Algebra di base e Analisi#
Sage sa svolgere diversi calcoli legati all’algebra di base ed all’analisi: per esempio, risoluzione di equazioni, calcolo differenziale ed integrale e trasformate di Laplace. Si veda la documentazione per le «Costruzioni di Sage» per ulteriori esempi.
Risoluzione di equazioni#
La funzione solve
risolve le equazioni. Per usarla,
bisogna anzitutto specificare alcune variabili; pertanto
gli argomenti di solve
sono un’equazione (od un sistema
di equazioni), insieme con le variabili rispetto alle quali
risolvere:
sage: x = var('x')
sage: solve(x^2 + 3*x + 2, x)
[x == -2, x == -1]
Si possono risolvere le equazioni rispetto ad una variabile in funzione delle altre:
sage: x, b, c = var('x b c')
sage: solve([x^2 + b*x + c == 0],x)
[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]
Si può anche risolvere rispetto a diverse variabili:
sage: x, y = var('x, y')
sage: solve([x+y==6, x-y==4], x, y)
[[x == 5, y == 1]]
Il seguente esempio dell’uso di Sage per risolvere un sistema di equazioni non lineari è stato fornito da Jason Grout: per prima cosa, si risolve il sistema simbolicamente:
sage: var('x y p q')
(x, y, p, q)
sage: eq1 = p+q==9
sage: eq2 = q*y+p*x==-6
sage: eq3 = q*y^2+p*x^2==24
sage: solve([eq1,eq2,eq3,p==1],p,q,x,y)
[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(10) - 2/3],
[p == 1, q == 8, x == 4/3*sqrt(10) - 2/3, y == -1/6*sqrt(10) - 2/3]]
Per una soluzione numerica, si può invece usare:
sage: solns = solve([eq1,eq2,eq3,p==1],p,q,x,y, solution_dict=True)
sage: [[s[p].n(30), s[q].n(30), s[x].n(30), s[y].n(30)] for s in solns]
[[1.0000000, 8.0000000, -4.8830369, -0.13962039],
[1.0000000, 8.0000000, 3.5497035, -1.1937129]]
(La funzione n
scrive un’approssimazione numerica, e
l’argomento è il numero di bit di precisione.)
Differenziazione, Integrazione, etc.#
Sage è in grado di differenziae ed integrare molte funzioni. Per esempio, per differenziare \(\sin(u)\) rispetto a \(u\), si procede come nelle righe seguenti:
sage: u = var('u')
sage: diff(sin(u), u)
cos(u)
Per calcolare la derivata quarta di \(\sin(x^2)\):
sage: diff(sin(x^2), x, 4)
16*x^4*sin(x^2) - 48*x^2*cos(x^2) - 12*sin(x^2)
Per calcolare le derivate parziali di \(x^2+17y^2\) rispetto a x e y, rispettivamente:
sage: x, y = var('x,y')
sage: f = x^2 + 17*y^2
sage: f.diff(x)
2*x
sage: f.diff(y)
34*y
Passiamo agli integrali, sia indefiniti che definiti. Per calcolare \(\int x\sin(x^2)\, dx\) e \(\int_0^1 \frac{x}{x^2+1}\, dx\)
sage: integral(x*sin(x^2), x)
-1/2*cos(x^2)
sage: integral(x/(x^2+1), x, 0, 1)
1/2*log(2)
Per calcolare la decomposizione in frazioni parziali di \(\frac{1}{x^2-1}\):
sage: f = 1/((1+x)*(x-1))
sage: f.partial_fraction(x)
-1/2/(x + 1) + 1/2/(x - 1)
Risoluzione di Equazioni Differenziali#
Si può usare Sage per studiare le equazioni differenziali ordinarie. Per risolvere l’equazione \(x'+x-1=0\):
sage: t = var('t') # definisce una variabile t
sage: x = function('x')(t) # definisce x come funzione di quella variabile
sage: DE = diff(x,t) + x - 1
sage: desolve(DE, [x,t])
(_C + e^t)*e^(-t)
Questo metodo utilizza l’interfaccia di Sage per Maxima [Max], e così il suo output può essere leggermente diverso dagli altri output di Sage. In questo caso, risulta che la soluzione generale dell’equazione differenziale è \(x(t) = e^{-t}(e^{t}+c)\).
Si può anche calcolare la trasformata di Laplace; la trasformata di Laplace di \(t^2e^t -\sin(t)\) è calcolata come segue:
sage: s = var("s")
sage: t = var("t")
sage: f = t^2*exp(t) - sin(t)
sage: f.laplace(t,s)
-1/(s^2 + 1) + 2/(s - 1)^3
Il successivo è un esempio più articolato. Lo scostamento dall’equilibrio (rispettivamente) per due molle accoppiate fissate ad un muro a sinistra
|------\/\/\/\/\---|massa1|----\/\/\/\/\/----|massa2|
molla1 molla2
è modellizzato dal sistema di equazioni differenziali del secondo ordine
dove \(m_{i}\) è la massa dell’oggetto i, \(x_{i}\) è lo scostamento dall’equilibrio della massa i, e \(k_{i}\) è la costante elastica della molla i.
Esempio: Usare Sage per risolvere il problema precedente con \(m_{1}=2\), \(m_{2}=1\), \(k_{1}=4\), \(k_{2}=2\), \(x_{1}(0)=3\), \(x_{1}'(0)=0\), \(x_{2}(0)=3\), \(x_{2}'(0)=0\).
Soluzione: Calcolare la trasformata di Laplace della prima equazione (con la notazione \(x=x_{1}\), \(y=x_{2}\):
sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)")
sage: lde1 = de1.laplace("t","s"); lde1
2*((-%at('diff(x(t),t,1),t = 0))+s^2*'laplace(x(t),t,s)-x(0)*s) -2*'laplace(y(t),t,s)+6*'laplace(x(t),t,s)
Questo è di difficile lettura, ma dice che
(dove la trasformata di Laplace di una funzione in minuscolo come \(x(t)\) è la funzione in maiuscolo \(X(s)\)). Calcolare la trasformata di Laplace della seconda equazione:
sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)")
sage: lde2 = de2.laplace("t","s"); lde2
(-%at('diff(y(t),t,1),t = 0))+s^2*'laplace(y(t),t,s) +2*'laplace(y(t),t,s)-2*'laplace(x(t),t,s) -y(0)*s
che significa
Imporre le condizioni iniziali per \(x(0)\), \(x'(0)\), \(y(0)\), e \(y'(0)\), e risolvere le due equazioni risultanti:
sage: var('s X Y')
(s, X, Y)
sage: eqns = [(2*s^2+6)*X-2*Y == 6*s, -2*X +(s^2+2)*Y == 3*s]
sage: solve(eqns, X,Y)
[[X == 3*(s^3 + 3*s)/(s^4 + 5*s^2 + 4),
Y == 3*(s^3 + 5*s)/(s^4 + 5*s^2 + 4)]]
Ora si calcola la trasformata inversa di Laplace per ottenere la risposta:
sage: var('s t')
(s, t)
sage: inverse_laplace((3*s^3 + 9*s)/(s^4 + 5*s^2 + 4),s,t)
cos(2*t) + 2*cos(t)
sage: inverse_laplace((3*s^3 + 15*s)/(s^4 + 5*s^2 + 4),s,t)
-cos(2*t) + 4*cos(t)
Pertanto, la soluzione è
Essa può essere disegnata in forma parametrica usando
sage: t = var('t')
sage: P = parametric_plot((cos(2*t) + 2*cos(t), 4*cos(t) - cos(2*t) ),
....: (0, 2*pi), rgbcolor=hue(0.9))
sage: show(P)
Le singole componenti possono essere tracciate usando:
sage: t = var('t')
sage: p1 = plot(cos(2*t) + 2*cos(t), 0, 2*pi, rgbcolor=hue(0.3))
sage: p2 = plot(4*cos(t) - cos(2*t), 0, 2*pi, rgbcolor=hue(0.6))
sage: show(p1 + p2)
BIBLIOGRAFIA: Nagle, Saff, Snider, Fundamentals of Differential Equations, 6th ed, Addison-Wesley, 2004. (si veda § 5.5).
Metodo di Eulero per i sistemi di equazioni differenziali#
Nel prossimo esempio, si illustrerà il metodo di Eulero per le ODE di primo e secondo ordine. Per prima cosa ricordiamo l’idea di base per le equazioni di primo ordine. Dato un problema di Cauchy della forma
si vuole trovare il valore approssimato della soluzione a \(x=b\) con \(b>a\).
Ricordando dalla definizione di derivata che
dove \(h>0\) è dato e piccolo. Questo e la DE insieme danno give \(f(x,y(x))\approx \frac{y(x+h)-y(x)}{h}\). Ora si risolve per \(y(x+h)\):
Se chiamiamo \(h f(x,y(x))\) il «termine di correzione» (per mancanza di un termine migliore), \(y(x)\) il «vecchio valore di y», e \(y(x+h)\) il «nuovo valore di y», allora questa approssimazione può essere espressa come
Se si spezza l’intervallo da a a b in n intervalli, dimodoché \(h=\frac{b-a}{n}\), allora si possono registrare le informazioni per questo metodo in una tabella.
\(x\) |
\(y\) |
\(hf(x,y)\) |
---|---|---|
\(a\) |
\(c\) |
\(hf(a,c)\) |
\(a+h\) |
\(c+hf(a,c)\) |
… |
\(a+2h\) |
… |
|
… |
||
\(b=a+nh\) |
??? |
… |
L’obiettivo è riempire tutti gli spazi vuoti della tavella, una riga alla volta, finché si arriva al valore ???, che è il metodo di approssimazione di Eulero per \(y(b)\).
L’idea per sistemi di ODE è simile.
Esempio: Si approssimi numericamente \(z(t)\) a \(t=1\) usando 4 passi del metodo di Eulero, dove \(z''+tz'+z=0\), \(z(0)=1\), \(z'(0)=0\).
Si deve ridurre l’ODE di secondo ordine ad un sistema di due equazioni del primo ordine (usando \(x=z\), \(y=z'\)) ed applicare il metodo di Eulero:
sage: t,x,y = PolynomialRing(RealField(10),3,"txy").gens()
sage: f = y; g = -x - y * t
sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)
t x h*f(t,x,y) y h*g(t,x,y)
0 1 0.00 0 -0.25
1/4 1.0 -0.062 -0.25 -0.23
1/2 0.94 -0.12 -0.48 -0.17
3/4 0.82 -0.16 -0.66 -0.081
1 0.65 -0.18 -0.74 0.022
Pertanto, \(z(1)\approx 0.75\).
Si possono anche tracciare i punti \((x,y)\) per ottenere un grafico
approssimato della curva. La funzione eulers_method_2x2_plot
svolge
questa funzione; per usarla, bisogna definire le funzioni f e
g che prendono on argomento con tre coordinate: (t, x,
y).
sage: f = lambda z: z[2] # f(t,x,y) = y
sage: g = lambda z: -sin(z[1]) # g(t,x,y) = -sin(x)
sage: P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0)
A questo punto, P
ha in memoria due grafici: P[0]
, il grafico di x
vs. t, e P[1]
, il grafico di y vs. t. Si possono tracciare entrambi
come mostrato qui in seguito:
sage: show(P[0] + P[1])
Funzioni speciali#
Sono implementati diversi polinomi ortogonali e funzioni speciali, usando sia PARI [GAP] che Maxima [Max]. Essi sono documentati nelle sezioni apposite («Polinomi ortogonali» e «Funzioni speciali», rispettivamente) del manuale di Sage.
sage: x = polygen(QQ, 'x')
sage: chebyshev_U(2,x)
4*x^2 - 1
sage: bessel_I(1,1).n(250)
0.56515910399248502720769602760986330732889962162109200948029448947925564096
sage: bessel_I(1,1).n()
0.565159103992485
sage: bessel_I(2,1.1).n()
0.167089499251049
A questo punto, Sage ha soltanto incorporato queste funzioni per l’uso numerico. Per l’uso simbolico, si usi direttamente l’intefaccia di Maxima, come nell’esempio seguente:
sage: maxima.eval("f:bessel_y(v, w)")
'bessel_y(v,w)'
sage: maxima.eval("diff(f,w)")
'(bessel_y(v-1,w)-bessel_y(v+1,w))/2'
- GAP
(en) The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.11; 2021, https://www.gap-system.org
- Max(1,2)
(en) Maxima, Version 5.45; 2021, http://maxima.sf.net/