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CHAPTER

ONE

INTRODUCTION

1.1 Sage categories quickref

• sage.categories.primer? a primer on Elements, Parents, and Categories

• sage.categories.tutorial? a tutorial on Elements, Parents, and Categories

• Category? technical background on categories

• Sets(), Semigroups(), Algebras(QQ) some categories

• SemiGroups().example()?? sample implementation of a semigroup

• Hom(A, B), End(A, Algebras()) homomorphisms sets

• tensor, cartesian_product functorial constructions

Module layout:

• sage.categories.basic the basic categories

• sage.categories.all all categories

• sage.categories.semigroups the Semigroups() category

• sage.categories.examples.semigroups the example of Semigroups()

• sage.categories.homset morphisms, . . .

• sage.categories.map

• sage.categories.morphism

• sage.categories.functors

• sage.categories.cartesian_product functorial constructions

• sage.categories.tensor

• sage.categories.dual
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CHAPTER

TWO

THE SAGE CATEGORY FRAMEWORK

2.1 Elements, parents, and categories in Sage: a primer

Contents

• Elements, parents, and categories in Sage: a primer

– Abstract

– Introduction: Sage as a library of objects and algorithms

– A bit of help from abstract algebra

– A bit of help from computer science

– Sage categories

– Case study

– Specifying the category of a parent

– Scaling further: functorial constructions, axioms, . . .

– Writing a new category

2.1.1 Abstract

The purpose of categories in Sage is to translate the mathematical concept of categories (category of
groups, of vector spaces, . . . ) into a concrete software engineering design pattern for:

• organizing and promoting generic code

• fostering consistency across the Sage library (naming conventions, doc, tests)

• embedding more mathematical knowledge into the system

This design pattern is largely inspired from Axiom and its followers (Aldor, Fricas, MuPAD, . . . ). It differs
from those by:

• blending in the Magma inspired concept of Parent/Element

• being built on top of (and not into) the standard Python object oriented and class hierarchy mech-
anism. This did not require changing the language, and could in principle be implemented in any
language supporting the creation of new classes dynamically.

3
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The general philosophy is that Building mathematical information into the system yields more expressive,
more conceptual and, at the end, easier to maintain and faster code (within a programming realm; this
would not necessarily apply to specialized libraries like gmp!).

One line pitch for mathematicians

Categories in Sage provide a library of interrelated bookshelves, with each bookshelf containing algorithms, tests,
documentation, or some mathematical facts about the objects of a given category (e.g. groups).

One line pitch for programmers

Categories in Sage provide a large hierarchy of abstract classes for mathematical objects. To keep it maintainable, the
inheritance information between the classes is not hardcoded but instead reconstructed dynamically from duplication
free semantic information.

2.1.2 Introduction: Sage as a library of objects and algorithms

The Sage library, with more than one million lines of code, documentation, and tests, implements:

• Thousands of different kinds of objects (classes):

Integers, polynomials, matrices, groups, number fields, elliptic curves, permutations, morphisms, languages, . . .
and a few racoons . . .

• Tens of thousands methods and functions:

Arithmetic, integer and polynomial factorization, pattern matching on words, . . .

Some challenges

• How to organize this library?

One needs some bookshelves to group together related objects and algorithms.

• How to ensure consistency?

Similar objects should behave similarly:

sage: Permutations(5).cardinality()
120

sage: GL(2,2).cardinality()
6

sage: A = random_matrix(ZZ,6,3,x=7)
sage: L = LatticePolytope(A.rows())
sage: L.npoints() # oops! # random
37

• How to ensure robustness?

• How to reduce duplication?

Example: binary powering:

4 Chapter 2. The Sage Category Framework
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sage: m = 3
sage: m^8 == m*m*m*m*m*m*m*m == ((m^2)^2)^2
True

sage: m = random_matrix(QQ, 4, algorithm='echelonizable', rank=3, upper_bound=60)
sage: m^8 == m*m*m*m*m*m*m*m == ((m^2)^2)^2
True

We want to implement binary powering only once, as generic code that will apply in all cases.

2.1.3 A bit of help from abstract algebra

The hierarchy of categories

What makes binary powering work in the above examples? In both cases, we have a set endowed with a multiplicative
binary operation which is associative and which has a unit element. Such a set is called a monoid, and binary powering
(to a non-negative power) works generally for any monoid.

Sage knows about monoids:

sage: Monoids()
Category of monoids

and sure enough, binary powering is defined there:

sage: m._pow_int.__module__
'sage.categories.monoids'

That’s our bookshelf! And it’s used in many places:

sage: GL(2,ZZ) in Monoids()
True
sage: NN in Monoids()
True

For a less trivial bookshelf we can consider euclidean rings: once we know how to do euclidean division in some set
𝑅, we can compute gcd’s in 𝑅 generically using the Euclidean algorithm.

We are in fact very lucky: abstract algebra provides us right away with a large and robust set of bookshelves which is
the result of centuries of work of mathematicians to identify the important concepts. This includes for example:

sage: Sets()
Category of sets

sage: Groups()
Category of groups

sage: Rings()
Category of rings

sage: Fields()
Category of fields

(continues on next page)
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(continued from previous page)

sage: HopfAlgebras(QQ)
Category of hopf algebras over Rational Field

Each of the above is called a category. It typically specifies what are the operations on the elements, as well as the
axioms satisfied by those operations. For example the category of groups specifies that a group is a set endowed with
a binary operation (the multiplication) which is associative and admits a unit and inverses.

Each set in Sage knows which bookshelf of generic algorithms it can use, that is to which category it belongs:

sage: G = GL(2,ZZ)
sage: G.category()
Category of infinite groups

In fact a group is a semigroup, and Sage knows about this:

sage: Groups().is_subcategory(Semigroups())
True
sage: G in Semigroups()
True

Altogether, our group gets algorithms from a bunch of bookshelves:

sage: G.categories()
[Category of infinite groups, Category of groups, Category of monoids,
...,
Category of magmas,
Category of infinite sets, ...]

Those can be viewed graphically:

sage: g = Groups().category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested

In case dot2tex is not available, you can use instead:

sage: g.show(vertex_shape=None, figsize=20)

Here is an overview of all categories in Sage:

sage: g = sage.categories.category.category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested

Wrap-up: generic algorithms in Sage are organized in a hierarchy of bookshelves modelled upon the usual hierarchy
of categories provided by abstract algebra.

6 Chapter 2. The Sage Category Framework
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Elements, Parents, Categories

Parent

A parent is a Python instance modelling a set of mathematical elements together with its additional (algebraic) structure.

Examples include the ring of integers, the group 𝑆3, the set of prime numbers, the set of linear maps between two given
vector spaces, and a given finite semigroup.

These sets are often equipped with additional structure: the set of all integers forms a ring. The main way of encoding
this information is specifying which categories a parent belongs to.

It is completely possible to have different Python instances modelling the same set of elements. For example, one
might want to consider the ring of integers, or the poset of integers under their standard order, or the poset of integers
under divisibility, or the semiring of integers under the operations of maximum and addition. Each of these would be
a different instance, belonging to different categories.

For a given model, there should be a unique instance in Sage representing that parent:

sage: IntegerRing() is IntegerRing()
True

Element

An element is a Python instance modelling a mathematical element of a set.

Examples of element include 5 in the integer ring, 𝑥3 − 𝑥 in the polynomial ring in 𝑥 over the rationals, 4 + 𝑂(33) in
the 3-adics, the transposition (12) in 𝑆3, and the identity morphism in the set of linear maps from Q3 to Q3.

Every element in Sage has a parent. The standard idiom in Sage for creating elements is to create their parent, and then
provide enough data to define the element:

sage: R = PolynomialRing(ZZ, name='x')
sage: R([1,2,3])
3*x^2 + 2*x + 1

One can also create elements using various methods on the parent and arithmetic of elements:

sage: x = R.gen()
sage: 1 + 2*x + 3*x^2
3*x^2 + 2*x + 1

Unlike parents, elements in Sage are not necessarily unique:

sage: ZZ(5040) is ZZ(5040)
False

Many parents model algebraic structures, and their elements support arithmetic operations. One often further wants to
do arithmetic by combining elements from different parents: adding together integers and rationals for example. Sage
supports this feature using coercion (see sage.structure.coerce for more details).

It is possible for a parent to also have simultaneously the structure of an element. Consider for example the monoid
of all finite groups, endowed with the Cartesian product operation. Then, every finite group (which is a parent) is also
an element of this monoid. This is not yet implemented, and the design details are not yet fixed but experiments are
underway in this direction.

2.1. Elements, parents, and categories in Sage: a primer 7
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Todo: Give a concrete example, typically using ElementWrapper.

Category

A category is a Python instance modelling a mathematical category.

Examples of categories include the category of finite semigroups, the category of all (Python) objects, the category of
Z-algebras, and the category of Cartesian products of Z-algebras:

sage: FiniteSemigroups()
Category of finite semigroups
sage: Objects()
Category of objects
sage: Algebras(ZZ)
Category of algebras over Integer Ring
sage: Algebras(ZZ).CartesianProducts()
Category of Cartesian products of algebras over Integer Ring

Mind the ‘s’ in the names of the categories above; GroupAlgebra and GroupAlgebras are distinct things.

Every parent belongs to a collection of categories. Moreover, categories are interrelated by the super categories relation.
For example, the category of rings is a super category of the category of fields, because every field is also a ring.

A category serves two roles:

• to provide a model for the mathematical concept of a category and the associated structures: homsets, morphisms,
functorial constructions, axioms.

• to organize and promote generic code, naming conventions, documentation, and tests across similar mathematical
structures.

CategoryObject

Objects of a mathematical category are not necessarily parents. Parent has a superclass that provides a means of
modeling such.

For example, the category of schemes does not have a faithful forgetful functor to the category of sets, so it does not
make sense to talk about schemes as parents.

Morphisms, Homsets

As category theorists will expect, Morphisms and Homsets will play an ever more important role, as support for them
will improve.

Much of the mathematical information in Sage is encoded as relations between elements and their parents, parents and
their categories, and categories and their super categories:

sage: 1.parent()
Integer Ring

sage: ZZ
(continues on next page)

8 Chapter 2. The Sage Category Framework
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(continued from previous page)

Integer Ring

sage: ZZ.category()
Join of Category of euclidean domains

and Category of infinite enumerated sets
and Category of metric spaces

sage: ZZ.categories()
[Join of Category of euclidean domains

and Category of infinite enumerated sets
and Category of metric spaces,

Category of euclidean domains, Category of principal ideal domains,
Category of unique factorization domains, Category of gcd domains,
Category of integral domains, Category of domains,
Category of commutative rings, Category of rings, ...
Category of magmas and additive magmas, ...
Category of monoids, Category of semigroups,
Category of commutative magmas, Category of unital magmas, Category of magmas,
Category of commutative additive groups, ..., Category of additive magmas,
Category of infinite enumerated sets, Category of enumerated sets,
Category of infinite sets, Category of metric spaces,
Category of topological spaces, Category of sets,
Category of sets with partial maps,
Category of objects]

sage: g = EuclideanDomains().category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested

2.1.4 A bit of help from computer science

Hierarchy of classes

How are the bookshelves implemented in practice?

Sage uses the classical design paradigm of Object Oriented Programming (OOP). Its fundamental principle is that any
object that a program is to manipulate should be modelled by an instance of a class. The class implements:

• a data structure: which describes how the object is stored,

• methods: which describe the operations on the object.

The instance itself contains the data for the given object, according to the specified data structure.

Hence, all the objects mentioned above should be instances of some classes. For example, an integer in Sage is an
instance of the class Integer (and it knows about it!):

sage: i = 12
sage: type(i)
<class 'sage.rings.integer.Integer'>

Applying an operation is generally done by calling a method:

2.1. Elements, parents, and categories in Sage: a primer 9
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sage: i.factor()
2^2 * 3

sage: x = var('x') # optional - sage.symbolic
sage: p = 6*x^2 + 12*x + 6 # optional - sage.symbolic
sage: type(p) # optional - sage.symbolic
<class 'sage.symbolic.expression.Expression'>
sage: p.factor() # optional - sage.symbolic
6*(x + 1)^2

sage: R.<x> = PolynomialRing(QQ, sparse=True)
sage: pQ = R ( p )
sage: type(pQ)
<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category.element_
→˓class'>
sage: pQ.factor()
(6) * (x + 1)^2

sage: pZ = ZZ['x'] ( p )
sage: type(pZ)
<class 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_
→˓flint'>
sage: pZ.factor()
2 * 3 * (x + 1)^2

Factoring integers, expressions, or polynomials are distinct tasks, with completely different algorithms. Yet, from a user
(or caller) point of view, all those objects can be manipulated alike. This illustrates the OOP concepts of polymorphism,
data abstraction, and encapsulation.

Let us be curious, and see where some methods are defined. This can be done by introspection:

sage: i._mul_?? # not tested

For plain Python methods, one can also just ask in which module they are implemented:

sage: i._pow_.__module__ # not tested (Trac #24275)
'sage.categories.semigroups'

sage: pQ._mul_.__module__
'sage.rings.polynomial.polynomial_element_generic'
sage: pQ._pow_.__module__ # not tested (Trac #24275)
'sage.categories.semigroups'

We see that integers and polynomials have each their own multiplication method: the multiplication algorithms are
indeed unrelated and deeply tied to their respective datastructures. On the other hand, as we have seen above, they
share the same powering method because the set Z of integers, and the set Q[𝑥] of polynomials are both semigroups.
Namely, the class for integers and the class for polynomials both derive from an abstract class for semigroup elements,
which factors out the generic methods like _pow_. This illustrates the use of hierarchy of classes to share common
code between classes having common behaviour.

OOP design is all about isolating the objects that one wants to model together with their operations, and designing
an appropriate hierarchy of classes for organizing the code. As we have seen above, the design of the class hierarchy
is easy since it can be modelled upon the hierarchy of categories (bookshelves). Here is for example a piece of the
hierarchy of classes for an element of a group of permutations:

10 Chapter 2. The Sage Category Framework
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sage: P = Permutations(4)
sage: m = P.an_element()
sage: for cls in m.__class__.mro(): print(cls)
<class 'sage.combinat.permutation.StandardPermutations_n_with_category.element_class'>
<class 'sage.combinat.permutation.StandardPermutations_n.Element'>
<class 'sage.combinat.permutation.Permutation'>
...
<class 'sage.categories.groups.Groups.element_class'>
<class 'sage.categories.monoids.Monoids.element_class'>
...
<class 'sage.categories.semigroups.Semigroups.element_class'>
...

On the top, we see concrete classes that describe the data structure for matrices and provide the operations that are tied
to this data structure. Then follow abstract classes that are attached to the hierarchy of categories and provide generic
algorithms.

The full hierarchy is best viewed graphically:

sage: g = class_graph(m.__class__)
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested

Parallel hierarchy of classes for parents

Let us recall that we do not just want to compute with elements of mathematical sets, but with the sets themselves:

sage: ZZ.one()
1

sage: R = QQ['x,y']
sage: R.krull_dimension()
2
sage: A = R.quotient( R.ideal(x^2 - 2) )
sage: A.krull_dimension() # todo: not implemented

Here are some typical operations that one may want to carry on various kinds of sets:

• The set of permutations of 5, the set of rational points of an elliptic curve: counting, listing, random generation

• A language (set of words): rationality testing, counting elements, generating series

• A finite semigroup: left/right ideals, center, representation theory

• A vector space, an algebra: Cartesian product, tensor product, quotient

Hence, following the OOP fundamental principle, parents should also be modelled by instances of some (hierarchy of)
classes. For example, our group 𝐺 is an instance of the following class:

sage: G = GL(2,ZZ)
sage: type(G)
<class 'sage.groups.matrix_gps.linear.LinearMatrixGroup_gap_with_category'>

Here is a piece of the hierarchy of classes above it:
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sage: for cls in G.__class__.mro(): print(cls)
<class 'sage.groups.matrix_gps.linear.LinearMatrixGroup_gap_with_category'>
...
<class 'sage.categories.groups.Groups.parent_class'>
<class 'sage.categories.monoids.Monoids.parent_class'>
<class 'sage.categories.semigroups.Semigroups.parent_class'>
...

Note that the hierarchy of abstract classes is again attached to categories and parallel to that we had seen for the elements.
This is best viewed graphically:

sage: g = class_graph(m.__class__)
sage: g.relabel(lambda x: x.replace("_",r"\_"))
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested

Note: This is a progress upon systems like Axiom or MuPAD where a parent is modelled by the class of its elements;
this oversimplification leads to confusion between methods on parents and elements, and makes parents special; in
particular it prevents potentially interesting constructions like “groups of groups”.

2.1.5 Sage categories

Why this business of categories? And to start with, why don’t we just have a good old hierarchy of classes Group,
Semigroup, Magma, . . . ?

Dynamic hierarchy of classes

As we have just seen, when we manipulate groups, we actually manipulate several kinds of objects:

• groups

• group elements

• morphisms between groups

• and even the category of groups itself!

Thus, on the group bookshelf, we want to put generic code for each of the above. We therefore need three, parallel
hierarchies of abstract classes:

• Group, Monoid, Semigroup, Magma, . . .

• GroupElement, MonoidElement, SemigroupElement, MagmaElement, . . .

• GroupMorphism, SemigroupElement, SemigroupMorphism, MagmaMorphism, . . .

(and in fact many more as we will see).

We could implement the above hierarchies as usual:

class Group(Monoid):
# generic methods that apply to all groups

class GroupElement(MonoidElement):
(continues on next page)
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(continued from previous page)

# generic methods that apply to all group elements

class GroupMorphism(MonoidMorphism):
# generic methods that apply to all group morphisms

And indeed that’s how it was done in Sage before 2009, and there are still many traces of this. The drawback of this
approach is duplication: the fact that a group is a monoid is repeated three times above!

Instead, Sage now uses the following syntax, where the Groups bookshelf is structured into units with nested classes:

class Groups(Category):

def super_categories(self):
return [Monoids(), ...]

class ParentMethods:
# generic methods that apply to all groups

class ElementMethods:
# generic methods that apply to all group elements

class MorphismMethods:
# generic methods that apply to all group morphisms (not yet implemented)

class SubcategoryMethods:
# generic methods that apply to all subcategories of Groups()

With this syntax, the information that a group is a monoid is specified only once, in the Category.
super_categories() method. And indeed, when the category of inverse unital magmas was introduced, there was
a single point of truth to update in order to reflect the fact that a group is an inverse unital magma:

sage: Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]

The price to pay (there is no free lunch) is that some magic is required to construct the actual hierarchy of classes for
parents, elements, and morphisms. Namely, Groups.ElementMethods should be seen as just a bag of methods, and
the actual class Groups().element_class is constructed from it by adding the appropriate super classes according
to Groups().super_categories():

sage: Groups().element_class
<class 'sage.categories.groups.Groups.element_class'>

sage: Groups().element_class.__bases__
(<class 'sage.categories.monoids.Monoids.element_class'>,
<class 'sage.categories.magmas.Magmas.Unital.Inverse.element_class'>)

We now see that the hierarchy of classes for parents and elements is parallel to the hierarchy of categories:

sage: Groups().all_super_categories()
[Category of groups,
Category of monoids,
Category of semigroups,
...

(continues on next page)
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(continued from previous page)

Category of magmas,
Category of sets,
...]

sage: for cls in Groups().element_class.mro(): print(cls)
<class 'sage.categories.groups.Groups.element_class'>
<class 'sage.categories.monoids.Monoids.element_class'>
<class 'sage.categories.semigroups.Semigroups.element_class'>
...
<class 'sage.categories.magmas.Magmas.element_class'>
...
sage: for cls in Groups().parent_class.mro(): print(cls)
<class 'sage.categories.groups.Groups.parent_class'>
<class 'sage.categories.monoids.Monoids.parent_class'>
<class 'sage.categories.semigroups.Semigroups.parent_class'>
...
<class 'sage.categories.magmas.Magmas.parent_class'>
...

Another advantage of building the hierarchy of classes dynamically is that, for parametrized categories, the hierarchy
may depend on the parameters. For example an algebra over Q is a Q-vector space, but an algebra over Z is not (it is
just a Z-module)!

Note: At this point this whole infrastructure may feel like overdesigning, right? We felt like this too! But we will see
later that, once one gets used to it, this approach scales very naturally.

From a computer science point of view, this infrastructure implements, on top of standard multiple inheritance, a
dynamic composition mechanism of mixin classes (Wikipedia article Mixin), governed by mathematical properties.

For implementation details on how the hierarchy of classes for parents and elements is constructed, see Category.

On the category hierarchy: subcategories and super categories

We have seen above that, for example, the category of sets is a super category of the category of groups. This models
the fact that a group can be unambiguously considered as a set by forgetting its group operation. In object-oriented
parlance, we want the relation “a group is a set”, so that groups can directly inherit code implemented on sets.

Formally, a category Cs() is a super category of a category Ds() if Sage considers any object of Ds() to be an object
of Cs(), up to an implicit application of a canonical functor from Ds() to Cs(). This functor is normally an inclusion
of categories or a forgetful functor. Reciprocally, Ds() is said to be a subcategory of Cs().

Warning: This terminology deviates from the usual mathematical definition of subcategory and is subject to
change. Indeed, the forgetful functor from the category of groups to the category of sets is not an inclusion of
categories, as it is not injective: a given set may admit more than one group structure. See trac ticket #16183 for
more details. The name supercategory is also used with a different meaning in certain areas of mathematics.

14 Chapter 2. The Sage Category Framework

https://en.wikipedia.org/wiki/Mixin
https://trac.sagemath.org/16183


Category Framework, Release 9.7

Categories are instances and have operations

Note that categories themselves are naturally modelled by instances because they can have operations of their own. An
important one is:

sage: Groups().example()
General Linear Group of degree 4 over Rational Field

which gives an example of object of the category. Besides illustrating the category, the example provides a minimal
template for implementing a new object in the category:

sage: S = Semigroups().example(); S
An example of a semigroup: the left zero semigroup

Its source code can be obtained by introspection:

sage: S?? # not tested

This example is also typically used for testing generic methods. See Category.example() for more.

Other operations on categories include querying the super categories or the axioms satisfied by the operations of a
category:

sage: Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]
sage: Groups().axioms()
frozenset({'Associative', 'Inverse', 'Unital'})

or constructing the intersection of two categories, or the smallest category containing them:

sage: Groups() & FiniteSets()
Category of finite groups
sage: Algebras(QQ) | Groups()
Category of monoids

Specifications and generic documentation

Categories do not only contain code but also the specifications of the operations. In particular a list of mandatory and
optional methods to be implemented can be found by introspection with:

sage: Groups().required_methods()
{'element': {'optional': ['_mul_'], 'required': []},
'parent': {'optional': [], 'required': ['__contains__']}}

Documentation about those methods can be obtained with:

sage: G = Groups()
sage: G.element_class._mul_? # not tested
sage: G.parent_class.one? # not tested

See also the abstract_method() decorator.
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Warning: Well, more precisely, that’s how things should be, but there is still some work to do in this direction.
For example, the inverse operation is not specified above. Also, we are still missing a good programmatic syntax
to specify the input and output types of the methods. Finally, in many cases the implementer must provide at least
one of two methods, each having a default implementation using the other one (e.g. listing or iterating for a finite
enumerated set); there is currently no good programmatic way to specify this.

Generic tests

Another feature that parents and elements receive from categories is generic tests; their purpose is to check (at least to
some extent) that the parent satisfies the required mathematical properties (is my semigroup indeed associative?) and is
implemented according to the specifications (does the method an_element indeed return an element of the parent?):

sage: S = FiniteSemigroups().example(alphabet=('a', 'b'))
sage: TestSuite(S).run(verbose = True)
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass

running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

Tests can be run individually:

sage: S._test_associativity()

Here is how to access the code of this test:

sage: S._test_associativity?? # not tested

Here is how to run the test on all elements:

sage: L = S.list()
sage: S._test_associativity(elements=L)
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See TestSuite for more information.

Let us see what happens when a test fails. Here we redefine the product of 𝑆 to something definitely not associative:

sage: S.product = lambda x, y: S("("+x.value +y.value+")")

And rerun the test:

sage: S._test_associativity(elements=L)
Traceback (most recent call last):
...
File ".../sage/categories/semigroups.py", line ..., in _test_associativity
tester.assertTrue((x * y) * z == x * (y * z))

...
AssertionError: '((aa)a)' != '(a(aa))'

We can recover instantly the actual values of x, y, z, that is, a counterexample to the associativity of our broken
semigroup, using post mortem introspection with the Python debugger pdb (this does not work yet in the notebook):

sage: import pdb
sage: pdb.pm() # not tested
> /opt/sage-5.11.rc1/local/lib/python/unittest/case.py(424)assertTrue()
-> raise self.failureException(msg)
(Pdb) u
> /opt/sage-5.11.rc1/local/lib/python2.7/site-packages/sage/categories/semigroups.
→˓py(145)_test_associativity()
-> tester.assertTrue((x * y) * z == x * (y * z))
(Pdb) p x, y, z
('a', 'a', 'a')
(Pdb) p (x * y) * z
'((aa)a)'
(Pdb) p x * (y * z)
'(a(aa))'

Wrap-up

• Categories provide a natural hierarchy of bookshelves to organize not only code, but also specifications and
testing tools.

• Everything about, say, algebras with a distinguished basis is gathered in AlgebrasWithBasis or its super cat-
egories. This includes properties and algorithms for elements, parents, morphisms, but also, as we will see, for
constructions like Cartesian products or quotients.

• The mathematical relations between elements, parents, and categories translate dynamically into a traditional
hierarchy of classes.

• This design enforces robustness and consistency, which is particularly welcome given that Python is an inter-
preted language without static type checking.
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2.1.6 Case study

In this section, we study an existing parent in detail; a good followup is to go through the sage.categories.tutorial
or the thematic tutorial on coercion and categories (“How to implement new algebraic structures in Sage”) to learn how
to implement a new one!

We consider the example of finite semigroup provided by the category:

sage: S = FiniteSemigroups().example(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')
sage: S? # not tested

Where do all the operations on S and its elements come from?

sage: x = S('a')

_repr_ is a technical method which comes with the data structure (ElementWrapper); since it’s implemented in
Cython, we need to use Sage’s introspection tools to recover where it’s implemented:

sage: x._repr_.__module__
sage: sage.misc.sageinspect.sage_getfile(x._repr_)
'.../sage/structure/element_wrapper.pyx'

_pow_int is a generic method for all finite semigroups:

sage: x._pow_int.__module__
'sage.categories.semigroups'

__mul__ is a generic method provided by the Magmas category (a magma is a set with an inner law *, not necessarily
associative). If the two arguments are in the same parent, it will call the method _mul_, and otherwise let the coercion
model try to discover how to do the multiplication:

sage: x.__mul__?? # not tested

Since it is a speed critical method, it is implemented in Cython in a separate file:

sage: x._mul_.__module__
'sage.categories.coercion_methods'

_mul_ is a default implementation, also provided by the Magmas category, that delegates the work to the method
product of the parent (following the advice: if you do not know what to do, ask your parent); it’s also a speed critical
method:

sage: x._mul_?? # not tested
sage: x._mul_.__module__
'sage.categories.coercion_methods'
sage: x._mul_.__func__ is Magmas.ElementMethods._mul_parent
True

product is a mathematical method implemented by the parent:

sage: S.product.__module__
'sage.categories.examples.finite_semigroups'

cayley_graph is a generic method on the parent, provided by the FiniteSemigroups category:
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sage: S.cayley_graph.__module__
'sage.categories.semigroups'

multiplication_table is a generic method on the parent, provided by the Magmas category (it does not require
associativity):

sage: S.multiplication_table.__module__
'sage.categories.magmas'

Consider now the implementation of the semigroup:

sage: S?? # not tested

This implementation specifies a data structure for the parents and the elements, and makes a promise: the implemented
parent is a finite semigroup. Then it fulfills the promise by implementing the basic operation product. It also imple-
ments the optional method semigroup_generators. In exchange, 𝑆 and its elements receive generic implementations
of all the other operations. 𝑆 may override any of those by more efficient ones. It may typically implement the element
method is_idempotent to always return True.

A (not yet complete) list of mandatory and optional methods to be implemented can be found by introspection with:

sage: FiniteSemigroups().required_methods()
{'element': {'optional': ['_mul_'], 'required': []},
'parent': {'optional': ['semigroup_generators'],
'required': ['__contains__']}}

product does not appear in the list because a default implementation is provided in term of the method _mul_ on
elements. Of course, at least one of them should be implemented. On the other hand, a default implementation for
__contains__ is provided by Parent.

Documentation about those methods can be obtained with:

sage: C = FiniteSemigroups().element_class
sage: C._mul_? # not tested

See also the abstract_method() decorator.

Here is the code for the finite semigroups category:

sage: FiniteSemigroups?? # not tested

2.1.7 Specifying the category of a parent

Some parent constructors (not enough!) allow to specify the desired category for the parent. This can typically be used
to specify additional properties of the parent that we know to hold a priori. For example, permutation groups are by
default in the category of finite permutation groups (no surprise):

sage: P = PermutationGroup([[(1,2,3)]]); P
Permutation Group with generators [(1,2,3)]
sage: P.category()
Category of finite enumerated permutation groups

In this case, the group is commutative, so we can specify this:
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sage: P = PermutationGroup([[(1,2,3)]], category=PermutationGroups().Finite().
→˓Commutative()); P
Permutation Group with generators [(1,2,3)]
sage: P.category()
Category of finite enumerated commutative permutation groups

This feature can even be used, typically in experimental code, to add more structure to existing parents, and in particular
to add methods for the parents or the elements, without touching the code base:

sage: class Foos(Category):
....: def super_categories(self):
....: return [PermutationGroups().Finite().Commutative()]
....: class ParentMethods:
....: def foo(self): print("foo")
....: class ElementMethods:
....: def bar(self): print("bar")

sage: P = PermutationGroup([[(1,2,3)]], category=Foos())
sage: P.foo()
foo
sage: p = P.an_element()
sage: p.bar()
bar

In the long run, it would be thinkable to use this idiom to implement forgetful functors; for example the above group
could be constructed as a plain set with:

sage: P = PermutationGroup([[(1,2,3)]], category=Sets()) # todo: not implemented

At this stage though, this is still to be explored for robustness and practicality. For now, most parents that accept a
category argument only accept a subcategory of the default one.

2.1.8 Scaling further: functorial constructions, axioms, . . .

In this section, we explore more advanced features of categories. Along the way, we illustrate that a large hierarchy
of categories is desirable to model complicated mathematics, and that scaling to support such a large hierarchy is the
driving motivation for the design of the category infrastructure.

Functorial constructions

Sage has support for a certain number of so-called covariant functorial constructions which can be used to construct
new parents from existing ones while carrying over as much as possible of their algebraic structure. This includes:

• Cartesian products: See cartesian_product.

• Tensor products: See tensor.

• Subquotients / quotients / subobjects / isomorphic objects: See:

– Sets().Subquotients,

– Sets().Quotients,

– Sets().Subobjects,

– Sets().IsomorphicObjects
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• Dual objects: See Modules().DualObjects.

• Algebras, as in group algebras, monoid algebras, . . . : See: Sets.ParentMethods.algebra().

Let for example 𝐴 and 𝐵 be two parents, and let us construct the Cartesian product 𝐴×𝐵 ×𝐵:

sage: A = AlgebrasWithBasis(QQ).example(); A.rename("A")
sage: B = HopfAlgebrasWithBasis(QQ).example(); B.rename("B")
sage: C = cartesian_product([A, B, B]); C
A (+) B (+) B

In which category should this new parent be? Since 𝐴 and 𝐵 are vector spaces, the result is, as a vector space, the
direct sum 𝐴⊕𝐵 ⊕𝐵, hence the notation. Also, since both 𝐴 and 𝐵 are monoids, 𝐴×𝐵 ×𝐵 is naturally endowed
with a monoid structure for pointwise multiplication:

sage: C in Monoids()
True

the unit being the Cartesian product of the units of the operands:

sage: C.one()
B[(0, word: )] + B[(1, ())] + B[(2, ())]
sage: cartesian_product([A.one(), B.one(), B.one()])
B[(0, word: )] + B[(1, ())] + B[(2, ())]

The pointwise product can be implemented generically for all magmas (i.e. sets endowed with a multiplicative opera-
tion) that are constructed as Cartesian products. It’s thus implemented in the Magmas category:

sage: C.product.__module__
'sage.categories.magmas'

More specifically, keeping on using nested classes to structure the code, the product method is put in the nested class
Magmas.CartesianProducts.ParentMethods:

class Magmas(Category):
class ParentMethods:

# methods for magmas
class ElementMethods:

# methods for elements of magmas
class CartesianProduct(CartesianProductCategory):

class ParentMethods:
# methods for magmas that are constructed as Cartesian products
def product(self, x, y):

# ...
class ElementMethods:

# ...

Note: The support for nested classes in Python is relatively recent. Their intensive use for the category infrastructure
did reveal some glitches in their implementation, in particular around class naming and introspection. Sage currently
works around the more annoying ones but some remain visible. See e.g. sage.misc.test_nested_class.

Let us now look at the categories of C:

2.1. Elements, parents, and categories in Sage: a primer 21

../../../../../../html/en/reference/misc/sage/misc/test_nested_class.html#module-sage.misc.test_nested_class


Category Framework, Release 9.7

sage: C.categories()
[Category of finite dimensional Cartesian products of algebras with basis over Rational␣
→˓Field, ...
Category of Cartesian products of algebras over Rational Field, ...
Category of Cartesian products of semigroups, Category of semigroups, ...
Category of Cartesian products of magmas, ..., Category of magmas, ...
Category of Cartesian products of additive magmas, ..., Category of additive magmas,
Category of Cartesian products of sets, Category of sets, ...]

This reveals the parallel hierarchy of categories for Cartesian products of semigroups magmas, . . . We are thus glad
that Sage uses its knowledge that a monoid is a semigroup to automatically deduce that a Cartesian product of monoids
is a Cartesian product of semigroups, and build the hierarchy of classes for parents and elements accordingly.

In general, the Cartesian product of 𝐴 and 𝐵 can potentially be an algebra, a coalgebra, a differential module, and be
finite dimensional, or graded, or . . . . This can only be decided at runtime, by introspection into the properties of 𝐴 and
𝐵; furthermore, the number of possible combinations (e.g. finite dimensional differential algebra) grows exponentially
with the number of properties.

Axioms

First examples

We have seen that Sage is aware of the axioms satisfied by, for example, groups:

sage: Groups().axioms()
frozenset({'Associative', 'Inverse', 'Unital'})

In fact, the category of groups can be defined by stating that a group is a magma, that is a set endowed with an internal
binary multiplication, which satisfies the above axioms. Accordingly, we can construct the category of groups from
the category of magmas:

sage: Magmas().Associative().Unital().Inverse()
Category of groups

In general, we can construct new categories in Sage by specifying the axioms that are satisfied by the operations of the
super categories. For example, starting from the category of magmas, we can construct all the following categories just
by specifying the axioms satisfied by the multiplication:

sage: Magmas()
Category of magmas
sage: Magmas().Unital()
Category of unital magmas

sage: Magmas().Commutative().Unital()
Category of commutative unital magmas
sage: Magmas().Unital().Commutative()
Category of commutative unital magmas

sage: Magmas().Associative()
Category of semigroups
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sage: Magmas().Associative().Unital()
Category of monoids

sage: Magmas().Associative().Unital().Commutative()
Category of commutative monoids

sage: Magmas().Associative().Unital().Inverse()
Category of groups

Axioms and categories with axioms

Here, Associative, Unital, Commutative are axioms. In general, any category Cs in Sage can declare a new axiom
A. Then, the category with axiom Cs.A()models the subcategory of the objects of Cs satisfying the axiom A. Similarly,
for any subcategory Ds of Cs, Ds.A() models the subcategory of the objects of Ds satisfying the axiom A. In most
cases, it’s a full subcategory (see Wikipedia article Subcategory).

For example, the category of sets defines the Finite axiom, and this axiom is available in the subcategory of groups:

sage: Sets().Finite()
Category of finite sets
sage: Groups().Finite()
Category of finite groups

The meaning of each axiom is described in the documentation of the corresponding method, which can be obtained as
usual by instrospection:

sage: C = Groups()
sage: C.Finite? # not tested

The purpose of categories with axioms is no different from other categories: to provide bookshelves of code, documen-
tation, mathematical knowledge, tests, for their objects. The extra feature is that, when intersecting categories, axioms
are automatically combined together:

sage: C = Magmas().Associative() & Magmas().Unital().Inverse() & Sets().Finite(); C
Category of finite groups
sage: sorted(C.axioms())
['Associative', 'Finite', 'Inverse', 'Unital']

For a more advanced example, Sage knows that a ring is a set 𝐶 endowed with a multiplication which distributes over
addition, such that (𝐶,+) is a commutative additive group and (𝐶, *) is a monoid:

sage: C = (CommutativeAdditiveGroups() & Monoids()).Distributive(); C
Category of rings

sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Associative', 'Distributive', 'Unital']

The infrastructure allows for specifying further deduction rules, in order to encode mathematical facts like Wedder-
burn’s theorem:

sage: DivisionRings() & Sets().Finite()
Category of finite enumerated fields
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Note: When an axiom specifies the properties of some operations in Sage, the notations for those operations are
tied to this axiom. For example, as we have seen above, we need two distinct axioms for associativity: the axiom
“AdditiveAssociative” is about the properties of the addition +, whereas the axiom “Associative” is about the properties
of the multiplication *.

We are touching here an inherent limitation of the current infrastructure. There is indeed no support for providing
generic code that is independent of the notations. In particular, the category hierarchy about additive structures (additive
monoids, additive groups, . . . ) is completely duplicated by that for multiplicative structures (monoids, groups, . . . ).

As far as we know, none of the existing computer algebra systems has a good solution for this problem. The difficulty
is that this is not only about a single notation but a bunch of operators and methods: +, -, zero, summation,
sum, ... in one case, *, /, one, product, prod, factor, ... in the other. Sharing something between the
two hierarchies of categories would only be useful if one could write generic code that applies in both cases; for
that one needs to somehow automatically substitute the right operations in the right spots in the code. That’s kind of
what we are doing manually between e.g. AdditiveMagmas.ParentMethods.addition_table() and Magmas.
ParentMethods.multiplication_table(), but doing this systematically is a different beast from what we have
been doing so far with just usual inheritance.

Single entry point and name space usage

A nice feature of the notation Cs.A() is that, from a single entry point (say the category Magmas as above), one
can explore a whole range of related categories, typically with the help of introspection to discover which axioms are
available, and without having to import new Python modules. This feature will be used in trac ticket #15741 to unclutter
the global name space from, for example, the many variants of the category of algebras like:

sage: FiniteDimensionalAlgebrasWithBasis(QQ)
Category of finite dimensional algebras with basis over Rational Field

There will of course be a deprecation step, but it’s recommended to prefer right away the more flexible notation:

sage: Algebras(QQ).WithBasis().FiniteDimensional()
Category of finite dimensional algebras with basis over Rational Field

Design discussion

How far should this be pushed? Fields should definitely stay, but should FiniteGroups or DivisionRings be
removed from the global namespace? Do we want to further completely deprecate the notation FiniteGroups()`
in favor of ``Groups().Finite()?

On the potential combinatorial explosion of categories with axioms

Even for a very simple category like Magmas, there are about 25 potential combinations of the axioms! Think about
what this becomes for a category with two operations + and *:

sage: C = (Magmas() & AdditiveMagmas()).Distributive(); C
Category of distributive magmas and additive magmas

sage: C.Associative().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
→˓AdditiveInverse()

(continues on next page)
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(continued from previous page)

Category of rngs

sage: C.Associative().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
→˓Unital()
Category of semirings

sage: C.Associative().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
→˓AdditiveInverse().Unital()
Category of rings

sage: Rings().Division()
Category of division rings

sage: Rings().Division().Commutative()
Category of fields

sage: Rings().Division().Finite()
Category of finite enumerated fields

or for more advanced categories:

sage: g = HopfAlgebras(QQ).WithBasis().Graded().Connected().category_graph()
sage: g.set_latex_options(format="dot2tex")
sage: view(g) # not tested

Difference between axioms and regressive covariant functorial constructions

Our running examples here will be the axiom FiniteDimensional and the regressive covariant functorial construction
Graded. Let Cs be some subcategory of Modules, say the category of modules itself:

sage: Cs = Modules(QQ)

Then, Cs.FiniteDimensional() (respectively Cs.Graded()) is the subcategory of the objects O of Cs which are
finite dimensional (respectively graded).

Let also Ds be a subcategory of Cs, say:

sage: Ds = Algebras(QQ)

A finite dimensional algebra is also a finite dimensional module:

sage: Algebras(QQ).FiniteDimensional().is_subcategory( Modules(QQ).FiniteDimensional() )
True

Similarly a graded algebra is also a graded module:

sage: Algebras(QQ).Graded().is_subcategory( Modules(QQ).Graded() )
True

This is the covariance property: for A an axiom or a covariant functorial construction, if Ds is a subcategory of Cs,
then Ds.A() is a subcategory of Cs.A().

What happens if we consider reciprocally an object of Cs.A() which is also in Ds? A finite dimensional module which
is also an algebra is a finite dimensional algebra:
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sage: Modules(QQ).FiniteDimensional() & Algebras(QQ)
Category of finite dimensional algebras over Rational Field

On the other hand, a graded module 𝑂 which is also an algebra is not necessarily a graded algebra! Indeed, the grading
on 𝑂 may not be compatible with the product on 𝑂:

sage: Modules(QQ).Graded() & Algebras(QQ)
Join of Category of algebras over Rational Field
and Category of graded vector spaces over Rational Field

The relevant difference between FiniteDimensional and Graded is that FiniteDimensional is a statement about
the properties of O seen as a module (and thus does not depend on the given category), whereas Graded is a statement
about the properties of O and all its operations in the given category.

In general, if a category satisfies a given axiom, any subcategory also satisfies that axiom. Another formulation is that,
for an axiom A defined in a super category Cs of Ds, Ds.A() is the intersection of the categories Ds and Cs.A():

sage: As = Algebras(QQ).FiniteDimensional(); As
Category of finite dimensional algebras over Rational Field
sage: Bs = Algebras(QQ) & Modules(QQ).FiniteDimensional(); As
Category of finite dimensional algebras over Rational Field
sage: As is Bs
True

An immediate consequence is that, as we have already noticed, axioms commute:

sage: As = Algebras(QQ).FiniteDimensional().WithBasis(); As
Category of finite dimensional algebras with basis over Rational Field
sage: Bs = Algebras(QQ).WithBasis().FiniteDimensional(); Bs
Category of finite dimensional algebras with basis over Rational Field
sage: As is Bs
True

On the other hand, axioms do not necessarily commute with functorial constructions, even if the current printout may
missuggest so:

sage: As = Algebras(QQ).Graded().WithBasis(); As
Category of graded algebras with basis over Rational Field
sage: Bs = Algebras(QQ).WithBasis().Graded(); Bs
Category of graded algebras with basis over Rational Field
sage: As is Bs
False

This is because Bs is the category of algebras endowed with basis, which are further graded; in particular the basis
must respect the grading (i.e. be made of homogeneous elements). On the other hand, As is the category of graded
algebras, which are further endowed with some basis; that basis need not respect the grading. In fact As is really a join
category:

sage: type(As)
<class 'sage.categories.category.JoinCategory_with_category'>
sage: As._repr_(as_join=True)
'Join of Category of algebras with basis over Rational Field and Category of graded␣
→˓algebras over Rational Field'
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Todo: Improve the printing of functorial constructions and joins to raise this potentially dangerous ambiguity.

Further reading on axioms

We refer to sage.categories.category_with_axiom for how to implement axioms.

Wrap-up

As we have seen, there is a combinatorial explosion of possible classes. Constructing by hand the full class hierarchy
would not scale unless one would restrict to a very rigid subset. Even if it was possible to construct automatically the
full hierarchy, this would not scale with respect to system resources.

When designing software systems with large hierarchies of abstract classes for business objects, the difficulty is usually
to identify a proper set of key concepts. Here we are lucky, as the key concepts have been long identified and are
relatively few:

• Operations (+, *, . . . )

• Axioms on those operations (associativity, . . . )

• Constructions (Cartesian products, . . . )

Better, those concepts are sufficiently well known so that a user can reasonably be expected to be familiar with the
concepts that are involved for his own needs.

Instead, the difficulty is concentrated in the huge number of possible combinations, an unpredictable large subset of
which being potentially of interest; at the same time, only a small – but moving – subset has code naturally attached to
it.

This has led to the current design, where one focuses on writing the relatively few classes for which there is actual
code or mathematical information, and lets Sage compose dynamically and lazily those building blocks to construct the
minimal hierarchy of classes needed for the computation at hand. This allows for the infrastructure to scale smoothly
as bookshelves are added, extended, or reorganized.

2.1.9 Writing a new category

Each category 𝐶 must be provided with a method C.super_categories() and can be provided with a method C.
_subcategory_hook_(D). Also, it may be needed to insert 𝐶 into the output of the super_categories() method
of some other category. This determines the position of 𝐶 in the category graph.

A category may provide methods that can be used by all its objects, respectively by all elements of its objects.

Each category should come with a good example, in sage.categories.examples.
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Inserting the new category into the category graph

C.super_categories() must return a list of categories, namely the immediate super categories of 𝐶. Of course, if
you know that your new category 𝐶 is an immediate super category of some existing category 𝐷, then you should also
update the method D.super_categories to include 𝐶.

The immediate super categories of 𝐶 should not be join categories. Furthermore, one always should have:

Cs().is_subcategory( Category.join(Cs().super_categories()) )

Cs()._cmp_key > other._cmp_key for other in Cs().super_categories()

This is checked by _test_category().

In several cases, the category 𝐶 is directly provided with a generic implementation of super_categories; a typ-
ical example is when 𝐶 implements an axiom or a functorial construction; in such a case, 𝐶 may implement C.
extra_super_categories() to complement the super categories discovered by the generic implementation. This
method needs not return immediate super categories; instead it’s usually best to specify the largest super category pro-
viding the desired mathematical information. For example, the category Magmas.Commutative.Algebras just states
that the algebra of a commutative magma is a commutative magma. This is sufficient to let Sage deduce that it’s in fact
a commutative algebra.

Methods for objects and elements

Different objects of the same category share some algebraic features, and very often these features can be encoded in
a method, in a generic way. For example, for every commutative additive monoid, it makes sense to ask for the sum of
a list of elements. Sage’s category framework allows to provide a generic implementation for all objects of a category.

If you want to provide your new category with generic methods for objects (or elements of objects), then you simply add
a nested class called ParentMethods (or ElementMethods). The methods of that class will automatically become
methods of the objects (or the elements). For instance:

sage: P.<x,y> = ZZ[]
sage: P.prod([x,y,2])
2*x*y
sage: P.prod.__module__
'sage.categories.monoids'
sage: P.prod.__func__ is raw_getattr(Monoids().ParentMethods, "prod")
True

We recommend to study the code of one example:

sage: C = CommutativeAdditiveMonoids()
sage: C?? # not tested
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On the order of super categories

The generic method C.all_super_categories() determines recursively the list of all super categories of 𝐶.

The order of the categories in this list does influence the inheritance of methods for parents and elements. Namely,
if 𝑃 is an object in the category 𝐶 and if 𝐶1 and 𝐶2 are both super categories of 𝐶 defining some method foo in
ParentMethods, then 𝑃 will use 𝐶1’s version of foo if and only if 𝐶1 appears in C.all_super_categories()
before 𝐶2.

However this must be considered as an implementation detail: if 𝐶1 and 𝐶2 are incomparable categories, then the
order in which they appear must be mathematically irrelevant: in particular, the methods foo in 𝐶1 and 𝐶2 must have
the same semantic. Code should not rely on any specific order, as it is subject to later change. Whenever one of
the implementations is preferred in some common subcategory of 𝐶1 and 𝐶2, for example for efficiency reasons, the
ambiguity should be resolved explicitly by defining a method foo in this category. See the method some_elements
in the code of the category FiniteCoxeterGroups for an example.

Since trac ticket #11943, C.all_super_categories() is computed by the so-called C3 algorithm used by Python
to compute Method Resolution Order of new-style classes. Thus the order in C.all_super_categories(), C.
parent_class.mro() and C.element_class.mro() are guaranteed to be consistent.

Since trac ticket #13589, the C3 algorithm is put under control of some total order on categories. This order is
not necessarily meaningful, but it guarantees that C3 always finds a consistent Method Resolution Order. For back-
ground, see sage.misc.c3_controlled. A visible effect is that the order in which categories are specified in C.
super_categories(), or in a join category, no longer influences the result of C.all_super_categories().

Subcategory hook (advanced optimization feature)

The default implementation of the method C.is_subcategory(D) is to look up whether 𝐷 appears in C.
all_super_categories(). However, building the list of all the super categories of 𝐶 is an expensive operation
that is sometimes best avoided. For example, if both 𝐶 and 𝐷 are categories defined over a base, but the bases differ,
then one knows right away that they can not be subcategories of each other.

When such a short-path is known, one can implement a method _subcategory_hook_. Then, C.
is_subcategory(D) first calls D._subcategory_hook_(C). If this returns Unknown, then C.is_subcategory(D)
tries to find D in C.all_super_categories(). Otherwise, C.is_subcategory(D) returns the result of D.
_subcategory_hook_(C).

By default, D._subcategory_hook_(C) tests whether issubclass(C.parent_class,D.parent_class), which
is very often giving the right answer:

sage: Rings()._subcategory_hook_(Algebras(QQ))
True
sage: HopfAlgebras(QQ)._subcategory_hook_(Algebras(QQ))
False
sage: Algebras(QQ)._subcategory_hook_(HopfAlgebras(QQ))
True
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2.2 Categories

AUTHORS:

• David Kohel, William Stein and Nicolas M. Thiery

Every Sage object lies in a category. Categories in Sage are modeled on the mathematical idea of category, and are
distinct from Python classes, which are a programming construct.

In most cases, typing x.category() returns the category to which x belongs. If C is a category and x is any object,
C(x) tries to make an object in C from x. Checking if x belongs to C is done as usually by x in C.

See Category and sage.categories.primer for more details.

EXAMPLES:

We create a couple of categories:

sage: Sets()
Category of sets
sage: GSets(AbelianGroup([2,4,9]))
Category of G-sets for Multiplicative Abelian group isomorphic to C2 x C4 x C9
sage: Semigroups()
Category of semigroups
sage: VectorSpaces(FiniteField(11))
Category of vector spaces over Finite Field of size 11
sage: Ideals(IntegerRing())
Category of ring ideals in Integer Ring

Let’s request the category of some objects:

sage: V = VectorSpace(RationalField(), 3)
sage: V.category()
Category of finite dimensional vector spaces with basis
over (number fields and quotient fields and metric spaces)

sage: G = SymmetricGroup(9)
sage: G.category()
Join of Category of finite enumerated permutation groups and
Category of finite weyl groups and
Category of well generated finite irreducible complex reflection groups

sage: P = PerfectMatchings(3)
sage: P.category()
Category of finite enumerated sets

Let’s check some memberships:

sage: V in VectorSpaces(QQ)
True
sage: V in VectorSpaces(FiniteField(11))
False
sage: G in Monoids()
True
sage: P in Rings()
False
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For parametrized categories one can use the following shorthand:

sage: V in VectorSpaces
True
sage: G in VectorSpaces
False

A parent P is in a category C if P.category() is a subcategory of C.

Note: Any object of a category should be an instance of CategoryObject.

For backward compatibility this is not yet enforced:

sage: class A:
....: def category(self):
....: return Fields()
sage: A() in Rings()
True

By default, the category of an element 𝑥 of a parent 𝑃 is the category of all objects of 𝑃 (this is dubious an may be
deprecated):

sage: V = VectorSpace(RationalField(), 3)
sage: v = V.gen(1)
sage: v.category()
Category of elements of Vector space of dimension 3 over Rational Field

class sage.categories.category.Category(s=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
sage_object.SageObject

The base class for modeling mathematical categories, like for example:

• Groups(): the category of groups

• EuclideanDomains(): the category of euclidean rings

• VectorSpaces(QQ): the category of vector spaces over the field of rationals

See sage.categories.primer for an introduction to categories in Sage, their relevance, purpose, and usage.
The documentation below will focus on their implementation.

Technically, a category is an instance of the class Category or some of its subclasses. Some categories, like
VectorSpaces, are parametrized: VectorSpaces(QQ) is one of many instances of the class VectorSpaces.
On the other hand, EuclideanDomains() is the single instance of the class EuclideanDomains.

Recall that an algebraic structure (say, the ring Q[𝑥]) is modelled in Sage by an object which is called a parent.
This object belongs to certain categories (here EuclideanDomains() and Algebras()). The elements of the
ring are themselves objects.

The class of a category (say EuclideanDomains) can define simultaneously:

• Operations on the category itself (what is its super categories? its category of morphisms? its dual cate-
gory?).

• Generic operations on parents in this category, like the ring Q[𝑥].

• Generic operations on elements of such parents (e. g., the Euclidean algorithm for computing gcds).

• Generic operations on morphisms of this category.
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This is achieved as follows:

sage: from sage.categories.all import Category
sage: class EuclideanDomains(Category):
....: # operations on the category itself
....: def super_categories(self):
....: [Rings()]
....:
....: def dummy(self): # TODO: find some good examples
....: pass
....:
....: class ParentMethods: # holds the generic operations on parents
....: # TODO: find a good example of an operation
....: pass
....:
....: class ElementMethods:# holds the generic operations on elements
....: def gcd(x,y):
....: # Euclid algorithms
....: pass
....:
....: class MorphismMethods: # holds the generic operations on morphisms
....: # TODO: find a good example of an operation
....: pass
....:

Note that the nested class ParentMethods is merely a container of operations, and does not inherit from any-
thing. Instead, the hierarchy relation is defined once at the level of the categories, and the actual hierarchy of
classes is built in parallel from all the ParentMethods nested classes, and stored in the attributes parent_class.
Then, a parent in a category C receives the appropriate operations from all the super categories by usual class
inheritance from C.parent_class.

Similarly, two other hierarchies of classes, for elements and morphisms respectively, are built from all the
ElementMethods and MorphismMethods nested classes.

EXAMPLES:

We define a hierarchy of four categories As(), Bs(), Cs(), Ds()with a diamond inheritance. Think for example:

• As(): the category of sets

• Bs(): the category of additive groups

• Cs(): the category of multiplicative monoids

• Ds(): the category of rings

sage: from sage.categories.all import Category
sage: from sage.misc.lazy_attribute import lazy_attribute
sage: class As (Category):
....: def super_categories(self):
....: return []
....:
....: class ParentMethods:
....: def fA(self):
....: return "A"
....: f = fA

(continues on next page)
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(continued from previous page)

sage: class Bs (Category):
....: def super_categories(self):
....: return [As()]
....:
....: class ParentMethods:
....: def fB(self):
....: return "B"

sage: class Cs (Category):
....: def super_categories(self):
....: return [As()]
....:
....: class ParentMethods:
....: def fC(self):
....: return "C"
....: f = fC

sage: class Ds (Category):
....: def super_categories(self):
....: return [Bs(),Cs()]
....:
....: class ParentMethods:
....: def fD(self):
....: return "D"

Categories should always have unique representation; by trac ticket #12215, this means that it will be kept in
cache, but only if there is still some strong reference to it.

We check this before proceeding:

sage: import gc
sage: idAs = id(As())
sage: _ = gc.collect()
sage: n == id(As())
False
sage: a = As()
sage: id(As()) == id(As())
True
sage: As().parent_class == As().parent_class
True

We construct a parent in the category Ds() (that, is an instance of Ds().parent_class), and check that it has
access to all the methods provided by all the categories, with the appropriate inheritance order:

sage: D = Ds().parent_class()
sage: [ D.fA(), D.fB(), D.fC(), D.fD() ]
['A', 'B', 'C', 'D']
sage: D.f()
'C'

sage: C = Cs().parent_class()
sage: [ C.fA(), C.fC() ]
['A', 'C']

(continues on next page)
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(continued from previous page)

sage: C.f()
'C'

Here is the parallel hierarchy of classes which has been built automatically, together with the method resolution
order (.mro()):

sage: As().parent_class
<class '__main__.As.parent_class'>
sage: As().parent_class.__bases__
(<... 'object'>,)
sage: As().parent_class.mro()
[<class '__main__.As.parent_class'>, <... 'object'>]

sage: Bs().parent_class
<class '__main__.Bs.parent_class'>
sage: Bs().parent_class.__bases__
(<class '__main__.As.parent_class'>,)
sage: Bs().parent_class.mro()
[<class '__main__.Bs.parent_class'>, <class '__main__.As.parent_class'>, <...
→˓'object'>]

sage: Cs().parent_class
<class '__main__.Cs.parent_class'>
sage: Cs().parent_class.__bases__
(<class '__main__.As.parent_class'>,)
sage: Cs().parent_class.__mro__
(<class '__main__.Cs.parent_class'>, <class '__main__.As.parent_class'>, <...
→˓'object'>)

sage: Ds().parent_class
<class '__main__.Ds.parent_class'>
sage: Ds().parent_class.__bases__
(<class '__main__.Cs.parent_class'>, <class '__main__.Bs.parent_class'>)
sage: Ds().parent_class.mro()
[<class '__main__.Ds.parent_class'>, <class '__main__.Cs.parent_class'>, <class '__
→˓main__.Bs.parent_class'>, <class '__main__.As.parent_class'>, <... 'object'>]

Note that two categories in the same class need not have the same super_categories. For example,
Algebras(QQ) has VectorSpaces(QQ) as super category, whereas Algebras(ZZ) only has Modules(ZZ)
as super category. In particular, the constructed parent class and element class will differ (inheriting, or not,
methods specific for vector spaces):

sage: Algebras(QQ).parent_class is Algebras(ZZ).parent_class
False
sage: issubclass(Algebras(QQ).parent_class, VectorSpaces(QQ).parent_class)
True

On the other hand, identical hierarchies of classes are, preferably, built only once (e.g. for categories over a base
ring):

sage: Algebras(GF(5)).parent_class is Algebras(GF(7)).parent_class
True

(continues on next page)
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(continued from previous page)

sage: F = FractionField(ZZ['t'])
sage: Coalgebras(F).parent_class is Coalgebras(FractionField(F['x'])).parent_class
True

We now construct a parent in the usual way:

sage: class myparent(Parent):
....: def __init__(self):
....: Parent.__init__(self, category=Ds())
....: def g(self):
....: return "myparent"
....: class Element():
....: pass
sage: D = myparent()
sage: D.__class__
<class '__main__.myparent_with_category'>
sage: D.__class__.__bases__
(<class '__main__.myparent'>, <class '__main__.Ds.parent_class'>)
sage: D.__class__.mro()
[<class '__main__.myparent_with_category'>,
<class '__main__.myparent'>,
<class 'sage.structure.parent.Parent'>,
<class 'sage.structure.category_object.CategoryObject'>,
<class 'sage.structure.sage_object.SageObject'>,
<class '__main__.Ds.parent_class'>,
<class '__main__.Cs.parent_class'>,
<class '__main__.Bs.parent_class'>,
<class '__main__.As.parent_class'>,
<... 'object'>]
sage: D.fA()
'A'
sage: D.fB()
'B'
sage: D.fC()
'C'
sage: D.fD()
'D'
sage: D.f()
'C'
sage: D.g()
'myparent'

sage: D.element_class
<class '__main__.myparent_with_category.element_class'>
sage: D.element_class.mro()
[<class '__main__.myparent_with_category.element_class'>,
<class ...__main__....Element...>,
<class '__main__.Ds.element_class'>,
<class '__main__.Cs.element_class'>,
<class '__main__.Bs.element_class'>,
<class '__main__.As.element_class'>,
<... 'object'>]
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_super_categories()
The immediate super categories of this category.

This lazy attribute caches the result of the mandatory method super_categories() for speed. It also
does some mangling (flattening join categories, sorting, . . . ).

Whenever speed matters, developers are advised to use this lazy attribute rather than calling
super_categories().

Note: This attribute is likely to eventually become a tuple. When this happens, we might as well use
Category._sort(), if not Category._sort_uniq().

EXAMPLES:

sage: Rings()._super_categories
[Category of rngs, Category of semirings]

_super_categories_for_classes()
The super categories of this category used for building classes.

This is a close variant of _super_categories() used for constructing the list of the bases for
parent_class(), element_class(), and friends. The purpose is ensure that Python will find a proper
Method Resolution Order for those classes. For background, see sage.misc.c3_controlled.

See also:

_cmp_key().

Note: This attribute is calculated as a by-product of computing _all_super_categories().

EXAMPLES:

sage: Rings()._super_categories_for_classes
[Category of rngs, Category of semirings]

_all_super_categories()
All the super categories of this category, including this category.

Since trac ticket #11943, the order of super categories is determined by Python’s method resolution order
C3 algorithm.

See also:

all_super_categories()

Note: this attribute is likely to eventually become a tuple.

Note: this sets _super_categories_for_classes() as a side effect

EXAMPLES:

sage: C = Rings(); C
Category of rings

(continues on next page)
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(continued from previous page)

sage: C._all_super_categories
[Category of rings, Category of rngs, Category of semirings, ...
Category of monoids, ...
Category of commutative additive groups, ...
Category of sets, Category of sets with partial maps,
Category of objects]

_all_super_categories_proper()
All the proper super categories of this category.

Since trac ticket #11943, the order of super categories is determined by Python’s method resolution order
C3 algorithm.

See also:

all_super_categories()

Note: this attribute is likely to eventually become a tuple.

EXAMPLES:

sage: C = Rings(); C
Category of rings
sage: C._all_super_categories_proper
[Category of rngs, Category of semirings, ...
Category of monoids, ...
Category of commutative additive groups, ...
Category of sets, Category of sets with partial maps,
Category of objects]

_set_of_super_categories()
The frozen set of all proper super categories of this category.

Note: this is used for speeding up category containment tests.

See also:

all_super_categories()

EXAMPLES:

sage: sorted(Groups()._set_of_super_categories, key=str)
[Category of inverse unital magmas,
Category of magmas,
Category of monoids,
Category of objects,
Category of semigroups,
Category of sets,
Category of sets with partial maps,
Category of unital magmas]
sage: sorted(Groups()._set_of_super_categories, key=str)
[Category of inverse unital magmas, Category of magmas, Category of monoids,

(continues on next page)
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(continued from previous page)

Category of objects, Category of semigroups, Category of sets,
Category of sets with partial maps, Category of unital magmas]

_make_named_class(name, method_provider, cache=False, picklable=True)
Construction of the parent/element/. . . class of self.

INPUT:

• name – a string; the name of the class as an attribute of self. E.g. “parent_class”

• method_provider – a string; the name of an attribute of self that provides methods for the new
class (in addition to those coming from the super categories). E.g. “ParentMethods”

• cache – a boolean or ignore_reduction (default: False) (passed down to dynamic_class; for in-
ternal use only)

• picklable – a boolean (default: True)

ASSUMPTION:

It is assumed that this method is only called from a lazy attribute whose name coincides with the given
name.

OUTPUT:

A dynamic class with bases given by the corresponding named classes of self’s super_categories, and
methods taken from the class getattr(self,method_provider).

Note:

• In this default implementation, the reduction data of the named class makes it depend on self. Since
the result is going to be stored in a lazy attribute of self anyway, we may as well disable the caching
in dynamic_class (hence the default value cache=False).

• CategoryWithParameters overrides this method so that the same parent/element/. . . classes can be
shared between closely related categories.

• The bases of the named class may also contain the named classes of some indirect super categories,
according to _super_categories_for_classes(). This is to guarantee that Python will build con-
sistent method resolution orders. For background, see sage.misc.c3_controlled.

See also:

CategoryWithParameters._make_named_class()

EXAMPLES:

sage: PC = Rings()._make_named_class("parent_class", "ParentMethods"); PC
<class 'sage.categories.rings.Rings.parent_class'>
sage: type(PC)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
sage: PC.__bases__
(<class 'sage.categories.rngs.Rngs.parent_class'>,
<class 'sage.categories.semirings.Semirings.parent_class'>)

Note that, by default, the result is not cached:

sage: PC is Rings()._make_named_class("parent_class", "ParentMethods")
False
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Indeed this method is only meant to construct lazy attributes like parent_class which already handle this
caching:

sage: Rings().parent_class
<class 'sage.categories.rings.Rings.parent_class'>

Reduction for pickling also assumes the existence of this lazy attribute:

sage: PC._reduction
(<built-in function getattr>, (Category of rings, 'parent_class'))
sage: loads(dumps(PC)) is Rings().parent_class
True

_repr_()
Return the print representation of this category.

EXAMPLES:

sage: Sets() # indirect doctest
Category of sets

_repr_object_names()
Return the name of the objects of this category.

EXAMPLES:

sage: FiniteGroups()._repr_object_names()
'finite groups'
sage: AlgebrasWithBasis(QQ)._repr_object_names()
'algebras with basis over Rational Field'

_test_category(**options)
Run generic tests on this category

See also:

TestSuite.

EXAMPLES:

sage: Sets()._test_category()

Let us now write a couple broken categories:

sage: class MyObjects(Category):
....: pass
sage: MyObjects()._test_category()
Traceback (most recent call last):
...
NotImplementedError: <abstract method super_categories at ...>

sage: class MyObjects(Category):
....: def super_categories(self):
....: return tuple()
sage: MyObjects()._test_category()
Traceback (most recent call last):
...

(continues on next page)
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(continued from previous page)

AssertionError: Category of my objects.super_categories() should return a list

sage: class MyObjects(Category):
....: def super_categories(self):
....: return []
sage: MyObjects()._test_category()
Traceback (most recent call last):
...
AssertionError: Category of my objects is not a subcategory of Objects()

_with_axiom(axiom)
Return the subcategory of the objects of self satisfying the given axiom.

INPUT:

• axiom – a string, the name of an axiom

EXAMPLES:

sage: Sets()._with_axiom("Finite")
Category of finite sets

sage: type(Magmas().Finite().Commutative())
<class 'sage.categories.category.JoinCategory_with_category'>
sage: Magmas().Finite().Commutative().super_categories()
[Category of commutative magmas, Category of finite sets]
sage: Algebras(QQ).WithBasis().Commutative() is Algebras(QQ).Commutative().
→˓WithBasis()
True

When axiom is not defined for self, self is returned:

sage: Sets()._with_axiom("Associative")
Category of sets

Warning: This may be changed in the future to raising an error.

_with_axiom_as_tuple(axiom)
Return a tuple of categories whose join is self._with_axiom().

INPUT:

• axiom – a string, the name of an axiom

This is a lazy version of _with_axiom() which is used to avoid recursion loops during join calculations.

Note: The order in the result is irrelevant.

EXAMPLES:

sage: Sets()._with_axiom_as_tuple('Finite')
(Category of finite sets,)
sage: Magmas()._with_axiom_as_tuple('Finite')

(continues on next page)
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(Category of magmas, Category of finite sets)
sage: Rings().Division()._with_axiom_as_tuple('Finite')
(Category of division rings,
Category of finite monoids,
Category of commutative magmas,
Category of finite additive groups)
sage: HopfAlgebras(QQ)._with_axiom_as_tuple('FiniteDimensional')
(Category of hopf algebras over Rational Field,
Category of finite dimensional vector spaces over Rational Field)

_without_axioms(named=False)
Return the category without the axioms that have been added to create it.

INPUT:

• named – a boolean (default: False)

Todo: Improve this explanation.

If named is True, then this stops at the first category that has an explicit name of its own. See
category_with_axiom.CategoryWithAxiom._without_axioms()

EXAMPLES:

sage: Sets()._without_axioms()
Category of sets
sage: Semigroups()._without_axioms()
Category of magmas
sage: Algebras(QQ).Commutative().WithBasis()._without_axioms()
Category of magmatic algebras over Rational Field
sage: Algebras(QQ).Commutative().WithBasis()._without_axioms(named=True)
Category of algebras over Rational Field

static _sort(categories)
Return the categories after sorting them decreasingly according to their comparison key.

See also:

_cmp_key()

INPUT:

• categories – a list (or iterable) of non-join categories

OUTPUT:

A sorted tuple of categories, possibly with repeats.

Note: The auxiliary function 𝑓 𝑙𝑎𝑡𝑡𝑒𝑛𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 used in the test below expects a second argument, which
is a type such that instances of that type will be replaced by its super categories. Usually, this type is
JoinCategory.

EXAMPLES:
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sage: Category._sort([Sets(), Objects(), Coalgebras(QQ), Monoids(), Sets().
→˓Finite()])
(Category of monoids,
Category of coalgebras over Rational Field,
Category of finite sets,
Category of sets,
Category of objects)
sage: Category._sort([Sets().Finite(), Semigroups().Finite(), Sets().Facade(),
→˓Magmas().Commutative()])
(Category of finite semigroups,
Category of commutative magmas,
Category of finite sets,
Category of facade sets)
sage: Category._sort(Category._flatten_categories([Sets().Finite(),␣
→˓Algebras(QQ).WithBasis(), Semigroups().Finite(), Sets().Facade(),Algebras(QQ).
→˓Commutative(), Algebras(QQ).Graded().WithBasis()], sage.categories.category.
→˓JoinCategory))
(Category of algebras with basis over Rational Field,
Category of algebras with basis over Rational Field,
Category of graded algebras over Rational Field,
Category of commutative algebras over Rational Field,
Category of finite semigroups,
Category of finite sets,
Category of facade sets)

static _sort_uniq(categories)
Return the categories after sorting them and removing redundant categories.

Redundant categories include duplicates and categories which are super categories of other categories in
the input.

INPUT:

• categories – a list (or iterable) of categories

OUTPUT: a sorted tuple of mutually incomparable categories

EXAMPLES:

sage: Category._sort_uniq([Rings(), Monoids(), Coalgebras(QQ)])
(Category of rings, Category of coalgebras over Rational Field)

Note that, in the above example, Monoids() does not appear in the result because it is a super category of
Rings().

static __classcall__(*args, **options)
Input mangling for unique representation.

Let C = Cs(...) be a category. Since trac ticket #12895, the class of C is a dynamic subclass
Cs_with_category of Cs in order for C to inherit code from the SubcategoryMethods nested classes
of its super categories.

The purpose of this __classcall__ method is to ensure that reconstructing C from its class with
Cs_with_category(...) actually calls properly Cs(...) and gives back C.

See also:

subcategory_class()
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EXAMPLES:

sage: A = Algebras(QQ)
sage: A.__class__
<class 'sage.categories.algebras.Algebras_with_category'>
sage: A is Algebras(QQ)
True
sage: A is A.__class__(QQ)
True

__init__(s=None)
Initialize this category.

EXAMPLES:

sage: class SemiprimitiveRings(Category):
....: def super_categories(self):
....: return [Rings()]
....: class ParentMethods:
....: def jacobson_radical(self):
....: return self.ideal(0)
sage: C = SemiprimitiveRings()
sage: C
Category of semiprimitive rings
sage: C.__class__
<class '__main__.SemiprimitiveRings_with_category'>

Note: Specifying the name of this category by passing a string is deprecated. If the default name (built
from the name of the class) is not adequate, please use _repr_object_names() to customize it.

Realizations()
Return the category of realizations of the parent self or of objects of the category self

INPUT:

• self – a parent or a concrete category

Note: this function is actually inserted as a method in the class Category (see Realizations()). It is
defined here for code locality reasons.

EXAMPLES:

The category of realizations of some algebra:

sage: Algebras(QQ).Realizations()
Join of Category of algebras over Rational Field and Category of realizations␣
→˓of unital magmas

The category of realizations of a given algebra:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.Realizations()

(continues on next page)
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Category of realizations of The subset algebra of {1, 2, 3} over Rational Field

sage: C = GradedHopfAlgebrasWithBasis(QQ).Realizations(); C
Join of Category of graded hopf algebras with basis over Rational Field and␣
→˓Category of realizations of hopf algebras over Rational Field
sage: C.super_categories()
[Category of graded hopf algebras with basis over Rational Field, Category of␣
→˓realizations of hopf algebras over Rational Field]

sage: TestSuite(C).run()

See also:

• Sets().WithRealizations

• ClasscallMetaclass

Todo: Add an optional argument to allow for:

sage: Realizations(A, category = Blahs()) # todo: not implemented

WithRealizations()
Return the category of parents in self endowed with multiple realizations.

INPUT:

• self – a category

See also:

• The documentation and code (sage.categories.examples.with_realizations) of Sets().
WithRealizations().example() for more on how to use and implement a parent with several re-
alizations.

• Various use cases:

– SymmetricFunctions

– QuasiSymmetricFunctions

– NonCommutativeSymmetricFunctions

– SymmetricFunctionsNonCommutingVariables

– DescentAlgebra

– algebras.Moebius

– IwahoriHeckeAlgebra

– ExtendedAffineWeylGroup

• The Implementing Algebraic Structures thematic tutorial.

• sage.categories.realizations
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Note: this function is actually inserted as a method in the class Category (see WithRealizations()).
It is defined here for code locality reasons.

EXAMPLES:

sage: Sets().WithRealizations()
Category of sets with realizations

Parent with realizations

Let us now explain the concept of realizations. A parent with realizations is a facade parent (see Sets.
Facade) admitting multiple concrete realizations where its elements are represented. Consider for example
an algebra 𝐴 which admits several natural bases:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field

For each such basis 𝐵 one implements a parent 𝑃𝐵 which realizes 𝐴 with its elements represented by
expanding them on the basis 𝐵:

sage: A.F()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: A.Out()
The subset algebra of {1, 2, 3} over Rational Field in the Out basis
sage: A.In()
The subset algebra of {1, 2, 3} over Rational Field in the In basis

sage: A.an_element()
F[{}] + 2*F[{1}] + 3*F[{2}] + F[{1, 2}]

If 𝐵 and 𝐵′ are two bases, then the change of basis from 𝐵 to 𝐵′ is implemented by a canonical coercion
between 𝑃𝐵 and 𝑃𝐵′ :

sage: F = A.F(); In = A.In(); Out = A.Out()
sage: i = In.an_element(); i
In[{}] + 2*In[{1}] + 3*In[{2}] + In[{1, 2}]
sage: F(i)
7*F[{}] + 3*F[{1}] + 4*F[{2}] + F[{1, 2}]
sage: F.coerce_map_from(Out)
Generic morphism:
From: The subset algebra of {1, 2, 3} over Rational Field in the Out basis
To: The subset algebra of {1, 2, 3} over Rational Field in the Fundamental␣

→˓basis

allowing for mixed arithmetic:

sage: (1 + Out.from_set(1)) * In.from_set(2,3)
Out[{}] + 2*Out[{1}] + 2*Out[{2}] + 2*Out[{3}] + 2*Out[{1, 2}] + 2*Out[{1, 3}]␣
→˓+ 4*Out[{2, 3}] + 4*Out[{1, 2, 3}]

In our example, there are three realizations:
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sage: A.realizations()
[The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis,
The subset algebra of {1, 2, 3} over Rational Field in the In basis,
The subset algebra of {1, 2, 3} over Rational Field in the Out basis]

Instead of manually defining the shorthands F, In, and Out, as above one can just do:

sage: A.inject_shorthands()
Defining F as shorthand for The subset algebra of {1, 2, 3} over Rational Field␣
→˓in the Fundamental basis
Defining In as shorthand for The subset algebra of {1, 2, 3} over Rational␣
→˓Field in the In basis
Defining Out as shorthand for The subset algebra of {1, 2, 3} over Rational␣
→˓Field in the Out basis

Rationale

Besides some goodies described below, the role of 𝐴 is threefold:

• To provide, as illustrated above, a single entry point for the algebra as a whole: documentation, access
to its properties and different realizations, etc.

• To provide a natural location for the initialization of the bases and the coercions between, and other
methods that are common to all bases.

• To let other objects refer to 𝐴 while allowing elements to be represented in any of the realizations.

We now illustrate this second point by defining the polynomial ring with coefficients in 𝐴:

sage: P = A['x']; P
Univariate Polynomial Ring in x over The subset algebra of {1, 2, 3} over␣
→˓Rational Field
sage: x = P.gen()

In the following examples, the coefficients turn out to be all represented in the 𝐹 basis:

sage: P.one()
F[{}]
sage: (P.an_element() + 1)^2
F[{}]*x^2 + 2*F[{}]*x + F[{}]

However we can create a polynomial with mixed coefficients, and compute with it:

sage: p = P([1, In[{1}], Out[{2}] ]); p
Out[{2}]*x^2 + In[{1}]*x + F[{}]
sage: p^2
Out[{2}]*x^4
+ (-8*In[{}] + 4*In[{1}] + 8*In[{2}] + 4*In[{3}] - 4*In[{1, 2}] - 2*In[{1, 3}] -
→˓ 4*In[{2, 3}] + 2*In[{1, 2, 3}])*x^3
+ (F[{}] + 3*F[{1}] + 2*F[{2}] - 2*F[{1, 2}] - 2*F[{2, 3}] + 2*F[{1, 2, 3}])*x^2
+ (2*F[{}] + 2*F[{1}])*x
+ F[{}]

Note how each coefficient involves a single basis which need not be that of the other coefficients. Which
basis is used depends on how coercion happened during mixed arithmetic and needs not be deterministic.
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One can easily coerce all coefficient to a given basis with:

sage: p.map_coefficients(In)
(-4*In[{}] + 2*In[{1}] + 4*In[{2}] + 2*In[{3}] - 2*In[{1, 2}] - In[{1, 3}] -␣
→˓2*In[{2, 3}] + In[{1, 2, 3}])*x^2 + In[{1}]*x + In[{}]

Alas, the natural notation for constructing such polynomials does not yet work:

sage: In[{1}] * x
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'The subset algebra of {1, 2, 3}
→˓ over Rational Field in the In basis' and 'Univariate Polynomial Ring in x␣
→˓over The subset algebra of {1, 2, 3} over Rational Field'

The category of realizations of 𝐴

The set of all realizations of 𝐴, together with the coercion morphisms is a category (whose class inherits
from Category_realization_of_parent):

sage: A.Realizations()
Category of realizations of The subset algebra of {1, 2, 3} over Rational Field

The various parent realizing 𝐴 belong to this category:

sage: A.F() in A.Realizations()
True

𝐴 itself is in the category of algebras with realizations:

sage: A in Algebras(QQ).WithRealizations()
True

The (mostly technical) WithRealizations categories are the analogs of the *WithSeveralBases cat-
egories in MuPAD-Combinat. They provide support tools for handling the different realizations and the
morphisms between them.

Typically, VectorSpaces(QQ).FiniteDimensional().WithRealizations() will eventually be in
charge, whenever a coercion 𝜑 : 𝐴 ↦→ 𝐵 is registered, to register 𝜑−1 as coercion 𝐵 ↦→ 𝐴 if there
is none defined yet. To achieve this, FiniteDimensionalVectorSpaces would provide a nested class
WithRealizations implementing the appropriate logic.

WithRealizations is a regressive covariant functorial construction. On our example, this
simply means that 𝐴 is automatically in the category of rings with realizations (covariance):

sage: A in Rings().WithRealizations()
True

and in the category of algebras (regressiveness):

sage: A in Algebras(QQ)
True

Note: For C a category, C.WithRealizations() in fact calls sage.categories.
with_realizations.WithRealizations(C). The later is responsible for building the hierarchy
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of the categories with realizations in parallel to that of their base categories, optimizing away
those categories that do not provide a WithRealizations nested class. See sage.categories.
covariant_functorial_construction for the technical details.

Note: Design question: currently WithRealizations is a regressive construction. That is self.
WithRealizations() is a subcategory of self by default:

sage: Algebras(QQ).WithRealizations().super_categories()
[Category of algebras over Rational Field,
Category of monoids with realizations,
Category of additive unital additive magmas with realizations]

Is this always desirable? For example, AlgebrasWithBasis(QQ).WithRealizations() should cer-
tainly be a subcategory of Algebras(QQ), but not of AlgebrasWithBasis(QQ). This is because
AlgebrasWithBasis(QQ) is specifying something about the concrete realization.

additional_structure()
Return whether self defines additional structure.

OUTPUT:

• self if self defines additional structure and None otherwise. This default implementation returns
self.

A category 𝐶 defines additional structure if 𝐶-morphisms shall preserve more structure (e.g. operations)
than that specified by the super categories of 𝐶. For example, the category of magmas defines additional
structure, namely the operation * that shall be preserved by magma morphisms. On the other hand the
category of rings does not define additional structure: a function between two rings that is both a unital
magma morphism and a unital additive magma morphism is automatically a ring morphism.

Formally speaking 𝐶 defines additional structure, if 𝐶 is not a full subcategory of the join of its super
categories: the morphisms need to preserve more structure, and thus the homsets are smaller.

By default, a category is considered as defining additional structure, unless it is a category with axiom.

EXAMPLES:

Here are some typical structure categories, with the additional structure they define:

sage: Sets().additional_structure()
Category of sets
sage: Magmas().additional_structure() # `*`
Category of magmas
sage: AdditiveMagmas().additional_structure() # `+`
Category of additive magmas
sage: LeftModules(ZZ).additional_structure() # left multiplication by scalar
Category of left modules over Integer Ring
sage: Coalgebras(QQ).additional_structure() # coproduct
Category of coalgebras over Rational Field
sage: Crystals().additional_structure() # crystal operators
Category of crystals

On the other hand, the category of semigroups is not a structure category, since its operation + is already
defined by the category of magmas:
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sage: Semigroups().additional_structure()

Most categories with axiom don’t define additional structure:

sage: Sets().Finite().additional_structure()
sage: Rings().Commutative().additional_structure()
sage: Modules(QQ).FiniteDimensional().additional_structure()
sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: MagmaticAlgebras(QQ).Unital().additional_structure()

As of Sage 6.4, the only exceptions are the category of unital magmas or the category of unital additive
magmas (both define a unit which shall be preserved by morphisms):

sage: Magmas().Unital().additional_structure()
Category of unital magmas
sage: AdditiveMagmas().AdditiveUnital().additional_structure()
Category of additive unital additive magmas

Similarly, functorial construction categories don’t define additional structure, unless the construction is
actually defined by their base category. For example, the category of graded modules defines a grading
which shall be preserved by morphisms:

sage: Modules(ZZ).Graded().additional_structure()
Category of graded modules over Integer Ring

On the other hand, the category of graded algebras does not define additional structure; indeed an algebra
morphism which is also a module morphism is a graded algebra morphism:

sage: Algebras(ZZ).Graded().additional_structure()

Similarly, morphisms are requested to preserve the structure given by the following constructions:

sage: Sets().Quotients().additional_structure()
Category of quotients of sets
sage: Sets().CartesianProducts().additional_structure()
Category of Cartesian products of sets
sage: Modules(QQ).TensorProducts().additional_structure()

This might change, as we are lacking enough data points to guarantee that this was the correct design
decision.

Note: In some cases a category defines additional structure, where the structure can be useful to manipu-
late morphisms but where, in most use cases, we don’t want the morphisms to necessarily preserve it. For
example, in the context of finite dimensional vector spaces, having a distinguished basis allows for rep-
resenting morphisms by matrices; yet considering only morphisms that preserve that distinguished basis
would be boring.

In such cases, we might want to eventually have two categories, one where the additional structure is pre-
served, and one where it’s not necessarily preserved (we would need to find an idiom for this).

At this point, a choice is to be made each time, according to the main use cases. Some of those choices are
yet to be settled. For example, should by default:

• an euclidean domain morphism preserve euclidean division?
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sage: EuclideanDomains().additional_structure()
Category of euclidean domains

• an enumerated set morphism preserve the distinguished enumeration?

sage: EnumeratedSets().additional_structure()

• a module with basis morphism preserve the distinguished basis?

sage: Modules(QQ).WithBasis().additional_structure()

See also:

This method together with the methods overloading it provide the basic data to determine, for a given
category, the super categories that define some structure (see structure()), and to test whether a category
is a full subcategory of some other category (see is_full_subcategory()). For example, the category
of Coxeter groups is not full subcategory of the category of groups since morphisms need to preserve the
distinguished generators:

sage: CoxeterGroups().is_full_subcategory(Groups())
False

The support for modeling full subcategories has been introduced in trac ticket #16340.

all_super_categories(proper=False)
Returns the list of all super categories of this category.

INPUT:

• proper – a boolean (default: False); whether to exclude this category.

Since trac ticket #11943, the order of super categories is determined by Python’s method resolution order
C3 algorithm.

Note: Whenever speed matters, the developers are advised to use instead the
lazy attributes _all_super_categories(), _all_super_categories_proper(), or
_set_of_super_categories(), as appropriate. Simply because lazy attributes are much faster
than any method.

EXAMPLES:

sage: C = Rings(); C
Category of rings
sage: C.all_super_categories()
[Category of rings, Category of rngs, Category of semirings, ...
Category of monoids, ...
Category of commutative additive groups, ...
Category of sets, Category of sets with partial maps,
Category of objects]

sage: C.all_super_categories(proper = True)
[Category of rngs, Category of semirings, ...
Category of monoids, ...
Category of commutative additive groups, ...

(continues on next page)
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Category of sets, Category of sets with partial maps,
Category of objects]

sage: Sets().all_super_categories()
[Category of sets, Category of sets with partial maps, Category of objects]
sage: Sets().all_super_categories(proper=True)
[Category of sets with partial maps, Category of objects]
sage: Sets().all_super_categories() is Sets()._all_super_categories
True
sage: Sets().all_super_categories(proper=True) is Sets()._all_super_categories_
→˓proper
True

classmethod an_instance()
Return an instance of this class.

EXAMPLES:

sage: Rings.an_instance()
Category of rings

Parametrized categories should overload this default implementation to provide appropriate arguments:

sage: Algebras.an_instance()
Category of algebras over Rational Field
sage: Bimodules.an_instance()
Category of bimodules over Rational Field on the left and Real Field with 53␣
→˓bits of precision on the right
sage: AlgebraIdeals.an_instance()
Category of algebra ideals in Univariate Polynomial Ring in x over Rational␣
→˓Field

axioms()
Return the axioms known to be satisfied by all the objects of self.

Technically, this is the set of all the axioms A such that, if Cs is the category defining A, then self is a
subcategory of Cs().A(). Any additional axiom A would yield a strict subcategory of self, at the very
least self & Cs().A() where Cs is the category defining A.

EXAMPLES:

sage: Monoids().axioms()
frozenset({'Associative', 'Unital'})
sage: (EnumeratedSets().Infinite() & Sets().Facade()).axioms()
frozenset({'Enumerated', 'Facade', 'Infinite'})

category()
Return the category of this category. So far, all categories are in the category of objects.

EXAMPLES:

sage: Sets().category()
Category of objects
sage: VectorSpaces(QQ).category()
Category of objects
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category_graph()
Returns the graph of all super categories of this category

EXAMPLES:

sage: C = Algebras(QQ)
sage: G = C.category_graph()
sage: G.is_directed_acyclic()
True

The girth of a directed acyclic graph is infinite, however, the girth of the underlying undirected graph is 4
in this case:

sage: Graph(G).girth()
4

element_class()
A common super class for all elements of parents in this category (and its subcategories).

This class contains the methods defined in the nested class self.ElementMethods (if it exists), and has
as bases the element classes of the super categories of self.

See also:

• parent_class(), morphism_class()

• Category for details

EXAMPLES:

sage: C = Algebras(QQ).element_class; C
<class 'sage.categories.algebras.Algebras.element_class'>
sage: type(C)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>

By trac ticket #11935, some categories share their element classes. For example, the element class of an
algebra only depends on the category of the base. A typical example is the category of algebras over a field
versus algebras over a non-field:

sage: Algebras(GF(5)).element_class is Algebras(GF(3)).element_class
True
sage: Algebras(QQ).element_class is Algebras(ZZ).element_class
False
sage: Algebras(ZZ['t']).element_class is Algebras(ZZ['t','x']).element_class
True

These classes are constructed with __slots__ = (), so instances may not have a __dict__:

sage: E = FiniteEnumeratedSets().element_class
sage: E.__dictoffset__
0

See also:

parent_class()

example(*args, **keywords)
Returns an object in this category. Most of the time, this is a parent.
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This serves three purposes:

• Give a typical example to better explain what the category is all about. (and by the way prove that the
category is non empty :-) )

• Provide a minimal template for implementing other objects in this category

• Provide an object on which to test generic code implemented by the category

For all those applications, the implementation of the object shall be kept to a strict minimum. The object
is therefore not meant to be used for other applications; most of the time a full featured version is available
elsewhere in Sage, and should be used instead.

Technical note: by default FooBar(...).example() is constructed by looking up sage.categories.
examples.foo_bar.Example and calling it as Example(). Extra positional or named parameters are also
passed down. For a category over base ring, the base ring is further passed down as an optional argument.

Categories are welcome to override this default implementation.

EXAMPLES:

sage: Semigroups().example()
An example of a semigroup: the left zero semigroup

sage: Monoids().Subquotients().example()
NotImplemented

full_super_categories()
Return the immediate full super categories of self.

See also:

• super_categories()

• is_full_subcategory()

Warning: The current implementation selects the full subcategories among the immediate super cat-
egories of self. This assumes that, if 𝐶 ⊂ 𝐵 ⊂ 𝐴 is a chain of categories and 𝐶 is a full subcategory
of 𝐴, then 𝐶 is a full subcategory of 𝐵 and 𝐵 is a full subcategory of 𝐴.

This assumption is guaranteed to hold with the current model and implementation of full subcategories
in Sage. However, mathematically speaking, this is too restrictive. This indeed prevents the complete
modelling of situations where any 𝐴 morphism between elements of 𝐶 automatically preserves the 𝐵
structure. See below for an example.

EXAMPLES:

A semigroup morphism between two finite semigroups is a finite semigroup morphism:

sage: Semigroups().Finite().full_super_categories()
[Category of semigroups]

On the other hand, a semigroup morphism between two monoids is not necessarily a monoid morphism
(which must map the unit to the unit):

sage: Monoids().super_categories()
[Category of semigroups, Category of unital magmas]

(continues on next page)
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sage: Monoids().full_super_categories()
[Category of unital magmas]

Any semigroup morphism between two groups is automatically a monoid morphism (in a group the unit is
the unique idempotent, so it has to be mapped to the unit). Yet, due to the limitation of the model advertised
above, Sage currently cannot be taught that the category of groups is a full subcategory of the category of
semigroups:

sage: Groups().full_super_categories() # todo: not implemented
[Category of monoids, Category of semigroups, Category of inverse unital magmas]
sage: Groups().full_super_categories()
[Category of monoids, Category of inverse unital magmas]

is_abelian()
Return whether this category is abelian.

An abelian category is a category satisfying:

• It has a zero object;

• It has all pullbacks and pushouts;

• All monomorphisms and epimorphisms are normal.

Equivalently, one can define an increasing sequence of conditions:

• A category is pre-additive if it is enriched over abelian groups (all homsets are abelian groups and
composition is bilinear);

• A pre-additive category is additive if every finite set of objects has a biproduct (we can form direct
sums and direct products);

• An additive category is pre-abelian if every morphism has both a kernel and a cokernel;

• A pre-abelian category is abelian if every monomorphism is the kernel of some morphism and every
epimorphism is the cokernel of some morphism.

EXAMPLES:

sage: Modules(ZZ).is_abelian()
True
sage: FreeModules(ZZ).is_abelian()
False
sage: FreeModules(QQ).is_abelian()
True
sage: CommutativeAdditiveGroups().is_abelian()
True
sage: Semigroups().is_abelian()
Traceback (most recent call last):
...
NotImplementedError: is_abelian

is_full_subcategory(other)
Return whether self is a full subcategory of other.

A subcategory𝐵 of a category𝐴 is a full subcategory if any𝐴-morphism between two objects of𝐵 is also a
𝐵-morphism (the reciprocal always holds: any 𝐵-morphism between two objects of 𝐵 is an 𝐴-morphism).
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This is computed by testing whether self is a subcategory of other and whether they have the same
structure, as determined by structure() from the result of additional_structure() on the super
categories.

Warning: A positive answer is guaranteed to be mathematically correct. A negative answer may mean
that Sage has not been taught enough information (or can not yet within the current model) to derive
this information. See full_super_categories() for a discussion.

See also:

• is_subcategory()

• full_super_categories()

EXAMPLES:

sage: Magmas().Associative().is_full_subcategory(Magmas())
True
sage: Magmas().Unital().is_full_subcategory(Magmas())
False
sage: Rings().is_full_subcategory(Magmas().Unital() & AdditiveMagmas().
→˓AdditiveUnital())
True

Here are two typical examples of false negatives:

sage: Groups().is_full_subcategory(Semigroups())
False
sage: Groups().is_full_subcategory(Semigroups()) # todo: not implemented
True
sage: Fields().is_full_subcategory(Rings())
False
sage: Fields().is_full_subcategory(Rings()) # todo: not implemented
True

Todo: The latter is a consequence of EuclideanDomains currently being a structure category. Is this
what we want?

sage: EuclideanDomains().is_full_subcategory(Rings())
False

is_subcategory(c)
Returns True if self is naturally embedded as a subcategory of c.

EXAMPLES:

sage: AbGrps = CommutativeAdditiveGroups()
sage: Rings().is_subcategory(AbGrps)
True
sage: AbGrps.is_subcategory(Rings())
False
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The is_subcategory function takes into account the base.

sage: M3 = VectorSpaces(FiniteField(3))
sage: M9 = VectorSpaces(FiniteField(9, 'a'))
sage: M3.is_subcategory(M9)
False

Join categories are properly handled:

sage: CatJ = Category.join((CommutativeAdditiveGroups(), Semigroups()))
sage: Rings().is_subcategory(CatJ)
True

sage: V3 = VectorSpaces(FiniteField(3))
sage: POSet = PartiallyOrderedSets()
sage: PoV3 = Category.join((V3, POSet))
sage: A3 = AlgebrasWithBasis(FiniteField(3))
sage: PoA3 = Category.join((A3, POSet))
sage: PoA3.is_subcategory(PoV3)
True
sage: PoV3.is_subcategory(PoV3)
True
sage: PoV3.is_subcategory(PoA3)
False

static join(categories, as_list=False, ignore_axioms=(), axioms=())
Return the join of the input categories in the lattice of categories.

At the level of objects and morphisms, this operation corresponds to intersection: the objects and mor-
phisms of a join category are those that belong to all its super categories.

INPUT:

• categories – a list (or iterable) of categories

• as_list – a boolean (default: False); whether the result should be returned as a list

• axioms – a tuple of strings; the names of some supplementary axioms

See also:

__and__() for a shortcut

EXAMPLES:

sage: J = Category.join((Groups(), CommutativeAdditiveMonoids())); J
Join of Category of groups and Category of commutative additive monoids
sage: J.super_categories()
[Category of groups, Category of commutative additive monoids]
sage: J.all_super_categories(proper=True)
[Category of groups, ..., Category of magmas,
Category of commutative additive monoids, ..., Category of additive magmas,
Category of sets, ...]

As a short hand, one can use:

sage: Groups() & CommutativeAdditiveMonoids()
Join of Category of groups and Category of commutative additive monoids
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This is a commutative and associative operation:

sage: Groups() & Posets()
Join of Category of groups and Category of posets
sage: Posets() & Groups()
Join of Category of groups and Category of posets

sage: Groups() & (CommutativeAdditiveMonoids() & Posets())
Join of Category of groups

and Category of commutative additive monoids
and Category of posets

sage: (Groups() & CommutativeAdditiveMonoids()) & Posets()
Join of Category of groups

and Category of commutative additive monoids
and Category of posets

The join of a single category is the category itself:

sage: Category.join([Monoids()])
Category of monoids

Similarly, the join of several mutually comparable categories is the smallest one:

sage: Category.join((Sets(), Rings(), Monoids()))
Category of rings

In particular, the unit is the top category Objects:

sage: Groups() & Objects()
Category of groups

If the optional parameter as_list is True, this returns the super categories of the join as a list, without
constructing the join category itself:

sage: Category.join((Groups(), CommutativeAdditiveMonoids()), as_list=True)
[Category of groups, Category of commutative additive monoids]
sage: Category.join((Sets(), Rings(), Monoids()), as_list=True)
[Category of rings]
sage: Category.join((Modules(ZZ), FiniteFields()), as_list=True)
[Category of finite enumerated fields, Category of modules over Integer Ring]
sage: Category.join([], as_list=True)
[]
sage: Category.join([Groups()], as_list=True)
[Category of groups]
sage: Category.join([Groups() & Posets()], as_list=True)
[Category of groups, Category of posets]

Support for axiom categories (TODO: put here meaningful examples):

sage: Sets().Facade() & Sets().Infinite()
Category of facade infinite sets
sage: Magmas().Infinite() & Sets().Facade()
Category of facade infinite magmas

(continues on next page)
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sage: FiniteSets() & Monoids()
Category of finite monoids
sage: Rings().Commutative() & Sets().Finite()
Category of finite commutative rings

Note that several of the above examples are actually join categories; they are just nicely displayed:

sage: AlgebrasWithBasis(QQ) & FiniteSets().Algebras(QQ)
Join of Category of finite dimensional algebras with basis over Rational Field

and Category of finite set algebras over Rational Field

sage: UniqueFactorizationDomains() & Algebras(QQ)
Join of Category of unique factorization domains

and Category of commutative algebras over Rational Field

static meet(categories)
Returns the meet of a list of categories

INPUT:

• categories - a non empty list (or iterable) of categories

See also:

__or__() for a shortcut

EXAMPLES:

sage: Category.meet([Algebras(ZZ), Algebras(QQ), Groups()])
Category of monoids

That meet of an empty list should be a category which is a subcategory of all categories, which does not
make practical sense:

sage: Category.meet([])
Traceback (most recent call last):
...
ValueError: The meet of an empty list of categories is not implemented

morphism_class()
A common super class for all morphisms between parents in this category (and its subcategories).

This class contains the methods defined in the nested class self.MorphismMethods (if it exists), and has
as bases the morphism classes of the super categories of self.

See also:

• parent_class(), element_class()

• Category for details

EXAMPLES:

sage: C = Algebras(QQ).morphism_class; C
<class 'sage.categories.algebras.Algebras.morphism_class'>
sage: type(C)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
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or_subcategory(category=None, join=False)
Return category or self if category is None.

INPUT:

• category – a sub category of self, tuple/list thereof, or None

• join – a boolean (default: False)

OUTPUT:

• a category

EXAMPLES:

sage: Monoids().or_subcategory(Groups())
Category of groups
sage: Monoids().or_subcategory(None)
Category of monoids

If category is a list/tuple, then a join category is returned:

sage: Monoids().or_subcategory((CommutativeAdditiveMonoids(), Groups()))
Join of Category of groups and Category of commutative additive monoids

If join is False, an error if raised if category is not a subcategory of self:

sage: Monoids().or_subcategory(EnumeratedSets())
Traceback (most recent call last):
...
ValueError: Subcategory of `Category of monoids` required; got `Category of␣
→˓enumerated sets`

Otherwise, the two categories are joined together:

sage: Monoids().or_subcategory(EnumeratedSets(), join=True)
Category of enumerated monoids

parent_class()
A common super class for all parents in this category (and its subcategories).

This class contains the methods defined in the nested class self.ParentMethods (if it exists), and has as
bases the parent classes of the super categories of self.

See also:

• element_class(), morphism_class()

• Category for details

EXAMPLES:

sage: C = Algebras(QQ).parent_class; C
<class 'sage.categories.algebras.Algebras.parent_class'>
sage: type(C)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>

By trac ticket #11935, some categories share their parent classes. For example, the parent class of an algebra
only depends on the category of the base ring. A typical example is the category of algebras over a finite
field versus algebras over a non-field:
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sage: Algebras(GF(7)).parent_class is Algebras(GF(5)).parent_class
True
sage: Algebras(QQ).parent_class is Algebras(ZZ).parent_class
False
sage: Algebras(ZZ['t']).parent_class is Algebras(ZZ['t','x']).parent_class
True

See CategoryWithParameters for an abstract base class for categories that depend on parameters, even
though the parent and element classes only depend on the parent or element classes of its super categories.
It is used in Bimodules, Category_over_base and sage.categories.category.JoinCategory.

required_methods()
Returns the methods that are required and optional for parents in this category and their elements.

EXAMPLES:

sage: Algebras(QQ).required_methods()
{'element': {'optional': ['_add_', '_mul_'], 'required': ['__bool__']},
'parent': {'optional': ['algebra_generators'], 'required': ['__contains__']}}

structure()
Return the structure self is endowed with.

This method returns the structure that morphisms in this category shall be preserving. For example, it tells
that a ring is a set endowed with a structure of both a unital magma and an additive unital magma which
satisfies some further axioms. In other words, a ring morphism is a function that preserves the unital magma
and additive unital magma structure.

In practice, this returns the collection of all the super categories of self that define some additional struc-
ture, as a frozen set.

EXAMPLES:

sage: Objects().structure()
frozenset()

sage: def structure(C):
....: return Category._sort(C.structure())

sage: structure(Sets())
(Category of sets, Category of sets with partial maps)
sage: structure(Magmas())
(Category of magmas, Category of sets, Category of sets with partial maps)

In the following example, we only list the smallest structure categories to get a more readable output:

sage: def structure(C):
....: return Category._sort_uniq(C.structure())

sage: structure(Magmas())
(Category of magmas,)
sage: structure(Rings())
(Category of unital magmas, Category of additive unital additive magmas)
sage: structure(Fields())
(Category of euclidean domains,)
sage: structure(Algebras(QQ))

(continues on next page)
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(Category of unital magmas,
Category of right modules over Rational Field,
Category of left modules over Rational Field)
sage: structure(HopfAlgebras(QQ).Graded().WithBasis().Connected())
(Category of hopf algebras over Rational Field,
Category of graded modules over Rational Field)

This method is used in is_full_subcategory() for deciding whether a category is a full subcategory
of some other category, and for documentation purposes. It is computed recursively from the result of
additional_structure() on the super categories of self.

subcategory_class()
A common superclass for all subcategories of this category (including this one).

This class derives from D.subcategory_class for each super category 𝐷 of self, and includes all the
methods from the nested class self.SubcategoryMethods, if it exists.

See also:

• trac ticket #12895

• parent_class()

• element_class()

• _make_named_class()

EXAMPLES:

sage: cls = Rings().subcategory_class; cls
<class 'sage.categories.rings.Rings.subcategory_class'>
sage: type(cls)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>

Rings() is an instance of this class, as well as all its subcategories:

sage: isinstance(Rings(), cls)
True
sage: isinstance(AlgebrasWithBasis(QQ), cls)
True

super_categories()
Return the immediate super categories of self.

OUTPUT:

• a duplicate-free list of categories.

Every category should implement this method.

EXAMPLES:

sage: Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]
sage: Objects().super_categories()
[]
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Note: Since trac ticket #10963, the order of the categories in the result is irrelevant. For details, see On
the order of super categories.

Note: Whenever speed matters, developers are advised to use the lazy attribute _super_categories()
instead of calling this method.

class sage.categories.category.CategoryWithParameters(s=None)
Bases: sage.categories.category.Category

A parametrized category whose parent/element classes depend only on its super categories.

Many categories in Sage are parametrized, like C = Algebras(K) which takes a base ring as parameter. In
many cases, however, the operations provided by C in the parent class and element class depend only on the
super categories of C. For example, the vector space operations are provided if and only if K is a field, since
VectorSpaces(K) is a super category of C only in that case. In such cases, and as an optimization (see trac
ticket #11935), we want to use the same parent and element class for all fields. This is the purpose of this abstract
class.

Currently, JoinCategory, Category_over_base and Bimodules inherit from this class.

EXAMPLES:

sage: C1 = Algebras(GF(5))
sage: C2 = Algebras(GF(3))
sage: C3 = Algebras(ZZ)
sage: from sage.categories.category import CategoryWithParameters
sage: isinstance(C1, CategoryWithParameters)
True
sage: C1.parent_class is C2.parent_class
True
sage: C1.parent_class is C3.parent_class
False

Category._make_named_class(name, method_provider, cache=False, picklable=True)
Construction of the parent/element/. . . class of self.

INPUT:

• name – a string; the name of the class as an attribute of self. E.g. “parent_class”

• method_provider – a string; the name of an attribute of self that provides methods for the new
class (in addition to those coming from the super categories). E.g. “ParentMethods”

• cache – a boolean or ignore_reduction (default: False) (passed down to dynamic_class; for in-
ternal use only)

• picklable – a boolean (default: True)

ASSUMPTION:

It is assumed that this method is only called from a lazy attribute whose name coincides with the given
name.

OUTPUT:

A dynamic class with bases given by the corresponding named classes of self’s super_categories, and
methods taken from the class getattr(self,method_provider).
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Note:

• In this default implementation, the reduction data of the named class makes it depend on self. Since
the result is going to be stored in a lazy attribute of self anyway, we may as well disable the caching
in dynamic_class (hence the default value cache=False).

• CategoryWithParameters overrides this method so that the same parent/element/. . . classes can be
shared between closely related categories.

• The bases of the named class may also contain the named classes of some indirect super categories,
according to _super_categories_for_classes(). This is to guarantee that Python will build con-
sistent method resolution orders. For background, see sage.misc.c3_controlled.

See also:

CategoryWithParameters._make_named_class()

EXAMPLES:

sage: PC = Rings()._make_named_class("parent_class", "ParentMethods"); PC
<class 'sage.categories.rings.Rings.parent_class'>
sage: type(PC)
<class 'sage.structure.dynamic_class.DynamicMetaclass'>
sage: PC.__bases__
(<class 'sage.categories.rngs.Rngs.parent_class'>,
<class 'sage.categories.semirings.Semirings.parent_class'>)

Note that, by default, the result is not cached:

sage: PC is Rings()._make_named_class("parent_class", "ParentMethods")
False

Indeed this method is only meant to construct lazy attributes like parent_class which already handle this
caching:

sage: Rings().parent_class
<class 'sage.categories.rings.Rings.parent_class'>

Reduction for pickling also assumes the existence of this lazy attribute:

sage: PC._reduction
(<built-in function getattr>, (Category of rings, 'parent_class'))
sage: loads(dumps(PC)) is Rings().parent_class
True

class sage.categories.category.JoinCategory(super_categories, **kwds)
Bases: sage.categories.category.CategoryWithParameters

A class for joins of several categories. Do not use directly; see Category.join instead.

EXAMPLES:

sage: from sage.categories.category import JoinCategory
sage: J = JoinCategory((Groups(), CommutativeAdditiveMonoids())); J
Join of Category of groups and Category of commutative additive monoids
sage: J.super_categories()

(continues on next page)
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[Category of groups, Category of commutative additive monoids]
sage: J.all_super_categories(proper=True)
[Category of groups, ..., Category of magmas,
Category of commutative additive monoids, ..., Category of additive magmas,
Category of sets, Category of sets with partial maps, Category of objects]

By trac ticket #11935, join categories and categories over base rings inherit from CategoryWithParameters.
This allows for sharing parent and element classes between similar categories. For example, since group algebras
belong to a join category and since the underlying implementation is the same for all finite fields, we have:

sage: G = SymmetricGroup(10)
sage: A3 = G.algebra(GF(3))
sage: A5 = G.algebra(GF(5))
sage: type(A3.category())
<class 'sage.categories.category.JoinCategory_with_category'>
sage: type(A3) is type(A5)
True

Category._repr_object_names()
Return the name of the objects of this category.

EXAMPLES:

sage: FiniteGroups()._repr_object_names()
'finite groups'
sage: AlgebrasWithBasis(QQ)._repr_object_names()
'algebras with basis over Rational Field'

Category._repr_()
Return the print representation of this category.

EXAMPLES:

sage: Sets() # indirect doctest
Category of sets

Category._without_axioms(named=False)
Return the category without the axioms that have been added to create it.

INPUT:

• named – a boolean (default: False)

Todo: Improve this explanation.

If named is True, then this stops at the first category that has an explicit name of its own. See
category_with_axiom.CategoryWithAxiom._without_axioms()

EXAMPLES:

sage: Sets()._without_axioms()
Category of sets
sage: Semigroups()._without_axioms()
Category of magmas

(continues on next page)
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sage: Algebras(QQ).Commutative().WithBasis()._without_axioms()
Category of magmatic algebras over Rational Field
sage: Algebras(QQ).Commutative().WithBasis()._without_axioms(named=True)
Category of algebras over Rational Field

additional_structure()
Return None.

Indeed, a join category defines no additional structure.

See also:

Category.additional_structure()

EXAMPLES:

sage: Modules(ZZ).additional_structure()

is_subcategory(C)
Check whether this join category is subcategory of another category C.

EXAMPLES:

sage: Category.join([Rings(),Modules(QQ)]).is_subcategory(Category.join([Rngs(),
→˓Bimodules(QQ,QQ)]))
True

super_categories()
Returns the immediate super categories, as per Category.super_categories().

EXAMPLES:

sage: from sage.categories.category import JoinCategory
sage: JoinCategory((Semigroups(), FiniteEnumeratedSets())).super_categories()
[Category of semigroups, Category of finite enumerated sets]

sage.categories.category.category_graph(categories=None)
Return the graph of the categories in Sage.

INPUT:

• categories – a list (or iterable) of categories

If categories is specified, then the graph contains the mentioned categories together with all their super
categories. Otherwise the graph contains (an instance of) each category in sage.categories.all (e.g.
Algebras(QQ) for algebras).

For readability, the names of the category are shortened.

Todo: Further remove the base ring (see also trac ticket #15801).

EXAMPLES:

sage: G = sage.categories.category.category_graph(categories = [Groups()])
sage: G.vertices(sort=True)
['groups', 'inverse unital magmas', 'magmas', 'monoids', 'objects',
'semigroups', 'sets', 'sets with partial maps', 'unital magmas']

(continues on next page)
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sage: G.plot()
Graphics object consisting of 20 graphics primitives

sage: sage.categories.category.category_graph().plot()
Graphics object consisting of ... graphics primitives

sage.categories.category.category_sample()
Return a sample of categories.

It is constructed by looking for all concrete category classes declared in sage.categories.all, calling
Category.an_instance() on those and taking all their super categories.

EXAMPLES:

sage: from sage.categories.category import category_sample
sage: sorted(category_sample(), key=str)
[Category of G-sets for Symmetric group of order 8! as a permutation group,
Category of Hecke modules over Rational Field,
Category of Lie algebras over Rational Field,
Category of additive magmas, ...,
Category of fields, ...,
Category of graded hopf algebras with basis over Rational Field, ...,
Category of modular abelian varieties over Rational Field, ...,
Category of simplicial complexes, ...,
Category of vector spaces over Rational Field, ...,
Category of weyl groups, ...

sage.categories.category.is_Category(x)
Returns True if x is a category.

EXAMPLES:

sage: sage.categories.category.is_Category(CommutativeAdditiveSemigroups())
True
sage: sage.categories.category.is_Category(ZZ)
False

2.3 Axioms

This documentation covers how to implement axioms and proceeds with an overview of the implementation of the
axiom infrastructure. It assumes that the reader is familiar with the category primer, and in particular its section about
axioms.
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2.3.1 Implementing axioms

Simple case involving a single predefined axiom

Suppose that one wants to provide code (and documentation, tests, . . . ) for the objects of some existing category Cs()
that satisfy some predefined axiom A.

The first step is to open the hood and check whether there already exists a class implementing the category Cs().A().
For example, taking Cs=Semigroups and the Finite axiom, there already exists a class for the category of finite
semigroups:

sage: Semigroups().Finite()
Category of finite semigroups
sage: type(Semigroups().Finite())
<class 'sage.categories.finite_semigroups.FiniteSemigroups_with_category'>

In this case, we say that the category of semigroups implements the axiom Finite, and code about finite semigroups
should go in the class FiniteSemigroups (or, as usual, in its nested classes ParentMethods, ElementMethods, and
so on).

On the other hand, there is no class for the category of infinite semigroups:

sage: Semigroups().Infinite()
Category of infinite semigroups
sage: type(Semigroups().Infinite())
<class 'sage.categories.category.JoinCategory_with_category'>

This category is indeed just constructed as the intersection of the categories of semigroups and of infinite sets respec-
tively:

sage: Semigroups().Infinite().super_categories()
[Category of semigroups, Category of infinite sets]

In this case, one needs to create a new class to implement the axiom Infinite for this category. This boils down to
adding a nested class Semigroups.Infinite inheriting from CategoryWithAxiom .

In the following example, we implement a category Cs, with a subcategory for the objects satisfying the Finite axiom
defined in the super category Sets (we will see later on how to define new axioms):

sage: from sage.categories.category_with_axiom import CategoryWithAxiom
sage: class Cs(Category):
....: def super_categories(self):
....: return [Sets()]
....: class Finite(CategoryWithAxiom):
....: class ParentMethods:
....: def foo(self):
....: print("I am a method on finite C's")

sage: Cs().Finite()
Category of finite cs
sage: Cs().Finite().super_categories()
[Category of finite sets, Category of cs]
sage: Cs().Finite().all_super_categories()
[Category of finite cs, Category of finite sets,
Category of cs, Category of sets, ...]

(continues on next page)
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sage: Cs().Finite().axioms()
frozenset({'Finite'})

Now a parent declared in the category Cs().Finite() inherits from all the methods of finite sets and of finite 𝐶’s, as
desired:

sage: P = Parent(category=Cs().Finite())
sage: P.is_finite() # Provided by Sets.Finite.ParentMethods
True
sage: P.foo() # Provided by Cs.Finite.ParentMethods
I am a method on finite C's

Note:

• This follows the same idiom as for Covariant Functorial Constructions.

• From an object oriented point of view, any subcategory Cs() of Sets inherits a Finite method. Usually Cs
could complement this method by overriding it with a method Cs.Finite which would make a super call to
Sets.Finite and then do extra stuff.

In the above example, Cs also wants to complement Sets.Finite, though not by doing more stuff, but by
providing it with an additional mixin class containing the code for finite Cs. To keep the analogy, this mixin
class is to be put in Cs.Finite.

• By defining the axiom Finite, Sets fixes the semantic of Cs.Finite() for all its subcategories Cs: namely
“the category of Cs which are finite as sets”. Hence, for example, Modules.Free.Finite cannot be used to
model the category of free modules of finite rank, even though their traditional name “finite free modules” might
suggest it.

• It may come as a surprise that we can actually use the same name Finite for the mixin class and for the method
defining the axiom; indeed, by default a class does not have a binding behavior and would completely override
the method. See the section Defining a new axiom for details and the rationale behind it.

An alternative would have been to give another name to the mixin class, like FiniteCategory. However this
would have resulted in more namespace pollution, whereas using Finite is already clear, explicit, and easier to
remember.

• Under the hood, the category Cs().Finite() is aware that it has been constructed from the category Cs() by
adding the axiom Finite:

sage: Cs().Finite().base_category()
Category of cs
sage: Cs().Finite()._axiom
'Finite'

Over time, the nested class Cs.Finite may become large and too cumbersome to keep as a nested subclass of Cs. Or
the category with axiom may have a name of its own in the literature, like semigroups rather than associative magmas,
or fields rather than commutative division rings. In this case, the category with axiom can be put elsewhere, typically
in a separate file, with just a link from Cs:

sage: class Cs(Category):
....: def super_categories(self):
....: return [Sets()]
sage: class FiniteCs(CategoryWithAxiom):

(continues on next page)
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....: class ParentMethods:

....: def foo(self):

....: print("I am a method on finite C's")
sage: Cs.Finite = FiniteCs
sage: Cs().Finite()
Category of finite cs

For a real example, see the code of the class FiniteGroups and the link to it in Groups. Note that the link is imple-
mented using LazyImport; this is highly recommended: it makes sure that FiniteGroups is imported after Groups
it depends upon, and makes it explicit that the class Groups can be imported and is fully functional without importing
FiniteGroups.

Note: Some categories with axioms are created upon Sage’s startup. In such a case, one needs to pass the
at_startup=True option to LazyImport, in order to quiet the warning about that lazy import being resolved upon
startup. See for example Sets.Finite.

This is undoubtedly a code smell. Nevertheless, it is preferable to stick to lazy imports, first to resolve the import order
properly, and more importantly as a reminder that the category would be best not constructed upon Sage’s startup. This
is to spur developers to reduce the number of parents (and therefore categories) that are constructed upon startup. Each
at_startup=True that will be removed will be a measure of progress in this direction.

Note: In principle, due to a limitation of LazyImport with nested classes (see trac ticket #15648), one should pass
the option as_name to LazyImport:

Finite = LazyImport('sage.categories.finite_groups', 'FiniteGroups', as_name='Finite')

in order to prevent Groups.Finite to keep on reimporting FiniteGroups.

Given that passing this option introduces some redundancy and is error prone, the axiom infrastructure includes a little
workaround which makes the as_name unnecessary in this case.

Making the category with axiom directly callable

If desired, a category with axiom can be constructed directly through its class rather than through its base category:

sage: Semigroups()
Category of semigroups
sage: Semigroups() is Magmas().Associative()
True

sage: FiniteGroups()
Category of finite groups
sage: FiniteGroups() is Groups().Finite()
True

For this notation to work, the class Semigroups needs to be aware of the base category class (here, Magmas) and of
the axiom (here, Associative):

sage: Semigroups._base_category_class_and_axiom
(<class 'sage.categories.magmas.Magmas'>, 'Associative')

(continues on next page)
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sage: Fields._base_category_class_and_axiom
(<class 'sage.categories.division_rings.DivisionRings'>, 'Commutative')
sage: FiniteGroups._base_category_class_and_axiom
(<class 'sage.categories.groups.Groups'>, 'Finite')
sage: FiniteDimensionalAlgebrasWithBasis._base_category_class_and_axiom
(<class 'sage.categories.algebras_with_basis.AlgebrasWithBasis'>, 'FiniteDimensional')

In our example, the attribute _base_category_class_and_axiom was set upon calling Cs().Finite(), which
makes the notation seemingly work:

sage: FiniteCs()
Category of finite cs
sage: FiniteCs._base_category_class_and_axiom
(<class '__main__.Cs'>, 'Finite')
sage: FiniteCs._base_category_class_and_axiom_origin
'set by __classget__'

But calling FiniteCs() right after defining the class would have failed (try it!). In general, one needs to set the
attribute explicitly:

sage: class FiniteCs(CategoryWithAxiom):
....: _base_category_class_and_axiom = (Cs, 'Finite')
....: class ParentMethods:
....: def foo(self):
....: print("I am a method on finite C's")

Having to set explicitly this link back from FiniteCs to Cs introduces redundancy in the code. It would therefore be
desirable to have the infrastructure set the link automatically instead (a difficulty is to achieve this while supporting
lazy imported categories with axiom).

As a first step, the link is set automatically upon accessing the class from the base category class:

sage: Algebras.WithBasis._base_category_class_and_axiom
(<class 'sage.categories.algebras.Algebras'>, 'WithBasis')
sage: Algebras.WithBasis._base_category_class_and_axiom_origin
'set by __classget__'

Hence, for whatever this notation is worth, one can currently do:

sage: Algebras.WithBasis(QQ)
Category of algebras with basis over Rational Field

We don’t recommend using syntax like Algebras.WithBasis(QQ), as it may eventually be deprecated.

As a second step, Sage tries some obvious heuristics to deduce the link from the name of the category with axiom (see
base_category_class_and_axiom() for the details). This typically covers the following examples:

sage: FiniteCoxeterGroups()
Category of finite coxeter groups
sage: FiniteCoxeterGroups() is CoxeterGroups().Finite()
True
sage: FiniteCoxeterGroups._base_category_class_and_axiom_origin
'deduced by base_category_class_and_axiom'

(continues on next page)
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sage: FiniteDimensionalAlgebrasWithBasis(QQ)
Category of finite dimensional algebras with basis over Rational Field
sage: FiniteDimensionalAlgebrasWithBasis(QQ) is Algebras(QQ).FiniteDimensional().
→˓WithBasis()
True

If the heuristic succeeds, the result is guaranteed to be correct. If it fails, typically because the category has a name of
its own like Fields, the attribute _base_category_class_and_axiom should be set explicitly. For more examples,
see the code of the classes Semigroups or Fields.

Note: When printing out a category with axiom, the heuristic determines whether a category has a name of its own
by checking out how _base_category_class_and_axiom was set:

sage: Fields._base_category_class_and_axiom_origin
'hardcoded'

See CategoryWithAxiom._without_axioms(), CategoryWithAxiom._repr_object_names_static().

In our running example FiniteCs, Sage failed to deduce automatically the base category class and axiom because the
class Cs is not in the standard location sage.categories.cs.

Design discussion

The above deduction, based on names, is undoubtedly inelegant. But it’s safe (either the result is guaranteed to be
correct, or an error is raised), it saves on some redundant information, and it is only used for the simple shorthands
like FiniteGroups() for Groups().Finite(). Finally, most if not all of these shorthands are likely to eventually
disappear (see trac ticket #15741 and the related discussion in the primer).

Defining a new axiom

We describe now how to define a new axiom. The first step is to figure out the largest category where the axiom makes
sense. For example Sets for Finite, Magmas for Associative, or Modules for FiniteDimensional. Here we
define the axiom Green for the category Cs and its subcategories:

sage: from sage.categories.category_with_axiom import CategoryWithAxiom
sage: class Cs(Category):
....: def super_categories(self):
....: return [Sets()]
....: class SubcategoryMethods:
....: def Green(self):
....: '<documentation of the axiom Green>'
....: return self._with_axiom("Green")
....: class Green(CategoryWithAxiom):
....: class ParentMethods:
....: def foo(self):
....: print("I am a method on green C's")

With the current implementation, the name of the axiom must also be added to a global container:

2.3. Axioms 71

https://trac.sagemath.org/15741


Category Framework, Release 9.7

sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: all_axioms += ("Green",)

We can now use the axiom as usual:

sage: Cs().Green()
Category of green cs

sage: P = Parent(category=Cs().Green())
sage: P.foo()
I am a method on green C's

Compared with our first example, the only newcomer is the method .Green() that can be used by any subcategory Ds()
of Cs() to add the axiom Green. Note that the expression Ds().Green always evaluates to this method, regardless of
whether Ds has a nested class Ds.Green or not (an implementation detail):

sage: Cs().Green
<bound method Cs.SubcategoryMethods.Green of Category of cs>

Thanks to this feature (implemented in CategoryWithAxiom.__classget__()), the user is systematically referred
to the documentation of this method when doing introspection on Ds().Green:

sage: C = Cs()
sage: C.Green? # not tested
sage: Cs().Green.__doc__
'<documentation of the axiom Green>'

It is therefore the natural spot for the documentation of the axiom.

Note: The presence of the nested class Green in Cs is currently mandatory even if it is empty.

Todo: Specify whether or not one should systematically use @cached_method in the definition of the axiom. And
make sure all the definition of axioms in Sage are consistent in this respect!

Todo: We could possibly define an @axiom decorator? This could hide two little implementation details: whether
or not to make the method a cached method, and the call to _with_axiom(. . . ) under the hood. It could do possibly do
some more magic. The gain is not obvious though.

Note: all_axioms is only used marginally, for sanity checks and when trying to derive automatically the base category
class. The order of the axioms in this tuple also controls the order in which they appear when printing out categories
with axioms (see CategoryWithAxiom._repr_object_names_static()).

During a Sage session, new axioms should only be added at the end of all_axioms, as above, so as to not break the
cache of axioms_rank(). Otherwise, they can be inserted statically anywhere in the tuple. For axioms defined within
the Sage library, the name is best inserted by editing directly the definition of all_axioms in sage.categories.
category_with_axiom .
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Design note

Let us state again that, unlike what the existence of all_axioms might suggest, the definition of an axiom is local
to a category and its subcategories. In particular, two independent categories Cs() and Ds() can very well define
axioms with the same name and different semantics. As long as the two hierarchies of subcategories don’t intersect,
this is not a problem. And if they do intersect naturally (that is if one is likely to create a parent belonging to both
categories), this probably means that the categories Cs and Ds are about related enough areas of mathematics that
one should clear the ambiguity by having either the same semantic or different names.

This caveat is no different from that of name clashes in hierarchy of classes involving multiple inheritance.

Todo: Explore ways to get rid of this global all_axioms tuple, and/or have automatic registration there, and/or having
a register_axiom(. . . ) method.

Special case: defining an axiom depending on several categories

In some cases, the largest category where the axiom makes sense is the intersection of two categories. This is
typically the case for axioms specifying compatibility conditions between two otherwise unrelated operations, like
Distributive which specifies a compatibility between * and +. Ideally, we would want the Distributive axiom
to be defined by:

sage: Magmas() & AdditiveMagmas()
Join of Category of magmas and Category of additive magmas

The current infrastructure does not support this perfectly: indeed, defining an axiom for a category 𝐶 requires 𝐶
to have a class of its own; hence a JoinCategory as above won’t do; we need to implement a new class like
MagmasAndAdditiveMagmas; furthermore, we cannot yet model the fact that MagmasAndAdditiveMagmas() is the
intersection of Magmas() and AdditiveMagmas() rather than a mere subcategory:

sage: from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
sage: Magmas() & AdditiveMagmas() is MagmasAndAdditiveMagmas()
False
sage: Magmas() & AdditiveMagmas() # todo: not implemented
Category of magmas and additive magmas

Still, there is a workaround to get the natural notations:

sage: (Magmas() & AdditiveMagmas()).Distributive()
Category of distributive magmas and additive magmas
sage: (Monoids() & CommutativeAdditiveGroups()).Distributive()
Category of rings

The trick is to define Distributive as usual in MagmasAndAdditiveMagmas, and to add a method
Magmas.SubcategoryMethods.Distributive() which checks that self is a subcategory of both
Magmas() and AdditiveMagmas(), complains if not, and otherwise takes the intersection of self with
MagmasAndAdditiveMagmas() before calling Distributive.

The downsides of this workaround are:

• Creation of an otherwise empty class MagmasAndAdditiveMagmas.

• Pollution of the namespace of Magmas() (and subcategories like Groups()) with a method that is irrelevant
(but safely complains if called).
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• C._with_axiom('Distributive') is not strictly equivalent to C.Distributive(), which can be unpleas-
antly surprising:

sage: (Monoids() & CommutativeAdditiveGroups()).Distributive()
Category of rings

sage: (Monoids() & CommutativeAdditiveGroups())._with_axiom('Distributive')
Join of Category of monoids and Category of commutative additive groups

Todo: Other categories that would be better implemented via an axiom depending on a join category include:

• Algebras: defining an associative unital algebra as a ring and a module satisfying the suitable compatibility
axiom between inner multiplication and multiplication by scalars (bilinearity). Of course this should be imple-
mented at the level of MagmaticAlgebras, if not higher.

• Bialgebras: defining an bialgebra as an algebra and coalgebra where the coproduct is a morphism for the
product.

• Bimodules: defining a bimodule as a left and right module where the two actions commute.

Todo:

• Design and implement an idiom for the definition of an axiom by a join category.

• Or support more advanced joins, through some hook or registration process to specify that a given category is
the intersection of two (or more) categories.

• Or at least improve the above workaround to avoid the last issue; this possibly could be achieved using a class
Magmas.Distributive with a bit of __classcall__ magic.

Handling multiple axioms, arborescence structure of the code

Prelude

Let us consider the category of magmas, together with two of its axioms, namely Associative and Unital. An
associative magma is a semigroup and a unital semigroup is a monoid. We have also seen that axioms commute:

sage: Magmas().Unital()
Category of unital magmas
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Associative().Unital()
Category of monoids
sage: Magmas().Unital().Associative()
Category of monoids

At the level of the classes implementing these categories, the following comes as a general naturalization of the previous
section:

sage: Magmas.Unital
<class 'sage.categories.magmas.Magmas.Unital'>
sage: Magmas.Associative

(continues on next page)
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<class 'sage.categories.semigroups.Semigroups'>
sage: Magmas.Associative.Unital
<class 'sage.categories.monoids.Monoids'>

However, the following may look suspicious at first:

sage: Magmas.Unital.Associative
Traceback (most recent call last):
...
AttributeError: type object 'Magmas.Unital' has no attribute 'Associative'

The purpose of this section is to explain the design of the code layout and the rationale for this mismatch.

Abstract model

As we have seen in the Primer, the objects of a category Cs() can usually satisfy, or not, many different axioms. Out of
all combinations of axioms, only a small number are relevant in practice, in the sense that we actually want to provide
features for the objects satisfying these axioms.

Therefore, in the context of the category class Cs, we want to provide the system with a collection (𝐷𝑆)𝑆∈𝒮 where each
𝑆 is a subset of the axioms and the corresponding 𝐷𝑆 is a class for the subcategory of the objects of Cs() satisfying
the axioms in 𝑆. For example, if Cs() is the category of magmas, the pairs (𝑆,𝐷𝑆) would include:

{Associative} : Semigroups
{Associative, Unital} : Monoids
{Associative, Unital, Inverse}: Groups
{Associative, Commutative} : Commutative Semigroups
{Unital, Inverse} : Loops

Then, given a subset 𝑇 of axioms, we want the system to be able to select automatically the relevant classes
(𝐷𝑆)𝑆∈𝒮,𝑆⊂𝑇 , and build from them a category for the objects of Cs satisfying the axioms in 𝑇 , together with its
hierarchy of super categories. If 𝑇 is in the indexing set 𝒮, then the class of the resulting category is directly 𝐷𝑇 :

sage: C = Magmas().Unital().Inverse().Associative(); C
Category of groups
sage: type(C)
<class 'sage.categories.groups.Groups_with_category'>

Otherwise, we get a join category:

sage: C = Magmas().Infinite().Unital().Associative(); C
Category of infinite monoids
sage: type(C)
<class 'sage.categories.category.JoinCategory_with_category'>
sage: C.super_categories()
[Category of monoids, Category of infinite sets]
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Concrete model as an arborescence of nested classes

We further want the construction to be efficient and amenable to laziness. This led us to the following design decision:
the collection (𝐷𝑆)𝑆∈𝒮 of classes should be structured as an arborescence (or equivalently a rooted forest). The root
is Cs, corresponding to 𝑆 = ∅. Any other class 𝐷𝑆 should be the child of a single class 𝐷𝑆′ where 𝑆′ is obtained
from 𝑆 by removing a single axiom 𝐴. Of course, 𝐷𝑆′ and 𝐴 are respectively the base category class and axiom of the
category with axiom 𝐷𝑆 that we have met in the first section.

At this point, we urge the reader to explore the code of Magmas and DistributiveMagmasAndAdditiveMagmas and
see how the arborescence structure on the categories with axioms is reflected by the nesting of category classes.

Discussion of the design

Performance

Thanks to the arborescence structure on subsets of axioms, constructing the hierarchy of categories and computing
intersections can be made efficient with, roughly speaking, a linear/quadratic complexity in the size of the involved
category hierarchy multiplied by the number of axioms (see Section Algorithms). This is to be put in perspective with
the manipulation of arbitrary collections of subsets (aka boolean functions) which can easily raise NP-hard problems.

Furthermore, thanks to its locality, the algorithms can be made suitably lazy: in particular, only the involved category
classes need to be imported.

Flexibility

This design also brings in quite some flexibility, with the possibility to support features such as defining new axioms
depending on other axioms and deduction rules. See below.

Asymmetry

As we have seen at the beginning of this section, this design introduces an asymmetry. It’s not so bad in practice, since
in most practical cases, we want to work incrementally. It’s for example more natural to describe FiniteFields as
Fields with the axiom Finite rather than Magmas and AdditiveMagmas with all (or at least sufficiently many) of
the following axioms:

sage: sorted(Fields().axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Associative', 'Commutative', 'Distributive',
'Division', 'NoZeroDivisors', 'Unital']

The main limitation is that the infrastructure currently imposes to be incremental by steps of a single axiom.

In practice, among the roughly 60 categories with axioms that are currently implemented in Sage, most admitted a
(rather) natural choice of a base category and single axiom to add. For example, one usually thinks more naturally of a
monoid as a semigroup which is unital rather than as a unital magma which is associative. Modeling this asymmetry in
the code actually brings a bonus: it is used for printing out categories in a (heuristically) mathematician-friendly way:

sage: Magmas().Commutative().Associative()
Category of commutative semigroups
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Only in a few cases is a choice made that feels mathematically arbitrary. This is essentially in the chain
of nested classes distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.
AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative.

Placeholder classes

Given that we can only add a single axiom at a time when implementing a CategoryWithAxiom , we
need to create a few category classes that are just placeholders. For the worst example, see the chain
of nested classes distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.
AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative.

This is suboptimal, but fits within the scope of the axiom infrastructure which is to reduce a potentially exponential
number of placeholder category classes to just a couple.

Note also that, in the above example, it’s likely that some of the intermediate classes will grow to non placeholder ones,
as people will explore more weaker variants of rings.

Mismatch between the arborescence of nested classes and the hierarchy of categories

The fact that the hierarchy relation between categories is not reflected directly as a relation between the classes may
sound suspicious at first! However, as mentioned in the primer, this is actually a big selling point of the axioms infras-
tructure: by calculating automatically the hierarchy relation between categories with axioms one avoids the nightmare
of maintaining it by hand. Instead, only a rather minimal number of links needs to be maintained in the code (one per
category with axiom).

Besides, with the flexibility introduced by runtime deduction rules (see below), the hierarchy of categories may depend
on the parameters of the categories and not just their class. So it’s fine to make it clear from the onset that the two
relations do not match.

Evolutivity

At this point, the arborescence structure has to be hardcoded by hand with the annoyances we have seen. This does
not preclude, in a future iteration, to design and implement some idiom for categories with axioms that adds several
axioms at once to a base category; maybe some variation around:

class DistributiveMagmasAndAdditiveMagmas:
...

@category_with_axiom(
AdditiveAssociative,
AdditiveCommutative,
AdditiveUnital,
AdditiveInverse,
Associative)

def _(): return LazyImport('sage.categories.rngs', 'Rngs', at_startup=True)

or:

register_axiom_category(DistributiveMagmasAndAdditiveMagmas,
{AdditiveAssociative,
AdditiveCommutative,
AdditiveUnital,

(continues on next page)

2.3. Axioms 77



Category Framework, Release 9.7

(continued from previous page)

AdditiveInverse,
Associative},
'sage.categories.rngs', 'Rngs', at_startup=True)

The infrastructure would then be in charge of building the appropriate arborescence under the hood. Or rely on some
database (see discussion on trac ticket #10963, in particular at the end of comment 332).

Axioms defined upon other axioms

Sometimes an axiom can only be defined when some other axiom holds. For example, the axiom NoZeroDivisors
only makes sense if there is a zero, that is if the axiom AdditiveUnital holds. Hence, for the category
MagmasAndAdditiveMagmas, we consider in the abstract model only those subsets of axioms where the presence
of NoZeroDivisors implies that of AdditiveUnital. We also want the axiom to be only available if meaningful:

sage: Rings().NoZeroDivisors()
Category of domains
sage: Rings().Commutative().NoZeroDivisors()
Category of integral domains
sage: Semirings().NoZeroDivisors()
Traceback (most recent call last):
...
AttributeError: 'Semirings_with_category' object has no attribute 'NoZeroDivisors'

Concretely, this is to be implemented by defining the new axiom in the (SubcategoryMethods nested class of
the) appropriate category with axiom. For example the axiom NoZeroDivisors would be naturally defined in
magmas_and_additive_magmas.MagmasAndAdditiveMagmas.Distributive.AdditiveUnital.

Note: The axiom NoZeroDivisors is currently defined in Rings, by simple lack of need for the feature; it should
be lifted up as soon as relevant, that is when some code will be available for parents with no zero divisors that are not
necessarily rings.

Deduction rules

A similar situation is when an axiom A of a category Cs implies some other axiom B, with the same consequence as
above on the subsets of axioms appearing in the abstract model. For example, a division ring necessarily has no zero
divisors:

sage: 'NoZeroDivisors' in Rings().Division().axioms()
True
sage: 'NoZeroDivisors' in Rings().axioms()
False

This deduction rule is implemented by the method Rings.Division.extra_super_categories():

sage: Rings().Division().extra_super_categories()
(Category of domains,)

In general, this is to be implemented by a method Cs.A.extra_super_categories returning a tuple (Cs().B(),),
or preferably (Ds().B(),) where Ds is the category defining the axiom B.
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This follows the same idiom as for deduction rules about functorial constructions (see
covariant_functorial_construction.CovariantConstructionCategory.extra_super_categories()).
For example, the fact that a Cartesian product of associative magmas (i.e. of semigroups) is an associative magma is
implemented in Semigroups.CartesianProducts.extra_super_categories():

sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Associative().CartesianProducts().extra_super_categories()
[Category of semigroups]

Similarly, the fact that the algebra of a commutative magma is commutative is implemented in Magmas.Commutative.
Algebras.extra_super_categories():

sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]

Warning: In some situations this idiom is inapplicable as it would require to implement two classes for the same
category. This is the purpose of the next section.

Special case

In the previous examples, the deduction rule only had an influence on the super categories of the category with
axiom being constructed. For example, when constructing Rings().Division(), the rule Rings.Division.
extra_super_categories() simply adds Rings().NoZeroDivisors() as a super category thereof.

In some situations this idiom is inapplicable because a class for the category with axiom under construction already
exists elsewhere. Take for example Wedderburn’s theorem: any finite division ring is commutative, i.e. is a finite field.
In other words, DivisionRings().Finite() coincides with Fields().Finite():

sage: DivisionRings().Finite()
Category of finite enumerated fields
sage: DivisionRings().Finite() is Fields().Finite()
True

Therefore we cannot create a class DivisionRings.Finite to hold the desired extra_super_categories method,
because there is already a class for this category with axiom, namely Fields.Finite.

A natural idiom would be to have DivisionRings.Finite be a link to Fields.Finite (locally introducing an undi-
rected cycle in the arborescence of nested classes). It would be a bit tricky to implement though, since one would need to
detect, upon constructing DivisionRings().Finite(), that DivisionRings.Finite is actually Fields.Finite,
in order to construct appropriately Fields().Finite(); and reciprocally, upon computing the super categories of
Fields().Finite(), to not try to add DivisionRings().Finite() as a super category.

Instead the current idiom is to have a method DivisionRings.Finite_extra_super_categories which mimics
the behavior of the would-be DivisionRings.Finite.extra_super_categories:

sage: DivisionRings().Finite_extra_super_categories()
(Category of commutative magmas,)

This idiom is admittedly rudimentary, but consistent with how mathematical facts specifying non trivial inclusion
relations between categories are implemented elsewhere in the various extra_super_categories methods of ax-
iom categories and covariant functorial constructions. Besides, it gives a natural spot (the docstring of the method)
to document and test the modeling of the mathematical fact. Finally, Wedderburn’s theorem is arguably a theorem
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about division rings (in the context of division rings, finiteness implies commutativity) and therefore lives naturally in
DivisionRings.

An alternative would be to implement the category of finite division rings (i.e. finite fields) in a class DivisionRings.
Finite rather than Fields.Finite:

sage: from sage.categories.category_with_axiom import CategoryWithAxiom

sage: class MyDivisionRings(Category):
....: def super_categories(self):
....: return [Rings()]

sage: class MyFields(Category):
....: def super_categories(self):
....: return [MyDivisionRings()]

sage: class MyFiniteFields(CategoryWithAxiom):
....: _base_category_class_and_axiom = (MyDivisionRings, "Finite")
....: def extra_super_categories(self): # Wedderburn's theorem
....: return [MyFields()]

sage: MyDivisionRings.Finite = MyFiniteFields

sage: MyDivisionRings().Finite()
Category of my finite fields
sage: MyFields().Finite() is MyDivisionRings().Finite()
True

In general, if several categories C1s(), C2s(), . . . are mapped to the same category when applying some axiom A (that
is C1s().A() == C2s().A() == ...), then one should be careful to implement this category in a single class Cs.
A, and set up methods extra_super_categories or A_extra_super_categories methods as appropriate. Each
such method should return something like [C2s()] and not [C2s().A()] for the latter would likely lead to an infinite
recursion.

Design discussion

Supporting similar deduction rules will be an important feature in the future, with quite a few occurrences already
implemented in upcoming tickets. For the time being though there is a single occurrence of this idiom outside of
the tests. So this would be an easy thing to refactor after trac ticket #10963 if a better idiom is found.

Larger synthetic examples

We now consider some larger synthetic examples to check that the machinery works as expected. Let us start with a
category defining a bunch of axioms, using axiom() for conciseness (don’t do it for real axioms; they deserve a full
documentation!):

sage: from sage.categories.category_singleton import Category_singleton
sage: from sage.categories.category_with_axiom import axiom
sage: import sage.categories.category_with_axiom
sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: all_axioms += ("B","C","D","E","F")

(continues on next page)
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sage: class As(Category_singleton):
....: def super_categories(self):
....: return [Objects()]
....:
....: class SubcategoryMethods:
....: B = axiom("B")
....: C = axiom("C")
....: D = axiom("D")
....: E = axiom("E")
....: F = axiom("F")
....:
....: class B(CategoryWithAxiom):
....: pass
....: class C(CategoryWithAxiom):
....: pass
....: class D(CategoryWithAxiom):
....: pass
....: class E(CategoryWithAxiom):
....: pass
....: class F(CategoryWithAxiom):
....: pass

Now we construct a subcategory where, by some theorem of William, axioms B and C together are equivalent to E and
F together:

sage: class A1s(Category_singleton):
....: def super_categories(self):
....: return [As()]
....:
....: class B(CategoryWithAxiom):
....: def C_extra_super_categories(self):
....: return [As().E(), As().F()]
....:
....: class E(CategoryWithAxiom):
....: def F_extra_super_categories(self):
....: return [As().B(), As().C()]

sage: A1s().B().C()
Category of e f a1s

The axioms B and C do not show up in the name of the obtained category because, for concision, the printing uses some
heuristics to not show axioms that are implied by others. But they are satisfied:

sage: sorted(A1s().B().C().axioms())
['B', 'C', 'E', 'F']

Note also that this is a join category:

sage: type(A1s().B().C())
<class 'sage.categories.category.JoinCategory_with_category'>
sage: A1s().B().C().super_categories()
[Category of e a1s,
Category of f as,

(continues on next page)
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Category of b a1s,
Category of c as]

As desired, William’s theorem holds:

sage: A1s().B().C() is A1s().E().F()
True

and propagates appropriately to subcategories:

sage: C = A1s().E().F().D().B().C()
sage: C is A1s().B().C().E().F().D() # commutativity
True
sage: C is A1s().E().F().E().F().D() # William's theorem
True
sage: C is A1s().E().E().F().F().D() # commutativity
True
sage: C is A1s().E().F().D() # idempotency
True
sage: C is A1s().D().E().F()
True

In this quick variant, we actually implement the category of b c a2s, and choose to do so in A2s.B.C:

sage: class A2s(Category_singleton):
....: def super_categories(self):
....: return [As()]
....:
....: class B(CategoryWithAxiom):
....: class C(CategoryWithAxiom):
....: def extra_super_categories(self):
....: return [As().E(), As().F()]
....:
....: class E(CategoryWithAxiom):
....: def F_extra_super_categories(self):
....: return [As().B(), As().C()]

sage: A2s().B().C()
Category of e f a2s
sage: sorted(A2s().B().C().axioms())
['B', 'C', 'E', 'F']
sage: type(A2s().B().C())
<class '__main__.A2s.B.C_with_category'>

As desired, William’s theorem and its consequences hold:

sage: A2s().B().C() is A2s().E().F()
True
sage: C = A2s().E().F().D().B().C()
sage: C is A2s().B().C().E().F().D() # commutativity
True
sage: C is A2s().E().F().E().F().D() # William's theorem

(continues on next page)
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True
sage: C is A2s().E().E().F().F().D() # commutativity
True
sage: C is A2s().E().F().D() # idempotency
True
sage: C is A2s().D().E().F()
True

Finally, we “accidentally” implement the category of b c a1s, both in A3s.B.C and A3s.E.F:

sage: class A3s(Category_singleton):
....: def super_categories(self):
....: return [As()]
....:
....: class B(CategoryWithAxiom):
....: class C(CategoryWithAxiom):
....: def extra_super_categories(self):
....: return [As().E(), As().F()]
....:
....: class E(CategoryWithAxiom):
....: class F(CategoryWithAxiom):
....: def extra_super_categories(self):
....: return [As().B(), As().C()]

We can still construct, say:

sage: A3s().B()
Category of b a3s
sage: A3s().C()
Category of c a3s

However,

sage: A3s().B().C() # not tested

runs into an infinite recursion loop, as A3s().B().C() wants to have A3s().E().F() as super category and recipro-
cally.

Todo: The above example violates the specifications (a category should be modelled by at most one class), so it’s
appropriate that it fails. Yet, the error message could be usefully complemented by some hint at what the source of the
problem is (a category implemented in two distinct classes). Leaving a large enough piece of the backtrace would be
useful though, so that one can explore where the issue comes from (e.g. with post mortem debugging).

2.3. Axioms 83



Category Framework, Release 9.7

2.3.2 Specifications

After fixing some vocabulary, we summarize here some specifications about categories and axioms.

The lattice of constructible categories

A mathematical category 𝐶 is implemented if there is a class in Sage modelling it; it is constructible if it is either
implemented, or is the intersection of implemented categories; in the latter case it is modelled by a JoinCategory. The
comparison of two constructible categories with the Category.is_subcategory()method is supposed to model the
comparison of the corresponding mathematical categories for inclusion of the objects (see On the category hierarchy:
subcategories and super categories for details). For example:

sage: Fields().is_subcategory(Rings())
True

However this modelling may be incomplete. It can happen that a mathematical fact implying that a category 𝐴 is a
subcategory of a category 𝐵 is not implemented. Still, the comparison should endow the set of constructible categories
with a poset structure and in fact a lattice structure.

In this lattice, the join of two categories (Category.join()) is supposed to model their intersection. Given that we
compare categories for inclusion, it would be more natural to call this operation the meet; blames go to me (Nicolas) for
originally comparing categories by amount of structure rather than by inclusion. In practice, the join of two categories
may be a strict super category of their intersection; first because this intersection might not be constructible; second
because Sage might miss some mathematical information to recover the smallest constructible super category of the
intersection.

Axioms

We say that an axiom A is defined by a category Cs() if Cs defines an appropriate method Cs.SubcategoryMethods.
A, with the semantic of the axiom specified in the documentation; for any subcategory Ds(), Ds().A() models the
subcategory of the objects of Ds() satisfying A. In this case, we say that the axiom A is defined for the category Ds().
Furthermore, Ds implements the axiom A if Ds has a category with axiom as nested class Ds.A. The category Ds()
satisfies the axiom if Ds() is a subcategory of Cs().A() (meaning that all the objects of Ds() are known to satisfy
the axiom A).

A digression on the structure of fibers when adding an axiom

Consider the application 𝜑𝐴 which maps a category to its category of objects satisfying 𝐴. Equivalently, 𝜑𝐴 is com-
puting the intersection with the defining category with axiom of 𝐴. It follows immediately from the latter that 𝜑𝐴 is a
regressive endomorphism of the lattice of categories. It restricts to a regressive endomorphism Cs() |-> Cs().A()
on the lattice of constructible categories.

This endomorphism may have non trivial fibers, as in our favorite example: DivisionRings() and Fields() are in
the same fiber for the axiom Finite:

sage: DivisionRings().Finite() is Fields().Finite()
True

Consider the intersection 𝑆 of such a fiber of 𝜑𝐴 with the upper set 𝐼𝐴 of categories that do not satisfy A. The fiber
itself is a sublattice. However 𝐼𝐴 is not guaranteed to be stable under intersection (though exceptions should be rare).
Therefore, there is a priori no guarantee that 𝑆 would be stable under intersection. Also it’s presumably finite, in fact
small, but this is not guaranteed either.
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Specifications

• Any constructible category C should admit a finite number of larger constructible categories.

• The methods super_categories, extra_super_categories, and friends should always return strict super-
categories.

For example, to specify that a finite division ring is a finite field, DivisionRings.
Finite_extra_super_categories should not return Fields().Finite()! It could possibly return
Fields(); but it’s preferable to return the largest category that contains the relevant information, in this case
Magmas().Commutative(), and to let the infrastructure apply the derivations.

• The base category of a CategoryWithAxiom should be an implemented category (i.e. not a JoinCategory).
This is checked by CategoryWithAxiom._test_category_with_axiom().

• Arborescent structure: Let Cs() be a category, and 𝑆 be some set of axioms defined in some super categories
of Cs() but not satisfied by Cs(). Suppose we want to provide a category with axiom for the elements of Cs()
satisfying the axioms in 𝑆. Then, there should be a single enumeration A1, A2, ..., Ak without repetition
of axioms in 𝑆 such that Cs.A1.A2....Ak is an implemented category. Furthermore, every intermediate step
Cs.A1.A2....Ai with 𝑖 ≤ 𝑘 should be a category with axiom having Ai as axiom and Cs.A1.A2....Ai-1 as
base category class; this base category class should not satisfy Ai. In particular, when some axioms of 𝑆 can be
deduced from previous ones by deduction rules, they should not appear in the enumeration A1, A2, ..., Ak.

• In particular, if Cs() is a category that satisfies some axiom A (e.g. from one of its super categories), then
it should not implement that axiom. For example, a category class Cs can never have a nested class Cs.A.A.
Similarly, applying the specification recursively, a category satisfying A cannot have a nested class Cs.A1.A2.
A3.A where A1, A2, A3 are axioms.

• A category can only implement an axiom if this axiom is defined by some super category. The code has not been
systematically checked to support having two super categories defining the same axiom (which should of course
have the same semantic). You are welcome to try, at your own risk. :-)

• When a category defines an axiom or functorial construction A, this fixes the semantic of A for all the subcat-
egories. In particular, if two categories define A, then these categories should be independent, and either the
semantic of A should be the same, or there should be no natural intersection between the two hierarchies of
subcategories.

• Any super category of a CategoryWithParameters should either be a CategoryWithParameters or a
Category_singleton.

• A CategoryWithAxiom having a Category_singleton as base category should be a
CategoryWithAxiom_singleton. This is handled automatically by CategoryWithAxiom.__init__() and
checked in CategoryWithAxiom._test_category_with_axiom().

• A CategoryWithAxiom having a Category_over_base_ring as base category should
be a Category_over_base_ring. This currently has to be handled by hand, us-
ing CategoryWithAxiom_over_base_ring. This is checked in CategoryWithAxiom.
_test_category_with_axiom().

Todo: The following specifications would be desirable but are not yet implemented:

• A functorial construction category (Graded, CartesianProducts, . . . ) having a Category_singleton as base
category should be a CategoryWithAxiom_singleton.

Nothing difficult to implement, but this will need to rework the current “no subclass of a concrete class” assertion
test of Category_singleton.__classcall__().

• Similarly, a covariant functorial construction category having a Category_over_base_ring as base category
should be a Category_over_base_ring.
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The following specification might be desirable, or not:

• A join category involving a Category_over_base_ring should be a Category_over_base_ring.
In the mean time, a base_ring method is automatically provided for most of those by Modules.
SubcategoryMethods.base_ring().

2.3.3 Design goals

As pointed out in the primer, the main design goal of the axioms infrastructure is to subdue the potential combinatorial
explosion of the category hierarchy by letting the developer focus on implementing a few bookshelves for which there
is actual code or mathematical information, and let Sage compose dynamically and lazily these building blocks to
construct the minimal hierarchy of classes needed for the computation at hand. This allows for the infrastructure to
scale smoothly as bookshelves are added, extended, or reorganized.

Other design goals include:

• Flexibility in the code layout: the category of, say, finite sets can be implemented either within the Sets category
(in a nested class Sets.Finite), or in a separate file (typically in a class FiniteSets in a lazily imported
module sage.categories.finite_sets).

• Single point of truth: a theorem, like Wedderburn’s, should be implemented in a single spot.

• Single entry point: for example, from the entry Rings, one can explore a whole range of related categories just
by applying axioms and constructions:

sage: Rings().Commutative().Finite().NoZeroDivisors()
Category of finite integral domains
sage: Rings().Finite().Division()
Category of finite enumerated fields

This will allow for progressively getting rid of all the entries like GradedHopfAlgebrasWithBasis which are
polluting the global name space.

Note that this is not about precluding the existence of multiple natural ways to construct the same category:

sage: Groups().Finite()
Category of finite groups
sage: Monoids().Finite().Inverse()
Category of finite groups
sage: Sets().Finite() & Monoids().Inverse()
Category of finite groups

• Concise idioms for the users (adding axioms, . . . )

• Concise idioms and well highlighted hierarchy of bookshelves for the developer (especially with code folding)

• Introspection friendly (listing the axioms, recovering the mixins)

Note: The constructor for instances of this class takes as input the base category. Hence, they should in principle be
constructed as:

sage: FiniteSets(Sets())
Category of finite sets

sage: Sets.Finite(Sets())
Category of finite sets
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None of these idioms are really practical for the user. So instead, this object is to be constructed using any of the
following idioms:

sage: Sets()._with_axiom('Finite')
Category of finite sets
sage: FiniteSets()
Category of finite sets
sage: Sets().Finite()
Category of finite sets

The later two are implemented using respectively CategoryWithAxiom.__classcall__() and
CategoryWithAxiom.__classget__().

2.3.4 Upcoming features

Todo:

• Implement compatibility axiom / functorial constructions. For example, one would want to have:

A.CartesianProducts() & B.CartesianProducts() = (A&B).CartesianProducts()

• Once full subcategories are implemented (see trac ticket #10668), make the relevant categories with axioms be
such. This can be done systematically for, e.g., the axioms Associative or Commutative, but not for the axiom
Unital: a semigroup morphism between two monoids need not preserve the unit.

Should all full subcategories be implemented in term of axioms?

2.3.5 Algorithms

Computing joins

The workhorse of the axiom infrastructure is the algorithm for computing the join 𝐽 of a set 𝐶1, . . . , 𝐶𝑘 of categories
(see Category.join()). Formally, 𝐽 is defined as the largest constructible category such that 𝐽 ⊂ 𝐶𝑖 for all 𝑖, and
𝐽 ⊂ 𝐶.𝐴() for every constructible category 𝐶 ⊃ 𝐽 and any axiom 𝐴 satisfied by 𝐽 .

The join 𝐽 is naturally computed as a closure in the lattice of constructible categories: it starts with the 𝐶𝑖’s, gathers the
set 𝑆 of all the axioms satisfied by them, and repeatedly adds each axiom 𝐴 to those categories that do not yet satisfy 𝐴
using Category._with_axiom(). Due to deduction rules or (extra) super categories, new categories or new axioms
may appear in the process. The process stops when each remaining category has been combined with each axiom.
In practice, only the smallest categories are kept along the way; this is correct because adding an axiom is covariant:
C.A() is a subcategory of D.A() whenever C is a subcategory of D.

As usual in such closure computations, the result does not depend on the order of execution. Furthermore, given that
adding an axiom is an idempotent and regressive operation, the process is guaranteed to stop in a number of steps which
is bounded by the number of super categories of 𝐽 . In particular, it is a finite process.

Todo: Detail this a bit. What could typically go wrong is a situation where, for some category C1, C1.A() specifies a
category C2 as super category such that C2.A() specifies C3 as super category such that . . . ; this would clearly cause
an infinite execution. Note that this situation violates the specifications since C1.A() is supposed to be a subcategory
of C2.A(), . . . so we would have an infinite increasing chain of constructible categories.
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It’s reasonable to assume that there is a finite number of axioms defined in the code. There remains to use this assump-
tion to argue that any infinite execution of the algorithm would give rise to such an infinite sequence.

Adding an axiom

Let Cs be a category and A an axiom defined for this category. To compute Cs().A(), there are two cases.

Adding an axiom A to a category Cs() not implementing it

In this case, Cs().A() returns the join of:

• Cs()

• Bs().A() for every direct super category Bs() of Cs()

• the categories appearing in Cs().A_extra_super_categories()

This is a highly recursive process. In fact, as such, it would run right away into an infinite loop! Indeed, the
join of Cs() with Bs().A() would trigger the construction of Cs().A() and reciprocally. To avoid this, the
Category.join() method itself does not use Category._with_axiom() to add axioms, but its sister Category.
_with_axiom_as_tuple(); the latter builds a tuple of categories that should be joined together but leaves the com-
putation of the join to its caller, the master join calculation.

Adding an axiom A to a category Cs() implementing it

In this case Cs().A() simply constructs an instance 𝐷 of Cs.A which models the desired category. The non trivial
part is the construction of the super categories of 𝐷. Very much like above, this includes:

• Cs()

• Bs().A() for every super category Bs() of Cs()

• the categories appearing in D.extra_super_categories()

This by itself may not be sufficient, due in particular to deduction rules. On may for example discover a new axiom A1
satisfied by 𝐷, imposing to add A1 to all of the above categories. Therefore the super categories are computed as the
join of the above categories. Up to one twist: as is, the computation of this join would trigger recursively a recalculation
of Cs().A()! To avoid this, Category.join() is given an optional argument to specify that the axiom A should not
be applied to Cs().

Sketch of proof of correctness and evaluation of complexity

As we have seen, this is a highly recursive process! In particular, one needs to argue that, as long as the specifications
are satisfied, the algorithm won’t run in an infinite recursion, in particular in case of deduction rule.

Theorem

Consider the construction of a category 𝐶 by adding an axiom to a category (or computing of a join). Let 𝐻 be
the hierarchy of implemented categories above 𝐶. Let 𝑛 and 𝑚 be respectively the number of categories and the
number of inheritance edges in 𝐻 .
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Assuming that the specifications are satisfied, the construction of𝐶 involves constructing the categories in𝐻 exactly
once (and no other category), and at most 𝑛 join calculations. In particular, the time complexity should be, roughly
speaking, bounded by 𝑛2. In particular, it’s finite.

Remark

It’s actually to be expected that the complexity is more of the order of magnitude of 𝑛𝑎+𝑚, where 𝑎 is the number
of axioms satisfied by 𝐶. But this is to be checked in detail, in particular due to the many category inclusion tests
involved.

The key argument is that Category.join cannot call itself recursively without going through the construction of
some implemented category. In turn, the construction of some implemented category 𝐶 only involves constructing
strictly smaller categories, and possibly a direct join calculation whose result is strictly smaller than 𝐶. This statement
is obvious if 𝐶 implements the super_categories method directly, and easy to check for functorial construction
categories. It requires a proof for categories with axioms since there is a recursive join involved.

Lemma

Let 𝐶 be a category implementing an axiom 𝐴. Recall that the construction of C.A() involves a single direct join
calculation for computing the super categories. No other direct join calculation occur, and the calculation involves
only implemented categories that are strictly smaller than C.A().

Proof

Let 𝐷 be a category involved in the join calculation for the super categories of C.A(), and assume by induction that
𝐷 is strictly smaller than C.A(). A category 𝐸 newly constructed from 𝐷 can come from:

• D.(extra_)super_categories()

In this case, the specifications impose that 𝐸 should be strictly smaller than 𝐷 and therefore strictly smaller
than 𝐶.

• D.with_axiom_as_tuple('B') or D.B_extra_super_categories() for some axiom 𝐵

In this case, the axiom 𝐵 is satisfied by some subcategory of C.A(), and therefore must be satisfied by C.A()
itself. Since adding an axiom is a regressive construction, 𝐸 must be a subcategory of C.A(). If there is
equality, then 𝐸 and C.A() must have the same class, and therefore, 𝐸 must be directly constructed as C.A().
However the join construction explicitly prevents this call.

Note that a call to D.with_axiom_as_tuple('B') does not trigger a direct join calculation; but of course, if
𝐷 implements 𝐵, the construction of the implemented category E = D.B() will involve a strictly smaller join
calculation.
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2.3.6 Conclusion

This is the end of the axioms documentation. Congratulations on having read that far!

2.3.7 Tests

Note: Quite a few categories with axioms are constructed early on during Sage’s startup. Therefore, when playing
around with the implementation of the axiom infrastructure, it is easy to break Sage. The following sequence of tests is
designed to test the infrastructure from the ground up even in a partially broken Sage. Please don’t remove the imports!

class sage.categories.category_with_axiom.Bars(s=None)
Bases: sage.categories.category_singleton.Category_singleton

A toy singleton category, for testing purposes.

See also:

Blahs

Unital_extra_super_categories()
Return extraneous super categories for the unital objects of self.

This method specifies that a unital bar is a test object. Thus, the categories of unital bars and of unital test
objects coincide.

EXAMPLES:

sage: from sage.categories.category_with_axiom import Bars, TestObjects
sage: Bars().Unital_extra_super_categories()
[Category of test objects]
sage: Bars().Unital()
Category of unital test objects
sage: TestObjects().Unital().all_super_categories()
[Category of unital test objects,
Category of unital blahs,
Category of test objects,
Category of bars,
Category of blahs,
Category of sets,
Category of sets with partial maps,
Category of objects]

super_categories()

class sage.categories.category_with_axiom.Blahs(s=None)
Bases: sage.categories.category_singleton.Category_singleton

A toy singleton category, for testing purposes.

This is the root of a hierarchy of mathematically meaningless categories, used for testing Sage’s category frame-
work:

• Bars

• TestObjects

• TestObjectsOverBaseRing
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Blue_extra_super_categories()
Illustrates a current limitation in the way to have an axiom imply another one.

Here, we would want Blue to imply Unital, and to put the class for the category of unital blue blahs in
Blahs.Unital.Blue rather than Blahs.Blue.

This currently fails because Blahs is the category where the axiom Blue is defined, and the specifications
currently impose that a category defining an axiom should also implement it (here in an category with
axiom Blahs.Blue). In practice, due to this violation of the specifications, the axiom is lost during the
join calculation.

Todo: Decide whether we care about this feature. In such a situation, we are not really defining a new
axiom, but just defining an axiom as an alias for a couple others, which might not be that useful.

Todo: Improve the infrastructure to detect and report this violation of the specifications, if this is easy.
Otherwise, it’s not so bad: when defining an axiom A in a category Cs the first thing one is supposed to
doctest is that Cs().A() works. So the problem should not go unnoticed.

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Connected(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Flying(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

extra_super_categories()
This illustrates a way to have an axiom imply another one.

Here, we want Flying to imply Unital, and to put the class for the category of unital flying blahs in
Blahs.Flying rather than Blahs.Unital.Flying.

class SubcategoryMethods
Bases: object

Blue()

Commutative()

Connected()

FiniteDimensional()

Flying()

Unital()

class Unital(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Blue(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

super_categories()
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class sage.categories.category_with_axiom.CategoryWithAxiom(base_category)
Bases: sage.categories.category.Category

An abstract class for categories obtained by adding an axiom to a base category.

See the category primer, and in particular its section about axioms for an introduction to axioms, and
CategoryWithAxiom for how to implement axioms and the documentation of the axiom infrastructure.

static __classcall__(*args, **options)
Make FoosBar(**) an alias for Foos(**)._with_axiom("Bar").

EXAMPLES:

sage: FiniteGroups()
Category of finite groups
sage: ModulesWithBasis(ZZ)
Category of modules with basis over Integer Ring
sage: AlgebrasWithBasis(QQ)
Category of algebras with basis over Rational Field

This is relevant when e.g. Foos(**) does some non trivial transformations:

sage: Modules(QQ) is VectorSpaces(QQ)
True
sage: type(Modules(QQ))
<class 'sage.categories.vector_spaces.VectorSpaces_with_category'>

sage: ModulesWithBasis(QQ) is VectorSpaces(QQ).WithBasis()
True
sage: type(ModulesWithBasis(QQ))
<class 'sage.categories.vector_spaces.VectorSpaces.WithBasis_with_category'>

static __classget__(base_category, base_category_class)
Implement the binding behavior for categories with axioms.

This method implements a binding behavior on category with axioms so that, when a category Cs imple-
ments an axiom A with a nested class Cs.A, the expression Cs().A evaluates to the method defining the
axiom A and not the nested class. See those design notes for the rationale behind this behavior.

EXAMPLES:

sage: Sets().Infinite()
Category of infinite sets
sage: Sets().Infinite
Cached version of <function ...Infinite at ...>
sage: Sets().Infinite.f == Sets.SubcategoryMethods.Infinite.f
True

We check that this also works when the class is implemented in a separate file, and lazy imported:

sage: Sets().Finite
Cached version of <function ...Finite at ...>

There is no binding behavior when accessing Finite or Infinite from the class of the category instead
of the category itself:
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sage: Sets.Finite
<class 'sage.categories.finite_sets.FiniteSets'>
sage: Sets.Infinite
<class 'sage.categories.sets_cat.Sets.Infinite'>

This method also initializes the attribute _base_category_class_and_axiom if not already set:

sage: Sets.Infinite._base_category_class_and_axiom
(<class 'sage.categories.sets_cat.Sets'>, 'Infinite')
sage: Sets.Infinite._base_category_class_and_axiom_origin
'set by __classget__'

__init__(base_category)

_repr_object_names()
The names of the objects of this category, as used by _repr_.

See also:

Category._repr_object_names()

EXAMPLES:

sage: FiniteSets()._repr_object_names()
'finite sets'
sage: AlgebrasWithBasis(QQ).FiniteDimensional()._repr_object_names()
'finite dimensional algebras with basis over Rational Field'
sage: Monoids()._repr_object_names()
'monoids'
sage: Semigroups().Unital().Finite()._repr_object_names()
'finite monoids'
sage: Algebras(QQ).Commutative()._repr_object_names()
'commutative algebras over Rational Field'

Note: This is implemented by taking _repr_object_names from self._without_axioms(named=True), and
adding the names of the relevant axioms in appropriate order.

static _repr_object_names_static(category, axioms)
INPUT:

• base_category – a category

• axioms – a list or iterable of strings

EXAMPLES:

sage: from sage.categories.category_with_axiom import CategoryWithAxiom
sage: CategoryWithAxiom._repr_object_names_static(Semigroups(), ["Flying", "Blue
→˓"])
'flying blue semigroups'
sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ), ["Flying",
→˓"WithBasis", "Blue"])
'flying blue algebras with basis over Rational Field'
sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ), ["WithBasis"])
'algebras with basis over Rational Field'

(continues on next page)
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sage: CategoryWithAxiom._repr_object_names_static(Sets().Finite().
→˓Subquotients(), ["Finite"])
'subquotients of finite sets'
sage: CategoryWithAxiom._repr_object_names_static(Monoids(), ["Unital"])
'monoids'
sage: CategoryWithAxiom._repr_object_names_static(Algebras(QQ['x']['y']), [
→˓"Flying", "WithBasis", "Blue"])
'flying blue algebras with basis over Univariate Polynomial Ring in y over␣
→˓Univariate Polynomial Ring in x over Rational Field'

If the axioms is a set or frozen set, then they are first sorted using canonicalize_axioms():

sage: CategoryWithAxiom._repr_object_names_static(Semigroups(), set(["Finite",
→˓"Commutative", "Facade"]))
'facade finite commutative semigroups'

See also:

_repr_object_names()

Note: The logic here is shared between _repr_object_names() and category.JoinCategory.
_repr_object_names()

_test_category_with_axiom(**options)
Run generic tests on this category with axioms.

See also:

TestSuite.

This check that an axiom category of a Category_singleton is a singleton category, and similarwise for
Category_over_base_ring.

EXAMPLES:

sage: Sets().Finite()._test_category_with_axiom()
sage: Modules(ZZ).FiniteDimensional()._test_category_with_axiom()

_without_axioms(named=False)
Return the category without the axioms that have been added to create it.

EXAMPLES:

sage: Sets().Finite()._without_axioms()
Category of sets
sage: Monoids().Finite()._without_axioms()
Category of magmas

This is because:

sage: Semigroups().Unital() is Monoids()
True

If named is True, then _without_axioms stops at the first category that has an explicit name of its own:
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sage: Sets().Finite()._without_axioms(named=True)
Category of sets
sage: Monoids().Finite()._without_axioms(named=True)
Category of monoids

Technically we test this by checking if the class specifies explicitly the attribute
_base_category_class_and_axiom by looking up _base_category_class_and_axiom_origin.

Some more examples:

sage: Algebras(QQ).Commutative()._without_axioms()
Category of magmatic algebras over Rational Field
sage: Algebras(QQ).Commutative()._without_axioms(named=True)
Category of algebras over Rational Field

additional_structure()
Return the additional structure defined by self.

OUTPUT: None

By default, a category with axiom defines no additional structure.

See also:

Category.additional_structure().

EXAMPLES:

sage: Sets().Finite().additional_structure()
sage: Monoids().additional_structure()

axioms()
Return the axioms known to be satisfied by all the objects of self.

See also:

Category.axioms()

EXAMPLES:

sage: C = Sets.Finite(); C
Category of finite sets
sage: C.axioms()
frozenset({'Finite'})

sage: C = Modules(GF(5)).FiniteDimensional(); C
Category of finite dimensional vector spaces over Finite Field of size 5
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Finite', 'FiniteDimensional']

sage: sorted(FiniteMonoids().Algebras(QQ).axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Associative', 'Distributive',
'FiniteDimensional', 'Unital', 'WithBasis']
sage: sorted(FiniteMonoids().Algebras(GF(3)).axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Associative', 'Distributive', 'Finite',

(continues on next page)
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'FiniteDimensional', 'Unital', 'WithBasis']

sage: from sage.categories.magmas_and_additive_magmas import␣
→˓MagmasAndAdditiveMagmas
sage: MagmasAndAdditiveMagmas().Distributive().Unital().axioms()
frozenset({'Distributive', 'Unital'})

sage: D = MagmasAndAdditiveMagmas().Distributive()
sage: X = D.AdditiveAssociative().AdditiveCommutative().Associative()
sage: X.Unital().super_categories()[1]
Category of monoids
sage: X.Unital().super_categories()[1] is Monoids()
True

base_category()
Return the base category of self.

EXAMPLES:

sage: C = Sets.Finite(); C
Category of finite sets
sage: C.base_category()
Category of sets
sage: C._without_axioms()
Category of sets

extra_super_categories()
Return the extra super categories of a category with axiom.

Default implementation which returns [].

EXAMPLES:

sage: FiniteSets().extra_super_categories()
[]

super_categories()
Return a list of the (immediate) super categories of self, as per Category.super_categories().

This implements the property that if As is a subcategory of Bs, then the intersection of As with
FiniteSets() is a subcategory of As and of the intersection of Bs with FiniteSets().

EXAMPLES:

A finite magma is both a magma and a finite set:

sage: Magmas().Finite().super_categories()
[Category of magmas, Category of finite sets]

Variants:

sage: Sets().Finite().super_categories()
[Category of sets]

sage: Monoids().Finite().super_categories()
[Category of monoids, Category of finite semigroups]
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EXAMPLES:

class sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom , sage.categories.
category_types.Category_over_base_ring

class sage.categories.category_with_axiom.CategoryWithAxiom_singleton(base_category)
Bases: sage.categories.category_singleton.Category_singleton, sage.categories.
category_with_axiom.CategoryWithAxiom

class sage.categories.category_with_axiom.TestObjects(s=None)
Bases: sage.categories.category_singleton.Category_singleton

A toy singleton category, for testing purposes.

See also:

Blahs

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Facade(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Unital(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Unital(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

super_categories()

class sage.categories.category_with_axiom.TestObjectsOverBaseRing(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

A toy singleton category, for testing purposes.

See also:

Blahs

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Facade(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
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class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Unital(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class Unital(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

super_categories()

sage.categories.category_with_axiom.axiom(axiom)
Return a function/method self -> self._with_axiom(axiom).

This can used as a shorthand to define axioms, in particular in the tests below. Usually one will want to attach
documentation to an axiom, so the need for such a shorthand in real life might not be that clear, unless we start
creating lots of axioms.

In the long run maybe this could evolve into an @axiom decorator.

EXAMPLES:

sage: from sage.categories.category_with_axiom import axiom
sage: axiom("Finite")(Semigroups())
Category of finite semigroups

Upon assigning the result to a class this becomes a method:

sage: class As:
....: def _with_axiom(self, axiom): return self, axiom
....: Finite = axiom("Finite")
sage: As().Finite()
(<__main__.As ... at ...>, 'Finite')

sage.categories.category_with_axiom.axiom_of_nested_class(cls, nested_cls)
Given a class and a nested axiom class, return the axiom.

EXAMPLES:

This uses some heuristics like checking if the nested_cls carries the name of the axiom, or is built by appending
or prepending the name of the axiom to that of the class:

sage: from sage.categories.category_with_axiom import TestObjects, axiom_of_nested_
→˓class
sage: axiom_of_nested_class(TestObjects, TestObjects.FiniteDimensional)
'FiniteDimensional'
sage: axiom_of_nested_class(TestObjects.FiniteDimensional, TestObjects.
→˓FiniteDimensional.Finite)
'Finite'
sage: axiom_of_nested_class(Sets, FiniteSets)
'Finite'

(continues on next page)
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sage: axiom_of_nested_class(Algebras, AlgebrasWithBasis)
'WithBasis'

In all other cases, the nested class should provide an attribute _base_category_class_and_axiom:

sage: Semigroups._base_category_class_and_axiom
(<class 'sage.categories.magmas.Magmas'>, 'Associative')
sage: axiom_of_nested_class(Magmas, Semigroups)
'Associative'

sage.categories.category_with_axiom.base_category_class_and_axiom(cls)
Try to deduce the base category and the axiom from the name of cls.

The heuristic is to try to decompose the name as the concatenation of the name of a category and the name of an
axiom, and looking up that category in the standard location (i.e. in sage.categories.hopf_algebras for
HopfAlgebras, and in sage.categories.sets_cat as a special case for Sets).

If the heuristic succeeds, the result is guaranteed to be correct. Otherwise, an error is raised.

EXAMPLES:

sage: from sage.categories.category_with_axiom import base_category_class_and_axiom,
→˓ CategoryWithAxiom
sage: base_category_class_and_axiom(FiniteSets)
(<class 'sage.categories.sets_cat.Sets'>, 'Finite')
sage: Sets.Finite
<class 'sage.categories.finite_sets.FiniteSets'>
sage: base_category_class_and_axiom(Sets.Finite)
(<class 'sage.categories.sets_cat.Sets'>, 'Finite')

sage: base_category_class_and_axiom(FiniteDimensionalHopfAlgebrasWithBasis)
(<class 'sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis'>,
→˓'FiniteDimensional')

sage: base_category_class_and_axiom(HopfAlgebrasWithBasis)
(<class 'sage.categories.hopf_algebras.HopfAlgebras'>, 'WithBasis')

Along the way, this does some sanity checks:

sage: class FacadeSemigroups(CategoryWithAxiom):
....: pass
sage: base_category_class_and_axiom(FacadeSemigroups)
Traceback (most recent call last):
...
AssertionError: Missing (lazy import) link for <class 'sage.categories.semigroups.
→˓Semigroups'> to <class '__main__.FacadeSemigroups'> for axiom Facade?

sage: Semigroups.Facade = FacadeSemigroups
sage: base_category_class_and_axiom(FacadeSemigroups)
(<class 'sage.categories.semigroups.Semigroups'>, 'Facade')

Note: In the following example, we could possibly retrieve Sets from the class name. However this cannot be
implemented robustly until trac ticket #9107 is fixed. Anyway this feature has not been needed so far:
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sage: Sets.Infinite
<class 'sage.categories.sets_cat.Sets.Infinite'>
sage: base_category_class_and_axiom(Sets.Infinite)
Traceback (most recent call last):
...
TypeError: Could not retrieve the base category class and axiom for <class 'sage.
→˓categories.sets_cat.Sets.Infinite'>.
...

sage.categories.category_with_axiom.uncamelcase(s, separator=' ')
EXAMPLES:

sage: sage.categories.category_with_axiom.uncamelcase("FiniteDimensionalAlgebras")
'finite dimensional algebras'
sage: sage.categories.category_with_axiom.uncamelcase("JTrivialMonoids")
'j trivial monoids'
sage: sage.categories.category_with_axiom.uncamelcase("FiniteDimensionalAlgebras",
→˓"_")
'finite_dimensional_algebras'

2.4 Functors

AUTHORS:

• David Kohel and William Stein

• David Joyner (2005-12-17): examples

• Robert Bradshaw (2007-06-23): Pyrexify

• Simon King (2010-04-30): more examples, several bug fixes, re-implementation of the default call method,
making functors applicable to morphisms (not only to objects)

• Simon King (2010-12): Pickling of functors without losing domain and codomain

sage.categories.functor.ForgetfulFunctor(domain, codomain)
Construct the forgetful function from one category to another.

INPUT:

C, D - two categories

OUTPUT:

A functor that returns the corresponding object of D for any element of C, by forgetting the extra structure.

ASSUMPTION:

The category C must be a sub-category of D.

EXAMPLES:

sage: rings = Rings()
sage: abgrps = CommutativeAdditiveGroups()
sage: F = ForgetfulFunctor(rings, abgrps)

(continues on next page)
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sage: F
The forgetful functor from Category of rings to Category of commutative additive␣
→˓groups

It would be a mistake to call it in opposite order:

sage: F = ForgetfulFunctor(abgrps, rings)
Traceback (most recent call last):
...
ValueError: Forgetful functor not supported for domain Category of commutative␣
→˓additive groups

If both categories are equal, the forgetful functor is the same as the identity functor:

sage: ForgetfulFunctor(abgrps, abgrps) == IdentityFunctor(abgrps)
True

class sage.categories.functor.ForgetfulFunctor_generic
Bases: sage.categories.functor.Functor

The forgetful functor, i.e., embedding of a subcategory.

NOTE:

Forgetful functors should be created using ForgetfulFunctor(), since the init method of this class does not
check whether the domain is a subcategory of the codomain.

EXAMPLES:

sage: F = ForgetfulFunctor(FiniteFields(),Fields()) #indirect doctest
sage: F
The forgetful functor from Category of finite enumerated fields to Category of␣
→˓fields
sage: F(GF(3))
Finite Field of size 3

class sage.categories.functor.Functor
Bases: sage.structure.sage_object.SageObject

A class for functors between two categories

NOTE:

• In the first place, a functor is given by its domain and codomain, which are both categories.

• When defining a sub-class, the user should not implement a call method. Instead, one should implement
three methods, which are composed in the default call method:

– _coerce_into_domain(self, x): Return an object of self’s domain, corresponding to x, or raise
a TypeError.

∗ Default: Raise TypeError if x is not in self’s domain.

– _apply_functor(self, x): Apply self to an object x of self’s domain.

∗ Default: Conversion into self’s codomain.

– _apply_functor_to_morphism(self, f): Apply self to a morphism f in self’s domain. -
Default: Return self(f.domain()).hom(f,self(f.codomain())).
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EXAMPLES:

sage: rings = Rings()
sage: abgrps = CommutativeAdditiveGroups()
sage: F = ForgetfulFunctor(rings, abgrps)
sage: F.domain()
Category of rings
sage: F.codomain()
Category of commutative additive groups
sage: from sage.categories.functor import is_Functor
sage: is_Functor(F)
True
sage: I = IdentityFunctor(abgrps)
sage: I
The identity functor on Category of commutative additive groups
sage: I.domain()
Category of commutative additive groups
sage: is_Functor(I)
True

Note that by default, an instance of the class Functor is coercion from the domain into the codomain. The above
subclasses overloaded this behaviour. Here we illustrate the default:

sage: from sage.categories.functor import Functor
sage: F = Functor(Rings(),Fields())
sage: F
Functor from Category of rings to Category of fields
sage: F(ZZ)
Rational Field
sage: F(GF(2))
Finite Field of size 2

Functors are not only about the objects of a category, but also about their morphisms. We illustrate it, again,
with the coercion functor from rings to fields.

sage: R1.<x> = ZZ[]
sage: R2.<a,b> = QQ[]
sage: f = R1.hom([a+b],R2)
sage: f
Ring morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Multivariate Polynomial Ring in a, b over Rational Field
Defn: x |--> a + b

sage: F(f)
Ring morphism:
From: Fraction Field of Univariate Polynomial Ring in x over Integer Ring
To: Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field
Defn: x |--> a + b

sage: F(f)(1/x)
1/(a + b)

We can also apply a polynomial ring construction functor to our homomorphism. The result is a homomorphism
that is defined on the base ring:
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sage: F = QQ['t'].construction()[0]
sage: F
Poly[t]
sage: F(f)
Ring morphism:
From: Univariate Polynomial Ring in t over Univariate Polynomial Ring in x over␣

→˓Integer Ring
To: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in a, b␣

→˓over Rational Field
Defn: Induced from base ring by

Ring morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Multivariate Polynomial Ring in a, b over Rational Field
Defn: x |--> a + b

sage: p = R1['t']('(-x^2 + x)*t^2 + (x^2 - x)*t - 4*x^2 - x + 1')
sage: F(f)(p)
(-a^2 - 2*a*b - b^2 + a + b)*t^2 + (a^2 + 2*a*b + b^2 - a - b)*t - 4*a^2 - 8*a*b -␣
→˓4*b^2 - a - b + 1

codomain()
The codomain of self

EXAMPLES:

sage: F = ForgetfulFunctor(FiniteFields(),Fields())
sage: F.codomain()
Category of fields

domain()
The domain of self

EXAMPLES:

sage: F = ForgetfulFunctor(FiniteFields(),Fields())
sage: F.domain()
Category of finite enumerated fields

sage.categories.functor.IdentityFunctor(C)
Construct the identity functor of the given category.

INPUT:

A category, C.

OUTPUT:

The identity functor in C.

EXAMPLES:

sage: rings = Rings()
sage: F = IdentityFunctor(rings)
sage: F(ZZ['x','y']) is ZZ['x','y']
True

class sage.categories.functor.IdentityFunctor_generic(C)
Bases: sage.categories.functor.ForgetfulFunctor_generic
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Generic identity functor on any category

NOTE:

This usually is created using IdentityFunctor().

EXAMPLES:

sage: F = IdentityFunctor(Fields()) #indirect doctest
sage: F
The identity functor on Category of fields
sage: F(RR) is RR
True
sage: F(ZZ)
Traceback (most recent call last):
...
TypeError: x (=Integer Ring) is not in Category of fields

sage.categories.functor.is_Functor(x)
Test whether the argument is a functor

NOTE:

There is a deprecation warning when using it from top level. Therefore we import it in our doc test.

EXAMPLES:

sage: from sage.categories.functor import is_Functor
sage: F1 = QQ.construction()[0]
sage: F1
FractionField
sage: is_Functor(F1)
True
sage: is_Functor(FractionField)
False
sage: F2 = ForgetfulFunctor(Fields(), Rings())
sage: F2
The forgetful functor from Category of fields to Category of rings
sage: is_Functor(F2)
True

2.5 Implementing a new parent: a tutorial

The easiest approach for implementing a new parent is to start from a close example in sage.categories.examples. Here,
we will get through the process of implementing a new finite semigroup, taking as starting point the provided example:

sage: S = FiniteSemigroups().example()
sage: S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')

You may lookup the implementation of this example with:

sage: S?? # not tested

Or by browsing the source code of sage.categories.examples.finite_semigroups.LeftRegularBand .
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Copy-paste this code into, say, a cell of the notebook, and replace every occurrence of FiniteSemigroups().
example(...) in the documentation by LeftRegularBand. This will be equivalent to:

sage: from sage.categories.examples.finite_semigroups import LeftRegularBand

Now, try:

sage: S = LeftRegularBand(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c', 'd')

and play around with the examples in the documentation of S and of FiniteSemigroups.

Rename the class to ShiftSemigroup, and modify the product to implement the semigroup generated by the given
alphabet such that 𝑎𝑢 = 𝑢 for any 𝑢 of length 3.

Use TestSuite to test the newly implemented semigroup; draw its Cayley graph.

Add another option to the constructor to generalize the construction to any u of length 𝑘.

Lookup the Sloane for the sequence of the sizes of those semigroups.

Now implement the commutative monoid of subsets of {1, . . . , 𝑛} endowed with union as product. What is its category?
What are the extra functionalities available there? Implement iteration and cardinality.

Todo: The tutorial should explain there how to reuse the enumerated set of subsets, and endow it with more structure.
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THREE

MAPS AND MORPHISMS

3.1 Base class for maps

AUTHORS:

• Robert Bradshaw: initial implementation

• Sebastien Besnier (2014-05-5): FormalCompositeMap contains a list of Map instead of only two Map. See trac
ticket #16291.

• Sebastian Oehms (2019-01-19): section() added to FormalCompositeMap. See trac ticket #27081.

class sage.categories.map.FormalCompositeMap
Bases: sage.categories.map.Map

Formal composite maps.

A formal composite map is formed by two maps, so that the codomain of the first map is contained in the domain
of the second map.

Note: When calling a composite with additional arguments, these arguments are only passed to the second
underlying map.

EXAMPLES:

sage: R.<x> = QQ[]
sage: S.<a> = QQ[]
sage: from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a^p.degree())
sage: g = S.hom([2*x])
sage: f*g
Composite map:
From: Univariate Polynomial Ring in a over Rational Field
To: Univariate Polynomial Ring in a over Rational Field
Defn: Ring morphism:

From: Univariate Polynomial Ring in a over Rational Field
To: Univariate Polynomial Ring in x over Rational Field
Defn: a |--> 2*x

then
Generic morphism:
From: Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in a over Rational Field

(continues on next page)
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sage: g*f
Composite map:
From: Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in x over Rational Field
Defn: Generic morphism:

From: Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in a over Rational Field

then
Ring morphism:
From: Univariate Polynomial Ring in a over Rational Field
To: Univariate Polynomial Ring in x over Rational Field
Defn: a |--> 2*x

sage: (f*g)(2*a^2+5)
5*a^2
sage: (g*f)(2*x^2+5)
20*x^2

domains()
Iterate over the domains of the factors of this map.

(This is useful in particular to check for loops in coercion maps.)

See also:

Map.domains()

EXAMPLES:

sage: f = QQ.coerce_map_from(ZZ)
sage: g = MatrixSpace(QQ, 2, 2).coerce_map_from(QQ)
sage: list((g*f).domains())
[Integer Ring, Rational Field]

first()
Return the first map in the formal composition.

If self represents 𝑓𝑛 ∘ 𝑓𝑛−1 ∘ · · · ∘ 𝑓1 ∘ 𝑓0, then self.first() returns 𝑓0. We have self == self.
then() * self.first().

EXAMPLES:

sage: R.<x> = QQ[]
sage: S.<a> = QQ[]
sage: from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a^p.degree())
sage: g = S.hom([2*x])
sage: fg = f * g
sage: fg.first() == g
True
sage: fg == fg.then() * fg.first()
True

is_injective()
Tell whether self is injective.

It raises NotImplementedError if it can’t be determined.
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EXAMPLES:

sage: V1 = QQ^2
sage: V2 = QQ^3
sage: phi1 = (QQ^1).hom(Matrix([[1, 1]]), V1)
sage: phi2 = V1.hom(Matrix([[1, 2, 3], [4, 5, 6]]), V2)

If both constituents are injective, the composition is injective:

sage: from sage.categories.map import FormalCompositeMap
sage: c1 = FormalCompositeMap(Hom(QQ^1, V2, phi1.category_for()), phi1, phi2)
sage: c1.is_injective()
True

If it cannot be determined whether the composition is injective, an error is raised:

sage: psi1 = V2.hom(Matrix([[1, 2], [3, 4], [5, 6]]), V1)
sage: c2 = FormalCompositeMap(Hom(V1, V1, phi2.category_for()), phi2, psi1)
sage: c2.is_injective()
Traceback (most recent call last):
...
NotImplementedError: Not enough information to deduce injectivity.

If the first map is surjective and the second map is not injective, then the composition is not injective:

sage: psi2 = V1.hom([[1], [1]], QQ^1)
sage: c3 = FormalCompositeMap(Hom(V2, QQ^1, phi2.category_for()), psi2, psi1)
sage: c3.is_injective()
False

is_surjective()
Tell whether self is surjective.

It raises NotImplementedError if it can’t be determined.

EXAMPLES:

sage: from sage.categories.map import FormalCompositeMap
sage: V3 = QQ^3
sage: V2 = QQ^2
sage: V1 = QQ^1

If both maps are surjective, the composition is surjective:

sage: phi32 = V3.hom(Matrix([[1, 2], [3, 4], [5, 6]]), V2)
sage: phi21 = V2.hom(Matrix([[1], [1]]), V1)
sage: c_phi = FormalCompositeMap(Hom(V3, V1, phi32.category_for()), phi32,␣
→˓phi21)
sage: c_phi.is_surjective()
True

If the second map is not surjective, the composition is not surjective:

sage: FormalCompositeMap(Hom(V3, V1, phi32.category_for()), phi32, V2.
→˓hom(Matrix([[0], [0]]), V1)).is_surjective()
False
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If the second map is an isomorphism and the first map is not surjective, then the composition is not surjec-
tive:

sage: FormalCompositeMap(Hom(V2, V1, phi32.category_for()), V2.hom(Matrix([[0],␣
→˓[0]]), V1), V1.hom(Matrix([[1]]), V1)).is_surjective()
False

Otherwise, surjectivity of the composition cannot be determined:

sage: FormalCompositeMap(Hom(V2, V1, phi32.category_for()),
....: V2.hom(Matrix([[1, 1], [1, 1]]), V2),
....: V2.hom(Matrix([[1], [1]]), V1)).is_surjective()
Traceback (most recent call last):
...
NotImplementedError: Not enough information to deduce surjectivity.

section()
Compute a section map from sections of the factors of self if they have been implemented.

EXAMPLES:

sage: P.<x> = QQ[]
sage: incl = P.coerce_map_from(ZZ)
sage: sect = incl.section(); sect
Composite map:
From: Univariate Polynomial Ring in x over Rational Field
To: Integer Ring
Defn: Generic map:

From: Univariate Polynomial Ring in x over Rational Field
To: Rational Field

then
Generic map:
From: Rational Field
To: Integer Ring

sage: p = x + 5; q = x + 2
sage: sect(p-q)
3

the following example has been attached to _integer_() of sage.rings.polynomial.
polynomial_element.Polynomial before (see comment there):

sage: k = GF(47)
sage: R.<x> = PolynomialRing(k)
sage: R.coerce_map_from(ZZ).section()
Composite map:
From: Univariate Polynomial Ring in x over Finite Field of size 47
To: Integer Ring
Defn: Generic map:

From: Univariate Polynomial Ring in x over Finite Field of size 47
To: Finite Field of size 47

then
Lifting map:
From: Finite Field of size 47
To: Integer Ring

sage: ZZ(R(45)) # indirect doctest
(continues on next page)
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45
sage: ZZ(3*x + 45) # indirect doctest
Traceback (most recent call last):
...
TypeError: not a constant polynomial

then()
Return the tail of the list of maps.

If self represents 𝑓𝑛 ∘ 𝑓𝑛−1 ∘ · · · ∘ 𝑓1 ∘ 𝑓0, then self.first() returns 𝑓𝑛 ∘ 𝑓𝑛−1 ∘ · · · ∘ 𝑓1. We have
self == self.then() * self.first().

EXAMPLES:

sage: R.<x> = QQ[]
sage: S.<a> = QQ[]
sage: from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(R, S, Rings()), lambda p: p[0]*a^p.degree())
sage: g = S.hom([2*x])
sage: (f*g).then() == f
True

sage: f = QQ.coerce_map_from(ZZ)
sage: f = f.extend_domain(ZZ).extend_codomain(QQ)
sage: f.then()
Composite map:
From: Integer Ring
To: Rational Field
Defn: Natural morphism:
From: Integer Ring
To: Rational Field
then
Identity endomorphism of Rational Field

class sage.categories.map.Map
Bases: sage.structure.element.Element

Basic class for all maps.

Note: The call method is of course not implemented in this base class. This must be done in the sub classes, by
overloading _call_ and possibly also _call_with_args.

EXAMPLES:

Usually, instances of this class will not be constructed directly, but for example like this:

sage: from sage.categories.morphism import SetMorphism
sage: X.<x> = ZZ[]
sage: Y = ZZ
sage: phi = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])
sage: phi(x^2+2*x-1)
-1
sage: R.<x,y> = QQ[]

(continues on next page)
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sage: f = R.hom([x+y, x-y], R)
sage: f(x^2+2*x-1)
x^2 + 2*x*y + y^2 + 2*x + 2*y - 1

category_for()
Returns the category self is a morphism for.

Note: This is different from the category of maps to which this map belongs as an object.

EXAMPLES:

sage: from sage.categories.morphism import SetMorphism
sage: X.<x> = ZZ[]
sage: Y = ZZ
sage: phi = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])
sage: phi.category_for()
Category of rings
sage: phi.category()
Category of homsets of unital magmas and additive unital additive magmas
sage: R.<x,y> = QQ[]
sage: f = R.hom([x+y, x-y], R)
sage: f.category_for()
Join of Category of unique factorization domains
and Category of commutative algebras
over (number fields and quotient fields and metric spaces)
and Category of infinite sets
sage: f.category()
Category of endsets of unital magmas
and right modules over (number fields and quotient fields and metric spaces)
and left modules over (number fields and quotient fields and metric spaces)

FIXME: find a better name for this method

codomain

domain

domains()
Iterate over the domains of the factors of a (composite) map.

This default implementation simply yields the domain of this map.

See also:

FormalCompositeMap.domains()

EXAMPLES:

sage: list(QQ.coerce_map_from(ZZ).domains())
[Integer Ring]

extend_codomain(new_codomain)
INPUT:

• self – a member of Hom(X, Y)

• new_codomain – an object Z such that there is a canonical coercion 𝜑 in Hom(Y, Z)
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OUTPUT:

An element of Hom(X, Z) obtained by composing self with 𝜑. If no canonical 𝜑 exists, a TypeError is
raised.

EXAMPLES:

sage: mor = QQ.coerce_map_from(ZZ)
sage: mor.extend_codomain(RDF)
Composite map:
From: Integer Ring
To: Real Double Field
Defn: Natural morphism:

From: Integer Ring
To: Rational Field

then
Native morphism:
From: Rational Field
To: Real Double Field

sage: mor.extend_codomain(GF(7))
Traceback (most recent call last):
...
TypeError: No coercion from Rational Field to Finite Field of size 7

extend_domain(new_domain)
INPUT:

• self – a member of Hom(Y, Z)

• new_codomain – an object X such that there is a canonical coercion 𝜑 in Hom(X, Y)

OUTPUT:

An element of Hom(X, Z) obtained by composing self with 𝜑. If no canonical 𝜑 exists, a TypeError is
raised.

EXAMPLES:

sage: mor = CDF.coerce_map_from(RDF)
sage: mor.extend_domain(QQ)
Composite map:
From: Rational Field
To: Complex Double Field
Defn: Native morphism:

From: Rational Field
To: Real Double Field

then
Native morphism:
From: Real Double Field
To: Complex Double Field

sage: mor.extend_domain(ZZ['x'])
Traceback (most recent call last):
...
TypeError: No coercion from Univariate Polynomial Ring in x over Integer Ring␣
→˓to Real Double Field

is_surjective()
Tells whether the map is surjective (not implemented in the base class).
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parent()
Return the homset containing this map.

Note: The method _make_weak_references(), that is used for the maps found by the coercion system,
needs to remove the usual strong reference from the coercion map to the homset containing it. As long
as the user keeps strong references to domain and codomain of the map, we will be able to reconstruct
the homset. However, a strong reference to the coercion map does not prevent the domain from garbage
collection!

EXAMPLES:

sage: Q = QuadraticField(-5)
sage: phi = CDF._internal_convert_map_from(Q)
sage: print(phi.parent())
Set of field embeddings from Number Field in a with defining polynomial x^2 + 5␣
→˓with a = 2.236067977499790?*I to Complex Double Field

We now demonstrate that the reference to the coercion map 𝜑 does not prevent 𝑄 from being garbage
collected:

sage: import gc
sage: del Q
sage: _ = gc.collect()
sage: phi.parent()
Traceback (most recent call last):
...
ValueError: This map is in an invalid state, the domain has been garbage␣
→˓collected

You can still obtain copies of the maps used by the coercion system with strong references:

sage: Q = QuadraticField(-5)
sage: phi = CDF.convert_map_from(Q)
sage: print(phi.parent())
Set of field embeddings from Number Field in a with defining polynomial x^2 + 5␣
→˓with a = 2.236067977499790?*I to Complex Double Field
sage: import gc
sage: del Q
sage: _ = gc.collect()
sage: phi.parent()
Set of field embeddings from Number Field in a with defining polynomial x^2 + 5␣
→˓with a = 2.236067977499790?*I to Complex Double Field

post_compose(left)
INPUT:

• self – a Map in some Hom(X, Y, category_right)

• left – a Map in some Hom(Y, Z, category_left)

Returns the composition of self followed by right as a morphism in Hom(X, Z, category) where
category is the meet of category_left and category_right.

Caveat: see the current restrictions on Category.meet()

EXAMPLES:
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sage: from sage.categories.morphism import SetMorphism
sage: X.<x> = ZZ[]
sage: Y = ZZ
sage: Z = QQ
sage: phi_xy = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])
sage: phi_yz = SetMorphism(Hom(Y, Z, Monoids()), lambda y: QQ(y**2))
sage: phi_xz = phi_xy.post_compose(phi_yz); phi_xz
Composite map:
From: Univariate Polynomial Ring in x over Integer Ring
To: Rational Field
Defn: Generic morphism:

From: Univariate Polynomial Ring in x over Integer Ring
To: Integer Ring

then
Generic morphism:
From: Integer Ring
To: Rational Field

sage: phi_xz.category_for()
Category of monoids

pre_compose(right)
INPUT:

• self – a Map in some Hom(Y, Z, category_left)

• left – a Map in some Hom(X, Y, category_right)

Returns the composition of right followed by self as a morphism in Hom(X, Z, category) where
category is the meet of category_left and category_right.

EXAMPLES:

sage: from sage.categories.morphism import SetMorphism
sage: X.<x> = ZZ[]
sage: Y = ZZ
sage: Z = QQ
sage: phi_xy = SetMorphism(Hom(X, Y, Rings()), lambda p: p[0])
sage: phi_yz = SetMorphism(Hom(Y, Z, Monoids()), lambda y: QQ(y**2))
sage: phi_xz = phi_yz.pre_compose(phi_xy); phi_xz
Composite map:
From: Univariate Polynomial Ring in x over Integer Ring
To: Rational Field
Defn: Generic morphism:

From: Univariate Polynomial Ring in x over Integer Ring
To: Integer Ring

then
Generic morphism:
From: Integer Ring
To: Rational Field

sage: phi_xz.category_for()
Category of monoids

section()
Return a section of self.
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Note: By default, it returns None. You may override it in subclasses.

class sage.categories.map.Section
Bases: sage.categories.map.Map

A formal section of a map.

Note: Call methods are not implemented for the base class Section.

EXAMPLES:

sage: from sage.categories.map import Section
sage: R.<x,y> = ZZ[]
sage: S.<a,b> = QQ[]
sage: f = R.hom([a+b, a-b])
sage: sf = Section(f); sf
Section map:
From: Multivariate Polynomial Ring in a, b over Rational Field
To: Multivariate Polynomial Ring in x, y over Integer Ring

sage: sf(a)
Traceback (most recent call last):
...
NotImplementedError: <class 'sage.categories.map.Section'>

inverse()
Return inverse of self.

sage.categories.map.is_Map(x)
Auxiliary function: Is the argument a map?

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = R.hom([x+y, x-y], R)
sage: from sage.categories.map import is_Map
sage: is_Map(f)
True

sage.categories.map.unpickle_map(_class, parent, _dict, _slots)
Auxiliary function for unpickling a map.

3.2 Homsets

The class Hom is the base class used to represent sets of morphisms between objects of a given category. Hom objects
are usually “weakly” cached upon creation so that they don’t have to be generated over and over but can be garbage
collected together with the corresponding objects when these are not strongly ref’ed anymore.

EXAMPLES:

In the following, the Hom object is indeed cached:
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sage: K = GF(17)
sage: H = Hom(ZZ, K)
sage: H
Set of Homomorphisms from Integer Ring to Finite Field of size 17
sage: H is Hom(ZZ, K)
True

Nonetheless, garbage collection occurs when the original references are overwritten:

sage: for p in prime_range(200):
....: K = GF(p)
....: H = Hom(ZZ, K)
sage: import gc
sage: _ = gc.collect()
sage: from sage.rings.finite_rings.finite_field_prime_modn import FiniteField_prime_modn␣
→˓as FF
sage: L = [x for x in gc.get_objects() if isinstance(x, FF)]
sage: len(L)
1
sage: L
[Finite Field of size 199]

AUTHORS:

• David Kohel and William Stein

• David Joyner (2005-12-17): added examples

• William Stein (2006-01-14): Changed from Homspace to Homset.

• Nicolas M. Thiery (2008-12-): Updated for the new category framework

• Simon King (2011-12): Use a weak cache for homsets

• Simon King (2013-02): added examples

sage.categories.homset.End(X, category=None)
Create the set of endomorphisms of X in the category category.

INPUT:

• X – anything

• category – (optional) category in which to coerce X

OUTPUT:

A set of endomorphisms in category

EXAMPLES:

sage: V = VectorSpace(QQ, 3)
sage: End(V)
Set of Morphisms (Linear Transformations) from
Vector space of dimension 3 over Rational Field to
Vector space of dimension 3 over Rational Field

sage: G = AlternatingGroup(3)
sage: S = End(G); S

(continues on next page)
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Set of Morphisms from Alternating group of order 3!/2 as a permutation group to␣
→˓Alternating group of order 3!/2 as a permutation group in Category of finite␣
→˓enumerated permutation groups
sage: from sage.categories.homset import is_Endset
sage: is_Endset(S)
True
sage: S.domain()
Alternating group of order 3!/2 as a permutation group

To avoid creating superfluous categories, a homset in a category Cs() is in the homset category of the lowest full
super category Bs() of Cs() that implements Bs.Homsets (or the join thereof if there are several). For example,
finite groups form a full subcategory of unital magmas: any unital magma morphism between two finite groups
is a finite group morphism. Since finite groups currently implement nothing more than unital magmas about
their homsets, we have:

sage: G = GL(3,3)
sage: G.category()
Category of finite groups
sage: H = Hom(G,G)
sage: H.homset_category()
Category of finite groups
sage: H.category()
Category of endsets of unital magmas

Similarly, a ring morphism just needs to preserve addition, multiplication, zero, and one. Accordingly, and since
the category of rings implements nothing specific about its homsets, a ring homset is currently constructed in
the category of homsets of unital magmas and unital additive magmas:

sage: H = Hom(ZZ,ZZ,Rings())
sage: H.category()
Category of endsets of unital magmas and additive unital additive magmas

sage.categories.homset.Hom(X, Y, category=None, check=True)
Create the space of homomorphisms from X to Y in the category category.

INPUT:

• X – an object of a category

• Y – an object of a category

• category – a category in which the morphisms must be. (default: the meet of the categories of X and Y)
Both X and Y must belong to that category.

• check – a boolean (default: True): whether to check the input, and in particular that X and Y belong to
category.

OUTPUT: a homset in category

EXAMPLES:

sage: V = VectorSpace(QQ,3)
sage: Hom(V, V)
Set of Morphisms (Linear Transformations) from
Vector space of dimension 3 over Rational Field to
Vector space of dimension 3 over Rational Field

(continues on next page)
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sage: G = AlternatingGroup(3)
sage: Hom(G, G)
Set of Morphisms from Alternating group of order 3!/2 as a permutation group to␣
→˓Alternating group of order 3!/2 as a permutation group in Category of finite␣
→˓enumerated permutation groups
sage: Hom(ZZ, QQ, Sets())
Set of Morphisms from Integer Ring to Rational Field in Category of sets

sage: Hom(FreeModule(ZZ,1), FreeModule(QQ,1))
Set of Morphisms from Ambient free module of rank 1 over the principal ideal domain␣
→˓Integer Ring to Vector space of dimension 1 over Rational Field in Category of␣
→˓commutative additive groups
sage: Hom(FreeModule(QQ,1), FreeModule(ZZ,1))
Set of Morphisms from Vector space of dimension 1 over Rational Field to Ambient␣
→˓free module of rank 1 over the principal ideal domain Integer Ring in Category of␣
→˓commutative additive groups

Here, we test against a memory leak that has been fixed at trac ticket #11521 by using a weak cache:

sage: for p in prime_range(10^3):
....: K = GF(p)
....: a = K(0)
sage: import gc
sage: gc.collect() # random
624
sage: from sage.rings.finite_rings.finite_field_prime_modn import FiniteField_prime_
→˓modn as FF
sage: L = [x for x in gc.get_objects() if isinstance(x, FF)]
sage: len(L), L[0]
(1, Finite Field of size 997)

To illustrate the choice of the category, we consider the following parents as running examples:

sage: X = ZZ; X
Integer Ring
sage: Y = SymmetricGroup(3); Y
Symmetric group of order 3! as a permutation group

By default, the smallest category containing both X and Y, is used:

sage: Hom(X, Y)
Set of Morphisms from Integer Ring
to Symmetric group of order 3! as a permutation group
in Category of enumerated monoids

Otherwise, if category is specified, then category is used, after checking that X and Y are indeed in category:

sage: Hom(X, Y, Magmas())
Set of Morphisms from Integer Ring to Symmetric group of order 3! as a permutation␣
→˓group in Category of magmas

sage: Hom(X, Y, Groups())
Traceback (most recent call last):

(continues on next page)
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...
ValueError: Integer Ring is not in Category of groups

A parent (or a parent class of a category) may specify how to construct certain homsets by implementing a
method _Hom_(self, codomain, category). This method should either construct the requested homset or
raise a TypeError. This hook is currently mostly used to create homsets in some specific subclass of Homset
(e.g. sage.rings.homset.RingHomset):

sage: Hom(QQ,QQ).__class__
<class 'sage.rings.homset.RingHomset_generic_with_category'>

Do not call this hook directly to create homsets, as it does not handle unique representation:

sage: Hom(QQ,QQ) == QQ._Hom_(QQ, category=QQ.category())
True
sage: Hom(QQ,QQ) is QQ._Hom_(QQ, category=QQ.category())
False

Todo:

• Design decision: how much of the homset comes from the category of X and Y, and how much from the
specific X and Y. In particular, do we need several parent classes depending on X and Y, or does the difference
only lie in the elements (i.e. the morphism), and of course how the parent calls their constructors.

• Specify the protocol for the _Hom_ hook in case of ambiguity (e.g. if both a parent and some category
thereof provide one).

class sage.categories.homset.Homset(X, Y, category=None, base=None, check=True)
Bases: sage.structure.parent.Set_generic

The class for collections of morphisms in a category.

EXAMPLES:

sage: H = Hom(QQ^2, QQ^3)
sage: loads(H.dumps()) is H
True

Homsets of unique parents are unique as well:

sage: H = End(AffineSpace(2, names='x,y'))
sage: loads(dumps(AffineSpace(2, names='x,y'))) is AffineSpace(2, names='x,y')
True
sage: loads(dumps(H)) is H
True

Conversely, homsets of non-unique parents are non-unique:

sage: H = End(ProductProjectiveSpaces(QQ, [1, 1]))
sage: loads(dumps(ProductProjectiveSpaces(QQ, [1, 1]))) is␣
→˓ProductProjectiveSpaces(QQ, [1, 1])
False
sage: loads(dumps(ProductProjectiveSpaces(QQ, [1, 1]))) ==␣
→˓ProductProjectiveSpaces(QQ, [1, 1])

(continues on next page)
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True
sage: loads(dumps(H)) is H
False
sage: loads(dumps(H)) == H
True

codomain()
Return the codomain of this homset.

EXAMPLES:

sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: f.parent().codomain()
Univariate Polynomial Ring in t over Rational Field
sage: f.codomain() is f.parent().codomain()
True

domain()
Return the domain of this homset.

EXAMPLES:

sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: f.parent().domain()
Univariate Polynomial Ring in t over Integer Ring
sage: f.domain() is f.parent().domain()
True

element_class_set_morphism()
A base class for elements of this homset which are also SetMorphism, i.e. implemented by mean of a
Python function.

This is currently plain SetMorphism, without inheritance from categories.

Todo: Refactor during the upcoming homset cleanup.

EXAMPLES:

sage: H = Hom(ZZ, ZZ)
sage: H.element_class_set_morphism
<class 'sage.categories.morphism.SetMorphism'>

homset_category()
Return the category that this is a Hom in, i.e., this is typically the category of the domain or codomain
object.

EXAMPLES:

sage: H = Hom(AlternatingGroup(4), AlternatingGroup(7))
sage: H.homset_category()
Category of finite enumerated permutation groups
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identity()
The identity map of this homset.

Note: Of course, this only exists for sets of endomorphisms.

EXAMPLES:

sage: H = Hom(QQ,QQ)
sage: H.identity()
Identity endomorphism of Rational Field
sage: H = Hom(ZZ,QQ)
sage: H.identity()
Traceback (most recent call last):
...
TypeError: Identity map only defined for endomorphisms. Try natural_map()␣
→˓instead.
sage: H.natural_map()
Natural morphism:
From: Integer Ring
To: Rational Field

natural_map()
Return the “natural map” of this homset.

Note: By default, a formal coercion morphism is returned.

EXAMPLES:

sage: H = Hom(ZZ['t'],QQ['t'], CommutativeAdditiveGroups())
sage: H.natural_map()
Coercion morphism:
From: Univariate Polynomial Ring in t over Integer Ring
To: Univariate Polynomial Ring in t over Rational Field

sage: H = Hom(QQ['t'],GF(3)['t'])
sage: H.natural_map()
Traceback (most recent call last):
...
TypeError: natural coercion morphism from Univariate Polynomial Ring in t over␣
→˓Rational Field to Univariate Polynomial Ring in t over Finite Field of size 3␣
→˓not defined

one()
The identity map of this homset.

Note: Of course, this only exists for sets of endomorphisms.

EXAMPLES:

sage: K = GaussianIntegers()
sage: End(K).one()
Identity endomorphism of Gaussian Integers in Number Field in I with defining␣
→˓polynomial x^2 + 1 with I = 1*I (continues on next page)
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reversed()
Return the corresponding homset, but with the domain and codomain reversed.

EXAMPLES:

sage: H = Hom(ZZ^2, ZZ^3); H
Set of Morphisms from Ambient free module of rank 2 over
the principal ideal domain Integer Ring to Ambient free module
of rank 3 over the principal ideal domain Integer Ring in
Category of finite dimensional modules with basis over (euclidean
domains and infinite enumerated sets and metric spaces)
sage: type(H)
<class 'sage.modules.free_module_homspace.FreeModuleHomspace_with_category'>
sage: H.reversed()
Set of Morphisms from Ambient free module of rank 3 over
the principal ideal domain Integer Ring to Ambient free module
of rank 2 over the principal ideal domain Integer Ring in
Category of finite dimensional modules with basis over (euclidean
domains and infinite enumerated sets and metric spaces)
sage: type(H.reversed())
<class 'sage.modules.free_module_homspace.FreeModuleHomspace_with_category'>

class sage.categories.homset.HomsetWithBase(X, Y, category=None, check=True, base=None)
Bases: sage.categories.homset.Homset

sage.categories.homset.end(X, f )
Return End(X)(f), where f is data that defines an element of End(X).

EXAMPLES:

sage: R.<x> = QQ[]
sage: phi = end(R, [x + 1])
sage: phi
Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
Defn: x |--> x + 1

sage: phi(x^2 + 5)
x^2 + 2*x + 6

sage.categories.homset.hom(X, Y, f )
Return Hom(X,Y)(f), where f is data that defines an element of Hom(X,Y).

EXAMPLES:

sage: R.<x> = QQ[]
sage: phi = hom(R, QQ, [2])
sage: phi(x^2 + 3)
7

sage.categories.homset.is_Endset(x)
Return True if x is a set of endomorphisms in a category.

EXAMPLES:

3.2. Homsets 123



Category Framework, Release 9.7

sage: from sage.categories.homset import is_Endset
sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: is_Endset(f.parent())
False
sage: g = P.hom([2*t])
sage: is_Endset(g.parent())
True

sage.categories.homset.is_Homset(x)
Return True if x is a set of homomorphisms in a category.

EXAMPLES:

sage: from sage.categories.homset import is_Homset
sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: is_Homset(f)
False
sage: is_Homset(f.category())
False
sage: is_Homset(f.parent())
True

3.3 Morphisms

This module defines the base classes of morphisms between objects of a given category.

EXAMPLES:

Typically, a morphism is defined by the images of the generators of the domain.

sage: X.<a, b> = ZZ[]
sage: Y.<c> = ZZ[]
sage: X.hom([c, c^2])
Ring morphism:
From: Multivariate Polynomial Ring in a, b over Integer Ring
To: Univariate Polynomial Ring in c over Integer Ring
Defn: a |--> c

b |--> c^2

AUTHORS:

• William Stein (2005): initial version

• David Joyner (2005-12-17): added examples

• Robert Bradshaw (2007-06-25): Pyrexification

class sage.categories.morphism.CallMorphism
Bases: sage.categories.morphism.Morphism

class sage.categories.morphism.FormalCoercionMorphism
Bases: sage.categories.morphism.Morphism
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class sage.categories.morphism.IdentityMorphism
Bases: sage.categories.morphism.Morphism

is_identity()
Return True if this morphism is the identity morphism.

EXAMPLES:

sage: E = End(Partitions(5))
sage: E.identity().is_identity()
True

Check that trac ticket #15478 is fixed:

sage: K.<z> = GF(4)
sage: phi = End(K)([z^2])
sage: R.<t> = K[]
sage: psi = End(R)(phi)
sage: psi.is_identity()
False

is_injective()
Return whether this morphism is injective.

EXAMPLES:

sage: Hom(ZZ, ZZ).identity().is_injective()
True

is_surjective()
Return whether this morphism is surjective.

EXAMPLES:

sage: Hom(ZZ, ZZ).identity().is_surjective()
True

section()
Return a section of this morphism.

EXAMPLES:

sage: T = Hom(ZZ, ZZ).identity()
sage: T.section() is T
True

class sage.categories.morphism.Morphism
Bases: sage.categories.map.Map

category()
Return the category of the parent of this morphism.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: f = R.hom([t**2])
sage: f.category()
Category of endsets of unital magmas and right modules over

(continues on next page)
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(euclidean domains and infinite enumerated sets and metric spaces)
and left modules over (euclidean domains
and infinite enumerated sets and metric spaces)

sage: K = CyclotomicField(12)
sage: L = CyclotomicField(132)
sage: phi = L._internal_coerce_map_from(K)
sage: phi.category()
Category of homsets of number fields

is_endomorphism()
Return True if this morphism is an endomorphism.

EXAMPLES:

sage: R.<t> = ZZ[]
sage: f = R.hom([t])
sage: f.is_endomorphism()
True

sage: K = CyclotomicField(12)
sage: L = CyclotomicField(132)
sage: phi = L._internal_coerce_map_from(K)
sage: phi.is_endomorphism()
False

is_identity()
Return True if this morphism is the identity morphism.

Note: Implemented only when the domain has a method gens()

EXAMPLES:

sage: R.<t> = ZZ[]
sage: f = R.hom([t])
sage: f.is_identity()
True
sage: g = R.hom([t+1])
sage: g.is_identity()
False

A morphism between two different spaces cannot be the identity:

sage: R2.<t2> = QQ[]
sage: h = R.hom([t2])
sage: h.is_identity()
False

pushforward(I)

register_as_coercion()
Register this morphism as a coercion to Sage’s coercion model (see sage.structure.coerce).

EXAMPLES:
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By default, adding polynomials over different variables triggers an error:

sage: X.<x> = ZZ[]
sage: Y.<y> = ZZ[]
sage: x^2 + y
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Univariate Polynomial Ring in␣
→˓x over Integer Ring' and 'Univariate Polynomial Ring in y over Integer Ring'

Let us declare a coercion from Z[𝑥] to Z[𝑧]:

sage: Z.<z> = ZZ[]
sage: phi = Hom(X, Z)(z)
sage: phi(x^2+1)
z^2 + 1
sage: phi.register_as_coercion()

Now we can add elements from Z[𝑥] and Z[𝑧], because the elements of the former are allowed to be im-
plicitly coerced into the later:

sage: x^2 + z
z^2 + z

Caveat: the registration of the coercion must be done before any other coercion is registered or discovered:

sage: phi = Hom(X, Z)(z^2)
sage: phi.register_as_coercion()
Traceback (most recent call last):
...
AssertionError: coercion from Univariate Polynomial Ring in x over Integer Ring␣
→˓to Univariate Polynomial Ring in z over Integer Ring already registered or␣
→˓discovered

register_as_conversion()
Register this morphism as a conversion to Sage’s coercion model

(see sage.structure.coerce).

EXAMPLES:

Let us declare a conversion from the symmetric group to Z through the sign map:

sage: S = SymmetricGroup(4)
sage: phi = Hom(S, ZZ)(lambda x: ZZ(x.sign()))
sage: x = S.an_element(); x
(2,3,4)
sage: phi(x)
1
sage: phi.register_as_conversion()
sage: ZZ(x)
1

class sage.categories.morphism.SetMorphism
Bases: sage.categories.morphism.Morphism

INPUT:
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• parent – a Homset

• function – a Python function that takes elements of the domain as input and returns elements of the
domain.

EXAMPLES:

sage: from sage.categories.morphism import SetMorphism
sage: f = SetMorphism(Hom(QQ, ZZ, Sets()), numerator)
sage: f.parent()
Set of Morphisms from Rational Field to Integer Ring in Category of sets
sage: f.domain()
Rational Field
sage: f.codomain()
Integer Ring
sage: TestSuite(f).run()

sage.categories.morphism.is_Morphism(x)

3.4 Coercion via construction functors

class sage.categories.pushout.AlgebraicClosureFunctor
Bases: sage.categories.pushout.ConstructionFunctor

Algebraic Closure.

EXAMPLES:

sage: F = CDF.construction()[0]
sage: F(QQ)
Algebraic Field
sage: F(RR)
Complex Field with 53 bits of precision
sage: F(F(QQ)) is F(QQ)
True

merge(other)
Mathematically, Algebraic Closure subsumes Algebraic Extension. However, it seems that people do want
to work with algebraic extensions of RR. Therefore, we do not merge with algebraic extension.

class sage.categories.pushout.AlgebraicExtensionFunctor(polys, names, embeddings, structures,
cyclotomic=None, precs=None,
implementations=None, residue=None,
latex_names=None, **kwds)

Bases: sage.categories.pushout.ConstructionFunctor

Algebraic extension (univariate polynomial ring modulo principal ideal).

EXAMPLES:

sage: x = polygen(QQ, 'x')
sage: K.<a> = NumberField(x^3 + x^2 + 1)
sage: F = K.construction()[0]
sage: F(ZZ['t'])
Univariate Quotient Polynomial Ring in a over Univariate Polynomial Ring in t over␣
→˓Integer Ring with modulus a^3 + a^2 + 1
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Note that, even if a field is algebraically closed, the algebraic extension will be constructed as the quotient of a
univariate polynomial ring:

sage: F(CC)
Univariate Quotient Polynomial Ring in a over Complex Field with 53 bits of␣
→˓precision with modulus a^3 + a^2 + 1.00000000000000
sage: F(RR)
Univariate Quotient Polynomial Ring in a over Real Field with 53 bits of precision␣
→˓with modulus a^3 + a^2 + 1.00000000000000

Note that the construction functor of a number field applied to the integers returns an order (not necessarily
maximal) of that field, similar to the behaviour of ZZ.extension(...):

sage: F(ZZ)
Order in Number Field in a with defining polynomial x^3 + x^2 + 1

This also holds for non-absolute number fields:

sage: x = polygen(QQ, 'x')
sage: K.<a,b> = NumberField([x^3 + x^2 + 1, x^2 + x + 1])
sage: F = K.construction()[0]
sage: O = F(ZZ); O
Relative Order in Number Field in a with defining polynomial x^3 + x^2 + 1 over its␣
→˓base field
sage: O.ambient() is K
True

Special cases are made for cyclotomic fields and residue fields:

sage: C = CyclotomicField(8)
sage: F,R = C.construction()
sage: F
AlgebraicExtensionFunctor
sage: R
Rational Field
sage: F(R)
Cyclotomic Field of order 8 and degree 4
sage: F(ZZ)
Maximal Order in Cyclotomic Field of order 8 and degree 4

sage: K.<z> = CyclotomicField(7)
sage: P = K.factor(17)[0][0]
sage: k = K.residue_field(P)
sage: F, R = k.construction()
sage: F
AlgebraicExtensionFunctor
sage: R
Cyclotomic Field of order 7 and degree 6
sage: F(R) is k
True
sage: F(ZZ)
Residue field of Integers modulo 17
sage: F(CyclotomicField(49))
Residue field in zbar of Fractional ideal (17)
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expand()
Decompose the functor 𝐹 into sub-functors, whose product returns 𝐹 .

EXAMPLES:

sage: P.<x> = QQ[]
sage: K.<a> = NumberField(x^3-5,embedding=0)
sage: L.<b> = K.extension(x^2+a)
sage: F,R = L.construction()
sage: prod(F.expand())(R) == L
True
sage: K = NumberField([x^2-2, x^2-3],'a')
sage: F, R = K.construction()
sage: F
AlgebraicExtensionFunctor
sage: L = F.expand(); L
[AlgebraicExtensionFunctor, AlgebraicExtensionFunctor]
sage: L[-1](QQ)
Number Field in a1 with defining polynomial x^2 - 3

merge(other)
Merging with another AlgebraicExtensionFunctor.

INPUT:

other – Construction Functor.

OUTPUT:

• If self==other, self is returned.

• If self and other are simple extensions and both provide an embedding, then it is tested whether
one of the number fields provided by the functors coerces into the other; the functor associated with
the target of the coercion is returned. Otherwise, the construction functor associated with the pushout
of the codomains of the two embeddings is returned, provided that it is a number field.

• If these two extensions are defined by Conway polynomials over finite fields, merges them into a single
extension of degree the lcm of the two degrees.

• Otherwise, None is returned.

REMARK:

Algebraic extension with embeddings currently only works when applied to the rational field. This is why
we use the admittedly strange rule above for merging.

EXAMPLES:

The following demonstrate coercions for finite fields using Conway or pseudo-Conway polynomials:

sage: k = GF(3^2, prefix='z'); a = k.gen()
sage: l = GF(3^3, prefix='z'); b = l.gen()
sage: a + b # indirect doctest
z6^5 + 2*z6^4 + 2*z6^3 + z6^2 + 2*z6 + 1

Note that embeddings are compatible in lattices of such finite fields:

sage: m = GF(3^5, prefix='z'); c = m.gen()
sage: (a+b)+c == a+(b+c) # indirect doctest
True

(continues on next page)
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sage: from sage.categories.pushout import pushout
sage: n = pushout(k, l)
sage: o = pushout(l, m)
sage: q = pushout(n, o)
sage: q(o(b)) == q(n(b)) # indirect doctest
True

Coercion is also available for number fields:

sage: P.<x> = QQ[]
sage: L.<b> = NumberField(x^8-x^4+1, embedding=CDF.0)
sage: M1.<c1> = NumberField(x^2+x+1, embedding=b^4-1)
sage: M2.<c2> = NumberField(x^2+1, embedding=-b^6)
sage: M1.coerce_map_from(M2)
sage: M2.coerce_map_from(M1)
sage: c1+c2; parent(c1+c2) #indirect doctest
-b^6 + b^4 - 1
Number Field in b with defining polynomial x^8 - x^4 + 1 with b = -0.
→˓2588190451025208? + 0.9659258262890683?*I
sage: pushout(M1['x'],M2['x'])
Univariate Polynomial Ring in x over Number Field in b with defining polynomial␣
→˓x^8 - x^4 + 1 with b = -0.2588190451025208? + 0.9659258262890683?*I

In the previous example, the number field L becomes the pushout of M1 and M2 since both are provided
with an embedding into L, and since L is a number field. If two number fields are embedded into a field
that is not a numberfield, no merging occurs:

sage: cbrt2 = CDF(2)^(1/3)
sage: zeta3 = CDF.zeta(3)
sage: K.<a> = NumberField(x^3-2, embedding=cbrt2 * zeta3)
sage: L.<b> = NumberField(x^6-2, embedding=1.1)
sage: L.coerce_map_from(K)
sage: K.coerce_map_from(L)
sage: pushout(K,L)
Traceback (most recent call last):
...
CoercionException: ('Ambiguous Base Extension', Number Field in a with defining␣
→˓polynomial x^3 - 2 with a = -0.6299605249474365? + 1.091123635971722?*I,␣
→˓Number Field in b with defining polynomial x^6 - 2 with b = 1.122462048309373?
→˓)

class sage.categories.pushout.BlackBoxConstructionFunctor(box)
Bases: sage.categories.pushout.ConstructionFunctor

Construction functor obtained from any callable object.

EXAMPLES:

sage: from sage.categories.pushout import BlackBoxConstructionFunctor
sage: FG = BlackBoxConstructionFunctor(gap)
sage: FS = BlackBoxConstructionFunctor(singular)
sage: FG
BlackBoxConstructionFunctor
sage: FG(ZZ)

(continues on next page)

3.4. Coercion via construction functors 131



Category Framework, Release 9.7

(continued from previous page)

Integers
sage: FG(ZZ).parent()
Gap
sage: FS(QQ['t'])
polynomial ring, over a field, global ordering
// coefficients: QQ
// number of vars : 1
// block 1 : ordering lp
// : names t
// block 2 : ordering C
sage: FG == FS
False
sage: FG == loads(dumps(FG))
True

class sage.categories.pushout.CompletionFunctor(p, prec, extras=None)
Bases: sage.categories.pushout.ConstructionFunctor

Completion of a ring with respect to a given prime (including infinity).

EXAMPLES:

sage: R = Zp(5)
sage: R
5-adic Ring with capped relative precision 20
sage: F1 = R.construction()[0]
sage: F1
Completion[5, prec=20]
sage: F1(ZZ) is R
True
sage: F1(QQ)
5-adic Field with capped relative precision 20
sage: F2 = RR.construction()[0]
sage: F2
Completion[+Infinity, prec=53]
sage: F2(QQ) is RR
True
sage: P.<x> = ZZ[]
sage: Px = P.completion(x) # currently the only implemented completion of P
sage: Px
Power Series Ring in x over Integer Ring
sage: F3 = Px.construction()[0]
sage: F3(GF(3)['x'])
Power Series Ring in x over Finite Field of size 3

commutes(other)
Completion commutes with fraction fields.

EXAMPLES:

sage: F1 = Zp(5).construction()[0]
sage: F2 = QQ.construction()[0]
sage: F1.commutes(F2)
True
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merge(other)
Two Completion functors are merged, if they are equal. If the precisions of both functors coincide, then
a Completion functor is returned that results from updating the extras dictionary of self by other.
extras. Otherwise, if the completion is at infinity then merging does not increase the set precision, and if
the completion is at a finite prime, merging does not decrease the capped precision.

EXAMPLES:

sage: R1.<a> = Zp(5,prec=20)[]
sage: R2 = Qp(5,prec=40)
sage: R2(1)+a # indirect doctest
(1 + O(5^20))*a + 1 + O(5^40)
sage: R3 = RealField(30)
sage: R4 = RealField(50)
sage: R3(1) + R4(1) # indirect doctest
2.0000000
sage: (R3(1) + R4(1)).parent()
Real Field with 30 bits of precision

class sage.categories.pushout.CompositeConstructionFunctor(*args)
Bases: sage.categories.pushout.ConstructionFunctor

A Construction Functor composed by other Construction Functors.

INPUT:

F1, F2,...: A list of Construction Functors. The result is the composition F1 followed by F2 followed by . . .

EXAMPLES:

sage: from sage.categories.pushout import CompositeConstructionFunctor
sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].
→˓construction()[0],QQ.construction()[0],ZZ['y'].construction()[0])
sage: F
Poly[y](FractionField(Poly[x](FractionField(...))))
sage: F == loads(dumps(F))
True
sage: F == CompositeConstructionFunctor(*F.all)
True
sage: F(GF(2)['t'])
Univariate Polynomial Ring in y over Fraction Field of Univariate Polynomial Ring␣
→˓in x over Fraction Field of Univariate Polynomial Ring in t over Finite Field of␣
→˓size 2 (using GF2X)

expand()
Return expansion of a CompositeConstructionFunctor.

Note: The product over the list of components, as returned by the expand() method, is equal to self.

EXAMPLES:

sage: from sage.categories.pushout import CompositeConstructionFunctor
sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].
→˓construction()[0],QQ.construction()[0],ZZ['y'].construction()[0])
sage: F

(continues on next page)
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Poly[y](FractionField(Poly[x](FractionField(...))))
sage: prod(F.expand()) == F
True

class sage.categories.pushout.ConstructionFunctor
Bases: sage.categories.functor.Functor

Base class for construction functors.

A construction functor is a functorial algebraic construction, such as the construction of a matrix ring over a
given ring or the fraction field of a given ring.

In addition to the class Functor, construction functors provide rules for combining and merging constructions.
This is an important part of Sage’s coercion model, namely the pushout of two constructions: When a polynomial
p in a variable x with integer coefficients is added to a rational number q, then Sage finds that the parents
ZZ['x'] and QQ are obtained from ZZ by applying a polynomial ring construction respectively the fraction field
construction. Each construction functor has an attribute rank, and the rank of the polynomial ring construction
is higher than the rank of the fraction field construction. This means that the pushout of QQ and ZZ['x'], and
thus a common parent in which p and q can be added, is QQ['x'], since the construction functor with a lower
rank is applied first.

sage: F1, R = QQ.construction()
sage: F1
FractionField
sage: R
Integer Ring
sage: F2, R = (ZZ['x']).construction()
sage: F2
Poly[x]
sage: R
Integer Ring
sage: F3 = F2.pushout(F1)
sage: F3
Poly[x](FractionField(...))
sage: F3(R)
Univariate Polynomial Ring in x over Rational Field
sage: from sage.categories.pushout import pushout
sage: P.<x> = ZZ[]
sage: pushout(QQ,P)
Univariate Polynomial Ring in x over Rational Field
sage: ((x+1) + 1/2).parent()
Univariate Polynomial Ring in x over Rational Field

When composing two construction functors, they are sometimes merged into one, as is the case in the Quotient
construction:

sage: Q15, R = (ZZ.quo(15*ZZ)).construction()
sage: Q15
QuotientFunctor
sage: Q35, R = (ZZ.quo(35*ZZ)).construction()
sage: Q35
QuotientFunctor
sage: Q15.merge(Q35)
QuotientFunctor

(continues on next page)
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sage: Q15.merge(Q35)(ZZ)
Ring of integers modulo 5

Functors can not only be applied to objects, but also to morphisms in the respective categories. For example:

sage: P.<x,y> = ZZ[]
sage: F = P.construction()[0]; F
MPoly[x,y]
sage: A.<a,b> = GF(5)[]
sage: f = A.hom([a+b,a-b],A)
sage: F(A)
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over␣
→˓Finite Field of size 5
sage: F(f)
Ring endomorphism of Multivariate Polynomial Ring in x, y over Multivariate␣
→˓Polynomial Ring in a, b over Finite Field of size 5
Defn: Induced from base ring by

Ring endomorphism of Multivariate Polynomial Ring in a, b over Finite Field␣
→˓of size 5

Defn: a |--> a + b
b |--> a - b

sage: F(f)(F(A)(x)*a)
(a + b)*x

common_base(other_functor, self_bases, other_bases)
This function is called by pushout() when no common parent is found in the construction tower.

Note: The main use is for multivariate construction functors, which use this function to implement recur-
sion for pushout().

INPUT:

• other_functor – a construction functor.

• self_bases – the arguments passed to this functor.

• other_bases – the arguments passed to the functor other_functor.

OUTPUT:

Nothing, since a CoercionException is raised.

Note: Overload this function in derived class, see e.e. MultivariateConstructionFunctor.

commutes(other)
Determine whether self commutes with another construction functor.

Note: By default, False is returned in all cases (even if the two functors are the same, since in this case
merge() will apply anyway). So far there is no construction functor that overloads this method. Anyway,
this method only becomes relevant if two construction functors have the same rank.

EXAMPLES:
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sage: F = QQ.construction()[0]
sage: P = ZZ['t'].construction()[0]
sage: F.commutes(P)
False
sage: P.commutes(F)
False
sage: F.commutes(F)
False

expand()
Decompose self into a list of construction functors.

Note: The default is to return the list only containing self.

EXAMPLES:

sage: F = QQ.construction()[0]
sage: F.expand()
[FractionField]
sage: Q = ZZ.quo(2).construction()[0]
sage: Q.expand()
[QuotientFunctor]
sage: P = ZZ['t'].construction()[0]
sage: FP = F*P
sage: FP.expand()
[FractionField, Poly[t]]

merge(other)
Merge self with another construction functor, or return None.

Note: The default is to merge only if the two functors coincide. But this may be overloaded for subclasses,
such as the quotient functor.

EXAMPLES:

sage: F = QQ.construction()[0]
sage: P = ZZ['t'].construction()[0]
sage: F.merge(F)
FractionField
sage: F.merge(P)
sage: P.merge(F)
sage: P.merge(P)
Poly[t]

pushout(other)
Composition of two construction functors, ordered by their ranks.

Note:

• This method seems not to be used in the coercion model.

• By default, the functor with smaller rank is applied first.
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class sage.categories.pushout.FractionField
Bases: sage.categories.pushout.ConstructionFunctor

Construction functor for fraction fields.

EXAMPLES:

sage: F = QQ.construction()[0]
sage: F
FractionField
sage: F.domain()
Category of integral domains
sage: F.codomain()
Category of fields
sage: F(GF(5)) is GF(5)
True
sage: F(ZZ['t'])
Fraction Field of Univariate Polynomial Ring in t over Integer Ring
sage: P.<x,y> = QQ[]
sage: f = P.hom([x+2*y,3*x-y],P)
sage: F(f)
Ring endomorphism of Fraction Field of Multivariate Polynomial Ring in x, y over␣
→˓Rational Field
Defn: x |--> x + 2*y

y |--> 3*x - y
sage: F(f)(1/x)
1/(x + 2*y)
sage: F == loads(dumps(F))
True

class sage.categories.pushout.IdentityConstructionFunctor
Bases: sage.categories.pushout.ConstructionFunctor

A construction functor that is the identity functor.

class sage.categories.pushout.InfinitePolynomialFunctor(gens, order, implementation)
Bases: sage.categories.pushout.ConstructionFunctor

A Construction Functor for Infinite Polynomial Rings (see infinite_polynomial_ring).

AUTHOR:

– Simon King

This construction functor is used to provide uniqueness of infinite polynomial rings as parent structures. As
usual, the construction functor allows for constructing pushouts.

Another purpose is to avoid name conflicts of variables of the to-be-constructed infinite polynomial ring with
variables of the base ring, and moreover to keep the internal structure of an Infinite Polynomial Ring as simple as
possible: If variables 𝑣1, ..., 𝑣𝑛 of the given base ring generate an ordered sub-monoid of the monomials of the
ambient Infinite Polynomial Ring, then they are removed from the base ring and merged with the generators of
the ambient ring. However, if the orders don’t match, an error is raised, since there was a name conflict without
merging.

EXAMPLES:

3.4. Coercion via construction functors 137

../../../../../../html/en/reference/polynomial_rings/sage/rings/polynomial/infinite_polynomial_ring.html#module-sage.rings.polynomial.infinite_polynomial_ring


Category Framework, Release 9.7

sage: A.<a,b> = InfinitePolynomialRing(ZZ['t'])
sage: A.construction()
[InfPoly{[a,b], "lex", "dense"},
Univariate Polynomial Ring in t over Integer Ring]
sage: type(_[0])
<class 'sage.categories.pushout.InfinitePolynomialFunctor'>
sage: B.<x,y,a_3,a_1> = PolynomialRing(QQ, order='lex')
sage: B.construction()
(MPoly[x,y,a_3,a_1], Rational Field)
sage: A.construction()[0]*B.construction()[0]
InfPoly{[a,b], "lex", "dense"}(MPoly[x,y](...))

Apparently the variables 𝑎1, 𝑎3 of the polynomial ring are merged with the variables 𝑎0, 𝑎1, 𝑎2, ... of the infi-
nite polynomial ring; indeed, they form an ordered sub-structure. However, if the polynomial ring was given a
different ordering, merging would not be allowed, resulting in a name conflict:

sage: A.construction()[0]*PolynomialRing(QQ,names=['x','y','a_3','a_1']).
→˓construction()[0]
Traceback (most recent call last):
...
CoercionException: Incompatible term orders lex, degrevlex

In an infinite polynomial ring with generator 𝑎*, the variable 𝑎3 will always be greater than the variable 𝑎1.
Hence, the orders are incompatible in the next example as well:

sage: A.construction()[0]*PolynomialRing(QQ,names=['x','y','a_1','a_3'], order='lex
→˓').construction()[0]
Traceback (most recent call last):
...
CoercionException: Overlapping variables (('a', 'b'),['a_1', 'a_3']) are␣
→˓incompatible

Another requirement is that after merging the order of the remaining variables must be unique. This is not the
case in the following example, since it is not clear whether the variables 𝑥, 𝑦 should be greater or smaller than
the variables 𝑏*:

sage: A.construction()[0]*PolynomialRing(QQ,names=['a_3','a_1','x','y'], order='lex
→˓').construction()[0]
Traceback (most recent call last):
...
CoercionException: Overlapping variables (('a', 'b'),['a_3', 'a_1']) are␣
→˓incompatible

Since the construction functors are actually used to construct infinite polynomial rings, the following result is no
surprise:

sage: C.<a,b> = InfinitePolynomialRing(B); C
Infinite polynomial ring in a, b over Multivariate Polynomial Ring in x, y over␣
→˓Rational Field

There is also an overlap in the next example:

sage: X.<w,x,y> = InfinitePolynomialRing(ZZ)
sage: Y.<x,y,z> = InfinitePolynomialRing(QQ)
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𝑋 and 𝑌 have an overlapping generators 𝑥*, 𝑦*. Since the default lexicographic order is used in both rings, it
gives rise to isomorphic sub-monoids in both 𝑋 and 𝑌 . They are merged in the pushout, which also yields a
common parent for doing arithmetic:

sage: P = sage.categories.pushout.pushout(Y,X); P
Infinite polynomial ring in w, x, y, z over Rational Field
sage: w[2]+z[3]
w_2 + z_3
sage: _.parent() is P
True

expand()
Decompose the functor 𝐹 into sub-functors, whose product returns 𝐹 .

EXAMPLES:

sage: F = InfinitePolynomialRing(QQ, ['x','y'],order='degrevlex').
→˓construction()[0]; F
InfPoly{[x,y], "degrevlex", "dense"}
sage: F.expand()
[InfPoly{[y], "degrevlex", "dense"}, InfPoly{[x], "degrevlex", "dense"}]
sage: F = InfinitePolynomialRing(QQ, ['x','y','z'],order='degrevlex').
→˓construction()[0]; F
InfPoly{[x,y,z], "degrevlex", "dense"}
sage: F.expand()
[InfPoly{[z], "degrevlex", "dense"},
InfPoly{[y], "degrevlex", "dense"},
InfPoly{[x], "degrevlex", "dense"}]
sage: prod(F.expand())==F
True

merge(other)
Merge two construction functors of infinite polynomial rings, regardless of monomial order and implemen-
tation.

The purpose is to have a pushout (and thus, arithmetic) even in cases when the parents are isomorphic as
rings, but not as ordered rings.

EXAMPLES:

sage: X.<x,y> = InfinitePolynomialRing(QQ,implementation='sparse')
sage: Y.<x,y> = InfinitePolynomialRing(QQ,order='degrevlex')
sage: X.construction()
[InfPoly{[x,y], "lex", "sparse"}, Rational Field]
sage: Y.construction()
[InfPoly{[x,y], "degrevlex", "dense"}, Rational Field]
sage: Y.construction()[0].merge(Y.construction()[0])
InfPoly{[x,y], "degrevlex", "dense"}
sage: y[3] + X(x[2])
x_2 + y_3
sage: _.parent().construction()
[InfPoly{[x,y], "degrevlex", "dense"}, Rational Field]

class sage.categories.pushout.LaurentPolynomialFunctor(var, multi_variate=False)
Bases: sage.categories.pushout.ConstructionFunctor

Construction functor for Laurent polynomial rings.
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EXAMPLES:

sage: L.<t> = LaurentPolynomialRing(ZZ)
sage: F = L.construction()[0]
sage: F
LaurentPolynomialFunctor
sage: F(QQ)
Univariate Laurent Polynomial Ring in t over Rational Field
sage: K.<x> = LaurentPolynomialRing(ZZ)
sage: F(K)
Univariate Laurent Polynomial Ring in t over Univariate Laurent Polynomial Ring in␣
→˓x over Integer Ring
sage: P.<x,y> = ZZ[]
sage: f = P.hom([x+2*y,3*x-y],P)
sage: F(f)
Ring endomorphism of Univariate Laurent Polynomial Ring in t over Multivariate␣
→˓Polynomial Ring in x, y over Integer Ring
Defn: Induced from base ring by

Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |--> x + 2*y

y |--> 3*x - y
sage: F(f)(x*F(P).gen()^-2+y*F(P).gen()^3)
(x + 2*y)*t^-2 + (3*x - y)*t^3

merge(other)
Two Laurent polynomial construction functors merge if the variable names coincide.

The result is multivariate if one of the arguments is multivariate.

EXAMPLES:

sage: from sage.categories.pushout import LaurentPolynomialFunctor
sage: F1 = LaurentPolynomialFunctor('t')
sage: F2 = LaurentPolynomialFunctor('t', multi_variate=True)
sage: F1.merge(F2)
LaurentPolynomialFunctor
sage: F1.merge(F2)(LaurentPolynomialRing(GF(2),'a'))
Multivariate Laurent Polynomial Ring in a, t over Finite Field of size 2
sage: F1.merge(F1)(LaurentPolynomialRing(GF(2),'a'))
Univariate Laurent Polynomial Ring in t over Univariate Laurent Polynomial Ring␣
→˓in a over Finite Field of size 2

class sage.categories.pushout.MatrixFunctor(nrows, ncols, is_sparse=False)
Bases: sage.categories.pushout.ConstructionFunctor

A construction functor for matrices over rings.

EXAMPLES:

sage: MS = MatrixSpace(ZZ,2, 3)
sage: F = MS.construction()[0]; F
MatrixFunctor
sage: MS = MatrixSpace(ZZ,2)
sage: F = MS.construction()[0]; F
MatrixFunctor
sage: P.<x,y> = QQ[]

(continues on next page)
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sage: R = F(P); R
Full MatrixSpace of 2 by 2 dense matrices over Multivariate Polynomial Ring in x, y␣
→˓over Rational Field
sage: f = P.hom([x+y,x-y],P); F(f)
Ring endomorphism of Full MatrixSpace of 2 by 2 dense matrices over Multivariate␣
→˓Polynomial Ring in x, y over Rational Field
Defn: Induced from base ring by

Ring endomorphism of Multivariate Polynomial Ring in x, y over Rational␣
→˓Field

Defn: x |--> x + y
y |--> x - y

sage: M = R([x,y,x*y,x+y])
sage: F(f)(M)
[ x + y x - y]
[x^2 - y^2 2*x]

merge(other)
Merging is only happening if both functors are matrix functors of the same dimension.

The result is sparse if and only if both given functors are sparse.

EXAMPLES:

sage: F1 = MatrixSpace(ZZ,2,2).construction()[0]
sage: F2 = MatrixSpace(ZZ,2,3).construction()[0]
sage: F3 = MatrixSpace(ZZ,2,2,sparse=True).construction()[0]
sage: F1.merge(F2)
sage: F1.merge(F3)
MatrixFunctor
sage: F13 = F1.merge(F3)
sage: F13.is_sparse
False
sage: F1.is_sparse
False
sage: F3.is_sparse
True
sage: F3.merge(F3).is_sparse
True

class sage.categories.pushout.MultiPolynomialFunctor(vars, term_order)
Bases: sage.categories.pushout.ConstructionFunctor

A constructor for multivariate polynomial rings.

EXAMPLES:

sage: P.<x,y> = ZZ[]
sage: F = P.construction()[0]; F
MPoly[x,y]
sage: A.<a,b> = GF(5)[]
sage: F(A)
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over␣
→˓Finite Field of size 5
sage: f = A.hom([a+b,a-b],A)

(continues on next page)
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sage: F(f)
Ring endomorphism of Multivariate Polynomial Ring in x, y over Multivariate␣
→˓Polynomial Ring in a, b over Finite Field of size 5
Defn: Induced from base ring by

Ring endomorphism of Multivariate Polynomial Ring in a, b over Finite Field␣
→˓of size 5

Defn: a |--> a + b
b |--> a - b

sage: F(f)(F(A)(x)*a)
(a + b)*x

expand()
Decompose self into a list of construction functors.

EXAMPLES:

sage: F = QQ['x,y,z,t'].construction()[0]; F
MPoly[x,y,z,t]
sage: F.expand()
[MPoly[t], MPoly[z], MPoly[y], MPoly[x]]

Now an actual use case:

sage: R.<x,y,z> = ZZ[]
sage: S.<z,t> = QQ[]
sage: x+t
x + t
sage: parent(x+t)
Multivariate Polynomial Ring in x, y, z, t over Rational Field
sage: T.<y,s> = QQ[]
sage: x + s
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Multivariate Polynomial Ring␣
→˓in x, y, z over Integer Ring' and 'Multivariate Polynomial Ring in y, s over␣
→˓Rational Field'
sage: R = PolynomialRing(ZZ, 'x', 500)
sage: S = PolynomialRing(GF(5), 'x', 200)
sage: R.gen(0) + S.gen(0)
2*x0

merge(other)
Merge self with another construction functor, or return None.

EXAMPLES:

sage: F = sage.categories.pushout.MultiPolynomialFunctor(['x','y'], None)
sage: G = sage.categories.pushout.MultiPolynomialFunctor(['t'], None)
sage: F.merge(G) is None
True
sage: F.merge(F)
MPoly[x,y]
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class sage.categories.pushout.MultivariateConstructionFunctor
Bases: sage.categories.pushout.ConstructionFunctor

An abstract base class for functors that take multiple inputs (e.g. Cartesian products).

common_base(other_functor, self_bases, other_bases)
This function is called by pushout() when no common parent is found in the construction tower.

INPUT:

• other_functor – a construction functor.

• self_bases – the arguments passed to this functor.

• other_bases – the arguments passed to the functor other_functor.

OUTPUT:

A parent.

If no common base is found a sage.structure.coerce_exceptions.CoercionException is raised.

Note: Overload this function in derived class, see e.g. MultivariateConstructionFunctor.

class sage.categories.pushout.PermutationGroupFunctor(gens, domain)
Bases: sage.categories.pushout.ConstructionFunctor

EXAMPLES:

sage: from sage.categories.pushout import PermutationGroupFunctor
sage: PF = PermutationGroupFunctor([PermutationGroupElement([(1,2)])], [1,2]); PF
PermutationGroupFunctor[(1,2)]

gens()
EXAMPLES:

sage: P1 = PermutationGroup([[(1,2)]])
sage: PF, P = P1.construction()
sage: PF.gens()
((1,2),)

merge(other)
Merge self with another construction functor, or return None.

EXAMPLES:

sage: P1 = PermutationGroup([[(1,2)]])
sage: PF1, P = P1.construction()
sage: P2 = PermutationGroup([[(1,3)]])
sage: PF2, P = P2.construction()
sage: PF1.merge(PF2)
PermutationGroupFunctor[(1,2), (1,3)]

class sage.categories.pushout.PolynomialFunctor(var, multi_variate=False, sparse=False)
Bases: sage.categories.pushout.ConstructionFunctor

Construction functor for univariate polynomial rings.

EXAMPLES:
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sage: P = ZZ['t'].construction()[0]
sage: P(GF(3))
Univariate Polynomial Ring in t over Finite Field of size 3
sage: P == loads(dumps(P))
True
sage: R.<x,y> = GF(5)[]
sage: f = R.hom([x+2*y,3*x-y],R)
sage: P(f)((x+y)*P(R).0)
(-x + y)*t

By trac ticket #9944, the construction functor distinguishes sparse and dense polynomial rings. Before, the
following example failed:

sage: R.<x> = PolynomialRing(GF(5), sparse=True)
sage: F,B = R.construction()
sage: F(B) is R
True
sage: S.<x> = PolynomialRing(ZZ)
sage: R.has_coerce_map_from(S)
False
sage: S.has_coerce_map_from(R)
False
sage: S.0 + R.0
2*x
sage: (S.0 + R.0).parent()
Univariate Polynomial Ring in x over Finite Field of size 5
sage: (S.0 + R.0).parent().is_sparse()
False

merge(other)
Merge self with another construction functor, or return None.

Note: Internally, the merging is delegated to the merging of multipolynomial construction functors. But in
effect, this does the same as the default implementation, that returns None unless the to-be-merged functors
coincide.

EXAMPLES:

sage: P = ZZ['x'].construction()[0]
sage: Q = ZZ['y','x'].construction()[0]
sage: P.merge(Q)
sage: P.merge(P) is P
True

class sage.categories.pushout.QuotientFunctor(I, names=None, as_field=False, domain=None,
codomain=None, **kwds)

Bases: sage.categories.pushout.ConstructionFunctor

Construction functor for quotient rings.

Note: The functor keeps track of variable names. Optionally, it may keep track of additional properties of the
quotient, such as its category or its implementation.
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EXAMPLES:

sage: P.<x,y> = ZZ[]
sage: Q = P.quo([x^2+y^2]*P)
sage: F = Q.construction()[0]
sage: F(QQ['x','y'])
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal␣
→˓(x^2 + y^2)
sage: F(QQ['x','y']) == QQ['x','y'].quo([x^2+y^2]*QQ['x','y'])
True
sage: F(QQ['x','y','z'])
Traceback (most recent call last):
...
CoercionException: Cannot apply this quotient functor to Multivariate Polynomial␣
→˓Ring in x, y, z over Rational Field
sage: F(QQ['y','z'])
Traceback (most recent call last):
...
TypeError: Could not find a mapping of the passed element to this ring.

merge(other)
Two quotient functors with coinciding names are merged by taking the gcd of their moduli, the meet of
their domains, and the join of their codomains.

In particular, if one of the functors being merged knows that the quotient is going to be a field, then the
merged functor will return fields as well.

EXAMPLES:

sage: P.<x> = QQ[]
sage: Q1 = P.quo([(x^2+1)^2*(x^2-3)])
sage: Q2 = P.quo([(x^2+1)^2*(x^5+3)])
sage: from sage.categories.pushout import pushout
sage: pushout(Q1,Q2) # indirect doctest
Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^
→˓4 + 2*x^2 + 1

The following was fixed in trac ticket #8800:

sage: pushout(GF(5), Integers(5))
Finite Field of size 5

class sage.categories.pushout.SubspaceFunctor(basis)
Bases: sage.categories.pushout.ConstructionFunctor

Constructing a subspace of an ambient free module, given by a basis.

Note: This construction functor keeps track of the basis. It can only be applied to free modules into which this
basis coerces.

EXAMPLES:

sage: M = ZZ^3
sage: S = M.submodule([(1,2,3),(4,5,6)]); S

(continues on next page)
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Free module of degree 3 and rank 2 over Integer Ring
Echelon basis matrix:
[1 2 3]
[0 3 6]
sage: F = S.construction()[0]
sage: F(GF(2)^3)
Vector space of degree 3 and dimension 2 over Finite Field of size 2
User basis matrix:
[1 0 1]
[0 1 0]

merge(other)
Two Subspace Functors are merged into a construction functor of the sum of two subspaces.

EXAMPLES:

sage: M = GF(5)^3
sage: S1 = M.submodule([(1,2,3),(4,5,6)])
sage: S2 = M.submodule([(2,2,3)])
sage: F1 = S1.construction()[0]
sage: F2 = S2.construction()[0]
sage: F1.merge(F2)
SubspaceFunctor
sage: F1.merge(F2)(GF(5)^3) == S1+S2
True
sage: F1.merge(F2)(GF(5)['t']^3)
Free module of degree 3 and rank 3 over Univariate Polynomial Ring in t over␣
→˓Finite Field of size 5
User basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]

class sage.categories.pushout.VectorFunctor(n, is_sparse, inner_product_matrix, with_basis,
basis_keys=None, name_mapping=False,
latex_name_mapping=None)

Bases: sage.categories.pushout.ConstructionFunctor

A construction functor for free modules over commutative rings.

EXAMPLES:

sage: F = (ZZ^3).construction()[0]
sage: F
VectorFunctor
sage: F(GF(2)['t'])
Ambient free module of rank 3 over the principal ideal domain Univariate Polynomial␣
→˓Ring in t over Finite Field of size 2 (using GF2X)

merge(other)
Two constructors of free modules merge, if the module ranks and the inner products coincide. If both have
explicitly given inner product matrices, they must coincide as well.

EXAMPLES:

Two modules without explicitly given inner product allow coercion:
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sage: M1 = QQ^3
sage: P.<t> = ZZ[]
sage: M2 = FreeModule(P,3)
sage: M1([1,1/2,1/3]) + M2([t,t^2+t,3]) # indirect doctest
(t + 1, t^2 + t + 1/2, 10/3)

If only one summand has an explicit inner product, the result will be provided with it:

sage: M3 = FreeModule(P,3, inner_product_matrix = Matrix(3,3,range(9)))
sage: M1([1,1/2,1/3]) + M3([t,t^2+t,3])
(t + 1, t^2 + t + 1/2, 10/3)
sage: (M1([1,1/2,1/3]) + M3([t,t^2+t,3])).parent().inner_product_matrix()
[0 1 2]
[3 4 5]
[6 7 8]

If both summands have an explicit inner product (even if it is the standard inner product), then the products
must coincide. The only difference between M1 and M4 in the following example is the fact that the default
inner product was explicitly requested for M4. It is therefore not possible to coerce with a different inner
product:

sage: M4 = FreeModule(QQ,3, inner_product_matrix = Matrix(3,3,1))
sage: M4 == M1
True
sage: M4.inner_product_matrix() == M1.inner_product_matrix()
True
sage: M4([1,1/2,1/3]) + M3([t,t^2+t,3]) # indirect doctest
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +: 'Ambient quadratic space of␣
→˓dimension 3 over Rational Field
Inner product matrix:
[1 0 0]
[0 1 0]
[0 0 1]' and 'Ambient free quadratic module of rank 3 over the integral domain␣
→˓Univariate Polynomial Ring in t over Integer Ring
Inner product matrix:
[0 1 2]
[3 4 5]
[6 7 8]'

Names are removed when they conflict:

sage: from sage.categories.pushout import VectorFunctor, pushout
sage: M_ZZx = FreeModule(ZZ['x'], 4, with_basis=None, name='M_ZZx')
sage: N_ZZx = FreeModule(ZZ['x'], 4, with_basis=None, name='N_ZZx')
sage: pushout(M_ZZx, QQ)
Rank-4 free module M_ZZx_base_ext over the Univariate Polynomial Ring in x over␣
→˓Rational Field
sage: pushout(M_ZZx, N_ZZx)
Rank-4 free module over the Univariate Polynomial Ring in x over Integer Ring
sage: pushout(pushout(M_ZZx, N_ZZx), QQ)
Rank-4 free module over the Univariate Polynomial Ring in x over Rational Field
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sage.categories.pushout.construction_tower(R)
An auxiliary function that is used in pushout() and pushout_lattice().

INPUT:

An object

OUTPUT:

A constructive description of the object from scratch, by a list of pairs of a construction functor and an object to
which the construction functor is to be applied. The first pair is formed by None and the given object.

EXAMPLES:

sage: from sage.categories.pushout import construction_tower
sage: construction_tower(MatrixSpace(FractionField(QQ['t']),2))
[(None, Full MatrixSpace of 2 by 2 dense matrices over Fraction Field of Univariate␣
→˓Polynomial Ring in t over Rational Field), (MatrixFunctor, Fraction Field of␣
→˓Univariate Polynomial Ring in t over Rational Field), (FractionField, Univariate␣
→˓Polynomial Ring in t over Rational Field), (Poly[t], Rational Field),␣
→˓(FractionField, Integer Ring)]

sage.categories.pushout.expand_tower(tower)
An auxiliary function that is used in pushout().

INPUT:

A construction tower as returned by construction_tower().

OUTPUT:

A new construction tower with all the construction functors expanded.

EXAMPLES:

sage: from sage.categories.pushout import construction_tower, expand_tower
sage: construction_tower(QQ['x,y,z'])
[(None, Multivariate Polynomial Ring in x, y, z over Rational Field),
(MPoly[x,y,z], Rational Field),
(FractionField, Integer Ring)]
sage: expand_tower(construction_tower(QQ['x,y,z']))
[(None, Multivariate Polynomial Ring in x, y, z over Rational Field),
(MPoly[z], Univariate Polynomial Ring in y over Univariate Polynomial Ring in x␣
→˓over Rational Field),
(MPoly[y], Univariate Polynomial Ring in x over Rational Field),
(MPoly[x], Rational Field),
(FractionField, Integer Ring)]

sage.categories.pushout.pushout(R, S)
Given a pair of objects 𝑅 and 𝑆, try to construct a reasonable object 𝑌 and return maps such that canonically
𝑅← 𝑌 → 𝑆.

ALGORITHM:

This incorporates the idea of functors discussed at Sage Days 4. Every object 𝑅 can be viewed as an initial object
and a series of functors (e.g. polynomial, quotient, extension, completion, vector/matrix, etc.). Call the series of
increasingly simple objects (with the associated functors) the “tower” of 𝑅. The construction method is used to
create the tower.

Given two objects 𝑅 and 𝑆, try to find a common initial object 𝑍. If the towers of 𝑅 and 𝑆 meet, let 𝑍 be their
join. Otherwise, see if the top of one coerces naturally into the other.
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Now we have an initial object and two ordered lists of functors to apply. We wish to merge these in an unam-
biguous order, popping elements off the top of one or the other tower as we apply them to 𝑍.

• If the functors are of distinct types, there is an absolute ordering given by the rank attribute. Use this.

• Otherwise:

– If the tops are equal, we (try to) merge them.

– If exactly one occurs lower in the other tower, we may unambiguously apply the other (hoping for a
later merge).

– If the tops commute, we can apply either first.

– Otherwise fail due to ambiguity.

The algorithm assumes by default that when a construction 𝐹 is applied to an object 𝑋 , the object 𝐹 (𝑋) admits
a coercion map from 𝑋 . However, the algorithm can also handle the case where 𝐹 (𝑋) has a coercion map to 𝑋
instead. In this case, the attribute coercion_reversed of the class implementing 𝐹 should be set to True.

EXAMPLES:

Here our “towers” are 𝑅 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒7(𝐹𝑟𝑎𝑐(Z)) and 𝐹𝑟𝑎𝑐(𝑃𝑜𝑙𝑦𝑥(Z)), which give us
𝐹𝑟𝑎𝑐(𝑃𝑜𝑙𝑦𝑥(𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒7(𝐹𝑟𝑎𝑐(Z)))):

sage: from sage.categories.pushout import pushout
sage: pushout(Qp(7), Frac(ZZ['x']))
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped␣
→˓relative precision 20

Note we get the same thing with

sage: pushout(Zp(7), Frac(QQ['x']))
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped␣
→˓relative precision 20
sage: pushout(Zp(7)['x'], Frac(QQ['x']))
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped␣
→˓relative precision 20

Note that polynomial variable ordering must be unambiguously determined.

sage: pushout(ZZ['x,y,z'], QQ['w,z,t'])
Traceback (most recent call last):
...
CoercionException: ('Ambiguous Base Extension', Multivariate Polynomial Ring in x,␣
→˓y, z over Integer Ring, Multivariate Polynomial Ring in w, z, t over Rational␣
→˓Field)
sage: pushout(ZZ['x,y,z'], QQ['w,x,z,t'])
Multivariate Polynomial Ring in w, x, y, z, t over Rational Field

Some other examples:

sage: pushout(Zp(7)['y'], Frac(QQ['t'])['x,y,z'])
Multivariate Polynomial Ring in x, y, z over Fraction Field of Univariate␣
→˓Polynomial Ring in t over 7-adic Field with capped relative precision 20
sage: pushout(ZZ['x,y,z'], Frac(ZZ['x'])['y'])
Multivariate Polynomial Ring in y, z over Fraction Field of Univariate Polynomial␣
→˓Ring in x over Integer Ring
sage: pushout(MatrixSpace(RDF, 2, 2), Frac(ZZ['x']))

(continues on next page)
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Full MatrixSpace of 2 by 2 dense matrices over Fraction Field of Univariate␣
→˓Polynomial Ring in x over Real Double Field
sage: pushout(ZZ, MatrixSpace(ZZ[['x']], 3, 3))
Full MatrixSpace of 3 by 3 dense matrices over Power Series Ring in x over Integer␣
→˓Ring
sage: pushout(QQ['x,y'], ZZ[['x']])
Univariate Polynomial Ring in y over Power Series Ring in x over Rational Field
sage: pushout(Frac(ZZ['x']), QQ[['x']])
Laurent Series Ring in x over Rational Field

A construction with coercion_reversed = True (currently only the SubspaceFunctor construction) is only
applied if it leads to a valid coercion:

sage: A = ZZ^2
sage: V = span([[1, 2]], QQ)
sage: P = sage.categories.pushout.pushout(A, V)
sage: P
Vector space of dimension 2 over Rational Field
sage: P.has_coerce_map_from(A)
True

sage: V = (QQ^3).span([[1, 2, 3/4]])
sage: A = ZZ^3
sage: pushout(A, V)
Vector space of dimension 3 over Rational Field
sage: B = A.span([[0, 0, 2/3]])
sage: pushout(B, V)
Vector space of degree 3 and dimension 2 over Rational Field
User basis matrix:
[1 2 0]
[0 0 1]

Some more tests with coercion_reversed = True:

sage: from sage.categories.pushout import ConstructionFunctor
sage: class EvenPolynomialRing(type(QQ['x'])):
....: def __init__(self, base, var):
....: super().__init__(base, var)
....: self.register_embedding(base[var])
....: def __repr__(self):
....: return "Even Power " + super().__repr__()
....: def construction(self):
....: return EvenPolynomialFunctor(), self.base()[self.variable_name()]
....: def _coerce_map_from_(self, R):
....: return self.base().has_coerce_map_from(R)
sage: class EvenPolynomialFunctor(ConstructionFunctor):
....: rank = 10
....: coercion_reversed = True
....: def __init__(self):
....: ConstructionFunctor.__init__(self, Rings(), Rings())
....: def _apply_functor(self, R):
....: return EvenPolynomialRing(R.base(), R.variable_name())

(continues on next page)
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sage: pushout(EvenPolynomialRing(QQ, 'x'), ZZ)
Even Power Univariate Polynomial Ring in x over Rational Field
sage: pushout(EvenPolynomialRing(QQ, 'x'), QQ)
Even Power Univariate Polynomial Ring in x over Rational Field
sage: pushout(EvenPolynomialRing(QQ, 'x'), RR)
Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of precision

sage: pushout(EvenPolynomialRing(QQ, 'x'), ZZ['x'])
Univariate Polynomial Ring in x over Rational Field
sage: pushout(EvenPolynomialRing(QQ, 'x'), QQ['x'])
Univariate Polynomial Ring in x over Rational Field
sage: pushout(EvenPolynomialRing(QQ, 'x'), RR['x'])
Univariate Polynomial Ring in x over Real Field with 53 bits of precision

sage: pushout(EvenPolynomialRing(QQ, 'x'), EvenPolynomialRing(QQ, 'x'))
Even Power Univariate Polynomial Ring in x over Rational Field
sage: pushout(EvenPolynomialRing(QQ, 'x'), EvenPolynomialRing(RR, 'x'))
Even Power Univariate Polynomial Ring in x over Real Field with 53 bits of precision

sage: pushout(EvenPolynomialRing(QQ, 'x')^2, RR^2)
Ambient free module of rank 2 over the principal ideal domain Even Power Univariate␣
→˓Polynomial Ring in x over Real Field with 53 bits of precision
sage: pushout(EvenPolynomialRing(QQ, 'x')^2, RR['x']^2)
Ambient free module of rank 2 over the principal ideal domain Univariate Polynomial␣
→˓Ring in x over Real Field with 53 bits of precision

Some more tests related to univariate/multivariate constructions. We consider a generalization of polynomial
rings, where in addition to the coefficient ring 𝐶 we also specify an additive monoid 𝐸 for the exponents of the
indeterminate. In particular, the elements of such a parent are given by

𝐼∑︁
𝑖=0

𝑐𝑖𝑋
𝑒𝑖

with 𝑐𝑖 ∈ 𝐶 and 𝑒𝑖 ∈ 𝐸. We define

sage: class GPolynomialRing(Parent):
....: def __init__(self, coefficients, var, exponents):
....: self.coefficients = coefficients
....: self.var = var
....: self.exponents = exponents
....: super().__init__(category=Rings())
....: def _repr_(self):
....: return 'Generalized Polynomial Ring in %s^(%s) over %s' % (
....: self.var, self.exponents, self.coefficients)
....: def construction(self):
....: return GPolynomialFunctor(self.var, self.exponents), self.coefficients
....: def _coerce_map_from_(self, R):
....: return self.coefficients.has_coerce_map_from(R)

and

sage: class GPolynomialFunctor(ConstructionFunctor):
....: rank = 10

(continues on next page)
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....: def __init__(self, var, exponents):

....: self.var = var

....: self.exponents = exponents

....: ConstructionFunctor.__init__(self, Rings(), Rings())

....: def _repr_(self):

....: return 'GPoly[%s^(%s)]' % (self.var, self.exponents)

....: def _apply_functor(self, coefficients):

....: return GPolynomialRing(coefficients, self.var, self.exponents)

....: def merge(self, other):

....: if isinstance(other, GPolynomialFunctor) and self.var == other.var:

....: exponents = pushout(self.exponents, other.exponents)

....: return GPolynomialFunctor(self.var, exponents)

We can construct a parent now in two different ways:

sage: GPolynomialRing(QQ, 'X', ZZ)
Generalized Polynomial Ring in X^(Integer Ring) over Rational Field
sage: GP_ZZ = GPolynomialFunctor('X', ZZ); GP_ZZ
GPoly[X^(Integer Ring)]
sage: GP_ZZ(QQ)
Generalized Polynomial Ring in X^(Integer Ring) over Rational Field

Since the construction

sage: GP_ZZ(QQ).construction()
(GPoly[X^(Integer Ring)], Rational Field)

uses the coefficient ring, we have the usual coercion with respect to this parameter:

sage: pushout(GP_ZZ(ZZ), GP_ZZ(QQ))
Generalized Polynomial Ring in X^(Integer Ring) over Rational Field
sage: pushout(GP_ZZ(ZZ['t']), GP_ZZ(QQ))
Generalized Polynomial Ring in X^(Integer Ring) over Univariate Polynomial Ring in␣
→˓t over Rational Field
sage: pushout(GP_ZZ(ZZ['a,b']), GP_ZZ(ZZ['b,c']))
Generalized Polynomial Ring in X^(Integer Ring)
over Multivariate Polynomial Ring in a, b, c over Integer Ring

sage: pushout(GP_ZZ(ZZ['a,b']), GP_ZZ(QQ['b,c']))
Generalized Polynomial Ring in X^(Integer Ring)
over Multivariate Polynomial Ring in a, b, c over Rational Field

sage: pushout(GP_ZZ(ZZ['a,b']), GP_ZZ(ZZ['c,d']))
Traceback (most recent call last):
...
CoercionException: ('Ambiguous Base Extension', ...)

sage: GP_QQ = GPolynomialFunctor('X', QQ)
sage: pushout(GP_ZZ(ZZ), GP_QQ(ZZ))
Generalized Polynomial Ring in X^(Rational Field) over Integer Ring
sage: pushout(GP_QQ(ZZ), GP_ZZ(ZZ))
Generalized Polynomial Ring in X^(Rational Field) over Integer Ring
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sage: GP_ZZt = GPolynomialFunctor('X', ZZ['t'])
sage: pushout(GP_ZZt(ZZ), GP_QQ(ZZ))
Generalized Polynomial Ring in X^(Univariate Polynomial Ring in t
over Rational Field) over Integer Ring

sage: pushout(GP_ZZ(ZZ), GP_QQ(QQ))
Generalized Polynomial Ring in X^(Rational Field) over Rational Field
sage: pushout(GP_ZZ(QQ), GP_QQ(ZZ))
Generalized Polynomial Ring in X^(Rational Field) over Rational Field
sage: pushout(GP_ZZt(QQ), GP_QQ(ZZ))
Generalized Polynomial Ring in X^(Univariate Polynomial Ring in t
over Rational Field) over Rational Field

sage: pushout(GP_ZZt(ZZ), GP_QQ(QQ))
Generalized Polynomial Ring in X^(Univariate Polynomial Ring in t
over Rational Field) over Rational Field

sage: pushout(GP_ZZt(ZZ['a,b']), GP_QQ(ZZ['c,d']))
Traceback (most recent call last):
...
CoercionException: ('Ambiguous Base Extension', ...)
sage: pushout(GP_ZZt(ZZ['a,b']), GP_QQ(ZZ['b,c']))
Generalized Polynomial Ring in X^(Univariate Polynomial Ring in t over Rational␣
→˓Field)
over Multivariate Polynomial Ring in a, b, c over Integer Ring

Some tests with Cartesian products:

sage: from sage.sets.cartesian_product import CartesianProduct
sage: A = CartesianProduct((ZZ['x'], QQ['y'], QQ['z']), Sets().CartesianProducts())
sage: B = CartesianProduct((ZZ['x'], ZZ['y'], ZZ['t']['z']), Sets().
→˓CartesianProducts())
sage: A.construction()
(The cartesian_product functorial construction,
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Rational Field,
Univariate Polynomial Ring in z over Rational Field))

sage: pushout(A, B)
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Rational Field,
Univariate Polynomial Ring in z over Univariate Polynomial Ring in t over␣

→˓Rational Field)
sage: pushout(ZZ, cartesian_product([ZZ, QQ]))
Traceback (most recent call last):
...
CoercionException: 'NoneType' object is not iterable

sage: from sage.categories.pushout import PolynomialFunctor
sage: from sage.sets.cartesian_product import CartesianProduct
sage: class CartesianProductPoly(CartesianProduct):
....: def __init__(self, polynomial_rings):
....: sort = sorted(polynomial_rings, key=lambda P: P.variable_name())
....: super().__init__(sort, Sets().CartesianProducts())

(continues on next page)
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....: def vars(self):

....: return tuple(P.variable_name() for P in self.cartesian_factors())

....: def _pushout_(self, other):

....: if isinstance(other, CartesianProductPoly):

....: s_vars = self.vars()

....: o_vars = other.vars()

....: if s_vars == o_vars:

....: return

....: return pushout(CartesianProductPoly(

....: self.cartesian_factors() +

....: tuple(f for f in other.cartesian_factors()

....: if f.variable_name() not in s_vars)),

....: CartesianProductPoly(

....: other.cartesian_factors() +

....: tuple(f for f in self.cartesian_factors()

....: if f.variable_name() not in o_vars)))

....: C = other.construction()

....: if C is None:

....: return

....: elif isinstance(C[0], PolynomialFunctor):

....: return pushout(self, CartesianProductPoly((other,)))

sage: pushout(CartesianProductPoly((ZZ['x'],)),
....: CartesianProductPoly((ZZ['y'],)))
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Integer Ring)

sage: pushout(CartesianProductPoly((ZZ['x'], ZZ['y'])),
....: CartesianProductPoly((ZZ['x'], ZZ['z'])))
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Integer Ring,
Univariate Polynomial Ring in z over Integer Ring)

sage: pushout(CartesianProductPoly((QQ['a,b']['x'], QQ['y'])), #␣
→˓optional - sage.symbolic
....: CartesianProductPoly((ZZ['b,c']['x'], SR['z'])))
The Cartesian product of
(Univariate Polynomial Ring in x over

Multivariate Polynomial Ring in a, b, c over Rational Field,
Univariate Polynomial Ring in y over Rational Field,
Univariate Polynomial Ring in z over Symbolic Ring)

sage: pushout(CartesianProductPoly((ZZ['x'],)), ZZ['y'])
The Cartesian product of
(Univariate Polynomial Ring in x over Integer Ring,
Univariate Polynomial Ring in y over Integer Ring)

sage: pushout(QQ['b,c']['y'], CartesianProductPoly((ZZ['a,b']['x'],)))
The Cartesian product of
(Univariate Polynomial Ring in x over

Multivariate Polynomial Ring in a, b over Integer Ring,
Univariate Polynomial Ring in y over
Multivariate Polynomial Ring in b, c over Rational Field)
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sage: pushout(CartesianProductPoly((ZZ['x'],)), ZZ)
Traceback (most recent call last):
...
CoercionException: No common base ("join") found for
The cartesian_product functorial construction(...) and None(Integer Ring):
(Multivariate) functors are incompatible.

AUTHORS:

• Robert Bradshaw

• Peter Bruin

• Simon King

• Daniel Krenn

• David Roe

sage.categories.pushout.pushout_lattice(R, S)
Given a pair of objects 𝑅 and 𝑆, try to construct a reasonable object 𝑌 and return maps such that canonically
𝑅← 𝑌 → 𝑆.

ALGORITHM:

This is based on the model that arose from much discussion at Sage Days 4. Going up the tower of constructions
of 𝑅 and 𝑆 (e.g. the reals come from the rationals come from the integers), try to find a common parent, and
then try to fill in a lattice with these two towers as sides with the top as the common ancestor and the bottom will
be the desired ring.

See the code for a specific worked-out example.

EXAMPLES:

sage: from sage.categories.pushout import pushout_lattice
sage: A, B = pushout_lattice(Qp(7), Frac(ZZ['x']))
sage: A.codomain()
Fraction Field of Univariate Polynomial Ring in x over 7-adic Field with capped␣
→˓relative precision 20
sage: A.codomain() is B.codomain()
True
sage: A, B = pushout_lattice(ZZ, MatrixSpace(ZZ[['x']], 3, 3))
sage: B
Identity endomorphism of Full MatrixSpace of 3 by 3 dense matrices over Power␣
→˓Series Ring in x over Integer Ring

AUTHOR:

• Robert Bradshaw

sage.categories.pushout.type_to_parent(P)
An auxiliary function that is used in pushout().

INPUT:

A type

OUTPUT:

A Sage parent structure corresponding to the given type
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CHAPTER

FOUR

INDIVIDUAL CATEGORIES

4.1 Group, ring, etc. actions on objects

The terminology and notation used is suggestive of groups acting on sets, but this framework can be used for modules,
algebras, etc.

A group action 𝐺× 𝑆 → 𝑆 is a functor from 𝐺 to Sets.

Warning: An Action object only keeps a weak reference to the underlying set which is acted upon. This decision
was made in trac ticket #715 in order to allow garbage collection within the coercion framework (this is where
actions are mainly used) and avoid memory leaks.

sage: from sage.categories.action import Action
sage: class P: pass
sage: A = Action(P(),P())
sage: import gc
sage: _ = gc.collect()
sage: A
<repr(<sage.categories.action.Action at 0x...>) failed: RuntimeError: This action␣
→˓acted on a set that became garbage collected>

To avoid garbage collection of the underlying set, it is sufficient to create a strong reference to it before the action
is created.
sage: _ = gc.collect()
sage: from sage.categories.action import Action
sage: class P: pass
sage: q = P()
sage: A = Action(P(),q)
sage: gc.collect()
0
sage: A
Left action by <__main__.P ... at ...> on <__main__.P ... at ...>

AUTHOR:

• Robert Bradshaw: initial version

class sage.categories.action.Action
Bases: sage.categories.functor.Functor

The action of G on S.
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INPUT:

• G – a parent or Python type

• S – a parent or Python type

• is_left – (boolean, default: True) whether elements of G are on the left

• op – (default: None) operation. This is not used by Action itself, but other classes may use it

G

act(g, x)
This is a consistent interface for acting on x by g, regardless of whether it’s a left or right action.

If needed, g and x are converted to the correct parent.

EXAMPLES:

sage: R.<x> = ZZ []
sage: from sage.structure.coerce_actions import IntegerMulAction
sage: A = IntegerMulAction(ZZ, R, True) # Left action
sage: A.act(5, x)
5*x
sage: A.act(int(5), x)
5*x
sage: A = IntegerMulAction(ZZ, R, False) # Right action
sage: A.act(5, x)
5*x
sage: A.act(int(5), x)
5*x

actor()

codomain()

domain()

is_left()

left_domain()

op

operation()

right_domain()

class sage.categories.action.ActionEndomorphism
Bases: sage.categories.morphism.Morphism

The endomorphism defined by the action of one element.

EXAMPLES:

sage: A = ZZ['x'].get_action(QQ, self_on_left=False, op=operator.mul)
sage: A
Left scalar multiplication by Rational Field on Univariate Polynomial
Ring in x over Integer Ring
sage: A(1/2)
Action of 1/2 on Univariate Polynomial Ring in x over Integer Ring
under Left scalar multiplication by Rational Field on Univariate
Polynomial Ring in x over Integer Ring.
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class sage.categories.action.InverseAction
Bases: sage.categories.action.Action

An action that acts as the inverse of the given action.

EXAMPLES:

sage: V = QQ^3
sage: v = V((1, 2, 3))
sage: cm = get_coercion_model()

sage: a = cm.get_action(V, QQ, operator.mul)
sage: a
Right scalar multiplication by Rational Field on Vector space of dimension 3 over␣
→˓Rational Field
sage: ~a
Right inverse action by Rational Field on Vector space of dimension 3 over Rational␣
→˓Field
sage: (~a)(v, 1/3)
(3, 6, 9)

sage: b = cm.get_action(QQ, V, operator.mul)
sage: b
Left scalar multiplication by Rational Field on Vector space of dimension 3 over␣
→˓Rational Field
sage: ~b
Left inverse action by Rational Field on Vector space of dimension 3 over Rational␣
→˓Field
sage: (~b)(1/3, v)
(3, 6, 9)

sage: c = cm.get_action(ZZ, list, operator.mul)
sage: c
Left action by Integer Ring on <... 'list'>
sage: ~c
Traceback (most recent call last):
...
TypeError: no inverse defined for Left action by Integer Ring on <... 'list'>

codomain()

class sage.categories.action.PrecomposedAction
Bases: sage.categories.action.Action

A precomposed action first applies given maps, and then applying an action to the return values of the maps.

EXAMPLES:

We demonstrate that an example discussed on trac ticket #14711 did not become a problem:

sage: E = ModularSymbols(11).2
sage: s = E.modular_symbol_rep()
sage: del E,s
sage: import gc
sage: _ = gc.collect()
sage: E = ModularSymbols(11).2
sage: v = E.manin_symbol_rep()

(continues on next page)
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sage: c,x = v[0]
sage: y = x.modular_symbol_rep()
sage: coercion_model.get_action(QQ, parent(y), op=operator.mul)
Left scalar multiplication by Rational Field on Abelian Group of all Formal Finite␣
→˓Sums over Rational Field
with precomposition on right by Coercion map:
From: Abelian Group of all Formal Finite Sums over Integer Ring
To: Abelian Group of all Formal Finite Sums over Rational Field

codomain()

domain()

left_precomposition
The left map to precompose with, or None if there is no left precomposition map.

right_precomposition
The right map to precompose with, or None if there is no right precomposition map.

4.2 Additive groups

class sage.categories.additive_groups.AdditiveGroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of additive groups.

An additive group is a set with an internal binary operation + which is associative, admits a zero, and where
every element can be negated.

EXAMPLES:

sage: from sage.categories.additive_groups import AdditiveGroups
sage: from sage.categories.additive_monoids import AdditiveMonoids
sage: AdditiveGroups()
Category of additive groups
sage: AdditiveGroups().super_categories()
[Category of additive inverse additive unital additive magmas,
Category of additive monoids]
sage: AdditiveGroups().all_super_categories()
[Category of additive groups,
Category of additive inverse additive unital additive magmas,
Category of additive monoids,
Category of additive unital additive magmas,
Category of additive semigroups,
Category of additive magmas,
Category of sets,
Category of sets with partial maps,
Category of objects]

sage: AdditiveGroups().axioms()
frozenset({'AdditiveAssociative', 'AdditiveInverse', 'AdditiveUnital'})
sage: AdditiveGroups() is AdditiveMonoids().AdditiveInverse()
True
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AdditiveCommutative
alias of sage.categories.commutative_additive_groups.CommutativeAdditiveGroups

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
Bases: object

group()
Return the underlying group of the group algebra.

EXAMPLES:

sage: GroupAlgebras(QQ).example(GL(3, GF(11))).group()
General Linear Group of degree 3 over Finite Field of size 11
sage: SymmetricGroup(10).algebra(QQ).group()
Symmetric group of order 10! as a permutation group

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
Bases: object

extra_super_categories()
Implement Maschke’s theorem.

In characteristic 0 all finite group algebras are semisimple.

EXAMPLES:

sage: FiniteGroups().Algebras(QQ).is_subcategory(Algebras(QQ).
→˓Semisimple())
True
sage: FiniteGroups().Algebras(FiniteField(7)).is_
→˓subcategory(Algebras(FiniteField(7)).Semisimple())
False
sage: FiniteGroups().Algebras(ZZ).is_subcategory(Algebras(ZZ).
→˓Semisimple())
False
sage: FiniteGroups().Algebras(Fields()).is_
→˓subcategory(Algebras(Fields()).Semisimple())
False

sage: Cat = CommutativeAdditiveGroups().Finite()
sage: Cat.Algebras(QQ).is_subcategory(Algebras(QQ).Semisimple())
True
sage: Cat.Algebras(GF(7)).is_subcategory(Algebras(GF(7)).Semisimple())
False
sage: Cat.Algebras(ZZ).is_subcategory(Algebras(ZZ).Semisimple())
False
sage: Cat.Algebras(Fields()).is_subcategory(Algebras(Fields()).
→˓Semisimple())
False
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4.3 Additive magmas

class sage.categories.additive_magmas.AdditiveMagmas(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of additive magmas.

An additive magma is a set endowed with a binary operation +.

EXAMPLES:

sage: AdditiveMagmas()
Category of additive magmas
sage: AdditiveMagmas().super_categories()
[Category of sets]
sage: AdditiveMagmas().all_super_categories()
[Category of additive magmas, Category of sets, Category of sets with partial maps,␣
→˓Category of objects]

The following axioms are defined by this category:

sage: AdditiveMagmas().AdditiveAssociative()
Category of additive semigroups
sage: AdditiveMagmas().AdditiveUnital()
Category of additive unital additive magmas
sage: AdditiveMagmas().AdditiveCommutative()
Category of additive commutative additive magmas
sage: AdditiveMagmas().AdditiveUnital().AdditiveInverse()
Category of additive inverse additive unital additive magmas
sage: AdditiveMagmas().AdditiveAssociative().AdditiveCommutative()
Category of commutative additive semigroups
sage: AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().AdditiveUnital()
Category of commutative additive monoids
sage: AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().AdditiveUnital().
→˓AdditiveInverse()
Category of commutative additive groups

AdditiveAssociative
alias of sage.categories.additive_semigroups.AdditiveSemigroups

class AdditiveCommutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

extra_super_categories()
Implement the fact that the algebra of a commutative additive magmas is commutative.

EXAMPLES:

sage: AdditiveMagmas().AdditiveCommutative().Algebras(QQ).extra_super_
→˓categories()
[Category of commutative magmas]

sage: AdditiveMagmas().AdditiveCommutative().Algebras(QQ).super_
→˓categories()

(continues on next page)
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[Category of additive magma algebras over Rational Field,
Category of commutative magmas]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a Cartesian product of commutative additive magmas is a commutative
additive magma.

EXAMPLES:

sage: C = AdditiveMagmas().AdditiveCommutative().CartesianProducts()
sage: C.extra_super_categories()
[Category of additive commutative additive magmas]
sage: C.axioms()
frozenset({'AdditiveCommutative'})

class AdditiveUnital(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class AdditiveInverse(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ElementMethods
Bases: object

extra_super_categories()
Implement the fact that a Cartesian product of additive magmas with inverses is an additive
magma with inverse.

EXAMPLES:

sage: C = AdditiveMagmas().AdditiveUnital().AdditiveInverse().
→˓CartesianProducts()
sage: C.extra_super_categories()
[Category of additive inverse additive unital additive magmas]
sage: sorted(C.axioms())
['AdditiveInverse', 'AdditiveUnital']

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
Bases: object

one_basis()
Return the zero of this additive magma, which index the one of this algebra, as per
AlgebrasWithBasis.ParentMethods.one_basis().

EXAMPLES:

sage: S = CommutativeAdditiveMonoids().example(); S
An example of a commutative monoid: the free commutative monoid␣
→˓generated by ('a', 'b', 'c', 'd')

(continues on next page)
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sage: A = S.algebra(ZZ)
sage: A.one_basis()
0
sage: A.one()
B[0]
sage: A(3)
3*B[0]

extra_super_categories()
EXAMPLES:

sage: C = AdditiveMagmas().AdditiveUnital().Algebras(QQ)
sage: C.extra_super_categories()
[Category of unital magmas]

sage: C.super_categories()
[Category of unital algebras with basis over Rational Field, Category of␣
→˓additive magma algebras over Rational Field]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ParentMethods
Bases: object

zero()
Returns the zero of this group

EXAMPLES:

sage: GF(8,'x').cartesian_product(GF(5)).zero()
(0, 0)

extra_super_categories()
Implement the fact that a Cartesian product of unital additive magmas is a unital additive magma.

EXAMPLES:

sage: C = AdditiveMagmas().AdditiveUnital().CartesianProducts()
sage: C.extra_super_categories()
[Category of additive unital additive magmas]
sage: C.axioms()
frozenset({'AdditiveUnital'})

class ElementMethods
Bases: object

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

class ParentMethods
Bases: object

zero()
EXAMPLES:
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sage: R = QQ['x']
sage: H = Hom(ZZ, R, AdditiveMagmas().AdditiveUnital())
sage: f = H.zero()
sage: f
Generic morphism:
From: Integer Ring
To: Univariate Polynomial Ring in x over Rational Field

sage: f(3)
0
sage: f(3) is R.zero()
True

extra_super_categories()
Implement the fact that a homset between two unital additive magmas is a unital additive magma.

EXAMPLES:

sage: AdditiveMagmas().AdditiveUnital().Homsets().extra_super_
→˓categories()
[Category of additive unital additive magmas]
sage: AdditiveMagmas().AdditiveUnital().Homsets().super_categories()
[Category of additive unital additive magmas, Category of homsets]

class ParentMethods
Bases: object

is_empty()
Return whether this set is empty.

Since this set is an additive magma it has a zero element and hence is not empty. This method thus
always returns False.

EXAMPLES:

sage: A = AdditiveAbelianGroup([3,3])
sage: A in AdditiveMagmas()
True
sage: A.is_empty()
False

sage: B = CommutativeAdditiveMonoids().example()
sage: B.is_empty()
False

zero()
Return the zero of this additive magma, that is the unique neutral element for +.

The default implementation is to coerce 0 into self.

It is recommended to override this method because the coercion from the integers:
• is not always meaningful (except for 0), and
• often uses self.zero() otherwise.
EXAMPLES:

sage: S = CommutativeAdditiveMonoids().example()
sage: S.zero()
0
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class SubcategoryMethods
Bases: object

AdditiveInverse()
Return the full subcategory of the additive inverse objects of self.

An inverse additive magma is a unital additive magma such that every element admits both
an additive inverse on the left and on the right. Such an additive magma is also called an additive
loop.

See also:

Wikipedia article Inverse_element, Wikipedia article Quasigroup

EXAMPLES:

sage: AdditiveMagmas().AdditiveUnital().AdditiveInverse()
Category of additive inverse additive unital additive magmas
sage: from sage.categories.additive_monoids import AdditiveMonoids
sage: AdditiveMonoids().AdditiveInverse()
Category of additive groups

class WithRealizations(category, *args)
Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
Bases: object

zero()
Return the zero of this unital additive magma.

This default implementation returns the zero of the realization of self given by
a_realization().

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.zero.__module__
'sage.categories.additive_magmas'
sage: A.zero()
0

additional_structure()
Return whether self is a structure category.

See also:

Category.additional_structure()

The category of unital additive magmas defines the zero as additional structure, and this zero shall be
preserved by morphisms.

EXAMPLES:

sage: AdditiveMagmas().AdditiveUnital().additional_structure()
Category of additive unital additive magmas

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory
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class ParentMethods
Bases: object

algebra_generators()
The generators of this algebra, as per MagmaticAlgebras.ParentMethods.
algebra_generators().

They correspond to the generators of the additive semigroup.

EXAMPLES:

sage: S = CommutativeAdditiveSemigroups().example(); S
An example of a commutative semigroup: the free commutative semigroup␣
→˓generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
sage: A.algebra_generators()
Finite family {0: B[a], 1: B[b], 2: B[c], 3: B[d]}

Todo: This doctest does not actually test this method, but rather the method of the same name
for AdditiveSemigroups. Find a better doctest!

product_on_basis(g1, g2)
Product, on basis elements, as per MagmaticAlgebras.WithBasis.ParentMethods.
product_on_basis().

The product of two basis elements is induced by the addition of the corresponding elements of the
group.

EXAMPLES:

sage: S = CommutativeAdditiveSemigroups().example(); S
An example of a commutative semigroup: the free commutative semigroup␣
→˓generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
sage: a,b,c,d = A.algebra_generators()
sage: a * d * b
B[a + b + d]

Todo: This doctest does not actually test this method, but rather the method of the same name
for AdditiveSemigroups. Find a better doctest!

extra_super_categories()
EXAMPLES:

sage: AdditiveMagmas().Algebras(QQ).extra_super_categories()
[Category of magmatic algebras with basis over Rational Field]

sage: AdditiveMagmas().Algebras(QQ).super_categories()
[Category of magmatic algebras with basis over Rational Field, Category of␣
→˓set algebras over Rational Field]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory
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class ElementMethods
Bases: object

extra_super_categories()
Implement the fact that a Cartesian product of additive magmas is an additive magma.

EXAMPLES:

sage: C = AdditiveMagmas().CartesianProducts()
sage: C.extra_super_categories()
[Category of additive magmas]
sage: C.super_categories()
[Category of additive magmas, Category of Cartesian products of sets]
sage: C.axioms()
frozenset()

class ElementMethods
Bases: object

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

extra_super_categories()
Implement the fact that a homset between two magmas is a magma.

EXAMPLES:

sage: AdditiveMagmas().Homsets().extra_super_categories()
[Category of additive magmas]
sage: AdditiveMagmas().Homsets().super_categories()
[Category of additive magmas, Category of homsets]

class ParentMethods
Bases: object

addition_table(names='letters', elements=None)
Return a table describing the addition operation.

Note: The order of the elements in the row and column headings is equal to the order given by
the table’s column_keys() method. The association can also be retrieved with the translation()
method.

INPUT:
• names – the type of names used:

– 'letters' - lowercase ASCII letters are used for a base 26 representation of the elements’
positions in the list given by column_keys(), padded to a common width with leading ‘a’s.

– 'digits' - base 10 representation of the elements’ positions in the list given by
column_keys(), padded to a common width with leading zeros.

– 'elements' - the string representations of the elements themselves.
– a list - a list of strings, where the length of the list equals the number of elements.

• elements – (default: None) A list of elements of the additive magma, in forms that can be coerced
into the structure, eg. their string representations. This may be used to impose an alternate ordering
on the elements, perhaps when this is used in the context of a particular structure. The default is
to use whatever ordering the S.list method returns. Or the elements can be a subset which is
closed under the operation. In particular, this can be used when the base set is infinite.

OUTPUT:
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The addition table as an object of the class OperationTable which defines several methods for ma-
nipulating and displaying the table. See the documentation there for full details to supplement the
documentation here.

EXAMPLES:

All that is required is that an algebraic structure has an addition defined.The default is to represent
elements as lowercase ASCII letters.

sage: R = IntegerModRing(5)
sage: R.addition_table()
+ a b c d e
+----------
a| a b c d e
b| b c d e a
c| c d e a b
d| d e a b c
e| e a b c d

The names argument allows displaying the elements in different ways. Requesting elements will use
the representation of the elements of the set. Requesting digitswill include leading zeros as padding.

sage: R = IntegerModRing(11)
sage: P = R.addition_table(names='elements')
sage: P
+ 0 1 2 3 4 5 6 7 8 9 10
+---------------------------------
0| 0 1 2 3 4 5 6 7 8 9 10
1| 1 2 3 4 5 6 7 8 9 10 0
2| 2 3 4 5 6 7 8 9 10 0 1
3| 3 4 5 6 7 8 9 10 0 1 2
4| 4 5 6 7 8 9 10 0 1 2 3
5| 5 6 7 8 9 10 0 1 2 3 4
6| 6 7 8 9 10 0 1 2 3 4 5
7| 7 8 9 10 0 1 2 3 4 5 6
8| 8 9 10 0 1 2 3 4 5 6 7
9| 9 10 0 1 2 3 4 5 6 7 8
10| 10 0 1 2 3 4 5 6 7 8 9

sage: T = R.addition_table(names='digits')
sage: T
+ 00 01 02 03 04 05 06 07 08 09 10
+---------------------------------

00| 00 01 02 03 04 05 06 07 08 09 10
01| 01 02 03 04 05 06 07 08 09 10 00
02| 02 03 04 05 06 07 08 09 10 00 01
03| 03 04 05 06 07 08 09 10 00 01 02
04| 04 05 06 07 08 09 10 00 01 02 03
05| 05 06 07 08 09 10 00 01 02 03 04
06| 06 07 08 09 10 00 01 02 03 04 05
07| 07 08 09 10 00 01 02 03 04 05 06
08| 08 09 10 00 01 02 03 04 05 06 07
09| 09 10 00 01 02 03 04 05 06 07 08
10| 10 00 01 02 03 04 05 06 07 08 09

4.3. Additive magmas 169

../../../../../../html/en/reference/matrices/sage/matrix/operation_table.html#sage.matrix.operation_table.OperationTable


Category Framework, Release 9.7

Specifying the elements in an alternative order can provide more insight into how the operation be-
haves.

sage: S = IntegerModRing(7)
sage: elts = [0, 3, 6, 2, 5, 1, 4]
sage: S.addition_table(elements=elts)
+ a b c d e f g
+--------------
a| a b c d e f g
b| b c d e f g a
c| c d e f g a b
d| d e f g a b c
e| e f g a b c d
f| f g a b c d e
g| g a b c d e f

The elements argument can be used to provide a subset of the elements of the structure. The subset
must be closed under the operation. Elements need only be in a form that can be coerced into the
set. The names argument can also be used to request that the elements be represented with their usual
string representation.

sage: T = IntegerModRing(12)
sage: elts=[0, 3, 6, 9]
sage: T.addition_table(names='elements', elements=elts)
+ 0 3 6 9
+--------
0| 0 3 6 9
3| 3 6 9 0
6| 6 9 0 3
9| 9 0 3 6

The table returned can be manipulated in various ways. See the documentation for OperationTable
for more comprehensive documentation.

sage: R = IntegerModRing(3)
sage: T = R.addition_table()
sage: T.column_keys()
(0, 1, 2)
sage: sorted(T.translation().items())
[('a', 0), ('b', 1), ('c', 2)]
sage: T.change_names(['x', 'y', 'z'])
sage: sorted(T.translation().items())
[('x', 0), ('y', 1), ('z', 2)]
sage: T
+ x y z
+------
x| x y z
y| y z x
z| z x y

summation(x, y)
Return the sum of x and y.

The binary addition operator of this additive magma.

INPUT:
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• x, y – elements of this additive magma
EXAMPLES:

sage: S = CommutativeAdditiveSemigroups().example()
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: S.summation(a, b)
a + b

A parent in AdditiveMagmas() must either implement summation() in the parent class or _add_ in
the element class. By default, the addition method on elements x._add_(y) calls S.summation(x,
y), and reciprocally.

As a bonus effect, S.summation by itself models the binary function from S to S:

sage: bin = S.summation
sage: bin(a,b)
a + b

Here, S.summation is just a bound method. Whenever possible, it is recommended to enrich S.
summation with extra mathematical structure. Lazy attributes can come handy for this.

Todo: Add an example.

summation_from_element_class_add(x, y)
Return the sum of x and y.

The binary addition operator of this additive magma.

INPUT:
• x, y – elements of this additive magma

EXAMPLES:

sage: S = CommutativeAdditiveSemigroups().example()
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: S.summation(a, b)
a + b

A parent in AdditiveMagmas() must either implement summation() in the parent class or _add_ in
the element class. By default, the addition method on elements x._add_(y) calls S.summation(x,
y), and reciprocally.

As a bonus effect, S.summation by itself models the binary function from S to S:

sage: bin = S.summation
sage: bin(a,b)
a + b

Here, S.summation is just a bound method. Whenever possible, it is recommended to enrich S.
summation with extra mathematical structure. Lazy attributes can come handy for this.

Todo: Add an example.

class SubcategoryMethods
Bases: object

4.3. Additive magmas 171



Category Framework, Release 9.7

AdditiveAssociative()
Return the full subcategory of the additive associative objects of self.

An additive magma 𝑀 is associative if, for all 𝑥, 𝑦, 𝑧 ∈𝑀 ,

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧

See also:

Wikipedia article Associative_property

EXAMPLES:

sage: AdditiveMagmas().AdditiveAssociative()
Category of additive semigroups

AdditiveCommutative()
Return the full subcategory of the commutative objects of self.

An additive magma 𝑀 is commutative if, for all 𝑥, 𝑦 ∈𝑀 ,

𝑥 + 𝑦 = 𝑦 + 𝑥

See also:

Wikipedia article Commutative_property

EXAMPLES:

sage: AdditiveMagmas().AdditiveCommutative()
Category of additive commutative additive magmas
sage: AdditiveMagmas().AdditiveAssociative().AdditiveUnital().
→˓AdditiveCommutative()
Category of commutative additive monoids
sage: _ is CommutativeAdditiveMonoids()
True

AdditiveUnital()
Return the subcategory of the unital objects of self.

An additive magma 𝑀 is unital if it admits an element 0, called neutral element, such that for all
𝑥 ∈𝑀 ,

0 + 𝑥 = 𝑥 + 0 = 𝑥

This element is necessarily unique, and should be provided as M.zero().

See also:

Wikipedia article Unital_magma#unital

EXAMPLES:

sage: AdditiveMagmas().AdditiveUnital()
Category of additive unital additive magmas
sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: AdditiveSemigroups().AdditiveUnital()
Category of additive monoids
sage: CommutativeAdditiveMonoids().AdditiveUnital()
Category of commutative additive monoids
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super_categories()
EXAMPLES:

sage: AdditiveMagmas().super_categories()
[Category of sets]

4.4 Additive monoids

class sage.categories.additive_monoids.AdditiveMonoids(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of additive monoids.

An additive monoid is a unital additive semigroup, that is a set endowed with a binary operation + which is
associative and admits a zero (see Wikipedia article Monoid).

EXAMPLES:

sage: from sage.categories.additive_monoids import AdditiveMonoids
sage: C = AdditiveMonoids(); C
Category of additive monoids
sage: C.super_categories()
[Category of additive unital additive magmas, Category of additive semigroups]
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveUnital']
sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: C is AdditiveSemigroups().AdditiveUnital()
True

AdditiveCommutative
alias of sage.categories.commutative_additive_monoids.CommutativeAdditiveMonoids

AdditiveInverse
alias of sage.categories.additive_groups.AdditiveGroups

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

extra_super_categories()
Implement the fact that a homset between two monoids is associative.

EXAMPLES:

sage: from sage.categories.additive_monoids import AdditiveMonoids
sage: AdditiveMonoids().Homsets().extra_super_categories()
[Category of additive semigroups]
sage: AdditiveMonoids().Homsets().super_categories()
[Category of homsets of additive unital additive magmas, Category of␣
→˓additive monoids]

Todo: This could be deduced from AdditiveSemigroups.Homsets.
extra_super_categories(). See comment in Objects.SubcategoryMethods.Homsets().

4.4. Additive monoids 173

https://en.wikipedia.org/wiki/Monoid


Category Framework, Release 9.7

class ParentMethods
Bases: object

sum(args)
Return the sum of the elements in args, as an element of self.

INPUT:
• args – a list (or iterable) of elements of self

EXAMPLES:

sage: S = CommutativeAdditiveMonoids().example()
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: S.sum((a,b,a,c,a,b))
3*a + 2*b + c
sage: S.sum(())
0
sage: S.sum(()).parent() == S
True

4.5 Additive semigroups

class sage.categories.additive_semigroups.AdditiveSemigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of additive semigroups.

An additive semigroup is an associative additive magma, that is a set endowed with an operation + which is
associative.

EXAMPLES:

sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: C = AdditiveSemigroups(); C
Category of additive semigroups
sage: C.super_categories()
[Category of additive magmas]
sage: C.all_super_categories()
[Category of additive semigroups,
Category of additive magmas,
Category of sets,
Category of sets with partial maps,
Category of objects]

sage: C.axioms()
frozenset({'AdditiveAssociative'})
sage: C is AdditiveMagmas().AdditiveAssociative()
True

AdditiveCommutative
alias of sage.categories.commutative_additive_semigroups.
CommutativeAdditiveSemigroups

AdditiveUnital
alias of sage.categories.additive_monoids.AdditiveMonoids
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class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
Bases: object

algebra_generators()
Return the generators of this algebra, as per MagmaticAlgebras.ParentMethods.
algebra_generators().

They correspond to the generators of the additive semigroup.

EXAMPLES:

sage: S = CommutativeAdditiveSemigroups().example(); S
An example of a commutative semigroup: the free commutative semigroup␣
→˓generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
sage: A.algebra_generators()
Finite family {0: B[a], 1: B[b], 2: B[c], 3: B[d]}

product_on_basis(g1, g2)
Product, on basis elements, as per MagmaticAlgebras.WithBasis.ParentMethods.
product_on_basis().

The product of two basis elements is induced by the addition of the corresponding elements of the
group.

EXAMPLES:

sage: S = CommutativeAdditiveSemigroups().example(); S
An example of a commutative semigroup: the free commutative semigroup␣
→˓generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
sage: a,b,c,d = A.algebra_generators()
sage: b * d * c
B[b + c + d]

extra_super_categories()
EXAMPLES:

sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: AdditiveSemigroups().Algebras(QQ).extra_super_categories()
[Category of semigroups]
sage: CommutativeAdditiveSemigroups().Algebras(QQ).super_categories()
[Category of additive semigroup algebras over Rational Field,
Category of additive commutative additive magma algebras over Rational␣
→˓Field]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a Cartesian product of additive semigroups is an additive semigroup.

EXAMPLES:
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sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: C = AdditiveSemigroups().CartesianProducts()
sage: C.extra_super_categories()
[Category of additive semigroups]
sage: C.axioms()
frozenset({'AdditiveAssociative'})

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

extra_super_categories()
Implement the fact that a homset between two semigroups is a semigroup.

EXAMPLES:

sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: AdditiveSemigroups().Homsets().extra_super_categories()
[Category of additive semigroups]
sage: AdditiveSemigroups().Homsets().super_categories()
[Category of homsets of additive magmas, Category of additive semigroups]

class ParentMethods
Bases: object

4.6 Affine Weyl groups

class sage.categories.affine_weyl_groups.AffineWeylGroups(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of affine Weyl groups

Todo: add a description of this category

See also:

• Wikipedia article Affine_weyl_group

• WeylGroups, WeylGroup

EXAMPLES:

sage: C = AffineWeylGroups(); C
Category of affine weyl groups
sage: C.super_categories()
[Category of infinite weyl groups]

sage: C.example()
NotImplemented
sage: W = WeylGroup(["A",4,1]); W
Weyl Group of type ['A', 4, 1] (as a matrix group acting on the root space)
sage: W.category()
Category of irreducible affine weyl groups
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class ElementMethods
Bases: object

affine_grassmannian_to_core()

Bijection between affine Grassmannian elements of type 𝐴(1)
𝑘 and (𝑘 + 1)-cores.

INPUT:
• self – an affine Grassmannian element of some affine Weyl group of type 𝐴(1)

𝑘

Recall that an element 𝑤 of an affine Weyl group is affine Grassmannian if all its all reduced words
end in 0, see is_affine_grassmannian().

OUTPUT:
• a (𝑘 + 1)-core

See also:

affine_grassmannian_to_partition()

EXAMPLES:

sage: W = WeylGroup(['A',2,1])
sage: w = W.from_reduced_word([0,2,1,0])
sage: la = w.affine_grassmannian_to_core(); la
[4, 2]
sage: type(la)
<class 'sage.combinat.core.Cores_length_with_category.element_class'>
sage: la.to_grassmannian() == w
True

sage: w = W.from_reduced_word([0,2,1])
sage: w.affine_grassmannian_to_core()
Traceback (most recent call last):
...
ValueError: this only works on type 'A' affine Grassmannian elements

affine_grassmannian_to_partition()

Bijection between affine Grassmannian elements of type 𝐴(1)
𝑘 and 𝑘-bounded partitions.

INPUT:
• self is affine Grassmannian element of the affine Weyl group of type 𝐴(1)

𝑘 (i.e. all reduced words
end in 0)

OUTPUT:
• 𝑘-bounded partition

See also:

affine_grassmannian_to_core()

EXAMPLES:

sage: k = 2
sage: W = WeylGroup(['A',k,1])
sage: w = W.from_reduced_word([0,2,1,0])
sage: la = w.affine_grassmannian_to_partition(); la
[2, 2]
sage: la.from_kbounded_to_grassmannian(k) == w
True

is_affine_grassmannian()
Test whether self is affine Grassmannian.
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An element of an affine Weyl group is affine Grassmannian if any of the following equivalent properties
holds:

• all reduced words for self end with 0.
• self is the identity, or 0 is its single right descent.
• self is a minimal coset representative for W / cl W.

EXAMPLES:

sage: W = WeylGroup(['A',3,1])
sage: w = W.from_reduced_word([2,1,0])
sage: w.is_affine_grassmannian()
True
sage: w = W.from_reduced_word([2,0])
sage: w.is_affine_grassmannian()
False
sage: W.one().is_affine_grassmannian()
True

class ParentMethods
Bases: object

affine_grassmannian_elements_of_given_length(k)
Return the affine Grassmannian elements of length 𝑘.

This is returned as a finite enumerated set.

EXAMPLES:

sage: W = WeylGroup(['A',3,1])
sage: [x.reduced_word() for x in W.affine_grassmannian_elements_of_given_
→˓length(3)]
[[2, 1, 0], [3, 1, 0], [2, 3, 0]]

See also:

AffineWeylGroups.ElementMethods.is_affine_grassmannian()

special_node()
Return the distinguished special node of the underlying Dynkin diagram.

EXAMPLES:

sage: W = WeylGroup(['A',3,1])
sage: W.special_node()
0

additional_structure()
Return None.

Indeed, the category of affine Weyl groups defines no additional structure: affine Weyl groups are a special
class of Weyl groups.

See also:

Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:
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sage: AffineWeylGroups().additional_structure()

super_categories()
EXAMPLES:

sage: AffineWeylGroups().super_categories()
[Category of infinite weyl groups]

4.7 Algebra ideals

class sage.categories.algebra_ideals.AlgebraIdeals(A)
Bases: sage.categories.category_types.Category_ideal

The category of two-sided ideals in a fixed algebra 𝐴.

EXAMPLES:

sage: AlgebraIdeals(QQ['a'])
Category of algebra ideals in Univariate Polynomial Ring in a over Rational Field

Todo:

• Add support for non commutative rings (this is currently not supported by the subcategory
AlgebraModules).

• Make AlgebraIdeals(R), return CommutativeAlgebraIdeals(R) when R is commutative.

• If useful, implement AlgebraLeftIdeals and AlgebraRightIdeals of which AlgebraIdeals would
be a subcategory.

algebra()
EXAMPLES:

sage: AlgebraIdeals(QQ['x']).algebra()
Univariate Polynomial Ring in x over Rational Field

super_categories()
The category of algebra modules should be a super category of this category.

However, since algebra modules are currently only available over commutative rings, we have to omit it if
our ring is non-commutative.

EXAMPLES:

sage: AlgebraIdeals(QQ['x']).super_categories()
[Category of algebra modules over Univariate Polynomial Ring in x over Rational␣
→˓Field]
sage: C = AlgebraIdeals(FreeAlgebra(QQ,2,'a,b'))
sage: C.super_categories()
[]
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4.8 Algebra modules

class sage.categories.algebra_modules.AlgebraModules(A)
Bases: sage.categories.category_types.Category_module

The category of modules over a fixed algebra 𝐴.

EXAMPLES:

sage: AlgebraModules(QQ['a'])
Category of algebra modules over Univariate Polynomial Ring in a over Rational Field
sage: AlgebraModules(QQ['a']).super_categories()
[Category of modules over Univariate Polynomial Ring in a over Rational Field]

Note: as of now, 𝐴 is required to be commutative, ensuring that the categories of left and right modules are
isomorphic. Feedback and use cases for potential generalizations to the non commutative case are welcome.

algebra()
EXAMPLES:

sage: AlgebraModules(QQ['x']).algebra()
Univariate Polynomial Ring in x over Rational Field

classmethod an_instance()
Returns an instance of this class

EXAMPLES:

sage: AlgebraModules.an_instance()
Category of algebra modules over Univariate Polynomial Ring in x over Rational␣
→˓Field

super_categories()
EXAMPLES:

sage: AlgebraModules(QQ['x']).super_categories()
[Category of modules over Univariate Polynomial Ring in x over Rational Field]

4.9 Algebras

AUTHORS:

• David Kohel & William Stein (2005): initial revision

• Nicolas M. Thiery (2008-2011): rewrote for the category framework

class sage.categories.algebras.Algebras(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of associative and unital algebras over a given base ring.

An associative and unital algebra over a ring 𝑅 is a module over 𝑅 which is itself a ring.
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Warning: Algebras will be eventually be replaced by magmatic_algebras.MagmaticAlgebras for
consistency with e.g. Wikipedia article Algebras which assumes neither associativity nor the existence of a
unit (see trac ticket #15043).

Todo: Should 𝑅 be a commutative ring?

EXAMPLES:

sage: Algebras(ZZ)
Category of algebras over Integer Ring
sage: sorted(Algebras(ZZ).super_categories(), key=str)
[Category of associative algebras over Integer Ring,
Category of rings,
Category of unital algebras over Integer Ring]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of algebras constructed as Cartesian products of algebras

This construction gives the direct product of algebras. See discussion on:

• http://groups.google.fr/group/sage-devel/browse_thread/thread/35a72b1d0a2fc77a/
348f42ae77a66d16#348f42ae77a66d16

• Wikipedia article Direct_product

extra_super_categories()
A Cartesian product of algebras is endowed with a natural algebra structure.

EXAMPLES:

sage: C = Algebras(QQ).CartesianProducts()
sage: C.extra_super_categories()
[Category of algebras over Rational Field]
sage: sorted(C.super_categories(), key=str)
[Category of Cartesian products of distributive magmas and additive magmas,
Category of Cartesian products of monoids,
Category of Cartesian products of vector spaces over Rational Field,
Category of algebras over Rational Field]

Commutative
alias of sage.categories.commutative_algebras.CommutativeAlgebras

class DualObjects(category, *args)
Bases: sage.categories.dual.DualObjectsCategory

extra_super_categories()
Return the dual category

EXAMPLES:

The category of algebras over the Rational Field is dual to the category of coalgebras over the same
field:
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sage: C = Algebras(QQ)
sage: C.dual()
Category of duals of algebras over Rational Field
sage: C.dual().extra_super_categories()
[Category of coalgebras over Rational Field]

Warning: This is only correct in certain cases (finite dimension, . . . ). See trac ticket #15647.

class ElementMethods
Bases: object

Filtered
alias of sage.categories.filtered_algebras.FilteredAlgebras

Graded
alias of sage.categories.graded_algebras.GradedAlgebras

class Quotients(category, *args)
Bases: sage.categories.quotients.QuotientsCategory

class ParentMethods
Bases: object

algebra_generators()
Return algebra generators for self.

This implementation retracts the algebra generators from the ambient algebra.

EXAMPLES:

sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: S = A.semisimple_quotient()
sage: S.algebra_generators()
Finite family {'x': B['x'], 'y': B['y'], 'a': 0, 'b': 0}

Todo: this could possibly remove the elements that retract to zero.

Semisimple
alias of sage.categories.semisimple_algebras.SemisimpleAlgebras

class SubcategoryMethods
Bases: object

Semisimple()
Return the subcategory of semisimple objects of self.

Note: This mimics the syntax of axioms for a smooth transition if Semisimple becomes one.

EXAMPLES:
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sage: Algebras(QQ).Semisimple()
Category of semisimple algebras over Rational Field
sage: Algebras(QQ).WithBasis().FiniteDimensional().Semisimple()
Category of finite dimensional semisimple algebras with basis over Rational␣
→˓Field

Supercommutative()
Return the full subcategory of the supercommutative objects of self.

This is shorthand for creating the corresponding super category.

EXAMPLES:

sage: Algebras(ZZ).Supercommutative()
Category of supercommutative algebras over Integer Ring
sage: Algebras(ZZ).WithBasis().Supercommutative()
Category of supercommutative super algebras with basis over Integer Ring

sage: Cat = Algebras(ZZ).Supercommutative()
sage: Cat is Algebras(ZZ).Super().Supercommutative()
True

Super
alias of sage.categories.super_algebras.SuperAlgebras

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

class ElementMethods
Bases: object

class ParentMethods
Bases: object

extra_super_categories()
EXAMPLES:

sage: Algebras(QQ).TensorProducts().extra_super_categories()
[Category of algebras over Rational Field]
sage: Algebras(QQ).TensorProducts().super_categories()
[Category of algebras over Rational Field,
Category of tensor products of vector spaces over Rational Field]

Meaning: a tensor product of algebras is an algebra

WithBasis
alias of sage.categories.algebras_with_basis.AlgebrasWithBasis

4.9. Algebras 183



Category Framework, Release 9.7

4.10 Algebras With Basis

class sage.categories.algebras_with_basis.AlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of algebras with a distinguished basis.

EXAMPLES:

sage: C = AlgebrasWithBasis(QQ); C
Category of algebras with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of algebras over Rational Field,
Category of unital algebras with basis over Rational Field]

We construct a typical parent in this category, and do some computations with it:

sage: A = C.example(); A
An example of an algebra with basis: the free algebra on the generators ('a', 'b',
→˓'c') over Rational Field

sage: A.category()
Category of algebras with basis over Rational Field

sage: A.one_basis()
word:
sage: A.one()
B[word: ]

sage: A.base_ring()
Rational Field
sage: A.basis().keys()
Finite words over {'a', 'b', 'c'}

sage: (a,b,c) = A.algebra_generators()
sage: a^3, b^2
(B[word: aaa], B[word: bb])
sage: a*c*b
B[word: acb]

sage: A.product
<bound method MagmaticAlgebras.WithBasis.ParentMethods._product_from_product_on_
→˓basis_multiply of
An example of an algebra with basis: the free algebra on the generators ('a', 'b',
→˓'c') over Rational Field>
sage: A.product(a*b,b)
B[word: abb]

sage: TestSuite(A).run(verbose=True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass

(continues on next page)
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(continued from previous page)

running ._test_characteristic() . . . pass
running ._test_construction() . . . pass
running ._test_distributivity() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_one() . . . pass
running ._test_pickling() . . . pass
running ._test_prod() . . . pass
running ._test_some_elements() . . . pass
running ._test_zero() . . . pass
sage: A.__class__
<class 'sage.categories.examples.algebras_with_basis.FreeAlgebra_with_category'>
sage: A.element_class
<class 'sage.categories.examples.algebras_with_basis.FreeAlgebra_with_category.
→˓element_class'>

Please see the source code of 𝐴 (with A??) for how to implement other algebras with basis.

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of algebras with basis, constructed as Cartesian products of algebras with basis.

Note: this construction give the direct products of algebras with basis. See comment in Algebras.
CartesianProducts

class ParentMethods
Bases: object

one()

one_from_cartesian_product_of_one_basis()
Returns the one of this Cartesian product of algebras, as per Monoids.ParentMethods.one

It is constructed as the Cartesian product of the ones of the summands, using their one_basis()
methods.

This implementation does not require multiplication by scalars nor calling cartesian_product. This
might help keeping things as lazy as possible upon initialization.

EXAMPLES:
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sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators (
→˓'a', 'b', 'c') over Rational Field
sage: A.one_basis()
word:

sage: B = cartesian_product((A, A, A))
sage: B.one_from_cartesian_product_of_one_basis()
B[(0, word: )] + B[(1, word: )] + B[(2, word: )]
sage: B.one()
B[(0, word: )] + B[(1, word: )] + B[(2, word: )]

sage: cartesian_product([SymmetricGroupAlgebra(QQ, 3),␣
→˓SymmetricGroupAlgebra(QQ, 4)]).one()
B[(0, [1, 2, 3])] + B[(1, [1, 2, 3, 4])]

extra_super_categories()
A Cartesian product of algebras with basis is endowed with a natural algebra with basis structure.

EXAMPLES:

sage: AlgebrasWithBasis(QQ).CartesianProducts().extra_super_categories()
[Category of algebras with basis over Rational Field]
sage: AlgebrasWithBasis(QQ).CartesianProducts().super_categories()
[Category of algebras with basis over Rational Field,
Category of Cartesian products of algebras over Rational Field,
Category of Cartesian products of vector spaces with basis over Rational␣
→˓Field]

class ElementMethods
Bases: object

Filtered
alias of sage.categories.filtered_algebras_with_basis.FilteredAlgebrasWithBasis

FiniteDimensional
alias of sage.categories.finite_dimensional_algebras_with_basis.
FiniteDimensionalAlgebrasWithBasis

Graded
alias of sage.categories.graded_algebras_with_basis.GradedAlgebrasWithBasis

class ParentMethods
Bases: object

hochschild_complex(M)
Return the Hochschild complex of self with coefficients in M.

See also:

HochschildComplex

EXAMPLES:

sage: R.<x> = QQ[]
sage: A = algebras.DifferentialWeyl(R)
sage: H = A.hochschild_complex(A)

(continues on next page)
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(continued from previous page)

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: T = SGA.trivial_representation()
sage: H = SGA.hochschild_complex(T)

one()
Return the multiplicative unit element.

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one()
B[word: ]

Super
alias of sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of algebras with basis constructed by tensor product of algebras with basis

class ElementMethods
Bases: object

Implements operations on elements of tensor products of algebras with basis

class ParentMethods
Bases: object

implements operations on tensor products of algebras with basis

one_basis()
Returns the index of the one of this tensor product of algebras, as per AlgebrasWithBasis.
ParentMethods.one_basis

It is the tuple whose operands are the indices of the ones of the operands, as returned by their
one_basis() methods.

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators (
→˓'a', 'b', 'c') over Rational Field
sage: A.one_basis()
word:
sage: B = tensor((A, A, A))
sage: B.one_basis()
(word: , word: , word: )
sage: B.one()
B[word: ] # B[word: ] # B[word: ]

product_on_basis(t1, t2)
The product of the algebra on the basis, as per AlgebrasWithBasis.ParentMethods.
product_on_basis.

EXAMPLES:
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sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators (
→˓'a', 'b', 'c') over Rational Field
sage: (a,b,c) = A.algebra_generators()

sage: x = tensor( (a, b, c) ); x
B[word: a] # B[word: b] # B[word: c]
sage: y = tensor( (c, b, a) ); y
B[word: c] # B[word: b] # B[word: a]
sage: x*y
B[word: ac] # B[word: bb] # B[word: ca]

sage: x = tensor( ((a+2*b), c) ) ; x
B[word: a] # B[word: c] + 2*B[word: b] # B[word: c]
sage: y = tensor( (c, a) ) + 1; y
B[word: ] # B[word: ] + B[word: c] # B[word: a]
sage: x*y
B[word: a] # B[word: c] + B[word: ac] # B[word: ca] + 2*B[word: b] #␣
→˓B[word: c] + 2*B[word: bc] # B[word: ca]

TODO: optimize this implementation!

extra_super_categories()
EXAMPLES:

sage: AlgebrasWithBasis(QQ).TensorProducts().extra_super_categories()
[Category of algebras with basis over Rational Field]
sage: AlgebrasWithBasis(QQ).TensorProducts().super_categories()
[Category of algebras with basis over Rational Field,
Category of tensor products of algebras over Rational Field,
Category of tensor products of vector spaces with basis over Rational␣
→˓Field]

example(alphabet=('a', 'b', 'c'))
Return an example of algebra with basis.

EXAMPLES:

sage: AlgebrasWithBasis(QQ).example()
An example of an algebra with basis: the free algebra on the generators ('a', 'b
→˓', 'c') over Rational Field

An other set of generators can be specified as optional argument:

sage: AlgebrasWithBasis(QQ).example((1,2,3))
An example of an algebra with basis: the free algebra on the generators (1, 2,␣
→˓3) over Rational Field
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4.11 Aperiodic semigroups

class sage.categories.aperiodic_semigroups.AperiodicSemigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

extra_super_categories()
Implement the fact that an aperiodic semigroup is 𝐻-trivial.

EXAMPLES:

sage: Semigroups().Aperiodic().extra_super_categories()
[Category of h trivial semigroups]

4.12 Associative algebras

class sage.categories.associative_algebras.AssociativeAlgebras(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of associative algebras over a given base ring.

An associative algebra over a ring 𝑅 is a module over 𝑅 which is also a not necessarily unital ring.

Warning: Until trac ticket #15043 is implemented, Algebras is the category of associative unital alge-
bras; thus, unlike the name suggests, AssociativeAlgebras is not a subcategory of Algebras but of
MagmaticAlgebras.

EXAMPLES:

sage: from sage.categories.associative_algebras import AssociativeAlgebras
sage: C = AssociativeAlgebras(ZZ); C
Category of associative algebras over Integer Ring

Unital
alias of sage.categories.algebras.Algebras

4.13 Bialgebras

class sage.categories.bialgebras.Bialgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of bialgebras

EXAMPLES:

sage: Bialgebras(ZZ)
Category of bialgebras over Integer Ring
sage: Bialgebras(ZZ).super_categories()
[Category of algebras over Integer Ring, Category of coalgebras over Integer Ring]

class ElementMethods
Bases: object
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is_grouplike()
Return whether self is a grouplike element.

EXAMPLES:

sage: s = SymmetricFunctions(QQ).schur()
sage: s([5]).is_grouplike()
False
sage: s([]).is_grouplike()
True

is_primitive()
Return whether self is a primitive element.

EXAMPLES:

sage: s = SymmetricFunctions(QQ).schur()
sage: s([5]).is_primitive()
False
sage: p = SymmetricFunctions(QQ).powersum()
sage: p([5]).is_primitive()
True

class Super(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

WithBasis
alias of sage.categories.bialgebras_with_basis.BialgebrasWithBasis

additional_structure()
Return None.

Indeed, the category of bialgebras defines no additional structure: a morphism of coalgebras and of algebras
between two bialgebras is a bialgebra morphism.

See also:

Category.additional_structure()

Todo: This category should be a CategoryWithAxiom.

EXAMPLES:

sage: Bialgebras(QQ).additional_structure()

super_categories()
EXAMPLES:

sage: Bialgebras(QQ).super_categories()
[Category of algebras over Rational Field, Category of coalgebras over Rational␣
→˓Field]
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4.14 Bialgebras with basis

class sage.categories.bialgebras_with_basis.BialgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of bialgebras with a distinguished basis.

EXAMPLES:

sage: C = BialgebrasWithBasis(QQ); C
Category of bialgebras with basis over Rational Field

sage: sorted(C.super_categories(), key=str)
[Category of algebras with basis over Rational Field,
Category of bialgebras over Rational Field,
Category of coalgebras with basis over Rational Field]

class ElementMethods
Bases: object

adams_operator(n)
Compute the 𝑛-th convolution power of the identity morphism Id on self.

INPUT:
• n – a nonnegative integer

OUTPUT:
• the image of self under the convolution power Id*𝑛

Note: In the literature, this is also called a Hopf power or Sweedler power, cf. [AL2015].

See also:

sage.categories.bialgebras.ElementMethods.convolution_product()

Todo: Remove dependency on modules_with_basis methods.

EXAMPLES:

sage: h = SymmetricFunctions(QQ).h()
sage: h[5].adams_operator(2)
2*h[3, 2] + 2*h[4, 1] + 2*h[5]
sage: h[5].plethysm(2*h[1])
2*h[3, 2] + 2*h[4, 1] + 2*h[5]
sage: h([]).adams_operator(0)
h[]
sage: h([]).adams_operator(1)
h[]
sage: h[3,2].adams_operator(0)
0
sage: h[3,2].adams_operator(1)
h[3, 2]
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sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: S[4].adams_operator(5)
5*S[1, 1, 1, 1] + 10*S[1, 1, 2] + 10*S[1, 2, 1] + 10*S[1, 3] + 10*S[2, 1,␣
→˓1] + 10*S[2, 2] + 10*S[3, 1] + 5*S[4]

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: m[[1,3],[2]].adams_operator(-2)
3*m{{1}, {2, 3}} + 3*m{{1, 2}, {3}} + 6*m{{1, 2, 3}} - 2*m{{1, 3}, {2}}

convolution_product(*maps)
Return the image of self under the convolution product (map) of the maps.

Let 𝐴 and 𝐵 be bialgebras over a commutative ring 𝑅. Given maps 𝑓𝑖 : 𝐴→ 𝐵 for 1 ≤ 𝑖 < 𝑛, define
the convolution product

(𝑓1 * 𝑓2 * · · · * 𝑓𝑛) := 𝜇(𝑛−1) ∘ (𝑓1 ⊗ 𝑓2 ⊗ · · · ⊗ 𝑓𝑛) ∘∆(𝑛−1),

where ∆(𝑘) :=
(︀
∆⊗Id⊗(𝑘−1)

)︀
∘∆(𝑘−1), with ∆(1) = ∆ (the ordinary coproduct in𝐴) and ∆(0) = Id;

and with 𝜇(𝑘) := 𝜇 ∘
(︀
𝜇(𝑘−1) ⊗ Id) and 𝜇(1) = 𝜇 (the ordinary product in 𝐵). See [Swe1969].

(In the literature, one finds, e.g., ∆(2) for what we denote above as ∆(1). See [KMN2012].)

INPUT:
• maps – any number 𝑛 ≥ 0 of linear maps 𝑓1, 𝑓2, . . . , 𝑓𝑛 on self.parent(); or a single list or
tuple of such maps

OUTPUT:
• the convolution product of maps applied to self

AUTHORS:
• Amy Pang - 12 June 2015 - Sage Days 65

Todo: Remove dependency on modules_with_basis methods.

EXAMPLES:

We compute convolution products of the identity and antipode maps on Schur functions:

sage: Id = lambda x: x
sage: Antipode = lambda x: x.antipode()
sage: s = SymmetricFunctions(QQ).schur()
sage: s[3].convolution_product(Id, Id)
2*s[2, 1] + 4*s[3]
sage: s[3,2].convolution_product(Id) == s[3,2]
True

The method accepts multiple arguments, or a single argument consisting of a list of maps:

sage: s[3,2].convolution_product(Id, Id)
2*s[2, 1, 1, 1] + 6*s[2, 2, 1] + 6*s[3, 1, 1] + 12*s[3, 2] + 6*s[4, 1] +␣
→˓2*s[5]
sage: s[3,2].convolution_product([Id, Id])
2*s[2, 1, 1, 1] + 6*s[2, 2, 1] + 6*s[3, 1, 1] + 12*s[3, 2] + 6*s[4, 1] +␣
→˓2*s[5]

We test the defining property of the antipode morphism; namely, that the antipode is the inverse of the
identity map in the convolution algebra whose identity element is the composition of the counit and
unit:
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sage: s[3,2].convolution_product() == s[3,2].convolution_product(Antipode,␣
→˓Id) == s[3,2].convolution_product(Id, Antipode)
True

sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi()
sage: Psi[2,1].convolution_product(Id, Id, Id)
3*Psi[1, 2] + 6*Psi[2, 1]
sage: (Psi[5,1] - Psi[1,5]).convolution_product(Id, Id, Id)
-3*Psi[1, 5] + 3*Psi[5, 1]

sage: G = SymmetricGroup(3)
sage: QG = GroupAlgebra(G,QQ)
sage: x = QG.sum_of_terms([(p,p.length()) for p in Permutations(3)]); x
[1, 3, 2] + [2, 1, 3] + 2*[2, 3, 1] + 2*[3, 1, 2] + 3*[3, 2, 1]
sage: x.convolution_product(Id, Id)
5*[1, 2, 3] + 2*[2, 3, 1] + 2*[3, 1, 2]
sage: x.convolution_product(Id, Id, Id)
4*[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + 3*[3, 2, 1]
sage: x.convolution_product([Id]*6)
9*[1, 2, 3]

class ParentMethods
Bases: object

convolution_product(*maps)
Return the convolution product (a map) of the given maps.

Let 𝐴 and 𝐵 be bialgebras over a commutative ring 𝑅. Given maps 𝑓𝑖 : 𝐴→ 𝐵 for 1 ≤ 𝑖 < 𝑛, define
the convolution product

(𝑓1 * 𝑓2 * · · · * 𝑓𝑛) := 𝜇(𝑛−1) ∘ (𝑓1 ⊗ 𝑓2 ⊗ · · · ⊗ 𝑓𝑛) ∘∆(𝑛−1),

where ∆(𝑘) :=
(︀
∆⊗Id⊗(𝑘−1)

)︀
∘∆(𝑘−1), with ∆(1) = ∆ (the ordinary coproduct in𝐴) and ∆(0) = Id;

and with 𝜇(𝑘) := 𝜇 ∘
(︀
𝜇(𝑘−1) ⊗ Id) and 𝜇(1) = 𝜇 (the ordinary product in 𝐵). See [Swe1969].

(In the literature, one finds, e.g., ∆(2) for what we denote above as ∆(1). See [KMN2012].)

INPUT:
• maps – any number 𝑛 ≥ 0 of linear maps 𝑓1, 𝑓2, . . . , 𝑓𝑛 on self; or a single list or tuple of

such maps
OUTPUT:

• the new map 𝑓1 * 𝑓2 * · · · * 𝑓2 representing their convolution product
See also:

sage.categories.bialgebras.ElementMethods.convolution_product()

AUTHORS:
• Aaron Lauve - 12 June 2015 - Sage Days 65

Todo: Remove dependency on modules_with_basis methods.

EXAMPLES:

We construct some maps: the identity, the antipode and projection onto the homogeneous component
of degree 2:
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sage: Id = lambda x: x
sage: Antipode = lambda x: x.antipode()
sage: Proj2 = lambda x: x.parent().sum_of_terms([(m, c) for (m, c) in x if␣
→˓m.size() == 2])

Compute the convolution product of the identity with itself and with the projection Proj2 on the Hopf
algebra of non-commutative symmetric functions:

sage: R = NonCommutativeSymmetricFunctions(QQ).ribbon()
sage: T = R.convolution_product([Id, Id])
sage: [T(R(comp)) for comp in Compositions(3)]
[4*R[1, 1, 1] + R[1, 2] + R[2, 1],
2*R[1, 1, 1] + 4*R[1, 2] + 2*R[2, 1] + 2*R[3],
2*R[1, 1, 1] + 2*R[1, 2] + 4*R[2, 1] + 2*R[3],
R[1, 2] + R[2, 1] + 4*R[3]]
sage: T = R.convolution_product(Proj2, Id)
sage: [T(R([i])) for i in range(1, 5)]
[0, R[2], R[2, 1] + R[3], R[2, 2] + R[4]]

Compute the convolution product of no maps on the Hopf algebra of symmetric functions in non-
commuting variables. This is the composition of the counit with the unit:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: T = m.convolution_product()
sage: [T(m(lam)) for lam in SetPartitions(0).list() + SetPartitions(2).
→˓list()]
[m{}, 0, 0]

Compute the convolution product of the projection Proj2 with the identity on the Hopf algebra of
symmetric functions in non-commuting variables:

sage: T = m.convolution_product(Proj2, Id)
sage: [T(m(lam)) for lam in SetPartitions(3)]
[0,
m{{1, 2}, {3}} + m{{1, 2, 3}},
m{{1, 2}, {3}} + m{{1, 2, 3}},
m{{1, 2}, {3}} + m{{1, 2, 3}},
3*m{{1}, {2}, {3}} + 3*m{{1}, {2, 3}} + 3*m{{1, 3}, {2}}]

Compute the convolution product of the antipode with itself and the identity map on group algebra of
the symmetric group:

sage: G = SymmetricGroup(3)
sage: QG = GroupAlgebra(G, QQ)
sage: x = QG.sum_of_terms([(p,p.number_of_peaks() + p.number_of_
→˓inversions()) for p in Permutations(3)]); x
2*[1, 3, 2] + [2, 1, 3] + 3*[2, 3, 1] + 2*[3, 1, 2] + 3*[3, 2, 1]
sage: T = QG.convolution_product(Antipode, Antipode, Id)
sage: T(x)
2*[1, 3, 2] + [2, 1, 3] + 2*[2, 3, 1] + 3*[3, 1, 2] + 3*[3, 2, 1]
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4.15 Bimodules

class sage.categories.bimodules.Bimodules(left_base, right_base, name=None)
Bases: sage.categories.category.CategoryWithParameters

The category of (𝑅,𝑆)-bimodules

For 𝑅 and 𝑆 rings, a (𝑅,𝑆)-bimodule 𝑋 is a left 𝑅-module and right 𝑆-module such that the left and right
actions commute: 𝑟 * (𝑥 * 𝑠) = (𝑟 * 𝑥) * 𝑠.

EXAMPLES:

sage: Bimodules(QQ, ZZ)
Category of bimodules over Rational Field on the left and Integer Ring on the right
sage: Bimodules(QQ, ZZ).super_categories()
[Category of left modules over Rational Field, Category of right modules over␣
→˓Integer Ring]

class ElementMethods
Bases: object

class ParentMethods
Bases: object

additional_structure()
Return None.

Indeed, the category of bimodules defines no additional structure: a left and right module morphism be-
tween two bimodules is a bimodule morphism.

See also:

Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

sage: Bimodules(QQ, ZZ).additional_structure()

classmethod an_instance()
Return an instance of this class.

EXAMPLES:

sage: Bimodules.an_instance()
Category of bimodules over Rational Field on the left and Real Field with 53␣
→˓bits of precision on the right

left_base_ring()
Return the left base ring over which elements of this category are defined.

EXAMPLES:

sage: Bimodules(QQ, ZZ).left_base_ring()
Rational Field
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right_base_ring()
Return the right base ring over which elements of this category are defined.

EXAMPLES:

sage: Bimodules(QQ, ZZ).right_base_ring()
Integer Ring

super_categories()
EXAMPLES:

sage: Bimodules(QQ, ZZ).super_categories()
[Category of left modules over Rational Field, Category of right modules over␣
→˓Integer Ring]

4.16 Classical Crystals

class sage.categories.classical_crystals.ClassicalCrystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of classical crystals, that is crystals of finite Cartan type.

EXAMPLES:

sage: C = ClassicalCrystals()
sage: C
Category of classical crystals
sage: C.super_categories()
[Category of regular crystals,
Category of finite crystals,
Category of highest weight crystals]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1

class ElementMethods
Bases: object

lusztig_involution()
Return the Lusztig involution on the classical highest weight crystal self.

The Lusztig involution on a finite-dimensional highest weight crystal 𝐵(𝜆) of highest weight 𝜆 maps
the highest weight vector to the lowest weight vector and the Kashiwara operator 𝑓𝑖 to 𝑒𝑖* , where 𝑖* is
defined as 𝛼𝑖* = −𝑤0(𝛼𝑖). Here 𝑤0 is the longest element of the Weyl group acting on the 𝑖-th simple
root 𝛼𝑖.

EXAMPLES:

sage: B = crystals.Tableaux(['A',3],shape=[2,1])
sage: b = B(rows=[[1,2],[4]])
sage: b.lusztig_involution()
[[1, 4], [3]]
sage: b.to_tableau().schuetzenberger_involution(n=4)
[[1, 4], [3]]

sage: all(b.lusztig_involution().to_tableau() == b.to_tableau().
→˓schuetzenberger_involution(n=4) for b in B) (continues on next page)
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True

sage: B = crystals.Tableaux(['D',4],shape=[1])
sage: [[b,b.lusztig_involution()] for b in B]
[[[[1]], [[-1]]], [[[2]], [[-2]]], [[[3]], [[-3]]], [[[4]], [[-4]]], [[[-
→˓4]],
[[4]]], [[[-3]], [[3]]], [[[-2]], [[2]]], [[[-1]], [[1]]]]

sage: B = crystals.Tableaux(['D',3],shape=[1])
sage: [[b,b.lusztig_involution()] for b in B]
[[[[1]], [[-1]]], [[[2]], [[-2]]], [[[3]], [[3]]], [[[-3]], [[-3]]],
[[[-2]], [[2]]], [[[-1]], [[1]]]]

sage: C = CartanType(['E',6])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[1])
sage: t = T[3]; t
[(-4, 2, 5)]
sage: t.lusztig_involution()
[(-2, -3, 4)]

class ParentMethods
Bases: object

cardinality()
Returns the number of elements of the crystal, using Weyl’s dimension formula on each connected
component.

EXAMPLES:

sage: C = ClassicalCrystals().example(5)
sage: C.cardinality()
6

character(R=None)
Returns the character of this crystal.

INPUT:
• R – a WeylCharacterRing (default: the default WeylCharacterRing for this Cartan type)

Returns the character of self as an element of R.

EXAMPLES:

sage: C = crystals.Tableaux("A2", shape=[2,1])
sage: chi = C.character(); chi
A2(2,1,0)

sage: T = crystals.TensorProduct(C,C)
sage: chiT = T.character(); chiT
A2(2,2,2) + 2*A2(3,2,1) + A2(3,3,0) + A2(4,1,1) + A2(4,2,0)
sage: chiT == chi^2
True

One may specify an alternate WeylCharacterRing:
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sage: R = WeylCharacterRing("A2", style="coroots")
sage: chiT = T.character(R); chiT
A2(0,0) + 2*A2(1,1) + A2(0,3) + A2(3,0) + A2(2,2)
sage: chiT in R
True

It should have the same Cartan type and use the same realization of the weight lattice as self:

sage: R = WeylCharacterRing("A3", style="coroots")
sage: T.character(R)
Traceback (most recent call last):
...
ValueError: Weyl character ring does not have the right Cartan type

demazure_character(w, f=None)
Return the Demazure character associated to w.

INPUT:
• w – an element of the ambient weight lattice realization of the crystal, or a reduced word, or an

element in the associated Weyl group
OPTIONAL:

• f – a function from the crystal to a module
This is currently only supported for crystals whose underlying weight space is the ambient space.

The Demazure character is obtained by applying the Demazure operator 𝐷𝑤 (see sage.categories.
regular_crystals.RegularCrystals.ParentMethods.demazure_operator()) to the highest
weight element of the classical crystal. The simple Demazure operators 𝐷𝑖 (see sage.categories.
regular_crystals.RegularCrystals.ElementMethods.demazure_operator_simple()) do
not braid on the level of crystals, but on the level of characters they do. That is why it makes sense to
input w either as a weight, a reduced word, or as an element of the underlying Weyl group.

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape = [2,1])
sage: e = T.weight_lattice_realization().basis()
sage: weight = e[0] + 2*e[2]
sage: weight.reduced_word()
[2, 1]
sage: T.demazure_character(weight)
x1^2*x2 + x1*x2^2 + x1^2*x3 + x1*x2*x3 + x1*x3^2

sage: T = crystals.Tableaux(['A',3],shape=[2,1])
sage: T.demazure_character([1,2,3])
x1^2*x2 + x1*x2^2 + x1^2*x3 + x1*x2*x3 + x2^2*x3
sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([1,2,3])
sage: T.demazure_character(w)
x1^2*x2 + x1*x2^2 + x1^2*x3 + x1*x2*x3 + x2^2*x3

sage: T = crystals.Tableaux(['B',2], shape = [2])
sage: e = T.weight_lattice_realization().basis()
sage: weight = -2*e[1]
sage: T.demazure_character(weight)
x1^2 + x1*x2 + x2^2 + x1 + x2 + x1/x2 + 1/x2 + 1/x2^2 + 1

(continues on next page)
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sage: T = crystals.Tableaux("B2",shape=[1/2,1/2])
sage: b2=WeylCharacterRing("B2",base_ring=QQ).ambient()
sage: T.demazure_character([1,2],f=lambda x:b2(x.weight()))
b2(-1/2,1/2) + b2(1/2,-1/2) + b2(1/2,1/2)

REFERENCES:
• [De1974]
• [Ma2009]

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of classical crystals constructed by tensor product of classical crystals.

extra_super_categories()
EXAMPLES:

sage: ClassicalCrystals().TensorProducts().extra_super_categories()
[Category of classical crystals]

additional_structure()
Return None.

Indeed, the category of classical crystals defines no additional structure: it only states that its objects are
𝑈𝑞(g)-crystals, where g is of finite type.

See also:

Category.additional_structure()

EXAMPLES:

sage: ClassicalCrystals().additional_structure()

example(n=3)
Returns an example of highest weight crystals, as per Category.example().

EXAMPLES:

sage: B = ClassicalCrystals().example(); B
Highest weight crystal of type A_3 of highest weight omega_1

super_categories()
EXAMPLES:

sage: ClassicalCrystals().super_categories()
[Category of regular crystals,
Category of finite crystals,
Category of highest weight crystals]
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4.17 Coalgebras

class sage.categories.coalgebras.Coalgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of coalgebras

EXAMPLES:

sage: Coalgebras(QQ)
Category of coalgebras over Rational Field
sage: Coalgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]

class Cocommutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of cocommutative coalgebras.

class DualObjects(category, *args)
Bases: sage.categories.dual.DualObjectsCategory

extra_super_categories()
Return the dual category.

EXAMPLES:

The category of coalgebras over the Rational Field is dual to the category of algebras over the same
field:

sage: C = Coalgebras(QQ)
sage: C.dual()
Category of duals of coalgebras over Rational Field
sage: C.dual().super_categories() # indirect doctest
[Category of algebras over Rational Field,
Category of duals of vector spaces over Rational Field]

Warning: This is only correct in certain cases (finite dimension, . . . ). See trac ticket #15647.

class ElementMethods
Bases: object

coproduct()
Return the coproduct of self.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6 as a permutation group␣
→˓over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.coproduct()
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, b.coproduct()
(B[(1,3)], B[(1,3)] # B[(1,3)])
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counit()
Return the counit of self.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6 as a permutation group␣
→˓over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.counit()
(B[(1,2,3)], 1)
sage: b, b.counit()
(B[(1,3)], 1)

class Filtered(base_category)
Bases: sage.categories.filtered_modules.FilteredModulesCategory

Category of filtered coalgebras.

Graded
alias of sage.categories.graded_coalgebras.GradedCoalgebras

class ParentMethods
Bases: object

coproduct(x)
Return the coproduct of x.

Eventually, there will be a default implementation, delegating to the overloading mechanism and forc-
ing the conversion back

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6 as a permutation group␣
→˓over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.coproduct(a)
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, A.coproduct(b)
(B[(1,3)], B[(1,3)] # B[(1,3)])

counit(x)
Return the counit of x.

Eventually, there will be a default implementation, delegating to the overloading mechanism and forc-
ing the conversion back

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6 as a permutation group␣
→˓over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.counit(a)

(continues on next page)
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(B[(1,2,3)], 1)
sage: b, A.counit(b)
(B[(1,3)], 1)

TODO: implement some tests of the axioms of coalgebras, bialgebras and Hopf algebras using the
counit.

class Realizations(category, *args)
Bases: sage.categories.realizations.RealizationsCategory

class ParentMethods
Bases: object

coproduct_by_coercion(x)
Return the coproduct by coercion if coproduct_by_basis is not implemented.

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: m = Sym.monomial()
sage: f = m[2,1]
sage: f.coproduct.__module__
'sage.categories.coalgebras'
sage: m.coproduct_on_basis
NotImplemented
sage: m.coproduct == m.coproduct_by_coercion
True
sage: f.coproduct()
m[] # m[2, 1] + m[1] # m[2] + m[2] # m[1] + m[2, 1] # m[]

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: R.coproduct_by_coercion.__module__
'sage.categories.coalgebras'
sage: R.coproduct_on_basis
NotImplemented
sage: R.coproduct == R.coproduct_by_coercion
True
sage: R[1].coproduct()
R[] # R[1] + R[1] # R[]

counit_by_coercion(x)
Return the counit of x if counit_by_basis is not implemented.

EXAMPLES:

sage: sp = SymmetricFunctions(QQ).sp()
sage: sp.an_element()
2*sp[] + 2*sp[1] + 3*sp[2]
sage: sp.counit(sp.an_element())
2

sage: o = SymmetricFunctions(QQ).o()
sage: o.an_element()
2*o[] + 2*o[1] + 3*o[2]

(continues on next page)
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sage: o.counit(o.an_element())
-1

class SubcategoryMethods
Bases: object

Cocommutative()
Return the full subcategory of the cocommutative objects of self.

A coalgebra 𝐶 is said to be cocommutative if

∆(𝑐) =
∑︁
(𝑐)

𝑐(1) ⊗ 𝑐(2) =
∑︁
(𝑐)

𝑐(2) ⊗ 𝑐(1)

in Sweedler’s notation for all 𝑐 ∈ 𝐶.

EXAMPLES:

sage: C1 = Coalgebras(ZZ).Cocommutative().WithBasis(); C1
Category of cocommutative coalgebras with basis over Integer Ring
sage: C2 = Coalgebras(ZZ).WithBasis().Cocommutative()
sage: C1 is C2
True
sage: BialgebrasWithBasis(QQ).Cocommutative()
Category of cocommutative bialgebras with basis over Rational Field

class Super(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

class SubcategoryMethods
Bases: object

Supercocommutative()
Return the full subcategory of the supercocommutative objects of self.

EXAMPLES:

sage: Coalgebras(ZZ).WithBasis().Super().Supercocommutative()
Category of supercocommutative super coalgebras with basis over Integer␣
→˓Ring
sage: BialgebrasWithBasis(QQ).Super().Supercocommutative()
Join of Category of super algebras with basis over Rational Field
and Category of super bialgebras over Rational Field
and Category of super coalgebras with basis over Rational Field
and Category of supercocommutative super coalgebras over Rational Field

class Supercocommutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of supercocommutative coalgebras.

extra_super_categories()
EXAMPLES:

sage: Coalgebras(ZZ).Super().extra_super_categories()
[Category of graded coalgebras over Integer Ring]
sage: Coalgebras(ZZ).Super().super_categories()

(continues on next page)
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[Category of graded coalgebras over Integer Ring,
Category of super modules over Integer Ring]

Compare this with the situation for bialgebras:

sage: Bialgebras(ZZ).Super().extra_super_categories()
[]
sage: Bialgebras(ZZ).Super().super_categories()
[Category of super algebras over Integer Ring,
Category of super coalgebras over Integer Ring]

The category of bialgebras does not occur in these results, since super bialgebras are not bialgebras.

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

class ElementMethods
Bases: object

class ParentMethods
Bases: object

extra_super_categories()
EXAMPLES:

sage: Coalgebras(QQ).TensorProducts().extra_super_categories()
[Category of coalgebras over Rational Field]
sage: Coalgebras(QQ).TensorProducts().super_categories()
[Category of tensor products of vector spaces over Rational Field,
Category of coalgebras over Rational Field]

Meaning: a tensor product of coalgebras is a coalgebra

WithBasis
alias of sage.categories.coalgebras_with_basis.CoalgebrasWithBasis

class WithRealizations(category, *args)
Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
Bases: object

coproduct(x)
Return the coproduct of x.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: S = N.complete()
sage: N.coproduct.__module__
'sage.categories.coalgebras'
sage: N.coproduct(S[2])
S[] # S[2] + S[1] # S[1] + S[2] # S[]

counit(x)
Return the counit of x.

EXAMPLES:
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sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: f = s[2,1]
sage: f.counit.__module__
'sage.categories.coalgebras'
sage: f.counit()
0

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: N.counit.__module__
'sage.categories.coalgebras'
sage: N.counit(N.one())
1
sage: x = N.an_element(); x
2*S[] + 2*S[1] + 3*S[1, 1]
sage: N.counit(x)
2

super_categories()
EXAMPLES:

sage: Coalgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]

4.18 Coalgebras with basis

class sage.categories.coalgebras_with_basis.CoalgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of coalgebras with a distinguished basis.

EXAMPLES:

sage: CoalgebrasWithBasis(ZZ)
Category of coalgebras with basis over Integer Ring
sage: sorted(CoalgebrasWithBasis(ZZ).super_categories(), key=str)
[Category of coalgebras over Integer Ring,
Category of modules with basis over Integer Ring]

class ElementMethods
Bases: object

coproduct_iterated(n=1)
Apply n coproducts to self.

Todo: Remove dependency on modules_with_basis methods.

EXAMPLES:

sage: Psi = NonCommutativeSymmetricFunctions(QQ).Psi()
sage: Psi[2,2].coproduct_iterated(0)

(continues on next page)
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Psi[2, 2]
sage: Psi[2,2].coproduct_iterated(2)
Psi[] # Psi[] # Psi[2, 2] + 2*Psi[] # Psi[2] # Psi[2]
+ Psi[] # Psi[2, 2] # Psi[] + 2*Psi[2] # Psi[] # Psi[2]
+ 2*Psi[2] # Psi[2] # Psi[] + Psi[2, 2] # Psi[] # Psi[]

class Filtered(base_category)
Bases: sage.categories.filtered_modules.FilteredModulesCategory

Category of filtered coalgebras.

Graded
alias of sage.categories.graded_coalgebras_with_basis.GradedCoalgebrasWithBasis

class ParentMethods
Bases: object

coproduct()
If coproduct_on_basis() is available, construct the coproduct morphism from self to self ⊗
self by extending it by linearity. Otherwise, use coproduct_by_coercion(), if available.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral␣
→˓group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.coproduct(a)
(B[(1,2,3)], B[(1,2,3)] # B[(1,2,3)])
sage: b, A.coproduct(b)
(B[(1,3)], B[(1,3)] # B[(1,3)])

coproduct_on_basis(i)
The coproduct of the algebra on the basis (optional).

INPUT:
• i – the indices of an element of the basis of self

Returns the coproduct of the corresponding basis elements If implemented, the coproduct of the algebra
is defined from it by linearity.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral␣
→˓group of order 6 as a permutation group over Rational Field
sage: (a, b) = A._group.gens()
sage: A.coproduct_on_basis(a)
B[(1,2,3)] # B[(1,2,3)]

counit()
If counit_on_basis() is available, construct the counit morphism from self to self ⊗ self by
extending it by linearity

EXAMPLES:
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sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral␣
→˓group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, A.counit(a)
(B[(1,2,3)], 1)
sage: b, A.counit(b)
(B[(1,3)], 1)

counit_on_basis(i)
The counit of the algebra on the basis (optional).

INPUT:
• i – the indices of an element of the basis of self

Returns the counit of the corresponding basis elements If implemented, the counit of the algebra is
defined from it by linearity.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral␣
→˓group of order 6 as a permutation group over Rational Field
sage: (a, b) = A._group.gens()
sage: A.counit_on_basis(a)
1

class Super(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

extra_super_categories()
EXAMPLES:

sage: C = Coalgebras(ZZ).WithBasis().Super()
sage: sorted(C.super_categories(), key=str) # indirect doctest
[Category of graded coalgebras with basis over Integer Ring,
Category of super coalgebras over Integer Ring,
Category of super modules with basis over Integer Ring]

4.19 Commutative additive groups

class sage.categories.commutative_additive_groups.CommutativeAdditiveGroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton, sage.
categories.category_types.AbelianCategory

The category of abelian groups, i.e. additive abelian monoids where each element has an inverse.

EXAMPLES:

sage: C = CommutativeAdditiveGroups(); C
Category of commutative additive groups
sage: C.super_categories()
[Category of additive groups, Category of commutative additive monoids]
sage: sorted(C.axioms())

(continues on next page)
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['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse', 'AdditiveUnital']
sage: C is CommutativeAdditiveMonoids().AdditiveInverse()
True
sage: from sage.categories.additive_groups import AdditiveGroups
sage: C is AdditiveGroups().AdditiveCommutative()
True

Note: This category is currently empty. It’s left there for backward compatibility and because it is likely to grow
in the future.

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ElementMethods
Bases: object

additive_order()
Return the additive order of this element.

EXAMPLES:

sage: G = cartesian_product([Zmod(3), Zmod(6), Zmod(5)])
sage: G((1,1,1)).additive_order()
30
sage: any((i * G((1,1,1))).is_zero() for i in range(1,30))
False
sage: 30 * G((1,1,1))
(0, 0, 0)

sage: G = cartesian_product([ZZ, ZZ])
sage: G((0,0)).additive_order()
1
sage: G((0,1)).additive_order()
+Infinity

sage: K = GF(9)
sage: H = cartesian_product([cartesian_product([Zmod(2),Zmod(9)]), K])
sage: z = H(((1,2), K.gen()))
sage: z.additive_order()
18
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4.20 Commutative additive monoids

class sage.categories.commutative_additive_monoids.CommutativeAdditiveMonoids(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of commutative additive monoids, that is abelian additive semigroups with a unit

EXAMPLES:

sage: C = CommutativeAdditiveMonoids(); C
Category of commutative additive monoids
sage: C.super_categories()
[Category of additive monoids, Category of commutative additive semigroups]
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveUnital']
sage: C is AdditiveMagmas().AdditiveAssociative().AdditiveCommutative().
→˓AdditiveUnital()
True

Note: This category is currently empty and only serves as a place holder to make C.example() work.

4.21 Commutative additive semigroups

class sage.categories.commutative_additive_semigroups.CommutativeAdditiveSemigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of additive abelian semigroups, i.e. sets with an associative and abelian operation +.

EXAMPLES:

sage: C = CommutativeAdditiveSemigroups(); C
Category of commutative additive semigroups
sage: C.example()
An example of a commutative semigroup: the free commutative semigroup generated by (
→˓'a', 'b', 'c', 'd')

sage: sorted(C.super_categories(), key=str)
[Category of additive commutative additive magmas,
Category of additive semigroups]
sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative']
sage: C is AdditiveMagmas().AdditiveAssociative().AdditiveCommutative()
True

Note: This category is currently empty and only serves as a place holder to make C.example() work.
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4.22 Commutative algebra ideals

class sage.categories.commutative_algebra_ideals.CommutativeAlgebraIdeals(A)
Bases: sage.categories.category_types.Category_ideal

The category of ideals in a fixed commutative algebra 𝐴.

EXAMPLES:

sage: C = CommutativeAlgebraIdeals(QQ['x'])
sage: C
Category of commutative algebra ideals in Univariate Polynomial Ring in x over␣
→˓Rational Field

algebra()
EXAMPLES:

sage: CommutativeAlgebraIdeals(QQ['x']).algebra()
Univariate Polynomial Ring in x over Rational Field

super_categories()
EXAMPLES:

sage: CommutativeAlgebraIdeals(QQ['x']).super_categories()
[Category of algebra ideals in Univariate Polynomial Ring in x over Rational␣
→˓Field]

4.23 Commutative algebras

class sage.categories.commutative_algebras.CommutativeAlgebras(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of commutative algebras with unit over a given base ring.

EXAMPLES:

sage: M = CommutativeAlgebras(GF(19))
sage: M
Category of commutative algebras over Finite Field of size 19
sage: CommutativeAlgebras(QQ).super_categories()
[Category of algebras over Rational Field, Category of commutative rings]

This is just a shortcut for:

sage: Algebras(QQ).Commutative()
Category of commutative algebras over Rational Field
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4.24 Commutative ring ideals

class sage.categories.commutative_ring_ideals.CommutativeRingIdeals(R)
Bases: sage.categories.category_types.Category_ideal

The category of ideals in a fixed commutative ring.

EXAMPLES:

sage: C = CommutativeRingIdeals(IntegerRing())
sage: C
Category of commutative ring ideals in Integer Ring

super_categories()
EXAMPLES:

sage: CommutativeRingIdeals(ZZ).super_categories()
[Category of ring ideals in Integer Ring]

4.25 Commutative rings

class sage.categories.commutative_rings.CommutativeRings(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of commutative rings

commutative rings with unity, i.e. rings with commutative * and a multiplicative identity

EXAMPLES:

sage: C = CommutativeRings(); C
Category of commutative rings
sage: C.super_categories()
[Category of rings, Category of commutative monoids]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Let Sage knows that Cartesian products of commutative rings is a commutative ring.

EXAMPLES:

sage: CommutativeRings().Commutative().CartesianProducts().extra_super_
→˓categories()
[Category of commutative rings]
sage: cartesian_product([ZZ, Zmod(34), QQ, GF(5)]) in CommutativeRings()
True

class ElementMethods
Bases: object

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

Check that Sage knows that Cartesian products of finite commutative rings is a finite commutative ring.
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EXAMPLES:

sage: cartesian_product([Zmod(34), GF(5)]) in Rings().Commutative().Finite()
True

class ParentMethods
Bases: object

cyclotomic_cosets(q, cosets=None)
Return the (multiplicative) orbits of q in the ring.

Let 𝑅 be a finite commutative ring. The group of invertible elements 𝑅* in 𝑅 gives rise to a group
action on 𝑅 by multiplication. An orbit of the subgroup generated by an invertible element 𝑞 is
called a 𝑞-cyclotomic coset (since in a finite ring, each invertible element is a root of unity).

These cosets arise in the theory of minimal polynomials of finite fields, duadic codes and combi-
natorial designs. Fix a primitive element 𝑧 of𝐺𝐹 (𝑞𝑘). The minimal polynomial of 𝑧𝑠 over𝐺𝐹 (𝑞)
is given by

𝑀𝑠(𝑥) =
∏︁
𝑖∈𝐶𝑠

(𝑥− 𝑧𝑖),

where 𝐶𝑠 is the 𝑞-cyclotomic coset mod 𝑛 containing 𝑠, 𝑛 = 𝑞𝑘 − 1.

Note: When 𝑅 = Z/𝑛Z the smallest element of each coset is sometimes called a coset leader.
This function returns sorted lists so that the coset leader will always be the first element of the
coset.

INPUT:
• q – an invertible element of the ring
• cosets – an optional lists of elements of self. If provided, the function only return the list of

cosets that contain some element from cosets.
OUTPUT:

A list of lists.

EXAMPLES:

sage: Zmod(11).cyclotomic_cosets(2)
[[0], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
sage: Zmod(15).cyclotomic_cosets(2)
[[0], [1, 2, 4, 8], [3, 6, 9, 12], [5, 10], [7, 11, 13, 14]]

Since the group of invertible elements of a finite field is cyclic, the set of squares is a particular
case of cyclotomic coset:

sage: K = GF(25,'z')
sage: a = K.multiplicative_generator()
sage: K.cyclotomic_cosets(a**2,cosets=[1])
[[1, 2, 3, 4, z + 1, z + 3,
2*z + 1, 2*z + 2, 3*z + 3,
3*z + 4, 4*z + 2, 4*z + 4]]

sage: sorted(b for b in K if not b.is_zero() and b.is_square())
[1, 2, 3, 4, z + 1, z + 3,
2*z + 1, 2*z + 2, 3*z + 3,
3*z + 4, 4*z + 2, 4*z + 4]

212 Chapter 4. Individual Categories



Category Framework, Release 9.7

We compute some examples of minimal polynomials:

sage: K = GF(27,'z')
sage: a = K.multiplicative_generator()
sage: R.<X> = PolynomialRing(K, 'X')
sage: a.minimal_polynomial('X')
X^3 + 2*X + 1
sage: cyc3 = Zmod(26).cyclotomic_cosets(3,cosets=[1]); cyc3
[[1, 3, 9]]
sage: prod(X - a**i for i in cyc3[0])
X^3 + 2*X + 1

sage: (a**7).minimal_polynomial('X')
X^3 + X^2 + 2*X + 1
sage: cyc7 = Zmod(26).cyclotomic_cosets(3,cosets=[7]); cyc7
[[7, 11, 21]]
sage: prod(X - a**i for i in cyc7[0])
X^3 + X^2 + 2*X + 1

Cyclotomic cosets of fields are useful in combinatorial design theory to provide so called difference
families (see Wikipedia article Difference_set and difference_family). This is illustrated on
the following examples:

sage: K = GF(5)
sage: a = K.multiplicative_generator()
sage: H = K.cyclotomic_cosets(a**2, cosets=[1,2]); H
[[1, 4], [2, 3]]
sage: sorted(x-y for D in H for x in D for y in D if x != y)
[1, 2, 3, 4]

sage: K = GF(37)
sage: a = K.multiplicative_generator()
sage: H = K.cyclotomic_cosets(a**4, cosets=[1]); H
[[1, 7, 9, 10, 12, 16, 26, 33, 34]]
sage: sorted(x-y for D in H for x in D for y in D if x != y)
[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ..., 33, 34, 34, 35, 35, 36, 36]

The method cyclotomic_cosets works on any finite commutative ring:

sage: R = cartesian_product([GF(7), Zmod(14)])
sage: a = R((3,5))
sage: R.cyclotomic_cosets((3,5), [(1,1)])
[[(1, 1), (2, 11), (3, 5), (4, 9), (5, 3), (6, 13)]]

class ParentMethods
Bases: object

over(base=None, gen=None, gens=None, name=None, names=None)
Return this ring, considered as an extension of base.

INPUT:
• base – a commutative ring or a morphism or None (default: None); the base of this extension or

its defining morphism
• gen – a generator of this extension (over its base) or None (default: None);
• gens – a list of generators of this extension (over its base) or None (default: None);
• name – a variable name or None (default: None)
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• names – a list or a tuple of variable names or None (default: None)
EXAMPLES:

We construct an extension of finite fields:

sage: F = GF(5^2)
sage: k = GF(5^4)
sage: z4 = k.gen()

sage: K = k.over(F)
sage: K
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base

If not explicitly given, the default generator of the top ring (here k) is used and the same name is kept:

sage: K.gen()
z4
sage: K(z4)
z4

However, it is possible to specify another generator and/or another name. For example:

sage: Ka = k.over(F, name='a')
sage: Ka
Field in a with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base
sage: Ka.gen()
a
sage: Ka(z4)
a

sage: Kb = k.over(F, gen=-z4+1, name='b')
sage: Kb
Field in b with defining polynomial x^2 + z2*x + 4 over its base
sage: Kb.gen()
b
sage: Kb(-z4+1)
b

Note that the shortcut K.<a> is also available:

sage: KKa.<a> = k.over(F)
sage: KKa is Ka
True

Building an extension on top of another extension is allowed:

sage: L = GF(5^12).over(K)
sage: L
Field in z12 with defining polynomial x^3 + (1 + (4*z2 + 2)*z4)*x^2 + (2 +␣
→˓2*z4)*x - z4 over its base
sage: L.base_ring()
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base

The successive bases of an extension are accessible via the method sage.rings.ring_extension.
RingExtension_generic.bases():
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sage: L.bases()
[Field in z12 with defining polynomial x^3 + (1 + (4*z2 + 2)*z4)*x^2 + (2 +␣
→˓2*z4)*x - z4 over its base,
Field in z4 with defining polynomial x^2 + (4*z2 + 3)*x + z2 over its base,
Finite Field in z2 of size 5^2]

When base is omitted, the canonical base of the ring is used:

sage: S.<x> = QQ[]
sage: E = S.over()
sage: E
Univariate Polynomial Ring in x over Rational Field over its base
sage: E.base_ring()
Rational Field

Here is an example where base is a defining morphism:

sage: k.<a> = QQ.extension(x^2 - 2)
sage: l.<b> = QQ.extension(x^4 - 2)
sage: f = k.hom([b^2])
sage: L = l.over(f)
sage: L
Field in b with defining polynomial x^2 - a over its base
sage: L.base_ring()
Number Field in a with defining polynomial x^2 - 2

Similarly, one can create a tower of extensions:

sage: K = k.over()
sage: L = l.over(Hom(K,l)(f))
sage: L
Field in b with defining polynomial x^2 - a over its base
sage: L.base_ring()
Field in a with defining polynomial x^2 - 2 over its base
sage: L.bases()
[Field in b with defining polynomial x^2 - a over its base,
Field in a with defining polynomial x^2 - 2 over its base,
Rational Field]

4.26 Complete Discrete Valuation Rings (CDVR) and Fields (CDVF)

class sage.categories.complete_discrete_valuation.CompleteDiscreteValuationFields(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of complete discrete valuation fields

EXAMPLES:

sage: Zp(7) in CompleteDiscreteValuationFields()
False
sage: QQ in CompleteDiscreteValuationFields()
False

(continues on next page)
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(continued from previous page)

sage: LaurentSeriesRing(QQ,'u') in CompleteDiscreteValuationFields()
True
sage: Qp(7) in CompleteDiscreteValuationFields()
True
sage: TestSuite(CompleteDiscreteValuationFields()).run()

class ElementMethods
Bases: object

denominator()
Return the denominator of this element normalized as a power of the uniformizer

EXAMPLES:

sage: K = Qp(7)
sage: x = K(1/21)
sage: x.denominator()
7 + O(7^21)

sage: x = K(7)
sage: x.denominator()
1 + O(7^20)

Note that the denominator lives in the ring of integers:

sage: x.denominator().parent()
7-adic Ring with capped relative precision 20

When the denominator is indistinguishable from 0 and the precision on the input is 𝑂(𝑝𝑛), the return
value is 1 if 𝑛 is nonnegative and 𝑝( − 𝑛) otherwise:

sage: x = K(0,5); x
O(7^5)
sage: x.denominator()
1 + O(7^20)

sage: x = K(0,-5); x
O(7^-5)
sage: x.denominator()
7^5 + O(7^25)

numerator()
Return the numerator of this element, normalized in such a way that 𝑥 =
𝑥.𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟()/𝑥.𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟() always holds true.

EXAMPLES:

sage: K = Qp(7, 5)
sage: x = K(1/21)
sage: x.numerator()
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + O(7^5)

sage: x == x.numerator() / x.denominator()
True
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Note that the numerator lives in the ring of integers:

sage: x.numerator().parent()
7-adic Ring with capped relative precision 5

valuation()
Return the valuation of this element.

EXAMPLES:

sage: K = Qp(7)
sage: x = K(7); x
7 + O(7^21)
sage: x.valuation()
1

super_categories()
EXAMPLES:

sage: CompleteDiscreteValuationFields().super_categories()
[Category of discrete valuation fields]

class sage.categories.complete_discrete_valuation.CompleteDiscreteValuationRings(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of complete discrete valuation rings

EXAMPLES:

sage: Zp(7) in CompleteDiscreteValuationRings()
True
sage: QQ in CompleteDiscreteValuationRings()
False
sage: QQ[['u']] in CompleteDiscreteValuationRings()
True
sage: Qp(7) in CompleteDiscreteValuationRings()
False
sage: TestSuite(CompleteDiscreteValuationRings()).run()

class ElementMethods
Bases: object

denominator()
Return the denominator of this element normalized as a power of the uniformizer

EXAMPLES:

sage: K = Qp(7)
sage: x = K(1/21)
sage: x.denominator()
7 + O(7^21)

sage: x = K(7)
sage: x.denominator()
1 + O(7^20)

Note that the denominator lives in the ring of integers:
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sage: x.denominator().parent()
7-adic Ring with capped relative precision 20

When the denominator is indistinguishable from 0 and the precision on the input is 𝑂(𝑝𝑛), the return
value is 1 if 𝑛 is nonnegative and 𝑝( − 𝑛) otherwise:

sage: x = K(0,5); x
O(7^5)
sage: x.denominator()
1 + O(7^20)

sage: x = K(0,-5); x
O(7^-5)
sage: x.denominator()
7^5 + O(7^25)

lift_to_precision(absprec=None)
Return another element of the same parent with absolute precision at least absprec, congruent to this
element modulo the precision of this element.

INPUT:
• absprec – an integer or None (default: None), the absolute precision of the result. If None, lifts

to the maximum precision allowed.

Note: If setting absprec that high would violate the precision cap, raises a precision error. Note that
the new digits will not necessarily be zero.

EXAMPLES:

sage: R = ZpCA(17)
sage: R(-1,2).lift_to_precision(10)
16 + 16*17 + O(17^10)
sage: R(1,15).lift_to_precision(10)
1 + O(17^15)
sage: R(1,15).lift_to_precision(30)
Traceback (most recent call last):
...
PrecisionError: precision higher than allowed by the precision cap
sage: R(-1,2).lift_to_precision().precision_absolute() == R.precision_cap()
True

sage: R = Zp(5); c = R(17,3); c.lift_to_precision(8)
2 + 3*5 + O(5^8)
sage: c.lift_to_precision().precision_relative() == R.precision_cap()
True

numerator()
Return the numerator of this element, normalized in such a way that 𝑥 =
𝑥.𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟()/𝑥.𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟() always holds true.

EXAMPLES:

sage: K = Qp(7, 5)
sage: x = K(1/21)

(continues on next page)
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sage: x.numerator()
5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + O(7^5)

sage: x == x.numerator() / x.denominator()
True

Note that the numerator lives in the ring of integers:

sage: x.numerator().parent()
7-adic Ring with capped relative precision 5

valuation()
Return the valuation of this element.

EXAMPLES:

sage: R = Zp(7)
sage: x = R(7); x
7 + O(7^21)
sage: x.valuation()
1

super_categories()
EXAMPLES:

sage: CompleteDiscreteValuationRings().super_categories()
[Category of discrete valuation rings]

4.27 Complex reflection groups

class sage.categories.complex_reflection_groups.ComplexReflectionGroups(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of complex reflection groups.

Let 𝑉 be a complex vector space. A complex reflection is an element of GL(𝑉 ) fixing an hyperplane pointwise
and acting by multiplication by a root of unity on a complementary line.

A complex reflection group is a group 𝑊 that is (isomorphic to) a subgroup of some general linear group GL(𝑉 )
generated by a distinguished set of complex reflections.

The dimension of 𝑉 is the rank of 𝑊 .

For a comprehensive treatment of complex reflection groups and many definitions and theorems used here, we
refer to [LT2009]. See also Wikipedia article Reflection_group.

See also:

ReflectionGroup() for usage examples of this category.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups()
Category of complex reflection groups

(continues on next page)
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sage: ComplexReflectionGroups().super_categories()
[Category of complex reflection or generalized coxeter groups]
sage: ComplexReflectionGroups().all_super_categories()
[Category of complex reflection groups,
Category of complex reflection or generalized coxeter groups,
Category of groups,
Category of monoids,
Category of finitely generated semigroups,
Category of semigroups,
Category of finitely generated magmas,
Category of inverse unital magmas,
Category of unital magmas,
Category of magmas,
Category of enumerated sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

An example of a reflection group:

sage: W = ComplexReflectionGroups().example(); W
5-colored permutations of size 3

W is in the category of complex reflection groups:

sage: W in ComplexReflectionGroups()
True

Finite
alias of sage.categories.finite_complex_reflection_groups.
FiniteComplexReflectionGroups

class ParentMethods
Bases: object

rank()
Return the rank of self.

The rank of self is the dimension of the smallest faithfull reflection representation of self.

EXAMPLES:

sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: W.rank()
3

additional_structure()
Return None.

Indeed, all the structure complex reflection groups have in addition to groups (simple reflections, . . . ) is
already defined in the super category.

See also:

Category.additional_structure()
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EXAMPLES:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: ComplexReflectionGroups().additional_structure()

example()
Return an example of a complex reflection group.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: ComplexReflectionGroups().example()
5-colored permutations of size 3

super_categories()
Return the super categories of self.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: ComplexReflectionGroups().super_categories()
[Category of complex reflection or generalized coxeter groups]

4.28 Common category for Generalized Coxeter Groups or Complex
Reflection Groups

class sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of complex reflection groups or generalized Coxeter groups.

Finite Coxeter groups can be defined equivalently as groups generated by reflections, or by presentations. Over the
last decades, the theory has been generalized in both directions, leading to the study of (finite) complex reflection
groups on the one hand, and (finite) generalized Coxeter groups on the other hand. Many of the features remain
similar, yet, in the current state of the art, there is no general theory covering both directions.

This is reflected by the name of this category which is about factoring out the common code, tests, and declara-
tions.

A group in this category has:

• A distinguished finite set of generators (𝑠𝑖)𝐼 , called simple reflections. The set 𝐼 is called the index set.
The name “reflection” is somewhat of an abuse as they can have higher order; still, they are all of finite
order: 𝑠𝑘𝑖 = 1 for some 𝑘.

• A collection of distinguished reflections which are the conjugates of the simple reflections. For complex
reflection groups, they are in one-to-one correspondence with the reflection hyperplanes and share the same
index set.

• A collection of reflections which are the conjugates of all the non trivial powers of the simple reflections.

The usual notions of reduced words, length, irreducibility, etc can be canonically defined from the above.

The following methods must be implemented:
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• ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods.index_set()

• ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods.simple_reflection()

Optionally one can define analog methods for distinguished reflections and reflections (see below).

At least one of the following methods must be implemented:

• ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.
apply_simple_reflection()

• ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.
apply_simple_reflection_left()

• ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods.
apply_simple_reflection_right()

• ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods._mul_()

It’s recommended to implement either _mul_ or both apply_simple_reflection_left and
apply_simple_reflection_right.

See also:

• complex_reflection_groups.ComplexReflectionGroups

• generalized_coxeter_groups.GeneralizedCoxeterGroups

EXAMPLES:

sage: from sage.categories.complex_reflection_or_generalized_coxeter_groups import␣
→˓ComplexReflectionOrGeneralizedCoxeterGroups
sage: C = ComplexReflectionOrGeneralizedCoxeterGroups(); C
Category of complex reflection or generalized coxeter groups
sage: C.super_categories()
[Category of finitely generated enumerated groups]

sage: C.required_methods()
{'element': {'optional': ['reflection_length'],

'required': []},
'parent': {'optional': ['distinguished_reflection', 'hyperplane_index_set',

'irreducible_components',
'reflection', 'reflection_index_set'],

'required': ['__contains__', 'index_set']}}

class ElementMethods
Bases: object

apply_conjugation_by_simple_reflection(i)
Conjugate self by the i-th simple reflection.

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.apply_conjugation_by_simple_reflection(1).reduced_word()
[3, 2]

apply_reflections(word, side='right', word_type='all')
Return the result of the (left/right) multiplication of self by word.
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INPUT:
• word – a sequence of indices of reflections
• side – (default: 'right') indicates multiplying from left or right
• word_type – (optional, default: 'all'): either 'simple', 'distinguished', or 'all'

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.one().apply_reflections([1]) # optional - gap3
(1,4)(2,3)(5,6)
sage: W.one().apply_reflections([2]) # optional - gap3
(1,3)(2,5)(4,6)
sage: W.one().apply_reflections([2,1]) # optional - gap3
(1,2,6)(3,4,5)

sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_reflections([0,1], word_type='simple')
(2, 3, 1, 0)
sage: w
(1, 2, 3, 0)
sage: w.apply_reflections([0,1], side='left', word_type='simple')
(0, 1, 3, 2)

sage: W = WeylGroup("A3", prefix='s')
sage: w = W.an_element(); w
s1*s2*s3
sage: AS = W.domain()
sage: r1 = AS.roots()[4]
sage: r1
(0, 1, 0, -1)
sage: r2 = AS.roots()[5]
sage: r2
(0, 0, 1, -1)
sage: w.apply_reflections([r1, r2], word_type='all')
s1

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: W.one().apply_reflections([1], word_type='distinguished') #␣
→˓optional - gap3
(1,4)(2,3)(5,6)
sage: W.one().apply_reflections([2], word_type='distinguished') #␣
→˓optional - gap3
(1,3)(2,5)(4,6)
sage: W.one().apply_reflections([3], word_type='distinguished') #␣
→˓optional - gap3
(1,5)(2,4)(3,6)
sage: W.one().apply_reflections([2,1], word_type='distinguished') #␣
→˓optional - gap3
(1,2,6)(3,4,5)

(continues on next page)
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sage: W = ReflectionGroup((1,1,3), hyperplane_index_set=['A','B','C']); W
→˓# optional - gap3
Irreducible real reflection group of rank 2 and type A2
sage: W.one().apply_reflections(['A'], word_type='distinguished') #␣
→˓optional - gap3
(1,4)(2,3)(5,6)

apply_simple_reflection(i, side='right')
Return self multiplied by the simple reflection s[i].

INPUT:
• i – an element of the index set
• side – (default: "right") "left" or "right"

This default implementation simply calls apply_simple_reflection_left() or
apply_simple_reflection_right().

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflection(0, side = "left")
(0, 2, 3, 1)
sage: w.apply_simple_reflection(1, side = "left")
(2, 1, 3, 0)
sage: w.apply_simple_reflection(2, side = "left")
(1, 3, 2, 0)

sage: w.apply_simple_reflection(0, side = "right")
(2, 1, 3, 0)
sage: w.apply_simple_reflection(1, side = "right")
(1, 3, 2, 0)
sage: w.apply_simple_reflection(2, side = "right")
(1, 2, 0, 3)

By default, side is "right":

sage: w.apply_simple_reflection(0)
(2, 1, 3, 0)

Some tests with a complex reflection group:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: W = ComplexReflectionGroups().example(); W
5-colored permutations of size 3
sage: w = W.an_element(); w
[[1, 0, 0], [3, 1, 2]]
sage: w.apply_simple_reflection(1, side="left")
[[0, 1, 0], [1, 3, 2]]
sage: w.apply_simple_reflection(2, side="left")
[[1, 0, 0], [3, 2, 1]]
sage: w.apply_simple_reflection(3, side="left")

(continues on next page)
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[[1, 0, 1], [3, 1, 2]]

sage: w.apply_simple_reflection(1, side="right")
[[1, 0, 0], [3, 2, 1]]
sage: w.apply_simple_reflection(2, side="right")
[[1, 0, 0], [2, 1, 3]]
sage: w.apply_simple_reflection(3, side="right")
[[2, 0, 0], [3, 1, 2]]

apply_simple_reflection_left(i)
Return self multiplied by the simple reflection s[i] on the left.

This low level method is used intensively. Coxeter groups are encouraged to override this straightfor-
ward implementation whenever a faster approach exists.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflection_left(0)
(0, 2, 3, 1)
sage: w.apply_simple_reflection_left(1)
(2, 1, 3, 0)
sage: w.apply_simple_reflection_left(2)
(1, 3, 2, 0)

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: W = ComplexReflectionGroups().example()
sage: w = W.an_element(); w
[[1, 0, 0], [3, 1, 2]]
sage: w.apply_simple_reflection_left(1)
[[0, 1, 0], [1, 3, 2]]
sage: w.apply_simple_reflection_left(2)
[[1, 0, 0], [3, 2, 1]]
sage: w.apply_simple_reflection_left(3)
[[1, 0, 1], [3, 1, 2]]

apply_simple_reflection_right(i)
Return self multiplied by the simple reflection s[i] on the right.

This low level method is used intensively. Coxeter groups are encouraged to override this straightfor-
ward implementation whenever a faster approach exists.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflection_right(0)
(2, 1, 3, 0)
sage: w.apply_simple_reflection_right(1)

(continues on next page)
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(1, 3, 2, 0)
sage: w.apply_simple_reflection_right(2)
(1, 2, 0, 3)

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: W = ComplexReflectionGroups().example()
sage: w = W.an_element(); w
[[1, 0, 0], [3, 1, 2]]
sage: w.apply_simple_reflection_right(1)
[[1, 0, 0], [3, 2, 1]]
sage: w.apply_simple_reflection_right(2)
[[1, 0, 0], [2, 1, 3]]
sage: w.apply_simple_reflection_right(3)
[[2, 0, 0], [3, 1, 2]]

apply_simple_reflections(word, side='right', type='simple')
Return the result of the (left/right) multiplication of self by word.

INPUT:
• word – a sequence of indices of simple reflections
• side – (default: 'right') indicates multiplying from left or right

This is a specialized implementation of apply_reflections() for the simple reflections. The ratio-
nale for its existence are:

• It can take advantage of apply_simple_reflection, which often is less expensive than com-
puting a product.

• It reduced burden on implementations that would want to provide an optimized version of this
method.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.apply_simple_reflections([0,1])
(2, 3, 1, 0)
sage: w
(1, 2, 3, 0)
sage: w.apply_simple_reflections([0,1],side='left')
(0, 1, 3, 2)

inverse()
Return the inverse of self.

EXAMPLES:

sage: W = WeylGroup(['B',7])
sage: w = W.an_element()
sage: u = w.inverse()
sage: u == ~w
True
sage: u * w == w * u
True
sage: u * w

(continues on next page)
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[1 0 0 0 0 0 0]
[0 1 0 0 0 0 0]
[0 0 1 0 0 0 0]
[0 0 0 1 0 0 0]
[0 0 0 0 1 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 0 0 1]

is_reflection()
Return whether self is a reflection.

EXAMPLES:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: [t.is_reflection() for t in W.reflections()] # optional - gap3
[True, True, True, True, True, True]
sage: len([t for t in W.reflections() if t.is_reflection()]) # optional -
→˓ gap3
6

sage: W = ReflectionGroup((2,1,3)) # optional - gap3
sage: [t.is_reflection() for t in W.reflections()] # optional - gap3
[True, True, True, True, True, True, True, True, True]
sage: len([t for t in W.reflections() if t.is_reflection()]) # optional -
→˓ gap3
9

reflection_length()
Return the reflection length of self.

This is the minimal length of a factorization of self into reflections.

EXAMPLES:

sage: W = ReflectionGroup((1,1,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1]

sage: W = ReflectionGroup((2,1,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 1, 2, 2, 2]

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

sage: W = ReflectionGroup((2,2,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 2]

class Irreducible(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
Bases: object
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irreducible_components()
Return a list containing all irreducible components of self as finite reflection groups.

EXAMPLES:

sage: W = ColoredPermutations(4, 3)
sage: W.irreducible_components()
[4-colored permutations of size 3]

class ParentMethods
Bases: object

distinguished_reflection(i)
Return the 𝑖-th distinguished reflection of self.

INPUT:
• i – an element of the index set of the distinguished reflections.

See also:

• distinguished_reflections()
• hyperplane_index_set()

EXAMPLES:

sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=('a','b','c','d','e
→˓','f')) # optional - gap3
sage: for i in W.hyperplane_index_set(): # optional -␣
→˓gap3
....: print('%s %s'%(i, W.distinguished_reflection(i))) # optional -␣
→˓gap3
a (1,7)(2,4)(5,6)(8,10)(11,12)
b (1,4)(2,8)(3,5)(7,10)(9,11)
c (2,5)(3,9)(4,6)(8,11)(10,12)
d (1,8)(2,7)(3,6)(4,10)(9,12)
e (1,6)(2,9)(3,8)(5,11)(7,12)
f (1,11)(3,10)(4,9)(5,7)(6,12)

distinguished_reflections()
Return a finite family containing the distinguished reflections of self, indexed by
hyperplane_index_set().

A distinguished reflection is a conjugate of a simple reflection. For a Coxeter group, reflections and
distinguished reflections coincide. For a Complex reflection groups this is a reflection acting on the
complement of the fixed hyperplane 𝐻 as exp(2𝜋𝑖/𝑛), where 𝑛 is the order of the reflection subgroup
fixing 𝐻 .

See also:

• distinguished_reflection()
• hyperplane_index_set()

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: distinguished_reflections = W.distinguished_reflections() # optional -
→˓ gap3
sage: for index in sorted(distinguished_reflections.keys()): #␣
→˓optional - gap3

(continues on next page)

228 Chapter 4. Individual Categories



Category Framework, Release 9.7

(continued from previous page)

....: print('%s %s'%(index, distinguished_reflections[index])) #␣
→˓optional - gap3
1 (1,4)(2,3)(5,6)
2 (1,3)(2,5)(4,6)
3 (1,5)(2,4)(3,6)

sage: W = ReflectionGroup((1,1,3),hyperplane_index_set=['a','b','c']) #␣
→˓optional - gap3
sage: distinguished_reflections = W.distinguished_reflections() # optional -
→˓ gap3
sage: for index in sorted(distinguished_reflections.keys()): #␣
→˓optional - gap3
....: print('%s %s'%(index, distinguished_reflections[index])) #␣
→˓optional - gap3
a (1,4)(2,3)(5,6)
b (1,3)(2,5)(4,6)
c (1,5)(2,4)(3,6)

sage: W = ReflectionGroup((3,1,1)) # optional - gap3
sage: distinguished_reflections = W.distinguished_reflections() # optional -
→˓ gap3
sage: for index in sorted(distinguished_reflections.keys()): #␣
→˓optional - gap3
....: print('%s %s'%(index, distinguished_reflections[index])) #␣
→˓optional - gap3
1 (1,2,3)

sage: W = ReflectionGroup((1,1,3), (3,1,2)) # optional - gap3
sage: distinguished_reflections = W.distinguished_reflections() # optional -
→˓ gap3
sage: for index in sorted(distinguished_reflections.keys()): # optional -
→˓ gap3
....: print('%s %s'%(index, distinguished_reflections[index])) #␣
→˓optional - gap3
1 (1,6)(2,5)(7,8)
2 (1,5)(2,7)(6,8)
3 (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30)
4 (3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,27)(24,28)(25,
→˓26)(29,30)
5 (1,7)(2,6)(5,8)
6 (3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,27)(21,29)(22,
→˓23)(24,26)
7 (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29)
8 (3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,30)(18,27)(20,
→˓22)(25,28)

from_reduced_word(word, word_type='simple')
Return an element of self from its (reduced) word.

INPUT:
• word – a list (or iterable) of elements of the index set of self (resp. of the distinguished or of all

reflections)
• word_type – (optional, default: 'simple'): either 'simple', 'distinguished', or 'all'
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If word is [𝑖1, 𝑖2, . . . , 𝑖𝑘], then this returns the corresponding product of simple reflections
𝑠𝑖1𝑠𝑖2 · · · 𝑠𝑖𝑘 .

If word_type is 'distinguished' (resp. 'all'), then the product of the distinguished reflections
(resp. all reflections) is returned.

Note: The main use case is for constructing elements from reduced words, hence the name of this
method. However, the input word need not be reduced.

See also:

• index_set()
• reflection_index_set()
• hyperplane_index_set()
• apply_simple_reflections()
• reduced_word()
• _test_reduced_word()

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: W
The symmetric group on {0, ..., 3}
sage: s = W.simple_reflections()
sage: W.from_reduced_word([0,2,0,1])
(0, 3, 1, 2)
sage: W.from_reduced_word((0,2,0,1))
(0, 3, 1, 2)
sage: s[0]*s[2]*s[0]*s[1]
(0, 3, 1, 2)

We now experiment with the different values for word_type for the colored symmetric group:

sage: W = ColoredPermutations(1,4)
sage: W.from_reduced_word([1,2,1,2,1,2])
[[0, 0, 0, 0], [1, 2, 3, 4]]

sage: W.from_reduced_word([1, 2, 3]).reduced_word()
[1, 2, 3]

sage: W = WeylGroup("A3", prefix='s')
sage: AS = W.domain()
sage: r1 = AS.roots()[4]
sage: r1
(0, 1, 0, -1)
sage: r2 = AS.roots()[5]
sage: r2
(0, 0, 1, -1)
sage: W.from_reduced_word([r1, r2], word_type='all')
s3*s2

sage: W = WeylGroup("G2", prefix='s')
sage: W.from_reduced_word(W.domain().positive_roots(), word_type='all')
s1*s2

(continues on next page)
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sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.from_reduced_word([1,2,3], word_type='all').reduced_word() #␣
→˓optional - gap3
[1, 2, 3]

sage: W.from_reduced_word([1,2,3], word_type='all').reduced_word_in_
→˓reflections() # optional - gap3
[1, 2, 3]

sage: W.from_reduced_word([1,2,3]).reduced_word_in_reflections() #␣
→˓optional - gap3
[1, 2, 3]

group_generators()
Return the simple reflections of self, as distinguished group generators.

See also:

• simple_reflections()
• Groups.ParentMethods.group_generators()
• Semigroups.ParentMethods.semigroup_generators()

EXAMPLES:

sage: D10 = FiniteCoxeterGroups().example(10)
sage: D10.group_generators()
Finite family {1: (1,), 2: (2,)}
sage: SymmetricGroup(5).group_generators()
Finite family {1: (1,2), 2: (2,3), 3: (3,4), 4: (4,5)}

sage: W = ColoredPermutations(3,2)
sage: W.group_generators()
Finite family {1: [[0, 0],

[2, 1]],
2: [[0, 1],

[1, 2]]}

The simple reflections are also semigroup generators, even for an infinite group:

sage: W = WeylGroup(["A",2,1])
sage: W.semigroup_generators()
Finite family {0: [-1 1 1]

[ 0 1 0]
[ 0 0 1],

1: [ 1 0 0]
[ 1 -1 1]
[ 0 0 1],

2: [ 1 0 0]
[ 0 1 0]
[ 1 1 -1]}

hyperplane_index_set()
Return the index set of the distinguished reflections of self.
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This is also the index set of the reflection hyperplanes of self, hence the name. This name is slightly
abusive since the concept of reflection hyperplanes is not defined for all generalized Coxeter groups.
However for all practical purposes this is only used for complex reflection groups, and there this is the
desirable name.

See also:

• distinguished_reflection()
• distinguished_reflections()

EXAMPLES:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
(1, 2, 3, 4, 5, 6)
sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=[1,3,'asdf',7,9,
→˓11]) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
(1, 3, 'asdf', 7, 9, 11)
sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=('a','b','c','d','e
→˓','f')) # optional - gap3
sage: W.hyperplane_index_set() # optional - gap3
('a', 'b', 'c', 'd', 'e', 'f')

index_set()
Return the index set of (the simple reflections of) self, as a list (or iterable).

See also:

• simple_reflection()
• simple_reflections()

EXAMPLES:

sage: W = CoxeterGroups().Finite().example(); W
The 5-th dihedral group of order 10
sage: W.index_set()
(1, 2)

sage: W = ColoredPermutations(1, 4)
sage: W.index_set()
(1, 2, 3)
sage: W = ReflectionGroup((1,1,4), index_set=[1,3,'asdf']) # optional -␣
→˓gap3
sage: W.index_set() # optional - gap3
(1, 3, 'asdf')
sage: W = ReflectionGroup((1,1,4), index_set=('a','b','c')) # optional -␣
→˓gap3
sage: W.index_set() # optional - gap3
('a', 'b', 'c')

irreducible_component_index_sets()
Return a list containing the index sets of the irreducible components of self as finite reflection groups.

EXAMPLES:
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sage: W = ReflectionGroup([1,1,3], [3,1,3], 4); W # optional - gap3
Reducible complex reflection group of rank 7 and type A2 x G(3,1,3) x ST4
sage: sorted(W.irreducible_component_index_sets()) # optional - gap3
[[1, 2], [3, 4, 5], [6, 7]]

ALGORITHM:

Take the connected components of the graph on the index set with edges (i,j), where s[i] and s[j]
do not commute.

irreducible_components()
Return the irreducible components of self as finite reflection groups.

EXAMPLES:

sage: W = ReflectionGroup([1,1,3], [3,1,3], 4) # optional - gap3
sage: W.irreducible_components() # optional - gap3
[Irreducible real reflection group of rank 2 and type A2,
Irreducible complex reflection group of rank 3 and type G(3,1,3),
Irreducible complex reflection group of rank 2 and type ST4]

is_irreducible()
Return True if self is irreducible.

EXAMPLES:

sage: W = ColoredPermutations(1,3); W
1-colored permutations of size 3
sage: W.is_irreducible()
True

sage: W = ReflectionGroup((1,1,3),(2,1,3)); W # optional - gap3
Reducible real reflection group of rank 5 and type A2 x B3
sage: W.is_irreducible() # optional - gap3
False

is_reducible()
Return True if self is not irreducible.

EXAMPLES:

sage: W = ColoredPermutations(1,3); W
1-colored permutations of size 3
sage: W.is_reducible()
False

sage: W = ReflectionGroup((1,1,3), (2,1,3)); W # optional - gap3
Reducible real reflection group of rank 5 and type A2 x B3
sage: W.is_reducible() # optional - gap3
True

number_of_irreducible_components()
Return the number of irreducible components of self.

EXAMPLES:
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sage: SymmetricGroup(3).number_of_irreducible_components()
1

sage: ColoredPermutations(1,3).number_of_irreducible_components()
1

sage: ReflectionGroup((1,1,3),(2,1,3)).number_of_irreducible_components()
→˓# optional - gap3
2

number_of_simple_reflections()
Return the number of simple reflections of self.

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: W.number_of_simple_reflections()
2
sage: W = ColoredPermutations(2,3)
sage: W.number_of_simple_reflections()
3
sage: W = ColoredPermutations(4,3)
sage: W.number_of_simple_reflections()
3
sage: W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.number_of_simple_reflections() # optional - gap3
4

reflection(i)
Return the 𝑖-th reflection of self.

For 𝑖 in 1, . . . , 𝑁 , this gives the 𝑖-th reflection of self.

See also:

• reflections_index_set()
• reflections()

EXAMPLES:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: for i in W.reflection_index_set(): # optional - gap3
....: print('%s %s'%(i, W.reflection(i))) # optional - gap3
1 (1,7)(2,4)(5,6)(8,10)(11,12)
2 (1,4)(2,8)(3,5)(7,10)(9,11)
3 (2,5)(3,9)(4,6)(8,11)(10,12)
4 (1,8)(2,7)(3,6)(4,10)(9,12)
5 (1,6)(2,9)(3,8)(5,11)(7,12)
6 (1,11)(3,10)(4,9)(5,7)(6,12)

reflection_index_set()
Return the index set of the reflections of self.

See also:

• reflection()
• reflections()
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EXAMPLES:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
(1, 2, 3, 4, 5, 6)
sage: W = ReflectionGroup((1,1,4), reflection_index_set=[1,3,'asdf',7,9,
→˓11]) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
(1, 3, 'asdf', 7, 9, 11)
sage: W = ReflectionGroup((1,1,4), reflection_index_set=('a','b','c','d','e
→˓','f')) # optional - gap3
sage: W.reflection_index_set() # optional - gap3
('a', 'b', 'c', 'd', 'e', 'f')

reflections()
Return a finite family containing the reflections of self, indexed by reflection_index_set().

See also:

• reflection()
• reflection_index_set()

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: reflections = W.reflections() # optional - gap3
sage: for index in sorted(reflections.keys()): # optional - gap3
....: print('%s %s'%(index, reflections[index])) # optional - gap3
1 (1,4)(2,3)(5,6)
2 (1,3)(2,5)(4,6)
3 (1,5)(2,4)(3,6)

sage: W = ReflectionGroup((1,1,3),reflection_index_set=['a','b','c']) #␣
→˓optional - gap3
sage: reflections = W.reflections() # optional - gap3
sage: for index in sorted(reflections.keys()): # optional - gap3
....: print('%s %s'%(index, reflections[index])) # optional - gap3
a (1,4)(2,3)(5,6)
b (1,3)(2,5)(4,6)
c (1,5)(2,4)(3,6)

sage: W = ReflectionGroup((3,1,1)) # optional - gap3
sage: reflections = W.reflections() # optional - gap3
sage: for index in sorted(reflections.keys()): # optional - gap3
....: print('%s %s'%(index, reflections[index])) # optional - gap3
1 (1,2,3)
2 (1,3,2)

sage: W = ReflectionGroup((1,1,3), (3,1,2)) # optional - gap3
sage: reflections = W.reflections() # optional - gap3
sage: for index in sorted(reflections.keys()): # optional - gap3
....: print('%s %s'%(index, reflections[index])) # optional - gap3
1 (1,6)(2,5)(7,8)
2 (1,5)(2,7)(6,8)
3 (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30)

(continues on next page)
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4 (3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,27)(24,28)(25,
→˓26)(29,30)
5 (1,7)(2,6)(5,8)
6 (3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,27)(21,29)(22,
→˓23)(24,26)
7 (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29)
8 (3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,30)(18,27)(20,
→˓22)(25,28)
9 (3,15,9)(4,16,10)(12,23,17)(14,24,18)(20,29,25)(21,26,22)(27,30,28)
10 (4,27,21)(10,28,22)(11,19,13)(12,20,14)(16,30,26)(17,25,18)(23,29,24)

semigroup_generators()
Return the simple reflections of self, as distinguished group generators.

See also:

• simple_reflections()
• Groups.ParentMethods.group_generators()
• Semigroups.ParentMethods.semigroup_generators()

EXAMPLES:

sage: D10 = FiniteCoxeterGroups().example(10)
sage: D10.group_generators()
Finite family {1: (1,), 2: (2,)}
sage: SymmetricGroup(5).group_generators()
Finite family {1: (1,2), 2: (2,3), 3: (3,4), 4: (4,5)}

sage: W = ColoredPermutations(3,2)
sage: W.group_generators()
Finite family {1: [[0, 0],

[2, 1]],
2: [[0, 1],

[1, 2]]}

The simple reflections are also semigroup generators, even for an infinite group:

sage: W = WeylGroup(["A",2,1])
sage: W.semigroup_generators()
Finite family {0: [-1 1 1]

[ 0 1 0]
[ 0 0 1],

1: [ 1 0 0]
[ 1 -1 1]
[ 0 0 1],

2: [ 1 0 0]
[ 0 1 0]
[ 1 1 -1]}

simple_reflection(i)
Return the 𝑖-th simple reflection 𝑠𝑖 of self.

INPUT:
• i – an element from the index set

See also:
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• index_set()
• simple_reflections()

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: W
The symmetric group on {0, ..., 3}
sage: W.simple_reflection(1)
(0, 2, 1, 3)
sage: s = W.simple_reflections()
sage: s[1]
(0, 2, 1, 3)

sage: W = ReflectionGroup((1,1,4), index_set=[1,3,'asdf']) # optional -␣
→˓gap3
sage: for i in W.index_set(): # optional - gap3
....: print('%s %s'%(i, W.simple_reflection(i))) # optional - gap3
1 (1,7)(2,4)(5,6)(8,10)(11,12)
3 (1,4)(2,8)(3,5)(7,10)(9,11)
asdf (2,5)(3,9)(4,6)(8,11)(10,12)

simple_reflection_orders()
Return the orders of the simple reflections.

EXAMPLES:

sage: W = WeylGroup(['B',3])
sage: W.simple_reflection_orders()
[2, 2, 2]
sage: W = CoxeterGroup(['C',4])
sage: W.simple_reflection_orders()
[2, 2, 2, 2]
sage: SymmetricGroup(5).simple_reflection_orders()
[2, 2, 2, 2]
sage: C = ColoredPermutations(4, 3)
sage: C.simple_reflection_orders()
[2, 2, 4]

simple_reflections()
Return the simple reflections (𝑠𝑖)𝑖∈𝐼 of self as a family indexed by index_set().

See also:

• simple_reflection()
• index_set()

EXAMPLES:

For the symmetric group, we recognize the simple transpositions:

sage: W = SymmetricGroup(4); W
Symmetric group of order 4! as a permutation group
sage: s = W.simple_reflections()
sage: s
Finite family {1: (1,2), 2: (2,3), 3: (3,4)}
sage: s[1]

(continues on next page)
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(1,2)
sage: s[2]
(2,3)
sage: s[3]
(3,4)

Here are the simple reflections for a colored symmetric group and a reflection group:

sage: W = ColoredPermutations(1,3)
sage: W.simple_reflections()
Finite family {1: [[0, 0, 0], [2, 1, 3]], 2: [[0, 0, 0], [1, 3, 2]]}

sage: W = ReflectionGroup((1,1,3), index_set=['a','b']) # optional - gap3
sage: W.simple_reflections() # optional - gap3
Finite family {'a': (1,4)(2,3)(5,6), 'b': (1,3)(2,5)(4,6)}

This default implementation uses index_set() and simple_reflection().

some_elements()
Implement Sets.ParentMethods.some_elements() by returning some typical elements of self.

The result is currently composed of the simple reflections together with the unit and the result of
an_element().

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: W.some_elements()
[
[0 1 0 0] [1 0 0 0] [1 0 0 0] [1 0 0 0] [0 0 0 1]
[1 0 0 0] [0 0 1 0] [0 1 0 0] [0 1 0 0] [1 0 0 0]
[0 0 1 0] [0 1 0 0] [0 0 0 1] [0 0 1 0] [0 1 0 0]
[0 0 0 1], [0 0 0 1], [0 0 1 0], [0 0 0 1], [0 0 1 0]
]

sage: W = ColoredPermutations(1,4)
sage: W.some_elements()
[[[0, 0, 0, 0], [2, 1, 3, 4]],
[[0, 0, 0, 0], [1, 3, 2, 4]],
[[0, 0, 0, 0], [1, 2, 4, 3]],
[[0, 0, 0, 0], [1, 2, 3, 4]],
[[0, 0, 0, 0], [4, 1, 2, 3]]]

class SubcategoryMethods
Bases: object

Irreducible()
Return the full subcategory of irreducible objects of self.

A complex reflection group, or generalized coxeter group is reducible if its simple reflections can be
split in two sets 𝑋 and 𝑌 such that the elements of 𝑋 commute with that of 𝑌 . In particular, the group
is then direct product of ⟨𝑋⟩ and ⟨𝑌 ⟩. It’s irreducible otherwise.

EXAMPLES:
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sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: ComplexReflectionGroups().Irreducible()
Category of irreducible complex reflection groups
sage: CoxeterGroups().Irreducible()
Category of irreducible coxeter groups

super_categories()
Return the super categories of self.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: ComplexReflectionGroups().super_categories()
[Category of complex reflection or generalized coxeter groups]

4.29 Coxeter Group Algebras

class sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
Bases: object

demazure_lusztig_eigenvectors(q1, q2)
Return the family of eigenvectors for the Cherednik operators.

INPUT:
• self – a finite Coxeter group 𝑊
• q1,q2 – two elements of the ground ring 𝐾

The affine Hecke algebra 𝐻𝑞1,𝑞2(�̃� ) acts on the group algebra of 𝑊 through the Demazure-Lusztig
operators 𝑇𝑖. Its Cherednik operators 𝑌 𝜆 can be simultaneously diagonalized as long as 𝑞1/𝑞2 is not
a small root of unity [HST2008].

This method returns the family of joint eigenvectors, indexed by 𝑊 .

See also:

• demazure_lusztig_operators()
• sage.combinat.root_system.hecke_algebra_representation.
CherednikOperatorsEigenvectors

EXAMPLES:

sage: W = WeylGroup(["B",2])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_
→˓word())
sage: K = QQ['q1,q2'].fraction_field()
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: E = KW.demazure_lusztig_eigenvectors(q1,q2)
sage: E.keys()
Weyl Group of type ['B', 2] (as a matrix group acting on the ambient space)
sage: w = W.an_element()

(continues on next page)
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sage: E[w]
(q2/(-q1+q2))*2121 + ((-q2)/(-q1+q2))*121 - 212 + 12

demazure_lusztig_operator_on_basis(w, i, q1, q2, side='right')
Return the result of applying the 𝑖-th Demazure Lusztig operator on w.

INPUT:
• w – an element of the Coxeter group
• i – an element of the index set
• q1,q2 – two elements of the ground ring
• bar – a boolean (default False)

See demazure_lusztig_operators() for details.

EXAMPLES:

sage: W = WeylGroup(["B",3])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_
→˓word())
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: w = W.an_element()
sage: KW.demazure_lusztig_operator_on_basis(w, 0, q1, q2)
(-q2)*323123 + (q1+q2)*123
sage: KW.demazure_lusztig_operator_on_basis(w, 1, q1, q2)
q1*1231
sage: KW.demazure_lusztig_operator_on_basis(w, 2, q1, q2)
q1*1232
sage: KW.demazure_lusztig_operator_on_basis(w, 3, q1, q2)
(q1+q2)*123 + (-q2)*12

At 𝑞1 = 1 and 𝑞2 = 0 we recover the action of the isobaric divided differences 𝜋𝑖:

sage: KW.demazure_lusztig_operator_on_basis(w, 0, 1, 0)
123
sage: KW.demazure_lusztig_operator_on_basis(w, 1, 1, 0)
1231
sage: KW.demazure_lusztig_operator_on_basis(w, 2, 1, 0)
1232
sage: KW.demazure_lusztig_operator_on_basis(w, 3, 1, 0)
123

At 𝑞1 = 1 and 𝑞2 = −1 we recover the action of the simple reflection 𝑠𝑖:

sage: KW.demazure_lusztig_operator_on_basis(w, 0, 1, -1)
323123
sage: KW.demazure_lusztig_operator_on_basis(w, 1, 1, -1)
1231
sage: KW.demazure_lusztig_operator_on_basis(w, 2, 1, -1)
1232
sage: KW.demazure_lusztig_operator_on_basis(w, 3, 1, -1)
12
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demazure_lusztig_operators(q1, q2, side='right', affine=True)
Return the Demazure Lusztig operators acting on self.

INPUT:
• q1,q2 – two elements of the ground ring 𝐾
• side – "left" or "right" (default: "right"); which side to act upon
• affine – a boolean (default: True)

The Demazure-Lusztig operator 𝑇𝑖 is the linear map 𝑅 → 𝑅 obtained by interpolating between the
simple projection𝜋𝑖 (see CoxeterGroups.ElementMethods.simple_projection()) and the sim-
ple reflection 𝑠𝑖 so that 𝑇𝑖 has eigenvalues 𝑞1 and 𝑞2:

(𝑞1 + 𝑞2)𝜋𝑖 − 𝑞2𝑠𝑖.

The Demazure-Lusztig operators give the usual representation of the operators 𝑇𝑖 of the 𝑞1, 𝑞2 Hecke
algebra associated to the Coxeter group.

For a finite Coxeter group, and if affine=True, the Demazure-Lusztig operators 𝑇1, . . . , 𝑇𝑛 are com-
pleted by 𝑇0 to implement the level 0 action of the affine Hecke algebra.

EXAMPLES:

sage: W = WeylGroup(["B",3])
sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_
→˓word())
sage: K = QQ['q1,q2']
sage: q1, q2 = K.gens()
sage: KW = W.algebra(K)
sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True)
sage: x = KW.monomial(W.an_element()); x
123
sage: T[0](x)
(-q2)*323123 + (q1+q2)*123
sage: T[1](x)
q1*1231
sage: T[2](x)
q1*1232
sage: T[3](x)
(q1+q2)*123 + (-q2)*12

sage: T._test_relations()

Note: For a finite Weyl group 𝑊 , the level 0 action of the affine Weyl group �̃� only depends on the
Coxeter diagram of the affinization, not its Dynkin diagram. Hence it is possible to explore all cases
using only untwisted affinizations.
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4.30 Coxeter Groups

class sage.categories.coxeter_groups.CoxeterGroups(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of Coxeter groups.

A Coxeter group is a group 𝑊 with a distinguished (finite) family of involutions (𝑠𝑖)𝑖∈𝐼 , called the simple
reflections, subject to relations of the form (𝑠𝑖𝑠𝑗)

𝑚𝑖,𝑗 = 1.

𝐼 is the index set of 𝑊 and |𝐼| is the rank of 𝑊 .

See Wikipedia article Coxeter_group for details.

EXAMPLES:

sage: C = CoxeterGroups(); C
Category of coxeter groups
sage: C.super_categories()
[Category of generalized coxeter groups]

sage: W = C.example(); W
The symmetric group on {0, ..., 3}

sage: W.simple_reflections()
Finite family {0: (1, 0, 2, 3), 1: (0, 2, 1, 3), 2: (0, 1, 3, 2)}

Here are some further examples:

sage: FiniteCoxeterGroups().example()
The 5-th dihedral group of order 10
sage: FiniteWeylGroups().example()
The symmetric group on {0, ..., 3}
sage: WeylGroup(["B", 3])
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)

sage: S4 = SymmetricGroup(4); S4
Symmetric group of order 4! as a permutation group
sage: S4 in CoxeterGroups().Finite()
True

Those will eventually be also in this category:

sage: DihedralGroup(5)
Dihedral group of order 10 as a permutation group

Todo: add a demo of usual computations on Coxeter groups.

See also:

• sage.combinat.root_system

• WeylGroups

• GeneralizedCoxeterGroups
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Warning: It is assumed that morphisms in this category preserve the distinguished choice of simple reflec-
tions. In particular, subobjects in this category are parabolic subgroups. In this sense, this category might
be better named Coxeter Systems. In the long run we might want to have two distinct categories, one for
Coxeter groups (with morphisms being just group morphisms) and one for Coxeter systems:

sage: CoxeterGroups().is_full_subcategory(Groups())
False
sage: from sage.categories.generalized_coxeter_groups import␣
→˓GeneralizedCoxeterGroups
sage: CoxeterGroups().is_full_subcategory(GeneralizedCoxeterGroups())
True

Algebras
alias of sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras

class ElementMethods
Bases: object

absolute_covers()
Return the list of covers of self in absolute order.

See also:

absolute_length()

EXAMPLES:

sage: W = WeylGroup(["A", 3])
sage: s = W.simple_reflections()
sage: w0 = s[1]
sage: w1 = s[1]*s[2]*s[3]
sage: w0.absolute_covers()
[
[0 0 1 0] [0 1 0 0] [0 1 0 0] [0 0 0 1] [0 1 0 0]
[1 0 0 0] [1 0 0 0] [0 0 1 0] [1 0 0 0] [0 0 0 1]
[0 1 0 0] [0 0 0 1] [1 0 0 0] [0 0 1 0] [0 0 1 0]
[0 0 0 1], [0 0 1 0], [0 0 0 1], [0 1 0 0], [1 0 0 0]
]

absolute_le(other)
Return whether self is smaller than other in the absolute order.

A general reflection is an element of the form 𝑤𝑠𝑖𝑤
−1, where 𝑠𝑖 is a simple reflection. The absolute

order is defined analogously to the weak order but using general reflections rather than just simple
reflections.

This partial order can be used to define noncrossing partitions associated with this Coxeter group.

See also:

absolute_length()

EXAMPLES:

sage: W = WeylGroup(["A", 3])
sage: s = W.simple_reflections()
sage: w0 = s[1]

(continues on next page)
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sage: w1 = s[1]*s[2]*s[3]
sage: w0.absolute_le(w1)
True
sage: w1.absolute_le(w0)
False
sage: w1.absolute_le(w1)
True

absolute_length()
Return the absolute length of self.

The absolute length is the length of the shortest expression of the element as a product of reflections.

For permutations in the symmetric groups, the absolute length is the size minus the number of its
disjoint cycles.

See also:

absolute_le()

EXAMPLES:

sage: W = WeylGroup(["A", 3])
sage: s = W.simple_reflections()
sage: (s[1]*s[2]*s[3]).absolute_length()
3

sage: W = SymmetricGroup(4)
sage: s = W.simple_reflections()
sage: (s[3]*s[2]*s[1]).absolute_length()
3

apply_demazure_product(element, side='right', length_increasing=True)
Return the Demazure or 0-Hecke product of self with another Coxeter group element.

See CoxeterGroups.ParentMethods.simple_projections().

INPUT:
• element – either an element of the same Coxeter group as self or a tuple or a list (such as a

reduced word) of elements from the index set of the Coxeter group.
• side – ‘left’ or ‘right’ (default: ‘right’); the side of self on which the element should be ap-

plied. If side is ‘left’ then the operation is applied on the left.
• length_increasing – a boolean (default True) whether to act length increasingly or decreas-

ingly
EXAMPLES:

sage: W = WeylGroup(['C',4],prefix="s")
sage: v = W.from_reduced_word([1,2,3,4,3,1])
sage: v.apply_demazure_product([1,3,4,3,3])
s4*s1*s2*s3*s4*s3*s1
sage: v.apply_demazure_product([1,3,4,3],side='left')
s3*s4*s1*s2*s3*s4*s2*s3*s1
sage: v.apply_demazure_product((1,3,4,3),side='left')
s3*s4*s1*s2*s3*s4*s2*s3*s1
sage: v.apply_demazure_product(v)
s2*s3*s4*s1*s2*s3*s4*s2*s3*s2*s1
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apply_simple_projection(i, side='right', length_increasing=True)
Return the result of the application of the simple projection 𝜋𝑖 (resp. 𝜋𝑖) on self.

INPUT:
• i - an element of the index set of the Coxeter group
• side - ‘left’ or ‘right’ (default: ‘right’)
• length_increasing - a boolean (default: True) specifying the direction of the projection

See CoxeterGroups.ParentMethods.simple_projections() for the definition of the simple
projections.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: w = W.an_element()
sage: w
(1, 2, 3, 0)
sage: w.apply_simple_projection(2)
(1, 2, 3, 0)
sage: w.apply_simple_projection(2, length_increasing=False)
(1, 2, 0, 3)
sage: W = WeylGroup(['C',4],prefix="s")
sage: v = W.from_reduced_word([1,2,3,4,3,1])
sage: v
s1*s2*s3*s4*s3*s1
sage: v.apply_simple_projection(2)
s1*s2*s3*s4*s3*s1*s2
sage: v.apply_simple_projection(2, side='left')
s1*s2*s3*s4*s3*s1
sage: v.apply_simple_projection(1, length_increasing = False)
s1*s2*s3*s4*s3

binary_factorizations(predicate=The constant function (...) -> True)
Return the set of all the factorizations 𝑠𝑒𝑙𝑓 = 𝑢𝑣 such that 𝑙(𝑠𝑒𝑙𝑓) = 𝑙(𝑢) + 𝑙(𝑣).

Iterating through this set is Constant Amortized Time (counting arithmetic operations in the Coxeter
group as constant time) complexity, and memory linear in the length of 𝑠𝑒𝑙𝑓 .

One can pass as optional argument a predicate p such that 𝑝(𝑢) implies 𝑝(𝑢′) for any 𝑢 left factor of
𝑠𝑒𝑙𝑓 and 𝑢′ left factor of 𝑢. Then this returns only the factorizations 𝑠𝑒𝑙𝑓 = 𝑢𝑣 such 𝑝(𝑢) holds.

EXAMPLES:

We construct the set of all factorizations of the maximal element of the group:

sage: W = WeylGroup(['A',3])
sage: s = W.simple_reflections()
sage: w0 = W.from_reduced_word([1,2,3,1,2,1])
sage: w0.binary_factorizations().cardinality()
24

The same number of factorizations, by bounded length:

sage: [w0.binary_factorizations(lambda u: u.length() <= l).cardinality()␣
→˓for l in [-1,0,1,2,3,4,5,6]]
[0, 1, 4, 9, 15, 20, 23, 24]

The number of factorizations of the elements just below the maximal element:
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sage: [(s[i]*w0).binary_factorizations().cardinality() for i in [1,2,3]]
[12, 12, 12]
sage: w0.binary_factorizations(lambda u: False).cardinality()
0

bruhat_le(other)
Return whether self <= other in the Bruhat order.

INPUT:
• other – an element of the same Coxeter group

OUTPUT: a boolean

EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: u = W.from_reduced_word([1,2,1])
sage: v = W.from_reduced_word([1,2,3,2,1])
sage: u.bruhat_le(u)
True
sage: u.bruhat_le(v)
True
sage: v.bruhat_le(u)
False
sage: v.bruhat_le(v)
True
sage: s = W.simple_reflections()
sage: s[1].bruhat_le(W.one())
False

The implementation uses the equivalent condition that any reduced word for other contains a reduced
word for self as subword. See Stembridge, A short derivation of the Möbius function for the Bruhat
order. J. Algebraic Combin. 25 (2007), no. 2, 141–148, Proposition 1.1.

Complexity: 𝑂(𝑙 * 𝑐), where 𝑙 is the minimum of the lengths of 𝑢 and of 𝑣, and 𝑐 is the cost of the low
level methods first_descent(), has_descent(), apply_simple_reflection()), etc. Those
are typically 𝑂(𝑛), where 𝑛 is the rank of the Coxeter group.

bruhat_lower_covers()
Return all elements that self covers in (strong) Bruhat order.

If w = self has a descent at 𝑖, then the elements that 𝑤 covers are exactly {𝑤𝑠𝑖, 𝑢1𝑠𝑖, 𝑢2𝑠𝑖, ..., 𝑢𝑗𝑠𝑖},
where the 𝑢𝑘 are elements that 𝑤𝑠𝑖 covers that also do not have a descent at 𝑖.

EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: w = W.from_reduced_word([3,2,3])
sage: print([v.reduced_word() for v in w.bruhat_lower_covers()])
[[3, 2], [2, 3]]

sage: W = WeylGroup(["A",3])
sage: print([v.reduced_word() for v in W.simple_reflection(1).bruhat_lower_
→˓covers()])
[[]]
sage: print([v.reduced_word() for v in W.one().bruhat_lower_covers()])
[]

(continues on next page)
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sage: W = WeylGroup(["B",4,1])
sage: w = W.from_reduced_word([0,2])
sage: print([v.reduced_word() for v in w.bruhat_lower_covers()])
[[2], [0]]
sage: W = WeylGroup("A3",prefix="s",implementation="permutation")
sage: [s1,s2,s3]=W.simple_reflections()
sage: (s1*s2*s3*s1).bruhat_lower_covers()
[s2*s1*s3, s1*s2*s1, s1*s2*s3]

We now show how to construct the Bruhat poset:

sage: W = WeylGroup(["A",3])
sage: covers = tuple([u, v] for v in W for u in v.bruhat_lower_covers() )
sage: P = Poset((W, covers), cover_relations = True)
sage: P.show()

Alternatively, one can just use:

sage: P = W.bruhat_poset()

The algorithm is taken from Stembridge’s ‘coxeter/weyl’ package for Maple.

bruhat_lower_covers_reflections()
Return all 2-tuples of lower_covers and reflections (v, r) where v is covered by self and r is the
reflection such that self = v r.

ALGORITHM:

See bruhat_lower_covers()

EXAMPLES:

sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.bruhat_lower_covers_reflections()
[(s1*s2*s1, s1*s2*s3*s2*s1), (s3*s2*s1, s2), (s3*s1*s2, s1)]

bruhat_upper_covers()
Return all elements that cover self in (strong) Bruhat order.

The algorithm works recursively, using the ‘inverse’ of the method described for lower covers
bruhat_lower_covers(). Namely, it runs through all 𝑖 in the index set. Let 𝑤 equal self. If
𝑤 has no right descent 𝑖, then 𝑤𝑠𝑖 is a cover; if 𝑤 has a decent at 𝑖, then 𝑢𝑗𝑠𝑖 is a cover of 𝑤 where 𝑢𝑗

is a cover of 𝑤𝑠𝑖.

EXAMPLES:

sage: W = WeylGroup(['A',3,1], prefix="s")
sage: w = W.from_reduced_word([1,2,1])
sage: w.bruhat_upper_covers()
[s1*s2*s1*s0, s1*s2*s0*s1, s0*s1*s2*s1, s3*s1*s2*s1, s2*s3*s1*s2,␣
→˓s1*s2*s3*s1]

sage: W = WeylGroup(['A',3])
sage: w = W.long_element()
sage: w.bruhat_upper_covers()

(continues on next page)
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[]

sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([1,2,1])
sage: S = [v for v in W if w in v.bruhat_lower_covers()]
sage: C = w.bruhat_upper_covers()
sage: set(S) == set(C)
True

bruhat_upper_covers_reflections()
Return all 2-tuples of covers and reflections (v, r) where v covers self and r is the reflection such
that self = v r.

ALGORITHM:

See bruhat_upper_covers()

EXAMPLES:

sage: W = WeylGroup(['A',4], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.bruhat_upper_covers_reflections()
[(s1*s2*s3*s2*s1, s3), (s2*s3*s1*s2*s1, s2*s3*s2), (s3*s4*s1*s2*s1, s4),␣
→˓(s4*s3*s1*s2*s1, s1*s2*s3*s4*s3*s2*s1)]

canonical_matrix()
Return the matrix of self in the canonical faithful representation.

This is an 𝑛-dimension real faithful essential representation, where 𝑛 is the number of generators of
the Coxeter group. Note that this is not always the most natural matrix representation, for instance in
type 𝐴𝑛.

EXAMPLES:

sage: W = WeylGroup(["A", 3])
sage: s = W.simple_reflections()
sage: (s[1]*s[2]*s[3]).canonical_matrix()
[ 0 0 -1]
[ 1 0 -1]
[ 0 1 -1]

coset_representative(index_set, side='right')
Return the unique shortest element of the Coxeter group 𝑊 which is in the same left (resp. right) coset
as self, with respect to the parabolic subgroup 𝑊𝐼 .

INPUT:
• index_set - a subset (or iterable) of the nodes of the Dynkin diagram
• side - ‘left’ or ‘right’

EXAMPLES:

sage: W = CoxeterGroups().example(5)
sage: s = W.simple_reflections()
sage: w = s[2]*s[1]*s[3]
sage: w.coset_representative([]).reduced_word()
[2, 3, 1]

(continues on next page)
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sage: w.coset_representative([1]).reduced_word()
[2, 3]
sage: w.coset_representative([1,2]).reduced_word()
[2, 3]
sage: w.coset_representative([1,3] ).reduced_word()
[2]
sage: w.coset_representative([2,3] ).reduced_word()
[2, 1]
sage: w.coset_representative([1,2,3] ).reduced_word()
[]
sage: w.coset_representative([], side='left').reduced_word()
[2, 3, 1]
sage: w.coset_representative([1], side='left').reduced_word()
[2, 3, 1]
sage: w.coset_representative([1,2], side='left').reduced_word()
[3]
sage: w.coset_representative([1,3], side='left').reduced_word()
[2, 3, 1]
sage: w.coset_representative([2,3], side='left').reduced_word()
[1]
sage: w.coset_representative([1,2,3], side='left').reduced_word()
[]

cover_reflections(side='right')
Return the set of reflections t such that self t covers self.

If side is ‘left’, t self covers self.

EXAMPLES:

sage: W = WeylGroup(['A',4], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.cover_reflections()
[s3, s2*s3*s2, s4, s1*s2*s3*s4*s3*s2*s1]
sage: w.cover_reflections(side='left')
[s4, s2, s1*s2*s1, s3*s4*s3]

coxeter_sorting_word(c)
Return the c-sorting word of self.

For a Coxeter element 𝑐 and an element𝑤, the 𝑐-sorting word of𝑤 is the lexicographic minimal reduced
expression of 𝑤 in the infinite word 𝑐∞.

INPUT:
• c– a Coxeter element.

OUTPUT:

the c-sorting word of self as a list of integers.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: c = W.from_reduced_word([0,2,1])
sage: w = W.from_reduced_word([1,2,1,0,1])
sage: w.coxeter_sorting_word(c)
[2, 1, 2, 0, 1]
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deodhar_factor_element(w, index_set)
Return Deodhar’s Bruhat order factoring element.

INPUT:
• w is an element of the same Coxeter group W as self
• index_set is a subset of Dynkin nodes defining a parabolic subgroup W' of W

It is assumed that v = self and w are minimum length coset representatives for W/W' such that v ≤
w in Bruhat order.

OUTPUT:

Deodhar’s element f(v,w) is the unique element of W' such that, for all v' and w' in W', vv' ≤ ww'
in W if and only if v' ≤ f(v,w) * w' in W' where * is the Demazure product.

EXAMPLES:

sage: W = WeylGroup(['A',5],prefix="s")
sage: v = W.from_reduced_word([5])
sage: w = W.from_reduced_word([4,5,2,3,1,2])
sage: v.deodhar_factor_element(w,[1,3,4])
s3*s1
sage: W = WeylGroup(['C',2])
sage: w = W.from_reduced_word([2,1])
sage: w.deodhar_factor_element(W.from_reduced_word([2]),[1])
Traceback (most recent call last):
...
ValueError: [2, 1] is not of minimum length in its coset for the parabolic␣
→˓subgroup with index set [1]

REFERENCES:
• [Deo1987a]

deodhar_lift_down(w, index_set)
Letting v = self, given a Bruhat relation v W' ≥ w W' among cosets with respect to the subgroup
W' given by the Dynkin node subset index_set, returns the Bruhat-maximum lift x of wW' such that
v ≥ x.

INPUT:
• w is an element of the same Coxeter group W as self.
• index_set is a subset of Dynkin nodes defining a parabolic subgroup W'.

OUTPUT:

The unique Bruhat-maximum element x in W such that x W' = w W' and v ≥ x.

See also:

sage.categories.coxeter_groups.CoxeterGroups.ElementMethods.
deodhar_lift_up()

EXAMPLES:

sage: W = WeylGroup(['A',3],prefix="s")
sage: v = W.from_reduced_word([1,2,3,2])
sage: w = W.from_reduced_word([3,2])
sage: v.deodhar_lift_down(w, [3])
s2*s3*s2

deodhar_lift_up(w, index_set)
Letting v = self, given a Bruhat relation v W' ≤ w W' among cosets with respect to the subgroup
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W' given by the Dynkin node subset index_set, returns the Bruhat-minimum lift x of wW' such that
v ≤ x.

INPUT:
• w is an element of the same Coxeter group W as self.
• index_set is a subset of Dynkin nodes defining a parabolic subgroup W'.

OUTPUT:

The unique Bruhat-minimum element x in W such that x W' = w W' and v ≤ x.

See also:

sage.categories.coxeter_groups.CoxeterGroups.ElementMethods.
deodhar_lift_down()

EXAMPLES:

sage: W = WeylGroup(['A',3],prefix="s")
sage: v = W.from_reduced_word([1,2,3])
sage: w = W.from_reduced_word([1,3,2])
sage: v.deodhar_lift_up(w, [3])
s1*s2*s3*s2

descents(side='right', index_set=None, positive=False)
Return the descents of self, as a list of elements of the index_set.

INPUT:
• index_set - a subset (as a list or iterable) of the nodes of the Dynkin diagram; (default: all of

them)
• side - ‘left’ or ‘right’ (default: ‘right’)
• positive - a boolean (default: False)

The index_set option can be used to restrict to the parabolic subgroup indexed by index_set.

If positive is True, then returns the non-descents instead

Todo: find a better name for positive: complement? non_descent?

Caveat: the return type may change to some other iterable (tuple, . . . ) in the future. Please use keyword
arguments also, as the order of the arguments may change as well.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0]*s[1]
sage: w.descents()
[1]
sage: w = s[0]*s[2]
sage: w.descents()
[0, 2]

Todo: side, index_set, positive

first_descent(side='right', index_set=None, positive=False)
Return the first left (resp. right) descent of self, as an element of index_set, or None if there is none.
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See descents() for a description of the options.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[2]*s[0]
sage: w.first_descent()
0
sage: w = s[0]*s[2]
sage: w.first_descent()
0
sage: w = s[0]*s[1]
sage: w.first_descent()
1

has_descent(i, side='right', positive=False)
Return whether i is a (left/right) descent of self.

See descents() for a description of the options.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0] * s[1] * s[2]
sage: w.has_descent(2)
True
sage: [ w.has_descent(i) for i in [0,1,2] ]
[False, False, True]
sage: [ w.has_descent(i, side='left') for i in [0,1,2] ]
[True, False, False]
sage: [ w.has_descent(i, positive=True) for i in [0,1,2] ]
[True, True, False]

This default implementation delegates the work to has_left_descent() and
has_right_descent().

has_full_support()
Return whether self has full support.

An element is said to have full support if its support contains all simple reflections.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: w = W.from_reduced_word([1,2,1])
sage: w.has_full_support()
False
sage: w = W.from_reduced_word([1,2,1,0,1])
sage: w.has_full_support()
True

has_left_descent(i)
Return whether 𝑖 is a left descent of self.

This default implementation uses that a left descent of 𝑤 is a right descent of 𝑤−1.

EXAMPLES:
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sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.has_left_descent(0)
True
sage: w.has_left_descent(1)
False
sage: w.has_left_descent(2)
False

has_right_descent(i)
Return whether i is a right descent of self.

EXAMPLES:

sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: w = W.an_element(); w
(1, 2, 3, 0)
sage: w.has_right_descent(0)
False
sage: w.has_right_descent(1)
False
sage: w.has_right_descent(2)
True

inversions_as_reflections()
Return the set of reflections r such that self r < self.

EXAMPLES:

sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.inversions_as_reflections()
[s1, s1*s2*s1, s2, s1*s2*s3*s2*s1]

is_coxeter_sortable(c, sorting_word=None)
Return whether self is c-sortable.

Given a Coxeter element 𝑐, an element 𝑤 is 𝑐-sortable if its 𝑐-sorting word decomposes into a sequence
of weakly decreasing subwords of 𝑐.

INPUT:
• c – a Coxeter element.
• sorting_word – sorting word (default: None) used to not recompute the c-sorting word if already

computed.
OUTPUT:

is self c-sortable

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: c = W.from_reduced_word([0,2,1])
sage: w = W.from_reduced_word([1,2,1,0,1])

(continues on next page)
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sage: w.coxeter_sorting_word(c)
[2, 1, 2, 0, 1]
sage: w.is_coxeter_sortable(c)
False
sage: w = W.from_reduced_word([0,2,1,0,2])
sage: w.coxeter_sorting_word(c)
[2, 0, 1, 2, 0]
sage: w.is_coxeter_sortable(c)
True
sage: W = CoxeterGroup(['A',3])
sage: c = W.from_reduced_word([1,2,3])
sage: len([w for w in W if w.is_coxeter_sortable(c)]) # number of c-
→˓sortable elements in A_3 (Catalan number)
14

is_grassmannian(side='right')
Return whether self is Grassmannian.

INPUT:
• side – “left” or “right” (default: “right”)

An element is Grassmannian if it has at most one descent on the right (resp. on the left).

EXAMPLES:

sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: s = W.simple_reflections()
sage: W.one().is_grassmannian()
True
sage: s[1].is_grassmannian()
True
sage: (s[1]*s[2]).is_grassmannian()
True
sage: (s[0]*s[1]).is_grassmannian()
True
sage: (s[1]*s[2]*s[1]).is_grassmannian()
False

sage: (s[0]*s[2]*s[1]).is_grassmannian(side="left")
False
sage: (s[0]*s[2]*s[1]).is_grassmannian(side="right")
True
sage: (s[0]*s[2]*s[1]).is_grassmannian()
True

kazhdan_lusztig_cell(side='left')

Compute the left, right, or two-sided Kazhdan-Lusztig cell containing the element self de-
pending on the specified side.

Let𝐶 ′ denote the Kazhdan-Lusztig𝐶 ′-basis of the Iwahori-Hecke algebra𝐻 of a Coxeter sys-
tem (𝑊,𝑆). Two elements𝑥, 𝑦 of the Coxeter group𝑊 are said to lie in the same left Kazhdan-
Lusztig cell if there exist sequences 𝑥 = 𝑤1, 𝑤2, . . . , 𝑤𝑘 = 𝑦 and 𝑦 = 𝑢1, 𝑢2, . . . , 𝑢𝑙 = 𝑥
such that for all 1 ≤ 𝑖 < 𝑘 and all 1 ≤ 𝑗 < 𝑙, there exist some Coxeter generators 𝑠, 𝑡 ∈ 𝑆
for which 𝐶 ′

𝑤𝑖+1
appears in 𝐶 ′

𝑠𝐶
′
𝑤𝑖

and 𝐶 ′
𝑢𝑗+1

appears in 𝐶 ′
𝑠𝐶

′
𝑢𝑗

in 𝐻 . Right and two-sided
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Kazhdan-Lusztig cells of 𝑊 are defined similarly; see [Lus2013].

In this function, we compute products in the 𝐶 ′ basis by using IwahoriHeckeAlgebra.Cp.
As mentioned in that class, installing the optional package coxeter3 is recommended (though
not required) before using this function because the package speeds up product computations
that are sometimes computationally infeasible without it.

INPUT:
• w – an element of self
• side – (default: 'left') the kind of cell to compute; must be either 'left', 'right', or
'two-sided'

EXAMPLES:

We compute the left cell of the generator 𝑠1 in type 𝐴3 in three different implementations
of the Coxeter group. Note that the choice of implementation affects the representation of
elements in the output cell but not the method used for the cell computation:

sage: W = CoxeterGroup('A3', implementation='permutation')
sage: s1,s2,s3 = W.simple_reflections()
sage: s1.kazhdan_lusztig_cell()
{(1,2,3,12)(4,5,10,11)(6,7,8,9),
(1,2,10)(3,6,5)(4,7,8)(9,12,11),
(1,7)(2,4)(5,6)(8,10)(11,12)}

The cell computation uses the optional package coxeter3 in the background if available to
speed up the computation, even in the different implementations implementations:

sage: W = WeylGroup('A3', prefix='s') # optional -␣
→˓coxeter3
sage: s1,s2,s3 = W.simple_reflections() # optional -␣
→˓coxeter3
sage: s1.kazhdan_lusztig_cell() # optional -␣
→˓coxeter3
{s3*s2*s1, s2*s1, s1}
sage: W = CoxeterGroup('A3', implementation='coxeter3') # optional -␣
→˓coxeter3
sage: s1,s2,s3 = W.simple_reflections() # optional -␣
→˓coxeter3
sage: s1.kazhdan_lusztig_cell() # optional -␣
→˓coxeter3
{[1], [2, 1], [3, 2, 1]}

Next, we compute a right cell and a two-sided cell in 𝐴3:

sage: W = CoxeterGroup('A3', implementation='coxeter3') # optional -␣
→˓coxeter3

sage: s1,s2,s3 = W.simple_reflections() # optional -␣
→˓coxeter3

sage: w = s1 * s3 # optional -␣
→˓coxeter3

sage: w.kazhdan_lusztig_cell(side='right') # optional -␣
→˓coxeter3

{[1, 3], [1, 3, 2]}
sage: w.kazhdan_lusztig_cell(side='two-sided') # optional -␣

→˓coxeter3
(continues on next page)
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{[1, 3], [1, 3, 2], [2, 1, 3], [2, 1, 3, 2]}

Some slightly longer computations in `B_4`::

sage: W = CoxeterGroup('B4', implementation='coxeter3') # optional -
→˓ coxeter3

sage: s1,s2,s3,s4 = W.simple_reflections() # optional -
→˓ coxeter3

sage: s1.kazhdan_lusztig_cell(side='right') # long time␣
→˓(4 seconds) # optional - coxeter3

{[1],
[1, 2],
[1, 2, 3],
[1, 2, 3, 4],
[1, 2, 3, 4, 3],
[1, 2, 3, 4, 3, 2],
[1, 2, 3, 4, 3, 2, 1]}
sage: (s4*s2*s3*s4).kazhdan_lusztig_cell(side='two-sided') # long time␣

→˓(8 seconds) # optional - coxeter3
{[2, 3, 1],
[2, 3, 1, 2],
[2, 3, 4, 1],
[2, 3, 4, 1, 2],
[2, 3, 4, 1, 2, 3],
[2, 3, 4, 1, 2, 3, 4],
[2, 3, 4, 3, 1],
[2, 3, 4, 3, 1, 2],
...
[4, 3, 4, 2, 3, 4, 1, 2, 3, 4]}

left_inversions_as_reflections()
Return the set of reflections r such that r self < self.

EXAMPLES:

sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.left_inversions_as_reflections()
[s1, s3, s1*s2*s3*s2*s1, s2*s3*s2]

length()
Return the length of self.

This is the minimal length of a product of simple reflections giving self.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: s1 = W.simple_reflection(1)
sage: s2 = W.simple_reflection(2)
sage: s1.length()
1
sage: (s1*s2).length()
2

(continues on next page)
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sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0]*s[1]*s[0]
sage: w.length()
3
sage: W = CoxeterGroups().example()
sage: R.<x> = ZZ[]
sage: s = sum(x^w.length() for w in W)
sage: p = prod(sum(x^i for i in range(j)) for j in range(1, 5))
sage: s - p
0

See also:

reduced_word()

Todo: Should use reduced_word_iterator (or reverse_iterator)

lower_cover_reflections(side='right')
Return the reflections t such that self covers self t.

If side is ‘left’, self covers t self.

EXAMPLES:

sage: W = WeylGroup(['A',3],prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.lower_cover_reflections()
[s1*s2*s3*s2*s1, s2, s1]
sage: w.lower_cover_reflections(side='left')
[s2*s3*s2, s3, s1]

lower_covers(side='right', index_set=None)
Return all elements that self covers in weak order.

INPUT:
• side – ‘left’ or ‘right’ (default: ‘right’)
• index_set – a list of indices or None

OUTPUT: a list

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([3,2,1])
sage: [x.reduced_word() for x in w.lower_covers()]
[[3, 2]]

To obtain covers for left weak order, set the option side to ‘left’:

sage: [x.reduced_word() for x in w.lower_covers(side='left')]
[[2, 1]]
sage: w = W.from_reduced_word([3,2,3,1])
sage: [x.reduced_word() for x in w.lower_covers()]
[[2, 3, 2], [3, 2, 1]]
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Covers w.r.t. a parabolic subgroup are obtained with the option index_set:

sage: [x.reduced_word() for x in w.lower_covers(index_set = [1,2])]
[[2, 3, 2]]
sage: [x.reduced_word() for x in w.lower_covers(side='left')]
[[3, 2, 1], [2, 3, 1]]

min_demazure_product_greater(element)
Find the unique Bruhat-minimum element u such that v ≤ w * u where v is self, w is element and *
is the Demazure product.

INPUT:
• element is either an element of the same Coxeter group as self or a list (such as a reduced word)

of elements from the index set of the Coxeter group.
EXAMPLES:

sage: W = WeylGroup(['A',4],prefix="s")
sage: v = W.from_reduced_word([2,3,4,1,2])
sage: u = W.from_reduced_word([2,3,2,1])
sage: v.min_demazure_product_greater(u)
s4*s2
sage: v.min_demazure_product_greater([2,3,2,1])
s4*s2
sage: v.min_demazure_product_greater((2,3,2,1))
s4*s2

reduced_word()
Return a reduced word for self.

This is a word [𝑖1, 𝑖2, . . . , 𝑖𝑘] of minimal length such that 𝑠𝑖1𝑠𝑖2 · · · 𝑠𝑖𝑘 = self , where the 𝑠𝑖 are the
simple reflections.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0]*s[1]*s[2]
sage: w.reduced_word()
[0, 1, 2]
sage: w = s[0]*s[2]
sage: w.reduced_word()
[2, 0]

See also:

• reduced_words(), reduced_word_reverse_iterator(),
• length(), reduced_word_graph()

reduced_word_graph()
Return the reduced word graph of self.

The reduced word graph of an element𝑤 in a Coxeter group is the graph whose vertices are the reduced
words for 𝑤 (see reduced_word() for a definition of this term), and which has an 𝑚-colored edge
between two reduced words 𝑥 and 𝑦 whenever 𝑥 and 𝑦 differ by exactly one length-𝑚 braid move (with
𝑚 ≥ 2).

This graph is always connected (a theorem due to Tits) and has no multiple edges.

EXAMPLES:
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sage: W = WeylGroup(['A',3], prefix='s')
sage: w0 = W.long_element()
sage: G = w0.reduced_word_graph()
sage: G.num_verts()
16
sage: len(w0.reduced_words())
16
sage: G.num_edges()
18
sage: len([e for e in G.edges(sort=False) if e[2] == 2])
10
sage: len([e for e in G.edges(sort=False) if e[2] == 3])
8

See also:

reduced_words(), reduced_word_reverse_iterator(), length(), reduced_word()

reduced_word_reverse_iterator()
Return a reverse iterator on a reduced word for self.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: sigma = s[0]*s[1]*s[2]
sage: rI=sigma.reduced_word_reverse_iterator()
sage: [i for i in rI]
[2, 1, 0]
sage: s[0]*s[1]*s[2]==sigma
True
sage: sigma.length()
3

See also:

reduced_word()

Default implementation: recursively remove the first right descent until the identity is reached (see
first_descent() and apply_simple_reflection()).

reduced_words()
Return all reduced words for self.

See reduced_word() for the definition of a reduced word.

The algorithm uses the Matsumoto property that any two reduced expressions are related by braid
relations, see Theorem 3.3.1(ii) in [BB2005].

See also:

braid_orbit()

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0] * s[2]

(continues on next page)
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sage: sorted(w.reduced_words())
[[0, 2], [2, 0]]

sage: W = WeylGroup(['E',6])
sage: w = W.from_reduced_word([2,3,4,2])
sage: sorted(w.reduced_words())
[[2, 3, 4, 2], [3, 2, 4, 2], [3, 4, 2, 4]]

sage: W = ReflectionGroup(['A',3], index_set=["AA","BB",5]) # optional -␣
→˓gap3
sage: w = W.long_element() # optional -␣
→˓gap3
sage: w.reduced_words() # optional -␣
→˓gap3
[['AA', 5, 'BB', 5, 'AA', 'BB'],
['AA', 'BB', 5, 'BB', 'AA', 'BB'],
[5, 'BB', 'AA', 5, 'BB', 5],
['BB', 5, 'AA', 'BB', 5, 'AA'],
[5, 'BB', 5, 'AA', 'BB', 5],
['BB', 5, 'AA', 'BB', 'AA', 5],
[5, 'AA', 'BB', 'AA', 5, 'BB'],
['BB', 'AA', 5, 'BB', 5, 'AA'],
['AA', 'BB', 'AA', 5, 'BB', 'AA'],
[5, 'BB', 'AA', 'BB', 5, 'BB'],
['BB', 'AA', 5, 'BB', 'AA', 5],
[5, 'AA', 'BB', 5, 'AA', 'BB'],
['AA', 'BB', 5, 'AA', 'BB', 'AA'],
['BB', 5, 'BB', 'AA', 'BB', 5],
['AA', 5, 'BB', 'AA', 5, 'BB'],
['BB', 'AA', 'BB', 5, 'BB', 'AA']]

Todo: The result should be full featured finite enumerated set (e.g., counting can be done much faster
than iterating).

See also:

reduced_word(), reduced_word_reverse_iterator(), length(), reduced_word_graph()

reflection_length()
Return the reflection length of self.

The reflection length is the length of the shortest expression of the element as a product of reflections.

See also:

absolute_length()

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: s = W.simple_reflections()
sage: (s[1]*s[2]*s[3]).reflection_length()
3

(continues on next page)
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sage: W = SymmetricGroup(4)
sage: s = W.simple_reflections()
sage: (s[3]*s[2]*s[3]).reflection_length()
1

support()
Return the support of self, that is the simple reflections that appear in the reduced expressions of
self.

OUTPUT:

The support of self as a set of integers

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: w = W.from_reduced_word([1,2,1])
sage: w.support()
{1, 2}

upper_covers(side='right', index_set=None)
Return all elements that cover self in weak order.

INPUT:
• side – ‘left’ or ‘right’ (default: ‘right’)
• index_set – a list of indices or None

OUTPUT: a list

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([2,3])
sage: [x.reduced_word() for x in w.upper_covers()]
[[2, 3, 1], [2, 3, 2]]

To obtain covers for left weak order, set the option side to ‘left’:

sage: [x.reduced_word() for x in w.upper_covers(side='left')]
[[1, 2, 3], [2, 3, 2]]

Covers w.r.t. a parabolic subgroup are obtained with the option index_set:

sage: [x.reduced_word() for x in w.upper_covers(index_set = [1])]
[[2, 3, 1]]
sage: [x.reduced_word() for x in w.upper_covers(side='left', index_set =␣
→˓[1])]
[[1, 2, 3]]

weak_covers(side='right', index_set=None, positive=False)
Return all elements that self covers in weak order.

INPUT:
• side – ‘left’ or ‘right’ (default: ‘right’)
• positive – a boolean (default: False)
• index_set – a list of indices or None

OUTPUT: a list
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EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([3,2,1])
sage: [x.reduced_word() for x in w.weak_covers()]
[[3, 2]]

To obtain instead elements that cover self, set positive=True:

sage: [x.reduced_word() for x in w.weak_covers(positive=True)]
[[3, 1, 2, 1], [2, 3, 2, 1]]

To obtain covers for left weak order, set the option side to ‘left’:

sage: [x.reduced_word() for x in w.weak_covers(side='left')]
[[2, 1]]
sage: w = W.from_reduced_word([3,2,3,1])
sage: [x.reduced_word() for x in w.weak_covers()]
[[2, 3, 2], [3, 2, 1]]
sage: [x.reduced_word() for x in w.weak_covers(side='left')]
[[3, 2, 1], [2, 3, 1]]

Covers w.r.t. a parabolic subgroup are obtained with the option index_set:

sage: [x.reduced_word() for x in w.weak_covers(index_set = [1,2])]
[[2, 3, 2]]

weak_le(other, side='right')
Comparison in weak order.

INPUT:
• other – an element of the same Coxeter group
• side – ‘left’ or ‘right’ (default: ‘right’)

OUTPUT: a boolean

This returns whether self <= other in left (resp. right) weak order, that is if ‘v’ can be obtained from
‘v’ by length increasing multiplication by simple reflections on the left (resp. right).

EXAMPLES:

sage: W = WeylGroup(["A",3])
sage: u = W.from_reduced_word([1,2])
sage: v = W.from_reduced_word([1,2,3,2])
sage: u.weak_le(u)
True
sage: u.weak_le(v)
True
sage: v.weak_le(u)
False
sage: v.weak_le(v)
True

Comparison for left weak order is achieved with the option side:

sage: u.weak_le(v, side='left')
False
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The implementation uses the equivalent condition that any reduced word for 𝑢 is a right (resp. left)
prefix of some reduced word for 𝑣.

Complexity: 𝑂(𝑙 * 𝑐), where 𝑙 is the minimum of the lengths of 𝑢 and of 𝑣, and 𝑐 is the cost of the low
level methods first_descent(), has_descent(), apply_simple_reflection()), etc. Those
are typically 𝑂(𝑛), where 𝑛 is the rank of the Coxeter group.

We now run consistency tests with permutations:

sage: W = WeylGroup(["A",3])
sage: P4 = Permutations(4)
sage: def P4toW(w): return W.from_reduced_word(w.reduced_word())
sage: for u in P4: # long time (5s on sage.math, 2011)
....: for v in P4:
....: assert u.permutohedron_lequal(v) == P4toW(u).weak_le(P4toW(v))
....: assert u.permutohedron_lequal(v, side='left') == P4toW(u).
→˓weak_le(P4toW(v), side='left')

Finite
alias of sage.categories.finite_coxeter_groups.FiniteCoxeterGroups

class ParentMethods
Bases: object

braid_group_as_finitely_presented_group()
Return the associated braid group.

EXAMPLES:

sage: W = CoxeterGroup(['A',2])
sage: W.braid_group_as_finitely_presented_group()
Finitely presented group < S1, S2 | S1*S2*S1*S2^-1*S1^-1*S2^-1 >

sage: W = WeylGroup(['B',2])
sage: W.braid_group_as_finitely_presented_group()
Finitely presented group < S1, S2 | (S1*S2)^2*(S1^-1*S2^-1)^2 >

sage: W = ReflectionGroup(['B',3], index_set=["AA","BB",5]) # optional -␣
→˓gap3
sage: W.braid_group_as_finitely_presented_group() # optional -␣
→˓gap3
Finitely presented group < SAA, SBB, S5 |
SAA*SBB*SAA*SBB^-1*SAA^-1*SBB^-1, SAA*S5*SAA^-1*S5^-1,
(SBB*S5)^2*(SBB^-1*S5^-1)^2 >

braid_orbit(word)
Return the braid orbit of a word word of indices.

The input word does not need to be a reduced expression of an element.

INPUT:
• word: a list (or iterable) of indices in self.index_set()

OUTPUT: a list of all lists that can be obtained from word by replacements of braid relations

See braid_relations() for the definition of braid relations.

EXAMPLES:
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sage: W = CoxeterGroups().example()
sage: s = W.simple_reflections()
sage: w = s[0] * s[1] * s[2] * s[1]
sage: word = w.reduced_word(); word
[0, 1, 2, 1]

sage: sorted(W.braid_orbit(word))
[[0, 1, 2, 1], [0, 2, 1, 2], [2, 0, 1, 2]]

sage: sorted(W.braid_orbit([2,1,1,2,1]))
[[1, 2, 1, 1, 2], [2, 1, 1, 2, 1], [2, 1, 2, 1, 2], [2, 2, 1, 2, 2]]

sage: W = ReflectionGroup(['A',3], index_set=["AA","BB",5]) # optional -␣
→˓gap3
sage: w = W.long_element() # optional -␣
→˓gap3
sage: W.braid_orbit(w.reduced_word()) # optional -␣
→˓gap3
[['AA', 5, 'BB', 5, 'AA', 'BB'],
['AA', 'BB', 5, 'BB', 'AA', 'BB'],
[5, 'BB', 'AA', 5, 'BB', 5],
['BB', 5, 'AA', 'BB', 5, 'AA'],
[5, 'BB', 5, 'AA', 'BB', 5],
['BB', 5, 'AA', 'BB', 'AA', 5],
[5, 'AA', 'BB', 'AA', 5, 'BB'],
['BB', 'AA', 5, 'BB', 5, 'AA'],
['AA', 'BB', 'AA', 5, 'BB', 'AA'],
[5, 'BB', 'AA', 'BB', 5, 'BB'],
['BB', 'AA', 5, 'BB', 'AA', 5],
[5, 'AA', 'BB', 5, 'AA', 'BB'],
['AA', 'BB', 5, 'AA', 'BB', 'AA'],
['BB', 5, 'BB', 'AA', 'BB', 5],
['AA', 5, 'BB', 'AA', 5, 'BB'],
['BB', 'AA', 'BB', 5, 'BB', 'AA']]

Todo: The result should be full featured finite enumerated set (e.g., counting can be done much faster
than iterating).

See also:

reduced_words()

braid_relations()
Return the braid relations of self as a list of reduced words of the braid relations.

EXAMPLES:

sage: W = WeylGroup(["A",2])
sage: W.braid_relations()
[[[1, 2, 1], [2, 1, 2]]]

sage: W = WeylGroup(["B",3])
sage: W.braid_relations()

(continues on next page)
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[[[1, 2, 1], [2, 1, 2]], [[1, 3], [3, 1]], [[2, 3, 2, 3], [3, 2, 3, 2]]]

bruhat_graph(x=None, y=None, edge_labels=False)
Return the Bruhat graph as a directed graph, with an edge 𝑢 → 𝑣 if and only if 𝑢 < 𝑣 in the Bruhat
order, and 𝑢 = 𝑟 · 𝑣.

The Bruhat graph Γ(𝑥, 𝑦), defined if 𝑥 ≤ 𝑦 in the Bruhat order, has as its vertices the Bruhat interval
{𝑡|𝑥 ≤ 𝑡 ≤ 𝑦}, and as its edges are the pairs (𝑢, 𝑣) such that 𝑢 = 𝑟 · 𝑣 where 𝑟 is a reflection, that is,
a conjugate of a simple reflection.

REFERENCES:

Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of
Schubert varieties. Algebraic groups and their generalizations: classical methods (University Park,
PA, 1991), 53–61, Proc. Sympos. Pure Math., 56, Part 1, Amer. Math. Soc., Providence, RI, 1994.

EXAMPLES:

sage: W = CoxeterGroup(['H',3])
sage: G = W.bruhat_graph(); G
Digraph on 120 vertices

sage: W = CoxeterGroup(['A',2,1])
sage: s1, s2, s3 = W.simple_reflections()
sage: W.bruhat_graph(s1, s1*s3*s2*s3)
Digraph on 6 vertices

sage: W.bruhat_graph(s1, s3*s2*s3)
Digraph on 0 vertices

sage: W = WeylGroup("A3", prefix="s")
sage: s1, s2, s3 = W.simple_reflections()
sage: G = W.bruhat_graph(s1*s3, s1*s2*s3*s2*s1); G
Digraph on 10 vertices

Check that the graph has the correct number of edges (see trac ticket #17744):

sage: len(G.edges(sort=False))
16

bruhat_interval(x, y)
Return the list of t such that x <= t <= y.

EXAMPLES:

sage: W = WeylGroup("A3", prefix="s")
sage: [s1,s2,s3] = W.simple_reflections()
sage: W.bruhat_interval(s2,s1*s3*s2*s1*s3)
[s1*s2*s3*s2*s1, s2*s3*s2*s1, s3*s1*s2*s1, s1*s2*s3*s1,
s1*s2*s3*s2, s3*s2*s1, s2*s3*s1, s2*s3*s2, s1*s2*s1,
s3*s1*s2, s1*s2*s3, s2*s1, s3*s2, s2*s3, s1*s2, s2]

sage: W = WeylGroup(['A',2,1], prefix="s")
sage: [s0,s1,s2] = W.simple_reflections()

(continues on next page)
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sage: W.bruhat_interval(1,s0*s1*s2)
[s0*s1*s2, s1*s2, s0*s2, s0*s1, s2, s1, s0, 1]

bruhat_interval_poset(x, y, facade=False)
Return the poset of the Bruhat interval between x and y in Bruhat order.

EXAMPLES:

sage: W = WeylGroup("A3", prefix="s")
sage: s1,s2,s3 = W.simple_reflections()
sage: W.bruhat_interval_poset(s2, s1*s3*s2*s1*s3)
Finite poset containing 16 elements

sage: W = WeylGroup(['A',2,1], prefix="s")
sage: s0,s1,s2 = W.simple_reflections()
sage: W.bruhat_interval_poset(1, s0*s1*s2)
Finite poset containing 8 elements

canonical_representation()
Return the canonical faithful representation of self.

EXAMPLES:

sage: W = WeylGroup("A3")
sage: W.canonical_representation()
Finite Coxeter group over Integer Ring with Coxeter matrix:
[1 3 2]
[3 1 3]
[2 3 1]

coxeter_diagram()
Return the Coxeter diagram of self.

EXAMPLES:

sage: W = CoxeterGroup(['H',3], implementation="reflection")
sage: G = W.coxeter_diagram(); G
Graph on 3 vertices
sage: G.edges(sort=True)
[(1, 2, 3), (2, 3, 5)]
sage: CoxeterGroup(G) is W
True
sage: G = Graph([(0, 1, 3), (1, 2, oo)])
sage: W = CoxeterGroup(G)
sage: W.coxeter_diagram() == G
True
sage: CoxeterGroup(W.coxeter_diagram()) is W
True

coxeter_element()
Return a Coxeter element.

The result is the product of the simple reflections, in some order.

Note: This implementation is shared with well generated complex reflection groups. It would be
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nicer to put it in some joint super category; however, in the current state of the art, there is none where
it is clear that this is the right construction for obtaining a Coxeter element.

In this context, this is an element having a regular eigenvector (a vector not contained in any reflection
hyperplane of self).

EXAMPLES:

sage: CoxeterGroup(['A', 4]).coxeter_element().reduced_word()
[1, 2, 3, 4]
sage: CoxeterGroup(['B', 4]).coxeter_element().reduced_word()
[1, 2, 3, 4]
sage: CoxeterGroup(['D', 4]).coxeter_element().reduced_word()
[1, 2, 4, 3]
sage: CoxeterGroup(['F', 4]).coxeter_element().reduced_word()
[1, 2, 3, 4]
sage: CoxeterGroup(['E', 8]).coxeter_element().reduced_word()
[1, 3, 2, 4, 5, 6, 7, 8]
sage: CoxeterGroup(['H', 3]).coxeter_element().reduced_word()
[1, 2, 3]

This method is also used for well generated finite complex reflection groups:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.coxeter_element().reduced_word() # optional - gap3
[1, 2, 3]

sage: W = ReflectionGroup((2,1,4)) # optional - gap3
sage: W.coxeter_element().reduced_word() # optional - gap3
[1, 2, 3, 4]

sage: W = ReflectionGroup((4,1,4)) # optional - gap3
sage: W.coxeter_element().reduced_word() # optional - gap3
[1, 2, 3, 4]

sage: W = ReflectionGroup((4,4,4)) # optional - gap3
sage: W.coxeter_element().reduced_word() # optional - gap3
[1, 2, 3, 4]

coxeter_matrix()
Return the Coxeter matrix associated to self.

EXAMPLES:

sage: G = WeylGroup(['A',3])
sage: G.coxeter_matrix()
[1 3 2]
[3 1 3]
[2 3 1]

coxeter_type()
Return the Coxeter type of self.

EXAMPLES:
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sage: W = CoxeterGroup(['H',3])
sage: W.coxeter_type()
Coxeter type of ['H', 3]

demazure_product(Q)
Return the Demazure product of the list Q in self.

INPUT:
• Q is a list of elements from the index set of self.

This returns the Coxeter group element that represents the composition of 0-Hecke or Demazure op-
erators.

See CoxeterGroups.ParentMethods.simple_projections().

EXAMPLES:

sage: W = WeylGroup(['A',2])
sage: w = W.demazure_product([2,2,1])
sage: w.reduced_word()
[2, 1]

sage: w = W.demazure_product([2,1,2,1,2])
sage: w.reduced_word()
[1, 2, 1]

sage: W = WeylGroup(['B',2])
sage: w = W.demazure_product([2,1,2,1,2])
sage: w.reduced_word()
[2, 1, 2, 1]

elements_of_length(n)
Return all elements of length 𝑛.

EXAMPLES:

sage: A = AffinePermutationGroup(['A',2,1])
sage: [len(list(A.elements_of_length(i))) for i in [0..5]]
[1, 3, 6, 9, 12, 15]

sage: W = CoxeterGroup(['H',3])
sage: [len(list(W.elements_of_length(i))) for i in range(4)]
[1, 3, 5, 7]

sage: W = CoxeterGroup(['A',2])
sage: [len(list(W.elements_of_length(i))) for i in range(6)]
[1, 2, 2, 1, 0, 0]

fully_commutative_elements()
Return the set of fully commutative elements in this Coxeter group.

See also:

FullyCommutativeElements

EXAMPLES:
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sage: CoxeterGroup(['A', 3]).fully_commutative_elements()
Fully commutative elements of Finite Coxeter group over Integer Ring with␣
→˓Coxeter matrix:
[1 3 2]
[3 1 3]
[2 3 1]

grassmannian_elements(side='right')
Return the left or right Grassmannian elements of self as an enumerated set.

INPUT:
• side – (default: "right") "left" or "right"

EXAMPLES:

sage: S = CoxeterGroups().example()
sage: G = S.grassmannian_elements()
sage: G.cardinality()
12
sage: G.list()
[(0, 1, 2, 3), (1, 0, 2, 3), (0, 2, 1, 3), (0, 1, 3, 2),
(2, 0, 1, 3), (1, 2, 0, 3), (0, 3, 1, 2), (0, 2, 3, 1),
(3, 0, 1, 2), (1, 3, 0, 2), (1, 2, 3, 0), (2, 3, 0, 1)]
sage: sorted(tuple(w.descents()) for w in G)
[(), (0,), (0,), (0,), (1,), (1,), (1,), (1,), (1,), (2,), (2,), (2,)]
sage: G = S.grassmannian_elements(side = "left")
sage: G.cardinality()
12
sage: sorted(tuple(w.descents(side = "left")) for w in G)
[(), (0,), (0,), (0,), (1,), (1,), (1,), (1,), (1,), (2,), (2,), (2,)]

index_set()
Return the index set of self.

EXAMPLES:

sage: W = CoxeterGroup([[1,3],[3,1]])
sage: W.index_set()
(1, 2)
sage: W = CoxeterGroup([[1,3],[3,1]], index_set=['x', 'y'])
sage: W.index_set()
('x', 'y')
sage: W = CoxeterGroup(['H',3])
sage: W.index_set()
(1, 2, 3)

kazhdan_lusztig_cells(side='left')
Compute the left, right, or two-sided Kazhdan-Lusztig cells of self if self is finite.

The cells are computed by using kazhdan_lusztig_cell().

As detailed there, installation of the optional package coxeter3 is recommended (though not required)
before using this function as it speeds up the computation.

INPUT:
• side – (default: 'left') either 'left', 'right', or 'two-sided'

EXAMPLES:
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We compute the right cells in the Coxeter group of type 𝐴2 below. Note that each Coxeter group may
be created with multiple implementations, namely, ‘reflection’ (default), ‘permutation’, ‘matrix’, or
‘coxeter3’. The choice of implementation affects the representation of elements in the output cells but
not the method used for the cell computation:

sage: W = CoxeterGroup('A2')
sage: KL_cells = W.kazhdan_lusztig_cells(side='right')
sage: set([tuple(sorted(C, key=lambda w: w.reduced_word()))
....: for C in KL_cells])
{(
[-1 1] [ 0 -1]
[ 0 1], [ 1 -1]
),
(
[ 0 -1]
[-1 0]
),
(
[1 0]
[0 1]
),
(
[ 1 0] [-1 1]
[ 1 -1], [-1 0]
)}
sage: len(KL_cells)
4

sage: W = CoxeterGroup('A2', implementation='permutation')
sage: len(W.kazhdan_lusztig_cells(side='right'))
4

We compute the left cells in the Coxeter group of type 𝐴3 below. If the optional package coxeter3 is
installed, it runs in the background even if the group is not created with the 'coxeter3' implemen-
tation:

sage: W = CoxeterGroup('A3', implementation='coxeter3') # optional -␣
→˓coxeter3
sage: KL_cells = W.kazhdan_lusztig_cells() # optional -␣
→˓coxeter3
sage: set([tuple(sorted(C)) for C in KL_cells]) # optional -␣
→˓coxeter3
{([],),
([1], [2, 1], [3, 2, 1]),
([1, 2], [2], [3, 2]),
([1, 2, 1], [1, 3, 2, 1], [2, 1, 3, 2, 1]),
([1, 2, 1, 3], [1, 2, 3, 2, 1], [2, 3, 2, 1]),
([1, 2, 1, 3, 2], [1, 2, 3, 2], [2, 3, 2]),
([1, 2, 1, 3, 2, 1],),
([1, 2, 3], [2, 3], [3]),
([1, 3], [2, 1, 3]),
([1, 3, 2], [2, 1, 3, 2])}
sage: len(KL_cells) # optional -␣
→˓coxeter3

(continues on next page)
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10

sage: W = CoxeterGroup('A3', implementation='permutation') # optional -␣
→˓coxeter3
sage: len(W.kazhdan_lusztig_cells()) # optional -␣
→˓coxeter3
10

Computing the two sided cells in 𝐵3:

sage: W = CoxeterGroup('B3', implementation='coxeter3') #␣
→˓optional - coxeter3
sage: b3_cells = W.kazhdan_lusztig_cells('two-sided') #␣
→˓optional - coxeter3
sage: len(b3_cells) #␣
→˓optional - coxeter3
6
sage: set([tuple(sorted(C)) for C in W.kazhdan_lusztig_cells()]) #␣
→˓optional - coxeter3
{([],),
([1], [1, 2, 3, 2, 1], [2, 1], [2, 3, 2, 1], [3, 2, 1]),
([1, 2], [1, 2, 3, 2], [2], [2, 3, 2], [3, 2]),
([1, 2, 3], [2, 3], [3], [3, 2, 3]),
([2, 1, 2], [2, 3, 2, 1, 2], [3, 2, 1, 2]),
([2, 1, 2, 3], [2, 3, 2, 1, 2, 3], [3, 2, 1, 2, 3]),
([2, 1, 2, 3, 2], [2, 3, 2, 1, 2, 3, 2], [3, 2, 1, 2, 3, 2]),
([2, 1, 2, 3, 2, 1],
[2, 3, 2, 1, 2, 3, 2, 1],
[3, 2, 1, 2, 3, 2, 1],
[3, 2, 3, 2, 1, 2]),
([2, 3, 1], [3, 1], [3, 2, 3, 1]),
([2, 3, 1, 2], [3, 1, 2], [3, 2, 3, 1, 2]),
([2, 3, 1, 2, 3], [3, 1, 2, 3], [3, 2, 3, 1, 2, 3]),
([2, 3, 1, 2, 3, 2],
[3, 1, 2, 3, 2],
[3, 2, 3, 1, 2, 3, 2],
[3, 2, 3, 2],
[3, 2, 3, 2, 1, 2, 3, 2]),
([2, 3, 1, 2, 3, 2, 1],
[3, 1, 2, 3, 2, 1],
[3, 2, 3, 1, 2, 3, 2, 1],
[3, 2, 3, 2, 1],
[3, 2, 3, 2, 1, 2, 3]),
([3, 2, 3, 2, 1, 2, 3, 2, 1],)}

random_element_of_length(n)
Return a random element of length n in self.

Starts at the identity, then chooses an upper cover at random.

Not very uniform: actually constructs a uniformly random reduced word of length 𝑛. Thus we most
likely get elements with lots of reduced words!

EXAMPLES:
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sage: A = AffinePermutationGroup(['A', 7, 1])
sage: p = A.random_element_of_length(10)
sage: p in A
True
sage: p.length() == 10
True

sage: W = CoxeterGroup(['A', 4])
sage: p = W.random_element_of_length(5)
sage: p in W
True
sage: p.length() == 5
True

sign_representation(base_ring=None, side='twosided')
Return the sign representation of self over base_ring.

INPUT:
• base_ring – (optional) the base ring; the default is Z
• side – ignored

EXAMPLES:

sage: W = WeylGroup(["A", 1, 1])
sage: W.sign_representation()
Sign representation of Weyl Group of type ['A', 1, 1] (as a matrix group␣
→˓acting on the root space) over Integer Ring

simple_projection(i, side='right', length_increasing=True)
Return the simple projection 𝜋𝑖 (or 𝜋𝑖 if 𝑙𝑒𝑛𝑔𝑡ℎ𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 is False).

INPUT:
• i - an element of the index set of self

See simple_projections() for the options and for the definition of the simple projections.

EXAMPLES:

sage: W = CoxeterGroups().example()
sage: W
The symmetric group on {0, ..., 3}
sage: s = W.simple_reflections()
sage: sigma = W.an_element()
sage: sigma
(1, 2, 3, 0)
sage: u0 = W.simple_projection(0)
sage: d0 = W.simple_projection(0,length_increasing=False)
sage: sigma.length()
3
sage: pi=sigma*s[0]
sage: pi.length()
4
sage: u0(sigma)
(2, 1, 3, 0)
sage: pi
(2, 1, 3, 0)

(continues on next page)
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sage: u0(pi)
(2, 1, 3, 0)
sage: d0(sigma)
(1, 2, 3, 0)
sage: d0(pi)
(1, 2, 3, 0)

simple_projections(side='right', length_increasing=True)
Return the family of simple projections, also known as 0-Hecke or Demazure operators.

INPUT:
• self – a Coxeter group 𝑊
• side – ‘left’ or ‘right’ (default: ‘right’)
• length_increasing – a boolean (default: True) specifying whether the operator increases or

decreases length
This returns the simple projections of 𝑊 , as a family.

To each simple reflection 𝑠𝑖 of 𝑊 , corresponds a simple projection 𝜋𝑖 from 𝑊 to 𝑊 defined by:
𝜋𝑖(𝑤) = 𝑤𝑠𝑖 if 𝑖 is not a descent of 𝑤 𝜋𝑖(𝑤) = 𝑤 otherwise.

The simple projections (𝜋𝑖)𝑖∈𝐼 move elements down the right permutohedron, toward the maximal
element. They satisfy the same braid relations as the simple reflections, but are idempotents 𝜋2

𝑖 = 𝜋
not involutions 𝑠2𝑖 = 1. As such, the simple projections generate the 0-Hecke monoid.

By symmetry, one can also define the projections (𝜋𝑖)𝑖∈𝐼 (when the option length_increasing is
False):

𝜋𝑖(𝑤) = 𝑤𝑠𝑖 if 𝑖 is a descent of 𝑤 𝜋𝑖(𝑤) = 𝑤 otherwise.
as well as the analogues acting on the left (when the option side is ‘left’).

EXAMPLES:

sage: W = CoxeterGroups().example(); W
The symmetric group on {0, ..., 3}
sage: s = W.simple_reflections()
sage: sigma = W.an_element(); sigma
(1, 2, 3, 0)
sage: pi = W.simple_projections(); pi
Finite family {0: <function ...<lambda> at ...>, 1: <function ...<lambda>␣
→˓at ...>, 2: <function ...<lambda> ...>}
sage: pi[1](sigma)
(1, 3, 2, 0)
sage: W.simple_projection(1)(sigma)
(1, 3, 2, 0)

standard_coxeter_elements()
Return all standard Coxeter elements in self.

This is the set of all elements in self obtained from any product of the simple reflections in self.

Note:
• self is assumed to be well-generated.
• This works even beyond real reflection groups, but the conjugacy class is not unique and we only

obtain one such class.

EXAMPLES:
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sage: W = ReflectionGroup(4) # optional - gap3
sage: sorted(W.standard_coxeter_elements()) # optional - gap3
[(1,7,6,12,23,20)(2,8,17,24,9,5)(3,16,10,19,15,21)(4,14,11,22,18,13),
(1,10,4,12,21,22)(2,11,19,24,13,3)(5,15,7,17,16,23)(6,18,8,20,14,9)]

weak_order_ideal(predicate, side='right', category=None)
Return a weak order ideal defined by a predicate

INPUT:
• predicate: a predicate on the elements of self defining an weak order ideal in self
• side: “left” or “right” (default: “right”)

OUTPUT: an enumerated set

EXAMPLES:

sage: D6 = FiniteCoxeterGroups().example(5)
sage: I = D6.weak_order_ideal(predicate = lambda w: w.length() <= 3)
sage: I.cardinality()
7
sage: list(I)
[(), (1,), (2,), (1, 2), (2, 1), (1, 2, 1), (2, 1, 2)]

We now consider an infinite Coxeter group:

sage: W = WeylGroup(["A",1,1])
sage: I = W.weak_order_ideal(predicate = lambda w: w.length() <= 2)
sage: list(iter(I))
[
[1 0] [-1 2] [ 1 0] [ 3 -2] [-1 2]
[0 1], [ 0 1], [ 2 -1], [ 2 -1], [-2 3]
]

Even when the result is finite, some features of FiniteEnumeratedSets are not available:

sage: I.cardinality() # todo: not implemented
5
sage: list(I) # todo: not implemented

unless this finiteness is explicitly specified:

sage: I = W.weak_order_ideal(predicate = lambda w: w.length() <= 2,
....: category = FiniteEnumeratedSets())
sage: I.cardinality()
5
sage: list(I)
[
[1 0] [-1 2] [ 1 0] [ 3 -2] [-1 2]
[0 1], [ 0 1], [ 2 -1], [ 2 -1], [-2 3]
]
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Background

The weak order is returned as a RecursivelyEnumeratedSet_forest. This is achieved by assign-
ing to each element 𝑢1 of the ideal a single ancestor 𝑢 = 𝑢1𝑠𝑖, where 𝑖 is the smallest descent of
𝑢.

This allows for iterating through the elements in roughly Constant Amortized Time and constant mem-
ory (taking the operations and size of the generated objects as constants).

additional_structure()
Return None.

Indeed, all the structure Coxeter groups have in addition to groups (simple reflections, . . . ) is already defined
in the super category.

See also:

Category.additional_structure()

EXAMPLES:

sage: CoxeterGroups().additional_structure()

super_categories()
EXAMPLES:

sage: CoxeterGroups().super_categories()
[Category of generalized coxeter groups]

4.31 Crystals

class sage.categories.crystals.CrystalHomset(X, Y, category=None)
Bases: sage.categories.homset.Homset

The set of crystal morphisms from one crystal to another.

An 𝑈𝑞(g) 𝐼-crystal morphism Ψ : 𝐵 → 𝐶 is a map Ψ : 𝐵 ∪ {0} → 𝐶 ∪ {0} such that:

• Ψ(0) = 0.

• If 𝑏 ∈ 𝐵 and Ψ(𝑏) ∈ 𝐶, then wt(Ψ(𝑏)) = wt(𝑏), 𝜀𝑖(Ψ(𝑏)) = 𝜀𝑖(𝑏), and 𝜙𝑖(Ψ(𝑏)) = 𝜙𝑖(𝑏) for all 𝑖 ∈ 𝐼 .

• If 𝑏, 𝑏′ ∈ 𝐵, Ψ(𝑏),Ψ(𝑏′) ∈ 𝐶 and 𝑓𝑖𝑏 = 𝑏′, then 𝑓𝑖Ψ(𝑏) = Ψ(𝑏′) and Ψ(𝑏) = 𝑒𝑖Ψ(𝑏′) for all 𝑖 ∈ 𝐼 .

If the Cartan type is unambiguous, it is suppressed from the notation.

We can also generalize the definition of a crystal morphism by considering a map of 𝜎 of the (now possibly
different) Dynkin diagrams corresponding to 𝐵 and 𝐶 along with scaling factors 𝛾𝑖 ∈ Z for 𝑖 ∈ 𝐼 . Let 𝜎𝑖 denote
the orbit of 𝑖 under 𝜎. We write objects for 𝐵 as 𝑋 with corresponding objects of 𝐶 as ̂︀𝑋 . Then a virtual crystal
morphism Ψ is a map such that the following holds:

• Ψ(0) = 0.

• If 𝑏 ∈ 𝐵 and Ψ(𝑏) ∈ 𝐶, then for all 𝑗 ∈ 𝜎𝑖:

𝜀𝑖(𝑏) =
1

𝛾𝑗
̂︀𝜀𝑗(Ψ(𝑏)), 𝜙𝑖(𝑏) =

1

𝛾𝑗
̂︀𝜙𝑗(Ψ(𝑏)), wt(Ψ(𝑏)) =

∑︁
𝑖

𝑐𝑖
∑︁
𝑗∈𝜎𝑖

𝛾𝑗̂︀Λ𝑗 ,

where wt(𝑏) =
∑︀

𝑖 𝑐𝑖Λ𝑖.

4.31. Crystals 275



Category Framework, Release 9.7

• If 𝑏, 𝑏′ ∈ 𝐵, Ψ(𝑏),Ψ(𝑏′) ∈ 𝐶 and 𝑓𝑖𝑏 = 𝑏′, then independent of the ordering of 𝜎𝑖 we have:

Ψ(𝑏′) = 𝑒𝑖Ψ(𝑏) =
∏︁
𝑗∈𝜎𝑖

̂︀𝑒𝛾𝑖

𝑗 Ψ(𝑏), Ψ(𝑏′) = 𝑓𝑖Ψ(𝑏) =
∏︁
𝑗∈𝜎𝑖

̂︀𝑓𝛾𝑖

𝑗 Ψ(𝑏).

If 𝛾𝑖 = 1 for all 𝑖 ∈ 𝐼 and the Dynkin diagrams are the same, then we call Ψ a twisted crystal morphism.

INPUT:

• X – the domain

• Y – the codomain

• category – (optional) the category of the crystal morphisms

See also:

For the construction of an element of the homset, see CrystalMorphismByGenerators and
crystal_morphism().

EXAMPLES:

We begin with the natural embedding of 𝐵(2Λ1) into 𝐵(Λ1)⊗𝐵(Λ1) in type 𝐴1:

sage: B = crystals.Tableaux(['A',1], shape=[2])
sage: F = crystals.Tableaux(['A',1], shape=[1])
sage: T = crystals.TensorProduct(F, F)
sage: v = T.highest_weight_vectors()[0]; v
[[[1]], [[1]]]
sage: H = Hom(B, T)
sage: psi = H([v])
sage: b = B.highest_weight_vector(); b
[[1, 1]]
sage: psi(b)
[[[1]], [[1]]]
sage: b.f(1)
[[1, 2]]
sage: psi(b.f(1))
[[[1]], [[2]]]

We now look at the decomposition of 𝐵(Λ1)⊗𝐵(Λ1) into 𝐵(2Λ1)⊕𝐵(0):

sage: B0 = crystals.Tableaux(['A',1], shape=[])
sage: D = crystals.DirectSum([B, B0])
sage: H = Hom(T, D)
sage: psi = H(D.module_generators)
sage: psi
['A', 1] Crystal morphism:
From: Full tensor product of the crystals
[The crystal of tableaux of type ['A', 1] and shape(s) [[1]],
The crystal of tableaux of type ['A', 1] and shape(s) [[1]]]

To: Direct sum of the crystals Family
(The crystal of tableaux of type ['A', 1] and shape(s) [[2]],
The crystal of tableaux of type ['A', 1] and shape(s) [[]])

Defn: [[[1]], [[1]]] |--> [[1, 1]]
[[[2]], [[1]]] |--> []

sage: psi.is_isomorphism()
True
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We can always construct the trivial morphism which sends everything to 0:

sage: Binf = crystals.infinity.Tableaux(['B', 2])
sage: B = crystals.Tableaux(['B',2], shape=[1])
sage: H = Hom(Binf, B)
sage: psi = H(lambda x: None)
sage: psi(Binf.highest_weight_vector())

For Kirillov-Reshetikhin crystals, we consider the map to the corresponding classical crystal:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: B = K.classical_decomposition()
sage: H = Hom(K, B)
sage: psi = H(lambda x: x.lift(), cartan_type=['D',4])
sage: L = [psi(mg) for mg in K.module_generators]; L
[[], [[1], [2]]]
sage: all(x.parent() == B for x in L)
True

Next we consider a type 𝐷4 crystal morphism where we twist by 3↔ 4:

sage: B = crystals.Tableaux(['D',4], shape=[1])
sage: H = Hom(B, B)
sage: d = {1:1, 2:2, 3:4, 4:3}
sage: psi = H(B.module_generators, automorphism=d)
sage: b = B.highest_weight_vector()
sage: b.f_string([1,2,3])
[[4]]
sage: b.f_string([1,2,4])
[[-4]]
sage: psi(b.f_string([1,2,3]))
[[-4]]
sage: psi(b.f_string([1,2,4]))
[[4]]

We construct the natural virtual embedding of a type 𝐵3 into a type 𝐷4 crystal:

sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: H = Hom(B, C)
sage: psi = H(C.module_generators)
sage: psi
['B', 3] -> ['D', 4] Virtual Crystal morphism:
From: The crystal of tableaux of type ['B', 3] and shape(s) [[1]]
To: The crystal of tableaux of type ['D', 4] and shape(s) [[2]]
Defn: [[1]] |--> [[1, 1]]

sage: for b in B: print("{} |--> {}".format(b, psi(b)))
[[1]] |--> [[1, 1]]
[[2]] |--> [[2, 2]]
[[3]] |--> [[3, 3]]
[[0]] |--> [[3, -3]]
[[-3]] |--> [[-3, -3]]
[[-2]] |--> [[-2, -2]]
[[-1]] |--> [[-1, -1]]
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Element
alias of CrystalMorphismByGenerators

class sage.categories.crystals.CrystalMorphism(parent, cartan_type=None, virtualization=None,
scaling_factors=None)

Bases: sage.categories.morphism.Morphism

A crystal morphism.

INPUT:

• parent – a homset

• cartan_type – (optional) a Cartan type; the default is the Cartan type of the domain

• virtualization – (optional) a dictionary whose keys are in the index set of the domain and whose values
are lists of entries in the index set of the codomain

• scaling_factors – (optional) a dictionary whose keys are in the index set of the domain and whose
values are scaling factors for the weight, 𝜀 and 𝜙

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: psi = Hom(B, B).an_element()
sage: psi.cartan_type()
['A', 2]

is_injective()
Return if self is an injective crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: psi = Hom(B, B).an_element()
sage: psi.is_injective()
False

is_surjective()
Check if self is a surjective crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_surjective()
False
sage: im_gens = [None, B.module_generators[0]]
sage: psi = C.crystal_morphism(im_gens, codomain=B)
sage: psi.is_surjective()
True

sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: B = crystals.infinity.Tableaux(['A',2])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()

(continues on next page)
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sage: W = crystals.elementary.T(['A',2], La[1]+La[2])
sage: T = W.tensor(B)
sage: mg = T(W.module_generators[0], B.module_generators[0])
sage: psi = Hom(C,T)([mg])
sage: psi.is_surjective()
False

scaling_factors()
Return the scaling factors 𝛾𝑖.

EXAMPLES:

sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: psi = B.crystal_morphism(C.module_generators)
sage: psi.scaling_factors()
Finite family {1: 2, 2: 2, 3: 1}

virtualization()
Return the virtualization sets 𝜎𝑖.

EXAMPLES:

sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: psi = B.crystal_morphism(C.module_generators)
sage: psi.virtualization()
Finite family {1: (1,), 2: (2,), 3: (3, 4)}

class sage.categories.crystals.CrystalMorphismByGenerators(parent, on_gens, cartan_type=None,
virtualization=None,
scaling_factors=None, gens=None,
check=True)

Bases: sage.categories.crystals.CrystalMorphism

A crystal morphism defined by a set of generators which create a virtual crystal inside the codomain.

INPUT:

• parent – a homset

• on_gens – a function or list that determines the image of the generators (if given a list, then this uses the
order of the generators of the domain) of the domain under self

• cartan_type – (optional) a Cartan type; the default is the Cartan type of the domain

• virtualization – (optional) a dictionary whose keys are in the index set of the domain and whose values
are lists of entries in the index set of the codomain

• scaling_factors – (optional) a dictionary whose keys are in the index set of the domain and whose
values are scaling factors for the weight, 𝜀 and 𝜙

• gens – (optional) a finite list of generators to define the morphism; the default is to use the highest weight
vectors of the crystal

• check – (default: True) check if the crystal morphism is valid

See also:

sage.categories.crystals.Crystals.ParentMethods.crystal_morphism()
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im_gens()
Return the image of the generators of self as a tuple.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: F = crystals.Tableaux(['A',2], shape=[1])
sage: T = crystals.TensorProduct(F, F, F)
sage: H = Hom(T, B)
sage: b = B.highest_weight_vector()
sage: psi = H((None, b, b, None), generators=T.highest_weight_vectors())
sage: psi.im_gens()
(None, [[1, 1], [2]], [[1, 1], [2]], None)

image()
Return the image of self in the codomain as a Subcrystal.

Warning: This assumes that self is a strict crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['B',3], shape=[1])
sage: C = crystals.Tableaux(['D',4], shape=[2])
sage: H = Hom(B, C)
sage: psi = H(C.module_generators)
sage: psi.image()
Virtual crystal of The crystal of tableaux of type ['D', 4] and shape(s) [[2]]␣
→˓of type ['B', 3]

to_module_generator(x)
Return a generator mg and a path of 𝑒𝑖 and 𝑓𝑖 operations to mg.

OUTPUT:

A tuple consisting of:

• a module generator,

• a list of 'e' and 'f' to denote which operation, and

• a list of matching indices.

EXAMPLES:

sage: B = crystals.elementary.Elementary(['A',2], 2)
sage: psi = B.crystal_morphism(B.module_generators)
sage: psi.to_module_generator(B(4))
(0, ['f', 'f', 'f', 'f'], [2, 2, 2, 2])
sage: psi.to_module_generator(B(-2))
(0, ['e', 'e'], [2, 2])

class sage.categories.crystals.Crystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of crystals.

See sage.combinat.crystals.crystals for an introduction to crystals.
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EXAMPLES:

sage: C = Crystals()
sage: C
Category of crystals
sage: C.super_categories()
[Category of... enumerated sets]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1

Parents in this category should implement the following methods:

• either an attribute _cartan_type or a method cartan_type

• module_generators: a list (or container) of distinct elements which generate the crystal using 𝑓𝑖

Furthermore, their elements x should implement the following methods:

• x.e(i) (returning 𝑒𝑖(𝑥))

• x.f(i) (returning 𝑓𝑖(𝑥))

• x.epsilon(i) (returning 𝜀𝑖(𝑥))

• x.phi(i) (returning 𝜙𝑖(𝑥))

EXAMPLES:

sage: from sage.misc.abstract_method import abstract_methods_of_class
sage: abstract_methods_of_class(Crystals().element_class)
{'optional': [], 'required': ['e', 'epsilon', 'f', 'phi', 'weight']}

class ElementMethods
Bases: object

Epsilon()
EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(0).Epsilon()
(0, 0, 0, 0, 0, 0)
sage: C(1).Epsilon()
(0, 0, 0, 0, 0, 0)
sage: C(2).Epsilon()
(1, 0, 0, 0, 0, 0)

Phi()
EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(0).Phi()
(0, 0, 0, 0, 0, 0)
sage: C(1).Phi()
(1, 0, 0, 0, 0, 0)
sage: C(2).Phi()
(1, 1, 0, 0, 0, 0)

all_paths_to_highest_weight(index_set=None)
Iterate over all paths to the highest weight from self with respect to 𝑖𝑛𝑑𝑒𝑥𝑠𝑒𝑡.
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INPUT:
• index_set – (optional) a subset of the index set of self

EXAMPLES:

sage: B = crystals.infinity.Tableaux("A2")
sage: b0 = B.highest_weight_vector()
sage: b = b0.f_string([1, 2, 1, 2])
sage: L = b.all_paths_to_highest_weight()
sage: list(L)
[[2, 1, 2, 1], [2, 2, 1, 1]]

sage: Y = crystals.infinity.GeneralizedYoungWalls(3)
sage: y0 = Y.highest_weight_vector()
sage: y = y0.f_string([0, 1, 2, 3, 2, 1, 0])
sage: list(y.all_paths_to_highest_weight())
[[0, 1, 2, 3, 2, 1, 0],
[0, 1, 3, 2, 2, 1, 0],
[0, 3, 1, 2, 2, 1, 0],
[0, 3, 2, 1, 1, 0, 2],
[0, 3, 2, 1, 1, 2, 0]]

sage: B = crystals.Tableaux("A3", shape=[4,2,1])
sage: b0 = B.highest_weight_vector()
sage: b = b0.f_string([1, 1, 2, 3])
sage: list(b.all_paths_to_highest_weight())
[[1, 3, 2, 1], [3, 1, 2, 1], [3, 2, 1, 1]]

cartan_type()
Returns the Cartan type associated to self

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: C(1).cartan_type()
['A', 5]

e(i)
Return 𝑒𝑖 of self if it exists or None otherwise.

This method should be implemented by the element class of the crystal.

EXAMPLES:

sage: C = Crystals().example(5)
sage: x = C[2]; x
3
sage: x.e(1), x.e(2), x.e(3)
(None, 2, None)

e_string(list)
Applies 𝑒𝑖𝑟 · · · 𝑒𝑖1 to self for list as [𝑖1, ..., 𝑖𝑟]

EXAMPLES:

sage: C = crystals.Letters(['A',3])
sage: b = C(3)

(continues on next page)
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sage: b.e_string([2,1])
1
sage: b.e_string([1,2])

epsilon(i)
EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).epsilon(1)
0
sage: C(2).epsilon(1)
1

f(i)
Return 𝑓𝑖 of self if it exists or None otherwise.

This method should be implemented by the element class of the crystal.

EXAMPLES:

sage: C = Crystals().example(5)
sage: x = C[1]; x
2
sage: x.f(1), x.f(2), x.f(3)
(None, 3, None)

f_string(list)
Applies 𝑓𝑖𝑟 · · · 𝑓𝑖1 to self for list as [𝑖1, ..., 𝑖𝑟]

EXAMPLES:

sage: C = crystals.Letters(['A',3])
sage: b = C(1)
sage: b.f_string([1,2])
3
sage: b.f_string([2,1])

index_set()
EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).index_set()
(1, 2, 3, 4, 5)

is_highest_weight(index_set=None)
Return True if self is a highest weight.

Specifying the option index_set to be a subset 𝐼 of the index set of the underlying crystal, finds all
highest weight vectors for arrows in 𝐼 .

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).is_highest_weight()
True

(continues on next page)
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sage: C(2).is_highest_weight()
False
sage: C(2).is_highest_weight(index_set = [2,3,4,5])
True

is_lowest_weight(index_set=None)
Returns True if self is a lowest weight. Specifying the option index_set to be a subset 𝐼 of the
index set of the underlying crystal, finds all lowest weight vectors for arrows in 𝐼 .

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).is_lowest_weight()
False
sage: C(6).is_lowest_weight()
True
sage: C(4).is_lowest_weight(index_set = [1,3])
True

phi(i)
EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).phi(1)
1
sage: C(2).phi(1)
0

phi_minus_epsilon(i)
Return 𝜙𝑖 − 𝜀𝑖 of self.

There are sometimes better implementations using the weight for this. It is used for reflections along
a string.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).phi_minus_epsilon(1)
1

s(i)
Return the reflection of self along its 𝑖-string.

EXAMPLES:

sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: b = C(rows=[[1,1],[3]])
sage: b.s(1)
[[2, 2], [3]]
sage: b = C(rows=[[1,2],[3]])
sage: b.s(2)
[[1, 2], [3]]
sage: T = crystals.Tableaux(['A',2],shape=[4])
sage: t = T(rows=[[1,2,2,2]])

(continues on next page)

284 Chapter 4. Individual Categories



Category Framework, Release 9.7

(continued from previous page)

sage: t.s(1)
[[1, 1, 1, 2]]

subcrystal(index_set=None, max_depth=inf, direction='both', contained=None, cartan_type=None,
category=None)

Construct the subcrystal generated by self using 𝑒𝑖 and/or 𝑓𝑖 for all 𝑖 in index_set.

INPUT:
• index_set – (default: None) the index set; if None then use the index set of the crystal
• max_depth – (default: infinity) the maximum depth to build
• direction – (default: 'both') the direction to build the subcrystal; it can be one of the following:

– 'both' - using both 𝑒𝑖 and 𝑓𝑖
– 'upper' - using 𝑒𝑖
– 'lower' - using 𝑓𝑖

• contained – (optional) a set (or function) defining the containment in the subcrystal
• cartan_type – (optional) specify the Cartan type of the subcrystal
• category – (optional) specify the category of the subcrystal

See also:

• Crystals.ParentMethods.subcrystal()

EXAMPLES:

sage: C = crystals.KirillovReshetikhin(['A',3,1], 1, 2)
sage: elt = C(1,4)
sage: list(elt.subcrystal(index_set=[1,3]))
[[[1, 4]], [[2, 4]], [[1, 3]], [[2, 3]]]
sage: list(elt.subcrystal(index_set=[1,3], max_depth=1))
[[[1, 4]], [[2, 4]], [[1, 3]]]
sage: list(elt.subcrystal(index_set=[1,3], direction='upper'))
[[[1, 4]], [[1, 3]]]
sage: list(elt.subcrystal(index_set=[1,3], direction='lower'))
[[[1, 4]], [[2, 4]]]

tensor(*elts)
Return the tensor product of self with the crystal elements elts.

EXAMPLES:

sage: C = crystals.Letters(['A', 3])
sage: B = crystals.infinity.Tableaux(['A', 3])
sage: c = C[0]
sage: b = B.highest_weight_vector()
sage: t = c.tensor(c, b)
sage: ascii_art(t)

1 1 1
1 # 1 # 2 2

3
sage: tensor([c, c, b]) == t
True
sage: ascii_art(tensor([b, b, c]))
1 1 1 1 1 1
2 2 # 2 2 # 1
3 3
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to_highest_weight(index_set=None)
Return the highest weight element 𝑢 and a list [𝑖1, ..., 𝑖𝑘] such that 𝑠𝑒𝑙𝑓 = 𝑓𝑖1 ...𝑓𝑖𝑘𝑢, where 𝑖1, ..., 𝑖𝑘
are elements in 𝑖𝑛𝑑𝑒𝑥𝑠𝑒𝑡. By default the index set is assumed to be the full index set of self.

EXAMPLES:

sage: T = crystals.Tableaux(['A',3], shape = [1])
sage: t = T(rows = [[3]])
sage: t.to_highest_weight()
[[[1]], [2, 1]]
sage: T = crystals.Tableaux(['A',3], shape = [2,1])
sage: t = T(rows = [[1,2],[4]])
sage: t.to_highest_weight()
[[[1, 1], [2]], [1, 3, 2]]
sage: t.to_highest_weight(index_set = [3])
[[[1, 2], [3]], [3]]
sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: t = K(rows=[[2],[3]]); t.to_highest_weight(index_set=[1])
[[[1], [3]], [1]]
sage: t.to_highest_weight()
Traceback (most recent call last):
...
ValueError: this is not a highest weight crystal

to_lowest_weight(index_set=None)
Return the lowest weight element 𝑢 and a list [𝑖1, ..., 𝑖𝑘] such that 𝑠𝑒𝑙𝑓 = 𝑒𝑖1 ...𝑒𝑖𝑘𝑢, where 𝑖1, ..., 𝑖𝑘
are elements in 𝑖𝑛𝑑𝑒𝑥𝑠𝑒𝑡. By default the index set is assumed to be the full index set of self.

EXAMPLES:

sage: T = crystals.Tableaux(['A',3], shape = [1])
sage: t = T(rows = [[3]])
sage: t.to_lowest_weight()
[[[4]], [3]]
sage: T = crystals.Tableaux(['A',3], shape = [2,1])
sage: t = T(rows = [[1,2],[4]])
sage: t.to_lowest_weight()
[[[3, 4], [4]], [1, 2, 2, 3]]
sage: t.to_lowest_weight(index_set = [3])
[[[1, 2], [4]], []]
sage: K = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: t = K.module_generator(); t
[[1], [2]]
sage: t.to_lowest_weight(index_set=[1,2,3])
[[[3], [4]], [2, 1, 3, 2]]
sage: t.to_lowest_weight()
Traceback (most recent call last):
...
ValueError: this is not a highest weight crystal

weight()
Return the weight of this crystal element.

This method should be implemented by the element class of the crystal.

EXAMPLES:
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sage: C = crystals.Letters(['A',5])
sage: C(1).weight()
(1, 0, 0, 0, 0, 0)

Finite
alias of sage.categories.finite_crystals.FiniteCrystals

class MorphismMethods
Bases: object

is_embedding()
Check if self is an injective crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_embedding()
True

sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: B = crystals.infinity.Tableaux(['A',2])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: W = crystals.elementary.T(['A',2], La[1]+La[2])
sage: T = W.tensor(B)
sage: mg = T(W.module_generators[0], B.module_generators[0])
sage: psi = Hom(C,T)([mg])
sage: psi.is_embedding()
True

is_isomorphism()
Check if self is a crystal isomorphism.

EXAMPLES:

sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_isomorphism()
False

is_strict()
Check if self is a strict crystal morphism.

EXAMPLES:

sage: B = crystals.Tableaux(['C',2], shape=[1,1])
sage: C = crystals.Tableaux(['C',2], ([2,1], [1,1]))
sage: psi = B.crystal_morphism(C.module_generators[1:], codomain=C)
sage: psi.is_strict()
True

class ParentMethods
Bases: object
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Lambda()
Returns the fundamental weights in the weight lattice realization for the root system associated with
the crystal

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: C.Lambda()
Finite family {1: (1, 0, 0, 0, 0, 0), 2: (1, 1, 0, 0, 0, 0), 3: (1, 1, 1, 0,
→˓ 0, 0), 4: (1, 1, 1, 1, 0, 0), 5: (1, 1, 1, 1, 1, 0)}

an_element()
Returns an element of self

sage: C = crystals.Letters([‘A’, 5]) sage: C.an_element() 1

cartan_type()
Returns the Cartan type of the crystal

EXAMPLES:

sage: C = crystals.Letters(['A',2])
sage: C.cartan_type()
['A', 2]

connected_components()
Return the connected components of self as subcrystals.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: T.connected_components()
[Subcrystal of Full tensor product of the crystals
[The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
The crystal of letters for type ['A', 2]],
Subcrystal of Full tensor product of the crystals
[The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
The crystal of letters for type ['A', 2]],
Subcrystal of Full tensor product of the crystals
[The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
The crystal of letters for type ['A', 2]]]

connected_components_generators()
Return a tuple of generators for each of the connected components of self.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: T.connected_components_generators()
([[[1, 1], [2]], 1], [[[1, 2], [2]], 1], [[[1, 2], [3]], 1])
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crystal_morphism(on_gens, codomain=None, cartan_type=None, index_set=None, generators=None,
automorphism=None, virtualization=None, scaling_factors=None,
category=None, check=True)

Construct a crystal morphism from self to another crystal codomain.

INPUT:
• on_gens – a function or list that determines the image of the generators (if given a list, then this

uses the order of the generators of the domain) of self under the crystal morphism
• codomain – (default: self) the codomain of the morphism
• cartan_type – (optional) the Cartan type of the morphism; the default is the Cartan type of self
• index_set – (optional) the index set of the morphism; the default is the index set of the Cartan

type
• generators – (optional) the generators to define the morphism; the default is the generators of
self

• automorphism – (optional) the automorphism to perform the twisting
• virtualization – (optional) a dictionary whose keys are in the index set of the domain and

whose values are lists of entries in the index set of the codomain; the default is the identity dictio-
nary

• scaling_factors – (optional) a dictionary whose keys are in the index set of the domain and
whose values are scaling factors for the weight, 𝜀 and 𝜙; the default are all scaling factors to be
one

• category – (optional) the category for the crystal morphism; the default is the category of
Crystals.

• check – (default: True) check if the crystal morphism is valid
See also:

For more examples, see sage.categories.crystals.CrystalHomset.

EXAMPLES:

We construct the natural embedding of a crystal using tableaux into the tensor product of single boxes
via the reading word:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: F = crystals.Tableaux(['A',2], shape=[1])
sage: T = crystals.TensorProduct(F, F, F)
sage: mg = T.highest_weight_vectors()[2]; mg
[[[1]], [[2]], [[1]]]
sage: psi = B.crystal_morphism([mg], codomain=T); psi
['A', 2] Crystal morphism:
From: The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]]
To: Full tensor product of the crystals

[The crystal of tableaux of type ['A', 2] and shape(s) [[1]],
The crystal of tableaux of type ['A', 2] and shape(s) [[1]],
The crystal of tableaux of type ['A', 2] and shape(s) [[1]]]

Defn: [[1, 1], [2]] |--> [[[1]], [[2]], [[1]]]
sage: b = B.module_generators[0]
sage: b.pp()
1 1
2

sage: psi(b)
[[[1]], [[2]], [[1]]]
sage: psi(b.f(2))
[[[1]], [[3]], [[1]]]
sage: psi(b.f_string([2,1,1]))

(continues on next page)
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[[[2]], [[3]], [[2]]]
sage: lw = b.to_lowest_weight()[0]
sage: lw.pp()
2 3
3

sage: psi(lw)
[[[3]], [[3]], [[2]]]
sage: psi(lw) == mg.to_lowest_weight()[0]
True

We now take the other isomorphic highest weight component in the tensor product:

sage: mg = T.highest_weight_vectors()[1]; mg
[[[2]], [[1]], [[1]]]
sage: psi = B.crystal_morphism([mg], codomain=T)
sage: psi(lw)
[[[3]], [[2]], [[3]]]

We construct a crystal morphism of classical crystals using a Kirillov-Reshetikhin crystal:

sage: B = crystals.Tableaux(['D', 4], shape=[1,1])
sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,2)
sage: K.module_generators
[[], [[1], [2]], [[1, 1], [2, 2]]]
sage: v = K.module_generators[1]
sage: psi = B.crystal_morphism([v], codomain=K, category=FiniteCrystals())
sage: psi
['D', 4] -> ['D', 4, 1] Virtual Crystal morphism:
From: The crystal of tableaux of type ['D', 4] and shape(s) [[1, 1]]
To: Kirillov-Reshetikhin crystal of type ['D', 4, 1] with (r,s)=(2,2)
Defn: [[1], [2]] |--> [[1], [2]]

sage: b = B.module_generators[0]
sage: psi(b)
[[1], [2]]
sage: psi(b.to_lowest_weight()[0])
[[-2], [-1]]

We can define crystal morphisms using a different set of generators. For example, we construct an
example using the lowest weight vector:

sage: B = crystals.Tableaux(['A',2], shape=[1])
sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: T = crystals.elementary.T(['A',2], La[2])
sage: Bp = T.tensor(B)
sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: x = C.module_generators[0].f_string([1,2])
sage: psi = Bp.crystal_morphism([x], generators=Bp.lowest_weight_vectors())
sage: psi(Bp.highest_weight_vector())
[[1, 1], [2]]

We can also use a dictionary to specify the generators and their images:
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sage: psi = Bp.crystal_morphism({Bp.lowest_weight_vectors()[0]: x})
sage: psi(Bp.highest_weight_vector())
[[1, 1], [2]]

We construct a twisted crystal morphism induced from the diagram automorphism of type 𝐴(1)
3 :

sage: La = RootSystem(['A',3,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: B0 = crystals.GeneralizedYoungWalls(3, La[0])
sage: B1 = crystals.GeneralizedYoungWalls(3, La[1])
sage: phi = B0.crystal_morphism(B1.module_generators, automorphism={0:1,␣
→˓1:2, 2:3, 3:0})
sage: phi
['A', 3, 1] Twisted Crystal morphism:
From: Highest weight crystal of generalized Young walls of Cartan type ['A

→˓', 3, 1] and highest weight Lambda[0]
To: Highest weight crystal of generalized Young walls of Cartan type ['A

→˓', 3, 1] and highest weight Lambda[1]
Defn: [] |--> []

sage: x = B0.module_generators[0].f_string([0,1,2,3]); x
[[0, 3], [1], [2]]
sage: phi(x)
[[], [1, 0], [2], [3]]

We construct a virtual crystal morphism from type 𝐺2 into type 𝐷4:

sage: D = crystals.Tableaux(['D',4], shape=[1,1])
sage: G = crystals.Tableaux(['G',2], shape=[1])
sage: psi = G.crystal_morphism(D.module_generators,
....: virtualization={1:[2],2:[1,3,4]},
....: scaling_factors={1:1, 2:1})
sage: for x in G:
....: ascii_art(x, psi(x), sep=' |--> ')
....: print("")

1
1 |--> 2

1
2 |--> 3

2
3 |--> -3

3
0 |--> -3

3
-3 |--> -2

-3
-2 |--> -1

-2
(continues on next page)

4.31. Crystals 291



Category Framework, Release 9.7

(continued from previous page)

-1 |--> -1

digraph(subset=None, index_set=None)
Return the DiGraph associated to self.

INPUT:
• subset – (optional) a subset of vertices for which the digraph should be constructed
• index_set – (optional) the index set to draw arrows

EXAMPLES:

sage: C = Crystals().example(5)
sage: C.digraph()
Digraph on 6 vertices

The edges of the crystal graph are by default colored using blue for edge 1, red for edge 2, and green
for edge 3:

sage: C = Crystals().example(3)
sage: G = C.digraph()
sage: view(G) # optional - dot2tex graphviz, not tested (opens external␣
→˓window)

One may also overwrite the colors:

sage: C = Crystals().example(3)
sage: G = C.digraph()
sage: G.set_latex_options(color_by_label = {1:"red", 2:"purple", 3:"blue"})
sage: view(G) # optional - dot2tex graphviz, not tested (opens external␣
→˓window)

Or one may add colors to yet unspecified edges:

sage: C = Crystals().example(4)
sage: G = C.digraph()
sage: C.cartan_type()._index_set_coloring[4]="purple"
sage: view(G) # optional - dot2tex graphviz, not tested (opens external␣
→˓window)

Here is an example of how to take the top part up to a given depth of an infinite dimensional crystal:

sage: C = CartanType(['C',2,1])
sage: La = C.root_system().weight_lattice().fundamental_weights()
sage: T = crystals.HighestWeight(La[0])
sage: S = T.subcrystal(max_depth=3)
sage: G = T.digraph(subset=S); G
Digraph on 5 vertices
sage: G.vertices(sort=True, key=str)
[(-Lambda[0] + 2*Lambda[1] - delta,),
(1/2*Lambda[0] + Lambda[1] - Lambda[2] - 1/2*delta, -1/2*Lambda[0] +␣
→˓Lambda[1] - 1/2*delta),
(1/2*Lambda[0] - Lambda[1] + Lambda[2] - 1/2*delta, -1/2*Lambda[0] +␣
→˓Lambda[1] - 1/2*delta),
(Lambda[0] - 2*Lambda[1] + 2*Lambda[2] - delta,),
(Lambda[0],)]
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Here is a way to construct a picture of a Demazure crystal using the subset option:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = B.highest_weight_vector()
sage: D = B.demazure_subcrystal(t, [2,1])
sage: list(D)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
[[1, 3], [2]], [[1, 3], [3]]]
sage: view(D) # optional - dot2tex graphviz, not tested (opens external␣
→˓window)

We can also choose to display particular arrows using the index_set option:

sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 1)
sage: G = C.digraph(index_set=[1,3])
sage: len(G.edges(sort=False))
20
sage: view(G) # optional - dot2tex graphviz, not tested (opens external␣
→˓window)

Todo: Add more tests.

direct_sum(X)
Return the direct sum of self with X.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: B.direct_sum(C)
Direct sum of the crystals Family
(The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
The crystal of letters for type ['A', 2])

As a shorthand, we can use +:

sage: B + C
Direct sum of the crystals Family
(The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]],
The crystal of letters for type ['A', 2])

dot_tex()
Return a dot_tex string representation of self.

EXAMPLES:

sage: C = crystals.Letters(['A',2])
sage: C.dot_tex()
'digraph G { \n node [ shape=plaintext ];\n N_0 [ label = " ", texlbl = "
→˓$1$" ];\n N_1 [ label = " ", texlbl = "$2$" ];\n N_2 [ label = " ",␣
→˓texlbl = "$3$" ];\n N_0 -> N_1 [ label = " ", texlbl = "1" ];\n N_1 ->␣
→˓N_2 [ label = " ", texlbl = "2" ];\n}'

index_set()
Returns the index set of the Dynkin diagram underlying the crystal
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EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: C.index_set()
(1, 2, 3, 4, 5)

is_connected()
Return True if self is a connected crystal.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: B.is_connected()
True
sage: T.is_connected()
False

latex(**options)
Returns the crystal graph as a latex string. This can be exported to a file with self.latex_file(‘filename’).

EXAMPLES:

sage: T = crystals.Tableaux(['A',2],shape=[1])
sage: T._latex_()
'...tikzpicture...'
sage: view(T) # optional - dot2tex graphviz, not tested (opens external␣
→˓window)

One can for example also color the edges using the following options:

sage: T = crystals.Tableaux(['A',2],shape=[1])
sage: T._latex_(color_by_label={0:"black", 1:"red", 2:"blue"})
'...tikzpicture...'

latex_file(filename)
Export a file, suitable for pdflatex, to ‘filename’.

This requires a proper installation of dot2tex in sage-python. For more information see the docu-
mentation for self.latex().

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: fn = tmp_filename(ext='.tex')
sage: C.latex_file(fn)

metapost(filename, thicklines=False, labels=True, scaling_factor=1.0, tallness=1.0)
Use C.metapost(“filename.mp”,[options]), where options can be:

thicklines = True (for thicker edges) labels = False (to suppress labeling of the vertices) scal-
ing_factor=value, where value is a floating point number, 1.0 by default. Increasing or decreasing the
scaling factor changes the size of the image. tallness=1.0. Increasing makes the image taller without
increasing the width.

Root operators e(1) or f(1) move along red lines, e(2) or f(2) along green. The highest weight is in
the lower left. Vertices with the same weight are kept close together. The concise labels on the nodes
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are strings introduced by Berenstein and Zelevinsky and Littelmann; see Littelmann’s paper Cones,
Crystals, Patterns, sections 5 and 6.

For Cartan types B2 or C2, the pattern has the form

a2 a3 a4 a1

where c*a2 = a3 = 2*a4 =0 and a1=0, with c=2 for B2, c=1 for C2. Applying e(2) a1 times, e(1) a2
times, e(2) a3 times, e(1) a4 times returns to the highest weight. (Observe that Littelmann writes the
roots in opposite of the usual order, so our e(1) is his e(2) for these Cartan types.) For type A2, the
pattern has the form

a3 a2 a1

where applying e(1) a1 times, e(2) a2 times then e(3) a1 times returns to the highest weight. These
data determine the vertex and may be translated into a Gelfand-Tsetlin pattern or tableau.

EXAMPLES:

sage: C = crystals.Letters(['A', 2])
sage: C.metapost(tmp_filename())

sage: C = crystals.Letters(['A', 5])
sage: C.metapost(tmp_filename())
Traceback (most recent call last):
...
NotImplementedError

number_of_connected_components()
Return the number of connected components of self.

EXAMPLES:

sage: B = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(B,C)
sage: T.number_of_connected_components()
3

plot(**options)
Return the plot of self as a directed graph.

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: print(C.plot())
Graphics object consisting of 17 graphics primitives

plot3d(**options)
Return the 3-dimensional plot of self as a directed graph.

EXAMPLES:

sage: C = crystals.KirillovReshetikhin(['A',3,1],2,1)
sage: print(C.plot3d())
Graphics3d Object
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subcrystal(index_set=None, generators=None, max_depth=inf, direction='both', contained=None,
virtualization=None, scaling_factors=None, cartan_type=None, category=None)

Construct the subcrystal from generators using 𝑒𝑖 and/or 𝑓𝑖 for all 𝑖 in index_set.

INPUT:
• index_set – (default: None) the index set; if None then use the index set of the crystal
• generators – (default: None) the list of generators; if None then use the module generators of

the crystal
• max_depth – (default: infinity) the maximum depth to build
• direction – (default: 'both') the direction to build the subcrystal; it can be one of the following:

– 'both' - using both 𝑒𝑖 and 𝑓𝑖
– 'upper' - using 𝑒𝑖
– 'lower' - using 𝑓𝑖

• contained – (optional) a set or function defining the containment in the subcrystal
• virtualization, scaling_factors – (optional) dictionaries whose key 𝑖 corresponds to the

sets 𝜎𝑖 and 𝛾𝑖 respectively used to define virtual crystals; see VirtualCrystal
• cartan_type – (optional) specify the Cartan type of the subcrystal
• category – (optional) specify the category of the subcrystal

EXAMPLES:

sage: C = crystals.KirillovReshetikhin(['A',3,1], 1, 2)
sage: S = list(C.subcrystal(index_set=[1,2])); S
[[[1, 1]], [[1, 2]], [[2, 2]], [[1, 3]], [[2, 3]], [[3, 3]]]
sage: C.cardinality()
10
sage: len(S)
6
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)]))
[[[1, 4]], [[2, 4]], [[1, 3]], [[2, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], max_depth=1))
[[[1, 4]], [[2, 4]], [[1, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], direction=
→˓'upper'))
[[[1, 4]], [[1, 3]]]
sage: list(C.subcrystal(index_set=[1,3], generators=[C(1,4)], direction=
→˓'lower'))
[[[1, 4]], [[2, 4]]]

sage: G = C.subcrystal(index_set=[1,2,3]).digraph()
sage: GA = crystals.Tableaux('A3', shape=[2]).digraph()
sage: G.is_isomorphic(GA, edge_labels=True)
True

We construct the subcrystal which contains the necessary data to construct the corresponding dual
equivalence graph:

sage: C = crystals.Tableaux(['A',5], shape=[3,3])
sage: is_wt0 = lambda x: all(x.epsilon(i) == x.phi(i) for i in x.parent().
→˓index_set())
sage: def check(x):
....: if is_wt0(x):
....: return True
....: for i in x.parent().index_set()[:-1]:
....: L = [x.e(i), x.e_string([i,i+1]), x.f(i), x.f_string([i,i+1])]

(continues on next page)
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(continued from previous page)

....: if any(y is not None and is_wt0(y) for y in L):

....: return True

....: return False
sage: wt0 = [x for x in C if is_wt0(x)]
sage: S = C.subcrystal(contained=check, generators=wt0)
sage: S.module_generators[0]
[[1, 3, 5], [2, 4, 6]]
sage: S.module_generators[0].e(2).e(3).f(2).f(3)
[[1, 2, 5], [3, 4, 6]]

An example of a type 𝐵2 virtual crystal inside of a type 𝐴3 ambient crystal:

sage: A = crystals.Tableaux(['A',3], shape=[2,1,1])
sage: S = A.subcrystal(virtualization={1:[1,3], 2:[2]},
....: scaling_factors={1:1,2:1}, cartan_type=['B',2])
sage: B = crystals.Tableaux(['B',2], shape=[1])
sage: S.digraph().is_isomorphic(B.digraph(), edge_labels=True)
True

tensor(*crystals, **options)
Return the tensor product of self with the crystals B.

EXAMPLES:

sage: C = crystals.Letters(['A', 3])
sage: B = crystals.infinity.Tableaux(['A', 3])
sage: T = C.tensor(C, B); T
Full tensor product of the crystals
[The crystal of letters for type ['A', 3],
The crystal of letters for type ['A', 3],
The infinity crystal of tableaux of type ['A', 3]]

sage: tensor([C, C, B]) is T
True

sage: C = crystals.Letters(['A',2])
sage: T = C.tensor(C, C, generators=[[C(2),C(1),C(1)],[C(1),C(2),C(1)]]); T
The tensor product of the crystals
[The crystal of letters for type ['A', 2],
The crystal of letters for type ['A', 2],
The crystal of letters for type ['A', 2]]

sage: T.module_generators
([2, 1, 1], [1, 2, 1])

weight_lattice_realization()
Return the weight lattice realization used to express weights in self.

This default implementation uses the ambient space of the root system for (non relabelled) finite types
and the weight lattice otherwise. This is a legacy from when ambient spaces were partially imple-
mented, and may be changed in the future.

For affine types, this returns the extended weight lattice by default.

EXAMPLES:
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sage: C = crystals.Letters(['A', 5])
sage: C.weight_lattice_realization()
Ambient space of the Root system of type ['A', 5]
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.weight_lattice_realization()
Weight lattice of the Root system of type ['A', 2, 1]

class SubcategoryMethods
Bases: object

Methods for all subcategories.

TensorProducts()
Return the full subcategory of objects of self constructed as tensor products.

See also:

• tensor.TensorProductsCategory
• RegressiveCovariantFunctorialConstruction.

EXAMPLES:

sage: HighestWeightCrystals().TensorProducts()
Category of tensor products of highest weight crystals

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of crystals constructed by tensor product of crystals.

extra_super_categories()
EXAMPLES:

sage: Crystals().TensorProducts().extra_super_categories()
[Category of crystals]

example(choice='highwt', **kwds)
Returns an example of a crystal, as per Category.example().

INPUT:

• choice – str [default: ‘highwt’]. Can be either ‘highwt’ for the highest weight crystal of type A, or
‘naive’ for an example of a broken crystal.

• **kwds – keyword arguments passed onto the constructor for the chosen crystal.

EXAMPLES:

sage: Crystals().example(choice='highwt', n=5)
Highest weight crystal of type A_5 of highest weight omega_1
sage: Crystals().example(choice='naive')
A broken crystal, defined by digraph, of dimension five.

super_categories()
EXAMPLES:

sage: Crystals().super_categories()
[Category of enumerated sets]
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4.32 CW Complexes

class sage.categories.cw_complexes.CWComplexes(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of CW complexes.

A CW complex is a Closure-finite cell complex in the Weak topology.

REFERENCES:

• Wikipedia article CW_complex

Note: The notion of “finite” is that the number of cells is finite.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: C = CWComplexes(); C
Category of CW complexes

Compact_extra_super_categories()
Return extraneous super categories for CWComplexes().Compact().

A compact CW complex is finite, see Proposition A.1 in [Hat2002].

Todo: Fix the name of finite CW complexes.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: CWComplexes().Compact() # indirect doctest
Category of finite finite dimensional CW complexes
sage: CWComplexes().Compact() is CWComplexes().Finite()
True

class Connected(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of connected CW complexes.

class ElementMethods
Bases: object

dimension()
Return the dimension of self.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: X.an_element().dimension()
2

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom
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Category of finite CW complexes.

A finite CW complex is a CW complex with a finite number of cells.

class ParentMethods
Bases: object

dimension()
Return the dimension of self.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: X.dimension()
2

extra_super_categories()
Return the extra super categories of self.

A finite CW complex is a compact finite-dimensional CW complex.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: C = CWComplexes().Finite()
sage: C.extra_super_categories()
[Category of finite dimensional CW complexes,
Category of compact topological spaces]

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Category of finite dimensional CW complexes.

class ParentMethods
Bases: object

cells()
Return the cells of self.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: C = X.cells()
sage: sorted((d, C[d]) for d in C.keys())
[(0, (0-cell v,)),
(1, (0-cell e1, 0-cell e2)),
(2, (2-cell f,))]

dimension()
Return the dimension of self.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: X.dimension()
2
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class SubcategoryMethods
Bases: object

Connected()
Return the full subcategory of the connected objects of self.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: CWComplexes().Connected()
Category of connected CW complexes

FiniteDimensional()
Return the full subcategory of the finite dimensional objects of self.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: C = CWComplexes().FiniteDimensional(); C
Category of finite dimensional CW complexes

super_categories()
EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: CWComplexes().super_categories()
[Category of topological spaces]

4.33 Discrete Valuation Rings (DVR) and Fields (DVF)

class sage.categories.discrete_valuation.DiscreteValuationFields(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of discrete valuation fields

EXAMPLES:

sage: Qp(7) in DiscreteValuationFields()
True
sage: TestSuite(DiscreteValuationFields()).run()

class ElementMethods
Bases: object

valuation()
Return the valuation of this element.

EXAMPLES:

sage: x = Qp(5)(50)
sage: x.valuation()
2

class ParentMethods
Bases: object
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residue_field()
Return the residue field of the ring of integers of this discrete valuation field.

EXAMPLES:

sage: Qp(5).residue_field()
Finite Field of size 5

sage: K.<u> = LaurentSeriesRing(QQ)
sage: K.residue_field()
Rational Field

uniformizer()
Return a uniformizer of this ring.

EXAMPLES:

sage: Qp(5).uniformizer()
5 + O(5^21)

super_categories()
EXAMPLES:

sage: DiscreteValuationFields().super_categories()
[Category of fields]

class sage.categories.discrete_valuation.DiscreteValuationRings(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of discrete valuation rings

EXAMPLES:

sage: GF(7)[['x']] in DiscreteValuationRings()
True
sage: TestSuite(DiscreteValuationRings()).run()

class ElementMethods
Bases: object

euclidean_degree()
Return the Euclidean degree of this element.

gcd(other)
Return the greatest common divisor of self and other, normalized so that it is a power of the distin-
guished uniformizer.

is_unit()
Return True if self is invertible.

EXAMPLES:

sage: x = Zp(5)(50)
sage: x.is_unit()
False

sage: x = Zp(7)(50)
sage: x.is_unit()
True
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lcm(other)
Return the least common multiple of self and other, normalized so that it is a power of the distinguished
uniformizer.

quo_rem(other)
Return the quotient and remainder for Euclidean division of self by other.

valuation()
Return the valuation of this element.

EXAMPLES:

sage: x = Zp(5)(50)
sage: x.valuation()
2

class ParentMethods
Bases: object

residue_field()
Return the residue field of this ring.

EXAMPLES:

sage: Zp(5).residue_field()
Finite Field of size 5

sage: K.<u> = QQ[[]]
sage: K.residue_field()
Rational Field

uniformizer()
Return a uniformizer of this ring.

EXAMPLES:

sage: Zp(5).uniformizer()
5 + O(5^21)

sage: K.<u> = QQ[[]]
sage: K.uniformizer()
u

super_categories()
EXAMPLES:

sage: DiscreteValuationRings().super_categories()
[Category of euclidean domains]
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4.34 Distributive Magmas and Additive Magmas

class sage.categories.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of sets (𝑆,+, *) with * distributing on +.

This is similar to a ring, but + and * are only required to be (additive) magmas.

EXAMPLES:

sage: from sage.categories.distributive_magmas_and_additive_magmas import␣
→˓DistributiveMagmasAndAdditiveMagmas
sage: C = DistributiveMagmasAndAdditiveMagmas(); C
Category of distributive magmas and additive magmas
sage: C.super_categories()
[Category of magmas and additive magmas]

class AdditiveAssociative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class AdditiveCommutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class AdditiveUnital(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Associative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

AdditiveInverse
alias of sage.categories.rngs.Rngs

Unital
alias of sage.categories.semirings.Semirings

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a Cartesian product of magmas distributing over additive magmas is a magma
distributing over an additive magma.

EXAMPLES:

sage: C = (Magmas() & AdditiveMagmas()).Distributive().CartesianProducts()
sage: C.extra_super_categories()
[Category of distributive magmas and additive magmas]
sage: C.axioms()
frozenset({'Distributive'})

class ParentMethods
Bases: object
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4.35 Division rings

class sage.categories.division_rings.DivisionRings(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of division rings

A division ring (or skew field) is a not necessarily commutative ring where all non-zero elements have multi-
plicative inverses

EXAMPLES:

sage: DivisionRings()
Category of division rings
sage: DivisionRings().super_categories()
[Category of domains]

Commutative
alias of sage.categories.fields.Fields

class ElementMethods
Bases: object

Finite_extra_super_categories()
Return extraneous super categories for DivisionRings().Finite().

EXAMPLES:

Any field is a division ring:

sage: Fields().is_subcategory(DivisionRings())
True

This methods specifies that, by Weddeburn theorem, the reciprocal holds in the finite case: a finite division
ring is commutative and thus a field:

sage: DivisionRings().Finite_extra_super_categories()
(Category of commutative magmas,)
sage: DivisionRings().Finite()
Category of finite enumerated fields

Warning: This is not implemented in DivisionRings.Finite.extra_super_categories be-
cause the categories of finite division rings and of finite fields coincide. See the section Deduction
rules in the documentation of axioms.

class ParentMethods
Bases: object

extra_super_categories()
Return the Domains category.

This method specifies that a division ring has no zero divisors, i.e. is a domain.

See also:

The Deduction rules section in the documentation of axioms

EXAMPLES:
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sage: DivisionRings().extra_super_categories()
(Category of domains,)
sage: "NoZeroDivisors" in DivisionRings().axioms()
True

4.36 Domains

class sage.categories.domains.Domains(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of domains

A domain (or non-commutative integral domain), is a ring, not necessarily commutative, with no nonzero zero
divisors.

EXAMPLES:

sage: C = Domains(); C
Category of domains
sage: C.super_categories()
[Category of rings]
sage: C is Rings().NoZeroDivisors()
True

Commutative
alias of sage.categories.integral_domains.IntegralDomains

class ElementMethods
Bases: object

class ParentMethods
Bases: object

super_categories()
EXAMPLES:

sage: Domains().super_categories()
[Category of rings]

4.37 Enumerated sets

class sage.categories.enumerated_sets.EnumeratedSets(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of enumerated sets

An enumerated set is a finite or countable set or multiset 𝑆 together with a canonical enumeration of its ele-
ments; conceptually, this is very similar to an immutable list. The main difference lies in the names and the
return type of the methods, and of course the fact that the list of elements is not supposed to be expanded
in memory. Whenever possible one should use one of the two sub-categories FiniteEnumeratedSets or
InfiniteEnumeratedSets.

The purpose of this category is threefold:
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• to fix a common interface for all these sets;

• to provide a bunch of default implementations;

• to provide consistency tests.

The standard methods for an enumerated set S are:

• S.cardinality(): the number of elements of the set. This is the equivalent for len on a list except that
the return value is specified to be a Sage Integer or infinity, instead of a Python int.

• iter(S): an iterator for the elements of the set;

• S.list(): a fresh list of the elements of the set, when possible; raises a NotImplementedError if the
list is predictably too large to be expanded in memory.

• S.tuple(): a tuple of the elements of the set, when possible; raises a NotImplementedError if the tuple
is predictably too large to be expanded in memory.

• S.unrank(n): the n-th element of the set when n is a sage Integer. This is the equivalent for l[n] on a
list.

• S.rank(e): the position of the element e in the set; This is equivalent to l.index(e) for a list except that
the return value is specified to be a Sage Integer, instead of a Python int.

• S.first(): the first object of the set; it is equivalent to S.unrank(0).

• S.next(e): the object of the set which follows e; it is equivalent to S.unrank(S.rank(e) + 1).

• S.random_element(): a random generator for an element of the set. Unless otherwise stated, and for
finite enumerated sets, the probability is uniform.

For examples and tests see:

• FiniteEnumeratedSets().example()

• InfiniteEnumeratedSets().example()

EXAMPLES:

sage: EnumeratedSets()
Category of enumerated sets
sage: EnumeratedSets().super_categories()
[Category of sets]
sage: EnumeratedSets().all_super_categories()
[Category of enumerated sets, Category of sets, Category of sets with partial maps,␣
→˓Category of objects]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ParentMethods
Bases: object

first()
Return the first element.

EXAMPLES:

sage: cartesian_product([ZZ]*10).first()
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

class ElementMethods
Bases: object
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rank()
Return the rank of self in its parent.

See also EnumeratedSets.ElementMethods.rank()

EXAMPLES:

sage: F = FiniteSemigroups().example(('a','b','c'))
sage: L = list(F)
sage: L[7].rank()
7
sage: all(x.rank() == i for i,x in enumerate(L))
True

Finite
alias of sage.categories.finite_enumerated_sets.FiniteEnumeratedSets

Infinite
alias of sage.categories.infinite_enumerated_sets.InfiniteEnumeratedSets

class ParentMethods
Bases: object

first()
The “first” element of self.

self.first() returns the first element of the set self. This is a generic implementation from the
category EnumeratedSets() which can be used when the method __iter__ is provided.

EXAMPLES:

sage: C = FiniteEnumeratedSets().example()
sage: C.first() # indirect doctest
1

is_empty()
Return whether this set is empty.

EXAMPLES:

sage: F = FiniteEnumeratedSet([1,2,3])
sage: F.is_empty()
False
sage: F = FiniteEnumeratedSet([])
sage: F.is_empty()
True

iterator_range(start=None, stop=None, step=None)
Iterate over the range of elements of self starting at start, ending at stop, and stepping by step.

See also:

unrank(), unrank_range()

EXAMPLES:

sage: P = Partitions()
sage: list(P.iterator_range(stop=5))
[[], [1], [2], [1, 1], [3]]

(continues on next page)
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sage: list(P.iterator_range(0, 5))
[[], [1], [2], [1, 1], [3]]
sage: list(P.iterator_range(3, 5))
[[1, 1], [3]]
sage: list(P.iterator_range(3, 10))
[[1, 1], [3], [2, 1], [1, 1, 1], [4], [3, 1], [2, 2]]
sage: list(P.iterator_range(3, 10, 2))
[[1, 1], [2, 1], [4], [2, 2]]
sage: it = P.iterator_range(3)
sage: [next(it) for x in range(10)]
[[1, 1],
[3], [2, 1], [1, 1, 1],
[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1],
[5]]
sage: it = P.iterator_range(3, step=2)
sage: [next(it) for x in range(5)]
[[1, 1],
[2, 1],
[4], [2, 2], [1, 1, 1, 1]]
sage: next(P.iterator_range(stop=-3))
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set
sage: next(P.iterator_range(start=-3))
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set

list()
Return a list of the elements of self.

The elements of set x are created and cached on the first call of x.list(). Then each call of x.
list() returns a new list from the cached result. Thus in looping, it may be better to do for e in
x:, not for e in x.list():.

If x is not known to be finite, then an exception is raised.

EXAMPLES:

sage: (GF(3)^2).list()
[(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)]
sage: R = Integers(11)
sage: R.list()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: l = R.list(); l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: l.remove(0); l
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
sage: R.list()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

sage: C = FiniteEnumeratedSets().example()
sage: C.list()
[1, 2, 3]
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map(f, name, is_injective=None)
Return the image {𝑓(𝑥)|𝑥 ∈ self} of this enumerated set by 𝑓 , as an enumerated set.

INPUT:
• is_injective – boolean (default: True) whether to assume that f is injective.

EXAMPLES:

sage: R = Compositions(4).map(attrcall('partial_sums')); R
Image of Compositions of 4 by The map *.partial_sums()
from Compositions of 4
sage: R.cardinality()
8
sage: R.list()
[[1, 2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 4], [2, 3, 4], [2, 4], [3, 4], [4]]
sage: [r for r in R]
[[1, 2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 4], [2, 3, 4], [2, 4], [3, 4], [4]]
sage: R.category()
Category of finite enumerated subobjects of sets

Warning: If the function is not injective, then there may be repeated elements:

sage: P = Compositions(4)
sage: P.list()
[[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [2, 2], [3, 1],␣
→˓[4]]
sage: P.map(attrcall('major_index')).list()
[6, 3, 4, 1, 5, 2, 3, 0]

Pass is_injective=False to get a correct result in this case:

sage: P.map(attrcall('major_index'), is_injective=False).list()
[6, 3, 4, 1, 5, 2, 0]

next(obj)
The “next” element after obj in self.

self.next(e) returns the element of the set self which follows e. This is a generic implementation
from the category EnumeratedSets() which can be used when the method __iter__ is provided.

Remark: this is the default (brute force) implementation of the category EnumeratedSets(). Its
complexity is 𝑂(𝑟), where 𝑟 is the rank of obj.

EXAMPLES:

sage: C = InfiniteEnumeratedSets().example()
sage: C._next_from_iterator(10) # indirect doctest
11

TODO: specify the behavior when obj is not in self.

random_element()
Return a random element in self.

Unless otherwise stated, and for finite enumerated sets, the probability is uniform.

This is a generic implementation from the category EnumeratedSets(). It raise a
NotImplementedError since one does not know whether the set is finite.

310 Chapter 4. Individual Categories



Category Framework, Release 9.7

EXAMPLES:

sage: class broken(UniqueRepresentation, Parent):
....: def __init__(self):
....: Parent.__init__(self, category = EnumeratedSets())
sage: broken().random_element()
Traceback (most recent call last):
...
NotImplementedError: unknown cardinality

rank(x)
The rank of an element of self

self.rank(x) returns the rank of 𝑥, that is its position in the enumeration of self. This is an integer
between 0 and n-1 where n is the cardinality of self, or None if 𝑥 is not in 𝑠𝑒𝑙𝑓 .

This is the default (brute force) implementation from the category EnumeratedSets() which can be
used when the method __iter__ is provided. Its complexity is 𝑂(𝑟), where 𝑟 is the rank of obj. For
infinite enumerated sets, this won’t terminate when 𝑥 is not in self

EXAMPLES:

sage: C = FiniteEnumeratedSets().example()
sage: list(C)
[1, 2, 3]
sage: C.rank(3) # indirect doctest
2
sage: C.rank(5) # indirect doctest

some_elements()
Return some elements in self.

See TestSuite for a typical use case.

This is a generic implementation from the category EnumeratedSets() which can be used when the
method __iter__ is provided. It returns an iterator for up to the first 100 elements of self

EXAMPLES:

sage: C = FiniteEnumeratedSets().example()
sage: list(C.some_elements()) # indirect doctest
[1, 2, 3]

tuple()
Return a tuple of the elements of self.

The tuple of elements of x is created and cached on the first call of x.tuple(). Each following call
of x.tuple() returns the same tuple.

For looping, it may be better to do for e in x:, not for e in x.tuple():.

If x is not known to be finite, then an exception is raised.

EXAMPLES:

sage: (GF(3)^2).tuple()
((0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2))
sage: R = Integers(11)
sage: l = R.tuple(); l

(continues on next page)
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(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
sage: l is R.tuple()
True

unrank(r)
The r-th element of self

self.unrank(r) returns the r-th element of self, where r is an integer between 0 and n-1 where
n is the cardinality of self.

This is the default (brute force) implementation from the category EnumeratedSets() which can be
used when the method __iter__ is provided. Its complexity is 𝑂(𝑟), where 𝑟 is the rank of obj.

EXAMPLES:

sage: C = FiniteEnumeratedSets().example()
sage: C.unrank(2) # indirect doctest
3
sage: C._unrank_from_iterator(5)
Traceback (most recent call last):
...
ValueError: the rank must be in the range from 0 to 2
sage: ZZ._unrank_from_iterator(-1)
Traceback (most recent call last):
...
ValueError: the rank must be greater than or equal to 0

unrank_range(start=None, stop=None, step=None)
Return the range of elements of self starting at start, ending at stop, and stepping by step.

See also:

unrank(), iterator_range()

EXAMPLES:

sage: P = Partitions()
sage: P.unrank_range(stop=5)
[[], [1], [2], [1, 1], [3]]
sage: P.unrank_range(0, 5)
[[], [1], [2], [1, 1], [3]]
sage: P.unrank_range(3, 5)
[[1, 1], [3]]
sage: P.unrank_range(3, 10)
[[1, 1], [3], [2, 1], [1, 1, 1], [4], [3, 1], [2, 2]]
sage: P.unrank_range(3, 10, 2)
[[1, 1], [2, 1], [4], [2, 2]]
sage: P.unrank_range(3)
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set
sage: P.unrank_range(stop=-3)
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set

(continues on next page)
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sage: P.unrank_range(start=-3)
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set

additional_structure()
Return None.

Indeed, morphisms of enumerated sets are not required to preserve the enumeration.

See also:

Category.additional_structure()

EXAMPLES:

sage: EnumeratedSets().additional_structure()

super_categories()
EXAMPLES:

sage: EnumeratedSets().super_categories()
[Category of sets]

4.38 Euclidean domains

AUTHORS:

• Teresa Gomez-Diaz (2008): initial version

• Julian Rueth (2013-09-13): added euclidean degree, quotient remainder, and their tests

class sage.categories.euclidean_domains.EuclideanDomains(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of constructive euclidean domains, i.e., one can divide producing a quotient and a remainder where
the remainder is either zero or its ElementMethods.euclidean_degree() is smaller than the divisor.

EXAMPLES:

sage: EuclideanDomains()
Category of euclidean domains
sage: EuclideanDomains().super_categories()
[Category of principal ideal domains]

class ElementMethods
Bases: object

euclidean_degree()
Return the degree of this element as an element of an Euclidean domain, i.e., for elements 𝑎, 𝑏 the
euclidean degree 𝑓 satisfies the usual properties:
1. if 𝑏 is not zero, then there are elements 𝑞 and 𝑟 such that 𝑎 = 𝑏𝑞 + 𝑟 with 𝑟 = 0 or 𝑓(𝑟) < 𝑓(𝑏)
2. if 𝑎, 𝑏 are not zero, then 𝑓(𝑎) ≤ 𝑓(𝑎𝑏)
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Note: The name euclidean_degree was chosen because the euclidean function has different names
in different contexts, e.g., absolute value for integers, degree for polynomials.

OUTPUT:

For non-zero elements, a natural number. For the zero element, this might raise an exception or produce
some other output, depending on the implementation.

EXAMPLES:

sage: R.<x> = QQ[]
sage: x.euclidean_degree()
1
sage: ZZ.one().euclidean_degree()
1

gcd(other)
Return the greatest common divisor of this element and other.

INPUT:
• other – an element in the same ring as self

ALGORITHM:

Algorithm 3.2.1 in [Coh1993].

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ, sparse=True)
sage: EuclideanDomains().element_class.gcd(x,x+1)
-1

quo_rem(other)
Return the quotient and remainder of the division of this element by the non-zero element other.

INPUT:
• other – an element in the same euclidean domain

OUTPUT:

a pair of elements

EXAMPLES:

sage: R.<x> = QQ[]
sage: x.quo_rem(x)
(1, 0)

class ParentMethods
Bases: object

gcd_free_basis(elts)
Compute a set of coprime elements that can be used to express the elements of elts.

INPUT:
• elts - A sequence of elements of self.

OUTPUT:

A GCD-free basis (also called a coprime base) of elts; that is, a set of pairwise relatively prime
elements of self such that any element of elts can be written as a product of elements of the set.
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ALGORITHM:

Naive implementation of the algorithm described in Section 4.8 of Bach & Shallit [BS1996].

EXAMPLES:

sage: ZZ.gcd_free_basis([1])
[]
sage: ZZ.gcd_free_basis([4, 30, 14, 49])
[2, 15, 7]

sage: Pol.<x> = QQ[]
sage: sorted(Pol.gcd_free_basis([
....: (x+1)^3*(x+2)^3*(x+3), (x+1)*(x+2)*(x+3),
....: (x+1)*(x+2)*(x+4)]))
[x + 3, x + 4, x^2 + 3*x + 2]

is_euclidean_domain()
Return True, since this in an object of the category of Euclidean domains.

EXAMPLES:

sage: Parent(QQ,category=EuclideanDomains()).is_euclidean_domain()
True

super_categories()
EXAMPLES:

sage: EuclideanDomains().super_categories()
[Category of principal ideal domains]

4.39 Fields

class sage.categories.fields.Fields(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of (commutative) fields, i.e. commutative rings where all non-zero elements have multiplicative
inverses

EXAMPLES:

sage: K = Fields()
sage: K
Category of fields
sage: Fields().super_categories()
[Category of euclidean domains, Category of division rings]

sage: K(IntegerRing())
Rational Field
sage: K(PolynomialRing(GF(3), 'x'))
Fraction Field of Univariate Polynomial Ring in x over
Finite Field of size 3
sage: K(RealField())
Real Field with 53 bits of precision
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class ElementMethods
Bases: object

euclidean_degree()
Return the degree of this element as an element of an Euclidean domain.

In a field, this returns 0 for all but the zero element (for which it is undefined).

EXAMPLES:

sage: QQ.one().euclidean_degree()
0

factor()
Return a factorization of self.

Since self is either a unit or zero, this function is trivial.

EXAMPLES:

sage: x = GF(7)(5)
sage: x.factor()
5
sage: RR(0).factor()
Traceback (most recent call last):
...
ArithmeticError: factorization of 0.000000000000000 is not defined

gcd(other)
Greatest common divisor.

Note: Since we are in a field and the greatest common divisor is only determined up to a unit, it is
correct to either return zero or one. Note that fraction fields of unique factorization domains provide
a more sophisticated gcd.

EXAMPLES:

sage: K = GF(5)
sage: K(2).gcd(K(1))
1
sage: K(0).gcd(K(0))
0
sage: all(x.gcd(y) == (0 if x == 0 and y == 0 else 1) for x in K for y in K)
True

For field of characteristic zero, the gcd of integers is considered as if they were elements of the integer
ring:

sage: gcd(15.0,12.0)
3.00000000000000

But for other floating point numbers, the gcd is just 0.0 or 1.0:

sage: gcd(3.2, 2.18)
1.00000000000000

(continues on next page)
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sage: gcd(0.0, 0.0)
0.000000000000000

AUTHOR:
• Simon King (2011-02) – trac ticket #10771
• Vincent Delecroix (2015) – trac ticket #17671

inverse_of_unit()
Return the inverse of this element.

EXAMPLES:

sage: NumberField(x^7+2,'a')(2).inverse_of_unit()
1/2

Trying to invert the zero element typically raises a ZeroDivisionError:

sage: QQ(0).inverse_of_unit()
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

To catch that exception in a way that also works for non-units in more general rings, use something
like:

sage: try:
....: QQ(0).inverse_of_unit()
....: except ArithmeticError:
....: pass

Also note that some “fields” allow one to invert the zero element:

sage: RR(0).inverse_of_unit()
+infinity

is_unit()
Returns True if self has a multiplicative inverse.

EXAMPLES:

sage: QQ(2).is_unit()
True
sage: QQ(0).is_unit()
False

lcm(other)
Least common multiple.

Note: Since we are in a field and the least common multiple is only determined up to a unit, it is
correct to either return zero or one. Note that fraction fields of unique factorization domains provide
a more sophisticated lcm.

EXAMPLES:
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sage: GF(2)(1).lcm(GF(2)(0))
0
sage: GF(2)(1).lcm(GF(2)(1))
1

For field of characteristic zero, the lcm of integers is considered as if they were elements of the integer
ring:

sage: lcm(15.0,12.0)
60.0000000000000

But for others floating point numbers, it is just 0.0 or 1.0:

sage: lcm(3.2, 2.18)
1.00000000000000

sage: lcm(0.0, 0.0)
0.000000000000000

AUTHOR:
• Simon King (2011-02) – trac ticket #10771
• Vincent Delecroix (2015) – trac ticket #17671

quo_rem(other)
Return the quotient with remainder of the division of this element by other.

INPUT:
• other – an element of the field

EXAMPLES:

sage: f,g = QQ(1), QQ(2)
sage: f.quo_rem(g)
(1/2, 0)

xgcd(other)
Compute the extended gcd of self and other.

INPUT:
• other – an element with the same parent as self

OUTPUT:

A tuple (r, s, t) of elements in the parent of self such that r = s * self + t * other. Since
the computations are done over a field, r is zero if self and other are zero, and one otherwise.

AUTHORS:
• Julian Rueth (2012-10-19): moved here from sage.structure.element.FieldElement

EXAMPLES:

sage: K = GF(5)
sage: K(2).xgcd(K(1))
(1, 3, 0)
sage: K(0).xgcd(K(4))
(1, 0, 4)
sage: K(1).xgcd(K(1))
(1, 1, 0)

(continues on next page)
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sage: GF(5)(0).xgcd(GF(5)(0))
(0, 0, 0)

The xgcd of non-zero floating point numbers will be a triple of floating points. But if the input are two
integral floating points the result is a floating point version of the standard gcd on Z:

sage: xgcd(12.0, 8.0)
(4.00000000000000, 1.00000000000000, -1.00000000000000)

sage: xgcd(3.1, 2.98714)
(1.00000000000000, 0.322580645161290, 0.000000000000000)

sage: xgcd(0.0, 1.1)
(1.00000000000000, 0.000000000000000, 0.909090909090909)

Finite
alias of sage.categories.finite_fields.FiniteFields

class ParentMethods
Bases: object

fraction_field()
Returns the fraction field of self, which is self.

EXAMPLES:

sage: QQ.fraction_field() is QQ
True

is_field(proof=True)
Returns True as self is a field.

EXAMPLES:

sage: QQ.is_field()
True
sage: Parent(QQ,category=Fields()).is_field()
True

is_integrally_closed()
Return True, as per IntegralDomain.is_integrally_closed(): for every field 𝐹 , 𝐹 is its own
field of fractions, hence every element of 𝐹 is integral over 𝐹 .

EXAMPLES:

sage: QQ.is_integrally_closed()
True
sage: QQbar.is_integrally_closed()
True
sage: Z5 = GF(5); Z5
Finite Field of size 5
sage: Z5.is_integrally_closed()
True

is_perfect()
Return whether this field is perfect, i.e., its characteristic is 𝑝 = 0 or every element has a 𝑝-th root.
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EXAMPLES:

sage: QQ.is_perfect()
True
sage: GF(2).is_perfect()
True
sage: FunctionField(GF(2), 'x').is_perfect()
False

vector_space(*args, **kwds)
Gives an isomorphism of this field with a vector space over a subfield.

This method is an alias for free_module, which may have more documentation.

INPUT:
• base – a subfield or morphism into this field (defaults to the base field)
• basis – a basis of the field as a vector space over the subfield; if not given, one is chosen auto-

matically
• map – whether to return maps from and to the vector space

OUTPUT:
• V – a vector space over base
• from_V – an isomorphism from V to this field
• to_V – the inverse isomorphism from this field to V

EXAMPLES:

sage: K.<a> = Qq(125) # optional - sage.
→˓rings.padics
sage: V, fr, to = K.vector_space() # optional - sage.
→˓rings.padics
sage: v = V([1, 2, 3]) # optional - sage.
→˓rings.padics
sage: fr(v, 7) # optional - sage.
→˓rings.padics
(3*a^2 + 2*a + 1) + O(5^7)

extra_super_categories()
EXAMPLES:

sage: Fields().extra_super_categories()
[Category of euclidean domains]

4.40 Filtered Algebras

class sage.categories.filtered_algebras.FilteredAlgebras(base_category)
Bases: sage.categories.filtered_modules.FilteredModulesCategory

The category of filtered algebras.

An algebra𝐴 over a commutative ring𝑅 is filtered if𝐴 is endowed with a structure of a filtered𝑅-module (whose
underlying 𝑅-module structure is identical with that of the 𝑅-algebra 𝐴) such that the indexing set 𝐼 (typically
𝐼 = N) is also an additive abelian monoid, the unity 1 of 𝐴 belongs to 𝐹0, and we have 𝐹𝑖 · 𝐹𝑗 ⊆ 𝐹𝑖+𝑗 for all
𝑖, 𝑗 ∈ 𝐼 .

EXAMPLES:
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sage: Algebras(ZZ).Filtered()
Category of filtered algebras over Integer Ring
sage: Algebras(ZZ).Filtered().super_categories()
[Category of algebras over Integer Ring,
Category of filtered modules over Integer Ring]

REFERENCES:

• Wikipedia article Filtered_algebra

class ParentMethods
Bases: object

graded_algebra()
Return the associated graded algebra to self.

Todo: Implement a version of the associated graded algebra which does not require self to have a
distinguished basis.

EXAMPLES:

sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.graded_algebra()
Graded Algebra of An example of a filtered algebra with basis:
the universal enveloping algebra of
Lie algebra of RR^3 with cross product over Integer Ring

4.41 Filtered Algebras With Basis

A filtered algebra with basis over a commutative ring 𝑅 is a filtered algebra over 𝑅 endowed with the structure
of a filtered module with basis (with the same underlying filtered-module structure). See FilteredAlgebras and
FilteredModulesWithBasis for these two notions.

class sage.categories.filtered_algebras_with_basis.FilteredAlgebrasWithBasis(base_category)
Bases: sage.categories.filtered_modules.FilteredModulesCategory

The category of filtered algebras with a distinguished homogeneous basis.

A filtered algebra with basis over a commutative ring 𝑅 is a filtered algebra over 𝑅 endowed with the structure
of a filtered module with basis (with the same underlying filtered-module structure). See FilteredAlgebras
and FilteredModulesWithBasis for these two notions.

EXAMPLES:

sage: C = AlgebrasWithBasis(ZZ).Filtered(); C
Category of filtered algebras with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of algebras with basis over Integer Ring,
Category of filtered algebras over Integer Ring,
Category of filtered modules with basis over Integer Ring]

class ElementMethods
Bases: object
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class ParentMethods
Bases: object

from_graded_conversion()
Return the inverse of the canonical 𝑅-module isomorphism 𝐴 → gr𝐴 induced by the basis of 𝐴
(where 𝐴 =). This inverse is an isomorphism gr𝐴→ 𝐴.

This is an isomorphism of 𝑅-modules, not of algebras. See the class documentation
AssociatedGradedAlgebra.

See also:

to_graded_conversion()

EXAMPLES:

sage: A = Algebras(QQ).WithBasis().Filtered().example()
sage: p = A.an_element() + A.algebra_generators()['x'] + 2; p
U['x']^2*U['y']^2*U['z']^3 + 3*U['x'] + 3*U['y'] + 3
sage: q = A.to_graded_conversion()(p)
sage: A.from_graded_conversion()(q) == p
True
sage: q.parent() is A.graded_algebra()
True

graded_algebra()
Return the associated graded algebra to self.

See AssociatedGradedAlgebra for the definition and the properties of this.

If the filtered algebra self with basis is called 𝐴, then this method returns gr𝐴. The method
to_graded_conversion() returns the canonical 𝑅-module isomorphism 𝐴→ gr𝐴 induced by the
basis of 𝐴, and the method from_graded_conversion() returns the inverse of this isomorphism.
The method projection() projects elements of 𝐴 onto gr𝐴 according to their place in the filtration
on 𝐴.

Warning: When not overridden, this method returns the default implementation
of an associated graded algebra – namely, AssociatedGradedAlgebra(self), where
AssociatedGradedAlgebra is AssociatedGradedAlgebra. But many instances of
FilteredAlgebrasWithBasis override this method, as the associated graded algebra often is
(isomorphic) to a simpler object (for instance, the associated graded algebra of a graded algebra
can be identified with the graded algebra itself). Generic code that uses associated graded alge-
bras (such as the code of the induced_graded_map() method below) should make sure to only
communicate with them via the to_graded_conversion(), from_graded_conversion(), and
projection() methods (in particular, do not expect there to be a conversion from self to
self.graded_algebra(); this currently does not work for Clifford algebras). Similarly, when
overriding graded_algebra(), make sure to accordingly redefine these three methods, unless
their definitions below still apply to your case (this will happen whenever the basis of your
graded_algebra() has the same indexing set as self, and the partition of this indexing set
according to degree is the same as for self).

Todo: Maybe the thing about the conversion from self to self.graded_algebra() on the Clifford
at least could be made to work? (I would still warn the user against ASSUMING that it must work –
as there is probably no way to guarantee it in all cases, and we shouldn’t require users to mess with
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element constructors.)

EXAMPLES:

sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.graded_algebra()
Graded Algebra of An example of a filtered algebra with basis:
the universal enveloping algebra of
Lie algebra of RR^3 with cross product over Integer Ring

induced_graded_map(other, f )
Return the graded linear map between the associated graded algebras of self and other canonically
induced by the filtration-preserving map f : self -> other.

Let 𝐴 and 𝐵 be two filtered algebras with basis, and let (𝐹𝑖)𝑖∈𝐼 and (𝐺𝑖)𝑖∈𝐼 be their filtrations. Let
𝑓 : 𝐴 → 𝐵 be a linear map which preserves the filtration (i.e., satisfies 𝑓(𝐹𝑖) ⊆ 𝐺𝑖 for all 𝑖 ∈ 𝐼).
Then, there is a canonically defined graded linear map gr 𝑓 : gr𝐴→ gr𝐵 which satisfies

(gr 𝑓)(𝑝𝑖(𝑎)) = 𝑝𝑖(𝑓(𝑎)) for all 𝑖 ∈ 𝐼 and 𝑎 ∈ 𝐹𝑖,

where the 𝑝𝑖 on the left hand side is the canonical projection from 𝐹𝑖 onto the 𝑖-th graded component
of gr𝐴, while the 𝑝𝑖 on the right hand side is the canonical projection from 𝐺𝑖 onto the 𝑖-th graded
component of gr𝐵.

INPUT:
• other – a filtered algebra with basis
• f – a filtration-preserving linear map from self to other (can be given as a morphism or as a

function)
OUTPUT:

The graded linear map gr 𝑓 .

EXAMPLES:

Example 1.

We start with the universal enveloping algebra of the Lie algebra R3 (with the cross product serving
as Lie bracket):

sage: A = AlgebrasWithBasis(QQ).Filtered().example(); A
An example of a filtered algebra with basis: the
universal enveloping algebra of Lie algebra of RR^3
with cross product over Rational Field
sage: M = A.indices(); M
Free abelian monoid indexed by {'x', 'y', 'z'}
sage: x,y,z = [A.basis()[M.gens()[i]] for i in "xyz"]

Let us define a stupid filtered map from A to itself:

sage: def map_on_basis(m):
....: d = m.dict()
....: i = d.get('x', 0); j = d.get('y', 0); k = d.get('z', 0)
....: g = (y ** (i+j)) * (z ** k)
....: if i > 0:
....: g += i * (x ** (i-1)) * (y ** j) * (z ** k)
....: return g
sage: f = A.module_morphism(on_basis=map_on_basis,

(continues on next page)
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....: codomain=A)
sage: f(x)
U['y'] + 1
sage: f(x*y*z)
U['y']^2*U['z'] + U['y']*U['z']
sage: f(x*x*y*z)
U['y']^3*U['z'] + 2*U['x']*U['y']*U['z']
sage: f(A.one())
1
sage: f(y*z)
U['y']*U['z']

(There is nothing here that is peculiar to this universal enveloping algebra; we are only using its module
structure, and we could just as well be using a polynomial algebra in its stead.)

We now compute gr 𝑓

sage: grA = A.graded_algebra(); grA
Graded Algebra of An example of a filtered algebra with
basis: the universal enveloping algebra of Lie algebra
of RR^3 with cross product over Rational Field
sage: xx, yy, zz = [A.to_graded_conversion()(i) for i in [x, y, z]]
sage: xx+yy*zz
bar(U['y']*U['z']) + bar(U['x'])
sage: grf = A.induced_graded_map(A, f); grf
Generic endomorphism of Graded Algebra of An example
of a filtered algebra with basis: the universal
enveloping algebra of Lie algebra of RR^3 with cross
product over Rational Field
sage: grf(xx)
bar(U['y'])
sage: grf(xx*yy*zz)
bar(U['y']^2*U['z'])
sage: grf(xx*xx*yy*zz)
bar(U['y']^3*U['z'])
sage: grf(grA.one())
bar(1)
sage: grf(yy*zz)
bar(U['y']*U['z'])
sage: grf(yy*zz-2*yy)
bar(U['y']*U['z']) - 2*bar(U['y'])

Example 2.

We shall now construct gr 𝑓 for a different map 𝑓 out of the same A; the new map 𝑓 will lead into a
graded algebra already, namely into the algebra of symmetric functions:

sage: h = SymmetricFunctions(QQ).h()
sage: def map_on_basis(m): # redefining map_on_basis
....: d = m.dict()
....: i = d.get('x', 0); j = d.get('y', 0); k = d.get('z', 0)
....: g = (h[1] ** i) * (h[2] ** (j // 2) * (h[3] ** (k // 3)))
....: g += i * (h[1] ** (i+j+k))

(continues on next page)
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....: return g
sage: f = A.module_morphism(on_basis=map_on_basis,
....: codomain=h) # redefining f
sage: f(x)
2*h[1]
sage: f(y)
h[]
sage: f(z)
h[]
sage: f(y**2)
h[2]
sage: f(x**2)
3*h[1, 1]
sage: f(x*y*z)
h[1] + h[1, 1, 1]
sage: f(x*x*y*y*z)
2*h[1, 1, 1, 1, 1] + h[2, 1, 1]
sage: f(A.one())
h[]

The algebra h of symmetric functions in the ℎ-basis is already graded, so its associated graded algebra
is implemented as itself:

sage: grh = h.graded_algebra(); grh is h
True
sage: grf = A.induced_graded_map(h, f); grf
Generic morphism:
From: Graded Algebra of An example of a filtered
algebra with basis: the universal enveloping
algebra of Lie algebra of RR^3 with cross
product over Rational Field

To: Symmetric Functions over Rational Field
in the homogeneous basis

sage: grf(xx)
2*h[1]
sage: grf(yy)
0
sage: grf(zz)
0
sage: grf(yy**2)
h[2]
sage: grf(xx**2)
3*h[1, 1]
sage: grf(xx*yy*zz)
h[1, 1, 1]
sage: grf(xx*xx*yy*yy*zz)
2*h[1, 1, 1, 1, 1]
sage: grf(grA.one())
h[]

Example 3.

After having had a graded algebra as the codomain, let us try to have one as the domain instead. Our
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new f will go from h to A:

sage: def map_on_basis(lam): # redefining map_on_basis
....: return x ** (sum(lam)) + y ** (len(lam))
sage: f = h.module_morphism(on_basis=map_on_basis,
....: codomain=A) # redefining f
sage: f(h[1])
U['x'] + U['y']
sage: f(h[2])
U['x']^2 + U['y']
sage: f(h[1, 1])
U['x']^2 + U['y']^2
sage: f(h[2, 2])
U['x']^4 + U['y']^2
sage: f(h[3, 2, 1])
U['x']^6 + U['y']^3
sage: f(h.one())
2
sage: grf = h.induced_graded_map(A, f); grf
Generic morphism:
From: Symmetric Functions over Rational Field
in the homogeneous basis

To: Graded Algebra of An example of a filtered
algebra with basis: the universal enveloping
algebra of Lie algebra of RR^3 with cross
product over Rational Field

sage: grf(h[1])
bar(U['x']) + bar(U['y'])
sage: grf(h[2])
bar(U['x']^2)
sage: grf(h[1, 1])
bar(U['x']^2) + bar(U['y']^2)
sage: grf(h[2, 2])
bar(U['x']^4)
sage: grf(h[3, 2, 1])
bar(U['x']^6)
sage: grf(h.one())
2*bar(1)

Example 4.

The construct gr 𝑓 also makes sense when 𝑓 is a filtration-preserving map between graded algebras.

sage: def map_on_basis(lam): # redefining map_on_basis
....: return h[lam] + h[len(lam)]
sage: f = h.module_morphism(on_basis=map_on_basis,
....: codomain=h) # redefining f
sage: f(h[1])
2*h[1]
sage: f(h[2])
h[1] + h[2]
sage: f(h[1, 1])
h[1, 1] + h[2]
sage: f(h[2, 1])

(continues on next page)
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h[2] + h[2, 1]
sage: f(h.one())
2*h[]
sage: grf = h.induced_graded_map(h, f); grf
Generic endomorphism of Symmetric Functions over Rational
Field in the homogeneous basis
sage: grf(h[1])
2*h[1]
sage: grf(h[2])
h[2]
sage: grf(h[1, 1])
h[1, 1] + h[2]
sage: grf(h[2, 1])
h[2, 1]
sage: grf(h.one())
2*h[]

Example 5.

For another example, let us compute gr 𝑓 for a map 𝑓 between two Clifford algebras:

sage: Q = QuadraticForm(ZZ, 2, [1,2,3])
sage: B = CliffordAlgebra(Q, names=['u','v']); B
The Clifford algebra of the Quadratic form in 2
variables over Integer Ring with coefficients:
[ 1 2 ]
[ * 3 ]
sage: m = Matrix(ZZ, [[1, 2], [1, -1]])
sage: f = B.lift_module_morphism(m, names=['x','y'])
sage: A = f.domain(); A
The Clifford algebra of the Quadratic form in 2
variables over Integer Ring with coefficients:
[ 6 0 ]
[ * 3 ]
sage: x, y = A.gens()
sage: f(x)
u + v
sage: f(y)
2*u - v
sage: f(x**2)
6
sage: f(x*y)
-3*u*v + 3
sage: grA = A.graded_algebra(); grA
The exterior algebra of rank 2 over Integer Ring
sage: A.to_graded_conversion()(x)
x
sage: A.to_graded_conversion()(y)
y
sage: A.to_graded_conversion()(x*y)
x*y
sage: u = A.to_graded_conversion()(x*y+1); u
x*y + 1

(continues on next page)
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sage: A.from_graded_conversion()(u)
x*y + 1
sage: A.projection(2)(x*y+1)
x*y
sage: A.projection(1)(x+2*y-2)
x + 2*y
sage: grf = A.induced_graded_map(B, f); grf
Generic morphism:
From: The exterior algebra of rank 2 over Integer Ring
To: The exterior algebra of rank 2 over Integer Ring

sage: grf(A.to_graded_conversion()(x))
u + v
sage: grf(A.to_graded_conversion()(y))
2*u - v
sage: grf(A.to_graded_conversion()(x**2))
6
sage: grf(A.to_graded_conversion()(x*y))
-3*u*v
sage: grf(grA.one())
1

projection(i)
Return the 𝑖-th projection 𝑝𝑖 : 𝐹𝑖 → 𝐺𝑖 (in the notations of the class documentation
AssociatedGradedAlgebra, where 𝐴 =).

This method actually does not return the map 𝑝𝑖 itself, but an extension of 𝑝𝑖 to the whole 𝑅-module
𝐴. This extension is the composition of the 𝑅-module isomorphism 𝐴 → gr𝐴 with the canonical
projection of the graded 𝑅-module gr𝐴 onto its 𝑖-th graded component 𝐺𝑖. The codomain of this
map is gr𝐴, although its actual image is 𝐺𝑖. The map 𝑝𝑖 is obtained from this map by restricting its
domain to 𝐹𝑖 and its image to 𝐺𝑖.

EXAMPLES:

sage: A = Algebras(QQ).WithBasis().Filtered().example()
sage: p = A.an_element() + A.algebra_generators()['x'] + 2; p
U['x']^2*U['y']^2*U['z']^3 + 3*U['x'] + 3*U['y'] + 3
sage: q = A.projection(7)(p); q
bar(U['x']^2*U['y']^2*U['z']^3)
sage: q.parent() is A.graded_algebra()
True
sage: A.projection(8)(p)
0

to_graded_conversion()
Return the canonical 𝑅-module isomorphism 𝐴→ gr𝐴 induced by the basis of 𝐴 (where 𝐴 =).

This is an isomorphism of 𝑅-modules, not of algebras. See the class documentation
AssociatedGradedAlgebra.

See also:

from_graded_conversion()

EXAMPLES:
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sage: A = Algebras(QQ).WithBasis().Filtered().example()
sage: p = A.an_element() + A.algebra_generators()['x'] + 2; p
U['x']^2*U['y']^2*U['z']^3 + 3*U['x'] + 3*U['y'] + 3
sage: q = A.to_graded_conversion()(p); q
bar(U['x']^2*U['y']^2*U['z']^3) + 3*bar(U['x'])
+ 3*bar(U['y']) + 3*bar(1)
sage: q.parent() is A.graded_algebra()
True

4.42 Filtered Modules

A filtered module over a ring 𝑅 with a totally ordered indexing set 𝐼 (typically 𝐼 = N) is an 𝑅-module 𝑀 equipped
with a family (𝐹𝑖)𝑖∈𝐼 of 𝑅-submodules satisfying 𝐹𝑖 ⊆ 𝐹𝑗 for all 𝑖, 𝑗 ∈ 𝐼 having 𝑖 ≤ 𝑗, and 𝑀 =

⋃︀
𝑖∈𝐼 𝐹𝑖. This

family is called a filtration of the given module 𝑀 .

Todo: Implement a notion for decreasing filtrations: where 𝐹𝑗 ⊆ 𝐹𝑖 when 𝑖 ≤ 𝑗.

Todo: Implement filtrations for all concrete categories.

Todo: Implement gr as a functor.

class sage.categories.filtered_modules.FilteredModules(base_category)
Bases: sage.categories.filtered_modules.FilteredModulesCategory

The category of filtered modules over a given ring 𝑅.

A filtered module over a ring 𝑅 with a totally ordered indexing set 𝐼 (typically 𝐼 = N) is an 𝑅-module 𝑀
equipped with a family (𝐹𝑖)𝑖∈𝐼 of 𝑅-submodules satisfying 𝐹𝑖 ⊆ 𝐹𝑗 for all 𝑖, 𝑗 ∈ 𝐼 having 𝑖 ≤ 𝑗, and 𝑀 =⋃︀

𝑖∈𝐼 𝐹𝑖. This family is called a filtration of the given module 𝑀 .

EXAMPLES:

sage: Modules(ZZ).Filtered()
Category of filtered modules over Integer Ring
sage: Modules(ZZ).Filtered().super_categories()
[Category of modules over Integer Ring]

REFERENCES:

• Wikipedia article Filtration_(mathematics)

class Connected(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class SubcategoryMethods
Bases: object

Connected()
Return the full subcategory of the connected objects of self.
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A filtered 𝑅-module 𝑀 with filtration (𝐹0, 𝐹1, 𝐹2, . . .) (indexed by N) is said to be connected if 𝐹0

is isomorphic to 𝑅.

EXAMPLES:

sage: Modules(ZZ).Filtered().Connected()
Category of filtered connected modules over Integer Ring
sage: Coalgebras(QQ).Filtered().Connected()
Category of filtered connected coalgebras over Rational Field
sage: AlgebrasWithBasis(QQ).Filtered().Connected()
Category of filtered connected algebras with basis over Rational Field

extra_super_categories()
Add VectorSpaces to the super categories of self if the base ring is a field.

EXAMPLES:

sage: Modules(QQ).Filtered().is_subcategory(VectorSpaces(QQ))
True
sage: Modules(ZZ).Filtered().extra_super_categories()
[]

This makes sure that Modules(QQ).Filtered() returns an instance of FilteredModules and not a join
category of an instance of this class and of VectorSpaces(QQ):

sage: type(Modules(QQ).Filtered())
<class 'sage.categories.vector_spaces.VectorSpaces.Filtered_with_category'>

Todo: Get rid of this workaround once there is a more systematic approach for the alias Modules(QQ)
-> VectorSpaces(QQ). Probably the latter should be a category with axiom, and covariant constructions
should play well with axioms.

class sage.categories.filtered_modules.FilteredModulesCategory(base_category)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory,
sage.categories.category_types.Category_over_base_ring

EXAMPLES:

sage: C = Algebras(QQ).Filtered()
sage: C
Category of filtered algebras over Rational Field
sage: C.base_category()
Category of algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of algebras over Rational Field,
Category of filtered vector spaces over Rational Field]

sage: AlgebrasWithBasis(QQ).Filtered().base_ring()
Rational Field
sage: HopfAlgebrasWithBasis(QQ).Filtered().base_ring()
Rational Field
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4.43 Filtered Modules With Basis

A filtered module with basis over a ring 𝑅 means (for the purpose of this code) a filtered 𝑅-module 𝑀 with filtration
(𝐹𝑖)𝑖∈𝐼 (typically 𝐼 = N) endowed with a basis (𝑏𝑗)𝑗∈𝐽 of 𝑀 and a partition 𝐽 =

⨆︀
𝑖∈𝐼 𝐽𝑖 of the set 𝐽 (it is allowed

that some 𝐽𝑖 are empty) such that for every 𝑛 ∈ 𝐼 , the subfamily (𝑏𝑗)𝑗∈𝑈𝑛
, where 𝑈𝑛 =

⋃︀
𝑖≤𝑛 𝐽𝑖, is a basis of the

𝑅-submodule 𝐹𝑛.

For every 𝑖 ∈ 𝐼 , the 𝑅-submodule of 𝑀 spanned by (𝑏𝑗)𝑗∈𝐽𝑖
is called the 𝑖-th graded component (aka the 𝑖-th homoge-

neous component) of the filtered module with basis 𝑀 ; the elements of this submodule are referred to as homogeneous
elements of degree 𝑖.

See the class documentation FilteredModulesWithBasis for further details.

class sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis(base_category)
Bases: sage.categories.filtered_modules.FilteredModulesCategory

The category of filtered modules with a distinguished basis.

A filtered module with basis over a ring 𝑅 means (for the purpose of this code) a filtered 𝑅-module 𝑀 with
filtration (𝐹𝑖)𝑖∈𝐼 (typically 𝐼 = N) endowed with a basis (𝑏𝑗)𝑗∈𝐽 of 𝑀 and a partition 𝐽 =

⨆︀
𝑖∈𝐼 𝐽𝑖 of the set 𝐽

(it is allowed that some 𝐽𝑖 are empty) such that for every 𝑛 ∈ 𝐼 , the subfamily (𝑏𝑗)𝑗∈𝑈𝑛
, where 𝑈𝑛 =

⋃︀
𝑖≤𝑛 𝐽𝑖,

is a basis of the 𝑅-submodule 𝐹𝑛.

For every 𝑖 ∈ 𝐼 , the 𝑅-submodule of 𝑀 spanned by (𝑏𝑗)𝑗∈𝐽𝑖
is called the 𝑖-th graded component (aka the 𝑖-th

homogeneous component) of the filtered module with basis 𝑀 ; the elements of this submodule are referred to
as homogeneous elements of degree 𝑖. The 𝑅-module 𝑀 is the direct sum of its 𝑖-th graded components over all
𝑖 ∈ 𝐼 , and thus becomes a graded𝑅-module with basis. Conversely, any graded𝑅-module with basis canonically
becomes a filtered 𝑅-module with basis (by defining 𝐹𝑛 =

⨁︀
𝑖≤𝑛 𝐺𝑖 where 𝐺𝑖 is the 𝑖-th graded component,

and defining 𝐽𝑖 as the indexing set of the basis of the 𝑖-th graded component). Hence, the notion of a filtered
𝑅-module with basis is equivalent to the notion of a graded 𝑅-module with basis.

However, the category of filtered 𝑅-modules with basis is not the category of graded 𝑅-modules with basis.
Indeed, the morphisms of filtered 𝑅-modules with basis are defined to be morphisms of 𝑅-modules which send
each 𝐹𝑛 of the domain to the corresponding 𝐹𝑛 of the target; in contrast, the morphisms of graded 𝑅-modules
with basis must preserve each homogeneous component. Also, the notion of a filtered algebra with basis differs
from that of a graded algebra with basis.

Note: Currently, to make use of the functionality of this class, an instance of FilteredModulesWithBasis
should fulfill the contract of a CombinatorialFreeModule (most likely by inheriting from it). It should also
have the indexing set 𝐽 encoded as its _indices attribute, and _indices.subset(size=i) should yield the
subset 𝐽𝑖 (as an iterable). If the latter conditions are not satisfied, then basis() must be overridden.

Note: One should implement a degree_on_basis method in the parent class in order to fully utilize the
methods of this category. This might become a required abstract method in the future.

EXAMPLES:

sage: C = ModulesWithBasis(ZZ).Filtered(); C
Category of filtered modules with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of filtered modules over Integer Ring,
Category of modules with basis over Integer Ring]
sage: C is ModulesWithBasis(ZZ).Filtered()
True
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class ElementMethods
Bases: object

degree()
The degree of a nonzero homogeneous element self in the filtered module.

Note: This raises an error if the element is not homogeneous. To compute the maximum of the degrees
of the homogeneous summands of a (not necessarily homogeneous) element, use maximal_degree()
instead.

EXAMPLES:

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A(Partition((3,2,1)))
sage: y = A(Partition((4,4,1)))
sage: z = A(Partition((2,2,2)))
sage: x.degree()
6
sage: (x + 2*z).degree()
6
sage: (y - x).degree()
Traceback (most recent call last):
...
ValueError: element is not homogeneous

An example in a graded algebra:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: x.homogeneous_degree()
2
sage: (x^3 + 4*y^2).homogeneous_degree()
6
sage: ((1 + x)^3).homogeneous_degree()
Traceback (most recent call last):
...
ValueError: element is not homogeneous

Let us now test a filtered algebra (but remember that the notion of homogeneity now depends on the
choice of a basis):

sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x,y,z = A.algebra_generators()
sage: (x*y).homogeneous_degree()
2
sage: (y*x).homogeneous_degree()
Traceback (most recent call last):
...
ValueError: element is not homogeneous
sage: A.one().homogeneous_degree()
0

degree_on_basis(m)
Return the degree of the basis element indexed by m in self.
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EXAMPLES:

sage: A = GradedModulesWithBasis(QQ).example()
sage: A.degree_on_basis(Partition((2,1)))
3
sage: A.degree_on_basis(Partition((4,2,1,1,1,1)))
10

homogeneous_component(n)
Return the homogeneous component of degree n of the element self.

Let 𝑚 be an element of a filtered 𝑅-module 𝑀 with basis. Then, 𝑚 can be uniquely written in the
form 𝑚 =

∑︀
𝑖∈𝐼 𝑚𝑖, where each 𝑚𝑖 is a homogeneous element of degree 𝑖. For 𝑛 ∈ 𝐼 , we define the

homogeneous component of degree 𝑛 of the element 𝑚 to be 𝑚𝑛.

EXAMPLES:

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A.an_element(); x
2*P[] + 2*P[1] + 3*P[2]
sage: x.homogeneous_component(-1)
0
sage: x.homogeneous_component(0)
2*P[]
sage: x.homogeneous_component(1)
2*P[1]
sage: x.homogeneous_component(2)
3*P[2]
sage: x.homogeneous_component(3)
0

sage: A = ModulesWithBasis(ZZ).Graded().example()
sage: x = A.an_element(); x
2*P[] + 2*P[1] + 3*P[2]
sage: x.homogeneous_component(-1)
0
sage: x.homogeneous_component(0)
2*P[]
sage: x.homogeneous_component(1)
2*P[1]
sage: x.homogeneous_component(2)
3*P[2]
sage: x.homogeneous_component(3)
0

sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: G = A.algebra_generators()
sage: g = A.an_element() - 2 * G['x'] * G['y']; g
U['x']^2*U['y']^2*U['z']^3 - 2*U['x']*U['y']
+ 2*U['x'] + 3*U['y'] + 1
sage: g.homogeneous_component(-1)
0
sage: g.homogeneous_component(0)
1
sage: g.homogeneous_component(2)

(continues on next page)
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(continued from previous page)

-2*U['x']*U['y']
sage: g.homogeneous_component(5)
0
sage: g.homogeneous_component(7)
U['x']^2*U['y']^2*U['z']^3
sage: g.homogeneous_component(8)
0

homogeneous_degree()
The degree of a nonzero homogeneous element self in the filtered module.

Note: This raises an error if the element is not homogeneous. To compute the maximum of the degrees
of the homogeneous summands of a (not necessarily homogeneous) element, use maximal_degree()
instead.

EXAMPLES:

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A(Partition((3,2,1)))
sage: y = A(Partition((4,4,1)))
sage: z = A(Partition((2,2,2)))
sage: x.degree()
6
sage: (x + 2*z).degree()
6
sage: (y - x).degree()
Traceback (most recent call last):
...
ValueError: element is not homogeneous

An example in a graded algebra:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: x.homogeneous_degree()
2
sage: (x^3 + 4*y^2).homogeneous_degree()
6
sage: ((1 + x)^3).homogeneous_degree()
Traceback (most recent call last):
...
ValueError: element is not homogeneous

Let us now test a filtered algebra (but remember that the notion of homogeneity now depends on the
choice of a basis):

sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x,y,z = A.algebra_generators()
sage: (x*y).homogeneous_degree()
2
sage: (y*x).homogeneous_degree()
Traceback (most recent call last):

(continues on next page)
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...
ValueError: element is not homogeneous
sage: A.one().homogeneous_degree()
0

is_homogeneous()
Return whether the element self is homogeneous.

EXAMPLES:

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A(Partition((3,2,1)))
sage: y = A(Partition((4,4,1)))
sage: z = A(Partition((2,2,2)))
sage: (3*x).is_homogeneous()
True
sage: (x - y).is_homogeneous()
False
sage: (x+2*z).is_homogeneous()
True

Here is an example with a graded algebra:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: (3*x).is_homogeneous()
True
sage: (x^3 - y^2).is_homogeneous()
True
sage: ((x + y)^2).is_homogeneous()
False

Let us now test a filtered algebra (but remember that the notion of homogeneity now depends on the
choice of a basis, or at least on a definition of homogeneous components):

sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x,y,z = A.algebra_generators()
sage: (x*y).is_homogeneous()
True
sage: (y*x).is_homogeneous()
False
sage: A.one().is_homogeneous()
True
sage: A.zero().is_homogeneous()
True
sage: (A.one()+x).is_homogeneous()
False

maximal_degree()
The maximum of the degrees of the homogeneous components of self.

This is also the smallest 𝑖 such that self belongs to 𝐹𝑖. Hence, it does not depend on the basis of the
parent of self.
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See also:

homogeneous_degree()

EXAMPLES:

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A(Partition((3,2,1)))
sage: y = A(Partition((4,4,1)))
sage: z = A(Partition((2,2,2)))
sage: x.maximal_degree()
6
sage: (x + 2*z).maximal_degree()
6
sage: (y - x).maximal_degree()
9
sage: (3*z).maximal_degree()
6

Now, we test this on a graded algebra:

sage: S = NonCommutativeSymmetricFunctions(QQ).S()
sage: (x, y) = (S[2], S[3])
sage: x.maximal_degree()
2
sage: (x^3 + 4*y^2).maximal_degree()
6
sage: ((1 + x)^3).maximal_degree()
6

Let us now test a filtered algebra:

sage: A = AlgebrasWithBasis(QQ).Filtered().example()
sage: x,y,z = A.algebra_generators()
sage: (x*y).maximal_degree()
2
sage: (y*x).maximal_degree()
2
sage: A.one().maximal_degree()
0
sage: A.zero().maximal_degree()
Traceback (most recent call last):
...
ValueError: the zero element does not have a well-defined degree
sage: (A.one()+x).maximal_degree()
1

truncate(n)
Return the sum of the homogeneous components of degree strictly less than n of self.

See homogeneous_component() for the notion of a homogeneous component.

EXAMPLES:

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: x = A.an_element(); x

(continues on next page)
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2*P[] + 2*P[1] + 3*P[2]
sage: x.truncate(0)
0
sage: x.truncate(1)
2*P[]
sage: x.truncate(2)
2*P[] + 2*P[1]
sage: x.truncate(3)
2*P[] + 2*P[1] + 3*P[2]

sage: A = ModulesWithBasis(ZZ).Graded().example()
sage: x = A.an_element(); x
2*P[] + 2*P[1] + 3*P[2]
sage: x.truncate(0)
0
sage: x.truncate(1)
2*P[]
sage: x.truncate(2)
2*P[] + 2*P[1]
sage: x.truncate(3)
2*P[] + 2*P[1] + 3*P[2]

sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: G = A.algebra_generators()
sage: g = A.an_element() - 2 * G['x'] * G['y']; g
U['x']^2*U['y']^2*U['z']^3 - 2*U['x']*U['y']
+ 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(-1)
0
sage: g.truncate(0)
0
sage: g.truncate(2)
2*U['x'] + 3*U['y'] + 1
sage: g.truncate(3)
-2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(5)
-2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(7)
-2*U['x']*U['y'] + 2*U['x'] + 3*U['y'] + 1
sage: g.truncate(8)
U['x']^2*U['y']^2*U['z']^3 - 2*U['x']*U['y']
+ 2*U['x'] + 3*U['y'] + 1

class ParentMethods
Bases: object

basis(d=None)
Return the basis for (the d-th homogeneous component of) self.

INPUT:
• d – (optional, default None) nonnegative integer or None

OUTPUT:

If d is None, returns the basis of the module. Otherwise, returns the basis of the homogeneous compo-
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nent of degree d (i.e., the subfamily of the basis of the whole module which consists only of the basis
vectors lying in 𝐹𝑑 ∖

⋃︀
𝑖<𝑑 𝐹𝑖).

The basis is always returned as a family.

EXAMPLES:

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Lazy family (Term map from Partitions to An example of a
filtered module with basis: the free module on partitions
over Integer Ring(i))_{i in Partitions of the integer 4}

Without arguments, the full basis is returned:

sage: A.basis()
Lazy family (Term map from Partitions to An example of a
filtered module with basis: the free module on partitions
over Integer Ring(i))_{i in Partitions}
sage: A.basis()
Lazy family (Term map from Partitions to An example of a
filtered module with basis: the free module on partitions
over Integer Ring(i))_{i in Partitions}

Checking this method on a filtered algebra. Note that this will typically raise a
NotImplementedError when this feature is not implemented.

sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Traceback (most recent call last):
...
NotImplementedError: infinite set

Without arguments, the full basis is returned:

sage: A.basis()
Lazy family (Term map from Free abelian monoid indexed by
{'x', 'y', 'z'} to An example of a filtered algebra with
basis: the universal enveloping algebra of Lie algebra
of RR^3 with cross product over Integer Ring(i))_{i in
Free abelian monoid indexed by {'x', 'y', 'z'}}

An example with a graded algebra:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: E.basis()
Lazy family (Term map from Subsets of {0,1} to
The exterior algebra of rank 2 over Rational Field(i))_{i in
Subsets of {0,1}}

from_graded_conversion()
Return the inverse of the canonical 𝑅-module isomorphism 𝐴 → gr𝐴 induced by the basis of 𝐴
(where 𝐴 =). This inverse is an isomorphism gr𝐴→ 𝐴.

This is an isomorphism of 𝑅-modules. See the class documentation AssociatedGradedAlgebra.
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See also:

to_graded_conversion()

EXAMPLES:

sage: A = Modules(QQ).WithBasis().Filtered().example()
sage: p = -2 * A.an_element(); p
-4*P[] - 4*P[1] - 6*P[2]
sage: q = A.to_graded_conversion()(p); q
-4*Bbar[[]] - 4*Bbar[[1]] - 6*Bbar[[2]]
sage: A.from_graded_conversion()(q) == p
True
sage: q.parent() is A.graded_algebra()
True

graded_algebra()
Return the associated graded module to self.

See AssociatedGradedAlgebra for the definition and the properties of this.

If the filtered module self with basis is called 𝐴, then this method returns gr𝐴. The method
to_graded_conversion() returns the canonical 𝑅-module isomorphism 𝐴→ gr𝐴 induced by the
basis of 𝐴, and the method from_graded_conversion() returns the inverse of this isomorphism.
The method projection() projects elements of 𝐴 onto gr𝐴 according to their place in the filtration
on 𝐴.

Warning: When not overridden, this method returns the default implementation
of an associated graded module – namely, AssociatedGradedAlgebra(self), where
AssociatedGradedAlgebra is AssociatedGradedAlgebra. But some instances of
FilteredModulesWithBasis override this method, as the associated graded module often is
(isomorphic) to a simpler object (for instance, the associated graded module of a graded mod-
ule can be identified with the graded module itself). Generic code that uses associated graded
modules (such as the code of the induced_graded_map() method below) should make sure to
only communicate with them via the to_graded_conversion(), from_graded_conversion()
and projection() methods (in particular, do not expect there to be a conversion from self
to self.graded_algebra(); this currently does not work for Clifford algebras). Similarly,
when overriding graded_algebra(), make sure to accordingly redefine these three methods, un-
less their definitions below still apply to your case (this will happen whenever the basis of your
graded_algebra() has the same indexing set as self, and the partition of this indexing set ac-
cording to degree is the same as for self).

EXAMPLES:

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: A.graded_algebra()
Graded Module of An example of a filtered module with basis:
the free module on partitions over Integer Ring

homogeneous_component(d)
Return the d-th homogeneous component of self.

EXAMPLES:
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sage: A = GradedModulesWithBasis(ZZ).example()
sage: A.homogeneous_component(4)
Degree 4 homogeneous component of An example of a graded module
with basis: the free module on partitions over Integer Ring

homogeneous_component_basis(d)
Return a basis for the d-th homogeneous component of self.

EXAMPLES:

sage: A = GradedModulesWithBasis(ZZ).example()
sage: A.homogeneous_component_basis(4)
Lazy family (Term map from Partitions to An example of a graded module with␣
→˓basis:

the free module on partitions over Integer Ring(i))_{i in␣
→˓Partitions of the integer 4}

sage: cat = GradedModulesWithBasis(ZZ)
sage: C = CombinatorialFreeModule(ZZ, ['a', 'b'], category=cat)
sage: C.degree_on_basis = lambda x: 1 if x == 'a' else 2
sage: C.homogeneous_component_basis(1)
Finite family {'a': B['a']}
sage: C.homogeneous_component_basis(2)
Finite family {'b': B['b']}

induced_graded_map(other, f )
Return the graded linear map between the associated graded modules of self and other canonically
induced by the filtration-preserving map f : self -> other.

Let 𝐴 and 𝐵 be two filtered modules with basis, and let (𝐹𝑖)𝑖∈𝐼 and (𝐺𝑖)𝑖∈𝐼 be their filtrations. Let
𝑓 : 𝐴 → 𝐵 be a linear map which preserves the filtration (i.e., satisfies 𝑓(𝐹𝑖) ⊆ 𝐺𝑖 for all 𝑖 ∈ 𝐼).
Then, there is a canonically defined graded linear map gr 𝑓 : gr𝐴→ gr𝐵 which satisfies

(gr 𝑓)(𝑝𝑖(𝑎)) = 𝑝𝑖(𝑓(𝑎)) for all 𝑖 ∈ 𝐼 and 𝑎 ∈ 𝐹𝑖,

where the 𝑝𝑖 on the left hand side is the canonical projection from 𝐹𝑖 onto the 𝑖-th graded component
of gr𝐴, while the 𝑝𝑖 on the right hand side is the canonical projection from 𝐺𝑖 onto the 𝑖-th graded
component of gr𝐵.

INPUT:
• other – a filtered algebra with basis
• f – a filtration-preserving linear map from self to other (can be given as a morphism or as a

function)
OUTPUT:

The graded linear map gr 𝑓 .

EXAMPLES:

Example 1.

We start with the free Q-module with basis the set of all partitions:

sage: A = Modules(QQ).WithBasis().Filtered().example(); A
An example of a filtered module with basis: the free module
on partitions over Rational Field
sage: M = A.indices(); M

(continues on next page)
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Partitions
sage: p1, p2, p21, p321 = [A.basis()[Partition(i)] for i in [[1], [2], [2,
→˓1], [3,2,1]]]

Let us define a map from A to itself which acts on the basis by sending every partition 𝜆 to the sum of
the conjugates of all partitions 𝜇 for which 𝜆/𝜇 is a horizontal strip:

sage: def map_on_basis(lam):
....: return A.sum_of_monomials([Partition(mu).conjugate() for k in␣
→˓range(sum(lam) + 1)
....: for mu in lam.remove_horizontal_border_
→˓strip(k)])
sage: f = A.module_morphism(on_basis=map_on_basis,
....: codomain=A)
sage: f(p1)
P[] + P[1]
sage: f(p2)
P[] + P[1] + P[1, 1]
sage: f(p21)
P[1] + P[1, 1] + P[2] + P[2, 1]
sage: f(p21 - p1)
-P[] + P[1, 1] + P[2] + P[2, 1]
sage: f(p321)
P[2, 1] + P[2, 1, 1] + P[2, 2] + P[2, 2, 1]
+ P[3, 1] + P[3, 1, 1] + P[3, 2] + P[3, 2, 1]

We now compute gr 𝑓

sage: grA = A.graded_algebra(); grA
Graded Module of An example of a filtered module with basis:
the free module on partitions over Rational Field
sage: pp1, pp2, pp21, pp321 = [A.to_graded_conversion()(i) for i in [p1, p2,
→˓ p21, p321]]
sage: pp2 + 4 * pp21
Bbar[[2]] + 4*Bbar[[2, 1]]
sage: grf = A.induced_graded_map(A, f); grf
Generic endomorphism of Graded Module of An example of a
filtered module with basis:
the free module on partitions over Rational Field
sage: grf(pp1)
Bbar[[1]]
sage: grf(pp2 + 4 * pp21)
Bbar[[1, 1]] + 4*Bbar[[2, 1]]

Example 2.

We shall now construct gr 𝑓 for a different map 𝑓 out of the same A; the new map 𝑓 will lead into a
graded algebra already, namely into the algebra of symmetric functions:

sage: h = SymmetricFunctions(QQ).h()
sage: def map_on_basis(lam): # redefining map_on_basis
....: return h.sum_of_monomials([Partition(mu).conjugate() for k in␣
→˓range(sum(lam) + 1)

(continues on next page)
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....: for mu in lam.remove_horizontal_border_
→˓strip(k)])
sage: f = A.module_morphism(on_basis=map_on_basis,
....: codomain=h) # redefining f
sage: f(p1)
h[] + h[1]
sage: f(p2)
h[] + h[1] + h[1, 1]
sage: f(A.zero())
0
sage: f(p2 - 3*p1)
-2*h[] - 2*h[1] + h[1, 1]

The algebra h of symmetric functions in the ℎ-basis is already graded, so its associated graded algebra
is implemented as itself:

sage: grh = h.graded_algebra(); grh is h
True
sage: grf = A.induced_graded_map(h, f); grf
Generic morphism:
From: Graded Module of An example of a filtered
module with basis: the free module on partitions
over Rational Field

To: Symmetric Functions over Rational Field
in the homogeneous basis

sage: grf(pp1)
h[1]
sage: grf(pp2)
h[1, 1]
sage: grf(pp321)
h[3, 2, 1]
sage: grf(pp2 - 3*pp1)
-3*h[1] + h[1, 1]
sage: grf(pp21)
h[2, 1]
sage: grf(grA.zero())
0

Example 3.

After having had a graded module as the codomain, let us try to have one as the domain instead. Our
new f will go from h to A:

sage: def map_on_basis(lam): # redefining map_on_basis
....: return A.sum_of_monomials([Partition(mu).conjugate() for k in␣
→˓range(sum(lam) + 1)
....: for mu in lam.remove_horizontal_border_
→˓strip(k)])
sage: f = h.module_morphism(on_basis=map_on_basis,
....: codomain=A) # redefining f
sage: f(h[1])
P[] + P[1]
sage: f(h[2])

(continues on next page)
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P[] + P[1] + P[1, 1]
sage: f(h[1, 1])
P[1] + P[2]
sage: f(h[2, 2])
P[1, 1] + P[2, 1] + P[2, 2]
sage: f(h[3, 2, 1])
P[2, 1] + P[2, 1, 1] + P[2, 2] + P[2, 2, 1]
+ P[3, 1] + P[3, 1, 1] + P[3, 2] + P[3, 2, 1]
sage: f(h.one())
P[]
sage: grf = h.induced_graded_map(A, f); grf
Generic morphism:
From: Symmetric Functions over Rational Field
in the homogeneous basis

To: Graded Module of An example of a filtered
module with basis: the free module on partitions
over Rational Field

sage: grf(h[1])
Bbar[[1]]
sage: grf(h[2])
Bbar[[1, 1]]
sage: grf(h[1, 1])
Bbar[[2]]
sage: grf(h[2, 2])
Bbar[[2, 2]]
sage: grf(h[3, 2, 1])
Bbar[[3, 2, 1]]
sage: grf(h.one())
Bbar[[]]

Example 4.

The construct gr 𝑓 also makes sense when 𝑓 is a filtration-preserving map between graded modules.

sage: def map_on_basis(lam): # redefining map_on_basis
....: return h.sum_of_monomials([Partition(mu).conjugate() for k in␣
→˓range(sum(lam) + 1)
....: for mu in lam.remove_horizontal_border_
→˓strip(k)])
sage: f = h.module_morphism(on_basis=map_on_basis,
....: codomain=h) # redefining f
sage: f(h[1])
h[] + h[1]
sage: f(h[2])
h[] + h[1] + h[1, 1]
sage: f(h[1, 1])
h[1] + h[2]
sage: f(h[2, 1])
h[1] + h[1, 1] + h[2] + h[2, 1]
sage: f(h.one())
h[]
sage: grf = h.induced_graded_map(h, f); grf
Generic endomorphism of Symmetric Functions over Rational

(continues on next page)
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Field in the homogeneous basis
sage: grf(h[1])
h[1]
sage: grf(h[2])
h[1, 1]
sage: grf(h[1, 1])
h[2]
sage: grf(h[2, 1])
h[2, 1]
sage: grf(h.one())
h[]

projection(i)
Return the 𝑖-th projection 𝑝𝑖 : 𝐹𝑖 → 𝐺𝑖 (in the notations of the class documentation
AssociatedGradedAlgebra, where 𝐴 =).

This method actually does not return the map 𝑝𝑖 itself, but an extension of 𝑝𝑖 to the whole 𝑅-module
𝐴. This extension is the composition of the 𝑅-module isomorphism 𝐴 → gr𝐴 with the canonical
projection of the graded 𝑅-module gr𝐴 onto its 𝑖-th graded component 𝐺𝑖. The codomain of this
map is gr𝐴, although its actual image is 𝐺𝑖. The map 𝑝𝑖 is obtained from this map by restricting its
domain to 𝐹𝑖 and its image to 𝐺𝑖.

EXAMPLES:

sage: A = Modules(ZZ).WithBasis().Filtered().example()
sage: p = -2 * A.an_element(); p
-4*P[] - 4*P[1] - 6*P[2]
sage: q = A.projection(2)(p); q
-6*Bbar[[2]]
sage: q.parent() is A.graded_algebra()
True
sage: A.projection(3)(p)
0

to_graded_conversion()
Return the canonical 𝑅-module isomorphism 𝐴→ gr𝐴 induced by the basis of 𝐴 (where 𝐴 =).

This is an isomorphism of 𝑅-modules. See the class documentation AssociatedGradedAlgebra.

See also:

from_graded_conversion()

EXAMPLES:

sage: A = Modules(QQ).WithBasis().Filtered().example()
sage: p = -2 * A.an_element(); p
-4*P[] - 4*P[1] - 6*P[2]
sage: q = A.to_graded_conversion()(p); q
-4*Bbar[[]] - 4*Bbar[[1]] - 6*Bbar[[2]]
sage: q.parent() is A.graded_algebra()
True

class Subobjects(category, *args)
Bases: sage.categories.subobjects.SubobjectsCategory
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class ElementMethods
Bases: object

degree()
Return the degree of self.

EXAMPLES:

sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: S = E.submodule([x + y, x*y - y*z, y])
sage: B = S.basis()
sage: [B[0].lift(), B[1].lift(), B[2].lift()]
[x, y, x*y - y*z]
sage: B[0].degree()
1
sage: B[1].degree()
1
sage: (B[0] + 3*B[1]).degree()
1

The degree of inhomogeneous elements is not defined (following the behavior of the exterior al-
gebra):

sage: (B[0] + B[2]).degree()
Traceback (most recent call last):
...
ValueError: element is not homogeneous

We can still get the maximal degree:

sage: (B[0] + B[2]).maximal_degree()
2

maximal_degree()
The maximum of the degrees of the homogeneous components of self.

This is also the smallest 𝑖 such that self belongs to 𝐹𝑖. Hence, it does not depend on the basis of
the parent of self.

See also:

homogeneous_degree()

EXAMPLES:

sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: F = E.submodule([x + 1, x*y - 1])
sage: B = F.basis()
sage: [B[0].lift(), B[1].lift()]
[-x*y + 1, x*y + x]
sage: B[0].maximal_degree()
2
sage: B[1].maximal_degree()
2

class ParentMethods
Bases: object

4.43. Filtered Modules With Basis 345



Category Framework, Release 9.7

degree_on_basis(m)
Return the degree of the basis element indexed by m in self.

EXAMPLES:

sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: S = E.submodule([x + y, x*y - y*z, y])
sage: B = S.basis()
sage: [B[0].lift(), B[1].lift(), B[2].lift()]
[x, y, x*y - y*z]
sage: S.degree_on_basis(0)
1
sage: S.degree_on_basis(1)
1
sage: S.degree_on_basis(2)
2

4.44 Finite Complex Reflection Groups

class sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite complex reflection groups.

See ComplexReflectionGroups for the definition of complex reflection group. In the finite case, most of the
information about the group can be recovered from its degrees and codegrees, and to a lesser extent to the explicit
realization as subgroup of 𝐺𝐿(𝑉 ). Hence the most important optional methods to implement are:

• ComplexReflectionGroups.Finite.ParentMethods.degrees(),

• ComplexReflectionGroups.Finite.ParentMethods.codegrees(),

• ComplexReflectionGroups.Finite.ElementMethods.to_matrix().

Finite complex reflection groups are completely classified. In particular, if the group is irreducible, then it’s
uniquely determined by its degrees and codegrees and whether it’s reflection representation is primitive or not
(see [LT2009] Chapter 2.1 for the definition of primitive).

See also:

Wikipedia article Complex_reflection_groups

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite()
Category of finite complex reflection groups
sage: ComplexReflectionGroups().Finite().super_categories()
[Category of complex reflection groups,
Category of finite groups,
Category of finite finitely generated semigroups]

An example of a finite reflection group:

sage: W = ComplexReflectionGroups().Finite().example(); W # optional - gap3
Reducible real reflection group of rank 4 and type A2 x B2

(continues on next page)
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sage: W.reflections() # optional - gap3
Finite family {1: (1,8)(2,5)(9,12), 2: (1,5)(2,9)(8,12),

3: (3,10)(4,7)(11,14), 4: (3,6)(4,11)(10,13),
5: (1,9)(2,8)(5,12), 6: (4,14)(6,13)(7,11),
7: (3,13)(6,10)(7,14)}

W is in the category of complex reflection groups:

sage: W in ComplexReflectionGroups().Finite() # optional - gap3
True

class ElementMethods
Bases: object

character_value()
Return the value at self of the character of the reflection representation given by to_matrix().

EXAMPLES:

sage: W = ColoredPermutations(1,3); W
1-colored permutations of size 3
sage: [t.character_value() for t in W]
[3, 1, 1, 0, 0, 1]

Note that this could be a different (faithful) representation than that given by the corresponding root
system:

sage: W = ReflectionGroup((1,1,3)); W # optional - gap3
Irreducible real reflection group of rank 2 and type A2
sage: [t.character_value() for t in W] # optional - gap3
[2, 0, 0, -1, -1, 0]

sage: W = ColoredPermutations(2,2); W
2-colored permutations of size 2
sage: [t.character_value() for t in W]
[2, 0, 0, -2, 0, 0, 0, 0]

sage: W = ColoredPermutations(3,1); W
3-colored permutations of size 1
sage: [t.character_value() for t in W]
[1, zeta3, -zeta3 - 1]

reflection_length(in_unitary_group=False)
Return the reflection length of self.

This is the minimal numbers of reflections needed to obtain self.

INPUT:
• in_unitary_group – (default: False) if True, the reflection length is computed in the unitary

group which is the dimension of the move space of self
EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3

(continues on next page)
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[0, 1, 1, 1, 2, 2]

sage: W = ReflectionGroup((2,1,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 1, 2, 2, 2]

sage: W = ReflectionGroup((2,2,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 2]

sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: sorted([t.reflection_length() for t in W]) # optional - gap3
[0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

to_matrix()
Return the matrix presentation of self acting on a vector space 𝑉 .

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: [t.to_matrix() for t in W] # optional - gap3
[
[1 0] [ 1 1] [-1 0] [-1 -1] [ 0 1] [ 0 -1]
[0 1], [ 0 -1], [ 1 1], [ 1 0], [-1 -1], [-1 0]
]

sage: W = ColoredPermutations(1,3)
sage: [t.to_matrix() for t in W]
[
[1 0 0] [1 0 0] [0 1 0] [0 0 1] [0 1 0] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [1 0 0] [0 0 1] [0 1 0]
[0 0 1], [0 1 0], [0 0 1], [0 1 0], [1 0 0], [1 0 0]
]

A different representation is given by the colored permutations:

sage: W = ColoredPermutations(3, 1)
sage: [t.to_matrix() for t in W]
[[1], [zeta3], [-zeta3 - 1]]

class Irreducible(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
Bases: object

absolute_order_ideal(gens=None, in_unitary_group=True, return_lengths=False)
Return all elements in self below given elements in the absolute order of self.

This order is defined by

𝜔 ≤𝑅 𝜏 ⇔ ℓ𝑅(𝜔) + ℓ𝑅(𝜔−1𝜏) = ℓ𝑅(𝜏),

where ℓ𝑅 denotes the reflection length.
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This is, if in_unitary_group is False, then

ℓ𝑅(𝑤) = min{ℓ : 𝑤 = 𝑟1 · · · 𝑟ℓ, 𝑟𝑖 ∈ 𝑅},

and otherwise

ℓ𝑅(𝑤) = dim im(𝑤 − 1).

Note: If gens are not given, self is assumed to be well-generated.

INPUT:
• gens – (default: None) if one or more elements are given, the order ideal in the absolute order

generated by gens is returned. Otherwise, the standard Coxeter element is used as unique
maximal element.

• in_unitary_group (default:True) determines the length function used to compute the order.
For real groups, both possible orders coincide, and for complex non-real groups, the order in
the unitary group is much faster to compute.

• return_lengths (default:False) whether or not to also return the lengths of the elements.
EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional -␣
→˓gap3

sage: sorted( w.reduced_word() for w in W.absolute_order_ideal() ) #␣
→˓optional - gap3
[[], [1], [1, 2], [1, 2, 1], [2]]

sage: sorted( w.reduced_word() for w in W.absolute_order_ideal(W.from_
→˓reduced_word([2,1])) ) # optional - gap3
[[], [1], [1, 2, 1], [2], [2, 1]]

sage: sorted( w.reduced_word() for w in W.absolute_order_ideal(W.from_
→˓reduced_word([2])) ) # optional - gap3
[[], [2]]

sage: W = CoxeterGroup(['A', 3])
sage: len(list(W.absolute_order_ideal()))
14

sage: W = CoxeterGroup(['A', 2])
sage: for (w, l) in W.absolute_order_ideal(return_lengths=True):
....: print(w.reduced_word(), l)
[1, 2] 2
[1, 2, 1] 1
[2] 1
[1] 1
[] 0

absolute_poset(in_unitary_group=False)
Return the poset induced by the absolute order of self as a finite lattice.

INPUT:
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• in_unitary_group – (default: False) if False, the relation is given by \sigma \leq \
tau if 𝑙𝑅(𝜎) + 𝑙𝑅(𝜎−1𝜏) = 𝑙𝑅(𝜏) If True, the relation is given by 𝜎 ≤ 𝜏 if dim(Fix(𝜎)) +
dim(Fix(𝜎−1𝜏)) = dim(Fix(𝜏))

See also:

noncrossing_partition_lattice()

EXAMPLES:

sage: P = ReflectionGroup((1,1,3)).absolute_poset(); P # optional -␣
→˓gap3
Finite poset containing 6 elements

sage: sorted(w.reduced_word() for w in P) # optional -␣
→˓gap3
[[], [1], [1, 2], [1, 2, 1], [2], [2, 1]]

sage: W = ReflectionGroup(4); W # optional -␣
→˓gap3
Irreducible complex reflection group of rank 2 and type ST4
sage: W.absolute_poset() # optional -␣
→˓gap3
Finite poset containing 24 elements

coxeter_number()
Return the Coxeter number of an irreducible reflection group.

This is defined as 𝑁+𝑁*

𝑛 where 𝑁 is the number of reflections, 𝑁* is the number of reflection
hyperplanes, and 𝑛 is the rank of self.

EXAMPLES:

sage: W = ReflectionGroup(31) # optional - gap3
sage: W.coxeter_number() # optional - gap3
30

elements_below_coxeter_element(c=None)
Deprecated method.

Superseded by absolute_order_ideal()

generalized_noncrossing_partitions(m, c=None, positive=False)
Return the set of all chains of length m in the noncrossing partition lattice of self, see
noncrossing_partition_lattice().

Note: self is assumed to be well-generated.

INPUT:
• c – (default: None) if an element c in self is given, it is used as the maximal element in the

interval
• positive – (default: False) if True, only those generalized noncrossing partitions of full

support are returned
EXAMPLES:
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sage: W = ReflectionGroup((1,1,3)) # optional -␣
→˓gap3

sage: sorted([w.reduced_word() for w in chain] # optional -␣
→˓gap3
....: for chain in W.generalized_noncrossing_partitions(2)) #␣
→˓optional - gap3
[[[], [], [1, 2]],
[[], [1], [2]],
[[], [1, 2], []],
[[], [1, 2, 1], [1]],
[[], [2], [1, 2, 1]],
[[1], [], [2]],
[[1], [2], []],
[[1, 2], [], []],
[[1, 2, 1], [], [1]],
[[1, 2, 1], [1], []],
[[2], [], [1, 2, 1]],
[[2], [1, 2, 1], []]]

sage: sorted([w.reduced_word() for w in chain] # optional -␣
→˓gap3
....: for chain in W.generalized_noncrossing_partitions(2,␣
→˓positive=True)) # optional - gap3
[[[], [1, 2], []],
[[], [1, 2, 1], [1]],
[[1], [2], []],
[[1, 2], [], []],
[[1, 2, 1], [], [1]],
[[1, 2, 1], [1], []],
[[2], [1, 2, 1], []]]

noncrossing_partition_lattice(c=None, L=None, in_unitary_group=True)
Return the interval [1, 𝑐] in the absolute order of self as a finite lattice.

See also:

absolute_order_ideal()

INPUT:
• c – (default: None) if an element c in self is given, it is used as the maximal element in the

interval
• L – (default: None) if a subset L (must be hashable!) of self is given, it is used as the underlying

set (only cover relations are checked).
• in_unitary_group – (default: False) if False, the relation is given by 𝜎 ≤ 𝜏 if
𝑙𝑅(𝜎) + 𝑙𝑅(𝜎−1𝜏) = 𝑙𝑅(𝜏); if True, the relation is given by 𝜎 ≤ 𝜏 if dim(Fix(𝜎)) +
dim(Fix(𝜎−1𝜏)) = dim(Fix(𝜏))

Note: If L is given, the parameter c is ignored.

EXAMPLES:

sage: W = SymmetricGroup(4)
sage: W.noncrossing_partition_lattice()

(continues on next page)
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Finite lattice containing 14 elements

sage: W = WeylGroup(['G', 2])
sage: W.noncrossing_partition_lattice()
Finite lattice containing 8 elements

sage: W = ReflectionGroup((1,1,3)) # optional -␣
→˓gap3

sage: sorted( w.reduced_word() for w in W.noncrossing_partition_
→˓lattice() ) # optional - gap3
[[], [1], [1, 2], [1, 2, 1], [2]]

sage: sorted( w.reduced_word() for w in W.noncrossing_partition_
→˓lattice(W.from_reduced_word([2,1])) ) # optional - gap3
[[], [1], [1, 2, 1], [2], [2, 1]]

sage: sorted( w.reduced_word() for w in W.noncrossing_partition_
→˓lattice(W.from_reduced_word([2])) ) # optional - gap3
[[], [2]]

example()
Return an example of an irreducible complex reflection group.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite().Irreducible().example() #␣
→˓optional - gap3
Irreducible complex reflection group of rank 3 and type G(4,2,3)

class ParentMethods
Bases: object

base_change_matrix()
Return the base change from the standard basis of the vector space of self to the basis given by the
independent roots of self.

Todo: For non-well-generated groups there is a conflict with construction of the matrix for an element.

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional -␣
→˓gap3
sage: W.base_change_matrix() # optional -␣
→˓gap3
[1 0]
[0 1]

sage: W = ReflectionGroup(23) # optional -␣
→˓gap3

(continues on next page)
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sage: W.base_change_matrix() # optional -␣
→˓gap3
[1 0 0]
[0 1 0]
[0 0 1]

sage: W = ReflectionGroup((3,1,2)) # optional -␣
→˓gap3
sage: W.base_change_matrix() # optional -␣
→˓gap3
[1 0]
[1 1]

sage: W = ReflectionGroup((4,2,2)) # optional -␣
→˓gap3
sage: W.base_change_matrix() # optional -␣
→˓gap3
[ 1 0]
[E(4) 1]

cardinality()
Return the cardinality of self.

It is given by the product of the degrees of self.

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: W.cardinality()
6
sage: W = ColoredPermutations(2,3)
sage: W.cardinality()
48
sage: W = ColoredPermutations(4,3)
sage: W.cardinality()
384
sage: W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.cardinality() # optional - gap3
192

codegrees()
Return the codegrees of self.

OUTPUT: a tuple of Sage integers

EXAMPLES:

sage: W = ColoredPermutations(1,4)
sage: W.codegrees()
(2, 1, 0)

sage: W = ColoredPermutations(3,3)
sage: W.codegrees()
(6, 3, 0)

(continues on next page)
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sage: W = ReflectionGroup(31) # optional - gap3
sage: W.codegrees() # optional - gap3
(28, 16, 12, 0)

degrees()
Return the degrees of self.

OUTPUT: a tuple of Sage integers

EXAMPLES:

sage: W = ColoredPermutations(1,4)
sage: W.degrees()
(2, 3, 4)

sage: W = ColoredPermutations(3,3)
sage: W.degrees()
(3, 6, 9)

sage: W = ReflectionGroup(31) # optional - gap3
sage: W.degrees() # optional - gap3
(8, 12, 20, 24)

is_real()
Return whether self is real.

A complex reflection group is real if it is isomorphic to a reflection group in 𝐺𝐿(𝑉 ) over a real vector
space 𝑉 . Equivalently its character table has real entries.

This implementation uses the following statement: an irreducible complex reflection group is real if
and only if 2 is a degree of self with multiplicity one. Hence, in general we just need to compare the
number of occurrences of 2 as degree of self and the number of irreducible components.

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: W.is_real()
True

sage: W = ColoredPermutations(4,3)
sage: W.is_real()
False

Todo: Add an example of non real finite complex reflection group that is generated by order 2 reflec-
tions.

is_well_generated()
Return whether self is well-generated.

A finite complex reflection group is well generated if the number of its simple reflections coincides
with its rank.

See also:

ComplexReflectionGroups.Finite.WellGenerated()
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Note:
• All finite real reflection groups are well generated.
• The complex reflection groups of type 𝐺(𝑟, 1, 𝑛) and of type 𝐺(𝑟, 𝑟, 𝑛) are well generated.
• The complex reflection groups of type 𝐺(𝑟, 𝑝, 𝑛) with 1 < 𝑝 < 𝑟 are not well generated.
• The direct product of two well generated finite complex reflection group is still well generated.

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: W.is_well_generated()
True

sage: W = ColoredPermutations(4,3)
sage: W.is_well_generated()
True

sage: W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.is_well_generated() # optional - gap3
False

sage: W = ReflectionGroup((4,4,3)) # optional - gap3
sage: W.is_well_generated() # optional - gap3
True

number_of_reflection_hyperplanes()
Return the number of reflection hyperplanes of self.

This is also the number of distinguished reflections. For real groups, this coincides with the number
of reflections.

This implementation uses that it is given by the sum of the codegrees of self plus its rank.

See also:

number_of_reflections()

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: W.number_of_reflection_hyperplanes()
3
sage: W = ColoredPermutations(2,3)
sage: W.number_of_reflection_hyperplanes()
9
sage: W = ColoredPermutations(4,3)
sage: W.number_of_reflection_hyperplanes()
15
sage: W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.number_of_reflection_hyperplanes() # optional - gap3
15

number_of_reflections()
Return the number of reflections of self.

For real groups, this coincides with the number of reflection hyperplanes.

4.44. Finite Complex Reflection Groups 355



Category Framework, Release 9.7

This implementation uses that it is given by the sum of the degrees of self minus its rank.

See also:

number_of_reflection_hyperplanes()

EXAMPLES:

sage: [SymmetricGroup(i).number_of_reflections() for i in range(int(8))]
[0, 0, 1, 3, 6, 10, 15, 21]

sage: W = ColoredPermutations(1,3)
sage: W.number_of_reflections()
3
sage: W = ColoredPermutations(2,3)
sage: W.number_of_reflections()
9
sage: W = ColoredPermutations(4,3)
sage: W.number_of_reflections()
21
sage: W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.number_of_reflections() # optional - gap3
15

rank()
Return the rank of self.

The rank of self is the dimension of the smallest faithfull reflection representation of self.

This default implementation uses that the rank is the number of degrees().

See also:

ComplexReflectionGroups.rank()

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: W.rank()
2
sage: W = ColoredPermutations(2,3)
sage: W.rank()
3
sage: W = ColoredPermutations(4,3)
sage: W.rank()
3
sage: W = ReflectionGroup((4,2,3)) # optional - gap3
sage: W.rank() # optional - gap3
3

class SubcategoryMethods
Bases: object

WellGenerated()
Return the full subcategory of well-generated objects of self.

A finite complex generated group is well generated if it is isomorphic to a subgroup of the general
linear group 𝐺𝐿𝑛 generated by 𝑛 reflections.
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See also:

ComplexReflectionGroups.Finite.ParentMethods.is_well_generated()

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: C = ComplexReflectionGroups().Finite().WellGenerated(); C
Category of well generated finite complex reflection groups

Here is an example of a finite well-generated complex reflection group:

sage: W = C.example(); W # optional - gap3
Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)

All finite Coxeter groups are well generated:

sage: CoxeterGroups().Finite().is_subcategory(C)
True
sage: SymmetricGroup(3) in C
True

Note: The category of well generated finite complex reflection groups is currently implemented as
an axiom. See discussion on trac ticket #11187. This may be a bit of overkill. Still it’s nice to have a
full subcategory.

class WellGenerated(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Irreducible(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite irreducible well-generated finite complex reflection groups.

class ParentMethods
Bases: object

catalan_number(positive=False, polynomial=False)
Return the Catalan number associated to self.

It is defined by

𝑛∏︁
𝑖=1

𝑑𝑖 + ℎ

𝑑𝑖
,

where 𝑑1, . . . , 𝑑𝑛 are the degrees and where ℎ is the Coxeter number. See [Ar2006] for further
information.

INPUT:
• positive – optional boolean (default False) if True, return instead the positive Catalan

number
• polynomial – optional boolean (default False) if True, return instead the 𝑞-analogue as a

polynomial in 𝑞

Note:
• For the symmetric group 𝑆𝑛, it reduces to the Catalan number 1

𝑛+1

(︀
2𝑛
𝑛

)︀
.
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• The Catalan numbers for 𝐺(𝑟, 1, 𝑛) all coincide for 𝑟 > 1.

EXAMPLES:

sage: [ColoredPermutations(1,n).catalan_number() for n in [3,4,5]]
[5, 14, 42]

sage: [ColoredPermutations(2,n).catalan_number() for n in [3,4,5]]
[20, 70, 252]

sage: [ReflectionGroup((2,2,n)).catalan_number() for n in [3,4,5]] #␣
→˓optional - gap3
[14, 50, 182]

coxeter_number()
Return the Coxeter number of a well-generated, irreducible reflection group. This is defined to
be the order of a regular element in self, and is equal to the highest degree of self.

See also:

ComplexReflectionGroups.Finite.Irreducible()

Note: This method overwrites the more general method for complex reflection groups since
the expression given here is quicker to compute.

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: W.coxeter_number()
3

sage: W = ColoredPermutations(4,3)
sage: W.coxeter_number()
12

sage: W = ReflectionGroup((4,4,3)) # optional - gap3
sage: W.coxeter_number() # optional - gap3
8

fuss_catalan_number(m, positive=False, polynomial=False)
Return the m-th Fuss-Catalan number associated to self.

This is defined by

𝑛∏︁
𝑖=1

𝑑𝑖 + 𝑚ℎ

𝑑𝑖
,

where 𝑑1, . . . , 𝑑𝑛 are the degrees and ℎ is the Coxeter number.

INPUT:
• positive – optional boolean (default False) if True, return instead the positive Fuss-

Catalan number
• polynomial – optional boolean (default False) if True, return instead the 𝑞-analogue as a

polynomial in 𝑞
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See [Ar2006] for further information.

Note:
• For the symmetric group 𝑆𝑛, it reduces to the Fuss-Catalan number 1

𝑚𝑛+1

(︀
(𝑚+1)𝑛

𝑛

)︀
.

• The Fuss-Catalan numbers for 𝐺(𝑟, 1, 𝑛) all coincide for 𝑟 > 1.

EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[5, 12, 22]

sage: W = ColoredPermutations(1,4)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[14, 55, 140]

sage: W = ColoredPermutations(1,5)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[42, 273, 969]

sage: W = ColoredPermutations(2,2)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[6, 15, 28]

sage: W = ColoredPermutations(2,3)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[20, 84, 220]

sage: W = ColoredPermutations(2,4)
sage: [W.fuss_catalan_number(i) for i in [1,2,3]]
[70, 495, 1820]

number_of_reflections_of_full_support()
Return the number of reflections with full support.

EXAMPLES:

sage: W = Permutations(4)
sage: W.number_of_reflections_of_full_support()
1

sage: W = ColoredPermutations(1,4)
sage: W.number_of_reflections_of_full_support()
1

sage: W = CoxeterGroup("B3")
sage: W.number_of_reflections_of_full_support()
3

sage: W = ColoredPermutations(3,3)
sage: W.number_of_reflections_of_full_support()
3
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rational_catalan_number(p, polynomial=False)
Return the p-th rational Catalan number associated to self.

It is defined by
𝑛∏︁

𝑖=1

𝑝 + (𝑝(𝑑𝑖 − 1)) mod ℎ)

𝑑𝑖
,

where 𝑑1, . . . , 𝑑𝑛 are the degrees and ℎ is the Coxeter number. See [STW2016] for this formula.

INPUT:
• polynomial – optional boolean (default False) if True, return instead the 𝑞-analogue as a

polynomial in 𝑞
EXAMPLES:

sage: W = ColoredPermutations(1,3)
sage: [W.rational_catalan_number(p) for p in [5,7,8]]
[7, 12, 15]

sage: W = ColoredPermutations(2,2)
sage: [W.rational_catalan_number(p) for p in [7,9,11]]
[10, 15, 21]

example()
Return an example of an irreducible well-generated complex reflection group.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite().WellGenerated().Irreducible().
→˓example()
4-colored permutations of size 3

class ParentMethods
Bases: object

coxeter_element()
Return a Coxeter element.

The result is the product of the simple reflections, in some order.

Note: This implementation is shared with well generated complex reflection groups. It would be
nicer to put it in some joint super category; however, in the current state of the art, there is none
where it is clear that this is the right construction for obtaining a Coxeter element.

In this context, this is an element having a regular eigenvector (a vector not contained in any
reflection hyperplane of self).

EXAMPLES:

sage: CoxeterGroup(['A', 4]).coxeter_element().reduced_word()
[1, 2, 3, 4]
sage: CoxeterGroup(['B', 4]).coxeter_element().reduced_word()
[1, 2, 3, 4]
sage: CoxeterGroup(['D', 4]).coxeter_element().reduced_word()

(continues on next page)
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[1, 2, 4, 3]
sage: CoxeterGroup(['F', 4]).coxeter_element().reduced_word()
[1, 2, 3, 4]
sage: CoxeterGroup(['E', 8]).coxeter_element().reduced_word()
[1, 3, 2, 4, 5, 6, 7, 8]
sage: CoxeterGroup(['H', 3]).coxeter_element().reduced_word()
[1, 2, 3]

This method is also used for well generated finite complex reflection groups:

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: W.coxeter_element().reduced_word() # optional - gap3
[1, 2, 3]

sage: W = ReflectionGroup((2,1,4)) # optional - gap3
sage: W.coxeter_element().reduced_word() # optional - gap3
[1, 2, 3, 4]

sage: W = ReflectionGroup((4,1,4)) # optional - gap3
sage: W.coxeter_element().reduced_word() # optional - gap3
[1, 2, 3, 4]

sage: W = ReflectionGroup((4,4,4)) # optional - gap3
sage: W.coxeter_element().reduced_word() # optional - gap3
[1, 2, 3, 4]

coxeter_elements()
Return the (unique) conjugacy class in self containing all Coxeter elements.

A Coxeter element is an element that has an eigenvalue 𝑒2𝜋𝑖/ℎ where ℎ is the Coxeter number.

In case of finite Coxeter groups, these are exactly the elements that are conjugate to one (or, equiv-
alently, all) standard Coxeter element, this is, to an element that is the product of the simple gen-
erators in some order.

See also:

standard_coxeter_elements()

EXAMPLES:

sage: W = ReflectionGroup((1,1,3)) # optional - gap3
sage: sorted(c.reduced_word() for c in W.coxeter_elements()) #␣
→˓optional - gap3
[[1, 2], [2, 1]]

sage: W = ReflectionGroup((1,1,4)) # optional - gap3
sage: sorted(c.reduced_word() for c in W.coxeter_elements()) #␣
→˓optional - gap3
[[1, 2, 1, 3, 2], [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 1, 3, 2, 1], [3,␣
→˓2, 1]]

is_well_generated()
Return True as self is well-generated.

EXAMPLES:
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sage: W = ReflectionGroup((3,1,2)) # optional - gap3
sage: W.is_well_generated() # optional - gap3
True

standard_coxeter_elements()
Return all standard Coxeter elements in self.

This is the set of all elements in self obtained from any product of the simple reflections in self.

Note:
• self is assumed to be well-generated.
• This works even beyond real reflection groups, but the conjugacy class is not unique and we

only obtain one such class.

EXAMPLES:

sage: W = ReflectionGroup(4) # optional - gap3
sage: sorted(W.standard_coxeter_elements()) # optional - gap3
[(1,7,6,12,23,20)(2,8,17,24,9,5)(3,16,10,19,15,21)(4,14,11,22,18,13),
(1,10,4,12,21,22)(2,11,19,24,13,3)(5,15,7,17,16,23)(6,18,8,20,14,9)]

example()
Return an example of a well-generated complex reflection group.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite().WellGenerated().example() #␣
→˓optional - gap3
Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)

example()
Return an example of a complex reflection group.

EXAMPLES:

sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups
sage: ComplexReflectionGroups().Finite().example() # optional - gap3
Reducible real reflection group of rank 4 and type A2 x B2

4.45 Finite Coxeter Groups

class sage.categories.finite_coxeter_groups.FiniteCoxeterGroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite Coxeter groups.

EXAMPLES:
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sage: CoxeterGroups.Finite()
Category of finite coxeter groups
sage: FiniteCoxeterGroups().super_categories()
[Category of finite generalized coxeter groups,
Category of coxeter groups]

sage: G = CoxeterGroups().Finite().example()
sage: G.cayley_graph(side = "right").plot()
Graphics object consisting of 40 graphics primitives

Here are some further examples:

sage: WeylGroups().Finite().example()
The symmetric group on {0, ..., 3}

sage: WeylGroup(["B", 3])
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)

Those other examples will eventually be also in this category:

sage: SymmetricGroup(4)
Symmetric group of order 4! as a permutation group
sage: DihedralGroup(5)
Dihedral group of order 10 as a permutation group

class ElementMethods
Bases: object

bruhat_upper_covers()
Returns all the elements that cover self in Bruhat order.

EXAMPLES:

sage: W = WeylGroup(["A",4])
sage: w = W.from_reduced_word([3,2])
sage: print([v.reduced_word() for v in w.bruhat_upper_covers()])
[[4, 3, 2], [3, 4, 2], [2, 3, 2], [3, 1, 2], [3, 2, 1]]

sage: W = WeylGroup(["B",6])
sage: w = W.from_reduced_word([1,2,1,4,5])
sage: C = w.bruhat_upper_covers()
sage: len(C)
9
sage: print([v.reduced_word() for v in C])
[[6, 4, 5, 1, 2, 1], [4, 5, 6, 1, 2, 1], [3, 4, 5, 1, 2, 1], [2, 3, 4, 5, 1,
→˓ 2],
[1, 2, 3, 4, 5, 1], [4, 5, 4, 1, 2, 1], [4, 5, 3, 1, 2, 1], [4, 5, 2, 3, 1,␣
→˓2],
[4, 5, 1, 2, 3, 1]]
sage: ww = W.from_reduced_word([5,6,5])
sage: CC = ww.bruhat_upper_covers()
sage: print([v.reduced_word() for v in CC])
[[6, 5, 6, 5], [4, 5, 6, 5], [5, 6, 4, 5], [5, 6, 5, 4], [5, 6, 5, 3], [5,␣
→˓6, 5, 2],
[5, 6, 5, 1]]
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Recursive algorithm: write 𝑤 for self. If 𝑖 is a non-descent of 𝑤, then the covers of 𝑤 are exactly
{𝑤𝑠𝑖, 𝑢1𝑠𝑖, 𝑢2𝑠𝑖, ..., 𝑢𝑗𝑠𝑖}, where the 𝑢𝑘 are those covers of 𝑤𝑠𝑖 that have a descent at 𝑖.

covered_reflections_subgroup()
Return the subgroup of 𝑊 generated by the conjugates by 𝑤 of the simple reflections indexed by right
descents of 𝑤.

This is used to compute the shard intersection order on 𝑊 .

EXAMPLES:

sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: len(W.long_element().covered_reflections_subgroup())
24
sage: s = W.simple_reflection(1)
sage: Gs = s.covered_reflections_subgroup()
sage: len(Gs)
2
sage: s in [u.lift() for u in Gs]
True
sage: len(W.one().covered_reflections_subgroup())
1

coxeter_knuth_graph()
Return the Coxeter-Knuth graph of type 𝐴.

The Coxeter-Knuth graph of type 𝐴 is generated by the Coxeter-Knuth relations which are given by
𝑎𝑎 + 1𝑎 ∼ 𝑎 + 1𝑎𝑎 + 1, 𝑎𝑏𝑐 ∼ 𝑎𝑐𝑏 if 𝑏 < 𝑎 < 𝑐 and 𝑎𝑏𝑐 ∼ 𝑏𝑎𝑐 if 𝑎 < 𝑐 < 𝑏.

EXAMPLES:

sage: W = WeylGroup(['A',4], prefix='s')
sage: w = W.from_reduced_word([1,2,1,3,2])
sage: D = w.coxeter_knuth_graph()
sage: D.vertices(sort=True)
[(1, 2, 1, 3, 2),
(1, 2, 3, 1, 2),
(2, 1, 2, 3, 2),
(2, 1, 3, 2, 3),
(2, 3, 1, 2, 3)]
sage: D.edges(sort=True)
[((1, 2, 1, 3, 2), (1, 2, 3, 1, 2), None),
((1, 2, 1, 3, 2), (2, 1, 2, 3, 2), None),
((2, 1, 2, 3, 2), (2, 1, 3, 2, 3), None),
((2, 1, 3, 2, 3), (2, 3, 1, 2, 3), None)]

sage: w = W.from_reduced_word([1,3])
sage: D = w.coxeter_knuth_graph()
sage: D.vertices(sort=True)
[(1, 3), (3, 1)]
sage: D.edges(sort=False)
[]

coxeter_knuth_neighbor(w)
Return the Coxeter-Knuth (oriented) neighbors of the reduced word 𝑤 of self.

INPUT:
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• w – reduced word of self
The Coxeter-Knuth relations are given by 𝑎𝑎 + 1𝑎 ∼ 𝑎 + 1𝑎𝑎 + 1, 𝑎𝑏𝑐 ∼ 𝑎𝑐𝑏 if 𝑏 < 𝑎 < 𝑐 and
𝑎𝑏𝑐 ∼ 𝑏𝑎𝑐 if 𝑎 < 𝑐 < 𝑏. This method returns all neighbors of w under the Coxeter-Knuth relations
oriented from left to right.

EXAMPLES:

sage: W = WeylGroup(['A',4], prefix='s')
sage: word = [1,2,1,3,2]
sage: w = W.from_reduced_word(word)
sage: w.coxeter_knuth_neighbor(word)
{(1, 2, 3, 1, 2), (2, 1, 2, 3, 2)}

sage: word = [1,2,1,3,2,4,3]
sage: w = W.from_reduced_word(word)
sage: w.coxeter_knuth_neighbor(word)
{(1, 2, 1, 3, 4, 2, 3), (1, 2, 3, 1, 2, 4, 3), (2, 1, 2, 3, 2, 4, 3)}

is_coxeter_element()
Return whether this is a Coxeter element.

This is, whether self has an eigenvalue 𝑒2𝜋𝑖/ℎ where ℎ is the Coxeter number.

See also:

coxeter_elements()

EXAMPLES:

sage: W = CoxeterGroup(['A',2])
sage: c = prod(W.gens())
sage: c.is_coxeter_element()
True
sage: W.one().is_coxeter_element()
False

sage: W = WeylGroup(['G', 2])
sage: c = prod(W.gens())
sage: c.is_coxeter_element()
True
sage: W.one().is_coxeter_element()
False

class ParentMethods
Bases: object

Ambiguity resolution: the implementation of some_elements is preferable to that of FiniteGroups. The
same holds for __iter__, although a breadth first search would be more natural; at least this maintains
backward compatibility after trac ticket #13589.

bhz_poset()
Return the Bergeron-Hohlweg-Zabrocki partial order on the Coxeter group.

This is a partial order on the elements of a finite Coxeter group 𝑊 , which is distinct from the Bruhat
order, the weak order and the shard intersection order. It was defined in [BHZ2005].

This partial order is not a lattice, as there is no unique maximal element. It can be succintly defined as
follows.
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Let 𝑢 and 𝑣 be two elements of the Coxeter group 𝑊 . Let 𝑆(𝑢) be the support of 𝑢. Then 𝑢 ≤ 𝑣 if
and only if 𝑣𝑆(𝑢) = 𝑢 (here 𝑣 = 𝑣𝐼𝑣𝐼 denotes the usual parabolic decomposition with respect to the
standard parabolic subgroup 𝑊𝐼 ).

See also:

bruhat_poset(), shard_poset(), weak_poset()

EXAMPLES:

sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: P = W.bhz_poset(); P
Finite poset containing 24 elements
sage: P.relations_number()
103
sage: P.chain_polynomial()
34*q^4 + 90*q^3 + 79*q^2 + 24*q + 1
sage: len(P.maximal_elements())
13

bruhat_poset(facade=False)
Return the Bruhat poset of self.

See also:

bhz_poset(), shard_poset(), weak_poset()

EXAMPLES:

sage: W = WeylGroup(["A", 2])
sage: P = W.bruhat_poset()
sage: P
Finite poset containing 6 elements
sage: P.show()

Here are some typical operations on this poset:

sage: W = WeylGroup(["A", 3])
sage: P = W.bruhat_poset()
sage: u = W.from_reduced_word([3,1])
sage: v = W.from_reduced_word([3,2,1,2,3])
sage: P(u) <= P(v)
True
sage: len(P.interval(P(u), P(v)))
10
sage: P.is_join_semilattice()
False

By default, the elements of 𝑃 are aware that they belong to 𝑃 :

sage: P.an_element().parent()
Finite poset containing 24 elements

If instead one wants the elements to be plain elements of the Coxeter group, one can use the facade
option:
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sage: P = W.bruhat_poset(facade = True)
sage: P.an_element().parent()
Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space)

See also:

Poset() for more on posets and facade posets.

Todo:
• Use the symmetric group in the examples (for nicer output), and print the edges for a stronger test.
• The constructed poset should be lazy, in order to handle large / infinite Coxeter groups.

cambrian_lattice(c, on_roots=False)
Return the 𝑐-Cambrian lattice on delta sequences.

See arXiv 1503.00710 and arXiv math/0611106.

Delta sequences are certain 2-colored minimal factorizations of c into reflections.

INPUT:
• c – a standard Coxeter element in self (as a tuple, or as an element of self)
• on_roots (optional, default False) – if on_roots is True, the lattice is realized on roots rather

than on reflections. In order for this to work, the ElementMethod reflection_to_root must be
available.

EXAMPLES:

sage: CoxeterGroup(["A", 2]).cambrian_lattice((1,2))
Finite lattice containing 5 elements

sage: CoxeterGroup(["B", 2]).cambrian_lattice((1,2))
Finite lattice containing 6 elements

sage: CoxeterGroup(["G", 2]).cambrian_lattice((1,2))
Finite lattice containing 8 elements

codegrees()
Return the codegrees of the Coxeter group.

These are just the degrees minus 2.

EXAMPLES:

sage: CoxeterGroup(['A', 4]).codegrees()
(0, 1, 2, 3)
sage: CoxeterGroup(['B', 4]).codegrees()
(0, 2, 4, 6)
sage: CoxeterGroup(['D', 4]).codegrees()
(0, 2, 2, 4)
sage: CoxeterGroup(['F', 4]).codegrees()
(0, 4, 6, 10)
sage: CoxeterGroup(['E', 8]).codegrees()
(0, 6, 10, 12, 16, 18, 22, 28)
sage: CoxeterGroup(['H', 3]).codegrees()
(0, 4, 8)

(continues on next page)
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(continued from previous page)

sage: WeylGroup([["A",3], ["A",3], ["B",2]]).codegrees()
(0, 1, 2, 0, 1, 2, 0, 2)

degrees()
Return the degrees of the Coxeter group.

The output is an increasing list of integers.

EXAMPLES:

sage: CoxeterGroup(['A', 4]).degrees()
(2, 3, 4, 5)
sage: CoxeterGroup(['B', 4]).degrees()
(2, 4, 6, 8)
sage: CoxeterGroup(['D', 4]).degrees()
(2, 4, 4, 6)
sage: CoxeterGroup(['F', 4]).degrees()
(2, 6, 8, 12)
sage: CoxeterGroup(['E', 8]).degrees()
(2, 8, 12, 14, 18, 20, 24, 30)
sage: CoxeterGroup(['H', 3]).degrees()
(2, 6, 10)

sage: WeylGroup([["A",3], ["A",3], ["B",2]]).degrees()
(2, 3, 4, 2, 3, 4, 2, 4)

inversion_sequence(word)
Return the inversion sequence corresponding to the word in indices of simple generators of self.

If word corresponds to [𝑤0, 𝑤1, ...𝑤𝑘], the output is [𝑤0, 𝑤0𝑤1𝑤0, . . . , 𝑤0𝑤1 · · ·𝑤𝑘 · · ·𝑤1𝑤0].

INPUT:
• word – a word in the indices of the simple generators of self.

EXAMPLES:

sage: CoxeterGroup(["A", 2]).inversion_sequence([1,2,1])
[
[-1 1] [ 0 -1] [ 1 0]
[ 0 1], [-1 0], [ 1 -1]
]

sage: [t.reduced_word() for t in CoxeterGroup(["A",3]).inversion_
→˓sequence([2,1,3,2,1,3])]
[[2], [1, 2, 1], [2, 3, 2], [1, 2, 3, 2, 1], [3], [1]]

is_real()
Return True since self is a real reflection group.

EXAMPLES:

sage: CoxeterGroup(['F',4]).is_real()
True
sage: CoxeterGroup(['H',4]).is_real()
True
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long_element(index_set=None, as_word=False)
Return the longest element of self, or of the parabolic subgroup corresponding to the given
index_set.

INPUT:
• index_set – a subset (as a list or iterable) of the nodes of the Dynkin diagram; (default: all of

them)
• as_word – boolean (default False). If True, then return instead a reduced decomposition of the

longest element.
Should this method be called maximal_element? longest_element?

EXAMPLES:

sage: D10 = FiniteCoxeterGroups().example(10)
sage: D10.long_element()
(1, 2, 1, 2, 1, 2, 1, 2, 1, 2)
sage: D10.long_element([1])
(1,)
sage: D10.long_element([2])
(2,)
sage: D10.long_element([])
()

sage: D7 = FiniteCoxeterGroups().example(7)
sage: D7.long_element()
(1, 2, 1, 2, 1, 2, 1)

One can require instead a reduced word for w0:

sage: A3 = CoxeterGroup(['A', 3])
sage: A3.long_element(as_word=True)
[1, 2, 1, 3, 2, 1]

m_cambrian_lattice(c, m=1, on_roots=False)
Return the 𝑚-Cambrian lattice on 𝑚-delta sequences.

See arXiv 1503.00710 and arXiv math/0611106.

The 𝑚-delta sequences are certain 𝑚-colored minimal factorizations of 𝑐 into reflections.

INPUT:
• 𝑐 – a Coxeter element of self (as a tuple, or as an element of self)
• 𝑚 – a positive integer (optional, default 1)
• on_roots (optional, default False) – if on_roots is True, the lattice is realized on roots rather

than on reflections. In order for this to work, the ElementMethod reflection_to_root must be
available.

EXAMPLES:

sage: CoxeterGroup(["A",2]).m_cambrian_lattice((1,2))
Finite lattice containing 5 elements

sage: CoxeterGroup(["A",2]).m_cambrian_lattice((1,2),2)
Finite lattice containing 12 elements

permutahedron(point=None, base_ring=None)
Return the permutahedron of self,
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This is the convex hull of the point point in the weight basis under the action of self on the underlying
vector space 𝑉 .

See also:

permutahedron()

INPUT:
• point – optional, a point given by its coordinates in the weight basis (default is (1, 1, 1, . . .))
• base_ring – optional, the base ring of the polytope

Note: The result is expressed in the root basis coordinates.

Note: If function is too slow, switching the base ring to RDF will almost certainly speed things up.

EXAMPLES:

sage: W = CoxeterGroup(['H',3], base_ring=RDF)
sage: W.permutahedron()
doctest:warning
...
UserWarning: This polyhedron data is numerically complicated; cdd could not␣
→˓convert between the inexact V and H representation without loss of data.␣
→˓The resulting object might show inconsistencies.
A 3-dimensional polyhedron in RDF^3 defined as the convex hull of 120␣
→˓vertices

sage: W = CoxeterGroup(['I',7])
sage: W.permutahedron()
A 2-dimensional polyhedron in AA^2 defined as the convex hull of 14 vertices
sage: W.permutahedron(base_ring=RDF)
A 2-dimensional polyhedron in RDF^2 defined as the convex hull of 14␣
→˓vertices

sage: W = ReflectionGroup(['A',3]) # optional -␣
→˓gap3
sage: W.permutahedron() # optional -␣
→˓gap3
A 3-dimensional polyhedron in QQ^3 defined as the convex hull
of 24 vertices

sage: W = ReflectionGroup(['A',3],['B',2]) # optional -␣
→˓gap3
sage: W.permutahedron() # optional -␣
→˓gap3
A 5-dimensional polyhedron in QQ^5 defined as the convex hull of 192␣
→˓vertices

reflections_from_w0()
Return the reflections of self using the inversion set of w_0.

EXAMPLES:
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sage: WeylGroup(['A',2]).reflections_from_w0()
[
[0 1 0] [0 0 1] [1 0 0]
[1 0 0] [0 1 0] [0 0 1]
[0 0 1], [1 0 0], [0 1 0]
]

sage: WeylGroup(['A',3]).reflections_from_w0()
[
[0 1 0 0] [0 0 1 0] [1 0 0 0] [0 0 0 1] [1 0 0 0] [1 0 0 0]
[1 0 0 0] [0 1 0 0] [0 0 1 0] [0 1 0 0] [0 0 0 1] [0 1 0 0]
[0 0 1 0] [1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 1 0] [0 0 0 1]
[0 0 0 1], [0 0 0 1], [0 0 0 1], [1 0 0 0], [0 1 0 0], [0 0 1 0]
]

shard_poset(side='right')
Return the shard intersection order attached to 𝑊 .

This is a lattice structure on 𝑊 , introduced in [Rea2009]. It contains the noncrossing partition lattice,
as the induced lattice on the subset of 𝑐-sortable elements.

The partial order is given by simultaneous inclusion of inversion sets and subgroups attached to every
element.

The precise description used here can be found in [STW2018].

Another implementation for the symmetric groups is available as shard_poset().

See also:

bhz_poset(), bruhat_poset(), weak_poset()

EXAMPLES:

sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: SH = W.shard_poset(); SH
Finite lattice containing 24 elements
sage: SH.is_graded()
True
sage: SH.characteristic_polynomial()

(continues on next page)
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q^3 - 11*q^2 + 23*q - 13
sage: SH.f_polynomial()
34*q^3 + 22*q^2 + q

w0()
Return the longest element of self.

This attribute is deprecated, use long_element() instead.

EXAMPLES:

sage: D8 = FiniteCoxeterGroups().example(8)
sage: D8.w0
(1, 2, 1, 2, 1, 2, 1, 2)
sage: D3 = FiniteCoxeterGroups().example(3)
sage: D3.w0
(1, 2, 1)

weak_lattice(side='right', facade=False)
INPUT:

• side – “left”, “right”, or “twosided” (default: “right”)
• facade – a boolean (default: False)

Returns the left (resp. right) poset for weak order. In this poset, 𝑢 is smaller than 𝑣 if some reduced
word of 𝑢 is a right (resp. left) factor of some reduced word of 𝑣.

See also:

bhz_poset(), bruhat_poset(), shard_poset()

EXAMPLES:

sage: W = WeylGroup(["A", 2])
sage: P = W.weak_poset()
sage: P
Finite lattice containing 6 elements
sage: P.show()

This poset is in fact a lattice:

sage: W = WeylGroup(["B", 3])
sage: P = W.weak_poset(side = "left")
sage: P.is_lattice()
True

so this method has an alias weak_lattice():

sage: W.weak_lattice(side = "left") is W.weak_poset(side = "left")
True

As a bonus feature, one can create the left-right weak poset:

sage: W = WeylGroup(["A",2])
sage: P = W.weak_poset(side = "twosided")
sage: P.show()
sage: len(P.hasse_diagram().edges(sort=False))
8
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This is the transitive closure of the union of left and right order. In this poset, 𝑢 is smaller than 𝑣 if
some reduced word of 𝑢 is a factor of some reduced word of 𝑣. Note that this is not a lattice:

sage: P.is_lattice()
False

By default, the elements of 𝑃 are aware of that they belong to 𝑃 :

sage: P.an_element().parent()
Finite poset containing 6 elements

If instead one wants the elements to be plain elements of the Coxeter group, one can use the facade
option:

sage: P = W.weak_poset(facade = True)
sage: P.an_element().parent()
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)

See also:

Poset() for more on posets and facade posets.

Todo:
• Use the symmetric group in the examples (for nicer output), and print the edges for a stronger test.
• The constructed poset should be lazy, in order to handle large / infinite Coxeter groups.

weak_poset(side='right', facade=False)
INPUT:

• side – “left”, “right”, or “twosided” (default: “right”)
• facade – a boolean (default: False)

Returns the left (resp. right) poset for weak order. In this poset, 𝑢 is smaller than 𝑣 if some reduced
word of 𝑢 is a right (resp. left) factor of some reduced word of 𝑣.

See also:

bhz_poset(), bruhat_poset(), shard_poset()

EXAMPLES:

sage: W = WeylGroup(["A", 2])
sage: P = W.weak_poset()
sage: P
Finite lattice containing 6 elements
sage: P.show()

This poset is in fact a lattice:

sage: W = WeylGroup(["B", 3])
sage: P = W.weak_poset(side = "left")
sage: P.is_lattice()
True

so this method has an alias weak_lattice():

sage: W.weak_lattice(side = "left") is W.weak_poset(side = "left")
True
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As a bonus feature, one can create the left-right weak poset:

sage: W = WeylGroup(["A",2])
sage: P = W.weak_poset(side = "twosided")
sage: P.show()
sage: len(P.hasse_diagram().edges(sort=False))
8

This is the transitive closure of the union of left and right order. In this poset, 𝑢 is smaller than 𝑣 if
some reduced word of 𝑢 is a factor of some reduced word of 𝑣. Note that this is not a lattice:

sage: P.is_lattice()
False

By default, the elements of 𝑃 are aware of that they belong to 𝑃 :

sage: P.an_element().parent()
Finite poset containing 6 elements

If instead one wants the elements to be plain elements of the Coxeter group, one can use the facade
option:

sage: P = W.weak_poset(facade = True)
sage: P.an_element().parent()
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)

See also:

Poset() for more on posets and facade posets.

Todo:
• Use the symmetric group in the examples (for nicer output), and print the edges for a stronger test.
• The constructed poset should be lazy, in order to handle large / infinite Coxeter groups.

extra_super_categories()
EXAMPLES:

sage: CoxeterGroups().Finite().super_categories()
[Category of finite generalized coxeter groups,
Category of coxeter groups]

4.46 Finite Crystals

class sage.categories.finite_crystals.FiniteCrystals(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finite crystals.

EXAMPLES:

sage: C = FiniteCrystals()
sage: C
Category of finite crystals

(continues on next page)
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sage: C.super_categories()
[Category of crystals, Category of finite enumerated sets]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of finite crystals constructed by tensor product of finite crystals.

extra_super_categories()
EXAMPLES:

sage: FiniteCrystals().TensorProducts().extra_super_categories()
[Category of finite crystals]

example(n=3)
Returns an example of highest weight crystals, as per Category.example().

EXAMPLES:

sage: B = FiniteCrystals().example(); B
Highest weight crystal of type A_3 of highest weight omega_1

extra_super_categories()
EXAMPLES:

sage: FiniteCrystals().extra_super_categories()
[Category of finite enumerated sets]

4.47 Finite dimensional algebras with basis

Todo: Quotients of polynomial rings.

Quotients in general.

Matrix rings.

REFERENCES:

• [CR1962]

class sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finite dimensional algebras with a distinguished basis.

EXAMPLES:

sage: C = FiniteDimensionalAlgebrasWithBasis(QQ); C
Category of finite dimensional algebras with basis over Rational Field
sage: C.super_categories()
[Category of algebras with basis over Rational Field,
Category of finite dimensional magmatic algebras with basis over Rational Field]

(continues on next page)
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sage: C.example()
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field

class Cellular(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Cellular algebras.

Let 𝑅 be a commutative ring. A 𝑅-algebra 𝐴 is a cellular algebra if it has a cell datum, which is a tuple
(Λ, 𝑖,𝑀,𝐶), where Λ is finite poset with order ≥, if 𝜇 ∈ Λ then 𝑇 (𝜇) is a finite set and

𝐶 :
∐︁
𝜇∈Λ

𝑇 (𝜇)× 𝑇 (𝜇) −→ 𝐴; (𝜇, 𝑠, 𝑡) ↦→ 𝑐𝜇𝑠𝑡 is an injective map

such that the following holds:

• The set {𝑐𝜇𝑠𝑡 | 𝜇 ∈ Λ, 𝑠, 𝑡 ∈ 𝑇 (𝜇)} is a basis of 𝐴.

• If 𝑎 ∈ 𝐴 and 𝜇 ∈ Λ, 𝑠, 𝑡 ∈ 𝑇 (𝜇) then:

𝑎𝑐𝜇𝑠𝑡 =
∑︁

𝑢∈𝑇 (𝜇)

𝑟𝑎(𝑠, 𝑢)𝑐𝜇𝑢𝑡 (mod 𝐴>𝜇),

where 𝐴>𝜇 is spanned by

{𝑐𝜈𝑎𝑏 | 𝜈 > 𝜇 and 𝑎, 𝑏 ∈ 𝑇 (𝜈)}.

Moreover, the scalar 𝑟𝑎(𝑠, 𝑢) depends only on 𝑎, 𝑠 and 𝑢 and, in particular, is independent of 𝑡.

• The map 𝜄 : 𝐴 −→ 𝐴; 𝑐𝜇𝑠𝑡 ↦→ 𝑐𝜇𝑡𝑠 is an algebra anti-isomorphism.

A cellular basis for 𝐴 is any basis of the form {𝑐𝜇𝑠𝑡 | 𝜇 ∈ Λ, 𝑠, 𝑡 ∈ 𝑇 (𝜇)}.

Note that in particular, the scalars 𝑟𝑎(𝑢, 𝑠) in the second condition do not depend on 𝑡.

REFERENCES:

• [GrLe1996]

• [KX1998]

• [Mat1999]

• Wikipedia article Cellular_algebra

• http://webusers.imj-prg.fr/~bernhard.keller/ictp2006/lecturenotes/xi.pdf

class ElementMethods
Bases: object

cellular_involution()
Return the cellular involution on self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: elt = S([3,1,2,4])
sage: ci = elt.cellular_involution(); ci
7/48*[1, 3, 2, 4] + 49/48*[2, 3, 1, 4]

(continues on next page)
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- 1/48*[3, 1, 2, 4] - 7/48*[3, 2, 1, 4]
sage: ci.cellular_involution()
[3, 1, 2, 4]

class ParentMethods
Bases: object

cell_module(mu, **kwds)
Return the cell module indexed by mu.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: S.cell_module(Partition([2,1]))
Cell module indexed by [2, 1] of Cellular basis of
Symmetric group algebra of order 3 over Rational Field

cell_module_indices(mu)
Return the indices of the cell module of self indexed by mu .

This is the finite set 𝑀(𝜆).

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: S.cell_module_indices([2,1])
Standard tableaux of shape [2, 1]

cell_poset()
Return the cell poset of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.cell_poset()
Finite poset containing 5 elements

cells()
Return the cells of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: dict(S.cells())
{[1, 1, 1]: Standard tableaux of shape [1, 1, 1],
[2, 1]: Standard tableaux of shape [2, 1],
[3]: Standard tableaux of shape [3]}

cellular_basis()
Return the cellular basis of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: S.cellular_basis()
Cellular basis of Symmetric group algebra of order 3
over Rational Field
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cellular_involution(x)
Return the cellular involution of x in self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 3)
sage: for b in S.basis(): b, S.cellular_involution(b)
([1, 2, 3], [1, 2, 3])
([1, 3, 2], 49/48*[1, 3, 2] + 7/48*[2, 3, 1]

- 7/48*[3, 1, 2] - 1/48*[3, 2, 1])
([2, 1, 3], [2, 1, 3])
([2, 3, 1], -7/48*[1, 3, 2] - 1/48*[2, 3, 1]

+ 49/48*[3, 1, 2] + 7/48*[3, 2, 1])
([3, 1, 2], 7/48*[1, 3, 2] + 49/48*[2, 3, 1]

- 1/48*[3, 1, 2] - 7/48*[3, 2, 1])
([3, 2, 1], -1/48*[1, 3, 2] - 7/48*[2, 3, 1]

+ 7/48*[3, 1, 2] + 49/48*[3, 2, 1])

simple_module_parameterization()
Return a parameterization of the simple modules of self.

The set of simple modules are parameterized by 𝜆 ∈ Λ such that the cell module bilinear form
Φ𝜆 ̸= 0.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.simple_module_parameterization()
([4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1])

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of cellular algebras constructed by tensor product of cellular algebras.

class ParentMethods
Bases: object

cell_module_indices(mu)
Return the indices of the cell module of self indexed by mu .

This is the finite set 𝑀(𝜆).

EXAMPLES:

sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: T.cell_module_indices(([1,1], [2,1]))
The Cartesian product of (Standard tableaux of shape [1, 1],

Standard tableaux of shape [2, 1])

cell_poset()
Return the cell poset of self.

EXAMPLES:
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sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: T.cell_poset()
Finite poset containing 6 elements

cellular_involution()
Return the image of the cellular involution of the basis element indexed by i.

EXAMPLES:

sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S3 = SymmetricGroupAlgebra(QQ, 3)
sage: T = S2.tensor(S3)
sage: for b in T.basis(): b, T.cellular_involution(b)
([1, 2] # [1, 2, 3], [1, 2] # [1, 2, 3])
([1, 2] # [1, 3, 2],
49/48*[1, 2] # [1, 3, 2] + 7/48*[1, 2] # [2, 3, 1]
- 7/48*[1, 2] # [3, 1, 2] - 1/48*[1, 2] # [3, 2, 1])

([1, 2] # [2, 1, 3], [1, 2] # [2, 1, 3])
([1, 2] # [2, 3, 1],
-7/48*[1, 2] # [1, 3, 2] - 1/48*[1, 2] # [2, 3, 1]
+ 49/48*[1, 2] # [3, 1, 2] + 7/48*[1, 2] # [3, 2, 1])

([1, 2] # [3, 1, 2],
7/48*[1, 2] # [1, 3, 2] + 49/48*[1, 2] # [2, 3, 1]
- 1/48*[1, 2] # [3, 1, 2] - 7/48*[1, 2] # [3, 2, 1])

([1, 2] # [3, 2, 1],
-1/48*[1, 2] # [1, 3, 2] - 7/48*[1, 2] # [2, 3, 1]
+ 7/48*[1, 2] # [3, 1, 2] + 49/48*[1, 2] # [3, 2, 1])

([2, 1] # [1, 2, 3], [2, 1] # [1, 2, 3])
([2, 1] # [1, 3, 2],
49/48*[2, 1] # [1, 3, 2] + 7/48*[2, 1] # [2, 3, 1]
- 7/48*[2, 1] # [3, 1, 2] - 1/48*[2, 1] # [3, 2, 1])

([2, 1] # [2, 1, 3], [2, 1] # [2, 1, 3])
([2, 1] # [2, 3, 1],
-7/48*[2, 1] # [1, 3, 2] - 1/48*[2, 1] # [2, 3, 1]
+ 49/48*[2, 1] # [3, 1, 2] + 7/48*[2, 1] # [3, 2, 1])

([2, 1] # [3, 1, 2],
7/48*[2, 1] # [1, 3, 2] + 49/48*[2, 1] # [2, 3, 1]
- 1/48*[2, 1] # [3, 1, 2] - 7/48*[2, 1] # [3, 2, 1])

([2, 1] # [3, 2, 1],
-1/48*[2, 1] # [1, 3, 2] - 7/48*[2, 1] # [2, 3, 1]
+ 7/48*[2, 1] # [3, 1, 2] + 49/48*[2, 1] # [3, 2, 1])

extra_super_categories()
Tensor products of cellular algebras are cellular.

EXAMPLES:

sage: cat = Algebras(QQ).FiniteDimensional().WithBasis()
sage: cat.Cellular().TensorProducts().extra_super_categories()
[Category of finite dimensional cellular algebras with basis
over Rational Field]
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class ElementMethods
Bases: object

on_left_matrix(base_ring=None, action=<built-in function mul>, side='left')
Return the matrix of the action of self on the algebra.

INPUT:
• base_ring – the base ring for the matrix to be constructed
• action – a bivariate function (default: operator.mul())
• side – ‘left’ or ‘right’ (default: ‘left’)

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3([2,1,3])
sage: a.to_matrix(side='left')
[0 0 1 0 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 0]
[0 0 0 0 0 1]
[0 1 0 0 0 0]
[0 0 0 1 0 0]
sage: a.to_matrix(side='right')
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 0 0 0 1]
[0 0 0 0 1 0]
sage: a.to_matrix(base_ring=RDF, side="left")
[0.0 0.0 1.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 1.0 0.0]
[1.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 1.0]
[0.0 1.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 1.0 0.0 0.0]

AUTHORS: Mike Hansen, . . .

to_matrix(base_ring=None, action=<built-in function mul>, side='left')
Return the matrix of the action of self on the algebra.

INPUT:
• base_ring – the base ring for the matrix to be constructed
• action – a bivariate function (default: operator.mul())
• side – ‘left’ or ‘right’ (default: ‘left’)

EXAMPLES:

sage: QS3 = SymmetricGroupAlgebra(QQ, 3)
sage: a = QS3([2,1,3])
sage: a.to_matrix(side='left')
[0 0 1 0 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 0]
[0 0 0 0 0 1]
[0 1 0 0 0 0]
[0 0 0 1 0 0]

(continues on next page)
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sage: a.to_matrix(side='right')
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 0 0 0 1]
[0 0 0 0 1 0]
sage: a.to_matrix(base_ring=RDF, side="left")
[0.0 0.0 1.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 1.0 0.0]
[1.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 1.0]
[0.0 1.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 1.0 0.0 0.0]

AUTHORS: Mike Hansen, . . .

class ParentMethods
Bases: object

cartan_invariants_matrix()
Return the Cartan invariants matrix of the algebra.

OUTPUT: a matrix of non negative integers

Let 𝐴 be this finite dimensional algebra and (𝑆𝑖)𝑖∈𝐼 be representatives of the right simple modules of
𝐴. Note that their adjoints 𝑆*

𝑖 are representatives of the left simple modules.

Let (𝑃𝐿
𝑖 )𝑖∈𝐼 and (𝑃𝑅

𝑖 )𝑖∈𝐼 be respectively representatives of the corresponding indecomposable pro-
jective left and right modules of 𝐴. In particular, we assume that the indexing is consistent so that
𝑆*
𝑖 = top𝑃𝐿

𝑖 and 𝑆𝑖 = top𝑃𝑅
𝑖 .

The Cartan invariant matrix (𝐶𝑖,𝑗)𝑖,𝑗∈𝐼 is a matrix of non negative integers that encodes much of the
representation theory of 𝐴; namely:

• 𝐶𝑖,𝑗 counts how many times 𝑆*
𝑖 ⊗ 𝑆𝑗 appears as composition factor of 𝐴 seen as a bimodule over

itself;
• 𝐶𝑖,𝑗 = dim𝐻𝑜𝑚𝐴(𝑃𝑅

𝑗 , 𝑃𝑅
𝑖 );

• 𝐶𝑖,𝑗 counts how many times 𝑆𝑗 appears as composition factor of 𝑃𝑅
𝑖 ;

• 𝐶𝑖,𝑗 = dim𝐻𝑜𝑚𝐴(𝑃𝐿
𝑖 , 𝑃𝐿

𝑗 );
• 𝐶𝑖,𝑗 counts how many times 𝑆*

𝑖 appears as composition factor of 𝑃𝐿
𝑗 .

In the commutative case, the Cartan invariant matrix is diagonal. In the context of solving systems of
multivariate polynomial equations of dimension zero, 𝐴 is the quotient of the polynomial ring by the
ideal generated by the equations, the simple modules correspond to the roots, and the numbers 𝐶𝑖,𝑖

give the multiplicities of those roots.

Note: For simplicity, the current implementation assumes that the index set 𝐼 is of the form
{0, . . . , 𝑛− 1}. Better indexations will be possible in the future.

ALGORITHM:

The Cartan invariant matrix of 𝐴 is computed from the dimension of the summands of its Peirce
decomposition.

See also:

• peirce_decomposition()
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• isotypic_projective_modules()

EXAMPLES:

For a semisimple algebra, in particular for group algebras in characteristic zero, the Cartan invariants
matrix is the identity:

sage: A3 = SymmetricGroup(3).algebra(QQ)
sage: A3.cartan_invariants_matrix()
[1 0 0]
[0 1 0]
[0 0 1]

For the path algebra of a quiver, the Cartan invariants matrix counts the number of paths between two
vertices:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: A.cartan_invariants_matrix()
[1 2]
[0 1]

In the commutative case, the Cartan invariant matrix is diagonal:

sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid: the integers modulo 12
sage: A = Z12.algebra(QQ)
sage: A.cartan_invariants_matrix()
[1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 2 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 0 0 0 2 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 2 0]
[0 0 0 0 0 0 0 0 1]

With the algebra of the 0-Hecke monoid:

sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: A.cartan_invariants_matrix()
[1 0 0 0 0 0 0 0]
[0 2 1 0 1 1 0 0]
[0 1 1 0 1 0 0 0]
[0 0 0 1 0 1 1 0]
[0 1 1 0 1 0 0 0]
[0 1 0 1 0 2 1 0]
[0 0 0 1 0 1 1 0]
[0 0 0 0 0 0 0 1]

center()
Return the center of self.

See also:

center_basis()
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EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: center = A.center(); center
Center of An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: center in Algebras(QQ).WithBasis().FiniteDimensional().Commutative()
True
sage: center.dimension()
1
sage: center.basis()
Finite family {0: B[0]}
sage: center.ambient() is A
True
sage: [c.lift() for c in center.basis()]
[x + y]

The center of a semisimple algebra is semisimple:

sage: DihedralGroup(6).algebra(QQ).center() in Algebras(QQ).Semisimple()
True

Todo:
• Pickling by construction, as A.center()?
• Lazy evaluation of _repr_

center_basis()
Return a basis of the center of self.

OUTPUT:
• a list of elements of self.

See also:

center()

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.center_basis()
(x + y,)

idempotent_lift(x)
Lift an idempotent of the semisimple quotient into an idempotent of self.

Let 𝐴 be this finite dimensional algebra and 𝜋 be the projection 𝐴 → 𝐴 on its semisimple quotient.
Let 𝑥 be an idempotent of 𝐴, and 𝑥 any lift thereof in 𝐴. This returns an idempotent 𝑒 of 𝐴 such that
𝜋(𝑒) = 𝜋(𝑥) and 𝑒 is a polynomial in 𝑥.

INPUT:
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• 𝑥 – an element of𝐴 that projects on an idempotent 𝑥 of the semisimple quotient of𝐴. Alternatively
one may give as input the idempotent 𝑥, in which case some lift thereof will be taken for 𝑥.

OUTPUT: the idempotent 𝑒 of self

ALGORITHM:

Iterate the formula 1− (1− 𝑥2)2 until having an idempotent.

See [CR1962] for correctness and termination proofs.

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: S = A.semisimple_quotient()
sage: A.idempotent_lift(S.basis()['x'])
x
sage: A.idempotent_lift(A.basis()['y'])
y

Todo: Add some non trivial example

is_commutative()
Return whether self is a commutative algebra.

EXAMPLES:

sage: S4 = SymmetricGroupAlgebra(QQ, 4)
sage: S4.is_commutative()
False
sage: S2 = SymmetricGroupAlgebra(QQ, 2)
sage: S2.is_commutative()
True

is_identity_decomposition_into_orthogonal_idempotents(l)
Return whether l is a decomposition of the identity into orthogonal idempotents.

INPUT:
• l – a list or iterable of elements of self

EXAMPLES:

sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field

sage: x,y,a,b = A.algebra_generators(); x,y,a,b
(x, y, a, b)

sage: A.is_identity_decomposition_into_orthogonal_idempotents([A.one()])
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents([x,y])
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents([x+a, y-a])
True

Here the idempotents do not sum up to 1:
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sage: A.is_identity_decomposition_into_orthogonal_idempotents([x])
False

Here 1 + 𝑥 and −𝑥 are neither idempotent nor orthogonal:

sage: A.is_identity_decomposition_into_orthogonal_idempotents([1+x,-x])
False

With the algebra of the 0-Hecke monoid:

sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: idempotents = A.orthogonal_idempotents_central_mod_radical()
sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True

Here are some more counterexamples:
1. Some orthogonal elements summing to 1 but not being idempotent:

sage: class PQAlgebra(CombinatorialFreeModule):
....: def __init__(self, F, p):
....: # Construct the quotient algebra F[x] / p,
....: # where p is a univariate polynomial.
....: R = parent(p); x = R.gen()
....: I = R.ideal(p)
....: self._xbar = R.quotient(I).gen()
....: basis_keys = [self._xbar**i for i in range(p.degree())]
....: CombinatorialFreeModule.__init__(self, F, basis_keys,
....: category=Algebras(F).FiniteDimensional().
→˓WithBasis())
....: def x(self):
....: return self(self._xbar)
....: def one(self):
....: return self.basis()[self.base_ring().one()]
....: def product_on_basis(self, w1, w2):
....: return self.from_vector(vector(w1*w2))
sage: R.<x> = PolynomialRing(QQ)
sage: A = PQAlgebra(QQ, x**3 - x**2 + x + 1); y = A.x()
sage: a, b = y, 1-y
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
False

For comparison:

sage: A = PQAlgebra(QQ, x**2 - x); y = A.x()
sage: a, b = y, 1-y
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, A.
→˓zero(), b))
True
sage: A = PQAlgebra(QQ, x**3 - x**2 + x - 1); y = A.x()
sage: a = (y**2 + 1) / 2

(continues on next page)
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sage: b = 1 - a
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b))
True

2. Some idempotents summing to 1 but not orthogonal:

sage: R.<x> = PolynomialRing(GF(2))
sage: A = PQAlgebra(GF(2), x)
sage: a = A.one()
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a,))
True
sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, a, a))
False

3. Some orthogonal idempotents not summing to the identity:

sage: A.is_identity_decomposition_into_orthogonal_idempotents((a,a))
False
sage: A.is_identity_decomposition_into_orthogonal_idempotents(())
False

isotypic_projective_modules(side='left')
Return the isotypic projective side self-modules.

Let 𝑃𝑖 be representatives of the indecomposable projective side-modules of this finite dimensional
algebra 𝐴, and 𝑆𝑖 be the associated simple modules.

The regular side representation of 𝐴 can be decomposed as a direct sum 𝐴 =
⨁︀

𝑖 𝑄𝑖 where each 𝑄𝑖

is an isotypic projective module; namely 𝑄𝑖 is the direct sum of dim𝑆𝑖 copies of the indecomposable
projective module 𝑃𝑖. This decomposition is not unique.

The isotypic projective modules are constructed as 𝑄𝑖 = 𝑒𝑖𝐴, where the (𝑒𝑖)𝑖 is the decomposition of
the identity into orthogonal idempotents obtained by lifting the central orthogonal idempotents of the
semisimple quotient of 𝐴.

INPUT:
• side – ‘left’ or ‘right’ (default: ‘left’)

OUTPUT: a list of subspaces of self.

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: Q = A.isotypic_projective_modules(side="left"); Q
[Free module generated by {0} over Rational Field,
Free module generated by {0, 1, 2} over Rational Field]
sage: [[x.lift() for x in Qi.basis()]
....: for Qi in Q]
[[x],
[y, a, b]]

We check that the sum of the dimensions of the isotypic projective modules is the dimension of self:

sage: sum([Qi.dimension() for Qi in Q]) == A.dimension()
True
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See also:

• orthogonal_idempotents_central_mod_radical()
• peirce_decomposition()

orthogonal_idempotents_central_mod_radical()
Return a family of orthogonal idempotents of self that project on the central orthogonal idempotents
of the semisimple quotient.

OUTPUT:
• a list of orthogonal idempotents obtained by lifting the central orthogonal idempotents of the

semisimple quotient.
ALGORITHM:

The orthogonal idempotents of 𝐴 are obtained by lifting the central orthogonal idempotents of the
semisimple quotient 𝐴.

Namely, let (𝑓𝑖) be the central orthogonal idempotents of the semisimple quotient of𝐴. We recursively
construct orthogonal idempotents of𝐴 by the following procedure: assuming (𝑓𝑖)𝑖<𝑛 is a set of already
constructed orthogonal idempotent, we construct 𝑓𝑘 by idempotent lifting of (1− 𝑓)𝑔(1− 𝑓), where
𝑔 is any lift of 𝑒𝑘 and 𝑓 =

∑︀
𝑖<𝑘 𝑓𝑖.

See [CR1962] for correctness and termination proofs.

See also:

• Algebras.SemiSimple.FiniteDimensional.WithBasis.ParentMethods.
central_orthogonal_idempotents()

• idempotent_lift()

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.orthogonal_idempotents_central_mod_radical()
(x, y)

sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid: the integers modulo 12
sage: A = Z12.algebra(QQ)
sage: idempotents = A.orthogonal_idempotents_central_mod_radical()
sage: sorted(idempotents, key=str)
[-B[0] + 1/2*B[4] + 1/2*B[8],
1/2*B[4] - 1/2*B[8],
1/2*B[9] + 1/2*B[3] - B[0],
1/2*B[9] - 1/2*B[3],
1/4*B[1] + 1/4*B[11] - 1/4*B[5] - 1/4*B[7],
1/4*B[1] - 1/2*B[9] + 1/4*B[5] - 1/4*B[7] + 1/2*B[3] - 1/4*B[11],
1/4*B[1] - 1/2*B[9] - 1/2*B[3] + 1/4*B[11] + 1/4*B[5] + 1/4*B[7] + B[0] -␣
→˓1/2*B[4] - 1/2*B[8],
1/4*B[1] - 1/4*B[5] + 1/4*B[7] - 1/4*B[11] - 1/2*B[4] + 1/2*B[8],
B[0]]
sage: sum(idempotents) == 1
True
sage: all(e*e == e for e in idempotents)
True

(continues on next page)
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sage: all(e*f == 0 and f*e == 0 for e in idempotents for f in idempotents␣
→˓if e != f)
True

This is best tested with:

sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True

We construct orthogonal idempotents for the algebra of the 0-Hecke monoid:

sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ)
sage: idempotents = A.orthogonal_idempotents_central_mod_radical()
sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True

peirce_decomposition(idempotents=None, check=True)
Return a Peirce decomposition of self.

Let (𝑒𝑖)𝑖 be a collection of orthogonal idempotents of 𝐴 with sum 1. The Peirce decomposition of 𝐴
is the decomposition of 𝐴 into the direct sum of the subspaces 𝑒𝑖𝐴𝑒𝑗 .

With the default collection of orthogonal idempotents, one has

dim 𝑒𝑖𝐴𝑒𝑗 = 𝐶𝑖,𝑗 dim𝑆𝑖 dim𝑆𝑗

where (𝑆𝑖)𝑖 are the simple modules of 𝐴 and (𝐶𝑖,𝑗)𝑖,𝑗 is the Cartan invariants matrix.

INPUT:
• idempotents – a list of orthogonal idempotents (𝑒𝑖)𝑖=0,...,𝑛 of the algebra that sum to 1 (default:

the idempotents returned by orthogonal_idempotents_central_mod_radical())
• check – (default: True) whether to check that the idempotents are indeed orthogonal and idem-

potent and sum to 1
OUTPUT:

A list of lists 𝑙 such that l[i][j] is the subspace 𝑒𝑖𝐴𝑒𝑗 .

See also:

• orthogonal_idempotents_central_mod_radical()
• cartan_invariants_matrix()

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.orthogonal_idempotents_central_mod_radical()
(x, y)
sage: decomposition = A.peirce_decomposition(); decomposition
[[Free module generated by {0} over Rational Field,
Free module generated by {0, 1} over Rational Field],
[Free module generated by {} over Rational Field,
Free module generated by {0} over Rational Field]]

(continues on next page)

388 Chapter 4. Individual Categories



Category Framework, Release 9.7

(continued from previous page)

sage: [ [[x.lift() for x in decomposition[i][j].basis()]
....: for j in range(2)]
....: for i in range(2)]
[[[x], [a, b]],
[[], [y]]]

We recover that the group algebra of the symmetric group 𝑆4 is a block matrix algebra:

sage: A = SymmetricGroup(4).algebra(QQ)
sage: decomposition = A.peirce_decomposition() # long time
sage: [[decomposition[i][j].dimension() # long time (4s)
....: for j in range(len(decomposition))]
....: for i in range(len(decomposition))]
[[9, 0, 0, 0, 0],
[0, 9, 0, 0, 0],
[0, 0, 4, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]]

The dimension of each block is 𝑑2, where 𝑑 is the dimension of the corresponding simple module of
𝑆4. The latter are given by:

sage: [p.standard_tableaux().cardinality() for p in Partitions(4)]
[1, 3, 2, 3, 1]

peirce_summand(ei, ej)
Return the Peirce decomposition summand 𝑒𝑖𝐴𝑒𝑗 .

INPUT:
• self – an algebra 𝐴
• ei, ej – two idempotents of 𝐴

OUTPUT: 𝑒𝑖𝐴𝑒𝑗 , as a subspace of 𝐴.

See also:

• peirce_decomposition()
• principal_ideal()

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example()
sage: idemp = A.orthogonal_idempotents_central_mod_radical()
sage: A.peirce_summand(idemp[0], idemp[1])
Free module generated by {0, 1} over Rational Field
sage: A.peirce_summand(idemp[1], idemp[0])
Free module generated by {} over Rational Field

We recover the 2 × 2 block of Q[𝑆4] corresponding to the unique simple module of dimension 2 of
the symmetric group 𝑆4:

sage: A4 = SymmetricGroup(4).algebra(QQ)
sage: e = A4.central_orthogonal_idempotents()[2]
sage: A4.peirce_summand(e, e)
Free module generated by {0, 1, 2, 3} over Rational Field
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principal_ideal(a, side='left')
Construct the side principal ideal generated by a.

EXAMPLES:

In order to highlight the difference between left and right principal ideals, our first example deals with
a non commutative algebra:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: x, y, a, b = A.basis()

In this algebra, multiplication on the right by 𝑥 annihilates all basis elements but 𝑥:

sage: x*x, y*x, a*x, b*x
(x, 0, 0, 0)

so the left ideal generated by 𝑥 is one-dimensional:

sage: Ax = A.principal_ideal(x, side='left'); Ax
Free module generated by {0} over Rational Field
sage: [B.lift() for B in Ax.basis()]
[x]

Multiplication on the left by 𝑥 annihilates only 𝑥 and fixes the other basis elements:

sage: x*x, x*y, x*a, x*b
(x, 0, a, b)

so the right ideal generated by 𝑥 is 3-dimensional:

sage: xA = A.principal_ideal(x, side='right'); xA
Free module generated by {0, 1, 2} over Rational Field
sage: [B.lift() for B in xA.basis()]
[x, a, b]

See also:

• peirce_summand()

radical()
Return the Jacobson radical of self.

This uses radical_basis(), whose default implementation handles algebras over fields of charac-
teristic zero or fields of characteristic 𝑝 in which we can compute 𝑥1/𝑝.

See also:

radical_basis(), semisimple_quotient()

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field

(continues on next page)
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sage: radical = A.radical(); radical
Radical of An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field

The radical is an ideal of 𝐴, and thus a finite dimensional non unital associative algebra:

sage: from sage.categories.associative_algebras import AssociativeAlgebras
sage: radical in AssociativeAlgebras(QQ).WithBasis().FiniteDimensional()
True
sage: radical in Algebras(QQ)
False

sage: radical.dimension()
2
sage: radical.basis()
Finite family {0: B[0], 1: B[1]}
sage: radical.ambient() is A
True
sage: [c.lift() for c in radical.basis()]
[a, b]

Todo:
• Tell Sage that the radical is in fact an ideal;
• Pickling by construction, as A.center();
• Lazy evaluation of _repr_.

radical_basis()
Return a basis of the Jacobson radical of this algebra.

Note: This implementation handles algebras over fields of characteristic zero (using Dixon’s lemma)
or fields of characteristic 𝑝 in which we can compute 𝑥1/𝑝 [FR1985], [Eb1989].

OUTPUT:
• a list of elements of self.

See also:

radical(), Algebras.Semisimple

EXAMPLES:

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.radical_basis()
(a, b)

We construct the group algebra of the Klein Four-Group over the rationals:

sage: A = KleinFourGroup().algebra(QQ)
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This algebra belongs to the category of finite dimensional algebras over the rationals:

sage: A in Algebras(QQ).FiniteDimensional().WithBasis()
True

Since the field has characteristic 0, Maschke’s Theorem tells us that the group algebra is semisimple.
So its radical is the zero ideal:

sage: A in Algebras(QQ).Semisimple()
True
sage: A.radical_basis()
()

Let’s work instead over a field of characteristic 2:

sage: A = KleinFourGroup().algebra(GF(2))
sage: A in Algebras(GF(2)).Semisimple()
False
sage: A.radical_basis()
(() + (1,2)(3,4), (3,4) + (1,2)(3,4), (1,2) + (1,2)(3,4))

We now implement the algebra 𝐴 = 𝐾[𝑥]/(𝑥𝑝 − 1), where 𝐾 is a finite field of characteristic 𝑝, and
check its radical; alas, we currently need to wrap 𝐴 to make it a proper ModulesWithBasis:

sage: class AnAlgebra(CombinatorialFreeModule):
....: def __init__(self, F):
....: R.<x> = PolynomialRing(F)
....: I = R.ideal(x**F.characteristic()-F.one())
....: self._xbar = R.quotient(I).gen()
....: basis_keys = [self._xbar**i for i in range(F.
→˓characteristic())]
....: CombinatorialFreeModule.__init__(self, F, basis_keys,
....: category=Algebras(F).FiniteDimensional().WithBasis())
....: def one(self):
....: return self.basis()[self.base_ring().one()]
....: def product_on_basis(self, w1, w2):
....: return self.from_vector(vector(w1*w2))
sage: AnAlgebra(GF(3)).radical_basis()
(B[1] + 2*B[xbar^2], B[xbar] + 2*B[xbar^2])
sage: AnAlgebra(GF(16,'a')).radical_basis()
(B[1] + B[xbar],)
sage: AnAlgebra(GF(49,'a')).radical_basis()
(B[1] + 6*B[xbar^6], B[xbar] + 6*B[xbar^6], B[xbar^2] + 6*B[xbar^6],
B[xbar^3] + 6*B[xbar^6], B[xbar^4] + 6*B[xbar^6], B[xbar^5] + 6*B[xbar^6])

semisimple_quotient()
Return the semisimple quotient of self.

This is the quotient of self by its radical.

See also:

radical()

EXAMPLES:
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sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: a,b,x,y = sorted(A.basis())
sage: S = A.semisimple_quotient(); S
Semisimple quotient of An example of a finite dimensional algebra with␣
→˓basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: S in Algebras(QQ).Semisimple()
True
sage: S.basis()
Finite family {'x': B['x'], 'y': B['y']}
sage: xs,ys = sorted(S.basis())
sage: (xs + ys) * xs
B['x']

Sanity check: the semisimple quotient of the 𝑛-th descent algebra of the symmetric group is of dimen-
sion the number of partitions of 𝑛:

sage: [ DescentAlgebra(QQ,n).B().semisimple_quotient().dimension()
....: for n in range(6) ]
[1, 1, 2, 3, 5, 7]
sage: [Partitions(n).cardinality() for n in range(10)]
[1, 1, 2, 3, 5, 7, 11, 15, 22, 30]

Todo:
• Pickling by construction, as A.semisimple_quotient()?
• Lazy evaluation of _repr_

class SubcategoryMethods
Bases: object

Cellular()
Return the full subcategory of the cellular objects of self.

See also:

Wikipedia article Cellular_algebra

EXAMPLES:

sage: Algebras(QQ).FiniteDimensional().WithBasis().Cellular()
Category of finite dimensional cellular algebras with basis
over Rational Field
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4.48 Finite dimensional bialgebras with basis

sage.categories.finite_dimensional_bialgebras_with_basis.FiniteDimensionalBialgebrasWithBasis(base_ring)
The category of finite dimensional bialgebras with a distinguished basis

EXAMPLES:

sage: C = FiniteDimensionalBialgebrasWithBasis(QQ); C
Category of finite dimensional bialgebras with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of bialgebras with basis over Rational Field,
Category of finite dimensional algebras with basis over Rational Field]
sage: C is Bialgebras(QQ).WithBasis().FiniteDimensional()
True

4.49 Finite dimensional coalgebras with basis

sage.categories.finite_dimensional_coalgebras_with_basis.FiniteDimensionalCoalgebrasWithBasis(base_ring)
The category of finite dimensional coalgebras with a distinguished basis

EXAMPLES:

sage: C = FiniteDimensionalCoalgebrasWithBasis(QQ); C
Category of finite dimensional coalgebras with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of coalgebras with basis over Rational Field,
Category of finite dimensional vector spaces with basis over Rational Field]
sage: C is Coalgebras(QQ).WithBasis().FiniteDimensional()
True

4.50 Finite Dimensional Graded Lie Algebras With Basis

AUTHORS:

• Eero Hakavuori (2018-08-16): initial version

class sage.categories.finite_dimensional_graded_lie_algebras_with_basis.FiniteDimensionalGradedLieAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of finite dimensional graded Lie algebras with a basis.

A grading of a Lie algebra g is a direct sum decomposition g =
⨁︀

𝑖 𝑉𝑖 such that [𝑉𝑖, 𝑉𝑗 ] ⊂ 𝑉𝑖+𝑗 .

EXAMPLES:

sage: C = LieAlgebras(ZZ).WithBasis().FiniteDimensional().Graded(); C
Category of finite dimensional graded lie algebras with basis over Integer Ring
sage: C.super_categories()
[Category of graded lie algebras with basis over Integer Ring,
Category of finite dimensional lie algebras with basis over Integer Ring]

(continues on next page)
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sage: C is LieAlgebras(ZZ).WithBasis().FiniteDimensional().Graded()
True

class ParentMethods
Bases: object

homogeneous_component_as_submodule(d)
Return the d-th homogeneous component of self as a submodule.

EXAMPLES:

sage: C = LieAlgebras(QQ).WithBasis().Graded()
sage: C = C.FiniteDimensional().Stratified().Nilpotent()
sage: L = LieAlgebra(QQ, {('x','y'): {'z': 1}},
....: nilpotent=True, category=C)
sage: L.homogeneous_component_as_submodule(2)
Sparse vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[0 0 1]

class Stratified(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of finite dimensional stratified Lie algebras with a basis.

A stratified Lie algebra is a graded Lie algebra that is generated as a Lie algebra by its homogeneous
component of degree 1. That is to say, for a graded Lie algebra 𝐿 =

⨁︀𝑀
𝑘=1 𝐿𝑘, we have 𝐿𝑘+1 = [𝐿1, 𝐿𝑘].

EXAMPLES:

sage: C = LieAlgebras(QQ).WithBasis().Graded().Stratified().FiniteDimensional()
sage: C
Category of finite dimensional stratified lie algebras with basis over Rational␣
→˓Field

A finite-dimensional stratified Lie algebra is nilpotent:

sage: C is C.Nilpotent()
True

class ParentMethods
Bases: object

degree_on_basis(m)
Return the degree of the basis element indexed by m.

If the degrees of the basis elements are not defined, they will be computed. By assumption the
stratification 𝐿1 ⊕ · · · ⊕ 𝐿𝑠 of self is such that each component 𝐿𝑘 is spanned by some subset
of the basis.

The degree of a basis element 𝑋 is therefore the largest index 𝑘 such that 𝑋 ∈ 𝐿𝑘 ⊕ · · · ⊕ 𝐿𝑠.
The space 𝐿𝑘 ⊕ · · · ⊕ 𝐿𝑠 is by assumption the 𝑘-th term of the lower central series.

EXAMPLES:

sage: C = LieAlgebras(QQ).WithBasis().Graded()
sage: C = C.FiniteDimensional().Stratified().Nilpotent()

(continues on next page)
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sage: sc = {('X','Y'): {'Z': 1}}
sage: L.<X,Y,Z> = LieAlgebra(QQ, sc, nilpotent=True, category=C)
sage: L.degree_on_basis(X.leading_support())
1
sage: X.degree()
1
sage: Y.degree()
1
sage: L[X, Y]
Z
sage: Z.degree()
2

4.51 Finite dimensional Hopf algebras with basis

class sage.categories.finite_dimensional_hopf_algebras_with_basis.FiniteDimensionalHopfAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finite dimensional Hopf algebras with a distinguished basis.

EXAMPLES:

sage: FiniteDimensionalHopfAlgebrasWithBasis(QQ) # fixme: Hopf should be capitalized
Category of finite dimensional hopf algebras with basis over Rational Field
sage: FiniteDimensionalHopfAlgebrasWithBasis(QQ).super_categories()
[Category of hopf algebras with basis over Rational Field,
Category of finite dimensional algebras with basis over Rational Field]

class ElementMethods
Bases: object

class ParentMethods
Bases: object

4.52 Finite Dimensional Lie Algebras With Basis

AUTHORS:

• Travis Scrimshaw (07-15-2013): Initial implementation

class sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of finite dimensional Lie algebras with a basis.

Todo: Many of these tests should use non-abelian Lie algebras and need to be added after trac ticket #16820.

class ElementMethods
Bases: object
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adjoint_matrix(sparse=False)
Return the matrix of the adjoint action of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.an_element().adjoint_matrix()
[0 0 0]
[0 0 0]
[0 0 0]
sage: L.an_element().adjoint_matrix(sparse=True).is_sparse()
True

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: x.adjoint_matrix()
[0 1]
[0 0]
sage: y.adjoint_matrix()
[-1 0]
[ 0 0]

We verify that this forms a representation:

sage: sl3 = lie_algebras.sl(QQ, 3)
sage: e1, e2 = sl3.e(1), sl3.e(2)
sage: e12 = e1.bracket(e2)
sage: E1, E2 = e1.adjoint_matrix(), e2.adjoint_matrix()
sage: E1 * E2 - E2 * E1 == e12.adjoint_matrix()
True

to_vector(order=None, sparse=False)
Return the vector in g.module() corresponding to the element self of g (where g is the parent of
self).

Implement this if you implement g.module(). See sage.categories.lie_algebras.
LieAlgebras.module() for how this is to be done.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.an_element().to_vector()
(0, 0, 0)

sage: L.an_element().to_vector(sparse=True)
(0, 0, 0)

sage: D = DescentAlgebra(QQ, 4).D()
sage: L = LieAlgebra(associative=D)
sage: L.an_element().to_vector()
(1, 1, 1, 1, 1, 1, 1, 1)

Nilpotent
alias of sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis.
FiniteDimensionalNilpotentLieAlgebrasWithBasis
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class ParentMethods
Bases: object

as_finite_dimensional_algebra()
Return self as a FiniteDimensionalAlgebra.

EXAMPLES:

sage: L = lie_algebras.cross_product(QQ)
sage: x,y,z = L.basis()
sage: F = L.as_finite_dimensional_algebra()
sage: X,Y,Z = F.basis()
sage: x.bracket(y)
Z
sage: X * Y
Z

center()
Return the center of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: Z = L.center(); Z
An example of a finite dimensional Lie algebra with basis: the
3-dimensional abelian Lie algebra over Rational Field
sage: Z.basis_matrix()
[1 0 0]
[0 1 0]
[0 0 1]

centralizer(S)
Return the centralizer of S in self.

INPUT:
• S – a subalgebra of self or a list of elements that represent generators for a subalgebra

See also:

centralizer_basis()

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: S = L.centralizer([a + b, 2*a + c]); S
An example of a finite dimensional Lie algebra with basis:
the 3-dimensional abelian Lie algebra over Rational Field
sage: S.basis_matrix()
[1 0 0]
[0 1 0]
[0 0 1]

centralizer_basis(S)
Return a basis of the centralizer of S in self.

INPUT:
• S – a subalgebra of self or a list of elements that represent generators for a subalgebra
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See also:

centralizer()

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: L.centralizer_basis([a + b, 2*a + c])
[(1, 0, 0), (0, 1, 0), (0, 0, 1)]

sage: H = lie_algebras.Heisenberg(QQ, 2)
sage: H.centralizer_basis(H)
[z]

sage: D = DescentAlgebra(QQ, 4).D()
sage: L = LieAlgebra(associative=D)
sage: L.centralizer_basis(L)
[D{},
D{1} + D{1, 2} + D{2, 3} + D{3},
D{1, 2, 3} + D{1, 3} + D{2}]
sage: D.center_basis()
(D{},
D{1} + D{1, 2} + D{2, 3} + D{3},
D{1, 2, 3} + D{1, 3} + D{2})

chevalley_eilenberg_complex(M=None, dual=False, sparse=True, ncpus=None)
Return the Chevalley-Eilenberg complex of self.

Let g be a Lie algebra and 𝑀 be a right g-module. The Chevalley-Eilenberg complex is the chain
complex on

𝐶∙(g,𝑀) = 𝑀 ⊗
⋀︁∙

g,

where the differential is given by

𝑑(𝑚⊗ 𝑔1 ∧ · · · ∧ 𝑔𝑝) =

𝑝∑︁
𝑖=1

(−1)𝑖+1(𝑚𝑔𝑖)⊗ 𝑔1 ∧ · · · ∧ 𝑔𝑖 ∧ · · · ∧ 𝑔𝑝 +
∑︁

1≤𝑖<𝑗≤𝑝

(−1)𝑖+𝑗𝑚⊗ [𝑔𝑖, 𝑔𝑗 ] ∧ 𝑔1 ∧ · · · ∧ 𝑔𝑖 ∧ · · · ∧ 𝑔𝑗 ∧ · · · ∧ 𝑔𝑝.

INPUT:
• M – (default: the trivial 1-dimensional module) the module 𝑀
• dual – (default: False) if True, causes the dual of the complex to be computed
• sparse – (default: True) whether to use sparse or dense matrices
• ncpus – (optional) how many cpus to use

EXAMPLES:

sage: L = lie_algebras.sl(ZZ, 2)
sage: C = L.chevalley_eilenberg_complex(); C
Chain complex with at most 4 nonzero terms over Integer Ring
sage: ascii_art(C)

[ 2 0 0] [0]
[ 0 -1 0] [0]

[0 0 0] [ 0 0 2] [0]
0 <-- C_0 <-------- C_1 <----------- C_2 <---- C_3 <-- 0

(continues on next page)
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sage: L = LieAlgebra(QQ, cartan_type=['C',2])
sage: C = L.chevalley_eilenberg_complex() # long time
sage: [C.free_module_rank(i) for i in range(11)] # long time
[1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1]

sage: g = lie_algebras.sl(QQ,2)
sage: E,F,H = g.basis()
sage: n = g.subalgebra([F,H])
sage: ascii_art(n.chevalley_eilenberg_complex())

[0]
[0 0] [2]

0 <-- C_0 <------ C_1 <---- C_2 <-- 0

REFERENCES:
• Wikipedia article Lie_algebra_cohomology#Chevalley-Eilenberg_complex
• [Wei1994] Chapter 7

Todo: Currently this is only implemented for coefficients given by the trivial module 𝑅, where 𝑅 is
the base ring and 𝑔𝑅 = 0 for all 𝑔 ∈ g. Allow generic coefficient modules 𝑀 .

cohomology(deg=None, M=None, sparse=True, ncpus=None)
Return the Lie algebra cohomology of self.

The Lie algebra cohomology is the cohomology of the Chevalley-Eilenberg cochain complex (which
is the dual of the Chevalley-Eilenberg chain complex).

Let g be a Lie algebra and𝑀 a left g-module. It is known that𝐻0(g;𝑀) is the subspace of g-invariants
of 𝑀 :

𝐻0(g;𝑀) = 𝑀g = {𝑚 ∈𝑀 | 𝑔𝑚 = 0 for all 𝑔 ∈ g}.

Additionally, 𝐻1(g;𝑀) is the space of derivations g→𝑀 modulo the space of inner derivations, and
𝐻2(g;𝑀) is the space of equivalence classes of Lie algebra extensions of g by 𝑀 .

INPUT:
• deg – the degree of the homology (optional)
• M – (default: the trivial module) a right module of self
• sparse – (default: True) whether to use sparse matrices for the Chevalley-Eilenberg chain com-

plex
• ncpus – (optional) how many cpus to use when computing the Chevalley-Eilenberg chain complex

EXAMPLES:

sage: L = lie_algebras.so(QQ, 4)
sage: L.cohomology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 0 over Rational Field,
2: Vector space of dimension 0 over Rational Field,
3: Vector space of dimension 2 over Rational Field,
4: Vector space of dimension 0 over Rational Field,
5: Vector space of dimension 0 over Rational Field,
6: Vector space of dimension 1 over Rational Field}

(continues on next page)
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(continued from previous page)

sage: L = lie_algebras.Heisenberg(QQ, 2)
sage: L.cohomology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 4 over Rational Field,
2: Vector space of dimension 5 over Rational Field,
3: Vector space of dimension 5 over Rational Field,
4: Vector space of dimension 4 over Rational Field,
5: Vector space of dimension 1 over Rational Field}

sage: d = {('x', 'y'): {'y': 2}}
sage: L.<x,y> = LieAlgebra(ZZ, d)
sage: L.cohomology()
{0: Z, 1: Z, 2: C2}

See also:

chevalley_eilenberg_complex()

REFERENCES:
• Wikipedia article Lie_algebra_cohomology

derivations_basis()
Return a basis for the Lie algebra of derivations of self as matrices.

A derivation 𝐷 of an algebra is an endomorphism of 𝐴 such that

𝐷([𝑎, 𝑏]) = [𝐷(𝑎), 𝑏] + [𝑎,𝐷(𝑏)]

for all 𝑎, 𝑏 ∈ 𝐴. The set of all derivations form a Lie algebra.

EXAMPLES:

We construct the derivations of the Heisenberg Lie algebra:

sage: H = lie_algebras.Heisenberg(QQ, 1)
sage: H.derivations_basis()
(
[1 0 0] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [1 0 0] [0 1 0] [0 0 0] [0 0 0]
[0 0 1], [0 0 0], [0 0 0], [0 0 1], [1 0 0], [0 1 0]
)

We construct the derivations of sl2:

sage: sl2 = lie_algebras.sl(QQ, 2)
sage: sl2.derivations_basis()
(
[ 1 0 0] [ 0 1 0] [ 0 0 0]
[ 0 0 0] [ 0 0 -1/2] [ 1 0 0]
[ 0 0 -1], [ 0 0 0], [ 0 -2 0]
)

We verify these are derivations:

sage: D = [sl2.module_morphism(matrix=M, codomain=sl2)
....: for M in sl2.derivations_basis()]

(continues on next page)

4.52. Finite Dimensional Lie Algebras With Basis 401

https://en.wikipedia.org/wiki/Lie_algebra_cohomology


Category Framework, Release 9.7

(continued from previous page)

sage: all(d(a.bracket(b)) == d(a).bracket(b) + a.bracket(d(b))
....: for a in sl2.basis() for b in sl2.basis() for d in D)
True

REFERENCES:

Wikipedia article Derivation_(differential_algebra)

derived_series()
Return the derived series (g(𝑖))𝑖 of self where the rightmost g(𝑘) = g(𝑘+1) = · · ·.

We define the derived series of a Lie algebra g recursively by g(0) := g and

g(𝑘+1) = [g(𝑘), g(𝑘)]

and recall that g(𝑘) ⊇ g(𝑘+1). Alternatively we can express this as

g ⊇ [g, g] ⊇
[︀
[g, g], [g, g]

]︀
⊇
[︂[︀

[g, g], [g, g]
]︀
,
[︀
[g, g], [g, g]

]︀]︂
⊇ · · · .

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.derived_series()
(An example of a finite dimensional Lie algebra with basis:

the 3-dimensional abelian Lie algebra over Rational Field,
An example of a finite dimensional Lie algebra with basis:

the 0-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[])

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.derived_series() # todo: not implemented - #17416
(Lie algebra on 2 generators (x, y) over Rational Field,
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational␣
→˓Field with basis:
(x,),
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational␣
→˓Field with basis:
())

derived_subalgebra()
Return the derived subalgebra of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.derived_subalgebra()
An example of a finite dimensional Lie algebra with basis:
the 0-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[]

If self is semisimple, then the derived subalgebra is self:

402 Chapter 4. Individual Categories

https://en.wikipedia.org/wiki/Derivation_(differential_algebra)


Category Framework, Release 9.7

sage: sl3 = LieAlgebra(QQ, cartan_type=['A',2])
sage: sl3.derived_subalgebra()
Lie algebra of ['A', 2] in the Chevalley basis
sage: sl3 is sl3.derived_subalgebra()
True

from_vector(v, order=None)
Return the element of self corresponding to the vector v in self.module().

Implement this if you implement module(); see the documentation of sage.categories.
lie_algebras.LieAlgebras.module() for how this is to be done.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True

homology(deg=None, M=None, sparse=True, ncpus=None)
Return the Lie algebra homology of self.

The Lie algebra homology is the homology of the Chevalley-Eilenberg chain complex.

INPUT:
• deg – the degree of the homology (optional)
• M – (default: the trivial module) a right module of self
• sparse – (default: True) whether to use sparse matrices for the Chevalley-Eilenberg chain com-

plex
• ncpus – (optional) how many cpus to use when computing the Chevalley-Eilenberg chain complex

EXAMPLES:

sage: L = lie_algebras.cross_product(QQ)
sage: L.homology()
{0: Vector space of dimension 1 over Rational Field,
1: Vector space of dimension 0 over Rational Field,
2: Vector space of dimension 0 over Rational Field,
3: Vector space of dimension 1 over Rational Field}

sage: L = lie_algebras.pwitt(GF(5), 5)
sage: L.homology()
{0: Vector space of dimension 1 over Finite Field of size 5,
1: Vector space of dimension 0 over Finite Field of size 5,
2: Vector space of dimension 1 over Finite Field of size 5,
3: Vector space of dimension 1 over Finite Field of size 5,
4: Vector space of dimension 0 over Finite Field of size 5,
5: Vector space of dimension 1 over Finite Field of size 5}

sage: d = {('x', 'y'): {'y': 2}}
sage: L.<x,y> = LieAlgebra(ZZ, d)
sage: L.homology()
{0: Z, 1: Z x C2, 2: 0}
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See also:

chevalley_eilenberg_complex()

ideal(*gens, **kwds)
Return the ideal of self generated by gens.

INPUT:
• gens – a list of generators of the ideal
• category – (optional) a subcategory of subobjects of finite dimensional Lie algebras with basis

EXAMPLES:

sage: H = lie_algebras.Heisenberg(QQ, 2)
sage: p1,p2,q1,q2,z = H.basis()
sage: I = H.ideal([p1-p2, q1-q2])
sage: I.basis().list()
[-p1 + p2, -q1 + q2, z]
sage: I.reduce(p1 + p2 + q1 + q2 + z)
2*p1 + 2*q1

Passing an extra category to an ideal:

sage: L.<x,y,z> = LieAlgebra(QQ, abelian=True)
sage: C = LieAlgebras(QQ).FiniteDimensional().WithBasis()
sage: C = C.Subobjects().Graded().Stratified()
sage: I = L.ideal(x, y, category=C)
sage: I.homogeneous_component_basis(1).list()
[x, y]

inner_derivations_basis()
Return a basis for the Lie algebra of inner derivations of self as matrices.

EXAMPLES:

sage: H = lie_algebras.Heisenberg(QQ, 1)
sage: H.inner_derivations_basis()
(
[0 0 0] [0 0 0]
[0 0 0] [0 0 0]
[1 0 0], [0 1 0]
)

is_abelian()
Return if self is an abelian Lie algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_abelian()
True

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}})
sage: L.is_abelian()
False

is_ideal(A)
Return if self is an ideal of A.
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EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: I = L.ideal([2*a - c, b + c])
sage: I.is_ideal(L)
True

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.is_ideal(L)
True

sage: F = LieAlgebra(QQ, 'F', representation='polynomial')
sage: L.is_ideal(F)
Traceback (most recent call last):
...
NotImplementedError: A must be a finite dimensional Lie algebra
with basis

is_nilpotent()
Return if self is a nilpotent Lie algebra.

A Lie algebra is nilpotent if the lower central series eventually becomes 0.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_nilpotent()
True

is_semisimple()
Return if self if a semisimple Lie algebra.

A Lie algebra is semisimple if the solvable radical is zero. In characteristic 0, this is equivalent to
saying the Killing form is non-degenerate.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_semisimple()
False

is_solvable()
Return if self is a solvable Lie algebra.

A Lie algebra is solvable if the derived series eventually becomes 0.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_solvable()
True

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.is_solvable() # todo: not implemented - #17416
False
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killing_form(x, y)
Return the Killing form on x and y, where x and y are two elements of self.

The Killing form is defined as

⟨𝑥 | 𝑦⟩ = tr (ad𝑥 ∘ ad𝑦) .

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: L.killing_form(a, b)
0

killing_form_matrix()
Return the matrix of the Killing form of self.

The rows and the columns of this matrix are indexed by the elements of the basis of self (in the order
provided by basis()).

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.killing_form_matrix()
[0 0 0]
[0 0 0]
[0 0 0]

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example(0)
sage: m = L.killing_form_matrix(); m
[]
sage: parent(m)
Full MatrixSpace of 0 by 0 dense matrices over Rational Field

killing_matrix(x, y)
Return the Killing matrix of x and y, where x and y are two elements of self.

The Killing matrix is defined as the matrix corresponding to the action of ad𝑥 ∘ ad𝑦 in the basis of
self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()
sage: L.killing_matrix(a, b)
[0 0 0]
[0 0 0]
[0 0 0]

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.killing_matrix(y, x)
[ 0 -1]
[ 0 0]

lower_central_series(submodule=False)
Return the lower central series (g𝑖)𝑖 of self where the rightmost g𝑘 = g𝑘+1 = · · ·.

INPUT:
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• submodule – (default: False) if True, then the result is given as submodules of self
We define the lower central series of a Lie algebra g recursively by g0 := g and

g𝑘+1 = [g, g𝑘]

and recall that g𝑘 ⊇ g𝑘+1. Alternatively we can express this as

g ⊇ [g, g] ⊇
[︀
[g, g], g

]︀
⊇
[︂[︀

[g, g], g
]︀
, g

]︂
⊇ · · · .

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.derived_series()
(An example of a finite dimensional Lie algebra with basis:

the 3-dimensional abelian Lie algebra over Rational Field,
An example of a finite dimensional Lie algebra with basis:

the 0-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[])

The lower central series as submodules:

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.lower_central_series(submodule=True)
(Sparse vector space of dimension 2 over Rational Field,
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0])

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: L.lower_central_series() # todo: not implemented - #17416
(Lie algebra on 2 generators (x, y) over Rational Field,
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational␣
→˓Field with basis:
(x,))

module(R=None)
Return a dense free module associated to self over R.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L._dense_free_module()
Vector space of dimension 3 over Rational Field

morphism(on_generators, codomain=None, base_map=None, check=True)
Return a Lie algebra morphism defined by images of a Lie generating subset of self.

INPUT:
• on_generators – dictionary {X: Y} of the images 𝑌 in codomain of elements 𝑋 of domain
• codomain – a Lie algebra (optional); this is inferred from the values of on_generators if not

given
• base_map – a homomorphism from the base ring to something coercing into the codomain
• check – (default: True) boolean; if False the values on the Lie brackets implied by
on_generators will not be checked for contradictory values
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Note: The keys of on_generators need to generate domain as a Lie algebra.

See also:

sage.algebras.lie_algebras.morphism.LieAlgebraMorphism_from_generators

EXAMPLES:

A quotient type Lie algebra morphism

sage: L.<X,Y,Z,W> = LieAlgebra(QQ, {('X','Y'): {'Z':1}, ('X','Z'): {'W':1}})
sage: K.<A,B> = LieAlgebra(QQ, abelian=True)
sage: L.morphism({X: A, Y: B})
Lie algebra morphism:
From: Lie algebra on 4 generators (X, Y, Z, W) over Rational Field
To: Abelian Lie algebra on 2 generators (A, B) over Rational Field
Defn: X |--> A

Y |--> B
Z |--> 0
W |--> 0

The reverse map 𝐴 ↦→ 𝑋 , 𝐵 ↦→ 𝑌 does not define a Lie algebra morphism, since [𝐴,𝐵] = 0, but
[𝑋,𝑌 ] ̸= 0:

sage: K.morphism({A:X, B: Y})
Traceback (most recent call last):
...
ValueError: this does not define a Lie algebra morphism;
contradictory values for brackets of length 2

However, it is still possible to create a morphism that acts nontrivially on the coefficients, even though
it’s not a Lie algebra morphism (since it isn’t linear):

sage: R.<x> = ZZ[]
sage: K.<i> = NumberField(x^2 + 1)
sage: cc = K.hom([-i])
sage: L.<X,Y,Z,W> = LieAlgebra(K, {('X','Y'): {'Z':1}, ('X','Z'): {'W':1}})
sage: M.<A,B> = LieAlgebra(K, abelian=True)
sage: phi = L.morphism({X: A, Y: B}, base_map=cc)
sage: phi(X)
A
sage: phi(i*X)
-i*A

product_space(L, submodule=False)
Return the product space [self, L].

INPUT:
• L – a Lie subalgebra of self
• submodule – (default: False) if True, then the result is forced to be a submodule of self

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a,b,c = L.lie_algebra_generators()

(continues on next page)

408 Chapter 4. Individual Categories

../../../../../../html/en/reference/algebras/sage/algebras/lie_algebras/morphism.html#sage.algebras.lie_algebras.morphism.LieAlgebraMorphism_from_generators


Category Framework, Release 9.7

(continued from previous page)

sage: X = L.subalgebra([a, b+c])
sage: L.product_space(X)
An example of a finite dimensional Lie algebra with basis:
the 0-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[]
sage: Y = L.subalgebra([a, 2*b-c])
sage: X.product_space(Y)
An example of a finite dimensional Lie algebra with basis:
the 0-dimensional abelian Lie algebra over Rational
Field with basis matrix:
[]

sage: H = lie_algebras.Heisenberg(ZZ, 4)
sage: Hp = H.product_space(H, submodule=True).basis()
sage: [H.from_vector(v) for v in Hp]
[z]

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'):{'x':1}})
sage: Lp = L.product_space(L) # todo: not implemented - #17416
sage: Lp # todo: not implemented - #17416
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational␣
→˓Field with basis:
(x,)
sage: Lp.product_space(L) # todo: not implemented - #17416
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational␣
→˓Field with basis:
(x,)
sage: L.product_space(Lp) # todo: not implemented - #17416
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational␣
→˓Field with basis:
(x,)
sage: Lp.product_space(Lp) # todo: not implemented - #17416
Subalgebra generated of Lie algebra on 2 generators (x, y) over Rational␣
→˓Field with basis:
()

quotient(I, names=None, category=None)
Return the quotient of self by the ideal I.

A quotient Lie algebra.

INPUT:
• I – an ideal or a list of generators of the ideal
• names – (optional) a string or a list of strings; names for the basis elements of the quotient. If
names is a string, the basis will be named names_1,. . . ,``names_n``.

EXAMPLES:

The Engel Lie algebra as a quotient of the free nilpotent Lie algebra of step 3 with 2 generators:

sage: L.<X,Y,Z,W,U> = LieAlgebra(QQ, 2, step=3)
sage: E = L.quotient(U); E
Lie algebra quotient L/I of dimension 4 over Rational Field where

(continues on next page)
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(continued from previous page)

L: Free Nilpotent Lie algebra on 5 generators (X, Y, Z, W, U) over Rational␣
→˓Field
I: Ideal (U)
sage: E.basis().list()
[X, Y, Z, W]
sage: E(X).bracket(E(Y))
Z
sage: Y.bracket(Z)
-U
sage: E(Y).bracket(E(Z))
0
sage: E(U)
0

Quotients when the base ring is not a field are not implemented:

sage: L = lie_algebras.Heisenberg(ZZ, 1)
sage: L.quotient(L.an_element())
Traceback (most recent call last):
...
NotImplementedError: quotients over non-fields not implemented

structure_coefficients(include_zeros=False)
Return the structure coefficients of self.

INPUT:
• include_zeros – (default: False) if True, then include the [𝑥, 𝑦] = 0 pairs in the output

OUTPUT:

A dictionary whose keys are pairs of basis indices (𝑖, 𝑗) with 𝑖 < 𝑗, and whose values are the corre-
sponding elements [𝑏𝑖, 𝑏𝑗 ] in the Lie algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.structure_coefficients()
Finite family {}
sage: L.structure_coefficients(True)
Finite family {(0, 1): (0, 0, 0), (0, 2): (0, 0, 0), (1, 2): (0, 0, 0)}

sage: G = SymmetricGroup(3)
sage: S = GroupAlgebra(G, QQ)
sage: L = LieAlgebra(associative=S)
sage: L.structure_coefficients()
Finite family {((2,3), (1,2)): (1,2,3) - (1,3,2),

((2,3), (1,3)): -(1,2,3) + (1,3,2),
((1,2,3), (2,3)): -(1,2) + (1,3),
((1,2,3), (1,2)): (2,3) - (1,3),
((1,2,3), (1,3)): -(2,3) + (1,2),
((1,3,2), (2,3)): (1,2) - (1,3),
((1,3,2), (1,2)): -(2,3) + (1,3),
((1,3,2), (1,3)): (2,3) - (1,2),
((1,3), (1,2)): -(1,2,3) + (1,3,2)}
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subalgebra(*gens, **kwds)
Return the subalgebra of self generated by gens.

INPUT:
• gens – a list of generators of the subalgebra
• category – (optional) a subcategory of subobjects of finite dimensional Lie algebras with basis

EXAMPLES:

sage: H = lie_algebras.Heisenberg(QQ, 2)
sage: p1,p2,q1,q2,z = H.basis()
sage: S = H.subalgebra([p1, q1])
sage: S.basis().list()
[p1, q1, z]
sage: S.basis_matrix()
[1 0 0 0 0]
[0 0 1 0 0]
[0 0 0 0 1]

Passing an extra category to a subalgebra:

sage: L = LieAlgebra(QQ, 3, step=2)
sage: x,y,z = L.homogeneous_component_basis(1)
sage: C = LieAlgebras(QQ).FiniteDimensional().WithBasis()
sage: C = C.Subobjects().Graded().Stratified()
sage: S = L.subalgebra([x, y], category=C)
sage: S.homogeneous_component_basis(2).list()
[X_12]

universal_commutative_algebra()
Return the universal commutative algebra associated to self.

Let 𝐼 be the index set of the basis of self. Let 𝒫 = {𝑃𝑎,𝑖,𝑗}𝑎,𝑖,𝑗∈𝐼 denote the universal polyno-
mials of a Lie algebra 𝐿. The universal commutative algebra associated to 𝐿 is the quotient ring
𝑅[𝑋𝑖𝑗 ]𝑖,𝑗∈𝐼/(𝒫).

EXAMPLES:

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}})
sage: A = L.universal_commutative_algebra()
sage: a,b,c,d = A.gens()
sage: (a,b,c,d)
(X00bar, X01bar, 0, X11bar)
sage: a*d - a
0

universal_polynomials()
Return the family of universal polynomials of self.

The universal polynomials of a Lie algebra 𝐿 with basis {𝑒𝑖}𝑖∈𝐼 and structure coefficients [𝑒𝑖, 𝑒𝑗 ] =
𝜏𝑎𝑖𝑗𝑒𝑎 is given by

𝑃𝑎𝑖𝑗 =
∑︁
𝑢∈𝐼

𝜏𝑢𝑖𝑗𝑋𝑎𝑢 −
∑︁
𝑠,𝑡∈𝐼

𝜏𝑎𝑠𝑡𝑋𝑠𝑖𝑋𝑡𝑗 ,

where 𝑎, 𝑖, 𝑗 ∈ 𝐼 .

REFERENCES:
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• [AM2020]
EXAMPLES:

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}})
sage: L.universal_polynomials()
Finite family {('x', 'x', 'y'): X01*X10 - X00*X11 + X00,

('y', 'x', 'y'): X10}

sage: L = LieAlgebra(QQ, cartan_type=['A',1])
sage: list(L.universal_polynomials())
[-2*X01*X10 + 2*X00*X11 - 2*X00,
-2*X02*X10 + 2*X00*X12 + X01,
-2*X02*X11 + 2*X01*X12 - 2*X02,
X01*X20 - X00*X21 - 2*X10,
X02*X20 - X00*X22 + X11,
X02*X21 - X01*X22 - 2*X12,
-2*X11*X20 + 2*X10*X21 - 2*X20,
-2*X12*X20 + 2*X10*X22 + X21,
-2*X12*X21 + 2*X11*X22 - 2*X22]

sage: L = LieAlgebra(QQ, cartan_type=['B',2])
sage: al = RootSystem(['B',2]).root_lattice().simple_roots()
sage: k = list(L.basis().keys())[0]
sage: UP = L.universal_polynomials() # long time
sage: len(UP) # long time
450
sage: UP[al[2],al[1],-al[1]] # long time
X0_7*X4_1 - X0_1*X4_7 - 2*X0_7*X5_1 + 2*X0_1*X5_7 + X2_7*X7_1
- X2_1*X7_7 - X3_7*X8_1 + X3_1*X8_7 + X0_4

class Subobjects(category, *args)
Bases: sage.categories.subobjects.SubobjectsCategory

A category for subalgebras of a finite dimensional Lie algebra with basis.

class ParentMethods
Bases: object

ambient()
Return the ambient Lie algebra of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: S = L.subalgebra([2*a+b, b + c])
sage: S.ambient() == L
True

basis_matrix()
Return the basis matrix of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()

(continues on next page)
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(continued from previous page)

sage: S = L.subalgebra([2*a+b, b + c])
sage: S.basis_matrix()
[ 1 0 -1/2]
[ 0 1 1]

example(n=3)
Return an example of a finite dimensional Lie algebra with basis as per Category.example.

EXAMPLES:

sage: C = LieAlgebras(QQ).FiniteDimensional().WithBasis()
sage: C.example()
An example of a finite dimensional Lie algebra with basis:
the 3-dimensional abelian Lie algebra over Rational Field

Other dimensions can be specified as an optional argument:

sage: C.example(5)
An example of a finite dimensional Lie algebra with basis:
the 5-dimensional abelian Lie algebra over Rational Field

4.53 Finite dimensional modules with basis

class sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finite dimensional modules with a distinguished basis

EXAMPLES:

sage: C = FiniteDimensionalModulesWithBasis(ZZ); C
Category of finite dimensional modules with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of finite dimensional modules over Integer Ring,
Category of modules with basis over Integer Ring]
sage: C is Modules(ZZ).WithBasis().FiniteDimensional()
True

class ElementMethods
Bases: object

dense_coefficient_list(order=None)
Return a list of all coefficients of self.

By default, this list is ordered in the same way as the indexing set of the basis of the parent of self.

INPUT:
• order – (optional) an ordering of the basis indexing set

EXAMPLES:

sage: v = vector([0, -1, -3])
sage: v.dense_coefficient_list()
[0, -1, -3]

(continues on next page)
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(continued from previous page)

sage: v.dense_coefficient_list([2,1,0])
[-3, -1, 0]
sage: sorted(v.coefficients())
[-3, -1]

class MorphismMethods
Bases: object

image()
Return the image of self as a submodule of the codomain.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
sage: f.image()
Free module generated by {0, 1, 2} over Rational Field

image_basis()
Return a basis for the image of self in echelon form.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
sage: f.image_basis()
([1, 2, 3], [2, 3, 1], [3, 1, 2])

kernel()
Return the kernel of self as a submodule of the domain.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
sage: K = f.kernel()
sage: K
Free module generated by {0, 1, 2} over Rational Field
sage: K.ambient()
Symmetric group algebra of order 3 over Rational Field

kernel_basis()
Return a basis of the kernel of self in echelon form.

EXAMPLES:

sage: SGA = SymmetricGroupAlgebra(QQ, 3)
sage: f = SGA.module_morphism(lambda x: SGA(x**2), codomain=SGA)
sage: f.kernel_basis()
([1, 2, 3] - [3, 2, 1], [1, 3, 2] - [3, 2, 1], [2, 1, 3] - [3, 2, 1])

matrix(base_ring=None, side='left')
Return the matrix of this morphism in the distinguished bases of the domain and codomain.

INPUT:
• base_ring – a ring (default: None, meaning the base ring of the codomain)
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• side – “left” or “right” (default: “left”)
If side is “left”, this morphism is considered as acting on the left; i.e. each column of the matrix
represents the image of an element of the basis of the domain.

The order of the rows and columns matches with the order in which the bases are enumerated.

See also:

Modules.WithBasis.ParentMethods.module_morphism()

EXAMPLES:

sage: X = CombinatorialFreeModule(ZZ, [1,2]); x = X.basis()
sage: Y = CombinatorialFreeModule(ZZ, [3,4]); y = Y.basis()
sage: phi = X.module_morphism(on_basis = {1: y[3] + 3*y[4], 2: 2*y[3] +␣
→˓5*y[4]}.__getitem__,
....: codomain = Y)
sage: phi.matrix()
[1 2]
[3 5]
sage: phi.matrix(side="right")
[1 3]
[2 5]

sage: phi.matrix().parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: phi.matrix(QQ).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field

The resulting matrix is immutable:

sage: phi.matrix().is_mutable()
False

The zero morphism has a zero matrix:

sage: Hom(X,Y).zero().matrix()
[0 0]
[0 0]

Todo: Add support for morphisms where the codomain has a different base ring than the domain:

sage: Y = CombinatorialFreeModule(QQ, [3,4]); y = Y.basis()
sage: phi = X.module_morphism(on_basis = {1: y[3] + 3*y[4], 2: 2*y[3] + 5/
→˓2*y[4]}.__getitem__,
....: codomain = Y)
sage: phi.matrix().parent() # todo: not implemented
Full MatrixSpace of 2 by 2 dense matrices over Rational Field

This currently does not work because, in this case, the morphism is just in the category of commutative
additive groups (i.e. the intersection of the categories of modules over Z and over Q):

sage: phi.parent().homset_category()
Category of commutative additive semigroups
sage: phi.parent().homset_category() # todo: not implemented
Category of finite dimensional modules with basis over Integer Ring
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class ParentMethods
Bases: object

annihilator(S, action=<built-in function mul>, side='right', category=None)
Return the annihilator of a finite set.

INPUT:
• S – a finite set
• action – a function (default: operator.mul)
• side – ‘left’ or ‘right’ (default: ‘right’)
• category – a category

Assumptions:
• action takes elements of self as first argument and elements of S as second argument;
• The codomain is any vector space, and action is linear on its first argument; typically it is bilinear;
• If side is ‘left’, this is reversed.

OUTPUT:

The subspace of the elements 𝑥 of self such that action(x,s) = 0 for all 𝑠 ∈ 𝑆. If side is ‘left’
replace the above equation by action(s,x) = 0.

If self is a ring, action an action of self on a module 𝑀 and 𝑆 is a subset of 𝑀 , we recover the
Wikipedia article Annihilator_%28ring_theory%29. Similarly this can be used to compute torsion or
orthogonals.

See also:

annihilator_basis() for lots of examples.

EXAMPLES:

sage: F = FiniteDimensionalAlgebrasWithBasis(QQ).example(); F
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: x,y,a,b = F.basis()
sage: A = F.annihilator([a + 3*b + 2*y]); A
Free module generated by {0} over Rational Field
sage: [b.lift() for b in A.basis()]
[-1/2*a - 3/2*b + x]

The category can be used to specify other properties of this subspace, like that this is a subalgebra:

sage: center = F.annihilator(F.basis(), F.bracket,
....: category=Algebras(QQ).Subobjects())
sage: (e,) = center.basis()
sage: e.lift()
x + y
sage: e * e == e
True

Taking annihilator is order reversing for inclusion:

sage: A = F.annihilator([]); A .rename("A")
sage: Ax = F.annihilator([x]); Ax .rename("Ax")
sage: Ay = F.annihilator([y]); Ay .rename("Ay")
sage: Axy = F.annihilator([x,y]); Axy.rename("Axy")

(continues on next page)
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(continued from previous page)

sage: P = Poset(([A, Ax, Ay, Axy], attrcall("is_submodule")))
sage: sorted(P.cover_relations(), key=str)
[[Ax, A], [Axy, Ax], [Axy, Ay], [Ay, A]]

annihilator_basis(S, action=<built-in function mul>, side='right')
Return a basis of the annihilator of a finite set of elements.

INPUT:
• S – a finite set of objects
• action – a function (default: operator.mul)
• side – ‘left’ or ‘right’ (default: ‘right’): on which side of self the elements of 𝑆 acts.

See annihilator() for the assumptions and definition of the annihilator.

EXAMPLES:

By default, the action is the standard * operation. So our first example is about an algebra:

sage: F = FiniteDimensionalAlgebrasWithBasis(QQ).example(); F
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: x,y,a,b = F.basis()

In this algebra, multiplication on the right by 𝑥 annihilates all basis elements but 𝑥:

sage: x*x, y*x, a*x, b*x
(x, 0, 0, 0)

So the annihilator is the subspace spanned by 𝑦, 𝑎, and 𝑏:

sage: F.annihilator_basis([x])
(y, a, b)

The same holds for 𝑎 and 𝑏:

sage: x*a, y*a, a*a, b*a
(a, 0, 0, 0)
sage: F.annihilator_basis([a])
(y, a, b)

On the other hand, 𝑦 annihilates only 𝑥:

sage: F.annihilator_basis([y])
(x,)

Here is a non trivial annihilator:

sage: F.annihilator_basis([a + 3*b + 2*y])
(-1/2*a - 3/2*b + x,)

Let’s check it:

sage: (-1/2*a - 3/2*b + x) * (a + 3*b + 2*y)
0

Doing the same calculations on the left exchanges the roles of 𝑥 and 𝑦:
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sage: F.annihilator_basis([y], side="left")
(x, a, b)
sage: F.annihilator_basis([a], side="left")
(x, a, b)
sage: F.annihilator_basis([b], side="left")
(x, a, b)
sage: F.annihilator_basis([x], side="left")
(y,)
sage: F.annihilator_basis([a+3*b+2*x], side="left")
(-1/2*a - 3/2*b + y,)

By specifying an inner product, this method can be used to compute the orthogonal of a subspace:

sage: x,y,a,b = F.basis()
sage: def scalar(u,v): return vector([sum(u[i]*v[i] for i in F.basis().
→˓keys())])
sage: F.annihilator_basis([x+y, a+b], scalar)
(x - y, a - b)

By specifying the standard Lie bracket as action, one can compute the commutator of a subspace of
𝐹 :

sage: F.annihilator_basis([a+b], action=F.bracket)
(x + y, a, b)

In particular one can compute a basis of the center of the algebra. In our example, it is reduced to the
identity:

sage: F.annihilator_basis(F.algebra_generators(), action=F.bracket)
(x + y,)

But see also FiniteDimensionalAlgebrasWithBasis.ParentMethods.center_basis().

echelon_form(elements, row_reduced=False, order=None)
Return a basis in echelon form of the subspace spanned by a finite set of elements.

INPUT:
• elements – a list or finite iterable of elements of self
• row_reduced – (default: False) whether to compute the basis for the row reduced echelon form
• order – (optional) either something that can be converted into a tuple or a key function

OUTPUT:

A list of elements of self whose expressions as vectors form a matrix in echelon form. If base_ring
is specified, then the calculation is achieved in this base ring.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: V = X.echelon_form([x[0]-x[1], x[0]-x[2],x[1]-x[2]]); V
[x[0] - x[2], x[1] - x[2]]
sage: matrix(list(map(vector, V)))
[ 1 0 -1]
[ 0 1 -1]
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sage: F = CombinatorialFreeModule(ZZ, [1,2,3,4])
sage: B = F.basis()
sage: elements = [B[1]-17*B[2]+6*B[3], B[1]-17*B[2]+B[4]]
sage: F.echelon_form(elements)
[B[1] - 17*B[2] + B[4], 6*B[3] - B[4]]

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: a,b,c = F.basis()
sage: F.echelon_form([8*a+b+10*c, -3*a+b-c, a-b-c])
[B['a'] + B['c'], B['b'] + 2*B['c']]

sage: R.<x,y> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: C.echelon_form([x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]])
[x[0] - x[2], x[1] - x[2]]

sage: M = MatrixSpace(QQ, 3, 3)
sage: A = M([[0, 0, 2], [0, 0, 0], [0, 0, 0]])
sage: M.echelon_form([A, A])
[
[0 0 1]
[0 0 0]
[0 0 0]
]

from_vector(vector, order=None, coerce=True)
Build an element of self from a vector.

EXAMPLES:

sage: p_mult = matrix([[0,0,0],[0,0,-1],[0,0,0]])
sage: q_mult = matrix([[0,0,1],[0,0,0],[0,0,0]])
sage: A = algebras.FiniteDimensional(QQ, [p_mult, q_mult, matrix(QQ,3,3)],
....: 'p,q,z')
sage: A.from_vector(vector([1,0,2]))
p + 2*z

gens()
Return the generators of self.

OUTPUT:

A tuple containing the basis elements of self.

EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, ['a', 'b', 'c'])
sage: F.gens()
(B['a'], B['b'], B['c'])

invariant_module(S, action=<built-in function mul>, action_on_basis=None, side='left', **kwargs)
Return the submodule of self invariant under the action of S.
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For a semigroup 𝑆 acting on a module 𝑀 , the invariant submodule is given by

𝑀𝑆 = {𝑚 ∈𝑀 : 𝑠 ·𝑚 = 𝑚, ∀𝑠 ∈ 𝑆}.

INPUT:
• S – a finitely-generated semigroup
• action – a function (default: operator.mul)
• side – 'left' or 'right' (default: 'right'); which side of self the elements of S acts
• action_on_basis – (optional) define the action of S on the basis of self

OUTPUT:
• FiniteDimensionalInvariantModule

EXAMPLES:

We build the invariant module of the permutation representation of the symmetric group:

sage: G = SymmetricGroup(3); G.rename('S3')
sage: M = FreeModule(ZZ, [1,2,3], prefix='M'); M.rename('M')
sage: action = lambda g, x: M.term(g(x))
sage: I = M.invariant_module(G, action_on_basis=action); I
(S3)-invariant submodule of M
sage: I.basis()
Finite family {0: B[0]}
sage: [I.lift(b) for b in I.basis()]
[M[1] + M[2] + M[3]]

sage: G.rename(); M.rename() # reset the names

We can construct the invariant module of any module that has an action of S. In this example, we
consider the dihedral group 𝐺 = 𝐷4 and the subgroup 𝐻 < 𝐺 of all rotations. We construct the
𝐻-invariant module of the group algebra Q[𝐺]:

sage: G = groups.permutation.Dihedral(4)
sage: H = G.subgroup(G.gen(0))
sage: H
Subgroup generated by [(1,2,3,4)] of (Dihedral group of order 8 as a␣
→˓permutation group)
sage: H.cardinality()
4
sage: A = G.algebra(QQ)
sage: I = A.invariant_module(H)
sage: [I.lift(b) for b in I.basis()]
[() + (1,2,3,4) + (1,3)(2,4) + (1,4,3,2),
(2,4) + (1,2)(3,4) + (1,3) + (1,4)(2,3)]
sage: all(h * I.lift(b) == I.lift(b) for b in I.basis() for h in H)
True

twisted_invariant_module(G, chi, action=<built-in function mul>, action_on_basis=None,
side='left', **kwargs)

Create the isotypic component of the action of G on self with irreducible character given by chi.

See also:

-FiniteDimensionalTwistedInvariantModule

INPUT:
• G – a finitely-generated group
• chi – a list/tuple of character values or an instance of ClassFunction_gap
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• action – a function (default: operator.mul)
• action_on_basis – (optional) define the action of g on the basis of self
• side – 'left' or 'right' (default: 'right'); which side of self the elements of S acts

OUTPUT:
• FiniteDimensionalTwistedInvariantModule

EXAMPLES:

sage: M = CombinatorialFreeModule(QQ, [1,2,3])
sage: G = SymmetricGroup(3)
sage: def action(g,x): return(M.term(g(x))) # permute coordinates
sage: T = M.twisted_invariant_module(G, [2,0,-1], action_on_basis=action)
sage: import __main__; __main__.action = action
sage: TestSuite(T).run()

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

extra_super_categories()
Implement the fact that a (finite) tensor product of finite dimensional modules is a finite dimensional
module.

EXAMPLES:

sage: ModulesWithBasis(ZZ).FiniteDimensional().TensorProducts().extra_super_
→˓categories()
[Category of finite dimensional modules with basis over Integer Ring]
sage: ModulesWithBasis(ZZ).FiniteDimensional().TensorProducts().
→˓FiniteDimensional()
Category of tensor products of finite dimensional modules with basis over␣
→˓Integer Ring

4.54 Finite Dimensional Nilpotent Lie Algebras With Basis

AUTHORS:

• Eero Hakavuori (2018-08-16): initial version

class sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis.FiniteDimensionalNilpotentLieAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of finite dimensional nilpotent Lie algebras with basis.

class ParentMethods
Bases: object

is_nilpotent()
Return True since self is nilpotent.

EXAMPLES:

sage: L = LieAlgebra(QQ, {('x','y'): {'z': 1}}, nilpotent=True)
sage: L.is_nilpotent()
True

lie_group(name='G', **kwds)
Return the Lie group associated to self.
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INPUT:
• name – string (default: 'G'); the name (symbol) given to the Lie group

EXAMPLES:

We define the Heisenberg group:

sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: G = L.lie_group('G'); G #␣
→˓optional - sage.symbolic
Lie group G of Heisenberg algebra of rank 1 over Rational Field

We test multiplying elements of the group:

sage: p,q,z = L.basis() #␣
→˓optional - sage.symbolic
sage: g = G.exp(p); g #␣
→˓optional - sage.symbolic
exp(p1)
sage: h = G.exp(q); h #␣
→˓optional - sage.symbolic
exp(q1)
sage: g*h #␣
→˓optional - sage.symbolic
exp(p1 + q1 + 1/2*z)

We extend an element of the Lie algebra to a left-invariant vector field:

sage: X = G.left_invariant_extension(2*p + 3*q, name='X'); X #␣
→˓optional - sage.symbolic
Vector field X on the Lie group G of Heisenberg algebra of rank 1 over␣
→˓Rational Field
sage: X.at(G.one()).display() #␣
→˓optional - sage.symbolic
X = 2 𝜕/𝜕x_0 + 3 𝜕/𝜕x_1
sage: X.display() #␣
→˓optional - sage.symbolic
X = 2 𝜕/𝜕x_0 + 3 𝜕/𝜕x_1 + (3/2*x_0 - x_1) 𝜕/𝜕x_2

See also:

NilpotentLieGroup

step()
Return the nilpotency step of self.

EXAMPLES:

sage: L = LieAlgebra(QQ, {('X','Y'): {'Z': 1}}, nilpotent=True)
sage: L.step()
2
sage: sc = {('X','Y'): {'Z': 1}, ('X','Z'): {'W': 1}}
sage: LieAlgebra(QQ, sc, nilpotent=True).step()
3
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4.55 Finite dimensional semisimple algebras with basis

class sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finite dimensional semisimple algebras with a distinguished basis

EXAMPLES:

sage: from sage.categories.finite_dimensional_semisimple_algebras_with_basis import␣
→˓FiniteDimensionalSemisimpleAlgebrasWithBasis
sage: C = FiniteDimensionalSemisimpleAlgebrasWithBasis(QQ); C
Category of finite dimensional semisimple algebras with basis over Rational Field

This category is best constructed as:

sage: D = Algebras(QQ).Semisimple().FiniteDimensional().WithBasis(); D
Category of finite dimensional semisimple algebras with basis over Rational Field
sage: D is C
True

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ParentMethods
Bases: object

central_orthogonal_idempotents()
Return the central orthogonal idempotents of this semisimple commutative algebra.

Those idempotents form a maximal decomposition of the identity into primitive orthogonal idem-
potents.

OUTPUT:

A list of orthogonal idempotents of self.

EXAMPLES:

sage: A4 = SymmetricGroup(4).algebra(QQ)
sage: Z4 = A4.center()
sage: idempotents = Z4.central_orthogonal_idempotents()
sage: idempotents
(1/24*B[0] + 1/24*B[1] + 1/24*B[2] + 1/24*B[3] + 1/24*B[4],
3/8*B[0] + 1/8*B[1] - 1/8*B[2] - 1/8*B[4],
1/6*B[0] + 1/6*B[2] - 1/12*B[3],
3/8*B[0] - 1/8*B[1] - 1/8*B[2] + 1/8*B[4],
1/24*B[0] - 1/24*B[1] + 1/24*B[2] + 1/24*B[3] - 1/24*B[4])

Lifting those idempotents from the center, we recognize among them the sum and alternating sum
of all permutations:

sage: [e.lift() for e in idempotents]
[1/24*() + 1/24*(3,4) + 1/24*(2,3) + 1/24*(2,3,4) + 1/24*(2,4,3)
+ 1/24*(2,4) + 1/24*(1,2) + 1/24*(1,2)(3,4) + 1/24*(1,2,3)
+ 1/24*(1,2,3,4) + 1/24*(1,2,4,3) + 1/24*(1,2,4) + 1/24*(1,3,2)
+ 1/24*(1,3,4,2) + 1/24*(1,3) + 1/24*(1,3,4) + 1/24*(1,3)(2,4)
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+ 1/24*(1,3,2,4) + 1/24*(1,4,3,2) + 1/24*(1,4,2) + 1/24*(1,4,3)
+ 1/24*(1,4) + 1/24*(1,4,2,3) + 1/24*(1,4)(2,3),
...,
1/24*() - 1/24*(3,4) - 1/24*(2,3) + 1/24*(2,3,4) + 1/24*(2,4,3)
- 1/24*(2,4) - 1/24*(1,2) + 1/24*(1,2)(3,4) + 1/24*(1,2,3)
- 1/24*(1,2,3,4) - 1/24*(1,2,4,3) + 1/24*(1,2,4) + 1/24*(1,3,2)
- 1/24*(1,3,4,2) - 1/24*(1,3) + 1/24*(1,3,4) + 1/24*(1,3)(2,4)
- 1/24*(1,3,2,4) - 1/24*(1,4,3,2) + 1/24*(1,4,2) + 1/24*(1,4,3)
- 1/24*(1,4) - 1/24*(1,4,2,3) + 1/24*(1,4)(2,3)]

We check that they indeed form a decomposition of the identity of𝑍4 into orthogonal idempotents:

sage: Z4.is_identity_decomposition_into_orthogonal_
→˓idempotents(idempotents)
True

class ParentMethods
Bases: object

central_orthogonal_idempotents()
Return a maximal list of central orthogonal idempotents of self.

Central orthogonal idempotents of an algebra 𝐴 are idempotents (𝑒1, . . . , 𝑒𝑛) in the center of 𝐴 such
that 𝑒𝑖𝑒𝑗 = 0 whenever 𝑖 ̸= 𝑗.

With the maximality condition, they sum up to 1 and are uniquely determined (up to order).

EXAMPLES:

For the algebra of the (abelian) alternating group 𝐴3, we recover three idempotents corresponding to
the three one-dimensional representations 𝑉𝑖 on which (1, 2, 3) acts on 𝑉𝑖 as multiplication by the 𝑖-th
power of a cube root of unity:

sage: R = CyclotomicField(3)
sage: A3 = AlternatingGroup(3).algebra(R)
sage: idempotents = A3.central_orthogonal_idempotents()
sage: idempotents
(1/3*() + 1/3*(1,2,3) + 1/3*(1,3,2),
1/3*() - (1/3*zeta3+1/3)*(1,2,3) - (-1/3*zeta3)*(1,3,2),
1/3*() - (-1/3*zeta3)*(1,2,3) - (1/3*zeta3+1/3)*(1,3,2))
sage: A3.is_identity_decomposition_into_orthogonal_idempotents(idempotents)
True

For the semisimple quotient of a quiver algebra, we recover the vertices of the quiver:

sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver (containing
the arrows a:x->y and b:x->y) over Rational Field
sage: Aquo = A.semisimple_quotient()
sage: Aquo.central_orthogonal_idempotents()
(B['x'], B['y'])

radical_basis(**keywords)
Return a basis of the Jacobson radical of this algebra.

• keywords – for compatibility; ignored.
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OUTPUT: the empty list since this algebra is semisimple.

EXAMPLES:

sage: A = SymmetricGroup(4).algebra(QQ)
sage: A.radical_basis()
()

4.56 Finite Enumerated Sets

class sage.categories.finite_enumerated_sets.FiniteEnumeratedSets(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finite enumerated sets

EXAMPLES:

sage: FiniteEnumeratedSets()
Category of finite enumerated sets
sage: FiniteEnumeratedSets().super_categories()
[Category of enumerated sets, Category of finite sets]
sage: FiniteEnumeratedSets().all_super_categories()
[Category of finite enumerated sets,
Category of enumerated sets,
Category of finite sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

Todo: sage.combinat.debruijn_sequence.DeBruijnSequences should not inherit from this class. If
that is solved, then FiniteEnumeratedSets shall be turned into a subclass of Category_singleton.

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ParentMethods
Bases: object

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: E = FiniteEnumeratedSet([1,2,3])
sage: C = cartesian_product([E,SymmetricGroup(4)])
sage: C.cardinality()
72

sage: E = FiniteEnumeratedSet([])
sage: C = cartesian_product([E, ZZ, QQ])
sage: C.cardinality()
0

(continues on next page)
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sage: C = cartesian_product([ZZ, QQ])
sage: C.cardinality()
+Infinity

sage: cartesian_product([GF(5), Permutations(10)]).cardinality()
18144000
sage: cartesian_product([GF(71)]*20).cardinality() == 71**20
True

last()
Return the last element

EXAMPLES:

sage: C = cartesian_product([Zmod(42), Partitions(10), IntegerRange(5)])
sage: C.last()
(41, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 4)

random_element(*args)
Return a random element of this Cartesian product.

The extra arguments are passed down to each of the factors of the Cartesian product.

EXAMPLES:

sage: C = cartesian_product([Permutations(10)]*5)
sage: C.random_element() # random
([2, 9, 4, 7, 1, 8, 6, 10, 5, 3],
[8, 6, 5, 7, 1, 4, 9, 3, 10, 2],
[5, 10, 3, 8, 2, 9, 1, 4, 7, 6],
[9, 6, 10, 3, 2, 1, 5, 8, 7, 4],
[8, 5, 2, 9, 10, 3, 7, 1, 4, 6])

sage: C = cartesian_product([ZZ]*10)
sage: c1 = C.random_element()
sage: c1 # random
(3, 1, 4, 1, 1, -3, 0, -4, -17, 2)
sage: c2 = C.random_element(4,7)
sage: c2 # random
(6, 5, 6, 4, 5, 6, 6, 4, 5, 5)
sage: all(4 <= i < 7 for i in c2)
True

rank(x)
Return the rank of an element of this Cartesian product.

The rank of x is its position in the enumeration. It is an integer between 0 and n-1 where n is the
cardinality of this set.

See also:

• EnumeratedSets.ParentMethods.rank()
• unrank()

EXAMPLES:
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sage: C = cartesian_product([GF(2), GF(11), GF(7)])
sage: C.rank(C((1,2,5)))
96
sage: C.rank(C((0,0,0)))
0

sage: for c in C: print(C.rank(c))
0
1
2
3
4
5
...
150
151
152
153

sage: F1 = FiniteEnumeratedSet('abcdefgh')
sage: F2 = IntegerRange(250)
sage: F3 = Partitions(20)
sage: C = cartesian_product([F1, F2, F3])
sage: c = C(('a', 86, [7,5,4,4]))
sage: C.rank(c)
54213
sage: C.unrank(54213)
('a', 86, [7, 5, 4, 4])

unrank(i)
Return the i-th element of this Cartesian product.

INPUT:
• i – integer between 0 and n-1 where n is the cardinality of this set.
See also:

• EnumeratedSets.ParentMethods.unrank()
• rank()

EXAMPLES:

sage: C = cartesian_product([GF(3), GF(11), GF(7), GF(5)])
sage: c = C.unrank(123); c
(0, 3, 3, 3)
sage: C.rank(c)
123

sage: c = C.unrank(857); c
(2, 2, 3, 2)
sage: C.rank(c)
857

sage: C.unrank(2500)
Traceback (most recent call last):

(continues on next page)
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...
IndexError: index i (=2) is greater than the cardinality

extra_super_categories()
A Cartesian product of finite enumerated sets is a finite enumerated set.

EXAMPLES:

sage: C = FiniteEnumeratedSets().CartesianProducts()
sage: C.extra_super_categories()
[Category of finite enumerated sets]

class IsomorphicObjects(category, *args)
Bases: sage.categories.isomorphic_objects.IsomorphicObjectsCategory

class ParentMethods
Bases: object

cardinality()
Returns the cardinality of self which is the same as that of the ambient set self is isomorphic
to.

EXAMPLES:

sage: A = FiniteEnumeratedSets().IsomorphicObjects().example(); A
The image by some isomorphism of An example of a finite enumerated set:
→˓{1,2,3}
sage: A.cardinality()
3

example()
Returns an example of isomorphic object of a finite enumerated set, as per Category.example.

EXAMPLES:

sage: FiniteEnumeratedSets().IsomorphicObjects().example()
The image by some isomorphism of An example of a finite enumerated set: {1,
→˓2,3}

class ParentMethods
Bases: object

cardinality(*ignored_args, **ignored_kwds)
Return the cardinality of self.

This brute force implementation of cardinality() iterates through the elements of self to count
them.

EXAMPLES:

sage: C = FiniteEnumeratedSets().example(); C
An example of a finite enumerated set: {1,2,3}
sage: C._cardinality_from_iterator()
3

iterator_range(start=None, stop=None, step=None)
Iterate over the range of elements of self starting at start, ending at stop, and stepping by step.
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See also:

unrank(), unrank_range()

EXAMPLES:

sage: F = FiniteEnumeratedSet([1,2,3])
sage: list(F.iterator_range(1))
[2, 3]
sage: list(F.iterator_range(stop=2))
[1, 2]
sage: list(F.iterator_range(stop=2, step=2))
[1]
sage: list(F.iterator_range(start=1, step=2))
[2]
sage: list(F.iterator_range(start=1, stop=2))
[2]
sage: list(F.iterator_range(start=0, stop=1))
[1]
sage: list(F.iterator_range(start=0, stop=3, step=2))
[1, 3]
sage: list(F.iterator_range(stop=-1))
[1, 2]

sage: F = FiniteEnumeratedSet([1,2,3,4])
sage: list(F.iterator_range(start=1, stop=3))
[2, 3]
sage: list(F.iterator_range(stop=10))
[1, 2, 3, 4]

last()
The last element of self.

self.last() returns the last element of self.

This is the default (brute force) implementation from the category FiniteEnumeratedSet() which
can be used when the method __iter__ is provided. Its complexity is 𝑂(𝑛) where 𝑛 is the size of
self.

EXAMPLES:

sage: C = FiniteEnumeratedSets().example()
sage: C.last()
3
sage: C._last_from_iterator()
3

random_element()
A random element in self.

self.random_element() returns a random element in self with uniform probability.

This is the default implementation from the category EnumeratedSet() which uses the method
unrank.

EXAMPLES:
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sage: C = FiniteEnumeratedSets().example()
sage: n = C.random_element()
sage: n in C
True

sage: n = C._random_element_from_unrank()
sage: n in C
True

TODO: implement _test_random which checks uniformness

tuple()
Return a tuple`of the elements of ``self`.

EXAMPLES:

sage: C = FiniteEnumeratedSets().example()
sage: C.tuple()
(1, 2, 3)
sage: C.tuple() is C.tuple()
True

unrank_range(start=None, stop=None, step=None)
Return the range of elements of self starting at start, ending at stop, and stepping by step.

See also unrank().

EXAMPLES:

sage: F = FiniteEnumeratedSet([1,2,3])
sage: F.unrank_range(1)
[2, 3]
sage: F.unrank_range(stop=2)
[1, 2]
sage: F.unrank_range(stop=2, step=2)
[1]
sage: F.unrank_range(start=1, step=2)
[2]
sage: F.unrank_range(stop=-1)
[1, 2]

sage: F = FiniteEnumeratedSet([1,2,3,4])
sage: F.unrank_range(stop=10)
[1, 2, 3, 4]
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4.57 Finite fields

class sage.categories.finite_fields.FiniteFields(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finite fields.

EXAMPLES:

sage: K = FiniteFields(); K
Category of finite enumerated fields

A finite field is a finite monoid with the structure of a field; it is currently assumed to be enumerated:

sage: K.super_categories()
[Category of fields,
Category of finite commutative rings,
Category of finite enumerated sets]

Some examples of membership testing and coercion:

sage: FiniteField(17) in K
True
sage: RationalField() in K
False
sage: K(RationalField())
Traceback (most recent call last):
...
TypeError: unable to canonically associate a finite field to Rational Field

class ElementMethods
Bases: object

class ParentMethods
Bases: object

extra_super_categories()
Any finite field is assumed to be endowed with an enumeration.

4.58 Finite groups

class sage.categories.finite_groups.FiniteGroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finite (multiplicative) groups.

EXAMPLES:

sage: C = FiniteGroups(); C
Category of finite groups
sage: C.super_categories()
[Category of finite monoids, Category of groups]
sage: C.example()
General Linear Group of degree 2 over Finite Field of size 3
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class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
Bases: object

extra_super_categories()
Implement Maschke’s theorem.

In characteristic 0 all finite group algebras are semisimple.

EXAMPLES:

sage: FiniteGroups().Algebras(QQ).is_subcategory(Algebras(QQ).Semisimple())
True
sage: FiniteGroups().Algebras(FiniteField(7)).is_
→˓subcategory(Algebras(FiniteField(7)).Semisimple())
False
sage: FiniteGroups().Algebras(ZZ).is_subcategory(Algebras(ZZ).Semisimple())
False
sage: FiniteGroups().Algebras(Fields()).is_subcategory(Algebras(Fields()).
→˓Semisimple())
False

sage: Cat = CommutativeAdditiveGroups().Finite()
sage: Cat.Algebras(QQ).is_subcategory(Algebras(QQ).Semisimple())
True
sage: Cat.Algebras(GF(7)).is_subcategory(Algebras(GF(7)).Semisimple())
False
sage: Cat.Algebras(ZZ).is_subcategory(Algebras(ZZ).Semisimple())
False
sage: Cat.Algebras(Fields()).is_subcategory(Algebras(Fields()).Semisimple())
False

class ElementMethods
Bases: object

class ParentMethods
Bases: object

cardinality()
Returns the cardinality of self, as per EnumeratedSets.ParentMethods.cardinality().

This default implementation calls order() if available, and otherwise resorts to
_cardinality_from_iterator(). This is for backward compatibility only. Finite groups
should override this method instead of order().

EXAMPLES:

We need to use a finite group which uses this default implementation of cardinality:

sage: G = groups.misc.SemimonomialTransformation(GF(5), 3); G
Semimonomial transformation group over Finite Field of size 5 of degree 3
sage: G.cardinality.__module__
'sage.categories.finite_groups'
sage: G.cardinality()
384
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cayley_graph_disabled(connecting_set=None)
AUTHORS:

• Bobby Moretti (2007-08-10)
• Robert Miller (2008-05-01): editing

conjugacy_classes()
Return a list with all the conjugacy classes of the group.

This will eventually be a fall-back method for groups not defined over GAP. Right now just raises a
NotImplementedError, until we include a non-GAP way of listing the conjugacy classes represen-
tatives.

EXAMPLES:

sage: from sage.groups.group import FiniteGroup
sage: G = FiniteGroup()
sage: G.conjugacy_classes()
Traceback (most recent call last):
...
NotImplementedError: Listing the conjugacy classes for group <sage.groups.
→˓group.FiniteGroup object at ...> is not implemented

conjugacy_classes_representatives()
Return a list of the conjugacy classes representatives of the group.

EXAMPLES:

sage: G = SymmetricGroup(3)
sage: G.conjugacy_classes_representatives()
[(), (1,2), (1,2,3)]

monoid_generators()
Return monoid generators for self.

For finite groups, the group generators are also monoid generators. Hence, this default implementation
calls group_generators().

EXAMPLES:

sage: A = AlternatingGroup(4)
sage: A.monoid_generators()
Family ((2,3,4), (1,2,3))

semigroup_generators()
Returns semigroup generators for self.

For finite groups, the group generators are also semigroup generators. Hence, this default implemen-
tation calls group_generators().

EXAMPLES:

sage: A = AlternatingGroup(4)
sage: A.semigroup_generators()
Family ((2,3,4), (1,2,3))

some_elements()
Return some elements of self.

EXAMPLES:
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sage: A = AlternatingGroup(4)
sage: A.some_elements()
Family ((2,3,4), (1,2,3))

example()
Return an example of finite group, as per Category.example().

EXAMPLES:

sage: G = FiniteGroups().example(); G
General Linear Group of degree 2 over Finite Field of size 3

4.59 Finite lattice posets

class sage.categories.finite_lattice_posets.FiniteLatticePosets(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite lattices, i.e. finite partially ordered sets which are also lattices.

EXAMPLES:

sage: FiniteLatticePosets()
Category of finite lattice posets
sage: FiniteLatticePosets().super_categories()
[Category of lattice posets, Category of finite posets]
sage: FiniteLatticePosets().example()
NotImplemented

See also:

FinitePosets, LatticePosets, FiniteLatticePoset

class ParentMethods
Bases: object

irreducibles_poset()
Return the poset of meet- or join-irreducibles of the lattice.

A join-irreducible element of a lattice is an element with exactly one lower cover. Dually a meet-
irreducible element has exactly one upper cover.

This is the smallest poset with completion by cuts being isomorphic to the lattice. As a special case
this returns one-element poset from one-element lattice.

See also:

completion_by_cuts().

EXAMPLES:

sage: L = LatticePoset({1: [2, 3, 4], 2: [5, 6], 3: [5],
....: 4: [6], 5: [9, 7], 6: [9, 8], 7: [10],
....: 8: [10], 9: [10], 10: [11]})
sage: L_ = L.irreducibles_poset()
sage: sorted(L_)
[2, 3, 4, 7, 8, 9, 10, 11]

(continues on next page)
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sage: L_.completion_by_cuts().is_isomorphic(L)
True

is_lattice_morphism(f, codomain)
Return whether f is a morphism of posets from self to codomain.

A map 𝑓 : 𝑃 → 𝑄 is a poset morphism if

𝑥 ≤ 𝑦 ⇒ 𝑓(𝑥) ≤ 𝑓(𝑦)

for all 𝑥, 𝑦 ∈ 𝑃 .

INPUT:
• f – a function from self to codomain
• codomain – a lattice

EXAMPLES:

We build the boolean lattice of {2, 2, 3} and the lattice of divisors of 60, and check that the map
𝑏 ↦→ 5

∏︀
𝑥∈𝑏 𝑥 is a morphism of lattices:

sage: D = LatticePoset((divisors(60), attrcall("divides")))
sage: B = LatticePoset((Subsets([2,2,3]), attrcall("issubset")))
sage: def f(b): return D(5*prod(b))
sage: B.is_lattice_morphism(f, D)
True

We construct the boolean lattice 𝐵2:

sage: B = posets.BooleanLattice(2)
sage: B.cover_relations()
[[0, 1], [0, 2], [1, 3], [2, 3]]

And the same lattice with new top and bottom elements numbered respectively −1 and 3:

sage: L = LatticePoset(DiGraph({-1:[0], 0:[1,2], 1:[3], 2:[3],3:[4]}))
sage: L.cover_relations()
[[-1, 0], [0, 1], [0, 2], [1, 3], [2, 3], [3, 4]]

sage: f = { B(0): L(0), B(1): L(1), B(2): L(2), B(3): L(3) }.__getitem__
sage: B.is_lattice_morphism(f, L)
True

sage: f = { B(0): L(-1),B(1): L(1), B(2): L(2), B(3): L(3) }.__getitem__
sage: B.is_lattice_morphism(f, L)
False

sage: f = { B(0): L(0), B(1): L(1), B(2): L(2), B(3): L(4) }.__getitem__
sage: B.is_lattice_morphism(f, L)
False

See also:

is_poset_morphism()

join_irreducibles()
Return the join-irreducible elements of this finite lattice.
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A join-irreducible element of self is an element 𝑥 that is not minimal and that can not be written as
the join of two elements different from 𝑥.

EXAMPLES:

sage: L = LatticePoset({0:[1,2],1:[3],2:[3,4],3:[5],4:[5]})
sage: L.join_irreducibles()
[1, 2, 4]

See also:

• Dual function: meet_irreducibles()
• Other: double_irreducibles(), join_irreducibles_poset()

join_irreducibles_poset()
Return the poset of join-irreducible elements of this finite lattice.

A join-irreducible element of self is an element 𝑥 that is not minimal and can not be written as the
join of two elements different from 𝑥.

EXAMPLES:

sage: L = LatticePoset({0:[1,2,3],1:[4],2:[4],3:[4]})
sage: L.join_irreducibles_poset()
Finite poset containing 3 elements

See also:

• Dual function: meet_irreducibles_poset()
• Other: join_irreducibles()

meet_irreducibles()
Return the meet-irreducible elements of this finite lattice.

A meet-irreducible element of self is an element 𝑥 that is not maximal and that can not be written as
the meet of two elements different from 𝑥.

EXAMPLES:

sage: L = LatticePoset({0:[1,2],1:[3],2:[3,4],3:[5],4:[5]})
sage: L.meet_irreducibles()
[1, 3, 4]

See also:

• Dual function: join_irreducibles()
• Other: double_irreducibles(), meet_irreducibles_poset()

meet_irreducibles_poset()
Return the poset of join-irreducible elements of this finite lattice.

A meet-irreducible element of self is an element 𝑥 that is not maximal and can not be written as the
meet of two elements different from 𝑥.

EXAMPLES:

sage: L = LatticePoset({0:[1,2,3],1:[4],2:[4],3:[4]})
sage: L.join_irreducibles_poset()
Finite poset containing 3 elements

See also:

436 Chapter 4. Individual Categories

../../../../../../html/en/reference/combinat/sage/combinat/posets/lattices.html#sage.combinat.posets.lattices.FiniteLatticePoset.double_irreducibles
../../../../../../html/en/reference/combinat/sage/combinat/posets/lattices.html#sage.combinat.posets.lattices.FiniteLatticePoset.double_irreducibles


Category Framework, Release 9.7

• Dual function: join_irreducibles_poset()
• Other: meet_irreducibles()

4.60 Finite monoids

class sage.categories.finite_monoids.FiniteMonoids(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finite (multiplicative) monoids.

A finite monoid is a finite sets endowed with an associative unital binary operation *.

EXAMPLES:

sage: FiniteMonoids()
Category of finite monoids
sage: FiniteMonoids().super_categories()
[Category of monoids, Category of finite semigroups]

class ElementMethods
Bases: object

pseudo_order()
Returns the pair [𝑘, 𝑗] with 𝑘 minimal and 0 ≤ 𝑗 < 𝑘 such that self^k == self^j.

Note that 𝑗 is uniquely determined.

EXAMPLES:

sage: M = FiniteMonoids().example(); M
An example of a finite multiplicative monoid: the integers modulo 12

sage: x = M(2)
sage: [ x^i for i in range(7) ]
[1, 2, 4, 8, 4, 8, 4]
sage: x.pseudo_order()
[4, 2]

sage: x = M(3)
sage: [ x^i for i in range(7) ]
[1, 3, 9, 3, 9, 3, 9]
sage: x.pseudo_order()
[3, 1]

sage: x = M(4)
sage: [ x^i for i in range(7) ]
[1, 4, 4, 4, 4, 4, 4]
sage: x.pseudo_order()
[2, 1]

sage: x = M(5)
sage: [ x^i for i in range(7) ]
[1, 5, 1, 5, 1, 5, 1]
sage: x.pseudo_order()
[2, 0]
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TODO: more appropriate name? see, for example, Jean-Eric Pin’s lecture notes on semigroups.

class ParentMethods
Bases: object

nerve()
The nerve (classifying space) of this monoid.

OUTPUT: the nerve 𝐵𝐺 (if 𝐺 denotes this monoid), as a simplicial set. The 𝑘-dimensional simplices
of this object are indexed by products of 𝑘 elements in the monoid:

𝑎1 * 𝑎2 * · · · * 𝑎𝑘

The 0th face of this is obtained by deleting 𝑎1, and the 𝑘-th face is obtained by deleting 𝑎𝑘. The other
faces are obtained by multiplying elements: the 1st face is

(𝑎1 * 𝑎2) * · · · * 𝑎𝑘

and so on. See Wikipedia article Nerve_(category_theory), which describes the construction of the
nerve as a simplicial set.

A simplex in this simplicial set will be degenerate if in the corresponding product of 𝑘 elements, one of
those elements is the identity. So we only need to keep track of the products of non-identity elements.
Similarly, if a product 𝑎𝑖−1𝑎𝑖 is the identity element, then the corresponding face of the simplex will
be a degenerate simplex.

EXAMPLES:

The nerve (classifying space) of the cyclic group of order 2 is infinite-dimensional real projective
space.

sage: Sigma2 = groups.permutation.Cyclic(2)
sage: BSigma2 = Sigma2.nerve()
sage: BSigma2.cohomology(4, base_ring=GF(2))
Vector space of dimension 1 over Finite Field of size 2

The 𝑘-simplices of the nerve are named after the chains of 𝑘 non-unit elements to be multiplied. The
group Σ2 has two elements, written () (the identity element) and (1,2) in Sage. So the 1-cells and
2-cells in 𝐵Σ2 are:

sage: BSigma2.n_cells(1)
[(1,2)]
sage: BSigma2.n_cells(2)
[(1,2) * (1,2)]

Another construction of the group, with different names for its elements:

sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = C2.nerve()
sage: BC2.n_cells(0)
[1]
sage: BC2.n_cells(1)
[f]
sage: BC2.n_cells(2)
[f * f]

With mod 𝑝 coefficients, 𝐵Σ𝑝 should have its first nonvanishing homology group in dimension 𝑝:
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sage: Sigma3 = groups.permutation.Symmetric(3)
sage: BSigma3 = Sigma3.nerve()
sage: BSigma3.homology(range(4), base_ring=GF(3))
{0: Vector space of dimension 0 over Finite Field of size 3,
1: Vector space of dimension 0 over Finite Field of size 3,
2: Vector space of dimension 0 over Finite Field of size 3,
3: Vector space of dimension 1 over Finite Field of size 3}

Note that we can construct the 𝑛-skeleton for 𝐵Σ2 for relatively large values of 𝑛, while for 𝐵Σ3, the
complexes get large pretty quickly:

sage: Sigma2.nerve().n_skeleton(14)
Simplicial set with 15 non-degenerate simplices

sage: BSigma3 = Sigma3.nerve()
sage: BSigma3.n_skeleton(3)
Simplicial set with 156 non-degenerate simplices
sage: BSigma3.n_skeleton(4)
Simplicial set with 781 non-degenerate simplices

Finally, note that the classifying space of the order 𝑝 cyclic group is smaller than that of the symmetric
group on 𝑝 letters, and its first homology group appears earlier:

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: list(C3)
[1, f, f^2]
sage: BC3 = C3.nerve()
sage: BC3.n_cells(1)
[f, f^2]
sage: BC3.n_cells(2)
[f * f, f * f^2, f^2 * f, f^2 * f^2]
sage: len(BSigma3.n_cells(2))
25
sage: len(BC3.n_cells(3))
8
sage: len(BSigma3.n_cells(3))
125

sage: BC3.homology(range(5), base_ring=GF(3))
{0: Vector space of dimension 0 over Finite Field of size 3,
1: Vector space of dimension 1 over Finite Field of size 3,
2: Vector space of dimension 1 over Finite Field of size 3,
3: Vector space of dimension 1 over Finite Field of size 3,
4: Vector space of dimension 1 over Finite Field of size 3}

sage: BC5 = groups.permutation.Cyclic(5).nerve()
sage: BC5.homology(range(5), base_ring=GF(5))
{0: Vector space of dimension 0 over Finite Field of size 5,
1: Vector space of dimension 1 over Finite Field of size 5,
2: Vector space of dimension 1 over Finite Field of size 5,
3: Vector space of dimension 1 over Finite Field of size 5,
4: Vector space of dimension 1 over Finite Field of size 5}
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rhodes_radical_congruence(base_ring=None)
Return the Rhodes radical congruence of the semigroup.

The Rhodes radical congruence is the congruence induced on S by the map 𝑆 → 𝑘𝑆 → 𝑘𝑆/𝑟𝑎𝑑𝑘𝑆
with k a field.

INPUT:
• base_ring (default: Q) a field

OUTPUT:
• A list of couples (m, n) with 𝑚 ̸= 𝑛 in the lexicographic order for the enumeration of the monoid
self.

EXAMPLES:

sage: M = Monoids().Finite().example()
sage: M.rhodes_radical_congruence()
[(0, 6), (2, 8), (4, 10)]
sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: H3 = HeckeMonoid(SymmetricGroup(3))
sage: H3.repr_element_method(style="reduced")
sage: H3.rhodes_radical_congruence()
[([1, 2], [2, 1]), ([1, 2], [1, 2, 1]), ([2, 1], [1, 2, 1])]

By Maschke’s theorem, every group algebra over Q is semisimple hence the Rhodes radical of a group
must be trivial:

sage: SymmetricGroup(3).rhodes_radical_congruence()
[]
sage: DihedralGroup(10).rhodes_radical_congruence()
[]

REFERENCES:
• [Rho69]

4.61 Finite Permutation Groups

class sage.categories.finite_permutation_groups.FinitePermutationGroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite permutation groups, i.e. groups concretely represented as groups of permutations acting
on a finite set.

It is currently assumed that any finite permutation group comes endowed with a distinguished finite set of gen-
erators (method group_generators); this is the case for all the existing implementations in Sage.

EXAMPLES:

sage: C = PermutationGroups().Finite(); C
Category of finite enumerated permutation groups
sage: C.super_categories()
[Category of permutation groups,
Category of finite groups,
Category of finite finitely generated semigroups]

sage: C.example()
Dihedral group of order 6 as a permutation group
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class ElementMethods
Bases: object

class ParentMethods
Bases: object

cycle_index(parent=None)
Return the cycle index of self.

INPUT:
• self - a permutation group 𝐺
• parent – a free module with basis indexed by partitions, or behave as such, with a term and sum

method (default: the symmetric functions over the rational field in the 𝑝 basis)
The cycle index of a permutation group 𝐺 (Wikipedia article Cycle_index) is a gadget counting the
elements of 𝐺 by cycle type, averaged over the group:

𝑃 =
1

|𝐺|
∑︁
𝑔∈𝐺

𝑝cycle type(𝑔)

EXAMPLES:

Among the permutations of the symmetric group 𝑆4, there is the identity, 6 cycles of length 2, 3
products of two cycles of length 2, 8 cycles of length 3, and 6 cycles of length 4:

sage: S4 = SymmetricGroup(4)
sage: P = S4.cycle_index()
sage: 24 * P
p[1, 1, 1, 1] + 6*p[2, 1, 1] + 3*p[2, 2] + 8*p[3, 1] + 6*p[4]

If 𝑙 = (𝑙1, . . . , 𝑙𝑘) is a partition, |G| P[l] is the number of elements of 𝐺 with cycles of length
(𝑝1, . . . , 𝑝𝑘):

sage: 24 * P[ Partition([3,1]) ]
8

The cycle index plays an important role in the enumeration of objects modulo the action of a group
(Pólya enumeration), via the use of symmetric functions and plethysms. It is therefore encoded as a
symmetric function, expressed in the powersum basis:

sage: P.parent()
Symmetric Functions over Rational Field in the powersum basis

This symmetric function can have some nice properties; for example, for the symmetric group 𝑆𝑛, we
get the complete symmetric function ℎ𝑛:

sage: S = SymmetricFunctions(QQ); h = S.h()
sage: h( P )
h[4]

Todo: Add some simple examples of Pólya enumeration, once it will be easy to expand symmetric
functions on any alphabet.

Here are the cycle indices of some permutation groups:
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sage: 6 * CyclicPermutationGroup(6).cycle_index()
p[1, 1, 1, 1, 1, 1] + p[2, 2, 2] + 2*p[3, 3] + 2*p[6]

sage: 60 * AlternatingGroup(5).cycle_index()
p[1, 1, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 24*p[5]

sage: for G in TransitiveGroups(5): # long time
....: G.cardinality() * G.cycle_index()
p[1, 1, 1, 1, 1] + 4*p[5]
p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 4*p[5]
p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 10*p[4, 1] + 4*p[5]
p[1, 1, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 24*p[5]
p[1, 1, 1, 1, 1] + 10*p[2, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] +␣
→˓20*p[3, 2] + 30*p[4, 1] + 24*p[5]

Permutation groups with arbitrary domains are supported (see trac ticket #22765):

sage: G = PermutationGroup([['b','c','a']], domain=['a','b','c'])
sage: G.cycle_index()
1/3*p[1, 1, 1] + 2/3*p[3]

One may specify another parent for the result:

sage: F = CombinatorialFreeModule(QQ, Partitions())
sage: P = CyclicPermutationGroup(6).cycle_index(parent = F)
sage: 6 * P
B[[1, 1, 1, 1, 1, 1]] + B[[2, 2, 2]] + 2*B[[3, 3]] + 2*B[[6]]
sage: P.parent() is F
True

This parent should be a module with basis indexed by partitions:

sage: CyclicPermutationGroup(6).cycle_index(parent = QQ)
Traceback (most recent call last):
...

ValueError: `parent` should be a module with basis indexed by partitions

REFERENCES:
• [Ke1991]

AUTHORS:
• Nicolas Borie and Nicolas M. Thiéry

profile(n, using_polya=True)
Return the value in n of the profile of the group self.

Optional argument using_polya allows to change the default method.

INPUT:
• n – a nonnegative integer
• using_polya (optional) – a boolean: if True (default), the computation uses Pólya enumeration

(and all values of the profile are cached, so this should be the method used in case several of them
are needed); if False, uses the GAP interface to compute the orbit.

OUTPUT:
• A nonnegative integer that is the number of orbits of n-subsets under the action induced by self

on the subsets of its domain (i.e. the value of the profile of self in n)
See also:
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• profile_series()

EXAMPLES:

sage: C6 = CyclicPermutationGroup(6)
sage: C6.profile(2)
3
sage: C6.profile(3)
4
sage: D8 = DihedralGroup(8)
sage: D8.profile(4, using_polya=False)
8

profile_polynomial(variable='z')
Return the (finite) generating series of the (finite) profile of the group.

The profile of a permutation group G is the counting function that maps each nonnegative integer n
onto the number of orbits of the action induced by G on the n-subsets of its domain. If f is the profile
of G, f(n) is thus the number of orbits of n-subsets of G.

INPUT:
• variable – a variable, or variable name as a string (default: ′𝑧′)

OUTPUT:
• A polynomial in variable with nonnegative integer coefficients. By default, a polynomial in z

over ZZ.
See also:

• profile()

EXAMPLES:

sage: C8 = CyclicPermutationGroup(8)
sage: C8.profile_series()
z^8 + z^7 + 4*z^6 + 7*z^5 + 10*z^4 + 7*z^3 + 4*z^2 + z + 1
sage: D8 = DihedralGroup(8)
sage: poly_D8 = D8.profile_series()
sage: poly_D8
z^8 + z^7 + 4*z^6 + 5*z^5 + 8*z^4 + 5*z^3 + 4*z^2 + z + 1
sage: poly_D8.parent()
Univariate Polynomial Ring in z over Rational Field
sage: D8.profile_series(variable='y')
y^8 + y^7 + 4*y^6 + 5*y^5 + 8*y^4 + 5*y^3 + 4*y^2 + y + 1
sage: u = var('u') # optional -
→˓ sage.symbolic
sage: D8.profile_series(u).parent() # optional -
→˓ sage.symbolic
Symbolic Ring

profile_series(variable='z')
Return the (finite) generating series of the (finite) profile of the group.

The profile of a permutation group G is the counting function that maps each nonnegative integer n
onto the number of orbits of the action induced by G on the n-subsets of its domain. If f is the profile
of G, f(n) is thus the number of orbits of n-subsets of G.

INPUT:
• variable – a variable, or variable name as a string (default: ′𝑧′)

OUTPUT:
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• A polynomial in variable with nonnegative integer coefficients. By default, a polynomial in z
over ZZ.

See also:

• profile()

EXAMPLES:

sage: C8 = CyclicPermutationGroup(8)
sage: C8.profile_series()
z^8 + z^7 + 4*z^6 + 7*z^5 + 10*z^4 + 7*z^3 + 4*z^2 + z + 1
sage: D8 = DihedralGroup(8)
sage: poly_D8 = D8.profile_series()
sage: poly_D8
z^8 + z^7 + 4*z^6 + 5*z^5 + 8*z^4 + 5*z^3 + 4*z^2 + z + 1
sage: poly_D8.parent()
Univariate Polynomial Ring in z over Rational Field
sage: D8.profile_series(variable='y')
y^8 + y^7 + 4*y^6 + 5*y^5 + 8*y^4 + 5*y^3 + 4*y^2 + y + 1
sage: u = var('u') # optional -
→˓ sage.symbolic
sage: D8.profile_series(u).parent() # optional -
→˓ sage.symbolic
Symbolic Ring

example()
Returns an example of finite permutation group, as per Category.example().

EXAMPLES:

sage: G = FinitePermutationGroups().example(); G
Dihedral group of order 6 as a permutation group

extra_super_categories()
Any permutation group is assumed to be endowed with a finite set of generators.

4.62 Finite posets

Here is some terminology used in this file:

• An order filter (or upper set) of a poset 𝑃 is a subset 𝑆 of 𝑃 such that if 𝑥 ≤ 𝑦 and 𝑥 ∈ 𝑆 then 𝑦 ∈ 𝑆.

• An order ideal (or lower set) of a poset 𝑃 is a subset 𝑆 of 𝑃 such that if 𝑥 ≤ 𝑦 and 𝑦 ∈ 𝑆 then 𝑥 ∈ 𝑆.

class sage.categories.finite_posets.FinitePosets(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite posets i.e. finite sets with a partial order structure.

EXAMPLES:

sage: FinitePosets()
Category of finite posets
sage: FinitePosets().super_categories()
[Category of posets, Category of finite sets]

(continues on next page)
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(continued from previous page)

sage: FinitePosets().example()
NotImplemented

See also:

Posets, Poset()

class ParentMethods
Bases: object

antichains()
Return all antichains of self.

EXAMPLES:

sage: A = posets.PentagonPoset().antichains(); A
Set of antichains of Finite lattice containing 5 elements
sage: list(A)
[[], [0], [1], [1, 2], [1, 3], [2], [3], [4]]

birational_free_labelling(linear_extension=None, prefix='x', base_field=None, reduced=False,
addvars=None, labels=None, min_label=None, max_label=None)

Return the birational free labelling of self.

Let us hold back defining this, and introduce birational toggles and birational rowmotion first.
These notions have been introduced in [EP2013] as generalizations of the notions of toggles
(order_ideal_toggle()) and rowmotion on order ideals of a finite poset. They have been studied
further in [GR2013].

Let K be a field, and 𝑃 be a finite poset. Let ̂︀𝑃 denote the poset obtained from 𝑃 by adding a new
element 1 which is greater than all existing elements of 𝑃 , and a new element 0 which is smaller than
all existing elements of 𝑃 and 1. Now, a K-labelling of 𝑃 will mean any function from ̂︀𝑃 to K. The
image of an element 𝑣 of ̂︀𝑃 under this labelling will be called the label of this labelling at 𝑣. The set
of all K-labellings of 𝑃 is clearly K

̂︀𝑃 .

For any 𝑣 ∈ 𝑃 , we now define a rational map 𝑇𝑣 : K
̂︀𝑃 99K K

̂︀𝑃 as follows: For every 𝑓 ∈ K
̂︀𝑃 , the

image 𝑇𝑣𝑓 should send every element 𝑢 ∈ ̂︀𝑃 distinct from 𝑣 to 𝑓(𝑢) (so the labels at all 𝑢 ̸= 𝑣 don’t
change), while 𝑣 is sent to

1

𝑓(𝑣)
·
∑︀

𝑢l𝑣 𝑓(𝑢)∑︀
𝑢m𝑣

1
𝑓(𝑢)

(both sums are over all 𝑢 ∈ ̂︀𝑃 satisfying the respectively given conditions). Here, l and m mean
(respectively) “covered by” and “covers”, interpreted with respect to the poset ̂︀𝑃 . This rational map
𝑇𝑣 is an involution and is called the (birational) 𝑣-toggle; see birational_toggle() for its imple-
mentation.

Now, birational rowmotion is defined as the composition 𝑇𝑣1 ∘ 𝑇𝑣2 ∘ · · · ∘ 𝑇𝑣𝑛 , where (𝑣1, 𝑣2, . . . , 𝑣𝑛)
is a linear extension of 𝑃 (written as a linear ordering of the elements of 𝑃 ). This is a rational map
K

̂︀𝑃 99K K
̂︀𝑃 which does not depend on the choice of the linear extension; it is denoted by 𝑅. See

birational_rowmotion() for its implementation.

The definitions of birational toggles and birational rowmotion extend to the case of K being any semi-
field rather than necessarily a field (although it becomes less clear what constitutes a rational map in
this generality). The most useful case is that of the tropical semiring, in which case birational
rowmotion relates to classical constructions such as promotion of rectangular semistandard Young
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tableaux (page 5 of [EP2013b] and future work, via the related notion of birational promotion) and
rowmotion on order ideals of the poset ([EP2013]).

The birational free labelling is a special labelling defined for every finite poset 𝑃 and every linear
extension (𝑣1, 𝑣2, . . . , 𝑣𝑛) of 𝑃 . It is given by sending every element 𝑣𝑖 in 𝑃 to 𝑥𝑖, sending the element
0 of ̂︀𝑃 to 𝑎, and sending the element 1 of ̂︀𝑃 to 𝑏, where the ground field K is the field of rational
functions in 𝑛 + 2 indeterminates 𝑎, 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑏 over Q.

In Sage, a labelling 𝑓 of a poset 𝑃 is encoded as a 4-tuple (K, 𝑑, 𝑢, 𝑣), where K is the ground field of
the labelling (i. e., its target), 𝑑 is the dictionary containing the values of 𝑓 at the elements of 𝑃 (the
keys being the respective elements of 𝑃 ), 𝑢 is the label of 𝑓 at 0, and 𝑣 is the label of 𝑓 at 1.

Warning: The dictionary 𝑑 is labelled by the elements of 𝑃 . If 𝑃 is a poset with facade option
set to False, these might not be what they seem to be! (For instance, if P == Poset({1: [2,
3]}, facade=False), then the value of 𝑑 at 1 has to be accessed by d[P(1)], not by d[1].)

Warning: Dictionaries are mutable. They do compare correctly, but are not hashable and need to
be cloned to avoid spooky action at a distance. Be careful!

INPUT:
• linear_extension – (default: the default linear extension of self) a linear extension of self

(as a linear extension or as a list), or more generally a list of all elements of all elements of self
each occurring exactly once

• prefix – (default: 'x') the prefix to name the indeterminates corresponding to the elements of
self in the labelling (so, setting it to 'frog' will result in these indeterminates being called
frog1, frog2, ..., frogn rather than x1, x2, ..., xn).

• base_field – (default: QQ) the base field to be used instead of Q to define the rational func-
tion field over; this is not going to be the base field of the labelling, because the latter will have
indeterminates adjoined!

• reduced – (default: False) if set to True, the result will be the reduced birational free labelling,
which differs from the regular one by having 0 and 1 both sent to 1 instead of 𝑎 and 𝑏 (the indeter-
minates 𝑎 and 𝑏 then also won’t appear in the ground field)

• addvars – (default: '') a string containing names of extra variables to be adjoined to the ground
field (these don’t have an effect on the labels)

• labels – (default: 'x') Either a function that takes an element of the poset and returns a name
for the indeterminate corresponding to that element, or a string containing a comma-separated list
of indeterminates that will be assigned to elements in the order of linear_extension. If the list
contains more indeterminates than needed, the excess will be ignored. If it contains too few, then
the needed indeterminates will be constructed from prefix.

• min_label – (default: 'a') a string to be used as the label for the element 0 of ̂︀𝑃
• max_label – (default: 'b') a string to be used as the label for the element 1 of ̂︀𝑃

OUTPUT:

The birational free labelling of the poset self and the linear extension linear_extension. Or, if
reduced is set to True, the reduced birational free labelling.

EXAMPLES:

We construct the birational free labelling on a simple poset:

sage: P = Poset({1: [2, 3]})
sage: l = P.birational_free_labelling(); l

(continues on next page)
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(continued from previous page)

(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over␣
→˓Rational Field,
{...},
a,
b)
sage: sorted(l[1].items())
[(1, x1), (2, x2), (3, x3)]

sage: l = P.birational_free_labelling(linear_extension=[1, 3, 2]); l
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over␣
→˓Rational Field,
{...},
a,
b)
sage: sorted(l[1].items())
[(1, x1), (2, x3), (3, x2)]

sage: l = P.birational_free_labelling(linear_extension=[1, 3, 2],␣
→˓reduced=True, addvars="spam, eggs"); l
(Fraction Field of Multivariate Polynomial Ring in x1, x2, x3, spam, eggs␣
→˓over Rational Field,
{...},
1,
1)
sage: sorted(l[1].items())
[(1, x1), (2, x3), (3, x2)]

sage: l = P.birational_free_labelling(linear_extension=[1, 3, 2], prefix=
→˓"wut", reduced=True, addvars="spam, eggs"); l
(Fraction Field of Multivariate Polynomial Ring in wut1, wut2, wut3, spam,␣
→˓eggs over Rational Field,
{...},
1,
1)
sage: sorted(l[1].items())
[(1, wut1), (2, wut3), (3, wut2)]

sage: l = P.birational_free_labelling(linear_extension=[1, 3, 2],␣
→˓reduced=False, addvars="spam, eggs"); l
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b, spam,␣
→˓eggs over Rational Field,
{...},
a,
b)
sage: sorted(l[1].items())
[(1, x1), (2, x3), (3, x2)]
sage: l[1][2]
x3

Illustrating labelling with a function:

sage: P = posets.ChainPoset(2).product(posets.ChainPoset(2))
(continues on next page)
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sage: l = P.birational_free_labelling(labels=lambda e : 'x_' + str(e[0]) +␣
→˓str(e[1]))
sage: sorted(l[1].items())
[((0, 0), x_00), ((0, 1), x_01), ((1, 0), x_10), ((1, 1), x_11)]
sage: l[2]
a

The same, but with min_label and max_label provided:

sage: P = posets.ChainPoset(2).product(posets.ChainPoset(2))
sage: l = P.birational_free_labelling(labels=lambda e : 'x_' + str(e[0]) +␣
→˓str(e[1]), min_label="lambda", max_label="mu")
sage: sorted(l[1].items())
[((0, 0), x_00), ((0, 1), x_01), ((1, 0), x_10), ((1, 1), x_11)]
sage: l[2]
lambda
sage: l[3]
mu

Illustrating labelling with a comma separated list of labels:

sage: l = P.birational_free_labelling(labels='w,x,y,z')
sage: sorted(l[1].items())
[((0, 0), w), ((0, 1), x), ((1, 0), y), ((1, 1), z)]
sage: l = P.birational_free_labelling(labels='w,x,y,z,m')
sage: sorted(l[1].items())
[((0, 0), w), ((0, 1), x), ((1, 0), y), ((1, 1), z)]
sage: l = P.birational_free_labelling(labels='w')
sage: sorted(l[1].items())
[((0, 0), w), ((0, 1), x1), ((1, 0), x2), ((1, 1), x3)]

Illustrating the warning about facade:

sage: P = Poset({1: [2, 3]}, facade=False)
sage: l = P.birational_free_labelling(linear_extension=[1, 3, 2],␣
→˓reduced=False, addvars="spam, eggs"); l
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b, spam,␣
→˓eggs over Rational Field,
{...},
a,
b)
sage: l[1][2]
Traceback (most recent call last):
...
KeyError: 2
sage: l[1][P(2)]
x3

Another poset:

sage: P = posets.SSTPoset([2,1])
sage: lext = sorted(P)
sage: l = P.birational_free_labelling(linear_extension=lext, addvars="ohai")

(continues on next page)
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sage: l
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, x4, x5,␣
→˓x6, x7, x8, b, ohai over Rational Field,
{...},
a,
b)
sage: sorted(l[1].items())
[([[1, 1], [2]], x1), ([[1, 1], [3]], x2), ([[1, 2], [2]], x3), ([[1, 2],␣
→˓[3]], x4),
([[1, 3], [2]], x5), ([[1, 3], [3]], x6), ([[2, 2], [3]], x7), ([[2, 3],␣
→˓[3]], x8)]

See birational_rowmotion(), birational_toggle() and birational_toggles() for more
substantial examples of what one can do with the birational free labelling.

birational_rowmotion(labelling)
Return the result of applying birational rowmotion to the K-labelling labelling of the poset self.

See the documentation of birational_free_labelling() for a definition of birational rowmotion
and K-labellings and for an explanation of how K-labellings are to be encoded to be understood by
Sage. This implementation allows K to be a semifield, not just a field. Birational rowmotion is only a
rational map, so an exception (most likely, ZeroDivisionError) will be thrown if the denominator
is zero.

INPUT:
• labelling – a K-labelling of self in the sense as defined in the documentation of
birational_free_labelling()

OUTPUT:

The image of the K-labelling 𝑓 under birational rowmotion.

EXAMPLES:

sage: P = Poset({1: [2, 3], 2: [4], 3: [4]})
sage: lex = [1, 2, 3, 4]
sage: t = P.birational_free_labelling(linear_extension=lex); t
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, x4, b␣
→˓over Rational Field,
{...},
a,
b)
sage: sorted(t[1].items())
[(1, x1), (2, x2), (3, x3), (4, x4)]
sage: t = P.birational_rowmotion(t); t
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, x4, b␣
→˓over Rational Field,
{...},
a,
b)
sage: sorted(t[1].items())
[(1, a*b/x4), (2, (x1*x2*b + x1*x3*b)/(x2*x4)),
(3, (x1*x2*b + x1*x3*b)/(x3*x4)), (4, (x2*b + x3*b)/x4)]

A result of [GR2013] states that applying birational rowmotion 𝑛+𝑚 times to a K-labelling 𝑓 of the
poset [𝑛]× [𝑚] gives back 𝑓 . Let us check this:
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sage: def test_rectangle_periodicity(n, m, k):
....: P = posets.ChainPoset(n).product(posets.ChainPoset(m))
....: t0 = P.birational_free_labelling(P)
....: t = t0
....: for i in range(k):
....: t = P.birational_rowmotion(t)
....: return t == t0
sage: test_rectangle_periodicity(2, 2, 4)
True
sage: test_rectangle_periodicity(2, 2, 2)
False
sage: test_rectangle_periodicity(2, 3, 5) # long time
True

While computations with the birational free labelling quickly run out of memory due to the complexity
of the rational functions involved, it is computationally cheap to check properties of birational rowmo-
tion on examples in the tropical semiring:

sage: def test_rectangle_periodicity_tropical(n, m, k):
....: P = posets.ChainPoset(n).product(posets.ChainPoset(m))
....: TT = TropicalSemiring(ZZ)
....: t0 = (TT, {v: TT(randint(0, 99)) for v in P}, TT(0), TT(124))
....: t = t0
....: for i in range(k):
....: t = P.birational_rowmotion(t)
....: return t == t0
sage: test_rectangle_periodicity_tropical(7, 6, 13)
True

Tropicalization is also what relates birational rowmotion to classical rowmotion on order ideals. In fact,
if 𝑇 denotes the tropical semiring of Z and 𝑃 is a finite poset, then we can define an embedding
𝜑 from the set 𝐽(𝑃 ) of all order ideals of 𝑃 into the set 𝑇 ̂︀𝑃 of all 𝑇 -labellings of 𝑃 by sending every
𝐼 ∈ 𝐽(𝑃 ) to the indicator function of 𝐼 extended by the value 1 at the element 0 and the value 0 at the
element 1. This map 𝜑 has the property that 𝑅 ∘ 𝜑 = 𝜑 ∘ 𝑟, where 𝑅 denotes birational rowmotion,
and 𝑟 denotes classical rowmotion on 𝐽(𝑃 ). An example:

sage: P = posets.IntegerPartitions(5)
sage: TT = TropicalSemiring(ZZ)
sage: def indicator_labelling(I):
....: # send order ideal `I` to a `T`-labelling of `P`.
....: dct = {v: TT(v in I) for v in P}
....: return (TT, dct, TT(1), TT(0))
sage: all(indicator_labelling(P.rowmotion(I))
....: == P.birational_rowmotion(indicator_labelling(I))
....: for I in P.order_ideals_lattice(facade=True))
True

birational_toggle(v, labelling)
Return the result of applying the birational 𝑣-toggle 𝑇𝑣 to the K-labelling labelling of the poset
self.

See the documentation of birational_free_labelling() for a definition of this toggle and of K-
labellings as well as an explanation of how K-labellings are to be encoded to be understood by Sage.
This implementation allows K to be a semifield, not just a field. The birational 𝑣-toggle is only a
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rational map, so an exception (most likely, ZeroDivisionError) will be thrown if the denominator
is zero.

INPUT:
• v – an element of self (must have self as parent if self is a facade=False poset)
• labelling – a K-labelling of self in the sense as defined in the documentation of
birational_free_labelling()

OUTPUT:

The K-labelling 𝑇𝑣𝑓 of self, where 𝑓 is labelling.

EXAMPLES:

Let us start with the birational free labelling of the “V”-poset (the three-element poset with Hasse
diagram looking like a “V”):

sage: V = Poset({1: [2, 3]})
sage: s = V.birational_free_labelling(); s
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over␣
→˓Rational Field,
{...},
a,
b)
sage: sorted(s[1].items())
[(1, x1), (2, x2), (3, x3)]

The image of 𝑠 under the 1-toggle 𝑇1 is:

sage: s1 = V.birational_toggle(1, s); s1
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over␣
→˓Rational Field,
{...},
a,
b)
sage: sorted(s1[1].items())
[(1, a*x2*x3/(x1*x2 + x1*x3)), (2, x2), (3, x3)]

Now let us apply the 2-toggle 𝑇2 (to the old s):

sage: s2 = V.birational_toggle(2, s); s2
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over␣
→˓Rational Field,
{...},
a,
b)
sage: sorted(s2[1].items())
[(1, x1), (2, x1*b/x2), (3, x3)]

On the other hand, we can also apply 𝑇2 to the image of 𝑠 under 𝑇1:

sage: s12 = V.birational_toggle(2, s1); s12
(Fraction Field of Multivariate Polynomial Ring in a, x1, x2, x3, b over␣
→˓Rational Field,
{...},
a,
b)

(continues on next page)
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sage: sorted(s12[1].items())
[(1, a*x2*x3/(x1*x2 + x1*x3)), (2, a*x3*b/(x1*x2 + x1*x3)), (3, x3)]

Each toggle is an involution:

sage: all( V.birational_toggle(i, V.birational_toggle(i, s)) == s
....: for i in V )
True

We can also start with a less generic labelling:

sage: t = (QQ, {1: 3, 2: 6, 3: 7}, 2, 10)
sage: t1 = V.birational_toggle(1, t); t1
(Rational Field, {...}, 2, 10)
sage: sorted(t1[1].items())
[(1, 28/13), (2, 6), (3, 7)]
sage: t13 = V.birational_toggle(3, t1); t13
(Rational Field, {...}, 2, 10)
sage: sorted(t13[1].items())
[(1, 28/13), (2, 6), (3, 40/13)]

However, labellings have to be sufficiently generic, lest denominators vanish:

sage: t = (QQ, {1: 3, 2: 5, 3: -5}, 1, 15)
sage: t1 = V.birational_toggle(1, t)
Traceback (most recent call last):
...
ZeroDivisionError: rational division by zero

We don’t get into zero-division issues in the tropical semiring (unless the zero of the tropical semiring
appears in the labelling):

sage: TT = TropicalSemiring(QQ)
sage: t = (TT, {1: TT(2), 2: TT(4), 3: TT(1)}, TT(6), TT(0))
sage: t1 = V.birational_toggle(1, t); t1
(Tropical semiring over Rational Field, {...}, 6, 0)
sage: sorted(t1[1].items())
[(1, 8), (2, 4), (3, 1)]
sage: t12 = V.birational_toggle(2, t1); t12
(Tropical semiring over Rational Field, {...}, 6, 0)
sage: sorted(t12[1].items())
[(1, 8), (2, 4), (3, 1)]
sage: t123 = V.birational_toggle(3, t12); t123
(Tropical semiring over Rational Field, {...}, 6, 0)
sage: sorted(t123[1].items())
[(1, 8), (2, 4), (3, 7)]

We turn to more interesting posets. Here is the 6-element poset arising from the weak order on 𝑆3:

sage: P = posets.SymmetricGroupWeakOrderPoset(3)
sage: sorted(list(P))
['123', '132', '213', '231', '312', '321']
sage: t = (TT, {'123': TT(4), '132': TT(2), '213': TT(3), '231': TT(1), '321
→˓': TT(1), '312': TT(2)}, TT(7), TT(1)) (continues on next page)
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sage: t1 = P.birational_toggle('123', t); t1
(Tropical semiring over Rational Field, {...}, 7, 1)
sage: sorted(t1[1].items())
[('123', 6), ('132', 2), ('213', 3), ('231', 1), ('312', 2), ('321', 1)]
sage: t13 = P.birational_toggle('213', t1); t13
(Tropical semiring over Rational Field, {...}, 7, 1)
sage: sorted(t13[1].items())
[('123', 6), ('132', 2), ('213', 4), ('231', 1), ('312', 2), ('321', 1)]

Let us verify on this example some basic properties of toggles. First of all, again let us check that 𝑇𝑣

is an involution for every 𝑣:

sage: all( P.birational_toggle(v, P.birational_toggle(v, t)) == t
....: for v in P )
True

Furthermore, two toggles 𝑇𝑣 and 𝑇𝑤 commute unless one of 𝑣 or 𝑤 covers the other:

sage: all( P.covers(v, w) or P.covers(w, v)
....: or P.birational_toggle(v, P.birational_toggle(w, t))
....: == P.birational_toggle(w, P.birational_toggle(v, t))
....: for v in P for w in P )
True

birational_toggles(vs, labelling)
Return the result of applying a sequence of birational toggles (specified by vs) to the K-labelling
labelling of the poset self.

See the documentation of birational_free_labelling() for a definition of birational toggles and
K-labellings and for an explanation of how K-labellings are to be encoded to be understood by Sage.
This implementation allows K to be a semifield, not just a field. The birational 𝑣-toggle is only a
rational map, so an exception (most likely, ZeroDivisionError) will be thrown if the denominator
is zero.

INPUT:
• vs – an iterable comprising elements of self (which must have self as parent if self is a
facade=False poset)

• labelling – a K-labelling of self in the sense as defined in the documentation of
birational_free_labelling()

OUTPUT:

TheK-labelling𝑇𝑣𝑛𝑇𝑣𝑛−1
· · ·𝑇𝑣1𝑓 of self, where 𝑓 is labelling and (𝑣1, 𝑣2, . . . , 𝑣𝑛) is vs (written

as list).

EXAMPLES:

sage: P = posets.SymmetricGroupBruhatOrderPoset(3)
sage: sorted(list(P))
['123', '132', '213', '231', '312', '321']
sage: TT = TropicalSemiring(ZZ)
sage: t = (TT, {'123': TT(4), '132': TT(2), '213': TT(3), '231': TT(1), '321
→˓': TT(1), '312': TT(2)}, TT(7), TT(1))
sage: tA = P.birational_toggles(['123', '231', '312'], t); tA
(Tropical semiring over Integer Ring, {...}, 7, 1)
sage: sorted(tA[1].items())

(continues on next page)
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[('123', 6), ('132', 2), ('213', 3), ('231', 2), ('312', 1), ('321', 1)]
sage: tAB = P.birational_toggles(['132', '213', '321'], tA); tAB
(Tropical semiring over Integer Ring, {...}, 7, 1)
sage: sorted(tAB[1].items())
[('123', 6), ('132', 6), ('213', 5), ('231', 2), ('312', 1), ('321', 1)]

sage: P = Poset({1: [2, 3], 2: [4], 3: [4]})
sage: Qx = PolynomialRing(QQ, 'x').fraction_field()
sage: x = Qx.gen()
sage: t = (Qx, {1: 1, 2: x, 3: (x+1)/x, 4: x^2}, 1, 1)
sage: t1 = P.birational_toggles((i for i in range(1, 5)), t); t1
(Fraction Field of Univariate Polynomial Ring in x over Rational Field,
{...},
1,
1)
sage: sorted(t1[1].items())
[(1, (x^2 + x)/(x^2 + x + 1)), (2, (x^3 + x^2)/(x^2 + x + 1)), (3, x^4/(x^2␣
→˓+ x + 1)), (4, 1)]
sage: t2 = P.birational_toggles(reversed(range(1, 5)), t)
sage: sorted(t2[1].items())
[(1, 1/x^2), (2, (x^2 + x + 1)/x^4), (3, (x^2 + x + 1)/(x^3 + x^2)), (4, (x^
→˓2 + x + 1)/x^3)]

Facade set to False works:

sage: P = Poset({'x': ['y', 'w'], 'y': ['z'], 'w': ['z']}, facade=False)
sage: lex = ['x', 'y', 'w', 'z']
sage: t = P.birational_free_labelling(linear_extension=lex)
sage: sorted(P.birational_toggles([P('x'), P('y')], t)[1].items())
[(x, a*x2*x3/(x1*x2 + x1*x3)), (y, a*x3*x4/(x1*x2 + x1*x3)), (w, x3), (z,␣
→˓x4)]

directed_subsets(direction)
Return the order filters (resp. order ideals) of self, as lists.

If direction is ‘up’, returns the order filters (upper sets).

If direction is ‘down’, returns the order ideals (lower sets).

INPUT:
• direction – ‘up’ or ‘down’

EXAMPLES:

sage: P = Poset((divisors(12), attrcall("divides")), facade=True)
sage: A = P.directed_subsets('up')
sage: sorted(list(A))
[[], [1, 2, 4, 3, 6, 12], [2, 4, 3, 6, 12], [2, 4, 6, 12], [3, 6, 12], [4,␣
→˓3, 6, 12], [4, 6, 12], [4, 12], [6, 12], [12]]

is_lattice()
Return whether the poset is a lattice.

A poset is a lattice if all pairs of elements have both a least upper bound (“join”) and a greatest lower
bound (“meet”) in the poset.

EXAMPLES:
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sage: P = Poset([[1, 3, 2], [4], [4, 5, 6], [6], [7], [7], [7], []])
sage: P.is_lattice()
True

sage: P = Poset([[1, 2], [3], [3], []])
sage: P.is_lattice()
True

sage: P = Poset({0: [2, 3], 1: [2, 3]})
sage: P.is_lattice()
False

sage: P = Poset({1: [2, 3, 4], 2: [5, 6], 3: [5, 7], 4: [6, 7], 5: [8, 9],
....: 6: [8, 10], 7: [9, 10], 8: [11], 9: [11], 10: [11]})
sage: P.is_lattice()
False

See also:

• Weaker properties: is_join_semilattice(), is_meet_semilattice()

is_poset_isomorphism(f, codomain)
Return whether 𝑓 is an isomorphism of posets from self to codomain.

INPUT:
• f – a function from self to codomain
• codomain – a poset

EXAMPLES:

We build the poset 𝐷 of divisors of 30, and check that it is isomorphic to the boolean lattice 𝐵 of the
subsets of {2, 3, 5} ordered by inclusion, via the reverse function 𝑓 : 𝐵 → 𝐷, 𝑏 ↦→

∏︀
𝑥∈𝑏 𝑥:

sage: D = Poset((divisors(30), attrcall("divides")))
sage: B = Poset(([frozenset(s) for s in Subsets([2,3,5])], attrcall(
→˓"issubset")))
sage: def f(b): return D(prod(b))
sage: B.is_poset_isomorphism(f, D)
True

On the other hand, 𝑓 is not an isomorphism to the chain of divisors of 30, ordered by usual comparison:

sage: P = Poset((divisors(30), operator.le))
sage: def f(b): return P(prod(b))
sage: B.is_poset_isomorphism(f, P)
False

A non surjective case:

sage: B = Poset(([frozenset(s) for s in Subsets([2,3])], attrcall("issubset
→˓")))
sage: def f(b): return D(prod(b))
sage: B.is_poset_isomorphism(f, D)
False

A non injective case:
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sage: B = Poset(([frozenset(s) for s in Subsets([2,3,5,6])], attrcall(
→˓"issubset")))
sage: def f(b): return D(gcd(prod(b), 30))
sage: B.is_poset_isomorphism(f, D)
False

Note: since D and B are not facade posets, f is responsible for the conversions between integers and
subsets to elements of D and B and back.

See also:

FiniteLatticePosets.ParentMethods.is_lattice_morphism()

is_poset_morphism(f, codomain)
Return whether 𝑓 is a morphism of posets from self to codomain, that is

𝑥 ≤ 𝑦 =⇒ 𝑓(𝑥) ≤ 𝑓(𝑦)

for all 𝑥 and 𝑦 in self.

INPUT:
• f – a function from self to codomain
• codomain – a poset

EXAMPLES:

We build the boolean lattice of the subsets of {2, 3, 5, 6} and the lattice of divisors of 30, and check
that the map 𝑏 ↦→ gcd(

∏︀
𝑥∈𝑏 𝑥, 30) is a morphism of posets:

sage: D = Poset((divisors(30), attrcall("divides")))
sage: B = Poset(([frozenset(s) for s in Subsets([2,3,5,6])], attrcall(
→˓"issubset")))
sage: def f(b): return D(gcd(prod(b), 30))
sage: B.is_poset_morphism(f, D)
True

Note: since D and B are not facade posets, f is responsible for the conversions between integers and
subsets to elements of D and B and back.

𝑓 is also a morphism of posets to the chain of divisors of 30, ordered by usual comparison:

sage: P = Poset((divisors(30), operator.le))
sage: def f(b): return P(gcd(prod(b), 30))
sage: B.is_poset_morphism(f, P)
True

FIXME: should this be is_order_preserving_morphism?

See also:

is_poset_isomorphism()

is_self_dual()
Return whether the poset is self-dual.

A poset is self-dual if it is isomorphic to its dual poset.
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EXAMPLES:

sage: P = Poset({1: [3, 4], 2: [3, 4]})
sage: P.is_self_dual()
True

sage: P = Poset({1: [2, 3]})
sage: P.is_self_dual()
False

See also:

• Stronger properties: is_orthocomplemented() (for lattices)
• Other: dual()

order_filter_generators(filter)
Generators for an order filter

INPUT:
• filter – an order filter of self, as a list (or iterable)

EXAMPLES:

sage: P = Poset((Subsets([1,2,3]), attrcall("issubset")))
sage: I = P.order_filter([Set([1,2]), Set([2,3]), Set([1])])
sage: sorted(sorted(p) for p in I)
[[1], [1, 2], [1, 2, 3], [1, 3], [2, 3]]
sage: gen = P.order_filter_generators(I)
sage: sorted(sorted(p) for p in gen)
[[1], [2, 3]]

See also:

order_ideal_generators()

order_ideal_complement_generators(antichain, direction='up')
Return the Panyushev complement of the antichain antichain.

Given an antichain 𝐴 of a poset 𝑃 , the Panyushev complement of 𝐴 is defined to be the antichain
consisting of the minimal elements of the order filter 𝐵, where 𝐵 is the (set-theoretic) complement of
the order ideal of 𝑃 generated by 𝐴.

Setting the optional keyword variable direction to 'down' leads to the inverse Panyushev comple-
ment being computed instead of the Panyushev complement. The inverse Panyushev complement of
an antichain 𝐴 is the antichain whose Panyushev complement is 𝐴. It can be found as the antichain
consisting of the maximal elements of the order ideal 𝐶, where 𝐶 is the (set-theoretic) complement of
the order filter of 𝑃 generated by 𝐴.

panyushev_complement() is an alias for this method.

Panyushev complementation is related (actually, isomorphic) to rowmotion (rowmotion()).

INPUT:
• antichain – an antichain of self, as a list (or iterable), or, more generally, generators of an order

ideal (resp. order filter)
• direction – ‘up’ or ‘down’ (default: ‘up’)

OUTPUT:
• the generating antichain of the complement order filter (resp. order ideal) of the order ideal (resp.

order filter) generated by the antichain antichain
EXAMPLES:
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sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] ) )
sage: P.order_ideal_complement_generators([1])
{2}
sage: P.order_ideal_complement_generators([3])
set()
sage: P.order_ideal_complement_generators([1,2])
{3}
sage: P.order_ideal_complement_generators([1,2,3])
set()

sage: P.order_ideal_complement_generators([1], direction="down")
{2}
sage: P.order_ideal_complement_generators([3], direction="down")
{1, 2}
sage: P.order_ideal_complement_generators([1,2], direction="down")
set()
sage: P.order_ideal_complement_generators([1,2,3], direction="down")
set()

Warning: This is a brute force implementation, building the order ideal generated by the antichain,
and searching for order filter generators of its complement

order_ideal_generators(ideal, direction='down')
Return the antichain of (minimal) generators of the order ideal (resp. order filter) ideal.

INPUT:
• ideal – an order ideal 𝐼 (resp. order filter) of self, as a list (or iterable); this should be an order

ideal if direction is set to 'down', and an order filter if direction is set to 'up'.
• direction – 'up' or 'down' (default: 'down').

The antichain of (minimal) generators of an order ideal 𝐼 in a poset 𝑃 is the set of all minimal elements
of 𝑃 . In the case of an order filter, the definition is similar, but with “maximal” used instead of
“minimal”.

EXAMPLES:

We build the boolean lattice of all subsets of {1, 2, 3} ordered by inclusion, and compute an order ideal
there:

sage: P = Poset((Subsets([1,2,3]), attrcall("issubset")))
sage: I = P.order_ideal([Set([1,2]), Set([2,3]), Set([1])])
sage: sorted(sorted(p) for p in I)
[[], [1], [1, 2], [2], [2, 3], [3]]

Then, we retrieve the generators of this ideal:

sage: gen = P.order_ideal_generators(I)
sage: sorted(sorted(p) for p in gen)
[[1, 2], [2, 3]]

If direction is ‘up’, then this instead computes the minimal generators for an order filter:

sage: I = P.order_filter([Set([1,2]), Set([2,3]), Set([1])])
sage: sorted(sorted(p) for p in I)

(continues on next page)
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[[1], [1, 2], [1, 2, 3], [1, 3], [2, 3]]
sage: gen = P.order_ideal_generators(I, direction='up')
sage: sorted(sorted(p) for p in gen)
[[1], [2, 3]]

Complexity: 𝑂(𝑛+𝑚) where 𝑛 is the cardinality of 𝐼 , and 𝑚 the number of upper covers of elements
of 𝐼 .

order_ideals_lattice(as_ideals=True, facade=None)
Return the lattice of order ideals of a poset self, ordered by inclusion.

The lattice of order ideals of a poset 𝑃 is usually denoted by 𝐽(𝑃 ). Its underlying set is the set of order
ideals of 𝑃 , and its partial order is given by inclusion.

The order ideals of 𝑃 are in a canonical bijection with the antichains of 𝑃 . The bijection maps every
order ideal to the antichain formed by its maximal elements. By setting the as_ideals keyword
variable to False, one can make this method apply this bijection before returning the lattice.

INPUT:
• as_ideals – Boolean, if True (default) returns a poset on the set of order ideals, otherwise on

the set of antichains
• facade – Boolean or None (default). Whether to return a facade lattice or not. By default return

facade lattice if the poset is a facade poset.
EXAMPLES:

sage: P = posets.PentagonPoset()
sage: P.cover_relations()
[[0, 1], [0, 2], [1, 4], [2, 3], [3, 4]]
sage: J = P.order_ideals_lattice(); J
Finite lattice containing 8 elements
sage: sorted(sorted(e) for e in J)
[[], [0], [0, 1], [0, 1, 2], [0, 1, 2, 3], [0, 1, 2, 3, 4], [0, 2], [0, 2,␣
→˓3]]

As a lattice on antichains:

sage: J2 = P.order_ideals_lattice(False); J2
Finite lattice containing 8 elements
sage: sorted(J2)
[(), (0,), (1,), (1, 2), (1, 3), (2,), (3,), (4,)]

panyushev_complement(antichain, direction='up')
Return the Panyushev complement of the antichain antichain.

Given an antichain 𝐴 of a poset 𝑃 , the Panyushev complement of 𝐴 is defined to be the antichain
consisting of the minimal elements of the order filter 𝐵, where 𝐵 is the (set-theoretic) complement of
the order ideal of 𝑃 generated by 𝐴.

Setting the optional keyword variable direction to 'down' leads to the inverse Panyushev comple-
ment being computed instead of the Panyushev complement. The inverse Panyushev complement of
an antichain 𝐴 is the antichain whose Panyushev complement is 𝐴. It can be found as the antichain
consisting of the maximal elements of the order ideal 𝐶, where 𝐶 is the (set-theoretic) complement of
the order filter of 𝑃 generated by 𝐴.

panyushev_complement() is an alias for this method.

Panyushev complementation is related (actually, isomorphic) to rowmotion (rowmotion()).

4.62. Finite posets 459



Category Framework, Release 9.7

INPUT:
• antichain – an antichain of self, as a list (or iterable), or, more generally, generators of an order

ideal (resp. order filter)
• direction – ‘up’ or ‘down’ (default: ‘up’)

OUTPUT:
• the generating antichain of the complement order filter (resp. order ideal) of the order ideal (resp.

order filter) generated by the antichain antichain
EXAMPLES:

sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] ) )
sage: P.order_ideal_complement_generators([1])
{2}
sage: P.order_ideal_complement_generators([3])
set()
sage: P.order_ideal_complement_generators([1,2])
{3}
sage: P.order_ideal_complement_generators([1,2,3])
set()

sage: P.order_ideal_complement_generators([1], direction="down")
{2}
sage: P.order_ideal_complement_generators([3], direction="down")
{1, 2}
sage: P.order_ideal_complement_generators([1,2], direction="down")
set()
sage: P.order_ideal_complement_generators([1,2,3], direction="down")
set()

Warning: This is a brute force implementation, building the order ideal generated by the antichain,
and searching for order filter generators of its complement

panyushev_orbit_iter(antichain, element_constructor=<class 'set'>, stop=True, check=True)
Iterate over the Panyushev orbit of an antichain antichain of self.

The Panyushev orbit of an antichain is its orbit under Panyushev complementation (see
panyushev_complement()).

INPUT:
• antichain – an antichain of self, given as an iterable.
• element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset,
iter, etc.) which is to be applied to the antichains before they are yielded.

• stop – a Boolean (default: True) determining whether the iterator should stop once it completes
its cycle (this happens when it is set to True) or go on forever (this happens when it is set to
False).

• check – a Boolean (default: True) determining whether antichain should be checked for being
an antichain.

OUTPUT:
• an iterator over the orbit of the antichain antichain under Panyushev complementation.

This iterator 𝐼 has the property that I[0] == antichain and each 𝑖 satisfies self.
order_ideal_complement_generators(I[i]) == I[i+1], where I[i+1] has to be under-
stood as I[0] if it is undefined. The entries I[i] are sets by default, but depending on the optional
keyword variable element_constructors they can also be tuples, lists etc.

EXAMPLES:
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sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] ) )
sage: list(P.panyushev_orbit_iter(set([1, 2])))
[{1, 2}, {3}, set()]
sage: list(P.panyushev_orbit_iter([1, 2]))
[{1, 2}, {3}, set()]
sage: list(P.panyushev_orbit_iter([2, 1]))
[{1, 2}, {3}, set()]
sage: list(P.panyushev_orbit_iter(set([1, 2]), element_constructor=list))
[[1, 2], [3], []]
sage: list(P.panyushev_orbit_iter(set([1, 2]), element_
→˓constructor=frozenset))
[frozenset({1, 2}), frozenset({3}), frozenset()]
sage: list(P.panyushev_orbit_iter(set([1, 2]), element_constructor=tuple))
[(1, 2), (3,), ()]

sage: P = Poset( {} )
sage: list(P.panyushev_orbit_iter([]))
[set()]

sage: P = Poset({ 1: [2, 3], 2: [4], 3: [4], 4: [] })
sage: Piter = P.panyushev_orbit_iter([2], stop=False)
sage: next(Piter)
{2}
sage: next(Piter)
{3}
sage: next(Piter)
{2}
sage: next(Piter)
{3}

panyushev_orbits(element_constructor=<class 'set'>)
Return the Panyushev orbits of antichains in self.

The Panyushev orbit of an antichain is its orbit under Panyushev complementation (see
panyushev_complement()).

INPUT:
• element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset,
iter, etc.) which is to be applied to the antichains before they are returned.

OUTPUT:
• the partition of the set of all antichains of self into orbits under Panyushev complemen-

tation. This is returned as a list of lists L such that for each L and i, cyclically: self.
order_ideal_complement_generators(L[i]) == L[i+1]. The entries L[i] are sets by de-
fault, but depending on the optional keyword variable element_constructors they can also be
tuples, lists etc.

EXAMPLES:

sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] ) )
sage: orb = P.panyushev_orbits()
sage: sorted(sorted(o) for o in orb)
[[set(), {1, 2}, {3}], [{2}, {1}]]
sage: orb = P.panyushev_orbits(element_constructor=list)
sage: sorted(sorted(o) for o in orb)
[[[], [1, 2], [3]], [[1], [2]]]

(continues on next page)
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sage: orb = P.panyushev_orbits(element_constructor=frozenset)
sage: sorted(sorted(o) for o in orb)
[[frozenset(), frozenset({1, 2}), frozenset({3})],
[frozenset({2}), frozenset({1})]]
sage: orb = P.panyushev_orbits(element_constructor=tuple)
sage: sorted(sorted(o) for o in orb)
[[(), (1, 2), (3,)], [(1,), (2,)]]
sage: P = Poset( {} )
sage: P.panyushev_orbits()
[[set()]]

rowmotion(order_ideal)
The image of the order ideal order_ideal under rowmotion in self.

Rowmotion on a finite poset 𝑃 is an automorphism of the set 𝐽(𝑃 ) of all order ideals of 𝑃 . One way
to define it is as follows: Given an order ideal 𝐼 ∈ 𝐽(𝑃 ), we let 𝐹 be the set-theoretic complement
of 𝐼 in 𝑃 . Furthermore we let 𝐴 be the antichain consisting of all minimal elements of 𝐹 . Then, the
rowmotion of 𝐼 is defined to be the order ideal of 𝑃 generated by the antichain 𝐴 (that is, the order
ideal consisting of each element of 𝑃 which has some element of 𝐴 above it).

Rowmotion is related (actually, isomorphic) to Panyushev complementation
(panyushev_complement()).

INPUT:
• order_ideal – an order ideal of self, as a set

OUTPUT:
• the image of order_ideal under rowmotion, as a set again

EXAMPLES:

sage: P = Poset( {1: [2, 3], 2: [], 3: [], 4: [8], 5: [], 6: [5], 7: [1, 4],
→˓ 8: []} )
sage: I = Set({2, 6, 1, 7})
sage: P.rowmotion(I)
{1, 3, 4, 5, 6, 7}

sage: P = Poset( {} )
sage: I = Set({})
sage: P.rowmotion(I)
{}

rowmotion_orbit_iter(oideal, element_constructor=<class 'set'>, stop=True, check=True)
Iterate over the rowmotion orbit of an order ideal oideal of self.

The rowmotion orbit of an order ideal is its orbit under rowmotion (see rowmotion()).

INPUT:
• oideal – an order ideal of self, given as an iterable.
• element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset,
iter, etc.) which is to be applied to the order ideals before they are yielded.

• stop – a Boolean (default: True) determining whether the iterator should stop once it completes
its cycle (this happens when it is set to True) or go on forever (this happens when it is set to
False).

• check – a Boolean (default: True) determining whether oideal should be checked for being an
order ideal.

OUTPUT:
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• an iterator over the orbit of the order ideal oideal under rowmotion. This iterator 𝐼 has the
property that I[0] == oideal and that every 𝑖 satisfies self.rowmotion(I[i]) == I[i+1],
where I[i+1] has to be understood as I[0] if it is undefined. The entries I[i] are sets by default,
but depending on the optional keyword variable element_constructors they can also be tuples,
lists etc.

EXAMPLES:

sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] ) )
sage: list(P.rowmotion_orbit_iter(set([1, 2])))
[{1, 2}, {1, 2, 3}, set()]
sage: list(P.rowmotion_orbit_iter([1, 2]))
[{1, 2}, {1, 2, 3}, set()]
sage: list(P.rowmotion_orbit_iter([2, 1]))
[{1, 2}, {1, 2, 3}, set()]
sage: list(P.rowmotion_orbit_iter(set([1, 2]), element_constructor=list))
[[1, 2], [1, 2, 3], []]
sage: list(P.rowmotion_orbit_iter(set([1, 2]), element_
→˓constructor=frozenset))
[frozenset({1, 2}), frozenset({1, 2, 3}), frozenset()]
sage: list(P.rowmotion_orbit_iter(set([1, 2]), element_constructor=tuple))
[(1, 2), (1, 2, 3), ()]

sage: P = Poset( {} )
sage: list(P.rowmotion_orbit_iter([]))
[set()]

sage: P = Poset({ 1: [2, 3], 2: [4], 3: [4], 4: [] })
sage: Piter = P.rowmotion_orbit_iter([1, 2, 3], stop=False)
sage: next(Piter)
{1, 2, 3}
sage: next(Piter)
{1, 2, 3, 4}
sage: next(Piter)
set()
sage: next(Piter)
{1}
sage: next(Piter)
{1, 2, 3}

sage: P = Poset({ 1: [4], 2: [4, 5], 3: [5] })
sage: list(P.rowmotion_orbit_iter([1, 2], element_constructor=list))
[[1, 2], [1, 2, 3, 4], [2, 3, 5], [1], [2, 3], [1, 2, 3, 5], [1, 2, 4], [3]]

rowmotion_orbits(element_constructor=<class 'set'>)
Return the rowmotion orbits of order ideals in self.

The rowmotion orbit of an order ideal is its orbit under rowmotion (see rowmotion()).

INPUT:
• element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset,
iter, etc.) which is to be applied to the antichains before they are returned.

OUTPUT:
• the partition of the set of all order ideals of self into orbits under rowmotion. This is re-

turned as a list of lists L such that for each L and i, cyclically: self.rowmotion(L[i]) ==
L[i+1]. The entries L[i] are sets by default, but depending on the optional keyword variable
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element_constructors they can also be tuples, lists etc.
EXAMPLES:

sage: P = Poset( {1: [2, 3], 2: [], 3: [], 4: [2]} )
sage: sorted(len(o) for o in P.rowmotion_orbits())
[3, 5]
sage: orb = P.rowmotion_orbits(element_constructor=list)
sage: sorted(sorted(e) for e in orb)
[[[], [4, 1], [4, 1, 2, 3]], [[1], [1, 3], [4], [4, 1, 2], [4, 1, 3]]]
sage: orb = P.rowmotion_orbits(element_constructor=tuple)
sage: sorted(sorted(e) for e in orb)
[[(), (4, 1), (4, 1, 2, 3)], [(1,), (1, 3), (4,), (4, 1, 2), (4, 1, 3)]]
sage: P = Poset({})
sage: P.rowmotion_orbits(element_constructor=tuple)
[[()]]

rowmotion_orbits_plots()
Return plots of the rowmotion orbits of order ideals in self.

The rowmotion orbit of an order ideal is its orbit under rowmotion (see rowmotion()).

EXAMPLES:

sage: P = Poset( {1: [2, 3], 2: [], 3: [], 4: [2]} )
sage: P.rowmotion_orbits_plots()
Graphics Array of size 2 x 5
sage: P = Poset({})
sage: P.rowmotion_orbits_plots()
Graphics Array of size 1 x 1

toggling_orbit_iter(vs, oideal, element_constructor=<class 'set'>, stop=True, check=True)
Iterate over the orbit of an order ideal oideal of self under the operation of toggling the vertices
vs[0], vs[1], ... in this order.

See order_ideal_toggle() for a definition of toggling.

Warning: The orbit is that under the composition of toggles, not under the single toggles them-
selves. Thus, for example, if vs == [1,2], then the orbit has the form (𝐼, 𝑇2𝑇1𝐼, 𝑇2𝑇1𝑇2𝑇1𝐼, . . .)
(where 𝐼 denotes oideal and 𝑇𝑖 means toggling at 𝑖) rather than (𝐼, 𝑇1𝐼, 𝑇2𝑇1𝐼, 𝑇1𝑇2𝑇1𝐼, . . .).

INPUT:
• vs: a list (or other iterable) of elements of self (but since the output depends on the order, sets

should not be used as vs).
• oideal – an order ideal of self, given as an iterable.
• element_constructor (defaults to set) – a type constructor (set, tuple, list, frozenset,
iter, etc.) which is to be applied to the order ideals before they are yielded.

• stop – a Boolean (default: True) determining whether the iterator should stop once it completes
its cycle (this happens when it is set to True) or go on forever (this happens when it is set to
False).

• check – a Boolean (default: True) determining whether oideal should be checked for being an
order ideal.

OUTPUT:
• an iterator over the orbit of the order ideal oideal under toggling the vertices in the list vs in

this order. This iterator 𝐼 has the property that I[0] == oideal and that every 𝑖 satisfies self.
order_ideal_toggles(I[i], vs) == I[i+1], where I[i+1] has to be understood as I[0]
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if it is undefined. The entries I[i] are sets by default, but depending on the optional keyword
variable element_constructors they can also be tuples, lists etc.

EXAMPLES:

sage: P = Poset( ( [1,2,3], [ [1,3], [2,3] ] ) )
sage: list(P.toggling_orbit_iter([1, 3, 1], set([1, 2])))
[{1, 2}]
sage: list(P.toggling_orbit_iter([1, 2, 3], set([1, 2])))
[{1, 2}, set(), {1, 2, 3}]
sage: list(P.toggling_orbit_iter([3, 2, 1], set([1, 2])))
[{1, 2}, {1, 2, 3}, set()]
sage: list(P.toggling_orbit_iter([3, 2, 1], set([1, 2]), element_
→˓constructor=list))
[[1, 2], [1, 2, 3], []]
sage: list(P.toggling_orbit_iter([3, 2, 1], set([1, 2]), element_
→˓constructor=frozenset))
[frozenset({1, 2}), frozenset({1, 2, 3}), frozenset()]
sage: list(P.toggling_orbit_iter([3, 2, 1], set([1, 2]), element_
→˓constructor=tuple))
[(1, 2), (1, 2, 3), ()]
sage: list(P.toggling_orbit_iter([3, 2, 1], [2, 1], element_
→˓constructor=tuple))
[(1, 2), (1, 2, 3), ()]

sage: P = Poset( {} )
sage: list(P.toggling_orbit_iter([], []))
[set()]

sage: P = Poset({ 1: [2, 3], 2: [4], 3: [4], 4: [] })
sage: Piter = P.toggling_orbit_iter([1, 2, 4, 3], [1, 2, 3], stop=False)
sage: next(Piter)
{1, 2, 3}
sage: next(Piter)
{1}
sage: next(Piter)
set()
sage: next(Piter)
{1, 2, 3}
sage: next(Piter)
{1}

toggling_orbits(vs, element_constructor=<class 'set'>)
Return the orbits of order ideals in self under the operation of toggling the vertices vs[0], vs[1],
... in this order.

See order_ideal_toggle() for a definition of toggling.

Warning: The orbits are those under the composition of toggles, not under the single
toggles themselves. Thus, for example, if vs == [1,2], then the orbits have the form
(𝐼, 𝑇2𝑇1𝐼, 𝑇2𝑇1𝑇2𝑇1𝐼, . . .) (where 𝐼 denotes an order ideal and 𝑇𝑖 means toggling at 𝑖) rather
than (𝐼, 𝑇1𝐼, 𝑇2𝑇1𝐼, 𝑇1𝑇2𝑇1𝐼, . . .).

INPUT:
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• vs: a list (or other iterable) of elements of self (but since the output depends on the order, sets
should not be used as vs).

OUTPUT:
• a partition of the order ideals of self, as a list of sets L such that for each L and i, cyclically:
self.order_ideal_toggles(L[i], vs) == L[i+1].

EXAMPLES:

sage: P = Poset( {1: [2, 4], 2: [], 3: [4], 4: []} )
sage: sorted(len(o) for o in P.toggling_orbits([1, 2]))
[2, 3, 3]
sage: P = Poset( {1: [3], 2: [1, 4], 3: [], 4: [3]} )
sage: sorted(len(o) for o in P.toggling_orbits((1, 2, 4, 3)))
[3, 3]

toggling_orbits_plots(vs)
Return plots of the orbits of order ideals in self under the operation of toggling the vertices vs[0],
vs[1], ... in this order.

See toggling_orbits() for more information.

EXAMPLES:

sage: P = Poset( {1: [2, 3], 2: [], 3: [], 4: [2]} )
sage: P.toggling_orbits_plots([1,2,3,4])
Graphics Array of size 2 x 5
sage: P = Poset({})
sage: P.toggling_orbits_plots([])
Graphics Array of size 1 x 1

4.63 Finite semigroups

class sage.categories.finite_semigroups.FiniteSemigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finite (multiplicative) semigroups.

A finite semigroup is a finite set endowed with an associative binary operation *.

Warning: Finite semigroups in Sage used to be automatically endowed with an enumerated set structure;
the default enumeration is then obtained by iteratively multiplying the semigroup generators. This forced
any finite semigroup to either implement an enumeration, or provide semigroup generators; this was often
inconvenient.

Instead, finite semigroups that provide a distinguished finite set of generators with
semigroup_generators() should now explicitly declare themselves in the category of finitely
generated semigroups:

sage: Semigroups().FinitelyGenerated()
Category of finitely generated semigroups

This is a backward incompatible change.

EXAMPLES:
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sage: C = FiniteSemigroups(); C
Category of finite semigroups
sage: C.super_categories()
[Category of semigroups, Category of finite sets]
sage: sorted(C.axioms())
['Associative', 'Finite']
sage: C.example()
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c',
→˓ 'd')

class ParentMethods
Bases: object

idempotents()
Returns the idempotents of the semigroup

EXAMPLES:

sage: S = FiniteSemigroups().example(alphabet=('x','y'))
sage: sorted(S.idempotents())
['x', 'xy', 'y', 'yx']

j_classes()
Returns the 𝐽-classes of the semigroup.

Two elements 𝑢 and 𝑣 of a monoid are in the same 𝐽-class if 𝑢 divides 𝑣 and 𝑣 divides 𝑢.

OUTPUT:
All the 𝐽-classes of self, as a list of lists.

EXAMPLES:

sage: S = FiniteSemigroups().example(alphabet=('a','b', 'c'))
sage: sorted(map(sorted, S.j_classes()))
[['a'], ['ab', 'ba'], ['abc', 'acb', 'bac', 'bca', 'cab', 'cba'], ['ac', 'ca
→˓'], ['b'], ['bc', 'cb'], ['c']]

j_classes_of_idempotents()
Returns all the idempotents of self, grouped by J-class.

OUTPUT:
a list of lists.

EXAMPLES:

sage: S = FiniteSemigroups().example(alphabet=('a','b', 'c'))
sage: sorted(map(sorted, S.j_classes_of_idempotents()))
[['a'], ['ab', 'ba'], ['abc', 'acb', 'bac', 'bca', 'cab', 'cba'], ['ac', 'ca
→˓'], ['b'], ['bc', 'cb'], ['c']]

j_transversal_of_idempotents()
Returns a list of one idempotent per regular J-class

EXAMPLES:

sage: S = FiniteSemigroups().example(alphabet=('a','b', 'c'))

The chosen elements depend on the order of each 𝐽-class, and that order is random when using Python
3.
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sage: sorted(S.j_transversal_of_idempotents()) # random
['a', 'ab', 'abc', 'ac', 'b', 'c', 'cb']

4.64 Finite sets

class sage.categories.finite_sets.FiniteSets(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finite sets.

EXAMPLES:

sage: C = FiniteSets(); C
Category of finite sets
sage: C.super_categories()
[Category of sets]
sage: C.all_super_categories()
[Category of finite sets,
Category of sets,
Category of sets with partial maps,
Category of objects]
sage: C.example()
NotImplemented

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

extra_super_categories()
EXAMPLES:

sage: FiniteSets().Algebras(QQ).extra_super_categories()
[Category of finite dimensional vector spaces with basis over Rational␣
→˓Field]

This implements the fact that the algebra of a finite set is finite dimensional:

sage: FiniteMonoids().Algebras(QQ).is_subcategory(AlgebrasWithBasis(QQ).
→˓FiniteDimensional())
True

class ParentMethods
Bases: object

is_finite()
Return True since self is finite.

EXAMPLES:

sage: C = FiniteEnumeratedSets().example()
sage: C.is_finite()
True

class Subquotients(category, *args)
Bases: sage.categories.subquotients.SubquotientsCategory
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extra_super_categories()
EXAMPLES:

sage: FiniteSets().Subquotients().extra_super_categories()
[Category of finite sets]

This implements the fact that a subquotient (and therefore a quotient or subobject) of a finite set is
finite:

sage: FiniteSets().Subquotients().is_subcategory(FiniteSets())
True
sage: FiniteSets().Quotients ().is_subcategory(FiniteSets())
True
sage: FiniteSets().Subobjects ().is_subcategory(FiniteSets())
True

4.65 Finite Weyl Groups

class sage.categories.finite_weyl_groups.FiniteWeylGroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of finite Weyl groups.

EXAMPLES:

sage: C = FiniteWeylGroups()
sage: C
Category of finite weyl groups
sage: C.super_categories()
[Category of finite coxeter groups, Category of weyl groups]
sage: C.example()
The symmetric group on {0, ..., 3}

class ElementMethods
Bases: object

class ParentMethods
Bases: object

4.66 Finitely Generated Lambda bracket Algebras

AUTHORS:

• Reimundo Heluani (2020-08-21): Initial implementation.

class sage.categories.finitely_generated_lambda_bracket_algebras.FinitelyGeneratedLambdaBracketAlgebras(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finitely generated lambda bracket algebras.

EXAMPLES:
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sage: from sage.categories.lambda_bracket_algebras import LambdaBracketAlgebras
sage: LambdaBracketAlgebras(QQbar).FinitelyGenerated()
Category of finitely generated lambda bracket algebras over Algebraic Field

class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded finitely generated Lie conformal algebras.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Graded()
Category of H-graded finitely generated lie conformal algebras over Algebraic␣
→˓Field

class ParentMethods
Bases: object

gen(i)
The i-th generator of this Lie conformal algebra.

EXAMPLES:

sage: V = lie_conformal_algebras.Affine(QQ, 'A1')
sage: V.gens()
(B[alpha[1]], B[alphacheck[1]], B[-alpha[1]], B['K'])
sage: V.gen(0)
B[alpha[1]]
sage: V.1
B[alphacheck[1]]

ngens()
The number of generators of this Lie conformal algebra.

EXAMPLES:

sage: Vir = lie_conformal_algebras.Virasoro(QQ)
sage: Vir.ngens()
2

sage: V = lie_conformal_algebras.Affine(QQ, 'A2')
sage: V.ngens()
9

some_elements()
Some elements of this Lie conformal algebra.

This method returns a list with elements containing at least the generators.

EXAMPLES:

sage: V = lie_conformal_algebras.Affine(QQ, 'A1', names=('e', 'h', 'f'))
sage: V.some_elements()
[e, h, f, K, ...]
sage: all(v.parent() is V for v in V.some_elements())
True
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4.67 Finitely Generated Lie Conformal Algebras

AUTHORS:

• Reimundo Heluani (2019-10-05): Initial implementation.

class sage.categories.finitely_generated_lie_conformal_algebras.FinitelyGeneratedLieConformalAlgebras(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finitely generated Lie conformal algebras.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).FinitelyGenerated()
Category of finitely generated lie conformal algebras over Algebraic Field

class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded finitely generated Lie conformal algebras.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Graded()
Category of H-graded finitely generated lie conformal algebras over Algebraic␣
→˓Field

class ParentMethods
Bases: object

some_elements()
Some elements of this Lie conformal algebra.

Returns a list with elements containing at least the generators.

EXAMPLES:

sage: V = lie_conformal_algebras.Affine(QQ, 'A1', names=('e', 'h', 'f'))
sage: V.some_elements()
[e, h, f, K, ...]
sage: all(v.parent() is V for v in V.some_elements())
True

class Super(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super finitely generated Lie conformal algebras.

EXAMPLES:

sage: LieConformalAlgebras(AA).FinitelyGenerated().Super()
Category of super finitely generated lie conformal algebras over Algebraic Real␣
→˓Field

class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded super finitely generated Lie conformal algebras.

EXAMPLES:
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sage: LieConformalAlgebras(QQbar).FinitelyGenerated().Super().Graded()
Category of H-graded super finitely generated lie conformal algebras over␣
→˓Algebraic Field

4.68 Finitely generated magmas

class sage.categories.finitely_generated_magmas.FinitelyGeneratedMagmas(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finitely generated (multiplicative) magmas.

See Magmas.SubcategoryMethods.FinitelyGeneratedAsMagma() for details.

EXAMPLES:

sage: C = Magmas().FinitelyGeneratedAsMagma(); C
Category of finitely generated magmas
sage: C.super_categories()
[Category of magmas]
sage: sorted(C.axioms())
['FinitelyGeneratedAsMagma']

class ParentMethods
Bases: object

magma_generators()
Return distinguished magma generators for self.

OUTPUT: a finite family

This method should be implemented by all finitely generated magmas.

EXAMPLES:

sage: S = FiniteSemigroups().example()
sage: S.magma_generators()
Family ('a', 'b', 'c', 'd')

4.69 Finitely generated semigroups

class sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finitely generated (multiplicative) semigroups.

A finitely generated semigroup is a semigroup endowed with a distinguished finite set of generators
(see FinitelyGeneratedSemigroups.ParentMethods.semigroup_generators()). This makes it into an
enumerated set.

EXAMPLES:

sage: C = Semigroups().FinitelyGenerated(); C
Category of finitely generated semigroups
sage: C.super_categories()

(continues on next page)
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[Category of semigroups,
Category of finitely generated magmas,
Category of enumerated sets]
sage: sorted(C.axioms())
['Associative', 'Enumerated', 'FinitelyGeneratedAsMagma']
sage: C.example()
An example of a semigroup: the free semigroup generated
by ('a', 'b', 'c', 'd')

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class ParentMethods
Bases: object

some_elements()
Return an iterable containing some elements of the semigroup.

OUTPUT: the ten first elements of the semigroup, if they exist.

EXAMPLES:

sage: S = FiniteSemigroups().example(alphabet=('x','y'))
sage: sorted(S.some_elements())
['x', 'xy', 'y', 'yx']
sage: S = FiniteSemigroups().example(alphabet=('x','y','z'))
sage: X = S.some_elements()
sage: len(X)
10
sage: all(x in S for x in X)
True

class ParentMethods
Bases: object

ideal(gens, side='twosided')
Return the side-sided ideal generated by gens.

This brute force implementation recursively multiplies the elements of gens by the distinguished gen-
erators of this semigroup.

See also:

semigroup_generators()

INPUT:
• gens – a list (or iterable) of elements of self
• side – [default: “twosided”] “left”, “right” or “twosided”

EXAMPLES:

sage: S = FiniteSemigroups().example()
sage: sorted(S.ideal([S('cab')], side="left"))
['abc', 'abcd', 'abdc', 'acb', 'acbd', 'acdb', 'adbc',
'adcb', 'bac', 'bacd', 'badc', 'bca', 'bcad', 'bcda',
'bdac', 'bdca', 'cab', 'cabd', 'cadb', 'cba', 'cbad',
'cbda', 'cdab', 'cdba', 'dabc', 'dacb', 'dbac', 'dbca',
'dcab', 'dcba']

(continues on next page)
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sage: list(S.ideal([S('cab')], side="right"))
['cab', 'cabd']
sage: sorted(S.ideal([S('cab')], side="twosided"))
['abc', 'abcd', 'abdc', 'acb', 'acbd', 'acdb', 'adbc',
'adcb', 'bac', 'bacd', 'badc', 'bca', 'bcad', 'bcda',
'bdac', 'bdca', 'cab', 'cabd', 'cadb', 'cba', 'cbad',
'cbda', 'cdab', 'cdba', 'dabc', 'dacb', 'dbac', 'dbca',
'dcab', 'dcba']
sage: sorted(S.ideal([S('cab')]))
['abc', 'abcd', 'abdc', 'acb', 'acbd', 'acdb', 'adbc',
'adcb', 'bac', 'bacd', 'badc', 'bca', 'bcad', 'bcda',
'bdac', 'bdca', 'cab', 'cabd', 'cadb', 'cba', 'cbad',
'cbda', 'cdab', 'cdba', 'dabc', 'dacb', 'dbac', 'dbca',
'dcab', 'dcba']

semigroup_generators()
Return distinguished semigroup generators for self.

OUTPUT: a finite family

This method should be implemented by all semigroups in FinitelyGeneratedSemigroups.

EXAMPLES:

sage: S = FiniteSemigroups().example()
sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')

succ_generators(side='twosided')
Return the successor function of the side-sided Cayley graph of self.

This is a function that maps an element of self to all the products of x by a generator of this semigroup,
where the product is taken on the left, right, or both sides.

INPUT:
• side: “left”, “right”, or “twosided”

Todo: Design choice:
• find a better name for this method
• should we return a set? a family?

EXAMPLES:

sage: S = FiniteSemigroups().example()
sage: S.succ_generators("left" )(S('ca'))
('ac', 'bca', 'ca', 'dca')
sage: S.succ_generators("right")(S('ca'))
('ca', 'cab', 'ca', 'cad')
sage: S.succ_generators("twosided" )(S('ca'))
('ac', 'bca', 'ca', 'dca', 'ca', 'cab', 'ca', 'cad')

example()
EXAMPLES:
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sage: Semigroups().FinitelyGenerated().example()
An example of a semigroup: the free semigroup generated
by ('a', 'b', 'c', 'd')

extra_super_categories()
State that a finitely generated semigroup is endowed with a default enumeration.

EXAMPLES:

sage: Semigroups().FinitelyGenerated().extra_super_categories()
[Category of enumerated sets]

4.70 Function fields

class sage.categories.function_fields.FunctionFields(s=None)
Bases: sage.categories.category.Category

The category of function fields.

EXAMPLES:

We create the category of function fields:

sage: C = FunctionFields()
sage: C
Category of function fields

class ElementMethods
Bases: object

class ParentMethods
Bases: object

super_categories()
Returns the Category of which this is a direct sub-Category For a list off all super categories see
all_super_categories

EXAMPLES:

sage: FunctionFields().super_categories()
[Category of fields]

4.71 G-Sets

class sage.categories.g_sets.GSets(G)
Bases: sage.categories.category.Category

The category of 𝐺-sets, for a group 𝐺.

EXAMPLES:

sage: S = SymmetricGroup(3)
sage: GSets(S)
Category of G-sets for Symmetric group of order 3! as a permutation group
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TODO: should this derive from Category_over_base?

classmethod an_instance()
Returns an instance of this class.

EXAMPLES:

sage: GSets.an_instance() # indirect doctest
Category of G-sets for Symmetric group of order 8! as a permutation group

super_categories()
EXAMPLES:

sage: GSets(SymmetricGroup(8)).super_categories()
[Category of sets]

4.72 Gcd domains

class sage.categories.gcd_domains.GcdDomains(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of gcd domains domains where gcd can be computed but where there is no guarantee of factorisation
into irreducibles

EXAMPLES:

sage: GcdDomains()
Category of gcd domains
sage: GcdDomains().super_categories()
[Category of integral domains]

class ElementMethods
Bases: object

class ParentMethods
Bases: object

additional_structure()
Return None.

Indeed, the category of gcd domains defines no additional structure: a ring morphism between two gcd
domains is a gcd domain morphism.

See also:

Category.additional_structure()

EXAMPLES:

sage: GcdDomains().additional_structure()

super_categories()
EXAMPLES:

sage: GcdDomains().super_categories()
[Category of integral domains]
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4.73 Generalized Coxeter Groups

class sage.categories.generalized_coxeter_groups.GeneralizedCoxeterGroups(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of generalized Coxeter groups.

A generalized Coxeter group is a group with a presentation of the following form:

⟨𝑠𝑖 | 𝑠𝑝𝑖

𝑖 , 𝑠𝑖𝑠𝑗 · · · = 𝑠𝑗𝑠𝑖 · · · ⟩,

where 𝑝𝑖 > 1, 𝑖 ∈ 𝐼 , and the factors in the braid relation occur 𝑚𝑖𝑗 = 𝑚𝑗𝑖 times for all 𝑖 ̸= 𝑗 ∈ 𝐼 .

EXAMPLES:

sage: from sage.categories.generalized_coxeter_groups import␣
→˓GeneralizedCoxeterGroups
sage: C = GeneralizedCoxeterGroups(); C
Category of generalized coxeter groups

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of finite generalized Coxeter groups.

extra_super_categories()
Implement that a finite generalized Coxeter group is a well-generated complex reflection group.

EXAMPLES:

sage: from sage.categories.generalized_coxeter_groups import␣
→˓GeneralizedCoxeterGroups
sage: from sage.categories.complex_reflection_groups import␣
→˓ComplexReflectionGroups

sage: Cat = GeneralizedCoxeterGroups().Finite()
sage: Cat.extra_super_categories()
[Category of well generated finite complex reflection groups]
sage: Cat.is_subcategory(ComplexReflectionGroups().Finite().WellGenerated())
True

additional_structure()
Return None.

Indeed, all the structure generalized Coxeter groups have in addition to groups (simple reflections, . . . ) is
already defined in the super category.

See also:

Category.additional_structure()

EXAMPLES:

sage: from sage.categories.generalized_coxeter_groups import␣
→˓GeneralizedCoxeterGroups
sage: GeneralizedCoxeterGroups().additional_structure()

super_categories()
EXAMPLES:
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sage: from sage.categories.generalized_coxeter_groups import␣
→˓GeneralizedCoxeterGroups
sage: GeneralizedCoxeterGroups().super_categories()
[Category of complex reflection or generalized coxeter groups]

4.74 Graded Algebras

class sage.categories.graded_algebras.GradedAlgebras(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded algebras

EXAMPLES:

sage: GradedAlgebras(ZZ)
Category of graded algebras over Integer Ring
sage: GradedAlgebras(ZZ).super_categories()
[Category of filtered algebras over Integer Ring,
Category of graded modules over Integer Ring]

class ElementMethods
Bases: object

class ParentMethods
Bases: object

graded_algebra()
Return the associated graded algebra to self.

Since self is already graded, this just returns self.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: m.graded_algebra() is m
True

class SignedTensorProducts(category, *args)
Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

extra_super_categories()
EXAMPLES:

sage: Algebras(QQ).Graded().SignedTensorProducts().extra_super_categories()
[Category of graded algebras over Rational Field]
sage: Algebras(QQ).Graded().SignedTensorProducts().super_categories()
[Category of graded algebras over Rational Field]

Meaning: a signed tensor product of algebras is an algebra

class SubcategoryMethods
Bases: object

SignedTensorProducts()
Return the full subcategory of objects of self constructed as signed tensor products.

See also:
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• SignedTensorProductsCategory
• CovariantFunctorialConstruction

EXAMPLES:

sage: AlgebrasWithBasis(QQ).Graded().SignedTensorProducts()
Category of signed tensor products of graded algebras with basis
over Rational Field

4.75 Graded algebras with basis

class sage.categories.graded_algebras_with_basis.GradedAlgebrasWithBasis(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded algebras with a distinguished basis

EXAMPLES:

sage: C = GradedAlgebrasWithBasis(ZZ); C
Category of graded algebras with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of filtered algebras with basis over Integer Ring,
Category of graded algebras over Integer Ring,
Category of graded modules with basis over Integer Ring]

class ElementMethods
Bases: object

class ParentMethods
Bases: object

formal_series_ring()
Return the completion of all formal linear combinations of self with finite linear combinations in
each homogeneous degree (computed lazily).

EXAMPLES:

sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
sage: S = NCSF.Complete()
sage: L = S.formal_series_ring()
sage: L
Lazy completion of Non-Commutative Symmetric Functions over
the Rational Field in the Complete basis

free_graded_module(generator_degrees, names=None)
Create a finitely generated free graded module over self

INPUT:
• generator_degrees – tuple of integers defining the number of generators of the module and

their degrees
• names – (optional) the names of the generators. If names is a comma-separated string like 'a,
b, c', then those will be the names. Otherwise, for example if names is abc, then the names will
be abc[d,i].

By default, if all generators are in distinct degrees, then the names of the generators will have the form
g[d] where d is the degree of the generator. If the degrees are not distinct, then the generators will be
called g[d,i] where d is the degree and i is its index in the list of generators in that degree.
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See sage.modules.fp_graded.free_module for more examples and details.

EXAMPLES:

sage: Q = QuadraticForm(QQ, 3, [1,2,3,4,5,6])
sage: Cl = CliffordAlgebra(Q)
sage: M = Cl.free_graded_module((0, 2, 3))
sage: M.gens()
(g[0], g[2], g[3])
sage: N.<xy, z> = Cl.free_graded_module((1, 2))
sage: N.generators()
(xy, z)

graded_algebra()
Return the associated graded algebra to self.

This is self, because self is already graded. See graded_algebra() for the general behavior of this
method, and see AssociatedGradedAlgebra for the definition and properties of associated graded
algebras.

EXAMPLES:

sage: m = SymmetricFunctions(QQ).m()
sage: m.graded_algebra() is m
True

class SignedTensorProducts(category, *args)
Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

The category of algebras with basis constructed by signed tensor product of algebras with basis.

class ParentMethods
Bases: object

Implements operations on tensor products of super algebras with basis.

one_basis()
Return the index of the one of this signed tensor product of algebras, as per AlgebrasWithBasis.
ParentMethods.one_basis.

It is the tuple whose operands are the indices of the ones of the operands, as returned by their
one_basis() methods.

EXAMPLES:

sage: A.<x,y> = ExteriorAlgebra(QQ)
sage: A.one_basis()
0
sage: B = tensor((A, A, A))
sage: B.one_basis()
(0, 0, 0)
sage: B.one()
1 # 1 # 1

product_on_basis(t0, t1)
The product of the algebra on the basis, as per AlgebrasWithBasis.ParentMethods.
product_on_basis.

EXAMPLES:
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Test the sign in the super tensor product:

sage: A = SteenrodAlgebra(3)
sage: x = A.Q(0)
sage: y = x.coproduct()
sage: y^2
0

TODO: optimize this implementation!

extra_super_categories()
EXAMPLES:

sage: Cat = AlgebrasWithBasis(QQ).Graded()
sage: Cat.SignedTensorProducts().extra_super_categories()
[Category of graded algebras with basis over Rational Field]
sage: Cat.SignedTensorProducts().super_categories()
[Category of graded algebras with basis over Rational Field,
Category of signed tensor products of graded algebras over Rational Field]

4.76 Graded bialgebras

sage.categories.graded_bialgebras.GradedBialgebras(base_ring)
The category of graded bialgebras

EXAMPLES:

sage: C = GradedBialgebras(QQ); C
Join of Category of graded algebras over Rational Field

and Category of bialgebras over Rational Field
and Category of graded coalgebras over Rational Field

sage: C is Bialgebras(QQ).Graded()
True

4.77 Graded bialgebras with basis

sage.categories.graded_bialgebras_with_basis.GradedBialgebrasWithBasis(base_ring)
The category of graded bialgebras with a distinguished basis

EXAMPLES:

sage: C = GradedBialgebrasWithBasis(QQ); C
Join of Category of ...
sage: sorted(C.super_categories(), key=str)
[Category of bialgebras with basis over Rational Field,
Category of graded algebras with basis over Rational Field,
Category of graded coalgebras with basis over Rational Field]
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4.78 Graded Coalgebras

class sage.categories.graded_coalgebras.GradedCoalgebras(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded coalgebras

EXAMPLES:

sage: C = GradedCoalgebras(QQ); C
Category of graded coalgebras over Rational Field
sage: C is Coalgebras(QQ).Graded()
True

class SignedTensorProducts(category, *args)
Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

extra_super_categories()
EXAMPLES:

sage: Coalgebras(QQ).Graded().SignedTensorProducts().extra_super_
→˓categories()
[Category of graded coalgebras over Rational Field]
sage: Coalgebras(QQ).Graded().SignedTensorProducts().super_categories()
[Category of graded coalgebras over Rational Field]

Meaning: a signed tensor product of coalgebras is a coalgebra

class SubcategoryMethods
Bases: object

SignedTensorProducts()
Return the full subcategory of objects of self constructed as signed tensor products.

See also:

• SignedTensorProductsCategory
• CovariantFunctorialConstruction

EXAMPLES:

sage: CoalgebrasWithBasis(QQ).Graded().SignedTensorProducts()
Category of signed tensor products of graded coalgebras with basis
over Rational Field

4.79 Graded coalgebras with basis

class sage.categories.graded_coalgebras_with_basis.GradedCoalgebrasWithBasis(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded coalgebras with a distinguished basis.

EXAMPLES:
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sage: C = GradedCoalgebrasWithBasis(QQ); C
Category of graded coalgebras with basis over Rational Field
sage: C is Coalgebras(QQ).WithBasis().Graded()
True

class SignedTensorProducts(category, *args)
Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

The category of coalgebras with basis constructed by signed tensor product of coalgebras with basis.

extra_super_categories()
EXAMPLES:

sage: Cat = CoalgebrasWithBasis(QQ).Graded()
sage: Cat.SignedTensorProducts().extra_super_categories()
[Category of graded coalgebras with basis over Rational Field]
sage: Cat.SignedTensorProducts().super_categories()
[Category of graded coalgebras with basis over Rational Field,
Category of signed tensor products of graded coalgebras over Rational␣
→˓Field]

4.80 Graded Hopf algebras

sage.categories.graded_hopf_algebras.GradedHopfAlgebras(base_ring)
The category of graded Hopf algebras.

EXAMPLES:

sage: C = GradedHopfAlgebras(QQ); C
Join of Category of hopf algebras over Rational Field

and Category of graded algebras over Rational Field
and Category of graded coalgebras over Rational Field

sage: C is HopfAlgebras(QQ).Graded()
True

Note: This is not a graded Hopf algebra as is typically defined in algebraic topology as the product in the tensor
square (𝑥 ⊗ 𝑦)(𝑎 ⊗ 𝑏) = (𝑥𝑎) ⊗ (𝑦𝑏) does not carry an additional sign. For this, instead use super Hopf
algebras.

4.81 Graded Hopf algebras with basis

class sage.categories.graded_hopf_algebras_with_basis.GradedHopfAlgebrasWithBasis(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded Hopf algebras with a distinguished basis.

EXAMPLES:
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sage: C = GradedHopfAlgebrasWithBasis(ZZ); C
Category of graded hopf algebras with basis over Integer Ring
sage: C.super_categories()
[Category of filtered hopf algebras with basis over Integer Ring,
Category of graded algebras with basis over Integer Ring,
Category of graded coalgebras with basis over Integer Ring]

sage: C is HopfAlgebras(ZZ).WithBasis().Graded()
True
sage: C is HopfAlgebras(ZZ).Graded().WithBasis()
False

class Connected(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ElementMethods
Bases: object

class ParentMethods
Bases: object

antipode_on_basis(index)
The antipode on the basis element indexed by index.

INPUT:
• index – an element of the index set
For a graded connected Hopf algebra, we can define an antipode recursively by

𝑆(𝑥) := −
∑︁
𝑥𝐿 ̸=𝑥

𝑆(𝑥𝐿)× 𝑥𝑅

when |𝑥| > 0, and by 𝑆(𝑥) = 𝑥 when |𝑥| = 0.

counit_on_basis(i)
The default counit of a graded connected Hopf algebra.

INPUT:
• i – an element of the index set
OUTPUT:
• an element of the base ring

𝑐(𝑖) :=

{︃
1 if 𝑖 indexes the 1 of the algebra
0 otherwise.

EXAMPLES:

sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example()
sage: H.monomial(4).counit() # indirect doctest
0
sage: H.monomial(0).counit() # indirect doctest
1

example()
Return an example of a graded connected Hopf algebra with a distinguished basis.

class ElementMethods
Bases: object

class ParentMethods
Bases: object
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class WithRealizations(category, *args)
Bases: sage.categories.with_realizations.WithRealizationsCategory

super_categories()
EXAMPLES:

sage: GradedHopfAlgebrasWithBasis(QQ).WithRealizations().super_categories()
[Join of Category of hopf algebras over Rational Field
and Category of graded algebras over Rational Field
and Category of graded coalgebras over Rational Field]

example()
Return an example of a graded Hopf algebra with a distinguished basis.

4.82 Graded Lie Algebras

AUTHORS:

• Eero Hakavuori (2018-08-16): initial version

class sage.categories.graded_lie_algebras.GradedLieAlgebras(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

Category of graded Lie algebras.

class Stratified(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of stratified Lie algebras.

A graded Lie algebra 𝐿 =
⨁︀𝑀

𝑘=1 𝐿𝑘 (where possibly 𝑀 =∞) is called stratified if it is generated by 𝐿1;
in other words, we have 𝐿𝑘+1 = [𝐿1, 𝐿𝑘].

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of finite dimensional stratified Lie algebras.

EXAMPLES:

sage: LieAlgebras(QQ).Graded().Stratified().FiniteDimensional()
Category of finite dimensional stratified Lie algebras over Rational Field

extra_super_categories()
Implements the fact that a finite dimensional stratified Lie algebra is nilpotent.

EXAMPLES:

sage: C = LieAlgebras(QQ).Graded().Stratified().FiniteDimensional()
sage: C.extra_super_categories()
[Category of nilpotent Lie algebras over Rational Field]
sage: C is C.Nilpotent()
True
sage: C.is_subcategory(LieAlgebras(QQ).Nilpotent())
True

class SubcategoryMethods
Bases: object
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Stratified()
Return the full subcategory of stratified objects of self.

A Lie algebra is stratified if it is graded and generated as a Lie algebra by its component of degree one.

EXAMPLES:

sage: LieAlgebras(QQ).Graded().Stratified()
Category of stratified Lie algebras over Rational Field

4.83 Graded Lie Algebras With Basis

class sage.categories.graded_lie_algebras_with_basis.GradedLieAlgebrasWithBasis(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded Lie algebras with a distinguished basis.

EXAMPLES:

sage: C = LieAlgebras(ZZ).WithBasis().Graded(); C
Category of graded lie algebras with basis over Integer Ring
sage: C.super_categories()
[Category of graded modules with basis over Integer Ring,
Category of lie algebras with basis over Integer Ring,
Category of graded Lie algebras over Integer Ring]

sage: C is LieAlgebras(ZZ).WithBasis().Graded()
True
sage: C is LieAlgebras(ZZ).Graded().WithBasis()
False

FiniteDimensional
alias of sage.categories.finite_dimensional_graded_lie_algebras_with_basis.
FiniteDimensionalGradedLieAlgebrasWithBasis

4.84 Graded Lie Conformal Algebras

AUTHORS:

• Reimundo Heluani (2019-10-05): Initial implementation.

class sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebras(base_category)
Bases: sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory

The category of graded Lie conformal algebras.

EXAMPLES:

sage: C = LieConformalAlgebras(QQbar).Graded(); C
Category of H-graded Lie conformal algebras over Algebraic Field

sage: CS = LieConformalAlgebras(QQ).Graded().Super(); CS
Category of H-graded super Lie conformal algebras over Rational Field

(continues on next page)
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(continued from previous page)

sage: CS is LieConformalAlgebras(QQ).Super().Graded()
True

class sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

Super(base_ring=None)
Return the super-analogue category of self.

INPUT:

• base_ring – this is ignored

EXAMPLES:

sage: C = LieConformalAlgebras(QQbar)
sage: C.Graded().Super() is C.Super().Graded()
True
sage: Cp = C.WithBasis()
sage: Cp.Graded().Super() is Cp.Super().Graded()
True

4.85 Graded modules

class sage.categories.graded_modules.GradedModules(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded modules.

We consider every graded module 𝑀 =
⨁︀

𝑖 𝑀𝑖 as a filtered module under the (natural) filtration given by

𝐹𝑖 =
⨁︁
𝑗<𝑖

𝑀𝑗 .

EXAMPLES:

sage: GradedModules(ZZ)
Category of graded modules over Integer Ring
sage: GradedModules(ZZ).super_categories()
[Category of filtered modules over Integer Ring]

The category of graded modules defines the graded structure which shall be preserved by morphisms:

sage: Modules(ZZ).Graded().additional_structure()
Category of graded modules over Integer Ring

class ElementMethods
Bases: object

class ParentMethods
Bases: object

class sage.categories.graded_modules.GradedModulesCategory(base_category)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory,
sage.categories.category_types.Category_over_base_ring

EXAMPLES:
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sage: C = GradedAlgebras(QQ)
sage: C
Category of graded algebras over Rational Field
sage: C.base_category()
Category of algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of filtered algebras over Rational Field,
Category of graded vector spaces over Rational Field]

sage: AlgebrasWithBasis(QQ).Graded().base_ring()
Rational Field
sage: GradedHopfAlgebrasWithBasis(QQ).base_ring()
Rational Field

classmethod default_super_categories(category, *args)
Return the default super categories of category.Graded().

Mathematical meaning: every graded object (module, algebra, etc.) is a filtered object with the (implicit)
filtration defined by 𝐹𝑖 =

⨁︀
𝑗≤𝑖 𝐺𝑗 .

INPUT:

• cls – the class GradedModulesCategory

• category – a category

OUTPUT: a (join) category

In practice, this returns category.Filtered(), joined together with the result of the method
RegressiveCovariantConstructionCategory.default_super_categories() (that is the join of
category.Filtered() and cat for each cat in the super categories of category).

EXAMPLES:

Consider category=Algebras(), which has cat=Modules() as super category. Then, a grading of an
algebra 𝐺 is also a filtration of 𝐺:

sage: Algebras(QQ).Graded().super_categories()
[Category of filtered algebras over Rational Field,
Category of graded vector spaces over Rational Field]

This resulted from the following call:

sage: sage.categories.graded_modules.GradedModulesCategory.default_super_
→˓categories(Algebras(QQ))
Join of Category of filtered algebras over Rational Field
and Category of graded vector spaces over Rational Field
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4.86 Graded modules with basis

class sage.categories.graded_modules_with_basis.GradedModulesWithBasis(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded modules with a distinguished basis.

EXAMPLES:

sage: C = GradedModulesWithBasis(ZZ); C
Category of graded modules with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of filtered modules with basis over Integer Ring,
Category of graded modules over Integer Ring]
sage: C is ModulesWithBasis(ZZ).Graded()
True

class ElementMethods
Bases: object

degree_negation()
Return the image of self under the degree negation automorphism of the graded module to which
self belongs.

The degree negation is the module automorphism which scales every homogeneous element of degree
𝑘 by (−1)𝑘 (for all 𝑘). This assumes that the module to which self belongs (that is, the module
self.parent()) is Z-graded.

EXAMPLES:

sage: E.<a,b> = ExteriorAlgebra(QQ)
sage: ((1 + a) * (1 + b)).degree_negation()
a*b - a - b + 1
sage: E.zero().degree_negation()
0

sage: P = GradedModulesWithBasis(ZZ).example(); P
An example of a graded module with basis: the free module on partitions␣
→˓over Integer Ring
sage: pbp = lambda x: P.basis()[Partition(list(x))]
sage: p = pbp([3,1]) - 2 * pbp([2]) + 4 * pbp([1])
sage: p.degree_negation()
-4*P[1] - 2*P[2] + P[3, 1]

class ParentMethods
Bases: object

degree_negation(element)
Return the image of element under the degree negation automorphism of the graded module self.

The degree negation is the module automorphism which scales every homogeneous element of degree
𝑘 by (−1)𝑘 (for all 𝑘). This assumes that the module self is Z-graded.

INPUT:
• element – element of the module self

EXAMPLES:
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sage: E.<a,b> = ExteriorAlgebra(QQ)
sage: E.degree_negation((1 + a) * (1 + b))
a*b - a - b + 1
sage: E.degree_negation(E.zero())
0

sage: P = GradedModulesWithBasis(ZZ).example(); P
An example of a graded module with basis: the free module on partitions␣
→˓over Integer Ring
sage: pbp = lambda x: P.basis()[Partition(list(x))]
sage: p = pbp([3,1]) - 2 * pbp([2]) + 4 * pbp([1])
sage: P.degree_negation(p)
-4*P[1] - 2*P[2] + P[3, 1]

quotient_module(submodule, check=True, already_echelonized=False, category=None)
Construct the quotient module self / submodule.

INPUT:
• submodule – a submodule with basis of self, or something that can be turned into one via self.
submodule(submodule)

• check, already_echelonized – passed down to ModulesWithBasis.ParentMethods.
submodule()

• category – (optional) the category of the quotient module

Warning: At this point, this only supports quotients by free submodules admitting a basis in
unitriangular echelon form. In this case, the quotient is also a free module, with a basis consisting
of the retract of a subset of the basis of self.

EXAMPLES:

sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: S = E.submodule([x + y, x*y - y*z, y])
sage: Q = E.quotient_module(S)
sage: Q.category()
Join of Category of quotients of graded modules with basis over Rational␣
→˓Field
and Category of graded vector spaces with basis over Rational Field
and Category of finite dimensional vector spaces with basis over Rational␣
→˓Field

See also:

• Modules.WithBasis.ParentMethods.submodule()
• Rings.ParentMethods.quotient()
• sage.modules.with_basis.subquotient.QuotientModuleWithBasis

submodule(gens, check=True, already_echelonized=False, unitriangular=False, support_order=None,
category=None, *args, **opts)

Return the submodule spanned by a finite set of elements.

INPUT:
• gens – a list or family of elements of self
• check – (default: True) whether to verify that the elements of gens are in self
• already_echelonized – (default: False) whether the elements of gens are already in (not

necessarily reduced) echelon form
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• unitriangular – (default: False) whether the lift morphism is unitriangular
• support_order – (optional) either something that can be converted into a tuple or a key function
• category – (optional) the category of the submodule

If already_echelonized is False, then the generators are put in reduced echelon form using
echelonize(), and reindexed by 0, 1, ....

Warning: At this point, this method only works for finite dimensional submodules and if matrices
can be echelonized over the base ring.

If in addition unitriangular is True, then the generators are made such that the coefficients of the
pivots are 1, so that lifting map is unitriangular.

The basis of the submodule uses the same index set as the generators, and the lifting map sends 𝑦𝑖 to
𝑔𝑒𝑛𝑠[𝑖].

See also:

• ModulesWithBasis.FiniteDimensional.ParentMethods.quotient_module()
• sage.modules.with_basis.subquotient.SubmoduleWithBasis

EXAMPLES:

A graded submodule of a graded module generated by homogeneous elements is naturally graded:

sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: S = E.submodule([x + y, x*y - y*z])
sage: S.category()
Join of Category of graded vector spaces with basis over Rational Field
and Category of subobjects of filtered modules with basis over Rational␣
→˓Field
and Category of finite dimensional vector spaces with basis over Rational␣
→˓Field
sage: S.basis()[0].degree()
1
sage: S.basis()[1].degree()
2

We check on the echelonized basis:

sage: Sp = E.submodule([1, x + y + 5, x*y - y*z + x + y - 2])
sage: Sp.category()
Join of Category of graded vector spaces with basis over Rational Field
and Category of subobjects of filtered modules with basis over Rational␣
→˓Field
and Category of finite dimensional vector spaces with basis over Rational␣
→˓Field

If it is generated by inhomogeneous elements, then it is filtered by default:

sage: F = E.submodule([x + y*z, x*z + y*x])
sage: F.category()
Join of Category of subobjects of filtered modules with basis over Rational␣
→˓Field
and Category of filtered vector spaces with basis over Rational Field
and Category of finite dimensional vector spaces with basis over Rational␣
→˓Field (continues on next page)
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(continued from previous page)

If category is specified, then it does not give any extra structure to the submodule (we can think of
this as applying the forgetful functor):

sage: SM = E.submodule([x + y, x*y - y*z], category=ModulesWithBasis(QQ))
sage: SM.category()
Join of Category of finite dimensional vector spaces with basis over␣
→˓Rational Field
and Category of subobjects of sets
sage: FM = E.submodule([x + 1, x*y - x*y*z], category=ModulesWithBasis(QQ))
sage: FM.category()
Join of Category of finite dimensional vector spaces with basis over␣
→˓Rational Field
and Category of subobjects of sets

If we have specified that this is a graded submodule of a graded module, then the echelonized elements
must be homogeneous:

sage: Cat = ModulesWithBasis(QQ).Graded().Subobjects()
sage: E.submodule([x + y, x*y - 1], category=Cat)
Traceback (most recent call last):
...
ValueError: all of the generators must be homogeneous
sage: E.submodule([x + y, x*y - x - y], category=Cat)
Free module generated by {0, 1} over Rational Field

class Quotients(category, *args)
Bases: sage.categories.quotients.QuotientsCategory

class ElementMethods
Bases: object

degree()
Return the degree of self.

EXAMPLES:

sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: S = E.submodule([x + y, x*y - y*z, y])
sage: Q = E.quotient_module(S)
sage: B = Q.basis()
sage: [B[i].lift() for i in Q.indices()]
[1, z, x*z, y*z, x*y*z]
sage: [B[i].degree() for i in Q.indices()]
[0, 1, 2, 2, 3]

class ParentMethods
Bases: object

degree_on_basis(m)
Return the degree of the basis element indexed by m in self.

EXAMPLES:
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sage: E.<x,y,z> = ExteriorAlgebra(QQ)
sage: S = E.submodule([x + y, x*y - y*z, y])
sage: Q = E.quotient_module(S)
sage: B = Q.basis()
sage: [B[i].lift() for i in Q.indices()]
[1, z, x*z, y*z, x*y*z]
sage: [Q.degree_on_basis(i) for i in Q.indices()]
[0, 1, 2, 2, 3]

4.87 Graphs

class sage.categories.graphs.Graphs(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of graphs.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs(); C
Category of graphs

class Connected(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of connected graphs.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().Connected()
sage: TestSuite(C).run()

extra_super_categories()
Return the extra super categories of self.

A connected graph is also a metric space.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: Graphs().Connected().super_categories() # indirect doctest
[Category of connected topological spaces,
Category of connected simplicial complexes,
Category of graphs,
Category of metric spaces]

class ParentMethods
Bases: object

dimension()
Return the dimension of self as a CW complex.

EXAMPLES:
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sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.dimension()
1

edges()
Return the edges of self.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.edges()
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]

faces()
Return the faces of self.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: sorted(C.faces(), key=lambda x: (x.dimension(), x.value))
[0, 1, 2, 3, 4, (0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]

facets()
Return the facets of self.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.facets()
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]

vertices()
Return the vertices of self.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.vertices()
[0, 1, 2, 3, 4]

super_categories()
EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: Graphs().super_categories()
[Category of simplicial complexes]
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4.88 Group Algebras

This module implements the category of group algebras for arbitrary groups over arbitrary commutative rings. For
details, see sage.categories.algebra_functor.

AUTHOR:

• David Loeffler (2008-08-24): initial version

• Martin Raum (2009-08): update to use new coercion model – see trac ticket #6670.

• John Palmieri (2011-07): more updates to coercion, categories, etc., group algebras constructed using Combi-
natorialFreeModule – see trac ticket #6670.

• Nicolas M. Thiéry (2010-2017), Travis Scrimshaw (2017): generalization to a covariant functorial construction
for monoid algebras, and beyond – see e.g. trac ticket #18700.

class sage.categories.group_algebras.GroupAlgebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

The category of group algebras over a given base ring.

EXAMPLES:

sage: C = Groups().Algebras(ZZ); C
Category of group algebras over Integer Ring
sage: C.super_categories()
[Category of hopf algebras with basis over Integer Ring,
Category of monoid algebras over Integer Ring]

We can also construct this category with:

sage: C is GroupAlgebras(ZZ)
True

Here is how to create the group algebra of a group 𝐺:

sage: G = DihedralGroup(5)
sage: QG = G.algebra(QQ); QG
Algebra of Dihedral group of order 10 as a permutation group over Rational Field

and an example of computation:

sage: g = G.an_element(); g
(1,4)(2,3)
sage: (QG.term(g) + 1)**3
4*() + 4*(1,4)(2,3)

Todo:

• Check which methods would be better located in Monoid.Algebras or Groups.Finite.Algebras.

class ElementMethods
Bases: object

central_form()
Return self expressed in the canonical basis of the center of the group algebra.
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INPUT:
• self – an element of the center of the group algebra

OUTPUT:
• A formal linear combination of the conjugacy class representatives representing its coordinates in

the canonical basis of the center. See Groups.Algebras.ParentMethods.center_basis()
for details.

Warning:

• This method requires the underlying group to have a method
conjugacy_classes_representatives (every permutation group has one, thanks
GAP!).

• This method does not check that the element is indeed central. Use the method Monoids.
Algebras.ElementMethods.is_central() for this purpose.

• This function has a complexity linear in the number of conjugacy classes of the group. One
could easily implement a function whose complexity is linear in the size of the support of
self.

EXAMPLES:

sage: QS3 = SymmetricGroup(3).algebra(QQ)
sage: A = QS3([2,3,1]) + QS3([3,1,2])
sage: A.central_form()
B[(1,2,3)]
sage: QS4 = SymmetricGroup(4).algebra(QQ)
sage: B = sum(len(s.cycle_type())*QS4(s) for s in Permutations(4))
sage: B.central_form()
4*B[()] + 3*B[(1,2)] + 2*B[(1,2)(3,4)] + 2*B[(1,2,3)] + B[(1,2,3,4)]

The following test fails due to a bug involving combinatorial free modules and the coercion system
(see trac ticket #28544):

sage: QG = GroupAlgebras(QQ).example(PermutationGroup([[(1,2,3),(4,5)],[(3,
→˓4)]]))
sage: s = sum(i for i in QG.basis())
sage: s.central_form() # not tested
B[()] + B[(4,5)] + B[(3,4,5)] + B[(2,3)(4,5)] + B[(2,3,4,5)] + B[(1,2)(3,4,
→˓5)] + B[(1,2,3,4,5)]

See also:

• Groups.Algebras.ParentMethods.center_basis()
• Monoids.Algebras.ElementMethods.is_central()

class ParentMethods
Bases: object

antipode_on_basis(g)
Return the antipode of the element g of the basis.

Each basis element g is group-like, and so has antipode 𝑔−1. This method is used to compute the
antipode of any element.

EXAMPLES:
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sage: A = CyclicPermutationGroup(6).algebra(ZZ); A
Algebra of Cyclic group of order 6 as a permutation group over Integer Ring
sage: g = CyclicPermutationGroup(6).an_element();g
(1,2,3,4,5,6)
sage: A.antipode_on_basis(g)
(1,6,5,4,3,2)
sage: a = A.an_element(); a
() + 3*(1,2,3,4,5,6) + 3*(1,3,5)(2,4,6)
sage: a.antipode()
() + 3*(1,5,3)(2,6,4) + 3*(1,6,5,4,3,2)

center_basis()
Return a basis of the center of the group algebra.

The canonical basis of the center of the group algebra is the family (𝑓𝜎)𝜎∈𝐶 , where 𝐶 is any collection
of representatives of the conjugacy classes of the group, and 𝑓𝜎 is the sum of the elements in the
conjugacy class of 𝜎.

OUTPUT:
• tuple of elements of self

Warning:

• This method requires the underlying group to have a method conjugacy_classes (every
permutation group has one, thanks GAP!).

EXAMPLES:

sage: SymmetricGroup(3).algebra(QQ).center_basis()
((), (2,3) + (1,2) + (1,3), (1,2,3) + (1,3,2))

See also:

• Groups.Algebras.ElementMethods.central_form()
• Monoids.Algebras.ElementMethods.is_central()

coproduct_on_basis(g)
Return the coproduct of the element g of the basis.

Each basis element g is group-like. This method is used to compute the coproduct of any element.

EXAMPLES:

sage: A = CyclicPermutationGroup(6).algebra(ZZ); A
Algebra of Cyclic group of order 6 as a permutation group over Integer Ring
sage: g = CyclicPermutationGroup(6).an_element(); g
(1,2,3,4,5,6)
sage: A.coproduct_on_basis(g)
(1,2,3,4,5,6) # (1,2,3,4,5,6)
sage: a = A.an_element(); a
() + 3*(1,2,3,4,5,6) + 3*(1,3,5)(2,4,6)
sage: a.coproduct()
() # () + 3*(1,2,3,4,5,6) # (1,2,3,4,5,6) + 3*(1,3,5)(2,4,6) # (1,3,5)(2,4,
→˓6)
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counit(x)
Return the counit of the element x of the group algebra.

This is the sum of all coefficients of x with respect to the standard basis of the group algebra.

EXAMPLES:

sage: A = CyclicPermutationGroup(6).algebra(ZZ); A
Algebra of Cyclic group of order 6 as a permutation group over Integer Ring
sage: a = A.an_element(); a
() + 3*(1,2,3,4,5,6) + 3*(1,3,5)(2,4,6)
sage: a.counit()
7

counit_on_basis(g)
Return the counit of the element g of the basis.

Each basis element g is group-like, and so has counit 1. This method is used to compute the counit of
any element.

EXAMPLES:

sage: A = CyclicPermutationGroup(6).algebra(ZZ);A
Algebra of Cyclic group of order 6 as a permutation group over Integer Ring
sage: g = CyclicPermutationGroup(6).an_element();g
(1,2,3,4,5,6)
sage: A.counit_on_basis(g)
1

group()
Return the underlying group of the group algebra.

EXAMPLES:

sage: GroupAlgebras(QQ).example(GL(3, GF(11))).group()
General Linear Group of degree 3 over Finite Field of size 11
sage: SymmetricGroup(10).algebra(QQ).group()
Symmetric group of order 10! as a permutation group

is_integral_domain(proof=True)
Return True if self is an integral domain.

This is false unless self.base_ring() is an integral domain, and even then it is false unless self.
group() has no nontrivial elements of finite order. I don’t know if this condition suffices, but it
obviously does if the group is abelian and finitely generated.

EXAMPLES:

sage: GroupAlgebra(SymmetricGroup(2)).is_integral_domain()
False
sage: GroupAlgebra(SymmetricGroup(1)).is_integral_domain()
True
sage: GroupAlgebra(SymmetricGroup(1), IntegerModRing(4)).is_integral_
→˓domain()
False
sage: GroupAlgebra(AbelianGroup(1)).is_integral_domain()
True

(continues on next page)
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(continued from previous page)

sage: GroupAlgebra(AbelianGroup(2, [0,2])).is_integral_domain()
False
sage: GroupAlgebra(GL(2, ZZ)).is_integral_domain() # not implemented
False

example(G=None)
Return an example of group algebra.

EXAMPLES:

sage: GroupAlgebras(QQ['x']).example()
Algebra of Dihedral group of order 8 as a permutation group over Univariate␣
→˓Polynomial Ring in x over Rational Field

An other group can be specified as optional argument:

sage: GroupAlgebras(QQ).example(AlternatingGroup(4))
Algebra of Alternating group of order 4!/2 as a permutation group over Rational␣
→˓Field

extra_super_categories()
Implement the fact that the algebra of a group is a Hopf algebra.

EXAMPLES:

sage: C = Groups().Algebras(QQ)
sage: C.extra_super_categories()
[Category of hopf algebras over Rational Field]
sage: sorted(C.super_categories(), key=str)
[Category of hopf algebras with basis over Rational Field,
Category of monoid algebras over Rational Field]

4.89 Groupoid

class sage.categories.groupoid.Groupoid(G=None)
Bases: sage.categories.category.CategoryWithParameters

The category of groupoids, for a set (usually a group) 𝐺.

FIXME:

• Groupoid or Groupoids ?

• definition and link with Wikipedia article Groupoid

• Should Groupoid inherit from Category_over_base?

EXAMPLES:

sage: Groupoid(DihedralGroup(3))
Groupoid with underlying set Dihedral group of order 6 as a permutation group

classmethod an_instance()
Returns an instance of this class.

EXAMPLES:
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sage: Groupoid.an_instance() # indirect doctest
Groupoid with underlying set Symmetric group of order 8! as a permutation group

super_categories()
EXAMPLES:

sage: Groupoid(DihedralGroup(3)).super_categories()
[Category of sets]

4.90 Groups

class sage.categories.groups.Groups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of (multiplicative) groups, i.e. monoids with inverses.

EXAMPLES:

sage: Groups()
Category of groups
sage: Groups().super_categories()
[Category of monoids, Category of inverse unital magmas]

Algebras
alias of sage.categories.group_algebras.GroupAlgebras

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of groups constructed as Cartesian products of groups.

This construction gives the direct product of groups. See Wikipedia article Direct_product and Wikipedia
article Direct_product_of_groups for more information.

class ElementMethods
Bases: object

multiplicative_order()
Return the multiplicative order of this element.

EXAMPLES:

sage: G1 = SymmetricGroup(3)
sage: G2 = SL(2,3)
sage: G = cartesian_product([G1,G2])
sage: G((G1.gen(0), G2.gen(1))).multiplicative_order()
12

class ParentMethods
Bases: object

group_generators()
Return the group generators of self.

EXAMPLES:
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sage: C5 = CyclicPermutationGroup(5)
sage: C4 = CyclicPermutationGroup(4)
sage: S4 = SymmetricGroup(3)
sage: C = cartesian_product([C5, C4, S4])
sage: C.group_generators()
Family (((1,2,3,4,5), (), ()),

((), (1,2,3,4), ()),
((), (), (1,2)),
((), (), (2,3)))

We check the other portion of trac ticket #16718 is fixed:

sage: len(C.j_classes())
1

An example with an infinitely generated group (a better output is needed):

sage: G = Groups.free([1,2])
sage: H = Groups.free(ZZ)
sage: C = cartesian_product([G, H])
sage: C.monoid_generators()
Lazy family (gen(i))_{i in The Cartesian product of (...)}

order()
Return the cardinality of self.

EXAMPLES:

sage: C = cartesian_product([SymmetricGroup(10), SL(2,GF(3))])
sage: C.order()
87091200

Todo: this method is just here to prevent FiniteGroups.ParentMethods to call
_cardinality_from_iterator.

extra_super_categories()
A Cartesian product of groups is endowed with a natural group structure.

EXAMPLES:

sage: C = Groups().CartesianProducts()
sage: C.extra_super_categories()
[Category of groups]
sage: sorted(C.super_categories(), key=str)
[Category of Cartesian products of inverse unital magmas,
Category of Cartesian products of monoids,
Category of groups]

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Category of commutative (abelian) groups.

A group 𝐺 is commutative if 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 ∈ 𝐺.
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static free(index_set=None, names=None, **kwds)
Return the free commutative group.

INPUT:
• index_set – (optional) an index set for the generators; if an integer, then this represents
{0, 1, . . . , 𝑛− 1}

• names – a string or list/tuple/iterable of strings (default: 'x'); the generator names or name prefix
EXAMPLES:

sage: Groups.Commutative.free(index_set=ZZ)
Free abelian group indexed by Integer Ring
sage: Groups().Commutative().free(ZZ)
Free abelian group indexed by Integer Ring
sage: Groups().Commutative().free(5)
Multiplicative Abelian group isomorphic to Z x Z x Z x Z x Z
sage: F.<x,y,z> = Groups().Commutative().free(); F
Multiplicative Abelian group isomorphic to Z x Z x Z

class ElementMethods
Bases: object

conjugacy_class()
Return the conjugacy class of self.

EXAMPLES:

sage: D = DihedralGroup(5)
sage: g = D((1,3,5,2,4))
sage: g.conjugacy_class()
Conjugacy class of (1,3,5,2,4) in Dihedral group of order 10 as a␣
→˓permutation group

sage: H = MatrixGroup([matrix(GF(5),2,[1,2, -1, 1]), matrix(GF(5),2, [1,1,␣
→˓0,1])])
sage: h = H(matrix(GF(5),2,[1,2, -1, 1]))
sage: h.conjugacy_class()
Conjugacy class of [1 2]
[4 1] in Matrix group over Finite Field of size 5 with 2 generators (
[1 2] [1 1]
[4 1], [0 1]
)

sage: G = SL(2, GF(2))
sage: g = G.gens()[0]
sage: g.conjugacy_class()
Conjugacy class of [1 1]
[0 1] in Special Linear Group of degree 2 over Finite Field of size 2

sage: G = SL(2, QQ)
sage: g = G([[1,1],[0,1]])
sage: g.conjugacy_class()
Conjugacy class of [1 1]
[0 1] in Special Linear Group of degree 2 over Rational Field

Finite
alias of sage.categories.finite_groups.FiniteGroups

502 Chapter 4. Individual Categories



Category Framework, Release 9.7

Lie
alias of sage.categories.lie_groups.LieGroups

class ParentMethods
Bases: object

cayley_table(names='letters', elements=None)
Return the “multiplication” table of this multiplicative group, which is also known as the “Cayley
table”.

Note: The order of the elements in the row and column headings is equal to the order given by the
table’s column_keys() method. The association between the actual elements and the names/symbols
used in the table can also be retrieved as a dictionary with the translation() method.

For groups, this routine should behave identically to the multiplication_table()method for mag-
mas, which applies in greater generality.

INPUT:
• names - the type of names used, values are:

– 'letters' - lowercase ASCII letters are used for a base 26 representation of the elements’
positions in the list given by list(), padded to a common width with leading ‘a’s.

– 'digits' - base 10 representation of the elements’ positions in the list given by
column_keys(), padded to a common width with leading zeros.

– 'elements' - the string representations of the elements themselves.
– a list - a list of strings, where the length of the list equals the number of elements.

• elements - default = None. A list of elements of the group, in forms that can be coerced into
the structure, eg. their string representations. This may be used to impose an alternate ordering
on the elements, perhaps when this is used in the context of a particular structure. The default is
to use whatever ordering is provided by the the group, which is reported by the column_keys()
method. Or the elements can be a subset which is closed under the operation. In particular, this
can be used when the base set is infinite.

OUTPUT: An object representing the multiplication table. This is an OperationTable object and
even more documentation can be found there.

EXAMPLES:

Permutation groups, matrix groups and abelian groups can all compute their multiplication tables.

sage: G = DiCyclicGroup(3)
sage: T = G.cayley_table()
sage: T.column_keys()
((), (5,6,7), ..., (1,4,2,3)(5,7))
sage: T
* a b c d e f g h i j k l
+------------------------
a| a b c d e f g h i j k l
b| b c a e f d i g h l j k
c| c a b f d e h i g k l j
d| d e f a b c j k l g h i
e| e f d b c a l j k i g h
f| f d e c a b k l j h i g
g| g h i j k l d e f a b c
h| h i g k l j f d e c a b
i| i g h l j k e f d b c a
j| j k l g h i a b c d e f

(continues on next page)
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k| k l j h i g c a b f d e
l| l j k i g h b c a e f d

sage: M = SL(2, 2)
sage: M.cayley_table()
* a b c d e f
+------------
a| a b c d e f
b| b a d c f e
c| c e a f b d
d| d f b e a c
e| e c f a d b
f| f d e b c a

sage: A = AbelianGroup([2, 3])
sage: A.cayley_table()
* a b c d e f
+------------
a| a b c d e f
b| b c a e f d
c| c a b f d e
d| d e f a b c
e| e f d b c a
f| f d e c a b

Lowercase ASCII letters are the default symbols used for the table, but you can also specify the use of
decimal digit strings, or provide your own strings (in the proper order if they have meaning). Also, if
the elements themselves are not too complex, you can choose to just use the string representations of
the elements themselves.

sage: C = CyclicPermutationGroup(11)
sage: C.cayley_table(names='digits')
* 00 01 02 03 04 05 06 07 08 09 10
+---------------------------------

00| 00 01 02 03 04 05 06 07 08 09 10
01| 01 02 03 04 05 06 07 08 09 10 00
02| 02 03 04 05 06 07 08 09 10 00 01
03| 03 04 05 06 07 08 09 10 00 01 02
04| 04 05 06 07 08 09 10 00 01 02 03
05| 05 06 07 08 09 10 00 01 02 03 04
06| 06 07 08 09 10 00 01 02 03 04 05
07| 07 08 09 10 00 01 02 03 04 05 06
08| 08 09 10 00 01 02 03 04 05 06 07
09| 09 10 00 01 02 03 04 05 06 07 08
10| 10 00 01 02 03 04 05 06 07 08 09

sage: G = QuaternionGroup()
sage: names = ['1', 'I', '-1', '-I', 'J', '-K', '-J', 'K']
sage: G.cayley_table(names=names)
* 1 I -1 -I J -K -J K
+------------------------

(continues on next page)
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1| 1 I -1 -I J -K -J K
I| I -1 -I 1 K J -K -J
-1| -1 -I 1 I -J K J -K
-I| -I 1 I -1 -K -J K J
J| J -K -J K -1 -I 1 I
-K| -K -J K J I -1 -I 1
-J| -J K J -K 1 I -1 -I
K| K J -K -J -I 1 I -1

sage: A = AbelianGroup([2,2])
sage: A.cayley_table(names='elements')

* 1 f1 f0 f0*f1
+------------------------
1| 1 f1 f0 f0*f1
f1| f1 1 f0*f1 f0
f0| f0 f0*f1 1 f1

f0*f1| f0*f1 f0 f1 1

The change_names() routine behaves similarly, but changes an existing table “in-place.”

sage: G = AlternatingGroup(3)
sage: T = G.cayley_table()
sage: T.change_names('digits')
sage: T
* 0 1 2
+------
0| 0 1 2
1| 1 2 0
2| 2 0 1

For an infinite group, you can still work with finite sets of elements, provided the set is closed under
multiplication. Elements will be coerced into the group as part of setting up the table.

sage: G = SL(2,ZZ)
sage: G
Special Linear Group of degree 2 over Integer Ring
sage: identity = matrix(ZZ, [[1,0], [0,1]])
sage: G.cayley_table(elements=[identity, -identity])
* a b
+----
a| a b
b| b a

The OperationTable class provides even greater flexibility, including changing the operation. Here is
one such example, illustrating the computation of commutators. commutator is defined as a function
of two variables, before being used to build the table. From this, the commutator subgroup seems
obvious, and creating a Cayley table with just these three elements confirms that they form a closed
subset in the group.

sage: from sage.matrix.operation_table import OperationTable
sage: G = DiCyclicGroup(3)
sage: commutator = lambda x, y: x*y*x^-1*y^-1

(continues on next page)
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sage: T = OperationTable(G, commutator)
sage: T
. a b c d e f g h i j k l
+------------------------
a| a a a a a a a a a a a a
b| a a a a a a c c c c c c
c| a a a a a a b b b b b b
d| a a a a a a a a a a a a
e| a a a a a a c c c c c c
f| a a a a a a b b b b b b
g| a b c a b c a c b a c b
h| a b c a b c b a c b a c
i| a b c a b c c b a c b a
j| a b c a b c a c b a c b
k| a b c a b c b a c b a c
l| a b c a b c c b a c b a

sage: trans = T.translation()
sage: comm = [trans['a'], trans['b'], trans['c']]
sage: comm
[(), (5,6,7), (5,7,6)]
sage: P = G.cayley_table(elements=comm)
sage: P
* a b c
+------
a| a b c
b| b c a
c| c a b

Todo: Arrange an ordering of elements into cosets of a normal subgroup close to size
√
𝑛. Then the

quotient group structure is often apparent in the table. See comments on trac ticket #7555.

AUTHOR:
• Rob Beezer (2010-03-15)

conjugacy_class(g)
Return the conjugacy class of the element g.

This is a fall-back method for groups not defined over GAP.

EXAMPLES:

sage: A = AbelianGroup([2,2])
sage: c = A.conjugacy_class(A.an_element())
sage: type(c)
<class 'sage.groups.conjugacy_classes.ConjugacyClass_with_category'>

group_generators()
Return group generators for self.

This default implementation calls gens(), for backward compatibility.

EXAMPLES:
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sage: A = AlternatingGroup(4)
sage: A.group_generators()
Family ((2,3,4), (1,2,3))

holomorph()
The holomorph of a group

The holomorph of a group 𝐺 is the semidirect product 𝐺o𝑖𝑑𝐴𝑢𝑡(𝐺), where 𝑖𝑑 is the identity function
on 𝐴𝑢𝑡(𝐺), the automorphism group of 𝐺.

See Wikipedia article Holomorph (mathematics)

EXAMPLES:

sage: G = Groups().example()
sage: G.holomorph()
Traceback (most recent call last):
...
NotImplementedError: holomorph of General Linear Group of degree 4 over␣
→˓Rational Field not yet implemented

monoid_generators()
Return the generators of self as a monoid.

Let 𝐺 be a group with generating set 𝑋 . In general, the generating set of 𝐺 as a monoid is given by
𝑋 ∪𝑋−1, where 𝑋−1 is the set of inverses of 𝑋 . If 𝐺 is a finite group, then the generating set as a
monoid is 𝑋 .

EXAMPLES:

sage: A = AlternatingGroup(4)
sage: A.monoid_generators()
Family ((2,3,4), (1,2,3))
sage: F.<x,y> = FreeGroup()
sage: F.monoid_generators()
Family (x, y, x^-1, y^-1)

semidirect_product(N, mapping, check=True)
The semi-direct product of two groups

EXAMPLES:

sage: G = Groups().example()
sage: G.semidirect_product(G,Morphism(G,G))
Traceback (most recent call last):
...
NotImplementedError: semidirect product of General Linear Group of degree 4␣
→˓over Rational Field and General Linear Group of degree 4 over Rational␣
→˓Field not yet implemented

class Topological(category, *args)
Bases: sage.categories.topological_spaces.TopologicalSpacesCategory

Category of topological groups.

A topological group 𝐺 is a group which has a topology such that multiplication and taking inverses are
continuous functions.

REFERENCES:
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• Wikipedia article Topological_group

example()
EXAMPLES:

sage: Groups().example()
General Linear Group of degree 4 over Rational Field

static free(index_set=None, names=None, **kwds)
Return the free group.

INPUT:

• index_set – (optional) an index set for the generators; if an integer, then this represents {0, 1, . . . , 𝑛−
1}

• names – a string or list/tuple/iterable of strings (default: 'x'); the generator names or name prefix

When the index set is an integer or only variable names are given, this returns FreeGroup_class, which
currently has more features due to the interface with GAP than IndexedFreeGroup.

EXAMPLES:

sage: Groups.free(index_set=ZZ)
Free group indexed by Integer Ring
sage: Groups().free(ZZ)
Free group indexed by Integer Ring
sage: Groups().free(5)
Free Group on generators {x0, x1, x2, x3, x4}
sage: F.<x,y,z> = Groups().free(); F
Free Group on generators {x, y, z}

4.91 Hecke modules

class sage.categories.hecke_modules.HeckeModules(R)
Bases: sage.categories.category_types.Category_module

The category of Hecke modules.

A Hecke module is a module 𝑀 over the emph{anemic} Hecke algebra, i.e., the Hecke algebra generated by
Hecke operators 𝑇𝑛 with 𝑛 coprime to the level of 𝑀 . (Every Hecke module defines a level function, which is
a positive integer.) The reason we require that 𝑀 only be a module over the anemic Hecke algebra is that many
natural maps, e.g., degeneracy maps, Atkin-Lehner operators, etc., are T-module homomorphisms; but they are
homomorphisms over the anemic Hecke algebra.

EXAMPLES:

We create the category of Hecke modules over Q:

sage: C = HeckeModules(RationalField()); C
Category of Hecke modules over Rational Field

TODO: check that this is what we want:

sage: C.super_categories()
[Category of vector spaces with basis over Rational Field]

508 Chapter 4. Individual Categories

https://en.wikipedia.org/wiki/Topological_group
../../../../../../html/en/reference/groups/sage/groups/free_group.html#sage.groups.free_group.FreeGroup_class
../../../../../../html/en/reference/groups/sage/groups/indexed_free_group.html#sage.groups.indexed_free_group.IndexedFreeGroup


Category Framework, Release 9.7

# [Category of vector spaces over Rational Field]

Note that the base ring can be an arbitrary commutative ring:

sage: HeckeModules(IntegerRing())
Category of Hecke modules over Integer Ring
sage: HeckeModules(FiniteField(5))
Category of Hecke modules over Finite Field of size 5

The base ring doesn’t have to be a principal ideal domain:

sage: HeckeModules(PolynomialRing(IntegerRing(), 'x'))
Category of Hecke modules over Univariate Polynomial Ring in x over Integer Ring

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

class ParentMethods
Bases: object

extra_super_categories()

class ParentMethods
Bases: object

super_categories()
EXAMPLES:

sage: HeckeModules(QQ).super_categories()
[Category of vector spaces with basis over Rational Field]

4.92 Highest Weight Crystals

class sage.categories.highest_weight_crystals.HighestWeightCrystalHomset(X, Y,
category=None)

Bases: sage.categories.crystals.CrystalHomset

The set of crystal morphisms from a highest weight crystal to another crystal.

See also:

See sage.categories.crystals.CrystalHomset for more information.

Element
alias of HighestWeightCrystalMorphism

class sage.categories.highest_weight_crystals.HighestWeightCrystalMorphism(parent, on_gens,
car-
tan_type=None,
virtualiza-
tion=None,
scal-
ing_factors=None,
gens=None,
check=True)

Bases: sage.categories.crystals.CrystalMorphismByGenerators

A virtual crystal morphism whose domain is a highest weight crystal.

4.92. Highest Weight Crystals 509



Category Framework, Release 9.7

INPUT:

• parent – a homset

• on_gens – a function or list that determines the image of the generators (if given a list, then this uses the
order of the generators of the domain) of the domain under self

• cartan_type – (optional) a Cartan type; the default is the Cartan type of the domain

• virtualization – (optional) a dictionary whose keys are in the index set of the domain and whose values
are lists of entries in the index set of the codomain

• scaling_factors – (optional) a dictionary whose keys are in the index set of the domain and whose
values are scaling factors for the weight, 𝜀 and 𝜙

• gens – (optional) a list of generators to define the morphism; the default is to use the highest weight vectors
of the crystal

• check – (default: True) check if the crystal morphism is valid

class sage.categories.highest_weight_crystals.HighestWeightCrystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of highest weight crystals.

A crystal is highest weight if it is acyclic; in particular, every connected component has a unique highest weight
element, and that element generate the component.

EXAMPLES:

sage: C = HighestWeightCrystals()
sage: C
Category of highest weight crystals
sage: C.super_categories()
[Category of crystals]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1

class ElementMethods
Bases: object

string_parameters(word=None)
Return the string parameters of self corresponding to the reduced word word.

Given a reduced expression 𝑤 = 𝑠𝑖1 · · · 𝑠𝑖𝑘 , the string parameters of 𝑏 ∈ 𝐵 corresponding to 𝑤 are
(𝑎1, . . . , 𝑎𝑘) such that

𝑒𝑎𝑚
𝑖𝑚
· · · 𝑒𝑎1

𝑖1
𝑏 ̸= 0

𝑒𝑎𝑚+1
𝑖𝑚

· · · 𝑒𝑎1
𝑖1
𝑏 = 0

for all 1 ≤ 𝑚 ≤ 𝑘.

For connected components isomorphic to 𝐵(𝜆) or 𝐵(∞), if 𝑤 = 𝑤0 is the longest element of the
Weyl group, then the path determined by the string parametrization terminates at the highest weight
vector.

INPUT:
• word – a word in the alphabet of the index set; if not specified and we are in finite type, then this

will be some reduced expression for the long element determined by the Weyl group
EXAMPLES:
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sage: B = crystals.infinity.NakajimaMonomials(['A',3])
sage: mg = B.highest_weight_vector()
sage: w0 = [1,2,1,3,2,1]
sage: mg.string_parameters(w0)
[0, 0, 0, 0, 0, 0]
sage: mg.f_string([1]).string_parameters(w0)
[1, 0, 0, 0, 0, 0]
sage: mg.f_string([1,1,1]).string_parameters(w0)
[3, 0, 0, 0, 0, 0]
sage: mg.f_string([1,1,1,2,2]).string_parameters(w0)
[1, 2, 2, 0, 0, 0]
sage: mg.f_string([1,1,1,2,2]) == mg.f_string([1,1,2,2,1])
True
sage: x = mg.f_string([1,1,1,2,2,1,3,3,2,1,1,1])
sage: x.string_parameters(w0)
[4, 1, 1, 2, 2, 2]
sage: x.string_parameters([3,2,1,3,2,3])
[2, 3, 7, 0, 0, 0]
sage: x == mg.f_string([1]*7 + [2]*3 + [3]*2)
True

sage: B = crystals.infinity.Tableaux("A5")
sage: b = B(rows=[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,6,6,6,6,6,6],
....: [2,2,2,2,2,2,2,2,2,4,5,5,5,6],
....: [3,3,3,3,3,3,3,5],
....: [4,4,4,6,6,6],
....: [5,6]])
sage: b.string_parameters([1,2,1,3,2,1,4,3,2,1,5,4,3,2,1])
[0, 1, 1, 1, 1, 0, 4, 4, 3, 0, 11, 10, 7, 7, 6]

sage: B = crystals.infinity.Tableaux("G2")
sage: b = B(rows=[[1,1,1,1,1,3,3,0,-3,-3,-2,-2,-1,-1,-1,-1],[2,3,3,3]])
sage: b.string_parameters([2,1,2,1,2,1])
[5, 13, 11, 15, 4, 4]
sage: b.string_parameters([1,2,1,2,1,2])
[7, 12, 15, 8, 10, 0]

sage: C = crystals.Tableaux(['C',2], shape=[2,1])
sage: mg = C.highest_weight_vector()
sage: lw = C.lowest_weight_vectors()[0]
sage: lw.string_parameters([1,2,1,2])
[1, 2, 3, 1]
sage: lw.string_parameters([2,1,2,1])
[1, 3, 2, 1]
sage: lw.e_string([2,1,1,1,2,2,1]) == mg
True
sage: lw.e_string([1,2,2,1,1,1,2]) == mg
True

class ParentMethods
Bases: object
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connected_components_generators()
Returns the highest weight vectors of self

This default implementation selects among the module generators those that are highest weight, and
caches the result. A crystal element 𝑏 is highest weight if 𝑒𝑖(𝑏) = 0 for all 𝑖 in the index set.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C.highest_weight_vectors()
(1,)

sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C,C,generators=[[C(2),C(1),C(1)],[C(1),
→˓C(2),C(1)]])
sage: T.highest_weight_vectors()
([2, 1, 1], [1, 2, 1])

digraph(subset=None, index_set=None, depth=None)
Return the DiGraph associated to self.

INPUT:
• subset – (optional) a subset of vertices for which the digraph should be constructed
• index_set – (optional) the index set to draw arrows
• depth – the depth to draw; optional only for finite crystals

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: T.digraph()
Digraph on 8 vertices
sage: S = T.subcrystal(max_depth=2)
sage: len(S)
5
sage: G = T.digraph(subset=list(S))
sage: G.is_isomorphic(T.digraph(depth=2), edge_labels=True)
True

highest_weight_vector()
Returns the highest weight vector if there is a single one; otherwise, raises an error.

Caveat: this assumes that highest_weight_vectors() returns a list or tuple.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C.highest_weight_vector()
1

highest_weight_vectors()
Returns the highest weight vectors of self

This default implementation selects among the module generators those that are highest weight, and
caches the result. A crystal element 𝑏 is highest weight if 𝑒𝑖(𝑏) = 0 for all 𝑖 in the index set.

EXAMPLES:
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sage: C = crystals.Letters(['A',5])
sage: C.highest_weight_vectors()
(1,)

sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C,C,generators=[[C(2),C(1),C(1)],[C(1),
→˓C(2),C(1)]])
sage: T.highest_weight_vectors()
([2, 1, 1], [1, 2, 1])

lowest_weight_vectors()
Return the lowest weight vectors of self.

This default implementation selects among all elements of the crystal those that are lowest weight, and
cache the result. A crystal element 𝑏 is lowest weight if 𝑓𝑖(𝑏) = 0 for all 𝑖 in the index set.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C.lowest_weight_vectors()
(6,)

sage: C = crystals.Letters(['A',2])
sage: T = crystals.TensorProduct(C,C,C,generators=[[C(2),C(1),C(1)],[C(1),
→˓C(2),C(1)]])
sage: T.lowest_weight_vectors()
([3, 2, 3], [3, 3, 2])

q_dimension(q=None, prec=None, use_product=False)
Return the 𝑞-dimension of self.

Let 𝐵(𝜆) denote a highest weight crystal. Recall that the degree of the 𝜇-weight space of 𝐵(𝜆) (under
the principal gradation) is equal to ⟨𝜌∨, 𝜆 − 𝜇⟩ where ⟨𝜌∨, 𝛼𝑖⟩ = 1 for all 𝑖 ∈ 𝐼 (in particular, take
𝜌∨ =

∑︀
𝑖∈𝐼 ℎ𝑖).

The 𝑞-dimension of a highest weight crystal 𝐵(𝜆) is defined as

dim𝑞 𝐵(𝜆) :=
∑︁
𝑗≥0

dim(𝐵𝑗)𝑞
𝑗 ,

where 𝐵𝑗 denotes the degree 𝑗 portion of 𝐵(𝜆). This can be expressed as the product

dim𝑞 𝐵(𝜆) =
∏︁

𝛼∨∈Δ∨
+

(︃
1− 𝑞⟨𝜆+𝜌,𝛼∨⟩

1− 𝑞⟨𝜌,𝛼∨⟩

)︃mult𝛼

,

where ∆∨
+ denotes the set of positive coroots. Taking the limit as 𝑞 → 1 gives the dimension of 𝐵(𝜆).

For more information, see [Ka1990] Section 10.10.

INPUT:
• q – the (generic) parameter 𝑞
• prec – (default: None) The precision of the power series ring to use if the crystal is not known to

be finite (i.e. the number of terms returned). If None, then the result is returned as a lazy power
series.

• use_product – (default: False) if we have a finite crystal and True, use the product formula
EXAMPLES:
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sage: C = crystals.Tableaux(['A',2], shape=[2,1])
sage: qdim = C.q_dimension(); qdim
q^4 + 2*q^3 + 2*q^2 + 2*q + 1
sage: qdim(1)
8
sage: len(C) == qdim(1)
True
sage: C.q_dimension(use_product=True) == qdim
True
sage: C.q_dimension(prec=20)
q^4 + 2*q^3 + 2*q^2 + 2*q + 1
sage: C.q_dimension(prec=2)
2*q + 1

sage: R.<t> = QQ[]
sage: C.q_dimension(q=t^2)
t^8 + 2*t^6 + 2*t^4 + 2*t^2 + 1

sage: C = crystals.Tableaux(['A',2], shape=[5,2])
sage: C.q_dimension()
q^10 + 2*q^9 + 4*q^8 + 5*q^7 + 6*q^6 + 6*q^5
+ 6*q^4 + 5*q^3 + 4*q^2 + 2*q + 1

sage: C = crystals.Tableaux(['B',2], shape=[2,1])
sage: qdim = C.q_dimension(); qdim
q^10 + 2*q^9 + 3*q^8 + 4*q^7 + 5*q^6 + 5*q^5
+ 5*q^4 + 4*q^3 + 3*q^2 + 2*q + 1
sage: qdim == C.q_dimension(use_product=True)
True

sage: C = crystals.Tableaux(['D',4], shape=[2,1])
sage: C.q_dimension()
q^16 + 2*q^15 + 4*q^14 + 7*q^13 + 10*q^12 + 13*q^11
+ 16*q^10 + 18*q^9 + 18*q^8 + 18*q^7 + 16*q^6 + 13*q^5
+ 10*q^4 + 7*q^3 + 4*q^2 + 2*q + 1

We check with a finite tensor product:

sage: TP = crystals.TensorProduct(C, C)
sage: TP.cardinality()
25600
sage: qdim = TP.q_dimension(use_product=True); qdim # long time
q^32 + 2*q^31 + 8*q^30 + 15*q^29 + 34*q^28 + 63*q^27 + 110*q^26
+ 175*q^25 + 276*q^24 + 389*q^23 + 550*q^22 + 725*q^21
+ 930*q^20 + 1131*q^19 + 1362*q^18 + 1548*q^17 + 1736*q^16
+ 1858*q^15 + 1947*q^14 + 1944*q^13 + 1918*q^12 + 1777*q^11
+ 1628*q^10 + 1407*q^9 + 1186*q^8 + 928*q^7 + 720*q^6
+ 498*q^5 + 342*q^4 + 201*q^3 + 117*q^2 + 48*q + 26
sage: qdim(1) # long time
25600
sage: TP.q_dimension() == qdim # long time
True

The 𝑞-dimensions of infinite crystals are returned as formal power series:
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sage: C = crystals.LSPaths(['A',2,1], [1,0,0])
sage: C.q_dimension(prec=5)
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + O(q^5)
sage: C.q_dimension(prec=10)
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6
+ 9*q^7 + 13*q^8 + 16*q^9 + O(q^10)
sage: qdim = C.q_dimension(); qdim
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6
+ 9*q^7 + 13*q^8 + 16*q^9 + 22*q^10 + O(x^11)
sage: qdim.compute_coefficients(15)
sage: qdim
1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6
+ 9*q^7 + 13*q^8 + 16*q^9 + 22*q^10 + 27*q^11
+ 36*q^12 + 44*q^13 + 57*q^14 + 70*q^15 + O(x^16)

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of highest weight crystals constructed by tensor product of highest weight crystals.

class ParentMethods
Bases: object

Implements operations on tensor products of crystals.

highest_weight_vectors()
Return the highest weight vectors of self.

This works by using a backtracing algorithm since if 𝑏2 ⊗ 𝑏1 is highest weight then 𝑏1 is highest
weight.

EXAMPLES:

sage: C = crystals.Tableaux(['D',4], shape=[2,2])
sage: D = crystals.Tableaux(['D',4], shape=[1])
sage: T = crystals.TensorProduct(D, C)
sage: T.highest_weight_vectors()
([[[1]], [[1, 1], [2, 2]]],
[[[3]], [[1, 1], [2, 2]]],
[[[-2]], [[1, 1], [2, 2]]])
sage: L = filter(lambda x: x.is_highest_weight(), T)
sage: tuple(L) == T.highest_weight_vectors()
True

highest_weight_vectors_iterator()
Iterate over the highest weight vectors of self.

This works by using a backtracing algorithm since if 𝑏2 ⊗ 𝑏1 is highest weight then 𝑏1 is highest
weight.

EXAMPLES:

sage: C = crystals.Tableaux(['D',4], shape=[2,2])
sage: D = crystals.Tableaux(['D',4], shape=[1])
sage: T = crystals.TensorProduct(D, C)
sage: tuple(T.highest_weight_vectors_iterator())
([[[1]], [[1, 1], [2, 2]]],

(continues on next page)
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(continued from previous page)

[[[3]], [[1, 1], [2, 2]]],
[[[-2]], [[1, 1], [2, 2]]])
sage: L = filter(lambda x: x.is_highest_weight(), T)
sage: tuple(L) == tuple(T.highest_weight_vectors_iterator())
True

extra_super_categories()
EXAMPLES:

sage: HighestWeightCrystals().TensorProducts().extra_super_categories()
[Category of highest weight crystals]

additional_structure()
Return None.

Indeed, the category of highest weight crystals defines no additional structure: it only guarantees the exis-
tence of a unique highest weight element in each component.

See also:

Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

sage: HighestWeightCrystals().additional_structure()

example()
Returns an example of highest weight crystals, as per Category.example().

EXAMPLES:

sage: B = HighestWeightCrystals().example(); B
Highest weight crystal of type A_3 of highest weight omega_1

super_categories()
EXAMPLES:

sage: HighestWeightCrystals().super_categories()
[Category of crystals]

4.93 Hopf algebras

class sage.categories.hopf_algebras.HopfAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of Hopf algebras.

EXAMPLES:
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sage: HopfAlgebras(QQ)
Category of hopf algebras over Rational Field
sage: HopfAlgebras(QQ).super_categories()
[Category of bialgebras over Rational Field]

class DualCategory(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of Hopf algebras constructed as dual of a Hopf algebra

class ParentMethods
Bases: object

class ElementMethods
Bases: object

antipode()
Return the antipode of self

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral␣
→˓group of order 6 as a permutation group over Rational Field
sage: [a,b] = A.algebra_generators()
sage: a, a.antipode()
(B[(1,2,3)], B[(1,3,2)])
sage: b, b.antipode()
(B[(1,3)], B[(1,3)])

class Morphism(s=None)
Bases: sage.categories.category.Category

The category of Hopf algebra morphisms.

class ParentMethods
Bases: object

class Realizations(category, *args)
Bases: sage.categories.realizations.RealizationsCategory

class ParentMethods
Bases: object

antipode_by_coercion(x)
Returns the image of x by the antipode

This default implementation coerces to the default realization, computes the antipode there, and
coerces the result back.

EXAMPLES:

sage: N = NonCommutativeSymmetricFunctions(QQ)
sage: R = N.ribbon()
sage: R.antipode_by_coercion.__module__
'sage.categories.hopf_algebras'
sage: R.antipode_by_coercion(R[1,3,1])
-R[2, 1, 2]
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class Super(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super Hopf algebras.

Note: A super Hopf algebra is not simply a Hopf algebra with a Z/2Z grading due to the signed bialgebra
compatibility conditions.

class ElementMethods
Bases: object

antipode()
Return the antipode of self.

EXAMPLES:

sage: A = SteenrodAlgebra(3)
sage: a = A.an_element()
sage: a, a.antipode()
(2 Q_1 Q_3 P(2,1), Q_1 Q_3 P(2,1))

dual()
Return the dual category.

EXAMPLES:

The category of super Hopf algebras over any field is self dual:

sage: C = HopfAlgebras(QQ).Super()
sage: C.dual()
Category of super hopf algebras over Rational Field

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of Hopf algebras constructed by tensor product of Hopf algebras

class ElementMethods
Bases: object

class ParentMethods
Bases: object

extra_super_categories()
EXAMPLES:

sage: C = HopfAlgebras(QQ).TensorProducts()
sage: C.extra_super_categories()
[Category of hopf algebras over Rational Field]
sage: sorted(C.super_categories(), key=str)
[Category of hopf algebras over Rational Field,
Category of tensor products of algebras over Rational Field,
Category of tensor products of coalgebras over Rational Field]

WithBasis
alias of sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis

dual()
Return the dual category
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EXAMPLES:

The category of Hopf algebras over any field is self dual:

sage: C = HopfAlgebras(QQ)
sage: C.dual()
Category of hopf algebras over Rational Field

super_categories()
EXAMPLES:

sage: HopfAlgebras(QQ).super_categories()
[Category of bialgebras over Rational Field]

4.94 Hopf algebras with basis

class sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of Hopf algebras with a distinguished basis

EXAMPLES:

sage: C = HopfAlgebrasWithBasis(QQ)
sage: C
Category of hopf algebras with basis over Rational Field
sage: C.super_categories()
[Category of hopf algebras over Rational Field,
Category of bialgebras with basis over Rational Field]

We now show how to use a simple Hopf algebra, namely the group algebra of the dihedral group (see also
AlgebrasWithBasis):

sage: A = C.example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group of␣
→˓order 6 as a permutation group over Rational Field
sage: A.__custom_name = "A"
sage: A.category()
Category of finite dimensional hopf algebras with basis over Rational Field

sage: A.one_basis()
()
sage: A.one()
B[()]

sage: A.base_ring()
Rational Field
sage: A.basis().keys()
Dihedral group of order 6 as a permutation group

sage: [a,b] = A.algebra_generators()
sage: a, b
(B[(1,2,3)], B[(1,3)])

(continues on next page)
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(continued from previous page)

sage: a^3, b^2
(B[()], B[()])
sage: a*b
B[(1,2)]

sage: A.product # todo: not quite ...
<bound method MagmaticAlgebras.WithBasis.ParentMethods._product_from_product_on_
→˓basis_multiply of A>
sage: A.product(b,b)
B[()]

sage: A.zero().coproduct()
0
sage: A.zero().coproduct().parent()
A # A
sage: a.coproduct()
B[(1,2,3)] # B[(1,2,3)]

sage: TestSuite(A).run(verbose=True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_antipode() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_characteristic() . . . pass
running ._test_construction() . . . pass
running ._test_distributivity() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_one() . . . pass
running ._test_pickling() . . . pass
running ._test_prod() . . . pass
running ._test_some_elements() . . . pass
running ._test_zero() . . . pass
sage: A.__class__
<class 'sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra_with_
→˓category'>

(continues on next page)
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sage: A.element_class
<class 'sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra_with_
→˓category.element_class'>

Let us look at the code for implementing A:

sage: A?? # todo: not implemented

class ElementMethods
Bases: object

Filtered
alias of sage.categories.filtered_hopf_algebras_with_basis.
FilteredHopfAlgebrasWithBasis

FiniteDimensional
alias of sage.categories.finite_dimensional_hopf_algebras_with_basis.
FiniteDimensionalHopfAlgebrasWithBasis

Graded
alias of sage.categories.graded_hopf_algebras_with_basis.
GradedHopfAlgebrasWithBasis

class ParentMethods
Bases: object

antipode()
The antipode of this Hopf algebra.

If antipode_basis() is available, this constructs the antipode morphism from self to self by
extending it by linearity. Otherwise, self.antipode_by_coercion() is used, if available.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(ZZ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral␣
→˓group of order 6 as a permutation group over Integer Ring
sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: [a,b] = A.algebra_generators()
sage: a, A.antipode(a)
(B[(1,2,3)], B[(1,3,2)])
sage: b, A.antipode(b)
(B[(1,3)], B[(1,3)])

antipode_on_basis(x)
The antipode of the Hopf algebra on the basis (optional)

INPUT:
• x – an index of an element of the basis of self

Returns the antipode of the basis element indexed by x.

If this method is implemented, then antipode() is defined from this by linearity.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: W = A.basis().keys(); W

(continues on next page)
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Dihedral group of order 6 as a permutation group
sage: w = W.gen(0); w
(1,2,3)
sage: A.antipode_on_basis(w)
B[(1,3,2)]

Super
alias of sage.categories.super_hopf_algebras_with_basis.SuperHopfAlgebrasWithBasis

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of hopf algebras with basis constructed by tensor product of hopf algebras with basis

class ElementMethods
Bases: object

class ParentMethods
Bases: object

extra_super_categories()
EXAMPLES:

sage: C = HopfAlgebrasWithBasis(QQ).TensorProducts()
sage: C.extra_super_categories()
[Category of hopf algebras with basis over Rational Field]
sage: sorted(C.super_categories(), key=str)
[Category of hopf algebras with basis over Rational Field,
Category of tensor products of algebras with basis over Rational Field,
Category of tensor products of hopf algebras over Rational Field]

example(G=None)
Returns an example of algebra with basis:

sage: HopfAlgebrasWithBasis(QQ['x']).example()
An example of Hopf algebra with basis: the group algebra of the Dihedral group␣
→˓of order 6 as a permutation group over Univariate Polynomial Ring in x over␣
→˓Rational Field

An other group can be specified as optional argument:

sage: HopfAlgebrasWithBasis(QQ).example(SymmetricGroup(4))
An example of Hopf algebra with basis: the group algebra of the Symmetric group␣
→˓of order 4! as a permutation group over Rational Field
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4.95 H-trivial semigroups

class sage.categories.h_trivial_semigroups.HTrivialSemigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Finite_extra_super_categories()
Implement the fact that a finite 𝐻-trivial is aperiodic

EXAMPLES:

sage: Semigroups().HTrivial().Finite_extra_super_categories()
[Category of aperiodic semigroups]
sage: Semigroups().HTrivial().Finite() is Semigroups().Aperiodic().Finite()
True

Inverse_extra_super_categories()
Implement the fact that an 𝐻-trivial inverse semigroup is 𝐽-trivial.

Todo: Generalization for inverse semigroups.

Recall that there are two invertibility axioms for a semigroup 𝑆:

• One stating the existence, for all 𝑥, of a local inverse 𝑦 satisfying 𝑥 = 𝑥𝑦𝑥 and 𝑦 = 𝑦𝑥𝑦;

• One stating the existence, for all 𝑥, of a global inverse 𝑦 satisfying 𝑥𝑦 = 𝑦𝑥 = 1, where 1 is the unit
of 𝑆 (which must of course exist).

It is sufficient to have local inverses for 𝐻-triviality to imply 𝐽-triviality. However, at this stage, only
the second axiom is implemented in Sage (see Magmas.Unital.SubcategoryMethods.Inverse()).
Therefore this fact is only implemented for semigroups with global inverses, that is groups. However the
trivial group is the unique 𝐻-trivial group, so this is rather boring.

EXAMPLES:

sage: Semigroups().HTrivial().Inverse_extra_super_categories()
[Category of j trivial semigroups]
sage: Monoids().HTrivial().Inverse()
Category of h trivial groups

4.96 Infinite Enumerated Sets

AUTHORS:

• Florent Hivert (2009-11): initial revision.

class sage.categories.infinite_enumerated_sets.InfiniteEnumeratedSets(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of infinite enumerated sets

An infinite enumerated sets is a countable set together with a canonical enumeration of its elements.

EXAMPLES:
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sage: InfiniteEnumeratedSets()
Category of infinite enumerated sets
sage: InfiniteEnumeratedSets().super_categories()
[Category of enumerated sets, Category of infinite sets]
sage: InfiniteEnumeratedSets().all_super_categories()
[Category of infinite enumerated sets,
Category of enumerated sets,
Category of infinite sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

class ParentMethods
Bases: object

list()
Raise an error because self is an infinite enumerated set.

EXAMPLES:

sage: NN = InfiniteEnumeratedSets().example()
sage: NN.list()
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set

random_element()
Raise an error because self is an infinite enumerated set.

EXAMPLES:

sage: NN = InfiniteEnumeratedSets().example()
sage: NN.random_element()
Traceback (most recent call last):
...
NotImplementedError: infinite set

TODO: should this be an optional abstract_method instead?

tuple()
Raise an error because self is an infinite enumerated set.

EXAMPLES:

sage: NN = InfiniteEnumeratedSets().example()
sage: NN.tuple()
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set
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4.97 Integral domains

class sage.categories.integral_domains.IntegralDomains(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of integral domains

An integral domain is commutative ring with no zero divisors, or equivalently a commutative domain.

EXAMPLES:

sage: C = IntegralDomains(); C
Category of integral domains
sage: sorted(C.super_categories(), key=str)
[Category of commutative rings, Category of domains]
sage: C is Domains().Commutative()
True
sage: C is Rings().Commutative().NoZeroDivisors()
True

class ElementMethods
Bases: object

class ParentMethods
Bases: object

is_integral_domain(proof=True)
Return True, since this in an object of the category of integral domains.

EXAMPLES:

sage: QQ.is_integral_domain()
True
sage: Parent(QQ, category=IntegralDomains()).is_integral_domain()
True

sage: L.<z> = LazyLaurentSeriesRing(QQ)
sage: L.is_integral_domain()
True
sage: L.is_integral_domain(proof=True)
True

4.98 J-trivial semigroups

class sage.categories.j_trivial_semigroups.JTrivialSemigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

extra_super_categories()
Implement the fact that a 𝐽-trivial semigroup is 𝐿 and 𝑅-trivial.

EXAMPLES:

sage: Semigroups().JTrivial().extra_super_categories()
[Category of l trivial semigroups, Category of r trivial semigroups]
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4.99 Kac-Moody Algebras

AUTHORS:

• Travis Scrimshaw (07-15-2017): Initial implementation

class sage.categories.kac_moody_algebras.KacMoodyAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

Category of Kac-Moody algebras.

class ParentMethods
Bases: object

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: L = LieAlgebra(QQ, cartan_type=['A', 2])
sage: L.cartan_type()
['A', 2]

weyl_group()
Return the Weyl group of self.

EXAMPLES:

sage: L = LieAlgebra(QQ, cartan_type=['A', 2])
sage: L.weyl_group()
Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)

example(n=2)
Return an example of a Kac-Moody algebra as per Category.example.

EXAMPLES:

sage: from sage.categories.kac_moody_algebras import KacMoodyAlgebras
sage: KacMoodyAlgebras(QQ).example()
Lie algebra of ['A', 2] in the Chevalley basis

We can specify the rank of the example:

sage: KacMoodyAlgebras(QQ).example(4)
Lie algebra of ['A', 4] in the Chevalley basis

super_categories()
EXAMPLES:

sage: from sage.categories.kac_moody_algebras import KacMoodyAlgebras
sage: KacMoodyAlgebras(QQ).super_categories()
[Category of Lie algebras over Rational Field]
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4.100 Lambda Bracket Algebras

AUTHORS:

• Reimundo Heluani (2019-10-05): Initial implementation.

class sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of Lambda bracket algebras.

This is an abstract base category for Lie conformal algebras and super Lie conformal algebras.

class ElementMethods
Bases: object

T(n=1)
The n-th derivative of self.

INPUT:
• n – integer (default:1); how many times to apply 𝑇 to this element

OUTPUT:

𝑇𝑛𝑎 where 𝑎 is this element. Notice that we use the divided powers notation 𝑇 (𝑗) = 𝑇 𝑗

𝑗! .

EXAMPLES:

sage: Vir = lie_conformal_algebras.Virasoro(QQ)
sage: Vir.inject_variables()
Defining L, C
sage: L.T()
TL
sage: L.T(3)
6*T^(3)L
sage: C.T()
0

bracket(rhs)
The 𝜆-bracket of these two elements.

EXAMPLES:

The brackets of the Virasoro Lie conformal algebra:

sage: Vir = lie_conformal_algebras.Virasoro(QQ); L = Vir.0
sage: L.bracket(L)
{0: TL, 1: 2*L, 3: 1/2*C}
sage: L.bracket(L.T())
{0: 2*T^(2)L, 1: 3*TL, 2: 4*L, 4: 2*C}

Now with a current algebra:

sage: V = lie_conformal_algebras.Affine(QQ, 'A1')
sage: V.gens()
(B[alpha[1]], B[alphacheck[1]], B[-alpha[1]], B['K'])
sage: E = V.0; H = V.1; F = V.2;
sage: H.bracket(H)
{1: 2*B['K']}

(continues on next page)
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sage: E.bracket(F)
{0: B[alphacheck[1]], 1: B['K']}

nproduct(rhs, n)
The n-th product of these two elements.

EXAMPLES:

sage: Vir = lie_conformal_algebras.Virasoro(QQ); L = Vir.0
sage: L.nproduct(L, 3)
1/2*C
sage: L.nproduct(L.T(), 0)
2*T^(2)L
sage: V = lie_conformal_algebras.Affine(QQ, 'A1')
sage: E = V.0; H = V.1; F = V.2;
sage: E.nproduct(H, 0) == - 2*E
True
sage: E.nproduct(F, 1)
B['K']

FinitelyGeneratedAsLambdaBracketAlgebra
alias of sage.categories.finitely_generated_lambda_bracket_algebras.
FinitelyGeneratedLambdaBracketAlgebras

class ParentMethods
Bases: object

ideal(*gens, **kwds)
The ideal of this Lambda bracket algebra generated by gens.

Todo: Ideals of Lie Conformal Algebras are not implemented yet.

EXAMPLES:

sage: Vir = lie_conformal_algebras.Virasoro(QQ)
sage: Vir.ideal()
Traceback (most recent call last):
...
NotImplementedError: ideals of Lie Conformal algebras are not implemented␣
→˓yet

class SubcategoryMethods
Bases: object

FinitelyGenerated()
The category of finitely generated Lambda bracket algebras.

EXAMPLES:

sage: LieConformalAlgebras(QQ).FinitelyGenerated()
Category of finitely generated lie conformal algebras over Rational Field

FinitelyGeneratedAsLambdaBracketAlgebra()
The category of finitely generated Lambda bracket algebras.
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EXAMPLES:

sage: LieConformalAlgebras(QQ).FinitelyGenerated()
Category of finitely generated lie conformal algebras over Rational Field

WithBasis
alias of sage.categories.lambda_bracket_algebras_with_basis.
LambdaBracketAlgebrasWithBasis

super_categories()
The list of super categories of this category.

EXAMPLES:

sage: from sage.categories.lambda_bracket_algebras import LambdaBracketAlgebras
sage: LambdaBracketAlgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]

4.101 Lambda Bracket Algebras With Basis

AUTHORS:

• Reimundo Heluani (2020-08-21): Initial implementation.

class sage.categories.lambda_bracket_algebras_with_basis.LambdaBracketAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of Lambda bracket algebras with basis.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).WithBasis()
Category of Lie conformal algebras with basis over Algebraic Field

class ElementMethods
Bases: object

index()
The index of this basis element.

EXAMPLES:

sage: V = lie_conformal_algebras.NeveuSchwarz(QQ)
sage: V.inject_variables()
Defining L, G, C
sage: G.T(3).index()
('G', 3)
sage: v = V.an_element(); v
L + G + C
sage: v.index()
Traceback (most recent call last):
...
ValueError: index can only be computed for monomials, got L + G + C

class FinitelyGeneratedAsLambdaBracketAlgebra(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
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The category of finitely generated lambda bracket algebras with basis.

EXAMPLES:

sage: C = LieConformalAlgebras(QQbar)
sage: C.WithBasis().FinitelyGenerated()
Category of finitely generated Lie conformal algebras with basis over Algebraic␣
→˓Field
sage: C.WithBasis().FinitelyGenerated() is C.FinitelyGenerated().WithBasis()
True

class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded finitely generated lambda bracket algebras with basis.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).WithBasis().FinitelyGenerated().Graded()
Category of H-graded finitely generated Lie conformal algebras with basis␣
→˓over Algebraic Field

class ParentMethods
Bases: object

degree_on_basis(m)
Return the degree of the basis element indexed by m in self.

EXAMPLES:

sage: V = lie_conformal_algebras.Virasoro(QQ)
sage: V.degree_on_basis(('L',2))
4

4.102 Lattice posets

class sage.categories.lattice_posets.LatticePosets(s=None)
Bases: sage.categories.category.Category

The category of lattices, i.e. partially ordered sets in which any two elements have a unique supremum (the
elements’ least upper bound; called their join) and a unique infimum (greatest lower bound; called their meet).

EXAMPLES:

sage: LatticePosets()
Category of lattice posets
sage: LatticePosets().super_categories()
[Category of posets]
sage: LatticePosets().example()
NotImplemented

See also:

Posets, FiniteLatticePosets, LatticePoset()

Finite
alias of sage.categories.finite_lattice_posets.FiniteLatticePosets
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class ParentMethods
Bases: object

join(x, y)
Returns the join of 𝑥 and 𝑦 in this lattice

INPUT:
• x, y – elements of self

EXAMPLES:

sage: D = LatticePoset((divisors(60), attrcall("divides")))
sage: D.join( D(6), D(10) )
30

meet(x, y)
Returns the meet of 𝑥 and 𝑦 in this lattice

INPUT:
• x, y – elements of self

EXAMPLES:

sage: D = LatticePoset((divisors(30), attrcall("divides")))
sage: D.meet( D(6), D(15) )
3

super_categories()
Returns a list of the (immediate) super categories of self, as per Category.super_categories().

EXAMPLES:

sage: LatticePosets().super_categories()
[Category of posets]

4.103 Left modules

class sage.categories.left_modules.LeftModules(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of left modules left modules over an rng (ring not necessarily with unit), i.e. an abelian group with
left multiplication by elements of the rng

EXAMPLES:

sage: LeftModules(ZZ)
Category of left modules over Integer Ring
sage: LeftModules(ZZ).super_categories()
[Category of commutative additive groups]

class ElementMethods
Bases: object

class ParentMethods
Bases: object

super_categories()
EXAMPLES:
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sage: LeftModules(QQ).super_categories()
[Category of commutative additive groups]

4.104 Lie Algebras

AUTHORS:

• Travis Scrimshaw (07-15-2013): Initial implementation

class sage.categories.lie_algebras.LieAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of Lie algebras.

EXAMPLES:

sage: C = LieAlgebras(QQ); C
Category of Lie algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of vector spaces over Rational Field]

We construct a typical parent in this category, and do some computations with it:

sage: A = C.example(); A
An example of a Lie algebra: the Lie algebra from the associative
algebra Symmetric group algebra of order 3 over Rational Field
generated by ([2, 1, 3], [2, 3, 1])

sage: A.category()
Category of Lie algebras over Rational Field

sage: A.base_ring()
Rational Field

sage: a,b = A.lie_algebra_generators()
sage: a.bracket(b)
-[1, 3, 2] + [3, 2, 1]
sage: b.bracket(2*a + b)
2*[1, 3, 2] - 2*[3, 2, 1]

sage: A.bracket(a, b)
-[1, 3, 2] + [3, 2, 1]

Please see the source code of 𝐴 (with A??) for how to implement other Lie algebras.

Todo: Many of these tests should use Lie algebras that are not the minimal example and need to be added after
trac ticket #16820 (and trac ticket #16823).

class ElementMethods
Bases: object

bracket(rhs)
Return the Lie bracket [self, rhs].
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EXAMPLES:

sage: L = LieAlgebras(QQ).example()
sage: x,y = L.lie_algebra_generators()
sage: x.bracket(y)
-[1, 3, 2] + [3, 2, 1]
sage: x.bracket(0)
0

exp(lie_group=None)
Return the exponential of self in lie_group.

INPUT:
• lie_group – (optional) the Lie group to map into; If lie_group is not given, the Lie group

associated to the parent Lie algebra of self is used.
EXAMPLES:

sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2)
sage: g = (X + Y + Z).exp(); g # optional -
→˓ sage.symbolic
exp(X + Y + Z)
sage: h = X.exp(); h # optional -
→˓ sage.symbolic
exp(X)
sage: g.parent() # optional -
→˓ sage.symbolic
Lie group G of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over␣
→˓Rational Field
sage: g.parent() is h.parent() # optional -
→˓ sage.symbolic
True

The Lie group can be specified explicitly:

sage: H = L.lie_group('H') # optional -
→˓ sage.symbolic
sage: k = Z.exp(lie_group=H); k # optional -
→˓ sage.symbolic
exp(Z)
sage: k.parent() # optional -
→˓ sage.symbolic
Lie group H of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over␣
→˓Rational Field
sage: g.parent() == k.parent() # optional -
→˓ sage.symbolic
False

killing_form(x)
Return the Killing form of self and x.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()

(continues on next page)
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sage: a.killing_form(b)
0

lift()
Return the image of self under the canonical lift from the Lie algebra to its universal enveloping
algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 3*a + b - c
sage: elt.lift()
3*b0 + b1 - b2

sage: L.<x,y> = LieAlgebra(QQ, abelian=True)
sage: x.lift()
x

to_vector(order=None)
Return the vector in g.module() corresponding to the element self of g (where g is the parent of
self).

Implement this if you implement g.module(). See LieAlgebras.module() for how this is to be
done.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L((1, 0, 0)).to_vector(); u
(1, 0, 0)
sage: parent(u)
Vector space of dimension 3 over Rational Field

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

WithBasis
alias of sage.categories.finite_dimensional_lie_algebras_with_basis.
FiniteDimensionalLieAlgebrasWithBasis

extra_super_categories()
Implements the fact that a finite dimensional Lie algebra over a finite ring is finite.

EXAMPLES:

sage: LieAlgebras(IntegerModRing(4)).FiniteDimensional().extra_super_
→˓categories()
[Category of finite sets]
sage: LieAlgebras(ZZ).FiniteDimensional().extra_super_categories()
[]
sage: LieAlgebras(GF(5)).FiniteDimensional().is_subcategory(Sets().Finite())
True
sage: LieAlgebras(ZZ).FiniteDimensional().is_subcategory(Sets().Finite())
False

(continues on next page)
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sage: LieAlgebras(GF(5)).WithBasis().FiniteDimensional().is_
→˓subcategory(Sets().Finite())
True

Graded
alias of sage.categories.graded_lie_algebras.GradedLieAlgebras

class Nilpotent(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of nilpotent Lie algebras.

class ParentMethods
Bases: object

is_nilpotent()
Return True since self is nilpotent.

EXAMPLES:

sage: h = lie_algebras.Heisenberg(ZZ, oo)
sage: h.is_nilpotent()
True

step()
Return the nilpotency step of self.

EXAMPLES:

sage: h = lie_algebras.Heisenberg(ZZ, oo)
sage: h.step()
2

class ParentMethods
Bases: object

baker_campbell_hausdorff(X, Y, prec=None)
Return the element log(exp(𝑋) exp(𝑌 )).

The BCH formula is an expression for log(exp(𝑋) exp(𝑌 )) as a sum of Lie brackets of X ` and ``Y
with rational coefficients. It is only defined if the base ring of self has a coercion from the rationals.

INPUT:
• X – an element of self
• Y – an element of self
• prec – an integer; the maximum length of Lie brackets to be considered in the formula

EXAMPLES:

The BCH formula for the generators of a free nilpotent Lie algebra of step 4:

sage: L = LieAlgebra(QQ, 2, step=4)
sage: L.inject_variables()
Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1122, X_1222
sage: L.bch(X_1, X_2)
X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_122 + 1/24*X_1122

An example of the BCH formula in a quotient:
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sage: Q = L.quotient(X_112 + X_122)
sage: x, y = Q.basis().list()[:2]
sage: Q.bch(x, y)
X_1 + X_2 + 1/2*X_12 - 1/24*X_1112

The BCH formula for a non-nilpotent Lie algebra requires the precision to be explicitly stated:

sage: L.<X,Y> = LieAlgebra(QQ)
sage: L.bch(X, Y)
Traceback (most recent call last):
...
ValueError: the Lie algebra is not known to be nilpotent, so you must␣
→˓specify the precision
sage: L.bch(X, Y, 4)
X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[[X, Y],␣
→˓Y] + Y

The BCH formula requires a coercion from the rationals:

sage: L.<X,Y,Z> = LieAlgebra(ZZ, 2, step=2)
sage: L.bch(X, Y)
Traceback (most recent call last):
...
TypeError: the BCH formula is not well defined since Integer Ring has no␣
→˓coercion from Rational Field

bch(X, Y, prec=None)
Return the element log(exp(𝑋) exp(𝑌 )).

The BCH formula is an expression for log(exp(𝑋) exp(𝑌 )) as a sum of Lie brackets of X ` and ``Y
with rational coefficients. It is only defined if the base ring of self has a coercion from the rationals.

INPUT:
• X – an element of self
• Y – an element of self
• prec – an integer; the maximum length of Lie brackets to be considered in the formula

EXAMPLES:

The BCH formula for the generators of a free nilpotent Lie algebra of step 4:

sage: L = LieAlgebra(QQ, 2, step=4)
sage: L.inject_variables()
Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1122, X_1222
sage: L.bch(X_1, X_2)
X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_122 + 1/24*X_1122

An example of the BCH formula in a quotient:

sage: Q = L.quotient(X_112 + X_122)
sage: x, y = Q.basis().list()[:2]
sage: Q.bch(x, y)
X_1 + X_2 + 1/2*X_12 - 1/24*X_1112

The BCH formula for a non-nilpotent Lie algebra requires the precision to be explicitly stated:
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sage: L.<X,Y> = LieAlgebra(QQ)
sage: L.bch(X, Y)
Traceback (most recent call last):
...
ValueError: the Lie algebra is not known to be nilpotent, so you must␣
→˓specify the precision
sage: L.bch(X, Y, 4)
X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[[X, Y],␣
→˓Y] + Y

The BCH formula requires a coercion from the rationals:

sage: L.<X,Y,Z> = LieAlgebra(ZZ, 2, step=2)
sage: L.bch(X, Y)
Traceback (most recent call last):
...
TypeError: the BCH formula is not well defined since Integer Ring has no␣
→˓coercion from Rational Field

bracket(lhs, rhs)
Return the Lie bracket [lhs, rhs] after coercing lhs and rhs into elements of self.

If lhs and rhs are Lie algebras, then this constructs the product space, and if only one of them is a
Lie algebra, then it constructs the corresponding ideal.

EXAMPLES:

sage: L = LieAlgebras(QQ).example()
sage: x,y = L.lie_algebra_generators()
sage: L.bracket(x, x + y)
-[1, 3, 2] + [3, 2, 1]
sage: L.bracket(x, 0)
0
sage: L.bracket(0, x)
0

Constructing the product space:

sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: Z = L.bracket(L, L); Z
Ideal (z) of Heisenberg algebra of rank 1 over Rational Field
sage: L.bracket(L, Z)
Ideal () of Heisenberg algebra of rank 1 over Rational Field

Constructing ideals:

sage: p,q,z = L.basis(); (p,q,z)
(p1, q1, z)
sage: L.bracket(3*p, L)
Ideal (3*p1) of Heisenberg algebra of rank 1 over Rational Field
sage: L.bracket(L, q+p)
Ideal (p1 + q1) of Heisenberg algebra of rank 1 over Rational Field

from_vector(v, order=None, coerce=False)
Return the element of self corresponding to the vector v in self.module().
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Implement this if you implement module(); see the documentation of the latter for how this is to be
done.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True

ideal(*gens, **kwds)
Return the ideal of self generated by gens.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.ideal([2*a - c, b + c])
An example of a finite dimensional Lie algebra with basis:
the 2-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[ 1 0 -1/2]
[ 0 1 1]

sage: L = LieAlgebras(QQ).example()
sage: x,y = L.lie_algebra_generators()
sage: L.ideal([x + y])
Traceback (most recent call last):
...
NotImplementedError: ideals not yet implemented: see #16824

is_abelian()
Return True if this Lie algebra is abelian.

A Lie algebra g is abelian if [𝑥, 𝑦] = 0 for all 𝑥, 𝑦 ∈ g.

EXAMPLES:

sage: L = LieAlgebras(QQ).example()
sage: L.is_abelian()
False
sage: R = QQ['x,y']
sage: L = LieAlgebras(QQ).example(R.gens())
sage: L.is_abelian()
True

sage: L.<x> = LieAlgebra(QQ,1) # todo: not implemented - #16823
sage: L.is_abelian() # todo: not implemented - #16823
True
sage: L.<x,y> = LieAlgebra(QQ,2) # todo: not implemented - #16823
sage: L.is_abelian() # todo: not implemented - #16823
False

is_commutative()
Return if self is commutative. This is equivalent to self being abelian.
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EXAMPLES:

sage: L = LieAlgebras(QQ).example()
sage: L.is_commutative()
False

sage: L.<x> = LieAlgebra(QQ, 1) # todo: not implemented - #16823
sage: L.is_commutative() # todo: not implemented - #16823
True

is_ideal(A)
Return if self is an ideal of A.

EXAMPLES:

sage: L = LieAlgebras(QQ).example()
sage: L.is_ideal(L)
True

is_nilpotent()
Return if self is a nilpotent Lie algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_nilpotent()
True

is_solvable()
Return if self is a solvable Lie algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.is_solvable()
True

killing_form(x, y)
Return the Killing form of x and y.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.killing_form(a, b+c)
0

lie_group(name='G', **kwds)
Return the simply connected Lie group related to self.

INPUT:
• name – string (default: 'G'); the name (symbol) given to the Lie group

EXAMPLES:
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sage: L = lie_algebras.Heisenberg(QQ, 1)
sage: G = L.lie_group('G'); G #␣
→˓optional - sage.symbolic
Lie group G of Heisenberg algebra of rank 1 over Rational Field

lift()
Construct the lift morphism from self to the universal enveloping algebra of self (the latter is im-
plemented as universal_enveloping_algebra()).

This is a Lie algebra homomorphism. It is injective if self is a free module over its base ring, or if
the base ring is a Q-algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: lifted = L.lift(2*a + b - c); lifted
2*b0 + b1 - b2
sage: lifted.parent() is L.universal_enveloping_algebra()
True

module()
Return an 𝑅-module which is isomorphic to the underlying 𝑅-module of self.

The rationale behind this method is to enable linear algebraic functionality on self (such as computing
the span of a list of vectors in self) via an isomorphism from self to an𝑅-module (typically, although
not always, an 𝑅-module of the form 𝑅𝑛 for an 𝑛 ∈ N) on which such functionality already exists.
For this method to be of any use, it should return an 𝑅-module which has linear algebraic functionality
that self does not have.

For instance, if self has ordered basis (𝑒, 𝑓, ℎ), then self.module() will be the 𝑅-module 𝑅3, and
the elements 𝑒, 𝑓 and ℎ of self will correspond to the basis vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) of
self.module().

This method module() needs to be set whenever a finite-dimensional Lie algebra with basis is intended
to support linear algebra (which is, e.g., used in the computation of centralizers and lower central
series). One then needs to also implement the 𝑅-module isomorphism from self to self.module()
in both directions; that is, implement:

• a to_vector ElementMethod which sends every element of self to the corresponding element
of self.module();

• a from_vector ParentMethod which sends every element of self.module() to an element of
self.

The from_vector method will automatically serve as an element constructor of self (that is,
self(v) for any v in self.module() will return self.from_vector(v)).

Todo: Ensure that this is actually so.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.module()
Vector space of dimension 3 over Rational Field

subalgebra(gens, names=None, index_set=None, category=None)
Return the subalgebra of self generated by gens.
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EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.subalgebra([2*a - c, b + c])
An example of a finite dimensional Lie algebra with basis:
the 2-dimensional abelian Lie algebra over Rational Field
with basis matrix:
[ 1 0 -1/2]
[ 0 1 1]

sage: L = LieAlgebras(QQ).example()
sage: x,y = L.lie_algebra_generators()
sage: L.subalgebra([x + y])
Traceback (most recent call last):
...
NotImplementedError: subalgebras not yet implemented: see #17416

universal_enveloping_algebra()
Return the universal enveloping algebra of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.universal_enveloping_algebra()
Noncommutative Multivariate Polynomial Ring in b0, b1, b2
over Rational Field, nc-relations: {}

sage: L = LieAlgebra(QQ, 3, 'x', abelian=True)
sage: L.universal_enveloping_algebra()
Multivariate Polynomial Ring in x0, x1, x2 over Rational Field

See also:

lift()

class SubcategoryMethods
Bases: object

Nilpotent()
Return the full subcategory of nilpotent objects of self.

A Lie algebra 𝐿 is nilpotent if there exist an integer 𝑠 such that all iterated brackets of 𝐿 of length
more than 𝑠 vanish. The integer 𝑠 is called the nilpotency step. For instance any abelian Lie algebra is
nilpotent of step 1.

EXAMPLES:

sage: LieAlgebras(QQ).Nilpotent()
Category of nilpotent Lie algebras over Rational Field
sage: LieAlgebras(QQ).WithBasis().Nilpotent()
Category of nilpotent lie algebras with basis over Rational Field

WithBasis
alias of sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis

example(gens=None)
Return an example of a Lie algebra as per Category.example.
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EXAMPLES:

sage: LieAlgebras(QQ).example()
An example of a Lie algebra: the Lie algebra from the associative algebra
Symmetric group algebra of order 3 over Rational Field
generated by ([2, 1, 3], [2, 3, 1])

Another set of generators can be specified as an optional argument:

sage: F.<x,y,z> = FreeAlgebra(QQ)
sage: LieAlgebras(QQ).example(F.gens())
An example of a Lie algebra: the Lie algebra from the associative algebra
Free Algebra on 3 generators (x, y, z) over Rational Field
generated by (x, y, z)

super_categories()
EXAMPLES:

sage: LieAlgebras(QQ).super_categories()
[Category of vector spaces over Rational Field]

class sage.categories.lie_algebras.LiftMorphism(domain, codomain)
Bases: sage.categories.morphism.Morphism

The natural lifting morphism from a Lie algebra to its enveloping algebra.

4.105 Lie Algebras With Basis

AUTHORS:

• Travis Scrimshaw (07-15-2013): Initial implementation

class sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of Lie algebras with a basis.

class ElementMethods
Bases: object

lift()
Lift self to the universal enveloping algebra.

EXAMPLES:

sage: S = SymmetricGroup(3).algebra(QQ)
sage: L = LieAlgebra(associative=S)
sage: x = L.gen(3)
sage: y = L.gen(1)
sage: x.lift()
b3
sage: y.lift()
b1
sage: x * y
b1*b3 + b4 - b5
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to_vector(order=None)
Return the vector in g.module() corresponding to the element self of g (where g is the parent of
self).

Implement this if you implement g.module(). See sage.categories.lie_algebras.
LieAlgebras.module() for how this is to be done.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.an_element().to_vector()
(0, 0, 0)

Todo: Doctest this implementation on an example not overshadowed.

Graded
alias of sage.categories.graded_lie_algebras_with_basis.GradedLieAlgebrasWithBasis

class ParentMethods
Bases: object

bracket_on_basis(x, y)
Return the bracket of basis elements indexed by x and y where x < y. If this is not implemented, then
the method _bracket_() for the elements must be overwritten.

EXAMPLES:

sage: L = LieAlgebras(QQ).WithBasis().example()
sage: L.bracket_on_basis(Partition([3,1]), Partition([2,2,1,1]))
0

dimension()
Return the dimension of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.dimension()
3

sage: L = LieAlgebra(QQ, 'x,y', {('x','y'): {'x':1}})
sage: L.dimension()
2

from_vector(v, order=None, coerce=False)
Return the element of self corresponding to the vector v in self.module().

Implement this if you implement module(); see the documentation of sage.categories.
lie_algebras.LieAlgebras.module() for how this is to be done.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True
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module()
Return an 𝑅-module which is isomorphic to the underlying 𝑅-module of self.

See sage.categories.lie_algebras.LieAlgebras.module() for an explanation.

EXAMPLES:

sage: L = LieAlgebras(QQ).WithBasis().example()
sage: L.module()
Free module generated by Partitions over Rational Field

pbw_basis(basis_key=None, **kwds)
Return the Poincare-Birkhoff-Witt basis of the universal enveloping algebra corresponding to self.

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 2)
sage: PBW = L.pbw_basis()

poincare_birkhoff_witt_basis(basis_key=None, **kwds)
Return the Poincare-Birkhoff-Witt basis of the universal enveloping algebra corresponding to self.

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 2)
sage: PBW = L.pbw_basis()

example(gens=None)
Return an example of a Lie algebra as per Category.example.

EXAMPLES:

sage: LieAlgebras(QQ).WithBasis().example()
An example of a Lie algebra: the abelian Lie algebra on the
generators indexed by Partitions over Rational Field

Another set of generators can be specified as an optional argument:

sage: LieAlgebras(QQ).WithBasis().example(Compositions())
An example of a Lie algebra: the abelian Lie algebra on the
generators indexed by Compositions of non-negative integers
over Rational Field

4.106 Lie Conformal Algebras

Let 𝑅 be a commutative ring, a super Lie conformal algebra [Kac1997] over 𝑅 (also known as a vertex Lie algebra)
is an 𝑅[𝑇 ] super module 𝐿 together with a Z/2Z-graded 𝑅-bilinear operation (called the 𝜆-bracket) 𝐿 ⊗ 𝐿 → 𝐿[𝜆]
(polynomials in 𝜆 with coefficients in 𝐿), 𝑎⊗ 𝑏 ↦→ [𝑎𝜆𝑏] satisfying

1. Sesquilinearity:

[𝑇𝑎𝜆𝑏] = −𝜆[𝑎𝜆𝑏], [𝑎𝜆𝑇𝑏] = (𝜆 + 𝑇 )[𝑎𝜆𝑏].

2. Skew-Symmetry:

[𝑎𝜆𝑏] = −(−1)𝑝(𝑎)𝑝(𝑏)[𝑏−𝜆−𝑇𝑎],
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where 𝑝(𝑎) is 0 if 𝑎 is even and 1 if 𝑎 is odd. The bracket in the RHS is computed as follows. First we evaluate
[𝑏𝜇𝑎] with the formal parameter 𝜇 to the left, then replace each appearance of the formal variable 𝜇 by −𝜆− 𝑇 .
Finally apply 𝑇 to the coefficients in 𝐿.

3. Jacobi identity:

[𝑎𝜆[𝑏𝜇𝑐]] = [[𝑎𝜆+𝜇𝑏]𝜇𝑐] + (−1)𝑝(𝑎)𝑝(𝑏)[𝑏𝜇[𝑎𝜆𝑐]],

which is understood as an equality in 𝐿[𝜆, 𝜇].

𝑇 is usually called the translation operation or the derivative. For an element 𝑎 ∈ 𝐿 we will say that 𝑇𝑎 is the
derivative of 𝑎. We define the 𝑛-th products 𝑎(𝑛)𝑏 for 𝑎, 𝑏 ∈ 𝐿 by

[𝑎𝜆𝑏] =
∑︁
𝑛≥0

𝜆𝑛

𝑛!
𝑎(𝑛)𝑏.

A Lie conformal algebra is called H-Graded [DSK2006] if there exists a decomposition 𝐿 = ⊕𝐿𝑛 such that the
𝜆-bracket becomes graded of degree −1, that is:

𝑎(𝑛)𝑏 ∈ 𝐿𝑝+𝑞−𝑛−1 𝑎 ∈ 𝐿𝑝, 𝑏 ∈ 𝐿𝑞, 𝑛 ≥ 0.

In particular this implies that the action of 𝑇 increases degree by 1.

Note: In the literature arbitrary gradings are allowed. In this implementation we only support non-negative rational
gradings.

EXAMPLES:

1. The Virasoro Lie conformal algebra 𝑉 𝑖𝑟 over a ring 𝑅 where 12 is invertible has two generators 𝐿,𝐶 as an
𝑅[𝑇 ]-module. It is the direct sum of a free module of rank 1 generated by 𝐿, and a free rank one 𝑅 module
generated by 𝐶 satisfying 𝑇𝐶 = 0. 𝐶 is central (the 𝜆-bracket of 𝐶 with any other vector vanishes). The
remaining 𝜆-bracket is given by

[𝐿𝜆𝐿] = 𝑇𝐿 + 2𝜆𝐿 +
𝜆3

12
𝐶.

2. The affine or current Lie conformal algebra 𝐿(g) associated to a finite dimensional Lie algebra g with non-
degenerate, invariant 𝑅-bilinear form (, ) is given as a central extension of the free 𝑅[𝑇 ] module generated by g
by a central element 𝐾. The 𝜆-bracket of generators is given by

[𝑎𝜆𝑏] = [𝑎, 𝑏] + 𝜆(𝑎, 𝑏)𝐾, 𝑎, 𝑏 ∈ g

3. The Weyl Lie conformal algebra, or 𝛽 − 𝛾 system is given as the central extension of a free 𝑅[𝑇 ] module with
two generators 𝛽 and 𝛾, by a central element 𝐾. The only non-trivial brackets among generators are

[𝛽𝜆𝛾] = −[𝛾𝜆𝛽] = 𝐾

4. The Neveu-Schwarz super Lie conformal algebra is a super Lie conformal algebra which is an extension of the
Virasoro Lie conformal algebra. It consists of a Virasoro generator 𝐿 as in example 1 above and an odd generator
𝐺. The remaining brackets are given by:

[𝐿𝜆𝐺] =

(︂
𝑇 +

3

2
𝜆

)︂
𝐺 [𝐺𝜆𝐺] = 2𝐿 +

𝜆2

3
𝐶

See also:
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• sage.algebras.lie_conformal_algebras.lie_conformal_algebra

• sage.algebras.lie_conformal_algebras.examples

AUTHORS:

• Reimundo Heluani (2019-10-05): Initial implementation.

class sage.categories.lie_conformal_algebras.LieConformalAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of Lie conformal algebras.

This is the base category for all Lie conformal algebras. Subcategories with axioms are FinitelyGenerated
and WithBasis. A finitely generated Lie conformal algebra is a Lie conformal algebra over 𝑅 which is finitely
generated as an 𝑅[𝑇 ]-module. A Lie conformal algebra with basis is one with a preferred basis as an 𝑅-module.

EXAMPLES:

The base category:

sage: C = LieConformalAlgebras(QQ); C
Category of Lie conformal algebras over Rational Field
sage: C.is_subcategory(VectorSpaces(QQ))
True

Some subcategories:

sage: LieConformalAlgebras(QQbar).FinitelyGenerated().WithBasis()
Category of finitely generated Lie conformal algebras with basis over Algebraic␣
→˓Field

In addition we support functorial constructions Graded and Super. These functors commute:

sage: LieConformalAlgebras(AA).Graded().Super()
Category of H-graded super Lie conformal algebras over Algebraic Real Field
sage: LieConformalAlgebras(AA).Graded().Super() is LieConformalAlgebras(AA).Super().
→˓Graded()
True

That is, we only consider gradings on super Lie conformal algebras that are compatible with the Z/2Z grading.

The base ring needs to be a commutative ring:

sage: LieConformalAlgebras(QuaternionAlgebra(2))
Traceback (most recent call last):
ValueError: base must be a commutative ring got Quaternion Algebra (-1, -1) with␣
→˓base ring Rational Field

class ElementMethods
Bases: object

is_even_odd()
Return 0 if this element is even and 1 if it is odd.

Note: This method returns 0 by default since every Lie conformal algebra can be thought as a purely
even Lie conformal algebra. In order to implement a super Lie conformal algebra, the user needs to
implement this method.
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EXAMPLES:

sage: R = lie_conformal_algebras.NeveuSchwarz(QQ);
sage: R.inject_variables()
Defining L, G, C
sage: G.is_even_odd()
1

FinitelyGeneratedAsLambdaBracketAlgebra
alias of sage.categories.finitely_generated_lie_conformal_algebras.
FinitelyGeneratedLieConformalAlgebras

Graded
alias of sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebras

class ParentMethods
Bases: object

Super
alias of sage.categories.super_lie_conformal_algebras.SuperLieConformalAlgebras

WithBasis
alias of sage.categories.lie_conformal_algebras_with_basis.
LieConformalAlgebrasWithBasis

example()
An example of parent in this category.

EXAMPLES:

sage: LieConformalAlgebras(QQ).example()
The Virasoro Lie conformal algebra over Rational Field

super_categories()
The list of super categories of this category.

EXAMPLES:

sage: C = LieConformalAlgebras(QQ)
sage: C.super_categories()
[Category of Lambda bracket algebras over Rational Field]
sage: C = LieConformalAlgebras(QQ).FinitelyGenerated(); C
Category of finitely generated lie conformal algebras over Rational Field
sage: C.super_categories()
[Category of finitely generated lambda bracket algebras over Rational Field,
Category of Lie conformal algebras over Rational Field]
sage: C.all_super_categories()
[Category of finitely generated lie conformal algebras over Rational Field,
Category of finitely generated lambda bracket algebras over Rational Field,
Category of Lie conformal algebras over Rational Field,
Category of Lambda bracket algebras over Rational Field,
Category of vector spaces over Rational Field,
Category of modules over Rational Field,
Category of bimodules over Rational Field on the left and Rational Field on␣
→˓the right,
Category of right modules over Rational Field,
Category of left modules over Rational Field,

(continues on next page)
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Category of commutative additive groups,
Category of additive groups,
Category of additive inverse additive unital additive magmas,
Category of commutative additive monoids,
Category of additive monoids,
Category of additive unital additive magmas,
Category of commutative additive semigroups,
Category of additive commutative additive magmas,
Category of additive semigroups,
Category of additive magmas,
Category of sets,
Category of sets with partial maps,
Category of objects]

4.107 Lie Conformal Algebras With Basis

AUTHORS:

• Reimundo Heluani (2019-10-05): Initial implementation.

class sage.categories.lie_conformal_algebras_with_basis.LieConformalAlgebrasWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of Lie conformal algebras with basis.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).WithBasis()
Category of Lie conformal algebras with basis over Algebraic Field

class FinitelyGeneratedAsLambdaBracketAlgebra(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of finitely generated Lie conformal algebras with basis.

EXAMPLES:

sage: C = LieConformalAlgebras(QQbar)
sage: C.WithBasis().FinitelyGenerated()
Category of finitely generated Lie conformal algebras with basis over Algebraic␣
→˓Field
sage: C.WithBasis().FinitelyGenerated() is C.FinitelyGenerated().WithBasis()
True

class Graded(base_category)
Bases: sage.categories.graded_lie_conformal_algebras.
GradedLieConformalAlgebrasCategory

The category of H-graded finitely generated Lie conformal algebras with basis.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).WithBasis().FinitelyGenerated().Graded()
Category of H-graded finitely generated Lie conformal algebras with basis␣
→˓over Algebraic Field
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class Super(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super finitely generated Lie conformal algebras with basis.

EXAMPLES:

sage: LieConformalAlgebras(AA).WithBasis().FinitelyGenerated().Super()
Category of super finitely generated Lie conformal algebras with basis over␣
→˓Algebraic Real Field

class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded super finitely generated Lie conformal algebras with basis.

EXAMPLES:

sage: C = LieConformalAlgebras(QQbar).WithBasis().FinitelyGenerated()
sage: C.Graded().Super()
Category of H-graded super finitely generated Lie conformal algebras␣
→˓with basis over Algebraic Field
sage: C.Graded().Super() is C.Super().Graded()
True

class Graded(base_category)
Bases: sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory

The category of H-graded Lie conformal algebras with basis.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).WithBasis().Graded()
Category of H-graded Lie conformal algebras with basis over Algebraic Field

class Super(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super Lie conformal algebras with basis.

EXAMPLES:

sage: LieConformalAlgebras(AA).WithBasis().Super()
Category of super Lie conformal algebras with basis over Algebraic Real Field

class Graded(base_category)
Bases: sage.categories.graded_lie_conformal_algebras.
GradedLieConformalAlgebrasCategory

The category of H-graded super Lie conformal algebras with basis.

EXAMPLES:

sage: LieConformalAlgebras(QQbar).WithBasis().Super().Graded()
Category of H-graded super Lie conformal algebras with basis over Algebraic␣
→˓Field

class ParentMethods
Bases: object

4.107. Lie Conformal Algebras With Basis 549



Category Framework, Release 9.7

4.108 Lie Groups

class sage.categories.lie_groups.LieGroups(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of Lie groups.

A Lie group is a topological group with a smooth manifold structure.

EXAMPLES:

sage: from sage.categories.lie_groups import LieGroups
sage: C = LieGroups(QQ); C
Category of Lie groups over Rational Field

additional_structure()
Return None.

Indeed, the category of Lie groups defines no new structure: a morphism of topological spaces and of
smooth manifolds is a morphism as Lie groups.

See also:

Category.additional_structure()

EXAMPLES:

sage: from sage.categories.lie_groups import LieGroups
sage: LieGroups(QQ).additional_structure()

super_categories()
EXAMPLES:

sage: from sage.categories.lie_groups import LieGroups
sage: LieGroups(QQ).super_categories()
[Category of topological groups,
Category of smooth manifolds over Rational Field]

4.109 Loop Crystals

class sage.categories.loop_crystals.KirillovReshetikhinCrystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

Category of Kirillov-Reshetikhin crystals.

class ElementMethods
Bases: object

energy_function()
Return the energy function of self.

Let𝐵 be a KR crystal. Let 𝑏♯ denote the unique element such that𝜙(𝑏♯) = ℓΛ0 with ℓ = min{⟨𝑐, 𝜙(𝑏) |
𝑏 ∈ 𝐵}. Let 𝑢𝐵 denote the maximal element of 𝐵. The energy of 𝑏 ∈ 𝐵 is given by

𝐷(𝑏) = 𝐻(𝑏⊗ 𝑏♯)−𝐻(𝑢𝐵 ⊗ 𝑏♯),

where 𝐻 is the local energy function.
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EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: for x in K.classically_highest_weight_vectors():
....: x, x.energy_function()
([], 1)
([[1], [2]], 0)

sage: K = crystals.KirillovReshetikhin(['D',4,3], 1,2)
sage: for x in K.classically_highest_weight_vectors():
....: x, x.energy_function()
([], 2)
([[1]], 1)
([[1, 1]], 0)

lusztig_involution()
Return the result of the classical Lusztig involution on self.

EXAMPLES:

sage: KRT = crystals.KirillovReshetikhin(['D',4,1], 2, 3, model='KR')
sage: mg = KRT.module_generators[1]
sage: mg.lusztig_involution()
[[-2, -2, 1], [-1, -1, 2]]
sage: elt = mg.f_string([2,1,3,2]); elt
[[3, -2, 1], [4, -1, 2]]
sage: elt.lusztig_involution()
[[-4, -2, 1], [-3, -1, 2]]

class ParentMethods
Bases: object

R_matrix(K)
Return the combinatorial 𝑅-matrix of self to K.

The combinatorial 𝑅-matrix is the affine crystal isomorphism 𝑅 : 𝐿 ⊗ 𝐾 → 𝐾 ⊗ 𝐿 which maps
𝑢𝐿 ⊗ 𝑢𝐾 to 𝑢𝐾 ⊗ 𝑢𝐿, where 𝑢𝐾 is the unique element in 𝐾 = 𝐵𝑟,𝑠 of weight 𝑠Λ𝑟 − 𝑠𝑐Λ0 (see
maximal_vector()).

INPUT:
• self – a crystal 𝐿
• K – a Kirillov-Reshetikhin crystal of the same type as 𝐿

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: L = crystals.KirillovReshetikhin(['A',2,1],1,2)
sage: f = K.R_matrix(L)
sage: [[b,f(b)] for b in crystals.TensorProduct(K,L)]
[[[[[1]], [[1, 1]]], [[[1, 1]], [[1]]]],
[[[[1]], [[1, 2]]], [[[1, 1]], [[2]]]],
[[[[1]], [[2, 2]]], [[[1, 2]], [[2]]]],
[[[[1]], [[1, 3]]], [[[1, 1]], [[3]]]],
[[[[1]], [[2, 3]]], [[[1, 2]], [[3]]]],
[[[[1]], [[3, 3]]], [[[1, 3]], [[3]]]],
[[[[2]], [[1, 1]]], [[[1, 2]], [[1]]]],
[[[[2]], [[1, 2]]], [[[2, 2]], [[1]]]],

(continues on next page)
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[[[[2]], [[2, 2]]], [[[2, 2]], [[2]]]],
[[[[2]], [[1, 3]]], [[[2, 3]], [[1]]]],
[[[[2]], [[2, 3]]], [[[2, 2]], [[3]]]],
[[[[2]], [[3, 3]]], [[[2, 3]], [[3]]]],
[[[[3]], [[1, 1]]], [[[1, 3]], [[1]]]],
[[[[3]], [[1, 2]]], [[[1, 3]], [[2]]]],
[[[[3]], [[2, 2]]], [[[2, 3]], [[2]]]],
[[[[3]], [[1, 3]]], [[[3, 3]], [[1]]]],
[[[[3]], [[2, 3]]], [[[3, 3]], [[2]]]],
[[[[3]], [[3, 3]]], [[[3, 3]], [[3]]]]]

sage: K = crystals.KirillovReshetikhin(['D',4,1],1,1)
sage: L = crystals.KirillovReshetikhin(['D',4,1],2,1)
sage: f = K.R_matrix(L)
sage: T = crystals.TensorProduct(K,L)
sage: b = T( K(rows=[[1]]), L(rows=[]) )
sage: f(b)
[[[2], [-2]], [[1]]]

Alternatively, one can compute the combinatorial 𝑅-matrix using the isomorphism method of di-
graphs:

sage: K1 = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: K2 = crystals.KirillovReshetikhin(['A',2,1],2,1)
sage: T1 = crystals.TensorProduct(K1,K2)
sage: T2 = crystals.TensorProduct(K2,K1)
sage: T1.digraph().is_isomorphic(T2.digraph(), edge_labels=True,␣
→˓certificate=True) #todo: not implemented (see #10904 and #10549)
(True, {[[[1]], [[2], [3]]]: [[[1], [3]], [[2]]], [[[3]], [[2], [3]]]:␣
→˓[[[2], [3]], [[3]]],
[[[3]], [[1], [3]]]: [[[1], [3]], [[3]]], [[[1]], [[1], [3]]]: [[[1], [3]],␣
→˓[[1]]], [[[1]],
[[1], [2]]]: [[[1], [2]], [[1]]], [[[2]], [[1], [2]]]: [[[1], [2]], [[2]]],␣
→˓[[[3]],
[[1], [2]]]: [[[2], [3]], [[1]]], [[[2]], [[1], [3]]]: [[[1], [2]], [[3]]],␣
→˓[[[2]], [[2], [3]]]: [[[2], [3]], [[2]]]})

affinization()
Return the corresponding affinization crystal of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.affinization()
Affinization of Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,
→˓s)=(1,1)

sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1, model='KR')
sage: K.affinization()
Affinization of Kirillov-Reshetikhin tableaux of type ['A', 2, 1] and shape␣
→˓(1, 1)

b_sharp()
Return the element 𝑏♯ of self.
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Let 𝐵 be a KR crystal. The element 𝑏♯ is the unique element such that 𝜙(𝑏♯) = ℓΛ0 with ℓ =
min{⟨𝑐, 𝜙(𝑏)⟩ | 𝑏 ∈ 𝐵}.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',6,2], 2,1)
sage: K.b_sharp()
[]
sage: K.b_sharp().Phi()
Lambda[0]

sage: K = crystals.KirillovReshetikhin(['C',3,1], 1,3)
sage: K.b_sharp()
[[-1]]
sage: K.b_sharp().Phi()
2*Lambda[0]

sage: K = crystals.KirillovReshetikhin(['D',6,2], 2,2)
sage: K.b_sharp() # long time
[]
sage: K.b_sharp().Phi() # long time
2*Lambda[0]

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,1)
sage: K.cardinality()
27
sage: K = crystals.KirillovReshetikhin(['C',6,1], 4,3)
sage: K.cardinality()
4736732

classical_decomposition()
Return the classical decomposition of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,2)
sage: K.classical_decomposition()
The crystal of tableaux of type ['A', 3] and shape(s) [[2, 2]]

classically_highest_weight_vectors()
Return the classically highest weight elements of self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: K.classically_highest_weight_vectors()
([(1,)],)

is_perfect(ell=None)
Check if self is a perfect crystal of level ell.

A crystal ℬ is perfect of level ℓ if:
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1. ℬ is isomorphic to the crystal graph of a finite-dimensional 𝑈 ′
𝑞(g)-module.

2. ℬ ⊗ ℬ is connected.
3. There exists a 𝜆 ∈ 𝑋 , such that wt(ℬ) ⊂ 𝜆 +

∑︀
𝑖∈𝐼 Z≤0𝛼𝑖 and there is a unique element in ℬ of

classical weight 𝜆.
4. For all 𝑏 ∈ ℬ, level(𝜀(𝑏)) ≥ ℓ.
5. For all Λ dominant weights of level ℓ, there exist unique elements 𝑏Λ, 𝑏Λ ∈ ℬ, such that 𝜀(𝑏Λ) =

Λ = 𝜙(𝑏Λ).
Points (1)-(3) are known to hold. This method checks points (4) and (5).

If self is the Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠, then it was proven for non-exceptional types in
[FOS2010] that it is perfect if and only if 𝑠/𝑐𝑟 is an integer (where 𝑐𝑟 is a constant related to the
type of the crystal).

It is conjectured this is true for all affine types.

INPUT:
• ell – (default: 𝑠/𝑐𝑟) integer; the level

REFERENCES:

[FOS2010]

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.is_perfect()
True

sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 1)
sage: K.is_perfect()
False

sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2)
sage: K.is_perfect()
True

sage: K = crystals.KirillovReshetikhin(['E',6,1], 1,3)
sage: K.is_perfect()
True

Todo: Implement a version for tensor products of KR crystals.

level()
Return the level of self when self is a perfect crystal.

See also:

is_perfect()

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.level()
1
sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2)
sage: K.level()
1

(continues on next page)
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sage: K = crystals.KirillovReshetikhin(['D',4,1], 1, 3)
sage: K.level()
3

sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 1)
sage: K.level()
Traceback (most recent call last):
...
ValueError: this crystal is not perfect

local_energy_function(B)
Return the local energy function of self and B.

See LocalEnergyFunction for a definition.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',6,2], 2,1)
sage: Kp = crystals.KirillovReshetikhin(['A',6,2], 1,1)
sage: H = K.local_energy_function(Kp); H
Local energy function of
Kirillov-Reshetikhin crystal of type ['BC', 3, 2] with (r,s)=(2,1)
tensor
Kirillov-Reshetikhin crystal of type ['BC', 3, 2] with (r,s)=(1,1)

maximal_vector()
Return the unique element of classical weight 𝑠Λ𝑟 in self.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',2,1],1,2)
sage: K.maximal_vector()
[[1, 1]]
sage: K = crystals.KirillovReshetikhin(['E',6,1],1,1)
sage: K.maximal_vector()
[(1,)]

sage: K = crystals.KirillovReshetikhin(['D',4,1],2,1)
sage: K.maximal_vector()
[[1], [2]]

module_generator()
Return the unique module generator of classical weight 𝑠Λ𝑟 of the Kirillov-Reshetikhin crystal 𝐵𝑟,𝑠.

EXAMPLES:

sage: La = RootSystem(['G',2,1]).weight_space().fundamental_weights()
sage: K = crystals.ProjectedLevelZeroLSPaths(La[1])
sage: K.module_generator()
(-Lambda[0] + Lambda[1],)

q_dimension(q=None, prec=None, use_product=False)
Return the 𝑞-dimension of self.

The 𝑞-dimension of a KR crystal is defined as the 𝑞-dimension of the underlying classical crystal.
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EXAMPLES:

sage: KRC = crystals.KirillovReshetikhin(['A',2,1], 2,2)
sage: KRC.q_dimension()
q^4 + q^3 + 2*q^2 + q + 1
sage: KRC = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: KRC.q_dimension()
q^10 + q^9 + 3*q^8 + 3*q^7 + 4*q^6 + 4*q^5 + 4*q^4 + 3*q^3 + 3*q^2 + q + 2

r()
Return the value 𝑟 in self written as 𝐵𝑟,𝑠.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,4)
sage: K.r()
2

s()
Return the value 𝑠 in self written as 𝐵𝑟,𝑠.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',3,1], 2,4)
sage: K.s()
4

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of tensor products of Kirillov-Reshetikhin crystals.

class ElementMethods
Bases: object

affine_grading()
Return the affine grading of self.

The affine grading is calculated by finding a path from self to a ground state path (using the
helper method e_string_to_ground_state()) and counting the number of affine Kashiwara
operators 𝑒0 applied on the way.

OUTPUT: an integer

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: t = T.module_generators[0]
sage: t.affine_grading()
1

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K,K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
....: print("{} {}".format(b, b.affine_grading()))
[[[1]], [[1]], [[1]]] 3

(continues on next page)
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[[[2]], [[1]], [[1]]] 2
[[[1]], [[2]], [[1]]] 1
[[[3]], [[2]], [[1]]] 0

sage: K = crystals.KirillovReshetikhin(['C',2,1],1,1)
sage: T = crystals.TensorProduct(K,K,K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
....: print("{} {}".format(b, b.affine_grading()))
[[[1]], [[1]], [[1]]] 2
[[[2]], [[1]], [[1]]] 1
[[[-1]], [[1]], [[1]]] 1
[[[1]], [[2]], [[1]]] 1
[[[-2]], [[2]], [[1]]] 0
[[[1]], [[-1]], [[1]]] 0

e_string_to_ground_state()
Return a string of integers in the index set (𝑖1, . . . , 𝑖𝑘) such that 𝑒𝑖𝑘 · · · 𝑒𝑖1 of self is the ground
state.

This method calculates a path from self to a ground state path using Demazure arrows as defined
in Lemma 7.3 in [ST2011].

OUTPUT: a tuple of integers (𝑖1, . . . , 𝑖𝑘)

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: t = T.module_generators[0]
sage: t.e_string_to_ground_state()
(0, 2)

sage: K = crystals.KirillovReshetikhin(['C',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: t = T.module_generators[0]; t
[[[1]], [[1]]]
sage: t.e_string_to_ground_state()
(0,)
sage: x = t.e(0)
sage: x.e_string_to_ground_state()
()
sage: y = t.f_string([1,2,1,1,0]); y
[[[2]], [[1]]]
sage: y.e_string_to_ground_state()
()

energy_function(algorithm=None)
Return the energy function of self.

ALGORITHM:
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definition

Let 𝑇 be a tensor product of Kirillov-Reshetikhin crystals. Let 𝑅𝑖 and 𝐻𝑖 be the combinatorial
𝑅-matrix and local energy functions, respectively, acting on the 𝑖 and 𝑖 + 1 factors. Let 𝐷𝐵 be
the energy function of a single Kirillov-Reshetikhin crystal. The energy function is given by

𝐷 =
∑︁
𝑗>𝑖

𝐻𝑖𝑅𝑖+1𝑅𝑖+2 · · ·𝑅𝑗−1 +
∑︁
𝑗

𝐷𝐵𝑅1𝑅2 · · ·𝑅𝑗−1,

where 𝐷𝐵 acts on the rightmost factor.

grading

If self is an element of 𝑇 , a tensor product of perfect crystals of the same level, then use the
affine grading to determine the energy. Specifically, let 𝑔 denote the affine grading of self and 𝑑
the affine grading of the maximal vector in 𝑇 . Then the energy of self is given by 𝑑− 𝑔.

For more details, see Theorem 7.5 in [ST2011].

INPUT:
• algorithm – (default: None) use one of the following algorithms to determine the energy

function:
– 'definition' - use the definition of the energy function;
– 'grading' - use the affine grading;
if not specified, then this uses 'grading' if all factors are perfect of the same level and other-
wise this uses 'definition'

OUTPUT: an integer

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: T = crystals.TensorProduct(K,K,K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
....: print("{} {}".format(b, b.energy_function()))
[[[1]], [[1]], [[1]]] 0
[[[2]], [[1]], [[1]]] 1
[[[1]], [[2]], [[1]]] 2
[[[3]], [[2]], [[1]]] 3

sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 2)
sage: T = crystals.TensorProduct(K,K)
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
....: print("{} {}".format(b, b.energy_function()))
[[], []] 4
[[[1, 1]], []] 3
[[], [[1, 1]]] 1
[[[1, 1]], [[1, 1]]] 0
[[[1, 2]], [[1, 1]]] 1
[[[2, 2]], [[1, 1]]] 2
[[[-1, -1]], [[1, 1]]] 2
[[[1, -1]], [[1, 1]]] 2
[[[2, -1]], [[1, 1]]] 2

(continues on next page)
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sage: K = crystals.KirillovReshetikhin(['C',2,1], 1, 1)
sage: T = crystals.TensorProduct(K)
sage: t = T.module_generators[0]
sage: t.energy_function('grading')
Traceback (most recent call last):
...
NotImplementedError: all crystals in the tensor product
need to be perfect of the same level

class ParentMethods
Bases: object

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [1, 2]])
sage: RC.cardinality()
100
sage: len(RC.list())
100

sage: RC = RiggedConfigurations(['E', 7, 1], [[1,1]])
sage: RC.cardinality()
134
sage: len(RC.list())
134

sage: RC = RiggedConfigurations(['B', 3, 1], [[2,2],[1,2]])
sage: RC.cardinality()
5130

classically_highest_weight_vectors()
Return the classically highest weight elements of self.

This works by using a backtracking algorithm since if 𝑏2⊗ 𝑏1 is classically highest weight then 𝑏1
is classically highest weight.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K,K)
sage: T.classically_highest_weight_vectors()
([[[1]], [[1]], [[1]]],
[[[2]], [[1]], [[1]]],
[[[1]], [[2]], [[1]]],
[[[3]], [[2]], [[1]]])

maximal_vector()
Return the maximal vector of self.

EXAMPLES:
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sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K,K)
sage: T.maximal_vector()
[[[1]], [[1]], [[1]]]

one_dimensional_configuration_sum(q=None, group_components=True)
Compute the one-dimensional configuration sum of self.

INPUT:
• q – (default: None) a variable or None; if None, a variable 𝑞 is set in the code
• group_components – (default: True) boolean; if True, then the terms are grouped by classical

component
The one-dimensional configuration sum is the sum of the weights of all elements in the crystal
weighted by the energy function.

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['A',2,1],1,1)
sage: T = crystals.TensorProduct(K,K)
sage: T.one_dimensional_configuration_sum()
B[-2*Lambda[1] + 2*Lambda[2]] + (q+1)*B[-Lambda[1]]
+ (q+1)*B[Lambda[1] - Lambda[2]] + B[2*Lambda[1]]
+ B[-2*Lambda[2]] + (q+1)*B[Lambda[2]]
sage: R.<t> = ZZ[]
sage: T.one_dimensional_configuration_sum(t, False)
B[-2*Lambda[1] + 2*Lambda[2]] + (t+1)*B[-Lambda[1]]
+ (t+1)*B[Lambda[1] - Lambda[2]] + B[2*Lambda[1]]
+ B[-2*Lambda[2]] + (t+1)*B[Lambda[2]]

sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: LS.one_dimensional_configuration_sum() == T.one_dimensional_
→˓configuration_sum() # long time
True

extra_super_categories()
EXAMPLES:

sage: from sage.categories.loop_crystals import KirillovReshetikhinCrystals
sage: KirillovReshetikhinCrystals().TensorProducts().extra_super_
→˓categories()
[Category of finite regular loop crystals]

super_categories()
EXAMPLES:

sage: from sage.categories.loop_crystals import KirillovReshetikhinCrystals
sage: KirillovReshetikhinCrystals().super_categories()
[Category of finite regular loop crystals]

class sage.categories.loop_crystals.LocalEnergyFunction(B, Bp, normalization=0)
Bases: sage.categories.map.Map

The local energy function.
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Let 𝐵 and 𝐵′ be Kirillov-Reshetikhin crystals with maximal vectors 𝑢𝐵 and 𝑢𝐵′ respectively. The local energy
function 𝐻 : 𝐵 ⊗𝐵′ → Z is the function which satisfies

𝐻(𝑒0(𝑏⊗ 𝑏′)) = 𝐻(𝑏⊗ 𝑏′) +

⎧⎪⎨⎪⎩
1 if 𝑖 = 0 and LL,
−1 if 𝑖 = 0 and RR,
0 otherwise,

where LL (resp. RR) denote 𝑒0 acts on the left (resp. right) on both 𝑏 ⊗ 𝑏′ and 𝑅(𝑏 ⊗ 𝑏′), and normalized by
𝐻(𝑢𝐵 ⊗ 𝑢𝐵′) = 0.

INPUT:

• B – a Kirillov-Reshetikhin crystal

• Bp – a Kirillov-Reshetikhin crystal

• normalization – (default: 0) the normalization value

EXAMPLES:

sage: K = crystals.KirillovReshetikhin(['C',2,1], 1,2)
sage: K2 = crystals.KirillovReshetikhin(['C',2,1], 2,1)
sage: H = K.local_energy_function(K2)
sage: T = tensor([K, K2])
sage: hw = T.classically_highest_weight_vectors()
sage: for b in hw:
....: b, H(b)
([[], [[1], [2]]], 1)
([[[1, 1]], [[1], [2]]], 0)
([[[2, -2]], [[1], [2]]], 1)
([[[1, -2]], [[1], [2]]], 1)

REFERENCES:

[KKMMNN1992]

class sage.categories.loop_crystals.LoopCrystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of 𝑈 ′
𝑞(g)-crystals, where g is of affine type.

The category is called loop crystals as we can also consider them as crystals corresponding to the loop algebra
g0[𝑡], where g0 is the corresponding classical type.

EXAMPLES:

sage: from sage.categories.loop_crystals import LoopCrystals
sage: C = LoopCrystals()
sage: C
Category of loop crystals
sage: C.super_categories()
[Category of crystals]
sage: C.example()
Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(1,1)

class ParentMethods
Bases: object

digraph(subset=None, index_set=None)
Return the DiGraph associated to self.
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INPUT:
• subset – (optional) a subset of vertices for which the digraph should be constructed
• index_set – (optional) the index set to draw arrows

See also:

sage.categories.crystals.Crystals.ParentMethods.digraph()

EXAMPLES:

sage: C = crystals.KirillovReshetikhin(['D',4,1], 2, 1)
sage: G = C.digraph()
sage: G.latex_options() # optional - dot2tex
LaTeX options for Digraph on 29 vertices:
{...'edge_options': <function ... at ...>...}
sage: view(G, tightpage=True) # optional - dot2tex graphviz, not tested␣
→˓(opens external window)

weight_lattice_realization()
Return the weight lattice realization used to express weights of elements in self.

The default is to use the non-extended affine weight lattice.

EXAMPLES:

sage: C = crystals.Letters(['A', 5])
sage: C.weight_lattice_realization()
Ambient space of the Root system of type ['A', 5]
sage: K = crystals.KirillovReshetikhin(['A',2,1], 1, 1)
sage: K.weight_lattice_realization()
Weight lattice of the Root system of type ['A', 2, 1]

example(n=3)
Return an example of Kirillov-Reshetikhin crystals, as per Category.example().

EXAMPLES:

sage: from sage.categories.loop_crystals import LoopCrystals
sage: B = LoopCrystals().example(); B
Kirillov-Reshetikhin crystal of type ['A', 3, 1] with (r,s)=(1,1)

super_categories()
EXAMPLES:

sage: from sage.categories.loop_crystals import LoopCrystals
sage: LoopCrystals().super_categories()
[Category of crystals]

class sage.categories.loop_crystals.RegularLoopCrystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of regular 𝑈 ′
𝑞(g)-crystals, where g is of affine type.

class ElementMethods
Bases: object

classical_weight()
Return the classical weight of self.

EXAMPLES:
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sage: R = RootSystem(['A',2,1])
sage: La = R.weight_space().basis()
sage: LS = crystals.ProjectedLevelZeroLSPaths(2*La[1])
sage: hw = LS.classically_highest_weight_vectors()
sage: [(v.weight(), v.classical_weight()) for v in hw]
[(-2*Lambda[0] + 2*Lambda[1], (2, 0, 0)),
(-Lambda[0] + Lambda[2], (1, 1, 0))]

super_categories()
EXAMPLES:

sage: from sage.categories.loop_crystals import RegularLoopCrystals
sage: RegularLoopCrystals().super_categories()
[Category of regular crystals,
Category of loop crystals]

4.110 L-trivial semigroups

class sage.categories.l_trivial_semigroups.LTrivialSemigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Commutative_extra_super_categories()
Implement the fact that a commutative 𝑅-trivial semigroup is 𝐽-trivial.

EXAMPLES:

sage: Semigroups().LTrivial().Commutative_extra_super_categories()
[Category of j trivial semigroups]

RTrivial_extra_super_categories()
Implement the fact that an 𝐿-trivial and 𝑅-trivial semigroup is 𝐽-trivial.

EXAMPLES:

sage: Semigroups().LTrivial().RTrivial_extra_super_categories()
[Category of j trivial magmas]

extra_super_categories()
Implement the fact that a 𝐿-trivial semigroup is 𝐻-trivial.

EXAMPLES:

sage: Semigroups().LTrivial().extra_super_categories()
[Category of h trivial semigroups]
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4.111 Magmas

class sage.categories.magmas.Magmas(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of (multiplicative) magmas.

A magma is a set with a binary operation *.

EXAMPLES:

sage: Magmas()
Category of magmas
sage: Magmas().super_categories()
[Category of sets]
sage: Magmas().all_super_categories()
[Category of magmas, Category of sets,
Category of sets with partial maps, Category of objects]

The following axioms are defined by this category:

sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Unital()
Category of unital magmas
sage: Magmas().Commutative()
Category of commutative magmas
sage: Magmas().Unital().Inverse()
Category of inverse unital magmas
sage: Magmas().Associative()
Category of semigroups
sage: Magmas().Associative().Unital()
Category of monoids
sage: Magmas().Associative().Unital().Inverse()
Category of groups

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
Bases: object

is_field(proof=True)
Return True if self is a field.

For a magma algebra 𝑅𝑆 this is always false unless 𝑆 is trivial and the base ring 𝑅 is a field.

EXAMPLES:

sage: SymmetricGroup(1).algebra(QQ).is_field()
True
sage: SymmetricGroup(1).algebra(ZZ).is_field()
False
sage: SymmetricGroup(2).algebra(QQ).is_field()
False
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extra_super_categories()
EXAMPLES:

sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]

This implements the fact that the algebra of a commutative magma is commutative:

sage: Magmas().Commutative().Algebras(QQ).super_categories()
[Category of magma algebras over Rational Field, Category of commutative␣
→˓magmas]

In particular, commutative monoid algebras are commutative algebras:

sage: Monoids().Commutative().Algebras(QQ).is_subcategory(Algebras(QQ).
→˓Commutative())
True

Associative
alias of sage.categories.semigroups.Semigroups

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ParentMethods
Bases: object

product(left, right)
EXAMPLES:

sage: C = Magmas().CartesianProducts().example(); C
The Cartesian product of (Rational Field, Integer Ring, Integer Ring)
sage: x = C.an_element(); x
(1/2, 1, 1)
sage: x * x
(1/4, 1, 1)

sage: A = SymmetricGroupAlgebra(QQ, 3)
sage: x = cartesian_product([A([1,3,2]), A([2,3,1])])
sage: y = cartesian_product([A([1,3,2]), A([2,3,1])])
sage: cartesian_product([A,A]).product(x,y)
B[(0, [1, 2, 3])] + B[(1, [3, 1, 2])]
sage: x*y
B[(0, [1, 2, 3])] + B[(1, [3, 1, 2])]

example()
Return an example of Cartesian product of magmas.

EXAMPLES:

sage: C = Magmas().CartesianProducts().example(); C
The Cartesian product of (Rational Field, Integer Ring, Integer Ring)
sage: C.category()
Join of Category of Cartesian products of commutative rings and
Category of Cartesian products of metric spaces
sage: sorted(C.category().axioms())

(continues on next page)
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(continued from previous page)

['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Associative', 'Commutative',
'Distributive', 'Unital']

sage: TestSuite(C).run()

extra_super_categories()
This implements the fact that a subquotient (and therefore a quotient or subobject) of a finite set is
finite.

EXAMPLES:

sage: Semigroups().CartesianProducts().extra_super_categories()
[Category of semigroups]
sage: Semigroups().CartesianProducts().super_categories()
[Category of semigroups, Category of Cartesian products of magmas]

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

extra_super_categories()
EXAMPLES:

sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]

This implements the fact that the algebra of a commutative magma is commutative:

sage: Magmas().Commutative().Algebras(QQ).super_categories()
[Category of magma algebras over Rational Field,
Category of commutative magmas]

In particular, commutative monoid algebras are commutative algebras:

sage: Monoids().Commutative().Algebras(QQ).is_subcategory(Algebras(QQ).
→˓Commutative())
True

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a Cartesian product of commutative additive magmas is still an commu-
tative additive magmas.

EXAMPLES:

sage: C = Magmas().Commutative().CartesianProducts()
sage: C.extra_super_categories()
[Category of commutative magmas]
sage: C.axioms()
frozenset({'Commutative'})
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class ParentMethods
Bases: object

is_commutative()
Return True, since commutative magmas are commutative.

EXAMPLES:

sage: Parent(QQ,category=CommutativeRings()).is_commutative()
True

class ElementMethods
Bases: object

is_idempotent()
Test whether self is idempotent.

EXAMPLES:

sage: S = Semigroups().example("free"); S
An example of a semigroup: the free semigroup generated by ('a', 'b', 'c',
→˓'d')
sage: a = S('a')
sage: a^2
'aa'
sage: a.is_idempotent()
False

sage: L = Semigroups().example("leftzero"); L
An example of a semigroup: the left zero semigroup
sage: x = L('x')
sage: x^2
'x'
sage: x.is_idempotent()
True

FinitelyGeneratedAsMagma
alias of sage.categories.finitely_generated_magmas.FinitelyGeneratedMagmas

class JTrivial(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
Bases: object

multiplication_table(names='letters', elements=None)
Returns a table describing the multiplication operation.

Note: The order of the elements in the row and column headings is equal to the order given by the
table’s list() method. The association can also be retrieved with the dict() method.

INPUT:
• names - the type of names used

– 'letters' - lowercase ASCII letters are used for a base 26 representation of the elements’
positions in the list given by column_keys(), padded to a common width with leading ‘a’s.

– 'digits' - base 10 representation of the elements’ positions in the list given by
column_keys(), padded to a common width with leading zeros.
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– 'elements' - the string representations of the elements themselves.
– a list - a list of strings, where the length of the list equals the number of elements.

• elements - default = None. A list of elements of the magma, in forms that can be coerced into
the structure, eg. their string representations. This may be used to impose an alternate ordering
on the elements, perhaps when this is used in the context of a particular structure. The default is
to use whatever ordering the S.list method returns. Or the elements can be a subset which is
closed under the operation. In particular, this can be used when the base set is infinite.

OUTPUT: The multiplication table as an object of the class OperationTable which defines several
methods for manipulating and displaying the table. See the documentation there for full details to
supplement the documentation here.

EXAMPLES:

The default is to represent elements as lowercase ASCII letters.

sage: G = CyclicPermutationGroup(5)
sage: G.multiplication_table()
* a b c d e
+----------
a| a b c d e
b| b c d e a
c| c d e a b
d| d e a b c
e| e a b c d

All that is required is that an algebraic structure has a multiplication defined. A LeftRegularBand
is an example of a finite semigroup. The names argument allows displaying the elements in different
ways.

sage: from sage.categories.examples.finite_semigroups import LeftRegularBand
sage: L = LeftRegularBand(('a', 'b'))
sage: T = L.multiplication_table(names='digits')
sage: T.column_keys()
('a', 'ab', 'b', 'ba')
sage: T
* 0 1 2 3
+--------
0| 0 1 1 1
1| 1 1 1 1
2| 3 3 2 3
3| 3 3 3 3

Specifying the elements in an alternative order can provide more insight into how the operation be-
haves.

sage: L = LeftRegularBand(('a', 'b', 'c'))
sage: elts = sorted(L.list())
sage: L.multiplication_table(elements=elts)
* a b c d e f g h i j k l m n o
+------------------------------
a| a b c d e b b c c c d d e e e
b| b b c c c b b c c c c c c c c
c| c c c c c c c c c c c c c c c
d| d e e d e e e e e e d d e e e
e| e e e e e e e e e e e e e e e

(continues on next page)
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(continued from previous page)

f| g g h h h f g h i j i j j i j
g| g g h h h g g h h h h h h h h
h| h h h h h h h h h h h h h h h
i| j j j j j i j j i j i j j i j
j| j j j j j j j j j j j j j j j
k| l m m l m n o o n o k l m n o
l| l m m l m m m m m m l l m m m
m| m m m m m m m m m m m m m m m
n| o o o o o n o o n o n o o n o
o| o o o o o o o o o o o o o o o

The elements argument can be used to provide a subset of the elements of the structure. The subset
must be closed under the operation. Elements need only be in a form that can be coerced into the
set. The names argument can also be used to request that the elements be represented with their usual
string representation.

sage: L = LeftRegularBand(('a','b','c'))
sage: elts=['a', 'c', 'ac', 'ca']
sage: L.multiplication_table(names='elements', elements=elts)

* 'a' 'c' 'ac' 'ca'
+--------------------

'a'| 'a' 'ac' 'ac' 'ac'
'c'| 'ca' 'c' 'ca' 'ca'
'ac'| 'ac' 'ac' 'ac' 'ac'
'ca'| 'ca' 'ca' 'ca' 'ca'

The table returned can be manipulated in various ways. See the documentation for OperationTable
for more comprehensive documentation.

sage: G = AlternatingGroup(3)
sage: T = G.multiplication_table()
sage: T.column_keys()
((), (1,2,3), (1,3,2))
sage: T.translation()
{'a': (), 'b': (1,2,3), 'c': (1,3,2)}
sage: T.change_names(['x', 'y', 'z'])
sage: T.translation()
{'x': (), 'y': (1,2,3), 'z': (1,3,2)}
sage: T
* x y z
+------
x| x y z
y| y z x
z| z x y

product(x, y)
The binary multiplication of the magma.

INPUT:
• x, y – elements of this magma

OUTPUT:
• an element of the magma (the product of x and y)

EXAMPLES:
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sage: S = Semigroups().example("free")
sage: x = S('a'); y = S('b')
sage: S.product(x, y)
'ab'

A parent in Magmas() must either implement product() in the parent class or _mul_ in the ele-
ment class. By default, the addition method on elements x._mul_(y) calls S.product(x,y), and
reciprocally.

As a bonus, S.product models the binary function from S to S:

sage: bin = S.product
sage: bin(x,y)
'ab'

Currently, S.product is just a bound method:

sage: bin
<bound method FreeSemigroup.product of An example of a semigroup: the free␣
→˓semigroup generated by ('a', 'b', 'c', 'd')>

When Sage will support multivariate morphisms, it will be possible, and in fact recommended, to
enrich S.product with extra mathematical structure. This will typically be implemented using lazy
attributes.:

sage: bin # todo: not implemented
Generic binary morphism:
From: (S x S)
To: S

product_from_element_class_mul(x, y)
The binary multiplication of the magma.

INPUT:
• x, y – elements of this magma

OUTPUT:
• an element of the magma (the product of x and y)

EXAMPLES:

sage: S = Semigroups().example("free")
sage: x = S('a'); y = S('b')
sage: S.product(x, y)
'ab'

A parent in Magmas() must either implement product() in the parent class or _mul_ in the ele-
ment class. By default, the addition method on elements x._mul_(y) calls S.product(x,y), and
reciprocally.

As a bonus, S.product models the binary function from S to S:

sage: bin = S.product
sage: bin(x,y)
'ab'

Currently, S.product is just a bound method:
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sage: bin
<bound method FreeSemigroup.product of An example of a semigroup: the free␣
→˓semigroup generated by ('a', 'b', 'c', 'd')>

When Sage will support multivariate morphisms, it will be possible, and in fact recommended, to
enrich S.product with extra mathematical structure. This will typically be implemented using lazy
attributes.:

sage: bin # todo: not implemented
Generic binary morphism:
From: (S x S)
To: S

class Realizations(category, *args)
Bases: sage.categories.realizations.RealizationsCategory

class ParentMethods
Bases: object

product_by_coercion(left, right)
Default implementation of product for realizations.

This method coerces to the realization specified by self.realization_of().
a_realization(), computes the product in that realization, and then coerces back.

EXAMPLES:

sage: Out = Sets().WithRealizations().example().Out(); Out
The subset algebra of {1, 2, 3} over Rational Field in the Out basis
sage: Out.product
<bound method Magmas.Realizations.ParentMethods.product_by_coercion of␣
→˓The subset algebra of {1, 2, 3} over Rational Field in the Out basis>
sage: Out.product.__module__
'sage.categories.magmas'
sage: x = Out.an_element()
sage: y = Out.an_element()
sage: Out.product(x, y)
Out[{}] + 4*Out[{1}] + 9*Out[{2}] + Out[{1, 2}]

class SubcategoryMethods
Bases: object

Associative()
Return the full subcategory of the associative objects of self.

A (multiplicative) magma Magmas𝑀 is associative if, for all 𝑥, 𝑦, 𝑧 ∈𝑀 ,

𝑥 * (𝑦 * 𝑧) = (𝑥 * 𝑦) * 𝑧

See also:

Wikipedia article Associative_property

EXAMPLES:

sage: Magmas().Associative()
Category of semigroups
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Commutative()
Return the full subcategory of the commutative objects of self.

A (multiplicative) magma Magmas𝑀 is commutative if, for all 𝑥, 𝑦 ∈𝑀 ,

𝑥 * 𝑦 = 𝑦 * 𝑥

See also:

Wikipedia article Commutative_property

EXAMPLES:

sage: Magmas().Commutative()
Category of commutative magmas
sage: Monoids().Commutative()
Category of commutative monoids

Distributive()
Return the full subcategory of the objects of self where * is distributive on +.

INPUT:
• self – a subcategory of Magmas and AdditiveMagmas

Given that Sage does not yet know that the category MagmasAndAdditiveMagmas is the intersec-
tion of the categories Magmas and AdditiveMagmas, the method MagmasAndAdditiveMagmas.
SubcategoryMethods.Distributive() is not available, as would be desirable, for this intersec-
tion.

This method is a workaround. It checks that self is a subcategory of both Magmas and
AdditiveMagmas and upgrades it to a subcategory of MagmasAndAdditiveMagmas before apply-
ing the axiom. It complains otherwise, since the Distributive axiom does not make sense for a
plain magma.

EXAMPLES:

sage: (Magmas() & AdditiveMagmas()).Distributive()
Category of distributive magmas and additive magmas
sage: (Monoids() & CommutativeAdditiveGroups()).Distributive()
Category of rings

sage: Magmas().Distributive()
Traceback (most recent call last):
...
ValueError: The distributive axiom only makes sense on a magma which is␣
→˓simultaneously an additive magma
sage: Semigroups().Distributive()
Traceback (most recent call last):
...
ValueError: The distributive axiom only makes sense on a magma which is␣
→˓simultaneously an additive magma

FinitelyGenerated()
Return the subcategory of the objects of self that are endowed with a distinguished finite set of
(multiplicative) magma generators.

EXAMPLES:

This is a shorthand for FinitelyGeneratedAsMagma(), which see:
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sage: Magmas().FinitelyGenerated()
Category of finitely generated magmas
sage: Semigroups().FinitelyGenerated()
Category of finitely generated semigroups
sage: Groups().FinitelyGenerated()
Category of finitely generated enumerated groups

An error is raised if this is ambiguous:

sage: (Magmas() & AdditiveMagmas()).FinitelyGenerated()
Traceback (most recent call last):
...
ValueError: FinitelyGenerated is ambiguous for
Join of Category of magmas and Category of additive magmas.
Please use explicitly one of the FinitelyGeneratedAsXXX methods

Note: Checking that there is no ambiguity currently assumes that all the other “finitely generated”
axioms involve an additive structure. As of Sage 6.4, this is correct.

The use of this shorthand should be reserved for casual interactive use or when there is no risk of
ambiguity.

FinitelyGeneratedAsMagma()
Return the subcategory of the objects of self that are endowed with a distinguished finite set of
(multiplicative) magma generators.

A set 𝑆 of elements of a multiplicative magma form a set of generators if any element of the magma
can be expressed recursively from elements of 𝑆 and products thereof.

It is not imposed that morphisms shall preserve the distinguished set of generators; hence this is a full
subcategory.

See also:

Wikipedia article Unital_magma#unital

EXAMPLES:

sage: Magmas().FinitelyGeneratedAsMagma()
Category of finitely generated magmas

Being finitely generated does depend on the structure: for a ring, being finitely generated as a magma,
as an additive magma, or as a ring are different concepts. Hence the name of this axiom is explicit:

sage: Rings().FinitelyGeneratedAsMagma()
Category of finitely generated as magma enumerated rings

On the other hand, it does not depend on the multiplicative structure: for example a group is finitely
generated if and only if it is finitely generated as a magma. A short hand is provided when there is no
ambiguity, and the output tries to reflect that:

sage: Semigroups().FinitelyGenerated()
Category of finitely generated semigroups
sage: Groups().FinitelyGenerated()
Category of finitely generated enumerated groups

(continues on next page)

4.111. Magmas 573

https://en.wikipedia.org/wiki/Unital_magma#unital


Category Framework, Release 9.7

(continued from previous page)

sage: Semigroups().FinitelyGenerated().axioms()
frozenset({'Associative', 'Enumerated', 'FinitelyGeneratedAsMagma'})

Note that the set of generators may depend on the actual category; for example, in a group, one can
often use less generators since it is allowed to take inverses.

JTrivial()
Return the full subcategory of the 𝐽-trivial objects of self.

This axiom is in fact only meaningful for semigroups. This stub definition is here as a workaround
for trac ticket #20515, in order to define the 𝐽-trivial axiom as the intersection of the 𝐿 and 𝑅-trivial
axioms.

See also:

Semigroups.SubcategoryMethods.JTrivial()

Unital()
Return the subcategory of the unital objects of self.

A (multiplicative) magma Magmas 𝑀 is unital if it admits an element 1, called unit, such that for all
𝑥 ∈𝑀 ,

1 * 𝑥 = 𝑥 * 1 = 𝑥

This element is necessarily unique, and should be provided as M.one().

See also:

Wikipedia article Unital_magma#unital

EXAMPLES:

sage: Magmas().Unital()
Category of unital magmas
sage: Semigroups().Unital()
Category of monoids
sage: Monoids().Unital()
Category of monoids
sage: from sage.categories.associative_algebras import AssociativeAlgebras
sage: AssociativeAlgebras(QQ).Unital()
Category of algebras over Rational Field

class Subquotients(category, *args)
Bases: sage.categories.subquotients.SubquotientsCategory

The category of subquotient magmas.

See Sets.SubcategoryMethods.Subquotients() for the general setup for subquotients. In the case
of a subquotient magma 𝑆 of a magma 𝐺, the condition that 𝑟 be a morphism in As can be rewritten as
follows:

• for any two 𝑎, 𝑏 ∈ 𝑆 the identity 𝑎×𝑆 𝑏 = 𝑟(𝑙(𝑎)×𝐺 𝑙(𝑏)) holds.

This is used by this category to implement the product ×𝑆 of 𝑆 from 𝑙 and 𝑟 and the product of 𝐺.

EXAMPLES:
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sage: Semigroups().Subquotients().all_super_categories()
[Category of subquotients of semigroups, Category of semigroups,
Category of subquotients of magmas, Category of magmas,
Category of subquotients of sets, Category of sets,
Category of sets with partial maps,
Category of objects]

class ParentMethods
Bases: object

product(x, y)
Return the product of two elements of self.

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: S
An example of a (sub)quotient semigroup:
a quotient of the left zero semigroup
sage: S.product(S(19), S(3))
19

Here is a more elaborate example involving a sub algebra:

sage: Z = SymmetricGroup(5).algebra(QQ).center()
sage: B = Z.basis()
sage: B[3] * B[2]
4*B[2] + 6*B[3] + 5*B[6]

class Unital(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

extra_super_categories()
EXAMPLES:

sage: Magmas().Commutative().Algebras(QQ).extra_super_categories()
[Category of commutative magmas]

This implements the fact that the algebra of a commutative magma is commutative:

sage: Magmas().Commutative().Algebras(QQ).super_categories()
[Category of magma algebras over Rational Field,
Category of commutative magmas]

In particular, commutative monoid algebras are commutative algebras:

sage: Monoids().Commutative().Algebras(QQ).is_subcategory(Algebras(QQ).
→˓Commutative())
True

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory
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class ElementMethods
Bases: object

class ParentMethods
Bases: object

one()
Return the unit of this Cartesian product.

It is built from the units for the Cartesian factors of self.

EXAMPLES:

sage: cartesian_product([QQ, ZZ, RR]).one()
(1, 1, 1.00000000000000)

extra_super_categories()
Implement the fact that a Cartesian product of unital magmas is a unital magma

EXAMPLES:

sage: C = Magmas().Unital().CartesianProducts()
sage: C.extra_super_categories()
[Category of unital magmas]
sage: C.axioms()
frozenset({'Unital'})

sage: Monoids().CartesianProducts().is_subcategory(Monoids())
True

class ElementMethods
Bases: object

class Inverse(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a Cartesian product of magmas with inverses is a magma with inverse.

EXAMPLES:

sage: C = Magmas().Unital().Inverse().CartesianProducts()
sage: C.extra_super_categories()
[Category of inverse unital magmas]
sage: sorted(C.axioms())
['Inverse', 'Unital']

class ParentMethods
Bases: object

is_empty()
Return whether self is empty.

Since this set is a unital magma it is not empty and this method always return False.

EXAMPLES:
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sage: S = SymmetricGroup(2)
sage: S.is_empty()
False

sage: M = Monoids().example()
sage: M.is_empty()
False

one()
Return the unit of the monoid, that is the unique neutral element for *.

Note: The default implementation is to coerce 1 into self. It is recommended to override this
method because the coercion from the integers:
• is not always meaningful (except for 1);
• often uses self.one().

EXAMPLES:

sage: M = Monoids().example(); M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: M.one()
''

class Realizations(category, *args)
Bases: sage.categories.realizations.RealizationsCategory

class ParentMethods
Bases: object

one()
Return the unit element of self.

sage: from sage.combinat.root_system.extended_affine_weyl_group import Ex-
tendedAffineWeylGroup sage: PvW0 = ExtendedAffineWeylGroup([‘A’,2,1]).PvW0()
sage: PvW0 in Magmas().Unital().Realizations() True sage: PvW0.one() 1

class SubcategoryMethods
Bases: object

Inverse()
Return the full subcategory of the inverse objects of self.

An inverse :class:` (multiplicative) magma <Magmas>` is a unital magma such that every ele-
ment admits both an inverse on the left and on the right. Such a magma is also called a loop.

See also:

Wikipedia article Inverse_element, Wikipedia article Quasigroup

EXAMPLES:

sage: Magmas().Unital().Inverse()
Category of inverse unital magmas
sage: Monoids().Inverse()
Category of groups

additional_structure()
Return self.
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Indeed, the category of unital magmas defines an additional structure, namely the unit of the magma
which shall be preserved by morphisms.

See also:

Category.additional_structure()

EXAMPLES:

sage: Magmas().Unital().additional_structure()
Category of unital magmas

super_categories()
EXAMPLES:

sage: Magmas().super_categories()
[Category of sets]

4.112 Magmas and Additive Magmas

class sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of sets (𝑆,+, *) with an additive operation ‘+’ and a multiplicative operation *

EXAMPLES:

sage: from sage.categories.magmas_and_additive_magmas import MagmasAndAdditiveMagmas
sage: C = MagmasAndAdditiveMagmas(); C
Category of magmas and additive magmas

This is the base category for the categories of rings and their variants:

sage: C.Distributive()
Category of distributive magmas and additive magmas
sage: C.Distributive().Associative().AdditiveAssociative().AdditiveCommutative().
→˓AdditiveUnital().AdditiveInverse()
Category of rngs
sage: C.Distributive().Associative().AdditiveAssociative().AdditiveCommutative().
→˓AdditiveUnital().Unital()
Category of semirings
sage: C.Distributive().Associative().AdditiveAssociative().AdditiveCommutative().
→˓AdditiveUnital().AdditiveInverse().Unital()
Category of rings

This category is really meant to represent the intersection of the categories of Magmas and AdditiveMagmas;
however Sage’s infrastructure does not allow yet to model this:

sage: Magmas() & AdditiveMagmas()
Join of Category of magmas and Category of additive magmas

sage: Magmas() & AdditiveMagmas() # todo: not implemented
Category of magmas and additive magmas
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class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that this structure is stable under Cartesian products.

Distributive
alias of sage.categories.distributive_magmas_and_additive_magmas.
DistributiveMagmasAndAdditiveMagmas

class SubcategoryMethods
Bases: object

Distributive()
Return the full subcategory of the objects of self where * is distributive on +.

A magma and additive magma 𝑀 is distributive if, for all 𝑥, 𝑦, 𝑧 ∈𝑀 ,

𝑥 * (𝑦 + 𝑧) = 𝑥 * 𝑦 + 𝑥 * 𝑧 and (𝑥 + 𝑦) * 𝑧 = 𝑥 * 𝑧 + 𝑦 * 𝑧

EXAMPLES:

sage: from sage.categories.magmas_and_additive_magmas import␣
→˓MagmasAndAdditiveMagmas
sage: C = MagmasAndAdditiveMagmas().Distributive(); C
Category of distributive magmas and additive magmas

Note: Given that Sage does not know that MagmasAndAdditiveMagmas is the intersection of Magmas
and AdditiveMagmas, this method is not available for:

sage: Magmas() & AdditiveMagmas()
Join of Category of magmas and Category of additive magmas

Still, the natural syntax works:

sage: (Magmas() & AdditiveMagmas()).Distributive()
Category of distributive magmas and additive magmas

thanks to a workaround implemented in Magmas.SubcategoryMethods.Distributive():

sage: (Magmas() & AdditiveMagmas()).Distributive.__module__
'sage.categories.magmas'

additional_structure()
Return None.

Indeed, this category is meant to represent the join of AdditiveMagmas and Magmas. As such, it defines
no additional structure.

See also:

Category.additional_structure()

EXAMPLES:

sage: from sage.categories.magmas_and_additive_magmas import␣
→˓MagmasAndAdditiveMagmas
sage: MagmasAndAdditiveMagmas().additional_structure()
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super_categories()
EXAMPLES:

sage: from sage.categories.magmas_and_additive_magmas import␣
→˓MagmasAndAdditiveMagmas
sage: MagmasAndAdditiveMagmas().super_categories()
[Category of magmas, Category of additive magmas]

4.113 Non-unital non-associative algebras

class sage.categories.magmatic_algebras.MagmaticAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of algebras over a given base ring.

An algebra over a ring 𝑅 is a module over 𝑅 endowed with a bilinear multiplication.

Warning: MagmaticAlgebras will eventually replace the current Algebras for consistency with e.g.
Wikipedia article Algebras which assumes neither associativity nor the existence of a unit (see trac ticket
#15043).

EXAMPLES:

sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: C = MagmaticAlgebras(ZZ); C
Category of magmatic algebras over Integer Ring
sage: C.super_categories()
[Category of additive commutative additive associative additive unital distributive␣
→˓magmas and additive magmas,
Category of modules over Integer Ring]

Associative
alias of sage.categories.associative_algebras.AssociativeAlgebras

class ParentMethods
Bases: object

algebra_generators()
Return a family of generators of this algebra.

EXAMPLES:

sage: F = AlgebrasWithBasis(QQ).example(); F
An example of an algebra with basis: the free algebra on the generators ('a
→˓', 'b', 'c') over Rational Field
sage: F.algebra_generators()
Family (B[word: a], B[word: b], B[word: c])

Unital
alias of sage.categories.unital_algebras.UnitalAlgebras

class WithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
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class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ParentMethods
Bases: object

derivations_basis()
Return a basis for the Lie algebra of derivations of self as matrices.

A derivation 𝐷 of an algebra is an endomorphism of 𝐴 such that

𝐷(𝑎𝑏) = 𝐷(𝑎)𝑏 + 𝑎𝐷(𝑏)

for all 𝑎, 𝑏 ∈ 𝐴. The set of all derivations form a Lie algebra.

EXAMPLES:

We construct the Heisenberg Lie algebra as a multiplicative algebra:

sage: p_mult = matrix([[0,0,0],[0,0,-1],[0,0,0]])
sage: q_mult = matrix([[0,0,1],[0,0,0],[0,0,0]])
sage: A = algebras.FiniteDimensional(QQ,
....: [p_mult,q_mult,matrix(QQ,3,3)], 'p,q,z')
sage: A.inject_variables()
Defining p, q, z
sage: p*q
z
sage: q*p
-z
sage: A.derivations_basis()
(
[1 0 0] [0 1 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [1 0 0] [0 1 0] [0 0 0] [0 0 0]
[0 0 1], [0 0 0], [0 0 0], [0 0 1], [1 0 0], [0 1 0]
)

We construct another example using the exterior algebra and verify we obtain a derivation:

sage: A = algebras.Exterior(QQ, 1)
sage: A.derivations_basis()
(
[0 0]
[0 1]
)
sage: D = A.module_morphism(matrix=A.derivations_basis()[0],␣
→˓codomain=A)
sage: one, e = A.basis()
sage: all(D(a*b) == D(a) * b + a * D(b)
....: for a in A.basis() for b in A.basis())
True

REFERENCES:

Wikipedia article Derivation_(differential_algebra)

class ParentMethods
Bases: object
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algebra_generators()
Return generators for this algebra.

This default implementation returns the basis of this algebra.

OUTPUT: a family

See also:

• basis()
• MagmaticAlgebras.ParentMethods.algebra_generators()

EXAMPLES:

sage: D4 = DescentAlgebra(QQ, 4).B()
sage: D4.algebra_generators()
Lazy family (...)_{i in Compositions of 4}

sage: R.<x> = ZZ[]
sage: P = PartitionAlgebra(1, x, R)
sage: P.algebra_generators()
Lazy family (Term map from Partition diagrams of order 1 to
Partition Algebra of rank 1 with parameter x over Univariate Polynomial␣
→˓Ring in x
over Integer Ring(i))_{i in Partition diagrams of order 1}

product()
The product of the algebra, as per Magmas.ParentMethods.product()

By default, this is implemented using one of the following methods, in the specified order:
• product_on_basis()
• product_by_coercion()
EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example()
sage: a, b, c = A.algebra_generators()
sage: A.product(a + 2*b, 3*c)
3*B[word: ac] + 6*B[word: bc]

product_on_basis(i, j)
The product of the algebra on the basis (optional).

INPUT:
• i, j – the indices of two elements of the basis of self
Return the product of the two corresponding basis elements indexed by i and j.

If implemented, product() is defined from it by bilinearity.

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example()
sage: Word = A.basis().keys()
sage: A.product_on_basis(Word("abc"),Word("cba"))
B[word: abccba]

additional_structure()
Return None.

Indeed, the category of (magmatic) algebras defines no new structure: a morphism of modules and of
magmas between two (magmatic) algebras is a (magmatic) algebra morphism.
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See also:

Category.additional_structure()

Todo: This category should be a CategoryWithAxiom , the axiom specifying the compatibility between
the magma and module structure.

EXAMPLES:

sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: MagmaticAlgebras(ZZ).additional_structure()

super_categories()
EXAMPLES:

sage: from sage.categories.magmatic_algebras import MagmaticAlgebras
sage: MagmaticAlgebras(ZZ).super_categories()
[Category of additive commutative additive associative additive unital␣
→˓distributive magmas and additive magmas, Category of modules over Integer␣
→˓Ring]

sage: from sage.categories.additive_semigroups import AdditiveSemigroups
sage: MagmaticAlgebras(ZZ).is_subcategory((AdditiveSemigroups() & Magmas()).
→˓Distributive())
True

4.114 Manifolds

class sage.categories.manifolds.ComplexManifolds(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of complex manifolds.

A 𝑑-dimensional complex manifold is a manifold whose underlying vector space is C𝑑 and has a holomorphic
atlas.

super_categories()
EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).super_categories()
[Category of topological spaces]

class sage.categories.manifolds.Manifolds(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of manifolds over any topological field.

Let 𝑘 be a topological field. A 𝑑-dimensional 𝑘-manifold 𝑀 is a second countable Hausdorff space such that the
neighborhood of any point 𝑥 ∈𝑀 is homeomorphic to 𝑘𝑑.

EXAMPLES:
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sage: from sage.categories.manifolds import Manifolds
sage: C = Manifolds(RR); C
Category of manifolds over Real Field with 53 bits of precision
sage: C.super_categories()
[Category of topological spaces]

class AlmostComplex(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of almost complex manifolds.

An almost complex manifold 𝑀 is a manifold with a smooth tensor field 𝐽 of rank (1, 1) such that 𝐽2 = −1
when regarded as a vector bundle isomorphism 𝐽 : 𝑇𝑀 → 𝑇𝑀 on the tangent bundle. The tensor field 𝐽
is called the almost complex structure of 𝑀 .

extra_super_categories()
Return the extra super categories of self.

An almost complex manifold is smooth.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).AlmostComplex().super_categories() # indirect doctest
[Category of smooth manifolds
over Real Field with 53 bits of precision]

class Analytic(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of complex manifolds.

An analytic manifold is a manifold with an analytic atlas.

extra_super_categories()
Return the extra super categories of self.

An analytic manifold is smooth.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Analytic().super_categories() # indirect doctest
[Category of smooth manifolds
over Real Field with 53 bits of precision]

class Connected(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of connected manifolds.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: C = Manifolds(RR).Connected()
sage: TestSuite(C).run(skip="_test_category_over_bases")

class Differentiable(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring
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The category of differentiable manifolds.

A differentiable manifold is a manifold with a differentiable atlas.

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

Category of finite dimensional manifolds.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: C = Manifolds(RR).FiniteDimensional()
sage: TestSuite(C).run(skip="_test_category_over_bases")

class ParentMethods
Bases: object

dimension()
Return the dimension of self.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: M = Manifolds(RR).example()
sage: M.dimension()
3

class Smooth(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of smooth manifolds.

A smooth manifold is a manifold with a smooth atlas.

extra_super_categories()
Return the extra super categories of self.

A smooth manifold is differentiable.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Smooth().super_categories() # indirect doctest
[Category of differentiable manifolds
over Real Field with 53 bits of precision]

class SubcategoryMethods
Bases: object

AlmostComplex()
Return the subcategory of the almost complex objects of self.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).AlmostComplex()
Category of almost complex manifolds
over Real Field with 53 bits of precision
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Analytic()
Return the subcategory of the analytic objects of self.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Analytic()
Category of analytic manifolds
over Real Field with 53 bits of precision

Complex()
Return the subcategory of manifolds over C of self.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(CC).Complex()
Category of complex manifolds over
Complex Field with 53 bits of precision

Connected()
Return the full subcategory of the connected objects of self.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Connected()
Category of connected manifolds
over Real Field with 53 bits of precision

Differentiable()
Return the subcategory of the differentiable objects of self.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Differentiable()
Category of differentiable manifolds
over Real Field with 53 bits of precision

FiniteDimensional()
Return the full subcategory of the finite dimensional objects of self.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: C = Manifolds(RR).Connected().FiniteDimensional(); C
Category of finite dimensional connected manifolds
over Real Field with 53 bits of precision

Smooth()
Return the subcategory of the smooth objects of self.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).Smooth()

(continues on next page)
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Category of smooth manifolds
over Real Field with 53 bits of precision

additional_structure()
Return None.

Indeed, the category of manifolds defines no new structure: a morphism of topological spaces between
manifolds is a manifold morphism.

See also:

Category.additional_structure()

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).additional_structure()

super_categories()
EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: Manifolds(RR).super_categories()
[Category of topological spaces]

4.115 Matrix algebras

class sage.categories.matrix_algebras.MatrixAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of matrix algebras over a field.

EXAMPLES:

sage: MatrixAlgebras(RationalField())
Category of matrix algebras over Rational Field

super_categories()
EXAMPLES:

sage: MatrixAlgebras(QQ).super_categories()
[Category of algebras over Rational Field]

4.116 Metric Spaces

class sage.categories.metric_spaces.MetricSpaces(category, *args)
Bases: sage.categories.metric_spaces.MetricSpacesCategory

The category of metric spaces.

A metric on a set 𝑆 is a function 𝑑 : 𝑆 × 𝑆 → R such that:

• 𝑑(𝑎, 𝑏) ≥ 0,
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• 𝑑(𝑎, 𝑏) = 0 if and only if 𝑎 = 𝑏.

A metric space is a set 𝑆 with a distinguished metric.

Implementation

Objects in this category must implement either a dist on the parent or the elements or metric on the parent;
otherwise this will cause an infinite recursion.

Todo:

• Implement a general geodesics class.

• Implement a category for metric additive groups and move the generic distance 𝑑(𝑎, 𝑏) = |𝑎− 𝑏| there.

• Incorporate the length of a geodesic as part of the default distance cycle.

EXAMPLES:

sage: from sage.categories.metric_spaces import MetricSpaces
sage: C = MetricSpaces()
sage: C
Category of metric spaces
sage: TestSuite(C).run()

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

class ParentMethods
Bases: object

dist(a, b)
Return the distance between a and b in self.

It is defined as the maximum of the distances within the Cartesian factors.

EXAMPLES:

sage: from sage.categories.metric_spaces import MetricSpaces
sage: Q2 = QQ.cartesian_product(QQ)
sage: Q2.category()
Join of
Category of Cartesian products of commutative rings and
Category of Cartesian products of metric spaces
sage: Q2 in MetricSpaces()
True
sage: Q2.dist((0, 0), (2, 3))
3

extra_super_categories()
Implement the fact that a (finite) Cartesian product of metric spaces is a metric space.

EXAMPLES:

sage: from sage.categories.metric_spaces import MetricSpaces
sage: C = MetricSpaces().CartesianProducts()

(continues on next page)
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sage: C.extra_super_categories()
[Category of metric spaces]
sage: C.super_categories()
[Category of Cartesian products of topological spaces,
Category of metric spaces]
sage: C.axioms()
frozenset()

class Complete(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of complete metric spaces.

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a (finite) Cartesian product of complete metric spaces is a complete metric
space.

EXAMPLES:

sage: from sage.categories.metric_spaces import MetricSpaces
sage: C = MetricSpaces().Complete().CartesianProducts()
sage: C.extra_super_categories()
[Category of complete metric spaces]
sage: C.super_categories()
[Category of Cartesian products of metric spaces,
Category of complete metric spaces]
sage: C.axioms()
frozenset({'Complete'})

sage: R2 = RR.cartesian_product(RR)
sage: R2 in MetricSpaces()
True
sage: R2 in MetricSpaces().Complete()
True

sage: QR = QQ.cartesian_product(RR)
sage: QR in MetricSpaces()
True
sage: QR in MetricSpaces().Complete()
False

class ElementMethods
Bases: object

abs()
Return the absolute value of self.

EXAMPLES:

sage: CC(I).abs()
1.00000000000000
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dist(b)
Return the distance between self and other.

EXAMPLES:

sage: UHP = HyperbolicPlane().UHP() # optional -␣
→˓sage.symbolic
sage: p1 = UHP.get_point(5 + 7*I) # optional -␣
→˓sage.symbolic
sage: p2 = UHP.get_point(1 + I) # optional -␣
→˓sage.symbolic
sage: p1.dist(p2) # optional -␣
→˓sage.symbolic
arccosh(33/7)

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

The category of homsets of metric spaces

It consists of the metric maps, that is, the Lipschitz functions with Lipschitz constant 1.

class ElementMethods
Bases: object

class ParentMethods
Bases: object

dist(a, b)
Return the distance between a and b in self.

EXAMPLES:

sage: UHP = HyperbolicPlane().UHP() # optional -␣
→˓sage.symbolic
sage: p1 = UHP.get_point(5 + 7*I) # optional -␣
→˓sage.symbolic
sage: p2 = UHP.get_point(1.0 + I) # optional -␣
→˓sage.symbolic
sage: UHP.dist(p1, p2) # optional -␣
→˓sage.symbolic
2.23230104635820

sage: PD = HyperbolicPlane().PD() # optional -␣
→˓sage.symbolic
sage: PD.dist(PD.get_point(0), PD.get_point(I/2)) # optional -␣
→˓sage.symbolic
arccosh(5/3)

metric(*args, **kwds)
Deprecated: Use metric_function() instead. See trac ticket #30062 for details.

metric_function()
Return the metric function of self.

EXAMPLES:
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sage: UHP = HyperbolicPlane().UHP() # optional -␣
→˓sage.symbolic
sage: m = UHP.metric_function() # optional -␣
→˓sage.symbolic
sage: p1 = UHP.get_point(5 + 7*I) # optional -␣
→˓sage.symbolic
sage: p2 = UHP.get_point(1.0 + I) # optional -␣
→˓sage.symbolic
sage: m(p1, p2) # optional -␣
→˓sage.symbolic
2.23230104635820

class SubcategoryMethods
Bases: object

Complete()
Return the full subcategory of the complete objects of self.

EXAMPLES:

sage: Sets().Metric().Complete()
Category of complete metric spaces

class WithRealizations(category, *args)
Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
Bases: object

dist(a, b)
Return the distance between a and b by converting them to a realization of self and doing the
computation.

EXAMPLES:

sage: H = HyperbolicPlane() # optional -␣
→˓sage.symbolic
sage: PD = H.PD() # optional -␣
→˓sage.symbolic
sage: p1 = PD.get_point(0) # optional -␣
→˓sage.symbolic
sage: p2 = PD.get_point(I/2) # optional -␣
→˓sage.symbolic
sage: H.dist(p1, p2) # optional -␣
→˓sage.symbolic
arccosh(5/3)

class sage.categories.metric_spaces.MetricSpacesCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

classmethod default_super_categories(category)
Return the default super categories of category.Metric().

Mathematical meaning: if 𝐴 is a metric space in the category 𝐶, then 𝐴 is also a topological space.

INPUT:
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• cls – the class MetricSpaces

• category – a category 𝐶𝑎𝑡

OUTPUT:

A (join) category

In practice, this returns category.Metric(), joined together with the result of the method
RegressiveCovariantConstructionCategory.default_super_categories() (that is the join of
category and cat.Metric() for each cat in the super categories of category).

EXAMPLES:

Consider category=Groups(). Then, a group 𝐺 with a metric is simultaneously a topological group by
itself, and a metric space:

sage: Groups().Metric().super_categories()
[Category of topological groups, Category of metric spaces]

This resulted from the following call:

sage: sage.categories.metric_spaces.MetricSpacesCategory.default_super_
→˓categories(Groups())
Join of Category of topological groups and Category of metric spaces

4.117 Modular abelian varieties

class sage.categories.modular_abelian_varieties.ModularAbelianVarieties(Y)
Bases: sage.categories.category_types.Category_over_base

The category of modular abelian varieties over a given field.

EXAMPLES:

sage: ModularAbelianVarieties(QQ)
Category of modular abelian varieties over Rational Field

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

class Endset(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

extra_super_categories()
Implement the fact that an endset of modular abelian variety is a ring.

EXAMPLES:

sage: ModularAbelianVarieties(QQ).Endsets().extra_super_categories()
[Category of rings]

base_field()
EXAMPLES:

sage: ModularAbelianVarieties(QQ).base_field()
Rational Field
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super_categories()
EXAMPLES:

sage: ModularAbelianVarieties(QQ).super_categories()
[Category of sets]

4.118 Modules

class sage.categories.modules.Modules(base, name=None)
Bases: sage.categories.category_types.Category_module

The category of all modules over a base ring 𝑅.

An 𝑅-module 𝑀 is a left and right 𝑅-module over a commutative ring 𝑅 such that:

𝑟 * (𝑥 * 𝑠) = (𝑟 * 𝑥) * 𝑠 ∀𝑟, 𝑠 ∈ 𝑅 and 𝑥 ∈𝑀

INPUT:

• base_ring – a ring 𝑅 or subcategory of Rings()

• dispatch – a boolean (for internal use; default: True)

When the base ring is a field, the category of vector spaces is returned instead (unless dispatch == False).

Warning: Outside of the context of symmetric modules over a commutative ring, the specifications of this
category are fuzzy and not yet set in stone (see below). The code in this category and its subcategories is
therefore prone to bugs or arbitrary limitations in this case.

EXAMPLES:

sage: Modules(ZZ)
Category of modules over Integer Ring
sage: Modules(QQ)
Category of vector spaces over Rational Field

sage: Modules(Rings())
Category of modules over rings
sage: Modules(FiniteFields())
Category of vector spaces over finite enumerated fields

sage: Modules(Integers(9))
Category of modules over Ring of integers modulo 9

sage: Modules(Integers(9)).super_categories()
[Category of bimodules over Ring of integers modulo 9 on the left and Ring of␣
→˓integers modulo 9 on the right]

sage: Modules(ZZ).super_categories()
[Category of bimodules over Integer Ring on the left and Integer Ring on the right]

sage: Modules == RingModules
True

(continues on next page)
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sage: Modules(ZZ['x']).is_abelian() # see #6081
True

Todo:

• Clarify the distinction, if any, with BiModules(R, R). In particular, if 𝑅 is a commutative ring (e.g. a
field), some pieces of the code possibly assume that 𝑀 is a symmetric `R`-`R`-bimodule:

𝑟 * 𝑥 = 𝑥 * 𝑟 ∀𝑟 ∈ 𝑅 and 𝑥 ∈𝑀

• Make sure that non symmetric modules are properly supported by all the code, and advertise it.

• Make sure that non commutative rings are properly supported by all the code, and advertise it.

• Add support for base semirings.

• Implement a FreeModules(R) category, when so prompted by a concrete use case: e.g. modeling a free
module with several bases (using Sets.SubcategoryMethods.Realizations()) or with an atlas of
local maps (see e.g. trac ticket #15916).

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of modules constructed as Cartesian products of modules

This construction gives the direct product of modules. The implementation is based on the following re-
sources:

• http://groups.google.fr/group/sage-devel/browse_thread/thread/35a72b1d0a2fc77a/
348f42ae77a66d16#348f42ae77a66d16

• Wikipedia article Direct_product

class ElementMethods
Bases: object

class ParentMethods
Bases: object

extra_super_categories()
A Cartesian product of modules is endowed with a natural module structure.

EXAMPLES:

sage: Modules(ZZ).CartesianProducts().extra_super_categories()
[Category of modules over Integer Ring]
sage: Modules(ZZ).CartesianProducts().super_categories()
[Category of Cartesian products of commutative additive groups,
Category of modules over Integer Ring]

class ElementMethods
Bases: object

Filtered
alias of sage.categories.filtered_modules.FilteredModules
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class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

extra_super_categories()
Implement the fact that a (finite) tensor product of finite dimensional modules is a finite dimen-
sional module.

EXAMPLES:

sage: Modules(ZZ).FiniteDimensional().TensorProducts().extra_super_
→˓categories()
[Category of finite dimensional modules over Integer Ring]
sage: Modules(QQ).FiniteDimensional().TensorProducts().
→˓FiniteDimensional()
Category of tensor products of finite dimensional vector spaces over␣
→˓Rational Field

extra_super_categories()
Implement the fact that a finite dimensional module over a finite ring is finite.

EXAMPLES:

sage: Modules(IntegerModRing(4)).FiniteDimensional().extra_super_
→˓categories()
[Category of finite sets]
sage: Modules(ZZ).FiniteDimensional().extra_super_categories()
[]
sage: Modules(GF(5)).FiniteDimensional().is_subcategory(Sets().Finite())
True
sage: Modules(ZZ).FiniteDimensional().is_subcategory(Sets().Finite())
False

sage: Modules(Rings().Finite()).FiniteDimensional().is_subcategory(Sets().
→˓Finite())
True
sage: Modules(Rings()).FiniteDimensional().is_subcategory(Sets().Finite())
False

class FinitelyPresented(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

extra_super_categories()
Implement the fact that a finitely presented module over a finite ring is finite.

EXAMPLES:

sage: Modules(IntegerModRing(4)).FiniteDimensional().extra_super_
→˓categories()
[Category of finite sets]
sage: Modules(ZZ).FiniteDimensional().extra_super_categories()
[]
sage: Modules(GF(5)).FiniteDimensional().is_subcategory(Sets().Finite())
True
sage: Modules(ZZ).FiniteDimensional().is_subcategory(Sets().Finite())

(continues on next page)
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False

sage: Modules(Rings().Finite()).FiniteDimensional().is_subcategory(Sets().
→˓Finite())
True
sage: Modules(Rings()).FiniteDimensional().is_subcategory(Sets().Finite())
False

Graded
alias of sage.categories.graded_modules.GradedModules

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

The category of homomorphism sets hom(𝑋,𝑌 ) for 𝑋 , 𝑌 modules.

class Endset(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of endomorphism sets 𝐸𝑛𝑑(𝑋) for 𝑋 a module (this is not used yet)

extra_super_categories()
Implement the fact that the endomorphism set of a module is an algebra.

See also:

CategoryWithAxiom.extra_super_categories()

EXAMPLES:

sage: Modules(ZZ).Endsets().extra_super_categories()
[Category of magmatic algebras over Integer Ring]

sage: End(ZZ^3) in Algebras(ZZ)
True

class ParentMethods
Bases: object

base_ring()
Return the base ring of self.

EXAMPLES:

sage: E = CombinatorialFreeModule(ZZ, [1,2,3])
sage: F = CombinatorialFreeModule(ZZ, [2,3,4])
sage: H = Hom(E, F)
sage: H.base_ring()
Integer Ring

This base_ring method is actually overridden by sage.structure.category_object.
CategoryObject.base_ring():

sage: H.base_ring.__module__

Here we call it directly:
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sage: method = H.category().parent_class.base_ring
sage: method.__get__(H)()
Integer Ring

zero()
EXAMPLES:

sage: E = CombinatorialFreeModule(ZZ, [1,2,3])
sage: F = CombinatorialFreeModule(ZZ, [2,3,4])
sage: H = Hom(E, F)
sage: f = H.zero()
sage: f
Generic morphism:
From: Free module generated by {1, 2, 3} over Integer Ring
To: Free module generated by {2, 3, 4} over Integer Ring

sage: f(E.monomial(2))
0
sage: f(E.monomial(3)) == F.zero()
True

base_ring()
EXAMPLES:

sage: Modules(ZZ).Homsets().base_ring()
Integer Ring

Todo: Generalize this so that any homset category of a full subcategory of modules over a base ring
is a category over this base ring.

extra_super_categories()
EXAMPLES:

sage: Modules(ZZ).Homsets().extra_super_categories()
[Category of modules over Integer Ring]

class ParentMethods
Bases: object

linear_combination(iter_of_elements_coeff, factor_on_left=True)
Return the linear combination 𝜆1𝑣1 + · · · + 𝜆𝑘𝑣𝑘 (resp. the linear combination 𝑣1𝜆1 + · · · + 𝑣𝑘𝜆𝑘)
where iter_of_elements_coeff iterates through the sequence ((𝜆1, 𝑣1), ..., (𝜆𝑘, 𝑣𝑘)).

INPUT:
• iter_of_elements_coeff – iterator of pairs (element, coeff) with element in self and
coeff in self.base_ring()

• factor_on_left – (optional) if True, the coefficients are multiplied from the left; if False, the
coefficients are multiplied from the right

EXAMPLES:

sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.linear_combination(((a+b, 1), (-2*b + c, -1)))
1 + (3, -1)
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module_morphism(function, category, codomain, **keywords)
Construct a module morphism from self to codomain.

Let self be a module 𝑋 over a ring 𝑅. This constructs a morphism 𝑓 : 𝑋 → 𝑌 .

INPUT:
• self – a parent 𝑋 in Modules(R).
• function – a function 𝑓 from 𝑋 to 𝑌
• codomain – the codomain 𝑌 of the morphism (default: f.codomain() if it’s defined; otherwise

it must be specified)
• category – a category or None (default: None)

EXAMPLES:

sage: V = FiniteRankFreeModule(QQ, 2)
sage: e = V.basis('e'); e
Basis (e_0,e_1) on the 2-dimensional vector space over the Rational Field
sage: neg = V.module_morphism(function=operator.neg, codomain=V); neg
Generic endomorphism of 2-dimensional vector space over the Rational Field
sage: neg(e[0])
Element -e_0 of the 2-dimensional vector space over the Rational Field

tensor_square()
Returns the tensor square of self

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: A.tensor_square()
An example of Hopf algebra with basis:
the group algebra of the Dihedral group of order 6
as a permutation group over Rational Field # An example
of Hopf algebra with basis: the group algebra of the Dihedral
group of order 6 as a permutation group over Rational Field

class SubcategoryMethods
Bases: object

DualObjects()
Return the category of spaces constructed as duals of spaces of self.

The dual of a vector space 𝑉 is the space consisting of all linear functionals on 𝑉 (see Wikipedia article
Dual_space). Additional structure on 𝑉 can endow its dual with additional structure; for example, if
𝑉 is a finite dimensional algebra, then its dual is a coalgebra.

This returns the category of spaces constructed as dual of spaces in self, endowed with the appropriate
additional structure.

Warning:

• This semantic of dual and DualObject is imposed on all subcategories, in particular to
make dual a covariant functorial construction.

A subcategory that defines a different notion of dual needs to use a different name.

• Typically, the category of graded modules should define a separate graded_dual construc-
tion (see trac ticket #15647). For now the two constructions are not distinguished which is
an oversimplified model.
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See also:

• dual.DualObjectsCategory
• CovariantFunctorialConstruction.

EXAMPLES:

sage: VectorSpaces(QQ).DualObjects()
Category of duals of vector spaces over Rational Field

The dual of a vector space is a vector space:

sage: VectorSpaces(QQ).DualObjects().super_categories()
[Category of vector spaces over Rational Field]

The dual of an algebra is a coalgebra:

sage: sorted(Algebras(QQ).DualObjects().super_categories(), key=str)
[Category of coalgebras over Rational Field,
Category of duals of vector spaces over Rational Field]

The dual of a coalgebra is an algebra:

sage: sorted(Coalgebras(QQ).DualObjects().super_categories(), key=str)
[Category of algebras over Rational Field,
Category of duals of vector spaces over Rational Field]

As a shorthand, this category can be accessed with the dual() method:

sage: VectorSpaces(QQ).dual()
Category of duals of vector spaces over Rational Field

Filtered(base_ring=None)
Return the subcategory of the filtered objects of self.

INPUT:
• base_ring – this is ignored

EXAMPLES:

sage: Modules(ZZ).Filtered()
Category of filtered modules over Integer Ring

sage: Coalgebras(QQ).Filtered()
Category of filtered coalgebras over Rational Field

sage: AlgebrasWithBasis(QQ).Filtered()
Category of filtered algebras with basis over Rational Field

Todo:
• Explain why this does not commute with WithBasis()
• Improve the support for covariant functorial constructions categories over a base ring so as to get

rid of the base_ring argument.

FiniteDimensional()
Return the full subcategory of the finite dimensional objects of self.

4.118. Modules 599



Category Framework, Release 9.7

EXAMPLES:

sage: Modules(ZZ).FiniteDimensional()
Category of finite dimensional modules over Integer Ring
sage: Coalgebras(QQ).FiniteDimensional()
Category of finite dimensional coalgebras over Rational Field
sage: AlgebrasWithBasis(QQ).FiniteDimensional()
Category of finite dimensional algebras with basis over Rational Field

FinitelyPresented()
Return the full subcategory of the finitely presented objects of self.

EXAMPLES:

sage: Modules(ZZ).FinitelyPresented()
Category of finitely presented modules over Integer Ring
sage: A = SteenrodAlgebra(2)
sage: from sage.modules.fp_graded.module import FPModule
sage: FPModule(A, [0, 1], [[Sq(2), Sq(1)]]).category()
Category of finitely presented graded modules over mod 2 Steenrod algebra,␣
→˓milnor basis

Graded(base_ring=None)
Return the subcategory of the graded objects of self.

INPUT:
• base_ring – this is ignored

EXAMPLES:

sage: Modules(ZZ).Graded()
Category of graded modules over Integer Ring

sage: Coalgebras(QQ).Graded()
Category of graded coalgebras over Rational Field

sage: AlgebrasWithBasis(QQ).Graded()
Category of graded algebras with basis over Rational Field

Todo:
• Explain why this does not commute with WithBasis()
• Improve the support for covariant functorial constructions categories over a base ring so as to get

rid of the base_ring argument.

Super(base_ring=None)
Return the super-analogue category of self.

INPUT:
• base_ring – this is ignored

EXAMPLES:

sage: Modules(ZZ).Super()
Category of super modules over Integer Ring

sage: Coalgebras(QQ).Super()
(continues on next page)
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Category of super coalgebras over Rational Field

sage: AlgebrasWithBasis(QQ).Super()
Category of super algebras with basis over Rational Field

Todo:
• Explain why this does not commute with WithBasis()
• Improve the support for covariant functorial constructions categories over a base ring so as to get

rid of the base_ring argument.

TensorProducts()
Return the full subcategory of objects of self constructed as tensor products.

See also:

• tensor.TensorProductsCategory
• RegressiveCovariantFunctorialConstruction.

EXAMPLES:

sage: ModulesWithBasis(QQ).TensorProducts()
Category of tensor products of vector spaces with basis over Rational Field

WithBasis()
Return the full subcategory of the objects of self with a distinguished basis.

EXAMPLES:

sage: Modules(ZZ).WithBasis()
Category of modules with basis over Integer Ring
sage: Coalgebras(QQ).WithBasis()
Category of coalgebras with basis over Rational Field
sage: AlgebrasWithBasis(QQ).WithBasis()
Category of algebras with basis over Rational Field

base_ring()
Return the base ring (category) for self.

This implements a base_ring method for all subcategories of Modules(K).

EXAMPLES:

sage: C = Modules(QQ) & Semigroups(); C
Join of Category of semigroups and Category of vector spaces over Rational␣
→˓Field
sage: C.base_ring()
Rational Field
sage: C.base_ring.__module__
'sage.categories.modules'

sage: C = Modules(Rings()) & Semigroups(); C
Join of Category of semigroups and Category of modules over rings
sage: C.base_ring()
Category of rings

(continues on next page)
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sage: C.base_ring.__module__
'sage.categories.modules'

sage: C = DescentAlgebra(QQ,3).B().category()
sage: C.base_ring.__module__
'sage.categories.modules'
sage: C.base_ring()
Rational Field

sage: C = QuasiSymmetricFunctions(QQ).F().category()
sage: C.base_ring.__module__
'sage.categories.modules'
sage: C.base_ring()
Rational Field

dual()
Return the category of spaces constructed as duals of spaces of self.

The dual of a vector space 𝑉 is the space consisting of all linear functionals on 𝑉 (see Wikipedia article
Dual_space). Additional structure on 𝑉 can endow its dual with additional structure; for example, if
𝑉 is a finite dimensional algebra, then its dual is a coalgebra.

This returns the category of spaces constructed as dual of spaces in self, endowed with the appropriate
additional structure.

Warning:

• This semantic of dual and DualObject is imposed on all subcategories, in particular to
make dual a covariant functorial construction.

A subcategory that defines a different notion of dual needs to use a different name.

• Typically, the category of graded modules should define a separate graded_dual construc-
tion (see trac ticket #15647). For now the two constructions are not distinguished which is
an oversimplified model.

See also:

• dual.DualObjectsCategory
• CovariantFunctorialConstruction.

EXAMPLES:

sage: VectorSpaces(QQ).DualObjects()
Category of duals of vector spaces over Rational Field

The dual of a vector space is a vector space:

sage: VectorSpaces(QQ).DualObjects().super_categories()
[Category of vector spaces over Rational Field]

The dual of an algebra is a coalgebra:
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sage: sorted(Algebras(QQ).DualObjects().super_categories(), key=str)
[Category of coalgebras over Rational Field,
Category of duals of vector spaces over Rational Field]

The dual of a coalgebra is an algebra:

sage: sorted(Coalgebras(QQ).DualObjects().super_categories(), key=str)
[Category of algebras over Rational Field,
Category of duals of vector spaces over Rational Field]

As a shorthand, this category can be accessed with the dual() method:

sage: VectorSpaces(QQ).dual()
Category of duals of vector spaces over Rational Field

Super
alias of sage.categories.super_modules.SuperModules

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of modules constructed by tensor product of modules.

extra_super_categories()
EXAMPLES:

sage: Modules(ZZ).TensorProducts().extra_super_categories()
[Category of modules over Integer Ring]
sage: Modules(ZZ).TensorProducts().super_categories()
[Category of modules over Integer Ring]

WithBasis
alias of sage.categories.modules_with_basis.ModulesWithBasis

additional_structure()
Return None.

Indeed, the category of modules defines no additional structure: a bimodule morphism between two mod-
ules is a module morphism.

See also:

Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

sage: Modules(ZZ).additional_structure()

super_categories()
EXAMPLES:

sage: Modules(ZZ).super_categories()
[Category of bimodules over Integer Ring on the left and Integer Ring on the␣
→˓right]
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Nota bene:

sage: Modules(QQ)
Category of vector spaces over Rational Field
sage: Modules(QQ).super_categories()
[Category of modules over Rational Field]

4.119 Modules With Basis

AUTHORS:

• Nicolas M. Thiery (2008-2014): initial revision, axiomatization

• Jason Bandlow and Florent Hivert (2010): Triangular Morphisms

• Christian Stump (2010): trac ticket #9648 module_morphism’s to a wider class of codomains

class sage.categories.modules_with_basis.ModulesWithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of modules with a distinguished basis.

The elements are represented by expanding them in the distinguished basis. The morphisms are not required to
respect the distinguished basis.

EXAMPLES:

sage: ModulesWithBasis(ZZ)
Category of modules with basis over Integer Ring
sage: ModulesWithBasis(ZZ).super_categories()
[Category of modules over Integer Ring]

If the base ring is actually a field, this constructs instead the category of vector spaces with basis:

sage: ModulesWithBasis(QQ)
Category of vector spaces with basis over Rational Field

sage: ModulesWithBasis(QQ).super_categories()
[Category of modules with basis over Rational Field,
Category of vector spaces over Rational Field]

Let 𝑋 and 𝑌 be two modules with basis. We can build 𝐻𝑜𝑚(𝑋,𝑌 ):

sage: X = CombinatorialFreeModule(QQ, [1,2]); X.__custom_name = "X"
sage: Y = CombinatorialFreeModule(QQ, [3,4]); Y.__custom_name = "Y"
sage: H = Hom(X, Y); H
Set of Morphisms from X to Y in Category of finite dimensional vector spaces with␣
→˓basis over Rational Field

The simplest morphism is the zero map:

sage: H.zero() # todo: move this test into module once we have an example
Generic morphism:
From: X
To: Y

604 Chapter 4. Individual Categories

https://trac.sagemath.org/9648


Category Framework, Release 9.7

which we can apply to elements of 𝑋:

sage: x = X.monomial(1) + 3 * X.monomial(2)
sage: H.zero()(x)
0

EXAMPLES:

We now construct a more interesting morphism by extending a function by linearity:

sage: phi = H(on_basis = lambda i: Y.monomial(i+2)); phi
Generic morphism:
From: X
To: Y

sage: phi(x)
B[3] + 3*B[4]

We can retrieve the function acting on indices of the basis:

sage: f = phi.on_basis()
sage: f(1), f(2)
(B[3], B[4])

𝐻𝑜𝑚(𝑋,𝑌 ) has a natural module structure (except for the zero, the operations are not yet implemented
though). However since the dimension is not necessarily finite, it is not a module with basis; but see
FiniteDimensionalModulesWithBasis and GradedModulesWithBasis:

sage: H in ModulesWithBasis(QQ), H in Modules(QQ)
(False, True)

Some more playing around with categories and higher order homsets:

sage: H.category()
Category of homsets of modules with basis over Rational Field
sage: Hom(H, H).category()
Category of endsets of homsets of modules with basis over Rational Field

Todo: End(X) is an algebra.

Note: This category currently requires an implementation of an element method support. Once trac ticket
#18066 is merged, an implementation of an items method will be required.

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of modules with basis constructed by Cartesian products of modules with basis.

class ParentMethods
Bases: object

extra_super_categories()
EXAMPLES:
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sage: ModulesWithBasis(QQ).CartesianProducts().extra_super_categories()
[Category of vector spaces with basis over Rational Field]
sage: ModulesWithBasis(QQ).CartesianProducts().super_categories()
[Category of Cartesian products of modules with basis over Rational Field,
Category of vector spaces with basis over Rational Field,
Category of Cartesian products of vector spaces over Rational Field]

class DualObjects(category, *args)
Bases: sage.categories.dual.DualObjectsCategory

extra_super_categories()
EXAMPLES:

sage: ModulesWithBasis(ZZ).DualObjects().extra_super_categories()
[Category of modules over Integer Ring]
sage: ModulesWithBasis(QQ).DualObjects().super_categories()
[Category of duals of vector spaces over Rational Field, Category of duals␣
→˓of modules with basis over Rational Field]

class ElementMethods
Bases: object

coefficient(m)
Return the coefficient of m in self and raise an error if m is not in the basis indexing set.

INPUT:
• m – a basis index of the parent of self

OUTPUT:

The B[m]-coordinate of self with respect to the basis B. Here, B denotes the given basis of the parent
of self.

EXAMPLES:

sage: s = CombinatorialFreeModule(QQ, Partitions())
sage: z = s([4]) - 2*s([2,1]) + s([1,1,1]) + s([1])
sage: z.coefficient([4])
1
sage: z.coefficient([2,1])
-2
sage: z.coefficient(Partition([2,1]))
-2
sage: z.coefficient([1,2])
Traceback (most recent call last):
...
AssertionError: [1, 2] should be an element of Partitions
sage: z.coefficient(Composition([2,1]))
Traceback (most recent call last):
...
AssertionError: [2, 1] should be an element of Partitions

Test that coefficient also works for those parents that do not have an element_class:

sage: H = pAdicWeightSpace(3)
sage: F = CombinatorialFreeModule(QQ, H)
sage: hasattr(H, "element_class")

(continues on next page)
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False
sage: h = H.an_element()
sage: (2*F.monomial(h)).coefficient(h)
2

coefficients(sort=True)
Return a list of the (non-zero) coefficients appearing on the basis elements in self (in an arbitrary
order).

INPUT:
• sort – (default: True) to sort the coefficients based upon the default ordering of the indexing set

See also:

dense_coefficient_list()

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.coefficients()
[1, -3]
sage: f = B['c'] - 3*B['a']
sage: f.coefficients()
[-3, 1]

sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: z.coefficients()
[1, 1, 1, 1]

is_zero()
Return True if and only if self == 0.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.is_zero()
False
sage: F.zero().is_zero()
True

sage: s = SymmetricFunctions(QQ).schur()
sage: s([2,1]).is_zero()
False
sage: s(0).is_zero()
True
sage: (s([2,1]) - s([2,1])).is_zero()
True

leading_coefficient(*args, **kwds)
Return the leading coefficient of self.
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This is the coefficient of the term whose corresponding basis element is maximal. Note that this may
not be the term which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison key, key(x,y), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X")
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_coefficient()
1
sage: def key(x): return -x
sage: x.leading_coefficient(key=key)
3

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.leading_coefficient()
-5

leading_item(*args, **kwds)
Return the pair (k, c) where

𝑐 · (the basis element indexed by 𝑘)

is the leading term of self.

Here ‘leading term’ means that the corresponding basis element is maximal. Note that this may not
be the term which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison function, key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
→˓basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + 4*X.monomial(3)
sage: x.leading_item()
(3, 4)
sage: def key(x): return -x
sage: x.leading_item(key=key)
(1, 3)

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.leading_item()
([3], -5)

leading_monomial(*args, **kwds)
Return the leading monomial of self.

This is the monomial whose corresponding basis element is maximal. Note that this may not be the
term which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison key, key(x), can be provided.

EXAMPLES:
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sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
→˓basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_monomial()
B[3]
sage: def key(x): return -x
sage: x.leading_monomial(key=key)
B[1]

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.leading_monomial()
s[3]

leading_support(*args, **kwds)
Return the maximal element of the support of self.

Note that this may not be the term which actually appears first when self is printed.

If the default ordering of the basis elements is not what is desired, a comparison key, key(x), can be
provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3])
sage: X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + 4*X.monomial(3)
sage: x.leading_support()
3
sage: def key(x): return -x
sage: x.leading_support(key=key)
1

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.leading_support()
[3]

leading_term(*args, **kwds)
Return the leading term of self.

This is the term whose corresponding basis element is maximal. Note that this may not be the term
which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison key, key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
→˓basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_term()
B[3]
sage: def key(x): return -x
sage: x.leading_term(key=key)
3*B[1]

(continues on next page)
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sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.leading_term()
-5*s[3]

length()
Return the number of basis elements whose coefficients in self are nonzero.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.length()
2

sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: z.length()
4

map_coefficients(f )
Mapping a function on coefficients.

INPUT:
• f – an endofunction on the coefficient ring of the free module

Return a new element of self.parent() obtained by applying the function f to all of the coefficients
of self.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.map_coefficients(lambda x: x+5)
6*B['a'] + 2*B['c']

Killed coefficients are handled properly:

sage: f.map_coefficients(lambda x: 0)
0
sage: list(f.map_coefficients(lambda x: 0))
[]

sage: s = SymmetricFunctions(QQ).schur()
sage: a = s([2,1])+2*s([3,2])
sage: a.map_coefficients(lambda x: x*2)
2*s[2, 1] + 4*s[3, 2]

map_item(f )
Mapping a function on items.

INPUT:
• f – a function mapping pairs (index, coeff) to other such pairs
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Return a new element of self.parent() obtained by applying the function 𝑓 to all items (index,
coeff) of self.

EXAMPLES:

sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_item(lambda i, c: (-i, 2*c))
6*B[-1] + 4*B[0] + 4*B[1]

f needs not be injective:

sage: x.map_item(lambda i, c: (1, 2*c))
14*B[1]

sage: s = SymmetricFunctions(QQ).schur()
sage: f = lambda m,c: (m.conjugate(), 2*c)
sage: a = s([2,1]) + s([1,1,1])
sage: a.map_item(f)
2*s[2, 1] + 2*s[3]

map_support(f )
Mapping a function on the support.

INPUT:
• f – an endofunction on the indices of the free module

Return a new element of self.parent() obtained by applying the function f to all of the objects
indexing the basis elements.

EXAMPLES:

sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_support(lambda i: -i)
3*B[-1] + 2*B[0] + 2*B[1]

f needs not be injective:

sage: x.map_support(lambda i: 1)
7*B[1]

sage: s = SymmetricFunctions(QQ).schur()
sage: a = s([2,1])+2*s([3,2])
sage: a.map_support(lambda x: x.conjugate())
s[2, 1] + 2*s[2, 2, 1]

map_support_skip_none(f )
Mapping a function on the support.

INPUT:
• f – an endofunction on the indices of the free module

Returns a new element of self.parent() obtained by applying the function 𝑓 to all of the objects
indexing the basis elements.

EXAMPLES:
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sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_support_skip_none(lambda i: -i if i else None)
3*B[-1] + 2*B[1]

f needs not be injective:

sage: x.map_support_skip_none(lambda i: 1 if i else None)
5*B[1]

monomial_coefficients(copy=True)
Return a dictionary whose keys are indices of basis elements in the support of self and whose values
are the corresponding coefficients.

INPUT:
• copy – (default: True) if self is internally represented by a dictionary d, then make a copy of d;

if False, then this can cause undesired behavior by mutating d
EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 3*B['c']
sage: d = f.monomial_coefficients()
sage: d['a']
1
sage: d['c']
3

monomials()
Return a list of the monomials of self (in an arbitrary order).

The monomials of an element 𝑎 are defined to be the basis elements whose corresponding coefficients
of 𝑎 are non-zero.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 2*B['c']
sage: f.monomials()
[B['a'], B['c']]

sage: (F.zero()).monomials()
[]

support()
Return a list of the objects indexing the basis of self.parent() whose corresponding coefficients of
self are non-zero.

This method returns these objects in an arbitrary order.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()

(continues on next page)
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sage: f = B['a'] - 3*B['c']
sage: sorted(f.support())
['a', 'c']

sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: sorted(z.support())
[[1], [1, 1, 1], [2, 1], [4]]

support_of_term()
Return the support of self, where self is a monomial (possibly with coefficient).

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1,2,3,4]); X.rename("X")
sage: X.monomial(2).support_of_term()
2
sage: X.term(3, 2).support_of_term()
3

An exception is raised if self has more than one term:

sage: (X.monomial(2) + X.monomial(3)).support_of_term()
Traceback (most recent call last):
...
ValueError: B[2] + B[3] is not a single term

tensor(*elements)
Return the tensor product of its arguments, as an element of the tensor product of the parents of those
elements.

EXAMPLES:

sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example()
sage: (a,b,c) = A.algebra_generators()
sage: a.tensor(b, c)
B[word: a] # B[word: b] # B[word: c]

FIXME: is this a policy that we want to enforce on all parents?

terms()
Return a list of the (non-zero) terms of self (in an arbitrary order).

See also:

monomials()

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 2*B['c']
sage: f.terms()
[B['a'], 2*B['c']]
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trailing_coefficient(*args, **kwds)
Return the trailing coefficient of self.

This is the coefficient of the monomial whose corresponding basis element is minimal. Note that this
may not be the term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
→˓basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_coefficient()
3
sage: def key(x): return -x
sage: x.trailing_coefficient(key=key)
1

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.trailing_coefficient()
2

trailing_item(*args, **kwds)
Return the pair (c, k) where c*self.parent().monomial(k) is the trailing term of self.

This is the monomial whose corresponding basis element is minimal. Note that this may not be the
term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
→˓basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_item()
(1, 3)
sage: def key(x): return -x
sage: x.trailing_item(key=key)
(3, 1)

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.trailing_item()
([1], 2)

trailing_monomial(*args, **kwds)
Return the trailing monomial of self.

This is the monomial whose corresponding basis element is minimal. Note that this may not be the
term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:
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sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
→˓basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_monomial()
B[1]
sage: def key(x): return -x
sage: x.trailing_monomial(key=key)
B[3]

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.trailing_monomial()
s[1]

trailing_support(*args, **kwds)
Return the minimal element of the support of self. Note that this may not be the term which actually
appears last when self is printed.

If the default ordering of the basis elements is not what is desired, a comparison key, key(x), can be
provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
→˓basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + 4*X.monomial(3)
sage: x.trailing_support()
1

sage: def key(x): return -x
sage: x.trailing_support(key=key)
3

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.trailing_support()
[1]

trailing_term(*args, **kwds)
Return the trailing term of self.

This is the term whose corresponding basis element is minimal. Note that this may not be the term
which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.
→˓basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_term()
3*B[1]
sage: def key(x): return -x
sage: x.trailing_term(key=key)

(continues on next page)
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B[3]

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.trailing_term()
2*s[1]

Filtered
alias of sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis

FiniteDimensional
alias of sage.categories.finite_dimensional_modules_with_basis.
FiniteDimensionalModulesWithBasis

Graded
alias of sage.categories.graded_modules_with_basis.GradedModulesWithBasis

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

class ParentMethods
Bases: object

class MorphismMethods
Bases: object

on_basis()
Return the action of this morphism on basis elements.

OUTPUT:
• a function from the indices of the basis of the domain to the codomain

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1,2,3]); X.rename("X")
sage: Y = CombinatorialFreeModule(QQ, [1,2,3,4]); Y.rename("Y")
sage: H = Hom(X, Y)
sage: x = X.basis()

sage: f = H(lambda x: Y.zero()).on_basis()
sage: f(2)
0

sage: f = lambda i: Y.monomial(i) + 2*Y.monomial(i+1)
sage: g = H(on_basis = f).on_basis()
sage: g(2)
B[2] + 2*B[3]
sage: g == f
True

class ParentMethods
Bases: object

basis()
Return the basis of self.

EXAMPLES:
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sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: F.basis()
Finite family {'a': B['a'], 'b': B['b'], 'c': B['c']}

sage: QS3 = SymmetricGroupAlgebra(QQ,3)
sage: list(QS3.basis())
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.cardinality()
+Infinity
sage: S = SymmetricGroupAlgebra(GF(2), 4) # not tested -- MRO bug trac
→˓#15475
sage: S.cardinality() # not tested -- MRO bug trac #15475
16777216
sage: S.cardinality().factor() # not tested -- MRO bug trac #15475
2^24

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: E.cardinality()
+Infinity
sage: E.<x,y> = ExteriorAlgebra(GF(3))
sage: E.cardinality()
81

sage: s = SymmetricFunctions(GF(2)).s()
sage: s.cardinality()
+Infinity

dimension()
Return the dimension of self.

EXAMPLES:

sage: A.<x,y> = algebras.DifferentialWeyl(QQ)
sage: A.dimension()
+Infinity

echelon_form(elements, row_reduced=False, order=None)
Return a basis in echelon form of the subspace spanned by a finite set of elements.

INPUT:
• elements – a list or finite iterable of elements of self
• row_reduced – (default: False) whether to compute the basis for the row reduced echelon form
• order – (optional) either something that can be converted into a tuple or a key function

OUTPUT:

A list of elements of self whose expressions as vectors form a matrix in echelon form. If base_ring
is specified, then the calculation is achieved in this base ring.

EXAMPLES:
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sage: R.<x,y> = QQ[]
sage: C = CombinatorialFreeModule(R, ZZ, prefix='z')
sage: z = C.basis()
sage: C.echelon_form([z[0] - z[1], 2*z[1] - 2*z[2], z[0] - z[2]])
[z[0] - z[2], z[1] - z[2]]

is_finite()
Return whether self is finite.

This is true if and only if self.basis().keys() and self.base_ring() are both finite.

EXAMPLES:

sage: GroupAlgebra(SymmetricGroup(2), IntegerModRing(10)).is_finite()
True
sage: GroupAlgebra(SymmetricGroup(2)).is_finite()
False
sage: GroupAlgebra(AbelianGroup(1), IntegerModRing(10)).is_finite()
False

module_morphism(on_basis=None, matrix=None, function=None, diagonal=None, triangular=None,
unitriangular=False, **keywords)

Construct a module morphism from self to codomain.

Let self be a module 𝑋 with a basis indexed by 𝐼 . This constructs a morphism 𝑓 : 𝑋 → 𝑌 by
linearity from a map 𝐼 → 𝑌 which is to be its restriction to the basis (𝑥𝑖)𝑖∈𝐼 of 𝑋 . Some variants are
possible too.

INPUT:
• self – a parent 𝑋 in ModulesWithBasis(R) with basis 𝑥 = (𝑥𝑖)𝑖∈𝐼 .

Exactly one of the four following options must be specified in order to define the morphism:
• on_basis – a function 𝑓 from 𝐼 to 𝑌
• diagonal – a function 𝑑 from 𝐼 to 𝑅
• function – a function 𝑓 from 𝑋 to 𝑌
• matrix – a matrix of size dim𝑌×dim𝑋 (if the keyword side is set to 'left') or dim𝑌×dim𝑋

(if this keyword is 'right')
Further options include:

• codomain – the codomain 𝑌 of the morphism (default: f.codomain() if it’s defined; otherwise
it must be specified)

• category – a category or None (default: None)
• zero – the zero of the codomain (default: codomain.zero()); can be used (with care) to define

affine maps. Only meaningful with on_basis.
• position – a non-negative integer specifying which positional argument is used as the input of

the function 𝑓 (default: 0); this is currently only used with on_basis.
• triangular – (default: None) "upper" or "lower" or None:

– "upper" - if the leading_support() of the image of the basis vector 𝑥𝑖 is 𝑖, or
– "lower" - if the trailing_support() of the image of the basis vector 𝑥𝑖 is 𝑖.

• unitriangular – (default: False) a boolean. Only meaningful for a triangular mor-
phism. As a shorthand, one may use unitriangular="lower" for triangular="lower",
unitriangular=True.

• side – “left” or “right” (default: “left”) Only meaningful for a morphism built from a matrix.
EXAMPLES:

With the on_basis option, this returns a function 𝑔 obtained by extending 𝑓 by linearity on the
position-th positional argument. For example, for position == 1 and a ternary function 𝑓 , one
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has:

𝑔

(︃
𝑎,
∑︁
𝑖

𝜆𝑖𝑥𝑖, 𝑐

)︃
=
∑︁
𝑖

𝜆𝑖𝑓(𝑎, 𝑖, 𝑐).

sage: X = CombinatorialFreeModule(QQ, [1,2,3]); X.rename("X")
sage: Y = CombinatorialFreeModule(QQ, [1,2,3,4]); Y.rename("Y")
sage: phi = X.module_morphism(lambda i: Y.monomial(i) + 2*Y.monomial(i+1),␣
→˓codomain = Y)
sage: x = X.basis(); y = Y.basis()
sage: phi(x[1] + x[3])
B[1] + 2*B[2] + B[3] + 2*B[4]

sage: phi
Generic morphism:
From: X
To: Y

By default, the category is the first of Modules(R).WithBasis().FiniteDimensional(),
Modules(R).WithBasis(), Modules(R), and CommutativeAdditiveMonoids() that contains
both the domain and the codomain:

sage: phi.category_for()
Category of finite dimensional vector spaces with basis over Rational Field

With the zero argument, one can define affine morphisms:

sage: phi = X.module_morphism(lambda i: Y.monomial(i) + 2*Y.monomial(i+1),
....: codomain = Y, zero = 10*y[1])
sage: phi(x[1] + x[3])
11*B[1] + 2*B[2] + B[3] + 2*B[4]

In this special case, the default category is Sets():

sage: phi.category_for()
Category of sets

One can construct morphisms with the base ring as codomain:

sage: X = CombinatorialFreeModule(ZZ,[1,-1])
sage: phi = X.module_morphism( on_basis=lambda i: i, codomain=ZZ )
sage: phi( 2 * X.monomial(1) + 3 * X.monomial(-1) )
-1
sage: phi.category_for()
Category of commutative additive semigroups
sage: phi.category_for() # todo: not implemented (ZZ is currently not in␣
→˓Modules(ZZ))
Category of modules over Integer Ring

Or more generally any ring admitting a coercion map from the base ring:

sage: phi = X.module_morphism(on_basis=lambda i: i, codomain=RR )
sage: phi( 2 * X.monomial(1) + 3 * X.monomial(-1) )
-1.00000000000000

(continues on next page)
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sage: phi.category_for()
Category of commutative additive semigroups
sage: phi.category_for() # todo: not implemented (RR is currently not in␣
→˓Modules(ZZ))
Category of modules over Integer Ring

sage: phi = X.module_morphism(on_basis=lambda i: i, codomain=Zmod(4) )
sage: phi( 2 * X.monomial(1) + 3 * X.monomial(-1) )
3

sage: phi = Y.module_morphism(on_basis=lambda i: i, codomain=Zmod(4) )
Traceback (most recent call last):
...
ValueError: codomain(=Ring of integers modulo 4) should be a module over␣
→˓the base ring of the domain(=Y)

On can also define module morphisms between free modules over different base rings; here we imple-
ment the natural map from 𝑋 = R2 to 𝑌 = C:

sage: X = CombinatorialFreeModule(RR,['x','y'])
sage: Y = CombinatorialFreeModule(CC,['z'])
sage: x = X.monomial('x')
sage: y = X.monomial('y')
sage: z = Y.monomial('z')
sage: def on_basis( a ):
....: if a == 'x':
....: return CC(1) * z
....: elif a == 'y':
....: return CC(I) * z
sage: phi = X.module_morphism( on_basis=on_basis, codomain=Y )
sage: v = 3 * x + 2 * y; v
3.00000000000000*B['x'] + 2.00000000000000*B['y']
sage: phi(v)
(3.00000000000000+2.00000000000000*I)*B['z']
sage: phi.category_for()
Category of commutative additive semigroups
sage: phi.category_for() # todo: not implemented (CC is currently not in␣
→˓Modules(RR)!)
Category of vector spaces over Real Field with 53 bits of precision

sage: Y = CombinatorialFreeModule(CC['q'],['z'])
sage: z = Y.monomial('z')
sage: phi = X.module_morphism( on_basis=on_basis, codomain=Y )
sage: phi(v)
(3.00000000000000+2.00000000000000*I)*B['z']

Of course, there should be a coercion between the respective base rings of the domain and the codomain
for this to be meaningful:

sage: Y = CombinatorialFreeModule(QQ,['z'])
sage: phi = X.module_morphism( on_basis=on_basis, codomain=Y )
Traceback (most recent call last):

(continues on next page)
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...
ValueError: codomain(=Free module generated by {'z'} over Rational Field)
should be a module over the base ring of the
domain(=Free module generated by {'x', 'y'} over Real Field with 53 bits␣
→˓of precision)

sage: Y = CombinatorialFreeModule(RR['q'],['z'])
sage: phi = Y.module_morphism( on_basis=on_basis, codomain=X )
Traceback (most recent call last):
...
ValueError: codomain(=Free module generated by {'x', 'y'} over Real Field␣
→˓with 53 bits of precision)
should be a module over the base ring of the
domain(=Free module generated by {'z'} over Univariate Polynomial Ring in␣
→˓q over Real Field with 53 bits of precision)

With the diagonal=d argument, this constructs the module morphism 𝑔 such that

‘𝑔(𝑥𝑖) = 𝑑(𝑖)𝑦𝑖‘.

This assumes that the respective bases 𝑥 and 𝑦 of 𝑋 and 𝑌 have the same index set 𝐼:

sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X")
sage: from sage.arith.misc import factorial
sage: phi = X.module_morphism(diagonal=factorial, codomain=X)
sage: x = X.basis()
sage: phi(x[1]), phi(x[2]), phi(x[3])
(B[1], 2*B[2], 6*B[3])

See also: sage.modules.with_basis.morphism.DiagonalModuleMorphism.

With the matrix=m argument, this constructs the module morphism whose matrix in the distinguished
basis of 𝑋 and 𝑌 is 𝑚:

sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X"); x = X.basis()
sage: Y = CombinatorialFreeModule(ZZ, [3,4]); Y.rename("Y"); y = Y.basis()
sage: m = matrix([[0,1,2],[3,5,0]])
sage: phi = X.module_morphism(matrix=m, codomain=Y)
sage: phi(x[1])
3*B[4]
sage: phi(x[2])
B[3] + 5*B[4]

See also: sage.modules.with_basis.morphism.ModuleMorphismFromMatrix.

With triangular="upper", the constructed module morphism is assumed to be upper triangular;
that is its matrix in the distinguished basis of 𝑋 and 𝑌 would be upper triangular with invertible
elements on its diagonal. This is used to compute preimages and to invert the morphism:

sage: I = list(range(1, 200))
sage: X = CombinatorialFreeModule(QQ, I); X.rename("X"); x = X.basis()
sage: Y = CombinatorialFreeModule(QQ, I); Y.rename("Y"); y = Y.basis()
sage: f = Y.sum_of_monomials * divisors
sage: phi = X.module_morphism(f, triangular="upper", codomain = Y)

(continues on next page)
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sage: phi(x[2])
B[1] + B[2]
sage: phi(x[6])
B[1] + B[2] + B[3] + B[6]
sage: phi(x[30])
B[1] + B[2] + B[3] + B[5] + B[6] + B[10] + B[15] + B[30]
sage: phi.preimage(y[2])
-B[1] + B[2]
sage: phi.preimage(y[6])
B[1] - B[2] - B[3] + B[6]
sage: phi.preimage(y[30])
-B[1] + B[2] + B[3] + B[5] - B[6] - B[10] - B[15] + B[30]
sage: (phi^-1)(y[30])
-B[1] + B[2] + B[3] + B[5] - B[6] - B[10] - B[15] + B[30]

Since trac ticket #8678, one can also define a triangular morphism from a function:

sage: X = CombinatorialFreeModule(QQ, [0,1,2,3,4]); x = X.basis()
sage: from sage.modules.with_basis.morphism import␣
→˓TriangularModuleMorphismFromFunction
sage: def f(x): return x + X.term(0, sum(x.coefficients()))
sage: phi = X.module_morphism(function=f, codomain=X, triangular="upper")
sage: phi(x[2] + 3*x[4])
4*B[0] + B[2] + 3*B[4]
sage: phi.preimage(_)
B[2] + 3*B[4]

For details and further optional arguments, see sage.modules.with_basis.morphism.
TriangularModuleMorphism.

Warning: As a temporary measure, until multivariate morphisms are implemented, the con-
structed morphism is in Hom(codomain, domain, category). This is only correct for unary
functions.

Todo:
• Should codomain be self by default in the diagonal, triangular, and matrix cases?
• Support for diagonal morphisms between modules not sharing the same index set

monomial(i)
Return the basis element indexed by i.

INPUT:
• i – an element of the index set

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.monomial('a')
B['a']

F.monomial is in fact (almost) a map:
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sage: F.monomial
Term map from {'a', 'b', 'c'} to Free module generated by {'a', 'b', 'c'}␣
→˓over Rational Field

monomial_or_zero_if_none(i)
EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.monomial_or_zero_if_none('a')
B['a']
sage: F.monomial_or_zero_if_none(None)
0

quotient_module(submodule, check=True, already_echelonized=False, category=None)
Construct the quotient module self / submodule.

INPUT:
• submodule – a submodule with basis of self, or something that can be turned into one via self.
submodule(submodule)

• check, already_echelonized – passed down to ModulesWithBasis.ParentMethods.
submodule()

Warning: At this point, this only supports quotients by free submodules admitting a basis in
unitriangular echelon form. In this case, the quotient is also a free module, with a basis consisting
of the retract of a subset of the basis of self.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: Y = X.quotient_module([x[0]-x[1], x[1]-x[2]], already_
→˓echelonized=True)
sage: Y.print_options(prefix='y'); Y
Free module generated by {2} over Rational Field
sage: y = Y.basis()
sage: y[2]
y[2]
sage: y[2].lift()
x[2]
sage: Y.retract(x[0]+2*x[1])
3*y[2]

sage: R.<a,b> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]
sage: Y = C.quotient_module(gens)

See also:

• Modules.WithBasis.ParentMethods.submodule()
• Rings.ParentMethods.quotient()
• sage.modules.with_basis.subquotient.QuotientModuleWithBasis
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random_element(n=2)
Return a ‘random’ element of self.

INPUT:
• n – integer (default: 2); number of summands

ALGORITHM:

Return a sum of n terms, each of which is formed by multiplying a random element of the base ring
by a random element of the group.

EXAMPLES:

sage: x = DihedralGroup(6).algebra(QQ).random_element()
sage: x.parent() is DihedralGroup(6).algebra(QQ)
True

Note, this result can depend on the PRNG state in libgap in a way that depends on which packages are
loaded, so we must re-seed GAP to ensure a consistent result for this example:

sage: libgap.set_seed(0)
0
sage: m = SU(2, 13).algebra(QQ).random_element(1)
sage: m.parent() is SU(2, 13).algebra(QQ)
True
sage: p = CombinatorialFreeModule(ZZ, Partitions(4)).random_element()
sage: p.parent() is CombinatorialFreeModule(ZZ, Partitions(4))
True

submodule(gens, check=True, already_echelonized=False, unitriangular=False, support_order=None,
category=None, *args, **opts)

The submodule spanned by a finite set of elements.

INPUT:
• gens – a list or family of elements of self
• check – (default: True) whether to verify that the elements of gens are in self
• already_echelonized – (default: False) whether the elements of gens are already in (not

necessarily reduced) echelon form
• unitriangular – (default: False) whether the lift morphism is unitriangular
• support_order – (optional) either something that can be converted into a tuple or a key function
• category – (optional) the category of the submodule

If already_echelonized is False, then the generators are put in reduced echelon form using
echelonize(), and reindexed by 0, 1, ....

Warning: At this point, this method only works for finite dimensional submodules and if matrices
can be echelonized over the base ring.

If in addition unitriangular is True, then the generators are made such that the coefficients of the
pivots are 1, so that lifting map is unitriangular.

The basis of the submodule uses the same index set as the generators, and the lifting map sends 𝑦𝑖 to
𝑔𝑒𝑛𝑠[𝑖].

See also:

• ModulesWithBasis.FiniteDimensional.ParentMethods.quotient_module()
• sage.modules.with_basis.subquotient.SubmoduleWithBasis
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EXAMPLES:

We construct a submodule of the free Q-module generated by 𝑥0, 𝑥1, 𝑥2. The submodule is spanned
by 𝑦0 = 𝑥0 − 𝑥1 and 𝑦1 − 𝑥1 − 𝑥2, and its basis elements are indexed by 0 and 1:

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = [x[0] - x[1], x[1] - x[2]]; gens
[x[0] - x[1], x[1] - x[2]]
sage: Y = X.submodule(gens, already_echelonized=True)
sage: Y.print_options(prefix='y'); Y
Free module generated by {0, 1} over Rational Field
sage: y = Y.basis()
sage: y[1]
y[1]
sage: y[1].lift()
x[1] - x[2]
sage: Y.retract(x[0]-x[2])
y[0] + y[1]
sage: Y.retract(x[0])
Traceback (most recent call last):
...
ValueError: x[0] is not in the image

By using a family to specify a basis of the submodule, we obtain a submodule whose index set coincides
with the index set of the family:

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = Family({1 : x[0] - x[1], 3: x[1] - x[2]}); gens
Finite family {1: x[0] - x[1], 3: x[1] - x[2]}
sage: Y = X.submodule(gens, already_echelonized=True)
sage: Y.print_options(prefix='y'); Y
Free module generated by {1, 3} over Rational Field
sage: y = Y.basis()
sage: y[1]
y[1]
sage: y[1].lift()
x[0] - x[1]
sage: y[3].lift()
x[1] - x[2]
sage: Y.retract(x[0]-x[2])
y[1] + y[3]
sage: Y.retract(x[0])
Traceback (most recent call last):
...
ValueError: x[0] is not in the image

It is not necessary that the generators of the submodule form a basis (an explicit basis will be com-
puted):

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]; gens

(continues on next page)
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[x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]
sage: Y = X.submodule(gens, already_echelonized=False)
sage: Y.print_options(prefix='y')
sage: Y
Free module generated by {0, 1} over Rational Field
sage: [b.lift() for b in Y.basis()]
[x[0] - x[2], x[1] - x[2]]

We now implement by hand the center of the algebra of the symmetric group 𝑆3:

sage: S3 = SymmetricGroup(3)
sage: S3A = S3.algebra(QQ)
sage: basis = S3A.annihilator_basis(S3A.algebra_generators(), S3A.bracket)
sage: basis
((), (1,2,3) + (1,3,2), (2,3) + (1,2) + (1,3))
sage: center = S3A.submodule(basis,
....: category=AlgebrasWithBasis(QQ).Subobjects(),
....: already_echelonized=True)
sage: center
Free module generated by {0, 1, 2} over Rational Field
sage: center in Algebras
True
sage: center.print_options(prefix='c')
sage: c = center.basis()
sage: c[1].lift()
(1,2,3) + (1,3,2)
sage: c[0]^2
c[0]
sage: e = 1/6*(c[0]+c[1]+c[2])
sage: e.is_idempotent()
True

Of course, this center is best constructed using:

sage: center = S3A.center()

We can also automatically construct a basis such that the lift morphism is (lower) unitriangular:

sage: R.<a,b> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]
sage: Y = C.submodule(gens, unitriangular=True)
sage: Y.lift.matrix()
[ 1 0]
[ 0 1]
[-1 -1]

We now construct a (finite-dimensional) submodule of an infinite dimensional free module:

sage: C = CombinatorialFreeModule(QQ, ZZ, prefix='z')
sage: z = C.basis()
sage: gens = [z[0] - z[1], 2*z[1] - 2*z[2], z[0] - z[2]]

(continues on next page)
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sage: Y = C.submodule(gens)
sage: [Y.lift(b) for b in Y.basis()]
[z[0] - z[2], z[1] - z[2]]

sum_of_monomials()
Return the sum of the basis elements with indices in indices.

INPUT:
• indices – an list (or iterable) of indices of basis elements

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.sum_of_monomials(['a', 'b'])
B['a'] + B['b']

sage: F.sum_of_monomials(['a', 'b', 'a'])
2*B['a'] + B['b']

F.sum_of_monomials is in fact (almost) a map:

sage: F.sum_of_monomials
A map to Free module generated by {'a', 'b', 'c'} over Rational Field

sum_of_terms(terms)
Construct a sum of terms of self.

INPUT:
• terms – a list (or iterable) of pairs (index, coeff)

OUTPUT:

Sum of coeff * B[index] over all (index, coeff) in terms, where B is the basis of self.

EXAMPLES:

sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.sum_of_terms([(0, 2), (2, -3)])
2 + (0, -3)

tensor(*parents, **kwargs)
Return the tensor product of the parents.

EXAMPLES:

sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example(); A.rename("A")
sage: A.tensor(A,A)
A # A # A
sage: A.rename(None)

term(index, coeff=None)
Construct a term in self.

INPUT:
• index – the index of a basis element
• coeff – an element of the coefficient ring (default: one)
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OUTPUT:

coeff * B[index], where B is the basis of self.

EXAMPLES:

sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.term(1, -2)
0 + (-2, 0)

Design: should this do coercion on the coefficient ring?

Super
alias of sage.categories.super_modules_with_basis.SuperModulesWithBasis

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of modules with basis constructed by tensor product of modules with basis.

class ElementMethods
Bases: object

Implements operations on elements of tensor products of modules with basis.

apply_multilinear_morphism(f, codomain=None)
Return the result of applying the morphism induced by f to self.

INPUT:
• f – a multilinear morphism from the component modules of the parent tensor product to any

module
• codomain – the codomain of f (optional)
By the universal property of the tensor product, f induces a linear morphism from 𝑠𝑒𝑙𝑓.𝑝𝑎𝑟𝑒𝑛𝑡()
to the target module. Returns the result of applying that morphism to self.

The codomain is used for optimizations purposes only. If it’s not provided, it’s recovered by calling
f on the zero input.

EXAMPLES:

We start with simple (admittedly not so interesting) examples, with two modules 𝐴 and 𝐵:

sage: A = CombinatorialFreeModule(ZZ, [1,2], prefix="A"); A.rename("A")
sage: B = CombinatorialFreeModule(ZZ, [3,4], prefix="B"); B.rename("B")

and 𝑓 the bilinear morphism (𝑎, 𝑏) ↦→ 𝑏⊗ 𝑎 from 𝐴×𝐵 to 𝐵 ⊗𝐴:

sage: def f(a,b):
....: return tensor([b,a])

Now, calling applying 𝑓 on 𝑎⊗ 𝑏 returns the same as 𝑓(𝑎, 𝑏):

sage: a = A.monomial(1) + 2 * A.monomial(2); a
A[1] + 2*A[2]
sage: b = B.monomial(3) - 2 * B.monomial(4); b
B[3] - 2*B[4]
sage: f(a,b)
B[3] # A[1] + 2*B[3] # A[2] - 2*B[4] # A[1] - 4*B[4] # A[2]

(continues on next page)
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sage: tensor([a,b]).apply_multilinear_morphism(f)
B[3] # A[1] + 2*B[3] # A[2] - 2*B[4] # A[1] - 4*B[4] # A[2]

𝑓 may be a bilinear morphism to any module over the base ring of 𝐴 and 𝐵. Here the codomain
is Z:

sage: def f(a,b):
....: return sum(a.coefficients(), 0) * sum(b.coefficients(), 0)
sage: f(a,b)
-3
sage: tensor([a,b]).apply_multilinear_morphism(f)
-3

Mind the 0 in the sums above; otherwise 𝑓 would not return 0 in Z:

sage: def f(a,b):
....: return sum(a.coefficients()) * sum(b.coefficients())
sage: type(f(A.zero(), B.zero()))
<... 'int'>

Which would be wrong and break this method:

sage: tensor([a,b]).apply_multilinear_morphism(f)
Traceback (most recent call last):
...
AttributeError: 'int' object has no attribute 'parent'

Here we consider an example where the codomain is a module with basis with a different base
ring:

sage: C = CombinatorialFreeModule(QQ, [(1,3),(2,4)], prefix="C"); C.
→˓rename("C")

sage: def f(a,b):
....: return C.sum_of_terms( [((1,3), QQ(a[1]*b[3])), ((2,4),␣

→˓QQ(a[2]*b[4]))] )
sage: f(a,b)
C[(1, 3)] - 4*C[(2, 4)]
sage: tensor([a,b]).apply_multilinear_morphism(f)
C[(1, 3)] - 4*C[(2, 4)]

We conclude with a real life application, where we
check that the antipode of the Hopf algebra of
Symmetric functions on the Schur basis satisfies its
defining formula::

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.schur()
sage: def f(a,b): return a*b.antipode()
sage: x = 4*s.an_element(); x
8*s[] + 8*s[1] + 12*s[2]
sage: x.coproduct().apply_multilinear_morphism(f)
8*s[]

(continues on next page)
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sage: x.coproduct().apply_multilinear_morphism(f) == x.counit()
True

We recover the constant term of 𝑥, as desired.

Todo: Extract a method to linearize a multilinear morphism, and delegate the work there.

class ParentMethods
Bases: object

Implements operations on tensor products of modules with basis.

extra_super_categories()
EXAMPLES:

sage: ModulesWithBasis(QQ).TensorProducts().extra_super_categories()
[Category of vector spaces with basis over Rational Field]
sage: ModulesWithBasis(QQ).TensorProducts().super_categories()
[Category of tensor products of modules with basis over Rational Field,
Category of vector spaces with basis over Rational Field,
Category of tensor products of vector spaces over Rational Field]

is_abelian()
Return whether this category is abelian.

This is the case if and only if the base ring is a field.

EXAMPLES:

sage: ModulesWithBasis(QQ).is_abelian()
True
sage: ModulesWithBasis(ZZ).is_abelian()
False

4.120 Monoid algebras

sage.categories.monoid_algebras.MonoidAlgebras(base_ring)
The category of monoid algebras over base_ring.

EXAMPLES:

sage: C = MonoidAlgebras(QQ); C
Category of monoid algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of bialgebras with basis over Rational Field,
Category of semigroup algebras over Rational Field,
Category of unital magma algebras over Rational Field]

This is just an alias for:

sage: C is Monoids().Algebras(QQ)
True
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4.121 Monoids

class sage.categories.monoids.Monoids(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of (multiplicative) monoids.

A monoid is a unital semigroup, that is a set endowed with a multiplicative binary operation * which is asso-
ciative and admits a unit (see Wikipedia article Monoid).

EXAMPLES:

sage: Monoids()
Category of monoids
sage: Monoids().super_categories()
[Category of semigroups, Category of unital magmas]
sage: Monoids().all_super_categories()
[Category of monoids,
Category of semigroups,
Category of unital magmas, Category of magmas,
Category of sets,
Category of sets with partial maps,
Category of objects]

sage: Monoids().axioms()
frozenset({'Associative', 'Unital'})
sage: Semigroups().Unital()
Category of monoids

sage: Monoids().example()
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class ElementMethods
Bases: object

is_central()
Return whether the element self is central.

EXAMPLES:

sage: SG4 = SymmetricGroupAlgebra(ZZ,4)
sage: SG4(1).is_central()
True
sage: SG4(Permutation([1,3,2,4])).is_central()
False
sage: A = GroupAlgebras(QQ).example(); A
Algebra of Dihedral group of order 8 as a permutation group over␣
→˓Rational Field
sage: sum(i for i in A.basis()).is_central()
True

class ParentMethods
Bases: object
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algebra_generators()
Return generators for this algebra.

For a monoid algebra, the algebra generators are built from the monoid generators if available and
from the semigroup generators otherwise.

See also:

• Semigroups.Algebras.ParentMethods.algebra_generators()
• MagmaticAlgebras.ParentMethods.algebra_generators().

EXAMPLES:

sage: M = Monoids().example(); M
An example of a monoid:
the free monoid generated by ('a', 'b', 'c', 'd')
sage: M.monoid_generators()
Finite family {'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd'}
sage: M.algebra(ZZ).algebra_generators()
Finite family {'a': B['a'], 'b': B['b'], 'c': B['c'], 'd': B['d']}

sage: Z12 = Monoids().Finite().example(); Z12
An example of a finite multiplicative monoid:
the integers modulo 12
sage: Z12.monoid_generators()
Traceback (most recent call last):
...
AttributeError: 'IntegerModMonoid_with_category' object
has no attribute 'monoid_generators'
sage: Z12.semigroup_generators()
Family (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
sage: Z12.algebra(QQ).algebra_generators()
Finite family {0: B[0], 1: B[1], 2: B[2], 3: B[3], 4: B[4], 5: B[5],

6: B[6], 7: B[7], 8: B[8], 9: B[9], 10: B[10], 11: B[11]}

sage: GroupAlgebras(QQ).example(AlternatingGroup(10)).algebra_
→˓generators()
Finite family {0: (8,9,10), 1: (1,2,3,4,5,6,7,8,9)}

sage: A = DihedralGroup(3).algebra(QQ); A
Algebra of Dihedral group of order 6 as a permutation group
over Rational Field
sage: A.algebra_generators()
Finite family {0: (1,2,3), 1: (1,3)}

one_basis()
Return the unit of the monoid, which indexes the unit of this algebra, as per AlgebrasWithBasis.
ParentMethods.one_basis().

EXAMPLES:

sage: A = Monoids().example().algebra(ZZ)
sage: A.one_basis()
''
sage: A.one()

(continues on next page)
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B['']
sage: A(3)
3*B['']

extra_super_categories()
The algebra of a monoid is a bialgebra and a monoid.

EXAMPLES:

sage: C = Monoids().Algebras(QQ)
sage: C.extra_super_categories()
[Category of bialgebras over Rational Field,
Category of monoids]
sage: Monoids().Algebras(QQ).super_categories()
[Category of bialgebras with basis over Rational Field,
Category of semigroup algebras over Rational Field,
Category of unital magma algebras over Rational Field]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of monoids constructed as Cartesian products of monoids.

This construction gives the direct product of monoids. See Wikipedia article Direct_product for more
information.

class ParentMethods
Bases: object

monoid_generators()
Return the generators of self.

EXAMPLES:

sage: M = Monoids.free([1,2,3])
sage: N = Monoids.free(['a','b'])
sage: C = cartesian_product([M, N])
sage: C.monoid_generators()
Family ((F[1], 1), (F[2], 1), (F[3], 1),

(1, F['a']), (1, F['b']))

An example with an infinitely generated group (a better output is needed):

sage: N = Monoids.free(ZZ)
sage: C = cartesian_product([M, N])
sage: C.monoid_generators()
Lazy family (gen(i))_{i in The Cartesian product of (...)}

extra_super_categories()
A Cartesian product of monoids is endowed with a natural group structure.

EXAMPLES:

sage: C = Monoids().CartesianProducts()
sage: C.extra_super_categories()
[Category of monoids]

(continues on next page)
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sage: sorted(C.super_categories(), key=str)
[Category of Cartesian products of semigroups,
Category of Cartesian products of unital magmas,
Category of monoids]

class Commutative(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

Category of commutative (abelian) monoids.

A monoid 𝑀 is commutative if 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 ∈𝑀 .

static free(index_set=None, names=None, **kwds)
Return a free abelian monoid on 𝑛 generators or with the generators indexed by a set 𝐼 .

A free monoid is constructed by specifying either:
• the number of generators and/or the names of the generators, or
• the indexing set for the generators.

INPUT:
• index_set – (optional) an index set for the generators; if an integer, then this represents
{0, 1, . . . , 𝑛− 1}

• names – a string or list/tuple/iterable of strings (default: 'x'); the generator names or name prefix
EXAMPLES:

sage: Monoids.Commutative.free(index_set=ZZ)
Free abelian monoid indexed by Integer Ring
sage: Monoids().Commutative().free(ZZ)
Free abelian monoid indexed by Integer Ring
sage: F.<x,y,z> = Monoids().Commutative().free(); F
Free abelian monoid indexed by {'x', 'y', 'z'}

class ElementMethods
Bases: object

is_one()
Return whether self is the one of the monoid.

The default implementation is to compare with self.one().

powers(n)
Return the list [𝑥0, 𝑥1, . . . , 𝑥𝑛−1].

EXAMPLES:

sage: A = Matrix([[1, 1], [-1, 0]])
sage: A.powers(6)
[
[1 0] [ 1 1] [ 0 1] [-1 0] [-1 -1] [ 0 -1]
[0 1], [-1 0], [-1 -1], [ 0 -1], [ 1 0], [ 1 1]
]

Finite
alias of sage.categories.finite_monoids.FiniteMonoids

Inverse
alias of sage.categories.groups.Groups
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class ParentMethods
Bases: object

prod(args)
n-ary product of elements of self.

INPUT:
• args – a list (or iterable) of elements of self

Returns the product of the elements in args, as an element of self.

EXAMPLES:

sage: S = Monoids().example()
sage: S.prod([S('a'), S('b')])
'ab'

semigroup_generators()
Return the generators of self as a semigroup.

The generators of a monoid 𝑀 as a semigroup are the generators of 𝑀 as a monoid and the unit.

EXAMPLES:

sage: M = Monoids().free([1,2,3])
sage: M.semigroup_generators()
Family (1, F[1], F[2], F[3])

submonoid(generators, category=None)
Return the multiplicative submonoid generated by generators.

INPUT:
• generators – a finite family of elements of self, or a list, iterable, . . . that can be converted

into one (see Family).
• category – a category

This is a shorthand for Semigroups.ParentMethods.subsemigroup() that specifies that this is a
submonoid, and in particular that the unit is self.one().

EXAMPLES:

sage: R = IntegerModRing(15)
sage: M = R.submonoid([R(3),R(5)]); M
A submonoid of (Ring of integers modulo 15) with 2 generators
sage: M.list()
[1, 3, 5, 9, 0, 10, 12, 6]

Not the presence of the unit, unlike in:

sage: S = R.subsemigroup([R(3),R(5)]); S
A subsemigroup of (Ring of integers modulo 15) with 2 generators
sage: S.list()
[3, 5, 9, 0, 10, 12, 6]

This method is really a shorthand for subsemigroup:

sage: M2 = R.subsemigroup([R(3),R(5)], one=R.one())
sage: M2 is M
True
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class Subquotients(category, *args)
Bases: sage.categories.subquotients.SubquotientsCategory

class ParentMethods
Bases: object

one()
Returns the multiplicative unit of this monoid, obtained by retracting that of the ambient monoid.

EXAMPLES:

sage: S = Monoids().Subquotients().example() # todo: not implemented
sage: S.one() # todo: not implemented

class WithRealizations(category, *args)
Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
Bases: object

one()
Return the unit of this monoid.

This default implementation returns the unit of the realization of self given by
a_realization().

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.one.__module__
'sage.categories.monoids'
sage: A.one()
F[{}]

static free(index_set=None, names=None, **kwds)
Return a free monoid on 𝑛 generators or with the generators indexed by a set 𝐼 .

A free monoid is constructed by specifying either:

• the number of generators and/or the names of the generators

• the indexing set for the generators

INPUT:

• index_set – (optional) an index set for the generators; if an integer, then this represents {0, 1, . . . , 𝑛−
1}

• names – a string or list/tuple/iterable of strings (default: 'x'); the generator names or name prefix

EXAMPLES:

sage: Monoids.free(index_set=ZZ)
Free monoid indexed by Integer Ring
sage: Monoids().free(ZZ)
Free monoid indexed by Integer Ring
sage: F.<x,y,z> = Monoids().free(); F
Free monoid indexed by {'x', 'y', 'z'}
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4.122 Number fields

class sage.categories.number_fields.NumberFields(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of number fields.

EXAMPLES:

We create the category of number fields:

sage: C = NumberFields()
sage: C
Category of number fields

By definition, it is infinite:

sage: NumberFields().Infinite() is NumberFields()
True

Notice that the rational numbers Q are considered as an object in this category:

sage: RationalField() in C
True

However, we can define a degree 1 extension of Q, which is of course also in this category:

sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: K = NumberField(x - 1, 'a'); K
Number Field in a with defining polynomial x - 1
sage: K in C
True

Number fields all lie in this category, regardless of the name of the variable:

sage: K = NumberField(x^2 + 1, 'a')
sage: K in C
True

class ElementMethods
Bases: object

class ParentMethods
Bases: object

zeta_function(prec=53, max_imaginary_part=0, max_asymp_coeffs=40, algorithm='pari')
Return the Dedekind zeta function of this number field.

Actually, this returns an interface for computing with the Dedekind zeta function 𝜁𝐹 (𝑠) of the number
field 𝐹 .

INPUT:
• prec – optional integer (default 53) bits precision
• max_imaginary_part – optional real number (default 0)
• max_asymp_coeffs – optional integer (default 40)
• algorithm – optional (default “pari”) either “gp” or “pari”

4.122. Number fields 637



Category Framework, Release 9.7

OUTPUT: The zeta function of this number field.

If algorithm is “gp”, this returns an interface to Tim Dokchitser’s gp script for computing with L-
functions.

If algorithm is “pari”, this returns instead an interface to Pari’s own general implementation of L-
functions.

EXAMPLES:

sage: K.<a> = NumberField(ZZ['x'].0^2+ZZ['x'].0-1)
sage: Z = K.zeta_function(); Z #␣
→˓optional - sage.symbolic
PARI zeta function associated to Number Field in a with defining polynomial␣
→˓x^2 + x - 1
sage: Z(-1) #␣
→˓optional - sage.symbolic
0.0333333333333333

sage: x = polygen(QQ, 'x') #␣
→˓optional - sage.symbolic
sage: L.<a, b, c> = NumberField([x^2 - 5, x^2 + 3, x^2 + 1]) #␣
→˓optional - sage.symbolic
sage: Z = L.zeta_function() #␣
→˓optional - sage.symbolic
sage: Z(5) #␣
→˓optional - sage.symbolic
1.00199015670185

Using the algorithm “pari”:

sage: K.<a> = NumberField(ZZ['x'].0^2+ZZ['x'].0-1) #␣
→˓optional - sage.symbolic
sage: Z = K.zeta_function(algorithm="pari") #␣
→˓optional - sage.symbolic
sage: Z(-1) #␣
→˓optional - sage.symbolic
0.0333333333333333

sage: x = polygen(QQ, 'x') #␣
→˓optional - sage.symbolic
sage: L.<a, b, c> = NumberField([x^2 - 5, x^2 + 3, x^2 + 1]) #␣
→˓optional - sage.symbolic
sage: Z = L.zeta_function(algorithm="pari") #␣
→˓optional - sage.symbolic
sage: Z(5) #␣
→˓optional - sage.symbolic
1.00199015670185

super_categories()
EXAMPLES:

sage: NumberFields().super_categories()
[Category of infinite fields]
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4.123 Objects

class sage.categories.objects.Objects(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of all objects the basic category

EXAMPLES:

sage: Objects()
Category of objects
sage: Objects().super_categories()
[]

class ParentMethods
Bases: object

Methods for all category objects

class SubcategoryMethods
Bases: object

Endsets()
Return the category of endsets between objects of this category.

EXAMPLES:

sage: Sets().Endsets()
Category of endsets of sets

sage: Rings().Endsets()
Category of endsets of unital magmas and additive unital additive magmas

See also:

• Homsets()

Homsets()
Return the category of homsets between objects of this category.

EXAMPLES:

sage: Sets().Homsets()
Category of homsets of sets

sage: Rings().Homsets()
Category of homsets of unital magmas and additive unital additive magmas

Note: Background

Information, code, documentation, and tests about the category of homsets of a category Cs should go
in the nested class Cs.Homsets. They will then be made available to homsets of any subcategory of
Cs.

Assume, for example, that homsets of Cs are Cs themselves. This information can be implemented
in the method Cs.Homsets.extra_super_categories to make Cs.Homsets() a subcategory of
Cs().

Methods about the homsets themselves should go in the nested class Cs.Homsets.ParentMethods.
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Methods about the morphisms can go in the nested class Cs.Homsets.ElementMethods. However
it’s generally preferable to put them in the nested class Cs.MorphimMethods; indeed they will then
apply to morphisms of all subcategories of Cs, and not only full subcategories.

See also:

FunctorialConstruction

Todo:
• Design a mechanism to specify that an axiom is compatible with taking subsets. Examples:
Finite, Associative, Commutative (when meaningful), but not Infinite nor Unital.

• Design a mechanism to specify that, when 𝐵 is a subcategory of 𝐴, a 𝐵-homset is a subset of
the corresponding 𝐴 homset. And use it to recover all the relevant axioms from homsets in super
categories.

• For instances of redundant code due to this missing feature, see:
– AdditiveMonoids.Homsets.extra_super_categories()
– HomsetsCategory.extra_super_categories() (slightly different nature)
– plus plenty of spots where this is not implemented.

additional_structure()
Return None

Indeed, by convention, the category of objects defines no additional structure.

See also:

Category.additional_structure()

EXAMPLES:

sage: Objects().additional_structure()

super_categories()
EXAMPLES:

sage: Objects().super_categories()
[]

4.124 Partially ordered monoids

class sage.categories.partially_ordered_monoids.PartiallyOrderedMonoids(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of partially ordered monoids, that is partially ordered sets which are also monoids, and such that
multiplication preserves the ordering: 𝑥 ≤ 𝑦 implies 𝑥 * 𝑧 < 𝑦 * 𝑧 and 𝑧 * 𝑥 < 𝑧 * 𝑦.

See Wikipedia article Ordered_monoid

EXAMPLES:

sage: PartiallyOrderedMonoids()
Category of partially ordered monoids
sage: PartiallyOrderedMonoids().super_categories()
[Category of posets, Category of monoids]
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class ElementMethods
Bases: object

class ParentMethods
Bases: object

super_categories()
EXAMPLES:

sage: PartiallyOrderedMonoids().super_categories()
[Category of posets, Category of monoids]

4.125 Permutation groups

class sage.categories.permutation_groups.PermutationGroups(s=None)
Bases: sage.categories.category.Category

The category of permutation groups.

A permutation group is a group whose elements are concretely represented by permutations of some set. In other
words, the group comes endowed with a distinguished action on some set.

This distinguished action should be preserved by permutation group morphisms. For details, see Wikipedia
article Permutation_group#Permutation_isomorphic_groups.

Todo: shall we accept only permutations with finite support or not?

EXAMPLES:

sage: PermutationGroups()
Category of permutation groups
sage: PermutationGroups().super_categories()
[Category of groups]

The category of permutation groups defines additional structure that should be preserved by morphisms, namely
the distinguished action:

sage: PermutationGroups().additional_structure()
Category of permutation groups

Finite
alias of sage.categories.finite_permutation_groups.FinitePermutationGroups

super_categories()
Return a list of the immediate super categories of self.

EXAMPLES:

sage: PermutationGroups().super_categories()
[Category of groups]
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4.126 Pointed sets

class sage.categories.pointed_sets.PointedSets(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of pointed sets.

EXAMPLES:

sage: PointedSets()
Category of pointed sets

super_categories()
EXAMPLES:

sage: PointedSets().super_categories()
[Category of sets]

4.127 Polyhedral subsets of free ZZ, QQ or RR-modules.

class sage.categories.polyhedra.PolyhedralSets(R)
Bases: sage.categories.category_types.Category_over_base_ring

The category of polyhedra over a ring.

EXAMPLES:

We create the category of polyhedra over Q:

sage: PolyhedralSets(QQ)
Category of polyhedral sets over Rational Field

super_categories()
EXAMPLES:

sage: PolyhedralSets(QQ).super_categories()
[Category of commutative magmas, Category of additive monoids]

4.128 Posets

class sage.categories.posets.Posets(s=None)
Bases: sage.categories.category.Category

The category of posets i.e. sets with a partial order structure.

EXAMPLES:

sage: Posets()
Category of posets
sage: Posets().super_categories()
[Category of sets]
sage: P = Posets().example(); P
An example of a poset: sets ordered by inclusion
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The partial order is implemented by the mandatory method le():

sage: x = P(Set([1,3])); y = P(Set([1,2,3]))
sage: x, y
({1, 3}, {1, 2, 3})
sage: P.le(x, y)
True
sage: P.le(x, x)
True
sage: P.le(y, x)
False

The other comparison methods are called lt(), ge(), gt(), following Python’s naming convention in
operator. Default implementations are provided:

sage: P.lt(x, x)
False
sage: P.ge(y, x)
True

Unless the poset is a facade (see Sets.Facade), one can compare directly its elements using the usual Python
operators:

sage: D = Poset((divisors(30), attrcall("divides")), facade = False)
sage: D(3) <= D(6)
True
sage: D(3) <= D(3)
True
sage: D(3) <= D(5)
False
sage: D(3) < D(3)
False
sage: D(10) >= D(5)
True

At this point, this has to be implemented by hand. Once trac ticket #10130 will be resolved, this will be auto-
matically provided by this category:

sage: x < y # todo: not implemented
True
sage: x < x # todo: not implemented
False
sage: x <= x # todo: not implemented
True
sage: y >= x # todo: not implemented
True

See also:

Poset(), FinitePosets, LatticePosets

class ElementMethods
Bases: object

Finite
alias of sage.categories.finite_posets.FinitePosets
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class ParentMethods
Bases: object

CartesianProduct
alias of sage.combinat.posets.cartesian_product.CartesianProductPoset

directed_subset(elements, direction)
Return the order filter or the order ideal generated by a list of elements.

If direction is ‘up’, the order filter (upper set) is being returned.

If direction is ‘down’, the order ideal (lower set) is being returned.

INPUT:
• elements – a list of elements.
• direction – ‘up’ or ‘down’.

EXAMPLES:

sage: B = posets.BooleanLattice(4)
sage: B.directed_subset([3, 8], 'up')
[3, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: B.directed_subset([7, 10], 'down')
[0, 1, 2, 3, 4, 5, 6, 7, 8, 10]

ge(x, y)
Return whether 𝑥 ≥ 𝑦 in the poset self.

INPUT:
• x, y – elements of self.

This default implementation delegates the work to le().

EXAMPLES:

sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.ge( 6, 3 )
True
sage: D.ge( 3, 3 )
True
sage: D.ge( 3, 5 )
False

gt(x, y)
Return whether 𝑥 > 𝑦 in the poset self.

INPUT:
• x, y – elements of self.

This default implementation delegates the work to lt().

EXAMPLES:

sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.gt( 3, 6 )
False
sage: D.gt( 3, 3 )
False
sage: D.gt( 3, 5 )
False
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is_antichain_of_poset(o)
Return whether an iterable o is an antichain of self.

INPUT:
• o – an iterable (e. g., list, set, or tuple) containing some elements of self

OUTPUT:

True if the subset of self consisting of the entries of o is an antichain of self, and False otherwise.

EXAMPLES:

sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_
→˓extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_antichain_of_poset([1, 3])
False
sage: P.is_antichain_of_poset([3, 1])
False
sage: P.is_antichain_of_poset([1, 1, 3])
False
sage: P.is_antichain_of_poset([])
True
sage: P.is_antichain_of_poset([1])
True
sage: P.is_antichain_of_poset([1, 1])
True
sage: P.is_antichain_of_poset([3, 4])
True
sage: P.is_antichain_of_poset([3, 4, 12])
False
sage: P.is_antichain_of_poset([6, 4])
True
sage: P.is_antichain_of_poset(i for i in divisors(12) if (2 < i and i < 6))
True
sage: P.is_antichain_of_poset(i for i in divisors(12) if (2 <= i and i < 6))
False

sage: Q = Poset({2: [3, 1], 3: [4], 1: [4]})
sage: Q.is_antichain_of_poset((1, 2))
False
sage: Q.is_antichain_of_poset((2, 4))
False
sage: Q.is_antichain_of_poset((4, 2))
False
sage: Q.is_antichain_of_poset((2, 2))
True
sage: Q.is_antichain_of_poset((3, 4))
False
sage: Q.is_antichain_of_poset((3, 1))
True
sage: Q.is_antichain_of_poset((1, ))
True
sage: Q.is_antichain_of_poset(())
True
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An infinite poset:

sage: from sage.categories.examples.posets import␣
→˓FiniteSetsOrderedByInclusion
sage: R = FiniteSetsOrderedByInclusion()
sage: R.is_antichain_of_poset([R(set([3, 1, 2])), R(set([1, 4])), R(set([4,␣
→˓5]))])
True
sage: R.is_antichain_of_poset([R(set([3, 1, 2, 4])), R(set([1, 4])),␣
→˓R(set([4, 5]))])
False

is_chain_of_poset(o, ordered=False)
Return whether an iterable o is a chain of self, including a check for o being ordered from smallest
to largest element if the keyword ordered is set to True.

INPUT:
• o – an iterable (e. g., list, set, or tuple) containing some elements of self
• ordered – a Boolean (default: False) which decides whether the notion of a chain includes being

ordered
OUTPUT:

If ordered is set to False, the truth value of the following assertion is returned: The subset of self
formed by the elements of o is a chain in self.

If ordered is set to True, the truth value of the following assertion is returned: Every element of the
list o is (strictly!) smaller than its successor in self. (This makes no sense if ordered is a set.)

EXAMPLES:

sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_
→˓extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_chain_of_poset([1, 3])
True
sage: P.is_chain_of_poset([3, 1])
True
sage: P.is_chain_of_poset([1, 3], ordered=True)
True
sage: P.is_chain_of_poset([3, 1], ordered=True)
False
sage: P.is_chain_of_poset([])
True
sage: P.is_chain_of_poset([], ordered=True)
True
sage: P.is_chain_of_poset((2, 12, 6))
True
sage: P.is_chain_of_poset((2, 6, 12), ordered=True)
True
sage: P.is_chain_of_poset((2, 12, 6), ordered=True)
False
sage: P.is_chain_of_poset((2, 12, 6, 3))
False
sage: P.is_chain_of_poset((2, 3))
False

(continues on next page)
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sage: Q = Poset({2: [3, 1], 3: [4], 1: [4]})
sage: Q.is_chain_of_poset([1, 2], ordered=True)
False
sage: Q.is_chain_of_poset([1, 2])
True
sage: Q.is_chain_of_poset([2, 1], ordered=True)
True
sage: Q.is_chain_of_poset([2, 1, 1], ordered=True)
False
sage: Q.is_chain_of_poset([3])
True
sage: Q.is_chain_of_poset([4, 2, 3])
True
sage: Q.is_chain_of_poset([4, 2, 3], ordered=True)
False
sage: Q.is_chain_of_poset([2, 3, 4], ordered=True)
True

Examples with infinite posets:

sage: from sage.categories.examples.posets import␣
→˓FiniteSetsOrderedByInclusion
sage: R = FiniteSetsOrderedByInclusion()
sage: R.is_chain_of_poset([R(set([3, 1, 2])), R(set([1, 4])), R(set([4,␣
→˓5]))])
False
sage: R.is_chain_of_poset([R(set([3, 1, 2])), R(set([1, 2])), R(set([1]))],␣
→˓ordered=True)
False
sage: R.is_chain_of_poset([R(set([3, 1, 2])), R(set([1, 2])), R(set([1]))])
True

sage: from sage.categories.examples.posets import␣
→˓PositiveIntegersOrderedByDivisibilityFacade
sage: T = PositiveIntegersOrderedByDivisibilityFacade()
sage: T.is_chain_of_poset((T(3), T(4), T(7)))
False
sage: T.is_chain_of_poset((T(3), T(6), T(3)))
True
sage: T.is_chain_of_poset((T(3), T(6), T(3)), ordered=True)
False
sage: T.is_chain_of_poset((T(3), T(3), T(6)))
True
sage: T.is_chain_of_poset((T(3), T(3), T(6)), ordered=True)
False
sage: T.is_chain_of_poset((T(3), T(6)), ordered=True)
True
sage: T.is_chain_of_poset((), ordered=True)
True
sage: T.is_chain_of_poset((T(3),), ordered=True)
True

(continues on next page)
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sage: T.is_chain_of_poset((T(q) for q in divisors(27)))
True
sage: T.is_chain_of_poset((T(q) for q in divisors(18)))
False

is_order_filter(o)
Return whether o is an order filter of self, assuming self has no infinite ascending path.

INPUT:
• o – a list (or set, or tuple) containing some elements of self

EXAMPLES:

sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_
→˓extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_order_filter([4, 12])
True
sage: P.is_order_filter([])
True
sage: P.is_order_filter({3, 4, 12})
False
sage: P.is_order_filter({3, 6, 12})
True

is_order_ideal(o)
Return whether o is an order ideal of self, assuming self has no infinite descending path.

INPUT:
• o – a list (or set, or tuple) containing some elements of self

EXAMPLES:

sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_
→˓extension=True)
sage: sorted(P.list())
[1, 2, 3, 4, 6, 12]
sage: P.is_order_ideal([1, 3])
True
sage: P.is_order_ideal([])
True
sage: P.is_order_ideal({1, 3})
True
sage: P.is_order_ideal([1, 3, 4])
False

le(x, y)
Return whether 𝑥 ≤ 𝑦 in the poset self.

INPUT:
• x, y – elements of self.

EXAMPLES:

sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.le( 3, 6 )

(continues on next page)
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True
sage: D.le( 3, 3 )
True
sage: D.le( 3, 5 )
False

lower_covers(x)
Return the lower covers of 𝑥, that is, the elements 𝑦 such that 𝑦 < 𝑥 and there exists no 𝑧 such that
𝑦 < 𝑧 < 𝑥.

EXAMPLES:

sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.lower_covers(15)
[3, 5]

lt(x, y)
Return whether 𝑥 < 𝑦 in the poset self.

INPUT:
• x, y – elements of self.

This default implementation delegates the work to le().

EXAMPLES:

sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.lt( 3, 6 )
True
sage: D.lt( 3, 3 )
False
sage: D.lt( 3, 5 )
False

order_filter(elements)
Return the order filter generated by a list of elements.

A subset 𝐼 of a poset is said to be an order filter if, for any 𝑥 in 𝐼 and 𝑦 such that 𝑦 ≥ 𝑥, then 𝑦 is in 𝐼 .

This is also called the upper set generated by these elements.

EXAMPLES:

sage: B = posets.BooleanLattice(4)
sage: B.order_filter([3,8])
[3, 7, 8, 9, 10, 11, 12, 13, 14, 15]

order_ideal(elements)
Return the order ideal in self generated by the elements of an iterable elements.

A subset 𝐼 of a poset is said to be an order ideal if, for any 𝑥 in 𝐼 and 𝑦 such that 𝑦 ≤ 𝑥, then 𝑦 is in 𝐼 .

This is also called the lower set generated by these elements.

EXAMPLES:

sage: B = posets.BooleanLattice(4)
sage: B.order_ideal([7,10])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 10]
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order_ideal_toggle(I, v)
Return the result of toggling the element v in the order ideal I.

If 𝑣 is an element of a poset 𝑃 , then toggling the element 𝑣 is an automorphism of the set 𝐽(𝑃 ) of
all order ideals of 𝑃 . It is defined as follows: If 𝐼 is an order ideal of 𝑃 , then the image of 𝐼 under
toggling the element 𝑣 is

• the set 𝐼 ∪ {𝑣}, if 𝑣 ̸∈ 𝐼 but every element of 𝑃 smaller than 𝑣 is in 𝐼;
• the set 𝐼 ∖ {𝑣}, if 𝑣 ∈ 𝐼 but no element of 𝑃 greater than 𝑣 is in 𝐼;
• 𝐼 otherwise.

This image always is an order ideal of 𝑃 .

EXAMPLES:

sage: P = Poset({1: [2,3], 2: [4], 3: []})
sage: I = Set({1, 2})
sage: I in P.order_ideals_lattice()
True
sage: P.order_ideal_toggle(I, 1)
{1, 2}
sage: P.order_ideal_toggle(I, 2)
{1}
sage: P.order_ideal_toggle(I, 3)
{1, 2, 3}
sage: P.order_ideal_toggle(I, 4)
{1, 2, 4}
sage: P4 = Posets(4)
sage: all(all(all(P.order_ideal_toggle(P.order_ideal_toggle(I, i), i) == I
....: for i in range(4))
....: for I in P.order_ideals_lattice(facade=True))
....: for P in P4)
True

order_ideal_toggles(I, vs)
Return the result of toggling the elements of the list (or iterable) vs (one by one, from left to right) in
the order ideal I.

See order_ideal_toggle() for a definition of toggling.

EXAMPLES:

sage: P = Poset({1: [2,3], 2: [4], 3: []})
sage: I = Set({1, 2})
sage: P.order_ideal_toggles(I, [1,2,3,4])
{1, 3}
sage: P.order_ideal_toggles(I, (1,2,3,4))
{1, 3}

principal_lower_set(x)
Return the order ideal generated by an element x.

This is also called the lower set generated by this element.

EXAMPLES:

sage: B = posets.BooleanLattice(4)
sage: B.principal_order_ideal(6)
[0, 2, 4, 6]

650 Chapter 4. Individual Categories



Category Framework, Release 9.7

principal_order_filter(x)
Return the order filter generated by an element x.

This is also called the upper set generated by this element.

EXAMPLES:

sage: B = posets.BooleanLattice(4)
sage: B.principal_order_filter(2)
[2, 3, 6, 7, 10, 11, 14, 15]

principal_order_ideal(x)
Return the order ideal generated by an element x.

This is also called the lower set generated by this element.

EXAMPLES:

sage: B = posets.BooleanLattice(4)
sage: B.principal_order_ideal(6)
[0, 2, 4, 6]

principal_upper_set(x)
Return the order filter generated by an element x.

This is also called the upper set generated by this element.

EXAMPLES:

sage: B = posets.BooleanLattice(4)
sage: B.principal_order_filter(2)
[2, 3, 6, 7, 10, 11, 14, 15]

upper_covers(x)
Return the upper covers of 𝑥, that is, the elements 𝑦 such that 𝑥 < 𝑦 and there exists no 𝑧 such that
𝑥 < 𝑧 < 𝑦.

EXAMPLES:

sage: D = Poset((divisors(30), attrcall("divides")))
sage: D.upper_covers(3)
[6, 15]

example(choice=None)
Return examples of objects of Posets(), as per Category.example().

EXAMPLES:

sage: Posets().example()
An example of a poset: sets ordered by inclusion

sage: Posets().example("facade")
An example of a facade poset: the positive integers ordered by divisibility

super_categories()
Return a list of the (immediate) super categories of self, as per Category.super_categories().

EXAMPLES:
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sage: Posets().super_categories()
[Category of sets]

4.129 Principal ideal domains

class sage.categories.principal_ideal_domains.PrincipalIdealDomains(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of (constructive) principal ideal domains

By constructive, we mean that a single generator can be constructively found for any ideal given by a finite set
of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is
not clear what we would mean by an infinitely generated ideal.

EXAMPLES:

sage: PrincipalIdealDomains()
Category of principal ideal domains
sage: PrincipalIdealDomains().super_categories()
[Category of unique factorization domains]

See also Wikipedia article Principal_ideal_domain

class ElementMethods
Bases: object

class ParentMethods
Bases: object

additional_structure()
Return None.

Indeed, the category of principal ideal domains defines no additional structure: a ring morphism between
two principal ideal domains is a principal ideal domain morphism.

EXAMPLES:

sage: PrincipalIdealDomains().additional_structure()

super_categories()
EXAMPLES:

sage: PrincipalIdealDomains().super_categories()
[Category of unique factorization domains]
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4.130 Quotient fields

class sage.categories.quotient_fields.QuotientFields(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of quotient fields over an integral domain

EXAMPLES:

sage: QuotientFields()
Category of quotient fields
sage: QuotientFields().super_categories()
[Category of fields]

class ElementMethods
Bases: object

denominator()
Constructor for abstract methods

EXAMPLES:

sage: def f(x):
....: "doc of f"
....: return 1
sage: x = abstract_method(f); x
<abstract method f at ...>
sage: x.__doc__
'doc of f'
sage: x.__name__
'f'
sage: x.__module__
'__main__'

derivative(*args)
The derivative of this rational function, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative()
function for more details.

See also:

_derivative()

EXAMPLES:

sage: F.<x> = Frac(QQ['x'])
sage: (1/x).derivative()
-1/x^2

sage: (x+1/x).derivative(x, 2)
2/x^3

sage: F.<x,y> = Frac(QQ['x,y'])
sage: (1/(x+y)).derivative(x,y)
2/(x^3 + 3*x^2*y + 3*x*y^2 + y^3)
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factor(*args, **kwds)
Return the factorization of self over the base ring.

INPUT:
• *args - Arbitrary arguments suitable over the base ring
• **kwds - Arbitrary keyword arguments suitable over the base ring

OUTPUT:
• Factorization of self over the base ring

EXAMPLES:

sage: K.<x> = QQ[]
sage: f = (x^3+x)/(x-3)
sage: f.factor()
(x - 3)^-1 * x * (x^2 + 1)

Here is an example to show that trac ticket #7868 has been resolved:

sage: R.<x,y> = GF(2)[]
sage: f = x*y/(x+y)
sage: f.factor()
(x + y)^-1 * y * x

gcd(other)
Greatest common divisor

Note: In a field, the greatest common divisor is not very informative, as it is only determined up to a
unit. But in the fraction field of an integral domain that provides both gcd and lcm, it is possible to be
a bit more specific and define the gcd uniquely up to a unit of the base ring (rather than in the fraction
field).

AUTHOR:
• Simon King (2011-02): See trac ticket #10771

EXAMPLES:

sage: R.<x> = QQ['x']
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
sage: factor(p)
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(q)
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^2 + 1/3)
sage: gcd(p,q)
(x + 1)/(x^7 + x^5 - x^2 - 1)
sage: factor(gcd(p,q))
(x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(gcd(p,1+x))
(x - 1)^-1 * (x + 1) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(gcd(1+x,q))
(x - 1)^-1 * (x + 1) * (x^2 + 1)^-1

lcm(other)
Least common multiple

In a field, the least common multiple is not very informative, as it is only determined up to a unit. But
in the fraction field of an integral domain that provides both gcd and lcm, it is reasonable to be a bit
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more specific and to define the least common multiple so that it restricts to the usual least common
multiple in the base ring and is unique up to a unit of the base ring (rather than up to a unit of the
fraction field).

The least common multiple is easily described in terms of the prime decomposition. A rational number
can be written as a product of primes with integer (positive or negative) powers in a unique way. The
least common multiple of two rational numbers 𝑥 and 𝑦 can then be defined by specifying that the
exponent of every prime 𝑝 in 𝑙𝑐𝑚(𝑥, 𝑦) is the supremum of the exponents of 𝑝 in 𝑥, and the exponent
of 𝑝 in 𝑦 (where the primes that does not appear in the decomposition of 𝑥 or 𝑦 are considered to have
exponent zero).

AUTHOR:
• Simon King (2011-02): See trac ticket #10771

EXAMPLES:

sage: lcm(2/3, 1/5)
2

Indeed 2/3 = 213−150 and 1/5 = 20305−1, so 𝑙𝑐𝑚(2/3, 1/5) = 213050 = 2.
sage: lcm(1/3, 1/5) 1 sage: lcm(1/3, 1/6) 1/3

Some more involved examples:

sage: R.<x> = QQ[]
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
sage: factor(p)
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(q)
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^2 + 1/3)
sage: factor(lcm(p,q))
(x - 1)^-1 * (x + 1)^3 * (x^2 + 1/3) * (x^2 + 1/2)
sage: factor(lcm(p,1+x))
(x + 1)^3 * (x^2 + 1/2)
sage: factor(lcm(1+x,q))
(x + 1) * (x^2 + 1/3)

numerator()
Constructor for abstract methods

EXAMPLES:

sage: def f(x):
....: "doc of f"
....: return 1
sage: x = abstract_method(f); x
<abstract method f at ...>
sage: x.__doc__
'doc of f'
sage: x.__name__
'f'
sage: x.__module__
'__main__'

partial_fraction_decomposition(decompose_powers=True)
Decomposes fraction field element into a whole part and a list of fraction field elements over prime
power denominators.
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The sum will be equal to the original fraction.

INPUT:
• decompose_powers – whether to decompose prime power denominators as opposed to having

a single term for each irreducible factor of the denominator (default: True)
OUTPUT:

• Partial fraction decomposition of self over the base ring.
AUTHORS:

• Robert Bradshaw (2007-05-31)
EXAMPLES:

sage: S.<t> = QQ[]
sage: q = 1/(t+1) + 2/(t+2) + 3/(t-3); q
(6*t^2 + 4*t - 6)/(t^3 - 7*t - 6)
sage: whole, parts = q.partial_fraction_decomposition(); parts
[3/(t - 3), 1/(t + 1), 2/(t + 2)]
sage: sum(parts) == q
True
sage: q = 1/(t^3+1) + 2/(t^2+2) + 3/(t-3)^5
sage: whole, parts = q.partial_fraction_decomposition(); parts
[1/3/(t + 1), 3/(t^5 - 15*t^4 + 90*t^3 - 270*t^2 + 405*t - 243), (-1/3*t +␣
→˓2/3)/(t^2 - t + 1), 2/(t^2 + 2)]
sage: sum(parts) == q
True
sage: q = 2*t / (t + 3)^2
sage: q.partial_fraction_decomposition()
(0, [2/(t + 3), -6/(t^2 + 6*t + 9)])
sage: for p in q.partial_fraction_decomposition()[1]: print(p.factor())
(2) * (t + 3)^-1
(-6) * (t + 3)^-2
sage: q.partial_fraction_decomposition(decompose_powers=False)
(0, [2*t/(t^2 + 6*t + 9)])

We can decompose over a given algebraic extension:

sage: R.<x> = QQ[sqrt(2)][]
sage: r = 1/(x^4+1)
sage: r.partial_fraction_decomposition()
(0,
[(-1/4*sqrt2*x + 1/2)/(x^2 - sqrt2*x + 1),
(1/4*sqrt2*x + 1/2)/(x^2 + sqrt2*x + 1)])

sage: R.<x> = QQ[I][] # of QQ[sqrt(-1)]
sage: r = 1/(x^4+1)
sage: r.partial_fraction_decomposition()
(0, [(-1/2*I)/(x^2 - I), 1/2*I/(x^2 + I)])

We can also ask Sage to find the least extension where the denominator factors in linear terms:

sage: R.<x> = QQ[]
sage: r = 1/(x^4+2)
sage: N = r.denominator().splitting_field('a')
sage: N
Number Field in a with defining polynomial x^8 - 8*x^6 + 28*x^4 + 16*x^2 +␣
→˓36

(continues on next page)
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sage: R1.<x1>=N[]
sage: r1 = 1/(x1^4+2)
sage: r1.partial_fraction_decomposition()
(0,
[(-1/224*a^6 + 13/448*a^4 - 5/56*a^2 - 25/224)/(x1 - 1/28*a^6 + 13/56*a^4 -
→˓ 5/7*a^2 - 25/28),
(1/224*a^6 - 13/448*a^4 + 5/56*a^2 + 25/224)/(x1 + 1/28*a^6 - 13/56*a^4 +␣

→˓5/7*a^2 + 25/28),
(-5/1344*a^7 + 43/1344*a^5 - 85/672*a^3 - 31/672*a)/(x1 - 5/168*a^7 + 43/

→˓168*a^5 - 85/84*a^3 - 31/84*a),
(5/1344*a^7 - 43/1344*a^5 + 85/672*a^3 + 31/672*a)/(x1 + 5/168*a^7 - 43/

→˓168*a^5 + 85/84*a^3 + 31/84*a)])

Or we may work directly over an algebraically closed field:

sage: R.<x> = QQbar[]
sage: r = 1/(x^4+1)
sage: r.partial_fraction_decomposition()
(0,
[(-0.1767766952966369? - 0.1767766952966369?*I)/(x - 0.7071067811865475? -␣
→˓0.7071067811865475?*I),
(-0.1767766952966369? + 0.1767766952966369?*I)/(x - 0.7071067811865475? +␣

→˓0.7071067811865475?*I),
(0.1767766952966369? - 0.1767766952966369?*I)/(x + 0.7071067811865475? -␣

→˓0.7071067811865475?*I),
(0.1767766952966369? + 0.1767766952966369?*I)/(x + 0.7071067811865475? +␣

→˓0.7071067811865475?*I)])

We do the best we can over inexact fields:

sage: R.<x> = RealField(20)[]
sage: q = 1/(x^2 + x + 2)^2 + 1/(x-1); q
(x^4 + 2.0000*x^3 + 5.0000*x^2 + 5.0000*x + 3.0000)/(x^5 + x^4 + 3.0000*x^3␣
→˓- x^2 - 4.0000)
sage: whole, parts = q.partial_fraction_decomposition(); parts
[1.0000/(x - 1.0000), 1.0000/(x^4 + 2.0000*x^3 + 5.0000*x^2 + 4.0000*x + 4.
→˓0000)]
sage: sum(parts)
(x^4 + 2.0000*x^3 + 5.0000*x^2 + 5.0000*x + 3.0000)/(x^5 + x^4 + 3.0000*x^3␣
→˓- x^2 - 4.0000)

xgcd(other)
Return a triple (g,s,t) of elements of that field such that g is the greatest common divisor of self
and other and g = s*self + t*other.

Note: In a field, the greatest common divisor is not very informative, as it is only determined up to
a unit. But in the fraction field of an integral domain that provides both xgcd and lcm, it is possible
to be a bit more specific and define the gcd uniquely up to a unit of the base ring (rather than in the
fraction field).

EXAMPLES:
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sage: QQ(3).xgcd(QQ(2))
(1, 1, -1)
sage: QQ(3).xgcd(QQ(1/2))
(1/2, 0, 1)
sage: QQ(1/3).xgcd(QQ(2))
(1/3, 1, 0)
sage: QQ(3/2).xgcd(QQ(5/2))
(1/2, 2, -1)

sage: R.<x> = QQ['x']
sage: p = (1+x)^3*(1+2*x^2)/(1-x^5)
sage: q = (1+x)^2*(1+3*x^2)/(1-x^4)
sage: factor(p)
(-2) * (x - 1)^-1 * (x + 1)^3 * (x^2 + 1/2) * (x^4 + x^3 + x^2 + x + 1)^-1
sage: factor(q)
(-3) * (x - 1)^-1 * (x + 1) * (x^2 + 1)^-1 * (x^2 + 1/3)
sage: g,s,t = xgcd(p,q)
sage: g
(x + 1)/(x^7 + x^5 - x^2 - 1)
sage: g == s*p + t*q
True

An example without a well defined gcd or xgcd on its base ring:

sage: K = QuadraticField(5)
sage: O = K.maximal_order()
sage: R = PolynomialRing(O, 'x')
sage: F = R.fraction_field()
sage: x = F.gen(0)
sage: x.gcd(x+1)
1
sage: x.xgcd(x+1)
(1, 1/x, 0)
sage: zero = F.zero()
sage: zero.gcd(x)
1
sage: zero.xgcd(x)
(1, 0, 1/x)
sage: zero.xgcd(zero)
(0, 0, 0)

class ParentMethods
Bases: object

super_categories()
EXAMPLES:

sage: QuotientFields().super_categories()
[Category of fields]
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4.131 Quantum Group Representations

AUTHORS:

• Travis Scrimshaw (2018): initial version

class sage.categories.quantum_group_representations.QuantumGroupRepresentations(base,
name=None)

Bases: sage.categories.category_types.Category_module

The category of quantum group representations.

class ParentMethods
Bases: object

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import␣
→˓MinusculeRepresentation
sage: C = crystals.Tableaux(['C',4], shape=[1])
sage: R = ZZ['q'].fraction_field()
sage: V = MinusculeRepresentation(R, C)
sage: V.cartan_type()
['C', 4]

index_set()
Return the index set of self.

EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import␣
→˓MinusculeRepresentation
sage: C = crystals.Tableaux(['C',4], shape=[1])
sage: R = ZZ['q'].fraction_field()
sage: V = MinusculeRepresentation(R, C)
sage: V.index_set()
(1, 2, 3, 4)

q()
Return the quantum parameter 𝑞 of self.

EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import␣
→˓MinusculeRepresentation
sage: C = crystals.Tableaux(['C',4], shape=[1])
sage: R = ZZ['q'].fraction_field()
sage: V = MinusculeRepresentation(R, C)
sage: V.q()
q

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of quantum group representations constructed by tensor product of quantum group represen-
tations.
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Warning: We use the reversed coproduct in order to match the tensor product rule on crystals.

class ParentMethods
Bases: object

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import␣
→˓MinusculeRepresentation
sage: C = crystals.Tableaux(['C',2], shape=[1])
sage: R = ZZ['q'].fraction_field()
sage: V = MinusculeRepresentation(R, C)
sage: T = tensor([V,V])
sage: T.cartan_type()
['C', 2]

extra_super_categories()
EXAMPLES:

sage: from sage.categories.quantum_group_representations import␣
→˓QuantumGroupRepresentations
sage: Cat = QuantumGroupRepresentations(ZZ['q'].fraction_field())
sage: Cat.TensorProducts().extra_super_categories()
[Category of quantum group representations over
Fraction Field of Univariate Polynomial Ring in q over Integer Ring]

class WithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of quantum group representations with a distinguished basis.

class ElementMethods
Bases: object

K(i, power=1)
Return the action of 𝐾𝑖 on self to the power power.

INPUT:
• i – an element of the index set
• power – (default: 1) the power of 𝐾𝑖

EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import␣
→˓AdjointRepresentation
sage: K = crystals.KirillovReshetikhin(['D',4,2], 1,1)
sage: R = ZZ['q'].fraction_field()
sage: V = AdjointRepresentation(R, K)
sage: v = V.an_element(); v
2*B[[]] + 2*B[[[1]]] + 3*B[[[2]]]
sage: v.K(0)
2*B[[]] + 2/q^2*B[[[1]]] + 3*B[[[2]]]
sage: v.K(1)

(continues on next page)
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2*B[[]] + 2*q^2*B[[[1]]] + 3/q^2*B[[[2]]]
sage: v.K(1, 2)
2*B[[]] + 2*q^4*B[[[1]]] + 3/q^4*B[[[2]]]
sage: v.K(1, -1)
2*B[[]] + 2/q^2*B[[[1]]] + 3*q^2*B[[[2]]]

e(i)
Return the action of 𝑒𝑖 on self.

INPUT:
• i – an element of the index set
EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import␣
→˓AdjointRepresentation
sage: C = crystals.Tableaux(['G',2], shape=[1,1])
sage: R = ZZ['q'].fraction_field()
sage: V = AdjointRepresentation(R, C)
sage: v = V.an_element(); v
2*B[[[1], [2]]] + 2*B[[[1], [3]]] + 3*B[[[2], [3]]]
sage: v.e(1)
((3*q^4+3*q^2+3)/q^2)*B[[[1], [3]]]
sage: v.e(2)
2*B[[[1], [2]]]

f(i)
Return the action of 𝑓𝑖 on self.

INPUT:
• i – an element of the index set
EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import␣
→˓AdjointRepresentation
sage: K = crystals.KirillovReshetikhin(['D',4,1], 2,1)
sage: R = ZZ['q'].fraction_field()
sage: V = AdjointRepresentation(R, K)
sage: v = V.an_element(); v
2*B[[]] + 2*B[[[1], [2]]] + 3*B[[[1], [3]]]
sage: v.f(0)
((2*q^2+2)/q)*B[[[1], [2]]]
sage: v.f(1)
3*B[[[2], [3]]]
sage: v.f(2)
2*B[[[1], [3]]]
sage: v.f(3)
3*B[[[1], [4]]]
sage: v.f(4)
3*B[[[1], [-4]]]

class ParentMethods
Bases: object

tensor(*factors)
Return the tensor product of self with the representations factors.
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EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import ␣
→˓ ....: MinusculeRepresentation, AdjointRepresentation
sage: R = ZZ['q'].fraction_field()
sage: CM = crystals.Tableaux(['D',4], shape=[1])
sage: CA = crystals.Tableaux(['D',4], shape=[1,1])
sage: V = MinusculeRepresentation(R, CM)
sage: V.tensor(V, V)
V((1, 0, 0, 0)) # V((1, 0, 0, 0)) # V((1, 0, 0, 0))
sage: A = MinusculeRepresentation(R, CA)
sage: V.tensor(A)
V((1, 0, 0, 0)) # V((1, 1, 0, 0))
sage: B = crystals.Tableaux(['A',2], shape=[1])
sage: W = MinusculeRepresentation(R, B)
sage: tensor([W,V])
Traceback (most recent call last):
...
ValueError: all factors must be of the same Cartan type
sage: tensor([V,A,W])
Traceback (most recent call last):
...
ValueError: all factors must be of the same Cartan type

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of quantum group representations with a distinguished basis constructed by tensor prod-
uct of quantum group representations with a distinguished basis.

class ParentMethods
Bases: object

K_on_basis(i, b, power=1)
Return the action of 𝐾𝑖 on the basis element indexed by b to the power power.

INPUT:
• i – an element of the index set
• b – an element of basis keys
• power – (default: 1) the power of 𝐾𝑖

EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import \
....: MinusculeRepresentation, AdjointRepresentation
sage: R = ZZ['q'].fraction_field()
sage: CM = crystals.Tableaux(['A',2], shape=[1])
sage: VM = MinusculeRepresentation(R, CM)
sage: CA = crystals.Tableaux(['A',2], shape=[2,1])
sage: VA = AdjointRepresentation(R, CA)
sage: v = tensor([sum(VM.basis()), VA.module_generator()]); v
B[[[1]]] # B[[[1, 1], [2]]]
+ B[[[2]]] # B[[[1, 1], [2]]]
+ B[[[3]]] # B[[[1, 1], [2]]]
sage: v.K(1) # indirect doctest
q^2*B[[[1]]] # B[[[1, 1], [2]]]
+ B[[[2]]] # B[[[1, 1], [2]]]

(continues on next page)
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+ q*B[[[3]]] # B[[[1, 1], [2]]]
sage: v.K(2, -1) # indirect doctest
1/q*B[[[1]]] # B[[[1, 1], [2]]]
+ 1/q^2*B[[[2]]] # B[[[1, 1], [2]]]
+ B[[[3]]] # B[[[1, 1], [2]]]

e_on_basis(i, b)
Return the action of 𝑒𝑖 on the basis element indexed by b.

INPUT:
• i – an element of the index set
• b – an element of basis keys
EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import \
....: MinusculeRepresentation, AdjointRepresentation
sage: R = ZZ['q'].fraction_field()
sage: CM = crystals.Tableaux(['D',4], shape=[1])
sage: VM = MinusculeRepresentation(R, CM)
sage: CA = crystals.Tableaux(['D',4], shape=[1,1])
sage: VA = AdjointRepresentation(R, CA)
sage: v = tensor([VM.an_element(), VA.an_element()]); v
4*B[[[1]]] # B[[[1], [2]]] + 4*B[[[1]]] # B[[[1], [3]]]
+ 6*B[[[1]]] # B[[[2], [3]]] + 4*B[[[2]]] # B[[[1], [2]]]
+ 4*B[[[2]]] # B[[[1], [3]]] + 6*B[[[2]]] # B[[[2], [3]]]
+ 6*B[[[3]]] # B[[[1], [2]]] + 6*B[[[3]]] # B[[[1], [3]]]
+ 9*B[[[3]]] # B[[[2], [3]]]
sage: v.e(1) # indirect doctest
4*B[[[1]]] # B[[[1], [2]]]
+ ((4*q+6)/q)*B[[[1]]] # B[[[1], [3]]]
+ 6*B[[[1]]] # B[[[2], [3]]]
+ 6*q*B[[[2]]] # B[[[1], [3]]]
+ 9*B[[[3]]] # B[[[1], [3]]]
sage: v.e(2) # indirect doctest
4*B[[[1]]] # B[[[1], [2]]]
+ ((6*q+4)/q)*B[[[2]]] # B[[[1], [2]]]
+ 6*B[[[2]]] # B[[[1], [3]]]
+ 9*B[[[2]]] # B[[[2], [3]]]
+ 6*q*B[[[3]]] # B[[[1], [2]]]
sage: v.e(3) # indirect doctest
0
sage: v.e(4) # indirect doctest
0

f_on_basis(i, b)
Return the action of 𝑓𝑖 on the basis element indexed by b.

INPUT:
• i – an element of the index set
• b – an element of basis keys
EXAMPLES:

sage: from sage.algebras.quantum_groups.representations import \
(continues on next page)
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....: MinusculeRepresentation, AdjointRepresentation
sage: R = ZZ['q'].fraction_field()
sage: KM = crystals.KirillovReshetikhin(['B',3,1], 3,1)
sage: VM = MinusculeRepresentation(R, KM)
sage: KA = crystals.KirillovReshetikhin(['B',3,1], 2,1)
sage: VA = AdjointRepresentation(R, KA)
sage: v = tensor([VM.an_element(), VA.an_element()]); v
4*B[[+++, []]] # B[[]] + 4*B[[+++, []]] # B[[[1], [2]]]
+ 6*B[[+++, []]] # B[[[1], [3]]] + 4*B[[++-, []]] # B[[]]
+ 4*B[[++-, []]] # B[[[1], [2]]]
+ 6*B[[++-, []]] # B[[[1], [3]]] + 6*B[[+-+, []]] # B[[]]
+ 6*B[[+-+, []]] # B[[[1], [2]]]
+ 9*B[[+-+, []]] # B[[[1], [3]]]
sage: v.f(0) # indirect doctest
((4*q^4+4)/q^2)*B[[+++, []]] # B[[[1], [2]]]
+ ((4*q^4+4)/q^2)*B[[++-, []]] # B[[[1], [2]]]
+ ((6*q^4+6)/q^2)*B[[+-+, []]] # B[[[1], [2]]]
sage: v.f(1) # indirect doctest
6*B[[+++, []]] # B[[[2], [3]]]
+ 6*B[[++-, []]] # B[[[2], [3]]]
+ 9*B[[+-+, []]] # B[[[2], [3]]]
+ 6*B[[-++, []]] # B[[]]
+ 6*B[[-++, []]] # B[[[1], [2]]]
+ 9*q^2*B[[-++, []]] # B[[[1], [3]]]
sage: v.f(2) # indirect doctest
4*B[[+++, []]] # B[[[1], [3]]]
+ 4*B[[++-, []]] # B[[[1], [3]]]
+ 4*B[[+-+, []]] # B[[]]
+ 4*q^2*B[[+-+, []]] # B[[[1], [2]]]
+ ((6*q^2+6)/q^2)*B[[+-+, []]] # B[[[1], [3]]]
sage: v.f(3) # indirect doctest
6*B[[+++, []]] # B[[[1], [0]]]
+ 4*B[[++-, []]] # B[[]]
+ 4*B[[++-, []]] # B[[[1], [2]]]
+ 6*q^2*B[[++-, []]] # B[[[1], [3]]]
+ 6*B[[++-, []]] # B[[[1], [0]]]
+ 9*B[[+-+, []]] # B[[[1], [0]]]
+ 6*B[[+--, []]] # B[[]]
+ 6*B[[+--, []]] # B[[[1], [2]]]
+ 9*q^2*B[[+--, []]] # B[[[1], [3]]]

extra_super_categories()
EXAMPLES:

sage: from sage.categories.quantum_group_representations import␣
→˓QuantumGroupRepresentations
sage: Cat = QuantumGroupRepresentations(ZZ['q'].fraction_field())
sage: Cat.WithBasis().TensorProducts().extra_super_categories()
[Category of quantum group representations with basis over
Fraction Field of Univariate Polynomial Ring in q over Integer Ring]

example()
Return an example of a quantum group representation as per Category.example.
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EXAMPLES:

sage: from sage.categories.quantum_group_representations import␣
→˓QuantumGroupRepresentations
sage: Cat = QuantumGroupRepresentations(ZZ['q'].fraction_field())
sage: Cat.example()
V((2, 1, 0))

super_categories()
Return the super categories of self.

EXAMPLES:

sage: from sage.categories.quantum_group_representations import␣
→˓QuantumGroupRepresentations
sage: QuantumGroupRepresentations(ZZ['q'].fraction_field()).super_categories()
[Category of vector spaces over
Fraction Field of Univariate Polynomial Ring in q over Integer Ring]

4.132 Regular Crystals

class sage.categories.regular_crystals.RegularCrystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of regular crystals.

A crystal is called regular if every vertex 𝑏 satisfies

𝜀𝑖(𝑏) = max{𝑘 | 𝑒𝑘𝑖 (𝑏) ̸= 0} and 𝜙𝑖(𝑏) = max{𝑘 | 𝑓𝑘
𝑖 (𝑏) ̸= 0}.

Note: Regular crystals are sometimes referred to as normal. When only one of the conditions (on either 𝜙𝑖 or
𝜀𝑖) holds, these crystals are sometimes called seminormal or semiregular.

EXAMPLES:

sage: C = RegularCrystals()
sage: C
Category of regular crystals
sage: C.super_categories()
[Category of crystals]
sage: C.example()
Highest weight crystal of type A_3 of highest weight omega_1

class ElementMethods
Bases: object

demazure_operator_simple(i, ring=None)
Return the Demazure operator 𝐷𝑖 applied to self.

INPUT:
• i – an element of the index set of the underlying crystal
• ring – (default: QQ) a ring
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OUTPUT:

An element of the ring-free module indexed by the underlying crystal.

Let 𝑟 = ⟨wt(𝑏), 𝛼∨
𝑖 ⟩, then 𝐷𝑖(𝑏) is defined as follows:

• If 𝑟 ≥ 0, this returns the sum of the elements obtained from self by application of 𝑓𝑘
𝑖 for 0 ≤

𝑘 ≤ 𝑟.
• If 𝑟 < 0, this returns the opposite of the sum of the elements obtained by application of 𝑒𝑘𝑖 for

0 < 𝑘 < −𝑟.
REFERENCES:

• [Li1995]
• [Ka1993]

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T(rows=[[1,2],[2]])
sage: t.demazure_operator_simple(2)
B[[[1, 2], [2]]] + B[[[1, 3], [2]]] + B[[[1, 3], [3]]]
sage: t.demazure_operator_simple(2).parent()
Algebra of The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]]

over Integer Ring

sage: t.demazure_operator_simple(1)
0

sage: K = crystals.KirillovReshetikhin(['A',2,1],2,1)
sage: t = K(rows=[[3],[2]])
sage: t.demazure_operator_simple(0)
B[[[1, 2]]] + B[[[2, 3]]]

dual_equivalence_class(index_set=None)
Return the dual equivalence class indexed by index_set of self.

The dual equivalence class of an element 𝑏 ∈ 𝐵 is the set of all elements of 𝐵 reachable from 𝑏 via
sequences of 𝑖-elementary dual equivalence relations (i.e., 𝑖-elementary dual equivalence transforma-
tions and their inverses) for 𝑖 in the index set of 𝐵.

For this to be well-defined, the element 𝑏 has to be of weight 0 with respect to 𝐼; that is, we need to
have 𝜀𝑗(𝑏) = 𝜙𝑗(𝑏) for all 𝑗 ∈ 𝐼 .

See [As2008]. See also dual_equivalence_graph() for a definition of 𝑖-elementary dual equiva-
lence transformations.

INPUT:
• index_set – (optional) the index set 𝐼 (default: the whole index set of the crystal); this has to be

a subset of the index set of the crystal (as a list or tuple)
OUTPUT:

The dual equivalence class of self indexed by the subset index_set. This class is returned as an
undirected edge-colored multigraph. The color of an edge is the index 𝑖 of the dual equivalence relation
it encodes.

See also:

• dual_equivalence_graph()
• sage.combinat.partition.Partition.dual_equivalence_graph()

EXAMPLES:
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sage: T = crystals.Tableaux(['A',3], shape=[2,2])
sage: G = T(2,1,4,3).dual_equivalence_class()
sage: G.edges(sort=True)
[([[1, 3], [2, 4]], [[1, 2], [3, 4]], 2),
([[1, 3], [2, 4]], [[1, 2], [3, 4]], 3)]
sage: T = crystals.Tableaux(['A',4], shape=[3,2])
sage: G = T(2,1,4,3,5).dual_equivalence_class()
sage: G.edges(sort=True)
[([[1, 3, 5], [2, 4]], [[1, 3, 4], [2, 5]], 4),
([[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 2),
([[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 3),
([[1, 3, 4], [2, 5]], [[1, 2, 4], [3, 5]], 2),
([[1, 2, 4], [3, 5]], [[1, 2, 3], [4, 5]], 3),
([[1, 2, 4], [3, 5]], [[1, 2, 3], [4, 5]], 4)]

epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).epsilon(1)
0
sage: C(2).epsilon(1)
1

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).phi(1)
1
sage: C(2).phi(1)
0

stembridgeDel_depth(i, j)
Return the difference in the 𝑗-depth of self and 𝑓𝑖 of self, where 𝑖 and 𝑗 are in the index set of the
underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.

The 𝑖-depth of a crystal node 𝑥 is 𝜀𝑖(𝑥).

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T(rows=[[1,1],[2]])
sage: t.stembridgeDel_depth(1,2)
0
sage: s = T(rows=[[1,3],[3]])
sage: s.stembridgeDel_depth(1,2)
-1

stembridgeDel_rise(i, j)
Return the difference in the 𝑗-rise of self and 𝑓𝑖 of self, where 𝑖 and 𝑗 are in the index set of the
underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.
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The 𝑖-rise of a crystal node 𝑥 is 𝜙𝑖(𝑥).

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T(rows=[[1,1],[2]])
sage: t.stembridgeDel_rise(1,2)
-1
sage: s = T(rows=[[1,3],[3]])
sage: s.stembridgeDel_rise(1,2)
0

stembridgeDelta_depth(i, j)
Return the difference in the 𝑗-depth of self and 𝑒𝑖 of self, where 𝑖 and 𝑗 are in the index set of the
underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.

The 𝑖-depth of a crystal node 𝑥 is −𝜀𝑖(𝑥).

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T(rows=[[1,2],[2]])
sage: t.stembridgeDelta_depth(1,2)
0
sage: s = T(rows=[[2,3],[3]])
sage: s.stembridgeDelta_depth(1,2)
-1

stembridgeDelta_rise(i, j)
Return the difference in the 𝑗-rise of self and 𝑒𝑖 of self, where 𝑖 and 𝑗 are in the index set of the
underlying crystal. This function is useful for checking the Stembridge local axioms for crystal bases.

The 𝑖-rise of a crystal node 𝑥 is 𝜙𝑖(𝑥).

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T(rows=[[1,2],[2]])
sage: t.stembridgeDelta_rise(1,2)
-1
sage: s = T(rows=[[2,3],[3]])
sage: s.stembridgeDelta_rise(1,2)
0

stembridgeTriple(i, j)
Let 𝐴 be the Cartan matrix of the crystal, 𝑥 a crystal element, and let 𝑖 and 𝑗 be in the index set of the
crystal. Further, set b=stembridgeDelta_depth(x,i,j), and c=stembridgeDelta_rise(x,i,
j)). If x.e(i) is non-empty, this function returns the triple (𝐴𝑖𝑗 , 𝑏, 𝑐); otherwise it returns None. By
the Stembridge local characterization of crystal bases, one should have 𝐴𝑖𝑗 = 𝑏 + 𝑐.

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T(rows=[[1,1],[2]])
sage: t.stembridgeTriple(1,2)
sage: s = T(rows=[[1,2],[2]])
sage: s.stembridgeTriple(1,2)

(continues on next page)
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(-1, 0, -1)

sage: T = crystals.Tableaux(['B',2], shape=[2,1])
sage: t = T(rows=[[1,2],[2]])
sage: t.stembridgeTriple(1,2)
(-2, 0, -2)
sage: s = T(rows=[[-1,-1],[0]])
sage: s.stembridgeTriple(1,2)
(-2, -2, 0)
sage: u = T(rows=[[0,2],[1]])
sage: u.stembridgeTriple(1,2)
(-2, -1, -1)

weight()
Return the weight of this crystal element.

EXAMPLES:

sage: C = crystals.Letters(['A',5])
sage: C(1).weight()
(1, 0, 0, 0, 0, 0)

class MorphismMethods
Bases: object

is_isomorphism()
Check if self is a crystal isomorphism, which is true if and only if this is a strict embedding with the
same number of connected components.

EXAMPLES:

sage: La = RootSystem(['A',2,1]).weight_space(extended=True).fundamental_
→˓weights()
sage: B = crystals.LSPaths(La[0])
sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_
→˓weights()
sage: C = crystals.GeneralizedYoungWalls(2, La[0])
sage: H = Hom(B, C)
sage: from sage.categories.highest_weight_crystals import␣
→˓HighestWeightCrystalMorphism
sage: class Psi(HighestWeightCrystalMorphism):
....: def is_strict(self):
....: return True
sage: psi = Psi(H, C.module_generators)
sage: psi
['A', 2, 1] Crystal morphism:
From: The crystal of LS paths of type ['A', 2, 1] and weight Lambda[0]
To: Highest weight crystal of generalized Young walls of Cartan type ['A

→˓', 2, 1]
and highest weight Lambda[0]

Defn: (Lambda[0],) |--> []
sage: psi.is_isomorphism()
True

4.132. Regular Crystals 669



Category Framework, Release 9.7

class ParentMethods
Bases: object

demazure_operator(element, reduced_word)
Returns the application of Demazure operators 𝐷𝑖 for 𝑖 from reduced_word on element.

INPUT:
• element – an element of a free module indexed by the underlying crystal
• reduced_word – a reduced word of the Weyl group of the same type as the underlying crystal

OUTPUT:
• an element of the free module indexed by the underlying crystal

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: C = CombinatorialFreeModule(QQ,T)
sage: t = T.highest_weight_vector()
sage: b = 2*C(t)
sage: T.demazure_operator(b,[1,2,1])
2*B[[[1, 1], [2]]] + 2*B[[[1, 2], [2]]] + 2*B[[[1, 3], [2]]] + 2*B[[[1, 1],␣
→˓[3]]]
+ 2*B[[[1, 2], [3]]] + 2*B[[[1, 3], [3]]] + 2*B[[[2, 2], [3]]] + 2*B[[[2,␣
→˓3], [3]]]

The Demazure operator is idempotent:

sage: T = crystals.Tableaux("A1",shape=[4])
sage: C = CombinatorialFreeModule(QQ,T)
sage: b = C(T.module_generators[0]); b
B[[[1, 1, 1, 1]]]
sage: e = T.demazure_operator(b,[1]); e
B[[[1, 1, 1, 1]]] + B[[[1, 1, 1, 2]]] + B[[[1, 1, 2, 2]]] + B[[[1, 2, 2,␣
→˓2]]] + B[[[2, 2, 2, 2]]]
sage: e == T.demazure_operator(e,[1])
True

sage: all(T.demazure_operator(T.demazure_operator(C(t),[1]),[1]) == T.
→˓demazure_operator(C(t),[1]) for t in T)
True

demazure_subcrystal(element, reduced_word, only_support=True)
Return the subcrystal corresponding to the application of Demazure operators 𝐷𝑖 for 𝑖 from
reduced_word on element.

INPUT:
• element – an element of a free module indexed by the underlying crystal
• reduced_word – a reduced word of the Weyl group of the same type as the underlying crystal
• only_support – (default: True) only include arrows corresponding to the support of
reduced_word

OUTPUT:
• the Demazure subcrystal

EXAMPLES:

sage: T = crystals.Tableaux(['A',2], shape=[2,1])
sage: t = T.highest_weight_vector()
sage: S = T.demazure_subcrystal(t, [1,2])

(continues on next page)
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sage: list(S)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
[[1, 2], [3]], [[2, 2], [3]]]
sage: S = T.demazure_subcrystal(t, [2,1])
sage: list(S)
[[[1, 1], [2]], [[1, 2], [2]], [[1, 1], [3]],
[[1, 3], [2]], [[1, 3], [3]]]

We construct an example where we don’t only want the arrows indicated by the support of the reduced
word:

sage: K = crystals.KirillovReshetikhin(['A',1,1], 1, 2)
sage: mg = K.module_generator()
sage: S = K.demazure_subcrystal(mg, [1])
sage: S.digraph().edges(sort=True)
[([[1, 1]], [[1, 2]], 1), ([[1, 2]], [[2, 2]], 1)]
sage: S = K.demazure_subcrystal(mg, [1], only_support=False)
sage: S.digraph().edges(sort=True)
[([[1, 1]], [[1, 2]], 1),
([[1, 2]], [[1, 1]], 0),
([[1, 2]], [[2, 2]], 1),
([[2, 2]], [[1, 2]], 0)]

dual_equivalence_graph(X=None, index_set=None, directed=True)
Return the dual equivalence graph indexed by index_set on the subset X of self.

Let 𝑏 ∈ 𝐵 be an element of weight 0, so 𝜀𝑗(𝑏) = 𝜙𝑗(𝑏) for all 𝑗 ∈ 𝐼 , where 𝐼 is the indexing set. We
say 𝑏′ is an 𝑖-elementary dual equivalence transformation of 𝑏 (where 𝑖 ∈ 𝐼) if

• 𝜀𝑖(𝑏) = 1 and 𝜀𝑖−1(𝑏) = 0, and
• 𝑏′ = 𝑓𝑖−1𝑓𝑖𝑒𝑖−1𝑒𝑖𝑏.

We can do the inverse procedure by interchanging 𝑖 and 𝑖− 1 above.

Note: If the index set is not an ordered interval, we let 𝑖− 1 mean the index appearing before 𝑖 in 𝐼 .

This definition comes from [As2008] Section 4 (where our 𝜙𝑗(𝑏) and 𝜀𝑗(𝑏) are denoted by 𝜖(𝑏, 𝑗) and
−𝛿(𝑏, 𝑗), respectively).

The dual equivalence graph of 𝐵 is defined to be the colored graph whose vertices are the elements of
𝐵 of weight 0, and whose edges of color 𝑖 (for 𝑖 ∈ 𝐼) connect pairs {𝑏, 𝑏′} such that 𝑏′ is an 𝑖-elementary
dual equivalence transformation of 𝑏.

Note: This dual equivalence graph is a generalization of 𝒢 (𝒳 ) in [As2008] Section 4 except we do
not require 𝜀𝑖(𝑏) = 0, 1 for all 𝑖.

This definition can be generalized by choosing a subset 𝑋 of the set of all vertices of 𝐵 of weight 0,
and restricting the dual equivalence graph to the vertex set 𝑋 .

INPUT:
• X – (optional) the vertex set 𝑋 (default: the whole set of vertices of self of weight 0)
• index_set – (optional) the index set 𝐼 (default: the whole index set of self); this has to be a

subset of the index set of self (as a list or tuple)
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• directed – (default: True) whether to have the dual equivalence graph be directed, where the
head of an edge 𝑏− 𝑏′ is 𝑏 and the tail is 𝑏′ = 𝑓𝑖−1𝑓𝑖𝑒𝑖−1𝑒𝑖𝑏)

See also:

sage.combinat.partition.Partition.dual_equivalence_graph()

EXAMPLES:

sage: T = crystals.Tableaux(['A',3], shape=[2,2])
sage: G = T.dual_equivalence_graph()
sage: G.edges(sort=True)
[([[1, 3], [2, 4]], [[1, 2], [3, 4]], 2),
([[1, 2], [3, 4]], [[1, 3], [2, 4]], 3)]
sage: T = crystals.Tableaux(['A',4], shape=[3,2])
sage: G = T.dual_equivalence_graph()
sage: G.edges(sort=True)
[([[1, 3, 5], [2, 4]], [[1, 3, 4], [2, 5]], 4),
([[1, 3, 5], [2, 4]], [[1, 2, 5], [3, 4]], 2),
([[1, 3, 4], [2, 5]], [[1, 2, 4], [3, 5]], 2),
([[1, 2, 5], [3, 4]], [[1, 3, 5], [2, 4]], 3),
([[1, 2, 4], [3, 5]], [[1, 2, 3], [4, 5]], 3),
([[1, 2, 3], [4, 5]], [[1, 2, 4], [3, 5]], 4)]

sage: T = crystals.Tableaux(['A',4], shape=[3,1])
sage: G = T.dual_equivalence_graph(index_set=[1,2,3])
sage: G.vertices(sort=True)
[[[1, 3, 4], [2]], [[1, 2, 4], [3]], [[1, 2, 3], [4]]]
sage: G.edges(sort=True)
[([[1, 3, 4], [2]], [[1, 2, 4], [3]], 2),
([[1, 2, 4], [3]], [[1, 2, 3], [4]], 3)]

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of regular crystals constructed by tensor product of regular crystals.

extra_super_categories()
EXAMPLES:

sage: RegularCrystals().TensorProducts().extra_super_categories()
[Category of regular crystals]

additional_structure()
Return None.

Indeed, the category of regular crystals defines no new structure: it only relates 𝜀𝑎 and 𝜙𝑎 to 𝑒𝑎 and 𝑓𝑎
respectively.

See also:

Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:
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sage: RegularCrystals().additional_structure()

example(n=3)
Returns an example of highest weight crystals, as per Category.example().

EXAMPLES:

sage: B = RegularCrystals().example(); B
Highest weight crystal of type A_3 of highest weight omega_1

super_categories()
EXAMPLES:

sage: RegularCrystals().super_categories()
[Category of crystals]

4.133 Regular Supercrystals

class sage.categories.regular_supercrystals.RegularSuperCrystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of crystals for super Lie algebras.

EXAMPLES:

sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
sage: C = RegularSuperCrystals()
sage: C
Category of regular super crystals
sage: C.super_categories()
[Category of finite super crystals]

Parents in this category should implement the following methods:

• either an attribute _cartan_type or a method cartan_type

• module_generators: a list (or container) of distinct elements that generate the crystal using 𝑓𝑖 and 𝑒𝑖

Furthermore, their elements x should implement the following methods:

• x.e(i) (returning 𝑒𝑖(𝑥))

• x.f(i) (returning 𝑓𝑖(𝑥))

• x.weight() (returning wt(𝑥))

EXAMPLES:

sage: from sage.misc.abstract_method import abstract_methods_of_class
sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
sage: abstract_methods_of_class(RegularSuperCrystals().element_class)
{'optional': [], 'required': ['e', 'f', 'weight']}

class ElementMethods
Bases: object
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epsilon(i)
Return 𝜀𝑖 of self.

EXAMPLES:

sage: C = crystals.Tableaux(['A',[1,2]], shape = [2,1])
sage: c = C.an_element(); c
[[-2, -2], [-1]]
sage: c.epsilon(2)
0
sage: c.epsilon(0)
0
sage: c.epsilon(-1)
0

phi(i)
Return 𝜙𝑖 of self.

EXAMPLES:

sage: C = crystals.Tableaux(['A',[1,2]], shape = [2,1])
sage: c = C.an_element(); c
[[-2, -2], [-1]]
sage: c.phi(1)
0
sage: c.phi(2)
0
sage: c.phi(0)
1

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of regular crystals constructed by tensor product of regular crystals.

extra_super_categories()
EXAMPLES:

sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
sage: RegularSuperCrystals().TensorProducts().extra_super_categories()
[Category of regular super crystals]

super_categories()
EXAMPLES:

sage: from sage.categories.regular_supercrystals import RegularSuperCrystals
sage: C = RegularSuperCrystals()
sage: C.super_categories()
[Category of finite super crystals]
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4.134 Right modules

class sage.categories.right_modules.RightModules(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of right modules right modules over an rng (ring not necessarily with unit), i.e. an abelian group
with right multiplication by elements of the rng

EXAMPLES:

sage: RightModules(QQ)
Category of right modules over Rational Field
sage: RightModules(QQ).super_categories()
[Category of commutative additive groups]

class ElementMethods
Bases: object

class ParentMethods
Bases: object

super_categories()
EXAMPLES:

sage: RightModules(QQ).super_categories()
[Category of commutative additive groups]

4.135 Ring ideals

class sage.categories.ring_ideals.RingIdeals(R)
Bases: sage.categories.category_types.Category_ideal

The category of two-sided ideals in a fixed ring.

EXAMPLES:

sage: Ideals(Integers(200))
Category of ring ideals in Ring of integers modulo 200
sage: C = Ideals(IntegerRing()); C
Category of ring ideals in Integer Ring
sage: I = C([8,12,18])
sage: I
Principal ideal (2) of Integer Ring

See also: CommutativeRingIdeals.

Todo:

• If useful, implement RingLeftIdeals and RingRightIdeals of which RingIdeals would be a subcat-
egory.

• Make RingIdeals(R), return CommutativeRingIdeals(R) when R is commutative.

super_categories()
EXAMPLES:
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sage: RingIdeals(ZZ).super_categories()
[Category of modules over Integer Ring]
sage: RingIdeals(QQ).super_categories()
[Category of vector spaces over Rational Field]

4.136 Rings

class sage.categories.rings.Rings(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of rings

Associative rings with unit, not necessarily commutative

EXAMPLES:

sage: Rings()
Category of rings
sage: sorted(Rings().super_categories(), key=str)
[Category of rngs, Category of semirings]

sage: sorted(Rings().axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Associative', 'Distributive', 'Unital']

sage: Rings() is (CommutativeAdditiveGroups() & Monoids()).Distributive()
True
sage: Rings() is Rngs().Unital()
True
sage: Rings() is Semirings().AdditiveInverse()
True

Todo: (see: http://trac.sagemath.org/sage_trac/wiki/CategoriesRoadMap)

• Make Rings() into a subcategory or alias of Algebras(ZZ);

• A parent P in the category Rings() should automatically be in the category Algebras(P).

Commutative
alias of sage.categories.commutative_rings.CommutativeRings

Division
alias of sage.categories.division_rings.DivisionRings

class ElementMethods
Bases: object

inverse_of_unit()
Return the inverse of this element if it is a unit.

OUTPUT:

An element in the same ring as this element.

EXAMPLES:
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sage: R.<x> = ZZ[]
sage: S = R.quo(x^2 + x + 1)
sage: S(1).inverse_of_unit()
1

This method fails when the element is not a unit:

sage: 2.inverse_of_unit()
Traceback (most recent call last):
...
ArithmeticError: inverse does not exist

The inverse returned is in the same ring as this element:

sage: a = -1
sage: a.parent()
Integer Ring
sage: a.inverse_of_unit().parent()
Integer Ring

Note that this is often not the case when computing inverses in other ways:

sage: (~a).parent()
Rational Field
sage: (1/a).parent()
Rational Field

is_unit()
Return whether this element is a unit in the ring.

Note: This is a generic implementation for (non-commutative) rings which only works for the one
element, its additive inverse, and the zero element. Most rings should provide a more specialized
implementation.

EXAMPLES:

sage: MS = MatrixSpace(ZZ, 2)
sage: MS.one().is_unit()
True
sage: MS.zero().is_unit()
False
sage: MS([1,2,3,4]).is_unit()
False

class MorphismMethods
Bases: object

extend_to_fraction_field()
Return the extension of this morphism to fraction fields of the domain and the codomain.

EXAMPLES:

sage: S.<x> = QQ[]
sage: f = S.hom([x+1]); f

(continues on next page)
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(continued from previous page)

Ring endomorphism of Univariate Polynomial Ring in x over Rational Field
Defn: x |--> x + 1

sage: g = f.extend_to_fraction_field(); g
Ring endomorphism of Fraction Field of Univariate Polynomial Ring in x over␣
→˓Rational Field

Defn: x |--> x + 1
sage: g(x)
x + 1
sage: g(1/x)
1/(x + 1)

If this morphism is not injective, it does not extend to the fraction field and an error is raised:

sage: f = GF(5).coerce_map_from(ZZ)
sage: f.extend_to_fraction_field()
Traceback (most recent call last):
...
ValueError: the morphism is not injective

is_injective()
Return whether or not this morphism is injective.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: R.hom([x, y^2], R).is_injective()
True
sage: R.hom([x, x^2], R).is_injective()
False
sage: S.<u,v> = R.quotient(x^3*y)
sage: R.hom([v, u], S).is_injective()
False
sage: S.hom([-u, v], S).is_injective()
True
sage: S.cover().is_injective()
False

If the domain is a field, the homomorphism is injective:

sage: K.<x> = FunctionField(QQ)
sage: L.<y> = FunctionField(QQ)
sage: f = K.hom([y]); f
Function Field morphism:
From: Rational function field in x over Rational Field
To: Rational function field in y over Rational Field
Defn: x |--> y

sage: f.is_injective()
True

Unless the codomain is the zero ring:
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sage: codomain = Integers(1)
sage: f = QQ.hom([Zmod(1)(0)], check=False)
sage: f.is_injective()
False

Homomorphism from rings of characteristic zero to rings of positive characteristic can not be injective:

sage: R.<x> = ZZ[]
sage: f = R.hom([GF(3)(1)]); f
Ring morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Finite Field of size 3
Defn: x |--> 1

sage: f.is_injective()
False

A morphism whose domain is an order in a number field is injective if the codomain has characteristic
zero:

sage: K.<x> = FunctionField(QQ)
sage: f = ZZ.hom(K); f
Composite map:
From: Integer Ring
To: Rational function field in x over Rational Field
Defn: Conversion via FractionFieldElement_1poly_field map:

From: Integer Ring
To: Fraction Field of Univariate Polynomial Ring in x over␣

→˓Rational Field
then
Isomorphism:
From: Fraction Field of Univariate Polynomial Ring in x over␣

→˓Rational Field
To: Rational function field in x over Rational Field

sage: f.is_injective()
True

A coercion to the fraction field is injective:

sage: R = ZpFM(3)
sage: R.fraction_field().coerce_map_from(R).is_injective()
True

NoZeroDivisors
alias of sage.categories.domains.Domains

class ParentMethods
Bases: object

bracket(x, y)
Returns the Lie bracket [𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥 of 𝑥 and 𝑦.

INPUT:
• x, y – elements of self

EXAMPLES:
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sage: F = AlgebrasWithBasis(QQ).example()
sage: F
An example of an algebra with basis: the free algebra on the generators ('a
→˓', 'b', 'c') over Rational Field
sage: a,b,c = F.algebra_generators()
sage: F.bracket(a,b)
B[word: ab] - B[word: ba]

This measures the default of commutation between 𝑥 and 𝑦. 𝐹 endowed with the bracket operation is
a Lie algebra; in particular, it satisfies Jacobi’s identity:

sage: F.bracket( F.bracket(a,b), c) + F.bracket(F.bracket(b,c),a) + F.
→˓bracket(F.bracket(c,a),b)
0

characteristic()
Return the characteristic of this ring.

EXAMPLES:

sage: QQ.characteristic()
0
sage: GF(19).characteristic()
19
sage: Integers(8).characteristic()
8
sage: Zp(5).characteristic()
0

free_module(base=None, basis=None, map=True)
Return a free module 𝑉 over the specified subring together with maps to and from 𝑉 .

The default implementation only supports the case that the base ring is the ring itself.

INPUT:
• base – a subring 𝑅 so that this ring is isomorphic to a finite-rank free 𝑅-module 𝑉
• basis – (optional) a basis for this ring over the base
• map – boolean (default True), whether to return 𝑅-linear maps to and from 𝑉

OUTPUT:
• A finite-rank free 𝑅-module 𝑉
• An 𝑅-module isomorphism from 𝑉 to this ring (only included if map is True)
• An 𝑅-module isomorphism from this ring to 𝑉 (only included if map is True)

EXAMPLES:

sage: R.<x> = QQ[[]]
sage: V, from_V, to_V = R.free_module(R)
sage: v = to_V(1+x); v
(1 + x)
sage: from_V(v)
1 + x
sage: W, from_W, to_W = R.free_module(R, basis=(1-x))
sage: W is V
True
sage: w = to_W(1+x); w
(1 - x^2)

(continues on next page)
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sage: from_W(w)
1 + x + O(x^20)

ideal(*args, **kwds)
Create an ideal of this ring.

NOTE:

The code is copied from the base class Ring. This is because there are rings that do not inherit from
that class, such as matrix algebras. See trac ticket #7797.

INPUT:
• An element or a list/tuple/sequence of elements.
• coerce (optional bool, default True): First coerce the elements into this ring.
• side, optional string, one of "twosided" (default), "left", "right": determines whether the

resulting ideal is twosided, a left ideal or a right ideal.
EXAMPLES:

sage: MS = MatrixSpace(QQ,2,2)
sage: isinstance(MS,Ring)
False
sage: MS in Rings()
True
sage: MS.ideal(2)
Twosided Ideal
(
[2 0]
[0 2]

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: MS.ideal([MS.0,MS.1],side='right')
Right Ideal
(
[1 0]
[0 0],

[0 1]
[0 0]

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field

ideal_monoid()
The monoid of the ideals of this ring.

NOTE:

The code is copied from the base class of rings. This is since there are rings that do not inherit from
that class, such as matrix algebras. See trac ticket #7797.

EXAMPLES:

sage: MS = MatrixSpace(QQ,2,2)
sage: isinstance(MS,Ring)
False
sage: MS in Rings()

(continues on next page)
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(continued from previous page)

True
sage: MS.ideal_monoid()
Monoid of ideals of Full MatrixSpace of 2 by 2 dense matrices
over Rational Field

Note that the monoid is cached:

sage: MS.ideal_monoid() is MS.ideal_monoid()
True

is_ring()
Return True, since this in an object of the category of rings.

EXAMPLES:

sage: Parent(QQ,category=Rings()).is_ring()
True

is_zero()
Return True if this is the zero ring.

EXAMPLES:

sage: Integers(1).is_zero()
True
sage: Integers(2).is_zero()
False
sage: QQ.is_zero()
False
sage: R.<x> = ZZ[]
sage: R.quo(1).is_zero()
True
sage: R.<x> = GF(101)[]
sage: R.quo(77).is_zero()
True
sage: R.quo(x^2+1).is_zero()
False

quo(I, names=None, **kwds)
Quotient of a ring by a two-sided ideal.

NOTE:

This is a synonym for quotient().

EXAMPLES:

sage: MS = MatrixSpace(QQ,2)
sage: I = MS*MS.gens()*MS

MS is not an instance of Ring.

However it is an instance of the parent class of the category of rings. The quotient method is inherited
from there:
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sage: isinstance(MS,sage.rings.ring.Ring)
False
sage: isinstance(MS,Rings().parent_class)
True
sage: MS.quo(I,names = ['a','b','c','d'])
Quotient of Full MatrixSpace of 2 by 2 dense matrices over Rational Field␣
→˓by the ideal
(
[1 0]
[0 0],

[0 1]
[0 0],

[0 0]
[1 0],

[0 0]
[0 1]

)

quotient(I, names=None, **kwds)
Quotient of a ring by a two-sided ideal.

INPUT:
• I: A twosided ideal of this ring.
• names: a list of strings to be used as names for the variables in the quotient ring.
• further named arguments that may be passed to the quotient ring constructor.

EXAMPLES:

Usually, a ring inherits a method sage.rings.ring.Ring.quotient(). So, we need a bit of effort
to make the following example work with the category framework:

sage: F.<x,y,z> = FreeAlgebra(QQ)
sage: from sage.rings.noncommutative_ideals import Ideal_nc
sage: from itertools import product
sage: class PowerIdeal(Ideal_nc):
....: def __init__(self, R, n):
....: self._power = n
....: Ideal_nc.__init__(self, R, [R.prod(m) for m in product(R.gens(),␣
→˓repeat=n)])
....: def reduce(self, x):
....: R = self.ring()
....: return add([c*R(m) for m,c in x if len(m) < self._power], R(0))
sage: I = PowerIdeal(F,3)
sage: Q = Rings().parent_class.quotient(F, I); Q
Quotient of Free Algebra on 3 generators (x, y, z) over Rational Field by␣
→˓the ideal (x^3, x^2*y, x^2*z, x*y*x, x*y^2, x*y*z, x*z*x, x*z*y, x*z^2,␣
→˓y*x^2, y*x*y, y*x*z, y^2*x, y^3, y^2*z, y*z*x, y*z*y, y*z^2, z*x^2, z*x*y,
→˓ z*x*z, z*y*x, z*y^2, z*y*z, z^2*x, z^2*y, z^3)
sage: Q.0
xbar
sage: Q.1
ybar

(continues on next page)
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sage: Q.2
zbar
sage: Q.0*Q.1
xbar*ybar
sage: Q.0*Q.1*Q.0
0

quotient_ring(I, names=None, **kwds)
Quotient of a ring by a two-sided ideal.

NOTE:

This is a synonyme for quotient().

EXAMPLES:

sage: MS = MatrixSpace(QQ,2)
sage: I = MS*MS.gens()*MS

MS is not an instance of Ring, but it is an instance of the parent class of the category of rings. The
quotient method is inherited from there:

sage: isinstance(MS,sage.rings.ring.Ring)
False
sage: isinstance(MS,Rings().parent_class)
True
sage: MS.quotient_ring(I,names = ['a','b','c','d'])
Quotient of Full MatrixSpace of 2 by 2 dense matrices over Rational Field␣
→˓by the ideal
(
[1 0]
[0 0],

[0 1]
[0 0],

[0 0]
[1 0],

[0 0]
[0 1]

)

class SubcategoryMethods
Bases: object

Division()
Return the full subcategory of the division objects of self.

A ring satisfies the division axiom if all non-zero elements have multiplicative inverses.

Note: This could be generalized to MagmasAndAdditiveMagmas.Distributive.
AdditiveUnital.

EXAMPLES:
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sage: Rings().Division()
Category of division rings
sage: Rings().Commutative().Division()
Category of fields

NoZeroDivisors()
Return the full subcategory of the objects of self having no nonzero zero divisors.

A zero divisor in a ring 𝑅 is an element 𝑥 ∈ 𝑅 such that there exists a nonzero element 𝑦 ∈ 𝑅 such
that 𝑥 · 𝑦 = 0 or 𝑦 · 𝑥 = 0 (see Wikipedia article Zero_divisor).

EXAMPLES:

sage: Rings().NoZeroDivisors()
Category of domains

Note: This could be generalized to MagmasAndAdditiveMagmas.Distributive.
AdditiveUnital.

4.137 Rngs

class sage.categories.rngs.Rngs(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of rngs.

An rng (𝑆,+, *) is similar to a ring but not necessarily unital. In other words, it is a combination of a commutative
additive group (𝑆,+) and a multiplicative semigroup (𝑆, *), where * distributes over +.

EXAMPLES:

sage: C = Rngs(); C
Category of rngs
sage: sorted(C.super_categories(), key=str)
[Category of associative additive commutative additive associative additive unital␣
→˓distributive magmas and additive magmas,
Category of commutative additive groups]

sage: sorted(C.axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveInverse',
'AdditiveUnital', 'Associative', 'Distributive']

sage: C is (CommutativeAdditiveGroups() & Semigroups()).Distributive()
True
sage: C.Unital()
Category of rings

Unital
alias of sage.categories.rings.Rings
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4.138 R-trivial semigroups

class sage.categories.r_trivial_semigroups.RTrivialSemigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Commutative_extra_super_categories()
Implement the fact that a commutative 𝑅-trivial semigroup is 𝐽-trivial.

EXAMPLES:

sage: Semigroups().RTrivial().Commutative_extra_super_categories()
[Category of j trivial semigroups]

extra_super_categories()
Implement the fact that a 𝑅-trivial semigroup is 𝐻-trivial.

EXAMPLES:

sage: Semigroups().RTrivial().extra_super_categories()
[Category of h trivial semigroups]

4.139 Schemes

class sage.categories.schemes.Schemes(s=None)
Bases: sage.categories.category.Category

The category of all schemes.

EXAMPLES:

sage: Schemes()
Category of schemes

Schemes can also be used to construct the category of schemes over a given base:

sage: Schemes(Spec(ZZ))
Category of schemes over Integer Ring

sage: Schemes(ZZ)
Category of schemes over Integer Ring

Todo: Make Schemes() a singleton category (and remove Schemes from the workaround in
category_types.Category_over_base._test_category_over_bases()).

This is currently incompatible with the dispatching below.

super_categories()
EXAMPLES:

sage: Schemes().super_categories()
[Category of sets]
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class sage.categories.schemes.Schemes_over_base(base, name=None)
Bases: sage.categories.category_types.Category_over_base

The category of schemes over a given base scheme.

EXAMPLES:

sage: Schemes(Spec(ZZ))
Category of schemes over Integer Ring

base_scheme()
EXAMPLES:

sage: Schemes(Spec(ZZ)).base_scheme()
Spectrum of Integer Ring

super_categories()
EXAMPLES:

sage: Schemes(Spec(ZZ)).super_categories()
[Category of schemes]

4.140 Semigroups

class sage.categories.semigroups.Semigroups(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of (multiplicative) semigroups.

A semigroup is an associative magma, that is a set endowed with a multiplicative binary operation * which is
associative (see Wikipedia article Semigroup).

The operation * is not required to have a neutral element. A semigroup for which such an element exists is a
monoid .

EXAMPLES:

sage: C = Semigroups(); C
Category of semigroups
sage: C.super_categories()
[Category of magmas]
sage: C.all_super_categories()
[Category of semigroups, Category of magmas,
Category of sets, Category of sets with partial maps, Category of objects]
sage: C.axioms()
frozenset({'Associative'})
sage: C.example()
An example of a semigroup: the left zero semigroup

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
Bases: object
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algebra_generators()
The generators of this algebra, as per MagmaticAlgebras.ParentMethods.
algebra_generators().

They correspond to the generators of the semigroup.

EXAMPLES:

sage: M = FiniteSemigroups().example(); M
An example of a finite semigroup:
the left regular band generated by ('a', 'b', 'c', 'd')
sage: M.semigroup_generators()
Family ('a', 'b', 'c', 'd')
sage: M.algebra(ZZ).algebra_generators()
Finite family {0: B['a'], 1: B['b'], 2: B['c'], 3: B['d']}

gen(i=0)
Return the i-th generator of self.

EXAMPLES:

sage: A = GL(3, GF(7)).algebra(ZZ)
sage: A.gen(0)
[3 0 0]
[0 1 0]
[0 0 1]

gens()
Return the generators of self.

EXAMPLES:

sage: a, b = SL2Z.algebra(ZZ).gens(); a, b
([ 0 -1]
[ 1 0],
[1 1]
[0 1])
sage: 2*a + b
2*[ 0 -1]
[ 1 0]

+
[1 1]
[0 1]

ngens()
Return the number of generators of self.

EXAMPLES:

sage: SL2Z.algebra(ZZ).ngens()
2
sage: DihedralGroup(4).algebra(RR).ngens()
2

product_on_basis(g1, g2)
Product, on basis elements, as per MagmaticAlgebras.WithBasis.ParentMethods.
product_on_basis().
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The product of two basis elements is induced by the product of the corresponding elements of the
group.

EXAMPLES:

sage: S = FiniteSemigroups().example(); S
An example of a finite semigroup: the left regular band generated by ('a
→˓', 'b', 'c', 'd')
sage: A = S.algebra(QQ)
sage: a,b,c,d = A.algebra_generators()
sage: a * b + b * d * c * d
B['ab'] + B['bdc']

regular_representation(side='left')
Return the regular representation of self.

INPUT:
• side – (default: "left") whether this is the "left" or "right" regular representation
EXAMPLES:

sage: G = groups.permutation.Dihedral(4)
sage: A = G.algebra(QQ)
sage: V = A.regular_representation()
sage: V == G.regular_representation(QQ)
True

trivial_representation(side='twosided')
Return the trivial representation of self.

INPUT:
• side – ignored
EXAMPLES:

sage: G = groups.permutation.Dihedral(4)
sage: A = G.algebra(QQ)
sage: V = A.trivial_representation()
sage: V == G.trivial_representation(QQ)
True

extra_super_categories()
Implement the fact that the algebra of a semigroup is indeed a (not necessarily unital) algebra.

EXAMPLES:

sage: Semigroups().Algebras(QQ).extra_super_categories()
[Category of semigroups]
sage: Semigroups().Algebras(QQ).super_categories()
[Category of associative algebras over Rational Field,
Category of magma algebras over Rational Field]

Aperiodic
alias of sage.categories.aperiodic_semigroups.AperiodicSemigroups

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a Cartesian product of semigroups is a semigroup.
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EXAMPLES:

sage: Semigroups().CartesianProducts().extra_super_categories()
[Category of semigroups]
sage: Semigroups().CartesianProducts().super_categories()
[Category of semigroups, Category of Cartesian products of magmas]

class ElementMethods
Bases: object

Finite
alias of sage.categories.finite_semigroups.FiniteSemigroups

FinitelyGeneratedAsMagma
alias of sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups

HTrivial
alias of sage.categories.h_trivial_semigroups.HTrivialSemigroups

JTrivial
alias of sage.categories.j_trivial_semigroups.JTrivialSemigroups

LTrivial
alias of sage.categories.l_trivial_semigroups.LTrivialSemigroups

class ParentMethods
Bases: object

cayley_graph(side='right', simple=False, elements=None, generators=None, connecting_set=None)
Return the Cayley graph for this finite semigroup.

INPUT:
• side – “left”, “right”, or “twosided”: the side on which the generators act (default:”right”)
• simple – boolean (default:False): if True, returns a simple graph (no loops, no labels, no multiple

edges)
• generators – a list, tuple, or family of elements of self (default: self.
semigroup_generators())

• connecting_set – alias for generators; deprecated
• elements – a list (or iterable) of elements of self

OUTPUT:
• DiGraph

EXAMPLES:

We start with the (right) Cayley graphs of some classical groups:

sage: D4 = DihedralGroup(4); D4
Dihedral group of order 8 as a permutation group
sage: G = D4.cayley_graph()
sage: show(G, color_by_label=True, edge_labels=True)
sage: A5 = AlternatingGroup(5); A5
Alternating group of order 5!/2 as a permutation group
sage: G = A5.cayley_graph()
sage: G.show3d(color_by_label=True, edge_size=0.01, edge_size2=0.02, vertex_
→˓size=0.03)
sage: G.show3d(vertex_size=0.03, edge_size=0.01, edge_size2=0.02, vertex_
→˓colors={(1,1,1):G.vertices(sort=True)}, bgcolor=(0,0,0), color_by_
→˓label=True, xres=700, yres=700, iterations=200) # long time (less than a␣
→˓minute)

(continues on next page)
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sage: G.num_edges()
120

sage: w = WeylGroup(['A',3])
sage: d = w.cayley_graph(); d
Digraph on 24 vertices
sage: d.show3d(color_by_label=True, edge_size=0.01, vertex_size=0.03)

Alternative generators may be specified:

sage: G = A5.cayley_graph(generators=[A5.gens()[0]])
sage: G.num_edges()
60
sage: g = PermutationGroup([(i+1,j+1) for i in range(5) for j in range(5)␣
→˓if j!=i])
sage: g.cayley_graph(generators=[(1,2),(2,3)])
Digraph on 120 vertices

If elements is specified, then only the subgraph induced and those elements is returned. Here we use
it to display the Cayley graph of the free monoid truncated on the elements of length at most 3:

sage: M = Monoids().example(); M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: elements = [ M.prod(w) for w in sum((list(Words(M.semigroup_
→˓generators(),k)) for k in range(4)),[]) ]
sage: G = M.cayley_graph(elements = elements)
sage: G.num_verts(), G.num_edges()
(85, 84)
sage: G.show3d(color_by_label=True, edge_size=0.001, vertex_size=0.01)

We now illustrate the side and simple options on a semigroup:

sage: S = FiniteSemigroups().example(alphabet=('a','b'))
sage: g = S.cayley_graph(simple=True)
sage: g.vertices(sort=True)
['a', 'ab', 'b', 'ba']
sage: g.edges(sort=True)
[('a', 'ab', None), ('b', 'ba', None)]

sage: g = S.cayley_graph(side="left", simple=True)
sage: g.vertices(sort=True)
['a', 'ab', 'b', 'ba']
sage: g.edges(sort=True)
[('a', 'ba', None), ('ab', 'ba', None), ('b', 'ab', None),
('ba', 'ab', None)]

sage: g = S.cayley_graph(side="twosided", simple=True)
sage: g.vertices(sort=True)
['a', 'ab', 'b', 'ba']
sage: g.edges(sort=True)
[('a', 'ab', None), ('a', 'ba', None), ('ab', 'ba', None),
('b', 'ab', None), ('b', 'ba', None), ('ba', 'ab', None)]
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sage: g = S.cayley_graph(side="twosided")
sage: g.vertices(sort=True)
['a', 'ab', 'b', 'ba']
sage: g.edges(sort=True)
[('a', 'a', (0, 'left')), ('a', 'a', (0, 'right')), ('a', 'ab', (1, 'right
→˓')), ('a', 'ba', (1, 'left')), ('ab', 'ab', (0, 'left')), ('ab', 'ab', (0,
→˓ 'right')), ('ab', 'ab', (1, 'right')), ('ab', 'ba', (1, 'left')), ('b',
→˓'ab', (0, 'left')), ('b', 'b', (1, 'left')), ('b', 'b', (1, 'right')), ('b
→˓', 'ba', (0, 'right')), ('ba', 'ab', (0, 'left')), ('ba', 'ba', (0, 'right
→˓')), ('ba', 'ba', (1, 'left')), ('ba', 'ba', (1, 'right'))]

sage: s1 = SymmetricGroup(1); s = s1.cayley_graph(); s.vertices(sort=False)
[()]

Todo:
• Add more options for constructing subgraphs of the Cayley graph, handling the standard use cases

when exploring large/infinite semigroups (a predicate, generators of an ideal, a maximal length in
term of the generators)

• Specify good default layout/plot/latex options in the graph
• Generalize to combinatorial modules with module generators / operators

AUTHORS:
• Bobby Moretti (2007-08-10)
• Robert Miller (2008-05-01): editing
• Nicolas M. Thiery (2008-12): extension to semigroups, side, simple, and elements options,

. . .

magma_generators()
An alias for semigroup_generators().

EXAMPLES:

sage: S = Semigroups().example("free"); S
An example of a semigroup: the free semigroup generated by ('a', 'b', 'c',
→˓'d')
sage: S.magma_generators()
Family ('a', 'b', 'c', 'd')
sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')

prod(args)
Return the product of the list of elements args inside self.

EXAMPLES:

sage: S = Semigroups().example("free")
sage: S.prod([S('a'), S('b'), S('c')])
'abc'
sage: S.prod([])
Traceback (most recent call last):
...
AssertionError: Cannot compute an empty product in a semigroup
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regular_representation(base_ring=None, side='left')
Return the regular representation of self over base_ring.

• side – (default: "left") whether this is the "left" or "right" regular representation
EXAMPLES:

sage: G = groups.permutation.Dihedral(4)
sage: G.regular_representation()
Left Regular Representation of Dihedral group of order 8
as a permutation group over Integer Ring

semigroup_generators()
Return distinguished semigroup generators for self.

OUTPUT: a family

This method is optional.

EXAMPLES:

sage: S = Semigroups().example("free"); S
An example of a semigroup: the free semigroup generated by ('a', 'b', 'c',
→˓'d')
sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')

subsemigroup(generators, one=None, category=None)
Return the multiplicative subsemigroup generated by generators.

INPUT:
• generators – a finite family of elements of self, or a list, iterable, . . . that can be converted

into one (see Family).
• one – a unit for the subsemigroup, or None.
• category – a category

This implementation lazily constructs all the elements of the semigroup, and the right Cayley graph
relations between them, and uses the latter as an automaton.

See AutomaticSemigroup for details.

EXAMPLES:

sage: R = IntegerModRing(15)
sage: M = R.subsemigroup([R(3),R(5)]); M
A subsemigroup of (Ring of integers modulo 15) with 2 generators
sage: M.list()
[3, 5, 9, 0, 10, 12, 6]

By default, 𝑀 is just in the category of subsemigroups:

sage: M in Semigroups().Subobjects()
True

In the following example, we specify that 𝑀 is a submonoid of the finite monoid 𝑅 (it shares the same
unit), and a group by itself:

sage: M = R.subsemigroup([R(-1)],
....: category=Monoids().Finite().Subobjects() & Groups()); M
A submonoid of (Ring of integers modulo 15) with 1 generators

(continues on next page)
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sage: M.list()
[1, 14]
sage: M.one()
1

In the following example 𝑀 is a group; however its unit does not coincide with that of 𝑅, so 𝑀 is only
a subsemigroup, and we need to specify its unit explicitly:

sage: M = R.subsemigroup([R(5)],
....: category=Semigroups().Finite().Subobjects() & Groups()); M
Traceback (most recent call last):
...
ValueError: For a monoid which is just a subsemigroup, the unit should be␣
→˓specified

sage: M = R.subsemigroup([R(5)], one=R(10),
....: category=Semigroups().Finite().Subobjects() & Groups()); M
A subsemigroup of (Ring of integers modulo 15) with 1 generators
sage: M in Groups()
True
sage: M.list()
[10, 5]
sage: M.one()
10

Todo:
• Fix the failure in TESTS by providing a default implementation of __invert__ for finite groups

(or even finite monoids).
• Provide a default implementation of one for a finite monoid, so that we would not need to specify

it explicitly?

trivial_representation(base_ring=None, side='twosided')
Return the trivial representation of self over base_ring.

INPUT:
• base_ring – (optional) the base ring; the default is Z
• side – ignored

EXAMPLES:

sage: G = groups.permutation.Dihedral(4)
sage: G.trivial_representation()
Trivial representation of Dihedral group of order 8
as a permutation group over Integer Ring

class Quotients(category, *args)
Bases: sage.categories.quotients.QuotientsCategory

class ParentMethods
Bases: object

semigroup_generators()
Return semigroup generators for self by retracting the semigroup generators of the ambient semi-
group.
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EXAMPLES:

sage: S = FiniteSemigroups().Quotients().example().semigroup_
→˓generators() # todo: not implemented

example()
Return an example of quotient of a semigroup, as per Category.example().

EXAMPLES:

sage: Semigroups().Quotients().example()
An example of a (sub)quotient semigroup: a quotient of the left zero␣
→˓semigroup

RTrivial
alias of sage.categories.r_trivial_semigroups.RTrivialSemigroups

class SubcategoryMethods
Bases: object

Aperiodic()
Return the full subcategory of the aperiodic objects of self.

A (multiplicative) semigroup 𝑆 is aperiodic if for any element 𝑠 ∈ 𝑆, the sequence 𝑠, 𝑠2, 𝑠3, ...
eventually stabilizes.

In terms of variety, this can be described by the equation 𝑠𝜔𝑠 = 𝑠.

EXAMPLES:

sage: Semigroups().Aperiodic()
Category of aperiodic semigroups

An aperiodic semigroup is 𝐻-trivial:

sage: Semigroups().Aperiodic().axioms()
frozenset({'Aperiodic', 'Associative', 'HTrivial'})

In the finite case, the two notions coincide:

sage: Semigroups().Aperiodic().Finite() is Semigroups().HTrivial().Finite()
True

See also:

• Wikipedia article Aperiodic_semigroup
• Semigroups.SubcategoryMethods.RTrivial
• Semigroups.SubcategoryMethods.LTrivial
• Semigroups.SubcategoryMethods.JTrivial
• Semigroups.SubcategoryMethods.Aperiodic

HTrivial()
Return the full subcategory of the 𝐻-trivial objects of self.

Let 𝑆 be (multiplicative) semigroup. Two elements of 𝑆 are in the same 𝐻-class if they are in the
same 𝐿-class and in the same 𝑅-class.

The semigroup 𝑆 is 𝐻-trivial if all its 𝐻-classes are trivial (that is of cardinality 1).

EXAMPLES:
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sage: C = Semigroups().HTrivial(); C
Category of h trivial semigroups
sage: Semigroups().HTrivial().Finite().example()
NotImplemented

See also:

• Wikipedia article Green%27s_relations
• Semigroups.SubcategoryMethods.RTrivial
• Semigroups.SubcategoryMethods.LTrivial
• Semigroups.SubcategoryMethods.JTrivial
• Semigroups.SubcategoryMethods.Aperiodic

JTrivial()
Return the full subcategory of the 𝐽-trivial objects of self.

Let 𝑆 be (multiplicative) semigroup. The 𝐽-preorder ≤𝐽 on 𝑆 is defined by:

𝑥 ≤𝐽 𝑦 ⇐⇒ 𝑥 ∈ 𝑆𝑦𝑆

The 𝐽-classes are the equivalence classes for the associated equivalence relation. The semigroup 𝑆 is
𝐽-trivial if all its 𝐽-classes are trivial (that is of cardinality 1), or equivalently if the 𝐽-preorder is in
fact a partial order.

EXAMPLES:

sage: C = Semigroups().JTrivial(); C
Category of j trivial semigroups

A semigroup is 𝐽-trivial if and only if it is 𝐿-trivial and 𝑅-trivial:

sage: sorted(C.axioms())
['Associative', 'HTrivial', 'JTrivial', 'LTrivial', 'RTrivial']
sage: Semigroups().LTrivial().RTrivial()
Category of j trivial semigroups

For a commutative semigroup, all three axioms are equivalent:

sage: Semigroups().Commutative().LTrivial()
Category of commutative j trivial semigroups
sage: Semigroups().Commutative().RTrivial()
Category of commutative j trivial semigroups

See also:

• Wikipedia article Green%27s_relations
• Semigroups.SubcategoryMethods.LTrivial
• Semigroups.SubcategoryMethods.RTrivial
• Semigroups.SubcategoryMethods.HTrivial

LTrivial()
Return the full subcategory of the 𝐿-trivial objects of self.

Let 𝑆 be (multiplicative) semigroup. The 𝐿-preorder ≤𝐿 on 𝑆 is defined by:

𝑥 ≤𝐿 𝑦 ⇐⇒ 𝑥 ∈ 𝑆𝑦
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The 𝐿-classes are the equivalence classes for the associated equivalence relation. The semigroup 𝑆 is
𝐿-trivial if all its 𝐿-classes are trivial (that is of cardinality 1), or equivalently if the 𝐿-preorder is in
fact a partial order.

EXAMPLES:

sage: C = Semigroups().LTrivial(); C
Category of l trivial semigroups

A 𝐿-trivial semigroup is 𝐻-trivial:

sage: sorted(C.axioms())
['Associative', 'HTrivial', 'LTrivial']

See also:

• Wikipedia article Green%27s_relations
• Semigroups.SubcategoryMethods.RTrivial
• Semigroups.SubcategoryMethods.JTrivial
• Semigroups.SubcategoryMethods.HTrivial

RTrivial()
Return the full subcategory of the 𝑅-trivial objects of self.

Let 𝑆 be (multiplicative) semigroup. The 𝑅-preorder ≤𝑅 on 𝑆 is defined by:

𝑥 ≤𝑅 𝑦 ⇐⇒ 𝑥 ∈ 𝑦𝑆

The 𝑅-classes are the equivalence classes for the associated equivalence relation. The semigroup 𝑆 is
𝑅-trivial if all its 𝑅-classes are trivial (that is of cardinality 1), or equivalently if the 𝑅-preorder is in
fact a partial order.

EXAMPLES:

sage: C = Semigroups().RTrivial(); C
Category of r trivial semigroups

An 𝑅-trivial semigroup is 𝐻-trivial:

sage: sorted(C.axioms())
['Associative', 'HTrivial', 'RTrivial']

See also:

• Wikipedia article Green%27s_relations
• Semigroups.SubcategoryMethods.LTrivial
• Semigroups.SubcategoryMethods.JTrivial
• Semigroups.SubcategoryMethods.HTrivial

class Subquotients(category, *args)
Bases: sage.categories.subquotients.SubquotientsCategory

The category of subquotient semi-groups.

EXAMPLES:

sage: Semigroups().Subquotients().all_super_categories()
[Category of subquotients of semigroups,
Category of semigroups,

(continues on next page)
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Category of subquotients of magmas,
Category of magmas,
Category of subquotients of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

[Category of subquotients of semigroups,
Category of semigroups,
Category of subquotients of magmas,
Category of magmas,
Category of subquotients of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

example()
Returns an example of subquotient of a semigroup, as per Category.example().

EXAMPLES:

sage: Semigroups().Subquotients().example()
An example of a (sub)quotient semigroup: a quotient of the left zero␣
→˓semigroup

Unital
alias of sage.categories.monoids.Monoids

example(choice='leftzero', **kwds)
Returns an example of a semigroup, as per Category.example().

INPUT:

• choice – str (default: ‘leftzero’). Can be either ‘leftzero’ for the left zero semigroup, or ‘free’ for the
free semigroup.

• **kwds – keyword arguments passed onto the constructor for the chosen semigroup.

EXAMPLES:

sage: Semigroups().example(choice='leftzero')
An example of a semigroup: the left zero semigroup
sage: Semigroups().example(choice='free')
An example of a semigroup: the free semigroup generated by ('a', 'b', 'c', 'd')
sage: Semigroups().example(choice='free', alphabet=('a','b'))
An example of a semigroup: the free semigroup generated by ('a', 'b')
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4.141 Semirngs

class sage.categories.semirings.Semirings(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

The category of semirings.

A semiring (𝑆,+, *) is similar to a ring, but without the requirement that each element must have an additive
inverse. In other words, it is a combination of a commutative additive monoid (𝑆,+) and a multiplicative monoid
(𝑆, *), where * distributes over +.

See also:

Wikipedia article Semiring

EXAMPLES:

sage: Semirings()
Category of semirings
sage: Semirings().super_categories()
[Category of associative additive commutative additive associative additive unital␣
→˓distributive magmas and additive magmas,
Category of monoids]

sage: sorted(Semirings().axioms())
['AdditiveAssociative', 'AdditiveCommutative', 'AdditiveUnital', 'Associative',
→˓'Distributive', 'Unital']

sage: Semirings() is (CommutativeAdditiveMonoids() & Monoids()).Distributive()
True

sage: Semirings().AdditiveInverse()
Category of rings

4.142 Semisimple Algebras

class sage.categories.semisimple_algebras.SemisimpleAlgebras(base, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of semisimple algebras over a given base ring.

EXAMPLES:

sage: from sage.categories.semisimple_algebras import SemisimpleAlgebras
sage: C = SemisimpleAlgebras(QQ); C
Category of semisimple algebras over Rational Field

This category is best constructed as:

sage: D = Algebras(QQ).Semisimple(); D
Category of semisimple algebras over Rational Field
sage: D is C
True

(continues on next page)
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sage: C.super_categories()
[Category of algebras over Rational Field]

Typically, finite group algebras are semisimple:

sage: DihedralGroup(5).algebra(QQ) in SemisimpleAlgebras
True

Unless the characteristic of the field divides the order of the group:

sage: DihedralGroup(5).algebra(IntegerModRing(5)) in SemisimpleAlgebras
False

sage: DihedralGroup(5).algebra(IntegerModRing(7)) in SemisimpleAlgebras
True

See also:

Wikipedia article Semisimple_algebra

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

WithBasis
alias of sage.categories.finite_dimensional_semisimple_algebras_with_basis.
FiniteDimensionalSemisimpleAlgebrasWithBasis

class ParentMethods
Bases: object

radical_basis(**keywords)
Return a basis of the Jacobson radical of this algebra.

• keywords – for compatibility; ignored.
OUTPUT: the empty list since this algebra is semisimple.

EXAMPLES:

sage: A = SymmetricGroup(4).algebra(QQ)
sage: A.radical_basis()
()

super_categories()
EXAMPLES:

sage: Algebras(QQ).Semisimple().super_categories()
[Category of algebras over Rational Field]
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4.143 Sets

exception sage.categories.sets_cat.EmptySetError
Bases: ValueError

Exception raised when some operation can’t be performed on the empty set.

EXAMPLES:

sage: def first_element(st):
....: if not st: raise EmptySetError("no elements")
....: else: return st[0]
sage: first_element(Set((1,2,3)))
1
sage: first_element(Set([]))
Traceback (most recent call last):
...
EmptySetError: no elements

class sage.categories.sets_cat.Sets(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of sets.

The base category for collections of elements with = (equality).

This is also the category whose objects are all parents.

EXAMPLES:

sage: Sets()
Category of sets
sage: Sets().super_categories()
[Category of sets with partial maps]
sage: Sets().all_super_categories()
[Category of sets, Category of sets with partial maps, Category of objects]

Let us consider an example of set:

sage: P = Sets().example("inherits")
sage: P
Set of prime numbers

See P?? for the code.

P is in the category of sets:

sage: P.category()
Category of sets

and therefore gets its methods from the following classes:

sage: for cl in P.__class__.mro(): print(cl)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category'>
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits'>
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Abstract'>
<class 'sage.structure.unique_representation.UniqueRepresentation'>

(continues on next page)
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<class 'sage.structure.unique_representation.CachedRepresentation'>
<class 'sage.misc.fast_methods.WithEqualityById'>
<class 'sage.structure.parent.Parent'>
<class 'sage.structure.category_object.CategoryObject'>
<class 'sage.structure.sage_object.SageObject'>
<class 'sage.categories.sets_cat.Sets.parent_class'>
<class 'sage.categories.sets_with_partial_maps.SetsWithPartialMaps.parent_class'>
<class 'sage.categories.objects.Objects.parent_class'>
<... 'object'>

We run some generic checks on P:

sage: TestSuite(P).run(verbose=True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

Now, we manipulate some elements of P:

sage: P.an_element()
47
sage: x = P(3)
sage: x.parent()
Set of prime numbers
sage: x in P, 4 in P
(True, False)
sage: x.is_prime()
True

They get their methods from the following classes:

sage: for cl in x.__class__.mro(): print(cl)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category.
→˓element_class'>
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits.Element'>

(continues on next page)
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<class 'sage.rings.integer.IntegerWrapper'>
<class 'sage.rings.integer.Integer'>
<class 'sage.structure.element.EuclideanDomainElement'>
<class 'sage.structure.element.PrincipalIdealDomainElement'>
<class 'sage.structure.element.DedekindDomainElement'>
<class 'sage.structure.element.IntegralDomainElement'>
<class 'sage.structure.element.CommutativeRingElement'>
<class 'sage.structure.element.RingElement'>
<class 'sage.structure.element.ModuleElement'>
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Abstract.Element'>
<class 'sage.structure.element.Element'>
<class 'sage.structure.sage_object.SageObject'>
<class 'sage.categories.sets_cat.Sets.element_class'>
<class 'sage.categories.sets_with_partial_maps.SetsWithPartialMaps.element_class'>
<class 'sage.categories.objects.Objects.element_class'>
<... 'object'>

FIXME: Objects.element_class is not very meaningful . . .

class Algebras(category, *args)
Bases: sage.categories.algebra_functor.AlgebrasCategory

class ParentMethods
Bases: object

construction()
Return the functorial construction of self.

EXAMPLES:

sage: A = GroupAlgebra(KleinFourGroup(), QQ)
sage: F, arg = A.construction(); F, arg
(GroupAlgebraFunctor, Rational Field)
sage: F(arg) is A
True

This also works for structures such as monoid algebras (see trac ticket #27937):

sage: A = FreeAbelianMonoid('x,y').algebra(QQ)
sage: F, arg = A.construction(); F, arg
(The algebra functorial construction,
Free abelian monoid on 2 generators (x, y))
sage: F(arg) is A
True

extra_super_categories()
EXAMPLES:

sage: Sets().Algebras(ZZ).super_categories()
[Category of modules with basis over Integer Ring]

sage: Sets().Algebras(QQ).extra_super_categories()
[Category of vector spaces with basis over Rational Field]

sage: Sets().example().algebra(ZZ).categories()
(continues on next page)
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[Category of set algebras over Integer Ring,
Category of modules with basis over Integer Ring,
...
Category of objects]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

EXAMPLES:

sage: C = Sets().CartesianProducts().example()
sage: C
The Cartesian product of (Set of prime numbers (basic implementation),
An example of an infinite enumerated set: the non negative integers,
An example of a finite enumerated set: {1,2,3})
sage: C.category()
Category of Cartesian products of sets
sage: C.categories()
[Category of Cartesian products of sets, Category of sets,
Category of sets with partial maps,
Category of objects]
sage: TestSuite(C).run()

class ElementMethods
Bases: object

cartesian_factors()
Return the Cartesian factors of self.

EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"
sage: H = CombinatorialFreeModule(ZZ, [4,7]); H.__custom_name = "H"
sage: S = cartesian_product([F, G, H])
sage: x = S.monomial((0,4)) + 2 * S.monomial((0,5)) + 3 * S.monomial((1,
→˓6)) + 4 * S.monomial((2,4)) + 5 * S.monomial((2,7))
sage: x.cartesian_factors()
(B[4] + 2*B[5], 3*B[6], 4*B[4] + 5*B[7])
sage: [s.parent() for s in x.cartesian_factors()]
[F, G, H]
sage: S.zero().cartesian_factors()
(0, 0, 0)
sage: [s.parent() for s in S.zero().cartesian_factors()]
[F, G, H]

cartesian_projection(i)
Return the projection of self onto the 𝑖-th factor of the Cartesian product.

INPUT:
• i – the index of a factor of the Cartesian product
EXAMPLES:

sage: F = CombinatorialFreeModule(ZZ, [4,5]); F.__custom_name = "F"
sage: G = CombinatorialFreeModule(ZZ, [4,6]); G.__custom_name = "G"

(continues on next page)
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sage: S = cartesian_product([F, G])
sage: x = S.monomial((0,4)) + 2 * S.monomial((0,5)) + 3 * S.monomial((1,
→˓6))
sage: x.cartesian_projection(0)
B[4] + 2*B[5]
sage: x.cartesian_projection(1)
3*B[6]

class ParentMethods
Bases: object

an_element()
EXAMPLES:

sage: C = Sets().CartesianProducts().example(); C
The Cartesian product of (Set of prime numbers (basic implementation),
An example of an infinite enumerated set: the non negative integers,
An example of a finite enumerated set: {1,2,3})
sage: C.an_element()
(47, 42, 1)

cardinality()
Return the cardinality of self.

EXAMPLES:

sage: E = FiniteEnumeratedSet([1,2,3])
sage: C = cartesian_product([E,SymmetricGroup(4)])
sage: C.cardinality()
72

sage: E = FiniteEnumeratedSet([])
sage: C = cartesian_product([E, ZZ, QQ])
sage: C.cardinality()
0

sage: C = cartesian_product([ZZ, QQ])
sage: C.cardinality()
+Infinity

sage: cartesian_product([GF(5), Permutations(10)]).cardinality()
18144000
sage: cartesian_product([GF(71)]*20).cardinality() == 71**20
True

cartesian_factors()
Return the Cartesian factors of self.

EXAMPLES:

sage: cartesian_product([QQ, ZZ, ZZ]).cartesian_factors()
(Rational Field, Integer Ring, Integer Ring)

cartesian_projection(i)
Return the natural projection onto the 𝑖-th Cartesian factor of self.
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INPUT:
• i – the index of a Cartesian factor of self
EXAMPLES:

sage: C = Sets().CartesianProducts().example(); C
The Cartesian product of (Set of prime numbers (basic implementation),
An example of an infinite enumerated set: the non negative integers,
An example of a finite enumerated set: {1,2,3})
sage: x = C.an_element(); x
(47, 42, 1)
sage: pi = C.cartesian_projection(1)
sage: pi(x)
42

construction()
The construction functor and the list of Cartesian factors.

EXAMPLES:

sage: C = cartesian_product([QQ, ZZ, ZZ])
sage: C.construction()
(The cartesian_product functorial construction,
(Rational Field, Integer Ring, Integer Ring))

is_empty()
Return whether this set is empty.

EXAMPLES:

sage: S1 = FiniteEnumeratedSet([1,2,3])
sage: S2 = Set([])
sage: cartesian_product([S1,ZZ]).is_empty()
False
sage: cartesian_product([S1,S2,S1]).is_empty()
True

is_finite()
Return whether this set is finite.

EXAMPLES:

sage: E = FiniteEnumeratedSet([1,2,3])
sage: C = cartesian_product([E, SymmetricGroup(4)])
sage: C.is_finite()
True

sage: cartesian_product([ZZ,ZZ]).is_finite()
False
sage: cartesian_product([ZZ, Set(), ZZ]).is_finite()
True

random_element(*args)
Return a random element of this Cartesian product.

The extra arguments are passed down to each of the factors of the Cartesian product.

EXAMPLES:
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sage: C = cartesian_product([Permutations(10)]*5)
sage: C.random_element() # random
([2, 9, 4, 7, 1, 8, 6, 10, 5, 3],
[8, 6, 5, 7, 1, 4, 9, 3, 10, 2],
[5, 10, 3, 8, 2, 9, 1, 4, 7, 6],
[9, 6, 10, 3, 2, 1, 5, 8, 7, 4],
[8, 5, 2, 9, 10, 3, 7, 1, 4, 6])

sage: C = cartesian_product([ZZ]*10)
sage: c1 = C.random_element()
sage: c1 # random
(3, 1, 4, 1, 1, -3, 0, -4, -17, 2)
sage: c2 = C.random_element(4,7)
sage: c2 # random
(6, 5, 6, 4, 5, 6, 6, 4, 5, 5)
sage: all(4 <= i < 7 for i in c2)
True

example()
EXAMPLES:

sage: Sets().CartesianProducts().example()
The Cartesian product of (Set of prime numbers (basic implementation),
An example of an infinite enumerated set: the non negative integers,
An example of a finite enumerated set: {1,2,3})

extra_super_categories()
A Cartesian product of sets is a set.

EXAMPLES:

sage: Sets().CartesianProducts().extra_super_categories()
[Category of sets]
sage: Sets().CartesianProducts().super_categories()
[Category of sets]

class ElementMethods
Bases: object

cartesian_product(*elements)
Return the Cartesian product of its arguments, as an element of the Cartesian product of the parents of
those elements.

EXAMPLES:

sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example()
sage: (a,b,c) = A.algebra_generators()
sage: a.cartesian_product(b, c)
B[(0, word: a)] + B[(1, word: b)] + B[(2, word: c)]

FIXME: is this a policy that we want to enforce on all parents?

Enumerated
alias of sage.categories.enumerated_sets.EnumeratedSets

4.143. Sets 707



Category Framework, Release 9.7

Facade
alias of sage.categories.facade_sets.FacadeSets

Finite
alias of sage.categories.finite_sets.FiniteSets

class Infinite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class ParentMethods
Bases: object

cardinality()
Count the elements of the enumerated set.

EXAMPLES:

sage: NN = InfiniteEnumeratedSets().example()
sage: NN.cardinality()
+Infinity

is_empty()
Return whether this set is empty.

Since this set is infinite this always returns False.

EXAMPLES:

sage: C = InfiniteEnumeratedSets().example()
sage: C.is_empty()
False

is_finite()
Return whether this set is finite.

Since this set is infinite this always returns False.

EXAMPLES:

sage: C = InfiniteEnumeratedSets().example()
sage: C.is_finite()
False

class IsomorphicObjects(category, *args)
Bases: sage.categories.isomorphic_objects.IsomorphicObjectsCategory

A category for isomorphic objects of sets.

EXAMPLES:

sage: Sets().IsomorphicObjects()
Category of isomorphic objects of sets
sage: Sets().IsomorphicObjects().all_super_categories()
[Category of isomorphic objects of sets,
Category of subobjects of sets, Category of quotients of sets,
Category of subquotients of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]
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class ParentMethods
Bases: object

Metric
alias of sage.categories.metric_spaces.MetricSpaces

class MorphismMethods
Bases: object

image(domain_subset=None)
Return the image of the domain or of domain_subset.

EXAMPLES:

sage: P = Partitions(6)
sage: H = Hom(P, ZZ)
sage: f = H(ZZ.sum)
sage: X = f.image()
sage: list(X)
[6]

is_injective()
Return whether this map is injective.

EXAMPLES:

sage: f = ZZ.hom(GF(3)); f
Natural morphism:
From: Integer Ring
To: Finite Field of size 3

sage: f.is_injective()
False

class ParentMethods
Bases: object

CartesianProduct
alias of sage.sets.cartesian_product.CartesianProduct

algebra(base_ring, category=None, **kwds)
Return the algebra of self over base_ring.

INPUT:
• self – a parent 𝑆
• base_ring – a ring 𝐾
• category – a super category of the category of 𝑆, or None

This returns the space of formal linear combinations of elements of 𝐺 with coefficients in 𝑅, endowed
with whatever structure can be induced from that of 𝑆. See the documentation of sage.categories.
algebra_functor for details.

EXAMPLES:

If 𝑆 is a group, the result is its group algebra 𝐾𝑆:

sage: S = DihedralGroup(4); S
Dihedral group of order 8 as a permutation group

sage: A = S.algebra(QQ); A
Algebra of Dihedral group of order 8 as a permutation group

over Rational Field
(continues on next page)
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(continued from previous page)

sage: A.category()
Category of finite group algebras over Rational Field
sage: a = A.an_element(); a
() + (1,3) + 2*(1,3)(2,4) + 3*(1,4,3,2)

This space is endowed with an algebra structure, obtained by extending by bilinearity the multiplication
of 𝐺 to a multiplication on 𝑅𝐺:

sage: a * a
6*() + 4*(2,4) + 3*(1,2)(3,4) + 12*(1,2,3,4) + 2*(1,3)
+ 13*(1,3)(2,4) + 6*(1,4,3,2) + 3*(1,4)(2,3)

If 𝑆 is a monoid , the result is its monoid algebra 𝐾𝑆:

sage: S = Monoids().example(); S
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ); A
Algebra of An example of a monoid: the free monoid generated by ('a', 'b',
→˓'c', 'd')

over Rational Field
sage: A.category()
Category of monoid algebras over Rational Field

Similarly, we can construct algebras for additive magmas, monoids, and groups.

One may specify for which category one takes the algebra; here we build the algebra of the additive
group 𝐺𝐹3:

sage: from sage.categories.additive_groups import AdditiveGroups
sage: S = GF(7)
sage: A = S.algebra(QQ, category=AdditiveGroups()); A
Algebra of Finite Field of size 7 over Rational Field
sage: A.category()
Category of finite dimensional additive group algebras

over Rational Field

sage: a = A(S(1))
sage: a
1
sage: 1 + a * a * a
0 + 3

Note that the category keyword needs to be fed with the structure on 𝑆 to be used, not the induced
structure on the result.

an_element()
Return a (preferably typical) element of this parent.

This is used both for illustration and testing purposes. If the set self is empty, an_element() should
raise the exception EmptySetError.

This default implementation calls _an_element_() and caches the result. Any parent should imple-
ment either an_element() or _an_element_().

EXAMPLES:
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sage: CDF.an_element()
1.0*I
sage: ZZ[['t']].an_element()
t

cartesian_product(*parents, **kwargs)
Return the Cartesian product of the parents.

INPUT:
• parents – a list (or other iterable) of parents.
• category – (default: None) the category the Cartesian product belongs to. If None is passed,

then category_from_parents() is used to determine the category.
• extra_category – (default: None) a category that is added to the Cartesian product in addition

to the categories obtained from the parents.
• other keyword arguments will passed on to the class used for this Cartesian product (see also
CartesianProduct).

OUTPUT:

The Cartesian product.

EXAMPLES:

sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example(); A.rename("A")
sage: A.cartesian_product(A,A)
A (+) A (+) A
sage: ZZ.cartesian_product(GF(2), FiniteEnumeratedSet([1,2,3]))
The Cartesian product of (Integer Ring, Finite Field of size 2, {1, 2, 3})

sage: C = ZZ.cartesian_product(A); C
The Cartesian product of (Integer Ring, A)

construction()
Return a pair (functor, parent) such that functor(parent) returns self. If self does not have
a functorial construction, return None.

EXAMPLES:

sage: QQ.construction()
(FractionField, Integer Ring)
sage: f, R = QQ['x'].construction()
sage: f
Poly[x]
sage: R
Rational Field
sage: f(R)
Univariate Polynomial Ring in x over Rational Field

is_parent_of(element)
Return whether self is the parent of element.

INPUT:
• element – any object

EXAMPLES:
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sage: S = ZZ
sage: S.is_parent_of(1)
True
sage: S.is_parent_of(2/1)
False

This method differs from __contains__() because it does not attempt any coercion:

sage: 2/1 in S, S.is_parent_of(2/1)
(True, False)
sage: int(1) in S, S.is_parent_of(int(1))
(True, False)

some_elements()
Return a list (or iterable) of elements of self.

This is typically used for running generic tests (see TestSuite).

This default implementation calls an_element().

EXAMPLES:

sage: S = Sets().example(); S
Set of prime numbers (basic implementation)
sage: S.an_element()
47
sage: S.some_elements()
[47]
sage: S = Set([])
sage: list(S.some_elements())
[]

This method should return an iterable, not an iterator.

class Quotients(category, *args)
Bases: sage.categories.quotients.QuotientsCategory

A category for quotients of sets.

See also:

Sets().Quotients()

EXAMPLES:

sage: Sets().Quotients()
Category of quotients of sets
sage: Sets().Quotients().all_super_categories()
[Category of quotients of sets,
Category of subquotients of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

class ParentMethods
Bases: object

class Realizations(category, *args)
Bases: sage.categories.realizations.RealizationsCategory
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class ParentMethods
Bases: object

realization_of()
Return the parent this is a realization of.

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: In = A.In(); In
The subset algebra of {1, 2, 3} over Rational Field in the In basis
sage: In.realization_of()
The subset algebra of {1, 2, 3} over Rational Field

class SubcategoryMethods
Bases: object

Algebras(base_ring)
Return the category of objects constructed as algebras of objects of self over base_ring.

INPUT:
• base_ring – a ring

See Sets.ParentMethods.algebra() for the precise meaning in Sage of the algebra of an object.

EXAMPLES:

sage: Monoids().Algebras(QQ)
Category of monoid algebras over Rational Field

sage: Groups().Algebras(QQ)
Category of group algebras over Rational Field

sage: AdditiveMagmas().AdditiveAssociative().Algebras(QQ)
Category of additive semigroup algebras over Rational Field

sage: Monoids().Algebras(Rings())
Category of monoid algebras over Category of rings

See also:

• algebra_functor.AlgebrasCategory
• CovariantFunctorialConstruction

CartesianProducts()
Return the full subcategory of the objects of self constructed as Cartesian products.

See also:

• cartesian_product.CartesianProductFunctor
• RegressiveCovariantFunctorialConstruction

EXAMPLES:

sage: Sets().CartesianProducts()
Category of Cartesian products of sets
sage: Semigroups().CartesianProducts()
Category of Cartesian products of semigroups

(continues on next page)
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sage: EuclideanDomains().CartesianProducts()
Category of Cartesian products of commutative rings

Enumerated()
Return the full subcategory of the enumerated objects of self.

An enumerated object can be iterated to get its elements.

EXAMPLES:

sage: Sets().Enumerated()
Category of enumerated sets
sage: Rings().Finite().Enumerated()
Category of finite enumerated rings
sage: Rings().Infinite().Enumerated()
Category of infinite enumerated rings

Facade()
Return the full subcategory of the facade objects of self.

What is a facade set?

Recall that, in Sage, sets are modelled by *parents*, and their elements know which distinguished set
they belong to. For example, the ring of integers Z is modelled by the parent ZZ, and integers know
that they belong to this set:

sage: ZZ
Integer Ring
sage: 42.parent()
Integer Ring

Sometimes, it is convenient to represent the elements of a parent P by elements of some other parent.
For example, the elements of the set of prime numbers are represented by plain integers:

sage: Primes()
Set of all prime numbers: 2, 3, 5, 7, ...
sage: p = Primes().an_element(); p
43
sage: p.parent()
Integer Ring

In this case, P is called a facade set.

This feature is advertised through the category of 𝑃 :

sage: Primes().category()
Category of facade infinite enumerated sets
sage: Sets().Facade()
Category of facade sets

Typical use cases include modeling a subset of an existing parent:

sage: Set([4,6,9]) # random
{4, 6, 9}

(continues on next page)
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sage: Sets().Facade().example()
An example of facade set: the monoid of positive integers

or the union of several parents:

sage: Sets().Facade().example("union")
An example of a facade set: the integers completed by +-infinity

or endowing an existing parent with more (or less!) structure:

sage: Posets().example("facade")
An example of a facade poset: the positive integers ordered by divisibility

Let us investigate in detail a close variant of this last example: let 𝑃 be set of divisors of 12 partially
ordered by divisibility. There are two options for representing its elements:
1. as plain integers:

sage: P = Poset((divisors(12), attrcall("divides")), facade=True)

2. as integers, modified to be aware that their parent is 𝑃 :

sage: Q = Poset((divisors(12), attrcall("divides")), facade=False)

The advantage of option 1. is that one needs not do conversions back and forth between 𝑃 and Z. The
disadvantage is that this introduces an ambiguity when writing 2 < 3: does this compare 2 and 3 w.r.t.
the natural order on integers or w.r.t. divisibility?:

sage: 2 < 3
True

To raise this ambiguity, one needs to explicitly specify the underlying poset as in 2 <𝑃 3:

sage: P = Posets().example("facade")
sage: P.lt(2,3)
False

On the other hand, with option 2. and once constructed, the elements know unambiguously how to
compare themselves:

sage: Q(2) < Q(3)
False
sage: Q(2) < Q(6)
True

Beware that P(2) is still the integer 2. Therefore P(2) < P(3) still compares 2 and 3 as integers!:

sage: P(2) < P(3)
True

In short 𝑃 being a facade parent is one of the programmatic counterparts (with e.g. coercions) of the
usual mathematical idiom: “for ease of notation, we identify an element of 𝑃 with the corresponding
integer”. Too many identifications lead to confusion; the lack thereof leads to heavy, if not obfuscated,
notations. Finding the right balance is an art, and even though there are common guidelines, it is
ultimately up to the writer to choose which identifications to do. This is no different in code.
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See also:

The following examples illustrate various ways to implement subsets like the set of prime numbers;
look at their code for details:

sage: Sets().example("facade")
Set of prime numbers (facade implementation)
sage: Sets().example("inherits")
Set of prime numbers
sage: Sets().example("wrapper")
Set of prime numbers (wrapper implementation)

Specifications

A parent which is a facade must either:
• call Parent.__init__() using the facade parameter to specify a parent, or tuple thereof.
• overload the method facade_for().

Note: The concept of facade parents was originally introduced in the computer algebra system Mu-
PAD.

Finite()
Return the full subcategory of the finite objects of self.

EXAMPLES:

sage: Sets().Finite()
Category of finite sets
sage: Rings().Finite()
Category of finite rings

Infinite()
Return the full subcategory of the infinite objects of self.

EXAMPLES:

sage: Sets().Infinite()
Category of infinite sets
sage: Rings().Infinite()
Category of infinite rings

IsomorphicObjects()
Return the full subcategory of the objects of self constructed by isomorphism.

Given a concrete category As() (i.e. a subcategory of Sets()), As().IsomorphicObjects() re-
turns the category of objects of As() endowed with a distinguished description as the image of some
other object of As() by an isomorphism in this category.

See Subquotients() for background.

EXAMPLES:

In the following example, 𝐴 is defined as the image by 𝑥 ↦→ 𝑥2 of the finite set 𝐵 = {1, 2, 3}:

sage: A = FiniteEnumeratedSets().IsomorphicObjects().example(); A
The image by some isomorphism of An example of a finite enumerated set: {1,
→˓2,3} (continues on next page)
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Since 𝐵 is a finite enumerated set, so is 𝐴:

sage: A in FiniteEnumeratedSets()
True
sage: A.cardinality()
3
sage: A.list()
[1, 4, 9]

The isomorphism from 𝐵 to 𝐴 is available as:

sage: A.retract(3)
9

and its inverse as:

sage: A.lift(9)
3

It often is natural to declare those morphisms as coercions so that one can do A(b) and B(a) to go
back and forth between 𝐴 and 𝐵 (TODO: refer to a category example where the maps are declared as
a coercion). This is not done by default. Indeed, in many cases one only wants to transport part of the
structure of 𝐵 to 𝐴. Assume for example, that one wants to construct the set of integers 𝐵 = 𝑍𝑍,
endowed with max as addition, and + as multiplication instead of the usual + and *. One can construct
𝐴 as isomorphic to 𝐵 as an infinite enumerated set. However 𝐴 is not isomorphic to 𝐵 as a ring; for
example, for 𝑎 ∈ 𝐴 and 𝑎 ∈ 𝐵, the expressions 𝑎 + 𝐴(𝑏) and 𝐵(𝑎) + 𝑏 give completely different
results; hence we would not want the expression 𝑎 + 𝑏 to be implicitly resolved to any one of above
two, as the coercion mechanism would do.

Coercions also cannot be used with facade parents (see Sets.Facade) like in the example above.

We now look at a category of isomorphic objects:

sage: C = Sets().IsomorphicObjects(); C
Category of isomorphic objects of sets

sage: C.super_categories()
[Category of subobjects of sets, Category of quotients of sets]

sage: C.all_super_categories()
[Category of isomorphic objects of sets,
Category of subobjects of sets,
Category of quotients of sets,
Category of subquotients of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

Unless something specific about isomorphic objects is implemented for this category, one actually get
an optimized super category:
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sage: C = Semigroups().IsomorphicObjects(); C
Join of Category of quotients of semigroups

and Category of isomorphic objects of sets

See also:

• Subquotients() for background
• isomorphic_objects.IsomorphicObjectsCategory
• RegressiveCovariantFunctorialConstruction

Metric()
Return the subcategory of the metric objects of self.

Quotients()
Return the full subcategory of the objects of self constructed as quotients.

Given a concrete category As() (i.e. a subcategory of Sets()), As().Quotients() returns the
category of objects of As() endowed with a distinguished description as quotient (in fact homomorphic
image) of some other object of As().

Implementing an object of As().Quotients() is done in the same way as for As().
Subquotients(); namely by providing an ambient space and a lift and a retract map. See
Subquotients() for detailed instructions.

See also:

• Subquotients() for background
• quotients.QuotientsCategory
• RegressiveCovariantFunctorialConstruction

EXAMPLES:

sage: C = Semigroups().Quotients(); C
Category of quotients of semigroups
sage: C.super_categories()
[Category of subquotients of semigroups, Category of quotients of sets]
sage: C.all_super_categories()
[Category of quotients of semigroups,
Category of subquotients of semigroups,
Category of semigroups,
Category of subquotients of magmas,
Category of magmas,
Category of quotients of sets,
Category of subquotients of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

The caller is responsible for checking that the given category admits a well defined category of quo-
tients:

sage: EuclideanDomains().Quotients()
Join of Category of euclidean domains

and Category of subquotients of monoids
and Category of quotients of semigroups

Subobjects()
Return the full subcategory of the objects of self constructed as subobjects.
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Given a concrete category As() (i.e. a subcategory of Sets()), As().Subobjects() returns the
category of objects of As() endowed with a distinguished embedding into some other object of As().

Implementing an object of As().Subobjects() is done in the same way as for As().
Subquotients(); namely by providing an ambient space and a lift and a retract map. In the case
of a trivial embedding, the two maps will typically be identity maps that just change the parent of their
argument. See Subquotients() for detailed instructions.

See also:

• Subquotients() for background
• subobjects.SubobjectsCategory
• RegressiveCovariantFunctorialConstruction

EXAMPLES:

sage: C = Sets().Subobjects(); C
Category of subobjects of sets

sage: C.super_categories()
[Category of subquotients of sets]

sage: C.all_super_categories()
[Category of subobjects of sets,
Category of subquotients of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

Unless something specific about subobjects is implemented for this category, one actually gets an
optimized super category:

sage: C = Semigroups().Subobjects(); C
Join of Category of subquotients of semigroups

and Category of subobjects of sets

The caller is responsible for checking that the given category admits a well defined category of sub-
objects.

Subquotients()
Return the full subcategory of the objects of self constructed as subquotients.

Given a concrete category self == As() (i.e. a subcategory of Sets()), As().Subquotients()
returns the category of objects of As() endowed with a distinguished description as subquotient of
some other object of As().

EXAMPLES:

sage: Monoids().Subquotients()
Category of subquotients of monoids

A parent 𝐴 in As() is further in As().Subquotients() if there is a distinguished parent 𝐵 in As(),
called the ambient set, a subobject 𝐵′ of 𝐵, and a pair of maps:

𝑙 : 𝐴→ 𝐵′ and 𝑟 : 𝐵′ → 𝐴

called respectively the lifting map and retract map such that 𝑟∘𝑙 is the identity of𝐴 and 𝑟 is a morphism
in As().
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Todo: Draw the typical commutative diagram.

It follows that, for each operation 𝑜𝑝 of the category, we have some property like:

𝑜𝑝𝐴(𝑒) = 𝑟(𝑜𝑝𝐵(𝑙(𝑒))), for all 𝑒 ∈ 𝐴

This allows for implementing the operations on 𝐴 from those on 𝐵.

The two most common use cases are:
• homomorphic images (or quotients), when 𝐵′ = 𝐵, 𝑟 is an homomorphism from 𝐵 to 𝐴 (typ-

ically a canonical quotient map), and 𝑙 a section of it (not necessarily a homomorphism); see
Quotients();

• subobjects (up to an isomorphism), when 𝑙 is an embedding from 𝐴 into 𝐵; in this case, 𝐵′ is
typically isomorphic to 𝐴 through the inverse isomorphisms 𝑟 and 𝑙; see Subobjects();

Note:
• The usual definition of “subquotient” (Wikipedia article Subquotient) does not involve the lifting

map 𝑙. This map is required in Sage’s context to make the definition constructive. It is only used
in computations and does not affect their results. This is relatively harmless since the category is
a concrete category (i.e., its objects are sets and its morphisms are set maps).

• In mathematics, especially in the context of quotients, the retract map 𝑟 is often referred to as a
projection map instead.

• Since 𝐵′ is not specified explicitly, it is possible to abuse the framework with situations where 𝐵′

is not quite a subobject and 𝑟 not quite a morphism, as long as the lifting and retract maps can be
used as above to compute all the operations in 𝐴. Use at your own risk!

Assumptions:
• For any category As(), As().Subquotients() is a subcategory of As().

Example: a subquotient of a group is a group (e.g., a left or right quotient of a group by a non-
normal subgroup is not in this category).

• This construction is covariant: if As() is a subcategory of Bs(), then As().Subquotients()
is a subcategory of Bs().Subquotients().

Example: if 𝐴 is a subquotient of 𝐵 in the category of groups, then it is also a subquotient of 𝐵
in the category of monoids.

• If the user (or a program) calls As().Subquotients(), then it is assumed that subquotients
are well defined in this category. This is not checked, and probably never will be. Note that, if
a category As() does not specify anything about its subquotients, then its subquotient category
looks like this:

sage: EuclideanDomains().Subquotients()
Join of Category of euclidean domains

and Category of subquotients of monoids

Interface: the ambient set 𝐵 of 𝐴 is given by A.ambient(). The subset 𝐵′ needs not be specified, so
the retract map is handled as a partial map from 𝐵 to 𝐴.

The lifting and retract map are implemented respectively as methods A.lift(a) and A.retract(b).
As a shorthand for the former, one can use alternatively a.lift():

sage: S = Semigroups().Subquotients().example(); S
An example of a (sub)quotient semigroup: a quotient of the left zero␣
→˓semigroup
sage: S.ambient()

(continues on next page)
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(continued from previous page)

An example of a semigroup: the left zero semigroup
sage: S(3).lift().parent()
An example of a semigroup: the left zero semigroup
sage: S(3) * S(1) == S.retract( S(3).lift() * S(1).lift() )
True

See S? for more.

Todo: use a more interesting example, like Z/𝑛Z.

See also:

• Quotients(), Subobjects(), IsomorphicObjects()
• subquotients.SubquotientsCategory
• RegressiveCovariantFunctorialConstruction

Topological()
Return the subcategory of the topological objects of self.

class Subobjects(category, *args)
Bases: sage.categories.subobjects.SubobjectsCategory

A category for subobjects of sets.

See also:

Sets().Subobjects()

EXAMPLES:

sage: Sets().Subobjects()
Category of subobjects of sets
sage: Sets().Subobjects().all_super_categories()
[Category of subobjects of sets,
Category of subquotients of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

class ParentMethods
Bases: object

class Subquotients(category, *args)
Bases: sage.categories.subquotients.SubquotientsCategory

A category for subquotients of sets.

See also:

Sets().Subquotients()

EXAMPLES:

sage: Sets().Subquotients()
Category of subquotients of sets
sage: Sets().Subquotients().all_super_categories()
[Category of subquotients of sets, Category of sets,

(continues on next page)
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(continued from previous page)

Category of sets with partial maps,
Category of objects]

class ElementMethods
Bases: object

lift()
Lift self to the ambient space for its parent.

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: s = S.an_element()
sage: s, s.parent()
(42, An example of a (sub)quotient semigroup: a quotient of the left␣
→˓zero semigroup)
sage: S.lift(s), S.lift(s).parent()
(42, An example of a semigroup: the left zero semigroup)
sage: s.lift(), s.lift().parent()
(42, An example of a semigroup: the left zero semigroup)

class ParentMethods
Bases: object

ambient()
Return the ambient space for self.

EXAMPLES:

sage: Semigroups().Subquotients().example().ambient()
An example of a semigroup: the left zero semigroup

See also:

Sets.SubcategoryMethods.Subquotients() for the specifications and lift() and
retract().

lift(x)
Lift 𝑥 to the ambient space for self.

INPUT:
• x – an element of self
EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: s = S.an_element()
sage: s, s.parent()
(42, An example of a (sub)quotient semigroup: a quotient of the left␣
→˓zero semigroup)
sage: S.lift(s), S.lift(s).parent()
(42, An example of a semigroup: the left zero semigroup)
sage: s.lift(), s.lift().parent()
(42, An example of a semigroup: the left zero semigroup)

See also:

Sets.SubcategoryMethods.Subquotients for the specifications, ambient(), retract(),
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and also Sets.Subquotients.ElementMethods.lift().

retract(x)
Retract x to self.

INPUT:
• x – an element of the ambient space for self
See also:

Sets.SubcategoryMethods.Subquotients for the specifications, ambient(), retract(),
and also Sets.Subquotients.ElementMethods.retract().

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: s = S.ambient().an_element()
sage: s, s.parent()
(42, An example of a semigroup: the left zero semigroup)
sage: S.retract(s), S.retract(s).parent()
(42, An example of a (sub)quotient semigroup: a quotient of the left␣
→˓zero semigroup)

Topological
alias of sage.categories.topological_spaces.TopologicalSpaces

class WithRealizations(category, *args)
Bases: sage.categories.with_realizations.WithRealizationsCategory

class ParentMethods
Bases: object

class Realizations(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

super_categories()
EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.Realizations().super_categories()
[Category of realizations of sets]

a_realization()
Return a realization of self.

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.a_realization()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental␣
→˓basis

facade_for()
Return the parents self is a facade for, that is the realizations of self

EXAMPLES:
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sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.facade_for()
[The subset algebra of {1, 2, 3} over Rational Field in the Fundamental␣
→˓basis, The subset algebra of {1, 2, 3} over Rational Field in the In␣
→˓basis, The subset algebra of {1, 2, 3} over Rational Field in the Out␣
→˓basis]

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: f = A.F().an_element(); f
F[{}] + 2*F[{1}] + 3*F[{2}] + F[{1, 2}]
sage: i = A.In().an_element(); i
In[{}] + 2*In[{1}] + 3*In[{2}] + In[{1, 2}]
sage: o = A.Out().an_element(); o
Out[{}] + 2*Out[{1}] + 3*Out[{2}] + Out[{1, 2}]
sage: f in A, i in A, o in A
(True, True, True)

inject_shorthands(shorthands=None, verbose=True)
Import standard shorthands into the global namespace.

INPUT:
• shorthands – a list (or iterable) of strings (default: self._shorthands) or "all" (for self.
_shorthands_all)

• verbose – boolean (default True); whether to print the defined shorthands
EXAMPLES:

When computing with a set with multiple realizations, like SymmetricFunctions or
SubsetAlgebra, it is convenient to define shorthands for the various realizations, but cumber-
some to do it by hand:

sage: S = SymmetricFunctions(ZZ); S
Symmetric Functions over Integer Ring
sage: s = S.s(); s
Symmetric Functions over Integer Ring in the Schur basis
sage: e = S.e(); e
Symmetric Functions over Integer Ring in the elementary basis

This method automates the process:

sage: S.inject_shorthands()
Defining e as shorthand for Symmetric Functions over Integer Ring in the␣
→˓elementary basis
Defining f as shorthand for Symmetric Functions over Integer Ring in the␣
→˓forgotten basis
Defining h as shorthand for Symmetric Functions over Integer Ring in the␣
→˓homogeneous basis
Defining m as shorthand for Symmetric Functions over Integer Ring in the␣
→˓monomial basis
Defining p as shorthand for Symmetric Functions over Integer Ring in the␣
→˓powersum basis
Defining s as shorthand for Symmetric Functions over Integer Ring in the␣
→˓Schur basis

(continues on next page)
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(continued from previous page)

sage: s[1] + e[2] * p[1,1] + 2*h[3] + m[2,1]
s[1] - 2*s[1, 1, 1] + s[1, 1, 1, 1] + s[2, 1] + 2*s[2, 1, 1] + s[2, 2] +␣
→˓2*s[3] + s[3, 1]

sage: e
Symmetric Functions over Integer Ring in the elementary basis
sage: p
Symmetric Functions over Integer Ring in the powersum basis
sage: s
Symmetric Functions over Integer Ring in the Schur basis

Sometimes, like for symmetric functions, one can request for all shorthands to be defined, includ-
ing less common ones:

sage: S.inject_shorthands("all")
Defining e as shorthand for Symmetric Functions over Integer Ring in the␣
→˓elementary basis
Defining f as shorthand for Symmetric Functions over Integer Ring in the␣
→˓forgotten basis
Defining h as shorthand for Symmetric Functions over Integer Ring in the␣
→˓homogeneous basis
Defining ht as shorthand for Symmetric Functions over Integer Ring in␣
→˓the induced trivial symmetric group character basis
Defining m as shorthand for Symmetric Functions over Integer Ring in the␣
→˓monomial basis
Defining o as shorthand for Symmetric Functions over Integer Ring in the␣
→˓orthogonal basis
Defining p as shorthand for Symmetric Functions over Integer Ring in the␣
→˓powersum basis
Defining s as shorthand for Symmetric Functions over Integer Ring in the␣
→˓Schur basis
Defining sp as shorthand for Symmetric Functions over Integer Ring in␣
→˓the symplectic basis
Defining st as shorthand for Symmetric Functions over Integer Ring in␣
→˓the irreducible symmetric group character basis
Defining w as shorthand for Symmetric Functions over Integer Ring in the␣
→˓Witt basis

The messages can be silenced by setting verbose=False:

sage: Q = QuasiSymmetricFunctions(ZZ)
sage: Q.inject_shorthands(verbose=False)

sage: F[1,2,1] + 5*M[1,3] + F[2]^2
5*F[1, 1, 1, 1] - 5*F[1, 1, 2] - 3*F[1, 2, 1] + 6*F[1, 3] +
2*F[2, 2] + F[3, 1] + F[4]

sage: F
Quasisymmetric functions over the Integer Ring in the
Fundamental basis
sage: M
Quasisymmetric functions over the Integer Ring in the
Monomial basis
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One can also just import a subset of the shorthands:

sage: SQ = SymmetricFunctions(QQ)
sage: SQ.inject_shorthands(['p', 's'], verbose=False)
sage: p
Symmetric Functions over Rational Field in the powersum basis
sage: s
Symmetric Functions over Rational Field in the Schur basis

Note that e is left unchanged:

sage: e
Symmetric Functions over Integer Ring in the elementary basis

realizations()
Return all the realizations of self that self is aware of.

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.realizations()
[The subset algebra of {1, 2, 3} over Rational Field in the Fundamental␣
→˓basis, The subset algebra of {1, 2, 3} over Rational Field in the In␣
→˓basis, The subset algebra of {1, 2, 3} over Rational Field in the Out␣
→˓basis]

Note: Constructing a parent P in the category A.Realizations() automatically adds P to this
list by calling A._register_realization(A)

example(base_ring=None, set=None)
Return an example of set with multiple realizations, as per Category.example().

EXAMPLES:

sage: Sets().WithRealizations().example()
The subset algebra of {1, 2, 3} over Rational Field

sage: Sets().WithRealizations().example(ZZ, Set([1,2]))
The subset algebra of {1, 2} over Integer Ring

extra_super_categories()
A set with multiple realizations is a facade parent.

EXAMPLES:

sage: Sets().WithRealizations().extra_super_categories()
[Category of facade sets]
sage: Sets().WithRealizations().super_categories()
[Category of facade sets]

example(choice=None)
Return examples of objects of Sets(), as per Category.example().

EXAMPLES:

726 Chapter 4. Individual Categories



Category Framework, Release 9.7

sage: Sets().example()
Set of prime numbers (basic implementation)

sage: Sets().example("inherits")
Set of prime numbers

sage: Sets().example("facade")
Set of prime numbers (facade implementation)

sage: Sets().example("wrapper")
Set of prime numbers (wrapper implementation)

super_categories()
We include SetsWithPartialMaps between Sets and Objects so that we can define morphisms between sets
that are only partially defined. This is also to have the Homset constructor not complain that SetsWithPar-
tialMaps is not a supercategory of Fields, for example.

EXAMPLES:

sage: Sets().super_categories()
[Category of sets with partial maps]

sage.categories.sets_cat.print_compare(x, y)
Helper method used in Sets.ParentMethods._test_elements_eq_symmetric(), Sets.
ParentMethods._test_elements_eq_tranisitive().

INPUT:

• x – an element

• y – an element

EXAMPLES:

sage: from sage.categories.sets_cat import print_compare
sage: print_compare(1,2)
1 != 2
sage: print_compare(1,1)
1 == 1

4.144 Sets With a Grading

class sage.categories.sets_with_grading.SetsWithGrading(s=None)
Bases: sage.categories.category.Category

The category of sets with a grading.

A set with a grading is a set 𝑆 equipped with a grading by some other set 𝐼 (by default the set N of the non-
negative integers):

𝑆 =
⨄︁
𝑖∈𝐼

𝑆𝑖

where the graded components 𝑆𝑖 are (usually finite) sets. The grading function maps each element 𝑠 of 𝑆 to its
grade 𝑖, so that 𝑠 ∈ 𝑆𝑖.
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From implementation point of view, if the graded set is enumerated then each graded component should be
enumerated (there is a check in the method _test_graded_components()). The contrary needs not be true.

To implement this category, a parent must either implement graded_component() or subset(). If only
subset() is implemented, the first argument must be the grading for compatibility with graded_component().
Additionally either the parent must implement grading() or its elements must implement a method grade().
See the example sage.categories.examples.sets_with_grading.NonNegativeIntegers.

Finally, if the graded set is enumerated (see EnumeratedSets) then each graded component should be enumer-
ated. The contrary needs not be true.

EXAMPLES:

A typical example of a set with a grading is the set of non-negative integers graded by themselves:

sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N.category()
Category of facade infinite sets with grading
sage: N.grading_set()
Non negative integers

The grading function is given by N.grading:

sage: N.grading(4)
4

The graded component 𝑁𝑖 is the set with one element 𝑖:

sage: N.graded_component(grade=5)
{5}
sage: N.graded_component(grade=42)
{42}

Here are some information about this category:

sage: SetsWithGrading()
Category of sets with grading
sage: SetsWithGrading().super_categories()
[Category of sets]
sage: SetsWithGrading().all_super_categories()
[Category of sets with grading,
Category of sets,
Category of sets with partial maps,
Category of objects]

Todo:

• This should be moved to Sets().WithGrading().

• Should the grading set be a parameter for this category?

• Does the enumeration need to be compatible with the grading? Be careful that the fact that graded compo-
nents are allowed to be finite or infinite make the answer complicated.

class ParentMethods
Bases: object
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generating_series()
Default implementation for generating series.

OUTPUT:

A series, indexed by the grading set.

EXAMPLES:

sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N.generating_series()
1/(-z + 1)

graded_component(grade)
Return the graded component of self with grade grade.

The default implementation just calls the method subset() with the first argument grade.

EXAMPLES:

sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N.graded_component(3)
{3}

grading(elt)
Return the grading of the element elt of self.

This default implementation calls elt.grade().

EXAMPLES:

sage: N = SetsWithGrading().example(); N
Non negative integers
sage: N.grading(4)
4

grading_set()
Return the set self is graded by. By default, this is the set of non-negative integers.

EXAMPLES:

sage: SetsWithGrading().example().grading_set()
Non negative integers

subset(*args, **options)
Return the subset of self described by the given parameters.

See also:

-graded_component()

EXAMPLES:

sage: W = WeightedIntegerVectors([3,2,1]); W
Integer vectors weighted by [3, 2, 1]
sage: W.subset(4)
Integer vectors of 4 weighted by [3, 2, 1]
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super_categories()
EXAMPLES:

sage: SetsWithGrading().super_categories()
[Category of sets]

4.145 SetsWithPartialMaps

class sage.categories.sets_with_partial_maps.SetsWithPartialMaps(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category whose objects are sets and whose morphisms are maps that are allowed to raise a ValueError on
some inputs.

This category is equivalent to the category of pointed sets, via the equivalence sending an object X to X union
{error}, a morphism f to the morphism of pointed sets that sends x to f(x) if f does not raise an error on x, or to
error if it does.

EXAMPLES:

sage: SetsWithPartialMaps()
Category of sets with partial maps

sage: SetsWithPartialMaps().super_categories()
[Category of objects]

super_categories()
EXAMPLES:

sage: SetsWithPartialMaps().super_categories()
[Category of objects]

4.146 Shephard Groups

class sage.categories.shephard_groups.ShephardGroups(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of Shephard groups.

EXAMPLES:

sage: from sage.categories.shephard_groups import ShephardGroups
sage: C = ShephardGroups(); C
Category of shephard groups

super_categories()
EXAMPLES:

sage: from sage.categories.shephard_groups import ShephardGroups
sage: ShephardGroups().super_categories()
[Category of finite generalized coxeter groups]
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4.147 Simplicial Complexes

class sage.categories.simplicial_complexes.SimplicialComplexes(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of abstract simplicial complexes.

An abstract simplicial complex 𝐴 is a collection of sets 𝑋 such that:

• ∅ ∈ 𝐴,

• if 𝑋 ⊂ 𝑌 ∈ 𝐴, then 𝑋 ∈ 𝐴.

Todo: Implement the category of simplicial complexes considered as CW complexes and rename this to the
category of AbstractSimplicialComplexes with appropriate functors.

EXAMPLES:

sage: from sage.categories.simplicial_complexes import SimplicialComplexes
sage: C = SimplicialComplexes(); C
Category of simplicial complexes

class Connected(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of connected simplicial complexes.

EXAMPLES:

sage: from sage.categories.simplicial_complexes import SimplicialComplexes
sage: C = SimplicialComplexes().Connected()
sage: TestSuite(C).run()

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Category of finite simplicial complexes.

class ParentMethods
Bases: object

dimension()
Return the dimension of self.

EXAMPLES:

sage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]])
sage: S.dimension()
2

class ParentMethods
Bases: object

faces()
Return the faces of self.

EXAMPLES:
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sage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]])
sage: S.faces()
{-1: {()},
0: {(1,), (2,), (3,), (4,), (5,)},
1: {(1, 2), (1, 3), (1, 4), (2, 5), (3, 4), (4, 5)},
2: {(1, 3, 4)}}

facets()
Return the facets of self.

EXAMPLES:

sage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]])
sage: sorted(S.facets())
[(1, 2), (1, 3, 4), (2, 5), (4, 5)]

class SubcategoryMethods
Bases: object

Connected()
Return the full subcategory of the connected objects of self.

EXAMPLES:

sage: from sage.categories.simplicial_complexes import SimplicialComplexes
sage: SimplicialComplexes().Connected()
Category of connected simplicial complexes

super_categories()
Return the super categories of self.

EXAMPLES:

sage: from sage.categories.simplicial_complexes import SimplicialComplexes
sage: SimplicialComplexes().super_categories()
[Category of sets]

4.148 Simplicial Sets

class sage.categories.simplicial_sets.SimplicialSets(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of simplicial sets.

A simplicial set 𝑋 is a collection of sets 𝑋𝑖, indexed by the non-negative integers, together with maps

𝑑𝑖 : 𝑋𝑛 → 𝑋𝑛−1, 0 ≤ 𝑖 ≤ 𝑛 (face maps)
𝑠𝑗 : 𝑋𝑛 → 𝑋𝑛+1, 0 ≤ 𝑗 ≤ 𝑛 (degeneracy maps)

satisfying the simplicial identities:

𝑑𝑖𝑑𝑗 = 𝑑𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗−1𝑑𝑖 if 𝑖 < 𝑗

𝑑𝑗𝑠𝑗 = 1 = 𝑑𝑗+1𝑠𝑗

𝑑𝑖𝑠𝑗 = 𝑠𝑗𝑑𝑖−1 if 𝑖 > 𝑗 + 1

𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 if 𝑖 ≤ 𝑗
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Morphisms are sequences of maps 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 which commute with the face and degeneracy maps.

EXAMPLES:

sage: from sage.categories.simplicial_sets import SimplicialSets
sage: C = SimplicialSets(); C
Category of simplicial sets

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

Category of finite simplicial sets.

The objects are simplicial sets with finitely many non-degenerate simplices.

class Homsets(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

class Endset(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
Bases: object

one()
Return the identity morphism in Hom(𝑆, 𝑆).

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: Hom(T, T).identity()
Simplicial set endomorphism of Torus
Defn: Identity map

class ParentMethods
Bases: object

is_finite()
Return True if this simplicial set is finite, i.e., has a finite number of nondegenerate simplices.

EXAMPLES:

sage: simplicial_sets.Torus().is_finite()
True
sage: C5 = groups.misc.MultiplicativeAbelian([5])
sage: simplicial_sets.ClassifyingSpace(C5).is_finite()
False

is_pointed()
Return True if this simplicial set is pointed, i.e., has a base point.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex,␣
→˓SimplicialSet
sage: v = AbstractSimplex(0)
sage: w = AbstractSimplex(0)
sage: e = AbstractSimplex(1)
sage: X = SimplicialSet({e: (v, w)})

(continues on next page)
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sage: Y = SimplicialSet({e: (v, w)}, base_point=w)
sage: X.is_pointed()
False
sage: Y.is_pointed()
True

set_base_point(point)
Return a copy of this simplicial set in which the base point is set to point.

INPUT:
• point – a 0-simplex in this simplicial set

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex,␣
→˓SimplicialSet
sage: v = AbstractSimplex(0, name='v_0')
sage: w = AbstractSimplex(0, name='w_0')
sage: e = AbstractSimplex(1)
sage: X = SimplicialSet({e: (v, w)})
sage: Y = SimplicialSet({e: (v, w)}, base_point=w)
sage: Y.base_point()
w_0
sage: X_star = X.set_base_point(w)
sage: X_star.base_point()
w_0
sage: Y_star = Y.set_base_point(v)
sage: Y_star.base_point()
v_0

class Pointed(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

class ParentMethods
Bases: object

fat_wedge(n)
Return the 𝑛-th fat wedge of this pointed simplicial set.

This is the subcomplex of the 𝑛-fold product 𝑋𝑛 consisting of those points in which at least one
factor is the base point. Thus when 𝑛 = 2, this is the wedge of the simplicial set with itself, but
when 𝑛 is larger, the fat wedge is larger than the 𝑛-fold wedge.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: S1.fat_wedge(0)
Point
sage: S1.fat_wedge(1)
S^1
sage: S1.fat_wedge(2).fundamental_group()
Finitely presented group < e0, e1 | >
sage: S1.fat_wedge(4).homology()
{0: 0, 1: Z x Z x Z x Z, 2: Z^6, 3: Z x Z x Z x Z}
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smash_product(*others)
Return the smash product of this simplicial set with others.

INPUT:
• others – one or several simplicial sets
EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: RP2 = simplicial_sets.RealProjectiveSpace(2)
sage: X = S1.smash_product(RP2)
sage: X.homology(base_ring=GF(2))
{0: Vector space of dimension 0 over Finite Field of size 2,
1: Vector space of dimension 0 over Finite Field of size 2,
2: Vector space of dimension 1 over Finite Field of size 2,
3: Vector space of dimension 1 over Finite Field of size 2}

sage: T = S1.product(S1)
sage: X = T.smash_product(S1)
sage: X.homology(reduced=False)
{0: Z, 1: 0, 2: Z x Z, 3: Z}

unset_base_point()
Return a copy of this simplicial set in which the base point has been forgotten.

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex,␣
→˓SimplicialSet
sage: v = AbstractSimplex(0, name='v_0')
sage: w = AbstractSimplex(0, name='w_0')
sage: e = AbstractSimplex(1)
sage: Y = SimplicialSet({e: (v, w)}, base_point=w)
sage: Y.is_pointed()
True
sage: Y.base_point()
w_0
sage: Z = Y.unset_base_point()
sage: Z.is_pointed()
False

class ParentMethods
Bases: object

base_point()
Return this simplicial set’s base point

EXAMPLES:

sage: from sage.topology.simplicial_set import AbstractSimplex,␣
→˓SimplicialSet
sage: v = AbstractSimplex(0, name='*')
sage: e = AbstractSimplex(1)
sage: S1 = SimplicialSet({e: (v, v)}, base_point=v)
sage: S1.is_pointed()
True

(continues on next page)
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sage: S1.base_point()
*

base_point_map(domain=None)
Return a map from a one-point space to this one, with image the base point.

This raises an error if this simplicial set does not have a base point.

INPUT:
• domain – optional, default None. Use this to specify a particular one-point space as the domain.

The default behavior is to use the sage.topology.simplicial_set.Point() function to
use a standard one-point space.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: f = T.base_point_map(); f
Simplicial set morphism:
From: Point
To: Torus
Defn: Constant map at (v_0, v_0)

sage: S3 = simplicial_sets.Sphere(3)
sage: g = S3.base_point_map()
sage: f.domain() == g.domain()
True
sage: RP3 = simplicial_sets.RealProjectiveSpace(3)
sage: temp = simplicial_sets.Simplex(0)
sage: pt = temp.set_base_point(temp.n_cells(0)[0])
sage: h = RP3.base_point_map(domain=pt)
sage: f.domain() == h.domain()
False

sage: C5 = groups.misc.MultiplicativeAbelian([5])
sage: BC5 = simplicial_sets.ClassifyingSpace(C5)
sage: BC5.base_point_map()
Simplicial set morphism:
From: Point
To: Classifying space of Multiplicative Abelian group isomorphic to␣

→˓C5
Defn: Constant map at 1

connectivity(max_dim=None)
Return the connectivity of this pointed simplicial set.

INPUT:
• max_dim – specify a maximum dimension through which to check. This is required if this

simplicial set is simply connected and not finite.
The dimension of the first nonzero homotopy group. If simply connected, this is the same as the
dimension of the first nonzero homology group.

Warning: See the warning for the is_simply_connected() method.

The connectivity of a contractible space is +Infinity.

EXAMPLES:
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sage: simplicial_sets.Sphere(3).connectivity()
2
sage: simplicial_sets.Sphere(0).connectivity()
-1
sage: K = simplicial_sets.Simplex(4)
sage: K = K.set_base_point(K.n_cells(0)[0])
sage: K.connectivity()
+Infinity
sage: X = simplicial_sets.Torus().suspension(2)
sage: X.connectivity()
2

sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = simplicial_sets.ClassifyingSpace(C2)
sage: BC2.connectivity()
0

fundamental_group(simplify=True)
Return the fundamental group of this pointed simplicial set.

INPUT:
• simplify (bool, optional True) – if False, then return a presentation of the group in terms of

generators and relations. If True, the default, simplify as much as GAP is able to.
Algorithm: we compute the edge-path group – see Section 19 of [Kan1958] and Wikipedia arti-
cle Fundamental_group. Choose a spanning tree for the connected component of the 1-skeleton
containing the base point, and then the group’s generators are given by the non-degenerate edges.
There are two types of relations: 𝑒 = 1 if 𝑒 is in the spanning tree, and for every 2-simplex, if its
faces are 𝑒0, 𝑒1, and 𝑒2, then we impose the relation 𝑒0𝑒

−1
1 𝑒2 = 1, where we first set 𝑒𝑖 = 1 if 𝑒𝑖

is degenerate.

EXAMPLES:

sage: S1 = simplicial_sets.Sphere(1)
sage: eight = S1.wedge(S1)
sage: eight.fundamental_group() # free group on 2 generators
Finitely presented group < e0, e1 | >

The fundamental group of a disjoint union of course depends on the choice of base point:

sage: T = simplicial_sets.Torus()
sage: K = simplicial_sets.KleinBottle()
sage: X = T.disjoint_union(K)

sage: X_0 = X.set_base_point(X.n_cells(0)[0])
sage: X_0.fundamental_group().is_abelian()
True
sage: X_1 = X.set_base_point(X.n_cells(0)[1])
sage: X_1.fundamental_group().is_abelian()
False

sage: RP3 = simplicial_sets.RealProjectiveSpace(3)
sage: RP3.fundamental_group()
Finitely presented group < e | e^2 >

Compute the fundamental group of some classifying spaces:
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sage: C5 = groups.misc.MultiplicativeAbelian([5])
sage: BC5 = C5.nerve()
sage: BC5.fundamental_group()
Finitely presented group < e0 | e0^5 >

sage: Sigma3 = groups.permutation.Symmetric(3)
sage: BSigma3 = Sigma3.nerve()
sage: pi = BSigma3.fundamental_group(); pi
Finitely presented group < e0, e1 | e0^2, e1^3, (e0*e1^-1)^2 >
sage: pi.order()
6
sage: pi.is_abelian()
False

The sphere has a trivial fundamental group:

sage: S2 = simplicial_sets.Sphere(2)
sage: S2.fundamental_group()
Finitely presented group < | >

is_simply_connected()
Return True if this pointed simplicial set is simply connected.

Warning: Determining simple connectivity is not always possible, because it requires deter-
mining when a group, as given by generators and relations, is trivial. So this conceivably may
give a false negative in some cases.

EXAMPLES:

sage: T = simplicial_sets.Torus()
sage: T.is_simply_connected()
False
sage: T.suspension().is_simply_connected()
True
sage: simplicial_sets.KleinBottle().is_simply_connected()
False

sage: S2 = simplicial_sets.Sphere(2)
sage: S3 = simplicial_sets.Sphere(3)
sage: (S2.wedge(S3)).is_simply_connected()
True
sage: X = S2.disjoint_union(S3)
sage: X = X.set_base_point(X.n_cells(0)[0])
sage: X.is_simply_connected()
False

sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: BC3 = simplicial_sets.ClassifyingSpace(C3)
sage: BC3.is_simply_connected()
False
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class SubcategoryMethods
Bases: object

Pointed()
A simplicial set is pointed if it has a distinguished base point.

EXAMPLES:

sage: from sage.categories.simplicial_sets import SimplicialSets
sage: SimplicialSets().Pointed().Finite()
Category of finite pointed simplicial sets
sage: SimplicialSets().Finite().Pointed()
Category of finite pointed simplicial sets

super_categories()
EXAMPLES:

sage: from sage.categories.simplicial_sets import SimplicialSets
sage: SimplicialSets().super_categories()
[Category of sets]

4.149 Super Algebras

class sage.categories.super_algebras.SuperAlgebras(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super algebras.

An 𝑅-super algebra is an 𝑅-super module 𝐴 endowed with an 𝑅-algebra structure satisfying

𝐴0𝐴0 ⊆ 𝐴0, 𝐴0𝐴1 ⊆ 𝐴1, 𝐴1𝐴0 ⊆ 𝐴1, 𝐴1𝐴1 ⊆ 𝐴0

and 1 ∈ 𝐴0.

EXAMPLES:

sage: Algebras(ZZ).Super()
Category of super algebras over Integer Ring

class ParentMethods
Bases: object

graded_algebra()
Return the associated graded algebra to self.

Warning: Because a super module 𝑀 is naturally Z/2Z-graded, and graded modules have a
natural filtration induced by the grading, if 𝑀 has a different filtration, then the associated graded
module gr𝑀 ̸= 𝑀 . This is most apparent with super algebras, such as the differential Weyl
algebra, and the multiplication may not coincide.

tensor(*parents, **kwargs)
Return the tensor product of the parents.

EXAMPLES:
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sage: A.<x,y,z> = ExteriorAlgebra(ZZ); A.rename("A")
sage: T = A.tensor(A,A); T
A # A # A
sage: T in Algebras(ZZ).Graded().SignedTensorProducts()
True
sage: T in Algebras(ZZ).Graded().TensorProducts()
False
sage: A.rename(None)

This also works when the other elements do not have a signed tensor product (trac ticket #31266):

sage: a = SteenrodAlgebra(3).an_element()
sage: M = CombinatorialFreeModule(GF(3), ['s', 't', 'u'])
sage: s = M.basis()['s']
sage: tensor([a, s])
2*Q_1 Q_3 P(2,1) # B['s']

class SignedTensorProducts(category, *args)
Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

extra_super_categories()
EXAMPLES:

sage: Coalgebras(QQ).Graded().SignedTensorProducts().extra_super_
→˓categories()
[Category of graded coalgebras over Rational Field]
sage: Coalgebras(QQ).Graded().SignedTensorProducts().super_categories()
[Category of graded coalgebras over Rational Field]

Meaning: a signed tensor product of coalgebras is a coalgebra

class SubcategoryMethods
Bases: object

Supercommutative()
Return the full subcategory of the supercommutative objects of self.

A super algebra 𝑀 is supercommutative if, for all homogeneous 𝑥, 𝑦 ∈𝑀 ,

𝑥 · 𝑦 = (−1)|𝑥||𝑦|𝑦 · 𝑥.

REFERENCES:

Wikipedia article Supercommutative_algebra

EXAMPLES:

sage: Algebras(ZZ).Super().Supercommutative()
Category of supercommutative algebras over Integer Ring
sage: Algebras(ZZ).Super().WithBasis().Supercommutative()
Category of supercommutative algebras with basis over Integer Ring

Supercommutative
alias of sage.categories.supercommutative_algebras.SupercommutativeAlgebras

extra_super_categories()
EXAMPLES:

740 Chapter 4. Individual Categories

https://trac.sagemath.org/31266
https://en.wikipedia.org/wiki/Supercommutative_algebra


Category Framework, Release 9.7

sage: Algebras(ZZ).Super().super_categories() # indirect doctest
[Category of graded algebras over Integer Ring,
Category of super modules over Integer Ring]

4.150 Super algebras with basis

class sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super algebras with a distinguished basis

EXAMPLES:

sage: C = Algebras(ZZ).WithBasis().Super(); C
Category of super algebras with basis over Integer Ring

class ElementMethods
Bases: object

supercommutator(x)
Return the supercommutator of self and x.

Let 𝐴 be a superalgebra. The supercommutator of homogeneous elements 𝑥, 𝑦 ∈ 𝐴 is defined by

[𝑥, 𝑦} = 𝑥𝑦 − (−1)|𝑥||𝑦|𝑦𝑥

and extended to all elements by linearity.

EXAMPLES:

sage: Q = QuadraticForm(ZZ, 3, [1,2,3,4,5,6])
sage: Cl.<x,y,z> = CliffordAlgebra(Q)
sage: a = x*y - z
sage: b = x - y + y*z
sage: a.supercommutator(b)
-5*x*y + 8*x*z - 2*y*z - 6*x + 12*y - 5*z
sage: a.supercommutator(Cl.one())
0
sage: Cl.one().supercommutator(a)
0
sage: Cl.zero().supercommutator(a)
0
sage: a.supercommutator(Cl.zero())
0

sage: Q = QuadraticForm(ZZ, 2, [-1,1,-3])
sage: Cl.<x,y> = CliffordAlgebra(Q)
sage: [a.supercommutator(b) for a in Cl.basis() for b in Cl.basis()]
[0, 0, 0, 0, 0, -2, 1, -x - 2*y, 0, 1,
-6, 6*x + y, 0, x + 2*y, -6*x - y, 0]
sage: [a*b-b*a for a in Cl.basis() for b in Cl.basis()]
[0, 0, 0, 0, 0, 0, 2*x*y - 1, -x - 2*y, 0,
-2*x*y + 1, 0, 6*x + y, 0, x + 2*y, -6*x - y, 0]
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Exterior algebras inherit from Clifford algebras, so supercommutators work as well. We verify the
exterior algebra is supercommutative:

sage: E.<x,y,z,w> = ExteriorAlgebra(QQ)
sage: all(b1.supercommutator(b2) == 0
....: for b1 in E.basis() for b2 in E.basis())
True

class ParentMethods
Bases: object

graded_algebra()
Return the associated graded module to self.

See AssociatedGradedAlgebra for the definition and the properties of this.

See also:

graded_algebra()

EXAMPLES:

sage: W.<x,y> = algebras.DifferentialWeyl(QQ)
sage: W.graded_algebra()
Graded Algebra of Differential Weyl algebra of
polynomials in x, y over Rational Field

class SignedTensorProducts(category, *args)
Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

The category of super algebras with basis constructed by tensor product of super algebras with basis.

extra_super_categories()
EXAMPLES:

sage: Algebras(QQ).Super().SignedTensorProducts().extra_super_categories()
[Category of super algebras over Rational Field]
sage: Algebras(QQ).Super().SignedTensorProducts().super_categories()
[Category of signed tensor products of graded algebras over Rational Field,
Category of super algebras over Rational Field]

Meaning: a signed tensor product of super algebras is a super algebra

extra_super_categories()
EXAMPLES:

sage: C = Algebras(ZZ).WithBasis().Super()
sage: sorted(C.super_categories(), key=str) # indirect doctest
[Category of graded algebras with basis over Integer Ring,
Category of super algebras over Integer Ring,
Category of super modules with basis over Integer Ring]
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4.151 Super Hopf algebras with basis

class sage.categories.super_hopf_algebras_with_basis.SuperHopfAlgebrasWithBasis(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super Hopf algebras with a distinguished basis.

EXAMPLES:

sage: C = HopfAlgebras(ZZ).WithBasis().Super(); C
Category of super hopf algebras with basis over Integer Ring
sage: sorted(C.super_categories(), key=str)
[Category of super algebras with basis over Integer Ring,
Category of super coalgebras with basis over Integer Ring,
Category of super hopf algebras over Integer Ring]

class ParentMethods
Bases: object

antipode()
The antipode of this Hopf algebra.

If antipode_basis() is available, this constructs the antipode morphism from self to self by
extending it by linearity. Otherwise, self.antipode_by_coercion() is used, if available.

EXAMPLES:

sage: A = SteenrodAlgebra(7)
sage: a = A.an_element()
sage: a, A.antipode(a)
(6 Q_1 Q_3 P(2,1), Q_1 Q_3 P(2,1))

4.152 Super Lie Conformal Algebras

AUTHORS:

• Reimundo Heluani (2019-10-05): Initial implementation.

class sage.categories.super_lie_conformal_algebras.SuperLieConformalAlgebras(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super Lie conformal algebras.

EXAMPLES:

sage: LieConformalAlgebras(AA).Super()
Category of super Lie conformal algebras over Algebraic Real Field

Notice that we can force to have a purely even super Lie conformal algebra:

sage: bosondict = {('a','a'):{1:{('K',0):1}}}
sage: R = LieConformalAlgebra(QQ,bosondict,names=('a',),
....: central_elements=('K',), super=True)
sage: [g.is_even_odd() for g in R.gens()]
[0, 0]
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class ElementMethods
Bases: object

is_even_odd()
Return 0 if this element is even and 1 if it is odd.

EXAMPLES:

sage: R = lie_conformal_algebras.NeveuSchwarz(QQ);
sage: R.inject_variables()
Defining L, G, C
sage: G.is_even_odd()
1

class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

The category of H-graded super Lie conformal algebras.

EXAMPLES:

sage: LieConformalAlgebras(AA).Super().Graded()
Category of H-graded super Lie conformal algebras over Algebraic Real Field

class ParentMethods
Bases: object

example()
An example parent in this category.

EXAMPLES:

sage: LieConformalAlgebras(QQ).Super().example()
The Neveu-Schwarz super Lie conformal algebra over Rational Field

extra_super_categories()
The extra super categories of self.

EXAMPLES:

sage: LieConformalAlgebras(QQ).Super().super_categories()
[Category of super modules over Rational Field,
Category of Lambda bracket algebras over Rational Field]

4.153 Super modules

class sage.categories.super_modules.SuperModules(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super modules.

An 𝑅-super module (where 𝑅 is a ring) is an 𝑅-module 𝑀 equipped with a decomposition 𝑀 = 𝑀0⊕𝑀1 into
two 𝑅-submodules 𝑀0 and 𝑀1 (called the even part and the odd part of 𝑀 , respectively).

Thus, an 𝑅-super module automatically becomes a Z/2Z-graded 𝑅-module, with 𝑀0 being the degree-0 com-
ponent and 𝑀1 being the degree-1 component.

EXAMPLES:

744 Chapter 4. Individual Categories



Category Framework, Release 9.7

sage: Modules(ZZ).Super()
Category of super modules over Integer Ring
sage: Modules(ZZ).Super().super_categories()
[Category of graded modules over Integer Ring]

The category of super modules defines the super structure which shall be preserved by morphisms:

sage: Modules(ZZ).Super().additional_structure()
Category of super modules over Integer Ring

class ElementMethods
Bases: object

is_even()
Return if self is an even element.

EXAMPLES:

sage: cat = Algebras(QQ).WithBasis().Super()
sage: C = CombinatorialFreeModule(QQ, Partitions(), category=cat)
sage: C.degree_on_basis = sum
sage: C.basis()[2,2,1].is_even()
False
sage: C.basis()[2,2].is_even()
True

is_even_odd()
Return 0 if self is an even element or 1 if an odd element.

Note: The default implementation assumes that the even/odd is determined by the parity of degree().

Overwrite this method if the even/odd behavior is desired to be independent.

EXAMPLES:

sage: cat = Algebras(QQ).WithBasis().Super()
sage: C = CombinatorialFreeModule(QQ, Partitions(), category=cat)
sage: C.degree_on_basis = sum
sage: C.basis()[2,2,1].is_even_odd()
1
sage: C.basis()[2,2].is_even_odd()
0

is_odd()
Return if self is an odd element.

EXAMPLES:

sage: cat = Algebras(QQ).WithBasis().Super()
sage: C = CombinatorialFreeModule(QQ, Partitions(), category=cat)
sage: C.degree_on_basis = sum
sage: C.basis()[2,2,1].is_odd()
True
sage: C.basis()[2,2].is_odd()
False
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class ParentMethods
Bases: object

extra_super_categories()
Adds VectorSpaces to the super categories of self if the base ring is a field.

EXAMPLES:

sage: Modules(QQ).Super().extra_super_categories()
[Category of vector spaces over Rational Field]
sage: Modules(ZZ).Super().extra_super_categories()
[]

This makes sure that Modules(QQ).Super() returns an instance of SuperModules and not a join category
of an instance of this class and of VectorSpaces(QQ):

sage: type(Modules(QQ).Super())
<class 'sage.categories.super_modules.SuperModules_with_category'>

Todo: Get rid of this workaround once there is a more systematic approach for the alias Modules(QQ)
-> VectorSpaces(QQ). Probably the latter should be a category with axiom, and covariant constructions
should play well with axioms.

super_categories()
EXAMPLES:

sage: Modules(ZZ).Super().super_categories()
[Category of graded modules over Integer Ring]

Nota bene:

sage: Modules(QQ).Super()
Category of super modules over Rational Field
sage: Modules(QQ).Super().super_categories()
[Category of graded modules over Rational Field]

class sage.categories.super_modules.SuperModulesCategory(base_category)
Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory,
sage.categories.category_types.Category_over_base_ring

EXAMPLES:

sage: C = Algebras(QQ).Super()
sage: C
Category of super algebras over Rational Field
sage: C.base_category()
Category of algebras over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of graded algebras over Rational Field,
Category of super modules over Rational Field]

sage: AlgebrasWithBasis(QQ).Super().base_ring()
Rational Field
sage: HopfAlgebrasWithBasis(QQ).Super().base_ring()
Rational Field
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classmethod default_super_categories(category, *args)
Return the default super categories of 𝐹𝐶𝑎𝑡(𝐴,𝐵, ...) for 𝐴,𝐵, ... parents in 𝐶𝑎𝑡.

INPUT:

• cls – the category class for the functor 𝐹

• category – a category 𝐶𝑎𝑡

• *args – further arguments for the functor

OUTPUT:

A join category.

This implements the property that subcategories constructed by the set of whitelisted axioms is a subcate-
gory.

EXAMPLES:

sage: HopfAlgebras(ZZ).WithBasis().FiniteDimensional().Super() # indirect␣
→˓doctest
Category of finite dimensional super hopf algebras with basis over Integer Ring

4.154 Super modules with basis

class sage.categories.super_modules_with_basis.SuperModulesWithBasis(base_category)
Bases: sage.categories.super_modules.SuperModulesCategory

The category of super modules with a distinguished basis.

An 𝑅-super module with a distinguished basis is an 𝑅-super module equipped with an 𝑅-module basis whose
elements are homogeneous.

EXAMPLES:

sage: C = GradedModulesWithBasis(QQ); C
Category of graded vector spaces with basis over Rational Field
sage: sorted(C.super_categories(), key=str)
[Category of filtered vector spaces with basis over Rational Field,
Category of graded modules with basis over Rational Field,
Category of graded vector spaces over Rational Field]
sage: C is ModulesWithBasis(QQ).Graded()
True

class ElementMethods
Bases: object

even_component()
Return the even component of self.

EXAMPLES:

sage: Q = QuadraticForm(QQ, 2, [1,2,3])
sage: C.<x,y> = CliffordAlgebra(Q)
sage: a = x*y + x - 3*y + 4
sage: a.even_component()
x*y + 4
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is_even_odd()
Return 0 if self is an even element and 1 if self is an odd element.

EXAMPLES:

sage: Q = QuadraticForm(QQ, 2, [1,2,3])
sage: C.<x,y> = CliffordAlgebra(Q)
sage: a = x + y
sage: a.is_even_odd()
1
sage: a = x*y + 4
sage: a.is_even_odd()
0
sage: a = x + 4
sage: a.is_even_odd()
Traceback (most recent call last):
...
ValueError: element is not homogeneous

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: (x*y).is_even_odd()
0

is_super_homogeneous()
Return whether this element is homogeneous, in the sense of a super module (i.e., is even or odd).

EXAMPLES:

sage: Q = QuadraticForm(QQ, 2, [1,2,3])
sage: C.<x,y> = CliffordAlgebra(Q)
sage: a = x + y
sage: a.is_super_homogeneous()
True
sage: a = x*y + 4
sage: a.is_super_homogeneous()
True
sage: a = x*y + x - 3*y + 4
sage: a.is_super_homogeneous()
False

The exterior algebra has a Z grading, which induces the Z/2Z grading. However the definition of
homogeneous elements differs because of the different gradings:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: a = x*y + 4
sage: a.is_super_homogeneous()
True
sage: a.is_homogeneous()
False

odd_component()
Return the odd component of self.

EXAMPLES:
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sage: Q = QuadraticForm(QQ, 2, [1,2,3])
sage: C.<x,y> = CliffordAlgebra(Q)
sage: a = x*y + x - 3*y + 4
sage: a.odd_component()
x - 3*y

class ParentMethods
Bases: object

4.155 Supercommutative Algebras

class sage.categories.supercommutative_algebras.SupercommutativeAlgebras(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of supercommutative algebras.

An 𝑅-supercommutative algebra is an 𝑅-super algebra 𝐴 = 𝐴0⊕𝐴1 endowed with an 𝑅-super algebra structure
satisfying:

𝑥0𝑥
′
0 = 𝑥′

0𝑥0, 𝑥1𝑥
′
1 = −𝑥′

1𝑥1, 𝑥0𝑥1 = 𝑥1𝑥0,

for all 𝑥0, 𝑥
′
0 ∈ 𝐴0 and 𝑥1, 𝑥

′
1 ∈ 𝐴1.

EXAMPLES:

sage: Algebras(ZZ).Supercommutative()
Category of supercommutative algebras over Integer Ring

class SignedTensorProducts(category, *args)
Bases: sage.categories.signed_tensor.SignedTensorProductsCategory

extra_super_categories()
Return the extra super categories of self.

A signed tensor product of supercommutative algebras is a supercommutative algebra.

EXAMPLES:

sage: C = Algebras(ZZ).Supercommutative().SignedTensorProducts()
sage: C.extra_super_categories()
[Category of supercommutative algebras over Integer Ring]

class WithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ParentMethods
Bases: object
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4.156 Supercrystals

class sage.categories.supercrystals.SuperCrystals(s=None)
Bases: sage.categories.category_singleton.Category_singleton

class Finite(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class ElementMethods
Bases: object

is_genuine_highest_weight(index_set=None)
Return whether self is a genuine highest weight element.

INPUT:
• index_set – (optional) the index set of the (sub)crystal on which to check
EXAMPLES:

sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: for b in B.highest_weight_vectors():
....: print("{} {}".format(b, b.is_genuine_highest_weight()))
[[-2, -2, -2], [-1, -1], [1]] True
[[-2, -2, -2], [-1, 2], [1]] False
[[-2, -2, 2], [-1, -1], [1]] False
sage: [b for b in B if b.is_genuine_highest_weight([-1,0])]
[[[-2, -2, -2], [-1, -1], [1]],
[[-2, -2, -2], [-1, -1], [2]],
[[-2, -2, -2], [-1, 2], [2]],
[[-2, -2, 2], [-1, -1], [2]],
[[-2, -2, 2], [-1, 2], [2]],
[[-2, -2, -2], [-1, 2], [1]],
[[-2, -2, 2], [-1, -1], [1]],
[[-2, -2, 2], [-1, 2], [1]]]

is_genuine_lowest_weight(index_set=None)
Return whether self is a genuine lowest weight element.

INPUT:
• index_set – (optional) the index set of the (sub)crystal on which to check
EXAMPLES:

sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: for b in sorted(B.lowest_weight_vectors()):
....: print("{} {}".format(b, b.is_genuine_lowest_weight()))
[[-2, 1, 2], [-1, 2], [1]] False
[[-2, 1, 2], [-1, 2], [2]] False
[[-1, 1, 2], [1, 2], [2]] True
sage: [b for b in B if b.is_genuine_lowest_weight([-1,0])]
[[[-2, -1, 1], [-1, 1], [1]],
[[-2, -1, 1], [-1, 1], [2]],
[[-2, 1, 2], [-1, 1], [2]],
[[-2, 1, 2], [-1, 1], [1]],
[[-1, -1, 1], [1, 2], [2]],
[[-1, -1, 1], [1, 2], [1]],
[[-1, 1, 2], [1, 2], [2]],
[[-1, 1, 2], [1, 2], [1]]]
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class ParentMethods
Bases: object

character()
Return the character of self.

Todo: Once the 𝑊𝑒𝑦𝑙𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑅𝑖𝑛𝑔 is implemented, make this consistent with the implemen-
tation in sage.categories.classical_crystals.ClassicalCrystals.ParentMethods.
character().

EXAMPLES:

sage: B = crystals.Letters(['A',[1,2]])
sage: B.character()
B[(1, 0, 0, 0, 0)] + B[(0, 1, 0, 0, 0)] + B[(0, 0, 1, 0, 0)]
+ B[(0, 0, 0, 1, 0)] + B[(0, 0, 0, 0, 1)]

connected_components()
Return the connected components of self as subcrystals.

EXAMPLES:

sage: B = crystals.Letters(['A', [1,2]])
sage: B.connected_components()
[Subcrystal of The crystal of letters for type ['A', [1, 2]]]

sage: T = B.tensor(B)
sage: T.connected_components()
[Subcrystal of Full tensor product of the crystals
[The crystal of letters for type ['A', [1, 2]],
The crystal of letters for type ['A', [1, 2]]],

Subcrystal of Full tensor product of the crystals
[The crystal of letters for type ['A', [1, 2]],
The crystal of letters for type ['A', [1, 2]]]]

connected_components_generators()
Return the tuple of genuine highest weight elements of self.

EXAMPLES:

sage: B = crystals.Letters(['A', [1,2]])
sage: B.genuine_highest_weight_vectors()
(-2,)

sage: T = B.tensor(B)
sage: T.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])
sage: s1, s2 = T.connected_components()
sage: s = s1 + s2
sage: s.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])

digraph(index_set=None)
Return the DiGraph associated to self.

EXAMPLES:
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sage: B = crystals.Letters(['A', [1,3]])
sage: G = B.digraph(); G
Multi-digraph on 6 vertices
sage: Q = crystals.Letters(['Q',3])
sage: G = Q.digraph(); G
Multi-digraph on 3 vertices
sage: G.edges(sort=True)
[(1, 2, -1), (1, 2, 1), (2, 3, -2), (2, 3, 2)]

The edges of the crystal graph are by default colored using blue for edge 1, red for edge 2, green
for edge 3, and dashed with the corresponding color for barred edges. Edge 0 is dotted black:

sage: view(G) # optional - dot2tex graphviz, not tested (opens external␣
→˓window)

genuine_highest_weight_vectors()
Return the tuple of genuine highest weight elements of self.

EXAMPLES:

sage: B = crystals.Letters(['A', [1,2]])
sage: B.genuine_highest_weight_vectors()
(-2,)

sage: T = B.tensor(B)
sage: T.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])
sage: s1, s2 = T.connected_components()
sage: s = s1 + s2
sage: s.genuine_highest_weight_vectors()
([-2, -1], [-2, -2])

genuine_lowest_weight_vectors()
Return the tuple of genuine lowest weight elements of self.

EXAMPLES:

sage: B = crystals.Letters(['A', [1,2]])
sage: B.genuine_lowest_weight_vectors()
(3,)

sage: T = B.tensor(B)
sage: T.genuine_lowest_weight_vectors()
([3, 3], [3, 2])
sage: s1, s2 = T.connected_components()
sage: s = s1 + s2
sage: s.genuine_lowest_weight_vectors()
([3, 3], [3, 2])

highest_weight_vectors()
Return the highest weight vectors of self.

EXAMPLES:
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sage: B = crystals.Letters(['A', [1,2]])
sage: B.highest_weight_vectors()
(-2,)

sage: T = B.tensor(B)
sage: T.highest_weight_vectors()
([-2, -2], [-2, -1])

We give an example from [BKK2000] that has fake highest weight vectors:

sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: B.highest_weight_vectors()
([[-2, -2, -2], [-1, -1], [1]],
[[-2, -2, -2], [-1, 2], [1]],
[[-2, -2, 2], [-1, -1], [1]])
sage: B.genuine_highest_weight_vectors()
([[-2, -2, -2], [-1, -1], [1]],)

lowest_weight_vectors()
Return the lowest weight vectors of self.

EXAMPLES:

sage: B = crystals.Letters(['A', [1,2]])
sage: B.lowest_weight_vectors()
(3,)

sage: T = B.tensor(B)
sage: sorted(T.lowest_weight_vectors())
[[3, 2], [3, 3]]

We give an example from [BKK2000] that has fake lowest weight vectors:

sage: B = crystals.Tableaux(['A', [1,1]], shape=[3,2,1])
sage: sorted(B.lowest_weight_vectors())
[[[-2, 1, 2], [-1, 2], [1]],
[[-2, 1, 2], [-1, 2], [2]],
[[-1, 1, 2], [1, 2], [2]]]
sage: B.genuine_lowest_weight_vectors()
([[-1, 1, 2], [1, 2], [2]],)

class ParentMethods
Bases: object

tensor(*crystals, **options)
Return the tensor product of self with the crystals B.

EXAMPLES:

sage: B = crystals.Letters(['A',[1,2]])
sage: C = crystals.Tableaux(['A',[1,2]], shape = [2,1])
sage: T = C.tensor(B); T
Full tensor product of the crystals [Crystal of BKK tableaux of shape [2,␣
→˓1] of gl(2|3),
The crystal of letters for type ['A', [1, 2]]]

(continues on next page)
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(continued from previous page)

sage: S = B.tensor(C); S
Full tensor product of the crystals [The crystal of letters for type ['A',␣
→˓[1, 2]],
Crystal of BKK tableaux of shape [2, 1] of gl(2|3)]
sage: G = T.digraph()
sage: H = S.digraph()
sage: G.is_isomorphic(H, edge_labels= True)
True

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

The category of regular crystals constructed by tensor product of regular crystals.

extra_super_categories()
EXAMPLES:

sage: from sage.categories.supercrystals import SuperCrystals
sage: SuperCrystals().TensorProducts().extra_super_categories()
[Category of super crystals]

super_categories()
EXAMPLES:

sage: from sage.categories.supercrystals import SuperCrystals
sage: C = SuperCrystals()
sage: C.super_categories()
[Category of crystals]

4.157 Topological Spaces

class sage.categories.topological_spaces.TopologicalSpaces(category, *args)
Bases: sage.categories.topological_spaces.TopologicalSpacesCategory

The category of topological spaces.

EXAMPLES:

sage: Sets().Topological()
Category of topological spaces
sage: Sets().Topological().super_categories()
[Category of sets]

The category of topological spaces defines the topological structure, which shall be preserved by morphisms:

sage: Sets().Topological().additional_structure()
Category of topological spaces

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a (finite) Cartesian product of topological spaces is a topological space.
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EXAMPLES:

sage: from sage.categories.topological_spaces import TopologicalSpaces
sage: C = TopologicalSpaces().CartesianProducts()
sage: C.extra_super_categories()
[Category of topological spaces]
sage: C.super_categories()
[Category of Cartesian products of sets, Category of topological spaces]
sage: C.axioms()
frozenset()

class Compact(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of compact topological spaces.

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a (finite) Cartesian product of compact topological spaces is compact.

EXAMPLES:

sage: from sage.categories.topological_spaces import TopologicalSpaces
sage: C = TopologicalSpaces().Compact().CartesianProducts()
sage: C.extra_super_categories()
[Category of compact topological spaces]
sage: C.super_categories()
[Category of Cartesian products of topological spaces,
Category of compact topological spaces]
sage: C.axioms()
frozenset({'Compact'})

class Connected(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of connected topological spaces.

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
Implement the fact that a (finite) Cartesian product of connected topological spaces is connected.

EXAMPLES:

sage: from sage.categories.topological_spaces import TopologicalSpaces
sage: C = TopologicalSpaces().Connected().CartesianProducts()
sage: C.extra_super_categories()
[Category of connected topological spaces]
sage: C.super_categories()
[Category of Cartesian products of topological spaces,
Category of connected topological spaces]
sage: C.axioms()
frozenset({'Connected'})

class SubcategoryMethods
Bases: object
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Compact()
Return the subcategory of the compact objects of self.

EXAMPLES:

sage: Sets().Topological().Compact()
Category of compact topological spaces

Connected()
Return the full subcategory of the connected objects of self.

EXAMPLES:

sage: Sets().Topological().Connected()
Category of connected topological spaces

class sage.categories.topological_spaces.TopologicalSpacesCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

4.158 Kac-Moody Algebras With Triangular Decomposition Basis

AUTHORS:

• Travis Scrimshaw (07-15-2017): Initial implementation

class sage.categories.triangular_kac_moody_algebras.TriangularKacMoodyAlgebras(base,
name=None)

Bases: sage.categories.category_types.Category_over_base_ring

Category of Kac-Moody algebras with a distinguished basis that respects the triangular decomposition.

We require that the grading group is the root lattice of the appropriate Cartan type.

class ElementMethods
Bases: object

part()
Return whether the element v is in the lower, zero, or upper part of self.

OUTPUT:

−1 if v is in the lower part, 0 if in the zero part, or 1 if in the upper part

EXAMPLES:

sage: L = LieAlgebra(QQ, cartan_type="F4")
sage: L.inject_variables()
Defining e1, e2, e3, e4, f1, f2, f3, f4, h1, h2, h3, h4
sage: e1.part()
1
sage: f4.part()
-1
sage: (h2 + h3).part()
0
sage: (f1.bracket(f2) + 4*f4).part()
-1
sage: (e1 + f1).part()
Traceback (most recent call last):

(continues on next page)
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(continued from previous page)

...
ValueError: element is not in one part

class ParentMethods
Bases: object

e(i=None)
Return the generators 𝑒 of self.

INPUT:
• i – (optional) if specified, return just the generator 𝑒𝑖

EXAMPLES:

sage: L = lie_algebras.so(QQ, 5)
sage: L.e()
Finite family {1: E[alpha[1]], 2: E[alpha[2]]}
sage: L.e(1)
E[alpha[1]]

f(i=None)
Return the generators 𝑓 of self.

INPUT:
• i – (optional) if specified, return just the generator 𝑓𝑖

EXAMPLES:

sage: L = lie_algebras.so(QQ, 5)
sage: L.f()
Finite family {1: E[-alpha[1]], 2: E[-alpha[2]]}
sage: L.f(1)
E[-alpha[1]]

verma_module(la, basis_key=None, **kwds)
Return the Verma module with highest weight la over self.

INPUT:
• basis_key – (optional) a key function for the indexing set of the basis elements of self

EXAMPLES:

sage: L = lie_algebras.sl(QQ, 3)
sage: P = L.cartan_type().root_system().weight_lattice()
sage: La = P.fundamental_weights()
sage: M = L.verma_module(La[1]+La[2])
sage: M
Verma module with highest weight Lambda[1] + Lambda[2]
of Lie algebra of ['A', 2] in the Chevalley basis

super_categories()
EXAMPLES:

sage: from sage.categories.triangular_kac_moody_algebras import␣
→˓TriangularKacMoodyAlgebras
sage: TriangularKacMoodyAlgebras(QQ).super_categories()
[Join of Category of graded lie algebras with basis over Rational Field

and Category of kac moody algebras over Rational Field]
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4.159 Unique factorization domains

class sage.categories.unique_factorization_domains.UniqueFactorizationDomains(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of unique factorization domains constructive unique factorization domains, i.e. where one can
constructively factor members into a product of a finite number of irreducible elements

EXAMPLES:

sage: UniqueFactorizationDomains()
Category of unique factorization domains
sage: UniqueFactorizationDomains().super_categories()
[Category of gcd domains]

class ElementMethods
Bases: object

radical(*args, **kwds)
Return the radical of this element, i.e. the product of its irreducible factors.

This default implementation calls squarefree_decomposition if available, and factor otherwise.

See also:

squarefree_part()

EXAMPLES:

sage: Pol.<x> = QQ[]
sage: (x^2*(x-1)^3).radical()
x^2 - x
sage: pol = 37 * (x-1)^3 * (x-2)^2 * (x-1/3)^7 * (x-3/7)
sage: pol.radical()
37*x^4 - 2923/21*x^3 + 1147/7*x^2 - 1517/21*x + 74/7

sage: Integer(10).radical()
10
sage: Integer(-100).radical()
10
sage: Integer(0).radical()
Traceback (most recent call last):
...
ArithmeticError: Radical of 0 not defined.

The next example shows how to compute the radical of a number, assuming no prime > 100000 has
exponent > 1 in the factorization:

sage: n = 2^1000-1; n / radical(n, limit=100000)
125

squarefree_part()
Return the square-free part of this element, i.e. the product of its irreducible factors appearing with
odd multiplicity.

This default implementation calls squarefree_decomposition.
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See also:

radical()

EXAMPLES:

sage: Pol.<x> = QQ[]
sage: (x^2*(x-1)^3).squarefree_part()
x - 1
sage: pol = 37 * (x-1)^3 * (x-2)^2 * (x-1/3)^7 * (x-3/7)
sage: pol.squarefree_part()
37*x^3 - 1369/21*x^2 + 703/21*x - 37/7

class ParentMethods
Bases: object

is_unique_factorization_domain(proof=True)
Return True, since this in an object of the category of unique factorization domains.

EXAMPLES:

sage: Parent(QQ,category=UniqueFactorizationDomains()).is_unique_
→˓factorization_domain()
True

additional_structure()
Return whether self is a structure category.

See also:

Category.additional_structure()

The category of unique factorization domains does not define additional structure: a ring morphism between
unique factorization domains is a unique factorization domain morphism.

EXAMPLES:

sage: UniqueFactorizationDomains().additional_structure()

super_categories()
EXAMPLES:

sage: UniqueFactorizationDomains().super_categories()
[Category of gcd domains]

4.160 Unital algebras

class sage.categories.unital_algebras.UnitalAlgebras(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of non-associative algebras over a given base ring.

A non-associative algebra over a ring 𝑅 is a module over 𝑅 which s also a unital magma.
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Warning: Until trac ticket #15043 is implemented, Algebras is the category of associative unital
algebras; thus, unlike the name suggests, UnitalAlgebras is not a subcategory of Algebras but of
MagmaticAlgebras.

EXAMPLES:

sage: from sage.categories.unital_algebras import UnitalAlgebras
sage: C = UnitalAlgebras(ZZ); C
Category of unital algebras over Integer Ring

class ParentMethods
Bases: object

from_base_ring(r)
Return the canonical embedding of r into self.

INPUT:
• r – an element of self.base_ring()

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators ('a
→˓', 'b', 'c') over Rational Field
sage: A.from_base_ring(1)
B[word: ]

class WithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class ParentMethods
Bases: object

from_base_ring()

from_base_ring_from_one_basis(r)
Implement the canonical embedding from the ground ring.

INPUT:
• r – an element of the coefficient ring
EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example()
sage: A.from_base_ring_from_one_basis(3)
3*B[word: ]
sage: A.from_base_ring(3)
3*B[word: ]
sage: A(3)
3*B[word: ]

one()
Return the multiplicative unit element.

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()

(continues on next page)
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(continued from previous page)

word:
sage: A.one()
B[word: ]

one_basis()
When the one of an algebra with basis is an element of this basis, this optional method can return
the index of this element. This is used to provide a default implementation of one(), and an
optimized default implementation of from_base_ring().

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one()
B[word: ]
sage: A.from_base_ring(4)
4*B[word: ]

one_from_one_basis()

Return the one of the algebra, as per Monoids.ParentMethods.one()

By default, this is implemented from one_basis(), if available.

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one_from_one_basis()
B[word: ]
sage: A.one()
B[word: ]

Even if called in the wrong order, they should returns their respective one:

sage: Bone().parent() is B
True
sage: Aone().parent() is A
True

4.161 Vector Bundles

class sage.categories.vector_bundles.VectorBundles(base_space, base_field, name=None)
Bases: sage.categories.category_types.Category_over_base_ring

The category of vector bundles over any base space and base field.

See also:

TopologicalVectorBundle

EXAMPLES:
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sage: M = Manifold(2, 'M', structure='top')
sage: from sage.categories.vector_bundles import VectorBundles
sage: C = VectorBundles(M, RR); C
Category of vector bundles over Real Field with 53 bits of precision
with base space 2-dimensional topological manifold M
sage: C.super_categories()
[Category of topological spaces]

class Differentiable(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of differentiable vector bundles.

A differentiable vector bundle is a differentiable manifold with differentiable surjective projection on a
differentiable base space.

class Smooth(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of smooth vector bundles.

A smooth vector bundle is a smooth manifold with smooth surjective projection on a smooth base space.

class SubcategoryMethods
Bases: object

Differentiable()
Return the subcategory of the differentiable objects of self.

EXAMPLES:

sage: M = Manifold(2, 'M')
sage: from sage.categories.vector_bundles import VectorBundles
sage: VectorBundles(M, RR).Differentiable()
Category of differentiable vector bundles over Real Field with
53 bits of precision with base space 2-dimensional
differentiable manifold M

Smooth()
Return the subcategory of the smooth objects of self.

EXAMPLES:

sage: M = Manifold(2, 'M')
sage: from sage.categories.vector_bundles import VectorBundles
sage: VectorBundles(M, RR).Smooth()
Category of smooth vector bundles over Real Field with 53 bits
of precision with base space 2-dimensional differentiable
manifold M

base_space()
Return the base space of this category.

EXAMPLES:

sage: M = Manifold(2, 'M', structure='top')
sage: from sage.categories.vector_bundles import VectorBundles
sage: VectorBundles(M, RR).base_space()
2-dimensional topological manifold M
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super_categories()
EXAMPLES:

sage: M = Manifold(2, 'M')
sage: from sage.categories.vector_bundles import VectorBundles
sage: VectorBundles(M, RR).super_categories()
[Category of topological spaces]

4.162 Vector Spaces

class sage.categories.vector_spaces.VectorSpaces(K)
Bases: sage.categories.category_types.Category_module

The category of (abstract) vector spaces over a given field

??? with an embedding in an ambient vector space ???

EXAMPLES:

sage: VectorSpaces(QQ)
Category of vector spaces over Rational Field
sage: VectorSpaces(QQ).super_categories()
[Category of modules over Rational Field]

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
The category of vector spaces is closed under Cartesian products:

sage: C = VectorSpaces(QQ)
sage: C.CartesianProducts()
Category of Cartesian products of vector spaces over Rational Field
sage: C in C.CartesianProducts().super_categories()
True

class DualObjects(category, *args)
Bases: sage.categories.dual.DualObjectsCategory

extra_super_categories()
Returns the dual category

EXAMPLES:

The category of algebras over the Rational Field is dual to the category of coalgebras over the same
field:

sage: C = VectorSpaces(QQ)
sage: C.dual()
Category of duals of vector spaces over Rational Field
sage: C.dual().super_categories() # indirect doctest
[Category of vector spaces over Rational Field]

class ElementMethods
Bases: object
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class Filtered(base_category)
Bases: sage.categories.filtered_modules.FilteredModulesCategory

Category of filtered vector spaces.

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

extra_super_categories()
Implement the fact that a (finite) tensor product of finite dimensional vector spaces is a finite
dimensional vector space.

EXAMPLES:

sage: VectorSpaces(QQ).FiniteDimensional().TensorProducts().extra_super_
→˓categories()
[Category of finite dimensional vector spaces over Rational Field]
sage: VectorSpaces(QQ).FiniteDimensional().TensorProducts().
→˓FiniteDimensional()
Category of tensor products of finite dimensional vector spaces over␣
→˓Rational Field

class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

Category of graded vector spaces.

class ParentMethods
Bases: object

dimension()
Return the dimension of this vector space.

EXAMPLES:

sage: M = FreeModule(FiniteField(19), 100)
sage: W = M.submodule([M.gen(50)])
sage: W.dimension()
1

sage: M = FiniteRankFreeModule(QQ, 3)
sage: M.dimension()
3
sage: M.tensor_module(1,2).dimension()
27

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

extra_super_categories()
The category of vector spaces is closed under tensor products:

sage: C = VectorSpaces(QQ)
sage: C.TensorProducts()
Category of tensor products of vector spaces over Rational Field

(continues on next page)
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sage: C in C.TensorProducts().super_categories()
True

class WithBasis(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class CartesianProducts(category, *args)
Bases: sage.categories.cartesian_product.CartesianProductsCategory

extra_super_categories()
The category of vector spaces with basis is closed under Cartesian products:

sage: C = VectorSpaces(QQ).WithBasis()
sage: C.CartesianProducts()
Category of Cartesian products of vector spaces with basis over Rational␣
→˓Field
sage: C in C.CartesianProducts().super_categories()
True

class Filtered(base_category)
Bases: sage.categories.filtered_modules.FilteredModulesCategory

Category of filtered vector spaces with basis.

example(base_ring=None)
Return an example of a graded vector space with basis, as per Category.example().

EXAMPLES:

sage: Modules(QQ).WithBasis().Graded().example()
An example of a graded module with basis:
the free module on partitions over Rational Field

class FiniteDimensional(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

extra_super_categories()
Implement the fact that a (finite) tensor product of finite dimensional vector spaces is a finite
dimensional vector space.

EXAMPLES:

sage: VectorSpaces(QQ).WithBasis().FiniteDimensional().
→˓TensorProducts().extra_super_categories()
[Category of finite dimensional vector spaces with basis over Rational␣
→˓Field]
sage: VectorSpaces(QQ).WithBasis().FiniteDimensional().
→˓TensorProducts().FiniteDimensional()
Category of tensor products of finite dimensional vector spaces with␣
→˓basis over Rational Field

class Graded(base_category)
Bases: sage.categories.graded_modules.GradedModulesCategory

Category of graded vector spaces with basis.
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example(base_ring=None)
Return an example of a graded vector space with basis, as per Category.example().

EXAMPLES:

sage: Modules(QQ).WithBasis().Graded().example()
An example of a graded module with basis:
the free module on partitions over Rational Field

class TensorProducts(category, *args)
Bases: sage.categories.tensor.TensorProductsCategory

extra_super_categories()
The category of vector spaces with basis is closed under tensor products:

sage: C = VectorSpaces(QQ).WithBasis()
sage: C.TensorProducts()
Category of tensor products of vector spaces with basis over Rational␣
→˓Field
sage: C in C.TensorProducts().super_categories()
True

is_abelian()
Return whether this category is abelian.

This is always True since the base ring is a field.

EXAMPLES:

sage: VectorSpaces(QQ).WithBasis().is_abelian()
True

additional_structure()
Return None.

Indeed, the category of vector spaces defines no additional structure: a bimodule morphism between two
vector spaces is a vector space morphism.

See also:

Category.additional_structure()

Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

sage: VectorSpaces(QQ).additional_structure()

base_field()
Returns the base field over which the vector spaces of this category are all defined.

EXAMPLES:

sage: VectorSpaces(QQ).base_field()
Rational Field

super_categories()
EXAMPLES:
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sage: VectorSpaces(QQ).super_categories()
[Category of modules over Rational Field]

4.163 Weyl Groups

REFERENCES:

class sage.categories.weyl_groups.WeylGroups(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of Weyl groups

See the Wikipedia page of Weyl Groups.

EXAMPLES:

sage: WeylGroups()
Category of weyl groups
sage: WeylGroups().super_categories()
[Category of coxeter groups]

Here are some examples:

sage: WeylGroups().example() # todo: not implemented
sage: FiniteWeylGroups().example()
The symmetric group on {0, ..., 3}
sage: AffineWeylGroups().example() # todo: not implemented
sage: WeylGroup(["B", 3])
Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space)

This one will eventually be also in this category:

sage: SymmetricGroup(4)
Symmetric group of order 4! as a permutation group

class ElementMethods
Bases: object

bruhat_lower_covers_coroots()
Return all 2-tuples (v, 𝛼) where v is covered by self and 𝛼 is the positive coroot such that self = v
𝑠𝛼 where 𝑠𝛼 is the reflection orthogonal to 𝛼.

ALGORITHM:

See bruhat_lower_covers() and bruhat_lower_covers_reflections() for Coxeter groups.

EXAMPLES:

sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.bruhat_lower_covers_coroots()
[(s1*s2*s1, alphacheck[1] + alphacheck[2] + alphacheck[3]),
(s3*s2*s1, alphacheck[2]), (s3*s1*s2, alphacheck[1])]
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bruhat_upper_covers_coroots()
Returns all 2-tuples (v, 𝛼) where v is covers self and 𝛼 is the positive coroot such that self = v 𝑠𝛼
where 𝑠𝛼 is the reflection orthogonal to 𝛼.

ALGORITHM:

See bruhat_upper_covers() and bruhat_upper_covers_reflections() for Coxeter groups.

EXAMPLES:

sage: W = WeylGroup(['A',4], prefix="s")
sage: w = W.from_reduced_word([3,1,2,1])
sage: w.bruhat_upper_covers_coroots()
[(s1*s2*s3*s2*s1, alphacheck[3]),
(s2*s3*s1*s2*s1, alphacheck[2] + alphacheck[3]),
(s3*s4*s1*s2*s1, alphacheck[4]),
(s4*s3*s1*s2*s1, alphacheck[1] + alphacheck[2] + alphacheck[3] +␣
→˓alphacheck[4])]

inversion_arrangement(side='right')
Return the inversion hyperplane arrangement of self.

INPUT:
• side – 'right' (default) or 'left'

OUTPUT:

A (central) hyperplane arrangement whose hyperplanes correspond to the inversions of self given as
roots.

The side parameter determines on which side to compute the inversions.

EXAMPLES:

sage: W = WeylGroup(['A',3])
sage: w = W.from_reduced_word([1, 2, 3, 1, 2])
sage: A = w.inversion_arrangement(); A
Arrangement of 5 hyperplanes of dimension 3 and rank 3
sage: A.hyperplanes()
(Hyperplane 0*a1 + 0*a2 + a3 + 0,
Hyperplane 0*a1 + a2 + 0*a3 + 0,
Hyperplane 0*a1 + a2 + a3 + 0,
Hyperplane a1 + a2 + 0*a3 + 0,
Hyperplane a1 + a2 + a3 + 0)

The identity element gives the empty arrangement:

sage: W = WeylGroup(['A',3])
sage: W.one().inversion_arrangement()
Empty hyperplane arrangement of dimension 3

inversions(side='right', inversion_type='reflections')
Return the set of inversions of self.

INPUT:
• side – ‘right’ (default) or ‘left’
• inversion_type – ‘reflections’ (default), ‘roots’, or ‘coroots’

OUTPUT:
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For reflections, the set of reflections r in the Weyl group such that self r < self. For (co)roots, the
set of positive (co)roots that are sent by self to negative (co)roots; their associated reflections are
described above.

If side is ‘left’, the inverse Weyl group element is used.

EXAMPLES:

sage: W = WeylGroup(['C',2], prefix="s")
sage: w = W.from_reduced_word([1,2])
sage: w.inversions()
[s2, s2*s1*s2]
sage: w.inversions(inversion_type = 'reflections')
[s2, s2*s1*s2]
sage: w.inversions(inversion_type = 'roots')
[alpha[2], alpha[1] + alpha[2]]
sage: w.inversions(inversion_type = 'coroots')
[alphacheck[2], alphacheck[1] + 2*alphacheck[2]]
sage: w.inversions(side = 'left')
[s1, s1*s2*s1]
sage: w.inversions(side = 'left', inversion_type = 'roots')
[alpha[1], 2*alpha[1] + alpha[2]]
sage: w.inversions(side = 'left', inversion_type = 'coroots')
[alphacheck[1], alphacheck[1] + alphacheck[2]]

is_pieri_factor()
Returns whether self is a Pieri factor, as used for computing Stanley symmetric functions.

See also:

• stanley_symmetric_function()
• WeylGroups.ParentMethods.pieri_factors()

EXAMPLES:

sage: W = WeylGroup(['A',5,1])
sage: W.from_reduced_word([3,2,5]).is_pieri_factor()
True
sage: W.from_reduced_word([3,2,4,5]).is_pieri_factor()
False

sage: W = WeylGroup(['C',4,1])
sage: W.from_reduced_word([0,2,1]).is_pieri_factor()
True
sage: W.from_reduced_word([0,2,1,0]).is_pieri_factor()
False

sage: W = WeylGroup(['B',3])
sage: W.from_reduced_word([3,2,3]).is_pieri_factor()
False
sage: W.from_reduced_word([2,1,2]).is_pieri_factor()
True

left_pieri_factorizations(max_length=None)
Returns all factorizations of self as 𝑢𝑣, where 𝑢 is a Pieri factor and 𝑣 is an element of the Weyl
group.
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See also:

• WeylGroups.ParentMethods.pieri_factors()
• sage.combinat.root_system.pieri_factors

EXAMPLES:

If we take 𝑤 = 𝑤0 the maximal element of a strict parabolic subgroup of type 𝐴𝑛1
× · · · ×𝐴𝑛𝑘

, then
the Pieri factorizations are in correspondence with all Pieri factors, and there are

∏︀
2𝑛𝑖 of them:

sage: W = WeylGroup(['A', 4, 1])
sage: W.from_reduced_word([]).left_pieri_factorizations().cardinality()
1
sage: W.from_reduced_word([1]).left_pieri_factorizations().cardinality()
2
sage: W.from_reduced_word([1,2,1]).left_pieri_factorizations().cardinality()
4
sage: W.from_reduced_word([1,2,3,1,2,1]).left_pieri_factorizations().
→˓cardinality()
8

sage: W.from_reduced_word([1,3]).left_pieri_factorizations().cardinality()
4
sage: W.from_reduced_word([1,3,4,3]).left_pieri_factorizations().
→˓cardinality()
8

sage: W.from_reduced_word([2,1]).left_pieri_factorizations().cardinality()
3
sage: W.from_reduced_word([1,2]).left_pieri_factorizations().cardinality()
2
sage: [W.from_reduced_word([1,2]).left_pieri_factorizations(max_length=i).
→˓cardinality() for i in [-1, 0, 1, 2]]
[0, 1, 2, 2]

sage: W = WeylGroup(['C',4,1])
sage: w = W.from_reduced_word([0,3,2,1,0])
sage: w.left_pieri_factorizations().cardinality()
7
sage: [(u.reduced_word(),v.reduced_word()) for (u,v) in w.left_pieri_
→˓factorizations()]
[([], [3, 2, 0, 1, 0]),
([0], [3, 2, 1, 0]),
([3], [2, 0, 1, 0]),
([3, 0], [2, 1, 0]),
([3, 2], [0, 1, 0]),
([3, 2, 0], [1, 0]),
([3, 2, 0, 1], [0])]

sage: W = WeylGroup(['B',4,1])
sage: W.from_reduced_word([0,2,1,0]).left_pieri_factorizations().
→˓cardinality()
6

quantum_bruhat_successors(index_set=None, roots=False, quantum_only=False)
Return the successors of self in the quantum Bruhat graph on the parabolic quotient of the Weyl
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group determined by the subset of Dynkin nodes index_set.

INPUT:
• self – a Weyl group element, which is assumed to be of minimum length in its coset with respect

to the parabolic subgroup
• index_set – (default: None) indicates the set of simple reflections used to generate the parabolic

subgroup; the default value indicates that the subgroup is the identity
• roots – (default: False) if True, returns the list of 2-tuples (w, 𝛼) where w is a successor and 𝛼

is the positive root associated with the successor relation
• quantum_only – (default: False) if True, returns only the quantum successors

EXAMPLES:

sage: W = WeylGroup(['A',3], prefix="s")
sage: w = W.from_reduced_word([3,1,2])
sage: w.quantum_bruhat_successors([1], roots = True)
[(s3, alpha[2]), (s1*s2*s3*s2, alpha[3]),
(s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3])]
sage: w.quantum_bruhat_successors([1,3])
[1, s2*s3*s1*s2]
sage: w.quantum_bruhat_successors(roots = True)
[(s3*s1*s2*s1, alpha[1]),
(s3*s1, alpha[2]),
(s1*s2*s3*s2, alpha[3]),
(s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3])]
sage: w.quantum_bruhat_successors()
[s3*s1*s2*s1, s3*s1, s1*s2*s3*s2, s2*s3*s1*s2]
sage: w.quantum_bruhat_successors(quantum_only = True)
[s3*s1]
sage: w = W.from_reduced_word([2,3])
sage: w.quantum_bruhat_successors([1,3])
Traceback (most recent call last):
...
ValueError: s2*s3 is not of minimum length in its coset of the parabolic␣
→˓subgroup generated by the reflections (1, 3)

reflection_to_coroot()
Return the coroot associated with the reflection self.

EXAMPLES:

sage: W = WeylGroup(['C',2],prefix="s")
sage: W.from_reduced_word([1,2,1]).reflection_to_coroot()
alphacheck[1] + alphacheck[2]
sage: W.from_reduced_word([1,2]).reflection_to_coroot()
Traceback (most recent call last):
...
ValueError: s1*s2 is not a reflection
sage: W.long_element().reflection_to_coroot()
Traceback (most recent call last):
...
ValueError: s2*s1*s2*s1 is not a reflection

reflection_to_root()
Return the root associated with the reflection self.

EXAMPLES:
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sage: W = WeylGroup(['C',2],prefix="s")
sage: W.from_reduced_word([1,2,1]).reflection_to_root()
2*alpha[1] + alpha[2]
sage: W.from_reduced_word([1,2]).reflection_to_root()
Traceback (most recent call last):
...
ValueError: s1*s2 is not a reflection
sage: W.long_element().reflection_to_root()
Traceback (most recent call last):
...
ValueError: s2*s1*s2*s1 is not a reflection

stanley_symmetric_function()
Return the affine Stanley symmetric function indexed by self.

INPUT:
• self – an element 𝑤 of a Weyl group

Returns the affine Stanley symmetric function indexed by 𝑤. Stanley symmetric functions are defined
as generating series of the factorizations of 𝑤 into Pieri factors and weighted by a statistic on Pieri
factors.

See also:

• stanley_symmetric_function_as_polynomial()
• WeylGroups.ParentMethods.pieri_factors()
• sage.combinat.root_system.pieri_factors

EXAMPLES:

sage: W = WeylGroup(['A', 3, 1])
sage: W.from_reduced_word([3,1,2,0,3,1,0]).stanley_symmetric_function()
8*m[1, 1, 1, 1, 1, 1, 1] + 4*m[2, 1, 1, 1, 1, 1] + 2*m[2, 2, 1, 1, 1] + m[2,
→˓ 2, 2, 1]
sage: A = AffinePermutationGroup(['A',3,1])
sage: A.from_reduced_word([3,1,2,0,3,1,0]).stanley_symmetric_function()
8*m[1, 1, 1, 1, 1, 1, 1] + 4*m[2, 1, 1, 1, 1, 1] + 2*m[2, 2, 1, 1, 1] + m[2,
→˓ 2, 2, 1]

sage: W = WeylGroup(['C',3,1])
sage: W.from_reduced_word([0,2,1,0]).stanley_symmetric_function()
32*m[1, 1, 1, 1] + 16*m[2, 1, 1] + 8*m[2, 2] + 4*m[3, 1]

sage: W = WeylGroup(['B',3,1])
sage: W.from_reduced_word([3,2,1]).stanley_symmetric_function()
2*m[1, 1, 1] + m[2, 1] + 1/2*m[3]

sage: W = WeylGroup(['B',4])
sage: w = W.from_reduced_word([3,2,3,1])
sage: w.stanley_symmetric_function() # long time (6s on sage.math, 2011)
48*m[1, 1, 1, 1] + 24*m[2, 1, 1] + 12*m[2, 2] + 8*m[3, 1] + 2*m[4]

sage: A = AffinePermutationGroup(['A',4,1])
sage: a = A([-2,0,1,4,12])
sage: a.stanley_symmetric_function()
6*m[1, 1, 1, 1, 1, 1, 1, 1] + 5*m[2, 1, 1, 1, 1, 1, 1] + 4*m[2, 2, 1, 1, 1,␣
→˓1] (continues on next page)
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+ 3*m[2, 2, 2, 1, 1] + 2*m[2, 2, 2, 2] + 4*m[3, 1, 1, 1, 1, 1] + 3*m[3, 2,␣
→˓1, 1, 1]
+ 2*m[3, 2, 2, 1] + 2*m[3, 3, 1, 1] + m[3, 3, 2] + 3*m[4, 1, 1, 1, 1] +␣
→˓2*m[4, 2, 1, 1]
+ m[4, 2, 2] + m[4, 3, 1]

One more example (trac ticket #14095):

sage: G = SymmetricGroup(4)
sage: w = G.from_reduced_word([3,2,3,1])
sage: w.stanley_symmetric_function()
3*m[1, 1, 1, 1] + 2*m[2, 1, 1] + m[2, 2] + m[3, 1]

REFERENCES:
• [BH1994]
• [Lam2008]
• [LSS2009]
• [Pon2010]

stanley_symmetric_function_as_polynomial(max_length=None)
Returns a multivariate generating function for the number of factorizations of a Weyl group element
into Pieri factors of decreasing length, weighted by a statistic on Pieri factors.

See also:

• stanley_symmetric_function()
• WeylGroups.ParentMethods.pieri_factors()
• sage.combinat.root_system.pieri_factors

INPUT:
• self – an element 𝑤 of a Weyl group 𝑊
• max_length – a non negative integer or infinity (default: infinity)

Returns the generating series for the Pieri factorizations 𝑤 = 𝑢1 · · ·𝑢𝑘, where 𝑢𝑖 is a Pieri factor for
all 𝑖, 𝑙(𝑤) =

∑︀𝑘
𝑖=1 𝑙(𝑢𝑖) and max_length ≥ 𝑙(𝑢1) ≥ · · · ≥ 𝑙(𝑢𝑘).

A factorization 𝑢1 · · ·𝑢𝑘 contributes a monomial of the form
∏︀

𝑖 𝑥𝑙(𝑢𝑖), with coefficient given by∏︀
𝑖 2𝑐(𝑢𝑖), where 𝑐 is a type-dependent statistic on Pieri factors, as returned by the method u[i].

stanley_symm_poly_weight().

EXAMPLES:

sage: W = WeylGroup(['A', 3, 1])
sage: W.from_reduced_word([]).stanley_symmetric_function_as_polynomial()
1
sage: W.from_reduced_word([1]).stanley_symmetric_function_as_polynomial()
x1
sage: W.from_reduced_word([1,2]).stanley_symmetric_function_as_polynomial()
x1^2
sage: W.from_reduced_word([2,1]).stanley_symmetric_function_as_polynomial()
x1^2 + x2
sage: W.from_reduced_word([1,2,1]).stanley_symmetric_function_as_
→˓polynomial()
2*x1^3 + x1*x2
sage: W.from_reduced_word([1,2,1,0]).stanley_symmetric_function_as_
→˓polynomial()

(continues on next page)
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3*x1^4 + 2*x1^2*x2 + x2^2 + x1*x3
sage: W.from_reduced_word([1,2,3,1,2,1,0]).stanley_symmetric_function_as_
→˓polynomial() # long time
22*x1^7 + 11*x1^5*x2 + 5*x1^3*x2^2 + 3*x1^4*x3 + 2*x1*x2^3 + x1^2*x2*x3
sage: W.from_reduced_word([3,1,2,0,3,1,0]).stanley_symmetric_function_as_
→˓polynomial() # long time
8*x1^7 + 4*x1^5*x2 + 2*x1^3*x2^2 + x1*x2^3

sage: W = WeylGroup(['C',3,1])
sage: W.from_reduced_word([0,2,1,0]).stanley_symmetric_function_as_
→˓polynomial()
32*x1^4 + 16*x1^2*x2 + 8*x2^2 + 4*x1*x3

sage: W = WeylGroup(['B',3,1])
sage: W.from_reduced_word([3,2,1]).stanley_symmetric_function_as_
→˓polynomial()
2*x1^3 + x1*x2 + 1/2*x3

Algorithm: Induction on the left Pieri factors. Note that this induction preserves subsets of 𝑊 which
are stable by taking right factors, and in particular Grassmanian elements.

Finite
alias of sage.categories.finite_weyl_groups.FiniteWeylGroups

class ParentMethods
Bases: object

bruhat_cone(x, y, side='upper', backend='cdd')
Return the (upper or lower) Bruhat cone associated to the interval [x,y].

To a cover relation 𝑣 ≺ 𝑤 in strong Bruhat order you can assign a positive root 𝛽 given by the unique
reflection 𝑠𝛽 such that 𝑠𝛽𝑣 = 𝑤.

The upper Bruhat cone of the interval [𝑥, 𝑦] is the non-empty, polyhedral cone generated by the roots
corresponding to 𝑥 ≺ 𝑎 for all atoms 𝑎 in the interval. The lower Bruhat cone of the interval [𝑥, 𝑦] is
the non-empty, polyhedral cone generated by the roots corresponding to 𝑐 ≺ 𝑦 for all coatoms 𝑐 in the
interval.

INPUT:
• x - an element in the group 𝑊
• y - an element in the group 𝑊
• side (default: 'upper') – must be one of the following:

– 'upper' - return the upper Bruhat cone of the interval [x, y]
– 'lower' - return the lower Bruhat cone of the interval [x, y]

• backend – string (default: 'cdd'); the backend to use to create the polyhedron
EXAMPLES:

sage: W = WeylGroup(['A',2])
sage: x = W.from_reduced_word([1])
sage: y = W.w0
sage: W.bruhat_cone(x, y)
A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex␣
→˓and 2 rays

sage: W = WeylGroup(['E',6])
(continues on next page)
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sage: x = W.one()
sage: y = W.w0
sage: W.bruhat_cone(x, y, side='lower')
A 6-dimensional polyhedron in QQ^8 defined as the convex hull of 1 vertex␣
→˓and 6 rays

REFERENCES:
• [Dye]
• [JahStu]

coxeter_matrix()
Return the Coxeter matrix associated to self.

EXAMPLES:

sage: G = WeylGroup(['A',3])
sage: G.coxeter_matrix()
[1 3 2]
[3 1 3]
[2 3 1]

pieri_factors(*args, **keywords)
Returns the set of Pieri factors in this Weyl group.

For any type, the set of Pieri factors forms a lower ideal in Bruhat order, generated by all the conjugates
of some special element of the Weyl group. In type 𝐴𝑛, this special element is 𝑠𝑛 · · · 𝑠1, and the
conjugates are obtained by rotating around this reduced word.

These are used to compute Stanley symmetric functions.

See also:

• WeylGroups.ElementMethods.stanley_symmetric_function()
• sage.combinat.root_system.pieri_factors

EXAMPLES:

sage: W = WeylGroup(['A',5,1])
sage: PF = W.pieri_factors()
sage: PF.cardinality()
63

sage: W = WeylGroup(['B',3])
sage: PF = W.pieri_factors()
sage: sorted([w.reduced_word() for w in PF])
[[],
[1],
[1, 2],
[1, 2, 1],
[1, 2, 3],
[1, 2, 3, 1],
[1, 2, 3, 2],
[1, 2, 3, 2, 1],
[2],
[2, 1],
[2, 3],

(continues on next page)
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[2, 3, 1],
[2, 3, 2],
[2, 3, 2, 1],
[3],
[3, 1],
[3, 1, 2],
[3, 1, 2, 1],
[3, 2],
[3, 2, 1]]
sage: W = WeylGroup(['C',4,1])
sage: PF = W.pieri_factors()
sage: W.from_reduced_word([3,2,0]) in PF
True

quantum_bruhat_graph(index_set=())
Return the quantum Bruhat graph of the quotient of the Weyl group by a parabolic subgroup 𝑊𝐽 .

INPUT:
• index_set – (default: ()) a tuple 𝐽 of nodes of the Dynkin diagram

By default, the value for index_set indicates that the subgroup is trivial and the quotient is the full
Weyl group.

EXAMPLES:

sage: W = WeylGroup(['A',3], prefix="s")
sage: g = W.quantum_bruhat_graph((1,3))
sage: g
Parabolic Quantum Bruhat Graph of Weyl Group of type ['A', 3] (as a matrix␣
→˓group acting on the ambient space) for nodes (1, 3): Digraph on 6 vertices
sage: g.vertices(sort=True)
[s2*s3*s1*s2, s3*s1*s2, s1*s2, s3*s2, s2, 1]
sage: g.edges(sort=True)
[(s2*s3*s1*s2, s2, alpha[2]),
(s3*s1*s2, s2*s3*s1*s2, alpha[1] + alpha[2] + alpha[3]),
(s3*s1*s2, 1, alpha[2]),
(s1*s2, s3*s1*s2, alpha[2] + alpha[3]),
(s3*s2, s3*s1*s2, alpha[1] + alpha[2]),
(s2, s1*s2, alpha[1] + alpha[2]),
(s2, s3*s2, alpha[2] + alpha[3]),
(1, s2, alpha[2])]
sage: W = WeylGroup(['A',3,1], prefix="s")
sage: g = W.quantum_bruhat_graph()
Traceback (most recent call last):
...
ValueError: the Cartan type ['A', 3, 1] is not finite

additional_structure()
Return None.

Indeed, the category of Weyl groups defines no additional structure: Weyl groups are a special class of
Coxeter groups.

See also:

Category.additional_structure()
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Todo: Should this category be a CategoryWithAxiom?

EXAMPLES:

sage: WeylGroups().additional_structure()

super_categories()
EXAMPLES:

sage: WeylGroups().super_categories()
[Category of coxeter groups]

4.164 Technical Categories

4.164.1 Facade Sets

For background, see What is a facade set?.

class sage.categories.facade_sets.FacadeSets(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom_singleton

class ParentMethods
Bases: object

facade_for()
Returns the parents this set is a facade for

This default implementation assumes that self has an attribute _facade_for, typically initialized by
Parent.__init__(). If the attribute is not present, the method raises a NotImplementedError.

EXAMPLES:

sage: S = Sets().Facade().example(); S
An example of facade set: the monoid of positive integers
sage: S.facade_for()
(Integer Ring,)

Check that trac ticket #13801 is corrected:

sage: class A(Parent):
....: def __init__(self):
....: Parent.__init__(self, category=Sets(), facade=True)
sage: a = A()
sage: a.facade_for()
Traceback (most recent call last):
...
NotImplementedError: this parent did not specify which parents it is a␣
→˓facade for

is_parent_of(element)
Returns whether self is the parent of element

INPUT:
• element – any object
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Since self is a facade domain, this actually tests whether the parent of element is any of the parent
self is a facade for.

EXAMPLES:

sage: S = Sets().Facade().example(); S
An example of facade set: the monoid of positive integers
sage: S.is_parent_of(1)
True
sage: S.is_parent_of(1/2)
False

This method differs from __contains__() in two ways. First, this does not take into account the fact
that self may be a strict subset of the parent(s) it is a facade for:

sage: -1 in S, S.is_parent_of(-1)
(False, True)

Furthermore, there is no coercion attempted:

sage: int(1) in S, S.is_parent_of(int(1))
(True, False)

Warning: this implementation does not handle facade parents of facade parents. Is this a feature
we want generically?

example(choice='subset')
Returns an example of facade set, as per Category.example().

INPUT:

• choice – ‘union’ or ‘subset’ (default: ‘subset’).

EXAMPLES:

sage: Sets().Facade().example()
An example of facade set: the monoid of positive integers
sage: Sets().Facade().example(choice='union')
An example of a facade set: the integers completed by +-infinity
sage: Sets().Facade().example(choice='subset')
An example of facade set: the monoid of positive integers
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CHAPTER

FIVE

FUNCTORIAL CONSTRUCTIONS

5.1 Covariant Functorial Constructions

A functorial construction is a collection of functors (𝐹𝐶𝑎𝑡)𝐶𝑎𝑡 (indexed by a collection of categories) which asso-
ciate to a sequence of parents (𝐴,𝐵, ...) in a category 𝐶𝑎𝑡 a parent 𝐹𝐶𝑎𝑡(𝐴,𝐵, ...). Typical examples of functorial
constructions are cartesian_product and tensor_product.

The category of 𝐹𝐶𝑎𝑡(𝐴,𝐵, ...), which only depends on 𝐶𝑎𝑡, is called the (functorial) construction category.

A functorial construction is (category)-covariant if for every categories 𝐶𝑎𝑡 and 𝑆𝑢𝑝𝑒𝑟𝐶𝑎𝑡, the category of
𝐹𝐶𝑎𝑡(𝐴,𝐵, ...) is a subcategory of the category of 𝐹𝑆𝑢𝑝𝑒𝑟𝐶𝑎𝑡(𝐴,𝐵, ...) whenever 𝐶𝑎𝑡 is a subcategory of 𝑆𝑢𝑝𝑒𝑟𝐶𝑎𝑡.
A functorial construction is (category)-regressive if the category of 𝐹𝐶𝑎𝑡(𝐴,𝐵, ...) is a subcategory of 𝐶𝑎𝑡.

The goal of this module is to provide generic support for covariant functorial constructions. In particular, given some
parents 𝐴, 𝐵, . . . , in respective categories 𝐶𝑎𝑡𝐴, 𝐶𝑎𝑡𝐵 , . . . , it provides tools for calculating the best known category
for the parent 𝐹 (𝐴,𝐵, ...). For examples, knowing that Cartesian products of semigroups (resp. monoids, groups)
have a semigroup (resp. monoid, group) structure, and given a group 𝐵 and two monoids 𝐴 and 𝐶 it can calculate that
𝐴×𝐵 × 𝐶 is naturally endowed with a monoid structure.

See CovariantFunctorialConstruction, CovariantConstructionCategory and
RegressiveCovariantConstructionCategory for more details.

AUTHORS:

• Nicolas M. Thiery (2010): initial revision

class sage.categories.covariant_functorial_construction.CovariantConstructionCategory(category,
*args)

Bases: sage.categories.covariant_functorial_construction.FunctorialConstructionCategory

Abstract class for categories 𝐹𝐶𝑎𝑡 obtained through a covariant functorial construction

additional_structure()
Return the additional structure defined by self.

By default, a functorial construction category A.F() defines additional structure if and only if 𝐴 is the
category defining 𝐹 . The rationale is that, for a subcategory 𝐵 of 𝐴, the fact that 𝐵.𝐹 () morphisms shall
preserve the 𝐹 -specific structure is already imposed by 𝐴.𝐹 ().

See also:

• Category.additional_structure().

• is_construction_defined_by_base().

EXAMPLES:
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sage: Modules(ZZ).Graded().additional_structure()
Category of graded modules over Integer Ring
sage: Algebras(ZZ).Graded().additional_structure()

classmethod default_super_categories(category, *args)
Return the default super categories of 𝐹𝐶𝑎𝑡(𝐴,𝐵, ...) for 𝐴,𝐵, ... parents in 𝐶𝑎𝑡.

INPUT:

• cls – the category class for the functor 𝐹

• category – a category 𝐶𝑎𝑡

• *args – further arguments for the functor

OUTPUT: a (join) category

The default implementation is to return the join of the categories of 𝐹 (𝐴,𝐵, ...) for 𝐴,𝐵, ... in turn in each
of the super categories of category.

This is implemented as a class method, in order to be able to reconstruct the functorial category associated
to each of the super categories of category.

EXAMPLES:

Bialgebras are both algebras and coalgebras:

sage: Bialgebras(QQ).super_categories()
[Category of algebras over Rational Field, Category of coalgebras over Rational␣
→˓Field]

Hence tensor products of bialgebras are tensor products of algebras and tensor products of coalgebras:

sage: Bialgebras(QQ).TensorProducts().super_categories()
[Category of tensor products of algebras over Rational Field,
Category of tensor products of coalgebras over Rational Field]

Here is how default_super_categories() was called internally:

sage: sage.categories.tensor.TensorProductsCategory.default_super_
→˓categories(Bialgebras(QQ))
Join of Category of tensor products of algebras over Rational Field and␣
→˓Category of tensor products of coalgebras over Rational Field

We now show a similar example, with the Algebra functor which takes a parameter Q:

sage: FiniteMonoids().super_categories()
[Category of monoids, Category of finite semigroups]
sage: sorted(FiniteMonoids().Algebras(QQ).super_categories(), key=str)
[Category of finite dimensional algebras with basis over Rational Field,
Category of finite set algebras over Rational Field,
Category of monoid algebras over Rational Field]

Note that neither the category of finite semigroup algebras nor that of monoid algebras appear in the result;
this is because there is currently nothing specific implemented about them.

Here is how default_super_categories() was called internally:
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sage: sage.categories.algebra_functor.AlgebrasCategory.default_super_
→˓categories(FiniteMonoids(), QQ)
Join of Category of finite dimensional algebras with basis over Rational Field

and Category of monoid algebras over Rational Field
and Category of finite set algebras over Rational Field

is_construction_defined_by_base()
Return whether the construction is defined by the base of self.

EXAMPLES:

The graded functorial construction is defined by the modules category. Hence this method returns True
for graded modules and False for other graded xxx categories:

sage: Modules(ZZ).Graded().is_construction_defined_by_base()
True
sage: Algebras(QQ).Graded().is_construction_defined_by_base()
False
sage: Modules(ZZ).WithBasis().Graded().is_construction_defined_by_base()
False

This is implemented as follows: given the base category 𝐴 and the construction 𝐹 of self, that is self=A.
F(), check whether no super category of 𝐴 has 𝐹 defined.

Note: Recall that, when 𝐴 does not implement the construction F, a join category is returned. Therefore,
in such cases, this method is not available:

sage: Bialgebras(QQ).Graded().is_construction_defined_by_base()
Traceback (most recent call last):
...
AttributeError: 'JoinCategory_with_category' object has no attribute 'is_
→˓construction_defined_by_base'

class sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
sage_object.SageObject

An abstract class for construction functors 𝐹 (eg 𝐹 = Cartesian product, tensor product, Q-algebra, . . . ) such
that:

• Each category 𝐶𝑎𝑡 (eg 𝐶𝑎𝑡 = Groups()) can provide a category 𝐹𝐶𝑎𝑡 for parents constructed via this
functor (e.g. 𝐹𝐶𝑎𝑡 = CartesianProductsOf(Groups())).

• For every category 𝐶𝑎𝑡, 𝐹𝐶𝑎𝑡 is a subcategory of 𝐹𝑆𝑢𝑝𝑒𝑟𝐶𝑎𝑡 for every super category 𝑆𝑢𝑝𝑒𝑟𝐶𝑎𝑡 of 𝐶𝑎𝑡
(the functorial construction is (category)-covariant).

• For parents 𝐴, 𝐵, . . . , respectively in the categories 𝐶𝑎𝑡𝐴, 𝐶𝑎𝑡𝐵 , . . . , the category of 𝐹 (𝐴,𝐵, ...) is 𝐹𝐶𝑎𝑡

where 𝐶𝑎𝑡 is the meet of the categories 𝐶𝑎𝑡𝐴, 𝐶𝑎𝑡𝐵 , . . . ,.

This covers two slightly different use cases:

• In the first use case, one uses directly the construction functor to create new parents:

sage: tensor() # todo: not implemented (add an example)

or even new elements, which indirectly constructs the corresponding parent:
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sage: tensor(...) # todo: not implemented

• In the second use case, one implements a parent, and then put it in the category 𝐹𝐶𝑎𝑡 to specify supple-
mentary mathematical information about that parent.

The main purpose of this class is to handle automatically the trivial part of the category hier-
archy. For example, CartesianProductsOf(Groups()) is set automatically as a subcategory of
CartesianProductsOf(Monoids()).

In practice, each subclass of this class should provide the following attributes:

• _functor_category - a string which should match the name of the nested category class to be used in
each category to specify information and generic operations for elements of this category.

• _functor_name - an string which specifies the name of the functor, and also (when relevant) of the method
on parents and elements used for calling the construction.

TODO: What syntax do we want for 𝐹𝐶𝑎𝑡? For example, for the tensor product construction, which one do we
want among (see chat on IRC, on 07/12/2009):

• tensor(Cat)

• tensor((Cat, Cat))

• tensor.of((Cat, Cat))

• tensor.category_from_categories((Cat, Cat, Cat))

• Cat.TensorProducts()

The syntax Cat.TensorProducts() does not supports well multivariate constructions like tensor.
of([Algebras(), HopfAlgebras(), ...]). Also it forces every category to be (somehow) aware of all
the tensorial construction that could apply to it, even those which are only induced from super categories.

Note: for each functorial construction, there probably is one (or several) largest categories on which it applies.
For example, the CartesianProducts() construction makes only sense for concrete categories, that is subcat-
egories of Sets(). Maybe we want to model this one way or the other.

category_from_categories(categories)
Return the category of 𝐹 (𝐴,𝐵, ...) for 𝐴,𝐵, ... parents in the given categories.

INPUT:

• self: a functor 𝐹

• categories: a non empty tuple of categories

EXAMPLES:

sage: Cat1 = Rings()
sage: Cat2 = Groups()
sage: cartesian_product.category_from_categories((Cat1, Cat1, Cat1))
Join of Category of rings and ...

and Category of Cartesian products of monoids
and Category of Cartesian products of commutative additive groups

sage: cartesian_product.category_from_categories((Cat1, Cat2))
Category of Cartesian products of monoids

category_from_category(category)
Return the category of 𝐹 (𝐴,𝐵, ...) for 𝐴,𝐵, ... parents in category.

INPUT:

782 Chapter 5. Functorial constructions



Category Framework, Release 9.7

• self: a functor 𝐹

• category: a category

EXAMPLES:

sage: tensor.category_from_category(ModulesWithBasis(QQ))
Category of tensor products of vector spaces with basis over Rational Field

# TODO: add support for parametrized functors

category_from_parents(parents)
Return the category of 𝐹 (𝐴,𝐵, ...) for 𝐴,𝐵, ... parents.

INPUT:

• self: a functor F

• parents: a list (or iterable) of parents.

EXAMPLES:

sage: E = CombinatorialFreeModule(QQ, ["a", "b", "c"])
sage: tensor.category_from_parents((E, E, E))
Category of tensor products of finite dimensional vector spaces with basis over␣
→˓Rational Field

class sage.categories.covariant_functorial_construction.FunctorialConstructionCategory(category,
*args)

Bases: sage.categories.category.Category

Abstract class for categories 𝐹𝐶𝑎𝑡 obtained through a functorial construction

base_category()
Return the base category of the category self.

For any category B = 𝐹𝐶𝑎𝑡 obtained through a functorial construction 𝐹 , the call B.base_category()
returns the category 𝐶𝑎𝑡.

EXAMPLES:

sage: Semigroups().Quotients().base_category()
Category of semigroups

classmethod category_of(category, *args)
Return the image category of the functor 𝐹𝐶𝑎𝑡.

This is the main entry point for constructing the category 𝐹𝐶𝑎𝑡 of parents 𝐹 (𝐴,𝐵, ...) constructed from
parents 𝐴,𝐵, ... in 𝐶𝑎𝑡.

INPUT:

• cls – the category class for the functorial construction 𝐹

• category – a category 𝐶𝑎𝑡

• *args – further arguments for the functor

EXAMPLES:
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sage: sage.categories.tensor.TensorProductsCategory.category_
→˓of(ModulesWithBasis(QQ))
Category of tensor products of vector spaces with basis over Rational Field

sage: sage.categories.algebra_functor.AlgebrasCategory.category_
→˓of(FiniteMonoids(), QQ)
Join of Category of finite dimensional algebras with basis over Rational Field

and Category of monoid algebras over Rational Field
and Category of finite set algebras over Rational Field

extra_super_categories()
Return the extra super categories of a construction category.

Default implementation which returns [].

EXAMPLES:

sage: Sets().Subquotients().extra_super_categories()
[]
sage: Semigroups().Quotients().extra_super_categories()
[]

super_categories()
Return the super categories of a construction category.

EXAMPLES:

sage: Sets().Subquotients().super_categories()
[Category of sets]
sage: Semigroups().Quotients().super_categories()
[Category of subquotients of semigroups, Category of quotients of sets]

class sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory(category,
*args)

Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

Abstract class for categories 𝐹𝐶𝑎𝑡 obtained through a regressive covariant functorial construction

classmethod default_super_categories(category, *args)
Return the default super categories of 𝐹𝐶𝑎𝑡(𝐴,𝐵, ...) for 𝐴,𝐵, ... parents in 𝐶𝑎𝑡.

INPUT:

• cls – the category class for the functor 𝐹

• category – a category 𝐶𝑎𝑡

• *args – further arguments for the functor

OUTPUT:

A join category.

This implements the property that an induced subcategory is a subcategory.

EXAMPLES:

A subquotient of a monoid is a monoid, and a subquotient of semigroup:

sage: Monoids().Subquotients().super_categories()
[Category of monoids, Category of subquotients of semigroups]

784 Chapter 5. Functorial constructions



Category Framework, Release 9.7

5.2 Cartesian Product Functorial Construction

AUTHORS:

• Nicolas M. Thiery (2008-2010): initial revision and refactorization

class sage.categories.cartesian_product.CartesianProductFunctor(category=None)
Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction,
sage.categories.pushout.MultivariateConstructionFunctor

The Cartesian product functor.

EXAMPLES:

sage: cartesian_product
The cartesian_product functorial construction

cartesian_product takes a finite collection of sets, and constructs the Cartesian product of those sets:

sage: A = FiniteEnumeratedSet(['a','b','c'])
sage: B = FiniteEnumeratedSet([1,2])
sage: C = cartesian_product([A, B]); C
The Cartesian product of ({'a', 'b', 'c'}, {1, 2})
sage: C.an_element()
('a', 1)
sage: C.list() # todo: not implemented
[['a', 1], ['a', 2], ['b', 1], ['b', 2], ['c', 1], ['c', 2]]

If those sets are endowed with more structure, say they are monoids (hence in the category Monoids()), then
the result is automatically endowed with its natural monoid structure:

sage: M = Monoids().example()
sage: M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: M.rename('M')
sage: C = cartesian_product([M, ZZ, QQ])
sage: C
The Cartesian product of (M, Integer Ring, Rational Field)
sage: C.an_element()
('abcd', 1, 1/2)
sage: C.an_element()^2
('abcdabcd', 1, 1/4)
sage: C.category()
Category of Cartesian products of monoids

sage: Monoids().CartesianProducts()
Category of Cartesian products of monoids

The Cartesian product functor is covariant: if A is a subcategory of B, then A.CartesianProducts() is a
subcategory of B.CartesianProducts() (see also CovariantFunctorialConstruction):

sage: C.categories()
[Category of Cartesian products of monoids,
Category of monoids,
Category of Cartesian products of semigroups,

(continues on next page)
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(continued from previous page)

Category of semigroups,
Category of Cartesian products of unital magmas,
Category of Cartesian products of magmas,
Category of unital magmas,
Category of magmas,
Category of Cartesian products of sets,
Category of sets, ...]

[Category of Cartesian products of monoids,
Category of monoids,
Category of Cartesian products of semigroups,
Category of semigroups,
Category of Cartesian products of magmas,
Category of unital magmas,
Category of magmas,
Category of Cartesian products of sets,
Category of sets,
Category of sets with partial maps,
Category of objects]

Hence, the role of Monoids().CartesianProducts() is solely to provide mathematical information and al-
gorithms which are relevant to Cartesian product of monoids. For example, it specifies that the result is again a
monoid, and that its multiplicative unit is the Cartesian product of the units of the underlying sets:

sage: C.one()
('', 1, 1)

Those are implemented in the nested class Monoids.CartesianProducts of Monoids(QQ). This nested class
is itself a subclass of CartesianProductsCategory.

class sage.categories.cartesian_product.CartesianProductsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

An abstract base class for all CartesianProducts categories.

CartesianProducts()
Return the category of (finite) Cartesian products of objects of self.

By associativity of Cartesian products, this is self (a Cartesian product of Cartesian products of 𝐴’s is a
Cartesian product of 𝐴’s).

EXAMPLES:

sage: ModulesWithBasis(QQ).CartesianProducts().CartesianProducts()
Category of Cartesian products of vector spaces with basis over Rational Field

base_ring()
The base ring of a Cartesian product is the base ring of the underlying category.

EXAMPLES:

sage: Algebras(ZZ).CartesianProducts().base_ring()
Integer Ring
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5.3 Tensor Product Functorial Construction

AUTHORS:

• Nicolas M. Thiéry (2008-2010): initial revision and refactorization

class sage.categories.tensor.TensorProductFunctor
Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

A singleton class for the tensor functor.

This functor takes a collection of vector spaces (or modules with basis), and constructs the tensor product of those
vector spaces. If this vector space is in a subcategory, say that of Algebras(QQ), it is automatically endowed
with its natural algebra structure, thanks to the category Algebras(QQ).TensorProducts() of tensor products
of algebras. For elements, it constructs the natural tensor product element in the corresponding tensor product
of their parents.

The tensor functor is covariant: if A is a subcategory of B, then A.TensorProducts() is a subcategory of B.
TensorProducts() (see also CovariantFunctorialConstruction). Hence, the role of Algebras(QQ).
TensorProducts() is solely to provide mathematical information and algorithms which are relevant to tensor
product of algebras.

Those are implemented in the nested class TensorProducts of Algebras(QQ). This nested class is itself a
subclass of TensorProductsCategory.

class sage.categories.tensor.TensorProductsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

An abstract base class for all TensorProducts’s categories

TensorProducts()
Returns the category of tensor products of objects of self

By associativity of tensor products, this is self (a tensor product of tensor products of 𝐶𝑎𝑡’s is a tensor
product of 𝐶𝑎𝑡’s)

EXAMPLES:

sage: ModulesWithBasis(QQ).TensorProducts().TensorProducts()
Category of tensor products of vector spaces with basis over Rational Field

base()
The base of a tensor product is the base (usually a ring) of the underlying category.

EXAMPLES:

sage: ModulesWithBasis(ZZ).TensorProducts().base()
Integer Ring

sage.categories.tensor.tensor = The tensor functorial construction
The tensor product functorial construction

See TensorProductFunctor for more information

EXAMPLES:

sage: tensor
The tensor functorial construction
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5.4 Signed Tensor Product Functorial Construction

AUTHORS:

• Travis Scrimshaw (2019-07): initial version

class sage.categories.signed_tensor.SignedTensorProductFunctor
Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

A singleton class for the signed tensor functor.

This functor takes a collection of graded algebras (possibly with basis) and constructs the signed tensor prod-
uct of those algebras. If this algebra is in a subcategory, say that of Algebras(QQ).Graded(), it is au-
tomatically endowed with its natural algebra structure, thanks to the category Algebras(QQ).Graded().
SignedTensorProducts() of signed tensor products of graded algebras. For elements, it constructs the natural
tensor product element in the corresponding tensor product of their parents.

The signed tensor functor is covariant: if A is a subcategory of B, then A.SignedTensorProducts() is a
subcategory of B.SignedTensorProducts() (see also CovariantFunctorialConstruction). Hence, the
role of Algebras(QQ).Graded().SignedTensorProducts() is solely to provide mathematical information
and algorithms which are relevant to signed tensor product of graded algebras.

Those are implemented in the nested class SignedTensorProducts of Algebras(QQ).Graded(). This nested
class is itself a subclass of SignedTensorProductsCategory.

EXAMPLES:

sage: tensor_signed
The signed tensor functorial construction

class sage.categories.signed_tensor.SignedTensorProductsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

An abstract base class for all SignedTensorProducts’s categories.

SignedTensorProducts()
Return the category of signed tensor products of objects of self.

By associativity of signed tensor products, this is self (a tensor product of signed tensor products of 𝐶𝑎𝑡’s
is a tensor product of 𝐶𝑎𝑡’s with the same twisting morphism)

EXAMPLES:

sage: AlgebrasWithBasis(QQ).Graded().SignedTensorProducts().
→˓SignedTensorProducts()
Category of signed tensor products of graded algebras with basis
over Rational Field

base()
The base of a signed tensor product is the base (usually a ring) of the underlying category.

EXAMPLES:

sage: AlgebrasWithBasis(ZZ).Graded().SignedTensorProducts().base()
Integer Ring

sage.categories.signed_tensor.tensor_signed = The signed tensor functorial construction

788 Chapter 5. Functorial constructions



Category Framework, Release 9.7

5.5 Dual functorial construction

AUTHORS:

• Nicolas M. Thiery (2009-2010): initial revision

class sage.categories.dual.DualFunctor
Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

A singleton class for the dual functor

class sage.categories.dual.DualObjectsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory

5.6 Group algebras and beyond: the Algebra functorial construction

5.6.1 Introduction: group algebras

Let 𝐺 be a group and 𝑅 be a ring. For example:

sage: G = DihedralGroup(3)
sage: R = QQ

The group algebra 𝐴 = 𝑅𝐺 of 𝐺 over 𝑅 is the space of formal linear combinations of elements of 𝑔𝑟𝑜𝑢𝑝 with
coefficients in 𝑅:

sage: A = G.algebra(R); A
Algebra of Dihedral group of order 6 as a permutation group

over Rational Field
sage: a = A.an_element(); a
() + (1,2) + 3*(1,2,3) + 2*(1,3,2)

This space is endowed with an algebra structure, obtained by extending by bilinearity the multiplication of 𝐺 to a
multiplication on 𝑅𝐺:

sage: A in Algebras
True
sage: a * a
14*() + 5*(2,3) + 2*(1,2) + 10*(1,2,3) + 13*(1,3,2) + 5*(1,3)

In particular, the product of two basis elements is induced by the product of the corresponding elements of the group,
and the unit of the group algebra is indexed by the unit of the group:

sage: (s, t) = A.algebra_generators()
sage: s*t
(1,2)
sage: A.one_basis()
()
sage: A.one()
()

For the user convenience and backward compatibility, the group algebra can also be constructed with:
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sage: GroupAlgebra(G, R)
Algebra of Dihedral group of order 6 as a permutation group

over Rational Field

Since trac ticket #18700, both constructions are strictly equivalent:

sage: GroupAlgebra(G, R) is G.algebra(R)
True

Group algebras are further endowed with a Hopf algebra structure; see below.

5.6.2 Generalizations

The above construction extends to weaker multiplicative structures than groups: magmas, semigroups, monoids. For a
monoid 𝑆, we obtain the monoid algebra 𝑅𝑆, which is defined exactly as above:

sage: S = Monoids().example(); S
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: A = S.algebra(QQ); A
Algebra of An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')

over Rational Field
sage: A.category()
Category of monoid algebras over Rational Field

This construction also extends to additive structures: magmas, semigroups, monoids, or groups:

sage: S = CommutativeAdditiveMonoids().example(); S
An example of a commutative monoid:
the free commutative monoid generated by ('a', 'b', 'c', 'd')
sage: U = S.algebra(QQ); U
Algebra of An example of a commutative monoid:

the free commutative monoid generated by ('a', 'b', 'c', 'd')
over Rational Field

Despite saying “free module”, this is really an algebra, whose multiplication is induced by the addition of elements of
𝑆:

sage: U in Algebras(QQ)
True
sage: (a,b,c,d) = S.additive_semigroup_generators()
sage: U(a) * U(b)
B[a + b]

To catter uniformly for the use cases above and some others, for 𝑆 a set and 𝐾 a ring, we define in Sage the algebra
of `S` as the 𝐾-free module with basis indexed by 𝑆, endowed with whatever algebraic structure can be induced from
that of 𝑆.

Warning: In most use cases, the result is actually an algebra, hence the name of this construction. In other cases
this name is misleading:
sage: A = Sets().example().algebra(QQ); A
Algebra of Set of prime numbers (basic implementation)

over Rational Field
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sage: A.category()
Category of set algebras over Rational Field
sage: A in Algebras(QQ)
False

Suggestions for a uniform, meaningful, and non misleading name are welcome!

To achieve this flexibility, the features are implemented as a Covariant Functorial Constructions that is essentially a
hierarchy of categories each providing the relevant additional features:

sage: A = DihedralGroup(3).algebra(QQ)
sage: A.categories()
[Category of finite group algebras over Rational Field,
...
Category of group algebras over Rational Field,
...
Category of monoid algebras over Rational Field,
...
Category of semigroup algebras over Rational Field,
...
Category of unital magma algebras over Rational Field,
...
Category of magma algebras over Rational Field,
...
Category of set algebras over Rational Field,
...]

5.6.3 Specifying the algebraic structure

Constructing the algebra of a set endowed with both an additive and a multiplicative structure is ambiguous:

sage: Z3 = IntegerModRing(3)
sage: A = Z3.algebra(QQ)
Traceback (most recent call last):
...
TypeError: `S = Ring of integers modulo 3` is both
an additive and a multiplicative semigroup.
Constructing its algebra is ambiguous.
Please use, e.g., S.algebra(QQ, category=Semigroups())

This ambiguity can be resolved using the category argument of the construction:

sage: A = Z3.algebra(QQ, category=Monoids()); A
Algebra of Ring of integers modulo 3 over Rational Field
sage: A.category()
Category of finite dimensional monoid algebras over Rational Field

sage: A = Z3.algebra(QQ, category=CommutativeAdditiveGroups()); A
Algebra of Ring of integers modulo 3 over Rational Field
sage: A.category()
Category of finite dimensional commutative additive group algebras
over Rational Field
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In general, the category argument can be used to specify which structure of 𝑆 shall be extended to 𝐾𝑆.

5.6.4 Group algebras, continued

Let us come back to the case of a group algebra 𝐴 = 𝑅𝐺. It is endowed with more structure and in particular that of a
Hopf algebra:

sage: G = DihedralGroup(3)
sage: A = G.algebra(R); A
Algebra of Dihedral group of order 6 as a permutation group

over Rational Field
sage: A in HopfAlgebras(R).FiniteDimensional().WithBasis()
True

The basis elements are group-like for the coproduct: ∆(𝑔) = 𝑔 ⊗ 𝑔:

sage: s
(1,2,3)
sage: s.coproduct()
(1,2,3) # (1,2,3)

The counit is the constant function 1 on the basis elements:

sage: A = GroupAlgebra(DihedralGroup(6), QQ)
sage: [A.counit(g) for g in A.basis()]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

The antipode is given on basis elements by 𝜒(𝑔) = 𝑔−1:

sage: A = GroupAlgebra(DihedralGroup(3), QQ)
sage: s
(1,2,3)
sage: s.antipode()
(1,3,2)

By Maschke’s theorem, for a finite group whose cardinality does not divide the characteristic of the base field, the
algebra is semisimple:

sage: SymmetricGroup(5).algebra(QQ) in Algebras(QQ).Semisimple()
True
sage: CyclicPermutationGroup(10).algebra(FiniteField(7)) in Algebras.Semisimple
True
sage: CyclicPermutationGroup(10).algebra(FiniteField(5)) in Algebras.Semisimple
False
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5.6.5 Coercions

Let 𝑅𝑆 be the algebra of some structure 𝑆. Then 𝑅𝑆 admits the natural coercion from any other algebra 𝑅′𝑆′ of some
structure 𝑆′, as long as 𝑅′ coerces into 𝑅 and 𝑆′ coerces into 𝑆.

For example, since there is a natural inclusion from the dihedral group 𝐷2 of order 4 into the symmetric group 𝑆4 of
order 4!, and since there is a natural map from the integers to the rationals, there is a natural map from Z[𝐷2] to Q[𝑆4]:

sage: A = DihedralGroup(2).algebra(ZZ)
sage: B = SymmetricGroup(4).algebra(QQ)
sage: a = A.an_element(); a
() + 2*(3,4) + 3*(1,2) + (1,2)(3,4)
sage: b = B.an_element(); b
() + (2,3,4) + 2*(1,3)(2,4) + 3*(1,4)(2,3)
sage: B(a)
() + 2*(3,4) + 3*(1,2) + (1,2)(3,4)
sage: a * b # a is automatically converted to an element of B
() + 2*(3,4) + 2*(2,3) + (2,3,4) + 3*(1,2) + (1,2)(3,4) + (1,3,2)
+ 3*(1,3,4,2) + 5*(1,3)(2,4) + 13*(1,3,2,4) + 12*(1,4,2,3) + 5*(1,4)(2,3)
sage: parent(a * b)
Symmetric group algebra of order 4 over Rational Field

There is no obvious map in the other direction, though:

sage: A(b)
Traceback (most recent call last):
...
TypeError: do not know how to make x (= () + (2,3,4) + 2*(1,3)(2,4) + 3*(1,4)(2,3))
an element of self
(=Algebra of Dihedral group of order 4 as a permutation group over Integer Ring)

If 𝑆 is a unital (additive) magma, then 𝑅𝑆 is a unital algebra, and thus admits a coercion from its base ring 𝑅 and any
ring that coerces into 𝑅.

sage: G = DihedralGroup(2)
sage: A = G.algebra(ZZ)
sage: A(2)
2*()

If 𝑆 is a multiplicative group, then 𝑅𝑆 admits a coercion from 𝑆 and from any group which coerce into 𝑆:

sage: g = DihedralGroup(2).gen(0); g
(3,4)
sage: A(g)
(3,4)
sage: A(2) * g
2*(3,4)

Note that there is an ambiguity if 𝑆′ is a group which coerces into both 𝑅 and 𝑆. For example) if 𝑆 is the additive group
(Z,+), and 𝐴 = 𝑅𝑆 is its group algebra, then the integer 2 can be coerced into 𝐴 in two ways – via 𝑆, or via the base
ring 𝑅 – and the answers are different. It that case the coercion to 𝑅 takes precedence. In particular, if Z is the ring
(or group) of integers, then Z will coerce to any 𝑅𝑆, by sending Z to 𝑅. In generic code, it is therefore recommended
to always explicitly use A.monomial(g) to convert an element of the group into 𝐴.

AUTHORS:
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• David Loeffler (2008-08-24): initial version

• Martin Raum (2009-08): update to use new coercion model – see trac ticket #6670.

• John Palmieri (2011-07): more updates to coercion, categories, etc., group algebras constructed using Combi-
natorialFreeModule – see trac ticket #6670.

• Nicolas M. Thiéry (2010-2017), Travis Scrimshaw (2017): generalization to a covariant functorial construction
for monoid algebras, and beyond – see e.g. trac ticket #18700.

class sage.categories.algebra_functor.AlgebraFunctor(base_ring)
Bases: sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction

For a fixed ring, a functor sending a group/. . . to the corresponding group/. . . algebra.

EXAMPLES:

sage: from sage.categories.algebra_functor import AlgebraFunctor
sage: F = AlgebraFunctor(QQ); F
The algebra functorial construction
sage: F(DihedralGroup(3))
Algebra of Dihedral group of order 6 as a permutation group

over Rational Field

base_ring()
Return the base ring for this functor.

EXAMPLES:

sage: from sage.categories.algebra_functor import AlgebraFunctor
sage: AlgebraFunctor(QQ).base_ring()
Rational Field

class sage.categories.algebra_functor.AlgebrasCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.CovariantConstructionCategory,
sage.categories.category_types.Category_over_base_ring

An abstract base class for categories of monoid algebras, groups algebras, and the like.

See also:

• Sets.ParentMethods.algebra()

• Sets.SubcategoryMethods.Algebras()

• CovariantFunctorialConstruction

INPUT:

• base_ring – a ring

EXAMPLES:

sage: C = Groups().Algebras(QQ); C
Category of group algebras over Rational Field
sage: C = Monoids().Algebras(QQ); C
Category of monoid algebras over Rational Field

sage: C._short_name()
'Algebras'

(continues on next page)
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(continued from previous page)

sage: latex(C) # todo: improve that
\mathbf{Algebras}(\mathbf{Monoids})

class ParentMethods
Bases: object

coproduct_on_basis(g)
Return the coproduct of the element g of the basis.

Each basis element g is group-like. This method is used to compute the coproduct of any element.

EXAMPLES:

sage: PF = NonDecreasingParkingFunctions(4)
sage: A = PF.algebra(ZZ); A
Algebra of Non-decreasing parking functions of size 4 over Integer Ring
sage: g = PF.an_element(); g
[1, 1, 1, 1]
sage: A.coproduct_on_basis(g)
B[[1, 1, 1, 1]] # B[[1, 1, 1, 1]]
sage: a = A.an_element(); a
2*B[[1, 1, 1, 1]] + 2*B[[1, 1, 1, 2]] + 3*B[[1, 1, 1, 3]]
sage: a.coproduct()
2*B[[1, 1, 1, 1]] # B[[1, 1, 1, 1]] +
2*B[[1, 1, 1, 2]] # B[[1, 1, 1, 2]] +
3*B[[1, 1, 1, 3]] # B[[1, 1, 1, 3]]

class sage.categories.algebra_functor.GroupAlgebraFunctor(group)
Bases: sage.categories.pushout.ConstructionFunctor

For a fixed group, a functor sending a commutative ring to the corresponding group algebra.

INPUT:

• group – the group associated to each group algebra under consideration

EXAMPLES:

sage: from sage.categories.algebra_functor import GroupAlgebraFunctor
sage: F = GroupAlgebraFunctor(KleinFourGroup()); F
GroupAlgebraFunctor
sage: A = F(QQ); A
Algebra of The Klein 4 group of order 4, as a permutation group over Rational Field

group()
Return the group which is associated to this functor.

EXAMPLES:

sage: from sage.categories.algebra_functor import GroupAlgebraFunctor
sage: GroupAlgebraFunctor(CyclicPermutationGroup(17)).group() ==␣
→˓CyclicPermutationGroup(17)
True
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5.7 Subquotient Functorial Construction

AUTHORS:

• Nicolas M. Thiery (2010): initial revision

class sage.categories.subquotients.SubquotientsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

5.8 Quotients Functorial Construction

AUTHORS:

• Nicolas M. Thiery (2010): initial revision

class sage.categories.quotients.QuotientsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

classmethod default_super_categories(category)
Returns the default super categories of category.Quotients()

Mathematical meaning: if 𝐴 is a quotient of 𝐵 in the category 𝐶, then 𝐴 is also a subquotient of 𝐵 in the
category 𝐶.

INPUT:

• cls – the class QuotientsCategory

• category – a category 𝐶𝑎𝑡

OUTPUT: a (join) category

In practice, this returns category.Subquotients(), joined together with the result of the method
RegressiveCovariantConstructionCategory.default_super_categories() (that is the join of
category and cat.Quotients() for each cat in the super categories of category).

EXAMPLES:

Consider category=Groups(), which has cat=Monoids() as super category. Then, a subgroup of a
group 𝐺 is simultaneously a subquotient of 𝐺, a group by itself, and a quotient monoid of G:

sage: Groups().Quotients().super_categories()
[Category of groups, Category of subquotients of monoids, Category of quotients␣
→˓of semigroups]

Mind the last item above: there is indeed currently nothing implemented about quotient monoids.

This resulted from the following call:

sage: sage.categories.quotients.QuotientsCategory.default_super_
→˓categories(Groups())
Join of Category of groups and Category of subquotients of monoids and Category␣
→˓of quotients of semigroups
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5.9 Subobjects Functorial Construction

AUTHORS:

• Nicolas M. Thiery (2010): initial revision

class sage.categories.subobjects.SubobjectsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

classmethod default_super_categories(category)
Returns the default super categories of category.Subobjects()

Mathematical meaning: if 𝐴 is a subobject of 𝐵 in the category 𝐶, then 𝐴 is also a subquotient of 𝐵 in the
category 𝐶.

INPUT:

• cls – the class SubobjectsCategory

• category – a category 𝐶𝑎𝑡

OUTPUT: a (join) category

In practice, this returns category.Subquotients(), joined together with the result of the method
RegressiveCovariantConstructionCategory.default_super_categories() (that is the join of
category and cat.Subobjects() for each cat in the super categories of category).

EXAMPLES:

Consider category=Groups(), which has cat=Monoids() as super category. Then, a subgroup of a
group 𝐺 is simultaneously a subquotient of 𝐺, a group by itself, and a submonoid of 𝐺:

sage: Groups().Subobjects().super_categories()
[Category of groups, Category of subquotients of monoids, Category of␣
→˓subobjects of sets]

Mind the last item above: there is indeed currently nothing implemented about submonoids.

This resulted from the following call:

sage: sage.categories.subobjects.SubobjectsCategory.default_super_
→˓categories(Groups())
Join of Category of groups and Category of subquotients of monoids and Category␣
→˓of subobjects of sets

5.10 Isomorphic Objects Functorial Construction

AUTHORS:

• Nicolas M. Thiery (2010): initial revision

class sage.categories.isomorphic_objects.IsomorphicObjectsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

classmethod default_super_categories(category)
Returns the default super categories of category.IsomorphicObjects()
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Mathematical meaning: if 𝐴 is the image of 𝐵 by an isomorphism in the category 𝐶, then 𝐴 is both a
subobject of 𝐵 and a quotient of 𝐵 in the category 𝐶.

INPUT:

• cls – the class IsomorphicObjectsCategory

• category – a category 𝐶𝑎𝑡

OUTPUT: a (join) category

In practice, this returns category.Subobjects() and category.Quotients(), joined
together with the result of the method RegressiveCovariantConstructionCategory.
default_super_categories() (that is the join of category and cat.IsomorphicObjects()
for each cat in the super categories of category).

EXAMPLES:

Consider category=Groups(), which has cat=Monoids() as super category. Then, the image of a group
𝐺′ by a group isomorphism is simultaneously a subgroup of 𝐺, a subquotient of 𝐺, a group by itself, and
the image of 𝐺 by a monoid isomorphism:

sage: Groups().IsomorphicObjects().super_categories()
[Category of groups,
Category of subquotients of monoids,
Category of quotients of semigroups,
Category of isomorphic objects of sets]

Mind the last item above: there is indeed currently nothing implemented about isomorphic objects of
monoids.

This resulted from the following call:

sage: sage.categories.isomorphic_objects.IsomorphicObjectsCategory.default_
→˓super_categories(Groups())
Join of Category of groups and
Category of subquotients of monoids and
Category of quotients of semigroups and
Category of isomorphic objects of sets

5.11 Homset categories

class sage.categories.homsets.Homsets(s=None)
Bases: sage.categories.category_singleton.Category_singleton

The category of all homsets.

EXAMPLES:

sage: from sage.categories.homsets import Homsets
sage: Homsets()
Category of homsets

This is a subcategory of Sets():

sage: Homsets().super_categories()
[Category of sets]
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By this, we assume that all homsets implemented in Sage are sets, or equivalently that we only implement locally
small categories. See Wikipedia article Category_(mathematics).

trac ticket #17364: every homset category shall be a subcategory of the category of all homsets:

sage: Schemes().Homsets().is_subcategory(Homsets())
True
sage: AdditiveMagmas().Homsets().is_subcategory(Homsets())
True
sage: AdditiveMagmas().AdditiveUnital().Homsets().is_subcategory(Homsets())
True

This is tested in HomsetsCategory._test_homsets_category().

class Endset(base_category)
Bases: sage.categories.category_with_axiom.CategoryWithAxiom

The category of all endomorphism sets.

This category serves too purposes: making sure that the Endset axiom is implemented in the category
where it’s defined, namely Homsets, and specifying that Endsets are monoids.

EXAMPLES:

sage: from sage.categories.homsets import Homsets
sage: Homsets().Endset()
Category of endsets

class ParentMethods
Bases: object

is_endomorphism_set()
Return True as self is in the category of Endsets.

EXAMPLES:

sage: P.<t> = ZZ[]
sage: E = End(P)
sage: E.is_endomorphism_set()
True

extra_super_categories()
Implement the fact that endsets are monoids.

See also:

CategoryWithAxiom.extra_super_categories()

EXAMPLES:

sage: from sage.categories.homsets import Homsets
sage: Homsets().Endset().extra_super_categories()
[Category of monoids]

class ParentMethods
Bases: object

is_endomorphism_set()
Return True if the domain and codomain of self are the same object.

EXAMPLES:
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sage: P.<t> = ZZ[]
sage: f = P.hom([1/2*t])
sage: f.parent().is_endomorphism_set()
False
sage: g = P.hom([2*t])
sage: g.parent().is_endomorphism_set()
True

class SubcategoryMethods
Bases: object

Endset()
Return the subcategory of the homsets of self that are endomorphism sets.

EXAMPLES:

sage: Sets().Homsets().Endset()
Category of endsets of sets

sage: Posets().Homsets().Endset()
Category of endsets of posets

super_categories()
Return the super categories of self.

EXAMPLES:

sage: from sage.categories.homsets import Homsets
sage: Homsets()
Category of homsets

class sage.categories.homsets.HomsetsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.FunctorialConstructionCategory

base()
If this homsets category is subcategory of a category with a base, return that base.

Todo: Is this really useful?

EXAMPLES:

sage: ModulesWithBasis(ZZ).Homsets().base()
Integer Ring

classmethod default_super_categories(category)
Return the default super categories of category.Homsets().

INPUT:

• cls – the category class for the functor 𝐹

• category – a category 𝐶𝑎𝑡

OUTPUT: a category
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As for the other functorial constructions, if category implements a nested Homsets class, this method
is used in combination with category.Homsets().extra_super_categories() to compute the super
categories of category.Homsets().

EXAMPLES:

If category has one or more full super categories, then the join of their respective homsets category is
returned. In this example, this join consists of a single category:

sage: from sage.categories.homsets import HomsetsCategory
sage: from sage.categories.additive_groups import AdditiveGroups

sage: C = AdditiveGroups()
sage: C.full_super_categories()
[Category of additive inverse additive unital additive magmas,
Category of additive monoids]
sage: H = HomsetsCategory.default_super_categories(C); H
Category of homsets of additive monoids
sage: type(H)
<class 'sage.categories.additive_monoids.AdditiveMonoids.Homsets_with_category'>

and, given that nothing specific is currently implemented for homsets of additive groups, H is directly the
category thereof:

sage: C.Homsets()
Category of homsets of additive monoids

Similarly for rings: a ring homset is just a homset of unital magmas and additive magmas:

sage: Rings().Homsets()
Category of homsets of unital magmas and additive unital additive magmas

Otherwise, if category implements a nested class Homsets, this method returns the category of all hom-
sets:

sage: AdditiveMagmas.Homsets
<class 'sage.categories.additive_magmas.AdditiveMagmas.Homsets'>
sage: HomsetsCategory.default_super_categories(AdditiveMagmas())
Category of homsets

which gives one of the super categories of category.Homsets():

sage: AdditiveMagmas().Homsets().super_categories()
[Category of additive magmas, Category of homsets]
sage: AdditiveMagmas().AdditiveUnital().Homsets().super_categories()
[Category of additive unital additive magmas, Category of homsets]

the other coming from category.Homsets().extra_super_categories():

sage: AdditiveMagmas().Homsets().extra_super_categories()
[Category of additive magmas]

Finally, as a last resort, this method returns a stub category modelling the homsets of this category:

sage: hasattr(Posets, "Homsets")
False

(continues on next page)
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(continued from previous page)

sage: H = HomsetsCategory.default_super_categories(Posets()); H
Category of homsets of posets
sage: type(H)
<class 'sage.categories.homsets.HomsetsOf_with_category'>
sage: Posets().Homsets()
Category of homsets of posets

class sage.categories.homsets.HomsetsOf(category, *args)
Bases: sage.categories.homsets.HomsetsCategory

Default class for homsets of a category.

This is used when a category 𝐶 defines some additional structure but not a homset category of its own. Indeed,
unlike for covariant functorial constructions, we cannot represent the homset category of 𝐶 by just the join of
the homset categories of its super categories.

EXAMPLES:

sage: C = (Magmas() & Posets()).Homsets(); C
Category of homsets of magmas and posets
sage: type(C)
<class 'sage.categories.homsets.HomsetsOf_with_category'>

super_categories()
Return the super categories of self.

A stub homset category admits a single super category, namely the category of all homsets.

EXAMPLES:

sage: C = (Magmas() & Posets()).Homsets(); C
Category of homsets of magmas and posets
sage: type(C)
<class 'sage.categories.homsets.HomsetsOf_with_category'>
sage: C.super_categories()
[Category of homsets]

5.12 Realizations Covariant Functorial Construction

See also:

• Sets().WithRealizations for an introduction to realizations and with realizations.

• sage.categories.covariant_functorial_construction for an introduction to covariant functorial con-
structions.

• sage.categories.examples.with_realizations for an example.

class sage.categories.realizations.Category_realization_of_parent(parent_with_realization)
Bases: sage.categories.category_types.Category_over_base, sage.misc.bindable_class.
BindableClass

An abstract base class for categories of all realizations of a given parent

INPUT:

• parent_with_realization – a parent
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See also:

Sets().WithRealizations

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field

The role of this base class is to implement some technical goodies, like the binding A.Realizations() when
a subclass Realizations is implemented as a nested class in A (see the code of the example):

sage: C = A.Realizations(); C
Category of realizations of The subset algebra of {1, 2, 3} over Rational Field

as well as the name for that category.

sage.categories.realizations.Realizations(self )
Return the category of realizations of the parent self or of objects of the category self

INPUT:

• self – a parent or a concrete category

Note: this function is actually inserted as a method in the class Category (see Realizations()). It is defined
here for code locality reasons.

EXAMPLES:

The category of realizations of some algebra:

sage: Algebras(QQ).Realizations()
Join of Category of algebras over Rational Field and Category of realizations of␣
→˓unital magmas

The category of realizations of a given algebra:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.Realizations()
Category of realizations of The subset algebra of {1, 2, 3} over Rational Field

sage: C = GradedHopfAlgebrasWithBasis(QQ).Realizations(); C
Join of Category of graded hopf algebras with basis over Rational Field and␣
→˓Category of realizations of hopf algebras over Rational Field
sage: C.super_categories()
[Category of graded hopf algebras with basis over Rational Field, Category of␣
→˓realizations of hopf algebras over Rational Field]

sage: TestSuite(C).run()

See also:

• Sets().WithRealizations

• ClasscallMetaclass
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Todo: Add an optional argument to allow for:

sage: Realizations(A, category = Blahs()) # todo: not implemented

class sage.categories.realizations.RealizationsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

An abstract base class for all categories of realizations category

Relization are implemented as RegressiveCovariantConstructionCategory. See there for the documen-
tation of how the various bindings such as Sets().Realizations() and P.Realizations(), where P is a
parent, work.

See also:

Sets().WithRealizations

5.13 With Realizations Covariant Functorial Construction

See also:

• Sets().WithRealizations for an introduction to realizations and with realizations.

• sage.categories.covariant_functorial_construction for an introduction to covariant functorial con-
structions.

sage.categories.with_realizations.WithRealizations(self )
Return the category of parents in self endowed with multiple realizations.

INPUT:

• self – a category

See also:

• The documentation and code (sage.categories.examples.with_realizations) of Sets().
WithRealizations().example() for more on how to use and implement a parent with several real-
izations.

• Various use cases:

– SymmetricFunctions

– QuasiSymmetricFunctions

– NonCommutativeSymmetricFunctions

– SymmetricFunctionsNonCommutingVariables

– DescentAlgebra

– algebras.Moebius

– IwahoriHeckeAlgebra

– ExtendedAffineWeylGroup

• The Implementing Algebraic Structures thematic tutorial.

• sage.categories.realizations
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Note: this function is actually inserted as a method in the class Category (see WithRealizations()). It is
defined here for code locality reasons.

EXAMPLES:

sage: Sets().WithRealizations()
Category of sets with realizations

Parent with realizations

Let us now explain the concept of realizations. A parent with realizations is a facade parent (see Sets.Facade)
admitting multiple concrete realizations where its elements are represented. Consider for example an algebra 𝐴
which admits several natural bases:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field

For each such basis 𝐵 one implements a parent 𝑃𝐵 which realizes 𝐴 with its elements represented by expanding
them on the basis 𝐵:

sage: A.F()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: A.Out()
The subset algebra of {1, 2, 3} over Rational Field in the Out basis
sage: A.In()
The subset algebra of {1, 2, 3} over Rational Field in the In basis

sage: A.an_element()
F[{}] + 2*F[{1}] + 3*F[{2}] + F[{1, 2}]

If𝐵 and𝐵′ are two bases, then the change of basis from 𝐵 to𝐵′ is implemented by a canonical coercion between
𝑃𝐵 and 𝑃𝐵′ :

sage: F = A.F(); In = A.In(); Out = A.Out()
sage: i = In.an_element(); i
In[{}] + 2*In[{1}] + 3*In[{2}] + In[{1, 2}]
sage: F(i)
7*F[{}] + 3*F[{1}] + 4*F[{2}] + F[{1, 2}]
sage: F.coerce_map_from(Out)
Generic morphism:
From: The subset algebra of {1, 2, 3} over Rational Field in the Out basis
To: The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis

allowing for mixed arithmetic:

sage: (1 + Out.from_set(1)) * In.from_set(2,3)
Out[{}] + 2*Out[{1}] + 2*Out[{2}] + 2*Out[{3}] + 2*Out[{1, 2}] + 2*Out[{1, 3}] +␣
→˓4*Out[{2, 3}] + 4*Out[{1, 2, 3}]

In our example, there are three realizations:
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sage: A.realizations()
[The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis,
The subset algebra of {1, 2, 3} over Rational Field in the In basis,
The subset algebra of {1, 2, 3} over Rational Field in the Out basis]

Instead of manually defining the shorthands F, In, and Out, as above one can just do:

sage: A.inject_shorthands()
Defining F as shorthand for The subset algebra of {1, 2, 3} over Rational Field in␣
→˓the Fundamental basis
Defining In as shorthand for The subset algebra of {1, 2, 3} over Rational Field in␣
→˓the In basis
Defining Out as shorthand for The subset algebra of {1, 2, 3} over Rational Field␣
→˓in the Out basis

Rationale

Besides some goodies described below, the role of 𝐴 is threefold:

• To provide, as illustrated above, a single entry point for the algebra as a whole: documentation, access to
its properties and different realizations, etc.

• To provide a natural location for the initialization of the bases and the coercions between, and other methods
that are common to all bases.

• To let other objects refer to 𝐴 while allowing elements to be represented in any of the realizations.

We now illustrate this second point by defining the polynomial ring with coefficients in 𝐴:

sage: P = A['x']; P
Univariate Polynomial Ring in x over The subset algebra of {1, 2, 3} over Rational␣
→˓Field
sage: x = P.gen()

In the following examples, the coefficients turn out to be all represented in the 𝐹 basis:

sage: P.one()
F[{}]
sage: (P.an_element() + 1)^2
F[{}]*x^2 + 2*F[{}]*x + F[{}]

However we can create a polynomial with mixed coefficients, and compute with it:

sage: p = P([1, In[{1}], Out[{2}] ]); p
Out[{2}]*x^2 + In[{1}]*x + F[{}]
sage: p^2
Out[{2}]*x^4
+ (-8*In[{}] + 4*In[{1}] + 8*In[{2}] + 4*In[{3}] - 4*In[{1, 2}] - 2*In[{1, 3}] -␣
→˓4*In[{2, 3}] + 2*In[{1, 2, 3}])*x^3
+ (F[{}] + 3*F[{1}] + 2*F[{2}] - 2*F[{1, 2}] - 2*F[{2, 3}] + 2*F[{1, 2, 3}])*x^2
+ (2*F[{}] + 2*F[{1}])*x
+ F[{}]

Note how each coefficient involves a single basis which need not be that of the other coefficients. Which basis is
used depends on how coercion happened during mixed arithmetic and needs not be deterministic.
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One can easily coerce all coefficient to a given basis with:

sage: p.map_coefficients(In)
(-4*In[{}] + 2*In[{1}] + 4*In[{2}] + 2*In[{3}] - 2*In[{1, 2}] - In[{1, 3}] - 2*In[
→˓{2, 3}] + In[{1, 2, 3}])*x^2 + In[{1}]*x + In[{}]

Alas, the natural notation for constructing such polynomials does not yet work:

sage: In[{1}] * x
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: 'The subset algebra of {1, 2, 3}␣
→˓over Rational Field in the In basis' and 'Univariate Polynomial Ring in x over␣
→˓The subset algebra of {1, 2, 3} over Rational Field'

The category of realizations of 𝐴

The set of all realizations of 𝐴, together with the coercion morphisms is a category (whose class inherits from
Category_realization_of_parent):

sage: A.Realizations()
Category of realizations of The subset algebra of {1, 2, 3} over Rational Field

The various parent realizing 𝐴 belong to this category:

sage: A.F() in A.Realizations()
True

𝐴 itself is in the category of algebras with realizations:

sage: A in Algebras(QQ).WithRealizations()
True

The (mostly technical) WithRealizations categories are the analogs of the *WithSeveralBases categories
in MuPAD-Combinat. They provide support tools for handling the different realizations and the morphisms
between them.

Typically, VectorSpaces(QQ).FiniteDimensional().WithRealizations() will eventually be in charge,
whenever a coercion 𝜑 : 𝐴 ↦→ 𝐵 is registered, to register 𝜑−1 as coercion 𝐵 ↦→ 𝐴 if there is none defined
yet. To achieve this, FiniteDimensionalVectorSpaces would provide a nested class WithRealizations
implementing the appropriate logic.

WithRealizations is a regressive covariant functorial construction. On our example, this sim-
ply means that 𝐴 is automatically in the category of rings with realizations (covariance):

sage: A in Rings().WithRealizations()
True

and in the category of algebras (regressiveness):

sage: A in Algebras(QQ)
True
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Note: For C a category, C.WithRealizations() in fact calls sage.categories.with_realizations.
WithRealizations(C). The later is responsible for building the hierarchy of the categories with realiza-
tions in parallel to that of their base categories, optimizing away those categories that do not provide a
WithRealizations nested class. See sage.categories.covariant_functorial_construction for the
technical details.

Note: Design question: currently WithRealizations is a regressive construction. That is self.
WithRealizations() is a subcategory of self by default:

sage: Algebras(QQ).WithRealizations().super_categories()
[Category of algebras over Rational Field,
Category of monoids with realizations,
Category of additive unital additive magmas with realizations]

Is this always desirable? For example, AlgebrasWithBasis(QQ).WithRealizations() should cer-
tainly be a subcategory of Algebras(QQ), but not of AlgebrasWithBasis(QQ). This is because
AlgebrasWithBasis(QQ) is specifying something about the concrete realization.

class sage.categories.with_realizations.WithRealizationsCategory(category, *args)
Bases: sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory

An abstract base class for all categories of parents with multiple realizations.

See also:

Sets().WithRealizations

The role of this base class is to implement some technical goodies, such as the name for that category.
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SIX

EXAMPLES OF PARENTS USING CATEGORIES

6.1 Examples of algebras with basis

sage.categories.examples.algebras_with_basis.Example
alias of sage.categories.examples.algebras_with_basis.FreeAlgebra

class sage.categories.examples.algebras_with_basis.FreeAlgebra(R, alphabet=('a', 'b', 'c'))
Bases: sage.combinat.free_module.CombinatorialFreeModule

An example of an algebra with basis: the free algebra

This class illustrates a minimal implementation of an algebra with basis.

algebra_generators()
Return the generators of this algebra, as per algebra_generators().

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example(); A
An example of an algebra with basis: the free algebra on the generators ('a', 'b
→˓', 'c') over Rational Field
sage: A.algebra_generators()
Family (B[word: a], B[word: b], B[word: c])

one_basis()
Returns the empty word, which index the one of this algebra, as per AlgebrasWithBasis.
ParentMethods.one_basis().

EXAMPLES::r

sage: A = AlgebrasWithBasis(QQ).example() sage: A.one_basis() word: sage: A.one() B[word:
]

product_on_basis(w1, w2)
Product of basis elements, as per AlgebrasWithBasis.ParentMethods.product_on_basis().

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example()
sage: Words = A.basis().keys()
sage: A.product_on_basis(Words("acb"), Words("cba"))
B[word: acbcba]
sage: (a,b,c) = A.algebra_generators()
sage: a * (1-b)^2 * c
B[word: abbc] - 2*B[word: abc] + B[word: ac]
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6.2 Examples of commutative additive monoids

sage.categories.examples.commutative_additive_monoids.Example
alias of sage.categories.examples.commutative_additive_monoids.
FreeCommutativeAdditiveMonoid

class sage.categories.examples.commutative_additive_monoids.FreeCommutativeAdditiveMonoid(alphabet=('a',
'b',
'c',
'd'))

Bases: sage.categories.examples.commutative_additive_semigroups.
FreeCommutativeAdditiveSemigroup

An example of a commutative additive monoid: the free commutative monoid

This class illustrates a minimal implementation of a commutative monoid.

EXAMPLES:

sage: S = CommutativeAdditiveMonoids().example(); S
An example of a commutative monoid: the free commutative monoid generated by ('a',
→˓'b', 'c', 'd')

sage: S.category()
Category of commutative additive monoids

This is the free semigroup generated by:

sage: S.additive_semigroup_generators()
Family (a, b, c, d)

with product rule given by 𝑎× 𝑏 = 𝑎 for all 𝑎, 𝑏:

sage: (a,b,c,d) = S.additive_semigroup_generators()

We conclude by running systematic tests on this commutative monoid:

sage: TestSuite(S).run(verbose = True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass

(continues on next page)
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(continued from previous page)

running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass
running ._test_zero() . . . pass

class Element(parent, iterable)
Bases: sage.categories.examples.commutative_additive_semigroups.
FreeCommutativeAdditiveSemigroup.Element

zero()
Returns the zero of this additive monoid, as per CommutativeAdditiveMonoids.ParentMethods.
zero().

EXAMPLES:

sage: M = CommutativeAdditiveMonoids().example(); M
An example of a commutative monoid: the free commutative monoid generated by ('a
→˓', 'b', 'c', 'd')
sage: M.zero()
0

6.3 Examples of commutative additive semigroups

sage.categories.examples.commutative_additive_semigroups.Example
alias of sage.categories.examples.commutative_additive_semigroups.
FreeCommutativeAdditiveSemigroup

class sage.categories.examples.commutative_additive_semigroups.FreeCommutativeAdditiveSemigroup(alphabet=('a',
'b',
'c',
'd'))

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a commutative additive monoid: the free commutative monoid

This class illustrates a minimal implementation of a commutative additive monoid.

EXAMPLES:

sage: S = CommutativeAdditiveSemigroups().example(); S
An example of a commutative semigroup: the free commutative semigroup generated by (
→˓'a', 'b', 'c', 'd')

sage: S.category()
Category of commutative additive semigroups

This is the free semigroup generated by:

sage: S.additive_semigroup_generators()
Family (a, b, c, d)
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with product rule given by 𝑎× 𝑏 = 𝑎 for all 𝑎, 𝑏:

sage: (a,b,c,d) = S.additive_semigroup_generators()

We conclude by running systematic tests on this commutative monoid:

sage: TestSuite(S).run(verbose = True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

class Element(parent, iterable)
Bases: sage.structure.element_wrapper.ElementWrapper

EXAMPLES:

sage: F = CommutativeAdditiveSemigroups().example()
sage: x = F.element_class(F, (('a',4), ('b', 0), ('a', 2), ('c', 1), ('d', 5)))
sage: x
2*a + c + 5*d
sage: x.value
{'a': 2, 'b': 0, 'c': 1, 'd': 5}
sage: x.parent()
An example of a commutative semigroup: the free commutative semigroup generated␣
→˓by ('a', 'b', 'c', 'd')

Internally, elements are represented as dense dictionaries which associate to each generator of the monoid
its multiplicity. In order to get an element, we wrap the dictionary into an element via ElementWrapper:

sage: x.value
{'a': 2, 'b': 0, 'c': 1, 'd': 5}

additive_semigroup_generators()
Returns the generators of the semigroup.

EXAMPLES:
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sage: F = CommutativeAdditiveSemigroups().example()
sage: F.additive_semigroup_generators()
Family (a, b, c, d)

an_element()
Returns an element of the semigroup.

EXAMPLES:

sage: F = CommutativeAdditiveSemigroups().example()
sage: F.an_element()
a + 2*b + 3*c + 4*d

summation(x, y)
Returns the product of x and y in the semigroup, as per CommutativeAdditiveSemigroups.
ParentMethods.summation().

EXAMPLES:

sage: F = CommutativeAdditiveSemigroups().example()
sage: (a,b,c,d) = F.additive_semigroup_generators()
sage: F.summation(a,b)
a + b
sage: (a+b) + (a+c)
2*a + b + c

6.4 Examples of Coxeter groups

6.5 Example of a crystal

class sage.categories.examples.crystals.HighestWeightCrystalOfTypeA(n=3)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a crystal: the highest weight crystal of type 𝐴𝑛 of highest weight 𝜔1.

The purpose of this class is to provide a minimal template for implementing crystals. See CrystalOfLetters
for a full featured and optimized implementation.

EXAMPLES:

sage: C = Crystals().example()
sage: C
Highest weight crystal of type A_3 of highest weight omega_1
sage: C.category()
Category of classical crystals

The elements of this crystal are in the set {1, . . . , 𝑛 + 1}:

sage: C.list()
[1, 2, 3, 4]
sage: C.module_generators[0]
1
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The crystal operators themselves correspond to the elementary transpositions:

sage: b = C.module_generators[0]
sage: b.f(1)
2
sage: b.f(1).e(1) == b
True

Only the following basic operations are implemented:

• cartan_type() or an attribute _cartan_type

• an attribute module_generators

• Element.e()

• Element.f()

All the other usual crystal operations are inherited from the categories; for example:

sage: C.cardinality()
4

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

e(i)
Returns the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = Crystals().example(4)
sage: [[c,i,c.e(i)] for i in C.index_set() for c in C if c.e(i) is not None]
[[2, 1, 1], [3, 2, 2], [4, 3, 3], [5, 4, 4]]

f(i)
Returns the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = Crystals().example(4)
sage: [[c,i,c.f(i)] for i in C.index_set() for c in C if c.f(i) is not None]
[[1, 1, 2], [2, 2, 3], [3, 3, 4], [4, 4, 5]]

class sage.categories.examples.crystals.NaiveCrystal
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

This is an example of a “crystal” which does not come from any kind of representation, designed primarily to
test the Stembridge local rules with. The crystal has vertices labeled 0 through 5, with 0 the highest weight.

The code here could also possibly be generalized to create a class that automatically builds a crystal from an
edge-colored digraph, if someone feels adventurous.

Currently, only the methods highest_weight_vector(), e(), and f() are guaranteed to work.

EXAMPLES:

sage: C = Crystals().example(choice='naive')
sage: C.highest_weight_vector()
0
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class Element
Bases: sage.structure.element_wrapper.ElementWrapper

e(i)
Returns the action of 𝑒𝑖 on self.

EXAMPLES:

sage: C = Crystals().example(choice='naive')
sage: [[c,i,c.e(i)] for i in C.index_set() for c in [C(j) for j in [0..5]]␣
→˓if c.e(i) is not None]
[[1, 1, 0], [2, 1, 1], [3, 1, 2], [5, 1, 3], [4, 2, 0], [5, 2, 4]]

f(i)
Returns the action of 𝑓𝑖 on self.

EXAMPLES:

sage: C = Crystals().example(choice='naive')
sage: [[c,i,c.f(i)] for i in C.index_set() for c in [C(j) for j in [0..5]]␣
→˓if c.f(i) is not None]
[[0, 1, 1], [1, 1, 2], [2, 1, 3], [3, 1, 5], [0, 2, 4], [4, 2, 5]]

6.6 Examples of CW complexes

sage.categories.examples.cw_complexes.Example
alias of sage.categories.examples.cw_complexes.Surface

class sage.categories.examples.cw_complexes.Surface(bdy=(1, 2, 1, 2))
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a CW complex: a (2-dimensional) surface.

This class illustrates a minimal implementation of a CW complex.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example(); X
An example of a CW complex: the surface given by the boundary map (1, 2, 1, 2)

sage: X.category()
Category of finite finite dimensional CW complexes

We conclude by running systematic tests on this manifold:

sage: TestSuite(X).run()

class Element(parent, dim, name)
Bases: sage.structure.element.Element

A cell in a CW complex.

dimension()
Return the dimension of self.

EXAMPLES:
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sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: f = X.an_element()
sage: f.dimension()
2

an_element()
Return an element of the CW complex, as per Sets.ParentMethods.an_element().

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: X.an_element()
2-cell f

cells()
Return the cells of self.

EXAMPLES:

sage: from sage.categories.cw_complexes import CWComplexes
sage: X = CWComplexes().example()
sage: C = X.cells()
sage: sorted((d, C[d]) for d in C.keys())
[(0, (0-cell v,)),
(1, (0-cell e1, 0-cell e2)),
(2, (2-cell f,))]

6.7 Example of facade set

class sage.categories.examples.facade_sets.IntegersCompletion
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a facade parent: the set of integers completed with +−∞

This class illustrates a minimal implementation of a facade parent that models the union of several other parents.

EXAMPLES:

sage: S = Sets().Facade().example("union"); S
An example of a facade set: the integers completed by +-infinity

class sage.categories.examples.facade_sets.PositiveIntegerMonoid
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a facade parent: the positive integers viewed as a multiplicative monoid

This class illustrates a minimal implementation of a facade parent which models a subset of a set.

EXAMPLES:

sage: S = Sets().Facade().example(); S
An example of facade set: the monoid of positive integers

816 Chapter 6. Examples of parents using categories

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent


Category Framework, Release 9.7

6.8 Examples of finite Coxeter groups

class sage.categories.examples.finite_coxeter_groups.DihedralGroup(n=5)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of finite Coxeter group: the 𝑛-th dihedral group of order 2𝑛.

The purpose of this class is to provide a minimal template for implementing finite Coxeter groups. See
DihedralGroup for a full featured and optimized implementation.

EXAMPLES:

sage: G = FiniteCoxeterGroups().example()

This group is generated by two simple reflections 𝑠1 and 𝑠2 subject to the relation (𝑠1𝑠2)𝑛 = 1:

sage: G.simple_reflections()
Finite family {1: (1,), 2: (2,)}

sage: s1, s2 = G.simple_reflections()
sage: (s1*s2)^5 == G.one()
True

An element is represented by its reduced word (a tuple of elements of 𝑠𝑒𝑙𝑓.𝑖𝑛𝑑𝑒𝑥𝑠𝑒𝑡()):

sage: G.an_element()
(1, 2)

sage: list(G)
[(),
(1,),
(2,),
(1, 2),
(2, 1),
(1, 2, 1),
(2, 1, 2),
(1, 2, 1, 2),
(2, 1, 2, 1),
(1, 2, 1, 2, 1)]

This reduced word is unique, except for the longest element where the chosen reduced word is (1, 2, 1, 2 . . . ):

sage: G.long_element()
(1, 2, 1, 2, 1)

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

apply_simple_reflection_right(i)
Implements CoxeterGroups.ElementMethods.apply_simple_reflection().

EXAMPLES:

sage: D5 = FiniteCoxeterGroups().example(5)
sage: [i^2 for i in D5] # indirect doctest

(continues on next page)
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(continued from previous page)

[(), (), (), (1, 2, 1, 2), (2, 1, 2, 1), (), (), (2, 1), (1, 2), ()]
sage: [i^5 for i in D5] # indirect doctest
[(), (1,), (2,), (), (), (1, 2, 1), (2, 1, 2), (), (), (1, 2, 1, 2, 1)]

has_right_descent(i, positive=False, side='right')
Implements SemiGroups.ElementMethods.has_right_descent().

EXAMPLES:

sage: D6 = FiniteCoxeterGroups().example(6)
sage: s = D6.simple_reflections()
sage: s[1].has_descent(1)
True
sage: s[1].has_descent(1)
True
sage: s[1].has_descent(2)
False
sage: D6.one().has_descent(1)
False
sage: D6.one().has_descent(2)
False
sage: D6.long_element().has_descent(1)
True
sage: D6.long_element().has_descent(2)
True

wrapped_class
alias of builtins.tuple

coxeter_matrix()
Return the Coxeter matrix of self.

EXAMPLES:

sage: FiniteCoxeterGroups().example(6).coxeter_matrix()
[1 6]
[6 1]

degrees()
Return the degrees of self.

EXAMPLES:

sage: FiniteCoxeterGroups().example(6).degrees()
(2, 6)

index_set()
Implements CoxeterGroups.ParentMethods.index_set().

EXAMPLES:

sage: D4 = FiniteCoxeterGroups().example(4)
sage: D4.index_set()
(1, 2)
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one()
Implements Monoids.ParentMethods.one().

EXAMPLES:

sage: D6 = FiniteCoxeterGroups().example(6)
sage: D6.one()
()

sage.categories.examples.finite_coxeter_groups.Example
alias of sage.categories.examples.finite_coxeter_groups.DihedralGroup

6.9 Example of a finite dimensional algebra with basis

sage.categories.examples.finite_dimensional_algebras_with_basis.Example
alias of sage.categories.examples.finite_dimensional_algebras_with_basis.
KroneckerQuiverPathAlgebra

class sage.categories.examples.finite_dimensional_algebras_with_basis.KroneckerQuiverPathAlgebra(base_ring)
Bases: sage.combinat.free_module.CombinatorialFreeModule

An example of a finite dimensional algebra with basis: the path algebra of the Kronecker quiver.

This class illustrates a minimal implementation of a finite dimensional algebra with basis. See sage.quivers.
algebra.PathAlgebra for a full-featured implementation of path algebras.

algebra_generators()
Return algebra generators for this algebra.

See also:

Algebras.ParentMethods.algebra_generators().

EXAMPLES:

sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A
An example of a finite dimensional algebra with basis:
the path algebra of the Kronecker quiver
(containing the arrows a:x->y and b:x->y) over Rational Field
sage: A.algebra_generators()
Finite family {'x': x, 'y': y, 'a': a, 'b': b}

one()
Return the unit of this algebra.

See also:

AlgebrasWithBasis.ParentMethods.one_basis()

EXAMPLES:

sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example()
sage: A.one()
x + y

product_on_basis(w1, w2)
Return the product of the two basis elements indexed by w1 and w2.
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See also:

AlgebrasWithBasis.ParentMethods.product_on_basis().

EXAMPLES:

sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example()

Here is the multiplication table for the algebra:

sage: matrix([[p*q for q in A.basis()] for p in A.basis()])
[x 0 a b]
[0 y 0 0]
[0 a 0 0]
[0 b 0 0]

Here we take some products of linear combinations of basis elements:

sage: x, y, a, b = A.basis()
sage: a * (1-b)^2 * x
0
sage: x*a + b*y
a + b
sage: x*x
x
sage: x*y
0
sage: x*a*y
a

6.10 Examples of a finite dimensional Lie algebra with basis

class sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra(R,
n=None,
M=None,
am-
bi-
ent=None)

Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

An example of a finite dimensional Lie algebra with basis: the abelian Lie algebra.

Let 𝑅 be a commutative ring, and 𝑀 an 𝑅-module. The abelian Lie algebra on 𝑀 is the 𝑅-Lie algebra obtained
by endowing 𝑀 with the trivial Lie bracket ([𝑎, 𝑏] = 0 for all 𝑎, 𝑏 ∈𝑀 ).

This class illustrates a minimal implementation of a finite dimensional Lie algebra with basis.

INPUT:

• R – base ring

• n – (optional) a nonnegative integer (default: None)

• M – an 𝑅-module (default: the free 𝑅-module of rank n) to serve as the ground space for the Lie algebra
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• ambient – (optional) a Lie algebra; if this is set, then the resulting Lie algebra is declared a Lie subalgebra
of ambient

OUTPUT:

The abelian Lie algebra on 𝑀 .

class Element
Bases: sage.categories.examples.lie_algebras.LieAlgebraFromAssociative.Element

lift()
Return the lift of self to the universal enveloping algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 2*a + 2*b + 3*c
sage: elt.lift()
2*b0 + 2*b1 + 3*b2

monomial_coefficients(copy=True)
Return the monomial coefficients of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 2*a + 2*b + 3*c
sage: elt.monomial_coefficients()
{0: 2, 1: 2, 2: 3}

to_vector(order=None, sparse=False)
Return self as a vector in self.parent().module().

See the docstring of the latter method for the meaning of this.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: elt = 2*a + 2*b + 3*c
sage: elt.to_vector()
(2, 2, 3)

ambient()
Return the ambient Lie algebra of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: S = L.subalgebra([2*a+b, b + c])
sage: S.ambient() == L
True

basis()
Return the basis of self.

EXAMPLES:
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sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.basis()
Finite family {0: (1, 0, 0), 1: (0, 1, 0), 2: (0, 0, 1)}

basis_matrix()
Return the basis matrix of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.basis_matrix()
[1 0 0]
[0 1 0]
[0 0 1]

from_vector(v, order=None)
Return the element of self corresponding to the vector v in self.module().

Implement this if you implement module(); see the documentation of sage.categories.
lie_algebras.LieAlgebras.module() for how this is to be done.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u
(1, 0, 0)
sage: parent(u) is L
True

gens()
Return the generators of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.gens()
((1, 0, 0), (0, 1, 0), (0, 0, 1))

ideal(gens)
Return the Lie subalgebra of self generated by the elements of the iterable gens.

This currently requires the ground ring 𝑅 to be a field.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.subalgebra([2*a+b, b + c])
An example of a finite dimensional Lie algebra with basis:
the 2-dimensional abelian Lie algebra over Rational Field with
basis matrix:

[ 1 0 -1/2]
[ 0 1 1]

is_ideal(A)
Return if self is an ideal of the ambient space A.

EXAMPLES:
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sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.is_ideal(L)
True
sage: S1 = L.subalgebra([2*a+b, b + c])
sage: S1.is_ideal(L)
True
sage: S2 = L.subalgebra([2*a+b])
sage: S2.is_ideal(S1)
True
sage: S1.is_ideal(S2)
False

lie_algebra_generators()
Return the basis of self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.basis()
Finite family {0: (1, 0, 0), 1: (0, 1, 0), 2: (0, 0, 1)}

module()
Return an 𝑅-module which is isomorphic to the underlying 𝑅-module of self.

See sage.categories.lie_algebras.LieAlgebras.module() for an explanation.

In this particular example, this returns the module 𝑀 that was used to construct self.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.module()
Vector space of dimension 3 over Rational Field

sage: a, b, c = L.lie_algebra_generators()
sage: S = L.subalgebra([2*a+b, b + c])
sage: S.module()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1/2]
[ 0 1 1]

subalgebra(gens)
Return the Lie subalgebra of self generated by the elements of the iterable gens.

This currently requires the ground ring 𝑅 to be a field.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: a, b, c = L.lie_algebra_generators()
sage: L.subalgebra([2*a+b, b + c])
An example of a finite dimensional Lie algebra with basis:
the 2-dimensional abelian Lie algebra over Rational Field with
basis matrix:

(continues on next page)
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(continued from previous page)

[ 1 0 -1/2]
[ 0 1 1]

zero()
Return the zero element.

EXAMPLES:

sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example()
sage: L.zero()
(0, 0, 0)

sage.categories.examples.finite_dimensional_lie_algebras_with_basis.Example
alias of sage.categories.examples.finite_dimensional_lie_algebras_with_basis.
AbelianLieAlgebra

6.11 Examples of finite enumerated sets

class sage.categories.examples.finite_enumerated_sets.Example
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a finite enumerated set: {1, 2, 3}

This class provides a minimal implementation of a finite enumerated set.

See FiniteEnumeratedSet for a full featured implementation.

EXAMPLES:

sage: C = FiniteEnumeratedSets().example()
sage: C.cardinality()
3
sage: C.list()
[1, 2, 3]
sage: C.an_element()
1

This checks that the different methods of the enumerated set 𝐶 return consistent results:

sage: TestSuite(C).run(verbose = True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass

(continues on next page)
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pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

class sage.categories.examples.finite_enumerated_sets.IsomorphicObjectOfFiniteEnumeratedSet(ambient=An
ex-
am-
ple
of
a
fi-
nite
enu-
mer-
ated
set:
{1,
2,
3})

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

ambient()
Returns the ambient space for self, as per Sets.Subquotients.ParentMethods.ambient().

EXAMPLES:

sage: C = FiniteEnumeratedSets().IsomorphicObjects().example(); C
The image by some isomorphism of An example of a finite enumerated set: {1,2,3}
sage: C.ambient()
An example of a finite enumerated set: {1,2,3}

lift(x)

INPUT:

• x – an element of self

Lifts x to the ambient space for self, as per Sets.Subquotients.ParentMethods.lift().

EXAMPLES:

sage: C = FiniteEnumeratedSets().IsomorphicObjects().example(); C
The image by some isomorphism of An example of a finite enumerated set: {1,2,3}

(continues on next page)
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sage: C.lift(9)
3

retract(x)

INPUT:

• x – an element of the ambient space for self

Retracts x from the ambient space to self, as per Sets.Subquotients.ParentMethods.retract().

EXAMPLES:

sage: C = FiniteEnumeratedSets().IsomorphicObjects().example(); C
The image by some isomorphism of An example of a finite enumerated set: {1,2,3}
sage: C.retract(3)
9

6.12 Examples of finite monoids

sage.categories.examples.finite_monoids.Example
alias of sage.categories.examples.finite_monoids.IntegerModMonoid

class sage.categories.examples.finite_monoids.IntegerModMonoid(n=12)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a finite monoid: the integers mod 𝑛

This class illustrates a minimal implementation of a finite monoid.

EXAMPLES:

sage: S = FiniteMonoids().example(); S
An example of a finite multiplicative monoid: the integers modulo 12

sage: S.category()
Category of finitely generated finite enumerated monoids

We conclude by running systematic tests on this monoid:

sage: TestSuite(S).run(verbose = True)
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass

(continues on next page)
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running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_one() . . . pass
running ._test_pickling() . . . pass
running ._test_prod() . . . pass
running ._test_some_elements() . . . pass

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

wrapped_class
alias of sage.rings.integer.Integer

an_element()
Returns an element of the monoid, as per Sets.ParentMethods.an_element().

EXAMPLES:

sage: M = FiniteMonoids().example()
sage: M.an_element()
6

one()
Return the one of the monoid, as per Monoids.ParentMethods.one().

EXAMPLES:

sage: M = FiniteMonoids().example()
sage: M.one()
1

product(x, y)
Return the product of two elements 𝑥 and 𝑦 of the monoid, as per Semigroups.ParentMethods.
product().

EXAMPLES:

sage: M = FiniteMonoids().example()
sage: M.product(M(3), M(5))
3

semigroup_generators()
Returns a set of generators for self, as per Semigroups.ParentMethods.semigroup_generators().
Currently this returns all integers mod 𝑛, which is of course far from optimal!

EXAMPLES:
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sage: M = FiniteMonoids().example()
sage: M.semigroup_generators()
Family (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

6.13 Examples of finite semigroups

sage.categories.examples.finite_semigroups.Example
alias of sage.categories.examples.finite_semigroups.LeftRegularBand

class sage.categories.examples.finite_semigroups.LeftRegularBand(alphabet=('a', 'b', 'c', 'd'))
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a finite semigroup

This class provides a minimal implementation of a finite semigroup.

EXAMPLES:

sage: S = FiniteSemigroups().example(); S
An example of a finite semigroup: the left regular band generated by ('a', 'b', 'c',
→˓ 'd')

This is the semigroup generated by:

sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')

such that 𝑥2 = 𝑥 and 𝑥𝑦𝑥 = 𝑥𝑦 for any 𝑥 and 𝑦 in 𝑆:

sage: S('dab')
'dab'
sage: S('dab') * S('acb')
'dabc'

It follows that the elements of 𝑆 are strings without repetitions over the alphabet 𝑎, 𝑏, 𝑐, 𝑑:

sage: sorted(S.list())
['a', 'ab', 'abc', 'abcd', 'abd', 'abdc', 'ac', 'acb', 'acbd', 'acd',
'acdb', 'ad', 'adb', 'adbc', 'adc', 'adcb', 'b', 'ba', 'bac',
'bacd', 'bad', 'badc', 'bc', 'bca', 'bcad', 'bcd', 'bcda', 'bd',
'bda', 'bdac', 'bdc', 'bdca', 'c', 'ca', 'cab', 'cabd', 'cad',
'cadb', 'cb', 'cba', 'cbad', 'cbd', 'cbda', 'cd', 'cda', 'cdab',
'cdb', 'cdba', 'd', 'da', 'dab', 'dabc', 'dac', 'dacb', 'db',
'dba', 'dbac', 'dbc', 'dbca', 'dc', 'dca', 'dcab', 'dcb', 'dcba']

It also follows that there are finitely many of them:

sage: S.cardinality()
64

Indeed:
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sage: 4 * ( 1 + 3 * (1 + 2 * (1 + 1)))
64

As expected, all the elements of 𝑆 are idempotents:

sage: all( x.is_idempotent() for x in S )
True

Now, let us look at the structure of the semigroup:

sage: S = FiniteSemigroups().example(alphabet = ('a','b','c'))
sage: S.cayley_graph(side="left", simple=True).plot()
Graphics object consisting of 60 graphics primitives
sage: S.j_transversal_of_idempotents() # random (arbitrary choice)
['acb', 'ac', 'ab', 'bc', 'a', 'c', 'b']

We conclude by running systematic tests on this semigroup:

sage: TestSuite(S).run(verbose = True)
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

wrapped_class
alias of builtins.str

an_element()
Returns an element of the semigroup.

EXAMPLES:
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sage: S = FiniteSemigroups().example()
sage: S.an_element()
'cdab'

sage: S = FiniteSemigroups().example(("b"))
sage: S.an_element()
'b'

product(x, y)
Returns the product of two elements of the semigroup.

EXAMPLES:

sage: S = FiniteSemigroups().example()
sage: S('a') * S('b')
'ab'
sage: S('a') * S('b') * S('a')
'ab'
sage: S('a') * S('a')
'a'

semigroup_generators()
Returns the generators of the semigroup.

EXAMPLES:

sage: S = FiniteSemigroups().example(alphabet=('x','y'))
sage: S.semigroup_generators()
Family ('x', 'y')

6.14 Examples of finite Weyl groups

sage.categories.examples.finite_weyl_groups.Example
alias of sage.categories.examples.finite_weyl_groups.SymmetricGroup

class sage.categories.examples.finite_weyl_groups.SymmetricGroup(n=4)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of finite Weyl group: the symmetric group, with elements in list notation.

The purpose of this class is to provide a minimal template for implementing finite Weyl groups. See
SymmetricGroup for a full featured and optimized implementation.

EXAMPLES:

sage: S = FiniteWeylGroups().example()
sage: S
The symmetric group on {0, ..., 3}
sage: S.category()
Category of finite irreducible weyl groups

The elements of this group are permutations of the set {0, . . . , 3}:
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sage: S.one()
(0, 1, 2, 3)
sage: S.an_element()
(1, 2, 3, 0)

The group itself is generated by the elementary transpositions:

sage: S.simple_reflections()
Finite family {0: (1, 0, 2, 3), 1: (0, 2, 1, 3), 2: (0, 1, 3, 2)}

Only the following basic operations are implemented:

• one()

• product()

• simple_reflection()

• cartan_type()

• Element.has_right_descent().

All the other usual Weyl group operations are inherited from the categories:

sage: S.cardinality()
24
sage: S.long_element()
(3, 2, 1, 0)
sage: S.cayley_graph(side = "left").plot()
Graphics object consisting of 120 graphics primitives

Alternatively, one could have implemented sage.categories.coxeter_groups.CoxeterGroups.
ElementMethods.apply_simple_reflection() instead of simple_reflection() and product(). See
CoxeterGroups().example().

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

has_right_descent(i)
Implements CoxeterGroups.ElementMethods.has_right_descent().

EXAMPLES:

sage: S = FiniteWeylGroups().example()
sage: s = S.simple_reflections()
sage: (s[1] * s[2]).has_descent(2)
True
sage: S._test_has_descent()

cartan_type()
Return the Cartan type of self.

EXAMPLES:

sage: FiniteWeylGroups().example().cartan_type()
['A', 3] relabelled by {1: 0, 2: 1, 3: 2}

degrees()
Return the degrees of self.
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EXAMPLES:

sage: W = FiniteWeylGroups().example()
sage: W.degrees()
(2, 3, 4)

index_set()
Implements CoxeterGroups.ParentMethods.index_set().

EXAMPLES:

sage: FiniteWeylGroups().example().index_set()
[0, 1, 2]

one()
Implements Monoids.ParentMethods.one().

EXAMPLES:

sage: FiniteWeylGroups().example().one()
(0, 1, 2, 3)

product(x, y)
Implements Semigroups.ParentMethods.product().

EXAMPLES:

sage: s = FiniteWeylGroups().example().simple_reflections()
sage: s[1] * s[2]
(0, 2, 3, 1)

simple_reflection(i)
Implement CoxeterGroups.ParentMethods.simple_reflection() by returning the transposition
(𝑖, 𝑖 + 1).

EXAMPLES:

sage: FiniteWeylGroups().example().simple_reflection(2)
(0, 1, 3, 2)

6.15 Examples of graded connected Hopf algebras with basis

sage.categories.examples.graded_connected_hopf_algebras_with_basis.Example
alias of sage.categories.examples.graded_connected_hopf_algebras_with_basis.
GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator

class sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator(base_ring)
Bases: sage.combinat.free_module.CombinatorialFreeModule

This class illustrates an implementation of a graded Hopf algebra with basis that has one primitive generator of
degree 1 and basis elements indexed by non-negative integers.

This Hopf algebra example differs from what topologists refer to as a graded Hopf algebra because the twist
operation in the tensor rule satisfies

(𝜇⊗ 𝜇) ∘ (𝑖𝑑⊗ 𝜏 ⊗ 𝑖𝑑) ∘ (∆⊗∆) = ∆ ∘ 𝜇
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where 𝜏(𝑥⊗ 𝑦) = 𝑦 ⊗ 𝑥.

coproduct_on_basis(i)
The coproduct of a basis element.

∆(𝑃𝑖) =

𝑖∑︁
𝑗=0

𝑃𝑖−𝑗 ⊗ 𝑃𝑗

INPUT:

• i – a non-negative integer

OUTPUT:

• an element of the tensor square of self

degree_on_basis(i)
The degree of a non-negative integer is itself

INPUT:

• i – a non-negative integer

OUTPUT:

• a non-negative integer

one_basis()
Returns 0, which index the unit of the Hopf algebra.

OUTPUT:

• the non-negative integer 0

EXAMPLES:

sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example()
sage: H.one_basis()
0
sage: H.one()
P0

product_on_basis(i, j)
The product of two basis elements.

The product of elements of degree i and j is an element of degree i+j.

INPUT:

• i, j – non-negative integers

OUTPUT:

• a basis element indexed by i+j
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6.16 Examples of graded modules with basis

sage.categories.examples.graded_modules_with_basis.Example
alias of sage.categories.examples.graded_modules_with_basis.GradedPartitionModule

class sage.categories.examples.graded_modules_with_basis.GradedPartitionModule(base_ring)
Bases: sage.combinat.free_module.CombinatorialFreeModule

This class illustrates an implementation of a graded module with basis: the free module over partitions.

INPUT:

• R – base ring

The implementation involves the following:

• A choice of how to represent elements. In this case, the basis elements are partitions. The algebra is
constructed as a CombinatorialFreeModule on the set of partitions, so it inherits all of the methods for
such objects, and has operations like addition already defined.

sage: A = GradedModulesWithBasis(QQ).example()

• A basis function - this module is graded by the non-negative integers, so there is a function defined in this
module, creatively called basis(), which takes an integer 𝑑 as input and returns a family of partitions
representing a basis for the algebra in degree 𝑑.

sage: A.basis(2)
Lazy family (Term map from Partitions to An example of a graded module with␣
→˓basis: the free module on partitions over Rational Field(i))_{i in Partitions␣
→˓of the integer 2}
sage: A.basis(6)[Partition([3,2,1])]
P[3, 2, 1]

• If the algebra is called A, then its basis function is stored as A.basis. Thus the function can be used to
find a basis for the degree 𝑑 piece: essentially, just call A.basis(d). More precisely, call x for each x in
A.basis(d).

sage: [m for m in A.basis(4)]
[P[4], P[3, 1], P[2, 2], P[2, 1, 1], P[1, 1, 1, 1]]

• For dealing with basis elements: degree_on_basis(), and _repr_term(). The first of these defines the
degree of any monomial, and then the degree method for elements – see the next item – uses it to compute
the degree for a linear combination of monomials. The last of these determines the print representation for
monomials, which automatically produces the print representation for general elements.

sage: A.degree_on_basis(Partition([4,3]))
7
sage: A._repr_term(Partition([4,3]))
'P[4, 3]'

• There is a class for elements, which inherits from IndexedFreeModuleElement. An element is deter-
mined by a dictionary whose keys are partitions and whose corresponding values are the coefficients. The
class implements two things: an is_homogeneous method and a degree method.

sage: p = A.monomial(Partition([3,2,1])); p
P[3, 2, 1]

(continues on next page)
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(continued from previous page)

sage: p.is_homogeneous()
True
sage: p.degree()
6

basis(d=None)
Return the basis for (the d-th homogeneous component of) self.

INPUT:

• d – (optional, default None) nonnegative integer or None

OUTPUT:

If d is None, returns the basis of the module. Otherwise, returns the basis of the homogeneous component
of degree d (i.e., the subfamily of the basis of the whole module which consists only of the basis vectors
lying in 𝐹𝑑 ∖

⋃︀
𝑖<𝑑 𝐹𝑖).

The basis is always returned as a family.

EXAMPLES:

sage: A = ModulesWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Lazy family (Term map from Partitions to An example of a
filtered module with basis: the free module on partitions
over Integer Ring(i))_{i in Partitions of the integer 4}

Without arguments, the full basis is returned:

sage: A.basis()
Lazy family (Term map from Partitions to An example of a
filtered module with basis: the free module on partitions
over Integer Ring(i))_{i in Partitions}
sage: A.basis()
Lazy family (Term map from Partitions to An example of a
filtered module with basis: the free module on partitions
over Integer Ring(i))_{i in Partitions}

Checking this method on a filtered algebra. Note that this will typically raise a NotImplementedError
when this feature is not implemented.

sage: A = AlgebrasWithBasis(ZZ).Filtered().example()
sage: A.basis(4)
Traceback (most recent call last):
...
NotImplementedError: infinite set

Without arguments, the full basis is returned:

sage: A.basis()
Lazy family (Term map from Free abelian monoid indexed by
{'x', 'y', 'z'} to An example of a filtered algebra with
basis: the universal enveloping algebra of Lie algebra
of RR^3 with cross product over Integer Ring(i))_{i in
Free abelian monoid indexed by {'x', 'y', 'z'}}
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An example with a graded algebra:

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: E.basis()
Lazy family (Term map from Subsets of {0,1} to
The exterior algebra of rank 2 over Rational Field(i))_{i in
Subsets of {0,1}}

degree_on_basis(t)
The degree of the element determined by the partition t in this graded module.

INPUT:

• t – the index of an element of the basis of this module, i.e. a partition

OUTPUT: an integer, the degree of the corresponding basis element

EXAMPLES:

sage: A = GradedModulesWithBasis(QQ).example()
sage: A.degree_on_basis(Partition((2,1)))
3
sage: A.degree_on_basis(Partition((4,2,1,1,1,1)))
10
sage: type(A.degree_on_basis(Partition((1,1))))
<class 'sage.rings.integer.Integer'>

6.17 Examples of graphs

class sage.categories.examples.graphs.Cycle(n=5)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a graph: the cycle of length 𝑛.

This class illustrates a minimal implementation of a graph.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example(); C
An example of a graph: the 5-cycle

sage: C.category()
Category of graphs

We conclude by running systematic tests on this graph:

sage: TestSuite(C).run()

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

dimension()
Return the dimension of self.

EXAMPLES:
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sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: e = C.edges()[0]
sage: e.dimension()
2
sage: v = C.vertices()[0]
sage: v.dimension()
1

an_element()
Return an element of the graph, as per Sets.ParentMethods.an_element().

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.an_element()
0

edges()
Return the edges of self.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.edges()
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]

vertices()
Return the vertices of self.

EXAMPLES:

sage: from sage.categories.graphs import Graphs
sage: C = Graphs().example()
sage: C.vertices()
[0, 1, 2, 3, 4]

sage.categories.examples.graphs.Example
alias of sage.categories.examples.graphs.Cycle

6.18 Examples of Hopf algebras with basis

class sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra(R, G)
Bases: sage.combinat.free_module.CombinatorialFreeModule

An example of a Hopf algebra with basis: the group algebra of a group

This class illustrates a minimal implementation of a Hopf algebra with basis.

algebra_generators()
Return the generators of this algebra, as per algebra_generators().

They correspond to the generators of the group.
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EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example(); A
An example of Hopf algebra with basis: the group algebra of the Dihedral group␣
→˓of order 6 as a permutation group over Rational Field
sage: A.algebra_generators()
Finite family {(1,2,3): B[(1,2,3)], (1,3): B[(1,3)]}

antipode_on_basis(g)
Antipode, on basis elements, as per HopfAlgebrasWithBasis.ParentMethods.
antipode_on_basis().

It is given, on basis elements, by 𝜈(𝑔) = 𝑔−1

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: A.antipode_on_basis(a)
B[(1,3,2)]

coproduct_on_basis(g)
Coproduct, on basis elements, as per HopfAlgebrasWithBasis.ParentMethods.
coproduct_on_basis().

The basis elements are group like: ∆(𝑔) = 𝑔 ⊗ 𝑔.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: A.coproduct_on_basis(a)
B[(1,2,3)] # B[(1,2,3)]

counit_on_basis(g)
Counit, on basis elements, as per HopfAlgebrasWithBasis.ParentMethods.counit_on_basis().

The counit on the basis elements is 1.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: A.counit_on_basis(a)
1

one_basis()
Returns the one of the group, which index the one of this algebra, as per AlgebrasWithBasis.
ParentMethods.one_basis().

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: A.one_basis()
()
sage: A.one()
B[()]
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product_on_basis(g1, g2)
Product, on basis elements, as per AlgebrasWithBasis.ParentMethods.product_on_basis().

The product of two basis elements is induced by the product of the corresponding elements of the group.

EXAMPLES:

sage: A = HopfAlgebrasWithBasis(QQ).example()
sage: (a, b) = A._group.gens()
sage: a*b
(1,2)
sage: A.product_on_basis(a, b)
B[(1,2)]

6.19 Examples of infinite enumerated sets

sage.categories.examples.infinite_enumerated_sets.Example
alias of sage.categories.examples.infinite_enumerated_sets.NonNegativeIntegers

class sage.categories.examples.infinite_enumerated_sets.NonNegativeIntegers
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of infinite enumerated set: the non negative integers

This class provides a minimal implementation of an infinite enumerated set.

EXAMPLES:

sage: NN = InfiniteEnumeratedSets().example()
sage: NN
An example of an infinite enumerated set: the non negative integers
sage: NN.cardinality()
+Infinity
sage: NN.list()
Traceback (most recent call last):
...
NotImplementedError: cannot list an infinite set
sage: NN.element_class
<class 'sage.rings.integer.Integer'>
sage: it = iter(NN)
sage: [next(it), next(it), next(it), next(it), next(it)]
[0, 1, 2, 3, 4]
sage: x = next(it); type(x)
<class 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: x+3
8
sage: NN(15)
15
sage: NN.first()
0

This checks that the different methods of 𝑁𝑁 return consistent results:
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sage: TestSuite(NN).run(verbose = True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_enumerated_set_contains() . . . pass
running ._test_enumerated_set_iter_cardinality() . . . pass
running ._test_enumerated_set_iter_list() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

Element
alias of sage.rings.integer.Integer

an_element()
EXAMPLES:

sage: InfiniteEnumeratedSets().example().an_element()
42

next(o)
EXAMPLES:

sage: NN = InfiniteEnumeratedSets().example()
sage: NN.next(3)
4

6.20 Examples of a Lie algebra

sage.categories.examples.lie_algebras.Example
alias of sage.categories.examples.lie_algebras.LieAlgebraFromAssociative

class sage.categories.examples.lie_algebras.LieAlgebraFromAssociative(gens)
Bases: sage.structure.parent.Parent, sage.structure.unique_representation.
UniqueRepresentation

An example of a Lie algebra: a Lie algebra generated by a set of elements of an associative algebra.
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This class illustrates a minimal implementation of a Lie algebra.

Let 𝑅 be a commutative ring, and 𝐴 an associative 𝑅-algebra. The Lie algebra 𝐴 (sometimes denoted 𝐴−) is
defined to be the 𝑅-module 𝐴 with Lie bracket given by the commutator in 𝐴: that is, [𝑎, 𝑏] := 𝑎𝑏 − 𝑏𝑎 for all
𝑎, 𝑏 ∈ 𝐴.

What this class implements is not precisely𝐴−, however; it is the Lie subalgebra of𝐴− generated by the elements
of the iterable gens. This specific implementation does not provide a reasonable containment test (i.e., it does
not allow you to check if a given element 𝑎 of 𝐴− belongs to this Lie subalgebra); it, however, allows computing
inside it.

INPUT:

• gens – a nonempty iterable consisting of elements of an associative algebra 𝐴

OUTPUT:

The Lie subalgebra of 𝐴− generated by the elements of gens

EXAMPLES:

We create a model of sl2 using matrices:

sage: gens = [matrix([[0,1],[0,0]]), matrix([[0,0],[1,0]]), matrix([[1,0],[0,-1]])]
sage: for g in gens:
....: g.set_immutable()
sage: L = LieAlgebras(QQ).example(gens)
sage: e,f,h = L.lie_algebra_generators()
sage: e.bracket(f) == h
True
sage: h.bracket(e) == 2*e
True
sage: h.bracket(f) == -2*f
True

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

Wrap an element as a Lie algebra element.

lie_algebra_generators()
Return the generators of self as a Lie algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).example()
sage: L.lie_algebra_generators()
Family ([2, 1, 3], [2, 3, 1])

zero()
Return the element 0.

EXAMPLES:

sage: L = LieAlgebras(QQ).example()
sage: L.zero()
0
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6.21 Examples of a Lie algebra with basis

class sage.categories.examples.lie_algebras_with_basis.AbelianLieAlgebra(R, gens)
Bases: sage.combinat.free_module.CombinatorialFreeModule

An example of a Lie algebra: the abelian Lie algebra.

This class illustrates a minimal implementation of a Lie algebra with a distinguished basis.

class Element
Bases: sage.modules.with_basis.indexed_element.IndexedFreeModuleElement

lift()
Return the lift of self to the universal enveloping algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).WithBasis().example()
sage: elt = L.an_element()
sage: elt.lift()
3*P[F[2]] + 2*P[F[1]] + 2*P[F[]]

bracket_on_basis(x, y)
Return the Lie bracket on basis elements indexed by x and y.

EXAMPLES:

sage: L = LieAlgebras(QQ).WithBasis().example()
sage: L.bracket_on_basis(Partition([4,1]), Partition([2,2,1]))
0

lie_algebra_generators()
Return the generators of self as a Lie algebra.

EXAMPLES:

sage: L = LieAlgebras(QQ).WithBasis().example()
sage: L.lie_algebra_generators()
Lazy family (Term map from Partitions to
An example of a Lie algebra: the abelian Lie algebra on the
generators indexed by Partitions over Rational
Field(i))_{i in Partitions}

sage.categories.examples.lie_algebras_with_basis.Example
alias of sage.categories.examples.lie_algebras_with_basis.AbelianLieAlgebra

class sage.categories.examples.lie_algebras_with_basis.IndexedPolynomialRing(R, indices,
**kwds)

Bases: sage.combinat.free_module.CombinatorialFreeModule

Polynomial ring whose generators are indexed by an arbitrary set.

Todo: Currently this is just used as the universal enveloping algebra for the example of the abelian Lie algebra.
This should be factored out into a more complete class.

algebra_generators()
Return the algebra generators of self.
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EXAMPLES:

sage: L = LieAlgebras(QQ).WithBasis().example()
sage: UEA = L.universal_enveloping_algebra()
sage: UEA.algebra_generators()
Lazy family (algebra generator map(i))_{i in Partitions}

one_basis()
Return the index of element 1.

EXAMPLES:

sage: L = LieAlgebras(QQ).WithBasis().example()
sage: UEA = L.universal_enveloping_algebra()
sage: UEA.one_basis()
1
sage: UEA.one_basis().parent()
Free abelian monoid indexed by Partitions

product_on_basis(x, y)
Return the product of the monomials indexed by x and y.

EXAMPLES:

sage: L = LieAlgebras(QQ).WithBasis().example()
sage: UEA = L.universal_enveloping_algebra()
sage: I = UEA._indices
sage: UEA.product_on_basis(I.an_element(), I.an_element())
P[F[]^4*F[1]^4*F[2]^6]

6.22 Examples of magmas

sage.categories.examples.magmas.Example
alias of sage.categories.examples.magmas.FreeMagma

class sage.categories.examples.magmas.FreeMagma(alphabet=('a', 'b', 'c', 'd'))
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of magma.

The purpose of this class is to provide a minimal template for implementing a magma.

EXAMPLES:

sage: M = Magmas().example(); M
An example of a magma: the free magma generated by ('a', 'b', 'c', 'd')

This is the free magma generated by:

sage: M.magma_generators()
Family ('a', 'b', 'c', 'd')
sage: a, b, c, d = M.magma_generators()

and with a non-associative product given by:

6.22. Examples of magmas 843

../../../../../../../html/en/reference/structure/sage/structure/unique_representation.html#sage.structure.unique_representation.UniqueRepresentation
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent
../../../../../../../html/en/reference/structure/sage/structure/parent.html#sage.structure.parent.Parent


Category Framework, Release 9.7

sage: a * (b * c) * (d * a * b)
'((a*(b*c))*((d*a)*b))'
sage: a * (b * c) == (a * b) * c
False

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

The class for elements of the free magma.

wrapped_class
alias of builtins.str

an_element()
Return an element of the magma.

EXAMPLES:

sage: F = Magmas().example()
sage: F.an_element()
'(((a*b)*c)*d)'

magma_generators()
Return the generators of the magma.

EXAMPLES:

sage: F = Magmas().example()
sage: F.magma_generators()
Family ('a', 'b', 'c', 'd')

product(x, y)
Return the product of x and y in the magma, as per Magmas.ParentMethods.product().

EXAMPLES:

sage: F = Magmas().example()
sage: F('a') * F.an_element()
'(a*(((a*b)*c)*d))'

6.23 Examples of manifolds

sage.categories.examples.manifolds.Example
alias of sage.categories.examples.manifolds.Plane

class sage.categories.examples.manifolds.Plane(n=3, base_ring=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a manifold: the 𝑛-dimensional plane.

This class illustrates a minimal implementation of a manifold.

EXAMPLES:
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sage: from sage.categories.manifolds import Manifolds
sage: M = Manifolds(QQ).example(); M
An example of a Rational Field manifold: the 3-dimensional plane

sage: M.category()
Category of manifolds over Rational Field

We conclude by running systematic tests on this manifold:

sage: TestSuite(M).run()

Element
alias of sage.structure.element_wrapper.ElementWrapper

an_element()
Return an element of the manifold, as per Sets.ParentMethods.an_element().

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: M = Manifolds(QQ).example()
sage: M.an_element()
(0, 0, 0)

dimension()
Return the dimension of self.

EXAMPLES:

sage: from sage.categories.manifolds import Manifolds
sage: M = Manifolds(QQ).example()
sage: M.dimension()
3

6.24 Examples of monoids

sage.categories.examples.monoids.Example
alias of sage.categories.examples.monoids.FreeMonoid

class sage.categories.examples.monoids.FreeMonoid(alphabet=('a', 'b', 'c', 'd'))
Bases: sage.categories.examples.semigroups.FreeSemigroup

An example of a monoid: the free monoid

This class illustrates a minimal implementation of a monoid. For a full featured implementation of free monoids,
see FreeMonoid().

EXAMPLES:

sage: S = Monoids().example(); S
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')

sage: S.category()
Category of monoids
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This is the free semigroup generated by:

sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')

with product rule given by concatenation of words:

sage: S('dab') * S('acb')
'dabacb'

and unit given by the empty word:

sage: S.one()
''

We conclude by running systematic tests on this monoid:

sage: TestSuite(S).run(verbose = True)
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_one() . . . pass
running ._test_pickling() . . . pass
running ._test_prod() . . . pass
running ._test_some_elements() . . . pass

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

wrapped_class
alias of builtins.str

monoid_generators()
Return the generators of this monoid.

EXAMPLES:

sage: M = Monoids().example(); M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')

(continues on next page)
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(continued from previous page)

sage: M.monoid_generators()
Finite family {'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd'}
sage: a,b,c,d = M.monoid_generators()
sage: a*d*c*b
'adcb'

one()
Returns the one of the monoid, as per Monoids.ParentMethods.one().

EXAMPLES:

sage: M = Monoids().example(); M
An example of a monoid: the free monoid generated by ('a', 'b', 'c', 'd')
sage: M.one()
''

6.25 Examples of posets

class sage.categories.examples.posets.FiniteSetsOrderedByInclusion
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a poset: finite sets ordered by inclusion

This class provides a minimal implementation of a poset

EXAMPLES:

sage: P = Posets().example(); P
An example of a poset: sets ordered by inclusion

We conclude by running systematic tests on this poset:

sage: TestSuite(P).run(verbose = True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass

(continues on next page)
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running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

wrapped_class
alias of sage.sets.set.Set_object_enumerated

an_element()
Returns an element of this poset

EXAMPLES:

sage: B = Posets().example()
sage: B.an_element()
{1, 4, 6}

le(x, y)
Returns whether 𝑥 is a subset of 𝑦

EXAMPLES:

sage: P = Posets().example()
sage: P.le( P(Set([1,3])), P(Set([1,2,3])) )
True
sage: P.le( P(Set([1,3])), P(Set([1,3])) )
True
sage: P.le( P(Set([1,2])), P(Set([1,3])) )
False

class sage.categories.examples.posets.PositiveIntegersOrderedByDivisibilityFacade
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a facade poset: the positive integers ordered by divisibility

This class provides a minimal implementation of a facade poset

EXAMPLES:

sage: P = Posets().example("facade"); P
An example of a facade poset: the positive integers ordered by divisibility

sage: P(5)
5
sage: P(0)
Traceback (most recent call last):
...
ValueError: Can't coerce `0` in any parent `An example of a facade poset: the␣
→˓positive integers ordered by divisibility` is a facade for

sage: 3 in P
True

(continues on next page)
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sage: 0 in P
False

class element_class(X, category=None)
Bases: sage.sets.set.Set_object_enumerated, sage.categories.finite_enumerated_sets.
FiniteEnumeratedSets.parent_class

A finite enumerated set.

le(x, y)
Returns whether 𝑥 is divisible by 𝑦

EXAMPLES:

sage: P = Posets().example("facade")
sage: P.le(3, 6)
True
sage: P.le(3, 3)
True
sage: P.le(3, 7)
False

6.26 Examples of semigroups

class sage.categories.examples.semigroups.FreeSemigroup(alphabet=('a', 'b', 'c', 'd'))
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of semigroup.

The purpose of this class is to provide a minimal template for implementing of a semigroup.

EXAMPLES:

sage: S = Semigroups().example("free"); S
An example of a semigroup: the free semigroup generated by ('a', 'b', 'c', 'd')

This is the free semigroup generated by:

sage: S.semigroup_generators()
Family ('a', 'b', 'c', 'd')

and with product given by concatenation:

sage: S('dab') * S('acb')
'dabacb'

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

The class for elements of the free semigroup.

wrapped_class
alias of builtins.str
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an_element()
Returns an element of the semigroup.

EXAMPLES:

sage: F = Semigroups().example('free')
sage: F.an_element()
'abcd'

product(x, y)
Returns the product of x and y in the semigroup, as per Semigroups.ParentMethods.product().

EXAMPLES:

sage: F = Semigroups().example('free')
sage: F.an_element() * F('a')^5
'abcdaaaaa'

semigroup_generators()
Returns the generators of the semigroup.

EXAMPLES:

sage: F = Semigroups().example('free')
sage: F.semigroup_generators()
Family ('a', 'b', 'c', 'd')

class sage.categories.examples.semigroups.IncompleteSubquotientSemigroup(category=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An incompletely implemented subquotient semigroup, for testing purposes

EXAMPLES:

sage: S = sage.categories.examples.semigroups.IncompleteSubquotientSemigroup()
sage: S
A subquotient of An example of a semigroup: the left zero semigroup

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

ambient()
Returns the ambient semigroup.

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: S.ambient()
An example of a semigroup: the left zero semigroup

class sage.categories.examples.semigroups.LeftZeroSemigroup
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of a semigroup.

This class illustrates a minimal implementation of a semigroup.

EXAMPLES:
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sage: S = Semigroups().example(); S
An example of a semigroup: the left zero semigroup

This is the semigroup that contains all sorts of objects:

sage: S.some_elements()
[3, 42, 'a', 3.4, 'raton laveur']

with product rule given by 𝑎× 𝑏 = 𝑎 for all 𝑎, 𝑏:

sage: S('hello') * S('world')
'hello'
sage: S(3)*S(1)*S(2)
3
sage: S(3)^12312321312321
3

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

is_idempotent()
Trivial implementation of Semigroups.Element.is_idempotent since all elements of this semi-
group are idempotent!

EXAMPLES:

sage: S = Semigroups().example()
sage: S.an_element().is_idempotent()
True
sage: S(17).is_idempotent()
True

an_element()
Returns an element of the semigroup.

EXAMPLES:

sage: Semigroups().example().an_element()
42

product(x, y)
Returns the product of x and y in the semigroup, as per Semigroups.ParentMethods.product().

EXAMPLES:

sage: S = Semigroups().example()
sage: S('hello') * S('world')
'hello'
sage: S(3)*S(1)*S(2)
3

some_elements()
Returns a list of some elements of the semigroup.

EXAMPLES:
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sage: Semigroups().example().some_elements()
[3, 42, 'a', 3.4, 'raton laveur']

class sage.categories.examples.semigroups.QuotientOfLeftZeroSemigroup(category=None)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Example of a quotient semigroup

EXAMPLES:

sage: S = Semigroups().Subquotients().example(); S
An example of a (sub)quotient semigroup: a quotient of the left zero semigroup

This is the quotient of:

sage: S.ambient()
An example of a semigroup: the left zero semigroup

obtained by setting 𝑥 = 42 for any 𝑥 ≥ 42:

sage: S(100)
42
sage: S(100) == S(42)
True

The product is inherited from the ambient semigroup:

sage: S(1)*S(2) == S(1)
True

class Element
Bases: sage.structure.element_wrapper.ElementWrapper

ambient()
Returns the ambient semigroup.

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: S.ambient()
An example of a semigroup: the left zero semigroup

an_element()
Returns an element of the semigroup.

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: S.an_element()
42

lift(x)
Lift the element x into the ambient semigroup.

INPUT:

• x – an element of self.
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OUTPUT:

• an element of self.ambient().

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: x = S.an_element(); x
42
sage: S.lift(x)
42
sage: S.lift(x) in S.ambient()
True
sage: y = S.ambient()(100); y
100
sage: S.lift(S(y))
42

retract(x)
Returns the retract x onto an element of this semigroup.

INPUT:

• x – an element of the ambient semigroup (self.ambient()).

OUTPUT:

• an element of self.

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: L = S.ambient()
sage: S.retract(L(17))
17
sage: S.retract(L(42))
42
sage: S.retract(L(171))
42

some_elements()
Returns a list of some elements of the semigroup.

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: S.some_elements()
[1, 2, 3, 8, 42, 42]

the_answer()
Returns the Answer to Life, the Universe, and Everything as an element of this semigroup.

EXAMPLES:

sage: S = Semigroups().Subquotients().example()
sage: S.the_answer()
42
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6.27 Examples of semigroups in cython

class sage.categories.examples.semigroups_cython.IdempotentSemigroups(s=None)
Bases: sage.categories.category.Category

class ElementMethods
Bases: object

is_idempotent()
EXAMPLES:

sage: from sage.categories.examples.semigroups_cython import␣
→˓LeftZeroSemigroup
sage: S = LeftZeroSemigroup()
sage: S(2).is_idempotent()
True

super_categories()
EXAMPLES:

sage: from sage.categories.examples.semigroups_cython import␣
→˓IdempotentSemigroups
sage: IdempotentSemigroups().super_categories()
[Category of semigroups]

class sage.categories.examples.semigroups_cython.LeftZeroSemigroup
Bases: sage.categories.examples.semigroups.LeftZeroSemigroup

An example of semigroup

This class illustrates a minimal implementation of a semi-group where the element class is an extension type,
and still gets code from the category. The category itself must be a Python class though.

This is purely a proof of concept. The code obviously needs refactorisation!

Comments:

• one cannot play ugly class surgery tricks (as with _mul_parent). available operations should really be
declared to the coercion model!

EXAMPLES:

sage: from sage.categories.examples.semigroups_cython import LeftZeroSemigroup
sage: S = LeftZeroSemigroup(); S
An example of a semigroup: the left zero semigroup

This is the semigroup which contains all sort of objects:

sage: S.some_elements()
[3, 42, 'a', 3.4, 'raton laveur']

with product rule given by 𝑎× 𝑏 = 𝑎 for all 𝑎, 𝑏.

sage: S('hello') * S('world')
'hello'

sage: S(3)*S(1)*S(2)
(continues on next page)
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3

sage: S(3)^12312321312321
3

sage: TestSuite(S).run(verbose = True)
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

That’s really the only method which is obtained from the category . . .

sage: S(42).is_idempotent
<bound method IdempotentSemigroups.ElementMethods.is_idempotent of 42>
sage: S(42).is_idempotent()
True

sage: S(42)._pow_int
<bound method IdempotentSemigroups.ElementMethods._pow_int of 42>
sage: S(42)^10
42

sage: S(42).is_idempotent
<bound method IdempotentSemigroups.ElementMethods.is_idempotent of 42>
sage: S(42).is_idempotent()
True

Element
alias of LeftZeroSemigroupElement

class sage.categories.examples.semigroups_cython.LeftZeroSemigroupElement
Bases: sage.structure.element.Element

EXAMPLES:

6.27. Examples of semigroups in cython 855

../../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.Element


Category Framework, Release 9.7

sage: from sage.categories.examples.semigroups_cython import LeftZeroSemigroup
sage: S = LeftZeroSemigroup()
sage: x = S(3)
sage: TestSuite(x).run()

6.28 Examples of sets

class sage.categories.examples.sets_cat.PrimeNumbers
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of parent in the category of sets: the set of prime numbers.

The elements are represented as plain integers in Z (facade implementation).

This is a minimal implementations. For more advanced examples of implementations, see also:

sage: P = Sets().example("facade")
sage: P = Sets().example("inherits")
sage: P = Sets().example("wrapper")

EXAMPLES:

sage: P = Sets().example()
sage: P(12)
Traceback (most recent call last):
...
AssertionError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Integer Ring
sage: x = P(13); x
13
sage: type(x)
<class 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: 13 in P
True
sage: 12 in P
False
sage: y = x+1; y
14
sage: type(y)
<class 'sage.rings.integer.Integer'>

sage: TestSuite(P).run(verbose=True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .

(continues on next page)
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Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

an_element()
Implements Sets.ParentMethods.an_element().

element_class
alias of sage.rings.integer.Integer

class sage.categories.examples.sets_cat.PrimeNumbers_Abstract
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

This class shows how to write a parent while keeping the choice of the datastructure for the children open.
Different class with fixed datastructure will then be constructed by inheriting from PrimeNumbers_Abstract.

This is used by:

sage: P = Sets().example(“facade”) sage: P = Sets().example(“inherits”) sage: P =
Sets().example(“wrapper”)

class Element
Bases: sage.structure.element.Element

is_prime()
Return whether self is a prime number.

EXAMPLES:

sage: P = Sets().example("inherits")
sage: x = P.an_element()
sage: P.an_element().is_prime()
True

next()
Return the next prime number.

EXAMPLES:

sage: P = Sets().example("inherits")
sage: p = P.an_element(); p
47

(continues on next page)
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sage: p.next()
53

Note: This method is not meant to implement the protocol iterator, and thus not subject to Python 2
vs Python 3 incompatibilities.

an_element()
Implements Sets.ParentMethods.an_element().

next(i)
Return the next prime number.

EXAMPLES:

sage: P = Sets().example("inherits")
sage: x = P.next(P.an_element()); x
53
sage: x.parent()
Set of prime numbers

some_elements()
Return some prime numbers.

EXAMPLES:

sage: P = Sets().example("inherits")
sage: P.some_elements()
[47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

class sage.categories.examples.sets_cat.PrimeNumbers_Facade
Bases: sage.categories.examples.sets_cat.PrimeNumbers_Abstract

An example of parent in the category of sets: the set of prime numbers.

In this alternative implementation, the elements are represented as plain integers in Z (facade implementation).

EXAMPLES:

sage: P = Sets().example("facade")
sage: P(12)
Traceback (most recent call last):
...
ValueError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Integer Ring
sage: x = P(13); x
13
sage: type(x)
<class 'sage.rings.integer.Integer'>
sage: x.parent()
Integer Ring
sage: 13 in P
True

(continues on next page)
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sage: 12 in P
False
sage: y = x+1; y
14
sage: type(y)
<class 'sage.rings.integer.Integer'>

sage: z = P.next(x); z
17
sage: type(z)
<class 'sage.rings.integer.Integer'>
sage: z.parent()
Integer Ring

The disadvantage of this implementation is that the elements do not know that they are prime, so that prime
testing is slow:

sage: pf = Sets().example("facade").an_element()
sage: timeit("pf.is_prime()") # random
625 loops, best of 3: 4.1 us per loop

compared to the other implementations where prime testing is only done if needed during the construction of the
element, and later on the elements “know” that they are prime:

sage: pw = Sets().example("wrapper").an_element()
sage: timeit("pw.is_prime()") # random
625 loops, best of 3: 859 ns per loop

sage: pi = Sets().example("inherits").an_element()
sage: timeit("pw.is_prime()") # random
625 loops, best of 3: 854 ns per loop

Note also that the next method for the elements does not exist:

sage: pf.next()
Traceback (most recent call last):
...
AttributeError: 'sage.rings.integer.Integer' object has no attribute 'next'

unlike in the other implementations:

sage: pw.next()
53
sage: pi.next()
53

element_class
alias of sage.rings.integer.Integer

class sage.categories.examples.sets_cat.PrimeNumbers_Inherits
Bases: sage.categories.examples.sets_cat.PrimeNumbers_Abstract

An example of parent in the category of sets: the set of prime numbers. In this implementation, the element are
stored as object of a new class which inherits from the class Integer (technically IntegerWrapper).
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EXAMPLES:

sage: P = Sets().example("inherits")
sage: P
Set of prime numbers
sage: P(12)
Traceback (most recent call last):
...
ValueError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Set of prime numbers
sage: x = P(13); x
13
sage: x.is_prime()
True
sage: type(x)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category.
→˓element_class'>
sage: x.parent()
Set of prime numbers
sage: P(13) in P
True
sage: y = x+1; y
14
sage: type(y)
<class 'sage.rings.integer.Integer'>
sage: y.parent()
Integer Ring
sage: type(P(13)+P(17))
<class 'sage.rings.integer.Integer'>
sage: type(P(2)+P(3))
<class 'sage.rings.integer.Integer'>

sage: z = P.next(x); z
17
sage: type(z)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Inherits_with_category.
→˓element_class'>
sage: z.parent()
Set of prime numbers

sage: TestSuite(P).run(verbose=True)
running ._test_an_element() . . . pass
running ._test_cardinality() . . . pass
running ._test_category() . . . pass
running ._test_construction() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass

(continues on next page)
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running ._test_pickling() . . . pass
pass

running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_new() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
running ._test_some_elements() . . . pass

See also:

sage: P = Sets().example("facade")
sage: P = Sets().example("inherits")
sage: P = Sets().example("wrapper")

class Element(parent, p)
Bases: sage.rings.integer.IntegerWrapper, sage.categories.examples.sets_cat.
PrimeNumbers_Abstract.Element

class sage.categories.examples.sets_cat.PrimeNumbers_Wrapper
Bases: sage.categories.examples.sets_cat.PrimeNumbers_Abstract

An example of parent in the category of sets: the set of prime numbers.

In this second alternative implementation, the prime integer are stored as a attribute of a sage object by inheriting
from ElementWrapper. In this case we need to ensure conversion and coercion from this parent and its element
to ZZ and Integer.

EXAMPLES:

sage: P = Sets().example("wrapper")
sage: P(12)
Traceback (most recent call last):
...
ValueError: 12 is not a prime number
sage: a = P.an_element()
sage: a.parent()
Set of prime numbers (wrapper implementation)
sage: x = P(13); x
13
sage: type(x)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Wrapper_with_category.
→˓element_class'>
sage: x.parent()
Set of prime numbers (wrapper implementation)
sage: 13 in P
True
sage: 12 in P
False
sage: y = x+1; y
14

(continues on next page)
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sage: type(y)
<class 'sage.rings.integer.Integer'>

sage: z = P.next(x); z
17
sage: type(z)
<class 'sage.categories.examples.sets_cat.PrimeNumbers_Wrapper_with_category.
→˓element_class'>
sage: z.parent()
Set of prime numbers (wrapper implementation)

class Element
Bases: sage.structure.element_wrapper.ElementWrapper, sage.categories.examples.
sets_cat.PrimeNumbers_Abstract.Element

ElementWrapper
alias of sage.structure.element_wrapper.ElementWrapper

6.29 Example of a set with grading

sage.categories.examples.sets_with_grading.Example
alias of sage.categories.examples.sets_with_grading.NonNegativeIntegers

class sage.categories.examples.sets_with_grading.NonNegativeIntegers
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

Non negative integers graded by themselves.

EXAMPLES:

sage: E = SetsWithGrading().example(); E
Non negative integers
sage: E in Sets().Infinite()
True
sage: E.graded_component(0)
{0}
sage: E.graded_component(100)
{100}

an_element()
Return 0.

EXAMPLES:

sage: SetsWithGrading().example().an_element()
0

generating_series(var='z')
Return 1/(1− 𝑧).

EXAMPLES:
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sage: N = SetsWithGrading().example(); N
Non negative integers
sage: f = N.generating_series(); f
1/(-z + 1)
sage: LaurentSeriesRing(ZZ,'z')(f)
1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + z^7 + z^8 + z^9 + z^10 + z^11 + z^12 + z^
→˓13 + z^14 + z^15 + z^16 + z^17 + z^18 + z^19 + O(z^20)

graded_component(grade)
Return the component with grade grade.

EXAMPLES:

sage: N = SetsWithGrading().example()
sage: N.graded_component(65)
{65}

grading(elt)
Return the grade of elt.

EXAMPLES:

sage: N = SetsWithGrading().example()
sage: N.grading(10)
10

6.30 Examples of parents endowed with multiple realizations

class sage.categories.examples.with_realizations.SubsetAlgebra(R, S)
Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.
parent.Parent

An example of parent endowed with several realizations

We consider an algebra 𝐴(𝑆) whose bases are indexed by the subsets 𝑠 of a given set 𝑆. We consider three
natural basis of this algebra: F, In, and Out. In the first basis, the product is given by the union of the indexing
sets. That is, for any 𝑠, 𝑡 ⊂ 𝑆

𝐹𝑠𝐹𝑡 = 𝐹𝑠∪𝑡

The In basis and Out basis are defined respectively by:

𝐼𝑛𝑠 =
∑︁
𝑡⊂𝑠

𝐹𝑡 and 𝐹𝑠 =
∑︁
𝑡⊃𝑠

𝑂𝑢𝑡𝑡

Each such basis gives a realization of 𝐴, where the elements are represented by their expansion in this basis.

This parent, and its code, demonstrate how to implement this algebra and its three realizations, with coercions
and mixed arithmetic between them.

See also:

• Sets().WithRealizations

• the Implementing Algebraic Structures thematic tutorial.
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EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.base_ring()
Rational Field

The three bases of A:

sage: F = A.F() ; F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: In = A.In() ; In
The subset algebra of {1, 2, 3} over Rational Field in the In basis
sage: Out = A.Out(); Out
The subset algebra of {1, 2, 3} over Rational Field in the Out basis

One can quickly define all the bases using the following shortcut:

sage: A.inject_shorthands()
Defining F as shorthand for The subset algebra of {1, 2, 3} over Rational Field in␣
→˓the Fundamental basis
Defining In as shorthand for The subset algebra of {1, 2, 3} over Rational Field in␣
→˓the In basis
Defining Out as shorthand for The subset algebra of {1, 2, 3} over Rational Field␣
→˓in the Out basis

Accessing the basis elements is done with basis() method:

sage: F.basis().list()
[F[{}], F[{1}], F[{2}], F[{3}], F[{1, 2}], F[{1, 3}], F[{2, 3}], F[{1, 2, 3}]]

To access a particular basis element, you can use the from_set() method:

sage: F.from_set(2,3)
F[{2, 3}]
sage: In.from_set(1,3)
In[{1, 3}]

or as a convenient shorthand, one can use the following notation:

sage: F[2,3]
F[{2, 3}]
sage: In[1,3]
In[{1, 3}]

Some conversions:

sage: F(In[2,3])
F[{}] + F[{2}] + F[{3}] + F[{2, 3}]
sage: In(F[2,3])
In[{}] - In[{2}] - In[{3}] + In[{2, 3}]

sage: Out(F[3])
Out[{3}] + Out[{1, 3}] + Out[{2, 3}] + Out[{1, 2, 3}]
sage: F(Out[3])

(continues on next page)
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F[{3}] - F[{1, 3}] - F[{2, 3}] + F[{1, 2, 3}]

sage: Out(In[2,3])
Out[{}] + Out[{1}] + 2*Out[{2}] + 2*Out[{3}] + 2*Out[{1, 2}] + 2*Out[{1, 3}] +␣
→˓4*Out[{2, 3}] + 4*Out[{1, 2, 3}]

We can now mix expressions:

sage: (1 + Out[1]) * In[2,3]
Out[{}] + 2*Out[{1}] + 2*Out[{2}] + 2*Out[{3}] + 2*Out[{1, 2}] + 2*Out[{1, 3}] +␣
→˓4*Out[{2, 3}] + 4*Out[{1, 2, 3}]

class Bases(parent_with_realization)
Bases: sage.categories.realizations.Category_realization_of_parent

The category of the realizations of the subset algebra

class ParentMethods
Bases: object

from_set(*args)
Construct the monomial indexed by the set containing the elements passed as arguments.

EXAMPLES:

sage: In = Sets().WithRealizations().example().In(); In
The subset algebra of {1, 2, 3} over Rational Field in the In basis
sage: In.from_set(2,3)
In[{2, 3}]

As a shorthand, one can construct elements using the following notation:

sage: In[2,3]
In[{2, 3}]

one()
Returns the unit of this algebra.

This default implementation takes the unit in the fundamental basis, and coerces it in self.

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: In = A.In(); Out = A.Out()
sage: In.one()
In[{}]
sage: Out.one()
Out[{}] + Out[{1}] + Out[{2}] + Out[{3}] + Out[{1, 2}] + Out[{1, 3}] +␣
→˓Out[{2, 3}] + Out[{1, 2, 3}]

super_categories()
EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field

(continues on next page)
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sage: C = A.Bases(); C
Category of bases of The subset algebra of {1, 2, 3} over Rational Field
sage: C.super_categories()
[Category of realizations of The subset algebra of {1, 2, 3} over Rational␣
→˓Field,
Join of Category of algebras with basis over Rational Field and

Category of commutative algebras over Rational Field and
Category of realizations of unital magmas]

F
alias of SubsetAlgebra.Fundamental

class Fundamental(A)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Subset algebra, in the fundamental basis

INPUT:

• A – a parent with realization in SubsetAlgebra

EXAMPLES:

sage: A = Sets().WithRealizations().example()
sage: A.F()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: A.Fundamental()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis

one()
Return the multiplicative unit element.

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one()
B[word: ]

one_basis()
Returns the index of the basis element which is equal to ‘1’.

EXAMPLES:

sage: F = Sets().WithRealizations().example().F(); F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: F.one_basis()
{}
sage: F.one()
F[{}]

product_on_basis(left, right)
Product of basis elements, as per AlgebrasWithBasis.ParentMethods.product_on_basis().

INPUT:
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• left, right – sets indexing basis elements
EXAMPLES:

sage: F = Sets().WithRealizations().example().F(); F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: S = F.basis().keys(); S
Subsets of {1, 2, 3}
sage: F.product_on_basis(S([]), S([]))
F[{}]
sage: F.product_on_basis(S({1}), S({3}))
F[{1, 3}]
sage: F.product_on_basis(S({1,2}), S({2,3}))
F[{1, 2, 3}]

class In(A)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Subset Algebra, in the In basis

INPUT:

• A – a parent with realization in SubsetAlgebra

EXAMPLES:

sage: A = Sets().WithRealizations().example()
sage: A.In()
The subset algebra of {1, 2, 3} over Rational Field in the In basis

class Out(A)
Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.
BindableClass

The Subset Algebra, in the 𝑂𝑢𝑡 basis

INPUT:

• A – a parent with realization in SubsetAlgebra

EXAMPLES:

sage: A = Sets().WithRealizations().example()
sage: A.Out()
The subset algebra of {1, 2, 3} over Rational Field in the Out basis

a_realization()
Returns the default realization of self

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.a_realization()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis

base_set()
EXAMPLES:
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sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.base_set()
{1, 2, 3}

indices()
The objects that index the basis elements of this algebra.

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.indices()
Subsets of {1, 2, 3}

indices_key(x)
A key function on a set which gives a linear extension of the inclusion order.

INPUT:

• x – set

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: sorted(A.indices(), key=A.indices_key)
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]

supsets(set)
Returns all the subsets of 𝑆 containing set

INPUT:

• set – a subset of the base set 𝑆 of self

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.supsets(Set((2,)))
[{1, 2, 3}, {2, 3}, {1, 2}, {2}]
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INTERNALS

7.1 Specific category classes

This is placed in a separate file from categories.py to avoid circular imports (as morphisms must be very low in the
hierarchy with the new coercion model).

class sage.categories.category_types.AbelianCategory(s=None)
Bases: sage.categories.category.Category

is_abelian()
Return True as self is an abelian category.

EXAMPLES:

sage: CommutativeAdditiveGroups().is_abelian()
True

class sage.categories.category_types.Category_ideal(ambient, name=None)
Bases: sage.categories.category_types.Category_in_ambient

classmethod an_instance()
Return an instance of this class.

EXAMPLES:

sage: AlgebraIdeals.an_instance()
Category of algebra ideals in Univariate Polynomial Ring in x over Rational␣
→˓Field

ring()
Return the ambient ring used to describe objects self.

EXAMPLES:

sage: C = Ideals(IntegerRing())
sage: C.ring()
Integer Ring

class sage.categories.category_types.Category_in_ambient(ambient, name=None)
Bases: sage.categories.category.Category

Initialize self.

EXAMPLES:
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sage: C = Ideals(IntegerRing())
sage: TestSuite(C).run()

ambient()
Return the ambient object in which objects of this category are embedded.

EXAMPLES:

sage: C = Ideals(IntegerRing())
sage: C.ambient()
Integer Ring

class sage.categories.category_types.Category_module(base, name=None)
Bases: sage.categories.category_types.AbelianCategory, sage.categories.category_types.
Category_over_base_ring

class sage.categories.category_types.Category_over_base(base, name=None)
Bases: sage.categories.category.CategoryWithParameters

A base class for categories over some base object

INPUT:

• base – a category 𝐶 or an object of such a category

Assumption: the classes for the parents, elements, morphisms, of self should only depend on 𝐶. See trac ticket
#11935 for details.

EXAMPLES:

sage: Algebras(GF(2)).element_class is Algebras(GF(3)).element_class
True

sage: C = GF(2).category()
sage: Algebras(GF(2)).parent_class is Algebras(C).parent_class
True

sage: C = ZZ.category()
sage: Algebras(ZZ).element_class is Algebras(C).element_class
True

classmethod an_instance()
Returns an instance of this class

EXAMPLES:

sage: Algebras.an_instance()
Category of algebras over Rational Field

base()
Return the base over which elements of this category are defined.

EXAMPLES:

sage: C = Algebras(QQ)
sage: C.base()
Rational Field
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class sage.categories.category_types.Category_over_base_ring(base, name=None)
Bases: sage.categories.category_types.Category_over_base

Initialize self.

EXAMPLES:

sage: C = Algebras(GF(2)); C
Category of algebras over Finite Field of size 2
sage: TestSuite(C).run()

base_ring()
Return the base ring over which elements of this category are defined.

EXAMPLES:

sage: C = Algebras(GF(2))
sage: C.base_ring()
Finite Field of size 2

class sage.categories.category_types.Elements(object)
Bases: sage.categories.category.Category

The category of all elements of a given parent.

EXAMPLES:

sage: a = IntegerRing()(5)
sage: C = a.category(); C
Category of elements of Integer Ring
sage: a in C
True
sage: 2/3 in C
False
sage: loads(C.dumps()) == C
True

classmethod an_instance()
Returns an instance of this class

EXAMPLES:

sage: Elements.an_instance()
Category of elements of Rational Field

object()
EXAMPLES:

sage: Elements(ZZ).object()
Integer Ring

super_categories()
EXAMPLES:

sage: Elements(ZZ).super_categories()
[Category of objects]
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Todo: Check that this is what we want.

7.2 Singleton categories

class sage.categories.category_singleton.Category_contains_method_by_parent_class
Bases: object

Returns whether x is an object in this category.

More specifically, returns True if and only if x has a category which is a subcategory of this one.

EXAMPLES:

sage: ZZ in Sets()
True

class sage.categories.category_singleton.Category_singleton(s=None)
Bases: sage.categories.category.Category

A base class for implementing singleton category

A singleton category is a category whose class takes no parameters like Fields() or Rings(). See also the
Singleton design pattern.

This is a subclass of Category, with a couple optimizations for singleton categories.

The main purpose is to make the idioms:

sage: QQ in Fields()
True
sage: ZZ in Fields()
False

as fast as possible, and in particular competitive to calling a constant Python method, in order to foster its system-
atic use throughout the Sage library. Such tests are time critical, in particular when creating a lot of polynomial
rings over small fields like in the elliptic curve code.

EXAMPLES:

sage: from sage.categories.category_singleton import Category_singleton
sage: class MyRings(Category):
....: def super_categories(self): return Rings().super_categories()
sage: class MyRingsSingleton(Category_singleton):
....: def super_categories(self): return Rings().super_categories()

We create three rings. One of them is contained in the usual category of rings, one in the category of “my rings”
and the third in the category of “my rings singleton”:

sage: R = QQ['x,y']
sage: R1 = Parent(category = MyRings())
sage: R2 = Parent(category = MyRingsSingleton())
sage: R in MyRings()
False
sage: R1 in MyRings()

(continues on next page)
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(continued from previous page)

True
sage: R1 in MyRingsSingleton()
False
sage: R2 in MyRings()
False
sage: R2 in MyRingsSingleton()
True

One sees that containment tests for the singleton class is a lot faster than for a usual class:

sage: timeit("R in MyRings()", number=10000) # not tested
10000 loops, best of 3: 7.12 𝜇s per loop
sage: timeit("R1 in MyRings()", number=10000) # not tested
10000 loops, best of 3: 6.98 𝜇s per loop
sage: timeit("R in MyRingsSingleton()", number=10000) # not tested
10000 loops, best of 3: 3.08 𝜇s per loop
sage: timeit("R2 in MyRingsSingleton()", number=10000) # not tested
10000 loops, best of 3: 2.99 𝜇s per loop

So this is an improvement, but not yet competitive with a pure Cython method:

sage: timeit("R.is_ring()", number=10000) # not tested
10000 loops, best of 3: 383 ns per loop

However, it is competitive with a Python method. Actually it is faster, if one stores the category in a variable:

sage: _Rings = Rings()
sage: R3 = Parent(category = _Rings)
sage: R3.is_ring.__module__
'sage.categories.rings'
sage: timeit("R3.is_ring()", number=10000) # not tested
10000 loops, best of 3: 2.64 𝜇s per loop
sage: timeit("R3 in Rings()", number=10000) # not tested
10000 loops, best of 3: 3.01 𝜇s per loop
sage: timeit("R3 in _Rings", number=10000) # not tested
10000 loops, best of 3: 652 ns per loop

This might not be easy to further optimize, since the time is consumed in many different spots:

sage: timeit("MyRingsSingleton.__classcall__()", number=10000)# not tested
10000 loops, best of 3: 306 ns per loop

sage: X = MyRingsSingleton()
sage: timeit("R in X ", number=10000) # not tested
10000 loops, best of 3: 699 ns per loop

sage: c = MyRingsSingleton().__contains__
sage: timeit("c(R)", number = 10000) # not tested
10000 loops, best of 3: 661 ns per loop

Warning: A singleton concrete class 𝐴 should not have a subclass 𝐵 (necessarily concrete). Otherwise,
creating an instance 𝑎 of 𝐴 and an instance 𝑏 of 𝐵 would break the singleton principle: 𝐴 would have two

7.2. Singleton categories 873



Category Framework, Release 9.7

instances 𝑎 and 𝑏.

With the current implementation only direct subclasses of Category_singleton are supported:
sage: class MyRingsSingleton(Category_singleton):
....: def super_categories(self): return Rings().super_categories()
sage: class Disaster(MyRingsSingleton): pass
sage: Disaster()
Traceback (most recent call last):
...
AssertionError: <class '__main__.Disaster'> is not a direct subclass of <class
→˓'sage.categories.category_singleton.Category_singleton'>

However, it is acceptable for a direct subclass 𝑅 of Category_singleton to create its unique instance as
an instance of a subclass of itself (in which case, its the subclass of 𝑅 which is concrete, not 𝑅 itself). This
is used for example to plug in extra category code via a dynamic subclass:
sage: from sage.categories.category_singleton import Category_singleton
sage: class R(Category_singleton):
....: def super_categories(self): return [Sets()]
sage: R()
Category of r
sage: R().__class__
<class '__main__.R_with_category'>
sage: R().__class__.mro()
[<class '__main__.R_with_category'>,
<class '__main__.R'>,
<class 'sage.categories.category_singleton.Category_singleton'>,
<class 'sage.categories.category.Category'>,
<class 'sage.structure.unique_representation.UniqueRepresentation'>,
<class 'sage.structure.unique_representation.CachedRepresentation'>,
<class 'sage.misc.fast_methods.WithEqualityById'>,
<class 'sage.structure.sage_object.SageObject'>,
<class '__main__.R.subcategory_class'>,
<class 'sage.categories.sets_cat.Sets.subcategory_class'>,
<class 'sage.categories.sets_with_partial_maps.SetsWithPartialMaps.subcategory_
→˓class'>,
<class 'sage.categories.objects.Objects.subcategory_class'>,
<... 'object'>]
sage: R() is R()
True
sage: R() is R().__class__()
True

In that case, R is an abstract class and has a single concrete subclass, so this does not break the Singleton
design pattern.

See also:

Category.__classcall__(), Category.__init__()

Note: The _test_category test is failing because MyRingsSingleton() is not a subcategory of the join of
its super categories:

sage: C = MyRingsSingleton()
(continues on next page)
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(continued from previous page)

sage: C.super_categories()
[Category of rngs, Category of semirings]
sage: Rngs() & Semirings()
Category of rings
sage: C.is_subcategory(Rings())
False

Oh well; it’s not really relevant for those tests.

7.3 Fast functions for the category framework

AUTHOR:

• Simon King (initial version)

class sage.categories.category_cy_helper.AxiomContainer
Bases: dict

A fast container for axioms.

This is derived from dict. A key is the name of an axiom. The corresponding value is the “rank” of this axiom,
that is used to order the axioms in canonicalize_axioms().

EXAMPLES:

sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: isinstance(all_axioms, sage.categories.category_with_axiom.AxiomContainer)
True

add(axiom)
Add a new axiom name, of the next rank.

EXAMPLES:

sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: m = max(all_axioms.values())
sage: all_axioms.add('Awesome')
sage: all_axioms['Awesome'] == m + 1
True

To avoid side effects, we remove the added axiom:

sage: del all_axioms['Awesome']

sage.categories.category_cy_helper.canonicalize_axioms(all_axioms, axioms)
Canonicalize a set of axioms.

INPUT:

• all_axioms – all available axioms

• axioms – a set (or iterable) of axioms
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Note: AxiomContainer provides a fast container for axioms, and the collection of axioms is stored in sage.
categories.category_with_axiom . In order to avoid circular imports, we expect that the collection of all
axioms is provided as an argument to this auxiliary function.

OUTPUT:

A set of axioms as a tuple sorted according to the order of the tuple all_axioms in sage.categories.
category_with_axiom .

EXAMPLES:

sage: from sage.categories.category_with_axiom import canonicalize_axioms, all_
→˓axioms
sage: canonicalize_axioms(all_axioms, ["Commutative", "Connected", "WithBasis",
→˓"Finite"])
('Finite', 'Connected', 'WithBasis', 'Commutative')
sage: canonicalize_axioms(all_axioms, ["Commutative", "Connected", "Commutative",
→˓"WithBasis", "Finite"])
('Finite', 'Connected', 'WithBasis', 'Commutative')

sage.categories.category_cy_helper.category_sort_key(category)
Return category._cmp_key.

This helper function is used for sorting lists of categories.

It is semantically equivalent to operator.attrgetter() ("_cmp_key"), but currently faster.

EXAMPLES:

sage: from sage.categories.category_cy_helper import category_sort_key
sage: category_sort_key(Rings()) is Rings()._cmp_key
True

sage.categories.category_cy_helper.get_axiom_index(all_axioms, axiom)
Helper function: Return the rank of an axiom.

INPUT:

• all_axioms – the axiom collection

• axiom – string, name of an axiom

EXAMPLES:

sage: all_axioms = sage.categories.category_with_axiom.all_axioms
sage: from sage.categories.category_cy_helper import get_axiom_index
sage: get_axiom_index(all_axioms, 'AdditiveCommutative') == all_axioms[
→˓'AdditiveCommutative']
True

sage.categories.category_cy_helper.join_as_tuple(categories, axioms, ignore_axioms)
Helper for join().

INPUT:

• categories – tuple of categories to be joined,

• axioms – tuple of strings; the names of some supplementary axioms.
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• ignore_axioms – tuple of pairs (cat, axiom), such that axiom will not be applied to cat, should cat
occur in the algorithm.

EXAMPLES:

sage: from sage.categories.category_cy_helper import join_as_tuple
sage: T = (Coalgebras(QQ), Sets().Finite(), Algebras(ZZ), SimplicialComplexes())
sage: join_as_tuple(T,(),())
(Category of algebras over Integer Ring,
Category of finite monoids,
Category of finite additive groups,
Category of coalgebras over Rational Field,
Category of finite simplicial complexes)
sage: join_as_tuple(T,('WithBasis',),())
(Category of algebras with basis over Integer Ring,
Category of finite monoids,
Category of coalgebras with basis over Rational Field,
Category of finite additive groups,
Category of finite simplicial complexes)
sage: join_as_tuple(T,(),((Monoids(),'Finite'),))
(Category of algebras over Integer Ring,
Category of finite additive groups,
Category of coalgebras over Rational Field,
Category of finite simplicial complexes)

7.4 Coercion methods for categories

The purpose of this Cython module is to hold special coercion methods, which are inserted by their respective cate-
gories.

7.5 Poor Man’s map

class sage.categories.poor_man_map.PoorManMap(function, domain=None, codomain=None, name=None)
Bases: sage.structure.sage_object.SageObject

A class for maps between sets which are not (yet) modeled by parents

Could possibly disappear when all combinatorial classes / enumerated sets will be parents

INPUT:

• function – a callable or an iterable of callables. This represents the underlying function used to implement
this map. If it is an iterable, then the callables will be composed to implement this map.

• domain – the domain of this map or None if the domain is not known or should remain unspecified

• codomain – the codomain of this map or None if the codomain is not known or should remain unspecified

• name – a name for this map or None if this map has no particular name

EXAMPLES:

sage: from sage.categories.poor_man_map import PoorManMap
sage: f = PoorManMap(factorial, domain = (1, 2, 3), codomain = (1, 2, 6))

(continues on next page)
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(continued from previous page)

sage: f
A map from (1, 2, 3) to (1, 2, 6)
sage: f(3)
6

The composition of several functions can be created by passing in a tuple of functions:

sage: i = PoorManMap((factorial, sqrt), domain= (1, 4, 9), codomain = (1, 2, 6))

However, the same effect can also be achieved by just composing maps:

sage: g = PoorManMap(factorial, domain = (1, 2, 3), codomain = (1, 2, 6))
sage: h = PoorManMap(sqrt, domain = (1, 4, 9), codomain = (1, 2, 3))
sage: i == g*h
True

codomain()
Returns the codomain of self

EXAMPLES:

sage: from sage.categories.poor_man_map import PoorManMap
sage: PoorManMap(lambda x: x+1, domain = (1,2,3), codomain = (2,3,4)).codomain()
(2, 3, 4)

domain()
Returns the domain of self

EXAMPLES:

sage: from sage.categories.poor_man_map import PoorManMap
sage: PoorManMap(lambda x: x+1, domain = (1,2,3), codomain = (2,3,4)).domain()
(1, 2, 3)

878 Chapter 7. Internals



CHAPTER

EIGHT

INDICES AND TABLES

• Index

• Module Index

• Search Page

879

../genindex.html
../py-modindex.html
../search.html


Category Framework, Release 9.7

880 Chapter 8. Indices and Tables



BIBLIOGRAPHY

[Dye] Dyer. Bruhat intervals, polyhedral cones and Kazhdan-Lusztig-Stanley polynomials. Math.Z., 215(2):223-
236, 1994.

[JahStu] Jahn and Stump. Bruhat intervals, subword complexes and brick polyhedra for finite Coxeter groups. Preprint,
available at arXiv 2103.03715, 2021.

881

https://arxiv.org/abs/2103.03715


Category Framework, Release 9.7

882 Bibliography



PYTHON MODULE INDEX

c
sage.categories.action, 157
sage.categories.additive_groups, 160
sage.categories.additive_magmas, 162
sage.categories.additive_monoids, 173
sage.categories.additive_semigroups, 174
sage.categories.affine_weyl_groups, 176
sage.categories.algebra_functor, 789
sage.categories.algebra_ideals, 179
sage.categories.algebra_modules, 180
sage.categories.algebras, 180
sage.categories.algebras_with_basis, 184
sage.categories.all, 1
sage.categories.aperiodic_semigroups, 189
sage.categories.associative_algebras, 189
sage.categories.bialgebras, 189
sage.categories.bialgebras_with_basis, 191
sage.categories.bimodules, 195
sage.categories.cartesian_product, 785
sage.categories.category, 30
sage.categories.category_cy_helper, 875
sage.categories.category_singleton, 872
sage.categories.category_types, 869
sage.categories.category_with_axiom, 66
sage.categories.classical_crystals, 196
sage.categories.coalgebras, 200
sage.categories.coalgebras_with_basis, 205
sage.categories.coercion_methods, 877
sage.categories.commutative_additive_groups,

207
sage.categories.commutative_additive_monoids,

209
sage.categories.commutative_additive_semigroups,

209
sage.categories.commutative_algebra_ideals,

210
sage.categories.commutative_algebras, 210
sage.categories.commutative_ring_ideals, 211
sage.categories.commutative_rings, 211
sage.categories.complete_discrete_valuation,

215
sage.categories.complex_reflection_groups,

219
sage.categories.complex_reflection_or_generalized_coxeter_groups,

221
sage.categories.covariant_functorial_construction,

779
sage.categories.coxeter_group_algebras, 239
sage.categories.coxeter_groups, 242
sage.categories.crystals, 275
sage.categories.cw_complexes, 299
sage.categories.discrete_valuation, 301
sage.categories.distributive_magmas_and_additive_magmas,

304
sage.categories.division_rings, 305
sage.categories.domains, 306
sage.categories.dual, 789
sage.categories.enumerated_sets, 306
sage.categories.euclidean_domains, 313
sage.categories.examples.algebras_with_basis,

809
sage.categories.examples.commutative_additive_monoids,

810
sage.categories.examples.commutative_additive_semigroups,

811
sage.categories.examples.coxeter_groups, 813
sage.categories.examples.crystals, 813
sage.categories.examples.cw_complexes, 815
sage.categories.examples.facade_sets, 816
sage.categories.examples.finite_coxeter_groups,

817
sage.categories.examples.finite_dimensional_algebras_with_basis,

819
sage.categories.examples.finite_dimensional_lie_algebras_with_basis,

820
sage.categories.examples.finite_enumerated_sets,

824
sage.categories.examples.finite_monoids, 826
sage.categories.examples.finite_semigroups,

828
sage.categories.examples.finite_weyl_groups,

830
sage.categories.examples.graded_connected_hopf_algebras_with_basis,

832

883



Category Framework, Release 9.7

sage.categories.examples.graded_modules_with_basis,
834

sage.categories.examples.graphs, 836
sage.categories.examples.hopf_algebras_with_basis,

837
sage.categories.examples.infinite_enumerated_sets,

839
sage.categories.examples.lie_algebras, 840
sage.categories.examples.lie_algebras_with_basis,

842
sage.categories.examples.magmas, 843
sage.categories.examples.manifolds, 844
sage.categories.examples.monoids, 845
sage.categories.examples.posets, 847
sage.categories.examples.semigroups, 849
sage.categories.examples.semigroups_cython,

854
sage.categories.examples.sets_cat, 856
sage.categories.examples.sets_with_grading,

862
sage.categories.examples.with_realizations,

863
sage.categories.facade_sets, 777
sage.categories.fields, 315
sage.categories.filtered_algebras, 320
sage.categories.filtered_algebras_with_basis,

321
sage.categories.filtered_modules, 329
sage.categories.filtered_modules_with_basis,

331
sage.categories.finite_complex_reflection_groups,

346
sage.categories.finite_coxeter_groups, 362
sage.categories.finite_crystals, 374
sage.categories.finite_dimensional_algebras_with_basis,

375
sage.categories.finite_dimensional_bialgebras_with_basis,

394
sage.categories.finite_dimensional_coalgebras_with_basis,

394
sage.categories.finite_dimensional_graded_lie_algebras_with_basis,

394
sage.categories.finite_dimensional_hopf_algebras_with_basis,

396
sage.categories.finite_dimensional_lie_algebras_with_basis,

396
sage.categories.finite_dimensional_modules_with_basis,

413
sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis,

421
sage.categories.finite_dimensional_semisimple_algebras_with_basis,

423
sage.categories.finite_enumerated_sets, 425
sage.categories.finite_fields, 431

sage.categories.finite_groups, 431
sage.categories.finite_lattice_posets, 434
sage.categories.finite_monoids, 437
sage.categories.finite_permutation_groups,

440
sage.categories.finite_posets, 444
sage.categories.finite_semigroups, 466
sage.categories.finite_sets, 468
sage.categories.finite_weyl_groups, 469
sage.categories.finitely_generated_lambda_bracket_algebras,

469
sage.categories.finitely_generated_lie_conformal_algebras,

471
sage.categories.finitely_generated_magmas,

472
sage.categories.finitely_generated_semigroups,

472
sage.categories.function_fields, 475
sage.categories.functor, 100
sage.categories.g_sets, 475
sage.categories.gcd_domains, 476
sage.categories.generalized_coxeter_groups,

477
sage.categories.graded_algebras, 478
sage.categories.graded_algebras_with_basis,

479
sage.categories.graded_bialgebras, 481
sage.categories.graded_bialgebras_with_basis,

481
sage.categories.graded_coalgebras, 482
sage.categories.graded_coalgebras_with_basis,

482
sage.categories.graded_hopf_algebras, 483
sage.categories.graded_hopf_algebras_with_basis,

483
sage.categories.graded_lie_algebras, 485
sage.categories.graded_lie_algebras_with_basis,

486
sage.categories.graded_lie_conformal_algebras,

486
sage.categories.graded_modules, 487
sage.categories.graded_modules_with_basis,

489
sage.categories.graphs, 493
sage.categories.group_algebras, 495
sage.categories.groupoid, 499
sage.categories.groups, 500
sage.categories.h_trivial_semigroups, 523
sage.categories.hecke_modules, 508
sage.categories.highest_weight_crystals, 509
sage.categories.homset, 116
sage.categories.homsets, 798
sage.categories.hopf_algebras, 516
sage.categories.hopf_algebras_with_basis, 519

884 Python Module Index



Category Framework, Release 9.7

sage.categories.infinite_enumerated_sets, 523
sage.categories.integral_domains, 525
sage.categories.isomorphic_objects, 797
sage.categories.j_trivial_semigroups, 525
sage.categories.kac_moody_algebras, 526
sage.categories.l_trivial_semigroups, 563
sage.categories.lambda_bracket_algebras, 527
sage.categories.lambda_bracket_algebras_with_basis,

529
sage.categories.lattice_posets, 530
sage.categories.left_modules, 531
sage.categories.lie_algebras, 532
sage.categories.lie_algebras_with_basis, 542
sage.categories.lie_conformal_algebras, 544
sage.categories.lie_conformal_algebras_with_basis,

548
sage.categories.lie_groups, 550
sage.categories.loop_crystals, 550
sage.categories.magmas, 564
sage.categories.magmas_and_additive_magmas,

578
sage.categories.magmatic_algebras, 580
sage.categories.manifolds, 583
sage.categories.map, 107
sage.categories.matrix_algebras, 587
sage.categories.metric_spaces, 587
sage.categories.modular_abelian_varieties,

592
sage.categories.modules, 593
sage.categories.modules_with_basis, 604
sage.categories.monoid_algebras, 630
sage.categories.monoids, 631
sage.categories.morphism, 124
sage.categories.number_fields, 637
sage.categories.objects, 639
sage.categories.partially_ordered_monoids,

640
sage.categories.permutation_groups, 641
sage.categories.pointed_sets, 642
sage.categories.polyhedra, 642
sage.categories.poor_man_map, 877
sage.categories.posets, 642
sage.categories.primer, 3
sage.categories.principal_ideal_domains, 652
sage.categories.pushout, 128
sage.categories.quantum_group_representations,

659
sage.categories.quotient_fields, 653
sage.categories.quotients, 796
sage.categories.r_trivial_semigroups, 686
sage.categories.realizations, 802
sage.categories.regular_crystals, 665
sage.categories.regular_supercrystals, 673
sage.categories.right_modules, 675

sage.categories.ring_ideals, 675
sage.categories.rings, 676
sage.categories.rngs, 685
sage.categories.schemes, 686
sage.categories.semigroups, 687
sage.categories.semirings, 699
sage.categories.semisimple_algebras, 699
sage.categories.sets_cat, 701
sage.categories.sets_with_grading, 727
sage.categories.sets_with_partial_maps, 730
sage.categories.shephard_groups, 730
sage.categories.signed_tensor, 788
sage.categories.simplicial_complexes, 731
sage.categories.simplicial_sets, 732
sage.categories.subobjects, 797
sage.categories.subquotients, 796
sage.categories.super_algebras, 739
sage.categories.super_algebras_with_basis,

741
sage.categories.super_hopf_algebras_with_basis,

743
sage.categories.super_lie_conformal_algebras,

743
sage.categories.super_modules, 744
sage.categories.super_modules_with_basis, 747
sage.categories.supercommutative_algebras,

749
sage.categories.supercrystals, 750
sage.categories.tensor, 787
sage.categories.topological_spaces, 754
sage.categories.triangular_kac_moody_algebras,

756
sage.categories.tutorial, 104
sage.categories.unique_factorization_domains,

758
sage.categories.unital_algebras, 759
sage.categories.vector_bundles, 761
sage.categories.vector_spaces, 763
sage.categories.weyl_groups, 767
sage.categories.with_realizations, 804

Python Module Index 885



Category Framework, Release 9.7

886 Python Module Index



INDEX

Symbols
__classcall__() (sage.categories.category.Category

static method), 42
__classcall__() (sage.categories.category_with_axiom.CategoryWithAxiom

static method), 92
__classget__() (sage.categories.category_with_axiom.CategoryWithAxiom

static method), 92
__init__() (sage.categories.category.Category

method), 43
__init__() (sage.categories.category_with_axiom.CategoryWithAxiom

method), 93
_all_super_categories()

(sage.categories.category.Category method),
36

_all_super_categories_proper()
(sage.categories.category.Category method),
37

_make_named_class()
(sage.categories.category.Category method),
38

_make_named_class()
(sage.categories.category.CategoryWithParameters.Category
method), 62

_repr_() (sage.categories.category.Category method),
39

_repr_() (sage.categories.category.JoinCategory.Category
method), 64

_repr_object_names()
(sage.categories.category.Category method),
39

_repr_object_names()
(sage.categories.category.JoinCategory.Category
method), 64

_repr_object_names()
(sage.categories.category_with_axiom.CategoryWithAxiom
method), 93

_repr_object_names_static()
(sage.categories.category_with_axiom.CategoryWithAxiom
static method), 93

_set_of_super_categories()
(sage.categories.category.Category method),
37

_sort() (sage.categories.category.Category static
method), 41

_sort_uniq() (sage.categories.category.Category
static method), 42

_super_categories()
(sage.categories.category.Category method),
35

_super_categories_for_classes()
(sage.categories.category.Category method),
36

_test_category() (sage.categories.category.Category
method), 39

_test_category_with_axiom()
(sage.categories.category_with_axiom.CategoryWithAxiom
method), 94

_with_axiom() (sage.categories.category.Category
method), 40

_with_axiom_as_tuple()
(sage.categories.category.Category method),
40

_without_axioms() (sage.categories.category.Category
method), 41

_without_axioms() (sage.categories.category.JoinCategory.Category
method), 64

_without_axioms() (sage.categories.category_with_axiom.CategoryWithAxiom
method), 94

A
a_realization() (sage.categories.examples.with_realizations.SubsetAlgebra

method), 867
a_realization() (sage.categories.sets_cat.Sets.WithRealizations.ParentMethods

method), 723
AbelianCategory (class in

sage.categories.category_types), 869
AbelianLieAlgebra (class in

sage.categories.examples.finite_dimensional_lie_algebras_with_basis),
820

AbelianLieAlgebra (class in
sage.categories.examples.lie_algebras_with_basis),
842

AbelianLieAlgebra.Element (class in
sage.categories.examples.finite_dimensional_lie_algebras_with_basis),

887



Category Framework, Release 9.7

821
AbelianLieAlgebra.Element (class in

sage.categories.examples.lie_algebras_with_basis),
842

abs() (sage.categories.metric_spaces.MetricSpaces.ElementMethods
method), 589

absolute_covers() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 243

absolute_le() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 243

absolute_length() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 244

absolute_order_ideal()
(sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible.ParentMethods
method), 348

absolute_poset() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible.ParentMethods
method), 349

act() (sage.categories.action.Action method), 158
Action (class in sage.categories.action), 157
ActionEndomorphism (class in sage.categories.action),

158
actor() (sage.categories.action.Action method), 158
adams_operator() (sage.categories.bialgebras_with_basis.BialgebrasWithBasis.ElementMethods

method), 191
add() (sage.categories.category_cy_helper.AxiomContainer

method), 875
addition_table() (sage.categories.additive_magmas.AdditiveMagmas.ParentMethods

method), 168
additional_structure()

(sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital
method), 166

additional_structure()
(sage.categories.affine_weyl_groups.AffineWeylGroups
method), 178

additional_structure()
(sage.categories.bialgebras.Bialgebras
method), 190

additional_structure()
(sage.categories.bimodules.Bimodules
method), 195

additional_structure()
(sage.categories.category.Category method),
48

additional_structure()
(sage.categories.category.JoinCategory
method), 65

additional_structure()
(sage.categories.category_with_axiom.CategoryWithAxiom
method), 95

additional_structure()
(sage.categories.classical_crystals.ClassicalCrystals
method), 199

additional_structure()
(sage.categories.complex_reflection_groups.ComplexReflectionGroups

method), 220
additional_structure()

(sage.categories.covariant_functorial_construction.CovariantConstructionCategory
method), 779

additional_structure()
(sage.categories.coxeter_groups.CoxeterGroups
method), 275

additional_structure()
(sage.categories.enumerated_sets.EnumeratedSets
method), 313

additional_structure()
(sage.categories.gcd_domains.GcdDomains
method), 476

additional_structure()
(sage.categories.generalized_coxeter_groups.GeneralizedCoxeterGroups
method), 477

additional_structure()
(sage.categories.highest_weight_crystals.HighestWeightCrystals
method), 516

additional_structure()
(sage.categories.lie_groups.LieGroups
method), 550

additional_structure()
(sage.categories.magmas.Magmas.Unital
method), 577

additional_structure()
(sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas
method), 579

additional_structure()
(sage.categories.magmatic_algebras.MagmaticAlgebras
method), 582

additional_structure()
(sage.categories.manifolds.Manifolds method),
587

additional_structure()
(sage.categories.modules.Modules method),
603

additional_structure()
(sage.categories.objects.Objects method),
640

additional_structure()
(sage.categories.principal_ideal_domains.PrincipalIdealDomains
method), 652

additional_structure()
(sage.categories.regular_crystals.RegularCrystals
method), 672

additional_structure()
(sage.categories.unique_factorization_domains.UniqueFactorizationDomains
method), 759

additional_structure()
(sage.categories.vector_spaces.VectorSpaces
method), 766

additional_structure()
(sage.categories.weyl_groups.WeylGroups

888 Index



Category Framework, Release 9.7

method), 776
additive_order() (sage.categories.commutative_additive_groups.CommutativeAdditiveGroups.CartesianProducts.ElementMethods

method), 208
additive_semigroup_generators()

(sage.categories.examples.commutative_additive_semigroups.FreeCommutativeAdditiveSemigroup
method), 812

AdditiveAssociative
(sage.categories.additive_magmas.AdditiveMagmas
attribute), 162

AdditiveAssociative()
(sage.categories.additive_magmas.AdditiveMagmas.SubcategoryMethods
method), 171

AdditiveCommutative
(sage.categories.additive_groups.AdditiveGroups
attribute), 160

AdditiveCommutative
(sage.categories.additive_monoids.AdditiveMonoids
attribute), 173

AdditiveCommutative
(sage.categories.additive_semigroups.AdditiveSemigroups
attribute), 174

AdditiveCommutative()
(sage.categories.additive_magmas.AdditiveMagmas.SubcategoryMethods
method), 172

AdditiveGroups (class in
sage.categories.additive_groups), 160

AdditiveGroups.Algebras (class in
sage.categories.additive_groups), 161

AdditiveGroups.Algebras.ParentMethods (class in
sage.categories.additive_groups), 161

AdditiveGroups.Finite (class in
sage.categories.additive_groups), 161

AdditiveGroups.Finite.Algebras (class in
sage.categories.additive_groups), 161

AdditiveGroups.Finite.Algebras.ParentMethods
(class in sage.categories.additive_groups), 161

AdditiveInverse (sage.categories.additive_monoids.AdditiveMonoids
attribute), 173

AdditiveInverse (sage.categories.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative
attribute), 304

AdditiveInverse() (sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital.SubcategoryMethods
method), 166

AdditiveMagmas (class in
sage.categories.additive_magmas), 162

AdditiveMagmas.AdditiveCommutative (class in
sage.categories.additive_magmas), 162

AdditiveMagmas.AdditiveCommutative.Algebras
(class in sage.categories.additive_magmas),
162

AdditiveMagmas.AdditiveCommutative.CartesianProducts
(class in sage.categories.additive_magmas),
163

AdditiveMagmas.AdditiveUnital (class in
sage.categories.additive_magmas), 163

AdditiveMagmas.AdditiveUnital.AdditiveInverse
(class in sage.categories.additive_magmas),
163

AdditiveMagmas.AdditiveUnital.AdditiveInverse.CartesianProducts
(class in sage.categories.additive_magmas),
163

AdditiveMagmas.AdditiveUnital.AdditiveInverse.CartesianProducts.ElementMethods
(class in sage.categories.additive_magmas),
163

AdditiveMagmas.AdditiveUnital.Algebras (class
in sage.categories.additive_magmas), 163

AdditiveMagmas.AdditiveUnital.Algebras.ParentMethods
(class in sage.categories.additive_magmas),
163

AdditiveMagmas.AdditiveUnital.CartesianProducts
(class in sage.categories.additive_magmas),
164

AdditiveMagmas.AdditiveUnital.CartesianProducts.ParentMethods
(class in sage.categories.additive_magmas),
164

AdditiveMagmas.AdditiveUnital.ElementMethods
(class in sage.categories.additive_magmas),
164

AdditiveMagmas.AdditiveUnital.Homsets (class in
sage.categories.additive_magmas), 164

AdditiveMagmas.AdditiveUnital.Homsets.ParentMethods
(class in sage.categories.additive_magmas),
164

AdditiveMagmas.AdditiveUnital.ParentMethods
(class in sage.categories.additive_magmas),
165

AdditiveMagmas.AdditiveUnital.SubcategoryMethods
(class in sage.categories.additive_magmas),
165

AdditiveMagmas.AdditiveUnital.WithRealizations
(class in sage.categories.additive_magmas),
166

AdditiveMagmas.AdditiveUnital.WithRealizations.ParentMethods
(class in sage.categories.additive_magmas),
166

AdditiveMagmas.Algebras (class in
sage.categories.additive_magmas), 166

AdditiveMagmas.Algebras.ParentMethods (class in
sage.categories.additive_magmas), 166

AdditiveMagmas.CartesianProducts (class in
sage.categories.additive_magmas), 167

AdditiveMagmas.CartesianProducts.ElementMethods
(class in sage.categories.additive_magmas),
167

AdditiveMagmas.ElementMethods (class in
sage.categories.additive_magmas), 168

AdditiveMagmas.Homsets (class in
sage.categories.additive_magmas), 168

AdditiveMagmas.ParentMethods (class in

Index 889



Category Framework, Release 9.7

sage.categories.additive_magmas), 168
AdditiveMagmas.SubcategoryMethods (class in

sage.categories.additive_magmas), 171
AdditiveMonoids (class in

sage.categories.additive_monoids), 173
AdditiveMonoids.Homsets (class in

sage.categories.additive_monoids), 173
AdditiveMonoids.ParentMethods (class in

sage.categories.additive_monoids), 173
AdditiveSemigroups (class in

sage.categories.additive_semigroups), 174
AdditiveSemigroups.Algebras (class in

sage.categories.additive_semigroups), 174
AdditiveSemigroups.Algebras.ParentMethods

(class in sage.categories.additive_semigroups),
175

AdditiveSemigroups.CartesianProducts (class in
sage.categories.additive_semigroups), 175

AdditiveSemigroups.Homsets (class in
sage.categories.additive_semigroups), 176

AdditiveSemigroups.ParentMethods (class in
sage.categories.additive_semigroups), 176

AdditiveUnital (sage.categories.additive_semigroups.AdditiveSemigroups
attribute), 174

AdditiveUnital() (sage.categories.additive_magmas.AdditiveMagmas.SubcategoryMethods
method), 172

adjoint_matrix() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ElementMethods
method), 396

affine_grading() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.TensorProducts.ElementMethods
method), 556

affine_grassmannian_elements_of_given_length()
(sage.categories.affine_weyl_groups.AffineWeylGroups.ParentMethods
method), 178

affine_grassmannian_to_core()
(sage.categories.affine_weyl_groups.AffineWeylGroups.ElementMethods
method), 177

affine_grassmannian_to_partition()
(sage.categories.affine_weyl_groups.AffineWeylGroups.ElementMethods
method), 177

AffineWeylGroups (class in
sage.categories.affine_weyl_groups), 176

AffineWeylGroups.ElementMethods (class in
sage.categories.affine_weyl_groups), 176

AffineWeylGroups.ParentMethods (class in
sage.categories.affine_weyl_groups), 178

affinization() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods
method), 552

algebra() (sage.categories.algebra_ideals.AlgebraIdeals
method), 179

algebra() (sage.categories.algebra_modules.AlgebraModules
method), 180

algebra() (sage.categories.commutative_algebra_ideals.CommutativeAlgebraIdeals
method), 210

algebra() (sage.categories.sets_cat.Sets.ParentMethods

method), 709
algebra_generators()

(sage.categories.additive_magmas.AdditiveMagmas.Algebras.ParentMethods
method), 167

algebra_generators()
(sage.categories.additive_semigroups.AdditiveSemigroups.Algebras.ParentMethods
method), 175

algebra_generators()
(sage.categories.algebras.Algebras.Quotients.ParentMethods
method), 182

algebra_generators()
(sage.categories.examples.algebras_with_basis.FreeAlgebra
method), 809

algebra_generators()
(sage.categories.examples.finite_dimensional_algebras_with_basis.KroneckerQuiverPathAlgebra
method), 819

algebra_generators()
(sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra
method), 837

algebra_generators()
(sage.categories.examples.lie_algebras_with_basis.IndexedPolynomialRing
method), 842

algebra_generators()
(sage.categories.magmatic_algebras.MagmaticAlgebras.ParentMethods
method), 580

algebra_generators()
(sage.categories.magmatic_algebras.MagmaticAlgebras.WithBasis.ParentMethods
method), 581

algebra_generators()
(sage.categories.monoids.Monoids.Algebras.ParentMethods
method), 631

algebra_generators()
(sage.categories.semigroups.Semigroups.Algebras.ParentMethods
method), 687

AlgebraFunctor (class in
sage.categories.algebra_functor), 794

AlgebraicClosureFunctor (class in
sage.categories.pushout), 128

AlgebraicExtensionFunctor (class in
sage.categories.pushout), 128

AlgebraIdeals (class in
sage.categories.algebra_ideals), 179

AlgebraModules (class in
sage.categories.algebra_modules), 180

Algebras (class in sage.categories.algebras), 180
Algebras (sage.categories.coxeter_groups.CoxeterGroups

attribute), 243
Algebras (sage.categories.groups.Groups attribute), 500
Algebras() (sage.categories.sets_cat.Sets.SubcategoryMethods

method), 713
Algebras.CartesianProducts (class in

sage.categories.algebras), 181
Algebras.DualObjects (class in

sage.categories.algebras), 181

890 Index



Category Framework, Release 9.7

Algebras.ElementMethods (class in
sage.categories.algebras), 182

Algebras.Quotients (class in
sage.categories.algebras), 182

Algebras.Quotients.ParentMethods (class in
sage.categories.algebras), 182

Algebras.SubcategoryMethods (class in
sage.categories.algebras), 182

Algebras.TensorProducts (class in
sage.categories.algebras), 183

Algebras.TensorProducts.ElementMethods (class
in sage.categories.algebras), 183

Algebras.TensorProducts.ParentMethods (class in
sage.categories.algebras), 183

AlgebrasCategory (class in
sage.categories.algebra_functor), 794

AlgebrasCategory.ParentMethods (class in
sage.categories.algebra_functor), 795

AlgebrasWithBasis (class in
sage.categories.algebras_with_basis), 184

AlgebrasWithBasis.CartesianProducts (class in
sage.categories.algebras_with_basis), 185

AlgebrasWithBasis.CartesianProducts.ParentMethods
(class in sage.categories.algebras_with_basis),
185

AlgebrasWithBasis.ElementMethods (class in
sage.categories.algebras_with_basis), 186

AlgebrasWithBasis.ParentMethods (class in
sage.categories.algebras_with_basis), 186

AlgebrasWithBasis.TensorProducts (class in
sage.categories.algebras_with_basis), 187

AlgebrasWithBasis.TensorProducts.ElementMethods
(class in sage.categories.algebras_with_basis),
187

AlgebrasWithBasis.TensorProducts.ParentMethods
(class in sage.categories.algebras_with_basis),
187

all_paths_to_highest_weight()
(sage.categories.crystals.Crystals.ElementMethods
method), 281

all_super_categories()
(sage.categories.category.Category method),
50

AlmostComplex() (sage.categories.manifolds.Manifolds.SubcategoryMethods
method), 585

ambient() (sage.categories.category_types.Category_in_ambient
method), 870

ambient() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra
method), 821

ambient() (sage.categories.examples.finite_enumerated_sets.IsomorphicObjectOfFiniteEnumeratedSet
method), 825

ambient() (sage.categories.examples.semigroups.IncompleteSubquotientSemigroup
method), 850

ambient() (sage.categories.examples.semigroups.QuotientOfLeftZeroSemigroup

method), 852
ambient() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.Subobjects.ParentMethods

method), 412
ambient() (sage.categories.sets_cat.Sets.Subquotients.ParentMethods

method), 722
an_element() (sage.categories.crystals.Crystals.ParentMethods

method), 288
an_element() (sage.categories.examples.commutative_additive_semigroups.FreeCommutativeAdditiveSemigroup

method), 813
an_element() (sage.categories.examples.cw_complexes.Surface

method), 816
an_element() (sage.categories.examples.finite_monoids.IntegerModMonoid

method), 827
an_element() (sage.categories.examples.finite_semigroups.LeftRegularBand

method), 829
an_element() (sage.categories.examples.graphs.Cycle

method), 837
an_element() (sage.categories.examples.infinite_enumerated_sets.NonNegativeIntegers

method), 840
an_element() (sage.categories.examples.magmas.FreeMagma

method), 844
an_element() (sage.categories.examples.manifolds.Plane

method), 845
an_element() (sage.categories.examples.posets.FiniteSetsOrderedByInclusion

method), 848
an_element() (sage.categories.examples.semigroups.FreeSemigroup

method), 849
an_element() (sage.categories.examples.semigroups.LeftZeroSemigroup

method), 851
an_element() (sage.categories.examples.semigroups.QuotientOfLeftZeroSemigroup

method), 852
an_element() (sage.categories.examples.sets_cat.PrimeNumbers

method), 857
an_element() (sage.categories.examples.sets_cat.PrimeNumbers_Abstract

method), 858
an_element() (sage.categories.examples.sets_with_grading.NonNegativeIntegers

method), 862
an_element() (sage.categories.sets_cat.Sets.CartesianProducts.ParentMethods

method), 705
an_element() (sage.categories.sets_cat.Sets.ParentMethods

method), 710
an_instance() (sage.categories.algebra_modules.AlgebraModules

class method), 180
an_instance() (sage.categories.bimodules.Bimodules

class method), 195
an_instance() (sage.categories.category.Category

class method), 51
an_instance() (sage.categories.category_types.Category_ideal

class method), 869
an_instance() (sage.categories.category_types.Category_over_base

class method), 870
an_instance() (sage.categories.category_types.Elements

class method), 871
an_instance() (sage.categories.g_sets.GSets class

Index 891



Category Framework, Release 9.7

method), 476
an_instance() (sage.categories.groupoid.Groupoid

class method), 499
Analytic() (sage.categories.manifolds.Manifolds.SubcategoryMethods

method), 585
annihilator() (sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.ParentMethods

method), 416
annihilator_basis()

(sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.ParentMethods
method), 417

antichains() (sage.categories.finite_posets.FinitePosets.ParentMethods
method), 445

antipode() (sage.categories.hopf_algebras.HopfAlgebras.ElementMethods
method), 517

antipode() (sage.categories.hopf_algebras.HopfAlgebras.Super.ElementMethods
method), 518

antipode() (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis.ParentMethods
method), 521

antipode() (sage.categories.super_hopf_algebras_with_basis.SuperHopfAlgebrasWithBasis.ParentMethods
method), 743

antipode_by_coercion()
(sage.categories.hopf_algebras.HopfAlgebras.Realizations.ParentMethods
method), 517

antipode_on_basis()
(sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra
method), 838

antipode_on_basis()
(sage.categories.graded_hopf_algebras_with_basis.GradedHopfAlgebrasWithBasis.Connected.ParentMethods
method), 484

antipode_on_basis()
(sage.categories.group_algebras.GroupAlgebras.ParentMethods
method), 496

antipode_on_basis()
(sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis.ParentMethods
method), 521

Aperiodic (sage.categories.semigroups.Semigroups at-
tribute), 689

Aperiodic() (sage.categories.semigroups.Semigroups.SubcategoryMethods
method), 695

AperiodicSemigroups (class in
sage.categories.aperiodic_semigroups), 189

apply_conjugation_by_simple_reflection()
(sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods
method), 222

apply_demazure_product()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 244

apply_multilinear_morphism()
(sage.categories.modules_with_basis.ModulesWithBasis.TensorProducts.ElementMethods
method), 628

apply_reflections()
(sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods
method), 222

apply_simple_projection()

(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 244

apply_simple_reflection()
(sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods
method), 224

apply_simple_reflection_left()
(sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods
method), 225

apply_simple_reflection_right()
(sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods
method), 225

apply_simple_reflection_right()
(sage.categories.examples.finite_coxeter_groups.DihedralGroup.Element
method), 817

apply_simple_reflections()
(sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods
method), 226

as_finite_dimensional_algebra()
(sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods
method), 398

Associative (sage.categories.magmas.Magmas at-
tribute), 565

Associative (sage.categories.magmatic_algebras.MagmaticAlgebras
attribute), 580

Associative() (sage.categories.magmas.Magmas.SubcategoryMethods
method), 571

AssociativeAlgebras (class in
sage.categories.associative_algebras), 189

axiom() (in module sage.categories.category_with_axiom),
98

axiom_of_nested_class() (in module
sage.categories.category_with_axiom), 98

AxiomContainer (class in
sage.categories.category_cy_helper), 875

axioms() (sage.categories.category.Category method),
51

axioms() (sage.categories.category_with_axiom.CategoryWithAxiom
method), 95

B
b_sharp() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods

method), 552
baker_campbell_hausdorff()

(sage.categories.lie_algebras.LieAlgebras.ParentMethods
method), 535

Bars (class in sage.categories.category_with_axiom), 90
base() (sage.categories.category_types.Category_over_base

method), 870
base() (sage.categories.homsets.HomsetsCategory

method), 800
base() (sage.categories.signed_tensor.SignedTensorProductsCategory

method), 788
base() (sage.categories.tensor.TensorProductsCategory

method), 787

892 Index



Category Framework, Release 9.7

base_category() (sage.categories.category_with_axiom.CategoryWithAxiom
method), 96

base_category() (sage.categories.covariant_functorial_construction.FunctorialConstructionCategory
method), 783

base_category_class_and_axiom() (in module
sage.categories.category_with_axiom), 99

base_change_matrix()
(sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods
method), 352

base_field() (sage.categories.modular_abelian_varieties.ModularAbelianVarieties
method), 592

base_field() (sage.categories.vector_spaces.VectorSpaces
method), 766

base_point() (sage.categories.simplicial_sets.SimplicialSets.Pointed.ParentMethods
method), 735

base_point_map() (sage.categories.simplicial_sets.SimplicialSets.Pointed.ParentMethods
method), 736

base_ring() (sage.categories.algebra_functor.AlgebraFunctor
method), 794

base_ring() (sage.categories.cartesian_product.CartesianProductsCategory
method), 786

base_ring() (sage.categories.category_types.Category_over_base_ring
method), 871

base_ring() (sage.categories.modules.Modules.Homsets
method), 597

base_ring() (sage.categories.modules.Modules.Homsets.ParentMethods
method), 596

base_ring() (sage.categories.modules.Modules.SubcategoryMethods
method), 601

base_scheme() (sage.categories.schemes.Schemes_over_base
method), 687

base_set() (sage.categories.examples.with_realizations.SubsetAlgebra
method), 867

base_space() (sage.categories.vector_bundles.VectorBundles
method), 762

basis() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra
method), 821

basis() (sage.categories.examples.graded_modules_with_basis.GradedPartitionModule
method), 835

basis() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ParentMethods
method), 337

basis() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods
method), 616

basis_matrix() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra
method), 822

basis_matrix() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.Subobjects.ParentMethods
method), 412

bch() (sage.categories.lie_algebras.LieAlgebras.ParentMethods
method), 536

bhz_poset() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods
method), 365

Bialgebras (class in sage.categories.bialgebras), 189
Bialgebras.ElementMethods (class in

sage.categories.bialgebras), 189

Bialgebras.Super (class in
sage.categories.bialgebras), 190

BialgebrasWithBasis (class in
sage.categories.bialgebras_with_basis), 191

BialgebrasWithBasis.ElementMethods (class in
sage.categories.bialgebras_with_basis), 191

BialgebrasWithBasis.ParentMethods (class in
sage.categories.bialgebras_with_basis), 193

Bimodules (class in sage.categories.bimodules), 195
Bimodules.ElementMethods (class in

sage.categories.bimodules), 195
Bimodules.ParentMethods (class in

sage.categories.bimodules), 195
binary_factorizations()

(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 245

birational_free_labelling()
(sage.categories.finite_posets.FinitePosets.ParentMethods
method), 445

birational_rowmotion()
(sage.categories.finite_posets.FinitePosets.ParentMethods
method), 449

birational_toggle()
(sage.categories.finite_posets.FinitePosets.ParentMethods
method), 450

birational_toggles()
(sage.categories.finite_posets.FinitePosets.ParentMethods
method), 453

BlackBoxConstructionFunctor (class in
sage.categories.pushout), 131

Blahs (class in sage.categories.category_with_axiom),
90

Blahs.Commutative (class in
sage.categories.category_with_axiom), 91

Blahs.Connected (class in
sage.categories.category_with_axiom), 91

Blahs.FiniteDimensional (class in
sage.categories.category_with_axiom), 91

Blahs.Flying (class in
sage.categories.category_with_axiom), 91

Blahs.SubcategoryMethods (class in
sage.categories.category_with_axiom), 91

Blahs.Unital (class in
sage.categories.category_with_axiom), 91

Blahs.Unital.Blue (class in
sage.categories.category_with_axiom), 91

Blue() (sage.categories.category_with_axiom.Blahs.SubcategoryMethods
method), 91

Blue_extra_super_categories()
(sage.categories.category_with_axiom.Blahs
method), 90

bracket() (sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras.ElementMethods
method), 527

bracket() (sage.categories.lie_algebras.LieAlgebras.ElementMethods

Index 893



Category Framework, Release 9.7

method), 532
bracket() (sage.categories.lie_algebras.LieAlgebras.ParentMethods

method), 537
bracket() (sage.categories.rings.Rings.ParentMethods

method), 679
bracket_on_basis() (sage.categories.examples.lie_algebras_with_basis.AbelianLieAlgebra

method), 842
bracket_on_basis() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis.ParentMethods

method), 543
braid_group_as_finitely_presented_group()

(sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 263

braid_orbit() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 263

braid_relations() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 264

bruhat_cone() (sage.categories.weyl_groups.WeylGroups.ParentMethods
method), 774

bruhat_graph() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 265

bruhat_interval() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 265

bruhat_interval_poset()
(sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 266

bruhat_le() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 246

bruhat_lower_covers()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 246

bruhat_lower_covers_coroots()
(sage.categories.weyl_groups.WeylGroups.ElementMethods
method), 767

bruhat_lower_covers_reflections()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 247

bruhat_poset() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods
method), 366

bruhat_upper_covers()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 247

bruhat_upper_covers()
(sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ElementMethods
method), 363

bruhat_upper_covers_coroots()
(sage.categories.weyl_groups.WeylGroups.ElementMethods
method), 767

bruhat_upper_covers_reflections()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 248

C
CallMorphism (class in sage.categories.morphism), 124

cambrian_lattice() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods
method), 367

canonical_matrix() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 248

canonical_representation()
(sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 266

canonicalize_axioms() (in module
sage.categories.category_cy_helper), 875

cardinality() (sage.categories.classical_crystals.ClassicalCrystals.ParentMethods
method), 197

cardinality() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods
method), 353

cardinality() (sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.CartesianProducts.ParentMethods
method), 425

cardinality() (sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.IsomorphicObjects.ParentMethods
method), 428

cardinality() (sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.ParentMethods
method), 428

cardinality() (sage.categories.finite_groups.FiniteGroups.ParentMethods
method), 432

cardinality() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods
method), 553

cardinality() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.TensorProducts.ParentMethods
method), 559

cardinality() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods
method), 617

cardinality() (sage.categories.sets_cat.Sets.CartesianProducts.ParentMethods
method), 705

cardinality() (sage.categories.sets_cat.Sets.Infinite.ParentMethods
method), 708

cartan_invariants_matrix()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods
method), 381

cartan_type() (sage.categories.crystals.CrystalMorphism
method), 278

cartan_type() (sage.categories.crystals.Crystals.ElementMethods
method), 282

cartan_type() (sage.categories.crystals.Crystals.ParentMethods
method), 288

cartan_type() (sage.categories.examples.finite_weyl_groups.SymmetricGroup
method), 831

cartan_type() (sage.categories.kac_moody_algebras.KacMoodyAlgebras.ParentMethods
method), 526

cartan_type() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.ParentMethods
method), 659

cartan_type() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.TensorProducts.ParentMethods
method), 660

cartesian_factors()
(sage.categories.sets_cat.Sets.CartesianProducts.ElementMethods
method), 704

cartesian_factors()
(sage.categories.sets_cat.Sets.CartesianProducts.ParentMethods
method), 705

894 Index



Category Framework, Release 9.7

cartesian_product()
(sage.categories.sets_cat.Sets.ElementMethods
method), 707

cartesian_product()
(sage.categories.sets_cat.Sets.ParentMethods
method), 711

cartesian_projection()
(sage.categories.sets_cat.Sets.CartesianProducts.ElementMethods
method), 704

cartesian_projection()
(sage.categories.sets_cat.Sets.CartesianProducts.ParentMethods
method), 705

CartesianProduct (sage.categories.posets.Posets.ParentMethods
attribute), 644

CartesianProduct (sage.categories.sets_cat.Sets.ParentMethods
attribute), 709

CartesianProductFunctor (class in
sage.categories.cartesian_product), 785

CartesianProducts()
(sage.categories.cartesian_product.CartesianProductsCategory
method), 786

CartesianProducts()
(sage.categories.sets_cat.Sets.SubcategoryMethods
method), 713

CartesianProductsCategory (class in
sage.categories.cartesian_product), 786

catalan_number() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated.Irreducible.ParentMethods
method), 357

Category (class in sage.categories.category), 31
category() (sage.categories.category.Category

method), 51
category() (sage.categories.morphism.Morphism

method), 125
Category_contains_method_by_parent_class

(class in sage.categories.category_singleton),
872

category_for() (sage.categories.map.Map method),
112

category_from_categories()
(sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction
method), 782

category_from_category()
(sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction
method), 782

category_from_parents()
(sage.categories.covariant_functorial_construction.CovariantFunctorialConstruction
method), 783

category_graph() (in module
sage.categories.category), 65

category_graph() (sage.categories.category.Category
method), 51

Category_ideal (class in
sage.categories.category_types), 869

Category_in_ambient (class in

sage.categories.category_types), 869
Category_module (class in

sage.categories.category_types), 870
category_of() (sage.categories.covariant_functorial_construction.FunctorialConstructionCategory

class method), 783
Category_over_base (class in

sage.categories.category_types), 870
Category_over_base_ring (class in

sage.categories.category_types), 870
Category_realization_of_parent (class in

sage.categories.realizations), 802
category_sample() (in module

sage.categories.category), 66
Category_singleton (class in

sage.categories.category_singleton), 872
category_sort_key() (in module

sage.categories.category_cy_helper), 876
CategoryWithAxiom (class in

sage.categories.category_with_axiom), 91
CategoryWithAxiom_over_base_ring (class in

sage.categories.category_with_axiom), 97
CategoryWithAxiom_singleton (class in

sage.categories.category_with_axiom), 97
CategoryWithParameters (class in

sage.categories.category), 62
cayley_graph() (sage.categories.semigroups.Semigroups.ParentMethods

method), 690
cayley_graph_disabled()

(sage.categories.finite_groups.FiniteGroups.ParentMethods
method), 432

cayley_table() (sage.categories.groups.Groups.ParentMethods
method), 503

cell_module() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods
method), 377

cell_module_indices()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods
method), 377

cell_module_indices()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.TensorProducts.ParentMethods
method), 378

cell_poset() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods
method), 377

cell_poset() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.TensorProducts.ParentMethods
method), 378

cells() (sage.categories.cw_complexes.CWComplexes.ParentMethods
method), 300

cells() (sage.categories.examples.cw_complexes.Surface
method), 816

cells() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods
method), 377

Cellular() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.SubcategoryMethods
method), 393

cellular_basis() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods
method), 377

Index 895



Category Framework, Release 9.7

cellular_involution()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ElementMethods
method), 376

cellular_involution()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods
method), 377

cellular_involution()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.TensorProducts.ParentMethods
method), 379

center() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods
method), 382

center() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods
method), 398

center_basis() (sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.ParentMethods
method), 383

center_basis() (sage.categories.group_algebras.GroupAlgebras.ParentMethods
method), 497

central_form() (sage.categories.group_algebras.GroupAlgebras.ElementMethods
method), 495

central_orthogonal_idempotents()
(sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis.Commutative.ParentMethods
method), 423

central_orthogonal_idempotents()
(sage.categories.finite_dimensional_semisimple_algebras_with_basis.FiniteDimensionalSemisimpleAlgebrasWithBasis.ParentMethods
method), 424

centralizer() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods
method), 398

centralizer_basis()
(sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods
method), 398

character() (sage.categories.classical_crystals.ClassicalCrystals.ParentMethods
method), 197

character() (sage.categories.supercrystals.SuperCrystals.Finite.ParentMethods
method), 751

character_value() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ElementMethods
method), 347

characteristic() (sage.categories.rings.Rings.ParentMethods
method), 680

chevalley_eilenberg_complex()
(sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods
method), 399

classical_decomposition()
(sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods
method), 553

classical_weight() (sage.categories.loop_crystals.RegularLoopCrystals.ElementMethods
method), 562

ClassicalCrystals (class in
sage.categories.classical_crystals), 196

ClassicalCrystals.ElementMethods (class in
sage.categories.classical_crystals), 196

ClassicalCrystals.ParentMethods (class in
sage.categories.classical_crystals), 197

ClassicalCrystals.TensorProducts (class in
sage.categories.classical_crystals), 199

classically_highest_weight_vectors()
(sage.categories.loop_crystals.KirillovReshetikhinCrystals.ParentMethods
method), 553

classically_highest_weight_vectors()
(sage.categories.loop_crystals.KirillovReshetikhinCrystals.TensorProducts.ParentMethods
method), 559

Coalgebras (class in sage.categories.coalgebras), 200
Coalgebras.Cocommutative (class in

sage.categories.coalgebras), 200
Coalgebras.DualObjects (class in

sage.categories.coalgebras), 200
Coalgebras.ElementMethods (class in

sage.categories.coalgebras), 200
Coalgebras.Filtered (class in

sage.categories.coalgebras), 201
Coalgebras.ParentMethods (class in

sage.categories.coalgebras), 201
Coalgebras.Realizations (class in

sage.categories.coalgebras), 202
Coalgebras.Realizations.ParentMethods (class in

sage.categories.coalgebras), 202
Coalgebras.SubcategoryMethods (class in

sage.categories.coalgebras), 203
Coalgebras.Super (class in

sage.categories.coalgebras), 203
Coalgebras.Super.SubcategoryMethods (class in

sage.categories.coalgebras), 203
Coalgebras.Super.Supercocommutative (class in

sage.categories.coalgebras), 203
Coalgebras.TensorProducts (class in

sage.categories.coalgebras), 204
Coalgebras.TensorProducts.ElementMethods

(class in sage.categories.coalgebras), 204
Coalgebras.TensorProducts.ParentMethods (class

in sage.categories.coalgebras), 204
Coalgebras.WithRealizations (class in

sage.categories.coalgebras), 204
Coalgebras.WithRealizations.ParentMethods

(class in sage.categories.coalgebras), 204
CoalgebrasWithBasis (class in

sage.categories.coalgebras_with_basis),
205

CoalgebrasWithBasis.ElementMethods (class in
sage.categories.coalgebras_with_basis), 205

CoalgebrasWithBasis.Filtered (class in
sage.categories.coalgebras_with_basis),
206

CoalgebrasWithBasis.ParentMethods (class in
sage.categories.coalgebras_with_basis), 206

CoalgebrasWithBasis.Super (class in
sage.categories.coalgebras_with_basis),
207

Cocommutative() (sage.categories.coalgebras.Coalgebras.SubcategoryMethods
method), 203

896 Index



Category Framework, Release 9.7

codegrees() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods
method), 353

codegrees() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods
method), 367

codomain (sage.categories.map.Map attribute), 112
codomain() (sage.categories.action.Action method), 158
codomain() (sage.categories.action.InverseAction

method), 159
codomain() (sage.categories.action.PrecomposedAction

method), 160
codomain() (sage.categories.functor.Functor method),

103
codomain() (sage.categories.homset.Homset method),

121
codomain() (sage.categories.poor_man_map.PoorManMap

method), 878
coefficient() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods

method), 606
coefficients() (sage.categories.modules_with_basis.ModulesWithBasis.ElementMethods

method), 607
cohomology() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods

method), 400
common_base() (sage.categories.pushout.ConstructionFunctor

method), 135
common_base() (sage.categories.pushout.MultivariateConstructionFunctor

method), 143
Commutative (sage.categories.algebras.Algebras at-

tribute), 181
Commutative (sage.categories.division_rings.DivisionRings

attribute), 305
Commutative (sage.categories.domains.Domains at-

tribute), 306
Commutative (sage.categories.rings.Rings attribute),

676
Commutative() (sage.categories.category_with_axiom.Blahs.SubcategoryMethods

method), 91
Commutative() (sage.categories.magmas.Magmas.SubcategoryMethods

method), 571
Commutative_extra_super_categories()

(sage.categories.l_trivial_semigroups.LTrivialSemigroups
method), 563

Commutative_extra_super_categories()
(sage.categories.r_trivial_semigroups.RTrivialSemigroups
method), 686

CommutativeAdditiveGroups (class in
sage.categories.commutative_additive_groups),
207

CommutativeAdditiveGroups.Algebras (class in
sage.categories.commutative_additive_groups),
208

CommutativeAdditiveGroups.CartesianProducts
(class in sage.categories.commutative_additive_groups),
208

CommutativeAdditiveGroups.CartesianProducts.ElementMethods

(class in sage.categories.commutative_additive_groups),
208

CommutativeAdditiveMonoids (class in
sage.categories.commutative_additive_monoids),
209

CommutativeAdditiveSemigroups (class in
sage.categories.commutative_additive_semigroups),
209

CommutativeAlgebraIdeals (class in
sage.categories.commutative_algebra_ideals),
210

CommutativeAlgebras (class in
sage.categories.commutative_algebras), 210

CommutativeRingIdeals (class in
sage.categories.commutative_ring_ideals),
211

CommutativeRings (class in
sage.categories.commutative_rings), 211

CommutativeRings.CartesianProducts (class in
sage.categories.commutative_rings), 211

CommutativeRings.ElementMethods (class in
sage.categories.commutative_rings), 211

CommutativeRings.Finite (class in
sage.categories.commutative_rings), 211

CommutativeRings.Finite.ParentMethods (class in
sage.categories.commutative_rings), 212

CommutativeRings.ParentMethods (class in
sage.categories.commutative_rings), 213

commutes() (sage.categories.pushout.CompletionFunctor
method), 132

commutes() (sage.categories.pushout.ConstructionFunctor
method), 135

Compact() (sage.categories.topological_spaces.TopologicalSpaces.SubcategoryMethods
method), 755

Compact_extra_super_categories()
(sage.categories.cw_complexes.CWComplexes
method), 299

Complete() (sage.categories.metric_spaces.MetricSpaces.SubcategoryMethods
method), 591

CompleteDiscreteValuationFields (class in
sage.categories.complete_discrete_valuation),
215

CompleteDiscreteValuationFields.ElementMethods
(class in sage.categories.complete_discrete_valuation),
216

CompleteDiscreteValuationRings (class in
sage.categories.complete_discrete_valuation),
217

CompleteDiscreteValuationRings.ElementMethods
(class in sage.categories.complete_discrete_valuation),
217

CompletionFunctor (class in sage.categories.pushout),
132

Complex() (sage.categories.manifolds.Manifolds.SubcategoryMethods

Index 897



Category Framework, Release 9.7

method), 586
ComplexManifolds (class in sage.categories.manifolds),

583
ComplexReflectionGroups (class in

sage.categories.complex_reflection_groups),
219

ComplexReflectionGroups.ParentMethods (class
in sage.categories.complex_reflection_groups),
220

ComplexReflectionOrGeneralizedCoxeterGroups
(class in sage.categories.complex_reflection_or_generalized_coxeter_groups),
221

ComplexReflectionOrGeneralizedCoxeterGroups.ElementMethods
(class in sage.categories.complex_reflection_or_generalized_coxeter_groups),
222

ComplexReflectionOrGeneralizedCoxeterGroups.Irreducible
(class in sage.categories.complex_reflection_or_generalized_coxeter_groups),
227

ComplexReflectionOrGeneralizedCoxeterGroups.Irreducible.ParentMethods
(class in sage.categories.complex_reflection_or_generalized_coxeter_groups),
227

ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods
(class in sage.categories.complex_reflection_or_generalized_coxeter_groups),
228

ComplexReflectionOrGeneralizedCoxeterGroups.SubcategoryMethods
(class in sage.categories.complex_reflection_or_generalized_coxeter_groups),
238

CompositeConstructionFunctor (class in
sage.categories.pushout), 133

conjugacy_class() (sage.categories.groups.Groups.ElementMethods
method), 502

conjugacy_class() (sage.categories.groups.Groups.ParentMethods
method), 506

conjugacy_classes()
(sage.categories.finite_groups.FiniteGroups.ParentMethods
method), 433

conjugacy_classes_representatives()
(sage.categories.finite_groups.FiniteGroups.ParentMethods
method), 433

Connected() (sage.categories.category_with_axiom.Blahs.SubcategoryMethods
method), 91

Connected() (sage.categories.cw_complexes.CWComplexes.SubcategoryMethods
method), 301

Connected() (sage.categories.filtered_modules.FilteredModules.SubcategoryMethods
method), 329

Connected() (sage.categories.manifolds.Manifolds.SubcategoryMethods
method), 586

Connected() (sage.categories.simplicial_complexes.SimplicialComplexes.SubcategoryMethods
method), 732

Connected() (sage.categories.topological_spaces.TopologicalSpaces.SubcategoryMethods
method), 756

connected_components()
(sage.categories.crystals.Crystals.ParentMethods
method), 288

connected_components()
(sage.categories.supercrystals.SuperCrystals.Finite.ParentMethods
method), 751

connected_components_generators()
(sage.categories.crystals.Crystals.ParentMethods
method), 288

connected_components_generators()
(sage.categories.highest_weight_crystals.HighestWeightCrystals.ParentMethods
method), 511

connected_components_generators()
(sage.categories.supercrystals.SuperCrystals.Finite.ParentMethods
method), 751

connectivity() (sage.categories.simplicial_sets.SimplicialSets.Pointed.ParentMethods
method), 736

construction() (sage.categories.sets_cat.Sets.Algebras.ParentMethods
method), 703

construction() (sage.categories.sets_cat.Sets.CartesianProducts.ParentMethods
method), 706

construction() (sage.categories.sets_cat.Sets.ParentMethods
method), 711

construction_tower() (in module
sage.categories.pushout), 147

ConstructionFunctor (class in
sage.categories.pushout), 134

convolution_product()
(sage.categories.bialgebras_with_basis.BialgebrasWithBasis.ElementMethods
method), 192

convolution_product()
(sage.categories.bialgebras_with_basis.BialgebrasWithBasis.ParentMethods
method), 193

coproduct() (sage.categories.coalgebras.Coalgebras.ElementMethods
method), 200

coproduct() (sage.categories.coalgebras.Coalgebras.ParentMethods
method), 201

coproduct() (sage.categories.coalgebras.Coalgebras.WithRealizations.ParentMethods
method), 204

coproduct() (sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.ParentMethods
method), 206

coproduct_by_coercion()
(sage.categories.coalgebras.Coalgebras.Realizations.ParentMethods
method), 202

coproduct_iterated()
(sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.ElementMethods
method), 205

coproduct_on_basis()
(sage.categories.algebra_functor.AlgebrasCategory.ParentMethods
method), 795

coproduct_on_basis()
(sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.ParentMethods
method), 206

coproduct_on_basis()
(sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator
method), 833

coproduct_on_basis()

898 Index



Category Framework, Release 9.7

(sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra
method), 838

coproduct_on_basis()
(sage.categories.group_algebras.GroupAlgebras.ParentMethods
method), 497

coset_representative()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 248

counit() (sage.categories.coalgebras.Coalgebras.ElementMethods
method), 200

counit() (sage.categories.coalgebras.Coalgebras.ParentMethods
method), 201

counit() (sage.categories.coalgebras.Coalgebras.WithRealizations.ParentMethods
method), 204

counit() (sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.ParentMethods
method), 206

counit() (sage.categories.group_algebras.GroupAlgebras.ParentMethods
method), 497

counit_by_coercion()
(sage.categories.coalgebras.Coalgebras.Realizations.ParentMethods
method), 202

counit_on_basis() (sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.ParentMethods
method), 207

counit_on_basis() (sage.categories.examples.hopf_algebras_with_basis.MyGroupAlgebra
method), 838

counit_on_basis() (sage.categories.graded_hopf_algebras_with_basis.GradedHopfAlgebrasWithBasis.Connected.ParentMethods
method), 484

counit_on_basis() (sage.categories.group_algebras.GroupAlgebras.ParentMethods
method), 498

CovariantConstructionCategory (class in
sage.categories.covariant_functorial_construction),
779

CovariantFunctorialConstruction (class in
sage.categories.covariant_functorial_construction),
781

cover_reflections()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 249

covered_reflections_subgroup()
(sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ElementMethods
method), 364

coxeter_diagram() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 266

coxeter_element() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 266

coxeter_element() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated.ParentMethods
method), 360

coxeter_elements() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated.ParentMethods
method), 361

coxeter_knuth_graph()
(sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ElementMethods
method), 364

coxeter_knuth_neighbor()
(sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ElementMethods

method), 364
coxeter_matrix() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods

method), 267
coxeter_matrix() (sage.categories.examples.finite_coxeter_groups.DihedralGroup

method), 818
coxeter_matrix() (sage.categories.weyl_groups.WeylGroups.ParentMethods

method), 775
coxeter_number() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible.ParentMethods

method), 350
coxeter_number() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated.Irreducible.ParentMethods

method), 358
coxeter_sorting_word()

(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 249

coxeter_type() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 267

CoxeterGroupAlgebras (class in
sage.categories.coxeter_group_algebras),
239

CoxeterGroupAlgebras.ParentMethods (class in
sage.categories.coxeter_group_algebras), 239

CoxeterGroups (class in
sage.categories.coxeter_groups), 242

CoxeterGroups.ElementMethods (class in
sage.categories.coxeter_groups), 243

CoxeterGroups.ParentMethods (class in
sage.categories.coxeter_groups), 263

crystal_morphism() (sage.categories.crystals.Crystals.ParentMethods
method), 288

CrystalHomset (class in sage.categories.crystals), 275
CrystalMorphism (class in sage.categories.crystals),

278
CrystalMorphismByGenerators (class in

sage.categories.crystals), 279
Crystals (class in sage.categories.crystals), 280
Crystals.ElementMethods (class in

sage.categories.crystals), 281
Crystals.MorphismMethods (class in

sage.categories.crystals), 287
Crystals.ParentMethods (class in

sage.categories.crystals), 287
Crystals.SubcategoryMethods (class in

sage.categories.crystals), 298
Crystals.TensorProducts (class in

sage.categories.crystals), 298
CWComplexes (class in sage.categories.cw_complexes),

299
CWComplexes.Connected (class in

sage.categories.cw_complexes), 299
CWComplexes.ElementMethods (class in

sage.categories.cw_complexes), 299
CWComplexes.Finite (class in

sage.categories.cw_complexes), 299
CWComplexes.Finite.ParentMethods (class in

Index 899



Category Framework, Release 9.7

sage.categories.cw_complexes), 300
CWComplexes.FiniteDimensional (class in

sage.categories.cw_complexes), 300
CWComplexes.ParentMethods (class in

sage.categories.cw_complexes), 300
CWComplexes.SubcategoryMethods (class in

sage.categories.cw_complexes), 300
Cycle (class in sage.categories.examples.graphs), 836
Cycle.Element (class in

sage.categories.examples.graphs), 836
cycle_index() (sage.categories.finite_permutation_groups.FinitePermutationGroups.ParentMethods

method), 441
cyclotomic_cosets()

(sage.categories.commutative_rings.CommutativeRings.Finite.ParentMethods
method), 212

D
default_super_categories()

(sage.categories.covariant_functorial_construction.CovariantConstructionCategory
class method), 780

default_super_categories()
(sage.categories.covariant_functorial_construction.RegressiveCovariantConstructionCategory
class method), 784

default_super_categories()
(sage.categories.graded_modules.GradedModulesCategory
class method), 488

default_super_categories()
(sage.categories.homsets.HomsetsCategory
class method), 800

default_super_categories()
(sage.categories.isomorphic_objects.IsomorphicObjectsCategory
class method), 797

default_super_categories()
(sage.categories.metric_spaces.MetricSpacesCategory
class method), 591

default_super_categories()
(sage.categories.quotients.QuotientsCategory
class method), 796

default_super_categories()
(sage.categories.subobjects.SubobjectsCategory
class method), 797

default_super_categories()
(sage.categories.super_modules.SuperModulesCategory
class method), 746

degree() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ElementMethods
method), 332

degree() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.Subobjects.ElementMethods
method), 345

degree() (sage.categories.graded_modules_with_basis.GradedModulesWithBasis.Quotients.ElementMethods
method), 492

degree_negation() (sage.categories.graded_modules_with_basis.GradedModulesWithBasis.ElementMethods
method), 489

degree_negation() (sage.categories.graded_modules_with_basis.GradedModulesWithBasis.ParentMethods
method), 489

degree_on_basis() (sage.categories.examples.graded_connected_hopf_algebras_with_basis.GradedConnectedCombinatorialHopfAlgebraWithPrimitiveGenerator
method), 833

degree_on_basis() (sage.categories.examples.graded_modules_with_basis.GradedPartitionModule
method), 836

degree_on_basis() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ElementMethods
method), 332

degree_on_basis() (sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.Subobjects.ParentMethods
method), 345

degree_on_basis() (sage.categories.finite_dimensional_graded_lie_algebras_with_basis.FiniteDimensionalGradedLieAlgebrasWithBasis.Stratified.ParentMethods
method), 395

degree_on_basis() (sage.categories.graded_modules_with_basis.GradedModulesWithBasis.Quotients.ParentMethods
method), 492

degree_on_basis() (sage.categories.lambda_bracket_algebras_with_basis.LambdaBracketAlgebrasWithBasis.FinitelyGeneratedAsLambdaBracketAlgebra.Graded.ParentMethods
method), 530

degrees() (sage.categories.examples.finite_coxeter_groups.DihedralGroup
method), 818

degrees() (sage.categories.examples.finite_weyl_groups.SymmetricGroup
method), 831

degrees() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.ParentMethods
method), 354

degrees() (sage.categories.finite_coxeter_groups.FiniteCoxeterGroups.ParentMethods
method), 368

demazure_character()
(sage.categories.classical_crystals.ClassicalCrystals.ParentMethods
method), 198

demazure_lusztig_eigenvectors()
(sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras.ParentMethods
method), 239

demazure_lusztig_operator_on_basis()
(sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras.ParentMethods
method), 240

demazure_lusztig_operators()
(sage.categories.coxeter_group_algebras.CoxeterGroupAlgebras.ParentMethods
method), 240

demazure_operator()
(sage.categories.regular_crystals.RegularCrystals.ParentMethods
method), 670

demazure_operator_simple()
(sage.categories.regular_crystals.RegularCrystals.ElementMethods
method), 665

demazure_product() (sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 268

demazure_subcrystal()
(sage.categories.regular_crystals.RegularCrystals.ParentMethods
method), 670

denominator() (sage.categories.complete_discrete_valuation.CompleteDiscreteValuationFields.ElementMethods
method), 216

denominator() (sage.categories.complete_discrete_valuation.CompleteDiscreteValuationRings.ElementMethods
method), 217

denominator() (sage.categories.quotient_fields.QuotientFields.ElementMethods
method), 653

dense_coefficient_list()
(sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.ElementMethods
method), 413

900 Index



Category Framework, Release 9.7

deodhar_factor_element()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 249

deodhar_lift_down()
(sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 250

deodhar_lift_up() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 250

derivations_basis()
(sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods
method), 401

derivations_basis()
(sage.categories.magmatic_algebras.MagmaticAlgebras.WithBasis.FiniteDimensional.ParentMethods
method), 581

derivative() (sage.categories.quotient_fields.QuotientFields.ElementMethods
method), 653

derived_series() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods
method), 402

derived_subalgebra()
(sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods
method), 402

descents() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 251

Differentiable() (sage.categories.manifolds.Manifolds.SubcategoryMethods
method), 586

Differentiable() (sage.categories.vector_bundles.VectorBundles.SubcategoryMethods
method), 762

digraph() (sage.categories.crystals.Crystals.ParentMethods
method), 292

digraph() (sage.categories.highest_weight_crystals.HighestWeightCrystals.ParentMethods
method), 512

digraph() (sage.categories.loop_crystals.LoopCrystals.ParentMethods
method), 561

digraph() (sage.categories.supercrystals.SuperCrystals.Finite.ParentMethods
method), 751

DihedralGroup (class in
sage.categories.examples.finite_coxeter_groups),
817

DihedralGroup.Element (class in
sage.categories.examples.finite_coxeter_groups),
817

dimension() (sage.categories.cw_complexes.CWComplexes.ElementMethods
method), 299

dimension() (sage.categories.cw_complexes.CWComplexes.Finite.ParentMethods
method), 300

dimension() (sage.categories.cw_complexes.CWComplexes.ParentMethods
method), 300

dimension() (sage.categories.examples.cw_complexes.Surface.Element
method), 815

dimension() (sage.categories.examples.graphs.Cycle.Element
method), 836

dimension() (sage.categories.examples.manifolds.Plane
method), 845

dimension() (sage.categories.graphs.Graphs.ParentMethods

method), 493
dimension() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis.ParentMethods

method), 543
dimension() (sage.categories.manifolds.Manifolds.ParentMethods

method), 585
dimension() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods

method), 617
dimension() (sage.categories.simplicial_complexes.SimplicialComplexes.Finite.ParentMethods

method), 731
dimension() (sage.categories.vector_spaces.VectorSpaces.ParentMethods

method), 764
direct_sum() (sage.categories.crystals.Crystals.ParentMethods

method), 293
directed_subset() (sage.categories.posets.Posets.ParentMethods

method), 644
directed_subsets() (sage.categories.finite_posets.FinitePosets.ParentMethods

method), 454
DiscreteValuationFields (class in

sage.categories.discrete_valuation), 301
DiscreteValuationFields.ElementMethods (class

in sage.categories.discrete_valuation), 301
DiscreteValuationFields.ParentMethods (class in

sage.categories.discrete_valuation), 301
DiscreteValuationRings (class in

sage.categories.discrete_valuation), 302
DiscreteValuationRings.ElementMethods (class in

sage.categories.discrete_valuation), 302
DiscreteValuationRings.ParentMethods (class in

sage.categories.discrete_valuation), 303
dist() (sage.categories.metric_spaces.MetricSpaces.CartesianProducts.ParentMethods

method), 588
dist() (sage.categories.metric_spaces.MetricSpaces.ElementMethods

method), 589
dist() (sage.categories.metric_spaces.MetricSpaces.ParentMethods

method), 590
dist() (sage.categories.metric_spaces.MetricSpaces.WithRealizations.ParentMethods

method), 591
distinguished_reflection()

(sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods
method), 228

distinguished_reflections()
(sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods
method), 228

Distributive (sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas
attribute), 579

Distributive() (sage.categories.magmas.Magmas.SubcategoryMethods
method), 572

Distributive() (sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas.SubcategoryMethods
method), 579

DistributiveMagmasAndAdditiveMagmas (class in
sage.categories.distributive_magmas_and_additive_magmas),
304

DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative
(class in sage.categories.distributive_magmas_and_additive_magmas),

Index 901



Category Framework, Release 9.7

304
DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative

(class in sage.categories.distributive_magmas_and_additive_magmas),
304

DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative.AdditiveUnital
(class in sage.categories.distributive_magmas_and_additive_magmas),
304

DistributiveMagmasAndAdditiveMagmas.AdditiveAssociative.AdditiveCommutative.AdditiveUnital.Associative
(class in sage.categories.distributive_magmas_and_additive_magmas),
304

DistributiveMagmasAndAdditiveMagmas.CartesianProducts
(class in sage.categories.distributive_magmas_and_additive_magmas),
304

DistributiveMagmasAndAdditiveMagmas.ParentMethods
(class in sage.categories.distributive_magmas_and_additive_magmas),
304

Division (sage.categories.rings.Rings attribute), 676
Division() (sage.categories.rings.Rings.SubcategoryMethods

method), 684
DivisionRings (class in

sage.categories.division_rings), 305
DivisionRings.ElementMethods (class in

sage.categories.division_rings), 305
DivisionRings.ParentMethods (class in

sage.categories.division_rings), 305
domain (sage.categories.map.Map attribute), 112
domain() (sage.categories.action.Action method), 158
domain() (sage.categories.action.PrecomposedAction

method), 160
domain() (sage.categories.functor.Functor method), 103
domain() (sage.categories.homset.Homset method), 121
domain() (sage.categories.poor_man_map.PoorManMap

method), 878
Domains (class in sage.categories.domains), 306
domains() (sage.categories.map.FormalCompositeMap

method), 108
domains() (sage.categories.map.Map method), 112
Domains.ElementMethods (class in

sage.categories.domains), 306
Domains.ParentMethods (class in

sage.categories.domains), 306
dot_tex() (sage.categories.crystals.Crystals.ParentMethods

method), 293
dual() (sage.categories.hopf_algebras.HopfAlgebras

method), 518
dual() (sage.categories.hopf_algebras.HopfAlgebras.Super

method), 518
dual() (sage.categories.modules.Modules.SubcategoryMethods

method), 602
dual_equivalence_class()

(sage.categories.regular_crystals.RegularCrystals.ElementMethods
method), 666

dual_equivalence_graph()
(sage.categories.regular_crystals.RegularCrystals.ParentMethods

method), 671
DualFunctor (class in sage.categories.dual), 789
DualObjects() (sage.categories.modules.Modules.SubcategoryMethods

method), 598
DualObjectsCategory (class in sage.categories.dual),

789

E
e() (sage.categories.crystals.Crystals.ElementMethods

method), 282
e() (sage.categories.examples.crystals.HighestWeightCrystalOfTypeA.Element

method), 814
e() (sage.categories.examples.crystals.NaiveCrystal.Element

method), 815
e() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.ElementMethods

method), 661
e() (sage.categories.triangular_kac_moody_algebras.TriangularKacMoodyAlgebras.ParentMethods

method), 757
e_on_basis() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.TensorProducts.ParentMethods

method), 663
e_string() (sage.categories.crystals.Crystals.ElementMethods

method), 282
e_string_to_ground_state()

(sage.categories.loop_crystals.KirillovReshetikhinCrystals.TensorProducts.ElementMethods
method), 557

echelon_form() (sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.ParentMethods
method), 418

echelon_form() (sage.categories.modules_with_basis.ModulesWithBasis.ParentMethods
method), 617

edges() (sage.categories.examples.graphs.Cycle
method), 837

edges() (sage.categories.graphs.Graphs.ParentMethods
method), 494

Element (sage.categories.crystals.CrystalHomset at-
tribute), 277

Element (sage.categories.examples.infinite_enumerated_sets.NonNegativeIntegers
attribute), 840

Element (sage.categories.examples.manifolds.Plane at-
tribute), 845

Element (sage.categories.examples.semigroups_cython.LeftZeroSemigroup
attribute), 855

Element (sage.categories.highest_weight_crystals.HighestWeightCrystalHomset
attribute), 509

element_class (sage.categories.examples.sets_cat.PrimeNumbers
attribute), 857

element_class (sage.categories.examples.sets_cat.PrimeNumbers_Facade
attribute), 859

element_class() (sage.categories.category.Category
method), 52

element_class_set_morphism()
(sage.categories.homset.Homset method),
121

Elements (class in sage.categories.category_types), 871
elements_below_coxeter_element()

902 Index



Category Framework, Release 9.7

(sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible.ParentMethods
method), 350

elements_of_length()
(sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 268

ElementWrapper (sage.categories.examples.sets_cat.PrimeNumbers_Wrapper
attribute), 862

EmptySetError, 701
End() (in module sage.categories.homset), 117
end() (in module sage.categories.homset), 123
Endset() (sage.categories.homsets.Homsets.SubcategoryMethods

method), 800
Endsets() (sage.categories.objects.Objects.SubcategoryMethods

method), 639
energy_function() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.ElementMethods

method), 550
energy_function() (sage.categories.loop_crystals.KirillovReshetikhinCrystals.TensorProducts.ElementMethods

method), 557
Enumerated (sage.categories.sets_cat.Sets attribute),

707
Enumerated() (sage.categories.sets_cat.Sets.SubcategoryMethods

method), 714
EnumeratedSets (class in

sage.categories.enumerated_sets), 306
EnumeratedSets.CartesianProducts (class in

sage.categories.enumerated_sets), 307
EnumeratedSets.CartesianProducts.ParentMethods

(class in sage.categories.enumerated_sets), 307
EnumeratedSets.ElementMethods (class in

sage.categories.enumerated_sets), 307
EnumeratedSets.ParentMethods (class in

sage.categories.enumerated_sets), 308
Epsilon() (sage.categories.crystals.Crystals.ElementMethods

method), 281
epsilon() (sage.categories.crystals.Crystals.ElementMethods

method), 283
epsilon() (sage.categories.regular_crystals.RegularCrystals.ElementMethods

method), 667
epsilon() (sage.categories.regular_supercrystals.RegularSuperCrystals.ElementMethods

method), 673
euclidean_degree() (sage.categories.discrete_valuation.DiscreteValuationRings.ElementMethods

method), 302
euclidean_degree() (sage.categories.euclidean_domains.EuclideanDomains.ElementMethods

method), 313
euclidean_degree() (sage.categories.fields.Fields.ElementMethods

method), 316
EuclideanDomains (class in

sage.categories.euclidean_domains), 313
EuclideanDomains.ElementMethods (class in

sage.categories.euclidean_domains), 313
EuclideanDomains.ParentMethods (class in

sage.categories.euclidean_domains), 314
even_component() (sage.categories.super_modules_with_basis.SuperModulesWithBasis.ElementMethods

method), 747

Example (class in sage.categories.examples.finite_enumerated_sets),
824

Example (in module sage.categories.examples.algebras_with_basis),
809

Example (in module sage.categories.examples.commutative_additive_monoids),
810

Example (in module sage.categories.examples.commutative_additive_semigroups),
811

Example (in module sage.categories.examples.cw_complexes),
815

Example (in module sage.categories.examples.finite_coxeter_groups),
819

Example (in module sage.categories.examples.finite_dimensional_algebras_with_basis),
819

Example (in module sage.categories.examples.finite_dimensional_lie_algebras_with_basis),
824

Example (in module sage.categories.examples.finite_monoids),
826

Example (in module sage.categories.examples.finite_semigroups),
828

Example (in module sage.categories.examples.finite_weyl_groups),
830

Example (in module sage.categories.examples.graded_connected_hopf_algebras_with_basis),
832

Example (in module sage.categories.examples.graded_modules_with_basis),
834

Example (in module sage.categories.examples.graphs),
837

Example (in module sage.categories.examples.infinite_enumerated_sets),
839

Example (in module sage.categories.examples.lie_algebras),
840

Example (in module sage.categories.examples.lie_algebras_with_basis),
842

Example (in module sage.categories.examples.magmas),
843

Example (in module sage.categories.examples.manifolds),
844

Example (in module sage.categories.examples.monoids),
845

Example (in module sage.categories.examples.sets_with_grading),
862

example() (sage.categories.algebras_with_basis.AlgebrasWithBasis
method), 188

example() (sage.categories.category.Category method),
52

example() (sage.categories.classical_crystals.ClassicalCrystals
method), 199

example() (sage.categories.complex_reflection_groups.ComplexReflectionGroups
method), 221

example() (sage.categories.crystals.Crystals method),
298

example() (sage.categories.facade_sets.FacadeSets
method), 778

Index 903



Category Framework, Release 9.7

example() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups
method), 362

example() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.Irreducible
method), 352

example() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated
method), 362

example() (sage.categories.finite_complex_reflection_groups.FiniteComplexReflectionGroups.WellGenerated.Irreducible
method), 360

example() (sage.categories.finite_crystals.FiniteCrystals
method), 375

example() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis
method), 413

example() (sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.IsomorphicObjects
method), 428

example() (sage.categories.finite_groups.FiniteGroups
method), 434

example() (sage.categories.finite_permutation_groups.FinitePermutationGroups
method), 444

example() (sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups
method), 474

example() (sage.categories.graded_hopf_algebras_with_basis.GradedHopfAlgebrasWithBasis
method), 485

example() (sage.categories.graded_hopf_algebras_with_basis.GradedHopfAlgebrasWithBasis.Connected
method), 484

example() (sage.categories.group_algebras.GroupAlgebras
method), 499

example() (sage.categories.groups.Groups method),
508

example() (sage.categories.highest_weight_crystals.HighestWeightCrystals
method), 516

example() (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis
method), 522

example() (sage.categories.kac_moody_algebras.KacMoodyAlgebras
method), 526

example() (sage.categories.lie_algebras.LieAlgebras
method), 541

example() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis
method), 544

example() (sage.categories.lie_conformal_algebras.LieConformalAlgebras
method), 547

example() (sage.categories.loop_crystals.LoopCrystals
method), 562

example() (sage.categories.magmas.Magmas.CartesianProducts
method), 565

example() (sage.categories.posets.Posets method), 651
example() (sage.categories.quantum_group_representations.QuantumGroupRepresentations

method), 664
example() (sage.categories.regular_crystals.RegularCrystals

method), 673
example() (sage.categories.semigroups.Semigroups

method), 698
example() (sage.categories.semigroups.Semigroups.Quotients

method), 695
example() (sage.categories.semigroups.Semigroups.Subquotients

method), 698
example() (sage.categories.sets_cat.Sets method), 726
example() (sage.categories.sets_cat.Sets.CartesianProducts

method), 707
example() (sage.categories.sets_cat.Sets.WithRealizations

method), 726
example() (sage.categories.super_lie_conformal_algebras.SuperLieConformalAlgebras

method), 744
example() (sage.categories.vector_spaces.VectorSpaces.WithBasis.Filtered

method), 765
example() (sage.categories.vector_spaces.VectorSpaces.WithBasis.Graded

method), 765
exp() (sage.categories.lie_algebras.LieAlgebras.ElementMethods

method), 533
expand() (sage.categories.pushout.AlgebraicExtensionFunctor

method), 129
expand() (sage.categories.pushout.CompositeConstructionFunctor

method), 133
expand() (sage.categories.pushout.ConstructionFunctor

method), 136
expand() (sage.categories.pushout.InfinitePolynomialFunctor

method), 139
expand() (sage.categories.pushout.MultiPolynomialFunctor

method), 142
expand_tower() (in module sage.categories.pushout),

148
extend_codomain() (sage.categories.map.Map

method), 112
extend_domain() (sage.categories.map.Map method),

113
extend_to_fraction_field()

(sage.categories.rings.Rings.MorphismMethods
method), 677

extra_super_categories()
(sage.categories.additive_groups.AdditiveGroups.Finite.Algebras
method), 161

extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.AdditiveCommutative.Algebras
method), 162

extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.AdditiveCommutative.CartesianProducts
method), 163

extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital.AdditiveInverse.CartesianProducts
method), 163

extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital.Algebras
method), 164

extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital.CartesianProducts
method), 164

extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital.Homsets
method), 165

904 Index



Category Framework, Release 9.7

extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.Algebras
method), 167

extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.CartesianProducts
method), 168

extra_super_categories()
(sage.categories.additive_magmas.AdditiveMagmas.Homsets
method), 168

extra_super_categories()
(sage.categories.additive_monoids.AdditiveMonoids.Homsets
method), 173

extra_super_categories()
(sage.categories.additive_semigroups.AdditiveSemigroups.Algebras
method), 175

extra_super_categories()
(sage.categories.additive_semigroups.AdditiveSemigroups.CartesianProducts
method), 175

extra_super_categories()
(sage.categories.additive_semigroups.AdditiveSemigroups.Homsets
method), 176

extra_super_categories()
(sage.categories.algebras.Algebras.CartesianProducts
method), 181

extra_super_categories()
(sage.categories.algebras.Algebras.DualObjects
method), 181

extra_super_categories()
(sage.categories.algebras.Algebras.TensorProducts
method), 183

extra_super_categories()
(sage.categories.algebras_with_basis.AlgebrasWithBasis.CartesianProducts
method), 186

extra_super_categories()
(sage.categories.algebras_with_basis.AlgebrasWithBasis.TensorProducts
method), 188

extra_super_categories()
(sage.categories.aperiodic_semigroups.AperiodicSemigroups
method), 189

extra_super_categories()
(sage.categories.category_with_axiom.Blahs.Flying
method), 91

extra_super_categories()
(sage.categories.category_with_axiom.CategoryWithAxiom
method), 96

extra_super_categories()
(sage.categories.classical_crystals.ClassicalCrystals.TensorProducts
method), 199

extra_super_categories()
(sage.categories.coalgebras.Coalgebras.DualObjects
method), 200

extra_super_categories()
(sage.categories.coalgebras.Coalgebras.Super
method), 203

extra_super_categories()
(sage.categories.coalgebras.Coalgebras.TensorProducts
method), 204

extra_super_categories()
(sage.categories.coalgebras_with_basis.CoalgebrasWithBasis.Super
method), 207

extra_super_categories()
(sage.categories.commutative_rings.CommutativeRings.CartesianProducts
method), 211

extra_super_categories()
(sage.categories.covariant_functorial_construction.FunctorialConstructionCategory
method), 784

extra_super_categories()
(sage.categories.crystals.Crystals.TensorProducts
method), 298

extra_super_categories()
(sage.categories.cw_complexes.CWComplexes.Finite
method), 300

extra_super_categories()
(sage.categories.distributive_magmas_and_additive_magmas.DistributiveMagmasAndAdditiveMagmas.CartesianProducts
method), 304

extra_super_categories()
(sage.categories.division_rings.DivisionRings
method), 305

extra_super_categories()
(sage.categories.fields.Fields method), 320

extra_super_categories()
(sage.categories.filtered_modules.FilteredModules
method), 330

extra_super_categories()
(sage.categories.finite_coxeter_groups.FiniteCoxeterGroups
method), 374

extra_super_categories()
(sage.categories.finite_crystals.FiniteCrystals
method), 375

extra_super_categories()
(sage.categories.finite_crystals.FiniteCrystals.TensorProducts
method), 375

extra_super_categories()
(sage.categories.finite_dimensional_algebras_with_basis.FiniteDimensionalAlgebrasWithBasis.Cellular.TensorProducts
method), 379

extra_super_categories()
(sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.TensorProducts
method), 421

extra_super_categories()
(sage.categories.finite_enumerated_sets.FiniteEnumeratedSets.CartesianProducts
method), 428

extra_super_categories()
(sage.categories.finite_fields.FiniteFields
method), 431

extra_super_categories()
(sage.categories.finite_groups.FiniteGroups.Algebras
method), 432

extra_super_categories()

Index 905



Category Framework, Release 9.7

(sage.categories.finite_permutation_groups.FinitePermutationGroups
method), 444

extra_super_categories()
(sage.categories.finite_sets.FiniteSets.Algebras
method), 468

extra_super_categories()
(sage.categories.finite_sets.FiniteSets.Subquotients
method), 468

extra_super_categories()
(sage.categories.finitely_generated_semigroups.FinitelyGeneratedSemigroups
method), 475

extra_super_categories()
(sage.categories.generalized_coxeter_groups.GeneralizedCoxeterGroups.Finite
method), 477

extra_super_categories()
(sage.categories.graded_algebras.GradedAlgebras.SignedTensorProducts
method), 478

extra_super_categories()
(sage.categories.graded_algebras_with_basis.GradedAlgebrasWithBasis.SignedTensorProducts
method), 481

extra_super_categories()
(sage.categories.graded_coalgebras.GradedCoalgebras.SignedTensorProducts
method), 482

extra_super_categories()
(sage.categories.graded_coalgebras_with_basis.GradedCoalgebrasWithBasis.SignedTensorProducts
method), 483

extra_super_categories()
(sage.categories.graded_lie_algebras.GradedLieAlgebras.Stratified.FiniteDimensional
method), 485

extra_super_categories()
(sage.categories.graphs.Graphs.Connected
method), 493

extra_super_categories()
(sage.categories.group_algebras.GroupAlgebras
method), 499

extra_super_categories()
(sage.categories.groups.Groups.CartesianProducts
method), 501

extra_super_categories()
(sage.categories.hecke_modules.HeckeModules.Homsets
method), 509

extra_super_categories()
(sage.categories.highest_weight_crystals.HighestWeightCrystals.TensorProducts
method), 516

extra_super_categories()
(sage.categories.homsets.Homsets.Endset
method), 799

extra_super_categories()
(sage.categories.hopf_algebras.HopfAlgebras.TensorProducts
method), 518

extra_super_categories()
(sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis.TensorProducts
method), 522

extra_super_categories()

(sage.categories.j_trivial_semigroups.JTrivialSemigroups
method), 525

extra_super_categories()
(sage.categories.l_trivial_semigroups.LTrivialSemigroups
method), 563

extra_super_categories()
(sage.categories.lie_algebras.LieAlgebras.FiniteDimensional
method), 534

extra_super_categories()
(sage.categories.loop_crystals.KirillovReshetikhinCrystals.TensorProducts
method), 560

extra_super_categories()
(sage.categories.magmas.Magmas.Algebras
method), 564

extra_super_categories()
(sage.categories.magmas.Magmas.CartesianProducts
method), 566

extra_super_categories()
(sage.categories.magmas.Magmas.Commutative.Algebras
method), 566

extra_super_categories()
(sage.categories.magmas.Magmas.Commutative.CartesianProducts
method), 566

extra_super_categories()
(sage.categories.magmas.Magmas.Unital.Algebras
method), 575

extra_super_categories()
(sage.categories.magmas.Magmas.Unital.CartesianProducts
method), 576

extra_super_categories()
(sage.categories.magmas.Magmas.Unital.Inverse.CartesianProducts
method), 576

extra_super_categories()
(sage.categories.magmas_and_additive_magmas.MagmasAndAdditiveMagmas.CartesianProducts
method), 579

extra_super_categories()
(sage.categories.manifolds.Manifolds.AlmostComplex
method), 584

extra_super_categories()
(sage.categories.manifolds.Manifolds.Analytic
method), 584

extra_super_categories()
(sage.categories.manifolds.Manifolds.Smooth
method), 585

extra_super_categories()
(sage.categories.metric_spaces.MetricSpaces.CartesianProducts
method), 588

extra_super_categories()
(sage.categories.metric_spaces.MetricSpaces.Complete.CartesianProducts
method), 589

extra_super_categories()
(sage.categories.modular_abelian_varieties.ModularAbelianVarieties.Homsets.Endset
method), 592

extra_super_categories()

906 Index



Category Framework, Release 9.7

(sage.categories.modules.Modules.CartesianProducts
method), 594

extra_super_categories()
(sage.categories.modules.Modules.FiniteDimensional
method), 595

extra_super_categories()
(sage.categories.modules.Modules.FiniteDimensional.TensorProducts
method), 595

extra_super_categories()
(sage.categories.modules.Modules.FinitelyPresented
method), 595

extra_super_categories()
(sage.categories.modules.Modules.Homsets
method), 597

extra_super_categories()
(sage.categories.modules.Modules.Homsets.Endset
method), 596

extra_super_categories()
(sage.categories.modules.Modules.TensorProducts
method), 603

extra_super_categories()
(sage.categories.modules_with_basis.ModulesWithBasis.CartesianProducts
method), 605

extra_super_categories()
(sage.categories.modules_with_basis.ModulesWithBasis.DualObjects
method), 606

extra_super_categories()
(sage.categories.modules_with_basis.ModulesWithBasis.TensorProducts
method), 630

extra_super_categories()
(sage.categories.monoids.Monoids.Algebras
method), 633

extra_super_categories()
(sage.categories.monoids.Monoids.CartesianProducts
method), 633

extra_super_categories()
(sage.categories.quantum_group_representations.QuantumGroupRepresentations.TensorProducts
method), 660

extra_super_categories()
(sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.TensorProducts
method), 664

extra_super_categories()
(sage.categories.r_trivial_semigroups.RTrivialSemigroups
method), 686

extra_super_categories()
(sage.categories.regular_crystals.RegularCrystals.TensorProducts
method), 672

extra_super_categories()
(sage.categories.regular_supercrystals.RegularSuperCrystals.TensorProducts
method), 674

extra_super_categories()
(sage.categories.semigroups.Semigroups.Algebras
method), 689

extra_super_categories()

(sage.categories.semigroups.Semigroups.CartesianProducts
method), 689

extra_super_categories()
(sage.categories.sets_cat.Sets.Algebras
method), 703

extra_super_categories()
(sage.categories.sets_cat.Sets.CartesianProducts
method), 707

extra_super_categories()
(sage.categories.sets_cat.Sets.WithRealizations
method), 726

extra_super_categories()
(sage.categories.super_algebras.SuperAlgebras
method), 740

extra_super_categories()
(sage.categories.super_algebras.SuperAlgebras.SignedTensorProducts
method), 740

extra_super_categories()
(sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis
method), 742

extra_super_categories()
(sage.categories.super_algebras_with_basis.SuperAlgebrasWithBasis.SignedTensorProducts
method), 742

extra_super_categories()
(sage.categories.super_lie_conformal_algebras.SuperLieConformalAlgebras
method), 744

extra_super_categories()
(sage.categories.super_modules.SuperModules
method), 746

extra_super_categories()
(sage.categories.supercommutative_algebras.SupercommutativeAlgebras.SignedTensorProducts
method), 749

extra_super_categories()
(sage.categories.supercrystals.SuperCrystals.TensorProducts
method), 754

extra_super_categories()
(sage.categories.topological_spaces.TopologicalSpaces.CartesianProducts
method), 754

extra_super_categories()
(sage.categories.topological_spaces.TopologicalSpaces.Compact.CartesianProducts
method), 755

extra_super_categories()
(sage.categories.topological_spaces.TopologicalSpaces.Connected.CartesianProducts
method), 755

extra_super_categories()
(sage.categories.vector_spaces.VectorSpaces.CartesianProducts
method), 763

extra_super_categories()
(sage.categories.vector_spaces.VectorSpaces.DualObjects
method), 763

extra_super_categories()
(sage.categories.vector_spaces.VectorSpaces.FiniteDimensional.TensorProducts
method), 764

extra_super_categories()

Index 907



Category Framework, Release 9.7

(sage.categories.vector_spaces.VectorSpaces.TensorProducts
method), 764

extra_super_categories()
(sage.categories.vector_spaces.VectorSpaces.WithBasis.CartesianProducts
method), 765

extra_super_categories()
(sage.categories.vector_spaces.VectorSpaces.WithBasis.FiniteDimensional.TensorProducts
method), 765

extra_super_categories()
(sage.categories.vector_spaces.VectorSpaces.WithBasis.TensorProducts
method), 766

F
F (sage.categories.examples.with_realizations.SubsetAlgebra

attribute), 866
f() (sage.categories.crystals.Crystals.ElementMethods

method), 283
f() (sage.categories.examples.crystals.HighestWeightCrystalOfTypeA.Element

method), 814
f() (sage.categories.examples.crystals.NaiveCrystal.Element

method), 815
f() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.ElementMethods

method), 661
f() (sage.categories.triangular_kac_moody_algebras.TriangularKacMoodyAlgebras.ParentMethods

method), 757
f_on_basis() (sage.categories.quantum_group_representations.QuantumGroupRepresentations.WithBasis.TensorProducts.ParentMethods

method), 663
f_string() (sage.categories.crystals.Crystals.ElementMethods

method), 283
Facade (sage.categories.sets_cat.Sets attribute), 707
Facade() (sage.categories.sets_cat.Sets.SubcategoryMethods

method), 714
facade_for() (sage.categories.facade_sets.FacadeSets.ParentMethods

method), 777
facade_for() (sage.categories.sets_cat.Sets.WithRealizations.ParentMethods

method), 723
FacadeSets (class in sage.categories.facade_sets), 777
FacadeSets.ParentMethods (class in

sage.categories.facade_sets), 777
faces() (sage.categories.graphs.Graphs.ParentMethods

method), 494
faces() (sage.categories.simplicial_complexes.SimplicialComplexes.ParentMethods

method), 731
facets() (sage.categories.graphs.Graphs.ParentMethods

method), 494
facets() (sage.categories.simplicial_complexes.SimplicialComplexes.ParentMethods

method), 732
factor() (sage.categories.fields.Fields.ElementMethods

method), 316
factor() (sage.categories.quotient_fields.QuotientFields.ElementMethods

method), 653
fat_wedge() (sage.categories.simplicial_sets.SimplicialSets.Pointed.Finite.ParentMethods

method), 734
Fields (class in sage.categories.fields), 315

Fields.ElementMethods (class in
sage.categories.fields), 315

Fields.ParentMethods (class in
sage.categories.fields), 319

Filtered (sage.categories.algebras.Algebras attribute),
182

Filtered (sage.categories.algebras_with_basis.AlgebrasWithBasis
attribute), 186

Filtered (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis
attribute), 521

Filtered (sage.categories.modules.Modules attribute),
594

Filtered (sage.categories.modules_with_basis.ModulesWithBasis
attribute), 616

Filtered() (sage.categories.modules.Modules.SubcategoryMethods
method), 599

FilteredAlgebras (class in
sage.categories.filtered_algebras), 320

FilteredAlgebras.ParentMethods (class in
sage.categories.filtered_algebras), 321

FilteredAlgebrasWithBasis (class in
sage.categories.filtered_algebras_with_basis),
321

FilteredAlgebrasWithBasis.ElementMethods
(class in sage.categories.filtered_algebras_with_basis),
321

FilteredAlgebrasWithBasis.ParentMethods (class
in sage.categories.filtered_algebras_with_basis),
321

FilteredModules (class in
sage.categories.filtered_modules), 329

FilteredModules.Connected (class in
sage.categories.filtered_modules), 329

FilteredModules.SubcategoryMethods (class in
sage.categories.filtered_modules), 329

FilteredModulesCategory (class in
sage.categories.filtered_modules), 330

FilteredModulesWithBasis (class in
sage.categories.filtered_modules_with_basis),
331

FilteredModulesWithBasis.ElementMethods (class
in sage.categories.filtered_modules_with_basis),
331

FilteredModulesWithBasis.ParentMethods (class
in sage.categories.filtered_modules_with_basis),
337

FilteredModulesWithBasis.Subobjects (class in
sage.categories.filtered_modules_with_basis),
344

FilteredModulesWithBasis.Subobjects.ElementMethods
(class in sage.categories.filtered_modules_with_basis),
344

FilteredModulesWithBasis.Subobjects.ParentMethods
(class in sage.categories.filtered_modules_with_basis),

908 Index



Category Framework, Release 9.7

345
Finite (sage.categories.complex_reflection_groups.ComplexReflectionGroups

attribute), 220
Finite (sage.categories.coxeter_groups.CoxeterGroups

attribute), 263
Finite (sage.categories.crystals.Crystals attribute), 287
Finite (sage.categories.enumerated_sets.EnumeratedSets

attribute), 308
Finite (sage.categories.fields.Fields attribute), 319
Finite (sage.categories.groups.Groups attribute), 502
Finite (sage.categories.lattice_posets.LatticePosets at-

tribute), 530
Finite (sage.categories.monoids.Monoids attribute),

634
Finite (sage.categories.permutation_groups.PermutationGroups

attribute), 641
Finite (sage.categories.posets.Posets attribute), 643
Finite (sage.categories.semigroups.Semigroups at-

tribute), 690
Finite (sage.categories.sets_cat.Sets attribute), 708
Finite (sage.categories.weyl_groups.WeylGroups

attribute), 774
Finite() (sage.categories.sets_cat.Sets.SubcategoryMethods

method), 716
Finite_extra_super_categories()

(sage.categories.division_rings.DivisionRings
method), 305

Finite_extra_super_categories()
(sage.categories.h_trivial_semigroups.HTrivialSemigroups
method), 523

FiniteComplexReflectionGroups (class in
sage.categories.finite_complex_reflection_groups),
346

FiniteComplexReflectionGroups.ElementMethods
(class in sage.categories.finite_complex_reflection_groups),
347

FiniteComplexReflectionGroups.Irreducible
(class in sage.categories.finite_complex_reflection_groups),
348

FiniteComplexReflectionGroups.Irreducible.ParentMethods
(class in sage.categories.finite_complex_reflection_groups),
348

FiniteComplexReflectionGroups.ParentMethods
(class in sage.categories.finite_complex_reflection_groups),
352

FiniteComplexReflectionGroups.SubcategoryMethods
(class in sage.categories.finite_complex_reflection_groups),
356

FiniteComplexReflectionGroups.WellGenerated
(class in sage.categories.finite_complex_reflection_groups),
357

FiniteComplexReflectionGroups.WellGenerated.Irreducible
(class in sage.categories.finite_complex_reflection_groups),
357

FiniteComplexReflectionGroups.WellGenerated.Irreducible.ParentMethods
(class in sage.categories.finite_complex_reflection_groups),
357

FiniteComplexReflectionGroups.WellGenerated.ParentMethods
(class in sage.categories.finite_complex_reflection_groups),
360

FiniteCoxeterGroups (class in
sage.categories.finite_coxeter_groups), 362

FiniteCoxeterGroups.ElementMethods (class in
sage.categories.finite_coxeter_groups), 363

FiniteCoxeterGroups.ParentMethods (class in
sage.categories.finite_coxeter_groups), 365

FiniteCrystals (class in
sage.categories.finite_crystals), 374

FiniteCrystals.TensorProducts (class in
sage.categories.finite_crystals), 375

FiniteDimensional (sage.categories.algebras_with_basis.AlgebrasWithBasis
attribute), 186

FiniteDimensional (sage.categories.graded_lie_algebras_with_basis.GradedLieAlgebrasWithBasis
attribute), 486

FiniteDimensional (sage.categories.hopf_algebras_with_basis.HopfAlgebrasWithBasis
attribute), 521

FiniteDimensional (sage.categories.modules_with_basis.ModulesWithBasis
attribute), 616

FiniteDimensional()
(sage.categories.category_with_axiom.Blahs.SubcategoryMethods
method), 91

FiniteDimensional()
(sage.categories.cw_complexes.CWComplexes.SubcategoryMethods
method), 301

FiniteDimensional()
(sage.categories.manifolds.Manifolds.SubcategoryMethods
method), 586

FiniteDimensional()
(sage.categories.modules.Modules.SubcategoryMethods
method), 599

FiniteDimensionalAlgebrasWithBasis (class in
sage.categories.finite_dimensional_algebras_with_basis),
375

FiniteDimensionalAlgebrasWithBasis.Cellular
(class in sage.categories.finite_dimensional_algebras_with_basis),
376

FiniteDimensionalAlgebrasWithBasis.Cellular.ElementMethods
(class in sage.categories.finite_dimensional_algebras_with_basis),
376

FiniteDimensionalAlgebrasWithBasis.Cellular.ParentMethods
(class in sage.categories.finite_dimensional_algebras_with_basis),
377

FiniteDimensionalAlgebrasWithBasis.Cellular.TensorProducts
(class in sage.categories.finite_dimensional_algebras_with_basis),
378

FiniteDimensionalAlgebrasWithBasis.Cellular.TensorProducts.ParentMethods
(class in sage.categories.finite_dimensional_algebras_with_basis),
378

Index 909



Category Framework, Release 9.7

FiniteDimensionalAlgebrasWithBasis.ElementMethods
(class in sage.categories.finite_dimensional_algebras_with_basis),
379

FiniteDimensionalAlgebrasWithBasis.ParentMethods
(class in sage.categories.finite_dimensional_algebras_with_basis),
381

FiniteDimensionalAlgebrasWithBasis.SubcategoryMethods
(class in sage.categories.finite_dimensional_algebras_with_basis),
393

FiniteDimensionalBialgebrasWithBasis() (in
module sage.categories.finite_dimensional_bialgebras_with_basis),
394

FiniteDimensionalCoalgebrasWithBasis() (in
module sage.categories.finite_dimensional_coalgebras_with_basis),
394

FiniteDimensionalGradedLieAlgebrasWithBasis
(class in sage.categories.finite_dimensional_graded_lie_algebras_with_basis),
394

FiniteDimensionalGradedLieAlgebrasWithBasis.ParentMethods
(class in sage.categories.finite_dimensional_graded_lie_algebras_with_basis),
395

FiniteDimensionalGradedLieAlgebrasWithBasis.Stratified
(class in sage.categories.finite_dimensional_graded_lie_algebras_with_basis),
395

FiniteDimensionalGradedLieAlgebrasWithBasis.Stratified.ParentMethods
(class in sage.categories.finite_dimensional_graded_lie_algebras_with_basis),
395

FiniteDimensionalHopfAlgebrasWithBasis (class
in sage.categories.finite_dimensional_hopf_algebras_with_basis),
396

FiniteDimensionalHopfAlgebrasWithBasis.ElementMethods
(class in sage.categories.finite_dimensional_hopf_algebras_with_basis),
396

FiniteDimensionalHopfAlgebrasWithBasis.ParentMethods
(class in sage.categories.finite_dimensional_hopf_algebras_with_basis),
396

FiniteDimensionalLieAlgebrasWithBasis (class in
sage.categories.finite_dimensional_lie_algebras_with_basis),
396

FiniteDimensionalLieAlgebrasWithBasis.ElementMethods
(class in sage.categories.finite_dimensional_lie_algebras_with_basis),
396

FiniteDimensionalLieAlgebrasWithBasis.ParentMethods
(class in sage.categories.finite_dimensional_lie_algebras_with_basis),
397

FiniteDimensionalLieAlgebrasWithBasis.Subobjects
(class in sage.categories.finite_dimensional_lie_algebras_with_basis),
412

FiniteDimensionalLieAlgebrasWithBasis.Subobjects.ParentMethods
(class in sage.categories.finite_dimensional_lie_algebras_with_basis),
412

FiniteDimensionalModulesWithBasis (class in
sage.categories.finite_dimensional_modules_with_basis),
413

FiniteDimensionalModulesWithBasis.ElementMethods
(class in sage.categories.finite_dimensional_modules_with_basis),
413

FiniteDimensionalModulesWithBasis.MorphismMethods
(class in sage.categories.finite_dimensional_modules_with_basis),
414

FiniteDimensionalModulesWithBasis.ParentMethods
(class in sage.categories.finite_dimensional_modules_with_basis),
416

FiniteDimensionalModulesWithBasis.TensorProducts
(class in sage.categories.finite_dimensional_modules_with_basis),
421

FiniteDimensionalNilpotentLieAlgebrasWithBasis
(class in sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis),
421

FiniteDimensionalNilpotentLieAlgebrasWithBasis.ParentMethods
(class in sage.categories.finite_dimensional_nilpotent_lie_algebras_with_basis),
421

FiniteDimensionalSemisimpleAlgebrasWithBasis
(class in sage.categories.finite_dimensional_semisimple_algebras_with_basis),
423

FiniteDimensionalSemisimpleAlgebrasWithBasis.Commutative
(class in sage.categories.finite_dimensional_semisimple_algebras_with_basis),
423

FiniteDimensionalSemisimpleAlgebrasWithBasis.Commutative.ParentMethods
(class in sage.categories.finite_dimensional_semisimple_algebras_with_basis),
423

FiniteDimensionalSemisimpleAlgebrasWithBasis.ParentMethods
(class in sage.categories.finite_dimensional_semisimple_algebras_with_basis),
424

FiniteEnumeratedSets (class in
sage.categories.finite_enumerated_sets),
425

FiniteEnumeratedSets.CartesianProducts (class
in sage.categories.finite_enumerated_sets), 425

FiniteEnumeratedSets.CartesianProducts.ParentMethods
(class in sage.categories.finite_enumerated_sets),
425

FiniteEnumeratedSets.IsomorphicObjects (class
in sage.categories.finite_enumerated_sets), 428

FiniteEnumeratedSets.IsomorphicObjects.ParentMethods
(class in sage.categories.finite_enumerated_sets),
428

FiniteEnumeratedSets.ParentMethods (class in
sage.categories.finite_enumerated_sets), 428

FiniteFields (class in sage.categories.finite_fields),
431

FiniteFields.ElementMethods (class in
sage.categories.finite_fields), 431

FiniteFields.ParentMethods (class in
sage.categories.finite_fields), 431

FiniteGroups (class in sage.categories.finite_groups),
431

FiniteGroups.Algebras (class in

910 Index



Category Framework, Release 9.7

sage.categories.finite_groups), 431
FiniteGroups.Algebras.ParentMethods (class in

sage.categories.finite_groups), 432
FiniteGroups.ElementMethods (class in

sage.categories.finite_groups), 432
FiniteGroups.ParentMethods (class in

sage.categories.finite_groups), 432
FiniteLatticePosets (class in

sage.categories.finite_lattice_posets), 434
FiniteLatticePosets.ParentMethods (class in

sage.categories.finite_lattice_posets), 434
FinitelyGenerated()

(sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras.SubcategoryMethods
method), 528

FinitelyGenerated()
(sage.categories.magmas.Magmas.SubcategoryMethods
method), 572

FinitelyGeneratedAsLambdaBracketAlgebra
(sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras
attribute), 528

FinitelyGeneratedAsLambdaBracketAlgebra
(sage.categories.lie_conformal_algebras.LieConformalAlgebras
attribute), 547

FinitelyGeneratedAsLambdaBracketAlgebra()
(sage.categories.lambda_bracket_algebras.LambdaBracketAlgebras.SubcategoryMethods
method), 528

FinitelyGeneratedAsMagma
(sage.categories.magmas.Magmas attribute),
567

FinitelyGeneratedAsMagma
(sage.categories.semigroups.Semigroups
attribute), 690

FinitelyGeneratedAsMagma()
(sage.categories.magmas.Magmas.SubcategoryMethods
method), 573

FinitelyGeneratedLambdaBracketAlgebras (class
in sage.categories.finitely_generated_lambda_bracket_algebras),
469

FinitelyGeneratedLambdaBracketAlgebras.Graded
(class in sage.categories.finitely_generated_lambda_bracket_algebras),
470

FinitelyGeneratedLambdaBracketAlgebras.ParentMethods
(class in sage.categories.finitely_generated_lambda_bracket_algebras),
470

FinitelyGeneratedLieConformalAlgebras (class in
sage.categories.finitely_generated_lie_conformal_algebras),
471

FinitelyGeneratedLieConformalAlgebras.Graded
(class in sage.categories.finitely_generated_lie_conformal_algebras),
471

FinitelyGeneratedLieConformalAlgebras.ParentMethods
(class in sage.categories.finitely_generated_lie_conformal_algebras),
471

FinitelyGeneratedLieConformalAlgebras.Super

(class in sage.categories.finitely_generated_lie_conformal_algebras),
471

FinitelyGeneratedLieConformalAlgebras.Super.Graded
(class in sage.categories.finitely_generated_lie_conformal_algebras),
471

FinitelyGeneratedMagmas (class in
sage.categories.finitely_generated_magmas),
472

FinitelyGeneratedMagmas.ParentMethods (class
in sage.categories.finitely_generated_magmas),
472

FinitelyGeneratedSemigroups (class in
sage.categories.finitely_generated_semigroups),
472

FinitelyGeneratedSemigroups.Finite (class in
sage.categories.finitely_generated_semigroups),
473

FinitelyGeneratedSemigroups.Finite.ParentMethods
(class in sage.categories.finitely_generated_semigroups),
473

FinitelyGeneratedSemigroups.ParentMethods
(class in sage.categories.finitely_generated_semigroups),
473

FinitelyPresented()
(sage.categories.modules.Modules.SubcategoryMethods
method), 600

FiniteMonoids (class in
sage.categories.finite_monoids), 437

FiniteMonoids.ElementMethods (class in
sage.categories.finite_monoids), 437

FiniteMonoids.ParentMethods (class in
sage.categories.finite_monoids), 438

FinitePermutationGroups (class in
sage.categories.finite_permutation_groups),
440

FinitePermutationGroups.ElementMethods (class
in sage.categories.finite_permutation_groups),
440

FinitePermutationGroups.ParentMethods (class
in sage.categories.finite_permutation_groups),
441

FinitePosets (class in sage.categories.finite_posets),
444

FinitePosets.ParentMethods (class in
sage.categories.finite_posets), 445

FiniteSemigroups (class in
sage.categories.finite_semigroups), 466

FiniteSemigroups.ParentMethods (class in
sage.categories.finite_semigroups), 467

FiniteSets (class in sage.categories.finite_sets), 468
FiniteSets.Algebras (class in

sage.categories.finite_sets), 468
FiniteSets.ParentMethods (class in

sage.categories.finite_sets), 468

Index 911



Category Framework, Release 9.7

FiniteSets.Subquotients (class in
sage.categories.finite_sets), 468

FiniteSetsOrderedByInclusion (class in
sage.categories.examples.posets), 847

FiniteSetsOrderedByInclusion.Element (class in
sage.categories.examples.posets), 848

FiniteWeylGroups (class in
sage.categories.finite_weyl_groups), 469

FiniteWeylGroups.ElementMethods (class in
sage.categories.finite_weyl_groups), 469

FiniteWeylGroups.ParentMethods (class in
sage.categories.finite_weyl_groups), 469

first() (sage.categories.enumerated_sets.EnumeratedSets.CartesianProducts.ParentMethods
method), 307

first() (sage.categories.enumerated_sets.EnumeratedSets.ParentMethods
method), 308

first() (sage.categories.map.FormalCompositeMap
method), 108

first_descent() (sage.categories.coxeter_groups.CoxeterGroups.ElementMethods
method), 251

Flying() (sage.categories.category_with_axiom.Blahs.SubcategoryMethods
method), 91

ForgetfulFunctor() (in module
sage.categories.functor), 100

ForgetfulFunctor_generic (class in
sage.categories.functor), 101

formal_series_ring()
(sage.categories.graded_algebras_with_basis.GradedAlgebrasWithBasis.ParentMethods
method), 479

FormalCoercionMorphism (class in
sage.categories.morphism), 124

FormalCompositeMap (class in sage.categories.map),
107

fraction_field() (sage.categories.fields.Fields.ParentMethods
method), 319

FractionField (class in sage.categories.pushout), 137
free() (sage.categories.groups.Groups static method),

508
free() (sage.categories.groups.Groups.Commutative

static method), 501
free() (sage.categories.monoids.Monoids static

method), 636
free() (sage.categories.monoids.Monoids.Commutative

static method), 634
free_graded_module()

(sage.categories.graded_algebras_with_basis.GradedAlgebrasWithBasis.ParentMethods
method), 479

free_module() (sage.categories.rings.Rings.ParentMethods
method), 680

FreeAlgebra (class in
sage.categories.examples.algebras_with_basis),
809

FreeCommutativeAdditiveMonoid (class in
sage.categories.examples.commutative_additive_monoids),

810
FreeCommutativeAdditiveMonoid.Element (class in

sage.categories.examples.commutative_additive_monoids),
811

FreeCommutativeAdditiveSemigroup (class in
sage.categories.examples.commutative_additive_semigroups),
811

FreeCommutativeAdditiveSemigroup.Element
(class in sage.categories.examples.commutative_additive_semigroups),
812

FreeMagma (class in sage.categories.examples.magmas),
843

FreeMagma.Element (class in
sage.categories.examples.magmas), 844

FreeMonoid (class in sage.categories.examples.monoids),
845

FreeMonoid.Element (class in
sage.categories.examples.monoids), 846

FreeSemigroup (class in
sage.categories.examples.semigroups), 849

FreeSemigroup.Element (class in
sage.categories.examples.semigroups), 849

from_base_ring() (sage.categories.unital_algebras.UnitalAlgebras.ParentMethods
method), 760

from_base_ring() (sage.categories.unital_algebras.UnitalAlgebras.WithBasis.ParentMethods
method), 760

from_base_ring_from_one_basis()
(sage.categories.unital_algebras.UnitalAlgebras.WithBasis.ParentMethods
method), 760

from_graded_conversion()
(sage.categories.filtered_algebras_with_basis.FilteredAlgebrasWithBasis.ParentMethods
method), 322

from_graded_conversion()
(sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis.ParentMethods
method), 338

from_reduced_word()
(sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods
method), 229

from_set() (sage.categories.examples.with_realizations.SubsetAlgebra.Bases.ParentMethods
method), 865

from_vector() (sage.categories.examples.finite_dimensional_lie_algebras_with_basis.AbelianLieAlgebra
method), 822

from_vector() (sage.categories.finite_dimensional_lie_algebras_with_basis.FiniteDimensionalLieAlgebrasWithBasis.ParentMethods
method), 403

from_vector() (sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.ParentMethods
method), 419

from_vector() (sage.categories.lie_algebras.LieAlgebras.ParentMethods
method), 537

from_vector() (sage.categories.lie_algebras_with_basis.LieAlgebrasWithBasis.ParentMethods
method), 543

full_super_categories()
(sage.categories.category.Category method),
53

fully_commutative_elements()

912 Index



Category Framework, Release 9.7

(sage.categories.coxeter_groups.CoxeterGroups.ParentMethods
method), 268

FunctionFields (class in
sage.categories.function_fields), 475

FunctionFields.ElementMethods (class in
sage.categories.function_fields), 475

FunctionFields.ParentMethods (class in
sage.categories.function_fields), 475

Functor (class in sage.categories.functor), 101
FunctorialConstructionCategory (class in

sage.categories.covariant_functorial_construction),
783

fundamental_group()
(sage.categories.simplicial_sets.SimplicialSets.Pointed.ParentMethods
method), 737

fuss_catalan_number()
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gcd_free_basis() (sage.categories.euclidean_domains.EuclideanDomains.ParentMethods

method), 314
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sage.categories.graded_algebras), 478

GradedAlgebras.SubcategoryMethods (class in
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sage.categories.graded_algebras_with_basis),
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sage.categories.graded_modules), 487

GradedModules.ElementMethods (class in
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(class in sage.categories.graded_modules_with_basis),
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(sage.categories.highest_weight_crystals.HighestWeightCrystals.TensorProducts.ParentMethods
method), 515

HighestWeightCrystalHomset (class in
sage.categories.highest_weight_crystals),
509

HighestWeightCrystalMorphism (class in

Index 915



Category Framework, Release 9.7

sage.categories.highest_weight_crystals),
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ideal() (sage.categories.rings.Rings.ParentMethods

method), 681
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image() (sage.categories.crystals.CrystalMorphismByGenerators
method), 280

image() (sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.MorphismMethods
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inverse_of_unit() (sage.categories.rings.Rings.ElementMethods
method), 676

InverseAction (class in sage.categories.action), 158
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(sage.categories.complex_reflection_or_generalized_coxeter_groups.ComplexReflectionOrGeneralizedCoxeterGroups.ParentMethods
method), 232

irreducible_components()
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