parts.
sage: a(0)
1
sage: a(1)
1
sage: a(13)
18
sage: a.list(14)
[1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18]

AUTHOR:

• Jaap Spies (2007-01-30)

cf()
EXAMPLES:

sage: it = sloane.A000009.cf()
sage: [next(it) for i in range(14)]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18]

5.1. Comprehensive Module List 3053

Combinatorics, Release 9.7

list(n)
EXAMPLES:

sage: sloane.A000009.list(14)
[1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18]

class sage.combinat.sloane_functions.A000010
Bases: sage.combinat.sloane_functions.SloaneSequence

The integer sequence A000010 is Euler’s totient function.

Number of positive integers 𝑖 < 𝑛 that are relative prime to 𝑛. Number of totatives of 𝑛.

Euler totient function 𝜑(𝑛): count numbers 𝑛 and prime to 𝑛. euler_phi is a standard Sage function implemented
in PARI

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000010; a
Euler's totient function
sage: a(1)
1
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(11)
10
sage: a.list(12)
[1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
sage: a(1/3)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer

AUTHORS:

• Jaap Spies (2007-01-12)

class sage.combinat.sloane_functions.A000012
Bases: sage.combinat.sloane_functions.SloaneSequence

The all 1’s sequence.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

3054 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: a = sloane.A000012; a
The all 1's sequence.
sage: a(1)
1
sage: a(2007)
1
sage: a.list(12)
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

AUTHORS:

• Jaap Spies (2007-01-12)

class sage.combinat.sloane_functions.A000015
Bases: sage.combinat.sloane_functions.SloaneSequence

Smallest prime power ≥ 𝑛 (where 1 is considered a prime power).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000015; a
Smallest prime power >= n.
sage: a(1)
1
sage: a(8)
8
sage: a(305)
307
sage: a(-4)
Traceback (most recent call last):
...
ValueError: input n (=-4) must be a positive integer
sage: a.list(12)
[1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11, 13]
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer

AUTHORS:

• Jaap Spies (2007-01-18)

class sage.combinat.sloane_functions.A000016
Bases: sage.combinat.sloane_functions.SloaneSequence

Sloane’s A000016

INPUT:

• n – non negative integer

OUTPUT:

5.1. Comprehensive Module List 3055

Combinatorics, Release 9.7

• integer – function value

EXAMPLES:

sage: a = sloane.A000016; a
Sloane's A000016.
sage: a(1)
1
sage: a(0)
1
sage: a(8)
16
sage: a(75)
251859545753048193000
sage: a(-4)
Traceback (most recent call last):
...
ValueError: input n (=-4) must be an integer >= 0
sage: a.list(12)
[1, 1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94]

AUTHORS:

• Jaap Spies (2007-01-18)

class sage.combinat.sloane_functions.A000027
Bases: sage.combinat.sloane_functions.SloaneSequence

The natural numbers. Also called the whole numbers, the counting numbers or the positive integers.

The following examples are tests of SloaneSequence more than A000027.

EXAMPLES:

sage: s = sloane.A000027; s
The natural numbers.
sage: s(10)
10

Index n is interpreted as _eval(n):

sage: s[10]
10

Slices are interpreted with absolute offsets, so the following returns the terms of the sequence up to but not
including the third term:

sage: s[:3]
[1, 2]
sage: s[3:6]
[3, 4, 5]
sage: s.list(5)
[1, 2, 3, 4, 5]

class sage.combinat.sloane_functions.A000030
Bases: sage.combinat.sloane_functions.SloaneSequence

Initial digit of 𝑛.

3056 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000030; a
Initial digit of n
sage: a(0)
0
sage: a(1)
1
sage: a(8)
8
sage: a(454)
4
sage: a(-4)
Traceback (most recent call last):
...
ValueError: input n (=-4) must be an integer >= 0
sage: a.list(12)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1]

AUTHORS:

• Jaap Spies (2007-01-18)

class sage.combinat.sloane_functions.A000032
Bases: sage.combinat.sloane_functions.SloaneSequence

Lucas numbers (beginning at 2): 𝐿(𝑛) = 𝐿(𝑛− 1) + 𝐿(𝑛− 2).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000032; a
Lucas numbers (beginning at 2): L(n) = L(n-1) + L(n-2).
sage: a(0)
2
sage: a(1)
1
sage: a(8)
47
sage: a(200)
627376215338105766356982006981782561278127
sage: a(-4)
Traceback (most recent call last):
...

(continues on next page)

5.1. Comprehensive Module List 3057

Combinatorics, Release 9.7

(continued from previous page)

ValueError: input n (=-4) must be an integer >= 0
sage: a.list(12)
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199]

AUTHORS:

• Jaap Spies (2007-01-18)

class sage.combinat.sloane_functions.A000035
Bases: sage.combinat.sloane_functions.SloaneSequence

A simple periodic sequence.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000035;a
A simple periodic sequence.
sage: a(0.0)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer
sage: a(1)
1
sage: a(2)
0
sage: a(9)
1
sage: a.list(10)
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

AUTHORS:

• Jaap Spies (2007-02-02)

class sage.combinat.sloane_functions.A000040
Bases: sage.combinat.sloane_functions.SloaneSequence

The prime numbers.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000040; a
The prime numbers.
sage: a(1)

(continues on next page)

3058 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

2
sage: a(8)
19
sage: a(305)
2011
sage: a.list(12)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer

AUTHORS:

• Jaap Spies (2007-01-17)

class sage.combinat.sloane_functions.A000041
Bases: sage.combinat.sloane_functions.SloaneSequence

𝑎(𝑛) = number of partitions of 𝑛 (the partition numbers).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000041;a
a(n) = number of partitions of n (the partition numbers).
sage: a(0)
1
sage: a(2)
2
sage: a(8)
22
sage: a(200)
3972999029388
sage: a.list(9)
[1, 1, 2, 3, 5, 7, 11, 15, 22]

AUTHORS:

• Jaap Spies (2007-01-18)

class sage.combinat.sloane_functions.A000043
Bases: sage.combinat.sloane_functions.SloaneSequence

Primes 𝑝 such that 2𝑝 − 1 is prime. 2𝑝 − 1 is then called a Mersenne prime.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

5.1. Comprehensive Module List 3059

Combinatorics, Release 9.7

EXAMPLES:

sage: a = sloane.A000043;a
Primes p such that 2^p - 1 is prime. 2^p - 1 is then called a Mersenne prime.
sage: a(1)
2
sage: a(2)
3
sage: a(39)
13466917
sage: a(40)
Traceback (most recent call last):
...
IndexError: list index out of range
sage: a.list(12)
[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000045
Bases: sage.combinat.sloane_functions.SloaneSequence

Sequence of Fibonacci numbers, offset 0,4.

REFERENCES:

• S. Plouffe, Project Gutenberg, The First 1001 Fibonacci Numbers, http://ibiblio.org/pub/docs/books/
gutenberg/etext01/fbncc10.txt

We have one more. Our first Fibonacci number is 0.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000045; a
Fibonacci numbers with index n >= 0
sage: a(0)
0
sage: a(1)
1
sage: a.list(12)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
sage: a(1/3)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer

AUTHORS:

• Jaap Spies (2007-01-13)

3060 Chapter 5. Comprehensive Module List

http://ibiblio.org/pub/docs/books/gutenberg/etext01/fbncc10.txt
http://ibiblio.org/pub/docs/books/gutenberg/etext01/fbncc10.txt

Combinatorics, Release 9.7

fib()
Returns a generator over all Fibonacci numbers, starting with 0.

EXAMPLES:

sage: it = sloane.A000045.fib()
sage: [next(it) for i in range(10)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

list(n)
EXAMPLES:

sage: sloane.A000045.list(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

class sage.combinat.sloane_functions.A000069
Bases: sage.combinat.sloane_functions.SloaneSequence

Odious numbers: odd number of 1’s in binary expansion.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000069; a
Odious numbers: odd number of 1's in binary expansion.
sage: a(0)
1
sage: a(2)
4
sage: a.list(9)
[1, 2, 4, 7, 8, 11, 13, 14, 16]

AUTHORS:

• Jaap Spies (2007-02-02)

class sage.combinat.sloane_functions.A000073
Bases: sage.combinat.sloane_functions.SloaneSequence

Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3). Starting with 0, 0, 1, . . .

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000073;a
Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3).
sage: a(0)

(continues on next page)

5.1. Comprehensive Module List 3061

Combinatorics, Release 9.7

(continued from previous page)

0
sage: a(1)
0
sage: a(2)
1
sage: a(11)
149
sage: a.list(12)
[0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149]

AUTHORS:

• Jaap Spies (2007-01-19)

list(n)
EXAMPLES:

sage: sloane.A000073.list(10)
[0, 0, 1, 1, 2, 4, 7, 13, 24, 44]

class sage.combinat.sloane_functions.A000079
Bases: sage.combinat.sloane_functions.SloaneSequence

Powers of 2: 𝑎(𝑛) = 2𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000079;a
Powers of 2: a(n) = 2^n.
sage: a(0)
1
sage: a(2)
4
sage: a(8)
256
sage: a(100)
1267650600228229401496703205376
sage: a.list(9)
[1, 2, 4, 8, 16, 32, 64, 128, 256]

AUTHORS:

• Jaap Spies (2007-01-18)

class sage.combinat.sloane_functions.A000085
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of self-inverse permutations on 𝑛 letters, also known as involutions; number of Young tableaux with 𝑛
cells.

INPUT:

3062 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000085;a
Number of self-inverse permutations on n letters.
sage: a(0)
1
sage: a(1)
1
sage: a(2)
2
sage: a(12)
140152
sage: a.list(13)
[1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152]

AUTHORS:

• Jaap Spies (2007-02-03)

class sage.combinat.sloane_functions.A000100
Bases: sage.combinat.sloane_functions.SloaneSequence

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000100;a
Number of compositions of n in which the maximum part size is 3.
sage: a(0)
0
sage: a(1)
0
sage: a(2)
0
sage: a(3)
1
sage: a(11)
360
sage: a.list(12)
[0, 0, 0, 1, 2, 5, 11, 23, 47, 94, 185, 360]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000108
Bases: sage.combinat.sloane_functions.SloaneSequence

Catalan numbers: 𝐶𝑛 =
(2𝑛

𝑛)
𝑛+1 = (2𝑛)!

𝑛!(𝑛+1)! .

5.1. Comprehensive Module List 3063

Combinatorics, Release 9.7

Also called Segner numbers.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000108;a
Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!). Also called Segner␣
→˓numbers.
sage: a(0)
1
sage: a.offset
0
sage: a(8)
1430
sage: a(40)
2622127042276492108820
sage: a.list(9)
[1, 1, 2, 5, 14, 42, 132, 429, 1430]

AUTHORS:

• Jaap Spies (2007-01-12)

class sage.combinat.sloane_functions.A000110
Bases: sage.combinat.sloane_functions.ExponentialNumbers

The sequence of Bell numbers.

The Bell number𝐵𝑛 counts the number of ways to put 𝑛 distinguishable things into indistinguishable boxes such
that no box is empty.

Let 𝑆(𝑛, 𝑘) denote the Stirling number of the second kind. Then

𝐵𝑛 =
∑︁

𝑘 = 0𝑛𝑆(𝑛, 𝑘).

INPUT:

• n – non negative integer

OUTPUT:

• integer – 𝐵𝑛
EXAMPLES:

sage: a = sloane.A000110; a
Sequence of Bell numbers
sage: a.offset
0
sage: a(0)
1
sage: a(100)
47585391276764833658790768841387207826363669686825611466616334637559114497892442622672724044217756306953557882560751
sage: a.list(10)
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147]

3064 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

AUTHORS:

• Nick Alexander

class sage.combinat.sloane_functions.A000120
Bases: sage.combinat.sloane_functions.SloaneSequence

1’s-counting sequence: number of 1’s in binary expansion of 𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000120;a
1's-counting sequence: number of 1's in binary expansion of n.
sage: a(0)
0
sage: a(2)
1
sage: a(12)
2
sage: a.list(12)
[0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3]

AUTHORS:

• Jaap Spies (2007-01-26)

f(n)
EXAMPLES:

sage: [sloane.A000120.f(n) for n in range(10)]
[0, 1, 1, 2, 1, 2, 2, 3, 1, 2]

class sage.combinat.sloane_functions.A000124
Bases: sage.combinat.sloane_functions.SloaneSequence

Central polygonal numbers (the Lazy Caterer’s sequence): 𝑛(𝑛+ 1)/2 + 1.

Or, maximal number of pieces formed when slicing a pancake with 𝑛 cuts.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000124;a
Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1.
sage: a(0)
1
sage: a(1)

(continues on next page)

5.1. Comprehensive Module List 3065

Combinatorics, Release 9.7

(continued from previous page)

2
sage: a(2)
4
sage: a(9)
46
sage: a.list(10)
[1, 2, 4, 7, 11, 16, 22, 29, 37, 46]

AUTHORS:

• Jaap Spies (2007-01-25)

class sage.combinat.sloane_functions.A000129
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Pell numbers: 𝑎(0) = 0, 𝑎(1) = 1; for 𝑛 > 1, 𝑎(𝑛) = 2𝑎(𝑛− 1) + 𝑎(𝑛− 2).

Denominators of continued fraction convergents to
√

2.

See also A001333

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000129;a
Pell numbers: a(0) = 0, a(1) = 1; for n > 1, a(n) = 2*a(n-1) + a(n-2).
sage: a(0)
0
sage: a(2)
2
sage: a(12)
13860
sage: a.list(12)
[0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741]

AUTHORS:

• Jaap Spies (2007-01-25)

class sage.combinat.sloane_functions.A000142
Bases: sage.combinat.sloane_functions.SloaneSequence

Factorial numbers: 𝑛! = 1 · 2 · 3 · · ·𝑛

Order of symmetric group 𝑆𝑛, number of permutations of 𝑛 letters.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

3066 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: a = sloane.A000142;a
Factorial numbers: n! = 1*2*3*4*...*n (order of symmetric group S_n, number of␣
→˓permutations of n letters).
sage: a(0)
1
sage: a(8)
40320
sage: a(40)
815915283247897734345611269596115894272000000000
sage: a.list(9)
[1, 1, 2, 6, 24, 120, 720, 5040, 40320]

AUTHORS:

• Jaap Spies (2007-01-12)

class sage.combinat.sloane_functions.A000153
Bases: sage.combinat.sloane_functions.ExtremesOfPermanentsSequence

𝑎(𝑛) = 𝑛 * 𝑎(𝑛− 1) + (𝑛− 2) * 𝑎(𝑛− 2), with 𝑎(0) = 0, 𝑎(1) = 1.

With offset 1, permanent of (0,1)-matrix of size 𝑛 × (𝑛 + 𝑑) with 𝑑 = 2 and 𝑛 zeros not on a line. This is a
special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p. 201-202.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000153; a
a(n) = n*a(n-1) + (n-2)*a(n-2), with a(0) = 0, a(1) = 1.
sage: a(0)
0
sage: a(1)
1
sage: a(8)
82508
sage: a(20)
10315043624498196944
sage: a.list(8)
[0, 1, 2, 7, 32, 181, 1214, 9403]

AUTHORS:

• Jaap Spies (2007-01-13)

class sage.combinat.sloane_functions.A000165
Bases: sage.combinat.sloane_functions.SloaneSequence

Double factorial numbers: (2𝑛)!! = 2𝑛 * 𝑛!.

INPUT:

• n – non negative integer

OUTPUT:

5.1. Comprehensive Module List 3067

Combinatorics, Release 9.7

• integer – function value

EXAMPLES:

sage: a = sloane.A000165;a
Double factorial numbers: (2n)!! = 2^n*n!.
sage: a(0)
1
sage: a.offset
0
sage: a(8)
10321920
sage: a(20)
2551082656125828464640000
sage: a.list(9)
[1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920]

AUTHORS:

• Jaap Spies (2007-01-24)

class sage.combinat.sloane_functions.A000166
Bases: sage.combinat.sloane_functions.SloaneSequence

Subfactorial or rencontres numbers, or derangements: number of permutations of𝑛 elements with no fixed points.

With offset 1 also the permanent of a (0,1)-matrix of order 𝑛 with 𝑛 0’s not on a line.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000166;a
Subfactorial or rencontres numbers, or derangements: number of permutations of n␣
→˓elements with no fixed points.
sage: a(0)
1
sage: a(1)
0
sage: a(2)
1
sage: a.offset
0
sage: a(8)
14833
sage: a(20)
895014631192902121
sage: a.list(9)
[1, 0, 1, 2, 9, 44, 265, 1854, 14833]

AUTHORS:

• Jaap Spies (2007-01-13)

3068 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.sloane_functions.A000169
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of labeled rooted trees with 𝑛 nodes: 𝑛(𝑛−1).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000169;a
Number of labeled rooted trees with n nodes: n^(n-1).
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
1
sage: a(2)
2
sage: a(10)
1000000000
sage: a.list(11)
[1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000203
Bases: sage.combinat.sloane_functions.SloaneSequence

The sequence 𝜎(𝑛), where 𝜎(𝑛) is the sum of the divisors of 𝑛. Also called 𝜎1(𝑛).

The function sigma(n, k) implements 𝜎𝑘(𝑛) in Sage.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000203; a
sigma(n) = sum of divisors of n. Also called sigma_1(n).
sage: a(1)
1
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(256)
511

(continues on next page)

5.1. Comprehensive Module List 3069

Combinatorics, Release 9.7

(continued from previous page)

sage: a.list(12)
[1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28]
sage: a(1/3)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer

AUTHORS:

• Jaap Spies (2007-01-13)

class sage.combinat.sloane_functions.A000204
Bases: sage.combinat.sloane_functions.SloaneSequence

Lucas numbers (beginning with 1): 𝐿(𝑛) = 𝐿(𝑛− 1) + 𝐿(𝑛− 2) with 𝐿(1) = 1, 𝐿(2) = 3.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000204; a
Lucas numbers (beginning at 1): L(n) = L(n-1) + L(n-2), L(2) = 3.
sage: a(1)
1
sage: a(8)
47
sage: a(200)
627376215338105766356982006981782561278127
sage: a(-4)
Traceback (most recent call last):
...
ValueError: input n (=-4) must be a positive integer
sage: a.list(12)
[1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322]
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer

AUTHORS:

• Jaap Spies (2007-01-18)

class sage.combinat.sloane_functions.A000213
Bases: sage.combinat.sloane_functions.SloaneSequence

Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3). Starting with 1, 1, 1, . . .

INPUT:

• n – non negative integer

OUTPUT:

3070 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• integer – function value

EXAMPLES:

sage: a = sloane.A000213;a
Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3).
sage: a(0)
1
sage: a(1)
1
sage: a(2)
1
sage: a(11)
355
sage: a.list(12)
[1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355]

AUTHORS:

• Jaap Spies (2007-01-19)

list(n)
EXAMPLES:

sage: sloane.A000213.list(10)
[1, 1, 1, 3, 5, 9, 17, 31, 57, 105]

class sage.combinat.sloane_functions.A000217
Bases: sage.combinat.sloane_functions.SloaneSequence

Triangular numbers: 𝑎(𝑛) =
(︀
𝑛+1
2

)︀
= 𝑛(𝑛+ 1)/2.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000217;a
Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n.
sage: a(0)
0
sage: a(2)
3
sage: a(8)
36
sage: a(2000)
2001000
sage: a.list(9)
[0, 1, 3, 6, 10, 15, 21, 28, 36]

AUTHORS:

• Jaap Spies (2007-01-25)

5.1. Comprehensive Module List 3071

Combinatorics, Release 9.7

class sage.combinat.sloane_functions.A000225
Bases: sage.combinat.sloane_functions.SloaneSequence

2𝑛 − 1.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000225;a
2^n - 1.
sage: a(0)
0
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be an integer >= 0
sage: a(12)
4095
sage: a.list(12)
[0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047]

AUTHORS:

• Jaap Spies (2007-01-25)

class sage.combinat.sloane_functions.A000244
Bases: sage.combinat.sloane_functions.SloaneSequence

Powers of 3: 𝑎(𝑛) = 3𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000244;a
Powers of 3: a(n) = 3^n.
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be an integer >= 0
sage: a(0)
1
sage: a(3)
27
sage: a(11)
177147
sage: a.list(12)
[1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147]

3072 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000255
Bases: sage.combinat.sloane_functions.ExtremesOfPermanentsSequence

𝑎(𝑛) = 𝑛 * 𝑎(𝑛− 1) + (𝑛− 1) * 𝑎(𝑛− 2), with 𝑎(0) = 1, 𝑎(1) = 1.

With offset 1, permanent of (0,1)-matrix of size 𝑛 × (𝑛 + 𝑑) with 𝑑 = 1 and 𝑛 zeros not on a line. This is a
special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p. 201-202.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000255;a
a(n) = n*a(n-1) + (n-1)*a(n-2), a(0) = 1, a(1) = 1.
sage: a(0)
1
sage: a(1)
1
sage: a.offset
0
sage: a(8)
148329
sage: a(22)
9923922230666898717143
sage: a.list(9)
[1, 1, 3, 11, 53, 309, 2119, 16687, 148329]

AUTHORS:

• Jaap Spies (2007-01-13)

class sage.combinat.sloane_functions.A000261
Bases: sage.combinat.sloane_functions.ExtremesOfPermanentsSequence

𝑎(𝑛) = 𝑛 * 𝑎(𝑛− 1) + (𝑛− 3) * 𝑎(𝑛− 2), with 𝑎(1) = 1, 𝑎(2) = 1.

With offset 1, permanent of (0,1)-matrix of size 𝑛 × (𝑛 + 𝑑) with 𝑑 = 3 and 𝑛 zeros not on a line. This is a
special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p. 201-202.

Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), p.
197-210.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

5.1. Comprehensive Module List 3073

Combinatorics, Release 9.7

sage: a = sloane.A000261;a
a(n) = n*a(n-1) + (n-3)*a(n-2), a(1) = 0, a(2) = 1.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
0
sage: a.offset
1
sage: a(8)
30637
sage: a(22)
1801366114380914335441
sage: a.list(9)
[0, 1, 3, 13, 71, 465, 3539, 30637, 296967]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A000272
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of labeled rooted trees on 𝑛 nodes: 𝑛(𝑛−2).

INPUT:

• n – integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000272;a
Number of labeled rooted trees with n nodes: n^(n-2).
sage: a(0)
1
sage: a(1)
1
sage: a(2)
1
sage: a(10)
100000000
sage: a.list(12)
[1, 1, 1, 3, 16, 125, 1296, 16807, 262144, 4782969, 100000000, 2357947691]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000290
Bases: sage.combinat.sloane_functions.SloaneSequence

The squares: 𝑎(𝑛) = 𝑛2.

INPUT:

3074 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000290;a
The squares: a(n) = n^2.
sage: a(0)
0
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be an integer >= 0
sage: a(16)
256
sage: a.list(17)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256]

AUTHORS:

• Jaap Spies (2007-01-25)

class sage.combinat.sloane_functions.A000292
Bases: sage.combinat.sloane_functions.SloaneSequence

Tetrahedral (or pyramidal) numbers:
(︀
𝑛+2
3

)︀
= 𝑛(𝑛+ 1)(𝑛+ 2)/6.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000292;a
Tetrahedral (or pyramidal) numbers: C(n+2,3) = n(n+1)(n+2)/6.
sage: a(0)
0
sage: a(2)
4
sage: a(11)
286
sage: a.list(12)
[0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000302
Bases: sage.combinat.sloane_functions.SloaneSequence

Powers of 4: 𝑎(𝑛) = 4𝑛.

INPUT:

5.1. Comprehensive Module List 3075

Combinatorics, Release 9.7

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000302;a
Powers of 4: a(n) = 4^n.
sage: a(0)
1
sage: a(1)
4
sage: a(2)
16
sage: a(10)
1048576
sage: a.list(12)
[1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000312
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of labeled mappings from 𝑛 points to themselves (endofunctions): 𝑛𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000312;a
Number of labeled mappings from n points to themselves (endofunctions): n^n.
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be an integer >= 0
sage: a(0)
1
sage: a(1)
1
sage: a(9)
387420489
sage: a.list(11)
[1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 10000000000]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000326
Bases: sage.combinat.sloane_functions.SloaneSequence

3076 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Pentagonal numbers: 𝑛(3𝑛− 1)/2.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000326;a
Pentagonal numbers: n(3n-1)/2.
sage: a(0)
0
sage: a(1)
1
sage: a(2)
5
sage: a(10)
145
sage: a.list(12)
[0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176]
sage: a(1/3)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000330
Bases: sage.combinat.sloane_functions.SloaneSequence

Square pyramidal numbers” 02 + 12 · · ·𝑛2 = 𝑛(𝑛+ 1)(2𝑛+ 1)/6.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000330;a
Square pyramidal numbers: 0^2+1^2+2^2+...+n^2 = n(n+1)(2n+1)/6.
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be an integer >= 0
sage: a(0)
0
sage: a(3)
14
sage: a(11)
506

(continues on next page)

5.1. Comprehensive Module List 3077

Combinatorics, Release 9.7

(continued from previous page)

sage: a.list(12)
[0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000396
Bases: sage.combinat.sloane_functions.SloaneSequence

Perfect numbers: equal to sum of proper divisors.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000396;a
Perfect numbers: equal to sum of proper divisors.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
6
sage: a(2)
28
sage: a(7)
137438691328
sage: a.list(7)
[6, 28, 496, 8128, 33550336, 8589869056, 137438691328]

AUTHORS:

• Jaap Spies (2007-01-25)

class sage.combinat.sloane_functions.A000578
Bases: sage.combinat.sloane_functions.SloaneSequence

The cubes: 𝑎(𝑛) = 𝑛3.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000578;a
The cubes: n^3
sage: a(-1)
Traceback (most recent call last):

(continues on next page)

3078 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

...
ValueError: input n (=-1) must be an integer >= 0
sage: a(0)
0
sage: a(3)
27
sage: a(11)
1331
sage: a.list(12)
[0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A000583
Bases: sage.combinat.sloane_functions.SloaneSequence

Fourth powers: 𝑎(𝑛) = 𝑛4.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000583;a
Fourth powers: n^4.
sage: a(0.0)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer
sage: a(1)
1
sage: a(2)
16
sage: a(9)
6561
sage: a.list(10)
[0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561]

AUTHORS:

• Jaap Spies (2007-02-04)

class sage.combinat.sloane_functions.A000587
Bases: sage.combinat.sloane_functions.ExponentialNumbers

The sequence of Uppuluri-Carpenter numbers.

The Uppuluri-Carpenter number 𝐶𝑛 counts the imbalance in the number of ways to put 𝑛 distinguishable things
into an even number of indistinguishable boxes versus into an odd number of indistinguishable boxes, such that
no box is empty.

5.1. Comprehensive Module List 3079

Combinatorics, Release 9.7

Let 𝑆(𝑛, 𝑘) denote the Stirling number of the second kind. Then

𝐶𝑛 =
∑︁

𝑘 = 0𝑛(−1)𝑘𝑆(𝑛, 𝑘).

INPUT:

• n – non negative integer

OUTPUT:

• integer – 𝐶𝑛
EXAMPLES:

sage: a = sloane.A000587; a
Sequence of Uppuluri-Carpenter numbers
sage: a.offset
0
sage: a(0)
1
sage: a(100)
397577026456518507969762382254187048845620355238545130875069912944235105204434466095862371032124545552161
sage: a.list(10)
[1, -1, 0, 1, 1, -2, -9, -9, 50, 267]

AUTHORS:

• Nick Alexander

class sage.combinat.sloane_functions.A000668
Bases: sage.combinat.sloane_functions.SloaneSequence

Mersenne primes (of form 2𝑝 − 1 where 𝑝 is a prime).

(See A000043 for the values of 𝑝.)

Warning: a(39) has 4,053,946 digits!

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000668;a
Mersenne primes (of form 2^p - 1 where p is a prime). (See A000043 for the values␣
→˓of p.)
sage: a(1)
3
sage: a(2)
7
sage: a(12)
170141183460469231731687303715884105727

Warning: a(39) has 4,053,946 digits!

3080 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: a(40)
Traceback (most recent call last):
...
IndexError: list index out of range
sage: a.list(8)
[3, 7, 31, 127, 8191, 131071, 524287, 2147483647]

AUTHORS:

• Jaap Spies (2007-01-25)

class sage.combinat.sloane_functions.A000670
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of preferential arrangements of 𝑛 labeled elements; or number of weak orders on 𝑛 labeled elements.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000670;a
Number of preferential arrangements of n labeled elements.
sage: a(0)
1
sage: a(1)
1
sage: a(2)
3
sage: a(9)
7087261
sage: a.list(10)
[1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261]

AUTHORS:

• Jaap Spies (2007-02-03)

class sage.combinat.sloane_functions.A000720
Bases: sage.combinat.sloane_functions.SloaneSequence

𝑝𝑖(𝑛), the number of primes ≤ 𝑛. Sometimes called 𝑃𝑟𝑖𝑚𝑒𝑃𝑖(𝑛).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000720;a
pi(n), the number of primes <= n. Sometimes called PrimePi(n)
sage: a(0)

(continues on next page)

5.1. Comprehensive Module List 3081

Combinatorics, Release 9.7

(continued from previous page)

Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(2)
1
sage: a(8)
4
sage: a(1000)
168
sage: a.list(12)
[0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5]

AUTHORS:

• Jaap Spies (2007-01-25)

class sage.combinat.sloane_functions.A000796
Bases: sage.combinat.sloane_functions.SloaneSequence

Decimal expansion of 𝜋.

INPUT:

• n – positive integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000796;a
Decimal expansion of Pi.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
3
sage: a(13)
9
sage: a.list(14)
[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7]
sage: a(100)
7

AUTHOR:

• Jaap Spies (2007-01-30)

list(n)
EXAMPLES:

sage: sloane.A000796.list(10)
[3, 1, 4, 1, 5, 9, 2, 6, 5, 3]

pi()
Based on an algorithm of Lambert Meertens The ABC-programming language!!!

3082 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: it = sloane.A000796.pi()
sage: [next(it) for i in range(10)]
[3, 1, 4, 1, 5, 9, 2, 6, 5, 3]

class sage.combinat.sloane_functions.A000961
Bases: sage.combinat.sloane_functions.SloaneSequence

Prime powers

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A000961;a
Prime powers.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(2)
2
sage: a(12)
17
sage: a.list(12)
[1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17]

AUTHORS:

• Jaap Spies (2007-01-25)

list(n)
EXAMPLES:

sage: sloane.A000961.list(10)
[1, 2, 3, 4, 5, 7, 8, 9, 11, 13]

class sage.combinat.sloane_functions.A000984
Bases: sage.combinat.sloane_functions.SloaneSequence

Central binomial coefficients:
(︀
2𝑛
𝑛

)︀
= (2𝑛)!

(𝑛!)2 .

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

5.1. Comprehensive Module List 3083

Combinatorics, Release 9.7

sage: a = sloane.A000984;a
Central binomial coefficients: C(2n,n) = (2n)!/(n!)^2
sage: a(0)
1
sage: a(2)
6
sage: a(8)
12870
sage: a.list(9)
[1, 2, 6, 20, 70, 252, 924, 3432, 12870]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A001006
Bases: sage.combinat.sloane_functions.SloaneSequence

Motzkin numbers: number of ways of drawing any number of nonintersecting chords among 𝑛 points on a circle.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001006;a
Motzkin numbers: number of ways of drawing any number of nonintersecting chords␣
→˓among n points on a circle.
sage: a(0)
1
sage: a(1)
1
sage: a(2)
2
sage: a(12)
15511
sage: a.list(13)
[1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511]

AUTHORS:

• Jaap Spies (2007-02-02)

class sage.combinat.sloane_functions.A001045
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Jacobsthal sequence: 𝑎(𝑛) = 𝑎(𝑛− 1) + 2𝑎(𝑛− 2), 𝑎(0) = 0 and 𝑎(1) = 1.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

3084 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: a = sloane.A001045;a
Jacobsthal sequence: a(n) = a(n-1) + 2a(n-2).
sage: a(0)
0
sage: a(1)
1
sage: a(2)
1
sage: a(11)
683
sage: a.list(12)
[0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A001055
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of ways of factoring 𝑛 with all factors 1.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001055;a
Number of ways of factoring n with all factors >1.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
1
sage: a(2)
1
sage: a(9)
2
sage: a.list(16)
[1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5]

AUTHORS:

• Jaap Spies (2007-02-04)

nwf(n, m)
EXAMPLES:

sage: sloane.A001055.nwf(4,1)
0
sage: sloane.A001055.nwf(4,2)
1

(continues on next page)

5.1. Comprehensive Module List 3085

Combinatorics, Release 9.7

(continued from previous page)

sage: sloane.A001055.nwf(4,3)
1
sage: sloane.A001055.nwf(4,4)
2

class sage.combinat.sloane_functions.A001109
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

𝑎(𝑛)2 is a triangular number: 𝑎(𝑛) = 6 * 𝑎(𝑛− 1)− 𝑎(𝑛− 2) with 𝑎(0) = 0, 𝑎(1) = 1.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001109;a
a(n)^2 is a triangular number: a(n) = 6*a(n-1) - a(n-2) with a(0)=0, a(1)=1
sage: a(0)
0
sage: a(1)
1
sage: a(2)
6
sage: a.offset
0
sage: a(8)
235416
sage: a(60)
1515330104844857898115857393785728383101709300
sage: a.list(9)
[0, 1, 6, 35, 204, 1189, 6930, 40391, 235416]

AUTHORS:

• Jaap Spies (2007-01-24)

class sage.combinat.sloane_functions.A001110
Bases: sage.combinat.sloane_functions.RecurrenceSequence

Numbers that are both triangular and square: 𝑎(𝑛) = 34𝑎(𝑛− 1)− 𝑎(𝑛− 2) + 2.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001110; a
Numbers that are both triangular and square: a(n) = 34a(n-1) - a(n-2) + 2.
sage: a(0)

(continues on next page)

3086 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

0
sage: a(1)
1
sage: a(8)
55420693056
sage: a(21)
4446390382511295358038307980025
sage: a.list(8)
[0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881]

AUTHORS:

• Jaap Spies (2007-01-19)

g(k)
EXAMPLES:

sage: sloane.A001110.g(2)
2
sage: sloane.A001110.g(1)
0

class sage.combinat.sloane_functions.A001147
Bases: sage.combinat.sloane_functions.SloaneSequence

Double factorial numbers: (2𝑛− 1)!! = 1 · 3 · 5 · · · (2𝑛− 1).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001147;a
Double factorial numbers: (2n-1)!! = 1.3.5....(2n-1).
sage: a(0)
1
sage: a.offset
0
sage: a(8)
2027025
sage: a(20)
319830986772877770815625
sage: a.list(9)
[1, 1, 3, 15, 105, 945, 10395, 135135, 2027025]

AUTHORS:

• Jaap Spies (2007-01-24)

class sage.combinat.sloane_functions.A001157
Bases: sage.combinat.sloane_functions.SloaneSequence

The sequence 𝜎2(𝑛), sum of squares of divisors of 𝑛.

5.1. Comprehensive Module List 3087

Combinatorics, Release 9.7

The function sigma(n, k) implements 𝜎𝑘* in Sage.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001157;a
sigma_2(n): sum of squares of divisors of n
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(2)
5
sage: a(8)
85
sage: a.list(9)
[1, 5, 10, 21, 26, 50, 50, 85, 91]

AUTHORS:

• Jaap Spies (2007-01-13)

class sage.combinat.sloane_functions.A001189
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of degree-n permutations of order exactly 2.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001189;a
Number of degree-n permutations of order exactly 2.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
0
sage: a(2)
1
sage: a(12)
140151
sage: a.list(13)
[0, 1, 3, 9, 25, 75, 231, 763, 2619, 9495, 35695, 140151, 568503]

AUTHORS:

3088 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Jaap Spies (2007-02-03)

class sage.combinat.sloane_functions.A001221
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of different prime divisors of 𝑛

Also called omega(n) or 𝜔(𝑛). Maximal number of terms in any factorization of 𝑛. Number of prime powers
that divide 𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001221; a
Number of distinct primes dividing n (also called omega(n)).
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
0
sage: a(8)
1
sage: a(41)
1
sage: a(84792)
3
sage: a.list(12)
[0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2]

AUTHORS:

• Jaap Spies (2007-01-19)

class sage.combinat.sloane_functions.A001222
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of prime divisors of 𝑛 (counted with multiplicity).

Also called bigomega(n) or Ω(𝑛). Maximal number of terms in any factorization of 𝑛. Number of prime powers
that divide 𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001222; a
Number of prime divisors of n (counted with multiplicity).
sage: a(0)

(continues on next page)

5.1. Comprehensive Module List 3089

Combinatorics, Release 9.7

(continued from previous page)

Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
0
sage: a(8)
3
sage: a(41)
1
sage: a(84792)
5
sage: a.list(12)
[0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3]

AUTHORS:

• Jaap Spies (2007-01-19)

class sage.combinat.sloane_functions.A001227
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of odd divisors of 𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001227; a
Number of odd divisors of n
sage: a.offset
1
sage: a(1)
1
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(100)
3
sage: a(256)
1
sage: a(29)
2
sage: a.list(20)
[1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2]
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be a positive integer

AUTHORS:

3090 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Jaap Spies (2007-01-14)

class sage.combinat.sloane_functions.A001333
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Numerators of continued fraction convergents to
√

2.

See also A000129

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001333;a
Numerators of continued fraction convergents to sqrt(2).
sage: a(0)
1
sage: a(1)
1
sage: a(2)
3
sage: a(3)
7
sage: a(11)
8119
sage: a.list(12)
[1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119]

AUTHORS:

• Jaap Spies (2007-02-01)

class sage.combinat.sloane_functions.A001358
Bases: sage.combinat.sloane_functions.SloaneSequence

Products of two primes.

These numbers have been called semiprimes (or semi-primes), biprimes or 2-almost primes.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001358;a
Products of two primes.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(2)

(continues on next page)

5.1. Comprehensive Module List 3091

Combinatorics, Release 9.7

(continued from previous page)

6
sage: a(8)
22
sage: a(200)
669
sage: a.list(9)
[4, 6, 9, 10, 14, 15, 21, 22, 25]

AUTHORS:

• Jaap Spies (2007-01-25)

list(n)
EXAMPLES:

sage: sloane.A001358.list(9)
[4, 6, 9, 10, 14, 15, 21, 22, 25]

class sage.combinat.sloane_functions.A001405
Bases: sage.combinat.sloane_functions.SloaneSequence

Central binomial coefficients:
(︀
𝑛
⌊𝑛2 ⌋
)︀
.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001405;a
Central binomial coefficients: C(n,floor(n/2)).
sage: a(0)
1
sage: a(2)
2
sage: a(12)
924
sage: a.list(12)
[1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A001477
Bases: sage.combinat.sloane_functions.SloaneSequence

The nonnegative integers.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

3092 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: a = sloane.A001477;a
The nonnegative integers.
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be an integer >= 0
sage: a(0)
0
sage: a(3382789)
3382789
sage: a(11)
11
sage: a.list(12)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A001694
Bases: sage.combinat.sloane_functions.SloaneSequence

This function returns the 𝑛-th Powerful Number:

A positive integer 𝑛 is powerful if for every prime 𝑝 dividing 𝑛, 𝑝2 also divides 𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001694; a
Powerful Numbers (also called squarefull, square-full or 2-full numbers).
sage: a.offset
1
sage: a(1)
1
sage: a(4)
9
sage: a(100)
3136
sage: a(156)
7225
sage: a.list(19)
[1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144]
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be a positive integer

AUTHORS:

5.1. Comprehensive Module List 3093

Combinatorics, Release 9.7

• Jaap Spies (2007-01-14)

is_powerful(n)
Return True if and only if 𝑛 is a powerful number.

A positive integer 𝑛 is powerful if for every prime 𝑝 dividing 𝑛, 𝑝2 also divides 𝑛.

See OEIS sequence A001694.

INPUT:

• 𝑛 – integer

OUTPUT:

True if 𝑛 is a powerful number, else False

EXAMPLES:

sage: a = sloane.A001694
sage: a.is_powerful(2500)
True
sage: a.is_powerful(20)
False

AUTHORS:

• Jaap Spies (2006-12-07)

list(n)
EXAMPLES:

sage: sloane.A001694.list(9)
[1, 4, 8, 9, 16, 25, 27, 32, 36]

class sage.combinat.sloane_functions.A001836
Bases: sage.combinat.sloane_functions.SloaneSequence

Numbers 𝑛 such that 𝜑(2𝑛− 1) < 𝜑(2𝑛), where 𝜑 is Euler’s totient function.

Euler’s totient function is also known as euler_phi, euler_phi is a standard Sage function.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001836; a
Numbers n such that phi(2n-1) < phi(2n), where phi is Euler's totient function␣
→˓A000010.
sage: a.offset
1
sage: a(1)
53
sage: a(8)
683
sage: a(300)

(continues on next page)

3094 Chapter 5. Comprehensive Module List

https://oeis.org/A001694

Combinatorics, Release 9.7

(continued from previous page)

17798
sage: a.list(12)
[53, 83, 158, 263, 293, 368, 578, 683, 743, 788, 878, 893]
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer

Compare: Searching Sloane’s online database. . . Numbers n such that phi(2n-1) phi(2n), where phi is Euler’s
totient function A000010. [53, 83, 158, 263, 293, 368, 578, 683, 743, 788, 878, 893]

AUTHORS:

• Jaap Spies (2007-01-17)

list(n)
EXAMPLES:

sage: sloane.A001836.list(9)
[53, 83, 158, 263, 293, 368, 578, 683, 743]

class sage.combinat.sloane_functions.A001906
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

𝐹 (2𝑛) = bisection of Fibonacci sequence: 𝑎(𝑛) = 3𝑎(𝑛− 1)− 𝑎(𝑛− 2).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001906; a
F(2n) = bisection of Fibonacci sequence: a(n)=3a(n-1)-a(n-2).
sage: a(0)
0
sage: a(1)
1
sage: a(8)
987
sage: a(22)
701408733
sage: a.list(12)
[0, 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711]

AUTHORS:

• Jaap Spies (2007-01-19)

class sage.combinat.sloane_functions.A001909
Bases: sage.combinat.sloane_functions.ExtremesOfPermanentsSequence

𝑎(𝑛) = 𝑛 * 𝑎(𝑛− 1) + (𝑛− 4) * 𝑎(𝑛− 2), with 𝑎(2) = 0, 𝑎(3) = 1.

With offset 1, permanent of (0,1)-matrix of size 𝑛 × (𝑛 + 𝑑) with 𝑑 = 4 and 𝑛 zeros not on a line. This is a
special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p. 201-202.

5.1. Comprehensive Module List 3095

Combinatorics, Release 9.7

Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), p.
197-210.

INPUT:

• n – positive integer >= 2

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001909;a
a(n) = n*a(n-1) + (n-4)*a(n-2), a(2) = 0, a(3) = 1.
sage: a(1)
Traceback (most recent call last):
...
ValueError: input n (=1) must be an integer >= 2
sage: a.offset
2
sage: a(2)
0
sage: a(8)
8544
sage: a(22)
470033715095287415734
sage: a.list(9)
[0, 1, 4, 21, 134, 1001, 8544, 81901, 870274]

AUTHORS:

• Jaap Spies (2007-01-13)

class sage.combinat.sloane_functions.A001910
Bases: sage.combinat.sloane_functions.ExtremesOfPermanentsSequence

𝑎(𝑛) = 𝑛 * 𝑎(𝑛− 1) + (𝑛− 5) * 𝑎(𝑛− 2), with 𝑎(3) = 0, 𝑎(4) = 1.

With offset 1, permanent of (0,1)-matrix of size 𝑛 × (𝑛 + 𝑑) with 𝑑 = 5 and 𝑛 zeros not on a line. This is a
special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p. 201-202.

Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), p.
197-210.

INPUT:

• n – positive integer >= 3

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001910;a
a(n) = n*a(n-1) + (n-5)*a(n-2), a(3) = 0, a(4) = 1.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be an integer >= 3

(continues on next page)

3096 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: a(3)
0
sage: a.offset
3
sage: a(8)
1909
sage: a(22)
98125321641110663023
sage: a.list(9)
[0, 1, 5, 31, 227, 1909, 18089, 190435, 2203319]

AUTHORS:

• Jaap Spies (2007-01-13)

class sage.combinat.sloane_functions.A001969
Bases: sage.combinat.sloane_functions.SloaneSequence

Evil numbers: even number of 1’s in binary expansion.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A001969;a
Evil numbers: even number of 1's in binary expansion.
sage: a(0)
0
sage: a(1)
3
sage: a(2)
5
sage: a(12)
24
sage: a.list(13)
[0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24]

AUTHORS:

• Jaap Spies (2007-02-02)

class sage.combinat.sloane_functions.A002110
Bases: sage.combinat.sloane_functions.SloaneSequence

Primorial numbers (first definition): product of first 𝑛 primes. Sometimes written 𝑝#.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

5.1. Comprehensive Module List 3097

Combinatorics, Release 9.7

sage: a = sloane.A002110;a
Primorial numbers (first definition): product of first n primes. Sometimes written p
→˓#.
sage: a(0)
1
sage: a(2)
6
sage: a(8)
9699690
sage: a(17)
1922760350154212639070
sage: a.list(9)
[1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690]

AUTHORS:

• Jaap Spies (2007-01-25)

class sage.combinat.sloane_functions.A002113
Bases: sage.combinat.sloane_functions.SloaneSequence

Palindromes in base 10.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A002113;a
Palindromes in base 10.
sage: a(0)
0
sage: a(1)
1
sage: a(2)
2
sage: a(12)
33
sage: a.list(13)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33]

AUTHORS:

• Jaap Spies (2007-02-02)

list(n)
EXAMPLES:

sage: sloane.A002113.list(15)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55]

class sage.combinat.sloane_functions.A002275
Bases: sage.combinat.sloane_functions.SloaneSequence

3098 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Repunits: (10𝑛−1)
9 . Often denoted by 𝑅𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A002275;a
Repunits: (10^n - 1)/9. Often denoted by R_n.
sage: a(0)
0
sage: a(2)
11
sage: a(8)
11111111
sage: a(20)
11111111111111111111
sage: a.list(9)
[0, 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111]

AUTHORS:

• Jaap Spies (2007-01-25)

class sage.combinat.sloane_functions.A002378
Bases: sage.combinat.sloane_functions.SloaneSequence

Oblong (or pronic, or heteromecic) numbers: 𝑛(𝑛+ 1).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A002378;a
Oblong (or pronic, or heteromecic) numbers: n(n+1).
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be an integer >= 0
sage: a(0)
0
sage: a(1)
2
sage: a(11)
132
sage: a.list(12)
[0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132]

AUTHORS:

5.1. Comprehensive Module List 3099

Combinatorics, Release 9.7

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A002620
Bases: sage.combinat.sloane_functions.SloaneSequence

Quarter-squares: floor(n/2)*ceiling(n/2). Equivalently, ⌊𝑛2/4⌋.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A002620;a
Quarter-squares: floor(n/2)*ceiling(n/2). Equivalently, floor(n^2/4).
sage: a(0)
0
sage: a(1)
0
sage: a(2)
1
sage: a(10)
25
sage: a.list(12)
[0, 0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A002808
Bases: sage.combinat.sloane_functions.SloaneSequence

The composite numbers: numbers 𝑛 of the form 𝑥𝑦 for 𝑥 > 1 and 𝑦 > 1.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A002808;a
The composite numbers: numbers n of the form x*y for x > 1 and y > 1.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(2)
6
sage: a(11)
20
sage: a.list(12)
[4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21]

3100 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

AUTHORS:

• Jaap Spies (2007-01-26)

list(n)
EXAMPLES:

sage: sloane.A002808.list(10)
[4, 6, 8, 9, 10, 12, 14, 15, 16, 18]

class sage.combinat.sloane_functions.A003418
Bases: sage.combinat.sloane_functions.SloaneSequence

Least common multiple (or lcm) of {1, 2, . . . , 𝑛}.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A003418;a
Least common multiple (or lcm) of {1, 2, ..., n}.
sage: a(0)
1
sage: a(1)
1
sage: a(13)
360360
sage: a.list(14)
[1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360]
sage: a(20.0)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer

AUTHOR:

• Jaap Spies (2007-01-31)

class sage.combinat.sloane_functions.A004086
Bases: sage.combinat.sloane_functions.SloaneSequence

Read n backwards (referred to as 𝑅(𝑛) in many sequences).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A004086;a
Read n backwards (referred to as R(n) in many sequences).
sage: a(0)

(continues on next page)

5.1. Comprehensive Module List 3101

Combinatorics, Release 9.7

(continued from previous page)

0
sage: a(1)
1
sage: a(2)
2
sage: a(3333)
3333
sage: a(12345)
54321
sage: a.list(13)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 21]

AUTHORS:

• Jaap Spies (2007-02-02)

class sage.combinat.sloane_functions.A004526
Bases: sage.combinat.sloane_functions.SloaneSequence

The nonnegative integers repeated.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A004526;a
The nonnegative integers repeated.
sage: a(0)
0
sage: a(1)
0
sage: a(2)
1
sage: a(10)
5
sage: a.list(12)
[0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A005100
Bases: sage.combinat.sloane_functions.SloaneSequence

Deficient numbers: 𝜎(𝑛) < 2𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

3102 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: a = sloane.A005100;a
Deficient numbers: sigma(n) < 2n
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
1
sage: a(2)
2
sage: a(12)
14
sage: a.list(12)
[1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14]

AUTHORS:

• Jaap Spies (2007-01-26)

list(n)
EXAMPLES:

sage: sloane.A005100.list(10)
[1, 2, 3, 4, 5, 7, 8, 9, 10, 11]

class sage.combinat.sloane_functions.A005101
Bases: sage.combinat.sloane_functions.SloaneSequence

Abundant numbers (sum of divisors of 𝑛 exceeds 2𝑛).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A005101;a
Abundant numbers (sum of divisors of n exceeds 2n).
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
12
sage: a(2)
18
sage: a(12)
60
sage: a.list(12)
[12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60]

AUTHORS:

5.1. Comprehensive Module List 3103

Combinatorics, Release 9.7

• Jaap Spies (2007-01-26)

list(n)
EXAMPLES:

sage: sloane.A005101.list(10)
[12, 18, 20, 24, 30, 36, 40, 42, 48, 54]

class sage.combinat.sloane_functions.A005117
Bases: sage.combinat.sloane_functions.SloaneSequence

Square-free numbers

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A005117;a
Square-free numbers.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(2)
2
sage: a(12)
17
sage: a.list(12)
[1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17]

AUTHORS:

• Jaap Spies (2007-01-25)

list(n)
EXAMPLES:

sage: sloane.A005117.list(10)
[1, 2, 3, 5, 6, 7, 10, 11, 13, 14]

class sage.combinat.sloane_functions.A005408
Bases: sage.combinat.sloane_functions.SloaneSequence

The odd numbers a(n) = 2n + 1.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

3104 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: a = sloane.A005408;a
The odd numbers a(n) = 2n + 1.
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be an integer >= 0
sage: a(0)
1
sage: a(4)
9
sage: a(11)
23
sage: a.list(12)
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23]

AUTHORS:

• Jaap Spies (2007-01-26)

class sage.combinat.sloane_functions.A005843
Bases: sage.combinat.sloane_functions.SloaneSequence

The even numbers: 𝑎(𝑛) = 2𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A005843;a
The even numbers: a(n) = 2n.
sage: a(0.0)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer
sage: a(1)
2
sage: a(2)
4
sage: a(9)
18
sage: a.list(10)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

AUTHORS:

• Jaap Spies (2007-02-03)

class sage.combinat.sloane_functions.A006318
Bases: sage.combinat.sloane_functions.SloaneSequence

Large Schroeder numbers.

INPUT:

5.1. Comprehensive Module List 3105

Combinatorics, Release 9.7

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A006318;a
Large Schroeder numbers.
sage: a(0)
1
sage: a(1)
2
sage: a(2)
6
sage: a(9)
206098
sage: a.list(10)
[1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098]

AUTHORS:

• Jaap Spies (2007-02-03)

class sage.combinat.sloane_functions.A006530
Bases: sage.combinat.sloane_functions.SloaneSequence

Largest prime dividing 𝑛 (with 𝑎(1) = 1).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A006530;a
Largest prime dividing n (with a(1)=1).
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
1
sage: a(2)
2
sage: a(8)
2
sage: a(11)
11
sage: a.list(15)
[1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5]

AUTHORS:

• Jaap Spies (2007-01-25)

3106 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.sloane_functions.A006882
Bases: sage.combinat.sloane_functions.SloaneSequence

Double factorials 𝑛!!: 𝑎(𝑛) = 𝑛 · 𝑎(𝑛− 2).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A006882;a
Double factorials n!!: a(n)=n*a(n-2).
sage: a(0)
1
sage: a(2)
2
sage: a(8)
384
sage: a(20)
3715891200
sage: a.list(9)
[1, 1, 2, 3, 8, 15, 48, 105, 384]

AUTHORS:

• Jaap Spies (2007-01-24)

df()
Double factorials n!!: a(n)=n*a(n-2).

EXAMPLES:

sage: it = sloane.A006882.df()
sage: [next(it) for i in range(10)]
[1, 1, 2, 3, 8, 15, 48, 105, 384, 945]

list(n)
EXAMPLES:

sage: sloane.A006882.list(10)
[1, 1, 2, 3, 8, 15, 48, 105, 384, 945]

class sage.combinat.sloane_functions.A007318
Bases: sage.combinat.sloane_functions.SloaneSequence

Pascal’s triangle read by rows: 𝐶(𝑛, 𝑘) =
(︀
𝑛
𝑘

)︀
= 𝑛!

(𝑘!(𝑛−𝑘)!) , 0 ≤ 𝑘 ≤ 𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

5.1. Comprehensive Module List 3107

Combinatorics, Release 9.7

sage: a = sloane.A007318
sage: a(0)
1
sage: a(1)
1
sage: a(13)
4
sage: a.list(15)
[1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1]
sage: a(100)
715

AUTHORS:

• Jaap Spies (2007-01-31)

class sage.combinat.sloane_functions.A008275
Bases: sage.combinat.sloane_functions.SloaneSequence

Triangle of Stirling numbers of first kind, 𝑠(𝑛, 𝑘), 𝑛 ≥ 1, 1 ≤ 𝑘 ≤ 𝑛.

The unsigned numbers are also called Stirling cycle numbers:

|𝑠(𝑛, 𝑘)| = number of permutations of 𝑛 objects with exactly 𝑘 cycles.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A008275;a
Triangle of Stirling numbers of first kind, s(n,k), n >= 1, 1<=k<=n.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
1
sage: a(2)
-1
sage: a(3)
1
sage: a(11)
24
sage: a.list(12)
[1, -1, 1, 2, -3, 1, -6, 11, -6, 1, 24, -50]

AUTHORS:

• Jaap Spies (2007-02-02)

s(n, k)
EXAMPLES:

3108 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: sloane.A008275.s(4,2)
11
sage: sloane.A008275.s(5,2)
-50
sage: sloane.A008275.s(5,3)
35

class sage.combinat.sloane_functions.A008277
Bases: sage.combinat.sloane_functions.SloaneSequence

Triangle of Stirling numbers of 2nd kind, 𝑆2(𝑛, 𝑘), 𝑛 ≥ 1, 1 ≤ 𝑘 ≤ 𝑛.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A008277;a
Triangle of Stirling numbers of 2nd kind, S2(n,k), n >= 1, 1<=k<=n.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
1
sage: a(2)
1
sage: a(3)
1
sage: a(4.0)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer
sage: a.list(15)
[1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 15, 25, 10, 1]

AUTHORS:

• Jaap Spies (2007-01-31)

s2(n, k)
Returns the Stirling number S2(n,k) of the 2nd kind.

EXAMPLES:

sage: sloane.A008277.s2(4,2)
7

class sage.combinat.sloane_functions.A008683
Bases: sage.combinat.sloane_functions.SloaneSequence

Möbius function 𝜇(𝑛).

INPUT:

5.1. Comprehensive Module List 3109

Combinatorics, Release 9.7

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A008683;a
Moebius function mu(n).
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(2)
-1
sage: a(12)
0
sage: a.list(12)
[1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0]

AUTHORS:

• Jaap Spies (2007-01-13)

class sage.combinat.sloane_functions.A010060
Bases: sage.combinat.sloane_functions.SloaneSequence

Thue-Morse sequence.

Let 𝐴𝑘 denote the first 2𝑘 terms; then 𝐴0 = 0, and for 𝑘 ≥ 0, 𝐴𝑘+1 = 𝐴𝑘𝐵𝑘, where 𝐵𝑘 is obtained from 𝐴𝑘 by
interchanging 0’s and 1’s.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A010060;a
Thue-Morse sequence.
sage: a(0)
0
sage: a(1)
1
sage: a(2)
1
sage: a(12)
0
sage: a.list(13)
[0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0]

AUTHORS:

• Jaap Spies (2007-02-02)

3110 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.sloane_functions.A015521
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Linear 2nd order recurrence, 𝑎(0) = 0, 𝑎(1) = 1 and 𝑎(𝑛) = 3𝑎(𝑛− 1) + 4𝑎(𝑛− 2).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A015521; a
Linear 2nd order recurrence, a(n) = 3 a(n-1) + 4 a(n-2).
sage: a(0)
0
sage: a(1)
1
sage: a(8)
13107
sage: a(41)
967140655691703339764941
sage: a.list(12)
[0, 1, 3, 13, 51, 205, 819, 3277, 13107, 52429, 209715, 838861]

AUTHORS:

• Jaap Spies (2007-01-19)

class sage.combinat.sloane_functions.A015523
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Linear 2nd order recurrence, 𝑎(0) = 0, 𝑎(1) = 1 and 𝑎(𝑛) = 3𝑎(𝑛− 1) + 5𝑎(𝑛− 2).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A015523; a
Linear 2nd order recurrence, a(n) = 3 a(n-1) + 5 a(n-2).
sage: a(0)
0
sage: a(1)
1
sage: a(8)
17727
sage: a(41)
6173719566474529739091481
sage: a.list(12)
[0, 1, 3, 14, 57, 241, 1008, 4229, 17727, 74326, 311613, 1306469]

AUTHORS:

5.1. Comprehensive Module List 3111

Combinatorics, Release 9.7

• Jaap Spies (2007-01-19)

class sage.combinat.sloane_functions.A015530
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Linear 2nd order recurrence, 𝑎(0) = 0, 𝑎(1) = 1 and 𝑎(𝑛) = 4𝑎(𝑛− 1) + 3𝑎(𝑛− 2).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A015530;a
Linear 2nd order recurrence, a(n) = 4 a(n-1) + 3 a(n-2).
sage: a(0)
0
sage: a(1)
1
sage: a(2)
4
sage: a.offset
0
sage: a(8)
41008
sage: a.list(9)
[0, 1, 4, 19, 88, 409, 1900, 8827, 41008]

AUTHORS:

• Jaap Spies (2007-01-19)

class sage.combinat.sloane_functions.A015531
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Linear 2nd order recurrence, 𝑎(0) = 0, 𝑎(1) = 1 and 𝑎(𝑛) = 4𝑎(𝑛− 1) + 5𝑎(𝑛− 2).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A015531;a
Linear 2nd order recurrence, a(n) = 4 a(n-1) + 5 a(n-2).
sage: a(0)
0
sage: a(1)
1
sage: a(2)
4
sage: a.offset
0

(continues on next page)

3112 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: a(8)
65104
sage: a(60)
144560289664733924534327040115992228190104
sage: a.list(9)
[0, 1, 4, 21, 104, 521, 2604, 13021, 65104]

AUTHORS:

• Jaap Spies (2007-01-19)

class sage.combinat.sloane_functions.A015551
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Linear 2nd order recurrence, 𝑎(0) = 0, 𝑎(1) = 1 and 𝑎(𝑛) = 6𝑎(𝑛− 1) + 5𝑎(𝑛− 2).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A015551;a
Linear 2nd order recurrence, a(n) = 6 a(n-1) + 5 a(n-2).
sage: a(0)
0
sage: a(1)
1
sage: a(2)
6
sage: a.offset
0
sage: a(8)
570216
sage: a(60)
7110606606530059736761484557155863822531970573036
sage: a.list(9)
[0, 1, 6, 41, 276, 1861, 12546, 84581, 570216]

AUTHORS:

• Jaap Spies (2007-01-19)

class sage.combinat.sloane_functions.A018252
Bases: sage.combinat.sloane_functions.SloaneSequence

The nonprime numbers, starting with 1.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

5.1. Comprehensive Module List 3113

Combinatorics, Release 9.7

sage: a = sloane.A018252;a
The nonprime numbers.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
1
sage: a(2)
4
sage: a(9)
15
sage: a.list(10)
[1, 4, 6, 8, 9, 10, 12, 14, 15, 16]

AUTHORS:

• Jaap Spies (2007-02-04)

class sage.combinat.sloane_functions.A020639
Bases: sage.combinat.sloane_functions.SloaneSequence

Least prime dividing 𝑛 with 𝑎(1) = 1.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A020639;a
Least prime dividing n (a(1)=1).
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
1
sage: a(13)
13
sage: a.list(14)
[1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2]

AUTHORS:

• Jaap Spies (2007-01-25)

list(n)
EXAMPLES:

sage: sloane.A020639.list(10)
[1, 2, 3, 2, 5, 2, 7, 2, 3, 2]

class sage.combinat.sloane_functions.A046660(offset=1)
Bases: sage.combinat.sloane_functions.SloaneSequence

3114 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Excess of 𝑛 = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity).

Ω(𝑛)− 𝜔(𝑛).

INPUT:

• n – positive integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A046660; a
Excess of n = Bigomega (with multiplicity) - omega (without multiplicity).
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
0
sage: a(8)
2
sage: a(41)
0
sage: a(84792)
2
sage: a.list(12)
[0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1]

AUTHORS:

• Jaap Spies (2007-01-19)

class sage.combinat.sloane_functions.A049310
Bases: sage.combinat.sloane_functions.SloaneSequence

Triangle of coefficients of Chebyshev’s 𝑆(𝑛, 𝑥): 𝑈(𝑛, 𝑥2) polynomials (exponents in increasing order).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A049310;a
Triangle of coefficients of Chebyshev's S(n,x) := U(n,x/2) polynomials (exponents␣
→˓in increasing order).
sage: a(0)
1
sage: a(1)
0
sage: a(13)
0
sage: a.list(15)

(continues on next page)

5.1. Comprehensive Module List 3115

Combinatorics, Release 9.7

(continued from previous page)

[1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 1, 0, -3, 0, 1]
sage: a(200)
0
sage: a.keyword
['sign', 'tabl', 'nice', 'easy', 'core', 'triangle']

AUTHORS:

• Jaap Spies (2007-01-31)

class sage.combinat.sloane_functions.A051959
Bases: sage.combinat.sloane_functions.RecurrenceSequence

Linear second order recurrence. A051959.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A051959; a
Linear second order recurrence. A051959.
sage: a(0)
1
sage: a(1)
10
sage: a(8)
9969
sage: a(41)
42834431872413650
sage: a.list(12)
[1, 10, 36, 104, 273, 686, 1688, 4112, 9969, 24114, 58268, 140728]

AUTHORS:

• Jaap Spies (2007-01-19)

g(k)
EXAMPLES:

sage: sloane.A051959.g(2)
15
sage: sloane.A051959.g(1)
0

class sage.combinat.sloane_functions.A055790
Bases: sage.combinat.sloane_functions.ExtremesOfPermanentsSequence2

𝑎(𝑛) = 𝑛 * 𝑎(𝑛− 1) + (𝑛− 2) * 𝑎(𝑛− 2)[𝑎(0) = 0, 𝑎(1) = 2].

With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=1 and n-1 zeros not on a line. This is a special
case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p. 201-202.

REFERENCES:

3116 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003),
p. 197-210.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A055790;a
a(n) = n*a(n-1) + (n-2)*a(n-2) [a(0) = 0, a(1) = 2].
sage: a(0)
0
sage: a(1)
2
sage: a(2)
4
sage: a.offset
0
sage: a(8)
165016
sage: a(22)
10356214297533070441564
sage: a.list(9)
[0, 2, 4, 14, 64, 362, 2428, 18806, 165016]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A061084
Bases: sage.combinat.sloane_functions.SloaneSequence

Fibonacci-type sequence based on subtraction: 𝑎(0) = 1, 𝑎(1) = 2 and 𝑎(𝑛) = 𝑎(𝑛− 2)− 𝑎(𝑛− 1).

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A061084; a
Fibonacci-type sequence based on subtraction: a(0) = 1, a(1) = 2 and a(n) = a(n-2)-
→˓a(n-1).
sage: a(0)
1
sage: a(1)
2
sage: a(8)
-29
sage: a(22)
-24476

(continues on next page)

5.1. Comprehensive Module List 3117

Combinatorics, Release 9.7

(continued from previous page)

sage: a.list(12)
[1, 2, -1, 3, -4, 7, -11, 18, -29, 47, -76, 123]
sage: a.keyword
['sign', 'easy', 'nice']

AUTHORS:

• Jaap Spies (2007-01-18)

class sage.combinat.sloane_functions.A064553
Bases: sage.combinat.sloane_functions.SloaneSequence

𝑎(1) = 1, 𝑎(𝑝𝑟𝑖𝑚𝑒(𝑖)) = 𝑖+ 1 for 𝑖 > 0 and 𝑎(𝑢 · 𝑣) = 𝑎(𝑢) · 𝑎(𝑣) for 𝑢, 𝑣 > 0.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A064553;a
a(1) = 1, a(prime(i)) = i+1 for i > 0 and a(u*v) = a(u)*a(v) for u,v > 0
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
1
sage: a(2)
2
sage: a(9)
9
sage: a.list(16)
[1, 2, 3, 4, 4, 6, 5, 8, 9, 8, 6, 12, 7, 10, 12, 16]

AUTHORS:

• Jaap Spies (2007-02-04)

class sage.combinat.sloane_functions.A079922(offset=1)
Bases: sage.combinat.sloane_functions.SloaneSequence

function returns solutions to the Dancing School problem with 𝑛 girls and 𝑛+ 3 boys.

The value is 𝑝𝑒𝑟(𝐵), the permanent of the (0,1)-matrix 𝐵 of size 𝑛 × 𝑛 + 3 with 𝑏(𝑖, 𝑗) = 1 if and only if
𝑖 ≤ 𝑗 ≤ 𝑖+ 𝑛.

REFERENCES:

• Jaap Spies, Nieuw Archief voor Wiskunde, 5/7 nr 4, December 2006

INPUT:

• n – positive integer

OUTPUT:

• integer – function value

3118 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: a = sloane.A079922; a
Solutions to the Dancing School problem with n girls and n+3 boys
sage: a.offset
1
sage: a(1)
4
sage: a(8)
2227
sage: a.list(8)
[4, 13, 36, 90, 212, 478, 1044, 2227]

Compare: Searching Sloane’s online database. . . Solution to the Dancing School Problem with n girls and n+3
boys: f(n,3). [4, 13, 36, 90, 212, 478, 1044, 2227]

sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be a positive integer

AUTHORS:

• Jaap Spies (2007-01-14)

class sage.combinat.sloane_functions.A079923(offset=1)
Bases: sage.combinat.sloane_functions.SloaneSequence

function returns solutions to the Dancing School problem with 𝑛 girls and 𝑛+ 4 boys.

The value is 𝑝𝑒𝑟(𝐵), the permanent of the (0,1)-matrix 𝐵 of size 𝑛 × 𝑛 + 3 with 𝑏(𝑖, 𝑗) = 1 if and only if
𝑖 ≤ 𝑗 ≤ 𝑖+ 𝑛.

REFERENCES:

• Jaap Spies, Nieuw Archief voor Wiskunde, 5/7 nr 4, December 2006

INPUT:

• n – positive integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A079923; a
Solutions to the Dancing School problem with n girls and n+4 boys
sage: a.offset
1
sage: a(1)
5
sage: a(8)
15458
sage: a.list(8)
[5, 21, 76, 246, 738, 2108, 5794, 15458]

Compare: Searching Sloane’s online database. . . Solution to the Dancing School Problem with n girls and n+4
boys: f(n,4). [5, 21, 76, 246, 738, 2108, 5794, 15458]

5.1. Comprehensive Module List 3119

Combinatorics, Release 9.7

sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer

AUTHORS:

• Jaap Spies (2007-01-17)

class sage.combinat.sloane_functions.A082411
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Second-order linear recurrence sequence with 𝑎(𝑛) = 𝑎(𝑛− 1) + 𝑎(𝑛− 2).

𝑎(0) = 407389224418, 𝑎(1) = 76343678551. This is the second-order linear recurrence sequence with 𝑎(0)
and 𝑎(1) co-prime, that R. L. Graham in 1964 stated did not contain any primes.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A082411;a
Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2).
sage: a(1)
76343678551
sage: a(2)
483732902969
sage: a(3)
560076581520
sage: a(20)
2219759332689173
sage: a.list(4)
[407389224418, 76343678551, 483732902969, 560076581520]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A083103
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Second-order linear recurrence sequence with 𝑎(𝑛) = 𝑎(𝑛− 1) + 𝑎(𝑛− 2).

𝑎(0) = 1786772701928802632268715130455793, 𝑎(1) = 1059683225053915111058165141686995. This is
the second-order linear recurrence sequence with 𝑎(0) and 𝑎(1) co- prime, that R. L. Graham in 1964 stated did
not contain any primes. It has not been verified. Graham made a mistake in the calculation that was corrected
by D. E. Knuth in 1990.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

3120 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: a = sloane.A083103;a
Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2).
sage: a(1)
1059683225053915111058165141686995
sage: a(2)
2846455926982717743326880272142788
sage: a(3)
3906139152036632854385045413829783
sage: a.offset
0
sage: a(8)
45481392851206651551714764671352204
sage: a(20)
14639253684254059531823985143948191708
sage: a.list(4)
[1786772701928802632268715130455793, 1059683225053915111058165141686995,␣
→˓2846455926982717743326880272142788, 3906139152036632854385045413829783]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A083104
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Second-order linear recurrence sequence with 𝑎(𝑛) = 𝑎(𝑛− 1) + 𝑎(𝑛− 2).

𝑎(0) = 331635635998274737472200656430763, 𝑎(1) = 1510028911088401971189590305498785. This is
the second-order linear recurrence sequence with 𝑎(0) and 𝑎(1) co-prime. It was found by Ronald Graham in
1990.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A083104;a
Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2).
sage: a(3)
3351693458175078679851381267428333
sage: a.offset
0
sage: a(8)
36021870400834012982120004949074404
sage: a(20)
11601914177621826012468849361236300628

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A083105
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Second-order linear recurrence sequence with 𝑎(𝑛) = 𝑎(𝑛− 1) + 𝑎(𝑛− 2).

5.1. Comprehensive Module List 3121

Combinatorics, Release 9.7

𝑎(0) = 62638280004239857, 𝑎(1) = 49463435743205655. This is the second-order linear recurrence sequence
with 𝑎(0) and 𝑎(1) co-prime. It was found by Donald Knuth in 1990.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A083105;a
Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2).
sage: a(1)
49463435743205655
sage: a(2)
112101715747445512
sage: a(3)
161565151490651167
sage: a.offset
0
sage: a(8)
1853029790662436896
sage: a(20)
596510791500513098192
sage: a.list(4)
[62638280004239857, 49463435743205655, 112101715747445512, 161565151490651167]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A083216
Bases: sage.combinat.sloane_functions.RecurrenceSequence2

Second-order linear recurrence sequence with 𝑎(𝑛) = 𝑎(𝑛− 1) + 𝑎(𝑛− 2).

𝑎(0) = 20615674205555510, 𝑎(1) = 3794765361567513. This is a second-order linear recurrence sequence
with 𝑎(0) and 𝑎(1) co-prime that does not contain any primes. It was found by Herbert Wilf in 1990.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A083216; a
Second-order linear recurrence sequence with a(n) = a(n-1) + a(n-2).
sage: a(0)
20615674205555510
sage: a(1)
3794765361567513
sage: a(8)
347693837265139403

(continues on next page)

3122 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: a(41)
2738025383211084205003383
sage: a.list(4)
[20615674205555510, 3794765361567513, 24410439567123023, 28205204928690536]

AUTHORS:

• Jaap Spies (2007-01-19)

class sage.combinat.sloane_functions.A090010
Bases: sage.combinat.sloane_functions.ExtremesOfPermanentsSequence2

Permanent of (0,1)-matrix of size 𝑛× (𝑛+ 𝑑) with 𝑑 = 6 and 𝑛 zeros not on a line.

` a(n) = (n+5)*a(n-1) + (n-1)*a(n-2), a(1)=6, a(2)=43`.

This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p.
201-202.

REFERENCES:

• Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003),
p. 197-210.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A090010;a
Permanent of (0,1)-matrix of size n X (n+d) with d=6 and n zeros not on a line.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
6
sage: a(2)
43
sage: a.offset
1
sage: a(8)
67741129
sage: a(22)
192416593029158989003270143
sage: a.list(9)
[6, 43, 356, 3333, 34754, 398959, 4996032, 67741129, 988344062]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A090012
Bases: sage.combinat.sloane_functions.SloaneSequence

5.1. Comprehensive Module List 3123

Combinatorics, Release 9.7

Permanent of (0,1)-matrix of size 𝑛× (𝑛+ 𝑑) with 𝑑 = 2 and 𝑛− 1 zeros not on a line.

𝑎(𝑛) = (𝑛+ 1) * 𝑎(𝑛− 1) + (𝑛− 2) * 𝑎(𝑛− 2), 𝑎(1) = 3 and 𝑎(2) = 9

This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p.
201-202.

REFERENCES:

• Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003),
p. 197-210.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A090012;a
Permanent of (0,1)-matrix of size n X (n+d) with d=2 and n-1 zeros not on a line.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
3
sage: a(2)
9
sage: a.offset
1
sage: a(8)
890901
sage: a(22)
129020386652297208795129
sage: a.list(9)
[3, 9, 39, 213, 1395, 10617, 91911, 890901, 9552387]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A090013
Bases: sage.combinat.sloane_functions.SloaneSequence

Permanent of (0,1)-matrix of size 𝑛× (𝑛+ 𝑑) with 𝑑 = 3 and 𝑛− 1 zeros not on a line.

𝑎(𝑛) = (𝑛+ 1) * 𝑎(𝑛− 1) + (𝑛− 2) * 𝑎(𝑛− 2)[𝑎(1) = 4, 𝑎(2) = 16]

This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p.
201-202.

REFERENCES:

• Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003),
p. 197-210.

INPUT:

• n – non negative integer

3124 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A090013;a
Permanent of (0,1)-matrix of size n X (n+d) with d=3 and n-1 zeros not on a line.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
4
sage: a(2)
16
sage: a.offset
1
sage: a(8)
3481096
sage: a(22)
1112998577171142607670336
sage: a.list(9)
[4, 16, 84, 536, 4004, 34176, 327604, 3481096, 40585284]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A090014
Bases: sage.combinat.sloane_functions.SloaneSequence

Permanent of (0,1)-matrix of size 𝑛× (𝑛+ 𝑑) with 𝑑 = 4 and 𝑛− 1 zeros not on a line.

𝑎(𝑛) = (𝑛+ 1) * 𝑎(𝑛− 1) + (𝑛− 2) * 𝑎(𝑛− 2)[𝑎(1) = 5, 𝑎(2) = 25]

This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p.
201-202.

REFERENCES:

• Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003),
p. 197-210.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A090014;a
Permanent of (0,1)-matrix of size n X (n+d) with d=4 and n-1 zeros not on a line.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer

(continues on next page)

5.1. Comprehensive Module List 3125

Combinatorics, Release 9.7

(continued from previous page)

sage: a(1)
5
sage: a(2)
25
sage: a.offset
1
sage: a(8)
11016595
sage: a(22)
7469733600354446865509725
sage: a.list(9)
[5, 25, 155, 1135, 9545, 90445, 952175, 11016595, 138864365]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A090015
Bases: sage.combinat.sloane_functions.SloaneSequence

Permanent of (0,1)-matrix of size 𝑛× (𝑛+ 𝑑) with 𝑑 = 5 and 𝑛− 1 zeros not on a line.

𝑎(𝑛) = (𝑛+ 1) * 𝑎(𝑛− 1) + (𝑛− 2) * 𝑎(𝑛− 2)[𝑎(1) = 6, 𝑎(2) = 36]

This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p.
201-202.

REFERENCES:

• Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003),
p. 197-210.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A090015;a
Permanent of (0,1)-matrix of size n X (n+d) with d=3 and n-1 zeros not on a line.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
6
sage: a(2)
36
sage: a.offset
1
sage: a(8)
29976192
sage: a(22)
41552258517692116794936876

(continues on next page)

3126 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: a.list(9)
[6, 36, 258, 2136, 19998, 208524, 2393754, 29976192, 406446774]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A090016
Bases: sage.combinat.sloane_functions.SloaneSequence

Permanent of (0,1)-matrix of size 𝑛× (𝑛+ 𝑑) with 𝑑 = 6 and 𝑛− 1 zeros not on a line.

𝑎(𝑛) = (𝑛+ 1) * 𝑎(𝑛− 1) + (𝑛− 2) * 𝑎(𝑛− 2)[𝑎(1) = 7, 𝑎(2) = 49]

𝐴090016𝑎(𝑛) = 𝐴090010(𝑛− 1) +𝐴090010(𝑛), 𝑎(1) = 7

This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p.
201-202.

REFERENCES:

• Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003),
p. 197-210.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A090016;a
Permanent of (0,1)-matrix of size n X (n+d) with d=6 and n-1 zeros not on a line.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(1)
7
sage: a(2)
49
sage: a.offset
1
sage: a(8)
72737161
sage: a(22)
199341969448774341802426289
sage: a.list(9)
[7, 49, 399, 3689, 38087, 433713, 5394991, 72737161, 1056085191]

AUTHORS:

• Jaap Spies (2007-01-23)

class sage.combinat.sloane_functions.A109814
Bases: sage.combinat.sloane_functions.SloaneSequence

The 𝑛 th term of the sequence 𝑎(𝑛) is the largest 𝑘 such that 𝑛 can be written as sum of 𝑘 consecutive integers.

5.1. Comprehensive Module List 3127

Combinatorics, Release 9.7

By definition, 𝑛 is the sum of at most 𝑎(𝑛) consecutive positive integers. Suppose 𝑛 is to be written as sum of
𝑘 consecutive integers starting with 𝑚, then 2𝑛 = 𝑘(2𝑚 + 𝑘 − 1). Only one of the factors is odd. For each
odd divisor 𝑑 of 𝑛 there is a unique corresponding 𝑘 = 𝑚𝑖𝑛(𝑑, 2𝑛/𝑑). 𝑎(𝑛) can be alternatively defined as the
largest among those 𝑘 .

See also:

• Wikipedia article Polite_number

• An exercise sheet (with answers) about sums of consecutive integers.

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A109814; a
a(n) is the largest k such that n can be written as sum of k consecutive positive␣
→˓integers.
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(2)
1
sage: a.list(9)
[1, 1, 2, 1, 2, 3, 2, 1, 3]

AUTHORS:

• Jaap Spies (2007-01-13)

class sage.combinat.sloane_functions.A111774
Bases: sage.combinat.sloane_functions.SloaneSequence

Sequence of numbers of the third kind, i.e., numbers that can be written as a sum of at least three consecutive
positive integers.

Odd primes can only be written as a sum of two consecutive integers. Powers of 2 do not have a representation
as a sum of 𝑘 consecutive integers (other than the trivial 𝑛 = 𝑛 for 𝑘 = 1).

See: http://www.jaapspies.nl/mathfiles/problem2005-2C.pdf

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A111774; a
Numbers that can be written as a sum of at least three consecutive positive␣
→˓integers.
sage: a(1)

(continues on next page)

3128 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Polite_number
http://www.jaapspies.nl/mathfiles/problem2005-2C.pdf
http://www.jaapspies.nl/mathfiles/problem2005-2C.pdf

Combinatorics, Release 9.7

(continued from previous page)

6
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(100)
141
sage: a(156)
209
sage: a(302)
386
sage: a.list(12)
[6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 24, 25]
sage: a(1/3)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer

AUTHORS:

• Jaap Spies (2007-01-13)

is_number_of_the_third_kind(n)
Return True if and only if 𝑛 is a number of the third kind.

A number is of the third kind if it can be written as a sum of at least three consecutive positive integers. Odd
primes can only be written as a sum of two consecutive integers. Powers of 2 do not have a representation
as a sum of 𝑘 consecutive integers (other than the trivial 𝑛 = 𝑛 for 𝑘 = 1).

See: http://www.jaapspies.nl/mathfiles/problem2005-2C.pdf

INPUT:

• 𝑛 – positive integer

OUTPUT:

True if 𝑛 is not prime and not a power of 2

EXAMPLES:

sage: a = sloane.A111774
sage: a.is_number_of_the_third_kind(6)
True
sage: a.is_number_of_the_third_kind(100)
True
sage: a.is_number_of_the_third_kind(16)
False
sage: a.is_number_of_the_third_kind(97)
False

AUTHORS:

• Jaap Spies (2006-12-09)

list(n)
EXAMPLES:

5.1. Comprehensive Module List 3129

http://www.jaapspies.nl/mathfiles/problem2005-2C.pdf

Combinatorics, Release 9.7

sage: sloane.A111774.list(12)
[6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 24, 25]

class sage.combinat.sloane_functions.A111775
Bases: sage.combinat.sloane_functions.SloaneSequence

Number of ways 𝑛 can be written as a sum of at least three consecutive integers.

Powers of 2 and (odd) primes can not be written as a sum of at least three consecutive integers. 𝑎(𝑛) strongly
depends on the number of odd divisors of 𝑛 (A001227): Suppose 𝑛 is to be written as sum of 𝑘 consecutive
integers starting with 𝑚, then 2𝑛 = 𝑘(2𝑚 + 𝑘 − 1). Only one of the factors is odd. For each odd divisor of 𝑛
there is a unique corresponding 𝑘, 𝑘 = 1 and 𝑘 = 2 must be excluded.

See: http://www.jaapspies.nl/mathfiles/problem2005-2C.pdf

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A111775; a
Number of ways n can be written as a sum of at least three consecutive integers.

sage: a(1)
0
sage: a(0)
0

We have a(15)=2 because 15 = 4+5+6 and 15 = 1+2+3+4+5. The number of odd divisors of 15 is 4.

sage: a(15)
2

sage: a(100)
2
sage: a(256)
0
sage: a(29)
0
sage: a.list(20)
[0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 2, 0]
sage: a(1/3)
Traceback (most recent call last):
...
TypeError: input must be an int or Integer

AUTHORS:

• Jaap Spies (2006-12-09)

class sage.combinat.sloane_functions.A111787
Bases: sage.combinat.sloane_functions.SloaneSequence

This function returns the 𝑛-th number of Sloane’s sequence A111787

3130 Chapter 5. Comprehensive Module List

http://www.jaapspies.nl/mathfiles/problem2005-2C.pdf

Combinatorics, Release 9.7

𝑎(𝑛) = 0 if 𝑛 is an odd prime or a power of 2. For numbers of the third kind (see A111774) we proceed as
follows: suppose 𝑛 is to be written as sum of 𝑘 consecutive integers starting with 𝑚, then 2𝑛 = 𝑘(2𝑚+ 𝑘− 1).
Let 𝑝 be the smallest odd prime divisor of 𝑛 then 𝑎(𝑛) = 𝑚𝑖𝑛(𝑝, 2𝑛/𝑝).

See: http://www.jaapspies.nl/mathfiles/problem2005-2C.pdf

INPUT:

• n – non negative integer

OUTPUT:

• integer – function value

EXAMPLES:

sage: a = sloane.A111787; a
a(n) is the least k >= 3 such that n can be written as sum of k consecutive␣
→˓integers. a(n)=0 if such a k does not exist.
sage: a.offset
1
sage: a(1)
0
sage: a(0)
Traceback (most recent call last):
...
ValueError: input n (=0) must be a positive integer
sage: a(100)
5
sage: a(256)
0
sage: a(29)
0
sage: a.list(20)
[0, 0, 0, 0, 0, 3, 0, 0, 3, 4, 0, 3, 0, 4, 3, 0, 0, 3, 0, 5]
sage: a(-1)
Traceback (most recent call last):
...
ValueError: input n (=-1) must be a positive integer

AUTHORS:

• Jaap Spies (2007-01-14)

class sage.combinat.sloane_functions.ExponentialNumbers(a)
Bases: sage.combinat.sloane_functions.SloaneSequence

A sequence of Exponential numbers.

EXAMPLES:

sage: from sage.combinat.sloane_functions import ExponentialNumbers
sage: ExponentialNumbers(0)
Sequence of Exponential numbers around 0

class sage.combinat.sloane_functions.ExtremesOfPermanentsSequence(offset=1)
Bases: sage.combinat.sloane_functions.SloaneSequence

gen(a0, a1, d)
EXAMPLES:

5.1. Comprehensive Module List 3131

http://www.jaapspies.nl/mathfiles/problem2005-2C.pdf

Combinatorics, Release 9.7

sage: it = sloane.A000153.gen(0,1,2)
sage: [next(it) for i in range(5)]
[0, 1, 2, 7, 32]

list(n)
EXAMPLES:

sage: sloane.A000153.list(8)
[0, 1, 2, 7, 32, 181, 1214, 9403]

class sage.combinat.sloane_functions.ExtremesOfPermanentsSequence2(offset=1)
Bases: sage.combinat.sloane_functions.ExtremesOfPermanentsSequence

gen(a0, a1, d)
EXAMPLES:

sage: from sage.combinat.sloane_functions import ExtremesOfPermanentsSequence2
sage: e = ExtremesOfPermanentsSequence2()
sage: it = e.gen(6,43,6)
sage: [next(it) for i in range(5)]
[6, 43, 307, 2542, 23799]

class sage.combinat.sloane_functions.RecurrenceSequence(offset=1)
Bases: sage.combinat.sloane_functions.SloaneSequence

list(n)
EXAMPLES:

sage: sloane.A001110.list(8)
[0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881]

class sage.combinat.sloane_functions.RecurrenceSequence2(offset=1)
Bases: sage.combinat.sloane_functions.SloaneSequence

list(n)
EXAMPLES:

sage: sloane.A001906.list(10)
[0, 1, 3, 8, 21, 55, 144, 377, 987, 2584]

class sage.combinat.sloane_functions.Sloane
Bases: sage.structure.sage_object.SageObject

A collection of Sloane generating functions.

This class inspects sage.combinat.sloane_functions, accumulating all the SloaneSequence classes starting with
‘A’. These are listed for tab completion, but not instantiated until requested.

EXAMPLES:

Ensure we have lots of entries:

sage: len(sloane.__dir__()) > 100
True

Ensure none are being incorrectly returned:

3132 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

sage: [None for n in sloane.__dir__() if not n.startswith('A')]
[]

Ensure we can access dynamic constructions and cache correctly:

sage: s = sloane.A000587
sage: s is sloane.A000587
True

Ensure that we can access other functions in parent classes:

sage: sloane.__class__
<class 'sage.combinat.sloane_functions.Sloane'>

AUTHORS:

• Nick Alexander

class sage.combinat.sloane_functions.SloaneSequence(offset=1)
Bases: sage.structure.sage_object.SageObject

Base class for a Sloane integer sequence.

list(n)
Return n terms of the sequence:

sequence[offset], sequence[offset+1], ..., sequence[offset+n-1].

EXAMPLES:

sage: sloane.A000012.list(4)
[1, 1, 1, 1]

sage.combinat.sloane_functions.perm_mh(m, h)
This functions calculates 𝑓(𝑔, ℎ) from Sloane’s sequences A079908-A079928

INPUT:

• m – positive integer

• h – non negative integer

OUTPUT: permanent of the 𝑚× (𝑚+ ℎ) matrix, etc.

EXAMPLES:

sage: from sage.combinat.sloane_functions import perm_mh
sage: perm_mh(3,3)
36
sage: perm_mh(3,4)
76

AUTHORS:

• Jaap Spies (2006)

sage.combinat.sloane_functions.recur_gen2(a0, a1, a2, a3)
homogeneous general second-order linear recurrence generator with fixed coefficients

a(0) = a0, a(1) = a1, a(n) = a2*a(n-1) + a3*a(n-2)

5.1. Comprehensive Module List 3133

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.sloane_functions import recur_gen2
sage: it = recur_gen2(1,1,1,1)
sage: [next(it) for i in range(10)]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

sage.combinat.sloane_functions.recur_gen2b(a0, a1, a2, a3, b)
Inhomogeneous second-order linear recurrence generator with fixed coefficients and 𝑏 = 𝑓(𝑛)

𝑎(0) = 𝑎0, 𝑎(1) = 𝑎1, 𝑎(𝑛) = 𝑎2 * 𝑎(𝑛− 1) + 𝑎3 * 𝑎(𝑛− 2) + 𝑓(𝑛).

EXAMPLES:

sage: from sage.combinat.sloane_functions import recur_gen2b
sage: it = recur_gen2b(1,1,1,1, lambda n: 0)
sage: [next(it) for i in range(10)]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

sage.combinat.sloane_functions.recur_gen3(a0, a1, a2, a3, a4, a5)
homogeneous general third-order linear recurrence generator with fixed coefficients

a(0) = a0, a(1) = a1, a(2) = a2, a(n) = a3*a(n-1) + a4*a(n-2) + a5*a(n-3)

EXAMPLES:

sage: from sage.combinat.sloane_functions import recur_gen3
sage: it = recur_gen3(1,1,1,1,1,1)
sage: [next(it) for i in range(10)]
[1, 1, 1, 3, 5, 9, 17, 31, 57, 105]

5.1.311 Combinatorial species

Todo: Short blurb about species

Todo: Proofread / point to the main classes rather than the modules?

Introductory material

• Enumeration of trees using generating functions

• Species, decomposable combinatorial classes

3134 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Lazy Power Series

• Streams or Infinite Arrays

• Series Order

• Lazy Power Series

• Generating Series

Basic Species

• Combinatorial Species

• Empty Species

• Recursive Species

• Characteristic Species

• Cycle Species

• Partition Species

• Permutation species

• Linear-order Species

• Set Species

• Subset Species

• Examples of Combinatorial Species

Operations on Species

• Sum species

• Product species

• Composition species

• Functorial composition species

Miscellaneous

• Species structures

• Miscellaneous Functions

5.1.312 Characteristic Species

class sage.combinat.species.characteristic_species.CharacteristicSpecies(n, min=None,
max=None,
weight=None)

Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.
unique_representation.UniqueRepresentation

Return the characteristic species of order 𝑛.

5.1. Comprehensive Module List 3135

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

This species has exactly one structure on a set of size 𝑛 and no structures on sets of any other size.

EXAMPLES:

sage: X = species.CharacteristicSpecies(1)
sage: X.structures([1]).list()
[1]
sage: X.structures([1,2]).list()
[]
sage: X.generating_series().coefficients(4)
[0, 1, 0, 0]
sage: X.isotype_generating_series().coefficients(4)
[0, 1, 0, 0]
sage: X.cycle_index_series().coefficients(4)
[0, p[1], 0, 0]

sage: F = species.CharacteristicSpecies(3)
sage: c = F.generating_series().coefficients(4)
sage: F._check()
True
sage: F == loads(dumps(F))
True

class sage.combinat.species.characteristic_species.CharacteristicSpeciesStructure(parent,
labels,
list)

Bases: sage.combinat.species.structure.GenericSpeciesStructure

automorphism_group()
Returns the group of permutations whose action on this structure leave it fixed. For the characteristic
species, there is only one structure, so every permutation is in its automorphism group.

EXAMPLES:

sage: F = species.CharacteristicSpecies(3)
sage: a = F.structures(["a", "b", "c"]).random_element(); a
{'a', 'b', 'c'}
sage: a.automorphism_group()
Symmetric group of order 3! as a permutation group

canonical_label()
EXAMPLES:

sage: F = species.CharacteristicSpecies(3)
sage: a = F.structures(["a", "b", "c"]).random_element(); a
{'a', 'b', 'c'}
sage: a.canonical_label()
{'a', 'b', 'c'}

transport(perm)
Returns the transport of this structure along the permutation perm.

EXAMPLES:

sage: F = species.CharacteristicSpecies(3)
sage: a = F.structures(["a", "b", "c"]).random_element(); a

(continues on next page)

3136 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

{'a', 'b', 'c'}
sage: p = PermutationGroupElement((1,2))
sage: a.transport(p)
{'a', 'b', 'c'}

sage.combinat.species.characteristic_species.CharacteristicSpecies_class
alias of sage.combinat.species.characteristic_species.CharacteristicSpecies

class sage.combinat.species.characteristic_species.EmptySetSpecies(min=None, max=None,
weight=None)

Bases: sage.combinat.species.characteristic_species.CharacteristicSpecies

Returns the empty set species.

This species has exactly one structure on the empty set. It is the same (and is implemented) as
CharacteristicSpecies(0).

EXAMPLES:

sage: X = species.EmptySetSpecies()
sage: X.structures([]).list()
[{}]
sage: X.structures([1,2]).list()
[]
sage: X.generating_series().coefficients(4)
[1, 0, 0, 0]
sage: X.isotype_generating_series().coefficients(4)
[1, 0, 0, 0]
sage: X.cycle_index_series().coefficients(4)
[p[], 0, 0, 0]

sage.combinat.species.characteristic_species.EmptySetSpecies_class
alias of sage.combinat.species.characteristic_species.EmptySetSpecies

class sage.combinat.species.characteristic_species.SingletonSpecies(min=None, max=None,
weight=None)

Bases: sage.combinat.species.characteristic_species.CharacteristicSpecies

Returns the species of singletons.

This species has exactly one structure on a set of size 1. It is the same (and is implemented) as
CharacteristicSpecies(1).

EXAMPLES:

sage: X = species.SingletonSpecies()
sage: X.structures([1]).list()
[1]
sage: X.structures([1,2]).list()
[]
sage: X.generating_series().coefficients(4)
[0, 1, 0, 0]
sage: X.isotype_generating_series().coefficients(4)
[0, 1, 0, 0]
sage: X.cycle_index_series().coefficients(4)
[0, p[1], 0, 0]

5.1. Comprehensive Module List 3137

Combinatorics, Release 9.7

sage.combinat.species.characteristic_species.SingletonSpecies_class
alias of sage.combinat.species.characteristic_species.SingletonSpecies

5.1.313 Composition species

class sage.combinat.species.composition_species.CompositionSpecies(F, G, min=None, max=None,
weight=None)

Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.
unique_representation.UniqueRepresentation

Returns the composition of two species.

EXAMPLES:

sage: E = species.SetSpecies()
sage: C = species.CycleSpecies()
sage: S = E(C)
sage: S.generating_series().coefficients(5)
[1, 1, 1, 1, 1]
sage: E(C) is S
True

weight_ring()
Returns the weight ring for this species. This is determined by asking Sage’s coercion model what the result
is when you multiply (and add) elements of the weight rings for each of the operands.

EXAMPLES:

sage: E = species.SetSpecies(); C = species.CycleSpecies()
sage: L = E(C)
sage: L.weight_ring()
Rational Field

class sage.combinat.species.composition_species.CompositionSpeciesStructure(parent, labels, pi,
f, gs)

Bases: sage.combinat.species.structure.GenericSpeciesStructure

change_labels(labels)
Return a relabelled structure.

INPUT:

• labels, a list of labels.

OUTPUT:

A structure with the i-th label of self replaced with the i-th label of the list.

EXAMPLES:

sage: E = species.SetSpecies(); C = species.CycleSpecies()
sage: L = E(C)
sage: S = L.structures(['a','b','c']).list()
sage: a = S[2]; a
F-structure: {{'a', 'c'}, {'b'}}; G-structures: (('a', 'c'), ('b'))
sage: a.change_labels([1,2,3])
F-structure: {{1, 3}, {2}}; G-structures: [(1, 3), (2)]

3138 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

transport(perm)
EXAMPLES:

sage: p = PermutationGroupElement((2,3))
sage: E = species.SetSpecies(); C = species.CycleSpecies()
sage: L = E(C)
sage: S = L.structures(['a','b','c']).list()
sage: a = S[2]; a
F-structure: {{'a', 'c'}, {'b'}}; G-structures: (('a', 'c'), ('b'))
sage: a.transport(p)
F-structure: {{'a', 'b'}, {'c'}}; G-structures: (('a', 'c'), ('b'))

sage.combinat.species.composition_species.CompositionSpecies_class
alias of sage.combinat.species.composition_species.CompositionSpecies

5.1.314 Cycle Species

class sage.combinat.species.cycle_species.CycleSpecies(min=None, max=None, weight=None)
Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.
unique_representation.UniqueRepresentation

Returns the species of cycles.

EXAMPLES:

sage: C = species.CycleSpecies(); C
Cyclic permutation species
sage: C.structures([1,2,3,4]).list()
[(1, 2, 3, 4),
(1, 2, 4, 3),
(1, 3, 2, 4),
(1, 3, 4, 2),
(1, 4, 2, 3),
(1, 4, 3, 2)]

class sage.combinat.species.cycle_species.CycleSpeciesStructure(parent, labels, list)
Bases: sage.combinat.species.structure.GenericSpeciesStructure

automorphism_group()
Returns the group of permutations whose action on this structure leave it fixed.

EXAMPLES:

sage: P = species.CycleSpecies()
sage: a = P.structures([1, 2, 3, 4])[0]; a
(1, 2, 3, 4)
sage: a.automorphism_group()
Permutation Group with generators [(1,2,3,4)]

sage: [a.transport(perm) for perm in a.automorphism_group()]
[(1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4)]

canonical_label()
EXAMPLES:

5.1. Comprehensive Module List 3139

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

sage: P = species.CycleSpecies()
sage: P.structures(["a","b","c"]).random_element().canonical_label()
('a', 'b', 'c')

permutation_group_element()
Returns this cycle as a permutation group element.

EXAMPLES:

sage: F = species.CycleSpecies()
sage: a = F.structures(["a", "b", "c"])[0]; a
('a', 'b', 'c')
sage: a.permutation_group_element()
(1,2,3)

transport(perm)
Returns the transport of this structure along the permutation perm.

EXAMPLES:

sage: F = species.CycleSpecies()
sage: a = F.structures(["a", "b", "c"])[0]; a
('a', 'b', 'c')
sage: p = PermutationGroupElement((1,2))
sage: a.transport(p)
('a', 'c', 'b')

sage.combinat.species.cycle_species.CycleSpecies_class
alias of sage.combinat.species.cycle_species.CycleSpecies

5.1.315 Empty Species

class sage.combinat.species.empty_species.EmptySpecies(min=None, max=None, weight=None)
Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.
unique_representation.UniqueRepresentation

Returns the empty species. This species has no structure at all. It is the zero of the semi-ring of species.

EXAMPLES:

sage: X = species.EmptySpecies(); X
Empty species
sage: X.structures([]).list()
[]
sage: X.structures([1]).list()
[]
sage: X.structures([1,2]).list()
[]
sage: X.generating_series().coefficients(4)
[0, 0, 0, 0]
sage: X.isotype_generating_series().coefficients(4)
[0, 0, 0, 0]
sage: X.cycle_index_series().coefficients(4)
[0, 0, 0, 0]

3140 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

The empty species is the zero of the semi-ring of species. The following tests that it is neutral with respect to
addition:

sage: Empt = species.EmptySpecies()
sage: S = species.CharacteristicSpecies(2)
sage: X = S + Empt
sage: X == S # TODO: Not Implemented
True
sage: (X.generating_series().coefficients(4) ==
....: S.generating_series().coefficients(4))
True
sage: (X.isotype_generating_series().coefficients(4) ==
....: S.isotype_generating_series().coefficients(4))
True
sage: (X.cycle_index_series().coefficients(4) ==
....: S.cycle_index_series().coefficients(4))
True

The following tests that it is the zero element with respect to multiplication:

sage: Y = Empt*S
sage: Y == Empt # TODO: Not Implemented
True
sage: Y.generating_series().coefficients(4)
[0, 0, 0, 0]
sage: Y.isotype_generating_series().coefficients(4)
[0, 0, 0, 0]
sage: Y.cycle_index_series().coefficients(4)
[0, 0, 0, 0]

sage.combinat.species.empty_species.EmptySpecies_class
alias of sage.combinat.species.empty_species.EmptySpecies

5.1.316 Functorial composition species

class sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies(F,
G,
min=None,
max=None,
weight=None)

Bases: sage.combinat.species.species.GenericCombinatorialSpecies

Returns the functorial composition of two species.

EXAMPLES:

sage: E = species.SetSpecies()
sage: E2 = species.SetSpecies(size=2)
sage: WP = species.SubsetSpecies()
sage: P2 = E2*E
sage: G = WP.functorial_composition(P2)
sage: G.isotype_generating_series().coefficients(5)
[1, 1, 2, 4, 11]

(continues on next page)

5.1. Comprehensive Module List 3141

Combinatorics, Release 9.7

(continued from previous page)

sage: G = species.SimpleGraphSpecies()
sage: c = G.generating_series().coefficients(2)
sage: type(G)
<class 'sage.combinat.species.functorial_composition_species.
→˓FunctorialCompositionSpecies'>
sage: G == loads(dumps(G))
True
sage: G._check() #False due to isomorphism types not being implemented
False

weight_ring()
Returns the weight ring for this species. This is determined by asking Sage’s coercion model what the result
is when you multiply (and add) elements of the weight rings for each of the operands.

EXAMPLES:

sage: G = species.SimpleGraphSpecies()
sage: G.weight_ring()
Rational Field

sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies_class
alias of sage.combinat.species.functorial_composition_species.
FunctorialCompositionSpecies

class sage.combinat.species.functorial_composition_species.FunctorialCompositionStructure(parent,
la-
bels,
list)

Bases: sage.combinat.species.structure.GenericSpeciesStructure

5.1.317 Generating Series

This file makes a number of extensions to lazy power series by endowing them with some semantic content for how
they’re to be interpreted.

This code is based on the work of Ralf Hemmecke and Martin Rubey’s Aldor-Combinat, which can be found at
http://www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html. In particular, the relevant section for this
file can be found at http://www.risc.uni-linz.ac.at/people/hemmecke/AldorCombinat/combinatse10.html. One notable
difference is that we use power-sum symmetric functions as the coefficients of our cycle index series.

REFERENCES:

class sage.combinat.species.generating_series.CycleIndexSeries(A, stream=None, order=None,
aorder=None,
aorder_changed=True,
is_initialized=False,
name=None)

Bases: sage.combinat.species.series.LazyPowerSeries

arithmetic_product(g, check_input=True)
Return the arithmetic product of self with g.

For species 𝑀 and 𝑁 such that 𝑀 [
𝑣𝑎𝑟𝑛𝑜𝑡ℎ𝑖𝑛𝑔] = 𝑁 [
𝑣𝑎𝑟𝑛𝑜𝑡ℎ𝑖𝑛𝑔] =

3142 Chapter 5. Comprehensive Module List

http://www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html
http://www.risc.uni-linz.ac.at/people/hemmecke/AldorCombinat/combinatse10.html

Combinatorics, Release 9.7

𝑣𝑎𝑟𝑛𝑜𝑡ℎ𝑖𝑛𝑔, their arithmetic product is the species 𝑀
𝑏𝑜𝑥𝑑𝑜𝑡𝑁 of “𝑀 -assemblies of cloned 𝑁 -structures”. This operation is defined and several examples are
given in [MM].

The cycle index series for 𝑀
𝑏𝑜𝑥𝑑𝑜𝑡𝑁 can be computed in terms of the component series 𝑍𝑀 and 𝑍𝑁 , as implemented in this method.

INPUT:

• g – a cycle index series having the same parent as self.

• check_input – (default: True) a Boolean which, when set to False, will cause input checks to be
skipped.

OUTPUT:

The arithmetic product of self with g. This is a cycle index series defined in terms of self and g such
that if self and g are the cycle index series of two species 𝑀 and 𝑁 , their arithmetic product is the cycle
index series of the species 𝑀
𝑏𝑜𝑥𝑑𝑜𝑡𝑁 .

EXAMPLES:

For 𝐶 the species of (oriented) cycles and 𝐿+ the species of nonempty linear orders, 𝐶
𝑏𝑜𝑥𝑑𝑜𝑡𝐿+ corresponds to the species of “regular octopuses”; a (𝐶
𝑏𝑜𝑥𝑑𝑜𝑡𝐿+)-structure is a cycle of some length, each of whose elements is an ordered list of a length which
is consistent for all the lists in the structure.

sage: C = species.CycleSpecies().cycle_index_series()
sage: Lplus = species.LinearOrderSpecies(min=1).cycle_index_series()
sage: RegularOctopuses = C.arithmetic_product(Lplus)
sage: RegOctSpeciesSeq = RegularOctopuses.generating_series().counts(8)
sage: RegOctSpeciesSeq
[0, 1, 3, 8, 42, 144, 1440, 5760]

It is shown in [MM] that the exponential generating function for regular octopuses satisfies (𝐶
𝑏𝑜𝑥𝑑𝑜𝑡𝐿+)(𝑥) =
𝑠𝑢𝑚𝑛≥1
𝑠𝑖𝑔𝑚𝑎(𝑛)(𝑛− 1)!
𝑓𝑟𝑎𝑐𝑥𝑛𝑛! (where
𝑠𝑖𝑔𝑚𝑎(𝑛) is the sum of the divisors of 𝑛).

sage: RegOctDirectSeq = [0] + [sum(divisors(i))*factorial(i-1) for i in range(1,
→˓8)]
sage: RegOctDirectSeq == RegOctSpeciesSeq
True

AUTHORS:

• Andrew Gainer-Dewar (2013)

REFERENCES:

coefficient_cycle_type(t)
Returns the coefficient of a cycle type t in self.

EXAMPLES:

sage: from sage.combinat.species.generating_series import CycleIndexSeriesRing
sage: p = SymmetricFunctions(QQ).power()

(continues on next page)

5.1. Comprehensive Module List 3143

Combinatorics, Release 9.7

(continued from previous page)

sage: CIS = CycleIndexSeriesRing(QQ)
sage: f = CIS([0, p([1]), 2*p([1,1]),3*p([2,1])])
sage: f.coefficient_cycle_type([1])
1
sage: f.coefficient_cycle_type([1,1])
2
sage: f.coefficient_cycle_type([2,1])
3

compositional_inverse()
Return the compositional inverse of self if possible.

(Specifically, if self is of the form 0 + 𝑝1 + · · ·.)

The compositional inverse is the inverse with respect to plethystic substitution. This is the operation on
cycle index series which corresponds to substitution, a.k.a. partitional composition, on the level of species.
See Section 2.2 of [BLL] for a definition of this operation.

EXAMPLES:

sage: Eplus = species.SetSpecies(min=1).cycle_index_series()
sage: Eplus(Eplus.compositional_inverse()).coefficients(8)
[0, p[1], 0, 0, 0, 0, 0, 0]

ALGORITHM:

Let 𝐹 be a species satisfying 𝐹 = 0 +𝑋 + 𝐹2 + 𝐹3 + · · · for 𝑋 the species of singletons. (Equivalently,
|𝐹 [∅]| = 0 and |𝐹 [{1}]| = 1.) Then there exists a (virtual) species 𝐺 satisfying 𝐹 ∘𝐺 = 𝐺 ∘ 𝐹 = 𝑋 .

It follows that (𝐹 −𝑋) ∘𝐺 = 𝐹 ∘𝐺−𝑋 ∘𝐺 = 𝑋 −𝐺. Rearranging, we obtain the recursive equation
𝐺 = 𝑋 − (𝐹 −𝑋) ∘𝐺, which can be solved using iterative methods.

Warning: This algorithm is functional but can be very slow. Use with caution!

See also:

The compositional inverse Ω of the species 𝐸+ of nonempty sets can be handled much more efficiently
using specialized methods. See LogarithmCycleIndexSeries()

AUTHORS:

• Andrew Gainer-Dewar

count(t)
Return the number of structures corresponding to a certain cycle type t.

EXAMPLES:

sage: from sage.combinat.species.generating_series import CycleIndexSeriesRing
sage: p = SymmetricFunctions(QQ).power()
sage: CIS = CycleIndexSeriesRing(QQ)
sage: f = CIS([0, p([1]), 2*p([1,1]), 3*p([2,1])])
sage: f.count([1])
1
sage: f.count([1,1])
4

(continues on next page)

3144 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: f.count([2,1])
6

derivative(order=1)
Return the species-theoretic 𝑛-th derivative of self, where 𝑛 is order.

For a cycle index series 𝐹 (𝑝1, 𝑝2, 𝑝3, . . .), its derivative is the cycle index series 𝐹 ′ = 𝐷𝑝1𝐹 (that is, the
formal derivative of 𝐹 with respect to the variable 𝑝1).

If 𝐹 is the cycle index series of a species 𝑆 then 𝐹 ′ is the cycle index series of an associated species 𝑆′ of
𝑆-structures with a “hole”.

EXAMPLES:

The species 𝐸 of sets satisfies the relationship 𝐸′ = 𝐸:

sage: E = species.SetSpecies().cycle_index_series()
sage: E.coefficients(8) == E.derivative().coefficients(8)
True

The species 𝐶 of cyclic orderings and the species 𝐿 of linear orderings satisfy the relationship 𝐶 ′ = 𝐿:

sage: C = species.CycleSpecies().cycle_index_series()
sage: L = species.LinearOrderSpecies().cycle_index_series()
sage: L.coefficients(8) == C.derivative().coefficients(8)
True

expand_as_sf(n, alphabet='x')
Returns the expansion of a cycle index series as a symmetric function in n variables.

Specifically, this returns a LazyPowerSeries whose ith term is obtained by calling expand() on the ith
term of self.

This relies on the (standard) interpretation of a cycle index series as a symmetric function in the power sum
basis.

INPUT:

• self – a cycle index series

• n – a positive integer

• alphabet – a variable for the expansion (default: 𝑥)

EXAMPLES:

sage: from sage.combinat.species.set_species import SetSpecies
sage: SetSpecies().cycle_index_series().expand_as_sf(2).coefficients(4)
[1, x0 + x1, x0^2 + x0*x1 + x1^2, x0^3 + x0^2*x1 + x0*x1^2 + x1^3]

exponential()
Return the species-theoretic exponential of self.

For a cycle index 𝑍𝐹 of a species 𝐹 , its exponential is the cycle index series 𝑍𝐸 ∘ 𝑍𝐹 , where 𝑍𝐸 is the
ExponentialCycleIndexSeries().

The exponential 𝑍𝐸 ∘ 𝑍𝐹 is then the cycle index series of the species 𝐸 ∘ 𝐹 of “sets of 𝐹 -structures”.

EXAMPLES:

5.1. Comprehensive Module List 3145

Combinatorics, Release 9.7

Let 𝐵𝑇 be the species of binary trees, 𝐵𝐹 the species of binary forests, and 𝐸 the species of sets. Then
we have 𝐵𝐹 = 𝐸 ∘𝐵𝑇 :

sage: BT = species.BinaryTreeSpecies().cycle_index_series()
sage: BF = species.BinaryForestSpecies().cycle_index_series()
sage: BT.exponential().isotype_generating_series().coefficients(8) == BF.
→˓isotype_generating_series().coefficients(8)
True

functorial_composition(g)
Returns the functorial composition of self and g.

If 𝐹 and 𝐺 are species, their functorial composition is the species 𝐹�𝐺 obtained by setting (𝐹�𝐺)[𝐴] =
𝐹 [𝐺[𝐴]]. In other words, an (𝐹�𝐺)-structure on a set 𝐴 of labels is an 𝐹 -structure whose labels are the
set of all 𝐺-structures on 𝐴.

It can be shown (as in section 2.2 of [BLL]) that there is a corresponding operation on cycle indices:

𝑍𝐹�𝑍𝐺 =
∑︁
𝑛≥0

1

𝑛!

∑︁
𝜎∈S𝑛

fix𝐹 [(𝐺[𝜎])1, (𝐺[𝜎])2, . . .] 𝑝
𝜎1
1 𝑝𝜎2

2 · · · .

This method implements that operation on cycle index series.

EXAMPLES:

The species 𝐺 of simple graphs can be expressed in terms of a functorial composition: 𝐺 = p�p2, where
p is the SubsetSpecies. This is how it is implemented in SimpleGraphSpecies():

sage: S = species.SimpleGraphSpecies()
sage: S.cycle_index_series().coefficients(5)
[p[],
p[1],
p[1, 1] + p[2],
4/3*p[1, 1, 1] + 2*p[2, 1] + 2/3*p[3],
8/3*p[1, 1, 1, 1] + 4*p[2, 1, 1] + 2*p[2, 2] + 4/3*p[3, 1] + p[4]]

generating_series()
EXAMPLES:

sage: P = species.PartitionSpecies()
sage: cis = P.cycle_index_series()
sage: f = cis.generating_series()
sage: f.coefficients(5)
[1, 1, 1, 5/6, 5/8]

integral(*args)
Given a cycle index𝐺, it is not in general possible to recover a single cycle index 𝐹 such that 𝐹 ′ = 𝐺 (even
up to addition of a constant term).

More broadly, it may be the case that there are many non-isomorphic species 𝑆 such that 𝑆′ = 𝑇 for a
given species 𝑇 . For example, the species 3𝐶3 of 3-cycles from three distinct classes and the species 𝑋3

of 3-sets are not isomorphic, but (3𝐶3)′ = (𝑋3)′ = 3𝑋2.

EXAMPLES:

sage: C3 = species.CycleSpecies(size=3).cycle_index_series()
sage: X = species.SingletonSpecies().cycle_index_series()

(continues on next page)

3146 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: (3*C3).derivative().coefficients(8) == (3*X^2).coefficients(8)
True
sage: (X^3).derivative().coefficients(8) == (3*X^2).coefficients(8)
True

Warning: This method has no implementation and exists only to prevent you from doing something
strange. Calling it raises a NotImplementedError!

isotype_generating_series()
EXAMPLES:

sage: P = species.PermutationSpecies()
sage: cis = P.cycle_index_series()
sage: f = cis.isotype_generating_series()
sage: f.coefficients(10)
[1, 1, 2, 3, 5, 7, 11, 15, 22, 30]

logarithm()
Return the combinatorial logarithm of self.

For a cycle index 𝑍𝐹 of a species 𝐹 , its logarithm is the cycle index series 𝑍Ω ∘ 𝑍𝐹 , where 𝑍Ω is the
LogarithmCycleIndexSeries().

The logarithm 𝑍Ω ∘ 𝑍𝐹 is then the cycle index series of the (virtual) species Ω ∘ 𝐹 of “connected 𝐹 -
structures”. In particular, if 𝐹 = 𝐸+ ∘𝐺 for 𝐸+ the species of nonempty sets and 𝐺 some other species,
then Ω ∘ 𝐹 = 𝐺.

EXAMPLES:

Let 𝐺 be the species of nonempty graphs and 𝐶𝐺 be the species of nonempty connected graphs. Then
𝐺 = 𝐸+ ∘ 𝐶𝐺, so 𝐶𝐺 = Ω ∘𝐺:

sage: G = species.SimpleGraphSpecies().cycle_index_series() - 1
sage: from sage.combinat.species.generating_series import␣
→˓LogarithmCycleIndexSeries
sage: CG = LogarithmCycleIndexSeries().compose(G)
sage: CG.isotype_generating_series().coefficients(8)
[0, 1, 1, 2, 6, 21, 112, 853]

pointing()
Return the species-theoretic pointing of self.

For a cycle index 𝐹 , its pointing is the cycle index series 𝐹 ∙ = 𝑝1 · 𝐹 ′.

If 𝐹 is the cycle index series of a species 𝑆 then 𝐹 ∙ is the cycle index series of an associated species 𝑆∙ of
𝑆-structures with a marked “root”.

EXAMPLES:

The species 𝐸∙ of “pointed sets” satisfies 𝐸∙ = 𝑋 · 𝐸:

sage: E = species.SetSpecies().cycle_index_series()
sage: X = species.SingletonSpecies().cycle_index_series()
sage: E.pointing().coefficients(8) == (X*E).coefficients(8)
True

5.1. Comprehensive Module List 3147

Combinatorics, Release 9.7

stretch(k)
Return the stretch of the cycle index series self by a positive integer 𝑘.

If

𝑓 =

∞∑︁
𝑛=0

𝑓𝑛(𝑝1, 𝑝2, 𝑝3, . . .),

then the stretch 𝑔 of 𝑓 by 𝑘 is

𝑔 =

∞∑︁
𝑛=0

𝑓𝑛(𝑝𝑘, 𝑝2𝑘, 𝑝3𝑘, . . .).

EXAMPLES:

sage: from sage.combinat.species.generating_series import CycleIndexSeriesRing
sage: p = SymmetricFunctions(QQ).power()
sage: CIS = CycleIndexSeriesRing(QQ)
sage: f = CIS([p([]), p([1]), p([2]), p.zero()])
sage: f.stretch(3).coefficients(10)
[p[], 0, 0, p[3], 0, 0, p[6], 0, 0, 0]

weighted_composition(y_species)
Return the composition of this cycle index series with the cycle index series of the weighted species
y_species.

Note that this is basically the same algorithm as composition except we can not use the optimization that
the powering of cycle index series commutes with ‘stretching’.

EXAMPLES:

sage: E = species.SetSpecies(); C = species.CycleSpecies()
sage: E_cis = E.cycle_index_series()
sage: E_cis.weighted_composition(C).coefficients(4)
[p[], p[1], p[1, 1] + p[2], p[1, 1, 1] + p[2, 1] + p[3]]
sage: E(C).cycle_index_series().coefficients(4)
[p[], p[1], p[1, 1] + p[2], p[1, 1, 1] + p[2, 1] + p[3]]

sage.combinat.species.generating_series.CycleIndexSeriesRing(R)
Return the ring of cycle index series over R.

This is the ring of formal power series Λ[𝑥], where Λ is the ring of symmetric functions over R in the 𝑝-basis. Its
purpose is to house the cycle index series of species (in a somewhat nonstandard notation tailored to Sage): If 𝐹
is a species, then the cycle index series of 𝐹 is defined to be the formal power series∑︁

𝑛≥0

1

𝑛!
(
∑︁
𝜎∈𝑆𝑛

fix𝐹 [𝜎]
∏︁

𝑧 is a cycle of 𝜎

𝑝length of 𝑧)𝑥
𝑛 ∈ ΛQ[𝑥],

where fix𝐹 [𝜎] denotes the number of fixed points of the permutation 𝐹 [𝜎] of 𝐹 [𝑛]. We notice that this power
series is “equigraded” (meaning that its 𝑥𝑛-coefficient is homogeneous of degree 𝑛). A more standard convention
in combinatorics would be to use 𝑥𝑖 instead of 𝑝𝑖, and drop the 𝑥 (that is, evaluate the above power series at
𝑥 = 1); but this would be more difficult to implement in Sage, as it would be an element of a power series ring
in infinitely many variables.

Note that it is just a LazyPowerSeriesRing (whose base ring is Λ) whose elements have some extra methods.

EXAMPLES:

3148 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.species.generating_series import CycleIndexSeriesRing
sage: R = CycleIndexSeriesRing(QQ); R
Cycle Index Series Ring over Symmetric Functions over Rational Field in the␣
→˓powersum basis
sage: R([1]).coefficients(4) # This is not combinatorially
....: # meaningful.
[1, 1, 1, 1]

class sage.combinat.species.generating_series.CycleIndexSeriesRing_class(R)
Bases: sage.combinat.species.series.LazyPowerSeriesRing

EXAMPLES:

sage: from sage.combinat.species.generating_series import CycleIndexSeriesRing
sage: R = CycleIndexSeriesRing(QQ); R
Cycle Index Series Ring over Symmetric Functions over Rational Field in the␣
→˓powersum basis
sage: R == loads(dumps(R))
True

sage.combinat.species.generating_series.ExponentialCycleIndexSeries(R=Rational Field)
Return the cycle index series of the species 𝐸 of sets.

This cycle index satisfies

𝑍𝐸 =
∑︁
𝑛≥0

∑︁
𝜆⊢𝑛

𝑝𝜆
𝑧𝜆
.

EXAMPLES:

sage: from sage.combinat.species.generating_series import␣
→˓ExponentialCycleIndexSeries
sage: ExponentialCycleIndexSeries().coefficients(5)
[p[], p[1], 1/2*p[1, 1] + 1/2*p[2], 1/6*p[1, 1, 1] + 1/2*p[2, 1]
+ 1/3*p[3], 1/24*p[1, 1, 1, 1] + 1/4*p[2, 1, 1] + 1/8*p[2, 2]
+ 1/3*p[3, 1] + 1/4*p[4]]

class sage.combinat.species.generating_series.ExponentialGeneratingSeries(A, stream=None,
order=None,
aorder=None,
aorder_changed=True,
is_initialized=False,
name=None)

Bases: sage.combinat.species.series.LazyPowerSeries

count(n)
Return the number of structures of size n.

EXAMPLES:

sage: from sage.combinat.species.generating_series import␣
→˓ExponentialGeneratingSeriesRing
sage: R = ExponentialGeneratingSeriesRing(QQ)
sage: f = R([1])
sage: [f.count(i) for i in range(7)]
[1, 1, 2, 6, 24, 120, 720]

5.1. Comprehensive Module List 3149

Combinatorics, Release 9.7

counts(n)
Return the number of structures on a set for size i for each i in range(n).

EXAMPLES:

sage: from sage.combinat.species.generating_series import␣
→˓ExponentialGeneratingSeriesRing
sage: R = ExponentialGeneratingSeriesRing(QQ)
sage: f = R(range(20))
sage: f.counts(5)
[0, 1, 4, 18, 96]

functorial_composition(y)
Return the exponential generating series which is the functorial composition of self with y.

If 𝑓 =
∑︀∞
𝑛=0 𝑓𝑛

𝑥𝑛

𝑛! and 𝑔 =
∑︀∞
𝑛=0 𝑔𝑛

𝑥𝑛

𝑛! , then functorial composition 𝑓�𝑔 is defined as

𝑓�𝑔 =

∞∑︁
𝑛=0

𝑓𝑔𝑛
𝑥𝑛

𝑛!

REFERENCES:

• Section 2.2 of [BLL].

EXAMPLES:

sage: G = species.SimpleGraphSpecies()
sage: g = G.generating_series()
sage: g.coefficients(10)
[1, 1, 1, 4/3, 8/3, 128/15, 2048/45, 131072/315, 2097152/315, 536870912/2835]

sage.combinat.species.generating_series.ExponentialGeneratingSeriesRing(R)
Return the ring of exponential generating series over R.

Note that it is just a LazyPowerSeriesRing whose elements have some extra methods.

EXAMPLES:

sage: from sage.combinat.species.generating_series import␣
→˓ExponentialGeneratingSeriesRing
sage: R = ExponentialGeneratingSeriesRing(QQ); R
Lazy Power Series Ring over Rational Field
sage: R([1]).coefficients(4)
[1, 1, 1, 1]
sage: R([1]).counts(4)
[1, 1, 2, 6]

class sage.combinat.species.generating_series.ExponentialGeneratingSeriesRing_class(R)
Bases: sage.combinat.species.series.LazyPowerSeriesRing

EXAMPLES:

sage: from sage.combinat.species.generating_series import␣
→˓ExponentialGeneratingSeriesRing
sage: R = ExponentialGeneratingSeriesRing(QQ)
sage: R == loads(dumps(R))
True

3150 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage.combinat.species.generating_series.LogarithmCycleIndexSeries(R=Rational Field)
Return the cycle index series of the virtual species Ω, the compositional inverse of the species 𝐸+ of nonempty
sets.

The notion of virtual species is treated thoroughly in [BLL]. The specific algorithm used here to compute the
cycle index of Ω is found in [Labelle2008].

EXAMPLES:

The virtual species Ω is ‘properly virtual’, in the sense that its cycle index has negative coefficients:

sage: from sage.combinat.species.generating_series import LogarithmCycleIndexSeries
sage: LogarithmCycleIndexSeries().coefficients(4)
[0, p[1], -1/2*p[1, 1] - 1/2*p[2], 1/3*p[1, 1, 1] - 1/3*p[3]]

Its defining property is that Ω ∘𝐸+ = 𝐸+ ∘Ω = 𝑋 (that is, that composition with 𝐸+ in both directions yields
the multiplicative identity 𝑋):

sage: Eplus = sage.combinat.species.set_species.SetSpecies(min=1).cycle_index_
→˓series()
sage: LogarithmCycleIndexSeries().compose(Eplus).coefficients(4)
[0, p[1], 0, 0]

class sage.combinat.species.generating_series.OrdinaryGeneratingSeries(A, stream=None,
order=None,
aorder=None,
aorder_changed=True,
is_initialized=False,
name=None)

Bases: sage.combinat.species.series.LazyPowerSeries

count(n)
Return the number of structures on a set of size n.

EXAMPLES:

sage: from sage.combinat.species.generating_series import␣
→˓OrdinaryGeneratingSeriesRing
sage: R = OrdinaryGeneratingSeriesRing(QQ)
sage: f = R(range(20))
sage: f.count(10)
10

counts(n)
Return the number of structures on a set for size i for each i in range(n).

EXAMPLES:

sage: from sage.combinat.species.generating_series import␣
→˓OrdinaryGeneratingSeriesRing
sage: R = OrdinaryGeneratingSeriesRing(QQ)
sage: f = R(range(20))
sage: f.counts(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

sage.combinat.species.generating_series.OrdinaryGeneratingSeriesRing(R)
Return the ring of ordinary generating series over R.

5.1. Comprehensive Module List 3151

Combinatorics, Release 9.7

Note that it is just a LazyPowerSeriesRing whose elements have some extra methods.

EXAMPLES:

sage: from sage.combinat.species.generating_series import␣
→˓OrdinaryGeneratingSeriesRing
sage: R = OrdinaryGeneratingSeriesRing(QQ); R
Lazy Power Series Ring over Rational Field
sage: R([1]).coefficients(4)
[1, 1, 1, 1]
sage: R([1]).counts(4)
[1, 1, 1, 1]

class sage.combinat.species.generating_series.OrdinaryGeneratingSeriesRing_class(R)
Bases: sage.combinat.species.series.LazyPowerSeriesRing

EXAMPLES:

sage: from sage.combinat.species.generating_series import␣
→˓OrdinaryGeneratingSeriesRing
sage: R = OrdinaryGeneratingSeriesRing(QQ)
sage: R == loads(dumps(R))
True

sage.combinat.species.generating_series.factorial_gen()
A generator for the factorials starting at 0.

EXAMPLES:

sage: from sage.combinat.species.generating_series import factorial_gen
sage: g = factorial_gen()
sage: [next(g) for i in range(5)]
[1, 1, 2, 6, 24]

5.1.318 Examples of Combinatorial Species

sage.combinat.species.library.BinaryForestSpecies()
Returns the species of binary forests. Binary forests are defined as sets of binary trees.

EXAMPLES:

sage: F = species.BinaryForestSpecies()
sage: F.generating_series().counts(10)
[1, 1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353]
sage: F.isotype_generating_series().counts(10)
[1, 1, 2, 4, 10, 26, 77, 235, 758, 2504]
sage: F.cycle_index_series().coefficients(7)
[p[],
p[1],
3/2*p[1, 1] + 1/2*p[2],
19/6*p[1, 1, 1] + 1/2*p[2, 1] + 1/3*p[3],
193/24*p[1, 1, 1, 1] + 3/4*p[2, 1, 1] + 5/8*p[2, 2] + 1/3*p[3, 1] + 1/4*p[4],
907/40*p[1, 1, 1, 1, 1] + 19/12*p[2, 1, 1, 1] + 5/8*p[2, 2, 1] + 1/2*p[3, 1, 1] +␣
→˓1/6*p[3, 2] + 1/4*p[4, 1] + 1/5*p[5],
49171/720*p[1, 1, 1, 1, 1, 1] + 193/48*p[2, 1, 1, 1, 1] + 15/16*p[2, 2, 1, 1] + 61/
→˓48*p[2, 2, 2] + 19/18*p[3, 1, 1, 1] + 1/6*p[3, 2, 1] + 7/18*p[3, 3] + 3/8*p[4, 1,␣
→˓1] + 1/8*p[4, 2] + 1/5*p[5, 1] + 1/6*p[6]]

(continues on next page)

3152 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage.combinat.species.library.BinaryTreeSpecies()
Return the species of binary trees on n leaves.

The species of binary trees B is defined by B = X + B*B where X is the singleton species.

EXAMPLES:

sage: B = species.BinaryTreeSpecies()
sage: B.generating_series().counts(10)
[0, 1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400]
sage: B.isotype_generating_series().counts(10)
[0, 1, 1, 2, 5, 14, 42, 132, 429, 1430]
sage: B._check()
True

sage: B = species.BinaryTreeSpecies()
sage: a = B.structures([1,2,3,4,5])[187]; a
2*((5*3)*(4*1))
sage: a.automorphism_group()
Permutation Group with generators [()]

sage.combinat.species.library.SimpleGraphSpecies()
Returns the species of simple graphs.

EXAMPLES:

sage: S = species.SimpleGraphSpecies()
sage: S.generating_series().counts(10)
[1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736]
sage: S.cycle_index_series().coefficients(5)
[p[],
p[1],
p[1, 1] + p[2],
4/3*p[1, 1, 1] + 2*p[2, 1] + 2/3*p[3],
8/3*p[1, 1, 1, 1] + 4*p[2, 1, 1] + 2*p[2, 2] + 4/3*p[3, 1] + p[4]]
sage: S.isotype_generating_series().coefficients(6)
[1, 1, 2, 4, 11, 34]

5.1.319 Linear-order Species

class sage.combinat.species.linear_order_species.LinearOrderSpecies(min=None, max=None,
weight=None)

Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.
unique_representation.UniqueRepresentation

Returns the species of linear orders.

EXAMPLES:

sage: L = species.LinearOrderSpecies()
sage: L.generating_series().coefficients(5)
[1, 1, 1, 1, 1]

(continues on next page)

5.1. Comprehensive Module List 3153

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

(continued from previous page)

sage: L = species.LinearOrderSpecies()
sage: L._check()
True
sage: L == loads(dumps(L))
True

class sage.combinat.species.linear_order_species.LinearOrderSpeciesStructure(parent, labels,
list)

Bases: sage.combinat.species.structure.GenericSpeciesStructure

automorphism_group()
Returns the group of permutations whose action on this structure leave it fixed. For the species of linear
orders, there is no non-trivial automorphism.

EXAMPLES:

sage: F = species.LinearOrderSpecies()
sage: a = F.structures(["a", "b", "c"])[0]; a
['a', 'b', 'c']
sage: a.automorphism_group()
Symmetric group of order 1! as a permutation group

canonical_label()
EXAMPLES:

sage: P = species.LinearOrderSpecies()
sage: s = P.structures(["a", "b", "c"]).random_element()
sage: s.canonical_label()
['a', 'b', 'c']

transport(perm)
Returns the transport of this structure along the permutation perm.

EXAMPLES:

sage: F = species.LinearOrderSpecies()
sage: a = F.structures(["a", "b", "c"])[0]; a
['a', 'b', 'c']
sage: p = PermutationGroupElement((1,2))
sage: a.transport(p)
['b', 'a', 'c']

sage.combinat.species.linear_order_species.LinearOrderSpecies_class
alias of sage.combinat.species.linear_order_species.LinearOrderSpecies

3154 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.320 Miscellaneous Functions

sage.combinat.species.misc.accept_size(f)
The purpose of this decorator is to change calls like species.SetSpecies(size=1) to species.SetSpecies(min=1,
max=2). This is to make caching species easier and to restrict the number of parameters that the lower level code
needs to know about.

EXAMPLES:

sage: from sage.combinat.species.misc import accept_size
sage: def f(*args, **kwds):
....: print("{} {}".format(args, sorted(kwds.items())))
sage: f = accept_size(f)
sage: f(min=1)
() [('min', 1)]
sage: f(size=2)
() [('max', 3), ('min', 2)]

sage.combinat.species.misc.change_support(perm, support, change_perm=None)
Changes the support of a permutation defined on [1, . . . , n] to support.

EXAMPLES:

sage: from sage.combinat.species.misc import change_support
sage: p = PermutationGroupElement((1,2,3)); p
(1,2,3)
sage: change_support(p, [3,4,5])
(3,4,5)

5.1.321 Partition Species

class sage.combinat.species.partition_species.PartitionSpecies(min=None, max=None,
weight=None)

Bases: sage.combinat.species.species.GenericCombinatorialSpecies

Returns the species of partitions.

EXAMPLES:

sage: P = species.PartitionSpecies()
sage: P.generating_series().coefficients(5)
[1, 1, 1, 5/6, 5/8]
sage: P.isotype_generating_series().coefficients(5)
[1, 1, 2, 3, 5]

sage: P = species.PartitionSpecies()
sage: P._check()
True
sage: P == loads(dumps(P))
True

class sage.combinat.species.partition_species.PartitionSpeciesStructure(parent, labels, list)
Bases: sage.combinat.species.structure.GenericSpeciesStructure

EXAMPLES:

5.1. Comprehensive Module List 3155

Combinatorics, Release 9.7

sage: from sage.combinat.species.partition_species import PartitionSpeciesStructure
sage: P = species.PartitionSpecies()
sage: s = PartitionSpeciesStructure(P, ['a','b','c'], [[1,2],[3]]); s
{{'a', 'b'}, {'c'}}
sage: s == loads(dumps(s))
True

automorphism_group()
Returns the group of permutations whose action on this set partition leave it fixed.

EXAMPLES:

sage: p = PermutationGroupElement((2,3))
sage: from sage.combinat.species.partition_species import␣
→˓PartitionSpeciesStructure
sage: a = PartitionSpeciesStructure(None, [2,3,4], [[1,2],[3]]); a
{{2, 3}, {4}}
sage: a.automorphism_group()
Permutation Group with generators [(1,2)]

canonical_label()
EXAMPLES:

sage: P = species.PartitionSpecies()
sage: S = P.structures(["a", "b", "c"])
sage: [s.canonical_label() for s in S]
[{{'a', 'b', 'c'}},
{{'a', 'b'}, {'c'}},
{{'a', 'b'}, {'c'}},
{{'a', 'b'}, {'c'}},
{{'a'}, {'b'}, {'c'}}]

change_labels(labels)
Return a relabelled structure.

INPUT:

• labels, a list of labels.

OUTPUT:

A structure with the i-th label of self replaced with the i-th label of the list.

EXAMPLES:

sage: p = PermutationGroupElement((2,3))
sage: from sage.combinat.species.partition_species import␣
→˓PartitionSpeciesStructure
sage: a = PartitionSpeciesStructure(None, [2,3,4], [[1,2],[3]]); a
{{2, 3}, {4}}
sage: a.change_labels([1,2,3])
{{1, 2}, {3}}

transport(perm)
Returns the transport of this set partition along the permutation perm. For set partitions, this is the direct
product of the automorphism groups for each of the blocks.

EXAMPLES:

3156 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: p = PermutationGroupElement((2,3))
sage: from sage.combinat.species.partition_species import␣
→˓PartitionSpeciesStructure
sage: a = PartitionSpeciesStructure(None, [2,3,4], [[1,2],[3]]); a
{{2, 3}, {4}}
sage: a.transport(p)
{{2, 4}, {3}}

sage.combinat.species.partition_species.PartitionSpecies_class
alias of sage.combinat.species.partition_species.PartitionSpecies

5.1.322 Permutation species

class sage.combinat.species.permutation_species.PermutationSpecies(min=None, max=None,
weight=None)

Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.
unique_representation.UniqueRepresentation

Returns the species of permutations.

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: P.generating_series().coefficients(5)
[1, 1, 1, 1, 1]
sage: P.isotype_generating_series().coefficients(5)
[1, 1, 2, 3, 5]

sage: P = species.PermutationSpecies()
sage: c = P.generating_series().coefficients(3)
sage: P._check()
True
sage: P == loads(dumps(P))
True

class sage.combinat.species.permutation_species.PermutationSpeciesStructure(parent, labels,
list)

Bases: sage.combinat.species.structure.GenericSpeciesStructure

automorphism_group()
Returns the group of permutations whose action on this structure leave it fixed.

EXAMPLES:

sage: set_random_seed(0)
sage: p = PermutationGroupElement((2,3,4))
sage: P = species.PermutationSpecies()
sage: a = P.structures(["a", "b", "c", "d"])[2]; a
['a', 'c', 'b', 'd']
sage: a.automorphism_group()
Permutation Group with generators [(2,3), (1,4)]

sage: [a.transport(perm) for perm in a.automorphism_group()]
[['a', 'c', 'b', 'd'],

(continues on next page)

5.1. Comprehensive Module List 3157

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

(continued from previous page)

['a', 'c', 'b', 'd'],
['a', 'c', 'b', 'd'],
['a', 'c', 'b', 'd']]

canonical_label()
EXAMPLES:

sage: P = species.PermutationSpecies()
sage: S = P.structures(["a", "b", "c"])
sage: [s.canonical_label() for s in S]
[['a', 'b', 'c'],
['b', 'a', 'c'],
['b', 'a', 'c'],
['b', 'c', 'a'],
['b', 'c', 'a'],
['b', 'a', 'c']]

permutation_group_element()
Returns self as a permutation group element.

EXAMPLES:

sage: p = PermutationGroupElement((2,3,4))
sage: P = species.PermutationSpecies()
sage: a = P.structures(["a", "b", "c", "d"])[2]; a
['a', 'c', 'b', 'd']
sage: a.permutation_group_element()
(2,3)

transport(perm)
Returns the transport of this structure along the permutation perm.

EXAMPLES:

sage: p = PermutationGroupElement((2,3,4))
sage: P = species.PermutationSpecies()
sage: a = P.structures(["a", "b", "c", "d"])[2]; a
['a', 'c', 'b', 'd']
sage: a.transport(p)
['a', 'd', 'c', 'b']

sage.combinat.species.permutation_species.PermutationSpecies_class
alias of sage.combinat.species.permutation_species.PermutationSpecies

3158 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.323 Product species

class sage.combinat.species.product_species.ProductSpecies(F, G, min=None, max=None,
weight=None)

Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.
unique_representation.UniqueRepresentation

EXAMPLES:

sage: X = species.SingletonSpecies()
sage: A = X*X
sage: A.generating_series().coefficients(4)
[0, 0, 1, 0]

sage: P = species.PermutationSpecies()
sage: F = P * P; F
Product of (Permutation species) and (Permutation species)
sage: F == loads(dumps(F))
True
sage: F._check()
True

left_factor()
Returns the left factor of this product.

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: X = species.SingletonSpecies()
sage: F = P*X
sage: F.left_factor()
Permutation species

right_factor()
Returns the right factor of this product.

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: X = species.SingletonSpecies()
sage: F = P*X
sage: F.right_factor()
Singleton species

weight_ring()
Returns the weight ring for this species. This is determined by asking Sage’s coercion model what the result
is when you multiply (and add) elements of the weight rings for each of the operands.

EXAMPLES:

sage: S = species.SetSpecies()
sage: C = S*S
sage: C.weight_ring()
Rational Field

5.1. Comprehensive Module List 3159

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

sage: S = species.SetSpecies(weight=QQ['t'].gen())
sage: C = S*S
sage: C.weight_ring()
Univariate Polynomial Ring in t over Rational Field

sage: S = species.SetSpecies()
sage: C = (S*S).weighted(QQ['t'].gen())
sage: C.weight_ring()
Univariate Polynomial Ring in t over Rational Field

class sage.combinat.species.product_species.ProductSpeciesStructure(parent, labels, subset, left,
right)

Bases: sage.combinat.species.structure.GenericSpeciesStructure

automorphism_group()
EXAMPLES:

sage: p = PermutationGroupElement((2,3))
sage: S = species.SetSpecies()
sage: F = S * S
sage: a = F.structures([1,2,3,4])[1]; a
{1}*{2, 3, 4}
sage: a.automorphism_group()
Permutation Group with generators [(2,3), (2,3,4)]

sage: [a.transport(g) for g in a.automorphism_group()]
[{1}*{2, 3, 4},
{1}*{2, 3, 4},
{1}*{2, 3, 4},
{1}*{2, 3, 4},
{1}*{2, 3, 4},
{1}*{2, 3, 4}]

sage: a = F.structures([1,2,3,4])[8]; a
{2, 3}*{1, 4}
sage: [a.transport(g) for g in a.automorphism_group()]
[{2, 3}*{1, 4}, {2, 3}*{1, 4}, {2, 3}*{1, 4}, {2, 3}*{1, 4}]

canonical_label()
EXAMPLES:

sage: S = species.SetSpecies()
sage: F = S * S
sage: S = F.structures(['a','b','c']).list(); S
[{}*{'a', 'b', 'c'},
{'a'}*{'b', 'c'},
{'b'}*{'a', 'c'},
{'c'}*{'a', 'b'},
{'a', 'b'}*{'c'},
{'a', 'c'}*{'b'},
{'b', 'c'}*{'a'},
{'a', 'b', 'c'}*{}]

3160 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: F.isotypes(['a','b','c']).cardinality()
4
sage: [s.canonical_label() for s in S]
[{}*{'a', 'b', 'c'},
{'a'}*{'b', 'c'},
{'a'}*{'b', 'c'},
{'a'}*{'b', 'c'},
{'a', 'b'}*{'c'},
{'a', 'b'}*{'c'},
{'a', 'b'}*{'c'},
{'a', 'b', 'c'}*{}]

change_labels(labels)
Return a relabelled structure.

INPUT:

• labels, a list of labels.

OUTPUT:

A structure with the i-th label of self replaced with the i-th label of the list.

EXAMPLES:

sage: S = species.SetSpecies()
sage: F = S * S
sage: a = F.structures(['a','b','c'])[0]; a
{}*{'a', 'b', 'c'}
sage: a.change_labels([1,2,3])
{}*{1, 2, 3}

transport(perm)
EXAMPLES:

sage: p = PermutationGroupElement((2,3))
sage: S = species.SetSpecies()
sage: F = S * S
sage: a = F.structures(['a','b','c'])[4]; a
{'a', 'b'}*{'c'}
sage: a.transport(p)
{'a', 'c'}*{'b'}

sage.combinat.species.product_species.ProductSpecies_class
alias of sage.combinat.species.product_species.ProductSpecies

5.1. Comprehensive Module List 3161

Combinatorics, Release 9.7

5.1.324 Recursive Species

class sage.combinat.species.recursive_species.CombinatorialSpecies
Bases: sage.combinat.species.species.GenericCombinatorialSpecies

EXAMPLES:

sage: F = CombinatorialSpecies()
sage: loads(dumps(F))
Combinatorial species

sage: X = species.SingletonSpecies()
sage: E = species.EmptySetSpecies()
sage: L = CombinatorialSpecies()
sage: L.define(E+X*L)
sage: L.generating_series().coefficients(4)
[1, 1, 1, 1]
sage: LL = loads(dumps(L))
sage: LL.generating_series().coefficients(4)
[1, 1, 1, 1]

define(x)
Define self to be equal to the combinatorial species x.

This is used to define combinatorial species recursively. All of the real work is done by calling the .set()
method for each of the series associated to self.

EXAMPLES: The species of linear orders L can be recursively defined by𝐿 = 1+𝑋*𝐿where 1 represents
the empty set species and X represents the singleton species.

sage: X = species.SingletonSpecies()
sage: E = species.EmptySetSpecies()
sage: L = CombinatorialSpecies()
sage: L.define(E+X*L)
sage: L.generating_series().coefficients(4)
[1, 1, 1, 1]
sage: L.structures([1,2,3]).cardinality()
6
sage: L.structures([1,2,3]).list()
[1*(2*(3*{})),
1*(3*(2*{})),
2*(1*(3*{})),
2*(3*(1*{})),
3*(1*(2*{})),
3*(2*(1*{}))]

sage: L = species.LinearOrderSpecies()
sage: L.generating_series().coefficients(4)
[1, 1, 1, 1]
sage: L.structures([1,2,3]).cardinality()
6
sage: L.structures([1,2,3]).list()
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

3162 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

weight_ring()
EXAMPLES:

sage: F = species.CombinatorialSpecies()
sage: F.weight_ring()
Rational Field

sage: X = species.SingletonSpecies()
sage: E = species.EmptySetSpecies()
sage: L = CombinatorialSpecies()
sage: L.define(E+X*L)
sage: L.weight_ring()
Rational Field

class sage.combinat.species.recursive_species.CombinatorialSpeciesStructure(parent, s,
**options)

Bases: sage.combinat.species.structure.SpeciesStructureWrapper

5.1.325 Lazy Power Series

This file provides an implementation of lazy univariate power series, which uses the stream class for its internal data
structure. The lazy power series keep track of their approximate order as much as possible without forcing the compu-
tation of any additional coefficients. This is required for recursively defined power series.

This code is based on the work of Ralf Hemmecke and Martin Rubey’s Aldor-Combinat, which can be found at http:
//www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html. In particular, the relevant section for this file
can be found at http://www.risc.uni-linz.ac.at/people/hemmecke/AldorCombinat/combinatse9.html.

class sage.combinat.species.series.LazyPowerSeries(A, stream=None, order=None, aorder=None,
aorder_changed=True, is_initialized=False,
name=None)

Bases: sage.structure.element.AlgebraElement

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: f = L()
sage: loads(dumps(f))
Uninitialized lazy power series

add(y)
EXAMPLES: Test Plus 1

sage: from sage.combinat.species.series import *
sage: from sage.combinat.species.stream import Stream
sage: L = LazyPowerSeriesRing(QQ)
sage: gs0 = L([0])
sage: gs1 = L([1])
sage: sum1 = gs0 + gs1
sage: sum2 = gs1 + gs1
sage: sum3 = gs1 + gs0
sage: [gs0.coefficient(i) for i in range(11)]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
sage: [gs1.coefficient(i) for i in range(11)]

(continues on next page)

5.1. Comprehensive Module List 3163

http://www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html
http://www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html
http://www.risc.uni-linz.ac.at/people/hemmecke/AldorCombinat/combinatse9.html
../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.AlgebraElement

Combinatorics, Release 9.7

(continued from previous page)

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
sage: [sum1.coefficient(i) for i in range(11)]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
sage: [sum2.coefficient(i) for i in range(11)]
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
sage: [sum3.coefficient(i) for i in range(11)]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Test Plus 2

sage: gs1 = L([1,2,4,8,0])
sage: gs2 = L([-1, 0,-1,-9,22,0])
sage: sum = gs1 + gs2
sage: sum2 = gs2 + gs1
sage: [sum.coefficient(i) for i in range(5)]
[0, 2, 3, -1, 22]
sage: [sum.coefficient(i) for i in range(5, 11)]
[0, 0, 0, 0, 0, 0]
sage: [sum2.coefficient(i) for i in range(5)]
[0, 2, 3, -1, 22]
sage: [sum2.coefficient(i) for i in range(5, 11)]
[0, 0, 0, 0, 0, 0]

coefficient(n)
Return the coefficient of xn in self.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: f = L(ZZ)
sage: [f.coefficient(i) for i in range(5)]
[0, 1, -1, 2, -2]

coefficients(n)
Return the first n coefficients of self.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: f = L([1,2,3,0])
sage: f.coefficients(5)
[1, 2, 3, 0, 0]

compose(y)
Return the composition of this power series and the power series y.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: s = L([1])
sage: t = L([0,0,1])
sage: u = s(t)
sage: u.coefficients(11)
[1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

3164 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Test Compose 2

sage: s = L([1])
sage: t = L([0,0,1,0])
sage: u = s(t)
sage: u.aorder
0
sage: u.order
Unknown series order
sage: u.coefficients(10)
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
sage: u.aorder
0
sage: u.order
0

Test Compose 3 s = 1/(1-x), t = x/(1-x) s(t) = (1-x)/(1-2x)

sage: s = L([1])
sage: t = L([0,1])
sage: u = s(t)
sage: u.coefficients(14)
[1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]

composition(y)
Return the composition of this power series and the power series y.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: s = L([1])
sage: t = L([0,0,1])
sage: u = s(t)
sage: u.coefficients(11)
[1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Test Compose 2

sage: s = L([1])
sage: t = L([0,0,1,0])
sage: u = s(t)
sage: u.aorder
0
sage: u.order
Unknown series order
sage: u.coefficients(10)
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
sage: u.aorder
0
sage: u.order
0

Test Compose 3 s = 1/(1-x), t = x/(1-x) s(t) = (1-x)/(1-2x)

5.1. Comprehensive Module List 3165

Combinatorics, Release 9.7

sage: s = L([1])
sage: t = L([0,1])
sage: u = s(t)
sage: u.coefficients(14)
[1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]

compute_aorder(*args, **kwargs)
The default compute_aorder does nothing.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: a = L(1)
sage: a.compute_aorder() is None
True

compute_coefficients(i)
Computes all the coefficients of self up to i.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: a = L([1,2,3])
sage: a.compute_coefficients(5)
sage: a
1 + 2*x + 3*x^2 + 3*x^3 + 3*x^4 + 3*x^5 + ...

define(x)
EXAMPLES: Test Recursive 0

sage: L = LazyPowerSeriesRing(QQ)
sage: one = L(1)
sage: monom = L.gen()
sage: s = L()
sage: s._name = 's'
sage: s.define(one+monom*s)
sage: s.aorder
0
sage: s.order
Unknown series order
sage: [s.coefficient(i) for i in range(6)]
[1, 1, 1, 1, 1, 1]

Test Recursive 1

sage: s = L()
sage: s._name = 's'
sage: s.define(one+monom*s*s)
sage: s.aorder
0
sage: s.order
Unknown series order
sage: [s.coefficient(i) for i in range(6)]
[1, 1, 2, 5, 14, 42]

3166 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Test Recursive 1b

sage: s = L()
sage: s._name = 's'
sage: s.define(monom + s*s)
sage: s.aorder
1
sage: s.order
Unknown series order
sage: [s.coefficient(i) for i in range(7)]
[0, 1, 1, 2, 5, 14, 42]

Test Recursive 2

sage: s = L()
sage: s._name = 's'
sage: t = L()
sage: t._name = 't'
sage: s.define(one+monom*t*t*t)
sage: t.define(one+monom*s*s)
sage: [s.coefficient(i) for i in range(9)]
[1, 1, 3, 9, 34, 132, 546, 2327, 10191]
sage: [t.coefficient(i) for i in range(9)]
[1, 1, 2, 7, 24, 95, 386, 1641, 7150]

Test Recursive 2b

sage: s = L()
sage: s._name = 's'
sage: t = L()
sage: t._name = 't'
sage: s.define(monom + t*t*t)
sage: t.define(monom + s*s)
sage: [s.coefficient(i) for i in range(9)]
[0, 1, 0, 1, 3, 3, 7, 30, 63]
sage: [t.coefficient(i) for i in range(9)]
[0, 1, 1, 0, 2, 6, 7, 20, 75]

Test Recursive 3

sage: s = L()
sage: s._name = 's'
sage: s.define(one+monom*s*s*s)
sage: [s.coefficient(i) for i in range(10)]
[1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675]

derivative()
EXAMPLES:

sage: from sage.combinat.species.stream import Stream
sage: L = LazyPowerSeriesRing(QQ)
sage: one = L(1)
sage: monom = L.gen()
sage: s = L([1])

(continues on next page)

5.1. Comprehensive Module List 3167

Combinatorics, Release 9.7

(continued from previous page)

sage: u = s.derivative()
sage: u.coefficients(10)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

sage: s = L()
sage: s._name = 's'
sage: s.define(one+monom*s*s)
sage: u = s.derivative()
sage: u.coefficients(5) #[1*1, 2*2, 3*5, 4*14, 5*42]
[1, 4, 15, 56, 210]

sage: s = L([1])
sage: t = L([0,1])
sage: u = s(t).derivative()
sage: v = (s.derivative().compose(t))*t.derivative()
sage: u.coefficients(11)
[1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264]
sage: v.coefficients(11)
[1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264]

sage: s = L(); s._name='s'
sage: t = L(); t._name='t'
sage: s.define(monom+t*t*t)
sage: t.define(monom+s*s)
sage: u = (s*t).derivative()
sage: v = s.derivative()*t + s*t.derivative()
sage: u.coefficients(10)
[0, 2, 3, 4, 30, 72, 133, 552, 1791, 4260]
sage: v.coefficients(10)
[0, 2, 3, 4, 30, 72, 133, 552, 1791, 4260]
sage: u.coefficients(10) == v.coefficients(10)
True

sage: f = L._new_initial(2, Stream([0,0,4,5,6,0]))
sage: d = f.derivative()
sage: d.get_aorder()
1
sage: d.coefficients(5)
[0, 8, 15, 24, 0]

div(other)
Divide this power series by other.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: x = L.gen()

Fibonacci numbers:

sage: b = x / (1-x-x^2); b.compute_coefficients(10); b
x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6

(continues on next page)

3168 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

+ 13*x^7 + 21*x^8 + 34*x^9 + 55*x^10 + O(x^11)

exponential()

get_aorder()
Return the approximate order of self.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: a = L.gen()
sage: a.get_aorder()
1

get_order()
Return the order of self.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: a = L.gen()
sage: a.get_order()
1

get_stream()
Return self’s underlying Stream object.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: a = L.gen()
sage: s = a.get_stream()
sage: [s[i] for i in range(5)]
[0, 1, 0, 0, 0]

initialize_coefficient_stream(compute_coefficients)
Initializes the coefficient stream.

INPUT: compute_coefficients

integral(integration_constant=0)
EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: zero = L(0)
sage: s = zero
sage: t = s.integral()
sage: t.is_zero()
True

sage: s = zero
sage: t = s.integral(1)
sage: t.coefficients(6)
[1, 0, 0, 0, 0, 0]
sage: t._stream.is_constant()
True

5.1. Comprehensive Module List 3169

Combinatorics, Release 9.7

sage: s = L.term(1, 0)
sage: t = s.integral()
sage: t.coefficients(6)
[0, 1, 0, 0, 0, 0]
sage: t._stream.is_constant()
True

sage: s = L.term(1,0)
sage: t = s.integral(1)
sage: t.coefficients(6)
[1, 1, 0, 0, 0, 0]
sage: t._stream.is_constant()
True

sage: s = L.term(1, 4)
sage: t = s.integral()
sage: t.coefficients(10)
[0, 0, 0, 0, 0, 1/5, 0, 0, 0, 0]

sage: s = L.term(1,4)
sage: t = s.integral(1)
sage: t.coefficients(10)
[1, 0, 0, 0, 0, 1/5, 0, 0, 0, 0]

invert()
Return 1 over this power series, i.e. invert this power series.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: x = L.gen()

Geometric series:

sage: a = ~(1-x); a.compute_coefficients(10); a
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + O(x^11)

(Shifted) Fibonacci numbers:

sage: b = ~(1-x-x^2); b.compute_coefficients(10); b
1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5
+ 13*x^6 + 21*x^7 + 34*x^8 + 55*x^9 + 89*x^10 + O(x^11)

Series whose constant coefficient is 0 cannot be inverted:

sage: ~x
Traceback (most recent call last):
....
ZeroDivisionError: cannot invert x because constant coefficient is 0

is_finite(n=None)
EXAMPLES:

3170 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = LazyPowerSeriesRing(QQ)
sage: a = L([0,0,1,0,0]); a
O(1)
sage: a.is_finite()
False
sage: c = a[4]
sage: a.is_finite()
False
sage: a.is_finite(4)
False
sage: c = a[5]
sage: a.is_finite()
True
sage: a.is_finite(4)
True

is_zero()
Return True if and only if self is zero.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: s = L([0,2,3,0])
sage: s.is_zero()
False

sage: s = L(0)
sage: s.is_zero()
True

sage: s = L([0])
sage: s.is_zero()
False
sage: s.coefficient(0)
0
sage: s.coefficient(1)
0
sage: s.is_zero()
True

iterator(n=0, initial=None)
Return an iterator for the coefficients of self starting at n.

EXAMPLES:

sage: from sage.combinat.species.stream import Stream
sage: L = LazyPowerSeriesRing(QQ)
sage: f = L(range(10))
sage: g = f.iterator(2)
sage: [next(g) for i in range(5)]
[2, 3, 4, 5, 6]
sage: g = f.iterator(2, initial=[0,0])
sage: [next(g) for i in range(5)]
[0, 0, 2, 3, 4]

5.1. Comprehensive Module List 3171

Combinatorics, Release 9.7

refine_aorder()
Refines the approximate order of self as much as possible without computing any coefficients.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: a = L([0,0,0,0,1])
sage: a.aorder
0
sage: a.coefficient(2)
0
sage: a.aorder
0
sage: a.refine_aorder()
sage: a.aorder
3

sage: a = L([0,0])
sage: a.aorder
0
sage: a.coefficient(5)
0
sage: a.refine_aorder()
sage: a.aorder
Infinite series order

sage: a = L([0,0,1,0,0,0])
sage: a[4]
0
sage: a.refine_aorder()
sage: a.aorder
2

restricted(min=None, max=None)
Return the power series restricted to the coefficients starting at min and going up to, but not including max.

If min is not specified, then it is assumed to be zero. If max is not specified, then it is assumed to be infinity.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: a = L([1])
sage: a.restricted().coefficients(10)
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
sage: a.restricted(min=2).coefficients(10)
[0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
sage: a.restricted(max=5).coefficients(10)
[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
sage: a.restricted(min=2, max=6).coefficients(10)
[0, 0, 1, 1, 1, 1, 0, 0, 0, 0]

set_approximate_order(new_order)
Sets the approximate order of self and returns True if the approximate order has changed otherwise it will
return False.

EXAMPLES:

3172 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: L = LazyPowerSeriesRing(QQ)
sage: f = L([0,0,0,3,2,1,0])
sage: f.get_aorder()
0
sage: f.set_approximate_order(3)
True
sage: f.set_approximate_order(3)
False

tail()
Return the power series whose coefficients obtained by subtracting the constant term from this series and
then dividing by x.

EXAMPLES:

sage: from sage.combinat.species.stream import Stream
sage: L = LazyPowerSeriesRing(QQ)
sage: f = L(range(20))
sage: g = f.tail()
sage: g.coefficients(10)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

times(y)
EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: gs0 = L(0)
sage: gs1 = L([1])

sage: prod0 = gs0 * gs1
sage: [prod0.coefficient(i) for i in range(11)]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

sage: prod1 = gs1 * gs0
sage: [prod1.coefficient(i) for i in range(11)]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

sage: prod2 = gs1 * gs1
sage: [prod2.coefficient(i) for i in range(11)]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

sage: gs1 = L([1,2,4,8,0])
sage: gs2 = L([-1, 0,-1,-9,22,0])

sage: prod1 = gs1 * gs2
sage: [prod1.coefficient(i) for i in range(11)]
[-1, -2, -5, -19, 0, 0, 16, 176, 0, 0, 0]

sage: prod2 = gs2 * gs1
sage: [prod2.coefficient(i) for i in range(11)]
[-1, -2, -5, -19, 0, 0, 16, 176, 0, 0, 0]

5.1. Comprehensive Module List 3173

Combinatorics, Release 9.7

class sage.combinat.species.series.LazyPowerSeriesRing(R, names=None, element_class=None)
Bases: sage.rings.ring.Algebra

gen(i=0)
EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: L.gen().coefficients(5)
[0, 1, 0, 0, 0]

identity_element()
Return the one power series.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: L.identity_element()
1

ngens()
EXAMPLES:

sage: LazyPowerSeriesRing(QQ).ngens()
1

product_generator(g)
EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: s1 = L([1,1,0])
sage: s2 = L([1,0,1,0])
sage: s3 = L([1,0,0,1,0])
sage: s4 = L([1,0,0,0,1,0])
sage: s5 = L([1,0,0,0,0,1,0])
sage: s6 = L([1,0,0,0,0,0,1,0])
sage: s = [s1, s2, s3, s4, s5, s6]
sage: def g():
....: for a in s:
....: yield a
sage: p = L.product_generator(g())
sage: p.coefficients(26)
[1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0]

sage: def m(n):
....: yield 1
....: while True:
....: for i in range(n-1):
....: yield 0
....: yield 1
sage: def s(n):
....: q = 1/n
....: yield 0
....: while True:
....: for i in range(n-1):

(continues on next page)

3174 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/rings/sage/rings/ring.html#sage.rings.ring.Algebra

Combinatorics, Release 9.7

(continued from previous page)

....: yield 0

....: yield q

sage: def lhs_gen():
....: n = 1
....: while True:
....: yield L(m(n))
....: n += 1

sage: def rhs_gen():
....: n = 1
....: while True:
....: yield L(s(n))
....: n += 1
sage: lhs = L.product_generator(lhs_gen())
sage: rhs = L.sum_generator(rhs_gen()).exponential()
sage: lhs.coefficients(10)
[1, 1, 2, 3, 5, 7, 11, 15, 22, 30]
sage: rhs.coefficients(10)
[1, 1, 2, 3, 5, 7, 11, 15, 22, 30]

sum(a)
EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: l = [L(ZZ)]*3
sage: L.sum(l).coefficients(10)
[0, 3, -3, 6, -6, 9, -9, 12, -12, 15]

sum_generator(g)
EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: g = [L([1])]*6 + [L(0)]
sage: t = L.sum_generator(g)
sage: t.coefficients(10)
[1, 2, 3, 4, 5, 6, 6, 6, 6, 6]

sage: s = L([1])
sage: def g():
....: while True:
....: yield s
sage: t = L.sum_generator(g())
sage: t.coefficients(9)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

term(r, n)
EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: L.term(0,0)
0

(continues on next page)

5.1. Comprehensive Module List 3175

Combinatorics, Release 9.7

(continued from previous page)

sage: L.term(3,2).coefficients(5)
[0, 0, 3, 0, 0]

zero()
Return the zero power series.

EXAMPLES:

sage: L = LazyPowerSeriesRing(QQ)
sage: L.zero()
0

sage.combinat.species.series.uninitialized()
EXAMPLES:

sage: from sage.combinat.species.series import uninitialized
sage: uninitialized()
Traceback (most recent call last):
...
RuntimeError: we should never be here

5.1.326 Series Order

This file provides some utility classes which are useful when working with unknown, known, and infinite series orders
for univariate power series.

This code is based on the work of Ralf Hemmecke and Martin Rubey’s Aldor-Combinat, which can be found at http:
//www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html. In particular, the relevant section for this file
can be found at http://www.risc.uni-linz.ac.at/people/hemmecke/AldorCombinat/combinatsu30.html.

class sage.combinat.species.series_order.InfiniteSeriesOrder
Bases: sage.combinat.species.series_order.SeriesOrderElement

class sage.combinat.species.series_order.SeriesOrderElement
Bases: object

class sage.combinat.species.series_order.UnknownSeriesOrder
Bases: sage.combinat.species.series_order.SeriesOrderElement

sage.combinat.species.series_order.bounded_decrement(x)
EXAMPLES:

sage: from sage.combinat.species.series_order import *
sage: u = UnknownSeriesOrder()
sage: bounded_decrement(u)
Unknown series order
sage: bounded_decrement(4)
3
sage: bounded_decrement(0)
0

sage.combinat.species.series_order.increment(x)
EXAMPLES:

3176 Chapter 5. Comprehensive Module List

http://www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html
http://www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html
http://www.risc.uni-linz.ac.at/people/hemmecke/AldorCombinat/combinatsu30.html

Combinatorics, Release 9.7

sage: from sage.combinat.species.series_order import *
sage: u = UnknownSeriesOrder()
sage: increment(u)
Unknown series order
sage: increment(2)
3

5.1.327 Set Species

class sage.combinat.species.set_species.SetSpecies(min=None, max=None, weight=None)
Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.
unique_representation.UniqueRepresentation

Returns the species of sets.

EXAMPLES:

sage: E = species.SetSpecies()
sage: E.structures([1,2,3]).list()
[{1, 2, 3}]
sage: E.isotype_generating_series().coefficients(4)
[1, 1, 1, 1]

sage: S = species.SetSpecies()
sage: c = S.generating_series().coefficients(3)
sage: S._check()
True
sage: S == loads(dumps(S))
True

class sage.combinat.species.set_species.SetSpeciesStructure(parent, labels, list)
Bases: sage.combinat.species.structure.GenericSpeciesStructure

automorphism_group()
Returns the group of permutations whose action on this set leave it fixed. For the species of sets, there is
only one isomorphism class, so every permutation is in its automorphism group.

EXAMPLES:

sage: F = species.SetSpecies()
sage: a = F.structures(["a", "b", "c"]).random_element(); a
{'a', 'b', 'c'}
sage: a.automorphism_group()
Symmetric group of order 3! as a permutation group

canonical_label()
EXAMPLES:

sage: S = species.SetSpecies()
sage: a = S.structures(["a","b","c"]).random_element(); a
{'a', 'b', 'c'}
sage: a.canonical_label()
{'a', 'b', 'c'}

5.1. Comprehensive Module List 3177

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

transport(perm)
Returns the transport of this set along the permutation perm.

EXAMPLES:

sage: F = species.SetSpecies()
sage: a = F.structures(["a", "b", "c"]).random_element(); a
{'a', 'b', 'c'}
sage: p = PermutationGroupElement((1,2))
sage: a.transport(p)
{'a', 'b', 'c'}

sage.combinat.species.set_species.SetSpecies_class
alias of sage.combinat.species.set_species.SetSpecies

5.1.328 Combinatorial Species

This file defines the main classes for working with combinatorial species, operations on them, as well as some imple-
mentations of basic species required for other constructions.

This code is based on the work of Ralf Hemmecke and Martin Rubey’s Aldor-Combinat, which can be found at http:
//www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html. In particular, the relevant section for this file
can be found at http://www.risc.uni-linz.ac.at/people/hemmecke/AldorCombinat/combinatse8.html.

Weighted Species:

As a first application of weighted species, we count unlabeled ordered trees by total number of nodes and number of
internal nodes. To achieve this, we assign a weight of 1 to the leaves and of 𝑞 to internal nodes:

sage: q = QQ['q'].gen()
sage: leaf = species.SingletonSpecies()
sage: internal_node = species.SingletonSpecies(weight=q)
sage: L = species.LinearOrderSpecies(min=1)
sage: T = species.CombinatorialSpecies()
sage: T.define(leaf + internal_node*L(T))
sage: T.isotype_generating_series().coefficients(6)
[0, 1, q, q^2 + q, q^3 + 3*q^2 + q, q^4 + 6*q^3 + 6*q^2 + q]

Consider the following:

sage: T.isotype_generating_series().coefficient(4)
q^3 + 3*q^2 + q

This means that, among the trees on 4 nodes, one has a single internal node, three have two internal nodes, and one has
three internal nodes.

class sage.combinat.species.species.GenericCombinatorialSpecies(min=None, max=None,
weight=None)

Bases: sage.structure.sage_object.SageObject

algebraic_equation_system()
Return a system of algebraic equations satisfied by this species.

The nodes are numbered in the order that they appear as vertices of the associated digraph.

EXAMPLES:

3178 Chapter 5. Comprehensive Module List

http://www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html
http://www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html
http://www.risc.uni-linz.ac.at/people/hemmecke/AldorCombinat/combinatse8.html
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

sage: B = species.BinaryTreeSpecies()
sage: B.algebraic_equation_system()
[-node3^2 + node1, -node1 + node3 + (-z)]

sage: sorted(B.digraph().vertex_iterator(), key=str)
[Combinatorial species,
Product of (Combinatorial species) and (Combinatorial species),
Singleton species,
Sum of (Singleton species) and (Product of (Combinatorial species) and␣
→˓(Combinatorial species))]

sage: B.algebraic_equation_system()[0].parent()
Multivariate Polynomial Ring in node0, node1, node2, node3 over Fraction Field␣
→˓of Univariate Polynomial Ring in z over Rational Field

composition(g)
EXAMPLES:

sage: S = species.SetSpecies()
sage: S(S)
Composition of (Set species) and (Set species)

cycle_index_series(base_ring=None)
Return the cycle index series for this species.

The cycle index series is a sequence of symmetric functions.

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: g = P.cycle_index_series()
sage: g.coefficients(4)
[p[], p[1], p[1, 1] + p[2], p[1, 1, 1] + p[2, 1] + p[3]]

digraph()
Return a directed graph where the vertices are the individual species that make up this one.

EXAMPLES:

sage: X = species.SingletonSpecies()
sage: B = species.CombinatorialSpecies()
sage: B.define(X+B*B)
sage: g = B.digraph(); g
Multi-digraph on 4 vertices

sage: sorted(g, key=str)
[Combinatorial species,
Product of (Combinatorial species) and (Combinatorial species),
Singleton species,
Sum of (Singleton species) and
(Product of (Combinatorial species) and (Combinatorial species))]

sage: d = {sp: i for i, sp in enumerate(g)}
sage: g.relabel(d)

(continues on next page)

5.1. Comprehensive Module List 3179

Combinatorics, Release 9.7

(continued from previous page)

sage: g.canonical_label().edges(sort=True)
[(0, 3, None), (2, 0, None), (2, 0, None), (3, 1, None), (3, 2, None)]

functorial_composition(g)
Return the functorial composition of self with g.

EXAMPLES:

sage: E = species.SetSpecies()
sage: E2 = E.restricted(min=2, max=3)
sage: WP = species.SubsetSpecies()
sage: P2 = E2*E
sage: G = WP.functorial_composition(P2)
sage: G.isotype_generating_series().coefficients(5)
[1, 1, 2, 4, 11]

generating_series(base_ring=None)
Return the generating series for this species.

This is an exponential generating series so the 𝑛-th coefficient of the series corresponds to the number of
labeled structures with 𝑛 labels divided by 𝑛!.

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: g = P.generating_series()
sage: g.coefficients(4)
[1, 1, 1, 1]
sage: g.counts(4)
[1, 1, 2, 6]
sage: P.structures([1,2,3]).list()
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
sage: len(_)
6

is_weighted()
Return True if this species has a nontrivial weighting associated with it.

EXAMPLES:

sage: C = species.CycleSpecies()
sage: C.is_weighted()
False

isotype_generating_series(base_ring=None)
Return the isotype generating series for this species.

The 𝑛-th coefficient of this series corresponds to the number of isomorphism types for the structures on 𝑛
labels.

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: g = P.isotype_generating_series()
sage: g.coefficients(4)
[1, 1, 2, 3]

(continues on next page)

3180 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: g.counts(4)
[1, 1, 2, 3]
sage: P.isotypes([1,2,3]).list()
[[2, 3, 1], [2, 1, 3], [1, 2, 3]]
sage: len(_)
3

isotypes(labels, structure_class=None)
EXAMPLES:

sage: F = CombinatorialSpecies()
sage: F.isotypes([1,2,3]).list()
Traceback (most recent call last):
...
NotImplementedError

product(g)
Return the product of self and g.

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: F = P * P; F
Product of (Permutation species) and (Permutation species)

restricted(*args, **kwds)
Return the restriction of the species.

INPUT:

• min – optional integer

• max – optional integer

EXAMPLES:

sage: S = species.SetSpecies().restricted(min=3); S
Set species with min=3
sage: S.structures([1,2]).list()
[]
sage: S.generating_series().coefficients(5)
[0, 0, 0, 1/6, 1/24]

structures(labels, structure_class=None)
EXAMPLES:

sage: F = CombinatorialSpecies()
sage: F.structures([1,2,3]).list()
Traceback (most recent call last):
...
NotImplementedError

sum(g)
Return the sum of self and g.

EXAMPLES:

5.1. Comprehensive Module List 3181

Combinatorics, Release 9.7

sage: P = species.PermutationSpecies()
sage: F = P + P; F
Sum of (Permutation species) and (Permutation species)
sage: F.structures([1,2]).list()
[[1, 2], [2, 1], [1, 2], [2, 1]]

weight_ring()
Return the ring in which the weights of this species occur.

By default, this is just the field of rational numbers.

EXAMPLES:

sage: species.SetSpecies().weight_ring()
Rational Field

weighted(weight)
Return a version of this species with the specified weight.

EXAMPLES:

sage: t = ZZ['t'].gen()
sage: C = species.CycleSpecies(); C
Cyclic permutation species
sage: C.weighted(t)
Cyclic permutation species with weight=t

5.1.329 Streams or Infinite Arrays

This code is based on the work of Ralf Hemmecke and Martin Rubey’s Aldor-Combinat, which can be found at http:
//www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html. In particular, the relevant section for this file
can be found at http://www.risc.uni-linz.ac.at/people/hemmecke/AldorCombinat/combinatse12.html.

sage.combinat.species.stream.Stream(x=None, const=None)
Returns a stream.

EXAMPLES: We can create a constant stream by just passing a

sage: from sage.combinat.species.stream import Stream
sage: s = Stream(const=0)
sage: [s[i] for i in range(10)]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

class sage.combinat.species.stream.Stream_class(gen=None, const=None, func=None)
Bases: sage.structure.sage_object.SageObject

EXAMPLES:

sage: from sage.combinat.species.stream import Stream
sage: from builtins import zip
sage: s = Stream(const=0)
sage: len(s)
1
sage: [x for (x,i) in zip(s, range(4))]
[0, 0, 0, 0]

(continues on next page)

3182 Chapter 5. Comprehensive Module List

http://www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html
http://www.risc.uni-linz.ac.at/people/hemmecke/aldor/combinat/index.html
http://www.risc.uni-linz.ac.at/people/hemmecke/AldorCombinat/combinatse12.html
../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

(continued from previous page)

sage: len(s)
1

sage: s = Stream(const=4)
sage: g = iter(s)
sage: l1 = [x for (x,i) in zip(g, range(10))]
sage: l = [4 for k in range(10)]
sage: l == l1
True

sage: h = lambda l: 1 if len(l) < 2 else l[-1] + l[-2]
sage: fib = Stream(h)
sage: [x for (x,i) in zip(fib, range(11))]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

sage: r = [4, 3, 5, 2, 6, 1, 1, 1, 1, 1]
sage: l = [4, 3, 5, 2, 6, 1]
sage: s = Stream(l)
sage: s[3] = -1
sage: [x for (x,i) in zip(s, r)]
[4, 3, 5, -1, 6, 1, 1, 1, 1, 1]
sage: s[5] = -2
sage: [x for (x,i) in zip(s, r)]
[4, 3, 5, -1, 6, -2, 1, 1, 1, 1]
sage: s[6] = -3
sage: [x for (x,i) in zip(s, r)]
[4, 3, 5, -1, 6, -2, -3, 1, 1, 1]
sage: s[8] = -4
sage: [x for (x,i) in zip(s, r)]
[4, 3, 5, -1, 6, -2, -3, 1, -4, 1]
sage: a = Stream(const=0)
sage: a[2] = 3
sage: [x for (x,i) in zip(a, range(4))]
[0, 0, 3, 0]

data()
Returns a list of all the coefficients computed so far.

EXAMPLES:

sage: from sage.combinat.species.stream import Stream, _integers_from
sage: s = Stream(_integers_from(3))
sage: s.data()
[]
sage: s[5]
8
sage: s.data()
[3, 4, 5, 6, 7, 8]

is_constant()
Returns True if and only if

EXAMPLES:

5.1. Comprehensive Module List 3183

Combinatorics, Release 9.7

sage: from sage.combinat.species.stream import Stream
sage: s = Stream([1,2,3])
sage: s.is_constant()
False
sage: s[3]
3
sage: s.data()
[1, 2, 3]
sage: s.is_constant()
True

map(f)
EXAMPLES:

sage: from sage.combinat.species.stream import Stream
sage: s = Stream(ZZ)
sage: square = lambda x: x^2
sage: ss = s.map(square)
sage: [ss[i] for i in range(10)]
[0, 1, 1, 4, 4, 9, 9, 16, 16, 25]

number_computed()
Returns the number of coefficients computed so far.

EXAMPLES:

sage: from sage.combinat.species.stream import Stream
sage: l = [4,3,5,7,4,1,9,7]
sage: s = Stream(l)
sage: s[3]
7
sage: len(s)
4
sage: s[3]
7
sage: len(s)
4
sage: s[1]
3
sage: len(s)
4
sage: s[4]
4
sage: len(s)
5

set_gen(gen)
EXAMPLES:

sage: from sage.combinat.species.stream import Stream
sage: from builtins import zip
sage: fib = Stream()
sage: def g():
....: yield 1

(continues on next page)

3184 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: yield 1

....: n = 0

....: while True:

....: yield fib[n] + fib[n+1]

....: n += 1

sage: fib.set_gen(g())
sage: [x for (x,i) in zip(fib, range(11))]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

sage: l = [4,3,5,2,6,1]
sage: s = Stream(l)
sage: s[3]
2
sage: len(s)
4
sage: g = iter(l)
sage: s.set_gen(g)
sage: s[5]
3
sage: len(s)
6

stretch(k)
EXAMPLES:

sage: from sage.combinat.species.stream import Stream
sage: s = Stream(range(1, 10))
sage: s2 = s.stretch(2)
sage: [s2[i] for i in range(10)]
[1, 0, 2, 0, 3, 0, 4, 0, 5, 0]

5.1.330 Species structures

We will illustrate the use of the structure classes using the “balls and bars” model for integer compositions. An integer
composition of 6 such as [2, 1, 3] can be represented in this model as ‘oooooo’ where the 6 o’s correspond to the balls
and the 2 ‘s correspond to the bars. If BB is our species for this model, the it satisfies the following recursive definition:

BB = o + o*BB + o*|*BB

Here we define this species using the default structures:

sage: ball = species.SingletonSpecies(); o = var('o')
sage: bar = species.EmptySetSpecies()
sage: BB = CombinatorialSpecies()
sage: BB.define(ball + ball*BB + ball*bar*BB)
sage: BB.isotypes([o]*3).list()
[o*(o*o), o*((o*{})*o), (o*{})*(o*o), (o*{})*((o*{})*o)]

If we ignore the parentheses, we can read off that the integer compositions are [3], [2, 1], [1, 2], and [1, 1, 1].

class sage.combinat.species.structure.GenericSpeciesStructure(parent, labels, list)
Bases: sage.combinat.combinat.CombinatorialObject

5.1. Comprehensive Module List 3185

Combinatorics, Release 9.7

This is a base class from which the classes for the structures inherit.

EXAMPLES:

sage: from sage.combinat.species.structure import GenericSpeciesStructure
sage: a = GenericSpeciesStructure(None, [2,3,4], [1,2,3])
sage: a
[2, 3, 4]
sage: a.parent() is None
True
sage: a == loads(dumps(a))
True

change_labels(labels)
Return a relabelled structure.

INPUT:

• labels, a list of labels.

OUTPUT:

A structure with the i-th label of self replaced with the i-th label of the list.

EXAMPLES:

sage: P = species.SubsetSpecies()
sage: S = P.structures(["a", "b", "c"])
sage: [s.change_labels([1,2,3]) for s in S]
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]

is_isomorphic(x)
EXAMPLES:

sage: S = species.SetSpecies()
sage: a = S.structures([1,2,3]).random_element(); a
{1, 2, 3}
sage: b = S.structures(['a','b','c']).random_element(); b
{'a', 'b', 'c'}
sage: a.is_isomorphic(b)
True

labels()
Returns the labels used for this structure.

Note: This includes labels which may not “appear” in this particular structure.

EXAMPLES:

sage: P = species.SubsetSpecies()
sage: s = P.structures(["a", "b", "c"]).random_element()
sage: s.labels()
['a', 'b', 'c']

parent()
Returns the species that this structure is associated with.

3186 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: L = species.LinearOrderSpecies()
sage: a,b = L.structures([1,2])
sage: a.parent()
Linear order species

class sage.combinat.species.structure.IsotypesWrapper(species, labels, structure_class)
Bases: sage.combinat.species.structure.SpeciesWrapper

A base class for the set of isotypes of a species with given set of labels. An object of this type is returned when
you call the isotypes() method of a species.

EXAMPLES:

sage: F = species.SetSpecies()
sage: S = F.isotypes([1,2,3])
sage: S == loads(dumps(S))
True

class sage.combinat.species.structure.SimpleIsotypesWrapper(species, labels, structure_class)
Bases: sage.combinat.species.structure.SpeciesWrapper

Warning: This is deprecated and currently not used for anything.

EXAMPLES:

sage: F = species.SetSpecies()
sage: S = F.structures([1,2,3])
sage: S == loads(dumps(S))
True

class sage.combinat.species.structure.SimpleStructuresWrapper(species, labels, structure_class)
Bases: sage.combinat.species.structure.SpeciesWrapper

Warning: This is deprecated and currently not used for anything.

EXAMPLES:

sage: F = species.SetSpecies()
sage: S = F.structures([1,2,3])
sage: S == loads(dumps(S))
True

sage.combinat.species.structure.SpeciesStructure
alias of sage.combinat.species.structure.GenericSpeciesStructure

class sage.combinat.species.structure.SpeciesStructureWrapper(parent, s, **options)
Bases: sage.combinat.species.structure.GenericSpeciesStructure

This is a class for the structures of species such as the sum species that do not provide “additional” structure. For
example, if you have the sum 𝐶 of species 𝐴 and 𝐵, then a structure of 𝐶 will either be either something from
𝐴 or 𝐵. Instead of just returning one of these directly, a “wrapper” is put around them so that they have their
parent is 𝐶 rather than 𝐴 or 𝐵:

5.1. Comprehensive Module List 3187

Combinatorics, Release 9.7

sage: X = species.SingletonSpecies()
sage: X2 = X+X
sage: s = X2.structures([1]).random_element(); s
1
sage: s.parent()
Sum of (Singleton species) and (Singleton species)
sage: from sage.combinat.species.structure import SpeciesStructureWrapper
sage: issubclass(type(s), SpeciesStructureWrapper)
True

EXAMPLES:

sage: E = species.SetSpecies(); B = E+E
sage: s = B.structures([1,2,3]).random_element()
sage: s.parent()
Sum of (Set species) and (Set species)
sage: s == loads(dumps(s))
True

canonical_label()
EXAMPLES:

sage: P = species.PartitionSpecies()
sage: s = (P+P).structures([1,2,3])[1]; s
{{1, 3}, {2}}
sage: s.canonical_label()
{{1, 2}, {3}}

change_labels(labels)
Return a relabelled structure.

INPUT:

• labels, a list of labels.

OUTPUT:

A structure with the i-th label of self replaced with the i-th label of the list.

EXAMPLES:

sage: X = species.SingletonSpecies()
sage: X2 = X+X
sage: s = X2.structures([1]).random_element(); s
1
sage: s.change_labels(['a'])
'a'

transport(perm)
EXAMPLES:

sage: P = species.PartitionSpecies()
sage: s = (P+P).structures([1,2,3])[1]; s
{{1, 3}, {2}}
sage: s.transport(PermutationGroupElement((2,3)))
{{1, 2}, {3}}

3188 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.species.structure.SpeciesWrapper(species, labels, iterator, generating_series,
name, structure_class)

Bases: sage.combinat.combinat.CombinatorialClass

This is a abstract base class for the set of structures of a species as well as the set of isotypes of the species.

Note: One typically does not use SpeciesWrapper directly, but instead instantiates one of its subclasses:
StructuresWrapper or IsotypesWrapper.

EXAMPLES:

sage: from sage.combinat.species.structure import SpeciesWrapper
sage: F = species.SetSpecies()
sage: S = SpeciesWrapper(F, [1,2,3], "_structures", "generating_series", 'Structures
→˓', None)
sage: S
Structures for Set species with labels [1, 2, 3]
sage: S.list()
[{1, 2, 3}]
sage: S.cardinality()
1

cardinality()
Returns the number of structures in this set.

EXAMPLES:

sage: F = species.SetSpecies()
sage: F.structures([1,2,3]).cardinality()
1

labels()
Returns the labels used on these structures. If 𝑋 is the species, then labels() returns the preimage of
these structures under the functor 𝑋 .

EXAMPLES:

sage: F = species.SetSpecies()
sage: F.structures([1,2,3]).labels()
[1, 2, 3]

class sage.combinat.species.structure.StructuresWrapper(species, labels, structure_class)
Bases: sage.combinat.species.structure.SpeciesWrapper

A base class for the set of structures of a species with given set of labels. An object of this type is returned when
you call the structures() method of a species.

EXAMPLES:

sage: F = species.SetSpecies()
sage: S = F.structures([1,2,3])
sage: S == loads(dumps(S))
True

5.1. Comprehensive Module List 3189

Combinatorics, Release 9.7

5.1.331 Subset Species

class sage.combinat.species.subset_species.SubsetSpecies(min=None, max=None, weight=None)
Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.
unique_representation.UniqueRepresentation

Return the species of subsets.

EXAMPLES:

sage: S = species.SubsetSpecies()
sage: S.generating_series().coefficients(5)
[1, 2, 2, 4/3, 2/3]
sage: S.isotype_generating_series().coefficients(5)
[1, 2, 3, 4, 5]

sage: S = species.SubsetSpecies()
sage: c = S.generating_series().coefficients(3)
sage: S._check()
True
sage: S == loads(dumps(S))
True

class sage.combinat.species.subset_species.SubsetSpeciesStructure(parent, labels, list)
Bases: sage.combinat.species.structure.GenericSpeciesStructure

automorphism_group()
Return the group of permutations whose action on this subset leave it fixed.

EXAMPLES:

sage: F = species.SubsetSpecies()
sage: a = F.structures([1,2,3,4])[6]; a
{1, 3}
sage: a.automorphism_group()
Permutation Group with generators [(2,4), (1,3)]

sage: [a.transport(g) for g in a.automorphism_group()]
[{1, 3}, {1, 3}, {1, 3}, {1, 3}]

canonical_label()
Return the canonical label of self.

EXAMPLES:

sage: P = species.SubsetSpecies()
sage: S = P.structures(["a", "b", "c"])
sage: [s.canonical_label() for s in S]
[{}, {'a'}, {'a'}, {'a'}, {'a', 'b'}, {'a', 'b'}, {'a', 'b'}, {'a', 'b', 'c'}]

complement()
Return the complement of self.

EXAMPLES:

3190 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

sage: F = species.SubsetSpecies()
sage: a = F.structures(["a", "b", "c"])[5]; a
{'a', 'c'}
sage: a.complement()
{'b'}

label_subset()
Return a subset of the labels that “appear” in this structure.

EXAMPLES:

sage: P = species.SubsetSpecies()
sage: S = P.structures(["a", "b", "c"])
sage: [s.label_subset() for s in S]
[[], ['a'], ['b'], ['c'], ['a', 'b'], ['a', 'c'], ['b', 'c'], ['a', 'b', 'c']]

transport(perm)
Return the transport of this subset along the permutation perm.

EXAMPLES:

sage: F = species.SubsetSpecies()
sage: a = F.structures(["a", "b", "c"])[5]; a
{'a', 'c'}
sage: p = PermutationGroupElement((1,2))
sage: a.transport(p)
{'b', 'c'}
sage: p = PermutationGroupElement((1,3))
sage: a.transport(p)
{'a', 'c'}

sage.combinat.species.subset_species.SubsetSpecies_class
alias of sage.combinat.species.subset_species.SubsetSpecies

5.1.332 Sum species

class sage.combinat.species.sum_species.SumSpecies(F, G, min=None, max=None, weight=None)
Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.
unique_representation.UniqueRepresentation

Returns the sum of two species.

EXAMPLES:

sage: S = species.PermutationSpecies()
sage: A = S+S
sage: A.generating_series().coefficients(5)
[2, 2, 2, 2, 2]

sage: P = species.PermutationSpecies()
sage: F = P + P
sage: F._check()
True
sage: F == loads(dumps(F))
True

5.1. Comprehensive Module List 3191

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

left_summand()
Returns the left summand of this species.

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: F = P + P*P
sage: F.left_summand()
Permutation species

right_summand()
Returns the right summand of this species.

EXAMPLES:

sage: P = species.PermutationSpecies()
sage: F = P + P*P
sage: F.right_summand()
Product of (Permutation species) and (Permutation species)

weight_ring()
Returns the weight ring for this species. This is determined by asking Sage’s coercion model what the result
is when you add elements of the weight rings for each of the operands.

EXAMPLES:

sage: S = species.SetSpecies()
sage: C = S+S
sage: C.weight_ring()
Rational Field

sage: S = species.SetSpecies(weight=QQ['t'].gen())
sage: C = S + S
sage: C.weight_ring()
Univariate Polynomial Ring in t over Rational Field

class sage.combinat.species.sum_species.SumSpeciesStructure(parent, s, **options)
Bases: sage.combinat.species.structure.SpeciesStructureWrapper

sage.combinat.species.sum_species.SumSpecies_class
alias of sage.combinat.species.sum_species.SumSpecies

5.1.333 Subsets

The set of subsets of a finite set. The set can be given as a list or a Set or else as an integer 𝑛 which encodes the set
{1, 2, ..., 𝑛}. See Subsets for more information and examples.

AUTHORS:

• Mike Hansen: initial version

• Florent Hivert (2009/02/06): doc improvements + new methods

class sage.combinat.subset.SubMultiset_s(s)
Bases: sage.structure.parent.Parent

The combinatorial class of the sub multisets of s.

EXAMPLES:

3192 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: S = Subsets([1,2,2,3], submultiset=True)
sage: S.cardinality()
12
sage: S.list()
[[],
[1],
[2],
[3],
[1, 2],
[1, 3],
[2, 2],
[2, 3],
[1, 2, 2],
[1, 2, 3],
[2, 2, 3],
[1, 2, 2, 3]]
sage: S.first()
[]
sage: S.last()
[1, 2, 2, 3]

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: S = Subsets([1,1,2,3],submultiset=True)
sage: S.cardinality()
12
sage: len(S.list())
12

sage: S = Subsets([1,1,2,2,3],submultiset=True)
sage: S.cardinality()
18
sage: len(S.list())
18

sage: S = Subsets([1,1,1,2,2,3],submultiset=True)
sage: S.cardinality()
24
sage: len(S.list())
24

element_class
alias of builtins.list

generating_serie(variable='x')
Return the polynomial associated to the counting of the elements of self weighted by the number of
element they contain.

EXAMPLES:

sage: Subsets([1,1],submultiset=True).generating_serie()
x^2 + x + 1

(continues on next page)

5.1. Comprehensive Module List 3193

Combinatorics, Release 9.7

(continued from previous page)

sage: Subsets([1,1,2,3],submultiset=True).generating_serie()
x^4 + 3*x^3 + 4*x^2 + 3*x + 1
sage: Subsets([1,1,1,2,2,3,3,4],submultiset=True).generating_serie()
x^8 + 4*x^7 + 9*x^6 + 14*x^5 + 16*x^4 + 14*x^3 + 9*x^2 + 4*x + 1

sage: S = Subsets([1,1,1,2,2,3,3,4],submultiset=True)
sage: S.cardinality()
72
sage: sum(S.generating_serie())
72

random_element()
Return a random element of self with uniform law.

EXAMPLES:

sage: S = Subsets([1,1,2,3], submultiset=True)
sage: s = S.random_element()
sage: s in S
True

class sage.combinat.subset.SubMultiset_sk(s, k)
Bases: sage.combinat.subset.SubMultiset_s

The combinatorial class of the subsets of size k of a multiset s. Note that each subset is represented by a list of
the elements rather than a set since we can have multiplicities (no multiset data structure yet in sage).

EXAMPLES:

sage: S = Subsets([1,2,3,3],2,submultiset=True)
sage: S._k
2
sage: S.cardinality()
4
sage: S.first()
[1, 2]
sage: S.last()
[3, 3]
sage: [sub for sub in S]
[[1, 2], [1, 3], [2, 3], [3, 3]]

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: S = Subsets([1,2,2,3,3,3],4,submultiset=True)
sage: S.cardinality()
5
sage: len(list(S))
5

sage: S = Subsets([1,2,2,3,3,3],3,submultiset=True)
sage: S.cardinality()
6

(continues on next page)

3194 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: len(list(S))
6

generating_serie(variable='x')
Return the polynomial associated to the counting of the elements of self weighted by the number of
elements they contains

EXAMPLES:

sage: x = ZZ['x'].gen()
sage: l = [1,1,1,1,2,2,3]
sage: for k in range(len(l)):
....: S = Subsets(l,k,submultiset=True)
....: print(S.generating_serie('x') == S.cardinality()*x**k)
True
True
True
True
True
True
True

random_element()
Return a random submultiset of given length

EXAMPLES:

sage: s = Subsets(7,3).random_element()
sage: s in Subsets(7,3)
True

sage: s = Subsets(7,5).random_element()
sage: s in Subsets(7,5)
True

sage.combinat.subset.Subsets(s, k=None, submultiset=False)
Return the combinatorial class of the subsets of the finite set s. The set can be given as a list, Set or any iterable
convertible to a set. Alternatively, a non-negative integer 𝑛 can be provided in place of s; in this case, the result
is the combinatorial class of the subsets of the set {1, 2, . . . , 𝑛} (i.e. of the Sage range(1,n+1)).

A second optional parameter k can be given. In this case, Subsets returns the combinatorial class of subsets of
s of size k.

Warning: The subsets are returned as Sets. Do not assume that these Sets are ordered; they often are not!
(E.g., Subsets(10).list()[619] returns {10, 4, 5, 6, 7} on my system.) See SubsetsSorted for
a similar class which returns the subsets as sorted tuples.

Finally the option submultiset allows one to deal with sets with repeated elements, usually called multisets.
The method then returns the class of all multisets in which every element is contained at most as often as it is
contained in s. These multisets are encoded as lists.

EXAMPLES:

5.1. Comprehensive Module List 3195

Combinatorics, Release 9.7

sage: S = Subsets([1, 2, 3]); S
Subsets of {1, 2, 3}
sage: S.cardinality()
8
sage: S.first()
{}
sage: S.last()
{1, 2, 3}
sage: S.random_element() in S
True
sage: S.list()
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]

Here is the same example where the set is given as an integer:

sage: S = Subsets(3)
sage: S.list()
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]

We demonstrate various the effect of the various options:

sage: S = Subsets(3, 2); S
Subsets of {1, 2, 3} of size 2
sage: S.list()
[{1, 2}, {1, 3}, {2, 3}]

sage: S = Subsets([1, 2, 2], submultiset=True); S
SubMultiset of [1, 2, 2]
sage: S.list()
[[], [1], [2], [1, 2], [2, 2], [1, 2, 2]]

sage: S = Subsets([1, 2, 2, 3], 3, submultiset=True); S
SubMultiset of [1, 2, 2, 3] of size 3
sage: S.list()
[[1, 2, 2], [1, 2, 3], [2, 2, 3]]

sage: S = Subsets(['a','b','a','b'], 2, submultiset=True); S.list()
[['a', 'a'], ['a', 'b'], ['b', 'b']]

And it is possible to play with subsets of subsets:

sage: S = Subsets(3)
sage: S2 = Subsets(S); S2
Subsets of Subsets of {1, 2, 3}
sage: S2.cardinality()
256
sage: it = iter(S2)
sage: [next(it) for _ in range(8)]
[{}, {{}}, {{1}}, {{2}}, {{3}}, {{1, 2}}, {{1, 3}}, {{2, 3}}]
sage: S2.random_element() # random
{{2}, {1, 2, 3}, {}}
sage: [S2.unrank(k) for k in range(256)] == S2.list()
True

(continues on next page)

3196 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: S3 = Subsets(S2)
sage: S3.cardinality()
115792089237316195423570985008687907853269984665640564039457584007913129639936
sage: S3.unrank(14123091480) # random
{{{2}, {1, 2, 3}, {1, 2}, {3}, {}},
{{1, 2, 3}, {2}, {1}, {1, 3}},
{{}, {2}, {2, 3}, {1, 2}},
{{}, {2}, {1, 2, 3}, {1, 2}},
{},
{{}, {1}, {1, 2, 3}}}

sage: T = Subsets(S2, 10)
sage: T.cardinality()
278826214642518400
sage: T.unrank(1441231049) # random
{{{1, 2, 3}, {2}, {2, 3}}, {{3}, {1, 3}, ..., {3}, {1}, {}, {1, 3}}}

class sage.combinat.subset.SubsetsSorted(s)
Bases: sage.combinat.subset.Subsets_s

Lightweight class of all subsets of some set 𝑆, with each subset being encoded as a sorted tuple.

Used to model indices of algebras given by subsets (so we don’t have to explicitly build all 2𝑛 subsets in memory).
For example, CliffordAlgebra.

element_class
alias of builtins.tuple

first()
Return the first element of self.

EXAMPLES:

sage: from sage.combinat.subset import SubsetsSorted
sage: S = SubsetsSorted(range(3))
sage: S.first()
()

last()
Return the last element of self.

EXAMPLES:

sage: from sage.combinat.subset import SubsetsSorted
sage: S = SubsetsSorted(range(3))
sage: S.last()
(0, 1, 2)

random_element()
Return a random element of self.

EXAMPLES:

sage: from sage.combinat.subset import SubsetsSorted
sage: S = SubsetsSorted(range(3))

(continues on next page)

5.1. Comprehensive Module List 3197

../../../../../../html/en/reference/algebras/sage/algebras/clifford_algebra.html#sage.algebras.clifford_algebra.CliffordAlgebra

Combinatorics, Release 9.7

(continued from previous page)

sage: isinstance(S.random_element(), tuple)
True

unrank(r)
Return the subset which has rank r.

EXAMPLES:

sage: from sage.combinat.subset import SubsetsSorted
sage: S = SubsetsSorted(range(3))
sage: S.unrank(4)
(0, 1)

class sage.combinat.subset.Subsets_s(s)
Bases: sage.structure.parent.Parent

Subsets of a given set.

EXAMPLES:

sage: S = Subsets(4); S
Subsets of {1, 2, 3, 4}
sage: S.cardinality()
16
sage: Subsets(4).list()
[{}, {1}, {2}, {3}, {4},
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},
{1, 2, 3, 4}]

sage: S = Subsets(Subsets(Subsets(GF(3)))); S
Subsets of Subsets of Subsets of Finite Field of size 3
sage: S.cardinality()
115792089237316195423570985008687907853269984665640564039457584007913129639936
sage: S.unrank(3149254230) # random
{{{1}, {0, 2}}, {{0, 1, 2}, {0, 1}, {1}, {1, 2}},
{{2}, {1, 2}, {0, 1, 2}, {0, 2}, {1}, {}},
{{1, 2}, {0}},
{{0, 1, 2}, {0, 1}, {0, 2}, {1, 2}}}

cardinality()
Return the number of subsets of the set s.

This is given by 2|𝑠|.

EXAMPLES:

sage: Subsets(Set([1,2,3])).cardinality()
8
sage: Subsets([1,2,3,3]).cardinality()
8
sage: Subsets(3).cardinality()
8

element_class
alias of sage.sets.set.Set_object_enumerated

3198 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/sets/sage/sets/set.html#sage.sets.set.Set_object_enumerated

Combinatorics, Release 9.7

first()
Returns the first subset of s. Since we aren’t restricted to subsets of a certain size, this is always the empty
set.

EXAMPLES:

sage: Subsets([1,2,3]).first()
{}
sage: Subsets(3).first()
{}

last()
Return the last subset of s. Since we aren’t restricted to subsets of a certain size, this is always the set s
itself.

EXAMPLES:

sage: Subsets([1,2,3]).last()
{1, 2, 3}
sage: Subsets(3).last()
{1, 2, 3}

lattice()
Return the lattice of subsets ordered by containment.

EXAMPLES:

sage: X = Subsets([7,8,9])
sage: X.lattice()
Finite lattice containing 8 elements
sage: Y = Subsets(0)
sage: Y.lattice()
Finite lattice containing 1 elements

random_element()
Return a random element of the class of subsets of s (in other words, a random subset of s).

EXAMPLES:

sage: Subsets(3).random_element() # random
{2}
sage: Subsets([4,5,6]).random_element() # random
{5}

sage: S = Subsets(Subsets(Subsets([0,1,2])))
sage: S.cardinality()
115792089237316195423570985008687907853269984665640564039457584007913129639936
sage: s = S.random_element()
sage: s # random
{{{1, 2}, {2}, {0}, {1}}, {{1, 2}, {0, 1, 2}, {0, 2}, {0}, {0, 1}}, ..., {{1, 2}
→˓, {2}, {1}}, {{2}, {0, 2}, {}, {1}}}
sage: s in S
True

rank(sub)
Return the rank of sub as a subset of s.

5.1. Comprehensive Module List 3199

Combinatorics, Release 9.7

EXAMPLES:

sage: Subsets(3).rank([])
0
sage: Subsets(3).rank([1,2])
4
sage: Subsets(3).rank([1,2,3])
7
sage: Subsets(3).rank([2,3,4])
Traceback (most recent call last):
...
ValueError: {2, 3, 4} is not a subset of {1, 2, 3}

underlying_set()
Return the set of elements.

EXAMPLES:

sage: Subsets(GF(13)).underlying_set()
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

unrank(r)
Return the subset of s that has rank k.

EXAMPLES:

sage: Subsets(3).unrank(0)
{}
sage: Subsets([2,4,5]).unrank(1)
{2}
sage: Subsets([1,2,3]).unrank(257)
Traceback (most recent call last):
...
IndexError: index out of range

class sage.combinat.subset.Subsets_sk(s, k)
Bases: sage.combinat.subset.Subsets_s

Subsets of fixed size of a set.

EXAMPLES:

sage: S = Subsets([0,1,2,5,7], 3); S
Subsets of {0, 1, 2, 5, 7} of size 3
sage: S.cardinality()
10
sage: S.first(), S.last()
({0, 1, 2}, {2, 5, 7})
sage: S.random_element() # random
{0, 5, 7}
sage: S([0,2,7])
{0, 2, 7}
sage: S([0,3,5])
Traceback (most recent call last):
...
ValueError: {0, 3, 5} not in Subsets of {0, 1, 2, 5, 7} of size 3

(continues on next page)

3200 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: S([0])
Traceback (most recent call last):
...
ValueError: {0} not in Subsets of {0, 1, 2, 5, 7} of size 3

an_element()
Returns an example of subset.

EXAMPLES:

sage: Subsets(0,0).an_element()
{}
sage: Subsets(3,2).an_element()
{1, 3}
sage: Subsets([2,4,5],2).an_element()
{2, 5}

cardinality()
EXAMPLES:

sage: Subsets(Set([1,2,3]), 2).cardinality()
3
sage: Subsets([1,2,3,3], 2).cardinality()
3
sage: Subsets([1,2,3], 1).cardinality()
3
sage: Subsets([1,2,3], 3).cardinality()
1
sage: Subsets([1,2,3], 0).cardinality()
1
sage: Subsets([1,2,3], 4).cardinality()
0
sage: Subsets(3,2).cardinality()
3
sage: Subsets(3,4).cardinality()
0

first()
Return the first subset of s of size k.

EXAMPLES:

sage: Subsets(Set([1,2,3]), 2).first()
{1, 2}
sage: Subsets([1,2,3,3], 2).first()
{1, 2}
sage: Subsets(3,2).first()
{1, 2}
sage: Subsets(3,4).first()
Traceback (most recent call last):
...
EmptySetError

5.1. Comprehensive Module List 3201

Combinatorics, Release 9.7

last()
Return the last subset of s of size k.

EXAMPLES:

sage: Subsets(Set([1,2,3]), 2).last()
{2, 3}
sage: Subsets([1,2,3,3], 2).last()
{2, 3}
sage: Subsets(3,2).last()
{2, 3}
sage: Subsets(3,4).last()
Traceback (most recent call last):
...
EmptySetError

random_element()
Return a random element of the class of subsets of s of size k (in other words, a random subset of s of size
k).

EXAMPLES:

sage: s = Subsets(3, 2).random_element()
sage: s in Subsets(3, 2)
True

sage: Subsets(3,4).random_element()
Traceback (most recent call last):
...
EmptySetError

rank(sub)
Return the rank of sub as a subset of s of size k.

EXAMPLES:

sage: Subsets(3,2).rank([1,2])
0
sage: Subsets([2,3,4],2).rank([3,4])
2
sage: Subsets([2,3,4],2).rank([2])
Traceback (most recent call last):
...
ValueError: {2} is not a subset of length 2 of {2, 3, 4}
sage: Subsets([2,3,4],4).rank([2,3,4,5])
Traceback (most recent call last):
...
ValueError: {2, 3, 4, 5} is not a subset of length 4 of {2, 3, 4}

unrank(r)
Return the subset of s of size k that has rank r.

EXAMPLES:

sage: Subsets(3,2).unrank(0)
{1, 2}

(continues on next page)

3202 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Subsets([2,4,5],2).unrank(0)
{2, 4}
sage: Subsets([1,2,8],3).unrank(42)
Traceback (most recent call last):
...
IndexError: index out of range

sage.combinat.subset.dict_to_list(d)
Return a list whose elements are the elements of i of d repeated with multiplicity d[i].

EXAMPLES:

sage: from sage.combinat.subset import dict_to_list
sage: dict_to_list({'a':1, 'b':3})
['a', 'b', 'b', 'b']

sage.combinat.subset.list_to_dict(l)
Return a dictionary of multiplicities and the list of its keys.

INPUT:

a list l with possibly repeated elements

The keys are the elements of l (in the same order in which they appear) and values are the multiplicities of each
element in l.

EXAMPLES:

sage: from sage.combinat.subset import list_to_dict
sage: list_to_dict(['a', 'b', 'b', 'b'])
({'a': 1, 'b': 3}, ['a', 'b'])

5.1.334 Subsets satisfying a hereditary property

sage.combinat.subsets_hereditary.subsets_with_hereditary_property(f, X,
max_obstruction_size=None,
ncpus=1)

Return all subsets 𝑆 of 𝑋 such that 𝑓(𝑆) is true.

The boolean function 𝑓 must be decreasing, i.e. 𝑓(𝑆)⇒ 𝑓(𝑆′) if 𝑆′ ⊆ 𝑆.

This function is implemented to call 𝑓 as few times as possible. More precisely, 𝑓 will be called on all sets 𝑆
such that 𝑓(𝑆) is true, as well as on all inclusionwise minimal sets 𝑆 such that 𝑓(𝑆) is false.

The problem that this function answers is also known as the learning problem on monotone boolean functions,
or as computing the set of winning coalitions in a simple game.

INPUT:

• f – a boolean function which takes as input a list of elements from X.

• X – a list/iterable.

• max_obstruction_size (integer) – if you know that there is a 𝑘 such that 𝑓(𝑆) is true if and only if
𝑓(𝑆′) is true for all 𝑆′ ⊆ 𝑆 with 𝑆′ ≤ 𝑘, set max_obstruction_size=k. It may dramatically decrease
the number of calls to 𝑓 . Set to None by default, meaning 𝑘 = |𝑋|.

5.1. Comprehensive Module List 3203

Combinatorics, Release 9.7

• ncpus – number of cpus to use for this computation. Note that changing the value from 1 (default) to
anything different enables parallel computations which can have a cost by itself, so it is not necessarily a
good move. In some cases, however, it is a great move. Set to None to automatically detect and use the
maximum number of cpus available.

Note: Parallel computations are performed through the parallel() decorator. See its documentation for
more information, in particular with respect to the memory context.

EXAMPLES:

Sets whose elements all have the same remainder mod 2:

sage: from sage.combinat.subsets_hereditary import subsets_with_hereditary_property
sage: f = lambda x: (not x) or all(xx%2 == x[0]%2 for xx in x)
sage: list(subsets_with_hereditary_property(f,range(4)))
[[], [0], [1], [2], [3], [0, 2], [1, 3]]

Same, on two threads:

sage: sorted(subsets_with_hereditary_property(f,range(4),ncpus=2))
[[], [0], [0, 2], [1], [1, 3], [2], [3]]

One can use this function to compute the independent sets of a graph. We know, however, that in this case
the maximum obstructions are the edges, and have size 2. We can thus set max_obstruction_size=2, which
reduces the number of calls to 𝑓 from 91 to 56:

sage: num_calls=0
sage: g = graphs.PetersenGraph()
sage: def is_independent_set(S):
....: global num_calls
....: num_calls+=1
....: return g.subgraph(S).size()==0
sage: l1=list(subsets_with_hereditary_property(is_independent_set, g.
→˓vertices(sort=False)))
sage: num_calls
91
sage: num_calls=0
sage: l2=list(subsets_with_hereditary_property(is_independent_set, g.
→˓vertices(sort=False), max_obstruction_size=2))
sage: num_calls
56
sage: l1==l2
True

3204 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/parallel/sage/parallel/decorate.html#sage.parallel.decorate.parallel

Combinatorics, Release 9.7

5.1.335 Subsets whose elements satisfy a predicate pairwise

class sage.combinat.subsets_pairwise.PairwiseCompatibleSubsets(ambient, predicate,
maximal=False,
element_class=<class
'sage.sets.set.Set_object_enumerated'>)

Bases: sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest

The set of all subsets of ambient whose elements satisfy predicate pairwise

INPUT:

• ambient – a set (or iterable)

• predicate – a binary predicate

Assumptions: predicate is symmetric (predicate(x,y) == predicate(y,x)) and reflexive
(predicate(x,x) == True).

Note: in fact, predicate(x,x) is never called.

Warning: The current name is suboptimal and is subject to change. Suggestions for a good name, and a
good user entry point are welcome. Maybe Subsets(..., independent = predicate).

EXAMPLES:

We construct the set of all subsets of {4, 5, 6, 8, 9} whose elements are pairwise relatively prime:

sage: from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets
sage: def predicate(x,y): return gcd(x,y) == 1
sage: P = PairwiseCompatibleSubsets([4,5,6,8,9], predicate); P
An enumerated set with a forest structure
sage: P.list()
[{}, {4}, {4, 5}, {9, 4, 5}, {9, 4}, {5}, {5, 6}, {8, 5}, {8, 9, 5}, {9, 5}, {6},
→˓{8}, {8, 9}, {9}]
sage: P.cardinality()
14
sage: P.category()
Category of finite enumerated sets

Here we consider only those subsets which are maximal for inclusion (not yet implemented):

sage: P = PairwiseCompatibleSubsets([4,5,6,8,9], predicate, maximal = True); P
An enumerated set with a forest structure
sage: P.list() # todo: not implemented
[{9, 4, 5}, {5, 6}, {8, 9, 5}]
sage: P.cardinality() # todo: not implemented
14
sage: P.category()
Category of finite enumerated sets

5.1. Comprehensive Module List 3205

../../../../../../html/en/reference/sets/sage/sets/recursively_enumerated_set.html#sage.sets.recursively_enumerated_set.RecursivelyEnumeratedSet_forest

Combinatorics, Release 9.7

Algorithm

In the following, we order the elements of the ambient set by order of apparition. The elements of self are
generated by organizing them in a search tree. Each node of this tree is of the form (subset, rest), where:

• subset represents an element of self, represented by an increasing tuple

• rest is the set of all 𝑦’s such that 𝑦 appears after 𝑥 in the ambient set and predicate(x,y) holds, repre-
sented by a decreasing tuple

The root of this tree is ((), ambient). All the other elements are generated by recursive depth first search,
which gives lexicographic order.

children(subset_rest)
Returns the children of a node in the tree.

post_process(subset_rest)

5.1.336 Subwords

A subword of a word 𝑤 is a word obtained by deleting the letters at some (non necessarily adjacent) positions in 𝑤. It
is not to be confused with the notion of factor where one keeps adjacent positions in 𝑤. Sometimes it is useful to allow
repeated uses of the same letter of 𝑤 in a “generalized” subword. We call this a subword with repetitions.

For example:

• “bnjr” is a subword of the word “bonjour” but not a factor;

• “njo” is both a factor and a subword of the word “bonjour”;

• “nr” is a subword of “bonjour”;

• “rn” is not a subword of “bonjour”;

• “nnu” is not a subword of “bonjour”;

• “nnu” is a subword with repetitions of “bonjour”;

A word can be given either as a string, as a list or as a tuple.

As repetition can occur in the initial word, in general subwords of a given word form an enumerated multiset rather
than a set!

Todo:

• implement subwords with repetitions

• implement the category of EnumeratedMultiset and inheritate from it when needed (i.e. the initial word has
repeated letters)

AUTHORS:

• Mike Hansen: initial version

• Florent Hivert (2009/02/06): doc improvements + new methods + bug fixes

sage.combinat.subword.Subwords(w, k=None, element_constructor=None)
Return the set of subwords of w.

INPUT:

• w – a word (can be a list, a string, a tuple or a word)

3206 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• k – an optional integer to specify the length of subwords

• element_constructor – an optional function that will be used to build the subwords

EXAMPLES:

sage: S = Subwords(['a','b','c']); S
Subwords of ['a', 'b', 'c']
sage: S.first()
[]
sage: S.last()
['a', 'b', 'c']
sage: S.list()
[[], ['a'], ['b'], ['c'], ['a', 'b'], ['a', 'c'], ['b', 'c'], ['a', 'b', 'c']]

The same example using string, tuple or a word:

sage: S = Subwords('abc'); S
Subwords of 'abc'
sage: S.list()
['', 'a', 'b', 'c', 'ab', 'ac', 'bc', 'abc']

sage: S = Subwords((1,2,3)); S
Subwords of (1, 2, 3)
sage: S.list()
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

sage: w = Word([1,2,3])
sage: S = Subwords(w); S
Subwords of word: 123
sage: S.list()
[word: , word: 1, word: 2, word: 3, word: 12, word: 13, word: 23, word: 123]

Using word with specified length:

sage: S = Subwords(['a','b','c'], 2); S
Subwords of ['a', 'b', 'c'] of length 2
sage: S.list()
[['a', 'b'], ['a', 'c'], ['b', 'c']]

An example that uses the element_constructor argument:

sage: p = Permutation([3,2,1])
sage: Subwords(p, element_constructor=tuple).list()
[(), (3,), (2,), (1,), (3, 2), (3, 1), (2, 1), (3, 2, 1)]
sage: Subwords(p, 2, element_constructor=tuple).list()
[(3, 2), (3, 1), (2, 1)]

class sage.combinat.subword.Subwords_w(w, element_constructor)
Bases: sage.structure.parent.Parent

Subwords of a given word.

cardinality()
EXAMPLES:

5.1. Comprehensive Module List 3207

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: Subwords([1,2,3]).cardinality()
8

first()
EXAMPLES:

sage: Subwords([1,2,3]).first()
[]
sage: Subwords((1,2,3)).first()
()
sage: Subwords('123').first()
''

last()
EXAMPLES:

sage: Subwords([1,2,3]).last()
[1, 2, 3]
sage: Subwords((1,2,3)).last()
(1, 2, 3)
sage: Subwords('123').last()
'123'

random_element()
Return a random subword with uniform law.

EXAMPLES:

sage: S1 = Subwords([1,2,3,2,1,3])
sage: S2 = Subwords([4,6,6,6,7,4,5,5])
sage: for i in range(100):
....: w = S1.random_element()
....: if w in S2:
....: assert(not w)
sage: for i in range(100):
....: w = S2.random_element()
....: if w in S1:
....: assert(not w)

class sage.combinat.subword.Subwords_wk(w, k, element_constructor)
Bases: sage.combinat.subword.Subwords_w

Subwords with fixed length of a given word.

cardinality()
Return the number of subwords of w of length k.

EXAMPLES:

sage: Subwords([1,2,3], 2).cardinality()
3

first()
EXAMPLES:

3208 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Subwords([1,2,3],2).first()
[1, 2]
sage: Subwords([1,2,3],0).first()
[]
sage: Subwords((1,2,3),2).first()
(1, 2)
sage: Subwords((1,2,3),0).first()
()
sage: Subwords('123',2).first()
'12'
sage: Subwords('123',0).first()
''

last()
EXAMPLES:

sage: Subwords([1,2,3],2).last()
[2, 3]
sage: Subwords([1,2,3],0).last()
[]
sage: Subwords((1,2,3),2).last()
(2, 3)
sage: Subwords((1,2,3),0).last()
()
sage: Subwords('123',2).last()
'23'
sage: Subwords('123',0).last()
''

random_element()
Return a random subword of given length with uniform law.

EXAMPLES:

sage: S1 = Subwords([1,2,3,2,1],3)
sage: S2 = Subwords([4,4,5,5,4,5,4,4],3)
sage: for i in range(100):
....: w = S1.random_element()
....: if w in S2:
....: assert(not w)
sage: for i in range(100):
....: w = S2.random_element()
....: if w in S1:
....: assert(not w)

sage.combinat.subword.smallest_positions(word, subword, pos=0)
Return the smallest positions for which subword appears as a subword of word.

If pos is specified, then it returns the positions of the first appearance of subword starting at pos.

If subword is not found in word, then return False.

EXAMPLES:

5.1. Comprehensive Module List 3209

Combinatorics, Release 9.7

sage: sage.combinat.subword.smallest_positions([1,2,3,4], [2,4])
[1, 3]
sage: sage.combinat.subword.smallest_positions([1,2,3,4,4], [2,4])
[1, 3]
sage: sage.combinat.subword.smallest_positions([1,2,3,3,4,4], [3,4])
[2, 4]
sage: sage.combinat.subword.smallest_positions([1,2,3,3,4,4], [3,4],2)
[2, 4]
sage: sage.combinat.subword.smallest_positions([1,2,3,3,4,4], [3,4],3)
[3, 4]
sage: sage.combinat.subword.smallest_positions([1,2,3,4], [2,3])
[1, 2]
sage: sage.combinat.subword.smallest_positions([1,2,3,4], [5,5])
False
sage: sage.combinat.subword.smallest_positions([1,3,3,4,5],[3,5])
[1, 4]
sage: sage.combinat.subword.smallest_positions([1,3,3,5,4,5,3,5],[3,5,3])
[1, 3, 6]
sage: sage.combinat.subword.smallest_positions([1,3,3,5,4,5,3,5],[3,5,3],2)
[2, 3, 6]
sage: sage.combinat.subword.smallest_positions([1,2,3,4,3,4,4],[2,3,3,1])
False
sage: sage.combinat.subword.smallest_positions([1,3,3,5,4,5,3,5],[3,5,3],3)
False

5.1.337 Subword complex

Fix a Coxeter system (𝑊,𝑆). The subword complex 𝒮𝒞(𝑄,𝑤) associated to a word 𝑄 ∈ 𝑆* and an element 𝑤 ∈ 𝑊
is the simplicial complex whose ground set is the set of positions in 𝑄 and whose facets are complements of sets of
positions defining a reduced expression for 𝑤.

A subword complex is a shellable sphere if and only if the Demazure product of𝑄 equals 𝑤, otherwise it is a shellable
ball.

The code is optimized to be used with ReflectionGroup, it works as well with CoxeterGroup, but many methods fail
for WeylGroup.

EXAMPLES:

sage: W = ReflectionGroup(['A',3]); I = list(W.index_set()) # optional - gap3
sage: Q = I + W.w0.coxeter_sorting_word(I); Q # optional - gap3
[1, 2, 3, 1, 2, 3, 1, 2, 1]

sage: S = SubwordComplex(Q,W.w0) # optional - gap3
sage: for F in S: print("{} {}".format(F, F.root_configuration())) #␣
→˓optional - gap3
(0, 1, 2) [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
(0, 1, 8) [(1, 0, 0), (0, 1, 0), (0, 0, -1)]
(0, 2, 6) [(1, 0, 0), (0, 1, 1), (0, -1, 0)]
(0, 6, 7) [(1, 0, 0), (0, 0, 1), (0, -1, -1)]
(0, 7, 8) [(1, 0, 0), (0, -1, 0), (0, 0, -1)]
(1, 2, 3) [(1, 1, 0), (0, 0, 1), (-1, 0, 0)]
(1, 3, 8) [(1, 1, 0), (-1, 0, 0), (0, 0, -1)]

(continues on next page)

3210 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

(2, 3, 4) [(1, 1, 1), (0, 1, 0), (-1, -1, 0)]
(2, 4, 6) [(1, 1, 1), (-1, 0, 0), (0, -1, 0)]
(3, 4, 5) [(0, 1, 0), (0, 0, 1), (-1, -1, -1)]
(3, 5, 8) [(0, 1, 0), (-1, -1, 0), (0, 0, -1)]
(4, 5, 6) [(0, 1, 1), (-1, -1, -1), (0, -1, 0)]
(5, 6, 7) [(-1, 0, 0), (0, 0, 1), (0, -1, -1)]
(5, 7, 8) [(-1, 0, 0), (0, -1, 0), (0, 0, -1)]

Testing that the implementation also works with CoxeterGroup:

sage: W = CoxeterGroup(['A',3]); I = list(W.index_set())
sage: Q = I + W.w0.coxeter_sorting_word(I); Q
[1, 2, 3, 1, 2, 3, 1, 2, 1]
sage: S = SubwordComplex(Q,W.w0); S
Subword complex of type ['A', 3] for Q = (1, 2, 3, 1, 2, 3, 1, 2, 1) and pi = [1, 2, 3,␣
→˓1, 2, 1]
sage: P = S.increasing_flip_poset(); P; len(P.cover_relations())
Finite poset containing 14 elements
21

The root configuration works:

sage: for F in S: print("{} {}".format(F, F.root_configuration()))
(0, 1, 2) [(1, 0, 0), (0, 1, 0), (0, 0, 1)]
(0, 1, 8) [(1, 0, 0), (0, 1, 0), (0, 0, -1)]
(0, 2, 6) [(1, 0, 0), (0, 1, 1), (0, -1, 0)]
(0, 6, 7) [(1, 0, 0), (0, 0, 1), (0, -1, -1)]
(0, 7, 8) [(1, 0, 0), (0, -1, 0), (0, 0, -1)]
(1, 2, 3) [(1, 1, 0), (0, 0, 1), (-1, 0, 0)]
(1, 3, 8) [(1, 1, 0), (-1, 0, 0), (0, 0, -1)]
(2, 3, 4) [(1, 1, 1), (0, 1, 0), (-1, -1, 0)]
(2, 4, 6) [(1, 1, 1), (-1, 0, 0), (0, -1, 0)]
(3, 4, 5) [(0, 1, 0), (0, 0, 1), (-1, -1, -1)]
(3, 5, 8) [(0, 1, 0), (-1, -1, 0), (0, 0, -1)]
(4, 5, 6) [(0, 1, 1), (-1, -1, -1), (0, -1, 0)]
(5, 6, 7) [(-1, 0, 0), (0, 0, 1), (0, -1, -1)]
(5, 7, 8) [(-1, 0, 0), (0, -1, 0), (0, 0, -1)]

And the weight configuration also works:

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2])
sage: F.extended_weight_configuration()
[(4/3, 2/3), (2/3, 4/3), (-2/3, 2/3), (2/3, 4/3), (-2/3, 2/3)]
sage: F.extended_weight_configuration(coefficients=(1,2))
[(4/3, 2/3), (4/3, 8/3), (-2/3, 2/3), (4/3, 8/3), (-2/3, 2/3)]

One finally can compute the brick polytope, using all functionality on weight configurations, though it does not realize
to live in real space:

5.1. Comprehensive Module List 3211

Combinatorics, Release 9.7

sage: W = CoxeterGroup(['A',3]); I = list(W.index_set())
sage: Q = I + W.w0.coxeter_sorting_word(I)
sage: S = SubwordComplex(Q,W.w0)
sage: S.brick_polytope()
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 14 vertices

sage: W = CoxeterGroup(['H',3]); I = list(W.index_set())
sage: Q = I + W.w0.coxeter_sorting_word(I)
sage: S = SubwordComplex(Q,W.w0)
sage: S.brick_polytope()
doctest:...: RuntimeWarning: the polytope is build with rational vertices
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 32 vertices

AUTHORS:

• Christian Stump: initial version

• Vincent Pilaud: greedy flip algorithm, minor improvements, documentation

REFERENCES:

class sage.combinat.subword_complex.SubwordComplex(Q, w, algorithm='inductive')
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.topology.
simplicial_complex.SimplicialComplex

Fix a Coxeter system (𝑊,𝑆). The subword complex 𝒮𝒞(𝑄,𝑤) associated to a word 𝑄 ∈ 𝑆* and an element
𝑤 ∈𝑊 is the simplicial complex whose ground set is the set of positions in𝑄 and whose facets are complements
of sets of positions defining a reduced expression for 𝑤.

A subword complex is a shellable sphere if and only if the Demazure product of 𝑄 equals 𝑤, otherwise it is a
shellable ball.

Warning: This implementation only works for groups build using CoxeterGroup, and does not work with
groups build using WeylGroup.

EXAMPLES:

As an example, dual associahedra are subword complexes in type 𝐴𝑛−1 given by the word
[1, . . . , 𝑛, 1, . . . , 𝑛, 1, . . . , 𝑛− 1, . . . , 1, 2, 1] and the permutation 𝑤0.

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w); SC # optional - gap3
Subword complex of type ['A', 2] for Q = (1, 2, 1, 2, 1) and pi = [1, 2, 1]
sage: SC.facets() # optional - gap3
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w); SC
Subword complex of type ['A', 2] for Q = (1, 2, 1, 2, 1) and pi = [1, 2, 1]
sage: SC.facets()
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]

REFERENCES: [KnuMil], [PilStu]

3212 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/topology/sage/topology/simplicial_complex.html#sage.topology.simplicial_complex.SimplicialComplex
../../../../../../html/en/reference/topology/sage/topology/simplicial_complex.html#sage.topology.simplicial_complex.SimplicialComplex

Combinatorics, Release 9.7

Element
alias of SubwordComplexFacet

barycenter()
Return the barycenter of the brick polytope of self.

See also:

brick_polytope()

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
sage: SC.barycenter() # optional - gap3
(2/3, 4/3)

sage: W = CoxeterGroup(['A',2])
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
sage: SC.barycenter()
(4/3, 8/3)

brick_fan()
Return the brick fan of self.

It is the normal fan of the brick polytope of self. It is formed by the cones generated by the weight
configurations of the facets of self.

See also:

weight_cone

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3
sage: SC.brick_fan() # optional - gap3
Rational polyhedral fan in 2-d lattice N

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w)
sage: SC.brick_fan()
Rational polyhedral fan in 2-d lattice N

brick_polytope(coefficients=None)
Return the brick polytope of self.

This polytope is the convex hull of the brick vectors of self.

INPUT:

• coefficients – (optional) a list of coefficients used to scale the fundamental weights

See also:

brick_vectors()

EXAMPLES:

5.1. Comprehensive Module List 3213

Combinatorics, Release 9.7

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
sage: X = SC.brick_polytope(); X # optional - gap3
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices

sage: Y = SC.brick_polytope(coefficients=[1,2]); Y # optional - gap3
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices

sage: X == Y # optional - gap3
False

sage: W = CoxeterGroup(['A',2])
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
sage: X = SC.brick_polytope(); X
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices

sage: W = ReflectionGroup(['H',3]) # optional - gap3
sage: c = W.index_set(); Q = c + tuple(W.w0.coxeter_sorting_word(c)) #␣
→˓optional - gap3
sage: SC = SubwordComplex(Q,W.w0) # optional - gap3
sage: SC.brick_polytope() # optional - gap3
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 32 vertices

brick_vectors(coefficients=None)
Return the list of all brick vectors of facets of self.

INPUT:

• coefficients – (optional) a list of coefficients used to scale the fundamental weights

See also:

brick_vector

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
sage: SC.brick_vectors() # optional - gap3
[(5/3, 7/3), (5/3, 1/3), (2/3, 7/3), (-1/3, 4/3), (-1/3, 1/3)]
sage: SC.brick_vectors(coefficients=(1,2)) # optional - gap3
[(7/3, 11/3), (7/3, 2/3), (4/3, 11/3), (-2/3, 5/3), (-2/3, 2/3)]

sage: W = CoxeterGroup(['A',2])
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
sage: SC.brick_vectors()
[(10/3, 14/3), (10/3, 2/3), (4/3, 14/3), (-2/3, 8/3), (-2/3, 2/3)]
sage: SC.brick_vectors(coefficients=(1,2))
[(14/3, 22/3), (14/3, 4/3), (8/3, 22/3), (-4/3, 10/3), (-4/3, 4/3)]

cartan_type()
Return the Cartan type of self.

EXAMPLES:

3214 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3
sage: SC.cartan_type() # optional - gap3
['A', 2]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w)
sage: SC.cartan_type()
['A', 2]

cover_relations(label=False)
Return the set of cover relations in the associated poset.

INPUT:

• label – boolean (default False) whether or not to label the cover relations by the position of flip

OUTPUT:

a list of pairs of facets

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
sage: sorted(SC.cover_relations()) # optional - gap3
[((0, 1), (0, 4)),
((0, 1), (1, 2)),
((0, 4), (3, 4)),
((1, 2), (2, 3)),
((2, 3), (3, 4))]

sage: W = CoxeterGroup(['A',2])
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
sage: sorted(SC.cover_relations())
[((0, 1), (0, 4)),
((0, 1), (1, 2)),
((0, 4), (3, 4)),
((1, 2), (2, 3)),
((2, 3), (3, 4))]

dimension()
Return the dimension of self.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
sage: SC.dimension() # optional - gap3
1

sage: W = CoxeterGroup(['A',2])
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)

(continues on next page)

5.1. Comprehensive Module List 3215

Combinatorics, Release 9.7

(continued from previous page)

sage: SC.dimension()
1

facets()
Return all facets of self.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3
sage: SC.facets() # optional - gap3
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w)
sage: SC.facets()
[(0, 1), (0, 4), (1, 2), (2, 3), (3, 4)]

greedy_facet(side='positive')
Return the negative (or positive) greedy facet of self.

This is the lexicographically last (or first) facet of self.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3
sage: SC.greedy_facet(side="positive") # optional - gap3
(0, 1)
sage: SC.greedy_facet(side="negative") # optional - gap3
(3, 4)

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w)
sage: SC.greedy_facet(side="positive")
(0, 1)
sage: SC.greedy_facet(side="negative")
(3, 4)

group()
Return the group associated to self.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3
sage: SC.group() # optional - gap3
Irreducible real reflection group of rank 2 and type A2

sage: W = CoxeterGroup(['A',2])
(continues on next page)

3216 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w)
sage: SC.group()
Finite Coxeter group over Integer Ring with Coxeter matrix:
[1 3]
[3 1]

increasing_flip_graph(label=True)
Return the increasing flip graph of the subword complex.

OUTPUT:

a directed graph

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
sage: SC.increasing_flip_graph() # optional - gap3
Digraph on 5 vertices

sage: W = CoxeterGroup(['A',2])
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
sage: SC.increasing_flip_graph()
Digraph on 5 vertices

increasing_flip_poset()
Return the increasing flip poset of the subword complex.

OUTPUT:

a poset

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
sage: SC.increasing_flip_poset() # optional - gap3
Finite poset containing 5 elements

sage: W = CoxeterGroup(['A',2])
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
sage: SC.increasing_flip_poset()
Finite poset containing 5 elements

interval(I, J)
Return the interval [I,J] in the increasing flip graph subword complex.

INPUT:

• I, J – two facets

OUTPUT:

a set of facets

EXAMPLES:

5.1. Comprehensive Module List 3217

Combinatorics, Release 9.7

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
sage: F = SC([1,2]) # optional - gap3
sage: SC.interval(F, F) # optional - gap3
{(1, 2)}

sage: W = CoxeterGroup(['A',2])
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
sage: F = SC([1,2])
sage: SC.interval(F, F)
{(1, 2)}

is_ball()
Return True if the subword complex self is a ball.

This is the case if and only if it is not a sphere.

EXAMPLES:

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: w = W.from_reduced_word([2,3,2]) # optional - gap3
sage: SC = SubwordComplex([3,2,3,2,3], w) # optional - gap3
sage: SC.is_ball() # optional - gap3
False

sage: SC = SubwordComplex([3,2,1,3,2,3], w) # optional - gap3
sage: SC.is_ball() # optional - gap3
True

sage: W = CoxeterGroup(['A',3])
sage: w = W.from_reduced_word([2,3,2])
sage: SC = SubwordComplex([3,2,3,2,3], w)
sage: SC.is_ball()
False

is_double_root_free()
Return True if self is double-root-free.

This means that the root configurations of all facets do not contain a root twice.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3
sage: SC.is_double_root_free() # optional - gap3
True

sage: SC = SubwordComplex([1,1,2,2,1,1], w) # optional - gap3
sage: SC.is_double_root_free() # optional - gap3
True

sage: SC = SubwordComplex([1,2,1,2,1,2], w) # optional - gap3
sage: SC.is_double_root_free() # optional - gap3
False

(continues on next page)

3218 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w)
sage: SC.is_double_root_free()
True

is_pure()
Return True since all subword complexes are pure.

EXAMPLES:

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: w = W.from_reduced_word([2,3,2]) # optional - gap3
sage: SC = SubwordComplex([3,2,3,2,3], w) # optional - gap3
sage: SC.is_pure() # optional - gap3
True

sage: W = CoxeterGroup(['A',3])
sage: w = W.from_reduced_word([2,3,2])
sage: SC = SubwordComplex([3,2,3,2,3], w)
sage: SC.is_pure()
True

is_root_independent()
Return True if self is root-independent.

This means that the root configuration of any (or equivalently all) facets is linearly independent.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3
sage: SC.is_root_independent() # optional - gap3
True

sage: SC = SubwordComplex([1,2,1,2,1,2], W.w0) # optional - gap3
sage: SC.is_root_independent() # optional - gap3
False

sage: W = CoxeterGroup(['A',2])
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
sage: SC.is_root_independent()
True

is_sphere()
Return True if the subword complex self is a sphere.

EXAMPLES:

sage: W = ReflectionGroup(['A',3]) # optional - gap3
sage: w = W.from_reduced_word([2,3,2]) # optional - gap3
sage: SC = SubwordComplex([3,2,3,2,3], w) # optional - gap3
sage: SC.is_sphere() # optional - gap3
True

(continues on next page)

5.1. Comprehensive Module List 3219

Combinatorics, Release 9.7

(continued from previous page)

sage: SC = SubwordComplex([3,2,1,3,2,3], w) # optional - gap3
sage: SC.is_sphere() # optional - gap3
False

sage: W = CoxeterGroup(['A',3])
sage: w = W.from_reduced_word([2,3,2])
sage: SC = SubwordComplex([3,2,3,2,3], w)
sage: SC.is_sphere()
True

kappa_preimages()
Return a dictionary containing facets of self as keys, and list of elements of self.group() as values.

See also:

kappa_preimage

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3
sage: kappa = SC.kappa_preimages() # optional - gap3
sage: for F in SC: print("{} {}".format(F, [w.reduced_word() for w in␣
→˓kappa[F]])) # optional - gap3
(0, 1) [[]]
(0, 4) [[2], [2, 1]]
(1, 2) [[1]]
(2, 3) [[1, 2]]
(3, 4) [[1, 2, 1]]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w)
sage: kappa = SC.kappa_preimages()
sage: for F in SC: print("{} {}".format(F, [w.reduced_word() for w in␣
→˓kappa[F]]))
(0, 1) [[]]
(0, 4) [[2], [2, 1]]
(1, 2) [[1]]
(2, 3) [[1, 2]]
(3, 4) [[1, 2, 1]]

minkowski_summand(i)
Return the 𝑖 th Minkowski summand of self.

INPUT:

𝑖 – an integer defining a position in the word 𝑄

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], W.w0) # optional - gap3

(continues on next page)

3220 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: SC.minkowski_summand(1) # optional - gap3
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex

sage: W = CoxeterGroup(['A',2])
sage: SC = SubwordComplex([1,2,1,2,1], W.w0)
sage: SC.minkowski_summand(1)
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex

pi()
Return the element in the Coxeter group associated to self.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3
sage: SC.pi().reduced_word() # optional - gap3
[1, 2, 1]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w)
sage: SC.pi().reduced_word()
[1, 2, 1]

word()
Return the word in the simple generators associated to self.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3
sage: SC.word() # optional - gap3
(1, 2, 1, 2, 1)

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w)
sage: SC.word()
(1, 2, 1, 2, 1)

class sage.combinat.subword_complex.SubwordComplexFacet(parent, positions, facet_test=True)
Bases: sage.topology.simplicial_complex.Simplex, sage.structure.element.Element

A facet of a subword complex.

Facets of the subword complex𝒮𝒞(𝑄,𝑤) are complements of sets of positions in𝑄 defining a reduced expression
for 𝑤.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1], w) # optional - gap3

(continues on next page)

5.1. Comprehensive Module List 3221

../../../../../../html/en/reference/topology/sage/topology/simplicial_complex.html#sage.topology.simplicial_complex.Simplex
../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

(continued from previous page)

sage: F = SC[0]; F # optional - gap3
(0, 1)

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1], w)
sage: F = SC[0]; F
(0, 1)

brick_vector(coefficients=None)
Return the brick vector of self.

This is the sum of the weight vectors in the extended weight configuration.

INPUT:

• coefficients – (optional) a list of coefficients used to scale the fundamental weights

See also:

extended_weight_configuration()

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
sage: F = SC([1,2]); F # optional - gap3
(1, 2)
sage: F.extended_weight_configuration() # optional - gap3
[(2/3, 1/3), (1/3, 2/3), (-1/3, 1/3), (1/3, 2/3), (-1/3, 1/3)]
sage: F.brick_vector() # optional - gap3
(2/3, 7/3)
sage: F.brick_vector(coefficients=[1,2]) # optional - gap3
(4/3, 11/3)

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2])
sage: F.brick_vector()
(4/3, 14/3)
sage: F.brick_vector(coefficients=[1,2])
(8/3, 22/3)

extended_root_configuration()
Return the extended root configuration of self.

Let 𝑄 = 𝑞1 . . . 𝑞𝑚 ∈ 𝑆* and 𝑤 ∈ 𝑊 . The extended root configuration of a facet 𝐼 of 𝒮𝒞(𝑄,𝑤) is
the sequence r(𝐼, 1), . . . , r(𝐼,𝑚) of roots defined by r(𝐼, 𝑘) = Π𝑄[𝑘−1]r𝐼(𝛼𝑞𝑘), where Π𝑄[𝑘−1]r𝐼 is the
product of the simple reflections 𝑞𝑖 for 𝑖 ∈ [𝑘 − 1] r 𝐼 in this order.

The extended root configuration is used to perform flips efficiently.

See also:

flip()

3222 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
sage: F = SC([1,2]); F # optional - gap3
(1, 2)
sage: F.extended_root_configuration() # optional - gap3
[(1, 0), (1, 1), (-1, 0), (1, 1), (0, 1)]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2]); F
(1, 2)
sage: F.extended_root_configuration()
[(1, 0), (1, 1), (-1, 0), (1, 1), (0, 1)]

extended_weight_configuration(coefficients=None)
Return the extended weight configuration of self.

Let 𝑄 = 𝑞1 . . . 𝑞𝑚 ∈ 𝑆* and 𝑤 ∈ 𝑊 . The extended weight configuration of a facet 𝐼 of 𝒮𝒞(𝑄,𝑤) is the
sequence w(𝐼, 1), . . . ,w(𝐼,𝑚) of weights defined by w(𝐼, 𝑘) = Π𝑄[𝑘−1]r𝐼(𝜔𝑞𝑘), where Π𝑄[𝑘−1]r𝐼 is the
product of the simple reflections 𝑞𝑖 for 𝑖 ∈ [𝑘 − 1] r 𝐼 in this order.

The extended weight configuration is used to compute the brick vector.

INPUT:

• coefficients – (optional) a list of coefficients used to scale the fundamental weights

See also:

brick_vector()

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
sage: F = SC([1,2]) # optional - gap3
sage: F.extended_weight_configuration() # optional - gap3
[(2/3, 1/3), (1/3, 2/3), (-1/3, 1/3), (1/3, 2/3), (-1/3, 1/3)]
sage: F.extended_weight_configuration(coefficients=(1,2)) # optional - gap3
[(2/3, 1/3), (2/3, 4/3), (-1/3, 1/3), (2/3, 4/3), (-1/3, 1/3)]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2])
sage: F.extended_weight_configuration()
[(4/3, 2/3), (2/3, 4/3), (-2/3, 2/3), (2/3, 4/3), (-2/3, 2/3)]
sage: F.extended_weight_configuration(coefficients=(1,2))
[(4/3, 2/3), (4/3, 8/3), (-2/3, 2/3), (4/3, 8/3), (-2/3, 2/3)]

flip(i, return_position=False)
Return the facet obtained after flipping position i in self.

5.1. Comprehensive Module List 3223

Combinatorics, Release 9.7

INPUT:

• i – position in the word 𝑄 (integer).

• return_position – boolean (default: False) tells whether the new position should be returned as
well.

OUTPUT:

• The new subword complex facet.

• The new position if return_position is True.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
sage: F = SC([1,2]); F # optional - gap3
(1, 2)
sage: F.flip(1) # optional - gap3
(2, 3)
sage: F.flip(1, return_position=True) # optional - gap3
((2, 3), 3)

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2]); F
(1, 2)
sage: F.flip(1)
(2, 3)
sage: F.flip(1, return_position=True)
((2, 3), 3)

is_vertex()
Return True if self is a vertex of the brick polytope of self.parent.

A facet is a vertex of the brick polytope if its root cone is pointed. Note that this property is always satisfied
for root-independent subword complexes.

See also:

root_cone()

EXAMPLES:

sage: W = ReflectionGroup(['A',1]) # optional - gap3
sage: w = W.from_reduced_word([1]) # optional - gap3
sage: SC = SubwordComplex([1,1,1],w) # optional - gap3
sage: F = SC([0,1]); F.is_vertex() # optional - gap3
True
sage: F = SC([0,2]); F.is_vertex() # optional - gap3
False

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1,2,1],w) # optional - gap3
sage: F = SC([0,1,2,3]); F.is_vertex() # optional - gap3

(continues on next page)

3224 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

True
sage: F = SC([0,1,2,6]); F.is_vertex() # optional - gap3
False

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1,2,1],w)
sage: F = SC([0,1,2,3]); F.is_vertex()
True
sage: F = SC([0,1,2,6]); F.is_vertex()
False

kappa_preimage()
Return the fiber of self under the 𝜅 map.

The 𝜅 map sends an element 𝑤 ∈ 𝑊 to the unique facet of 𝐼 ∈ 𝒮𝒞(𝑄,𝑤) such that the root configuration
of 𝐼 is contained in 𝑤(Φ+). In other words, 𝑤 is in the preimage of self under 𝜅 if and only if 𝑤−1 sends
every root in the root configuration to a positive root.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3

sage: F = SC([1,2]); F # optional - gap3
(1, 2)
sage: F.kappa_preimage() # optional - gap3
[(1,4)(2,3)(5,6)]

sage: F = SC([0,4]); F # optional - gap3
(0, 4)
sage: F.kappa_preimage() # optional - gap3
[(1,3)(2,5)(4,6), (1,2,6)(3,4,5)]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)

sage: F = SC([1,2]); F
(1, 2)
sage: F.kappa_preimage()
[
[-1 1]
[0 1]
]

sage: F = SC([0,4]); F
(0, 4)
sage: F.kappa_preimage()
[
[1 0] [-1 1]
[1 -1], [-1 0]

(continues on next page)

5.1. Comprehensive Module List 3225

Combinatorics, Release 9.7

(continued from previous page)

]

plot(list_colors=None, labels=[], thickness=3, fontsize=14, shift=(0, 0), compact=False, roots=True,
**args)

In type 𝐴 or 𝐵, plot a pseudoline arrangement representing the facet self.

Pseudoline arrangements are graphical representations of facets of types A or B subword complexes.

INPUT:

• list_colors – list (default: []) to change the colors of the pseudolines.

• labels – list (default: []) to change the labels of the pseudolines.

• thickness – integer (default: 3) for the thickness of the pseudolines.

• fontsize – integer (default: 14) for the size of the font used for labels.

• shift – couple of coordinates (default: (0,0)) to change the origin.

• compact – boolean (default: False) to require a more compact representation.

• roots – boolean (default: True) to print the extended root configuration.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
sage: F = SC([1,2]); F.plot() # optional - gap3
Graphics object consisting of 26 graphics primitives

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2]); F.plot()
Graphics object consisting of 26 graphics primitives

sage: W = ReflectionGroup(['B',3]) # optional - gap3
sage: c = W.from_reduced_word([1,2,3]) # optional - gap3
sage: Q = c.reduced_word()*2 + W.w0.coxeter_sorting_word(c) # optional - gap3
sage: SC = SubwordComplex(Q, W.w0) # optional - gap3
sage: F = SC[15]; F.plot() # optional - gap3
Graphics object consisting of 52 graphics primitives

REFERENCES: [PilStu]

root_cone()
Return the polyhedral cone generated by the root configuration of self.

See also:

root_configuration()

EXAMPLES:

sage: W = ReflectionGroup(['A',1]) # optional - gap3
sage: w = W.from_reduced_word([1]) # optional - gap3
sage: SC = SubwordComplex([1,1,1],w) # optional - gap3

(continues on next page)

3226 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: F = SC([0,2]); F.root_cone() # optional - gap3
1-d cone in 1-d lattice N

sage: W = CoxeterGroup(['A',1])
sage: w = W.from_reduced_word([1])
sage: SC = SubwordComplex([1,1,1],w)
sage: F = SC([0,2]); F.root_cone()
1-d cone in 1-d lattice N

root_configuration()
Return the root configuration of self.

Let 𝑄 = 𝑞1 . . . 𝑞𝑚 ∈ 𝑆* and 𝑤 ∈ 𝑊 . The root configuration of a facet 𝐼 = [𝑖1, . . . , 𝑖𝑛] of 𝒮𝒞(𝑄,𝑤) is
the sequence r(𝐼, 𝑖1), . . . , r(𝐼, 𝑖𝑛) of roots defined by r(𝐼, 𝑘) = Π𝑄[𝑘−1]r𝐼(𝛼𝑞𝑘), where Π𝑄[𝑘−1]r𝐼 is the
product of the simple reflections 𝑞𝑖 for 𝑖 ∈ [𝑘 − 1] r 𝐼 in this order.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
sage: F = SC([1,2]); F # optional - gap3
(1, 2)
sage: F.root_configuration() # optional - gap3
[(1, 1), (-1, 0)]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2]); F
(1, 2)
sage: F.root_configuration() # optional - gap3
[(1, 1), (-1, 0)]

show(*kwds, **args)
Show the facet self.

See also:

plot()

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
sage: F = SC([1,2]); F.show() # optional - gap3

upper_root_configuration()
Return the positive roots of the root configuration of self.

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3

(continues on next page)

5.1. Comprehensive Module List 3227

Combinatorics, Release 9.7

(continued from previous page)

sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
sage: F = SC([1,2]); F # optional - gap3
(1, 2)
sage: F.root_configuration() # optional - gap3
[(1, 1), (-1, 0)]
sage: F.upper_root_configuration() # optional - gap3
[(1, 0)]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2]); F
(1, 2)
sage: F.upper_root_configuration()
[(1, 0)]

weight_cone()
Return the polyhedral cone generated by the weight configuration of self.

See also:

weight_configuration()

EXAMPLES:

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
sage: F = SC([1,2]); F # optional - gap3
(1, 2)
sage: WC = F.weight_cone(); WC # optional - gap3
2-d cone in 2-d lattice N
sage: WC.rays() # optional - gap3
N(1, 2),
N(-1, 1)
in 2-d lattice N

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2]); F
(1, 2)
sage: WC = F.weight_cone(); WC
2-d cone in 2-d lattice N

weight_configuration()
Return the weight configuration of self.

Let 𝑄 = 𝑞1 . . . 𝑞𝑚 ∈ 𝑆* and 𝑤 ∈ 𝑊 . The weight configuration of a facet 𝐼 = [𝑖1, . . . , 𝑖𝑛] of 𝒮𝒞(𝑄,𝑤) is
the sequence w(𝐼, 𝑖1), . . . ,w(𝐼, 𝑖𝑛) of weights defined by w(𝐼, 𝑘) = Π𝑄[𝑘−1]r𝐼(𝜔𝑞𝑘), where Π𝑄[𝑘−1]r𝐼
is the product of the simple reflections 𝑞𝑖 for 𝑖 ∈ [𝑘 − 1] r 𝐼 in this order.

EXAMPLES:

3228 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: W = ReflectionGroup(['A',2]) # optional - gap3
sage: w = W.from_reduced_word([1,2,1]) # optional - gap3
sage: SC = SubwordComplex([1,2,1,2,1],w) # optional - gap3
sage: F = SC([1,2]); F # optional - gap3
(1, 2)
sage: F.weight_configuration() # optional - gap3
[(1/3, 2/3), (-1/3, 1/3)]

sage: W = CoxeterGroup(['A',2])
sage: w = W.from_reduced_word([1,2,1])
sage: SC = SubwordComplex([1,2,1,2,1],w)
sage: F = SC([1,2]); F
(1, 2)
sage: F.weight_configuration()
[(2/3, 4/3), (-2/3, 2/3)]

5.1.338 Super Tableaux

AUTHORS:

• Matthew Lancellotti (2007): initial version

• Chaman Agrawal (2019-07-23): Modify standard and semistandard tableaux for super tableaux.

class sage.combinat.super_tableau.SemistandardSuperTableau(parent, t, check=True,
preprocessed=False)

Bases: sage.combinat.tableau.Tableau

A semistandard super tableau.

A semistandard super tableau is a tableau with primed positive integer entries. As defined in [Muth2019], a
semistandard super tableau weakly increases along the rows and down the columns. Also, the letters of even
parity (unprimed) strictly increases down the columns, and letters of oddd parity (primed) strictly increases
along the rows. Note that Sage uses the English convention for partitions and tableaux; the longer rows are
displayed on top.

INPUT:

• t – a tableau, a list of iterables, or an empty list

EXAMPLES:

sage: t = SemistandardSuperTableau([['1p',2,"3'"],[2,3]]); t
[[1', 2, 3'], [2, 3]]
sage: t.shape()
[3, 2]
sage: t.pp() # pretty printing
1' 2 3'
2 3
sage: t = Tableau([["1p",2],[2]])
sage: s = SemistandardSuperTableau(t); s
[[1', 2], [2]]
sage: SemistandardSuperTableau([]) # The empty tableau
[]

5.1. Comprehensive Module List 3229

Combinatorics, Release 9.7

check()
Check that self is a valid semistandard super tableau.

class sage.combinat.super_tableau.SemistandardSuperTableaux(**kwds)
Bases: sage.combinat.tableau.SemistandardTableaux

The set of semistandard super tableaux.

A semistandard super tableau is a tableau with primed positive integer entries. As defined in [Muth2019], a
semistandard super tableau weakly increases along the rows and down the columns. Also, the letters of even
parity (unprimed) strictly increases down the columns, and letters of oddd parity (primed) strictly increases
along the rows. Note that Sage uses the English convention for partitions and tableaux; the longer rows are
displayed on top.

EXAMPLES:

sage: SST = SemistandardSuperTableaux(); SST
Semistandard super tableaux

Element
alias of SemistandardSuperTableau

class sage.combinat.super_tableau.SemistandardSuperTableaux_all
Bases: sage.combinat.super_tableau.SemistandardSuperTableaux

All semistandard super tableaux.

class sage.combinat.super_tableau.StandardSuperTableau(parent, t, check=True, preprocessed=False)
Bases: sage.combinat.super_tableau.SemistandardSuperTableau

A standard super tableau.

A standard super tableau is a semistandard super tableau whose entries are in bijection with positive primed
integers 1′, 1, 2′ . . . 𝑛.

For more information refer [Muth2019].

INPUT:

• t – a Tableau, a list of iterables, or an empty list

EXAMPLES:

sage: t = StandardSuperTableau([["1'",1,"2'",2,"3'"],[3,"4'"]]); t
[[1', 1, 2', 2, 3'], [3, 4']]
sage: t.shape()
[5, 2]
sage: t.pp() # pretty printing
1' 1 2' 2 3'
3 4'
sage: t.is_standard()
True
sage: StandardSuperTableau([]) # The empty tableau
[]

check()
Check that self is a standard tableau.

is_standard()
Return True since self is a standard super tableau.

EXAMPLES:

3230 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: StandardSuperTableau([['1p', 1], ['2p', 2]]).is_standard()
True

class sage.combinat.super_tableau.StandardSuperTableaux(**kwds)
Bases: sage.combinat.super_tableau.SemistandardSuperTableaux, sage.structure.parent.
Parent

The set of standard super tableaux.

A standard super tableau is a tableau whose entries are primed positive integers, which are strictly increasing in
rows and down columns and contains each letters from 1’,1,2’. . . n exactly once.

For more information refer [Muth2019].

INPUT:

• n – a non-negative integer or a partition.

EXAMPLES:

sage: SST = StandardSuperTableaux()
sage: SST
Standard super tableaux
sage: SST([["1'",1,"2'",2,"3'"],[3,"4'"]])
[[1', 1, 2', 2, 3'], [3, 4']]
sage: SST = StandardSuperTableaux(3)
sage: SST
Standard super tableaux of size 3
sage: SST.first()
[[1', 1, 2']]
sage: SST.last()
[[1'], [1], [2']]
sage: SST.cardinality()
4
sage: SST.list()
[[[1', 1, 2']], [[1', 2'], [1]], [[1', 1], [2']], [[1'], [1], [2']]]
sage: SST = StandardSuperTableaux([3,2])
sage: SST
Standard super tableaux of shape [3, 2]

Element
alias of StandardSuperTableau

class sage.combinat.super_tableau.StandardSuperTableaux_all
Bases: sage.combinat.super_tableau.StandardSuperTableaux, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

All standard super tableaux.

class sage.combinat.super_tableau.StandardSuperTableaux_shape(p)
Bases: sage.combinat.super_tableau.StandardSuperTableaux

Standard super tableaux of a fixed shape 𝑝.

cardinality()
Return the number of standard super tableaux of given shape.

The standard super tableaux of a fixed shape 𝑝 are in bijection with the corresponding standard tableaux
(under the alphabet relabeling). Refer sage.combinat.tableau.StandardTableaux_shape for more
details.

5.1. Comprehensive Module List 3231

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

EXAMPLES:

sage: StandardSuperTableaux([3,2,1]).cardinality()
16
sage: StandardSuperTableaux([2,2]).cardinality()
2
sage: StandardSuperTableaux([5]).cardinality()
1
sage: StandardSuperTableaux([6,5,5,3]).cardinality()
6651216
sage: StandardSuperTableaux([]).cardinality()
1

class sage.combinat.super_tableau.StandardSuperTableaux_size(n)
Bases: sage.combinat.super_tableau.StandardSuperTableaux, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Standard super tableaux of fixed size 𝑛.

EXAMPLES:

sage: [t for t in StandardSuperTableaux(1)]
[[[1']]]
sage: [t for t in StandardSuperTableaux(2)]
[[[1', 1]], [[1'], [1]]]
sage: [t for t in StandardSuperTableaux(3)]
[[[1', 1, 2']], [[1', 2'], [1]], [[1', 1], [2']], [[1'], [1], [2']]]
sage: StandardSuperTableaux(4)[:]
[[[1', 1, 2', 2]],
[[1', 2', 2], [1]],
[[1', 1, 2], [2']],
[[1', 1, 2'], [2]],
[[1', 2'], [1, 2]],
[[1', 1], [2', 2]],
[[1', 2], [1], [2']],
[[1', 2'], [1], [2]],
[[1', 1], [2'], [2]],
[[1'], [1], [2'], [2]]]

cardinality()
Return the number of all standard super tableaux of size n.

The standard super tableaux of size 𝑛 are in bijection with the corresponding standard tableaux (under the
alphabet relabeling). Refer sage.combinat.tableau.StandardTableaux_size for more details.

EXAMPLES:

sage: StandardSuperTableaux(3).cardinality()
4
sage: ns = [1,2,3,4,5,6]
sage: sts = [StandardSuperTableaux(n) for n in ns]
sage: all(st.cardinality() == len(st.list()) for st in sts)
True
sage: StandardSuperTableaux(50).cardinality() # long time
27886995605342342839104615869259776

3232 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

5.1.339 Super Partitions

AUTHORS:

• Mike Zabrocki

A super partition of size 𝑛 and fermionic sector 𝑚 is a pair consisting of a strict partition of some integer 𝑟 of length
𝑚 (that may end in a 0) and an integer partition of 𝑛− 𝑟.

This module provides tools for manipulating super partitions.

Super partitions are the indexing set for symmetric functions in super space.

Super partitions may be input in two different formats: one as a pair consisting of fermionic (strict partition) and a
bosonic (partition) part and the other as a list of integer values where the negative entries come first and are listed in
strict order followed by the positive values in weak order.

A super partition is displayed as two partitions separated by a semicolon as a default. Super partitions may also be
displayed as a weakly increasing sequence of integers that are strict if the numbers are not positive.

These combinatorial objects index the space of symmetric polynomials in two sets of variables, one commuting and
one anti-commuting, and they are known as symmetric functions in super space (hence the origin of the name super
partitions).

EXAMPLES:

sage: SuperPartitions()
Super Partitions
sage: SuperPartitions(2)
Super Partitions of 2
sage: SuperPartitions(2).cardinality()
8
sage: SuperPartitions(4,2)
Super Partitions of 4 and of fermionic sector 2
sage: [[2,0],[1,1]] in SuperPartitions(4,2)
True
sage: [[1,0],[1,1]] in SuperPartitions(4,2)
False
sage: [[1,0],[2,1]] in SuperPartitions(4)
True
sage: [[1,0],[2,2,1]] in SuperPartitions(4)
False
sage: [[1,0],[2,1]] in SuperPartitions()
True
sage: [[1,1],[2,1]] in SuperPartitions()
False
sage: [-2, 0, 1, 1] in SuperPartitions(4,2)
True
sage: [-1, 0, 1, 1] in SuperPartitions(4,2)
False
sage: [-2, -2, 2, 1] in SuperPartitions(7,2)
False

REFERENCES:

• [JL2016]

class sage.combinat.superpartition.SuperPartition(parent, lst, check=True, immutable=True)
Bases: sage.structure.list_clone.ClonableArray

5.1. Comprehensive Module List 3233

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

A super partition.

A super partition of size 𝑛 and fermionic sector 𝑚 is a pair consisting of a strict partition of some integer 𝑟 of
length 𝑚 (that may end in a 0) and an integer partition of 𝑛− 𝑟.

EXAMPLES:

sage: sp = SuperPartition([[1,0],[2,2,1]]); sp
[1, 0; 2, 2, 1]
sage: sp[0]
(1, 0)
sage: sp[1]
(2, 2, 1)
sage: sp.fermionic_degree()
2
sage: sp.bosonic_degree()
6
sage: sp.length()
5
sage: sp.conjugate()
[4, 2;]

a_part()
The antisymmetric part as a list of strictly decreasing integers.

OUTPUT:

• a list

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).antisymmetric_part()
[3, 1]
sage: SuperPartition([[2,1,0],[3,3]]).antisymmetric_part()
[2, 1, 0]

add_horizontal_border_strip_star(h)
Return a list of super partitions that differ from self by a horizontal strip.

The notion of horizontal strip comes from the Pieri rule for the Schur-star basis of symmetric functions in
super space (see Theorem 7 from [JL2016]).

INPUT:

• h – number of cells in the horizontal strip

OUTPUT:

• a list of super partitions

EXAMPLES:

sage: SuperPartition([[4,1],[3]]).add_horizontal_border_strip_star(3)
[[3, 1; 7],
[4, 1; 6],
[3, 0; 6, 2],
[3, 1; 6, 1],
[4, 0; 5, 2],
[4, 1; 5, 1],

(continues on next page)

3234 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[3, 0; 5, 3],
[3, 1; 5, 2],
[4, 0; 4, 3],
[4, 1; 4, 2],
[4, 1; 3, 3]]
sage: SuperPartition([[2,1],[3]]).add_horizontal_border_strip_star(2)
[[2, 1; 5], [2, 0; 4, 2], [2, 1; 4, 1], [2, 0; 3, 3], [2, 1; 3, 2]]

add_horizontal_border_strip_star_bar(h)
List super partitions that differ from self by a horizontal strip.

The notion of horizontal strip comes from the Pieri rule for the Schur-star-bar basis of symmetric functions
in super space (see Theorem 10 from [JL2016]).

INPUT:

• h – number of cells in the horizontal strip

OUTPUT:

• a list of super partitions

EXAMPLES:

sage: SuperPartition([[4,1],[5,4]]).add_horizontal_border_strip_star_bar(3)
[[4, 1; 8, 4],
[4, 1; 7, 5],
[4, 2; 7, 4],
[4, 1; 7, 4, 1],
[4, 2; 6, 5],
[4, 1; 6, 5, 1],
[4, 3; 6, 4],
[4, 2; 6, 4, 1],
[4, 1; 6, 4, 2],
[4, 3; 5, 5],
[4, 2; 5, 5, 1],
[4, 1; 5, 5, 2],
[4, 3; 5, 4, 1],
[4, 1; 5, 4, 3]]
sage: SuperPartition([[3,1],[5]]).add_horizontal_border_strip_star_bar(2)
[[3, 1; 7],
[4, 1; 6],
[3, 2; 6],
[3, 1; 6, 1],
[4, 2; 5],
[4, 1; 5, 1],
[3, 2; 5, 1],
[3, 1; 5, 2]]

antisymmetric_part()
The antisymmetric part as a list of strictly decreasing integers.

OUTPUT:

• a list

EXAMPLES:

5.1. Comprehensive Module List 3235

Combinatorics, Release 9.7

sage: SuperPartition([[3,1],[2,2,1]]).antisymmetric_part()
[3, 1]
sage: SuperPartition([[2,1,0],[3,3]]).antisymmetric_part()
[2, 1, 0]

bi_degree()
Return the bidegree of self, which is a pair consisting of the bosonic and fermionic degree.

OUTPUT:

• a tuple of two integers

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).bi_degree()
(9, 2)
sage: SuperPartition([[2,1,0],[3,3]]).bi_degree()
(9, 3)

bosonic_degree()
Return the bosonic degree of self.

The bosonic degree is the sum of the sizes of the antisymmetric and symmetric parts.

OUTPUT:

• an integer

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).bosonic_degree()
9
sage: SuperPartition([[2,1,0],[3,3]]).bosonic_degree()
9

bosonic_length()
Return the length of the partition of the symmetric part.

OUTPUT:

• an integer

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).bosonic_length()
3
sage: SuperPartition([[2,1,0],[3,3]]).bosonic_length()
2

check()
Check that self is a valid super partition.

EXAMPLES:

sage: SP = SuperPartition([[1],[1]])
sage: SP.check()

conjugate()
Conjugate of a super partition.

3236 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The conjugate of a super partition is defined by conjugating the circled diagram.

OUTPUT:

• a SuperPartition

EXAMPLES:

sage: SuperPartition([[3, 1, 0], [4, 3, 2, 1]]).conjugate()
[6, 4, 1; 3]
sage: all(sp == sp.conjugate().conjugate() for sp in SuperPartitions(4))
True
sage: all(sp.conjugate() in SuperPartitions(3,2) for sp in SuperPartitions(3,2))
True

degree()
Return the bosonic degree of self.

The bosonic degree is the sum of the sizes of the antisymmetric and symmetric parts.

OUTPUT:

• an integer

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).bosonic_degree()
9
sage: SuperPartition([[2,1,0],[3,3]]).bosonic_degree()
9

dominates(other)
Return True if and only if self dominates other.

If the symmetric and anti-symmetric parts of self and other are not the same size then the result is False.

EXAMPLES:

sage: LA = SuperPartition([[2,1],[2,1,1]])
sage: LA.dominates([[2,1],[3,1]])
False
sage: LA.dominates([[2,1],[1,1,1,1]])
True
sage: LA.dominates([[3],[2,1,1]])
False
sage: LA.dominates([[1],[1]*6])
False

fermionic_degree()
Return the fermionic degree of self.

The fermionic degree is the length of the antisymmetric part.

OUTPUT:

• an integer

EXAMPLES:

5.1. Comprehensive Module List 3237

Combinatorics, Release 9.7

sage: SuperPartition([[3,1],[2,2,1]]).fermionic_degree()
2
sage: SuperPartition([[2,1,0],[3,3]]).fermionic_degree()
3

fermionic_sector()
Return the fermionic degree of self.

The fermionic degree is the length of the antisymmetric part.

OUTPUT:

• an integer

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).fermionic_degree()
2
sage: SuperPartition([[2,1,0],[3,3]]).fermionic_degree()
3

static from_circled_diagram(shape, corners)
Construct a super partition from a circled diagram.

A circled diagram consists of a partition of the concatenation of the antisymmetric and symmetric parts
and a list of addable cells of the partition which indicate the location of the circled cells.

INPUT:

• shape – a partition or list of integers

• corners – a list of removable cells of shape

OUTPUT:

• a SuperPartition

EXAMPLES:

sage: SuperPartition.from_circled_diagram([3, 2, 2, 1, 1], [(0, 3), (3, 1)])
[3, 1; 2, 2, 1]
sage: SuperPartition.from_circled_diagram([3, 3, 2, 1], [(2, 2), (3, 1), (4,␣
→˓0)])
[2, 1, 0; 3, 3]
sage: from_cd = SuperPartition.from_circled_diagram
sage: all(sp == from_cd(*sp.to_circled_diagram()) for sp in SuperPartitions(4))
True

length()
Return the length of self, which is the sum of the lengths of the antisymmetric and symmetric part.

OUTPUT:

• an integer

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).length()
5
sage: SuperPartition([[2,1,0],[3,3]]).length()
5

3238 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

s_part()
The symmetric part as a list of weakly decreasing integers.

OUTPUT:

• a list

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).symmetric_part()
[2, 2, 1]
sage: SuperPartition([[2,1,0],[3,3]]).symmetric_part()
[3, 3]

shape_circled_diagram()
A concatenated partition with an extra cell for each antisymmetric part

OUTPUT:

• a partition

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).shape_circled_diagram()
[4, 2, 2, 2, 1]
sage: SuperPartition([[2,1,0],[3,3]]).shape_circled_diagram()
[3, 3, 3, 2, 1]

sign()
Return the sign of a permutation of cycle type the symmetric part of self.

OUTPUT:

• either 1 or −1

EXAMPLES:

sage: SuperPartition([[1,0],[3,1,1]]).sign()
-1
sage: SuperPartition([[1,0],[3,2,1]]).sign()
1
sage: sum(sp.sign()/sp.zee() for sp in SuperPartitions(6,0))
0

symmetric_part()
The symmetric part as a list of weakly decreasing integers.

OUTPUT:

• a list

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).symmetric_part()
[2, 2, 1]
sage: SuperPartition([[2,1,0],[3,3]]).symmetric_part()
[3, 3]

to_circled_diagram()
The shape of the circled diagram and a list of addable cells

5.1. Comprehensive Module List 3239

Combinatorics, Release 9.7

A circled diagram consists of a partition for the outer shape and a list of removable cells of the partition
indicating the location of the circled cells

OUTPUT:

• a list consisting of a partition and a list of pairs of integers

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).to_circled_diagram()
[[3, 2, 2, 1, 1], [(0, 3), (3, 1)]]
sage: SuperPartition([[2,1,0],[3,3]]).to_circled_diagram()
[[3, 3, 2, 1], [(2, 2), (3, 1), (4, 0)]]
sage: from_cd = SuperPartition.from_circled_diagram
sage: all(sp == from_cd(*sp.to_circled_diagram()) for sp in SuperPartitions(4))
True

to_composition()
Concatenate the antisymmetric and symmetric parts to a composition.

OUTPUT:

• a (possibly weak) composition

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).to_composition()
[3, 1, 2, 2, 1]
sage: SuperPartition([[2,1,0],[3,3]]).to_composition()
[2, 1, 0, 3, 3]
sage: SuperPartition([[2,1,0],[3,3]]).to_composition().parent()
Compositions of non-negative integers

to_list()
The list of two lists with the antisymmetric and symmetric parts.

EXAMPLES:

sage: SuperPartition([[1],[1]]).to_list()
[[1], [1]]
sage: SuperPartition([[],[1]]).to_list()
[[], [1]]

to_partition()
Concatenate and sort the antisymmetric and symmetric parts to a partition.

OUTPUT:

• a partition

EXAMPLES:

sage: SuperPartition([[3,1],[2,2,1]]).to_partition()
[3, 2, 2, 1, 1]
sage: SuperPartition([[2,1,0],[3,3]]).to_partition()
[3, 3, 2, 1]
sage: SuperPartition([[2,1,0],[3,3]]).to_partition().parent()
Partitions

3240 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

zee()
Return the centralizer size of a permutation of cycle type symmetric part of self.

OUTPUT:

• a positive integer

EXAMPLES:

sage: SuperPartition([[1,0],[3,1,1]]).zee()
6
sage: SuperPartition([[1],[2,2,1]]).zee()
8
sage: sum(1/sp.zee() for sp in SuperPartitions(6,0))
1

class sage.combinat.superpartition.SuperPartitions(is_infinite=False)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Super partitions.

A super partition of size 𝑛 and fermionic sector 𝑚 is a pair consisting of a strict partition of some integer 𝑟 of
length 𝑚 (that may end in a 0) and an integer partition of 𝑛− 𝑟.

INPUT:

• n – an integer (optional: default None)

• m – if n is specified, an integer (optional: default None)

Super partitions are the indexing set for symmetric functions in super space.

EXAMPLES:

sage: SuperPartitions()
Super Partitions
sage: SuperPartitions(2)
Super Partitions of 2
sage: SuperPartitions(2).cardinality()
8
sage: SuperPartitions(4,2)
Super Partitions of 4 and of fermionic sector 2
sage: [[2,0],[1,1]] in SuperPartitions(4,2)
True
sage: [[1,0],[1,1]] in SuperPartitions(4,2)
False
sage: [[1,0],[2,1]] in SuperPartitions(4)
True
sage: [[1,0],[2,2,1]] in SuperPartitions(4)
False
sage: [[1,0],[2,1]] in SuperPartitions()
True
sage: [[1,1],[2,1]] in SuperPartitions()
False

Element
alias of SuperPartition

5.1. Comprehensive Module List 3241

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

options(*get_value, **set_value)
OPTIONS:

• display – (default: default) Specifies how the super partitions should be printed

– default – the super partition is displayed in a form [fermionic part; bosonic part]

– list – the super partitions are displayed in a list of two lists

– pair – the super partition is displayed as a list of integers

See GlobalOptions for more features of these options.

class sage.combinat.superpartition.SuperPartitions_all
Bases: sage.combinat.superpartition.SuperPartitions

Initialize self.

class sage.combinat.superpartition.SuperPartitions_n(n)
Bases: sage.combinat.superpartition.SuperPartitions

Initialize self.

class sage.combinat.superpartition.SuperPartitions_n_m(n, m)
Bases: sage.combinat.superpartition.SuperPartitions

Initialize self.

5.1.340 Symmetric Group Algebra

sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroupT(R, n, q=None)
Return the Hecke algebra of the symmetric group 𝑆𝑛 on the T-basis with quantum parameter q over the ring 𝑅.

If 𝑅 is a commutative ring and 𝑞 is an invertible element of 𝑅, and if 𝑛 is a nonnegative integer, then the Hecke
algebra of the symmetric group 𝑆𝑛 over 𝑅 with quantum parameter 𝑞 is defined as the algebra generated by the
generators 𝑇1, 𝑇2, . . . , 𝑇𝑛−1 with relations

𝑇𝑖𝑇𝑖+1𝑇𝑖 = 𝑇𝑖+1𝑇𝑖𝑇𝑖+1

for all 𝑖 < 𝑛− 1 (“braid relations”),

𝑇𝑖𝑇𝑗 = 𝑇𝑗𝑇𝑖

for all 𝑖 and 𝑗 such that |𝑖− 𝑗| > 1 (“locality relations”), and

𝑇 2
𝑖 = 𝑞 + (𝑞 − 1)𝑇𝑖

for all 𝑖 (the “quadratic relations”, also known in the form (𝑇𝑖 + 1)(𝑇𝑖 − 𝑞) = 0). (This is only one of several
existing definitions in literature, not all of which are fully equivalent. We are following the conventions of
[Go1993].) For any permutation 𝑤 ∈ 𝑆𝑛, we can define an element 𝑇𝑤 of this Hecke algebra by setting 𝑇𝑤 =
𝑇𝑖1𝑇𝑖2 · · ·𝑇𝑖𝑘 , where𝑤 = 𝑠𝑖1𝑠𝑖2 · · · 𝑠𝑖𝑘 is a reduced word for𝑤 (with 𝑠𝑖 meaning the transposition (𝑖, 𝑖+1), and
the product of permutations being evaluated by first applying 𝑠𝑖𝑘 , then 𝑠𝑖𝑘−1

, etc.). This element is independent
of the choice of the reduced decomposition, and can be computed in Sage by calling H[w] where H is the Hecke
algebra and w is the permutation.

The Hecke algebra of the symmetric group 𝑆𝑛 with quantum parameter 𝑞 over 𝑅 can be seen as a deformation
of the group algebra 𝑅𝑆𝑛; indeed, it becomes 𝑅𝑆𝑛 when 𝑞 = 1.

3242 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

Warning: The multiplication on the Hecke algebra of the symmetric group does not follow the global
option mult of the Permutations class (see options()). It is always as defined above. It does not match
the default option (mult=l2r) of the symmetric group algebra!

EXAMPLES:

sage: HeckeAlgebraSymmetricGroupT(QQ, 3)
Hecke algebra of the symmetric group of order 3 on the T basis over Univariate␣
→˓Polynomial Ring in q over Rational Field

sage: HeckeAlgebraSymmetricGroupT(QQ, 3, 2)
Hecke algebra of the symmetric group of order 3 with q=2 on the T basis over␣
→˓Rational Field

The multiplication on the Hecke algebra follows a different convention than the one on the symmetric group
algebra does by default:

sage: H3 = HeckeAlgebraSymmetricGroupT(QQ, 3)
sage: H3([1,3,2]) * H3([2,1,3])
T[3, 1, 2]
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: S3([1,3,2]) * S3([2,1,3])
[2, 3, 1]

sage: TestSuite(H3).run()

class sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_generic(R, n,
q=None)

Bases: sage.combinat.free_module.CombinatorialFreeModule

one_basis()
Return the identity permutation.

EXAMPLES:

sage: HeckeAlgebraSymmetricGroupT(QQ, 3).one() # indirect doctest
T[1, 2, 3]

q()
Return the variable or parameter 𝑞.

EXAMPLES:

sage: HeckeAlgebraSymmetricGroupT(QQ, 3).q()
q
sage: HeckeAlgebraSymmetricGroupT(QQ, 3, 2).q()
2

class sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_t(R, n, q=None)
Bases: sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_generic

algebra_generators()
Return the generators of the algebra.

EXAMPLES:

5.1. Comprehensive Module List 3243

Combinatorics, Release 9.7

sage: HeckeAlgebraSymmetricGroupT(QQ,3).algebra_generators()
[T[2, 1, 3], T[1, 3, 2]]

jucys_murphy(k)
Return the Jucys-Murphy element 𝐽𝑘 of the Hecke algebra.

These Jucys-Murphy elements are defined by

𝐽𝑘 = (𝑇𝑘−1𝑇𝑘−2 · · ·𝑇1)(𝑇1𝑇2 · · ·𝑇𝑘−1).

More explicitly,

𝐽𝑘 = 𝑞𝑘−1 +

𝑘−1∑︁
𝑙=1

(𝑞𝑙 − 𝑞𝑙−1)𝑇(𝑙,𝑘).

For generic 𝑞, the 𝐽𝑘 generate a maximal commutative sub-algebra of the Hecke algebra.

Warning: The specialization 𝑞 = 1 does not map these elements 𝐽𝑘 to the Young-Jucys-Murphy
elements of the group algebra 𝑅𝑆𝑛. (Instead, it maps the “reduced” Jucys-Murphy elements (𝐽𝑘 −
𝑞𝑘−1)/(𝑞 − 1) to the Young-Jucys-Murphy elements of 𝑅𝑆𝑛.)

EXAMPLES:

sage: H3 = HeckeAlgebraSymmetricGroupT(QQ,3)
sage: j2 = H3.jucys_murphy(2); j2
q*T[1, 2, 3] + (q-1)*T[2, 1, 3]
sage: j3 = H3.jucys_murphy(3); j3
q^2*T[1, 2, 3] + (q^2-q)*T[1, 3, 2] + (q-1)*T[3, 2, 1]
sage: j2*j3 == j3*j2
True
sage: j0 = H3.jucys_murphy(1); j0 == H3.one()
True
sage: H3.jucys_murphy(0)
Traceback (most recent call last):
...
ValueError: k (= 0) must be between 1 and n (= 3)

product_on_basis(perm1, perm2)
EXAMPLES:

sage: H3 = HeckeAlgebraSymmetricGroupT(QQ, 3, 1)
sage: a = H3([2,1,3])+2*H3([1,2,3])-H3([3,2,1])
sage: a^2 #indirect doctest
6*T[1, 2, 3] + 4*T[2, 1, 3] - T[2, 3, 1] - T[3, 1, 2] - 4*T[3, 2, 1]

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3([2,1,3])+2*QS3([1,2,3])-QS3([3,2,1])
sage: a^2
6*[1, 2, 3] + 4*[2, 1, 3] - [2, 3, 1] - [3, 1, 2] - 4*[3, 2, 1]

t(i)
Return the element 𝑇𝑖 of the Hecke algebra self.

EXAMPLES:

3244 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: H3 = HeckeAlgebraSymmetricGroupT(QQ,3)
sage: H3.t(1)
T[2, 1, 3]
sage: H3.t(2)
T[1, 3, 2]
sage: H3.t(0)
Traceback (most recent call last):
...
ValueError: i (= 0) must be between 1 and n-1 (= 2)

t_action(a, i)
Return the product 𝑇𝑖 · 𝑎.

EXAMPLES:

sage: H3 = HeckeAlgebraSymmetricGroupT(QQ, 3)
sage: a = H3([2,1,3])+2*H3([1,2,3])
sage: H3.t_action(a, 1)
q*T[1, 2, 3] + (q+1)*T[2, 1, 3]
sage: H3.t(1)*a
q*T[1, 2, 3] + (q+1)*T[2, 1, 3]

t_action_on_basis(perm, i)
Return the product 𝑇𝑖 · 𝑇𝑝𝑒𝑟𝑚, where perm is a permutation in the symmetric group 𝑆𝑛.

EXAMPLES:

sage: H3 = HeckeAlgebraSymmetricGroupT(QQ, 3)
sage: H3.t_action_on_basis(Permutation([2,1,3]), 1)
q*T[1, 2, 3] + (q-1)*T[2, 1, 3]
sage: H3.t_action_on_basis(Permutation([1,2,3]), 1)
T[2, 1, 3]
sage: H3 = HeckeAlgebraSymmetricGroupT(QQ, 3, 1)
sage: H3.t_action_on_basis(Permutation([2,1,3]), 1)
T[1, 2, 3]
sage: H3.t_action_on_basis(Permutation([1,3,2]), 2)
T[1, 2, 3]

sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra(R, W, category=None)
Return the symmetric group algebra of order W over the ring R.

INPUT:

• W – a symmetric group; alternatively an integer 𝑛 can be provided, as shorthand for Permutations(n).

• R – a base ring

• category – a category (default: the category of W)

This supports several implementations of the symmetric group. At this point this has been tested with
W=Permutations(n) and W=SymmetricGroup(n).

Warning: Some features are failing in the latter case, in particular if the domain of the symmetric group is
not 1, . . . , 𝑛.

5.1. Comprehensive Module List 3245

Combinatorics, Release 9.7

Note: The brave can also try setting W=WeylGroup(['A',n-1]), but little support for this currently exists.

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3); QS3
Symmetric group algebra of order 3 over Rational Field
sage: QS3(1)
[1, 2, 3]
sage: QS3(2)
2*[1, 2, 3]
sage: basis = [QS3(p) for p in Permutations(3)]
sage: a = sum(basis); a
[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
sage: a^2
6*[1, 2, 3] + 6*[1, 3, 2] + 6*[2, 1, 3] + 6*[2, 3, 1] + 6*[3, 1, 2] + 6*[3, 2, 1]
sage: a^2 == 6*a
True
sage: b = QS3([3, 1, 2])
sage: b
[3, 1, 2]
sage: b*a
[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
sage: b*a == a
True

We now construct the symmetric group algebra by providing explicitly the underlying group:

sage: SGA = SymmetricGroupAlgebra(QQ, Permutations(4)); SGA
Symmetric group algebra of order 4 over Rational Field
sage: SGA.group()
Standard permutations of 4
sage: SGA.an_element()
[1, 2, 3, 4] + 2*[1, 2, 4, 3] + 3*[1, 3, 2, 4] + [4, 1, 2, 3]

sage: SGA = SymmetricGroupAlgebra(QQ, SymmetricGroup(4)); SGA
Symmetric group algebra of order 4 over Rational Field
sage: SGA.group()
Symmetric group of order 4! as a permutation group
sage: SGA.an_element()
() + (2,3,4) + 2*(1,3)(2,4) + 3*(1,4)(2,3)

sage: SGA = SymmetricGroupAlgebra(QQ, WeylGroup(["A",3], prefix='s')); SGA
Symmetric group algebra of order 4 over Rational Field
sage: SGA.group()
Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space)
sage: SGA.an_element()
s1*s2*s3 + 3*s3*s2 + 2*s3 + 1

The preferred way to construct the symmetric group algebra is to go through the usual algebra method:

sage: SGA = Permutations(3).algebra(QQ); SGA
Symmetric group algebra of order 3 over Rational Field

(continues on next page)

3246 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: SGA.group()
Standard permutations of 3

sage: SGA = SymmetricGroup(3).algebra(QQ); SGA
Symmetric group algebra of order 3 over Rational Field
sage: SGA.group()
Symmetric group of order 3! as a permutation group

The canonical embedding from the symmetric group algebra of order 𝑛 to the symmetric group algebra of order
𝑝 > 𝑛 is available as a coercion:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: QS4 = SymmetricGroupAlgebra(QQ, 4)
sage: QS4.coerce_map_from(QS3)
Generic morphism:
From: Symmetric group algebra of order 3 over Rational Field
To: Symmetric group algebra of order 4 over Rational Field

sage: x3 = QS3([3,1,2]) + 2 * QS3([2,3,1]); x3
2*[2, 3, 1] + [3, 1, 2]
sage: QS4(x3)
2*[2, 3, 1, 4] + [3, 1, 2, 4]

This allows for mixed expressions:

sage: x4 = 3*QS4([3, 1, 4, 2])
sage: x3 + x4
2*[2, 3, 1, 4] + [3, 1, 2, 4] + 3*[3, 1, 4, 2]

sage: QS0 = SymmetricGroupAlgebra(QQ, 0)
sage: QS1 = SymmetricGroupAlgebra(QQ, 1)
sage: x0 = QS0([])
sage: x1 = QS1([1])
sage: x0 * x1
[1]
sage: x3 - (2*x0 + x1) - x4
-3*[1, 2, 3, 4] + 2*[2, 3, 1, 4] + [3, 1, 2, 4] - 3*[3, 1, 4, 2]

Caveat: to achieve this, constructing SymmetricGroupAlgebra(QQ, 10) currently triggers the construction of
all symmetric group algebras of smaller order. Is this a feature we really want to have?

Warning: The semantics of multiplication in symmetric group algebras with index set Permutations(n)
is determined by the order in which permutations are multiplied, which currently defaults to “in such a way
that multiplication is associative with permutations acting on integers from the right”, but can be changed to
the opposite order at runtime by setting the global variable Permutations.options['mult'] (see sage.
combinat.permutation.Permutations.options()). On the other hand, the semantics of multiplica-
tion in symmetric group algebras with index set SymmetricGroup(n) does not depend on this global vari-
able. (This has the awkward consequence that the coercions between these two sorts of symmetric group alge-
bras do not respect multiplication when this global variable is set to 'r2l'.) In view of this, it is recommended
that code not rely on the usual multiplication function, but rather use the methods left_action_product()
and right_action_product() for multiplying permutations (these methods don’t depend on the setting).
See trac ticket #14885 for more information.

5.1. Comprehensive Module List 3247

https://trac.sagemath.org/14885

Combinatorics, Release 9.7

We conclude by constructing the algebra of the symmetric group as a monoid algebra:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3, category=Monoids())
sage: QS3.category()
Category of finite dimensional cellular monoid algebras over Rational Field
sage: TestSuite(QS3).run(skip=['_test_construction'])

class sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n(R, W, category)
Bases: sage.algebras.group_algebra.GroupAlgebra_class

algebra_generators()
Return generators of this group algebra (as algebra) as a list of permutations.

The generators used for the group algebra of 𝑆𝑛 are the transposition (2, 1) and the 𝑛-cycle (1, 2, . . . , 𝑛),
unless 𝑛 ≤ 1 (in which case no generators are needed).

EXAMPLES:

sage: SymmetricGroupAlgebra(ZZ,5).algebra_generators()
Family ([2, 1, 3, 4, 5], [2, 3, 4, 5, 1])

sage: SymmetricGroupAlgebra(QQ,0).algebra_generators()
Family ()

sage: SymmetricGroupAlgebra(QQ,1).algebra_generators()
Family ()

antipode(x)
Return the image of the element x of self under the antipode of the Hopf algebra self (where the comul-
tiplication is the usual one on a group algebra).

Explicitly, this is obtained by replacing each permutation 𝜎 by 𝜎−1 in x while keeping all coefficients as
they are.

EXAMPLES:

sage: QS4 = SymmetricGroupAlgebra(QQ, 4)
sage: QS4.antipode(2 * QS4([1, 3, 4, 2]) - 1/2 * QS4([1, 4, 2, 3]))
-1/2*[1, 3, 4, 2] + 2*[1, 4, 2, 3]
sage: all(QS4.antipode(QS4(p)) == QS4(p.inverse())
....: for p in Permutations(4))
True

sage: ZS3 = SymmetricGroupAlgebra(ZZ, 3)
sage: ZS3.antipode(ZS3.zero())
0
sage: ZS3.antipode(-ZS3(Permutation([2, 3, 1])))
-[3, 1, 2]

binary_unshuffle_sum(k)
Return the 𝑘-th binary unshuffle sum in the group algebra self.

The 𝑘-th binary unshuffle sum in the symmetric group algebra 𝑅𝑆𝑛 over a ring 𝑅 is defined as the sum of
all permutations 𝜎 ∈ 𝑆𝑛 satisfying 𝜎(1) < 𝜎(2) < · · · < 𝜎(𝑘) and 𝜎(𝑘 + 1) < 𝜎(𝑘 + 2) < · · · < 𝜎(𝑛).

This element has the property that, if it is denoted by 𝑡𝑘, and if the 𝑘-th semi-RSW element (see
semi_rsw_element()) is denoted by 𝑠𝑘, then 𝑠𝑘𝑆(𝑡𝑘) and 𝑡𝑘𝑆(𝑠𝑘) both equal the 𝑘-th Reiner-Saliola-
Welker shuffling element of 𝑅𝑆𝑛 (see rsw_shuffling_element()).

3248 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/algebras/sage/algebras/group_algebra.html#sage.algebras.group_algebra.GroupAlgebra_class

Combinatorics, Release 9.7

The 𝑘-th binary unshuffle sum is the image of the complete non-commutative symmetric function 𝑆(𝑘,𝑛−𝑘)

in the ring of non-commutative symmetric functions under the canonical projection on the symmetric group
algebra (through the descent algebra).

EXAMPLES:

The binary unshuffle sums on Q𝑆3:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: QS3.binary_unshuffle_sum(0)
[1, 2, 3]
sage: QS3.binary_unshuffle_sum(1)
[1, 2, 3] + [2, 1, 3] + [3, 1, 2]
sage: QS3.binary_unshuffle_sum(2)
[1, 2, 3] + [1, 3, 2] + [2, 3, 1]
sage: QS3.binary_unshuffle_sum(3)
[1, 2, 3]
sage: QS3.binary_unshuffle_sum(4)
0

Let us check the relation with the 𝑘-th Reiner-Saliola-Welker shuffling element stated in the docstring:

sage: def test_rsw(n):
....: ZSn = SymmetricGroupAlgebra(ZZ, n)
....: for k in range(1, n):
....: a = ZSn.semi_rsw_element(k)
....: b = ZSn.binary_unshuffle_sum(k)
....: c = ZSn.left_action_product(a, ZSn.antipode(b))
....: d = ZSn.left_action_product(b, ZSn.antipode(a))
....: e = ZSn.rsw_shuffling_element(k)
....: if c != e or d != e:
....: return False
....: return True
sage: test_rsw(3)
True
sage: test_rsw(4) # long time
True
sage: test_rsw(5) # long time
True

Let us also check the statement about the complete non-commutative symmetric function:

sage: def test_rsw_ncsf(n):
....: ZSn = SymmetricGroupAlgebra(ZZ, n)
....: NSym = NonCommutativeSymmetricFunctions(ZZ)
....: S = NSym.S()
....: for k in range(1, n):
....: a = S(Composition([k, n-k])).to_symmetric_group_algebra()
....: if a != ZSn.binary_unshuffle_sum(k):
....: return False
....: return True
sage: test_rsw_ncsf(3)
True
sage: test_rsw_ncsf(4)
True

(continues on next page)

5.1. Comprehensive Module List 3249

Combinatorics, Release 9.7

(continued from previous page)

sage: test_rsw_ncsf(5) # long time
True

canonical_embedding(other)
Return the canonical coercion of self into a symmetric group algebra other.

INPUT:

• other – a symmetric group algebra with order 𝑝 satisfying 𝑝 ≥ 𝑛, where 𝑛 is the order of self, over
a ground ring into which the ground ring of self coerces.

EXAMPLES:

sage: QS2 = SymmetricGroupAlgebra(QQ, 2)
sage: QS4 = SymmetricGroupAlgebra(QQ, 4)
sage: phi = QS2.canonical_embedding(QS4); phi
Generic morphism:
From: Symmetric group algebra of order 2 over Rational Field
To: Symmetric group algebra of order 4 over Rational Field

sage: x = QS2([2,1]) + 2 * QS2([1,2])
sage: phi(x)
2*[1, 2, 3, 4] + [2, 1, 3, 4]

sage: loads(dumps(phi))
Generic morphism:
From: Symmetric group algebra of order 2 over Rational Field
To: Symmetric group algebra of order 4 over Rational Field

sage: ZS2 = SymmetricGroupAlgebra(ZZ, 2)
sage: phi = ZS2.canonical_embedding(QS4); phi
Generic morphism:
From: Symmetric group algebra of order 2 over Integer Ring
To: Symmetric group algebra of order 4 over Rational Field

sage: phi = ZS2.canonical_embedding(QS2); phi
Generic morphism:
From: Symmetric group algebra of order 2 over Integer Ring
To: Symmetric group algebra of order 2 over Rational Field

sage: QS4.canonical_embedding(QS2)
Traceback (most recent call last):
...
ValueError: There is no canonical embedding from Symmetric group
algebra of order 2 over Rational Field to Symmetric group
algebra of order 4 over Rational Field

sage: QS4g = SymmetricGroup(4).algebra(QQ)
sage: QS4.canonical_embedding(QS4g)(QS4([1,3,2,4]))
(2,3)
sage: QS4g.canonical_embedding(QS4)(QS4g((2,3)))
[1, 3, 2, 4]
sage: ZS2.canonical_embedding(QS4g)(ZS2([2,1]))
(1,2)

(continues on next page)

3250 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: ZS2g = SymmetricGroup(2).algebra(ZZ)
sage: ZS2g.canonical_embedding(QS4)(ZS2g((1,2)))
[2, 1, 3, 4]

cell_module(la, **kwds)
Return the cell module indexed by la.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: M = S.cell_module(Partition([2,1])); M
Cell module indexed by [2, 1] of Cellular basis of
Symmetric group algebra of order 3 over Rational Field

We check that the input la is standardized:

sage: N = S.cell_module([2,1])
sage: M is N
True

cell_module_indices(la)
Return the indices of the cell module of self indexed by la .

This is the finite set 𝑀(𝜆).

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.cell_module_indices([3,1])
Standard tableaux of shape [3, 1]

cell_poset()
Return the cell poset of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.cell_poset()
Finite poset containing 5 elements

central_orthogonal_idempotent(la, block=True)
Return the central idempotent for the symmetric group of order 𝑛 corresponding to the indecomposable
block to which the partition la is associated.

If self.base_ring() contains Q, this corresponds to the classical central idempotent corresponding to
the irreducible representation indexed by la.

Alternatively, if self.base_ring() has characteristic 𝑝 > 0, then Theorem 2.8 in [Mur1983] provides
that la is associated to an idempotent 𝑓𝜇, where 𝜇 is the 𝑝-core of la. This 𝑓𝜇 is a sum of classical
idempotents,

𝑓𝜇 =
∑︁

𝑐(𝜆)=𝜇

𝑒𝜆,

where the sum ranges over the partitions 𝜆 of 𝑛 with 𝑝-core equal to 𝜇.

INPUT:

5.1. Comprehensive Module List 3251

Combinatorics, Release 9.7

• la – a partition of self.n or a self.base_ring().characteristic()-core of such a partition

• block – boolean (default: True); when False, this returns the classical idempotent associated to la
(defined over Q)

OUTPUT:

If block=False and the corresponding coefficients are not defined over self.base_ring(), then return
None. Otherwise return an element of self.

EXAMPLES:

Asking for block idempotents in any characteristic, by passing a partition of self.n:

sage: S0 = SymmetricGroup(4).algebra(QQ)
sage: S2 = SymmetricGroup(4).algebra(GF(2))
sage: S3 = SymmetricGroup(4).algebra(GF(3))
sage: S0.central_orthogonal_idempotent([2,1,1])
3/8*() - 1/8*(3,4) - 1/8*(2,3) - 1/8*(2,4) - 1/8*(1,2)
- 1/8*(1,2)(3,4) + 1/8*(1,2,3,4) + 1/8*(1,2,4,3)
+ 1/8*(1,3,4,2) - 1/8*(1,3) - 1/8*(1,3)(2,4)
+ 1/8*(1,3,2,4) + 1/8*(1,4,3,2) - 1/8*(1,4)
+ 1/8*(1,4,2,3) - 1/8*(1,4)(2,3)
sage: S2.central_orthogonal_idempotent([2,1,1])
()
sage: idem = S3.central_orthogonal_idempotent([4]); idem
() + (1,2)(3,4) + (1,3)(2,4) + (1,4)(2,3)
sage: idem == S3.central_orthogonal_idempotent([1,1,1,1])
True
sage: S3.central_orthogonal_idempotent([2,2])
() + (1,2)(3,4) + (1,3)(2,4) + (1,4)(2,3)

Asking for block idempotents in any characteristic, by passing 𝑝-cores:

sage: S0.central_orthogonal_idempotent([1,1])
Traceback (most recent call last):
...
ValueError: [1, 1] is not a partition of integer 4
sage: S2.central_orthogonal_idempotent([])
()
sage: S2.central_orthogonal_idempotent([1])
Traceback (most recent call last):
...
ValueError: the 2-core of [1] is not a 2-core of a partition of 4
sage: S3.central_orthogonal_idempotent([1])
() + (1,2)(3,4) + (1,3)(2,4) + (1,4)(2,3)
sage: S3.central_orthogonal_idempotent([7])
() + (1,2)(3,4) + (1,3)(2,4) + (1,4)(2,3)

Asking for classical idempotents:

sage: S3.central_orthogonal_idempotent([2,2], block=False) is None
True
sage: S3.central_orthogonal_idempotent([2,1,1], block=False)
(3,4) + (2,3) + (2,4) + (1,2) + (1,2)(3,4) + 2*(1,2,3,4)
+ 2*(1,2,4,3) + 2*(1,3,4,2) + (1,3) + (1,3)(2,4)

(continues on next page)

3252 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

+ 2*(1,3,2,4) + 2*(1,4,3,2) + (1,4) + 2*(1,4,2,3)
+ (1,4)(2,3)

See also:

• sage.combinat.partition.Partition.core()

central_orthogonal_idempotents()
Return a maximal list of central orthogonal idempotents for self.

This method does not require that self be semisimple, relying on Nakayama’s Conjecture whenever self.
base_ring() has positive characteristic.

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ,3)
sage: a = QS3.central_orthogonal_idempotents()
sage: a[0] # [3]
1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1]
+ 1/6*[3, 1, 2] + 1/6*[3, 2, 1]
sage: a[1] # [2, 1]
2/3*[1, 2, 3] - 1/3*[2, 3, 1] - 1/3*[3, 1, 2]

See also:

• central_orthogonal_idempotent()

dft(form='seminormal', mult='l2r')
Return the discrete Fourier transform for self.

INPUT:

• mult – string (default: 𝑙2𝑟). If set to 𝑟2𝑙, this causes the method to use the antipodes (antipode())
of the seminormal basis instead of the seminormal basis.

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: QS3.dft()
[1 1 1 1 1 1]
[1 1/2 -1 -1/2 -1/2 1/2]
[0 3/4 0 3/4 -3/4 -3/4]
[0 1 0 -1 1 -1]
[1 -1/2 1 -1/2 -1/2 -1/2]
[1 -1 -1 1 1 -1]

epsilon_ik(itab, ktab, star=0, mult='l2r')
Return the seminormal basis element of self corresponding to the pair of tableaux itab and ktab (or
restrictions of these tableaux, if the optional variable star is set).

INPUT:

• itab, ktab – two standard tableaux of size 𝑛.

• star – integer (default: 0).

• mult – string (default: 𝑙2𝑟). If set to 𝑟2𝑙, this causes the method to return the antipode (antipode())
of 𝜖(𝐼,𝐾) instead of 𝜖(𝐼,𝐾) itself.

5.1. Comprehensive Module List 3253

Combinatorics, Release 9.7

OUTPUT:

The element 𝜖(𝐼,𝐾), where 𝐼 and𝐾 are the tableaux obtained by removing all entries higher than 𝑛− star
from itab and ktab, respectively. Here, we are using the notations from seminormal_basis().

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3.epsilon_ik([[1,2,3]], [[1,2,3]]); a
1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] +␣
→˓1/6*[3, 2, 1]
sage: QS3.dft()*vector(a)
(1, 0, 0, 0, 0, 0)
sage: a = QS3.epsilon_ik([[1,2],[3]], [[1,2],[3]]); a
1/3*[1, 2, 3] - 1/6*[1, 3, 2] + 1/3*[2, 1, 3] - 1/6*[2, 3, 1] - 1/6*[3, 1, 2] -␣
→˓1/6*[3, 2, 1]
sage: QS3.dft()*vector(a)
(0, 0, 0, 0, 1, 0)

Let us take some properties of the seminormal basis listed in the docstring of seminormal_basis(), and
verify them on the situation of 𝑆3.

First, check the formula

𝜖(𝑇) =
1

𝜅sh(𝑇)
𝜖(𝑇)𝑒(𝑇)𝜖(𝑇).

In fact:

sage: from sage.combinat.symmetric_group_algebra import e
sage: def test_sn1(n):
....: QSn = SymmetricGroupAlgebra(QQ, n)
....: QSn1 = SymmetricGroupAlgebra(QQ, n - 1)
....: for T in StandardTableaux(n):
....: TT = T.restrict(n-1)
....: eTT = QSn1.epsilon_ik(TT, TT)
....: eT = QSn.epsilon_ik(T, T)
....: kT = prod(T.shape().hooks())
....: if kT * eT != eTT * e(T) * eTT:
....: return False
....: return True
sage: test_sn1(3)
True
sage: test_sn1(4) # long time
True

Next, we check the identity

𝜖(𝑇, 𝑆) =
1

𝜅sh(𝑇)
𝜖(𝑆)𝜋𝑇,𝑆𝑒(𝑇)𝜖(𝑇)

which we used to define 𝜖(𝑇, 𝑆). In fact:

sage: from sage.combinat.symmetric_group_algebra import e
sage: def test_sn2(n):
....: QSn = SymmetricGroupAlgebra(QQ, n)
....: mul = QSn.left_action_product

(continues on next page)

3254 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

....: QSn1 = SymmetricGroupAlgebra(QQ, n - 1)

....: for lam in Partitions(n):

....: k = prod(lam.hooks())

....: for T in StandardTableaux(lam):

....: for S in StandardTableaux(lam):

....: TT = T.restrict(n-1)

....: SS = S.restrict(n-1)

....: eTT = QSn1.epsilon_ik(TT, TT)

....: eSS = QSn1.epsilon_ik(SS, SS)

....: eTS = QSn.epsilon_ik(T, S)

....: piTS = [0] * n

....: for (i, j) in T.cells():

....: piTS[T[i][j] - 1] = S[i][j]

....: piTS = QSn(Permutation(piTS))

....: if k * eTS != mul(mul(eSS, piTS), mul(e(T), eTT)):

....: return False

....: return True
sage: test_sn2(3)
True
sage: test_sn2(4) # long time
True

Let us finally check the identity

𝜖(𝑇, 𝑆)𝜖(𝑈, 𝑉) = 𝛿𝑇,𝑉 𝜖(𝑈, 𝑆)

In fact:

sage: def test_sn3(lam):
....: n = lam.size()
....: QSn = SymmetricGroupAlgebra(QQ, n)
....: mul = QSn.left_action_product
....: for T in StandardTableaux(lam):
....: for S in StandardTableaux(lam):
....: for U in StandardTableaux(lam):
....: for V in StandardTableaux(lam):
....: lhs = mul(QSn.epsilon_ik(T, S), QSn.epsilon_ik(U, V))
....: if T == V:
....: rhs = QSn.epsilon_ik(U, S)
....: else:
....: rhs = QSn.zero()
....: if rhs != lhs:
....: return False
....: return True
sage: all(test_sn3(lam) for lam in Partitions(3))
True
sage: all(test_sn3(lam) for lam in Partitions(4)) # long time
True

jucys_murphy(k)
Return the Jucys-Murphy element 𝐽𝑘 (also known as a Young-Jucys-Murphy element) for the symmetric
group algebra self.

The Jucys-Murphy element 𝐽𝑘 in the symmetric group algebra 𝑅𝑆𝑛 is defined for every 𝑘 ∈ {1, 2, . . . , 𝑛}

5.1. Comprehensive Module List 3255

Combinatorics, Release 9.7

by

𝐽𝑘 = (1, 𝑘) + (2, 𝑘) + · · ·+ (𝑘 − 1, 𝑘) ∈ 𝑅𝑆𝑛,

where the addends are transpositions in 𝑆𝑛 (regarded as elements of 𝑅𝑆𝑛). We note that there is not a
dependence on 𝑛, so it is often suppressed in the notation.

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: QS3.jucys_murphy(1)
0
sage: QS3.jucys_murphy(2)
[2, 1, 3]
sage: QS3.jucys_murphy(3)
[1, 3, 2] + [3, 2, 1]

sage: QS4 = SymmetricGroupAlgebra(QQ, 4)
sage: j3 = QS4.jucys_murphy(3); j3
[1, 3, 2, 4] + [3, 2, 1, 4]
sage: j4 = QS4.jucys_murphy(4); j4
[1, 2, 4, 3] + [1, 4, 3, 2] + [4, 2, 3, 1]
sage: j3*j4 == j4*j3
True

sage: QS5 = SymmetricGroupAlgebra(QQ, 5)
sage: QS5.jucys_murphy(4)
[1, 2, 4, 3, 5] + [1, 4, 3, 2, 5] + [4, 2, 3, 1, 5]

left_action_product(left, right)
Return the product of two elements left and right of self, where multiplication is defined in such a way
that for two permutations 𝑝 and 𝑞, the product 𝑝𝑞 is the permutation obtained by first applying 𝑞 and then
applying 𝑝. This definition of multiplication is tailored to make multiplication of permutations associative
with their action on numbers if permutations are to act on numbers from the left.

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: p1 = Permutation([2, 1, 3])
sage: p2 = Permutation([3, 1, 2])
sage: QS3.left_action_product(QS3(p1), QS3(p2))
[3, 2, 1]
sage: x = QS3([1, 2, 3]) - 2*QS3([1, 3, 2])
sage: y = 1/2 * QS3([3, 1, 2]) + 3*QS3([1, 2, 3])
sage: QS3.left_action_product(x, y)
3*[1, 2, 3] - 6*[1, 3, 2] - [2, 1, 3] + 1/2*[3, 1, 2]
sage: QS3.left_action_product(0, x)
0

The method coerces its input into the algebra self:

sage: QS4 = SymmetricGroupAlgebra(QQ, 4)
sage: QS4.left_action_product(QS3([1, 2, 3]), QS3([2, 1, 3]))
[2, 1, 3, 4]
sage: QS4.left_action_product(1, Permutation([4, 1, 2, 3]))
[4, 1, 2, 3]

3256 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Warning: Note that coercion presently works from permutations of n into the n-th symmetric group
algebra, and also from all smaller symmetric group algebras into the n-th symmetric group algebra, but
not from permutations of integers smaller than n into the n-th symmetric group algebra.

monomial_from_smaller_permutation(permutation)
Convert permutation into a permutation, possibly extending it to the appropriate size, and return the
corresponding basis element of self.

EXAMPLES:

sage: QS5 = SymmetricGroupAlgebra(QQ, 5)
sage: QS5.monomial_from_smaller_permutation([])
[1, 2, 3, 4, 5]
sage: QS5.monomial_from_smaller_permutation(Permutation([3,1,2]))
[3, 1, 2, 4, 5]
sage: QS5.monomial_from_smaller_permutation([5,3,4,1,2])
[5, 3, 4, 1, 2]
sage: QS5.monomial_from_smaller_permutation(SymmetricGroup(2)((1,2)))
[2, 1, 3, 4, 5]

sage: QS5g = SymmetricGroup(5).algebra(QQ)
sage: QS5g.monomial_from_smaller_permutation([2,1])
(1,2)

retract_direct_product(f, m)
Return the direct-product retract of the element 𝑓 ∈ 𝑅𝑆𝑛 to𝑅𝑆𝑚, where𝑚 ≤ 𝑛 (and where𝑅𝑆𝑛 is self).

If 𝑚 is a nonnegative integer less or equal to 𝑛, then the direct-product retract from 𝑆𝑛 to 𝑆𝑚 is defined as
an 𝑅-linear map 𝑆𝑛 → 𝑆𝑚 which sends every permutation 𝑝 ∈ 𝑆𝑛 to{︃

dret(𝑝) if dret(𝑝) is defined;
0 otherwise

.

Here dret(𝑝) denotes the direct-product retract of the permutation 𝑝 to 𝑆𝑚, which is defined in
retract_direct_product().

EXAMPLES:

sage: SGA3 = SymmetricGroupAlgebra(QQ, 3)
sage: SGA3.retract_direct_product(2*SGA3([1,2,3]) - 4*SGA3([2,1,3]) + 7*SGA3([1,
→˓3,2]), 2)
2*[1, 2] - 4*[2, 1]
sage: SGA3.retract_direct_product(2*SGA3([1,3,2]) - 5*SGA3([2,3,1]), 2)
0

sage: SGA5 = SymmetricGroupAlgebra(QQ, 5)
sage: SGA5.retract_direct_product(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) +␣
→˓11*SGA5([3,2,1,4,5]), 4)
11*[3, 2, 1, 4]
sage: SGA5.retract_direct_product(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) +␣
→˓11*SGA5([3,2,1,4,5]), 3)
-6*[1, 3, 2] + 11*[3, 2, 1]
sage: SGA5.retract_direct_product(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) +␣
→˓11*SGA5([3,2,1,4,5]), 2)

(continues on next page)

5.1. Comprehensive Module List 3257

Combinatorics, Release 9.7

(continued from previous page)

0
sage: SGA5.retract_direct_product(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) +␣
→˓11*SGA5([3,2,1,4,5]), 1)
2*[1]

sage: SGA5.retract_direct_product(8*SGA5([1,2,3,4,5]) - 6*SGA5([1,3,2,4,5]), 3)
8*[1, 2, 3] - 6*[1, 3, 2]
sage: SGA5.retract_direct_product(8*SGA5([1,2,3,4,5]) - 6*SGA5([1,3,2,4,5]), 1)
2*[1]
sage: SGA5.retract_direct_product(8*SGA5([1,2,3,4,5]) - 6*SGA5([1,3,2,4,5]), 0)
2*[]

See also:

retract_plain(), retract_okounkov_vershik()

retract_okounkov_vershik(f, m)
Return the Okounkov-Vershik retract of the element 𝑓 ∈ 𝑅𝑆𝑛 to 𝑅𝑆𝑚, where 𝑚 ≤ 𝑛 (and where 𝑅𝑆𝑛 is
self).

If𝑚 is a nonnegative integer less or equal to 𝑛, then the Okounkov-Vershik retract from 𝑆𝑛 to 𝑆𝑚 is defined
as an 𝑅-linear map 𝑆𝑛 → 𝑆𝑚 which sends every permutation 𝑝 ∈ 𝑆𝑛 to the Okounkov-Vershik retract of
the permutation 𝑝 to 𝑆𝑚, which is defined in retract_okounkov_vershik().

EXAMPLES:

sage: SGA3 = SymmetricGroupAlgebra(QQ, 3)
sage: SGA3.retract_okounkov_vershik(2*SGA3([1,2,3]) - 4*SGA3([2,1,3]) +␣
→˓7*SGA3([1,3,2]), 2)
9*[1, 2] - 4*[2, 1]
sage: SGA3.retract_okounkov_vershik(2*SGA3([1,3,2]) - 5*SGA3([2,3,1]), 2)
2*[1, 2] - 5*[2, 1]

sage: SGA5 = SymmetricGroupAlgebra(QQ, 5)
sage: SGA5.retract_okounkov_vershik(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) +␣
→˓11*SGA5([3,2,1,4,5]), 4)
-6*[1, 3, 2, 4] + 8*[1, 4, 2, 3] + 11*[3, 2, 1, 4]
sage: SGA5.retract_okounkov_vershik(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) +␣
→˓11*SGA5([3,2,1,4,5]), 3)
2*[1, 3, 2] + 11*[3, 2, 1]
sage: SGA5.retract_okounkov_vershik(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) +␣
→˓11*SGA5([3,2,1,4,5]), 2)
13*[1, 2]
sage: SGA5.retract_okounkov_vershik(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) +␣
→˓11*SGA5([3,2,1,4,5]), 1)
13*[1]

sage: SGA5.retract_okounkov_vershik(8*SGA5([1,2,3,4,5]) - 6*SGA5([1,3,2,4,5]),␣
→˓3)
8*[1, 2, 3] - 6*[1, 3, 2]
sage: SGA5.retract_okounkov_vershik(8*SGA5([1,2,3,4,5]) - 6*SGA5([1,3,2,4,5]),␣
→˓1)
2*[1]
sage: SGA5.retract_okounkov_vershik(8*SGA5([1,2,3,4,5]) - 6*SGA5([1,3,2,4,5]),␣
→˓0) (continues on next page)

3258 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

2*[]

See also:

retract_plain(), retract_direct_product()

retract_plain(f, m)
Return the plain retract of the element 𝑓 ∈ 𝑅𝑆𝑛 to 𝑅𝑆𝑚, where 𝑚 ≤ 𝑛 (and where 𝑅𝑆𝑛 is self).

If𝑚 is a nonnegative integer less or equal to 𝑛, then the plain retract from 𝑆𝑛 to 𝑆𝑚 is defined as an𝑅-linear
map 𝑆𝑛 → 𝑆𝑚 which sends every permutation 𝑝 ∈ 𝑆𝑛 to{︃

pret(𝑝) if pret(𝑝) is defined;
0 otherwise

.

Here pret(𝑝) denotes the plain retract of the permutation 𝑝 to 𝑆𝑚, which is defined in retract_plain().

EXAMPLES:

sage: SGA3 = SymmetricGroupAlgebra(QQ, 3)
sage: SGA3.retract_plain(2*SGA3([1,2,3]) - 4*SGA3([2,1,3]) + 7*SGA3([1,3,2]), 2)
2*[1, 2] - 4*[2, 1]
sage: SGA3.retract_plain(2*SGA3([1,3,2]) - 5*SGA3([2,3,1]), 2)
0

sage: SGA5 = SymmetricGroupAlgebra(QQ, 5)
sage: SGA5.retract_plain(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) + 11*SGA5([3,
→˓2,1,4,5]), 4)
11*[3, 2, 1, 4]
sage: SGA5.retract_plain(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) + 11*SGA5([3,
→˓2,1,4,5]), 3)
11*[3, 2, 1]
sage: SGA5.retract_plain(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) + 11*SGA5([3,
→˓2,1,4,5]), 2)
0
sage: SGA5.retract_plain(8*SGA5([1,4,2,5,3]) - 6*SGA5([1,3,2,5,4]) + 11*SGA5([3,
→˓2,1,4,5]), 1)
0

sage: SGA5.retract_plain(8*SGA5([1,2,3,4,5]) - 6*SGA5([1,3,2,4,5]), 3)
8*[1, 2, 3] - 6*[1, 3, 2]
sage: SGA5.retract_plain(8*SGA5([1,2,3,4,5]) - 6*SGA5([1,3,2,4,5]), 1)
8*[1]
sage: SGA5.retract_plain(8*SGA5([1,2,3,4,5]) - 6*SGA5([1,3,2,4,5]), 0)
8*[]

See also:

retract_direct_product(), retract_okounkov_vershik()

right_action_product(left, right)
Return the product of two elements left and right of self, where multiplication is defined in such a way
that for two permutations 𝑝 and 𝑞, the product 𝑝𝑞 is the permutation obtained by first applying 𝑝 and then
applying 𝑞. This definition of multiplication is tailored to make multiplication of permutations associative
with their action on numbers if permutations are to act on numbers from the right.

EXAMPLES:

5.1. Comprehensive Module List 3259

Combinatorics, Release 9.7

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: p1 = Permutation([2, 1, 3])
sage: p2 = Permutation([3, 1, 2])
sage: QS3.right_action_product(QS3(p1), QS3(p2))
[1, 3, 2]
sage: x = QS3([1, 2, 3]) - 2*QS3([1, 3, 2])
sage: y = 1/2 * QS3([3, 1, 2]) + 3*QS3([1, 2, 3])
sage: QS3.right_action_product(x, y)
3*[1, 2, 3] - 6*[1, 3, 2] + 1/2*[3, 1, 2] - [3, 2, 1]
sage: QS3.right_action_product(0, x)
0

The method coerces its input into the algebra self:

sage: QS4 = SymmetricGroupAlgebra(QQ, 4)
sage: QS4.right_action_product(QS3([1, 2, 3]), QS3([2, 1, 3]))
[2, 1, 3, 4]
sage: QS4.right_action_product(1, Permutation([4, 1, 2, 3]))
[4, 1, 2, 3]

Warning: Note that coercion presently works from permutations of n into the n-th symmetric group
algebra, and also from all smaller symmetric group algebras into the n-th symmetric group algebra, but
not from permutations of integers smaller than n into the n-th symmetric group algebra.

rsw_shuffling_element(k)
Return the 𝑘-th Reiner-Saliola-Welker shuffling element in the group algebra self.

The 𝑘-th Reiner-Saliola-Welker shuffling element in the symmetric group algebra 𝑅𝑆𝑛 over a ring
𝑅 is defined as the sum

∑︀
𝜎∈𝑆𝑛

noninv𝑘(𝜎) · 𝜎, where for every permutation 𝜎, the number
noninv𝑘(𝜎) is the number of all 𝑘-noninversions of 𝜎 (that is, the number of all 𝑘-element subsets of
{1, 2, . . . , 𝑛} on which 𝜎 restricts to a strictly increasing map). See sage.combinat.permutation.
number_of_noninversions() for the noninv map.

This element is more or less the operator 𝜈𝑘,1𝑛−𝑘 introduced in [RSW2011]; more precisely, 𝜈𝑘,1𝑛−𝑘 is the
left multiplication by this element.

It is a nontrivial theorem (Theorem 1.1 in [RSW2011]) that the operators 𝜈𝑘,1𝑛−𝑘 (for fixed 𝑛 and vary-
ing 𝑘) pairwise commute. It is a conjecture (Conjecture 1.2 in [RSW2011]) that all their eigenvalues are
integers (which, in light of their commutativity and easily established symmetry, yields that they can be
simultaneously diagonalized over Q with only integer eigenvalues).

EXAMPLES:

The Reiner-Saliola-Welker shuffling elements on Q𝑆3:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: QS3.rsw_shuffling_element(0)
[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
sage: QS3.rsw_shuffling_element(1)
3*[1, 2, 3] + 3*[1, 3, 2] + 3*[2, 1, 3] + 3*[2, 3, 1] + 3*[3, 1, 2] + 3*[3, 2,␣
→˓1]
sage: QS3.rsw_shuffling_element(2)
3*[1, 2, 3] + 2*[1, 3, 2] + 2*[2, 1, 3] + [2, 3, 1] + [3, 1, 2]
sage: QS3.rsw_shuffling_element(3)

(continues on next page)

3260 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1, 2, 3]
sage: QS3.rsw_shuffling_element(4)
0

Checking the commutativity of Reiner-Saliola-Welker shuffling elements (we leave out the ones for which
it is trivial):

sage: def test_rsw_comm(n):
....: QSn = SymmetricGroupAlgebra(QQ, n)
....: rsws = [QSn.rsw_shuffling_element(k) for k in range(2, n)]
....: return all(all(rsws[i] * rsws[j] == rsws[j] * rsws[i]
....: for j in range(i))
....: for i in range(len(rsws)))
sage: test_rsw_comm(3)
True
sage: test_rsw_comm(4)
True
sage: test_rsw_comm(5) # long time
True

Note: For large k (relative to n), it might be faster to call QSn.left_action_product(QSn.
semi_rsw_element(k), QSn.antipode(binary_unshuffle_sum(k))) than QSn.
rsw_shuffling_element(n).

See also:

semi_rsw_element(), binary_unshuffle_sum()

semi_rsw_element(k)
Return the 𝑘-th semi-RSW element in the group algebra self.

The 𝑘-th semi-RSW element in the symmetric group algebra 𝑅𝑆𝑛 over a ring 𝑅 is defined as the sum of
all permutations 𝜎 ∈ 𝑆𝑛 satisfying 𝜎(1) < 𝜎(2) < · · · < 𝜎(𝑘).

This element has the property that, if it is denoted by 𝑠𝑘, then 𝑠𝑘𝑆(𝑠𝑘) is (𝑛 − 𝑘)! times the 𝑘-th Reiner-
Saliola-Welker shuffling element of𝑅𝑆𝑛 (see rsw_shuffling_element()). Here, 𝑆 denotes the antipode
of the group algebra 𝑅𝑆𝑛.

The 𝑘-th semi-RSW element is the image of the complete non-commutative symmetric function 𝑆(𝑘,1𝑛−𝑘)

in the ring of non-commutative symmetric functions under the canonical projection on the symmetric group
algebra (through the descent algebra).

EXAMPLES:

The semi-RSW elements on Q𝑆3:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: QS3.semi_rsw_element(0)
[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
sage: QS3.semi_rsw_element(1)
[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
sage: QS3.semi_rsw_element(2)
[1, 2, 3] + [1, 3, 2] + [2, 3, 1]
sage: QS3.semi_rsw_element(3)

(continues on next page)

5.1. Comprehensive Module List 3261

Combinatorics, Release 9.7

(continued from previous page)

[1, 2, 3]
sage: QS3.semi_rsw_element(4)
0

Let us check the relation with the 𝑘-th Reiner-Saliola-Welker shuffling element stated in the docstring:

sage: def test_rsw(n):
....: ZSn = SymmetricGroupAlgebra(ZZ, n)
....: for k in range(1, n):
....: a = ZSn.semi_rsw_element(k)
....: b = ZSn.left_action_product(a, ZSn.antipode(a))
....: if factorial(n-k) * ZSn.rsw_shuffling_element(k) != b:
....: return False
....: return True
sage: test_rsw(3)
True
sage: test_rsw(4)
True
sage: test_rsw(5) # long time
True

Let us also check the statement about the complete non-commutative symmetric function:

sage: def test_rsw_ncsf(n):
....: ZSn = SymmetricGroupAlgebra(ZZ, n)
....: NSym = NonCommutativeSymmetricFunctions(ZZ)
....: S = NSym.S()
....: for k in range(1, n):
....: a = S(Composition([k] + [1]*(n-k))).to_symmetric_group_algebra()
....: if a != ZSn.semi_rsw_element(k):
....: return False
....: return True
sage: test_rsw_ncsf(3)
True
sage: test_rsw_ncsf(4)
True
sage: test_rsw_ncsf(5) # long time
True

seminormal_basis(mult='l2r')
Return a list of the seminormal basis elements of self.

The seminormal basis of a symmetric group algebra is defined as follows:

Let 𝑛 be a nonnegative integer. Let 𝑅 be a Q-algebra. In the following, we will use the “left action”
convention for multiplying permutations. This means that for all permutations 𝑝 and 𝑞 in 𝑆𝑛, the product
𝑝𝑞 is defined in such a way that (𝑝𝑞)(𝑖) = 𝑝(𝑞(𝑖)) for each 𝑖 ∈ {1, 2, . . . , 𝑛} (this is the same convention
as in left_action_product(), but not the default semantics of the * operator on permutations in Sage).
Thus, for instance, 𝑠2𝑠1 is the permutation obtained by first transposing 1 with 2 and then transposing 2
with 3 (where 𝑠𝑖 = (𝑖, 𝑖+ 1)).

For every partition 𝜆 of 𝑛, let

𝜅𝜆 =
𝑛!

𝑓𝜆

3262 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

where 𝑓𝜆 is the number of standard Young tableaux of shape 𝜆. Note that 𝜅𝜆 is an integer, namely the
product of all hook lengths of 𝜆 (by the hook length formula). In Sage, this integer can be computed by
using sage.combinat.symmetric_group_algebra.kappa().

Let 𝑇 be a standard tableau of size 𝑛.

Let 𝑎(𝑇) denote the formal sum (in 𝑅𝑆𝑛) of all permutations in 𝑆𝑛 which stabilize the rows of 𝑇 (as
sets), i. e., which map each entry 𝑖 of 𝑇 to an entry in the same row as 𝑖. (See sage.combinat.
symmetric_group_algebra.a() for an implementation of this.)

Let 𝑏(𝑇) denote the signed formal sum (in 𝑅𝑆𝑛) of all permutations in 𝑆𝑛 which stabilize the columns of
𝑇 (as sets). Here, “signed” means that each permutation is multiplied with its sign. (This is implemented
in sage.combinat.symmetric_group_algebra.b().)

Define an element 𝑒(𝑇) of 𝑅𝑆𝑛 to be 𝑎(𝑇)𝑏(𝑇). (This is implemented in sage.combinat.
symmetric_group_algebra.e() for 𝑅 = Q.)

Let sh(𝑇) denote the shape of 𝑇 . (See shape().)

Let 𝑇 denote the standard tableau of size 𝑛− 1 obtained by removing the letter 𝑛 (along with its cell) from
𝑇 (if 𝑛 ≥ 1).

Now, we define an element 𝜖(𝑇) of 𝑅𝑆𝑛. We define it by induction on the size 𝑛 of 𝑇 , so we set 𝜖(∅) = 1
and only need to define 𝜖(𝑇) for 𝑛 ≥ 1, assuming that 𝜖(𝑇) is already defined. We do this by setting

𝜖(𝑇) =
1

𝜅sh(𝑇)
𝜖(𝑇)𝑒(𝑇)𝜖(𝑇).

This element 𝜖(𝑇) is implemented as sage.combinat.symmetric_group_algebra.epsilon() for
𝑅 = Q, but it is also a particular case of the elements 𝜖(𝑇, 𝑆) defined below.

Now let𝑆 be a further tableau of the same shape as 𝑇 (possibly equal to 𝑇). Let 𝜋𝑇,𝑆 denote the permutation
in 𝑆𝑛 such that applying this permutation to the entries of 𝑇 yields the tableau 𝑆. Define an element 𝜖(𝑇, 𝑆)
of 𝑅𝑆𝑛 by

𝜖(𝑇, 𝑆) =
1

𝜅sh(𝑇)
𝜖(𝑆)𝜋𝑇,𝑆𝑒(𝑇)𝜖(𝑇) =

1

𝜅sh(𝑇)
𝜖(𝑆)𝑎(𝑆)𝜋𝑇,𝑆𝑏(𝑇)𝜖(𝑇).

This element 𝜖(𝑇, 𝑆) is called Young’s seminormal unit corresponding to the bitableau `(T, S)`, and is the
return value of epsilon_ik() applied to T and S. Note that 𝜖(𝑇, 𝑇) = 𝜖(𝑇).

If we let 𝜆 run through all partitions of 𝑛, and (𝑇, 𝑆) run through all pairs of tableaux of shape 𝜆, then the
elements 𝜖(𝑇, 𝑆) form a basis of𝑅𝑆𝑛. This basis is called Young’s seminormal basis and has the properties
that

𝜖(𝑇, 𝑆)𝜖(𝑈, 𝑉) = 𝛿𝑇,𝑉 𝜖(𝑈, 𝑆)

(where 𝛿 stands for the Kronecker delta).

Warning: Because of our convention, we are multiplying our elements in reverse of those given in
some papers, for example [Ram1997]. Using the other convention of multiplying permutations, we
would instead have 𝜖(𝑈, 𝑉)𝜖(𝑇, 𝑆) = 𝛿𝑇,𝑉 𝜖(𝑈, 𝑆).

In other words, Young’s seminormal basis consists of the matrix units in a (particular) Artin-Wedderburn
decomposition of 𝑅𝑆𝑛 into a direct product of matrix algebras over Q.

The output of seminormal_basis() is a list of all elements of the seminormal basis of self.

INPUT:

5.1. Comprehensive Module List 3263

Combinatorics, Release 9.7

• mult – string (default: 'l2r'). If set to 'r2l', this causes the method to return the list of the antipodes
(antipode()) of all 𝜖(𝑇, 𝑆) instead of the 𝜖(𝑇, 𝑆) themselves.

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ,3)
sage: QS3.seminormal_basis()
[1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2]␣
→˓+ 1/6*[3, 2, 1],
1/3*[1, 2, 3] + 1/6*[1, 3, 2] - 1/3*[2, 1, 3] - 1/6*[2, 3, 1] - 1/6*[3, 1, 2] +␣
→˓1/6*[3, 2, 1],
1/3*[1, 3, 2] + 1/3*[2, 3, 1] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1],
1/4*[1, 3, 2] - 1/4*[2, 3, 1] + 1/4*[3, 1, 2] - 1/4*[3, 2, 1],
1/3*[1, 2, 3] - 1/6*[1, 3, 2] + 1/3*[2, 1, 3] - 1/6*[2, 3, 1] - 1/6*[3, 1, 2] -␣
→˓1/6*[3, 2, 1],
1/6*[1, 2, 3] - 1/6*[1, 3, 2] - 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] -␣
→˓1/6*[3, 2, 1]]

sage.combinat.symmetric_group_algebra.a(tableau, star=0, base_ring=Rational Field)
The row projection operator corresponding to the Young tableau tableau (which is supposed to contain every
integer from 1 to its size precisely once, but may and may not be standard).

This is the sum (in the group algebra of the relevant symmetric group over Q) of all the permutations which
preserve the rows of tableau. It is called 𝑎tableau in [EGHLSVY], Section 4.2.

INPUT:

• tableau – Young tableau which contains every integer from 1 to its size precisely once.

• star – nonnegative integer (default: 0). When this optional variable is set, the method computes not the
row projection operator of tableau, but the row projection operator of the restriction of tableau to the
entries 1, 2, ..., tableau.size() - star instead.

• base_ring – commutative ring (default: QQ). When this optional variable is set, the row projection operator
is computed over a user-determined base ring instead of Q. (Note that symmetric group algebras currently
don’t preserve coercion, so e. g. a symmetric group algebra over Z does not coerce into the corresponding
one over Q; so convert manually or choose your base rings wisely!)

EXAMPLES:

sage: from sage.combinat.symmetric_group_algebra import a
sage: a([[1,2]])
[1, 2] + [2, 1]
sage: a([[1],[2]])
[1, 2]
sage: a([])
[]
sage: a([[1, 5], [2, 3], [4]])
[1, 2, 3, 4, 5] + [1, 3, 2, 4, 5] + [5, 2, 3, 4, 1] + [5, 3, 2, 4, 1]
sage: a([[1,4], [2,3]], base_ring=ZZ)
[1, 2, 3, 4] + [1, 3, 2, 4] + [4, 2, 3, 1] + [4, 3, 2, 1]

sage.combinat.symmetric_group_algebra.b(tableau, star=0, base_ring=Rational Field)
The column projection operator corresponding to the Young tableau tableau (which is supposed to contain
every integer from 1 to its size precisely once, but may and may not be standard).

This is the signed sum (in the group algebra of the relevant symmetric group over Q) of all the permutations
which preserve the column of tableau (where the signs are the usual signs of the permutations). It is called

3264 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

𝑏tableau in [EGHLSVY], Section 4.2.

INPUT:

• tableau – Young tableau which contains every integer from 1 to its size precisely once.

• star – nonnegative integer (default: 0). When this optional variable is set, the method computes not the
column projection operator of tableau, but the column projection operator of the restriction of tableau
to the entries 1, 2, ..., tableau.size() - star instead.

• base_ring – commutative ring (default: QQ). When this optional variable is set, the column projection
operator is computed over a user-determined base ring instead of Q. (Note that symmetric group algebras
currently don’t preserve coercion, so e. g. a symmetric group algebra over Z does not coerce into the
corresponding one over Q; so convert manually or choose your base rings wisely!)

EXAMPLES:

sage: from sage.combinat.symmetric_group_algebra import b
sage: b([[1,2]])
[1, 2]
sage: b([[1],[2]])
[1, 2] - [2, 1]
sage: b([])
[]
sage: b([[1, 2, 4], [5, 3]])
[1, 2, 3, 4, 5] - [1, 3, 2, 4, 5] - [5, 2, 3, 4, 1] + [5, 3, 2, 4, 1]
sage: b([[1, 4], [2, 3]], base_ring=ZZ)
[1, 2, 3, 4] - [1, 2, 4, 3] - [2, 1, 3, 4] + [2, 1, 4, 3]
sage: b([[1, 4], [2, 3]], base_ring=Integers(5))
[1, 2, 3, 4] + 4*[1, 2, 4, 3] + 4*[2, 1, 3, 4] + [2, 1, 4, 3]

With the l2r setting for multiplication, the unnormalized Young symmetrizer e(tableau) should be the product
b(tableau) * a(tableau) for every tableau. Let us check this on the standard tableaux of size 5:

sage: from sage.combinat.symmetric_group_algebra import a, b, e
sage: all(e(t) == b(t) * a(t) for t in StandardTableaux(5))
True

sage.combinat.symmetric_group_algebra.e(tableau, star=0)
The unnormalized Young projection operator corresponding to the Young tableau tableau (which is supposed
to contain every integer from 1 to its size precisely once, but may and may not be standard).

If 𝑛 is a nonnegative integer, and 𝑇 is a Young tableau containing every integer from 1 to 𝑛 exactly once, then
the unnormalized Young projection operator 𝑒(𝑇) is defined by

𝑒(𝑇) = 𝑎(𝑇)𝑏(𝑇) ∈ Q𝑆𝑛,

where 𝑎(𝑇) ∈ Q𝑆𝑛 is the sum of all permutations in 𝑆𝑛 which fix the rows of 𝑇 (as sets), and 𝑏(𝑇) ∈ Q𝑆𝑛
is the signed sum of all permutations in 𝑆𝑛 which fix the columns of 𝑇 (as sets). Here, “signed” means that
each permutation is multiplied with its sign; and the product on the group 𝑆𝑛 is defined in such a way that
(𝑝𝑞)(𝑖) = 𝑝(𝑞(𝑖)) for any permutations 𝑝 and 𝑞 and any 1 ≤ 𝑖 ≤ 𝑛.

Note that the definition of 𝑒(𝑇) is not uniform across literature. Others define it as 𝑏(𝑇)𝑎(𝑇) instead, or include
certain scalar factors (we do not, whence “unnormalized”).

EXAMPLES:

5.1. Comprehensive Module List 3265

Combinatorics, Release 9.7

sage: from sage.combinat.symmetric_group_algebra import e
sage: e([[1,2]])
[1, 2] + [2, 1]
sage: e([[1],[2]])
[1, 2] - [2, 1]
sage: e([])
[]

There are differing conventions for the order of the symmetrizers and antisymmetrizers. This example illustrates
our conventions:

sage: e([[1,2],[3]])
[1, 2, 3] + [2, 1, 3] - [3, 1, 2] - [3, 2, 1]

To obtain the product 𝑏(𝑇)𝑎(𝑇), one has to take the antipode of this:

sage: QS3 = parent(e([[1,2],[3]]))
sage: QS3.antipode(e([[1,2],[3]]))
[1, 2, 3] + [2, 1, 3] - [2, 3, 1] - [3, 2, 1]

See also:

e_hat()

sage.combinat.symmetric_group_algebra.e_hat(tab, star=0)
The Young projection operator corresponding to the Young tableau tab (which is supposed to contain every
integer from 1 to its size precisely once, but may and may not be standard). This is an idempotent in the rational
group algebra.

If 𝑛 is a nonnegative integer, and 𝑇 is a Young tableau containing every integer from 1 to 𝑛 exactly once, then
the Young projection operator ̂︀𝑒(𝑇) is defined by

̂︀𝑒(𝑇) =
1

𝜅𝜆
𝑎(𝑇)𝑏(𝑇) ∈ Q𝑆𝑛,

where 𝜆 is the shape of 𝑇 , where 𝜅𝜆 is 𝑛! divided by the number of standard tableaux of shape 𝜆, where 𝑎(𝑇) ∈
Q𝑆𝑛 is the sum of all permutations in 𝑆𝑛 which fix the rows of 𝑇 (as sets), and where 𝑏(𝑇) ∈ Q𝑆𝑛 is the signed
sum of all permutations in 𝑆𝑛 which fix the columns of 𝑇 (as sets). Here, “signed” means that each permutation
is multiplied with its sign; and the product on the group 𝑆𝑛 is defined in such a way that (𝑝𝑞)(𝑖) = 𝑝(𝑞(𝑖)) for
any permutations 𝑝 and 𝑞 and any 1 ≤ 𝑖 ≤ 𝑛.

Note that the definition of ̂︀𝑒(𝑇) is not uniform across literature. Others define it as 1
𝜅𝜆
𝑏(𝑇)𝑎(𝑇) instead.

EXAMPLES:

sage: from sage.combinat.symmetric_group_algebra import e_hat
sage: e_hat([[1,2,3]])
1/6*[1, 2, 3] + 1/6*[1, 3, 2] + 1/6*[2, 1, 3] + 1/6*[2, 3, 1] + 1/6*[3, 1, 2] + 1/
→˓6*[3, 2, 1]
sage: e_hat([[1],[2]])
1/2*[1, 2] - 1/2*[2, 1]

There are differing conventions for the order of the symmetrizers and antisymmetrizers. This example illustrates
our conventions:

sage: e_hat([[1,2],[3]])
1/3*[1, 2, 3] + 1/3*[2, 1, 3] - 1/3*[3, 1, 2] - 1/3*[3, 2, 1]

3266 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

e()

sage.combinat.symmetric_group_algebra.e_ik(itab, ktab, star=0)
EXAMPLES:

sage: from sage.combinat.symmetric_group_algebra import e_ik
sage: e_ik([[1,2,3]], [[1,2,3]])
[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + [2, 3, 1] + [3, 1, 2] + [3, 2, 1]
sage: e_ik([[1,2,3]], [[1,2,3]], star=1)
[1, 2] + [2, 1]

sage.combinat.symmetric_group_algebra.epsilon(tab, star=0)
The (𝑇, 𝑇)-th element of the seminormal basis of the group algebra Q[𝑆𝑛], where 𝑇 is the tableau tab (with its
star highest entries removed if the optional variable star is set).

See the docstring of seminormal_basis() for the notation used herein.

EXAMPLES:

sage: from sage.combinat.symmetric_group_algebra import epsilon
sage: epsilon([[1,2]])
1/2*[1, 2] + 1/2*[2, 1]
sage: epsilon([[1],[2]])
1/2*[1, 2] - 1/2*[2, 1]

sage.combinat.symmetric_group_algebra.epsilon_ik(itab, ktab, star=0)
Return the seminormal basis element of the symmetric group algebra Q𝑆𝑛 corresponding to the pair of tableaux
itab and ktab (or restrictions of these tableaux, if the optional variable star is set).

INPUT:

• itab, ktab – two standard tableaux of same size.

• star – integer (default: 0).

OUTPUT:

The element 𝜖(𝐼,𝐾) ∈ Q𝑆𝑛, where 𝐼 and 𝐾 are the tableaux obtained by removing all entries higher than
𝑛 − star from itab and ktab, respectively (where 𝑛 is the size of itab and ktab). Here, we are using the
notations from seminormal_basis().

EXAMPLES:

sage: from sage.combinat.symmetric_group_algebra import epsilon_ik
sage: epsilon_ik([[1,2],[3]], [[1,3],[2]])
1/4*[1, 3, 2] - 1/4*[2, 3, 1] + 1/4*[3, 1, 2] - 1/4*[3, 2, 1]
sage: epsilon_ik([[1,2],[3]], [[1,3],[2]], star=1)
Traceback (most recent call last):
...
ValueError: the two tableaux must be of the same shape

sage.combinat.symmetric_group_algebra.kappa(alpha)
Return 𝜅𝛼, which is 𝑛! divided by the number of standard tableaux of shape 𝛼 (where 𝛼 is a partition of 𝑛).

INPUT:

• alpha – integer partition (can be encoded as a list).

5.1. Comprehensive Module List 3267

Combinatorics, Release 9.7

OUTPUT:

The factorial of the size of alpha, divided by the number of standard tableaux of shape alpha. Equivalently,
the product of all hook lengths of alpha.

EXAMPLES:

sage: from sage.combinat.symmetric_group_algebra import kappa
sage: kappa(Partition([2,1]))
3
sage: kappa([2,1])
3

sage.combinat.symmetric_group_algebra.pi_ik(itab, ktab)
Return the permutation 𝑝which sends every entry of the tableau itab to the respective entry of the tableau ktab,
as an element of the corresponding symmetric group algebra.

This assumes that itab and ktab are tableaux (possibly given just as lists of lists) of the same shape.

EXAMPLES:

sage: from sage.combinat.symmetric_group_algebra import pi_ik
sage: pi_ik([[1,3],[2]], [[1,2],[3]])
[1, 3, 2]

sage.combinat.symmetric_group_algebra.seminormal_test(n)
Run a variety of tests to verify that the construction of the seminormal basis works as desired. The numbers
appearing are results in James and Kerber’s ‘Representation Theory of the Symmetric Group’ [JK1981].

EXAMPLES:

sage: from sage.combinat.symmetric_group_algebra import seminormal_test
sage: seminormal_test(3)
True

5.1.341 Representations of the Symmetric Group

Todo:

• construct the product of two irreducible representations.

• implement Induction/Restriction of representations.

Warning: This code uses a different convention than in Sagan’s book “The Symmetric Group”

class sage.combinat.symmetric_group_representations.SpechtRepresentation(parent, partition)
Bases: sage.combinat.symmetric_group_representations.SymmetricGroupRepresentation_generic_class

representation_matrix(permutation)
Return the matrix representing the permutation in this irreducible representation.

Note: This method caches the results.

3268 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: spc = SymmetricGroupRepresentation([3,1], 'specht')
sage: spc.representation_matrix(Permutation([2,1,3,4]))
[0 -1 0]
[-1 0 0]
[0 0 1]
sage: spc.representation_matrix(Permutation([3,2,1,4]))
[0 0 1]
[0 1 0]
[1 0 0]

scalar_product(u, v)
Return 0 if u+v is not a permutation, and the signature of the permutation otherwise.

This is the scalar product of a vertex u of the underlying Yang-Baxter graph with the vertex v in the ‘dual’
Yang-Baxter graph.

EXAMPLES:

sage: spc = SymmetricGroupRepresentation([3,2], 'specht')
sage: spc.scalar_product((1,0,2,1,0),(0,3,0,3,0))
-1
sage: spc.scalar_product((1,0,2,1,0),(3,0,0,3,0))
0

scalar_product_matrix(permutation=None)
Return the scalar product matrix corresponding to permutation.

The entries are given by the scalar products of u and permutation.action(v), where u is a vertex in the
underlying Yang-Baxter graph and v is a vertex in the dual graph.

EXAMPLES:

sage: spc = SymmetricGroupRepresentation([3,1], 'specht')
sage: spc.scalar_product_matrix()
[1 0 0]
[0 -1 0]
[0 0 1]

class sage.combinat.symmetric_group_representations.SpechtRepresentations(n, ring=None,
cache_matrices=True)

Bases: sage.combinat.symmetric_group_representations.SymmetricGroupRepresentations_class

Element
alias of SpechtRepresentation

sage.combinat.symmetric_group_representations.SymmetricGroupRepresentation(partition,
implementa-
tion='specht',
ring=None,
cache_matrices=True)

The irreducible representation of the symmetric group corresponding to partition.

INPUT:

• partition – a partition of a positive integer

5.1. Comprehensive Module List 3269

Combinatorics, Release 9.7

• implementation – string (default: "specht"), one of:

– "seminormal" - for Young’s seminormal representation

– "orthogonal" - for Young’s orthogonal representation

– "specht" - for Specht’s representation

• ring – the ring over which the representation is defined

• cache_matrices – boolean (default: True) if True, then any representation matrices that are computed
are cached

EXAMPLES:

Young’s orthogonal representation: the matrices are orthogonal.

sage: orth = SymmetricGroupRepresentation([2,1], "orthogonal"); orth
Orthogonal representation of the symmetric group corresponding to [2, 1]
sage: all(a*a.transpose() == a.parent().identity_matrix() for a in orth)
True

sage: orth = SymmetricGroupRepresentation([3,2], "orthogonal"); orth
Orthogonal representation of the symmetric group corresponding to [3, 2]
sage: orth([2,1,3,4,5])
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 -1 0 0]
[0 0 0 1 0]
[0 0 0 0 -1]
sage: orth([1,3,2,4,5])
[1 0 0 0 0]
[0 -1/2 1/2*sqrt(3) 0 0]
[0 1/2*sqrt(3) 1/2 0 0]
[0 0 0 -1/2 1/2*sqrt(3)]
[0 0 0 1/2*sqrt(3) 1/2]
sage: orth([1,2,4,3,5])
[-1/3 2/3*sqrt(2) 0 0 0]
[2/3*sqrt(2) 1/3 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 -1]

The Specht representation:

sage: spc = SymmetricGroupRepresentation([3,2], "specht")
sage: spc.scalar_product_matrix(Permutation([1,2,3,4,5]))
[1 0 0 0 0]
[0 -1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[-1 0 0 0 -1]
sage: spc.scalar_product_matrix(Permutation([5,4,3,2,1]))
[1 -1 0 1 0]
[0 0 1 0 -1]
[0 0 0 -1 1]
[0 1 -1 -1 1]

(continues on next page)

3270 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[-1 0 0 0 -1]
sage: spc([5,4,3,2,1])
[1 -1 0 1 0]
[0 0 -1 0 1]
[0 0 0 -1 1]
[0 1 -1 -1 1]
[0 1 0 -1 1]
sage: spc.verify_representation()
True

By default, any representation matrices that are computed are cached:

sage: spc = SymmetricGroupRepresentation([3,2], "specht")
sage: spc([5,4,3,2,1])
[1 -1 0 1 0]
[0 0 -1 0 1]
[0 0 0 -1 1]
[0 1 -1 -1 1]
[0 1 0 -1 1]
sage: spc._cache__representation_matrix
{(([5, 4, 3, 2, 1],), ()): [1 -1 0 1 0]
[0 0 -1 0 1]
[0 0 0 -1 1]
[0 1 -1 -1 1]
[0 1 0 -1 1]}

This can be turned off with the keyword cache_matrices:

sage: spc = SymmetricGroupRepresentation([3,2], "specht", cache_matrices=False)
sage: spc([5,4,3,2,1])
[1 -1 0 1 0]
[0 0 -1 0 1]
[0 0 0 -1 1]
[0 1 -1 -1 1]
[0 1 0 -1 1]
sage: hasattr(spc, '_cache__representation_matrix')
False

Note: The implementation is based on the paper [Las].

REFERENCES:

AUTHORS:

• Franco Saliola (2009-04-23)

class sage.combinat.symmetric_group_representations.SymmetricGroupRepresentation_generic_class(parent,
par-
ti-
tion)

Bases: sage.structure.element.Element

Generic methods for a representation of the symmetric group.

5.1. Comprehensive Module List 3271

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element

Combinatorics, Release 9.7

to_character()
Return the character of the representation.

EXAMPLES:

The trivial character:

sage: rho = SymmetricGroupRepresentation([3])
sage: chi = rho.to_character(); chi
Character of Symmetric group of order 3! as a permutation group
sage: chi.values()
[1, 1, 1]
sage: all(chi(g) == 1 for g in SymmetricGroup(3))
True

The sign character:

sage: rho = SymmetricGroupRepresentation([1,1,1])
sage: chi = rho.to_character(); chi
Character of Symmetric group of order 3! as a permutation group
sage: chi.values()
[1, -1, 1]
sage: all(chi(g) == g.sign() for g in SymmetricGroup(3))
True

The defining representation:

sage: triv = SymmetricGroupRepresentation([4])
sage: hook = SymmetricGroupRepresentation([3,1])
sage: def_rep = lambda p : triv(p).block_sum(hook(p)).trace()
sage: list(map(def_rep, Permutations(4)))
[4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0]
sage: [p.to_matrix().trace() for p in Permutations(4)]
[4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0]

verify_representation()
Verify the representation.

This tests that the images of the simple transpositions are involutions and tests that the braid relations hold.

EXAMPLES:

sage: spc = SymmetricGroupRepresentation([1,1,1])
sage: spc.verify_representation()
True
sage: spc = SymmetricGroupRepresentation([4,2,1])
sage: spc.verify_representation()
True

sage.combinat.symmetric_group_representations.SymmetricGroupRepresentations(n, implementa-
tion='specht',
ring=None,
cache_matrices=True)

Irreducible representations of the symmetric group.

INPUT:

• n – positive integer

3272 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• implementation – string (default: "specht"), one of:

– "seminormal" - for Young’s seminormal representation

– "orthogonal" - for Young’s orthogonal representation

– "specht" - for Specht’s representation

• ring – the ring over which the representation is defined

• cache_matrices – boolean (default: True) if True, then any representation matrices that are computed
are cached

EXAMPLES:

Young’s orthogonal representation: the matrices are orthogonal.

sage: orth = SymmetricGroupRepresentations(3, "orthogonal"); orth
Orthogonal representations of the symmetric group of order 3! over Symbolic Ring
sage: orth.list()
[Orthogonal representation of the symmetric group corresponding to [3],
Orthogonal representation of the symmetric group corresponding to [2, 1],
Orthogonal representation of the symmetric group corresponding to [1, 1, 1]]
sage: orth([2,1])([1,2,3])
[1 0]
[0 1]

Young’s seminormal representation.

sage: snorm = SymmetricGroupRepresentations(3, "seminormal"); snorm
Seminormal representations of the symmetric group of order 3! over Rational Field
sage: sgn = snorm([1,1,1]); sgn
Seminormal representation of the symmetric group corresponding to [1, 1, 1]
sage: list(map(sgn, Permutations(3)))
[[1], [-1], [-1], [1], [1], [-1]]

The Specht Representation.

sage: spc = SymmetricGroupRepresentations(5, "specht"); spc
Specht representations of the symmetric group of order 5! over Integer Ring
sage: spc([3,2])([5,4,3,2,1])
[1 -1 0 1 0]
[0 0 -1 0 1]
[0 0 0 -1 1]
[0 1 -1 -1 1]
[0 1 0 -1 1]

Note: The implementation is based on the paper [Las].

AUTHORS:

• Franco Saliola (2009-04-23)

class sage.combinat.symmetric_group_representations.SymmetricGroupRepresentations_class(n,
ring=None,
cache_matrices=True)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

5.1. Comprehensive Module List 3273

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

Generic methods for the CombinatorialClass of irreducible representations of the symmetric group.

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: sp = SymmetricGroupRepresentations(4, "specht")
sage: sp.cardinality()
5

class sage.combinat.symmetric_group_representations.YoungRepresentation_Orthogonal(parent,
parti-
tion)

Bases: sage.combinat.symmetric_group_representations.YoungRepresentation_generic

class sage.combinat.symmetric_group_representations.YoungRepresentation_Seminormal(parent,
parti-
tion)

Bases: sage.combinat.symmetric_group_representations.YoungRepresentation_generic

class sage.combinat.symmetric_group_representations.YoungRepresentation_generic(parent,
partition)

Bases: sage.combinat.symmetric_group_representations.SymmetricGroupRepresentation_generic_class

Generic methods for Young’s representations of the symmetric group.

representation_matrix(permutation)
Return the matrix representing permutation.

EXAMPLES:

sage: orth = SymmetricGroupRepresentation([2,1], "orthogonal")
sage: orth.representation_matrix(Permutation([2,1,3]))
[1 0]
[0 -1]
sage: orth.representation_matrix(Permutation([1,3,2]))
[-1/2 1/2*sqrt(3)]
[1/2*sqrt(3) 1/2]

sage: norm = SymmetricGroupRepresentation([2,1], "seminormal")
sage: p = PermutationGroupElement([2,1,3])
sage: norm.representation_matrix(p)
[1 0]
[0 -1]
sage: p = PermutationGroupElement([1,3,2])
sage: norm.representation_matrix(p)
[-1/2 3/2]
[1/2 1/2]

representation_matrix_for_simple_transposition(i)
Return the matrix representing the transposition that swaps i and i+1.

EXAMPLES:

sage: orth = SymmetricGroupRepresentation([2,1], "orthogonal")
sage: orth.representation_matrix_for_simple_transposition(1)

(continues on next page)

3274 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[1 0]
[0 -1]
sage: orth.representation_matrix_for_simple_transposition(2)
[-1/2 1/2*sqrt(3)]
[1/2*sqrt(3) 1/2]

sage: norm = SymmetricGroupRepresentation([2,1], "seminormal")
sage: norm.representation_matrix_for_simple_transposition(1)
[1 0]
[0 -1]
sage: norm.representation_matrix_for_simple_transposition(2)
[-1/2 3/2]
[1/2 1/2]

class sage.combinat.symmetric_group_representations.YoungRepresentations_Orthogonal(n,
ring=None,
cache_matrices=True)

Bases: sage.combinat.symmetric_group_representations.SymmetricGroupRepresentations_class

Element
alias of YoungRepresentation_Orthogonal

class sage.combinat.symmetric_group_representations.YoungRepresentations_Seminormal(n,
ring=None,
cache_matrices=True)

Bases: sage.combinat.symmetric_group_representations.SymmetricGroupRepresentations_class

Element
alias of YoungRepresentation_Seminormal

sage.combinat.symmetric_group_representations.partition_to_vector_of_contents(partition, re-
verse=False)

Return the “vector of contents” associated to partition.

EXAMPLES:

sage: from sage.combinat.symmetric_group_representations import partition_to_vector_
→˓of_contents
sage: partition_to_vector_of_contents([3,2])
(0, 1, 2, -1, 0)

5.1.342 Tableaux

AUTHORS:

• Mike Hansen (2007): initial version

• Jason Bandlow (2011): updated to use Parent/Element model, and many minor fixes

• Andrew Mathas (2012-13): completed the transition to the parent/element model begun by Jason Bandlow

• Travis Scrimshaw (11-22-2012): Added tuple options, changed *katabolism* to *catabolism*. Cleaned up
documentation.

• Andrew Mathas (2016-08-11): Row standard tableaux added

5.1. Comprehensive Module List 3275

Combinatorics, Release 9.7

• Oliver Pechenik (2018): Added increasing tableaux.

This file consists of the following major classes:

Element classes:

• Tableau

• SemistandardTableau

• StandardTableau

• RowStandardTableau

• IncreasingTableau

Factory classes:

• Tableaux

• SemistandardTableaux

• StandardTableaux

• RowStandardTableaux

• IncreasingTableaux

Parent classes:

• Tableaux_all

• Tableaux_size

• SemistandardTableaux_all (facade class)

• SemistandardTableaux_size

• SemistandardTableaux_size_inf

• SemistandardTableaux_size_weight

• SemistandardTableaux_shape

• SemistandardTableaux_shape_inf

• SemistandardTableaux_shape_weight

• StandardTableaux_all (facade class)

• StandardTableaux_size

• StandardTableaux_shape

• IncreasingTableaux_all (facade class)

• IncreasingTableaux_size

• IncreasingTableaux_size_inf

• IncreasingTableaux_size_weight

• IncreasingTableaux_shape

• IncreasingTableaux_shape_inf

• IncreasingTableaux_shape_weight

• RowStandardTableaux_all (facade class)

• RowStandardTableaux_size

3276 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• RowStandardTableaux_shape

For display options, see Tableaux.options().

Todo:

• Move methods that only apply to semistandard tableaux from tableau to semistandard tableau

• Copy/move functionality to skew tableaux

• Add a class for tableaux of a given shape (eg Tableaux_shape)

class sage.combinat.tableau.IncreasingTableau(parent, t, check=True)
Bases: sage.combinat.tableau.Tableau

A class to model an increasing tableau.

INPUT:

• t – a tableau, a list of iterables, or an empty list

An increasing tableau is a tableau whose entries are positive integers that are strictly increasing across rows and
strictly increasing down columns.

EXAMPLES:

sage: t = IncreasingTableau([[1,2,3],[2,3]]); t
[[1, 2, 3], [2, 3]]
sage: t.shape()
[3, 2]
sage: t.pp() # pretty printing
1 2 3
2 3
sage: t = Tableau([[1,2],[2]])
sage: s = IncreasingTableau(t); s
[[1, 2], [2]]
sage: IncreasingTableau([]) # The empty tableau
[]

You can also construct an IncreasingTableau from the appropriate Parent object:

sage: IT = IncreasingTableaux()
sage: IT([[1, 2, 3], [4, 5]])
[[1, 2, 3], [4, 5]]

See also:

• Tableaux

• Tableau

• SemistandardTableaux

• SemistandardTableau

• StandardTableaux

• StandardTableau

• IncreasingTableaux

5.1. Comprehensive Module List 3277

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

K_bender_knuth(i)
Return the i-th K-Bender-Knuth operator (as defined in [DPS2017]) applied to self.

The 𝑖-th K-Bender-Knuth operator swaps the letters 𝑖 and 𝑖+1 everywhere where doing so would not break
increasingness.

EXAMPLES:

sage: T = IncreasingTableau([[1,3,4],[2,4,5]])
sage: T.K_bender_knuth(2)
[[1, 2, 4], [3, 4, 5]]
sage: T.K_bender_knuth(3)
[[1, 3, 4], [2, 4, 5]]

K_evacuation(ceiling=None)
Return the K-evacuation involution from [TY2009] to self.

EXAMPLES:

sage: T = IncreasingTableau([[1,3,4],[2,4,5]])
sage: T.K_evacuation()
[[1, 2, 4], [2, 3, 5]]
sage: T.K_evacuation(6)
[[2, 3, 5], [3, 4, 6]]
sage: U = IncreasingTableau([[1,3,4],[3,4,5],[5]])
sage: U.K_evacuation()
[[1, 2, 3], [2, 3, 5], [3]]

K_promotion(ceiling=None)
Return the K-promotion operator from [Pec2014] applied to self.

EXAMPLES:

sage: T = IncreasingTableau([[1,3,4],[2,4,5]])
sage: T.K_promotion()
[[1, 2, 3], [3, 4, 5]]
sage: T.K_promotion(6)
[[1, 2, 3], [3, 4, 6]]
sage: U = IncreasingTableau([[1,3,4],[3,4,5],[5]])
sage: U.K_promotion()
[[2, 3, 4], [3, 4, 5], [4]]

K_promotion_inverse(ceiling=None)
Return the inverse of K-promotion operator applied to self.

EXAMPLES:

sage: T = IncreasingTableau([[1,3,4],[2,4,5]])
sage: T.K_promotion_inverse()
[[1, 2, 4], [3, 4, 5]]
sage: T.K_promotion_inverse(6)
[[2, 4, 5], [3, 5, 6]]
sage: U = IncreasingTableau([[1,3,4],[3,4,5],[5]])
sage: U.K_promotion_inverse()
[[1, 2, 4], [2, 4, 5], [4]]

3278 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

check()
Check that self is a valid increasing tableau.

descent_set()
Compute the descents of the increasing tableau self as defined in [DPS2017].

The number 𝑖 is a descent of an increasing tableau if some instance of 𝑖 + 1 appears in a lower row than
some instance of 𝑖.

Note: This notion is close to the notion of descent for a standard tableau but is unrelated to the notion for
semistandard tableaux.

EXAMPLES:

sage: T = IncreasingTableau([[1,2,4],[3,5,6]])
sage: T.descent_set()
[2, 4]
sage: U = IncreasingTableau([[1,3,4],[2,4,5]])
sage: U.descent_set()
[1, 3, 4]
sage: V = IncreasingTableau([[1,3,4],[3,4,5],[4,5]])
sage: V.descent_set()
[3, 4]

dual_K_evacuation(ceiling=None)
Return the dual K-evacuation involution applied to self.

EXAMPLES:

sage: T = IncreasingTableau([[1,3,4],[2,4,5]])
sage: T.dual_K_evacuation()
[[1, 2, 4], [2, 3, 5]]
sage: T.dual_K_evacuation(6)
[[2, 3, 5], [3, 4, 6]]
sage: U = IncreasingTableau([[1,3,4],[3,4,5],[5]])
sage: U.dual_K_evacuation()
[[1, 2, 3], [2, 3, 5], [3]]

class sage.combinat.tableau.IncreasingTableaux(**kwds)
Bases: sage.combinat.tableau.Tableaux

A factory class for the various classes of increasing tableaux.

An increasing tableau is a tableau whose entries are positive integers that are strictly increasing across rows and
strictly increasing down columns. Note that Sage uses the English convention for partitions and tableaux; the
longer rows are displayed on top.

INPUT:

Keyword arguments:

• size – the size of the tableaux

• shape – the shape of the tableaux

• eval – the weight (also called binary content) of the tableaux, where values can be either 0 or 1 with
position 𝑖 being 1 if and only if 𝑖 can appear in the tableaux

5.1. Comprehensive Module List 3279

Combinatorics, Release 9.7

• max_entry – positive integer or infinity (oo); the maximum entry for the tableaux; if size or shape are
specified, max_entry defaults to be size or the size of shape

Positional arguments:

• the first argument is interpreted as either size or shape according to whether it is an integer or a partition

• the second keyword argument will always be interpreted as eval

Warning: The eval is not the usual notion of eval or weight, where the 𝑖-th entry counts how many 𝑖’s
appear in the tableau.

EXAMPLES:

sage: IT = IncreasingTableaux([2,1]); IT
Increasing tableaux of shape [2, 1] and maximum entry 3
sage: IT.list()
[[[1, 3], [2]], [[1, 2], [3]], [[1, 2], [2]], [[1, 3], [3]], [[2, 3], [3]]]

sage: IT = IncreasingTableaux(3); IT
Increasing tableaux of size 3 and maximum entry 3
sage: IT.list()
[[[1, 2, 3]],
[[1, 3], [2]],
[[1, 2], [3]],
[[1, 2], [2]],
[[1, 3], [3]],
[[2, 3], [3]],
[[1], [2], [3]]]

sage: IT = IncreasingTableaux(3, max_entry=2); IT
Increasing tableaux of size 3 and maximum entry 2
sage: IT.list()
[[[1, 2], [2]]]

sage: IT = IncreasingTableaux(3, max_entry=4); IT
Increasing tableaux of size 3 and maximum entry 4
sage: IT.list()
[[[1, 2, 3]],
[[1, 2, 4]],
[[1, 3, 4]],
[[2, 3, 4]],
[[1, 3], [2]],
[[1, 2], [3]],
[[1, 4], [2]],
[[1, 2], [4]],
[[1, 2], [2]],
[[1, 4], [3]],
[[1, 3], [4]],
[[1, 3], [3]],
[[1, 4], [4]],
[[2, 4], [3]],
[[2, 3], [4]],

(continues on next page)

3280 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[2, 3], [3]],
[[2, 4], [4]],
[[3, 4], [4]],
[[1], [2], [3]],
[[1], [2], [4]],
[[1], [3], [4]],
[[2], [3], [4]]]

sage: IT = IncreasingTableaux(3, max_entry=oo); IT
Increasing tableaux of size 3
sage: IT[123]
[[5, 7], [6]]

sage: IT = IncreasingTableaux(max_entry=2)
sage: list(IT)
[[], [[1]], [[2]], [[1, 2]], [[1], [2]]]
sage: IT[4]
[[1], [2]]

sage: IncreasingTableaux()[0]
[]

See also:

• Tableaux

• Tableau

• SemistandardTableaux

• SemistandardTableau

• StandardTableaux

• StandardTableau

• IncreasingTableau

Element
alias of IncreasingTableau

class sage.combinat.tableau.IncreasingTableaux_all(max_entry=None)
Bases: sage.combinat.tableau.IncreasingTableaux, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

All increasing tableaux.

EXAMPLES:

sage: T = IncreasingTableaux()
sage: T.cardinality()
+Infinity

sage: T = IncreasingTableaux(max_entry=3)
sage: list(T)
[[],
[[1]],

(continues on next page)

5.1. Comprehensive Module List 3281

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

(continued from previous page)

[[2]],
[[3]],
[[1, 2]],
[[1, 3]],
[[2, 3]],
[[1], [2]],
[[1], [3]],
[[2], [3]],
[[1, 2, 3]],
[[1, 3], [2]],
[[1, 2], [3]],
[[1, 2], [2]],
[[1, 3], [3]],
[[2, 3], [3]],
[[1], [2], [3]]]

class sage.combinat.tableau.IncreasingTableaux_shape(p, max_entry=None)
Bases: sage.combinat.tableau.IncreasingTableaux

Increasing tableaux of fixed shape 𝑝 with a given max entry.

An increasing tableau with max entry 𝑖 is required to have all its entries less or equal to 𝑖. It is not required to
actually contain an entry 𝑖.

INPUT:

• p – a partition

• max_entry – the max entry; defaults to the size of p

class sage.combinat.tableau.IncreasingTableaux_shape_inf(p)
Bases: sage.combinat.tableau.IncreasingTableaux

Increasing tableaux of fixed shape 𝑝 and no maximum entry.

class sage.combinat.tableau.IncreasingTableaux_shape_weight(p, wt)
Bases: sage.combinat.tableau.IncreasingTableaux_shape

Increasing tableaux of fixed shape 𝑝 and binary weight 𝑤𝑡.

class sage.combinat.tableau.IncreasingTableaux_size(n, max_entry=None)
Bases: sage.combinat.tableau.IncreasingTableaux

Increasing tableaux of fixed size 𝑛.

class sage.combinat.tableau.IncreasingTableaux_size_inf(n)
Bases: sage.combinat.tableau.IncreasingTableaux

Increasing tableaux of fixed size 𝑛 with no maximum entry.

class sage.combinat.tableau.IncreasingTableaux_size_weight(n, wt)
Bases: sage.combinat.tableau.IncreasingTableaux

Increasing tableaux of fixed size 𝑛 and weight 𝑤𝑡.

class sage.combinat.tableau.RowStandardTableau(parent, t, check=True)
Bases: sage.combinat.tableau.Tableau

A class to model a row standard tableau.

A row standard tableau is a tableau whose entries are positive integers from 1 to 𝑚 that increase along rows.

3282 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• t – a Tableau, a list of iterables, or an empty list

EXAMPLES:

sage: t = RowStandardTableau([[3,4,5],[1,2]]); t
[[3, 4, 5], [1, 2]]
sage: t.shape()
[3, 2]
sage: t.pp() # pretty printing
3 4 5
1 2
sage: t.is_standard()
False
sage: RowStandardTableau([]) # The empty tableau
[]
sage: RowStandardTableau([[3,4,5],[1,2]]) in StandardTableaux()
False
sage: RowStandardTableau([[1,2,5],[3,4]]) in StandardTableaux()
True

When using code that will generate a lot of tableaux, it is more efficient to construct a RowStandardTableau
from the appropriate Parent object:

sage: ST = RowStandardTableaux()
sage: ST([[3, 4, 5], [1, 2]])
[[3, 4, 5], [1, 2]]

See also:

• Tableau

• StandardTableau

• SemistandardTableau

• Tableaux

• StandardTableaux

• RowStandardTableaux

• SemistandardTableaux

check()
Check that self is a valid row standard tableau.

class sage.combinat.tableau.RowStandardTableaux
Bases: sage.combinat.tableau.Tableaux

A factory for the various classes of row standard tableaux.

INPUT:

• either a non-negative integer (possibly specified with the keyword n) or a partition

OUTPUT:

• with no argument, the class of all standard tableaux

• with a non-negative integer argument, n, the class of all standard tableaux of size n

5.1. Comprehensive Module List 3283

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

• with a partition argument, the class of all standard tableaux of that shape

A row standard tableau is a tableau that contains each of the entries from 1 to 𝑛 exactly once and is increasing
along rows.

All classes of row standard tableaux are iterable.

EXAMPLES:

sage: ST = RowStandardTableaux(3); ST
Row standard tableaux of size 3
sage: ST.first()
[[1, 2, 3]]
sage: ST.last()
[[3], [1], [2]]
sage: ST.cardinality()
10
sage: ST.list()
[[[1, 2, 3]],
[[2, 3], [1]],
[[1, 2], [3]],
[[1, 3], [2]],
[[3], [2], [1]],
[[2], [3], [1]],
[[1], [3], [2]],
[[1], [2], [3]],
[[2], [1], [3]],
[[3], [1], [2]]]

See also:

• Tableaux

• Tableau

• SemistandardTableaux

• SemistandardTableau

• RowStandardTableau

• StandardSkewTableaux

Element
alias of RowStandardTableau

class sage.combinat.tableau.RowStandardTableaux_all
Bases: sage.combinat.tableau.RowStandardTableaux, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

All row standard tableaux.

class sage.combinat.tableau.RowStandardTableaux_shape(p)
Bases: sage.combinat.tableau.RowStandardTableaux

Row Standard tableaux of a fixed shape 𝑝.

cardinality()
Return the number of row standard tableaux of this shape.

This is just the index of the corresponding Young subgroup in the full symmetric group.

3284 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

EXAMPLES:

sage: RowStandardTableaux([3,2,1]).cardinality()
60
sage: RowStandardTableaux([2,2]).cardinality()
6
sage: RowStandardTableaux([5]).cardinality()
1
sage: RowStandardTableaux([6,5,5,3]).cardinality()
1955457504
sage: RowStandardTableaux([]).cardinality()
1

class sage.combinat.tableau.RowStandardTableaux_size(n)
Bases: sage.combinat.tableau.RowStandardTableaux, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Row standard tableaux of fixed size 𝑛.

EXAMPLES:

sage: [t for t in RowStandardTableaux(1)]
[[[1]]]
sage: [t for t in RowStandardTableaux(2)]
[[[1, 2]], [[2], [1]], [[1], [2]]]
sage: list(RowStandardTableaux(3))
[[[1, 2, 3]],
[[2, 3], [1]],
[[1, 2], [3]],
[[1, 3], [2]],
[[3], [2], [1]],
[[2], [3], [1]],
[[1], [3], [2]],
[[1], [2], [3]],
[[2], [1], [3]],
[[3], [1], [2]]]

an_element()
Return a particular element of the class.

EXAMPLES:

sage: RowStandardTableaux(4).an_element()
[[1, 2, 3, 4]]

class sage.combinat.tableau.SemistandardTableau(parent, t, check=True)
Bases: sage.combinat.tableau.Tableau

A class to model a semistandard tableau.

INPUT:

• t – a tableau, a list of iterables, or an empty list

OUTPUT:

• A SemistandardTableau object constructed from t.

5.1. Comprehensive Module List 3285

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

A semistandard tableau is a tableau whose entries are positive integers, which are weakly increasing in rows and
strictly increasing down columns.

EXAMPLES:

sage: t = SemistandardTableau([[1,2,3],[2,3]]); t
[[1, 2, 3], [2, 3]]
sage: t.shape()
[3, 2]
sage: t.pp() # pretty printing
1 2 3
2 3
sage: t = Tableau([[1,2],[2]])
sage: s = SemistandardTableau(t); s
[[1, 2], [2]]
sage: SemistandardTableau([]) # The empty tableau
[]

When using code that will generate a lot of tableaux, it is slightly more efficient to construct a Semistandard-
Tableau from the appropriate Parent object:

sage: SST = SemistandardTableaux()
sage: SST([[1, 2, 3], [4, 5]])
[[1, 2, 3], [4, 5]]

See also:

• Tableaux

• Tableau

• SemistandardTableaux

• StandardTableaux

• StandardTableau

check()
Check that self is a valid semistandard tableau.

class sage.combinat.tableau.SemistandardTableaux(**kwds)
Bases: sage.combinat.tableau.Tableaux

A factory class for the various classes of semistandard tableaux.

INPUT:

Keyword arguments:

• size – The size of the tableaux

• shape – The shape of the tableaux

• eval – The weight (also called content or evaluation) of the tableaux

• max_entry – A maximum entry for the tableaux. This can be a positive integer or infinity (oo). If size
or shape are specified, max_entry defaults to be size or the size of shape.

Positional arguments:

• The first argument is interpreted as either size or shape according to whether it is an integer or a partition

3286 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

• The second keyword argument will always be interpreted as eval

OUTPUT:

• The appropriate class, after checking basic consistency tests. (For example, specifying eval implies a value
for 𝑚𝑎𝑥𝑒𝑛𝑡𝑟𝑦).

A semistandard tableau is a tableau whose entries are positive integers, which are weakly increasing in rows and
strictly increasing down columns. Note that Sage uses the English convention for partitions and tableaux; the
longer rows are displayed on top.

Classes of semistandard tableaux can be iterated over if and only if there is some restriction.

EXAMPLES:

sage: SST = SemistandardTableaux([2,1]); SST
Semistandard tableaux of shape [2, 1] and maximum entry 3
sage: SST.list()
[[[1, 1], [2]],
[[1, 1], [3]],
[[1, 2], [2]],
[[1, 2], [3]],
[[1, 3], [2]],
[[1, 3], [3]],
[[2, 2], [3]],
[[2, 3], [3]]]

sage: SST = SemistandardTableaux(3); SST
Semistandard tableaux of size 3 and maximum entry 3
sage: SST.list()
[[[1, 1, 1]],
[[1, 1, 2]],
[[1, 1, 3]],
[[1, 2, 2]],
[[1, 2, 3]],
[[1, 3, 3]],
[[2, 2, 2]],
[[2, 2, 3]],
[[2, 3, 3]],
[[3, 3, 3]],
[[1, 1], [2]],
[[1, 1], [3]],
[[1, 2], [2]],
[[1, 2], [3]],
[[1, 3], [2]],
[[1, 3], [3]],
[[2, 2], [3]],
[[2, 3], [3]],
[[1], [2], [3]]]

sage: SST = SemistandardTableaux(3, max_entry=2); SST
Semistandard tableaux of size 3 and maximum entry 2
sage: SST.list()
[[[1, 1, 1]],
[[1, 1, 2]],
[[1, 2, 2]],

(continues on next page)

5.1. Comprehensive Module List 3287

Combinatorics, Release 9.7

(continued from previous page)

[[2, 2, 2]],
[[1, 1], [2]],
[[1, 2], [2]]]

sage: SST = SemistandardTableaux(3, max_entry=oo); SST
Semistandard tableaux of size 3
sage: SST[123]
[[3, 4], [6]]

sage: SemistandardTableaux(max_entry=2)[11]
[[1, 1], [2]]

sage: SemistandardTableaux()[0]
[]

See also:

• Tableaux

• Tableau

• SemistandardTableau

• StandardTableaux

• StandardTableau

Element
alias of SemistandardTableau

class sage.combinat.tableau.SemistandardTableaux_all(max_entry=None)
Bases: sage.combinat.tableau.SemistandardTableaux, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

All semistandard tableaux.

list()

class sage.combinat.tableau.SemistandardTableaux_shape(p, max_entry=None)
Bases: sage.combinat.tableau.SemistandardTableaux

Semistandard tableaux of fixed shape 𝑝 with a given max entry.

A semistandard tableau with max entry 𝑖 is required to have all its entries less or equal to 𝑖. It is not required to
actually contain an entry 𝑖.

INPUT:

• p – a partition

• max_entry – the max entry; defaults to the size of p

cardinality(algorithm='hook')
Return the cardinality of self.

INPUT:

• algorithm – (default: 'hook') any one of the following:

– 'hook' – use Stanley’s hook length formula

3288 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

– 'sum' – sum over the compositions of max_entry the number of semistandard tableau with
shape and given weight vector

This is computed using Stanley’s hook length formula:

𝑓𝜆 =
∏︁
𝑢∈𝜆

𝑛+ 𝑐(𝑢)

ℎ(𝑢)
.

where 𝑛 is the max_entry, 𝑐(𝑢) is the content of 𝑢, and ℎ(𝑢) is the hook length of 𝑢. See [Sta-EC2]
Corollary 7.21.4.

EXAMPLES:

sage: SemistandardTableaux([2,1]).cardinality()
8
sage: SemistandardTableaux([2,2,1]).cardinality()
75
sage: SymmetricFunctions(QQ).schur()([2,2,1]).expand(5)(1,1,1,1,1) # cross check
75
sage: SemistandardTableaux([5]).cardinality()
126
sage: SemistandardTableaux([3,2,1]).cardinality()
896
sage: SemistandardTableaux([3,2,1], max_entry=7).cardinality()
2352
sage: SemistandardTableaux([6,5,4,3,2,1], max_entry=30).cardinality()
208361017592001331200
sage: ssts = [SemistandardTableaux(p, max_entry=6) for p in Partitions(5)]
sage: all(sst.cardinality() == sst.cardinality(algorithm='sum')
....: for sst in ssts)
True

random_element()
Return a uniformly distributed random tableau of the given shape and max_entry.

Uses the algorithm from [Kra1999] based on the Novelli-Pak-Stoyanovskii bijection http:
//www.sciencedirect.com/science/article/pii/0012365X9290368P

EXAMPLES:

sage: S = SemistandardTableaux([2, 2, 1, 1])
sage: S.random_element() in S
True
sage: S = SemistandardTableaux([2, 2, 1, 1], max_entry=7)
sage: S.random_element() in S
True

class sage.combinat.tableau.SemistandardTableaux_shape_inf(p)
Bases: sage.combinat.tableau.SemistandardTableaux

Semistandard tableaux of fixed shape 𝑝 and no maximum entry.

class sage.combinat.tableau.SemistandardTableaux_shape_weight(p, mu)
Bases: sage.combinat.tableau.SemistandardTableaux_shape

Semistandard tableaux of fixed shape 𝑝 and weight 𝜇.

5.1. Comprehensive Module List 3289

http://www.sciencedirect.com/science/article/pii/0012365X9290368P
http://www.sciencedirect.com/science/article/pii/0012365X9290368P

Combinatorics, Release 9.7

cardinality()
Return the number of semistandard tableaux of the given shape and weight, as computed by
kostka_number function of symmetrica.

EXAMPLES:

sage: SemistandardTableaux([2,2], [2, 1, 1]).cardinality()
1
sage: SemistandardTableaux([2,2,2], [2, 2, 1,1]).cardinality()
1
sage: SemistandardTableaux([2,2,2], [2, 2, 2]).cardinality()
1
sage: SemistandardTableaux([3,2,1], [2, 2, 2]).cardinality()
2

list()
Return a list of all semistandard tableaux in self generated by symmetrica.

EXAMPLES:

sage: SemistandardTableaux([2,2], [2, 1, 1]).list()
[[[1, 1], [2, 3]]]
sage: SemistandardTableaux([2,2,2], [2, 2, 1,1]).list()
[[[1, 1], [2, 2], [3, 4]]]
sage: SemistandardTableaux([2,2,2], [2, 2, 2]).list()
[[[1, 1], [2, 2], [3, 3]]]
sage: SemistandardTableaux([3,2,1], [2, 2, 2]).list()
[[[1, 1, 2], [2, 3], [3]], [[1, 1, 3], [2, 2], [3]]]

class sage.combinat.tableau.SemistandardTableaux_size(n, max_entry=None)
Bases: sage.combinat.tableau.SemistandardTableaux

Semistandard tableaux of fixed size 𝑛.

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: SemistandardTableaux(3).cardinality()
19
sage: SemistandardTableaux(4).cardinality()
116
sage: SemistandardTableaux(4, max_entry=2).cardinality()
9
sage: SemistandardTableaux(4, max_entry=10).cardinality()
4225
sage: ns = list(range(1, 6))
sage: ssts = [SemistandardTableaux(n) for n in ns]
sage: all(sst.cardinality() == len(sst.list()) for sst in ssts)
True

random_element()
Generate a random SemistandardTableau with uniform probability.

The RSK algorithm gives a bijection between symmetric 𝑘 × 𝑘 matrices of nonnegative integers that sum
to 𝑛 and semistandard tableaux with size 𝑛 and maximum entry 𝑘.

3290 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The number of 𝑘 × 𝑘 symmetric matrices of nonnegative integers having sum of elements on the diagonal
𝑖 and sum of elements above the diagonal 𝑗 is

(︀
𝑘+𝑖−1
𝑘−1

)︀(︀(𝑘
2)+𝑗−1
(𝑘
2)−1

)︀
. We first choose the sum of the elements

on the diagonal randomly weighted by the number of matrices having that trace. We then create random
integer vectors of length 𝑘 having that sum and use them to generate a 𝑘×𝑘 diagonal matrix. Then we take
a random integer vector of length

(︀
𝑘
2

)︀
summing to half the remainder and distribute it symmetrically to the

remainder of the matrix.

Applying RSK to the random symmetric matrix gives us a pair of identical SemistandardTableau of
which we choose the first.

EXAMPLES:

sage: SemistandardTableaux(6).random_element() # random
[[1, 1, 2], [3, 5, 5]]
sage: SemistandardTableaux(6, max_entry=7).random_element() # random
[[2, 4, 4, 6, 6, 6]]

class sage.combinat.tableau.SemistandardTableaux_size_inf(n)
Bases: sage.combinat.tableau.SemistandardTableaux

Semistandard tableaux of fixed size 𝑛 with no maximum entry.

list()

class sage.combinat.tableau.SemistandardTableaux_size_weight(n, mu)
Bases: sage.combinat.tableau.SemistandardTableaux

Semistandard tableaux of fixed size 𝑛 and weight 𝜇.

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: SemistandardTableaux(3, [2,1]).cardinality()
2
sage: SemistandardTableaux(4, [2,2]).cardinality()
3

class sage.combinat.tableau.StandardTableau(parent, t, check=True)
Bases: sage.combinat.tableau.SemistandardTableau

A class to model a standard tableau.

INPUT:

• t – a Tableau, a list of iterables, or an empty list

A standard tableau is a semistandard tableau whose entries are exactly the positive integers from 1 to 𝑛, where
𝑛 is the size of the tableau.

EXAMPLES:

sage: t = StandardTableau([[1,2,3],[4,5]]); t
[[1, 2, 3], [4, 5]]
sage: t.shape()
[3, 2]
sage: t.pp() # pretty printing
1 2 3
4 5

(continues on next page)

5.1. Comprehensive Module List 3291

Combinatorics, Release 9.7

(continued from previous page)

sage: t.is_standard()
True
sage: StandardTableau([]) # The empty tableau
[]
sage: StandardTableau([[1,2,3],[4,5]]) in RowStandardTableaux()
True

When using code that will generate a lot of tableaux, it is more efficient to construct a StandardTableau from the
appropriate Parent object:

sage: ST = StandardTableaux()
sage: ST([[1, 2, 3], [4, 5]])
[[1, 2, 3], [4, 5]]

See also:

• Tableaux

• Tableau

• SemistandardTableaux

• SemistandardTableau

• StandardTableaux

check()
Check that self is a standard tableau.

dominates(t)
Return True if self dominates the tableau t.

That is, if the shape of the tableau restricted to 𝑘 dominates the shape of t restricted to 𝑘, for 𝑘 = 1, 2, . . . , 𝑛.

When the two tableaux have the same shape, then this ordering coincides with the Bruhat ordering for the
corresponding permutations.

INPUT:

• t – a tableau

EXAMPLES:

sage: s = StandardTableau([[1,2,3],[4,5]])
sage: t = StandardTableau([[1,2],[3,5],[4]])
sage: s.dominates(t)
True
sage: t.dominates(s)
False
sage: all(StandardTableau(s).dominates(t) for t in StandardTableaux([3,2]))
True
sage: s.dominates([[1,2,3,4,5]])
False

down()
An iterator for all the standard tableaux that can be obtained from self by removing a cell. Note that this
iterates just over a single tableau (or nothing if self is empty).

EXAMPLES:

3292 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: t = StandardTableau([[1,2],[3]])
sage: [x for x in t.down()]
[[[1, 2]]]
sage: t = StandardTableau([])
sage: [x for x in t.down()]
[]

down_list()
Return a list of all the standard tableaux that can be obtained from self by removing a cell. Note that this
is just a singleton list if self is nonempty, and an empty list otherwise.

EXAMPLES:

sage: t = StandardTableau([[1,2],[3]])
sage: t.down_list()
[[[1, 2]]]
sage: t = StandardTableau([])
sage: t.down_list()
[]

is_standard()
Return True since self is a standard tableau.

EXAMPLES:

sage: StandardTableau([[1, 3], [2, 4]]).is_standard()
True

promotion(n=None)
Return the image of self under the promotion operator.

The promotion operator, applied to a standard tableau 𝑡, does the following:

Remove the letter 𝑛 from 𝑡, thus leaving a hole where it used to be. Apply jeu de taquin to move this hole
southwest (in French notation) until it reaches the inner boundary of 𝑡. Fill 0 into the hole once jeu de taquin
has completed. Finally, add 1 to each letter in the tableau. The resulting standard tableau is the image of 𝑡
under the promotion operator.

This definition of promotion is precisely the one given in [Hai1992] (p. 90). It is the inverse of the maps
called “promotion” in [Sag2011] (p. 23) and in [Stan2009].

See the promotion() method for a more general operator.

EXAMPLES:

sage: ST = StandardTableaux(7)
sage: all(st.promotion().promotion_inverse() == st for st in ST) # long time
True
sage: all(st.promotion_inverse().promotion() == st for st in ST) # long time
True
sage: st = StandardTableau([[1,2,5],[3,4]])
sage: parent(st.promotion())
Standard tableaux

promotion_inverse(n=None)
Return the image of self under the inverse promotion operator. The optional variable 𝑚 should be set to
the size of self minus 1 for a minimal speedup; otherwise, it defaults to this number.

5.1. Comprehensive Module List 3293

Combinatorics, Release 9.7

The inverse promotion operator, applied to a standard tableau 𝑡, does the following:

Remove the letter 1 from 𝑡, thus leaving a hole where it used to be. Apply jeu de taquin to move this hole
northeast (in French notation) until it reaches the outer boundary of 𝑡. Fill 𝑛+ 1 into this hole, where 𝑛 is
the size of 𝑡. Finally, subtract 1 from each letter in the tableau. This yields a new standard tableau.

This definition of inverse promotion is the map called “promotion” in [Sag2011] (p. 23) and in [Stan2009],
and is the inverse of the map called “promotion” in [Hai1992] (p. 90).

See the promotion_inverse() method for a more general operator.

EXAMPLES:

sage: t = StandardTableau([[1,3],[2,4]])
sage: t.promotion_inverse()
[[1, 2], [3, 4]]

We check the equivalence of two definitions of inverse promotion on standard tableaux:

sage: ST = StandardTableaux(7)
sage: def bk_promotion_inverse7(st):
....: st2 = st
....: for i in range(1, 7):
....: st2 = st2.bender_knuth_involution(i, check=False)
....: return st2
sage: all(bk_promotion_inverse7(st) == st.promotion_inverse() for st in ST) #␣
→˓long time
True

standard_descents()
Return a list of the integers 𝑖 such that 𝑖 appears strictly further north than 𝑖+ 1 in self (this is not to say
that 𝑖 and 𝑖+ 1 must be in the same column). The list is sorted in increasing order.

EXAMPLES:

sage: StandardTableau([[1,3,4],[2,5]]).standard_descents()
[1, 4]
sage: StandardTableau([[1,2],[3,4]]).standard_descents()
[2]
sage: StandardTableau([[1,2,5],[3,4],[6,7],[8],[9]]).standard_descents()
[2, 5, 7, 8]
sage: StandardTableau([]).standard_descents()
[]

standard_major_index()
Return the major index of the standard tableau self in the standard meaning of the word. The major index
is defined to be the sum of the descents of self (see standard_descents() for their definition).

EXAMPLES:

sage: StandardTableau([[1,4,5],[2,6],[3]]).standard_major_index()
8
sage: StandardTableau([[1,2],[3,4]]).standard_major_index()
2
sage: StandardTableau([[1,2,3],[4,5]]).standard_major_index()
3

3294 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

standard_number_of_descents()
Return the number of all integers 𝑖 such that 𝑖 appears strictly further north than 𝑖+ 1 in self (this is not
to say that 𝑖 and 𝑖 + 1 must be in the same column). A list of these integers can be obtained using the
standard_descents() method.

EXAMPLES:

sage: StandardTableau([[1,2],[3,4],[5]]).standard_number_of_descents()
2
sage: StandardTableau([]).standard_number_of_descents()
0
sage: tabs = StandardTableaux(5)
sage: all(t.standard_number_of_descents() == t.schuetzenberger_involution().
→˓standard_number_of_descents() for t in tabs)
True

up()
An iterator for all the standard tableaux that can be obtained from self by adding a cell.

EXAMPLES:

sage: t = StandardTableau([[1,2]])
sage: [x for x in t.up()]
[[[1, 2, 3]], [[1, 2], [3]]]

up_list()
Return a list of all the standard tableaux that can be obtained from self by adding a cell.

EXAMPLES:

sage: t = StandardTableau([[1,2]])
sage: t.up_list()
[[[1, 2, 3]], [[1, 2], [3]]]

class sage.combinat.tableau.StandardTableaux(**kwds)
Bases: sage.combinat.tableau.SemistandardTableaux

A factory for the various classes of standard tableaux.

INPUT:

• Either a non-negative integer (possibly specified with the keyword n) or a partition.

OUTPUT:

• With no argument, the class of all standard tableaux

• With a non-negative integer argument, n, the class of all standard tableaux of size n

• With a partition argument, the class of all standard tableaux of that shape.

A standard tableau is a semistandard tableaux which contains each of the entries from 1 to n exactly once.

All classes of standard tableaux are iterable.

EXAMPLES:

sage: ST = StandardTableaux(3); ST
Standard tableaux of size 3
sage: ST.first()

(continues on next page)

5.1. Comprehensive Module List 3295

Combinatorics, Release 9.7

(continued from previous page)

[[1, 2, 3]]
sage: ST.last()
[[1], [2], [3]]
sage: ST.cardinality()
4
sage: ST.list()
[[[1, 2, 3]], [[1, 3], [2]], [[1, 2], [3]], [[1], [2], [3]]]

See also:

• Tableaux

• Tableau

• SemistandardTableaux

• SemistandardTableau

• StandardTableau

• StandardSkewTableaux

Element
alias of StandardTableau

class sage.combinat.tableau.StandardTableaux_all
Bases: sage.combinat.tableau.StandardTableaux, sage.sets.disjoint_union_enumerated_sets.
DisjointUnionEnumeratedSets

All standard tableaux.

class sage.combinat.tableau.StandardTableaux_shape(p)
Bases: sage.combinat.tableau.StandardTableaux

Semistandard tableaux of a fixed shape 𝑝.

cardinality()
Return the number of standard Young tableaux of this shape.

This method uses the so-called hook length formula, a formula for the number of Young tableaux associated
with a given partition. The formula says the following: Let 𝜆 be a partition. For each cell 𝑐 of the Young
diagram of 𝜆, let the hook length of 𝑐 be defined as 1 plus the number of cells horizontally to the right of 𝑐
plus the number of cells vertically below 𝑐. The number of standard Young tableaux of shape 𝜆 is then 𝑛!
divided by the product of the hook lengths of the shape of 𝜆, where 𝑛 = |𝜆|.

For example, consider the partition [3,2,1] of 6 with Ferrers diagram:

#
#
#

When we fill in the cells with their respective hook lengths, we obtain:

5 3 1
3 1
1

3296 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

The hook length formula returns

6!

5 · 3 · 1 · 3 · 1 · 1
= 16.

EXAMPLES:

sage: StandardTableaux([3,2,1]).cardinality()
16
sage: StandardTableaux([2,2]).cardinality()
2
sage: StandardTableaux([5]).cardinality()
1
sage: StandardTableaux([6,5,5,3]).cardinality()
6651216
sage: StandardTableaux([]).cardinality()
1

REFERENCES:

• http://mathworld.wolfram.com/HookLengthFormula.html

list()
Return a list of the standard Young tableaux of the specified shape.

EXAMPLES:

sage: StandardTableaux([2,2]).list()
[[[1, 3], [2, 4]], [[1, 2], [3, 4]]]
sage: StandardTableaux([5]).list()
[[[1, 2, 3, 4, 5]]]
sage: StandardTableaux([3,2,1]).list()
[[[1, 4, 6], [2, 5], [3]],
[[1, 3, 6], [2, 5], [4]],
[[1, 2, 6], [3, 5], [4]],
[[1, 3, 6], [2, 4], [5]],
[[1, 2, 6], [3, 4], [5]],
[[1, 4, 5], [2, 6], [3]],
[[1, 3, 5], [2, 6], [4]],
[[1, 2, 5], [3, 6], [4]],
[[1, 3, 4], [2, 6], [5]],
[[1, 2, 4], [3, 6], [5]],
[[1, 2, 3], [4, 6], [5]],
[[1, 3, 5], [2, 4], [6]],
[[1, 2, 5], [3, 4], [6]],
[[1, 3, 4], [2, 5], [6]],
[[1, 2, 4], [3, 5], [6]],
[[1, 2, 3], [4, 5], [6]]]

random_element()
Return a random standard tableau of the given shape using the Greene-Nijenhuis-Wilf Algorithm.

EXAMPLES:

sage: t = StandardTableaux([2,2]).random_element()
sage: t.shape()
[2, 2]

(continues on next page)

5.1. Comprehensive Module List 3297

http://mathworld.wolfram.com/HookLengthFormula.html

Combinatorics, Release 9.7

(continued from previous page)

sage: StandardTableaux([]).random_element()
[]

class sage.combinat.tableau.StandardTableaux_size(n)
Bases: sage.combinat.tableau.StandardTableaux, sage.sets.disjoint_union_enumerated_sets.
DisjointUnionEnumeratedSets

Standard tableaux of fixed size 𝑛.

EXAMPLES:

sage: [t for t in StandardTableaux(1)]
[[[1]]]
sage: [t for t in StandardTableaux(2)]
[[[1, 2]], [[1], [2]]]
sage: [t for t in StandardTableaux(3)]
[[[1, 2, 3]], [[1, 3], [2]], [[1, 2], [3]], [[1], [2], [3]]]
sage: StandardTableaux(4)[:]
[[[1, 2, 3, 4]],
[[1, 3, 4], [2]],
[[1, 2, 4], [3]],
[[1, 2, 3], [4]],
[[1, 3], [2, 4]],
[[1, 2], [3, 4]],
[[1, 4], [2], [3]],
[[1, 3], [2], [4]],
[[1, 2], [3], [4]],
[[1], [2], [3], [4]]]

cardinality()
Return the number of all standard tableaux of size n.

The number of standard tableaux of size 𝑛 is equal to the number of involutions in the symmet-
ric group 𝑆𝑛. This is a consequence of the symmetry of the RSK correspondence, that if 𝜎 ↦→
(𝑃,𝑄), then 𝜎−1 ↦→ (𝑄,𝑃). For more information, see Wikipedia article Robinson-Schensted-
Knuth_correspondence#Symmetry.

ALGORITHM:

The algorithm uses the fact that standard tableaux of size n are in bijection with the involutions of size n,
(see page 41 in section 4.1 of [Ful1997]). For each number of fixed points, you count the number of ways
to choose those fixed points multiplied by the number of perfect matchings on the remaining values.

EXAMPLES:

sage: StandardTableaux(3).cardinality()
4
sage: ns = [1,2,3,4,5,6]
sage: sts = [StandardTableaux(n) for n in ns]
sage: all(st.cardinality() == len(st.list()) for st in sts)
True

The cardinality can be computed without constructing all elements in this set, so this computation is fast
(see also trac ticket #28273):

3298 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
https://en.wikipedia.org/wiki/Robinson-Schensted-Knuth_correspondence#Symmetry
https://en.wikipedia.org/wiki/Robinson-Schensted-Knuth_correspondence#Symmetry
https://trac.sagemath.org/28273

Combinatorics, Release 9.7

sage: StandardTableaux(500).cardinality()
423107565308608549951551753690...221285999236657443927937253376

random_element()
Return a random StandardTableau with uniform probability.

This algorithm uses the fact that the Robinson-Schensted correspondence returns a pair of identical standard
Young tableaux (SYTs) if and only if the permutation was an involution. Thus, generating a random SYT
is equivalent to generating a random involution.

To generate an involution, we first need to choose its number of fixed points 𝑘 (if the size of the involution is
even, the number of fixed points will be even, and if the size is odd, the number of fixed points will be odd).
To do this, we choose a random integer 𝑟 between 0 and the number𝑁 of all involutions of size 𝑛. We then
decompose the interval {1, 2, . . . , 𝑁} into subintervals whose lengths are the numbers of involutions of
size 𝑛 with respectively 0, 1, . . ., ⌊𝑁/2⌋ fixed points. The interval in which our random integer 𝑟 lies then
decides how many fixed points our random involution will have. We then place those fixed points randomly
and then compute a perfect matching (an involution without fixed points) on the remaining values.

EXAMPLES:

sage: StandardTableaux(10).random_element() # random
[[1, 3, 6], [2, 5, 7], [4, 8], [9], [10]]
sage: StandardTableaux(0).random_element()
[]
sage: StandardTableaux(1).random_element()
[[1]]

class sage.combinat.tableau.Tableau(parent, t, check=True)
Bases: sage.structure.list_clone.ClonableList

A class to model a tableau.

INPUT:

• t – a Tableau, a list of iterables, or an empty list

OUTPUT:

• A Tableau object constructed from t.

A tableau is abstractly a mapping from the cells in a partition to arbitrary objects (called entries). It is often
represented as a finite list of nonempty lists (or, more generally an iterator of iterables) of weakly decreasing
lengths. This list, in particular, can be empty, representing the empty tableau.

Note that Sage uses the English convention for partitions and tableaux; the longer rows are displayed on top.

EXAMPLES:

sage: t = Tableau([[1,2,3],[4,5]]); t
[[1, 2, 3], [4, 5]]
sage: t.shape()
[3, 2]
sage: t.pp() # pretty printing
1 2 3
4 5
sage: t.is_standard()
True

(continues on next page)

5.1. Comprehensive Module List 3299

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableList

Combinatorics, Release 9.7

(continued from previous page)

sage: Tableau([['a','c','b'],[[],(2,1)]])
[['a', 'c', 'b'], [[], (2, 1)]]
sage: Tableau([]) # The empty tableau
[]

When using code that will generate a lot of tableaux, it is slightly more efficient to construct a Tableau from the
appropriate Parent object:

sage: T = Tableaux()
sage: T([[1, 2, 3], [4, 5]])
[[1, 2, 3], [4, 5]]

See also:

• Tableaux

• SemistandardTableaux

• SemistandardTableau

• StandardTableaux

• StandardTableau

add_entry(cell, m)
Return the result of setting the entry in cell cell equal to m in the tableau self.

This tableau has larger size than self if cell does not belong to the shape of self; otherwise, the tableau
has the same shape as self and has the appropriate entry replaced.

INPUT:

• cell – a pair of nonnegative integers

OUTPUT:

The tableau self with the entry in cell cell set to m. This entry overwrites an existing entry if cell
already belongs to self, or is added to the tableau if cell is a cocorner of the shape self. (Either way,
the input is not modified.)

Note: Both coordinates of cell are interpreted as starting at 0. So, cell == (0, 0) corresponds to the
northwesternmost cell.

EXAMPLES:

sage: s = StandardTableau([[1,2,5],[3,4]]); s.pp()
1 2 5
3 4

sage: t = s.add_entry((1,2), 6); t.pp()
1 2 5
3 4 6

sage: t.category()
Category of elements of Standard tableaux
sage: s.add_entry((2,0), 6).pp()
1 2 5
3 4

(continues on next page)

3300 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

6
sage: u = s.add_entry((1,2), 3); u.pp()
1 2 5
3 4 3

sage: u.category()
Category of elements of Tableaux
sage: s.add_entry((2,2),3)
Traceback (most recent call last):
...
IndexError: (2, 2) is not an addable cell of the tableau

anti_restrict(n)
Return the skew tableau formed by removing all of the cells from self that are filled with a number at most
𝑛.

EXAMPLES:

sage: t = Tableau([[1,2,3],[4,5]]); t
[[1, 2, 3], [4, 5]]
sage: t.anti_restrict(1)
[[None, 2, 3], [4, 5]]
sage: t.anti_restrict(2)
[[None, None, 3], [4, 5]]
sage: t.anti_restrict(3)
[[None, None, None], [4, 5]]
sage: t.anti_restrict(4)
[[None, None, None], [None, 5]]
sage: t.anti_restrict(5)
[[None, None, None], [None, None]]

atom()
EXAMPLES:

sage: Tableau([[1,2],[3,4]]).atom()
[2, 2]
sage: Tableau([[1,2,3],[4,5],[6]]).atom()
[3, 2, 1]

bender_knuth_involution(k, rows=None, check=True)
Return the image of self under the 𝑘-th Bender–Knuth involution, assuming self is a semistandard
tableau.

Let 𝑇 be a tableau, then a lower free `k` in `T` means a cell of 𝑇 which is filled with the integer 𝑘 and whose
direct lower neighbor is not filled with the integer 𝑘 + 1 (in particular, this lower neighbor might not exist
at all). Let an upper free `k + 1` in `T` mean a cell of 𝑇 which is filled with the integer 𝑘 + 1 and whose
direct upper neighbor is not filled with the integer 𝑘 (in particular, this neighbor might not exist at all). It is
clear that for any row 𝑟 of 𝑇 , the lower free 𝑘’s and the upper free 𝑘 + 1’s in 𝑟 together form a contiguous
interval or 𝑟.

The `k`-th Bender–Knuth switch at row `i` changes the entries of the cells in this interval in such a way
that if it used to have 𝑎 entries of 𝑘 and 𝑏 entries of 𝑘 + 1, it will now have 𝑏 entries of 𝑘 and 𝑎 entries of
𝑘 + 1. For fixed 𝑘, the 𝑘-th Bender–Knuth switches for different 𝑖 commute. The composition of the 𝑘-th
Bender–Knuth switches for all rows is called the `k`-th Bender-Knuth involution. This is used to show that
the Schur functions defined by semistandard tableaux are symmetric functions.

5.1. Comprehensive Module List 3301

Combinatorics, Release 9.7

INPUT:

• k – an integer

• rows – (Default None) When set to None, the method computes the 𝑘-th Bender–Knuth involution as
defined above. When an iterable, this computes the composition of the 𝑘-th Bender–Knuth switches at
row 𝑖 over all 𝑖 in rows. When set to an integer 𝑖, the method computes the 𝑘-th Bender–Knuth switch
at row 𝑖. Note the indexing of the rows starts with 1.

• check – (Default: True) Check to make sure self is semistandard. Set to False to avoid this check.

OUTPUT:

The image of self under either the 𝑘-th Bender–Knuth involution, the 𝑘-th Bender–Knuth switch at a
certain row, or the composition of such switches, as detailed in the INPUT section.

EXAMPLES:

sage: t = Tableau([[1,1,3,4,4,5,6,7],[2,2,4,6,7,7,7],[3,4,5,8,8,9],[6,6,7,10],
→˓[7,8,8,11],[8]])
sage: t.bender_knuth_involution(1) == t
True
sage: t.bender_knuth_involution(2)
[[1, 1, 2, 4, 4, 5, 6, 7], [2, 3, 4, 6, 7, 7, 7], [3, 4, 5, 8, 8, 9], [6, 6, 7,␣
→˓10], [7, 8, 8, 11], [8]]
sage: t.bender_knuth_involution(3)
[[1, 1, 3, 3, 3, 5, 6, 7], [2, 2, 4, 6, 7, 7, 7], [3, 4, 5, 8, 8, 9], [6, 6, 7,␣
→˓10], [7, 8, 8, 11], [8]]
sage: t.bender_knuth_involution(4)
[[1, 1, 3, 4, 5, 5, 6, 7], [2, 2, 4, 6, 7, 7, 7], [3, 5, 5, 8, 8, 9], [6, 6, 7,␣
→˓10], [7, 8, 8, 11], [8]]
sage: t.bender_knuth_involution(5)
[[1, 1, 3, 4, 4, 5, 6, 7], [2, 2, 4, 5, 7, 7, 7], [3, 4, 6, 8, 8, 9], [5, 5, 7,␣
→˓10], [7, 8, 8, 11], [8]]
sage: t.bender_knuth_involution(666) == t
True
sage: t.bender_knuth_involution(4, 2) == t
True
sage: t.bender_knuth_involution(4, 3)
[[1, 1, 3, 4, 4, 5, 6, 7], [2, 2, 4, 6, 7, 7, 7], [3, 5, 5, 8, 8, 9], [6, 6, 7,␣
→˓10], [7, 8, 8, 11], [8]]

The rows keyword can be an iterator:

sage: t.bender_knuth_involution(6, iter([1,2])) == t
False
sage: t.bender_knuth_involution(6, iter([3,4])) == t
True

The Bender–Knuth involution is an involution:

sage: T = SemistandardTableaux(shape=[3,1,1], max_entry=4)
sage: all(all(t.bender_knuth_involution(k).bender_knuth_involution(k) == t for␣
→˓k in range(1,5)) for t in T)
True

The same holds for the single switches:

3302 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: all(all(t.bender_knuth_involution(k, j).bender_knuth_involution(k, j) ==␣
→˓t for k in range(1,5) for j in range(1, 5)) for t in T)
True

Locality of the Bender–Knuth involutions:

sage: all(all(t.bender_knuth_involution(k).bender_knuth_involution(l) == t.
→˓bender_knuth_involution(l).bender_knuth_involution(k) for k in range(1,5) for␣
→˓l in range(1,5) if abs(k - l) > 1) for t in T)
True

Berenstein and Kirillov [KB1995] have shown that (𝑠1𝑠2)6 = 𝑖𝑑 (for tableaux of straight shape):

sage: p = lambda t, k: t.bender_knuth_involution(k).bender_knuth_involution(k +␣
→˓1)
sage: all(p(p(p(p(p(p(t,1),1),1),1),1),1) == t for t in T)
True

However, (𝑠2𝑠3)6 = 𝑖𝑑 is false:

sage: p = lambda t, k: t.bender_knuth_involution(k).bender_knuth_involution(k +␣
→˓1)
sage: t = Tableau([[1,2,2],[3,4]])
sage: x = t
sage: for i in range(6): x = p(x, 2)
sage: x
[[1, 2, 3], [2, 4]]
sage: x == t
False

bump(x)
Insert x into self using Schensted’s row-bumping (or row-insertion) algorithm.

EXAMPLES:

sage: t = Tableau([[1,2],[3]])
sage: t.bump(1)
[[1, 1], [2], [3]]
sage: t
[[1, 2], [3]]
sage: t.bump(2)
[[1, 2, 2], [3]]
sage: t.bump(3)
[[1, 2, 3], [3]]
sage: t
[[1, 2], [3]]
sage: t = Tableau([[1,2,2,3],[2,3,5,5],[4,4,6],[5,6]])
sage: t.bump(2)
[[1, 2, 2, 2], [2, 3, 3, 5], [4, 4, 5], [5, 6, 6]]
sage: t.bump(1)
[[1, 1, 2, 3], [2, 2, 5, 5], [3, 4, 6], [4, 6], [5]]

bump_multiply(other)
Multiply two tableaux using Schensted’s bump.

5.1. Comprehensive Module List 3303

Combinatorics, Release 9.7

This product makes the set of semistandard tableaux into an associative monoid. The empty tableau is the
unit in this monoid. See pp. 11-12 of [Ful1997].

The same product operation is implemented in a different way in slide_multiply().

EXAMPLES:

sage: t = Tableau([[1,2,2,3],[2,3,5,5],[4,4,6],[5,6]])
sage: t2 = Tableau([[1,2],[3]])
sage: t.bump_multiply(t2)
[[1, 1, 2, 2, 3], [2, 2, 3, 5], [3, 4, 5], [4, 6, 6], [5]]

catabolism()
Remove the top row of self and insert it back in using column Schensted insertion (starting with the largest
letter).

EXAMPLES:

sage: Tableau([]).catabolism()
[]
sage: Tableau([[1,2,3,4,5]]).catabolism()
[[1, 2, 3, 4, 5]]
sage: Tableau([[1,1,3,3],[2,3],[3]]).catabolism()
[[1, 1, 2, 3, 3, 3], [3]]
sage: Tableau([[1, 1, 2, 3, 3, 3], [3]]).catabolism()
[[1, 1, 2, 3, 3, 3, 3]]

catabolism_projector(parts)
EXAMPLES:

sage: t = Tableau([[1,1,3,3],[2,3],[3]])
sage: t.catabolism_projector([[4,2,1]])
[[1, 1, 3, 3], [2, 3], [3]]
sage: t.catabolism_projector([[1]])
[]
sage: t.catabolism_projector([[2,1],[1]])
[]
sage: t.catabolism_projector([[1,1],[4,1]])
[[1, 1, 3, 3], [2, 3], [3]]

catabolism_sequence()
Perform catabolism() on self until it returns a tableau consisting of a single row.

EXAMPLES:

sage: t = Tableau([[1,2,3,4,5,6,8],[7,9]])
sage: t.catabolism_sequence()
[[[1, 2, 3, 4, 5, 6, 8], [7, 9]],
[[1, 2, 3, 4, 5, 6, 7, 9], [8]],
[[1, 2, 3, 4, 5, 6, 7, 8], [9]],
[[1, 2, 3, 4, 5, 6, 7, 8, 9]]]
sage: Tableau([]).catabolism_sequence()
[[]]

cells()
Return a list of the coordinates of the cells of self.

3304 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Coordinates start at 0, so the northwesternmost cell (in English notation) has coordinates (0, 0).

EXAMPLES:

sage: Tableau([[1,2],[3,4]]).cells()
[(0, 0), (0, 1), (1, 0), (1, 1)]

cells_containing(i)
Return the list of cells in which the letter 𝑖 appears in the tableau self. The list is ordered with cells
appearing from left to right.

Cells are given as pairs of coordinates (𝑎, 𝑏), where both rows and columns are counted from 0 (so 𝑎 = 0
means the cell lies in the leftmost column of the tableau, etc.).

EXAMPLES:

sage: t = Tableau([[1,1,3],[2,3,5],[4,5]])
sage: t.cells_containing(5)
[(2, 1), (1, 2)]
sage: t.cells_containing(4)
[(2, 0)]
sage: t.cells_containing(6)
[]

sage: t = Tableau([[1,1,2,4],[2,4,4],[4]])
sage: t.cells_containing(4)
[(2, 0), (1, 1), (1, 2), (0, 3)]

sage: t = Tableau([[1,1,2,8,9],[2,5,6,11],[3,7,7,13],[4,8,9],[5],[13],[14]])
sage: t.cells_containing(8)
[(3, 1), (0, 3)]

sage: Tableau([]).cells_containing(3)
[]

charge()
Return the charge of the reading word of self. See charge() for more information.

EXAMPLES:

sage: Tableau([[1,1],[2,2],[3]]).charge()
0
sage: Tableau([[1,1,3],[2,2]]).charge()
1
sage: Tableau([[1,1,2],[2],[3]]).charge()
1
sage: Tableau([[1,1,2],[2,3]]).charge()
2
sage: Tableau([[1,1,2,3],[2]]).charge()
2
sage: Tableau([[1,1,2,2],[3]]).charge()
3
sage: Tableau([[1,1,2,2,3]]).charge()
4

check()
Check that self is a valid straight-shape tableau.

5.1. Comprehensive Module List 3305

Combinatorics, Release 9.7

EXAMPLES:

sage: t = Tableau([[1,1],[2]])
sage: t.check()

sage: t = Tableau([[None, None, 1], [2, 4], [3, 4, 5]]) # indirect doctest
Traceback (most recent call last):
...
ValueError: a tableau must be a list of iterables of weakly decreasing length

cocharge()
Return the cocharge of the reading word of self. See cocharge() for more information.

EXAMPLES:

sage: Tableau([[1,1],[2,2],[3]]).cocharge()
4
sage: Tableau([[1,1,3],[2,2]]).cocharge()
3
sage: Tableau([[1,1,2],[2],[3]]).cocharge()
3
sage: Tableau([[1,1,2],[2,3]]).cocharge()
2
sage: Tableau([[1,1,2,3],[2]]).cocharge()
2
sage: Tableau([[1,1,2,2],[3]]).cocharge()
1
sage: Tableau([[1,1,2,2,3]]).cocharge()
0

codegree(e, multicharge=(0,))
Return the Brundan-Kleshchev-Wang [BKW2011] codegree of the standard tableau self.

The codegree of a tableau is an integer that is defined recursively by successively stripping off the number
𝑘, for 𝑘 = 𝑛, 𝑛 − 1, . . . , 1 and at stage adding the number of addable cell of the same residue minus the
number of removable cells of the same residue as 𝑘 and are above 𝑘 in the diagram.

The codegree of the tableau 𝑇 gives the degree of “dual” homogeneous basis element of the Graded Specht
module that is indexed by 𝑇 .

INPUT:

• e – the quantum characteristic

• multicharge – (default: [0]) the multicharge

OUTPUT:

The codegree of the tableau self, which is an integer.

EXAMPLES:

sage: StandardTableau([[1,3,5],[2,4]]).codegree(3)
0
sage: StandardTableau([[1,2,5],[3,4]]).codegree(3)
1
sage: StandardTableau([[1,2,5],[3,4]]).codegree(4)
0

3306 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

column_stabilizer()
Return the PermutationGroup corresponding to the column stabilizer of self.

This assumes that every integer from 1 to the size of self appears exactly once in self.

EXAMPLES:

sage: cs = Tableau([[1,2,3],[4,5]]).column_stabilizer()
sage: cs.order() == factorial(2)*factorial(2)
True
sage: PermutationGroupElement([(1,3,2),(4,5)]) in cs
False
sage: PermutationGroupElement([(1,4)]) in cs
True

components()
This function returns a list containing itself. It exists mainly for compatibility with TableauTuple as it
allows constructions like the example below.

EXAMPLES:

sage: t = Tableau([[1,2,3],[4,5]])
sage: for s in t.components(): print(s.to_list())
[[1, 2, 3], [4, 5]]

conjugate()
Return the conjugate of self.

EXAMPLES:

sage: Tableau([[1,2],[3,4]]).conjugate()
[[1, 3], [2, 4]]
sage: c = StandardTableau([[1,2],[3,4]]).conjugate()
sage: c.parent()
Standard tableaux

content(k, multicharge=[0])
Return the content of k in the standard tableau self.

The content of 𝑘 is 𝑐− 𝑟 if 𝑘 appears in row 𝑟 and column 𝑐 of the tableau.

The multicharge is a list of length 1 which gives an offset for all of the contents. It is included mainly
for compatibility with sage.combinat.tableau_tuple.TableauTuple().

EXAMPLES:

sage: StandardTableau([[1,2],[3,4]]).content(3)
-1

sage: StandardTableau([[1,2],[3,4]]).content(6)
Traceback (most recent call last):
...
ValueError: 6 does not appear in tableau

corners()
Return the corners of the tableau self.

EXAMPLES:

5.1. Comprehensive Module List 3307

Combinatorics, Release 9.7

sage: Tableau([[1, 4, 6], [2, 5], [3]]).corners()
[(0, 2), (1, 1), (2, 0)]
sage: Tableau([[1, 3], [2, 4]]).corners()
[(1, 1)]

degree(e, multicharge=(0,))
Return the Brundan-Kleshchev-Wang [BKW2011] degree of self.

The degree is an integer that is defined recursively by successively stripping off the number 𝑘, for 𝑘 =
𝑛, 𝑛 − 1, . . . , 1 and at stage adding the number of addable cell of the same residue minus the number of
removable cells of the same residue as 𝑘 and which are below 𝑘 in the diagram.

The degrees of the tableau 𝑇 gives the degree of the homogeneous basis element of the graded Specht
module that is indexed by 𝑇 .

INPUT:

• e – the quantum characteristic

• multicharge – (default: [0]) the multicharge

OUTPUT:

The degree of the tableau self, which is an integer.

EXAMPLES:

sage: StandardTableau([[1,2,5],[3,4]]).degree(3)
0
sage: StandardTableau([[1,2,5],[3,4]]).degree(4)
1

descents()
Return a list of the cells (i,j) such that self[i][j] > self[i-1][j].

Warning: This is not to be confused with the descents of a standard tableau.

EXAMPLES:

sage: Tableau([[1,4],[2,3]]).descents()
[(1, 0)]
sage: Tableau([[1,2],[3,4]]).descents()
[(1, 0), (1, 1)]
sage: Tableau([[1,2,3],[4,5]]).descents()
[(1, 0), (1, 1)]

entries()
Return the tuple of all entries of self, in the order obtained by reading across the rows from top to bottom
(in English notation).

EXAMPLES:

sage: t = Tableau([[1,3], [2]])
sage: t.entries()
(1, 3, 2)

3308 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

entry(cell)
Return the entry of cell cell in the tableau self. Here, cell should be given as a tuple (𝑖, 𝑗) of zero-based
coordinates (so the northwesternmost cell in English notation is (0, 0)).

EXAMPLES:

sage: t = Tableau([[1,2],[3,4]])
sage: t.entry((0,0))
1
sage: t.entry((1,1))
4

evacuation(n=None, check=True)
Return the evacuation of the tableau self.

This is an alias for schuetzenberger_involution().

This method relies on the analogous method on words, which reverts the word and then complements all
letters within the underlying ordered alphabet. If 𝑛 is specified, the underlying alphabet is assumed to be
[1, 2, . . . , 𝑛]. If no alphabet is specified, 𝑛 is the maximal letter appearing in self.

INPUT:

• n – an integer specifying the maximal letter in the alphabet (optional)

• check – (Default: True) Check to make sure self is semistandard. Set to False to avoid this check.
(optional)

OUTPUT:

• a tableau, the evacuation of self

EXAMPLES:

sage: t = Tableau([[1,1,1],[2,2]])
sage: t.evacuation(3)
[[2, 2, 3], [3, 3]]

sage: t = Tableau([[1,2,3],[4,5]])
sage: t.evacuation()
[[1, 2, 5], [3, 4]]

sage: t = Tableau([[1,3,5,7],[2,4,6],[8,9]])
sage: t.evacuation()
[[1, 2, 6, 8], [3, 4, 9], [5, 7]]

sage: t = Tableau([])
sage: t.evacuation()
[]

sage: t = StandardTableau([[1,2,3],[4,5]])
sage: s = t.evacuation()
sage: s.parent()
Standard tableaux

evaluation()
Return the weight of the tableau self. Trailing zeroes are omitted when returning the weight.

5.1. Comprehensive Module List 3309

Combinatorics, Release 9.7

The weight of a tableau 𝑇 is the sequence (𝑎1, 𝑎2, 𝑎3, . . .), where 𝑎𝑘 is the number of entries of 𝑇 equal to
𝑘. This sequence contains only finitely many nonzero entries.

The weight of a tableau 𝑇 is the same as the weight of the reading word of 𝑇 , for any reading order.

EXAMPLES:

sage: Tableau([[1,2],[3,4]]).weight()
[1, 1, 1, 1]

sage: Tableau([]).weight()
[]

sage: Tableau([[1,3,3,7],[4,2],[2,3]]).weight()
[1, 2, 3, 1, 0, 0, 1]

first_column_descent()
Return the first cell where self is not column standard.

Cells are ordered left to right along the rows and then top to bottom. That is, the cell (𝑟, 𝑐) with 𝑟 and 𝑐
minimal such that the entry in position (𝑟, 𝑐) is bigger than the entry in position (𝑟, 𝑐 + 1). If there is no
such cell then None is returned - in this case the tableau is column strict.

OUTPUT:

The first cell which there is a descent or None if no such cell exists.

EXAMPLES:

sage: Tableau([[1,4,5],[2,3]]).first_column_descent()
(0, 1)
sage: Tableau([[1,2,3],[4]]).first_column_descent() is None
True

first_row_descent()
Return the first cell where the tableau self is not row standard.

Cells are ordered left to right along the rows and then top to bottom. That is, the cell (𝑟, 𝑐) with 𝑟 and 𝑐
minimal such that the entry in position (𝑟, 𝑐) is bigger than the entry in position (𝑟, 𝑐 + 1). If there is no
such cell then None is returned - in this case the tableau is row strict.

OUTPUT:

The first cell which there is a descent or None if no such cell exists.

EXAMPLES:

sage: t = Tableau([[1,3,2],[4]]); t.first_row_descent()
(0, 1)
sage: Tableau([[1,2,3],[4]]).first_row_descent() is None
True

flush()
Return the number of flush segments in self, as in [Sal2014].

Let 1 ≤ 𝑖 < 𝑘 ≤ 𝑟 + 1 and suppose ℓ is the smallest integer greater than 𝑘 such that there exists an
ℓ-segment in the (𝑖+ 1)-st row of 𝑇 . A 𝑘-segment in the 𝑖-th row of 𝑇 is called flush if the leftmost box in
the 𝑘-segment and the leftmost box of the ℓ-segment are in the same column of 𝑇 . If, however, no such ℓ
exists, then this 𝑘-segment is said to be flush if the number of boxes in the 𝑘-segment is equal to 𝜃𝑖, where

3310 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

𝜃𝑖 = 𝜆𝑖 − 𝜆𝑖+1 and the shape of 𝑇 is 𝜆 = (𝜆1 > 𝜆2 > · · · > 𝜆𝑟). Denote the number of flush 𝑘-segments
in 𝑇 by flush(𝑇).

EXAMPLES:

sage: t = Tableau([[1,1,2,3,5],[2,3,5,5],[3,4]])
sage: t.flush()
3

sage: B = crystals.Tableaux("A4",shape=[4,3,2,1])
sage: t = B[32].to_tableau()
sage: t.flush()
4

height()
Return the height of self.

EXAMPLES:

sage: Tableau([[1,2,3],[4,5]]).height()
2
sage: Tableau([[1,2,3]]).height()
1
sage: Tableau([]).height()
0

hillman_grassl()
Return the image of the 𝜆-array self under the Hillman-Grassl correspondence (as a
WeakReversePlanePartition).

This relies on interpreting self as a 𝜆-array in the sense of hillman_grassl.

Fix a partition 𝜆 (see Partition()). We draw all partitions and tableaux in English notation.

A 𝜆-array will mean a tableau of shape 𝜆 whose entries are nonnegative integers. (No conditions on the
order of these entries are made. Note that 0 is allowed.)

A weak reverse plane partition of shape 𝜆 (short: 𝜆-rpp) will mean a 𝜆-array whose entries weakly increase
along each row and weakly increase along each column.

The Hillman-Grassl correspondence 𝐻 is the map that sends a 𝜆-array 𝑀 to a 𝜆-rpp 𝐻(𝑀) defined recur-
sively as follows:

• If all entries of 𝑀 are 0, then 𝐻(𝑀) = 𝑀 .

• Otherwise, let 𝑠 be the index of the leftmost column of 𝑀 containing a nonzero entry. Let 𝑟 be the
index of the bottommost nonzero entry in the 𝑠-th column of𝑀 . Let𝑀 ′ be the 𝜆-array obtained from
𝑀 by subtracting 1 from the (𝑟, 𝑠)-th entry of 𝑀 . Let 𝑄 = (𝑞𝑖,𝑗) be the image 𝐻(𝑀 ′) (which is
already defined by recursion).

• Define a sequence ((𝑖1, 𝑗1), (𝑖2, 𝑗2), . . . , (𝑖𝑛, 𝑗𝑛)) of boxes in the diagram of 𝜆 (actually a lattice path
made of southward and westward steps) as follows: Set (𝑖1, 𝑗1) = (𝑟, 𝜆𝑟) (the rightmost box in the 𝑟-th
row of 𝜆). If (𝑖𝑘, 𝑗𝑘) is defined for some 𝑘 ≥ 1, then (𝑖𝑘+1, 𝑗𝑘+1) is constructed as follows: If 𝑞𝑖𝑘+1,𝑗𝑘

is well-defined and equals 𝑞𝑖𝑘,𝑗𝑘 , then we set (𝑖𝑘+1, 𝑗𝑘+1) = (𝑖𝑘 + 1, 𝑗𝑘). Otherwise, if 𝑗𝑘 = 𝑠, then
the sequence ends here. Otherwise, we set (𝑖𝑘+1, 𝑗𝑘+1) = (𝑖𝑘, 𝑗𝑘 − 1).

• Let 𝐻(𝑀) be the array obtained from 𝑄 by adding 1 to the (𝑖𝑘, 𝑗𝑘)-th entry of 𝑄 for each 𝑘 ∈
{1, 2, . . . , 𝑛}.

See [Gans1981] (Section 3) for this construction.

5.1. Comprehensive Module List 3311

Combinatorics, Release 9.7

See also:

hillman_grassl() for the Hillman-Grassl correspondence as a standalone function.

hillman_grassl_inverse() for the inverse map.

EXAMPLES:

sage: a = Tableau([[2, 1, 1], [0, 2, 0], [1, 1]])
sage: A = a.hillman_grassl(); A
[[2, 2, 4], [2, 3, 4], [3, 5]]
sage: A.parent(), a.parent()
(Weak Reverse Plane Partitions, Tableaux)

insert_word(w, left=False)
Insert the word w into the tableau self letter by letter using Schensted insertion. By default, the word w is
being processed from left to right, and the insertion used is row insertion. If the optional keyword left is
set to True, the word w is being processed from right to left, and column insertion is used instead.

EXAMPLES:

sage: t0 = Tableau([])
sage: w = [1,1,2,3,3,3,3]
sage: t0.insert_word(w)
[[1, 1, 2, 3, 3, 3, 3]]
sage: t0.insert_word(w,left=True)
[[1, 1, 2, 3, 3, 3, 3]]
sage: w.reverse()
sage: t0.insert_word(w)
[[1, 1, 3, 3], [2, 3], [3]]
sage: t0.insert_word(w,left=True)
[[1, 1, 3, 3], [2, 3], [3]]
sage: t1 = Tableau([[1,3],[2]])
sage: t1.insert_word([4,5])
[[1, 3, 4, 5], [2]]
sage: t1.insert_word([4,5], left=True)
[[1, 3], [2, 5], [4]]

inversion_number()
Return the inversion number of self.

The inversion number is defined to be the number of inversions of self minus the sum of the arm lengths
of the descents of self (see the inversions() and descents() methods for the relevant definitions).

Warning: This has none of the meanings in which the word “inversion” is used in the theory of
standard tableaux.

EXAMPLES:

sage: t = Tableau([[1,2,3],[2,5]])
sage: t.inversion_number()
0
sage: t = Tableau([[1,2,4],[3,5]])
sage: t.inversion_number()
0

3312 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

inversions()
Return a list of the inversions of self.

Let 𝑇 be a tableau. An inversion is an attacking pair (𝑐, 𝑑) of the shape of 𝑇 (see attacking_pairs()
for a definition of this) such that the entry of 𝑐 in 𝑇 is greater than the entry of 𝑑.

Warning: Do not mistake this for the inversions of a standard tableau.

EXAMPLES:

sage: t = Tableau([[1,2,3],[2,5]])
sage: t.inversions()
[((1, 1), (0, 0))]
sage: t = Tableau([[1,4,3],[5,2],[2,6],[3]])
sage: t.inversions()
[((0, 1), (0, 2)), ((1, 0), (1, 1)), ((1, 1), (0, 0)), ((2, 1), (1, 0))]

is_column_increasing(weak=False)
Return True if the entries in each column are in increasing order, and False otherwise.

By default, this checks for strictly increasing columns. Set weak to True to test for weakly increasing
columns.

EXAMPLES:

sage: T = Tableau([[1, 1, 3], [1, 2]])
sage: T.is_column_increasing(weak=True)
True
sage: T.is_column_increasing()
False
sage: Tableau([[2], [1]]).is_column_increasing(weak=True)
False

is_column_strict()
Return True if self is a column strict tableau and False otherwise.

A tableau is column strict if the entries in each column are in (strictly) increasing order.

EXAMPLES:

sage: Tableau([[1, 3], [2, 4]]).is_column_strict()
True
sage: Tableau([[1, 2], [2, 4]]).is_column_strict()
True
sage: Tableau([[2, 3], [2, 4]]).is_column_strict()
False
sage: Tableau([[5, 3], [2, 4]]).is_column_strict()
False
sage: Tableau([]).is_column_strict()
True
sage: Tableau([[1, 4, 2]]).is_column_strict()
True
sage: Tableau([[1, 4, 2], [2, 5]]).is_column_strict()
True

(continues on next page)

5.1. Comprehensive Module List 3313

Combinatorics, Release 9.7

(continued from previous page)

sage: Tableau([[1, 4, 2], [2, 3]]).is_column_strict()
False

is_increasing()
Return True if self is an increasing tableau and False otherwise.

A tableau is increasing if it is both row strict and column strict.

EXAMPLES:

sage: Tableau([[1, 3], [2, 4]]).is_increasing()
True
sage: Tableau([[1, 2], [2, 4]]).is_increasing()
True
sage: Tableau([[2, 3], [2, 4]]).is_increasing()
False
sage: Tableau([[5, 3], [2, 4]]).is_increasing()
False
sage: Tableau([[1, 2, 3], [2, 3], [3]]).is_increasing()
True

is_k_tableau(k)
Checks whether self is a valid weak 𝑘-tableau.

EXAMPLES:

sage: t = Tableau([[1,2,3],[2,3],[3]])
sage: t.is_k_tableau(3)
True
sage: t = Tableau([[1,1,3],[2,2],[3]])
sage: t.is_k_tableau(3)
False

is_key_tableau()
Return True if self is a key tableau or False otherwise.

A tableau is a key tableau if the set of entries in the 𝑗-th column is a subset of the set of entries in the
(𝑗 − 1)-st column.

REFERENCES:

• [LS1990]

• [Wil2010]

EXAMPLES:

sage: t = Tableau([[1,1,1],[2,3],[3]])
sage: t.is_key_tableau()
True

sage: t = Tableau([[1,1,2],[2,3],[3]])
sage: t.is_key_tableau()
False

is_rectangular()
Return True if the tableau self is rectangular and False otherwise.

3314 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: Tableau([[1,2],[3,4]]).is_rectangular()
True
sage: Tableau([[1,2,3],[4,5],[6]]).is_rectangular()
False
sage: Tableau([]).is_rectangular()
True

is_row_increasing(weak=False)
Return True if the entries in each row are in increasing order, and False otherwise.

By default, this checks for strictly increasing rows. Set weak to True to test for weakly increasing rows.

EXAMPLES:

sage: T = Tableau([[1, 1, 3], [1, 2]])
sage: T.is_row_increasing(weak=True)
True
sage: T.is_row_increasing()
False
sage: Tableau([[2, 1]]).is_row_increasing(weak=True)
False

is_row_strict()
Return True if self is a row strict tableau and False otherwise.

A tableau is row strict if the entries in each row are in (strictly) increasing order.

EXAMPLES:

sage: Tableau([[1, 3], [2, 4]]).is_row_strict()
True
sage: Tableau([[1, 2], [2, 4]]).is_row_strict()
True
sage: Tableau([[2, 3], [2, 4]]).is_row_strict()
True
sage: Tableau([[5, 3], [2, 4]]).is_row_strict()
False

is_semistandard()
Return True if self is a semistandard tableau, and False otherwise.

A tableau is semistandard if its rows weakly increase and its columns strictly increase.

EXAMPLES:

sage: Tableau([[1,1],[1,2]]).is_semistandard()
False
sage: Tableau([[1,2],[1,2]]).is_semistandard()
False
sage: Tableau([[1,1],[2,2]]).is_semistandard()
True
sage: Tableau([[1,2],[2,3]]).is_semistandard()
True
sage: Tableau([[4,1],[3,2]]).is_semistandard()
False

5.1. Comprehensive Module List 3315

Combinatorics, Release 9.7

is_standard()
Return True if self is a standard tableau and False otherwise.

EXAMPLES:

sage: Tableau([[1, 3], [2, 4]]).is_standard()
True
sage: Tableau([[1, 2], [2, 4]]).is_standard()
False
sage: Tableau([[2, 3], [2, 4]]).is_standard()
False
sage: Tableau([[5, 3], [2, 4]]).is_standard()
False

k_weight(k)
Return the 𝑘-weight of self.

A tableau has 𝑘-weight 𝛼 = (𝛼1, ..., 𝛼𝑛) if there are exactly 𝛼𝑖 distinct residues for the cells occupied by
the letter 𝑖 for each 𝑖. The residue of a cell in position (𝑎, 𝑏) is 𝑎− 𝑏 modulo 𝑘 + 1.

This definition is the one used in [Ive2012] (p. 12).

EXAMPLES:

sage: Tableau([[1,2],[2,3]]).k_weight(1)
[1, 1, 1]
sage: Tableau([[1,2],[2,3]]).k_weight(2)
[1, 2, 1]
sage: t = Tableau([[1,1,1,2,5],[2,3,6],[3],[4]])
sage: t.k_weight(1)
[2, 1, 1, 1, 1, 1]
sage: t.k_weight(2)
[3, 2, 2, 1, 1, 1]
sage: t.k_weight(3)
[3, 1, 2, 1, 1, 1]
sage: t.k_weight(4)
[3, 2, 2, 1, 1, 1]
sage: t.k_weight(5)
[3, 2, 2, 1, 1, 1]

lambda_catabolism(part)
Return the part-catabolism of self, where part is a partition (which can be just given as an array).

For a partition 𝜆 and a tableau 𝑇 , the 𝜆-catabolism of 𝑇 is defined by performing the following steps.

1. Truncate the parts of 𝜆 so that 𝜆 is contained in the shape of 𝑇 . Let 𝑚 be the length of this partition.

2. Let 𝑇𝑎 be the first 𝑚 rows of 𝑇 , and 𝑇𝑏 be the remaining rows.

3. Let 𝑆𝑎 be the skew tableau 𝑇𝑎/𝜆.

4. Concatenate the reading words of 𝑆𝑎 and 𝑇𝑏, and insert into a tableau.

EXAMPLES:

sage: Tableau([[1,1,3],[2,4,5]]).lambda_catabolism([2,1])
[[3, 5], [4]]
sage: t = Tableau([[1,1,3,3],[2,3],[3]])
sage: t.lambda_catabolism([])

(continues on next page)

3316 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[[1, 1, 3, 3], [2, 3], [3]]
sage: t.lambda_catabolism([1])
[[1, 2, 3, 3, 3], [3]]
sage: t.lambda_catabolism([1,1])
[[1, 3, 3, 3], [3]]
sage: t.lambda_catabolism([2,1])
[[3, 3, 3, 3]]
sage: t.lambda_catabolism([4,2,1])
[]
sage: t.lambda_catabolism([5,1])
[[3, 3]]
sage: t.lambda_catabolism([4,1])
[[3, 3]]

last_letter_lequal(tab2)
Return True if self is less than or equal to tab2 in the last letter ordering.

EXAMPLES:

sage: st = StandardTableaux([3,2])
sage: f = lambda b: 1 if b else 0
sage: matrix([[f(t1.last_letter_lequal(t2)) for t2 in st] for t1 in st])
[1 1 1 1 1]
[0 1 1 1 1]
[0 0 1 1 1]
[0 0 0 1 1]
[0 0 0 0 1]

left_key_tableau()
Return the left key tableau of self.

The left key tableau of a tableau 𝑇 is the key tableau whose entries are weakly lesser than the corresponding
entries in 𝑇 , and whose column reading word is subject to certain conditions. See [LS1990] for the full
definition.

ALGORITHM:

The following algorithm follows [Wil2010]. Note that if 𝑇 is a key tableau then the output of the algorithm
is 𝑇 .

To compute the left key tableau 𝐿 of a tableau 𝑇 we iterate over the columns of 𝑇 . Let 𝑇𝑗 be the 𝑗-th
column of 𝑇 and iterate over the entries in 𝑇𝑗 from bottom to top. Initialize the corresponding entry 𝑘 in
𝐿 as the largest entry in 𝑇𝑗 . Scan the columns to the left of 𝑇𝑗 and with each column update 𝑘 to be the
lowest entry in that column which is weakly less than 𝑘. Update 𝑇𝑗 and all columns to the left by removing
all scanned entries.

See also:

• is_key_tableau()

EXAMPLES:

sage: t = Tableau([[1,2],[2,3]])
sage: t.left_key_tableau()
[[1, 1], [2, 2]]

(continues on next page)

5.1. Comprehensive Module List 3317

Combinatorics, Release 9.7

(continued from previous page)

sage: t = Tableau([[1,1,2,4],[2,3,3],[4],[5]])
sage: t.left_key_tableau()
[[1, 1, 1, 2], [2, 2, 2], [4], [5]]

leq(secondtab)
Check whether each entry of self is less-or-equal to the corresponding entry of a further tableau
secondtab.

INPUT:

• secondtab – a tableau of the same shape as self

EXAMPLES:

sage: T = Tableau([[1, 2], [3]])
sage: S = Tableau([[1, 3], [3]])
sage: G = Tableau([[2, 1], [4]])
sage: H = Tableau([[1, 2], [4]])
sage: T.leq(S)
True
sage: T.leq(T)
True
sage: T.leq(G)
False
sage: T.leq(H)
True
sage: S.leq(T)
False
sage: S.leq(G)
False
sage: S.leq(H)
False
sage: G.leq(H)
False
sage: H.leq(G)
False

level()
Return the level of self, which is always 1.

This function exists mainly for compatibility with TableauTuple.

EXAMPLES:

sage: Tableau([[1,2,3],[4,5]]).level()
1

major_index()
Return the major index of self.

The major index of a tableau 𝑇 is defined to be the sum of the number of descents of T (defined in
descents()) with the sum of their legs’ lengths.

Warning: This is not to be confused with the major index of a standard tableau.

3318 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: Tableau([[1,4],[2,3]]).major_index()
1
sage: Tableau([[1,2],[3,4]]).major_index()
2

If the major index would be defined in the sense of standard tableaux theory, then the following would give
3 for a result:

sage: Tableau([[1,2,3],[4,5]]).major_index()
2

plot(descents=False)
Return a plot self.

INPUT:

• descents – boolean (default: False); if True, then the descents are marked in the tableau; only valid
if self is a standard tableau

EXAMPLES:

sage: t = Tableau([[1,2,4],[3]])
sage: t.plot()
Graphics object consisting of 11 graphics primitives
sage: t.plot(descents=True)
Graphics object consisting of 12 graphics primitives

sage: t = Tableau([[2,2,4],[3]])
sage: t.plot()
Graphics object consisting of 11 graphics primitives
sage: t.plot(descents=True)
Traceback (most recent call last):
...
ValueError: the tableau must be standard for 'descents=True'

pp()
Pretty print a string of the tableau.

EXAMPLES:

sage: T = Tableau([[1,2,3],[3,4],[5]])
sage: T.pp()
1 2 3
3 4
5

sage: Tableaux.options.convention="french"
sage: T.pp()
5
3 4
1 2 3

sage: Tableaux.options._reset()

promotion(n)
Return the image of self under the promotion operator.

5.1. Comprehensive Module List 3319

Combinatorics, Release 9.7

Warning: You might know this operator as the inverse promotion operator – literature does not
agree on the name. You might also be looking for the Lapointe-Lascoux-Morse promotion operator
(promotion_operator()).

The promotion operator, applied to a tableau 𝑡, does the following:

Iterate over all letters 𝑛+ 1 in the tableau 𝑡, from left to right. For each of these letters, do the following:

• Remove the letter from 𝑡, thus leaving a hole where it used to be.

• Apply jeu de taquin to move this hole southwest (in French notation) until it reaches the inner boundary
of 𝑡.

• Fill 0 into the hole once jeu de taquin has completed.

Once this all is done, add 1 to each letter in the tableau. This is not always well-defined. Restricted to the
class of semistandard tableaux whose entries are all ≤ 𝑛+ 1, this is the usual promotion operator defined
on this class.

When self is a standard tableau of size n + 1, this definition of promotion is precisely the one given in
[Hai1992] (p. 90). It is the inverse of the maps called “promotion” in [Sag2011] (p. 23) and in [Stan2009].

Warning: To my (Darij’s) knowledge, the fact that the above promotion operator really is the inverse
of the “inverse promotion operator” promotion_inverse() for semistandard tableaux has never been
proven in literature. Corrections are welcome.

REFERENCES:

• [Hai1992]

• [Sag2011]

EXAMPLES:

sage: t = Tableau([[1,2],[3,3]])
sage: t.promotion(2)
[[1, 1], [2, 3]]

sage: t = Tableau([[1,1,1],[2,2,3],[3,4,4]])
sage: t.promotion(3)
[[1, 1, 2], [2, 2, 3], [3, 4, 4]]

sage: t = Tableau([[1,2],[2]])
sage: t.promotion(3)
[[2, 3], [3]]

sage: t = Tableau([[1,1,3],[2,2]])
sage: t.promotion(2)
[[1, 2, 2], [3, 3]]

sage: t = Tableau([[1,1,3],[2,3]])
sage: t.promotion(2)
[[1, 1, 2], [2, 3]]

sage: t = Tableau([])
(continues on next page)

3320 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: t.promotion(2)
[]

promotion_inverse(n)
Return the image of self under the inverse promotion operator.

Warning: You might know this operator as the promotion operator (without “inverse”) – literature
does not agree on the name.

The inverse promotion operator, applied to a tableau 𝑡, does the following:

Iterate over all letters 1 in the tableau 𝑡, from right to left. For each of these letters, do the following:

• Remove the letter from 𝑡, thus leaving a hole where it used to be.

• Apply jeu de taquin to move this hole northeast (in French notation) until it reaches the outer boundary
of 𝑡.

• Fill 𝑛+ 2 into the hole once jeu de taquin has completed.

Once this all is done, subtract 1 from each letter in the tableau. This is not always well-defined. Restricted
to the class of semistandard tableaux whose entries are all ≤ 𝑛 + 1, this is the usual inverse promotion
operator defined on this class.

When self is a standard tableau of size n + 1, this definition of inverse promotion is the map called
“promotion” in [Sag2011] (p. 23) and in [Stan2009], and is the inverse of the map called “promotion” in
[Hai1992] (p. 90).

Warning: To my (Darij’s) knowledge, the fact that the above “inverse promotion operator” really is
the inverse of the promotion operator promotion() for semistandard tableaux has never been proven
in literature. Corrections are welcome.

EXAMPLES:

sage: t = Tableau([[1,2],[3,3]])
sage: t.promotion_inverse(2)
[[1, 2], [2, 3]]

sage: t = Tableau([[1,2],[2,3]])
sage: t.promotion_inverse(2)
[[1, 1], [2, 3]]

sage: t = Tableau([[1,2,5],[3,3,6],[4,7]])
sage: t.promotion_inverse(8)
[[1, 2, 4], [2, 5, 9], [3, 6]]

sage: t = Tableau([])
sage: t.promotion_inverse(2)
[]

promotion_operator(i)
Return a list of semistandard tableaux obtained by the 𝑖-th Lapointe-Lascoux-Morse promotion operator
from the semistandard tableau self.

5.1. Comprehensive Module List 3321

Combinatorics, Release 9.7

Warning: This is not Schuetzenberger’s jeu de taquin promotion! For the latter, see promotion()
and promotion_inverse().

This operator is defined by taking the maximum entry 𝑚 of 𝑇 , then adding a horizontal 𝑖-strip to
𝑇 in all possible ways, each time filling this strip with 𝑚 + 1’s, and finally letting the permutation
𝜎1𝜎2 · · ·𝜎𝑚 = (2, 3, . . . ,𝑚+ 1, 1) act on each of the resulting tableaux via the Lascoux-Schuetzenberger
action (symmetric_group_action_on_values()). This method returns the list of all resulting tableaux.
See [LLM2003] for the purpose of this operator.

EXAMPLES:

sage: t = Tableau([[1,2],[3]])
sage: t.promotion_operator(1)
[[[1, 2, 4], [3]], [[1, 2], [3, 4]], [[1, 2], [3], [4]]]
sage: t.promotion_operator(2)
[[[1, 1, 2, 4], [3]],
[[1, 1, 4], [2, 3]],
[[1, 1, 2], [3], [4]],
[[1, 1], [2, 3], [4]]]
sage: Tableau([[1]]).promotion_operator(2)
[[[1, 1, 2]], [[1, 1], [2]]]
sage: Tableau([[1,1],[2]]).promotion_operator(3)
[[[1, 1, 1, 2, 3], [2]],
[[1, 1, 1, 3], [2, 2]],
[[1, 1, 1, 2], [2], [3]],
[[1, 1, 1], [2, 2], [3]]]

The example from [LLM2003] p. 12:

sage: Tableau([[1,1],[2,2]]).promotion_operator(3)
[[[1, 1, 1, 3, 3], [2, 2]],
[[1, 1, 1, 3], [2, 2], [3]],
[[1, 1, 1], [2, 2], [3, 3]]]

raise_action_from_words(f, *args)
EXAMPLES:

sage: from sage.combinat.tableau import symmetric_group_action_on_values
sage: import functools
sage: t = Tableau([[1,1,3,3],[2,3],[3]])
sage: f = functools.partial(t.raise_action_from_words, symmetric_group_action_
→˓on_values)
sage: f([1,2,3])
[[1, 1, 3, 3], [2, 3], [3]]
sage: f([3,2,1])
[[1, 1, 1, 1], [2, 3], [3]]
sage: f([1,3,2])
[[1, 1, 2, 2], [2, 2], [3]]

reading_word_permutation()
Return the permutation obtained by reading the entries of the standardization of self row by row, starting
with the bottommost row (in English notation).

EXAMPLES:

3322 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: StandardTableau([[1,2],[3,4]]).reading_word_permutation()
[3, 4, 1, 2]

Check that trac ticket #14724 is fixed:

sage: SemistandardTableau([[1,1]]).reading_word_permutation()
[1, 2]

reduced_column_word()
Return the lexicographically minimal reduced expression for the permutation that maps the conjugate of
the initial_tableau() to self.

Ths reduced expression is a minimal length coset representative for the corresponding Young subgroup. In
one line notation, the permutation is obtained by concatenating the columns of the tableau in order from
top to bottom.

EXAMPLES:

sage: StandardTableau([[1,4,6],[2,5],[3]]).reduced_column_word()
[]
sage: StandardTableau([[1,4,5],[2,6],[3]]).reduced_column_word()
[5]
sage: StandardTableau([[1,3,6],[2,5],[4]]).reduced_column_word()
[3]
sage: StandardTableau([[1,3,5],[2,6],[4]]).reduced_column_word()
[3, 5]
sage: StandardTableau([[1,2,5],[3,6],[4]]).reduced_column_word()
[3, 2, 5]

reduced_lambda_catabolism(part)
EXAMPLES:

sage: t = Tableau([[1,1,3,3],[2,3],[3]])
sage: t.reduced_lambda_catabolism([])
[[1, 1, 3, 3], [2, 3], [3]]
sage: t.reduced_lambda_catabolism([1])
[[1, 2, 3, 3, 3], [3]]
sage: t.reduced_lambda_catabolism([1,1])
[[1, 3, 3, 3], [3]]
sage: t.reduced_lambda_catabolism([2,1])
[[3, 3, 3, 3]]
sage: t.reduced_lambda_catabolism([4,2,1])
[]
sage: t.reduced_lambda_catabolism([5,1])
0
sage: t.reduced_lambda_catabolism([4,1])
0

reduced_row_word()
Return the lexicographically minimal reduced expression for the permutation that maps the
initial_tableau() to self.

Ths reduced expression is a minimal length coset representative for the corresponding Young subgroup. In
one line notation, the permutation is obtained by concatenating the rows of the tableau in order from top to
bottom.

5.1. Comprehensive Module List 3323

https://trac.sagemath.org/14724

Combinatorics, Release 9.7

EXAMPLES:

sage: StandardTableau([[1,2,3],[4,5],[6]]).reduced_row_word()
[]
sage: StandardTableau([[1,2,3],[4,6],[5]]).reduced_row_word()
[5]
sage: StandardTableau([[1,2,4],[3,6],[5]]).reduced_row_word()
[3, 5]
sage: StandardTableau([[1,2,5],[3,6],[4]]).reduced_row_word()
[3, 5, 4]
sage: StandardTableau([[1,2,6],[3,5],[4]]).reduced_row_word()
[3, 4, 5, 4]

residue(k, e, multicharge=(0,))
Return the residue of the integer k in the tableau self.

The residue of 𝑘 in a standard tableau is 𝑐− 𝑟+𝑚 in Z/𝑒Z, where 𝑘 appears in row 𝑟 and column 𝑐 of the
tableau with multicharge 𝑚.

INPUT:

• k – an integer in {1, 2, . . . , 𝑛}

• e – an integer in {0, 2, 3, 4, 5, . . .}

• multicharge – (default: [0]) a list of length 1

Here 𝑛 is its size of self.

The multicharge is a list of length 1 which gives an offset for all of the contents. It is included mainly
for compatibility with residue().

OUTPUT:

The residue in Z/𝑒Z.

EXAMPLES:

sage: StandardTableau([[1,2,5],[3,4]]).residue(1,3)
0
sage: StandardTableau([[1,2,5],[3,4]]).residue(2,3)
1
sage: StandardTableau([[1,2,5],[3,4]]).residue(3,3)
2
sage: StandardTableau([[1,2,5],[3,4]]).residue(4,3)
0
sage: StandardTableau([[1,2,5],[3,4]]).residue(5,3)
2
sage: StandardTableau([[1,2,5],[3,4]]).residue(6,3)
Traceback (most recent call last):
...
ValueError: 6 does not appear in the tableau

residue_sequence(e, multicharge=(0,))
Return the sage.combinat.tableau_residues.ResidueSequence of the tableau self.

INPUT:

• e – an integer in {0, 2, 3, 4, 5, . . .}

• multicharge – (default: [0]) a sequence of integers of length 1

3324 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The 𝑚𝑢𝑙𝑡𝑖𝑐ℎ𝑎𝑟𝑔𝑒 is a list of length 1 which gives an offset for all of the contents. It is included mainly for
compatibility with residue().

OUTPUT:

The corresponding residue sequence of the tableau; see ResidueSequence.

EXAMPLES:

sage: StandardTableauTuple([[1,2],[3,4]]).residue_sequence(2)
2-residue sequence (0,1,1,0) with multicharge (0)
sage: StandardTableauTuple([[1,2],[3,4]]).residue_sequence(3)
3-residue sequence (0,1,2,0) with multicharge (0)
sage: StandardTableauTuple([[1,2],[3,4]]).residue_sequence(4)
4-residue sequence (0,1,3,0) with multicharge (0)

restrict(n)
Return the restriction of the semistandard tableau self to n. If possible, the restricted tableau will have
the same parent as this tableau.

If 𝑇 is a semistandard tableau and 𝑛 is a nonnegative integer, then the restriction of 𝑇 to 𝑛 is defined as the
(semistandard) tableau obtained by removing all cells filled with entries greater than 𝑛 from 𝑇 .

Note: If only the shape of the restriction, rather than the whole restriction, is needed, then the faster method
restriction_shape() is preferred.

EXAMPLES:

sage: Tableau([[1,2],[3],[4]]).restrict(3)
[[1, 2], [3]]
sage: StandardTableau([[1,2],[3],[4]]).restrict(2)
[[1, 2]]
sage: Tableau([[1,2,3],[2,4,4],[3]]).restrict(0)
[]
sage: Tableau([[1,2,3],[2,4,4],[3]]).restrict(2)
[[1, 2], [2]]
sage: Tableau([[1,2,3],[2,4,4],[3]]).restrict(3)
[[1, 2, 3], [2], [3]]
sage: Tableau([[1,2,3],[2,4,4],[3]]).restrict(5)
[[1, 2, 3], [2, 4, 4], [3]]

If possible the restricted tableau will belong to the same category as the original tableau:

sage: S = StandardTableau([[1,2,4,7],[3,5],[6]]); S.category()
Category of elements of Standard tableaux
sage: S.restrict(4).category()
Category of elements of Standard tableaux
sage: SS=StandardTableaux([4,2,1])([[1,2,4,7],[3,5],[6]]); SS.category()
Category of elements of Standard tableaux of shape [4, 2, 1]
sage: SS.restrict(4).category()
Category of elements of Standard tableaux

sage: Tableau([[1,2],[3],[4]]).restrict(3)
[[1, 2], [3]]
sage: Tableau([[1,2],[3],[4]]).restrict(2)

(continues on next page)

5.1. Comprehensive Module List 3325

Combinatorics, Release 9.7

(continued from previous page)

[[1, 2]]
sage: SemistandardTableau([[1,1],[2]]).restrict(1)
[[1, 1]]
sage: _.category()
Category of elements of Semistandard tableaux

restriction_shape(n)
Return the shape of the restriction of the semistandard tableau self to n.

If 𝑇 is a semistandard tableau and 𝑛 is a nonnegative integer, then the restriction of 𝑇 to 𝑛 is defined as the
(semistandard) tableau obtained by removing all cells filled with entries greater than 𝑛 from 𝑇 .

This method computes merely the shape of the restriction. For the restriction itself, use restrict().

EXAMPLES:

sage: Tableau([[1,2],[2,3],[3,4]]).restriction_shape(3)
[2, 2, 1]
sage: StandardTableau([[1,2],[3],[4],[5]]).restriction_shape(2)
[2]
sage: Tableau([[1,3,3,5],[2,4,4],[17]]).restriction_shape(0)
[]
sage: Tableau([[1,3,3,5],[2,4,4],[17]]).restriction_shape(2)
[1, 1]
sage: Tableau([[1,3,3,5],[2,4,4],[17]]).restriction_shape(3)
[3, 1]
sage: Tableau([[1,3,3,5],[2,4,4],[17]]).restriction_shape(5)
[4, 3]

sage: all(T.restriction_shape(i) == T.restrict(i).shape()
....: for T in StandardTableaux(5) for i in range(1, 5))
True

reverse_bump(loc)
Reverse row bump the entry of self at the specified location loc (given as a row index or a corner (r,
c) of the tableau).

This is the reverse of Schensted’s row-insertion algorithm. See Section 1.1, page 8, of Fulton’s [Ful1997].

INPUT:

• loc – Can be either of the following:

– The coordinates (r, c) of the square to reverse-bump (which must be a corner of the tableau);

– The row index r of this square.

Note that both r and c are 0-based, i.e., the topmost row and the leftmost column are the 0-th row and
the 0-th column.

OUTPUT:

An ordered pair consisting of:

1. The resulting (smaller) tableau;

2. The entry bumped out at the end of the process.

3326 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

See also:

bump()

EXAMPLES:

This is the reverse of Schensted’s bump:

sage: T = Tableau([[1, 1, 2, 2, 4], [2, 3, 3], [3, 4], [4]])
sage: T.reverse_bump(2)
([[1, 1, 2, 3, 4], [2, 3, 4], [3], [4]], 2)
sage: T == T.reverse_bump(2)[0].bump(2)
True
sage: T.reverse_bump((3, 0))
([[1, 2, 2, 2, 4], [3, 3, 3], [4, 4]], 1)

Some errors caused by wrong input:

sage: T.reverse_bump((3, 1))
Traceback (most recent call last):
...
ValueError: invalid corner
sage: T.reverse_bump(4)
Traceback (most recent call last):
...
IndexError: list index out of range
sage: Tableau([[2, 2, 1], [3, 3]]).reverse_bump(0)
Traceback (most recent call last):
...
ValueError: reverse bumping is only defined for semistandard tableaux

Some edge cases:

sage: Tableau([[1]]).reverse_bump(0)
([], 1)
sage: Tableau([[1,1]]).reverse_bump(0)
([[1]], 1)
sage: Tableau([]).reverse_bump(0)
Traceback (most recent call last):
...
IndexError: list index out of range

Note: Reverse row bumping is only implemented for tableaux with weakly increasing and strictly increas-
ing columns (though the tableau does not need to be an instance of class SemistandardTableau).

right_key_tableau()
Return the right key tableau of self.

The right key tableau of a tableau 𝑇 is a key tableau whose entries are weakly greater than the corresponding
entries in 𝑇 , and whose column reading word is subject to certain conditions. See [LS1990] for the full
definition.

ALGORITHM:

The following algorithm follows [Wil2010]. Note that if 𝑇 is a key tableau then the output of the algorithm
is 𝑇 .

5.1. Comprehensive Module List 3327

Combinatorics, Release 9.7

To compute the right key tableau 𝑅 of a tableau 𝑇 we iterate over the columns of 𝑇 . Let 𝑇𝑗 be the 𝑗-th
column of 𝑇 and iterate over the entries in 𝑇𝑗 from bottom to top. Initialize the corresponding entry 𝑘 in
𝑅 to be the largest entry in 𝑇𝑗 . Scan the bottom of each column of 𝑇 to the right of 𝑇𝑗 , updating 𝑘 to be
the scanned entry whenever the scanned entry is weakly greater than 𝑘. Update 𝑇𝑗 and all columns to the
right by removing all scanned entries.

See also:

• is_key_tableau()

EXAMPLES:

sage: t = Tableau([[1,2],[2,3]])
sage: t.right_key_tableau()
[[2, 2], [3, 3]]
sage: t = Tableau([[1,1,2,4],[2,3,3],[4],[5]])
sage: t.right_key_tableau()
[[2, 2, 2, 4], [3, 4, 4], [4], [5]]

rotate_180()
Return the tableau obtained by rotating self by 180 degrees.

This only works for rectangular tableaux.

EXAMPLES:

sage: Tableau([[1,2],[3,4]]).rotate_180()
[[4, 3], [2, 1]]

row_stabilizer()
Return the PermutationGroup corresponding to the row stabilizer of self.

This assumes that every integer from 1 to the size of self appears exactly once in self.

EXAMPLES:

sage: rs = Tableau([[1,2,3],[4,5]]).row_stabilizer()
sage: rs.order() == factorial(3)*factorial(2)
True
sage: PermutationGroupElement([(1,3,2),(4,5)]) in rs
True
sage: PermutationGroupElement([(1,4)]) in rs
False
sage: rs = Tableau([[1, 2],[3]]).row_stabilizer()
sage: PermutationGroupElement([(1,2),(3,)]) in rs
True
sage: rs.one().domain()
[1, 2, 3]
sage: rs = Tableau([[1],[2],[3]]).row_stabilizer()
sage: rs.order()
1
sage: rs = Tableau([[2,4,5],[1,3]]).row_stabilizer()
sage: rs.order()
12
sage: rs = Tableau([]).row_stabilizer()
sage: rs.order()
1

3328 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

schensted_insert(i, left=False)
Insert i into self using Schensted’s row-bumping (or row-insertion) algorithm.

INPUT:

• i – a number to insert

• left – (default: False) boolean; if set to True, the insertion will be done from the left. That is, if
one thinks of the algorithm as appending a letter to the reading word of self, we append the letter to
the left instead of the right

EXAMPLES:

sage: t = Tableau([[3,5],[7]])
sage: t.schensted_insert(8)
[[3, 5, 8], [7]]
sage: t.schensted_insert(8, left=True)
[[3, 5], [7], [8]]

schuetzenberger_involution(n=None, check=True)
Return the Schuetzenberger involution of the tableau self.

This method relies on the analogous method on words, which reverts the word and then complements all
letters within the underlying ordered alphabet. If 𝑛 is specified, the underlying alphabet is assumed to be
[1, 2, . . . , 𝑛]. If no alphabet is specified, 𝑛 is the maximal letter appearing in self.

INPUT:

• n – an integer specifying the maximal letter in the alphabet (optional)

• check – (Default: True) Check to make sure self is semistandard. Set to False to avoid this check.
(optional)

OUTPUT:

• a tableau, the Schuetzenberger involution of self

EXAMPLES:

sage: t = Tableau([[1,1,1],[2,2]])
sage: t.schuetzenberger_involution(3)
[[2, 2, 3], [3, 3]]

sage: t = Tableau([[1,2,3],[4,5]])
sage: t.schuetzenberger_involution()
[[1, 2, 5], [3, 4]]

sage: t = Tableau([[1,3,5,7],[2,4,6],[8,9]])
sage: t.schuetzenberger_involution()
[[1, 2, 6, 8], [3, 4, 9], [5, 7]]

sage: t = Tableau([])
sage: t.schuetzenberger_involution()
[]

sage: t = StandardTableau([[1,2,3],[4,5]])
sage: s = t.schuetzenberger_involution()
sage: s.parent()
Standard tableaux

5.1. Comprehensive Module List 3329

Combinatorics, Release 9.7

seg()
Return the total number of segments in self, as in [Sal2014].

Let 𝑇 be a tableaux. We define a 𝑘-segment of 𝑇 (in the 𝑖-th row) to be a maximal consecutive sequence of
𝑘-boxes in the 𝑖-th row for any 𝑖+ 1 ≤ 𝑘 ≤ 𝑟+ 1. Denote the total number of 𝑘-segments in 𝑇 by seg(𝑇).

REFERENCES:

• [Sal2014]

EXAMPLES:

sage: t = Tableau([[1,1,2,3,5],[2,3,5,5],[3,4]])
sage: t.seg()
6

sage: B = crystals.Tableaux("A4",shape=[4,3,2,1])
sage: t = B[31].to_tableau()
sage: t.seg()
3

shape()
Return the shape of a tableau self.

EXAMPLES:

sage: Tableau([[1,2,3],[4,5],[6]]).shape()
[3, 2, 1]

size()
Return the size of the shape of the tableau self.

EXAMPLES:

sage: Tableau([[1, 4, 6], [2, 5], [3]]).size()
6
sage: Tableau([[1, 3], [2, 4]]).size()
4

slide_multiply(other)
Multiply two tableaux using jeu de taquin.

This product makes the set of semistandard tableaux into an associative monoid. The empty tableau is the
unit in this monoid.

See pp. 15 of [Ful1997].

The same product operation is implemented in a different way in bump_multiply().

EXAMPLES:

sage: t = Tableau([[1,2,2,3],[2,3,5,5],[4,4,6],[5,6]])
sage: t2 = Tableau([[1,2],[3]])
sage: t.slide_multiply(t2)
[[1, 1, 2, 2, 3], [2, 2, 3, 5], [3, 4, 5], [4, 6, 6], [5]]

socle()
EXAMPLES:

3330 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Tableau([[1,2],[3,4]]).socle()
2
sage: Tableau([[1,2,3,4]]).socle()
4

standardization(check=True)
Return the standardization of self, assuming self is a semistandard tableau.

The standardization of a semistandard tableau 𝑇 is the standard tableau st(𝑇) of the same shape as 𝑇 whose
reversed reading word is the standardization of the reversed reading word of 𝑇 .

The standardization of a word 𝑤 can be formed by replacing all 1’s in 𝑤 by 1, 2, . . . , 𝑘1 from left to right,
all 2’s in 𝑤 by 𝑘1 + 1, 𝑘1 + 2, . . . , 𝑘2, and repeating for all letters which appear in 𝑤. See also Word.
standard_permutation().

INPUT:

• check – (Default: True) Check to make sure self is semistandard. Set to False to avoid this check.

EXAMPLES:

sage: t = Tableau([[1,3,3,4],[2,4,4],[5,16]])
sage: t.standardization()
[[1, 3, 4, 7], [2, 5, 6], [8, 9]]

Standard tableaux are fixed under standardization:

sage: all((t == t.standardization() for t in StandardTableaux(6)))
True
sage: t = Tableau([])
sage: t.standardization()
[]

The reading word of the standardization is the standardization of the reading word:

sage: T = SemistandardTableaux(shape=[5,2,2,1], max_entry=4)
sage: all(t.to_word().standard_permutation() == t.standardization().reading_
→˓word_permutation() for t in T) # long time
True

sulzgruber_correspondence()
Return the image of the 𝜆-array self under the Sulzgruber correspondence (as a
WeakReversePlanePartition).

This relies on interpreting self as a 𝜆-array in the sense of hillman_grassl. See hillman_grassl for
definitions of the objects involved.

The Sulzgruber correspondence is the map Φ𝜆 from [Sulzgr2017] Section 7, and is the map 𝜉−1𝜆 from
[Pak2002] Section 5. It is denoted by ℛ𝒮𝒦 in [Hopkins2017]. It is the inverse of the Pak correspon-
dence (pak_correspondence()). The following description of the Sulzgruber correspondence follows
[Hopkins2017] (which denotes it byℛ𝒮𝒦):

Fix a partition 𝜆 (see Partition()). We draw all partitions and tableaux in English notation.

A 𝜆-array will mean a tableau of shape 𝜆 whose entries are nonnegative integers. (No conditions on the
order of these entries are made. Note that 0 is allowed.)

A weak reverse plane partition of shape 𝜆 (short: 𝜆-rpp) will mean a 𝜆-array whose entries weakly increase
along each row and weakly increase along each column.

5.1. Comprehensive Module List 3331

Combinatorics, Release 9.7

We shall also use the following notation: If (𝑢, 𝑣) is a cell of 𝜆, and if 𝜋 is a 𝜆-rpp, then:

• the lower bound of 𝜋 at (𝑢, 𝑣) (denoted by 𝜋<(𝑢,𝑣)) is defined to be max{𝜋𝑢−1,𝑣, 𝜋𝑢,𝑣−1} (where 𝜋0,𝑣
and 𝜋𝑢,0 are understood to mean 0).

• the upper bound of 𝜋 at (𝑢, 𝑣) (denoted by 𝜋>(𝑢,𝑣)) is defined to be min{𝜋𝑢+1,𝑣, 𝜋𝑢,𝑣+1} (where 𝜋𝑖,𝑗
is understood to mean +∞ if (𝑖, 𝑗) is not in 𝜆; thus, the upper bound at a corner cell is +∞).

• toggling 𝜋 at (𝑢, 𝑣) means replacing the entry 𝜋𝑢,𝑣 of 𝜋 at (𝑢, 𝑣) by 𝜋<(𝑢,𝑣) + 𝜋>(𝑢,𝑣) − 𝜋𝑢,𝑣 (this is
well-defined as long as (𝑢, 𝑣) is not a corner of 𝜆).

Note that every 𝜆-rpp 𝜋 and every cell (𝑢, 𝑣) of 𝜆 satisfy 𝜋<(𝑢,𝑣) ≤ 𝜋𝑢,𝑣 ≤ 𝜋>(𝑢,𝑣). Note that toggling a
𝜆-rpp (at a cell that is not a corner) always results in a 𝜆-rpp. Also, toggling is an involution).

The Pak correspondence 𝜉𝜆 sends a 𝜆-rpp 𝜋 to a 𝜆-array 𝜉𝜆(𝜋). It is defined by recursion on 𝜆 (that is,
we assume that 𝜉𝜇 is already defined for every partition 𝜇 smaller than 𝜆), and its definition proceeds as
follows:

• If 𝜆 = ∅, then 𝜉𝜆 is the obvious bijection sending the only ∅-rpp to the only ∅-array.

• Pick any corner 𝑐 = (𝑖, 𝑗) of 𝜆, and let 𝜇 be the result of removing this corner 𝑐 from the partition 𝜆.
(The exact choice of 𝑐 is immaterial.)

• Let 𝜋′ be what remains of 𝜋 when the corner cell 𝑐 is removed.

• For each positive integer 𝑘 such that (𝑖− 𝑘, 𝑗 − 𝑘) is a cell of 𝜆, toggle 𝜋′ at (𝑖− 𝑘, 𝑗 − 𝑘). (All these
togglings commute, so the order in which they are made is immaterial.)

• Let 𝑀 = 𝜉𝜇(𝜋′).

• Extend the 𝜇-array 𝑀 to a 𝜆-array 𝑀 ′ by adding the cell 𝑐 and writing the number 𝜋𝑖,𝑗 − 𝜋<(𝑖,𝑗) into
this cell.

• Set 𝜉𝜆(𝜋) = 𝑀 ′.

See also:

sulzgruber_correspondence() for the Sulzgruber correspondence as a standalone function.

pak_correspondence() for the inverse map.

EXAMPLES:

sage: a = Tableau([[2, 1, 1], [0, 2, 0], [1, 1]])
sage: A = a.sulzgruber_correspondence(); A
[[0, 1, 4], [1, 5, 5], [3, 6]]
sage: A.parent(), a.parent()
(Weak Reverse Plane Partitions, Tableaux)

sage: a = Tableau([[1, 3], [0, 1]])
sage: a.sulzgruber_correspondence()
[[0, 4], [1, 5]]

symmetric_group_action_on_entries(w)
Return the tableau obtained form this tableau by acting by the permutation w.

Let 𝑇 be a standard tableau of size 𝑛, then the action of 𝑤 ∈ 𝑆𝑛 is defined by permuting the entries of 𝑇
(recall they are 1, 2, . . . , 𝑛). In particular, suppose the entry at cell (𝑖, 𝑗) is 𝑎, then the entry becomes 𝑤(𝑎).
In general, the resulting tableau 𝑤𝑇 may not be standard.

3332 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Note: This is different than symmetric_group_action_on_values()which is defined on semistandard
tableaux and is guaranteed to return a semistandard tableau.

INPUT:

• w – a permutation

EXAMPLES:

sage: StandardTableau([[1,2,4],[3,5]]).symmetric_group_action_on_entries(␣
→˓Permutation(((4,5))))
[[1, 2, 5], [3, 4]]
sage: _.category()
Category of elements of Standard tableaux
sage: StandardTableau([[1,2,4],[3,5]]).symmetric_group_action_on_entries(␣
→˓Permutation(((1,2))))
[[2, 1, 4], [3, 5]]
sage: _.category()
Category of elements of Tableaux

symmetric_group_action_on_values(perm)
Return the image of the semistandard tableau self under the action of the permutation perm using the
Lascoux-Schuetzenberger action of the symmetric group 𝑆𝑛 on the semistandard tableaux with ceiling 𝑛.

If 𝑛 is a nonnegative integer, then the Lascoux-Schuetzenberger action is a group action of the symmetric
group 𝑆𝑛 on the set of semistandard Young tableaux with ceiling 𝑛 (that is, with entries taken from the set
{1, 2, . . . , 𝑛}). It is defined as follows:

Let 𝑖 ∈ {1, 2, . . . , 𝑛 − 1}, and let 𝑇 be a semistandard tableau with ceiling 𝑛. Let 𝑤 be the reading word
(to_word()) of 𝑇 . Replace all letters 𝑖 in 𝑤 by closing parentheses, and all letters 𝑖 + 1 in 𝑤 by opening
parentheses. Whenever an opening parenthesis stands left of a closing parenthesis without there being
any parentheses in between (it is allowed to have letters in-between as long as they are not parentheses),
consider these two parentheses as matched with each other, and replace them back by the letters 𝑖+ 1 and
𝑖. Repeat this procedure until there are no more opening parentheses standing left of closing parentheses.
Then, let 𝑎 be the number of opening parentheses in the word, and 𝑏 the number of closing parentheses
(notice that all opening parentheses are right of all closing parentheses). Replace the first 𝑎 parentheses by
the letters 𝑖, and replace the remaining 𝑏 parentheses by the letters 𝑖+ 1. Let 𝑤′ be the resulting word. Let
𝑇 ′ be the tableau with the same shape as 𝑇 but with reading word 𝑤′. This tableau 𝑇 ′ can be shown to be
semistandard. We define the image of 𝑇 under the action of the simple transposition 𝑠𝑖 = (𝑖, 𝑖+ 1) ∈ 𝑆𝑛
to be this tableau 𝑇 ′. It can be shown that these actions of the transpositions 𝑠1, 𝑠2, . . . , 𝑠𝑛−1 satisfy the
Moore-Coxeter relations of 𝑆𝑛, and thus this extends to a unique action of the symmetric group 𝑆𝑛 on the
set of semistandard tableaux with ceiling 𝑛. This is the Lascoux-Schuetzenberger action.

This action of the symmetric group 𝑆𝑛 on the set of all semistandard tableaux of given shape 𝜆with entries
in {1, 2, . . . , 𝑛} is the one defined in [Loth02] Theorem 5.6.3. In particular, the action of 𝑠𝑖 is denoted
by 𝜎𝑖 in said source. (Beware of the typo in the definition of 𝜎𝑖: it should say 𝜎𝑖(𝑎𝑟𝑖 𝑎𝑠𝑖+1) = 𝑎𝑠𝑖𝑎

𝑟
𝑖+1, not

𝜎𝑖(𝑎
𝑟
𝑖 𝑎
𝑠
𝑖+1) = 𝑎𝑠𝑖𝑎

𝑠
𝑖+1.)

EXAMPLES:

sage: t = Tableau([[1,1,3,3],[2,3],[3]])
sage: t.symmetric_group_action_on_values([1,2,3])
[[1, 1, 3, 3], [2, 3], [3]]
sage: t.symmetric_group_action_on_values([2,1,3])
[[1, 2, 3, 3], [2, 3], [3]]

(continues on next page)

5.1. Comprehensive Module List 3333

Combinatorics, Release 9.7

(continued from previous page)

sage: t.symmetric_group_action_on_values([3,1,2])
[[1, 2, 2, 2], [2, 3], [3]]
sage: t.symmetric_group_action_on_values([2,3,1])
[[1, 1, 1, 1], [2, 2], [3]]
sage: t.symmetric_group_action_on_values([3,2,1])
[[1, 1, 1, 1], [2, 3], [3]]
sage: t.symmetric_group_action_on_values([1,3,2])
[[1, 1, 2, 2], [2, 2], [3]]

to_Gelfand_Tsetlin_pattern()
Return the Gelfand-Tsetlin pattern corresponding to self when semistandard.

EXAMPLES:

sage: T = Tableau([[1,2,3],[2,3],[3]])
sage: G = T.to_Gelfand_Tsetlin_pattern(); G
[[3, 2, 1], [2, 1], [1]]
sage: G.to_tableau() == T
True
sage: T = Tableau([[1,3],[2]])
sage: T.to_Gelfand_Tsetlin_pattern()
[[2, 1, 0], [1, 1], [1]]

to_chain(max_entry=None)
Return the chain of partitions corresponding to the (semi)standard tableau self.

The optional keyword parameter max_entry can be used to customize the length of the chain. Specifically,
if this parameter is set to a nonnegative integer n, then the chain is constructed from the positions of the
letters 1, 2, . . . , 𝑛 in the tableau.

EXAMPLES:

sage: Tableau([[1,2],[3],[4]]).to_chain()
[[], [1], [2], [2, 1], [2, 1, 1]]
sage: Tableau([[1,1],[2]]).to_chain()
[[], [2], [2, 1]]
sage: Tableau([[1,1],[3]]).to_chain()
[[], [2], [2], [2, 1]]
sage: Tableau([]).to_chain()
[[]]
sage: Tableau([[1,1],[2],[3]]).to_chain(max_entry=2)
[[], [2], [2, 1]]
sage: Tableau([[1,1],[2],[3]]).to_chain(max_entry=3)
[[], [2], [2, 1], [2, 1, 1]]
sage: Tableau([[1,1],[2],[3]]).to_chain(max_entry=4)
[[], [2], [2, 1], [2, 1, 1], [2, 1, 1]]
sage: Tableau([[1,1,2],[2,3],[4,5]]).to_chain(max_entry=6)
[[], [2], [3, 1], [3, 2], [3, 2, 1], [3, 2, 2], [3, 2, 2]]

to_list()
Return self as a list of lists (not tuples!).

EXAMPLES:

3334 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: t = Tableau([[1,2],[3,4]])
sage: l = t.to_list(); l
[[1, 2], [3, 4]]
sage: l[0][0] = 2
sage: t
[[1, 2], [3, 4]]

to_sign_matrix(max_entry=None)
Return the sign matrix of self.

A sign matrix is an 𝑚× 𝑛 matrix of 0’s, 1’s and -1’s such that the partial sums of each column is either 0
or 1 and the partial sums of each row is non-negative. [Ava2007]

INPUT:

• max_entry – A non-negative integer, the maximum allowable number in the tableau. Defaults to the
largest entry in the tableau if not specified.

EXAMPLES:

sage: t = SemistandardTableau([[1,1,1,2,4],[3,3,4],[4,5],[6,6]])
sage: t.to_sign_matrix(6)
[0 0 0 1 0 0]
[0 1 0 -1 0 0]
[1 -1 0 1 0 0]
[0 0 1 -1 1 1]
[0 0 0 1 -1 0]
sage: t = Tableau([[1,2,4],[3,5]])
sage: t.to_sign_matrix(7)
[0 0 0 1 0 0 0]
[0 1 0 -1 1 0 0]
[1 -1 1 0 -1 0 0]
sage: t = Tableau([(4,5,4,3),(2,1,3)])
sage: t.to_sign_matrix(5)
[0 0 1 0 0]
[0 0 0 1 0]
[1 0 -1 -1 1]
[-1 1 0 1 -1]
sage: s = Tableau([(1,0,-2,4),(3,4,5)])
sage: s.to_sign_matrix(6)
Traceback (most recent call last):
...
ValueError: the entries must be non-negative integers

to_word()
An alias for to_word_by_row().

EXAMPLES:

sage: Tableau([[1,2],[3,4]]).to_word()
word: 3412
sage: Tableau([[1, 4, 6], [2, 5], [3]]).to_word()
word: 325146

to_word_by_column()
Return the word obtained from a column reading of the tableau self (starting with the leftmost column,

5.1. Comprehensive Module List 3335

Combinatorics, Release 9.7

reading every column from bottom to top).

EXAMPLES:

sage: Tableau([[1,2],[3,4]]).to_word_by_column()
word: 3142
sage: Tableau([[1, 4, 6], [2, 5], [3]]).to_word_by_column()
word: 321546

to_word_by_row()
Return the word obtained from a row reading of the tableau self (starting with the lowermost row, reading
every row from left to right).

EXAMPLES:

sage: Tableau([[1,2],[3,4]]).to_word_by_row()
word: 3412
sage: Tableau([[1, 4, 6], [2, 5], [3]]).to_word_by_row()
word: 325146

vertical_flip()
Return the tableau obtained by vertically flipping the tableau self.

This only works for rectangular tableaux.

EXAMPLES:

sage: Tableau([[1,2],[3,4]]).vertical_flip()
[[3, 4], [1, 2]]

weight()
Return the weight of the tableau self. Trailing zeroes are omitted when returning the weight.

The weight of a tableau 𝑇 is the sequence (𝑎1, 𝑎2, 𝑎3, . . .), where 𝑎𝑘 is the number of entries of 𝑇 equal to
𝑘. This sequence contains only finitely many nonzero entries.

The weight of a tableau 𝑇 is the same as the weight of the reading word of 𝑇 , for any reading order.

EXAMPLES:

sage: Tableau([[1,2],[3,4]]).weight()
[1, 1, 1, 1]

sage: Tableau([]).weight()
[]

sage: Tableau([[1,3,3,7],[4,2],[2,3]]).weight()
[1, 2, 3, 1, 0, 0, 1]

class sage.combinat.tableau.Tableau_class(parent, t, check=True)
Bases: sage.combinat.tableau.Tableau

This exists solely for unpickling Tableau_class objects.

class sage.combinat.tableau.Tableaux
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

A factory class for the various classes of tableaux.

3336 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

INPUT:

• n (optional) – a non-negative integer

OUTPUT:

• If n is specified, the class of tableaux of size n. Otherwise, the class of all tableaux.

A tableau in Sage is a finite list of lists, whose lengths are weakly decreasing, or an empty list, representing the
empty tableau. The entries of a tableau can be any Sage objects. Because of this, no enumeration through the
set of Tableaux is possible.

EXAMPLES:

sage: T = Tableaux(); T
Tableaux
sage: T3 = Tableaux(3); T3
Tableaux of size 3
sage: [['a','b']] in T
True
sage: [['a','b']] in T3
False
sage: t = T3([[1,1,1]]); t
[[1, 1, 1]]
sage: t in T
True
sage: t.parent()
Tableaux of size 3
sage: T([]) # the empty tableau
[]
sage: T.category()
Category of sets

See also:

• Tableau

• SemistandardTableaux

• SemistandardTableau

• StandardTableaux

• StandardTableau

Element
alias of Tableau

options(*get_value, **set_value)
Sets the global options for elements of the tableau, skew_tableau, and tableau tuple classes. The defaults
are for tableau to be displayed as a list, latexed as a Young diagram using the English convention.

OPTIONS:

• ascii_art – (default: repr) Controls the ascii art output for tableaux

– compact – minimal length ascii art

– repr – display using the diagram string representation

– table – display as a table

5.1. Comprehensive Module List 3337

Combinatorics, Release 9.7

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• display – (default: list) Controls the way in which tableaux are printed

– array – alias for diagram

– compact – minimal length string representation

– diagram – display as Young diagram (similar to pp()

– ferrers_diagram – alias for diagram

– list – print tableaux as lists

– young_diagram – alias for diagram

• latex – (default: diagram) Controls the way in which tableaux are latexed

– array – alias for diagram

– diagram – as a Young diagram

– ferrers_diagram – alias for diagram

– list – as a list

– young_diagram – alias for diagram

• notation – alternative name for convention

Note: Changing the convention for tableaux also changes the convention for partitions.

If no parameters are set, then the function returns a copy of the options dictionary.

EXAMPLES:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T
[[1, 2, 3], [4, 5]]
sage: Tableaux.options.display="array"
sage: T
1 2 3
4 5

sage: Tableaux.options.convention="french"
sage: T
4 5
1 2 3

Changing the convention for tableaux also changes the convention for partitions and vice versa:

sage: P = Partition([3,3,1])
sage: print(P.ferrers_diagram())
*

sage: Partitions.options.convention="english"
sage: print(P.ferrers_diagram())

(continues on next page)

3338 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

*
sage: T

1 2 3
4 5

The ASCII art can also be changed:

sage: t = Tableau([[1,2,3],[4,5]])
sage: ascii_art(t)
1 2 3
4 5

sage: Tableaux.options.ascii_art = "table"
sage: ascii_art(t)
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 |
+---+---+
sage: Tableaux.options.ascii_art = "compact"
sage: ascii_art(t)
|1|2|3|
|4|5|
sage: Tableaux.options._reset()

See GlobalOptions for more features of these options.

class sage.combinat.tableau.Tableaux_all
Bases: sage.combinat.tableau.Tableaux

Initializes the class of all tableaux

an_element()
Return a particular element of the class.

class sage.combinat.tableau.Tableaux_size(n)
Bases: sage.combinat.tableau.Tableaux

Tableaux of a fixed size 𝑛.

an_element()
Return a particular element of the class.

sage.combinat.tableau.from_chain(chain)
Return a semistandard tableau from a chain of partitions.

EXAMPLES:

sage: from sage.combinat.tableau import from_chain
sage: from_chain([[], [2], [2, 1], [3, 2, 1]])
[[1, 1, 3], [2, 3], [3]]

sage.combinat.tableau.from_shape_and_word(shape, w, convention='French')
Return a tableau from a shape and word.

INPUT:

5.1. Comprehensive Module List 3339

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

• shape – a partition

• w – a word whose length equals that of the partition

• convention – a string which can take values "French" or "English"; the default is "French"

OUTPUT:

A tableau, whose shape is shape and whose reading word is w. If the convention is specified as "French",
the reading word is to be read starting from the top row in French convention (= the bottom row in English
convention). If the convention is specified as "English", the reading word is to be read starting with the top
row in English convention.

EXAMPLES:

sage: from sage.combinat.tableau import from_shape_and_word
sage: t = Tableau([[1, 3], [2], [4]])
sage: shape = t.shape(); shape
[2, 1, 1]
sage: word = t.to_word(); word
word: 4213
sage: from_shape_and_word(shape, word)
[[1, 3], [2], [4]]
sage: word = Word(flatten(t))
sage: from_shape_and_word(shape, word, convention="English")
[[1, 3], [2], [4]]

sage.combinat.tableau.symmetric_group_action_on_values(word, perm)
Return the image of the word word under the Lascoux-Schuetzenberger action of the permutation perm.

See Tableau.symmetric_group_action_on_values() for the definition of the Lascoux-Schuetzenberger
action on semistandard tableaux. The transformation that the reading word of the tableau undergoes in said
definition is precisely the Lascoux-Schuetzenberger action on words.

EXAMPLES:

sage: from sage.combinat.tableau import symmetric_group_action_on_values
sage: symmetric_group_action_on_values([1,1,1],[1,3,2])
[1, 1, 1]
sage: symmetric_group_action_on_values([1,1,1],[2,1,3])
[2, 2, 2]
sage: symmetric_group_action_on_values([1,2,1],[2,1,3])
[2, 2, 1]
sage: symmetric_group_action_on_values([2,2,2],[2,1,3])
[1, 1, 1]
sage: symmetric_group_action_on_values([2,1,2],[2,1,3])
[2, 1, 1]
sage: symmetric_group_action_on_values([2,2,3,1,1,2,2,3],[1,3,2])
[2, 3, 3, 1, 1, 2, 3, 3]
sage: symmetric_group_action_on_values([2,1,1],[2,1])
[2, 1, 2]
sage: symmetric_group_action_on_values([2,2,1],[2,1])
[1, 2, 1]
sage: symmetric_group_action_on_values([1,2,1],[2,1])
[2, 2, 1]

sage.combinat.tableau.unmatched_places(w, open, close)
Given a word w and two letters open and close to be treated as opening and closing parentheses (respectively),

3340 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

return a pair (xs, ys) that encodes the positions of the unmatched parentheses after the standard parenthesis
matching procedure is applied to w.

More precisely, xs will be the list of all i such that w[i] is an unmatched closing parenthesis, while ys will be
the list of all i such that w[i] is an unmatched opening parenthesis. Both lists returned are in increasing order.

EXAMPLES:

sage: from sage.combinat.tableau import unmatched_places
sage: unmatched_places([2,2,2,1,1,1],2,1)
([], [])
sage: unmatched_places([1,1,1,2,2,2],2,1)
([0, 1, 2], [3, 4, 5])
sage: unmatched_places([], 2, 1)
([], [])
sage: unmatched_places([1,2,4,6,2,1,5,3],2,1)
([0], [1])
sage: unmatched_places([2,2,1,2,4,6,2,1,5,3], 2, 1)
([], [0, 3])
sage: unmatched_places([3,1,1,1,2,1,2], 2, 1)
([1, 2, 3], [6])

5.1.343 Residue sequences of tableaux

A residue sequence for a StandardTableau, or StandardTableauTuple, of size 𝑛 is an 𝑛-tuple (𝑖1, 𝑖2, . . . , 𝑖𝑛) of
elements of Z/𝑒Z for some positive integer 𝑒 ≥ 1. Such sequences arise in the representation theory of the symmetric
group and the closely related cyclotomic Hecke algebras, and cyclotomic quiver Hecke algebras, where the residue
sequences play a similar role to weights in the representations of Lie groups and Lie algebras. These Hecke algebras are
semisimple when 𝑒 is “large enough” and in these cases residue sequences are essentially the same as content sequences
(see sage.combinat.partition.Partition.content()) and it is not difficult to see that residue sequences are in
bijection with the set of standard tableaux. In the non-semisimple case, when 𝑒 is “small”, different standard tableaux
can have the same residue sequence. In this case the residue sequences describe how to decompose modules into
generalised eigenspaces for the Jucys-Murphy elements for these algebras.

By definition, if 𝑡 is a StandardTableau of size 𝑛 then the residue sequence of 𝑡 is the 𝑛-tuple (𝑖1, . . . , 𝑖𝑛) where
𝑖𝑚 = 𝑐− 𝑟+ 𝑒Z, if 𝑚 appears in row 𝑟 and column 𝑐 of 𝑡. If 𝑝 is prime then such sequence arise in the representation
theory of the symmetric group n characteristic 𝑝. More generally, 𝑒-residue sequences arise in he representation theory
of the Iwahori-Hecke algebra (see IwahoriHeckeAlgebra) the symmetric group with Hecke parameter at an 𝑒-th root
of unity.

More generally, the 𝑒-residue sequence of a StandardTableau of size 𝑛 and level 𝑙 is the 𝑛-tuple (𝑖1, . . . , 𝑖𝑛) deter-
mined by 𝑒 and a multicharge 𝜅 = (𝜅1, . . . , 𝜅𝑙) by setting 𝑖𝑚 = 𝜅𝑘 + 𝑐− 𝑟 + 𝑒Z, if 𝑚 appears in component 𝑘, row
𝑟 and column 𝑐 of 𝑡. These sequences arise in the representation theory of the cyclotomic Hecke algebras of type A,
which are also known as Ariki-Koike algebras.

The residue classes are constructed from standard tableaux:

sage: StandardTableau([[1,2],[3,4]]).residue_sequence(2)
2-residue sequence (0,1,1,0) with multicharge (0)
sage: StandardTableau([[1,2],[3,4]]).residue_sequence(3)
3-residue sequence (0,1,2,0) with multicharge (0)

sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue_sequence(3,[0,0])
3-residue sequence (0,1,2,0,0) with multicharge (0,0)
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue_sequence(3,[0,1])

(continues on next page)

5.1. Comprehensive Module List 3341

../../../../../../html/en/reference/algebras/sage/algebras/iwahori_hecke_algebra.html#sage.algebras.iwahori_hecke_algebra.IwahoriHeckeAlgebra

Combinatorics, Release 9.7

(continued from previous page)

3-residue sequence (1,2,0,1,0) with multicharge (0,1)
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue_sequence(3,[0,2])
3-residue sequence (2,0,1,2,0) with multicharge (0,2)

One of the most useful functions of a ResidueSequence is that it can return the StandardTableaux_residue and
StandardTableaux_residue_shape that contain all of the tableaux with this residue sequence. Again, these are
best accessed via the standard tableaux classes:

sage: res = StandardTableau([[1,2],[3,4]]).residue_sequence(2)
sage: res.standard_tableaux()
Standard tableaux with 2-residue sequence (0,1,1,0) and multicharge (0)
sage: res.standard_tableaux()[:]
[[[1, 2, 4], [3]],
[[1, 2], [3, 4]],
[[1, 2], [3], [4]],
[[1, 3, 4], [2]],
[[1, 3], [2, 4]],
[[1, 3], [2], [4]]]
sage: res.standard_tableaux(shape=[4])
Standard (4)-tableaux with 2-residue sequence (0,1,1,0) and multicharge (0)
sage: res.standard_tableaux(shape=[4])[:]
[]

sage: res=StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue_sequence(3,[0,0])
sage: res.standard_tableaux()
Standard tableaux with 3-residue sequence (0,1,2,0,0) and multicharge (0,0)
sage: res.standard_tableaux(shape=[[1],[2,2]])[:]
[([[5]], [[1, 2], [3, 4]]), ([[4]], [[1, 2], [3, 5]])]

These residue sequences are particularly useful in the graded representation theory of the cyclotomic KLR algebras
and the cyclotomic Hecke algebras of type~A; see [DJM1998] and [BK2009].

This module implements the following classes:

• ResidueSequence

• ResidueSequences

See also:

• Partitions

• PartitionTuples

• StandardTableaux_residue

• StandardTableaux_residue_shape

• RowStandardTableauTuples_residue

• RowStandardTableauTuples_residue_shape

• StandardTableaux

• StandardTableauTuples

• Tableaux

• TableauTuples

3342 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Todo: Strictly speaking this module implements residue sequences of type 𝐴(1)
𝑒 . Residue sequences of other types

also need to be implemented.

AUTHORS:

• Andrew Mathas (2016-07-01): Initial version

class sage.combinat.tableau_residues.ResidueSequence(parent, residues, check)
Bases: sage.structure.list_clone.ClonableArray

A residue sequence.

The residue sequence of a tableau 𝑡 (of partition or partition tuple shape) is the sequence (𝑖1, 𝑖2, . . . , 𝑖𝑛) where
𝑖𝑘 is the residue of 𝑙 in 𝑡, for 𝑘 = 1, 2, . . . , 𝑛, where 𝑛 is the size of 𝑡. Residue sequences are important in the
representation theory of the cyclotomic Hecke algebras of type 𝐺(𝑟, 1, 𝑛), and of the cyclotomic quiver Hecke
algebras, because they determine the eigenvalues of the Jucys-Murphy elements upon all modules. More pre-
cisely, they index and completely determine the irreducible representations of the (cyclotomic) Gelfand-Tsetlin
algebras.

Rather than being called directly, residue sequences are best accessed via the standard tableaux classes
StandardTableau and StandardTableauTuple.

INPUT:

Can be of the form:

• ResidueSequence(e, res),

• ResidueSequence(e, multicharge, res),

where e is a positive integer not equal to 1 and res is a sequence of integers (the residues).

EXAMPLES:

sage: res = StandardTableauTuple([[[1,3],[6]],[[2,7],[4],[5]]]).residue_sequence(3,
→˓(0,5))
sage: res
3-residue sequence (0,2,1,1,0,2,0) with multicharge (0,2)
sage: res.quantum_characteristic()
3
sage: res.level()
2
sage: res.size()
7
sage: res.residues()
[0, 2, 1, 1, 0, 2, 0]
sage: res.restrict(2)
3-residue sequence (0,2) with multicharge (0,2)
sage: res.standard_tableaux([[2,1],[1],[2,1]])
Standard (2,1|1|2,1)-tableaux with 3-residue sequence (0,2,1,1,0,2,0) and␣
→˓multicharge (0,2)
sage: res.standard_tableaux([[2,2],[3]]).list()
[]
sage: res.standard_tableaux([[2,2],[3]])[:]
[]
sage: res.standard_tableaux()
Standard tableaux with 3-residue sequence (0,2,1,1,0,2,0) and multicharge (0,2)

(continues on next page)

5.1. Comprehensive Module List 3343

../../../../../../html/en/reference/structure/sage/structure/list_clone.html#sage.structure.list_clone.ClonableArray

Combinatorics, Release 9.7

(continued from previous page)

sage: res.standard_tableaux()[:10]
[([[1, 3, 6, 7], [2, 5], [4]], []),
([[1, 3, 6], [2, 5], [4], [7]], []),
([[1, 3], [2, 5], [4, 6], [7]], []),
([[1, 3], [2, 5], [4], [7]], [[6]]),
([[1, 3], [2, 5], [4]], [[6, 7]]),
([[1, 3, 6, 7], [2], [4], [5]], []),
([[1, 3, 6], [2, 7], [4], [5]], []),
([[1, 3], [2, 7], [4], [5], [6]], []),
([[1, 3], [2, 7], [4], [5]], [[6]]),
([[1, 3], [2], [4], [5]], [[6, 7]])]

The TestSuite fails _test_pickling because __getitem__ does not support slices, so we skip this.

base_ring()
Return the base ring for the residue sequence.

If the quantum_characteristic() of the residue sequence self is 𝑒 then the base ring for the sequence
is Z/𝑒Z, or Z if 𝑒 = 0.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3]).base_ring()
Ring of integers modulo 3

block()
Return a dictionary 𝛽 that determines the block associated to the residue sequence self.

Two Specht modules for a cyclotomic Hecke algebra of type 𝐴 belong to the same block, in this sense, if
and only if the residue sequences of their standard tableaux have the same block in this sense. The blocks
of these algebras are actually indexed by positive roots in the root lattice of an affine special linear group.
Instead of than constructing the root lattice, this method simply returns a dictionary 𝛽 where the keys are
residues 𝑖 and where the value of the key 𝑖 is equal to the numbers of nodes in the residue sequence self
that are equal to 𝑖. The dictionary 𝛽 corresponds to the positive root:∑︁

𝑖∈𝐼
𝛽𝑖𝛼𝑖 ∈ 𝑄+,

These positive roots also index the blocks of the cyclotomic KLR algebras of type 𝐴.

We return a dictionary because when the quantum_characteristic() is 0, the Cartan type is 𝐴∞, in
which case the simple roots are indexed by the integers, which is infinite.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3, [0,0,0], [0,1,2,0,1,2,0,1,2]).block()
{0: 3, 1: 3, 2: 3}

check()
Raise a ValueError if self is not a residue sequence.

EXAMPLES:

3344 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3, [0,0,1], [0,0,1,1,2,2,3,3]).check()
sage: ResidueSequence(3, [0,0,1], [2,0,1,1,2,2,3,3]).check()

level()
Return the level of the residue sequence. That is, the level of the corresponding (tuples of) standard tableaux.

The level of a residue sequence is the length of its multicharge(). This is the same as the level of the
standard_tableaux() that belong to the residue class of tableaux determined by self.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3]).level()
3

multicharge()
Return the multicharge for the residue sequence self.

The 𝑒-residue sequences are associated with a cyclotomic Hecke algebra with Hecke parameter 𝑞 of
quantum_characteristic() 𝑒 and multicharge (𝜅1, . . . , 𝜅𝑙). This means that the cyclotomic param-
eters of the Hecke algebra are 𝑞𝜅1 , . . . , 𝑞𝜅𝑙 . Equivalently, the Hecke algebra is determined by the dominant
weight ∑︁

𝑟∈Z/𝑒Z

𝜅𝑟Λ𝑟 ∈ 𝑃+.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3]).multicharge()
(0, 0, 1)

negative()
Return the negative of the residue sequence self.

That is, if self is the residue sequence (𝑖1, . . . , 𝑖𝑛) then return (−𝑖1, . . . ,−𝑖𝑛). Taking the negative residue
sequences is a shadow of tensoring with the sign representation from the cyclotomic Hecke algebras of type
𝐴.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3,[0,0,1],[0,0,1,1,2,2,3,3]).negative()
3-residue sequence (0,0,2,2,1,1,0,0) with multicharge (0,0,1)

quantum_characteristic()
Return the quantum characteristic of the residue sequence self.

The 𝑒-residue sequences are associated with a cyclotomic Hecke algebra that has a parameter 𝑞 of quantum
characteristic 𝑒. This is the smallest positive integer such that 1 + 𝑞 + · · ·+ 𝑞𝑒−1 = 0, or 𝑒 = 0 if no such
integer exists.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3]).quantum_characteristic()
3

5.1. Comprehensive Module List 3345

Combinatorics, Release 9.7

residues()
Return a list of the residue sequence.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]).residues()
[0, 0, 1, 1, 2, 2, 0, 0]

restrict(m)
Return the subsequence of this sequence of length 𝑚.

The residue sequence self is of the form (𝑟1, . . . , 𝑟𝑛). The function returns the residue sequence
(𝑟1, . . . , 𝑟𝑚), with the same quantum_characteristic() and multicharge().

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]).restrict(7)
3-residue sequence (0,0,1,1,2,2,0) with multicharge (0,0,1)
sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]).restrict(6)
3-residue sequence (0,0,1,1,2,2) with multicharge (0,0,1)
sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]).restrict(4)
3-residue sequence (0,0,1,1) with multicharge (0,0,1)

restrict_row(cell, row)
Return a residue sequence for the tableau obtained by swapping the row in ending in 𝑐𝑒𝑙𝑙 with the row that
is 𝑟𝑜𝑤 rows above it and which has the same length.

The residue sequence self is of the form (𝑟1, . . . , 𝑟𝑛). The function returns the residue sequence
(𝑟1, . . . , 𝑟𝑚), with the same quantum_characteristic() and multicharge().

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3, [0,1,2,2,0,1]).restrict_row((1,2),1)
3-residue sequence (2,0,1,0,1) with multicharge (0)
sage: ResidueSequence(3, [1,0], [0,1,2,2,0,1]).restrict_row((1,1,2),1)
3-residue sequence (2,0,1,0,1) with multicharge (1,0)

row_standard_tableaux(shape=None)
Return the residue-class of row standard tableaux that have residue sequence self.

INPUT:

• shape – (optional) a partition or partition tuple of the correct level

OUTPUT:

An iterator for the row standard tableaux with this residue sequence. If the shape is given then only tableaux
of this shape are returned, otherwise all of the full residue-class of row standard tableaux, or row standard
tableaux tuples, is returned. The residue sequence self specifies the multicharge() of the tableaux
which, in turn, determines the level() of the tableaux in the residue class.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3,(0,0,0),[0,1,2,0,1,2,0,1,2]).row_standard_tableaux()
Row standard tableaux with 3-residue sequence (0,1,2,0,1,2,0,1,2) and␣
→˓multicharge (0,0,0) (continues on next page)

3346 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: ResidueSequence(3,(0,0,0),[0,1,2,0,1,2,0,1,2]).row_standard_tableaux([[3],
→˓[3],[3]])
Row standard (3|3|3)-tableaux with 3-residue sequence (0,1,2,0,1,2,0,1,2) and␣
→˓multicharge (0,0,0)

size()
Return the size of the residue sequence.

This is the size, or length, of the residue sequence, which is the same as the size of the
standard_tableaux() that belong to the residue class of tableaux determined by self.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3, (0,0,1), [0,0,1,1,2,2,3,3]).size()
8

standard_tableaux(shape=None)
Return the residue-class of standard tableaux that have residue sequence self.

INPUT:

• shape – (optional) a partition or partition tuple of the correct level

OUTPUT:

An iterator for the standard tableaux with this residue sequence. If the shape is given then only tableaux
of this shape are returned, otherwise all of the full residue-class of standard tableaux, or standard tableaux
tuples, is returned. The residue sequence self specifies the multicharge() of the tableaux which, in
turn, determines the level() of the tableaux in the residue class.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3,(0,0,0),[0,1,2,0,1,2,0,1,2]).standard_tableaux()
Standard tableaux with 3-residue sequence (0,1,2,0,1,2,0,1,2) and multicharge␣
→˓(0,0,0)
sage: ResidueSequence(3,(0,0,0),[0,1,2,0,1,2,0,1,2]).standard_tableaux([[3],[3],
→˓[3]])
Standard (3|3|3)-tableaux with 3-residue sequence (0,1,2,0,1,2,0,1,2) and␣
→˓multicharge (0,0,0)

swap_residues(i, j)
Return the new residue sequence obtained by swapping the residues for i and 𝑗.

INPUT:

• i and j – two integers between 1 and the length of the residue sequence

If residue sequence self is of the form (𝑟1, . . . , 𝑟𝑛), and 𝑖 < 𝑗, then the residue sequence
(𝑟1, . . . , 𝑟𝑗 , . . . , 𝑟𝑖, . . . , 𝑟𝑚), with the same quantum_characteristic() and multicharge(), is re-
turned.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: res = ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]); res
3-residue sequence (0,0,1,1,2,2,0,0) with multicharge (0,0,1)

(continues on next page)

5.1. Comprehensive Module List 3347

Combinatorics, Release 9.7

(continued from previous page)

sage: ser = res.swap_residues(2,6); ser
3-residue sequence (0,2,1,1,2,0,0,0) with multicharge (0,0,1)
sage: res == ser
False

class sage.combinat.tableau_residues.ResidueSequences(e, multicharge=(0,))
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

A parent class for ResidueSequence.

This class exists because ResidueSequence needs to have a parent. Apart form being a parent the only useful
method that it provides is cell_residue(), which is a short-hand for computing the residue of a cell using the
ResidueSequence.quantum_characteristic() and ResidueSequence.multicharge() for the residue
class.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequences
sage: ResidueSequences(e=0, multicharge=(0,1,2))
0-residue sequences with multicharge (0, 1, 2)
sage: ResidueSequences(e=0, multicharge=(0,1,2)) == ResidueSequences(e=0,␣
→˓multicharge=(0,1,2))
True
sage: ResidueSequences(e=0, multicharge=(0,1,2)) == ResidueSequences(e=3,␣
→˓multicharge=(0,1,2))
False
sage: ResidueSequences(e=0, multicharge=(0,1,2)).element_class
<class 'sage.combinat.tableau_residues.ResidueSequences_with_category.element_class
→˓'>

Element
alias of ResidueSequence

an_element()
Return a particular element of self.

EXAMPLES:

sage: TableauTuples().an_element()
([[1]], [[2]], [[3]], [[4]], [[5]], [[6]], [[7]])

cell_residue(*args)
Return the residue a cell with respect to the quantum characteristic and the multicharge of the residue
sequence.

INPUT:

• r and c – the row and column indices in level one

• k, r and c – the component, row and column indices in higher levels

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequences
sage: ResidueSequences(3).cell_residue(1,1)
0

(continues on next page)

3348 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

sage: ResidueSequences(3).cell_residue(2,1)
2
sage: ResidueSequences(3).cell_residue(3,1)
1
sage: ResidueSequences(3).cell_residue(3,2)
2
sage: ResidueSequences(3,(0,1,2)).cell_residue(0,0,0)
0
sage: ResidueSequences(3,(0,1,2)).cell_residue(0,1,0)
2
sage: ResidueSequences(3,(0,1,2)).cell_residue(0,1,2)
1
sage: ResidueSequences(3,(0,1,2)).cell_residue(1,0,0)
1
sage: ResidueSequences(3,(0,1,2)).cell_residue(1,1,0)
0
sage: ResidueSequences(3,(0,1,2)).cell_residue(1,0,1)
2
sage: ResidueSequences(3,(0,1,2)).cell_residue(2,0,0)
2
sage: ResidueSequences(3,(0,1,2)).cell_residue(2,1,0)
1
sage: ResidueSequences(3,(0,1,2)).cell_residue(2,0,1)
0

check_element(element)
Check that element is a residue sequence with multicharge self.multicharge().

This is weak criteria in that we only require that element is a tuple of elements in the underlying base ring
of self. Such a sequence is always a valid residue sequence, although there may be no tableaux with this
residue sequence.

EXAMPLES:

sage: from sage.combinat.tableau_residues import ResidueSequence
sage: ResidueSequence(3,(0,0,1),[0,0,1,1,2,2,3,3]) # indirect doctest
3-residue sequence (0,0,1,1,2,2,0,0) with multicharge (0,0,1)
sage: ResidueSequence(3,(0,0,1),[2,0,1,4,2,2,5,3]) # indirect doctest
3-residue sequence (2,0,1,1,2,2,2,0) with multicharge (0,0,1)
sage: ResidueSequence(3,(0,0,1),[2,0,1,1,2,2,3,3]) # indirect doctest
3-residue sequence (2,0,1,1,2,2,0,0) with multicharge (0,0,1)

5.1.344 TableauTuples

A TableauTuple is a tuple of tableaux. These objects arise naturally in representation theory of the wreath products
of cyclic groups and the symmetric groups where the standard tableau tuples index bases for the ordinary irreducible
representations. This generalises the well-known fact the ordinary irreducible representations of the symmetric groups
have bases indexed by the standard tableaux of a given shape. More generally, TableauTuples, or multitableaux,
appear in the representation theory of the degenerate and non-degenerate cyclotomic Hecke algebras and in the crystal
theory of the integral highest weight representations of the affine special linear groups.

A TableauTuple is an ordered tuple (𝑡(1), 𝑡(2), . . . , 𝑡(𝑙)) of tableaux. The length of the tuple is its level and the tableaux
𝑡(1), 𝑡(2), . . . , 𝑡(𝑙) are the components of the TableauTuple.

5.1. Comprehensive Module List 3349

Combinatorics, Release 9.7

A tableaux can be thought of as the labelled diagram of a partition. Analogously, a TableauTuple is the labelled dia-
gram of a PartitionTuple. That is, a TableauTuple is a tableau of PartitionTuple shape. As much as possible,
TableauTuples behave in exactly the same way as Tableaux. There are obvious differences in that the cells of a
partition are ordered pairs (𝑟, 𝑐), where 𝑟 is a row index and 𝑐 a column index, whereas the cells of a PartitionTuple
are ordered triples (𝑘, 𝑟, 𝑐), with 𝑟 and 𝑐 as before and 𝑘 indexes the component.

Frequently, we will call a TableauTuple a tableau, or a tableau of PartitionTuple shape. If the shape of the tableau
is known this should not cause any confusion.

Warning: In sage the convention is that the (𝑘, 𝑟, 𝑐)-th entry of a tableau tuple 𝑡 is the entry in row 𝑟, column 𝑐 and
component 𝑘 of the tableau. This is because it makes much more sense to let t[k] be component of the tableau.
In particular, we want t(k,r,c) == t[k][r][c]. In the literature, the cells of a tableau tuple are usually written
in the form (𝑟, 𝑐, 𝑘), where 𝑟 is the row index, 𝑐 is the column index, and 𝑘 is the component index.

The same convention applies to the cells of PartitionTuples.

Note: As with partitions and tableaux, the cells are 0-based. For example, the (lexicographically) first cell in any
non-empty tableau tuple is [0,0,0].

EXAMPLES:

sage: TableauTuple([[1,2,3],[4,5]])
[[1, 2, 3], [4, 5]]
sage: t = TableauTuple([[[6,7],[8,9]],[[1,2,3],[4,5]]]); t
([[6, 7], [8, 9]], [[1, 2, 3], [4, 5]])
sage: t.pp()

6 7 1 2 3
8 9 4 5

sage: t(0,0,1)
7
sage: t(1,0,1)
2
sage: t.shape()
([2, 2], [3, 2])
sage: t.size()
9
sage: t.level()
2
sage: t.components()
[[[6, 7], [8, 9]], [[1, 2, 3], [4, 5]]]
sage: t.entries()
[6, 7, 8, 9, 1, 2, 3, 4, 5]
sage: t.parent()
Tableau tuples
sage: t.category()
Category of elements of Tableau tuples

One reason for implementing TableauTuples is to be able to consider StandardTableauTuples. These objects
arise in many areas of algebraic combinatorics. In particular, they index bases for the Specht modules of the cy-
clotomic Hecke algebras of type 𝐺(𝑟, 1, 𝑛). A StandardTableauTuple of tableau whose entries are increasing
along rows and down columns in each component and which contain the numbers 1, 2, . . . , 𝑛, where the shape of
the StandardTableauTuple is a PartitionTuple of 𝑛.

3350 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: s = StandardTableauTuple([[[1,2],[3]],[[4,5]]])
sage: s.category()
Category of elements of Standard tableau tuples
sage: t = TableauTuple([[[1,2],[3]],[[4,5]]])
sage: t.is_standard(), t.is_column_strict(), t.is_row_strict()
(True, True, True)
sage: t.category()
Category of elements of Tableau tuples
sage: s == t
True
sage: s is t
False
sage: s == StandardTableauTuple(t)
True
sage: StandardTableauTuples([[2,1],[1]])[:]
[([[1, 2], [3]], [[4]]),
([[1, 3], [2]], [[4]]),
([[1, 2], [4]], [[3]]),
([[1, 3], [4]], [[2]]),
([[2, 3], [4]], [[1]]),
([[1, 4], [2]], [[3]]),
([[1, 4], [3]], [[2]]),
([[2, 4], [3]], [[1]])]

As tableaux (of partition shape) are in natural bijection with 1-tuples of tableaux all of the TableauTuple classes
return an ordinary Tableau when given TableauTuple of level 1.

sage: TableauTuples(level=1) is Tableaux()
True
sage: TableauTuple([[1,2,3],[4,5]])
[[1, 2, 3], [4, 5]]
sage: TableauTuple([[[1,2,3],[4,5]]])
[[1, 2, 3], [4, 5]]
sage: TableauTuple([[1,2,3],[4,5]]) == Tableau([[1,2,3],[4,5]])
True

There is one situation where a 1-tuple of tableau is not actually a Tableau; tableaux generated by the
StandardTableauTuples() iterators must have the correct parents, so in this one case 1-tuples of tableaux are dif-
ferent from Tableaux:

sage: StandardTableauTuples()[:10]
[(),
([[1]]),
([], []),
([[1, 2]]),
([[1], [2]]),
([[1]], []),
([], [[1]]),
([], [], []),
([[1, 2, 3]]),
([[1, 3], [2]])]

AUTHORS:

5.1. Comprehensive Module List 3351

Combinatorics, Release 9.7

• Andrew Mathas (2012-10-09): Initial version – heavily based on tableau.py by Mike Hansen (2007) and Jason
Bandlow (2011).

• Andrew Mathas (2016-08-11): Row standard tableaux added

Element classes:

• TableauTuples

• StandardTableauTuples

• RowStandardTableauTuples

Factory classes:

• TableauTuples

• StandardTableauTuples

• RowStandardTableauTuples

Parent classes:

• TableauTuples_all

• TableauTuples_level

• TableauTuples_size

• TableauTuples_level_size

• StandardTableauTuples_all

• StandardTableauTuples_level

• StandardTableauTuples_size

• StandardTableauTuples_level_size

• StandardTableauTuples_shape

• StandardTableaux_residue

• StandardTableaux_residue_shape

• RowStandardTableauTuples_all

• RowStandardTableauTuples_level

• RowStandardTableauTuples_size

• RowStandardTableauTuples_level_size

• RowStandardTableauTuples_shape

• RowStandardTableauTuples_residue

• RowStandardTableauTuples_residue_shape

See also:

• Tableau

• StandardTableau

• Tableaux

• StandardTableaux

• Partitions

3352 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• PartitionTuples

• ResidueSequence

Todo: Implement semistandard tableau tuples as defined in [DJM1998].

Much of the combinatorics implemented here is motivated by this and subsequent papers on the representation theory
of these algebras.

class sage.combinat.tableau_tuple.RowStandardTableauTuple(parent, t, check=True)
Bases: sage.combinat.tableau_tuple.TableauTuple

A class for row standard tableau tuples of shape a partition tuple.

A row standard tableau tuple of size 𝑛 is an ordered tuple of row standard tableaux (see RowStandardTableau),
with entries 1, 2, . . . , 𝑛 such that, in each component, the entries are in increasing order along each row. If the
tableau in component 𝑘 has shape 𝜆(𝑘) then 𝜆 = (𝜆(1), . . . , 𝜆(𝑙) is a PartitionTuple.

Note: The tableaux appearing in a RowStandardTableauTuple are row strict, but individually they are not
standard tableaux because the entries in any single component of a RowStandardTableauTuple will typically
not be in bijection with {1, 2, . . . , 𝑛}.

INPUT:

• t – a tableau, a list of (standard) tableau or an equivalent list

OUTPUT:

• A RowStandardTableauTuple object constructed from t.

Note: Sage uses the English convention for (tuples of) partitions and tableaux: the longer rows are displayed
on top. As with PartitionTuple, in sage the cells, or nodes, of partition tuples are 0-based. For example, the
(lexicographically) first cell in any non-empty partition tuple is [0, 0, 0]. Further, the coordinates [k,r,c] in a
TableauTuple refer to the component, row and column indices, respectively.

EXAMPLES:

sage: t = RowStandardTableauTuple([[[4,7],[3]],[[2,6,8],[1,5]],[[9]]]); t
([[4, 7], [3]], [[2, 6, 8], [1, 5]], [[9]])
sage: t.pp()
4 7 2 6 8 9
3 1 5

sage: t.shape()
([2, 1], [3, 2], [1])
sage: t[0].pp() # pretty printing
4 7
3

sage: t.is_row_strict()
True
sage: t[0].is_standard()
False
sage: RowStandardTableauTuple([[],[],[]]) # An empty tableau tuple
([], [], [])
sage: RowStandardTableauTuple([[[4,5],[6]],[[1,2,3]]]) in StandardTableauTuples()

(continues on next page)

5.1. Comprehensive Module List 3353

Combinatorics, Release 9.7

(continued from previous page)

True
sage: RowStandardTableauTuple([[[5,6],[4]],[[1,2,3]]]) in StandardTableauTuples()
False

When using code that will generate a lot of tableaux, it is slightly more efficient to construct a
RowStandardTableauTuple from the appropriate parent object:

sage: RST = RowStandardTableauTuples()
sage: RST([[[4,5],[7]],[[1,2,3],[6,8]],[[9]]])
([[4, 5], [7]], [[1, 2, 3], [6, 8]], [[9]])

See also:

• RowTableau

• RowTableaux

• TableauTuples

• TableauTuple

• StandardTableauTuples

• StandardTableauTuple

• RowStandardTableauTuples

codegree(e, multicharge)
Return the Brundan-Kleshchev-Wang [BKW2011] codegree of self.

The codegree of a tableau is an integer that is defined recursively by successively stripping off the number
𝑘, for 𝑘 = 𝑛, 𝑛 − 1, . . . , 1 and at stage adding the number of addable cell of the same residue minus the
number of removable cells of the same residue as 𝑘 and which are above 𝑘 in the diagram.

The codegree of the tableau self gives the degree of “dual” homogeneous basis element of the graded
Specht module which is indexed by self.

INPUT:

• e – the quantum characteristic

• multicharge – the multicharge

OUTPUT:

The codegree of the tableau self, which is an integer.

EXAMPLES:

sage: StandardTableauTuple([[[1]], [], []]).codegree(0,(0,0,0))
0
sage: StandardTableauTuple([[],[[1]], []]).codegree(0,(0,0,0))
1
sage: StandardTableauTuple([[], [], [[1]]]).codegree(0,(0,0,0))
2
sage: StandardTableauTuple([[[1]],[[2]], []]).codegree(0,(0,0,0))
-1
sage: StandardTableauTuple([[[1]], [], [[2]]]).codegree(0,(0,0,0))
0

(continues on next page)

3354 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: StandardTableauTuple([[],[[1]], [[2]]]).codegree(0,(0,0,0))
1
sage: StandardTableauTuple([[[2]],[[1]], []]).codegree(0,(0,0,0))
1
sage: StandardTableauTuple([[[2]], [], [[1]]]).codegree(0,(0,0,0))
2
sage: StandardTableauTuple([[],[[2]], [[1]]]).codegree(0,(0,0,0))
3

degree(e, multicharge)
Return the Brundan-Kleshchev-Wang [BKW2011] degree of self.

The degree of a tableau is an integer that is defined recursively by successively stripping off the number 𝑘,
for 𝑘 = 𝑛, 𝑛 − 1, . . . , 1, and at stage adding the count of the number of addable cell of the same residue
minus the number of removable cells of them same residue as 𝑘 and that are below 𝑘 in the diagram.

Note that even though this degree function was defined by Brundan-Kleshchev-Wang [BKW2011] the un-
derlying combinatorics is much older, going back at least to Misra and Miwa.

The degrees of the tableau 𝑇 gives the degree of the homogeneous basis element of the graded Specht
module which is indexed by 𝑇 .

INPUT:

• e – the quantum characteristic e

• multicharge – (default: [0]) the multicharge

OUTPUT:

The degree of the tableau self, which is an integer.

EXAMPLES:

sage: StandardTableauTuple([[[1]], [], []]).degree(0,(0,0,0))
2
sage: StandardTableauTuple([[],[[1]], []]).degree(0,(0,0,0))
1
sage: StandardTableauTuple([[], [], [[1]]]).degree(0,(0,0,0))
0
sage: StandardTableauTuple([[[1]],[[2]], []]).degree(0,(0,0,0))
3
sage: StandardTableauTuple([[[1]], [], [[2]]]).degree(0,(0,0,0))
2
sage: StandardTableauTuple([[],[[1]], [[2]]]).degree(0,(0,0,0))
1
sage: StandardTableauTuple([[[2]],[[1]], []]).degree(0,(0,0,0))
1
sage: StandardTableauTuple([[[2]], [], [[1]]]).degree(0,(0,0,0))
0
sage: StandardTableauTuple([[],[[2]], [[1]]]).degree(0,(0,0,0))
-1

inverse(k)
Return the cell containing k in the tableau tuple self.

EXAMPLES:

5.1. Comprehensive Module List 3355

Combinatorics, Release 9.7

sage: RowStandardTableauTuple([[[3,4],[1,2]],[[5,6,7],[8]],[[9,10],[11],[12]]]).
→˓inverse(1)
(0, 1, 0)
sage: RowStandardTableauTuple([[[3,4],[1,2]],[[5,6,7],[8]],[[9,10],[11],[12]]]).
→˓inverse(2)
(0, 1, 1)
sage: RowStandardTableauTuple([[[3,4],[1,2]],[[5,6,7],[8]],[[9,10],[11],[12]]]).
→˓inverse(3)
(0, 0, 0)
sage: RowStandardTableauTuple([[[3,4],[1,2]],[[5,6,7],[8]],[[9,10],[11],[12]]]).
→˓inverse(4)
(0, 0, 1)
sage: StandardTableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]]).
→˓inverse(1)
(0, 0, 0)
sage: StandardTableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]]).
→˓inverse(2)
(0, 0, 1)
sage: StandardTableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]]).
→˓inverse(3)
(0, 1, 0)
sage: StandardTableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]]).
→˓inverse(12)
(2, 2, 0)

residue_sequence(e, multicharge)
Return the sage.combinat.tableau_residues.ResidueSequence of self.

INPUT:

• e – integer in {0, 2, 3, 4, 5, . . .}

• multicharge – a sequence of integers of length equal to the level/length of self

OUTPUT:

The residue sequence of the tableau.

EXAMPLES:

sage: RowStandardTableauTuple([[[5]],[[3,4],[1,2]]]).residue_sequence(3,[0,0])
3-residue sequence (2,0,0,1,0) with multicharge (0,0)
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue_sequence(3,[0,1])
3-residue sequence (1,2,0,1,0) with multicharge (0,1)
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue_sequence(3,[0,2])
3-residue sequence (2,0,1,2,0) with multicharge (0,2)

class sage.combinat.tableau_tuple.RowStandardTableauTuples
Bases: sage.combinat.tableau_tuple.TableauTuples

A factory class for the various classes of tuples of row standard tableau.

INPUT:

There are three optional arguments:

• level – the level() of the tuples of tableaux

• size – the size() of the tuples of tableaux

3356 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• shape – a list or a partition tuple specifying the shape() of the row standard tableau tuples

It is not necessary to use the keywords. If they are not used then the first integer argument specifies the level()
and the second the size() of the tableau tuples.

OUTPUT:

The appropriate subclass of RowStandardTableauTuples.

A tuple of row standard tableau is a tableau whose entries are positive integers which increase from left to right
along the rows in each component. The entries do NOT need to increase from left to right along the components.

Note: Sage uses the English convention for (tuples of) partitions and tableaux: the longer rows are displayed
on top. As with PartitionTuple, in sage the cells, or nodes, of partition tuples are 0-based. For example, the
(lexicographically) first cell in any non-empty partition tuple is [0, 0, 0].

EXAMPLES:

sage: tabs = RowStandardTableauTuples([[2],[1,1]]); tabs
Row standard tableau tuples of shape ([2], [1, 1])
sage: tabs.cardinality()
12
sage: tabs[:]
[([[3, 4]], [[2], [1]]),
([[2, 4]], [[3], [1]]),
([[1, 4]], [[3], [2]]),
([[1, 2]], [[4], [3]]),
([[1, 3]], [[4], [2]]),
([[2, 3]], [[4], [1]]),
([[1, 4]], [[2], [3]]),
([[1, 3]], [[2], [4]]),
([[1, 2]], [[3], [4]]),
([[2, 3]], [[1], [4]]),
([[2, 4]], [[1], [3]]),
([[3, 4]], [[1], [2]])]

sage: tabs = RowStandardTableauTuples(level=3); tabs
Row standard tableau tuples of level 3
sage: tabs[100]
([], [], [[2, 3], [1]])

sage: RowStandardTableauTuples()[0]
([])

See also:

• TableauTuples

• Tableau

• RowStandardTableau

• RowStandardTableauTuples

Element
alias of RowStandardTableauTuple

5.1. Comprehensive Module List 3357

Combinatorics, Release 9.7

level_one_parent_class
alias of sage.combinat.tableau.RowStandardTableaux_all

shape()
Return the shape of the set of RowStandardTableauTuples, or None if it is not defined.

EXAMPLES:

sage: tabs=RowStandardTableauTuples(shape=[[5,2],[3,2],[],[1,1,1],[3]]); tabs
Row standard tableau tuples of shape ([5, 2], [3, 2], [], [1, 1, 1], [3])
sage: tabs.shape()
([5, 2], [3, 2], [], [1, 1, 1], [3])
sage: RowStandardTableauTuples().shape() is None
True

class sage.combinat.tableau_tuple.RowStandardTableauTuples_all
Bases: sage.combinat.tableau_tuple.RowStandardTableauTuples, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Default class of all RowStandardTableauTuples with an arbitrary level() and size().

an_element()
Return a particular element of the class.

EXAMPLES:

sage: RowStandardTableauTuples().an_element()
([[4, 5, 6, 7]], [[2, 3]], [[1]])

class sage.combinat.tableau_tuple.RowStandardTableauTuples_level(level)
Bases: sage.combinat.tableau_tuple.RowStandardTableauTuples, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Class of all RowStandardTableauTuples with a fixed level and arbitrary size.

an_element()
Return a particular element of the class.

EXAMPLES:

sage: RowStandardTableauTuples(2).an_element()
([[1]], [[2, 3]])
sage: RowStandardTableauTuples(3).an_element()
([[1]], [[2, 3]], [[4, 5, 6, 7]])

class sage.combinat.tableau_tuple.RowStandardTableauTuples_level_size(level, size)
Bases: sage.combinat.tableau_tuple.RowStandardTableauTuples, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Class of all RowStandardTableauTuples with a fixed level and a fixed size.

an_element()
Return a particular element of self.

EXAMPLES:

sage: RowStandardTableauTuples(5,size=2).an_element()
([], [], [], [], [[1], [2]])
sage: RowStandardTableauTuples(2,size=4).an_element()
([[1]], [[2, 3], [4]])

3358 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

class sage.combinat.tableau_tuple.RowStandardTableauTuples_residue(residue)
Bases: sage.combinat.tableau_tuple.RowStandardTableauTuples

Class of all row standard tableau tuples with a fixed residue sequence.

Implicitly, this also specifies the quantum characteristic, multicharge and hence the level and size of the tableaux.

Note: This class is not intended to be called directly, but rather, it is accessed through the row standard tableaux.

EXAMPLES:

sage: RowStandardTableau([[3,4,5],[1,2]]).residue_sequence(2).row_standard_
→˓tableaux()
Row standard tableaux with 2-residue sequence (1,0,0,1,0) and multicharge (0)
sage: RowStandardTableau([[3,4,5],[1,2]]).residue_sequence(3).row_standard_
→˓tableaux()
Row standard tableaux with 3-residue sequence (2,0,0,1,2) and multicharge (0)
sage: RowStandardTableauTuple([[[5,6],[7]],[[1,2,3],[4]]]).residue_sequence(2,(0,
→˓0)).row_standard_tableaux()
Row standard tableaux with 2-residue sequence (0,1,0,1,0,1,1) and multicharge (0,0)
sage: RowStandardTableauTuple([[[5,6],[7]],[[1,2,3],[4]]]).residue_sequence(3,(0,
→˓1)).row_standard_tableaux()
Row standard tableaux with 3-residue sequence (1,2,0,0,0,1,2) and multicharge (0,1)

an_element()
Return a particular element of self.

EXAMPLES:

sage: RowStandardTableau([[2,3],[1]]).residue_sequence(3).row_standard_
→˓tableaux().an_element()
[[2, 3], [1]]
sage: StandardTableau([[1,3],[2]]).residue_sequence(3).row_standard_tableaux().
→˓an_element()
[[1, 3], [2]]
sage: RowStandardTableauTuple([[[4]],[[2,3],[1]]]).residue_sequence(3,(0,1)).
→˓row_standard_tableaux().an_element()
sage: StandardTableauTuple([[[4]],[[1,3],[2]]]).residue_sequence(3,(0,1)).row_
→˓standard_tableaux().an_element()
([[4], [3], [1], [2]], [])

level()
Return the level of self.

EXAMPLES:

sage: RowStandardTableau([[2,3],[1]]).residue_sequence(3,(0,1)).row_standard_
→˓tableaux().level()
2
sage: StandardTableau([[1,2],[3]]).residue_sequence(3,(0,1)).row_standard_
→˓tableaux().level()
2
sage: RowStandardTableauTuple([[[4]],[[2,3],[1]]]).residue_sequence(3,(0,1)).
→˓row_standard_tableaux().level()
2

(continues on next page)

5.1. Comprehensive Module List 3359

Combinatorics, Release 9.7

(continued from previous page)

sage: StandardTableauTuple([[[4]],[[1,3],[2]]]).residue_sequence(3,(0,1)).row_
→˓standard_tableaux().level()
2

multicharge()
Return the multicharge of self.

EXAMPLES:

sage: RowStandardTableau([[2,3],[1]]).residue_sequence(3,(0,1)).row_standard_
→˓tableaux().multicharge()
(0, 1)
sage: StandardTableau([[1,2],[3]]).residue_sequence(3,(0,1)).row_standard_
→˓tableaux().multicharge()
(0, 1)
sage: RowStandardTableauTuple([[[4]],[[2,3],[1]]]).residue_sequence(3,(0,1)).
→˓row_standard_tableaux().multicharge()
(0, 1)
sage: StandardTableauTuple([[[4]],[[1,3],[2]]]).residue_sequence(3,(0,1)).row_
→˓standard_tableaux().multicharge()
(0, 1)

quantum_characteristic()
Return the quantum characteristic of self.

EXAMPLES:

sage: RowStandardTableau([[2,3],[1]]).residue_sequence(3,(0,1)).row_standard_
→˓tableaux().quantum_characteristic()
3
sage: StandardTableau([[1,2],[3]]).residue_sequence(3,(0,1)).row_standard_
→˓tableaux().quantum_characteristic()
3
sage: RowStandardTableauTuple([[[4]],[[2,3],[1]]]).residue_sequence(3,(0,1)).
→˓row_standard_tableaux().quantum_characteristic()
3
sage: StandardTableauTuple([[[4]],[[1,3],[2]]]).residue_sequence(3,(0,1)).row_
→˓standard_tableaux().quantum_characteristic()
3

residue_sequence()
Return the residue sequence of self.

EXAMPLES:

sage: RowStandardTableau([[2,3],[1]]).residue_sequence(3,(0,1)).row_standard_
→˓tableaux().residue_sequence()
3-residue sequence (2,0,1) with multicharge (0,1)
sage: StandardTableau([[1,2],[3]]).residue_sequence(3,(0,1)).row_standard_
→˓tableaux().residue_sequence()
3-residue sequence (0,1,2) with multicharge (0,1)
sage: RowStandardTableauTuple([[[4]],[[2,3],[1]]]).residue_sequence(3,(0,1)).
→˓row_standard_tableaux().residue_sequence()
3-residue sequence (0,1,2,0) with multicharge (0,1)

(continues on next page)

3360 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: StandardTableauTuple([[[4]],[[1,3],[2]]]).residue_sequence(3,(0,1)).row_
→˓standard_tableaux().residue_sequence()
3-residue sequence (1,0,2,0) with multicharge (0,1)

size()
Return the size of self.

EXAMPLES:

sage: RowStandardTableau([[2,3],[1]]).residue_sequence(3,(0,1)).row_standard_
→˓tableaux().size()
3
sage: StandardTableau([[1,2],[3]]).residue_sequence(3,(0,1)).row_standard_
→˓tableaux().size()
3
sage: RowStandardTableauTuple([[[4]],[[2,3],[1]]]).residue_sequence(3,(0,1)).
→˓row_standard_tableaux().size()
4
sage: StandardTableauTuple([[[4]],[[1,3],[2]]]).residue_sequence(3,(0,1)).row_
→˓standard_tableaux().size()
4

class sage.combinat.tableau_tuple.RowStandardTableauTuples_residue_shape(residue, shape)
Bases: sage.combinat.tableau_tuple.RowStandardTableauTuples_residue

All row standard tableau tuples with a fixed residue and shape.

INPUT:

• shape – the shape of the partitions or partition tuples

• residue – the residue sequence of the label

EXAMPLES:

sage: res = RowStandardTableauTuple([[[3,6],[1]],[[5,7],[4],[2]]]).residue_
→˓sequence(3,(0,0))
sage: tabs = res.row_standard_tableaux([[2,1],[2,1,1]]); tabs
Row standard (2,1|2,1^2)-tableaux with 3-residue sequence (2,1,0,2,0,1,1) and␣
→˓multicharge (0,0)
sage: tabs.shape()
([2, 1], [2, 1, 1])
sage: tabs.level()
2
sage: tabs[:6]
[([[5, 7], [4]], [[3, 6], [1], [2]]),
([[5, 7], [1]], [[3, 6], [4], [2]]),
([[3, 7], [4]], [[5, 6], [1], [2]]),
([[3, 7], [1]], [[5, 6], [4], [2]]),
([[5, 6], [4]], [[3, 7], [1], [2]]),
([[5, 6], [1]], [[3, 7], [4], [2]])]

class sage.combinat.tableau_tuple.RowStandardTableauTuples_shape(shape)
Bases: sage.combinat.tableau_tuple.RowStandardTableauTuples

Class of all RowStandardTableauTuples of a fixed shape.

5.1. Comprehensive Module List 3361

Combinatorics, Release 9.7

an_element()
Return a particular element of self.

EXAMPLES:

sage: RowStandardTableauTuples([[2],[2,1]]).an_element()
([[4, 5]], [[1, 3], [2]])
sage: RowStandardTableauTuples([[10],[],[]]).an_element()
([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], [], [])

cardinality()
Return the number of row standard tableau tuples of with the same shape as the partition tuple self.

This is just the index of the corresponding Young subgroup in the full symmetric group.

EXAMPLES:

sage: RowStandardTableauTuples([[3,2,1],[]]).cardinality()
60
sage: RowStandardTableauTuples([[1],[1],[1]]).cardinality()
6
sage: RowStandardTableauTuples([[2,1],[1],[1]]).cardinality()
60

class sage.combinat.tableau_tuple.RowStandardTableauTuples_size(size)
Bases: sage.combinat.tableau_tuple.RowStandardTableauTuples, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Class of all RowStandardTableauTuples with an arbitrary level and a fixed size.

an_element()
Return a particular element of the class.

EXAMPLES:

sage: RowStandardTableauTuples(size=2).an_element()
([[1]], [[2]], [], [])
sage: RowStandardTableauTuples(size=4).an_element()
([[1]], [[2, 3, 4]], [], [])

class sage.combinat.tableau_tuple.StandardTableauTuple(parent, t, check=True)
Bases: sage.combinat.tableau_tuple.RowStandardTableauTuple

A class to model a standard tableau of shape a partition tuple. This is a tuple of standard tableau with entries
1, 2, . . . , 𝑛, where 𝑛 is the size of the underlying partition tuple, such that the entries increase along rows and
down columns in each component of the tuple.

sage: s = StandardTableauTuple([[1,2,3],[4,5]]) sage: t = StandardTableauTu-
ple([[1,2],[3,5],[4]]) sage: s.dominates(t) True sage: t.dominates(s) False sage: Stan-
dardTableauTuple([[1,2,3],[4,5]]) in RowStandardTableauTuples() True

The tableaux appearing in a StandardTableauTuple are both row and column strict, but in-
dividually they are not standard tableaux because the entries in any single component of a
StandardTableauTuple will typically not be in bijection with {1, 2, . . . , 𝑛}.

INPUT:

• t – a tableau, a list of (standard) tableau or an equivalent list

OUTPUT:

3362 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

• A StandardTableauTuple object constructed from t.

Note: Sage uses the English convention for (tuples of) partitions and tableaux: the longer rows are displayed
on top. As with PartitionTuple, in sage the cells, or nodes, of partition tuples are 0-based. For example, the
(lexicographically) first cell in any non-empty partition tuple is [0, 0, 0]. Further, the coordinates [k,r,c] in a
TableauTuple refer to the component, row and column indices, respectively.

EXAMPLES:

sage: t = TableauTuple([[[1,3,4],[7,9]], [[2,8,11],[6]], [[5,10]]])
sage: t
([[1, 3, 4], [7, 9]], [[2, 8, 11], [6]], [[5, 10]])
sage: t[0][0][0]
1
sage: t[1][1][0]
6
sage: t[2][0][0]
5
sage: t[2][0][1]
10

sage: t = StandardTableauTuple([[[4,5],[7]],[[1,2,3],[6,8]],[[9]]]); t
([[4, 5], [7]], [[1, 2, 3], [6, 8]], [[9]])
sage: t.pp()
4 5 1 2 3 9
7 6 8

sage: t.shape()
([2, 1], [3, 2], [1])
sage: t[0].pp() # pretty printing
4 5
7

sage: t.is_standard()
True
sage: t[0].is_standard()
False
sage: StandardTableauTuple([[],[],[]]) # An empty tableau tuple
([], [], [])

When using code that will generate a lot of tableaux, it is slightly more efficient to construct a
StandardTableauTuple from the appropriate parent object:

sage: STT = StandardTableauTuples()
sage: STT([[[4,5],[7]],[[1,2,3],[6,8]],[[9]]])
([[4, 5], [7]], [[1, 2, 3], [6, 8]], [[9]])

See also:

• Tableau

• Tableaux

• TableauTuples

• TableauTuple

5.1. Comprehensive Module List 3363

Combinatorics, Release 9.7

• StandardTableauTuples

dominates(t)
Return True if the tableau (tuple) self dominates the tableau t. The two tableaux do not need to be of the
same shape.

EXAMPLES:

sage: s = StandardTableauTuple([[1,2,3],[4,5]])
sage: t = StandardTableauTuple([[1,2],[3,5],[4]])
sage: s.dominates(t)
True
sage: t.dominates(s)
False

restrict(m=None)
Return the restriction of the standard tableau self to m, which defaults to one less than the current size().

EXAMPLES:

sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).restrict(6)
([[5]], [[1, 2], [3, 4]])
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).restrict(5)
([[5]], [[1, 2], [3, 4]])
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).restrict(4)
([], [[1, 2], [3, 4]])
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).restrict(3)
([], [[1, 2], [3]])
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).restrict(2)
([], [[1, 2]])
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).restrict(1)
([], [[1]])
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).restrict(0)
([], [])

Where possible the restricted tableau belongs to the same category as the tableau self:

sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict(3).category()
Category of elements of Tableau tuples
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).restrict(3).category()
Category of elements of Standard tableau tuples
sage: StandardTableauTuples([[1],[2,2]])([[[5]],[[1,2],[3,4]]]).restrict(3).
→˓category()
Category of elements of Standard tableau tuples
sage: StandardTableauTuples(level=2)([[[5]],[[1,2],[3,4]]]).restrict(3).
→˓category()
Category of elements of Standard tableau tuples of level 2

to_chain()
Return the chain of partitions corresponding to the standard tableau tuple self.

EXAMPLES:

sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).to_chain()
[([], []),

(continues on next page)

3364 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

([], [1]),
([], [2]),
([], [2, 1]),
([], [2, 2]),
([1], [2, 2])]

class sage.combinat.tableau_tuple.StandardTableauTuples
Bases: sage.combinat.tableau_tuple.RowStandardTableauTuples

A factory class for the various classes of tuples of standard tableau.

INPUT:

There are three optional arguments:

• level – the level() of the tuples of tableaux

• size – the size() of the tuples of tableaux

• shape – a list or a partition tuple specifying the shape() of the standard tableau tuples

It is not necessary to use the keywords. If they are not used then the first integer argument specifies the level()
and the second the size() of the tableau tuples.

OUTPUT:

The appropriate subclass of StandardTableauTuples.

A tuple of standard tableau is a tableau whose entries are positive integers which increase from left to right along
the rows, and from top to bottom down the columns, in each component. The entries do NOT need to increase
from left to right along the components.

Note: Sage uses the English convention for (tuples of) partitions and tableaux: the longer rows are displayed
on top. As with PartitionTuple, in sage the cells, or nodes, of partition tuples are 0-based. For example, the
(lexicographically) first cell in any non-empty partition tuple is [0, 0, 0].

EXAMPLES:

sage: tabs=StandardTableauTuples([[3],[2,2]]); tabs
Standard tableau tuples of shape ([3], [2, 2])
sage: tabs.cardinality()
70
sage: tabs[10:16]
[([[1, 2, 3]], [[4, 6], [5, 7]]),
([[1, 2, 4]], [[3, 6], [5, 7]]),
([[1, 3, 4]], [[2, 6], [5, 7]]),
([[2, 3, 4]], [[1, 6], [5, 7]]),
([[1, 2, 5]], [[3, 6], [4, 7]]),
([[1, 3, 5]], [[2, 6], [4, 7]])]

sage: tabs=StandardTableauTuples(level=3); tabs
Standard tableau tuples of level 3
sage: tabs[100]
([[1, 2], [3]], [], [[4]])

(continues on next page)

5.1. Comprehensive Module List 3365

Combinatorics, Release 9.7

(continued from previous page)

sage: StandardTableauTuples()[0]
()

See also:

• TableauTuples

• Tableau

• StandardTableau

• StandardTableauTuples

Element
alias of StandardTableauTuple

level_one_parent_class
alias of sage.combinat.tableau.StandardTableaux_all

shape()
Return the shape of the set of StandardTableauTuples, or None if it is not defined.

EXAMPLES:

sage: tabs=StandardTableauTuples(shape=[[5,2],[3,2],[],[1,1,1],[3]]); tabs
Standard tableau tuples of shape ([5, 2], [3, 2], [], [1, 1, 1], [3])
sage: tabs.shape()
([5, 2], [3, 2], [], [1, 1, 1], [3])
sage: StandardTableauTuples().shape() is None
True

class sage.combinat.tableau_tuple.StandardTableauTuples_all
Bases: sage.combinat.tableau_tuple.StandardTableauTuples, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Default class of all StandardTableauTuples with an arbitrary level() and size().

class sage.combinat.tableau_tuple.StandardTableauTuples_level(level)
Bases: sage.combinat.tableau_tuple.StandardTableauTuples, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Class of all StandardTableauTuples with a fixed level and arbitrary size.

an_element()
Return a particular element of the class.

EXAMPLES:

sage: StandardTableauTuples(size=2).an_element()
([[1]], [[2]], [], [])
sage: StandardTableauTuples(size=4).an_element()
([[1]], [[2, 3, 4]], [], [])

class sage.combinat.tableau_tuple.StandardTableauTuples_level_size(level, size)
Bases: sage.combinat.tableau_tuple.StandardTableauTuples, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Class of all StandardTableauTuples with a fixed level and a fixed size.

3366 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

an_element()
Return a particular element of the class.

EXAMPLES:

sage: StandardTableauTuples(5,size=2).an_element()
([], [], [], [], [[1], [2]])
sage: StandardTableauTuples(2,size=4).an_element()
([[1]], [[2, 3], [4]])

cardinality()
Return the number of elements in this set of tableaux.

EXAMPLES:

sage: StandardTableauTuples(3,2).cardinality()
12
sage: StandardTableauTuples(4,6).cardinality()
31936

class sage.combinat.tableau_tuple.StandardTableauTuples_shape(shape)
Bases: sage.combinat.tableau_tuple.StandardTableauTuples

Class of all StandardTableauTuples of a fixed shape.

an_element()
Return a particular element of the class.

EXAMPLES:

sage: StandardTableauTuples([[2],[2,1]]).an_element()
([[2, 4]], [[1, 3], [5]])
sage: StandardTableauTuples([[10],[],[]]).an_element()
([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], [], [])

cardinality()
Return the number of standard Young tableau tuples of with the same shape as the partition tuple self.

Let 𝜇 = (𝜇(1), . . . , 𝜇(𝑙)) be the shape of the tableaux in self and let 𝑚𝑘 = |𝜇(𝑘)|, for 1 ≤ 𝑘 ≤ 𝑙.
Multiplying by a (unique) coset representative of the Young subgroup 𝑆𝑚1

×· · ·×𝑆𝑚𝑙
inside the symmetric

group 𝑆𝑛, we can assume that 𝑡 is standard and the numbers 1, 2..., 𝑛 are entered in order from to right along
the components of the tableau. Therefore, there are(︂

𝑛

𝑚1, . . . ,𝑚𝑙

)︂ 𝑙∏︁
𝑘=1

|Std(𝜇(𝑘))|

standard tableau tuples of this shape, where |Std(𝜇(𝑘))| is the number of standard tableau of shape 𝜇(𝑘), for
1 ≤ 𝑘 ≤ 𝑙. This is given by the hook length formula.

EXAMPLES:

sage: StandardTableauTuples([[3,2,1],[]]).cardinality()
16
sage: StandardTableauTuples([[1],[1],[1]]).cardinality()
6
sage: StandardTableauTuples([[2,1],[1],[1]]).cardinality()
40

(continues on next page)

5.1. Comprehensive Module List 3367

Combinatorics, Release 9.7

(continued from previous page)

sage: StandardTableauTuples([[3,2,1],[3,2]]).cardinality()
36960

last()
Return the last standard tableau tuple in self, with respect to the order that they are generated by the
iterator.

This is just the standard tableau tuple with the numbers 1, 2, . . . , 𝑛, where 𝑛 is size(), entered in order
down the columns form right to left along the components.

EXAMPLES:

sage: StandardTableauTuples([[2],[2,2]]).last().pp()
5 6 1 3

2 4

random_element()
Return a random standard tableau in self.

We do this by randomly selecting addable nodes to place 1, 2, . . . , 𝑛. Of course we could do this recursively,
but it is more efficient to keep track of the (changing) list of addable nodes as we go.

EXAMPLES:

sage: StandardTableauTuples([[2],[2,1]]).random_element() # random
([[1, 2]], [[3, 4], [5]])

class sage.combinat.tableau_tuple.StandardTableauTuples_size(size)
Bases: sage.combinat.tableau_tuple.StandardTableauTuples, sage.sets.
disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Class of all StandardTableauTuples with an arbitrary level and a fixed size.

an_element()
Return a particular element of the class.

EXAMPLES:

sage: StandardTableauTuples(size=2).an_element()
([[1]], [[2]], [], [])
sage: StandardTableauTuples(size=4).an_element()
([[1]], [[2, 3, 4]], [], [])

class sage.combinat.tableau_tuple.StandardTableaux_residue(residue)
Bases: sage.combinat.tableau_tuple.StandardTableauTuples

Class of all standard tableau tuples with a fixed residue sequence.

Implicitly, this also specifies the quantum characteristic, multicharge and hence the level and size of the tableaux.

Note: This class is not intended to be called directly, but rather, it is accessed through the standard tableaux.

EXAMPLES:

sage: StandardTableau([[1,2,3],[4,5]]).residue_sequence(2).standard_tableaux()
Standard tableaux with 2-residue sequence (0,1,0,1,0) and multicharge (0)

(continues on next page)

3368 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Combinatorics, Release 9.7

(continued from previous page)

sage: StandardTableau([[1,2,3],[4,5]]).residue_sequence(3).standard_tableaux()
Standard tableaux with 3-residue sequence (0,1,2,2,0) and multicharge (0)
sage: StandardTableauTuple([[[5,6],[7]],[[1,2,3],[4]]]).residue_sequence(2,(0,0)).
→˓standard_tableaux()
Standard tableaux with 2-residue sequence (0,1,0,1,0,1,1) and multicharge (0,0)
sage: StandardTableauTuple([[[5,6],[7]],[[1,2,3],[4]]]).residue_sequence(3,(0,1)).
→˓standard_tableaux()
Standard tableaux with 3-residue sequence (1,2,0,0,0,1,2) and multicharge (0,1)

class sage.combinat.tableau_tuple.StandardTableaux_residue_shape(residue, shape)
Bases: sage.combinat.tableau_tuple.StandardTableaux_residue

All standard tableau tuples with a fixed residue and shape.

INPUT:

• shape – the shape of the partitions or partition tuples

• residue – the residue sequence of the label

EXAMPLES:

sage: res = StandardTableauTuple([[[1,3],[6]],[[2,7],[4],[5]]]).residue_sequence(3,
→˓(0,0))
sage: tabs = res.standard_tableaux([[2,1],[2,1,1]]); tabs
Standard (2,1|2,1^2)-tableaux with 3-residue sequence (0,0,1,2,1,2,1) and␣
→˓multicharge (0,0)
sage: tabs.shape()
([2, 1], [2, 1, 1])
sage: tabs.level()
2
sage: tabs[:6]
[([[2, 7], [6]], [[1, 3], [4], [5]]),
([[1, 7], [6]], [[2, 3], [4], [5]]),
([[2, 3], [6]], [[1, 7], [4], [5]]),
([[1, 3], [6]], [[2, 7], [4], [5]]),
([[2, 5], [6]], [[1, 3], [4], [7]]),
([[1, 5], [6]], [[2, 3], [4], [7]])]

an_element()
Return a particular element of self.

EXAMPLES:

sage: T = StandardTableau([[1,3],[2]]).residue_sequence(3).standard_tableaux([2,
→˓1])
sage: T.an_element()
[[1, 3], [2]]

class sage.combinat.tableau_tuple.TableauTuple(parent, t, check=True)
Bases: sage.combinat.combinat.CombinatorialElement

A class to model a tuple of tableaux.

INPUT:

• t – a list or tuple of Tableau, a list or tuple of lists of lists

5.1. Comprehensive Module List 3369

Combinatorics, Release 9.7

OUTPUT:

• The Tableau tuple object constructed from t.

A TableauTuple is a tuple of tableau of shape a PartitionTuple. These combinatorial objects are useful is
several areas of algebraic combinatorics. In particular, they are important in:

• the representation theory of the complex reflection groups of type 𝐺(𝑙, 1, 𝑛) and the representation theory
of the associated (degenerate and non-degenerate) Hecke algebras. See, for example, [DJM1998]

• the crystal theory of (quantum) affine special linear groups and its integral highest weight modules and their
canonical bases. See, for example, [BK2009].

These apparently different and unrelated contexts are, in fact, intimately related as in characteristic zero the
cyclotomic Hecke algebras categorify the canonical bases of the integral highest weight modules of the quantum
affine special linear groups.

The level() of a tableau tuple is the length of the tuples. This corresponds to the level of the corresponding
highest weight module.

In sage a TableauTuple looks an behaves like a real tuple of (level 1) Tableaux. Many of the operations which
are defined on Tableau extend to TableauTuples. Tableau tuples of level 1 are just ordinary Tableau.

In sage, the entries of Tableaux can be very general, including arbitrarily nested lists, so some lists can be inter-
preted either as a tuple of tableaux or simply as tableaux. If it is possible to interpret the input to TableauTuple
as a tuple of tableaux then TableauTuple returns the corresponding tuple. Given a 1-tuple of tableaux the
tableau itself is returned.

EXAMPLES:

sage: t = TableauTuple([[[6,9,10],[11]], [[1,2,3],[4,5]], [[7],[8]]]); t
([[6, 9, 10], [11]], [[1, 2, 3], [4, 5]], [[7], [8]])
sage: t.level()
3
sage: t.size()
11
sage: t.shape()
([3, 1], [3, 2], [1, 1])
sage: t.is_standard()
True
sage: t.pp() # pretty printing
6 9 10 1 2 3 7
11 4 5 8
sage: t.category()
Category of elements of Tableau tuples
sage: t.parent()
Tableau tuples

sage: s = TableauTuple([[['a','c','b'],['d','e']],[[(2,1)]]]); s
([['a', 'c', 'b'], ['d', 'e']], [[(2, 1)]])
sage: s.shape()
([3, 2], [1])
sage: s.size()
6

sage: TableauTuple([[],[],[]]) # The empty 3-tuple of tableaux
([], [], [])

(continues on next page)

3370 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: TableauTuple([[1,2,3],[4,5]])
[[1, 2, 3], [4, 5]]
sage: TableauTuple([[1,2,3],[4,5]]) == Tableau([[1,2,3],[4,5]])
True

See also:

• StandardTableauTuple

• StandardTableauTuples

• StandardTableau

• StandardTableaux

• TableauTuple

• TableauTuples

• Tableau

• Tableaux

Element
alias of sage.combinat.tableau.Tableau

add_entry(cell, m)
Set the entry in cell equal to m. If the cell does not exist then extend the tableau, otherwise just replace
the entry.

EXAMPLES:

sage: s = StandardTableauTuple([[[3,4,7],[6,8]], [[9,13],[12]], [[1,5],[2,11],
→˓[10]]]); s.pp()
3 4 7 9 13 1 5
6 8 12 2 11

10
sage: t = s.add_entry((0,0,3),14); t.pp(); t.category()
3 4 7 14 9 13 1 5
6 8 12 2 11

10
Category of elements of Standard tableau tuples
sage: t = s.add_entry((0,0,3),15); t.pp(); t.category()
3 4 7 15 9 13 1 5
6 8 12 2 11

10
Category of elements of Tableau tuples
sage: t = s.add_entry((1,1,1),14); t.pp(); t.category()
3 4 7 9 13 1 5
6 8 12 14 2 11

10
Category of elements of Standard tableau tuples
sage: t = s.add_entry((2,1,1),14); t.pp(); t.category()
3 4 7 9 13 1 5
6 8 12 2 14

10
Category of elements of Tableau tuples

(continues on next page)

5.1. Comprehensive Module List 3371

Combinatorics, Release 9.7

(continued from previous page)

sage: t = s.add_entry((2,1,2),14); t.pp(); t.category()
Traceback (most recent call last):
...
IndexError: (2, 1, 2) is not an addable cell of the tableau

cells_containing(m)
Return the list of cells in which the letter m appears in the tableau self.

The list is ordered with cells appearing from left to right.

EXAMPLES:

sage: t = TableauTuple([[[4,5]],[[1,1,2,4],[2,4,4],[4]],[[1,3,4],[3,4]]])
sage: t.cells_containing(4)
[(0, 0, 0),
(1, 2, 0),
(1, 1, 1),
(1, 1, 2),
(1, 0, 3),
(2, 1, 1),
(2, 0, 2)]

sage: t.cells_containing(6)
[]

charge()
Return the charge of the reading word of self.

See charge() for more information.

EXAMPLES:

sage: TableauTuple([[[4,5]],[[1,1,2,4],[2,4,4],[4]],[[1,3,4],[3,4]]]).charge()
4

cocharge()
Return the cocharge of the reading word of self.

See cocharge() for more information.

EXAMPLES:

sage: TableauTuple([[[4,5]],[[1,1,2,4],[2,4,4],[4]],[[1,3,4],[3,4]]]).charge()
4

column_stabilizer()
Return the PermutationGroup corresponding to self. That is, return subgroup of the symmetric group
of degree size() which is the column stabilizer of self.

EXAMPLES:

sage: cs = TableauTuple([[[1,2,3],[4,5]],[[6,7]],[[8],[9]]]).column_stabilizer()
sage: cs.order()
8
sage: PermutationGroupElement([(1,3,2),(4,5)]) in cs
False
sage: PermutationGroupElement([(1,4)]) in cs
True

3372 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

components()
Return a list of the components of tableau tuple self.

The 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 are the individual Tableau which are contained in the tuple self.

For compatibility with TableauTuples of level() 1, components() should be used to iterate over the
components of TableauTuples.

EXAMPLES:

sage: for t in TableauTuple([[1,2,3],[4,5]]).components(): t.pp()
1 2 3
4 5

sage: for t in TableauTuple([[[1,2,3],[4,5]], [[6,7],[8,9]]]).components(): t.
→˓pp()
1 2 3
4 5
6 7
8 9

conjugate()
Return the conjugate of the tableau tuple self.

The conjugate tableau tuple 𝑇 ′ is the TableauTuple obtained from 𝑇 by reversing the order of the com-
ponents and conjugating each component – that is, swapping the rows and columns of the all of Tableau
in 𝑇 (see sage.combinat.tableau.Tableau.conjugate()).

EXAMPLES:

sage: TableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]]).conjugate()
([[9, 11, 12], [10]], [[5, 8], [6], [7]], [[1, 3], [2, 4]])

content(k, multicharge)
Return the content k in self.

The content of 𝑘 in a standard tableau. That is, if 𝑘 appears in row 𝑟 and column 𝑐 of the tableau, then we
return 𝑐− 𝑟 + 𝑎𝑘, where the multicharge is (𝑎1, 𝑎2, . . . , 𝑎𝑙) and 𝑙 is the level of the tableau.

The multicharge determines the dominant weight

Λ =

𝑙∑︁
𝑖=1

Λ𝑎𝑖

of the affine special linear group. In the combinatorics, the multicharge simply offsets the contents in each
component so that the cell (𝑘, 𝑟, 𝑐) has content 𝑎𝑘 + 𝑐− 𝑟.

INPUT:

• k – an integer in {1, 2, . . . , 𝑛}

• multicharge – a sequence of integers of length 𝑙

Here 𝑙 is the level() and 𝑛 is the size() of self.

EXAMPLES:

sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).content(3,[0,0])
-1
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).content(3,[0,1])
0

(continues on next page)

5.1. Comprehensive Module List 3373

Combinatorics, Release 9.7

(continued from previous page)

sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).content(3,[0,2])
1
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).content(6,[0,2])
Traceback (most recent call last):
...
ValueError: 6 must be contained in the tableaux

entries()
Return a sorted list of all entries of self, in the order obtained by reading across the rows.

EXAMPLES:

sage: TableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]]).entries()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: TableauTuple([[[1,2],[3,4]],[[9,10],[11],[12]],[[5,6,7],[8]]]).entries()
[1, 2, 3, 4, 9, 10, 11, 12, 5, 6, 7, 8]

entry(l, r, c)
Return the entry of the cell (l, r, c) in self.

A cell is a tuple (l, r, c) of coordinates, where l is the component index, r is the row index, and c is
the column index.

EXAMPLES:

sage: t = TableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]])
sage: t.entry(1, 0, 0)
5
sage: t.entry(1, 1, 1)
Traceback (most recent call last):
...
IndexError: tuple index out of range

first_column_descent()
Return the first cell of self is not column standard.

Cells are ordered left to right along the rows and then top to bottom. That is, return the cell (𝑘, 𝑟, 𝑐) with
(𝑘, 𝑟, 𝑐) minimal such that the entry in position (𝑘, 𝑟, 𝑐) is bigger than the entry in position (𝑘, 𝑟, 𝑐+ 1). If
there is no such cell then None is returned - in this case the tableau is column strict.

OUTPUT:

The cell corresponding to the first column descent or None if the tableau is column strict.

EXAMPLES:

sage: TableauTuple([[[3,5,6],[2,4,5]],[[1,4,5],[2,3]]]).first_column_descent()
(0, 0, 0)
sage: Tableau([[[1,2,3],[4]],[[5,6,7],[8,9]]]).first_column_descent() is None
True

first_row_descent()
Return the first cell of self that is not row standard.

Cells are ordered left to right along the rows and then top to bottom. That is, the cell minimal (𝑘, 𝑟, 𝑐) such
that the entry in position (𝑘, 𝑟, 𝑐) is bigger than the entry in position (𝑘, 𝑟, 𝑐 + 1). If there is no such cell
then None is returned - in this case the tableau is row strict.

3374 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

The cell corresponding to the first row descent or None if the tableau is row strict.

EXAMPLES:

sage: TableauTuple([[[5,6,7],[1,2]],[[1,3,2],[4]]]).first_row_descent()
(1, 0, 1)
sage: TableauTuple([[[1,2,3],[4]],[[6,7,8],[1,2,3]],[[1,11]]]).first_row_
→˓descent() is None
True

is_column_strict()
Return True if the tableau self is column strict and False otherwise.

A tableau tuple is column strict if the entries in each column of each component are in increasing order,
when read from top to bottom.

EXAMPLES:

sage: TableauTuple([[[5,7],[8]],[[1, 3], [2, 4]],[[6]]]).is_column_strict()
True
sage: TableauTuple([[[1, 2], [2, 4]],[[4,5,6],[7,8]]]).is_column_strict()
True
sage: TableauTuple([[[1]],[[2, 3], [2, 4]]]).is_column_strict()
False
sage: TableauTuple([[[1]],[[2, 2], [4,5]]]).is_column_strict()
True
sage: TableauTuple([[[1,2],[6,7]],[[4,8], [6, 9]],[]]).is_column_strict()
True

is_row_strict()
Return True if the tableau self is row strict and False otherwise.

A tableau tuple is row strict if the entries in each row of each component are in increasing order, when read
from left to right.

EXAMPLES:

sage: TableauTuple([[[5,7],[8]],[[1, 3], [2, 4]],[[6]]]).is_row_strict()
True
sage: TableauTuple([[[1, 2], [2, 4]],[[4,5,6],[7,8]]]).is_row_strict()
True
sage: TableauTuple([[[1]],[[2, 3], [2, 4]]]).is_row_strict()
True
sage: TableauTuple([[[1]],[[2, 2], [4,5]]]).is_row_strict()
False
sage: TableauTuple([[[1,2],[6,7]],[[4,8], [6, 9]],[]]).is_row_strict()
True

is_standard()
Return True if the tableau self is a standard tableau and False otherwise.

A tableau tuple is standard if it is row standard, column standard and the entries in the tableaux are
1, 2, . . . , 𝑛, where 𝑛 is the size() of the underlying partition tuple of self.

EXAMPLES:

5.1. Comprehensive Module List 3375

Combinatorics, Release 9.7

sage: TableauTuple([[[5,7],[8]],[[1, 3], [2, 4]],[[6]]]).is_standard()
True
sage: TableauTuple([[[1, 2], [2, 4]],[[4,5,6],[7,8]]]).is_standard()
False
sage: TableauTuple([[[1]],[[2, 3], [2, 4]]]).is_standard()
False
sage: TableauTuple([[[1]],[[2, 2], [4,5]]]).is_row_strict()
False
sage: TableauTuple([[[1,2],[6,7]],[[4,8], [6, 9]],[]]).is_standard()
False

level()
Return the level of the tableau self.

This is just the number of components in the tableau tuple self.

EXAMPLES:

sage: TableauTuple([[[7,8,9]],[],[[1,2,3],[4,5],[6]]]).level()
3

pp()
Pretty printing for the tableau tuple self.

EXAMPLES:

sage: TableauTuple([[[1,2,3],[4,5]], [[1,2,3],[4,5]]]).pp()
1 2 3 1 2 3
4 5 4 5

sage: TableauTuple([[[1,2],[3],[4]],[],[[6,7,8],[10,11],[12],[13]]]).pp()
1 2 - 6 7 8
3 10 11
4 12

13
sage: t = TableauTuple([[[1,2,3],[4,5],[6],[9]], [[1,2,3],[4,5,8]], [[11,12,
→˓13],[14]]])
sage: t.pp()
1 2 3 1 2 3 11 12 13
4 5 4 5 8 14
6
9

sage: TableauTuples.options(convention="french")
sage: t.pp()
9
6
4 5 4 5 8 14
1 2 3 1 2 3 11 12 13

sage: TableauTuples.options._reset()

reduced_column_word()
Return the lexicographically minimal reduced expression for the permutation that maps the
initial_column_tableau() to self.

This reduced expression is a minimal length coset representative for the corresponding Young subgroup. In
one line notation, the permutation is obtained by concatenating the rows of the tableau from top to bottom
in each component, and then left to right along the components.

3376 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: StandardTableauTuple([[[7,9],[8]],[[1,4,6],[2,5],[3]]]).reduced_column_
→˓word()
[]
sage: StandardTableauTuple([[[7,9],[8]],[[1,3,6],[2,5],[4]]]).reduced_column_
→˓word()
[3]
sage: StandardTableauTuple([[[6,9],[8]],[[1,3,7],[2,5],[4]]]).reduced_column_
→˓word()
[3, 6]
sage: StandardTableauTuple([[[6,8],[9]],[[1,3,7],[2,5],[4]]]).reduced_column_
→˓word()
[3, 6, 8]
sage: StandardTableauTuple([[[5,8],[9]],[[1,3,7],[2,6],[4]]]).reduced_column_
→˓word()
[3, 6, 5, 8]

reduced_row_word()
Return the lexicographically minimal reduced expression for the permutation that maps the
initial_tableau() to self.

This reduced expression is a minimal length coset representative for the corresponding Young subgroup. In
one line notation, the permutation is obtained by concatenating the rows of the tableau from top to bottom
in each component, and then left to right along the components.

EXAMPLES:

sage: StandardTableauTuple([[[1,2],[3]],[[4,5,6],[7,8],[9]]]).reduced_row_word()
[]
sage: StandardTableauTuple([[[1,2],[3]],[[4,5,6],[7,9],[8]]]).reduced_row_word()
[8]
sage: StandardTableauTuple([[[1,2],[3]],[[4,5,7],[6,9],[8]]]).reduced_row_word()
[6, 8]
sage: StandardTableauTuple([[[1,2],[3]],[[4,5,8],[6,9],[7]]]).reduced_row_word()
[6, 8, 7]
sage: StandardTableauTuple([[[1,2],[3]],[[4,5,9],[6,8],[7]]]).reduced_row_word()
[6, 7, 8, 7]
sage: StandardTableauTuple([[[7,9],[8]],[[1,3,5],[2,6],[4]]]).reduced_row_word()
[2, 3, 2, 1, 4, 3, 2, 5, 4, 3, 6, 5, 4, 3, 2, 7, 6, 5, 8, 7, 6, 5, 4]

residue(k, e, multicharge)
Return the residue of the integer k in the tableau self.

The residue of 𝑘 is 𝑐 − 𝑟 + 𝑎𝑘 in Z/𝑒Z, where 𝑘 appears in row 𝑟 and column 𝑐 of the tableau and the
multicharge is (𝑎1, 𝑎2, . . . , 𝑎𝑙).

The multicharge determines the dominant weight

𝑙∑︁
𝑖=1

Λ𝑎𝑖

for the affine special linear group. In the combinatorics, it simply offsets the contents in each component
so that the cell (𝑘, 0, 0) has content 𝑎𝑘.

INPUT:

• k – an integer in {1, 2, . . . , 𝑛}

5.1. Comprehensive Module List 3377

Combinatorics, Release 9.7

• e – an integer in {0, 2, 3, 4, 5, . . .}

• multicharge – a list of integers of length 𝑙

Here 𝑙 is the level() and 𝑛 is the size() of self.

OUTPUT:

The residue of k in a standard tableau. That is,

EXAMPLES:

sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue(1, 3,[0,0])
0
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue(1, 3,[0,1])
1
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue(1, 3,[0,2])
2
sage: StandardTableauTuple([[[5]],[[1,2],[3,4]]]).residue(6, 3,[0,2])
Traceback (most recent call last):
...
ValueError: 6 must be contained in the tableaux

restrict(m=None)
Return the restriction of the standard tableau self to m.

The restriction is the subtableau of self whose entries are less than or equal to m.

By default, m is one less than the current size.

EXAMPLES:

sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict()
([], [[1, 2], [3, 4]])
sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict(6)
([[5]], [[1, 2], [3, 4]])
sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict(5)
([[5]], [[1, 2], [3, 4]])
sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict(4)
([], [[1, 2], [3, 4]])
sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict(3)
([], [[1, 2], [3]])
sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict(2)
([], [[1, 2]])
sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict(1)
([], [[1]])
sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict(0)
([], [])

Where possible the restricted tableau belongs to the same category as the original tableaux:

sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict(3).category()
Category of elements of Tableau tuples
sage: TableauTuple([[[5]],[[1,2],[3,4]]]).restrict(3).category()
Category of elements of Tableau tuples
sage: TableauTuples(level=2)([[[5]],[[1,2],[3,4]]]).restrict(3).category()
Category of elements of Tableau tuples of level 2

3378 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

row_stabilizer()
Return the PermutationGroup corresponding to self. That is, return subgroup of the symmetric group
of degree size() which is the row stabilizer of self.

EXAMPLES:

sage: rs = TableauTuple([[[1,2,3],[4,5]],[[6,7]],[[8],[9]]]).row_stabilizer()
sage: rs.order()
24
sage: PermutationGroupElement([(1,3,2),(4,5)]) in rs
True
sage: PermutationGroupElement([(1,4)]) in rs
False
sage: rs.one().domain()
[1, 2, 3, 4, 5, 6, 7, 8, 9]

shape()
Return the PartitionTuple which is the shape of the tableau tuple self.

EXAMPLES:

sage: TableauTuple([[[7,8,9]],[],[[1,2,3],[4,5],[6]]]).shape()
([3], [], [3, 2, 1])

size()
Return the size of the tableau tuple self.

This is just the number of boxes, or the size, of the underlying PartitionTuple.

EXAMPLES:

sage: TableauTuple([[[7,8,9]],[],[[1,2,3],[4,5],[6]]]).size()
9

symmetric_group_action_on_entries(w)
Return the action of a permutation w on self.

Consider a standard tableau tuple 𝑇 = (𝑡(1), 𝑡(2), . . . 𝑡(𝑙)) of size 𝑛, then the action of 𝑤 ∈ 𝑆𝑛 is defined
by permuting the entries of 𝑇 (recall they are 1, 2, . . . , 𝑛). In particular, suppose the entry at cell (𝑘, 𝑖, 𝑗)
is 𝑎, then the entry becomes 𝑤(𝑎). In general, the resulting tableau tuple 𝑤𝑇 may not be standard.

INPUT:

• w – a permutation

EXAMPLES:

sage: TableauTuple([[[1,2],[4]],[[3,5]]]).symmetric_group_action_on_entries(␣
→˓Permutation(((4,5))))
([[1, 2], [5]], [[3, 4]])
sage: TableauTuple([[[1,2],[4]],[[3,5]]]).symmetric_group_action_on_entries(␣
→˓Permutation(((1,2))))
([[2, 1], [4]], [[3, 5]])

to_list()
Return the list representation of the tableaux tuple self.

EXAMPLES:

5.1. Comprehensive Module List 3379

Combinatorics, Release 9.7

sage: TableauTuple([[[1,2,3],[4,5]], [[6,7],[8,9]]]).to_list()
[[[1, 2, 3], [4, 5]], [[6, 7], [8, 9]]]

to_permutation()
Return a permutation with the entries in the tableau tuple self.

The permutation is obtained from self by reading the entries of the tableau tuple in order from left to right
along the rows, and then top to bottom, in each component and then left to right along the components.

EXAMPLES:

sage: TableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]]).to_
→˓permutation()
[12, 11, 9, 10, 8, 5, 6, 7, 3, 4, 1, 2]

to_word()
Return a word obtained from a row reading of the tableau tuple self.

EXAMPLES:

sage: TableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]]).to_word_by_
→˓row()
word: 12,11,9,10,8,5,6,7,3,4,1,2

to_word_by_column()
Return the word obtained from a column reading of the tableau tuple self.

EXAMPLES:

sage: TableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]]).to_word_by_
→˓column()
word: 12,11,9,10,8,5,6,7,3,1,4,2

to_word_by_row()
Return a word obtained from a row reading of the tableau tuple self.

EXAMPLES:

sage: TableauTuple([[[1,2],[3,4]],[[5,6,7],[8]],[[9,10],[11],[12]]]).to_word_by_
→˓row()
word: 12,11,9,10,8,5,6,7,3,4,1,2

up(n=None)
An iterator for all the TableauTuple that can be obtained from self by adding a cell with the label n. If
n is not specified then a cell with label n will be added to the tableau tuple, where n-1 is the size of the
tableau tuple before any cells are added.

EXAMPLES:

sage: list(TableauTuple([[[1,2]],[[3]]]).up())
[([[1, 2, 4]], [[3]]),
([[1, 2], [4]], [[3]]),
([[1, 2]], [[3, 4]]),
([[1, 2]], [[3], [4]])]

class sage.combinat.tableau_tuple.TableauTuples
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

3380 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

A factory class for the various classes of tableau tuples.

INPUT:

There are three optional arguments:

• shape – determines a PartitionTuple which gives the shape of the TableauTuples

• level – the level of the tableau tuples (positive integer)

• size – the size of the tableau tuples (non-negative integer)

It is not necessary to use the keywords. If they are not specified then the first integer argument specifies the
level and the second the size of the tableaux.

OUTPUT:

• The corresponding class of tableau tuples.

The entries of a tableau can be any sage object. Because of this, no enumeration of the set of TableauTuples
is possible.

EXAMPLES:

sage: T3 = TableauTuples(3); T3
Tableau tuples of level 3
sage: [['a','b']] in TableauTuples()
True
sage: [['a','b']] in TableauTuples(level=3)
False
sage: t = TableauTuples(level=3)([[],[[1,1,1]],[]]); t
([], [[1, 1, 1]], [])
sage: t in T3
True
sage: t in TableauTuples()
True
sage: t in TableauTuples(size=3)
True
sage: t in TableauTuples(size=4)
False
sage: t in StandardTableauTuples()
False
sage: t.parent()
Tableau tuples of level 3
sage: t.category()
Category of elements of Tableau tuples of level 3

See also:

• Tableau

• StandardTableau

• StandardTableauTuples

Element
alias of TableauTuple

level()
Return the level of a tableau tuple in self, or None if different tableau tuples in self can have different
sizes. The level of a tableau tuple is just the level of the underlying PartitionTuple.

5.1. Comprehensive Module List 3381

Combinatorics, Release 9.7

EXAMPLES:

sage: TableauTuples().level() is None
True
sage: TableauTuples(7).level()
7

level_one_parent_class
alias of sage.combinat.tableau.Tableaux_all

list()
If the set of tableau tuples self is finite then this function returns the list of these tableau tuples. If the
class is infinite an error is returned.

EXAMPLES:

sage: StandardTableauTuples([[2,1],[2]]).list()
[([[1, 2], [3]], [[4, 5]]),
([[1, 3], [2]], [[4, 5]]),
([[1, 2], [4]], [[3, 5]]),
([[1, 3], [4]], [[2, 5]]),
([[2, 3], [4]], [[1, 5]]),
([[1, 4], [2]], [[3, 5]]),
([[1, 4], [3]], [[2, 5]]),
([[2, 4], [3]], [[1, 5]]),
([[1, 2], [5]], [[3, 4]]),
([[1, 3], [5]], [[2, 4]]),
([[2, 3], [5]], [[1, 4]]),
([[1, 4], [5]], [[2, 3]]),
([[2, 4], [5]], [[1, 3]]),
([[3, 4], [5]], [[1, 2]]),
([[1, 5], [2]], [[3, 4]]),
([[1, 5], [3]], [[2, 4]]),
([[2, 5], [3]], [[1, 4]]),
([[1, 5], [4]], [[2, 3]]),
([[2, 5], [4]], [[1, 3]]),
([[3, 5], [4]], [[1, 2]])]

options(*get_value, **set_value)
Sets the global options for elements of the tableau, skew_tableau, and tableau tuple classes. The defaults
are for tableau to be displayed as a list, latexed as a Young diagram using the English convention.

OPTIONS:

• ascii_art – (default: repr) Controls the ascii art output for tableaux

– compact – minimal length ascii art

– repr – display using the diagram string representation

– table – display as a table

• convention – (default: English) Sets the convention used for displaying tableaux and partitions

– English – use the English convention

– French – use the French convention

• display – (default: list) Controls the way in which tableaux are printed

3382 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

– array – alias for diagram

– compact – minimal length string representation

– diagram – display as Young diagram (similar to pp()

– ferrers_diagram – alias for diagram

– list – print tableaux as lists

– young_diagram – alias for diagram

• latex – (default: diagram) Controls the way in which tableaux are latexed

– array – alias for diagram

– diagram – as a Young diagram

– ferrers_diagram – alias for diagram

– list – as a list

– young_diagram – alias for diagram

• notation – alternative name for convention

Note: Changing the convention for tableaux also changes the convention for partitions.

If no parameters are set, then the function returns a copy of the options dictionary.

EXAMPLES:

sage: T = Tableau([[1,2,3],[4,5]])
sage: T
[[1, 2, 3], [4, 5]]
sage: Tableaux.options.display="array"
sage: T
1 2 3
4 5

sage: Tableaux.options.convention="french"
sage: T
4 5
1 2 3

Changing the convention for tableaux also changes the convention for partitions and vice versa:

sage: P = Partition([3,3,1])
sage: print(P.ferrers_diagram())
*

sage: Partitions.options.convention="english"
sage: print(P.ferrers_diagram())

*
sage: T
1 2 3
4 5

5.1. Comprehensive Module List 3383

Combinatorics, Release 9.7

The ASCII art can also be changed:

sage: t = Tableau([[1,2,3],[4,5]])
sage: ascii_art(t)
1 2 3
4 5

sage: Tableaux.options.ascii_art = "table"
sage: ascii_art(t)
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 |
+---+---+
sage: Tableaux.options.ascii_art = "compact"
sage: ascii_art(t)
|1|2|3|
|4|5|
sage: Tableaux.options._reset()

See GlobalOptions for more features of these options.

size()
Return the size of a tableau tuple in self, or None if different tableau tuples in self can have different
sizes. The size of a tableau tuple is just the size of the underlying PartitionTuple.

EXAMPLES:

sage: TableauTuples(size=14).size()
14

class sage.combinat.tableau_tuple.TableauTuples_all
Bases: sage.combinat.tableau_tuple.TableauTuples

The parent class of all TableauTuples, with arbitrary level and size.

an_element()
Return a particular element of the class.

EXAMPLES:

sage: TableauTuples().an_element()
([[1]], [[2]], [[3]], [[4]], [[5]], [[6]], [[7]])

class sage.combinat.tableau_tuple.TableauTuples_level(level)
Bases: sage.combinat.tableau_tuple.TableauTuples

Class of all TableauTuples with a fixed level and arbitrary size.

an_element()
Return a particular element of the class.

EXAMPLES:

sage: TableauTuples(3).an_element()
([], [], [])
sage: TableauTuples(5).an_element()
([], [], [], [], [])
sage: T = TableauTuples(0)

(continues on next page)

3384 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/global_options.html#sage.structure.global_options.GlobalOptions

Combinatorics, Release 9.7

(continued from previous page)

Traceback (most recent call last):
...
ValueError: the level must be a positive integer

class sage.combinat.tableau_tuple.TableauTuples_level_size(level, size)
Bases: sage.combinat.tableau_tuple.TableauTuples

Class of all TableauTuples with a fixed level and a fixed size.

an_element()
Return a particular element of the class.

EXAMPLES:

sage: TableauTuples(3,0).an_element()
([], [], [])
sage: TableauTuples(3,1).an_element()
([[1]], [], [])
sage: TableauTuples(3,2).an_element()
([[1, 2]], [], [])

class sage.combinat.tableau_tuple.TableauTuples_size(size)
Bases: sage.combinat.tableau_tuple.TableauTuples

Class of all TableauTuples with a arbitrary level and fixed size.

an_element()
Return a particular element of the class.

EXAMPLES:

sage: TableauTuples(size=3).an_element()
([], [[1, 2, 3]], [])
sage: TableauTuples(size=0).an_element()
([], [], [])

5.1.345 Generalized Tamari lattices

These lattices depend on three parameters 𝑎, 𝑏 and𝑚, where 𝑎 and 𝑏 are coprime positive integers and𝑚 is a nonnegative
integer.

The elements are Dyck paths in the (𝑎× 𝑏)-rectangle. The order relation depends on 𝑚.

To use the provided functionality, you should import Generalized Tamari lattices by typing:

sage: from sage.combinat.tamari_lattices import GeneralizedTamariLattice

Then,

sage: GeneralizedTamariLattice(3,2)
Finite lattice containing 2 elements
sage: GeneralizedTamariLattice(4,3)
Finite lattice containing 5 elements

The classical Tamari lattices are special cases of this construction and are also available directly using the catalogue
of posets, as follows:

5.1. Comprehensive Module List 3385

Combinatorics, Release 9.7

sage: posets.TamariLattice(3)
Finite lattice containing 5 elements

See also:

For more detailed information see TamariLattice(), GeneralizedTamariLattice().

sage.combinat.tamari_lattices.DexterSemilattice(n)
Return the 𝑛-th Dexter meet-semilattice.

INPUT:

• n – a nonnegative integer (the index)

OUTPUT:

a finite meet-semilattice

The elements of the semilattice are Dyck paths in the (𝑛+ 1× 𝑛)-rectangle.

EXAMPLES:

sage: posets.DexterSemilattice(3)
Finite meet-semilattice containing 5 elements

sage: P = posets.DexterSemilattice(4); P
Finite meet-semilattice containing 14 elements
sage: len(P.maximal_chains())
15
sage: len(P.maximal_elements())
4
sage: P.chain_polynomial()
q^5 + 19*q^4 + 47*q^3 + 42*q^2 + 14*q + 1

REFERENCES:

• [Cha18]

sage.combinat.tamari_lattices.GeneralizedTamariLattice(a, b, m=1, check=True)
Return the (𝑎, 𝑏)-Tamari lattice of parameter 𝑚.

INPUT:

• 𝑎 and 𝑏 – coprime integers with 𝑎 ≥ 𝑏

• 𝑚 – a nonnegative integer such that 𝑎 ≥ 𝑏𝑚

OUTPUT:

• a finite lattice (the lattice property is only conjectural in general)

The elements of the lattice are Dyck paths in the (𝑎× 𝑏)-rectangle.

The parameter 𝑚 (slope) is used only to define the covering relations. When the slope 𝑚 is 0, two paths are
comparable if and only if one is always above the other.

The usual Tamari lattice of index 𝑏 is the special case 𝑎 = 𝑏+ 1 and 𝑚 = 1.

Other special cases give the 𝑚-Tamari lattices studied in [BMFPR].

EXAMPLES:

3386 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Tamari_lattice

Combinatorics, Release 9.7

sage: from sage.combinat.tamari_lattices import GeneralizedTamariLattice
sage: GeneralizedTamariLattice(3,2)
Finite lattice containing 2 elements
sage: GeneralizedTamariLattice(4,3)
Finite lattice containing 5 elements
sage: GeneralizedTamariLattice(4,4)
Traceback (most recent call last):
...
ValueError: the numbers a and b must be coprime with a>=b
sage: GeneralizedTamariLattice(7,5,2)
Traceback (most recent call last):
...
ValueError: the condition a>=b*m does not hold
sage: P = GeneralizedTamariLattice(5,3);P
Finite lattice containing 7 elements

REFERENCES:

sage.combinat.tamari_lattices.TamariLattice(n, m=1)
Return the 𝑛-th Tamari lattice.

Using the slope parameter 𝑚, one can also get the 𝑚-Tamari lattices.

INPUT:

• 𝑛 – a nonnegative integer (the index)

• 𝑚 – an optional nonnegative integer (the slope, default to 1)

OUTPUT:

a finite lattice

In the usual case, the elements of the lattice are Dyck paths in the (𝑛+ 1× 𝑛)-rectangle. For a general slope
𝑚, the elements are Dyck paths in the (𝑚𝑛+ 1× 𝑛)-rectangle.

See Tamari lattice for mathematical background.

EXAMPLES:

sage: posets.TamariLattice(3)
Finite lattice containing 5 elements

sage: posets.TamariLattice(3, 2)
Finite lattice containing 12 elements

REFERENCES:

• [BMFPR]

sage.combinat.tamari_lattices.paths_in_triangle(i, j, a, b)
Return all Dyck paths from (0, 0) to (𝑖, 𝑗) in the (𝑎× 𝑏)-rectangle.

This means that at each step of the path, one has 𝑎𝑦 ≥ 𝑏𝑥.

A path is represented by a sequence of 0 and 1, where 0 is an horizontal step (1, 0) and 1 is a vertical step (0, 1).

INPUT:

• 𝑎 and 𝑏 – coprime integers with 𝑎 ≥ 𝑏

• 𝑖 and 𝑗 – nonnegative integers with 1 ≥ 𝑗
𝑏 ≥

𝑏𝑖
𝑎 ≥ 0

5.1. Comprehensive Module List 3387

https://en.wikipedia.org/wiki/Tamari_lattice

Combinatorics, Release 9.7

OUTPUT:

• a list of paths

EXAMPLES:

sage: from sage.combinat.tamari_lattices import paths_in_triangle
sage: paths_in_triangle(2,2,2,2)
[(1, 0, 1, 0), (1, 1, 0, 0)]
sage: paths_in_triangle(2,3,4,4)
[(1, 0, 1, 0, 1), (1, 1, 0, 0, 1), (1, 0, 1, 1, 0),
(1, 1, 0, 1, 0), (1, 1, 1, 0, 0)]
sage: paths_in_triangle(2,1,4,4)
Traceback (most recent call last):
...
ValueError: the endpoint is not valid
sage: paths_in_triangle(3,2,5,3)
[(1, 0, 1, 0, 0), (1, 1, 0, 0, 0)]

sage.combinat.tamari_lattices.swap(p, i, m=1)
Perform a covering move in the (𝑎, 𝑏)-Tamari lattice of parameter 𝑚.

The letter at position 𝑖 in 𝑝 must be a 0, followed by at least one 1.

INPUT:

• p – a Dyck path in the (𝑎× 𝑏)-rectangle

• i – an integer between 0 and 𝑎+ 𝑏− 1

OUTPUT:

• a Dyck path in the (𝑎× 𝑏)-rectangle

EXAMPLES:

sage: from sage.combinat.tamari_lattices import swap
sage: swap((1,0,1,0,0),1)
(1, 1, 0, 0, 0)
sage: swap((1,1,0,0,1,1,0,0,0),3)
(1, 1, 0, 1, 1, 0, 0, 0, 0)

sage.combinat.tamari_lattices.swap_dexter(p, i)
Perform covering moves in the (𝑎, 𝑏)-Dexter posets.

The letter at position 𝑖 in 𝑝 must be a 0, followed by at least one 1.

INPUT:

• p – a Dyck path in the (𝑎× 𝑏)-rectangle

• i – an integer between 0 and 𝑎+ 𝑏− 1

OUTPUT:

• a list of Dyck paths in the (𝑎× 𝑏)-rectangle

EXAMPLES:

sage: from sage.combinat.tamari_lattices import swap_dexter
sage: swap_dexter((1,0,1,0,0),1)
[(1, 1, 0, 0, 0)]

(continues on next page)

3388 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: swap_dexter((1,1,0,0,1,1,0,0,0),3)
[(1, 1, 0, 1, 1, 0, 0, 0, 0), (1, 1, 1, 1, 0, 0, 0, 0, 0)]
sage: swap_dexter((1,1,0,1,0,0,0),2)
[]

5.1.346 Tiling Solver

Tiling a n-dimensional polyomino with n-dimensional polyominoes.

This module defines two classes:

• sage.combinat.tiling.Polyomino class, to represent polyominoes in arbitrary dimension. The goal of this
class is to return all the rotated, reflected and/or translated copies of a polyomino that are contained in a certain
box.

• sage.combinat.tiling.TilingSolver class, to solve the problem of tiling a 𝑛-dimensional polyomino with
a set of 𝑛-dimensional polyominoes. One can specify if rotations and reflections are allowed or not and if pieces
can be reused or not. This class convert the tiling data into rows of a matrix that are passed to the DLX solver. It
also allows to compute the number of solutions.

This uses dancing links code which is in Sage. Dancing links were originally introduced by Donald Knuth in 2000
[Knuth1]. Knuth used dancing links to solve tilings of a region by 2d pentaminoes. Here we extend the method to any
dimension.

In particular, the sage.games.quantumino module is based on the Tiling Solver and allows to solve the 3d Quantu-
mino puzzle.

AUTHOR:

• Sébastien Labbé, June 2011, initial version

• Sébastien Labbé, July 2015, count solutions up to rotations

• Sébastien Labbé, April 2017, tiling a polyomino, not only a rectangular box

EXAMPLES:

2d Easy Example

Here is a 2d example. Let us try to fill the 3× 2 rectangle with a 1× 2 rectangle and a 2× 2 square. Obviously, there
are two solutions:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0), (0,1)])
sage: q = Polyomino([(0,0), (0,1), (1,0), (1,1)])
sage: T = TilingSolver([p,q], box=[3,2])
sage: it = T.solve()
sage: next(it)
[Polyomino: [(0, 0), (0, 1), (1, 0), (1, 1)], Color: gray, Polyomino: [(2, 0), (2, 1)],␣
→˓Color: gray]
sage: next(it)
[Polyomino: [(1, 0), (1, 1), (2, 0), (2, 1)], Color: gray, Polyomino: [(0, 0), (0, 1)],␣
→˓Color: gray]
sage: next(it)
Traceback (most recent call last):

(continues on next page)

5.1. Comprehensive Module List 3389

../../../../../../html/en/reference/games/sage/games/quantumino.html#module-sage.games.quantumino

Combinatorics, Release 9.7

(continued from previous page)

...
StopIteration
sage: T.number_of_solutions()
2

Scott’s pentamino problem

As mentioned in the introduction of [Knuth1], Scott’s pentamino problem consists in tiling a chessboard leaving the
center four squares vacant with the 12 distinct pentaminoes.

The 12 pentaminoes:

sage: from sage.combinat.tiling import Polyomino
sage: I = Polyomino([(0,0),(1,0),(2,0),(3,0),(4,0)], color='brown')
sage: N = Polyomino([(1,0),(1,1),(1,2),(0,2),(0,3)], color='yellow')
sage: L = Polyomino([(0,0),(1,0),(0,1),(0,2),(0,3)], color='magenta')
sage: U = Polyomino([(0,0),(1,0),(0,1),(0,2),(1,2)], color='violet')
sage: X = Polyomino([(1,0),(0,1),(1,1),(1,2),(2,1)], color='pink')
sage: W = Polyomino([(2,0),(2,1),(1,1),(1,2),(0,2)], color='green')
sage: P = Polyomino([(1,0),(2,0),(0,1),(1,1),(2,1)], color='orange')
sage: F = Polyomino([(1,0),(1,1),(0,1),(2,1),(2,2)], color='gray')
sage: Z = Polyomino([(0,0),(1,0),(1,1),(1,2),(2,2)], color='yellow')
sage: T = Polyomino([(0,0),(0,1),(1,1),(2,1),(0,2)], color='red')
sage: Y = Polyomino([(0,0),(1,0),(2,0),(3,0),(2,1)], color='green')
sage: V = Polyomino([(0,0),(0,1),(0,2),(1,0),(2,0)], color='blue')

A 8× 8 chessboard leaving the center four squares vacant:

sage: import itertools
sage: s = set(itertools.product(range(8), repeat=2))
sage: s.difference_update([(3,3), (3,4), (4,3), (4,4)])
sage: chessboard = Polyomino(s)
sage: len(chessboard)
60

This problem is represented by a matrix made of 1568 rows and 72 columns. It has 65 different solutions up to isome-
tries:

sage: from sage.combinat.tiling import TilingSolver
sage: T = TilingSolver([I,N,L,U,X,W,P,F,Z,T,Y,V], box=chessboard, reflection=True)
sage: T
Tiling solver of 12 pieces into a box of size 60
Rotation allowed: True
Reflection allowed: True
Reusing pieces allowed: False
sage: len(T.rows()) # long time
1568
sage: T.number_of_solutions() # long time
520
sage: 520 / 8
65

Showing one solution:

3390 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: solution = next(T.solve()) # long time
sage: G = sum([piece.show2d() for piece in solution], Graphics()) # long time
sage: G.show(aspect_ratio=1, axes=False) # long time

1d Easy Example

Here is an easy one dimensional example where we try to tile a stick of length 6 with three sticks of length 1, 2 and 3.
There are six solutions:

sage: p = Polyomino([[0]])
sage: q = Polyomino([[0],[1]])
sage: r = Polyomino([[0],[1],[2]])
sage: T = TilingSolver([p,q,r], box=[6])
sage: len(T.rows())
15
sage: it = T.solve()
sage: next(it)
[Polyomino: [(0)], Color: gray, Polyomino: [(1), (2)], Color: gray, Polyomino: [(3), (4),
→˓ (5)], Color: gray]
sage: next(it)
[Polyomino: [(0)], Color: gray, Polyomino: [(1), (2), (3)], Color: gray, Polyomino: [(4),
→˓ (5)], Color: gray]
sage: T.number_of_solutions()
6

2d Puzzle allowing reflections

The following is a puzzle owned by Florent Hivert:

sage: from sage.combinat.tiling import Polyomino, TilingSolver
sage: L = []
sage: L.append(Polyomino([(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)], 'yellow'))
sage: L.append(Polyomino([(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2)], "black"))
sage: L.append(Polyomino([(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,3)], "gray"))
sage: L.append(Polyomino([(0,0),(0,1),(0,2),(0,3),(1,0),(1,3)],"cyan"))
sage: L.append(Polyomino([(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)],"red"))
sage: L.append(Polyomino([(0,0),(0,1),(0,2),(0,3),(1,1),(1,2)],"blue"))
sage: L.append(Polyomino([(0,0),(0,1),(0,2),(0,3),(1,1),(1,3)],"green"))
sage: L.append(Polyomino([(0,1),(0,2),(0,3),(1,0),(1,1),(1,3)],"magenta"))
sage: L.append(Polyomino([(0,1),(0,2),(0,3),(1,0),(1,1),(1,2)],"orange"))
sage: L.append(Polyomino([(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)],"pink"))

By default, rotations are allowed and reflections are not. In this case, there are no solution for tiling a 8× 8 rectangular
box:

sage: T = TilingSolver(L, box=(8,8))
sage: T.number_of_solutions() # long time (2.5 s)
0

If reflections are allowed, there are solutions. Solve the puzzle and show one solution:

5.1. Comprehensive Module List 3391

Combinatorics, Release 9.7

sage: T = TilingSolver(L, box=(8,8), reflection=True)
sage: solution = next(T.solve()) # long time (7s)
sage: G = sum([piece.show2d() for piece in solution], Graphics()) # long time (<1s)
sage: G.show(aspect_ratio=1, axes=False) # long time (2s)

Compute the number of solutions:

sage: T.number_of_solutions() # long time (2.6s)
328

Create a animation of all the solutions:

sage: a = T.animate() # not tested
sage: a # not tested
Animation with 328 frames

3d Puzzle

The same thing done in 3d without allowing reflections this time:

sage: from sage.combinat.tiling import Polyomino, TilingSolver
sage: L = []
sage: L.append(Polyomino([(0,0,0),(0,1,0),(0,2,0),(0,3,0),(1,0,0),(1,1,0),(1,2,0),(1,3,
→˓0)]))
sage: L.append(Polyomino([(0,0,0),(0,1,0),(0,2,0),(0,3,0),(1,0,0),(1,1,0),(1,2,0)]))
sage: L.append(Polyomino([(0,0,0),(0,1,0),(0,2,0),(0,3,0),(1,0,0),(1,1,0),(1,3,0)]))
sage: L.append(Polyomino([(0,0,0),(0,1,0),(0,2,0),(0,3,0),(1,0,0),(1,3,0)]))
sage: L.append(Polyomino([(0,0,0),(0,1,0),(0,2,0),(0,3,0),(1,0,0),(1,1,0)]))
sage: L.append(Polyomino([(0,0,0),(0,1,0),(0,2,0),(0,3,0),(1,1,0),(1,2,0)]))
sage: L.append(Polyomino([(0,0,0),(0,1,0),(0,2,0),(0,3,0),(1,1,0),(1,3,0)]))
sage: L.append(Polyomino([(0,1,0),(0,2,0),(0,3,0),(1,0,0),(1,1,0),(1,3,0)]))
sage: L.append(Polyomino([(0,1,0),(0,2,0),(0,3,0),(1,0,0),(1,1,0),(1,2,0)]))
sage: L.append(Polyomino([(0,0,0),(0,1,0),(0,2,0),(1,0,0),(1,1,0),(1,2,0)]))

Solve the puzzle and show one solution:

sage: T = TilingSolver(L, box=(8,8,1))
sage: solution = next(T.solve()) # long time (8s)
sage: G = sum([p.show3d(size=0.85) for p in solution], Graphics()) # long time (<1s)
sage: G.show(aspect_ratio=1, viewer='tachyon') # long time (2s)

Let us compute the number of solutions:

sage: T.number_of_solutions() # long time (3s)
328

3392 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Donald Knuth example : the Y pentamino

Donald Knuth [Knuth1] considered the problem of packing 45 Y pentaminoes into a 15× 15 square:

sage: from sage.combinat.tiling import Polyomino, TilingSolver
sage: y = Polyomino([(0,0),(1,0),(2,0),(3,0),(2,1)])
sage: T = TilingSolver([y], box=(5,10), reusable=True, reflection=True)
sage: T.number_of_solutions()
10
sage: solution = next(T.solve())
sage: G = sum([p.show2d() for p in solution], Graphics())
sage: G.show(aspect_ratio=1) # long time (2s)

sage: T = TilingSolver([y], box=(15,15), reusable=True, reflection=True)
sage: T.number_of_solutions() # not tested
1696

Up to the symmetries of the square, there are 212 distinct solutions:

sage: 1696 // 8
212

Animation of Donald Knuth’s dancing links

Animation of the solutions:

sage: from sage.combinat.tiling import Polyomino, TilingSolver
sage: Y = Polyomino([(0,0),(1,0),(2,0),(3,0),(2,1)], color='yellow')
sage: T = TilingSolver([Y], box=(15,15), reusable=True, reflection=True)
sage: a = T.animate(stop=40) # long time # optional -- ImageMagick
sage: a # long time # optional -- ImageMagick
Animation with 40 frames

Incremental animation of the solutions (one piece is removed/added at a time):

sage: a = T.animate('incremental', stop=40) # long time # optional -- ImageMagick
sage: a # long time # optional -- ImageMagick
Animation with 40 frames
sage: a.show(delay=50, iterations=1) # long time # optional -- ImageMagick

5d Easy Example

Here is a 5d example. Let us try to fill the 2 × 2 × 2 × 2 × 2 rectangle with reusable 1 × 1 × 1 × 1 × 1 rectangles.
Obviously, there is one solution:

sage: from sage.combinat.tiling import Polyomino, TilingSolver
sage: p = Polyomino([(0,0,0,0,0)])
sage: T = TilingSolver([p], box=(2,2,2,2,2), reusable=True)
sage: rows = T.rows() # long time (3s)
sage: rows # long time (fast)
[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],␣
→˓[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],␣
→˓[30], [31]] (continues on next page)

5.1. Comprehensive Module List 3393

Combinatorics, Release 9.7

(continued from previous page)

sage: T.number_of_solutions() # long time (fast)
1

REFERENCES:

class sage.combinat.tiling.Polyomino(coords, color='gray', dimension=None)
Bases: sage.structure.sage_object.SageObject

A polyomino in Z𝑑.

The polyomino is the union of the unit square (or cube, or n-cube) centered at those coordinates. Such an object
should be connected, but the code does not make this assumption.

INPUT:

• coords – iterable of integer coordinates in Z𝑑

• color – string (default: 'gray'), color for display

• dimension – integer (default: None), dimension of the space, if None, it is guessed from the coords if
coords is non empty

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: Polyomino([(0,0,0), (0,1,0), (1,1,0), (1,1,1)], color='blue')
Polyomino: [(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1)], Color: blue

boundary()
Return the boundary of a 2d polyomino.

INPUT:

• self - a 2d polyomino

OUTPUT:

• list of edges (an edge is a pair of adjacent 2d coordinates)

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0), (1,0), (0,1), (1,1)])
sage: sorted(p.boundary())
[((-0.5, -0.5), (-0.5, 0.5)), ((-0.5, -0.5), (0.5, -0.5)), ((-0.5, 0.5), (-0.5,␣
→˓1.5)), ((-0.5, 1.5), (0.5, 1.5)), ((0.5, -0.5), (1.5, -0.5)), ((0.5, 1.5), (1.
→˓5, 1.5)), ((1.5, -0.5), (1.5, 0.5)), ((1.5, 0.5), (1.5, 1.5))]
sage: len(_)
8
sage: p = Polyomino([(5,5)])
sage: sorted(p.boundary())
[((4.5, 4.5), (4.5, 5.5)), ((4.5, 4.5), (5.5, 4.5)), ((4.5, 5.5), (5.5, 5.5)),␣
→˓((5.5, 4.5), (5.5, 5.5))]

bounding_box()
EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0),(1,0,0),(1,1,0),(1,1,1),(1,2,0)], color='deeppink')

(continues on next page)

3394 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

(continued from previous page)

sage: p.bounding_box()
[[0, 0, 0], [1, 2, 1]]

canonical()
Return the translated copy of self having minimal and nonnegative coordinates

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0),(1,0,0),(1,1,0),(1,1,1),(1,2,0)], color='deeppink')
sage: p
Polyomino: [(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 0)], Color:␣
→˓deeppink
sage: p.canonical()
Polyomino: [(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 0)], Color:␣
→˓deeppink

canonical_isometric_copies(orientation_preserving=True, mod_box_isometries=False)
Return the list of image of self under isometries of the 𝑛-cube where the coordinates are all nonnegative
and minimal.

INPUT:

• orientation_preserving – bool (optional, default: True); if True, the group of isometries of the
𝑛-cube is restricted to those that preserve the orientation, i.e. of determinant 1.

• mod_box_isometries – bool (default: False), whether to quotient the group of isometries of the
𝑛-cube by the subgroup of isometries of the 𝑎1 × 𝑎2 · · · × 𝑎𝑛 rectangular box where are the 𝑎𝑖 are
assumed to be distinct.

OUTPUT:

set of Polyomino

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0), (0,1,0), (1,1,0), (1,1,1)], color='blue')
sage: s = p.canonical_isometric_copies()
sage: len(s)
12

With the non orientation-preserving:

sage: s = p.canonical_isometric_copies(orientation_preserving=False)
sage: len(s)
24

Modulo rotation by angle 180 degrees:

sage: s = p.canonical_isometric_copies(mod_box_isometries=True)
sage: len(s)
3

center()
Return the center of the polyomino.

EXAMPLES:

5.1. Comprehensive Module List 3395

Combinatorics, Release 9.7

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0),(0,0,1)])
sage: p.center()
(0, 0, 1/2)

In 3d:

sage: p = Polyomino([(0,0,0),(1,0,0),(1,1,0),(1,1,1),(1,2,0)], color='deeppink')
sage: p.center()
(4/5, 4/5, 1/5)

In 2d:

sage: p = Polyomino([(0,0),(1,0),(1,1),(1,2)])
sage: p.center()
(3/4, 3/4)

color(color=None)
Return or change the color of the polyomino.

INPUT:

• color – string, RBG tuple or None (default: None), if None, it returns the current color

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0), (0,1,0), (1,1,0), (1,1,1)], color='blue')
sage: p.color()
'blue'

frozenset()
Return the elements of Z𝑑 in the polyomino as a frozenset.

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0), (0,1,0), (1,1,0), (1,1,1)], color='red')
sage: p.frozenset()
frozenset({(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1)})

intersection(other)
Return the intersection of self and other.

INPUT:

• other - a polyomino

OUTPUT:

polyomino

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: a = Polyomino([(0,0)])
sage: b = Polyomino([(0,0), (0,1), (1,1), (2,1)])
sage: a.intersection(b)

(continues on next page)

3396 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Polyomino: [(0, 0)], Color: gray
sage: a.intersection(b+(1,1))
Polyomino: [], Color: gray

isometric_copies(box, orientation_preserving=True, mod_box_isometries=False)
Return the translated and isometric images of self that lies in the box.

INPUT:

• box – Polyomino or tuple of integers (size of a box)

• orientation_preserving – bool (optional, default: True); If True, the group of isometries of the
𝑛-cube is restricted to those that preserve the orientation, i.e. of determinant 1.

• mod_box_isometries – bool (default: False), whether to quotient the group of isometries of the
𝑛-cube by the subgroup of isometries of the 𝑎1 × 𝑎2 · · · × 𝑎𝑛 rectangular box where are the 𝑎𝑖 are
assumed to be distinct.

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0),(1,0,0),(1,1,0),(1,1,1),(1,2,0)], color='deeppink')
sage: L = list(p.isometric_copies(box=(5,8,2)))
sage: len(L)
360

sage: p = Polyomino([(0,0,0),(1,0,0),(1,1,0),(1,2,0),(1,2,1)], color='orange')
sage: L = list(p.isometric_copies(box=(5,8,2)))
sage: len(L)
180
sage: L = list(p.isometric_copies((5,8,2), False))
sage: len(L)
360
sage: L = list(p.isometric_copies((5,8,2), mod_box_isometries=True))
sage: len(L)
45

sage: p = Polyomino([(0,0), (1,0), (0,1)])
sage: b = Polyomino([(0,0), (1,0), (2,0), (0,1), (1,1), (0,2)])
sage: sorted(p.isometric_copies(b), key=lambda p: p.sorted_list())
[Polyomino: [(0, 0), (0, 1), (1, 0)], Color: gray,
Polyomino: [(0, 0), (0, 1), (1, 1)], Color: gray,
Polyomino: [(0, 0), (1, 0), (1, 1)], Color: gray,
Polyomino: [(0, 1), (0, 2), (1, 1)], Color: gray,
Polyomino: [(0, 1), (1, 0), (1, 1)], Color: gray,
Polyomino: [(1, 0), (1, 1), (2, 0)], Color: gray]

isometric_copies_intersection(box, orientation_preserving=True)
Return the set of non empty intersections of isometric images of self with a polyomino.

INPUT:

• box – Polyomino or tuple of integers (size of a box)

• orientation_preserving – bool (optional, default: True); if True, the group of isometries of the
𝑛-cube is restricted to those that preserve the orientation, i.e. of determinant 1.

5.1. Comprehensive Module List 3397

Combinatorics, Release 9.7

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0),(1,0)], color='deeppink')
sage: sorted(sorted(a.frozenset()) for a in p.isometric_copies_
→˓intersection(box=(2,3)))
[[(0, 0)],
[(0, 0), (0, 1)],
[(0, 0), (1, 0)],
[(0, 1)],
[(0, 1), (0, 2)],
[(0, 1), (1, 1)],
[(0, 2)],
[(0, 2), (1, 2)],
[(1, 0)],
[(1, 0), (1, 1)],
[(1, 1)],
[(1, 1), (1, 2)],
[(1, 2)]]

neighbor_edges()
Return an iterator over the pairs of neighbor coordinates inside of the polyomino.

Two points 𝑃 and 𝑄 in the polyomino are neighbor if 𝑃 − 𝑄 has one coordinate equal to +1 or −1 and
zero everywhere else.

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0),(0,0,1)])
sage: [sorted(edge) for edge in p.neighbor_edges()]
[[(0, 0, 0), (0, 0, 1)]]

In 3d:

sage: p = Polyomino([(0,0,0),(1,0,0),(1,1,0),(1,1,1),(1,2,0)], color='deeppink')
sage: L = sorted(sorted(edge) for edge in p.neighbor_edges())
sage: for a in L: a
[(0, 0, 0), (1, 0, 0)]
[(1, 0, 0), (1, 1, 0)]
[(1, 1, 0), (1, 1, 1)]
[(1, 1, 0), (1, 2, 0)]

In 2d:

sage: p = Polyomino([(0,0),(1,0),(1,1),(1,2)])
sage: L = sorted(sorted(edge) for edge in p.neighbor_edges())
sage: for a in L: a
[(0, 0), (1, 0)]
[(1, 0), (1, 1)]
[(1, 1), (1, 2)]

self_surrounding(radius, remove_incomplete_copies=True, ncpus=None)
Return a list of isometric copies of self surrounding it with an annulus of given radius.

INPUT:

3398 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• self - a polyomino of dimension 2

• radius - integer

• remove_incomplete_copies – bool (default: True), whether to keep only complete copies of self
in the output

• ncpus – integer (default: None), maximal number of subprocesses to use at the same time. If None,
it detects the number of effective CPUs in the system using sage.parallel.ncpus.ncpus(). If
ncpus=1, the first solution is searched serially.

OUTPUT:

list of polyominoes

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: H = Polyomino([(-1, 1), (-1, 4), (-1, 7), (0, 0), (0, 1), (0, 2),
....: (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (1, 1), (1, 2),
....: (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 0), (2, 2),
....: (2, 3), (2, 5), (2, 6), (2, 8)])
sage: solution = H.self_surrounding(8)
sage: G = sum([p.show2d() for p in solution], Graphics())

sage: solution = H.self_surrounding(8, remove_incomplete_copies=False)
sage: G = sum([p.show2d() for p in solution], Graphics())

show2d(size=0.7, color='black', thickness=1)
Return a 2d Graphic object representing the polyomino.

INPUT:

• self - a polyomino of dimension 2

• size - number (optional, default: 0.7), the size of each square.

• color - color (optional, default: 'black'), color of the boundary line.

• thickness - number (optional, default: 1), how thick the boundary line is.

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0),(1,0),(1,1),(1,2)], color='deeppink')
sage: p.show2d() # long time (0.5s)
Graphics object consisting of 17 graphics primitives

show3d(size=1)
Return a 3d Graphic object representing the polyomino.

INPUT:

• self - a polyomino of dimension 3

• size - number (optional, default: 1), the size of each 1 \times 1 \times 1 cube. This does a
homothety with respect to the center of the polyomino.

EXAMPLES:

5.1. Comprehensive Module List 3399

../../../../../../html/en/reference/parallel/sage/parallel/ncpus.html#sage.parallel.ncpus.ncpus

Combinatorics, Release 9.7

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0), (0,1,0), (1,1,0), (1,1,1)], color='blue')
sage: p.show3d() # long time (2s)
Graphics3d Object

sorted_list()
Return the color of the polyomino.

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0), (0,1,0), (1,1,0), (1,1,1)], color='blue')
sage: p.sorted_list()
[(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1)]

translated_copies(box)
Return an iterator over the translated images of self inside a polyomino.

INPUT:

• box – Polyomino or tuple of integers (size of a box)

OUTPUT:

iterator of 3d polyominoes

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0,0),(1,0,0),(1,1,0),(1,1,1),(1,2,0)], color='deeppink')
sage: for t in p.translated_copies(box=(5,8,2)): t
Polyomino: [(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 0)], Color:␣
→˓deeppink
Polyomino: [(0, 1, 0), (1, 1, 0), (1, 2, 0), (1, 2, 1), (1, 3, 0)], Color:␣
→˓deeppink
Polyomino: [(0, 2, 0), (1, 2, 0), (1, 3, 0), (1, 3, 1), (1, 4, 0)], Color:␣
→˓deeppink
Polyomino: [(0, 3, 0), (1, 3, 0), (1, 4, 0), (1, 4, 1), (1, 5, 0)], Color:␣
→˓deeppink
Polyomino: [(0, 4, 0), (1, 4, 0), (1, 5, 0), (1, 5, 1), (1, 6, 0)], Color:␣
→˓deeppink
Polyomino: [(0, 5, 0), (1, 5, 0), (1, 6, 0), (1, 6, 1), (1, 7, 0)], Color:␣
→˓deeppink
Polyomino: [(1, 0, 0), (2, 0, 0), (2, 1, 0), (2, 1, 1), (2, 2, 0)], Color:␣
→˓deeppink
Polyomino: [(1, 1, 0), (2, 1, 0), (2, 2, 0), (2, 2, 1), (2, 3, 0)], Color:␣
→˓deeppink
Polyomino: [(1, 2, 0), (2, 2, 0), (2, 3, 0), (2, 3, 1), (2, 4, 0)], Color:␣
→˓deeppink
Polyomino: [(1, 3, 0), (2, 3, 0), (2, 4, 0), (2, 4, 1), (2, 5, 0)], Color:␣
→˓deeppink
Polyomino: [(1, 4, 0), (2, 4, 0), (2, 5, 0), (2, 5, 1), (2, 6, 0)], Color:␣
→˓deeppink
Polyomino: [(1, 5, 0), (2, 5, 0), (2, 6, 0), (2, 6, 1), (2, 7, 0)], Color:␣
→˓deeppink
Polyomino: [(2, 0, 0), (3, 0, 0), (3, 1, 0), (3, 1, 1), (3, 2, 0)], Color:␣
→˓deeppink (continues on next page)

3400 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

Polyomino: [(2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1), (3, 3, 0)], Color:␣
→˓deeppink
Polyomino: [(2, 2, 0), (3, 2, 0), (3, 3, 0), (3, 3, 1), (3, 4, 0)], Color:␣
→˓deeppink
Polyomino: [(2, 3, 0), (3, 3, 0), (3, 4, 0), (3, 4, 1), (3, 5, 0)], Color:␣
→˓deeppink
Polyomino: [(2, 4, 0), (3, 4, 0), (3, 5, 0), (3, 5, 1), (3, 6, 0)], Color:␣
→˓deeppink
Polyomino: [(2, 5, 0), (3, 5, 0), (3, 6, 0), (3, 6, 1), (3, 7, 0)], Color:␣
→˓deeppink
Polyomino: [(3, 0, 0), (4, 0, 0), (4, 1, 0), (4, 1, 1), (4, 2, 0)], Color:␣
→˓deeppink
Polyomino: [(3, 1, 0), (4, 1, 0), (4, 2, 0), (4, 2, 1), (4, 3, 0)], Color:␣
→˓deeppink
Polyomino: [(3, 2, 0), (4, 2, 0), (4, 3, 0), (4, 3, 1), (4, 4, 0)], Color:␣
→˓deeppink
Polyomino: [(3, 3, 0), (4, 3, 0), (4, 4, 0), (4, 4, 1), (4, 5, 0)], Color:␣
→˓deeppink
Polyomino: [(3, 4, 0), (4, 4, 0), (4, 5, 0), (4, 5, 1), (4, 6, 0)], Color:␣
→˓deeppink
Polyomino: [(3, 5, 0), (4, 5, 0), (4, 6, 0), (4, 6, 1), (4, 7, 0)], Color:␣
→˓deeppink

This method is independent of the translation of the polyomino:

sage: q = Polyomino([(0,0,0), (1,0,0)])
sage: list(q.translated_copies((2,2,1)))
[Polyomino: [(0, 0, 0), (1, 0, 0)], Color: gray, Polyomino: [(0, 1, 0), (1, 1,␣
→˓0)], Color: gray]
sage: q = Polyomino([(34,7,-9), (35,7,-9)])
sage: list(q.translated_copies((2,2,1)))
[Polyomino: [(0, 0, 0), (1, 0, 0)], Color: gray, Polyomino: [(0, 1, 0), (1, 1,␣
→˓0)], Color: gray]

Inside smaller boxes:

sage: list(p.translated_copies(box=(2,2,3)))
[]
sage: list(p.translated_copies(box=(2,3,2)))
[Polyomino: [(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 0)], Color:␣
→˓deeppink]
sage: list(p.translated_copies(box=(3,2,2)))
[]
sage: list(p.translated_copies(box=(1,1,1)))
[]

Using a Polyomino as input:

sage: b = Polyomino([(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)])
sage: p = Polyomino([(0,0)])
sage: list(p.translated_copies(b))
[Polyomino: [(0, 0)], Color: gray,
Polyomino: [(0, 1)], Color: gray,

(continues on next page)

5.1. Comprehensive Module List 3401

Combinatorics, Release 9.7

(continued from previous page)

Polyomino: [(0, 2)], Color: gray,
Polyomino: [(1, 0)], Color: gray,
Polyomino: [(1, 1)], Color: gray,
Polyomino: [(1, 2)], Color: gray]

sage: p = Polyomino([(0,0), (1,0), (0,1)])
sage: b = Polyomino([(0,0), (1,0), (2,0), (0,1), (1,1), (0,2)])
sage: list(p.translated_copies(b))
[Polyomino: [(0, 0), (0, 1), (1, 0)], Color: gray,
Polyomino: [(0, 1), (0, 2), (1, 1)], Color: gray,
Polyomino: [(1, 0), (1, 1), (2, 0)], Color: gray]

translated_copies_intersection(box)
Return the set of non empty intersections of translated images of self with a polyomino.

INPUT:

• box – Polyomino or tuple of integers (size of a box)

OUTPUT:

set of 3d polyominoes

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino
sage: p = Polyomino([(0,0),(1,0)], color='deeppink')
sage: sorted(sorted(a.frozenset()) for a in p.translated_copies_
→˓intersection(box=(2,3)))
[[(0, 0)],
[(0, 0), (1, 0)],
[(0, 1)],
[(0, 1), (1, 1)],
[(0, 2)],
[(0, 2), (1, 2)],
[(1, 0)],
[(1, 1)],
[(1, 2)]]

Using a Polyomino as input:

sage: b = Polyomino([(0,0), (0,1), (0,2), (1,0), (2,0)])
sage: p = Polyomino([(0,0), (1,0)])
sage: sorted(sorted(a.frozenset()) for a in p.translated_copies_intersection(b))
[[(0, 0)], [(0, 0), (1, 0)], [(0, 1)], [(0, 2)], [(1, 0), (2, 0)], [(2, 0)]]

class sage.combinat.tiling.TilingSolver(pieces, box, rotation=True, reflection=False, reusable=False,
outside=False)

Bases: sage.structure.sage_object.SageObject

Tiling solver

Solve the problem of tiling a polyomino with a certain number of polyominoes.

INPUT:

• pieces – iterable of Polyominoes

3402 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

• box – Polyomino or tuple of integers (size of a box)

• rotation – bool (optional, default: True), whether to allow rotations

• reflection – bool (optional, default: False), whether to allow reflections

• reusable – bool (optional, default: False), whether to allow the pieces to be reused

• outside – bool (optional, default: False), whether to allow pieces to partially go outside of the box (all
non-empty intersection of the pieces with the box are considered)

EXAMPLES:

By default, rotations are allowed and reflections are not allowed:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])
sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: T
Tiling solver of 3 pieces into a box of size 6
Rotation allowed: True
Reflection allowed: False
Reusing pieces allowed: False

Solutions are given by an iterator:

sage: it = T.solve()
sage: for p in next(it): p
Polyomino: [(0, 0, 0)], Color: gray
Polyomino: [(0, 0, 1), (0, 0, 2)], Color: gray
Polyomino: [(0, 0, 3), (0, 0, 4), (0, 0, 5)], Color: gray

Another solution:

sage: for p in next(it): p
Polyomino: [(0, 0, 0)], Color: gray
Polyomino: [(0, 0, 1), (0, 0, 2), (0, 0, 3)], Color: gray
Polyomino: [(0, 0, 4), (0, 0, 5)], Color: gray

Tiling of a polyomino by polyominoes:

sage: b = Polyomino([(0,0), (1,0), (1,1), (2,1), (1,2), (2,2), (0,3), (1,3)])
sage: p = Polyomino([(0,0), (1,0)])
sage: T = TilingSolver([p], box=b, reusable=True)
sage: T.number_of_solutions()
2

animate(partial=None, stop=None, size=0.75, axes=False)
Return an animation of evolving solutions.

INPUT:

• partial - string (optional, default: None), whether to include partial (incomplete) solutions. It can
be one of the following:

– None - include only complete solutions

– 'common_prefix' - common prefix between two consecutive solutions

5.1. Comprehensive Module List 3403

Combinatorics, Release 9.7

– 'incremental' - one piece change at a time

• stop - integer (optional, default:None), number of frames

• size - number (optional, default: 0.75), the size of each 1 \times 1 square. This does a homothety
with respect to the center of each polyomino.

• axes - bool (optional, default:False), whether the x and y axes are shown.

EXAMPLES:

sage: from sage.combinat.tiling import Polyomino, TilingSolver
sage: y = Polyomino([(0,0),(1,0),(2,0),(3,0),(2,1)], color='cyan')
sage: T = TilingSolver([y], box=(5,10), reusable=True, reflection=True)
sage: a = T.animate()
sage: a # optional -- ImageMagick # long time
Animation with 10 frames

Include partial solutions (common prefix between two consecutive solutions):

sage: a = T.animate('common_prefix')
sage: a # optional -- ImageMagick # long time
Animation with 19 frames

Incremental solutions (one piece removed or added at a time):

sage: a = T.animate('incremental') # long time (2s)
sage: a # long time (2s) # optional --␣
→˓ImageMagick
Animation with 123 frames

sage: a.show() # optional -- ImageMagick # long time

The show function takes arguments to specify the delay between frames (measured in hundredths of a
second, default value 20) and the number of iterations (default value 0, which means to iterate forever). To
iterate 4 times with half a second between each frame:

sage: a.show(delay=50, iterations=4) # optional -- ImageMagick # long time

Limit the number of frames:

sage: a = T.animate('incremental', stop=13) # not tested
sage: a # not tested
Animation with 13 frames

coord_to_int_dict()
Return a dictionary mapping coordinates to integers.

OUTPUT:

dict

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])

(continues on next page)

3404 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: A = T.coord_to_int_dict()
sage: sorted(A.items())
[((0, 0, 0), 3), ((0, 0, 1), 4), ((0, 0, 2), 5), ((0, 0, 3), 6), ((0, 0, 4), 7),
→˓ ((0, 0, 5), 8)]

Reusable pieces:

sage: p = Polyomino([(0,0), (0,1)])
sage: q = Polyomino([(0,0), (0,1), (1,0), (1,1)])
sage: T = TilingSolver([p,q], box=[3,2], reusable=True)
sage: B = T.coord_to_int_dict()
sage: sorted(B.items())
[((0, 0), 0), ((0, 1), 1), ((1, 0), 2), ((1, 1), 3), ((2, 0), 4), ((2, 1), 5)]

dlx_solver()
Return the sage DLX solver of that tiling problem.

OUTPUT:

DLX Solver

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])
sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: T.dlx_solver()
Dancing links solver for 9 columns and 15 rows

int_to_coord_dict()
Return a dictionary mapping integers to coordinates.

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])
sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: B = T.int_to_coord_dict()
sage: sorted(B.items())
[(3, (0, 0, 0)), (4, (0, 0, 1)), (5, (0, 0, 2)), (6, (0, 0, 3)), (7, (0, 0, 4)),
→˓ (8, (0, 0, 5))]

Reusable pieces:

sage: from sage.combinat.tiling import Polyomino, TilingSolver
sage: p = Polyomino([(0,0), (0,1)])
sage: q = Polyomino([(0,0), (0,1), (1,0), (1,1)])
sage: T = TilingSolver([p,q], box=[3,2], reusable=True)
sage: B = T.int_to_coord_dict()

(continues on next page)

5.1. Comprehensive Module List 3405

Combinatorics, Release 9.7

(continued from previous page)

sage: sorted(B.items())
[(0, (0, 0)), (1, (0, 1)), (2, (1, 0)), (3, (1, 1)), (4, (2, 0)), (5, (2, 1))]

is_suitable()
Return whether the volume of the box is equal to sum of the volume of the polyominoes and the number of
rows sent to the DLX solver is larger than zero.

If these conditions are not verified, then the problem is not suitable in the sense that there are no solution.

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])
sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: T.is_suitable()
True
sage: T = TilingSolver([p,q,r], box=(1,1,7))
sage: T.is_suitable()
False

nrows_per_piece()
Return the number of rows necessary by each piece.

OUTPUT:

list

EXAMPLES:

sage: from sage.games.quantumino import QuantuminoSolver
sage: q = QuantuminoSolver(0)
sage: T = q.tiling_solver()
sage: T.nrows_per_piece() # long time (10s)
[360, 360, 360, 360, 360, 180, 180, 672, 672, 360, 360, 180, 180, 360, 360, 180]

number_of_solutions()
Return the number of distinct solutions.

OUTPUT:

integer

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0)])
sage: q = Polyomino([(0,0), (0,1)])
sage: r = Polyomino([(0,0), (0,1), (0,2)])
sage: T = TilingSolver([p,q,r], box=(1,6))
sage: T.number_of_solutions()
6

sage: T = TilingSolver([p,q,r], box=(1,7))
sage: T.number_of_solutions()
0

3406 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

pieces()
Return the list of pieces.

OUTPUT:

list of 3d polyominoes

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])
sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: for p in T._pieces: p
Polyomino: [(0, 0, 0)], Color: gray
Polyomino: [(0, 0, 0), (0, 0, 1)], Color: gray
Polyomino: [(0, 0, 0), (0, 0, 1), (0, 0, 2)], Color: gray

row_to_polyomino(row_number)
Return a polyomino associated to a row.

INPUT:

• row_number – integer, the i-th row

OUTPUT:

polyomino

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: a = Polyomino([(0,0,0), (0,0,1), (1,0,0)], color='blue')
sage: b = Polyomino([(0,0,0), (1,0,0), (0,1,0)], color='red')
sage: T = TilingSolver([a,b], box=(2,1,3))
sage: len(T.rows())
16

sage: T.row_to_polyomino(7)
Polyomino: [(0, 0, 2), (1, 0, 1), (1, 0, 2)], Color: blue

sage: T.row_to_polyomino(13)
Polyomino: [(0, 0, 1), (1, 0, 1), (1, 0, 2)], Color: red

rows()
Creation of the rows

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])
sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: rows = T.rows()
sage: for row in rows: row
[0, 3]

(continues on next page)

5.1. Comprehensive Module List 3407

Combinatorics, Release 9.7

(continued from previous page)

[0, 4]
[0, 5]
[0, 6]
[0, 7]
[0, 8]
[1, 3, 4]
[1, 4, 5]
[1, 5, 6]
[1, 6, 7]
[1, 7, 8]
[2, 3, 4, 5]
[2, 4, 5, 6]
[2, 5, 6, 7]
[2, 6, 7, 8]

rows_for_piece(i, mod_box_isometries=False)
Return the rows for the i-th piece.

INPUT:

• i – integer, the i-th piece

• mod_box_isometries – bool (default: False), whether to consider only rows for positions up to
the action of the quotient the group of isometries of the 𝑛-cube by the subgroup of isometries of the
𝑎1 × 𝑎2 · · · × 𝑎𝑛 rectangular box where are the 𝑎𝑖 are assumed to be distinct.

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])
sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: T.rows_for_piece(0)
[[0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8]]
sage: T.rows_for_piece(1)
[[1, 3, 4], [1, 4, 5], [1, 5, 6], [1, 6, 7], [1, 7, 8]]
sage: T.rows_for_piece(2)
[[2, 3, 4, 5], [2, 4, 5, 6], [2, 5, 6, 7], [2, 6, 7, 8]]

Less rows when using mod_box_isometries=True:

sage: a = Polyomino([(0,0,0), (0,0,1), (1,0,0)])
sage: b = Polyomino([(0,0,0), (1,0,0), (0,1,0)])
sage: T = TilingSolver([a,b], box=(2,1,3))
sage: T.rows_for_piece(0)
[[0, 2, 3, 5],
[0, 3, 4, 6],
[0, 2, 3, 6],
[0, 3, 4, 7],
[0, 2, 5, 6],
[0, 3, 6, 7],
[0, 3, 5, 6],
[0, 4, 6, 7]]

(continues on next page)

3408 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: T.rows_for_piece(0, mod_box_isometries=True)
[[0, 2, 3, 5], [0, 3, 4, 6]]
sage: T.rows_for_piece(1, mod_box_isometries=True)
[[1, 2, 3, 5], [1, 3, 4, 6]]

solve(partial=None)
Return an iterator of list of polyominoes that are an exact cover of the box.

INPUT:

• partial - string (optional, default: None), whether to include partial (incomplete) solutions. It can
be one of the following:

– None - include only complete solution

– 'common_prefix' - common prefix between two consecutive solutions

– 'incremental' - one piece change at a time

OUTPUT:

iterator of list of polyominoes

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])
sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: it = T.solve()
sage: for p in next(it): p
Polyomino: [(0, 0, 0)], Color: gray
Polyomino: [(0, 0, 1), (0, 0, 2)], Color: gray
Polyomino: [(0, 0, 3), (0, 0, 4), (0, 0, 5)], Color: gray
sage: for p in next(it): p
Polyomino: [(0, 0, 0)], Color: gray
Polyomino: [(0, 0, 1), (0, 0, 2), (0, 0, 3)], Color: gray
Polyomino: [(0, 0, 4), (0, 0, 5)], Color: gray
sage: for p in next(it): p
Polyomino: [(0, 0, 0), (0, 0, 1)], Color: gray
Polyomino: [(0, 0, 2), (0, 0, 3), (0, 0, 4)], Color: gray
Polyomino: [(0, 0, 5)], Color: gray

Including the partial solutions:

sage: it = T.solve(partial='common_prefix')
sage: for p in next(it): p
Polyomino: [(0, 0, 0)], Color: gray
Polyomino: [(0, 0, 1), (0, 0, 2)], Color: gray
Polyomino: [(0, 0, 3), (0, 0, 4), (0, 0, 5)], Color: gray
sage: for p in next(it): p
Polyomino: [(0, 0, 0)], Color: gray
sage: for p in next(it): p
Polyomino: [(0, 0, 0)], Color: gray
Polyomino: [(0, 0, 1), (0, 0, 2), (0, 0, 3)], Color: gray

(continues on next page)

5.1. Comprehensive Module List 3409

Combinatorics, Release 9.7

(continued from previous page)

Polyomino: [(0, 0, 4), (0, 0, 5)], Color: gray
sage: for p in next(it): p
sage: for p in next(it): p
Polyomino: [(0, 0, 0), (0, 0, 1)], Color: gray
Polyomino: [(0, 0, 2), (0, 0, 3), (0, 0, 4)], Color: gray
Polyomino: [(0, 0, 5)], Color: gray

Colors are preserved when the polyomino can be reused:

sage: p = Polyomino([(0,0,0)], color='yellow')
sage: q = Polyomino([(0,0,0), (0,0,1)], color='yellow')
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)], color='yellow')
sage: T = TilingSolver([p,q,r], box=(1,1,6), reusable=True)
sage: it = T.solve()
sage: for p in next(it): p
Polyomino: [(0, 0, 0)], Color: yellow
Polyomino: [(0, 0, 1)], Color: yellow
Polyomino: [(0, 0, 2)], Color: yellow
Polyomino: [(0, 0, 3)], Color: yellow
Polyomino: [(0, 0, 4)], Color: yellow
Polyomino: [(0, 0, 5)], Color: yellow

space()
Return an iterator over all the non negative integer coordinates contained in the space to tile.

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])
sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: list(T.space())
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 0, 5)]

starting_rows()
Return the starting rows for each piece.

EXAMPLES:

sage: from sage.combinat.tiling import TilingSolver, Polyomino
sage: p = Polyomino([(0,0,0)])
sage: q = Polyomino([(0,0,0), (0,0,1)])
sage: r = Polyomino([(0,0,0), (0,0,1), (0,0,2)])
sage: T = TilingSolver([p,q,r], box=(1,1,6))
sage: T.starting_rows()
[0, 6, 11, 15]

sage.combinat.tiling.ncube_isometry_group(n, orientation_preserving=True)
Return the isometry group of the 𝑛-cube as a list of matrices.

INPUT:

• n – positive integer, dimension of the space

• orientation_preserving – bool (optional, default: True), whether the orientation is preserved

3410 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

list of matrices

EXAMPLES:

sage: from sage.combinat.tiling import ncube_isometry_group
sage: ncube_isometry_group(2)
[
[1 0] [0 1] [-1 0] [0 -1]
[0 1], [-1 0], [0 -1], [1 0]
]
sage: ncube_isometry_group(2, orientation_preserving=False)
[
[1 0] [0 -1] [1 0] [0 1] [0 1] [-1 0] [0 -1] [-1 0]
[0 1], [-1 0], [0 -1], [-1 0], [1 0], [0 -1], [1 0], [0 1]
]

There are 24 orientation preserving isometries of the 3-cube:

sage: ncube_isometry_group(3)
[
[1 0 0] [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1]
[0 1 0] [0 0 1] [0 0 -1] [-1 0 0] [0 0 1] [0 -1 0]
[0 0 1], [0 -1 0], [0 1 0], [0 0 1], [1 0 0], [1 0 0],

[-1 0 0] [0 -1 0] [-1 0 0] [-1 0 0] [0 -1 0] [0 0 -1]
[0 -1 0] [0 0 -1] [0 0 -1] [0 1 0] [0 0 1] [1 0 0]
[0 0 1], [1 0 0], [0 -1 0], [0 0 -1], [-1 0 0], [0 -1 0],

[0 1 0] [0 0 1] [0 0 1] [0 -1 0] [0 0 -1] [-1 0 0]
[1 0 0] [0 1 0] [1 0 0] [1 0 0] [0 1 0] [0 0 1]
[0 0 -1], [-1 0 0], [0 1 0], [0 0 1], [1 0 0], [0 1 0],

[0 -1 0] [0 0 -1] [0 0 1] [1 0 0] [0 0 -1] [0 1 0]
[-1 0 0] [-1 0 0] [-1 0 0] [0 -1 0] [0 -1 0] [0 0 -1]
[0 0 -1], [0 1 0], [0 -1 0], [0 0 -1], [-1 0 0], [-1 0 0]
]

sage.combinat.tiling.ncube_isometry_group_cosets(n, orientation_preserving=True)
Return the quotient of the isometry group of the 𝑛-cube by the the isometry group of the rectangular paral-
lelepiped.

INPUT:

• n – positive integer, dimension of the space

• orientation_preserving – bool (optional, default: True), whether the orientation is preserved

OUTPUT:

list of cosets, each coset being a sorted list of matrices

EXAMPLES:

sage: from sage.combinat.tiling import ncube_isometry_group_cosets
sage: sorted(ncube_isometry_group_cosets(2))
[[

(continues on next page)

5.1. Comprehensive Module List 3411

Combinatorics, Release 9.7

(continued from previous page)

[-1 0] [1 0]
[0 -1], [0 1]
], [
[0 -1] [0 1]
[1 0], [-1 0]
]]
sage: sorted(ncube_isometry_group_cosets(2, False))
[[
[-1 0] [-1 0] [1 0] [1 0]
[0 -1], [0 1], [0 -1], [0 1]
], [
[0 -1] [0 -1] [0 1] [0 1]
[-1 0], [1 0], [-1 0], [1 0]
]]

sage: sorted(ncube_isometry_group_cosets(3))
[[
[-1 0 0] [-1 0 0] [1 0 0] [1 0 0]
[0 -1 0] [0 1 0] [0 -1 0] [0 1 0]
[0 0 1], [0 0 -1], [0 0 -1], [0 0 1]
], [
[-1 0 0] [-1 0 0] [1 0 0] [1 0 0]
[0 0 -1] [0 0 1] [0 0 -1] [0 0 1]
[0 -1 0], [0 1 0], [0 1 0], [0 -1 0]
], [
[0 -1 0] [0 -1 0] [0 1 0] [0 1 0]
[-1 0 0] [1 0 0] [-1 0 0] [1 0 0]
[0 0 -1], [0 0 1], [0 0 1], [0 0 -1]
], [
[0 -1 0] [0 -1 0] [0 1 0] [0 1 0]
[0 0 -1] [0 0 1] [0 0 -1] [0 0 1]
[1 0 0], [-1 0 0], [-1 0 0], [1 0 0]
], [
[0 0 -1] [0 0 -1] [0 0 1] [0 0 1]
[-1 0 0] [1 0 0] [-1 0 0] [1 0 0]
[0 1 0], [0 -1 0], [0 -1 0], [0 1 0]
], [
[0 0 -1] [0 0 -1] [0 0 1] [0 0 1]
[0 -1 0] [0 1 0] [0 -1 0] [0 1 0]
[-1 0 0], [1 0 0], [1 0 0], [-1 0 0]
]]

3412 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.347 Transitive ideal closure tool

sage.combinat.tools.transitive_ideal(f, x)
Return a list of all elements reachable from 𝑥 in the abstract reduction system whose reduction relation is given
by the function 𝑓 .

In more elementary terms:

If 𝑆 is a set, and 𝑓 is a function sending every element of 𝑆 to a list of elements of 𝑆, then we can define a digraph
on the vertex set 𝑆 by drawing an edge from 𝑠 to 𝑡 for every 𝑠 ∈ 𝑆 and every 𝑡 ∈ 𝑓(𝑠).

If 𝑥 ∈ 𝑆, then an element 𝑦 ∈ 𝑆 is said to be reachable from 𝑥 if there is a path 𝑥→ 𝑦 in this graph.

Given 𝑓 and 𝑥, this method computes the list of all elements of 𝑆 reachable from 𝑥.

Note that if there are infinitely many such elements, then this method will never halt.

For more powerful versions, see sage.combinat.backtrack

EXAMPLES:

sage: f = lambda x: [x-1] if x > 0 else []
sage: sage.combinat.tools.transitive_ideal(f, 10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

5.1.348 Tuples

class sage.combinat.tuple.Tuples(S, k)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

Return the enumerated set of ordered tuples of S of length k.

An ordered tuple of length k of set is an ordered selection with repetition and is represented by a list of length k
containing elements of set.

EXAMPLES:

sage: S = [1,2]
sage: Tuples(S,3).list()
[[1, 1, 1], [2, 1, 1], [1, 2, 1], [2, 2, 1], [1, 1, 2],
[2, 1, 2], [1, 2, 2], [2, 2, 2]]
sage: mset = ["s","t","e","i","n"]
sage: Tuples(mset,2).list()
[['s', 's'], ['t', 's'], ['e', 's'], ['i', 's'], ['n', 's'],
['s', 't'], ['t', 't'], ['e', 't'], ['i', 't'], ['n', 't'],
['s', 'e'], ['t', 'e'], ['e', 'e'], ['i', 'e'], ['n', 'e'],
['s', 'i'], ['t', 'i'], ['e', 'i'], ['i', 'i'], ['n', 'i'],
['s', 'n'], ['t', 'n'], ['e', 'n'], ['i', 'n'], ['n', 'n']]

sage: K.<a> = GF(4, 'a')
sage: mset = [x for x in K if x != 0]
sage: Tuples(mset,2).list()
[[a, a], [a + 1, a], [1, a], [a, a + 1], [a + 1, a + 1], [1, a + 1],
[a, 1], [a + 1, 1], [1, 1]]

5.1. Comprehensive Module List 3413

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

cardinality()
EXAMPLES:

sage: S = [1,2,3,4,5]
sage: Tuples(S,2).cardinality()
25
sage: S = [1,1,2,3,4,5]
sage: Tuples(S,2).cardinality()
25

sage.combinat.tuple.Tuples_sk
alias of sage.combinat.tuple.Tuples

class sage.combinat.tuple.UnorderedTuples(S, k)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

Return the enumerated set of unordered tuples of S of length k.

An unordered tuple of length k of set is a unordered selection with repetitions of set and is represented by a sorted
list of length k containing elements from set.

EXAMPLES:

sage: S = [1,2]
sage: UnorderedTuples(S,3).list()
[[1, 1, 1], [1, 1, 2], [1, 2, 2], [2, 2, 2]]
sage: UnorderedTuples(["a","b","c"],2).list()
[['a', 'a'], ['a', 'b'], ['a', 'c'], ['b', 'b'], ['b', 'c'],
['c', 'c']]

cardinality()
EXAMPLES:

sage: S = [1,2,3,4,5]
sage: UnorderedTuples(S,2).cardinality()
15

list()
EXAMPLES:

sage: S = [1,2]
sage: UnorderedTuples(S,3).list()
[[1, 1, 1], [1, 1, 2], [1, 2, 2], [2, 2, 2]]
sage: UnorderedTuples(["a","b","c"],2).list()
[['a', 'a'], ['a', 'b'], ['a', 'c'], ['b', 'b'], ['b', 'c'],
['c', 'c']]

sage.combinat.tuple.UnorderedTuples_sk
alias of sage.combinat.tuple.UnorderedTuples

3414 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

5.1.349 Introduction to combinatorics in Sage

This thematic tutorial is a translation by Hugh Thomas of the combinatorics chapter written by Nicolas M. Thiéry
in the book “Calcul Mathématique avec Sage” [CMS2012]. It covers mainly the treatment in Sage of the following
combinatorial problems: enumeration (how many elements are there in a set 𝑆?), listing (generate all the elements of
𝑆, or iterate through them), and random selection (choosing an element at random from a set 𝑆 according to a given
distribution, for example the uniform distribution). These questions arise naturally in the calculation of probabilities
(what is the probability in poker of obtaining a straight or a four-of-a-kind of aces?), in statistical physics, and also
in computer algebra (the number of elements in a finite field), or in the analysis of algorithms. Combinatorics covers
a much wider domain (partial orders, representation theory, . . .) for which we only give a few pointers towards the
possibilities offered by Sage.

Todo: Add link to some thematic tutorial on graphs

A characteristic of computational combinatorics is the profusion of types of objects and sets that one wants to manipu-
late. It would be impossible to describe them all or, a fortiori, to implement them all. After some Initial examples, this
chapter illustrates the underlying method: supplying the basic building blocks to describe common combinatorial sets
Common enumerated sets, tools for combining them to construct new examples Constructions, and generic algorithms
for solving uniformly a large class of problems Generic algorithms.

This is a domain in which Sage has much more extensive capabilities than most computer algebra systems, and it is
rapidly expanding; at the same time, it is still quite new, and has many unnecessary limitations and incoherences.

Initial examples

Poker and probability

We begin by solving a classic problem: enumerating certain combinations of cards in the game of poker, in order to
deduce their probability.

A card in a poker deck is characterized by a suit (hearts, diamonds, spades, or clubs) and a value (2, 3, . . . , 10, jack,
queen, king, ace). The game is played with a full deck, which consists of the Cartesian product of the set of suits and
the set of values:

Cards = Suits×Values = {(𝑠, 𝑣) | 𝑠 ∈ Suits et 𝑣 ∈ Values} .

We construct these examples in Sage:

sage: Suits = Set(["Hearts", "Diamonds", "Spades", "Clubs"])
sage: Values = Set([2, 3, 4, 5, 6, 7, 8, 9, 10,
....: "Jack", "Queen", "King", "Ace"])
sage: Cards = cartesian_product([Values, Suits])

There are 4 suits and 13 possible values, and therefore 4× 13 = 52 cards in the poker deck:

sage: Suits.cardinality()
4
sage: Values.cardinality()
13
sage: Cards.cardinality()
52

Draw a card at random:

5.1. Comprehensive Module List 3415

Combinatorics, Release 9.7

sage: Cards.random_element() # random
(6, 'Clubs')

Now we can define a set of cards:

sage: Set([Cards.random_element(), Cards.random_element()]) # random
{(2, 'Hearts'), (4, 'Spades')}

This problem should eventually disappear: it is planned to change the implementation of Cartesian products so that
their elements are immutable by default.

Returning to our main topic, we will be considering a simplified version of poker, in which each player directly draws
five cards, which form his hand. The cards are all distinct and the order in which they are drawn is irrelevant; a hand
is therefore a subset of size 5 of the set of cards. To draw a hand at random, we first construct the set of all possible
hands, and then we ask for a randomly chosen element:

sage: Hands = Subsets(Cards, 5)
sage: Hands.random_element() # random
{(4, 'Hearts', 4), (9, 'Diamonds'), (8, 'Spades'),
(9, 'Clubs'), (7, 'Hearts')}

The total number of hands is given by the number of subsets of size 5 of a set of size 52, which is given by the binomial
coefficient

(︀
52
5

)︀
:

sage: binomial(52,5)
2598960

One can also ignore the method of calculation, and simply ask for the size of the set of hands:

sage: Hands.cardinality()
2598960

The strength of a poker hand depends on the particular combination of cards present. One such combination is the
flush; this is a hand all of whose cards have the same suit. (In principle, straight flushes should be excluded; this will
be the goal of an exercise given below.) Such a hand is therefore characterized by the choice of five values from among
the thirteen possibilities, and the choice of one of four suits. We will construct the set of all flushes, so as to determine
how many there are:

sage: Flushes = cartesian_product([Subsets(Values, 5), Suits])
sage: Flushes.cardinality()
5148

The probability of obtaining a flush when drawing a hand at random is therefore:

sage: Flushes.cardinality() / Hands.cardinality()
33/16660

or about two in a thousand:

sage: 1000.0 * Flushes.cardinality() / Hands.cardinality()
1.98079231692677

We will now attempt a little numerical simulation. The following function tests whether a given hand is a flush or not:

3416 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: def is_flush(hand):
....: return len(set(suit for (val, suit) in hand)) == 1

We now draw 10000 hands at random, and count the number of flushes obtained (this takes about 10 seconds):

sage: n = 10000
sage: nflush = 0
sage: for i in range(n): # long time
....: hand = Hands.random_element()
....: if is_flush(hand):
....: nflush += 1
sage: n, nflush # random
(10000, 18)

Exercises

A hand containing four cards of the same value is called a four of a kind. Construct the set of four of a kind hands
(Hint: use Arrangements to choose a pair of distinct values at random, then choose a suit for the first value).
Calculate the number of four of a kind hand, list them, and then determine the probability of obtaining a four of a
kind when drawing a hand at random.

A hand all of whose cards have the same suit, and whose values are consecutive, is called a straight flush rather
than a flush. Count the number of straight flushes, and then deduce the correct probability of obtaining a flush when
drawing a hand at random.

Calculate the probability of each of the poker hands (see Wikipedia article Poker_hands), and compare them with
the results of simulations.

Enumeration of trees using generating functions

In this section, we discuss the example of complete binary trees, and illustrate in this context many techniques of enu-
meration in which formal power series play a natural role. These techniques are quite general, and can be applied
whenever the combinatorial objects in question admit a recursive definition (grammar) (see Species, decomposable
combinatorial classes for an automated treatment). The goal is not a formal presentation of these methods; the calcu-
lations are rigorous, but most of the justifications will be skipped.

A complete binary tree is either a leaf L, or a node to which two complete binary trees are attached (see Figure: The
five complete binary trees with four leaves).

Fig. 1: Figure: The five complete binary trees with four leaves

Exercise: enumeration of binary trees

Find by hand all the complete binary trees with 𝑛 = 1, 2, 3, 4, 5 leaves (see Exercise: complete binary tree iterator
to find them using Sage).

5.1. Comprehensive Module List 3417

https://en.wikipedia.org/wiki/Poker_hands

Combinatorics, Release 9.7

Our goal is to determine the number 𝑐𝑛 of complete binary trees with 𝑛 leaves (in this section, except when explicitly
stated otherwise, “trees” always means complete binary trees). This is a typical situation in which one is not only
interested in a single set, but in a family of sets, typically parameterized by 𝑛 ∈ N.

According to the solution of Exercise: enumeration of binary trees, the first terms are given by 𝑐1, . . . , 𝑐5 =
1, 1, 2, 5, 14. The simple fact of knowing these few numbers is already very valuable. In fact, this permits research in a
gold mine of information: the Online Encyclopedia of Integer Sequences, commonly called “Sloane”, the name of its
principal author, which contains more than 190000 sequences of integers:

sage: oeis([1,1,2,5,14]) # optional -- internet
0: A000108: Catalan numbers: ...
1: ...
2: ...

The result suggests that the trees are counted by one of the most famous sequences, the Catalan numbers. Looking
through the references supplied by the Encyclopedia, we see that this is really the case: the few numbers above form a
digital fingerprint of our objects, which enable us to find, in a few seconds, a precise result from within an abundant
literature.

Our next goal is to recover this result using Sage. Let 𝐶𝑛 be the set of trees with 𝑛 leaves, so that 𝑐𝑛 = |𝐶𝑛|; by
convention, we will define 𝐶0 = ∅ and 𝑐0 = 0. The set of all trees is then the disjoint union of the sets 𝐶𝑛:

𝐶 =
⨄︁
𝑛∈N

𝐶𝑛 .

Having named the set 𝐶 of all trees, we can translate the recursive definition of trees into a set-theoretic equation:

𝐶 ≈ {L} ⊎ 𝐶 × 𝐶 .

In words: a tree 𝑡 (which is by definition in 𝐶) is either a leaf (so in {L}) or a node to which two trees 𝑡1 and 𝑡2 have
been attached, and which we can therefore identify with the pair (𝑡1, 𝑡2) (in the Cartesian product 𝐶 × 𝐶).

The founding idea of algebraic combinatorics, introduced by Euler in a letter to Goldbach of 1751 to treat a similar
problem , is to manipulate all the numbers 𝑐𝑛 simultaneously, by encoding them as coefficients in a formal power series,
called the generating function of the 𝑐𝑛’s:

𝐶(𝑧) =
∑︁
𝑛∈N

𝑐𝑛𝑧
𝑛 ,

where 𝑧 is a formal variable (which means that we do not have to worry about questions of convergence). The beauty of
this idea is that set-theoretic operations (𝐴⊎𝐵,𝐴×𝐵) translate naturally into algebraic operations on the corresponding
series (𝐴(𝑧)+𝐵(𝑧),𝐴(𝑧) ·𝐵(𝑧)), in such a way that the set-theoretic equation satisfied by𝐶 can be translated directly
into an algebraic equation satisfied by 𝐶(𝑧):

𝐶(𝑧) = 𝑧 + 𝐶(𝑧) · 𝐶(𝑧) .

Now we can solve this equation with Sage. In order to do so, we introduce two variables, 𝐶 and 𝑧, and we define the
equation:

sage: C, z = var('C,z')
sage: sys = [C == z + C*C]

There are two solutions, which happen to have closed forms:

sage: sol = solve(sys, C, solution_dict=True); sol
[{C: -1/2*sqrt(-4*z + 1) + 1/2}, {C: 1/2*sqrt(-4*z + 1) + 1/2}]
sage: s0 = sol[0][C]; s1 = sol[1][C]

3418 Chapter 5. Comprehensive Module List

http://oeis.org/

Combinatorics, Release 9.7

and whose Taylor series begin as follows:

sage: s0.series(z, 6)
1*z + 1*z^2 + 2*z^3 + 5*z^4 + 14*z^5 + Order(z^6)
sage: s1.series(z, 6)
1 + (-1)*z + (-1)*z^2 + (-2)*z^3 + (-5)*z^4 + (-14)*z^5
+ Order(z^6)

The second solution is clearly aberrant, while the first one gives the expected coefficients. Therefore, we set:

sage: C = s0

We can now calculate the next terms:

sage: C.series(z, 11)
1*z + 1*z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 +
132*z^7 + 429*z^8 + 1430*z^9 + 4862*z^10 + Order(z^11)

or calculate, more or less instantaneously, the 100-th coefficient:

sage: C.series(z, 101).coefficient(z,100)
227508830794229349661819540395688853956041682601541047340

It is unfortunate to have to recalculate everything if at some point we wanted the 101-st coefficient. Lazy power series
(see sage.combinat.species.series) come into their own here, in that one can define them from a system of
equations without solving it, and, in particular, without needing a closed form for the answer. We begin by defining the
ring of lazy power series:

sage: L.<z> = LazyPowerSeriesRing(QQ)

Then we create a “free” power series, which we name, and which we then define by a recursive equation:

sage: C = L()
sage: C._name = 'C'
sage: C.define(z + C * C)

sage: [C.coefficient(i) for i in range(11)]
[0, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]

At any point, one can ask for any coefficient without having to redefine 𝐶:

sage: C.coefficient(100)
227508830794229349661819540395688853956041682601541047340
sage: C.coefficient(200)
129013158064429114001222907669676675134349530552728882499810851598901419013348319045534580850847735528275750122188940

We now return to the closed form of 𝐶(𝑧):

sage: z = var('z')
sage: C = s0; C
-1/2*sqrt(-4*z + 1) + 1/2

The 𝑛-th coefficient in the Taylor series for 𝐶(𝑧) being given by 1
𝑛!𝐶(𝑧)(𝑛)(0), we look at the successive derivatives

𝐶(𝑧)(𝑛)(𝑧):

5.1. Comprehensive Module List 3419

Combinatorics, Release 9.7

sage: derivative(C, z, 1)
1/sqrt(-4*z + 1)
sage: derivative(C, z, 2)
2/(-4*z + 1)^(3/2)
sage: derivative(C, z, 3)
12/(-4*z + 1)^(5/2)

This suggests the existence of a simple explicit formula, which we will now seek. The following small function returns
𝑑𝑛 = 𝑛! 𝑐𝑛:

sage: def d(n): return derivative(s0, n).subs(z=0)

Taking successive quotients:

sage: [(d(n+1) / d(n)) for n in range(1,17)]
[2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62]

we observe that 𝑑𝑛 satisfies the recurrence relation 𝑑𝑛+1 = (4𝑛 − 2)𝑑𝑛, from which we deduce that 𝑐𝑛 satisfies the
recurrence relation 𝑐𝑛+1 = (4𝑛−2)

𝑛+1 𝑐𝑛. Simplifying, we find that 𝑐𝑛 is the (𝑛− 1)-th Catalan number:

𝑐𝑛 = Catalan(𝑛− 1) =
1

𝑛

(︂
2(𝑛− 1)

𝑛− 1

)︂
.

We check this:

sage: n = var('n')
sage: c = 1/n*binomial(2*(n-1),n-1)
sage: [c.subs(n=k) for k in range(1, 11)]
[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]
sage: [catalan_number(k-1) for k in range(1, 11)]
[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]

We can now calculate coefficients much further; here we calculate 𝑐100000 which has more than 60000 digits:

sage: cc = c(n = 100000)

This takes a couple of seconds:

sage: %time cc = c(100000) # not tested
CPU times: user 2.34 s, sys: 0.00 s, total: 2.34 s
Wall time: 2.34 s
sage: ZZ(cc).ndigits()
60198

The methods which we have used generalize to all recursively defined objects: the system of set-theoretic equations
can be translated into a system of equations on the generating function, which enables the recursive calculation of its
coefficients. If the set-theoretic equations are simple enough (for example, if they only involve Cartesian products and
disjoint unions), the equation for 𝐶(𝑧) is algebraic. This equation has, in general, no closed-form solution. However,
using confinement, one can deduce a linear differential equation which 𝐶(𝑧) satisfies. This differential equation, in
turn, can be translated into a recurrence relation of fixed length on its coefficients 𝑐𝑛. In this case, the series is called
D-finite. After the initial calculation of this recurrence relation, the calculation of coefficients is very fast. All these
steps are purely algorithmic, and it is planned to port into Sage the implementations which exist in Maple (the gfun
and combstruct packages) or MuPAD-Combinat (the decomposableObjects library).

3420 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

For the moment, we illustrate this general procedure in the case of complete binary trees. The generating function𝐶(𝑧)
is a solution to an algebraic equation 𝑃 (𝑧, 𝐶(𝑧)) = 0, where 𝑃 = 𝑃 (𝑥, 𝑦) is a polynomial with coefficients in Q. In
the present case, 𝑃 = 𝑦2 − 𝑦 + 𝑥. We formally differentiate this equation with respect to 𝑧:

sage: x, y, z = var('x, y, z')
sage: P = function('P')(x, y)
sage: C = function('C')(z)
sage: equation = P(x=z, y=C) == 0
sage: diff(equation, z)
diff(C(z), z)*D[1](P)(z, C(z)) + D[0](P)(z, C(z)) == 0

or, in a more readable format,

𝑑𝐶(𝑧)

𝑑𝑧

𝜕𝑃

𝜕𝑦
(𝑧, 𝐶(𝑧)) +

𝜕𝑃

𝜕𝑥
(𝑧, 𝐶(𝑧)) = 0

From this we deduce:

𝑑𝐶(𝑧)

𝑑𝑧
= −

𝜕𝑃
𝜕𝑥
𝜕𝑃
𝜕𝑦

(𝑧, 𝐶(𝑧)) .

In the case of complete binary trees, this gives:

sage: P = y^2 - y + x
sage: Px = diff(P, x); Py = diff(P, y)
sage: - Px / Py
-1/(2*y - 1)

Recall that 𝑃 (𝑧, 𝐶(𝑧)) = 0. Thus, we can calculate this fraction mod 𝑃 and, in this way, express the derivative
of 𝐶(𝑧) as a polynomial in 𝐶(𝑧) with coefficients in Q(𝑧). In order to achieve this, we construct the quotient ring
𝑅 = Q(𝑥)[𝑦]/(𝑃):

sage: Qx = QQ['x'].fraction_field()
sage: Qxy = Qx['y']
sage: R = Qxy.quo(P); R
Univariate Quotient Polynomial Ring in ybar
over Fraction Field of Univariate Polynomial Ring in x
over Rational Field with modulus y^2 - y + x

Note: ybar is the name of the variable 𝑦 in the quotient ring.

Todo: add link to some tutorial on quotient rings

We continue the calculation of this fraction in 𝑅:

sage: fraction = - R(Px) / R(Py); fraction
(1/2/(x - 1/4))*ybar - 1/4/(x - 1/4)

Note: The following variant does not work yet:

sage: fraction = R(- Px / Py); fraction # todo: not implemented
Traceback (most recent call last):
...
TypeError: denominator must be a unit

5.1. Comprehensive Module List 3421

Combinatorics, Release 9.7

We lift the result to Q(𝑥)[𝑦] and then substitute 𝑧 and 𝐶(𝑧) to obtain an expression for 𝑑
𝑑𝑧𝐶(𝑧):

sage: fraction = fraction.lift(); fraction
(1/2/(x - 1/4))*y - 1/4/(x - 1/4)
sage: fraction(x=z, y=C)
2*C(z)/(4*z - 1) - 1/(4*z - 1)

or, more legibly,

𝜕𝐶(𝑧)

𝜕𝑧
=

1

1− 4𝑧
− 2

1− 4𝑧
𝐶(𝑧) .

In this simple case, we can directly deduce from this expression a linear differential equation with coefficients in Q[𝑧]:

sage: equadiff = diff(C,z) == fraction(x=z, y=C)
sage: equadiff
diff(C(z), z) == 2*C(z)/(4*z - 1) - 1/(4*z - 1)
sage: equadiff = equadiff.simplify_rational()
sage: equadiff = equadiff * equadiff.rhs().denominator()
sage: equadiff = equadiff - equadiff.rhs()
sage: equadiff
(4*z - 1)*diff(C(z), z) - 2*C(z) + 1 == 0

or, more legibly,

(1− 4𝑧)
𝜕𝐶(𝑧)

𝜕𝑧
+ 2𝐶(𝑧)− 1 = 0 .

It is trivial to verify this equation on the closed form:

sage: Cf = sage.symbolic.function_factory.function('C')
sage: equadiff.substitute_function(Cf, s0.function(z))
(4*z - 1)/sqrt(-4*z + 1) + sqrt(-4*z + 1) == 0
sage: bool(equadiff.substitute_function(Cf, s0.function(z)))
True

In the general case, one continues to calculate successive derivatives of 𝐶(𝑧). These derivatives are confined in the
quotient ring Q(𝑧)[𝐶]/(𝑃) which is of finite dimension deg𝑃 over Q(𝑧). Therefore, one will eventually find a linear
relation among the first deg𝑃 derivatives of 𝐶(𝑧). Putting it over a single denominator, we obtain a linear differential
equation of degree ≤ deg𝑃 with coefficients in Q[𝑧]. By extracting the coefficient of 𝑧𝑛 in the differential equation,
we obtain the desired recurrence relation on the coefficients; in this case we recover the relation we had already found,
based on the closed form:

𝑐𝑛+1 =
(4𝑛− 2)

𝑛+ 1
𝑐𝑛

After fixing the correct initial conditions, it becomes possible to calculate the coefficients of 𝐶(𝑧) recursively:

sage: def C(n): return 1 if n <= 1 else (4*n-6)/n * C(n-1)
sage: [C(i) for i in range(10)]
[1, 1, 1, 2, 5, 14, 42, 132, 429, 1430]

If 𝑛 is too large for the explicit calculation of 𝑐𝑛, a sequence asymptotically equivalent to the sequence of coefficients
𝑐𝑛 may be sought. Here again, there are generic techniques. The central tool is complex analysis, specifically, the study
of the generating function around its singularities. In the present instance, the singularity is at 𝑧0 = 1/4 and one would
obtain 𝑐𝑛 ∼ 4𝑛

𝑛3/2
√
𝜋

.

3422 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Summary

We see here a general phenomenon of computer algebra: the best data structure to describe a complicated mathematical
object (a real number, a sequence, a formal power series, a function, a set) is often an equation defining the object
(or a system of equations, typically with some initial conditions). Attempting to find a closed-form solution to this
equation is not necessarily of interest: on the one hand, such a closed form rarely exists (e.g., the problem of solving a
polynomial by radicals), and on the other hand, the equation, in itself, contains all the necessary information to calculate
algorithmically the properties of the object under consideration (e.g., a numerical approximation, the initial terms or
elements, an asymptotic equivalent), or to calculate with the object itself (e.g., performing arithmetic on power series).
Therefore, instead of solving the equation, we look for the equation describing the object which is best suited to the
problem we want to solve.

As we saw in our example, confinement (for example, in a finite dimensional vector space) is a fundamental tool for
studying such equations. This notion of confinement is widely applicable in elimination techniques (linear algebra,
Gröbner bases, and their algebro-differential generalizations). The same tool is central in algorithms for automatic
summation and automatic verification of identities (Gosper’s algorithm, Zeilberger’s algorithm, and their generaliza-
tions; see also Exercise: alternating sign matrices).

Todo: add link to some tutorial on summation

All these techniques and their many generalizations are at the heart of very active topics of research: automatic com-
binatorics and analytic combinatorics, with major applications in the analysis of algorithms. It is likely, and desirable,
that they will be progressively implemented in Sage.

Common enumerated sets

First example: the subsets of a set

Fix a set 𝐸 of size 𝑛 and consider the subsets of 𝐸 of size 𝑘. We know that these subsets are counted by the binomial
coefficients

(︀
𝑛
𝑘

)︀
. We can therefore calculate the number of subsets of size 𝑘 = 2 of 𝐸 = {1, 2, 3, 4} with the function

binomial:

sage: binomial(4, 2)
6

Alternatively, we can construct the set 𝒫2(𝐸) of all the subsets of size 2 of 𝐸, then ask its cardinality:

sage: S = Subsets([1,2,3,4], 2)
sage: S.cardinality()
6

Once S has been constructed, we can also obtain the list of its elements:

sage: S.list()
[{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}]

or select an element at random:

sage: S.random_element() # random
{1, 4}

More precisely, the object Smodels the set𝒫2(𝐸) equipped with a fixed order (here, lexicographic order). It is therefore
possible to ask for its 5-th element, keeping in mind that, as with Python lists, the first element is numbered zero:

5.1. Comprehensive Module List 3423

Combinatorics, Release 9.7

sage: S.unrank(4)
{2, 4}

As a shortcut, in this setting, one can also use the notation:

sage: S[4]
{2, 4}

but this should be used with care because some sets have a natural indexing other than by (0, 1, . . .).

Conversely, one can calculate the position of an object in this order:

sage: s = S([2,4]); s
{2, 4}
sage: S.rank(s)
4

Note that S is not the list of its elements. One can, for example, model the set𝒫(𝒫(𝒫(𝐸))) and calculate its cardinality
(222

4

):

sage: E = Set([1,2,3,4])
sage: S = Subsets(Subsets(Subsets(E))); S
Subsets of Subsets of Subsets of {1, 2, 3, 4}
sage: n = S.cardinality(); n
2003529930406846464979072351560255750447825475569751419265016973...

which is roughly 2 · 1019728:

sage: n.ndigits()
19729

or ask for its 237102124-th element:

sage: S.unrank(237102123) # random print output
{{{2, 4}, {1, 4}, {}, {1, 3, 4}, {1, 2, 4}, {4}, {2, 3}, {1, 3}, {2}},
{{1, 3}, {2, 4}, {1, 2, 4}, {}, {3, 4}}}

It would be physically impossible to construct explicitly all the elements of 𝑆, as there are many more of them than
there are particles in the universe (estimated at 1082).

Remark: it would be natural in Python to use len(S) to ask for the cardinality of S. This is not possible because
Python requires that the result of len be an integer of type int; this could cause overflows, and would not permit the
return of {Infinity} for infinite sets:

sage: len(S)
Traceback (most recent call last):
...
OverflowError: cannot fit 'int' into an index-sized integer

3424 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Partitions of integers

We now consider another classic problem: given a positive integer 𝑛, in how many ways can it be written in the form
of a sum 𝑛 = 𝑖1 + 𝑖2 + · · ·+ 𝑖ℓ, where 𝑖1, . . . , 𝑖ℓ are positive integers? There are two cases to distinguish:

• the order of the elements in the sum is not important, in which case we call (𝑖1, . . . , 𝑖ℓ) a partition of 𝑛;

• the order of the elements in the sum is important, in which case we call (𝑖1, . . . , 𝑖ℓ) a composition of 𝑛.

We will begin with the partitions of 𝑛 = 5; as before, we begin by constructing the set of these partitions:

sage: P5 = Partitions(5); P5
Partitions of the integer 5

then we ask for its cardinality:

sage: P5.cardinality()
7

We look at these 7 partitions; the order being irrelevant, the entries are ordered, by convention, in decreasing order.

sage: P5.list()
[[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1],
[1, 1, 1, 1, 1]]

The calculation of the number of partitions uses the Rademacher formula (Wikipedia article Parti-
tion_(number_theory)), implemented in C and highly optimized, which makes it very fast:

sage: Partitions(100000).cardinality()
27493510569775696512677516320986352688173429315980054758203125984302147328114964173055050741660736621590157844774296248940493063070200461792764493033510116079342457190155718943509725312466108452006369558934464248716828789832182345009262853831404597021307130674510624419227311238999702284408609370935531629697851569569892196108480158600569421098519

Partitions of integers are combinatorial objects naturally equipped with many operations. They are therefore returned
as objects that are richer than simple lists:

sage: P7 = Partitions(7)
sage: p = P7.unrank(5); p
[4, 2, 1]
sage: type(p)
<class 'sage.combinat.partition.Partitions_n_with_category.element_class'>

For example, they can be represented graphically by a Ferrers diagram:

sage: print(p.ferrers_diagram())

**
*

We leave it to the user to explore by introspection the available operations.

Note that we can also construct a partition directly by:

sage: Partition([4,2,1])
[4, 2, 1]

or:

5.1. Comprehensive Module List 3425

https://en.wikipedia.org/wiki/Partition_(number_theory)
https://en.wikipedia.org/wiki/Partition_(number_theory)

Combinatorics, Release 9.7

sage: P7([4,2,1])
[4, 2, 1]

If one wants to restrict the possible values of the parts 𝑖1, . . . , 𝑖ℓ of the partition as, for example, when giving change,
one can use WeightedIntegerVectors. For example, the following calculation:

sage: WeightedIntegerVectors(8, [2,3,5]).list()
[[0, 1, 1], [1, 2, 0], [4, 0, 0]]

shows that to make 8 dollars using 2, 3, and 5 dollar bills, one can use a 3 and a 5 dollar bill, or a 2 and two 3 dollar
bills, or four 2 dollar bills.

Compositions of integers are manipulated the same way:

sage: C5 = Compositions(5); C5
Compositions of 5
sage: C5.cardinality()
16
sage: C5.list()
[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 1], [1, 1, 3],
[1, 2, 1, 1], [1, 2, 2], [1, 3, 1], [1, 4], [2, 1, 1, 1],
[2, 1, 2], [2, 2, 1], [2, 3], [3, 1, 1], [3, 2], [4, 1], [5]]

The number 16 above seems significant and suggests the existence of a formula. We look at the number of compositions
of 𝑛 ranging from 0 to 9:

sage: [Compositions(n).cardinality() for n in range(10)]
[1, 1, 2, 4, 8, 16, 32, 64, 128, 256]

Similarly, if we consider the number of compositions of 5 by length, we find a line of Pascal’s triangle:

sage: x = var('x')
sage: sum(x^len(c) for c in C5)
x^5 + 4*x^4 + 6*x^3 + 4*x^2 + x

The above example uses a functionality which we have not seen yet: C5 being iterable, it can be used like a list in a for
loop or a comprehension (Set comprehension and iterators).

Prove the formulas suggested by the above examples for the number of compositions of 𝑛 and the num-
ber of compositions of 𝑛 of length 𝑘; investigate by introspection whether Sage uses these formulas for
calculating cardinalities.

Some other finite enumerated sets

Essentially, the principle is the same for all the finite sets with which one wants to do combinatorics in Sage; begin
by constructing an object which models this set, and then supply appropriate methods, following a uniform interface1.
We now give a few more typical examples.

Intervals of integers:

sage: C = IntegerRange(3, 21, 2); C
{3, 5, ..., 19}
sage: C.cardinality()

(continues on next page)

1 Or at least that should be the case; there are still many corners to clean up.

3426 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

9
sage: C.list()
[3, 5, 7, 9, 11, 13, 15, 17, 19]

Permutations:

sage: C = Permutations(4); C
Standard permutations of 4
sage: C.cardinality()
24
sage: C.list()
[[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2],
[1, 4, 2, 3], [1, 4, 3, 2], [2, 1, 3, 4], [2, 1, 4, 3],
[2, 3, 1, 4], [2, 3, 4, 1], [2, 4, 1, 3], [2, 4, 3, 1],
[3, 1, 2, 4], [3, 1, 4, 2], [3, 2, 1, 4], [3, 2, 4, 1],
[3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 1, 3, 2],
[4, 2, 1, 3], [4, 2, 3, 1], [4, 3, 1, 2], [4, 3, 2, 1]]

Set partitions:

sage: C = SetPartitions(["a", "b", "c"])
sage: C # random print output
Set partitions of {'a', 'c', 'b'}
sage: C.cardinality()
5
sage: C.list()
[{{'a', 'b', 'c'}},
{{'a', 'b'}, {'c'}},
{{'a', 'c'}, {'b'}},
{{'a'}, {'b', 'c'}},
{{'a'}, {'b'}, {'c'}}]

Partial orders on a set of 8 elements, up to isomorphism:

sage: C = Posets(8); C
Posets containing 8 elements
sage: C.cardinality()
16999

sage: C.unrank(20).plot()
Graphics object consisting of 20 graphics primitives

5.1. Comprehensive Module List 3427

Combinatorics, Release 9.7

One can iterate through all graphs up to isomorphism. For example, there are 34 simple graphs with 5 vertices:

sage: len(list(graphs(5)))
34

Here are those with at most 4 edges:

sage: up_to_four_edges = list(graphs(5, lambda G: G.size() <= 4))
sage: pretty_print(*up_to_four_edges)

3428 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

However, the set C of these graphs is not yet available in Sage; as a result, the following commands are not yet imple-
mented:

sage: C = Graphs(5) # todo: not implemented
sage: C.cardinality() # todo: not implemented
34
sage: Graphs(19).cardinality() # todo: not implemented
24637809253125004524383007491432768
sage: Graphs(19).random_element() # todo: not implemented
Graph on 19 vertices

What we have seen so far also applies, in principle, to finite algebraic structures like the dihedral groups:

5.1. Comprehensive Module List 3429

Combinatorics, Release 9.7

sage: G = DihedralGroup(4); G
Dihedral group of order 8 as a permutation group
sage: G.cardinality()
8
sage: G.list()
[(), (1,3)(2,4), (1,4,3,2), (1,2,3,4), (2,4), (1,3), (1,4)(2,3), (1,2)(3,4)]

or the algebra of 2× 2 matrices over the finite field Z/2Z:

sage: C = MatrixSpace(GF(2), 2)
sage: C.list()
[
[0 0] [1 0] [0 1] [0 0] [0 0] [1 1] [1 0] [1 0] [0 1] [0 1]
[0 0], [0 0], [0 0], [1 0], [0 1], [0 0], [1 0], [0 1], [1 0], [0 1],

[0 0] [1 1] [1 1] [1 0] [0 1] [1 1]
[1 1], [1 0], [0 1], [1 1], [1 1], [1 1]
]
sage: C.cardinality()
16

Exercise

List all the monomials of degree 5 in three variables (see IntegerVectors). Manipulate the ordered set partitions
OrderedSetPartitions and standard tableaux (StandardTableaux).

Exercise

List the alternating sign matrices of size 3, 4, and 5 (AlternatingSignMatrices), and try to guess the definition.
The discovery and proof of the formula for the enumeration of these matrices (see the method cardinality),
motivated by calculations of determinants in physics, is quite a story. In particular, the first proof, given by Zeilberger
in 1992 was automatically produced by a computer program. It was 84 pages long, and required nearly a hundred
people to verify it.

Exercise

Calculate by hand the number of vectors in (Z/2Z)5, and the number of matrices in 𝐺𝐿3(Z/2Z) (that is to say,
the number of invertible 3 × 3 matrices with coefficients in Z/2Z). Verify your answer with Sage. Generalize to
𝐺𝐿𝑛(Z/𝑞Z).

3430 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Set comprehension and iterators

We will now show some of the possibilities offered by Python for constructing (and iterating through) sets, with a
notation that is flexible and close to usual mathematical usage, and in particular the benefits this yields in combinatorics.

We begin by constructing the finite set {𝑖2 ‖ 𝑖 ∈ {1, 3, 7}}:

sage: [i^2 for i in [1, 3, 7]]
[1, 9, 49]

and then the same set, but with 𝑖 running from 1 to 9:

sage: [i^2 for i in range(1,10)]
[1, 4, 9, 16, 25, 36, 49, 64, 81]

A construction of this form in Python is called set comprehension. A clause can be added to keep only those elements
with 𝑖 prime:

sage: [i^2 for i in range(1,10) if is_prime(i)]
[4, 9, 25, 49]

Combining more than one set comprehension, it is possible to construct the set {(𝑖, 𝑗) | 1 ≤ 𝑗 < 𝑖 < 5}:

sage: [(i,j) for i in range(1,6) for j in range(1,i)]
[(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3),
(5, 1), (5, 2), (5, 3), (5, 4)]

or to produce Pascal’s triangle:

sage: [[binomial(n,i) for i in range(n+1)] for n in range(10)]
[[1],
[1, 1],
[1, 2, 1],
[1, 3, 3, 1],
[1, 4, 6, 4, 1],
[1, 5, 10, 10, 5, 1],
[1, 6, 15, 20, 15, 6, 1],
[1, 7, 21, 35, 35, 21, 7, 1],
[1, 8, 28, 56, 70, 56, 28, 8, 1],
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]]

The execution of a set comprehension is accomplished in two steps; first an iterator is constructed, and then a list is
filled with the elements successively produced by the iterator. Technically, an iterator is an object with a method next
which returns a new value each time it is called, until it is exhausted. For example, the following iterator it:

sage: it = (binomial(3, i) for i in range(4))

returns successively the binomial coefficients
(︀
3
𝑖

)︀
with 𝑖 = 0, 1, 2, 3:

sage: next(it)
1
sage: next(it)
3
sage: next(it)
3

(continues on next page)

5.1. Comprehensive Module List 3431

Combinatorics, Release 9.7

(continued from previous page)

sage: next(it)
1

When the iterator is finally exhausted, an exception is raised:

sage: next(it)
Traceback (most recent call last):
...

StopIteration

More generally, an iterable is a Python object L (a list, a set, . . .) over whose elements it is possible to iterate.
Technically, the iterator is constructed by iter(L). In practice, the commands iter and next are used very rarely,
since for loops and list comprehensions provide a much pleasanter syntax:

sage: for s in Subsets(3):
....: print(s)
{}
{1}
{2}
{3}
{1, 2}
{1, 3}
{2, 3}
{1, 2, 3}

sage: [s.cardinality() for s in Subsets(3)]
[0, 1, 1, 1, 2, 2, 2, 3]

What is the point of an iterator? Consider the following example:

sage: sum([binomial(8, i) for i in range(9)])
256

When it is executed, a list of 9 elements is constructed, and then it is passed as an argument to sum to add them up. If,
on the other hand, the iterator is passed directly to sum (note the absence of square brackets):

sage: sum(binomial(8, i) for i in range(9))
256

the function sum receives the iterator directly, and can short-circuit the construction of the intermediate list. If there are
a large number of elements, this avoids allocating a large quantity of memory to fill a list which will be immediately
destroyed2.

Most functions that take a list of elements as input will also accept an iterator (or an iterable) instead. To begin with,
one can obtain the list (or the tuple) of elements of an iterator as follows:

sage: list(binomial(8, i) for i in range(9))
[1, 8, 28, 56, 70, 56, 28, 8, 1]
sage: tuple(binomial(8, i) for i in range(9))
(1, 8, 28, 56, 70, 56, 28, 8, 1)

We now consider the functions all and any which denote respectively the 𝑛-ary and and or:
2 Technical detail: range returns an iterator on {0, . . . , 8} while range returns the corresponding list. Starting in Python 3.0, range will

behave like range, and range will no longer be needed.

3432 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: all([True, True, True, True])
True
sage: all([True, False, True, True])
False
sage: any([False, False, False, False])
False
sage: any([False, False, True, False])
True

The following example verifies that all primes from 3 to 99 are odd:

sage: all(is_odd(p) for p in range(3,100) if is_prime(p))
True

A Mersenne prime is a prime of the form 2𝑝− 1. We verify that, for 𝑝 < 1000, if 2𝑝− 1 is prime, then 𝑝 is also prime:

sage: def mersenne(p): return 2^p -1
sage: [is_prime(p)
....: for p in range(1000) if is_prime(mersenne(p))]
[True, True, True, True, True, True, True, True, True, True,
True, True, True, True]

Is the converse true?

Exercise

Try the two following commands and explain the considerable difference in the length of the calculations:

sage: all(is_prime(mersenne(p))
....: for p in range(1000) if is_prime(p))
False
sage: all([is_prime(mersenne(p))
....: for p in range(1000) if is_prime(p)])
False

We now try to find the smallest counter-example. In order to do this, we use the Sage function exists:

sage: exists((p for p in range(1000) if is_prime(p)),
....: lambda p: not is_prime(mersenne(p)))
(True, 11)

Alternatively, we could construct an iterator on the counter-examples:

sage: counter_examples = (p for p in range(1000)
....: if is_prime(p) and not is_prime(mersenne(p)))
sage: next(counter_examples)
11
sage: next(counter_examples)
23

5.1. Comprehensive Module List 3433

Combinatorics, Release 9.7

Exercise

What do the following commands do?

sage: cubes = [t**3 for t in range(-999,1000)]
sage: exists([(x,y) for x in cubes for y in cubes], # long time (3s, 2012)
....: lambda x_y: x_y[0] + x_y[1] == 218)
(True, (-125, 343))
sage: exists(((x,y) for x in cubes for y in cubes), # long time (2s, 2012)
....: lambda x_y: x_y[0] + x_y[1] == 218)
(True, (-125, 343))

Which of the last two is more economical in terms of time? In terms of memory? By how much?

Exercise

Try each of the following commands, and explain its result. If possible, hide the result first and try to guess it before
launching the command.

Todo: hide the results by default

Warning: it will be necessary to interrupt the execution of some of the commands

sage: x = var('x')
sage: sum(x^len(s) for s in Subsets(8))
x^8 + 8*x^7 + 28*x^6 + 56*x^5 + 70*x^4 + 56*x^3 + 28*x^2 + 8*x + 1

sage: sum(x^p.length() for p in Permutations(3))
x^3 + 2*x^2 + 2*x + 1

sage: factor(sum(x^p.length() for p in Permutations(3)))
(x^2 + x + 1)*(x + 1)

sage: P = Permutations(5)
sage: all(p in P for p in P)
True

sage: for p in GL(2, 2): print(p); print("")
[1 0]
[0 1]

[0 1]
[1 0]

[0 1]
[1 1]

[1 1]
[0 1]

[1 1]
[1 0]

[1 0]
[1 1]

3434 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: for p in Partitions(3): print(p) # not tested
[3]
[2, 1]
[1, 1, 1]
...

sage: for p in Partitions(): print(p) # not tested
[]
[1]
[2]
[1, 1]
[3]
...

sage: for p in Primes(): print(p) # not tested
2
3
5
7
...

sage: exists(Primes(), lambda p: not is_prime(mersenne(p)))
(True, 11)

sage: counter_examples = (p for p in Primes()
....: if not is_prime(mersenne(p)))
sage: for p in counter_examples: print(p) # not tested
11
23
29
37
41
43
47
...

Operations on iterators

Python provides numerous tools for manipulating iterators; most of them are in the itertools library, which can be
imported by:

sage: import itertools

We will demonstrate some applications, taking as a starting point the permutations of 3:

sage: list(Permutations(3))
[[1, 2, 3], [1, 3, 2], [2, 1, 3],
[2, 3, 1], [3, 1, 2], [3, 2, 1]]

We can list the elements of a set by numbering them:

5.1. Comprehensive Module List 3435

Combinatorics, Release 9.7

sage: list(enumerate(Permutations(3)))
[(0, [1, 2, 3]), (1, [1, 3, 2]), (2, [2, 1, 3]),
(3, [2, 3, 1]), (4, [3, 1, 2]), (5, [3, 2, 1])]

or select only the elements in positions 2, 3, and 4 (analogue of l[1:4]):

sage: import itertools
sage: list(itertools.islice(Permutations(3), int(1), int(4)))
[[1, 3, 2], [2, 1, 3], [2, 3, 1]]

To apply a function to all the elements, one can do:

sage: [z.cycle_type() for z in Permutations(3)]
[[1, 1, 1], [2, 1], [2, 1], [3], [3], [2, 1]]

and similarly to select the elements satisfying a certain condition:

sage: [z for z in Permutations(3) if z.has_pattern([1,2])]
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]]

Implementation of new iterators

It is easy to construct new iterators, using the keyword yield instead of return in a function:

sage: def f(n):
....: for i in range(n):
....: yield i

After the yield, execution is not halted, but only suspended, ready to be continued from the same point. The result of
the function is therefore an iterator over the successive values returned by yield:

sage: g = f(4)
sage: next(g)
0
sage: next(g)
1
sage: next(g)
2
sage: next(g)
3

sage: next(g)
Traceback (most recent call last):
...

StopIteration

The function could be used as follows:

sage: [x for x in f(5)]
[0, 1, 2, 3, 4]

This model of computation, called continuation, is very useful in combinatorics, especially when combined with re-
cursion. Here is how to generate all words of a given length on a given alphabet:

3436 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: def words(alphabet,l):
....: if l == 0:
....: yield []
....: else:
....: for word in words(alphabet, l-1):
....: for l in alphabet:
....: yield word + [l]
sage: [w for w in words(['a','b'], 3)]
[['a', 'a', 'a'], ['a', 'a', 'b'], ['a', 'b', 'a'],
['a', 'b', 'b'], ['b', 'a', 'a'], ['b', 'a', 'b'],
['b', 'b', 'a'], ['b', 'b', 'b']]

These words can then be counted by:

sage: sum(1 for w in words(['a','b','c','d'], 10))
1048576

Counting the words one by one is clearly not an efficient method in this case, since the formula 𝑛ℓ is also available; note,
though, that this is not the stupidest possible approach - it does, at least, avoid constructing the entire list in memory.

We now consider Dyck words, which are well-parenthesized words in the letters “(” and “)”. The function below
generates all the Dyck words of a given length (where the length is the number of pairs of parentheses), using the
recursive definition which says that a Dyck word is either empty or of the form (𝑤1)𝑤2 where 𝑤1 and 𝑤2 are Dyck
words:

sage: def dyck_words(l):
....: if l==0:
....: yield ''
....: else:
....: for k in range(l):
....: for w1 in dyck_words(k):
....: for w2 in dyck_words(l-k-1):
....: yield '('+w1+')'+w2

Here are all the Dyck words of length 4:

sage: list(dyck_words(4))
['()()()()', '()()(())', '()(())()', '()(()())', '()((()))',
'(())()()', '(())(())', '(()())()', '((()))()', '(()()())',
'(()(()))', '((())())', '((()()))', '(((())))']

Counting them, we recover a well-known sequence:

sage: [sum(1 for w in dyck_words(l)) for l in range(10)]
[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862]

Exercise: complete binary tree iterator

Construct an iterator on the set𝐶𝑛 of complete binary trees with 𝑛 leaves (see Enumeration of trees using generating
functions).

Hint: Sage 4.8.2 does not yet have a native data structure to represent complete binary trees. One simple way to
represent them is to define a formal variable Leaf for the leaves and a formal 2-ary function Node:

5.1. Comprehensive Module List 3437

Combinatorics, Release 9.7

sage: var('Leaf')
Leaf
sage: function('Node', nargs=2)
Node

The second tree in Figure: The five complete binary trees with four leaves can be represented by the expression:

sage: tr = Node(Node(Leaf, Node(Leaf, Leaf)), Leaf)

Constructions

We will now see how to construct new sets starting from these building blocks. In fact, we have already begun to do this
with the construction of 𝒫(𝒫(𝒫({1, 2, 3, 4}))) in the previous section, and to construct the example of sets of cards in
Initial examples.

Consider a large Cartesian product:

sage: C = cartesian_product([Compositions(8), Permutations(20)]); C
The Cartesian product of (Compositions of 8, Standard permutations of 20)
sage: C.cardinality()
311411457046609920000

Clearly, it is impractical to construct the list of all the elements of this Cartesian product! And, in the following example,
𝐻 is equipped with the usual combinatorial operations and also its structure as a product group:

sage: G = DihedralGroup(4)
sage: H = cartesian_product([G,G])
sage: H in Groups()
True
sage: H.an_element()
((1,3), (1,3))
sage: t = H([G.gen(0), G.gen(0)])
sage: t
((1,2,3,4), (1,2,3,4))
sage: t*t
((1,3)(2,4), (1,3)(2,4))

We now construct the union of two existing disjoint sets:

sage: C = DisjointUnionEnumeratedSets(
....: [Compositions(4), Permutations(3)])
sage: C
Disjoint union of Family (Compositions of 4,
Standard permutations of 3)
sage: C.cardinality()
14
sage: C.list()
[[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [2, 2],
[3, 1], [4], [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1],
[3, 1, 2], [3, 2, 1]]

It is also possible to take the union of more than two disjoint sets, or even an infinite number of them. We will now
construct the set of all permutations, viewed as the union of the sets 𝑃𝑛 of permutations of size 𝑛. We begin by

3438 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

constructing the infinite family 𝐹 = (𝑃𝑛)𝑛∈𝑁 :

sage: F = Family(NonNegativeIntegers(), Permutations); F
Lazy family (<class 'sage.combinat.permutation.Permutations'>(i))_{i in Non negative␣
→˓integers}
sage: F.keys()
Non negative integers
sage: F[1000]
Standard permutations of 1000

Now we can construct the disjoint union
⋃︀
𝑛∈N 𝑃𝑛:

sage: U = DisjointUnionEnumeratedSets(F); U
Disjoint union of
Lazy family (<class 'sage.combinat.permutation.Permutations'>(i))_{i in Non negative␣
→˓integers}

It is an infinite set:

sage: U.cardinality()
+Infinity

which doesn’t prohibit iteration through its elements, though it will be necessary to interrupt it at some point:

sage: for p in U: # not tested
....: print(p)
[]
[1]
[1, 2]
[2, 1]
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
...

Note: the above set could also have been constructed directly with:

sage: U = Permutations(); U
Standard permutations

Summary

Sage provides a library of common enumerated sets, which can be combined by standard constructions, giving a
toolbox that is flexible (but which could still be expanded). It is also possible to add new building blocks to Sage with
a few lines (see the code in FiniteEnumeratedSets().example()). This is made possible by the uniformity of the
interfaces and the fact that Sage is based on an object-oriented language. Also, very large or even infinite sets can be
manipulated thanks to lazy evaluation strategies (iterators, etc.).

There is no magic to any of this: under the hood, Sage applies the usual rules (for example, that the cardinality of𝐸×𝐸
is |𝐸|2); the added value comes from the capacity to manipulate complicated constructions. The situation is comparable
to Sage’s implementation of differential calculus: Sage applies the usual rules for differentiation of functions and their

5.1. Comprehensive Module List 3439

Combinatorics, Release 9.7

compositions, where the added value comes from the possibility of manipulating complicated formulas. In this sense,
Sage implements a calculus of finite enumerated sets.

Generic algorithms

Lexicographic generation of lists of integers

Among the classic enumerated sets, especially in algebraic combinatorics, a certain number are composed of lists of
integers of fixed sum, such as partitions, compositions, or integer vectors. These examples can also have supplementary
constraints added to them. Here are some examples. We start with the integer vectors with sum 10 and length 3, with
parts bounded below by 2, 4 and 2 respectively:

sage: IntegerVectors(10, 3, min_part=2, max_part=5,
....: inner=[2, 4, 2]).list()
[[4, 4, 2], [3, 5, 2], [3, 4, 3], [2, 5, 3], [2, 4, 4]]

The compositions of 5 with each part at most 3, and with length 2 or 3:

sage: Compositions(5, max_part=3,
....: min_length=2, max_length=3).list()
[[3, 2], [3, 1, 1], [2, 3], [2, 2, 1], [2, 1, 2], [1, 3, 1],
[1, 2, 2], [1, 1, 3]]

The strictly decreasing partitions of 5:

sage: Partitions(5, max_slope=-1).list()
[[5], [4, 1], [3, 2]]

These sets share the same underlying algorithmic structure, implemented in the more general (and slightly more cum-
bersome) class IntegerListsLex. This class models sets of vectors (ℓ0, . . . , ℓ𝑘) of non-negative integers, with con-
straints on the sum and the length, and bounds on the parts and on the consecutive differences between the parts. Here
are some more examples:

sage: IntegerListsLex(10, length=3,
....: min_part=2, max_part=5,
....: floor=[2, 4, 2]).list()
[[4, 4, 2], [3, 5, 2], [3, 4, 3], [2, 5, 3], [2, 4, 4]]

sage: IntegerListsLex(5, min_part=1, max_part=3,
....: min_length=2, max_length=3).list()
[[3, 2], [3, 1, 1], [2, 3], [2, 2, 1], [2, 1, 2],
[1, 3, 1], [1, 2, 2], [1, 1, 3]]

sage: IntegerListsLex(5, min_part=1, max_slope=-1).list()
[[5], [4, 1], [3, 2]]

sage: list(Compositions(5, max_length=2))
[[5], [4, 1], [3, 2], [2, 3], [1, 4]]

sage: list(IntegerListsLex(5, max_length=2, min_part=1))
[[5], [4, 1], [3, 2], [2, 3], [1, 4]]

The point of the model of IntegerListsLex is in the compromise between generality and efficiency. The main
algorithm permits iteration through the elements of such a set 𝑆 in reverse lexicographic order with a good complexity

3440 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

in most practical use cases. Roughly speaking, the time needed to iterate through all the elements of 𝑆 is proportional
to the number of elements, where the proportion factor is controlled by the length 𝑙 of the longest element of 𝑆. In
addition, the memory usage is also controlled by 𝑙, which is to say negligible in practice.

This algorithm is based on a very general principle for traversing a decision tree, called branch and bound: at the top
level, we run through all the possible choices for ℓ0; for each of these choices, we run through all the possible choices
for ℓ1, and so on. Mathematically speaking, we have put the structure of a prefix tree on the elements of 𝑆: a node of
the tree at depth 𝑘 corresponds to a prefix ℓ0, . . . , ℓ𝑘 of one (or more) elements of 𝑆 (see Figure: The prefix tree of the
partitions of 5.).

Fig. 2: Figure: The prefix tree of the partitions of 5.

The usual problem with this type of approach is to avoid bad decisions which lead to leaving the prefix tree and exploring
dead branches; this is particularly problematic because the growth of the number of elements is usually exponential
in the depth. It turns out that the constraints listed above are simple enough to be able to reasonably predict when a
sequence ℓ0, . . . , ℓ𝑘 is a prefix of some element 𝑆. Hence, most dead branches can be pruned.

Integer points in polytopes

Although the algorithm for iteration in IntegerListsLex is efficient, its counting algorithm is naive: it just iterates
over all the elements.

There is an alternative approach to treating this problem: modelling the desired lists of integers as the set of integer
points of a polytope, that is to say, the set of solutions with integer coordinates of a system of linear inequalities. This
is a very general context in which there exist advanced counting algorithms (e.g. Barvinok), which are implemented
in libraries like LattE. Iteration does not pose a hard problem in principle. However, there are two limitations that
justify the existence of IntegerListsLex. The first is theoretical: lattice points in a polytope only allow modelling
of problems of a fixed dimension (length). The second is practical: at the moment only the library PALP has a Sage
interface, and though it offers multiple capabilities for the study of polytopes, in the present application it only produces
a list of lattice points, without providing either an iterator or non-naive counting:

5.1. Comprehensive Module List 3441

Combinatorics, Release 9.7

sage: A = random_matrix(ZZ, 6, 3, x=7)
sage: L = LatticePolytope(A.rows())
sage: L.points() # random
M(4, 1, 0),
M(0, 3, 5),
M(2, 2, 3),
M(6, 1, 3),
M(1, 3, 6),
M(6, 2, 3),
M(3, 2, 4),
M(3, 2, 3),
M(4, 2, 4),
M(4, 2, 3),
M(5, 2, 3)
in 3-d lattice M
sage: L.npoints() # random
11

This polytope can be visualized in 3D with L.plot3d() (see Figure: The polytope L and its integer points, in cross-
eyed stereographic perspective.).

Fig. 3: Figure: The polytope 𝐿 and its integer points, in cross-eyed stereographic perspective.

3442 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Species, decomposable combinatorial classes

In Enumeration of trees using generating functions, we showed how to use the recursive definition of binary trees to
count them efficiently using generating functions. The techniques we used there are very general, and apply whenever
the sets involved can be defined recursively (depending on who you ask, such a set is called a decomposable combina-
torial class or, roughly speaking, a combinatorial species). This includes all the types of trees, but also permutations,
compositions, functional graphs, etc.

Here, we illustrate just a few examples using the Sage library on combinatorial species:

sage: from sage.combinat.species.library import *
sage: o = var('o')

We begin by redefining the complete binary trees; to do so, we stipulate the recurrence relation directly on the sets:

sage: BT = CombinatorialSpecies()
sage: Leaf = SingletonSpecies()
sage: BT.define(Leaf + (BT*BT))

Now we can construct the set of trees with five nodes, list them, count them. . . :

sage: BT5 = BT.isotypes([o]*5)
sage: BT5.cardinality()
14
sage: BT5.list()
[o*(o*(o*(o*o))), o*(o*((o*o)*o)), o*((o*o)*(o*o)),
o*((o*(o*o))*o), o*(((o*o)*o)*o), (o*o)*(o*(o*o)),
(o*o)*((o*o)*o), (o*(o*o))*(o*o), ((o*o)*o)*(o*o),
(o*(o*(o*o)))*o, (o*((o*o)*o))*o, ((o*o)*(o*o))*o,
((o*(o*o))*o)*o, (((o*o)*o)*o)*o]

The trees are constructed using a generic recursive structure; the display is therefore not wonderful. To do better, it
would be necessary to provide Sage with a more specialized data structure with the desired display capabilities.

We recover the generating function for the Catalan numbers:

sage: g = BT.isotype_generating_series(); g
x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + O(x^6)

which is returned in the form of a lazy power series:

sage: g[100]
227508830794229349661819540395688853956041682601541047340

We finish with the Fibonacci words, which are binary words without two consecutive “1”s. They admit a natural
recursive definition:

sage: Eps = EmptySetSpecies()
sage: Z0 = SingletonSpecies()
sage: Z1 = Eps*SingletonSpecies()
sage: FW = CombinatorialSpecies()
sage: FW.define(Eps + Z0*FW + Z1*Eps + Z1*Z0*FW)

The Fibonacci sequence is easily recognized here, hence the name:

5.1. Comprehensive Module List 3443

Combinatorics, Release 9.7

sage: L = FW.isotype_generating_series().coefficients(15); L
[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

sage: oeis(L) # optional -- internet
0: A000045: Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
1: ...
2: ...

This is an immediate consequence of the recurrence relation. One can also generate immediately all the Fibonacci
words of a given length, with the same limitations resulting from the generic display.

sage: FW3 = FW.isotypes([o]*3)
sage: FW3.list()
[o*(o*(o*{})), o*(o*(({}*o)*{})), o*((({}*o)*o)*{}),
(({}*o)*o)*(o*{}), (({}*o)*o)*(({}*o)*{})]

Graphs up to isomorphism

We saw in Some other finite enumerated sets that Sage could generate graphs and partial orders up to isomorphism.
We will now describe the underlying algorithm, which is the same in both cases, and covers a substantially wider class
of problems.

We begin by recalling some notions. A graph 𝐺 = (𝑉,𝐸) is a set 𝑉 of vertices and a set 𝐸 of edges connecting these
vertices; an edge is described by a pair {𝑢, 𝑣} of distinct vertices of 𝑉 . Such a graph is called labelled; its vertices are
typically numbered by considering 𝑉 = {1, 2, 3, 4, 5}.

In many problems, the labels on the vertices play no role. Typically a chemist wants to study all the possible molecules
with a given composition, for example the alkanes with 𝑛 = 8 atoms of carbon and 2𝑛 + 2 = 18 atoms of hydrogen.
He therefore wants to find all the graphs consisting of 8 vertices with 4 neighbours, and 18 vertices with a single
neighbour. The different carbon atoms, however, are all considered to be identical, and the same for the hydrogen
atoms. The problem of our chemist is not imaginary; this type of application is actually at the origin of an important
part of the research in graph theory on isomorphism problems.

Working by hand on a small graph it is possible, as in the example of Some other finite enumerated sets, to make
a drawing, erase the labels, and “forget” the geometrical information about the location of the vertices in the plane.
However, to represent a graph in a computer program, it is necessary to introduce labels on the vertices so as to be able
to describe how the edges connect them together. To compensate for the extra information which we have introduced,
we then say that two labelled graphs 𝑔1 and 𝑔2 are isomorphic if there is a bijection from the vertices of 𝑔1 to those of
𝑔2, which maps bijectively the edges of 𝑔1 to those of 𝑔2; an unlabelled graph is then an equivalence class of labelled
graphs.

In general, testing if two labelled graphs are isomorphic is expensive. However, the number of graphs, even unlabelled,
grows very rapidly. Nonetheless, it is possible to list unlabelled graphs very efficiently considering their number. For
example, the program Nauty can list the 12005168 simple graphs with 10 vertices in 20 seconds.

As in Lexicographic generation of lists of integers, the general principle of the algorithm is to organize the objects to
be enumerated into a tree that one traverses.

For this, in each equivalence class of labelled graphs (that is to say, for each unlabelled graph) one fixes a convenient
canonical representative. The following are the fundamental operations:

• Testing whether a labelled graph is canonical

• Calculating the canonical representative of a labelled graph

These unavoidable operations remain expensive; one therefore tries to minimize the number of calls to them.

3444 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The canonical representatives are chosen in such a way that, for each canonical labelled graph 𝐺, there is a canonical
choice of an edge whose removal produces a canonical graph again, which is called the father of 𝐺. This property
implies that it is possible to organize the set of canonical representatives as a tree: at the root, the graph with no edges;
below it, its unique child, the graph with one edge; then the graphs with two edges, and so on. The set of children of
a graph 𝐺 can be constructed by augmentation, adding an edge in all the possible ways to 𝐺, and then selecting, from
among those graphs, the ones that are still canonical3. Recursively, one obtains all the canonical graphs.

In what sense is this algorithm generic? Consider for example planar graphs (graphs which can be drawn in the plane
without edges crossing): by removing an edge from a planar graph, one obtains another planar graph; so planar graphs
form a subtree of the previous tree. To generate them, exactly the same algorithm can be used, selecting only the
children which are planar:

sage: [len(list(graphs(n, property = lambda G: G.is_planar())))
....: for n in range(7)]
[1, 1, 2, 4, 11, 33, 142]

In a similar fashion, one can generate any family of graphs closed under deletion of an edge, and in particular any
family characterized by a forbidden subgraph. This includes for example forests (graphs without cycles), bipartite
graphs (graphs without odd cycles), etc. This can be applied to generate:

• partial orders, via the bijection with Hasse diagrams which are oriented graphs without cycles and without edges
implied by the transitivity of the order relation;

• lattices (not implemented in Sage), via the bijection with the meet semi-lattice obtained by deleting the maximal
vertex; in this case an augmentation by vertices rather than by edges is used.

REFERENCES:

5.1.350 Vector Partitions

AUTHORS:

• Amritanshu Prasad (2013): Initial version

sage.combinat.vector_partition.IntegerVectorsIterator(vect, min=None)
Return an iterator over the list of integer vectors which are componentwise less than or equal to vect, and
lexicographically greater than or equal to min.

INPUT:

• vect – A list of non-negative integers

• min – A list of non-negative integers dominated elementwise by vect

OUTPUT:

A list in lexicographic order of all integer vectors (as lists) which are dominated elementwise by vect and are
greater than or equal to min in lexicographic order.

EXAMPLES:

sage: from sage.combinat.vector_partition import IntegerVectorsIterator
sage: list(IntegerVectorsIterator([1, 1]))
[[0, 0], [0, 1], [1, 0], [1, 1]]

(continues on next page)

3 In practice, an efficient implementation would exploit the symmetries of 𝐺, i.e., its automorphism group, to reduce the number of children to
explore, and to reduce the cost of each test of canonicity.

5.1. Comprehensive Module List 3445

Combinatorics, Release 9.7

Fig. 4: Figure: The generation tree of simple graphs with 4 vertices.

3446 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: list(IntegerVectorsIterator([1, 1], min = [1, 0]))
[[1, 0], [1, 1]]

class sage.combinat.vector_partition.VectorPartition(parent, vecpar)
Bases: sage.combinat.combinat.CombinatorialElement

A vector partition is a multiset of integer vectors.

partition_at_vertex(i)
Return the partition obtained by sorting the i-th elements of the vectors in the vector partition.

EXAMPLES:

sage: V = VectorPartition([[1, 2, 1], [2, 4, 1]])
sage: V.partition_at_vertex(1)
[4, 2]

sum()
Return the sum vector as a list.

EXAMPLES:

sage: V = VectorPartition([[3, 2, 1], [2, 2, 1]])
sage: V.sum()
[5, 4, 2]

class sage.combinat.vector_partition.VectorPartitions(vec, min)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Class of all vector partitions of vec with all parts greater than or equal to min in lexicographic order.

A vector partition of vec is a list of vectors with non-negative integer entries whose sum is vec.

INPUT:

• vec – a list of non-negative integers.

EXAMPLES:

If min is not specified, then the class of all vector partitions of vec is created:

sage: VP = VectorPartitions([2, 2])
sage: for vecpar in VP:
....: print(vecpar)
[[0, 1], [0, 1], [1, 0], [1, 0]]
[[0, 1], [0, 1], [2, 0]]
[[0, 1], [1, 0], [1, 1]]
[[0, 1], [2, 1]]
[[0, 2], [1, 0], [1, 0]]
[[0, 2], [2, 0]]
[[1, 0], [1, 2]]
[[1, 1], [1, 1]]
[[2, 2]]

If min is specified, then the class consists of only those vector partitions whose parts are all greater than or equal
to min in lexicographic order:

5.1. Comprehensive Module List 3447

../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: VP = VectorPartitions([2, 2], min = [1, 0])
sage: for vecpar in VP:
....: print(vecpar)
[[1, 0], [1, 2]]
[[1, 1], [1, 1]]
[[2, 2]]

Element
alias of VectorPartition

sage.combinat.vector_partition.find_min(vect)
Return a string of 0’s with one 1 at the location where the list vect has its last entry which is not equal to 0.

INPUT:

• vec – A list of integers

OUTPUT:

A list of the same length with 0’s everywhere, except for a 1 at the last position where vec has an entry not equal
to 0.

EXAMPLES:

sage: from sage.combinat.vector_partition import find_min
sage: find_min([2, 1])
[0, 1]
sage: find_min([2, 1, 0])
[0, 1, 0]

5.1.351 Abstract word (finite or infinite)

This module gathers functions that works for both finite and infinite words.

AUTHORS:

• Sébastien Labbé

• Franco Saliola

EXAMPLES:

sage: a = 0.618
sage: g = words.CodingOfRotationWord(alpha=a, beta=1-a, x=a)
sage: f = words.FibonacciWord()
sage: p = f.longest_common_prefix(g, length='finite')
sage: p
word: 0100101001001010010100100101001001010010...
sage: p.length()
231

class sage.combinat.words.abstract_word.Word_class
Bases: sage.structure.sage_object.SageObject

apply_morphism(morphism)
Returns the word obtained by applying the morphism to self.

INPUT:

3448 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

• morphism - Can be an instance of WordMorphism, or anything that can be used to construct one.

EXAMPLES:

sage: w = Word("ab")
sage: d = {'a':'ab', 'b':'ba'}
sage: w.apply_morphism(d)
word: abba
sage: w.apply_morphism(WordMorphism(d))
word: abba

sage: w = Word('ababa')
sage: d = dict(a='ab', b='ba')
sage: d
{'a': 'ab', 'b': 'ba'}
sage: w.apply_morphism(d)
word: abbaabbaab

For infinite words:

sage: t = words.ThueMorseWord([0,1]); t
word: 0110100110010110100101100110100110010110...
sage: t.apply_morphism({0:8,1:9})
word: 8998988998898998988989988998988998898998...

complete_return_words_iterator(fact)
Returns an iterator over all the complete return words of fact in self (without unicity).

A complete return words 𝑢 of a factor 𝑣 is a factor starting by the given factor 𝑣 and ending just after the
next occurrence of this factor 𝑣. See for instance [1].

INPUT:

• fact - a non empty finite word

OUTPUT:

iterator

EXAMPLES:

sage: TM = words.ThueMorseWord()
sage: fact = Word([0,1,1,0,1])
sage: it = TM.complete_return_words_iterator(fact)
sage: next(it)
word: 01101001100101101
sage: next(it)
word: 01101001011001101
sage: next(it)
word: 011010011001011001101
sage: next(it)
word: 0110100101101
sage: next(it)
word: 01101001100101101
sage: next(it)
word: 01101001011001101

REFERENCES:

5.1. Comprehensive Module List 3449

Combinatorics, Release 9.7

• [1] J. Justin, L. Vuillon, Return words in Sturmian and episturmian words, Theor. Inform. Appl. 34
(2000) 343–356.

delta()
Returns the image of self under the delta morphism.

This is the word composed of the length of consecutive runs of the same letter in a given word.

OUTPUT:

Word over integers

EXAMPLES:

For finite words:

sage: W = Words('0123456789')
sage: W('22112122').delta()
word: 22112
sage: W('555008').delta()
word: 321
sage: W().delta()
word:
sage: Word('aabbabaa').delta()
word: 22112

For infinite words:

sage: t = words.ThueMorseWord()
sage: t.delta()
word: 1211222112112112221122211222112112112221...

factor_occurrences_iterator(fact)
Returns an iterator over all occurrences (including overlapping ones) of fact in self in their order of appear-
ance.

INPUT:

• fact - a non empty finite word

OUTPUT:

iterator

EXAMPLES:

sage: TM = words.ThueMorseWord()
sage: fact = Word([0,1,1,0,1])
sage: it = TM.factor_occurrences_iterator(fact)
sage: next(it)
0
sage: next(it)
12
sage: next(it)
24

sage: u = Word('121')
sage: w = Word('121213211213')

(continues on next page)

3450 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: list(w.factor_occurrences_iterator(u))
[0, 2, 8]

finite_differences(mod=None)
Return the word obtained by the differences of consecutive letters of self.

INPUT:

• self - A word over the integers.

• mod - (default: None) It can be one of the following:

– None or 0 : result is over the integers

– integer : result is over the integers modulo mod.

EXAMPLES:

sage: w = Word([x^2 for x in range(10)])
sage: w.finite_differences()
word: 1,3,5,7,9,11,13,15,17
sage: w.finite_differences(mod=4)
word: 131313131
sage: w.finite_differences(mod=0)
word: 1,3,5,7,9,11,13,15,17

first_occurrence(other, start=0)
Return the position of the first occurrence of other in self.

If other is not a factor of self, it returns None or loops forever when self is an infinite word.

INPUT:

• other – a finite word

• start – integer (default:0), where the search starts

OUTPUT:

integer or None

EXAMPLES:

sage: w = Word('01234567890123456789')
sage: w.first_occurrence(Word('3456'))
3
sage: w.first_occurrence(Word('3456'), start=7)
13

When the factor is not present, None is returned:

sage: w.first_occurrence(Word('3456'), start=17) is None
True
sage: w.first_occurrence(Word('3333')) is None
True

Also works for searching a finite word in an infinite word:

5.1. Comprehensive Module List 3451

Combinatorics, Release 9.7

sage: w = Word('0123456789')^oo
sage: w.first_occurrence(Word('3456'))
3
sage: w.first_occurrence(Word('3456'), start=1000)
1003

But it will loop for ever if the factor is not found:

sage: w.first_occurrence(Word('3333')) # not tested -- infinite loop

The empty word occurs in a word:

sage: Word('123').first_occurrence(Word(''), 0)
0
sage: Word('').first_occurrence(Word(''), 0)
0

is_empty()
Returns True if the length of self is zero, and False otherwise.

EXAMPLES:

sage: it = iter([])
sage: Word(it).is_empty()
True
sage: it = iter([1,2,3])
sage: Word(it).is_empty()
False
sage: from itertools import count
sage: Word(count()).is_empty()
False

is_finite()
Returns whether this word is known to be finite.

Warning: A word defined by an iterator such that its end has never been reached will returns False.

EXAMPLES:

sage: Word([]).is_finite()
True
sage: Word('a').is_finite()
True
sage: TM = words.ThueMorseWord()
sage: TM.is_finite()
False

sage: w = Word(iter('a'*100))
sage: w.is_finite()
False

iterated_right_palindromic_closure(f=None, algorithm='recursive')
Returns the iterated (𝑓 -)palindromic closure of self.

3452 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• f - involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

• algorithm - string (default: 'recursive') specifying which algorithm to be used when computing
the iterated palindromic closure. It must be one of the two following values:

– 'definition' - computed using the definition

– 'recursive' - computation based on an efficient formula that recursively computes the iterated
right palindromic closure without having to recompute the longest 𝑓 -palindromic suffix at each
iteration [2].

OUTPUT:

word – the iterated (𝑓 -)palindromic closure of self

EXAMPLES:

sage: Word('123').iterated_right_palindromic_closure()
word: 1213121

sage: w = Word('abc')
sage: w.iterated_right_palindromic_closure()
word: abacaba

sage: w = Word('aaa')
sage: w.iterated_right_palindromic_closure()
word: aaa

sage: w = Word('abbab')
sage: w.iterated_right_palindromic_closure()
word: ababaabababaababa

A right 𝑓 -palindromic closure:

sage: f = WordMorphism('a->b,b->a')
sage: w = Word('abbab')
sage: w.iterated_right_palindromic_closure(f=f)
word: abbaabbaababbaabbaabbaababbaabbaab

An infinite word:

sage: t = words.ThueMorseWord('ab')
sage: t.iterated_right_palindromic_closure()
word: ababaabababaababaabababaababaabababaabab...

There are two implementations computing the iterated right 𝑓 -palindromic closure, the latter being much
more efficient:

sage: w = Word('abaab')
sage: u = w.iterated_right_palindromic_closure(algorithm='definition')
sage: v = w.iterated_right_palindromic_closure(algorithm='recursive')
sage: u
word: abaabaababaabaaba
sage: u == v

(continues on next page)

5.1. Comprehensive Module List 3453

Combinatorics, Release 9.7

(continued from previous page)

True
sage: w = words.RandomWord(8)
sage: u = w.iterated_right_palindromic_closure(algorithm='definition')
sage: v = w.iterated_right_palindromic_closure(algorithm='recursive')
sage: u == v
True

REFERENCES:

• [1] A. de Luca, A. De Luca, Pseudopalindrome closure operators in free monoids, Theoret. Comput.
Sci. 362 (2006) 282–300.

• [2] J. Justin, Episturmian morphisms and a Galois theorem on continued fractions, RAIRO Theoret.
Informatics Appl. 39 (2005) 207-215.

length()
Returns the length of self.

lex_greater(other)
Returns True if self is lexicographically greater than other.

EXAMPLES:

sage: w = Word([1,2,3])
sage: u = Word([1,3,2])
sage: v = Word([3,2,1])
sage: w.lex_greater(u)
False
sage: v.lex_greater(w)
True
sage: a = Word("abba")
sage: b = Word("abbb")
sage: a.lex_greater(b)
False
sage: b.lex_greater(a)
True

For infinite words:

sage: t = words.ThueMorseWord()
sage: t[:10].lex_greater(t)
False
sage: t.lex_greater(t[:10])
True

lex_less(other)
Returns True if self is lexicographically less than other.

EXAMPLES:

sage: w = Word([1,2,3])
sage: u = Word([1,3,2])
sage: v = Word([3,2,1])
sage: w.lex_less(u)
True

(continues on next page)

3454 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: v.lex_less(w)
False
sage: a = Word("abba")
sage: b = Word("abbb")
sage: a.lex_less(b)
True
sage: b.lex_less(a)
False

For infinite words:

sage: t = words.ThueMorseWord()
sage: t.lex_less(t[:10])
False
sage: t[:10].lex_less(t)
True

longest_common_prefix(other, length='unknown')
Returns the longest common prefix of self and other.

INPUT:

• other - word

• length - string (optional, default: 'unknown') the length type of the resulting word if known. It may
be one of the following:

– 'unknown'

– 'finite'

– 'infinite'

EXAMPLES:

sage: f = lambda n : add(Integer(n).digits(2)) % 2
sage: t = Word(f)
sage: u = t[:10]
sage: t.longest_common_prefix(u)
word: 0110100110

The longest common prefix of two equal infinite words:

sage: t1 = Word(f)
sage: t2 = Word(f)
sage: t1.longest_common_prefix(t2)
word: 0110100110010110100101100110100110010110...

Useful to study the approximation of an infinite word:

sage: a = 0.618
sage: g = words.CodingOfRotationWord(alpha=a, beta=1-a, x=a)
sage: f = words.FibonacciWord()
sage: p = f.longest_common_prefix(g, length='finite')
sage: p.length()
231

5.1. Comprehensive Module List 3455

Combinatorics, Release 9.7

longest_periodic_prefix(period=1)
Returns the longest prefix of self having the given period.

INPUT:

• period - positive integer (optional, default 1)

OUTPUT:

word

EXAMPLES:

sage: Word([]).longest_periodic_prefix()
word:
sage: Word([1]).longest_periodic_prefix()
word: 1
sage: Word([1,2]).longest_periodic_prefix()
word: 1
sage: Word([1,1,2]).longest_periodic_prefix()
word: 11
sage: Word([1,2,1,2,1,3]).longest_periodic_prefix(2)
word: 12121
sage: type(_)
<class 'sage.combinat.words.word.FiniteWord_iter_with_caching'>
sage: Word(lambda n:0).longest_periodic_prefix()
word: 00...

palindrome_prefixes_iterator(max_length=None)
Returns an iterator over the palindrome prefixes of self.

INPUT:

• max_length - non negative integer or None (optional, default: None) the maximum length of the
prefixes

OUTPUT:

iterator

EXAMPLES:

sage: w = Word('abaaba')
sage: for pp in w.palindrome_prefixes_iterator(): pp
word:
word: a
word: aba
word: abaaba
sage: for pp in w.palindrome_prefixes_iterator(max_length=4): pp
word:
word: a
word: aba

You can iterate over the palindrome prefixes of an infinite word:

sage: f = words.FibonacciWord()
sage: for pp in f.palindrome_prefixes_iterator(max_length=20): pp
word:
word: 0

(continues on next page)

3456 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

word: 010
word: 010010
word: 01001010010
word: 0100101001001010010

parent()
Returns the parent of self.

partial_sums(start, mod=None)
Returns the word defined by the partial sums of its prefixes.

INPUT:

• self - A word over the integers.

• start - integer, the first letter of the resulting word.

• mod - (default: None) It can be one of the following:

– None or 0 : result is over the integers

– integer : result is over the integers modulo mod.

EXAMPLES:

sage: w = Word(range(10))
sage: w.partial_sums(0)
word: 0,0,1,3,6,10,15,21,28,36,45
sage: w.partial_sums(1)
word: 1,1,2,4,7,11,16,22,29,37,46

sage: w = Word([1,2,3,1,2,3,2,2,2,2])
sage: w.partial_sums(0, mod=None)
word: 0,1,3,6,7,9,12,14,16,18,20
sage: w.partial_sums(0, mod=0)
word: 0,1,3,6,7,9,12,14,16,18,20
sage: w.partial_sums(0, mod=8)
word: 01367146024
sage: w.partial_sums(0, mod=4)
word: 01323102020
sage: w.partial_sums(0, mod=2)
word: 01101100000
sage: w.partial_sums(0, mod=1)
word: 00000000000

prefixes_iterator(max_length=None)
Returns an iterator over the prefixes of self.

INPUT:

• max_length - non negative integer or None (optional, default: None) the maximum length of the
prefixes

OUTPUT:

iterator

EXAMPLES:

5.1. Comprehensive Module List 3457

Combinatorics, Release 9.7

sage: w = Word('abaaba')
sage: for p in w.prefixes_iterator(): p
word:
word: a
word: ab
word: aba
word: abaa
word: abaab
word: abaaba
sage: for p in w.prefixes_iterator(max_length=3): p
word:
word: a
word: ab
word: aba

You can iterate over the prefixes of an infinite word:

sage: f = words.FibonacciWord()
sage: for p in f.prefixes_iterator(max_length=8): p
word:
word: 0
word: 01
word: 010
word: 0100
word: 01001
word: 010010
word: 0100101
word: 01001010

return_words_iterator(fact)
Returns an iterator over all the return words of fact in self (without unicity).

INPUT:

• fact - a non empty finite word

OUTPUT:

iterator

EXAMPLES:

sage: w = Word('baccabccbacbca')
sage: b = Word('b')
sage: list(w.return_words_iterator(b))
[word: bacca, word: bcc, word: bac]

sage: TM = words.ThueMorseWord()
sage: fact = Word([0,1,1,0,1])
sage: it = TM.return_words_iterator(fact)
sage: next(it)
word: 011010011001
sage: next(it)
word: 011010010110
sage: next(it)

(continues on next page)

3458 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

word: 0110100110010110
sage: next(it)
word: 01101001
sage: next(it)
word: 011010011001
sage: next(it)
word: 011010010110

string_rep()
Returns the (truncated) raw sequence of letters as a string.

EXAMPLES:

sage: Word('abbabaab').string_rep()
'abbabaab'
sage: Word([0, 1, 0, 0, 1]).string_rep()
'01001'
sage: Word([0,1,10,101]).string_rep()
'0,1,10,101'
sage: WordOptions(letter_separator='-')
sage: Word([0,1,10,101]).string_rep()
'0-1-10-101'
sage: WordOptions(letter_separator=',')

sum_digits(base=2, mod=None)
Return the sequence of the sum modulo mod of the digits written in base base of self.

INPUT:

• self - word over natural numbers

• base - integer (default : 2), greater or equal to 2

• mod - modulo (default: None), can take the following values:

– integer – the modulo

– None - the value base is considered for the modulo.

EXAMPLES:

The Thue-Morse word:

sage: from itertools import count
sage: Word(count()).sum_digits()
word: 0110100110010110100101100110100110010110...

Sum of digits modulo 2 of the prime numbers written in base 2:

sage: Word(primes(1000)).sum_digits()
word: 1001110100111010111011001011101110011011...

Sum of digits modulo 3 of the prime numbers written in base 3:

sage: Word(primes(1000)).sum_digits(base=3)
word: 2100002020002221222121022221022122111022...
sage: Word(primes(1000)).sum_digits(base=3, mod=3)
word: 2100002020002221222121022221022122111022...

5.1. Comprehensive Module List 3459

Combinatorics, Release 9.7

Sum of digits modulo 2 of the prime numbers written in base 3:

sage: Word(primes(1000)).sum_digits(base=3, mod=2)
word: 0111111111111111111111111111111111111111...

Sum of digits modulo 7 of the prime numbers written in base 10:

sage: Word(primes(1000)).sum_digits(base=10, mod=7)
word: 2350241354435041006132432241353546006304...

Negative entries:

sage: w = Word([-1,0,1,2,3,4,5])
sage: w.sum_digits()
Traceback (most recent call last):
...
NotImplementedError: nth digit of Thue-Morse word is not implemented for␣
→˓negative value of n

to_integer_word()
Returns a word over the integers whose letters are those output by self._to_integer_iterator()

EXAMPLES:

sage: from itertools import count
sage: w = Word(count()); w
word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
→˓28,29,30,31,32,33,34,35,36,37,38,39,...
sage: w.to_integer_word()
word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
→˓28,29,30,31,32,33,34,35,36,37,38,39,...
sage: w = Word(iter("abbacabba"), length="finite"); w
word: abbacabba
sage: w.to_integer_word()
word: 011020110
sage: w = Word(iter("abbacabba"), length="unknown"); w
word: abbacabba
sage: w.to_integer_word()
word: 011020110

5.1.352 Combinatorics on words

Main modules and their methods:

• Abstract word (finite or infinite)

• Finite word

• Infinite word

• Alphabet

• Set of words

• Word paths

• Word morphisms/substitutions

3460 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• Shuffle product of words

• Suffix Tries and Suffix Trees

Main classes and functions meant to be used by the user:

Word(), FiniteWords, InfiniteWords, Words(), Alphabet(), WordMorphism , WordPaths.

A list of common words can be accessed through words.<tab> and are listed in the words catalog.

Internal representation of words:

• Word classes

• Fast word datatype using an array of unsigned char

• Datatypes for finite words

• Datatypes for words defined by iterators and callables

Options:

• User-customizable options for words

See WordOptions().

5.1.353 Alphabet

AUTHORS:

• Franco Saliola (2008-12-17) : merged into sage

• Vincent Delecroix and Stepan Starosta (2012): remove classes for alphabet and use other Sage classes otherwise
(TotallyOrderedFiniteSet, FiniteEnumeratedSet, . . .). More shortcut to standard alphabets.

EXAMPLES:

sage: build_alphabet("ab")
{'a', 'b'}
sage: build_alphabet([0,1,2])
{0, 1, 2}
sage: build_alphabet(name="PP")
Positive integers
sage: build_alphabet(name="NN")
Non negative integers
sage: build_alphabet(name="lower")
{'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r
→˓', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'}

sage.combinat.words.alphabet.Alphabet(data=None, names=None, name=None)
Return an object representing an ordered alphabet.

INPUT:

• data – the letters of the alphabet; it can be:

– a list/tuple/iterable of letters; the iterable may be infinite

– an integer 𝑛 to represent {1, . . . , 𝑛}, or infinity to represent N

• names – (optional) a list for the letters (i.e. variable names) or a string for prefix for all letters; if given a
list, it must have the same cardinality as the set represented by data

5.1. Comprehensive Module List 3461

Combinatorics, Release 9.7

• name – (optional) if given, then return a named set and can be equal to : 'lower', 'upper',
'space', 'underscore', 'punctuation', 'printable', 'binary', 'octal', 'decimal',
'hexadecimal', 'radix64'.

You can use many of them at once, separated by spaces : 'lower punctuation' represents the union of
the two alphabets 'lower' and 'punctuation'.

Alternatively, name can be set to "positive integers" (or "PP") or "natural numbers" (or "NN").

name cannot be combined with data.

EXAMPLES:

If the argument is a Set, it just returns it:

sage: build_alphabet(ZZ) is ZZ
True
sage: F = FiniteEnumeratedSet('abc')
sage: build_alphabet(F) is F
True

If a list, tuple or string is provided, then it builds a proper Sage class (TotallyOrderedFiniteSet):

sage: build_alphabet([0,1,2])
{0, 1, 2}
sage: F = build_alphabet('abc'); F
{'a', 'b', 'c'}
sage: print(type(F).__name__)
TotallyOrderedFiniteSet_with_category

If an integer and a set is given, then it constructs a TotallyOrderedFiniteSet:

sage: build_alphabet(3, ['a','b','c'])
{'a', 'b', 'c'}

If an integer and a string is given, then it considers that string as a prefix:

sage: build_alphabet(3, 'x')
{'x0', 'x1', 'x2'}

If no data is provided, name may be a string which describe an alphabet. The available names decompose into
two families. The first one are ‘positive integers’, ‘PP’, ‘natural numbers’ or ‘NN’ which refer to standard set of
numbers:

sage: build_alphabet(name="positive integers")
Positive integers
sage: build_alphabet(name="PP")
Positive integers
sage: build_alphabet(name="natural numbers")
Non negative integers
sage: build_alphabet(name="NN")
Non negative integers

The other families for the option name are among ‘lower’, ‘upper’, ‘space’, ‘underscore’, ‘punctuation’, ‘print-
able’, ‘binary’, ‘octal’, ‘decimal’, ‘hexadecimal’, ‘radix64’ which refer to standard set of characters. Theses
names may be combined by separating them by a space:

3462 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/sets/sage/sets/totally_ordered_finite_set.html#sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet
../../../../../../../html/en/reference/sets/sage/sets/totally_ordered_finite_set.html#sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet

Combinatorics, Release 9.7

sage: build_alphabet(name="lower")
{'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q
→˓', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'}
sage: build_alphabet(name="hexadecimal")
{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'}
sage: build_alphabet(name="decimal punctuation")
{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ' ', ',', '.', ';', ':', '!', '?
→˓'}

In the case the alphabet is built from a list or a tuple, the order on the alphabet is given by the elements themselves:

sage: A = build_alphabet([0,2,1])
sage: A(0) < A(2)
True
sage: A(2) < A(1)
False

If a different order is needed, you may use TotallyOrderedFiniteSet and set the option facade to False.
That way, the comparison fits the order of the input:

sage: A = TotallyOrderedFiniteSet([4,2,6,1], facade=False)
sage: A(4) < A(2)
True
sage: A(1) < A(6)
False

Be careful, the element of the set in the last example are no more integers and do not compare equal with integers:

sage: type(A.an_element())
<class 'sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet_with_category.
→˓element_class'>
sage: A(1) == 1
False
sage: 1 == A(1)
False

We give an example of an infinite alphabet indexed by the positive integers and the prime numbers:

sage: build_alphabet(oo, 'x')
Lazy family (x(i))_{i in Non negative integers}
sage: build_alphabet(Primes(), 'y')
Lazy family (y(i))_{i in Set of all prime numbers: 2, 3, 5, 7, ...}

sage.combinat.words.alphabet.build_alphabet(data=None, names=None, name=None)
Return an object representing an ordered alphabet.

INPUT:

• data – the letters of the alphabet; it can be:

– a list/tuple/iterable of letters; the iterable may be infinite

– an integer 𝑛 to represent {1, . . . , 𝑛}, or infinity to represent N

• names – (optional) a list for the letters (i.e. variable names) or a string for prefix for all letters; if given a
list, it must have the same cardinality as the set represented by data

5.1. Comprehensive Module List 3463

../../../../../../../html/en/reference/sets/sage/sets/totally_ordered_finite_set.html#sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet

Combinatorics, Release 9.7

• name – (optional) if given, then return a named set and can be equal to : 'lower', 'upper',
'space', 'underscore', 'punctuation', 'printable', 'binary', 'octal', 'decimal',
'hexadecimal', 'radix64'.

You can use many of them at once, separated by spaces : 'lower punctuation' represents the union of
the two alphabets 'lower' and 'punctuation'.

Alternatively, name can be set to "positive integers" (or "PP") or "natural numbers" (or "NN").

name cannot be combined with data.

EXAMPLES:

If the argument is a Set, it just returns it:

sage: build_alphabet(ZZ) is ZZ
True
sage: F = FiniteEnumeratedSet('abc')
sage: build_alphabet(F) is F
True

If a list, tuple or string is provided, then it builds a proper Sage class (TotallyOrderedFiniteSet):

sage: build_alphabet([0,1,2])
{0, 1, 2}
sage: F = build_alphabet('abc'); F
{'a', 'b', 'c'}
sage: print(type(F).__name__)
TotallyOrderedFiniteSet_with_category

If an integer and a set is given, then it constructs a TotallyOrderedFiniteSet:

sage: build_alphabet(3, ['a','b','c'])
{'a', 'b', 'c'}

If an integer and a string is given, then it considers that string as a prefix:

sage: build_alphabet(3, 'x')
{'x0', 'x1', 'x2'}

If no data is provided, name may be a string which describe an alphabet. The available names decompose into
two families. The first one are ‘positive integers’, ‘PP’, ‘natural numbers’ or ‘NN’ which refer to standard set of
numbers:

sage: build_alphabet(name="positive integers")
Positive integers
sage: build_alphabet(name="PP")
Positive integers
sage: build_alphabet(name="natural numbers")
Non negative integers
sage: build_alphabet(name="NN")
Non negative integers

The other families for the option name are among ‘lower’, ‘upper’, ‘space’, ‘underscore’, ‘punctuation’, ‘print-
able’, ‘binary’, ‘octal’, ‘decimal’, ‘hexadecimal’, ‘radix64’ which refer to standard set of characters. Theses
names may be combined by separating them by a space:

3464 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/sets/sage/sets/totally_ordered_finite_set.html#sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet
../../../../../../../html/en/reference/sets/sage/sets/totally_ordered_finite_set.html#sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet

Combinatorics, Release 9.7

sage: build_alphabet(name="lower")
{'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q
→˓', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'}
sage: build_alphabet(name="hexadecimal")
{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'}
sage: build_alphabet(name="decimal punctuation")
{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ' ', ',', '.', ';', ':', '!', '?
→˓'}

In the case the alphabet is built from a list or a tuple, the order on the alphabet is given by the elements themselves:

sage: A = build_alphabet([0,2,1])
sage: A(0) < A(2)
True
sage: A(2) < A(1)
False

If a different order is needed, you may use TotallyOrderedFiniteSet and set the option facade to False.
That way, the comparison fits the order of the input:

sage: A = TotallyOrderedFiniteSet([4,2,6,1], facade=False)
sage: A(4) < A(2)
True
sage: A(1) < A(6)
False

Be careful, the element of the set in the last example are no more integers and do not compare equal with integers:

sage: type(A.an_element())
<class 'sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet_with_category.
→˓element_class'>
sage: A(1) == 1
False
sage: 1 == A(1)
False

We give an example of an infinite alphabet indexed by the positive integers and the prime numbers:

sage: build_alphabet(oo, 'x')
Lazy family (x(i))_{i in Non negative integers}
sage: build_alphabet(Primes(), 'y')
Lazy family (y(i))_{i in Set of all prime numbers: 2, 3, 5, 7, ...}

5.1.354 Finite word

AUTHORS:

• Arnaud Bergeron

• Amy Glen

• Sébastien Labbé

• Franco Saliola

5.1. Comprehensive Module List 3465

../../../../../../../html/en/reference/sets/sage/sets/totally_ordered_finite_set.html#sage.sets.totally_ordered_finite_set.TotallyOrderedFiniteSet

Combinatorics, Release 9.7

• Julien Leroy (March 2010): reduced_rauzy_graph

EXAMPLES:

Creation of a finite word

Finite words from Python strings, lists and tuples:

sage: Word("abbabaab")
word: abbabaab
sage: Word([0, 1, 1, 0, 1, 0, 0, 1])
word: 01101001
sage: Word(('a', 0, 5, 7, 'b', 9, 8))
word: a057b98

Finite words from functions:

sage: f = lambda n : n%3
sage: Word(f, length=13)
word: 0120120120120

Finite words from iterators:

sage: from itertools import count
sage: Word(count(), length=10)
word: 0123456789

sage: Word(iter('abbccdef'))
word: abbccdef

Finite words from words via concatenation:

sage: u = Word("abcccabba")
sage: v = Word([0, 4, 8, 8, 3])
sage: u * v
word: abcccabba04883
sage: v * u
word: 04883abcccabba
sage: u + v
word: abcccabba04883
sage: u^3 * v^(8/5)
word: abcccabbaabcccabbaabcccabba04883048

Finite words from infinite words:

sage: vv = v^Infinity
sage: vv[10000:10015]
word: 048830488304883

Finite words in a specific combinatorial class:

sage: W = Words("ab")
sage: W
Finite and infinite words over {'a', 'b'}

(continues on next page)

3466 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: W("abbabaab")
word: abbabaab
sage: W(["a","b","b","a","b","a","a","b"])
word: abbabaab
sage: W(iter('ababab'))
word: ababab

Finite word as the image under a morphism:

sage: m = WordMorphism({0:[4,4,5,0],5:[0,5,5],4:[4,0,0,0]})
sage: m(0)
word: 4450
sage: m(0, order=2)
word: 400040000554450
sage: m(0, order=3)
word: 4000445044504450400044504450445044500550...

Note: The following two finite words have the same string representation:

sage: w = Word('010120')
sage: z = Word([0, 1, 0, 1, 2, 0])
sage: w
word: 010120
sage: z
word: 010120

but are not equal:

sage: w == z
False

Indeed, w and z are defined on different alphabets:

sage: w[2]
'0'
sage: z[2]
0

Functions and algorithms

There are more than 100 functions defined on a finite word. Here are some of them:

sage: w = Word('abaabbba'); w
word: abaabbba
sage: w.is_palindrome()
False
sage: w.is_lyndon()
False
sage: w.number_of_factors()
28

(continues on next page)

5.1. Comprehensive Module List 3467

Combinatorics, Release 9.7

(continued from previous page)

sage: w.critical_exponent()
3

sage: print(w.lyndon_factorization())
(ab, aabbb, a)
sage: print(w.crochemore_factorization())
(a, b, a, ab, bb, a)

sage: st = w.suffix_tree()
sage: st
Implicit Suffix Tree of the word: abaabbba
sage: st.show(word_labels=True)

sage: T = words.FibonacciWord('ab')
sage: T.longest_common_prefix(Word('abaabababbbbbb'))
word: abaababa

As matrix and many other sage objects, words have a parent:

sage: u = Word('xyxxyxyyy')
sage: u.parent()
Finite words over Set of Python objects of class 'object'

sage: v = Word('xyxxyxyyy', alphabet='xy')
sage: v.parent()
Finite words over {'x', 'y'}

Factors and Rauzy Graphs

Enumeration of factors, the successive values returned by next(it) can appear in a different order depending on
hardware. Therefore we mark the three first results of the test random. The important test is that the iteration stops
properly on the fourth call:

sage: w = Word([4,5,6])^7
sage: it = w.factor_iterator(4)
sage: next(it) # random
word: 6456
sage: next(it) # random
word: 5645
sage: next(it) # random
word: 4564
sage: next(it)
Traceback (most recent call last):
...
StopIteration

The set of factors:

sage: sorted(w.factor_set(3))
[word: 456, word: 564, word: 645]

(continues on next page)

3468 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: sorted(w.factor_set(4))
[word: 4564, word: 5645, word: 6456]
sage: w.factor_set().cardinality()
61

Rauzy graphs:

sage: f = words.FibonacciWord()[:30]
sage: f.rauzy_graph(4)
Looped digraph on 5 vertices
sage: f.reduced_rauzy_graph(4)
Looped multi-digraph on 2 vertices

Left-special and bispecial factors:

sage: f.number_of_left_special_factors(7)
1
sage: f.bispecial_factors()
[word: , word: 0, word: 010, word: 010010, word: 01001010010]

class sage.combinat.words.finite_word.CallableFromListOfWords
Bases: tuple

A class to create a callable from a list of words. The concatenation of a list of words is obtained by creating a
word from this callable.

class sage.combinat.words.finite_word.Factorization
Bases: list

A list subclass having a nicer representation for factorization of words.

class sage.combinat.words.finite_word.FiniteWord_class
Bases: sage.combinat.words.abstract_word.Word_class

BWT()
Return the Burrows-Wheeler Transform (BWT) of self.

The Burrows-Wheeler transform of a finite word𝑤 is obtained from𝑤 by first listing the conjugates of𝑤 in
lexicographic order and then concatenating the final letters of the conjugates in this order. See [BW1994].

EXAMPLES:

sage: Word('abaccaaba').BWT()
word: cbaabaaca
sage: Word('abaab').BWT()
word: bbaaa
sage: Word('bbabbaca').BWT()
word: cbbbbaaa
sage: Word('aabaab').BWT()
word: bbaaaa
sage: Word().BWT()
word:
sage: Word('a').BWT()
word: a

LZ_decomposition()
Return the Crochemore factorization of self as an ordered list of factors.

5.1. Comprehensive Module List 3469

Combinatorics, Release 9.7

The Crochemore factorization or the Lempel-Ziv decomposition of a finite word 𝑤 is the unique factor-
ization: (𝑥1, 𝑥2, . . . , 𝑥𝑛) of 𝑤 with each 𝑥𝑖 satisfying either: C1. 𝑥𝑖 is a letter that does not appear in
𝑢 = 𝑥1 . . . 𝑥𝑖−1; C2. 𝑥𝑖 is the longest prefix of 𝑣 = 𝑥𝑖 . . . 𝑥𝑛 that also has an occurrence beginning within
𝑢 = 𝑥1 . . . 𝑥𝑖−1. See [Cro1983].

EXAMPLES:

sage: x = Word('abababb')
sage: x.crochemore_factorization()
(a, b, abab, b)
sage: mul(x.crochemore_factorization()) == x
True
sage: y = Word('abaababacabba')
sage: y.crochemore_factorization()
(a, b, a, aba, ba, c, ab, ba)
sage: mul(y.crochemore_factorization()) == y
True
sage: x = Word([0,1,0,1,0,1,1])
sage: x.crochemore_factorization()
(0, 1, 0101, 1)
sage: mul(x.crochemore_factorization()) == x
True

abelian_complexity(n)
Return the number of abelian vectors of factors of length n of self.

EXAMPLES:

sage: w = words.FibonacciWord()[:100]
sage: [w.abelian_complexity(i) for i in range(20)]
[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

sage: w = words.ThueMorseWord()[:100]
sage: [w.abelian_complexity(i) for i in range(20)]
[1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2]

abelian_vector()
Return the abelian vector of self counting the occurrences of each letter.

The vector is defined w.r.t. the order of the alphabet of the parent. See also evaluation_dict().

INPUT:

• self – word having a parent on a finite alphabet

OUTPUT:

a list

EXAMPLES:

sage: W = Words('ab')
sage: W('aaabbbbb').abelian_vector()
[3, 5]
sage: W('a').abelian_vector()
[1, 0]
sage: W().abelian_vector()
[0, 0]

3470 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The result depends on the alphabet of the parent:

sage: W = Words('abc')
sage: W('aabaa').abelian_vector()
[4, 1, 0]

abelian_vectors(n)
Return the abelian vectors of factors of length n of self.

The vectors are defined w.r.t. the order of the alphabet of the parent.

OUTPUT:

a set of tuples

EXAMPLES:

sage: W = Words([0,1,2])
sage: w = W([0,1,1,0,1,2,0,2,0,2])
sage: w.abelian_vectors(3)
{(1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1)}
sage: w[:5].abelian_vectors(3)
{(1, 2, 0)}
sage: w[5:].abelian_vectors(3)
{(1, 0, 2), (2, 0, 1)}

sage: w = words.FibonacciWord()[:100]
sage: sorted(w.abelian_vectors(0))
[(0, 0)]
sage: sorted(w.abelian_vectors(1))
[(0, 1), (1, 0)]
sage: sorted(w.abelian_vectors(7))
[(4, 3), (5, 2)]

The word must be defined with a parent on a finite alphabet:

sage: from itertools import count
sage: w = Word(count(), alphabet=NN)
sage: w[:2].abelian_vectors(2)
Traceback (most recent call last):
...
TypeError: The alphabet of the parent is infinite; define the
word with a parent on a finite alphabet

apply_permutation_to_letters(permutation)
Return the word obtained by applying the permutation permutation of the alphabet of self to each letter
of self.

EXAMPLES:

sage: w = Words('abcd')('abcd')
sage: p = [2,1,4,3]
sage: w.apply_permutation_to_letters(p)
word: badc
sage: u = Words('dabc')('abcd')
sage: u.apply_permutation_to_letters(p)

(continues on next page)

5.1. Comprehensive Module List 3471

Combinatorics, Release 9.7

(continued from previous page)

word: dcba
sage: w.apply_permutation_to_letters(Permutation(p))
word: badc
sage: w.apply_permutation_to_letters(PermutationGroupElement(p))
word: badc

apply_permutation_to_positions(permutation)
Return the word obtained by permuting the positions of the letters in self according to the permutation
permutation.

EXAMPLES:

sage: w = Words('abcd')('abcd')
sage: w.apply_permutation_to_positions([2,1,4,3])
word: badc
sage: u = Words('dabc')('abcd')
sage: u.apply_permutation_to_positions([2,1,4,3])
word: badc
sage: w.apply_permutation_to_positions(Permutation([2,1,4,3]))
word: badc
sage: w.apply_permutation_to_positions(PermutationGroupElement([2,1,4,3]))
word: badc
sage: Word([1,2,3,4]).apply_permutation_to_positions([3,4,2,1])
word: 3421

balance()
Return the balance of self.

The balance of a word is the smallest number 𝑞 such that self is 𝑞-balanced [FV2002].

A finite or infinite word 𝑤 is said to be 𝑞-balanced if for any two factors 𝑢, 𝑣 of 𝑤 of the same length, the
difference between the number of 𝑥’s in each of 𝑢 and 𝑣 is at most 𝑞 for all letters 𝑥 in the alphabet of 𝑤.
A 1-balanced word is simply said to be balanced. See Chapter 2 of [Lot2002].

OUTPUT:

integer

EXAMPLES:

sage: Word('1111111').balance()
0
sage: Word('001010101011').balance()
2
sage: Word('0101010101').balance()
1

sage: w = Word('11112222')
sage: w.is_balanced(2)
False
sage: w.is_balanced(3)
False
sage: w.is_balanced(4)
True
sage: w.is_balanced(5)

(continues on next page)

3472 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

True
sage: w.balance()
4

bispecial_factors(n=None)
Return the bispecial factors (of length n).

A factor 𝑢 of a word 𝑤 is bispecial if it is right special and left special.

INPUT:

• n – integer (optional, default: None). If None, it returns all bispecial factors.

OUTPUT:

a list of words

EXAMPLES:

sage: w = words.FibonacciWord()[:30]
sage: w.bispecial_factors()
[word: , word: 0, word: 010, word: 010010, word: 01001010010]

sage: w = words.ThueMorseWord()[:30]
sage: for i in range(10):
....: print("{} {}".format(i, sorted(w.bispecial_factors(i))))
0 [word:]
1 [word: 0, word: 1]
2 [word: 01, word: 10]
3 [word: 010, word: 101]
4 [word: 0110, word: 1001]
5 []
6 [word: 011001, word: 100110]
7 []
8 [word: 10010110]
9 []

bispecial_factors_iterator(n=None)
Return an iterator over the bispecial factors (of length n).

A factor 𝑢 of a word 𝑤 is bispecial if it is right special and left special.

INPUT:

• n – integer (optional, default: None). If None, it returns an iterator over all bispecial factors.

EXAMPLES:

sage: w = words.ThueMorseWord()[:30]
sage: for i in range(10):
....: for u in sorted(w.bispecial_factors_iterator(i)):
....: print("{} {}".format(i,u))
0
1 0
1 1
2 01
2 10

(continues on next page)

5.1. Comprehensive Module List 3473

Combinatorics, Release 9.7

(continued from previous page)

3 010
3 101
4 0110
4 1001
6 011001
6 100110
8 10010110

sage: key = lambda u : (len(u), u)
sage: for u in sorted(w.bispecial_factors_iterator(), key=key): u
word:
word: 0
word: 1
word: 01
word: 10
word: 010
word: 101
word: 0110
word: 1001
word: 011001
word: 100110
word: 10010110

border()
Return the longest word that is both a proper prefix and a proper suffix of self.

EXAMPLES:

sage: Word('121212').border()
word: 1212
sage: Word('12321').border()
word: 1
sage: Word().border() is None
True

charge(check=True)
Return the charge of self. This is defined as follows.

If𝑤 is a permutation of length 𝑛, (in other words, the evaluation of𝑤 is (1, 1, . . . , 1)), the statistic charge(𝑤)
is given by

∑︀𝑛
𝑖=1 𝑐𝑖(𝑤) where 𝑐1(𝑤) = 0 and 𝑐𝑖(𝑤) is defined recursively by setting 𝑝𝑖 equal to 1 if 𝑖 appears

to the right of 𝑖− 1 in 𝑤 and 0 otherwise. Then we set 𝑐𝑖(𝑤) = 𝑐𝑖−1(𝑤) + 𝑝𝑖.

EXAMPLES:

sage: Word([1, 2, 3]).charge()
3
sage: Word([3, 5, 1, 4, 2]).charge() == 0 + 1 + 1 + 2 + 2
True

If 𝑤 is not a permutation, but the evaluation of 𝑤 is a partition, the charge of 𝑤 is defined to be the sum of
its charge subwords (each of which will be a permutation). The first charge subword is found by starting
at the end of 𝑤 and moving left until the first 1 is found. This is marked, and we continue to move to the
left until the first 2 is found, wrapping around from the beginning of the word back to the end, if necessary.
We mark this 2, and continue on until we have marked the largest letter in 𝑤. The marked letters, with

3474 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

relative order preserved, form the first charge subword of 𝑤. This subword is removed, and the next charge
subword is found in the same manner from the remaining letters. In the following example, 𝑤1, 𝑤2, 𝑤3 are
the charge subwords of 𝑤.

EXAMPLES:

sage: w = Word([5,2,3,4,4,1,1,1,2,2,3])
sage: w1 = Word([5, 2, 4, 1, 3])
sage: w2 = Word([3, 4, 1, 2])
sage: w3 = Word([1, 2])
sage: w.charge() == w1.charge() + w2.charge() + w3.charge()
True

Finally, if 𝑤 does not have partition content, we apply the Lascoux-Schützenberger standardization opera-
tors 𝑠𝑖 in such a manner as to obtain a word with partition content. (The word we obtain is independent of
the choice of operators.) The charge is then defined to be the charge of this word:

sage: Word([3,3,2,1,1]).charge()
0
sage: Word([1,2,3,1,2]).charge()
2

Note that this differs from the definition of charge given in Macdonald’s book. The difference amounts to
a choice of reading a word from left-to-right or right-to-left. The choice in Sage was made to agree with
the definition of a reading word of a tableau in Sage, and seems to be the more common convention in the
literature.

See [Mac1995], [LLM2003], and [LLT].

cocharge()
Return the cocharge of self. For a word 𝑤, this can be defined as 𝑛𝑒𝑣− 𝑐ℎ(𝑤), where 𝑐ℎ(𝑤) is the charge
of 𝑤 and 𝑒𝑣 is the evaluation of 𝑤, and 𝑛𝑒𝑣 is

∑︀
𝑖<𝑗𝑚𝑖𝑛(𝑒𝑣𝑖, 𝑒𝑣𝑗).

EXAMPLES:

sage: Word([1,2,3]).cocharge()
0
sage: Word([3,2,1]).cocharge()
3
sage: Word([1,1,2]).cocharge()
0
sage: Word([2,1,2]).cocharge()
1

coerce(other)
Try to return a pair of words with a common parent; raise an exception if this is not possible.

This function begins by checking if both words have the same parent. If this is the case, then no work is
done and both words are returned as-is.

Otherwise it will attempt to convert other to the domain of self. If that fails, it will attempt to convert
self to the domain of other. If both attempts fail, it raises a TypeError to signal failure.

EXAMPLES:

sage: W1 = Words('abc'); W2 = Words('ab')
sage: w1 = W1('abc'); w2 = W2('abba'); w3 = W1('baab')

(continues on next page)

5.1. Comprehensive Module List 3475

Combinatorics, Release 9.7

(continued from previous page)

sage: w1.parent() is w2.parent()
False
sage: a, b = w1.coerce(w2)
sage: a.parent() is b.parent()
True
sage: w1.parent() is w2.parent()
False

colored_vector(x=0, y=0, width='default', height=1, cmap='hsv', thickness=1, label=None)
Return a vector (Graphics object) illustrating self. Each letter is represented by a coloured rectangle.

If the parent of self is a class of words over a finite alphabet, then each letter in the alphabet is assigned a
unique colour, and this colour will be the same every time this method is called. This is especially useful
when plotting and comparing words defined on the same alphabet.

If the alphabet is infinite, then the letters appearing in the word are used as the alphabet.

INPUT:

• x – (default: 0) bottom left x-coordinate of the vector

• y – (default: 0) bottom left y-coordinate of the vector

• width – (default: 'default') width of the vector. By default, the width is the length of self.

• height – (default: 1) height of the vector

• thickness – (default: 1) thickness of the contour

• cmap – (default: 'hsv') color map; for available color map names type: import matplotlib.cm;
list(matplotlib.cm.datad)

• label – string (default: None) a label to add on the colored vector

OUTPUT:

Graphics

EXAMPLES:

sage: Word(range(20)).colored_vector()
Graphics object consisting of 21 graphics primitives
sage: Word(range(100)).colored_vector(0,0,10,1)
Graphics object consisting of 101 graphics primitives
sage: Words(range(100))(range(10)).colored_vector()
Graphics object consisting of 11 graphics primitives
sage: w = Word('abbabaab')
sage: w.colored_vector()
Graphics object consisting of 9 graphics primitives
sage: w.colored_vector(cmap='autumn')
Graphics object consisting of 9 graphics primitives
sage: Word(range(20)).colored_vector(label='Rainbow')
Graphics object consisting of 23 graphics primitives

When two words are defined under the same parent, same letters are mapped to same colors:

sage: W = Words(range(20))
sage: w = W(range(20))
sage: y = W(range(10,20))

(continues on next page)

3476 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: y.colored_vector(y=1, x=10) + w.colored_vector()
Graphics object consisting of 32 graphics primitives

commutes_with(other)
Return True if self commutes with other, and False otherwise.

EXAMPLES:

sage: Word('12').commutes_with(Word('12'))
True
sage: Word('12').commutes_with(Word('11'))
False
sage: Word().commutes_with(Word('21'))
True

complete_return_words(fact)
Return the set of complete return words of fact in self.

This is the set of all factors starting by the given factor and ending just after the next occurrence of this
factor. See for instance [JV2000].

INPUT:

• fact – a non-empty finite word

OUTPUT:

a Python set of finite words

EXAMPLES:

sage: s = Word('21331233213231').complete_return_words(Word('2'))
sage: sorted(s)
[word: 2132, word: 213312, word: 2332]
sage: Word('').complete_return_words(Word('213'))
set()
sage: Word('121212').complete_return_words(Word('1212'))
{word: 121212}

concatenate(other)
Return the concatenation of self and other.

INPUT:

• other – a word over the same alphabet as self

EXAMPLES:

Concatenation may be made using + or * operations:

sage: w = Word('abadafd')
sage: y = Word([5,3,5,8,7])
sage: w * y
word: abadafd53587
sage: w + y
word: abadafd53587
sage: w.concatenate(y)
word: abadafd53587

5.1. Comprehensive Module List 3477

Combinatorics, Release 9.7

Both words must be defined over the same alphabet:

sage: z = Word('12223', alphabet = '123')
sage: z + y
Traceback (most recent call last):
...
ValueError: 5 not in alphabet

Eventually, it should work:

sage: z = Word('12223', alphabet = '123')
sage: z + y #todo: not implemented
word: 1222353587

conjugate(pos)
Return the conjugate at pos of self.

pos can be any integer, the distance used is the modulo by the length of self.

EXAMPLES:

sage: Word('12112').conjugate(1)
word: 21121
sage: Word().conjugate(2)
word:
sage: Word('12112').conjugate(8)
word: 12121
sage: Word('12112').conjugate(-1)
word: 21211

conjugate_position(other)
Return the position where self is conjugate with other. Return None if there is no such position.

EXAMPLES:

sage: Word('12113').conjugate_position(Word('31211'))
1
sage: Word('12131').conjugate_position(Word('12113')) is None
True
sage: Word().conjugate_position(Word('123')) is None
True

conjugates()
Return the list of unique conjugates of self.

EXAMPLES:

sage: Word(range(6)).conjugates()
[word: 012345,
word: 123450,
word: 234501,
word: 345012,
word: 450123,
word: 501234]
sage: Word('cbbca').conjugates()
[word: cbbca, word: bbcac, word: bcacb, word: cacbb, word: acbbc]

3478 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

The result contains each conjugate only once:

sage: Word('abcabc').conjugates()
[word: abcabc, word: bcabca, word: cabcab]

conjugates_iterator()
Return an iterator over the conjugates of self.

EXAMPLES:

sage: it = Word(range(4)).conjugates_iterator()
sage: for w in it: w
word: 0123
word: 1230
word: 2301
word: 3012

content(n=None)
Return content of self.

INPUT:

• n – (optional) an integer specifying the maximal letter in the alphabet

OUTPUT:

• a list where the 𝑖-th entry indicates the multiplicity of the 𝑖-th letter in the alphabet in self

EXAMPLES:

sage: w = Word([1,2,4,3,2,2,2])
sage: w.content()
[1, 4, 1, 1]
sage: w = Word([3,1])
sage: w.content()
[1, 1]
sage: w.content(n=3)
[1, 0, 1]
sage: w = Word([2,4],alphabet=[1,2,3,4])
sage: w.content(n=3)
[0, 1, 0]
sage: w.content()
[0, 1, 0, 1]

count(letter)
Return the number of occurrences of letter in self.

INPUT:

• letter - a letter

OUTPUT:

• integer

EXAMPLES:

sage: w = Word('abbabaab')
sage: w.number_of_letter_occurrences('a')

(continues on next page)

5.1. Comprehensive Module List 3479

Combinatorics, Release 9.7

(continued from previous page)

4
sage: w.number_of_letter_occurrences('ab')
0

This methods is equivalent to list(w).count(letter) and tuple(w).count(letter), thus count is
an alias for the method number_of_letter_occurrences:

sage: list(w).count('a')
4
sage: w.count('a')
4

But notice that if s and w are strings, Word(s).count(w) counts the number occurrences of w as a letter
in Word(s) which is not the same as s.count(w) which counts the number of occurrences of the string w
inside s:

sage: s = 'abbabaab'
sage: s.count('ab')
3
sage: Word(s).count('ab')
0

See also:

sage.combinat.words.finite_word.FiniteWord_class.number_of_factor_occurrences()

critical_exponent()
Return the critical exponent of self.

The critical exponent of a word is the supremum of the order of all its (finite) factors. See [Dej1972].

Note: The implementation here uses the suffix tree to enumerate all the factors. It should be improved
(especially when the critical exponent is larger than 2).

EXAMPLES:

sage: Word('aaba').critical_exponent()
2
sage: Word('aabaa').critical_exponent()
2
sage: Word('aabaaba').critical_exponent()
7/3
sage: Word('ab').critical_exponent()
1
sage: Word('aba').critical_exponent()
3/2
sage: words.ThueMorseWord()[:20].critical_exponent()
2

For the Fibonacci word, the critical exponent is known to be (5 +
√︀

(5))/2. With a prefix of length 500,
we obtain a lower bound:

sage: words.FibonacciWord()[:500].critical_exponent()
320/89

3480 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

It is an error to compute the critical exponent of the empty word:

sage: Word('').critical_exponent()
Traceback (most recent call last):
...
ValueError: no critical exponent for empty word

crochemore_factorization()
Return the Crochemore factorization of self as an ordered list of factors.

The Crochemore factorization or the Lempel-Ziv decomposition of a finite word 𝑤 is the unique factor-
ization: (𝑥1, 𝑥2, . . . , 𝑥𝑛) of 𝑤 with each 𝑥𝑖 satisfying either: C1. 𝑥𝑖 is a letter that does not appear in
𝑢 = 𝑥1 . . . 𝑥𝑖−1; C2. 𝑥𝑖 is the longest prefix of 𝑣 = 𝑥𝑖 . . . 𝑥𝑛 that also has an occurrence beginning within
𝑢 = 𝑥1 . . . 𝑥𝑖−1. See [Cro1983].

EXAMPLES:

sage: x = Word('abababb')
sage: x.crochemore_factorization()
(a, b, abab, b)
sage: mul(x.crochemore_factorization()) == x
True
sage: y = Word('abaababacabba')
sage: y.crochemore_factorization()
(a, b, a, aba, ba, c, ab, ba)
sage: mul(y.crochemore_factorization()) == y
True
sage: x = Word([0,1,0,1,0,1,1])
sage: x.crochemore_factorization()
(0, 1, 0101, 1)
sage: mul(x.crochemore_factorization()) == x
True

defect(f=None)
Return the defect of self.

The defect of a finite word 𝑤 is given by the difference between the maximum number of possible palin-
dromic factors in a word of length |𝑤| and the actual number of palindromic factors contained in 𝑤. It is
well known that the maximum number of palindromic factors in 𝑤 is |𝑤|+ 1 (see [DJP2001]).

An optional involution on letters f can be given. In that case, the f-palindromic defect (or pseudopalin-
dromic defect, or theta-palindromic defect) of𝑤 is returned. It is a generalization of defect to f-palindromes.
More precisely, the defect is 𝐷(𝑤) = |𝑤| + 1 − 𝑔𝑓 (𝑤) − |𝑃𝐴𝐿𝑓 (𝑤)|, where 𝑃𝐴𝐿𝑓 (𝑤) denotes the set
of f-palindromic factors of 𝑤 (including the empty word) and 𝑔𝑓 (𝑤) is the number of pairs {𝑎, 𝑓(𝑎)} such
that 𝑎 is a letter, 𝑎 is not equal to 𝑓(𝑎), and 𝑎 or 𝑓(𝑎) occurs in 𝑤. In the case of usual palindromes (i.e.,
for f not given or equal to the identity), 𝑔𝑓 (𝑤) = 0 for all 𝑤. See [BHNR2004] for usual palindromes and
[Star2011] for f-palindromes.

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism). The default value corresponds to usual palindromes, i.e., f equal to the identity.

OUTPUT:

an integer – If f is None, the palindromic defect of self; otherwise, the f-palindromic defect of self.

EXAMPLES:

5.1. Comprehensive Module List 3481

Combinatorics, Release 9.7

sage: Word('ara').defect()
0
sage: Word('abcacba').defect()
1

It is known that Sturmian words (see [DJP2001]) have zero defect:

sage: words.FibonacciWord()[:100].defect()
0

sage: sa = WordMorphism('a->ab,b->b')
sage: sb = WordMorphism('a->a,b->ba')
sage: w = (sa*sb*sb*sa*sa*sa*sb).fixed_point('a')
sage: w[:30].defect()
0
sage: w[110:140].defect()
0

It is even conjectured that the defect of an aperiodic word which is a fixed point of a primitive morphism is
either 0 or infinite (see [BBGL2008]):

sage: w = words.ThueMorseWord()
sage: w[:50].defect()
12
sage: w[:100].defect()
16
sage: w[:300].defect()
52

For generalized defect with an involution different from the identity, there is always a letter which is not a
palindrome! This is the reason for the modification of the definition:

sage: f = WordMorphism('a->b,b->a')
sage: Word('a').defect(f)
0
sage: Word('ab').defect(f)
0
sage: Word('aa').defect(f)
1
sage: Word('abbabaabbaababba').defect(f)
3

sage: f = WordMorphism('a->b,b->a,c->c')
sage: Word('cabc').defect(f)
0
sage: Word('abcaab').defect(f)
2

Other examples:

sage: Word('000000000000').defect()
0
sage: Word('011010011001').defect()

(continues on next page)

3482 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

2
sage: Word('0101001010001').defect()
0
sage: Word().defect()
0
sage: Word('abbabaabbaababba').defect()
2

deg_inv_lex_less(other, weights=None)
Return True if the word self is degree inverse lexicographically less than other.

EXAMPLES:

sage: Word([1,2,4]).deg_inv_lex_less(Word([1,3,2]))
False
sage: Word([3,2,1]).deg_inv_lex_less(Word([1,2,3]))
True

deg_lex_less(other, weights=None)
Return True if self is degree lexicographically less than other, and False otherwise. The weight of
each letter in the ordered alphabet is given by weights, which defaults to [1, 2, 3, ...].

EXAMPLES:

sage: Word([1,2,3]).deg_lex_less(Word([1,3,2]))
True
sage: Word([3,2,1]).deg_lex_less(Word([1,2,3]))
False
sage: W = Words(range(5))
sage: W([1,2,4]).deg_lex_less(W([1,3,2]))
False
sage: Word("abba").deg_lex_less(Word("abbb"), dict(a=1,b=2))
True
sage: Word("abba").deg_lex_less(Word("baba"), dict(a=1,b=2))
True
sage: Word("abba").deg_lex_less(Word("aaba"), dict(a=1,b=2))
False
sage: Word("abba").deg_lex_less(Word("aaba"), dict(a=1,b=0))
True

deg_rev_lex_less(other, weights=None)
Return True if self is degree reverse lexicographically less than other.

EXAMPLES:

sage: Word([3,2,1]).deg_rev_lex_less(Word([1,2,3]))
False
sage: Word([1,2,4]).deg_rev_lex_less(Word([1,3,2]))
False
sage: Word([1,2,3]).deg_rev_lex_less(Word([1,2,4]))
True

degree(weights=None)
Return the weighted degree of self, where the weighted degree of each letter in the ordered alphabet is
given by weights, which defaults to [1, 2, 3, ...].

5.1. Comprehensive Module List 3483

Combinatorics, Release 9.7

INPUT:

• weights – a list or a tuple, or a dictionary keyed by the letters occurring in self.

EXAMPLES:

sage: Word([1,2,3]).degree()
6
sage: Word([3,2,1]).degree()
6
sage: Words("ab")("abba").degree()
6
sage: Words("ab")("abba").degree([0,2])
4
sage: Words("ab")("abba").degree([-1,-1])
-4
sage: Words("ab")("aabba").degree([1,1])
5
sage: Words([1,2,4])([1,2,4]).degree()
6
sage: Word([1,2,4]).degree()
7
sage: Word("aabba").degree({'a':1,'b':2})
7
sage: Word([0,1,0]).degree({0:17,1:0})
34

delta()
Return the image of self under the delta morphism.

The delta morphism, also known as the run-length encoding, is the word composed of the length of con-
secutive runs of the same letter in a given word.

EXAMPLES:

sage: W = Words('0123456789')
sage: W('22112122').delta()
word: 22112
sage: W('555008').delta()
word: 321
sage: W().delta()
word:
sage: Word('aabbabaa').delta()
word: 22112

delta_derivate(W=None)
Return the derivative under delta for self.

EXAMPLES:

sage: W = Words('12')
sage: W('12211').delta_derivate()
word: 22
sage: W('1').delta_derivate(Words([1]))
word: 1
sage: W('2112').delta_derivate()

(continues on next page)

3484 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

word: 2
sage: W('2211').delta_derivate()
word: 22
sage: W('112').delta_derivate()
word: 2
sage: W('11222').delta_derivate(Words([1, 2, 3]))
word: 3

delta_derivate_left(W=None)
Return the derivative under delta for self.

EXAMPLES:

sage: W = Words('12')
sage: W('12211').delta_derivate_left()
word: 22
sage: W('1').delta_derivate_left(Words([1]))
word: 1
sage: W('2112').delta_derivate_left()
word: 21
sage: W('2211').delta_derivate_left()
word: 22
sage: W('112').delta_derivate_left()
word: 21
sage: W('11222').delta_derivate_left(Words([1, 2, 3]))
word: 3

delta_derivate_right(W=None)
Return the right derivative under delta for self.

EXAMPLES:

sage: W = Words('12')
sage: W('12211').delta_derivate_right()
word: 122
sage: W('1').delta_derivate_right(Words([1]))
word: 1
sage: W('2112').delta_derivate_right()
word: 12
sage: W('2211').delta_derivate_right()
word: 22
sage: W('112').delta_derivate_right()
word: 2
sage: W('11222').delta_derivate_right(Words([1, 2, 3]))
word: 23

delta_inv(W=None, s=None)
Lift self via the delta operator to obtain a word containing the letters in alphabet (default is [0, 1]). The
letters used in the construction start with s (default is alphabet[0]) and cycle through alphabet.

INPUT:

• alphabet – an iterable

• s – an object in the iterable

5.1. Comprehensive Module List 3485

Combinatorics, Release 9.7

EXAMPLES:

sage: W = Words([1, 2])
sage: W([2, 2, 1, 1]).delta_inv()
word: 112212
sage: W([1, 1, 1, 1]).delta_inv(Words('123'))
word: 1231
sage: W([2, 2, 1, 1, 2]).delta_inv(s=2)
word: 22112122

evaluation()
Return the abelian vector of self counting the occurrences of each letter.

The vector is defined w.r.t. the order of the alphabet of the parent. See also evaluation_dict().

INPUT:

• self – word having a parent on a finite alphabet

OUTPUT:

a list

EXAMPLES:

sage: W = Words('ab')
sage: W('aaabbbbb').abelian_vector()
[3, 5]
sage: W('a').abelian_vector()
[1, 0]
sage: W().abelian_vector()
[0, 0]

The result depends on the alphabet of the parent:

sage: W = Words('abc')
sage: W('aabaa').abelian_vector()
[4, 1, 0]

evaluation_dict()
Return a dictionary keyed by the letters occurring in self with values the number of occurrences of the
letter.

EXAMPLES:

sage: Word([2,1,4,2,3,4,2]).evaluation_dict()
{1: 1, 2: 3, 3: 1, 4: 2}
sage: Word('badbcdb').evaluation_dict()
{'a': 1, 'b': 3, 'c': 1, 'd': 2}
sage: Word().evaluation_dict()
{}

sage: f = Word('1213121').evaluation_dict() # keys appear in random order
{'1': 4, '2': 2, '3': 1}

evaluation_partition()
Return the evaluation of the word w as a partition.

EXAMPLES:

3486 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Word("acdabda").evaluation_partition()
[3, 2, 1, 1]
sage: Word([2,1,4,2,3,4,2]).evaluation_partition()
[3, 2, 1, 1]

evaluation_sparse()
Return a list representing the evaluation of self. The entries of the list are two-element lists [a, n],
where a is a letter occurring in self and n is the number of occurrences of a in self.

EXAMPLES:

sage: sorted(Word([4,4,2,5,2,1,4,1]).evaluation_sparse())
[(1, 2), (2, 2), (4, 3), (5, 1)]
sage: sorted(Word("abcaccab").evaluation_sparse())
[('a', 3), ('b', 2), ('c', 3)]

exponent()
Return the exponent of self.

OUTPUT:

integer – the exponent

EXAMPLES:

sage: Word('1231').exponent()
1
sage: Word('121212').exponent()
3
sage: Word().exponent()
0

factor_complexity(n)
Return the number of distinct factors of length n of self.

INPUT:

• n – the length of the factors.

EXAMPLES:

sage: w = words.FibonacciWord()[:100]
sage: [w.factor_complexity(i) for i in range(20)]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

sage: w = words.ThueMorseWord()[:1000]
sage: [w.factor_complexity(i) for i in range(20)]
[1, 2, 4, 6, 10, 12, 16, 20, 22, 24, 28, 32, 36, 40, 42, 44, 46, 48, 52, 56]

factor_iterator(n=None)
Generate distinct factors of self.

INPUT:

• n – an integer, or None.

OUTPUT:

5.1. Comprehensive Module List 3487

Combinatorics, Release 9.7

If n is an integer, returns an iterator over all distinct factors of length n. If n is None, returns an iterator
generating all distinct factors.

EXAMPLES:

sage: w = Word('1213121')
sage: sorted(w.factor_iterator(0))
[word:]
sage: sorted(w.factor_iterator(10))
[]
sage: sorted(w.factor_iterator(1))
[word: 1, word: 2, word: 3]
sage: sorted(w.factor_iterator(4))
[word: 1213, word: 1312, word: 2131, word: 3121]
sage: sorted(w.factor_iterator())
[word: , word: 1, word: 12, word: 121, word: 1213, word: 12131, word: 121312,␣
→˓word: 1213121, word: 13, word: 131, word: 1312, word: 13121, word: 2, word:␣
→˓21, word: 213, word: 2131, word: 21312, word: 213121, word: 3, word: 31,␣
→˓word: 312, word: 3121]

sage: u = Word([1,2,1,2,3])
sage: sorted(u.factor_iterator(0))
[word:]
sage: sorted(u.factor_iterator(10))
[]
sage: sorted(u.factor_iterator(1))
[word: 1, word: 2, word: 3]
sage: sorted(u.factor_iterator(5))
[word: 12123]
sage: sorted(u.factor_iterator())
[word: , word: 1, word: 12, word: 121, word: 1212, word: 12123, word: 123,␣
→˓word: 2, word: 21, word: 212, word: 2123, word: 23, word: 3]

sage: xxx = Word("xxx")
sage: sorted(xxx.factor_iterator(0))
[word:]
sage: sorted(xxx.factor_iterator(4))
[]
sage: sorted(xxx.factor_iterator(2))
[word: xx]
sage: sorted(xxx.factor_iterator())
[word: , word: x, word: xx, word: xxx]

sage: e = Word()
sage: sorted(e.factor_iterator(0))
[word:]
sage: sorted(e.factor_iterator(17))
[]
sage: sorted(e.factor_iterator())
[word:]

factor_occurrences_in(other)
Return an iterator over all occurrences (including overlapping ones) of self in other in their order of
appearance.

3488 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Warning: This method is deprecated since 2020 and will be removed in a later version of SageMath.
Use factor_occurrences_iterator() instead.

EXAMPLES:

sage: u = Word('121')
sage: w = Word('121213211213')
sage: list(u.factor_occurrences_in(w))
doctest:warning
...
DeprecationWarning: f.factor_occurrences_in(w) is deprecated.
Use w.factor_occurrences_iterator(f) instead.
See https://trac.sagemath.org/30187 for details.
[0, 2, 8]

factor_set(n=None, algorithm='suffix tree')
Return the set of factors (of length n) of self.

INPUT:

• n – an integer or None (default: None).

• algorithm – string (default: 'suffix tree'), takes the following values:

– 'suffix tree' – construct and use the suffix tree of the word

– 'naive' – algorithm uses a sliding window

OUTPUT:

If n is an integer, returns the set of all distinct factors of length n. If n is None, returns the set of all distinct
factors.

EXAMPLES:

sage: w = Word('121')
sage: sorted(w.factor_set())
[word: , word: 1, word: 12, word: 121, word: 2, word: 21]
sage: sorted(w.factor_set(algorithm='naive'))
[word: , word: 1, word: 12, word: 121, word: 2, word: 21]

sage: w = Word('1213121')
sage: for i in range(w.length()): sorted(w.factor_set(i))
[word:]
[word: 1, word: 2, word: 3]
[word: 12, word: 13, word: 21, word: 31]
[word: 121, word: 131, word: 213, word: 312]
[word: 1213, word: 1312, word: 2131, word: 3121]
[word: 12131, word: 13121, word: 21312]
[word: 121312, word: 213121]

sage: w = Word([1,2,1,2,3])
sage: s = w.factor_set()
sage: sorted(s)
[word: , word: 1, word: 12, word: 121, word: 1212, word: 12123, word: 123,␣
→˓word: 2, word: 21, word: 212, word: 2123, word: 23, word: 3]

5.1. Comprehensive Module List 3489

Combinatorics, Release 9.7

find(sub, start=0, end=None)
Return the index of the first occurrence of sub in self, such that sub is contained within
self[start:end]. Return -1 on failure.

INPUT:

• sub – string, list, tuple or word to search for.

• start – non-negative integer (default: 0) specifying the position from which to start the search.

• end – non-negative integer (default: None) specifying the position at which the search must stop. If
None, then the search is performed up to the end of the string.

OUTPUT:

a non-negative integer or -1

EXAMPLES:

sage: w = Word([0,1,0,0,1])
sage: w.find(Word([1,0]))
1

The sub argument can also be a tuple or a list:

sage: w.find([1,0])
1
sage: w.find((1,0))
1

Examples using start and end:

sage: w.find(Word([0,1]), start=1)
3
sage: w.find(Word([0,1]), start=1, end=5)
3
sage: w.find(Word([0,1]), start=1, end=4) == -1
True
sage: w.find(Word([1,1])) == -1
True
sage: w.find("aa")
-1

Instances of Word_str handle string inputs as well:

sage: w = Word('abac')
sage: w.find('a')
0
sage: w.find('ba')
1

first_pos_in(other)
Return the position of the first occurrence of self in other, or None if self is not a factor of other.

Warning: This method is deprecated since 2020 and will be removed in a later version of SageMath.
Use first_occurrence() instead.

3490 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: Word('12').first_pos_in(Word('131231'))
doctest:warning
...
DeprecationWarning: f.first_pos_in(w) is deprecated.
Use w.first_occurrence(f) instead.
See https://trac.sagemath.org/30187 for details.
2
sage: Word('32').first_pos_in(Word('131231')) is None
True

foata_bijection()
Return word self under the Foata bijection.

The Foata bijection 𝜑 is a bijection on the set of words of given content (by a slight generalization of Section
2 in [FS1978]). It can be defined by induction on the size of the word: Given a word𝑤1𝑤2 · · ·𝑤𝑛, start with
𝜑(𝑤1) = 𝑤1. At the 𝑖-th step, if 𝜑(𝑤1𝑤2 · · ·𝑤𝑖) = 𝑣1𝑣2 · · · 𝑣𝑖, we define 𝜑(𝑤1𝑤2 · · ·𝑤𝑖𝑤𝑖+1) by placing
𝑤𝑖+1 on the end of the word 𝑣1𝑣2 · · · 𝑣𝑖 and breaking the word up into blocks as follows. If 𝑤𝑖+1 ≥ 𝑣𝑖,
place a vertical line to the right of each 𝑣𝑘 for which 𝑤𝑖+1 ≥ 𝑣𝑘. Otherwise, if 𝑤𝑖+1 < 𝑣𝑖, place a vertical
line to the right of each 𝑣𝑘 for which 𝑤𝑖+1 < 𝑣𝑘. In either case, place a vertical line at the start of the word
as well. Now, within each block between vertical lines, cyclically shift the entries one place to the right.

For instance, to compute 𝜑([4, 1, 5, 4, 2, 2, 3]), the sequence of words is

• 4,

• |4|1→ 41,

• |4|1|5→ 415,

• |415|4→ 5414,

• |5|4|14|2→ 54412,

• |5441|2|2→ 154422,

• |1|5442|2|3→ 1254423.

So 𝜑([4, 1, 5, 4, 2, 2, 3]) = [1, 2, 5, 4, 4, 2, 3].

See also:

Foata bijection on Permutations.

EXAMPLES:

sage: w = Word([2,2,2,1,1,1])
sage: w.foata_bijection()
word: 112221
sage: w = Word([2,2,1,2,2,2,1,1,2,1])
sage: w.foata_bijection()
word: 2122212211
sage: w = Word([4,1,5,4,2,2,3])
sage: w.foata_bijection()
word: 1254423

good_suffix_table()
Return a table of the maximum skip you can do in order not to miss a possible occurrence of self in a
word.

5.1. Comprehensive Module List 3491

Combinatorics, Release 9.7

This is a part of the Boyer-Moore algorithm to find factors. See [BM1977].

EXAMPLES:

sage: Word('121321').good_suffix_table()
[5, 5, 5, 5, 3, 3, 1]
sage: Word('12412').good_suffix_table()
[3, 3, 3, 3, 3, 1]

has_period(p)
Return True if self has the period p, False otherwise.

Note: By convention, integers greater than the length of self are periods of self.

INPUT:

• p – an integer to check if it is a period of self.

EXAMPLES:

sage: w = Word('ababa')
sage: w.has_period(2)
True
sage: w.has_period(3)
False
sage: w.has_period(4)
True
sage: w.has_period(-1)
False
sage: w.has_period(5)
True
sage: w.has_period(6)
True

has_prefix(other)
Test whether self has other as a prefix.

INPUT:

• other – a word, or data describing a word

OUTPUT:

boolean

EXAMPLES:

sage: w = Word("abbabaabababa")
sage: u = Word("abbab")
sage: w.has_prefix(u)
True
sage: u.has_prefix(w)
False
sage: u.has_prefix("abbab")
True

3492 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: w = Word([0,1,1,0,1,0,0,1,0,1,0,1,0])
sage: u = Word([0,1,1,0,1])
sage: w.has_prefix(u)
True
sage: u.has_prefix(w)
False
sage: u.has_prefix([0,1,1,0,1])
True

has_suffix(other)
Test whether self has other as a suffix.

Note: Some word datatype classes, like WordDatatype_str, override this method.

INPUT:

• other – a word, or data describing a word

OUTPUT:

boolean

EXAMPLES:

sage: w = Word("abbabaabababa")
sage: u = Word("ababa")
sage: w.has_suffix(u)
True
sage: u.has_suffix(w)
False
sage: u.has_suffix("ababa")
True

sage: w = Word([0,1,1,0,1,0,0,1,0,1,0,1,0])
sage: u = Word([0,1,0,1,0])
sage: w.has_suffix(u)
True
sage: u.has_suffix(w)
False
sage: u.has_suffix([0,1,0,1,0])
True

implicit_suffix_tree()
Return the implicit suffix tree of self.

The suffix tree of a word 𝑤 is a compactification of the suffix trie for 𝑤. The compactification removes all
nodes that have exactly one incoming edge and exactly one outgoing edge. It consists of two components:
a tree and a word. Thus, instead of labelling the edges by factors of 𝑤, we can label them by indices of the
occurrence of the factors in 𝑤.

Type sage.combinat.words.suffix_trees.ImplicitSuffixTree? for more information.

EXAMPLES:

5.1. Comprehensive Module List 3493

Combinatorics, Release 9.7

sage: w = Word("cacao")
sage: w.implicit_suffix_tree()
Implicit Suffix Tree of the word: cacao

sage: w = Word([0,1,0,1,1])
sage: w.implicit_suffix_tree()
Implicit Suffix Tree of the word: 01011

inv_lex_less(other)
Return True if self is inverse lexicographically less than other.

EXAMPLES:

sage: Word([1,2,4]).inv_lex_less(Word([1,3,2]))
False
sage: Word([3,2,1]).inv_lex_less(Word([1,2,3]))
True

inversions()
Return a list of the inversions of self. An inversion is a pair (𝑖, 𝑗) of non-negative integers 𝑖 < 𝑗 such that
self[i] > self[j].

EXAMPLES:

sage: Word([1,2,3,2,2,1]).inversions()
[[1, 5], [2, 3], [2, 4], [2, 5], [3, 5], [4, 5]]
sage: Words([3,2,1])([1,2,3,2,2,1]).inversions()
[[0, 1], [0, 2], [0, 3], [0, 4], [1, 2]]
sage: Word('abbaba').inversions()
[[1, 3], [1, 5], [2, 3], [2, 5], [4, 5]]
sage: Words('ba')('abbaba').inversions()
[[0, 1], [0, 2], [0, 4], [3, 4]]

is_balanced(q=1)
Return True if self is q-balanced, and False otherwise.

A finite or infinite word 𝑤 is said to be 𝑞-balanced if for any two factors 𝑢, 𝑣 of 𝑤 of the same length, the
difference between the number of 𝑥’s in each of 𝑢 and 𝑣 is at most 𝑞 for all letters 𝑥 in the alphabet of 𝑤.
A 1-balanced word is simply said to be balanced. See for instance [CFZ2000] and Chapter 2 of [Lot2002].

INPUT:

• q – integer (default: 1), the balance level

OUTPUT:

boolean – the result

EXAMPLES:

sage: Word('1213121').is_balanced()
True
sage: Word('1122').is_balanced()
False
sage: Word('121333121').is_balanced()
False
sage: Word('121333121').is_balanced(2)

(continues on next page)

3494 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

False
sage: Word('121333121').is_balanced(3)
True
sage: Word('121122121').is_balanced()
False
sage: Word('121122121').is_balanced(2)
True

is_cadence(seq)
Return True if seq is a cadence of self, and False otherwise.

A cadence is an increasing sequence of indexes that all map to the same letter.

EXAMPLES:

sage: Word('121132123').is_cadence([0, 2, 6])
True
sage: Word('121132123').is_cadence([0, 1, 2])
False
sage: Word('121132123').is_cadence([])
True

is_christoffel()
Return True if self is a Christoffel word, and False otherwise.

The Christoffel word of slope 𝑝/𝑞 is obtained from the Cayley graph of Z/(𝑝 + 𝑞)Z with generator 𝑞 as
follows. If 𝑢 → 𝑣 is an edge in the Cayley graph, then, 𝑣 = 𝑢 + 𝑝 mod 𝑝 + 𝑞. Let 𝑎,`b` be the alphabet
of 𝑤. Label the edge 𝑢 → 𝑣 by 𝑎 if 𝑢 < 𝑣 and 𝑏 otherwise. The Christoffel word is the word obtained by
reading the edge labels along the cycle beginning from 0.

Equivalently,𝑤 is a Christoffel word iff𝑤 is a symmetric non-empty word and𝑤[1 : 𝑛−1] is a palindrome.

See for instance [Ber2007] and [BLRS2009].

INPUT:

• self – word

OUTPUT:

boolean – True if self is a Christoffel word, False otherwise.

EXAMPLES:

sage: Word('00100101').is_christoffel()
True
sage: Word('aab').is_christoffel()
True
sage: Word().is_christoffel()
False
sage: Word('123123123').is_christoffel()
False
sage: Word('00100').is_christoffel()
False
sage: Word('0').is_christoffel()
True

5.1. Comprehensive Module List 3495

Combinatorics, Release 9.7

is_conjugate_with(other)
Return True if self is a conjugate of other, and False otherwise.

INPUT:

• other – a finite word

OUTPUT:

bool

EXAMPLES:

sage: w = Word([0..20])
sage: z = Word([7..20] + [0..6])
sage: w
word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
sage: z
word: 7,8,9,10,11,12,13,14,15,16,17,18,19,20,0,1,2,3,4,5,6
sage: w.is_conjugate_with(z)
True
sage: z.is_conjugate_with(w)
True
sage: u = Word([4]*21)
sage: u.is_conjugate_with(w)
False
sage: u.is_conjugate_with(z)
False

Both words must be finite:

sage: w = Word(iter([2]*100),length='unknown')
sage: z = Word([2]*100)
sage: z.is_conjugate_with(w) #TODO: Not implemented for word of unknown length
True
sage: wf = Word(iter([2]*100),length='finite')
sage: z.is_conjugate_with(wf)
True
sage: wf.is_conjugate_with(z)
True

is_cube()
Return True if self is a cube, and False otherwise.

EXAMPLES:

sage: Word('012012012').is_cube()
True
sage: Word('01010101').is_cube()
False
sage: Word().is_cube()
True
sage: Word('012012').is_cube()
False

is_cube_free()
Return True if self does not contain cubes, and False otherwise.

3496 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: Word('12312').is_cube_free()
True
sage: Word('32221').is_cube_free()
False
sage: Word().is_cube_free()
True

is_empty()
Return True if the length of self is zero, and False otherwise.

EXAMPLES:

sage: Word([]).is_empty()
True
sage: Word('a').is_empty()
False

is_factor(other)
Return True if self is a factor of other, and False otherwise.

A finite word 𝑢 ∈ 𝐴* is a factor of a finite word 𝑣 ∈ 𝐴* if there exists 𝑝, 𝑠 ∈ 𝐴* such that 𝑣 = 𝑝𝑢𝑠.

EXAMPLES:

sage: u = Word('2113')
sage: w = Word('123121332131233121132123')
sage: u.is_factor(w)
True
sage: u = Word('321')
sage: w = Word('1231241231312312312')
sage: u.is_factor(w)
False

The empty word is factor of another word:

sage: Word().is_factor(Word())
True
sage: Word().is_factor(Word('a'))
True
sage: Word().is_factor(Word([1,2,3]))
True
sage: Word().is_factor(Word(lambda n:n, length=5))
True

is_finite()
Return True.

EXAMPLES:

sage: Word([]).is_finite()
True
sage: Word('a').is_finite()
True

5.1. Comprehensive Module List 3497

Combinatorics, Release 9.7

is_full(f=None)
Return True if self has defect 0, and False otherwise.

A word is full (or rich) if its defect is zero (see [BHNR2004]).

If f is given, then the f-palindromic defect is used (see [PeSt2011]).

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

OUTPUT:

boolean – If f is None, whether self is full; otherwise, whether self is full of f-palindromes.

EXAMPLES:

sage: words.ThueMorseWord()[:100].is_full()
False
sage: words.FibonacciWord()[:100].is_full()
True
sage: Word('000000000000000').is_full()
True
sage: Word('011010011001').is_full()
False
sage: Word('2194').is_full()
True
sage: Word().is_full()
True

sage: f = WordMorphism('a->b,b->a')
sage: Word().is_full(f)
True
sage: w = Word('ab')
sage: w.is_full()
True
sage: w.is_full(f)
True

sage: f = WordMorphism('a->b,b->a')
sage: Word('abab').is_full(f)
True
sage: Word('abba').is_full(f)
False

A simple example of an infinite word full of f-palindromes:

sage: p = WordMorphism({0:'abc',1:'ab'})
sage: f = WordMorphism('a->b,b->a,c->c')
sage: p(words.FibonacciWord()[:50]).is_full(f)
True
sage: p(words.FibonacciWord()[:150]).is_full(f)
True

is_lyndon()
Return True if self is a Lyndon word, and False otherwise.

3498 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

A Lyndon word is a non-empty word that is lexicographically smaller than each of its proper suffixes (for
the given order on its alphabet). That is, 𝑤 is a Lyndon word if 𝑤 is non-empty and for each factorization
𝑤 = 𝑢𝑣 (with 𝑢, 𝑣 both non-empty), we have 𝑤 < 𝑣.

Equivalently, 𝑤 is a Lyndon word iff 𝑤 is a non-empty word that is lexicographically smaller than each of
its proper conjugates for the given order on its alphabet.

See for instance [Lot1983].

EXAMPLES:

sage: Word('123132133').is_lyndon()
True
sage: Word().is_lyndon()
False
sage: Word('122112').is_lyndon()
False

is_overlap()
Return True if self is an overlap, and False otherwise.

EXAMPLES:

sage: Word('12121').is_overlap()
True
sage: Word('123').is_overlap()
False
sage: Word('1231').is_overlap()
False
sage: Word('123123').is_overlap()
False
sage: Word('1231231').is_overlap()
True
sage: Word().is_overlap()
False

is_palindrome(f=None)
Return True if self is a palindrome (or a f-palindrome), and False otherwise.

Let 𝑓 : Σ→ Σ be an involution that extends to a morphism on Σ*. We say that 𝑤 ∈ Σ* is a `f`-palindrome
if 𝑤 = 𝑓(�̃�) [Lab2008]. Also called `f`-pseudo-palindrome [AZZ2005].

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism). The default value corresponds to usual palindromes, i.e., f equal to the identity.

EXAMPLES:

sage: Word('esope reste ici et se repose').is_palindrome()
False
sage: Word('esoperesteicietserepose').is_palindrome()
True
sage: Word('I saw I was I').is_palindrome()
True
sage: Word('abbcbba').is_palindrome()
True

(continues on next page)

5.1. Comprehensive Module List 3499

Combinatorics, Release 9.7

(continued from previous page)

sage: Word('abcbdba').is_palindrome()
False

Some 𝑓 -palindromes:

sage: f = WordMorphism('a->b,b->a')
sage: Word('aababb').is_palindrome(f)
True

sage: f = WordMorphism('a->b,b->a,c->c')
sage: Word('abacbacbab').is_palindrome(f)
True

sage: f = WordMorphism({'a':'b','b':'a'})
sage: Word('aababb').is_palindrome(f)
True

sage: f = WordMorphism({0:[1],1:[0]})
sage: w = words.ThueMorseWord()[:8]; w
word: 01101001
sage: w.is_palindrome(f)
True

The word must be in the domain of the involution:

sage: f = WordMorphism('a->a')
sage: Word('aababb').is_palindrome(f)
Traceback (most recent call last):
...
KeyError: 'b'

is_prefix(other)
Return True if self is a prefix of other, and False otherwise.

EXAMPLES:

sage: w = Word('0123456789')
sage: y = Word('012345')
sage: y.is_prefix(w)
True
sage: w.is_prefix(y)
False
sage: w.is_prefix(Word())
False
sage: Word().is_prefix(w)
True
sage: Word().is_prefix(Word())
True

is_primitive()
Return True if self is primitive, and False otherwise.

A finite word 𝑤 is primitive if it is not a positive integer power of a shorter word.

3500 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: Word('1231').is_primitive()
True
sage: Word('111').is_primitive()
False

is_proper_prefix(other)
Return True if self is a proper prefix of other, and False otherwise.

EXAMPLES:

sage: Word('12').is_proper_prefix(Word('123'))
True
sage: Word('12').is_proper_prefix(Word('12'))
False
sage: Word().is_proper_prefix(Word('123'))
True
sage: Word('123').is_proper_prefix(Word('12'))
False
sage: Word().is_proper_prefix(Word())
False

is_proper_suffix(other)
Return True if self is a proper suffix of other, and False otherwise.

EXAMPLES:

sage: Word('23').is_proper_suffix(Word('123'))
True
sage: Word('12').is_proper_suffix(Word('12'))
False
sage: Word().is_proper_suffix(Word('123'))
True
sage: Word('123').is_proper_suffix(Word('12'))
False

is_quasiperiodic()
Return True if self is quasiperiodic, and False otherwise.

A finite or infinite word 𝑤 is quasiperiodic if it can be constructed by concatenations and superpositions
of one of its proper factors 𝑢, which is called a quasiperiod of 𝑤. See for instance [AE1993], [Mar2004],
and [GLR2008].

EXAMPLES:

sage: Word('abaababaabaababaaba').is_quasiperiodic()
True
sage: Word('abacaba').is_quasiperiodic()
False
sage: Word('a').is_quasiperiodic()
False
sage: Word().is_quasiperiodic()
False
sage: Word('abaaba').is_quasiperiodic()
True

5.1. Comprehensive Module List 3501

Combinatorics, Release 9.7

is_rich(f=None)
Return True if self has defect 0, and False otherwise.

A word is full (or rich) if its defect is zero (see [BHNR2004]).

If f is given, then the f-palindromic defect is used (see [PeSt2011]).

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

OUTPUT:

boolean – If f is None, whether self is full; otherwise, whether self is full of f-palindromes.

EXAMPLES:

sage: words.ThueMorseWord()[:100].is_full()
False
sage: words.FibonacciWord()[:100].is_full()
True
sage: Word('000000000000000').is_full()
True
sage: Word('011010011001').is_full()
False
sage: Word('2194').is_full()
True
sage: Word().is_full()
True

sage: f = WordMorphism('a->b,b->a')
sage: Word().is_full(f)
True
sage: w = Word('ab')
sage: w.is_full()
True
sage: w.is_full(f)
True

sage: f = WordMorphism('a->b,b->a')
sage: Word('abab').is_full(f)
True
sage: Word('abba').is_full(f)
False

A simple example of an infinite word full of f-palindromes:

sage: p = WordMorphism({0:'abc',1:'ab'})
sage: f = WordMorphism('a->b,b->a,c->c')
sage: p(words.FibonacciWord()[:50]).is_full(f)
True
sage: p(words.FibonacciWord()[:150]).is_full(f)
True

is_smooth_prefix()
Return True if self is the prefix of a smooth word, and False otherwise.

3502 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Let 𝐴𝑘 = {1, . . . , 𝑘}, 𝑘 ≥ 2. An infinite word 𝑤 in 𝐴𝜔𝑘 is said to be smooth if and only if for all posi-
tive integers 𝑚, ∆𝑚(𝑤) is in 𝐴𝜔𝑘 , where ∆(𝑤) is the word obtained from 𝑤 by composing the length of
consecutive runs of the same letter in 𝑤. See for instance [BL2003] and [BDLV2006].

INPUT:

• self – must be a word over the integers to get something other than False

OUTPUT:

boolean – whether self is a smooth prefix or not

EXAMPLES:

sage: W = Words([1, 2])
sage: W([1, 1, 2, 2, 1, 2, 1, 1]).is_smooth_prefix()
True
sage: W([1, 2, 1, 2, 1, 2]).is_smooth_prefix()
False

is_square()
Return True if self is a square, and False otherwise.

EXAMPLES:

sage: Word([1,0,0,1]).is_square()
False
sage: Word('1212').is_square()
True
sage: Word('1213').is_square()
False
sage: Word('12123').is_square()
False
sage: Word().is_square()
True

is_square_free()
Return True if self does not contain squares, and False otherwise.

EXAMPLES:

sage: Word('12312').is_square_free()
True
sage: Word('31212').is_square_free()
False
sage: Word().is_square_free()
True

is_sturmian_factor()
Tell whether self is a factor of a Sturmian word.

The finite word self must be defined on a two-letter alphabet.

Equivalently, tells whether self is balanced. The advantage over the is_balanced method is that this
one runs in linear time whereas is_balanced runs in quadratic time.

OUTPUT:

boolean – the result

EXAMPLES:

5.1. Comprehensive Module List 3503

Combinatorics, Release 9.7

sage: w = Word('0111011011011101101',alphabet='01')
sage: w.is_sturmian_factor()
True

sage: words.LowerMechanicalWord(random(),alphabet='01')[:100].is_sturmian_
→˓factor()
True
sage: words.CharacteristicSturmianWord(random())[:100].is_sturmian_factor()
True

sage: w = Word('aabb',alphabet='ab')
sage: w.is_sturmian_factor()
False

sage: s1 = WordMorphism('a->ab,b->b')
sage: s2 = WordMorphism('a->ba,b->b')
sage: s3 = WordMorphism('a->a,b->ba')
sage: s4 = WordMorphism('a->a,b->ab')
sage: W = Words('ab')
sage: w = W('ab')
sage: for i in range(8): w = choice([s1,s2,s3,s4])(w)
sage: w.is_sturmian_factor()
True

Famous words:

sage: words.FibonacciWord()[:100].is_sturmian_factor()
True
sage: words.ThueMorseWord()[:1000].is_sturmian_factor()
False
sage: words.KolakoskiWord()[:1000].is_sturmian_factor()
False

See [Arn2002], [Ser1985], and [SU2009].

AUTHOR:

• Thierry Monteil

is_subword_of(other)
Return True if self is a subword of other, and False otherwise.

A finite word 𝑢 is a subword of a finite word 𝑣 if 𝑢 is a subsequence of 𝑣. See Chapter 6 on Subwords in
[Lot1997].

Some references define subword as a consecutive subsequence. Use is_factor() if this is what you need.

INPUT:

other – a finite word

EXAMPLES:

sage: Word('bb').is_subword_of(Word('ababa'))
True
sage: Word('bbb').is_subword_of(Word('ababa'))
False

3504 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Word().is_subword_of(Word('123'))
True
sage: Word('123').is_subword_of(Word('3211333213233321'))
True
sage: Word('321').is_subword_of(Word('11122212112122133111222332'))
False

See also:

longest_common_subword() number_of_subword_occurrences() is_factor()

is_suffix(other)
Return True if self is a suffix of other, and False otherwise.

EXAMPLES:

sage: w = Word('0123456789')
sage: y = Word('56789')
sage: y.is_suffix(w)
True
sage: w.is_suffix(y)
False
sage: Word('579').is_suffix(w)
False
sage: Word().is_suffix(y)
True
sage: w.is_suffix(Word())
False
sage: Word().is_suffix(Word())
True

is_symmetric(f=None)
Return True if self is symmetric (or f-symmetric), and False otherwise.

A word is symmetric (resp. 𝑓 -symmetric) if it is the product of two palindromes (resp. 𝑓 -palindromes).
See [BHNR2004] and [DeLuca2006].

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

EXAMPLES:

sage: Word('abbabab').is_symmetric()
True
sage: Word('ababa').is_symmetric()
True
sage: Word('aababaabba').is_symmetric()
False
sage: Word('aabbbaababba').is_symmetric()
False
sage: f = WordMorphism('a->b,b->a')
sage: Word('aabbbaababba').is_symmetric(f)
True

5.1. Comprehensive Module List 3505

Combinatorics, Release 9.7

is_tangent()
Tell whether self is a tangent word.

The finite word self must be defined on a two-letter alphabet.

A binary word is said to be tangent if it can appear in infinitely many cutting sequences of a smooth curve,
where each cutting sequence is observed on a progressively smaller grid.

This class of words strictly contains the class of 1-balanced words, and is strictly contained in the class of
2-balanced words.

This method runs in linear time.

OUTPUT:

boolean – the result

EXAMPLES:

sage: w = Word('01110110110111011101',alphabet='01')
sage: w.is_tangent()
True

Some tangent words may not be balanced:

sage: Word('aabb',alphabet='ab').is_balanced()
False
sage: Word('aabb',alphabet='ab').is_tangent()
True

Some 2-balanced words may not be tangent:

sage: Word('aaabb',alphabet='ab').is_tangent()
False
sage: Word('aaabb',alphabet='ab').is_balanced(2)
True

Famous words:

sage: words.FibonacciWord()[:100].is_tangent()
True
sage: words.ThueMorseWord()[:1000].is_tangent()
True
sage: words.KolakoskiWord()[:1000].is_tangent()
False

See [Mon2010].

AUTHOR:

• Thierry Monteil

is_yamanouchi(n=None)
Return whether self is Yamanouchi.

A word 𝑤 is Yamanouchi if, when read from right to left, it always has weakly more 𝑖’s than 𝑖+ 1’s for all
𝑖 that appear in 𝑤.

INPUT:

• n – (optional) an integer specifying the maximal letter in the alphabet

3506 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: w = Word([1,2,4,3,2,2,2])
sage: w.is_yamanouchi()
False
sage: w = Word([2,3,4,3,1,2,1,1,2,1])
sage: w.is_yamanouchi()
True
sage: w = Word([3,1])
sage: w.is_yamanouchi(n=3)
False
sage: w.is_yamanouchi()
True
sage: w = Word([3,1],alphabet=[1,2,3])
sage: w.is_yamanouchi()
False
sage: w = Word([2,1,1,2])
sage: w.is_yamanouchi()
False

iterated_left_palindromic_closure(f=None)
Return the iterated left (f-)palindromic closure of self.

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

OUTPUT:

word – the left iterated f-palindromic closure of self.

EXAMPLES:

sage: Word('123').iterated_left_palindromic_closure()
word: 3231323
sage: f = WordMorphism('a->b,b->a')
sage: Word('ab').iterated_left_palindromic_closure(f=f)
word: abbaab
sage: Word('aab').iterated_left_palindromic_closure(f=f)
word: abbaabbaab

lacunas(f=None)
Return the list of all the lacunas of self.

A lacuna is a position in a word where the longest (𝑓 -)palindromic suffix is not unioccurrent (see
[BMBL2008]).

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism). The default value corresponds to usual palindromes, i.e., f equal to the identity.

OUTPUT:

a list – list of all the lacunas of self

EXAMPLES:

5.1. Comprehensive Module List 3507

Combinatorics, Release 9.7

sage: w = Word([0,1,1,2,3,4,5,1,13,3])
sage: w.lacunas()
[7, 9]
sage: words.ThueMorseWord()[:100].lacunas()
[8, 9, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 96, 97, 98, 99]
sage: f = WordMorphism({0:[1],1:[0]})
sage: words.ThueMorseWord()[:50].lacunas(f)
[0, 2, 4, 12, 16, 17, 18, 19, 48, 49]

last_position_dict()
Return a dictionary that contains the last position of each letter in self.

EXAMPLES:

sage: Word('1231232').last_position_dict()
{'1': 3, '2': 6, '3': 5}

left_special_factors(n=None)
Return the left special factors (of length n).

A factor 𝑢 of a word 𝑤 is left special if there are two distinct letters 𝑎 and 𝑏 such that 𝑎𝑢 and 𝑏𝑢 are factors
of 𝑤.

INPUT:

• n – integer (optional, default: None). If None, it returns all left special factors.

OUTPUT:

a list of words

EXAMPLES:

sage: alpha, beta, x = 0.54, 0.294, 0.1415
sage: w = words.CodingOfRotationWord(alpha, beta, x)[:40]
sage: for i in range(5):
....: print("{} {}".format(i, sorted(w.left_special_factors(i))))
0 [word:]
1 [word: 0]
2 [word: 00, word: 01]
3 [word: 000, word: 010]
4 [word: 0000, word: 0101]

left_special_factors_iterator(n=None)
Return an iterator over the left special factors (of length n).

A factor 𝑢 of a word 𝑤 is left special if there are two distinct letters 𝑎 and 𝑏 such that 𝑎𝑢 and 𝑏𝑢 are factors
of 𝑤.

INPUT:

• n – integer (optional, default: None). If None, it returns an iterator over all left special factors.

EXAMPLES:

sage: alpha, beta, x = 0.54, 0.294, 0.1415
sage: w = words.CodingOfRotationWord(alpha, beta, x)[:40]
sage: sorted(w.left_special_factors_iterator(3))
[word: 000, word: 010]

(continues on next page)

3508 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: sorted(w.left_special_factors_iterator(4))
[word: 0000, word: 0101]
sage: sorted(w.left_special_factors_iterator(5))
[word: 00000, word: 01010]

length()
Return the length of self.

length_border()
Return the length of the border of self.

The border of a word is the longest word that is both a proper prefix and a proper suffix of self.

EXAMPLES:

sage: Word('121').length_border()
1
sage: Word('1').length_border()
0
sage: Word('1212').length_border()
2
sage: Word('111').length_border()
2
sage: Word().length_border() is None
True

length_maximal_palindrome(j, m=None, f=None)
Return the length of the longest palindrome centered at position j.

INPUT:

• j – rational, position of the symmetry axis of the palindrome. Must return an integer when doubled.
It is an integer when the center of the palindrome is a letter.

• m – integer (default: None), minimal length of palindrome, if known. The parity of m can’t be the same
as the parity of 2j.

• f – involution (default: None), on the alphabet. It must be callable on letters as well as words (e.g.
WordMorphism).

OUTPUT:

length of the longest f-palindrome centered at position j

EXAMPLES:

sage: Word('01001010').length_maximal_palindrome(3/2)
0
sage: Word('01101001').length_maximal_palindrome(3/2)
4
sage: Word('01010').length_maximal_palindrome(j=3, f='0->1,1->0')
0
sage: Word('01010').length_maximal_palindrome(j=2.5, f='0->1,1->0')
4
sage: Word('0222220').length_maximal_palindrome(3, f='0->1,1->0,2->2')
5

5.1. Comprehensive Module List 3509

Combinatorics, Release 9.7

sage: w = Word('abcdcbaxyzzyx')
sage: w.length_maximal_palindrome(3)
7
sage: w.length_maximal_palindrome(3, 3)
7
sage: w.length_maximal_palindrome(3.5)
0
sage: w.length_maximal_palindrome(9.5)
6
sage: w.length_maximal_palindrome(9.5, 2)
6

lengths_maximal_palindromes(f=None)
Return the length of maximal palindromes centered at each position.

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

OUTPUT:

a list – The length of the maximal palindrome (or f-palindrome) with a given symmetry axis (letter or space
between two letters).

EXAMPLES:

sage: Word('01101001').lengths_maximal_palindromes()
[0, 1, 0, 1, 4, 1, 0, 3, 0, 3, 0, 1, 4, 1, 0, 1, 0]
sage: Word('00000').lengths_maximal_palindromes()
[0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0]
sage: Word('0').lengths_maximal_palindromes()
[0, 1, 0]
sage: Word('').lengths_maximal_palindromes()
[0]
sage: Word().lengths_maximal_palindromes()
[0]
sage: f = WordMorphism('a->b,b->a')
sage: Word('abbabaab').lengths_maximal_palindromes(f)
[0, 0, 2, 0, 0, 0, 2, 0, 8, 0, 2, 0, 0, 0, 2, 0, 0]

lengths_unioccurrent_lps(f=None)
Return the list of the lengths of the unioccurrent longest (f)-palindromic suffixes (lps) for each non-empty
prefix of self. No unioccurrent lps are indicated by None.

It corresponds to the function 𝐻𝑤 defined in [BMBL2008] and [BMBFLR2008].

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism). The default value corresponds to usual palindromes, i.e., f equal to the identity.

OUTPUT:

a list – list of the length of the unioccurrent longest palindromic suffix (lps) for each non-empty prefix of
self. No unioccurrent lps are indicated by None.

EXAMPLES:

3510 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: w = Word([0,1,1,2,3,4,5,1,13,3])
sage: w.lengths_unioccurrent_lps()
[1, 1, 2, 1, 1, 1, 1, None, 1, None]
sage: f = words.FibonacciWord()[:20]
sage: f.lengths_unioccurrent_lps() == f.lps_lengths()[1:]
True
sage: t = words.ThueMorseWord()
sage: t[:20].lengths_unioccurrent_lps()
[1, 1, 2, 4, 3, 3, 2, 4, None, None, 6, 8, 10, 12, 14, 16, 6, 8, 10, 12]
sage: f = WordMorphism({1:[0],0:[1]})
sage: t[:15].lengths_unioccurrent_lps(f)
[None, 2, None, 2, None, 4, 6, 8, 4, 6, 4, 6, None, 4, 6]

letters()
Return the list of letters that appear in this word, listed in the order of first appearance.

EXAMPLES:

sage: Word([0,1,1,0,1,0,0,1]).letters()
[0, 1]
sage: Word("cacao").letters()
['c', 'a', 'o']

longest_backward_extension(x, y)
Compute the length of the longest factor of self that ends at x and that matches a factor that ends at y.

INPUT:

• x, y – positions in self

EXAMPLES:

sage: w = Word('0011001')
sage: w.longest_backward_extension(6, 2)
3
sage: w.longest_backward_extension(1, 4)
1
sage: w.longest_backward_extension(1, 3)
0

The method also accepts negative positions indicating the distance from the end of the word (in order to be
consist with how negative indices work with lists). For instance, for a word of length 7, using positions 6
and −5 is the same as using positions 6 and 2:

sage: w.longest_backward_extension(6, -5)
3
sage: w.longest_backward_extension(-6, 4)
1

longest_common_subword(other)
Return a longest subword of self and other.

A subword of a word is a subset of the word’s letters, read in the order in which they appear in the word.

For more information, see Wikipedia article Longest_common_subsequence_problem.

INPUT:

5.1. Comprehensive Module List 3511

https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

Combinatorics, Release 9.7

• other – a word

ALGORITHM:

For any indices 𝑖, 𝑗, we compute the longest common subword lcs[i,j] of self[:i] and other[:j].
This can be easily obtained as the longest of

• lcs[i-1,j]

• lcs[i,j-1]

• lcs[i-1,j-1]+self[i] if self[i]==other[j]

EXAMPLES:

sage: v1 = Word("abc")
sage: v2 = Word("ace")
sage: v1.longest_common_subword(v2)
word: ac

sage: w1 = Word("10")
sage: w2 = Word("0011001100110011001100110011001100110011")
sage: w1.longest_common_subword(w2)
word: 00110011001100110011010101010

See also:

is_subword_of()

longest_common_suffix(other)
Return the longest common suffix of self and other.

EXAMPLES:

sage: w = Word('112345678')
sage: u = Word('1115678')
sage: w.longest_common_suffix(u)
word: 5678
sage: u.longest_common_suffix(u)
word: 1115678
sage: u.longest_common_suffix(w)
word: 5678
sage: w.longest_common_suffix(w)
word: 112345678
sage: y = Word('549332345')
sage: w.longest_common_suffix(y)
word:

longest_forward_extension(x, y)
Compute the length of the longest factor of self that starts at x and that matches a factor that starts at y.

INPUT:

• x, y – positions in self

EXAMPLES:

sage: w = Word('0011001')
sage: w.longest_forward_extension(0, 4)
3

(continues on next page)

3512 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: w.longest_forward_extension(0, 2)
0

The method also accepts negative positions indicating the distance from the end of the word (in order to be
consist with how negative indices work with lists). For instance, for a word of length 7, using positions−3
and 2 is the same as using positions 4 and 2:

sage: w.longest_forward_extension(1, -2)
2
sage: w.longest_forward_extension(4, -3)
3

lps(f=None, l=None)
Return the longest palindromic (or f-palindromic) suffix of self.

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

• l – integer (default: None) the length of the longest palindrome suffix of ``self[:-1]``, if known.

OUTPUT:

word – If f is None, the longest palindromic suffix of self; otherwise, the longest f-palindromic suffix of
self.

EXAMPLES:

sage: Word('0111').lps()
word: 111
sage: Word('011101').lps()
word: 101
sage: Word('6667').lps()
word: 7
sage: Word('abbabaab').lps()
word: baab
sage: Word().lps()
word:
sage: f = WordMorphism('a->b,b->a')
sage: Word('abbabaab').lps(f=f)
word: abbabaab
sage: w = Word('33412321')
sage: w.lps(l=3)
word: 12321
sage: Y = Word
sage: w = Y('01101001')
sage: w.lps(l=2)
word: 1001
sage: w.lps()
word: 1001
sage: w.lps(l=None)
word: 1001
sage: Y().lps(l=2)
Traceback (most recent call last):

(continues on next page)

5.1. Comprehensive Module List 3513

Combinatorics, Release 9.7

(continued from previous page)

...
IndexError: list index out of range
sage: v = Word('abbabaab')
sage: pal = v[:0]
sage: for i in range(1, v.length()+1):
....: pal = v[:i].lps(l=pal.length())
....: pal
word: a
word: b
word: bb
word: abba
word: bab
word: aba
word: aa
word: baab
sage: f = WordMorphism('a->b,b->a')
sage: v = Word('abbabaab')
sage: pal = v[:0]
sage: for i in range(1, v.length()+1):
....: pal = v[:i].lps(f=f, l=pal.length())
....: pal
word:
word: ab
word:
word: ba
word: ab
word: baba
word: bbabaa
word: abbabaab

lps_lengths(f=None)
Return the length of the longest palindromic suffix of each prefix.

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

OUTPUT:

a list – The length of the longest palindromic (or f-palindromic) suffix of each prefix of self.

EXAMPLES:

sage: Word('01101001').lps_lengths()
[0, 1, 1, 2, 4, 3, 3, 2, 4]
sage: Word('00000').lps_lengths()
[0, 1, 2, 3, 4, 5]
sage: Word('0').lps_lengths()
[0, 1]
sage: Word('').lps_lengths()
[0]
sage: Word().lps_lengths()
[0]
sage: f = WordMorphism('a->b,b->a')

(continues on next page)

3514 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: Word('abbabaab').lps_lengths(f)
[0, 0, 2, 0, 2, 2, 4, 6, 8]

lyndon_factorization()
Return the Lyndon factorization of self.

The Lyndon factorization of a finite word 𝑤 is the unique factorization of 𝑤 as a non-increasing product
of Lyndon words, i.e., 𝑤 = 𝑙1 · · · 𝑙𝑛 where each 𝑙𝑖 is a Lyndon word and 𝑙1 ≥ · · · ≥ 𝑙𝑛. See for instance
[Duv1983].

OUTPUT:

the list [𝑙1, . . . , 𝑙𝑛] of factors obtained

EXAMPLES:

sage: Word('010010010001000').lyndon_factorization()
(01, 001, 001, 0001, 0, 0, 0)
sage: Words('10')('010010010001000').lyndon_factorization()
(0, 10010010001000)
sage: Word('abbababbaababba').lyndon_factorization()
(abb, ababb, aababb, a)
sage: Words('ba')('abbababbaababba').lyndon_factorization()
(a, bbababbaaba, bba)
sage: Word([1,2,1,3,1,2,1]).lyndon_factorization()
(1213, 12, 1)

major_index(final_descent=False)
Return the major index of self.

The major index of a word 𝑤 is the sum of the descents of 𝑤.

With the final_descent option, the last position of a non-empty word is also considered as a descent.

See also:

major index on Permutations.

EXAMPLES:

sage: w = Word([2,1,3,3,2])
sage: w.major_index()
5
sage: w = Word([2,1,3,3,2])
sage: w.major_index(final_descent=True)
10

minimal_conjugate()
Return the lexicographically minimal conjugate of this word (see Wikipedia article Lexicographi-
cally_minimal_string_rotation).

EXAMPLES:

sage: Word('213').minimal_conjugate()
word: 132
sage: Word('11').minimal_conjugate()
word: 11

(continues on next page)

5.1. Comprehensive Module List 3515

https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation
https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation

Combinatorics, Release 9.7

(continued from previous page)

sage: Word('12112').minimal_conjugate()
word: 11212
sage: Word('211').minimal_conjugate()
word: 112
sage: Word('211211211').minimal_conjugate()
word: 112112112

minimal_period()
Return the period of self.

Let 𝐴 be an alphabet. An integer 𝑝 ≥ 1 is a period of a word 𝑤 = 𝑎1𝑎2 · · · 𝑎𝑛 where 𝑎𝑖 ∈ 𝐴 if 𝑎𝑖 = 𝑎𝑖+𝑝
for 𝑖 = 1, . . . , 𝑛− 𝑝. The smallest period of 𝑤 is called the period of 𝑤. See Chapter 1 of [Lot2002].

EXAMPLES:

sage: Word('aba').minimal_period()
2
sage: Word('abab').minimal_period()
2
sage: Word('ababa').minimal_period()
2
sage: Word('ababaa').minimal_period()
5
sage: Word('ababac').minimal_period()
6
sage: Word('aaaaaa').minimal_period()
1
sage: Word('a').minimal_period()
1
sage: Word().minimal_period()
1

nb_factor_occurrences_in(other)
Return the number of times self appears as a factor in other.

Warning: This method is deprecated since 2020 and will be removed in a later version of SageMath.
Use number_of_factor_occurrences() instead.

EXAMPLES:

sage: Word('123').nb_factor_occurrences_in(Word('112332312313112332121123'))
doctest:warning
...
DeprecationWarning: f.nb_factor_occurrences_in(w) is deprecated.
Use w.number_of_factor_occurrences(f) instead.
See https://trac.sagemath.org/30187 for details.
4
sage: Word('321').nb_factor_occurrences_in(Word('11233231231311233221123'))
0

An error is raised for the empty word:

3516 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Word().nb_factor_occurrences_in(Word('123'))
Traceback (most recent call last):
...
NotImplementedError: The factor must be non empty

nb_subword_occurrences_in(other)
Return the number of times self appears in other as a subword.

This corresponds to the notion of 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 of two finite words whose properties are presented
in the chapter of Lothaire’s book written by Sakarovitch and Simon [Lot1997].

Warning: This method is deprecated since 2020 and will be removed in a later version of SageMath.
Use number_of_subword_occurrences() instead.

INPUT:

• other – finite word

EXAMPLES:

sage: tm = words.ThueMorseWord()

sage: u = Word([0,1,0,1])
sage: u.nb_subword_occurrences_in(tm[:1000])
doctest:warning
...
DeprecationWarning: f.nb_subword_occurrences_in(w) is deprecated.
Use w.number_of_subword_occurrences(f) instead.
See https://trac.sagemath.org/30187 for details.
2604124996

sage: u = Word([0,1,0,1,1,0])
sage: u.nb_subword_occurrences_in(tm[:100])
20370432

Note: This code, based on [MSSY2001], actually compute the number of occurrences of all prefixes
of self as subwords in all prefixes of other. In particular, its complexity is bounded by len(self) *
len(other).

number_of_factor_occurrences(other)
Return the number of times other appears as a factor in self.

INPUT:

other – a non empty word

EXAMPLES:

sage: w = Word('112332312313112332121123')
sage: w.number_of_factor_occurrences(Word('123'))
4
sage: w = Word('11233231231311233221123')
sage: w.number_of_factor_occurrences(Word('321'))
0

5.1. Comprehensive Module List 3517

Combinatorics, Release 9.7

sage: Word().number_of_factor_occurrences(Word('123'))
0

An error is raised for the empty word:

sage: Word('123').number_of_factor_occurrences(Word())
Traceback (most recent call last):
...
NotImplementedError: The factor must be non empty

number_of_factors(n=None, algorithm='suffix tree')
Count the number of distinct factors of self.

INPUT:

• n – an integer, or None.

• algorithm – string (default: 'suffix tree'), takes the following values:

– 'suffix tree' – construct and use the suffix tree of the word

– 'naive' – algorithm uses a sliding window

OUTPUT:

If n is an integer, returns the number of distinct factors of length n. If n is None, returns the total number
of distinct factors.

EXAMPLES:

sage: w = Word([1,2,1,2,3])
sage: w.number_of_factors()
13
sage: [w.number_of_factors(i) for i in range(6)]
[1, 3, 3, 3, 2, 1]

sage: w = words.ThueMorseWord()[:100]
sage: [w.number_of_factors(i) for i in range(10)]
[1, 2, 4, 6, 10, 12, 16, 20, 22, 24]

sage: Word('1213121').number_of_factors()
22
sage: Word('1213121').number_of_factors(1)
3

sage: Word('a'*100).number_of_factors()
101
sage: Word('a'*100).number_of_factors(77)
1

sage: Word().number_of_factors()
1
sage: Word().number_of_factors(17)
0

3518 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: blueberry = Word("blueberry")
sage: blueberry.number_of_factors()
43
sage: [blueberry.number_of_factors(i) for i in range(10)]
[1, 6, 8, 7, 6, 5, 4, 3, 2, 1]

number_of_inversions()
Return the number of inversions in self.

An inversion of a word 𝑤 = 𝑤1 . . . 𝑤𝑛 is a pair of indices (𝑖, 𝑗) with 𝑖 < 𝑗 and 𝑤𝑖 > 𝑤𝑗 .

See also:

number of inversions on Permutations.

EXAMPLES:

sage: w = Word([2,1,3,3,2])
sage: w.number_of_inversions()
3

number_of_left_special_factors(n)
Return the number of left special factors of length n.

A factor 𝑢 of a word 𝑤 is left special if there are two distinct letters 𝑎 and 𝑏 such that 𝑎𝑢 and 𝑏𝑢 are factors
of 𝑤.

INPUT:

• n – integer

OUTPUT:

a non-negative integer

EXAMPLES:

sage: w = words.FibonacciWord()[:100]
sage: [w.number_of_left_special_factors(i) for i in range(10)]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

sage: w = words.ThueMorseWord()[:100]
sage: [w.number_of_left_special_factors(i) for i in range(10)]
[1, 2, 2, 4, 2, 4, 4, 2, 2, 4]

number_of_letter_occurrences(letter)
Return the number of occurrences of letter in self.

INPUT:

• letter - a letter

OUTPUT:

• integer

EXAMPLES:

sage: w = Word('abbabaab')
sage: w.number_of_letter_occurrences('a')

(continues on next page)

5.1. Comprehensive Module List 3519

Combinatorics, Release 9.7

(continued from previous page)

4
sage: w.number_of_letter_occurrences('ab')
0

This methods is equivalent to list(w).count(letter) and tuple(w).count(letter), thus count is
an alias for the method number_of_letter_occurrences:

sage: list(w).count('a')
4
sage: w.count('a')
4

But notice that if s and w are strings, Word(s).count(w) counts the number occurrences of w as a letter
in Word(s) which is not the same as s.count(w) which counts the number of occurrences of the string w
inside s:

sage: s = 'abbabaab'
sage: s.count('ab')
3
sage: Word(s).count('ab')
0

See also:

sage.combinat.words.finite_word.FiniteWord_class.number_of_factor_occurrences()

number_of_right_special_factors(n)
Return the number of right special factors of length n.

A factor 𝑢 of a word𝑤 is right special if there are two distinct letters 𝑎 and 𝑏 such that 𝑢𝑎 and 𝑢𝑏 are factors
of 𝑤.

INPUT:

• n – integer

OUTPUT:

a non-negative integer

EXAMPLES:

sage: w = words.FibonacciWord()[:100]
sage: [w.number_of_right_special_factors(i) for i in range(10)]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

sage: w = words.ThueMorseWord()[:100]
sage: [w.number_of_right_special_factors(i) for i in range(10)]
[1, 2, 2, 4, 2, 4, 4, 2, 2, 4]

number_of_subword_occurrences(other)
Return the number of times other appears in self as a subword.

This corresponds to the notion of 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 of two finite words whose properties are presented
in the chapter of Lothaire’s book written by Sakarovitch and Simon [Lot1997].

INPUT:

• other – finite word

3520 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: tm = words.ThueMorseWord()
sage: u = Word([0,1,0,1])
sage: tm[:1000].number_of_subword_occurrences(u)
2604124996

sage: u = Word([0,1,0,1,1,0])
sage: tm[:100].number_of_subword_occurrences(u)
20370432

Note: This code, based on [MSSY2001], actually compute the number of occurrences of all prefixes
of self as subwords in all prefixes of other. In particular, its complexity is bounded by len(self) *
len(other).

order()
Return the order of self.

Let 𝑝(𝑤) be the period of a word 𝑤. The positive rational number |𝑤|/𝑝(𝑤) is the order of 𝑤. See Chapter
8 of [Lot2002].

OUTPUT:

rational – the order

EXAMPLES:

sage: Word('abaaba').order()
2
sage: Word('ababaaba').order()
8/5
sage: Word('a').order()
1
sage: Word('aa').order()
2
sage: Word().order()
0

overlap_partition(other, delay=0, p=None, involution=None)
Return the partition of the alphabet induced by the overlap of self and other with the given delay.

The partition of the alphabet is given by the equivalence relation obtained from the symmetric, reflexive
and transitive closure of the set of pairs of letters 𝑅𝑢,𝑣,𝑑 = {(𝑢𝑘, 𝑣𝑘−𝑑) : 0 ≤ 𝑘 < 𝑛, 0 ≤ 𝑘 − 𝑑 < 𝑚}
where 𝑢 = 𝑢0𝑢1 · · ·𝑢𝑛−1, 𝑣 = 𝑣0𝑣1 · · · 𝑣𝑚−1 are two words on the alphabet 𝐴 and 𝑑 is an integer.

The equivalence relation defined by 𝑅 is inspired from [Lab2008].

INPUT:

• other – word on the same alphabet as self

• delay – integer (default: 0)

• p – disjoint sets data structure (optional, default: None), a partition of the alphabet into disjoint sets to
start with. If None, each letter start in distinct equivalence classes.

• involution – callable (optional, default: None), an involution on the alphabet. If involution is not
None, the relation 𝑅𝑢,𝑣,𝑑 ∪𝑅𝑖𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑢),𝑖𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣),𝑑 is considered.

5.1. Comprehensive Module List 3521

Combinatorics, Release 9.7

OUTPUT:

a disjoint set data structure

EXAMPLES:

sage: W = Words(list('abc012345'))
sage: u = W('abc')
sage: v = W('01234')
sage: u.overlap_partition(v)
{{'0', 'a'}, {'1', 'b'}, {'2', 'c'}, {'3'}, {'4'}, {'5'}}
sage: u.overlap_partition(v, 2)
{{'0', 'c'}, {'1'}, {'2'}, {'3'}, {'4'}, {'5'}, {'a'}, {'b'}}
sage: u.overlap_partition(v, -1)
{{'0'}, {'1', 'a'}, {'2', 'b'}, {'3', 'c'}, {'4'}, {'5'}}

You can re-use the same disjoint set and do more than one overlap:

sage: p = u.overlap_partition(v, 2)
sage: p
{{'0', 'c'}, {'1'}, {'2'}, {'3'}, {'4'}, {'5'}, {'a'}, {'b'}}
sage: u.overlap_partition(v, 1, p)
{{'0', '1', 'b', 'c'}, {'2'}, {'3'}, {'4'}, {'5'}, {'a'}}

The function overlap_partition can be used to study equations on words. For example, if a word 𝑤
overlaps itself with delay 𝑑, then 𝑑 is a period of 𝑤:

sage: W = Words(range(20))
sage: w = W(range(14)); w
word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13
sage: d = 5
sage: p = w.overlap_partition(w, d)
sage: m = WordMorphism(p.element_to_root_dict())
sage: w2 = m(w); w2
word: 56789567895678
sage: w2.minimal_period() == d
True

If a word is equal to its reversal, then it is a palindrome:

sage: W = Words(range(20))
sage: w = W(range(17)); w
word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
sage: p = w.overlap_partition(w.reversal(), 0)
sage: m = WordMorphism(p.element_to_root_dict())
sage: w2 = m(w); w2
word: 01234567876543210
sage: w2.parent()
Finite words over {0, 1, 2, 3, 4, 5, 6, 7, 8, 17, 18, 19}
sage: w2.is_palindrome()
True

If the reversal of a word 𝑤 is factor of its square 𝑤2, then 𝑤 is symmetric, i.e. the product of two palin-
dromes:

3522 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: W = Words(range(10))
sage: w = W(range(10)); w
word: 0123456789
sage: p = (w*w).overlap_partition(w.reversal(), 4)
sage: m = WordMorphism(p.element_to_root_dict())
sage: w2 = m(w); w2
word: 0110456654
sage: w2.is_symmetric()
True

If the image of the reversal of a word 𝑤 under an involution 𝑓 is factor of its square 𝑤2, then 𝑤 is 𝑓 -
symmetric:

sage: W = Words([-11,-9,..,11])
sage: w = W([1,3,..,11])
sage: w
word: 1,3,5,7,9,11
sage: inv = lambda x:-x
sage: f = WordMorphism(dict((a, inv(a)) for a in W.alphabet()))
sage: p = (w*w).overlap_partition(f(w).reversal(), 2, involution=f)
sage: m = WordMorphism(p.element_to_root_dict())
sage: m(w)
word: 1,-1,5,7,-7,-5
sage: m(w).is_symmetric(f)
True

palindrome_prefixes()
Return a list of all palindrome prefixes of self.

OUTPUT:

a list – A list of all palindrome prefixes of self.

EXAMPLES:

sage: w = Word('abaaba')
sage: w.palindrome_prefixes()
[word: , word: a, word: aba, word: abaaba]
sage: w = Word('abbbbbbbbbb')
sage: w.palindrome_prefixes()
[word: , word: a]

palindromes(f=None)
Return the set of all palindromic (or f-palindromic) factors of self.

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

OUTPUT:

a set – If f is None, the set of all palindromic factors of self; otherwise, the set of all f-palindromic factors
of self.

EXAMPLES:

5.1. Comprehensive Module List 3523

Combinatorics, Release 9.7

sage: sorted(Word('01101001').palindromes())
[word: , word: 0, word: 00, word: 010, word: 0110, word: 1, word: 1001, word:␣
→˓101, word: 11]
sage: sorted(Word('00000').palindromes())
[word: , word: 0, word: 00, word: 000, word: 0000, word: 00000]
sage: sorted(Word('0').palindromes())
[word: , word: 0]
sage: sorted(Word('').palindromes())
[word:]
sage: sorted(Word().palindromes())
[word:]
sage: f = WordMorphism('a->b,b->a')
sage: sorted(Word('abbabaab').palindromes(f))
[word: , word: ab, word: abbabaab, word: ba, word: baba, word: bbabaa]

palindromic_closure(side='right', f=None)
Return the shortest palindrome having self as a prefix (or as a suffix if side is 'left').

See [DeLuca2006].

INPUT:

• side – 'right' or 'left' (default: 'right') the direction of the closure

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

OUTPUT:

a word – If f is None, the right palindromic closure of self; otherwise, the right f-palindromic closure of
self. If side is 'left', the left palindromic closure.

EXAMPLES:

sage: Word('1233').palindromic_closure()
word: 123321
sage: Word('12332').palindromic_closure()
word: 123321
sage: Word('0110343').palindromic_closure()
word: 01103430110
sage: Word('0110343').palindromic_closure(side='left')
word: 3430110343
sage: Word('01105678').palindromic_closure(side='left')
word: 876501105678
sage: w = Word('abbaba')
sage: w.palindromic_closure()
word: abbababba

sage: f = WordMorphism('a->b,b->a')
sage: w.palindromic_closure(f=f)
word: abbabaab
sage: w.palindromic_closure(f=f, side='left')
word: babaabbaba

palindromic_complexity(n)
Return the number of distinct palindromic factors of length n of self.

3524 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• n – the length of the factors.

EXAMPLES:

sage: w = words.FibonacciWord()[:100]
sage: [w.palindromic_complexity(i) for i in range(20)]
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]

sage: w = words.ThueMorseWord()[:1000]
sage: [w.palindromic_complexity(i) for i in range(20)]
[1, 2, 2, 2, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 2, 0, 2, 0, 4, 0]

palindromic_lacunas_study(f=None)
Return interesting statistics about longest (f-)palindromic suffixes and lacunas of self (see [BMBL2008]
and [BMBFLR2008]).

Note that a word𝑤 has at most |𝑤|+1 different palindromic factors (see [DJP2001]). For 𝑓 -palindromes (or
pseudopalidromes or theta-palindromes), the maximum number of 𝑓 -palindromic factors is |𝑤|+1−𝑔𝑓 (𝑤),
where 𝑔𝑓 (𝑤) is the number of pairs {𝑎, 𝑓(𝑎)} such that 𝑎 is a letter, 𝑎 is not equal to 𝑓(𝑎), and 𝑎 or 𝑓(𝑎)
occurs in 𝑤, see [Star2011].

INPUT:

• f – involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism). The default value corresponds to usual palindromes, i.e., f equal to the identity.

OUTPUT:

• list – list of the length of the longest palindromic suffix (lps) for each non-empty prefix of self

• list – list of all the lacunas, i.e. positions where there is no unioccurrent lps

• set – set of palindromic factors of self

EXAMPLES:

sage: a,b,c = Word('abbabaabbaab').palindromic_lacunas_study()
sage: a
[1, 1, 2, 4, 3, 3, 2, 4, 2, 4, 6, 8]
sage: b
[8, 9]
sage: c # random order
set([word: , word: b, word: bab, word: abba, word: bb, word: aa, word: baabbaab,
→˓ word: baab, word: aba, word: aabbaa, word: a])

sage: f = WordMorphism('a->b,b->a')
sage: a,b,c = Word('abbabaab').palindromic_lacunas_study(f=f)
sage: a
[0, 2, 0, 2, 2, 4, 6, 8]
sage: b
[0, 2, 4]
sage: c # random order
set([word: , word: ba, word: baba, word: ab, word: bbabaa, word: abbabaab])
sage: c == set([Word(), Word('ba'), Word('baba'), Word('ab'), Word('bbabaa'),␣
→˓Word('abbabaab')])
True

5.1. Comprehensive Module List 3525

Combinatorics, Release 9.7

periods(divide_length=False)
Return a list containing the periods of self between 1 and 𝑛− 1, where 𝑛 is the length of self.

INPUT:

• divide_length – boolean (default: False). When set to True, then only periods that divide the
length of self are considered.

OUTPUT:

a list of positive integers

EXAMPLES:

sage: w = Word('ababab')
sage: w.periods()
[2, 4]
sage: w.periods(divide_length=True)
[2]
sage: w = Word('ababa')
sage: w.periods()
[2, 4]
sage: w.periods(divide_length=True)
[]

phi()
Apply the phi function to self and return the result. This is the word obtained by taking the first letter of
the words obtained by iterating delta on self.

OUTPUT:

a word – the result of the phi function

EXAMPLES:

sage: W = Words([1, 2])
sage: W([2,2,1,1,2,1,2,2,1,2,2,1,1,2]).phi()
word: 222222
sage: W([2,1,2,2,1,2,2,1,2,1]).phi()
word: 212113
sage: W().phi()
word:
sage: Word([2,1,2,2,1,2,2,1,2,1]).phi()
word: 212113
sage: Word([2,3,1,1,2,1,2,3,1,2,2,3,1,2]).phi()
word: 21215
sage: Word("aabbabaabaabba").phi()
word: a22222
sage: w = Word([2,3,1,1,2,1,2,3,1,2,2,3,1,2])

See [BL2003] and [BDLV2006].

phi_inv(W=None)
Apply the inverse of the phi function to self.

INPUT:

• self – a word over the integers

• W – a parent object of words defined over integers

3526 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

a word – the inverse of the phi function

EXAMPLES:

sage: W = Words([1, 2])
sage: W([2, 2, 2, 2, 1, 2]).phi_inv()
word: 22112122
sage: W([2, 2, 2]).phi_inv(Words([2, 3]))
word: 2233

prefix_function_table()
Return a vector containing the length of the proper prefix-suffixes for all the non-empty prefixes of self.

EXAMPLES:

sage: Word('121321').prefix_function_table()
[0, 0, 1, 0, 0, 1]
sage: Word('1241245').prefix_function_table()
[0, 0, 0, 1, 2, 3, 0]
sage: Word().prefix_function_table()
[]

primitive()
Return the primitive of self.

EXAMPLES:

sage: Word('12312').primitive()
word: 12312
sage: Word('121212').primitive()
word: 12

primitive_length()
Return the length of the primitive of self.

EXAMPLES:

sage: Word('1231').primitive_length()
4
sage: Word('121212').primitive_length()
2

quasiperiods()
Return the quasiperiods of self as a list ordered from shortest to longest.

Let 𝑤 be a finite or infinite word. A quasiperiod of 𝑤 is a proper factor 𝑢 of 𝑤 such that the occurrences of
𝑢 in 𝑤 entirely cover 𝑤, i.e., every position of 𝑤 falls within some occurrence of 𝑢 in 𝑤. See for instance
[AE1993], [Mar2004], and [GLR2008].

EXAMPLES:

sage: Word('abaababaabaababaaba').quasiperiods()
[word: aba, word: abaaba, word: abaababaaba]
sage: Word('abaaba').quasiperiods()
[word: aba]

(continues on next page)

5.1. Comprehensive Module List 3527

Combinatorics, Release 9.7

(continued from previous page)

sage: Word('abacaba').quasiperiods()
[]

rauzy_graph(n)
Return the Rauzy graph of the factors of length n of self.

The vertices are the factors of length 𝑛 and there is an edge from 𝑢 to 𝑣 if 𝑢𝑎 = 𝑏𝑣 is a factor of length
𝑛+ 1 for some letters 𝑎 and 𝑏.

INPUT:

• n – integer

EXAMPLES:

sage: w = Word(range(10)); w
word: 0123456789
sage: g = w.rauzy_graph(3); g
Looped digraph on 8 vertices
sage: WordOptions(identifier='')
sage: g.vertices(sort=True)
[012, 123, 234, 345, 456, 567, 678, 789]
sage: g.edges(sort=True)
[(012, 123, 3),
(123, 234, 4),
(234, 345, 5),
(345, 456, 6),
(456, 567, 7),
(567, 678, 8),
(678, 789, 9)]
sage: WordOptions(identifier='word: ')

sage: f = words.FibonacciWord()[:100]
sage: f.rauzy_graph(8)
Looped digraph on 9 vertices

sage: w = Word('1111111')
sage: g = w.rauzy_graph(3)
sage: g.edges(sort=True)
[(word: 111, word: 111, word: 1)]

sage: w = Word('111')
sage: for i in range(5) : w.rauzy_graph(i)
Looped multi-digraph on 1 vertex
Looped digraph on 1 vertex
Looped digraph on 1 vertex
Looped digraph on 1 vertex
Looped digraph on 0 vertices

Multi-edges are allowed for the empty word:

sage: W = Words('abcde')
sage: w = W('abc')

(continues on next page)

3528 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: w.rauzy_graph(0)
Looped multi-digraph on 1 vertex
sage: _.edges(sort=True)
[(word: , word: , word: a),
(word: , word: , word: b),
(word: , word: , word: c)]

reduced_rauzy_graph(n)
Return the reduced Rauzy graph of order n of self.

INPUT:

• n – a non-negative integer. Every vertex of a reduced Rauzy graph of order n is a factor of length n of
self.

OUTPUT:

a looped multi-digraph

DEFINITION:

For infinite periodic words (resp. for finite words of type 𝑢𝑖𝑢[0 : 𝑗]), the reduced Rauzy graph of order 𝑛
(resp. for 𝑛 smaller or equal to (𝑖− 1)|𝑢|+ 𝑗) is the directed graph whose unique vertex is the prefix 𝑝 of
length 𝑛 of self and which has an only edge which is a loop on 𝑝 labelled by 𝑤[𝑛+ 1 : |𝑤|]𝑝 where 𝑤 is
the unique return word to 𝑝.

In other cases, it is the directed graph defined as followed. Let 𝐺𝑛 be the Rauzy graph of order 𝑛 of self.
The vertices are the vertices of 𝐺𝑛 that are either special or not prolongable to the right or to the left. For
each couple (𝑢, 𝑣) of such vertices and each directed path in 𝐺𝑛 from 𝑢 to 𝑣 that contains no other vertices
that are special, there is an edge from 𝑢 to 𝑣 in the reduced Rauzy graph of order 𝑛 whose label is the label
of the path in 𝐺𝑛.

Note: In the case of infinite recurrent non-periodic words, this definition corresponds to the following one
that can be found in [BDLGZ2009] and [BPS2008] where a simple path is a path that begins with a special
factor, ends with a special factor and contains no other vertices that are special:

The reduced Rauzy graph of factors of length 𝑛 is obtained from 𝐺𝑛 by replacing each simple path 𝑃 =
𝑣1𝑣2...𝑣ℓ with an edge 𝑣1𝑣ℓ whose label is the concatenation of the labels of the edges of 𝑃 .

EXAMPLES:

sage: w = Word(range(10)); w
word: 0123456789
sage: g = w.reduced_rauzy_graph(3); g
Looped multi-digraph on 2 vertices
sage: g.vertices(sort=True)
[word: 012, word: 789]
sage: g.edges(sort=True)
[(word: 012, word: 789, word: 3456789)]

For the Fibonacci word:

sage: f = words.FibonacciWord()[:100]
sage: g = f.reduced_rauzy_graph(8);g
Looped multi-digraph on 2 vertices

(continues on next page)

5.1. Comprehensive Module List 3529

Combinatorics, Release 9.7

(continued from previous page)

sage: g.vertices(sort=True)
[word: 01001010, word: 01010010]
sage: g.edges(sort=True)
[(word: 01001010, word: 01010010, word: 010), (word: 01010010, word: 01001010,␣
→˓word: 01010), (word: 01010010, word: 01001010, word: 10)]

For periodic words:

sage: from itertools import cycle
sage: w = Word(cycle('abcd'))[:100]
sage: g = w.reduced_rauzy_graph(3)
sage: g.edges(sort=True)
[(word: abc, word: abc, word: dabc)]

sage: w = Word('111')
sage: for i in range(5) : w.reduced_rauzy_graph(i)
Looped digraph on 1 vertex
Looped digraph on 1 vertex
Looped digraph on 1 vertex
Looped multi-digraph on 1 vertex
Looped multi-digraph on 0 vertices

For ultimately periodic words:

sage: sigma = WordMorphism('a->abcd,b->cd,c->cd,d->cd')
sage: w = sigma.fixed_point('a')[:100]; w
word: abcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd...
sage: g = w.reduced_rauzy_graph(5)
sage: g.vertices(sort=True)
[word: abcdc, word: cdcdc]
sage: g.edges(sort=True)
[(word: abcdc, word: cdcdc, word: dc), (word: cdcdc, word: cdcdc, word: dc)]

AUTHOR:

Julien Leroy (March 2010): initial version

return_words(fact)
Return the set of return words of fact in self.

This is the set of all factors starting by the given factor and ending just before the next occurrence of this
factor. See [Dur1998] and [HZ1999].

INPUT:

• fact – a non-empty finite word

OUTPUT:

a Python set of finite words

EXAMPLES:

sage: Word('21331233213231').return_words(Word('2'))
{word: 213, word: 21331, word: 233}
sage: Word().return_words(Word('213'))

(continues on next page)

3530 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

set()
sage: Word('121212').return_words(Word('1212'))
{word: 12}

sage: TM = words.ThueMorseWord()[:1000]
sage: sorted(TM.return_words(Word([0])))
[word: 0, word: 01, word: 011]

return_words_derivate(fact)
Return the word generated by mapping a letter to each occurrence of the return words for the given factor
dropping any dangling prefix and suffix. See for instance [Dur1998].

EXAMPLES:

sage: Word('12131221312313122').return_words_derivate(Word('1'))
word: 123242

rev_lex_less(other)
Return True if the word self is reverse lexicographically less than other.

EXAMPLES:

sage: Word([1,2,4]).rev_lex_less(Word([1,3,2]))
True
sage: Word([3,2,1]).rev_lex_less(Word([1,2,3]))
False

reversal()
Return the reversal of self.

EXAMPLES:

sage: Word('124563').reversal()
word: 365421

rfind(sub, start=0, end=None)
Return the index of the last occurrence of sub in self, such that sub is contained within
self[start:end]. Return -1 on failure.

INPUT:

• sub – string, list, tuple or word to search for.

• start – non-negative integer (default: 0) specifying the position at which the search must stop.

• end – non-negative integer (default: None) specifying the position from which to start the search. If
None, then the search is performed up to the end of the string.

OUTPUT:

a non-negative integer or -1

EXAMPLES:

sage: w = Word([0,1,0,0,1])
sage: w.rfind(Word([0,1]))
3

5.1. Comprehensive Module List 3531

Combinatorics, Release 9.7

The sub parameter can also be a list or a tuple:

sage: w.rfind([0,1])
3
sage: w.rfind((0,1))
3

Examples using the argument start and end:

sage: w.rfind(Word([0,1]), end=4)
0
sage: w.rfind(Word([0,1]), end=5)
3
sage: w.rfind(Word([0,0]), start=2, end=5)
2
sage: w.rfind(Word([0,0]), start=3, end=5)
-1

Instances of Word_str handle string inputs as well:

sage: w = Word('abac')
sage: w.rfind('a')
2
sage: w.rfind(Word('a'))
2
sage: w.rfind([0,1])
-1

right_special_factors(n=None)
Return the right special factors (of length n).

A factor 𝑢 of a word𝑤 is right special if there are two distinct letters 𝑎 and 𝑏 such that 𝑢𝑎 and 𝑢𝑏 are factors
of 𝑤.

INPUT:

• n – integer (optional, default: None). If None, it returns all right special factors.

OUTPUT:

a list of words

EXAMPLES:

sage: w = words.ThueMorseWord()[:30]
sage: for i in range(5):
....: print("{} {}".format(i, sorted(w.right_special_factors(i))))
0 [word:]
1 [word: 0, word: 1]
2 [word: 01, word: 10]
3 [word: 001, word: 010, word: 101, word: 110]
4 [word: 0110, word: 1001]

right_special_factors_iterator(n=None)
Return an iterator over the right special factors (of length n).

A factor 𝑢 of a word𝑤 is right special if there are two distinct letters 𝑎 and 𝑏 such that 𝑢𝑎 and 𝑢𝑏 are factors
of 𝑤.

3532 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• n – integer (optional, default: None). If None, it returns an iterator over all right special factors.

EXAMPLES:

sage: alpha, beta, x = 0.61, 0.54, 0.3
sage: w = words.CodingOfRotationWord(alpha, beta, x)[:40]
sage: sorted(w.right_special_factors_iterator(3))
[word: 010, word: 101]
sage: sorted(w.right_special_factors_iterator(4))
[word: 0101, word: 1010]
sage: sorted(w.right_special_factors_iterator(5))
[word: 00101, word: 11010]

robinson_schensted()
Return the semistandard tableau and standard tableau pair obtained by running the Robinson-Schensted
algorithm on self.

This can also be done by running RSK() on self.

EXAMPLES:

sage: Word([1,1,3,1,2,3,1]).robinson_schensted()
[[[1, 1, 1, 1, 3], [2], [3]], [[1, 2, 3, 5, 6], [4], [7]]]

schuetzenberger_involution(n=None)
Return the Schützenberger involution of the word self, which is obtained by reverting the word and then
complementing all letters within the underlying ordered alphabet. If n is specified, the underlying alphabet
is assumed to be [1, 2, . . . , 𝑛]. If no alphabet is specified, 𝑛 is the maximal letter appearing in self.

INPUT:

• self – a word

• n – an integer specifying the maximal letter in the alphabet (optional)

OUTPUT:

a word, the Schützenberger involution of self

EXAMPLES:

sage: w = Word([9,7,4,1,6,2,3])
sage: v = w.schuetzenberger_involution(); v
word: 7849631
sage: v.parent()
Finite words over Set of Python objects of class 'object'

sage: w = Word([1,2,3],alphabet=[1,2,3,4,5])
sage: v = w.schuetzenberger_involution();v
word: 345
sage: v.parent()
Finite words over {1, 2, 3, 4, 5}

sage: w = Word([1,2,3])
sage: v = w.schuetzenberger_involution(n=5);v
word: 345
sage: v.parent()

(continues on next page)

5.1. Comprehensive Module List 3533

Combinatorics, Release 9.7

(continued from previous page)

Finite words over Set of Python objects of class 'object'

sage: w = Word([11,32,69,2,53,1,2,3,18,41])
sage: w.schuetzenberger_involution()
word: 29,52,67,68,69,17,68,1,38,59

sage: w = Word([],alphabet=[1,2,3,4,5])
sage: w.schuetzenberger_involution()
word:

sage: w = Word([])
sage: w.schuetzenberger_involution()
word:

shifted_shuffle(other, shift=None)
Return the combinatorial class representing the shifted shuffle product between words self and other.
This is the same as the shuffle product of self with the word obtained from other by incrementing its
values (i.e. its letters) by the given shift.

INPUT:

• other – finite word over the integers

• shift – integer or None (default: None) added to each letter of other. When shift is None, it is
replaced by self.length()

OUTPUT:

combinatorial class of shifted shuffle products of self and other

EXAMPLES:

sage: w = Word([0,1,1])
sage: sp = w.shifted_shuffle(w); sp
Shuffle product of word: 011 and word: 344
sage: sp = w.shifted_shuffle(w, 2); sp
Shuffle product of word: 011 and word: 233
sage: sp.cardinality()
20
sage: WordOptions(identifier='')
sage: sp.list()
[011233, 012133, 012313, 012331, 021133, 021313, 021331, 023113, 023131, 023311,
→˓ 201133, 201313, 201331, 203113, 203131, 203311, 230113, 230131, 230311,␣
→˓233011]
sage: WordOptions(identifier='word: ')
sage: y = Word('aba')
sage: y.shifted_shuffle(w,2)
Traceback (most recent call last):
...
ValueError: for shifted shuffle, words must only contain integers as letters

shuffle(other, overlap=0)
Return the combinatorial class representing the shuffle product between words self and other. This
consists of all words of length self.length()+other.length() that have both self and other as
subwords.

3534 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

If overlap is non-zero, then the combinatorial class representing the shuffle product with overlaps is re-
turned. The calculation of the shift in each overlap is done relative to the order of the alphabet. For example,
𝑎 shifted by 𝑎 is 𝑏 in the alphabet [𝑎, 𝑏, 𝑐] and 0 shifted by 1 in [0, 1, 2, 3] is 2.

INPUT:

• other – finite word

• overlap – (default: 0) integer or True

OUTPUT:

combinatorial class of shuffle product of self and other

EXAMPLES:

sage: ab = Word("ab")
sage: cd = Word("cd")
sage: sp = ab.shuffle(cd); sp
Shuffle product of word: ab and word: cd
sage: sp.cardinality()
6
sage: sp.list()
[word: abcd, word: acbd, word: acdb, word: cabd, word: cadb, word: cdab]
sage: w = Word([0,1])
sage: u = Word([2,3])
sage: w.shuffle(w)
Shuffle product of word: 01 and word: 01
sage: u.shuffle(u)
Shuffle product of word: 23 and word: 23
sage: w.shuffle(u)
Shuffle product of word: 01 and word: 23
sage: sp2 = w.shuffle(u,2); sp2
Overlapping shuffle product of word: 01 and word: 23 with 2 overlaps
sage: list(sp2)
[word: 24]

squares()
Returns a set of all distinct squares of self.

EXAMPLES:

sage: sorted(Word('cacao').squares())
[word: , word: caca]
sage: sorted(Word('1111').squares())
[word: , word: 11, word: 1111]
sage: w = Word('00110011010')
sage: sorted(w.squares())
[word: , word: 00, word: 00110011, word: 01100110, word: 1010, word: 11]

standard_factorization()
Return the standard factorization of self.

The standard factorization of a word 𝑤 of length greater than 1 is the factorization 𝑤 = 𝑢𝑣 where 𝑣 is the
longest proper suffix of 𝑤 that is a Lyndon word.

Note that if 𝑤 is a Lyndon word of length greater than 1 with standard factorization 𝑤 = 𝑢𝑣, then 𝑢 and 𝑣
are also Lyndon words and 𝑢 < 𝑣.

5.1. Comprehensive Module List 3535

Combinatorics, Release 9.7

See for instance [CFL1958], [Duv1983] and [Lot2002].

INPUT:

• self – finite word of length greater than 1

OUTPUT:

2-tuple (𝑢, 𝑣)

EXAMPLES:

sage: Words('01')('0010110011').standard_factorization()
(word: 001011, word: 0011)
sage: Words('123')('1223312').standard_factorization()
(word: 12233, word: 12)
sage: Word([3,2,1]).standard_factorization()
(word: 32, word: 1)

sage: w = Word('0010110011',alphabet='01')
sage: w.standard_factorization()
(word: 001011, word: 0011)
sage: w = Word('0010110011',alphabet='10')
sage: w.standard_factorization()
(word: 001011001, word: 1)
sage: w = Word('1223312',alphabet='123')
sage: w.standard_factorization()
(word: 12233, word: 12)

standard_permutation()
Return the standard permutation of the word self on the ordered alphabet. It is defined as the permutation
with exactly the same inversions as self. Equivalently, it is the permutation of minimal length whose
inverse sorts self.

EXAMPLES:

sage: w = Word([1,2,3,2,2,1]); w
word: 123221
sage: p = w.standard_permutation(); p
[1, 3, 6, 4, 5, 2]
sage: v = Word(p.inverse().action(w)); v
word: 112223
sage: [q for q in Permutations(w.length())
....: if q.length() <= p.length() and
....: q.inverse().action(w) == list(v)]
[[1, 3, 6, 4, 5, 2]]

sage: w = Words([1,2,3])([1,2,3,2,2,1,2,1]); w
word: 12322121
sage: p = w.standard_permutation(); p
[1, 4, 8, 5, 6, 2, 7, 3]
sage: Word(p.inverse().action(w))
word: 11122223

sage: w = Words([3,2,1])([1,2,3,2,2,1,2,1]); w
word: 12322121

(continues on next page)

3536 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: p = w.standard_permutation(); p
[6, 2, 1, 3, 4, 7, 5, 8]
sage: Word(p.inverse().action(w))
word: 32222111

sage: w = Words('ab')('abbaba'); w
word: abbaba
sage: p = w.standard_permutation(); p
[1, 4, 5, 2, 6, 3]
sage: Word(p.inverse().action(w))
word: aaabbb

sage: w = Words('ba')('abbaba'); w
word: abbaba
sage: p = w.standard_permutation(); p
[4, 1, 2, 5, 3, 6]
sage: Word(p.inverse().action(w))
word: bbbaaa

sturmian_desubstitute_as_possible()
Sturmian-desubstitute the word self as much as possible.

The finite word self must be defined on a two-letter alphabet or use at most two letters.

It can be Sturmian desubstituted if one letter appears isolated: the Sturmian desubstitution consists in
removing one letter per run of the non-isolated letter. The accelerated Sturmian desubstitution consists
in removing a run equal to the length of the shortest inner run from any run of the non-isolated letter
(including possible leading and trailing runs even if they have shorter length). The (accelerated) Sturmian
desubstitution is done as much as possible. A word is a factor of a Sturmian word if, and only if, the result
is the empty word.

OUTPUT:

a finite word defined on a two-letter alphabet

EXAMPLES:

sage: u = Word('10111101101110111',alphabet='01') ; u
word: 10111101101110111
sage: v = u.sturmian_desubstitute_as_possible() ; v
word: 01100101
sage: v == v.sturmian_desubstitute_as_possible()
True

sage: Word('azaazaaazaaazaazaaaz', alphabet='az').sturmian_desubstitute_as_
→˓possible()
word:

AUTHOR:

• Thierry Monteil

subword_complementaries(other)
Return the possible complementaries other minus self if self is a subword of other (empty list other-
wise). The complementary is made of all the letters that are in other once we removed the letters of self.
There can be more than one.

5.1. Comprehensive Module List 3537

Combinatorics, Release 9.7

To check whether self is a subword of other (without knowing its complementaries), use self.
is_subword_of(other), and to count the number of occurrences of self in other, use other.
number_of_subword_occurrences(self).

INPUT:

• other – finite word

OUTPUT:

• list of all the complementary subwords of self in other.

EXAMPLES:

sage: Word('tamtam').subword_complementaries(Word('ta'))
[]

sage: Word('mta').subword_complementaries(Word('tamtam'))
[word: tam]

sage: Word('ta').subword_complementaries(Word('tamtam'))
[word: mtam, word: amtm, word: tamm]

sage: Word('a').subword_complementaries(Word('a'))
[word:]

suffix_tree()
Alias for implicit_suffix_tree().

EXAMPLES:

sage: Word('abbabaab').suffix_tree()
Implicit Suffix Tree of the word: abbabaab

suffix_trie()
Return the suffix trie of self.

The suffix trie of a finite word 𝑤 is a data structure representing the factors of 𝑤. It is a tree whose edges
are labelled with letters of 𝑤, and whose leafs correspond to suffixes of 𝑤.

Type sage.combinat.words.suffix_trees.SuffixTrie? for more information.

EXAMPLES:

sage: w = Word("cacao")
sage: w.suffix_trie()
Suffix Trie of the word: cacao

sage: w = Word([0,1,0,1,1])
sage: w.suffix_trie()
Suffix Trie of the word: 01011

swap(i, j=None)
Return the word 𝑤 with entries at positions i and j swapped. By default, j = i+1.

EXAMPLES:

3538 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Word([1,2,3]).swap(0,2)
word: 321
sage: Word([1,2,3]).swap(1)
word: 132
sage: Word("abba").swap(1,-1)
word: aabb

swap_decrease(i)
Return the word with positions i and i+1 exchanged if self[i] < self[i+1]. Otherwise, it returns
self.

EXAMPLES:

sage: w = Word([1,3,2])
sage: w.swap_decrease(0)
word: 312
sage: w.swap_decrease(1)
word: 132
sage: w.swap_decrease(1) is w
True
sage: Words("ab")("abba").swap_decrease(0)
word: baba
sage: Words("ba")("abba").swap_decrease(0)
word: abba

swap_increase(i)
Return the word with positions i and i+1 exchanged if self[i] > self[i+1]. Otherwise, it returns
self.

EXAMPLES:

sage: w = Word([1,3,2])
sage: w.swap_increase(1)
word: 123
sage: w.swap_increase(0)
word: 132
sage: w.swap_increase(0) is w
True
sage: Words("ab")("abba").swap_increase(0)
word: abba
sage: Words("ba")("abba").swap_increase(0)
word: baba

to_integer_list()
Return a list of integers from [0,1,...,self.length()-1] in the same relative order as the letters in
self in the parent.

EXAMPLES:

sage: from itertools import count
sage: w = Word('abbabaab')
sage: w.to_integer_list()
[0, 1, 1, 0, 1, 0, 0, 1]
sage: w = Word(iter("cacao"), length="finite")
sage: w.to_integer_list()

(continues on next page)

5.1. Comprehensive Module List 3539

Combinatorics, Release 9.7

(continued from previous page)

[1, 0, 1, 0, 2]
sage: w = Words([3,2,1])([2,3,3,1])
sage: w.to_integer_list()
[1, 0, 0, 2]

to_integer_word()
Return a word over the alphabet [0,1,...,self.length()-1] whose letters are in the same relative
order as the letters of self in the parent.

EXAMPLES:

sage: from itertools import count
sage: w = Word('abbabaab')
sage: w.to_integer_word()
word: 01101001
sage: w = Word(iter("cacao"), length="finite")
sage: w.to_integer_word()
word: 10102

sage: w = Words([3,2,1])([2,3,3,1])
sage: w.to_integer_word()
word: 1002

to_monoid_element()
Return self as an element of the free monoid with the same alphabet as self.

EXAMPLES:

sage: w = Word('aabb')
sage: w.to_monoid_element()
a^2*b^2
sage: W = Words('abc')
sage: w = W(w)
sage: w.to_monoid_element()
a^2*b^2

to_ordered_set_partition()
Return the ordered set partition correspond to self.

If 𝑤 is a finite word of length 𝑛, then the corresponding ordered set partition is an ordered set partition
(𝑃1, 𝑃2, . . . , 𝑃𝑘) of {1, 2, . . . , 𝑛}, where each block 𝑃𝑖 is the set of positions at which the 𝑖-th smallest
letter occurring in 𝑤 occurs in 𝑤.

EXAMPLES:

sage: w = Word('abbabaab')
sage: w.to_ordered_set_partition()
[{1, 4, 6, 7}, {2, 3, 5, 8}]
sage: Word([-10, 3, -10, 2]).to_ordered_set_partition()
[{1, 3}, {4}, {2}]
sage: Word([]).to_ordered_set_partition()
[]
sage: Word('aaaaa').to_ordered_set_partition()
[{1, 2, 3, 4, 5}]

3540 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

topological_entropy(n)
Return the topological entropy for the factors of length n.

The topological entropy of a sequence 𝑢 is defined as the exponential growth rate of the complexity of 𝑢 as
the length increases: 𝐻𝑡𝑜𝑝(𝑢) = lim𝑛→∞

log𝑑(𝑝𝑢(𝑛))
𝑛 where 𝑑 denotes the cardinality of the alphabet and

𝑝𝑢(𝑛) is the complexity function, i.e. the number of factors of length 𝑛 in the sequence 𝑢 [Fog2002].

INPUT:

• self – a word defined over a finite alphabet

• n – positive integer

OUTPUT:

real number (a symbolic expression)

EXAMPLES:

sage: W = Words([0, 1])
sage: w = W([0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1])
sage: t = w.topological_entropy(3); t
1/3*log(7)/log(2)
sage: n(t)
0.935784974019201

sage: w = words.ThueMorseWord()[:100]
sage: topo = w.topological_entropy
sage: for i in range(0, 41, 5):
....: print("{} {}".format(i, n(topo(i), digits=5)))
0 1.0000
5 0.71699
10 0.48074
15 0.36396
20 0.28774
25 0.23628
30 0.20075
35 0.17270
40 0.14827

If no alphabet is specified, an error is raised:

sage: w = Word(range(20))
sage: w.topological_entropy(3)
Traceback (most recent call last):
...
TypeError: The word must be defined over a finite alphabet

The following is ok:

sage: W = Words(range(20))
sage: w = W(range(20))
sage: w.topological_entropy(3)
1/3*log(18)/log(20)

sage.combinat.words.finite_word.evaluation_dict(w)
Return a dictionary keyed by the letters occurring in w with values the number of occurrences of the letter.

5.1. Comprehensive Module List 3541

Combinatorics, Release 9.7

INPUT:

• w – a word

sage.combinat.words.finite_word.word_to_ordered_set_partition(w)
Return the ordered set partition corresponding to a finite word 𝑤.

If 𝑤 is a finite word of length 𝑛, then the corresponding ordered set partition is an ordered set partition
(𝑃1, 𝑃2, . . . , 𝑃𝑘) of {1, 2, . . . , 𝑛}, where each block 𝑃𝑖 is the set of positions at which the 𝑖-th smallest letter
occurring in 𝑤 occurs in 𝑤. (Positions are 1-based.)

This is the same functionality that to_ordered_set_partition() provides, but without the wrapping: The
input 𝑤 can be given as a list or tuple, not necessarily as a word; and the output is returned as a list of lists (which
are the blocks of the ordered set partition in increasing order), not as an ordered set partition.

EXAMPLES:

sage: from sage.combinat.words.finite_word import word_to_ordered_set_partition
sage: word_to_ordered_set_partition([3, 6, 3, 1])
[[4], [1, 3], [2]]
sage: word_to_ordered_set_partition((1, 3, 3, 7))
[[1], [2, 3], [4]]
sage: word_to_ordered_set_partition("noob")
[[4], [1], [2, 3]]
sage: word_to_ordered_set_partition(Word("hell"))
[[2], [1], [3, 4]]
sage: word_to_ordered_set_partition([1])
[[1]]
sage: word_to_ordered_set_partition([])
[]

5.1.355 Infinite word

AUTHORS:

• Sebastien Labbe

• Franco Saliola

EXAMPLES:

Creation of an infinite word

Periodic infinite words:

sage: v = Word([0, 4, 8, 8, 3])
sage: vv = v^Infinity
sage: vv
word: 0488304883048830488304883048830488304883...

Infinite words from a function 𝑓 : N→ 𝐴 over an alphabet 𝐴:

sage: Word(lambda n: n%3)
word: 0120120120120120120120120120120120120120...

3542 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: def t(n):
....: return add(Integer(n).digits(base=2)) % 2
sage: Word(t, alphabet = [0, 1])
word: 0110100110010110100101100110100110010110...

or as a one-liner:

sage: Word(lambda n : add(Integer(n).digits(base=2)) % 2, alphabet = [0, 1])
word: 0110100110010110100101100110100110010110...

Infinite words from iterators:

sage: from itertools import count,repeat
sage: Word(repeat(4))
word: 44...
sage: Word(count())
word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,
→˓31,32,33,34,35,36,37,38,39,...

Infinite words from morphism

For example, let 𝐴 = {𝑎, 𝑏} and 𝜇 : 𝐴* → 𝐴* be the morphism defined by 𝑎 ↦→ 𝑎𝑏, 𝑏 ↦→ 𝑏𝑎:

sage: mu = WordMorphism('a->ab,b->ba'); mu
WordMorphism: a->ab, b->ba
sage: mu.fixed_point('a')
word: abbabaabbaababbabaababbaabbabaabbaababba...

Infinite words in a specific combinatorial class:

sage: W = InfiniteWords("ab"); W
Infinite words over {'a', 'b'}
sage: f = lambda n : 'a' if n % 2 == 1 else 'b'
sage: W(f)
word: ba...

class sage.combinat.words.infinite_word.InfiniteWord_class
Bases: sage.combinat.words.abstract_word.Word_class

length()
Returns the length of self.

EXAMPLES:

sage: f = lambda n : n % 6
sage: w = Word(f); w
word: 0123450123450123450123450123450123450123...
sage: w.length()
+Infinity

5.1. Comprehensive Module List 3543

Combinatorics, Release 9.7

5.1.356 Lyndon words

sage.combinat.words.lyndon_word.LyndonWord(data, check=True)
Construction of a Lyndon word.

INPUT:

• data – list

• check – bool (optional, default: True) if True, check that the input data represents a Lyndon word.

OUTPUT:

A Lyndon word.

EXAMPLES:

sage: LyndonWord([1,2,2])
word: 122
sage: LyndonWord([1,2,3])
word: 123
sage: LyndonWord([2,1,2,3])
Traceback (most recent call last):
...
ValueError: not a Lyndon word

If check is False, then no verification is done:

sage: LyndonWord([2,1,2,3], check=False)
word: 2123

sage.combinat.words.lyndon_word.LyndonWords(e=None, k=None)
Return the combinatorial class of Lyndon words.

A Lyndon word 𝑤 is a word that is lexicographically less than all of its rotations. Equivalently, whenever 𝑤 is
split into two non-empty substrings, 𝑤 is lexicographically less than the right substring.

See Wikipedia article Lyndon_word

INPUT:

• no input at all

or

• e – integer, size of alphabet

• k – integer, length of the words

or

• e – a composition

OUTPUT:

A combinatorial class of Lyndon words.

EXAMPLES:

sage: LyndonWords()
Lyndon words

If e is an integer, then e specifies the length of the alphabet; k must also be specified in this case:

3544 Chapter 5. Comprehensive Module List

https://en.wikipedia.org/wiki/Lyndon_word

Combinatorics, Release 9.7

sage: LW = LyndonWords(3, 4); LW
Lyndon words from an alphabet of size 3 of length 4
sage: LW.first()
word: 1112
sage: LW.last()
word: 2333
sage: LW.random_element() # random
word: 1232
sage: LW.cardinality()
18

If e is a (weak) composition, then it returns the class of Lyndon words that have evaluation e:

sage: LyndonWords([2, 0, 1]).list()
[word: 113]
sage: LyndonWords([2, 0, 1, 0, 1]).list()
[word: 1135, word: 1153, word: 1315]
sage: LyndonWords([2, 1, 1]).list()
[word: 1123, word: 1132, word: 1213]

class sage.combinat.words.lyndon_word.LyndonWords_class(alphabet=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The set of all Lyndon words.

class sage.combinat.words.lyndon_word.LyndonWords_evaluation(e)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

The set of Lyndon words on a fixed multiset of letters.

EXAMPLES:

sage: L = LyndonWords([1,2,1])
sage: L
Lyndon words with evaluation [1, 2, 1]
sage: L.list()
[word: 1223, word: 1232, word: 1322]

cardinality()
Return the number of Lyndon words with the evaluation e.

EXAMPLES:

sage: LyndonWords([]).cardinality()
0
sage: LyndonWords([2,2]).cardinality()
1
sage: LyndonWords([2,3,2]).cardinality()
30

Check to make sure that the count matches up with the number of Lyndon words generated:

sage: comps = [[],[2,2],[3,2,7],[4,2]] + Compositions(4).list()
sage: lws = [LyndonWords(comp) for comp in comps]

(continues on next page)

5.1. Comprehensive Module List 3545

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

(continued from previous page)

sage: all(lw.cardinality() == len(lw.list()) for lw in lws)
True

class sage.combinat.words.lyndon_word.LyndonWords_nk(n, k)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Lyndon words of fixed length 𝑘 over the alphabet {1, 2, . . . , 𝑛}.

INPUT:

• n – the size of the alphabet

• k – the length of the words

EXAMPLES:

sage: L = LyndonWords(3, 4)
sage: L.list()
[word: 1112,
word: 1113,
word: 1122,
word: 1123,
...
word: 1333,
word: 2223,
word: 2233,
word: 2333]

cardinality()

sage.combinat.words.lyndon_word.StandardBracketedLyndonWords(n, k)
Return the combinatorial class of standard bracketed Lyndon words from [1, . . . , n] of length k.

These are in one to one correspondence with the Lyndon words and form a basis for the subspace of degree k of
the free Lie algebra of rank n.

EXAMPLES:

sage: SBLW33 = StandardBracketedLyndonWords(3,3); SBLW33
Standard bracketed Lyndon words from an alphabet of size 3 of length 3
sage: SBLW33.first()
[1, [1, 2]]
sage: SBLW33.last()
[[2, 3], 3]
sage: SBLW33.cardinality()
8
sage: SBLW33.random_element() in SBLW33
True

class sage.combinat.words.lyndon_word.StandardBracketedLyndonWords_nk(n, k)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

cardinality()
EXAMPLES:

3546 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

sage: StandardBracketedLyndonWords(3, 3).cardinality()
8
sage: StandardBracketedLyndonWords(3, 4).cardinality()
18

sage.combinat.words.lyndon_word.standard_bracketing(lw)
Return the standard bracketing of a Lyndon word lw.

EXAMPLES:

sage: import sage.combinat.words.lyndon_word as lyndon_word
sage: [lyndon_word.standard_bracketing(u) for u in LyndonWords(3,3)]
[[1, [1, 2]],
[1, [1, 3]],
[[1, 2], 2],
[1, [2, 3]],
[[1, 3], 2],
[[1, 3], 3],
[2, [2, 3]],
[[2, 3], 3]]

sage.combinat.words.lyndon_word.standard_unbracketing(sblw)
Return flattened sblw if it is a standard bracketing of a Lyndon word, otherwise raise an error.

EXAMPLES:

sage: from sage.combinat.words.lyndon_word import standard_unbracketing
sage: standard_unbracketing([1, [2, 3]])
word: 123
sage: standard_unbracketing([[1, 2], 3])
Traceback (most recent call last):
...
ValueError: not a standard bracketing of a Lyndon word

5.1.357 Word morphisms/substitutions

This module implements morphisms over finite and infinite words.

AUTHORS:

• Sébastien Labbé (2007-06-01): initial version

• Sébastien Labbé (2008-07-01): merged into sage-words

• Sébastien Labbé (2008-12-17): merged into sage

• Sébastien Labbé (2009-02-03): words next generation

• Sébastien Labbé (2009-11-20): allowing the choice of the datatype of the image. Doc improvements.

• Stepan Starosta (2012-11-09): growing letters

EXAMPLES:

Creation of a morphism from a dictionary or a string:

sage: n = WordMorphism({0:[0,2,2,1],1:[0,2],2:[2,2,1]})

5.1. Comprehensive Module List 3547

Combinatorics, Release 9.7

sage: m = WordMorphism('x->xyxsxss,s->xyss,y->ys')

sage: n
WordMorphism: 0->0221, 1->02, 2->221
sage: m
WordMorphism: s->xyss, x->xyxsxss, y->ys

The codomain may be specified:

sage: WordMorphism({0:[0,2,2,1],1:[0,2],2:[2,2,1]}, codomain=Words([0,1,2,3,4]))
WordMorphism: 0->0221, 1->02, 2->221

Power of a morphism:

sage: n^2
WordMorphism: 0->022122122102, 1->0221221, 2->22122102

Image under a morphism:

sage: m('y')
word: ys
sage: m('xxxsy')
word: xyxsxssxyxsxssxyxsxssxyssys

Iterated image under a morphism:

sage: m('y', 3)
word: ysxyssxyxsxssysxyssxyss

See more examples in the documentation of the call method (m.__call__?).

Infinite fixed point of morphism:

sage: fix = m.fixed_point('x')
sage: fix
word: xyxsxssysxyxsxssxyssxyxsxssxyssxyssysxys...
sage: fix.length()
+Infinity

Incidence matrix:

sage: matrix(m)
[2 3 1]
[1 3 0]
[1 1 1]

Many other functionalities. . . :

sage: m.is_identity()
False
sage: m.is_endomorphism()
True

class sage.combinat.words.morphism.PeriodicPointIterator(m, cycle)
Bases: object

3548 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(Lazy) constructor of the periodic points of a word morphism.

This class is mainly used in WordMorphism.periodic_point and WordMorphism.periodic_points.

EXAMPLES:

sage: from sage.combinat.words.morphism import PeriodicPointIterator
sage: s = WordMorphism('a->bacca,b->cba,c->aab')
sage: p = PeriodicPointIterator(s, ['a','b','c'])
sage: p._cache[0]
lazy list ['a', 'a', 'b', ...]
sage: p._cache[1]
lazy list ['b', 'a', 'c', ...]
sage: p._cache[2]
lazy list ['c', 'b', 'a', ...]

get_iterator(i)
Internal method.

EXAMPLES:

sage: from sage.combinat.words.morphism import PeriodicPointIterator
sage: s = WordMorphism('a->bacca,b->cba,c->aab')
sage: p = PeriodicPointIterator(s, ['a','b','c'])
sage: p.get_iterator(0)
<generator object ...get_iterator at ...>

class sage.combinat.words.morphism.WordMorphism(data, domain=None, codomain=None)
Bases: sage.structure.sage_object.SageObject

WordMorphism class

INPUT:

• data – dict or str or an instance of WordMorphism, the map giving the image of letters

• domain – (optional:None) set of words over a given alphabet. If None, the domain alphabet is computed
from data and is sorted.

• codomain – (optional:None) set of words over a given alphabet. If None, the codomain alphabet is com-
puted from data and is sorted.

Note: When the domain or the codomain are not explicitly given, it is expected that the letters are comparable
because the alphabets of the domain and of the codomain are sorted.

EXAMPLES:

From a dictionary:

sage: n = WordMorphism({0:[0,2,2,1],1:[0,2],2:[2,2,1]})
sage: n
WordMorphism: 0->0221, 1->02, 2->221

From a string with '->' as separation:

sage: m = WordMorphism('x->xyxsxss,s->xyss,y->ys')
sage: m

(continues on next page)

5.1. Comprehensive Module List 3549

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

(continued from previous page)

WordMorphism: s->xyss, x->xyxsxss, y->ys
sage: m.domain()
Finite words over {'s', 'x', 'y'}
sage: m.codomain()
Finite words over {'s', 'x', 'y'}

Specifying the domain and codomain:

sage: W = FiniteWords([0,1,2])
sage: d = {0:[0,1], 1:[0,1,0], 2:[0]}
sage: m = WordMorphism(d, domain=W, codomain=W)
sage: m([0]).parent()
Finite words over {0, 1, 2}

When the alphabet is non-sortable, the domain and/or codomain must be explicitly given:

sage: W = FiniteWords(['a',6])
sage: d = {'a':['a',6,'a'],6:[6,6,6,'a']}
sage: WordMorphism(d, domain=W, codomain=W)
WordMorphism: 6->666a, a->a6a

abelian_rotation_subspace()
Return the subspace on which the incidence matrix of self acts by roots of unity.

EXAMPLES:

sage: WordMorphism('0->1,1->0').abelian_rotation_subspace()
Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:
[1 0]
[0 1]
sage: WordMorphism('0->01,1->10').abelian_rotation_subspace()
Vector space of degree 2 and dimension 0 over Rational Field
Basis matrix:
[]
sage: WordMorphism('0->01,1->1').abelian_rotation_subspace()
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[0 1]
sage: WordMorphism('1->122,2->211').abelian_rotation_subspace()
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 -1]
sage: WordMorphism('0->1,1->102,2->3,3->4,4->2').abelian_rotation_subspace()
Vector space of degree 5 and dimension 3 over Rational Field
Basis matrix:
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

The domain needs to be equal to the codomain:

3550 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: WordMorphism('0->1,1->',codomain=Words('01')).abelian_rotation_subspace()
Vector space of degree 2 and dimension 0 over Rational Field
Basis matrix:
[]

codomain()
Return the codomain of self.

EXAMPLES:

sage: WordMorphism('a->ab,b->a').codomain()
Finite words over {'a', 'b'}
sage: WordMorphism('6->ab,y->5,0->asd').codomain()
Finite words over {'5', 'a', 'b', 'd', 's'}

conjugate(pos)
Return the morphism where the image of the letter by self is conjugated of parameter pos.

INPUT:

• pos - integer

EXAMPLES:

sage: m = WordMorphism('a->abcde')
sage: m.conjugate(0) == m
True
sage: m.conjugate(1)
WordMorphism: a->bcdea
sage: m.conjugate(3)
WordMorphism: a->deabc
sage: WordMorphism('').conjugate(4)
WordMorphism:
sage: m = WordMorphism('a->abcde,b->xyz')
sage: m.conjugate(2)
WordMorphism: a->cdeab, b->zxy

domain()
Return domain of self.

EXAMPLES:

sage: WordMorphism('a->ab,b->a').domain()
Finite words over {'a', 'b'}
sage: WordMorphism('b->ba,a->ab').domain()
Finite words over {'a', 'b'}
sage: WordMorphism('6->ab,y->5,0->asd').domain()
Finite words over {'0', '6', 'y'}

dual_map(k=1)
Return the dual map 𝐸*𝑘 of self (see [1]).

Note: It is actually implemented only for 𝑘 = 1.

INPUT:

5.1. Comprehensive Module List 3551

Combinatorics, Release 9.7

• self - unimodular endomorphism defined on integers 1, 2, \ldots, d

• k - integer (optional, default: 1)

OUTPUT:

an instance of E1Star - the dual map

EXAMPLES:

sage: sigma = WordMorphism({1:[2],2:[3],3:[1,2]})
sage: sigma.dual_map()
E_1^*(1->2, 2->3, 3->12)

sage: sigma.dual_map(k=2)
Traceback (most recent call last):
...
NotImplementedError: the dual map E_k^* is implemented only for k = 1 (not 2)

REFERENCES:

• [1] Sano, Y., Arnoux, P. and Ito, S., Higher dimensional extensions of substitutions and their dual
maps, Journal d’Analyse Mathématique 83 (2001), 183-206.

extend_by(other)
Return self extended by other.

Let 𝜙1 : 𝐴* → 𝐵* and 𝜙2 : 𝐶* → 𝐷* be two morphisms. A morphism 𝜇 : (𝐴 ∪ 𝐶)* → (𝐵 ∪ 𝐷)*

corresponds to 𝜙1 extended by 𝜙2 if 𝜇(𝑎) = 𝜙1(𝑎) if 𝑎 ∈ 𝐴 and 𝜇(𝑎) = 𝜙2(𝑎) otherwise.

INPUT:

• other - a WordMorphism.

OUTPUT:

WordMorphism

EXAMPLES:

sage: m = WordMorphism('a->ab,b->ba')
sage: n = WordMorphism({'0':'1','1':'0','a':'5'})
sage: m.extend_by(n)
WordMorphism: 0->1, 1->0, a->ab, b->ba
sage: n.extend_by(m)
WordMorphism: 0->1, 1->0, a->5, b->ba
sage: m.extend_by(m)
WordMorphism: a->ab, b->ba

fixed_point(letter)
Return the fixed point of self beginning by the given letter.

A fixed point of morphism 𝜙 is a word 𝑤 such that 𝜙(𝑤) = 𝑤.

INPUT:

• self - an endomorphism (or more generally a self-composable morphism), must be prolongable on
letter

• letter - in the domain of self, the first letter of the fixed point.

OUTPUT:

3552 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• word - the fixed point of self beginning with letter.

EXAMPLES:

sage: W = FiniteWords('abc')

1. Infinite fixed point:

sage: WordMorphism('a->ab,b->ba').fixed_point(letter='a')
word: abbabaabbaababbabaababbaabbabaabbaababba...
sage: WordMorphism('a->ab,b->a').fixed_point(letter='a')
word: abaababaabaababaababaabaababaabaababaaba...
sage: WordMorphism('a->ab,b->b,c->ba', codomain=W).fixed_point(letter='a')
word: abbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb...

2. Infinite fixed point of an erasing morphism:

sage: WordMorphism('a->ab,b->,c->ba', codomain=W).fixed_point(letter='a')
word: ab

3. Finite fixed point:

sage: WordMorphism('a->ab,b->b,c->ba', codomain=W).fixed_point(letter='b')
word: b
sage: _.parent()
Finite words over {'a', 'b', 'c'}

sage: WordMorphism('a->ab,b->cc,c->', codomain=W).fixed_point(letter='a')
word: abcc
sage: _.parent()
Finite words over {'a', 'b', 'c'}

sage: m = WordMorphism('a->abc,b->,c->')
sage: fp = m.fixed_point('a'); fp
word: abc

sage: m = WordMorphism('a->ba,b->')
sage: m('ba')
word: ba
sage: m.fixed_point('a') #todo: not implemented
word: ba

5. Fixed point of a power of a morphism:

sage: m = WordMorphism('a->ba,b->ab')
sage: (m^2).fixed_point(letter='a')
word: abbabaabbaababbabaababbaabbabaabbaababba...

6. With a self-composable but not endomorphism

sage: m = WordMorphism(‘a->cbc,b->bc,c->b’) sage: m.is_endomorphism() False sage:
m.fixed_point(‘b’) word: bcbbcbcbbcbbcbcbbcbcbbcbbcbcbbcbbcbcbbcb. . .

fixed_points()
Return the list of all fixed points of self.

5.1. Comprehensive Module List 3553

Combinatorics, Release 9.7

EXAMPLES:

sage: f = WordMorphism('a->ab,b->ba')
sage: for w in f.fixed_points(): print(w)
abbabaabbaababbabaababbaabbabaabbaababba...
baababbaabbabaababbabaabbaababbaabbabaab...

sage: f = WordMorphism('a->ab,b->c,c->a')
sage: for w in f.fixed_points(): print(w)
abcaababcabcaabcaababcaababcabcaababcabc...

sage: f = WordMorphism('a->ab,b->cab,c->bcc')
sage: for w in f.fixed_points(): print(w)
abcabbccabcabcabbccbccabcabbccabcabbccab...

This shows that ticket trac ticket #13668 has been resolved:

sage: d = {1:[1,2],2:[2,3],3:[4],4:[5],5:[6],6:[7],7:[8],8:[9],9:[10],10:[1]}
sage: s = WordMorphism(d)
sage: s7 = s^7
sage: s7.fixed_points()
[word: 12232342..., word: 2,3,4,5,6,7,8...]
sage: s7r = s7.reversal()
sage: s7r.periodic_point(2)
word: 2,1,1,10,9,8,7,6,5,4,3,2,1,10,9,8,7,6,5,4,3,2,10,9,8,7,6,5,4,3,2,9,8,7,6,
→˓5,4,3,2,8,...

This shows that ticket trac ticket #13668 has been resolved:

sage: s = "1->321331332133133,2->133321331332133133,3->2133133133321331332133133
→˓"
sage: s = WordMorphism(s)
sage: (s^2).fixed_points()
[]

growing_letters()
Return the list of growing letters.

See is_growing() for more information.

EXAMPLES:

sage: WordMorphism('0->01,1->10').growing_letters()
['0', '1']
sage: WordMorphism('0->01,1->1').growing_letters()
['0']
sage: WordMorphism('0->01,1->0,2->1',codomain=Words('012')).growing_letters()
['0', '1', '2']
sage: WordMorphism('a->b,b->a').growing_letters()
[]
sage: WordMorphism('a->b,b->c,c->d,d->c', codomain=Words('abcd')).growing_
→˓letters()
[]

has_conjugate_in_classP(f=None)
Return True if self has a conjugate in class 𝑓 -𝑃 .

3554 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/13668
https://trac.sagemath.org/13668

Combinatorics, Release 9.7

DEFINITION : Let 𝐴 be an alphabet. We say that a primitive substitution 𝑆 is in the class P if there exists
a palindrome 𝑝 and for each 𝑏 ∈ 𝐴 a palindrome 𝑞𝑏 such that 𝑆(𝑏) = 𝑝𝑞𝑏 for all 𝑏 ∈ 𝐴. [1]

Let 𝑓 be an involution on 𝐴. We say that a morphism 𝜙 is in class 𝑓 -𝑃 if there exists an 𝑓 -palindrome 𝑝
and for each 𝛼 ∈ 𝐴 there exists an 𝑓 -palindrome 𝑞𝛼 such that 𝜙(𝛼) = 𝑝𝑞𝛼. [2]

INPUT:

• f - involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

REFERENCES:

• [1] Hof, A., O. Knill et B. Simon, Singular continuous spectrum for palindromic Schrödinger operators,
Commun. Math. Phys. 174 (1995) 149-159.

• [2] Labbe, Sebastien. Proprietes combinatoires des 𝑓 -palindromes, Memoire de maitrise en Mathe-
matiques, Montreal, UQAM, 2008, 109 pages.

EXAMPLES:

sage: fibo = WordMorphism('a->ab,b->a')
sage: fibo.has_conjugate_in_classP()
True
sage: (fibo^2).is_in_classP()
False
sage: (fibo^2).has_conjugate_in_classP()
True

has_left_conjugate()
Return True if all the non empty images of self begins with the same letter.

EXAMPLES:

sage: m = WordMorphism('a->abcde,b->xyz')
sage: m.has_left_conjugate()
False
sage: WordMorphism('b->xyz').has_left_conjugate()
True
sage: WordMorphism('').has_left_conjugate()
True
sage: WordMorphism('a->,b->xyz').has_left_conjugate()
True
sage: WordMorphism('a->abbab,b->abb').has_left_conjugate()
True
sage: WordMorphism('a->abbab,b->abb,c->').has_left_conjugate()
True

has_right_conjugate()
Return True if all the non empty images of self ends with the same letter.

EXAMPLES:

sage: m = WordMorphism('a->abcde,b->xyz')
sage: m.has_right_conjugate()
False
sage: WordMorphism('b->xyz').has_right_conjugate()
True

(continues on next page)

5.1. Comprehensive Module List 3555

Combinatorics, Release 9.7

(continued from previous page)

sage: WordMorphism('').has_right_conjugate()
True
sage: WordMorphism('a->,b->xyz').has_right_conjugate()
True
sage: WordMorphism('a->abbab,b->abb').has_right_conjugate()
True
sage: WordMorphism('a->abbab,b->abb,c->').has_right_conjugate()
True

image(letter)
Return the image of a letter.

INPUT:

• letter – a letter in the domain alphabet

OUTPUT:

word

Note: The letter is assumed to be in the domain alphabet (no check done). Hence, this method is faster
than the __call__ method suitable for words input.

EXAMPLES:

sage: m = WordMorphism('a->ab,b->ac,c->a')
sage: m.image('b')
word: ac

sage: s = WordMorphism({('a', 1):[('a', 1), ('a', 2)], ('a', 2):[('a', 1)]})
sage: s.image(('a',1))
word: ('a', 1),('a', 2)

sage: s = WordMorphism({'b':[1,2], 'a':(2,3,4), 'z':[9,8,7]})
sage: s.image('b')
word: 12
sage: s.image('a')
word: 234
sage: s.image('z')
word: 987

images()
Return the list of all the images of the letters of the alphabet under self.

EXAMPLES:

sage: sorted(WordMorphism('a->ab,b->a').images())
[word: a, word: ab]
sage: sorted(WordMorphism('6->ab,y->5,0->asd').images())
[word: 5, word: ab, word: asd]

immortal_letters()
Return the list of immortal letters.

3556 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

A letter 𝑎 is immortal for the morphism 𝑠 if the length of the iterates of |𝑠𝑛(𝑎)| is larger than zero as 𝑛 goes
to infinity.

Requires this morphism to be self-composable.

EXAMPLES:

sage: WordMorphism('a->a').immortal_letters()
['a']
sage: WordMorphism('a->b,b->a').immortal_letters()
['a', 'b']
sage: WordMorphism('a->abcd,b->cd,c->dd,d->').immortal_letters()
['a']
sage: WordMorphism('a->bc,b->cac,c->de,d->,e->').immortal_letters()
['a', 'b']
sage: WordMorphism('a->', domain=Words('a'), codomain=Words('a')).immortal_
→˓letters()
[]

sage: WordMorphism('a->').immortal_letters()
[]

incidence_matrix()
Return the incidence matrix of the morphism. The order of the rows and column are given by the order
defined on the alphabet of the domain and the codomain.

The matrix returned is over the integers. If a different ring is desired, use either the change_ring function
or the matrix function.

EXAMPLES:

sage: m = WordMorphism('a->abc,b->a,c->c')
sage: m.incidence_matrix()
[1 1 0]
[1 0 0]
[1 0 1]
sage: m = WordMorphism('a->abc,b->a,c->c,d->abbccccabca,e->abc')
sage: m.incidence_matrix()
[1 1 0 3 1]
[1 0 0 3 1]
[1 0 1 5 1]

infinite_repetitions_primitive_roots(w=None, allow_growing=None)
Return the set of primitive roots (up to conjugacy) of infinite repetitions from the language {𝑚𝑛(𝑤)|𝑛 ≥ 0},
where 𝑚 is this morphism and 𝑤 is a word inputted as a parameter.

Requires this morphism to be an endomorphism.

The word 𝑣𝜔 is an infinite repetition (in other words, an infinite periodic factor) of a language, if 𝑣 is a
non-empty word and for each positive integer 𝑘 the word 𝑣𝑘 is a factor of some word from the language. It
turns out that a language created by iterating a morphism has a finite number of primitive roots of infinite
repetitions.

If 𝑣 is a primitive root of an infinite repetition, then all its conjugations are also primitive roots of an
infinite repetition. For simplicity’s sake this method returns only the lexicographically minimal one from
each conjugacy class.

INPUT:

5.1. Comprehensive Module List 3557

Combinatorics, Release 9.7

• w – finite iterable (default: self.domain().alphabet()). Represents a word used to start the lan-
guage.

• allow_growing – boolean or None (default: None). If False, return only the primitive roots that
contain no growing letters. If True, return only the primitive roots that contain at least one growing
letter. If None, return both.

ALGORITHM:

The algorithm used is described in detail in [KS2015].

EXAMPLES:

sage: m = WordMorphism('a->aba,b->aba,c->cd,d->e,e->d')
sage: inf_reps = m.infinite_repetitions_primitive_roots('ac')
sage: sorted(inf_reps)
[word: aab, word: de]

allow_growing parameter:

sage: sorted(m.infinite_repetitions_primitive_roots('ac', True))
[word: aab]
sage: sorted(m.infinite_repetitions_primitive_roots('ac', False))
[word: de]

Incomplete check that these words are indeed the primitive roots of infinite repetitions:

sage: SL = m._language_naive(10, Word('ac'))
sage: all(x in SL for x in inf_reps)
True
sage: all(x^2 in SL for x in inf_reps)
True
sage: all(x^3 in SL for x in inf_reps)
True

Large example:

sage: m = WordMorphism('a->1b5,b->fcg,c->dae,d->432,e->678,f->f,g->g,1->2,2->3,
→˓3->4,4->1,5->6,6->7,7->8,8->5')
sage: sorted(m.infinite_repetitions_primitive_roots('a'))
[word: 1432f2143f3214f4321f, word: 5678g8567g7856g6785g]

is_empty()
Return True if the cardinality of the domain is zero and False otherwise.

EXAMPLES:

sage: WordMorphism('').is_empty()
True
sage: WordMorphism('a->a').is_empty()
False

is_endomorphism()
Return whether self is an endomorphism, that is if the domain coincide with the codomain.

EXAMPLES:

3558 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: WordMorphism('a->ab,b->a').is_endomorphism()
True
sage: WordMorphism('6->ab,y->5,0->asd').is_endomorphism()
False
sage: WordMorphism('a->a,b->aa,c->aaa').is_endomorphism()
False
sage: Wabc = Words('abc')
sage: m = WordMorphism('a->a,b->aa,c->aaa',codomain = Wabc)
sage: m.is_endomorphism()
True

We check that trac ticket #8674 is fixed:

sage: P = WordPaths('abcd')
sage: m = WordMorphism('a->adab,b->ab,c->cbcd,d->cd', domain=P, codomain=P)
sage: m.is_endomorphism()
True

is_erasing()
Return True if self is an erasing morphism, i.e. the image of a letter is the empty word.

EXAMPLES:

sage: WordMorphism('a->ab,b->a').is_erasing()
False
sage: WordMorphism('6->ab,y->5,0->asd').is_erasing()
False
sage: WordMorphism('6->ab,y->5,0->asd,7->').is_erasing()
True
sage: WordMorphism('').is_erasing()
False

is_growing(letter=None)
Return True if letter is a growing letter.

A letter 𝑎 is growing for the morphism 𝑠 if the length of the iterates of |𝑠𝑛(𝑎)| tend to infinity as 𝑛 goes to
infinity.

INPUT:

• letter – None or a letter in the domain of self

Note: If letter is None, this returns True if self is everywhere growing, i.e., all letters are growing letters
(see [CassNic10]), and that self must be an endomorphism.

EXAMPLES:

sage: WordMorphism('0->01,1->1').is_growing('0')
True
sage: WordMorphism('0->01,1->1').is_growing('1')
False
sage: WordMorphism('0->01,1->10').is_growing()
True
sage: WordMorphism('0->1,1->2,2->01').is_growing()

(continues on next page)

5.1. Comprehensive Module List 3559

https://trac.sagemath.org/8674

Combinatorics, Release 9.7

(continued from previous page)

True
sage: WordMorphism('0->01,1->1').is_growing()
False

The domain needs to be equal to the codomain:

sage: WordMorphism('0->01,1->0,2->1',codomain=Words('012')).is_growing()
True

Test of erasing morphisms:

sage: WordMorphism('0->01,1->').is_growing('0')
False
sage: m = WordMorphism('a->bc,b->bcc,c->',codomain=Words('abc'))
sage: m.is_growing('a')
False
sage: m.is_growing('b')
False
sage: m.is_growing('c')
False

REFERENCES:

is_identity()
Return True if self is the identity morphism.

EXAMPLES:

sage: m = WordMorphism('a->a,b->b,c->c,d->e')
sage: m.is_identity()
False
sage: WordMorphism('a->a,b->b,c->c').is_identity()
True
sage: WordMorphism('a->a,b->b,c->cb').is_identity()
False
sage: m = WordMorphism('a->b,b->c,c->a')
sage: (m^2).is_identity()
False
sage: (m^3).is_identity()
True
sage: (m^4).is_identity()
False
sage: WordMorphism('').is_identity()
True
sage: WordMorphism({0:[0],1:[1]}).is_identity()
True

We check that trac ticket #8618 is fixed:

sage: t = WordMorphism({'a1':['a2'], 'a2':['a1']})
sage: (t*t).is_identity()
True

is_in_classP(f=None)
Return True if self is in class 𝑃 (or 𝑓 -𝑃).

3560 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/8618

Combinatorics, Release 9.7

DEFINITION : Let 𝐴 be an alphabet. We say that a primitive substitution 𝑆 is in the class P if there exists
a palindrome 𝑝 and for each 𝑏 ∈ 𝐴 a palindrome 𝑞𝑏 such that 𝑆(𝑏) = 𝑝𝑞𝑏 for all 𝑏 ∈ 𝐴. [1]

Let 𝑓 be an involution on 𝐴. “We say that a morphism 𝜙 is in class 𝑓 -𝑃 if there exists an 𝑓 -palindrome 𝑝
and for each 𝛼 ∈ 𝐴 there exists an 𝑓 -palindrome 𝑞𝛼 such that 𝜙(𝛼) = 𝑝𝑞𝛼. [2]

INPUT:

• f - involution (default: None) on the alphabet of self. It must be callable on letters as well as words
(e.g. WordMorphism).

REFERENCES:

• [1] Hof, A., O. Knill et B. Simon, Singular continuous spectrum for palindromic Schrödinger operators,
Commun. Math. Phys. 174 (1995) 149-159.

• [2] Labbe, Sebastien. Proprietes combinatoires des 𝑓 -palindromes, Memoire de maitrise en Mathe-
matiques, Montreal, UQAM, 2008, 109 pages.

EXAMPLES:

sage: WordMorphism('a->bbaba,b->bba').is_in_classP()
True
sage: tm = WordMorphism('a->ab,b->ba')
sage: tm.is_in_classP()
False
sage: f = WordMorphism('a->b,b->a')
sage: tm.is_in_classP(f=f)
True
sage: (tm^2).is_in_classP()
True
sage: (tm^2).is_in_classP(f=f)
False
sage: fibo = WordMorphism('a->ab,b->a')
sage: fibo.is_in_classP()
True
sage: fibo.is_in_classP(f=f)
False
sage: (fibo^2).is_in_classP()
False
sage: f = WordMorphism('a->b,b->a,c->c')
sage: WordMorphism('a->acbcc,b->acbab,c->acbba').is_in_classP(f)
True

is_injective()
Return whether this morphism is injective.

ALGORITHM:

Uses a version of Wikipedia article Sardinas–Patterson_algorithm. Time complexity is on average quadratic
with regards to the size of the morphism.

EXAMPLES:

sage: WordMorphism('a->0,b->10,c->110,d->111').is_injective()
True
sage: WordMorphism('a->00,b->01,c->012,d->20001').is_injective()
False

5.1. Comprehensive Module List 3561

https://en.wikipedia.org/wiki/Sardinas\T1\textendash {}Patterson_algorithm

Combinatorics, Release 9.7

is_involution()
Return True if self is an involution, i.e. its square is the identity.

INPUT:

• self - an endomorphism

EXAMPLES:

sage: WordMorphism('a->b,b->a').is_involution()
True
sage: WordMorphism('a->b,b->ba').is_involution()
False
sage: WordMorphism({0:[1],1:[0]}).is_involution()
True

is_primitive()
Return True if self is primitive.

A morphism 𝜙 is primitive if there exists an positive integer 𝑘 such that for all 𝛼 ∈ Σ, 𝜙𝑘(𝛼) contains all
the letters of Σ.

INPUT:

• self - an endomorphism

ALGORITHM:

Exercices 8.7.8, p.281 in [1]: (c) Let 𝑦(𝑀) be the least integer 𝑒 such that 𝑀𝑒 has all positive
entries. Prove that, for all primitive matrices 𝑀 , we have 𝑦(𝑀) ≤ (𝑑 − 1)2 + 1. (d) Prove that
the bound 𝑦(𝑀) ≤ (𝑑− 1)2 + 1 is best possible.

EXAMPLES:

sage: tm = WordMorphism('a->ab,b->ba')
sage: tm.is_primitive()
True
sage: fibo = WordMorphism('a->ab,b->a')
sage: fibo.is_primitive()
True
sage: m = WordMorphism('a->bb,b->aa')
sage: m.is_primitive()
False
sage: f = WordMorphism({0:[1],1:[0]})
sage: f.is_primitive()
False

sage: s = WordMorphism('a->b,b->c,c->ab')
sage: s.is_primitive()
True
sage: s = WordMorphism('a->b,b->c,c->d,d->e,e->f,f->g,g->h,h->ab')
sage: s.is_primitive()
True

REFERENCES:

• [1] Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences: Theory, Applications, Generaliza-
tions, Cambridge University Press, 2003.

3562 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

is_prolongable(letter)
Return True if self is prolongable on letter.

A morphism 𝜙 is prolongable on a letter 𝑎 if 𝑎 is a prefix of 𝜙(𝑎).

INPUT:

• self - its codomain must be an instance of Words

• letter - a letter in the domain alphabet

OUTPUT:

Boolean

EXAMPLES:

sage: WordMorphism('a->ab,b->a').is_prolongable(letter='a')
True
sage: WordMorphism('a->ab,b->a').is_prolongable(letter='b')
False
sage: WordMorphism('a->ba,b->ab').is_prolongable(letter='b')
False
sage: (WordMorphism('a->ba,b->ab')^2).is_prolongable(letter='b')
True
sage: WordMorphism('a->ba,b->').is_prolongable(letter='b')
False
sage: WordMorphism('a->bb,b->aac').is_prolongable(letter='a')
False

We check that trac ticket #8595 is fixed:

sage: s = WordMorphism({('a', 1) : [('a', 1), ('a', 2)], ('a', 2) : [('a', 1)]})
sage: s.is_prolongable(('a',1))
True

is_pushy(w=None)
Return whether the language {𝑚𝑛(𝑤)|𝑛 ≥ 0} is pushy, where𝑚 is this morphism and𝑤 is a word inputted
as a parameter.

Requires this morphism to be an endomorphism.

A language created by iterating a morphism is pushy, if its words contain an infinite number of factors
containing no growing letters. It turns out that this is equivalent to having at least one infinite repetition
containing no growing letters.

See infinite_repetitions_primitive_roots() and is_growing().

INPUT:

• w – finite iterable (default: self.domain().alphabet()). Represents a word used to start the lan-
guage.

EXAMPLES:

sage: WordMorphism('a->abca,b->bc,c->').is_pushy()
False
sage: WordMorphism('a->abc,b->,c->bcb').is_pushy()
True

5.1. Comprehensive Module List 3563

https://trac.sagemath.org/8595

Combinatorics, Release 9.7

is_repetitive(w=None)
Return whether the language {𝑚𝑛(𝑤)|𝑛 ≥ 0} is repetitive, where 𝑚 is this morphism and 𝑤 is a word
inputted as a parameter.

Requires this morphism to be an endomorphism.

A language is repetitive, if for each positive integer 𝑘 there exists a word 𝑢 such that 𝑢𝑘 is a factor of some
word of the language.

It turns out that for languages created by iterating a morphism this is equivalent to having at least one infinite
repetition (this property is also known as strong repetitiveness).

See infinite_repetitions_primitive_roots().

INPUT:

• w – finite iterable (default: self.domain().alphabet()). Represents a word used to start the lan-
guage.

EXAMPLES:

This method can be used to check whether a purely morphic word is not k-power free for all positive integers
k. For example, the language containing just the Thue-Morse word and its prefixes is not repetitive, since
the Thue-Morse word is cube-free:

sage: WordMorphism('a->ab,b->ba').is_repetitive('a')
False

Similarly, the Hanoi word is square-free:

sage: WordMorphism('a->aC,A->ac,b->cB,B->cb,c->bA,C->ba').is_repetitive('a')
False

However, this method solves a more general problem, as it can be called on any morphism 𝑚 and with any
word 𝑤:

sage: WordMorphism('a->c,b->cda,c->a,d->abc').is_repetitive('bd')
True

is_self_composable()
Return whether the codomain of self is contained in the domain.

EXAMPLES:

sage: f = WordMorphism('a->a,b->a')
sage: f.is_endomorphism()
False
sage: f.is_self_composable()
True

is_unboundedly_repetitive(w=None)
Return whether the language {𝑚𝑛(𝑤)|𝑛 ≥ 0} is unboundedly repetitive, where 𝑚 is this morphism and 𝑤
is a word inputted as a parameter.

Requires this morphism to be an endomorphism.

A language created by iterating a morphism is unboundedly repetitive, if it has at least one infinite repetition
containing at least one growing letter.

See infinite_repetitions_primitive_roots() and is_growing().

3564 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

INPUT:

• w – finite iterable (default: self.domain().alphabet()). Represents a word used to start the lan-
guage.

EXAMPLES:

sage: WordMorphism('a->abca,b->bc,c->').is_unboundedly_repetitive()
True
sage: WordMorphism('a->abc,b->,c->bcb').is_unboundedly_repetitive()
False

is_uniform(k=None)
Return True if self is a 𝑘-uniform morphism.

Let 𝑘 be a positive integer. A morphism 𝜑 is called 𝑘-uniform if for every letter 𝛼, we have |𝜑(𝛼)| = 𝑘. In
other words, all images have length 𝑘. A morphism is called uniform if it is 𝑘-uniform for some positive
integer 𝑘.

INPUT:

• k - a positive integer or None. If set to a positive integer, then the function return True if self is
𝑘-uniform. If set to None, then the function return True if self is uniform.

EXAMPLES:

sage: phi = WordMorphism('a->ab,b->a')
sage: phi.is_uniform()
False
sage: phi.is_uniform(k=1)
False
sage: tau = WordMorphism('a->ab,b->ba')
sage: tau.is_uniform()
True
sage: tau.is_uniform(k=1)
False
sage: tau.is_uniform(k=2)
True

language(n, u=None)
Return the words of length n in the language generated by this substitution.

Given a non-erasing substitution 𝑠 and a word 𝑢 the DOL-language generated by 𝑠 and 𝑢 is the union of
the factors of 𝑠𝑛(𝑢) where 𝑛 is a non-negative integer.

INPUT:

• n – non-negative integer - length of the words in the language

• u – a word or None (optional, default None) - if set to None some letter of the alphabet is used

OUTPUT: a Python set

EXAMPLES:

The fibonacci morphism:

sage: s = WordMorphism({0: [0,1], 1:[0]})
sage: sorted(s.language(3))
[word: 001, word: 010, word: 100, word: 101]

(continues on next page)

5.1. Comprehensive Module List 3565

Combinatorics, Release 9.7

(continued from previous page)

sage: len(s.language(1000))
1001
sage: all(len(s.language(n)) == n+1 for n in range(100))
True

A growing but non-primitive example. The DOL-languages generated by 0 and 2 are different:

sage: s = WordMorphism({0: [0,1], 1:[0], 2:[2,0,2]})

sage: u = s.fixed_point(0)
sage: A0 = u[:200].factor_set(5)
sage: B0 = s.language(5, [0])
sage: set(A0) == B0
True

sage: v = s.fixed_point(2)
sage: A2 = v[:200].factor_set(5)
sage: B2 = s.language(5, [2])
sage: set(A2) == B2
True

sage: len(A0), len(A2)
(6, 20)

The Chacon transformation (non-primitive):

sage: s = WordMorphism({0: [0,0,1,0], 1:[1]})
sage: sorted(s.language(10))
[word: 0001000101,
word: 0001010010,
...
word: 1010010001,
word: 1010010100]

latex_layout(layout=None)
Get or set the actual latex layout (oneliner vs array).

INPUT:

• layout - string (default: None), can take one of the following values:

– None - Returns the actual latex layout. By default, the layout is 'array'

– 'oneliner' - Set the layout to 'oneliner'

– 'array' - Set the layout to 'array'

EXAMPLES:

sage: s = WordMorphism('a->ab,b->ba')
sage: s.latex_layout()
'array'
sage: s.latex_layout('oneliner')
sage: s.latex_layout()
'oneliner'

3566 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

letter_growth_types()
Return the mortal, polynomial and exponential growing letters.

The growth of |𝑠𝑛(𝑎)| as 𝑛 goes to∞ is always of the form 𝛼𝑛𝑛𝛽 (where 𝛼 is a Perron number and 𝛽 an
integer).

Without doing any linear algebra three cases can be differentiated: mortal (ultimately empty or 𝛼 = 0);
polynomial (𝛼 = 1); exponential (𝛼 > 1). This is what is done in this method.

It requires this morphism to be an endomorphism.

OUTPUT:

The output is a 3-tuple of lists (mortal, polynomial, exponential) where:

• mortal: list of mortal letters

• polynomial: a list of lists where polynomial[i] is the list of letters with growth 𝑛𝑖.

• exponential: list of at least exponentionally growing letters

EXAMPLES:

sage: s = WordMorphism('a->abc,b->bc,c->c')
sage: mortal, poly, expo = s.letter_growth_types()
sage: mortal
[]
sage: poly
[['c'], ['b'], ['a']]
sage: expo
[]

When three mortal letters (c, d, and e), and two letters (a, b) are not growing:

sage: s = WordMorphism('a->bc,b->cac,c->de,d->,e->')
sage: s^20
WordMorphism: a->cacde, b->debcde, c->, d->, e->
sage: mortal, poly, expo = s.letter_growth_types()
sage: mortal
['c', 'd', 'e']
sage: poly
[['a', 'b']]
sage: expo
[]

sage: s = WordMorphism('a->abcd,b->bc,c->c,d->a')
sage: mortal, poly, expo = s.letter_growth_types()
sage: mortal
[]
sage: poly
[['c'], ['b']]
sage: expo
['a', 'd']

list_of_conjugates()
Return the list of all the conjugate morphisms of self.

DEFINITION:

5.1. Comprehensive Module List 3567

Combinatorics, Release 9.7

Recall from Lothaire [1] (Section 2.3.4) that 𝜙 is right conjugate of 𝜙′, noted 𝜙 ▷𝜙′, if there exists 𝑢 ∈ Σ*

such that

𝜙(𝛼)𝑢 = 𝑢𝜙′(𝛼),

for all 𝛼 ∈ Σ, or equivalently that 𝜙(𝑥)𝑢 = 𝑢𝜙′(𝑥), for all words 𝑥 ∈ Σ*. Clearly, this relation is not
symmetric so that we say that two morphisms 𝜙 and 𝜙′ are conjugate, noted 𝜙 ◁▷ 𝜙′, if 𝜙 ▷ 𝜙′ or 𝜙′ ▷ 𝜙. It
is easy to see that conjugacy of morphisms is an equivalence relation.

REFERENCES:

• [1] M. Lothaire, Algebraic Combinatorics on words, Cambridge University Press, 2002.

EXAMPLES:

sage: m = WordMorphism('a->abbab,b->abb')
sage: m.list_of_conjugates()
[WordMorphism: a->babba, b->bab,
WordMorphism: a->abbab, b->abb,
WordMorphism: a->bbaba, b->bba,
WordMorphism: a->babab, b->bab,
WordMorphism: a->ababb, b->abb,
WordMorphism: a->babba, b->bba,
WordMorphism: a->abbab, b->bab]
sage: m = WordMorphism('a->aaa,b->aa')
sage: m.list_of_conjugates()
[WordMorphism: a->aaa, b->aa]
sage: WordMorphism('').list_of_conjugates()
[WordMorphism:]
sage: m = WordMorphism('a->aba,b->aba')
sage: m.list_of_conjugates()
[WordMorphism: a->baa, b->baa,
WordMorphism: a->aab, b->aab,
WordMorphism: a->aba, b->aba]
sage: m = WordMorphism('a->abb,b->abbab,c->')
sage: m.list_of_conjugates()
[WordMorphism: a->bab, b->babba, c->,
WordMorphism: a->abb, b->abbab, c->,
WordMorphism: a->bba, b->bbaba, c->,
WordMorphism: a->bab, b->babab, c->,
WordMorphism: a->abb, b->ababb, c->,
WordMorphism: a->bba, b->babba, c->,
WordMorphism: a->bab, b->abbab, c->]

partition_of_domain_alphabet()
Return a partition of the domain alphabet.

Let 𝜙 : Σ* → Σ* be an involution. There exists a triple of sets (𝐴,𝐵,𝐶) such that

• 𝐴 ∪𝐵 ∪ 𝐶 = Σ;

• 𝐴, 𝐵 and 𝐶 are mutually disjoint and

• 𝜙(𝐴) = 𝐵, 𝜙(𝐵) = 𝐴, 𝜙(𝐶) = 𝐶.

These sets are not unique.

INPUT:

• self - An involution.

3568 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

A tuple of three sets

EXAMPLES:

sage: m = WordMorphism('a->b,b->a')
sage: m.partition_of_domain_alphabet() #random ordering
({'a'}, {'b'}, {})
sage: m = WordMorphism('a->b,b->a,c->c')
sage: m.partition_of_domain_alphabet() #random ordering
({'a'}, {'b'}, {'c'})
sage: m = WordMorphism('a->a,b->b,c->c')
sage: m.partition_of_domain_alphabet() #random ordering
({}, {}, {'a', 'c', 'b'})
sage: m = WordMorphism('A->T,T->A,C->G,G->C')
sage: m.partition_of_domain_alphabet() #random ordering
({'A', 'C'}, {'T', 'G'}, {})
sage: I = WordMorphism({0:oo,oo:0,1:-1,-1:1,2:-2,-2:2,3:-3,-3:3})
sage: I.partition_of_domain_alphabet() #random ordering
({0, -1, -3, -2}, {1, 2, 3, +Infinity}, {})

periodic_point(letter)
Return the periodic point of self that starts with letter.

EXAMPLES:

sage: f = WordMorphism('a->bab,b->ab')
sage: f.periodic_point('a')
word: abbababbababbabababbababbabababbababbaba...
sage: f.fixed_point('a')
Traceback (most recent call last):
...
TypeError: self must be prolongable on a

Make sure that trac ticket #31759 is fixed:

sage: WordMorphism('a->b,b->a').periodic_point('a')
word: a

periodic_points()
Return the periodic points of f as a list of tuples where each tuple is a periodic orbit of f.

EXAMPLES:

sage: f = WordMorphism('a->aba,b->baa')
sage: for p in f.periodic_points():
....: print("{} , {}".format(len(p), p[0]))
1 , ababaaababaaabaabaababaaababaaabaabaabab...
1 , baaabaabaababaaabaababaaabaababaaababaaa...

sage: f = WordMorphism('a->bab,b->aa')
sage: for p in f.periodic_points():
....: print("{} , {}".format(len(p), p[0]))
2 , aababaaaababaababbabaababaababbabaababaa...

(continues on next page)

5.1. Comprehensive Module List 3569

https://trac.sagemath.org/31759

Combinatorics, Release 9.7

(continued from previous page)

sage: f.fixed_points()
[]

This shows that ticket trac ticket #13668 has been resolved:

sage: d = {1:[1,2],2:[2,3],3:[4],4:[5],5:[6],6:[7],7:[8],8:[9],9:[10],10:[1]}
sage: s = WordMorphism(d)
sage: s7 = s^7
sage: s7r = s7.reversal()
sage: for p in s7r.periodic_points(): p
[word: 1,10,9,8,7,6,5,4,3,2,10,9,8,7,6,5,4,3,2,...,
word: 8765432765432654325432432322176543265432...,
word: 5,4,3,2,4,3,2,3,2,2,1,4,3,2,3,2,2,1,3,2,...,
word: 2,1,1,10,9,8,7,6,5,4,3,2,1,10,9,8,7,6,5,...,
word: 9876543287654327654326543254324323221876...,
word: 6543254324323221543243232214323221322121...,
word: 3,2,2,1,2,1,1,10,9,8,7,6,5,4,3,2,2,1,1,1...,
word: 10,9,8,7,6,5,4,3,2,9,8,7,6,5,4,3,2,8,7,6...,
word: 7654326543254324323221654325432432322154...,
word: 4,3,2,3,2,2,1,3,2,2,1,2,1,1,10,9,8,7,6,5...]

Make sure that trac ticket #31454 is fixed:

sage: WordMorphism('a->a,b->bb').periodic_points()
[[word: bb...]]

pisot_eigenvector_left()
Return the left eigenvector of the incidence matrix associated to the largest eigenvalue (in absolute value).

Unicity of the result is guaranteed when the multiplicity of the largest eigenvalue is one, for example when
self is a Pisot irreductible substitution.

A substitution is Pisot irreducible if the characteristic polynomial of its incidence matrix is irreducible over
Q and has all roots, except one, of modulus strictly smaller than 1.

INPUT:

• self - a Pisot irreducible substitution.

EXAMPLES:

sage: m = WordMorphism('a->aaaabbc,b->aaabbc,c->aabc')
sage: matrix(m)
[4 3 2]
[2 2 1]
[1 1 1]
sage: m.pisot_eigenvector_left()
(1, 0.8392867552141611?, 0.5436890126920763?)

pisot_eigenvector_right()
Return the right eigenvector of the incidence matrix associated to the largest eigenvalue (in absolute value).

Unicity of the result is guaranteed when the multiplicity of the largest eigenvalue is one, for example when
self is a Pisot irreductible substitution.

A substitution is Pisot irreducible if the characteristic polynomial of its incidence matrix is irreducible over
Q and has all roots, except one, of modulus strictly smaller than 1.

3570 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/13668
https://trac.sagemath.org/31454

Combinatorics, Release 9.7

INPUT:

• self - a Pisot irreducible substitution.

EXAMPLES:

sage: m = WordMorphism('a->aaaabbc,b->aaabbc,c->aabc')
sage: matrix(m)
[4 3 2]
[2 2 1]
[1 1 1]
sage: m.pisot_eigenvector_right()
(1, 0.5436890126920763?, 0.2955977425220848?)

rauzy_fractal_plot(n=None, exchange=False, eig=None, translate=None, prec=53, colormap='hsv',
opacity=None, plot_origin=None, plot_basis=False, point_size=None)

Return a plot of the Rauzy fractal associated with a substitution.

The substitution does not have to be irreducible. The usual definition of a Rauzy fractal requires that its
dominant eigenvalue is a Pisot number but the present method doesn’t require this, allowing to plot some
interesting pictures in the non-Pisot case (see the examples below).

For more details about the definition of the fractal and the projection which is used, see Section 3.1 of [1].

Plots with less than 100,000 points take a few seconds, and several millions of points can be plotted in
reasonable time.

Other ways to draw Rauzy fractals (and more generally projections of paths) can be found in
sage.combinat.words.paths.FiniteWordPath_all.plot_projection() or in sage.combinat.
e_one_star().

OUTPUT:

A Graphics object.

INPUT:

• n - integer (default: None) The number of points used to plot the fractal. Default values: 1000 for a
1D fractal, 50000 for a 2D fractal, 10000 for a 3D fractal.

• exchange - boolean (default: False). Plot the Rauzy fractal with domain exchange.

• eig - a real element of QQbar of degree >= 2 (default: None). The eigenvalue used to plot the fractal.
It must be an eigenvalue of self.incidence_matrix(). The one used by default the maximal
eigenvalue of self.incidence_matrix() (usually a Pisot number), but for substitutions with more
than 3 letters other interesting choices are sometimes possible.

• translate - a list of vectors of RR^size_alphabet, or a dictionary from the alphabet to lists of
vectors (default: None). Plot translated copies of the fractal. This option allows to plot tilings easily.
The projection used for these vectors is the same as the projection used for the canonical basis to plot
the fractal. If the input is a list, all the pieces will be translated and plotted. If the input is a dictionary,
each piece will be translated and plotted accordingly to the vectors associated with each letter in the
dictionary. Note: by default, the Rauzy fractal placed at the origin is not plotted with the translate
option; the vector (0,0,...,0) has to be added manually.

• prec - integer (default: 53). The number of bits used in the floating point representations of the points
of the fractal.

• colormap - color map or dictionary (default: 'hsv'). It can be one of the following:

– string - a coloring map. For available coloring map names type: sorted(colormaps)

– dict - a dictionary of the alphabet mapped to colors.

5.1. Comprehensive Module List 3571

Combinatorics, Release 9.7

• opacity - a dictionary from the alphabet to the real interval [0,1] (default: None). If none is specified,
all letters are plotted with opacity 1.

• plot_origin - a couple (k,c) (default: None). If specified, mark the origin by a point of size k and
color c.

• plot_basis - boolean (default: False). Plot the projection of the canonical basis with the fractal.

• point_size - float (default: None). The size of the points used to plot the fractal.

EXAMPLES:

1. The Rauzy fractal of the Tribonacci substitution:

sage: s = WordMorphism('1->12,2->13,3->1')
sage: s.rauzy_fractal_plot() # long time
Graphics object consisting of 3 graphics primitives

2. The “Hokkaido” fractal. We tweak the plot using the plotting options to get a nice reusable picture, in
which we mark the origin by a black dot:

sage: s = WordMorphism('a->ab,b->c,c->d,d->e,e->a')
sage: G = s.rauzy_fractal_plot(n=100000, point_size=3, plot_origin=(50,
→˓"black")) # not tested
sage: G.show(figsize=10, axes=false) # not tested

3. Another “Hokkaido” fractal and its domain exchange:

sage: s = WordMorphism({1:[2], 2:[4,3], 3:[4], 4:[5,3], 5:[6], 6:[1]})
sage: s.rauzy_fractal_plot() # not tested takes > 1 second
sage: s.rauzy_fractal_plot(exchange=True) # not tested takes > 1 second

4. A three-dimensional Rauzy fractal:

sage: s = WordMorphism('1->12,2->13,3->14,4->1')
sage: s.rauzy_fractal_plot() # not tested takes > 1 second

5. A one-dimensional Rauzy fractal (very scattered):

sage: s = WordMorphism('1->2122,2->1')
sage: s.rauzy_fractal_plot().show(figsize=20) # not tested takes > 1␣
→˓second

6. A high resolution plot of a complicated fractal:

sage: s = WordMorphism('1->23,2->123,3->1122233')
sage: G = s.rauzy_fractal_plot(n=300000) # not tested takes > 1 second
sage: G.show(axes=false, figsize=20) # not tested takes > 1 second

7. A nice colorful animation of a domain exchange:

sage: s = WordMorphism('1->21,2->3,3->4,4->25,5->6,6->7,7->1')
sage: L = [s.rauzy_fractal_plot(), s.rauzy_fractal_plot(exchange=True)]
→˓# not tested takes > 1 second
sage: animate(L, axes=false).show(delay=100) # not tested takes > 1␣
→˓second

8. Plotting with only one color:

3572 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: s = WordMorphism('1->12,2->31,3->1')
sage: s.rauzy_fractal_plot(colormap={'1':'black', '2':'black', '3':'black'}
→˓) # not tested takes > 1 second

9. Different fractals can be obtained by choosing another (non-Pisot) eigenvalue:

sage: s = WordMorphism('1->12,2->3,3->45,4->5,5->6,6->7,7->8,8->1')
sage: E = s.incidence_matrix().eigenvalues()
sage: x = [x for x in E if -0.8 < x < -0.7][0]
sage: s.rauzy_fractal_plot() # not tested takes > 1 second
sage: s.rauzy_fractal_plot(eig=x) # not tested takes > 1 second

10. A Pisot reducible substitution with seemingly overlapping tiles:

sage: s = WordMorphism({1:[1,2], 2:[2,3], 3:[4], 4:[5], 5:[6], 6:[7], 7:[8],
→˓ 8:[9], 9:[10], 10:[1]})
sage: s.rauzy_fractal_plot() # not tested takes > 1 second

11. A non-Pisot reducible substitution with a strange Rauzy fractal:

sage: s = WordMorphism({1:[3,2], 2:[3,3], 3:[4], 4:[1]})
sage: s.rauzy_fractal_plot() # not tested takes > 1 second

12. A substitution with overlapping tiles. We use the options colormap and opacity to study how the
tiles overlap:

sage: s = WordMorphism('1->213,2->4,3->5,4->1,5->21')
sage: s.rauzy_fractal_plot() # not tested␣
→˓takes > 1 second
sage: s.rauzy_fractal_plot(colormap={'1':'red', '4':'purple'}) # not␣
→˓tested takes > 1 second
sage: s.rauzy_fractal_plot(opacity={'1':0.1,'2':1,'3':0.1,'4':0.1,'5':0.1},␣
→˓n=150000) # not tested takes > 1 second

13. Funny experiments by playing with the precision of the float numbers used to plot the fractal:

sage: s = WordMorphism('1->12,2->13,3->1')
sage: s.rauzy_fractal_plot(prec=6) # not tested
sage: s.rauzy_fractal_plot(prec=9) # not tested
sage: s.rauzy_fractal_plot(prec=15) # not tested
sage: s.rauzy_fractal_plot(prec=19) # not tested
sage: s.rauzy_fractal_plot(prec=25) # not tested

14. Using the translate option to plot periodic tilings:

sage: s = WordMorphism('1->12,2->13,3->1')
sage: s.rauzy_fractal_plot(n=10000, translate=[(0,0,0),(-1,0,1),(0,-1,1),(1,
→˓-1,0),(1,0,-1),(0,1,-1),(-1,1,0)]) # not tested takes > 1 second

sage: t = WordMorphism("a->aC,b->d,C->de,d->a,e->ab") # substitution␣
→˓found by Julien Bernat
sage: V = [vector((0,0,1,0,-1)), vector((0,0,1,-1,0))]

(continues on next page)

5.1. Comprehensive Module List 3573

Combinatorics, Release 9.7

(continued from previous page)

sage: S = set(map(tuple, [i*V[0] + j*V[1] for i in [-1,0,1] for j in [-1,0,
→˓1]]))
sage: t.rauzy_fractal_plot(n=10000, translate=S, exchange=true) # not␣
→˓tested takes > 1 second

15. Using the translate option to plot arbitrary tilings with the fractal pieces. This can be used for
example to plot the self-replicating tiling of the Rauzy fractal:

sage: s = WordMorphism({1:[1,2], 2:[3], 3:[4,3], 4:[5], 5:[6], 6:[1]})
sage: s.rauzy_fractal_plot() # not tested takes > 1 second
sage: D = {1:[(0,0,0,0,0,0), (0,1,0,0,0,0)], 3:[(0,0,0,0,0,0), (0,1,0,0,0,
→˓0)], 6:[(0,1,0,0,0,0)]}
sage: s.rauzy_fractal_plot(n=30000, translate=D) # not tested takes > 1␣
→˓second

16. Plot the projection of the canonical basis with the fractal:

sage: s = WordMorphism({1:[2,1], 2:[3], 3:[6,4], 4:[5,1], 5:[6], 6:[7],␣
→˓7:[8], 8:[9], 9:[1]})
sage: s.rauzy_fractal_plot(plot_basis=True) # not tested takes > 1␣
→˓second

REFERENCES:

• [1] Valerie Berthe and Anne Siegel, Tilings associated with beta-numeration and substitutions, Integers
5 (3), 2005. http://www.integers-ejcnt.org/vol5-3.html

AUTHOR:

Timo Jolivet (2012-06-16)

rauzy_fractal_points(n=None, exchange=False, eig=None, translate=None, prec=53)
Return a dictionary of list of points associated with the pieces of the Rauzy fractal of self.

INPUT:

See the method rauzy_fractal_plot() for a description of the options and more examples.

OUTPUT:

dictionary of list of points

EXAMPLES:

The Rauzy fractal of the Tribonacci substitution and the number of points in the piece of the fractal asso-
ciated with '1', '2' and '3' are respectively:

sage: s = WordMorphism('1->12,2->13,3->1')
sage: D = s.rauzy_fractal_points(n=100)
sage: len(D['1'])
54
sage: len(D['2'])
30
sage: len(D['3'])
16

AUTHOR:

Timo Jolivet (2012-06-16)

3574 Chapter 5. Comprehensive Module List

http://www.integers-ejcnt.org/vol5-3.html

Combinatorics, Release 9.7

rauzy_fractal_projection(eig=None, prec=53)
Return a dictionary giving the projection of the canonical basis.

See the method rauzy_fractal_plot() for more details about the projection.

INPUT:

• eig - a real element of QQbar of degree >= 2 (default: None). The eigenvalue used for the projection.
It must be an eigenvalue of self.incidence_matrix(). The one used by default is the maximal
eigenvalue of self.incidence_matrix() (usually a Pisot number), but for substitutions with more
than 3 letters other interesting choices are sometimes possible.

• prec - integer (default: 53). The number of bits used in the floating point representations of the
coordinates.

OUTPUT:

dictionary, letter -> vector, giving the projection

EXAMPLES:

The projection for the Rauzy fractal of the Tribonacci substitution is:

sage: s = WordMorphism('1->12,2->13,3->1')
sage: s.rauzy_fractal_projection()
{'1': (1.00000000000000, 0.000000000000000),
'2': (-1.41964337760708, -0.606290729207199),
'3': (-0.771844506346038, 1.11514250803994)}

AUTHOR:

Timo Jolivet (2012-06-16)

restrict_domain(alphabet)
Return a restriction of self to the given alphabet.

INPUT:

• alphabet - an iterable

OUTPUT:

WordMorphism

EXAMPLES:

sage: m = WordMorphism('a->b,b->a')
sage: m.restrict_domain('a')
WordMorphism: a->b
sage: m.restrict_domain('')
WordMorphism:
sage: m.restrict_domain('A')
WordMorphism:
sage: m.restrict_domain('Aa')
WordMorphism: a->b

The input alphabet must be iterable:

sage: m.restrict_domain(66)
Traceback (most recent call last):
...
TypeError: 'sage.rings.integer.Integer' object is not iterable

5.1. Comprehensive Module List 3575

Combinatorics, Release 9.7

reversal()
Return the reversal of self.

EXAMPLES:

sage: WordMorphism('6->ab,y->5,0->asd').reversal()
WordMorphism: 0->dsa, 6->ba, y->5
sage: WordMorphism('a->ab,b->a').reversal()
WordMorphism: a->ba, b->a

simplify_alphabet_size(Z=None)
If this morphism is simplifiable, return morphisms ℎ and 𝑘 such that this morphism is simplifiable with
respect to ℎ and 𝑘, otherwise raise ValueError.

This method is quite fast if this morphism is non-injective, but very slow if it is injective.

Let 𝑓 : 𝑋* → 𝑌 * be a morphism. Then 𝑓 is simplifiable with respect to morphisms ℎ : 𝑋* → 𝑍* and
𝑘 : 𝑍* → 𝑌 *, if 𝑓 = 𝑘 ∘ ℎ and |𝑍| < |𝑋|. If also 𝑌 ⊆ 𝑋 , then the morphism 𝑔 : 𝑍* → 𝑍* = ℎ ∘ 𝑘 is a
simplification of 𝑓 (with respect to ℎ and 𝑘).

Loosely speaking, a morphism is simplifiable if it contains “more letters than is needed”. Non-injectivity
implies simplifiability. Simplification preserves some properties of the original morphism (e.g. repetitive-
ness).

For more information see Section 3 in [KO2000].

INPUT:

• Z – iterable (default: self.domain().alphabet()), whose elements are used as an alphabet for the
simplification.

EXAMPLES:

Example of a simplifiable (non-injective) morphism:

sage: f = WordMorphism('a->aca,b->badc,c->acab,d->adc')
sage: h, k = f.simplify_alphabet_size('xyz'); h, k
(WordMorphism: a->x, b->zy, c->xz, d->y, WordMorphism: x->aca, y->adc, z->b)
sage: k * h == f
True
sage: g = h * k; g
WordMorphism: x->xxzx, y->xyxz, z->zy

Example of a simplifiable (injective) morphism:

sage: f = WordMorphism('a->abcc,b->abcd,c->abdc,d->abdd')
sage: h, k = f.simplify_alphabet_size('xyz'); h, k
(WordMorphism: a->xyy, b->xyz, c->xzy, d->xzz, WordMorphism: x->ab, y->c, z->d)
sage: k * h == f
True
sage: g = h * k; g
WordMorphism: x->xyyxyz, y->xzy, z->xzz

Example of a non-simplifiable morphism:

sage: WordMorphism('a->aa').simplify_alphabet_size()
Traceback (most recent call last):
...
ValueError: self (a->aa) is not simplifiable

3576 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Example of an erasing morphism:

sage: f = WordMorphism('a->abc,b->cc,c->')
sage: h, k = f.simplify_alphabet_size(); h, k
(WordMorphism: a->a, b->b, c->, WordMorphism: a->abc, b->cc)
sage: k * h == f
True
sage: g = h * k; g
WordMorphism: a->ab, b->

Example of a morphism, that is not an endomorphism:

sage: f = WordMorphism('a->xx,b->xy,c->yx,d->yy')
sage: h, k = f.simplify_alphabet_size(NN); h, k
(WordMorphism: a->00, b->01, c->10, d->11, WordMorphism: 0->x, 1->y)
sage: k * h == f
True
sage: len(k.domain().alphabet()) < len(f.domain().alphabet())
True

simplify_until_injective()
Return a quadruplet (𝑔, ℎ, 𝑘, 𝑖), where 𝑔 is an injective simplification of this morphism with respect to ℎ,
𝑘 and 𝑖.

Requires this morphism to be an endomorphism.

This methods basically calls simplify_alphabet_size() until the returned simplification is injective.
If this morphism is already injective, a quadruplet (𝑔, ℎ, 𝑘, 𝑖) is still returned, where 𝑔 is this morphism, ℎ
and 𝑘 are the identity morphisms and 𝑖 is 0.

Let 𝑓 : 𝑋* → 𝑌 * be a morphism and 𝑌 ⊆ 𝑋 . Then 𝑔 : 𝑍* → 𝑍* is an injective simplification of 𝑓 with
respect to morphisms ℎ : 𝑋* → 𝑍* and 𝑘 : 𝑍* → 𝑌 * and a positive integer 𝑖, if 𝑔 is injective, |𝑍| < |𝑋|,
𝑔𝑖 = ℎ ∘ 𝑘 and 𝑓 𝑖 = 𝑘 ∘ ℎ.

For more information see Section 4 in [KO2000].

EXAMPLES:

sage: f = WordMorphism('a->abc,b->a,c->bc')
sage: g, h, k, i = f.simplify_until_injective(); g, h, k, i
(WordMorphism: a->aa, WordMorphism: a->aa, b->a, c->a, WordMorphism: a->abc, 2)
sage: g.is_injective()
True
sage: g**i == h * k
True
sage: f**i == k * h
True

sage.combinat.words.morphism.get_cycles(f, domain)
Return the list of cycles of the function f contained in domain.

INPUT:

• f - function.

• domain - iterable, a subdomain of the domain of definition of f.

EXAMPLES:

5.1. Comprehensive Module List 3577

Combinatorics, Release 9.7

sage: from sage.combinat.words.morphism import get_cycles
sage: get_cycles(lambda i: (i+1)%3, [0,1,2])
[(0, 1, 2)]
sage: get_cycles(lambda i: [0,0,0][i], [0,1,2])
[(0,)]
sage: get_cycles(lambda i: [1,1,1][i], [0,1,2])
[(1,)]
sage: get_cycles(lambda i: [2,3,0][i], [0,1,2])
[(0, 2)]
sage: d = {'a': 'a', 'b': 'b'}
sage: get_cycles(d.__getitem__, 'ba')
[('b',), ('a',)]

5.1.358 Word paths

This module implements word paths, which is an application of Combinatorics on Words to Discrete Geometry. A word
path is the representation of a word as a discrete path in a vector space using a one-to-one correspondence between
the alphabet and a set of vectors called steps. Many problems surrounding 2d lattice polygons (such as questions of
self-intersection, area, inertia moment, etc.) can be solved in linear time (linear in the length of the perimeter) using
theory from Combinatorics on Words.

On the square grid, the encoding of a path using a four-letter alphabet (for East, North, West and South directions) is
also known as the Freeman chain code [1,2] (see [3] for further reading).

AUTHORS:

• Arnaud Bergeron (2008) : Initial version, path on the square grid

• Sebastien Labbe (2009-01-14) : New classes and hierarchy, doc and functions.

EXAMPLES:

The combinatorial class of all paths defined over three given steps:

sage: P = WordPaths('abc', steps=[(1,2), (-3,4), (0,-3)]); P
Word Paths over 3 steps

This defines a one-to-one correspondence between alphabet and steps:

sage: d = P.letters_to_steps()
sage: sorted(d.items())
[('a', (1, 2)), ('b', (-3, 4)), ('c', (0, -3))]

Creation of a path from the combinatorial class P defined above:

sage: p = P('abaccba'); p
Path: abaccba

Many functions can be used on p: the coordinates of its trajectory, ask whether p is a closed path, plot it and many
other:

sage: list(p.points())
[(0, 0), (1, 2), (-2, 6), (-1, 8), (-1, 5), (-1, 2), (-4, 6), (-3, 8)]
sage: p.is_closed()
False

(continues on next page)

3578 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: p.plot()
Graphics object consisting of 3 graphics primitives

To obtain a list of all the available word path specific functions, use help(p):

sage: help(p)
Help on FiniteWordPath_2d_str in module sage.combinat.words.paths object:
...
Methods inherited from FiniteWordPath_2d:
...
Methods inherited from FiniteWordPath_all:
...

Since p is a finite word, many functions from the word library are available:

sage: p.crochemore_factorization()
(a, b, a, c, c, ba)
sage: p.is_palindrome()
False
sage: p[:3]
Path: aba
sage: len(p)
7

P also herits many functions from Words:

sage: P = WordPaths('rs', steps=[(1,2), (-1,4)]); P
Word Paths over 2 steps
sage: P.alphabet()
{'r', 's'}
sage: list(P.iterate_by_length(3))
[Path: rrr,
Path: rrs,
Path: rsr,
Path: rss,
Path: srr,
Path: srs,
Path: ssr,
Path: sss]

When the number of given steps is half the size of alphabet, the opposite of vectors are used:

sage: P = WordPaths('abcd', [(1,0), (0,1)])
sage: sorted(P.letters_to_steps().items())
[('a', (1, 0)), ('b', (0, 1)), ('c', (-1, 0)), ('d', (0, -1))]

Some built-in combinatorial classes of paths:

sage: P = WordPaths('abAB', steps='square_grid'); P
Word Paths on the square grid

sage: D = WordPaths('()', steps='dyck'); D
Finite Dyck paths

(continues on next page)

5.1. Comprehensive Module List 3579

Combinatorics, Release 9.7

(continued from previous page)

sage: d = D('()()()(())'); d
Path: ()()()(())
sage: d.plot()
Graphics object consisting of 3 graphics primitives

sage: P = WordPaths('abcdef', steps='triangle_grid')
sage: p = P('babaddefadabcadefaadfafabacdefa')
sage: p.plot()
Graphics object consisting of 3 graphics primitives

Vector steps may be in more than 2 dimensions:

sage: d = [(1,0,0), (0,1,0), (0,0,1)]
sage: P = WordPaths(alphabet='abc', steps=d); P
Word Paths over 3 steps
sage: p = P('abcabcabcabcaabacabcababcacbabacacabcaccbcac')
sage: p.plot()
Graphics3d Object

sage: d = [(1,3,5,1), (-5,1,-6,0), (0,0,1,9), (4,2,-1,0)]
sage: P = WordPaths(alphabet='rstu', steps=d); P
Word Paths over 4 steps
sage: p = P('rtusuusususuturrsust'); p
Path: rtusuusususuturrsust
sage: p.end_point()
(5, 31, -26, 30)

sage: CubePaths = WordPaths('abcABC', steps='cube_grid'); CubePaths
Word Paths on the cube grid
sage: CubePaths('abcabaabcabAAAAA').plot()
Graphics3d Object

The input data may be a str, a list, a tuple, a callable or a finite iterator:

sage: P = WordPaths([0, 1, 2, 3])
sage: P([0,1,2,3,2,1,2,3,2])
Path: 012321232
sage: P((0,1,2,3,2,1,2,3,2))
Path: 012321232
sage: P(lambda n:n%4, length=10)
Path: 0123012301
sage: P(iter([0,3,2,1]), length='finite')
Path: 0321

REFERENCES:

• [1] Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electronic Computer 10
(1961) 260-268.

• [2] Freeman, H.: Boundary encoding and processing. In Lipkin, B., Rosenfeld, A., eds.: Picture Processing and
Psychopictorics, Academic Press, New York (1970) 241-266.

• [3] Braquelaire, J.P., Vialard, A.: Euclidean paths: A new representation of boundary of discrete regions. Graph-
ical Models and Image Processing 61 (1999) 16-43.

3580 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• [4] Wikipedia article Regular_tiling

• [5] Wikipedia article Dyck_word

class sage.combinat.words.paths.FiniteWordPath_2d
Bases: sage.combinat.words.paths.FiniteWordPath_all

animate()
Returns an animation object illustrating the path growing step by step.

EXAMPLES:

sage: P = WordPaths('abAB')
sage: p = P('aaababbb')
sage: a = p.animate(); a # optional -- ImageMagick
Animation with 9 frames
sage: show(a) # optional -- ImageMagick
sage: a.gif(delay=35, iterations=3) # optional -- ImageMagick

sage: P = WordPaths('abcdef',steps='triangle')
sage: p = P('abcdef')
sage: p.animate() # optional -- ImageMagick
Animation with 8 frames

If the path is closed, the plain polygon is added at the end of the animation:

sage: P = WordPaths('abAB')
sage: p = P('ababAbABABaB')
sage: a = p.animate(); a # optional -- ImageMagick
Animation with 14 frames

Another example illustrating a Fibonacci tile:

sage: w = words.fibonacci_tile(2)
sage: show(w.animate()) # optional -- ImageMagick

The first 4 Fibonacci tiles in an animation:

sage: a = words.fibonacci_tile(0).animate()
sage: b = words.fibonacci_tile(1).animate()
sage: c = words.fibonacci_tile(2).animate()
sage: d = words.fibonacci_tile(3).animate()
sage: (a*b*c*d).show() # optional -- ImageMagick # long time

Note: If ImageMagick is not installed, you will get an error message like this:

convert: not found

Error: ImageMagick does not appear to be installed. Saving an
animation to a GIF file or displaying an animation requires
ImageMagick, so please install it and try again.

See www.imagemagick.org, for example.

5.1. Comprehensive Module List 3581

https://en.wikipedia.org/wiki/Regular_tiling
https://en.wikipedia.org/wiki/Dyck_word

Combinatorics, Release 9.7

area()
Returns the area of a closed path.

INPUT:

• self - a closed path

EXAMPLES:

sage: P = WordPaths('abcd',steps=[(1,1),(-1,1),(-1,-1),(1,-1)])
sage: p = P('abcd')
sage: p.area() #todo: not implemented
2

height()
Returns the height of self.

The height of a 2𝑑-path is merely the difference between the highest and the lowest 𝑦-coordinate of each
points traced by it.

OUTPUT:

non negative real number

EXAMPLES:

sage: Freeman = WordPaths('abAB')
sage: Freeman('aababaabbbAA').height()
5

The function is well-defined if self is not simple or close:

sage: Freeman('aabAAB').height()
1
sage: Freeman('abbABa').height()
2

This works for any 2𝑑-paths:

sage: Paths = WordPaths('ab', steps=[(1,0),(1,1)])
sage: p = Paths('abbaa')
sage: p.height()
2
sage: DyckPaths = WordPaths('ab', steps='dyck')
sage: p = DyckPaths('abaabb')
sage: p.height()
2
sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC')
sage: w.height()
2.59807621135332

height_vector()
Return the height at each point.

EXAMPLES:

sage: Paths = WordPaths('ab', steps=[(1,0),(0,1)])
sage: p = Paths('abbba')

(continues on next page)

3582 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: p.height_vector()
[0, 0, 1, 2, 3, 3]

plot(pathoptions={'rgbcolor': 'red', 'thickness': 3}, fill=True, filloptions={'rgbcolor': 'red', 'alpha': 0.2},
startpoint=True, startoptions={'rgbcolor': 'red', 'pointsize': 100}, endarrow=True,
arrowoptions={'rgbcolor': 'red', 'arrowsize': 20, 'width': 3}, gridlines=False, gridoptions={})

Returns a 2d Graphics illustrating the path.

INPUT:

• pathoptions - (dict, default:dict(rgbcolor=’red’,thickness=3)), options for the path drawing

• fill - (boolean, default: True), if fill is True and if the path is closed, the inside is colored

• filloptions - (dict, default:dict(rgbcolor=’red’,alpha=0.2)), options for the inside filling

• startpoint - (boolean, default: True), draw the start point?

• startoptions - (dict, default:dict(rgbcolor=’red’,pointsize=100)) options for the start point drawing

• endarrow - (boolean, default: True), draw an arrow end at the end?

• arrowoptions - (dict, default:dict(rgbcolor=’red’,arrowsize=20, width=3)) options for the end point
arrow

• gridlines- (boolean, default: False), show gridlines?

• gridoptions - (dict, default: {}), options for the gridlines

EXAMPLES:

A non closed path on the square grid:

sage: P = WordPaths('abAB')
sage: P('abababAABAB').plot()
Graphics object consisting of 3 graphics primitives

A closed path on the square grid:

sage: P('abababAABABB').plot()
Graphics object consisting of 4 graphics primitives

A Dyck path:

sage: P = WordPaths('()', steps='dyck')
sage: P('()()()((()))').plot()
Graphics object consisting of 3 graphics primitives

A path in the triangle grid:

sage: P = WordPaths('abcdef', steps='triangle_grid')
sage: P('abcdedededefab').plot()
Graphics object consisting of 3 graphics primitives

A polygon of length 220 that tiles the plane in two ways:

5.1. Comprehensive Module List 3583

Combinatorics, Release 9.7

sage: P = WordPaths('abAB')
sage: P(
→˓'aBababAbabaBaBABaBabaBaBABAbABABaBabaBaBABaBababAbabaBaBABaBabaBaBABAbABABaBABAbAbabAbABABaBABAbABABaBabaBaBABAbABABaBABAbAbabAbABAbAbabaBababAbABAbAbabAbABABaBABAbAbabAbABAbAbabaBababAbabaBaBABaBababAbabaBababAbABAbAbab
→˓').plot()
Graphics object consisting of 4 graphics primitives

With gridlines:

sage: P('ababababab').plot(gridlines=True)

plot_directive_vector(options={'rgbcolor': 'blue'})
Returns an arrow 2d graphics that goes from the start of the path to the end.

INPUT:

• options - dictionary, default: {‘rgbcolor’: ‘blue’} graphic options for the arrow

If the start is the same as the end, a single point is returned.

EXAMPLES:

sage: P = WordPaths('abcd'); P
Word Paths on the square grid
sage: p = P('aaaccaccacacacaccccccbbdd'); p
Path: aaaccaccacacacaccccccbbdd
sage: R = p.plot() + p.plot_directive_vector()
sage: R.axes(False)
sage: R.set_aspect_ratio(1)
sage: R.plot()
Graphics object consisting of 4 graphics primitives

width()
Returns the width of self.

The height of a 2𝑑-path is merely the difference between the rightmost and the leftmost 𝑥-coordinate of
each points traced by it.

OUTPUT:

non negative real number

EXAMPLES:

sage: Freeman = WordPaths('abAB')
sage: Freeman('aababaabbbAA').width()
5

The function is well-defined if self is not simple or close:

sage: Freeman('aabAAB').width()
2
sage: Freeman('abbABa').width()
1

This works for any 2𝑑-paths:

3584 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: Paths = WordPaths('ab', steps=[(1,0),(1,1)])
sage: p = Paths('abbaa')
sage: p.width()
5
sage: DyckPaths = WordPaths('ab', steps='dyck')
sage: p = DyckPaths('abaabb')
sage: p.width()
6
sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC')
sage: w.width()
4.50000000000000

width_vector()
Return the width at each point.

EXAMPLES:

sage: Paths = WordPaths('ab', steps=[(1,0),(0,1)])
sage: p = Paths('abbba')
sage: p.width_vector()
[0, 1, 1, 1, 1, 2]

xmax()
Returns the maximum of the x-coordinates of the path.

EXAMPLES:

sage: P = WordPaths('0123')
sage: p = P('0101013332')
sage: p.xmax()
3

This works for any 2𝑑-paths:

sage: Paths = WordPaths('ab', steps=[(1,-1),(-1,1)])
sage: p = Paths('ababa')
sage: p.xmax()
1
sage: DyckPaths = WordPaths('ab', steps='dyck')
sage: p = DyckPaths('abaabb')
sage: p.xmax()
6
sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC')
sage: w.xmax()
4.50000000000000

xmin()
Returns the minimum of the x-coordinates of the path.

EXAMPLES:

sage: P = WordPaths('0123')
sage: p = P('0101013332')
sage: p.xmin()
0

5.1. Comprehensive Module List 3585

Combinatorics, Release 9.7

This works for any 2𝑑-paths:

sage: Paths = WordPaths('ab', steps=[(1,0),(-1,1)])
sage: p = Paths('abbba')
sage: p.xmin()
-2
sage: DyckPaths = WordPaths('ab', steps='dyck')
sage: p = DyckPaths('abaabb')
sage: p.xmin()
0
sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC')
sage: w.xmin()
0.000000000000000

ymax()
Returns the maximum of the y-coordinates of the path.

EXAMPLES:

sage: P = WordPaths('0123')
sage: p = P('0101013332')
sage: p.ymax()
3

This works for any 2𝑑-paths:

sage: Paths = WordPaths('ab', steps=[(1,-1),(-1,1)])
sage: p = Paths('ababa')
sage: p.ymax()
0
sage: DyckPaths = WordPaths('ab', steps='dyck')
sage: p = DyckPaths('abaabb')
sage: p.ymax()
2
sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC')
sage: w.ymax()
2.59807621135332

ymin()
Returns the minimum of the y-coordinates of the path.

EXAMPLES:

sage: P = WordPaths('0123')
sage: p = P('0101013332')
sage: p.ymin()
0

This works for any 2𝑑-paths:

sage: Paths = WordPaths('ab', steps=[(1,-1),(-1,1)])
sage: p = Paths('ababa')
sage: p.ymin()
-1
sage: DyckPaths = WordPaths('ab', steps='dyck')

(continues on next page)

3586 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: p = DyckPaths('abaabb')
sage: p.ymin()
0
sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC')
sage: w.ymin()
0.000000000000000

class sage.combinat.words.paths.FiniteWordPath_2d_callable(parent, callable, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable,
sage.combinat.words.paths.FiniteWordPath_2d , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_2d_callable_with_caching(parent, callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.paths.FiniteWordPath_2d , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_2d_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.combinat.
words.paths.FiniteWordPath_2d , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_2d_iter_with_caching(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.paths.FiniteWordPath_2d , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_2d_list
Bases: sage.combinat.words.word_datatypes.WordDatatype_list, sage.combinat.words.paths.
FiniteWordPath_2d , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_2d_str
Bases: sage.combinat.words.word_datatypes.WordDatatype_str, sage.combinat.words.paths.
FiniteWordPath_2d , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_2d_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype_tuple, sage.combinat.words.
paths.FiniteWordPath_2d , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_3d
Bases: sage.combinat.words.paths.FiniteWordPath_all

plot(pathoptions={'rgbcolor': 'red', 'arrow_head': True, 'thickness': 3}, startpoint=True,
startoptions={'rgbcolor': 'red', 'size': 10})

INPUT:

• pathoptions - (dict, default:dict(rgbcolor=’red’,arrow_head=True, thickness=3)), options for the
path drawing

• startpoint - (boolean, default: True), draw the start point?

• startoptions - (dict, default:dict(rgbcolor=’red’,size=10)) options for the start point drawing

EXAMPLES:

sage: d = (vector((1,3,2)), vector((2,-4,5)))
sage: P = WordPaths(alphabet='ab', steps=d); P
Word Paths over 2 steps

(continues on next page)

5.1. Comprehensive Module List 3587

Combinatorics, Release 9.7

(continued from previous page)

sage: p = P('ababab'); p
Path: ababab
sage: p.plot()
Graphics3d Object

sage: P = WordPaths('abcABC', steps='cube_grid')
sage: p = P('abcabcAABBC')
sage: p.plot()
Graphics3d Object

class sage.combinat.words.paths.FiniteWordPath_3d_callable(parent, callable, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable,
sage.combinat.words.paths.FiniteWordPath_3d , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_3d_callable_with_caching(parent, callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.paths.FiniteWordPath_3d , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_3d_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.combinat.
words.paths.FiniteWordPath_3d , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_3d_iter_with_caching(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.paths.FiniteWordPath_3d , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_3d_list
Bases: sage.combinat.words.word_datatypes.WordDatatype_list, sage.combinat.words.paths.
FiniteWordPath_3d , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_3d_str
Bases: sage.combinat.words.word_datatypes.WordDatatype_str, sage.combinat.words.paths.
FiniteWordPath_3d , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_3d_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype_tuple, sage.combinat.words.
paths.FiniteWordPath_3d , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_all
Bases: sage.structure.sage_object.SageObject

directive_vector()
Returns the directive vector of self.

The directive vector is the vector starting at the start point and ending at the end point of the path self.

EXAMPLES:

sage: WordPaths('abcdef')('abababab').directive_vector()
(6, 2*sqrt3)
sage: WordPaths('abAB')('abababab').directive_vector()
(4, 4)
sage: P = WordPaths('abcABC', steps='cube_grid')

(continues on next page)

3588 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

(continued from previous page)

sage: P('ababababCC').directive_vector()
(4, 4, -2)
sage: WordPaths('abcdef')('abcdef').directive_vector()
(0, 0)
sage: P = WordPaths('abc', steps=[(1,3,7,9),(-4,1,0,0),(0,32,1,8)])
sage: P('abcabababacaacccbbcac').directive_vector()
(-16, 254, 63, 128)

end_point()
Returns the end point of the path.

EXAMPLES:

sage: WordPaths('abcdef')('abababab').end_point()
(6, 2*sqrt3)
sage: WordPaths('abAB')('abababab').end_point()
(4, 4)
sage: P = WordPaths('abcABC', steps='cube_grid')
sage: P('ababababCC').end_point()
(4, 4, -2)
sage: WordPaths('abcdef')('abcdef').end_point()
(0, 0)
sage: P = WordPaths('abc', steps=[(1,3,7,9),(-4,1,0,0),(0,32,1,8)])
sage: P('abcabababacaacccbbcac').end_point()
(-16, 254, 63, 128)

is_closed()
Returns True if the path is closed, i.e. if the origin and the end of the path are equal.

EXAMPLES:

sage: P = WordPaths('abcd', steps=[(1,0),(0,1),(-1,0),(0,-1)])
sage: P('abcd').is_closed()
True
sage: P('abc').is_closed()
False
sage: P().is_closed()
True
sage: P('aacacc').is_closed()
True

is_simple()
Returns True if the path is simple, i.e. if all its points are distincts.

If the path is closed, the last point is not considered.

EXAMPLES:

sage: P = WordPaths('abcdef',steps='triangle_grid');P
Word Paths on the triangle grid
sage: P('abc').is_simple()
True
sage: P('abcde').is_simple()
True
sage: P('abcdef').is_simple()

(continues on next page)

5.1. Comprehensive Module List 3589

Combinatorics, Release 9.7

(continued from previous page)

True
sage: P('ad').is_simple()
True
sage: P('aabdee').is_simple()
False

is_tangent()
The is_tangent() method, which is implemented for words, has an extended meaning for word paths, which
is not implemented yet.

AUTHOR:

• Thierry Monteil

plot_projection(v=None, letters=None, color=None, ring=None, size=12, kind='right')
Return an image of the projection of the successive points of the path into the space orthogonal to the given
vector.

INPUT:

• self - a word path in a 3 or 4 dimension vector space

• v - vector (optional, default: None) If None, the directive vector (i.e. the end point minus starting
point) of the path is considered.

• letters - iterable (optional, default: None) of the letters to be projected. If None, then all the letters
are considered.

• color - dictionary (optional, default: None) of the letters mapped to colors. If None, automatic colors
are chosen.

• ring - ring (optional, default: None) where to do the computations. If None, RealField(53) is used.

• size - number (optional, default: 12) size of the points.

• kind - string (optional, default 'right') either 'right' or 'left'. The color of a letter is given to
the projected prefix to the right or the left of the letter.

OUTPUT:

2d or 3d Graphic object.

EXAMPLES:

The Rauzy fractal:

sage: s = WordMorphism('1->12,2->13,3->1')
sage: D = s.fixed_point('1')
sage: v = s.pisot_eigenvector_right()
sage: P = WordPaths('123',[(1,0,0),(0,1,0),(0,0,1)])
sage: w = P(D[:200])
sage: w.plot_projection(v) # long time (2s)
Graphics object consisting of 200 graphics primitives

In this case, the abelianized vector doesn’t give a good projection:

sage: w.plot_projection() # long time (2s)
Graphics object consisting of 200 graphics primitives

You can project only the letters you want:

3590 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: w.plot_projection(v, letters='12') # long time (2s)
Graphics object consisting of 168 graphics primitives

You can increase or decrease the precision of the computations by changing the ring of the projection
matrix:

sage: w.plot_projection(v, ring=RealField(20)) # long time (2s)
Graphics object consisting of 200 graphics primitives

You can change the size of the points:

sage: w.plot_projection(v, size=30) # long time (2s)
Graphics object consisting of 200 graphics primitives

You can assign the color of a letter to the projected prefix to the right or the left of the letter:

sage: w.plot_projection(v, kind='left') # long time (2s)
Graphics object consisting of 200 graphics primitives

To remove the axis, do like this:

sage: r = w.plot_projection(v)
sage: r.axes(False)
sage: r # long time (2s)
Graphics object consisting of 200 graphics primitives

You can assign different colors to each letter:

sage: color = {'1':'purple', '2':(.2,.3,.4), '3': 'magenta'}
sage: w.plot_projection(v, color=color) # long time (2s)
Graphics object consisting of 200 graphics primitives

The 3d-Rauzy fractal:

sage: s = WordMorphism('1->12,2->13,3->14,4->1')
sage: D = s.fixed_point('1')
sage: v = s.pisot_eigenvector_right()
sage: P = WordPaths('1234',[(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)])
sage: w = P(D[:200])
sage: w.plot_projection(v)
Graphics3d Object

The dimension of vector space of the parent must be 3 or 4:

sage: P = WordPaths('ab', [(1, 0), (0, 1)])
sage: p = P('aabbabbab')
sage: p.plot_projection()
Traceback (most recent call last):
...
TypeError: The dimension of the vector space (=2) must be 3 or 4

points(include_last=True)
Returns an iterator yielding a list of points used to draw the path represented by this word.

INPUT:

5.1. Comprehensive Module List 3591

Combinatorics, Release 9.7

• include_last - bool (default: True) whether to include the last point

EXAMPLES:

A simple closed square:

sage: P = WordPaths('abAB')
sage: list(P('abAB').points())
[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]

A simple closed square without the last point:

sage: list(P('abAB').points(include_last=False))
[(0, 0), (1, 0), (1, 1), (0, 1)]

sage: list(P('abaB').points())
[(0, 0), (1, 0), (1, 1), (2, 1), (2, 0)]

projected_path(v=None, ring=None)
Return the path projected into the space orthogonal to the given vector.

INPUT:

• v - vector (optional, default: None) If None, the directive vector (i.e. the end point minus starting
point) of the path is considered.

• ring - ring (optional, default: None) where to do the computations. If None, RealField(53) is used.

OUTPUT:

word path

EXAMPLES:

The projected path of the tribonacci word:

sage: s = WordMorphism('1->12,2->13,3->1')
sage: D = s.fixed_point('1')
sage: v = s.pisot_eigenvector_right()
sage: P = WordPaths('123',[(1,0,0),(0,1,0),(0,0,1)])
sage: w = P(D[:1000])
sage: p = w.projected_path(v)
sage: p
Path: 1213121121312121312112131213121121312121...
sage: p[:20].plot()
Graphics object consisting of 3 graphics primitives

The ring argument allows to change the precision of the projected steps:

sage: p = w.projected_path(v, RealField(10))
sage: p
Path: 1213121121312121312112131213121121312121...
sage: p.parent().letters_to_steps()
{'1': (-0.53, 0.00), '2': (0.75, -0.48), '3': (0.41, 0.88)}

projected_point_iterator(v=None, ring=None)
Return an iterator of the projection of the orbit points of the path into the space orthogonal to the given
vector.

INPUT:

3592 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• v - vector (optional, default: None) If None, the directive vector (i.e. the end point minus starting
point) of the path is considered.

• ring - ring (optional, default: None) where to do the computations. If None, RealField(53) is used.

OUTPUT:

iterator of points

EXAMPLES:

Projected points of the Rauzy fractal:

sage: s = WordMorphism('1->12,2->13,3->1')
sage: D = s.fixed_point('1')
sage: v = s.pisot_eigenvector_right()
sage: P = WordPaths('123',[(1,0,0),(0,1,0),(0,0,1)])
sage: w = P(D[:200])
sage: it = w.projected_point_iterator(v)
sage: for i in range(6): next(it)
(0.000000000000000, 0.000000000000000)
(-0.526233343362516, 0.000000000000000)
(0.220830337618112, -0.477656250512816)
(-0.305403005744404, -0.477656250512816)
(0.100767309386062, 0.400890564600664)
(-0.425466033976454, 0.400890564600664)

Projected points of a 2d path:

sage: P = WordPaths('ab','ne')
sage: p = P('aabbabbab')
sage: it = p.projected_point_iterator(ring=RealField(20))
sage: for i in range(8): next(it)
(0.00000)
(0.78087)
(1.5617)
(0.93704)
(0.31235)
(1.0932)
(0.46852)
(-0.15617)

start_point()
Return the starting point of self.

OUTPUT:

vector

EXAMPLES:

sage: WordPaths('abcdef')('abcdef').start_point()
(0, 0)
sage: WordPaths('abcdef', steps='cube_grid')('abcdef').start_point()
(0, 0, 0)
sage: P = WordPaths('ab', steps=[(1,0,0,0),(0,1,0,0)])
sage: P('abbba').start_point()
(0, 0, 0, 0)

5.1. Comprehensive Module List 3593

Combinatorics, Release 9.7

tikz_trajectory()
Returns the trajectory of self as a tikz str.

EXAMPLES:

sage: P = WordPaths('abcdef')
sage: p = P('abcde')
sage: p.tikz_trajectory()
'(0.000, 0.000) -- (1.00, 0.000) -- (1.50, 0.866) -- (1.00, 1.73) -- (0.000, 1.
→˓73) -- (-0.500, 0.866)'

class sage.combinat.words.paths.FiniteWordPath_all_callable(parent, callable, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable, sage.
combinat.words.paths.FiniteWordPath_all, sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_all_callable_with_caching(parent, callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.paths.FiniteWordPath_all, sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_all_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.combinat.
words.paths.FiniteWordPath_all, sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_all_iter_with_caching(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.paths.FiniteWordPath_all, sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_all_list
Bases: sage.combinat.words.word_datatypes.WordDatatype_list, sage.combinat.words.paths.
FiniteWordPath_all, sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_all_str
Bases: sage.combinat.words.word_datatypes.WordDatatype_str, sage.combinat.words.paths.
FiniteWordPath_all, sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_all_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype_tuple, sage.combinat.words.
paths.FiniteWordPath_all, sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_cube_grid
Bases: sage.combinat.words.paths.FiniteWordPath_3d

class sage.combinat.words.paths.FiniteWordPath_cube_grid_callable(parent, callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable, sage.
combinat.words.paths.FiniteWordPath_cube_grid , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_cube_grid_callable_with_caching(parent,
callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.paths.FiniteWordPath_cube_grid , sage.combinat.words.finite_word.
FiniteWord_class

3594 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.words.paths.FiniteWordPath_cube_grid_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.
combinat.words.paths.FiniteWordPath_cube_grid , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_cube_grid_iter_with_caching(parent, iter,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.paths.FiniteWordPath_cube_grid , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_cube_grid_list
Bases: sage.combinat.words.word_datatypes.WordDatatype_list, sage.combinat.words.paths.
FiniteWordPath_cube_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_cube_grid_str
Bases: sage.combinat.words.word_datatypes.WordDatatype_str, sage.combinat.words.paths.
FiniteWordPath_cube_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_cube_grid_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype_tuple, sage.combinat.words.
paths.FiniteWordPath_cube_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_dyck
Bases: sage.combinat.words.paths.FiniteWordPath_2d

class sage.combinat.words.paths.FiniteWordPath_dyck_callable(parent, callable, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable, sage.
combinat.words.paths.FiniteWordPath_dyck , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_dyck_callable_with_caching(parent, callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.paths.FiniteWordPath_dyck , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_dyck_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.combinat.
words.paths.FiniteWordPath_dyck , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_dyck_iter_with_caching(parent, iter,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.paths.FiniteWordPath_dyck , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_dyck_list
Bases: sage.combinat.words.word_datatypes.WordDatatype_list, sage.combinat.words.paths.
FiniteWordPath_dyck , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_dyck_str
Bases: sage.combinat.words.word_datatypes.WordDatatype_str, sage.combinat.words.paths.
FiniteWordPath_dyck , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_dyck_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype_tuple, sage.combinat.words.
paths.FiniteWordPath_dyck , sage.combinat.words.finite_word.FiniteWord_class

5.1. Comprehensive Module List 3595

Combinatorics, Release 9.7

class sage.combinat.words.paths.FiniteWordPath_hexagonal_grid(parent, *args, **kwds)
Bases: sage.combinat.words.paths.FiniteWordPath_triangle_grid

INPUT:

• parent - a parent object inheriting from Words_all that has the alphabet attribute defined

• *args, **kwds - arguments accepted by AbstractWord

EXAMPLES:

sage: F = WordPaths('abcdef', steps='hexagon'); F
Word Paths on the hexagonal grid
sage: f = F('aaabbbccddef'); f
Path: aaabbbccddef

sage: f == loads(dumps(f))
True

class sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_callable(parent, callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable, sage.
combinat.words.paths.FiniteWordPath_hexagonal_grid , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_callable_with_caching(parent,
callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.paths.FiniteWordPath_hexagonal_grid , sage.combinat.words.
finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.combinat.
words.paths.FiniteWordPath_hexagonal_grid , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_iter_with_caching(parent, iter,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.paths.FiniteWordPath_hexagonal_grid , sage.combinat.words.
finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_list
Bases: sage.combinat.words.word_datatypes.WordDatatype_list, sage.combinat.words.paths.
FiniteWordPath_hexagonal_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_str
Bases: sage.combinat.words.word_datatypes.WordDatatype_str, sage.combinat.words.paths.
FiniteWordPath_hexagonal_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_hexagonal_grid_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype_tuple, sage.combinat.words.
paths.FiniteWordPath_hexagonal_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_north_east
Bases: sage.combinat.words.paths.FiniteWordPath_2d

3596 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

class sage.combinat.words.paths.FiniteWordPath_north_east_callable(parent, callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable, sage.
combinat.words.paths.FiniteWordPath_north_east, sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_north_east_callable_with_caching(parent,
callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.paths.FiniteWordPath_north_east, sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_north_east_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.
combinat.words.paths.FiniteWordPath_north_east, sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_north_east_iter_with_caching(parent, iter,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.paths.FiniteWordPath_north_east, sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_north_east_list
Bases: sage.combinat.words.word_datatypes.WordDatatype_list, sage.combinat.words.paths.
FiniteWordPath_north_east, sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_north_east_str
Bases: sage.combinat.words.word_datatypes.WordDatatype_str, sage.combinat.words.paths.
FiniteWordPath_north_east, sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_north_east_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype_tuple, sage.combinat.words.
paths.FiniteWordPath_north_east, sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_square_grid
Bases: sage.combinat.words.paths.FiniteWordPath_2d

area()
Returns the area of a closed path.

INPUT:

• self - a closed path

EXAMPLES:

sage: P = WordPaths('abAB', steps='square_grid')
sage: P('abAB').area()
1
sage: P('aabbAABB').area()
4
sage: P('aabbABAB').area()
3

The area of the Fibonacci tiles:

5.1. Comprehensive Module List 3597

Combinatorics, Release 9.7

sage: [words.fibonacci_tile(i).area() for i in range(6)]
[1, 5, 29, 169, 985, 5741]
sage: [words.dual_fibonacci_tile(i).area() for i in range(6)]
[1, 5, 29, 169, 985, 5741]
sage: oeis(_)[0] # optional -- internet
A001653: Numbers k such that 2*k^2 - 1 is a square.
sage: _.first_terms() # optional -- internet
(1,
5,
29,
169,
985,
5741,
33461,
195025,
1136689,
6625109,
38613965,
225058681,
1311738121,
7645370045,
44560482149,
259717522849,
1513744654945,
8822750406821,
51422757785981,
299713796309065,
1746860020068409,
10181446324101389,
59341817924539925)

is_closed()
Returns True if self represents a closed path and False otherwise.

EXAMPLES:

sage: P = WordPaths('abAB', steps='square_grid')
sage: P('aA').is_closed()
True
sage: P('abAB').is_closed()
True
sage: P('ababAABB').is_closed()
True
sage: P('aaabbbAABB').is_closed()
False
sage: P('ab').is_closed()
False

is_simple()
Returns True if the path is simple, i.e. if all its points are distincts.

If the path is closed, the last point is not considered.

3598 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Note: The linear algorithm described in the thesis of Xavier Provençal should be implemented here.

EXAMPLES:

sage: P = WordPaths('abAB', steps='square_grid')
sage: P('abab').is_simple()
True
sage: P('abAB').is_simple()
True
sage: P('abA').is_simple()
True
sage: P('aabABB').is_simple()
False
sage: P().is_simple()
True
sage: P('A').is_simple()
True
sage: P('aA').is_simple()
True
sage: P('aaA').is_simple()
False

REFERENCES:

• Provençal, X., Combinatoires des mots, géometrie discrète et pavages, Thèse de doctorat en Mathé-
matiques, Montréal, UQAM, septembre 2008, 115 pages.

tikz_trajectory()
Returns the trajectory of self as a tikz str.

EXAMPLES:

sage: f = words.fibonacci_tile(1)
sage: f.tikz_trajectory()
'(0, 0) -- (0, -1) -- (-1, -1) -- (-1, -2) -- (0, -2) -- (0, -3) -- (1, -3) --␣
→˓(1, -2) -- (2, -2) -- (2, -1) -- (1, -1) -- (1, 0) -- (0, 0)'

class sage.combinat.words.paths.FiniteWordPath_square_grid_callable(parent, callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable, sage.
combinat.words.paths.FiniteWordPath_square_grid , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_square_grid_callable_with_caching(parent,
callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.paths.FiniteWordPath_square_grid , sage.combinat.words.
finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_square_grid_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.
combinat.words.paths.FiniteWordPath_square_grid , sage.combinat.words.finite_word.
FiniteWord_class

5.1. Comprehensive Module List 3599

Combinatorics, Release 9.7

class sage.combinat.words.paths.FiniteWordPath_square_grid_iter_with_caching(parent, iter,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.paths.FiniteWordPath_square_grid , sage.combinat.words.
finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_square_grid_list
Bases: sage.combinat.words.word_datatypes.WordDatatype_list, sage.combinat.words.paths.
FiniteWordPath_square_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_square_grid_str
Bases: sage.combinat.words.word_datatypes.WordDatatype_str, sage.combinat.words.paths.
FiniteWordPath_square_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_square_grid_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype_tuple, sage.combinat.words.
paths.FiniteWordPath_square_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_triangle_grid
Bases: sage.combinat.words.paths.FiniteWordPath_2d

xmax()
Returns the maximum of the x-coordinates of the path.

EXAMPLES:

sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC')
sage: w.xmax()
4.50000000000000
sage: w = WordPaths('abcABC', steps='triangle')('ABAcacacababababcbcbAC')
sage: w.xmax()
4.00000000000000

xmin()
Returns the minimum of the x-coordinates of the path.

EXAMPLES:

sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC')
sage: w.xmin()
0.000000000000000
sage: w = WordPaths('abcABC', steps='triangle')('ABAcacacababababcbcbAC')
sage: w.xmin()
-3.00000000000000

ymax()
Returns the maximum of the y-coordinates of the path.

EXAMPLES:

sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC')
sage: w.ymax()
2.59807621135332
sage: w = WordPaths('abcABC', steps='triangle')('ABAcacacababababcbcbAC')
sage: w.ymax()
8.66025403784439

ymin()
Returns the minimum of the y-coordinates of the path.

3600 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: w = WordPaths('abcABC', steps='triangle')('ababcaaBC')
sage: w.ymin()
0.000000000000000
sage: w = WordPaths('abcABC', steps='triangle')('ABAcacacababababcbcbAC')
sage: w.ymin()
-0.866025403784439

class sage.combinat.words.paths.FiniteWordPath_triangle_grid_callable(parent, callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable, sage.
combinat.words.paths.FiniteWordPath_triangle_grid , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_triangle_grid_callable_with_caching(parent,
callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.paths.FiniteWordPath_triangle_grid , sage.combinat.words.
finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_triangle_grid_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.
combinat.words.paths.FiniteWordPath_triangle_grid , sage.combinat.words.finite_word.
FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_triangle_grid_iter_with_caching(parent, iter,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.paths.FiniteWordPath_triangle_grid , sage.combinat.words.
finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_triangle_grid_list
Bases: sage.combinat.words.word_datatypes.WordDatatype_list, sage.combinat.words.paths.
FiniteWordPath_triangle_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_triangle_grid_str
Bases: sage.combinat.words.word_datatypes.WordDatatype_str, sage.combinat.words.paths.
FiniteWordPath_triangle_grid , sage.combinat.words.finite_word.FiniteWord_class

class sage.combinat.words.paths.FiniteWordPath_triangle_grid_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype_tuple, sage.combinat.words.
paths.FiniteWordPath_triangle_grid , sage.combinat.words.finite_word.FiniteWord_class

sage.combinat.words.paths.WordPaths(alphabet, steps=None)
Returns the combinatorial class of paths of the given type of steps.

INPUT:

• alphabet - ordered alphabet

• steps - (default is None). It can be one of the following:

– an iterable ordered container of as many vectors as there are letters in the alphabet. The vectors are
associated to the letters according to their order in steps. The vectors can be a tuple or anything that
can be passed to vector function.

– an iterable ordered container of k vectors where k is half the size of alphabet. The vectors and their
opposites are associated to the letters according to their order in steps (given vectors first, opposite

5.1. Comprehensive Module List 3601

Combinatorics, Release 9.7

vectors after).

– None: In this case, the type of steps are guessed from the length of alphabet.

– ‘square_grid’ or ‘square’: (default when size of alphabet is 4) The order is : East, North, West, South.

– ‘triangle_grid’ or ‘triangle’:

– ‘hexagonal_grid’ or ‘hexagon’: (default when size of alphabet is 6)

– ‘cube_grid’ or ‘cube’:

– ‘north_east’, ‘ne’ or ‘NE’: (the default when size of alphabet is 2)

– ‘dyck’:

OUTPUT:

• The combinatorial class of all paths of the given type.

EXAMPLES:

The steps can be given explicitly:

sage: WordPaths('abc', steps=[(1,2), (-1,4), (0,-3)])
Word Paths over 3 steps

Different type of input alphabet:

sage: WordPaths(range(3), steps=[(1,2), (-1,4), (0,-3)])
Word Paths over 3 steps
sage: WordPaths(['cric','crac','croc'], steps=[(1,2), (1,4), (0,3)])
Word Paths over 3 steps

Directions can be in three dimensions as well:

sage: WordPaths('ab', steps=[(1,2,2),(-1,4,2)])
Word Paths over 2 steps

When the number of given steps is half the size of alphabet, the opposite of vectors are used:

sage: P = WordPaths('abcd', [(1,0), (0,1)])
sage: P
Word Paths over 4 steps
sage: sorted(P.letters_to_steps().items())
[('a', (1, 0)), ('b', (0, 1)), ('c', (-1, 0)), ('d', (0, -1))]

When no steps are given, default classes are returned:

sage: WordPaths('ab')
Word Paths in North and East steps
sage: WordPaths(range(4))
Word Paths on the square grid
sage: WordPaths(range(6))
Word Paths on the hexagonal grid

There are many type of built-in steps. . .

On a two letters alphabet:

3602 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: WordPaths('ab', steps='north_east')
Word Paths in North and East steps
sage: WordPaths('()', steps='dyck')
Finite Dyck paths

On a four letters alphabet:

sage: WordPaths('ruld', steps='square_grid')
Word Paths on the square grid

On a six letters alphabet:

sage: WordPaths('abcdef', steps='hexagonal_grid')
Word Paths on the hexagonal grid
sage: WordPaths('abcdef', steps='triangle_grid')
Word Paths on the triangle grid
sage: WordPaths('abcdef', steps='cube_grid')
Word Paths on the cube grid

class sage.combinat.words.paths.WordPaths_all(alphabet, steps)
Bases: sage.combinat.words.words.FiniteWords

The combinatorial class of all paths, i.e of all words over an alphabet where each letter is mapped to a step (a
vector).

letters_to_steps()
Returns the dictionary mapping letters to vectors (steps).

EXAMPLES:

sage: d = WordPaths('ab').letters_to_steps()
sage: sorted(d.items())
[('a', (0, 1)), ('b', (1, 0))]
sage: d = WordPaths('abcd').letters_to_steps()
sage: sorted(d.items())
[('a', (1, 0)), ('b', (0, 1)), ('c', (-1, 0)), ('d', (0, -1))]
sage: d = WordPaths('abcdef').letters_to_steps()
sage: sorted(d.items())
[('a', (1, 0)),
('b', (1/2, 1/2*sqrt3)),
('c', (-1/2, 1/2*sqrt3)),
('d', (-1, 0)),
('e', (-1/2, -1/2*sqrt3)),
('f', (1/2, -1/2*sqrt3))]

vector_space()
Return the vector space over which the steps of the paths are defined.

EXAMPLES:

sage: WordPaths('ab',steps='dyck').vector_space()
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: WordPaths('ab',steps='north_east').vector_space()
Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: WordPaths('abcd',steps='square_grid').vector_space()

(continues on next page)

5.1. Comprehensive Module List 3603

Combinatorics, Release 9.7

(continued from previous page)

Ambient free module of rank 2 over the principal ideal domain Integer Ring
sage: WordPaths('abcdef',steps='hexagonal_grid').vector_space()
Vector space of dimension 2 over Number Field in sqrt3 with defining polynomial␣
→˓x^2 - 3 with sqrt3 = 1.732050807568878?
sage: WordPaths('abcdef',steps='cube_grid').vector_space()
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: WordPaths('abcdef',steps='triangle_grid').vector_space()
Vector space of dimension 2 over Number Field in sqrt3 with defining polynomial␣
→˓x^2 - 3 with sqrt3 = 1.732050807568878?

class sage.combinat.words.paths.WordPaths_cube_grid(alphabet)
Bases: sage.combinat.words.paths.WordPaths_all

The combinatorial class of all paths on the cube grid.

class sage.combinat.words.paths.WordPaths_dyck(alphabet)
Bases: sage.combinat.words.paths.WordPaths_all

The combinatorial class of all Dyck paths.

class sage.combinat.words.paths.WordPaths_hexagonal_grid(alphabet)
Bases: sage.combinat.words.paths.WordPaths_triangle_grid

The combinatorial class of all paths on the hexagonal grid.

class sage.combinat.words.paths.WordPaths_north_east(alphabet)
Bases: sage.combinat.words.paths.WordPaths_all

The combinatorial class of all paths using North and East directions.

class sage.combinat.words.paths.WordPaths_square_grid(alphabet)
Bases: sage.combinat.words.paths.WordPaths_all

The combinatorial class of all paths on the square grid.

class sage.combinat.words.paths.WordPaths_triangle_grid(alphabet)
Bases: sage.combinat.words.paths.WordPaths_all

The combinatorial class of all paths on the triangle grid.

5.1.359 Shuffle product of words

See also:

The module sage.combinat.shuffle contains a more general implementation of shuffle product.

class sage.combinat.words.shuffle_product.ShuffleProduct_shifted(w1, w2, check=True)
Bases: sage.combinat.words.shuffle_product.ShuffleProduct_w1w2

Shifted shuffle product of w1 with w2.

This is the shuffle product of w1 with the word obtained by adding the length of w1 to every letter of w2.

Note that this class is meant to be used for words; it misbehaves when w1 is a permutation or composition.

INPUT:

• check – boolean (default True) whether to check that all words in the shuffle product belong to the correct
parent

EXAMPLES:

3604 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.words.shuffle_product import ShuffleProduct_shifted
sage: w, u = Word([1,2]), Word([3,4])
sage: S = ShuffleProduct_shifted(w,u)
sage: S == loads(dumps(S))
True

class sage.combinat.words.shuffle_product.ShuffleProduct_w1w2(w1, w2, check=True)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

The shuffle product of the two words w1 and w2.

If 𝑢 and 𝑣 are two words, then the shuffle product of 𝑢 and 𝑣 is a certain multiset of words defined as follows:
Let 𝑎 and 𝑏 be the lengths of 𝑢 and 𝑣, respectively. For every 𝑎-element subset 𝐼 of {1, 2, · · · , 𝑎 + 𝑏}, let 𝑤(𝐼)
be the length-𝑎+ 𝑏 word such that:

• for every 1 ≤ 𝑘 ≤ 𝑎, the 𝑖𝑘-th letter of 𝑤(𝐼) is the 𝑘-th letter of 𝑢, where 𝑖𝑘 is the 𝑘-th smallest element of
𝐼;

• for every 1 ≤ 𝑙 ≤ 𝑏, the 𝑗𝑙-th letter of 𝑤(𝐼) is the 𝑙-th letter of 𝑣, where 𝑗𝑙 is the 𝑙-th smallest element of
{1, 2, · · · , 𝑎+ 𝑏} ∖ 𝐼 .

The shuffle product of 𝑢 and 𝑣 is then the multiset of all 𝑤(𝐼) with 𝐼 ranging over the 𝑎-element subsets of
{1, 2, · · · , 𝑎+ 𝑏}.

INPUT:

• check – boolean (default True) whether to check that all words in the shuffle product belong to the correct
parent

EXAMPLES:

sage: from sage.combinat.words.shuffle_product import ShuffleProduct_w1w2
sage: W = Words([1,2,3,4])
sage: s = ShuffleProduct_w1w2(W([1,2]),W([3,4]))
sage: sorted(s)
[word: 1234, word: 1324, word: 1342, word: 3124,
word: 3142, word: 3412]
sage: s == loads(dumps(s))
True
sage: TestSuite(s).run()

sage: s = ShuffleProduct_w1w2(W([1,4,3]),W([2]))
sage: sorted(s)
[word: 1243, word: 1423, word: 1432, word: 2143]

sage: s = ShuffleProduct_w1w2(W([1,4,3]),W([]))
sage: sorted(s)
[word: 143]

cardinality()
Return the number of words in the shuffle product of w1 and w2.

This is understood as a multiset cardinality, not as a set cardinality; it does not count the distinct words
only.

It is given by
(︀
𝑙1+𝑙2
𝑙1

)︀
, where 𝑙1 is the length of w1 and where 𝑙2 is the length of w2.

EXAMPLES:

5.1. Comprehensive Module List 3605

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

sage: from sage.combinat.words.shuffle_product import ShuffleProduct_w1w2
sage: w, u = map(Words("abcd"), ["ab", "cd"])
sage: S = ShuffleProduct_w1w2(w,u)
sage: S.cardinality()
6

sage: w, u = map(Words("ab"), ["ab", "ab"])
sage: S = ShuffleProduct_w1w2(w,u)
sage: S.cardinality()
6

5.1.360 Suffix Tries and Suffix Trees

class sage.combinat.words.suffix_trees.DecoratedSuffixTree(w)
Bases: sage.combinat.words.suffix_trees.ImplicitSuffixTree

The decorated suffix tree of a word.

A decorated suffix tree of a word 𝑤 is the suffix tree of 𝑤 marked with the end point of all squares in the 𝑤.

The symbol $ is appended to w to ensure that each final state is a leaf of the suffix tree.

INPUT:

• w – a finite word

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import DecoratedSuffixTree
sage: w = Word('0011001')
sage: DecoratedSuffixTree(w)
Decorated suffix tree of : 0011001$
sage: w = Word('0011001', '01')
sage: DecoratedSuffixTree(w)
Decorated suffix tree of : 0011001$

ALGORITHM:

When using 'pair' as output, the squares are retrieved in linear time. The algorithm is an implementation of
the one proposed in [DS2004].

square_vocabulary(output='pair')
Return the list of distinct squares of self.word.

Two types of outputs are available 𝑝𝑎𝑖𝑟 and 𝑤𝑜𝑟𝑑. The algorithm is only truly linear if 𝑜𝑢𝑡𝑝𝑢𝑡 is set to
𝑝𝑎𝑖𝑟. A pair is a tuple (𝑖, 𝑙) that indicates the factor self.word()[i:i+l]. The option 'word' return
word objects.

INPUT:

• output – (default: "pair") either "pair" or "word"

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import DecoratedSuffixTree
sage: w = Word('aabb')
sage: sorted(DecoratedSuffixTree(w).square_vocabulary())

(continues on next page)

3606 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

[(0, 0), (0, 2), (2, 2)]
sage: w = Word('00110011010')
sage: sorted(DecoratedSuffixTree(w).square_vocabulary(output="word"))
[word: , word: 00, word: 00110011, word: 01100110, word: 1010, word: 11]

class sage.combinat.words.suffix_trees.ImplicitSuffixTree(word)
Bases: sage.structure.sage_object.SageObject

Construct the implicit suffix tree of a word w.

The suffix tree of a word w is a compactification of the suffix trie for w. The compactification removes all nodes
that have exactly one incoming edge and exactly one outgoing edge. It consists of two components: a tree and a
word. Thus, instead of labelling the edges by factors of w, we can labelled them by indices of the occurrence of
the factors in w.

The following is a straightforward implementation of Ukkonen’s on-line algorithm for constructing the implicit
suffix tree [Ukko1995]. It constructs the suffix tree for w[:i] from that of w[:i-1].

GENERAL IDEA. The suffix tree of w[:i+1] can be obtained from that of w[:i] by visiting each node correspond-
ing to a suffix of w[:i] and modifying the tree by applying one of two rules (either append a new node to the tree,
or split an edge into two). The “active state” is the node where the algorithm begins and the “suffix link” carries
us to the next node that needs to be dealt with.

TREE. The tree is modelled as an automaton, which is stored as a dictionary of dictionaries: it is keyed by the
nodes of the tree, and the corresponding dictionary is keyed by pairs (𝑖, 𝑗) of integers representing the word
w[i-1:j]. This makes it faster to look up a particular transition beginning at a specific node.

STATES/NODES. The states will always be -1, 0, 1, . . . , n. The state -1 is special and is only used for the
purposes of the algorithm. All transitions map -1 to 0, so this information is not explicitly stored in the transition
function.

EXPLICIT/IMPLICIT NODES. By definition, some of the nodes will not be states, but merely locations along
an edge; these are called implicit nodes. A node r (implicit or explicit) is referenced as a pair (s,(k,p)) where s
is an ancestor of r and w[k-1:p] is the word read by transitioning from s to r in the suffix trie. A reference pair is
canonical if s is the closest ancestor of r.

SUFFIX LINK. The algorithm makes use of a map from (some) nodes to other nodes, called the suffix link. This
is stored as a dictionary.

ACTIVE STATE. We store as ._active_state the active state of the tree, the state where the algorithm will begin
when processing the next letter.

RUNNING TIME. The running time and storage space of the algorithm is linear in the length of the word w
(whereas for a suffix tree it is quadratic).

REFERENCES:

• [Ukko1995]

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: w = Words("aco")("cacao")
sage: t = ImplicitSuffixTree(w); t
Implicit Suffix Tree of the word: cacao
sage: ababb = Words([0,1])([0,1,0,1,1])
sage: s = ImplicitSuffixTree(ababb); s
Implicit Suffix Tree of the word: 01011

5.1. Comprehensive Module List 3607

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

LZ_decomposition()
Return a list of index of the beginning of the block of the Lempel-Ziv decomposition of self.word

The Lempel-Ziv decomposition is the factorisation 𝑢1...𝑢𝑘 of a word𝑤 = 𝑥1...𝑥𝑛 such that 𝑢𝑖 is the longest
prefix of 𝑢𝑖...𝑢𝑘 that has an occurrence starting before 𝑢𝑖 or a letter if this prefix is empty.

OUTPUT:

Return a list iB of index such that the blocks of the decomposition are self.word()[iB[k]:iB[k+1]]

EXAMPLES:

sage: w = Word('abababb')
sage: T = w.suffix_tree()
sage: T.LZ_decomposition()
[0, 1, 2, 6, 7]
sage: w = Word('abaababacabba')
sage: T = w.suffix_tree()
sage: T.LZ_decomposition()
[0, 1, 2, 3, 6, 8, 9, 11, 13]
sage: w = Word([0, 0, 0, 1, 1, 0, 1])
sage: T = w.suffix_tree()
sage: T.LZ_decomposition()
[0, 1, 3, 4, 5, 7]
sage: w = Word('0000100101')
sage: T = w.suffix_tree()
sage: T.LZ_decomposition()
[0, 1, 4, 5, 9, 10]

active_state()
Returns the active state of the suffix tree.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: W = Words([0,1,2])
sage: t = ImplicitSuffixTree(W([0,1,0,1,2]))
sage: t.active_state()
(0, (6, 6))

edge_iterator()
Returns an iterator over the edges of the suffix tree. The edge from 𝑢 to 𝑣 labelled by (𝑖, 𝑗) is returned as
the tuple (𝑢, 𝑣, (𝑖, 𝑗)).

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: sorted(ImplicitSuffixTree(Word("aaaaa")).edge_iterator())
[(0, 1, (0, None))]
sage: sorted(ImplicitSuffixTree(Word([0,1,0,1])).edge_iterator())
[(0, 1, (0, None)), (0, 2, (1, None))]
sage: sorted(ImplicitSuffixTree(Word()).edge_iterator())
[]

factor_iterator(n=None)
Generate distinct factors of self.

INPUT:

3608 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• n - an integer, or None.

OUTPUT:

• If n is an integer, returns an iterator over all distinct factors of length n. If n is None, returns an iterator
generating all distinct factors.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: sorted(ImplicitSuffixTree(Word("cacao")).factor_iterator())
[word: , word: a, word: ac, word: aca, word: acao, word: ao, word: c, word: ca,␣
→˓word: cac, word: caca, word: cacao, word: cao, word: o]
sage: sorted(ImplicitSuffixTree(Word("cacao")).factor_iterator(1))
[word: a, word: c, word: o]
sage: sorted(ImplicitSuffixTree(Word("cacao")).factor_iterator(2))
[word: ac, word: ao, word: ca]
sage: sorted(ImplicitSuffixTree(Word([0,0,0])).factor_iterator())
[word: , word: 0, word: 00, word: 000]
sage: sorted(ImplicitSuffixTree(Word([0,0,0])).factor_iterator(2))
[word: 00]
sage: sorted(ImplicitSuffixTree(Word([0,0,0])).factor_iterator(0))
[word:]
sage: sorted(ImplicitSuffixTree(Word()).factor_iterator())
[word:]
sage: sorted(ImplicitSuffixTree(Word()).factor_iterator(2))
[]

leftmost_covering_set()
Compute the leftmost covering set of square pairs in self.word(). Return a square as a pair (i,l)
designating factor self.word()[i:i+l].

A leftmost covering set is a set such that the leftmost occurrence (𝑗, 𝑙) of a square in self.word() is
covered by a pair (𝑖, 𝑙) in the set for all types of squares. We say that (𝑗, 𝑙) is covered by (𝑖, 𝑙) if (𝑖, 𝑙) (i+1,l),
ldots, (j,l)` are all squares.

The set is returned in the form of a list P such that P[i] contains all the lengths of squares starting at i in
the set. The lists P[i] are sorted in decreasing order.

The algorithm used is described in [DS2004].

EXAMPLES:

sage: w = Word('abaabaabbaaabaaba')
sage: T = w.suffix_tree()
sage: T.leftmost_covering_set()
[[6], [6], [2], [], [], [], [], [2], [], [], [6, 2], [], [], [], [], [], []]
sage: w = Word('abaca')
sage: T = w.suffix_tree()
sage: T.leftmost_covering_set()
[[], [], [], [], []]
sage: T = Word('aaaaa').suffix_tree()
sage: T.leftmost_covering_set()
[[4, 2], [], [], [], []]

number_of_factors(n=None)
Count the number of distinct factors of self.word().

5.1. Comprehensive Module List 3609

Combinatorics, Release 9.7

INPUT:

• n - an integer, or None.

OUTPUT:

• If n is an integer, returns the number of distinct factors of length n. If n is None, returns the total
number of distinct factors.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: t = ImplicitSuffixTree(Word([1,2,1,3,1,2,1]))
sage: t.number_of_factors()
22
sage: t.number_of_factors(1)
3
sage: t.number_of_factors(9)
0
sage: t.number_of_factors(0)
1

sage: t = ImplicitSuffixTree(Word("cacao"))
sage: t.number_of_factors()
13
sage: list(map(t.number_of_factors, range(10)))
[1, 3, 3, 3, 2, 1, 0, 0, 0, 0]

sage: t = ImplicitSuffixTree(Word("c"*1000))
sage: t.number_of_factors()
1001
sage: t.number_of_factors(17)
1
sage: t.number_of_factors(0)
1

sage: ImplicitSuffixTree(Word()).number_of_factors()
1

sage: blueberry = ImplicitSuffixTree(Word("blueberry"))
sage: blueberry.number_of_factors()
43
sage: list(map(blueberry.number_of_factors, range(10)))
[1, 6, 8, 7, 6, 5, 4, 3, 2, 1]

plot(word_labels=False, layout='tree', tree_root=0, tree_orientation='up', vertex_colors=None,
edge_labels=True, *args, **kwds)

Returns a Graphics object corresponding to the transition graph of the suffix tree.

INPUT:

• word_labels - boolean (default: False) if False, labels the edges by pairs (𝑖, 𝑗); if True, labels the
edges by word[i:j].

• layout - (default: 'tree')

• tree_root - (default: 0)

3610 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

• tree_orientation - (default: 'up')

• vertex_colors - (default: None)

• edge_labels - (default: True)

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: ImplicitSuffixTree(Word('cacao')).plot(word_labels=True)
Graphics object consisting of 23 graphics primitives
sage: ImplicitSuffixTree(Word('cacao')).plot(word_labels=False)
Graphics object consisting of 23 graphics primitives

process_letter(letter)
Modifies the current implicit suffix tree producing the implicit suffix tree for self.word() + letter.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: w = Words("aco")("cacao")
sage: t = ImplicitSuffixTree(w[:-1]); t
Implicit Suffix Tree of the word: caca
sage: t.process_letter(w[-1]); t
Implicit Suffix Tree of the word: cacao

sage: W = Words([0,1])
sage: s = ImplicitSuffixTree(W([0,1,0,1])); s
Implicit Suffix Tree of the word: 0101
sage: s.process_letter(W([1])[0]); s
Implicit Suffix Tree of the word: 01011

show(word_labels=None, *args, **kwds)
Displays the output of self.plot().

INPUT:

• word_labels - (default: None) if False, labels the edges by pairs (𝑖, 𝑗); if True, labels the edges by
word[i:j].

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: w = Words("cao")("cacao")
sage: t = ImplicitSuffixTree(w)
sage: t.show(word_labels=True)
sage: t.show(word_labels=False)

states()
Returns the states (explicit nodes) of the suffix tree.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: W = Words([0,1,2])
sage: t = ImplicitSuffixTree(W([0,1,0,1,2]))
sage: t.states()
[0, 1, 2, 3, 4, 5, 6, 7]

5.1. Comprehensive Module List 3611

Combinatorics, Release 9.7

suffix_link(state)
Evaluates the suffix link map of the implicit suffix tree on state. Note that the suffix link is not defined
for all states.

The suffix link of a state 𝑥′ that corresponds to the suffix 𝑥 is defined to be -1 is 𝑥′ is the root (0) and 𝑦′
otherwise, where 𝑦′ is the state corresponding to the suffix x[1:].

INPUT:

• state - a state

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: W = Words([0,1,2])
sage: t = ImplicitSuffixTree(W([0,1,0,1,2]))
sage: t.suffix_link(3)
5
sage: t.suffix_link(5)
0
sage: t.suffix_link(0)
-1
sage: t.suffix_link(-1)
Traceback (most recent call last):

...
TypeError: there is no suffix link from -1

suffix_walk(edge, l)
Return the state of “w” if the input state is “aw”.

If the input state (edge, l) is path labeled “aw” with “a” a letter, the output is the state which is path
labeled “w”.

INPUT:

• edge – the edge containing the state

• l – the string-depth of the state on edge (l>0)

OUTPUT:

Return ("explicit", end_node) if the state of w is an explicit state and ("implicit", edge, d) is
obtained by reading d letters on edge.

EXAMPLES:

sage: T = Word('00110111011').suffix_tree()
sage: T.suffix_walk((0, 5), 1)
('explicit', 0)
sage: T.suffix_walk((7, 3), 1)
('implicit', (9, 4), 1)

to_digraph(word_labels=False)
Returns a DiGraph object of the transition graph of the suffix tree.

INPUT:

• word_labels - boolean (default: False) if False, labels the edges by pairs (𝑖, 𝑗); if True, labels the
edges by word[i:j].

EXAMPLES:

3612 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: W = Words([0,1,2])
sage: t = ImplicitSuffixTree(W([0,1,0,1,2]))
sage: t.to_digraph()
Digraph on 8 vertices

to_explicit_suffix_tree()
Converts self to an explicit suffix tree. It is obtained by processing an end of string letter as if it were a
regular letter, except that no new leaf nodes are created (thus, the only thing that happens is that some
implicit nodes become explicit).

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: w = Words("aco")("cacao")
sage: t = ImplicitSuffixTree(w)
sage: t.to_explicit_suffix_tree()

sage: W = Words([0,1])
sage: s = ImplicitSuffixTree(W([0,1,0,1,1]))
sage: s.to_explicit_suffix_tree()

transition_function(word, node=0)
Returns the node obtained by starting from node and following the edges labelled by the letters of word.
Returns ("explicit", end_node) if we end at end_node, or ("implicit", edge, d) if we end 𝑑
spots along an edge.

INPUT:

• word - a word

• node - (default: 0) starting node

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: W = Words([0,1,2])
sage: t = ImplicitSuffixTree(W([0,1,0,1,2]))
sage: t.transition_function(W([0,1,0]))
('implicit', (3, 1), 1)
sage: t.transition_function(W([0,1,2]))
('explicit', 4)
sage: t.transition_function(W([0,1,2]), 5)
('explicit', 2)
sage: t.transition_function(W([0,1]), 5)
('implicit', (5, 2), 2)

transition_function_dictionary()
Returns the transition function as a dictionary of dictionaries. The format is consistent with the input format
for DiGraph.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree
sage: W = Words("aco")
sage: t = ImplicitSuffixTree(W("cac"))

(continues on next page)

5.1. Comprehensive Module List 3613

Combinatorics, Release 9.7

(continued from previous page)

sage: t.transition_function_dictionary()
{0: {1: (0, None), 2: (1, None)}}

sage: W = Words([0,1])
sage: t = ImplicitSuffixTree(W([0,1,0]))
sage: t.transition_function_dictionary()
{0: {1: (0, None), 2: (1, None)}}

trie_type_dict()
Returns a dictionary in a format compatible with that of the suffix trie transition function.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree,␣
→˓SuffixTrie
sage: W = Words("ab")
sage: t = ImplicitSuffixTree(W("aba"))
sage: d = t.trie_type_dict()
sage: len(d)
5
sage: d # random
{(4, word: b): 5, (0, word: a): 4, (0, word: b): 3, (5, word: a): 1, (3, word:␣
→˓a): 2}

uncompactify()
Returns the tree obtained from self by splitting edges so that they are labelled by exactly one letter. The
resulting tree is isomorphic to the suffix trie.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree,␣
→˓SuffixTrie
sage: abbab = Words("ab")("abbab")
sage: s = SuffixTrie(abbab)
sage: t = ImplicitSuffixTree(abbab)
sage: t.uncompactify().is_isomorphic(s.to_digraph())
True

word()
Returns the word whose implicit suffix tree this is.

class sage.combinat.words.suffix_trees.SuffixTrie(word)
Bases: sage.structure.sage_object.SageObject

Construct the suffix trie of the word w.

The suffix trie of a finite word w is a data structure representing the factors of w. It is a tree whose edges are
labelled with letters of w, and whose leafs correspond to suffixes of w.

This is a straightforward implementation of Algorithm 1 from [Ukko1995]. It constructs the suffix trie of w[:i]
from that of w[:i-1].

A suffix trie is modelled as a deterministic finite-state automaton together with the suffix_link map. The set of
states corresponds to factors of the word (below we write x’ for the state corresponding to x); these are always
0, 1, The state 0 is the initial state, and it corresponds to the empty word. For the purposes of the algorithm,
there is also an auxiliary state -1. The transition function t is defined as:

3614 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

t(-1,a) = 0 for all letters a; and
t(x',a) = y' for all x',y' \in Q such that y = xa,

and the suffix link function is defined as:

suffix_link(0) = -1;
suffix_link(x') = y', if x = ay for some letter a.

REFERENCES:

• [Ukko1995]

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words("cao")("cacao")
sage: t = SuffixTrie(w); t
Suffix Trie of the word: cacao

sage: e = Words("ab")()
sage: t = SuffixTrie(e); t
Suffix Trie of the word:
sage: t.process_letter("a"); t
Suffix Trie of the word: a
sage: t.process_letter("b"); t
Suffix Trie of the word: ab
sage: t.process_letter("a"); t
Suffix Trie of the word: aba

active_state()
Returns the active state of the suffix trie. This is the state corresponding to the word as a suffix of itself.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words("cao")("cacao")
sage: t = SuffixTrie(w)
sage: t.active_state()
8

sage: u = Words([0,1])([0,1,1,0,1,0,0,1])
sage: s = SuffixTrie(u)
sage: s.active_state()
22

final_states()
Returns the set of final states of the suffix trie. These are the states corresponding to the suffixes of self.
word(). They are obtained be repeatedly following the suffix link from the active state until we reach
0.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words("cao")("cacao")
sage: t = SuffixTrie(w)

(continues on next page)

5.1. Comprehensive Module List 3615

Combinatorics, Release 9.7

(continued from previous page)

sage: t.final_states() == Set([8, 9, 10, 11, 12, 0])
True

has_suffix(word)
Return True if and only if word is a suffix of self.word().

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words("cao")("cacao")
sage: t = SuffixTrie(w)
sage: [t.has_suffix(w[i:]) for i in range(w.length()+1)]
[True, True, True, True, True, True]
sage: [t.has_suffix(w[:i]) for i in range(w.length()+1)]
[True, False, False, False, False, True]

node_to_word(state=0)
Returns the word obtained by reading the edge labels from 0 to state.

INPUT:

• state - (default: 0) a state

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words("abc")("abcba")
sage: t = SuffixTrie(w)
sage: t.node_to_word(10)
word: abcba
sage: t.node_to_word(7)
word: abcb

plot(layout='tree', tree_root=0, tree_orientation='up', vertex_colors=None, edge_labels=True, *args,
**kwds)

Returns a Graphics object corresponding to the transition graph of the suffix trie.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: SuffixTrie(Word("cacao")).plot()
Graphics object consisting of 38 graphics primitives

process_letter(letter)
Modify self to produce the suffix trie for self.word() + letter.

Note: letter must occur within the alphabet of the word.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words("ab")("ababba")
sage: t = SuffixTrie(w); t
Suffix Trie of the word: ababba

(continues on next page)

3616 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: t.process_letter("a"); t
Suffix Trie of the word: ababbaa

show(*args, **kwds)
Displays the output of self.plot().

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words("cao")("cac")
sage: t = SuffixTrie(w)
sage: t.show()

states()
Returns the states of the automaton defined by the suffix trie.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words([0,1])([0,1,1])
sage: t = SuffixTrie(w)
sage: t.states()
[0, 1, 2, 3, 4]

sage: u = Words("aco")("cacao")
sage: s = SuffixTrie(u)
sage: s.states()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

suffix_link(state)
Evaluates the suffix link map of the suffix trie on state. Note that the suffix link map is not defined on -1.

INPUT:

• state - a state

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words("cao")("cacao")
sage: t = SuffixTrie(w)
sage: list(map(t.suffix_link, range(13)))
[-1, 0, 3, 0, 5, 1, 7, 2, 9, 10, 11, 12, 0]
sage: t.suffix_link(0)
-1

to_digraph()
Returns a DiGraph object of the transition graph of the suffix trie.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words("cao")("cac")
sage: t = SuffixTrie(w)
sage: d = t.to_digraph(); d

(continues on next page)

5.1. Comprehensive Module List 3617

Combinatorics, Release 9.7

(continued from previous page)

Digraph on 6 vertices
sage: d.adjacency_matrix()
[0 1 0 1 0 0]
[0 0 1 0 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]
[0 0 0 0 0 0]
[0 0 0 0 0 0]

transition_function(node, word)
Returns the state reached by beginning at node and following the arrows in the transition graph labelled by
the letters of word.

INPUT:

• node - a node

• word - a word

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words([0,1])([0,1,0,1,1])
sage: t = SuffixTrie(w)
sage: all(t.transition_function(u, letter) == v
....: for ((u, letter), v) in t._transition_function.items())
True

word()
Returns the word whose suffix tree this is.

EXAMPLES:

sage: from sage.combinat.words.suffix_trees import SuffixTrie
sage: w = Words("abc")("abcba")
sage: t = SuffixTrie(w)
sage: t.word()
word: abcba
sage: t.word() == w
True

5.1.361 Word classes

AUTHORS:

• Arnaud Bergeron

• Amy Glen

• Sébastien Labbé

• Franco Saliola

class sage.combinat.words.word.FiniteWord_callable(parent, callable, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable, sage.
combinat.words.finite_word.FiniteWord_class

3618 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Finite word represented by a callable.

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

EXAMPLES:

sage: f = lambda n : 3 if n > 8 else 6
sage: w = Word(f, length=30, caching=False)
sage: w
word: 666666666333333333333333333333
sage: w.is_symmetric()
True

class sage.combinat.words.word.FiniteWord_callable_with_caching(parent, callable, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.finite_word.FiniteWord_class

Finite word represented by a callable (with caching).

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

EXAMPLES:

sage: f = lambda n : n % 3
sage: w = Word(f, length=32)
sage: w
word: 01201201201201201201201201201201
sage: w.border()
word: 01201201201201201201201201201

class sage.combinat.words.word.FiniteWord_char
Bases: sage.combinat.words.word_char.WordDatatype_char, sage.combinat.words.
finite_word.FiniteWord_class

Finite word represented by an array unsigned char * (i.e. integers between 0 and 255).

For any word w, type w.<TAB> to see the functions that can be applied to w.

EXAMPLES:

sage: W = Words(range(20))

sage: w = W(list(range(1, 10)) * 2)
sage: type(w)
<class 'sage.combinat.words.word.FiniteWord_char'>
sage: w
word: 123456789123456789

sage: w.is_palindrome()
False
sage: (w*w[::-1]).is_palindrome()
True
sage: (w[:-1:]*w[::-1]).is_palindrome()
True

sage: w.is_lyndon()
False
sage: W(list(range(10)) + [10, 10]).is_lyndon()

(continues on next page)

5.1. Comprehensive Module List 3619

Combinatorics, Release 9.7

(continued from previous page)

True

sage: w.is_square_free()
False
sage: w[:-1].is_square_free()
True

sage: u = W([randint(0,10) for i in range(10)])
sage: (u*u).is_square()
True
sage: (u*u*u).is_cube()
True

sage: len(w.factor_set())
127
sage: w.rauzy_graph(5)
Looped digraph on 9 vertices

sage: u = W([1,2,3])
sage: w.first_occurrence(u)
0
sage: w.first_occurrence(u, start=1)
9

class sage.combinat.words.word.FiniteWord_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.combinat.
words.finite_word.FiniteWord_class

Finite word represented by an iterator.

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

EXAMPLES:

sage: w = Word(iter(range(10)), caching=False)
sage: w
word: 0123456789
sage: w.finite_differences()
word: 111111111

class sage.combinat.words.word.FiniteWord_iter_with_caching(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.finite_word.FiniteWord_class

Finite word represented by an iterator (with caching).

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

EXAMPLES:

sage: w = Word(iter('abcdef'))
sage: w.conjugate(2)
word: cdefab

class sage.combinat.words.word.FiniteWord_list
Bases: sage.combinat.words.word_datatypes.WordDatatype_list, sage.combinat.words.

3620 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

finite_word.FiniteWord_class

Finite word represented by a Python list.

For any word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

EXAMPLES:

sage: w = Word(range(10))
sage: w.iterated_right_palindromic_closure()
word: 0102010301020104010201030102010501020103...

class sage.combinat.words.word.FiniteWord_morphic(parent, morphism, letter, coding=None, length=+
Infinity)

Bases: sage.combinat.words.morphic.WordDatatype_morphic, sage.combinat.words.
finite_word.FiniteWord_class

Finite morphic word.

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

EXAMPLES:

sage: m = WordMorphism("a->ab,b->")
sage: w = m.fixed_point("a")
sage: w
word: ab

class sage.combinat.words.word.FiniteWord_str
Bases: sage.combinat.words.word_datatypes.WordDatatype_str, sage.combinat.words.
finite_word.FiniteWord_class

Finite word represented by a Python str.

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

EXAMPLES:

sage: w = Word('abcdef')
sage: w.is_square()
False

class sage.combinat.words.word.FiniteWord_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype_tuple, sage.combinat.words.
finite_word.FiniteWord_class

Finite word represented by a Python tuple.

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

EXAMPLES:

sage: w = Word(())
sage: w.is_empty()
True

class sage.combinat.words.word.InfiniteWord_callable(parent, callable, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable, sage.
combinat.words.infinite_word.InfiniteWord_class

Infinite word represented by a callable.

5.1. Comprehensive Module List 3621

Combinatorics, Release 9.7

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

Infinite words behave like a Python list : they can be sliced using square braquets to define for example a prefix
or a factor.

EXAMPLES:

sage: w = Word(lambda n:n, caching=False)
sage: w
word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
→˓29,30,31,32,33,34,35,36,37,38,39,...
sage: w.iterated_right_palindromic_closure()
word: 0102010301020104010201030102010501020103...

class sage.combinat.words.word.InfiniteWord_callable_with_caching(parent, callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching,
sage.combinat.words.infinite_word.InfiniteWord_class

Infinite word represented by a callable (with caching).

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

Infinite words behave like a Python list : they can be sliced using square braquets to define for example a prefix
or a factor.

EXAMPLES:

sage: w = Word(lambda n:n)
sage: factor = w[4:13]
sage: factor
word: 4,5,6,7,8,9,10,11,12

class sage.combinat.words.word.InfiniteWord_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.combinat.
words.infinite_word.InfiniteWord_class

Infinite word represented by an iterable.

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

Infinite words behave like a Python list : they can be sliced using square braquets to define for example a prefix
or a factor.

EXAMPLES:

sage: from itertools import chain, cycle
sage: w = Word(chain('letsgo', cycle('forever')), caching=False)
sage: w
word: letsgoforeverforeverforeverforeverforeve...
sage: prefix = w[:100]
sage: prefix
word: letsgoforeverforeverforeverforeverforeve...
sage: prefix.is_lyndon()
False

class sage.combinat.words.word.InfiniteWord_iter_with_caching(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.infinite_word.InfiniteWord_class

3622 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Infinite word represented by an iterable (with caching).

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

Infinite words behave like a Python list : they can be sliced using square braquets to define for example a prefix
or a factor.

EXAMPLES:

sage: from itertools import cycle
sage: w = Word(cycle([9,8,4]))
sage: w
word: 9849849849849849849849849849849849849849...
sage: prefix = w[:23]
sage: prefix
word: 98498498498498498498498
sage: prefix.minimal_period()
3

class sage.combinat.words.word.InfiniteWord_morphic(parent, morphism, letter, coding=None,
length=+ Infinity)

Bases: sage.combinat.words.morphic.WordDatatype_morphic, sage.combinat.words.
infinite_word.InfiniteWord_class

Morphic word of infinite length.

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

Infinite words behave like a Python list : they can be sliced using square braquets to define for example a prefix
or a factor.

EXAMPLES:

sage: m = WordMorphism('a->ab,b->a')
sage: w = m.fixed_point('a')
sage: w
word: abaababaabaababaababaabaababaabaababaaba...

sage.combinat.words.word.Word(data=None, alphabet=None, length=None, datatype=None, caching=True,
RSK_data=None)

Construct a word.

INPUT:

• data – (default: None) list, string, tuple, iterator, free monoid element, None (shorthand for []), or a
callable defined on [0,1,...,length].

• alphabet – any argument accepted by Words

• length – (default: None) This is dependent on the type of data. It is ignored for words defined by lists,
strings, tuples, etc., because they have a naturally defined length. For callables, this defines the domain
of definition, which is assumed to be [0, 1, 2, ..., length-1]. For iterators: Infinity if you know
the iterator will not terminate (default); "unknown" if you do not know whether the iterator terminates;
"finite" if you know that the iterator terminates, but do not know the length.

• datatype – (default: None) None, "list", "str", "tuple", "iter", "callable". If None, then the
function tries to guess this from the data.

• caching – (default: True) True or False. Whether to keep a cache of the letters computed by an iterator
or callable.

5.1. Comprehensive Module List 3623

Combinatorics, Release 9.7

• RSK_data – (Optional. Default: None) A semistandard and a standard Young tableau to run the inverse
RSK bijection on.

Note: Be careful when defining words using callables and iterators. It appears that islice does not pickle
correctly causing various errors when reloading. Also, most iterators do not support copying and should not
support pickling by extension.

EXAMPLES:

Empty word:

sage: Word()
word:

Word with string:

sage: Word("abbabaab")
word: abbabaab

Word with string constructed from other types:

sage: Word([0,1,1,0,1,0,0,1], datatype="str")
word: 01101001
sage: Word((0,1,1,0,1,0,0,1), datatype="str")
word: 01101001

Word with list:

sage: Word([0,1,1,0,1,0,0,1])
word: 01101001

Word with list constructed from other types:

sage: Word("01101001", datatype="list")
word: 01101001
sage: Word((0,1,1,0,1,0,0,1), datatype="list")
word: 01101001

Word with tuple:

sage: Word((0,1,1,0,1,0,0,1))
word: 01101001

Word with tuple constructed from other types:

sage: Word([0,1,1,0,1,0,0,1], datatype="tuple")
word: 01101001
sage: Word("01101001", datatype="str")
word: 01101001

Word with iterator:

sage: from itertools import count
sage: Word(count())

(continues on next page)

3624 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

word: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,
→˓29,30,31,32,33,34,35,36,37,38,39,...
sage: Word(iter("abbabaab")) # iterators default to infinite words
word: abbabaab
sage: Word(iter("abbabaab"), length="unknown")
word: abbabaab
sage: Word(iter("abbabaab"), length="finite")
word: abbabaab

Word with function (a ‘callable’):

sage: f = lambda n : add(Integer(n).digits(2)) % 2
sage: Word(f)
word: 0110100110010110100101100110100110010110...
sage: Word(f, length=8)
word: 01101001

Word over a string with a parent:

sage: w = Word("abbabaab", alphabet="abc"); w
word: abbabaab
sage: w.parent()
Finite words over {'a', 'b', 'c'}

Word from a free monoid element:

sage: M.<x,y,z> = FreeMonoid(3)
sage: Word(x^3*y*x*z^2*x)
word: xxxyxzzx

The default parent is the combinatorial class of all words:

sage: w = Word("abbabaab"); w
word: abbabaab
sage: w.parent()
Finite words over Set of Python objects of class 'object'

We can also input a semistandard tableau and a standard tableau to obtain a word from the inverse RSK algorithm
using the RSK_data option:

sage: p = Tableau([[1,2,2],[3]]); q = Tableau([[1,2,4],[3]])
sage: Word(RSK_data=[p, q])
word: 1322

class sage.combinat.words.word.Word_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter, sage.combinat.
words.abstract_word.Word_class

Word of unknown length (finite or infinite) represented by an iterable.

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

Words behave like a Python list : they can be sliced using square braquets to define for example a prefix or a
factor.

EXAMPLES:

5.1. Comprehensive Module List 3625

Combinatorics, Release 9.7

sage: w = Word(iter([1,1,4,9]*1000), length='unknown', caching=False)
sage: w
word: 1149114911491149114911491149114911491149...
sage: w.delta()
word: 2112112112112112112112112112112112112112...

class sage.combinat.words.word.Word_iter_with_caching(parent, iter, length=None)
Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching,
sage.combinat.words.abstract_word.Word_class

Word of unknown length (finite or infinite) represented by an iterable (with caching).

For such word 𝑤, type w. and hit TAB key to see the list of functions defined on 𝑤.

Words behave like a Python list : they can be sliced using square braquets to define for example a prefix or a
factor.

EXAMPLES:

sage: w = Word(iter([1,2,3]*1000), length='unknown')
sage: w
word: 1231231231231231231231231231231231231231...
sage: w.finite_differences(mod=2)
word: 1101101101101101101101101101101101101101...

5.1.362 Fast word datatype using an array of unsigned char

class sage.combinat.words.word_char.WordDatatype_char
Bases: sage.combinat.words.word_datatypes.WordDatatype

A Fast class for words represented by an array unsigned char *.

Currently, only handles letters in [0,255].

concatenate(other)
Concatenation of self and other.

EXAMPLES:

sage: W = Words([0,1,2])
sage: W([0,2,1]).concatenate([0,0,0])
word: 021000

has_prefix(other)
Test whether other is a prefix of self.

INPUT:

• other – a word or a sequence (e.g. tuple, list)

EXAMPLES:

sage: W = Words([0,1,2])
sage: w = W([0,1,1,0,1,2,0])
sage: w.has_prefix([0,1,1])
True
sage: w.has_prefix([0,1,2])

(continues on next page)

3626 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

False
sage: w.has_prefix(w)
True
sage: w.has_prefix(w[:-1])
True
sage: w.has_prefix(w[1:])
False

is_empty()
Return whether the word is empty.

EXAMPLES:

sage: W = Words([0,1,2])
sage: W([0,1,2,2]).is_empty()
False
sage: W([]).is_empty()
True

is_square()
Return True if self is a square, and False otherwise.

EXAMPLES:

sage: w = Word([n % 4 for n in range(48)], alphabet=[0,1,2,3])
sage: w.is_square()
True

sage: w = Word([n % 4 for n in range(49)], alphabet=[0,1,2,3])
sage: w.is_square()
False
sage: (w*w).is_square()
True

length()
Return the length of the word as a Sage integer.

EXAMPLES:

sage: W = Words([0,1,2,3,4])
sage: w = W([0,1,2,0,3,2,1])
sage: w.length()
7
sage: type(w.length())
<class 'sage.rings.integer.Integer'>
sage: type(len(w))
<class 'int'>

letters()
Return the list of letters that appear in this word, listed in the order of first appearance.

EXAMPLES:

5.1. Comprehensive Module List 3627

Combinatorics, Release 9.7

sage: W = Words(5)
sage: W([1,3,1,2,2,3,1]).letters()
[1, 3, 2]

longest_common_prefix(other)
Return the longest common prefix of this word and other.

EXAMPLES:

sage: W = Words([0,1,2])
sage: W([0,1,0,2]).longest_common_prefix([0,1])
word: 01
sage: u = W([0,1,0,0,1])
sage: v = W([0,1,0,2])
sage: u.longest_common_prefix(v)
word: 010
sage: v.longest_common_prefix(u)
word: 010

Using infinite words is also possible (and the return type is also a of the same type as self):

sage: W([0,1,0,0]).longest_common_prefix(words.FibonacciWord())
word: 0100
sage: type(_)
<class 'sage.combinat.words.word.FiniteWord_char'>

An example of an intensive usage:

sage: W = Words([0,1])
sage: w = words.FibonacciWord()
sage: w = W(list(w[:5000]))
sage: L = [[len(w[n:].longest_common_prefix(w[n+fibonacci(i):]))
....: for i in range(5,15)] for n in range(1,1000)]
sage: for n,l in enumerate(L):
....: if l.count(0) > 4:
....: print("{} {}".format(n+1,l))
375 [0, 13, 0, 34, 0, 89, 0, 233, 0, 233]
376 [0, 12, 0, 33, 0, 88, 0, 232, 0, 232]
608 [8, 0, 21, 0, 55, 0, 144, 0, 377, 0]
609 [7, 0, 20, 0, 54, 0, 143, 0, 376, 0]
985 [0, 13, 0, 34, 0, 89, 0, 233, 0, 610]
986 [0, 12, 0, 33, 0, 88, 0, 232, 0, 609]

longest_common_suffix(other)
Return the longest common suffix between this word and other.

EXAMPLES:

sage: W = Words([0,1,2])
sage: W([0,1,0,2]).longest_common_suffix([2,0,2])
word: 02
sage: u = W([0,1,0,0,1])
sage: v = W([1,2,0,0,1])
sage: u.longest_common_suffix(v)

(continues on next page)

3628 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

word: 001
sage: v.longest_common_suffix(u)
word: 001

sage.combinat.words.word_char.reversed_word_iterator(w)
This function exists only because it is not possible to use yield in the special method __reversed__.

EXAMPLES:

sage: W = Words([0,1,2])
sage: w = W([0,1,0,0,1,2])
sage: list(reversed(w)) # indirect doctest
[2, 1, 0, 0, 1, 0]

5.1.363 Datatypes for finite words

class sage.combinat.words.word_datatypes.WordDatatype
Bases: object

The generic WordDatatype class.

Any word datatype must contain two attributes (at least):

- _parent
- _hash

They are automatically defined here and it’s not necessary (and forbidden) to define them anywhere else.

class sage.combinat.words.word_datatypes.WordDatatype_list
Bases: sage.combinat.words.word_datatypes.WordDatatype

Datatype class for words defined by lists.

length()
Return the length of the word.

EXAMPLES:

sage: w = Word([0,1,1,0])
sage: w.length()
4

number_of_letter_occurrences(a)
Returns the number of occurrences of the letter a in the word self.

INPUT:

• a - a letter

OUTPUT:

• integer

EXAMPLES:

5.1. Comprehensive Module List 3629

Combinatorics, Release 9.7

sage: w = Word([0,1,1,0,1])
sage: w.number_of_letter_occurrences(0)
2
sage: w.number_of_letter_occurrences(1)
3
sage: w.number_of_letter_occurrences(2)
0

See also:

sage.combinat.words.finite_word.FiniteWord_class.number_of_factor_occurrences()

class sage.combinat.words.word_datatypes.WordDatatype_str
Bases: sage.combinat.words.word_datatypes.WordDatatype

Datatype for words defined by strings.

find(sub, start=0, end=None)
Returns the index of the first occurrence of sub in self, such that sub is contained within self[start:end].
Returns -1 on failure.

INPUT:

• sub - string or word to search for.

• start - non negative integer (default: 0) specifying the position from which to start the search.

• end - non negative integer (default: None) specifying the position at which the search must stop. If
None, then the search is performed up to the end of the string.

OUTPUT:

non negative integer or -1

EXAMPLES:

sage: w = Word("abbabaabababa")
sage: w.find("a")
0
sage: w.find("a", 4)
5
sage: w.find("a", 4, 5)
-1

has_prefix(other)
Test whether self has other as a prefix.

INPUT:

• other - a word (an instance of Word_class) or a str.

OUTPUT:

• boolean

EXAMPLES:

sage: w = Word("abbabaabababa")
sage: u = Word("abbab")
sage: w.has_prefix(u)
True

(continues on next page)

3630 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: u.has_prefix(w)
False
sage: u.has_prefix("abbab")
True

has_suffix(other)
Test whether self has other as a suffix.

INPUT:

• other - a word (an instance of Word_class) or a str.

OUTPUT:

• boolean

EXAMPLES:

sage: w = Word("abbabaabababa")
sage: u = Word("ababa")
sage: w.has_suffix(u)
True
sage: u.has_suffix(w)
False
sage: u.has_suffix("ababa")
True

is_prefix(other)
Test whether self is a prefix of other.

INPUT:

• other - a word (an instance of Word_class) or a str.

OUTPUT:

• boolean

EXAMPLES:

sage: w = Word("abbabaabababa")
sage: u = Word("abbab")
sage: w.is_prefix(u)
False
sage: u.is_prefix(w)
True
sage: u.is_prefix("abbabaabababa")
True

is_suffix(other)
Test whether self is a suffix of other.

INPUT:

• other - a word (an instance of Word_class) or a str.

OUTPUT:

• boolean

EXAMPLES:

5.1. Comprehensive Module List 3631

Combinatorics, Release 9.7

sage: w = Word("abbabaabababa")
sage: u = Word("ababa")
sage: w.is_suffix(u)
False
sage: u.is_suffix(w)
True
sage: u.is_suffix("abbabaabababa")
True

length()
Return the length of the word.

EXAMPLES:

sage: w = Word("abbabaabababa")
sage: w.length()
13

number_of_letter_occurrences(letter)
Count the number of occurrences of letter.

INPUT:

• letter - a letter

OUTPUT:

• integer

EXAMPLES:

sage: w = Word("abbabaabababa")
sage: w.number_of_letter_occurrences('a')
7
sage: w.number_of_letter_occurrences('b')
6
sage: w.number_of_letter_occurrences('c')
0

sage: w.number_of_letter_occurrences('abb')
0

See also:

sage.combinat.words.finite_word.FiniteWord_class.number_of_factor_occurrences()

partition(sep)
Search for the separator sep in S, and return the part before it, the separator itself, and the part after it. The
concatenation of the terms in the list gives back the initial word.

See also the split method.

Note: This just wraps Python’s builtin str::partition() for str.

INPUT:

• sep - string or word

3632 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: w = Word("MyTailorIsPoor")
sage: w.partition("Tailor")
[word: My, word: Tailor, word: IsPoor]

sage: w = Word("3230301030323212323032321210121232121010")
sage: l = w.partition("323")
sage: print(l)
[word: , word: 323, word: 0301030323212323032321210121232121010]
sage: sum(l, Word('')) == w
True

If the separator is not a string an error is raised:

sage: w = Word("le papa du papa du papa etait un petit pioupiou")
sage: w.partition(Word(['p','a','p','a']))
Traceback (most recent call last):
...
ValueError: the separator must be a string

rfind(sub, start=0, end=None)
Returns the index of the last occurrence of sub in self, such that sub is contained within self[start:end].
Returns -1 on failure.

INPUT:

• sub - string or word to search for.

• start - non negative integer (default: 0) specifying the position at which the search must stop.

• end - non negative integer (default: None) specifying the position from which to start the search. If
None, then the search is performed up to the end of the string.

OUTPUT:

non negative integer or -1

EXAMPLES:

sage: w = Word("abbabaabababa")
sage: w.rfind("a")
12
sage: w.rfind("a", 4, 8)
6
sage: w.rfind("a", 4, 5)
-1

split(sep=None, maxsplit=None)
Returns a list of words, using sep as a delimiter string. If maxsplit is given, at most maxsplit splits are done.

See also the partition method.

Note: This just wraps Python’s builtin str::split() for str.

INPUT:

• sep - string or word (optional, default: None)

5.1. Comprehensive Module List 3633

Combinatorics, Release 9.7

• maxsplit - positive integer (optional, default: None)

OUTPUT:

• a list of words

EXAMPLES:

You can split along white space to find words in a sentence:

sage: w = Word("My tailor is poor")
sage: w.split(" ")
[word: My, word: tailor, word: is, word: poor]

The python behavior is kept when no argument is given:

sage: w.split()
[word: My, word: tailor, word: is, word: poor]

You can split in two words letters to get the length of blocks in the other letter:

sage: w = Word("ababbabaaba")
sage: w.split('a')
[word: , word: b, word: bb, word: b, word: , word: b, word:]
sage: w.split('b')
[word: a, word: a, word: , word: a, word: aa, word: a]

You can split along words:

sage: w = Word("3230301030323212323032321")
sage: w.split("32")
[word: , word: 30301030, word: , word: 12, word: 30, word: , word: 1]

If the separator is not a string a ValueError is raised:

sage: w = Word("le papa du papa du papa etait un petit pioupiou")
sage: w.split(Word(['p','a','p','a']))
Traceback (most recent call last):
...
ValueError: the separator must be a string

class sage.combinat.words.word_datatypes.WordDatatype_tuple
Bases: sage.combinat.words.word_datatypes.WordDatatype

Datatype class for words defined by tuples.

length()
Return the length of the word.

EXAMPLES:

sage: w = Word((0,1,1,0))
sage: w.length()
4

3634 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

5.1.364 Common words

AUTHORS:

• Franco Saliola (2008-12-17): merged into sage

• Sebastien Labbe (2008-12-17): merged into sage

• Arnaud Bergeron (2008-12-17): merged into sage

• Amy Glen (2008-12-17): merged into sage

• Sébastien Labbé (2009-12-19): Added S-adic words (trac ticket #7543)

USE:

To see a list of all word constructors, type words. and then press the tab key. The documentation for each constructor
includes information about each word, which provides a useful reference.

REFERENCES:

EXAMPLES:

sage: t = words.ThueMorseWord(); t
word: 0110100110010110100101100110100110010110...

class sage.combinat.words.word_generators.LowerChristoffelWord(p, q, alphabet=(0, 1),
algorithm='cf')

Bases: sage.combinat.words.word.FiniteWord_list

Returns the lower Christoffel word of slope 𝑝/𝑞, where 𝑝 and 𝑞 are relatively prime non-negative integers, over
the given two-letter alphabet.

The Christoffel word of slope `p/q` is obtained from the Cayley graph of Z/(𝑝+ 𝑞)Z with generator 𝑞 as follows.
If 𝑢→ 𝑣 is an edge in the Cayley graph, then 𝑣 = 𝑢+ 𝑝 mod 𝑝+ 𝑞. Label the edge 𝑢→ 𝑣 by alphabet[1] if
𝑢 < 𝑣 and alphabet[0] otherwise. The Christoffel word is the word obtained by reading the edge labels along
the cycle beginning from 0.

EXAMPLES:

sage: words.LowerChristoffelWord(4,7)
word: 00100100101

sage: words.LowerChristoffelWord(4,7,alphabet='ab')
word: aabaabaabab

markoff_number()
Return the Markoff number associated to the Christoffel word self.

The Markoff number of a Christoffel word 𝑤 is 𝑡𝑟𝑎𝑐𝑒(𝑀(𝑤))/3, where𝑀(𝑤) is the 2×2 matrix obtained
by applying the morphism: 0 -> matrix(2,[2,1,1,1]) 1 -> matrix(2,[5,2,2,1])

EXAMPLES:

sage: w0 = words.LowerChristoffelWord(4,7)
sage: w1, w2 = w0.standard_factorization()
sage: (m0,m1,m2) = (w.markoff_number() for w in (w0,w1,w2))
sage: (m0,m1,m2)
(294685, 13, 7561)
sage: m0**2 + m1**2 + m2**2 == 3*m0*m1*m2
True

5.1. Comprehensive Module List 3635

https://trac.sagemath.org/7543

Combinatorics, Release 9.7

standard_factorization()
Returns the standard factorization of the Christoffel word self.

The standard factorization of a Christoffel word 𝑤 is the unique factorization of 𝑤 into two Christoffel
words.

EXAMPLES:

sage: w = words.LowerChristoffelWord(5,9)
sage: w
word: 00100100100101
sage: w1, w2 = w.standard_factorization()
sage: w1
word: 001
sage: w2
word: 00100100101

sage: w = words.LowerChristoffelWord(51,37)
sage: w1, w2 = w.standard_factorization()
sage: w1
word: 0101011010101101011
sage: w2
word: 0101011010101101011010101101010110101101...
sage: w1 * w2 == w
True

class sage.combinat.words.word_generators.WordGenerator
Bases: object

Constructor of several famous words.

EXAMPLES:

sage: words.ThueMorseWord()
word: 0110100110010110100101100110100110010110...

sage: words.FibonacciWord()
word: 0100101001001010010100100101001001010010...

sage: words.ChristoffelWord(5, 8)
word: 0010010100101

sage: words.RandomWord(10, 4) # not tested random
word: 1311131221

sage: words.CodingOfRotationWord(alpha=0.618, beta=0.618)
word: 1010110101101101011010110110101101101011...

sage: tm = WordMorphism('a->ab,b->ba')
sage: fib = WordMorphism('a->ab,b->a')
sage: tmword = words.ThueMorseWord([0, 1])
sage: from itertools import repeat
sage: words.s_adic(tmword, repeat('a'), {0:tm, 1:fib})
word: abbaababbaabbaabbaababbaababbaabbaababba...

3636 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Note: To see a list of all word constructors, type words. and then hit the TAB key. The documentation for each
constructor includes information about each word, which provides a useful reference.

BaumSweetWord()
Returns the Baum-Sweet Word.

The Baum-Sweet Sequence is an infinite word over the alphabet {0, 1} defined by the following string
substitution rules:

00→ 0000

01→ 1001

10→ 0100

11→ 1101

The substitution rule above can be considered as a morphism on the submonoid of {0, 1} generated by
{00, 01, 10, 11} (which is a free monoid on these generators).

It is also defined as the concatenation of the terms from the Baum-Sweet Sequence:

𝑏𝑛 =

⎧⎪⎨⎪⎩
0, if 𝑛 = 0

1, if 𝑚 is even
𝑏𝑚−1

2
, if 𝑚 is odd

where 𝑛 = 𝑚4𝑘 and 𝑚 is not divisible by 4 if 𝑚 ̸= 0.

The individual terms of the Baum-Sweet Sequence are also given by:

𝑏𝑛 =

{︃
1, if the binary representation of𝑛 contains no block of consecutive 0’s of odd length
0, otherwise

for 𝑛 > 0 with 𝑏0 = 1.

For more information see: Wikipedia article Baum-Sweet_sequence.

EXAMPLES:

Baum-Sweet Word:

sage: w = words.BaumSweetWord(); w
word: 1101100101001001100100000100100101001001...

Block Definition:

sage: w = words.BaumSweetWord()
sage: f = lambda n: '1' if all(len(x)%2==0 for x in bin(n)[2:].split('1')) else
→˓'0'
sage: all(f(i) == w[i] for i in range(1,100))
True

CharacteristicSturmianWord(slope, alphabet=(0, 1), bits=None)
Returns the characteristic Sturmian word (also called standard Sturmian word) of given slope.

Over a binary alphabet {𝑎, 𝑏}, the characteristic Sturmian word 𝑐𝛼 of irrational slope 𝛼 is the infinite word
satisfying 𝑠𝛼,0 = 𝑎𝑐𝛼 and 𝑠′𝛼,0 = 𝑏𝑐𝛼, where 𝑠𝛼,0 and 𝑠′𝛼,0 are respectively the lower and upper mechanical
words with slope 𝛼 and intercept 0. Equivalently, for irrational 𝛼, 𝑐𝛼 = 𝑠𝛼,𝛼 = 𝑠′𝛼,𝛼.

5.1. Comprehensive Module List 3637

https://en.wikipedia.org/wiki/Baum-Sweet_sequence

Combinatorics, Release 9.7

Let 𝛼 = [0, 𝑑1 + 1, 𝑑2, 𝑑3, . . .] be the continued fraction expansion of 𝛼. It has been shown that the
characteristic Sturmian word of slope 𝛼 is also the limit of the sequence: 𝑠0 = 𝑏, 𝑠1 = 𝑎, . . . , 𝑠𝑛+1 =
𝑠𝑑𝑛𝑛 𝑠𝑛−1 for 𝑛 > 0.

See Section 2.1 of [Loth02] for more details.

INPUT:

• slope - the slope of the word. It can be one of the following:

– real number in]0, 1[

– iterable over the continued fraction expansion of a real number in]0, 1[

• alphabet - any container of length two that is suitable to build an instance of OrderedAlphabet (list,
tuple, str, . . .)

• bits - integer (optional and considered only if slope is a real number) the number of bits to consider
when computing the continued fraction.

OUTPUT:

word

ALGORITHM:

Let [0, 𝑑1 + 1, 𝑑2, 𝑑3, . . .] be the continued fraction expansion of 𝛼. Then, the characteristic Sturmian word
of slope 𝛼 is the limit of the sequence: 𝑠0 = 𝑏, 𝑠1 = 𝑎 and 𝑠𝑛+1 = 𝑠𝑑𝑛𝑛 𝑠𝑛−1 for 𝑛 > 0.

EXAMPLES:

From real slope:

sage: words.CharacteristicSturmianWord(1/golden_ratio^2)
word: 0100101001001010010100100101001001010010...
sage: words.CharacteristicSturmianWord(4/5)
word: 11110
sage: words.CharacteristicSturmianWord(5/14)
word: 01001001001001
sage: words.CharacteristicSturmianWord(pi-3)
word: 0000001000000100000010000001000000100000...

From an iterator of the continued fraction expansion of a real:

sage: def cf():
....: yield 0
....: yield 2
....: while True: yield 1
sage: F = words.CharacteristicSturmianWord(cf()); F
word: 0100101001001010010100100101001001010010...
sage: Fib = words.FibonacciWord(); Fib
word: 0100101001001010010100100101001001010010...
sage: F[:10000] == Fib[:10000]
True

The alphabet may be specified:

sage: words.CharacteristicSturmianWord(cf(), 'rs')
word: rsrrsrsrrsrrsrsrrsrsrrsrrsrsrrsrrsrsrrsr...

The characteristic sturmian word of slope (
√

3− 1)/2:

3638 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: words.CharacteristicSturmianWord((sqrt(3)-1)/2)
word: 0100100101001001001010010010010100100101...

The same word defined from the continued fraction expansion of (
√

3− 1)/2:

sage: from itertools import cycle, chain
sage: it = chain([0], cycle([2, 1]))
sage: words.CharacteristicSturmianWord(it)
word: 0100100101001001001010010010010100100101...

The first terms of the standard sequence of the characteristic sturmian word of slope (
√

3− 1)/2:

sage: words.CharacteristicSturmianWord([0,2])
word: 01
sage: words.CharacteristicSturmianWord([0,2,1])
word: 010
sage: words.CharacteristicSturmianWord([0,2,1,2])
word: 01001001
sage: words.CharacteristicSturmianWord([0,2,1,2,1])
word: 01001001010
sage: words.CharacteristicSturmianWord([0,2,1,2,1,2])
word: 010010010100100100101001001001
sage: words.CharacteristicSturmianWord([0,2,1,2,1,2,1])
word: 0100100101001001001010010010010100100101...

ChristoffelWord
alias of LowerChristoffelWord

CodingOfRotationWord(alpha, beta, x=0, alphabet=(0, 1))
Returns the infinite word obtained from the coding of rotation of parameters (𝛼, 𝛽, 𝑥) over the given two-
letter alphabet.

The coding of rotation corresponding to the parameters (𝛼, 𝛽, 𝑥) is the symbolic sequence 𝑢 = (𝑢𝑛)𝑛≥0
defined over the binary alphabet {0, 1} by 𝑢𝑛 = 1 if 𝑥+ 𝑛𝛼 ∈ [0, 𝛽[and 𝑢𝑛 = 0 otherwise. See [AC03].

EXAMPLES:

sage: alpha = 0.45
sage: beta = 0.48
sage: words.CodingOfRotationWord(0.45, 0.48)
word: 1101010101001010101011010101010010101010...

sage: words.CodingOfRotationWord(0.45, 0.48, alphabet='xy')
word: yyxyxyxyxyxxyxyxyxyxyyxyxyxyxyxxyxyxyxyx...

FibonacciWord(alphabet=(0, 1), construction_method='recursive')
Returns the Fibonacci word on the given two-letter alphabet.

INPUT:

• alphabet – any container of length two that is suitable to build an instance of OrderedAlphabet (list,
tuple, str, . . .)

• construction_method – can be any of the following: “recursive”, “fixed point”, “function” (see
below for definitions).

5.1. Comprehensive Module List 3639

Combinatorics, Release 9.7

Recursive construction: the Fibonacci word is the limit of the following sequence of words: 𝑆0 = 0,
𝑆1 = 01, 𝑆𝑛 = 𝑆𝑛−1𝑆𝑛−2 for 𝑛 ≥ 2.

Fixed point construction: the Fibonacci word is the fixed point of the morphism: 0 ↦→ 01 and 1 ↦→ 0.
Hence, it can be constructed by the following read-write process:

1. beginning at the first letter of 01,

2. if the next letter is 0, append 01 to the word;

3. if the next letter is 1, append 1 to the word;

4. move to the next letter of the word.

Function: Over the alphabet {1, 2}, the n-th letter of the Fibonacci word is ⌊(𝑛+ 2)𝜙⌋−⌊(𝑛+ 1)𝜙⌋ where
𝜙 = (1 +

√
5)/2 is the golden ratio.

EXAMPLES:

sage: w = words.FibonacciWord(construction_method="recursive"); w
word: 0100101001001010010100100101001001010010...

sage: v = words.FibonacciWord(construction_method="recursive", alphabet='ab'); v
word: abaababaabaababaababaabaababaabaababaaba...

sage: u = words.FibonacciWord(construction_method="fixed point"); u
word: 0100101001001010010100100101001001010010...

sage: words.FibonacciWord(construction_method="fixed point", alphabet=[4, 1])
word: 4144141441441414414144144141441441414414...

sage: words.FibonacciWord([0,1], 'function')
word: 0100101001001010010100100101001001010010...
sage: words.FibonacciWord('ab', 'function')
word: abaababaabaababaababaabaababaabaababaaba...

FixedPointOfMorphism(morphism, first_letter)
Returns the fixed point of the morphism beginning with first_letter.

A fixed point of a morphism 𝜙 is a word 𝑤 such that 𝜙(𝑤) = 𝑤.

INPUT:

• morphism – endomorphism prolongable on first_letter. It must be something that WordMor-
phism’s constructor understands (dict, str, . . .).

• first_letter – the first letter of the fixed point

OUTPUT:

The fixed point of the morphism beginning with first_letter

EXAMPLES:

sage: mu = {0:[0,1], 1:[1,0]}
sage: tm = words.FixedPointOfMorphism(mu,0); tm
word: 0110100110010110100101100110100110010110...
sage: TM = words.ThueMorseWord()
sage: tm[:1000] == TM[:1000]
True

3640 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

sage: mu = {0:[0,1], 1:[0]}
sage: f = words.FixedPointOfMorphism(mu,0); f
word: 0100101001001010010100100101001001010010...
sage: F = words.FibonacciWord(); F
word: 0100101001001010010100100101001001010010...
sage: f[:1000] == F[:1000]
True

sage: fp = words.FixedPointOfMorphism('a->abc,b->,c->','a'); fp
word: abc

KolakoskiWord(alphabet=(1, 2))
Returns the Kolakoski word over the given alphabet and starting with the first letter of the alphabet.

Let 𝐴 = {𝑎, 𝑏} be an alphabet, where 𝑎 and 𝑏 are two distinct positive integers. The Kolakoski word 𝐾𝑎,𝑏

over 𝐴 and starting with 𝑎 is the unique infinite word 𝑤 such that 𝑤 = ∆(𝑤), where ∆(𝑤) is the word
encoding the runs of 𝑤 (see delta() method on words for more details).

Note that 𝐾𝑎,𝑏 ̸= 𝐾𝑏,𝑎. On the other hand, the words 𝐾𝑎,𝑏 and 𝐾𝑏,𝑎 are the unique two words over 𝐴 that
are fixed by ∆.

Also note that the Kolakoski word is also known as the Oldenburger word.

INPUT:

• alphabet - (default: (1,2)) an iterable of two positive integers

OUTPUT:

infinite word

EXAMPLES:

The usual Kolakoski word:

sage: w = words.KolakoskiWord()
sage: w
word: 1221121221221121122121121221121121221221...
sage: w.delta()
word: 1221121221221121122121121221121121221221...

The other Kolakoski word on the same alphabet:

sage: w = words.KolakoskiWord(alphabet = (2,1))
sage: w
word: 2211212212211211221211212211211212212211...
sage: w.delta()
word: 2211212212211211221211212211211212212211...

It is naturally generalized to any two integers alphabet:

sage: w = words.KolakoskiWord(alphabet = (2,5))
sage: w
word: 2255222225555522552255225555522222555552...
sage: w.delta()
word: 2255222225555522552255225555522222555552...

REFERENCES:

5.1. Comprehensive Module List 3641

Combinatorics, Release 9.7

LowerChristoffelWord
alias of LowerChristoffelWord

LowerMechanicalWord(alpha, rho=0, alphabet=None)
Returns the lower mechanical word with slope 𝛼 and intercept 𝜌

The lower mechanical word 𝑠𝛼,𝜌 with slope 𝛼 and intercept 𝜌 is defined by 𝑠𝛼,𝜌(𝑛) = ⌊𝛼(𝑛 + 1) + 𝜌⌋ −
⌊𝛼𝑛+ 𝜌⌋. [Loth02]

INPUT:

• alpha – real number such that 0 ≤ 𝛼 ≤ 1

• rho – real number (optional, default: 0)

• alphabet – iterable of two elements or None (optional, default: None)

OUTPUT:

infinite word

EXAMPLES:

sage: words.LowerMechanicalWord(1/golden_ratio^2)
word: 0010010100100101001010010010100100101001...
sage: words.LowerMechanicalWord(1/5)
word: 0000100001000010000100001000010000100001...
sage: words.LowerMechanicalWord(1/pi)
word: 0001001001001001001001000100100100100100...

MinimalSmoothPrefix(n)
This function finds and returns the minimal smooth prefix of length n.

See [BMP2007] for a definition.

INPUT:

• n – the desired length of the prefix

OUTPUT:

word – the prefix

Note: Be patient, this function can take a really long time if asked for a large prefix.

EXAMPLES:

sage: words.MinimalSmoothPrefix(10)
word: 1212212112

PalindromicDefectWord(k=1, alphabet='ab')
Return the finite word 𝑤 = 𝑎𝑏𝑘𝑎𝑏𝑘−1𝑎𝑎𝑏𝑘−1𝑎𝑏𝑘𝑎.

As described by Brlek, Hamel, Nivat and Reutenauer in [BHNR2004], this finite word 𝑤 is such that the
infinite periodic word 𝑤𝜔 has palindromic defect k.

INPUT:

• k – positive integer (optional, default: 1)

• alphabet – iterable (optional, default: 'ab') of size two

3642 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

OUTPUT:

finite word

EXAMPLES:

sage: words.PalindromicDefectWord(10)
word: abbbbbbbbbbabbbbbbbbbaabbbbbbbbbabbbbbbb...

sage: w = words.PalindromicDefectWord(3)
sage: w
word: abbbabbaabbabbba
sage: w.defect()
0
sage: (w^2).defect()
3
sage: (w^3).defect()
3

On other alphabets:

sage: words.PalindromicDefectWord(3, alphabet='cd')
word: cdddcddccddcdddc
sage: words.PalindromicDefectWord(3, alphabet=['c', 3])
word: c333c33cc33c333c

RandomWord(n, m=2, alphabet=None)
Return a random word of length 𝑛 over the given 𝑚-letter alphabet.

INPUT:

• n - integer, the length of the word

• m - integer (default 2), the size of the output alphabet

• alphabet - (default is {0, 1, ...,𝑚− 1}) any container of length m that is suitable to build an instance
of OrderedAlphabet (list, tuple, str, . . .)

EXAMPLES:

sage: words.RandomWord(10) # random results
word: 0110100101
sage: words.RandomWord(10, 4) # random results
word: 0322313320
sage: words.RandomWord(100, 7) # random results
word: 2630644023642516442650025611300034413310...
sage: words.RandomWord(100, 7, range(-3,4)) # random results
word: 1,3,-1,-1,3,2,2,0,1,-2,1,-1,-3,-2,2,0,3,0,-3,0,3,0,-2,-2,2,0,1,-3,2,-2,-2,
→˓2,0,2,1,-2,-3,-2,-1,0,...
sage: words.RandomWord(100, 5, "abcde") # random results
word: acebeaaccdbedbbbdeadeebbdeeebeaaacbadaac...
sage: words.RandomWord(17, 5, "abcde") # random results
word: dcacbbecbddebaadd

StandardEpisturmianWord(directive_word)
Returns the standard episturmian word (or epistandard word) directed by directive_word. Over a 2-letter
alphabet, this function gives characteristic Sturmian words.

5.1. Comprehensive Module List 3643

Combinatorics, Release 9.7

An infinite word 𝑤 over a finite alphabet 𝐴 is said to be standard episturmian (or epistandard) iff there
exists an infinite word 𝑥1𝑥2𝑥3 · · · over 𝐴 (called the directive word of 𝑤) such that 𝑤 is the limit as 𝑛 goes
to infinity of 𝑃𝑎𝑙(𝑥1 · · ·𝑥𝑛), where 𝑃𝑎𝑙 is the iterated palindromic closure function.

Note that an infinite word is episturmian if it has the same set of factors as some epistandard word.

See for instance [DJP2001], [JP2002], and [GJ2007].

INPUT:

• directive_word - an infinite word or a period of a periodic infinite word

EXAMPLES:

sage: Fibonacci = words.StandardEpisturmianWord(Words('ab')('ab')); Fibonacci
word: abaababaabaababaababaabaababaabaababaaba...
sage: Tribonacci = words.StandardEpisturmianWord(Words('abc')('abc'));␣
→˓Tribonacci
word: abacabaabacababacabaabacabacabaabacababa...
sage: S = words.StandardEpisturmianWord(Words('abcd')('aabcabada')); S
word: aabaacaabaaabaacaabaabaacaabaaabaacaabaa...
sage: S = words.StandardEpisturmianWord(Fibonacci); S
word: abaabaababaabaabaababaabaababaabaabaabab...
sage: S[:25]
word: abaabaababaabaabaababaaba
sage: S = words.StandardEpisturmianWord(Tribonacci); S
word: abaabacabaabaabacabaababaabacabaabaabaca...
sage: words.StandardEpisturmianWord(123)
Traceback (most recent call last):
...
TypeError: directive_word is not a word, so it cannot be used to build an␣
→˓episturmian word
sage: words.StandardEpisturmianWord(Words('ab'))
Traceback (most recent call last):
...
TypeError: directive_word is not a word, so it cannot be used to build an␣
→˓episturmian word

ThueMorseWord(alphabet=(0, 1), base=2)
Returns the (Generalized) Thue-Morse word over the given alphabet.

There are several ways to define the Thue-Morse word 𝑡. We use the following definition: 𝑡[𝑛] is the sum
modulo 𝑚 of the digits in the given base expansion of 𝑛.

See [BmBGL07], [Brlek89], and [MH38].

INPUT:

• alphabet - (default: (0, 1)) any container that is suitable to build an instance of OrderedAlphabet
(list, tuple, str, . . .)

• base - an integer (default : 2) greater or equal to 2

EXAMPLES:

Thue-Morse word:

sage: t = words.ThueMorseWord(); t
word: 0110100110010110100101100110100110010110...

3644 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

Thue-Morse word on other alphabets:

sage: t = words.ThueMorseWord('ab'); t
word: abbabaabbaababbabaababbaabbabaabbaababba...

sage: t = words.ThueMorseWord(['L1', 'L2'])
sage: t[:8]
word: L1,L2,L2,L1,L2,L1,L1,L2

Generalized Thue Morse word:

sage: words.ThueMorseWord(alphabet=(0,1,2), base=2)
word: 0112122012202001122020012001011212202001...
sage: t = words.ThueMorseWord(alphabet=(0,1,2), base=5); t
word: 0120112012201200120112012120122012001201...
sage: t[100:130].critical_exponent()
10/3

REFERENCES:

UpperChristoffelWord(p, q, alphabet=(0, 1))
Returns the upper Christoffel word of slope 𝑝/𝑞, where 𝑝 and 𝑞 are relatively prime non-negative integers,
over the given alphabet.

The upper Christoffel word of slope `p/q` is equal to the reversal of the lower Christoffel word of slope 𝑝/𝑞.
Equivalently, if 𝑥𝑢𝑦 is the lower Christoffel word of slope 𝑝/𝑞, where 𝑥 and 𝑦 are letters, then 𝑦𝑢𝑥 is the
upper Christoffel word of slope 𝑝/𝑞 (because 𝑢 is a palindrome).

INPUT:

• alphabet - any container of length two that is suitable to build an instance of OrderedAlphabet (list,
tuple, str, . . .)

EXAMPLES:

sage: words.UpperChristoffelWord(1,0)
word: 1

sage: words.UpperChristoffelWord(0,1)
word: 0

sage: words.UpperChristoffelWord(1,1)
word: 10

sage: words.UpperChristoffelWord(4,7)
word: 10100100100

UpperMechanicalWord(alpha, rho=0, alphabet=None)
Returns the upper mechanical word with slope 𝛼 and intercept 𝜌

The upper mechanical word 𝑠′𝛼,𝜌 with slope 𝛼 and intercept 𝜌 is defined by 𝑠′𝛼,𝜌(𝑛) = ⌈𝛼(𝑛 + 1) + 𝜌⌉ −
⌈𝛼𝑛+ 𝜌⌉. [Loth02]

INPUT:

• alpha – real number such that 0 ≤ 𝛼 ≤ 1

• rho – real number (optional, default: 0)

5.1. Comprehensive Module List 3645

Combinatorics, Release 9.7

• alphabet – iterable of two elements or None (optional, default: None)

OUTPUT:

infinite word

EXAMPLES:

sage: words.UpperMechanicalWord(1/golden_ratio^2)
word: 1010010100100101001010010010100100101001...
sage: words.UpperMechanicalWord(1/5)
word: 1000010000100001000010000100001000010000...
sage: words.UpperMechanicalWord(1/pi)
word: 1001001001001001001001000100100100100100...

dual_fibonacci_tile(n)
Returns the 𝑛-th dual Fibonacci Tile [BmBGL09].

EXAMPLES:

sage: for i in range(4): words.dual_fibonacci_tile(i)
Path: 3210
Path: 32123032301030121012
Path: 3212303230103230321232101232123032123210...
Path: 3212303230103230321232101232123032123210...

fibonacci_tile(n)
Returns the 𝑛-th Fibonacci Tile [BmBGL09].

EXAMPLES:

sage: for i in range(3): words.fibonacci_tile(i)
Path: 3210
Path: 323030101212
Path: 3230301030323212323032321210121232121010...

s_adic(sequence, letters, morphisms=None)
Returns the 𝑠-adic infinite word obtained from a sequence of morphisms applied on a letter.

DEFINITION (from [Fogg]):

Let 𝑤 be a infinite word over an alphabet 𝐴 = 𝐴0. A standard representation of 𝑤 is obtained from a
sequence of substitutions 𝜎𝑘 : 𝐴𝑘+1 → 𝐴𝑘 and a sequence of letters 𝑎𝑘 ∈ 𝐴𝑘 such that:

lim
𝑘→∞

𝜎0 ∘ 𝜎1 ∘ · · ·𝜎𝑘(𝑎𝑘).

Given a set of substitutions 𝑆, we say that the representation is 𝑆-adic standard if the substitutions are
chosen in 𝑆.

INPUT:

• sequence - An iterable sequence of indices or of morphisms. It may be finite or infinite. If sequence
is infinite, the image of the (𝑖+1)-th letter under the (𝑖+1)-th morphism must start with the 𝑖-th letter.

• letters - A letter or a sequence of letters.

• morphisms - dict, list, callable or None (optional, default None) an object that maps indices to mor-
phisms. If None, then sequence must consist of morphisms.

OUTPUT:

3646 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

A word.

EXAMPLES:

Let us define three morphisms and compute the first nested successive prefixes of the 𝑠-adic word:

sage: m1 = WordMorphism('e->gh,f->hg')
sage: m2 = WordMorphism('c->ef,d->e')
sage: m3 = WordMorphism('a->cd,b->dc')
sage: words.s_adic([m1],'e')
word: gh
sage: words.s_adic([m1,m2],'ec')
word: ghhg
sage: words.s_adic([m1,m2,m3],'eca')
word: ghhggh

When the given sequence of morphism is finite, one may simply give the last letter, i.e. 'a', instead of
giving all of them, i.e. 'eca':

sage: words.s_adic([m1,m2,m3],'a')
word: ghhggh
sage: words.s_adic([m1,m2,m3],'b')
word: ghghhg

If the letters don’t satisfy the hypothesis of the algorithm (nested prefixes), an error is raised:

sage: words.s_adic([m1,m2,m3],'ecb')
Traceback (most recent call last):
...
ValueError: the hypothesis of the algorithm used is not satisfied; the image of␣
→˓the 3-th letter (=b) under the 3-th morphism (=a->cd, b->dc) should start␣
→˓with the 2-th letter (=c)

Let’s define the Thue-Morse morphism and the Fibonacci morphism which will be used below to illustrate
more examples and let’s import the repeat tool from the itertools:

sage: tm = WordMorphism('a->ab,b->ba')
sage: fib = WordMorphism('a->ab,b->a')
sage: from itertools import repeat

Two trivial examples of infinite 𝑠-adic words:

sage: words.s_adic(repeat(tm),repeat('a'))
word: abbabaabbaababbabaababbaabbabaabbaababba...

sage: words.s_adic(repeat(fib),repeat('a'))
word: abaababaabaababaababaabaababaabaababaaba...

A less trivial infinite 𝑠-adic word:

sage: D = {4:tm,5:fib}
sage: tmword = words.ThueMorseWord([4,5])
sage: it = (D[a] for a in tmword)
sage: words.s_adic(it, repeat('a'))
word: abbaababbaabbaabbaababbaababbaabbaababba...

5.1. Comprehensive Module List 3647

Combinatorics, Release 9.7

The same thing using a sequence of indices:

sage: tmword = words.ThueMorseWord([0,1])
sage: words.s_adic(tmword, repeat('a'), [tm,fib])
word: abbaababbaabbaabbaababbaababbaabbaababba...

The correspondence of the indices may be given as a dict:

sage: words.s_adic(tmword, repeat('a'), {0:tm,1:fib})
word: abbaababbaabbaabbaababbaababbaabbaababba...

because dict are more versatile for indices:

sage: tmwordTF = words.ThueMorseWord('TF')
sage: words.s_adic(tmwordTF, repeat('a'), {'T':tm,'F':fib})
word: abbaababbaabbaabbaababbaababbaabbaababba...

or by a callable:

sage: f = lambda n: tm if n == 0 else fib
sage: words.s_adic(words.ThueMorseWord(), repeat('a'), f)
word: abbaababbaabbaabbaababbaababbaabbaababba...

Random infinite 𝑠-adic words:

sage: from sage.misc.prandom import randint
sage: def it():
....: while True: yield randint(0,1)
sage: words.s_adic(it(), repeat('a'), [tm,fib]) # random
word: abbaabababbaababbaabbaababbaabababbaabba...
sage: words.s_adic(it(), repeat('a'), [tm,fib]) # random
word: abbaababbaabbaababbaababbaabbaababbaabba...
sage: words.s_adic(it(), repeat('a'), [tm,fib]) # random
word: abaaababaabaabaaababaabaaababaaababaabaa...

An example where the sequences cycle on two morphisms and two letters:

sage: G = WordMorphism('a->cd,b->dc')
sage: H = WordMorphism('c->ab,d->ba')
sage: from itertools import cycle
sage: words.s_adic([G,H],'ac')
word: cddc
sage: words.s_adic(cycle([G,H]),cycle('ac'))
word: cddcdccddccdcddcdccdcddccddcdccddccdcddc...

The morphism 𝜎 : 𝑎 ↦→ 𝑏𝑎, 𝑏 ↦→ 𝑏 can’t satisfy the hypothesis of the nested prefixes, but one may compute
arbitrarily long finite words having the limit 𝜎𝜔(𝑎):

sage: sigma = WordMorphism('a->ba,b->b')
sage: words.s_adic(repeat(sigma),repeat('a'))
Traceback (most recent call last):
...
ValueError: the hypothesis of the algorithm used is not satisfied; the image of␣
→˓the 2-th letter (=a) under the 2-th morphism (=a->ba, b->b) should start with␣
→˓the 1-th letter (=a)

(continues on next page)

3648 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: words.s_adic([sigma],'a')
word: ba
sage: words.s_adic([sigma,sigma],'a')
word: bba
sage: words.s_adic([sigma]*3,'a')
word: bbba
sage: words.s_adic([sigma]*4,'a')
word: bbbba
sage: words.s_adic([sigma]*5,'a')
word: bbbbba
sage: words.s_adic([sigma]*6,'a')
word: bbbbbba
sage: words.s_adic([sigma]*7,'a')
word: bbbbbbba

The following examples illustrates an 𝑆-adic word defined over an infinite set 𝑆 of morphisms 𝑥ℎ:

sage: x = lambda h:WordMorphism({1:[2],2:[3]+[1]*(h+1),3:[3]+[1]*h})
sage: for h in [0,1,2,3]:
....: print("{} {}".format(h, x(h)))
0 1->2, 2->31, 3->3
1 1->2, 2->311, 3->31
2 1->2, 2->3111, 3->311
3 1->2, 2->31111, 3->3111
sage: w = Word(lambda n : valuation(n+1, 2)); w
word: 0102010301020104010201030102010501020103...
sage: s = words.s_adic(w, repeat(3), x); s
word: 3232232232322322322323223223232232232232...
sage: prefixe = s[:10000]
sage: list(map(prefixe.number_of_factors, range(15)))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: [_[i+1] - _[i] for i in range(len(_)-1)]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

AUTHORS:

• Sébastien Labbé (2009-12-18): initial version

5.1.365 Datatypes for words defined by iterators and callables

class sage.combinat.words.word_infinite_datatypes.WordDatatype_callable(parent, callable,
length=None)

Bases: sage.combinat.words.word_datatypes.WordDatatype

Datatype for a word defined by a callable.

class sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching(parent,
callable,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_callable

Datatype for a word defined by a callable.

5.1. Comprehensive Module List 3649

Combinatorics, Release 9.7

flush()
Empty the associated cache of letters.

EXAMPLES:

The first 40 (by default) values are always cached:

sage: w = words.ThueMorseWord()
sage: w._letter_cache
{0: 0, 1: 1, 2: 1, 3: 0, 4: 1, 5: 0, 6: 0, 7: 1, 8: 1, 9: 0, 10: 0, 11: 1, 12:␣
→˓0, 13: 1, 14: 1, 15: 0, 16: 1, 17: 0, 18: 0, 19: 1, 20: 0, 21: 1, 22: 1, 23:␣
→˓0, 24: 0, 25: 1, 26: 1, 27: 0, 28: 1, 29: 0, 30: 0, 31: 1, 32: 1, 33: 0, 34:␣
→˓0, 35: 1, 36: 0, 37: 1, 38: 1, 39: 0}
sage: w[100]
1
sage: w._letter_cache
{0: 0, 1: 1, 2: 1, 3: 0, 4: 1, 5: 0, 6: 0, 7: 1, 8: 1, 9: 0, 10: 0, 11: 1, 12:␣
→˓0, 13: 1, 14: 1, 15: 0, 16: 1, 17: 0, 18: 0, 19: 1, 20: 0, 21: 1, 22: 1, 23:␣
→˓0, 24: 0, 25: 1, 26: 1, 27: 0, 28: 1, 29: 0, 30: 0, 31: 1, 32: 1, 33: 0, 34:␣
→˓0, 35: 1, 36: 0, 37: 1, 38: 1, 39: 0, 100: 1}
sage: w.flush()
sage: w._letter_cache
{}

class sage.combinat.words.word_infinite_datatypes.WordDatatype_iter(parent, iter, length=None)
Bases: sage.combinat.words.word_datatypes.WordDatatype

INPUT:

• parent - a parent

• iter - an iterator

• length - (default: None) the length of the word

EXAMPLES:

sage: w = Word(iter("abbabaab"), length="unknown", caching=False); w
word: abbabaab
sage: isinstance(w, sage.combinat.words.word_infinite_datatypes.WordDatatype_iter)
True
sage: w.length() is None
False
sage: w.length()
8
sage: s = "abbabaabbaababbabaababbaabbabaabbaababbaabbabaabab"
sage: w = Word(iter(s), length="unknown", caching=False); w
word: abbabaabbaababbabaababbaabbabaabbaababba...
sage: w.length() is None
True

sage: w = Word(iter("abbabaab"), length="finite", caching=False); w
word: abbabaab
sage: isinstance(w, sage.combinat.words.word_infinite_datatypes.WordDatatype_iter)
True
sage: w.length()
8

(continues on next page)

3650 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: w = Word(iter("abbabaab"), length=8, caching=False); w
word: abbabaab
sage: isinstance(w, sage.combinat.words.word_infinite_datatypes.WordDatatype_iter)
True
sage: w.length()
8

class sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching(parent,
iter,
length=None)

Bases: sage.combinat.words.word_infinite_datatypes.WordDatatype_iter

INPUT:

• parent - a parent

• iter - an iterator

• length - (default: None) the length of the word

EXAMPLES:

sage: import itertools
sage: Word(itertools.cycle("abbabaab"))
word: abbabaababbabaababbabaababbabaababbabaab...
sage: w = Word(iter("abbabaab"), length="finite"); w
word: abbabaab
sage: w.length()
8
sage: w = Word(iter("abbabaab"), length="unknown"); w
word: abbabaab
sage: w.length()
8
sage: list(w)
['a', 'b', 'b', 'a', 'b', 'a', 'a', 'b']
sage: w.length()
8
sage: w = Word(iter("abbabaab"), length=8)
sage: w._len
8

flush()
Delete the cached values.

EXAMPLES:

sage: from itertools import count
sage: w = Word(count())
sage: w._last_index, len(w._list)
(39, 40)
sage: w[43]
43
sage: w._last_index, len(w._list)
(43, 44)
sage: w.flush()

(continues on next page)

5.1. Comprehensive Module List 3651

Combinatorics, Release 9.7

(continued from previous page)

sage: w._last_index, w._list
(-1, [])

5.1.366 User-customizable options for words

sage.combinat.words.word_options.WordOptions(**kwargs)
Sets the global options for elements of the word class. The defaults are for words to be displayed in list notation.

INPUT:

• display - ‘string’ (default), or ‘list’, words are displayed in string or list notation.

• truncate - boolean (default: True), whether to truncate the string output of long words (see trun-
cate_length below).

• truncate_length - integer (default: 40), if the length of the word is greater than this integer, then the
word is truncated.

• letter_separator - (string, default: “,”) if the string representation of letters have length greater than 1,
then the letters are separated by this string in the string representation of the word.

If no parameters are set, then the function returns a copy of the options dictionary.

EXAMPLES:

sage: w = Word([2,1,3,12])
sage: u = Word("abba")
sage: WordOptions(display='list')
sage: w
word: [2, 1, 3, 12]
sage: u
word: ['a', 'b', 'b', 'a']
sage: WordOptions(display='string')
sage: w
word: 2,1,3,12
sage: u
word: abba

5.1.367 Set of words

To define a new class of words, please refer to the documentation file:
sage/combinat/words/notes/word_inheritance_howto.rst

AUTHORS:

• Franco Saliola (2008-12-17): merged into sage

• Sebastien Labbe (2008-12-17): merged into sage

• Arnaud Bergeron (2008-12-17): merged into sage

• Sebastien Labbe (2009-07-21): Improved morphism iterator (trac ticket #6571).

• Vincent Delecroix (2015): classes simplifications (trac ticket #19619)

EXAMPLES:

3652 Chapter 5. Comprehensive Module List

https://trac.sagemath.org/6571
https://trac.sagemath.org/19619

Combinatorics, Release 9.7

sage: Words()
Finite and infinite words over Set of Python objects of class 'object'
sage: Words(4)
Finite and infinite words over {1, 2, 3, 4}
sage: Words(4,5)
Words of length 5 over {1, 2, 3, 4}

sage: FiniteWords('ab')
Finite words over {'a', 'b'}
sage: InfiniteWords('natural numbers')
Infinite words over Non negative integers

class sage.combinat.words.words.AbstractLanguage(alphabet=None, category=None)
Bases: sage.structure.parent.Parent

Abstract base class

This is not to be used by any means. This class gather previous features of set of words (prior to trac ticket
#19619). In the future that class might simply disappear or become a common base class for all languages. In
the latter case, its name would possibly change to Language.

alphabet()
EXAMPLES:

sage: Words(NN).alphabet()
Non negative integer semiring

sage: InfiniteWords([1,2,3]).alphabet()
{1, 2, 3}
sage: InfiniteWords('ab').alphabet()
{'a', 'b'}

sage: FiniteWords([1,2,3]).alphabet()
{1, 2, 3}
sage: FiniteWords().alphabet()
Set of Python objects of class 'object'

identity_morphism()
Returns the identity morphism from self to itself.

EXAMPLES:

sage: W = Words('ab')
sage: W.identity_morphism()
WordMorphism: a->a, b->b

sage: W = Words(range(3))
sage: W.identity_morphism()
WordMorphism: 0->0, 1->1, 2->2

There is no support yet for infinite alphabet:

sage: W = Words(alphabet=Alphabet(name='NN'))
sage: W
Finite and infinite words over Non negative integers

(continues on next page)

5.1. Comprehensive Module List 3653

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
https://trac.sagemath.org/19619
https://trac.sagemath.org/19619

Combinatorics, Release 9.7

(continued from previous page)

sage: W.identity_morphism()
Traceback (most recent call last):
...
NotImplementedError: size of alphabet must be finite

class sage.combinat.words.words.FiniteOrInfiniteWords(alphabet)
Bases: sage.combinat.words.words.AbstractLanguage

INPUT:

• alphabet – the underlying alphabet

cardinality()
Return the cardinality of this set of words.

EXAMPLES:

sage: Words('abcd').cardinality()
+Infinity
sage: Words('a').cardinality()
+Infinity
sage: Words('').cardinality()
1

factors()
Return the set of finite words.

EXAMPLES:

sage: Words('ab').finite_words()
Finite words over {'a', 'b'}

finite_words()
Return the set of finite words.

EXAMPLES:

sage: Words('ab').finite_words()
Finite words over {'a', 'b'}

infinite_words()
Return the set of infinite words.

EXAMPLES:

sage: Words('ab').infinite_words()
Infinite words over {'a', 'b'}

iterate_by_length(length)
Return an iterator over the words of given length.

EXAMPLES:

sage: [w.string_rep() for w in Words('ab').iterate_by_length(3)]
['aaa', 'aab', 'aba', 'abb', 'baa', 'bab', 'bba', 'bbb']

shift()
Return the set of infinite words.

3654 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

EXAMPLES:

sage: Words('ab').infinite_words()
Infinite words over {'a', 'b'}

class sage.combinat.words.words.FiniteWords(alphabet=None, category=None)
Bases: sage.combinat.words.words.AbstractLanguage

The set of finite words over a fixed alphabet.

EXAMPLES:

sage: W = FiniteWords('ab')
sage: W
Finite words over {'a', 'b'}

cardinality()
Return the cardinality of this set.

EXAMPLES:

sage: FiniteWords('').cardinality()
1
sage: FiniteWords('a').cardinality()
+Infinity

factors()
Return itself.

EXAMPLES:

sage: FiniteWords('ab').factors()
Finite words over {'a', 'b'}

iter_morphisms(arg=None, codomain=None, min_length=1)
Iterate over all morphisms with domain self and the given codomain.

INPUT:

• arg - (optional, default: None) It can be one of the following:

– None - then the method iterates through all morphisms.

– tuple (𝑎, 𝑏) of two integers - It specifies the range range(a, b) of values to consider for the sum
of the length of the image of each letter in the alphabet.

– list of nonnegative integers - The length of the list must be equal to the size of the alphabet, and the
i-th integer of arg determines the length of the word mapped to by the i-th letter of the (ordered)
alphabet.

• codomain - (default: None) a combinatorial class of words. By default, codomain is self.

• min_length - (default: 1) nonnegative integer. If arg is not specified, then iterate through all the
morphisms where the length of the images of each letter in the alphabet is at least min_length. This
is ignored if arg is a list.

OUTPUT:

iterator

EXAMPLES:

5.1. Comprehensive Module List 3655

Combinatorics, Release 9.7

Iterator over all non-erasing morphisms:

sage: W = FiniteWords('ab')
sage: it = W.iter_morphisms()
sage: for _ in range(7): next(it)
WordMorphism: a->a, b->a
WordMorphism: a->a, b->b
WordMorphism: a->b, b->a
WordMorphism: a->b, b->b
WordMorphism: a->aa, b->a
WordMorphism: a->aa, b->b
WordMorphism: a->ab, b->a

Iterator over all morphisms including erasing morphisms:

sage: W = FiniteWords('ab')
sage: it = W.iter_morphisms(min_length=0)
sage: for _ in range(7): next(it)
WordMorphism: a->, b->
WordMorphism: a->a, b->
WordMorphism: a->b, b->
WordMorphism: a->, b->a
WordMorphism: a->, b->b
WordMorphism: a->aa, b->
WordMorphism: a->ab, b->

Iterator over morphisms where the sum of the lengths of the images of the letters is in a specific range:

sage: for m in W.iter_morphisms((0, 3), min_length=0): m
WordMorphism: a->aa, b->
WordMorphism: a->ab, b->
WordMorphism: a->ba, b->
WordMorphism: a->bb, b->
WordMorphism: a->a, b->a
WordMorphism: a->a, b->b
WordMorphism: a->b, b->a
WordMorphism: a->b, b->b
WordMorphism: a->a, b->
WordMorphism: a->b, b->
WordMorphism: a->, b->aa
WordMorphism: a->, b->ab
WordMorphism: a->, b->ba
WordMorphism: a->, b->bb
WordMorphism: a->, b->a
WordMorphism: a->, b->b
WordMorphism: a->, b->

sage: for m in W.iter_morphisms((2, 4)): m
WordMorphism: a->aa, b->a
WordMorphism: a->aa, b->b
WordMorphism: a->ab, b->a
WordMorphism: a->ab, b->b
WordMorphism: a->ba, b->a
WordMorphism: a->ba, b->b

(continues on next page)

3656 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

WordMorphism: a->bb, b->a
WordMorphism: a->bb, b->b
WordMorphism: a->a, b->aa
WordMorphism: a->a, b->ab
WordMorphism: a->a, b->ba
WordMorphism: a->a, b->bb
WordMorphism: a->b, b->aa
WordMorphism: a->b, b->ab
WordMorphism: a->b, b->ba
WordMorphism: a->b, b->bb
WordMorphism: a->a, b->a
WordMorphism: a->a, b->b
WordMorphism: a->b, b->a
WordMorphism: a->b, b->b

Iterator over morphisms with specific image lengths:

sage: for m in W.iter_morphisms([0, 0]): m
WordMorphism: a->, b->
sage: for m in W.iter_morphisms([0, 1]): m
WordMorphism: a->, b->a
WordMorphism: a->, b->b
sage: for m in W.iter_morphisms([2, 1]): m
WordMorphism: a->aa, b->a
WordMorphism: a->aa, b->b
WordMorphism: a->ab, b->a
WordMorphism: a->ab, b->b
WordMorphism: a->ba, b->a
WordMorphism: a->ba, b->b
WordMorphism: a->bb, b->a
WordMorphism: a->bb, b->b
sage: for m in W.iter_morphisms([2, 2]): m
WordMorphism: a->aa, b->aa
WordMorphism: a->aa, b->ab
WordMorphism: a->aa, b->ba
WordMorphism: a->aa, b->bb
WordMorphism: a->ab, b->aa
WordMorphism: a->ab, b->ab
WordMorphism: a->ab, b->ba
WordMorphism: a->ab, b->bb
WordMorphism: a->ba, b->aa
WordMorphism: a->ba, b->ab
WordMorphism: a->ba, b->ba
WordMorphism: a->ba, b->bb
WordMorphism: a->bb, b->aa
WordMorphism: a->bb, b->ab
WordMorphism: a->bb, b->ba
WordMorphism: a->bb, b->bb

The codomain may be specified as well:

sage: Y = FiniteWords('xyz')
(continues on next page)

5.1. Comprehensive Module List 3657

Combinatorics, Release 9.7

(continued from previous page)

sage: for m in W.iter_morphisms([0, 2], codomain=Y): m
WordMorphism: a->, b->xx
WordMorphism: a->, b->xy
WordMorphism: a->, b->xz
WordMorphism: a->, b->yx
WordMorphism: a->, b->yy
WordMorphism: a->, b->yz
WordMorphism: a->, b->zx
WordMorphism: a->, b->zy
WordMorphism: a->, b->zz
sage: for m in Y.iter_morphisms([0,2,1], codomain=W): m
WordMorphism: x->, y->aa, z->a
WordMorphism: x->, y->aa, z->b
WordMorphism: x->, y->ab, z->a
WordMorphism: x->, y->ab, z->b
WordMorphism: x->, y->ba, z->a
WordMorphism: x->, y->ba, z->b
WordMorphism: x->, y->bb, z->a
WordMorphism: x->, y->bb, z->b
sage: it = W.iter_morphisms(codomain=Y)
sage: for _ in range(10): next(it)
WordMorphism: a->x, b->x
WordMorphism: a->x, b->y
WordMorphism: a->x, b->z
WordMorphism: a->y, b->x
WordMorphism: a->y, b->y
WordMorphism: a->y, b->z
WordMorphism: a->z, b->x
WordMorphism: a->z, b->y
WordMorphism: a->z, b->z
WordMorphism: a->xx, b->x

iterate_by_length(l=1)
Returns an iterator over all the words of self of length l.

INPUT:

• l - integer (default: 1), the length of the desired words

EXAMPLES:

sage: W = FiniteWords('ab')
sage: list(W.iterate_by_length(1))
[word: a, word: b]
sage: list(W.iterate_by_length(2))
[word: aa, word: ab, word: ba, word: bb]
sage: list(W.iterate_by_length(3))
[word: aaa,
word: aab,
word: aba,
word: abb,
word: baa,
word: bab,
word: bba,

(continues on next page)

3658 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

word: bbb]
sage: list(W.iterate_by_length('a'))
Traceback (most recent call last):
...
TypeError: the parameter l (='a') must be an integer

random_element(length=None, *args, **kwds)
Returns a random finite word on the given alphabet.

INPUT:

• length – (optional) the length of the word. If not set, will use a uniformly random number between 0
and 10.

• all other argument are transmitted to the random generator of the alphabet

EXAMPLES:

sage: W = FiniteWords(5)
sage: W.random_element() # random
word: 5114325445423521544531411434451152142155...

sage: W = FiniteWords(ZZ)
sage: W.random_element() # random
word: 5,-1,-1,-1,0,0,0,0,-3,-11
sage: W.random_element(length=4, x=0, y=4) # random
word: 1003

shift()
Return the set of infinite words on the same alphabet.

EXAMPLES:

sage: FiniteWords('ab').shift()
Infinite words over {'a', 'b'}

class sage.combinat.words.words.InfiniteWords(alphabet=None, category=None)
Bases: sage.combinat.words.words.AbstractLanguage

cardinality()
Return the cardinality of this set

EXAMPLES:

sage: InfiniteWords('ab').cardinality()
+Infinity
sage: InfiniteWords('a').cardinality()
1
sage: InfiniteWords('').cardinality()
0

factors()
Return the set of finite words on the same alphabet.

EXAMPLES:

5.1. Comprehensive Module List 3659

Combinatorics, Release 9.7

sage: InfiniteWords('ab').factors()
Finite words over {'a', 'b'}

random_element(*args, **kwds)
Return a random infinite word.

EXAMPLES:

sage: W = InfiniteWords('ab')
sage: W.random_element() # random
word: abbbabbaabbbabbabbaabaabbabbbbbbbbaabbbb...

sage: W = InfiniteWords(ZZ)
sage: W.random_element(x=2,y=4) # random
word: 3333223322232233333223323223222233233233...

shift()
Return itself.

EXAMPLES:

sage: InfiniteWords('ab').shift()
Infinite words over {'a', 'b'}

sage.combinat.words.words.Words(alphabet=None, length=None, finite=True, infinite=True)
Returns the combinatorial class of words of length k over an alphabet.

EXAMPLES:

sage: Words()
Finite and infinite words over Set of Python objects of class 'object'
sage: Words(length=7)
Words of length 7 over Set of Python objects of class 'object'
sage: Words(5)
Finite and infinite words over {1, 2, 3, 4, 5}
sage: Words(5, 3)
Words of length 3 over {1, 2, 3, 4, 5}
sage: Words(5, infinite=False)
Finite words over {1, 2, 3, 4, 5}
sage: Words(5, finite=False)
Infinite words over {1, 2, 3, 4, 5}
sage: Words('ab')
Finite and infinite words over {'a', 'b'}
sage: Words('ab', 2)
Words of length 2 over {'a', 'b'}
sage: Words('ab', infinite=False)
Finite words over {'a', 'b'}
sage: Words('ab', finite=False)
Infinite words over {'a', 'b'}
sage: Words('positive integers', finite=False)
Infinite words over Positive integers
sage: Words('natural numbers')
Finite and infinite words over Non negative integers

class sage.combinat.words.words.Words_n(words, n)
Bases: sage.structure.parent.Parent

3660 Chapter 5. Comprehensive Module List

../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent

Combinatorics, Release 9.7

The set of words of fixed length on a given alphabet.

alphabet()
Return the underlying alphabet.

EXAMPLES:

sage: Words([0,1], 4).alphabet()
{0, 1}

cardinality()
Returns the number of words of length 𝑛 from alphabet.

EXAMPLES:

sage: Words(['a','b','c'], 4).cardinality()
81
sage: Words(3, 4).cardinality()
81
sage: Words(0,0).cardinality()
1
sage: Words(5,0).cardinality()
1
sage: Words(['a','b','c'],0).cardinality()
1
sage: Words(0,1).cardinality()
0
sage: Words(5,1).cardinality()
5
sage: Words(['a','b','c'],1).cardinality()
3
sage: Words(7,13).cardinality()
96889010407
sage: Words(['a','b','c','d','e','f','g'],13).cardinality()
96889010407

iterate_by_length(length)
All words in this class are of the same length, so use iterator instead.

list()
Returns a list of all the words contained in self.

EXAMPLES:

sage: Words(0,0).list()
[word:]
sage: Words(5,0).list()
[word:]
sage: Words(['a','b','c'],0).list()
[word:]
sage: Words(5,1).list()
[word: 1, word: 2, word: 3, word: 4, word: 5]
sage: Words(['a','b','c'],2).list()
[word: aa, word: ab, word: ac, word: ba, word: bb, word: bc, word: ca, word: cb,
→˓ word: cc]

5.1. Comprehensive Module List 3661

Combinatorics, Release 9.7

random_element(*args, **kwds)
Return a random word in this set.

EXAMPLES:

sage: W = Words('ab', 4)
sage: W.random_element() # random
word: bbab
sage: W.random_element() in W
True

sage: W = Words(ZZ, 5)
sage: W.random_element() # random
word: 1,2,2,-1,12
sage: W.random_element() in W
True

5.1.368 Yang-Baxter Graphs

class sage.combinat.yang_baxter_graph.SwapIncreasingOperator(i)
Bases: sage.combinat.yang_baxter_graph.SwapOperator

class sage.combinat.yang_baxter_graph.SwapOperator(i)
Bases: sage.structure.sage_object.SageObject

The operator that swaps the items in positions i and i+1.

EXAMPLES:

sage: from sage.combinat.yang_baxter_graph import SwapOperator
sage: s3 = SwapOperator(3)
sage: s3 == loads(dumps(s3))
True

position()
self is the operator that swaps positions i and i+1. This method returns i.

EXAMPLES:

sage: from sage.combinat.yang_baxter_graph import SwapOperator
sage: s3 = SwapOperator(3)
sage: s3.position()
3

sage.combinat.yang_baxter_graph.YangBaxterGraph(partition=None, root=None, operators=None)
Construct the Yang-Baxter graph from root by repeated application of operators, or the Yang-Baxter graph
associated to partition.

INPUT:

The user needs to provide either partition or both root and operators, where

• partition – a partition of a positive integer

• root – the root vertex

• operator - a function that maps vertices 𝑢 to a list of tuples of the form (𝑣, 𝑙) where 𝑣 is a successor of 𝑢
and 𝑙 is the label of the edge from 𝑢 to 𝑣.

3662 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

OUTPUT:

• Either:

– YangBaxterGraph_partition - if partition is defined

– YangBaxterGraph_generic - if partition is None

EXAMPLES:

The Yang-Baxter graph defined by a partition [𝑝1, . . . , 𝑝𝑘] is the labelled directed graph with vertex set obtained
by bubble-sorting (𝑝𝑘 − 1, 𝑝𝑘 − 2, . . . , 0, . . . , 𝑝1 − 1, 𝑝1 − 2, . . . , 0); there is an arrow from 𝑢 to 𝑣 labelled by
𝑖 if 𝑣 is obtained by swapping the 𝑖-th and (𝑖 + 1)-th elements of 𝑢. For example, if the partition is [3, 1], then
we begin with (0, 2, 1, 0) and generate all tuples obtained from it by swapping two adjacent entries if they are
increasing:

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: bubbleswaps = [SwapIncreasingOperator(i) for i in range(3)]
sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=bubbleswaps); Y
Yang-Baxter graph with root vertex (0, 2, 1, 0)
sage: Y.vertices(sort=True)
[(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)]

The partition keyword is a shorthand for the above construction:

sage: Y = YangBaxterGraph(partition=[3,1]); Y
Yang-Baxter graph of [3, 1], with top vertex (0, 2, 1, 0)
sage: Y.vertices(sort=True)
[(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)]

The permutahedron can be realized as a Yang-Baxter graph:

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: swappers = [SwapIncreasingOperator(i) for i in range(3)]
sage: Y = YangBaxterGraph(root=(1,2,3,4), operators=swappers); Y
Yang-Baxter graph with root vertex (1, 2, 3, 4)
sage: Y.plot()
Graphics object consisting of 97 graphics primitives

The Cayley graph of a finite group can be realized as a Yang-Baxter graph:

sage: def left_multiplication_by(g):
....: return lambda h : h*g
sage: G = CyclicPermutationGroup(4)
sage: operators = [left_multiplication_by(gen) for gen in G.gens()]
sage: Y = YangBaxterGraph(root=G.identity(), operators=operators); Y
Yang-Baxter graph with root vertex ()
sage: Y.plot(edge_labels=False)
Graphics object consisting of 9 graphics primitives

sage: G = SymmetricGroup(4)
sage: operators = [left_multiplication_by(gen) for gen in G.gens()]
sage: Y = YangBaxterGraph(root=G.identity(), operators=operators); Y
Yang-Baxter graph with root vertex ()
sage: Y.plot(edge_labels=False)
Graphics object consisting of 96 graphics primitives

5.1. Comprehensive Module List 3663

Combinatorics, Release 9.7

AUTHORS:

• Franco Saliola (2009-04-23)

class sage.combinat.yang_baxter_graph.YangBaxterGraph_generic(root, operators)
Bases: sage.structure.sage_object.SageObject

A class to model the Yang-Baxter graph defined by root and operators.

INPUT:

• root – the root vertex of the graph

• operators – a list of callables that map vertices to (new) vertices.

Note: This is a lazy implementation: the digraph is only computed when it is needed.

EXAMPLES:

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: ops = [SwapIncreasingOperator(i) for i in range(4)]
sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops); Y
Yang-Baxter graph with root vertex (1, 0, 2, 1, 0)
sage: loads(dumps(Y)) == Y
True

AUTHORS:

• Franco Saliola (2009-04-23)

edges()
Return the (labelled) edges of self.

EXAMPLES:

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: ops = [SwapIncreasingOperator(i) for i in range(3)]
sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops)
sage: Y.edges()
[((0, 2, 1, 0), (2, 0, 1, 0), Swap-if-increasing at position 0), ((2, 0, 1, 0),␣
→˓(2, 1, 0, 0), Swap-if-increasing at position 1)]

plot(*args, **kwds)
Plot self as a digraph.

EXAMPLES:

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: ops = [SwapIncreasingOperator(i) for i in range(4)]
sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops)
sage: Y.plot()
Graphics object consisting of 16 graphics primitives
sage: Y.plot(edge_labels=False)
Graphics object consisting of 11 graphics primitives

relabel_edges(edge_dict, inplace=True)
Relabel the edges of self.

INPUT:

3664 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/structure/sage/structure/sage_object.html#sage.structure.sage_object.SageObject

Combinatorics, Release 9.7

• edge_dict – a dictionary keyed by the (unlabelled) edges.

EXAMPLES:

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: ops = [SwapIncreasingOperator(i) for i in range(3)]
sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops)
sage: def relabel_op(op, u):
....: i = op.position()
....: return u[:i] + u[i:i+2][::-1] + u[i+2:]
sage: Y.edges()
[((0, 2, 1, 0), (2, 0, 1, 0), Swap-if-increasing at position 0), ((2, 0, 1, 0),␣
→˓(2, 1, 0, 0), Swap-if-increasing at position 1)]
sage: d = {((0,2,1,0),(2,0,1,0)):17, ((2,0,1,0),(2,1,0,0)):27}
sage: Y.relabel_edges(d, inplace=False).edges()
[((0, 2, 1, 0), (2, 0, 1, 0), 17), ((2, 0, 1, 0), (2, 1, 0, 0), 27)]
sage: Y.edges()
[((0, 2, 1, 0), (2, 0, 1, 0), Swap-if-increasing at position 0), ((2, 0, 1, 0),␣
→˓(2, 1, 0, 0), Swap-if-increasing at position 1)]
sage: Y.relabel_edges(d, inplace=True)
sage: Y.edges()
[((0, 2, 1, 0), (2, 0, 1, 0), 17), ((2, 0, 1, 0), (2, 1, 0, 0), 27)]

relabel_vertices(v, relabel_operator, inplace=True)
Relabel the vertices u of self by the object obtained from u by applying the relabel_operator to v
along a path from self.root() to u.

Note that the self.root() is paired with v.

INPUT:

• v – tuple, Permutation, . . .

• inplace – if True, modifies self; otherwise returns a modified copy of self.

EXAMPLES:

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: ops = [SwapIncreasingOperator(i) for i in range(3)]
sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops)
sage: def relabel_op(op, u):
....: i = op.position()
....: return u[:i] + u[i:i+2][::-1] + u[i+2:]
sage: d = Y.relabel_vertices((1,2,3,4), relabel_op, inplace=False); d
Yang-Baxter graph with root vertex (1, 2, 3, 4)
sage: Y.vertices(sort=True)
[(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)]
sage: e = Y.relabel_vertices((1,2,3,4), relabel_op); e
sage: Y.vertices(sort=True)
[(1, 2, 3, 4), (2, 1, 3, 4), (2, 3, 1, 4)]

root()
Return the root vertex of self.

If self is the Yang-Baxter graph of the partition [𝑝1, 𝑝2, . . . , 𝑝𝑘], then this is the vertex (𝑝𝑘 − 1, 𝑝𝑘 −
2, . . . , 0, . . . , 𝑝1 − 1, 𝑝1 − 2, . . . , 0).

EXAMPLES:

5.1. Comprehensive Module List 3665

Combinatorics, Release 9.7

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: ops = [SwapIncreasingOperator(i) for i in range(4)]
sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops)
sage: Y.root()
(1, 0, 2, 1, 0)
sage: Y = YangBaxterGraph(root=(0,1,0,2,1,0), operators=ops)
sage: Y.root()
(0, 1, 0, 2, 1, 0)
sage: Y = YangBaxterGraph(root=(1,0,3,2,1,0), operators=ops)
sage: Y.root()
(1, 0, 3, 2, 1, 0)
sage: Y = YangBaxterGraph(partition=[3,2])
sage: Y.root()
(1, 0, 2, 1, 0)

successors(v)
Return the successors of the vertex v.

EXAMPLES:

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: ops = [SwapIncreasingOperator(i) for i in range(4)]
sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops)
sage: Y.successors(Y.root())
[(1, 2, 0, 1, 0)]
sage: sorted(Y.successors((1, 2, 0, 1, 0)))
[(1, 2, 1, 0, 0), (2, 1, 0, 1, 0)]

vertex_relabelling_dict(v, relabel_operator)
Return a dictionary pairing vertices u of self with the object obtained from v by applying the
relabel_operator along a path from the root to u.

Note that the root is paired with v.

INPUT:

• v – an object

• relabel_operator – function mapping a vertex and a label to the image of the vertex

OUTPUT:

• dictionary pairing vertices with the corresponding image of v

EXAMPLES:

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: ops = [SwapIncreasingOperator(i) for i in range(3)]
sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops)
sage: def relabel_operator(op, u):
....: i = op.position()
....: return u[:i] + u[i:i+2][::-1] + u[i+2:]
sage: Y.vertex_relabelling_dict((1,2,3,4), relabel_operator)
{(0, 2, 1, 0): (1, 2, 3, 4),
(2, 0, 1, 0): (2, 1, 3, 4),
(2, 1, 0, 0): (2, 3, 1, 4)}

3666 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

vertices(sort=False)
Return the vertices of self.

INPUT:

• sort – boolean (default False) whether to sort the vertices

EXAMPLES:

sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: ops = [SwapIncreasingOperator(i) for i in range(3)]
sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops)
sage: Y.vertices(sort=True)
[(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)]

class sage.combinat.yang_baxter_graph.YangBaxterGraph_partition(partition)
Bases: sage.combinat.yang_baxter_graph.YangBaxterGraph_generic

A class to model the Yang-Baxter graph of a partition.

The Yang-Baxter graph defined by a partition [𝑝1, . . . , 𝑝𝑘] is the labelled directed graph with vertex set obtained
by bubble-sorting (𝑝𝑘 − 1, 𝑝𝑘 − 2, . . . , 0, . . . , 𝑝1 − 1, 𝑝1 − 2, . . . , 0); there is an arrow from 𝑢 to 𝑣 labelled by 𝑖
if 𝑣 is obtained by swapping the 𝑖-th and (𝑖+ 1)-th elements of 𝑢.

Note: This is a lazy implementation: the digraph is only computed when it is needed.

EXAMPLES:

sage: Y = YangBaxterGraph(partition=[3,2,1]); Y
Yang-Baxter graph of [3, 2, 1], with top vertex (0, 1, 0, 2, 1, 0)
sage: loads(dumps(Y)) == Y
True

AUTHORS:

• Franco Saliola (2009-04-23)

relabel_vertices(v, inplace=True)
Relabel the vertices of self with the object obtained from v by applying the transpositions corresponding
to the edge labels along some path from the root to the vertex.

INPUT:

• v – tuple, Permutation, . . .

• inplace – if True, modifies self; otherwise returns a modified copy of self.

EXAMPLES:

sage: Y = YangBaxterGraph(partition=[3,1]); Y
Yang-Baxter graph of [3, 1], with top vertex (0, 2, 1, 0)
sage: d = Y.relabel_vertices((1,2,3,4), inplace=False); d
Digraph on 3 vertices
sage: Y.vertices(sort=True)
[(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)]
sage: e = Y.relabel_vertices((1,2,3,4)); e
sage: Y.vertices(sort=True)
[(1, 2, 3, 4), (2, 1, 3, 4), (2, 3, 1, 4)]

5.1. Comprehensive Module List 3667

Combinatorics, Release 9.7

vertex_relabelling_dict(v)
Return a dictionary pairing vertices u of self with the object obtained from v by applying transpositions
corresponding to the edges labels along a path from the root to u.

Note that the root is paired with v.

INPUT:

• v – an object

OUTPUT:

• dictionary pairing vertices with the corresponding image of v

EXAMPLES:

sage: Y = YangBaxterGraph(partition=[3,1])
sage: Y.vertex_relabelling_dict((1,2,3,4))
{(0, 2, 1, 0): (1, 2, 3, 4),
(2, 0, 1, 0): (2, 1, 3, 4),
(2, 1, 0, 0): (2, 3, 1, 4)}
sage: Y.vertex_relabelling_dict((4,3,2,1))
{(0, 2, 1, 0): (4, 3, 2, 1),
(2, 0, 1, 0): (3, 4, 2, 1),
(2, 1, 0, 0): (3, 2, 4, 1)}

5.1.369 C-Finite Sequences

C-finite infinite sequences satisfy homogeneous linear recurrences with constant coefficients:

𝑎𝑛+𝑑 = 𝑐0𝑎𝑛 + 𝑐1𝑎𝑛+1 + · · ·+ 𝑐𝑑−1𝑎𝑛+𝑑−1, 𝑑 > 0.

CFiniteSequences are completely defined by their ordinary generating function (o.g.f., which is always a fraction of
polynomials over Z or Q).

EXAMPLES:

sage: fibo = CFiniteSequence(x/(1-x-x^2)) # the Fibonacci sequence
sage: fibo
C-finite sequence, generated by -x/(x^2 + x - 1)
sage: fibo.parent()
The ring of C-Finite sequences in x over Rational Field
sage: fibo.parent().category()
Category of commutative rings
sage: C.<x> = CFiniteSequences(QQ)
sage: fibo.parent() == C
True
sage: C
The ring of C-Finite sequences in x over Rational Field
sage: C(x/(1-x-x^2))
C-finite sequence, generated by -x/(x^2 + x - 1)
sage: C(x/(1-x-x^2)) == fibo
True
sage: var('y')
y
sage: CFiniteSequence(y/(1-y-y^2))

(continues on next page)

3668 Chapter 5. Comprehensive Module List

../../../../../../html/en/reference/rings/sage/rings/fraction_field_element.html#module-sage.rings.fraction_field_element
../../../../../../html/en/reference/polynomial_rings/sage/rings/polynomial/polynomial_element.html#module-sage.rings.polynomial.polynomial_element

Combinatorics, Release 9.7

(continued from previous page)

C-finite sequence, generated by -y/(y^2 + y - 1)
sage: CFiniteSequence(y/(1-y-y^2)) == fibo
False

Finite subsets of the sequence are accessible via python slices:

sage: fibo[137] #the 137th term of the Fibonacci sequence
19134702400093278081449423917
sage: fibo[137] == fibonacci(137)
True
sage: fibo[0:12]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
sage: fibo[14:4:-2]
[377, 144, 55, 21, 8]

They can be created also from the coefficients and start values of a recurrence:

sage: r = C.from_recurrence([1,1],[0,1])
sage: r == fibo
True

Given enough values, the o.g.f. of a C-finite sequence can be guessed:

sage: r = C.guess([0,1,1,2,3,5,8])
sage: r == fibo
True

See also:

fibonacci(), BinaryRecurrenceSequence

AUTHORS:

• Ralf Stephan (2014): initial version

REFERENCES:

• [GK1982]

• [KP2011]

• [SZ1994]

• [Zei2011]

class sage.rings.cfinite_sequence.CFiniteSequence(parent, ogf)
Bases: sage.structure.element.FieldElement

Create a C-finite sequence given its ordinary generating function.

INPUT:

• ogf – a rational function, the ordinary generating function (can be an element from the symbolic ring,
fraction field or polynomial ring)

OUTPUT:

• A CFiniteSequence object

EXAMPLES:

5.1. Comprehensive Module List 3669

../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.FieldElement

Combinatorics, Release 9.7

sage: CFiniteSequence((2-x)/(1-x-x^2)) # the Lucas sequence
C-finite sequence, generated by (x - 2)/(x^2 + x - 1)
sage: CFiniteSequence(x/(1-x)^3) # triangular numbers
C-finite sequence, generated by -x/(x^3 - 3*x^2 + 3*x - 1)

Polynomials are interpreted as finite sequences, or recurrences of degree 0:

sage: CFiniteSequence(x^2-4*x^5)
Finite sequence [1, 0, 0, -4], offset = 2
sage: CFiniteSequence(1)
Finite sequence [1], offset = 0

This implementation allows any polynomial fraction as o.g.f. by interpreting any power of 𝑥 dividing the o.g.f.
numerator or denominator as a right or left shift of the sequence offset:

sage: CFiniteSequence(x^2+3/x)
Finite sequence [3, 0, 0, 1], offset = -1
sage: CFiniteSequence(1/x+4/x^3)
Finite sequence [4, 0, 1], offset = -3
sage: P = LaurentPolynomialRing(QQ.fraction_field(), 'X')
sage: X=P.gen()
sage: CFiniteSequence(1/(1-X))
C-finite sequence, generated by -1/(X - 1)

The o.g.f. is always normalized to get a denominator constant coefficient of +1:

sage: CFiniteSequence(1/(x-2))
C-finite sequence, generated by 1/(x - 2)

The given ogf is used to create an appropriate parent: it can be a symbolic expression, a polynomial , or a fraction
field element as long as it can be coerced into a proper fraction field over the rationals:

sage: var('x')
x
sage: f1 = CFiniteSequence((2-x)/(1-x-x^2))
sage: P.<x> = QQ[]
sage: f2 = CFiniteSequence((2-x)/(1-x-x^2))
sage: f1 == f2
True
sage: f1.parent()
The ring of C-Finite sequences in x over Rational Field
sage: f1.ogf().parent()
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: CFiniteSequence(log(x))
Traceback (most recent call last):
...
TypeError: unable to convert log(x) to a rational

closed_form(n='n')
Return a symbolic expression in n, which equals the n-th term of the sequence.

It is a well-known property of C-finite sequences a_n that they have a closed form of the type:

𝑎𝑛 =

𝑑∑︁
𝑖=1

𝑐𝑖(𝑛) · 𝑟𝑛𝑖 ,

3670 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

where r_i are the roots of the characteristic equation and c_i(n) is a polynomial (whose degree equals the
multiplicity of r_i minus one). This is a natural generalization of Binet’s formula for Fibonacci numbers.
See, for instance, [KP2011, Theorem 4.1].

Note that if the o.g.f. has a polynomial part, that is, if the numerator degree is not strictly less than the
denominator degree, then this closed form holds only when n exceeds the degree of that polynomial part.
In that case, the returned expression will differ from the sequence for small n.

EXAMPLES:

sage: CFiniteSequence(1/(1-x)).closed_form()
1
sage: CFiniteSequence(x^2/(1-x)).closed_form()
1
sage: CFiniteSequence(1/(1-x^2)).closed_form()
1/2*(-1)^n + 1/2
sage: CFiniteSequence(1/(1+x^3)).closed_form()
1/3*(-1)^n + 1/3*(1/2*I*sqrt(3) + 1/2)^n + 1/3*(-1/2*I*sqrt(3) + 1/2)^n
sage: CFiniteSequence(1/(1-x)/(1-2*x)/(1-3*x)).closed_form()
9/2*3^n - 4*2^n + 1/2

Binet’s formula for the Fibonacci numbers:

sage: CFiniteSequence(x/(1-x-x^2)).closed_form()
sqrt(1/5)*(1/2*sqrt(5) + 1/2)^n - sqrt(1/5)*(-1/2*sqrt(5) + 1/2)^n
sage: [_.subs(n=k).full_simplify() for k in range(6)]
[0, 1, 1, 2, 3, 5]

sage: CFiniteSequence((4*x+3)/(1-2*x-5*x^2)).closed_form()
1/2*(sqrt(6) + 1)^n*(7*sqrt(1/6) + 3) - 1/2*(-sqrt(6) + 1)^n*(7*sqrt(1/6) - 3)

Examples with multiple roots:

sage: CFiniteSequence(x*(x^2+4*x+1)/(1-x)^5).closed_form()
1/4*n^4 + 1/2*n^3 + 1/4*n^2
sage: CFiniteSequence((1+2*x-x^2)/(1-x)^4/(1+x)^2).closed_form()
1/12*n^3 - 1/8*(-1)^n*(n + 1) + 3/4*n^2 + 43/24*n + 9/8
sage: CFiniteSequence(1/(1-x)^3/(1-2*x)^4).closed_form()
4/3*(n^3 - 3*n^2 + 20*n - 36)*2^n + 1/2*n^2 + 19/2*n + 49
sage: CFiniteSequence((x/(1-x-x^2))^2).closed_form()
1/5*(n - sqrt(1/5))*(1/2*sqrt(5) + 1/2)^n + 1/5*(n + sqrt(1/5))*(-1/2*sqrt(5) +␣
→˓1/2)^n

coefficients()
Return the coefficients of the recurrence representation of the C-finite sequence.

OUTPUT:

• A list of values

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: lucas = C((2-x)/(1-x-x^2)) # the Lucas sequence
sage: lucas.coefficients()
[1, 1]

5.1. Comprehensive Module List 3671

Combinatorics, Release 9.7

denominator()
Return the numerator of the o.g.f of self.

EXAMPLES:

sage: f = CFiniteSequence((2-x)/(1-x-x^2)); f
C-finite sequence, generated by (x - 2)/(x^2 + x - 1)
sage: f.denominator()
x^2 + x - 1

numerator()
Return the numerator of the o.g.f of self.

EXAMPLES:

sage: f = CFiniteSequence((2-x)/(1-x-x^2)); f
C-finite sequence, generated by (x - 2)/(x^2 + x - 1)
sage: f.numerator()
x - 2

ogf()
Return the ordinary generating function associated with the CFiniteSequence.

This is always a fraction of polynomials in the base ring.

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: r = C.from_recurrence([2],[1])
sage: r.ogf()
-1/2/(x - 1/2)
sage: C(0).ogf()
0

recurrence_repr()
Return a string with the recurrence representation of the C-finite sequence.

OUTPUT:

• A string

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: C((2-x)/(1-x-x^2)).recurrence_repr()
'homogeneous linear recurrence with constant coefficients of degree 2: a(n+2) =␣
→˓a(n+1) + a(n), starting a(0...) = [2, 1]'
sage: C(x/(1-x)^3).recurrence_repr()
'homogeneous linear recurrence with constant coefficients of degree 3: a(n+3) =␣
→˓3*a(n+2) - 3*a(n+1) + a(n), starting a(1...) = [1, 3, 6]'
sage: C(1).recurrence_repr()
'Finite sequence [1], offset 0'
sage: r = C((-2*x^3 + x^2 - x + 1)/(2*x^2 - 3*x + 1))
sage: r.recurrence_repr()
'homogeneous linear recurrence with constant coefficients of degree 2: a(n+2) =␣
→˓3*a(n+1) - 2*a(n), starting a(0...) = [1, 2, 5, 9]'
sage: r = CFiniteSequence(x^3/(1-x-x^2))

(continues on next page)

3672 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

(continued from previous page)

sage: r.recurrence_repr()
'homogeneous linear recurrence with constant coefficients of degree 2: a(n+2) =␣
→˓a(n+1) + a(n), starting a(3...) = [1, 1, 2, 3]'

series(n)
Return the Laurent power series associated with the CFiniteSequence, with precision 𝑛.

INPUT:

• 𝑛 – a nonnegative integer

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: r = C.from_recurrence([-1,2],[0,1])
sage: s = r.series(4); s
x + 2*x^2 + 3*x^3 + 4*x^4 + O(x^5)
sage: type(s)
<class 'sage.rings.laurent_series_ring_element.LaurentSeries'>

sage.rings.cfinite_sequence.CFiniteSequences(base_ring, names=None, category=None)
Return the ring of C-Finite sequences.

The ring is defined over a base ring (Z or Q) and each element is represented by its ordinary generating function
(ogf) which is a rational function over the base ring.

INPUT:

• base_ring – the base ring to construct the fraction field representing the C-Finite sequences

• names – (optional) the list of variables.

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: C
The ring of C-Finite sequences in x over Rational Field
sage: C.an_element()
C-finite sequence, generated by (x - 2)/(x^2 + x - 1)
sage: C.category()
Category of commutative rings
sage: C.one()
Finite sequence [1], offset = 0
sage: C.zero()
Constant infinite sequence 0.
sage: C(x)
Finite sequence [1], offset = 1
sage: C(1/x)
Finite sequence [1], offset = -1
sage: C((-x + 2)/(-x^2 - x + 1))
C-finite sequence, generated by (x - 2)/(x^2 + x - 1)

class sage.rings.cfinite_sequence.CFiniteSequences_generic(polynomial_ring, category)
Bases: sage.rings.ring.CommutativeRing, sage.structure.unique_representation.
UniqueRepresentation

The class representing the ring of C-Finite Sequences

5.1. Comprehensive Module List 3673

../../../../../../html/en/reference/rings/sage/rings/ring.html#sage.rings.ring.CommutativeRing
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation

Combinatorics, Release 9.7

Element
alias of CFiniteSequence

an_element()
Return an element of C-Finite Sequences.

OUTPUT:

The Lucas sequence.

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: C.an_element()
C-finite sequence, generated by (x - 2)/(x^2 + x - 1)

fraction_field()
Return the fraction field used to represent the elements of self.

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: C.fraction_field()
Fraction Field of Univariate Polynomial Ring in x over Rational Field

from_recurrence(coefficients, values)
Create a C-finite sequence given the coefficients 𝑐 and starting values 𝑎 of a homogeneous linear recurrence.

𝑎𝑛+𝑑 = 𝑐0𝑎𝑛 + 𝑐1𝑎𝑛+1 + · · ·+ 𝑐𝑑−1𝑎𝑛+𝑑−1, 𝑑 ≥ 0.

INPUT:

• coefficients – a list of rationals

• values – start values, a list of rationals

OUTPUT:

• A CFiniteSequence object

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: C.from_recurrence([1,1],[0,1]) # Fibonacci numbers
C-finite sequence, generated by -x/(x^2 + x - 1)
sage: C.from_recurrence([-1,2],[0,1]) # natural numbers
C-finite sequence, generated by x/(x^2 - 2*x + 1)
sage: r = C.from_recurrence([-1],[1])
sage: s = C.from_recurrence([-1],[1,-1])
sage: r == s
True
sage: r = C(x^3/(1-x-x^2))
sage: s = C.from_recurrence([1,1],[0,0,0,1,1])
sage: r == s
True
sage: C.from_recurrence(1,1)
Traceback (most recent call last):
...
ValueError: Wrong type for recurrence coefficient list.

3674 Chapter 5. Comprehensive Module List

Combinatorics, Release 9.7

gen(i=0)
Return the i-th generator of self.

INPUT:

• i – an integer (default:0)

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: C.gen()
x
sage: x == C.gen()
True

guess(sequence, algorithm='sage')
Return the minimal CFiniteSequence that generates the sequence.

Assume the first value has index 0.

INPUT:

• sequence – list of integers

• algorithm – string

– ‘sage’ - the default is to use Sage’s matrix kernel function

– ‘pari’ - use Pari’s implementation of LLL

– ‘bm’ - use Sage’s Berlekamp-Massey algorithm

OUTPUT:

• a CFiniteSequence, or 0 if none could be found

With the default kernel method, trailing zeroes are chopped off before a guessing attempt. This may reduce
the data below the accepted length of six values.

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: C.guess([1,2,4,8,16,32])
C-finite sequence, generated by -1/2/(x - 1/2)
sage: r = C.guess([1,2,3,4,5])
Traceback (most recent call last):
...
ValueError: Sequence too short for guessing.

With Berlekamp-Massey, if an odd number of values is given, the last one is dropped. So with an odd
number of values the result may not generate the last value:

sage: r = C.guess([1,2,4,8,9], algorithm='bm'); r
C-finite sequence, generated by -1/2/(x - 1/2)
sage: r[0:5]
[1, 2, 4, 8, 16]

ngens()
Return the number of generators of self

EXAMPLES:

5.1. Comprehensive Module List 3675

Combinatorics, Release 9.7

sage: from sage.rings.cfinite_sequence import CFiniteSequences
sage: C.<x> = CFiniteSequences(QQ)
sage: C.ngens()
1

polynomial_ring()
Return the polynomial ring used to represent the elements of self.

EXAMPLES:

sage: C.<x> = CFiniteSequences(QQ)
sage: C.polynomial_ring()
Univariate Polynomial Ring in x over Rational Field

3676 Chapter 5. Comprehensive Module List

CHAPTER

SIX

INDICES AND TABLES

• Index

• Module Index

• Search Page

3677

../genindex.html
../py-modindex.html
../search.html

Combinatorics, Release 9.7

3678 Chapter 6. Indices and Tables

BIBLIOGRAPHY

[Rei2002] Markus Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli,
arXiv math/0204059

[RSW2004] Reiner, Stanton, White - The cyclic sieving phenomenon, Journal of Combinatorial Theory A 108 (2004)

[ClaytonSmith] On the existence of (𝑣, 5, 1)-BIBD. http://www.argilo.net/files/bibd.pdf Clayton Smith

[Denniston69] R. H. F. Denniston, Some maximal arcs in finite projective planes. Journal of Combinatorial Theory 6,
no. 3 (1969): 317-319. doi:10.1016/S0021-9800(69)80095-5

[AndHonk97] A short course in Combinatorial Designs, Ian Anderson, Iiro Honkala, Internet Editions, Spring 1997,
http://www.utu.fi/~honkala/designs.ps

[Stinson91] D.R. Stinson, A survey of Kirkman triple systems and related designs, Volume 92, Issues 1-3, 17 November
1991, Pages 371-393, Discrete Mathematics, doi:10.1016/0012-365X(91)90294-C

[RCW71] D. K. Ray-Chaudhuri, R. M. Wilson, Solution of Kirkman’s schoolgirl problem, Volume 19, Pages 187-
203, Proceedings of Symposia in Pure Mathematics

[BJL99] T. Beth, D. Jungnickel, H. Lenz, Design Theory 2ed. Cambridge University Press 1999

[Hu57] Daniel R. Hughes, “A class of non-Desarguesian projective planes”, The Canadian Journal of Mathematics
(1957), http://cms.math.ca/cjm/v9/p378

[We07] Charles Weibel, “Survey of Non-Desarguesian planes” (2007), notices of the AMS, vol. 54 num. 10, pages
1294–1303

[CvL] P. Cameron, J. H. van Lint, Designs, graphs, codes and their links, London Math. Soc., 1991.

[DesignHandbook] Handbook of Combinatorial Designs (2ed) Charles Colbourn, Jeffrey Dinitz Chapman &
Hall/CRC 2012

[Aschbacher71] M. Aschbacher, On collineation groups of symmetric block designs. J. Combinatorial Theory Ser. A
11 (1971), pp. 272–281.

[Hall71] M. Hall, Jr., Combinatorial designs and groups. Actes du Congrès International des Mathématiciens (Nice,
1970), v.3, pp. 217–222. Gauthier-Villars, Paris, 1971.

[HT95] W. Huffman and V. Tonchev, The existence of extremal self-dual [50, 25, 10] codes and quasi-symmetric
2− (49, 9, 6) designs, Designs, Codes and Cryptography September 1995, Volume 6, Issue 2, pp 97-106

[Hanani75] Haim Hanani, Balanced incomplete block designs and related designs, doi:10.1016/0012-365X(75)90040-
0, Discrete Mathematics, Volume 11, Issue 3, 1975, Pages 255-369.

[JulianAbel13] Existence of Five MOLS of Orders 18 and 60 R. Julian R. Abel Journal of Combinatorial Designs 2013

[KY04] S. Klee and L. Yates, Tight Subdesigns of the Higman-Sims Design, Rose-Hulman Undergraduate Math.
J 5.2 (2004). https://www.rose-hulman.edu/mathjournal/archives/2004/vol5-n2/paper9/v5n2-9pd.pdf

3679

https://arxiv.org/abs/math/0204059
http://www.argilo.net/files/bibd.pdf
https://doi.org/10.1016/S0021-9800(69)80095-5
http://www.utu.fi/~honkala/designs.ps
https://doi.org/10.1016/0012-365X(91)90294-C
http://cms.math.ca/cjm/v9/p378
https://doi.org/10.1016/0012-365X(75)90040-0
https://doi.org/10.1016/0012-365X(75)90040-0
https://www.rose-hulman.edu/mathjournal/archives/2004/vol5-n2/paper9/v5n2-9pd.pdf

Combinatorics, Release 9.7

[Todorov12] D.T. Todorov, Four mutually orthogonal Latin squares of order 14, Journal of Combinatorial Designs
2012, vol.20 n.8 pp.363-367

[BJL99-1] T. Beth, D. Jungnickel, H. Lenz “Design theory Vol. I.” Second edition. Encyclopedia of Mathematics and
its Applications, 69. Cambridge University Press, (1999).

[BLJ99-2] T. Beth, D. Jungnickel, H. Lenz “Design theory Vol. II.” Second edition. Encyclopedia of Mathematics
and its Applications, 78. Cambridge University Press, (1999).

[Bo39] R. C. Bose, “On the construction of balanced incomplete block designs”, Ann. Eugenics, 9 (1939),
353–399.

[Bu95] M. Buratti “On simple radical difference families”, J. Combinatorial Designs, 3 (1995) 161–168.

[Tu1965] R. J. Turyn “Character sum and difference sets” Pacific J. Math. 15 (1965) 319–346.

[Tu1984] R. J. Turyn “A special class of Williamson matrices and difference sets” J. Combinatorial Theory (A) 36
(1984) 111–115.

[Wi72] R. M. Wilson “Cyclotomy and difference families in elementary Abelian groups”, J. Number Theory, 4
(1972) 17–47.

[McF1973] Robert L. McFarland “A family of difference sets in non-cyclic groups” J. Combinatorial Theory (A) 15
(1973) 1–10. doi:10.1016/0097-3165(73)90031-9

[Stinson2004] Douglas R. Stinson, Combinatorial designs: construction and analysis, Springer, 2004.

[ColDin01] Charles Colbourn, Jeffrey Dinitz, Mutually orthogonal latin squares: a brief survey of constructions,
Volume 95, Issues 1-2, Pages 9-48, Journal of Statistical Planning and Inference, Springer, 1 May 2001.

[HananiBIBD] Balanced incomplete block designs and related designs, Haim Hanani, Discrete Mathematics 11.3
(1975) pages 255-369.

[Brouwer80] A Series of Separable Designs with Application to Pairwise Orthogonal Latin Squares, Andries E.
Brouwer, Vol. 1, n. 1, pp. 39-41, European Journal of Combinatorics, 1980 http://www.sciencedirect.
com/science/article/pii/S0195669880800199

[Greig99] Designs from projective planes and PBD bases Malcolm Greig Journal of Combinatorial Designs vol. 7,
num. 5, pp. 341–374 1999

[DukesLing14] A three-factor product construction for mutually orthogonal latin squares, Peter J. Dukes, Alan C.H.
Ling, arXiv 1401.1466

[Rees00] Truncated Transversal Designs: A New Lower Bound on the Number of Idempotent MOLS of Side, Rolf
S. Rees, Journal of Combinatorial Theory, Series A 90.2 (2000): 257-266.

[Rees93] Two new direct product-type constructions for resolvable group-divisible designs, Rolf S. Rees, Journal of
Combinatorial Designs 1.1 (1993): 15-26.

[Thwarts] Thwarts in transversal designs Charles J.Colbourn, Jeffrey H. Dinitz, Mieczyslaw Wojtas. Designs, Codes
and Cryptography 5, no. 3 (1995): 189-197.

[OS64] Finite projective planes with affine subplanes, T. G. Ostrom and F. A. Sherk. Canad. Math. Bull vol7 num.4
(1964)

[AC07] Concerning eight mutually orthogonal latin squares Julian R. Abel, Nicholas Cavenagh Journal of Com-
binatorial Designs Vol. 15, n.3, pp. 255-261 2007

[Naz96] Maxim Nazarov, Young’s Orthogonal Form for Brauer’s Centralizer Algebra. Journal of Algebra 182
(1996), 664–693.

[GL1996] J.J. Graham and G.I. Lehrer, Cellular algebras. Inventiones mathematicae 123 (1996), 1–34.

[Sta-EC2] Richard P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge University Press, 2001.

3680 Bibliography

https://doi.org/10.1016/0097-3165(73)90031-9
http://www.sciencedirect.com/science/article/pii/S0195669880800199
http://www.sciencedirect.com/science/article/pii/S0195669880800199
https://arxiv.org/abs/1401.1466

Combinatorics, Release 9.7

[StaCat98] Richard Stanley. Exercises on Catalan and Related Numbers excerpted from Enumerative Combinatorics,
vol. 2 (CUP 1999), version of 23 June 1998. http://www-math.mit.edu/~rstan/ec/catalan.pdf

[Hag2008] James Haglund. The 𝑞, 𝑡 – Catalan Numbers and the Space of Diagonal Harmonics: With an Appendix
on the Combinatorics of Macdonald Polynomials. University of Pennsylvania, Philadelphia – AMS, 2008,
167 pp.

[BK2001] J. Bandlow, K. Killpatrick – An area-to_inv bijection between Dyck paths and 312-avoiding permutations,
Electronic Journal of Combinatorics, Volume 8, Issue 1 (2001).

[EP2004] S. Elizalde, I. Pak. Bijections for refined restricted permutations*. JCTA 105(2) 2004.

[CK2008] A. Claesson, S. Kitaev. Classification of bijections between `321`- and `132`- avoiding permutations. Sémi-
naire Lotharingien de Combinatoire 60 2008. arXiv 0805.1325.

[Knu1973] D. Knuth. The Art of Computer Programming, Vol. III. Addison-Wesley. Reading, MA. 1973.

[Kra2001] C. Krattenthaler – Permutations with restricted patterns and Dyck paths, Adv. Appl. Math. 27 (2001),
510–530.

[DS1992] A. Denise, R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math 137 (1992), 155–176.

[AI] P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. 8 (2), 2001, pp. 181–207

[SAI] Y. Sano, P. Arnoux, S. Ito, Higher dimensional extensions of substitutions and their dual maps, J. Anal.
Math. 83, 2001, pp. 183–206

[HKP2015] Clemens Heuberger, Sara Kropf, and Helmut Prodinger, Output sum of transducers: Limiting distribution
and periodic fluctuation, Electron. J. Combin. 22 (2015), #P2.19.

[HKW2015] Clemens Heuberger, Sara Kropf and Stephan Wagner, Variances and Covariances in the Cen-
tral Limit Theorem for the Output of a Transducer, European J. Combin. 49 (2015), 167-187,
doi:10.1016/j.ejc.2015.03.004.

[HKP2015a] Clemens Heuberger, Sara Kropf, and Helmut Prodinger, Analysis of Carries in Signed Digit Expansions,
arXiv 1503.08816.

[P1964] William Parry, Intrinsic Markov chains, Transactions of the American Mathematical Society 112, 1964,
pp. 55-66. doi:10.1090/S0002-9947-1964-0161372-1.

[S1948] Claude E. Shannon, A mathematical theory of communication, The Bell System Technical Journal 27,
1948, 379-423, doi:10.1002/j.1538-7305.1948.tb01338.x.

[HP2007] Clemens Heuberger and Helmut Prodinger, The Hamming Weight of the Non-Adjacent-Form under Vari-
ous Input Statistics, Periodica Mathematica Hungarica Vol. 55 (1), 2007, pp. 81–96, doi:10.1007/s10998-
007-3081-z.

[FGT1992] Philippe Flajolet, Danièle Gardy, Loÿs Thimonier, Birthday paradox, coupon collectors, caching al-
gorithms and self-organizing search, Discrete Appl. Math. 39 (1992), 207–229, doi:10.1016/0166-
218X(92)90177-C.

[FHP2015] Uta Freiberg, Clemens Heuberger, Helmut Prodinger, Application of Smirnov Words to Waiting Time Dis-
tributions of Runs, arXiv 1503.08096.

[S1986] Gábor J. Székely, Paradoxes in Probability Theory and Mathematical Statistics, D. Reidel Publishing
Company.

[BaWo2012] Javier Baliosian and Dina Wonsever, Finite State Transducers, chapter in Handbook of Finite State Based
Models and Applications, edited by Jiacun Wang, Chapman and Hall/CRC, 2012.

[BBF] B. Brubaker, D. Bump, and S. Friedberg. Weyl Group Multiple Dirichlet Series: Type A Combinatorial
Theory. Ann. of Math. Stud., vol. 175, Princeton Univ. Press, New Jersey, 2011.

Bibliography 3681

http://www-math.mit.edu/~rstan/ec/catalan.pdf
https://arxiv.org/abs/0805.1325
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p19
https://doi.org/10.1016/j.ejc.2015.03.004
https://arxiv.org/abs/1503.08816
https://doi.org/10.1090/S0002-9947-1964-0161372-1
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/s10998-007-3081-z
https://doi.org/10.1007/s10998-007-3081-z
https://doi.org/10.1016/0166-218X(92)90177-C
https://doi.org/10.1016/0166-218X(92)90177-C
https://arxiv.org/abs/1503.08096

Combinatorics, Release 9.7

[GC50] I. M. Gelfand and M. L. Cetlin. Finite-Dimensional Representations of the Group of Unimodular Matrices.
Dokl. Akad. Nauk SSSR 71, pp. 825–828, 1950.

[Tok88] T. Tokuyama. A Generating Function of Strict Gelfand Patterns and Some Formulas on Characters of
General Linear Groups. J. Math. Soc. Japan 40 (4), pp. 671–685, 1988.

[Ryser63] H. J. Ryser, Combinatorial Mathematics, Carus Monographs, MAA, 1963.

[Gale57] D. Gale, A theorem on flows in networks, Pacific J. Math. 7(1957)1073-1082.

[KnutsonPurbhoo10] A. Knutson, K. Purbhoo, Product and puzzle formulae for 𝐺𝐿𝑛 Belkale-Kumar coefficients,
arXiv 1008.4979

[KT2003] Allen Knutson, Terence Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119
(2003) 221

[CoskunVakil06] I. Coskun, R. Vakil, Geometric positivity in the cohomology of homogeneous spaces and generalized
Schubert calculus, arXiv math/0610538

[KTW] Allen Knutson, Terence Tao, Christopher Woodward, The honeycomb model of GL(n) tensor products II:
Puzzles determine facets of the Littlewood-Richardson cone, arXiv math/0107011

[BuchKreschTamvakis03] A. Buch, A. Kresch, H. Tamvakis, Gromov-Witten invariants on Grassmannian, arXiv
math/0306388

[Buch00] A. Buch, A Littlewood-Richardson rule for the K-theory of Grassmannians, arXiv math.AG/0004137

[HadaSloa] N.J.A. Sloane’s Library of Hadamard Matrices, at http://neilsloane.com/hadamard/

[HadaWiki] Hadamard matrices on Wikipedia, Wikipedia article Hadamard_matrix

[Hora] K. J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, 2006.

[Ha83] M. Hall, Combinatorial Theory, 2nd edition, Wiley, 1983

[GS70s] J.M. Goethals and J. J. Seidel, A skew Hadamard matrix of order 36, J. Aust. Math. Soc. 11(1970), 343-344

[Wall71] J. Wallis, A skew-Hadamard matrix of order 92, Bull. Aust. Math. Soc. 5(1971), 203-204

[KoSt08] C. Koukouvinos, S. Stylianou On skew-Hadamard matrices, Discrete Math. 308(2008) 2723-2731

[JacMat96] Mark T. Jacobson and Peter Matthews, “Generating uniformly distributed random Latin squares”, Journal
of Combinatorial Designs, 4 (1996)

[NCSF] Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon, Noncommutative Symmetric Functions, Adv. Math. 112
(1995), no. 2, 218-348.

[QSCHUR] Haglund, Luoto, Mason, van Willigenburg, Quasisymmetric Schur functions, J. Comb. Theory Ser.
A 118 (2011), 463-490. http://www.sciencedirect.com/science/article/pii/S0097316509001745 , arXiv
0810.2489v2.

[Tev2007] Lenny Tevlin, Noncommutative Analogs of Monomial Symmetric Functions, Cauchy Identity, and Hall
Scalar Product, arXiv 0712.2201v1.

[Ges] I. Gessel, Multipartite P-partitions and inner products of skew Schur functions, Contemp. Math. 34 (1984),
289-301. http://people.brandeis.edu/~gessel/homepage/papers/multipartite.pdf

[MR] C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent
algebra, J. Algebra 177 (1995), no. 3, 967-982. http://www.mat.uniroma1.it/people/malvenuto/Duality.
pdf

[Mal1993] Claudia Malvenuto, Produits et coproduits des fonctions quasi-symétriques et de l’algèbre des descentes,
thesis, November 1993. http://www1.mat.uniroma1.it/people/malvenuto/Thesis.pdf

[Haz2004] Michiel Hazewinkel, Explicit polynomial generators for the ring of quasisymmetric functions over the
integers. arXiv math/0410366v1

3682 Bibliography

https://arxiv.org/abs/1008.4979
https://arxiv.org/abs/math/0610538
https://arxiv.org/abs/math/0107011
https://arxiv.org/abs/math/0306388
https://arxiv.org/abs/math/0306388
https://arxiv.org/abs/math.AG/0004137
http://neilsloane.com/hadamard/
https://en.wikipedia.org/wiki/Hadamard_matrix
http://www.sciencedirect.com/science/article/pii/S0097316509001745
https://arxiv.org/abs/0810.2489v2
https://arxiv.org/abs/0810.2489v2
https://arxiv.org/abs/0712.2201v1
http://people.brandeis.edu/~gessel/homepage/papers/multipartite.pdf
http://www.mat.uniroma1.it/people/malvenuto/Duality.pdf
http://www.mat.uniroma1.it/people/malvenuto/Duality.pdf
http://www1.mat.uniroma1.it/people/malvenuto/Thesis.pdf
https://arxiv.org/abs/math/0410366v1

Combinatorics, Release 9.7

[Rad1979] David E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes, J.
Algebra 58 (1979), 432-454.

[NCSF1] Israel Gelfand, D. Krob, Alain Lascoux, B. Leclerc, V. S. Retakh, J.-Y. Thibon, Noncommutative symmetric
functions. arXiv hep-th/9407124v1

[NCSF2] D. Krob, B. Leclerc, J.-Y. Thibon, Noncommutative symmetric functions II: Transformations of alphabets.
http://www-igm.univ-mlv.fr/~jyt/ARTICLES/NCSF2.ps

[HLNT09] F. Hivert, J.-G. Luque, J.-C. Novelli, J.-Y. Thibon, The (1-E)-transform in combinatorial Hopf algebras.
arXiv math/0912.0184v2

[LMvW13] Kurt Luoto, Stefan Mykytiuk and Stephanie van Willigenburg, An introduction to quasisymmetric Schur
functions – Hopf algebras, quasisymmetric functions, and Young composition tableaux, May 23, 2013,
Springer. http://www.math.ubc.ca/%7Esteph/papers/QuasiSchurBook.pdf

[BBSSZ2012] Chris Berg, Nantel Bergeron, Franco Saliola, Luis Serrano, Mike Zabrocki, A lift of the Schur and
Hall-Littlewood bases to non-commutative symmetric functions, arXiv 1208.5191v3.

[Hoff2015] Michael Hoffman. Quasi-symmetric functions and mod 𝑝 multiple harmonic sums. Kyushu J. Math. 69
(2015), pp. 345-366. doi:10.2206/kyushujm.69.345, arXiv math/0401319v3.

[BDHMN2017] Cristina Ballantine, Zajj Daugherty, Angela Hicks, Sarah Mason, Elizabeth Niese. Quasisymmetric
power sums. arXiv 1710.11613.

[AHM2018] Edward Allen, Joshua Hallam, Sarah Mason, Dual Immaculate Quasisymmetric Functions Expand Pos-
itively into Young Quasisymmetric Schur Functions. arXiv 1606.03519

[SW2010] John Shareshian and Michelle Wachs. Eulerian quasisymmetric functions. (2010). arXiv 0812.0764v2

[HHL05] A combinatorial formula for Macdonald polynomials. Haiman, Haglund, and Loehr. J. Amer. Math. Soc.
18 (2005), no. 3, 735-761.

[LW12] Quasisymmetric expansions of Schur-function plethysms. Loehr and Warrington. Proc. Amer. Math. Soc.
140 (2012), no. 4, 1159-1171.

[KT97] Noncommutative symmetric functions IV: Quantum linear groups and Hecke algebras at 𝑞 = 0. Krob and
Thibon. Journal of Algebraic Combinatorics 6 (1997), 339-376.

[HNT06] F. Hivert, J.-C. Novelli, J.-Y. Thibon. Commutative combinatorial Hopf algebras. (2006). arXiv
0605262v1.

[BZ05] N. Bergeron, M. Zabrocki. The Hopf algebra of symmetric functions and quasisymmetric functions in non-
commutative variables are free and cofree. (2005). arXiv math/0509265v3.

[BHRZ06] N. Bergeron, C. Hohlweg, M. Rosas, M. Zabrocki. Grothendieck bialgebras, partition lattices, and sym-
metric functions in noncommutative variables. Electronic Journal of Combinatorics. 13 (2006).

[RS06] M. Rosas, B. Sagan. Symmetric functions in noncommuting variables. Trans. Amer. Math. Soc. 358 (2006).
no. 1, 215-232. arXiv math/0208168.

[BRRZ08] N. Bergeron, C. Reutenauer, M. Rosas, M. Zabrocki. Invariants and coinvariants of the symmetric group
in noncommuting variables. Canad. J. Math. 60 (2008). 266-296. arXiv math/0502082

[BT13] N. Bergeron, N. Thiem. A supercharacter table decomposition via power-sum symmetric functions. Int. J.
Algebra Comput. 23, 763 (2013). doi:10.1142/S0218196713400171. arXiv 1112.4901.

[Beck] M. Beck, Stanford Math Circle - Parking Functions, October 2010, http://math.stanford.edu/circle/
parkingBeck.pdf

[Hag08] The 𝑞, 𝑡 – Catalan Numbers and the Space of Diagonal Harmonics: With an Appendix on the Combina-
torics of Macdonald Polynomials, James Haglund, University of Pennsylvania, Philadelphia – AMS, 2008,
167 pp.

Bibliography 3683

https://arxiv.org/abs/hep-th/9407124v1
http://www-igm.univ-mlv.fr/~jyt/ARTICLES/NCSF2.ps
https://arxiv.org/abs/math/0912.0184v2
http://www.math.ubc.ca/%7Esteph/papers/QuasiSchurBook.pdf
https://arxiv.org/abs/1208.5191v3
https://doi.org/10.2206/kyushujm.69.345
https://arxiv.org/abs/math/0401319v3
https://arxiv.org/abs/1710.11613
https://arxiv.org/abs/1606.03519
https://arxiv.org/abs/0812.0764v2
https://arxiv.org/abs/0605262v1
https://arxiv.org/abs/0605262v1
https://arxiv.org/abs/math/0509265v3
https://arxiv.org/abs/math/0208168
https://arxiv.org/abs/math/0502082
https://doi.org/10.1142/S0218196713400171
https://arxiv.org/abs/1112.4901
http://math.stanford.edu/circle/parkingBeck.pdf
http://math.stanford.edu/circle/parkingBeck.pdf

Combinatorics, Release 9.7

[Shin] H. Shin, Forests and Parking Functions, slides from talk September 24, 2008, http://www.emis.de/journals/
SLC/wpapers/s61vortrag/shin.pdf

[GXZ] A. M. Garsia, G. Xin, M. Zabrocki, A three shuffle case of the compositional parking function conjecture,
arXiv 1208.5796v1

[ZS98] Antoine Zoghbi, Ivan Stojmenovic, Fast Algorithms for Generating Integer Partitions, Intern. J. Computer
Math., Vol. 70., pp. 319–332. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1287

[MV] combinatorics of orthogonal polynomials (A. de Medicis et X.Viennot, Moments des q-polynômes de
Laguerre et la bijection de Foata-Zeilberger, Adv. Appl. Math., 15 (1994), 262-304)

[McD] combinatorics of hyperoctahedral group, double coset algebra and zonal polynomials (I. G. Macdonald,
Symmetric functions and Hall polynomials, Oxford University Press, second edition, 1995, chapter VII).

[CM] Benoit Collins, Sho Matsumoto, On some properties of orthogonal Weingarten functions, arXiv
0903.5143.

[Gec81] Fundamentals of Computation Theory Gecseg, F. Proceedings of the 1981 International Fct-Conference
Szeged, Hungaria, August 24-28, vol 117 Springer-Verlag, 1981

[Thom2006] Hugh Thomas, An analogue of distributivity for ungraded lattices. Order 23 (2006), no. 2-3, 249-269.

[Solomon67] Louis Solomon. The Burnside Algebra of a Finite Group. Journal of Combinatorial Theory, 2, 1967.
doi:10.1016/S0021-9800(67)80064-4.

[Greene73] Curtis Greene. On the Möbius algebra of a partially ordered set. Advances in Mathematics, 10, 1973.
doi:10.1016/0001-8708(73)90106-0.

[Etienne98] Gwihen Etienne. On the Möbius algebra of geometric lattices. European Journal of Combinatorics, 19,
1998. doi:10.1006/eujc.1998.0227.

[Feig1986] Joan Feigenbaum, Directed Cartesian-Product Graphs have Unique Factorizations that can be computed
in Polynomial Time, Discrete Applied Mathematics 15 (1986) 105-110 doi:10.1016/0166-218X(86)90023-
5

[CH2006] William Y.C. Chen and Qing-Hu Hou, Factors of the Gaussian coefficients, Discrete Mathematics 306
(2006), 1446-1449. doi:10.1016/j.disc.2006.03.031

[Bu87] Butler, Lynne M. A unimodality result in the enumeration of subgroups of a finite abelian group. Proceed-
ings of the American Mathematical Society 101, no. 4 (1987): 771-775. doi:10.1090/S0002-9939-1987-
0911049-8

[Delsarte48] S. Delsarte, Fonctions de Möbius Sur Les Groupes Abeliens Finis, Annals of Mathematics, second series,
Vol. 45, No. 3, (Jul 1948), pp. 600-609. http://www.jstor.org/stable/1969047

[Ca1948] Leonard Carlitz, “q-Bernoulli numbers and polynomials”. Duke Math J. 15, 987-1000 (1948),
doi:10.1215/S0012-7094-48-01588-9

[Ca1954] Leonard Carlitz, “q-Bernoulli and Eulerian numbers”. Trans Am Soc. 76, 332-350 (1954),
doi:10.1090/S0002-9947-1954-0060538-2

[vanLeeuwen91] Marc. A. A. van Leeuwen, Edge sequences, ribbon tableaux, and an action of affine permutations.
Europe J. Combinatorics. 20 (1999). http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/edgeseqs.pdf

[RC-MLT] Ben Salisbury and Travis Scrimshaw. Connecting marginally large tableaux and rigged configurations via
crystals. Preprint. arXiv 1505.07040.

[Kleber1] Michael Kleber. Combinatorial structure of finite dimensional representations of Yangians: the simply-
laced case. Internat. Math. Res. Notices. (1997) no. 4. 187-201.

[Kleber2] Michael Kleber. Finite dimensional representations of quantum affine algebras. Ph.D. dissertation at Uni-
versity of California Berkeley. (1998). arXiv math.QA/9809087.

3684 Bibliography

http://www.emis.de/journals/SLC/wpapers/s61vortrag/shin.pdf
http://www.emis.de/journals/SLC/wpapers/s61vortrag/shin.pdf
https://arxiv.org/abs/1208.5796v1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1287
https://arxiv.org/abs/0903.5143
https://arxiv.org/abs/0903.5143
https://doi.org/10.1016/S0021-9800(67)80064-4
https://doi.org/10.1016/0001-8708(73)90106-0
https://doi.org/10.1006/eujc.1998.0227
https://doi.org/10.1016/0166-218X(86)90023-5
https://doi.org/10.1016/0166-218X(86)90023-5
https://doi.org/10.1016/j.disc.2006.03.031
https://doi.org/10.1090/S0002-9939-1987-0911049-8
https://doi.org/10.1090/S0002-9939-1987-0911049-8
http://www.jstor.org/stable/1969047
https://doi.org/10.1215/S0012-7094-48-01588-9
https://doi.org/10.1090/S0002-9947-1954-0060538-2
http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/edgeseqs.pdf
https://arxiv.org/abs/1505.07040
https://arxiv.org/abs/math.QA/9809087

Combinatorics, Release 9.7

[OSS03] Masato Okado, Anne Schilling, and Mark Shimozono. Virtual crystals and Klebers algorithm. Commun.
Math. Phys. 238 (2003). 187-209. arXiv math.QA/0209082.

[OSS13] Masato Okado, Reiho Sakamoto, and Anne Schilling. Affine crystal structure on rigged configurations of
type 𝐷(1)

𝑛 . J. Algebraic Combinatorics, 37 (2013). 571-599. arXiv 1109.3523.

[HKOTT2002] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi. Paths, Crystals and Fermionic Formulae.
Prog. Math. Phys. 23 (2002) Pages 205-272.

[CrysStructSchilling06] Anne Schilling. Crystal structure on rigged configurations. International Mathematics Re-
search Notices. Volume 2006. (2006) Article ID 97376. Pages 1-27.

[RigConBijection] Masato Okado, Anne Schilling, Mark Shimozono. A crystal to rigged configuration bijection for
non-exceptional affine algebras. Algebraic Combinatorics and Quantum Groups. Edited by N. Jing. World
Scientific. (2003) Pages 85-124.

[BijectionDn] Anne Schilling. A bijection between type𝐷(1)
𝑛 crystals and rigged configurations. J. Algebra. 285 (2005)

292-334

[BijectionLRT] Anatol N. Kirillov, Anne Schilling, Mark Shimozono. A bijection between Littlewood-Richardson
tableaux and rigged configurations. Selecta Mathematica (N.S.). 8 (2002) Pages 67-135. (MathSciNet
MR1890195).

[OSS2003] Masato Okado, Anne Schilling, and Mark Shimozono. Virtual crystals and fermionic formulas of type
𝐷

(2)
𝑛+1, 𝐴(2)

2𝑛 , and 𝐶(1)
𝑛 . Representation Theory. 7 (2003) arXiv math.QA/0105017.

[Sakamoto13] Reiho Sakamoto. Rigged configurations and Kashiwara operators. (2013) arXiv 1302.4562v1.

[OSS2011] Masato Okado, Reiho Sakamoto, Anne Schilling, Affine crystal structure on rigged configurations of type
𝐷

(1)
𝑛 , J. Algebraic Combinatorics 37(3) (2013) 571-599 (arXiv 1109.3523 [math.QA])

[FSS07] G. Fourier, A. Schilling, and M. Shimozono, Demazure structure inside Kirillov-Reshetikhin crystals, J.
Algebra, Vol. 309, (2007), p. 386-404 arXiv math/0605451

[HST09] F. Hivert, A. Schilling, and N. M. Thiery, Hecke group algebras as quotients of affine Hecke algebras at
level 0, JCT A, Vol. 116, (2009) p. 844-863 arXiv 0804.3781

[KMPS] Kass, Moody, Patera and Slansky, Affine Lie algebras, weight multiplicities, and branching rules. Vols. 1,
2. University of California Press, Berkeley, CA, 1990.

[KacPeterson] Kac and Peterson. Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. in Math.
53 (1984), no. 2, 125-264.

[Carter] Carter, Lie algebras of finite and affine type. Cambridge University Press, 2005

[HaimanICM] M. Haiman, Cherednik algebras, Macdonald polynomials and combinatorics, Proceedings of the Inter-
national Congress of Mathematicians, Madrid 2006, Vol. III, 843-872.

[HHL06] J. Haglund, M. Haiman and N. Loehr, A combinatorial formula for nonsymmetric Macdonald polynomials,
Amer. J. Math. 130, No. 2 (2008), 359-383.

[LNSSS12] C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, A uniform model for Kirillov-Reshetikhin
crystals I: Lifting the parabolic quantum Bruhat graph, preprint arXiv 1211.2042 [math.QA]

[Haiman06] M. Haiman, Cherednik algebras, Macdonald polynomials and combinatorics, ICM 2006.

[Lusztig1985] G. Lusztig, Equivariant K-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94
(1985), no. 2, 337-342.

[Cherednik1995] I. Cherednik, Nonsymmetric Macdonald polynomials. IMRN 10, 483-515 (1995).

[Kumar1987] S. Kumar, Demazure character formula in arbitrary Kac-Moody setting, Invent. Math. 89 (1987), no. 2,
395-423.

Bibliography 3685

https://arxiv.org/abs/math.QA/0209082
https://arxiv.org/abs/1109.3523
https://www.ams.org/mathscinet-getitem?mr=MR1890195
https://www.ams.org/mathscinet-getitem?mr=MR1890195
https://arxiv.org/abs/math.QA/0105017
https://arxiv.org/abs/1302.4562v1
https://arxiv.org/abs/1109.3523
https://arxiv.org/abs/math/0605451
https://arxiv.org/abs/0804.3781
https://arxiv.org/abs/1211.2042

Combinatorics, Release 9.7

[Lascoux2003] Alain Lascoux, Symmetric functions and combinatorial operators on polynomials, CBMS Regional
Conference Series in Mathematics, 99, 2003.

[Reiner97] Victor Reiner. Non-crossing partitions for classical reflection groups. Discrete Mathematics 177 (1997)

[Arm06] Drew Armstrong. Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups. arXiv
math/0611106

[Iwahori] Iwahori, Generalized Tits system (Bruhat decomposition) on p-adic semisimple groups. 1966 Algebraic
Groups and Discontinuous Subgroups (AMS Proc. Symp. Pure Math.., 1965) pp. 71-83 Amer. Math. Soc.,
Providence, R.I.

[Bour] Bourbaki, Lie Groups and Lie Algebras IV.2

[OSShimo03] M. Okado, A. Schilling, M. Shimozono. “Virtual crystals and fermionic formulas for type 𝐷(2)
𝑛+1, 𝐴(2)

2𝑛 ,
and 𝐶(1)

𝑛 ”. Representation Theory. 7 (2003). 101-163. doi:10.1.1.192.2095, arXiv 0810.5067.

[SL000081] Sloane’s OEIS sequence A000081

[Knu1970] Donald E. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific J. Math. Volume 34,
Number 3 (1970), pp. 709-727. http://projecteuclid.org/euclid.pjm/1102971948

[EG1987] Paul Edelman, Curtis Greene. Balanced Tableaux. Advances in Mathematics 63 (1987), pp. 42-99.
doi:10.1016/0001-8708(87)90063-6

[BKSTY06] A. Buch, A. Kresch, M. Shimozono, H. Tamvakis, and A. Yong. Stable Grothendieck polynomials and
𝐾-theoretic factor sequences. Math. Ann. 340 Issue 2, (2008), pp. 359–382. arXiv math/0601514v1.

[GR2018v5sol] Darij Grinberg, Victor Reiner. Hopf Algebras In Combinatorics, arXiv 1409.8356v5, available with
solutions at https://arxiv.org/src/1409.8356v5/anc/HopfComb-v73-with-solutions.pdf

[OZ2015] R. Orellana, M. Zabrocki, Symmetric group characters as symmetric functions, arXiv 1510.00438.

[Jack1970] H. Jack, A class of symmetric functions with a parameter, Proc. R. Soc. Edinburgh (A), 69, 1-18.

[Ma1995] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., The Clarendon Press, Oxford
University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications.

[Mc1995] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., The Clarendon Press, Oxford
University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications.

[Lam2006] T. Lam, Schubert polynomials for the affine Grassmannian, J. Amer. Math. Soc., 21 (2008), 259-281.

[LLMSSZ] T. Lam, L. Lapointe, J. Morse, A. Schilling, M. Shimozono, M. Zabrocki, k-Schur functions and affine
Schubert calculus.

[LLT1997] Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum
affine algebras, and unipotent varieties, J. Math. Phys. 38 (1997), no. 2, 1041-1068, arXiv q-alg/9512031v1
[math.q.alg]

[LT2000] Bernard Leclerc and Jean-Yves Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig poly-
nomials, in: Combinatorial methods in representation theory (Kyoto) Adv. Stud. Pure Math., vol. 28,
Kinokuniya, Tokyo, 2000, pp 155-220 arXiv math/9809122v3 [math.q-alg]

[GH1993] A. Garsia, M. Haiman, A graded representation module for Macdonald’s polynomials, Proc. Nat. Acad.
U.S.A. no. 90, 3607–3610.

[BGHT1999] F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures for some
remarkable operators in the theory of symmetric functions, Methods Appl. Anal. 6 (1999), no. 3, 363–420.

[LLM1998] L. Lapointe, A. Lascoux, J. Morse, Determinantal Expressions for Macdonald Polynomials, IRMN no.
18 (1998). arXiv math/9808050.

3686 Bibliography

https://arxiv.org/abs/math/0611106
https://arxiv.org/abs/math/0611106
https://doi.org/10.1.1.192.2095
https://arxiv.org/abs/0810.5067
https://oeis.org/A000081
http://projecteuclid.org/euclid.pjm/1102971948
https://doi.org/10.1016/0001-8708(87)90063-6
https://arxiv.org/abs/math/0601514v1
https://arxiv.org/abs/1409.8356v5
https://arxiv.org/src/1409.8356v5/anc/HopfComb-v73-with-solutions.pdf
https://arxiv.org/abs/1510.00438
https://arxiv.org/abs/q-alg/9512031v1
https://arxiv.org/abs/math/9809122v3
https://arxiv.org/abs/math/9808050

Combinatorics, Release 9.7

[BH2013] F. Bergeron, M. Haiman, Tableaux Formulas for Macdonald Polynomials, Special edition in honor of
Christophe Reutenauer 60 birthday, International Journal of Algebra and Computation, Volume 23, Issue
4, (2013), pp. 833-852.

[Morse11] J. Morse, Combinatorics of the K-theory of affine Grassmannians, Adv. in Math., Volume 229, Issue 5,
pp. 2950–2984.

[LamSchillingShimozono10] T. Lam, A. Schilling, M.Shimozono, K-theory Schubert calculus of the affine Grassman-
nian, Compositio Math. 146 (2010), 811-852.

[Morse2011] J. Morse, Combinatorics of the K-theory of affine Grassmannians, Adv. in Math., Volume 229, Issue 5,
pp. 2950–2984.

[LamSchillingShimozono2010] T. Lam, A. Schilling, M.Shimozono, K-theory Schubert calculus of the affine Grass-
mannian, Compositio Math. 146 (2010), 811-852.

[ClSt03] Peter Clifford, Richard P. Stanley, Bottom Schur functions. arXiv math/0311382v2.

[ChariKleber2000] Vyjayanthi Chari and Michael Kleber. Symmetric functions and representations of quantum affine
algebras. arXiv math/0011161v1

[KoikeTerada1987] K. Koike, I. Terada, Young-diagrammatic methods for the representation theory of the classical
groups of type Bn, Cn, Dn. J. Algebra 107 (1987), no. 2, 466-511.

[ShimozonoZabrocki2006] Mark Shimozono and Mike Zabrocki. Deformed universal characters for classical and
affine algebras. Journal of Algebra, 299 (2006). arXiv math/0404288.

[FD06] Francois Descouens, Making research on symmetric functions using MuPAD-Combinat. In Andres Igle-
sias and Nobuki Takayama, editors, 2nd International Congress on Mathematical Software (ICMS’06),
volume 4151 of LNCS, pages 407-418, Castro Urdiales, Spain, September 2006. Springer-Verlag. arXiv
0806.1873

[HT04] Florent Hivert and Nicolas M. Thiery, MuPAD-Combinat, an open-source package for research in algebraic
combinatorics. Sem. Lothar. Combin., 51 :Art. B51z, 70 pp. (electronic), 2004. http://mupad-combinat.
sf.net/.

[MAC] Ian Macdonald, Symmetric Functions and Orthogonal Polynomials, Second edition. With contributions
by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press,
Oxford University Press, New York, 1995. x+475 pp. ISBN: 0-19-853489-2

[STA] Richard Stanley, Enumerative combinatorics. Vol. 2. With a foreword by Gian-Carlo Rota and appendix 1
by Sergey Fomin. Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cam-
bridge, 1999. xii+581 pp. ISBN: 0-521-56069-1; 0-521-78987-7

[ST94] Scharf, Thomas, Thibon, Jean-Yves, A Hopf-algebra approach to inner plethysm. Adv. Math. 104 (1994),
no. 1, 30-58. doi:10.1006/aima.1994.1019

[SZ2001] M. Shimozono, M. Zabrocki, Hall-Littlewood vertex operators and generalized Kostka polynomials. Adv.
Math. 158 (2001), no. 1, 66-85.

[King] King, R. Branching rules for 𝐺𝐿𝑚 ⊃ Σ𝑛 and the evaluation of inner plethysms. J. Math. Phys. 15, 258
(1974) doi:10.1063/1.1666632

[SchaThi1994] Thomas Scharf, Jean-Yves Thibon. A Hopf-algebra approach to inner plethysm. Advances in
Mathematics 104 (1994), pp. 30-58. ftp://ftp.mathe2.uni-bayreuth.de/axel/papers/scharf:a_hopf_algebra_
approach_to_inner_plethysm.ps.gz

[ShaWach2014] John Shareshian, Michelle L. Wachs. Chromatic quasisymmetric functions. arXiv 1405.4629v2.

[HazWitt1] Michiel Hazewinkel. Witt vectors. Part 1. arXiv 0804.3888v1

[DoranIV1996] William F. Doran IV. A Proof of Reutenauer’s `-q_{(n)}` Conjecture. Journal of combinatorial theory,
Series A 74, pp. 342-344 (1996), article no. 0056. doi:10.1006/jcta.1996.0056

Bibliography 3687

https://arxiv.org/abs/math/0311382v2
https://arxiv.org/abs/math/0011161v1
https://arxiv.org/abs/math/0404288
https://arxiv.org/abs/0806.1873
https://arxiv.org/abs/0806.1873
http://mupad-combinat.sf.net/
http://mupad-combinat.sf.net/
https://doi.org/10.1006/aima.1994.1019
https://doi.org/10.1063/1.1666632
ftp://ftp.mathe2.uni-bayreuth.de/axel/papers/scharf:a_hopf_algebra_approach_to_inner_plethysm.ps.gz
ftp://ftp.mathe2.uni-bayreuth.de/axel/papers/scharf:a_hopf_algebra_approach_to_inner_plethysm.ps.gz
https://arxiv.org/abs/1405.4629v2
https://arxiv.org/abs/0804.3888v1
https://doi.org/10.1006/jcta.1996.0056

Combinatorics, Release 9.7

[BorWi2004] James Borger, Ben Wieland. Plethystic algebra. arXiv math/0407227v1

[Banc2011] E. E. Bancroft, Shard Intersections and Cambrian Congruence Classes in Type A., Ph.D. Thesis, North
Carolina State University. 2011.

[Pete2013] T. Kyle Petersen, On the shard intersection order of a Coxeter group, SIAM J. Discrete Math. 27 (2013),
no. 4, 1880-1912.

[Read2011] N. Reading, Noncrossing partitions and the shard intersection order, J. Algebraic Combin., 33 (2011),
483-530.

[EilLan53] On the groups 𝐻(𝜋, 𝑛), I, Samuel Eilenberg and Saunders Mac Lane, 1953.

[Green55] Green, J. A. The characters of the finite general linear groups. Trans. Amer. Math. Soc. 80 (1955), 402–447.
doi:10.1090/S0002-9947-1955-0072878-2

[Morrison06] Morrison, Kent E. Integer sequences and matrices over finite fields. J. Integer Seq. 9 (2006), no. 2,
Article 06.2.1, 28 pp. https://cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html

[PSS13] Prasad, A., Singla, P., and Spallone, S., Similarity of matrices over local rings of length two. arXiv
1212.6157

[PR22] Prasad, A., Ram, S., Splitting subspaces and a finite field interpretation of the Touchard-Riordan formula.
arXiv 2205.11076

[R17] Ramaré, O., Rationality of the zeta function of the subgroups of abelian p-groups. Publ. Math. Debrecen
90.1-2. doi:10.5486/PMD.2017.7466

[NS] T. Nakanishi, S. Stella, Wonder of sine-Gordon Y-systems, to appear in Trans. Amer. Math. Soc., arXiv
1212.6853

[BLL] F. Bergeron, G. Labelle, and P. Leroux. “Combinatorial species and tree-like structures”. Encyclopedia of
Mathematics and its Applications, vol. 67, Cambridge Univ. Press. 1998.

[BLL-Intro] François Bergeron, Gilbert Labelle, and Pierre Leroux. “Introduction to the Theory of Species of Struc-
tures”, March 14, 2008.

[MM] M. Maia and M. Mendez. “On the arithmetic product of combinatorial species”. Discrete Mathematics,
vol. 308, issue 23, 2008, pp. 5407-5427. arXiv math/0503436v2.

[KnuMil] Knutson and Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1):161-176, 2004.

[PilStu] Pilaud and Stump. Brick polytopes of spherical subword complexes and generalized associahedra. Adv.
Math. 276:1-61, 2015.

[Las] Alain Lascoux, ‘Young representations of the symmetric group.’ http://phalanstere.univ-mlv.fr/~al/
ARTICLES/ProcCrac.ps.gz

[BMFPR] M. Bousquet-Melou, E. Fusy, L.-F. Preville Ratelle. The number of intervals in the m-Tamari lattices.
arXiv 1106.1498

[Knuth1] Knuth, Donald (2000). “Dancing links”. arXiv cs/0011047.

[CMS2012] Alexandre Casamayou, Nathann Cohen, Guillaume Connan, Thierry Dumont, Laurent Fousse, François
Maltey, Matthias Meulien, Marc Mezzarobba, Clément Pernet, Nicolas M. Thiéry, Paul Zimmermann
Calcul Mathématique avec Sage https://www.sagemath.org/sagebook/french.html

[CassNic10] Cassaigne J., Nicolas F. Factor complexity. Combinatorics, automata and number theory, 163–247, En-
cyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010.

[AC03] B. Adamczewski, J. Cassaigne, On the transcendence of real numbers with a regular expansion, J. Number
Theory 103 (2003) 27–37.

[BmBGL07] A. Blondin-Masse, S. Brlek, A. Glen, and S. Labbe. On the critical exponent of generalized Thue-Morse
words. Discrete Math. Theor. Comput. Sci. 9 (1):293–304, 2007.

3688 Bibliography

https://arxiv.org/abs/math/0407227v1
https://doi.org/10.1090/S0002-9947-1955-0072878-2
https://cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html
https://arxiv.org/abs/1212.6157
https://arxiv.org/abs/1212.6157
https://arxiv.org/abs/2205.11076
https://doi.org/10.5486/PMD.2017.7466
https://arxiv.org/abs/1212.6853
https://arxiv.org/abs/1212.6853
https://arxiv.org/abs/math/0503436v2
http://phalanstere.univ-mlv.fr/~al/ARTICLES/ProcCrac.ps.gz
http://phalanstere.univ-mlv.fr/~al/ARTICLES/ProcCrac.ps.gz
https://arxiv.org/abs/1106.1498
https://arxiv.org/abs/cs/0011047
https://www.sagemath.org/sagebook/french.html

Combinatorics, Release 9.7

[BmBGL09] A. Blondin-Masse, S. Brlek, A. Garon, and S. Labbe. Christoffel and Fibonacci Tiles, DGCI 2009, Mon-
treal, to appear in LNCS.

[Loth02] M. Lothaire, Algebraic Combinatorics On Words, vol. 90 of Encyclopedia of Mathematics and its Appli-
cations, Cambridge University Press, U.K., 2002.

[Fogg] Pytheas Fogg, https://www.lirmm.fr/arith/wiki/PytheasFogg/S-adiques.

[Kolakoski66] William Kolakoski, proposal 5304, American Mathematical Monthly 72 (1965), 674; for a partial so-
lution, see “Self Generating Runs,” by Necdet Üçoluk, Amer. Math. Mon. 73 (1966), 681-2.

[Brlek89] Brlek, S. 1989. «Enumeration of the factors in the Thue-Morse word», Discrete Appl. Math., vol. 24, p.
83–96.

[MH38] Morse, M., et G. A. Hedlund. 1938. «Symbolic dynamics», American Journal of Mathematics, vol. 60, p.
815–866.

Bibliography 3689

https://www.lirmm.fr/arith/wiki/PytheasFogg/S-adiques

Combinatorics, Release 9.7

3690 Bibliography

PYTHON MODULE INDEX

c
sage.combinat.abstract_tree, 9
sage.combinat.affine_permutation, 25
sage.combinat.algebraic_combinatorics, 46
sage.combinat.all, 47
sage.combinat.alternating_sign_matrix, 48
sage.combinat.backtrack, 64
sage.combinat.baxter_permutations, 66
sage.combinat.binary_recurrence_sequences, 68
sage.combinat.binary_tree, 72
sage.combinat.blob_algebra, 117
sage.combinat.cartesian_product, 120
sage.combinat.catalog_partitions, 122
sage.combinat.chas.all, 123
sage.combinat.chas.fsym, 123
sage.combinat.chas.wqsym, 132
sage.combinat.cluster_algebra_quiver.all, 156
sage.combinat.cluster_algebra_quiver.cluster_seed,

156
sage.combinat.cluster_algebra_quiver.mutation_class,

201
sage.combinat.cluster_algebra_quiver.mutation_type,

202
sage.combinat.cluster_algebra_quiver.quiver,

203
sage.combinat.cluster_algebra_quiver.quiver_mutation_type,

224
sage.combinat.cluster_complex, 239
sage.combinat.colored_permutations, 242
sage.combinat.combinat, 253
sage.combinat.combinat_cython, 278
sage.combinat.combination, 280
sage.combinat.combinatorial_map, 285
sage.combinat.composition, 290
sage.combinat.composition_signed, 311
sage.combinat.composition_tableau, 312
sage.combinat.constellation, 316
sage.combinat.core, 329
sage.combinat.counting, 336
sage.combinat.crystals.affine, 336
sage.combinat.crystals.affine_factorization,

344

sage.combinat.crystals.affinization, 348
sage.combinat.crystals.alcove_path, 351
sage.combinat.crystals.all, 362
sage.combinat.crystals.bkk_crystals, 362
sage.combinat.crystals.catalog, 363
sage.combinat.crystals.catalog_elementary_crystals,

365
sage.combinat.crystals.catalog_infinity_crystals,

365
sage.combinat.crystals.catalog_kirillov_reshetikhin,

365
sage.combinat.crystals.crystals, 366
sage.combinat.crystals.direct_sum, 368
sage.combinat.crystals.elementary_crystals,

371
sage.combinat.crystals.fast_crystals, 380
sage.combinat.crystals.fully_commutative_stable_grothendieck,

382
sage.combinat.crystals.generalized_young_walls,

386
sage.combinat.crystals.highest_weight_crystals,

396
sage.combinat.crystals.induced_structure, 399
sage.combinat.crystals.infinity_crystals, 405
sage.combinat.crystals.kac_modules, 411
sage.combinat.crystals.kirillov_reshetikhin,

417
sage.combinat.crystals.kyoto_path_model, 457
sage.combinat.crystals.letters, 462
sage.combinat.crystals.littelmann_path, 478
sage.combinat.crystals.monomial_crystals, 492
sage.combinat.crystals.multisegments, 501
sage.combinat.crystals.mv_polytopes, 504
sage.combinat.crystals.pbw_crystal, 509
sage.combinat.crystals.pbw_datum, 512
sage.combinat.crystals.polyhedral_realization,

515
sage.combinat.crystals.spins, 519
sage.combinat.crystals.star_crystal, 523
sage.combinat.crystals.tensor_product, 526
sage.combinat.crystals.tensor_product_element,

536

3691

Combinatorics, Release 9.7

sage.combinat.cyclic_sieving_phenomenon, 548
sage.combinat.debruijn_sequence, 550
sage.combinat.degree_sequences, 552
sage.combinat.derangements, 555
sage.combinat.descent_algebra, 558
sage.combinat.designs.all, 568
sage.combinat.designs.bibd, 568
sage.combinat.designs.block_design, 585
sage.combinat.designs.covering_design, 595
sage.combinat.designs.database, 600
sage.combinat.designs.design_catalog, 630
sage.combinat.designs.designs_pyx, 631
sage.combinat.designs.difference_family, 636
sage.combinat.designs.difference_matrices,

651
sage.combinat.designs.evenly_distributed_sets,

654
sage.combinat.designs.ext_rep, 657
sage.combinat.designs.gen_quadrangles_with_spread,

660
sage.combinat.designs.group_divisible_designs,

582
sage.combinat.designs.incidence_structures,

663
sage.combinat.designs.latin_squares, 681
sage.combinat.designs.orthogonal_arrays, 686
sage.combinat.designs.orthogonal_arrays_build_recursive,

704
sage.combinat.designs.orthogonal_arrays_find_recursive,

716
sage.combinat.designs.resolvable_bibd, 579
sage.combinat.designs.steiner_quadruple_systems,

723
sage.combinat.designs.subhypergraph_search,

727
sage.combinat.designs.twographs, 729
sage.combinat.diagram_algebras, 732
sage.combinat.dlx, 774
sage.combinat.dyck_word, 776
sage.combinat.e_one_star, 818
sage.combinat.enumerated_sets, 831
sage.combinat.enumeration_mod_permgroup, 834
sage.combinat.expnums, 836
sage.combinat.family, 837
sage.combinat.fast_vector_partitions, 837
sage.combinat.finite_state_machine, 850
sage.combinat.finite_state_machine_generators,

978
sage.combinat.fqsym, 997
sage.combinat.free_dendriform_algebra, 1025
sage.combinat.free_module, 1013
sage.combinat.free_prelie_algebra, 1033
sage.combinat.fully_commutative_elements, 841
sage.combinat.fully_packed_loop, 1040

sage.combinat.gelfand_tsetlin_patterns, 1054
sage.combinat.graph_path, 1061
sage.combinat.gray_codes, 1065
sage.combinat.grossman_larson_algebras, 1108
sage.combinat.growth, 1067
sage.combinat.hall_polynomial, 1113
sage.combinat.hillman_grassl, 1115
sage.combinat.integer_lists.base, 1122
sage.combinat.integer_lists.invlex, 1127
sage.combinat.integer_lists.lists, 1126
sage.combinat.integer_matrices, 1138
sage.combinat.integer_vector, 1141
sage.combinat.integer_vector_weighted, 1149
sage.combinat.integer_vectors_mod_permgroup,

1151
sage.combinat.interval_posets, 1160
sage.combinat.k_regular_sequence, 1196
sage.combinat.k_tableau, 1212
sage.combinat.kazhdan_lusztig, 1255
sage.combinat.knutson_tao_puzzles, 1257
sage.combinat.matrices.all, 1278
sage.combinat.matrices.dancing_links, 1278
sage.combinat.matrices.dlxcpp, 1289
sage.combinat.matrices.hadamard_matrix, 1291
sage.combinat.matrices.latin, 1301
sage.combinat.misc, 1328
sage.combinat.multiset_partition_into_sets_ordered,

1330
sage.combinat.ncsf_qsym.all, 1349
sage.combinat.ncsf_qsym.combinatorics, 1349
sage.combinat.ncsf_qsym.generic_basis_code,

1352
sage.combinat.ncsf_qsym.ncsf, 1370
sage.combinat.ncsf_qsym.qsym, 1424
sage.combinat.ncsf_qsym.tutorial, 1464
sage.combinat.ncsym.all, 1471
sage.combinat.ncsym.bases, 1472
sage.combinat.ncsym.dual, 1481
sage.combinat.ncsym.ncsym, 1487
sage.combinat.necklace, 1503
sage.combinat.non_decreasing_parking_function,

1504
sage.combinat.nu_dyck_word, 1509
sage.combinat.nu_tamari_lattice, 1521
sage.combinat.ordered_tree, 1522
sage.combinat.output, 1533
sage.combinat.parallelogram_polyomino, 1539
sage.combinat.parking_functions, 1566
sage.combinat.partition, 1607
sage.combinat.partition_algebra, 1687
sage.combinat.partition_kleshchev, 1698
sage.combinat.partition_shifting_algebras,

1713
sage.combinat.partition_tuple, 1717

3692 Python Module Index

Combinatorics, Release 9.7

sage.combinat.partitions, 1741
sage.combinat.path_tableaux.catalog, 1584
sage.combinat.path_tableaux.dyck_path, 1584
sage.combinat.path_tableaux.frieze, 1587
sage.combinat.path_tableaux.path_tableau,

1593
sage.combinat.path_tableaux.semistandard,

1597
sage.combinat.perfect_matching, 1742
sage.combinat.permutation, 1747
sage.combinat.permutation_cython, 1824
sage.combinat.plane_partition, 1601
sage.combinat.posets.all, 1827
sage.combinat.posets.cartesian_product, 1827
sage.combinat.posets.d_complete, 1831
sage.combinat.posets.elements, 1833
sage.combinat.posets.forest, 1834
sage.combinat.posets.hasse_diagram, 1834
sage.combinat.posets.incidence_algebras, 1862
sage.combinat.posets.lattices, 1867
sage.combinat.posets.linear_extensions, 1913
sage.combinat.posets.mobile, 1832
sage.combinat.posets.moebius_algebra, 1922
sage.combinat.posets.poset_examples, 1927
sage.combinat.posets.posets, 1943
sage.combinat.q_analogues, 2027
sage.combinat.q_bernoulli, 2035
sage.combinat.quickref, 2037
sage.combinat.ranker, 2038
sage.combinat.recognizable_series, 2041
sage.combinat.restricted_growth, 2052
sage.combinat.ribbon, 2052
sage.combinat.ribbon_shaped_tableau, 2052
sage.combinat.ribbon_tableau, 2059
sage.combinat.rigged_configurations.all, 2067
sage.combinat.rigged_configurations.bij_abstract_class,

2068
sage.combinat.rigged_configurations.bij_infinity,

2069
sage.combinat.rigged_configurations.bij_type_A,

2071
sage.combinat.rigged_configurations.bij_type_A2_dual,

2072
sage.combinat.rigged_configurations.bij_type_A2_even,

2072
sage.combinat.rigged_configurations.bij_type_A2_odd,

2073
sage.combinat.rigged_configurations.bij_type_B,

2073
sage.combinat.rigged_configurations.bij_type_C,

2075
sage.combinat.rigged_configurations.bij_type_D,

2075

sage.combinat.rigged_configurations.bij_type_D_tri,
2078

sage.combinat.rigged_configurations.bij_type_D_twisted,
2077

sage.combinat.rigged_configurations.bijection,
2079

sage.combinat.rigged_configurations.kleber_tree,
2079

sage.combinat.rigged_configurations.kr_tableaux,
2086

sage.combinat.rigged_configurations.rc_crystal,
2100

sage.combinat.rigged_configurations.rc_infinity,
2104

sage.combinat.rigged_configurations.rigged_configuration_element,
2109

sage.combinat.rigged_configurations.rigged_configurations,
2131

sage.combinat.rigged_configurations.rigged_partition,
2144

sage.combinat.rigged_configurations.tensor_product_kr_tableaux,
2146

sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element,
2150

sage.combinat.root_system.all, 2155
sage.combinat.root_system.ambient_space, 2158
sage.combinat.root_system.associahedron, 2163
sage.combinat.root_system.braid_move_calculator,

2166
sage.combinat.root_system.braid_orbit, 2167
sage.combinat.root_system.branching_rules,

2168
sage.combinat.root_system.cartan_matrix, 2187
sage.combinat.root_system.cartan_type, 2199
sage.combinat.root_system.coxeter_group, 2244
sage.combinat.root_system.coxeter_matrix,

2246
sage.combinat.root_system.coxeter_type, 2255
sage.combinat.root_system.dynkin_diagram,

2262
sage.combinat.root_system.extended_affine_weyl_group,

2536
sage.combinat.root_system.fundamental_group,

2572
sage.combinat.root_system.fusion_ring, 2634
sage.combinat.root_system.hecke_algebra_representation,

2270
sage.combinat.root_system.integrable_representations,

2283
sage.combinat.root_system.non_symmetric_macdonald_polynomials,

2293
sage.combinat.root_system.pieri_factors, 2324
sage.combinat.root_system.plot, 2333
sage.combinat.root_system.reflection_group_complex,

Python Module Index 3693

Combinatorics, Release 9.7

2359
sage.combinat.root_system.reflection_group_real,

2387
sage.combinat.root_system.root_lattice_realization_algebras,

2395
sage.combinat.root_system.root_lattice_realizations,

2411
sage.combinat.root_system.root_space, 2455
sage.combinat.root_system.root_system, 2460
sage.combinat.root_system.type_A, 2479
sage.combinat.root_system.type_A_affine, 2482
sage.combinat.root_system.type_A_infinity,

2484
sage.combinat.root_system.type_affine, 2526
sage.combinat.root_system.type_B, 2486
sage.combinat.root_system.type_B_affine, 2492
sage.combinat.root_system.type_BC_affine,

2490
sage.combinat.root_system.type_C, 2494
sage.combinat.root_system.type_C_affine, 2497
sage.combinat.root_system.type_D, 2498
sage.combinat.root_system.type_D_affine, 2502
sage.combinat.root_system.type_dual, 2532
sage.combinat.root_system.type_E, 2504
sage.combinat.root_system.type_E_affine, 2512
sage.combinat.root_system.type_F, 2514
sage.combinat.root_system.type_F_affine, 2518
sage.combinat.root_system.type_folded, 2581
sage.combinat.root_system.type_G, 2519
sage.combinat.root_system.type_G_affine, 2522
sage.combinat.root_system.type_H, 2523
sage.combinat.root_system.type_I, 2524
sage.combinat.root_system.type_marked, 2584
sage.combinat.root_system.type_Q, 2525
sage.combinat.root_system.type_reducible,

2589
sage.combinat.root_system.type_relabel, 2595
sage.combinat.root_system.type_super_A, 2470
sage.combinat.root_system.weight_lattice_realizations,

2600
sage.combinat.root_system.weight_space, 2610
sage.combinat.root_system.weyl_characters,

2616
sage.combinat.root_system.weyl_group, 2646
sage.combinat.rooted_tree, 2660
sage.combinat.rsk, 2668
sage.combinat.schubert_polynomial, 2698
sage.combinat.set_partition, 2702
sage.combinat.set_partition_ordered, 2730
sage.combinat.sf.all, 2742
sage.combinat.sf.character, 2743
sage.combinat.sf.classical, 2744
sage.combinat.sf.dual, 2745
sage.combinat.sf.elementary, 2750

sage.combinat.sf.hall_littlewood, 2755
sage.combinat.sf.hecke, 2764
sage.combinat.sf.homogeneous, 2766
sage.combinat.sf.jack, 2770
sage.combinat.sf.k_dual, 2784
sage.combinat.sf.kfpoly, 2797
sage.combinat.sf.llt, 2801
sage.combinat.sf.macdonald, 2806
sage.combinat.sf.monomial, 2822
sage.combinat.sf.multiplicative, 2826
sage.combinat.sf.new_kschur, 2828
sage.combinat.sf.ns_macdonald, 2841
sage.combinat.sf.orthogonal, 2850
sage.combinat.sf.orthotriang, 2853
sage.combinat.sf.powersum, 2854
sage.combinat.sf.schur, 2864
sage.combinat.sf.sf, 2873
sage.combinat.sf.sfa, 2899
sage.combinat.sf.symplectic, 2871
sage.combinat.sf.witt, 2965
sage.combinat.shard_order, 2970
sage.combinat.shifted_primed_tableau, 2972
sage.combinat.shuffle, 2987
sage.combinat.sidon_sets, 2990
sage.combinat.similarity_class_type, 2991
sage.combinat.sine_gordon, 3005
sage.combinat.six_vertex_model, 3008
sage.combinat.skew_partition, 3014
sage.combinat.skew_tableau, 3029
sage.combinat.sloane_functions, 3050
sage.combinat.species.all, 3134
sage.combinat.species.characteristic_species,

3135
sage.combinat.species.composition_species,

3138
sage.combinat.species.cycle_species, 3139
sage.combinat.species.empty_species, 3140
sage.combinat.species.functorial_composition_species,

3141
sage.combinat.species.generating_series, 3142
sage.combinat.species.library, 3152
sage.combinat.species.linear_order_species,

3153
sage.combinat.species.misc, 3155
sage.combinat.species.partition_species, 3155
sage.combinat.species.permutation_species,

3157
sage.combinat.species.product_species, 3159
sage.combinat.species.recursive_species, 3162
sage.combinat.species.series, 3163
sage.combinat.species.series_order, 3176
sage.combinat.species.set_species, 3177
sage.combinat.species.species, 3178
sage.combinat.species.stream, 3182

3694 Python Module Index

Combinatorics, Release 9.7

sage.combinat.species.structure, 3185
sage.combinat.species.subset_species, 3190
sage.combinat.species.sum_species, 3191
sage.combinat.subset, 3192
sage.combinat.subsets_hereditary, 3203
sage.combinat.subsets_pairwise, 3205
sage.combinat.subword, 3206
sage.combinat.subword_complex, 3210
sage.combinat.super_tableau, 3229
sage.combinat.superpartition, 3233
sage.combinat.symmetric_group_algebra, 3242
sage.combinat.symmetric_group_representations,

3268
sage.combinat.tableau, 3275
sage.combinat.tableau_residues, 3341
sage.combinat.tableau_tuple, 3349
sage.combinat.tamari_lattices, 3385
sage.combinat.tiling, 3389
sage.combinat.tools, 3413
sage.combinat.tuple, 3413
sage.combinat.tutorial, 3415
sage.combinat.vector_partition, 3445
sage.combinat.words, 3460
sage.combinat.words.abstract_word, 3448
sage.combinat.words.alphabet, 3461
sage.combinat.words.finite_word, 3465
sage.combinat.words.infinite_word, 3542
sage.combinat.words.lyndon_word, 3544
sage.combinat.words.morphism, 3547
sage.combinat.words.paths, 3578
sage.combinat.words.shuffle_product, 3604
sage.combinat.words.suffix_trees, 3606
sage.combinat.words.word, 3618
sage.combinat.words.word_char, 3626
sage.combinat.words.word_datatypes, 3629
sage.combinat.words.word_generators, 3635
sage.combinat.words.word_infinite_datatypes,

3649
sage.combinat.words.word_options, 3652
sage.combinat.words.words, 3652
sage.combinat.yang_baxter_graph, 3662

r
sage.rings.cfinite_sequence, 3668

Python Module Index 3695

Combinatorics, Release 9.7

3696 Python Module Index

INDEX

Symbols
__call__() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 894

A
a (sage.combinat.permutation.StandardPermutations_avoiding_generic

attribute), 1810
a() (in module sage.combinat.symmetric_group_algebra),

3264
a() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall

method), 389
a() (sage.combinat.diagram_algebras.PartitionAlgebra

method), 754
a() (sage.combinat.root_system.cartan_type.CartanType_affine

method), 2226
a() (sage.combinat.sf.ns_macdonald.LatticeDiagram

method), 2847
A000001 (class in sage.combinat.sloane_functions), 3050
A000004 (class in sage.combinat.sloane_functions), 3051
A000005 (class in sage.combinat.sloane_functions), 3051
A000007 (class in sage.combinat.sloane_functions), 3052
A000008 (class in sage.combinat.sloane_functions), 3052
A000009 (class in sage.combinat.sloane_functions), 3053
A000010 (class in sage.combinat.sloane_functions), 3054
A000012 (class in sage.combinat.sloane_functions), 3054
A000015 (class in sage.combinat.sloane_functions), 3055
A000016 (class in sage.combinat.sloane_functions), 3055
A000027 (class in sage.combinat.sloane_functions), 3056
A000030 (class in sage.combinat.sloane_functions), 3056
A000032 (class in sage.combinat.sloane_functions), 3057
A000035 (class in sage.combinat.sloane_functions), 3058
A000040 (class in sage.combinat.sloane_functions), 3058
A000041 (class in sage.combinat.sloane_functions), 3059
A000043 (class in sage.combinat.sloane_functions), 3059
A000045 (class in sage.combinat.sloane_functions), 3060
A000069 (class in sage.combinat.sloane_functions), 3061
A000073 (class in sage.combinat.sloane_functions), 3061
A000079 (class in sage.combinat.sloane_functions), 3062
A000085 (class in sage.combinat.sloane_functions), 3062
A000100 (class in sage.combinat.sloane_functions), 3063
A000108 (class in sage.combinat.sloane_functions), 3063
A000110 (class in sage.combinat.sloane_functions), 3064

A000120 (class in sage.combinat.sloane_functions), 3065
A000124 (class in sage.combinat.sloane_functions), 3065
A000129 (class in sage.combinat.sloane_functions), 3066
A000142 (class in sage.combinat.sloane_functions), 3066
A000153 (class in sage.combinat.sloane_functions), 3067
A000165 (class in sage.combinat.sloane_functions), 3067
A000166 (class in sage.combinat.sloane_functions), 3068
A000169 (class in sage.combinat.sloane_functions), 3068
A000203 (class in sage.combinat.sloane_functions), 3069
A000204 (class in sage.combinat.sloane_functions), 3070
A000213 (class in sage.combinat.sloane_functions), 3070
A000217 (class in sage.combinat.sloane_functions), 3071
A000225 (class in sage.combinat.sloane_functions), 3071
A000244 (class in sage.combinat.sloane_functions), 3072
A000255 (class in sage.combinat.sloane_functions), 3073
A000261 (class in sage.combinat.sloane_functions), 3073
A000272 (class in sage.combinat.sloane_functions), 3074
A000290 (class in sage.combinat.sloane_functions), 3074
A000292 (class in sage.combinat.sloane_functions), 3075
A000302 (class in sage.combinat.sloane_functions), 3075
A000312 (class in sage.combinat.sloane_functions), 3076
A000326 (class in sage.combinat.sloane_functions), 3076
A000330 (class in sage.combinat.sloane_functions), 3077
A000396 (class in sage.combinat.sloane_functions), 3078
A000578 (class in sage.combinat.sloane_functions), 3078
A000583 (class in sage.combinat.sloane_functions), 3079
A000587 (class in sage.combinat.sloane_functions), 3079
A000668 (class in sage.combinat.sloane_functions), 3080
A000670 (class in sage.combinat.sloane_functions), 3081
A000720 (class in sage.combinat.sloane_functions), 3081
A000796 (class in sage.combinat.sloane_functions), 3082
A000961 (class in sage.combinat.sloane_functions), 3083
A000984 (class in sage.combinat.sloane_functions), 3083
A001006 (class in sage.combinat.sloane_functions), 3084
A001045 (class in sage.combinat.sloane_functions), 3084
A001055 (class in sage.combinat.sloane_functions), 3085
A001109 (class in sage.combinat.sloane_functions), 3086
A001110 (class in sage.combinat.sloane_functions), 3086
A001147 (class in sage.combinat.sloane_functions), 3087
A001157 (class in sage.combinat.sloane_functions), 3087
A001189 (class in sage.combinat.sloane_functions), 3088
A001221 (class in sage.combinat.sloane_functions), 3089

3697

Combinatorics, Release 9.7

A001222 (class in sage.combinat.sloane_functions), 3089
A001227 (class in sage.combinat.sloane_functions), 3090
A001333 (class in sage.combinat.sloane_functions), 3091
A001358 (class in sage.combinat.sloane_functions), 3091
A001405 (class in sage.combinat.sloane_functions), 3092
A001477 (class in sage.combinat.sloane_functions), 3092
A001694 (class in sage.combinat.sloane_functions), 3093
A001836 (class in sage.combinat.sloane_functions), 3094
A001906 (class in sage.combinat.sloane_functions), 3095
A001909 (class in sage.combinat.sloane_functions), 3095
A001910 (class in sage.combinat.sloane_functions), 3096
A001969 (class in sage.combinat.sloane_functions), 3097
A002110 (class in sage.combinat.sloane_functions), 3097
A002113 (class in sage.combinat.sloane_functions), 3098
A002275 (class in sage.combinat.sloane_functions), 3098
A002378 (class in sage.combinat.sloane_functions), 3099
A002620 (class in sage.combinat.sloane_functions), 3100
A002808 (class in sage.combinat.sloane_functions), 3100
A003418 (class in sage.combinat.sloane_functions), 3101
A004086 (class in sage.combinat.sloane_functions), 3101
A004526 (class in sage.combinat.sloane_functions), 3102
A005100 (class in sage.combinat.sloane_functions), 3102
A005101 (class in sage.combinat.sloane_functions), 3103
A005117 (class in sage.combinat.sloane_functions), 3104
A005408 (class in sage.combinat.sloane_functions), 3104
A005843 (class in sage.combinat.sloane_functions), 3105
A006318 (class in sage.combinat.sloane_functions), 3105
A006530 (class in sage.combinat.sloane_functions), 3106
A006882 (class in sage.combinat.sloane_functions), 3106
A007318 (class in sage.combinat.sloane_functions), 3107
A008275 (class in sage.combinat.sloane_functions), 3108
A008277 (class in sage.combinat.sloane_functions), 3109
A008683 (class in sage.combinat.sloane_functions), 3109
A010060 (class in sage.combinat.sloane_functions), 3110
A015521 (class in sage.combinat.sloane_functions), 3110
A015523 (class in sage.combinat.sloane_functions), 3111
A015530 (class in sage.combinat.sloane_functions), 3112
A015531 (class in sage.combinat.sloane_functions), 3112
A015551 (class in sage.combinat.sloane_functions), 3113
A018252 (class in sage.combinat.sloane_functions), 3113
A020639 (class in sage.combinat.sloane_functions), 3114
A046660 (class in sage.combinat.sloane_functions), 3114
A049310 (class in sage.combinat.sloane_functions), 3115
A051959 (class in sage.combinat.sloane_functions), 3116
A055790 (class in sage.combinat.sloane_functions), 3116
A061084 (class in sage.combinat.sloane_functions), 3117
A064553 (class in sage.combinat.sloane_functions), 3118
A079922 (class in sage.combinat.sloane_functions), 3118
A079923 (class in sage.combinat.sloane_functions), 3119
A082411 (class in sage.combinat.sloane_functions), 3120
A083103 (class in sage.combinat.sloane_functions), 3120
A083104 (class in sage.combinat.sloane_functions), 3121
A083105 (class in sage.combinat.sloane_functions), 3121
A083216 (class in sage.combinat.sloane_functions), 3122

A090010 (class in sage.combinat.sloane_functions), 3123
A090012 (class in sage.combinat.sloane_functions), 3123
A090013 (class in sage.combinat.sloane_functions), 3124
A090014 (class in sage.combinat.sloane_functions), 3125
A090015 (class in sage.combinat.sloane_functions), 3126
A090016 (class in sage.combinat.sloane_functions), 3127
A109814 (class in sage.combinat.sloane_functions), 3127
A111774 (class in sage.combinat.sloane_functions), 3128
A111775 (class in sage.combinat.sloane_functions), 3130
A111787 (class in sage.combinat.sloane_functions), 3130
A7_decomposition() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_E7

method), 438
a_long_simple_root()

(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2429

a_part() (sage.combinat.superpartition.SuperPartition
method), 3234

a_realization() (sage.combinat.chas.fsym.FreeSymmetricFunctions
method), 128

a_realization() (sage.combinat.chas.fsym.FreeSymmetricFunctions_Dual
method), 131

a_realization() (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions
method), 155

a_realization() (sage.combinat.descent_algebra.DescentAlgebra
method), 565

a_realization() (sage.combinat.fqsym.FreeQuasisymmetricFunctions
method), 1013

a_realization() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions
method), 1420

a_realization() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions
method), 1460

a_realization() (sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual
method), 1481

a_realization() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables
method), 1488

a_realization() (sage.combinat.posets.moebius_algebra.MoebiusAlgebra
method), 1923

a_realization() (sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra
method), 1926

a_realization() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2568

a_realization() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2786

a_realization() (sage.combinat.sf.sf.SymmetricFunctions
method), 2887

abelian_complexity()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3470

abelian_rotation_subspace()
(sage.combinat.words.morphism.WordMorphism
method), 3550

abelian_vector() (sage.combinat.words.finite_word.FiniteWord_class
method), 3470

abelian_vectors() (sage.combinat.words.finite_word.FiniteWord_class

3698 Index

Combinatorics, Release 9.7

method), 3471
abs() (sage.combinat.finite_state_machine_generators.TransducerGenerators

method), 991
absolute_length() (sage.combinat.permutation.Permutation

method), 1758
AbstractClonableTree (class in

sage.combinat.abstract_tree), 10
AbstractLabelledClonableTree (class in

sage.combinat.abstract_tree), 10
AbstractLabelledTree (class in

sage.combinat.abstract_tree), 12
AbstractLanguage (class in

sage.combinat.words.words), 3653
AbstractPartitionDiagram (class in

sage.combinat.diagram_algebras), 732
AbstractPartitionDiagrams (class in

sage.combinat.diagram_algebras), 735
AbstractSetPartition (class in

sage.combinat.set_partition), 2702
AbstractSingleCrystalElement (class in

sage.combinat.crystals.elementary_crystals),
371

AbstractTree (class in sage.combinat.abstract_tree), 15
accept_size() (in module sage.combinat.species.misc),

3155
accessible_components()

(sage.combinat.finite_state_machine.FiniteStateMachine
method), 895

acheck() (sage.combinat.root_system.cartan_type.CartanType_affine
method), 2226

act_on_affine_lattice()
(sage.combinat.root_system.fundamental_group.FundamentalGroupElement
method), 2572

act_on_affine_weyl()
(sage.combinat.root_system.fundamental_group.FundamentalGroupElement
method), 2572

act_on_classical_ambient()
(sage.combinat.root_system.fundamental_group.FundamentalGroupGLElement
method), 2575

acted_upon() (sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ElementMethods
method), 2395

action() (sage.combinat.permutation.Permutation
method), 1758

action() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0Element
method), 2546

action() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2556

action() (sage.combinat.root_system.fundamental_group.FundamentalGroupGL
method), 2573

action() (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class
method), 2579

action() (sage.combinat.root_system.weyl_group.WeylGroupElement
method), 2649

action_on_affine_roots()

(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFWElement
method), 2544

action_on_affine_roots()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2556

active_state() (sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3608

active_state() (sage.combinat.words.suffix_trees.SuffixTrie
method), 3615

actual_row_col_sym_sizes()
(sage.combinat.matrices.latin.LatinSquare
method), 1303

adams_operation() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2622

adams_operation() (sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element
method), 2854

adapt() (sage.combinat.integer_lists.base.Envelope
method), 1123

add() (sage.combinat.finite_state_machine_generators.TransducerGenerators
method), 992

add() (sage.combinat.recognizable_series.PrefixClosedSet
method), 2042

add() (sage.combinat.species.series.LazyPowerSeries
method), 3163

add_cell() (sage.combinat.partition.Partition method),
1615

add_cell() (sage.combinat.partition_tuple.PartitionTuple
method), 1723

add_edge() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2264

add_entry() (sage.combinat.tableau.Tableau method),
3300

add_entry() (sage.combinat.tableau_tuple.TableauTuple
method), 3371

add_forbidden_label()
(sage.combinat.knutson_tao_puzzles.PuzzlePieces
method), 1275

add_from_transition_function()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 896

add_horizontal_border_strip()
(sage.combinat.partition.Partition method),
1615

add_horizontal_border_strip_star()
(sage.combinat.superpartition.SuperPartition
method), 3234

add_horizontal_border_strip_star_bar()
(sage.combinat.superpartition.SuperPartition
method), 3235

add_marking() (sage.combinat.k_tableau.StrongTableaux
class method), 1227

add_piece() (sage.combinat.knutson_tao_puzzles.PuzzleFilling
method), 1271

add_piece() (sage.combinat.knutson_tao_puzzles.PuzzlePieces

Index 3699

Combinatorics, Release 9.7

method), 1275
add_pieces() (sage.combinat.knutson_tao_puzzles.PuzzleFilling

method), 1271
add_state() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 897
add_states() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 897
add_T_piece() (sage.combinat.knutson_tao_puzzles.PuzzlePieces

method), 1275
add_transition() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 897
add_transitions_from_function()

(sage.combinat.finite_state_machine.FiniteStateMachine
method), 898

add_vertical_border_strip()
(sage.combinat.partition.Partition method),
1615

addable_cells() (sage.combinat.partition.Partition
method), 1615

addable_cells() (sage.combinat.partition_tuple.PartitionTuple
method), 1723

addable_cells_residue()
(sage.combinat.partition.Partition method),
1616

adjacency_matrix() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 899

adjoint_representation()
(sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2625

adjunct() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1871

affine() (sage.combinat.root_system.cartan_type.CartanType_standard_finite
method), 2240

affine() (sage.combinat.root_system.type_marked.CartanType_finite
method), 2588

affine() (sage.combinat.root_system.type_relabel.CartanType_finite
method), 2599

affine_factorizations() (in module
sage.combinat.crystals.affine_factorization),
347

affine_lift() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors
method), 2270

affine_lift() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials
method), 2318

affine_orbit() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2413

affine_reflect() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2626

affine_retract() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors
method), 2271

affine_retract() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials
method), 2319

affine_symmetric_group_action()
(sage.combinat.core.Core method), 330

affine_symmetric_group_simple_action()
(sage.combinat.core.Core method), 330

affine_weight() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6
method), 435

affine_weyl() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2569

AffineCrystalFromClassical (class in
sage.combinat.crystals.affine), 336

AffineCrystalFromClassicalAndPromotion (class
in sage.combinat.crystals.affine), 338

AffineCrystalFromClassicalAndPromotionElement
(class in sage.combinat.crystals.affine), 339

AffineCrystalFromClassicalElement (class in
sage.combinat.crystals.affine), 341

AffineFactorizationCrystal (class in
sage.combinat.crystals.affine_factorization),
344

AffineFactorizationCrystal.Element (class in
sage.combinat.crystals.affine_factorization),
345

AffineGeometryDesign() (in module
sage.combinat.designs.block_design), 585

AffineGrothendieckPolynomial()
(sage.combinat.sf.k_dual.KBoundedQuotient
method), 2786

AffinePermutation (class in
sage.combinat.affine_permutation), 25

AffinePermutationGroup() (in module
sage.combinat.affine_permutation), 28

AffinePermutationGroupGeneric (class in
sage.combinat.affine_permutation), 31

AffinePermutationGroupTypeA (class in
sage.combinat.affine_permutation), 33

AffinePermutationGroupTypeB (class in
sage.combinat.affine_permutation), 33

AffinePermutationGroupTypeC (class in
sage.combinat.affine_permutation), 33

AffinePermutationGroupTypeD (class in
sage.combinat.affine_permutation), 34

AffinePermutationGroupTypeG (class in
sage.combinat.affine_permutation), 34

AffinePermutationTypeA (class in
sage.combinat.affine_permutation), 34

AffinePermutationTypeB (class in
sage.combinat.affine_permutation), 40

AffinePermutationTypeC (class in
sage.combinat.affine_permutation), 41

AffinePermutationTypeD (class in
sage.combinat.affine_permutation), 43

AffinePermutationTypeG (class in
sage.combinat.affine_permutation), 44

affineSchur() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2786

AffineSchurFunctions (class in

3700 Index

Combinatorics, Release 9.7

sage.combinat.sf.k_dual), 2784
AffinizationOfCrystal (class in

sage.combinat.crystals.affinization), 348
AffinizationOfCrystal.Element (class in

sage.combinat.crystals.affinization), 349
alcove_walk_signs()

(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2557

algebra() (sage.combinat.permutation.StandardPermutations_n
method), 1813

algebra_generators()
(sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1027

algebra_generators()
(sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1035

algebra_generators()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBases.ParentMethods
method), 1403

algebra_generators()
(sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_t
method), 3243

algebra_generators()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3248

algebra_morphism() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBases.ParentMethods
method), 1403

algebraic_complement()
(sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.Characteristic.Element
method), 145

algebraic_complement()
(sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyCoarser.Element
method), 149

algebraic_complement()
(sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyFiner.Element
method), 152

algebraic_complement()
(sage.combinat.chas.wqsym.WQSymBases.ElementMethods
method), 133

algebraic_equation_system()
(sage.combinat.species.species.GenericCombinatorialSpecies
method), 3178

AlgebraMorphism (class in
sage.combinat.ncsf_qsym.generic_basis_code),
1352

Algebras (class in sage.combinat.root_system.root_lattice_realization_algebras),
2395

Algebras (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations
attribute), 2413

Algebras.ElementMethods (class in
sage.combinat.root_system.root_lattice_realization_algebras),
2395

Algebras.ParentMethods (class in
sage.combinat.root_system.root_lattice_realization_algebras),

2396
all() (sage.combinat.finite_state_machine_generators.TransducerGenerators

method), 992
all_children() (in module

sage.combinat.enumeration_mod_permgroup),
834

all_solutions() (sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1279

AllExactCovers() (in module sage.combinat.dlx), 774
AllExactCovers() (in module

sage.combinat.matrices.dlxcpp), 1289
almost_positive_root()

(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterVariable
method), 199

almost_positive_roots()
(sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2388

almost_positive_roots()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2429

almost_positive_roots_decomposition()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2430

alpha() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2430

Alphabet() (in module sage.combinat.words.alphabet),
3461

alphabet() (sage.combinat.recognizable_series.RecognizableSeriesSpace
method), 2050

alphabet() (sage.combinat.words.words.AbstractLanguage
method), 3653

alphabet() (sage.combinat.words.words.Words_n
method), 3661

alphacheck() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2430

alternating_group_bitrade_generators() (in
module sage.combinat.matrices.latin), 1314

alternating_sum_of_compositions()
(sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1355

alternating_sum_of_fatter_compositions()
(sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1355

alternating_sum_of_finer_compositions()
(sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1356

AlternatingSignMatrices (class in
sage.combinat.alternating_sign_matrix),
48

AlternatingSignMatrix (class in
sage.combinat.alternating_sign_matrix),
53

ambient() (sage.combinat.diagram_algebras.SubPartitionAlgebra
method), 765

Index 3701

Combinatorics, Release 9.7

ambient() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All
method), 1154

ambient() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints
method), 1157

ambient() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2626

ambient() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2787

ambient() (sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods
method), 2790

ambient_crystal() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2
method), 420

ambient_crystal() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn
method), 423

ambient_crystal() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_box
method), 440

ambient_crystal() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_C
method), 426

ambient_dict_pm_diagrams()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2
method), 420

ambient_dict_pm_diagrams()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_C
method), 426

ambient_highest_weight_dict()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2
method), 421

ambient_highest_weight_dict()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn
method), 424

ambient_highest_weight_dict()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_box
method), 440

ambient_highest_weight_dict()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_C
method), 427

ambient_lattice() (sage.combinat.root_system.root_system.RootSystem
method), 2464

ambient_space() (sage.combinat.root_system.root_system.RootSystem
method), 2464

ambient_spaces() (sage.combinat.root_system.type_reducible.AmbientSpace
method), 2589

AmbientRetractMap (class in
sage.combinat.crystals.kirillov_reshetikhin),
417

AmbientSpace (class in
sage.combinat.root_system.ambient_space),
2158

AmbientSpace (class in
sage.combinat.root_system.type_A), 2479

AmbientSpace (class in
sage.combinat.root_system.type_affine), 2526

AmbientSpace (class in
sage.combinat.root_system.type_B), 2486

AmbientSpace (class in
sage.combinat.root_system.type_C), 2494

AmbientSpace (class in
sage.combinat.root_system.type_D), 2498

AmbientSpace (class in
sage.combinat.root_system.type_dual), 2532

AmbientSpace (class in
sage.combinat.root_system.type_E), 2504

AmbientSpace (class in
sage.combinat.root_system.type_F), 2514

AmbientSpace (class in
sage.combinat.root_system.type_G), 2519

AmbientSpace (class in
sage.combinat.root_system.type_marked),
2584

AmbientSpace (class in
sage.combinat.root_system.type_reducible),
2589

AmbientSpace (class in
sage.combinat.root_system.type_relabel),
2595

AmbientSpace (class in
sage.combinat.root_system.type_super_A),
2470

AmbientSpace (sage.combinat.root_system.cartan_type.CartanType_affine
attribute), 2226

AmbientSpace (sage.combinat.root_system.type_A.CartanType
attribute), 2481

AmbientSpace (sage.combinat.root_system.type_B.CartanType
attribute), 2488

AmbientSpace (sage.combinat.root_system.type_C.CartanType
attribute), 2496

AmbientSpace (sage.combinat.root_system.type_D.CartanType
attribute), 2500

AmbientSpace (sage.combinat.root_system.type_dual.CartanType_finite
attribute), 2536

AmbientSpace (sage.combinat.root_system.type_E.CartanType
attribute), 2510

AmbientSpace (sage.combinat.root_system.type_F.CartanType
attribute), 2516

AmbientSpace (sage.combinat.root_system.type_G.CartanType
attribute), 2520

AmbientSpace (sage.combinat.root_system.type_marked.CartanType_finite
attribute), 2588

AmbientSpace (sage.combinat.root_system.type_reducible.CartanType
attribute), 2591

AmbientSpace (sage.combinat.root_system.type_relabel.CartanType_finite
attribute), 2599

AmbientSpace (sage.combinat.root_system.type_super_A.CartanType
attribute), 2476

AmbientSpace.Element (class in
sage.combinat.root_system.type_affine), 2527

AmbientSpace.Element (class in
sage.combinat.root_system.type_super_A),

3702 Index

Combinatorics, Release 9.7

2471
AmbientSpaceElement (class in

sage.combinat.root_system.ambient_space),
2160

an_element() (sage.combinat.chas.wqsym.WQSymBasis_abstract
method), 140

an_element() (sage.combinat.composition_tableau.CompositionTableaux_all
method), 315

an_element() (sage.combinat.composition_tableau.CompositionTableaux_shape
method), 315

an_element() (sage.combinat.debruijn_sequence.DeBruijnSequences
method), 551

an_element() (sage.combinat.designs.evenly_distributed_sets.EvenlyDistributedSetsBacktracker
method), 656

an_element() (sage.combinat.fqsym.FQSymBasis_abstract
method), 1006

an_element() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1028

an_element() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1035

an_element() (sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra
method), 1110

an_element() (sage.combinat.hillman_grassl.WeakReversePlanePartitions
method), 1119

an_element() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints
method), 1157

an_element() (sage.combinat.k_tableau.StrongTableaux
method), 1228

an_element() (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_size
method), 1564

an_element() (sage.combinat.root_system.fundamental_group.FundamentalGroupGL
method), 2573

an_element() (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class
method), 2579

an_element() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2787

an_element() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ParentMethods
method), 2833

an_element() (sage.combinat.subset.Subsets_sk
method), 3201

an_element() (sage.combinat.tableau.RowStandardTableaux_size
method), 3285

an_element() (sage.combinat.tableau.Tableaux_all
method), 3339

an_element() (sage.combinat.tableau.Tableaux_size
method), 3339

an_element() (sage.combinat.tableau_residues.ResidueSequences
method), 3348

an_element() (sage.combinat.tableau_tuple.RowStandardTableauTuples_all
method), 3358

an_element() (sage.combinat.tableau_tuple.RowStandardTableauTuples_level
method), 3358

an_element() (sage.combinat.tableau_tuple.RowStandardTableauTuples_level_size
method), 3358

an_element() (sage.combinat.tableau_tuple.RowStandardTableauTuples_residue
method), 3359

an_element() (sage.combinat.tableau_tuple.RowStandardTableauTuples_shape
method), 3361

an_element() (sage.combinat.tableau_tuple.RowStandardTableauTuples_size
method), 3362

an_element() (sage.combinat.tableau_tuple.StandardTableauTuples_level
method), 3366

an_element() (sage.combinat.tableau_tuple.StandardTableauTuples_level_size
method), 3366

an_element() (sage.combinat.tableau_tuple.StandardTableauTuples_shape
method), 3367

an_element() (sage.combinat.tableau_tuple.StandardTableauTuples_size
method), 3368

an_element() (sage.combinat.tableau_tuple.StandardTableaux_residue_shape
method), 3369

an_element() (sage.combinat.tableau_tuple.TableauTuples_all
method), 3384

an_element() (sage.combinat.tableau_tuple.TableauTuples_level
method), 3384

an_element() (sage.combinat.tableau_tuple.TableauTuples_level_size
method), 3385

an_element() (sage.combinat.tableau_tuple.TableauTuples_size
method), 3385

an_element() (sage.rings.cfinite_sequence.CFiniteSequences_generic
method), 3674

an_instance() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
static method), 2264

anchor() (sage.combinat.posets.mobile.MobilePoset
method), 1833

animate() (sage.combinat.tiling.TilingSolver method),
3403

animate() (sage.combinat.words.paths.FiniteWordPath_2d
method), 3581

anti_restrict() (sage.combinat.tableau.Tableau
method), 3301

AntichainPoset() (sage.combinat.posets.poset_examples.Posets
static method), 1929

antichains() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1836

antichains() (sage.combinat.posets.posets.FinitePoset
method), 1949

antichains_iterator()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1836

antichains_iterator()
(sage.combinat.posets.posets.FinitePoset
method), 1950

antipode() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBases.ParentMethods
method), 1404

antipode() (sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods
method), 2790

antipode() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ParentMethods
method), 2833

Index 3703

Combinatorics, Release 9.7

antipode() (sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3248

antipode_by_coercion()
(sage.combinat.sf.monomial.SymmetricFunctionAlgebra_monomial
method), 2824

antipode_by_coercion()
(sage.combinat.sf.sfa.GradedSymmetricFunctionsBases.ParentMethods
method), 2903

antipode_on_basis()
(sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra
method), 1110

antipode_on_basis()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBasesOnGroupLikeElements.ParentMethods
method), 1406

antipode_on_basis()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Ribbon
method), 1418

antipode_on_basis()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Essential
method), 1445

antipode_on_basis()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Fundamental
method), 1451

antipode_on_basis()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial
method), 1456

antipode_on_basis()
(sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w
method), 1484

antipode_on_basis()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.powersum
method), 1498

antipode_on_basis()
(sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power
method), 2862

antipode_on_generators()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBasesOnPrimitiveElements.ParentMethods
method), 1408

antisymmetric_part()
(sage.combinat.superpartition.SuperPartition
method), 3235

any() (sage.combinat.finite_state_machine_generators.TransducerGenerators
method), 993

AnyLetter() (sage.combinat.finite_state_machine_generators.AutomatonGenerators
method), 979

AnyWord() (sage.combinat.finite_state_machine_generators.AutomatonGenerators
method), 979

apply_isotopism() (sage.combinat.matrices.latin.LatinSquare
method), 1303

apply_morphism() (sage.combinat.words.abstract_word.Word_class
method), 3448

apply_permutation()
(sage.combinat.set_partition.SetPartition
method), 2705

apply_permutation_to_letters()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3471

apply_permutation_to_positions()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3472

apply_simple_projection()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2557

apply_simple_reflection()
(sage.combinat.affine_permutation.AffinePermutation
method), 26

apply_simple_reflection()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2558

apply_simple_reflection()
(sage.combinat.root_system.weyl_group.WeylGroupElement
method), 2650

apply_simple_reflection_left()
(sage.combinat.affine_permutation.AffinePermutationTypeA
method), 34

apply_simple_reflection_left()
(sage.combinat.affine_permutation.AffinePermutationTypeB
method), 40

apply_simple_reflection_left()
(sage.combinat.affine_permutation.AffinePermutationTypeC
method), 41

apply_simple_reflection_left()
(sage.combinat.affine_permutation.AffinePermutationTypeD
method), 43

apply_simple_reflection_left()
(sage.combinat.affine_permutation.AffinePermutationTypeG
method), 44

apply_simple_reflection_left()
(sage.combinat.permutation.StandardPermutations_n.Element
method), 1811

apply_simple_reflection_right()
(sage.combinat.affine_permutation.AffinePermutationTypeA
method), 34

apply_simple_reflection_right()
(sage.combinat.affine_permutation.AffinePermutationTypeB
method), 40

apply_simple_reflection_right()
(sage.combinat.affine_permutation.AffinePermutationTypeC
method), 41

apply_simple_reflection_right()
(sage.combinat.affine_permutation.AffinePermutationTypeD
method), 43

apply_simple_reflection_right()
(sage.combinat.affine_permutation.AffinePermutationTypeG
method), 44

apply_simple_reflection_right()
(sage.combinat.permutation.StandardPermutations_n.Element
method), 1811

3704 Index

Combinatorics, Release 9.7

apply_vector_field()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2364

arc() (sage.combinat.designs.bibd.BalancedIncompleteBlockDesign
method), 573

arcs() (sage.combinat.set_partition.SetPartition
method), 2706

are_attacking() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2842

are_comparable() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1837

are_hadamard_difference_set_parameters() (in
module sage.combinat.designs.difference_family),
637

are_hyperplanes_in_projective_geometry_parameters()
(in module sage.combinat.designs.block_design),
591

are_incomparable() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1837

are_mcfarland_1973_parameters() (in module
sage.combinat.designs.difference_family), 637

are_mutually_orthogonal_latin_squares() (in
module sage.combinat.designs.latin_squares),
683

area() (sage.combinat.dyck_word.DyckWord_complete
method), 799

area() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1541

area() (sage.combinat.parking_functions.ParkingFunction
method), 1568

area() (sage.combinat.words.paths.FiniteWordPath_2d
method), 3581

area() (sage.combinat.words.paths.FiniteWordPath_square_grid
method), 3597

area_dinv_to_bounce_area_map()
(sage.combinat.dyck_word.DyckWord_complete
method), 800

arithmetic_product()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2910

arithmetic_product()
(sage.combinat.species.generating_series.CycleIndexSeries
method), 3142

arm() (sage.combinat.sf.ns_macdonald.LatticeDiagram
method), 2847

arm_cells() (sage.combinat.partition.Partition
method), 1616

arm_left() (sage.combinat.sf.ns_macdonald.LatticeDiagram
method), 2847

arm_length() (sage.combinat.partition.Partition
method), 1616

arm_length() (sage.combinat.partition_tuple.PartitionTuple
method), 1724

arm_lengths() (sage.combinat.partition.Partition

method), 1617
arm_right() (sage.combinat.sf.ns_macdonald.LatticeDiagram

method), 2847
arms_legs_coeff() (sage.combinat.partition.Partition

method), 1617
Arrangements (class in sage.combinat.permutation),

1751
Arrangements_msetk (class in

sage.combinat.permutation), 1752
Arrangements_setk (class in

sage.combinat.permutation), 1752
as_digraph() (sage.combinat.abstract_tree.AbstractLabelledTree

method), 13
as_folding() (sage.combinat.root_system.cartan_type.CartanType_abstract

method), 2219
as_ordered_tree() (sage.combinat.binary_tree.BinaryTree

method), 73
as_partition_dictionary()

(sage.combinat.similarity_class_type.SimilarityClassType
method), 2996

as_permutation_group()
(sage.combinat.colored_permutations.ColoredPermutations
method), 245

as_permutation_group()
(sage.combinat.permutation.StandardPermutations_n
method), 1813

ascent_prime_decomposition()
(sage.combinat.dyck_word.DyckWord method),
781

ascent_set() (in module sage.combinat.chas.fsym),
131

ascii_art() (sage.combinat.root_system.cartan_type.CartanType_crystallographic
method), 2234

ascii_art() (sage.combinat.root_system.type_A.CartanType
method), 2481

ascii_art() (sage.combinat.root_system.type_A_affine.CartanType
method), 2483

ascii_art() (sage.combinat.root_system.type_A_infinity.CartanType
method), 2484

ascii_art() (sage.combinat.root_system.type_B.CartanType
method), 2489

ascii_art() (sage.combinat.root_system.type_B_affine.CartanType
method), 2493

ascii_art() (sage.combinat.root_system.type_BC_affine.CartanType
method), 2491

ascii_art() (sage.combinat.root_system.type_C.CartanType
method), 2496

ascii_art() (sage.combinat.root_system.type_C_affine.CartanType
method), 2498

ascii_art() (sage.combinat.root_system.type_D.CartanType
method), 2500

ascii_art() (sage.combinat.root_system.type_D_affine.CartanType
method), 2503

ascii_art() (sage.combinat.root_system.type_dual.CartanType

Index 3705

Combinatorics, Release 9.7

method), 2534
ascii_art() (sage.combinat.root_system.type_E.CartanType

method), 2510
ascii_art() (sage.combinat.root_system.type_E_affine.CartanType

method), 2512
ascii_art() (sage.combinat.root_system.type_F.CartanType

method), 2517
ascii_art() (sage.combinat.root_system.type_F_affine.CartanType

method), 2518
ascii_art() (sage.combinat.root_system.type_G.CartanType

method), 2520
ascii_art() (sage.combinat.root_system.type_G_affine.CartanType

method), 2522
ascii_art() (sage.combinat.root_system.type_marked.CartanType

method), 2586
ascii_art() (sage.combinat.root_system.type_reducible.CartanType

method), 2592
ascii_art() (sage.combinat.root_system.type_relabel.CartanType

method), 2596
ascii_art() (sage.combinat.root_system.type_super_A.CartanType

method), 2476
ascii_art_table() (in module sage.combinat.output),

1533
ASM_compatible() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix

method), 53
ASM_compatible_bigger()

(sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 53

ASM_compatible_smaller()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 54

Associahedra() (in module
sage.combinat.root_system.associahedron),
2163

Associahedra_base (class in
sage.combinat.root_system.associahedron),
2163

Associahedra_cdd (class in
sage.combinat.root_system.associahedron),
2163

Associahedra_field (class in
sage.combinat.root_system.associahedron),
2163

Associahedra_normaliz (class in
sage.combinat.root_system.associahedron),
2163

Associahedra_polymake (class in
sage.combinat.root_system.associahedron),
2164

Associahedra_ppl (class in
sage.combinat.root_system.associahedron),
2164

Associahedron() (in module
sage.combinat.root_system.associahedron),

2164
Associahedron_class_base (class in

sage.combinat.root_system.associahedron),
2165

Associahedron_class_cdd (class in
sage.combinat.root_system.associahedron),
2165

Associahedron_class_field (class in
sage.combinat.root_system.associahedron),
2165

Associahedron_class_normaliz (class in
sage.combinat.root_system.associahedron),
2166

Associahedron_class_polymake (class in
sage.combinat.root_system.associahedron),
2166

Associahedron_class_ppl (class in
sage.combinat.root_system.associahedron),
2166

associated_coroot()
(sage.combinat.root_system.ambient_space.AmbientSpaceElement
method), 2161

associated_coroot()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2414

associated_coroot()
(sage.combinat.root_system.root_space.RootSpaceElement
method), 2457

associated_coroot()
(sage.combinat.root_system.type_affine.AmbientSpace.Element
method), 2527

associated_coroot()
(sage.combinat.root_system.type_super_A.AmbientSpace.Element
method), 2471

associated_parenthesis()
(sage.combinat.dyck_word.DyckWord method),
782

associated_reflection()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2414

asymptotic_moments()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 900

atkinson() (sage.combinat.posets.posets.FinitePoset
method), 1950

atom() (sage.combinat.partition.Partition method), 1617
atom() (sage.combinat.tableau.Tableau method), 3301
atoms() (sage.combinat.posets.lattices.FiniteMeetSemilattice

method), 1908
atoms_of_congruence_lattice()

(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1837

attacking_boxes() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2842

3706 Index

Combinatorics, Release 9.7

attacking_pairs() (sage.combinat.partition.Partition
method), 1618

AugmentedLatticeDiagramFilling (class in
sage.combinat.sf.ns_macdonald), 2841

aut() (sage.combinat.partition.Partition method), 1618
Automaton (class in sage.combinat.finite_state_machine),

865
AutomatonGenerators (class in

sage.combinat.finite_state_machine_generators),
979

automorphism() (sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotion
method), 339

automorphism_group()
(sage.combinat.designs.incidence_structures.IncidenceStructure
method), 665

automorphism_group()
(sage.combinat.species.characteristic_species.CharacteristicSpeciesStructure
method), 3136

automorphism_group()
(sage.combinat.species.cycle_species.CycleSpeciesStructure
method), 3139

automorphism_group()
(sage.combinat.species.linear_order_species.LinearOrderSpeciesStructure
method), 3154

automorphism_group()
(sage.combinat.species.partition_species.PartitionSpeciesStructure
method), 3156

automorphism_group()
(sage.combinat.species.permutation_species.PermutationSpeciesStructure
method), 3157

automorphism_group()
(sage.combinat.species.product_species.ProductSpeciesStructure
method), 3160

automorphism_group()
(sage.combinat.species.set_species.SetSpeciesStructure
method), 3177

automorphism_group()
(sage.combinat.species.subset_species.SubsetSpeciesStructure
method), 3190

automorphism_on_affine_weight()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6
method), 436

avoids() (sage.combinat.permutation.Permutation
method), 1758

B
b() (in module sage.combinat.symmetric_group_algebra),

3264
b_matrix() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 159
b_matrix() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver

method), 206
b_matrix() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract

method), 233

b_matrix_class() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 159

b_matrix_class_iter()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 159

back_circulant() (in module
sage.combinat.matrices.latin), 1314

backend_class (sage.combinat.integer_lists.invlex.IntegerListsLex
attribute), 1137

backend_class (sage.combinat.integer_lists.lists.IntegerLists
attribute), 1127

backward_differences()
(sage.combinat.k_regular_sequence.kRegularSequence
method), 1205

backward_rule() (sage.combinat.growth.RuleBinaryWord
method), 1082

backward_rule() (sage.combinat.growth.RuleBurge
method), 1084

backward_rule() (sage.combinat.growth.RuleRSK
method), 1094

backward_rule() (sage.combinat.growth.RuleShiftedShapes
method), 1097

backward_rule() (sage.combinat.growth.RuleSylvester
method), 1102

backward_rule() (sage.combinat.growth.RuleYoungFibonacci
method), 1106

backward_rule() (sage.combinat.rsk.Rule method),
2674

backward_rule() (sage.combinat.rsk.RuleCoRSK
method), 2677

backward_rule() (sage.combinat.rsk.RuleHecke
method), 2683

backward_rule() (sage.combinat.rsk.RuleStar
method), 2687

backward_rule() (sage.combinat.rsk.RuleSuperRSK
method), 2691

balance() (sage.combinat.words.finite_word.FiniteWord_class
method), 3472

balanced_incomplete_block_design() (in module
sage.combinat.designs.bibd), 576

BalancedIncompleteBlockDesign (class in
sage.combinat.designs.bibd), 573

barP() (in module sage.combinat.designs.steiner_quadruple_systems),
724

barP_system() (in module
sage.combinat.designs.steiner_quadruple_systems),
724

barycenter() (sage.combinat.subword_complex.SubwordComplex
method), 3213

barycentric_projection_matrix() (in module
sage.combinat.root_system.plot), 2358

base_diagram() (sage.combinat.diagram_algebras.AbstractPartitionDiagram
method), 733

base_ring() (sage.combinat.root_system.weyl_characters.WeylCharacterRing

Index 3707

Combinatorics, Release 9.7

method), 2626
base_ring() (sage.combinat.sf.hall_littlewood.HallLittlewood

method), 2759
base_ring() (sage.combinat.sf.jack.Jack method), 2774
base_ring() (sage.combinat.sf.llt.LLT_class method),

2802
base_ring() (sage.combinat.sf.macdonald.Macdonald

method), 2813
base_ring() (sage.combinat.tableau_residues.ResidueSequence

method), 3344
base_set() (sage.combinat.blob_algebra.BlobDiagrams

method), 119
base_set() (sage.combinat.perfect_matching.PerfectMatchings

method), 1746
base_set() (sage.combinat.set_partition.AbstractSetPartition

method), 2702
base_set() (sage.combinat.set_partition.SetPartitions_set

method), 2726
base_set() (sage.combinat.set_partition_ordered.OrderedSetPartition

method), 2731
base_set_cardinality()

(sage.combinat.perfect_matching.PerfectMatchings
method), 1746

base_set_cardinality()
(sage.combinat.set_partition.AbstractSetPartition
method), 2702

base_set_cardinality()
(sage.combinat.set_partition.SetPartitions_set
method), 2726

base_set_cardinality()
(sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2731

base_tree() (sage.combinat.rigged_configurations.kleber_tree.VirtualKleberTree
method), 2085

BasesOfQSymOrNCSF (class in
sage.combinat.ncsf_qsym.generic_basis_code),
1352

BasesOfQSymOrNCSF.ElementMethods (class in
sage.combinat.ncsf_qsym.generic_basis_code),
1352

BasesOfQSymOrNCSF.ParentMethods (class in
sage.combinat.ncsf_qsym.generic_basis_code),
1355

basic_imaginary_roots()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2431

basic_untwisted() (sage.combinat.root_system.cartan_type.CartanType_affine
method), 2227

basic_untwisted() (sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine
method), 2242

basic_untwisted() (sage.combinat.root_system.type_BC_affine.CartanType
method), 2491

basic_untwisted() (sage.combinat.root_system.type_dual.CartanType_affine
method), 2535

basic_untwisted() (sage.combinat.root_system.type_marked.CartanType_affine
method), 2587

basic_untwisted() (sage.combinat.root_system.type_relabel.CartanType_affine
method), 2597

basis() (sage.combinat.chas.fsym.FSymBases.ParentMethods
method), 123

basis() (sage.combinat.fqsym.FQSymBases.ParentMethods
method), 1003

basis_extension() (sage.combinat.root_system.weight_space.WeightSpace
method), 2611

basis_name() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
method), 2905

BasisAbstract (class in
sage.combinat.posets.moebius_algebra),
1922

BaumSweetWord() (sage.combinat.words.word_generators.WordGenerator
method), 3637

BaxterPermutations (class in
sage.combinat.baxter_permutations), 66

BaxterPermutations_all (class in
sage.combinat.baxter_permutations), 66

BaxterPermutations_size (class in
sage.combinat.baxter_permutations), 67

bell_number() (in module sage.combinat.combinat),
262

bell_polynomial() (in module
sage.combinat.combinat), 264

bender_knuth_involution()
(sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
method), 1056

bender_knuth_involution()
(sage.combinat.skew_tableau.SkewTableau
method), 3032

bender_knuth_involution()
(sage.combinat.tableau.Tableau method),
3301

bernoulli_polynomial() (in module
sage.combinat.combinat), 265

bernstein_creation_operator()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1377

bernstein_creation_operator()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Immaculate.Element
method), 1401

bernstein_creation_operator()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2911

best_known_covering_design_www() (in module
sage.combinat.designs.covering_design), 598

beta1() (in module sage.combinat.matrices.latin), 1314
beta2() (in module sage.combinat.matrices.latin), 1315
beta3() (in module sage.combinat.matrices.latin), 1315
beta_numbers() (sage.combinat.partition.Partition

method), 1619

3708 Index

Combinatorics, Release 9.7

bi_degree() (sage.combinat.superpartition.SuperPartition
method), 3236

BIBD (in module sage.combinat.designs.bibd), 569
BIBD_106_6_1() (in module

sage.combinat.designs.database), 602
BIBD_111_6_1() (in module

sage.combinat.designs.database), 602
BIBD_126_6_1() (in module

sage.combinat.designs.database), 602
BIBD_136_6_1() (in module

sage.combinat.designs.database), 603
BIBD_141_6_1() (in module

sage.combinat.designs.database), 603
BIBD_171_6_1() (in module

sage.combinat.designs.database), 603
BIBD_196_6_1() (in module

sage.combinat.designs.database), 603
BIBD_201_6_1() (in module

sage.combinat.designs.database), 603
BIBD_45_9_8() (in module

sage.combinat.designs.database), 604
BIBD_56_11_2() (in module

sage.combinat.designs.database), 604
BIBD_5q_5_for_q_prime_power() (in module

sage.combinat.designs.bibd), 569
BIBD_66_6_1() (in module

sage.combinat.designs.database), 604
BIBD_76_6_1() (in module

sage.combinat.designs.database), 604
BIBD_79_13_2() (in module

sage.combinat.designs.database), 605
BIBD_96_6_1() (in module

sage.combinat.designs.database), 605
BIBD_from_arc_in_desarguesian_projective_plane()

(in module sage.combinat.designs.bibd), 571
BIBD_from_difference_family() (in module

sage.combinat.designs.bibd), 572
BIBD_from_PBD() (in module

sage.combinat.designs.bibd), 569
BIBD_from_TD() (in module

sage.combinat.designs.bibd), 570
bijection_on_free_nodes()

(sage.combinat.diagram_algebras.BrauerDiagram
method), 738

bilinear_form() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix
method), 2247

bilinear_form() (sage.combinat.root_system.coxeter_type.CoxeterType
method), 2255

binary_search_insert()
(sage.combinat.binary_tree.LabelledBinaryTree
method), 112

binary_search_tree()
(sage.combinat.permutation.Permutation
method), 1759

binary_search_tree_shape() (in module
sage.combinat.binary_tree), 116

binary_search_tree_shape()
(sage.combinat.permutation.Permutation
method), 1759

binary_trees() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1162

binary_unshuffle_sum()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3248

BinaryForestSpecies() (in module
sage.combinat.species.library), 3152

BinaryRecurrenceSequence (class in
sage.combinat.binary_recurrence_sequences),
68

BinaryTree (class in sage.combinat.binary_tree), 72
BinaryTrees (class in sage.combinat.binary_tree), 109
BinaryTrees_all (class in sage.combinat.binary_tree),

110
BinaryTrees_size (class in

sage.combinat.binary_tree), 110
BinaryTreeSpecies() (in module

sage.combinat.species.library), 3153
BinaryWord (sage.combinat.growth.Rules attribute),

1107
bipartite_index_set()

(sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2389

biplane() (in module sage.combinat.designs.bibd), 577
bispecial_factors()

(sage.combinat.words.finite_word.FiniteWord_class
method), 3473

bispecial_factors_iterator()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3473

bistochastic_as_sum_of_permutations() (in mod-
ule sage.combinat.permutation), 1817

bitrade() (in module sage.combinat.matrices.latin),
1316

bitrade_from_group() (in module
sage.combinat.matrices.latin), 1316

BK_pieces() (in module
sage.combinat.knutson_tao_puzzles), 1257

BKKLetter (class in sage.combinat.crystals.letters), 462
BlobAlgebra (class in sage.combinat.blob_algebra), 117
BlobDiagram (class in sage.combinat.blob_algebra),

119
BlobDiagrams (class in sage.combinat.blob_algebra),

119
block() (sage.combinat.partition.Partition method),

1619
block() (sage.combinat.partition_tuple.PartitionTuple

method), 1724
block() (sage.combinat.tableau_residues.ResidueSequence

Index 3709

Combinatorics, Release 9.7

method), 3344
block_sizes() (sage.combinat.designs.incidence_structures.IncidenceStructure

method), 666
block_stabilizer() (in module

sage.combinat.designs.difference_family),
638

blocks() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 666

BooleanLattice() (sage.combinat.posets.poset_examples.Posets
static method), 1929

border() (sage.combinat.knutson_tao_puzzles.PuzzlePiece
method), 1273

border() (sage.combinat.words.finite_word.FiniteWord_class
method), 3474

bosonic_degree() (sage.combinat.superpartition.SuperPartition
method), 3236

bosonic_length() (sage.combinat.superpartition.SuperPartition
method), 3236

bottom() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1838

bottom() (sage.combinat.posets.posets.FinitePoset
method), 1951

bottom_schur_function()
(sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power
method), 2862

bottom_up_osp() (sage.combinat.set_partition_ordered.OrderedSetPartition
static method), 2732

bounce() (sage.combinat.dyck_word.DyckWord_complete
method), 800

bounce() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1541

bounce_area_to_area_dinv_map()
(sage.combinat.dyck_word.DyckWord_complete
method), 801

bounce_path() (sage.combinat.dyck_word.DyckWord_complete
method), 802

bounce_path() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1542

boundary() (sage.combinat.partition.Partition method),
1620

boundary() (sage.combinat.tiling.Polyomino method),
3394

boundary_conditions()
(sage.combinat.six_vertex_model.SixVertexModel
method), 3013

boundary_deltas() (sage.combinat.knutson_tao_puzzles.PuzzlePieces
method), 1276

bounded_affine_permutation() (in module
sage.combinat.permutation), 1819

bounded_decrement() (in module
sage.combinat.species.series_order), 3176

bounding_box() (sage.combinat.tiling.Polyomino
method), 3394

box() (sage.combinat.plane_partition.PlanePartitions

method), 1606
box_is_node() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino

method), 1543
box_is_root() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino

method), 1544
boxed_entries() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern

method), 1056
boxes() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling

method), 2842
boxes() (sage.combinat.sf.ns_macdonald.LatticeDiagram

method), 2848
boxes_same_and_lower_right()

(sage.combinat.sf.ns_macdonald.LatticeDiagram
method), 2848

bracket_on_basis() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1035

bracketing() (sage.combinat.crystals.affine_factorization.AffineFactorizationCrystal.Element
method), 345

bracketing() (sage.combinat.crystals.fully_commutative_stable_grothendieck.FullyCommutativeStableGrothendieckCrystal.Element
method), 385

braid_group_action()
(sage.combinat.constellation.Constellation_class
method), 317

braid_group_action()
(sage.combinat.constellation.Constellations_ld
method), 324

braid_group_orbit()
(sage.combinat.constellation.Constellation_class
method), 318

braid_group_orbits()
(sage.combinat.constellation.Constellations_ld
method), 324

braid_relations() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2364

BraidMoveCalculator (class in
sage.combinat.root_system.braid_move_calculator),
2166

BraidOrbit() (in module
sage.combinat.root_system.braid_orbit),
2167

branch() (sage.combinat.root_system.branching_rules.BranchingRule
method), 2168

branch() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2286

branch() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2622

branch_weyl_character() (in module
sage.combinat.root_system.branching_rules),
2169

branching_rule() (in module
sage.combinat.root_system.branching_rules),
2185

branching_rule_from_plethysm() (in module
sage.combinat.root_system.branching_rules),

3710 Index

Combinatorics, Release 9.7

2185
BranchingRule (class in

sage.combinat.root_system.branching_rules),
2168

brauer_diagrams() (in module
sage.combinat.diagram_algebras), 769

BrauerAlgebra (class in
sage.combinat.diagram_algebras), 735

BrauerAlgebra.options() (in module
sage.combinat.diagram_algebras), 737

BrauerDiagram (class in
sage.combinat.diagram_algebras), 737

BrauerDiagram.options() (in module
sage.combinat.diagram_algebras), 739

BrauerDiagrams (class in
sage.combinat.diagram_algebras), 740

BrauerDiagrams.options() (in module
sage.combinat.diagram_algebras), 741

breadth() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1871

breadth_first_iter()
(sage.combinat.rigged_configurations.kleber_tree.KleberTree
method), 2080

breadth_first_iter()
(sage.combinat.rigged_configurations.kleber_tree.KleberTreeTypeA2Even
method), 2083

breadth_first_iter()
(sage.combinat.rigged_configurations.kleber_tree.VirtualKleberTree
method), 2085

breadth_first_order_traversal()
(sage.combinat.abstract_tree.AbstractTree
method), 15

brick_fan() (sage.combinat.subword_complex.SubwordComplex
method), 3213

brick_polytope() (sage.combinat.subword_complex.SubwordComplex
method), 3213

brick_vector() (sage.combinat.subword_complex.SubwordComplexFacet
method), 3222

brick_vectors() (sage.combinat.subword_complex.SubwordComplex
method), 3214

brouwer_separable_design() (in module
sage.combinat.designs.orthogonal_arrays_build_recursive),
705

BruckRyserChowla_check() (in module
sage.combinat.designs.bibd), 574

bruhat_greater() (sage.combinat.permutation.Permutation
method), 1759

bruhat_inversions()
(sage.combinat.permutation.Permutation
method), 1760

bruhat_inversions_iterator()
(sage.combinat.permutation.Permutation
method), 1760

bruhat_le() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWFElement

method), 2554
bruhat_le() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods

method), 2558
bruhat_lequal() (in module

sage.combinat.permutation), 1819
bruhat_lequal() (sage.combinat.permutation.Permutation

method), 1760
bruhat_pred() (sage.combinat.permutation.Permutation

method), 1761
bruhat_pred_iterator()

(sage.combinat.permutation.Permutation
method), 1761

bruhat_smaller() (sage.combinat.permutation.Permutation
method), 1761

bruhat_succ() (sage.combinat.permutation.Permutation
method), 1762

bruhat_succ_iterator()
(sage.combinat.permutation.Permutation
method), 1762

build() (sage.combinat.designs.orthogonal_arrays.OAMainFunctions
static method), 688

build_alphabet() (in module
sage.combinat.words.alphabet), 3463

build_and_register_conversion()
(sage.combinat.partition_shifting_algebras.ShiftingOperatorAlgebra
method), 1715

bump() (sage.combinat.tableau.Tableau method), 3303
bump_multiply() (sage.combinat.tableau.Tableau

method), 3303
Burge (sage.combinat.growth.Rules attribute), 1107
BWT() (sage.combinat.words.finite_word.FiniteWord_class

method), 3469

C
C (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions

attribute), 144
c() (sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials

method), 497
c() (sage.combinat.root_system.cartan_type.CartanType_affine

method), 2228
c1() (in module sage.combinat.sf.jack), 2782
c1() (in module sage.combinat.sf.macdonald), 2819
c1() (sage.combinat.sf.jack.JackPolynomials_generic

method), 2776
c1() (sage.combinat.sf.macdonald.MacdonaldPolynomials_generic

method), 2814
c2() (in module sage.combinat.sf.jack), 2783
c2() (in module sage.combinat.sf.macdonald), 2820
c2() (sage.combinat.sf.jack.JackPolynomials_generic

method), 2776
c2() (sage.combinat.sf.macdonald.MacdonaldPolynomials_generic

method), 2815
c_matrix() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 161

Index 3711

Combinatorics, Release 9.7

c_vector() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 162

cactus() (sage.combinat.path_tableaux.path_tableau.PathTableau
method), 1594

CallableFromListOfWords (class in
sage.combinat.words.finite_word), 3469

can_mutate() (sage.combinat.nu_dyck_word.NuDyckWord
method), 1510

canonical() (sage.combinat.tiling.Polyomino method),
3395

canonical_children() (in module
sage.combinat.enumeration_mod_permgroup),
834

canonical_embedding()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3250

canonical_isometric_copies()
(sage.combinat.tiling.Polyomino method),
3395

canonical_joinands()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1872

canonical_label() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 206

canonical_label() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 666

canonical_label() (sage.combinat.posets.posets.FinitePoset
method), 1951

canonical_label() (sage.combinat.species.characteristic_species.CharacteristicSpeciesStructure
method), 3136

canonical_label() (sage.combinat.species.cycle_species.CycleSpeciesStructure
method), 3139

canonical_label() (sage.combinat.species.linear_order_species.LinearOrderSpeciesStructure
method), 3154

canonical_label() (sage.combinat.species.partition_species.PartitionSpeciesStructure
method), 3156

canonical_label() (sage.combinat.species.permutation_species.PermutationSpeciesStructure
method), 3158

canonical_label() (sage.combinat.species.product_species.ProductSpeciesStructure
method), 3160

canonical_label() (sage.combinat.species.set_species.SetSpeciesStructure
method), 3177

canonical_label() (sage.combinat.species.structure.SpeciesStructureWrapper
method), 3188

canonical_label() (sage.combinat.species.subset_species.SubsetSpeciesStructure
method), 3190

canonical_labelling()
(sage.combinat.abstract_tree.AbstractTree
method), 16

canonical_labelling()
(sage.combinat.binary_tree.BinaryTree
method), 74

canonical_meetands()
(sage.combinat.posets.lattices.FiniteLatticePoset

method), 1873
canonical_representative_of_orbit_of() (in

module sage.combinat.enumeration_mod_permgroup),
834

canopee() (sage.combinat.binary_tree.BinaryTree
method), 74

cardinality() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 49

cardinality() (sage.combinat.alternating_sign_matrix.ContreTableaux_n
method), 62

cardinality() (sage.combinat.alternating_sign_matrix.MonotoneTriangles
method), 63

cardinality() (sage.combinat.alternating_sign_matrix.TruncatedStaircases_nlastcolumn
method), 64

cardinality() (sage.combinat.baxter_permutations.BaxterPermutations_size
method), 67

cardinality() (sage.combinat.binary_tree.BinaryTrees_size
method), 110

cardinality() (sage.combinat.binary_tree.FullBinaryTrees_size
method), 110

cardinality() (sage.combinat.blob_algebra.BlobDiagrams
method), 119

cardinality() (sage.combinat.cartesian_product.CartesianProduct_iters
method), 121

cardinality() (sage.combinat.colored_permutations.ColoredPermutations
method), 246

cardinality() (sage.combinat.combinat.CombinatorialClass
method), 255

cardinality() (sage.combinat.combinat.FilteredCombinatorialClass
method), 259

cardinality() (sage.combinat.combinat.InfiniteAbstractCombinatorialClass
method), 260

cardinality() (sage.combinat.combinat.UnionCombinatorialClass
method), 261

cardinality() (sage.combinat.combination.Combinations_mset
method), 282

cardinality() (sage.combinat.combination.Combinations_msetk
method), 282

cardinality() (sage.combinat.combination.Combinations_set
method), 282

cardinality() (sage.combinat.combination.Combinations_setk
method), 283

cardinality() (sage.combinat.composition.Compositions_n
method), 310

cardinality() (sage.combinat.composition_signed.SignedCompositions
method), 311

cardinality() (sage.combinat.crystals.affine.AffineCrystalFromClassical
method), 337

cardinality() (sage.combinat.crystals.elementary_crystals.ComponentCrystal
method), 373

cardinality() (sage.combinat.crystals.elementary_crystals.RCrystal
method), 377

cardinality() (sage.combinat.crystals.elementary_crystals.TCrystal
method), 379

3712 Index

Combinatorics, Release 9.7

cardinality() (sage.combinat.crystals.induced_structure.InducedCrystal
method), 402

cardinality() (sage.combinat.crystals.induced_structure.InducedFromCrystal
method), 404

cardinality() (sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomials
method), 494

cardinality() (sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials
method), 497

cardinality() (sage.combinat.crystals.tensor_product.FullTensorProductOfCrystals
method), 529

cardinality() (sage.combinat.debruijn_sequence.DeBruijnSequences
method), 551

cardinality() (sage.combinat.derangements.Derangements
method), 557

cardinality() (sage.combinat.designs.evenly_distributed_sets.EvenlyDistributedSetsBacktracker
method), 656

cardinality() (sage.combinat.diagram_algebras.BrauerDiagrams
method), 740

cardinality() (sage.combinat.diagram_algebras.PartitionDiagrams
method), 761

cardinality() (sage.combinat.diagram_algebras.PlanarDiagrams
method), 764

cardinality() (sage.combinat.diagram_algebras.TemperleyLiebDiagrams
method), 768

cardinality() (sage.combinat.dyck_word.CompleteDyckWords_size
method), 779

cardinality() (sage.combinat.dyck_word.DyckWords_size
method), 815

cardinality() (sage.combinat.fully_packed_loop.FullyPackedLoops
method), 1054

cardinality() (sage.combinat.integer_matrices.IntegerMatrices
method), 1139

cardinality() (sage.combinat.integer_vector.IntegerVectorsConstraints
method), 1143

cardinality() (sage.combinat.interval_posets.TamariIntervalPosets_size
method), 1195

cardinality() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_alph_d
method), 1347

cardinality() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_n
method), 1348

cardinality() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_X
method), 1346

cardinality() (sage.combinat.necklace.Necklaces_evaluation
method), 1504

cardinality() (sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunctions_n
method), 1508

cardinality() (sage.combinat.nu_dyck_word.NuDyckWords
method), 1518

cardinality() (sage.combinat.ordered_tree.LabelledOrderedTrees
method), 1524

cardinality() (sage.combinat.ordered_tree.OrderedTrees_size
method), 1533

cardinality() (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_size
method), 1564

cardinality() (sage.combinat.parking_functions.ParkingFunctions_n
method), 1582

cardinality() (sage.combinat.partition.OrderedPartitions
method), 1612

cardinality() (sage.combinat.partition.Partitions_n
method), 1675

cardinality() (sage.combinat.partition.Partitions_nk
method), 1679

cardinality() (sage.combinat.partition.Partitions_parts_in
method), 1680

cardinality() (sage.combinat.partition.PartitionsGreatestEQ
method), 1668

cardinality() (sage.combinat.partition.PartitionsGreatestLE
method), 1671

cardinality() (sage.combinat.partition.PartitionsInBox
method), 1673

cardinality() (sage.combinat.partition.RegularPartitions_n
method), 1684

cardinality() (sage.combinat.partition.RestrictedPartitions_n
method), 1685

cardinality() (sage.combinat.partition_algebra.SetPartitionsBk_k
method), 1691

cardinality() (sage.combinat.partition_algebra.SetPartitionsBkhalf_k
method), 1691

cardinality() (sage.combinat.partition_algebra.SetPartitionsIk_k
method), 1692

cardinality() (sage.combinat.partition_algebra.SetPartitionsIkhalf_k
method), 1692

cardinality() (sage.combinat.partition_algebra.SetPartitionsPk_k
method), 1693

cardinality() (sage.combinat.partition_algebra.SetPartitionsPkhalf_k
method), 1693

cardinality() (sage.combinat.partition_algebra.SetPartitionsPRk_k
method), 1692

cardinality() (sage.combinat.partition_algebra.SetPartitionsPRkhalf_k
method), 1692

cardinality() (sage.combinat.partition_algebra.SetPartitionsRk_k
method), 1693

cardinality() (sage.combinat.partition_algebra.SetPartitionsRkhalf_k
method), 1693

cardinality() (sage.combinat.partition_algebra.SetPartitionsSk_k
method), 1694

cardinality() (sage.combinat.partition_algebra.SetPartitionsSkhalf_k
method), 1694

cardinality() (sage.combinat.partition_algebra.SetPartitionsTk_k
method), 1695

cardinality() (sage.combinat.partition_algebra.SetPartitionsTkhalf_k
method), 1695

cardinality() (sage.combinat.partition_tuple.PartitionTuples_level_size
method), 1738

cardinality() (sage.combinat.perfect_matching.PerfectMatchings
method), 1746

cardinality() (sage.combinat.permutation.Arrangements
method), 1752

Index 3713

Combinatorics, Release 9.7

cardinality() (sage.combinat.permutation.Permutations_mset
method), 1805

cardinality() (sage.combinat.permutation.Permutations_msetk
method), 1806

cardinality() (sage.combinat.permutation.Permutations_nk
method), 1806

cardinality() (sage.combinat.permutation.Permutations_set
method), 1807

cardinality() (sage.combinat.permutation.StandardPermutations_avoiding_12
method), 1808

cardinality() (sage.combinat.permutation.StandardPermutations_avoiding_123
method), 1808

cardinality() (sage.combinat.permutation.StandardPermutations_avoiding_132
method), 1808

cardinality() (sage.combinat.permutation.StandardPermutations_avoiding_21
method), 1809

cardinality() (sage.combinat.permutation.StandardPermutations_avoiding_213
method), 1809

cardinality() (sage.combinat.permutation.StandardPermutations_avoiding_231
method), 1809

cardinality() (sage.combinat.permutation.StandardPermutations_avoiding_312
method), 1809

cardinality() (sage.combinat.permutation.StandardPermutations_avoiding_321
method), 1809

cardinality() (sage.combinat.permutation.StandardPermutations_avoiding_generic
method), 1810

cardinality() (sage.combinat.permutation.StandardPermutations_descents
method), 1810

cardinality() (sage.combinat.permutation.StandardPermutations_n
method), 1813

cardinality() (sage.combinat.plane_partition.PlanePartitions
method), 1607

cardinality() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1838

cardinality() (sage.combinat.posets.linear_extensions.LinearExtensionsOfForest
method), 1917

cardinality() (sage.combinat.posets.linear_extensions.LinearExtensionsOfMobile
method), 1918

cardinality() (sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset
method), 1919

cardinality() (sage.combinat.posets.linear_extensions.LinearExtensionsOfPosetWithHooks
method), 1922

cardinality() (sage.combinat.posets.posets.FinitePoset
method), 1952

cardinality() (sage.combinat.posets.posets.FinitePosets_n
method), 2021

cardinality() (sage.combinat.restricted_growth.RestrictedGrowthArrays
method), 2052

cardinality() (sage.combinat.ribbon_tableau.RibbonTableaux_shape_weight_length
method), 2064

cardinality() (sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Even
method), 2135

cardinality() (sage.combinat.rigged_configurations.tensor_product_kr_tableaux.HighestWeightTensorKRT
method), 2147

cardinality() (sage.combinat.root_system.pieri_factors.PieriFactors_type_A_affine
method), 2328

cardinality() (sage.combinat.rooted_tree.RootedTrees_size
method), 2667

cardinality() (sage.combinat.set_partition.SetPartition
method), 2706

cardinality() (sage.combinat.set_partition.SetPartitions_set
method), 2726

cardinality() (sage.combinat.set_partition.SetPartitions_setn
method), 2727

cardinality() (sage.combinat.set_partition.SetPartitions_setparts
method), 2728

cardinality() (sage.combinat.set_partition_ordered.OrderedSetPartitions_s
method), 2740

cardinality() (sage.combinat.set_partition_ordered.OrderedSetPartitions_scomp
method), 2741

cardinality() (sage.combinat.set_partition_ordered.OrderedSetPartitions_sn
method), 2741

cardinality() (sage.combinat.shuffle.SetShuffleProduct
method), 2988

cardinality() (sage.combinat.shuffle.ShuffleProduct
method), 2988

cardinality() (sage.combinat.skew_partition.SkewPartitions_n
method), 3028

cardinality() (sage.combinat.skew_tableau.SemistandardSkewTableaux_shape
method), 3031

cardinality() (sage.combinat.skew_tableau.SemistandardSkewTableaux_size
method), 3031

cardinality() (sage.combinat.skew_tableau.SemistandardSkewTableaux_size_weight
method), 3031

cardinality() (sage.combinat.skew_tableau.StandardSkewTableaux_shape
method), 3049

cardinality() (sage.combinat.skew_tableau.StandardSkewTableaux_size
method), 3049

cardinality() (sage.combinat.species.structure.SpeciesWrapper
method), 3189

cardinality() (sage.combinat.subset.SubMultiset_s
method), 3193

cardinality() (sage.combinat.subset.SubMultiset_sk
method), 3194

cardinality() (sage.combinat.subset.Subsets_s
method), 3198

cardinality() (sage.combinat.subset.Subsets_sk
method), 3201

cardinality() (sage.combinat.subword.Subwords_w
method), 3207

cardinality() (sage.combinat.subword.Subwords_wk
method), 3208

cardinality() (sage.combinat.super_tableau.StandardSuperTableaux_shape
method), 3231

cardinality() (sage.combinat.super_tableau.StandardSuperTableaux_size
method), 3232

cardinality() (sage.combinat.symmetric_group_representations.SymmetricGroupRepresentations_class
method), 3274

3714 Index

Combinatorics, Release 9.7

cardinality() (sage.combinat.tableau.RowStandardTableaux_shape
method), 3284

cardinality() (sage.combinat.tableau.SemistandardTableaux_shape
method), 3288

cardinality() (sage.combinat.tableau.SemistandardTableaux_shape_weight
method), 3289

cardinality() (sage.combinat.tableau.SemistandardTableaux_size
method), 3290

cardinality() (sage.combinat.tableau.SemistandardTableaux_size_weight
method), 3291

cardinality() (sage.combinat.tableau.StandardTableaux_shape
method), 3296

cardinality() (sage.combinat.tableau.StandardTableaux_size
method), 3298

cardinality() (sage.combinat.tableau_tuple.RowStandardTableauTuples_shape
method), 3362

cardinality() (sage.combinat.tableau_tuple.StandardTableauTuples_level_size
method), 3367

cardinality() (sage.combinat.tableau_tuple.StandardTableauTuples_shape
method), 3367

cardinality() (sage.combinat.tuple.Tuples method),
3413

cardinality() (sage.combinat.tuple.UnorderedTuples
method), 3414

cardinality() (sage.combinat.words.lyndon_word.LyndonWords_evaluation
method), 3545

cardinality() (sage.combinat.words.lyndon_word.LyndonWords_nk
method), 3546

cardinality() (sage.combinat.words.lyndon_word.StandardBracketedLyndonWords_nk
method), 3546

cardinality() (sage.combinat.words.shuffle_product.ShuffleProduct_w1w2
method), 3605

cardinality() (sage.combinat.words.words.FiniteOrInfiniteWords
method), 3654

cardinality() (sage.combinat.words.words.FiniteWords
method), 3655

cardinality() (sage.combinat.words.words.InfiniteWords
method), 3659

cardinality() (sage.combinat.words.words.Words_n
method), 3661

carlitz_shareshian_wachs()
(sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2950

cars_permutation() (sage.combinat.parking_functions.ParkingFunction
method), 1568

cartan_matrix() (sage.combinat.affine_permutation.AffinePermutationGroupGeneric
method), 31

cartan_matrix() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract
method), 233

cartan_matrix() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2190

cartan_matrix() (sage.combinat.root_system.cartan_type.CartanType_crystallographic
method), 2234

cartan_matrix() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class

method), 2265
cartan_matrix() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup

method), 2364
cartan_matrix() (sage.combinat.root_system.root_system.RootSystem

method), 2466
cartan_matrix() (sage.combinat.root_system.type_reducible.CartanType

method), 2592
cartan_matrix() (sage.combinat.root_system.type_super_A.CartanType

method), 2477
cartan_type() (sage.combinat.affine_permutation.AffinePermutationGroupGeneric

method), 31
cartan_type() (sage.combinat.crystals.tensor_product.CrystalOfTableaux

method), 529
cartan_type() (sage.combinat.permutation.StandardPermutations_n

method), 1814
cartan_type() (sage.combinat.rigged_configurations.kleber_tree.KleberTree

method), 2081
cartan_type() (sage.combinat.root_system.associahedron.Associahedron_class_base

method), 2165
cartan_type() (sage.combinat.root_system.cartan_matrix.CartanMatrix

method), 2190
cartan_type() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType

method), 2259
cartan_type() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class

method), 2265
cartan_type() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class

method), 2569
cartan_type() (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class

method), 2579
cartan_type() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors

method), 2271
cartan_type() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation

method), 2281
cartan_type() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation

method), 2288
cartan_type() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials

method), 2319
cartan_type() (sage.combinat.root_system.reflection_group_real.RealReflectionGroup

method), 2389
cartan_type() (sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods

method), 2397
cartan_type() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods

method), 2431
cartan_type() (sage.combinat.root_system.root_system.RootSystem

method), 2466
cartan_type() (sage.combinat.root_system.type_folded.CartanTypeFolded

method), 2583
cartan_type() (sage.combinat.root_system.type_reducible.AmbientSpace

method), 2589
cartan_type() (sage.combinat.root_system.weyl_characters.WeightRing

method), 2619
cartan_type() (sage.combinat.root_system.weyl_characters.WeightRing.Element

method), 2616
cartan_type() (sage.combinat.root_system.weyl_characters.WeylCharacterRing

Index 3715

Combinatorics, Release 9.7

method), 2626
cartan_type() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element

method), 2622
cartan_type() (sage.combinat.root_system.weyl_group.ClassicalWeylSubgroup

method), 2646
cartan_type() (sage.combinat.root_system.weyl_group.WeylGroup_gens

method), 2652
cartan_type() (sage.combinat.root_system.weyl_group.WeylGroup_permutation

method), 2656
cartan_type() (sage.combinat.subword_complex.SubwordComplex

method), 3214
CartanMatrix (class in

sage.combinat.root_system.cartan_matrix),
2187

CartanType (class in sage.combinat.root_system.type_A),
2481

CartanType (class in sage.combinat.root_system.type_A_affine),
2482

CartanType (class in sage.combinat.root_system.type_A_infinity),
2484

CartanType (class in sage.combinat.root_system.type_B),
2488

CartanType (class in sage.combinat.root_system.type_B_affine),
2492

CartanType (class in sage.combinat.root_system.type_BC_affine),
2490

CartanType (class in sage.combinat.root_system.type_C),
2495

CartanType (class in sage.combinat.root_system.type_C_affine),
2497

CartanType (class in sage.combinat.root_system.type_D),
2500

CartanType (class in sage.combinat.root_system.type_D_affine),
2502

CartanType (class in sage.combinat.root_system.type_dual),
2533

CartanType (class in sage.combinat.root_system.type_E),
2509

CartanType (class in sage.combinat.root_system.type_E_affine),
2512

CartanType (class in sage.combinat.root_system.type_F),
2516

CartanType (class in sage.combinat.root_system.type_F_affine),
2518

CartanType (class in sage.combinat.root_system.type_G),
2520

CartanType (class in sage.combinat.root_system.type_G_affine),
2522

CartanType (class in sage.combinat.root_system.type_H),
2523

CartanType (class in sage.combinat.root_system.type_I),
2524

CartanType (class in sage.combinat.root_system.type_marked),
2585

CartanType (class in sage.combinat.root_system.type_Q),
2525

CartanType (class in sage.combinat.root_system.type_reducible),
2590

CartanType (class in sage.combinat.root_system.type_relabel),
2596

CartanType (class in sage.combinat.root_system.type_super_A),
2476

CartanType() (in module
sage.combinat.root_system.cartan_type),
2207

CartanType_abstract (class in
sage.combinat.root_system.cartan_type),
2219

CartanType_abstract.options() (in module
sage.combinat.root_system.cartan_type), 2223

CartanType_affine (class in
sage.combinat.root_system.cartan_type),
2226

CartanType_affine (class in
sage.combinat.root_system.type_dual), 2535

CartanType_affine (class in
sage.combinat.root_system.type_marked),
2587

CartanType_affine (class in
sage.combinat.root_system.type_relabel),
2597

CartanType_crystallographic (class in
sage.combinat.root_system.cartan_type),
2234

CartanType_decorator (class in
sage.combinat.root_system.cartan_type),
2236

CartanType_finite (class in
sage.combinat.root_system.cartan_type),
2237

CartanType_finite (class in
sage.combinat.root_system.type_dual), 2536

CartanType_finite (class in
sage.combinat.root_system.type_marked),
2588

CartanType_finite (class in
sage.combinat.root_system.type_relabel),
2599

CartanType_simple (class in
sage.combinat.root_system.cartan_type),
2238

CartanType_simple_finite (class in
sage.combinat.root_system.cartan_type),
2238

CartanType_simply_laced (class in
sage.combinat.root_system.cartan_type),
2238

CartanType_standard (class in

3716 Index

Combinatorics, Release 9.7

sage.combinat.root_system.cartan_type),
2238

CartanType_standard_affine (class in
sage.combinat.root_system.cartan_type),
2238

CartanType_standard_finite (class in
sage.combinat.root_system.cartan_type),
2240

CartanType_standard_untwisted_affine (class in
sage.combinat.root_system.cartan_type), 2241

CartanTypeFactory (class in
sage.combinat.root_system.cartan_type),
2216

CartanTypeFactory.options() (in module
sage.combinat.root_system.cartan_type),
2216

CartanTypeFolded (class in
sage.combinat.root_system.type_folded),
2581

cartesian_embedding()
(sage.combinat.free_module.CombinatorialFreeModule_CartesianProduct
method), 1022

cartesian_factors()
(sage.combinat.free_module.CombinatorialFreeModule_CartesianProduct
method), 1022

cartesian_product()
(sage.combinat.finite_state_machine.Automaton
method), 865

cartesian_product()
(sage.combinat.finite_state_machine.Transducer
method), 964

cartesian_projection()
(sage.combinat.free_module.CombinatorialFreeModule_CartesianProduct
method), 1022

CartesianProduct (sage.combinat.free_module.CombinatorialFreeModule
attribute), 1016

CartesianProduct_iters (class in
sage.combinat.cartesian_product), 120

CartesianProductPoset (class in
sage.combinat.posets.cartesian_product),
1827

CartesianProductPoset.Element (class in
sage.combinat.posets.cartesian_product),
1828

CartesianProductWithFlattening (class in
sage.combinat.free_module), 1013

catabolism() (sage.combinat.tableau.Tableau method),
3304

catabolism_projector()
(sage.combinat.tableau.Tableau method),
3304

catabolism_sequence()
(sage.combinat.tableau.Tableau method),
3304

catalan_factorization()
(sage.combinat.dyck_word.DyckWord method),
782

catalan_number() (in module
sage.combinat.combinat), 265

cc() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCNonSimplyLacedElement
method), 2109

cc() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCSimplyLacedElement
method), 2111

cc() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCTypeA2DualElement
method), 2111

ceiling (sage.combinat.integer_lists.base.IntegerListsBackend
attribute), 1126

cell_is_inside() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1544

cell_module() (sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3251

cell_module_indices()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3251

cell_of_highest_head()
(sage.combinat.k_tableau.StrongTableau
method), 1213

cell_of_marked_head()
(sage.combinat.k_tableau.StrongTableau
method), 1213

cell_poset() (sage.combinat.partition.Partition
method), 1620

cell_poset() (sage.combinat.skew_partition.SkewPartition
method), 3016

cell_poset() (sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3251

cell_residue() (sage.combinat.tableau_residues.ResidueSequences
method), 3348

cells() (sage.combinat.partition.Partition method),
1622

cells() (sage.combinat.partition_tuple.PartitionTuple
method), 1725

cells() (sage.combinat.plane_partition.PlanePartition
method), 1601

cells() (sage.combinat.skew_partition.SkewPartition
method), 3017

cells() (sage.combinat.skew_tableau.SkewTableau
method), 3033

cells() (sage.combinat.tableau.Tableau method), 3304
cells_by_content() (sage.combinat.skew_tableau.SkewTableau

method), 3033
cells_containing() (sage.combinat.skew_tableau.SkewTableau

method), 3034
cells_containing() (sage.combinat.tableau.Tableau

method), 3305
cells_containing() (sage.combinat.tableau_tuple.TableauTuple

method), 3372
cells_head_dictionary()

Index 3717

Combinatorics, Release 9.7

(sage.combinat.k_tableau.StrongTableau
method), 1213

cells_head_dictionary()
(sage.combinat.k_tableau.StrongTableaux
class method), 1228

cells_map_as_square() (in module
sage.combinat.matrices.latin), 1317

cells_of_heads() (sage.combinat.k_tableau.StrongTableau
method), 1214

cells_of_marked_ribbon()
(sage.combinat.k_tableau.StrongTableau
method), 1214

center() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1873

center() (sage.combinat.tiling.Polyomino method),
3395

central_orthogonal_idempotent()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3251

central_orthogonal_idempotents()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3253

centralizer_algebra_dim() (in module
sage.combinat.similarity_class_type), 3000

centralizer_algebra_dim()
(sage.combinat.similarity_class_type.PrimarySimilarityClassType
method), 2993

centralizer_algebra_dim()
(sage.combinat.similarity_class_type.SimilarityClassType
method), 2996

centralizer_group_card()
(sage.combinat.similarity_class_type.PrimarySimilarityClassType
method), 2993

centralizer_group_card()
(sage.combinat.similarity_class_type.SimilarityClassType
method), 2996

centralizer_group_cardinality() (in module
sage.combinat.similarity_class_type), 3001

centralizer_size() (sage.combinat.partition.Partition
method), 1622

cf() (sage.combinat.sloane_functions.A000009 method),
3053

CFiniteSequence (class in
sage.rings.cfinite_sequence), 3669

CFiniteSequences() (in module
sage.rings.cfinite_sequence), 3673

CFiniteSequences_generic (class in
sage.rings.cfinite_sequence), 3673

chain_of_reduced_words()
(sage.combinat.root_system.braid_move_calculator.BraidMoveCalculator
method), 2166

chain_polynomial() (sage.combinat.posets.posets.FinitePoset
method), 1952

chain_polytope() (sage.combinat.posets.posets.FinitePoset

method), 1952
ChainPoset() (sage.combinat.posets.poset_examples.Posets

static method), 1929
chains() (sage.combinat.posets.hasse_diagram.HasseDiagram

method), 1838
chains() (sage.combinat.posets.posets.FinitePoset

method), 1953
change_labels() (sage.combinat.species.composition_species.CompositionSpeciesStructure

method), 3138
change_labels() (sage.combinat.species.partition_species.PartitionSpeciesStructure

method), 3156
change_labels() (sage.combinat.species.product_species.ProductSpeciesStructure

method), 3161
change_labels() (sage.combinat.species.structure.GenericSpeciesStructure

method), 3186
change_labels() (sage.combinat.species.structure.SpeciesStructureWrapper

method), 3188
change_ring() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra

method), 1028
change_ring() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra

method), 1036
change_ring() (sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra

method), 1110
change_ring() (sage.combinat.path_tableaux.frieze.FriezePattern

method), 1589
change_support() (in module

sage.combinat.species.misc), 3155
char_from_weights()

(sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2626

character() (sage.combinat.root_system.weyl_characters.WeightRing.Element
method), 2616

character_polynomial()
(sage.combinat.partition.Partition method),
1622

character_table() (sage.combinat.root_system.weyl_group.WeylGroup_gens
method), 2652

character_to_frobenius_image()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2912

characteristic_basis
(sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra
attribute), 1926

characteristic_polynomial()
(sage.combinat.posets.posets.FinitePoset
method), 1953

characteristic_quasisymmetric_function()
(sage.combinat.parking_functions.ParkingFunction
method), 1568

characteristic_symmetric_function()
(sage.combinat.dyck_word.DyckWord_complete
method), 802

CharacteristicSpecies (class in
sage.combinat.species.characteristic_species),

3718 Index

Combinatorics, Release 9.7

3135
CharacteristicSpecies_class (in module

sage.combinat.species.characteristic_species),
3137

CharacteristicSpeciesStructure (class in
sage.combinat.species.characteristic_species),
3136

CharacteristicSturmianWord()
(sage.combinat.words.word_generators.WordGenerator
method), 3637

charge() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCSimplyLacedElement
method), 2111

charge() (sage.combinat.tableau.Tableau method),
3305

charge() (sage.combinat.tableau_tuple.TableauTuple
method), 3372

charge() (sage.combinat.words.finite_word.FiniteWord_class
method), 3474

check (sage.combinat.integer_lists.invlex.IntegerListsBackend_invlex
attribute), 1127

check() (sage.combinat.abstract_tree.AbstractClonableTree
method), 10

check() (sage.combinat.affine_permutation.AffinePermutationTypeA
method), 34

check() (sage.combinat.affine_permutation.AffinePermutationTypeB
method), 40

check() (sage.combinat.affine_permutation.AffinePermutationTypeC
method), 41

check() (sage.combinat.affine_permutation.AffinePermutationTypeD
method), 43

check() (sage.combinat.affine_permutation.AffinePermutationTypeG
method), 44

check() (sage.combinat.binary_tree.BinaryTree
method), 75

check() (sage.combinat.diagram_algebras.AbstractPartitionDiagram
method), 733

check() (sage.combinat.diagram_algebras.BrauerDiagram
method), 738

check() (sage.combinat.diagram_algebras.IdealDiagram
method), 744

check() (sage.combinat.diagram_algebras.PlanarDiagram
method), 763

check() (sage.combinat.diagram_algebras.TemperleyLiebDiagram
method), 768

check() (sage.combinat.fully_commutative_elements.FullyCommutativeElement
method), 841

check() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
method), 1056

check() (sage.combinat.integer_lists.lists.IntegerList
method), 1126

check() (sage.combinat.integer_vector.IntegerVector
method), 1141

check() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All.Element
method), 1153

check() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints.Element
method), 1157

check() (sage.combinat.k_tableau.StrongTableau
method), 1215

check() (sage.combinat.k_tableau.WeakTableau_bounded
method), 1240

check() (sage.combinat.k_tableau.WeakTableau_core
method), 1242

check() (sage.combinat.k_tableau.WeakTableau_factorized_permutation
method), 1246

check() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1333

check() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1545

check() (sage.combinat.parking_functions.ParkingFunction
method), 1569

check() (sage.combinat.partition_algebra.SetPartitionsXkElement
method), 1695

check() (sage.combinat.partition_shifting_algebras.ShiftingSequenceSpace
method), 1717

check() (sage.combinat.path_tableaux.dyck_path.DyckPath
method), 1585

check() (sage.combinat.path_tableaux.frieze.FriezePattern
method), 1589

check() (sage.combinat.path_tableaux.semistandard.SemistandardPathTableau
method), 1599

check() (sage.combinat.permutation.CyclicPermutationsOfPartition.Element
method), 1754

check() (sage.combinat.permutation.Permutations_mset.Element
method), 1804

check() (sage.combinat.permutation.Permutations_nk.Element
method), 1806

check() (sage.combinat.permutation.Permutations_set.Element
method), 1807

check() (sage.combinat.plane_partition.PlanePartition
method), 1601

check() (sage.combinat.posets.linear_extensions.LinearExtensionOfPoset
method), 1914

check() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2113

check() (sage.combinat.rigged_configurations.rigged_configuration_element.RCHighestWeightElement
method), 2123

check() (sage.combinat.rigged_configurations.rigged_configuration_element.RCHWNonSimplyLacedElement
method), 2122

check() (sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement
method), 2127

check() (sage.combinat.set_partition.SetPartition
method), 2706

check() (sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2732

check() (sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau
method), 2977

check() (sage.combinat.six_vertex_model.SixVertexConfiguration
method), 3008

Index 3719

Combinatorics, Release 9.7

check() (sage.combinat.skew_tableau.SkewTableau
method), 3034

check() (sage.combinat.super_tableau.SemistandardSuperTableau
method), 3229

check() (sage.combinat.super_tableau.StandardSuperTableau
method), 3230

check() (sage.combinat.superpartition.SuperPartition
method), 3236

check() (sage.combinat.tableau.IncreasingTableau
method), 3278

check() (sage.combinat.tableau.RowStandardTableau
method), 3283

check() (sage.combinat.tableau.SemistandardTableau
method), 3286

check() (sage.combinat.tableau.StandardTableau
method), 3292

check() (sage.combinat.tableau.Tableau method), 3305
check() (sage.combinat.tableau_residues.ResidueSequence

method), 3344
check_bitrade_generators() (in module

sage.combinat.matrices.latin), 1317
check_coxeter_matrix() (in module

sage.combinat.root_system.coxeter_matrix),
2252

check_dtrs_protocols() (in module
sage.combinat.designs.ext_rep), 658

check_element() (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_all
method), 1563

check_element() (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_size
method), 1565

check_element() (sage.combinat.rooted_tree.RootedTrees_size
method), 2667

check_element() (sage.combinat.tableau_residues.ResidueSequences
method), 3349

check_integer_list_constraints() (in module
sage.combinat.misc), 1329

check_poset() (sage.combinat.interval_posets.TamariIntervalPosets
static method), 1188

CherednikOperatorsEigenvectors (class in
sage.combinat.root_system.hecke_algebra_representation),
2270

chi (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables
attribute), 1489

chi() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1378

children() (sage.combinat.backtrack.PositiveIntegerSemigroup
method), 65

children() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All
method), 1154

children() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints
method), 1158

children() (sage.combinat.subsets_pairwise.PairwiseCompatibleSubsets
method), 3206

ChooseNK (class in sage.combinat.combination), 280

ChristoffelWord (sage.combinat.words.word_generators.WordGenerator
attribute), 3639

circled_entries() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
method), 1056

circular_distance()
(sage.combinat.k_tableau.WeakTableaux_core
method), 1253

class_card() (sage.combinat.similarity_class_type.SimilarityClassType
method), 2996

class_size() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Irreducible
method), 230

class_size() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Reducible
method), 232

classical() (sage.combinat.affine_permutation.AffinePermutationGroupGeneric
method), 31

classical() (sage.combinat.root_system.cartan_type.CartanType_affine
method), 2228

classical() (sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine
method), 2242

classical() (sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2398

classical() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2431

classical() (sage.combinat.root_system.type_BC_affine.CartanType
method), 2491

classical() (sage.combinat.root_system.type_dual.CartanType_affine
method), 2535

classical() (sage.combinat.root_system.type_marked.CartanType_affine
method), 2588

classical() (sage.combinat.root_system.type_relabel.CartanType_affine
method), 2598

classical() (sage.combinat.root_system.weyl_group.WeylGroup_gens
method), 2653

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_A
method), 418

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2
method), 421

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn
method), 424

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_box
method), 440

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_C
method), 427

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Cn
method), 429

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_D_tri1
method), 432

3720 Index

Combinatorics, Release 9.7

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twisted
method), 432

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6
method), 436

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_E7
method), 439

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_spin
method), 444

classical_decomposition()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_vertical
method), 446

classical_decomposition()
(sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux
method), 2094

classical_weight() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement
method), 341

classical_weight() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2096

classical_weight() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpinElement
method), 2087

classical_weight() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2113

classical_weight() (sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.TensorProductOfKirillovReshetikhinTableauxElement
method), 2151

classical_weyl() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2569

classical_weyl_to_affine()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2569

ClassicalCrystalOfLetters (class in
sage.combinat.crystals.letters), 463

ClassicalCrystalOfLettersWrapped (class in
sage.combinat.crystals.letters), 463

classically_highest_weight_vectors()
(sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal
method), 452

classically_highest_weight_vectors()
(sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths
method), 487

classically_highest_weight_vectors()
(sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations
method), 2140

ClassicalWeylSubgroup (class in
sage.combinat.root_system.weyl_group),
2646

clear_cells() (sage.combinat.matrices.latin.LatinSquare
method), 1304

clockwise_rotation()
(sage.combinat.knutson_tao_puzzles.DeltaPiece
method), 1258

clockwise_rotation()
(sage.combinat.knutson_tao_puzzles.NablaPiece
method), 1270

closed_form() (sage.rings.cfinite_sequence.CFiniteSequence
method), 3670

closed_interval() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1839

closed_interval() (sage.combinat.posets.posets.FinitePoset
method), 1954

closers() (sage.combinat.set_partition.SetPartition
method), 2706

cluster() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 162

cluster() (sage.combinat.cluster_complex.ClusterComplexFacet
method), 241

cluster_class() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 162

cluster_class_iter()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 163

cluster_index() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 164

cluster_variable() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 165

ClusterComplex (class in
sage.combinat.cluster_complex), 240

ClusterComplexFacet (class in
sage.combinat.cluster_complex), 241

ClusterQuiver (class in
sage.combinat.cluster_algebra_quiver.quiver),
203

ClusterSeed (class in
sage.combinat.cluster_algebra_quiver.cluster_seed),
157

ClusterVariable (class in
sage.combinat.cluster_algebra_quiver.cluster_seed),
199

cmp_elements() (sage.combinat.crystals.fast_crystals.FastCrystal
method), 381

cmunu() (in module sage.combinat.sf.macdonald), 2820
cmunu1() (in module sage.combinat.sf.macdonald), 2821
coaccessible_components()

(sage.combinat.finite_state_machine.FiniteStateMachine
method), 905

coalgebraic_complement()
(sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.Characteristic.Element
method), 145

coalgebraic_complement()
(sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyCoarser.Element
method), 150

coalgebraic_complement()
(sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyFiner.Element
method), 153

coalgebraic_complement()

Index 3721

Combinatorics, Release 9.7

(sage.combinat.chas.wqsym.WQSymBases.ElementMethods
method), 135

coambient_space() (sage.combinat.root_system.root_system.RootSystem
method), 2466

coarsenings() (sage.combinat.set_partition.AbstractSetPartition
method), 2703

coatoms() (sage.combinat.posets.lattices.FiniteJoinSemilattice
method), 1869

cocharge() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCNonSimplyLacedElement
method), 2109

cocharge() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCSimplyLacedElement
method), 2111

cocharge() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCTypeA2DualElement
method), 2112

cocharge() (sage.combinat.tableau.Tableau method),
3306

cocharge() (sage.combinat.tableau_tuple.TableauTuple
method), 3372

cocharge() (sage.combinat.words.finite_word.FiniteWord_class
method), 3475

codegree() (sage.combinat.tableau.Tableau method),
3306

codegree() (sage.combinat.tableau_tuple.RowStandardTableauTuple
method), 3354

codegrees() (sage.combinat.colored_permutations.ColoredPermutations
method), 246

codegrees() (sage.combinat.permutation.StandardPermutations_n
method), 1814

codegrees() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2365

CodingOfRotationWord()
(sage.combinat.words.word_generators.WordGenerator
method), 3639

codomain() (sage.combinat.words.morphism.WordMorphism
method), 3551

coeff() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2842

coeff_dab() (in module
sage.combinat.ncsf_qsym.combinatorics),
1349

coeff_ell() (in module
sage.combinat.ncsf_qsym.combinatorics),
1349

coeff_integral() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2843

coeff_lp() (in module
sage.combinat.ncsf_qsym.combinatorics),
1349

coeff_pi() (in module
sage.combinat.ncsf_qsym.combinatorics),
1350

coeff_recurs() (in module
sage.combinat.cluster_algebra_quiver.cluster_seed),
200

coeff_sp() (in module
sage.combinat.ncsf_qsym.combinatorics),
1350

coefficient() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 165

coefficient() (sage.combinat.species.series.LazyPowerSeries
method), 3164

coefficient_cycle_type()
(sage.combinat.species.generating_series.CycleIndexSeries
method), 3143

coefficient_of_word()
(sage.combinat.recognizable_series.RecognizableSeries
method), 2045

coefficient_ring() (sage.combinat.recognizable_series.RecognizableSeriesSpace
method), 2050

coefficients() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 165

coefficients() (sage.combinat.species.series.LazyPowerSeries
method), 3164

coefficients() (sage.rings.cfinite_sequence.CFiniteSequence
method), 3671

coerce() (sage.combinat.words.finite_word.FiniteWord_class
method), 3475

coerce_to_e6() (sage.combinat.root_system.ambient_space.AmbientSpaceElement
method), 2161

coerce_to_e7() (sage.combinat.root_system.ambient_space.AmbientSpaceElement
method), 2161

coerce_to_sl() (sage.combinat.root_system.ambient_space.AmbientSpaceElement
method), 2161

cogood_cells() (sage.combinat.partition_kleshchev.KleshchevPartition
method), 1700

cogood_cells() (sage.combinat.partition_kleshchev.KleshchevPartitionTuple
method), 1704

cohighest_root() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2431

coin() (in module sage.combinat.matrices.latin), 1317
coinv() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling

method), 2843
col_annihilator() (sage.combinat.root_system.cartan_type.CartanType_affine

method), 2229
color() (sage.combinat.e_one_star.Face method), 823
color() (sage.combinat.knutson_tao_puzzles.PuzzlePiece

method), 1273
color() (sage.combinat.root_system.cartan_type.CartanTypeFactory

class method), 2216
color() (sage.combinat.root_system.plot.PlotOptions

method), 2351
color() (sage.combinat.tiling.Polyomino method), 3396
colored_vector() (sage.combinat.words.finite_word.FiniteWord_class

method), 3476
ColoredPermutation (class in

sage.combinat.colored_permutations), 242
ColoredPermutations (class in

sage.combinat.colored_permutations), 244

3722 Index

Combinatorics, Release 9.7

coloring() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 666

colors() (sage.combinat.colored_permutations.ColoredPermutation
method), 242

column() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 390

column() (sage.combinat.matrices.latin.LatinSquare
method), 1304

column() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2265

column_containing_sym() (in module
sage.combinat.matrices.latin), 1317

column_lengths() (sage.combinat.skew_partition.SkewPartition
method), 3017

column_stabilizer() (sage.combinat.tableau.Tableau
method), 3306

column_stabilizer()
(sage.combinat.tableau_tuple.TableauTuple
method), 3372

column_sums() (sage.combinat.integer_matrices.IntegerMatrices
method), 1139

column_with_indices()
(sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2190

columns_intersection_set()
(sage.combinat.skew_partition.SkewPartition
method), 3018

comb() (sage.combinat.binary_tree.BinaryTree method),
75

Combinations() (in module
sage.combinat.combination), 280

combinations() (in module
sage.combinat.gray_codes), 1065

Combinations_mset (class in
sage.combinat.combination), 282

Combinations_msetk (class in
sage.combinat.combination), 282

Combinations_set (class in
sage.combinat.combination), 282

Combinations_setk (class in
sage.combinat.combination), 283

combinatorial_map() (in module
sage.combinat.combinatorial_map), 286

combinatorial_map_trivial() (in module
sage.combinat.combinatorial_map), 287

combinatorial_map_wrapper() (in module
sage.combinat.combinatorial_map), 288

combinatorial_maps_in_class() (in module
sage.combinat.combinatorial_map), 289

CombinatorialClass (class in
sage.combinat.combinat), 255

CombinatorialElement (class in
sage.combinat.combinat), 258

CombinatorialFreeModule (class in

sage.combinat.free_module), 1013
CombinatorialFreeModule_CartesianProduct

(class in sage.combinat.free_module), 1021
CombinatorialFreeModule_CartesianProduct.Element

(class in sage.combinat.free_module), 1021
CombinatorialFreeModule_Tensor (class in

sage.combinat.free_module), 1023
CombinatorialMap (class in

sage.combinat.combinatorial_map), 285
CombinatorialObject (class in

sage.combinat.combinat), 258
CombinatorialSpecies (class in

sage.combinat.species.recursive_species),
3162

CombinatorialSpeciesStructure (class in
sage.combinat.species.recursive_species),
3163

common_lower_covers()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1840

common_lower_covers()
(sage.combinat.posets.posets.FinitePoset
method), 1954

common_upper_covers()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1840

common_upper_covers()
(sage.combinat.posets.posets.FinitePoset
method), 1954

commutes_with() (sage.combinat.words.finite_word.FiniteWord_class
method), 3477

commutor() (sage.combinat.path_tableaux.path_tableau.PathTableau
method), 1594

comparability_graph()
(sage.combinat.posets.posets.FinitePoset
method), 1954

compare_elements() (sage.combinat.posets.posets.FinitePoset
method), 1955

compare_graphs() (in module
sage.combinat.crystals.alcove_path), 361

compat() (in module sage.combinat.sf.kfpoly), 2797
complement() (sage.combinat.composition.Composition

method), 291
complement() (sage.combinat.designs.incidence_structures.IncidenceStructure

method), 667
complement() (sage.combinat.designs.twographs.TwoGraph

method), 730
complement() (sage.combinat.finite_state_machine.Automaton

method), 866
complement() (sage.combinat.interval_posets.TamariIntervalPoset

method), 1162
complement() (sage.combinat.permutation.Permutation

method), 1762
complement() (sage.combinat.plane_partition.PlanePartition

Index 3723

Combinatorics, Release 9.7

method), 1602
complement() (sage.combinat.set_partition_ordered.OrderedSetPartition

method), 2732
complement() (sage.combinat.species.subset_species.SubsetSpeciesStructure

method), 3190
complement_rigging()

(sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2114

complements() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1874

complete (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions
attribute), 1421

complete() (sage.combinat.sf.sf.SymmetricFunctions
method), 2887

complete_return_words()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3477

complete_return_words_iterator()
(sage.combinat.words.abstract_word.Word_class
method), 3449

CompleteDyckWords (class in
sage.combinat.dyck_word), 776

CompleteDyckWords_all (class in
sage.combinat.dyck_word), 778

CompleteDyckWords_all.height_poset (class in
sage.combinat.dyck_word), 778

CompleteDyckWords_size (class in
sage.combinat.dyck_word), 779

completion() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 906

completion_by_cuts()
(sage.combinat.posets.posets.FinitePoset
method), 1955

ComplexReflectionGroup (class in
sage.combinat.root_system.reflection_group_complex),
2363

ComplexReflectionGroup.Element (class in
sage.combinat.root_system.reflection_group_complex),
2363

component_types() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType
method), 2259

component_types() (sage.combinat.root_system.type_reducible.AmbientSpace
method), 2589

component_types() (sage.combinat.root_system.type_reducible.CartanType
method), 2592

ComponentCrystal (class in
sage.combinat.crystals.elementary_crystals),
372

ComponentCrystal.Element (class in
sage.combinat.crystals.elementary_crystals),
372

components() (sage.combinat.partition.Partition
method), 1623

components() (sage.combinat.partition_tuple.PartitionTuple

method), 1725
components() (sage.combinat.tableau.Tableau method),

3307
components() (sage.combinat.tableau_tuple.TableauTuple

method), 3372
compose() (sage.combinat.diagram_algebras.AbstractPartitionDiagram

method), 733
compose() (sage.combinat.species.series.LazyPowerSeries

method), 3164
Composition (class in sage.combinat.composition), 290
composition() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 907
composition() (sage.combinat.species.series.LazyPowerSeries

method), 3165
composition() (sage.combinat.species.species.GenericCombinatorialSpecies

method), 3179
composition_iterator_fast() (in module

sage.combinat.composition), 310
compositional_inverse()

(sage.combinat.species.generating_series.CycleIndexSeries
method), 3144

Compositions (class in sage.combinat.composition),
306

Compositions_all (class in
sage.combinat.composition), 310

Compositions_constraints (class in
sage.combinat.composition), 310

Compositions_n (class in sage.combinat.composition),
310

compositions_order() (in module
sage.combinat.ncsf_qsym.combinatorics),
1350

CompositionSpecies (class in
sage.combinat.species.composition_species),
3138

CompositionSpecies_class (in module
sage.combinat.species.composition_species),
3139

CompositionSpeciesStructure (class in
sage.combinat.species.composition_species),
3138

CompositionTableau (class in
sage.combinat.composition_tableau), 312

CompositionTableaux (class in
sage.combinat.composition_tableau), 313

CompositionTableaux_all (class in
sage.combinat.composition_tableau), 315

CompositionTableaux_shape (class in
sage.combinat.composition_tableau), 315

CompositionTableaux_size (class in
sage.combinat.composition_tableau), 316

CompositionTableauxBacktracker (class in
sage.combinat.composition_tableau), 315

compress() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element

3724 Index

Combinatorics, Release 9.7

method), 480
compute_aorder() (sage.combinat.species.series.LazyPowerSeries

method), 3166
compute_coefficients()

(sage.combinat.species.series.LazyPowerSeries
method), 3166

compute_new_lusztig_datum() (in module
sage.combinat.crystals.pbw_datum), 514

concatenate() (sage.combinat.words.finite_word.FiniteWord_class
method), 3477

concatenate() (sage.combinat.words.word_char.WordDatatype_char
method), 3626

concatenation() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 910

cone() (sage.combinat.root_system.plot.PlotOptions
method), 2352

congruence() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1840

congruence() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1874

congruences_iterator()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1841

congruences_lattice()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1875

conj_matrix() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2640

conjugacy_class() (sage.combinat.permutation.StandardPermutations_n
method), 1814

conjugacy_class() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup.Element
method), 2363

conjugacy_class_representative()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup.Element
method), 2363

conjugacy_class_size()
(sage.combinat.partition.Partition method),
1623

conjugacy_classes()
(sage.combinat.permutation.StandardPermutations_n
method), 1814

conjugacy_classes()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2366

conjugacy_classes_iterator()
(sage.combinat.permutation.StandardPermutations_n
method), 1815

conjugacy_classes_representatives()
(sage.combinat.permutation.StandardPermutations_n
method), 1815

conjugacy_classes_representatives()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2366

conjugate() (in module

sage.combinat.combinat_cython), 278
conjugate() (sage.combinat.composition.Composition

method), 292
conjugate() (sage.combinat.growth.GrowthDiagram

method), 1077
conjugate() (sage.combinat.hillman_grassl.WeakReversePlanePartition

method), 1116
conjugate() (sage.combinat.partition.Partition

method), 1623
conjugate() (sage.combinat.partition_tuple.PartitionTuple

method), 1725
conjugate() (sage.combinat.set_partition.AbstractSetPartition

method), 2703
conjugate() (sage.combinat.skew_partition.SkewPartition

method), 3018
conjugate() (sage.combinat.skew_tableau.SkewTableau

method), 3035
conjugate() (sage.combinat.superpartition.SuperPartition

method), 3236
conjugate() (sage.combinat.tableau.Tableau method),

3307
conjugate() (sage.combinat.tableau_tuple.TableauTuple

method), 3373
conjugate() (sage.combinat.words.finite_word.FiniteWord_class

method), 3478
conjugate() (sage.combinat.words.morphism.WordMorphism

method), 3551
conjugate_position()

(sage.combinat.words.finite_word.FiniteWord_class
method), 3478

conjugates() (sage.combinat.words.finite_word.FiniteWord_class
method), 3478

conjugates_iterator()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3479

connected_components()
(sage.combinat.constellation.Constellation_class
method), 318

connected_components()
(sage.combinat.posets.posets.FinitePoset
method), 1956

conormal_cells() (sage.combinat.partition_kleshchev.KleshchevPartition
method), 1700

conormal_cells() (sage.combinat.partition_kleshchev.KleshchevPartitionTuple
method), 1705

Constellation() (in module
sage.combinat.constellation), 316

Constellation_class (class in
sage.combinat.constellation), 317

Constellations() (in module
sage.combinat.constellation), 323

Constellations_ld (class in
sage.combinat.constellation), 324

Constellations_p (class in

Index 3725

Combinatorics, Release 9.7

sage.combinat.constellation), 325
construct_final_word_out()

(sage.combinat.finite_state_machine.FiniteStateMachine
method), 912

construction() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1028

construction() (sage.combinat.free_module.CombinatorialFreeModule
method), 1016

construction() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1036

construction_3_3() (in module
sage.combinat.designs.orthogonal_arrays_build_recursive),
707

construction_3_4() (in module
sage.combinat.designs.orthogonal_arrays_build_recursive),
708

construction_3_5() (in module
sage.combinat.designs.orthogonal_arrays_build_recursive),
709

construction_3_6() (in module
sage.combinat.designs.orthogonal_arrays_build_recursive),
709

construction_q_x() (in module
sage.combinat.designs.orthogonal_arrays_build_recursive),
710

contained_in() (sage.combinat.matrices.latin.LatinSquare
method), 1304

contains() (sage.combinat.core.Core method), 331
contains() (sage.combinat.partition.Partition method),

1624
contains() (sage.combinat.partition_tuple.PartitionTuple

method), 1726
contains_binary_tree()

(sage.combinat.interval_posets.TamariIntervalPoset
method), 1162

contains_dyck_word()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1163

contains_interval()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1163

ContainsWord() (sage.combinat.finite_state_machine_generators.AutomatonGenerators
method), 980

content() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 390

content() (sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux.Element
method), 408

content() (sage.combinat.necklace.Necklaces_evaluation
method), 1504

content() (sage.combinat.partition.Partition method),
1624

content() (sage.combinat.partition_tuple.PartitionTuple
method), 1726

content() (sage.combinat.tableau.Tableau method),

3307
content() (sage.combinat.tableau_tuple.TableauTuple

method), 3373
content() (sage.combinat.words.finite_word.FiniteWord_class

method), 3479
content_of_highest_head()

(sage.combinat.k_tableau.StrongTableau
method), 1215

content_of_marked_head()
(sage.combinat.k_tableau.StrongTableau
method), 1216

content_tableau() (sage.combinat.partition_tuple.PartitionTuple
method), 1726

contents_of_heads()
(sage.combinat.k_tableau.StrongTableau
method), 1216

contents_tableau() (sage.combinat.partition.Partition
method), 1624

ContreTableaux (class in
sage.combinat.alternating_sign_matrix),
62

ContreTableaux_n (class in
sage.combinat.alternating_sign_matrix),
62

contribution() (sage.combinat.knutson_tao_puzzles.PuzzleFilling
method), 1271

convention() (sage.combinat.partition_kleshchev.KleshchevPartitions
method), 1710

convert_to_long_word_with_first_letter()
(sage.combinat.crystals.pbw_datum.PBWDatum
method), 512

convert_to_new_long_word()
(sage.combinat.crystals.pbw_datum.PBWData
method), 512

convert_to_new_long_word()
(sage.combinat.crystals.pbw_datum.PBWDatum
method), 513

coord_to_int_dict()
(sage.combinat.tiling.TilingSolver method),
3404

coordinates() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_D_tri1.Element
method), 431

coproduct() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBases.ParentMethods
method), 1404

coproduct() (sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods
method), 2790

coproduct() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ParentMethods
method), 2833

coproduct() (sage.combinat.sf.witt.SymmetricFunctionAlgebra_witt
method), 2967

coproduct_by_coercion()
(sage.combinat.sf.jack.JackPolynomials_generic
method), 2776

coproduct_by_coercion()

3726 Index

Combinatorics, Release 9.7

(sage.combinat.sf.jack.JackPolynomials_qp
method), 2780

coproduct_by_coercion()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
method), 2905

coproduct_on_basis()
(sage.combinat.chas.fsym.FreeSymmetricFunctions.Fundamental
method), 127

coproduct_on_basis()
(sage.combinat.chas.fsym.FreeSymmetricFunctions_Dual.FundamentalDual
method), 130

coproduct_on_basis()
(sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.Monomial
method), 147

coproduct_on_basis()
(sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyCoarser
method), 150

coproduct_on_basis()
(sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyFiner
method), 153

coproduct_on_basis()
(sage.combinat.fqsym.FreeQuasisymmetricFunctions.F
method), 1009

coproduct_on_basis()
(sage.combinat.fqsym.FreeQuasisymmetricFunctions.M
method), 1012

coproduct_on_basis()
(sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1028

coproduct_on_basis()
(sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra
method), 1110

coproduct_on_basis()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Essential
method), 1446

coproduct_on_basis()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Fundamental
method), 1452

coproduct_on_basis()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial
method), 1457

coproduct_on_basis()
(sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w
method), 1484

coproduct_on_basis()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial
method), 1494

coproduct_on_basis()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.powersum
method), 1499

coproduct_on_basis()
(sage.combinat.sf.multiplicative.SymmetricFunctionAlgebra_multiplicative
method), 2827

coproduct_on_basis()

(sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur
method), 2870

coproduct_on_generators()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBasesOnGroupLikeElements.ParentMethods
method), 1407

coproduct_on_generators()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBasesOnPrimitiveElements.ParentMethods
method), 1408

coproduct_on_generators()
(sage.combinat.sf.elementary.SymmetricFunctionAlgebra_elementary
method), 2755

coproduct_on_generators()
(sage.combinat.sf.hecke.HeckeCharacter
method), 2766

coproduct_on_generators()
(sage.combinat.sf.homogeneous.SymmetricFunctionAlgebra_homogeneous
method), 2770

coproduct_on_generators()
(sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power
method), 2863

copy() (sage.combinat.constellation.Constellation_class
method), 319

copy() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 668

copy() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 912

copy() (sage.combinat.finite_state_machine.FSMState
method), 885

copy() (sage.combinat.finite_state_machine.FSMTransition
method), 889

copy() (sage.combinat.knutson_tao_puzzles.PuzzleFilling
method), 1271

Core (class in sage.combinat.core), 329
core() (sage.combinat.partition.Partition method), 1625
Cores() (in module sage.combinat.core), 334
Cores_length (class in sage.combinat.core), 335
Cores_size (class in sage.combinat.core), 335
corner_sum_matrix()

(sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 54

corners() (sage.combinat.partition.Partition method),
1625

corners() (sage.combinat.partition_tuple.PartitionTuple
method), 1727

corners() (sage.combinat.tableau.Tableau method),
3307

corners_residue() (sage.combinat.partition.Partition
method), 1625

coroot_lattice() (sage.combinat.root_system.ambient_space.AmbientSpace
method), 2158

coroot_lattice() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2432

coroot_lattice() (sage.combinat.root_system.root_system.RootSystem
method), 2466

Index 3727

Combinatorics, Release 9.7

coroot_lattice() (sage.combinat.root_system.type_affine.AmbientSpace
method), 2529

coroot_space() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2432

coroot_space() (sage.combinat.root_system.root_system.RootSystem
method), 2467

corresponding_basis_over()
(sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2953

coRSK (sage.combinat.rsk.InsertionRules attribute), 2669
coset_decomposition()

(sage.combinat.fully_commutative_elements.FullyCommutativeElement
method), 841

coset_representative()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2558

cospin() (sage.combinat.sf.llt.LLT_class method), 2802
cospin_polynomial() (in module

sage.combinat.ribbon_tableau), 2065
counit() (sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods

method), 2791
counit() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ParentMethods

method), 2834
counit() (sage.combinat.sf.sfa.GradedSymmetricFunctionsBases.ParentMethods

method), 2904
counit_on_basis() (sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra

method), 1111
counit_on_basis() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods

method), 1356
counit_on_basis() (sage.combinat.ncsym.bases.NCSymOrNCSymDualBases.ParentMethods

method), 1479
count() (sage.combinat.species.generating_series.CycleIndexSeries

method), 3144
count() (sage.combinat.species.generating_series.ExponentialGeneratingSeries

method), 3149
count() (sage.combinat.species.generating_series.OrdinaryGeneratingSeries

method), 3151
count() (sage.combinat.words.finite_word.FiniteWord_class

method), 3479
count_blocks_of_size()

(sage.combinat.diagram_algebras.AbstractPartitionDiagram
method), 733

count_rec() (in module
sage.combinat.ribbon_tableau), 2065

counts() (sage.combinat.species.generating_series.ExponentialGeneratingSeries
method), 3149

counts() (sage.combinat.species.generating_series.OrdinaryGeneratingSeries
method), 3151

CountSubblockOccurrences()
(sage.combinat.finite_state_machine_generators.TransducerGenerators
method), 982

cover_relations() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 49

cover_relations() (sage.combinat.alternating_sign_matrix.MonotoneTriangles

method), 63
cover_relations() (sage.combinat.posets.hasse_diagram.HasseDiagram

method), 1841
cover_relations() (sage.combinat.posets.posets.FinitePoset

method), 1956
cover_relations() (sage.combinat.subword_complex.SubwordComplex

method), 3215
cover_relations_graph()

(sage.combinat.posets.posets.FinitePoset
method), 1956

cover_relations_iterator()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1841

cover_relations_iterator()
(sage.combinat.posets.posets.FinitePoset
method), 1956

CoveringDesign (class in
sage.combinat.designs.covering_design),
595

covers() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1841

covers() (sage.combinat.posets.posets.FinitePoset
method), 1956

coweight_lattice() (sage.combinat.root_system.root_system.RootSystem
method), 2467

coweight_space() (sage.combinat.root_system.root_system.RootSystem
method), 2467

coxeter_diagram() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2191

coxeter_diagram() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2219

coxeter_diagram() (sage.combinat.root_system.cartan_type.CartanType_crystallographic
method), 2234

coxeter_diagram() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2265

coxeter_diagram() (sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2390

coxeter_diagram() (sage.combinat.root_system.type_H.CartanType
method), 2523

coxeter_diagram() (sage.combinat.root_system.type_I.CartanType
method), 2524

coxeter_diagram() (sage.combinat.root_system.type_reducible.CartanType
method), 2592

coxeter_diagram() (sage.combinat.root_system.type_relabel.CartanType
method), 2596

coxeter_graph() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix
method), 2248

coxeter_graph() (sage.combinat.root_system.coxeter_type.CoxeterType
method), 2255

coxeter_graph() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType
method), 2259

coxeter_group() (sage.combinat.fully_commutative_elements.FullyCommutativeElements
method), 849

coxeter_matrix() (sage.combinat.colored_permutations.ColoredPermutations

3728 Index

Combinatorics, Release 9.7

method), 246
coxeter_matrix() (sage.combinat.root_system.cartan_matrix.CartanMatrix

method), 2191
coxeter_matrix() (sage.combinat.root_system.cartan_type.CartanType_abstract

method), 2220
coxeter_matrix() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix

method), 2248
coxeter_matrix() (sage.combinat.root_system.coxeter_type.CoxeterType

method), 2255
coxeter_matrix() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType

method), 2259
coxeter_matrix() (sage.combinat.root_system.reflection_group_real.RealReflectionGroup

method), 2390
coxeter_matrix_as_function() (in module

sage.combinat.root_system.coxeter_matrix),
2253

coxeter_number() (sage.combinat.root_system.cartan_type.CartanType_standard_finite
method), 2240

coxeter_number() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2288

coxeter_number() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2367

coxeter_number() (sage.combinat.root_system.type_A.CartanType
method), 2482

coxeter_number() (sage.combinat.root_system.type_B.CartanType
method), 2489

coxeter_number() (sage.combinat.root_system.type_C.CartanType
method), 2496

coxeter_number() (sage.combinat.root_system.type_D.CartanType
method), 2501

coxeter_number() (sage.combinat.root_system.type_E.CartanType
method), 2510

coxeter_number() (sage.combinat.root_system.type_F.CartanType
method), 2517

coxeter_number() (sage.combinat.root_system.type_G.CartanType
method), 2521

coxeter_number() (sage.combinat.root_system.type_H.CartanType
method), 2523

coxeter_number() (sage.combinat.root_system.type_I.CartanType
method), 2524

coxeter_polynomial()
(sage.combinat.posets.posets.FinitePoset
method), 1957

coxeter_smith_form()
(sage.combinat.posets.posets.FinitePoset
method), 1957

coxeter_transformation()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1842

coxeter_transformation()
(sage.combinat.posets.posets.FinitePoset
method), 1958

coxeter_type() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2220

coxeter_type() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix
method), 2248

CoxeterGroup() (in module
sage.combinat.root_system.coxeter_group),
2244

CoxeterGroupAbsoluteOrderPoset()
(sage.combinat.posets.poset_examples.Posets
static method), 1930

CoxeterMatrix (class in
sage.combinat.root_system.coxeter_matrix),
2246

CoxeterType (class in
sage.combinat.root_system.coxeter_type),
2255

CoxeterTypeFromCartanType (class in
sage.combinat.root_system.coxeter_type),
2259

cp (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables
attribute), 1489

crank() (sage.combinat.partition.Partition method),
1626

create_by_alphabet()
(sage.combinat.recognizable_series.PrefixClosedSet
class method), 2043

creation() (sage.combinat.sf.macdonald.MacdonaldPolynomials_s.Element
method), 2819

creator() (sage.combinat.designs.covering_design.CoveringDesign
method), 595

CremonaRichmondConfiguration() (in module
sage.combinat.designs.block_design), 586

critical_exponent()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3480

crochemore_factorization()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3481

crossings() (sage.combinat.set_partition.SetPartition
method), 2706

crossings_iterator()
(sage.combinat.set_partition.SetPartition
method), 2707

Crown() (sage.combinat.posets.poset_examples.Posets
static method), 1930

Crystal_of_letters_type_A_element (class in
sage.combinat.crystals.letters), 465

Crystal_of_letters_type_B_element (class in
sage.combinat.crystals.letters), 466

Crystal_of_letters_type_C_element (class in
sage.combinat.crystals.letters), 467

Crystal_of_letters_type_D_element (class in
sage.combinat.crystals.letters), 468

Crystal_of_letters_type_E6_element (class in
sage.combinat.crystals.letters), 469

Crystal_of_letters_type_E6_element_dual (class

Index 3729

Combinatorics, Release 9.7

in sage.combinat.crystals.letters), 470
Crystal_of_letters_type_E7_element (class in

sage.combinat.crystals.letters), 472
Crystal_of_letters_type_G_element (class in

sage.combinat.crystals.letters), 473
CrystalBacktracker (class in

sage.combinat.crystals.crystals), 368
CrystalDiagramAutomorphism (class in

sage.combinat.crystals.kirillov_reshetikhin),
417

CrystalElementShiftedPrimedTableau (class in
sage.combinat.shifted_primed_tableau), 2972

CrystalOfAlcovePaths (class in
sage.combinat.crystals.alcove_path), 351

CrystalOfAlcovePathsElement (class in
sage.combinat.crystals.alcove_path), 354

CrystalOfBKKLetters (class in
sage.combinat.crystals.letters), 464

CrystalOfBKKTableaux (class in
sage.combinat.crystals.bkk_crystals), 362

CrystalOfBKKTableaux.Element (class in
sage.combinat.crystals.bkk_crystals), 363

CrystalOfBKKTableauxElement (class in
sage.combinat.crystals.tensor_product_element),
536

CrystalOfGeneralizedYoungWalls (class in
sage.combinat.crystals.generalized_young_walls),
387

CrystalOfGeneralizedYoungWallsElement (class in
sage.combinat.crystals.generalized_young_walls),
388

CrystalOfKacModule (class in
sage.combinat.crystals.kac_modules), 411

CrystalOfKacModule.Element (class in
sage.combinat.crystals.kac_modules), 413

CrystalOfLetters() (in module
sage.combinat.crystals.letters), 464

CrystalOfLSPaths (class in
sage.combinat.crystals.littelmann_path),
478

CrystalOfLSPaths.Element (class in
sage.combinat.crystals.littelmann_path),
480

CrystalOfNakajimaMonomials (class in
sage.combinat.crystals.monomial_crystals),
492

CrystalOfNakajimaMonomialsElement (class in
sage.combinat.crystals.monomial_crystals),
494

CrystalOfNonSimplyLacedRC (class in
sage.combinat.rigged_configurations.rc_crystal),
2100

CrystalOfOddNegativeRoots (class in
sage.combinat.crystals.kac_modules), 414

CrystalOfOddNegativeRoots.Element (class in
sage.combinat.crystals.kac_modules), 414

CrystalOfProjectedLevelZeroLSPaths (class in
sage.combinat.crystals.littelmann_path), 483

CrystalOfProjectedLevelZeroLSPaths.Element
(class in sage.combinat.crystals.littelmann_path),
484

CrystalOfQueerLetters (class in
sage.combinat.crystals.letters), 465

CrystalOfQueerTableaux (class in
sage.combinat.crystals.tensor_product), 526

CrystalOfQueerTableaux.Element (class in
sage.combinat.crystals.tensor_product), 526

CrystalOfRiggedConfigurations (class in
sage.combinat.rigged_configurations.rc_crystal),
2101

CrystalOfRiggedConfigurations.options() (in
module sage.combinat.rigged_configurations.rc_crystal),
2102

CrystalOfSpins() (in module
sage.combinat.crystals.spins), 519

CrystalOfSpinsMinus() (in module
sage.combinat.crystals.spins), 519

CrystalOfSpinsPlus() (in module
sage.combinat.crystals.spins), 519

CrystalOfTableaux (class in
sage.combinat.crystals.tensor_product), 527

CrystalOfTableaux.Element (class in
sage.combinat.crystals.tensor_product), 529

CrystalOfTableaux_E7 (class in
sage.combinat.crystals.kirillov_reshetikhin),
418

CrystalOfTableauxElement (class in
sage.combinat.crystals.tensor_product_element),
536

CrystalOfWords (class in
sage.combinat.crystals.tensor_product), 529

CrystalOfWords.Element (class in
sage.combinat.crystals.tensor_product), 529

cubical_coordinates()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1164

cuts() (sage.combinat.posets.posets.FinitePoset
method), 1958

cycle_index_series()
(sage.combinat.species.species.GenericCombinatorialSpecies
method), 3179

cycle_string() (sage.combinat.permutation.Permutation
method), 1762

cycle_tuples() (sage.combinat.permutation.Permutation
method), 1763

cycle_type() (sage.combinat.permutation.Permutation
method), 1763

CycleIndexSeries (class in

3730 Index

Combinatorics, Release 9.7

sage.combinat.species.generating_series),
3142

CycleIndexSeriesRing() (in module
sage.combinat.species.generating_series),
3148

CycleIndexSeriesRing_class (class in
sage.combinat.species.generating_series),
3149

CycleSpecies (class in
sage.combinat.species.cycle_species), 3139

CycleSpecies_class (in module
sage.combinat.species.cycle_species), 3140

CycleSpeciesStructure (class in
sage.combinat.species.cycle_species), 3139

cyclic_permutations_of_set_partition() (in
module sage.combinat.set_partition), 2729

cyclic_permutations_of_set_partition_iterator()
(in module sage.combinat.set_partition), 2729

cyclic_rotation() (sage.combinat.cluster_complex.ClusterComplex
method), 241

cyclic_shift() (in module
sage.combinat.designs.database), 630

CyclicPermutations (class in
sage.combinat.permutation), 1752

CyclicPermutationsOfPartition (class in
sage.combinat.permutation), 1753

CyclicPermutationsOfPartition.Element (class in
sage.combinat.permutation), 1754

CyclicSievingCheck() (in module
sage.combinat.cyclic_sieving_phenomenon),
548

CyclicSievingPolynomial() (in module
sage.combinat.cyclic_sieving_phenomenon),
548

CylindricalDiagram (class in
sage.combinat.path_tableaux.path_tableau),
1593

D
d_matrix() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 165
D_minus() (sage.combinat.root_system.fusion_ring.FusionRing

method), 2638
D_plus() (sage.combinat.root_system.fusion_ring.FusionRing

method), 2638
d_vector() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 166
d_vector_fan() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver

method), 207
dancing_linksWrapper (class in

sage.combinat.matrices.dancing_links), 1279
data() (sage.combinat.species.stream.Stream_class

method), 3183

day_doubling() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1876

DCompletePoset (class in
sage.combinat.posets.d_complete), 1831

debruijn_sequence() (in module
sage.combinat.debruijn_sequence), 551

DeBruijnSequences (class in
sage.combinat.debruijn_sequence), 550

decomposition_reverse()
(sage.combinat.dyck_word.DyckWord_complete
method), 802

decomposition_to_triple()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1164

deconcatenate() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1333

DecoratedSuffixTree (class in
sage.combinat.words.suffix_trees), 3606

decrease_half() (sage.combinat.shifted_primed_tableau.PrimedEntry
method), 2976

decrease_one() (sage.combinat.shifted_primed_tableau.PrimedEntry
method), 2976

decreasing_children()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1164

decreasing_cover_relations()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1165

decreasing_parent()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1165

decreasing_roots() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1166

decreasing_runs() (sage.combinat.permutation.Permutation
method), 1763

DecreasingHeckeFactorization (class in
sage.combinat.crystals.fully_commutative_stable_grothendieck),
382

DecreasingHeckeFactorizations (class in
sage.combinat.crystals.fully_commutative_stable_grothendieck),
383

deepcopy() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 912

deepcopy() (sage.combinat.finite_state_machine.FSMState
method), 886

deepcopy() (sage.combinat.finite_state_machine.FSMTransition
method), 889

default_format_transition_label()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 913

default_long_word()
(sage.combinat.crystals.pbw_crystal.PBWCrystal
method), 509

default_tikz_options (in module

Index 3731

Combinatorics, Release 9.7

sage.combinat.parallelogram_polyomino),
1566

default_weight() (sage.combinat.root_system.pieri_factors.PieriFactors
method), 2325

defect() (sage.combinat.partition.Partition method),
1626

defect() (sage.combinat.partition_tuple.PartitionTuple
method), 1727

defect() (sage.combinat.words.finite_word.FiniteWord_class
method), 3481

define() (sage.combinat.species.recursive_species.CombinatorialSpecies
method), 3162

define() (sage.combinat.species.series.LazyPowerSeries
method), 3166

deg_inv_lex_less() (sage.combinat.words.finite_word.FiniteWord_class
method), 3483

deg_lex_less() (sage.combinat.words.finite_word.FiniteWord_class
method), 3483

deg_rev_lex_less() (sage.combinat.words.finite_word.FiniteWord_class
method), 3483

degree() (sage.combinat.constellation.Constellation_class
method), 319

degree() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 668

degree() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ElementMethods
method), 1353

degree() (sage.combinat.partition.Partition method),
1627

degree() (sage.combinat.partition_tuple.PartitionTuple
method), 1727

degree() (sage.combinat.permutation.StandardPermutations_n
method), 1815

degree() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2622

degree() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2913

degree() (sage.combinat.similarity_class_type.PrimarySimilarityClassType
method), 2994

degree() (sage.combinat.superpartition.SuperPartition
method), 3237

degree() (sage.combinat.tableau.Tableau method),
3308

degree() (sage.combinat.tableau_tuple.RowStandardTableauTuple
method), 3355

degree() (sage.combinat.words.finite_word.FiniteWord_class
method), 3483

degree_convexity() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1546

degree_negation() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ElementMethods
method), 1353

degree_negation() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1356

degree_negation() (sage.combinat.sf.sfa.GradedSymmetricFunctionsBases.ElementMethods
method), 2902

degree_negation() (sage.combinat.sf.sfa.GradedSymmetricFunctionsBases.ParentMethods
method), 2904

degree_on_basis() (sage.combinat.chas.fsym.FSymBases.ParentMethods
method), 124

degree_on_basis() (sage.combinat.chas.wqsym.WQSymBases.ParentMethods
method), 139

degree_on_basis() (sage.combinat.fqsym.FreeQuasisymmetricFunctions.F
method), 1009

degree_on_basis() (sage.combinat.fqsym.FreeQuasisymmetricFunctions.G
method), 1011

degree_on_basis() (sage.combinat.fqsym.FreeQuasisymmetricFunctions.M
method), 1012

degree_on_basis() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1029

degree_on_basis() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1036

degree_on_basis() (sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra
method), 1111

degree_on_basis() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1357

degree_on_basis() (sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods
method), 2791

degree_on_basis() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ParentMethods
method), 2834

degree_on_basis() (sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2953

degree_polynomial()
(sage.combinat.posets.posets.FinitePoset
method), 1958

degree_zero_coefficient()
(sage.combinat.sf.sfa.GradedSymmetricFunctionsBases.ElementMethods
method), 2903

degrees() (sage.combinat.colored_permutations.ColoredPermutations
method), 246

degrees() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 668

degrees() (sage.combinat.permutation.StandardPermutations_n
method), 1815

degrees() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2367

DegreeSequences (class in
sage.combinat.degree_sequences), 555

delete_state() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 914

delete_transition()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 914

delta() (sage.combinat.posets.incidence_algebras.IncidenceAlgebra
method), 1863

delta() (sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra
method), 1866

delta() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2115

delta() (sage.combinat.words.abstract_word.Word_class

3732 Index

Combinatorics, Release 9.7

method), 3450
delta() (sage.combinat.words.finite_word.FiniteWord_class

method), 3484
delta_derivate() (sage.combinat.words.finite_word.FiniteWord_class

method), 3484
delta_derivate_left()

(sage.combinat.words.finite_word.FiniteWord_class
method), 3485

delta_derivate_right()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3485

delta_inv() (sage.combinat.words.finite_word.FiniteWord_class
method), 3485

delta_pieces() (sage.combinat.knutson_tao_puzzles.PuzzlePieces
method), 1276

DeltaPiece (class in sage.combinat.knutson_tao_puzzles),
1258

demazure() (sage.combinat.root_system.weyl_characters.WeightRing.Element
method), 2617

demazure_character()
(sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2627

demazure_lusztig() (sage.combinat.root_system.weyl_characters.WeightRing.Element
method), 2617

demazure_lusztig_operator_on_basis()
(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2398

demazure_lusztig_operator_on_classical_on_basis()
(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2399

demazure_lusztig_operators()
(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2400

demazure_lusztig_operators_on_classical()
(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2403

demazure_operators()
(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2405

dendriform_leq() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods
method), 1432

dendriform_less() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods
method), 1433

dendriform_shuffle()
(sage.combinat.binary_tree.BinaryTree
method), 76

DendriformFunctor (class in
sage.combinat.free_dendriform_algebra),
1025

denominator() (sage.rings.cfinite_sequence.CFiniteSequence
method), 3671

depth() (sage.combinat.abstract_tree.AbstractTree
method), 16

depth() (sage.combinat.rigged_configurations.kleber_tree.KleberTreeNode

method), 2082
depth_first_iter() (sage.combinat.rigged_configurations.kleber_tree.KleberTree

method), 2081
depth_first_iter() (sage.combinat.rigged_configurations.kleber_tree.KleberTreeTypeA2Even

method), 2084
depth_first_iter() (sage.combinat.rigged_configurations.kleber_tree.VirtualKleberTree

method), 2085
Derangement (class in sage.combinat.derangements),

555
Derangements (class in sage.combinat.derangements),

556
derivative() (sage.combinat.species.generating_series.CycleIndexSeries

method), 3145
derivative() (sage.combinat.species.series.LazyPowerSeries

method), 3167
derivative_with_respect_to_p1()

(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2913

DesarguesianProjectivePlaneDesign() (in module
sage.combinat.designs.block_design), 586

descendant() (sage.combinat.designs.twographs.TwoGraph
method), 730

descent_composition() (in module
sage.combinat.chas.fsym), 131

descent_composition()
(sage.combinat.composition_tableau.CompositionTableau
method), 312

descent_polynomial()
(sage.combinat.permutation.Permutation
method), 1764

descent_set() (in module sage.combinat.chas.fsym),
132

descent_set() (sage.combinat.composition_tableau.CompositionTableau
method), 312

descent_set() (sage.combinat.tableau.IncreasingTableau
method), 3279

DescentAlgebra (class in
sage.combinat.descent_algebra), 558

DescentAlgebra.B (class in
sage.combinat.descent_algebra), 559

DescentAlgebra.D (class in
sage.combinat.descent_algebra), 562

DescentAlgebra.I (class in
sage.combinat.descent_algebra), 563

DescentAlgebraBases (class in
sage.combinat.descent_algebra), 566

DescentAlgebraBases.ElementMethods (class in
sage.combinat.descent_algebra), 566

DescentAlgebraBases.ParentMethods (class in
sage.combinat.descent_algebra), 566

descents() (sage.combinat.composition.Composition
method), 292

descents() (sage.combinat.fully_commutative_elements.FullyCommutativeElement
method), 842

Index 3733

Combinatorics, Release 9.7

descents() (sage.combinat.path_tableaux.dyck_path.DyckPath
method), 1586

descents() (sage.combinat.permutation.Permutation
method), 1764

descents() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2414

descents() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2843

descents() (sage.combinat.tableau.Tableau method),
3308

descents_composition()
(sage.combinat.permutation.Permutation
method), 1765

descents_composition_first() (in module
sage.combinat.permutation), 1819

descents_composition_last() (in module
sage.combinat.permutation), 1820

descents_composition_list() (in module
sage.combinat.permutation), 1820

describe() (sage.combinat.root_system.branching_rules.BranchingRule
method), 2168

designs_from_XML() (in module
sage.combinat.designs.ext_rep), 658

designs_from_XML_url() (in module
sage.combinat.designs.ext_rep), 659

destandardize() (sage.combinat.permutation.Permutation
method), 1765

det() (sage.combinat.root_system.type_A.AmbientSpace
method), 2479

determine_alphabets()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 915

determine_input_alphabet()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 915

determine_output_alphabet()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 916

determinisation() (sage.combinat.finite_state_machine.Automaton
method), 867

DexterSemilattice() (in module
sage.combinat.tamari_lattices), 3386

DexterSemilattice()
(sage.combinat.posets.poset_examples.Posets
static method), 1930

df() (sage.combinat.sloane_functions.A006882 method),
3107

df_q_6_1() (in module
sage.combinat.designs.difference_family),
639

dft() (sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3253

dI (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions
attribute), 1460

diag() (sage.combinat.k_tableau.WeakTableaux_core
method), 1253

diagonal_composition()
(sage.combinat.parking_functions.ParkingFunction
method), 1569

diagonal_reading_word()
(sage.combinat.parking_functions.ParkingFunction
method), 1570

diagonal_word() (sage.combinat.parking_functions.ParkingFunction
method), 1570

diagram() (sage.combinat.diagram_algebras.AbstractPartitionDiagram
method), 733

diagram() (sage.combinat.diagram_algebras.DiagramAlgebra.Element
method), 742

diagram() (sage.combinat.partition_tuple.PartitionTuple
method), 1728

diagram() (sage.combinat.skew_partition.SkewPartition
method), 3018

diagram_basis() (sage.combinat.diagram_algebras.OrbitBasis
method), 746

diagram_latex() (in module
sage.combinat.diagram_algebras), 769

DiagramAlgebra (class in
sage.combinat.diagram_algebras), 742

DiagramAlgebra.Element (class in
sage.combinat.diagram_algebras), 742

DiagramBasis (class in
sage.combinat.diagram_algebras), 743

diagrams() (sage.combinat.diagram_algebras.DiagramAlgebra.Element
method), 742

DiamondPoset() (sage.combinat.posets.poset_examples.Posets
static method), 1931

diamonds() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1842

diamonds() (sage.combinat.posets.posets.FinitePoset
method), 1959

dict() (sage.combinat.permutation.Permutation
method), 1766

dict_to_list() (in module sage.combinat.subset),
3203

dictionary_from_generator() (in module
sage.combinat.similarity_class_type), 3001

dictionary_of_coordinates_at_residues()
(sage.combinat.k_tableau.WeakTableau_core
method), 1242

difference() (sage.combinat.e_one_star.Patch
method), 824

difference_family() (in module
sage.combinat.designs.difference_family),
639

difference_matrix() (in module
sage.combinat.designs.difference_matrices),
651

difference_matrix_product() (in module

3734 Index

Combinatorics, Release 9.7

sage.combinat.designs.difference_matrices),
653

digraph() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 207

digraph() (sage.combinat.crystals.fast_crystals.FastCrystal
method), 381

digraph() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 916

digraph() (sage.combinat.rigged_configurations.kleber_tree.KleberTree
method), 2081

digraph() (sage.combinat.species.species.GenericCombinatorialSpecies
method), 3179

dilworth_decomposition()
(sage.combinat.posets.posets.FinitePoset
method), 1959

dimension() (sage.combinat.e_one_star.Patch method),
824

dimension() (sage.combinat.free_module.CombinatorialFreeModule
method), 1016

dimension() (sage.combinat.partition.Partition
method), 1628

dimension() (sage.combinat.posets.posets.FinitePoset
method), 1960

dimension() (sage.combinat.recognizable_series.RecognizableSeries
method), 2046

dimension() (sage.combinat.root_system.ambient_space.AmbientSpace
method), 2158

dimension() (sage.combinat.root_system.type_A.AmbientSpace
method), 2480

dimension() (sage.combinat.root_system.type_B.AmbientSpace
method), 2486

dimension() (sage.combinat.root_system.type_C.AmbientSpace
method), 2494

dimension() (sage.combinat.root_system.type_D.AmbientSpace
method), 2498

dimension() (sage.combinat.root_system.type_dual.AmbientSpace
method), 2532

dimension() (sage.combinat.root_system.type_E.AmbientSpace
method), 2504

dimension() (sage.combinat.root_system.type_F.AmbientSpace
method), 2514

dimension() (sage.combinat.root_system.type_G.AmbientSpace
method), 2519

dimension() (sage.combinat.root_system.type_marked.AmbientSpace
method), 2584

dimension() (sage.combinat.root_system.type_reducible.AmbientSpace
method), 2589

dimension() (sage.combinat.root_system.type_relabel.AmbientSpace
method), 2595

dimension() (sage.combinat.root_system.type_super_A.AmbientSpace
method), 2473

dimension() (sage.combinat.subword_complex.SubwordComplex
method), 3215

dinv() (sage.combinat.dyck_word.DyckWord_complete

method), 803
dinv() (sage.combinat.parking_functions.ParkingFunction

method), 1571
dinversion_pairs() (sage.combinat.parking_functions.ParkingFunction

method), 1571
direct_product() (in module

sage.combinat.matrices.latin), 1318
directive_vector() (sage.combinat.words.paths.FiniteWordPath_all

method), 3588
DirectSumOfCrystals (class in

sage.combinat.crystals.direct_sum), 368
DirectSumOfCrystals.Element (class in

sage.combinat.crystals.direct_sum), 369
discriminant() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup

method), 2368
discriminant_in_invariant_ring()

(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2368

disjoint_mate_dlxcpp_rows_and_map()
(sage.combinat.matrices.latin.LatinSquare
method), 1304

disjoint_union() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 917

disjoint_union() (sage.combinat.posets.posets.FinitePoset
method), 1961

distinguished_reflection()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2369

distinguished_reflections()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2370

distinguished_reflections()
(sage.combinat.root_system.weyl_group.WeylGroup_permutation
method), 2656

div() (sage.combinat.species.series.LazyPowerSeries
method), 3168

divided_difference()
(sage.combinat.schubert_polynomial.SchubertPolynomial_class
method), 2700

divided_difference_on_basis()
(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2406

DivisorLattice() (sage.combinat.posets.poset_examples.Posets
static method), 1931

dks() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2787

dlx_solver() (in module
sage.combinat.matrices.dancing_links), 1289

dlx_solver() (sage.combinat.tiling.TilingSolver
method), 3405

DLXCPP() (in module sage.combinat.matrices.dlxcpp),
1289

dlxcpp_find_completions() (in module
sage.combinat.matrices.latin), 1318

Index 3735

Combinatorics, Release 9.7

dlxcpp_has_unique_completion()
(sage.combinat.matrices.latin.LatinSquare
method), 1307

dlxcpp_rows_and_map() (in module
sage.combinat.matrices.latin), 1318

DLXMatrix (class in sage.combinat.dlx), 774
DM_12_6_1() (in module

sage.combinat.designs.database), 605
DM_21_6_1() (in module

sage.combinat.designs.database), 605
DM_24_8_1() (in module

sage.combinat.designs.database), 606
DM_273_17_1() (in module

sage.combinat.designs.database), 606
DM_28_6_1() (in module

sage.combinat.designs.database), 606
DM_33_6_1() (in module

sage.combinat.designs.database), 607
DM_35_6_1() (in module

sage.combinat.designs.database), 607
DM_36_9_1() (in module

sage.combinat.designs.database), 607
DM_39_6_1() (in module

sage.combinat.designs.database), 607
DM_44_6_1() (in module

sage.combinat.designs.database), 608
DM_45_7_1() (in module

sage.combinat.designs.database), 608
DM_48_9_1() (in module

sage.combinat.designs.database), 608
DM_51_6_1() (in module

sage.combinat.designs.database), 609
DM_52_6_1() (in module

sage.combinat.designs.database), 609
DM_55_7_1() (in module

sage.combinat.designs.database), 609
DM_56_8_1() (in module

sage.combinat.designs.database), 610
DM_57_8_1() (in module

sage.combinat.designs.database), 610
DM_60_6_1() (in module

sage.combinat.designs.database), 610
DM_75_8_1() (in module

sage.combinat.designs.database), 610
DM_993_32_1() (in module

sage.combinat.designs.database), 611
dom() (in module sage.combinat.sf.kfpoly), 2798
domain() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors

method), 2271
domain() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation

method), 2281
domain() (sage.combinat.root_system.weyl_group.WeylGroup_gens

method), 2653
domain() (sage.combinat.root_system.weyl_group.WeylGroupElement

method), 2650
domain() (sage.combinat.words.morphism.WordMorphism

method), 3551
dominant_maximal_weights()

(sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2288

dominated_partitions()
(sage.combinat.partition.Partition method),
1629

dominates() (sage.combinat.partition.Partition
method), 1629

dominates() (sage.combinat.partition_tuple.PartitionTuple
method), 1729

dominates() (sage.combinat.superpartition.SuperPartition
method), 3237

dominates() (sage.combinat.tableau.StandardTableau
method), 3292

dominates() (sage.combinat.tableau_tuple.StandardTableauTuple
method), 3364

Domino (sage.combinat.growth.Rules attribute), 1108
dot_action() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods

method), 2415
dot_orbit() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods

method), 2415
dot_product() (sage.combinat.root_system.ambient_space.AmbientSpaceElement

method), 2161
dot_product() (sage.combinat.root_system.type_super_A.AmbientSpace.Element

method), 2471
dot_reduce() (sage.combinat.root_system.weyl_characters.WeylCharacterRing

method), 2627
double_irreducibles()

(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1877

DoubleTailedDiamond()
(sage.combinat.posets.poset_examples.Posets
static method), 1931

doubling_map() (sage.combinat.rigged_configurations.bij_type_D.KRTToRCBijectionTypeD
method), 2075

doubling_map() (sage.combinat.rigged_configurations.bij_type_D.RCToKRTBijectionTypeD
method), 2076

DoublyLinkedList (class in sage.combinat.misc), 1328
down() (sage.combinat.partition.Partition method), 1629
down() (sage.combinat.partition_tuple.PartitionTuple

method), 1729
down() (sage.combinat.tableau.StandardTableau

method), 3292
down_list() (sage.combinat.partition.Partition

method), 1630
down_list() (sage.combinat.partition_tuple.PartitionTuple

method), 1729
down_list() (sage.combinat.tableau.StandardTableau

method), 3293
dQS (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions

attribute), 1421

3736 Index

Combinatorics, Release 9.7

dual() (sage.combinat.chas.fsym.FreeSymmetricFunctions
method), 129

dual() (sage.combinat.chas.fsym.FreeSymmetricFunctions_Dual
method), 131

dual() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Irreducible
method), 231

dual() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Reducible
method), 232

dual() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 669

dual() (sage.combinat.diagram_algebras.AbstractPartitionDiagram
method), 734

dual() (sage.combinat.diagram_algebras.PartitionAlgebra.Element
method), 751

dual() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions
method), 1421

dual() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Complete
method), 1395

dual() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.dualQuasisymmetric_Schur
method), 1422

dual() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.dualYoungQuasisymmetric_Schur
method), 1423

dual() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Immaculate
method), 1402

dual() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Ribbon
method), 1419

dual() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions
method), 1460

dual() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Fundamental
method), 1452

dual() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial
method), 1457

dual() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Quasisymmetric_Schur
method), 1459

dual() (sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual
method), 1482

dual() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables
method), 1491

dual() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1843

dual() (sage.combinat.posets.posets.FinitePoset
method), 1962

dual() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2191

dual() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2220

dual() (sage.combinat.root_system.cartan_type.CartanType_simply_laced
method), 2238

dual() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2265

dual() (sage.combinat.root_system.type_A_affine.CartanType
method), 2483

dual() (sage.combinat.root_system.type_A_infinity.CartanType
method), 2485

dual() (sage.combinat.root_system.type_B.CartanType
method), 2489

dual() (sage.combinat.root_system.type_C.CartanType
method), 2496

dual() (sage.combinat.root_system.type_dual.CartanType
method), 2535

dual() (sage.combinat.root_system.type_F.CartanType
method), 2517

dual() (sage.combinat.root_system.type_G.CartanType
method), 2521

dual() (sage.combinat.root_system.type_marked.CartanType
method), 2586

dual() (sage.combinat.root_system.type_Q.CartanType
method), 2525

dual() (sage.combinat.root_system.type_reducible.CartanType
method), 2593

dual() (sage.combinat.root_system.type_relabel.CartanType
method), 2596

dual() (sage.combinat.root_system.type_super_A.CartanType
method), 2477

dual() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2622

dual() (sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual.Element
method), 2746

dual_action() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0Element
method), 2548

dual_action() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PvElement
method), 2552

dual_action() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2559

dual_basis() (sage.combinat.chas.fsym.FreeSymmetricFunctions.Fundamental
method), 128

dual_basis() (sage.combinat.chas.fsym.FreeSymmetricFunctions_Dual.FundamentalDual
method), 130

dual_basis() (sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w
method), 1484

dual_basis() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial
method), 1494

dual_basis() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
method), 2906

dual_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2569

dual_classical_weyl_to_affine()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2570

dual_coxeter_number()
(sage.combinat.root_system.cartan_type.CartanType_standard_finite
method), 2240

dual_coxeter_number()
(sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2289

dual_coxeter_number()
(sage.combinat.root_system.type_A.CartanType

Index 3737

Combinatorics, Release 9.7

method), 2482
dual_coxeter_number()

(sage.combinat.root_system.type_B.CartanType
method), 2489

dual_coxeter_number()
(sage.combinat.root_system.type_C.CartanType
method), 2496

dual_coxeter_number()
(sage.combinat.root_system.type_D.CartanType
method), 2501

dual_coxeter_number()
(sage.combinat.root_system.type_E.CartanType
method), 2511

dual_coxeter_number()
(sage.combinat.root_system.type_F.CartanType
method), 2517

dual_coxeter_number()
(sage.combinat.root_system.type_G.CartanType
method), 2521

dual_equivalence_graph()
(sage.combinat.partition.Partition method),
1630

dual_equivalence_graph()
(sage.combinat.path_tableaux.path_tableau.PathTableau
method), 1595

dual_fibonacci_tile()
(sage.combinat.words.word_generators.WordGenerator
method), 3646

dual_GQ_ovoid() (in module
sage.combinat.designs.gen_quadrangles_with_spread),
660

dual_K_evacuation()
(sage.combinat.tableau.IncreasingTableau
method), 3279

dual_k_Schur() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2787

dual_lattice() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2570

dual_lattice_basis()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2570

dual_map() (sage.combinat.words.morphism.WordMorphism
method), 3551

dual_node() (sage.combinat.root_system.fundamental_group.FundamentalGroupGL
method), 2573

dual_node() (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class
method), 2579

dual_type_cospace()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2432

DualInfinityQueerCrystalOfTableaux (class in
sage.combinat.crystals.infinity_crystals), 405

DualInfinityQueerCrystalOfTableaux.Element
(class in sage.combinat.crystals.infinity_crystals),

405
duality_pairing() (sage.combinat.chas.fsym.FSymBases.ElementMethods

method), 123
duality_pairing() (sage.combinat.chas.fsym.FSymBases.ParentMethods

method), 124
duality_pairing() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ElementMethods

method), 1353
duality_pairing() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods

method), 1357
duality_pairing() (sage.combinat.ncsym.bases.NCSymOrNCSymDualBases.ElementMethods

method), 1479
duality_pairing() (sage.combinat.ncsym.bases.NCSymOrNCSymDualBases.ParentMethods

method), 1479
duality_pairing() (sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w

method), 1484
duality_pairing() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial

method), 1495
duality_pairing_by_coercion()

(sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1358

duality_pairing_matrix()
(sage.combinat.chas.fsym.FSymBases.ParentMethods
method), 125

duality_pairing_matrix()
(sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1358

duality_pairing_matrix()
(sage.combinat.ncsym.bases.NCSymOrNCSymDualBases.ParentMethods
method), 1480

dualize() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element
method), 480

DualkSchurFunctions (class in
sage.combinat.sf.k_dual), 2784

dualRSK (sage.combinat.rsk.InsertionRules attribute),
2669

dump_to_tmpfile() (in module
sage.combinat.designs.ext_rep), 659

dumps() (sage.combinat.matrices.latin.LatinSquare
method), 1307

duplicate_transition_add_input() (in module
sage.combinat.finite_state_machine), 973

duplicate_transition_ignore() (in module
sage.combinat.finite_state_machine), 974

duplicate_transition_raise_error() (in module
sage.combinat.finite_state_machine), 974

dyck_words() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1166

DyckPath (class in sage.combinat.path_tableaux.dyck_path),
1584

DyckPaths (class in sage.combinat.path_tableaux.dyck_path),
1587

DyckWord (class in sage.combinat.dyck_word), 779
DyckWord_complete (class in

sage.combinat.dyck_word), 799

3738 Index

Combinatorics, Release 9.7

DyckWordBacktracker (class in
sage.combinat.dyck_word), 798

DyckWords (class in sage.combinat.dyck_word), 812
DyckWords.options() (in module

sage.combinat.dyck_word), 814
DyckWords_all (class in sage.combinat.dyck_word),

815
DyckWords_size (class in sage.combinat.dyck_word),

815
dynkin_diagram() (sage.combinat.root_system.cartan_matrix.CartanMatrix

method), 2192
dynkin_diagram() (sage.combinat.root_system.cartan_type.CartanType_crystallographic

method), 2235
dynkin_diagram() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class

method), 2266
dynkin_diagram() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods

method), 2432
dynkin_diagram() (sage.combinat.root_system.root_system.RootSystem

method), 2467
dynkin_diagram() (sage.combinat.root_system.type_A.CartanType

method), 2482
dynkin_diagram() (sage.combinat.root_system.type_A_affine.CartanType

method), 2484
dynkin_diagram() (sage.combinat.root_system.type_B.CartanType

method), 2489
dynkin_diagram() (sage.combinat.root_system.type_B_affine.CartanType

method), 2493
dynkin_diagram() (sage.combinat.root_system.type_BC_affine.CartanType

method), 2491
dynkin_diagram() (sage.combinat.root_system.type_C.CartanType

method), 2497
dynkin_diagram() (sage.combinat.root_system.type_C_affine.CartanType

method), 2498
dynkin_diagram() (sage.combinat.root_system.type_D.CartanType

method), 2501
dynkin_diagram() (sage.combinat.root_system.type_D_affine.CartanType

method), 2503
dynkin_diagram() (sage.combinat.root_system.type_dual.CartanType

method), 2535
dynkin_diagram() (sage.combinat.root_system.type_E.CartanType

method), 2511
dynkin_diagram() (sage.combinat.root_system.type_E_affine.CartanType

method), 2513
dynkin_diagram() (sage.combinat.root_system.type_F.CartanType

method), 2517
dynkin_diagram() (sage.combinat.root_system.type_F_affine.CartanType

method), 2518
dynkin_diagram() (sage.combinat.root_system.type_G.CartanType

method), 2521
dynkin_diagram() (sage.combinat.root_system.type_G_affine.CartanType

method), 2522
dynkin_diagram() (sage.combinat.root_system.type_marked.CartanType

method), 2586
dynkin_diagram() (sage.combinat.root_system.type_reducible.CartanType

method), 2593
dynkin_diagram() (sage.combinat.root_system.type_relabel.CartanType

method), 2597
dynkin_diagram() (sage.combinat.root_system.type_super_A.CartanType

method), 2477
dynkin_diagram() (sage.combinat.root_system.weyl_characters.WeylCharacterRing

method), 2628
dynkin_diagram_automorphism()

(sage.combinat.crystals.kirillov_reshetikhin.KR_type_A
method), 419

dynkin_diagram_automorphism()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6
method), 436

dynkin_diagram_automorphism()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_spin
method), 444

dynkin_diagram_automorphism()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_vertical
method), 446

dynkin_diagram_automorphism_of_alcove_morphism()
(sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2603

DynkinDiagram() (in module
sage.combinat.root_system.dynkin_diagram),
2262

DynkinDiagram_class (class in
sage.combinat.root_system.dynkin_diagram),
2264

dYQS (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions
attribute), 1421

E
E (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions

attribute), 1445
e (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables

attribute), 1491
E() (in module sage.combinat.sf.ns_macdonald), 2845
e() (in module sage.combinat.symmetric_group_algebra),

3265
e() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement

method), 341
e() (sage.combinat.crystals.affine_factorization.AffineFactorizationCrystal.Element

method), 345
e() (sage.combinat.crystals.affinization.AffinizationOfCrystal.Element

method), 349
e() (sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement

method), 355
e() (sage.combinat.crystals.alcove_path.InfinityCrystalOfAlcovePaths.Element

method), 358
e() (sage.combinat.crystals.direct_sum.DirectSumOfCrystals.Element

method), 369
e() (sage.combinat.crystals.elementary_crystals.AbstractSingleCrystalElement

method), 371

Index 3739

Combinatorics, Release 9.7

e() (sage.combinat.crystals.elementary_crystals.ElementaryCrystal.Element
method), 374

e() (sage.combinat.crystals.fast_crystals.FastCrystal.Element
method), 380

e() (sage.combinat.crystals.fully_commutative_stable_grothendieck.FullyCommutativeStableGrothendieckCrystal.Element
method), 385

e() (sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWallsElement
method), 388

e() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 390

e() (sage.combinat.crystals.induced_structure.InducedCrystal.Element
method), 401

e() (sage.combinat.crystals.induced_structure.InducedFromCrystal.Element
method), 403

e() (sage.combinat.crystals.kac_modules.CrystalOfKacModule.Element
method), 413

e() (sage.combinat.crystals.kac_modules.CrystalOfOddNegativeRoots.Element
method), 414

e() (sage.combinat.crystals.kyoto_path_model.KyotoPathModel.Element
method), 459

e() (sage.combinat.crystals.letters.BKKLetter method),
462

e() (sage.combinat.crystals.letters.Crystal_of_letters_type_A_element
method), 465

e() (sage.combinat.crystals.letters.Crystal_of_letters_type_B_element
method), 466

e() (sage.combinat.crystals.letters.Crystal_of_letters_type_C_element
method), 467

e() (sage.combinat.crystals.letters.Crystal_of_letters_type_D_element
method), 468

e() (sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element
method), 469

e() (sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element_dual
method), 471

e() (sage.combinat.crystals.letters.Crystal_of_letters_type_E7_element
method), 472

e() (sage.combinat.crystals.letters.Crystal_of_letters_type_G_element
method), 473

e() (sage.combinat.crystals.letters.EmptyLetter method),
474

e() (sage.combinat.crystals.letters.LetterWrapped
method), 476

e() (sage.combinat.crystals.letters.QueerLetter_element
method), 477

e() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element
method), 480

e() (sage.combinat.crystals.littelmann_path.InfinityCrystalOfLSPaths.Element
method), 489

e() (sage.combinat.crystals.monomial_crystals.NakajimaMonomial
method), 499

e() (sage.combinat.crystals.multisegments.InfinityCrystalOfMultisegments.Element
method), 503

e() (sage.combinat.crystals.pbw_crystal.PBWCrystalElement
method), 510

e() (sage.combinat.crystals.polyhedral_realization.InfinityCrystalAsPolyhedralRealization.Element
method), 517

e() (sage.combinat.crystals.spins.Spin_crystal_type_B_element
method), 521

e() (sage.combinat.crystals.spins.Spin_crystal_type_D_element
method), 522

e() (sage.combinat.crystals.star_crystal.StarCrystal.Element
method), 524

e() (sage.combinat.crystals.tensor_product_element.InfinityCrystalOfTableauxElement
method), 538

e() (sage.combinat.crystals.tensor_product_element.InfinityCrystalOfTableauxElementTypeD
method), 539

e() (sage.combinat.crystals.tensor_product_element.InfinityQueerCrystalOfTableauxElement
method), 540

e() (sage.combinat.crystals.tensor_product_element.TensorProductOfCrystalsElement
method), 541

e() (sage.combinat.crystals.tensor_product_element.TensorProductOfQueerSuperCrystalsElement
method), 544

e() (sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement
method), 545

e() (sage.combinat.crystals.tensor_product_element.TensorProductOfSuperCrystalsElement
method), 547

e() (sage.combinat.diagram_algebras.PartitionAlgebra
method), 754

e() (sage.combinat.multiset_partition_into_sets_ordered.MinimajCrystal.Element
method), 1331

e() (sage.combinat.partition_kleshchev.KleshchevPartitionCrystal
method), 1704

e() (sage.combinat.partition_kleshchev.KleshchevPartitionTupleCrystal
method), 1708

e() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2096

e() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpinElement
method), 2088

e() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeFromRCElement
method), 2090

e() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCNonSimplyLacedElement
method), 2109

e() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2115

e() (sage.combinat.rigged_configurations.rigged_configuration_element.RCNonSimplyLacedElement
method), 2124

e() (sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement
method), 2127

e() (sage.combinat.sf.sf.SymmetricFunctions method),
2887

e() (sage.combinat.shifted_primed_tableau.CrystalElementShiftedPrimedTableau
method), 2972

e0() (sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotionElement
method), 340

e0() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement
method), 342

e0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2Element
method), 422

3740 Index

Combinatorics, Release 9.7

e0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_BnElement
method), 425

e0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_boxElement
method), 442

e0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_CElement
method), 428

e0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_CnElement
method), 430

e0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_D_tri1.Element
method), 431

e0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twistedElement
method), 434

e0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_E7.Element
method), 439

E1Star (class in sage.combinat.e_one_star), 821
e_hat() (in module sage.combinat.symmetric_group_algebra),

3266
e_ik() (in module sage.combinat.symmetric_group_algebra),

3267
E_integral() (in module

sage.combinat.sf.ns_macdonald), 2846
edge_color() (sage.combinat.knutson_tao_puzzles.PuzzlePiece

method), 1274
edge_coloring() (sage.combinat.designs.incidence_structures.IncidenceStructure

method), 669
edge_iterator() (sage.combinat.words.suffix_trees.ImplicitSuffixTree

method), 3608
edge_label() (sage.combinat.knutson_tao_puzzles.PuzzlePiece

method), 1274
edges() (sage.combinat.knutson_tao_puzzles.DeltaPiece

method), 1258
edges() (sage.combinat.knutson_tao_puzzles.NablaPiece

method), 1270
edges() (sage.combinat.knutson_tao_puzzles.RhombusPiece

method), 1277
edges() (sage.combinat.yang_baxter_graph.YangBaxterGraph_generic

method), 3664
EG (sage.combinat.rsk.InsertionRules attribute), 2669
eigenvalue() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors

method), 2272
eigenvalue_experimental()

(sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials
method), 2319

eigenvalues() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors
method), 2272

Element (sage.combinat.affine_permutation.AffinePermutationGroupTypeA
attribute), 33

Element (sage.combinat.affine_permutation.AffinePermutationGroupTypeB
attribute), 33

Element (sage.combinat.affine_permutation.AffinePermutationGroupTypeC
attribute), 33

Element (sage.combinat.affine_permutation.AffinePermutationGroupTypeD
attribute), 34

Element (sage.combinat.affine_permutation.AffinePermutationGroupTypeG

attribute), 34
Element (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices

attribute), 49
Element (sage.combinat.binary_tree.BinaryTrees_all at-

tribute), 110
Element (sage.combinat.binary_tree.LabelledBinaryTrees

attribute), 116
Element (sage.combinat.blob_algebra.BlobDiagrams at-

tribute), 119
Element (sage.combinat.cluster_complex.ClusterComplex

attribute), 241
Element (sage.combinat.colored_permutations.ColoredPermutations

attribute), 245
Element (sage.combinat.colored_permutations.SignedPermutations

attribute), 252
Element (sage.combinat.combinat.CombinatorialClass

attribute), 255
Element (sage.combinat.composition.Compositions at-

tribute), 308
Element (sage.combinat.composition_tableau.CompositionTableaux

attribute), 315
Element (sage.combinat.constellation.Constellations_ld

attribute), 324
Element (sage.combinat.core.Cores_length attribute),

335
Element (sage.combinat.core.Cores_size attribute), 335
Element (sage.combinat.crystals.affine.AffineCrystalFromClassical

attribute), 337
Element (sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotion

attribute), 339
Element (sage.combinat.crystals.alcove_path.CrystalOfAlcovePaths

attribute), 354
Element (sage.combinat.crystals.alcove_path.RootsWithHeight

attribute), 361
Element (sage.combinat.crystals.fully_commutative_stable_grothendieck.DecreasingHeckeFactorizations

attribute), 383
Element (sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWalls

attribute), 388
Element (sage.combinat.crystals.generalized_young_walls.InfinityCrystalOfGeneralizedYoungWalls

attribute), 395
Element (sage.combinat.crystals.highest_weight_crystals.FiniteDimensionalHighestWeightCrystal_TypeE

attribute), 396
Element (sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinCrystalFromPromotion

attribute), 451
Element (sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal

attribute), 452
Element (sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2

attribute), 420
Element (sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn

attribute), 423
Element (sage.combinat.crystals.kirillov_reshetikhin.KR_type_box

attribute), 440
Element (sage.combinat.crystals.kirillov_reshetikhin.KR_type_C

attribute), 426

Index 3741

Combinatorics, Release 9.7

Element (sage.combinat.crystals.kirillov_reshetikhin.KR_type_Cn
attribute), 429

Element (sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twisted
attribute), 432

Element (sage.combinat.crystals.letters.CrystalOfBKKLetters
attribute), 464

Element (sage.combinat.crystals.letters.CrystalOfQueerLetters
attribute), 465

Element (sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomials
attribute), 494

Element (sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials
attribute), 497

Element (sage.combinat.crystals.mv_polytopes.MVPolytopes
attribute), 508

Element (sage.combinat.crystals.pbw_crystal.PBWCrystal
attribute), 509

Element (sage.combinat.derangements.Derangements
attribute), 557

Element (sage.combinat.diagram_algebras.AbstractPartitionDiagrams
attribute), 735

Element (sage.combinat.diagram_algebras.BrauerDiagrams
attribute), 740

Element (sage.combinat.diagram_algebras.IdealDiagrams
attribute), 744

Element (sage.combinat.diagram_algebras.PartitionDiagrams
attribute), 761

Element (sage.combinat.diagram_algebras.PlanarDiagrams
attribute), 764

Element (sage.combinat.diagram_algebras.TemperleyLiebDiagrams
attribute), 768

Element (sage.combinat.dyck_word.CompleteDyckWords
attribute), 776

Element (sage.combinat.dyck_word.DyckWords at-
tribute), 813

Element (sage.combinat.free_module.CombinatorialFreeModule
attribute), 1016

Element (sage.combinat.fully_commutative_elements.FullyCommutativeElements
attribute), 849

Element (sage.combinat.fully_packed_loop.FullyPackedLoops
attribute), 1053

Element (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatterns
attribute), 1059

Element (sage.combinat.hillman_grassl.WeakReversePlanePartitions
attribute), 1119

Element (sage.combinat.integer_lists.lists.IntegerLists
attribute), 1127

Element (sage.combinat.integer_vector.IntegerVectors
attribute), 1143

Element (sage.combinat.integer_vector_weighted.WeightedIntegerVectors
attribute), 1149

Element (sage.combinat.interval_posets.TamariIntervalPosets_all
attribute), 1195

Element (sage.combinat.k_regular_sequence.kRegularSequenceSpace
attribute), 1209

Element (sage.combinat.k_tableau.StrongTableaux at-
tribute), 1227

Element (sage.combinat.k_tableau.WeakTableaux_bounded
attribute), 1253

Element (sage.combinat.k_tableau.WeakTableaux_core
attribute), 1253

Element (sage.combinat.k_tableau.WeakTableaux_factorized_permutation
attribute), 1254

Element (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets
attribute), 1345

Element (sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunctions_n
attribute), 1508

Element (sage.combinat.nu_dyck_word.NuDyckWords
attribute), 1518

Element (sage.combinat.ordered_tree.LabelledOrderedTrees
attribute), 1524

Element (sage.combinat.ordered_tree.OrderedTrees_all
attribute), 1532

Element (sage.combinat.parking_functions.ParkingFunctions_all
attribute), 1582

Element (sage.combinat.parking_functions.ParkingFunctions_n
attribute), 1582

Element (sage.combinat.partition.Partitions attribute),
1665

Element (sage.combinat.partition.Partitions_with_constraints
attribute), 1681

Element (sage.combinat.partition.PartitionsGreatestEQ
attribute), 1668

Element (sage.combinat.partition.PartitionsGreatestLE
attribute), 1671

Element (sage.combinat.partition_algebra.SetPartitionsAk_k
attribute), 1690

Element (sage.combinat.partition_algebra.SetPartitionsAkhalf_k
attribute), 1690

Element (sage.combinat.partition_kleshchev.KleshchevPartitions_size
attribute), 1713

Element (sage.combinat.partition_tuple.PartitionTuple
attribute), 1723

Element (sage.combinat.partition_tuple.PartitionTuples
attribute), 1736

Element (sage.combinat.path_tableaux.dyck_path.DyckPaths
attribute), 1587

Element (sage.combinat.path_tableaux.frieze.FriezePatterns
attribute), 1593

Element (sage.combinat.path_tableaux.semistandard.SemistandardPathTableaux
attribute), 1601

Element (sage.combinat.perfect_matching.PerfectMatchings
attribute), 1746

Element (sage.combinat.permutation.Permutations at-
tribute), 1802

Element (sage.combinat.plane_partition.PlanePartitions
attribute), 1606

Element (sage.combinat.posets.lattices.FiniteJoinSemilattice
attribute), 1869

3742 Index

Combinatorics, Release 9.7

Element (sage.combinat.posets.lattices.FiniteLatticePoset
attribute), 1871

Element (sage.combinat.posets.lattices.FiniteMeetSemilattice
attribute), 1908

Element (sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset
attribute), 1919

Element (sage.combinat.posets.posets.FinitePoset
attribute), 1949

Element (sage.combinat.recognizable_series.RecognizableSeriesSpace
attribute), 2050

Element (sage.combinat.ribbon_shaped_tableau.RibbonShapedTableaux
attribute), 2053

Element (sage.combinat.ribbon_shaped_tableau.StandardRibbonShapedTableaux
attribute), 2055

Element (sage.combinat.ribbon_tableau.MultiSkewTableaux
attribute), 2060

Element (sage.combinat.ribbon_tableau.RibbonTableaux
attribute), 2062

Element (sage.combinat.rigged_configurations.kleber_tree.KleberTree
attribute), 2080

Element (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux
attribute), 2094

Element (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxBn
attribute), 2086

Element (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxDTwistedSpin
attribute), 2087

Element (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpin
attribute), 2087

Element (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeFromRC
attribute), 2089

Element (sage.combinat.rigged_configurations.rc_crystal.CrystalOfNonSimplyLacedRC
attribute), 2100

Element (sage.combinat.rigged_configurations.rc_crystal.CrystalOfRiggedConfigurations
attribute), 2102

Element (sage.combinat.rigged_configurations.rigged_configurations.RCNonSimplyLaced
attribute), 2131

Element (sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Dual
attribute), 2133

Element (sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations
attribute), 2140

Element (sage.combinat.rigged_configurations.tensor_product_kr_tableaux.TensorProductOfKirillovReshetikhinTableaux
attribute), 2149

Element (sage.combinat.root_system.ambient_space.AmbientSpace
attribute), 2158

Element (sage.combinat.root_system.associahedron.Associahedra_cdd
attribute), 2163

Element (sage.combinat.root_system.associahedron.Associahedra_field
attribute), 2163

Element (sage.combinat.root_system.associahedron.Associahedra_normaliz
attribute), 2164

Element (sage.combinat.root_system.associahedron.Associahedra_polymake
attribute), 2164

Element (sage.combinat.root_system.associahedron.Associahedra_ppl
attribute), 2164

Element (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFW
attribute), 2544

Element (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0
attribute), 2548

Element (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0
attribute), 2545

Element (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0P
attribute), 2550

Element (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0Pv
attribute), 2551

Element (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWF
attribute), 2553

Element (sage.combinat.root_system.fundamental_group.FundamentalGroupGL
attribute), 2573

Element (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class
attribute), 2579

Element (sage.combinat.root_system.root_space.RootSpace
attribute), 2455

Element (sage.combinat.root_system.weight_space.WeightSpace
attribute), 2611

Element (sage.combinat.root_system.weyl_group.WeylGroup_gens
attribute), 2652

Element (sage.combinat.rooted_tree.LabelledRootedTrees_all
attribute), 2662

Element (sage.combinat.rooted_tree.RootedTrees_all at-
tribute), 2666

Element (sage.combinat.schubert_polynomial.SchubertPolynomialRing_xbasis
attribute), 2699

Element (sage.combinat.set_partition.SetPartitions at-
tribute), 2720

Element (sage.combinat.set_partition_ordered.OrderedSetPartitions
attribute), 2740

Element (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
attribute), 2905

Element (sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux
attribute), 2983

Element (sage.combinat.similarity_class_type.PrimarySimilarityClassTypes
attribute), 2995

Element (sage.combinat.similarity_class_type.SimilarityClassTypes
attribute), 2999

Element (sage.combinat.six_vertex_model.SixVertexModel
attribute), 3012

Element (sage.combinat.skew_partition.SkewPartitions
attribute), 3025

Element (sage.combinat.skew_tableau.SkewTableaux at-
tribute), 3046

Element (sage.combinat.subword_complex.SubwordComplex
attribute), 3212

Element (sage.combinat.super_tableau.SemistandardSuperTableaux
attribute), 3230

Element (sage.combinat.super_tableau.StandardSuperTableaux
attribute), 3231

Element (sage.combinat.superpartition.SuperPartitions
attribute), 3241

Index 3743

Combinatorics, Release 9.7

Element (sage.combinat.symmetric_group_representations.SpechtRepresentations
attribute), 3269

Element (sage.combinat.symmetric_group_representations.YoungRepresentations_Orthogonal
attribute), 3275

Element (sage.combinat.symmetric_group_representations.YoungRepresentations_Seminormal
attribute), 3275

Element (sage.combinat.tableau.IncreasingTableaux at-
tribute), 3281

Element (sage.combinat.tableau.RowStandardTableaux
attribute), 3284

Element (sage.combinat.tableau.SemistandardTableaux
attribute), 3288

Element (sage.combinat.tableau.StandardTableaux at-
tribute), 3296

Element (sage.combinat.tableau.Tableaux attribute),
3337

Element (sage.combinat.tableau_residues.ResidueSequences
attribute), 3348

Element (sage.combinat.tableau_tuple.RowStandardTableauTuples
attribute), 3357

Element (sage.combinat.tableau_tuple.StandardTableauTuples
attribute), 3366

Element (sage.combinat.tableau_tuple.TableauTuple at-
tribute), 3371

Element (sage.combinat.tableau_tuple.TableauTuples
attribute), 3381

Element (sage.combinat.vector_partition.VectorPartitions
attribute), 3448

Element (sage.rings.cfinite_sequence.CFiniteSequences_generic
attribute), 3673

element_class (sage.combinat.subset.SubMultiset_s
attribute), 3193

element_class (sage.combinat.subset.Subsets_s at-
tribute), 3198

element_class (sage.combinat.subset.SubsetsSorted at-
tribute), 3197

element_class() (sage.combinat.combinat.CombinatorialClass
method), 255

element_class() (sage.combinat.free_module.CombinatorialFreeModule
method), 1017

element_class() (sage.combinat.interval_posets.TamariIntervalPosets_size
method), 1195

element_class() (sage.combinat.ordered_tree.OrderedTrees_size
method), 1533

element_class() (sage.combinat.rooted_tree.RootedTrees_size
method), 2667

element_in_conjugacy_classes()
(sage.combinat.permutation.StandardPermutations_n
method), 1815

elementary (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions
attribute), 1424

elementary() (sage.combinat.sf.sf.SymmetricFunctions
method), 2887

elementary_abelian_2group() (in module

sage.combinat.matrices.latin), 1319
ElementaryCrystal (class in

sage.combinat.crystals.elementary_crystals),
373

ElementaryCrystal.Element (class in
sage.combinat.crystals.elementary_crystals),
374

elements() (sage.combinat.root_system.pieri_factors.PieriFactors
method), 2325

ell() (sage.combinat.partition.RegularPartitions
method), 1683

ell() (sage.combinat.partition.RestrictedPartitions_generic
method), 1685

embed_at_level() (sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2604

empty() (sage.combinat.root_system.plot.PlotOptions
method), 2353

empty_copy() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 919

EmptyLetter (class in sage.combinat.crystals.letters),
474

EmptySetSpecies (class in
sage.combinat.species.characteristic_species),
3137

EmptySetSpecies_class (in module
sage.combinat.species.characteristic_species),
3137

EmptySpecies (class in
sage.combinat.species.empty_species), 3140

EmptySpecies_class (in module
sage.combinat.species.empty_species), 3141

EmptyWord() (sage.combinat.finite_state_machine_generators.AutomatonGenerators
method), 981

end_point() (sage.combinat.words.paths.FiniteWordPath_all
method), 3589

endpoint() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element
method), 481

energy() (sage.combinat.six_vertex_model.SixVertexConfiguration
method), 3008

energy_function() (sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths.Element
method), 484

enhance_braid_move_chain() (in module
sage.combinat.crystals.pbw_datum), 514

entries() (sage.combinat.tableau.Tableau method),
3308

entries() (sage.combinat.tableau_tuple.TableauTuple
method), 3374

entries_by_content()
(sage.combinat.k_tableau.StrongTableau
method), 1217

entries_by_content()
(sage.combinat.skew_tableau.SkewTableau
method), 3035

entries_by_content_standard()

3744 Index

Combinatorics, Release 9.7

(sage.combinat.k_tableau.StrongTableau
method), 1217

entry() (sage.combinat.tableau.Tableau method), 3308
entry() (sage.combinat.tableau_tuple.TableauTuple

method), 3374
Envelope (class in sage.combinat.integer_lists.base),

1122
epsilon() (in module

sage.combinat.symmetric_group_algebra),
3267

epsilon() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement
method), 342

epsilon() (sage.combinat.crystals.affinization.AffinizationOfCrystal.Element
method), 349

epsilon() (sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement
method), 355

epsilon() (sage.combinat.crystals.alcove_path.InfinityCrystalOfAlcovePaths.Element
method), 358

epsilon() (sage.combinat.crystals.direct_sum.DirectSumOfCrystals.Element
method), 369

epsilon() (sage.combinat.crystals.elementary_crystals.ComponentCrystal.Element
method), 372

epsilon() (sage.combinat.crystals.elementary_crystals.ElementaryCrystal.Element
method), 374

epsilon() (sage.combinat.crystals.elementary_crystals.RCrystal.Element
method), 376

epsilon() (sage.combinat.crystals.elementary_crystals.TCrystal.Element
method), 378

Epsilon() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 389

epsilon() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 390

epsilon() (sage.combinat.crystals.induced_structure.InducedCrystal.Element
method), 401

epsilon() (sage.combinat.crystals.induced_structure.InducedFromCrystal.Element
method), 403

epsilon() (sage.combinat.crystals.kac_modules.CrystalOfOddNegativeRoots.Element
method), 415

epsilon() (sage.combinat.crystals.kyoto_path_model.KyotoPathModel.Element
method), 459

epsilon() (sage.combinat.crystals.letters.Crystal_of_letters_type_A_element
method), 465

epsilon() (sage.combinat.crystals.letters.Crystal_of_letters_type_B_element
method), 466

epsilon() (sage.combinat.crystals.letters.Crystal_of_letters_type_C_element
method), 467

epsilon() (sage.combinat.crystals.letters.Crystal_of_letters_type_D_element
method), 468

epsilon() (sage.combinat.crystals.letters.Crystal_of_letters_type_G_element
method), 473

epsilon() (sage.combinat.crystals.letters.EmptyLetter
method), 474

epsilon() (sage.combinat.crystals.letters.LetterTuple
method), 476

epsilon() (sage.combinat.crystals.letters.LetterWrapped
method), 477

epsilon() (sage.combinat.crystals.letters.QueerLetter_element
method), 477

epsilon() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element
method), 481

epsilon() (sage.combinat.crystals.monomial_crystals.NakajimaMonomial
method), 499

epsilon() (sage.combinat.crystals.multisegments.InfinityCrystalOfMultisegments.Element
method), 503

epsilon() (sage.combinat.crystals.pbw_crystal.PBWCrystalElement
method), 510

epsilon() (sage.combinat.crystals.polyhedral_realization.InfinityCrystalAsPolyhedralRealization.Element
method), 517

epsilon() (sage.combinat.crystals.spins.Spin_crystal_type_B_element
method), 521

epsilon() (sage.combinat.crystals.spins.Spin_crystal_type_D_element
method), 522

epsilon() (sage.combinat.crystals.star_crystal.StarCrystal.Element
method), 524

epsilon() (sage.combinat.crystals.tensor_product_element.InfinityQueerCrystalOfTableauxElement
method), 540

epsilon() (sage.combinat.crystals.tensor_product_element.TensorProductOfCrystalsElement
method), 541

epsilon() (sage.combinat.crystals.tensor_product_element.TensorProductOfQueerSuperCrystalsElement
method), 544

epsilon() (sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement
method), 545

epsilon() (sage.combinat.crystals.tensor_product_element.TensorProductOfSuperCrystalsElement
method), 547

Epsilon() (sage.combinat.partition_kleshchev.KleshchevCrystalMixin
method), 1699

epsilon() (sage.combinat.partition_kleshchev.KleshchevCrystalMixin
method), 1699

epsilon() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2096

epsilon() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpinElement
method), 2088

epsilon() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeFromRCElement
method), 2090

epsilon() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCTypeA2DualElement
method), 2112

epsilon() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2116

epsilon() (sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement
method), 2128

epsilon0() (sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotionElement
method), 340

epsilon0() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement
method), 342

epsilon0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2Element
method), 422

epsilon0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_BnElement
method), 425

Index 3745

Combinatorics, Release 9.7

epsilon0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_boxElement
method), 442

epsilon0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_CElement
method), 428

epsilon0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_CnElement
method), 430

epsilon0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_D_tri1.Element
method), 431

epsilon0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twistedElement
method), 434

epsilon_ik() (in module
sage.combinat.symmetric_group_algebra),
3267

epsilon_ik() (sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3253

epsilon_successors()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 920

equal() (in module sage.combinat.finite_state_machine),
975

equivalence_classes()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 920

euler_characteristic()
(sage.combinat.constellation.Constellation_class
method), 319

euler_number() (in module sage.combinat.combinat),
266

Eulerian() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ParentMethods
method), 1443

Eulerian() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Fundamental
method), 1450

Eulerian() (sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2950

eulerian_number() (in module
sage.combinat.combinat), 267

eulerian_polynomial() (in module
sage.combinat.combinat), 267

evacuation() (sage.combinat.path_tableaux.path_tableau.PathTableau
method), 1595

evacuation() (sage.combinat.posets.linear_extensions.LinearExtensionOfPoset
method), 1914

evacuation() (sage.combinat.posets.posets.FinitePoset
method), 1962

evacuation() (sage.combinat.tableau.Tableau method),
3309

eval_at_permutation_roots()
(sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element
method), 2855

eval_at_permutation_roots()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2914

eval_at_permutation_roots_on_generators()
(sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power

method), 2863
evaluation() (sage.combinat.partition.Partition

method), 1631
evaluation() (sage.combinat.skew_tableau.SkewTableau

method), 3035
evaluation() (sage.combinat.tableau.Tableau method),

3309
evaluation() (sage.combinat.words.finite_word.FiniteWord_class

method), 3486
evaluation_dict() (in module

sage.combinat.words.finite_word), 3541
evaluation_dict() (sage.combinat.words.finite_word.FiniteWord_class

method), 3486
evaluation_partition()

(sage.combinat.words.finite_word.FiniteWord_class
method), 3486

evaluation_sparse()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3487

EvenlyDistributedSetsBacktracker (class in
sage.combinat.designs.evenly_distributed_sets),
654

exchangeable_part()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 166

exchangeable_part()
(sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 208

exists() (sage.combinat.designs.orthogonal_arrays.OAMainFunctions
static method), 688

exp_dual_lattice() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2570

exp_lattice() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2570

expand() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1378

expand() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods
method), 1434

expand() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial.Element
method), 1454

expand() (sage.combinat.ncsym.bases.NCSymBases.ElementMethods
method), 1473

expand() (sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w.Element
method), 1482

expand() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial.Element
method), 1493

expand() (sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ElementMethods
method), 2396

expand() (sage.combinat.schubert_polynomial.SchubertPolynomial_class
method), 2701

expand() (sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual.Element
method), 2747

expand() (sage.combinat.sf.elementary.SymmetricFunctionAlgebra_elementary.Element
method), 2750

3746 Index

Combinatorics, Release 9.7

expand() (sage.combinat.sf.hall_littlewood.HallLittlewood_generic.Element
method), 2759

expand() (sage.combinat.sf.homogeneous.SymmetricFunctionAlgebra_homogeneous.Element
method), 2766

expand() (sage.combinat.sf.monomial.SymmetricFunctionAlgebra_monomial.Element
method), 2822

expand() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ElementMethods
method), 2830

expand() (sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element
method), 2856

expand() (sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur.Element
method), 2864

expand() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2915

expand_as_sf() (sage.combinat.species.generating_series.CycleIndexSeries
method), 3145

explain_construction()
(sage.combinat.designs.orthogonal_arrays.OAMainFunctions
static method), 689

expnums() (in module sage.combinat.expnums), 836
expnums2() (in module sage.combinat.expnums), 837
exponent() (sage.combinat.words.finite_word.FiniteWord_class

method), 3487
exponential() (sage.combinat.species.generating_series.CycleIndexSeries

method), 3145
exponential() (sage.combinat.species.series.LazyPowerSeries

method), 3169
exponential_specialization()

(sage.combinat.sf.elementary.SymmetricFunctionAlgebra_elementary.Element
method), 2751

exponential_specialization()
(sage.combinat.sf.homogeneous.SymmetricFunctionAlgebra_homogeneous.Element
method), 2767

exponential_specialization()
(sage.combinat.sf.monomial.SymmetricFunctionAlgebra_monomial.Element
method), 2822

exponential_specialization()
(sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element
method), 2856

exponential_specialization()
(sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur.Element
method), 2865

exponential_specialization()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2915

ExponentialCycleIndexSeries() (in module
sage.combinat.species.generating_series),
3149

ExponentialGeneratingSeries (class in
sage.combinat.species.generating_series),
3149

ExponentialGeneratingSeriesRing() (in module
sage.combinat.species.generating_series),
3150

ExponentialGeneratingSeriesRing_class (class
in sage.combinat.species.generating_series),
3150

ExponentialNumbers (class in
sage.combinat.sloane_functions), 3131

ext_orbit_centralizers() (in module
sage.combinat.similarity_class_type), 3001

ext_orbits() (in module
sage.combinat.similarity_class_type), 3001

extend_by() (sage.combinat.words.morphism.WordMorphism
method), 3552

extended_dynkin_diagram()
(sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2628

extended_root_configuration()
(sage.combinat.subword_complex.SubwordComplexFacet
method), 3222

extended_weight_configuration()
(sage.combinat.subword_complex.SubwordComplexFacet
method), 3223

ExtendedAffineWeylGroup() (in module
sage.combinat.root_system.extended_affine_weyl_group),
2536

ExtendedAffineWeylGroup_Class (class in
sage.combinat.root_system.extended_affine_weyl_group),
2543

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFW
(class in sage.combinat.root_system.extended_affine_weyl_group),
2543

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFWElement
(class in sage.combinat.root_system.extended_affine_weyl_group),
2544

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0
(class in sage.combinat.root_system.extended_affine_weyl_group),
2547

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0Element
(class in sage.combinat.root_system.extended_affine_weyl_group),
2548

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0
(class in sage.combinat.root_system.extended_affine_weyl_group),
2545

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0Element
(class in sage.combinat.root_system.extended_affine_weyl_group),
2546

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0P
(class in sage.combinat.root_system.extended_affine_weyl_group),
2549

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PElement
(class in sage.combinat.root_system.extended_affine_weyl_group),
2550

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0Pv
(class in sage.combinat.root_system.extended_affine_weyl_group),
2551

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PvElement

Index 3747

Combinatorics, Release 9.7

(class in sage.combinat.root_system.extended_affine_weyl_group),
2552

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWF
(class in sage.combinat.root_system.extended_affine_weyl_group),
2553

ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWFElement
(class in sage.combinat.root_system.extended_affine_weyl_group),
2554

ExtendedAffineWeylGroup_Class.Realizations
(class in sage.combinat.root_system.extended_affine_weyl_group),
2556

ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
(class in sage.combinat.root_system.extended_affine_weyl_group),
2556

ExtendedAffineWeylGroup_Class.Realizations.ParentMethods
(class in sage.combinat.root_system.extended_affine_weyl_group),
2564

exterior_power() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2623

exterior_square() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2623

extraspecial_pair()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2416

ExtremesOfPermanentsSequence (class in
sage.combinat.sloane_functions), 3131

ExtremesOfPermanentsSequence2 (class in
sage.combinat.sloane_functions), 3132

F
F (sage.combinat.chas.fsym.FreeSymmetricFunctions_Dual

attribute), 129
F (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions

attribute), 1446
f() (in module sage.combinat.designs.database), 630
f() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement

method), 342
f() (sage.combinat.crystals.affine_factorization.AffineFactorizationCrystal.Element

method), 345
f() (sage.combinat.crystals.affinization.AffinizationOfCrystal.Element

method), 350
f() (sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement

method), 355
f() (sage.combinat.crystals.alcove_path.InfinityCrystalOfAlcovePaths.Element

method), 358
f() (sage.combinat.crystals.direct_sum.DirectSumOfCrystals.Element

method), 369
f() (sage.combinat.crystals.elementary_crystals.AbstractSingleCrystalElement

method), 371
f() (sage.combinat.crystals.elementary_crystals.ElementaryCrystal.Element

method), 374
f() (sage.combinat.crystals.fast_crystals.FastCrystal.Element

method), 380

f() (sage.combinat.crystals.fully_commutative_stable_grothendieck.FullyCommutativeStableGrothendieckCrystal.Element
method), 386

f() (sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWallsElement
method), 388

f() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 391

f() (sage.combinat.crystals.induced_structure.InducedCrystal.Element
method), 401

f() (sage.combinat.crystals.induced_structure.InducedFromCrystal.Element
method), 403

f() (sage.combinat.crystals.kac_modules.CrystalOfKacModule.Element
method), 413

f() (sage.combinat.crystals.kac_modules.CrystalOfOddNegativeRoots.Element
method), 415

f() (sage.combinat.crystals.kyoto_path_model.KyotoPathModel.Element
method), 460

f() (sage.combinat.crystals.letters.BKKLetter method),
462

f() (sage.combinat.crystals.letters.Crystal_of_letters_type_A_element
method), 465

f() (sage.combinat.crystals.letters.Crystal_of_letters_type_B_element
method), 466

f() (sage.combinat.crystals.letters.Crystal_of_letters_type_C_element
method), 468

f() (sage.combinat.crystals.letters.Crystal_of_letters_type_D_element
method), 469

f() (sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element
method), 470

f() (sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element_dual
method), 471

f() (sage.combinat.crystals.letters.Crystal_of_letters_type_E7_element
method), 472

f() (sage.combinat.crystals.letters.Crystal_of_letters_type_G_element
method), 474

f() (sage.combinat.crystals.letters.EmptyLetter method),
475

f() (sage.combinat.crystals.letters.LetterWrapped
method), 477

f() (sage.combinat.crystals.letters.QueerLetter_element
method), 478

f() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element
method), 481

f() (sage.combinat.crystals.littelmann_path.InfinityCrystalOfLSPaths.Element
method), 490

f() (sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomialsElement
method), 495

f() (sage.combinat.crystals.monomial_crystals.NakajimaMonomial
method), 500

f() (sage.combinat.crystals.multisegments.InfinityCrystalOfMultisegments.Element
method), 503

f() (sage.combinat.crystals.pbw_crystal.PBWCrystalElement
method), 511

f() (sage.combinat.crystals.polyhedral_realization.InfinityCrystalAsPolyhedralRealization.Element
method), 517

3748 Index

Combinatorics, Release 9.7

f() (sage.combinat.crystals.spins.Spin_crystal_type_B_element
method), 522

f() (sage.combinat.crystals.spins.Spin_crystal_type_D_element
method), 522

f() (sage.combinat.crystals.star_crystal.StarCrystal.Element
method), 524

f() (sage.combinat.crystals.tensor_product_element.InfinityCrystalOfTableauxElement
method), 538

f() (sage.combinat.crystals.tensor_product_element.InfinityCrystalOfTableauxElementTypeD
method), 539

f() (sage.combinat.crystals.tensor_product_element.InfinityQueerCrystalOfTableauxElement
method), 540

f() (sage.combinat.crystals.tensor_product_element.TensorProductOfCrystalsElement
method), 542

f() (sage.combinat.crystals.tensor_product_element.TensorProductOfQueerSuperCrystalsElement
method), 544

f() (sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement
method), 545

f() (sage.combinat.crystals.tensor_product_element.TensorProductOfSuperCrystalsElement
method), 547

f() (sage.combinat.multiset_partition_into_sets_ordered.MinimajCrystal.Element
method), 1332

f() (sage.combinat.partition_kleshchev.KleshchevPartitionCrystal
method), 1704

f() (sage.combinat.partition_kleshchev.KleshchevPartitionTupleCrystal
method), 1708

f() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2097

f() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpinElement
method), 2088

f() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeFromRCElement
method), 2090

f() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCNonSimplyLacedElement
method), 2110

f() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2116

f() (sage.combinat.rigged_configurations.rigged_configuration_element.RCHighestWeightElement
method), 2123

f() (sage.combinat.rigged_configurations.rigged_configuration_element.RCHWNonSimplyLacedElement
method), 2122

f() (sage.combinat.rigged_configurations.rigged_configuration_element.RCNonSimplyLacedElement
method), 2124

f() (sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement
method), 2128

F() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2786

f() (sage.combinat.sf.sf.SymmetricFunctions method),
2887

f() (sage.combinat.shifted_primed_tableau.CrystalElementShiftedPrimedTableau
method), 2973

F() (sage.combinat.sine_gordon.SineGordonYsystem
method), 3006

f() (sage.combinat.sloane_functions.A000120 method),
3065

f0() (sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotionElement
method), 340

f0() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement
method), 342

f0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2Element
method), 423

f0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_BnElement
method), 426

f0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_boxElement
method), 442

f0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_CElement
method), 428

f0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_CnElement
method), 431

f0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_D_tri1.Element
method), 432

f0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twistedElement
method), 434

f0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_E7.Element
method), 439

f_polynomial() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 166

f_polynomial() (sage.combinat.posets.posets.FinitePoset
method), 1963

f_polynomials() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 166

Face (class in sage.combinat.e_one_star), 822
face_data() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods

method), 2559
faces_of_color() (sage.combinat.e_one_star.Patch

method), 825
faces_of_type() (sage.combinat.e_one_star.Patch

method), 825
faces_of_vector() (sage.combinat.e_one_star.Patch

method), 825
facets() (sage.combinat.subword_complex.SubwordComplex

method), 3216
factor() (sage.combinat.interval_posets.TamariIntervalPoset

method), 1166
factor() (sage.combinat.posets.posets.FinitePoset

method), 1964
factor_complexity()

(sage.combinat.words.finite_word.FiniteWord_class
method), 3487

factor_iterator() (sage.combinat.words.finite_word.FiniteWord_class
method), 3487

factor_iterator() (sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3608

factor_occurrences_in()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3488

factor_occurrences_iterator()
(sage.combinat.words.abstract_word.Word_class
method), 3450

Index 3749

Combinatorics, Release 9.7

factor_set() (sage.combinat.words.finite_word.FiniteWord_class
method), 3489

factorial_gen() (in module
sage.combinat.species.generating_series),
3152

Factorization (class in
sage.combinat.words.finite_word), 3469

FactorizationToTableaux (class in
sage.combinat.crystals.affine_factorization),
346

factors() (sage.combinat.words.words.FiniteOrInfiniteWords
method), 3654

factors() (sage.combinat.words.words.FiniteWords
method), 3655

factors() (sage.combinat.words.words.InfiniteWords
method), 3659

fake_degrees() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2370

family() (sage.combinat.root_system.fundamental_group.FundamentalGroupGL
method), 2574

family_of_vectors()
(sage.combinat.root_system.plot.PlotOptions
method), 2353

fast_vector_partitions() (in module
sage.combinat.fast_vector_partitions), 837

FastCrystal (class in
sage.combinat.crystals.fast_crystals), 380

FastCrystal.Element (class in
sage.combinat.crystals.fast_crystals), 380

fatten() (sage.combinat.composition.Composition
method), 292

fatten() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1334

fatten() (sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2733

fatter() (sage.combinat.composition.Composition
method), 293

fatter() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1334

fatter() (sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2733

fermionic_degree() (sage.combinat.superpartition.SuperPartition
method), 3237

fermionic_formula()
(sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations
method), 2140

fermionic_sector() (sage.combinat.superpartition.SuperPartition
method), 3238

ferrers_diagram() (sage.combinat.partition.Partition
method), 1631

ferrers_diagram() (sage.combinat.partition_tuple.PartitionTuple
method), 1729

ferrers_diagram() (sage.combinat.skew_partition.SkewPartition
method), 3018

fib() (sage.combinat.sloane_functions.A000045
method), 3060

fibonacci() (in module sage.combinat.combinat), 268
fibonacci_sequence() (in module

sage.combinat.combinat), 268
fibonacci_tile() (sage.combinat.words.word_generators.WordGenerator

method), 3646
fibonacci_xrange() (in module

sage.combinat.combinat), 269
FibonacciWord() (sage.combinat.words.word_generators.WordGenerator

method), 3639
field() (sage.combinat.root_system.fusion_ring.FusionRing

method), 2641
filled_cells_map() (sage.combinat.matrices.latin.LatinSquare

method), 1307
filling() (sage.combinat.growth.GrowthDiagram

method), 1077
filling() (sage.combinat.skew_tableau.SkewTableau

method), 3036
filter() (sage.combinat.combinat.CombinatorialClass

method), 255
FilteredCombinatorialClass (class in

sage.combinat.combinat), 259
FilteredSymmetricFunctionsBases (class in

sage.combinat.sf.sfa), 2902
final_components() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 921
final_forest() (sage.combinat.interval_posets.TamariIntervalPoset

method), 1166
final_forest() (sage.combinat.interval_posets.TamariIntervalPosets

static method), 1188
final_shape() (sage.combinat.path_tableaux.path_tableau.PathTableau

method), 1596
final_states() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 922
final_states() (sage.combinat.words.suffix_trees.SuffixTrie

method), 3615
final_word_out (sage.combinat.finite_state_machine.FSMState

attribute), 887
finalize() (sage.combinat.root_system.plot.PlotOptions

method), 2354
find() (sage.combinat.words.finite_word.FiniteWord_class

method), 3489
find() (sage.combinat.words.word_datatypes.WordDatatype_str

method), 3630
find_brouwer_separable_design() (in module

sage.combinat.designs.orthogonal_arrays_find_recursive),
716

find_brouwer_van_rees_with_one_truncated_column()
(in module sage.combinat.designs.orthogonal_arrays_find_recursive),
716

find_cartan_type_from_matrix() (in module
sage.combinat.root_system.cartan_matrix),
2197

3750 Index

Combinatorics, Release 9.7

find_construction_3_3() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
717

find_construction_3_4() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
717

find_construction_3_5() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
718

find_construction_3_6() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
718

find_descent() (sage.combinat.fully_commutative_elements.FullyCommutativeElement
method), 842

find_disjoint_mates()
(sage.combinat.matrices.latin.LatinSquare
method), 1308

find_min() (in module sage.combinat.vector_partition),
3448

find_nonsemidistributive_elements()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1843

find_nonsemimodular_pair()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1843

find_nontrivial_congruence()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1844

find_product_decomposition() (in module
sage.combinat.designs.difference_matrices),
653

find_product_decomposition() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
718

find_q_x() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
719

find_recursive_construction() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
719

find_three_factor_product() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
720

find_thwart_lemma_3_5() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
720

find_thwart_lemma_4_1() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
721

find_upper_bound() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 167

find_wilson_decomposition_with_one_truncated_group()
(in module sage.combinat.designs.orthogonal_arrays_find_recursive),
722

find_wilson_decomposition_with_two_truncated_groups()
(in module sage.combinat.designs.orthogonal_arrays_find_recursive),
722

finer() (sage.combinat.composition.Composition
method), 293

finer() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1335

finer() (sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2734

FinishedBranch (sage.combinat.finite_state_machine.FSMProcessIterator
attribute), 881

finite_differences()
(sage.combinat.words.abstract_word.Word_class
method), 3451

finite_tensor_product()
(sage.combinat.crystals.kyoto_path_model.KyotoPathModel
method), 461

finite_tensor_product()
(sage.combinat.crystals.polyhedral_realization.InfinityCrystalAsPolyhedralRealization
method), 518

finite_words() (sage.combinat.words.words.FiniteOrInfiniteWords
method), 3654

FiniteDimensionalHighestWeightCrystal_TypeE
(class in sage.combinat.crystals.highest_weight_crystals),
396

FiniteDimensionalHighestWeightCrystal_TypeE6
(class in sage.combinat.crystals.highest_weight_crystals),
396

FiniteDimensionalHighestWeightCrystal_TypeE7
(class in sage.combinat.crystals.highest_weight_crystals),
396

FiniteJoinSemilattice (class in
sage.combinat.posets.lattices), 1869

FiniteLatticePoset (class in
sage.combinat.posets.lattices), 1871

FiniteMeetSemilattice (class in
sage.combinat.posets.lattices), 1908

FiniteOrInfiniteWords (class in
sage.combinat.words.words), 3654

FinitePoset (class in sage.combinat.posets.posets),
1947

FinitePosets_n (class in sage.combinat.posets.posets),
2020

FiniteStateMachine (class in
sage.combinat.finite_state_machine), 890

FiniteStateMachine.default_format_letter()
(in module sage.combinat.finite_state_machine),
912

FiniteStateMachine.format_letter() (in module
sage.combinat.finite_state_machine), 922

FiniteWord_callable (class in
sage.combinat.words.word), 3618

FiniteWord_callable_with_caching (class in
sage.combinat.words.word), 3619

Index 3751

Combinatorics, Release 9.7

FiniteWord_char (class in sage.combinat.words.word),
3619

FiniteWord_class (class in
sage.combinat.words.finite_word), 3469

FiniteWord_iter (class in sage.combinat.words.word),
3620

FiniteWord_iter_with_caching (class in
sage.combinat.words.word), 3620

FiniteWord_list (class in sage.combinat.words.word),
3620

FiniteWord_morphic (class in
sage.combinat.words.word), 3621

FiniteWord_str (class in sage.combinat.words.word),
3621

FiniteWord_tuple (class in
sage.combinat.words.word), 3621

FiniteWordPath_2d (class in
sage.combinat.words.paths), 3581

FiniteWordPath_2d_callable (class in
sage.combinat.words.paths), 3587

FiniteWordPath_2d_callable_with_caching (class
in sage.combinat.words.paths), 3587

FiniteWordPath_2d_iter (class in
sage.combinat.words.paths), 3587

FiniteWordPath_2d_iter_with_caching (class in
sage.combinat.words.paths), 3587

FiniteWordPath_2d_list (class in
sage.combinat.words.paths), 3587

FiniteWordPath_2d_str (class in
sage.combinat.words.paths), 3587

FiniteWordPath_2d_tuple (class in
sage.combinat.words.paths), 3587

FiniteWordPath_3d (class in
sage.combinat.words.paths), 3587

FiniteWordPath_3d_callable (class in
sage.combinat.words.paths), 3588

FiniteWordPath_3d_callable_with_caching (class
in sage.combinat.words.paths), 3588

FiniteWordPath_3d_iter (class in
sage.combinat.words.paths), 3588

FiniteWordPath_3d_iter_with_caching (class in
sage.combinat.words.paths), 3588

FiniteWordPath_3d_list (class in
sage.combinat.words.paths), 3588

FiniteWordPath_3d_str (class in
sage.combinat.words.paths), 3588

FiniteWordPath_3d_tuple (class in
sage.combinat.words.paths), 3588

FiniteWordPath_all (class in
sage.combinat.words.paths), 3588

FiniteWordPath_all_callable (class in
sage.combinat.words.paths), 3594

FiniteWordPath_all_callable_with_caching
(class in sage.combinat.words.paths), 3594

FiniteWordPath_all_iter (class in
sage.combinat.words.paths), 3594

FiniteWordPath_all_iter_with_caching (class in
sage.combinat.words.paths), 3594

FiniteWordPath_all_list (class in
sage.combinat.words.paths), 3594

FiniteWordPath_all_str (class in
sage.combinat.words.paths), 3594

FiniteWordPath_all_tuple (class in
sage.combinat.words.paths), 3594

FiniteWordPath_cube_grid (class in
sage.combinat.words.paths), 3594

FiniteWordPath_cube_grid_callable (class in
sage.combinat.words.paths), 3594

FiniteWordPath_cube_grid_callable_with_caching
(class in sage.combinat.words.paths), 3594

FiniteWordPath_cube_grid_iter (class in
sage.combinat.words.paths), 3594

FiniteWordPath_cube_grid_iter_with_caching
(class in sage.combinat.words.paths), 3595

FiniteWordPath_cube_grid_list (class in
sage.combinat.words.paths), 3595

FiniteWordPath_cube_grid_str (class in
sage.combinat.words.paths), 3595

FiniteWordPath_cube_grid_tuple (class in
sage.combinat.words.paths), 3595

FiniteWordPath_dyck (class in
sage.combinat.words.paths), 3595

FiniteWordPath_dyck_callable (class in
sage.combinat.words.paths), 3595

FiniteWordPath_dyck_callable_with_caching
(class in sage.combinat.words.paths), 3595

FiniteWordPath_dyck_iter (class in
sage.combinat.words.paths), 3595

FiniteWordPath_dyck_iter_with_caching (class in
sage.combinat.words.paths), 3595

FiniteWordPath_dyck_list (class in
sage.combinat.words.paths), 3595

FiniteWordPath_dyck_str (class in
sage.combinat.words.paths), 3595

FiniteWordPath_dyck_tuple (class in
sage.combinat.words.paths), 3595

FiniteWordPath_hexagonal_grid (class in
sage.combinat.words.paths), 3595

FiniteWordPath_hexagonal_grid_callable (class
in sage.combinat.words.paths), 3596

FiniteWordPath_hexagonal_grid_callable_with_caching
(class in sage.combinat.words.paths), 3596

FiniteWordPath_hexagonal_grid_iter (class in
sage.combinat.words.paths), 3596

FiniteWordPath_hexagonal_grid_iter_with_caching
(class in sage.combinat.words.paths), 3596

FiniteWordPath_hexagonal_grid_list (class in
sage.combinat.words.paths), 3596

3752 Index

Combinatorics, Release 9.7

FiniteWordPath_hexagonal_grid_str (class in
sage.combinat.words.paths), 3596

FiniteWordPath_hexagonal_grid_tuple (class in
sage.combinat.words.paths), 3596

FiniteWordPath_north_east (class in
sage.combinat.words.paths), 3596

FiniteWordPath_north_east_callable (class in
sage.combinat.words.paths), 3596

FiniteWordPath_north_east_callable_with_caching
(class in sage.combinat.words.paths), 3597

FiniteWordPath_north_east_iter (class in
sage.combinat.words.paths), 3597

FiniteWordPath_north_east_iter_with_caching
(class in sage.combinat.words.paths), 3597

FiniteWordPath_north_east_list (class in
sage.combinat.words.paths), 3597

FiniteWordPath_north_east_str (class in
sage.combinat.words.paths), 3597

FiniteWordPath_north_east_tuple (class in
sage.combinat.words.paths), 3597

FiniteWordPath_square_grid (class in
sage.combinat.words.paths), 3597

FiniteWordPath_square_grid_callable (class in
sage.combinat.words.paths), 3599

FiniteWordPath_square_grid_callable_with_caching
(class in sage.combinat.words.paths), 3599

FiniteWordPath_square_grid_iter (class in
sage.combinat.words.paths), 3599

FiniteWordPath_square_grid_iter_with_caching
(class in sage.combinat.words.paths), 3599

FiniteWordPath_square_grid_list (class in
sage.combinat.words.paths), 3600

FiniteWordPath_square_grid_str (class in
sage.combinat.words.paths), 3600

FiniteWordPath_square_grid_tuple (class in
sage.combinat.words.paths), 3600

FiniteWordPath_triangle_grid (class in
sage.combinat.words.paths), 3600

FiniteWordPath_triangle_grid_callable (class in
sage.combinat.words.paths), 3601

FiniteWordPath_triangle_grid_callable_with_caching
(class in sage.combinat.words.paths), 3601

FiniteWordPath_triangle_grid_iter (class in
sage.combinat.words.paths), 3601

FiniteWordPath_triangle_grid_iter_with_caching
(class in sage.combinat.words.paths), 3601

FiniteWordPath_triangle_grid_list (class in
sage.combinat.words.paths), 3601

FiniteWordPath_triangle_grid_str (class in
sage.combinat.words.paths), 3601

FiniteWordPath_triangle_grid_tuple (class in
sage.combinat.words.paths), 3601

FiniteWords (class in sage.combinat.words.words),
3655

first() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 50

first() (sage.combinat.combinat.CombinatorialClass
method), 255

first() (sage.combinat.combinat.UnionCombinatorialClass
method), 261

first() (sage.combinat.partition.Partitions_ending
method), 1675

first() (sage.combinat.partition.Partitions_n method),
1677

first() (sage.combinat.partition.Partitions_parts_in
method), 1680

first() (sage.combinat.partition.Partitions_starting
method), 1681

first() (sage.combinat.permutation.StandardPermutations_descents
method), 1810

first() (sage.combinat.ribbon_shaped_tableau.StandardRibbonShapedTableaux_shape
method), 2058

first() (sage.combinat.subset.Subsets_s method), 3198
first() (sage.combinat.subset.Subsets_sk method),

3201
first() (sage.combinat.subset.SubsetsSorted method),

3197
first() (sage.combinat.subword.Subwords_w method),

3208
first() (sage.combinat.subword.Subwords_wk

method), 3208
first_column_descent()

(sage.combinat.tableau.Tableau method),
3310

first_column_descent()
(sage.combinat.tableau_tuple.TableauTuple
method), 3374

first_descent() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2560

first_descent() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2416

first_green_vertex()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 167

first_occurrence() (sage.combinat.words.abstract_word.Word_class
method), 3451

first_pos_in() (sage.combinat.words.finite_word.FiniteWord_class
method), 3490

first_red_vertex() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 168

first_return_decomposition()
(sage.combinat.dyck_word.DyckWord_complete
method), 803

first_row_descent() (sage.combinat.tableau.Tableau
method), 3310

first_row_descent()
(sage.combinat.tableau_tuple.TableauTuple
method), 3374

Index 3753

Combinatorics, Release 9.7

first_sink() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 208

first_source() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 208

first_urban_renewal()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 168

fixed_point() (sage.combinat.words.morphism.WordMorphism
method), 3552

fixed_point_polynomial()
(sage.combinat.colored_permutations.ColoredPermutations
method), 247

fixed_points() (sage.combinat.permutation.Permutation
method), 1766

fixed_points() (sage.combinat.words.morphism.WordMorphism
method), 3553

FixedPointOfMorphism()
(sage.combinat.words.word_generators.WordGenerator
method), 3640

flag_f_polynomial()
(sage.combinat.posets.posets.FinitePoset
method), 1964

flag_h_polynomial()
(sage.combinat.posets.posets.FinitePoset
method), 1965

flip() (sage.combinat.sf.ns_macdonald.LatticeDiagram
method), 2848

flip() (sage.combinat.sf.ns_macdonald.NonattackingFillings_shape
method), 2850

flip() (sage.combinat.subword_complex.SubwordComplexFacet
method), 3223

flip_automorphism()
(sage.combinat.affine_permutation.AffinePermutationTypeA
method), 35

floor (sage.combinat.integer_lists.base.IntegerListsBackend
attribute), 1126

flush() (sage.combinat.tableau.Tableau method), 3310
flush() (sage.combinat.words.word_infinite_datatypes.WordDatatype_callable_with_caching

method), 3649
flush() (sage.combinat.words.word_infinite_datatypes.WordDatatype_iter_with_caching

method), 3651
foata_bijection() (sage.combinat.permutation.Permutation

method), 1766
foata_bijection() (sage.combinat.words.finite_word.FiniteWord_class

method), 3491
foata_bijection_inverse()

(sage.combinat.permutation.Permutation
method), 1767

folding_of() (sage.combinat.root_system.type_folded.CartanTypeFolded
method), 2583

folding_orbit() (sage.combinat.root_system.type_folded.CartanTypeFolded
method), 2583

follows_tableau() (sage.combinat.k_tableau.StrongTableau
method), 1217

follows_tableau_unsigned_standard()
(sage.combinat.k_tableau.StrongTableaux
class method), 1228

ForestPoset (class in sage.combinat.posets.forest),
1834

forget_cycles() (sage.combinat.permutation.Permutation
method), 1767

forgotten() (sage.combinat.sf.sf.SymmetricFunctions
method), 2887

formal_series_ring()
(sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2954

format_letter_negative()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 923

format_transition_label()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 923

format_transition_label_reversed()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 924

forward_circulant() (in module
sage.combinat.matrices.latin), 1319

forward_differences()
(sage.combinat.k_regular_sequence.kRegularSequence
method), 1205

forward_rule() (sage.combinat.growth.RuleBinaryWord
method), 1082

forward_rule() (sage.combinat.growth.RuleBurge
method), 1085

forward_rule() (sage.combinat.growth.RuleDomino
method), 1086

forward_rule() (sage.combinat.growth.RuleLLMS
method), 1090

forward_rule() (sage.combinat.growth.RuleRSK
method), 1095

forward_rule() (sage.combinat.growth.RuleShiftedShapes
method), 1098

forward_rule() (sage.combinat.growth.RuleSylvester
method), 1102

forward_rule() (sage.combinat.growth.RuleYoungFibonacci
method), 1106

forward_rule() (sage.combinat.rsk.Rule method),
2674

forward_rule() (sage.combinat.rsk.RuleHecke
method), 2684

forward_rule() (sage.combinat.rsk.RuleStar method),
2688

forward_rule() (sage.combinat.rsk.RuleSuperRSK
method), 2691

four_n_minus_six() (in module
sage.combinat.designs.steiner_quadruple_systems),
725

fq() (in module sage.combinat.similarity_class_type),

3754 Index

Combinatorics, Release 9.7

3002
FQSymBases (class in sage.combinat.fqsym), 997
FQSymBases.ElementMethods (class in

sage.combinat.fqsym), 997
FQSymBases.ParentMethods (class in

sage.combinat.fqsym), 1003
FQSymBasis_abstract (class in sage.combinat.fqsym),

1006
fraction_field() (sage.rings.cfinite_sequence.CFiniteSequences_generic

method), 3674
frank_network() (sage.combinat.posets.posets.FinitePoset

method), 1966
frattini_sublattice()

(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1844

frattini_sublattice()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1877

free_vertices() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 168

free_vertices() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 209

FreeDendriformAlgebra (class in
sage.combinat.free_dendriform_algebra),
1026

FreePreLieAlgebra (class in
sage.combinat.free_prelie_algebra), 1033

FreePreLieAlgebra.Element (class in
sage.combinat.free_prelie_algebra), 1035

FreeQuasisymmetricFunctions (class in
sage.combinat.fqsym), 1006

FreeQuasisymmetricFunctions.F (class in
sage.combinat.fqsym), 1008

FreeQuasisymmetricFunctions.F.Element (class in
sage.combinat.fqsym), 1008

FreeQuasisymmetricFunctions.G (class in
sage.combinat.fqsym), 1010

FreeQuasisymmetricFunctions.M (class in
sage.combinat.fqsym), 1011

FreeQuasisymmetricFunctions.M.Element (class in
sage.combinat.fqsym), 1011

FreeSymmetricFunctions (class in
sage.combinat.chas.fsym), 126

FreeSymmetricFunctions.Fundamental (class in
sage.combinat.chas.fsym), 127

FreeSymmetricFunctions.Fundamental.Element
(class in sage.combinat.chas.fsym), 127

FreeSymmetricFunctions_Dual (class in
sage.combinat.chas.fsym), 129

FreeSymmetricFunctions_Dual.FundamentalDual
(class in sage.combinat.chas.fsym), 129

FreeSymmetricFunctions_Dual.FundamentalDual.Element
(class in sage.combinat.chas.fsym), 130

FriezePattern (class in

sage.combinat.path_tableaux.frieze), 1587
FriezePatterns (class in

sage.combinat.path_tableaux.frieze), 1592
frobenius() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods

method), 1434
frobenius() (sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element

method), 2857
frobenius() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

method), 2916
frobenius_coordinates()

(sage.combinat.partition.Partition method),
1632

frobenius_rank() (sage.combinat.partition.Partition
method), 1632

frobenius_rank() (sage.combinat.skew_partition.SkewPartition
method), 3019

frobenius_schur_indicator()
(sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2623

from_A7_crystal() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_E7
method), 439

from_affine_weyl() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFW
method), 2544

from_affine_weyl() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWF
method), 2553

from_affine_weyl() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ParentMethods
method), 2564

from_alternating_sign_matrix()
(sage.combinat.six_vertex_model.SquareIceModel
method), 3014

from_ambient_crystal()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2
method), 421

from_ambient_crystal()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn
method), 424

from_ambient_crystal()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_box
method), 441

from_ambient_crystal()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_C
method), 427

from_arcs() (sage.combinat.set_partition.SetPartitions
method), 2720

from_area_sequence()
(sage.combinat.dyck_word.CompleteDyckWords
method), 777

from_beta_numbers()
(sage.combinat.partition.Partitions_all
method), 1673

from_binary_trees()
(sage.combinat.interval_posets.TamariIntervalPosets
static method), 1189

from_Catalan_code()

Index 3755

Combinatorics, Release 9.7

(sage.combinat.dyck_word.CompleteDyckWords
method), 776

from_chain() (in module sage.combinat.tableau), 3339
from_chain() (sage.combinat.skew_tableau.SkewTableaux

method), 3046
from_circled_diagram()

(sage.combinat.superpartition.SuperPartition
static method), 3238

from_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0
method), 2546

from_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0P
method), 2550

from_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ParentMethods
method), 2564

from_code() (sage.combinat.composition.Compositions
method), 309

from_contre_tableau()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 50

from_coordinates() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_D_tri1
method), 432

from_core_and_quotient()
(sage.combinat.partition.Partitions_all
method), 1674

from_core_tableau()
(sage.combinat.k_tableau.WeakTableau_bounded
class method), 1240

from_core_tableau()
(sage.combinat.k_tableau.WeakTableau_factorized_permutation
class method), 1247

from_corner_sum() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 50

from_cycles() (in module sage.combinat.permutation),
1820

from_descents() (sage.combinat.composition.Compositions
method), 309

from_dual_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0
method), 2548

from_dual_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0Pv
method), 2551

from_dual_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ParentMethods
method), 2565

from_dual_translation()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0
method), 2548

from_dual_translation()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0Pv
method), 2552

from_dual_translation()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ParentMethods
method), 2565

from_dyck_word() (sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunction
class method), 1505

from_dyck_word() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
static method), 1546

from_dyck_words() (sage.combinat.interval_posets.TamariIntervalPosets
static method), 1190

from_exp() (sage.combinat.partition.Partitions_all
method), 1674

from_expr() (sage.combinat.ribbon_tableau.RibbonTableaux
method), 2062

from_expr() (sage.combinat.skew_tableau.SkewTableaux
method), 3046

from_finite_word() (sage.combinat.set_partition_ordered.OrderedSetPartitions
method), 2740

from_frobenius_coordinates()
(sage.combinat.partition.Partitions_all
method), 1674

from_fundamental() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFW
method), 2544

from_fundamental() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWF
method), 2553

from_fundamental() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ParentMethods
method), 2566

from_grafting_tree()
(sage.combinat.interval_posets.TamariIntervalPosets
static method), 1190

from_height_function()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 51

from_heights() (sage.combinat.dyck_word.DyckWords
method), 813

from_hexacode() (in module
sage.combinat.abstract_tree), 25

from_highest_weight_vector_to_pm_diagram()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Cn
method), 429

from_highest_weight_vector_to_pm_diagram()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twisted
method), 433

from_highest_weight_vector_to_pm_diagram()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_vertical
method), 447

from_inversion_vector() (in module
sage.combinat.permutation), 1821

from_involution_permutation_triple()
(sage.combinat.diagram_algebras.BrauerDiagrams
method), 741

from_kbounded_to_grassmannian()
(sage.combinat.partition.Partition method),
1632

from_kbounded_to_reduced_word()

3756 Index

Combinatorics, Release 9.7

(sage.combinat.partition.Partition method),
1633

from_kirillov_reshetikhin_crystal()
(sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux
method), 2094

from_kirillov_reshetikhin_crystal()
(sage.combinat.rigged_configurations.kr_tableaux.KRTableauxBn
method), 2086

from_kirillov_reshetikhin_crystal()
(sage.combinat.rigged_configurations.kr_tableaux.KRTableauxRectangle
method), 2087

from_kirillov_reshetikhin_crystal()
(sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeHorizonal
method), 2091

from_kirillov_reshetikhin_crystal()
(sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeVertical
method), 2091

from_labelled_dyck_word() (in module
sage.combinat.parking_functions), 1583

from_labelling_and_area_sequence() (in module
sage.combinat.parking_functions), 1583

from_lehmer_code() (in module
sage.combinat.permutation), 1821

from_lehmer_code() (sage.combinat.affine_permutation.AffinePermutationGroupTypeA
method), 33

from_list() (in module sage.combinat.ranker), 2038
from_major_code() (in module

sage.combinat.permutation), 1821
from_minimal_schnyder_wood()

(sage.combinat.interval_posets.TamariIntervalPosets
static method), 1191

from_monotone_triangle()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 51

from_morphism() (sage.combinat.root_system.weyl_group.WeylGroup_gens
method), 2653

from_non_decreasing_parking_function()
(sage.combinat.dyck_word.CompleteDyckWords
method), 777

from_noncrossing_partition()
(sage.combinat.dyck_word.CompleteDyckWords
method), 778

from_other_uncached()
(sage.combinat.sf.witt.SymmetricFunctionAlgebra_witt
method), 2968

from_partition() (sage.combinat.core.Cores_length
method), 335

from_partition() (sage.combinat.core.Cores_size
method), 335

from_permutation() (sage.combinat.ribbon_shaped_tableau.StandardRibbonShapedTableaux
method), 2055

from_permutation_group_element() (in module
sage.combinat.permutation), 1822

from_pm_diagram_to_highest_weight_vector()

(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Cn
method), 430

from_pm_diagram_to_highest_weight_vector()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twisted
method), 433

from_pm_diagram_to_highest_weight_vector()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_vertical
method), 447

from_polynomial() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions
method), 1461

from_polynomial() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ParentMethods
method), 1444

from_polynomial() (sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2407

from_polynomial() (sage.combinat.sf.monomial.SymmetricFunctionAlgebra_monomial
method), 2824

from_polynomial() (sage.combinat.sf.sf.SymmetricFunctions
method), 2888

from_polynomial() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
method), 2907

from_polynomial_exp()
(sage.combinat.sf.monomial.SymmetricFunctionAlgebra_monomial
method), 2825

from_rank() (in module sage.combinat.combination),
284

from_rank() (in module sage.combinat.permutation),
1822

from_recurrence() (sage.combinat.k_regular_sequence.kRegularSequenceSpace
method), 1209

from_recurrence() (sage.rings.cfinite_sequence.CFiniteSequences_generic
method), 3674

from_reduced_word() (in module
sage.combinat.permutation), 1823

from_reduced_word()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ParentMethods
method), 2566

from_restricted_growth_word()
(sage.combinat.set_partition.SetPartitions
method), 2721

from_restricted_growth_word_blocks()
(sage.combinat.set_partition.SetPartitions
method), 2721

from_restricted_growth_word_intertwining()
(sage.combinat.set_partition.SetPartitions
method), 2722

from_rook_placement()
(sage.combinat.set_partition.SetPartitions
method), 2722

from_rook_placement_gamma()
(sage.combinat.set_partition.SetPartitions
method), 2723

from_rook_placement_psi()
(sage.combinat.set_partition.SetPartitions
method), 2723

Index 3757

Combinatorics, Release 9.7

from_rook_placement_rho()
(sage.combinat.set_partition.SetPartitions
method), 2724

from_row_and_column_length()
(sage.combinat.skew_partition.SkewPartitions
method), 3025

from_shape_and_word() (in module
sage.combinat.tableau), 3339

from_shape_and_word()
(sage.combinat.ribbon_shaped_tableau.RibbonShapedTableaux
method), 2053

from_shape_and_word()
(sage.combinat.ribbon_shaped_tableau.StandardRibbonShapedTableaux
method), 2056

from_shape_and_word()
(sage.combinat.skew_tableau.SkewTableaux
method), 3046

from_state (sage.combinat.finite_state_machine.FSMTransition
attribute), 890

from_subset() (sage.combinat.composition.Compositions
method), 309

from_symmetric_function()
(sage.combinat.ncsym.bases.NCSymBases.ParentMethods
method), 1476

from_symmetric_function()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial
method), 1495

from_symmetric_group_algebra()
(sage.combinat.fqsym.FQSymBases.ParentMethods
method), 1003

from_tableau() (sage.combinat.multiset_partition_into_sets_ordered.MinimajCrystal
method), 1332

from_tamari_sorting_tuple() (in module
sage.combinat.binary_tree), 117

from_translation() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0
method), 2546

from_translation() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0P
method), 2550

from_translation() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ParentMethods
method), 2566

from_vector() (sage.combinat.free_module.CombinatorialFreeModule
method), 1017

from_vector_notation()
(sage.combinat.root_system.ambient_space.AmbientSpace
method), 2159

from_virtual() (sage.combinat.rigged_configurations.rc_crystal.CrystalOfNonSimplyLacedRC
method), 2100

from_virtual() (sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfNonSimplyLacedRC
method), 2104

from_virtual() (sage.combinat.rigged_configurations.rigged_configurations.RCNonSimplyLaced
method), 2131

from_virtual() (sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Dual
method), 2133

from_virtual() (sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Even

method), 2135
from_weight() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation

method), 2289
from_word() (sage.combinat.affine_permutation.AffinePermutationGroupGeneric

method), 31
from_zero_one() (sage.combinat.partition.Partitions_all

method), 1674
FromRCIsomorphism (class in

sage.combinat.rigged_configurations.bij_infinity),
2069

FromTableauIsomorphism (class in
sage.combinat.rigged_configurations.bij_infinity),
2069

frozen_vertices() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 168

frozen_vertices() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 209

frozenset() (sage.combinat.tiling.Polyomino method),
3396

FSMLetterSymbol() (in module
sage.combinat.finite_state_machine), 877

FSMProcessIterator (class in
sage.combinat.finite_state_machine), 877

FSMProcessIterator.Current (class in
sage.combinat.finite_state_machine), 880

FSMState (class in sage.combinat.finite_state_machine),
883

FSMTransition (class in
sage.combinat.finite_state_machine), 889

FSMWordSymbol() (in module
sage.combinat.finite_state_machine), 890

FSymBases (class in sage.combinat.chas.fsym), 123
FSymBases.ElementMethods (class in

sage.combinat.chas.fsym), 123
FSymBases.ParentMethods (class in

sage.combinat.chas.fsym), 123
FSymBasis_abstract (class in

sage.combinat.chas.fsym), 125
full_group_by() (in module

sage.combinat.finite_state_machine), 975
FullBinaryTrees_all (class in

sage.combinat.binary_tree), 110
FullBinaryTrees_size (class in

sage.combinat.binary_tree), 110
FullTensorProductOfCrystals (class in

sage.combinat.crystals.tensor_product), 529
FullTensorProductOfQueerSuperCrystals (class in

sage.combinat.crystals.tensor_product), 530
FullTensorProductOfQueerSuperCrystals.Element

(class in sage.combinat.crystals.tensor_product),
530

FullTensorProductOfRegularCrystals (class in
sage.combinat.crystals.tensor_product), 530

FullTensorProductOfRegularCrystals.Element

3758 Index

Combinatorics, Release 9.7

(class in sage.combinat.crystals.tensor_product),
530

FullTensorProductOfSuperCrystals (class in
sage.combinat.crystals.tensor_product), 530

FullTensorProductOfSuperCrystals.Element
(class in sage.combinat.crystals.tensor_product),
530

fully_equal() (sage.combinat.finite_state_machine.FSMState
method), 887

FullyCommutativeElement (class in
sage.combinat.fully_commutative_elements),
841

FullyCommutativeElements (class in
sage.combinat.fully_commutative_elements),
847

FullyCommutativeStableGrothendieckCrystal
(class in sage.combinat.crystals.fully_commutative_stable_grothendieck),
384

FullyCommutativeStableGrothendieckCrystal.Element
(class in sage.combinat.crystals.fully_commutative_stable_grothendieck),
385

FullyPackedLoop (class in
sage.combinat.fully_packed_loop), 1040

FullyPackedLoops (class in
sage.combinat.fully_packed_loop), 1053

functorial_composition()
(sage.combinat.species.generating_series.CycleIndexSeries
method), 3146

functorial_composition()
(sage.combinat.species.generating_series.ExponentialGeneratingSeries
method), 3150

functorial_composition()
(sage.combinat.species.species.GenericCombinatorialSpecies
method), 3180

FunctorialCompositionSpecies (class in
sage.combinat.species.functorial_composition_species),
3141

FunctorialCompositionSpecies_class (in module
sage.combinat.species.functorial_composition_species),
3142

FunctorialCompositionStructure (class in
sage.combinat.species.functorial_composition_species),
3142

fundamental_group()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2570

fundamental_invariants()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2371

fundamental_transformation()
(sage.combinat.permutation.Permutation
method), 1768

fundamental_transformation_inverse()
(sage.combinat.permutation.Permutation

method), 1769
fundamental_weight()

(sage.combinat.root_system.ambient_space.AmbientSpace
method), 2159

fundamental_weight()
(sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2390

fundamental_weight()
(sage.combinat.root_system.type_A.AmbientSpace
method), 2480

fundamental_weight()
(sage.combinat.root_system.type_affine.AmbientSpace
method), 2529

fundamental_weight()
(sage.combinat.root_system.type_B.AmbientSpace
method), 2486

fundamental_weight()
(sage.combinat.root_system.type_C.AmbientSpace
method), 2494

fundamental_weight()
(sage.combinat.root_system.type_D.AmbientSpace
method), 2498

fundamental_weight()
(sage.combinat.root_system.type_marked.AmbientSpace
method), 2584

fundamental_weight()
(sage.combinat.root_system.type_relabel.AmbientSpace
method), 2595

fundamental_weight()
(sage.combinat.root_system.type_super_A.AmbientSpace
method), 2473

fundamental_weight()
(sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2605

fundamental_weight()
(sage.combinat.root_system.weight_space.WeightSpace
method), 2612

fundamental_weights()
(sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2390

fundamental_weights()
(sage.combinat.root_system.type_dual.AmbientSpace
method), 2532

fundamental_weights()
(sage.combinat.root_system.type_E.AmbientSpace
method), 2504

fundamental_weights()
(sage.combinat.root_system.type_F.AmbientSpace
method), 2514

fundamental_weights()
(sage.combinat.root_system.type_G.AmbientSpace
method), 2519

fundamental_weights()
(sage.combinat.root_system.type_reducible.AmbientSpace

Index 3759

Combinatorics, Release 9.7

method), 2589
fundamental_weights()

(sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2605

fundamental_weights()
(sage.combinat.root_system.weyl_characters.WeightRing
method), 2619

fundamental_weights()
(sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2628

fundamental_weights_from_simple_roots()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2432

FundamentalGroupElement (class in
sage.combinat.root_system.fundamental_group),
2572

FundamentalGroupGL (class in
sage.combinat.root_system.fundamental_group),
2573

FundamentalGroupGLElement (class in
sage.combinat.root_system.fundamental_group),
2575

FundamentalGroupOfExtendedAffineWeylGroup()
(in module sage.combinat.root_system.fundamental_group),
2575

FundamentalGroupOfExtendedAffineWeylGroup_Class
(class in sage.combinat.root_system.fundamental_group),
2578

fusion_l() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2641

fusion_labels() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2641

fusion_level() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2642

FusionRing (class in sage.combinat.root_system.fusion_ring),
2634

FusionRing.Element (class in
sage.combinat.root_system.fusion_ring),
2638

FW() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2555

G
G (sage.combinat.chas.fsym.FreeSymmetricFunctions at-

tribute), 128
g() (sage.combinat.constellation.Constellation_class

method), 319
g() (sage.combinat.sloane_functions.A001110 method),

3087
g() (sage.combinat.sloane_functions.A051959 method),

3116
g_matrix() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 168

g_vector() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 169

g_vector_fan() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 209

gale_ryser_theorem() (in module
sage.combinat.integer_vector), 1145

garnir_tableau() (sage.combinat.partition.Partition
method), 1633

garnir_tableau() (sage.combinat.partition_tuple.PartitionTuple
method), 1730

gaussian_binomial() (in module
sage.combinat.q_analogues), 2027

gaussian_multinomial() (in module
sage.combinat.q_analogues), 2027

gcs() (sage.combinat.matrices.latin.LatinSquare
method), 1308

GDD_4_2() (in module
sage.combinat.designs.group_divisible_designs),
582

ge() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1167

ge() (sage.combinat.posets.posets.FinitePoset method),
1968

GelfandTsetlinPattern (class in
sage.combinat.gelfand_tsetlin_patterns),
1054

GelfandTsetlinPatterns (class in
sage.combinat.gelfand_tsetlin_patterns),
1059

GelfandTsetlinPatternsTopRow (class in
sage.combinat.gelfand_tsetlin_patterns),
1059

gen() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1029

gen() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1036

gen() (sage.combinat.sloane_functions.ExtremesOfPermanentsSequence
method), 3131

gen() (sage.combinat.sloane_functions.ExtremesOfPermanentsSequence2
method), 3132

gen() (sage.combinat.species.series.LazyPowerSeriesRing
method), 3174

gen() (sage.rings.cfinite_sequence.CFiniteSequences_generic
method), 3674

generalised_quadrangle_hermitian_with_ovoid()
(in module sage.combinat.designs.gen_quadrangles_with_spread),
661

generalised_quadrangle_with_spread() (in mod-
ule sage.combinat.designs.gen_quadrangles_with_spread),
661

generalized_nonnesting_partition_lattice()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2433

generalized_pochhammer_symbol()

3760 Index

Combinatorics, Release 9.7

(sage.combinat.partition.Partition method),
1634

GeneralizedTamariLattice() (in module
sage.combinat.tamari_lattices), 3386

GeneralizedYoungWall (class in
sage.combinat.crystals.generalized_young_walls),
389

generate_signature()
(sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 391

generating_serie() (sage.combinat.subset.SubMultiset_s
method), 3193

generating_serie() (sage.combinat.subset.SubMultiset_sk
method), 3195

generating_series()
(sage.combinat.root_system.pieri_factors.PieriFactors
method), 2325

generating_series()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_A_affine
method), 2328

generating_series()
(sage.combinat.species.generating_series.CycleIndexSeries
method), 3146

generating_series()
(sage.combinat.species.species.GenericCombinatorialSpecies
method), 3180

generator_a() (sage.combinat.diagram_algebras.PartitionAlgebra
method), 755

generator_e() (sage.combinat.diagram_algebras.PartitionAlgebra
method), 756

generator_s() (sage.combinat.diagram_algebras.PartitionAlgebra
method), 756

generic_character (class in
sage.combinat.sf.character), 2743

GenericBacktracker (class in
sage.combinat.backtrack), 64

GenericCombinatorialSpecies (class in
sage.combinat.species.species), 3178

GenericCrystalOfSpins (class in
sage.combinat.crystals.spins), 520

GenericSpeciesStructure (class in
sage.combinat.species.structure), 3185

gens() (sage.combinat.colored_permutations.ColoredPermutations
method), 247

gens() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1029

gens() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1037

genuine_highest_weight_vectors()
(sage.combinat.crystals.bkk_crystals.CrystalOfBKKTableaux
method), 363

genus() (in module sage.combinat.matrices.latin), 1320
genus() (sage.combinat.constellation.Constellation_class

method), 320

geometry() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1547

gessel_reutenauer()
(sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2954

get_aorder() (sage.combinat.species.series.LazyPowerSeries
method), 3169

get_array() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1547

get_branching_rule() (in module
sage.combinat.root_system.branching_rules),
2186

get_BS_nodes() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1547

get_cycles() (in module
sage.combinat.words.morphism), 3577

get_green_vertices() (in module
sage.combinat.cluster_algebra_quiver.cluster_seed),
200

get_hook() (sage.combinat.posets.d_complete.DCompletePoset
method), 1831

get_hooks() (sage.combinat.posets.d_complete.DCompletePoset
method), 1831

get_iterator() (sage.combinat.words.morphism.PeriodicPointIterator
method), 3549

get_left_BS_nodes()
(sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1548

get_next_pos() (sage.combinat.composition_tableau.CompositionTableauxBacktracker
method), 315

get_next_pos() (sage.combinat.sf.ns_macdonald.NonattackingBacktracker
method), 2849

get_node_position_from_box()
(sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1549

get_num_cells_to_column()
(sage.combinat.rigged_configurations.rigged_partition.RiggedPartition
method), 2144

get_options() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1550

get_options() (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_all
method), 1563

get_options() (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_size
method), 1565

get_order() (sage.combinat.free_module.CombinatorialFreeModule
method), 1017

get_order() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2642

get_order() (sage.combinat.species.series.LazyPowerSeries
method), 3169

get_order_key() (sage.combinat.free_module.CombinatorialFreeModule
method), 1018

get_part() (sage.combinat.partition.Partition method),
1634

Index 3761

Combinatorics, Release 9.7

get_print_style() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
method), 2907

get_red_vertices() (in module
sage.combinat.cluster_algebra_quiver.cluster_seed),
201

get_right_BS_nodes()
(sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1550

get_solution() (sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1281

get_stream() (sage.combinat.species.series.LazyPowerSeries
method), 3169

get_tikz_options() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1551

get_upper_cluster_algebra_element()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 169

get_variables() (sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials
method), 497

global_q_dimension()
(sage.combinat.root_system.fusion_ring.FusionRing
method), 2642

good_cell_sequence()
(sage.combinat.partition_kleshchev.KleshchevPartition
method), 1701

good_cell_sequence()
(sage.combinat.partition_kleshchev.KleshchevPartitionTuple
method), 1706

good_cells() (sage.combinat.partition_kleshchev.KleshchevPartition
method), 1701

good_cells() (sage.combinat.partition_kleshchev.KleshchevPartitionTuple
method), 1706

good_residue_sequence()
(sage.combinat.partition_kleshchev.KleshchevPartition
method), 1702

good_residue_sequence()
(sage.combinat.partition_kleshchev.KleshchevPartitionTuple
method), 1706

good_suffix_table()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3491

grade() (sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunction
method), 1505

grade() (sage.combinat.parking_functions.ParkingFunction
method), 1571

grade() (sage.combinat.permutation.Permutation
method), 1769

graded_component() (sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunctions_all
method), 1507

graded_component() (sage.combinat.parking_functions.ParkingFunctions_all
method), 1582

graded_component() (sage.combinat.permutation.StandardPermutations_all
method), 1808

GradedModulesWithInternalProduct (class in

sage.combinat.ncsf_qsym.generic_basis_code),
1362

GradedModulesWithInternalProduct.ElementMethods
(class in sage.combinat.ncsf_qsym.generic_basis_code),
1362

GradedModulesWithInternalProduct.ParentMethods
(class in sage.combinat.ncsf_qsym.generic_basis_code),
1368

GradedModulesWithInternalProduct.Realizations
(class in sage.combinat.ncsf_qsym.generic_basis_code),
1370

GradedModulesWithInternalProduct.Realizations.ParentMethods
(class in sage.combinat.ncsf_qsym.generic_basis_code),
1370

GradedSymmetricFunctionsBases (class in
sage.combinat.sf.sfa), 2902

GradedSymmetricFunctionsBases.ElementMethods
(class in sage.combinat.sf.sfa), 2902

GradedSymmetricFunctionsBases.ParentMethods
(class in sage.combinat.sf.sfa), 2903

grading() (sage.combinat.integer_vector_weighted.WeightedIntegerVectors_all
method), 1150

graft_list() (sage.combinat.rooted_tree.RootedTree
method), 2663

graft_on_root() (sage.combinat.rooted_tree.RootedTree
method), 2663

grafting_tree() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1167

graph() (sage.combinat.binary_tree.BinaryTree
method), 77

graph() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 925

graph_implementation_rec() (in module
sage.combinat.ribbon_tableau), 2065

GraphPaths() (in module sage.combinat.graph_path),
1061

GraphPaths_all (class in sage.combinat.graph_path),
1062

GraphPaths_common (class in
sage.combinat.graph_path), 1062

GraphPaths_s (class in sage.combinat.graph_path),
1063

GraphPaths_st (class in sage.combinat.graph_path),
1063

GraphPaths_t (class in sage.combinat.graph_path),
1064

graphviz_string() (sage.combinat.posets.posets.FinitePoset
method), 1968

grassmannian_quotient()
(sage.combinat.affine_permutation.AffinePermutation
method), 26

GrayCode() (sage.combinat.finite_state_machine_generators.TransducerGenerators
method), 984

greater() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods

3762 Index

Combinatorics, Release 9.7

method), 2416
greedy() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 170
greedy_facet() (sage.combinat.subword_complex.SubwordComplex

method), 3216
greedy_linear_extensions_iterator()

(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1844

green_vertices() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 171

greene_shape() (sage.combinat.posets.posets.FinitePoset
method), 1968

GrossmanLarsonAlgebra (class in
sage.combinat.grossman_larson_algebras),
1108

ground_field() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 171

ground_set() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 670

group() (sage.combinat.subword_complex.SubwordComplex
method), 3216

group_divisible_design() (in module
sage.combinat.designs.group_divisible_designs),
584

group_element() (sage.combinat.fully_commutative_elements.FullyCommutativeElement
method), 843

group_generators() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2571

group_generators() (sage.combinat.root_system.fundamental_group.FundamentalGroupGL
method), 2574

group_generators() (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class
method), 2580

group_law() (in module
sage.combinat.designs.difference_family),
642

group_to_LatinSquare() (in module
sage.combinat.matrices.latin), 1320

GroupDivisibleDesign (class in
sage.combinat.designs.group_divisible_designs),
583

groups() (sage.combinat.designs.group_divisible_designs.GroupDivisibleDesign
method), 584

growing_letters() (sage.combinat.words.morphism.WordMorphism
method), 3554

GrowthDiagram (class in sage.combinat.growth), 1074
GS_skew_hadamard_smallcases() (in module

sage.combinat.matrices.hadamard_matrix),
1291

gt() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1167

gt() (sage.combinat.posets.posets.FinitePoset method),
1969

guess() (sage.rings.cfinite_sequence.CFiniteSequences_generic
method), 3675

gyration() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 55

gyration() (sage.combinat.fully_packed_loop.FullyPackedLoop
method), 1047

gyration_orbit() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 56

gyration_orbit_sizes()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 51

gyration_orbits() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 52

H
h (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables

attribute), 1492
H() (sage.combinat.sf.macdonald.Macdonald method),

2807
h() (sage.combinat.sf.sf.SymmetricFunctions method),

2888
H_grassmannian_pieces() (in module

sage.combinat.knutson_tao_puzzles), 1259
h_polynomial() (sage.combinat.posets.posets.FinitePoset

method), 1969
H_two_step_pieces() (in module

sage.combinat.knutson_tao_puzzles), 1259
Hadamard3Design() (in module

sage.combinat.designs.block_design), 587
hadamard_difference_set_product() (in module

sage.combinat.designs.difference_family), 642
hadamard_difference_set_product_parameters()

(in module sage.combinat.designs.difference_family),
643

hadamard_matrix() (in module
sage.combinat.matrices.hadamard_matrix),
1292

hadamard_matrix_paleyI() (in module
sage.combinat.matrices.hadamard_matrix),
1293

hadamard_matrix_paleyII() (in module
sage.combinat.matrices.hadamard_matrix),
1293

hadamard_matrix_www() (in module
sage.combinat.matrices.hadamard_matrix),
1294

hadamard_product() (sage.combinat.recognizable_series.RecognizableSeries
method), 2046

HadamardDesign() (in module
sage.combinat.designs.block_design), 588

half_perimeter() (sage.combinat.growth.GrowthDiagram
method), 1077

half_turn_rotation()
(sage.combinat.knutson_tao_puzzles.DeltaPiece
method), 1258

half_turn_rotation()

Index 3763

Combinatorics, Release 9.7

(sage.combinat.knutson_tao_puzzles.NablaPiece
method), 1270

hall_littlewood() (sage.combinat.sf.sf.SymmetricFunctions
method), 2888

hall_littlewood_family()
(sage.combinat.sf.hall_littlewood.HallLittlewood_generic
method), 2761

hall_polynomial() (in module
sage.combinat.hall_polynomial), 1113

HallLittlewood (class in
sage.combinat.sf.hall_littlewood), 2755

HallLittlewood_generic (class in
sage.combinat.sf.hall_littlewood), 2759

HallLittlewood_generic.Element (class in
sage.combinat.sf.hall_littlewood), 2759

HallLittlewood_p (class in
sage.combinat.sf.hall_littlewood), 2762

HallLittlewood_p.Element (class in
sage.combinat.sf.hall_littlewood), 2763

HallLittlewood_q (class in
sage.combinat.sf.hall_littlewood), 2763

HallLittlewood_q.Element (class in
sage.combinat.sf.hall_littlewood), 2763

HallLittlewood_qp (class in
sage.combinat.sf.hall_littlewood), 2763

HallLittlewood_qp.Element (class in
sage.combinat.sf.hall_littlewood), 2764

halving_map() (sage.combinat.rigged_configurations.bij_type_D.KRTToRCBijectionTypeD
method), 2076

halving_map() (sage.combinat.rigged_configurations.bij_type_D.RCToKRTBijectionTypeD
method), 2076

has_bottom() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1845

has_bottom() (sage.combinat.posets.posets.FinitePoset
method), 1970

has_conjugate_in_classP()
(sage.combinat.words.morphism.WordMorphism
method), 3554

has_descent() (sage.combinat.fully_commutative_elements.FullyCommutativeElement
method), 843

has_descent() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFWElement
method), 2544

has_descent() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0Element
method), 2549

has_descent() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0Element
method), 2547

has_descent() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PElement
method), 2551

has_descent() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PvElement
method), 2552

has_descent() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWFElement
method), 2554

has_descent() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2560

has_descent() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2417

has_descent() (sage.combinat.root_system.type_super_A.AmbientSpace.Element
method), 2471

has_descent() (sage.combinat.root_system.weyl_group.WeylGroupElement
method), 2650

has_final_state() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 925

has_final_states() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 925

has_initial_state()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 926

has_initial_states()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 926

has_isomorphic_subposet()
(sage.combinat.posets.posets.FinitePoset
method), 1970

has_k_rectangle() (sage.combinat.partition.Partition
method), 1634

has_left_conjugate()
(sage.combinat.words.morphism.WordMorphism
method), 3555

has_left_descent() (sage.combinat.affine_permutation.AffinePermutationTypeA
method), 35

has_left_descent() (sage.combinat.affine_permutation.AffinePermutationTypeB
method), 40

has_left_descent() (sage.combinat.affine_permutation.AffinePermutationTypeC
method), 42

has_left_descent() (sage.combinat.affine_permutation.AffinePermutationTypeD
method), 43

has_left_descent() (sage.combinat.affine_permutation.AffinePermutationTypeG
method), 45

has_left_descent() (sage.combinat.colored_permutations.ColoredPermutation
method), 242

has_left_descent() (sage.combinat.colored_permutations.SignedPermutation
method), 250

has_left_descent() (sage.combinat.permutation.StandardPermutations_n.Element
method), 1812

has_left_descent() (sage.combinat.root_system.weyl_group.WeylGroupElement
method), 2651

has_pattern() (sage.combinat.permutation.Permutation
method), 1769

has_period() (sage.combinat.words.finite_word.FiniteWord_class
method), 3492

has_prefix() (sage.combinat.words.finite_word.FiniteWord_class
method), 3492

has_prefix() (sage.combinat.words.word_char.WordDatatype_char
method), 3626

has_prefix() (sage.combinat.words.word_datatypes.WordDatatype_str
method), 3630

has_rectangle() (sage.combinat.partition.Partition
method), 1635

3764 Index

Combinatorics, Release 9.7

has_right_conjugate()
(sage.combinat.words.morphism.WordMorphism
method), 3555

has_right_descent()
(sage.combinat.affine_permutation.AffinePermutationTypeA
method), 35

has_right_descent()
(sage.combinat.affine_permutation.AffinePermutationTypeB
method), 41

has_right_descent()
(sage.combinat.affine_permutation.AffinePermutationTypeC
method), 42

has_right_descent()
(sage.combinat.affine_permutation.AffinePermutationTypeD
method), 44

has_right_descent()
(sage.combinat.affine_permutation.AffinePermutationTypeG
method), 45

has_right_descent()
(sage.combinat.permutation.StandardPermutations_n.Element
method), 1812

has_right_descent()
(sage.combinat.root_system.weyl_group.WeylGroupElement
method), 2651

has_state() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 926

has_suffix() (sage.combinat.words.finite_word.FiniteWord_class
method), 3493

has_suffix() (sage.combinat.words.suffix_trees.SuffixTrie
method), 3616

has_suffix() (sage.combinat.words.word_datatypes.WordDatatype_str
method), 3631

has_top() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1845

has_top() (sage.combinat.posets.posets.FinitePoset
method), 1971

has_transition() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 926

hasse_diagram() (sage.combinat.posets.posets.FinitePoset
method), 1971

HasseDiagram (class in
sage.combinat.posets.hasse_diagram), 1835

hcospin() (sage.combinat.sf.llt.LLT_class method),
2802

head() (sage.combinat.misc.DoublyLinkedList method),
1328

heap() (sage.combinat.fully_commutative_elements.FullyCommutativeElement
method), 844

heap_insert() (sage.combinat.binary_tree.LabelledBinaryTree
method), 114

Hecke (sage.combinat.rsk.InsertionRules attribute), 2669
hecke_character() (sage.combinat.sf.sf.SymmetricFunctions

method), 2889
hecke_parameters() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors

method), 2273
HeckeAlgebraRepresentation (class in

sage.combinat.root_system.hecke_algebra_representation),
2274

HeckeAlgebraSymmetricGroup_generic (class in
sage.combinat.symmetric_group_algebra),
3243

HeckeAlgebraSymmetricGroup_t (class in
sage.combinat.symmetric_group_algebra),
3243

HeckeAlgebraSymmetricGroupT() (in module
sage.combinat.symmetric_group_algebra),
3242

HeckeCharacter (class in sage.combinat.sf.hecke), 2764
height() (sage.combinat.dyck_word.DyckWord

method), 783
height() (sage.combinat.nu_dyck_word.NuDyckWord

method), 1510
height() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino

method), 1551
height() (sage.combinat.posets.posets.FinitePoset

method), 1971
height() (sage.combinat.ribbon_shaped_tableau.RibbonShapedTableau

method), 2053
height() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods

method), 2417
height() (sage.combinat.tableau.Tableau method),

3311
height() (sage.combinat.words.paths.FiniteWordPath_2d

method), 3582
height_function() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix

method), 56
height_of_ribbon() (sage.combinat.k_tableau.StrongTableau

method), 1218
height_vector() (sage.combinat.words.paths.FiniteWordPath_2d

method), 3582
heights() (sage.combinat.dyck_word.DyckWord

method), 783
heights() (sage.combinat.nu_dyck_word.NuDyckWord

method), 1510
heights() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino

method), 1552
heights_of_addable_plus()

(sage.combinat.crystals.kirillov_reshetikhin.PMDiagram
method), 454

heights_of_minus() (sage.combinat.crystals.kirillov_reshetikhin.PMDiagram
method), 454

hide() (sage.combinat.misc.DoublyLinkedList method),
1328

higher_lie_character()
(sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2956

highest_degree_denominator()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

Index 3765

Combinatorics, Release 9.7

method), 171
highest_root() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods

method), 2434
highest_root() (sage.combinat.root_system.type_A.AmbientSpace

method), 2480
highest_root() (sage.combinat.root_system.type_super_A.AmbientSpace

method), 2474
highest_root() (sage.combinat.root_system.weyl_characters.WeylCharacterRing

method), 2628
highest_weight() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation

method), 2289
highest_weight() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element

method), 2624
highest_weight_dict()

(sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2
method), 421

highest_weight_dict()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn
method), 424

highest_weight_dict()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_box
method), 441

highest_weight_dict()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_C
method), 427

highest_weight_dict()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6
method), 436

highest_weight_dict_inv()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6
method), 437

highest_weight_vector()
(sage.combinat.crystals.multisegments.InfinityCrystalOfMultisegments
method), 504

HighestWeightCrystal() (in module
sage.combinat.crystals.highest_weight_crystals),
397

HighestWeightTensorKRT (class in
sage.combinat.rigged_configurations.tensor_product_kr_tableaux),
2147

HigmanSimsDesign() (in module
sage.combinat.designs.database), 611

hillman_grassl() (in module
sage.combinat.hillman_grassl), 1119

hillman_grassl() (sage.combinat.tableau.Tableau
method), 3311

hillman_grassl_inverse() (in module
sage.combinat.hillman_grassl), 1120

hillman_grassl_inverse()
(sage.combinat.hillman_grassl.WeakReversePlanePartition
method), 1117

hl_creation_operator()
(sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ElementMethods
method), 2830

hl_creation_operator()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2918

homogeneous() (sage.combinat.sf.sf.SymmetricFunctions
method), 2889

homogeneous_basis_noncommutative_variables_zero_Hecke()
(sage.combinat.sf.new_kschur.K_kSchur
method), 2836

hook_length() (sage.combinat.partition.Partition
method), 1635

hook_length() (sage.combinat.partition_tuple.PartitionTuple
method), 1731

hook_lengths() (sage.combinat.partition.Partition
method), 1636

hook_number() (sage.combinat.binary_tree.BinaryTree
method), 78

hook_polynomial() (sage.combinat.partition.Partition
method), 1636

hook_product() (sage.combinat.partition.Partition
method), 1637

hook_product() (sage.combinat.posets.d_complete.DCompletePoset
method), 1832

hooks() (sage.combinat.partition.Partition method),
1637

horizontal_distance()
(sage.combinat.nu_dyck_word.NuDyckWord
method), 1510

horizontal_dominoes_removed() (in module
sage.combinat.crystals.kirillov_reshetikhin),
456

hspin() (sage.combinat.sf.llt.LLT_class method), 2803
Ht() (in module sage.combinat.sf.ns_macdonald), 2847
Ht() (sage.combinat.sf.macdonald.Macdonald method),

2807
ht() (sage.combinat.sf.sf.SymmetricFunctions method),

2889
HT_grassmannian_pieces() (in module

sage.combinat.knutson_tao_puzzles), 1258
HT_two_step_pieces() (in module

sage.combinat.knutson_tao_puzzles), 1259
HughesPlane() (in module

sage.combinat.designs.block_design), 588
hw_auxiliary() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6

method), 437
hyperoctahedral_double_coset_type()

(sage.combinat.permutation.Permutation
method), 1769

hyperplane_index_set()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2371

I
I (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions

attribute), 1400

3766 Index

Combinatorics, Release 9.7

ideal_diagrams() (in module
sage.combinat.diagram_algebras), 770

IdealDiagram (class in
sage.combinat.diagram_algebras), 743

IdealDiagrams (class in
sage.combinat.diagram_algebras), 744

idempotent (sage.combinat.descent_algebra.DescentAlgebra
attribute), 566

idempotent (sage.combinat.posets.moebius_algebra.MoebiusAlgebra
attribute), 1924

idempotent() (sage.combinat.descent_algebra.DescentAlgebra.I
method), 564

identity() (in module
sage.combinat.partition_algebra), 1695

Identity() (sage.combinat.finite_state_machine_generators.TransducerGenerators
method), 984

identity() (sage.combinat.permutation.StandardPermutations_n
method), 1816

identity_element() (sage.combinat.species.series.LazyPowerSeriesRing
method), 3174

identity_morphism()
(sage.combinat.words.words.AbstractLanguage
method), 3653

identity_set_partition() (in module
sage.combinat.diagram_algebras), 770

ides() (sage.combinat.parking_functions.ParkingFunction
method), 1572

ides_composition() (sage.combinat.parking_functions.ParkingFunction
method), 1572

idescents() (sage.combinat.permutation.Permutation
method), 1770

idescents_signature()
(sage.combinat.permutation.Permutation
method), 1770

ij() (sage.combinat.partition_shifting_algebras.ShiftingOperatorAlgebra
method), 1716

image() (sage.combinat.words.morphism.WordMorphism
method), 3556

images() (sage.combinat.words.morphism.WordMorphism
method), 3556

imajor_index() (sage.combinat.permutation.Permutation
method), 1771

immaculate_function()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ParentMethods
method), 1392

immortal_letters() (sage.combinat.words.morphism.WordMorphism
method), 3556

ImmutableListWithParent (class in
sage.combinat.crystals.tensor_product_element),
538

implicit_suffix_tree()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3493

ImplicitSuffixTree (class in

sage.combinat.words.suffix_trees), 3607
in_bounding_box() (sage.combinat.root_system.plot.PlotOptions

method), 2355
in_highest_weight_crystal()

(sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 391

in_labels() (sage.combinat.growth.GrowthDiagram
method), 1077

in_order_traversal()
(sage.combinat.binary_tree.BinaryTree
method), 78

in_order_traversal_iter()
(sage.combinat.binary_tree.BinaryTree
method), 79

incidence_algebra()
(sage.combinat.posets.posets.FinitePoset
method), 1972

incidence_graph() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 670

incidence_matrix() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 670

incidence_matrix() (sage.combinat.words.morphism.WordMorphism
method), 3557

incidence_structure()
(sage.combinat.designs.covering_design.CoveringDesign
method), 596

IncidenceAlgebra (class in
sage.combinat.posets.incidence_algebras),
1862

IncidenceAlgebra.Element (class in
sage.combinat.posets.incidence_algebras),
1862

IncidenceStructure (class in
sage.combinat.designs.incidence_structures),
664

incoming_edges() (sage.combinat.graph_path.GraphPaths_common
method), 1062

incoming_paths() (sage.combinat.graph_path.GraphPaths_common
method), 1062

incomparability_graph()
(sage.combinat.posets.posets.FinitePoset
method), 1972

incomplete_orthogonal_array() (in module
sage.combinat.designs.orthogonal_arrays),
697

increase_half() (sage.combinat.shifted_primed_tableau.PrimedEntry
method), 2977

increase_one() (sage.combinat.shifted_primed_tableau.PrimedEntry
method), 2977

increasing_children()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1168

increasing_cover_relations()
(sage.combinat.interval_posets.TamariIntervalPoset

Index 3767

Combinatorics, Release 9.7

method), 1168
increasing_flip_graph()

(sage.combinat.subword_complex.SubwordComplex
method), 3217

increasing_flip_poset()
(sage.combinat.subword_complex.SubwordComplex
method), 3217

increasing_parent()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1168

increasing_roots() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1169

increasing_tree() (sage.combinat.permutation.Permutation
method), 1771

increasing_tree_shape()
(sage.combinat.permutation.Permutation
method), 1771

IncreasingTableau (class in sage.combinat.tableau),
3277

IncreasingTableaux (class in sage.combinat.tableau),
3279

IncreasingTableaux_all (class in
sage.combinat.tableau), 3281

IncreasingTableaux_shape (class in
sage.combinat.tableau), 3282

IncreasingTableaux_shape_inf (class in
sage.combinat.tableau), 3282

IncreasingTableaux_shape_weight (class in
sage.combinat.tableau), 3282

IncreasingTableaux_size (class in
sage.combinat.tableau), 3282

IncreasingTableaux_size_inf (class in
sage.combinat.tableau), 3282

IncreasingTableaux_size_weight (class in
sage.combinat.tableau), 3282

increment() (in module
sage.combinat.species.series_order), 3176

ind() (sage.combinat.k_regular_sequence.RecurrenceParser
method), 1197

indecomposable_blocks()
(sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2192

independent_roots()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2371

independent_roots()
(sage.combinat.root_system.weyl_group.WeylGroup_permutation
method), 2656

index() (sage.combinat.combinat.CombinatorialObject
method), 259

index_of_object() (sage.combinat.root_system.plot.PlotOptions
method), 2355

index_set() (sage.combinat.affine_permutation.AffinePermutation
method), 27

index_set() (sage.combinat.affine_permutation.AffinePermutationGroupGeneric
method), 32

index_set() (sage.combinat.colored_permutations.ColoredPermutations
method), 248

index_set() (sage.combinat.crystals.infinity_crystals.DualInfinityQueerCrystalOfTableaux
method), 405

index_set() (sage.combinat.crystals.letters.CrystalOfQueerLetters
method), 465

index_set() (sage.combinat.crystals.tensor_product.QueerSuperCrystalsMixin
method), 531

index_set() (sage.combinat.permutation.StandardPermutations_n
method), 1816

index_set() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2193

index_set() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2220

index_set() (sage.combinat.root_system.cartan_type.CartanType_decorator
method), 2237

index_set() (sage.combinat.root_system.cartan_type.CartanType_standard_affine
method), 2239

index_set() (sage.combinat.root_system.cartan_type.CartanType_standard_finite
method), 2240

index_set() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix
method), 2248

index_set() (sage.combinat.root_system.coxeter_type.CoxeterType
method), 2255

index_set() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType
method), 2259

index_set() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2266

index_set() (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class
method), 2580

index_set() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2372

index_set() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2434

index_set() (sage.combinat.root_system.root_system.RootSystem
method), 2468

index_set() (sage.combinat.root_system.type_A_infinity.CartanType
method), 2485

index_set() (sage.combinat.root_system.type_I.CartanType
method), 2525

index_set() (sage.combinat.root_system.type_Q.CartanType
method), 2525

index_set() (sage.combinat.root_system.type_reducible.CartanType
method), 2593

index_set() (sage.combinat.root_system.type_relabel.CartanType
method), 2597

index_set() (sage.combinat.root_system.type_super_A.CartanType
method), 2477

index_set() (sage.combinat.root_system.weyl_group.WeylGroup_gens
method), 2653

index_set() (sage.combinat.root_system.weyl_group.WeylGroup_permutation
method), 2656

3768 Index

Combinatorics, Release 9.7

index_set_bipartition()
(sage.combinat.root_system.cartan_type.CartanType_crystallographic
method), 2235

indices() (sage.combinat.recognizable_series.RecognizableSeriesSpace
method), 2050

indices() (sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods
method), 2792

induced_sub_finite_state_machine()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 927

induced_substructure()
(sage.combinat.designs.incidence_structures.IncidenceStructure
method), 671

induced_trivial_character()
(sage.combinat.sf.sf.SymmetricFunctions
method), 2890

induced_trivial_character_basis (class in
sage.combinat.sf.character), 2743

InducedCrystal (class in
sage.combinat.crystals.induced_structure),
399

InducedCrystal.Element (class in
sage.combinat.crystals.induced_structure),
401

InducedFromCrystal (class in
sage.combinat.crystals.induced_structure),
402

InducedFromCrystal.Element (class in
sage.combinat.crystals.induced_structure),
403

inf() (sage.combinat.composition.Composition
method), 294

inf() (sage.combinat.set_partition.AbstractSetPartition
method), 2703

infinite_repetitions_primitive_roots()
(sage.combinat.words.morphism.WordMorphism
method), 3557

infinite_words() (sage.combinat.words.words.FiniteOrInfiniteWords
method), 3654

InfiniteAbstractCombinatorialClass (class in
sage.combinat.combinat), 259

InfiniteSeriesOrder (class in
sage.combinat.species.series_order), 3176

InfiniteWord_callable (class in
sage.combinat.words.word), 3621

InfiniteWord_callable_with_caching (class in
sage.combinat.words.word), 3622

InfiniteWord_class (class in
sage.combinat.words.infinite_word), 3543

InfiniteWord_iter (class in
sage.combinat.words.word), 3622

InfiniteWord_iter_with_caching (class in
sage.combinat.words.word), 3622

InfiniteWord_morphic (class in

sage.combinat.words.word), 3623
InfiniteWords (class in sage.combinat.words.words),

3659
InfinityCrystalAsPolyhedralRealization (class

in sage.combinat.crystals.polyhedral_realization),
515

InfinityCrystalAsPolyhedralRealization.Element
(class in sage.combinat.crystals.polyhedral_realization),
516

InfinityCrystalOfAlcovePaths (class in
sage.combinat.crystals.alcove_path), 358

InfinityCrystalOfAlcovePaths.Element (class in
sage.combinat.crystals.alcove_path), 358

InfinityCrystalOfGeneralizedYoungWalls (class
in sage.combinat.crystals.generalized_young_walls),
394

InfinityCrystalOfLSPaths (class in
sage.combinat.crystals.littelmann_path),
489

InfinityCrystalOfLSPaths.Element (class in
sage.combinat.crystals.littelmann_path), 489

InfinityCrystalOfMultisegments (class in
sage.combinat.crystals.multisegments), 501

InfinityCrystalOfMultisegments.Element (class
in sage.combinat.crystals.multisegments), 503

InfinityCrystalOfNakajimaMonomials (class in
sage.combinat.crystals.monomial_crystals),
495

InfinityCrystalOfNonSimplyLacedRC (class in
sage.combinat.rigged_configurations.rc_infinity),
2104

InfinityCrystalOfNonSimplyLacedRC.Element
(class in sage.combinat.rigged_configurations.rc_infinity),
2104

InfinityCrystalOfRiggedConfigurations (class in
sage.combinat.rigged_configurations.rc_infinity),
2105

InfinityCrystalOfRiggedConfigurations.Element
(class in sage.combinat.rigged_configurations.rc_infinity),
2107

InfinityCrystalOfRiggedConfigurations.options()
(in module sage.combinat.rigged_configurations.rc_infinity),
2107

InfinityCrystalOfTableaux (class in
sage.combinat.crystals.infinity_crystals),
405

InfinityCrystalOfTableaux.Element (class in
sage.combinat.crystals.infinity_crystals), 407

InfinityCrystalOfTableauxElement (class in
sage.combinat.crystals.tensor_product_element),
538

InfinityCrystalOfTableauxElementTypeD (class in
sage.combinat.crystals.tensor_product_element),
539

Index 3769

Combinatorics, Release 9.7

InfinityCrystalOfTableauxTypeD (class in
sage.combinat.crystals.infinity_crystals),
411

InfinityCrystalOfTableauxTypeD.Element (class
in sage.combinat.crystals.infinity_crystals), 411

InfinityQueerCrystalOfTableauxElement (class in
sage.combinat.crystals.tensor_product_element),
540

init() (in module sage.combinat.sf.classical), 2744
initial_column_tableau()

(sage.combinat.partition.Partition method),
1637

initial_column_tableau()
(sage.combinat.partition_tuple.PartitionTuple
method), 1731

initial_forest() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1169

initial_forest() (sage.combinat.interval_posets.TamariIntervalPosets
static method), 1192

initial_shape() (sage.combinat.path_tableaux.path_tableau.PathTableau
method), 1596

initial_states() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 927

initial_tableau() (sage.combinat.partition.Partition
method), 1637

initial_tableau() (sage.combinat.partition_tuple.PartitionTuple
method), 1731

initialize_coefficient_stream()
(sage.combinat.species.series.LazyPowerSeries
method), 3169

inject_weights() (sage.combinat.root_system.type_reducible.AmbientSpace
method), 2590

inner() (sage.combinat.skew_partition.SkewPartition
method), 3020

inner_corners() (sage.combinat.skew_partition.SkewPartition
method), 3020

inner_plethysm() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2919

inner_product() (sage.combinat.root_system.ambient_space.AmbientSpaceElement
method), 2162

inner_product() (sage.combinat.root_system.type_affine.AmbientSpace.Element
method), 2528

inner_product() (sage.combinat.root_system.type_super_A.AmbientSpace.Element
method), 2472

inner_product() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2624

inner_shape() (sage.combinat.crystals.kirillov_reshetikhin.PMDiagram
method), 455

inner_shape() (sage.combinat.k_tableau.StrongTableau
method), 1218

inner_shape() (sage.combinat.k_tableau.StrongTableaux
method), 1229

inner_shape() (sage.combinat.skew_tableau.SkewTableau
method), 3036

inner_size() (sage.combinat.skew_tableau.SkewTableau
method), 3036

inner_tensor() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2921

input_alphabet (sage.combinat.finite_state_machine.FiniteStateMachine
attribute), 927

input_parsing() (in module
sage.combinat.similarity_class_type), 3002

input_projection() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 928

insert_cell() (sage.combinat.rigged_configurations.rigged_partition.RiggedPartition
method), 2145

insert_word() (sage.combinat.tableau.Tableau
method), 3312

insertion() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1169

insertion() (sage.combinat.rsk.RuleDualRSK
method), 2680

insertion() (sage.combinat.rsk.RuleEG method), 2682
insertion() (sage.combinat.rsk.RuleHecke method),

2684
insertion() (sage.combinat.rsk.RuleRSK method),

2685
insertion() (sage.combinat.rsk.RuleStar method),

2688
insertion() (sage.combinat.rsk.RuleSuperRSK

method), 2692
insertion_tableau() (in module

sage.combinat.ribbon_tableau), 2065
InsertionRules (class in sage.combinat.rsk), 2669
inside_corners() (sage.combinat.partition.Partition

method), 1637
inside_corners_residue()

(sage.combinat.partition.Partition method),
1638

int_as_sum() (in module
sage.combinat.designs.orthogonal_arrays_find_recursive),
722

int_to_coord_dict()
(sage.combinat.tiling.TilingSolver method),
3405

integer() (sage.combinat.shifted_primed_tableau.PrimedEntry
method), 2977

integer_matrices_generator() (in module
sage.combinat.integer_matrices), 1140

integer_sequence() (sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement
method), 355

integer_vectors_nk_fast_iter() (in module
sage.combinat.integer_vector), 1147

IntegerCompositions()
(sage.combinat.posets.poset_examples.Posets
static method), 1932

IntegerList (class in sage.combinat.integer_lists.lists),
1126

3770 Index

Combinatorics, Release 9.7

IntegerLists (class in
sage.combinat.integer_lists.lists), 1126

IntegerListsBackend (class in
sage.combinat.integer_lists.base), 1125

IntegerListsBackend_invlex (class in
sage.combinat.integer_lists.invlex), 1127

IntegerListsLex (class in
sage.combinat.integer_lists.invlex), 1127

IntegerListsLexIter (class in
sage.combinat.integer_lists.invlex), 1137

IntegerMatrices (class in
sage.combinat.integer_matrices), 1138

IntegerPartitions()
(sage.combinat.posets.poset_examples.Posets
static method), 1932

IntegerPartitionsDominanceOrder()
(sage.combinat.posets.poset_examples.Posets
static method), 1932

IntegerVector (class in sage.combinat.integer_vector),
1141

IntegerVectors (class in
sage.combinat.integer_vector), 1141

IntegerVectors_all (class in
sage.combinat.integer_vector), 1144

IntegerVectors_k (class in
sage.combinat.integer_vector), 1144

IntegerVectors_n (class in
sage.combinat.integer_vector), 1144

IntegerVectors_nk (class in
sage.combinat.integer_vector), 1144

IntegerVectors_nnondescents (class in
sage.combinat.integer_vector), 1144

IntegerVectorsConstraints (class in
sage.combinat.integer_vector), 1143

IntegerVectorsIterator() (in module
sage.combinat.vector_partition), 3445

IntegerVectorsModPermutationGroup (class in
sage.combinat.integer_vectors_mod_permgroup),
1151

IntegerVectorsModPermutationGroup_All (class in
sage.combinat.integer_vectors_mod_permgroup),
1153

IntegerVectorsModPermutationGroup_All.Element
(class in sage.combinat.integer_vectors_mod_permgroup),
1153

IntegerVectorsModPermutationGroup_with_constraints
(class in sage.combinat.integer_vectors_mod_permgroup),
1156

IntegerVectorsModPermutationGroup_with_constraints.Element
(class in sage.combinat.integer_vectors_mod_permgroup),
1156

IntegrableRepresentation (class in
sage.combinat.root_system.integrable_representations),
2283

integral() (sage.combinat.species.generating_series.CycleIndexSeries
method), 3146

integral() (sage.combinat.species.series.LazyPowerSeries
method), 3169

interact() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 171

interact() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 209

intermediate_shape()
(sage.combinat.crystals.kirillov_reshetikhin.PMDiagram
method), 455

intermediate_shapes() (in module
sage.combinat.k_tableau), 1254

intermediate_shapes()
(sage.combinat.k_tableau.StrongTableau
method), 1219

intermediate_shapes()
(sage.combinat.k_tableau.WeakTableau_abstract
method), 1237

internal_coproduct()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods
method), 1435

internal_coproduct()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Fundamental.Element
method), 1447

internal_coproduct()
(sage.combinat.ncsym.bases.NCSymBases.ElementMethods
method), 1474

internal_coproduct()
(sage.combinat.ncsym.bases.NCSymBases.ParentMethods
method), 1477

internal_coproduct()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2923

internal_coproduct_by_coercion()
(sage.combinat.ncsym.bases.NCSymBases.ParentMethods
method), 1477

internal_coproduct_on_basis()
(sage.combinat.ncsym.bases.NCSymBases.ParentMethods
method), 1477

internal_coproduct_on_basis()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial
method), 1496

internal_coproduct_on_basis()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.powersum
method), 1499

internal_product() (sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.ElementMethods
method), 1362

internal_product() (sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.ParentMethods
method), 1368

internal_product() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2925

internal_product_by_coercion()
(sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.Realizations.ParentMethods

Index 3771

Combinatorics, Release 9.7

method), 1370
internal_product_on_basis()

(sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.ParentMethods
method), 1368

internal_product_on_basis()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Complete
method), 1395

internal_product_on_basis_by_bracketing()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Psi
method), 1415

intersection() (sage.combinat.finite_state_machine.Automaton
method), 868

intersection() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 928

intersection() (sage.combinat.finite_state_machine.Transducer
method), 967

intersection() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1170

intersection() (sage.combinat.tiling.Polyomino
method), 3396

intersection_at_level_1()
(sage.combinat.root_system.plot.PlotOptions
method), 2356

intersection_graph()
(sage.combinat.designs.incidence_structures.IncidenceStructure
method), 671

interval() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1845

interval() (sage.combinat.posets.posets.FinitePoset
method), 1972

interval() (sage.combinat.subword_complex.SubwordComplex
method), 3217

interval_cardinality()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1171

interval_iterator()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1846

intervals() (sage.combinat.sine_gordon.SineGordonYsystem
method), 3006

intervals_number() (sage.combinat.posets.posets.FinitePoset
method), 1973

intervals_poset() (sage.combinat.posets.posets.FinitePoset
method), 1973

inv() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2843

inv_lex_less() (sage.combinat.words.finite_word.FiniteWord_class
method), 3494

invariant_degree() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2624

invariant_form() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2372

invariant_form_standardization()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup

method), 2373
invariant_subspace_generating_function() (in

module sage.combinat.similarity_class_type),
3002

invariant_subspace_generating_function()
(sage.combinat.similarity_class_type.PrimarySimilarityClassType
method), 2994

invariant_subspace_generating_function()
(sage.combinat.similarity_class_type.SimilarityClassType
method), 2997

inverse() (sage.combinat.affine_permutation.AffinePermutation
method), 27

inverse() (sage.combinat.colored_permutations.ColoredPermutation
method), 243

inverse() (sage.combinat.colored_permutations.SignedPermutation
method), 250

inverse() (sage.combinat.permutation.Permutation
method), 1771

inverse() (sage.combinat.permutation.StandardPermutations_n.Element
method), 1813

inverse() (sage.combinat.root_system.fundamental_group.FundamentalGroupElement
method), 2572

inverse() (sage.combinat.tableau_tuple.RowStandardTableauTuple
method), 3355

inverse_automorphism()
(sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotion
method), 339

inverse_matrix() (sage.combinat.e_one_star.E1Star
method), 822

inversion_number() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 57

inversion_number() (sage.combinat.tableau.Tableau
method), 3312

inversion_pairs() (sage.combinat.ribbon_tableau.MultiSkewTableau
method), 2059

inversions() (sage.combinat.permutation.Permutation
method), 1772

inversions() (sage.combinat.ribbon_tableau.MultiSkewTableau
method), 2059

inversions() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2843

inversions() (sage.combinat.tableau.Tableau method),
3312

inversions() (sage.combinat.words.finite_word.FiniteWord_class
method), 3494

invert() (sage.combinat.species.series.LazyPowerSeries
method), 3170

involution_permutation_triple()
(sage.combinat.diagram_algebras.BrauerDiagram
method), 738

irr_repr() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2628

irreducible_character_basis (class in
sage.combinat.sf.character), 2743

3772 Index

Combinatorics, Release 9.7

irreducible_character_freudenthal() (in module
sage.combinat.root_system.weyl_characters),
2633

irreducible_components()
(sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Irreducible
method), 231

irreducible_components()
(sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Reducible
method), 232

irreducible_components()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2374

irreducible_symmetric_group_character()
(sage.combinat.sf.sf.SymmetricFunctions
method), 2891

IrreducibleComplexReflectionGroup (class in
sage.combinat.root_system.reflection_group_complex),
2384

IrreducibleComplexReflectionGroup.Element
(class in sage.combinat.root_system.reflection_group_complex),
2384

IrreducibleRealReflectionGroup (class in
sage.combinat.root_system.reflection_group_real),
2387

IrreducibleRealReflectionGroup.Element (class
in sage.combinat.root_system.reflection_group_real),
2387

is_a() (in module sage.combinat.dyck_word), 815
is_a() (in module sage.combinat.non_decreasing_parking_function),

1508
is_a() (in module sage.combinat.parking_functions),

1584
is_acyclic() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 171
is_acyclic() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver

method), 210
is_admissible() (sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement

method), 356
is_affine() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract

method), 234
is_affine() (sage.combinat.root_system.cartan_matrix.CartanMatrix

method), 2193
is_affine() (sage.combinat.root_system.cartan_type.CartanType_abstract

method), 2221
is_affine() (sage.combinat.root_system.cartan_type.CartanType_affine

method), 2229
is_affine() (sage.combinat.root_system.cartan_type.CartanType_decorator

method), 2237
is_affine() (sage.combinat.root_system.cartan_type.CartanType_finite

method), 2237
is_affine() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix

method), 2248
is_affine() (sage.combinat.root_system.coxeter_type.CoxeterType

method), 2256

is_affine() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType
method), 2260

is_affine() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2266

is_affine() (sage.combinat.root_system.type_A_infinity.CartanType
method), 2485

is_affine() (sage.combinat.root_system.type_reducible.CartanType
method), 2594

is_affine() (sage.combinat.root_system.type_super_A.CartanType
method), 2477

is_affine_grassmannian()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2560

is_antichain_of_poset()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1846

is_antichain_of_poset()
(sage.combinat.posets.posets.FinitePoset
method), 1974

is_area_sequence() (in module
sage.combinat.dyck_word), 816

is_arithmetic() (sage.combinat.binary_recurrence_sequences.BinaryRecurrenceSequence
method), 69

is_atomic() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1877

is_atomic() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2221

is_atomic() (sage.combinat.root_system.type_D.CartanType
method), 2502

is_atomic() (sage.combinat.set_partition.SetPartition
method), 2707

is_Automaton() (in module
sage.combinat.finite_state_machine), 976

is_available() (sage.combinat.designs.orthogonal_arrays.OAMainFunctions
static method), 689

is_balanced() (sage.combinat.words.finite_word.FiniteWord_class
method), 3494

is_ball() (sage.combinat.subword_complex.SubwordComplex
method), 3218

is_berge_cyclic() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 671

is_bipartite() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 172

is_bipartite() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 210

is_bitrade() (in module sage.combinat.matrices.latin),
1320

is_borcherds_cartan_matrix() (in module
sage.combinat.root_system.cartan_matrix),
2198

is_bounded() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1846

is_bounded() (sage.combinat.posets.posets.FinitePoset
method), 1974

Index 3773

Combinatorics, Release 9.7

is_cadence() (sage.combinat.words.finite_word.FiniteWord_class
method), 3495

is_canonical() (in module
sage.combinat.enumeration_mod_permgroup),
835

is_canonical() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All
method), 1154

is_canonical() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints
method), 1158

is_chain() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1846

is_chain() (sage.combinat.posets.posets.FinitePoset
method), 1974

is_chain_of_poset()
(sage.combinat.posets.posets.FinitePoset
method), 1975

is_chevie_available() (in module
sage.combinat.root_system.reflection_group_real),
2395

is_christoffel() (sage.combinat.words.finite_word.FiniteWord_class
method), 3495

is_closed() (sage.combinat.words.paths.FiniteWordPath_all
method), 3589

is_closed() (sage.combinat.words.paths.FiniteWordPath_square_grid
method), 3598

is_coatomic() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1878

is_column_increasing()
(sage.combinat.tableau.Tableau method),
3313

is_column_strict() (sage.combinat.tableau.Tableau
method), 3313

is_column_strict() (sage.combinat.tableau_tuple.TableauTuple
method), 3375

is_column_strict_with_weight()
(sage.combinat.k_tableau.StrongTableau
method), 1219

is_commutative() (sage.combinat.chas.wqsym.WQSymBases.ParentMethods
method), 139

is_commutative() (sage.combinat.descent_algebra.DescentAlgebraBases.ParentMethods
method), 566

is_commutative() (sage.combinat.fqsym.FQSymBases.ParentMethods
method), 1003

is_commutative() (sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2959

is_complemented() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1847

is_complemented() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1879

is_completable() (sage.combinat.matrices.latin.LatinSquare
method), 1309

is_complete() (sage.combinat.binary_tree.BinaryTree
method), 80

is_complete() (sage.combinat.dyck_word.DyckWord

method), 784
is_complete() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 930
is_completed() (sage.combinat.knutson_tao_puzzles.PuzzleFilling

method), 1271
is_compound() (sage.combinat.root_system.cartan_type.CartanType_abstract

method), 2221
is_congruence_normal()

(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1847

is_conjugate_with()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3495

is_connected() (sage.combinat.constellation.Constellation_class
method), 320

is_connected() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 672

is_connected() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 930

is_connected() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1171

is_connected() (sage.combinat.posets.posets.FinitePoset
method), 1975

is_connected() (sage.combinat.skew_partition.SkewPartition
method), 3020

is_constant() (sage.combinat.species.stream.Stream_class
method), 3183

is_constructible_by_doublings()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1879

is_convex_subset() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1847

is_core() (sage.combinat.partition.Partition method),
1638

is_cosectionally_complemented()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1880

is_covering() (sage.combinat.designs.covering_design.CoveringDesign
method), 596

is_coxeter_element()
(sage.combinat.root_system.reflection_group_complex.IrreducibleComplexReflectionGroup.Element
method), 2384

is_crystallographic()
(sage.combinat.affine_permutation.AffinePermutationGroupGeneric
method), 32

is_crystallographic()
(sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2193

is_crystallographic()
(sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2221

is_crystallographic()
(sage.combinat.root_system.cartan_type.CartanType_crystallographic
method), 2235

3774 Index

Combinatorics, Release 9.7

is_crystallographic()
(sage.combinat.root_system.cartan_type.CartanType_decorator
method), 2237

is_crystallographic()
(sage.combinat.root_system.coxeter_matrix.CoxeterMatrix
method), 2249

is_crystallographic()
(sage.combinat.root_system.coxeter_type.CoxeterType
method), 2256

is_crystallographic()
(sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType
method), 2260

is_crystallographic()
(sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2266

is_crystallographic()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2374

is_crystallographic()
(sage.combinat.root_system.type_A_infinity.CartanType
method), 2485

is_CSPP() (sage.combinat.plane_partition.PlanePartition
method), 1602

is_CSSCPP() (sage.combinat.plane_partition.PlanePartition
method), 1602

is_CSTCPP() (sage.combinat.plane_partition.PlanePartition
method), 1602

is_cube() (sage.combinat.words.finite_word.FiniteWord_class
method), 3496

is_cube_free() (sage.combinat.words.finite_word.FiniteWord_class
method), 3496

is_d_complete() (sage.combinat.posets.posets.FinitePoset
method), 1976

is_debruijn_sequence() (in module
sage.combinat.debruijn_sequence), 551

is_degenerate() (sage.combinat.binary_recurrence_sequences.BinaryRecurrenceSequence
method), 69

is_derangement() (sage.combinat.permutation.Permutation
method), 1772

is_deterministic() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 930

is_dexter() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1171

is_difference_family() (in module
sage.combinat.designs.difference_family),
643

is_difference_matrix() (in module
sage.combinat.designs.designs_pyx), 632

is_disjoint() (in module
sage.combinat.matrices.latin), 1321

is_dismantlable() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1881

is_distributive() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1882

is_dominant() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2417

is_dominant() (sage.combinat.root_system.weight_space.WeightSpaceElement
method), 2614

is_dominant_weight()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2418

is_dominant_weight()
(sage.combinat.root_system.type_super_A.AmbientSpace.Element
method), 2472

is_double_root_free()
(sage.combinat.subword_complex.SubwordComplex
method), 3218

is_EL_labelling() (sage.combinat.posets.posets.FinitePoset
method), 1973

is_elementary_symmetric()
(sage.combinat.diagram_algebras.BrauerDiagram
method), 739

is_elliptic() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract
method), 234

is_embedding() (sage.combinat.crystals.affine_factorization.FactorizationToTableaux
method), 346

is_embedding() (sage.combinat.crystals.kirillov_reshetikhin.CrystalDiagramAutomorphism
method), 417

is_empty() (sage.combinat.binary_tree.BinaryTree
method), 81

is_empty() (sage.combinat.constellation.Constellations_ld
method), 325

is_empty() (sage.combinat.ordered_tree.OrderedTree
method), 1525

is_empty() (sage.combinat.partition.Partition method),
1638

is_empty() (sage.combinat.rooted_tree.RootedTree
method), 2664

is_empty() (sage.combinat.words.abstract_word.Word_class
method), 3452

is_empty() (sage.combinat.words.finite_word.FiniteWord_class
method), 3497

is_empty() (sage.combinat.words.morphism.WordMorphism
method), 3558

is_empty() (sage.combinat.words.word_char.WordDatatype_char
method), 3627

is_empty_column() (sage.combinat.matrices.latin.LatinSquare
method), 1309

is_empty_row() (sage.combinat.matrices.latin.LatinSquare
method), 1310

is_endomorphism() (sage.combinat.words.morphism.WordMorphism
method), 3558

is_equivalent() (sage.combinat.finite_state_machine.Automaton
method), 869

is_equivalent_to() (sage.combinat.crystals.pbw_datum.PBWDatum
method), 513

is_erasing() (sage.combinat.words.morphism.WordMorphism
method), 3559

Index 3775

Combinatorics, Release 9.7

is_eulerian() (sage.combinat.posets.posets.FinitePoset
method), 1976

is_even() (sage.combinat.permutation.Permutation
method), 1772

is_exact() (sage.combinat.free_module.CombinatorialFreeModule
method), 1018

is_exceptional() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1171

is_extended() (sage.combinat.root_system.type_affine.AmbientSpace
method), 2530

is_extended() (sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2605

is_extended() (sage.combinat.root_system.weight_space.WeightSpace
method), 2612

is_extremal() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1883

is_factor() (sage.combinat.words.finite_word.FiniteWord_class
method), 3497

is_field() (sage.combinat.chas.wqsym.WQSymBases.ParentMethods
method), 139

is_field() (sage.combinat.descent_algebra.DescentAlgebraBases.ParentMethods
method), 566

is_field() (sage.combinat.fqsym.FQSymBases.ParentMethods
method), 1003

is_field() (sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2959

is_final (sage.combinat.finite_state_machine.FSMState
attribute), 888

is_final_interval()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1172

is_finer() (sage.combinat.composition.Composition
method), 295

is_finer() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1335

is_finer() (sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2734

is_finite() (sage.combinat.cartesian_product.CartesianProduct_iters
method), 121

is_finite() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 172

is_finite() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 210

is_finite() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract
method), 234

is_finite() (sage.combinat.combinat.CombinatorialClass
method), 255

is_finite() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2193

is_finite() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2222

is_finite() (sage.combinat.root_system.cartan_type.CartanType_affine
method), 2229

is_finite() (sage.combinat.root_system.cartan_type.CartanType_decorator

method), 2237
is_finite() (sage.combinat.root_system.cartan_type.CartanType_finite

method), 2237
is_finite() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix

method), 2249
is_finite() (sage.combinat.root_system.coxeter_type.CoxeterType

method), 2256
is_finite() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType

method), 2260
is_finite() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class

method), 2266
is_finite() (sage.combinat.root_system.root_system.RootSystem

method), 2468
is_finite() (sage.combinat.root_system.type_A_infinity.CartanType

method), 2485
is_finite() (sage.combinat.root_system.type_reducible.CartanType

method), 2594
is_finite() (sage.combinat.root_system.type_super_A.CartanType

method), 2478
is_finite() (sage.combinat.species.series.LazyPowerSeries

method), 3170
is_finite() (sage.combinat.words.abstract_word.Word_class

method), 3452
is_finite() (sage.combinat.words.finite_word.FiniteWord_class

method), 3497
is_FiniteStateMachine() (in module

sage.combinat.finite_state_machine), 976
is_flat() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino

method), 1552
is_FSMProcessIterator() (in module

sage.combinat.finite_state_machine), 976
is_FSMState() (in module

sage.combinat.finite_state_machine), 976
is_FSMTransition() (in module

sage.combinat.finite_state_machine), 976
is_full() (sage.combinat.binary_tree.BinaryTree

method), 81
is_full() (sage.combinat.words.finite_word.FiniteWord_class

method), 3497
is_fully_commutative()

(sage.combinat.affine_permutation.AffinePermutationTypeA
method), 36

is_fully_commutative()
(sage.combinat.fully_commutative_elements.FullyCommutativeElement
method), 844

is_gale_ryser() (in module
sage.combinat.integer_vector), 1147

is_generalized_cartan_matrix() (in module
sage.combinat.root_system.cartan_matrix),
2198

is_generalized_quadrangle()
(sage.combinat.designs.incidence_structures.IncidenceStructure
method), 672

is_geometric() (sage.combinat.binary_recurrence_sequences.BinaryRecurrenceSequence

3776 Index

Combinatorics, Release 9.7

method), 70
is_geometric() (sage.combinat.posets.lattices.FiniteLatticePoset

method), 1883
is_gequal() (sage.combinat.posets.hasse_diagram.HasseDiagram

method), 1848
is_gequal() (sage.combinat.posets.posets.FinitePoset

method), 1977
is_GQ_with_spread() (in module

sage.combinat.designs.gen_quadrangles_with_spread),
662

is_graded() (sage.combinat.posets.posets.FinitePoset
method), 1977

is_grassmannian() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2561

is_greater_than() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1848

is_greater_than() (sage.combinat.posets.posets.FinitePoset
method), 1978

is_greedy() (sage.combinat.posets.linear_extensions.LinearExtensionOfPoset
method), 1915

is_greedy() (sage.combinat.posets.posets.FinitePoset
method), 1978

is_group_divisible_design() (in module
sage.combinat.designs.designs_pyx), 633

is_growing() (sage.combinat.words.morphism.WordMorphism
method), 3559

is_h_regular() (sage.combinat.root_system.reflection_group_complex.IrreducibleComplexReflectionGroup.Element
method), 2385

is_hadamard_matrix() (in module
sage.combinat.matrices.hadamard_matrix),
1294

is_highest_weight()
(sage.combinat.shifted_primed_tableau.CrystalElementShiftedPrimedTableau
method), 2975

is_hyperbolic() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2194

is_i_grassmannian()
(sage.combinat.affine_permutation.AffinePermutation
method), 27

is_identity() (sage.combinat.words.morphism.WordMorphism
method), 3560

is_imaginary_root()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2418

is_implemented() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2222

is_in_classP() (sage.combinat.words.morphism.WordMorphism
method), 3560

is_in_south_edge() (sage.combinat.knutson_tao_puzzles.PuzzleFilling
method), 1272

is_incomparable_chain_free()
(sage.combinat.posets.posets.FinitePoset
method), 1979

is_increasing() (sage.combinat.tableau.Tableau

method), 3314
is_indecomposable()

(sage.combinat.interval_posets.TamariIntervalPoset
method), 1172

is_indecomposable()
(sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2194

is_indefinite() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2194

is_induced_subposet()
(sage.combinat.posets.posets.FinitePoset
method), 1980

is_infinitely_modern()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1172

is_initial_interval()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1173

is_injective() (sage.combinat.words.morphism.WordMorphism
method), 3561

is_integral() (sage.combinat.path_tableaux.frieze.FriezePattern
method), 1590

is_integral() (sage.combinat.path_tableaux.semistandard.SemistandardPathTableau
method), 1599

is_integral_domain()
(sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2959

is_interval_dismantlable()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1884

is_involution() (sage.combinat.words.morphism.WordMorphism
method), 3561

is_irreducible() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract
method), 234

is_irreducible() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2222

is_irreducible() (sage.combinat.root_system.cartan_type.CartanType_decorator
method), 2237

is_irreducible() (sage.combinat.root_system.cartan_type.CartanType_simple
method), 2238

is_irreducible() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix
method), 2249

is_irreducible() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType
method), 2260

is_irreducible() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2267

is_irreducible() (sage.combinat.root_system.root_system.RootSystem
method), 2468

is_irreducible() (sage.combinat.root_system.type_Q.CartanType
method), 2525

is_irreducible() (sage.combinat.root_system.type_reducible.CartanType
method), 2594

is_irreducible() (sage.combinat.root_system.type_super_A.CartanType
method), 2478

Index 3777

Combinatorics, Release 9.7

is_irreducible() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2624

is_isoform() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1884

is_isomorphic() (sage.combinat.constellation.Constellation_class
method), 320

is_isomorphic() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 672

is_isomorphic() (sage.combinat.posets.posets.FinitePoset
method), 1980

is_isomorphic() (sage.combinat.species.structure.GenericSpeciesStructure
method), 3186

is_isomorphism() (sage.combinat.crystals.affine_factorization.FactorizationToTableaux
method), 347

is_isomorphism() (sage.combinat.crystals.kirillov_reshetikhin.CrystalDiagramAutomorphism
method), 417

is_join_distributive()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1885

is_join_pseudocomplemented()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1886

is_join_semidistributive()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1886

is_join_semilattice()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1849

is_join_semilattice()
(sage.combinat.posets.posets.FinitePoset
method), 1980

is_jump_critical() (sage.combinat.posets.posets.FinitePoset
method), 1981

is_k_bounded() (sage.combinat.partition.Partition
method), 1639

is_k_directed() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1553

is_k_irreducible() (sage.combinat.partition.Partition
method), 1639

is_k_reducible() (sage.combinat.partition.Partition
method), 1639

is_k_tableau() (sage.combinat.skew_tableau.SkewTableau
method), 3036

is_k_tableau() (sage.combinat.tableau.Tableau
method), 3314

is_key_tableau() (sage.combinat.tableau.Tableau
method), 3314

is_latin_square() (sage.combinat.matrices.latin.LatinSquare
method), 1310

is_LeeLiZel_allowable() (in module
sage.combinat.cluster_algebra_quiver.cluster_seed),
201

is_left_modular_element()
(sage.combinat.posets.lattices.FiniteLatticePoset

method), 1887
is_lequal() (sage.combinat.posets.hasse_diagram.HasseDiagram

method), 1849
is_lequal() (sage.combinat.posets.posets.FinitePoset

method), 1981
is_less_than() (sage.combinat.posets.hasse_diagram.HasseDiagram

method), 1849
is_less_than() (sage.combinat.posets.posets.FinitePoset

method), 1982
is_less_than() (sage.combinat.set_partition.SetPartitions

method), 2724
is_linear_extension()

(sage.combinat.interval_posets.TamariIntervalPoset
method), 1173

is_linear_extension()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1850

is_linear_extension()
(sage.combinat.posets.posets.FinitePoset
method), 1982

is_linear_interval()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1850

is_linear_interval()
(sage.combinat.posets.posets.FinitePoset
method), 1983

is_long_root() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2419

is_lorentzian() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2195

is_lower_semimodular()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1887

is_lyndon() (sage.combinat.words.finite_word.FiniteWord_class
method), 3498

is_Markov_chain() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 928

is_meet_distributive()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1888

is_meet_semidistributive()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1889

is_meet_semilattice()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1850

is_meet_semilattice()
(sage.combinat.posets.posets.FinitePoset
method), 1983

is_modern() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1173

is_modular() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1889

is_modular_element()

3778 Index

Combinatorics, Release 9.7

(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1890

is_monochromatic() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 931

is_mutable() (sage.combinat.constellation.Constellation_class
method), 321

is_mutation_finite() (in module
sage.combinat.cluster_algebra_quiver.mutation_type),
202

is_mutation_finite()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 172

is_mutation_finite()
(sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 211

is_mutation_finite()
(sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract
method), 235

is_new() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1174

is_non_attacking() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2844

is_noncrossing() (sage.combinat.set_partition.SetPartition
method), 2707

is_nonnesting() (sage.combinat.set_partition.SetPartition
method), 2708

is_number_of_the_third_kind()
(sage.combinat.sloane_functions.A111774
method), 3129

is_one() (sage.combinat.affine_permutation.AffinePermutation
method), 27

is_orthocomplemented()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1891

is_orthogonal_array() (in module
sage.combinat.designs.designs_pyx), 633

is_overlap() (sage.combinat.skew_partition.SkewPartition
method), 3020

is_overlap() (sage.combinat.words.finite_word.FiniteWord_class
method), 3499

is_P_edge() (sage.combinat.growth.RuleBinaryWord
method), 1083

is_P_edge() (sage.combinat.growth.RuleDomino
method), 1088

is_P_edge() (sage.combinat.growth.RuleLLMS
method), 1091

is_P_edge() (sage.combinat.growth.RuleShiftedShapes
method), 1099

is_P_edge() (sage.combinat.growth.RuleSylvester
method), 1104

is_P_edge() (sage.combinat.growth.RuleYoungFibonacci
method), 1106

is_pairwise_balanced_design() (in module
sage.combinat.designs.designs_pyx), 634

is_palindrome() (sage.combinat.words.finite_word.FiniteWord_class
method), 3499

is_parabolic_root()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2419

is_parent_of() (sage.combinat.posets.posets.FinitePoset
method), 1984

is_partial_latin_square()
(sage.combinat.matrices.latin.LatinSquare
method), 1310

is_perfect() (sage.combinat.binary_tree.BinaryTree
method), 82

is_perfect() (sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths
method), 487

is_permutation() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 57

is_planar() (in module
sage.combinat.diagram_algebras), 770

is_planar() (in module
sage.combinat.partition_algebra), 1695

is_planar() (sage.combinat.diagram_algebras.AbstractPartitionDiagram
method), 734

is_planar() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1891

is_poset() (in module sage.combinat.posets.posets),
2026

is_positive() (sage.combinat.path_tableaux.frieze.FriezePattern
method), 1590

is_positive_root() (sage.combinat.root_system.ambient_space.AmbientSpaceElement
method), 2162

is_positive_root() (sage.combinat.root_system.root_space.RootSpaceElement
method), 2457

is_powerful() (sage.combinat.sloane_functions.A001694
method), 3094

is_prefix() (sage.combinat.words.finite_word.FiniteWord_class
method), 3500

is_prefix() (sage.combinat.words.word_datatypes.WordDatatype_str
method), 3631

is_primary_bitrade() (in module
sage.combinat.matrices.latin), 1321

is_primed() (sage.combinat.shifted_primed_tableau.PrimedEntry
method), 2977

is_primitive() (sage.combinat.words.finite_word.FiniteWord_class
method), 3500

is_primitive() (sage.combinat.words.morphism.WordMorphism
method), 3562

is_projective_plane() (in module
sage.combinat.designs.designs_pyx), 634

is_prolongable() (sage.combinat.words.morphism.WordMorphism
method), 3562

is_proper_prefix() (sage.combinat.words.finite_word.FiniteWord_class
method), 3501

is_proper_suffix() (sage.combinat.words.finite_word.FiniteWord_class
method), 3501

Index 3779

Combinatorics, Release 9.7

is_pseudocomplemented()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1892

is_pure() (sage.combinat.subword_complex.SubwordComplex
method), 3219

is_pushy() (sage.combinat.words.morphism.WordMorphism
method), 3563

is_Q_edge() (sage.combinat.growth.RuleBinaryWord
method), 1083

is_Q_edge() (sage.combinat.growth.RuleDomino
method), 1088

is_Q_edge() (sage.combinat.growth.RuleLLMS
method), 1092

is_Q_edge() (sage.combinat.growth.RuleShiftedShapes
method), 1099

is_Q_edge() (sage.combinat.growth.RuleSylvester
method), 1104

is_Q_edge() (sage.combinat.growth.RuleYoungFibonacci
method), 1107

is_quasi_difference_matrix() (in module
sage.combinat.designs.designs_pyx), 635

is_quasigeometric()
(sage.combinat.binary_recurrence_sequences.BinaryRecurrenceSequence
method), 70

is_quasiperiodic() (sage.combinat.words.finite_word.FiniteWord_class
method), 3501

is_rank_symmetric()
(sage.combinat.posets.posets.FinitePoset
method), 1984

is_ranked() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1851

is_ranked() (sage.combinat.posets.posets.FinitePoset
method), 1984

is_real_root() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2419

is_rectangular() (sage.combinat.growth.GrowthDiagram
method), 1077

is_rectangular() (sage.combinat.tableau.Tableau
method), 3314

is_reducible() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2222

is_reducible() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType
method), 2260

is_regular() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 673

is_regular() (sage.combinat.partition.Partition
method), 1640

is_regular() (sage.combinat.partition_kleshchev.KleshchevPartition
method), 1702

is_regular() (sage.combinat.partition_kleshchev.KleshchevPartitionTuple
method), 1706

is_regular() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1893

is_regular() (sage.combinat.root_system.reflection_group_complex.IrreducibleComplexReflectionGroup.Element

method), 2385
is_regular() (sage.combinat.similarity_class_type.SimilarityClassType

method), 2997
is_regular_twograph()

(sage.combinat.designs.twographs.TwoGraph
method), 730

is_relatively_complemented()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1893

is_repetitive() (sage.combinat.words.morphism.WordMorphism
method), 3563

is_resolvable() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 673

is_restricted() (sage.combinat.partition.Partition
method), 1640

is_restricted() (sage.combinat.partition_kleshchev.KleshchevPartition
method), 1702

is_restricted() (sage.combinat.partition_kleshchev.KleshchevPartitionTuple
method), 1707

is_ribbon() (sage.combinat.skew_partition.SkewPartition
method), 3020

is_ribbon() (sage.combinat.skew_tableau.SkewTableau
method), 3036

is_rich() (sage.combinat.words.finite_word.FiniteWord_class
method), 3501

is_root_independent()
(sage.combinat.subword_complex.SubwordComplex
method), 3219

is_row_and_col_balanced() (in module
sage.combinat.matrices.latin), 1321

is_row_increasing() (sage.combinat.tableau.Tableau
method), 3315

is_row_strict() (sage.combinat.tableau.Tableau
method), 3315

is_row_strict() (sage.combinat.tableau_tuple.TableauTuple
method), 3375

is_same_shape() (in module
sage.combinat.matrices.latin), 1321

is_schur_positive()
(sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ElementMethods
method), 2831

is_schur_positive()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2927

is_SCPP() (sage.combinat.plane_partition.PlanePartition
method), 1602

is_sectionally_complemented()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1894

is_self_composable()
(sage.combinat.words.morphism.WordMorphism
method), 3564

is_semidistributive()
(sage.combinat.posets.lattices.FiniteLatticePoset

3780 Index

Combinatorics, Release 9.7

method), 1895
is_semisimple() (sage.combinat.similarity_class_type.SimilarityClassType

method), 2997
is_semistandard() (sage.combinat.skew_tableau.SkewTableau

method), 3037
is_semistandard() (sage.combinat.tableau.Tableau

method), 3315
is_series_parallel()

(sage.combinat.posets.posets.FinitePoset
method), 1984

is_short_root() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2419

is_simple() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 674

is_simple() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1174

is_simple() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1896

is_simple() (sage.combinat.words.paths.FiniteWordPath_all
method), 3589

is_simple() (sage.combinat.words.paths.FiniteWordPath_square_grid
method), 3598

is_simple_object() (sage.combinat.root_system.fusion_ring.FusionRing.Element
method), 2638

is_simply_laced() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract
method), 235

is_simply_laced() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2195

is_simply_laced() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2223

is_simply_laced() (sage.combinat.root_system.cartan_type.CartanType_simply_laced
method), 2238

is_simply_laced() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix
method), 2249

is_simply_laced() (sage.combinat.root_system.coxeter_type.CoxeterType
method), 2257

is_simply_laced() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType
method), 2261

is_simply_laced() (sage.combinat.root_system.type_A_infinity.CartanType
method), 2485

is_simply_laced() (sage.combinat.root_system.type_Q.CartanType
method), 2526

is_skew() (sage.combinat.path_tableaux.dyck_path.DyckPath
method), 1586

is_skew() (sage.combinat.path_tableaux.frieze.FriezePattern
method), 1590

is_skew() (sage.combinat.path_tableaux.semistandard.SemistandardPathTableau
method), 1599

is_skew_symmetric()
(sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract
method), 235

is_slender() (sage.combinat.posets.posets.FinitePoset
method), 1985

is_smooth_prefix() (sage.combinat.words.finite_word.FiniteWord_class

method), 3502
is_sperner() (sage.combinat.posets.posets.FinitePoset

method), 1985
is_sphere() (sage.combinat.subword_complex.SubwordComplex

method), 3219
is_SPP() (sage.combinat.plane_partition.PlanePartition

method), 1603
is_spread() (sage.combinat.designs.incidence_structures.IncidenceStructure

method), 675
is_square() (sage.combinat.words.finite_word.FiniteWord_class

method), 3503
is_square() (sage.combinat.words.word_char.WordDatatype_char

method), 3627
is_square_free() (sage.combinat.words.finite_word.FiniteWord_class

method), 3503
is_SSCPP() (sage.combinat.plane_partition.PlanePartition

method), 1603
is_standard() (sage.combinat.composition_tableau.CompositionTableau

method), 312
is_standard() (sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau

method), 2978
is_standard() (sage.combinat.skew_tableau.SkewTableau

method), 3038
is_standard() (sage.combinat.super_tableau.StandardSuperTableau

method), 3230
is_standard() (sage.combinat.tableau.StandardTableau

method), 3293
is_standard() (sage.combinat.tableau.Tableau

method), 3315
is_standard() (sage.combinat.tableau_tuple.TableauTuple

method), 3375
is_stone() (sage.combinat.posets.lattices.FiniteLatticePoset

method), 1896
is_strict() (sage.combinat.crystals.kirillov_reshetikhin.CrystalDiagramAutomorphism

method), 418
is_strict() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern

method), 1056
is_strict_refinement()

(sage.combinat.set_partition.SetPartitions
method), 2725

is_strongly_finer()
(sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2735

is_sturmian_factor()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3503

is_subdirectly_reducible()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1897

is_sublattice() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1898

is_sublattice_dismantlable()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1898

Index 3781

Combinatorics, Release 9.7

is_subword_of() (sage.combinat.words.finite_word.FiniteWord_class
method), 3504

is_suffix() (sage.combinat.words.finite_word.FiniteWord_class
method), 3505

is_suffix() (sage.combinat.words.word_datatypes.WordDatatype_str
method), 3631

is_suitable() (sage.combinat.tiling.TilingSolver
method), 3406

is_supersolvable() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1899

is_surjective() (sage.combinat.crystals.affine_factorization.FactorizationToTableaux
method), 347

is_surjective() (sage.combinat.crystals.kirillov_reshetikhin.CrystalDiagramAutomorphism
method), 418

is_symmetric() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods
method), 1437

is_symmetric() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial.Element
method), 1455

is_symmetric() (sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w.Element
method), 1483

is_symmetric() (sage.combinat.partition.Partition
method), 1640

is_symmetric() (sage.combinat.words.finite_word.FiniteWord_class
method), 3505

is_SymmetricFunction() (in module
sage.combinat.sf.sfa), 2964

is_SymmetricFunctionAlgebra() (in module
sage.combinat.sf.sfa), 2964

is_synchronized() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1174

is_t_design() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 675

is_tangent() (sage.combinat.words.finite_word.FiniteWord_class
method), 3505

is_tangent() (sage.combinat.words.paths.FiniteWordPath_all
method), 3590

is_TCPP() (sage.combinat.plane_partition.PlanePartition
method), 1603

is_Transducer() (in module
sage.combinat.finite_state_machine), 976

is_translation() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2561

is_transversal_design() (in module
sage.combinat.designs.orthogonal_arrays),
698

is_trim() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1900

is_trivial_zero() (sage.combinat.recognizable_series.RecognizableSeries
method), 2047

is_TSPP() (sage.combinat.plane_partition.PlanePartition
method), 1604

is_TSSCPP() (sage.combinat.plane_partition.PlanePartition
method), 1604

is_twograph() (in module

sage.combinat.designs.twographs), 731
is_unboundedly_repetitive()

(sage.combinat.words.morphism.WordMorphism
method), 3564

is_uniform() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 677

is_uniform() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1900

is_uniform() (sage.combinat.words.morphism.WordMorphism
method), 3565

is_uniquely_completable()
(sage.combinat.matrices.latin.LatinSquare
method), 1310

is_unit() (sage.combinat.posets.incidence_algebras.IncidenceAlgebra.Element
method), 1862

is_unit() (sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra.Element
method), 1865

is_unprimed() (sage.combinat.shifted_primed_tableau.PrimedEntry
method), 2977

is_untwisted_affine()
(sage.combinat.root_system.cartan_type.CartanType_affine
method), 2229

is_untwisted_affine()
(sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine
method), 2242

is_untwisted_affine()
(sage.combinat.root_system.type_A_infinity.CartanType
method), 2486

is_untwisted_affine()
(sage.combinat.root_system.type_marked.CartanType_affine
method), 2588

is_untwisted_affine()
(sage.combinat.root_system.type_relabel.CartanType_affine
method), 2598

is_upper_semimodular()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1901

is_vertex() (sage.combinat.subword_complex.SubwordComplexFacet
method), 3224

is_vertically_decomposable()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1901

is_weighted() (sage.combinat.species.species.GenericCombinatorialSpecies
method), 3180

is_well_generated()
(sage.combinat.colored_permutations.ColoredPermutations
method), 248

is_yamanouchi() (sage.combinat.words.finite_word.FiniteWord_class
method), 3506

is_zero() (sage.combinat.species.series.LazyPowerSeries
method), 3171

ishift() (sage.combinat.permutation.Permutation
method), 1772

isobaric_divided_difference_on_basis()

3782 Index

Combinatorics, Release 9.7

(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2407

isometric_copies() (sage.combinat.tiling.Polyomino
method), 3397

isometric_copies_intersection()
(sage.combinat.tiling.Polyomino method),
3397

isomorphic_sublattices_iterator()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1902

isomorphic_subposets()
(sage.combinat.posets.posets.FinitePoset
method), 1986

isomorphic_subposets_iterator()
(sage.combinat.posets.posets.FinitePoset
method), 1986

isomorphic_substructures_iterator()
(sage.combinat.designs.incidence_structures.IncidenceStructure
method), 677

isomorphism_representatives()
(sage.combinat.constellation.Constellations_p
method), 326

isotopism() (in module sage.combinat.matrices.latin),
1322

isotype_generating_series()
(sage.combinat.species.generating_series.CycleIndexSeries
method), 3147

isotype_generating_series()
(sage.combinat.species.species.GenericCombinatorialSpecies
method), 3180

isotypes() (sage.combinat.species.species.GenericCombinatorialSpecies
method), 3181

IsotypesWrapper (class in
sage.combinat.species.structure), 3187

iswitch() (sage.combinat.permutation.Permutation
method), 1773

itensor() (sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.ElementMethods
method), 1364

itensor() (sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.ParentMethods
method), 1369

itensor() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2927

iter_final_states()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 931

iter_initial_states()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 931

iter_morphisms() (sage.combinat.words.words.FiniteWords
method), 3655

iter_process() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 932

iter_states() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 934

iter_transitions() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 934

IterableFunctionCall (class in sage.combinat.misc),
1328

iterate_by_length()
(sage.combinat.words.words.FiniteOrInfiniteWords
method), 3654

iterate_by_length()
(sage.combinat.words.words.FiniteWords
method), 3658

iterate_by_length()
(sage.combinat.words.words.Words_n method),
3661

iterate_possible_additions()
(sage.combinat.recognizable_series.PrefixClosedSet
method), 2043

iterate_to_length()
(sage.combinat.fully_commutative_elements.FullyCommutativeElements
method), 849

iterated_left_palindromic_closure()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3507

iterated_right_palindromic_closure()
(sage.combinat.words.abstract_word.Word_class
method), 3452

iteration() (sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2391

iteration() (sage.combinat.root_system.weyl_group.WeylGroup_permutation
method), 2657

iterative_post_order_traversal()
(sage.combinat.abstract_tree.AbstractTree
method), 16

iterative_pre_order_traversal()
(sage.combinat.abstract_tree.AbstractTree
method), 17

iterator() (sage.combinat.permutation.CyclicPermutations
method), 1753

iterator() (sage.combinat.permutation.CyclicPermutationsOfPartition
method), 1754

iterator() (sage.combinat.species.series.LazyPowerSeries
method), 3171

iterator_fast() (in module
sage.combinat.integer_vector_weighted),
1150

J
J() (sage.combinat.sf.jack.Jack method), 2770
J() (sage.combinat.sf.macdonald.Macdonald method),

2808
Jack (class in sage.combinat.sf.jack), 2770
jack() (sage.combinat.sf.sf.SymmetricFunctions

method), 2891
jack_family() (sage.combinat.sf.jack.JackPolynomials_generic

method), 2777

Index 3783

Combinatorics, Release 9.7

JackPolynomials_generic (class in
sage.combinat.sf.jack), 2775

JackPolynomials_generic.Element (class in
sage.combinat.sf.jack), 2775

JackPolynomials_j (class in sage.combinat.sf.jack),
2777

JackPolynomials_j.Element (class in
sage.combinat.sf.jack), 2778

JackPolynomials_p (class in sage.combinat.sf.jack),
2778

JackPolynomials_p.Element (class in
sage.combinat.sf.jack), 2778

JackPolynomials_q (class in sage.combinat.sf.jack),
2779

JackPolynomials_q.Element (class in
sage.combinat.sf.jack), 2780

JackPolynomials_qp (class in sage.combinat.sf.jack),
2780

JackPolynomials_qp.Element (class in
sage.combinat.sf.jack), 2780

jacobi_trudi() (sage.combinat.partition.Partition
method), 1640

jacobi_trudi() (sage.combinat.skew_partition.SkewPartition
method), 3021

jacobian_of_fundamental_invariants()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2374

join() (sage.combinat.composition.Composition
method), 295

join() (sage.combinat.posets.lattices.FiniteJoinSemilattice
method), 1870

join() (sage.combinat.posets.posets.FinitePoset
method), 1987

join_matrix() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1851

join_matrix() (sage.combinat.posets.lattices.FiniteJoinSemilattice
method), 1870

join_primes() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1903

JoinSemilattice() (in module
sage.combinat.posets.lattices), 1911

JoinSemilatticeElement (class in
sage.combinat.posets.elements), 1833

jucys_murphy() (sage.combinat.diagram_algebras.BrauerAlgebra
method), 736

jucys_murphy() (sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_t
method), 3244

jucys_murphy() (sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3255

jucys_murphy_element()
(sage.combinat.diagram_algebras.PartitionAlgebra
method), 757

jump() (sage.combinat.crystals.star_crystal.StarCrystal.Element
method), 525

jump() (sage.combinat.parking_functions.ParkingFunction
method), 1572

jump_count() (sage.combinat.posets.linear_extensions.LinearExtensionOfPoset
method), 1915

jump_list() (sage.combinat.parking_functions.ParkingFunction
method), 1573

jump_number() (sage.combinat.posets.posets.FinitePoset
method), 1987

K
K (sage.combinat.finite_state_machine_generators.TransducerGenerators.RecursionRule

attribute), 991
k (sage.combinat.finite_state_machine_generators.TransducerGenerators.RecursionRule

attribute), 991
k() (sage.combinat.cluster_complex.ClusterComplex

method), 241
k() (sage.combinat.core.Core method), 331
k() (sage.combinat.designs.covering_design.CoveringDesign

method), 596
k_atom() (sage.combinat.partition.Partition method),

1641
K_bender_knuth() (sage.combinat.tableau.IncreasingTableau

method), 3277
k_boundary() (sage.combinat.partition.Partition

method), 1641
k_charge() (sage.combinat.k_tableau.WeakTableau_bounded

method), 1241
k_charge() (sage.combinat.k_tableau.WeakTableau_core

method), 1243
k_charge() (sage.combinat.k_tableau.WeakTableau_factorized_permutation

method), 1247
k_charge_I() (sage.combinat.k_tableau.WeakTableau_core

method), 1243
k_charge_J() (sage.combinat.k_tableau.WeakTableau_core

method), 1244
k_column_lengths() (sage.combinat.partition.Partition

method), 1641
k_conjugate() (sage.combinat.partition.Partition

method), 1642
k_conjugate() (sage.combinat.skew_partition.SkewPartition

method), 3022
K_evacuation() (sage.combinat.tableau.IncreasingTableau

method), 3278
K_grassmannian_pieces() (in module

sage.combinat.knutson_tao_puzzles), 1259
k_interior() (sage.combinat.partition.Partition

method), 1642
k_irreducible() (sage.combinat.partition.Partition

method), 1642
K_k_Schur_non_commutative_variables()

(sage.combinat.sf.new_kschur.K_kSchur
method), 2835

K_kSchur (class in sage.combinat.sf.new_kschur), 2835

3784 Index

Combinatorics, Release 9.7

K_kschur() (sage.combinat.sf.new_kschur.KBoundedSubspace
method), 2828

K_promotion() (sage.combinat.tableau.IncreasingTableau
method), 3278

K_promotion_inverse()
(sage.combinat.tableau.IncreasingTableau
method), 3278

k_rim() (sage.combinat.partition.Partition method),
1643

k_row_lengths() (sage.combinat.partition.Partition
method), 1643

k_size() (sage.combinat.partition.Partition method),
1643

k_skew() (sage.combinat.partition.Partition method),
1644

k_split() (sage.combinat.partition.Partition method),
1644

k_weight() (sage.combinat.tableau.Tableau method),
3316

kappa() (in module sage.combinat.symmetric_group_algebra),
3267

kappa() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1851

kappa_dual() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1852

kappa_preimage() (sage.combinat.subword_complex.SubwordComplexFacet
method), 3225

kappa_preimages() (sage.combinat.subword_complex.SubwordComplex
method), 3220

KashiwaraNakashimaTableaux() (in module
sage.combinat.crystals.kirillov_reshetikhin),
448

kazhdan_lusztig (sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra
attribute), 1927

kazhdan_lusztig_polynomial()
(sage.combinat.posets.posets.FinitePoset
method), 1988

KazhdanLusztigPolynomial (class in
sage.combinat.kazhdan_lusztig), 1255

kbounded_HallLittlewoodP (class in
sage.combinat.sf.k_dual), 2796

KBoundedQuotient (class in sage.combinat.sf.k_dual),
2784

kBoundedQuotient() (sage.combinat.sf.sf.SymmetricFunctions
method), 2892

KBoundedQuotientBases (class in
sage.combinat.sf.k_dual), 2789

KBoundedQuotientBases.ElementMethods (class in
sage.combinat.sf.k_dual), 2789

KBoundedQuotientBases.ParentMethods (class in
sage.combinat.sf.k_dual), 2790

KBoundedQuotientBasis (class in
sage.combinat.sf.k_dual), 2795

KBoundedSubspace (class in

sage.combinat.sf.new_kschur), 2828
kBoundedSubspace() (sage.combinat.sf.sf.SymmetricFunctions

method), 2892
KBoundedSubspaceBases (class in

sage.combinat.sf.new_kschur), 2830
KBoundedSubspaceBases.ElementMethods (class in

sage.combinat.sf.new_kschur), 2830
KBoundedSubspaceBases.ParentMethods (class in

sage.combinat.sf.new_kschur), 2833
keys() (sage.combinat.parallelogram_polyomino.LocalOptions

method), 1540
keys() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors

method), 2273
kfpoly() (in module sage.combinat.sf.kfpoly), 2798
kHallLittlewoodP() (sage.combinat.sf.k_dual.KBoundedQuotient

method), 2787
kHLP() (sage.combinat.sf.k_dual.KBoundedQuotient

method), 2787
kHomogeneous (class in sage.combinat.sf.new_kschur),

2837
khomogeneous() (sage.combinat.sf.new_kschur.KBoundedSubspace

method), 2829
khomogeneous() (sage.combinat.sf.sf.SymmetricFunctions

method), 2893
kink_coordinates() (sage.combinat.knutson_tao_puzzles.PuzzleFilling

method), 1272
kirillov_reshetikhin_crystal()

(sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux
method), 2094

kirillov_reshetikhin_tableaux()
(sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal
method), 452

KirillovReshetikhinCrystal() (in module
sage.combinat.crystals.kirillov_reshetikhin),
449

KirillovReshetikhinCrystal() (in module
sage.combinat.rigged_configurations.rigged_configurations),
2131

KirillovReshetikhinCrystalFromLSPaths() (in
module sage.combinat.crystals.kirillov_reshetikhin),
450

KirillovReshetikhinCrystalFromPromotion (class
in sage.combinat.crystals.kirillov_reshetikhin),
451

KirillovReshetikhinCrystalFromPromotionElement
(class in sage.combinat.crystals.kirillov_reshetikhin),
451

KirillovReshetikhinGenericCrystal (class in
sage.combinat.crystals.kirillov_reshetikhin),
451

KirillovReshetikhinGenericCrystalElement
(class in sage.combinat.crystals.kirillov_reshetikhin),
453

KirillovReshetikhinTableaux (class in

Index 3785

Combinatorics, Release 9.7

sage.combinat.rigged_configurations.kr_tableaux),
2091

KirillovReshetikhinTableauxElement (class in
sage.combinat.rigged_configurations.kr_tableaux),
2096

kirkman_triple_system() (in module
sage.combinat.designs.resolvable_bibd),
580

KL0() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials
method), 2316

kleber_tree() (sage.combinat.rigged_configurations.rigged_configurations.RCNonSimplyLaced
method), 2131

kleber_tree() (sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations
method), 2141

KleberTree (class in sage.combinat.rigged_configurations.kleber_tree),
2079

KleberTreeNode (class in
sage.combinat.rigged_configurations.kleber_tree),
2082

KleberTreeTypeA2Even (class in
sage.combinat.rigged_configurations.kleber_tree),
2083

kleene_star() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 934

KleshchevCrystalMixin (class in
sage.combinat.partition_kleshchev), 1699

KleshchevPartition (class in
sage.combinat.partition_kleshchev), 1700

KleshchevPartitionCrystal (class in
sage.combinat.partition_kleshchev), 1704

KleshchevPartitions (class in
sage.combinat.partition_kleshchev), 1709

KleshchevPartitions_all (class in
sage.combinat.partition_kleshchev), 1711

KleshchevPartitions_size (class in
sage.combinat.partition_kleshchev), 1713

KleshchevPartitionTuple (class in
sage.combinat.partition_kleshchev), 1704

KleshchevPartitionTupleCrystal (class in
sage.combinat.partition_kleshchev), 1708

km() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2788

kMonomial (class in sage.combinat.sf.k_dual), 2795
kmonomial() (sage.combinat.sf.k_dual.KBoundedQuotient

method), 2788
KnutsonTaoPuzzleSolver (class in

sage.combinat.knutson_tao_puzzles), 1260
KolakoskiWord() (sage.combinat.words.word_generators.WordGenerator

method), 3641
KostkaFoulkesPolynomial() (in module

sage.combinat.sf.kfpoly), 2797
KR_type_A (class in sage.combinat.crystals.kirillov_reshetikhin),

418
KR_type_A2 (class in sage.combinat.crystals.kirillov_reshetikhin),

419
KR_type_A2Element (class in

sage.combinat.crystals.kirillov_reshetikhin),
422

KR_type_Bn (class in sage.combinat.crystals.kirillov_reshetikhin),
423

KR_type_BnElement (class in
sage.combinat.crystals.kirillov_reshetikhin),
425

KR_type_box (class in
sage.combinat.crystals.kirillov_reshetikhin),
440

KR_type_boxElement (class in
sage.combinat.crystals.kirillov_reshetikhin),
442

KR_type_C (class in sage.combinat.crystals.kirillov_reshetikhin),
426

KR_type_CElement (class in
sage.combinat.crystals.kirillov_reshetikhin),
428

KR_type_Cn (class in sage.combinat.crystals.kirillov_reshetikhin),
429

KR_type_CnElement (class in
sage.combinat.crystals.kirillov_reshetikhin),
430

KR_type_D_tri1 (class in
sage.combinat.crystals.kirillov_reshetikhin),
431

KR_type_D_tri1.Element (class in
sage.combinat.crystals.kirillov_reshetikhin),
431

KR_type_Dn_twisted (class in
sage.combinat.crystals.kirillov_reshetikhin),
432

KR_type_Dn_twistedElement (class in
sage.combinat.crystals.kirillov_reshetikhin),
433

KR_type_E6 (class in sage.combinat.crystals.kirillov_reshetikhin),
434

KR_type_E7 (class in sage.combinat.crystals.kirillov_reshetikhin),
438

KR_type_E7.Element (class in
sage.combinat.crystals.kirillov_reshetikhin),
438

KR_type_spin (class in
sage.combinat.crystals.kirillov_reshetikhin),
443

KR_type_vertical (class in
sage.combinat.crystals.kirillov_reshetikhin),
446

kRegularSequence (class in
sage.combinat.k_regular_sequence), 1204

kRegularSequenceSpace (class in
sage.combinat.k_regular_sequence), 1209

3786 Index

Combinatorics, Release 9.7

kronecker_coproduct()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods
method), 1438

kronecker_coproduct()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Fundamental.Element
method), 1448

kronecker_coproduct()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2930

kronecker_product()
(sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.ElementMethods
method), 1366

kronecker_product()
(sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct.ParentMethods
method), 1369

kronecker_product()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2931

KRRCNonSimplyLacedElement (class in
sage.combinat.rigged_configurations.rigged_configuration_element),
2109

KRRCSimplyLacedElement (class in
sage.combinat.rigged_configurations.rigged_configuration_element),
2110

KRRCTypeA2DualElement (class in
sage.combinat.rigged_configurations.rigged_configuration_element),
2111

KRRiggedConfigurationElement (class in
sage.combinat.rigged_configurations.rigged_configuration_element),
2113

KRTableauxBn (class in
sage.combinat.rigged_configurations.kr_tableaux),
2086

KRTableauxDTwistedSpin (class in
sage.combinat.rigged_configurations.kr_tableaux),
2086

KRTableauxRectangle (class in
sage.combinat.rigged_configurations.kr_tableaux),
2087

KRTableauxSpin (class in
sage.combinat.rigged_configurations.kr_tableaux),
2087

KRTableauxSpinElement (class in
sage.combinat.rigged_configurations.kr_tableaux),
2087

KRTableauxTypeBox (class in
sage.combinat.rigged_configurations.kr_tableaux),
2089

KRTableauxTypeFromRC (class in
sage.combinat.rigged_configurations.kr_tableaux),
2089

KRTableauxTypeFromRCElement (class in
sage.combinat.rigged_configurations.kr_tableaux),
2090

KRTableauxTypeHorizonal (class in
sage.combinat.rigged_configurations.kr_tableaux),
2091

KRTableauxTypeVertical (class in
sage.combinat.rigged_configurations.kr_tableaux),
2091

KRTToRCBijection() (in module
sage.combinat.rigged_configurations.bijection),
2079

KRTToRCBijectionAbstract (class in
sage.combinat.rigged_configurations.bij_abstract_class),
2068

KRTToRCBijectionTypeA (class in
sage.combinat.rigged_configurations.bij_type_A),
2071

KRTToRCBijectionTypeA2Dual (class in
sage.combinat.rigged_configurations.bij_type_A2_dual),
2072

KRTToRCBijectionTypeA2Even (class in
sage.combinat.rigged_configurations.bij_type_A2_even),
2072

KRTToRCBijectionTypeA2Odd (class in
sage.combinat.rigged_configurations.bij_type_A2_odd),
2073

KRTToRCBijectionTypeB (class in
sage.combinat.rigged_configurations.bij_type_B),
2073

KRTToRCBijectionTypeC (class in
sage.combinat.rigged_configurations.bij_type_C),
2075

KRTToRCBijectionTypeD (class in
sage.combinat.rigged_configurations.bij_type_D),
2075

KRTToRCBijectionTypeDTri (class in
sage.combinat.rigged_configurations.bij_type_D_tri),
2078

KRTToRCBijectionTypeDTwisted (class in
sage.combinat.rigged_configurations.bij_type_D_twisted),
2077

kSchur (class in sage.combinat.sf.new_kschur), 2838
kschur() (sage.combinat.sf.new_kschur.KBoundedSubspace

method), 2829
kschur() (sage.combinat.sf.sf.SymmetricFunctions

method), 2893
kSplit (class in sage.combinat.sf.new_kschur), 2840
ksplit() (sage.combinat.sf.new_kschur.KBoundedSubspace

method), 2829
ksplit() (sage.combinat.sf.sf.SymmetricFunctions

method), 2893
KyotoPathModel (class in

sage.combinat.crystals.kyoto_path_model),
457

KyotoPathModel.Element (class in
sage.combinat.crystals.kyoto_path_model),

Index 3787

Combinatorics, Release 9.7

459

L
L (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions

attribute), 1402
L() (sage.combinat.diagram_algebras.PartitionAlgebra

method), 752
L() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials

method), 2316
l() (sage.combinat.sf.ns_macdonald.LatticeDiagram

method), 2848
L0() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials

method), 2316
L_check() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials

method), 2316
L_prime() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials

method), 2316
label() (sage.combinat.abstract_tree.AbstractLabelledTree

method), 13
label() (sage.combinat.finite_state_machine.FSMState

method), 888
label_subset() (sage.combinat.species.subset_species.SubsetSpeciesStructure

method), 3191
labelled_trees() (sage.combinat.binary_tree.BinaryTrees_all

method), 110
labelled_trees() (sage.combinat.binary_tree.LabelledBinaryTrees

method), 116
labelled_trees() (sage.combinat.ordered_tree.LabelledOrderedTrees

method), 1524
labelled_trees() (sage.combinat.ordered_tree.OrderedTrees_all

method), 1532
labelled_trees() (sage.combinat.rooted_tree.LabelledRootedTrees_all

method), 2662
labelled_trees() (sage.combinat.rooted_tree.RootedTrees_all

method), 2666
LabelledBinaryTree (class in

sage.combinat.binary_tree), 111
LabelledBinaryTrees (class in

sage.combinat.binary_tree), 116
LabelledOrderedTree (class in

sage.combinat.ordered_tree), 1522
LabelledOrderedTrees (class in

sage.combinat.ordered_tree), 1523
LabelledRootedTree (class in

sage.combinat.rooted_tree), 2660
LabelledRootedTrees (class in

sage.combinat.rooted_tree), 2661
LabelledRootedTrees_all (class in

sage.combinat.rooted_tree), 2662
labels() (sage.combinat.abstract_tree.AbstractLabelledTree

method), 14
labels() (sage.combinat.species.structure.GenericSpeciesStructure

method), 3186

labels() (sage.combinat.species.structure.SpeciesWrapper
method), 3189

lacunas() (sage.combinat.words.finite_word.FiniteWord_class
method), 3507

lambda_catabolism() (sage.combinat.tableau.Tableau
method), 3316

lambda_chain() (sage.combinat.crystals.alcove_path.RootsWithHeight
method), 361

lambda_of_monomial()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial
method), 1457

language() (sage.combinat.finite_state_machine.Automaton
method), 870

language() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 936

language() (sage.combinat.words.morphism.WordMorphism
method), 3565

larger_lex() (sage.combinat.partition.Partition
method), 1644

largest_available_k() (in module
sage.combinat.designs.orthogonal_arrays),
698

largest_available_k()
(sage.combinat.designs.orthogonal_arrays.OAMainFunctions
static method), 689

last() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 52

last() (sage.combinat.combinat.CombinatorialClass
method), 256

last() (sage.combinat.combinat.UnionCombinatorialClass
method), 261

last() (sage.combinat.partition.Partitions_n method),
1677

last() (sage.combinat.partition.Partitions_parts_in
method), 1680

last() (sage.combinat.permutation.StandardPermutations_descents
method), 1811

last() (sage.combinat.ribbon_shaped_tableau.StandardRibbonShapedTableaux_shape
method), 2058

last() (sage.combinat.subset.Subsets_s method), 3199
last() (sage.combinat.subset.Subsets_sk method), 3201
last() (sage.combinat.subset.SubsetsSorted method),

3197
last() (sage.combinat.subword.Subwords_w method),

3208
last() (sage.combinat.subword.Subwords_wk method),

3209
last() (sage.combinat.tableau_tuple.StandardTableauTuples_shape

method), 3368
last_letter_lequal()

(sage.combinat.tableau.Tableau method),
3317

last_position_dict()
(sage.combinat.words.finite_word.FiniteWord_class

3788 Index

Combinatorics, Release 9.7

method), 3508
latex() (sage.combinat.matrices.latin.LatinSquare

method), 1311
latex_dual() (in module

sage.combinat.crystals.kac_modules), 416
latex_large() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall

method), 392
latex_layout() (sage.combinat.words.morphism.WordMorphism

method), 3566
latex_options() (sage.combinat.crystals.mv_polytopes.MVPolytopes

method), 508
latex_options() (sage.combinat.dyck_word.DyckWord

method), 784
latex_options() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 937
latex_options() (sage.combinat.interval_posets.TamariIntervalPoset

method), 1175
latex_options() (sage.combinat.nu_dyck_word.NuDyckWord

method), 1511
latex_options() (sage.combinat.rigged_configurations.kleber_tree.KleberTree

method), 2081
latex_options() (sage.combinat.set_partition.SetPartition

method), 2708
latin_square_product() (in module

sage.combinat.designs.latin_squares), 684
LatinSquare (class in sage.combinat.matrices.latin),

1302
LatinSquare_generator() (in module

sage.combinat.matrices.latin), 1313
lattice() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices

method), 52
lattice() (sage.combinat.alternating_sign_matrix.MonotoneTriangles

method), 64
lattice() (sage.combinat.posets.moebius_algebra.MoebiusAlgebra

method), 1924
lattice() (sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra

method), 1927
lattice() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class

method), 2571
lattice() (sage.combinat.subset.Subsets_s method),

3199
lattice_basis() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class

method), 2571
LatticeDiagram (class in

sage.combinat.sf.ns_macdonald), 2847
LatticeError, 1861
LatticePoset() (in module

sage.combinat.posets.lattices), 1912
LatticePosetElement (class in

sage.combinat.posets.elements), 1833
LazyPowerSeries (class in

sage.combinat.species.series), 3163
LazyPowerSeriesRing (class in

sage.combinat.species.series), 3173

le() (sage.combinat.dyck_word.CompleteDyckWords_all.height_poset
method), 778

le() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1175

le() (sage.combinat.interval_posets.TamariIntervalPosets
method), 1193

le() (sage.combinat.posets.cartesian_product.CartesianProductPoset
method), 1828

le() (sage.combinat.posets.posets.FinitePoset method),
1989

le_lex() (sage.combinat.posets.cartesian_product.CartesianProductPoset
method), 1829

le_native() (sage.combinat.posets.cartesian_product.CartesianProductPoset
method), 1829

le_product() (sage.combinat.posets.cartesian_product.CartesianProductPoset
method), 1830

leaf() (sage.combinat.binary_tree.BinaryTrees
method), 109

leaf() (sage.combinat.ordered_tree.OrderedTrees
method), 1532

leaf() (sage.combinat.rooted_tree.RootedTrees_all
method), 2666

leaf_labels() (sage.combinat.abstract_tree.AbstractLabelledTree
method), 14

left (sage.combinat.recognizable_series.RecognizableSeries
attribute), 2047

left() (sage.combinat.k_regular_sequence.RecurrenceParser
method), 1197

left_action() (sage.combinat.k_tableau.StrongTableau
method), 1219

left_action_product() (in module
sage.combinat.permutation_cython), 1824

left_action_product()
(sage.combinat.permutation.Permutation
method), 1773

left_action_product()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3256

left_action_same_n() (in module
sage.combinat.permutation_cython), 1824

left_border_symmetry()
(sage.combinat.binary_tree.BinaryTree
method), 83

left_box() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2117

left_branch_involution()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1175

left_children_node_number()
(sage.combinat.binary_tree.BinaryTree
method), 83

left_column_box() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2117

left_coset_representatives()

Index 3789

Combinatorics, Release 9.7

(sage.combinat.root_system.reflection_group_real.RealReflectionGroup.Element
method), 2388

left_factor() (sage.combinat.species.product_species.ProductSpecies
method), 3159

left_key() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 57

left_key_as_permutation()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 58

left_key_tableau() (sage.combinat.tableau.Tableau
method), 3317

left_padded_kronecker_product()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1379

left_padded_kronecker_product()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2933

left_right_symmetry()
(sage.combinat.binary_tree.BinaryTree
method), 84

left_right_symmetry()
(sage.combinat.ordered_tree.LabelledOrderedTree
method), 1522

left_right_symmetry()
(sage.combinat.ordered_tree.OrderedTree
method), 1525

left_rotate() (sage.combinat.binary_tree.BinaryTree
method), 84

left_rotate() (sage.combinat.binary_tree.LabelledBinaryTree
method), 114

left_special_factors()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3508

left_special_factors_iterator()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3508

left_split() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2097

left_split() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpinElement
method), 2088

left_split() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2118

left_split() (sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.TensorProductOfKirillovReshetikhinTableauxElement
method), 2152

left_summand() (sage.combinat.species.sum_species.SumSpecies
method), 3191

left_tableau() (sage.combinat.permutation.Permutation
method), 1773

leftmost_covering_set()
(sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3609

leg() (sage.combinat.sf.ns_macdonald.LatticeDiagram
method), 2848

leg_cells() (sage.combinat.partition.Partition

method), 1645
leg_length() (sage.combinat.partition.Partition

method), 1645
leg_length() (sage.combinat.partition_tuple.PartitionTuple

method), 1731
leg_lengths() (sage.combinat.partition.Partition

method), 1646
lehrer_solomon() (sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods

method), 2960
length() (sage.combinat.colored_permutations.ColoredPermutation

method), 243
length() (sage.combinat.constellation.Constellation_class

method), 321
length() (sage.combinat.core.Core method), 331
length() (sage.combinat.dyck_word.DyckWord

method), 784
length() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets

method), 1335
length() (sage.combinat.nu_dyck_word.NuDyckWord

method), 1511
length() (sage.combinat.partition.Partition method),

1646
length() (sage.combinat.permutation.Permutation

method), 1774
length() (sage.combinat.ribbon_tableau.RibbonTableau

method), 2061
length() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods

method), 2561
length() (sage.combinat.set_partition_ordered.OrderedSetPartition

method), 2736
length() (sage.combinat.superpartition.SuperPartition

method), 3238
length() (sage.combinat.words.abstract_word.Word_class

method), 3454
length() (sage.combinat.words.finite_word.FiniteWord_class

method), 3509
length() (sage.combinat.words.infinite_word.InfiniteWord_class

method), 3543
length() (sage.combinat.words.word_char.WordDatatype_char

method), 3627
length() (sage.combinat.words.word_datatypes.WordDatatype_list

method), 3629
length() (sage.combinat.words.word_datatypes.WordDatatype_str

method), 3632
length() (sage.combinat.words.word_datatypes.WordDatatype_tuple

method), 3634
length_border() (sage.combinat.words.finite_word.FiniteWord_class

method), 3509
length_maximal_palindrome()

(sage.combinat.words.finite_word.FiniteWord_class
method), 3509

lengths_maximal_palindromes()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3510

3790 Index

Combinatorics, Release 9.7

lengths_unioccurrent_lps()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3510

leq() (sage.combinat.tableau.Tableau method), 3318
lequal_matrix() (sage.combinat.posets.hasse_diagram.HasseDiagram

method), 1852
lequal_matrix() (sage.combinat.posets.posets.FinitePoset

method), 1989
Letter (class in sage.combinat.crystals.letters), 475
letter() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract

method), 235
letter_growth_types()

(sage.combinat.words.morphism.WordMorphism
method), 3566

letters() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1335

letters() (sage.combinat.words.finite_word.FiniteWord_class
method), 3511

letters() (sage.combinat.words.word_char.WordDatatype_char
method), 3627

letters_to_steps() (sage.combinat.words.paths.WordPaths_all
method), 3603

LetterTuple (class in sage.combinat.crystals.letters),
476

LetterWrapped (class in sage.combinat.crystals.letters),
476

level() (sage.combinat.partition.Partition method),
1646

level() (sage.combinat.partition_tuple.PartitionTuple
method), 1732

level() (sage.combinat.partition_tuple.PartitionTuples
method), 1736

level() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2289

level() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2420

level() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2629

level() (sage.combinat.sf.llt.LLT_class method), 2803
level() (sage.combinat.sf.llt.LLT_generic method),

2805
level() (sage.combinat.tableau.Tableau method), 3318
level() (sage.combinat.tableau_residues.ResidueSequence

method), 3345
level() (sage.combinat.tableau_tuple.RowStandardTableauTuples_residue

method), 3359
level() (sage.combinat.tableau_tuple.TableauTuple

method), 3376
level() (sage.combinat.tableau_tuple.TableauTuples

method), 3381
level_one_parent_class

(sage.combinat.tableau_tuple.RowStandardTableauTuples
attribute), 3357

level_one_parent_class

(sage.combinat.tableau_tuple.StandardTableauTuples
attribute), 3366

level_one_parent_class
(sage.combinat.tableau_tuple.TableauTuples
attribute), 3382

level_sets() (sage.combinat.posets.posets.FinitePoset
method), 1990

lex_cmp() (in module
sage.combinat.enumeration_mod_permgroup),
835

lex_cmp_partial() (in module
sage.combinat.enumeration_mod_permgroup),
836

lex_greater() (sage.combinat.words.abstract_word.Word_class
method), 3454

lex_less() (sage.combinat.words.abstract_word.Word_class
method), 3454

lexicographic_sum()
(sage.combinat.posets.posets.FinitePoset
method), 1990

lift() (sage.combinat.crystals.affine.AffineCrystalFromClassical
method), 337

lift() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement
method), 342

lift() (sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element_dual
method), 471

lift() (sage.combinat.diagram_algebras.SubPartitionAlgebra
method), 765

lift() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra.Element
method), 1035

lift() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All
method), 1154

lift() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints
method), 1158

lift() (sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra
method), 1866

lift() (sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra.Element
method), 1865

lift() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2629

lift() (sage.combinat.sf.k_dual.kbounded_HallLittlewoodP
method), 2796

lift() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2788

lift() (sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods
method), 2792

lift() (sage.combinat.sf.k_dual.kMonomial method),
2795

lift() (sage.combinat.sf.new_kschur.K_kSchur
method), 2836

lift_on_basis() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2629

limit() (sage.combinat.integer_lists.base.Envelope
method), 1124

Index 3791

Combinatorics, Release 9.7

limit_start() (sage.combinat.integer_lists.base.Envelope
method), 1125

linear_combination()
(sage.combinat.free_module.CombinatorialFreeModule
method), 1018

linear_extension() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1853

linear_extension() (sage.combinat.posets.posets.FinitePoset
method), 1991

linear_extension_iterator() (in module
sage.combinat.combinat_cython), 278

linear_extensions()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1176

linear_extensions()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1853

linear_extensions()
(sage.combinat.posets.posets.FinitePoset
method), 1992

linear_extensions_graph()
(sage.combinat.posets.posets.FinitePoset
method), 1993

linear_intervals_count()
(sage.combinat.posets.posets.FinitePoset
method), 1993

linear_representation()
(sage.combinat.recognizable_series.RecognizableSeries
method), 2047

LinearExtensionOfPoset (class in
sage.combinat.posets.linear_extensions),
1914

LinearExtensionsOfForest (class in
sage.combinat.posets.linear_extensions),
1917

LinearExtensionsOfMobile (class in
sage.combinat.posets.linear_extensions),
1918

LinearExtensionsOfPoset (class in
sage.combinat.posets.linear_extensions),
1918

LinearExtensionsOfPosetWithHooks (class in
sage.combinat.posets.linear_extensions), 1922

LinearOrderSpecies (class in
sage.combinat.species.linear_order_species),
3153

LinearOrderSpecies_class (in module
sage.combinat.species.linear_order_species),
3154

LinearOrderSpeciesStructure (class in
sage.combinat.species.linear_order_species),
3154

link_pattern() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 58

link_pattern() (sage.combinat.fully_packed_loop.FullyPackedLoop
method), 1048

list() (sage.combinat.cartesian_product.CartesianProduct_iters
method), 121

list() (sage.combinat.combinat.CombinatorialClass
method), 256

list() (sage.combinat.combinat.InfiniteAbstractCombinatorialClass
method), 260

list() (sage.combinat.combinat.UnionCombinatorialClass
method), 261

list() (sage.combinat.combination.Combinations_setk
method), 283

list() (sage.combinat.core.Cores_length method), 335
list() (sage.combinat.core.Cores_size method), 336
list() (sage.combinat.crystals.fully_commutative_stable_grothendieck.DecreasingHeckeFactorizations

method), 383
list() (sage.combinat.crystals.letters.ClassicalCrystalOfLetters

method), 463
list() (sage.combinat.graph_path.GraphPaths_all

method), 1062
list() (sage.combinat.graph_path.GraphPaths_s

method), 1063
list() (sage.combinat.graph_path.GraphPaths_st

method), 1064
list() (sage.combinat.graph_path.GraphPaths_t

method), 1064
list() (sage.combinat.matrices.latin.LatinSquare

method), 1311
list() (sage.combinat.partition.OrderedPartitions

method), 1612
list() (sage.combinat.partition.PartitionsInBox

method), 1673
list() (sage.combinat.permutation.CyclicPermutations

method), 1753
list() (sage.combinat.permutation.CyclicPermutationsOfPartition

method), 1755
list() (sage.combinat.posets.posets.FinitePoset

method), 1993
list() (sage.combinat.sloane_functions.A000009

method), 3053
list() (sage.combinat.sloane_functions.A000045

method), 3061
list() (sage.combinat.sloane_functions.A000073

method), 3062
list() (sage.combinat.sloane_functions.A000213

method), 3071
list() (sage.combinat.sloane_functions.A000796

method), 3082
list() (sage.combinat.sloane_functions.A000961

method), 3083
list() (sage.combinat.sloane_functions.A001358

method), 3092
list() (sage.combinat.sloane_functions.A001694

method), 3094

3792 Index

Combinatorics, Release 9.7

list() (sage.combinat.sloane_functions.A001836
method), 3095

list() (sage.combinat.sloane_functions.A002113
method), 3098

list() (sage.combinat.sloane_functions.A002808
method), 3101

list() (sage.combinat.sloane_functions.A005100
method), 3103

list() (sage.combinat.sloane_functions.A005101
method), 3104

list() (sage.combinat.sloane_functions.A005117
method), 3104

list() (sage.combinat.sloane_functions.A006882
method), 3107

list() (sage.combinat.sloane_functions.A020639
method), 3114

list() (sage.combinat.sloane_functions.A111774
method), 3129

list() (sage.combinat.sloane_functions.ExtremesOfPermanentsSequence
method), 3132

list() (sage.combinat.sloane_functions.RecurrenceSequence
method), 3132

list() (sage.combinat.sloane_functions.RecurrenceSequence2
method), 3132

list() (sage.combinat.sloane_functions.SloaneSequence
method), 3133

list() (sage.combinat.tableau.SemistandardTableaux_all
method), 3288

list() (sage.combinat.tableau.SemistandardTableaux_shape_weight
method), 3290

list() (sage.combinat.tableau.SemistandardTableaux_size_inf
method), 3291

list() (sage.combinat.tableau.StandardTableaux_shape
method), 3297

list() (sage.combinat.tableau_tuple.TableauTuples
method), 3382

list() (sage.combinat.tuple.UnorderedTuples method),
3414

list() (sage.combinat.words.words.Words_n method),
3661

list2func() (in module sage.combinat.integer_vector),
1148

list_of_conjugates()
(sage.combinat.words.morphism.WordMorphism
method), 3567

list_of_standard_cells()
(sage.combinat.k_tableau.WeakTableau_core
method), 1244

list_parking_functions()
(sage.combinat.dyck_word.DyckWord_complete
method), 803

list_rec() (in module sage.combinat.ribbon_tableau),
2065

list_to_dict() (in module sage.combinat.subset),

3203
LLM_gen_set() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 158
LLMS (sage.combinat.growth.Rules attribute), 1108
llt() (sage.combinat.sf.sf.SymmetricFunctions method),

2893
LLT_class (class in sage.combinat.sf.llt), 2801
LLT_cospin (class in sage.combinat.sf.llt), 2804
LLT_cospin.Element (class in sage.combinat.sf.llt),

2804
llt_family() (sage.combinat.sf.llt.LLT_generic

method), 2805
LLT_generic (class in sage.combinat.sf.llt), 2804
LLT_generic.Element (class in sage.combinat.sf.llt),

2805
LLT_spin (class in sage.combinat.sf.llt), 2806
LLT_spin.Element (class in sage.combinat.sf.llt), 2806
load_data() (in module

sage.combinat.cluster_algebra_quiver.mutation_type),
202

local_rule() (sage.combinat.path_tableaux.dyck_path.DyckPath
method), 1586

local_rule() (sage.combinat.path_tableaux.frieze.FriezePattern
method), 1590

local_rule() (sage.combinat.path_tableaux.path_tableau.PathTableau
method), 1596

local_rule() (sage.combinat.path_tableaux.semistandard.SemistandardPathTableau
method), 1599

LocalOptions (class in
sage.combinat.parallelogram_polyomino),
1539

logarithm() (sage.combinat.species.generating_series.CycleIndexSeries
method), 3147

LogarithmCycleIndexSeries() (in module
sage.combinat.species.generating_series),
3150

long_element() (sage.combinat.colored_permutations.SignedPermutations
method), 252

long_element_hardcoded()
(sage.combinat.root_system.weyl_group.WeylGroup_gens
method), 2653

long_roots() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2434

longest_backward_extension()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3511

longest_common_prefix()
(sage.combinat.words.abstract_word.Word_class
method), 3455

longest_common_prefix()
(sage.combinat.words.word_char.WordDatatype_char
method), 3628

longest_common_subword()
(sage.combinat.words.finite_word.FiniteWord_class

Index 3793

Combinatorics, Release 9.7

method), 3511
longest_common_suffix()

(sage.combinat.words.finite_word.FiniteWord_class
method), 3512

longest_common_suffix()
(sage.combinat.words.word_char.WordDatatype_char
method), 3628

longest_forward_extension()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3512

longest_increasing_subsequence_length()
(sage.combinat.permutation.Permutation
method), 1774

longest_increasing_subsequences()
(sage.combinat.permutation.Permutation
method), 1774

longest_increasing_subsequences_number()
(sage.combinat.permutation.Permutation
method), 1774

longest_periodic_prefix()
(sage.combinat.words.abstract_word.Word_class
method), 3455

loop_type() (sage.combinat.perfect_matching.PerfectMatching
method), 1743

loops() (sage.combinat.perfect_matching.PerfectMatching
method), 1743

loops_iterator() (sage.combinat.perfect_matching.PerfectMatching
method), 1744

low_bd() (sage.combinat.designs.covering_design.CoveringDesign
method), 597

lower_binary_tree()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1176

lower_contained_intervals()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1176

lower_contains_interval()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1177

lower_covers() (sage.combinat.affine_permutation.AffinePermutation
method), 27

lower_covers() (sage.combinat.posets.posets.FinitePoset
method), 1994

lower_covers_iterator()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1853

lower_covers_iterator()
(sage.combinat.posets.posets.FinitePoset
method), 1994

lower_dyck_word() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1177

lower_heights() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1553

lower_hook() (sage.combinat.partition.Partition

method), 1646
lower_hook_lengths()

(sage.combinat.partition.Partition method),
1647

lower_path() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1554

lower_widths() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1554

LowerChristoffelWord (class in
sage.combinat.words.word_generators), 3635

LowerChristoffelWord
(sage.combinat.words.word_generators.WordGenerator
attribute), 3641

LowerMechanicalWord()
(sage.combinat.words.word_generators.WordGenerator
method), 3642

lps() (sage.combinat.words.finite_word.FiniteWord_class
method), 3513

lps_lengths() (sage.combinat.words.finite_word.FiniteWord_class
method), 3514

lt() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1178

lt() (sage.combinat.posets.posets.FinitePoset method),
1994

lt() (sage.combinat.set_partition.SetPartitions method),
2725

lt_elements() (sage.combinat.crystals.letters.ClassicalCrystalOfLetters
method), 463

lt_elements() (sage.combinat.crystals.spins.GenericCrystalOfSpins
method), 520

lucas_number1() (in module sage.combinat.combinat),
269

lucas_number2() (in module sage.combinat.combinat),
270

luck() (sage.combinat.parking_functions.ParkingFunction
method), 1573

lucky_cars() (sage.combinat.parking_functions.ParkingFunction
method), 1574

lusztig_datum() (sage.combinat.crystals.pbw_crystal.PBWCrystalElement
method), 511

lusztig_involution()
(sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement
method), 453

lusztig_involution()
(sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.TensorProductOfKirillovReshetikhinTableauxElement
method), 2152

lyndon_factorization()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3515

lyndon_word_iterator() (in module
sage.combinat.combinat_cython), 279

LyndonWord() (in module
sage.combinat.words.lyndon_word), 3544

LyndonWords() (in module

3794 Index

Combinatorics, Release 9.7

sage.combinat.words.lyndon_word), 3544
LyndonWords_class (class in

sage.combinat.words.lyndon_word), 3545
LyndonWords_evaluation (class in

sage.combinat.words.lyndon_word), 3545
LyndonWords_nk (class in

sage.combinat.words.lyndon_word), 3546
LZ_decomposition() (sage.combinat.words.finite_word.FiniteWord_class

method), 3469
LZ_decomposition() (sage.combinat.words.suffix_trees.ImplicitSuffixTree

method), 3607

M
M (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions

attribute), 147
M (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions

attribute), 1454
m (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables

attribute), 1493
m() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 173
m() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver

method), 211
m() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation

method), 2289
m() (sage.combinat.sf.sf.SymmetricFunctions method),

2894
m_to_s_stat() (in module

sage.combinat.ncsf_qsym.combinatorics),
1351

Macdonald (class in sage.combinat.sf.macdonald), 2806
macdonald() (sage.combinat.sf.sf.SymmetricFunctions

method), 2894
macdonald_family() (sage.combinat.sf.macdonald.MacdonaldPolynomials_generic

method), 2815
MacdonaldPolynomials_generic (class in

sage.combinat.sf.macdonald), 2813
MacdonaldPolynomials_generic.Element (class in

sage.combinat.sf.macdonald), 2814
MacdonaldPolynomials_h (class in

sage.combinat.sf.macdonald), 2816
MacdonaldPolynomials_h.Element (class in

sage.combinat.sf.macdonald), 2816
MacdonaldPolynomials_ht (class in

sage.combinat.sf.macdonald), 2816
MacdonaldPolynomials_ht.Element (class in

sage.combinat.sf.macdonald), 2816
MacdonaldPolynomials_j (class in

sage.combinat.sf.macdonald), 2817
MacdonaldPolynomials_j.Element (class in

sage.combinat.sf.macdonald), 2817
MacdonaldPolynomials_p (class in

sage.combinat.sf.macdonald), 2817

MacdonaldPolynomials_p.Element (class in
sage.combinat.sf.macdonald), 2818

MacdonaldPolynomials_q (class in
sage.combinat.sf.macdonald), 2818

MacdonaldPolynomials_q.Element (class in
sage.combinat.sf.macdonald), 2818

MacdonaldPolynomials_s (class in
sage.combinat.sf.macdonald), 2818

MacdonaldPolynomials_s.Element (class in
sage.combinat.sf.macdonald), 2819

magnitude() (sage.combinat.posets.posets.FinitePoset
method), 1995

maj() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2844

major_index() (sage.combinat.composition.Composition
method), 296

major_index() (sage.combinat.dyck_word.DyckWord_complete
method), 804

major_index() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1336

major_index() (sage.combinat.permutation.Permutation
method), 1775

major_index() (sage.combinat.tableau.Tableau
method), 3318

major_index() (sage.combinat.words.finite_word.FiniteWord_class
method), 3515

make_dlxwrapper() (in module
sage.combinat.matrices.dancing_links), 1289

make_leaf() (sage.combinat.binary_tree.BinaryTree
method), 85

make_node() (sage.combinat.binary_tree.BinaryTree
method), 85

map() (sage.combinat.combinat.CombinatorialClass
method), 256

map() (sage.combinat.finite_state_machine_generators.TransducerGenerators
method), 994

map() (sage.combinat.species.stream.Stream_class
method), 3184

map_labels() (sage.combinat.abstract_tree.AbstractLabelledClonableTree
method), 11

map_to_list() (in module
sage.combinat.permutation_cython), 1824

MapCombinatorialClass (class in
sage.combinat.combinat), 260

marked_CST_to_transposition_sequence()
(sage.combinat.k_tableau.StrongTableaux
class method), 1229

marked_given_unmarked_and_weight_iterator()
(sage.combinat.k_tableau.StrongTableaux
class method), 1230

marked_nodes() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2223

marked_nodes() (sage.combinat.root_system.type_marked.CartanType
method), 2587

Index 3795

Combinatorics, Release 9.7

markoff_number() (sage.combinat.words.word_generators.LowerChristoffelWord
method), 3635

markov_chain_digraph()
(sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset
method), 1919

markov_chain_simplification()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 940

markov_chain_transition_matrix()
(sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset
method), 1921

matchings() (in module sage.combinat.ncsym.ncsym),
1502

matrix() (sage.combinat.e_one_star.E1Star method),
822

matrix() (sage.combinat.k_regular_sequence.RecurrenceParser
method), 1198

matrix_centralizer_cardinalities() (in module
sage.combinat.similarity_class_type), 3002

matrix_centralizer_cardinalities_length_two()
(in module sage.combinat.similarity_class_type),
3002

matrix_group() (sage.combinat.colored_permutations.ColoredPermutations
method), 248

matrix_similarity_classes() (in module
sage.combinat.similarity_class_type), 3003

matrix_similarity_classes_length_two() (in
module sage.combinat.similarity_class_type),
3003

matrix_space() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 52

matrix_space() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2195

max_block_size() (sage.combinat.set_partition.AbstractSetPartition
method), 2704

max_coroot_le() (sage.combinat.root_system.root_space.RootSpaceElement
method), 2457

max_entry() (sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau
method), 2978

max_length (sage.combinat.integer_lists.base.IntegerListsBackend
attribute), 1126

max_length() (sage.combinat.partition.RegularPartitions_truncated
method), 1684

max_length() (sage.combinat.root_system.pieri_factors.PieriFactors
method), 2326

max_letter() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1336

max_linear_extension()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1178

max_part (sage.combinat.integer_lists.base.Envelope at-
tribute), 1125

max_part (sage.combinat.integer_lists.base.IntegerListsBackend
attribute), 1126

max_quantum_element()
(sage.combinat.root_system.root_space.RootSpaceElement
method), 2458

max_slope (sage.combinat.integer_lists.base.Envelope
attribute), 1125

max_slope (sage.combinat.integer_lists.base.IntegerListsBackend
attribute), 1126

max_sum (sage.combinat.integer_lists.base.IntegerListsBackend
attribute), 1126

maximal_antichains()
(sage.combinat.posets.posets.FinitePoset
method), 1995

maximal_chain_binary_trees()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1179

maximal_chain_dyck_words()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1179

maximal_chain_length()
(sage.combinat.posets.posets.FinitePoset
method), 1995

maximal_chain_tamari_intervals()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1179

maximal_chains() (sage.combinat.posets.posets.FinitePoset
method), 1996

maximal_chains_iterator()
(sage.combinat.posets.posets.FinitePoset
method), 1996

maximal_cyclic_decomposition()
(sage.combinat.affine_permutation.AffinePermutationTypeA
method), 36

maximal_cyclic_factor()
(sage.combinat.affine_permutation.AffinePermutationTypeA
method), 36

maximal_elements() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1853

maximal_elements() (sage.combinat.posets.posets.FinitePoset
method), 1996

maximal_elements() (sage.combinat.root_system.pieri_factors.PieriFactors_affine_type
method), 2326

maximal_elements() (sage.combinat.root_system.pieri_factors.PieriFactors_finite_type
method), 2327

maximal_elements_combinatorial()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_A
method), 2327

maximal_elements_combinatorial()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_A_affine
method), 2328

maximal_elements_combinatorial()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_B
method), 2329

maximal_elements_combinatorial()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_B_affine

3796 Index

Combinatorics, Release 9.7

method), 2330
maximal_elements_combinatorial()

(sage.combinat.root_system.pieri_factors.PieriFactors_type_C_affine
method), 2331

maximal_elements_combinatorial()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_D_affine
method), 2332

maximal_subgroup() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2630

maximal_subgroups() (in module
sage.combinat.root_system.branching_rules),
2186

maximal_subgroups()
(sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2630

maximal_sublattices()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1854

maximal_sublattices()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1903

maximal_vector() (sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths
method), 488

mcfarland_1973_construction() (in module
sage.combinat.designs.difference_family), 645

meet() (sage.combinat.composition.Composition
method), 296

meet() (sage.combinat.posets.lattices.FiniteMeetSemilattice
method), 1909

meet() (sage.combinat.posets.posets.FinitePoset
method), 1997

meet_matrix() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1854

meet_matrix() (sage.combinat.posets.lattices.FiniteMeetSemilattice
method), 1909

meet_primes() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1903

MeetSemilattice() (in module
sage.combinat.posets.lattices), 1913

MeetSemilatticeElement (class in
sage.combinat.posets.elements), 1833

merge() (sage.combinat.free_dendriform_algebra.DendriformFunctor
method), 1026

merge() (sage.combinat.free_prelie_algebra.PreLieFunctor
method), 1039

merged_transitions()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 941

method() (sage.combinat.designs.covering_design.CoveringDesign
method), 597

min_from_heights() (sage.combinat.dyck_word.DyckWords
method), 814

min_length (sage.combinat.integer_lists.base.IntegerListsBackend
attribute), 1126

min_linear_extension()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1180

min_part (sage.combinat.integer_lists.base.IntegerListsBackend
attribute), 1126

min_slope (sage.combinat.integer_lists.base.Envelope
attribute), 1125

min_slope (sage.combinat.integer_lists.base.IntegerListsBackend
attribute), 1126

min_sum (sage.combinat.integer_lists.base.IntegerListsBackend
attribute), 1126

minimaj() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1337

minimaj_blocks() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1337

minimaj_word() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1338

MinimajCrystal (class in
sage.combinat.multiset_partition_into_sets_ordered),
1331

MinimajCrystal.Element (class in
sage.combinat.multiset_partition_into_sets_ordered),
1331

minimal_conjugate()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3515

minimal_elements() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1854

minimal_elements() (sage.combinat.posets.posets.FinitePoset
method), 1997

minimal_nonfaces() (sage.combinat.cluster_complex.ClusterComplex
method), 241

minimal_period() (sage.combinat.words.finite_word.FiniteWord_class
method), 3516

MinimalSmoothPrefix()
(sage.combinat.words.word_generators.WordGenerator
method), 3642

minimization() (sage.combinat.finite_state_machine.Automaton
method), 870

minimize_result() (in module
sage.combinat.recognizable_series), 2051

minimize_results (sage.combinat.recognizable_series.RecognizableSeriesSpace
attribute), 2051

minimized() (sage.combinat.recognizable_series.RecognizableSeries
method), 2048

minkowski_summand()
(sage.combinat.subword_complex.SubwordComplex
method), 3220

MLTToRCBijectionTypeB (class in
sage.combinat.rigged_configurations.bij_infinity),
2069

MLTToRCBijectionTypeD (class in
sage.combinat.rigged_configurations.bij_infinity),
2070

Index 3797

Combinatorics, Release 9.7

MobilePoset (class in sage.combinat.posets.mobile),
1832

MobilePoset() (sage.combinat.posets.poset_examples.Posets
static method), 1933

modular_characteristic()
(sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2290

module
sage.combinat.abstract_tree, 9
sage.combinat.affine_permutation, 25
sage.combinat.algebraic_combinatorics, 46
sage.combinat.all, 47
sage.combinat.alternating_sign_matrix, 48
sage.combinat.backtrack, 64
sage.combinat.baxter_permutations, 66
sage.combinat.binary_recurrence_sequences,

68
sage.combinat.binary_tree, 72
sage.combinat.blob_algebra, 117
sage.combinat.cartesian_product, 120
sage.combinat.catalog_partitions, 122
sage.combinat.chas.all, 123
sage.combinat.chas.fsym, 123
sage.combinat.chas.wqsym, 132
sage.combinat.cluster_algebra_quiver.all,

156
sage.combinat.cluster_algebra_quiver.cluster_seed,

156
sage.combinat.cluster_algebra_quiver.mutation_class,

201
sage.combinat.cluster_algebra_quiver.mutation_type,

202
sage.combinat.cluster_algebra_quiver.quiver,

203
sage.combinat.cluster_algebra_quiver.quiver_mutation_type,

224
sage.combinat.cluster_complex, 239
sage.combinat.colored_permutations, 242
sage.combinat.combinat, 253
sage.combinat.combinat_cython, 278
sage.combinat.combination, 280
sage.combinat.combinatorial_map, 285
sage.combinat.composition, 290
sage.combinat.composition_signed, 311
sage.combinat.composition_tableau, 312
sage.combinat.constellation, 316
sage.combinat.core, 329
sage.combinat.counting, 336
sage.combinat.crystals.affine, 336
sage.combinat.crystals.affine_factorization,

344
sage.combinat.crystals.affinization, 348
sage.combinat.crystals.alcove_path, 351
sage.combinat.crystals.all, 362

sage.combinat.crystals.bkk_crystals, 362
sage.combinat.crystals.catalog, 363
sage.combinat.crystals.catalog_elementary_crystals,

365
sage.combinat.crystals.catalog_infinity_crystals,

365
sage.combinat.crystals.catalog_kirillov_reshetikhin,

365
sage.combinat.crystals.crystals, 366
sage.combinat.crystals.direct_sum, 368
sage.combinat.crystals.elementary_crystals,

371
sage.combinat.crystals.fast_crystals, 380
sage.combinat.crystals.fully_commutative_stable_grothendieck,

382
sage.combinat.crystals.generalized_young_walls,

386
sage.combinat.crystals.highest_weight_crystals,

396
sage.combinat.crystals.induced_structure,

399
sage.combinat.crystals.infinity_crystals,

405
sage.combinat.crystals.kac_modules, 411
sage.combinat.crystals.kirillov_reshetikhin,

417
sage.combinat.crystals.kyoto_path_model,

457
sage.combinat.crystals.letters, 462
sage.combinat.crystals.littelmann_path,

478
sage.combinat.crystals.monomial_crystals,

492
sage.combinat.crystals.multisegments, 501
sage.combinat.crystals.mv_polytopes, 504
sage.combinat.crystals.pbw_crystal, 509
sage.combinat.crystals.pbw_datum, 512
sage.combinat.crystals.polyhedral_realization,

515
sage.combinat.crystals.spins, 519
sage.combinat.crystals.star_crystal, 523
sage.combinat.crystals.tensor_product,

526
sage.combinat.crystals.tensor_product_element,

536
sage.combinat.cyclic_sieving_phenomenon,

548
sage.combinat.debruijn_sequence, 550
sage.combinat.degree_sequences, 552
sage.combinat.derangements, 555
sage.combinat.descent_algebra, 558
sage.combinat.designs.all, 568
sage.combinat.designs.bibd, 568
sage.combinat.designs.block_design, 585

3798 Index

Combinatorics, Release 9.7

sage.combinat.designs.covering_design,
595

sage.combinat.designs.database, 600
sage.combinat.designs.design_catalog, 630
sage.combinat.designs.designs_pyx, 631
sage.combinat.designs.difference_family,

636
sage.combinat.designs.difference_matrices,

651
sage.combinat.designs.evenly_distributed_sets,

654
sage.combinat.designs.ext_rep, 657
sage.combinat.designs.gen_quadrangles_with_spread,

660
sage.combinat.designs.group_divisible_designs,

582
sage.combinat.designs.incidence_structures,

663
sage.combinat.designs.latin_squares, 681
sage.combinat.designs.orthogonal_arrays,

686
sage.combinat.designs.orthogonal_arrays_build_recursive,

704
sage.combinat.designs.orthogonal_arrays_find_recursive,

716
sage.combinat.designs.resolvable_bibd,

579
sage.combinat.designs.steiner_quadruple_systems,

723
sage.combinat.designs.subhypergraph_search,

727
sage.combinat.designs.twographs, 729
sage.combinat.diagram_algebras, 732
sage.combinat.dlx, 774
sage.combinat.dyck_word, 776
sage.combinat.e_one_star, 818
sage.combinat.enumerated_sets, 831
sage.combinat.enumeration_mod_permgroup,

834
sage.combinat.expnums, 836
sage.combinat.family, 837
sage.combinat.fast_vector_partitions, 837
sage.combinat.finite_state_machine, 850
sage.combinat.finite_state_machine_generators,

978
sage.combinat.fqsym, 997
sage.combinat.free_dendriform_algebra,

1025
sage.combinat.free_module, 1013
sage.combinat.free_prelie_algebra, 1033
sage.combinat.fully_commutative_elements,

841
sage.combinat.fully_packed_loop, 1040
sage.combinat.gelfand_tsetlin_patterns,

1054
sage.combinat.graph_path, 1061
sage.combinat.gray_codes, 1065
sage.combinat.grossman_larson_algebras,

1108
sage.combinat.growth, 1067
sage.combinat.hall_polynomial, 1113
sage.combinat.hillman_grassl, 1115
sage.combinat.integer_lists.base, 1122
sage.combinat.integer_lists.invlex, 1127
sage.combinat.integer_lists.lists, 1126
sage.combinat.integer_matrices, 1138
sage.combinat.integer_vector, 1141
sage.combinat.integer_vector_weighted,

1149
sage.combinat.integer_vectors_mod_permgroup,

1151
sage.combinat.interval_posets, 1160
sage.combinat.k_regular_sequence, 1196
sage.combinat.k_tableau, 1212
sage.combinat.kazhdan_lusztig, 1255
sage.combinat.knutson_tao_puzzles, 1257
sage.combinat.matrices.all, 1278
sage.combinat.matrices.dancing_links,

1278
sage.combinat.matrices.dlxcpp, 1289
sage.combinat.matrices.hadamard_matrix,

1291
sage.combinat.matrices.latin, 1301
sage.combinat.misc, 1328
sage.combinat.multiset_partition_into_sets_ordered,

1330
sage.combinat.ncsf_qsym.all, 1349
sage.combinat.ncsf_qsym.combinatorics,

1349
sage.combinat.ncsf_qsym.generic_basis_code,

1352
sage.combinat.ncsf_qsym.ncsf, 1370
sage.combinat.ncsf_qsym.qsym, 1424
sage.combinat.ncsf_qsym.tutorial, 1464
sage.combinat.ncsym.all, 1471
sage.combinat.ncsym.bases, 1472
sage.combinat.ncsym.dual, 1481
sage.combinat.ncsym.ncsym, 1487
sage.combinat.necklace, 1503
sage.combinat.non_decreasing_parking_function,

1504
sage.combinat.nu_dyck_word, 1509
sage.combinat.nu_tamari_lattice, 1521
sage.combinat.ordered_tree, 1522
sage.combinat.output, 1533
sage.combinat.parallelogram_polyomino,

1539
sage.combinat.parking_functions, 1566

Index 3799

Combinatorics, Release 9.7

sage.combinat.partition, 1607
sage.combinat.partition_algebra, 1687
sage.combinat.partition_kleshchev, 1698
sage.combinat.partition_shifting_algebras,

1713
sage.combinat.partition_tuple, 1717
sage.combinat.partitions, 1741
sage.combinat.path_tableaux.catalog, 1584
sage.combinat.path_tableaux.dyck_path,

1584
sage.combinat.path_tableaux.frieze, 1587
sage.combinat.path_tableaux.path_tableau,

1593
sage.combinat.path_tableaux.semistandard,

1597
sage.combinat.perfect_matching, 1742
sage.combinat.permutation, 1747
sage.combinat.permutation_cython, 1824
sage.combinat.plane_partition, 1601
sage.combinat.posets.all, 1827
sage.combinat.posets.cartesian_product,

1827
sage.combinat.posets.d_complete, 1831
sage.combinat.posets.elements, 1833
sage.combinat.posets.forest, 1834
sage.combinat.posets.hasse_diagram, 1834
sage.combinat.posets.incidence_algebras,

1862
sage.combinat.posets.lattices, 1867
sage.combinat.posets.linear_extensions,

1913
sage.combinat.posets.mobile, 1832
sage.combinat.posets.moebius_algebra,

1922
sage.combinat.posets.poset_examples, 1927
sage.combinat.posets.posets, 1943
sage.combinat.q_analogues, 2027
sage.combinat.q_bernoulli, 2035
sage.combinat.quickref, 2037
sage.combinat.ranker, 2038
sage.combinat.recognizable_series, 2041
sage.combinat.restricted_growth, 2052
sage.combinat.ribbon, 2052
sage.combinat.ribbon_shaped_tableau, 2052
sage.combinat.ribbon_tableau, 2059
sage.combinat.rigged_configurations.all,

2067
sage.combinat.rigged_configurations.bij_abstract_class,

2068
sage.combinat.rigged_configurations.bij_infinity,

2069
sage.combinat.rigged_configurations.bij_type_A,

2071

sage.combinat.rigged_configurations.bij_type_A2_dual,
2072

sage.combinat.rigged_configurations.bij_type_A2_even,
2072

sage.combinat.rigged_configurations.bij_type_A2_odd,
2073

sage.combinat.rigged_configurations.bij_type_B,
2073

sage.combinat.rigged_configurations.bij_type_C,
2075

sage.combinat.rigged_configurations.bij_type_D,
2075

sage.combinat.rigged_configurations.bij_type_D_tri,
2078

sage.combinat.rigged_configurations.bij_type_D_twisted,
2077

sage.combinat.rigged_configurations.bijection,
2079

sage.combinat.rigged_configurations.kleber_tree,
2079

sage.combinat.rigged_configurations.kr_tableaux,
2086

sage.combinat.rigged_configurations.rc_crystal,
2100

sage.combinat.rigged_configurations.rc_infinity,
2104

sage.combinat.rigged_configurations.rigged_configuration_element,
2109

sage.combinat.rigged_configurations.rigged_configurations,
2131

sage.combinat.rigged_configurations.rigged_partition,
2144

sage.combinat.rigged_configurations.tensor_product_kr_tableaux,
2146

sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element,
2150

sage.combinat.root_system.all, 2155
sage.combinat.root_system.ambient_space,

2158
sage.combinat.root_system.associahedron,

2163
sage.combinat.root_system.braid_move_calculator,

2166
sage.combinat.root_system.braid_orbit,

2167
sage.combinat.root_system.branching_rules,

2168
sage.combinat.root_system.cartan_matrix,

2187
sage.combinat.root_system.cartan_type,

2199
sage.combinat.root_system.coxeter_group,

2244
sage.combinat.root_system.coxeter_matrix,

3800 Index

Combinatorics, Release 9.7

2246
sage.combinat.root_system.coxeter_type,

2255
sage.combinat.root_system.dynkin_diagram,

2262
sage.combinat.root_system.extended_affine_weyl_group,

2536
sage.combinat.root_system.fundamental_group,

2572
sage.combinat.root_system.fusion_ring,

2634
sage.combinat.root_system.hecke_algebra_representation,

2270
sage.combinat.root_system.integrable_representations,

2283
sage.combinat.root_system.non_symmetric_macdonald_polynomials,

2293
sage.combinat.root_system.pieri_factors,

2324
sage.combinat.root_system.plot, 2333
sage.combinat.root_system.reflection_group_complex,

2359
sage.combinat.root_system.reflection_group_real,

2387
sage.combinat.root_system.root_lattice_realization_algebras,

2395
sage.combinat.root_system.root_lattice_realizations,

2411
sage.combinat.root_system.root_space,

2455
sage.combinat.root_system.root_system,

2460
sage.combinat.root_system.type_A, 2479
sage.combinat.root_system.type_A_affine,

2482
sage.combinat.root_system.type_A_infinity,

2484
sage.combinat.root_system.type_affine,

2526
sage.combinat.root_system.type_B, 2486
sage.combinat.root_system.type_B_affine,

2492
sage.combinat.root_system.type_BC_affine,

2490
sage.combinat.root_system.type_C, 2494
sage.combinat.root_system.type_C_affine,

2497
sage.combinat.root_system.type_D, 2498
sage.combinat.root_system.type_D_affine,

2502
sage.combinat.root_system.type_dual, 2532
sage.combinat.root_system.type_E, 2504
sage.combinat.root_system.type_E_affine,

2512

sage.combinat.root_system.type_F, 2514
sage.combinat.root_system.type_F_affine,

2518
sage.combinat.root_system.type_folded,

2581
sage.combinat.root_system.type_G, 2519
sage.combinat.root_system.type_G_affine,

2522
sage.combinat.root_system.type_H, 2523
sage.combinat.root_system.type_I, 2524
sage.combinat.root_system.type_marked,

2584
sage.combinat.root_system.type_Q, 2525
sage.combinat.root_system.type_reducible,

2589
sage.combinat.root_system.type_relabel,

2595
sage.combinat.root_system.type_super_A,

2470
sage.combinat.root_system.weight_lattice_realizations,

2600
sage.combinat.root_system.weight_space,

2610
sage.combinat.root_system.weyl_characters,

2616
sage.combinat.root_system.weyl_group,

2646
sage.combinat.rooted_tree, 2660
sage.combinat.rsk, 2668
sage.combinat.schubert_polynomial, 2698
sage.combinat.set_partition, 2702
sage.combinat.set_partition_ordered, 2730
sage.combinat.sf.all, 2742
sage.combinat.sf.character, 2743
sage.combinat.sf.classical, 2744
sage.combinat.sf.dual, 2745
sage.combinat.sf.elementary, 2750
sage.combinat.sf.hall_littlewood, 2755
sage.combinat.sf.hecke, 2764
sage.combinat.sf.homogeneous, 2766
sage.combinat.sf.jack, 2770
sage.combinat.sf.k_dual, 2784
sage.combinat.sf.kfpoly, 2797
sage.combinat.sf.llt, 2801
sage.combinat.sf.macdonald, 2806
sage.combinat.sf.monomial, 2822
sage.combinat.sf.multiplicative, 2826
sage.combinat.sf.new_kschur, 2828
sage.combinat.sf.ns_macdonald, 2841
sage.combinat.sf.orthogonal, 2850
sage.combinat.sf.orthotriang, 2853
sage.combinat.sf.powersum, 2854
sage.combinat.sf.schur, 2864
sage.combinat.sf.sf, 2873

Index 3801

Combinatorics, Release 9.7

sage.combinat.sf.sfa, 2899
sage.combinat.sf.symplectic, 2871
sage.combinat.sf.witt, 2965
sage.combinat.shard_order, 2970
sage.combinat.shifted_primed_tableau,

2972
sage.combinat.shuffle, 2987
sage.combinat.sidon_sets, 2990
sage.combinat.similarity_class_type, 2991
sage.combinat.sine_gordon, 3005
sage.combinat.six_vertex_model, 3008
sage.combinat.skew_partition, 3014
sage.combinat.skew_tableau, 3029
sage.combinat.sloane_functions, 3050
sage.combinat.species.all, 3134
sage.combinat.species.characteristic_species,

3135
sage.combinat.species.composition_species,

3138
sage.combinat.species.cycle_species, 3139
sage.combinat.species.empty_species, 3140
sage.combinat.species.functorial_composition_species,

3141
sage.combinat.species.generating_series,

3142
sage.combinat.species.library, 3152
sage.combinat.species.linear_order_species,

3153
sage.combinat.species.misc, 3155
sage.combinat.species.partition_species,

3155
sage.combinat.species.permutation_species,

3157
sage.combinat.species.product_species,

3159
sage.combinat.species.recursive_species,

3162
sage.combinat.species.series, 3163
sage.combinat.species.series_order, 3176
sage.combinat.species.set_species, 3177
sage.combinat.species.species, 3178
sage.combinat.species.stream, 3182
sage.combinat.species.structure, 3185
sage.combinat.species.subset_species,

3190
sage.combinat.species.sum_species, 3191
sage.combinat.subset, 3192
sage.combinat.subsets_hereditary, 3203
sage.combinat.subsets_pairwise, 3205
sage.combinat.subword, 3206
sage.combinat.subword_complex, 3210
sage.combinat.super_tableau, 3229
sage.combinat.superpartition, 3233

sage.combinat.symmetric_group_algebra,
3242

sage.combinat.symmetric_group_representations,
3268

sage.combinat.tableau, 3275
sage.combinat.tableau_residues, 3341
sage.combinat.tableau_tuple, 3349
sage.combinat.tamari_lattices, 3385
sage.combinat.tiling, 3389
sage.combinat.tools, 3413
sage.combinat.tuple, 3413
sage.combinat.tutorial, 3415
sage.combinat.vector_partition, 3445
sage.combinat.words, 3460
sage.combinat.words.abstract_word, 3448
sage.combinat.words.alphabet, 3461
sage.combinat.words.finite_word, 3465
sage.combinat.words.infinite_word, 3542
sage.combinat.words.lyndon_word, 3544
sage.combinat.words.morphism, 3547
sage.combinat.words.paths, 3578
sage.combinat.words.shuffle_product, 3604
sage.combinat.words.suffix_trees, 3606
sage.combinat.words.word, 3618
sage.combinat.words.word_char, 3626
sage.combinat.words.word_datatypes, 3629
sage.combinat.words.word_generators, 3635
sage.combinat.words.word_infinite_datatypes,

3649
sage.combinat.words.word_options, 3652
sage.combinat.words.words, 3652
sage.combinat.yang_baxter_graph, 3662
sage.rings.cfinite_sequence, 3668

module_generator() (sage.combinat.crystals.highest_weight_crystals.FiniteDimensionalHighestWeightCrystal_TypeE
method), 396

module_generator() (sage.combinat.crystals.infinity_crystals.DualInfinityQueerCrystalOfTableaux
method), 405

module_generator() (sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux
method), 410

module_generator() (sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableauxTypeD
method), 411

module_generator() (sage.combinat.crystals.kac_modules.CrystalOfKacModule
method), 414

module_generator() (sage.combinat.crystals.kac_modules.CrystalOfOddNegativeRoots
method), 416

module_generator() (sage.combinat.crystals.kirillov_reshetikhin.CrystalOfTableaux_E7
method), 418

module_generator() (sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal
method), 452

module_generator() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2
method), 421

module_generator() (sage.combinat.crystals.littelmann_path.InfinityCrystalOfLSPaths
method), 491

3802 Index

Combinatorics, Release 9.7

module_generator() (sage.combinat.crystals.tensor_product.CrystalOfTableaux
method), 529

module_generator() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux
method), 2094

module_generators()
(sage.combinat.crystals.fully_commutative_stable_grothendieck.FullyCommutativeStableGrothendieckCrystal
method), 386

module_generators()
(sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeFromRC
method), 2089

module_generators()
(sage.combinat.rigged_configurations.rigged_configurations.RCNonSimplyLaced
method), 2132

module_generators()
(sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Dual
method), 2134

module_generators()
(sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations
method), 2141

module_generators()
(sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux_shape
method), 2986

moebius() (sage.combinat.posets.incidence_algebras.IncidenceAlgebra
method), 1863

moebius() (sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra
method), 1866

moebius_algebra() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1904

moebius_function() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1854

moebius_function() (sage.combinat.posets.posets.FinitePoset
method), 1997

moebius_function_matrix()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1855

moebius_function_matrix()
(sage.combinat.posets.posets.FinitePoset
method), 1998

MoebiusAlgebra (class in
sage.combinat.posets.moebius_algebra),
1922

MoebiusAlgebra.E (class in
sage.combinat.posets.moebius_algebra),
1922

MoebiusAlgebra.I (class in
sage.combinat.posets.moebius_algebra),
1923

MoebiusAlgebraBases (class in
sage.combinat.posets.moebius_algebra),
1924

MoebiusAlgebraBases.ElementMethods (class in
sage.combinat.posets.moebius_algebra), 1924

MoebiusAlgebraBases.ParentMethods (class in
sage.combinat.posets.moebius_algebra), 1924

MOLS_10_2() (in module
sage.combinat.designs.database), 612

MOLS_12_5() (in module
sage.combinat.designs.database), 612

MOLS_14_4() (in module
sage.combinat.designs.database), 612

MOLS_15_4() (in module
sage.combinat.designs.database), 612

MOLS_18_3() (in module
sage.combinat.designs.database), 613

MOLS_table() (in module
sage.combinat.designs.latin_squares), 683

moments_waiting_time()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 941

monomial (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions
attribute), 1424

monomial() (sage.combinat.free_module.CombinatorialFreeModule
method), 1018

monomial() (sage.combinat.sf.sf.SymmetricFunctions
method), 2895

monomial_from_smaller_permutation()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3257

MonotoneTriangles (class in
sage.combinat.alternating_sign_matrix),
62

morphism_matrix() (sage.combinat.root_system.weyl_group.WeylGroup_gens
method), 2654

most_decreased_denominator_after_mutation()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 173

most_decreased_edge_after_mutation()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 173

mu (sage.combinat.recognizable_series.RecognizableSeries
attribute), 2048

mullineux_conjugate()
(sage.combinat.partition_kleshchev.KleshchevPartition
method), 1703

mullineux_conjugate()
(sage.combinat.partition_kleshchev.KleshchevPartitionTuple
method), 1707

mult() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2290

multi_major_index()
(sage.combinat.permutation.Permutation
method), 1775

multi_partitions() (in module
sage.combinat.root_system.reflection_group_complex),
2386

multicharge() (sage.combinat.partition_kleshchev.KleshchevPartitions
method), 1710

multicharge() (sage.combinat.tableau_residues.ResidueSequence

Index 3803

Combinatorics, Release 9.7

method), 3345
multicharge() (sage.combinat.tableau_tuple.RowStandardTableauTuples_residue

method), 3360
MultiplicativeNCSymBases (class in

sage.combinat.ncsym.bases), 1472
MultiplicativeNCSymBases.ElementMethods (class

in sage.combinat.ncsym.bases), 1472
MultiplicativeNCSymBases.ParentMethods (class

in sage.combinat.ncsym.bases), 1472
multiplicity() (sage.combinat.rigged_configurations.kleber_tree.KleberTreeNode

method), 2083
multiplicity() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element

method), 2624
multiply_variable()

(sage.combinat.schubert_polynomial.SchubertPolynomial_class
method), 2701

multiset() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1338

MultiSkewTableau (class in
sage.combinat.ribbon_tableau), 2059

MultiSkewTableaux (class in
sage.combinat.ribbon_tableau), 2060

mutable_copy() (sage.combinat.constellation.Constellation_class
method), 321

mutate() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 173

mutate() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 211

mutate() (sage.combinat.nu_dyck_word.NuDyckWord
method), 1511

mutation_analysis()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 177

mutation_class() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 180

mutation_class() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 213

mutation_class_iter()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 181

mutation_class_iter()
(sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 215

mutation_sequence()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 183

mutation_sequence()
(sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 217

mutation_type() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 183

mutation_type() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 217

mutations() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 185
mutually_orthogonal_latin_squares() (in module

sage.combinat.designs.latin_squares), 684
MVPolytope (class in sage.combinat.crystals.mv_polytopes),

504
MVPolytopes (class in

sage.combinat.crystals.mv_polytopes), 506

N
n (sage.combinat.set_partition.SetPartitions_setn at-

tribute), 2727
n() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 185
n() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver

method), 219
N_ijk() (sage.combinat.root_system.fusion_ring.FusionRing

method), 2640
n_value() (sage.combinat.fully_commutative_elements.FullyCommutativeElement

method), 844
na() (sage.combinat.sine_gordon.SineGordonYsystem

method), 3006
nabla() (sage.combinat.sf.macdonald.MacdonaldPolynomials_generic.Element

method), 2814
nabla() (sage.combinat.sf.macdonald.MacdonaldPolynomials_ht.Element

method), 2816
nabla() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

method), 2935
nabla_pieces() (sage.combinat.knutson_tao_puzzles.PuzzlePieces

method), 1276
NablaPiece (class in sage.combinat.knutson_tao_puzzles),

1270
nabs() (in module sage.combinat.k_tableau), 1255
NakajimaMonomial (class in

sage.combinat.crystals.monomial_crystals),
498

name() (sage.combinat.combinatorial_map.CombinatorialMap
method), 286

nap_product() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1037

nap_product_on_basis()
(sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1037

narayana_number() (in module
sage.combinat.combinat), 271

natural (sage.combinat.posets.moebius_algebra.MoebiusAlgebra
attribute), 1924

natural (sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra
attribute), 1927

nb_factor_occurrences_in()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3516

nb_subword_occurrences_in()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3517

3804 Index

Combinatorics, Release 9.7

ncols() (sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1281

ncols() (sage.combinat.matrices.latin.LatinSquare
method), 1311

NCSymBases (class in sage.combinat.ncsym.bases), 1473
NCSymBases.ElementMethods (class in

sage.combinat.ncsym.bases), 1473
NCSymBases.ParentMethods (class in

sage.combinat.ncsym.bases), 1476
NCSymBasis_abstract (class in

sage.combinat.ncsym.bases), 1478
NCSymDualBases (class in sage.combinat.ncsym.bases),

1478
NCSymOrNCSymDualBases (class in

sage.combinat.ncsym.bases), 1478
NCSymOrNCSymDualBases.ElementMethods (class in

sage.combinat.ncsym.bases), 1478
NCSymOrNCSymDualBases.ParentMethods (class in

sage.combinat.ncsym.bases), 1479
ncube_isometry_group() (in module

sage.combinat.tiling), 3410
ncube_isometry_group_cosets() (in module

sage.combinat.tiling), 3411
near_concatenation()

(sage.combinat.composition.Composition
method), 298

Necklaces() (in module sage.combinat.necklace), 1503
Necklaces_evaluation (class in

sage.combinat.necklace), 1503
negative() (sage.combinat.tableau_residues.ResidueSequence

method), 3345
negative_even_roots()

(sage.combinat.root_system.type_super_A.AmbientSpace
method), 2474

negative_odd_roots()
(sage.combinat.root_system.type_super_A.AmbientSpace
method), 2474

negative_roots() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2434

negative_roots() (sage.combinat.root_system.type_A.AmbientSpace
method), 2480

negative_roots() (sage.combinat.root_system.type_B.AmbientSpace
method), 2487

negative_roots() (sage.combinat.root_system.type_C.AmbientSpace
method), 2494

negative_roots() (sage.combinat.root_system.type_D.AmbientSpace
method), 2499

negative_roots() (sage.combinat.root_system.type_E.AmbientSpace
method), 2504

negative_roots() (sage.combinat.root_system.type_F.AmbientSpace
method), 2514

negative_roots() (sage.combinat.root_system.type_G.AmbientSpace
method), 2520

negative_roots() (sage.combinat.root_system.type_reducible.AmbientSpace

method), 2590
negative_roots() (sage.combinat.root_system.type_super_A.AmbientSpace

method), 2474
neighbor_edges() (sage.combinat.tiling.Polyomino

method), 3398
nesting() (in module sage.combinat.ncsym.ncsym),

1502
nestings() (sage.combinat.set_partition.SetPartition

method), 2708
nestings_iterator()

(sage.combinat.set_partition.SetPartition
method), 2709

neutral_elements() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1855

neutral_elements() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1904

new_decomposition()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1180

next() (sage.combinat.combinat.CombinatorialClass
method), 257

next() (sage.combinat.dlx.DLXMatrix method), 775
next() (sage.combinat.finite_state_machine.FSMProcessIterator

method), 881
next() (sage.combinat.misc.DoublyLinkedList method),

1328
next() (sage.combinat.partition.Partition method), 1647
next() (sage.combinat.partition.Partitions_ending

method), 1675
next() (sage.combinat.partition.Partitions_n method),

1677
next() (sage.combinat.partition.Partitions_starting

method), 1681
next() (sage.combinat.permutation.Permutation

method), 1775
next_conjugate() (in module

sage.combinat.matrices.latin), 1322
next_perm() (in module

sage.combinat.permutation_cython), 1825
next_state() (sage.combinat.rigged_configurations.bij_abstract_class.KRTToRCBijectionAbstract

method), 2068
next_state() (sage.combinat.rigged_configurations.bij_abstract_class.RCToKRTBijectionAbstract

method), 2068
next_state() (sage.combinat.rigged_configurations.bij_type_A.KRTToRCBijectionTypeA

method), 2071
next_state() (sage.combinat.rigged_configurations.bij_type_A.RCToKRTBijectionTypeA

method), 2071
next_state() (sage.combinat.rigged_configurations.bij_type_A2_dual.KRTToRCBijectionTypeA2Dual

method), 2072
next_state() (sage.combinat.rigged_configurations.bij_type_A2_dual.RCToKRTBijectionTypeA2Dual

method), 2072
next_state() (sage.combinat.rigged_configurations.bij_type_A2_even.KRTToRCBijectionTypeA2Even

method), 2072
next_state() (sage.combinat.rigged_configurations.bij_type_A2_even.RCToKRTBijectionTypeA2Even

Index 3805

Combinatorics, Release 9.7

method), 2072
next_state() (sage.combinat.rigged_configurations.bij_type_A2_odd.KRTToRCBijectionTypeA2Odd

method), 2073
next_state() (sage.combinat.rigged_configurations.bij_type_A2_odd.RCToKRTBijectionTypeA2Odd

method), 2073
next_state() (sage.combinat.rigged_configurations.bij_type_B.KRTToRCBijectionTypeB

method), 2073
next_state() (sage.combinat.rigged_configurations.bij_type_B.RCToKRTBijectionTypeB

method), 2074
next_state() (sage.combinat.rigged_configurations.bij_type_C.KRTToRCBijectionTypeC

method), 2075
next_state() (sage.combinat.rigged_configurations.bij_type_C.RCToKRTBijectionTypeC

method), 2075
next_state() (sage.combinat.rigged_configurations.bij_type_D.KRTToRCBijectionTypeD

method), 2076
next_state() (sage.combinat.rigged_configurations.bij_type_D.RCToKRTBijectionTypeD

method), 2076
next_state() (sage.combinat.rigged_configurations.bij_type_D_tri.KRTToRCBijectionTypeDTri

method), 2078
next_state() (sage.combinat.rigged_configurations.bij_type_D_tri.RCToKRTBijectionTypeDTri

method), 2079
next_state() (sage.combinat.rigged_configurations.bij_type_D_twisted.KRTToRCBijectionTypeDTwisted

method), 2077
next_state() (sage.combinat.rigged_configurations.bij_type_D_twisted.RCToKRTBijectionTypeDTwisted

method), 2078
next_within_bounds()

(sage.combinat.partition.Partition method),
1647

ngens() (sage.combinat.species.series.LazyPowerSeriesRing
method), 3174

ngens() (sage.rings.cfinite_sequence.CFiniteSequences_generic
method), 3675

Nk_ij() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2640

nM (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions
attribute), 1424

node_number() (sage.combinat.abstract_tree.AbstractTree
method), 17

node_number_at_depth()
(sage.combinat.abstract_tree.AbstractTree
method), 18

node_number_to_the_right()
(sage.combinat.abstract_tree.AbstractTree
method), 18

node_to_word() (sage.combinat.words.suffix_trees.SuffixTrie
method), 3616

NonattackingBacktracker (class in
sage.combinat.sf.ns_macdonald), 2849

NonattackingFillings() (in module
sage.combinat.sf.ns_macdonald), 2849

NonattackingFillings_shape (class in
sage.combinat.sf.ns_macdonald), 2850

NonCommutativeSymmetricFunctions (class in
sage.combinat.ncsf_qsym.ncsf), 1370

NonCommutativeSymmetricFunctions.Bases (class
in sage.combinat.ncsf_qsym.ncsf), 1376

NonCommutativeSymmetricFunctions.Bases.ElementMethods
(class in sage.combinat.ncsf_qsym.ncsf), 1376

NonCommutativeSymmetricFunctions.Bases.ParentMethods
(class in sage.combinat.ncsf_qsym.ncsf), 1392

NonCommutativeSymmetricFunctions.Complete
(class in sage.combinat.ncsf_qsym.ncsf), 1394

NonCommutativeSymmetricFunctions.Complete.Element
(class in sage.combinat.ncsf_qsym.ncsf), 1394

NonCommutativeSymmetricFunctions.dualQuasisymmetric_Schur
(class in sage.combinat.ncsf_qsym.ncsf), 1421

NonCommutativeSymmetricFunctions.dualYoungQuasisymmetric_Schur
(class in sage.combinat.ncsf_qsym.ncsf), 1423

NonCommutativeSymmetricFunctions.Elementary
(class in sage.combinat.ncsf_qsym.ncsf), 1396

NonCommutativeSymmetricFunctions.Elementary.Element
(class in sage.combinat.ncsf_qsym.ncsf), 1397

NonCommutativeSymmetricFunctions.Immaculate
(class in sage.combinat.ncsf_qsym.ncsf), 1400

NonCommutativeSymmetricFunctions.Immaculate.Element
(class in sage.combinat.ncsf_qsym.ncsf), 1401

NonCommutativeSymmetricFunctions.Monomial
(class in sage.combinat.ncsf_qsym.ncsf), 1402

NonCommutativeSymmetricFunctions.MultiplicativeBases
(class in sage.combinat.ncsf_qsym.ncsf), 1402

NonCommutativeSymmetricFunctions.MultiplicativeBases.ParentMethods
(class in sage.combinat.ncsf_qsym.ncsf), 1403

NonCommutativeSymmetricFunctions.MultiplicativeBasesOnGroupLikeElements
(class in sage.combinat.ncsf_qsym.ncsf), 1406

NonCommutativeSymmetricFunctions.MultiplicativeBasesOnGroupLikeElements.ParentMethods
(class in sage.combinat.ncsf_qsym.ncsf), 1406

NonCommutativeSymmetricFunctions.MultiplicativeBasesOnPrimitiveElements
(class in sage.combinat.ncsf_qsym.ncsf), 1407

NonCommutativeSymmetricFunctions.MultiplicativeBasesOnPrimitiveElements.ParentMethods
(class in sage.combinat.ncsf_qsym.ncsf), 1408

NonCommutativeSymmetricFunctions.Phi (class in
sage.combinat.ncsf_qsym.ncsf), 1408

NonCommutativeSymmetricFunctions.Phi.Element
(class in sage.combinat.ncsf_qsym.ncsf), 1409

NonCommutativeSymmetricFunctions.Psi (class in
sage.combinat.ncsf_qsym.ncsf), 1412

NonCommutativeSymmetricFunctions.Psi.Element
(class in sage.combinat.ncsf_qsym.ncsf), 1413

NonCommutativeSymmetricFunctions.Ribbon (class
in sage.combinat.ncsf_qsym.ncsf), 1415

NonCommutativeSymmetricFunctions.Ribbon.Element
(class in sage.combinat.ncsf_qsym.ncsf), 1416

NonCommutativeSymmetricFunctions.Zassenhaus_left
(class in sage.combinat.ncsf_qsym.ncsf), 1420

NonCommutativeSymmetricFunctions.Zassenhaus_right
(class in sage.combinat.ncsf_qsym.ncsf), 1420

NoncrossingPartitions()
(sage.combinat.posets.poset_examples.Posets

3806 Index

Combinatorics, Release 9.7

static method), 1933
NonDecreasingParkingFunction (class in

sage.combinat.non_decreasing_parking_function),
1504

NonDecreasingParkingFunctions() (in module
sage.combinat.non_decreasing_parking_function),
1506

NonDecreasingParkingFunctions_all (class in
sage.combinat.non_decreasing_parking_function),
1507

NonDecreasingParkingFunctions_n (class in
sage.combinat.non_decreasing_parking_function),
1507

noninversions() (sage.combinat.permutation.Permutation
method), 1776

nonnesting_partition_lattice()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2435

nonparabolic_positive_root_sum()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2435

nonparabolic_positive_roots()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2435

NonSymmetricMacdonaldPolynomials (class in
sage.combinat.root_system.non_symmetric_macdonald_polynomials),
2293

norm_squared() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2420

normal_cells() (sage.combinat.partition_kleshchev.KleshchevPartition
method), 1703

normal_cells() (sage.combinat.partition_kleshchev.KleshchevPartitionTuple
method), 1707

normalise_hadamard() (in module
sage.combinat.matrices.hadamard_matrix),
1295

normalize() (sage.combinat.fully_commutative_elements.FullyCommutativeElement
method), 845

normalize() (sage.combinat.ordered_tree.OrderedTree
method), 1525

normalize() (sage.combinat.rooted_tree.RootedTree
method), 2664

normalize_coefficients() (in module
sage.combinat.sf.jack), 2783

normalize_hughes_plane_point() (in module
sage.combinat.designs.block_design), 592

normalize_vertex() (sage.combinat.growth.Rule
method), 1081

normalize_vertex() (sage.combinat.growth.RuleBinaryWord
method), 1083

normalize_vertex() (sage.combinat.growth.RuleDomino
method), 1088

normalize_vertex() (sage.combinat.growth.RuleLLMS
method), 1092

normalize_vertex() (sage.combinat.growth.RulePartitions
method), 1093

normalize_vertex() (sage.combinat.growth.RuleShiftedShapes
method), 1099

normalize_vertex() (sage.combinat.growth.RuleSylvester
method), 1104

normalize_vertex() (sage.combinat.growth.RuleYoungFibonacci
method), 1107

north_east_label_of_kink()
(sage.combinat.knutson_tao_puzzles.PuzzleFilling
method), 1272

north_piece() (sage.combinat.knutson_tao_puzzles.RhombusPiece
method), 1277

north_west_label_of_kink()
(sage.combinat.knutson_tao_puzzles.PuzzleFilling
method), 1272

nr_distinct_symbols()
(sage.combinat.matrices.latin.LatinSquare
method), 1311

nr_filled_cells() (sage.combinat.matrices.latin.LatinSquare
method), 1311

nrows() (sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1281

nrows() (sage.combinat.matrices.latin.LatinSquare
method), 1312

nrows_per_piece() (sage.combinat.tiling.TilingSolver
method), 3406

nu() (sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement
method), 2129

NuDyckWord (class in sage.combinat.nu_dyck_word),
1509

NuDyckWords (class in sage.combinat.nu_dyck_word),
1517

NuDyckWords.options() (in module
sage.combinat.nu_dyck_word), 1518

null_coroot() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2436

null_root() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2436

num_blocks() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 678

num_points() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 679

number_computed() (sage.combinat.species.stream.Stream_class
method), 3184

number_negative_ones()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 58

number_of_blocks() (sage.combinat.set_partition.SetPartitions_setn
method), 2727

number_of_boxes() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
method), 1057

number_of_circles()
(sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern

Index 3807

Combinatorics, Release 9.7

method), 1057
number_of_classes()

(sage.combinat.similarity_class_type.SimilarityClassType
method), 2997

number_of_close_symbols()
(sage.combinat.dyck_word.DyckWord method),
785

number_of_connected_components()
(sage.combinat.k_tableau.StrongTableau
method), 1220

number_of_crossings()
(sage.combinat.set_partition.SetPartition
method), 2709

number_of_descents()
(sage.combinat.permutation.Permutation
method), 1776

number_of_double_rises()
(sage.combinat.dyck_word.DyckWord method),
785

number_of_edges() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 219

number_of_factor_occurrences()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3517

number_of_factors()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3518

number_of_factors()
(sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3609

number_of_fCT() (in module
sage.combinat.ncsf_qsym.combinatorics),
1352

number_of_fixed_points()
(sage.combinat.permutation.Permutation
method), 1776

number_of_idescents()
(sage.combinat.permutation.Permutation
method), 1776

number_of_initial_rises()
(sage.combinat.dyck_word.DyckWord method),
785

number_of_inversions()
(sage.combinat.permutation.Permutation
method), 1777

number_of_inversions()
(sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2736

number_of_inversions()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3519

number_of_irreducible_components()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2375

number_of_left_special_factors()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3519

number_of_letter_occurrences()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3519

number_of_letter_occurrences()
(sage.combinat.words.word_datatypes.WordDatatype_list
method), 3629

number_of_letter_occurrences()
(sage.combinat.words.word_datatypes.WordDatatype_str
method), 3632

number_of_loops() (sage.combinat.perfect_matching.PerfectMatching
method), 1744

number_of_matrices()
(sage.combinat.similarity_class_type.SimilarityClassType
method), 2998

number_of_nestings()
(sage.combinat.set_partition.SetPartition
method), 2709

number_of_new_components()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1181

number_of_noninversions()
(sage.combinat.permutation.Permutation
method), 1777

number_of_open_symbols()
(sage.combinat.dyck_word.DyckWord method),
785

number_of_parking_functions()
(sage.combinat.dyck_word.DyckWord_complete
method), 804

number_of_partitions() (in module
sage.combinat.partition), 1686

number_of_partitions_length() (in module
sage.combinat.partition), 1687

number_of_parts() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 392

number_of_peaks() (sage.combinat.dyck_word.DyckWord
method), 785

number_of_peaks() (sage.combinat.permutation.Permutation
method), 1778

number_of_recoils()
(sage.combinat.permutation.Permutation
method), 1778

number_of_reflection_hyperplanes()
(sage.combinat.colored_permutations.ColoredPermutations
method), 248

number_of_reflections()
(sage.combinat.root_system.weyl_group.WeylGroup_permutation
method), 2657

number_of_right_special_factors()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3520

3808 Index

Combinatorics, Release 9.7

number_of_rooted_trees() (in module
sage.combinat.rooted_tree), 2667

number_of_saliances()
(sage.combinat.permutation.Permutation
method), 1778

number_of_solutions()
(sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1281

number_of_solutions()
(sage.combinat.tiling.TilingSolver method),
3406

number_of_special_entries()
(sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
method), 1057

number_of_SSRCT() (in module
sage.combinat.ncsf_qsym.combinatorics),
1351

number_of_subword_occurrences()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3520

number_of_tamari_inversions()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1181

number_of_touch_points()
(sage.combinat.dyck_word.DyckWord method),
786

number_of_tunnels()
(sage.combinat.dyck_word.DyckWord_complete
method), 804

number_of_tuples() (in module
sage.combinat.combinat), 271

number_of_unordered_tuples() (in module
sage.combinat.combinat), 272

number_of_valleys()
(sage.combinat.dyck_word.DyckWord method),
786

number_of_words() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 945

numerator() (sage.rings.cfinite_sequence.CFiniteSequence
method), 3672

NuTamariLattice() (in module
sage.combinat.nu_tamari_lattice), 1521

nwf() (sage.combinat.sloane_functions.A001055
method), 3085

O
o() (sage.combinat.sf.sf.SymmetricFunctions method),

2895
OA_10_1620() (in module

sage.combinat.designs.database), 613
OA_10_205() (in module

sage.combinat.designs.database), 613
OA_10_469() (in module

sage.combinat.designs.database), 614

OA_10_520() (in module
sage.combinat.designs.database), 615

OA_10_796() (in module
sage.combinat.designs.database), 615

OA_11_160() (in module
sage.combinat.designs.database), 615

OA_11_185() (in module
sage.combinat.designs.database), 616

OA_11_254() (in module
sage.combinat.designs.database), 616

OA_11_640() (in module
sage.combinat.designs.database), 617

OA_11_80() (in module
sage.combinat.designs.database), 617

OA_12_522() (in module
sage.combinat.designs.database), 617

OA_14_524() (in module
sage.combinat.designs.database), 618

OA_15_112() (in module
sage.combinat.designs.database), 618

OA_15_224() (in module
sage.combinat.designs.database), 618

OA_15_896() (in module
sage.combinat.designs.database), 619

OA_16_176() (in module
sage.combinat.designs.database), 619

OA_16_208() (in module
sage.combinat.designs.database), 620

OA_17_560() (in module
sage.combinat.designs.database), 620

OA_20_352() (in module
sage.combinat.designs.database), 620

OA_20_416() (in module
sage.combinat.designs.database), 621

OA_20_544() (in module
sage.combinat.designs.database), 621

OA_25_1262() (in module
sage.combinat.designs.database), 621

OA_520_plus_x() (in module
sage.combinat.designs.database), 622

OA_7_18() (in module sage.combinat.designs.database),
622

OA_7_66() (in module sage.combinat.designs.database),
623

OA_7_68() (in module sage.combinat.designs.database),
623

OA_7_74() (in module sage.combinat.designs.database),
623

OA_8_69() (in module sage.combinat.designs.database),
624

OA_8_76() (in module sage.combinat.designs.database),
624

OA_9_1078() (in module
sage.combinat.designs.database), 624

Index 3809

Combinatorics, Release 9.7

OA_9_120() (in module
sage.combinat.designs.database), 625

OA_9_135() (in module
sage.combinat.designs.database), 625

OA_9_1612() (in module
sage.combinat.designs.database), 626

OA_9_40() (in module sage.combinat.designs.database),
626

OA_and_oval() (in module
sage.combinat.designs.orthogonal_arrays_build_recursive),
704

OA_find_disjoint_blocks() (in module
sage.combinat.designs.orthogonal_arrays),
690

OA_from_PBD() (in module
sage.combinat.designs.orthogonal_arrays),
690

OA_from_quasi_difference_matrix() (in module
sage.combinat.designs.orthogonal_arrays),
691

OA_from_Vmt() (in module
sage.combinat.designs.orthogonal_arrays),
691

OA_from_wider_OA() (in module
sage.combinat.designs.orthogonal_arrays),
692

OA_n_times_2_pow_c_from_matrix() (in module
sage.combinat.designs.orthogonal_arrays),
693

OA_relabel() (in module
sage.combinat.designs.orthogonal_arrays),
694

OAMainFunctions (class in
sage.combinat.designs.orthogonal_arrays),
687

occurrences_of() (sage.combinat.e_one_star.Patch
method), 825

odd_isotropic_roots()
(sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2267

ogf() (sage.rings.cfinite_sequence.CFiniteSequence
method), 3672

omega() (sage.combinat.ncsym.bases.NCSymBases.ElementMethods
method), 1474

omega() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.elementary.Element
method), 1491

omega() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.homogeneous.Element
method), 1492

omega() (sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual.Element
method), 2747

omega() (sage.combinat.sf.elementary.SymmetricFunctionAlgebra_elementary.Element
method), 2752

omega() (sage.combinat.sf.homogeneous.SymmetricFunctionAlgebra_homogeneous.Element
method), 2768

omega() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ElementMethods
method), 2831

omega() (sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element
method), 2858

omega() (sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur.Element
method), 2866

omega() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2936

omega_involution() (sage.combinat.fqsym.FQSymBases.ElementMethods
method), 997

omega_involution() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1381

omega_involution() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods
method), 1440

omega_involution() (sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual.Element
method), 2748

omega_involution() (sage.combinat.sf.elementary.SymmetricFunctionAlgebra_elementary.Element
method), 2752

omega_involution() (sage.combinat.sf.homogeneous.SymmetricFunctionAlgebra_homogeneous.Element
method), 2768

omega_involution() (sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element
method), 2859

omega_involution() (sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur.Element
method), 2866

omega_involution() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2937

omega_qt() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2937

omega_t_inverse() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ElementMethods
method), 2832

on_basis() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation
method), 2281

on_duplicate_transition
(sage.combinat.finite_state_machine.FiniteStateMachine
attribute), 947

on_fly() (in module sage.combinat.ranker), 2039
one() (sage.combinat.affine_permutation.AffinePermutationGroupTypeA

method), 33
one() (sage.combinat.affine_permutation.AffinePermutationGroupTypeC

method), 33
one() (sage.combinat.affine_permutation.AffinePermutationGroupTypeG

method), 34
one() (sage.combinat.backtrack.PositiveIntegerSemigroup

method), 65
one() (sage.combinat.colored_permutations.ColoredPermutations

method), 249
one() (sage.combinat.colored_permutations.SignedPermutations

method), 252
one() (sage.combinat.descent_algebra.DescentAlgebra.I

method), 564
one() (sage.combinat.diagram_algebras.OrbitBasis

method), 746
one() (sage.combinat.interval_posets.TamariIntervalPosets_all

method), 1195

3810 Index

Combinatorics, Release 9.7

one() (sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunctions_n
method), 1508

one() (sage.combinat.permutation.StandardPermutations_n
method), 1816

one() (sage.combinat.posets.incidence_algebras.IncidenceAlgebra
method), 1863

one() (sage.combinat.posets.moebius_algebra.MoebiusAlgebra.E
method), 1923

one() (sage.combinat.posets.moebius_algebra.MoebiusAlgebra.I
method), 1923

one() (sage.combinat.posets.moebius_algebra.MoebiusAlgebraBases.ParentMethods
method), 1924

one() (sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra.E
method), 1925

one() (sage.combinat.root_system.fundamental_group.FundamentalGroupGL
method), 2574

one() (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class
method), 2580

one() (sage.combinat.root_system.weyl_group.WeylGroup_gens
method), 2654

one() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2788

one_basis() (sage.combinat.blob_algebra.BlobAlgebra
method), 118

one_basis() (sage.combinat.chas.fsym.FSymBases.ParentMethods
method), 125

one_basis() (sage.combinat.chas.wqsym.WQSymBases.ParentMethods
method), 139

one_basis() (sage.combinat.descent_algebra.DescentAlgebra.B
method), 560

one_basis() (sage.combinat.descent_algebra.DescentAlgebra.D
method), 562

one_basis() (sage.combinat.descent_algebra.DescentAlgebra.I
method), 564

one_basis() (sage.combinat.diagram_algebras.UnitDiagramMixin
method), 769

one_basis() (sage.combinat.fqsym.FQSymBases.ParentMethods
method), 1004

one_basis() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1030

one_basis() (sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra
method), 1111

one_basis() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1360

one_basis() (sage.combinat.ncsym.bases.NCSymOrNCSymDualBases.ParentMethods
method), 1481

one_basis() (sage.combinat.partition_algebra.PartitionAlgebra_generic
method), 1688

one_basis() (sage.combinat.partition_shifting_algebras.ShiftingOperatorAlgebra
method), 1716

one_basis() (sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra
method), 1866

one_basis() (sage.combinat.root_system.weyl_characters.WeightRing
method), 2619

one_basis() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2631

one_basis() (sage.combinat.schubert_polynomial.SchubertPolynomialRing_xbasis
method), 2699

one_basis() (sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods
method), 2792

one_basis() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ParentMethods
method), 2834

one_basis() (sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2961

one_basis() (sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_generic
method), 3243

one_cyclic_tiling() (in module
sage.combinat.designs.difference_family),
645

one_dimensional_configuration_sum()
(sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths
method), 489

one_hadamard() (sage.combinat.recognizable_series.RecognizableSeriesSpace
method), 2051

one_line_form() (sage.combinat.colored_permutations.ColoredPermutation
method), 243

one_radical_difference_family() (in module
sage.combinat.designs.difference_family), 646

one_solution() (sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1282

one_solution_using_milp_solver()
(sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1283

one_solution_using_sat_solver()
(sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1283

OneExactCover() (in module sage.combinat.dlx), 776
OneExactCover() (in module

sage.combinat.matrices.dlxcpp), 1290
open_extrep_file() (in module

sage.combinat.designs.ext_rep), 659
open_extrep_url() (in module

sage.combinat.designs.ext_rep), 660
open_interval() (sage.combinat.posets.hasse_diagram.HasseDiagram

method), 1856
open_interval() (sage.combinat.posets.posets.FinitePoset

method), 1998
openers() (sage.combinat.set_partition.SetPartition

method), 2710
operator() (sage.combinat.finite_state_machine_generators.TransducerGenerators

method), 994
opposition_automorphism()

(sage.combinat.root_system.cartan_type.CartanType_standard_finite
method), 2241

options (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_all
attribute), 1564

options (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_size
attribute), 1565

Index 3811

Combinatorics, Release 9.7

orbit() (in module sage.combinat.enumeration_mod_permgroup),
836

orbit() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All
method), 1154

orbit() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints
method), 1158

orbit() (sage.combinat.path_tableaux.path_tableau.PathTableau
method), 1596

orbit() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2421

orbit_basis() (sage.combinat.diagram_algebras.PartitionAlgebra
method), 759

orbit_decomposition() (in module
sage.combinat.cyclic_sieving_phenomenon),
549

OrbitBasis (class in sage.combinat.diagram_algebras),
744

OrbitBasis.Element (class in
sage.combinat.diagram_algebras), 745

order() (sage.combinat.blob_algebra.BlobAlgebra
method), 118

order() (sage.combinat.blob_algebra.BlobDiagrams
method), 119

order() (sage.combinat.colored_permutations.ColoredPermutations
method), 249

order() (sage.combinat.colored_permutations.SignedPermutation
method), 250

order() (sage.combinat.combinatorial_map.CombinatorialMap
method), 286

order() (sage.combinat.diagram_algebras.AbstractPartitionDiagram
method), 734

order() (sage.combinat.diagram_algebras.DiagramAlgebra
method), 743

order() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1338

order() (sage.combinat.words.finite_word.FiniteWord_class
method), 3521

order_complex() (sage.combinat.posets.posets.FinitePoset
method), 1999

order_filter() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1856

order_filter() (sage.combinat.posets.posets.FinitePoset
method), 1999

order_ideal() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1856

order_ideal() (sage.combinat.posets.posets.FinitePoset
method), 2000

order_ideal_cardinality()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1856

order_ideal_cardinality()
(sage.combinat.posets.posets.FinitePoset
method), 2000

order_ideal_plot() (sage.combinat.posets.posets.FinitePoset

method), 2000
order_of_general_linear_group() (in module

sage.combinat.similarity_class_type), 3004
order_polynomial() (sage.combinat.posets.posets.FinitePoset

method), 2000
order_polytope() (sage.combinat.posets.posets.FinitePoset

method), 2001
ordered_set_partition_action()

(sage.combinat.set_partition.SetPartition
method), 2710

OrderedMultisetPartitionIntoSets (class in
sage.combinat.multiset_partition_into_sets_ordered),
1333

OrderedMultisetPartitionsIntoSets (class in
sage.combinat.multiset_partition_into_sets_ordered),
1341

OrderedMultisetPartitionsIntoSets_all_constraints
(class in sage.combinat.multiset_partition_into_sets_ordered),
1347

OrderedMultisetPartitionsIntoSets_alph_d
(class in sage.combinat.multiset_partition_into_sets_ordered),
1347

OrderedMultisetPartitionsIntoSets_alph_d_constraints
(class in sage.combinat.multiset_partition_into_sets_ordered),
1348

OrderedMultisetPartitionsIntoSets_n (class in
sage.combinat.multiset_partition_into_sets_ordered),
1348

OrderedMultisetPartitionsIntoSets_n_constraints
(class in sage.combinat.multiset_partition_into_sets_ordered),
1348

OrderedMultisetPartitionsIntoSets_X (class in
sage.combinat.multiset_partition_into_sets_ordered),
1346

OrderedMultisetPartitionsIntoSets_X_constraints
(class in sage.combinat.multiset_partition_into_sets_ordered),
1347

OrderedPartitions (class in sage.combinat.partition),
1612

OrderedSetPartition (class in
sage.combinat.set_partition_ordered), 2730

OrderedSetPartitions (class in
sage.combinat.set_partition_ordered), 2739

OrderedSetPartitions_all (class in
sage.combinat.set_partition_ordered), 2740

OrderedSetPartitions_all.Element (class in
sage.combinat.set_partition_ordered), 2740

OrderedSetPartitions_s (class in
sage.combinat.set_partition_ordered), 2740

OrderedSetPartitions_scomp (class in
sage.combinat.set_partition_ordered), 2741

OrderedSetPartitions_sn (class in
sage.combinat.set_partition_ordered), 2741

OrderedTree (class in sage.combinat.ordered_tree),

3812 Index

Combinatorics, Release 9.7

1524
OrderedTrees (class in sage.combinat.ordered_tree),

1531
OrderedTrees_all (class in

sage.combinat.ordered_tree), 1532
OrderedTrees_size (class in

sage.combinat.ordered_tree), 1532
ordinal_product() (sage.combinat.posets.posets.FinitePoset

method), 2001
ordinal_sum() (sage.combinat.posets.posets.FinitePoset

method), 2002
ordinal_summands() (sage.combinat.posets.posets.FinitePoset

method), 2003
OrdinaryGeneratingSeries (class in

sage.combinat.species.generating_series),
3151

OrdinaryGeneratingSeriesRing() (in module
sage.combinat.species.generating_series),
3151

OrdinaryGeneratingSeriesRing_class (class in
sage.combinat.species.generating_series),
3152

oriented_exchange_graph()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 185

orthocomplementations_iterator()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1857

orthogonal() (sage.combinat.sf.sf.SymmetricFunctions
method), 2895

orthogonal_array() (in module
sage.combinat.designs.orthogonal_arrays),
698

other_affinization()
(sage.combinat.root_system.cartan_type.CartanType_affine
method), 2230

other_outcome() (sage.combinat.rigged_configurations.bij_type_B.KRTToRCBijectionTypeB
method), 2073

out_labels() (sage.combinat.growth.GrowthDiagram
method), 1078

outer() (sage.combinat.skew_partition.SkewPartition
method), 3022

outer_corners() (sage.combinat.skew_partition.SkewPartition
method), 3022

outer_rim() (sage.combinat.partition.Partition
method), 1648

outer_shape() (sage.combinat.crystals.kirillov_reshetikhin.PMDiagram
method), 455

outer_shape() (sage.combinat.k_tableau.StrongTableau
method), 1220

outer_shape() (sage.combinat.k_tableau.StrongTableaux
method), 1232

outer_shape() (sage.combinat.skew_tableau.SkewTableau
method), 3038

outer_size() (sage.combinat.skew_tableau.SkewTableau
method), 3038

outgoing_edges() (sage.combinat.graph_path.GraphPaths_common
method), 1062

outgoing_paths() (sage.combinat.graph_path.GraphPaths_common
method), 1062

outline() (sage.combinat.partition.Partition method),
1648

output_alphabet (sage.combinat.finite_state_machine.FiniteStateMachine
attribute), 948

output_projection()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 948

outside_corners() (sage.combinat.partition.Partition
method), 1649

outside_corners() (sage.combinat.partition_tuple.PartitionTuple
method), 1732

outside_corners_residue()
(sage.combinat.partition.Partition method),
1649

over() (sage.combinat.binary_tree.BinaryTree method),
86

over() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1030

over_decomposition()
(sage.combinat.binary_tree.BinaryTree
method), 87

overlap() (sage.combinat.skew_partition.SkewPartition
method), 3022

overlap_partition()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3521

P
p (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables

attribute), 1497
P() (in module sage.combinat.designs.steiner_quadruple_systems),

724
P() (sage.combinat.kazhdan_lusztig.KazhdanLusztigPolynomial

method), 1256
P() (sage.combinat.sf.hall_littlewood.HallLittlewood

method), 2755
P() (sage.combinat.sf.jack.Jack method), 2771
P() (sage.combinat.sf.macdonald.Macdonald method),

2809
p() (sage.combinat.sf.sf.SymmetricFunctions method),

2895
p3_group_bitrade_generators() (in module

sage.combinat.matrices.latin), 1323
P_chain() (sage.combinat.growth.GrowthDiagram

method), 1076
P_graph() (sage.combinat.growth.Rule method), 1080
p_partition_enumerator()

(sage.combinat.posets.posets.FinitePoset

Index 3813

Combinatorics, Release 9.7

method), 2003
P_symbol() (sage.combinat.growth.GrowthDiagram

method), 1076
P_symbol() (sage.combinat.growth.RuleDomino

method), 1086
P_symbol() (sage.combinat.growth.RuleLLMS method),

1090
P_symbol() (sage.combinat.growth.RulePartitions

method), 1092
P_symbol() (sage.combinat.growth.RuleShiftedShapes

method), 1096
P_symbol() (sage.combinat.growth.RuleSylvester

method), 1101
pa() (sage.combinat.sine_gordon.SineGordonYsystem

method), 3006
packing() (sage.combinat.designs.incidence_structures.IncidenceStructure

method), 679
pair_to_graph() (in module

sage.combinat.diagram_algebras), 770
pair_to_graph() (in module

sage.combinat.partition_algebra), 1696
PairwiseBalancedDesign (class in

sage.combinat.designs.bibd), 576
PairwiseCompatibleSubsets (class in

sage.combinat.subsets_pairwise), 3205
pak_correspondence() (in module

sage.combinat.hillman_grassl), 1120
pak_correspondence()

(sage.combinat.hillman_grassl.WeakReversePlanePartition
method), 1118

palindrome_prefixes()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3523

palindrome_prefixes_iterator()
(sage.combinat.words.abstract_word.Word_class
method), 3456

palindromes() (sage.combinat.words.finite_word.FiniteWord_class
method), 3523

palindromic_closure()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3524

palindromic_complexity()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3524

palindromic_lacunas_study()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3525

PalindromicDefectWord()
(sage.combinat.words.word_generators.WordGenerator
method), 3642

ParallelogramPolyomino (class in
sage.combinat.parallelogram_polyomino),
1540

ParallelogramPolyominoes (in module

sage.combinat.parallelogram_polyomino),
1562

ParallelogramPolyominoes_all (class in
sage.combinat.parallelogram_polyomino),
1563

ParallelogramPolyominoes_size (class in
sage.combinat.parallelogram_polyomino),
1564

ParallelogramPolyominoesFactory (class in
sage.combinat.parallelogram_polyomino),
1562

ParallelogramPolyominoesOptions (in module
sage.combinat.parallelogram_polyomino),
1562

parameters() (sage.combinat.k_regular_sequence.RecurrenceParser
method), 1201

parameters() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation
method), 2282

parent() (sage.combinat.root_system.weyl_characters.WeightRing
method), 2619

parent() (sage.combinat.species.structure.GenericSpeciesStructure
method), 3186

parent() (sage.combinat.words.abstract_word.Word_class
method), 3457

parking_permutation()
(sage.combinat.parking_functions.ParkingFunction
method), 1574

ParkingFunction (class in
sage.combinat.parking_functions), 1567

ParkingFunctions (class in
sage.combinat.parking_functions), 1580

ParkingFunctions_all (class in
sage.combinat.parking_functions), 1581

ParkingFunctions_n (class in
sage.combinat.parking_functions), 1582

parse() (sage.combinat.designs.ext_rep.XTreeProcessor
method), 658

parse_direct_arguments()
(sage.combinat.k_regular_sequence.RecurrenceParser
method), 1201

parse_recurrence() (sage.combinat.k_regular_sequence.RecurrenceParser
method), 1202

part_scalar_jack() (in module
sage.combinat.sf.jack), 2783

partial_sums() (sage.combinat.composition.Composition
method), 298

partial_sums() (sage.combinat.k_regular_sequence.kRegularSequence
method), 1206

partial_sums() (sage.combinat.words.abstract_word.Word_class
method), 3457

Partition (class in sage.combinat.partition), 1612
partition() (sage.combinat.similarity_class_type.PrimarySimilarityClassType

method), 2994
partition() (sage.combinat.words.word_datatypes.WordDatatype_str

3814 Index

Combinatorics, Release 9.7

method), 3632
partition_at_vertex()

(sage.combinat.vector_partition.VectorPartition
method), 3447

partition_diagrams() (in module
sage.combinat.diagram_algebras), 771

partition_function()
(sage.combinat.six_vertex_model.SixVertexModel
method), 3013

partition_of_domain_alphabet()
(sage.combinat.words.morphism.WordMorphism
method), 3568

partition_rigging_lists()
(sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement
method), 2129

partition_to_vector_of_contents() (in module
sage.combinat.symmetric_group_representations),
3275

PartitionAlgebra (class in
sage.combinat.diagram_algebras), 747

PartitionAlgebra.Element (class in
sage.combinat.diagram_algebras), 751

PartitionAlgebra_ak (class in
sage.combinat.partition_algebra), 1688

PartitionAlgebra_bk (class in
sage.combinat.partition_algebra), 1688

PartitionAlgebra_generic (class in
sage.combinat.partition_algebra), 1688

PartitionAlgebra_pk (class in
sage.combinat.partition_algebra), 1688

PartitionAlgebra_prk (class in
sage.combinat.partition_algebra), 1689

PartitionAlgebra_rk (class in
sage.combinat.partition_algebra), 1689

PartitionAlgebra_sk (class in
sage.combinat.partition_algebra), 1689

PartitionAlgebra_tk (class in
sage.combinat.partition_algebra), 1689

PartitionAlgebraElement_ak (class in
sage.combinat.partition_algebra), 1687

PartitionAlgebraElement_bk (class in
sage.combinat.partition_algebra), 1687

PartitionAlgebraElement_generic (class in
sage.combinat.partition_algebra), 1687

PartitionAlgebraElement_pk (class in
sage.combinat.partition_algebra), 1687

PartitionAlgebraElement_prk (class in
sage.combinat.partition_algebra), 1687

PartitionAlgebraElement_rk (class in
sage.combinat.partition_algebra), 1687

PartitionAlgebraElement_sk (class in
sage.combinat.partition_algebra), 1687

PartitionAlgebraElement_tk (class in
sage.combinat.partition_algebra), 1687

PartitionDiagram (class in
sage.combinat.diagram_algebras), 761

PartitionDiagrams (class in
sage.combinat.diagram_algebras), 761

Partitions (class in sage.combinat.partition), 1662
Partitions.options() (in module

sage.combinat.partition), 1665
Partitions_all (class in sage.combinat.partition),

1673
Partitions_all_bounded (class in

sage.combinat.partition), 1675
Partitions_constraints (class in

sage.combinat.partition), 1675
Partitions_ending (class in sage.combinat.partition),

1675
partitions_in_box() (in module

sage.combinat.crystals.kirillov_reshetikhin),
456

Partitions_n (class in sage.combinat.partition), 1675
Partitions_nk (class in sage.combinat.partition), 1678
Partitions_parts_in (class in

sage.combinat.partition), 1680
Partitions_starting (class in

sage.combinat.partition), 1680
Partitions_with_constraints (class in

sage.combinat.partition), 1681
Partitions_with_constraints.options() (in mod-

ule sage.combinat.partition), 1681
PartitionsGreatestEQ (class in

sage.combinat.partition), 1668
PartitionsGreatestEQ.options() (in module

sage.combinat.partition), 1668
PartitionsGreatestLE (class in

sage.combinat.partition), 1670
PartitionsGreatestLE.options() (in module

sage.combinat.partition), 1671
PartitionsInBox (class in sage.combinat.partition),

1673
PartitionSpecies (class in

sage.combinat.species.partition_species),
3155

PartitionSpecies_class (in module
sage.combinat.species.partition_species),
3157

PartitionSpeciesStructure (class in
sage.combinat.species.partition_species),
3155

PartitionTuple (class in
sage.combinat.partition_tuple), 1721

PartitionTuples (class in
sage.combinat.partition_tuple), 1736

PartitionTuples.options() (in module
sage.combinat.partition_tuple), 1736

PartitionTuples_all (class in

Index 3815

Combinatorics, Release 9.7

sage.combinat.partition_tuple), 1738
PartitionTuples_level (class in

sage.combinat.partition_tuple), 1738
PartitionTuples_level_size (class in

sage.combinat.partition_tuple), 1738
PartitionTuples_size (class in

sage.combinat.partition_tuple), 1739
partner() (sage.combinat.perfect_matching.PerfectMatching

method), 1744
parts (sage.combinat.set_partition.SetPartitions_setparts

attribute), 2728
passport() (sage.combinat.constellation.Constellation_class

method), 321
Patch (class in sage.combinat.e_one_star), 824
path() (sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement

method), 356
path() (sage.combinat.nu_dyck_word.NuDyckWord

method), 1512
path_weakly_above_other() (in module

sage.combinat.nu_dyck_word), 1518
paths() (sage.combinat.abstract_tree.AbstractTree

method), 19
paths() (sage.combinat.graph_path.GraphPaths_common

method), 1063
paths_at_depth() (sage.combinat.abstract_tree.AbstractTree

method), 19
paths_from_source_to_target()

(sage.combinat.graph_path.GraphPaths_common
method), 1063

paths_in_triangle() (in module
sage.combinat.tamari_lattices), 3387

paths_to_the_right()
(sage.combinat.abstract_tree.AbstractTree
method), 20

PathSubset() (in module
sage.combinat.cluster_algebra_quiver.cluster_seed),
199

PathTableau (class in
sage.combinat.path_tableaux.path_tableau),
1594

PathTableaux (class in
sage.combinat.path_tableaux.path_tableau),
1597

pattern_positions()
(sage.combinat.permutation.Permutation
method), 1778

PatternAvoider (class in sage.combinat.permutation),
1755

patterns() (sage.combinat.permutation.StandardPermutations_all_avoiding
method), 1808

patterns() (sage.combinat.permutation.StandardPermutations_avoiding_generic
method), 1810

PBD_4_5_8_9_12() (in module
sage.combinat.designs.bibd), 575

PBD_4_7() (in module
sage.combinat.designs.resolvable_bibd),
580

PBD_4_7_from_Y() (in module
sage.combinat.designs.resolvable_bibd),
580

PBD_from_TD() (in module
sage.combinat.designs.bibd), 575

PBWCrystal (class in sage.combinat.crystals.pbw_crystal),
509

PBWCrystalElement (class in
sage.combinat.crystals.pbw_crystal), 510

PBWData (class in sage.combinat.crystals.pbw_datum),
512

PBWDatum (class in sage.combinat.crystals.pbw_datum),
512

peaks() (sage.combinat.composition.Composition
method), 298

peaks() (sage.combinat.dyck_word.DyckWord method),
786

peaks() (sage.combinat.permutation.Permutation
method), 1778

pealing() (in module sage.combinat.dyck_word), 816
PentagonPoset() (sage.combinat.posets.poset_examples.Posets

static method), 1933
perfect_matchings_iterator() (in module

sage.combinat.combinat_cython), 279
PerfectMatching (class in

sage.combinat.perfect_matching), 1742
PerfectMatchings (class in

sage.combinat.perfect_matching), 1745
period() (sage.combinat.binary_recurrence_sequences.BinaryRecurrenceSequence

method), 70
periodic_point() (sage.combinat.words.morphism.WordMorphism

method), 3569
periodic_points() (sage.combinat.words.morphism.WordMorphism

method), 3569
PeriodicPointIterator (class in

sage.combinat.words.morphism), 3548
periods() (sage.combinat.words.finite_word.FiniteWord_class

method), 3525
perm() (sage.combinat.diagram_algebras.BrauerDiagram

method), 740
perm_conjugate() (in module

sage.combinat.constellation), 326
perm_invert() (in module

sage.combinat.constellation), 327
perm_mh() (in module sage.combinat.sloane_functions),

3133
perm_sym_domain() (in module

sage.combinat.constellation), 327
permissable_values()

(sage.combinat.matrices.latin.LatinSquare
method), 1312

3816 Index

Combinatorics, Release 9.7

perms_are_connected() (in module
sage.combinat.constellation), 327

perms_canonical_labels() (in module
sage.combinat.constellation), 328

perms_canonical_labels_from() (in module
sage.combinat.constellation), 328

perms_sym_init() (in module
sage.combinat.constellation), 329

Permutation (class in sage.combinat.permutation),
1755

permutation() (sage.combinat.colored_permutations.ColoredPermutation
method), 244

permutation_group()
(sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All
method), 1155

permutation_group()
(sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints
method), 1159

permutation_group_element()
(sage.combinat.species.cycle_species.CycleSpeciesStructure
method), 3140

permutation_group_element()
(sage.combinat.species.permutation_species.PermutationSpeciesStructure
method), 3158

permutation_iterator_transposition_list() (in
module sage.combinat.permutation_cython),
1826

permutation_poset()
(sage.combinat.permutation.Permutation
method), 1779

PermutationPattern()
(sage.combinat.posets.poset_examples.Posets
static method), 1934

PermutationPatternInterval()
(sage.combinat.posets.poset_examples.Posets
static method), 1934

PermutationPatternOccurrenceInterval()
(sage.combinat.posets.poset_examples.Posets
static method), 1934

Permutations (class in sage.combinat.permutation),
1800

Permutations.options() (in module
sage.combinat.permutation), 1802

Permutations_CC (class in sage.combinat.combinat),
260

Permutations_mset (class in
sage.combinat.permutation), 1804

Permutations_mset.Element (class in
sage.combinat.permutation), 1804

Permutations_msetk (class in
sage.combinat.permutation), 1806

Permutations_nk (class in sage.combinat.permutation),
1806

Permutations_nk.Element (class in

sage.combinat.permutation), 1806
Permutations_set (class in

sage.combinat.permutation), 1807
Permutations_set.Element (class in

sage.combinat.permutation), 1807
Permutations_setk (class in

sage.combinat.permutation), 1807
PermutationsNK (class in sage.combinat.permutation),

1804
PermutationSpecies (class in

sage.combinat.species.permutation_species),
3157

PermutationSpecies_class (in module
sage.combinat.species.permutation_species),
3158

PermutationSpeciesStructure (class in
sage.combinat.species.permutation_species),
3157

permuted_filling() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2844

permutohedron_greater()
(sage.combinat.permutation.Permutation
method), 1779

permutohedron_join()
(sage.combinat.permutation.Permutation
method), 1779

permutohedron_lequal() (in module
sage.combinat.permutation), 1823

permutohedron_lequal()
(sage.combinat.permutation.Permutation
method), 1781

permutohedron_meet()
(sage.combinat.permutation.Permutation
method), 1782

permutohedron_pred()
(sage.combinat.permutation.Permutation
method), 1783

permutohedron_smaller()
(sage.combinat.permutation.Permutation
method), 1784

permutohedron_succ()
(sage.combinat.permutation.Permutation
method), 1784

PF (in module sage.combinat.parking_functions), 1567
Phi (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions

attribute), 148
phi() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement

method), 343
phi() (sage.combinat.crystals.affinization.AffinizationOfCrystal.Element

method), 350
phi() (sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement

method), 357
phi() (sage.combinat.crystals.alcove_path.InfinityCrystalOfAlcovePaths.Element

method), 359

Index 3817

Combinatorics, Release 9.7

phi() (sage.combinat.crystals.direct_sum.DirectSumOfCrystals.Element
method), 370

phi() (sage.combinat.crystals.elementary_crystals.ComponentCrystal.Element
method), 372

phi() (sage.combinat.crystals.elementary_crystals.ElementaryCrystal.Element
method), 374

phi() (sage.combinat.crystals.elementary_crystals.RCrystal.Element
method), 376

phi() (sage.combinat.crystals.elementary_crystals.TCrystal.Element
method), 378

phi() (sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWallsElement
method), 388

Phi() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 389

phi() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 392

phi() (sage.combinat.crystals.induced_structure.InducedCrystal.Element
method), 402

phi() (sage.combinat.crystals.induced_structure.InducedFromCrystal.Element
method), 404

phi() (sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux.Element
method), 408

phi() (sage.combinat.crystals.kac_modules.CrystalOfOddNegativeRoots.Element
method), 415

phi() (sage.combinat.crystals.kyoto_path_model.KyotoPathModel.Element
method), 460

phi() (sage.combinat.crystals.letters.Crystal_of_letters_type_A_element
method), 466

phi() (sage.combinat.crystals.letters.Crystal_of_letters_type_B_element
method), 467

phi() (sage.combinat.crystals.letters.Crystal_of_letters_type_C_element
method), 468

phi() (sage.combinat.crystals.letters.Crystal_of_letters_type_D_element
method), 469

phi() (sage.combinat.crystals.letters.Crystal_of_letters_type_G_element
method), 474

phi() (sage.combinat.crystals.letters.EmptyLetter
method), 475

phi() (sage.combinat.crystals.letters.LetterTuple
method), 476

phi() (sage.combinat.crystals.letters.LetterWrapped
method), 477

phi() (sage.combinat.crystals.letters.QueerLetter_element
method), 478

phi() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element
method), 482

phi() (sage.combinat.crystals.littelmann_path.InfinityCrystalOfLSPaths.Element
method), 490

phi() (sage.combinat.crystals.monomial_crystals.NakajimaMonomial
method), 500

phi() (sage.combinat.crystals.multisegments.InfinityCrystalOfMultisegments.Element
method), 503

phi() (sage.combinat.crystals.pbw_crystal.PBWCrystalElement
method), 511

phi() (sage.combinat.crystals.polyhedral_realization.InfinityCrystalAsPolyhedralRealization.Element
method), 517

phi() (sage.combinat.crystals.spins.Spin_crystal_type_B_element
method), 522

phi() (sage.combinat.crystals.spins.Spin_crystal_type_D_element
method), 523

phi() (sage.combinat.crystals.star_crystal.StarCrystal.Element
method), 525

phi() (sage.combinat.crystals.tensor_product_element.TensorProductOfCrystalsElement
method), 542

phi() (sage.combinat.crystals.tensor_product_element.TensorProductOfQueerSuperCrystalsElement
method), 545

phi() (sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement
method), 546

phi() (sage.combinat.crystals.tensor_product_element.TensorProductOfSuperCrystalsElement
method), 547

Phi() (sage.combinat.partition_kleshchev.KleshchevCrystalMixin
method), 1699

phi() (sage.combinat.partition_kleshchev.KleshchevCrystalMixin
method), 1699

phi() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2097

phi() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpinElement
method), 2088

phi() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxTypeFromRCElement
method), 2090

phi() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRCTypeA2DualElement
method), 2112

phi() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2118

phi() (sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement
method), 2130

phi() (sage.combinat.words.finite_word.FiniteWord_class
method), 3526

phi0() (sage.combinat.crystals.affine.AffineCrystalFromClassicalAndPromotionElement
method), 340

phi0() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement
method), 343

phi0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2Element
method), 423

phi0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_BnElement
method), 426

phi0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_boxElement
method), 443

phi0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_CElement
method), 429

phi0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_CnElement
method), 431

phi0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_D_tri1.Element
method), 432

phi0() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_Dn_twistedElement
method), 434

phi_inv() (sage.combinat.words.finite_word.FiniteWord_class
method), 3526

3818 Index

Combinatorics, Release 9.7

pi() (sage.combinat.sloane_functions.A000796 method),
3082

pi() (sage.combinat.subword_complex.SubwordComplex
method), 3221

pi_ik() (in module sage.combinat.symmetric_group_algebra),
3268

pieces() (sage.combinat.tiling.TilingSolver method),
3406

pieri_macdonald_coeffs()
(sage.combinat.skew_partition.SkewPartition
method), 3022

PieriFactors (class in
sage.combinat.root_system.pieri_factors),
2324

PieriFactors (sage.combinat.root_system.type_A.CartanType
attribute), 2481

PieriFactors (sage.combinat.root_system.type_A_affine.CartanType
attribute), 2483

PieriFactors (sage.combinat.root_system.type_B.CartanType
attribute), 2488

PieriFactors (sage.combinat.root_system.type_B_affine.CartanType
attribute), 2493

PieriFactors (sage.combinat.root_system.type_C_affine.CartanType
attribute), 2498

PieriFactors (sage.combinat.root_system.type_D_affine.CartanType
attribute), 2503

PieriFactors_affine_type (class in
sage.combinat.root_system.pieri_factors),
2326

PieriFactors_finite_type (class in
sage.combinat.root_system.pieri_factors),
2327

PieriFactors_type_A (class in
sage.combinat.root_system.pieri_factors),
2327

PieriFactors_type_A_affine (class in
sage.combinat.root_system.pieri_factors),
2328

PieriFactors_type_B (class in
sage.combinat.root_system.pieri_factors),
2329

PieriFactors_type_B_affine (class in
sage.combinat.root_system.pieri_factors),
2330

PieriFactors_type_C_affine (class in
sage.combinat.root_system.pieri_factors),
2331

PieriFactors_type_D_affine (class in
sage.combinat.root_system.pieri_factors),
2332

pipe() (sage.combinat.set_partition.SetPartition
method), 2711

pisot_eigenvector_left()
(sage.combinat.words.morphism.WordMorphism

method), 3570
pisot_eigenvector_right()

(sage.combinat.words.morphism.WordMorphism
method), 3570

planar_diagrams() (in module
sage.combinat.diagram_algebras), 772

PlanarAlgebra (class in
sage.combinat.diagram_algebras), 762

PlanarDiagram (class in
sage.combinat.diagram_algebras), 763

PlanarDiagrams (class in
sage.combinat.diagram_algebras), 763

plancherel_measure()
(sage.combinat.partition.Partition method),
1649

PlanePartition (class in
sage.combinat.plane_partition), 1601

PlanePartitions (class in
sage.combinat.plane_partition), 1606

plethysm() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2938

plot() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 185

plot() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 220

plot() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract
method), 236

plot() (sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement
method), 357

plot() (sage.combinat.crystals.mv_polytopes.MVPolytope
method), 505

plot() (sage.combinat.dyck_word.DyckWord method),
787

plot() (sage.combinat.e_one_star.Patch method), 826
plot() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 948
plot() (sage.combinat.fully_packed_loop.FullyPackedLoop

method), 1049
plot() (sage.combinat.interval_posets.TamariIntervalPoset

method), 1181
plot() (sage.combinat.knutson_tao_puzzles.KnutsonTaoPuzzleSolver

method), 1268
plot() (sage.combinat.knutson_tao_puzzles.PuzzleFilling

method), 1273
plot() (sage.combinat.nu_dyck_word.NuDyckWord

method), 1512
plot() (sage.combinat.ordered_tree.OrderedTree

method), 1526
plot() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino

method), 1554
plot() (sage.combinat.path_tableaux.frieze.FriezePattern

method), 1591
plot() (sage.combinat.plane_partition.PlanePartition

method), 1604

Index 3819

Combinatorics, Release 9.7

plot() (sage.combinat.posets.posets.FinitePoset
method), 2005

plot() (sage.combinat.rigged_configurations.kleber_tree.KleberTree
method), 2082

plot() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2436

plot() (sage.combinat.set_partition.SetPartition
method), 2711

plot() (sage.combinat.sine_gordon.SineGordonYsystem
method), 3007

plot() (sage.combinat.six_vertex_model.SixVertexConfiguration
method), 3009

plot() (sage.combinat.subword_complex.SubwordComplexFacet
method), 3226

plot() (sage.combinat.tableau.Tableau method), 3319
plot() (sage.combinat.words.paths.FiniteWordPath_2d

method), 3583
plot() (sage.combinat.words.paths.FiniteWordPath_3d

method), 3587
plot() (sage.combinat.words.suffix_trees.ImplicitSuffixTree

method), 3610
plot() (sage.combinat.words.suffix_trees.SuffixTrie

method), 3616
plot() (sage.combinat.yang_baxter_graph.YangBaxterGraph_generic

method), 3664
plot3d() (sage.combinat.e_one_star.Patch method), 827
plot3d() (sage.combinat.plane_partition.PlanePartition

method), 1604
plot_alcove_walk() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods

method), 2438
plot_alcoves() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods

method), 2438
plot_bounding_box()

(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2439

plot_coroots() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2439

plot_crystal() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2440

plot_directive_vector()
(sage.combinat.words.paths.FiniteWordPath_2d
method), 3584

plot_fundamental_chamber()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2440

plot_fundamental_weights()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2441

plot_heap() (sage.combinat.fully_commutative_elements.FullyCommutativeElement
method), 845

plot_hedron() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2441

plot_ls_paths() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2442

plot_mv_polytope() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2442

plot_parse_options()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2443

plot_projection() (sage.combinat.words.paths.FiniteWordPath_all
method), 3590

plot_reflection_hyperplanes()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2443

plot_roots() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2444

plot_tikz() (sage.combinat.e_one_star.Patch method),
827

PlotOptions (class in sage.combinat.root_system.plot),
2351

PMDiagram (class in sage.combinat.crystals.kirillov_reshetikhin),
454

poincare_semistable()
(sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 220

pointing() (sage.combinat.species.generating_series.CycleIndexSeries
method), 3147

points() (sage.combinat.nu_dyck_word.NuDyckWord
method), 1512

points() (sage.combinat.words.paths.FiniteWordPath_all
method), 3591

polygonal_number() (in module
sage.combinat.combinat), 273

polynomial_ring() (sage.rings.cfinite_sequence.CFiniteSequences_generic
method), 3676

Polyomino (class in sage.combinat.tiling), 3394
polytope() (sage.combinat.crystals.mv_polytopes.MVPolytope

method), 505
Poset() (in module sage.combinat.posets.posets), 2021
poset() (sage.combinat.interval_posets.TamariIntervalPoset

method), 1182
poset() (sage.combinat.posets.incidence_algebras.IncidenceAlgebra

method), 1864
poset() (sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra

method), 1866
poset() (sage.combinat.posets.linear_extensions.LinearExtensionOfPoset

method), 1915
poset() (sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset

method), 1921
PosetElement (class in sage.combinat.posets.elements),

1833
Posets (class in sage.combinat.posets.poset_examples),

1928
posets (in module sage.combinat.posets.poset_examples),

1943
position() (sage.combinat.affine_permutation.AffinePermutationTypeA

method), 37
position() (sage.combinat.affine_permutation.AffinePermutationTypeC

3820 Index

Combinatorics, Release 9.7

method), 42
position() (sage.combinat.affine_permutation.AffinePermutationTypeG

method), 45
position() (sage.combinat.yang_baxter_graph.SwapOperator

method), 3662
position_of_first_return()

(sage.combinat.dyck_word.DyckWord method),
787

position_of_first_unmatched_plus()
(sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement
method), 546

position_of_last_unmatched_minus()
(sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement
method), 546

positions_of_double_rises()
(sage.combinat.dyck_word.DyckWord method),
787

positions_of_unmatched_minus()
(sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement
method), 546

positions_of_unmatched_plus()
(sage.combinat.crystals.tensor_product_element.TensorProductOfRegularCrystalsElement
method), 546

positive_even_roots()
(sage.combinat.root_system.type_super_A.AmbientSpace
method), 2474

positive_imaginary_roots()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2444

positive_odd_roots()
(sage.combinat.root_system.type_super_A.AmbientSpace
method), 2475

positive_real_roots()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2444

positive_roots() (sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2392

positive_roots() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2445

positive_roots() (sage.combinat.root_system.type_A.AmbientSpace
method), 2480

positive_roots() (sage.combinat.root_system.type_B.AmbientSpace
method), 2487

positive_roots() (sage.combinat.root_system.type_C.AmbientSpace
method), 2495

positive_roots() (sage.combinat.root_system.type_D.AmbientSpace
method), 2499

positive_roots() (sage.combinat.root_system.type_E.AmbientSpace
method), 2505

positive_roots() (sage.combinat.root_system.type_F.AmbientSpace
method), 2515

positive_roots() (sage.combinat.root_system.type_G.AmbientSpace
method), 2520

positive_roots() (sage.combinat.root_system.type_reducible.AmbientSpace

method), 2590
positive_roots() (sage.combinat.root_system.type_super_A.AmbientSpace

method), 2475
positive_roots() (sage.combinat.root_system.weyl_characters.WeightRing

method), 2619
positive_roots() (sage.combinat.root_system.weyl_characters.WeylCharacterRing

method), 2631
positive_roots() (sage.combinat.root_system.weyl_group.WeylGroup_permutation

method), 2658
positive_roots_by_height()

(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2446

positive_roots_nonparabolic()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2446

positive_roots_nonparabolic_sum()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2447

positive_roots_parabolic()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2447

PositiveIntegerSemigroup (class in
sage.combinat.backtrack), 65

positively_parallel_weights() (in module
sage.combinat.crystals.littelmann_path), 491

post_order_traversal()
(sage.combinat.abstract_tree.AbstractTree
method), 21

post_order_traversal_iter()
(sage.combinat.abstract_tree.AbstractTree
method), 21

post_process() (sage.combinat.subsets_pairwise.PairwiseCompatibleSubsets
method), 3206

power() (in module sage.combinat.root_system.reflection_group_complex),
2386

power() (sage.combinat.partition.Partition method),
1650

power() (sage.combinat.sf.sf.SymmetricFunctions
method), 2896

PowerPoset() (sage.combinat.posets.poset_examples.Posets
static method), 1935

powersum() (sage.combinat.sf.sf.SymmetricFunctions
method), 2896

PP (in module sage.combinat.plane_partition), 1601
pp() (sage.combinat.composition_tableau.CompositionTableau

method), 312
pp() (sage.combinat.crystals.affine.AffineCrystalFromClassicalElement

method), 343
pp() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall

method), 393
pp() (sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement

method), 453
pp() (sage.combinat.crystals.kirillov_reshetikhin.PMDiagram

method), 456

Index 3821

Combinatorics, Release 9.7

pp() (sage.combinat.crystals.spins.Spin method), 520
pp() (sage.combinat.crystals.tensor_product_element.CrystalOfBKKTableauxElement

method), 536
pp() (sage.combinat.crystals.tensor_product_element.CrystalOfTableauxElement

method), 536
pp() (sage.combinat.crystals.tensor_product_element.TensorProductOfCrystalsElement

method), 543
pp() (sage.combinat.dyck_word.DyckWord method), 787
pp() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern

method), 1057
pp() (sage.combinat.k_tableau.StrongTableau method),

1221
pp() (sage.combinat.k_tableau.WeakTableau_abstract

method), 1237
pp() (sage.combinat.nu_dyck_word.NuDyckWord

method), 1513
pp() (sage.combinat.partition.Partition method), 1650
pp() (sage.combinat.partition_tuple.PartitionTuple

method), 1732
pp() (sage.combinat.path_tableaux.path_tableau.CylindricalDiagram

method), 1593
pp() (sage.combinat.plane_partition.PlanePartition

method), 1605
pp() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement

method), 2097
pp() (sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.TensorProductOfKirillovReshetikhinTableauxElement

method), 2152
pp() (sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau

method), 2978
pp() (sage.combinat.skew_partition.SkewPartition

method), 3023
pp() (sage.combinat.skew_tableau.SkewTableau

method), 3038
pp() (sage.combinat.tableau.Tableau method), 3319
pp() (sage.combinat.tableau_tuple.TableauTuple

method), 3376
pq_group_bitrade_generators() (in module

sage.combinat.matrices.latin), 1323
pre_Lie_product() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra

method), 1037
pre_Lie_product_on_basis()

(sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1038

pre_order_traversal()
(sage.combinat.abstract_tree.AbstractTree
method), 22

pre_order_traversal_iter()
(sage.combinat.abstract_tree.AbstractTree
method), 23

prec() (sage.combinat.fqsym.FQSymBases.ParentMethods
method), 1004

prec() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1030

prec_by_coercion() (sage.combinat.fqsym.FQSymBases.ParentMethods

method), 1004
prec_product_on_basis()

(sage.combinat.fqsym.FreeQuasisymmetricFunctions.F
method), 1009

prec_product_on_basis()
(sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1030

precheck() (in module
sage.combinat.root_system.dynkin_diagram),
2269

pred() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2421

predecessors() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 949

prefix() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
method), 2907

prefix_function_table()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3527

prefix_set() (sage.combinat.recognizable_series.PrefixClosedSet
method), 2044

PrefixClosedSet (class in
sage.combinat.recognizable_series), 2042

prefixes_iterator()
(sage.combinat.words.abstract_word.Word_class
method), 3457

PreLieFunctor (class in
sage.combinat.free_prelie_algebra), 1039

prepone_output() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 949

pretty_print() (sage.combinat.dyck_word.DyckWord
method), 790

pretty_print() (sage.combinat.nu_dyck_word.NuDyckWord
method), 1515

pretty_print() (sage.combinat.parking_functions.ParkingFunction
method), 1574

prev() (sage.combinat.misc.DoublyLinkedList method),
1328

prev() (sage.combinat.permutation.Permutation
method), 1785

preview_word() (sage.combinat.finite_state_machine.FSMProcessIterator
method), 881

previous() (sage.combinat.combinat.CombinatorialClass
method), 257

primary_dinversion_pairs()
(sage.combinat.parking_functions.ParkingFunction
method), 1576

PrimarySimilarityClassType (class in
sage.combinat.similarity_class_type), 2993

PrimarySimilarityClassTypes (class in
sage.combinat.similarity_class_type), 2995

prime_degree() (sage.combinat.partition.Partition
method), 1651

prime_degree() (sage.combinat.partition_tuple.PartitionTuple

3822 Index

Combinatorics, Release 9.7

method), 1732
prime_elements() (sage.combinat.posets.hasse_diagram.HasseDiagram

method), 1857
primed() (sage.combinat.shifted_primed_tableau.PrimedEntry

method), 2977
PrimedEntry (class in

sage.combinat.shifted_primed_tableau),
2976

primitive() (sage.combinat.ncsym.bases.NCSymBases.ParentMethods
method), 1477

primitive() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.powersum
method), 1499

primitive() (sage.combinat.words.finite_word.FiniteWord_class
method), 3527

primitive_length() (sage.combinat.words.finite_word.FiniteWord_class
method), 3527

primitive_vector_field()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2375

primitives() (in module
sage.combinat.similarity_class_type), 3004

principal_congruences_poset()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1857

principal_extension()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 186

principal_extension()
(sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 221

principal_order_filter()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1858

principal_order_ideal()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1858

principal_specialization()
(sage.combinat.sf.elementary.SymmetricFunctionAlgebra_elementary.Element
method), 2753

principal_specialization()
(sage.combinat.sf.homogeneous.SymmetricFunctionAlgebra_homogeneous.Element
method), 2769

principal_specialization()
(sage.combinat.sf.monomial.SymmetricFunctionAlgebra_monomial.Element
method), 2823

principal_specialization()
(sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element
method), 2859

principal_specialization()
(sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur.Element
method), 2867

principal_specialization()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2939

principal_submatrices()
(sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2195

print_strings() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2291

process() (sage.combinat.finite_state_machine.Automaton
method), 871

process() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 951

process() (sage.combinat.finite_state_machine.Transducer
method), 968

process_letter() (sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3611

process_letter() (sage.combinat.words.suffix_trees.SuffixTrie
method), 3616

product() (in module sage.combinat.gray_codes), 1066
product() (sage.combinat.posets.posets.FinitePoset

method), 2006
product() (sage.combinat.root_system.fundamental_group.FundamentalGroupGL

method), 2574
product() (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class

method), 2580
product() (sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual

method), 2749
product() (sage.combinat.sf.hall_littlewood.HallLittlewood_generic

method), 2761
product() (sage.combinat.sf.jack.JackPolynomials_generic

method), 2777
product() (sage.combinat.sf.jack.JackPolynomials_p

method), 2778
product() (sage.combinat.sf.jack.JackPolynomials_qp

method), 2781
product() (sage.combinat.sf.jack.SymmetricFunctionAlgebra_zonal

method), 2782
product() (sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods

method), 2792
product() (sage.combinat.sf.llt.LLT_generic method),

2805
product() (sage.combinat.sf.macdonald.MacdonaldPolynomials_generic

method), 2815
product() (sage.combinat.sf.macdonald.MacdonaldPolynomials_s

method), 2819
product() (sage.combinat.sf.monomial.SymmetricFunctionAlgebra_monomial

method), 2826
product() (sage.combinat.sf.new_kschur.K_kSchur

method), 2837
product() (sage.combinat.sf.orthotriang.SymmetricFunctionAlgebra_orthotriang

method), 2853
product() (sage.combinat.species.species.GenericCombinatorialSpecies

method), 3181
product_by_coercion()

(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
method), 2907

product_FiniteStateMachine()

Index 3823

Combinatorics, Release 9.7

(sage.combinat.finite_state_machine.FiniteStateMachine
method), 954

product_generator()
(sage.combinat.species.series.LazyPowerSeriesRing
method), 3174

product_of_upper_cluster()
(sage.combinat.cluster_complex.ClusterComplexFacet
method), 241

product_on_basis() (sage.combinat.blob_algebra.BlobAlgebra
method), 118

product_on_basis() (sage.combinat.chas.fsym.FreeSymmetricFunctions.Fundamental
method), 128

product_on_basis() (sage.combinat.chas.fsym.FreeSymmetricFunctions_Dual.FundamentalDual
method), 130

product_on_basis() (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.Monomial
method), 148

product_on_basis() (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyCoarser
method), 151

product_on_basis() (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyFiner
method), 154

product_on_basis() (sage.combinat.descent_algebra.DescentAlgebra.B
method), 560

product_on_basis() (sage.combinat.descent_algebra.DescentAlgebra.D
method), 562

product_on_basis() (sage.combinat.descent_algebra.DescentAlgebra.I
method), 565

product_on_basis() (sage.combinat.diagram_algebras.DiagramBasis
method), 743

product_on_basis() (sage.combinat.diagram_algebras.OrbitBasis
method), 746

product_on_basis() (sage.combinat.fqsym.FreeQuasisymmetricFunctions.F
method), 1010

product_on_basis() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1031

product_on_basis() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1038

product_on_basis() (sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra
method), 1111

product_on_basis() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBases.ParentMethods
method), 1405

product_on_basis() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Ribbon
method), 1419

product_on_basis() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Essential
method), 1446

product_on_basis() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.HazewinkelLambda
method), 1453

product_on_basis() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial
method), 1458

product_on_basis() (sage.combinat.ncsym.bases.MultiplicativeNCSymBases.ParentMethods
method), 1472

product_on_basis() (sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w
method), 1485

product_on_basis() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial
method), 1496

product_on_basis() (sage.combinat.partition_algebra.PartitionAlgebra_generic
method), 1688

product_on_basis() (sage.combinat.partition_shifting_algebras.ShiftingOperatorAlgebra
method), 1716

product_on_basis() (sage.combinat.posets.incidence_algebras.IncidenceAlgebra
method), 1864

product_on_basis() (sage.combinat.posets.moebius_algebra.MoebiusAlgebra.E
method), 1923

product_on_basis() (sage.combinat.posets.moebius_algebra.MoebiusAlgebra.I
method), 1923

product_on_basis() (sage.combinat.posets.moebius_algebra.MoebiusAlgebraBases.ParentMethods
method), 1924

product_on_basis() (sage.combinat.posets.moebius_algebra.QuantumMoebiusAlgebra.E
method), 1926

product_on_basis() (sage.combinat.root_system.weyl_characters.WeightRing
method), 2619

product_on_basis() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2631

product_on_basis() (sage.combinat.schubert_polynomial.SchubertPolynomialRing_xbasis
method), 2699

product_on_basis() (sage.combinat.sf.multiplicative.SymmetricFunctionAlgebra_multiplicative
method), 2827

product_on_basis() (sage.combinat.sf.new_kschur.kSchur
method), 2840

product_on_basis() (sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur
method), 2870

product_on_basis() (sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_t
method), 3244

ProductOfChains() (sage.combinat.posets.poset_examples.Posets
static method), 1935

ProductSpecies (class in
sage.combinat.species.product_species),
3159

ProductSpecies_class (in module
sage.combinat.species.product_species),
3161

ProductSpeciesStructure (class in
sage.combinat.species.product_species),
3160

profile() (sage.combinat.constellation.Constellation_class
method), 321

projected_path() (sage.combinat.words.paths.FiniteWordPath_all
method), 3592

projected_point_iterator()
(sage.combinat.words.paths.FiniteWordPath_all
method), 3592

projection() (sage.combinat.crystals.alcove_path.InfinityCrystalOfAlcovePaths.Element
method), 359

projection() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 956

projection() (sage.combinat.root_system.plot.PlotOptions
method), 2356

projection() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2448

3824 Index

Combinatorics, Release 9.7

projective_plane() (in module
sage.combinat.designs.block_design), 593

projective_plane_to_OA() (in module
sage.combinat.designs.block_design), 593

ProjectiveGeometryDesign() (in module
sage.combinat.designs.block_design), 590

promotion() (sage.combinat.affine_permutation.AffinePermutationTypeA
method), 37

promotion() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_A
method), 419

promotion() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6
method), 437

promotion() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_spin
method), 444

promotion() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_vertical
method), 447

promotion() (sage.combinat.crystals.tensor_product_element.CrystalOfTableauxElement
method), 536

promotion() (sage.combinat.path_tableaux.path_tableau.PathTableau
method), 1596

promotion() (sage.combinat.posets.linear_extensions.LinearExtensionOfPoset
method), 1916

promotion() (sage.combinat.posets.posets.FinitePoset
method), 2007

promotion() (sage.combinat.tableau.StandardTableau
method), 3293

promotion() (sage.combinat.tableau.Tableau method),
3319

promotion_inverse()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_A
method), 419

promotion_inverse()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6
method), 437

promotion_inverse()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_spin
method), 444

promotion_inverse()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_vertical
method), 448

promotion_inverse()
(sage.combinat.crystals.tensor_product_element.CrystalOfTableauxElement
method), 537

promotion_inverse()
(sage.combinat.tableau.StandardTableau
method), 3293

promotion_inverse() (sage.combinat.tableau.Tableau
method), 3321

promotion_on_highest_weight_vector()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_vertical
method), 448

promotion_on_highest_weight_vectors()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6
method), 438

promotion_on_highest_weight_vectors()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_spin
method), 445

promotion_on_highest_weight_vectors_function()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_E6
method), 438

promotion_on_highest_weight_vectors_inverse()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_spin
method), 445

promotion_operator()
(sage.combinat.tableau.Tableau method),
3321

propagating_number() (in module
sage.combinat.diagram_algebras), 772

propagating_number() (in module
sage.combinat.partition_algebra), 1696

propagating_number()
(sage.combinat.diagram_algebras.AbstractPartitionDiagram
method), 734

PropagatingIdeal (class in
sage.combinat.diagram_algebras), 764

PropagatingIdeal.Element (class in
sage.combinat.diagram_algebras), 765

properties() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract
method), 236

prune() (sage.combinat.binary_tree.BinaryTree
method), 87

pseudocomplement() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1858

pseudocomplement() (sage.combinat.posets.lattices.FiniteMeetSemilattice
method), 1910

psi_involution() (sage.combinat.fqsym.FQSymBases.ElementMethods
method), 999

psi_involution() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1383

psi_involution() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Complete.Element
method), 1394

psi_involution() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Elementary.Element
method), 1397

psi_involution() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Phi.Element
method), 1409

psi_involution() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods
method), 1441

psi_involution() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial.Element
method), 1455

pthpowers() (sage.combinat.binary_recurrence_sequences.BinaryRecurrenceSequence
method), 71

put_in_front() (sage.combinat.root_system.braid_move_calculator.BraidMoveCalculator
method), 2166

puzzle_pieces() (sage.combinat.knutson_tao_puzzles.KnutsonTaoPuzzleSolver
method), 1268

PuzzleFilling (class in
sage.combinat.knutson_tao_puzzles), 1270

PuzzlePiece (class in

Index 3825

Combinatorics, Release 9.7

sage.combinat.knutson_tao_puzzles), 1273
PuzzlePieces (class in

sage.combinat.knutson_tao_puzzles), 1274
PvW0() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class

method), 2556
PW0() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class

method), 2555
PW0_to_WF_func() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class

method), 2555
pyramid_weight() (sage.combinat.dyck_word.DyckWord_complete

method), 805

Q
Q (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions

attribute), 148
q() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.deformed_coarse_powersum

method), 1490
q() (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.supercharacter

method), 1501
Q() (sage.combinat.sf.hall_littlewood.HallLittlewood

method), 2758
Q() (sage.combinat.sf.jack.Jack method), 2773
Q() (sage.combinat.sf.macdonald.Macdonald method),

2811
q() (sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_generic

method), 3243
q3_minus_one_matrix() (in module

sage.combinat.designs.block_design), 594
q_bernoulli() (in module sage.combinat.q_bernoulli),

2035
q_bernoulli_polynomial() (in module

sage.combinat.q_bernoulli), 2036
q_binomial() (in module sage.combinat.q_analogues),

2027
q_catalan_number() (in module

sage.combinat.q_analogues), 2029
Q_chain() (sage.combinat.growth.GrowthDiagram

method), 1076
q_dimension() (sage.combinat.root_system.fusion_ring.FusionRing.Element

method), 2639
q_factorial() (in module

sage.combinat.q_analogues), 2029
Q_graph() (sage.combinat.growth.Rule method), 1080
q_hook_length_fraction()

(sage.combinat.binary_tree.BinaryTree
method), 88

q_int() (in module sage.combinat.q_analogues), 2030
q_jordan() (in module sage.combinat.q_analogues),

2030
q_multinomial() (in module

sage.combinat.q_analogues), 2031
q_pochhammer() (in module

sage.combinat.q_analogues), 2032

q_project() (sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2408

q_project_on_basis()
(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2408

q_stirling_number1() (in module
sage.combinat.q_analogues), 2032

q_stirling_number2() (in module
sage.combinat.q_analogues), 2033

q_subgroups_of_abelian_group() (in module
sage.combinat.q_analogues), 2033

Q_symbol() (sage.combinat.growth.GrowthDiagram
method), 1077

Q_symbol() (sage.combinat.growth.RuleDomino
method), 1086

Q_symbol() (sage.combinat.growth.RuleLLMS method),
1090

Q_symbol() (sage.combinat.growth.RulePartitions
method), 1093

Q_symbol() (sage.combinat.growth.RuleShiftedShapes
method), 1096

Q_symbol() (sage.combinat.growth.RuleSylvester
method), 1101

Q_to_Qcheck() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials
method), 2317

qa() (sage.combinat.sine_gordon.SineGordonYsystem
method), 3007

qbar() (sage.combinat.sf.sf.SymmetricFunctions
method), 2896

QDM_19_6_1_1_1() (in module
sage.combinat.designs.database), 627

QDM_21_5_1_1_1() (in module
sage.combinat.designs.database), 627

QDM_21_6_1_1_5() (in module
sage.combinat.designs.database), 627

QDM_25_6_1_1_5() (in module
sage.combinat.designs.database), 627

QDM_33_6_1_1_1() (in module
sage.combinat.designs.database), 628

QDM_35_7_1_1_7() (in module
sage.combinat.designs.database), 628

QDM_37_6_1_1_1() (in module
sage.combinat.designs.database), 628

QDM_45_7_1_1_9() (in module
sage.combinat.designs.database), 628

QDM_54_7_1_1_8() (in module
sage.combinat.designs.database), 629

QDM_57_9_1_1_8() (in module
sage.combinat.designs.database), 629

QDM_from_Vmt() (in module
sage.combinat.designs.orthogonal_arrays),
695

qmu_save() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 221

3826 Index

Combinatorics, Release 9.7

Qp() (sage.combinat.sf.hall_littlewood.HallLittlewood
method), 2758

Qp() (sage.combinat.sf.jack.Jack method), 2774
QS (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions

attribute), 1459
qt_catalan_number() (in module

sage.combinat.q_analogues), 2035
qt_kostka() (in module sage.combinat.sf.macdonald),

2821
quantum_characteristic()

(sage.combinat.tableau_residues.ResidueSequence
method), 3345

quantum_characteristic()
(sage.combinat.tableau_tuple.RowStandardTableauTuples_residue
method), 3360

quantum_moebius_algebra()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1904

quantum_root() (sage.combinat.root_system.root_space.RootSpaceElement
method), 2458

QuantumMoebiusAlgebra (class in
sage.combinat.posets.moebius_algebra),
1925

QuantumMoebiusAlgebra.C (class in
sage.combinat.posets.moebius_algebra),
1925

QuantumMoebiusAlgebra.E (class in
sage.combinat.posets.moebius_algebra),
1925

QuantumMoebiusAlgebra.KL (class in
sage.combinat.posets.moebius_algebra),
1926

quasiperiods() (sage.combinat.words.finite_word.FiniteWord_class
method), 3527

QuasiSymmetricFunctions (class in
sage.combinat.ncsf_qsym.qsym), 1424

QuasiSymmetricFunctions.Bases (class in
sage.combinat.ncsf_qsym.qsym), 1432

QuasiSymmetricFunctions.Bases.ElementMethods
(class in sage.combinat.ncsf_qsym.qsym), 1432

QuasiSymmetricFunctions.Bases.ParentMethods
(class in sage.combinat.ncsf_qsym.qsym), 1443

QuasiSymmetricFunctions.dualImmaculate (class
in sage.combinat.ncsf_qsym.qsym), 1461

QuasiSymmetricFunctions.Essential (class in
sage.combinat.ncsf_qsym.qsym), 1445

QuasiSymmetricFunctions.Fundamental (class in
sage.combinat.ncsf_qsym.qsym), 1447

QuasiSymmetricFunctions.Fundamental.Element
(class in sage.combinat.ncsf_qsym.qsym), 1447

QuasiSymmetricFunctions.HazewinkelLambda
(class in sage.combinat.ncsf_qsym.qsym), 1452

QuasiSymmetricFunctions.Monomial (class in
sage.combinat.ncsf_qsym.qsym), 1454

QuasiSymmetricFunctions.Monomial.Element
(class in sage.combinat.ncsf_qsym.qsym), 1454

QuasiSymmetricFunctions.phi (class in
sage.combinat.ncsf_qsym.qsym), 1462

QuasiSymmetricFunctions.psi (class in
sage.combinat.ncsf_qsym.qsym), 1463

QuasiSymmetricFunctions.Quasisymmetric_Schur
(class in sage.combinat.ncsf_qsym.qsym), 1459

QuasiSymmetricFunctions.Young_Quasisymmetric_Schur
(class in sage.combinat.ncsf_qsym.qsym), 1460

QueerLetter_element (class in
sage.combinat.crystals.letters), 477

QueerSuperCrystalsMixin (class in
sage.combinat.crystals.tensor_product), 531

quiver() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 187

QuiverMutationType() (in module
sage.combinat.cluster_algebra_quiver.quiver_mutation_type),
224

QuiverMutationType_abstract (class in
sage.combinat.cluster_algebra_quiver.quiver_mutation_type),
232

QuiverMutationType_Irreducible (class in
sage.combinat.cluster_algebra_quiver.quiver_mutation_type),
230

QuiverMutationType_Reducible (class in
sage.combinat.cluster_algebra_quiver.quiver_mutation_type),
231

QuiverMutationTypeFactory (class in
sage.combinat.cluster_algebra_quiver.quiver_mutation_type),
229

quotient() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 956

quotient() (sage.combinat.partition.Partition method),
1651

quotient() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1905

quotient() (sage.combinat.skew_partition.SkewPartition
method), 3023

R
r (sage.combinat.finite_state_machine_generators.TransducerGenerators.RecursionRule

attribute), 991
R (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions

attribute), 1415
r() (sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal

method), 452
R() (sage.combinat.kazhdan_lusztig.KazhdanLusztigPolynomial

method), 1256
r() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux

method), 2095
r() (sage.combinat.sine_gordon.SineGordonYsystem

method), 3007

Index 3827

Combinatorics, Release 9.7

r_matrix() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2643

R_tilde() (sage.combinat.kazhdan_lusztig.KazhdanLusztigPolynomial
method), 1256

radical_difference_family() (in module
sage.combinat.designs.difference_family),
647

radical_difference_set() (in module
sage.combinat.designs.difference_family),
648

raise_action_from_words()
(sage.combinat.tableau.Tableau method),
3322

random_element() (sage.combinat.affine_permutation.AffinePermutationGroupGeneric
method), 32

random_element() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices
method), 52

random_element() (sage.combinat.binary_tree.BinaryTrees_size
method), 110

random_element() (sage.combinat.binary_tree.FullBinaryTrees_size
method), 111

random_element() (sage.combinat.cartesian_product.CartesianProduct_iters
method), 121

random_element() (sage.combinat.combinat.CombinatorialClass
method), 257

random_element() (sage.combinat.composition.Compositions_n
method), 310

random_element() (sage.combinat.constellation.Constellations_ld
method), 325

random_element() (sage.combinat.derangements.Derangements
method), 558

random_element() (sage.combinat.dyck_word.CompleteDyckWords_size
method), 779

random_element() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatterns
method), 1059

random_element() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatternsTopRow
method), 1060

random_element() (sage.combinat.interval_posets.TamariIntervalPosets_size
method), 1195

random_element() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_alph_d
method), 1347

random_element() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_n
method), 1348

random_element() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets_X
method), 1346

random_element() (sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunctions_n
method), 1508

random_element() (sage.combinat.ordered_tree.OrderedTrees_size
method), 1533

random_element() (sage.combinat.parking_functions.ParkingFunctions_n
method), 1583

random_element() (sage.combinat.partition.Partitions_n
method), 1677

random_element() (sage.combinat.perfect_matching.PerfectMatchings

method), 1747
random_element() (sage.combinat.permutation.Permutations_nk

method), 1807
random_element() (sage.combinat.permutation.Permutations_set

method), 1807
random_element() (sage.combinat.permutation.Permutations_setk

method), 1807
random_element() (sage.combinat.permutation.StandardPermutations_n

method), 1816
random_element() (sage.combinat.plane_partition.PlanePartitions

method), 1607
random_element() (sage.combinat.set_partition.SetPartitions_set

method), 2726
random_element() (sage.combinat.set_partition.SetPartitions_setn

method), 2727
random_element() (sage.combinat.set_partition.SetPartitions_setparts

method), 2728
random_element() (sage.combinat.subset.SubMultiset_s

method), 3194
random_element() (sage.combinat.subset.SubMultiset_sk

method), 3195
random_element() (sage.combinat.subset.Subsets_s

method), 3199
random_element() (sage.combinat.subset.Subsets_sk

method), 3202
random_element() (sage.combinat.subset.SubsetsSorted

method), 3197
random_element() (sage.combinat.subword.Subwords_w

method), 3208
random_element() (sage.combinat.subword.Subwords_wk

method), 3209
random_element() (sage.combinat.tableau.SemistandardTableaux_shape

method), 3289
random_element() (sage.combinat.tableau.SemistandardTableaux_size

method), 3290
random_element() (sage.combinat.tableau.StandardTableaux_shape

method), 3297
random_element() (sage.combinat.tableau.StandardTableaux_size

method), 3299
random_element() (sage.combinat.tableau_tuple.StandardTableauTuples_shape

method), 3368
random_element() (sage.combinat.words.words.FiniteWords

method), 3659
random_element() (sage.combinat.words.words.InfiniteWords

method), 3660
random_element() (sage.combinat.words.words.Words_n

method), 3661
random_element_plancherel()

(sage.combinat.partition.Partitions_n method),
1677

random_element_uniform()
(sage.combinat.partition.Partitions_n method),
1678

random_empty_cell()

3828 Index

Combinatorics, Release 9.7

(sage.combinat.matrices.latin.LatinSquare
method), 1312

random_linear_extension()
(sage.combinat.posets.posets.FinitePoset
method), 2008

random_maximal_antichain()
(sage.combinat.posets.posets.FinitePoset
method), 2008

random_maximal_chain()
(sage.combinat.posets.posets.FinitePoset
method), 2009

random_order_ideal()
(sage.combinat.posets.posets.FinitePoset
method), 2009

random_subposet() (sage.combinat.posets.posets.FinitePoset
method), 2009

RandomLattice() (sage.combinat.posets.poset_examples.Posets
static method), 1935

RandomPoset() (sage.combinat.posets.poset_examples.Posets
static method), 1936

RandomWord() (sage.combinat.words.word_generators.WordGenerator
method), 3643

rank() (in module sage.combinat.combination), 284
rank() (sage.combinat.affine_permutation.AffinePermutationGroupGeneric

method), 32
rank() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract

method), 238
rank() (sage.combinat.colored_permutations.ColoredPermutations

method), 249
rank() (sage.combinat.combinat.CombinatorialClass

method), 257
rank() (sage.combinat.combinat.UnionCombinatorialClass

method), 261
rank() (sage.combinat.combination.Combinations_set

method), 283
rank() (sage.combinat.combination.Combinations_setk

method), 283
rank() (sage.combinat.designs.incidence_structures.IncidenceStructure

method), 679
rank() (sage.combinat.free_module.CombinatorialFreeModule

method), 1019
rank() (sage.combinat.growth.RuleBinaryWord

method), 1083
rank() (sage.combinat.growth.RuleDomino method),

1088
rank() (sage.combinat.growth.RuleLLMS method), 1092
rank() (sage.combinat.growth.RulePartitions method),

1093
rank() (sage.combinat.growth.RuleShiftedShapes

method), 1099
rank() (sage.combinat.growth.RuleSylvester method),

1105
rank() (sage.combinat.growth.RuleYoungFibonacci

method), 1107

rank() (sage.combinat.integer_vector.IntegerVectors_nk
method), 1144

rank() (sage.combinat.permutation.Permutation
method), 1785

rank() (sage.combinat.permutation.Permutations_mset
method), 1805

rank() (sage.combinat.permutation.StandardPermutations_n
method), 1816

rank() (sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1859

rank() (sage.combinat.posets.posets.FinitePoset
method), 2010

rank() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2196

rank() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2225

rank() (sage.combinat.root_system.cartan_type.CartanType_decorator
method), 2237

rank() (sage.combinat.root_system.cartan_type.CartanType_standard_affine
method), 2239

rank() (sage.combinat.root_system.cartan_type.CartanType_standard_finite
method), 2241

rank() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix
method), 2250

rank() (sage.combinat.root_system.coxeter_type.CoxeterType
method), 2257

rank() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType
method), 2261

rank() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2267

rank() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2375

rank() (sage.combinat.root_system.type_A_infinity.CartanType
method), 2486

rank() (sage.combinat.root_system.type_I.CartanType
method), 2525

rank() (sage.combinat.root_system.type_reducible.CartanType
method), 2594

rank() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2632

rank() (sage.combinat.root_system.weyl_group.WeylGroup_permutation
method), 2658

rank() (sage.combinat.subset.Subsets_s method), 3199
rank() (sage.combinat.subset.Subsets_sk method), 3202
rank_from_list() (in module sage.combinat.ranker),

2039
rank_function() (sage.combinat.posets.hasse_diagram.HasseDiagram

method), 1859
rank_function() (sage.combinat.posets.posets.FinitePoset

method), 2010
rauzy_fractal_plot()

(sage.combinat.words.morphism.WordMorphism
method), 3571

rauzy_fractal_points()

Index 3829

Combinatorics, Release 9.7

(sage.combinat.words.morphism.WordMorphism
method), 3574

rauzy_fractal_projection()
(sage.combinat.words.morphism.WordMorphism
method), 3574

rauzy_graph() (sage.combinat.words.finite_word.FiniteWord_class
method), 3528

raw_signature() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 393

RBIBD_120_8_1() (in module
sage.combinat.designs.database), 629

rcf() (sage.combinat.similarity_class_type.SimilarityClassType
method), 2998

RCHighestWeightElement (class in
sage.combinat.rigged_configurations.rigged_configuration_element),
2123

RCHWNonSimplyLacedElement (class in
sage.combinat.rigged_configurations.rigged_configuration_element),
2122

RCNonSimplyLaced (class in
sage.combinat.rigged_configurations.rigged_configurations),
2131

RCNonSimplyLacedElement (class in
sage.combinat.rigged_configurations.rigged_configuration_element),
2124

RCrystal (class in sage.combinat.crystals.elementary_crystals),
375

RCrystal.Element (class in
sage.combinat.crystals.elementary_crystals),
376

RCToKRTBijection() (in module
sage.combinat.rigged_configurations.bijection),
2079

RCToKRTBijectionAbstract (class in
sage.combinat.rigged_configurations.bij_abstract_class),
2068

RCToKRTBijectionTypeA (class in
sage.combinat.rigged_configurations.bij_type_A),
2071

RCToKRTBijectionTypeA2Dual (class in
sage.combinat.rigged_configurations.bij_type_A2_dual),
2072

RCToKRTBijectionTypeA2Even (class in
sage.combinat.rigged_configurations.bij_type_A2_even),
2072

RCToKRTBijectionTypeA2Odd (class in
sage.combinat.rigged_configurations.bij_type_A2_odd),
2073

RCToKRTBijectionTypeB (class in
sage.combinat.rigged_configurations.bij_type_B),
2074

RCToKRTBijectionTypeC (class in
sage.combinat.rigged_configurations.bij_type_C),
2075

RCToKRTBijectionTypeD (class in
sage.combinat.rigged_configurations.bij_type_D),
2076

RCToKRTBijectionTypeDTri (class in
sage.combinat.rigged_configurations.bij_type_D_tri),
2079

RCToKRTBijectionTypeDTwisted (class in
sage.combinat.rigged_configurations.bij_type_D_twisted),
2078

RCToMLTBijectionTypeB (class in
sage.combinat.rigged_configurations.bij_infinity),
2070

RCToMLTBijectionTypeD (class in
sage.combinat.rigged_configurations.bij_infinity),
2070

RCTypeA2Dual (class in
sage.combinat.rigged_configurations.rigged_configurations),
2133

RCTypeA2Even (class in
sage.combinat.rigged_configurations.rigged_configurations),
2135

reading_order() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2844

reading_permutation()
(sage.combinat.dyck_word.DyckWord_complete
method), 805

reading_tableau() (sage.combinat.partition.Partition
method), 1651

reading_word() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2845

reading_word() (sage.combinat.shifted_primed_tableau.CrystalElementShiftedPrimedTableau
method), 2976

reading_word_permutation()
(sage.combinat.tableau.Tableau method),
3322

realizations() (sage.combinat.sf.k_dual.KBoundedQuotient
method), 2789

realizations() (sage.combinat.sf.new_kschur.KBoundedSubspace
method), 2829

RealReflectionGroup (class in
sage.combinat.root_system.reflection_group_real),
2387

RealReflectionGroup.Element (class in
sage.combinat.root_system.reflection_group_real),
2388

RecognizableSeries (class in
sage.combinat.recognizable_series), 2045

RecognizableSeriesSpace (class in
sage.combinat.recognizable_series), 2049

recognize_coxeter_type_from_matrix() (in mod-
ule sage.combinat.root_system.coxeter_matrix),
2253

recoils() (sage.combinat.permutation.Permutation
method), 1785

3830 Index

Combinatorics, Release 9.7

recoils_composition()
(sage.combinat.permutation.Permutation
method), 1785

recomposition_from_triple()
(sage.combinat.interval_posets.TamariIntervalPosets
static method), 1194

rectify() (sage.combinat.path_tableaux.semistandard.SemistandardPathTableau
method), 1600

rectify() (sage.combinat.skew_tableau.SkewTableau
method), 3039

recur_gen2() (in module
sage.combinat.sloane_functions), 3133

recur_gen2b() (in module
sage.combinat.sloane_functions), 3134

recur_gen3() (in module
sage.combinat.sloane_functions), 3134

recurrence_repr() (sage.rings.cfinite_sequence.CFiniteSequence
method), 3672

RecurrenceParser (class in
sage.combinat.k_regular_sequence), 1197

RecurrenceSequence (class in
sage.combinat.sloane_functions), 3132

RecurrenceSequence2 (class in
sage.combinat.sloane_functions), 3132

Recursion() (sage.combinat.finite_state_machine_generators.TransducerGenerators
method), 985

recursion() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors
method), 2273

recursive_vector_partitions() (in module
sage.combinat.fast_vector_partitions), 838

recursive_within_from_to() (in module
sage.combinat.fast_vector_partitions), 839

red_vertices() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 187

reduced_column_word()
(sage.combinat.tableau.Tableau method),
3323

reduced_column_word()
(sage.combinat.tableau_tuple.TableauTuple
method), 3376

reduced_form() (sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux.Element
method), 408

reduced_kronecker_product()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2941

reduced_lambda_catabolism()
(sage.combinat.tableau.Tableau method),
3323

reduced_rauzy_graph()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3529

reduced_row_word() (sage.combinat.tableau.Tableau
method), 3323

reduced_row_word() (sage.combinat.tableau_tuple.TableauTuple

method), 3377
reduced_subalgebra()

(sage.combinat.posets.incidence_algebras.IncidenceAlgebra
method), 1864

reduced_word() (sage.combinat.affine_permutation.AffinePermutation
method), 28

reduced_word() (sage.combinat.colored_permutations.ColoredPermutation
method), 244

reduced_word() (sage.combinat.permutation.Permutation
method), 1786

reduced_word() (sage.combinat.root_system.fundamental_group.FundamentalGroupGL
method), 2575

reduced_word() (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class
method), 2581

reduced_word() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2421

reduced_word_lexmin()
(sage.combinat.permutation.Permutation
method), 1786

reduced_word_of_alcove_morphism()
(sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2605

reduced_word_of_translation()
(sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2606

reduced_words() (sage.combinat.permutation.Permutation
method), 1786

reduced_words_iterator()
(sage.combinat.permutation.Permutation
method), 1787

ReducedIncidenceAlgebra (class in
sage.combinat.posets.incidence_algebras),
1865

ReducedIncidenceAlgebra.Element (class in
sage.combinat.posets.incidence_algebras),
1865

rees_product() (sage.combinat.posets.posets.FinitePoset
method), 2011

refine_aorder() (sage.combinat.species.series.LazyPowerSeries
method), 3171

refinement_splitting()
(sage.combinat.composition.Composition
method), 299

refinement_splitting_lengths()
(sage.combinat.composition.Composition
method), 299

refinements() (sage.combinat.set_partition.SetPartition
method), 2713

reflect() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1555

reflect_step() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element
method), 482

reflection() (sage.combinat.root_system.ambient_space.AmbientSpace
method), 2159

Index 3831

Combinatorics, Release 9.7

reflection() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2376

reflection() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2422

reflection() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2448

reflection_character()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2376

reflection_eigenvalues()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2376

reflection_eigenvalues_family()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2377

reflection_group() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2196

reflection_hyperplane()
(sage.combinat.root_system.plot.PlotOptions
method), 2356

reflection_hyperplane()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2378

reflection_hyperplanes()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2378

reflection_index_set()
(sage.combinat.affine_permutation.AffinePermutationGroupGeneric
method), 32

reflection_index_set()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2379

reflection_index_set()
(sage.combinat.root_system.weyl_group.WeylGroup_permutation
method), 2658

reflection_length()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup.Element
method), 2363

reflection_to_positive_root()
(sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2392

ReflectionGroup() (in module
sage.combinat.root_system.reflection_group_real),
2394

reflections() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2379

reflections() (sage.combinat.root_system.weyl_group.WeylGroup_gens
method), 2654

reflections() (sage.combinat.root_system.weyl_group.WeylGroup_permutation
method), 2658

register_isomorphism()
(sage.combinat.sf.sf.SymmetricFunctions
method), 2896

regular_symmetric_hadamard_matrix_with_constant_diagonal()

(in module sage.combinat.matrices.hadamard_matrix),
1295

RegularPartitions (class in sage.combinat.partition),
1683

RegularPartitions_all (class in
sage.combinat.partition), 1683

RegularPartitions_bounded (class in
sage.combinat.partition), 1684

RegularPartitions_n (class in
sage.combinat.partition), 1684

RegularPartitions_truncated (class in
sage.combinat.partition), 1684

RegularPartitionTuples (class in
sage.combinat.partition_tuple), 1739

RegularPartitionTuples_all (class in
sage.combinat.partition_tuple), 1739

RegularPartitionTuples_level (class in
sage.combinat.partition_tuple), 1739

RegularPartitionTuples_level_size (class in
sage.combinat.partition_tuple), 1740

RegularPartitionTuples_size (class in
sage.combinat.partition_tuple), 1741

reinitialize() (sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1284

relabel() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 222

relabel() (sage.combinat.constellation.Constellation_class
method), 322

relabel() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 679

relabel() (sage.combinat.posets.posets.FinitePoset
method), 2011

relabel() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2196

relabel() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2225

relabel() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix
method), 2250

relabel() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType
method), 2261

relabel() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2267

relabel() (sage.combinat.root_system.type_marked.CartanType
method), 2587

relabel() (sage.combinat.root_system.type_super_A.CartanType
method), 2478

relabel_edges() (sage.combinat.yang_baxter_graph.YangBaxterGraph_generic
method), 3664

relabel_heuristic()
(sage.combinat.designs.subhypergraph_search.SubHypergraphSearch
method), 729

relabel_system() (in module
sage.combinat.designs.steiner_quadruple_systems),
725

3832 Index

Combinatorics, Release 9.7

relabel_vertices() (sage.combinat.yang_baxter_graph.YangBaxterGraph_generic
method), 3665

relabel_vertices() (sage.combinat.yang_baxter_graph.YangBaxterGraph_partition
method), 3667

relabeled() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 957

relabeled() (sage.combinat.finite_state_machine.FSMState
method), 888

relations() (sage.combinat.posets.posets.FinitePoset
method), 2012

relations_iterator()
(sage.combinat.posets.posets.FinitePoset
method), 2013

relations_number() (sage.combinat.posets.posets.FinitePoset
method), 2013

removable_cells() (sage.combinat.partition.Partition
method), 1652

removable_cells() (sage.combinat.partition_tuple.PartitionTuple
method), 1733

removable_cells_residue()
(sage.combinat.partition.Partition method),
1652

remove_cell() (sage.combinat.partition.Partition
method), 1652

remove_cell() (sage.combinat.partition_tuple.PartitionTuple
method), 1733

remove_cell() (sage.combinat.rigged_configurations.rigged_partition.RiggedPartition
method), 2145

remove_epsilon_transitions()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 958

remove_extra_fixed_points()
(sage.combinat.permutation.Permutation
method), 1787

remove_horizontal_border_strip()
(sage.combinat.partition.Partition method),
1653

reorient() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 187

reorient() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 222

repaint() (sage.combinat.e_one_star.Patch method),
829

replace_dyck_char() (in module
sage.combinat.nu_dyck_word), 1519

replace_dyck_symbol() (in module
sage.combinat.nu_dyck_word), 1519

replace_parens() (in module
sage.combinat.dyck_word), 816

replace_symbols() (in module
sage.combinat.dyck_word), 817

representation() (sage.combinat.k_tableau.WeakTableau_abstract
method), 1238

representation() (sage.combinat.k_tableau.WeakTableaux_abstract

method), 1250
representation_matrix()

(sage.combinat.symmetric_group_representations.SpechtRepresentation
method), 3268

representation_matrix()
(sage.combinat.symmetric_group_representations.YoungRepresentation_generic
method), 3274

representation_matrix_for_simple_transposition()
(sage.combinat.symmetric_group_representations.YoungRepresentation_generic
method), 3274

reset_cluster() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 188

reset_coefficients()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 188

residue() (sage.combinat.partition.Partition method),
1653

residue() (sage.combinat.tableau.Tableau method),
3324

residue() (sage.combinat.tableau_tuple.TableauTuple
method), 3377

residue_sequence() (sage.combinat.tableau.Tableau
method), 3324

residue_sequence() (sage.combinat.tableau_tuple.RowStandardTableauTuple
method), 3356

residue_sequence() (sage.combinat.tableau_tuple.RowStandardTableauTuples_residue
method), 3360

residues() (sage.combinat.tableau_residues.ResidueSequence
method), 3345

residues_of_entries()
(sage.combinat.k_tableau.WeakTableau_core
method), 1245

ResidueSequence (class in
sage.combinat.tableau_residues), 3343

ResidueSequences (class in
sage.combinat.tableau_residues), 3348

resolvable_balanced_incomplete_block_design()
(in module sage.combinat.designs.resolvable_bibd),
581

restrict() (sage.combinat.k_tableau.StrongTableau
method), 1221

restrict() (sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1285

restrict() (sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau
method), 2979

restrict() (sage.combinat.skew_tableau.SkewTableau
method), 3039

restrict() (sage.combinat.tableau.Tableau method),
3325

restrict() (sage.combinat.tableau_residues.ResidueSequence
method), 3346

restrict() (sage.combinat.tableau_tuple.StandardTableauTuple
method), 3364

restrict() (sage.combinat.tableau_tuple.TableauTuple

Index 3833

Combinatorics, Release 9.7

method), 3378
restrict_degree() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

method), 2942
restrict_domain() (sage.combinat.words.morphism.WordMorphism

method), 3575
restrict_partition_lengths()

(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2943

restrict_parts() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2943

restrict_row() (sage.combinat.tableau_residues.ResidueSequence
method), 3346

restricted() (sage.combinat.species.series.LazyPowerSeries
method), 3172

restricted() (sage.combinat.species.species.GenericCombinatorialSpecies
method), 3181

RestrictedGrowthArrays (class in
sage.combinat.restricted_growth), 2052

RestrictedIntegerPartitions()
(sage.combinat.posets.poset_examples.Posets
static method), 1936

RestrictedPartitions_all (class in
sage.combinat.partition), 1685

RestrictedPartitions_generic (class in
sage.combinat.partition), 1685

RestrictedPartitions_n (class in
sage.combinat.partition), 1685

restriction() (sage.combinat.set_partition.SetPartition
method), 2713

restriction_outer_shape()
(sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau
method), 2979

restriction_outer_shape()
(sage.combinat.skew_tableau.SkewTableau
method), 3039

restriction_shape()
(sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau
method), 2980

restriction_shape()
(sage.combinat.skew_tableau.SkewTableau
method), 3040

restriction_shape() (sage.combinat.tableau.Tableau
method), 3326

result() (sage.combinat.finite_state_machine.FSMProcessIterator
method), 882

retract() (sage.combinat.crystals.affine.AffineCrystalFromClassical
method), 338

retract() (sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element_dual
method), 471

retract() (sage.combinat.diagram_algebras.SubPartitionAlgebra
method), 765

retract() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All
method), 1155

retract() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints

method), 1159
retract() (sage.combinat.root_system.weyl_characters.WeylCharacterRing

method), 2632
retract() (sage.combinat.sf.k_dual.kbounded_HallLittlewoodP

method), 2796
retract() (sage.combinat.sf.k_dual.KBoundedQuotient

method), 2789
retract() (sage.combinat.sf.k_dual.KBoundedQuotientBases.ParentMethods

method), 2794
retract() (sage.combinat.sf.k_dual.kMonomial

method), 2795
retract() (sage.combinat.sf.new_kschur.K_kSchur

method), 2837
retract() (sage.combinat.sf.new_kschur.KBoundedSubspace

method), 2830
retract_direct_product()

(sage.combinat.permutation.Permutation
method), 1787

retract_direct_product()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3257

retract_okounkov_vershik()
(sage.combinat.permutation.Permutation
method), 1788

retract_okounkov_vershik()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3258

retract_plain() (sage.combinat.permutation.Permutation
method), 1789

retract_plain() (sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3259

return_words() (sage.combinat.words.finite_word.FiniteWord_class
method), 3530

return_words_derivate()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3531

return_words_iterator()
(sage.combinat.words.abstract_word.Word_class
method), 3458

returns_to_zero() (sage.combinat.dyck_word.DyckWord
method), 793

rev_lex_less() (sage.combinat.words.finite_word.FiniteWord_class
method), 3531

reversal() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1339

reversal() (sage.combinat.words.finite_word.FiniteWord_class
method), 3531

reversal() (sage.combinat.words.morphism.WordMorphism
method), 3575

reverse() (sage.combinat.dyck_word.DyckWord_complete
method), 805

reverse() (sage.combinat.permutation.Permutation
method), 1789

reverse_bump() (sage.combinat.tableau.Tableau

3834 Index

Combinatorics, Release 9.7

method), 3326
reverse_insertion()

(sage.combinat.rsk.RuleDualRSK method),
2680

reverse_insertion() (sage.combinat.rsk.RuleEG
method), 2682

reverse_insertion() (sage.combinat.rsk.RuleHecke
method), 2685

reverse_insertion() (sage.combinat.rsk.RuleRSK
method), 2686

reverse_insertion() (sage.combinat.rsk.RuleStar
method), 2689

reverse_insertion()
(sage.combinat.rsk.RuleSuperRSK method),
2692

reversed() (sage.combinat.composition.Composition
method), 299

reversed() (sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2736

reversed_word_iterator() (in module
sage.combinat.words.word_char), 3629

rfind() (sage.combinat.words.finite_word.FiniteWord_class
method), 3531

rfind() (sage.combinat.words.word_datatypes.WordDatatype_str
method), 3633

rho (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables
attribute), 1500

rho() (sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2607

rho_classical() (sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2607

rho_prime() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials
method), 2321

rhombus_pieces() (sage.combinat.knutson_tao_puzzles.PuzzlePieces
method), 1277

RhombusPiece (class in
sage.combinat.knutson_tao_puzzles), 1277

ribbon (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions
attribute), 1424

ribbon() (sage.combinat.posets.mobile.MobilePoset
method), 1833

ribbon() (sage.combinat.root_system.fusion_ring.FusionRing.Element
method), 2639

Ribbon_class (class in
sage.combinat.ribbon_shaped_tableau),
2055

ribbon_decomposition()
(sage.combinat.composition.Composition
method), 300

RibbonPoset() (sage.combinat.posets.poset_examples.Posets
static method), 1937

ribbons_above_marked()
(sage.combinat.k_tableau.StrongTableau
method), 1222

RibbonShapedTableau (class in
sage.combinat.ribbon_shaped_tableau),
2052

RibbonShapedTableaux (class in
sage.combinat.ribbon_shaped_tableau),
2053

RibbonShapedTableaux.options() (in module
sage.combinat.ribbon_shaped_tableau), 2053

RibbonTableau (class in
sage.combinat.ribbon_tableau), 2060

RibbonTableau_class (class in
sage.combinat.ribbon_tableau), 2061

RibbonTableaux (class in
sage.combinat.ribbon_tableau), 2061

RibbonTableaux.options() (in module
sage.combinat.ribbon_tableau), 2062

RibbonTableaux_shape_weight_length (class in
sage.combinat.ribbon_tableau), 2064

rigged_configurations()
(sage.combinat.rigged_configurations.tensor_product_kr_tableaux.TensorProductOfKirillovReshetikhinTableaux
method), 2149

RiggedConfigurationElement (class in
sage.combinat.rigged_configurations.rigged_configuration_element),
2125

RiggedConfigurations (class in
sage.combinat.rigged_configurations.rigged_configurations),
2136

RiggedConfigurations.options() (in module
sage.combinat.rigged_configurations.rigged_configurations),
2142

RiggedPartition (class in
sage.combinat.rigged_configurations.rigged_partition),
2144

RiggedPartitionTypeB (class in
sage.combinat.rigged_configurations.rigged_partition),
2146

rigging (sage.combinat.rigged_configurations.rigged_partition.RiggedPartition
attribute), 2146

riggings() (in module sage.combinat.sf.kfpoly), 2799
right (sage.combinat.recognizable_series.RecognizableSeries

attribute), 2049
right() (sage.combinat.k_regular_sequence.RecurrenceParser

method), 1203
right_action_product() (in module

sage.combinat.permutation_cython), 1826
right_action_product()

(sage.combinat.permutation.Permutation
method), 1790

right_action_product()
(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3259

right_action_same_n() (in module
sage.combinat.permutation_cython), 1826

right_column_box() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement

Index 3835

Combinatorics, Release 9.7

method), 2118
right_coset_representatives()

(sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2392

right_coset_representatives()
(sage.combinat.root_system.reflection_group_real.RealReflectionGroup.Element
method), 2388

right_factor() (sage.combinat.species.product_species.ProductSpecies
method), 3159

right_key_tableau() (sage.combinat.tableau.Tableau
method), 3327

right_permutohedron_interval()
(sage.combinat.permutation.Permutation
method), 1790

right_permutohedron_interval_iterator()
(sage.combinat.permutation.Permutation
method), 1790

right_rotate() (sage.combinat.binary_tree.BinaryTree
method), 90

right_rotate() (sage.combinat.binary_tree.LabelledBinaryTree
method), 114

right_special_factors()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3532

right_special_factors_iterator()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3532

right_split() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2097

right_split() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2119

right_split() (sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.TensorProductOfKirillovReshetikhinTableauxElement
method), 2152

right_summand() (sage.combinat.species.sum_species.SumSpecies
method), 3192

right_tableau() (sage.combinat.permutation.Permutation
method), 1790

rim() (sage.combinat.partition.Partition method), 1653
rise_composition() (sage.combinat.dyck_word.DyckWord

method), 793
rise_contact_involution()

(sage.combinat.interval_posets.TamariIntervalPoset
method), 1182

rk() (sage.combinat.sine_gordon.SineGordonYsystem
method), 3007

robinson_schensted()
(sage.combinat.permutation.Permutation
method), 1791

robinson_schensted()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3533

robinson_schensted_knuth() (in module
sage.combinat.rsk), 2693

robinson_schensted_knuth_inverse() (in module

sage.combinat.rsk), 2695
root() (sage.combinat.root_system.type_A.AmbientSpace

method), 2480
root() (sage.combinat.root_system.type_B.AmbientSpace

method), 2487
root() (sage.combinat.root_system.type_C.AmbientSpace

method), 2495
root() (sage.combinat.root_system.type_D.AmbientSpace

method), 2499
root() (sage.combinat.root_system.type_E.AmbientSpace

method), 2508
root() (sage.combinat.root_system.type_F.AmbientSpace

method), 2516
root() (sage.combinat.yang_baxter_graph.YangBaxterGraph_generic

method), 3665
root_cone() (sage.combinat.subword_complex.SubwordComplexFacet

method), 3226
root_configuration()

(sage.combinat.subword_complex.SubwordComplexFacet
method), 3227

root_lattice() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2291

root_lattice() (sage.combinat.root_system.root_system.RootSystem
method), 2468

root_of_unity() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2643

root_poset() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2448

root_poset() (sage.combinat.root_system.root_system.RootSystem
method), 2468

root_space() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2196

root_space() (sage.combinat.root_system.root_system.RootSystem
method), 2469

root_system() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2196

root_system() (sage.combinat.root_system.cartan_type.CartanType_abstract
method), 2225

root_system() (sage.combinat.root_system.type_Q.CartanType
method), 2526

root_system() (sage.combinat.root_system.type_super_A.CartanType
method), 2478

root_to_reflection()
(sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2393

RootedTree (class in sage.combinat.rooted_tree), 2662
RootedTrees (class in sage.combinat.rooted_tree), 2666
RootedTrees_all (class in sage.combinat.rooted_tree),

2666
RootedTrees_size (class in

sage.combinat.rooted_tree), 2667
RootLatticeRealizations (class in

sage.combinat.root_system.root_lattice_realizations),
2411

3836 Index

Combinatorics, Release 9.7

RootLatticeRealizations.ElementMethods (class
in sage.combinat.root_system.root_lattice_realizations),
2413

RootLatticeRealizations.ParentMethods (class in
sage.combinat.root_system.root_lattice_realizations),
2429

roots() (sage.combinat.backtrack.PositiveIntegerSemigroup
method), 65

roots() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All
method), 1155

roots() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_with_constraints
method), 1159

roots() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2380

roots() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2449

roots() (sage.combinat.root_system.weyl_group.WeylGroup_permutation
method), 2658

RootSpace (class in sage.combinat.root_system.root_space),
2455

RootSpaceElement (class in
sage.combinat.root_system.root_space), 2456

RootsWithHeight (class in
sage.combinat.crystals.alcove_path), 360

RootsWithHeightElement (class in
sage.combinat.crystals.alcove_path), 361

RootSystem (class in
sage.combinat.root_system.root_system),
2460

rotate() (sage.combinat.growth.GrowthDiagram
method), 1078

rotate() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1555

rotate_180() (sage.combinat.tableau.Tableau method),
3328

rotate_ccw() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 59

rotate_cw() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 59

row() (sage.combinat.matrices.latin.LatinSquare
method), 1312

row() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2268

row_annihilator() (sage.combinat.root_system.cartan_type.CartanType_affine
method), 2230

row_containing_sym() (in module
sage.combinat.matrices.latin), 1323

row_lengths() (sage.combinat.skew_partition.SkewPartition
method), 3023

row_lengths_aux() (in module
sage.combinat.skew_partition), 3028

row_stabilizer() (sage.combinat.tableau.Tableau
method), 3328

row_stabilizer() (sage.combinat.tableau_tuple.TableauTuple

method), 3378
row_standard_tableaux()

(sage.combinat.partition.Partition method),
1654

row_standard_tableaux()
(sage.combinat.partition_tuple.PartitionTuple
method), 1733

row_standard_tableaux()
(sage.combinat.tableau_residues.ResidueSequence
method), 3346

row_sums() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
method), 1057

row_sums() (sage.combinat.integer_matrices.IntegerMatrices
method), 1139

row_to_polyomino() (sage.combinat.tiling.TilingSolver
method), 3407

row_with_indices() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2197

rows() (sage.combinat.crystals.tensor_product.CrystalOfQueerTableaux.Element
method), 526

rows() (sage.combinat.crystals.tensor_product_element.InfinityQueerCrystalOfTableauxElement
method), 541

rows() (sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1286

rows() (sage.combinat.tiling.TilingSolver method), 3407
rows_for_piece() (sage.combinat.tiling.TilingSolver

method), 3408
rows_intersection_set()

(sage.combinat.skew_partition.SkewPartition
method), 3023

RowStandardTableau (class in sage.combinat.tableau),
3282

RowStandardTableauTuple (class in
sage.combinat.tableau_tuple), 3353

RowStandardTableauTuples (class in
sage.combinat.tableau_tuple), 3356

RowStandardTableauTuples_all (class in
sage.combinat.tableau_tuple), 3358

RowStandardTableauTuples_level (class in
sage.combinat.tableau_tuple), 3358

RowStandardTableauTuples_level_size (class in
sage.combinat.tableau_tuple), 3358

RowStandardTableauTuples_residue (class in
sage.combinat.tableau_tuple), 3358

RowStandardTableauTuples_residue_shape (class
in sage.combinat.tableau_tuple), 3361

RowStandardTableauTuples_shape (class in
sage.combinat.tableau_tuple), 3361

RowStandardTableauTuples_size (class in
sage.combinat.tableau_tuple), 3362

RowStandardTableaux (class in
sage.combinat.tableau), 3283

RowStandardTableaux_all (class in
sage.combinat.tableau), 3284

Index 3837

Combinatorics, Release 9.7

RowStandardTableaux_shape (class in
sage.combinat.tableau), 3284

RowStandardTableaux_size (class in
sage.combinat.tableau), 3285

RS_partition() (sage.combinat.permutation.Permutation
method), 1758

RSHCD_324() (in module
sage.combinat.matrices.hadamard_matrix),
1291

rshcd_from_close_prime_powers() (in module
sage.combinat.matrices.hadamard_matrix),
1297

rshcd_from_prime_power_and_conference_matrix()
(in module sage.combinat.matrices.hadamard_matrix),
1297

RSK (sage.combinat.growth.Rules attribute), 1108
RSK (sage.combinat.rsk.InsertionRules attribute), 2669
RSK() (in module sage.combinat.rsk), 2670
RSK_inverse() (in module sage.combinat.rsk), 2671
rsw_shuffling_element()

(sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n
method), 3260

Rtype() (sage.combinat.root_system.branching_rules.BranchingRule
method), 2168

Rule (class in sage.combinat.growth), 1079
Rule (class in sage.combinat.rsk), 2673
RuleBinaryWord (class in sage.combinat.growth), 1081
RuleBurge (class in sage.combinat.growth), 1084
RuleCoRSK (class in sage.combinat.rsk), 2675
RuleDomino (class in sage.combinat.growth), 1085
RuleDualRSK (class in sage.combinat.rsk), 2678
RuleEG (class in sage.combinat.rsk), 2681
RuleHecke (class in sage.combinat.rsk), 2683
RuleLLMS (class in sage.combinat.growth), 1089
RulePartitions (class in sage.combinat.growth), 1092
RuleRSK (class in sage.combinat.growth), 1093
RuleRSK (class in sage.combinat.rsk), 2685
Rules (class in sage.combinat.growth), 1107
rules (sage.combinat.growth.GrowthDiagram attribute),

1078
RuleShiftedShapes (class in sage.combinat.growth),

1095
RuleStar (class in sage.combinat.rsk), 2686
RuleSuperRSK (class in sage.combinat.rsk), 2689
RuleSylvester (class in sage.combinat.growth), 1100
RuleYoungFibonacci (class in sage.combinat.growth),

1105
run() (sage.combinat.rigged_configurations.bij_abstract_class.KRTToRCBijectionAbstract

method), 2068
run() (sage.combinat.rigged_configurations.bij_abstract_class.RCToKRTBijectionAbstract

method), 2069
run() (sage.combinat.rigged_configurations.bij_infinity.MLTToRCBijectionTypeB

method), 2069
run() (sage.combinat.rigged_configurations.bij_infinity.MLTToRCBijectionTypeD

method), 2070
run() (sage.combinat.rigged_configurations.bij_infinity.RCToMLTBijectionTypeB

method), 2070
run() (sage.combinat.rigged_configurations.bij_infinity.RCToMLTBijectionTypeD

method), 2070
run() (sage.combinat.rigged_configurations.bij_type_B.KRTToRCBijectionTypeB

method), 2073
run() (sage.combinat.rigged_configurations.bij_type_B.RCToKRTBijectionTypeB

method), 2074
run() (sage.combinat.rigged_configurations.bij_type_D.KRTToRCBijectionTypeD

method), 2076
run() (sage.combinat.rigged_configurations.bij_type_D.RCToKRTBijectionTypeD

method), 2076
run() (sage.combinat.rigged_configurations.bij_type_D_twisted.KRTToRCBijectionTypeDTwisted

method), 2077
run() (sage.combinat.rigged_configurations.bij_type_D_twisted.RCToKRTBijectionTypeDTwisted

method), 2078
runs() (sage.combinat.permutation.Permutation

method), 1791

S
s (sage.combinat.finite_state_machine_generators.TransducerGenerators.RecursionRule

attribute), 991
S (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions

attribute), 1419
s() (sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystal

method), 452
s() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element

method), 482
s() (sage.combinat.diagram_algebras.PartitionAlgebra

method), 759
s() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux

method), 2095
s() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation

method), 2291
s() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods

method), 2449
S() (sage.combinat.sf.macdonald.Macdonald method),

2812
s() (sage.combinat.sf.sf.SymmetricFunctions method),

2896
s() (sage.combinat.sloane_functions.A008275 method),

3108
S0() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0

method), 2545
S0() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0P

method), 2550
s2() (sage.combinat.sloane_functions.A008277 method),

3109
s_adic() (sage.combinat.words.word_generators.WordGenerator

method), 3646
s_ij() (sage.combinat.root_system.fusion_ring.FusionRing

method), 2643

3838 Index

Combinatorics, Release 9.7

s_matrix() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2644

s_part() (sage.combinat.superpartition.SuperPartition
method), 3238

sage.combinat.abstract_tree
module, 9

sage.combinat.affine_permutation
module, 25

sage.combinat.algebraic_combinatorics
module, 46

sage.combinat.all
module, 47

sage.combinat.alternating_sign_matrix
module, 48

sage.combinat.backtrack
module, 64

sage.combinat.baxter_permutations
module, 66

sage.combinat.binary_recurrence_sequences
module, 68

sage.combinat.binary_tree
module, 72

sage.combinat.blob_algebra
module, 117

sage.combinat.cartesian_product
module, 120

sage.combinat.catalog_partitions
module, 122

sage.combinat.chas.all
module, 123

sage.combinat.chas.fsym
module, 123

sage.combinat.chas.wqsym
module, 132

sage.combinat.cluster_algebra_quiver.all
module, 156

sage.combinat.cluster_algebra_quiver.cluster_seed
module, 156

sage.combinat.cluster_algebra_quiver.mutation_class
module, 201

sage.combinat.cluster_algebra_quiver.mutation_type
module, 202

sage.combinat.cluster_algebra_quiver.quiver
module, 203

sage.combinat.cluster_algebra_quiver.quiver_mutation_type
module, 224

sage.combinat.cluster_complex
module, 239

sage.combinat.colored_permutations
module, 242

sage.combinat.combinat
module, 253

sage.combinat.combinat_cython
module, 278

sage.combinat.combination
module, 280

sage.combinat.combinatorial_map
module, 285

sage.combinat.composition
module, 290

sage.combinat.composition_signed
module, 311

sage.combinat.composition_tableau
module, 312

sage.combinat.constellation
module, 316

sage.combinat.core
module, 329

sage.combinat.counting
module, 336

sage.combinat.crystals.affine
module, 336

sage.combinat.crystals.affine_factorization
module, 344

sage.combinat.crystals.affinization
module, 348

sage.combinat.crystals.alcove_path
module, 351

sage.combinat.crystals.all
module, 362

sage.combinat.crystals.bkk_crystals
module, 362

sage.combinat.crystals.catalog
module, 363

sage.combinat.crystals.catalog_elementary_crystals
module, 365

sage.combinat.crystals.catalog_infinity_crystals
module, 365

sage.combinat.crystals.catalog_kirillov_reshetikhin
module, 365

sage.combinat.crystals.crystals
module, 366

sage.combinat.crystals.direct_sum
module, 368

sage.combinat.crystals.elementary_crystals
module, 371

sage.combinat.crystals.fast_crystals
module, 380

sage.combinat.crystals.fully_commutative_stable_grothendieck
module, 382

sage.combinat.crystals.generalized_young_walls
module, 386

sage.combinat.crystals.highest_weight_crystals
module, 396

sage.combinat.crystals.induced_structure
module, 399

sage.combinat.crystals.infinity_crystals
module, 405

Index 3839

Combinatorics, Release 9.7

sage.combinat.crystals.kac_modules
module, 411

sage.combinat.crystals.kirillov_reshetikhin
module, 417

sage.combinat.crystals.kyoto_path_model
module, 457

sage.combinat.crystals.letters
module, 462

sage.combinat.crystals.littelmann_path
module, 478

sage.combinat.crystals.monomial_crystals
module, 492

sage.combinat.crystals.multisegments
module, 501

sage.combinat.crystals.mv_polytopes
module, 504

sage.combinat.crystals.pbw_crystal
module, 509

sage.combinat.crystals.pbw_datum
module, 512

sage.combinat.crystals.polyhedral_realization
module, 515

sage.combinat.crystals.spins
module, 519

sage.combinat.crystals.star_crystal
module, 523

sage.combinat.crystals.tensor_product
module, 526

sage.combinat.crystals.tensor_product_element
module, 536

sage.combinat.cyclic_sieving_phenomenon
module, 548

sage.combinat.debruijn_sequence
module, 550

sage.combinat.degree_sequences
module, 552

sage.combinat.derangements
module, 555

sage.combinat.descent_algebra
module, 558

sage.combinat.designs.all
module, 568

sage.combinat.designs.bibd
module, 568

sage.combinat.designs.block_design
module, 585

sage.combinat.designs.covering_design
module, 595

sage.combinat.designs.database
module, 600

sage.combinat.designs.design_catalog
module, 630

sage.combinat.designs.designs_pyx
module, 631

sage.combinat.designs.difference_family
module, 636

sage.combinat.designs.difference_matrices
module, 651

sage.combinat.designs.evenly_distributed_sets
module, 654

sage.combinat.designs.ext_rep
module, 657

sage.combinat.designs.gen_quadrangles_with_spread
module, 660

sage.combinat.designs.group_divisible_designs
module, 582

sage.combinat.designs.incidence_structures
module, 663

sage.combinat.designs.latin_squares
module, 681

sage.combinat.designs.orthogonal_arrays
module, 686

sage.combinat.designs.orthogonal_arrays_build_recursive
module, 704

sage.combinat.designs.orthogonal_arrays_find_recursive
module, 716

sage.combinat.designs.resolvable_bibd
module, 579

sage.combinat.designs.steiner_quadruple_systems
module, 723

sage.combinat.designs.subhypergraph_search
module, 727

sage.combinat.designs.twographs
module, 729

sage.combinat.diagram_algebras
module, 732

sage.combinat.dlx
module, 774

sage.combinat.dyck_word
module, 776

sage.combinat.e_one_star
module, 818

sage.combinat.enumerated_sets
module, 831

sage.combinat.enumeration_mod_permgroup
module, 834

sage.combinat.expnums
module, 836

sage.combinat.family
module, 837

sage.combinat.fast_vector_partitions
module, 837

sage.combinat.finite_state_machine
module, 850

sage.combinat.finite_state_machine_generators
module, 978

sage.combinat.fqsym
module, 997

3840 Index

Combinatorics, Release 9.7

sage.combinat.free_dendriform_algebra
module, 1025

sage.combinat.free_module
module, 1013

sage.combinat.free_prelie_algebra
module, 1033

sage.combinat.fully_commutative_elements
module, 841

sage.combinat.fully_packed_loop
module, 1040

sage.combinat.gelfand_tsetlin_patterns
module, 1054

sage.combinat.graph_path
module, 1061

sage.combinat.gray_codes
module, 1065

sage.combinat.grossman_larson_algebras
module, 1108

sage.combinat.growth
module, 1067

sage.combinat.hall_polynomial
module, 1113

sage.combinat.hillman_grassl
module, 1115

sage.combinat.integer_lists.base
module, 1122

sage.combinat.integer_lists.invlex
module, 1127

sage.combinat.integer_lists.lists
module, 1126

sage.combinat.integer_matrices
module, 1138

sage.combinat.integer_vector
module, 1141

sage.combinat.integer_vector_weighted
module, 1149

sage.combinat.integer_vectors_mod_permgroup
module, 1151

sage.combinat.interval_posets
module, 1160

sage.combinat.k_regular_sequence
module, 1196

sage.combinat.k_tableau
module, 1212

sage.combinat.kazhdan_lusztig
module, 1255

sage.combinat.knutson_tao_puzzles
module, 1257

sage.combinat.matrices.all
module, 1278

sage.combinat.matrices.dancing_links
module, 1278

sage.combinat.matrices.dlxcpp
module, 1289

sage.combinat.matrices.hadamard_matrix
module, 1291

sage.combinat.matrices.latin
module, 1301

sage.combinat.misc
module, 1328

sage.combinat.multiset_partition_into_sets_ordered
module, 1330

sage.combinat.ncsf_qsym.all
module, 1349

sage.combinat.ncsf_qsym.combinatorics
module, 1349

sage.combinat.ncsf_qsym.generic_basis_code
module, 1352

sage.combinat.ncsf_qsym.ncsf
module, 1370

sage.combinat.ncsf_qsym.qsym
module, 1424

sage.combinat.ncsf_qsym.tutorial
module, 1464

sage.combinat.ncsym.all
module, 1471

sage.combinat.ncsym.bases
module, 1472

sage.combinat.ncsym.dual
module, 1481

sage.combinat.ncsym.ncsym
module, 1487

sage.combinat.necklace
module, 1503

sage.combinat.non_decreasing_parking_function
module, 1504

sage.combinat.nu_dyck_word
module, 1509

sage.combinat.nu_tamari_lattice
module, 1521

sage.combinat.ordered_tree
module, 1522

sage.combinat.output
module, 1533

sage.combinat.parallelogram_polyomino
module, 1539

sage.combinat.parking_functions
module, 1566

sage.combinat.partition
module, 1607

sage.combinat.partition_algebra
module, 1687

sage.combinat.partition_kleshchev
module, 1698

sage.combinat.partition_shifting_algebras
module, 1713

sage.combinat.partition_tuple
module, 1717

Index 3841

Combinatorics, Release 9.7

sage.combinat.partitions
module, 1741

sage.combinat.path_tableaux.catalog
module, 1584

sage.combinat.path_tableaux.dyck_path
module, 1584

sage.combinat.path_tableaux.frieze
module, 1587

sage.combinat.path_tableaux.path_tableau
module, 1593

sage.combinat.path_tableaux.semistandard
module, 1597

sage.combinat.perfect_matching
module, 1742

sage.combinat.permutation
module, 1747

sage.combinat.permutation_cython
module, 1824

sage.combinat.plane_partition
module, 1601

sage.combinat.posets.all
module, 1827

sage.combinat.posets.cartesian_product
module, 1827

sage.combinat.posets.d_complete
module, 1831

sage.combinat.posets.elements
module, 1833

sage.combinat.posets.forest
module, 1834

sage.combinat.posets.hasse_diagram
module, 1834

sage.combinat.posets.incidence_algebras
module, 1862

sage.combinat.posets.lattices
module, 1867

sage.combinat.posets.linear_extensions
module, 1913

sage.combinat.posets.mobile
module, 1832

sage.combinat.posets.moebius_algebra
module, 1922

sage.combinat.posets.poset_examples
module, 1927

sage.combinat.posets.posets
module, 1943

sage.combinat.q_analogues
module, 2027

sage.combinat.q_bernoulli
module, 2035

sage.combinat.quickref
module, 2037

sage.combinat.ranker
module, 2038

sage.combinat.recognizable_series
module, 2041

sage.combinat.restricted_growth
module, 2052

sage.combinat.ribbon
module, 2052

sage.combinat.ribbon_shaped_tableau
module, 2052

sage.combinat.ribbon_tableau
module, 2059

sage.combinat.rigged_configurations.all
module, 2067

sage.combinat.rigged_configurations.bij_abstract_class
module, 2068

sage.combinat.rigged_configurations.bij_infinity
module, 2069

sage.combinat.rigged_configurations.bij_type_A
module, 2071

sage.combinat.rigged_configurations.bij_type_A2_dual
module, 2072

sage.combinat.rigged_configurations.bij_type_A2_even
module, 2072

sage.combinat.rigged_configurations.bij_type_A2_odd
module, 2073

sage.combinat.rigged_configurations.bij_type_B
module, 2073

sage.combinat.rigged_configurations.bij_type_C
module, 2075

sage.combinat.rigged_configurations.bij_type_D
module, 2075

sage.combinat.rigged_configurations.bij_type_D_tri
module, 2078

sage.combinat.rigged_configurations.bij_type_D_twisted
module, 2077

sage.combinat.rigged_configurations.bijection
module, 2079

sage.combinat.rigged_configurations.kleber_tree
module, 2079

sage.combinat.rigged_configurations.kr_tableaux
module, 2086

sage.combinat.rigged_configurations.rc_crystal
module, 2100

sage.combinat.rigged_configurations.rc_infinity
module, 2104

sage.combinat.rigged_configurations.rigged_configuration_element
module, 2109

sage.combinat.rigged_configurations.rigged_configurations
module, 2131

sage.combinat.rigged_configurations.rigged_partition
module, 2144

sage.combinat.rigged_configurations.tensor_product_kr_tableaux
module, 2146

sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element
module, 2150

3842 Index

Combinatorics, Release 9.7

sage.combinat.root_system.all
module, 2155

sage.combinat.root_system.ambient_space
module, 2158

sage.combinat.root_system.associahedron
module, 2163

sage.combinat.root_system.braid_move_calculator
module, 2166

sage.combinat.root_system.braid_orbit
module, 2167

sage.combinat.root_system.branching_rules
module, 2168

sage.combinat.root_system.cartan_matrix
module, 2187

sage.combinat.root_system.cartan_type
module, 2199

sage.combinat.root_system.coxeter_group
module, 2244

sage.combinat.root_system.coxeter_matrix
module, 2246

sage.combinat.root_system.coxeter_type
module, 2255

sage.combinat.root_system.dynkin_diagram
module, 2262

sage.combinat.root_system.extended_affine_weyl_group
module, 2536

sage.combinat.root_system.fundamental_group
module, 2572

sage.combinat.root_system.fusion_ring
module, 2634

sage.combinat.root_system.hecke_algebra_representation
module, 2270

sage.combinat.root_system.integrable_representations
module, 2283

sage.combinat.root_system.non_symmetric_macdonald_polynomials
module, 2293

sage.combinat.root_system.pieri_factors
module, 2324

sage.combinat.root_system.plot
module, 2333

sage.combinat.root_system.reflection_group_complex
module, 2359

sage.combinat.root_system.reflection_group_real
module, 2387

sage.combinat.root_system.root_lattice_realization_algebras
module, 2395

sage.combinat.root_system.root_lattice_realizations
module, 2411

sage.combinat.root_system.root_space
module, 2455

sage.combinat.root_system.root_system
module, 2460

sage.combinat.root_system.type_A
module, 2479

sage.combinat.root_system.type_A_affine
module, 2482

sage.combinat.root_system.type_A_infinity
module, 2484

sage.combinat.root_system.type_affine
module, 2526

sage.combinat.root_system.type_B
module, 2486

sage.combinat.root_system.type_B_affine
module, 2492

sage.combinat.root_system.type_BC_affine
module, 2490

sage.combinat.root_system.type_C
module, 2494

sage.combinat.root_system.type_C_affine
module, 2497

sage.combinat.root_system.type_D
module, 2498

sage.combinat.root_system.type_D_affine
module, 2502

sage.combinat.root_system.type_dual
module, 2532

sage.combinat.root_system.type_E
module, 2504

sage.combinat.root_system.type_E_affine
module, 2512

sage.combinat.root_system.type_F
module, 2514

sage.combinat.root_system.type_F_affine
module, 2518

sage.combinat.root_system.type_folded
module, 2581

sage.combinat.root_system.type_G
module, 2519

sage.combinat.root_system.type_G_affine
module, 2522

sage.combinat.root_system.type_H
module, 2523

sage.combinat.root_system.type_I
module, 2524

sage.combinat.root_system.type_marked
module, 2584

sage.combinat.root_system.type_Q
module, 2525

sage.combinat.root_system.type_reducible
module, 2589

sage.combinat.root_system.type_relabel
module, 2595

sage.combinat.root_system.type_super_A
module, 2470

sage.combinat.root_system.weight_lattice_realizations
module, 2600

sage.combinat.root_system.weight_space
module, 2610

Index 3843

Combinatorics, Release 9.7

sage.combinat.root_system.weyl_characters
module, 2616

sage.combinat.root_system.weyl_group
module, 2646

sage.combinat.rooted_tree
module, 2660

sage.combinat.rsk
module, 2668

sage.combinat.schubert_polynomial
module, 2698

sage.combinat.set_partition
module, 2702

sage.combinat.set_partition_ordered
module, 2730

sage.combinat.sf.all
module, 2742

sage.combinat.sf.character
module, 2743

sage.combinat.sf.classical
module, 2744

sage.combinat.sf.dual
module, 2745

sage.combinat.sf.elementary
module, 2750

sage.combinat.sf.hall_littlewood
module, 2755

sage.combinat.sf.hecke
module, 2764

sage.combinat.sf.homogeneous
module, 2766

sage.combinat.sf.jack
module, 2770

sage.combinat.sf.k_dual
module, 2784

sage.combinat.sf.kfpoly
module, 2797

sage.combinat.sf.llt
module, 2801

sage.combinat.sf.macdonald
module, 2806

sage.combinat.sf.monomial
module, 2822

sage.combinat.sf.multiplicative
module, 2826

sage.combinat.sf.new_kschur
module, 2828

sage.combinat.sf.ns_macdonald
module, 2841

sage.combinat.sf.orthogonal
module, 2850

sage.combinat.sf.orthotriang
module, 2853

sage.combinat.sf.powersum
module, 2854

sage.combinat.sf.schur
module, 2864

sage.combinat.sf.sf
module, 2873

sage.combinat.sf.sfa
module, 2899

sage.combinat.sf.symplectic
module, 2871

sage.combinat.sf.witt
module, 2965

sage.combinat.shard_order
module, 2970

sage.combinat.shifted_primed_tableau
module, 2972

sage.combinat.shuffle
module, 2987

sage.combinat.sidon_sets
module, 2990

sage.combinat.similarity_class_type
module, 2991

sage.combinat.sine_gordon
module, 3005

sage.combinat.six_vertex_model
module, 3008

sage.combinat.skew_partition
module, 3014

sage.combinat.skew_tableau
module, 3029

sage.combinat.sloane_functions
module, 3050

sage.combinat.species.all
module, 3134

sage.combinat.species.characteristic_species
module, 3135

sage.combinat.species.composition_species
module, 3138

sage.combinat.species.cycle_species
module, 3139

sage.combinat.species.empty_species
module, 3140

sage.combinat.species.functorial_composition_species
module, 3141

sage.combinat.species.generating_series
module, 3142

sage.combinat.species.library
module, 3152

sage.combinat.species.linear_order_species
module, 3153

sage.combinat.species.misc
module, 3155

sage.combinat.species.partition_species
module, 3155

sage.combinat.species.permutation_species
module, 3157

3844 Index

Combinatorics, Release 9.7

sage.combinat.species.product_species
module, 3159

sage.combinat.species.recursive_species
module, 3162

sage.combinat.species.series
module, 3163

sage.combinat.species.series_order
module, 3176

sage.combinat.species.set_species
module, 3177

sage.combinat.species.species
module, 3178

sage.combinat.species.stream
module, 3182

sage.combinat.species.structure
module, 3185

sage.combinat.species.subset_species
module, 3190

sage.combinat.species.sum_species
module, 3191

sage.combinat.subset
module, 3192

sage.combinat.subsets_hereditary
module, 3203

sage.combinat.subsets_pairwise
module, 3205

sage.combinat.subword
module, 3206

sage.combinat.subword_complex
module, 3210

sage.combinat.super_tableau
module, 3229

sage.combinat.superpartition
module, 3233

sage.combinat.symmetric_group_algebra
module, 3242

sage.combinat.symmetric_group_representations
module, 3268

sage.combinat.tableau
module, 3275

sage.combinat.tableau_residues
module, 3341

sage.combinat.tableau_tuple
module, 3349

sage.combinat.tamari_lattices
module, 3385

sage.combinat.tiling
module, 3389

sage.combinat.tools
module, 3413

sage.combinat.tuple
module, 3413

sage.combinat.tutorial
module, 3415

sage.combinat.vector_partition
module, 3445

sage.combinat.words
module, 3460

sage.combinat.words.abstract_word
module, 3448

sage.combinat.words.alphabet
module, 3461

sage.combinat.words.finite_word
module, 3465

sage.combinat.words.infinite_word
module, 3542

sage.combinat.words.lyndon_word
module, 3544

sage.combinat.words.morphism
module, 3547

sage.combinat.words.paths
module, 3578

sage.combinat.words.shuffle_product
module, 3604

sage.combinat.words.suffix_trees
module, 3606

sage.combinat.words.word
module, 3618

sage.combinat.words.word_char
module, 3626

sage.combinat.words.word_datatypes
module, 3629

sage.combinat.words.word_generators
module, 3635

sage.combinat.words.word_infinite_datatypes
module, 3649

sage.combinat.words.word_options
module, 3652

sage.combinat.words.words
module, 3652

sage.combinat.yang_baxter_graph
module, 3662

sage.rings.cfinite_sequence
module, 3668

saliances() (sage.combinat.permutation.Permutation
method), 1791

samples() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationTypeFactory
method), 229

samples() (sage.combinat.root_system.cartan_type.CartanTypeFactory
method), 2218

samples() (sage.combinat.root_system.coxeter_matrix.CoxeterMatrix
class method), 2250

samples() (sage.combinat.root_system.coxeter_type.CoxeterType
class method), 2257

save_image() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 189

save_image() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 222

Index 3845

Combinatorics, Release 9.7

save_quiver_data() (in module
sage.combinat.cluster_algebra_quiver.quiver_mutation_type),
239

scalar() (sage.combinat.root_system.ambient_space.AmbientSpaceElement
method), 2162

scalar() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2422

scalar() (sage.combinat.root_system.root_space.RootSpaceElement
method), 2459

scalar() (sage.combinat.root_system.type_affine.AmbientSpace.Element
method), 2528

scalar() (sage.combinat.root_system.type_super_A.AmbientSpace.Element
method), 2473

scalar() (sage.combinat.root_system.weight_space.WeightSpaceElement
method), 2614

scalar() (sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual.Element
method), 2748

scalar() (sage.combinat.sf.hall_littlewood.HallLittlewood_generic.Element
method), 2760

scalar() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ElementMethods
method), 2832

scalar() (sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element
method), 2860

scalar() (sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur.Element
method), 2868

scalar() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2943

scalar_factors() (sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths.Element
method), 486

scalar_hl() (sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual.Element
method), 2749

scalar_hl() (sage.combinat.sf.hall_littlewood.HallLittlewood_generic.Element
method), 2760

scalar_hl() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2944

scalar_jack() (sage.combinat.sf.jack.JackPolynomials_generic.Element
method), 2775

scalar_jack() (sage.combinat.sf.jack.JackPolynomials_p.Element
method), 2778

scalar_jack() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2945

scalar_jack_basis()
(sage.combinat.sf.jack.JackPolynomials_p
method), 2779

scalar_product() (sage.combinat.schubert_polynomial.SchubertPolynomial_class
method), 2701

scalar_product() (sage.combinat.symmetric_group_representations.SpechtRepresentation
method), 3269

scalar_product_matrix()
(sage.combinat.symmetric_group_representations.SpechtRepresentation
method), 3269

scalar_qt() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2945

scalar_qt_basis() (sage.combinat.sf.macdonald.MacdonaldPolynomials_p

method), 2818
scalar_t() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

method), 2946
scalar_zonal() (sage.combinat.sf.jack.SymmetricFunctionAlgebra_zonal.Element

method), 2781
scale() (sage.combinat.root_system.weyl_characters.WeightRing.Element

method), 2618
scaling_factors() (sage.combinat.root_system.type_folded.CartanTypeFolded

method), 2584
schensted_insert() (sage.combinat.tableau.Tableau

method), 3328
schonheim() (in module

sage.combinat.designs.covering_design),
599

SchubertPolynomial_class (class in
sage.combinat.schubert_polynomial), 2699

SchubertPolynomialRing() (in module
sage.combinat.schubert_polynomial), 2698

SchubertPolynomialRing_xbasis (class in
sage.combinat.schubert_polynomial), 2699

schuetzenberger_involution()
(sage.combinat.tableau.Tableau method),
3329

schuetzenberger_involution()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3533

Schur() (sage.combinat.sf.sf.SymmetricFunctions
method), 2886

schur() (sage.combinat.sf.sf.SymmetricFunctions
method), 2897

schur_to_hl() (in module sage.combinat.sf.kfpoly),
2799

search() (sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1286

secondary_dinversion_pairs()
(sage.combinat.parking_functions.ParkingFunction
method), 1576

seed() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors
method), 2274

seed() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials
method), 2322

seg() (sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux.Element
method), 409

seg() (sage.combinat.tableau.Tableau method), 3329
self_surrounding() (sage.combinat.tiling.Polyomino

method), 3398
semi_rsw_element() (sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n

method), 3261
semilength() (sage.combinat.dyck_word.DyckWord_complete

method), 806
seminormal_basis() (sage.combinat.symmetric_group_algebra.SymmetricGroupAlgebra_n

method), 3262
seminormal_test() (in module

sage.combinat.symmetric_group_algebra),

3846 Index

Combinatorics, Release 9.7

3268
semistandard_insert()

(sage.combinat.binary_tree.LabelledBinaryTree
method), 115

SemistandardMultiSkewTableaux (class in
sage.combinat.ribbon_tableau), 2064

SemistandardPathTableau (class in
sage.combinat.path_tableaux.semistandard),
1598

SemistandardPathTableaux (class in
sage.combinat.path_tableaux.semistandard),
1601

SemistandardSkewTableaux (class in
sage.combinat.skew_tableau), 3029

SemistandardSkewTableaux_all (class in
sage.combinat.skew_tableau), 3030

SemistandardSkewTableaux_shape (class in
sage.combinat.skew_tableau), 3030

SemistandardSkewTableaux_shape_weight (class in
sage.combinat.skew_tableau), 3031

SemistandardSkewTableaux_size (class in
sage.combinat.skew_tableau), 3031

SemistandardSkewTableaux_size_weight (class in
sage.combinat.skew_tableau), 3031

SemistandardSuperTableau (class in
sage.combinat.super_tableau), 3229

SemistandardSuperTableaux (class in
sage.combinat.super_tableau), 3230

SemistandardSuperTableaux_all (class in
sage.combinat.super_tableau), 3230

SemistandardTableau (class in
sage.combinat.tableau), 3285

SemistandardTableaux (class in
sage.combinat.tableau), 3286

SemistandardTableaux_all (class in
sage.combinat.tableau), 3288

SemistandardTableaux_shape (class in
sage.combinat.tableau), 3288

SemistandardTableaux_shape_inf (class in
sage.combinat.tableau), 3289

SemistandardTableaux_shape_weight (class in
sage.combinat.tableau), 3289

SemistandardTableaux_size (class in
sage.combinat.tableau), 3290

SemistandardTableaux_size_inf (class in
sage.combinat.tableau), 3291

SemistandardTableaux_size_weight (class in
sage.combinat.tableau), 3291

series() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2381

series() (sage.rings.cfinite_sequence.CFiniteSequence
method), 3673

SeriesOrderElement (class in
sage.combinat.species.series_order), 3176

set_approximate_order()
(sage.combinat.species.series.LazyPowerSeries
method), 3172

set_c_matrix() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 189

set_cluster() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 190

set_coordinates() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 958

set_default_long_word()
(sage.combinat.crystals.pbw_crystal.PBWCrystal
method), 510

set_gen() (sage.combinat.species.stream.Stream_class
method), 3184

set_immutable() (sage.combinat.constellation.Constellation_class
method), 323

set_immutable() (sage.combinat.matrices.latin.LatinSquare
method), 1313

set_label() (sage.combinat.abstract_tree.AbstractLabelledClonableTree
method), 11

set_latex_options()
(sage.combinat.crystals.mv_polytopes.MVPolytopes
method), 508

set_latex_options()
(sage.combinat.dyck_word.DyckWord method),
793

set_latex_options()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1182

set_latex_options()
(sage.combinat.nu_dyck_word.NuDyckWord
method), 1516

set_latex_options()
(sage.combinat.set_partition.SetPartition
method), 2714

set_options() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1555

set_options() (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_all
method), 1564

set_options() (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_size
method), 1565

set_order() (sage.combinat.free_module.CombinatorialFreeModule
method), 1019

set_partition() (sage.combinat.diagram_algebras.AbstractPartitionDiagram
method), 735

set_partition_composition() (in module
sage.combinat.combinat_cython), 279

set_partition_composition() (in module
sage.combinat.partition_algebra), 1697

set_partition_iterator() (in module
sage.combinat.combinat_cython), 280

set_partition_iterator_blocks() (in module
sage.combinat.combinat_cython), 280

set_partitions() (sage.combinat.diagram_algebras.DiagramAlgebra

Index 3847

Combinatorics, Release 9.7

method), 743
set_print_style() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

method), 2908
set_reflection_representation()

(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2381

set_root_label() (sage.combinat.abstract_tree.AbstractLabelledClonableTree
method), 12

set_variables() (sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials
method), 498

set_weight() (sage.combinat.k_tableau.StrongTableau
method), 1222

SetPartition (class in sage.combinat.set_partition),
2704

SetPartitions (class in sage.combinat.set_partition),
2720

SetPartitions() (sage.combinat.posets.poset_examples.Posets
static method), 1937

SetPartitions_all (class in
sage.combinat.set_partition), 2726

SetPartitions_set (class in
sage.combinat.set_partition), 2726

SetPartitions_setn (class in
sage.combinat.set_partition), 2727

SetPartitions_setparts (class in
sage.combinat.set_partition), 2728

SetPartitionsAk() (in module
sage.combinat.partition_algebra), 1689

SetPartitionsAk_k (class in
sage.combinat.partition_algebra), 1690

SetPartitionsAkhalf_k (class in
sage.combinat.partition_algebra), 1690

SetPartitionsBk() (in module
sage.combinat.partition_algebra), 1690

SetPartitionsBk_k (class in
sage.combinat.partition_algebra), 1691

SetPartitionsBkhalf_k (class in
sage.combinat.partition_algebra), 1691

SetPartitionsIk() (in module
sage.combinat.partition_algebra), 1691

SetPartitionsIk_k (class in
sage.combinat.partition_algebra), 1692

SetPartitionsIkhalf_k (class in
sage.combinat.partition_algebra), 1692

SetPartitionsPk() (in module
sage.combinat.partition_algebra), 1692

SetPartitionsPk_k (class in
sage.combinat.partition_algebra), 1693

SetPartitionsPkhalf_k (class in
sage.combinat.partition_algebra), 1693

SetPartitionsPRk() (in module
sage.combinat.partition_algebra), 1692

SetPartitionsPRk_k (class in
sage.combinat.partition_algebra), 1692

SetPartitionsPRkhalf_k (class in
sage.combinat.partition_algebra), 1692

SetPartitionsRk() (in module
sage.combinat.partition_algebra), 1693

SetPartitionsRk_k (class in
sage.combinat.partition_algebra), 1693

SetPartitionsRkhalf_k (class in
sage.combinat.partition_algebra), 1693

SetPartitionsSk() (in module
sage.combinat.partition_algebra), 1693

SetPartitionsSk_k (class in
sage.combinat.partition_algebra), 1694

SetPartitionsSkhalf_k (class in
sage.combinat.partition_algebra), 1694

SetPartitionsTk() (in module
sage.combinat.partition_algebra), 1694

SetPartitionsTk_k (class in
sage.combinat.partition_algebra), 1695

SetPartitionsTkhalf_k (class in
sage.combinat.partition_algebra), 1695

SetPartitionsXkElement (class in
sage.combinat.partition_algebra), 1695

SetShuffleProduct (class in sage.combinat.shuffle),
2987

SetSpecies (class in sage.combinat.species.set_species),
3177

SetSpecies_class (in module
sage.combinat.species.set_species), 3178

SetSpeciesStructure (class in
sage.combinat.species.set_species), 3177

SetToPath() (in module
sage.combinat.cluster_algebra_quiver.cluster_seed),
200

setup_latex_preamble() (in module
sage.combinat.finite_state_machine), 976

shannon_parry_markov_chain()
(sage.combinat.finite_state_machine.Automaton
method), 874

shape() (sage.combinat.abstract_tree.AbstractLabelledTree
method), 14

shape() (sage.combinat.crystals.bkk_crystals.CrystalOfBKKTableaux
method), 363

shape() (sage.combinat.crystals.tensor_product_element.CrystalOfTableauxElement
method), 537

shape() (sage.combinat.growth.GrowthDiagram
method), 1078

shape() (sage.combinat.k_tableau.StrongTableau
method), 1223

shape() (sage.combinat.k_tableau.StrongTableaux
method), 1232

shape() (sage.combinat.k_tableau.WeakTableau_abstract
method), 1238

shape() (sage.combinat.k_tableau.WeakTableaux_abstract
method), 1251

3848 Index

Combinatorics, Release 9.7

shape() (sage.combinat.ribbon_tableau.MultiSkewTableau
method), 2059

shape() (sage.combinat.set_partition.SetPartition
method), 2714

shape() (sage.combinat.set_partition.SetPartitions_setparts
method), 2728

shape() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2845

shape() (sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau
method), 2980

shape() (sage.combinat.shifted_primed_tableau.ShiftedPrimedTableaux_shape
method), 2986

shape() (sage.combinat.skew_tableau.SkewTableau
method), 3040

shape() (sage.combinat.tableau.Tableau method), 3330
shape() (sage.combinat.tableau_tuple.RowStandardTableauTuples

method), 3358
shape() (sage.combinat.tableau_tuple.StandardTableauTuples

method), 3366
shape() (sage.combinat.tableau_tuple.TableauTuple

method), 3379
shape_bounded() (sage.combinat.k_tableau.WeakTableau_bounded

method), 1241
shape_bounded() (sage.combinat.k_tableau.WeakTableau_core

method), 1245
shape_bounded() (sage.combinat.k_tableau.WeakTableau_factorized_permutation

method), 1247
shape_circled_diagram()

(sage.combinat.superpartition.SuperPartition
method), 3239

shape_composition()
(sage.combinat.composition_tableau.CompositionTableau
method), 313

shape_core() (sage.combinat.k_tableau.WeakTableau_bounded
method), 1241

shape_core() (sage.combinat.k_tableau.WeakTableau_core
method), 1245

shape_core() (sage.combinat.k_tableau.WeakTableau_factorized_permutation
method), 1248

shape_from_cardinality()
(sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1339

shape_from_size() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1339

shape_partition() (sage.combinat.composition_tableau.CompositionTableau
method), 313

shape_partition() (sage.combinat.set_partition.SetPartition
method), 2715

shard_poset() (in module sage.combinat.shard_order),
2970

shard_preorder_graph() (in module
sage.combinat.shard_order), 2971

ShardPoset() (sage.combinat.posets.poset_examples.Posets
static method), 1938

ShardPosetElement (class in
sage.combinat.shard_order), 2970

shift() (sage.combinat.root_system.weyl_characters.WeightRing.Element
method), 2618

shift() (sage.combinat.words.words.FiniteOrInfiniteWords
method), 3654

shift() (sage.combinat.words.words.FiniteWords
method), 3659

shift() (sage.combinat.words.words.InfiniteWords
method), 3660

shift_left() (sage.combinat.k_regular_sequence.kRegularSequence
method), 1206

shift_right() (sage.combinat.k_regular_sequence.kRegularSequence
method), 1207

shifted_concatenation()
(sage.combinat.permutation.Permutation
method), 1792

shifted_shuffle() (sage.combinat.permutation.Permutation
method), 1792

shifted_shuffle() (sage.combinat.words.finite_word.FiniteWord_class
method), 3534

ShiftedPrimedTableau (class in
sage.combinat.shifted_primed_tableau),
2977

ShiftedPrimedTableaux (class in
sage.combinat.shifted_primed_tableau),
2981

ShiftedPrimedTableaux.options() (in module
sage.combinat.shifted_primed_tableau), 2983

ShiftedPrimedTableaux_all (class in
sage.combinat.shifted_primed_tableau),
2984

ShiftedPrimedTableaux_shape (class in
sage.combinat.shifted_primed_tableau),
2984

ShiftedPrimedTableaux_weight (class in
sage.combinat.shifted_primed_tableau),
2986

ShiftedPrimedTableaux_weight_shape (class in
sage.combinat.shifted_primed_tableau), 2986

ShiftedShapes (sage.combinat.growth.Rules attribute),
1108

ShiftingOperatorAlgebra (class in
sage.combinat.partition_shifting_algebras),
1713

ShiftingOperatorAlgebra.Element (class in
sage.combinat.partition_shifting_algebras),
1715

ShiftingSequenceSpace (class in
sage.combinat.partition_shifting_algebras),
1716

short_roots() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2450

show() (sage.combinat.binary_tree.BinaryTree method),

Index 3849

Combinatorics, Release 9.7

92
show() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 190
show() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver

method), 223
show() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract

method), 238
show() (sage.combinat.permutation.Permutation

method), 1793
show() (sage.combinat.posets.posets.FinitePoset

method), 2014
show() (sage.combinat.subword_complex.SubwordComplexFacet

method), 3227
show() (sage.combinat.words.suffix_trees.ImplicitSuffixTree

method), 3611
show() (sage.combinat.words.suffix_trees.SuffixTrie

method), 3617
show2d() (sage.combinat.tiling.Polyomino method),

3399
show3d() (sage.combinat.tiling.Polyomino method),

3399
shuffle() (sage.combinat.skew_tableau.SkewTableau

method), 3040
shuffle() (sage.combinat.words.finite_word.FiniteWord_class

method), 3534
shuffle_product() (sage.combinat.composition.Composition

method), 301
shuffle_product() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets

method), 1339
ShuffleProduct (class in sage.combinat.shuffle), 2988
ShuffleProduct_abstract (class in

sage.combinat.shuffle), 2988
ShuffleProduct_overlapping (class in

sage.combinat.shuffle), 2988
ShuffleProduct_overlapping_r (class in

sage.combinat.shuffle), 2990
ShuffleProduct_shifted (class in

sage.combinat.words.shuffle_product), 3604
ShuffleProduct_w1w2 (class in

sage.combinat.words.shuffle_product), 3605
sidon_sets() (in module sage.combinat.sidon_sets),

2990
sidon_sets_rec() (in module

sage.combinat.sidon_sets), 2991
sigma() (sage.combinat.crystals.kirillov_reshetikhin.PMDiagram

method), 456
sigma() (sage.combinat.diagram_algebras.PartitionAlgebra

method), 759
sigma() (sage.combinat.e_one_star.E1Star method), 822
sign (sage.combinat.integer_lists.base.Envelope at-

tribute), 1125
sign() (sage.combinat.partition.Partition method), 1654
sign() (sage.combinat.permutation.Permutation

method), 1794

sign() (sage.combinat.superpartition.SuperPartition
method), 3239

signature() (sage.combinat.affine_permutation.AffinePermutation
method), 28

signature() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 393

signature() (sage.combinat.crystals.spins.Spin
method), 521

signature() (sage.combinat.permutation.Permutation
method), 1794

SignedCompositions (class in
sage.combinat.composition_signed), 311

SignedPermutation (class in
sage.combinat.colored_permutations), 250

SignedPermutations (class in
sage.combinat.colored_permutations), 251

signs_of_alcovewalk()
(sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2608

similarity_factor()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn
method), 425

similarity_factor()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_box
method), 441

SimilarityClassType (class in
sage.combinat.similarity_class_type), 2995

SimilarityClassTypes (class in
sage.combinat.similarity_class_type), 2999

simion_schmidt() (sage.combinat.permutation.Permutation
method), 1794

simple_coroot() (sage.combinat.root_system.ambient_space.AmbientSpace
method), 2160

simple_coroot() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2382

simple_coroot() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2450

simple_coroot() (sage.combinat.root_system.type_affine.AmbientSpace
method), 2530

simple_coroot() (sage.combinat.root_system.type_reducible.AmbientSpace
method), 2590

simple_coroot() (sage.combinat.root_system.type_super_A.AmbientSpace
method), 2475

simple_coroots() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2382

simple_coroots() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2450

simple_coroots() (sage.combinat.root_system.weyl_characters.WeylCharacterRing
method), 2632

simple_projection()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2450

simple_projections()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods

3850 Index

Combinatorics, Release 9.7

method), 2451
simple_reflection()

(sage.combinat.colored_permutations.ColoredPermutations
method), 249

simple_reflection()
(sage.combinat.colored_permutations.SignedPermutations
method), 253

simple_reflection()
(sage.combinat.permutation.StandardPermutations_n
method), 1817

simple_reflection()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0
method), 2546

simple_reflection()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0P
method), 2550

simple_reflection()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ParentMethods
method), 2567

simple_reflection()
(sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2383

simple_reflection()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2422

simple_reflection()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2451

simple_reflection()
(sage.combinat.root_system.weyl_group.WeylGroup_gens
method), 2654

simple_reflection()
(sage.combinat.root_system.weyl_group.WeylGroup_permutation
method), 2659

simple_reflections()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFW
method), 2544

simple_reflections()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0
method), 2548

simple_reflections()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0
method), 2546

simple_reflections()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0P
method), 2550

simple_reflections()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0Pv
method), 2552

simple_reflections()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWF
method), 2554

simple_reflections()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ParentMethods

method), 2567
simple_reflections()

(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2423

simple_reflections()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2451

simple_reflections()
(sage.combinat.root_system.weyl_group.ClassicalWeylSubgroup
method), 2647

simple_reflections()
(sage.combinat.root_system.weyl_group.WeylGroup_gens
method), 2655

simple_root() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup
method), 2383

simple_root() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2451

simple_root() (sage.combinat.root_system.root_space.RootSpace
method), 2455

simple_root() (sage.combinat.root_system.type_A.AmbientSpace
method), 2481

simple_root() (sage.combinat.root_system.type_affine.AmbientSpace
method), 2530

simple_root() (sage.combinat.root_system.type_B.AmbientSpace
method), 2487

simple_root() (sage.combinat.root_system.type_C.AmbientSpace
method), 2495

simple_root() (sage.combinat.root_system.type_D.AmbientSpace
method), 2499

simple_root() (sage.combinat.root_system.type_dual.AmbientSpace
method), 2533

simple_root() (sage.combinat.root_system.type_E.AmbientSpace
method), 2509

simple_root() (sage.combinat.root_system.type_F.AmbientSpace
method), 2516

simple_root() (sage.combinat.root_system.type_G.AmbientSpace
method), 2520

simple_root() (sage.combinat.root_system.type_marked.AmbientSpace
method), 2585

simple_root() (sage.combinat.root_system.type_reducible.AmbientSpace
method), 2590

simple_root() (sage.combinat.root_system.type_relabel.AmbientSpace
method), 2595

simple_root() (sage.combinat.root_system.type_super_A.AmbientSpace
method), 2476

simple_root() (sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2609

simple_root() (sage.combinat.root_system.weight_space.WeightSpace
method), 2612

simple_root_index()
(sage.combinat.root_system.reflection_group_real.RealReflectionGroup
method), 2393

simple_root_index()
(sage.combinat.root_system.weyl_group.WeylGroup_permutation

Index 3851

Combinatorics, Release 9.7

method), 2659
simple_roots() (sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup

method), 2383
simple_roots() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods

method), 2451
simple_roots() (sage.combinat.root_system.weyl_characters.WeightRing

method), 2620
simple_roots() (sage.combinat.root_system.weyl_characters.WeylCharacterRing

method), 2633
simple_roots() (sage.combinat.root_system.weyl_group.WeylGroup_permutation

method), 2659
simple_roots_tilde()

(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2452

SimpleGraphSpecies() (in module
sage.combinat.species.library), 3153

SimpleIsotypesWrapper (class in
sage.combinat.species.structure), 3187

SimpleStructuresWrapper (class in
sage.combinat.species.structure), 3187

simplification() (sage.combinat.finite_state_machine.Transducer
method), 972

simplify_alphabet_size()
(sage.combinat.words.morphism.WordMorphism
method), 3576

simplify_until_injective()
(sage.combinat.words.morphism.WordMorphism
method), 3577

SineGordonYsystem (class in
sage.combinat.sine_gordon), 3005

singer_difference_set() (in module
sage.combinat.designs.difference_family),
650

single_edge_cut_shapes()
(sage.combinat.binary_tree.BinaryTree
method), 92

single_graft() (sage.combinat.rooted_tree.RootedTree
method), 2665

single_vertex() (sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra
method), 1112

single_vertex_all()
(sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra
method), 1112

SingletonSpecies (class in
sage.combinat.species.characteristic_species),
3137

SingletonSpecies_class (in module
sage.combinat.species.characteristic_species),
3137

sinks() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver
method), 223

six_vertex_model() (sage.combinat.fully_packed_loop.FullyPackedLoop
method), 1051

SixVertexConfiguration (class in

sage.combinat.six_vertex_model), 3008
SixVertexModel (class in

sage.combinat.six_vertex_model), 3010
size() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrices

method), 53
size() (sage.combinat.composition.Composition

method), 302
size() (sage.combinat.composition_tableau.CompositionTableau

method), 313
size() (sage.combinat.core.Core method), 331
size() (sage.combinat.designs.covering_design.CoveringDesign

method), 597
size() (sage.combinat.fully_packed_loop.FullyPackedLoops

method), 1054
size() (sage.combinat.interval_posets.TamariIntervalPoset

method), 1183
size() (sage.combinat.k_tableau.StrongTableau

method), 1223
size() (sage.combinat.k_tableau.WeakTableau_abstract

method), 1239
size() (sage.combinat.k_tableau.WeakTableaux_abstract

method), 1252
size() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets

method), 1340
size() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino

method), 1556
size() (sage.combinat.parallelogram_polyomino.ParallelogramPolyominoes_size

method), 1566
size() (sage.combinat.partition.Partition method), 1655
size() (sage.combinat.partition_tuple.PartitionTuple

method), 1734
size() (sage.combinat.partition_tuple.PartitionTuples

method), 1738
size() (sage.combinat.path_tableaux.path_tableau.PathTableau

method), 1596
size() (sage.combinat.path_tableaux.semistandard.SemistandardPathTableau

method), 1600
size() (sage.combinat.permutation.Permutation

method), 1794
size() (sage.combinat.ribbon_tableau.MultiSkewTableau

method), 2060
size() (sage.combinat.set_partition.SetPartition

method), 2715
size() (sage.combinat.set_partition_ordered.OrderedSetPartition

method), 2736
size() (sage.combinat.sf.ns_macdonald.LatticeDiagram

method), 2849
size() (sage.combinat.similarity_class_type.PrimarySimilarityClassType

method), 2994
size() (sage.combinat.similarity_class_type.PrimarySimilarityClassTypes

method), 2995
size() (sage.combinat.similarity_class_type.SimilarityClassType

method), 2998
size() (sage.combinat.similarity_class_type.SimilarityClassTypes

3852 Index

Combinatorics, Release 9.7

method), 2999
size() (sage.combinat.skew_partition.SkewPartition

method), 3023
size() (sage.combinat.skew_tableau.SkewTableau

method), 3042
size() (sage.combinat.tableau.Tableau method), 3330
size() (sage.combinat.tableau_residues.ResidueSequence

method), 3347
size() (sage.combinat.tableau_tuple.RowStandardTableauTuples_residue

method), 3361
size() (sage.combinat.tableau_tuple.TableauTuple

method), 3379
size() (sage.combinat.tableau_tuple.TableauTuples

method), 3384
skeleton() (sage.combinat.posets.hasse_diagram.HasseDiagram

method), 1859
skeleton() (sage.combinat.posets.lattices.FiniteLatticePoset

method), 1905
skew() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods

method), 1360
skew_by() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ElementMethods

method), 1354
skew_by() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

method), 2946
skew_hadamard_matrix() (in module

sage.combinat.matrices.hadamard_matrix),
1298

skew_schur() (sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2961

SkewPartition (class in sage.combinat.skew_partition),
3016

SkewPartitions (class in
sage.combinat.skew_partition), 3024

SkewPartitions.options() (in module
sage.combinat.skew_partition), 3026

SkewPartitions_all (class in
sage.combinat.skew_partition), 3027

SkewPartitions_n (class in
sage.combinat.skew_partition), 3027

SkewPartitions_rowlengths (class in
sage.combinat.skew_partition), 3028

SkewTableau (class in sage.combinat.skew_tableau),
3031

SkewTableau_class (class in
sage.combinat.skew_tableau), 3046

SkewTableaux (class in sage.combinat.skew_tableau),
3046

SkewTableaux.options() (in module
sage.combinat.skew_tableau), 3047

slant_sum() (sage.combinat.posets.posets.FinitePoset
method), 2014

slide() (sage.combinat.skew_tableau.SkewTableau
method), 3042

slide_multiply() (sage.combinat.tableau.Tableau

method), 3330
Sloane (class in sage.combinat.sloane_functions), 3132
SloaneSequence (class in

sage.combinat.sloane_functions), 3133
smaller() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods

method), 2423
smallest_base_ring()

(sage.combinat.root_system.ambient_space.AmbientSpace
class method), 2160

smallest_base_ring()
(sage.combinat.root_system.type_A.AmbientSpace
class method), 2481

smallest_base_ring()
(sage.combinat.root_system.type_affine.AmbientSpace
class method), 2531

smallest_base_ring()
(sage.combinat.root_system.type_super_A.AmbientSpace
class method), 2476

smallest_c_vector()
(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 191

smallest_positions() (in module
sage.combinat.subword), 3209

socle() (sage.combinat.tableau.Tableau method), 3330
solutions() (sage.combinat.knutson_tao_puzzles.KnutsonTaoPuzzleSolver

method), 1268
solutions_iterator()

(sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1286

solve() (sage.combinat.tiling.TilingSolver method),
3409

some_elements() (sage.combinat.chas.fsym.FSymBasis_abstract
method), 126

some_elements() (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.Cone
method), 147

some_elements() (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyCoarser
method), 151

some_elements() (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyFiner
method), 155

some_elements() (sage.combinat.chas.wqsym.WQSymBasis_abstract
method), 141

some_elements() (sage.combinat.fqsym.FQSymBases.ParentMethods
method), 1004

some_elements() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1031

some_elements() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1038

some_elements() (sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra
method), 1112

some_elements() (sage.combinat.posets.incidence_algebras.IncidenceAlgebra
method), 1864

some_elements() (sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra
method), 1867

some_elements() (sage.combinat.recognizable_series.RecognizableSeriesSpace

Index 3853

Combinatorics, Release 9.7

method), 2051
some_elements() (sage.combinat.root_system.fundamental_group.FundamentalGroupGL

method), 2575
some_elements() (sage.combinat.root_system.fusion_ring.FusionRing

method), 2644
some_elements() (sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods

method), 2409
some_elements() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods

method), 2452
some_elements() (sage.combinat.root_system.weyl_characters.WeightRing

method), 2620
some_elements() (sage.combinat.root_system.weyl_characters.WeylCharacterRing

method), 2633
some_elements() (sage.combinat.schubert_polynomial.SchubertPolynomialRing_xbasis

method), 2699
sort_key() (sage.combinat.ordered_tree.LabelledOrderedTree

method), 1523
sort_key() (sage.combinat.ordered_tree.OrderedTree

method), 1528
sort_key() (sage.combinat.rooted_tree.LabelledRootedTree

method), 2660
sort_key() (sage.combinat.rooted_tree.RootedTree

method), 2665
sorted() (sage.combinat.posets.posets.FinitePoset

method), 2015
sorted_list() (sage.combinat.tiling.Polyomino

method), 3400
sources() (sage.combinat.cluster_algebra_quiver.quiver.ClusterQuiver

method), 223
south_labels() (sage.combinat.knutson_tao_puzzles.PuzzleFilling

method), 1273
south_piece() (sage.combinat.knutson_tao_puzzles.RhombusPiece

method), 1278
sp() (sage.combinat.sf.sf.SymmetricFunctions method),

2897
space() (sage.combinat.root_system.weyl_characters.WeightRing

method), 2620
space() (sage.combinat.root_system.weyl_characters.WeylCharacterRing

method), 2633
space() (sage.combinat.tiling.TilingSolver method),

3410
SpechtRepresentation (class in

sage.combinat.symmetric_group_representations),
3268

SpechtRepresentations (class in
sage.combinat.symmetric_group_representations),
3269

special_entries() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
method), 1058

special_node() (sage.combinat.root_system.cartan_type.CartanType_affine
method), 2231

special_node() (sage.combinat.root_system.cartan_type.CartanType_standard_affine
method), 2239

special_node() (sage.combinat.root_system.type_dual.CartanType_affine

method), 2536
special_node() (sage.combinat.root_system.type_marked.CartanType_affine

method), 2588
special_node() (sage.combinat.root_system.type_relabel.CartanType_affine

method), 2598
special_nodes() (sage.combinat.root_system.cartan_type.CartanType_affine

method), 2231
special_nodes() (sage.combinat.root_system.fundamental_group.FundamentalGroupOfExtendedAffineWeylGroup_Class

method), 2581
SpeciesStructure (in module

sage.combinat.species.structure), 3187
SpeciesStructureWrapper (class in

sage.combinat.species.structure), 3187
SpeciesWrapper (class in

sage.combinat.species.structure), 3188
spectrum() (sage.combinat.posets.posets.FinitePoset

method), 2015
Spin (class in sage.combinat.crystals.spins), 520
spin() (sage.combinat.k_tableau.StrongTableau

method), 1223
spin() (sage.combinat.ribbon_shaped_tableau.RibbonShapedTableau

method), 2053
Spin_crystal_type_B_element (class in

sage.combinat.crystals.spins), 521
Spin_crystal_type_D_element (class in

sage.combinat.crystals.spins), 522
spin_of_ribbon() (sage.combinat.k_tableau.StrongTableau

method), 1224
spin_polynomial() (in module

sage.combinat.ribbon_tableau), 2065
spin_polynomial_square() (in module

sage.combinat.ribbon_tableau), 2066
spin_rec() (in module sage.combinat.ribbon_tableau),

2066
spin_square() (sage.combinat.sf.llt.LLT_class

method), 2804
split() (sage.combinat.matrices.dancing_links.dancing_linksWrapper

method), 1287
split() (sage.combinat.words.word_datatypes.WordDatatype_str

method), 3633
split_blocks() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets

method), 1340
split_step() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element

method), 483
split_transitions()

(sage.combinat.finite_state_machine.FiniteStateMachine
method), 958

SplitNK (class in sage.combinat.set_partition_ordered),
2741

square_vocabulary()
(sage.combinat.words.suffix_trees.DecoratedSuffixTree
method), 3606

SquareIceModel (class in
sage.combinat.six_vertex_model), 3013

3854 Index

Combinatorics, Release 9.7

SquareIceModel.Element (class in
sage.combinat.six_vertex_model), 3013

squares() (sage.combinat.words.finite_word.FiniteWord_class
method), 3535

SSTPoset() (sage.combinat.posets.poset_examples.Posets
static method), 1937

st() (sage.combinat.sf.sf.SymmetricFunctions method),
2897

stack_sort() (sage.combinat.permutation.Permutation
method), 1795

standard (sage.combinat.descent_algebra.DescentAlgebra
attribute), 566

standard_bracketing() (in module
sage.combinat.words.lyndon_word), 3547

standard_descents()
(sage.combinat.tableau.StandardTableau
method), 3294

standard_factorization()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3535

standard_factorization()
(sage.combinat.words.word_generators.LowerChristoffelWord
method), 3635

standard_form() (sage.combinat.set_partition.AbstractSetPartition
method), 2704

standard_major_index()
(sage.combinat.tableau.StandardTableau
method), 3294

standard_marked_iterator()
(sage.combinat.k_tableau.StrongTableaux
class method), 1233

standard_number_of_descents()
(sage.combinat.tableau.StandardTableau
method), 3294

standard_permutation()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3536

standard_quiver() (sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract
method), 238

standard_tableaux()
(sage.combinat.partition.Partition method),
1655

standard_tableaux()
(sage.combinat.partition_tuple.PartitionTuple
method), 1734

standard_tableaux()
(sage.combinat.tableau_residues.ResidueSequence
method), 3347

standard_unbracketing() (in module
sage.combinat.words.lyndon_word), 3547

standard_unmarked_iterator()
(sage.combinat.k_tableau.StrongTableaux
class method), 1233

StandardBracketedLyndonWords() (in module

sage.combinat.words.lyndon_word), 3546
StandardBracketedLyndonWords_nk (class in

sage.combinat.words.lyndon_word), 3546
StandardEpisturmianWord()

(sage.combinat.words.word_generators.WordGenerator
method), 3643

StandardExample() (sage.combinat.posets.poset_examples.Posets
static method), 1938

standardization() (sage.combinat.perfect_matching.PerfectMatching
method), 1745

standardization() (sage.combinat.set_partition.SetPartition
method), 2715

standardization() (sage.combinat.skew_tableau.SkewTableau
method), 3042

standardization() (sage.combinat.tableau.Tableau
method), 3331

standardize() (in module sage.combinat.chas.fsym),
132

StandardPermutations_all (class in
sage.combinat.permutation), 1808

StandardPermutations_all_avoiding (class in
sage.combinat.permutation), 1808

StandardPermutations_avoiding_12 (class in
sage.combinat.permutation), 1808

StandardPermutations_avoiding_123 (class in
sage.combinat.permutation), 1808

StandardPermutations_avoiding_132 (class in
sage.combinat.permutation), 1808

StandardPermutations_avoiding_21 (class in
sage.combinat.permutation), 1809

StandardPermutations_avoiding_213 (class in
sage.combinat.permutation), 1809

StandardPermutations_avoiding_231 (class in
sage.combinat.permutation), 1809

StandardPermutations_avoiding_312 (class in
sage.combinat.permutation), 1809

StandardPermutations_avoiding_321 (class in
sage.combinat.permutation), 1809

StandardPermutations_avoiding_generic (class in
sage.combinat.permutation), 1810

StandardPermutations_bruhat_greater (class in
sage.combinat.permutation), 1810

StandardPermutations_bruhat_smaller (class in
sage.combinat.permutation), 1810

StandardPermutations_descents (class in
sage.combinat.permutation), 1810

StandardPermutations_n (class in
sage.combinat.permutation), 1811

StandardPermutations_n.Element (class in
sage.combinat.permutation), 1811

StandardPermutations_n_abstract (class in
sage.combinat.permutation), 1817

StandardPermutations_recoils (class in
sage.combinat.permutation), 1817

Index 3855

Combinatorics, Release 9.7

StandardPermutations_recoilsfatter (class in
sage.combinat.permutation), 1817

StandardPermutations_recoilsfiner (class in
sage.combinat.permutation), 1817

StandardRibbonShapedTableaux (class in
sage.combinat.ribbon_shaped_tableau),
2055

StandardRibbonShapedTableaux.options() (in
module sage.combinat.ribbon_shaped_tableau),
2056

StandardRibbonShapedTableaux_shape (class in
sage.combinat.ribbon_shaped_tableau), 2058

StandardSkewTableaux (class in
sage.combinat.skew_tableau), 3048

StandardSkewTableaux_all (class in
sage.combinat.skew_tableau), 3049

StandardSkewTableaux_shape (class in
sage.combinat.skew_tableau), 3049

StandardSkewTableaux_size (class in
sage.combinat.skew_tableau), 3049

StandardSuperTableau (class in
sage.combinat.super_tableau), 3230

StandardSuperTableaux (class in
sage.combinat.super_tableau), 3231

StandardSuperTableaux_all (class in
sage.combinat.super_tableau), 3231

StandardSuperTableaux_shape (class in
sage.combinat.super_tableau), 3231

StandardSuperTableaux_size (class in
sage.combinat.super_tableau), 3232

StandardTableau (class in sage.combinat.tableau),
3291

StandardTableauTuple (class in
sage.combinat.tableau_tuple), 3362

StandardTableauTuples (class in
sage.combinat.tableau_tuple), 3365

StandardTableauTuples_all (class in
sage.combinat.tableau_tuple), 3366

StandardTableauTuples_level (class in
sage.combinat.tableau_tuple), 3366

StandardTableauTuples_level_size (class in
sage.combinat.tableau_tuple), 3366

StandardTableauTuples_shape (class in
sage.combinat.tableau_tuple), 3367

StandardTableauTuples_size (class in
sage.combinat.tableau_tuple), 3368

StandardTableaux (class in sage.combinat.tableau),
3295

StandardTableaux_all (class in
sage.combinat.tableau), 3296

StandardTableaux_residue (class in
sage.combinat.tableau_tuple), 3368

StandardTableaux_residue_shape (class in
sage.combinat.tableau_tuple), 3369

StandardTableaux_shape (class in
sage.combinat.tableau), 3296

StandardTableaux_size (class in
sage.combinat.tableau), 3298

stanley_symm_poly_weight()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_A
method), 2328

stanley_symm_poly_weight()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_A_affine
method), 2328

stanley_symm_poly_weight()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_B
method), 2329

stanley_symm_poly_weight()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_B_affine
method), 2330

stanley_symm_poly_weight()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_C_affine
method), 2331

stanley_symm_poly_weight()
(sage.combinat.root_system.pieri_factors.PieriFactors_type_D_affine
method), 2332

Star (sage.combinat.rsk.InsertionRules attribute), 2669
star() (sage.combinat.crystals.pbw_crystal.PBWCrystalElement

method), 511
star() (sage.combinat.crystals.pbw_datum.PBWDatum

method), 513
star_involution() (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.Characteristic.Element

method), 146
star_involution() (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyCoarser.Element

method), 150
star_involution() (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions.StronglyFiner.Element

method), 153
star_involution() (sage.combinat.chas.wqsym.WQSymBases.ElementMethods

method), 136
star_involution() (sage.combinat.fqsym.FQSymBases.ElementMethods

method), 1000
star_involution() (sage.combinat.fqsym.FreeQuasisymmetricFunctions.M.Element

method), 1011
star_involution() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods

method), 1384
star_involution() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Elementary.Element

method), 1398
star_involution() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Phi.Element

method), 1410
star_involution() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Ribbon.Element

method), 1416
star_involution() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods

method), 1442
star_involution() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Fundamental.Element

method), 1450
star_operation() (sage.combinat.fully_commutative_elements.FullyCommutativeElement

method), 845
star_product() (sage.combinat.posets.posets.FinitePoset

3856 Index

Combinatorics, Release 9.7

method), 2016
StarCrystal (class in

sage.combinat.crystals.star_crystal), 523
StarCrystal.Element (class in

sage.combinat.crystals.star_crystal), 524
start_point() (sage.combinat.words.paths.FiniteWordPath_all

method), 3593
starting_rows() (sage.combinat.tiling.TilingSolver

method), 3410
startswith() (in module

sage.combinat.finite_state_machine), 977
state() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 959
states() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 959
states() (sage.combinat.words.suffix_trees.ImplicitSuffixTree

method), 3611
states() (sage.combinat.words.suffix_trees.SuffixTrie

method), 3617
statistic() (sage.combinat.similarity_class_type.PrimarySimilarityClassType

method), 2994
statistic() (sage.combinat.similarity_class_type.SimilarityClassType

method), 2998
steiner_quadruple_system() (in module

sage.combinat.designs.steiner_quadruple_systems),
725

steiner_triple_system() (in module
sage.combinat.designs.bibd), 577

stirling_number1() (in module
sage.combinat.combinat), 274

stirling_number2() (in module
sage.combinat.combinat), 274

straighten_input() (sage.combinat.k_tableau.WeakTableau_factorized_permutation
static method), 1248

straighten_word() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation
method), 2283

Stream() (in module sage.combinat.species.stream),
3182

Stream_class (class in sage.combinat.species.stream),
3182

stretch() (sage.combinat.species.generating_series.CycleIndexSeries
method), 3147

stretch() (sage.combinat.species.stream.Stream_class
method), 3185

strict_coarsenings()
(sage.combinat.set_partition.SetPartition
method), 2715

string() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2291

string_rep() (sage.combinat.words.abstract_word.Word_class
method), 3459

strings() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2292

strong_covers() (sage.combinat.core.Core method),

332
strong_down_list() (sage.combinat.core.Core

method), 332
strong_le() (sage.combinat.core.Core method), 332
strongly_fatter() (sage.combinat.set_partition_ordered.OrderedSetPartition

method), 2737
strongly_finer() (sage.combinat.set_partition_ordered.OrderedSetPartition

method), 2737
StrongTableau (class in sage.combinat.k_tableau),

1212
StrongTableaux (class in sage.combinat.k_tableau),

1227
StrongTableaux.options() (in module

sage.combinat.k_tableau), 1230
structure_constants()

(sage.combinat.knutson_tao_puzzles.KnutsonTaoPuzzleSolver
method), 1268

structures() (sage.combinat.species.species.GenericCombinatorialSpecies
method), 3181

StructuresWrapper (class in
sage.combinat.species.structure), 3189

sturmian_desubstitute_as_possible()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3537

Stype() (sage.combinat.root_system.branching_rules.BranchingRule
method), 2168

sub() (sage.combinat.finite_state_machine_generators.TransducerGenerators
method), 996

sub_poset() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1184

subdirect_decomposition()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1906

SubHypergraphSearch (class in
sage.combinat.designs.subhypergraph_search),
729

subjoinsemilattice()
(sage.combinat.posets.lattices.FiniteMeetSemilattice
method), 1910

sublattice() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1906

sublattices() (sage.combinat.posets.lattices.FiniteLatticePoset
method), 1906

sublattices_iterator()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1860

sublattices_lattice()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1907

submeetsemilattice()
(sage.combinat.posets.lattices.FiniteMeetSemilattice
method), 1911

SubMultiset_s (class in sage.combinat.subset), 3192
SubMultiset_sk (class in sage.combinat.subset), 3194

Index 3857

Combinatorics, Release 9.7

SubPartitionAlgebra (class in
sage.combinat.diagram_algebras), 765

SubPartitionAlgebra.Element (class in
sage.combinat.diagram_algebras), 765

subposet() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1184

subposet() (sage.combinat.posets.posets.FinitePoset
method), 2016

subsequence() (sage.combinat.k_regular_sequence.kRegularSequence
method), 1207

subset (sage.combinat.descent_algebra.DescentAlgebra
attribute), 566

subset() (sage.combinat.composition.Compositions_all
method), 310

subset() (sage.combinat.integer_vector_weighted.WeightedIntegerVectors_all
method), 1150

subset() (sage.combinat.integer_vectors_mod_permgroup.IntegerVectorsModPermutationGroup_All
method), 1156

subset() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionsIntoSets
method), 1345

subset() (sage.combinat.partition.Partitions method),
1667

subset() (sage.combinat.partition.Partitions_all
method), 1675

subset() (sage.combinat.partition.Partitions_n
method), 1678

subset() (sage.combinat.partition.Partitions_nk
method), 1679

subset() (sage.combinat.root_system.pieri_factors.PieriFactors_type_A_affine
method), 2329

subset() (sage.combinat.set_partition.SetPartitions_all
method), 2726

subset() (sage.combinat.set_partition_ordered.OrderedSetPartitions_all
method), 2740

Subsets() (in module sage.combinat.subset), 3195
Subsets_s (class in sage.combinat.subset), 3198
Subsets_sk (class in sage.combinat.subset), 3200
subsets_with_hereditary_property() (in module

sage.combinat.subsets_hereditary), 3203
SubsetSpecies (class in

sage.combinat.species.subset_species), 3190
SubsetSpecies_class (in module

sage.combinat.species.subset_species), 3191
SubsetSpeciesStructure (class in

sage.combinat.species.subset_species), 3190
SubsetsSorted (class in sage.combinat.subset), 3197
subtrees() (sage.combinat.abstract_tree.AbstractTree

method), 23
subtype() (sage.combinat.root_system.cartan_matrix.CartanMatrix

method), 2197
subtype() (sage.combinat.root_system.cartan_type.CartanType_abstract

method), 2225
subtype() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class

method), 2269

subword_complementaries()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3537

SubwordComplex (class in
sage.combinat.subword_complex), 3212

SubwordComplexFacet (class in
sage.combinat.subword_complex), 3221

Subwords() (in module sage.combinat.subword), 3206
Subwords_w (class in sage.combinat.subword), 3207
Subwords_wk (class in sage.combinat.subword), 3208
succ() (sage.combinat.fqsym.FQSymBases.ParentMethods

method), 1005
succ() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra

method), 1031
succ() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods

method), 2423
succ_by_coercion() (sage.combinat.fqsym.FQSymBases.ParentMethods

method), 1005
succ_product_on_basis()

(sage.combinat.fqsym.FreeQuasisymmetricFunctions.F
method), 1010

succ_product_on_basis()
(sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1032

successors() (sage.combinat.yang_baxter_graph.YangBaxterGraph_generic
method), 3666

suffix_link() (sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3611

suffix_link() (sage.combinat.words.suffix_trees.SuffixTrie
method), 3617

suffix_tree() (sage.combinat.words.finite_word.FiniteWord_class
method), 3538

suffix_trie() (sage.combinat.words.finite_word.FiniteWord_class
method), 3538

suffix_walk() (sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3612

SuffixTrie (class in sage.combinat.words.suffix_trees),
3614

sulzgruber_correspondence() (in module
sage.combinat.hillman_grassl), 1121

sulzgruber_correspondence()
(sage.combinat.tableau.Tableau method),
3331

sum() (sage.combinat.composition.Composition static
method), 302

sum() (sage.combinat.free_module.CombinatorialFreeModule
method), 1019

sum() (sage.combinat.set_partition_ordered.OrderedSetPartition
static method), 2738

sum() (sage.combinat.similarity_class_type.SimilarityClassTypes
method), 2999

sum() (sage.combinat.species.series.LazyPowerSeriesRing
method), 3175

sum() (sage.combinat.species.species.GenericCombinatorialSpecies

3858 Index

Combinatorics, Release 9.7

method), 3181
sum() (sage.combinat.vector_partition.VectorPartition

method), 3447
sum_digits() (sage.combinat.words.abstract_word.Word_class

method), 3459
sum_generator() (sage.combinat.species.series.LazyPowerSeriesRing

method), 3175
sum_of_fatter_compositions()

(sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1361

sum_of_finer_compositions()
(sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1361

sum_of_partition_rearrangements()
(sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF.ParentMethods
method), 1361

sum_of_partitions()
(sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w
method), 1486

sum_of_partitions()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial
method), 1497

sum_of_terms() (sage.combinat.free_module.CombinatorialFreeModule
method), 1020

sum_of_weighted_row_lengths()
(sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 394

summand_embedding()
(sage.combinat.free_module.CombinatorialFreeModule_CartesianProduct
method), 1022

summand_projection()
(sage.combinat.free_module.CombinatorialFreeModule_CartesianProduct
method), 1023

SumSpecies (class in sage.combinat.species.sum_species),
3191

SumSpecies_class (in module
sage.combinat.species.sum_species), 3192

SumSpeciesStructure (class in
sage.combinat.species.sum_species), 3192

sup() (sage.combinat.composition.Composition
method), 302

sup() (sage.combinat.set_partition.AbstractSetPartition
method), 2704

super_categories() (sage.combinat.chas.fsym.FSymBases
method), 125

super_categories() (sage.combinat.chas.wqsym.WQSymBases
method), 140

super_categories() (sage.combinat.descent_algebra.DescentAlgebraBases
method), 567

super_categories() (sage.combinat.fqsym.FQSymBases
method), 1005

super_categories() (sage.combinat.ncsf_qsym.generic_basis_code.BasesOfQSymOrNCSF
method), 1362

super_categories() (sage.combinat.ncsf_qsym.generic_basis_code.GradedModulesWithInternalProduct

method), 1370
super_categories() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases

method), 1394
super_categories() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBases

method), 1406
super_categories() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBasesOnGroupLikeElements

method), 1407
super_categories() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBasesOnPrimitiveElements

method), 1408
super_categories() (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases

method), 1445
super_categories() (sage.combinat.ncsym.bases.MultiplicativeNCSymBases

method), 1473
super_categories() (sage.combinat.ncsym.bases.NCSymBases

method), 1478
super_categories() (sage.combinat.ncsym.bases.NCSymDualBases

method), 1478
super_categories() (sage.combinat.ncsym.bases.NCSymOrNCSymDualBases

method), 1481
super_categories() (sage.combinat.posets.moebius_algebra.MoebiusAlgebraBases

method), 1925
super_categories() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations

method), 2567
super_categories() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations

method), 2455
super_categories() (sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations

method), 2609
super_categories() (sage.combinat.sf.k_dual.KBoundedQuotientBases

method), 2794
super_categories() (sage.combinat.sf.new_kschur.KBoundedSubspaceBases

method), 2835
super_categories() (sage.combinat.sf.sfa.FilteredSymmetricFunctionsBases

method), 2902
super_categories() (sage.combinat.sf.sfa.GradedSymmetricFunctionsBases

method), 2904
super_categories() (sage.combinat.sf.sfa.SymmetricFunctionsBases

method), 2963
SuperCartanType_standard (class in

sage.combinat.root_system.cartan_type),
2242

SuperCartanType_standard.options() (in module
sage.combinat.root_system.cartan_type), 2242

supergreedy_linear_extensions_iterator()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1860

SuperPartition (class in
sage.combinat.superpartition), 3233

SuperPartitions (class in
sage.combinat.superpartition), 3241

SuperPartitions.options() (in module
sage.combinat.superpartition), 3241

SuperPartitions_all (class in
sage.combinat.superpartition), 3242

SuperPartitions_n (class in

Index 3859

Combinatorics, Release 9.7

sage.combinat.superpartition), 3242
SuperPartitions_n_m (class in

sage.combinat.superpartition), 3242
superRSK (sage.combinat.rsk.InsertionRules attribute),

2669
suter_diagonal_slide()

(sage.combinat.partition.Partition method),
1655

swap() (in module sage.combinat.tamari_lattices), 3388
swap() (sage.combinat.words.finite_word.FiniteWord_class

method), 3538
swap_decrease() (sage.combinat.words.finite_word.FiniteWord_class

method), 3539
swap_dexter() (in module

sage.combinat.tamari_lattices), 3388
swap_increase() (sage.combinat.words.finite_word.FiniteWord_class

method), 3539
swap_residues() (sage.combinat.tableau_residues.ResidueSequence

method), 3347
SwapIncreasingOperator (class in

sage.combinat.yang_baxter_graph), 3662
SwapOperator (class in

sage.combinat.yang_baxter_graph), 3662
switch() (sage.combinat.constellation.Constellation_class

method), 323
Sylvester (sage.combinat.growth.Rules attribute), 1108
sylvester_class() (sage.combinat.binary_tree.BinaryTree

method), 93
sylvester_class() (sage.combinat.permutation.Permutation

method), 1795
symmetric_conference_matrix() (in module

sage.combinat.matrices.hadamard_matrix),
1299

symmetric_diagrams()
(sage.combinat.diagram_algebras.BrauerDiagrams
method), 742

symmetric_form() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2424

symmetric_form() (sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ElementMethods
method), 2601

symmetric_function_ring()
(sage.combinat.sf.hall_littlewood.HallLittlewood
method), 2759

symmetric_function_ring()
(sage.combinat.sf.jack.Jack method), 2775

symmetric_function_ring()
(sage.combinat.sf.llt.LLT_class method),
2804

symmetric_function_ring()
(sage.combinat.sf.macdonald.Macdonald
method), 2813

symmetric_function_ring()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
method), 2908

symmetric_group_action_on_entries()
(sage.combinat.tableau.Tableau method),
3332

symmetric_group_action_on_entries()
(sage.combinat.tableau_tuple.TableauTuple
method), 3379

symmetric_group_action_on_values() (in module
sage.combinat.tableau), 3340

symmetric_group_action_on_values()
(sage.combinat.tableau.Tableau method),
3333

symmetric_macdonald_polynomial()
(sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials
method), 2322

symmetric_part() (sage.combinat.superpartition.SuperPartition
method), 3239

symmetric_power() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2625

symmetric_square() (sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2625

SymmetricaConversionOnBasis (class in
sage.combinat.sf.sf), 2898

SymmetricFunctionAlgebra_classical (class in
sage.combinat.sf.classical), 2744

SymmetricFunctionAlgebra_classical.Element
(class in sage.combinat.sf.classical), 2744

SymmetricFunctionAlgebra_dual (class in
sage.combinat.sf.dual), 2745

SymmetricFunctionAlgebra_dual.Element (class in
sage.combinat.sf.dual), 2746

SymmetricFunctionAlgebra_elementary (class in
sage.combinat.sf.elementary), 2750

SymmetricFunctionAlgebra_elementary.Element
(class in sage.combinat.sf.elementary), 2750

SymmetricFunctionAlgebra_generic (class in
sage.combinat.sf.sfa), 2904

SymmetricFunctionAlgebra_generic_Element
(class in sage.combinat.sf.sfa), 2910

SymmetricFunctionAlgebra_homogeneous (class in
sage.combinat.sf.homogeneous), 2766

SymmetricFunctionAlgebra_homogeneous.Element
(class in sage.combinat.sf.homogeneous), 2766

SymmetricFunctionAlgebra_monomial (class in
sage.combinat.sf.monomial), 2822

SymmetricFunctionAlgebra_monomial.Element
(class in sage.combinat.sf.monomial), 2822

SymmetricFunctionAlgebra_multiplicative (class
in sage.combinat.sf.multiplicative), 2826

SymmetricFunctionAlgebra_orthogonal (class in
sage.combinat.sf.orthogonal), 2850

SymmetricFunctionAlgebra_orthotriang (class in
sage.combinat.sf.orthotriang), 2853

SymmetricFunctionAlgebra_orthotriang.Element
(class in sage.combinat.sf.orthotriang), 2853

3860 Index

Combinatorics, Release 9.7

SymmetricFunctionAlgebra_power (class in
sage.combinat.sf.powersum), 2854

SymmetricFunctionAlgebra_power.Element (class
in sage.combinat.sf.powersum), 2854

SymmetricFunctionAlgebra_schur (class in
sage.combinat.sf.schur), 2864

SymmetricFunctionAlgebra_schur.Element (class
in sage.combinat.sf.schur), 2864

SymmetricFunctionAlgebra_symplectic (class in
sage.combinat.sf.symplectic), 2871

SymmetricFunctionAlgebra_witt (class in
sage.combinat.sf.witt), 2965

SymmetricFunctionAlgebra_zonal (class in
sage.combinat.sf.jack), 2781

SymmetricFunctionAlgebra_zonal.Element (class
in sage.combinat.sf.jack), 2781

SymmetricFunctions (class in sage.combinat.sf.sf),
2873

SymmetricFunctionsBases (class in
sage.combinat.sf.sfa), 2949

SymmetricFunctionsBases.ParentMethods (class in
sage.combinat.sf.sfa), 2950

SymmetricFunctionsNonCommutingVariables (class
in sage.combinat.ncsym.ncsym), 1487

SymmetricFunctionsNonCommutingVariables.coarse_powersum
(class in sage.combinat.ncsym.ncsym), 1489

SymmetricFunctionsNonCommutingVariables.deformed_coarse_powersum
(class in sage.combinat.ncsym.ncsym), 1489

SymmetricFunctionsNonCommutingVariables.elementary
(class in sage.combinat.ncsym.ncsym), 1491

SymmetricFunctionsNonCommutingVariables.elementary.Element
(class in sage.combinat.ncsym.ncsym), 1491

SymmetricFunctionsNonCommutingVariables.homogeneous
(class in sage.combinat.ncsym.ncsym), 1492

SymmetricFunctionsNonCommutingVariables.homogeneous.Element
(class in sage.combinat.ncsym.ncsym), 1492

SymmetricFunctionsNonCommutingVariables.monomial
(class in sage.combinat.ncsym.ncsym), 1493

SymmetricFunctionsNonCommutingVariables.monomial.Element
(class in sage.combinat.ncsym.ncsym), 1493

SymmetricFunctionsNonCommutingVariables.powersum
(class in sage.combinat.ncsym.ncsym), 1498

SymmetricFunctionsNonCommutingVariables.powersum.Element
(class in sage.combinat.ncsym.ncsym), 1498

SymmetricFunctionsNonCommutingVariables.supercharacter
(class in sage.combinat.ncsym.ncsym), 1500

SymmetricFunctionsNonCommutingVariables.x_basis
(class in sage.combinat.ncsym.ncsym), 1501

SymmetricFunctionsNonCommutingVariablesDual
(class in sage.combinat.ncsym.dual), 1481

SymmetricFunctionsNonCommutingVariablesDual.w
(class in sage.combinat.ncsym.dual), 1482

SymmetricFunctionsNonCommutingVariablesDual.w.Element
(class in sage.combinat.ncsym.dual), 1482

SymmetricGroupAbsoluteOrderPoset()
(sage.combinat.posets.poset_examples.Posets
static method), 1939

SymmetricGroupAlgebra() (in module
sage.combinat.symmetric_group_algebra),
3245

SymmetricGroupAlgebra_n (class in
sage.combinat.symmetric_group_algebra),
3248

SymmetricGroupBruhatIntervalPoset()
(sage.combinat.posets.poset_examples.Posets
static method), 1939

SymmetricGroupBruhatOrderPoset()
(sage.combinat.posets.poset_examples.Posets
static method), 1939

SymmetricGroupRepresentation() (in module
sage.combinat.symmetric_group_representations),
3269

SymmetricGroupRepresentation_generic_class
(class in sage.combinat.symmetric_group_representations),
3271

SymmetricGroupRepresentations() (in module
sage.combinat.symmetric_group_representations),
3272

SymmetricGroupRepresentations_class (class in
sage.combinat.symmetric_group_representations),
3273

SymmetricGroupWeakOrderPoset()
(sage.combinat.posets.poset_examples.Posets
static method), 1940

symmetrized_matrix()
(sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2197

symmetrizer() (sage.combinat.root_system.cartan_matrix.CartanMatrix
method), 2197

symmetrizer() (sage.combinat.root_system.cartan_type.CartanType_crystallographic
method), 2235

symmetrizer() (sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class
method), 2269

symmetrizer() (sage.combinat.root_system.type_super_A.CartanType
method), 2478

symplectic() (sage.combinat.sf.sf.SymmetricFunctions
method), 2898

szekeres_difference_set_pair() (in module
sage.combinat.matrices.hadamard_matrix),
1299

T
t (sage.combinat.finite_state_machine_generators.TransducerGenerators.RecursionRule

attribute), 991
t() (sage.combinat.designs.covering_design.CoveringDesign

method), 597
t() (sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_t

method), 3244

Index 3861

Combinatorics, Release 9.7

T0_check_on_basis()
(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2396

t_action() (sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_t
method), 3245

t_action_on_basis()
(sage.combinat.symmetric_group_algebra.HeckeAlgebraSymmetricGroup_t
method), 3245

t_completion() (sage.combinat.partition.Partition
method), 1657

Tableau (class in sage.combinat.tableau), 3299
Tableau_class (class in sage.combinat.tableau), 3336
tableau_of_word() (sage.combinat.affine_permutation.AffinePermutationTypeA

method), 37
TableauTuple (class in sage.combinat.tableau_tuple),

3369
TableauTuples (class in sage.combinat.tableau_tuple),

3380
TableauTuples.options() (in module

sage.combinat.tableau_tuple), 3382
TableauTuples_all (class in

sage.combinat.tableau_tuple), 3384
TableauTuples_level (class in

sage.combinat.tableau_tuple), 3384
TableauTuples_level_size (class in

sage.combinat.tableau_tuple), 3385
TableauTuples_size (class in

sage.combinat.tableau_tuple), 3385
Tableaux (class in sage.combinat.tableau), 3336
Tableaux.options() (in module

sage.combinat.tableau), 3337
Tableaux_all (class in sage.combinat.tableau), 3339
Tableaux_size (class in sage.combinat.tableau), 3339
tail() (sage.combinat.species.series.LazyPowerSeries

method), 3173
tamari_greater() (sage.combinat.binary_tree.BinaryTree

method), 94
tamari_interval() (sage.combinat.binary_tree.BinaryTree

method), 95
tamari_interval() (sage.combinat.dyck_word.DyckWord

method), 794
tamari_inversions()

(sage.combinat.interval_posets.TamariIntervalPoset
method), 1185

tamari_inversions_iter()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1185

tamari_join() (sage.combinat.binary_tree.BinaryTree
method), 95

tamari_lequal() (sage.combinat.binary_tree.BinaryTree
method), 97

tamari_meet() (sage.combinat.binary_tree.BinaryTree
method), 98

tamari_pred() (sage.combinat.binary_tree.BinaryTree

method), 99
tamari_smaller() (sage.combinat.binary_tree.BinaryTree

method), 100
tamari_sorting_tuple()

(sage.combinat.binary_tree.BinaryTree
method), 100

tamari_succ() (sage.combinat.binary_tree.BinaryTree
method), 101

TamariIntervalPoset (class in
sage.combinat.interval_posets), 1160

TamariIntervalPosets (class in
sage.combinat.interval_posets), 1187

TamariIntervalPosets.options() (in module
sage.combinat.interval_posets), 1193

TamariIntervalPosets_all (class in
sage.combinat.interval_posets), 1195

TamariIntervalPosets_size (class in
sage.combinat.interval_posets), 1195

TamariLattice() (in module
sage.combinat.tamari_lattices), 3387

TamariLattice() (sage.combinat.posets.poset_examples.Posets
static method), 1940

tau() (sage.combinat.posets.linear_extensions.LinearExtensionOfPoset
method), 1916

tau1() (in module sage.combinat.matrices.latin), 1324
tau123() (in module sage.combinat.matrices.latin),

1324
tau2() (in module sage.combinat.matrices.latin), 1326
tau3() (in module sage.combinat.matrices.latin), 1327
tau_epsilon_operator_on_almost_positive_roots()

(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2452

tau_plus_minus() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2454

tau_to_bitrade() (in module
sage.combinat.matrices.latin), 1327

taylor_twograph() (in module
sage.combinat.designs.twographs), 731

TCrystal (class in sage.combinat.crystals.elementary_crystals),
377

TCrystal.Element (class in
sage.combinat.crystals.elementary_crystals),
378

TD_product() (in module
sage.combinat.designs.orthogonal_arrays),
696

tdesign_params() (in module
sage.combinat.designs.block_design), 594

temperley_lieb_diagram()
(sage.combinat.blob_algebra.BlobDiagram
method), 119

temperley_lieb_diagrams() (in module
sage.combinat.diagram_algebras), 772

TemperleyLiebAlgebra (class in

3862 Index

Combinatorics, Release 9.7

sage.combinat.diagram_algebras), 767
TemperleyLiebDiagram (class in

sage.combinat.diagram_algebras), 768
TemperleyLiebDiagrams (class in

sage.combinat.diagram_algebras), 768
Tensor (sage.combinat.free_module.CombinatorialFreeModule

attribute), 1016
tensor() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux

method), 2095
tensor() (sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations

method), 2143
tensor() (sage.combinat.rigged_configurations.tensor_product_kr_tableaux.TensorProductOfKirillovReshetikhinTableaux

method), 2149
tensor_constructor()

(sage.combinat.free_module.CombinatorialFreeModule_Tensor
method), 1024

tensor_product_of_kirillov_reshetikhin_crystals()
(sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations
method), 2143

tensor_product_of_kirillov_reshetikhin_crystals()
(sage.combinat.rigged_configurations.tensor_product_kr_tableaux.TensorProductOfKirillovReshetikhinTableaux
method), 2149

tensor_product_of_kirillov_reshetikhin_tableaux()
(sage.combinat.rigged_configurations.rigged_configurations.RiggedConfigurations
method), 2144

TensorProductOfCrystals (class in
sage.combinat.crystals.tensor_product), 531

TensorProductOfCrystals.options() (in module
sage.combinat.crystals.tensor_product), 534

TensorProductOfCrystalsElement (class in
sage.combinat.crystals.tensor_product_element),
541

TensorProductOfCrystalsWithGenerators (class in
sage.combinat.crystals.tensor_product), 535

TensorProductOfKirillovReshetikhinTableaux
(class in sage.combinat.rigged_configurations.tensor_product_kr_tableaux),
2147

TensorProductOfKirillovReshetikhinTableauxElement
(class in sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element),
2150

TensorProductOfQueerSuperCrystalsElement
(class in sage.combinat.crystals.tensor_product_element),
543

TensorProductOfRegularCrystalsElement (class in
sage.combinat.crystals.tensor_product_element),
545

TensorProductOfRegularCrystalsWithGenerators
(class in sage.combinat.crystals.tensor_product),
535

TensorProductOfRegularCrystalsWithGenerators.Element
(class in sage.combinat.crystals.tensor_product),
535

TensorProductOfSuperCrystalsElement (class in
sage.combinat.crystals.tensor_product_element),

547
term() (sage.combinat.free_module.CombinatorialFreeModule

method), 1020
term() (sage.combinat.species.series.LazyPowerSeriesRing

method), 3175
TetrahedralPoset() (sage.combinat.posets.poset_examples.Posets

static method), 1940
tex_from_array() (in module sage.combinat.output),

1534
tex_from_array_tuple() (in module

sage.combinat.output), 1537
tex_from_skew_array() (in module

sage.combinat.output), 1539
text() (sage.combinat.root_system.plot.PlotOptions

method), 2357
theta() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

method), 2947
theta_qt() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element

method), 2947
thickness() (sage.combinat.root_system.plot.PlotOptions

method), 2357
three_factor_product() (in module

sage.combinat.designs.orthogonal_arrays_build_recursive),
711

three_n_minus_eight() (in module
sage.combinat.designs.steiner_quadruple_systems),
726

three_n_minus_four() (in module
sage.combinat.designs.steiner_quadruple_systems),
726

three_n_minus_two() (in module
sage.combinat.designs.steiner_quadruple_systems),
726

ThueMorseWord() (sage.combinat.words.word_generators.WordGenerator
method), 3644

thwart_lemma_3_5() (in module
sage.combinat.designs.orthogonal_arrays_build_recursive),
713

thwart_lemma_4_1() (in module
sage.combinat.designs.orthogonal_arrays_build_recursive),
715

Ti_inverse_on_basis()
(sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation
method), 2275

Ti_on_basis() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation
method), 2276

tikz_trajectory() (sage.combinat.words.paths.FiniteWordPath_all
method), 3593

tikz_trajectory() (sage.combinat.words.paths.FiniteWordPath_square_grid
method), 3599

TilingSolver (class in sage.combinat.tiling), 3402
times() (sage.combinat.species.series.LazyPowerSeries

method), 3173
timestamp() (sage.combinat.designs.covering_design.CoveringDesign

Index 3863

Combinatorics, Release 9.7

method), 597
TIP (in module sage.combinat.interval_posets), 1160
TL_diagram_ascii_art() (in module

sage.combinat.diagram_algebras), 766
to_132_avoiding_permutation()

(sage.combinat.binary_tree.BinaryTree
method), 101

to_132_avoiding_permutation()
(sage.combinat.dyck_word.DyckWord_complete
method), 806

to_312_avoiding_permutation()
(sage.combinat.binary_tree.BinaryTree
method), 101

to_312_avoiding_permutation()
(sage.combinat.dyck_word.DyckWord_complete
method), 806

to_321_avoiding_permutation()
(sage.combinat.dyck_word.DyckWord_complete
method), 806

to_A7_crystal() (sage.combinat.crystals.kirillov_reshetikhin.KR_type_E7
method), 439

to_affine_grassmannian()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2561

to_affine_weyl_left()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWFElement
method), 2555

to_affine_weyl_left()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2562

to_affine_weyl_right()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFWElement
method), 2545

to_affine_weyl_right()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2562

to_alternating_sign_matrix()
(sage.combinat.dyck_word.DyckWord_complete
method), 808

to_alternating_sign_matrix()
(sage.combinat.fully_packed_loop.FullyPackedLoop
method), 1052

to_alternating_sign_matrix()
(sage.combinat.permutation.Permutation
method), 1796

to_alternating_sign_matrix()
(sage.combinat.six_vertex_model.SquareIceModel.Element
method), 3013

to_ambient() (sage.combinat.root_system.ambient_space.AmbientSpaceElement
method), 2162

to_ambient() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2424

to_ambient() (sage.combinat.root_system.root_space.RootSpaceElement
method), 2459

to_ambient() (sage.combinat.root_system.weight_space.WeightSpaceElement
method), 2615

to_ambient_crystal()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_A2
method), 422

to_ambient_crystal()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_Bn
method), 425

to_ambient_crystal()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_box
method), 442

to_ambient_crystal()
(sage.combinat.crystals.kirillov_reshetikhin.KR_type_C
method), 428

to_ambient_space_morphism()
(sage.combinat.root_system.ambient_space.AmbientSpace
method), 2160

to_ambient_space_morphism()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2454

to_ambient_space_morphism()
(sage.combinat.root_system.root_space.RootSpace
method), 2456

to_ambient_space_morphism()
(sage.combinat.root_system.weight_space.WeightSpace
method), 2613

to_area_sequence() (sage.combinat.dyck_word.DyckWord
method), 795

to_area_sequence() (sage.combinat.parking_functions.ParkingFunction
method), 1577

to_array() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2098

to_array() (sage.combinat.rigged_configurations.kr_tableaux.KRTableauxSpinElement
method), 2089

to_B_basis() (sage.combinat.descent_algebra.DescentAlgebra.D
method), 563

to_B_basis() (sage.combinat.descent_algebra.DescentAlgebra.I
method), 565

to_binary_tree() (sage.combinat.dyck_word.DyckWord
method), 795

to_binary_tree() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1556

to_binary_tree_left_branch()
(sage.combinat.ordered_tree.OrderedTree
method), 1529

to_binary_tree_right_branch()
(sage.combinat.ordered_tree.OrderedTree
method), 1529

to_binary_tree_tamari()
(sage.combinat.dyck_word.DyckWord method),
796

to_biword() (sage.combinat.growth.GrowthDiagram
method), 1079

to_bounded_partition()

3864 Index

Combinatorics, Release 9.7

(sage.combinat.affine_permutation.AffinePermutationTypeA
method), 38

to_bounded_partition() (sage.combinat.core.Core
method), 332

to_bounded_tableau()
(sage.combinat.k_tableau.WeakTableau_core
method), 1246

to_Brauer_partition() (in module
sage.combinat.diagram_algebras), 773

to_Catalan_code() (sage.combinat.dyck_word.DyckWord_complete
method), 807

to_chain() (sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau
method), 2980

to_chain() (sage.combinat.skew_tableau.SkewTableau
method), 3043

to_chain() (sage.combinat.tableau.Tableau method),
3334

to_chain() (sage.combinat.tableau_tuple.StandardTableauTuple
method), 3364

to_character() (sage.combinat.symmetric_group_representations.SymmetricGroupRepresentation_generic_class
method), 3271

to_circled_diagram()
(sage.combinat.superpartition.SuperPartition
method), 3239

to_classical() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2425

to_classical_highest_weight()
(sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2098

to_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0Element
method), 2547

to_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PElement
method), 2551

to_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2562

to_code() (sage.combinat.composition.Composition
method), 304

to_composition() (sage.combinat.integer_matrices.IntegerMatrices
method), 1140

to_composition() (sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2738

to_composition() (sage.combinat.superpartition.SuperPartition
method), 3240

to_core() (sage.combinat.affine_permutation.AffinePermutationTypeA
method), 38

to_core() (sage.combinat.partition.Partition method),
1657

to_core_tableau() (sage.combinat.k_tableau.WeakTableau_bounded
method), 1242

to_core_tableau() (sage.combinat.k_tableau.WeakTableau_factorized_permutation
method), 1248

to_coroot_space_morphism()
(sage.combinat.root_system.root_space.RootSpace
method), 2456

to_cycles() (sage.combinat.colored_permutations.SignedPermutation
method), 250

to_cycles() (sage.combinat.permutation.Permutation
method), 1797

to_D_basis() (sage.combinat.descent_algebra.DescentAlgebra.B
method), 560

to_dag() (sage.combinat.skew_partition.SkewPartition
method), 3024

to_descent_algebra()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1386

to_diagram_basis() (sage.combinat.diagram_algebras.OrbitBasis.Element
method), 745

to_difference_family()
(sage.combinat.designs.evenly_distributed_sets.EvenlyDistributedSetsBacktracker
method), 656

to_digraph() (sage.combinat.permutation.Permutation
method), 1797

to_digraph() (sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3612

to_digraph() (sage.combinat.words.suffix_trees.SuffixTrie
method), 3617

to_dominant() (sage.combinat.affine_permutation.AffinePermutationTypeA
method), 38

to_dominant() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2292

to_dominant_chamber()
(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2425

to_dual_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0Element
method), 2549

to_dual_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PvElement
method), 2553

to_dual_classical_weyl()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2562

to_dual_tableau() (in module
sage.combinat.crystals.kac_modules), 416

to_dual_translation_left()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPvW0Element
method), 2549

to_dual_translation_left()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2563

to_dual_translation_right()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PvElement
method), 2553

to_dual_translation_right()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods

Index 3865

Combinatorics, Release 9.7

method), 2563
to_dual_type_cospace()

(sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2426

to_dyck_word() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 59

to_dyck_word() (sage.combinat.binary_tree.BinaryTree
method), 102

to_dyck_word() (sage.combinat.non_decreasing_parking_function.NonDecreasingParkingFunction
method), 1505

to_dyck_word() (sage.combinat.ordered_tree.OrderedTree
method), 1529

to_dyck_word() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1557

to_dyck_word() (sage.combinat.parking_functions.ParkingFunction
method), 1577

to_dyck_word() (sage.combinat.partition.Partition
method), 1658

to_dyck_word_tamari()
(sage.combinat.binary_tree.BinaryTree
method), 102

to_DyckWord() (sage.combinat.path_tableaux.dyck_path.DyckPath
method), 1586

to_exp() (sage.combinat.partition.Partition method),
1658

to_exp() (sage.combinat.partition_tuple.PartitionTuple
method), 1734

to_exp_dict() (sage.combinat.partition.Partition
method), 1658

to_explicit_suffix_tree()
(sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3613

to_expr() (sage.combinat.skew_tableau.SkewTableau
method), 3043

to_factorized_permutation_tableau()
(sage.combinat.k_tableau.WeakTableau_core
method), 1246

to_fqsym() (sage.combinat.chas.fsym.FreeSymmetricFunctions.Fundamental.Element
method), 127

to_fqsym() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1387

to_fsym() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1388

to_full() (sage.combinat.binary_tree.BinaryTree
method), 103

to_fully_packed_loop()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 60

to_fundamental_group()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupFWElement
method), 2545

to_fundamental_group()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupWFElement
method), 2555

to_fundamental_group()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2563

to_Gelfand_Tsetlin_pattern()
(sage.combinat.tableau.Tableau method),
3334

to_graph() (in module
sage.combinat.diagram_algebras), 773

to_graph() (in module
sage.combinat.partition_algebra), 1697

to_graph() (sage.combinat.perfect_matching.PerfectMatching
method), 1745

to_grassmannian() (sage.combinat.core.Core
method), 333

to_hexacode() (sage.combinat.abstract_tree.AbstractTree
method), 24

to_I_basis() (sage.combinat.descent_algebra.DescentAlgebra.B
method), 561

to_increasing_hecke_biword()
(sage.combinat.crystals.fully_commutative_stable_grothendieck.DecreasingHeckeFactorization
method), 382

to_integer_list() (sage.combinat.words.finite_word.FiniteWord_class
method), 3539

to_integer_word() (sage.combinat.words.abstract_word.Word_class
method), 3460

to_integer_word() (sage.combinat.words.finite_word.FiniteWord_class
method), 3540

to_inversion_vector()
(sage.combinat.permutation.Permutation
method), 1797

to_kirillov_reshetikhin_crystal()
(sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2099

to_kirillov_reshetikhin_tableau()
(sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement
method), 453

to_labelled_dyck_word()
(sage.combinat.parking_functions.ParkingFunction
method), 1578

to_labelling_area_sequence_pair()
(sage.combinat.parking_functions.ParkingFunction
method), 1578

to_labelling_dyck_word_pair()
(sage.combinat.parking_functions.ParkingFunction
method), 1579

to_labelling_permutation()
(sage.combinat.parking_functions.ParkingFunction
method), 1579

to_lehmer_cocode() (sage.combinat.permutation.Permutation
method), 1798

to_lehmer_code() (sage.combinat.affine_permutation.AffinePermutationTypeA
method), 39

to_lehmer_code() (sage.combinat.permutation.Permutation
method), 1798

3866 Index

Combinatorics, Release 9.7

to_list() (sage.combinat.k_tableau.StrongTableau
method), 1225

to_list() (sage.combinat.partition.Partition method),
1659

to_list() (sage.combinat.partition_tuple.PartitionTuple
method), 1734

to_list() (sage.combinat.skew_partition.SkewPartition
method), 3024

to_list() (sage.combinat.skew_tableau.SkewTableau
method), 3043

to_list() (sage.combinat.superpartition.SuperPartition
method), 3240

to_list() (sage.combinat.tableau.Tableau method),
3334

to_list() (sage.combinat.tableau_tuple.TableauTuple
method), 3379

to_major_code() (sage.combinat.permutation.Permutation
method), 1798

to_matrix() (in module sage.combinat.rsk), 2697
to_matrix() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix

method), 60
to_matrix() (sage.combinat.colored_permutations.ColoredPermutation

method), 244
to_matrix() (sage.combinat.colored_permutations.SignedPermutation

method), 251
to_matrix() (sage.combinat.permutation.Permutation

method), 1799
to_matrix() (sage.combinat.posets.incidence_algebras.IncidenceAlgebra.Element

method), 1863
to_matrix() (sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra.Element

method), 1865
to_matrix() (sage.combinat.root_system.weyl_group.WeylGroupElement

method), 2651
to_milp() (sage.combinat.matrices.dancing_links.dancing_linksWrapper

method), 1287
to_monoid_element()

(sage.combinat.words.finite_word.FiniteWord_class
method), 3540

to_monotone_triangle()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 61

to_ncsym() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1388

to_non_decreasing_parking_function()
(sage.combinat.dyck_word.DyckWord_complete
method), 808

to_noncrossing_partition()
(sage.combinat.dyck_word.DyckWord_complete
method), 808

to_noncrossing_permutation()
(sage.combinat.dyck_word.DyckWord_complete
method), 809

to_noncrossing_set_partition()
(sage.combinat.perfect_matching.PerfectMatching

method), 1745
to_NonDecreasingParkingFunction()

(sage.combinat.parking_functions.ParkingFunction
method), 1577

to_nsym() (sage.combinat.descent_algebra.DescentAlgebra.B
method), 561

to_orbit_basis() (sage.combinat.diagram_algebras.PartitionAlgebra.Element
method), 752

to_orbit_basis() (sage.combinat.diagram_algebras.SubPartitionAlgebra.Element
method), 765

to_ordered_set_partition()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3540

to_ordered_tree() (sage.combinat.dyck_word.DyckWord_complete
method), 809

to_ordered_tree() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1557

to_ordered_tree_left_branch()
(sage.combinat.binary_tree.BinaryTree
method), 104

to_ordered_tree_right_branch()
(sage.combinat.binary_tree.BinaryTree
method), 104

to_packed_word() (sage.combinat.set_partition_ordered.OrderedSetPartition
method), 2738

to_pair_of_standard_tableaux()
(sage.combinat.dyck_word.DyckWord_complete
method), 810

to_pair_of_twin_binary_trees()
(sage.combinat.baxter_permutations.BaxterPermutations_all
method), 66

to_pairs() (sage.combinat.rsk.Rule method), 2675
to_pairs() (sage.combinat.rsk.RuleCoRSK method),

2677
to_pairs() (sage.combinat.rsk.RuleDualRSK method),

2681
to_pairs() (sage.combinat.rsk.RuleSuperRSK method),

2693
to_parallelogram_polyomino()

(sage.combinat.ordered_tree.OrderedTree
method), 1530

to_partition() (sage.combinat.composition.Composition
method), 304

to_partition() (sage.combinat.core.Core method),
333

to_partition() (sage.combinat.dyck_word.DyckWord_complete
method), 810

to_partition() (sage.combinat.set_partition.SetPartition
method), 2716

to_partition() (sage.combinat.superpartition.SuperPartition
method), 3240

to_path_string() (sage.combinat.dyck_word.DyckWord
method), 796

to_pattern() (sage.combinat.path_tableaux.semistandard.SemistandardPathTableau

Index 3867

Combinatorics, Release 9.7

method), 1600
to_perfect_matching()

(sage.combinat.path_tableaux.dyck_path.DyckPath
method), 1586

to_permutation() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 61

to_permutation() (sage.combinat.derangements.Derangement
method), 556

to_permutation() (sage.combinat.dyck_word.DyckWord_complete
method), 810

to_permutation() (sage.combinat.root_system.weyl_group.WeylGroupElement
method), 2652

to_permutation() (sage.combinat.set_partition.SetPartition
method), 2716

to_permutation() (sage.combinat.skew_tableau.SkewTableau
method), 3044

to_permutation() (sage.combinat.tableau_tuple.TableauTuple
method), 3380

to_permutation_group_element()
(sage.combinat.permutation.Permutation
method), 1799

to_permutation_string()
(sage.combinat.root_system.weyl_group.WeylGroupElement
method), 2652

to_poset() (sage.combinat.binary_tree.BinaryTree
method), 104

to_poset() (sage.combinat.ordered_tree.OrderedTree
method), 1530

to_poset() (sage.combinat.posets.linear_extensions.LinearExtensionOfPoset
method), 1917

to_qsym() (sage.combinat.fqsym.FQSymBases.ElementMethods
method), 1001

to_quasisymmetric_function()
(sage.combinat.chas.fsym.FreeSymmetricFunctions_Dual.FundamentalDual.Element
method), 130

to_quasisymmetric_function()
(sage.combinat.chas.wqsym.WQSymBases.ElementMethods
method), 138

to_restricted_growth_word()
(sage.combinat.set_partition.SetPartition
method), 2716

to_restricted_growth_word_blocks()
(sage.combinat.set_partition.SetPartition
method), 2717

to_restricted_growth_word_intertwining()
(sage.combinat.set_partition.SetPartition
method), 2717

to_ribbon() (sage.combinat.skew_tableau.SkewTableau
method), 3044

to_rigged_configuration()
(sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.TensorProductOfKirillovReshetikhinTableauxElement
method), 2153

to_rook_placement()
(sage.combinat.set_partition.SetPartition

method), 2717
to_rook_placement_gamma()

(sage.combinat.set_partition.SetPartition
method), 2718

to_rook_placement_psi()
(sage.combinat.set_partition.SetPartition
method), 2719

to_rook_placement_rho()
(sage.combinat.set_partition.SetPartition
method), 2719

to_sat_solver() (sage.combinat.matrices.dancing_links.dancing_linksWrapper
method), 1288

to_semistandard_tableau()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 61

to_set_partition() (in module
sage.combinat.diagram_algebras), 773

to_set_partition() (in module
sage.combinat.partition_algebra), 1697

to_sign_matrix() (sage.combinat.tableau.Tableau
method), 3335

to_signed_matrix() (sage.combinat.six_vertex_model.SixVertexConfiguration
method), 3010

to_simple_root() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2426

to_six_vertex_model()
(sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 61

to_skew_partition()
(sage.combinat.composition.Composition
method), 304

to_standard() (in module sage.combinat.permutation),
1823

to_standard_list() (sage.combinat.k_tableau.StrongTableau
method), 1225

to_standard_tableau()
(sage.combinat.dyck_word.DyckWord method),
797

to_standard_tableau()
(sage.combinat.k_tableau.StrongTableau
method), 1225

to_state (sage.combinat.finite_state_machine.FSMTransition
attribute), 890

to_subset() (sage.combinat.composition.Composition
method), 304

to_symmetric_function()
(sage.combinat.chas.fsym.FreeSymmetricFunctions.Fundamental.Element
method), 127

to_symmetric_function()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1389

to_symmetric_function()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ParentMethods
method), 1393

3868 Index

Combinatorics, Release 9.7

to_symmetric_function()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Complete
method), 1396

to_symmetric_function()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBases.ParentMethods
method), 1405

to_symmetric_function()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Bases.ElementMethods
method), 1443

to_symmetric_function()
(sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions.Monomial.Element
method), 1456

to_symmetric_function()
(sage.combinat.ncsym.bases.NCSymBases.ElementMethods
method), 1474

to_symmetric_function()
(sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w
method), 1486

to_symmetric_function()
(sage.combinat.ncsym.dual.SymmetricFunctionsNonCommutingVariablesDual.w.Element
method), 1483

to_symmetric_function()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.elementary.Element
method), 1491

to_symmetric_function()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.homogeneous.Element
method), 1492

to_symmetric_function()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.monomial.Element
method), 1494

to_symmetric_function()
(sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables.powersum.Element
method), 1498

to_symmetric_function_on_basis()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ParentMethods
method), 1393

to_symmetric_function_on_basis()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Complete
method), 1396

to_symmetric_function_on_basis()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.dualQuasisymmetric_Schur
method), 1422

to_symmetric_function_on_basis()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.dualYoungQuasisymmetric_Schur
method), 1424

to_symmetric_function_on_basis()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Ribbon
method), 1419

to_symmetric_function_on_generators()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.MultiplicativeBases.ParentMethods
method), 1405

to_symmetric_group_algebra()
(sage.combinat.descent_algebra.DescentAlgebraBases.ElementMethods
method), 566

to_symmetric_group_algebra()
(sage.combinat.descent_algebra.DescentAlgebraBases.ParentMethods
method), 567

to_symmetric_group_algebra()
(sage.combinat.fqsym.FQSymBases.ElementMethods
method), 1002

to_symmetric_group_algebra()
(sage.combinat.fqsym.FreeQuasisymmetricFunctions.F.Element
method), 1008

to_symmetric_group_algebra()
(sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1390

to_symmetric_group_algebra_on_basis()
(sage.combinat.descent_algebra.DescentAlgebra.D
method), 563

to_symmetric_group_algebra_on_basis()
(sage.combinat.descent_algebra.DescentAlgebraBases.ParentMethods
method), 567

to_tableau() (sage.combinat.crystals.affine_factorization.AffineFactorizationCrystal.Element
method), 346

to_tableau() (sage.combinat.crystals.kirillov_reshetikhin.KirillovReshetikhinGenericCrystalElement
method), 453

to_tableau() (sage.combinat.crystals.tensor_product_element.CrystalOfBKKTableauxElement
method), 536

to_tableau() (sage.combinat.crystals.tensor_product_element.CrystalOfTableauxElement
method), 537

to_tableau() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
method), 1058

to_tableau() (sage.combinat.path_tableaux.dyck_path.DyckPath
method), 1586

to_tableau() (sage.combinat.path_tableaux.semistandard.SemistandardPathTableau
method), 1600

to_tableau() (sage.combinat.plane_partition.PlanePartition
method), 1605

to_tableau() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2099

to_tableau() (sage.combinat.skew_tableau.SkewTableau
method), 3044

to_tableau_by_shape()
(sage.combinat.permutation.Permutation
method), 1800

to_tableaux_words()
(sage.combinat.multiset_partition_into_sets_ordered.MinimajCrystal.Element
method), 1332

to_tableaux_words()
(sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1341

to_tamari_sorting_tuple()
(sage.combinat.dyck_word.DyckWord method),
797

to_tensor_product_of_kirillov_reshetikhin_crystals()
(sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2119

to_tensor_product_of_kirillov_reshetikhin_crystals()

Index 3869

Combinatorics, Release 9.7

(sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.TensorProductOfKirillovReshetikhinTableauxElement
method), 2154

to_tensor_product_of_kirillov_reshetikhin_tableaux()
(sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2120

to_tikz() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1558

to_tilting() (sage.combinat.binary_tree.BinaryTree
method), 105

to_translation_left()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupPW0Element
method), 2547

to_translation_left()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2563

to_translation_right()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.ExtendedAffineWeylGroupW0PElement
method), 2551

to_translation_right()
(sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class.Realizations.ElementMethods
method), 2564

to_transposition_sequence()
(sage.combinat.k_tableau.StrongTableau
method), 1226

to_triangulation() (sage.combinat.dyck_word.DyckWord_complete
method), 811

to_triangulation_as_graph()
(sage.combinat.dyck_word.DyckWord_complete
method), 811

to_type_a() (sage.combinat.affine_permutation.AffinePermutationTypeA
method), 39

to_type_a() (sage.combinat.affine_permutation.AffinePermutationTypeC
method), 42

to_type_a() (sage.combinat.affine_permutation.AffinePermutationTypeG
method), 45

to_undirected_graph()
(sage.combinat.binary_tree.BinaryTree
method), 106

to_undirected_graph()
(sage.combinat.ordered_tree.OrderedTree
method), 1531

to_unmarked_list() (sage.combinat.k_tableau.StrongTableau
method), 1226

to_unmarked_standard_list()
(sage.combinat.k_tableau.StrongTableau
method), 1226

to_virtual() (sage.combinat.rigged_configurations.rc_crystal.CrystalOfNonSimplyLacedRC
method), 2100

to_virtual() (sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfNonSimplyLacedRC
method), 2105

to_virtual() (sage.combinat.rigged_configurations.rigged_configurations.RCNonSimplyLaced
method), 2132

to_virtual() (sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Dual
method), 2134

to_virtual() (sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Even
method), 2135

to_virtual_configuration()
(sage.combinat.rigged_configurations.rigged_configuration_element.RCNonSimplyLacedElement
method), 2125

to_weight() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2292

to_weight_space() (sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ElementMethods
method), 2603

to_weight_space() (sage.combinat.root_system.weight_space.WeightSpaceElement
method), 2615

to_weyl_group_element()
(sage.combinat.affine_permutation.AffinePermutation
method), 28

to_word() (sage.combinat.crystals.fully_commutative_stable_grothendieck.DecreasingHeckeFactorization
method), 382

to_word() (sage.combinat.growth.GrowthDiagram
method), 1079

to_word() (sage.combinat.path_tableaux.dyck_path.DyckPath
method), 1587

to_word() (sage.combinat.ribbon_tableau.RibbonTableau
method), 2061

to_word() (sage.combinat.skew_tableau.SkewTableau
method), 3044

to_word() (sage.combinat.tableau.Tableau method),
3335

to_word() (sage.combinat.tableau_tuple.TableauTuple
method), 3380

to_word_by_column()
(sage.combinat.skew_tableau.SkewTableau
method), 3045

to_word_by_column() (sage.combinat.tableau.Tableau
method), 3335

to_word_by_column()
(sage.combinat.tableau_tuple.TableauTuple
method), 3380

to_word_by_row() (sage.combinat.skew_tableau.SkewTableau
method), 3045

to_word_by_row() (sage.combinat.tableau.Tableau
method), 3336

to_word_by_row() (sage.combinat.tableau_tuple.TableauTuple
method), 3380

to_word_path() (in module
sage.combinat.nu_dyck_word), 1520

to_wqsym() (sage.combinat.fqsym.FQSymBases.ElementMethods
method), 1002

to_wqsym() (sage.combinat.ncsym.bases.NCSymBases.ElementMethods
method), 1475

Tokuyama_coefficient()
(sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
method), 1055

Tokuyama_formula() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatternsTopRow
method), 1059

top() (sage.combinat.posets.hasse_diagram.HasseDiagram

3870 Index

Combinatorics, Release 9.7

method), 1861
top() (sage.combinat.posets.posets.FinitePoset method),

2017
top_garnir_tableau()

(sage.combinat.partition.Partition method),
1659

top_garnir_tableau()
(sage.combinat.partition_tuple.PartitionTuple
method), 1734

top_left_empty_cell()
(sage.combinat.matrices.latin.LatinSquare
method), 1313

top_row() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPatternsTopRow
method), 1060

topological_entropy()
(sage.combinat.words.finite_word.FiniteWord_class
method), 3540

total_q_order() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2644

touch_composition()
(sage.combinat.dyck_word.DyckWord method),
797

touch_composition()
(sage.combinat.parking_functions.ParkingFunction
method), 1579

touch_points() (sage.combinat.dyck_word.DyckWord
method), 798

touch_points() (sage.combinat.parking_functions.ParkingFunction
method), 1580

trace() (sage.combinat.designs.incidence_structures.IncidenceStructure
method), 680

track_mutations() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 191

Transducer (class in sage.combinat.finite_state_machine),
964

TransducerGenerators (class in
sage.combinat.finite_state_machine_generators),
982

TransducerGenerators.RecursionRule (class in
sage.combinat.finite_state_machine_generators),
991

transition() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 959

transition_function()
(sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3613

transition_function()
(sage.combinat.words.suffix_trees.SuffixTrie
method), 3618

transition_function_dictionary()
(sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3613

transition_matrix()
(sage.combinat.sf.dual.SymmetricFunctionAlgebra_dual

method), 2749
transition_matrix()

(sage.combinat.sf.hall_littlewood.HallLittlewood_generic
method), 2762

transition_matrix()
(sage.combinat.sf.new_kschur.KBoundedSubspaceBases.ParentMethods
method), 2834

transition_matrix()
(sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic
method), 2908

transitions() (sage.combinat.finite_state_machine.FiniteStateMachine
method), 960

transitive_ideal() (in module sage.combinat.tools),
3413

translate() (sage.combinat.e_one_star.Patch method),
830

translated_copies()
(sage.combinat.tiling.Polyomino method),
3400

translated_copies_intersection()
(sage.combinat.tiling.Polyomino method),
3402

translation() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2427

translation_factors()
(sage.combinat.root_system.cartan_type.CartanType_affine
method), 2231

transport() (sage.combinat.species.characteristic_species.CharacteristicSpeciesStructure
method), 3136

transport() (sage.combinat.species.composition_species.CompositionSpeciesStructure
method), 3138

transport() (sage.combinat.species.cycle_species.CycleSpeciesStructure
method), 3140

transport() (sage.combinat.species.linear_order_species.LinearOrderSpeciesStructure
method), 3154

transport() (sage.combinat.species.partition_species.PartitionSpeciesStructure
method), 3156

transport() (sage.combinat.species.permutation_species.PermutationSpeciesStructure
method), 3158

transport() (sage.combinat.species.product_species.ProductSpeciesStructure
method), 3161

transport() (sage.combinat.species.set_species.SetSpeciesStructure
method), 3177

transport() (sage.combinat.species.structure.SpeciesStructureWrapper
method), 3188

transport() (sage.combinat.species.subset_species.SubsetSpeciesStructure
method), 3191

transpose() (in module sage.combinat.hillman_grassl),
1121

transpose() (sage.combinat.alternating_sign_matrix.AlternatingSignMatrix
method), 62

transpose() (sage.combinat.plane_partition.PlanePartition
method), 1605

transposed() (sage.combinat.recognizable_series.RecognizableSeries

Index 3871

Combinatorics, Release 9.7

method), 2049
transposition() (sage.combinat.finite_state_machine.FiniteStateMachine

method), 960
transpositions_to_standard_strong()

(sage.combinat.k_tableau.StrongTableaux
class method), 1234

transversal_design() (in module
sage.combinat.designs.orthogonal_arrays),
700

TransversalDesign (class in
sage.combinat.designs.orthogonal_arrays),
696

tree_factorial() (sage.combinat.abstract_tree.AbstractTree
method), 24

triangulation() (sage.combinat.path_tableaux.frieze.FriezePattern
method), 1592

triangulation() (sage.combinat.sine_gordon.SineGordonYsystem
method), 3007

trie_type_dict() (sage.combinat.words.suffix_trees.ImplicitSuffixTree
method), 3614

trivial_covering_design() (in module
sage.combinat.designs.covering_design),
599

tropical_plucker_relation() (in module
sage.combinat.crystals.pbw_datum), 514

truncate() (sage.combinat.crystals.kyoto_path_model.KyotoPathModel.Element
method), 460

truncate() (sage.combinat.crystals.polyhedral_realization.InfinityCrystalAsPolyhedralRealization.Element
method), 518

TruncatedStaircases (class in
sage.combinat.alternating_sign_matrix),
64

TruncatedStaircases_nlastcolumn (class in
sage.combinat.alternating_sign_matrix), 64

tunnels() (sage.combinat.dyck_word.DyckWord_complete
method), 812

tupleofwords_to_wordoftuples() (in module
sage.combinat.finite_state_machine), 977

Tuples (class in sage.combinat.tuple), 3413
tuples() (in module sage.combinat.combinat), 275
Tuples_sk (in module sage.combinat.tuple), 3414
turyn_1965_3x3xK() (in module

sage.combinat.designs.difference_family),
650

Tw() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation
method), 2276

Tw_inverse() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation
method), 2277

twelve_n_minus_ten() (in module
sage.combinat.designs.steiner_quadruple_systems),
726

twin_prime_powers_difference_set() (in module
sage.combinat.designs.difference_family), 651

twist() (sage.combinat.root_system.fusion_ring.FusionRing.Element

method), 2639
twist() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors

method), 2274
twist() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials

method), 2324
twisted_demazure_lusztig_operator_on_basis()

(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2409

twisted_demazure_lusztig_operators()
(sage.combinat.root_system.root_lattice_realization_algebras.Algebras.ParentMethods
method), 2410

twisting_number() (sage.combinat.binary_tree.BinaryTree
method), 106

twists_matrix() (sage.combinat.root_system.fusion_ring.FusionRing
method), 2645

two_n() (in module sage.combinat.designs.steiner_quadruple_systems),
727

TwoGraph (class in sage.combinat.designs.twographs),
730

twograph_descendant() (in module
sage.combinat.designs.twographs), 731

type() (sage.combinat.e_one_star.Face method), 823
type() (sage.combinat.root_system.cartan_type.CartanType_abstract

method), 2226
type() (sage.combinat.root_system.cartan_type.CartanType_standard_affine

method), 2239
type() (sage.combinat.root_system.cartan_type.CartanType_standard_finite

method), 2241
type() (sage.combinat.root_system.coxeter_type.CoxeterTypeFromCartanType

method), 2261
type() (sage.combinat.root_system.type_A_infinity.CartanType

method), 2486
type() (sage.combinat.root_system.type_marked.CartanType

method), 2587
type() (sage.combinat.root_system.type_reducible.CartanType

method), 2594
type() (sage.combinat.root_system.type_relabel.CartanType

method), 2597
type() (sage.combinat.root_system.type_super_A.CartanType

method), 2479
type() (sage.combinat.sine_gordon.SineGordonYsystem

method), 3008
typeI_matrix_difference_set() (in module

sage.combinat.matrices.hadamard_matrix),
1300

U
umbral_operation() (in module sage.combinat.misc),

1329
unbounded_map() (sage.combinat.combinatorial_map.CombinatorialMap

method), 286
uncompactify() (sage.combinat.words.suffix_trees.ImplicitSuffixTree

method), 3614

3872 Index

Combinatorics, Release 9.7

under() (sage.combinat.binary_tree.BinaryTree
method), 107

under() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1032

under_decomposition()
(sage.combinat.binary_tree.BinaryTree
method), 108

underlying_set() (sage.combinat.subset.Subsets_s
method), 3200

unhide() (sage.combinat.misc.DoublyLinkedList
method), 1328

uninitialized() (in module
sage.combinat.species.series), 3176

union() (sage.combinat.combinat.CombinatorialClass
method), 257

union() (sage.combinat.e_one_star.Patch method), 830
UnionCombinatorialClass (class in

sage.combinat.combinat), 260
unit() (sage.combinat.root_system.weyl_group.WeylGroup_gens

method), 2656
UnitDiagramMixin (class in

sage.combinat.diagram_algebras), 769
universal_extension()

(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 191

UnknownSeriesOrder (class in
sage.combinat.species.series_order), 3176

unlabelled_trees() (sage.combinat.binary_tree.BinaryTrees_all
method), 110

unlabelled_trees() (sage.combinat.binary_tree.LabelledBinaryTrees
method), 116

unlabelled_trees() (sage.combinat.ordered_tree.LabelledOrderedTrees
method), 1524

unlabelled_trees() (sage.combinat.ordered_tree.OrderedTrees_all
method), 1532

unlabelled_trees() (sage.combinat.rooted_tree.LabelledRootedTrees_all
method), 2662

unlabelled_trees() (sage.combinat.rooted_tree.RootedTrees_all
method), 2667

unmatched_places() (in module
sage.combinat.tableau), 3340

unordered_tuples() (in module
sage.combinat.combinat), 276

UnorderedTuples (class in sage.combinat.tuple), 3414
UnorderedTuples_sk (in module sage.combinat.tuple),

3414
unprimed() (sage.combinat.shifted_primed_tableau.PrimedEntry

method), 2977
unrank() (in module sage.combinat.ranker), 2040
unrank() (sage.combinat.cartesian_product.CartesianProduct_iters

method), 122
unrank() (sage.combinat.combinat.CombinatorialClass

method), 257
unrank() (sage.combinat.combinat.UnionCombinatorialClass

method), 261
unrank() (sage.combinat.combination.Combinations_set

method), 283
unrank() (sage.combinat.combination.Combinations_setk

method), 283
unrank() (sage.combinat.permutation.Permutations_mset

method), 1805
unrank() (sage.combinat.permutation.StandardPermutations_n

method), 1817
unrank() (sage.combinat.subset.Subsets_s method),

3200
unrank() (sage.combinat.subset.Subsets_sk method),

3202
unrank() (sage.combinat.subset.SubsetsSorted method),

3198
unrank_from_list() (in module

sage.combinat.ranker), 2041
unshuffle_iterator() (in module

sage.combinat.combinat), 277
unwrap() (sage.combinat.posets.posets.FinitePoset

method), 2017
up() (sage.combinat.partition.Partition method), 1660
up() (sage.combinat.partition_tuple.PartitionTuple

method), 1735
up() (sage.combinat.tableau.StandardTableau method),

3295
up() (sage.combinat.tableau_tuple.TableauTuple

method), 3380
up_list() (sage.combinat.partition.Partition method),

1660
up_list() (sage.combinat.partition_tuple.PartitionTuple

method), 1735
up_list() (sage.combinat.tableau.StandardTableau

method), 3295
update_ndw_symbols() (in module

sage.combinat.nu_dyck_word), 1520
UpDownPoset() (sage.combinat.posets.poset_examples.Posets

static method), 1941
upper_binary_tree()

(sage.combinat.interval_posets.TamariIntervalPoset
method), 1186

upper_cluster() (sage.combinat.cluster_complex.ClusterComplexFacet
method), 242

upper_contains_interval()
(sage.combinat.interval_posets.TamariIntervalPoset
method), 1186

upper_covers() (sage.combinat.posets.posets.FinitePoset
method), 2018

upper_covers_iterator()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1861

upper_covers_iterator()
(sage.combinat.posets.posets.FinitePoset
method), 2018

Index 3873

Combinatorics, Release 9.7

upper_dyck_word() (sage.combinat.interval_posets.TamariIntervalPoset
method), 1187

upper_heights() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1560

upper_hook() (sage.combinat.partition.Partition
method), 1660

upper_hook_lengths()
(sage.combinat.partition.Partition method),
1660

upper_path() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1560

upper_root_configuration()
(sage.combinat.subword_complex.SubwordComplexFacet
method), 3227

upper_widths() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1561

UpperChristoffelWord()
(sage.combinat.words.word_generators.WordGenerator
method), 3645

UpperMechanicalWord()
(sage.combinat.words.word_generators.WordGenerator
method), 3645

urban_renewals() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 192

use_c_vectors() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 193

use_d_vectors() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 193

use_fpolys() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 194

use_g_vectors() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 195

V
v() (sage.combinat.designs.covering_design.CoveringDesign

method), 598
v_4_1_BIBD() (in module sage.combinat.designs.bibd),

578
v_4_1_rbibd() (in module

sage.combinat.designs.resolvable_bibd),
581

v_5_1_BIBD() (in module sage.combinat.designs.bibd),
579

v_eval_n() (sage.combinat.k_regular_sequence.RecurrenceParser
method), 1203

vacancy_number() (sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement
method), 2130

vacancy_numbers (sage.combinat.rigged_configurations.rigged_partition.RiggedPartition
attribute), 2146

val() (sage.combinat.multiset_partition_into_sets_ordered.MinimajCrystal
method), 1332

valleys() (sage.combinat.dyck_word.DyckWord
method), 798

vals_in_col() (sage.combinat.matrices.latin.LatinSquare
method), 1313

vals_in_row() (sage.combinat.matrices.latin.LatinSquare
method), 1313

value (sage.combinat.crystals.letters.EmptyLetter
attribute), 475

value (sage.combinat.crystals.letters.Letter attribute),
476

value (sage.combinat.crystals.letters.LetterTuple at-
tribute), 476

value (sage.combinat.crystals.letters.LetterWrapped at-
tribute), 477

value (sage.combinat.crystals.spins.Spin attribute), 521
value() (sage.combinat.affine_permutation.AffinePermutationTypeA

method), 39
value() (sage.combinat.affine_permutation.AffinePermutationTypeC

method), 43
value() (sage.combinat.affine_permutation.AffinePermutationTypeG

method), 45
value() (sage.combinat.root_system.fundamental_group.FundamentalGroupElement

method), 2573
values() (sage.combinat.k_regular_sequence.RecurrenceParser

method), 1203
variable_class() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 196
variable_class_iter()

(sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed
method), 196

variable_names() (sage.combinat.free_dendriform_algebra.FreeDendriformAlgebra
method), 1032

variable_names() (sage.combinat.free_prelie_algebra.FreePreLieAlgebra
method), 1039

variable_names() (sage.combinat.grossman_larson_algebras.GrossmanLarsonAlgebra
method), 1113

vector() (sage.combinat.e_one_star.Face method), 823
vector_space() (sage.combinat.words.paths.WordPaths_all

method), 3603
VectorPartition (class in

sage.combinat.vector_partition), 3447
VectorPartitions (class in

sage.combinat.vector_partition), 3447
verify_representation()

(sage.combinat.symmetric_group_representations.SymmetricGroupRepresentation_generic_class
method), 3272

verschiebung() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Bases.ElementMethods
method), 1390

verschiebung() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Elementary.Element
method), 1399

verschiebung() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Phi.Element
method), 1411

verschiebung() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Psi.Element
method), 1413

verschiebung() (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions.Ribbon.Element
method), 1417

3874 Index

Combinatorics, Release 9.7

verschiebung() (sage.combinat.sf.elementary.SymmetricFunctionAlgebra_elementary.Element
method), 2754

verschiebung() (sage.combinat.sf.powersum.SymmetricFunctionAlgebra_power.Element
method), 2861

verschiebung() (sage.combinat.sf.schur.SymmetricFunctionAlgebra_schur.Element
method), 2869

verschiebung() (sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element
method), 2948

verschiebung() (sage.combinat.sf.witt.SymmetricFunctionAlgebra_witt
method), 2969

vertex_relabelling_dict()
(sage.combinat.yang_baxter_graph.YangBaxterGraph_generic
method), 3666

vertex_relabelling_dict()
(sage.combinat.yang_baxter_graph.YangBaxterGraph_partition
method), 3667

vertical_composition()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1907

vertical_decomposition()
(sage.combinat.posets.hasse_diagram.HasseDiagram
method), 1861

vertical_decomposition()
(sage.combinat.posets.lattices.FiniteLatticePoset
method), 1908

vertical_dominoes_removed() (in module
sage.combinat.crystals.kirillov_reshetikhin),
456

vertical_flip() (sage.combinat.tableau.Tableau
method), 3336

vertices() (sage.combinat.crystals.alcove_path.CrystalOfAlcovePaths
method), 354

vertices() (sage.combinat.growth.RuleBinaryWord
method), 1083

vertices() (sage.combinat.growth.RuleDomino
method), 1089

vertices() (sage.combinat.growth.RuleLLMS method),
1092

vertices() (sage.combinat.growth.RulePartitions
method), 1093

vertices() (sage.combinat.growth.RuleShiftedShapes
method), 1099

vertices() (sage.combinat.growth.RuleSylvester
method), 1105

vertices() (sage.combinat.growth.RuleYoungFibonacci
method), 1107

vertices() (sage.combinat.sine_gordon.SineGordonYsystem
method), 3008

vertices() (sage.combinat.yang_baxter_graph.YangBaxterGraph_generic
method), 3666

vertices_in_root_space()
(sage.combinat.root_system.associahedron.Associahedron_class_base
method), 2165

virasoro_central_charge()

(sage.combinat.root_system.fusion_ring.FusionRing
method), 2645

virtual() (sage.combinat.rigged_configurations.rc_crystal.CrystalOfNonSimplyLacedRC
method), 2101

virtual() (sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfNonSimplyLacedRC
method), 2105

virtual() (sage.combinat.rigged_configurations.rigged_configurations.RCNonSimplyLaced
method), 2133

virtual() (sage.combinat.rigged_configurations.rigged_configurations.RCTypeA2Even
method), 2136

VirtualKleberTree (class in
sage.combinat.rigged_configurations.kleber_tree),
2084

W
w() (sage.combinat.sf.sf.SymmetricFunctions method),

2898
W0P() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class

method), 2568
W0Pv() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class

method), 2568
Wait() (sage.combinat.finite_state_machine_generators.TransducerGenerators

method), 991
weak_covers() (sage.combinat.core.Core method), 333
weak_excedences() (sage.combinat.permutation.Permutation

method), 1800
weak_le() (sage.combinat.core.Core method), 333
WeakReversePlanePartition (class in

sage.combinat.hillman_grassl), 1116
WeakReversePlanePartitions (class in

sage.combinat.hillman_grassl), 1119
WeakTableau() (in module sage.combinat.k_tableau),

1235
WeakTableau_abstract (class in

sage.combinat.k_tableau), 1237
WeakTableau_bounded (class in

sage.combinat.k_tableau), 1240
WeakTableau_core (class in sage.combinat.k_tableau),

1242
WeakTableau_factorized_permutation (class in

sage.combinat.k_tableau), 1246
WeakTableaux() (in module sage.combinat.k_tableau),

1249
WeakTableaux_abstract (class in

sage.combinat.k_tableau), 1250
WeakTableaux_bounded (class in

sage.combinat.k_tableau), 1252
WeakTableaux_core (class in

sage.combinat.k_tableau), 1253
WeakTableaux_factorized_permutation (class in

sage.combinat.k_tableau), 1254
weight() (in module sage.combinat.sf.kfpoly), 2800
weight() (sage.combinat.composition_tableau.CompositionTableau

method), 313

Index 3875

Combinatorics, Release 9.7

weight() (sage.combinat.crystals.affinization.AffinizationOfCrystal.Element
method), 350

weight() (sage.combinat.crystals.alcove_path.CrystalOfAlcovePathsElement
method), 357

weight() (sage.combinat.crystals.alcove_path.InfinityCrystalOfAlcovePaths.Element
method), 360

weight() (sage.combinat.crystals.direct_sum.DirectSumOfCrystals.Element
method), 370

weight() (sage.combinat.crystals.elementary_crystals.ComponentCrystal.Element
method), 372

weight() (sage.combinat.crystals.elementary_crystals.ElementaryCrystal.Element
method), 375

weight() (sage.combinat.crystals.elementary_crystals.RCrystal.Element
method), 377

weight() (sage.combinat.crystals.elementary_crystals.TCrystal.Element
method), 379

weight() (sage.combinat.crystals.fast_crystals.FastCrystal.Element
method), 381

weight() (sage.combinat.crystals.fully_commutative_stable_grothendieck.DecreasingHeckeFactorization
method), 383

weight() (sage.combinat.crystals.generalized_young_walls.CrystalOfGeneralizedYoungWallsElement
method), 388

weight() (sage.combinat.crystals.generalized_young_walls.GeneralizedYoungWall
method), 394

weight() (sage.combinat.crystals.induced_structure.InducedCrystal.Element
method), 402

weight() (sage.combinat.crystals.induced_structure.InducedFromCrystal.Element
method), 404

weight() (sage.combinat.crystals.infinity_crystals.InfinityCrystalOfTableaux.Element
method), 409

weight() (sage.combinat.crystals.kac_modules.CrystalOfKacModule.Element
method), 413

weight() (sage.combinat.crystals.kac_modules.CrystalOfOddNegativeRoots.Element
method), 416

weight() (sage.combinat.crystals.kyoto_path_model.KyotoPathModel.Element
method), 461

weight() (sage.combinat.crystals.letters.BKKLetter
method), 462

weight() (sage.combinat.crystals.letters.Crystal_of_letters_type_A_element
method), 466

weight() (sage.combinat.crystals.letters.Crystal_of_letters_type_B_element
method), 467

weight() (sage.combinat.crystals.letters.Crystal_of_letters_type_C_element
method), 468

weight() (sage.combinat.crystals.letters.Crystal_of_letters_type_D_element
method), 469

weight() (sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element
method), 470

weight() (sage.combinat.crystals.letters.Crystal_of_letters_type_E6_element_dual
method), 471

weight() (sage.combinat.crystals.letters.Crystal_of_letters_type_E7_element
method), 472

weight() (sage.combinat.crystals.letters.Crystal_of_letters_type_G_element
method), 474

weight() (sage.combinat.crystals.letters.EmptyLetter
method), 475

weight() (sage.combinat.crystals.letters.QueerLetter_element
method), 478

weight() (sage.combinat.crystals.littelmann_path.CrystalOfLSPaths.Element
method), 483

weight() (sage.combinat.crystals.littelmann_path.InfinityCrystalOfLSPaths.Element
method), 490

weight() (sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomialsElement
method), 495

weight() (sage.combinat.crystals.monomial_crystals.NakajimaMonomial
method), 500

weight() (sage.combinat.crystals.multisegments.InfinityCrystalOfMultisegments.Element
method), 504

weight() (sage.combinat.crystals.pbw_crystal.PBWCrystalElement
method), 512

weight() (sage.combinat.crystals.pbw_datum.PBWDatum
method), 513

weight() (sage.combinat.crystals.spins.Spin method),
521

weight() (sage.combinat.crystals.star_crystal.StarCrystal.Element
method), 526

weight() (sage.combinat.crystals.tensor_product_element.InfinityQueerCrystalOfTableauxElement
method), 541

weight() (sage.combinat.crystals.tensor_product_element.TensorProductOfCrystalsElement
method), 543

weight() (sage.combinat.finite_state_machine_generators.TransducerGenerators
method), 996

weight() (sage.combinat.gelfand_tsetlin_patterns.GelfandTsetlinPattern
method), 1058

weight() (sage.combinat.k_tableau.StrongTableau
method), 1227

weight() (sage.combinat.k_tableau.WeakTableau_abstract
method), 1239

weight() (sage.combinat.multiset_partition_into_sets_ordered.OrderedMultisetPartitionIntoSets
method), 1341

weight() (sage.combinat.partition_kleshchev.KleshchevCrystalMixin
method), 1699

weight() (sage.combinat.ribbon_tableau.MultiSkewTableau
method), 2060

weight() (sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement
method), 2099

weight() (sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfNonSimplyLacedRC.Element
method), 2104

weight() (sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfRiggedConfigurations.Element
method), 2107

weight() (sage.combinat.rigged_configurations.rigged_configuration_element.KRRiggedConfigurationElement
method), 2122

weight() (sage.combinat.rigged_configurations.rigged_configuration_element.RCHighestWeightElement
method), 2124

weight() (sage.combinat.rigged_configurations.rigged_configuration_element.RCHWNonSimplyLacedElement
method), 2122

weight() (sage.combinat.root_system.fusion_ring.FusionRing.Element
method), 2640

3876 Index

Combinatorics, Release 9.7

weight() (sage.combinat.sf.ns_macdonald.AugmentedLatticeDiagramFilling
method), 2845

weight() (sage.combinat.shifted_primed_tableau.CrystalElementShiftedPrimedTableau
method), 2976

weight() (sage.combinat.shifted_primed_tableau.ShiftedPrimedTableau
method), 2981

weight() (sage.combinat.skew_tableau.SkewTableau
method), 3045

weight() (sage.combinat.tableau.Tableau method),
3336

weight_cone() (sage.combinat.subword_complex.SubwordComplexFacet
method), 3228

weight_configuration()
(sage.combinat.subword_complex.SubwordComplexFacet
method), 3228

weight_in_root_lattice()
(sage.combinat.crystals.monomial_crystals.NakajimaMonomial
method), 501

weight_lattice() (sage.combinat.root_system.integrable_representations.IntegrableRepresentation
method), 2293

weight_lattice() (sage.combinat.root_system.root_system.RootSystem
method), 2469

weight_lattice_realization()
(sage.combinat.crystals.direct_sum.DirectSumOfCrystals
method), 370

weight_lattice_realization()
(sage.combinat.crystals.elementary_crystals.ComponentCrystal
method), 373

weight_lattice_realization()
(sage.combinat.crystals.elementary_crystals.ElementaryCrystal
method), 375

weight_lattice_realization()
(sage.combinat.crystals.elementary_crystals.RCrystal
method), 377

weight_lattice_realization()
(sage.combinat.crystals.elementary_crystals.TCrystal
method), 379

weight_lattice_realization()
(sage.combinat.crystals.kyoto_path_model.KyotoPathModel
method), 461

weight_lattice_realization()
(sage.combinat.crystals.littelmann_path.CrystalOfLSPaths
method), 483

weight_lattice_realization()
(sage.combinat.crystals.littelmann_path.InfinityCrystalOfLSPaths
method), 491

weight_lattice_realization()
(sage.combinat.crystals.multisegments.InfinityCrystalOfMultisegments
method), 504

weight_lattice_realization()
(sage.combinat.crystals.tensor_product.FullTensorProductOfCrystals
method), 530

weight_lattice_realization()
(sage.combinat.rigged_configurations.rc_crystal.CrystalOfRiggedConfigurations

method), 2103
weight_lattice_realization()

(sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfRiggedConfigurations
method), 2108

weight_multiplicities()
(sage.combinat.root_system.weyl_characters.WeylCharacterRing.Element
method), 2625

weight_ring() (sage.combinat.species.composition_species.CompositionSpecies
method), 3138

weight_ring() (sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies
method), 3142

weight_ring() (sage.combinat.species.product_species.ProductSpecies
method), 3159

weight_ring() (sage.combinat.species.recursive_species.CombinatorialSpecies
method), 3162

weight_ring() (sage.combinat.species.species.GenericCombinatorialSpecies
method), 3182

weight_ring() (sage.combinat.species.sum_species.SumSpecies
method), 3192

weight_space() (sage.combinat.root_system.root_system.RootSystem
method), 2469

weighted() (sage.combinat.species.species.GenericCombinatorialSpecies
method), 3182

weighted_composition()
(sage.combinat.species.generating_series.CycleIndexSeries
method), 3148

weighted_size() (sage.combinat.partition.Partition
method), 1661

WeightedIntegerVectors (class in
sage.combinat.integer_vector_weighted),
1149

WeightedIntegerVectors_all (class in
sage.combinat.integer_vector_weighted),
1149

WeightLatticeRealizations (class in
sage.combinat.root_system.weight_lattice_realizations),
2600

WeightLatticeRealizations.ElementMethods
(class in sage.combinat.root_system.weight_lattice_realizations),
2601

WeightLatticeRealizations.ParentMethods (class
in sage.combinat.root_system.weight_lattice_realizations),
2603

WeightRing (class in sage.combinat.root_system.weyl_characters),
2616

WeightRing.Element (class in
sage.combinat.root_system.weyl_characters),
2616

WeightSpace (class in
sage.combinat.root_system.weight_space),
2610

WeightSpaceElement (class in
sage.combinat.root_system.weight_space),
2614

Index 3877

Combinatorics, Release 9.7

Weingarten_function()
(sage.combinat.perfect_matching.PerfectMatching
method), 1742

Weingarten_matrix()
(sage.combinat.perfect_matching.PerfectMatchings
method), 1746

weyl_action() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2428

weyl_character_ring()
(sage.combinat.root_system.weyl_characters.WeightRing
method), 2620

weyl_dimension() (sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations.ParentMethods
method), 2609

weyl_group() (sage.combinat.affine_permutation.AffinePermutationGroupGeneric
method), 32

weyl_group() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods
method), 2455

weyl_group() (sage.combinat.root_system.weyl_group.ClassicalWeylSubgroup
method), 2647

weyl_group_action()
(sage.combinat.root_system.weyl_characters.WeightRing.Element
method), 2618

weyl_group_representation()
(sage.combinat.crystals.littelmann_path.CrystalOfProjectedLevelZeroLSPaths.Element
method), 487

weyl_stabilizer() (sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ElementMethods
method), 2429

WeylCharacterRing (class in
sage.combinat.root_system.weyl_characters),
2620

WeylCharacterRing.Element (class in
sage.combinat.root_system.weyl_characters),
2622

WeylDim() (in module
sage.combinat.root_system.root_system),
2470

WeylGroup() (in module
sage.combinat.root_system.weyl_group),
2647

WeylGroup_gens (class in
sage.combinat.root_system.weyl_group),
2652

WeylGroup_permutation (class in
sage.combinat.root_system.weyl_group),
2656

WeylGroup_permutation.Element (class in
sage.combinat.root_system.weyl_group),
2656

WeylGroupElement (class in
sage.combinat.root_system.weyl_group),
2649

WF() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class
method), 2568

WF_to_PW0_func() (sage.combinat.root_system.extended_affine_weyl_group.ExtendedAffineWeylGroup_Class

method), 2568
whitney_homology_character()

(sage.combinat.sf.sfa.SymmetricFunctionsBases.ParentMethods
method), 2962

width() (sage.combinat.nu_dyck_word.NuDyckWord
method), 1517

width() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1561

width() (sage.combinat.path_tableaux.frieze.FriezePattern
method), 1592

width() (sage.combinat.posets.posets.FinitePoset
method), 2018

width() (sage.combinat.ribbon_shaped_tableau.RibbonShapedTableau
method), 2053

width() (sage.combinat.words.paths.FiniteWordPath_2d
method), 3584

width_vector() (sage.combinat.words.paths.FiniteWordPath_2d
method), 3585

widths() (sage.combinat.nu_dyck_word.NuDyckWord
method), 1517

widths() (sage.combinat.parallelogram_polyomino.ParallelogramPolyomino
method), 1561

williamson_goethals_seidel_skew_hadamard_matrix()
(in module sage.combinat.matrices.hadamard_matrix),
1300

wilson_construction() (in module
sage.combinat.designs.orthogonal_arrays),
702

with_bounds() (sage.combinat.posets.posets.FinitePoset
method), 2018

with_final_word_out()
(sage.combinat.finite_state_machine.FiniteStateMachine
method), 961

with_linear_extension()
(sage.combinat.posets.posets.FinitePoset
method), 2019

with_output() (sage.combinat.finite_state_machine.Automaton
method), 876

within_from_to() (in module
sage.combinat.fast_vector_partitions), 839

without_bounds() (sage.combinat.posets.posets.FinitePoset
method), 2019

Witt() (sage.combinat.sf.sf.SymmetricFunctions
method), 2887

witt() (sage.combinat.sf.sf.SymmetricFunctions
method), 2898

WittDesign() (in module
sage.combinat.designs.block_design), 591

wll_gt() (sage.combinat.composition.Composition
method), 305

Word() (in module sage.combinat.words.word), 3623
word() (sage.combinat.crystals.alcove_path.RootsWithHeight

method), 361
Word() (sage.combinat.finite_state_machine_generators.AutomatonGenerators

3878 Index

Combinatorics, Release 9.7

method), 981
word() (sage.combinat.subword_complex.SubwordComplex

method), 3221
word() (sage.combinat.words.suffix_trees.ImplicitSuffixTree

method), 3614
word() (sage.combinat.words.suffix_trees.SuffixTrie

method), 3618
Word_class (class in sage.combinat.words.abstract_word),

3448
word_in (sage.combinat.finite_state_machine.FSMTransition

attribute), 890
Word_iter (class in sage.combinat.words.word), 3625
Word_iter_with_caching (class in

sage.combinat.words.word), 3626
word_out (sage.combinat.finite_state_machine.FSMTransition

attribute), 890
word_to_ordered_set_partition() (in module

sage.combinat.words.finite_word), 3542
WordDatatype (class in

sage.combinat.words.word_datatypes), 3629
WordDatatype_callable (class in

sage.combinat.words.word_infinite_datatypes),
3649

WordDatatype_callable_with_caching (class in
sage.combinat.words.word_infinite_datatypes),
3649

WordDatatype_char (class in
sage.combinat.words.word_char), 3626

WordDatatype_iter (class in
sage.combinat.words.word_infinite_datatypes),
3650

WordDatatype_iter_with_caching (class in
sage.combinat.words.word_infinite_datatypes),
3651

WordDatatype_list (class in
sage.combinat.words.word_datatypes), 3629

WordDatatype_str (class in
sage.combinat.words.word_datatypes), 3630

WordDatatype_tuple (class in
sage.combinat.words.word_datatypes), 3634

WordGenerator (class in
sage.combinat.words.word_generators), 3636

WordMorphism (class in
sage.combinat.words.morphism), 3549

wordoftuples_to_tupleofwords() (in module
sage.combinat.finite_state_machine), 977

WordOptions() (in module
sage.combinat.words.word_options), 3652

WordPaths() (in module sage.combinat.words.paths),
3601

WordPaths_all (class in sage.combinat.words.paths),
3603

WordPaths_cube_grid (class in
sage.combinat.words.paths), 3604

WordPaths_dyck (class in sage.combinat.words.paths),
3604

WordPaths_hexagonal_grid (class in
sage.combinat.words.paths), 3604

WordPaths_north_east (class in
sage.combinat.words.paths), 3604

WordPaths_square_grid (class in
sage.combinat.words.paths), 3604

WordPaths_triangle_grid (class in
sage.combinat.words.paths), 3604

WordQuasiSymmetricFunctions (class in
sage.combinat.chas.wqsym), 142

WordQuasiSymmetricFunctions.Characteristic
(class in sage.combinat.chas.wqsym), 144

WordQuasiSymmetricFunctions.Characteristic.Element
(class in sage.combinat.chas.wqsym), 145

WordQuasiSymmetricFunctions.Cone (class in
sage.combinat.chas.wqsym), 146

WordQuasiSymmetricFunctions.Monomial (class in
sage.combinat.chas.wqsym), 147

WordQuasiSymmetricFunctions.options() (in mod-
ule sage.combinat.chas.wqsym), 155

WordQuasiSymmetricFunctions.StronglyCoarser
(class in sage.combinat.chas.wqsym), 148

WordQuasiSymmetricFunctions.StronglyCoarser.Element
(class in sage.combinat.chas.wqsym), 149

WordQuasiSymmetricFunctions.StronglyFiner
(class in sage.combinat.chas.wqsym), 151

WordQuasiSymmetricFunctions.StronglyFiner.Element
(class in sage.combinat.chas.wqsym), 152

Words() (in module sage.combinat.words.words), 3660
Words_n (class in sage.combinat.words.words), 3660
WQSymBases (class in sage.combinat.chas.wqsym), 132
WQSymBases.ElementMethods (class in

sage.combinat.chas.wqsym), 132
WQSymBases.ParentMethods (class in

sage.combinat.chas.wqsym), 139
WQSymBasis_abstract (class in

sage.combinat.chas.wqsym), 140
WQSymBasis_abstract.options() (in module

sage.combinat.chas.wqsym), 140
wt_repr() (sage.combinat.root_system.weyl_characters.WeightRing

method), 2620

X
X (sage.combinat.chas.wqsym.WordQuasiSymmetricFunctions

attribute), 155
x (sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables

attribute), 1501
x() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 198
x_tableau() (sage.combinat.plane_partition.PlanePartition

method), 1606

Index 3879

Combinatorics, Release 9.7

xmax() (sage.combinat.words.paths.FiniteWordPath_2d
method), 3585

xmax() (sage.combinat.words.paths.FiniteWordPath_triangle_grid
method), 3600

xmin() (sage.combinat.words.paths.FiniteWordPath_2d
method), 3585

xmin() (sage.combinat.words.paths.FiniteWordPath_triangle_grid
method), 3600

XTree (class in sage.combinat.designs.ext_rep), 657
XTreeProcessor (class in

sage.combinat.designs.ext_rep), 658

Y
y() (sage.combinat.cluster_algebra_quiver.cluster_seed.ClusterSeed

method), 198
Y() (sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors

method), 2270
Y() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation

method), 2278
Y() (sage.combinat.root_system.non_symmetric_macdonald_polynomials.NonSymmetricMacdonaldPolynomials

method), 2318
Y_eigenvectors() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation

method), 2278
Y_lambdacheck() (sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation

method), 2279
y_tableau() (sage.combinat.plane_partition.PlanePartition

method), 1606
YangBaxterGraph() (in module

sage.combinat.yang_baxter_graph), 3662
YangBaxterGraph_generic (class in

sage.combinat.yang_baxter_graph), 3664
YangBaxterGraph_partition (class in

sage.combinat.yang_baxter_graph), 3667
ymax() (sage.combinat.words.paths.FiniteWordPath_2d

method), 3586
ymax() (sage.combinat.words.paths.FiniteWordPath_triangle_grid

method), 3600
ymin() (sage.combinat.words.paths.FiniteWordPath_2d

method), 3586
ymin() (sage.combinat.words.paths.FiniteWordPath_triangle_grid

method), 3600
young_subgroup() (sage.combinat.partition.Partition

method), 1661
young_subgroup() (sage.combinat.partition_tuple.PartitionTuple

method), 1735
young_subgroup_generators()

(sage.combinat.partition.Partition method),
1661

young_subgroup_generators()
(sage.combinat.partition_tuple.PartitionTuple
method), 1735

YoungDiagramPoset()
(sage.combinat.posets.poset_examples.Posets
static method), 1941

YoungFibonacci (sage.combinat.growth.Rules at-
tribute), 1108

YoungFibonacci() (sage.combinat.posets.poset_examples.Posets
static method), 1942

YoungRepresentation_generic (class in
sage.combinat.symmetric_group_representations),
3274

YoungRepresentation_Orthogonal (class in
sage.combinat.symmetric_group_representations),
3274

YoungRepresentation_Seminormal (class in
sage.combinat.symmetric_group_representations),
3274

YoungRepresentations_Orthogonal (class in
sage.combinat.symmetric_group_representations),
3275

YoungRepresentations_Seminormal (class in
sage.combinat.symmetric_group_representations),
3275

YoungsLattice() (sage.combinat.posets.poset_examples.Posets
static method), 1942

YoungsLatticePrincipalOrderIdeal()
(sage.combinat.posets.poset_examples.Posets
static method), 1942

YQS (sage.combinat.ncsf_qsym.qsym.QuasiSymmetricFunctions
attribute), 1460

Z
z_tableau() (sage.combinat.plane_partition.PlanePartition

method), 1606
zee() (in module sage.combinat.sf.sfa), 2964
zee() (sage.combinat.superpartition.SuperPartition

method), 3240
zero (sage.combinat.growth.RuleDomino attribute),

1089
zero (sage.combinat.growth.RulePartitions attribute),

1093
zero (sage.combinat.growth.RuleShiftedShapes at-

tribute), 1100
zero (sage.combinat.growth.RuleSylvester attribute),

1105
zero() (sage.combinat.free_module.CombinatorialFreeModule

method), 1021
zero() (sage.combinat.species.series.LazyPowerSeriesRing

method), 3176
zero_one_sequence()

(sage.combinat.partition.Partition method),
1662

zeta() (sage.combinat.posets.incidence_algebras.IncidenceAlgebra
method), 1864

zeta() (sage.combinat.posets.incidence_algebras.ReducedIncidenceAlgebra
method), 1867

zeta_polynomial() (sage.combinat.posets.posets.FinitePoset
method), 2020

3880 Index

Combinatorics, Release 9.7

ZL (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions
attribute), 1419

zonal() (sage.combinat.sf.sf.SymmetricFunctions
method), 2898

ZR (sage.combinat.ncsf_qsym.ncsf.NonCommutativeSymmetricFunctions
attribute), 1419

ZS1_iterator() (in module sage.combinat.partitions),
1741

ZS1_iterator_nk() (in module
sage.combinat.partitions), 1741

Index 3881

	Introductory material
	Thematic indexes
	Utilities
	Related topics
	Comprehensive Module List
	Comprehensive Module List
	Abstract Recursive Trees
	Affine Permutations
	Algebraic combinatorics
	Thematic tutorials
	Enumerated sets of combinatorial objects
	Groups and Algebras
	Combinatorial Representation Theory
	Operads and their algebras

	Combinatorics
	Introductory material
	Thematic indexes
	Utilities
	Related topics

	Alternating Sign Matrices
	Backtracking
	Baxter permutations
	Binary Recurrence Sequences
	Binary Trees
	Blob Algebras
	Cartesian Products
	Enumerated sets of partitions, tableaux, …
	Partitions
	RSK

	Combinatorial Hopf algebras
	Poirier-Reutenauer Hopf algebra of standard tableaux
	Word Quasi-symmetric functions
	Cluster algebras and quivers
	ClusterSeed
	mutation_class
	Helper functions for mutation types of quivers
	Quiver
	Quiver mutation types
	Cluster complex (or generalized dual associahedron)
	Colored Permutations
	Combinatorial Functions
	Functions and classes

	Fast computation of combinatorial functions (Cython + mpz)
	Combinations
	Combinatorial maps
	Integer compositions
	Signed Compositions
	Composition Tableaux
	Constellations
	Cores
	Counting
	Affine Crystals
	Affine factorization crystal of type A
	Affinization Crystals
	Alcove paths
	Crystals
	Introductory material
	Catalogs of crystals
	See also

	Benkart-Kang-Kashiwara crystals for the general-linear Lie superalgebra
	Catalog Of Crystals
	Catalog

	Catalog Of Elementary Crystals
	Catalog Of Crystal Models For B()
	Catalog Of Crystal Models For Kirillov-Reshetikhin Crystals
	An introduction to crystals
	Axiomatic definition

	Direct Sum of Crystals
	Elementary Crystals
	Fast Rank Two Crystals
	Fully commutative stable Grothendieck crystal
	Crystals of Generalized Young Walls
	Highest weight crystals
	Induced Crystals
	B() Crystals of Tableaux in Nonexceptional Types and G2
	Crystals of Kac modules of the general-linear Lie superalgebra
	Kirillov-Reshetikhin Crystals
	Kyoto Path Model for Affine Highest Weight Crystals
	Crystals of letters
	Littelmann paths
	Crystals of Modified Nakajima Monomials
	Crystal of Bernstein-Zelevinsky Multisegments
	Crystal Of Mirković-Vilonen (MV) Polytopes
	B() Crystal Of PBW Monomials
	PBW Data
	Polyhedral Realization of B()
	Spin Crystals
	Star-Crystal Structure On B()
	Tensor Products of Crystals
	Tensor Products of Crystal Elements
	Cyclic sieving phenomenon
	De Bruijn sequences
	Degree sequences
	Definitions
	Algorithms
	About the implementation

	Derangements
	Descent Algebras
	Combinatorial designs and incidence structures
	Balanced Incomplete Block Designs (BIBD)
	Functions

	Resolvable Balanced Incomplete Block Design (RBIBD)
	Functions

	Group-Divisible Designs (GDD)
	Functions

	Block designs
	Functions and methods

	Covering designs: coverings of t-element subsets of a v-set by k-sets
	Classes and methods

	Database of small combinatorial designs
	Functions

	Catalog of designs
	Cython functions for combinatorial designs
	Functions

	Difference families
	Functions

	Difference Matrices
	Functions

	Evenly distributed sets in finite fields
	Classes and methods

	External Representations of Block Designs
	Functions

	Database of generalised quadrangles with spread
	Incidence structures (i.e. hypergraphs, i.e. set systems)
	Methods

	Mutually Orthogonal Latin Squares (MOLS)
	Functions

	Orthogonal arrays (OA)
	Functions

	Orthogonal arrays (build recursive constructions)
	Functions

	Orthogonal arrays (find recursive constructions)
	Functions

	Steiner Quadruple Systems
	Index
	Functions

	Hypergraph isomorphic copy search
	Implementation
	Algorithm
	Limitations
	Methods

	Two-graphs
	Index
	Methods

	Diagram and Partition Algebras
	Exact Cover Problem via Dancing Links
	Dyck Words
	Substitutions over unit cube faces (Rauzy fractals)
	Enumerated sets and combinatorial objects
	Categories
	Basic enumerated sets
	Integer lists
	Words
	Permutations, …
	Partitions, tableaux, …
	Polyominoes
	Integer matrices, …
	Subsets and set partitions
	Trees
	Enumerated sets related to graphs
	Backtracking solvers and generic enumerated sets
	Low level enumerated sets
	Misc enumerated sets

	Tools for enumeration modulo the action of a permutation group
	Compute Bell and Uppuluri-Carpenter numbers
	Families
	Brent Yorgey’s fast algorithm for integer vector (multiset) partitions.
	Fully commutative elements of Coxeter groups
	Acknowledgements

	Finite state machines, automata, transducers
	Contents
	FiniteStateMachine and derived classes Transducer and Automaton
	Accessing parts of a finite state machine
	(Modified) Copies
	Manipulation
	Properties
	Operations
	Simplification
	Conversion
	LaTeX output

	FSMState
	FSMTransition
	FSMProcessIterator
	Helper Functions

	Examples
	A simple finite state machine
	A simple Automaton (recognizing NAFs)
	Recognizing NAFs via Automata Operations

	LaTeX output
	A simple transducer (binary inverter)
	Transducers and (in)finite Words
	A transducer which performs division by 3 in binary
	Gray Code
	Using the hook-functions
	Detecting sequences with same number of 0 and 1

	Methods

	Common Automata and Transducers (Finite State Machines Generators)
	Functions and methods

	Free Quasi-symmetric functions
	Free modules
	Free Dendriform Algebras
	Free Pre-Lie Algebras
	Fully packed loops
	Gelfand-Tsetlin Patterns
	Paths in Directed Acyclic Graphs
	Gray codes
	Functions

	Growth diagrams and dual graded graphs
	A guided tour
	Invocation
	Rules currently available
	Background
	Implementing your own growth diagrams

	Grossman-Larson Hopf Algebras
	Hall Polynomials
	The Hillman-Grassl correspondence
	Enumerated set of lists of integers with constraints: base classes
	Enumerated set of lists of integers with constraints: front-end
	Enumerated set of lists of integers with constraints, in inverse lexicographic order
	Counting, generating, and manipulating non-negative integer matrices
	(Non-negative) Integer vectors
	Weighted Integer Vectors
	Integer vectors modulo the action of a permutation group
	Tamari Interval-posets
	k-regular Sequences
	Examples
	Binary sum of digits
	Number of odd entries in Pascal’s triangle

	Various
	Classes and Methods

	Strong and weak tableaux
	Kazhdan-Lusztig Polynomials
	Knutson-Tao Puzzles
	Acknowledgements

	Combinatorics on matrices
	Dancing Links internal pyx code
	Dancing links C++ wrapper
	Hadamard matrices
	Latin Squares
	Miscellaneous
	Ordered Multiset Partitions into Sets and the Minimaj Crystal
	Non-commutative symmetric functions and quasi-symmetric functions
	Common combinatorial tools
	Generic code for bases
	Non-Commutative Symmetric Functions
	Quasisymmetric functions
	Introduction to Quasisymmetric Functions
	Working with symmetric functions
	QSym is a Hopf algebra

	Symmetric functions in non-commuting variables
	Bases for NCSym
	Dual Symmetric Functions in Non-Commuting Variables
	Symmetric Functions in Non-Commuting Variables
	Necklaces
	Non-Decreasing Parking Functions
	-Dyck Words
	-Tamari lattice
	Ordered Rooted Trees
	Output functions
	Parallelogram Polyominoes
	Parking Functions
	Catalog of Path Tableaux
	Dyck Paths
	Frieze Patterns
	Path Tableaux
	Semistandard Tableaux
	Plane Partitions
	Integer partitions
	Partition/Diagram Algebras
	Kleshchev partitions
	Partition Shifting Algebras
	Partition tuples
	Iterators over the partitions of an integer
	Perfect matchings
	Permutations
	What does this file define ?
	Classes and methods

	Permutations (Cython file)
	Posets
	Cartesian products of Posets
	D-Complete Posets
	Mobile posets
	Elements of posets, lattices, semilattices, etc.
	Forest Posets
	Hasse diagrams of posets
	Incidence Algebras
	Finite lattices and semilattices
	List of (semi)lattice methods

	Linear Extensions of Posets
	Classes and methods

	Möbius Algebras
	Catalog of posets and lattices
	Constructions

	Finite posets
	List of Poset methods
	Classes and functions

	q-Analogues
	q-Bernoulli Numbers and Polynomials
	Combinatorics quickref
	Rankers
	Recognizable Series
	Various
	Classes and Methods

	Restricted growth arrays
	Ribbons
	Ribbon Shaped Tableaux
	Ribbon Tableaux
	Rigged configurations
	Bijections

	Abstract classes for the rigged configuration bijections
	Bijection between rigged configurations for B() and marginally large tableaux
	Bijection classes for type An(1)
	Bijection classes for type A2n(2)
	Bijection classes for type A2n(2)
	Bijection classes for type A2n-1(2).
	Bijection classes for type Bn(1)
	Bijection classes for type Cn(1)
	Bijection classes for type Dn(1)
	Bijection classes for type Dn+1(2)
	Bijection classes for type D4(3)
	Bijection between rigged configurations and KR tableaux
	Kleber Trees
	Kirillov-Reshetikhin Tableaux
	Crystal of Rigged Configurations
	Rigged Configurations of B()
	Rigged Configuration Elements
	Rigged Configurations
	Rigged Partitions
	Tensor Product of Kirillov-Reshetikhin Tableaux
	Tensor Product of Kirillov-Reshetikhin Tableaux Elements
	Root Systems
	Quickref
	Introductory material
	Related material
	Cartan datum
	Root systems
	Coxeter groups
	Finite reflection groups
	Representation theory
	Root system data and code for specific families of Cartan types
	Root system data and code for specific Cartan types

	Ambient lattices and ambient spaces
	Associahedron
	Braid Move Calculator
	Braid Orbit
	Branching Rules
	Cartan matrices
	Cartan types
	Coxeter Groups
	Coxeter Matrices
	Coxeter Types
	Dynkin diagrams
	Hecke algebra representations
	Integrable Representations of Affine Lie Algebras
	Nonsymmetric Macdonald polynomials
	Pieri Factors
	Tutorial: visualizing root systems
	First plots
	Alcoves and chambers
	Alcove pictures for affine types
	Higher dimension affine pictures
	Drawing on top of a root system plot
	Hand drawing on top of a root system plot (aka Coxeter graph paper)
	Drawing custom objects on top of a root system plot

	Finite complex reflection groups
	A guided tour

	Finite real reflection groups
	Group algebras of root lattice realizations
	Root lattice realizations
	Root lattices and root spaces
	Root systems
	Root system data for super type A
	Root system data for type A
	Root system data for (untwisted) type A affine
	Root system data for type A infinity
	Root system data for type B
	Root system data for type BC affine
	Root system data for (untwisted) type B affine
	Root system data for type C
	Root system data for (untwisted) type C affine
	Root system data for type D
	Root system data for (untwisted) type D affine
	Root system data for type E
	Root system data for (untwisted) type E affine
	Root system data for type F
	Root system data for (untwisted) type F affine
	Root system data for type G
	Root system data for (untwisted) type G affine
	Root system data for type H
	Root system data for type I
	Root system data for type Q
	Root system data for affine Cartan types
	Root system data for dual Cartan types
	Extended Affine Weyl Groups
	Fundamental Group of an Extended Affine Weyl Group
	Root system data for folded Cartan types
	Root system data for Cartan types with marked nodes
	Root system data for reducible Cartan types
	Root system data for relabelled Cartan types
	Weight lattice realizations
	Weight lattices and weight spaces
	Weyl Character Rings
	Fusion Rings
	Weyl Groups
	Rooted (Unordered) Trees
	Robinson-Schensted-Knuth correspondence
	Introduction
	Insertions currently available
	Implementing your own insertion rule

	Schubert Polynomials
	Set Partitions
	Ordered Set Partitions
	Symmetric Functions
	Characters of the symmetric group as bases of the symmetric functions
	Classical symmetric functions
	Generic dual bases symmetric functions
	Elementary symmetric functions
	Hall-Littlewood Polynomials
	Hecke Character Basis
	Homogeneous symmetric functions
	Jack Symmetric Functions
	Quotient of symmetric function space by ideal generated by Hall-Littlewood symmetric functions
	Kostka-Foulkes Polynomials
	LLT symmetric functions
	Macdonald Polynomials
	Monomial symmetric functions
	Multiplicative symmetric functions
	k-Schur Functions
	Non-symmetric Macdonald Polynomials
	Orthogonal Symmetric Functions
	Symmetric functions defined by orthogonality and triangularity
	Power sum symmetric functions
	Schur symmetric functions
	Symplectic Symmetric Functions
	Symmetric functions, with their multiple realizations
	Symmetric Functions
	Witt symmetric functions
	Shard intersection order
	Shifted primed tableaux
	Shuffle product of iterables
	Sidon sets and their generalizations, Sidon g-sets
	Similarity class types of matrices with entries in a finite field
	sine-Gordon Y-system plotter
	Six Vertex Model
	Skew Partitions
	Skew Tableaux
	Functions that compute some of the sequences in Sloane’s tables
	Combinatorial species
	Introductory material
	Lazy Power Series
	Basic Species
	Operations on Species
	Miscellaneous

	Characteristic Species
	Composition species
	Cycle Species
	Empty Species
	Functorial composition species
	Generating Series
	Examples of Combinatorial Species
	Linear-order Species
	Miscellaneous Functions
	Partition Species
	Permutation species
	Product species
	Recursive Species
	Lazy Power Series
	Series Order
	Set Species
	Combinatorial Species
	Streams or Infinite Arrays
	Species structures
	Subset Species
	Sum species
	Subsets
	Subsets satisfying a hereditary property
	Subsets whose elements satisfy a predicate pairwise
	Subwords
	Subword complex
	Super Tableaux
	Super Partitions
	Symmetric Group Algebra
	Representations of the Symmetric Group
	Tableaux
	Residue sequences of tableaux
	TableauTuples
	Generalized Tamari lattices
	Tiling Solver
	2d Easy Example
	Scott’s pentamino problem
	1d Easy Example
	2d Puzzle allowing reflections
	3d Puzzle
	Donald Knuth example : the Y pentamino
	Animation of Donald Knuth’s dancing links
	5d Easy Example

	Transitive ideal closure tool
	Tuples
	Introduction to combinatorics in Sage
	Initial examples
	Poker and probability
	Enumeration of trees using generating functions
	Summary

	Common enumerated sets
	First example: the subsets of a set
	Partitions of integers
	Some other finite enumerated sets
	Set comprehension and iterators
	Operations on iterators
	Implementation of new iterators

	Constructions
	Summary

	Generic algorithms
	Lexicographic generation of lists of integers
	Integer points in polytopes
	Species, decomposable combinatorial classes
	Graphs up to isomorphism

	Vector Partitions
	Abstract word (finite or infinite)
	Combinatorics on words
	Alphabet
	Finite word
	Creation of a finite word
	Functions and algorithms
	Factors and Rauzy Graphs

	Infinite word
	Creation of an infinite word

	Lyndon words
	Word morphisms/substitutions
	Word paths
	Shuffle product of words
	Suffix Tries and Suffix Trees
	Word classes
	Fast word datatype using an array of unsigned char
	Datatypes for finite words
	Common words
	Datatypes for words defined by iterators and callables
	User-customizable options for words
	Set of words
	Yang-Baxter Graphs
	C-Finite Sequences

	Indices and Tables
	Bibliography
	Python Module Index
	Index

