Bibliography#

Bourbaki46

Nicolas Bourbaki. Lie Groups and Lie Algebras: Chapters 4-6. Springer, reprint edition, 1998.

BumpNakasuji2010

D. Bump and M. Nakasuji. Casselman’s basis of Iwahori vectors and the Bruhat order. arXiv 1002.2996, arXiv 1002.2996.

BumpSchilling2017

D. Bump and A. Schilling, Crystal bases: representations and combinatorics, World Scientific, 2017.

Carrell1994

J. B. Carrell. The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties. In Algebraic Groups and Their Generalizations: Classical Methods, AMS Proceedings of Symposia in Pure Mathematics, 56, 53–61, 1994.

Deodhar1977

V. V. Deodhar. Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Moebius function. Inventiones Mathematicae, 39(2):187–198, 1977.

Dyer1993

M. J. Dyer. The nil Hecke ring and Deodhar’s conjecture on Bruhat intervals. Inventiones Mathematicae, 111(1):571–574, 1993.

Dynkin1952

E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras. (Russian) Mat. Sbornik N.S. 30(72):349–462, 1952.

FauserEtAl2006

B. Fauser, P. D. Jarvis, R. C. King, and B. G. Wybourne. New branching rules induced by plethysm. Journal of Physics A. 39(11):2611–2655, 2006.

Fulton1997

W. Fulton. Young Tableaux. Cambridge University Press, 1997.

FourierEtAl2009

G. Fourier, M. Okado, A. Schilling. Kirillov–Reshetikhin crystal for nonexceptional types. Advances in Mathematics, 222:1080–1116, 2009.

FourierEtAl2010

G. Fourier, M. Okado, A. Schilling. Perfectness of Kirillov-Reshetikhin crystals for nonexceptional types. Contemp. Math., 506:127–143, 2010.

HatayamaEtAl2001

G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi. Paths, crystals and fermionic formulae. in MathPhys Odyssey 2001, in : Prog. Math. Phys., vol 23, Birkhauser Boston, Boston, MA 2002, pp. 205–272.

HainesEtAl2009

T. J. Haines, R. E. Kottwitz, and A. Prasad. Iwahori-Hecke Algebras. arXiv math/0309168.

HongKang2002

J. Hong and S.-J. Kang. Introduction to Quantum Groups and Crystal Bases. AMS Graduate Studies in Mathematics, American Mathematical Society, 2002.

HongLee2008

J. Hong and H. Lee. Young tableaux and crystal \(B(\infty)\) for finite simple Lie algebras. J. Algebra, 320:3680–3693, 2008.

HoweEtAl2005

R. Howe, E.-C.Tan, and J. F. Willenbring. Stable branching rules for classical symmetric pairs. Transactions of the American Mathematical Society, 357(4):1601–1626, 2005.

Iwahori1964

N. Iwahori. On the structure of a Hecke ring of a Chevalley group over a finite field. J. Fac. Sci. Univ. Tokyo Sect. I, 10:215–236, 1964.

JayneMisra2014

R. Jayne and K. Misra, On multiplicities of maximal weights of \(\widehat{sl}(n)\)-modules. Algebr. Represent. Theory 17 (2014), no. 4, 1303–1321. arXiv 1309.4969.

Jimbo1986

M. A. Jimbo. \(q\)-analogue of \(U(\mathfrak{gl}(N+1))\), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys, 11(3):247–252, 1986.

JonesEtAl2010

B. Jones, A. Schilling. Affine structures and a tableau model for E_6 crystals J. Algebra, 324:2512-2542, 2010.

Joseph1995

A. Joseph. Quantum Groups and Their Primitive Ideals. Springer-Verlag, 1995.

Kac

Victor G. Kac. Infinite Dimensional Lie algebras, Cambridge University Press, third edition, 1994.

KacPeterson

Kac and Peterson. Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. in Math. 53 (1984), no. 2, 125-264.

KKMMNN1992

S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki. Affine crystals and vertex models. Int. J. Mod. Phys. A 7 (suppl. 1A): 449–484, 1992.

KKS2007

S.-J. Kang, J.-A. Kim, and D.-U. Shin. Modified Nakajima monomials and the crystal \(B(\infty)\). J. Algebra, 308 (2007), 524-535.

Kashiwara1993

M. Kashiwara. The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J., 71(3):839–858, 1993.

Kashiwara1995

M. Kashiwara. On crystal bases. Representations of groups (Banff, AB, 1994), 155–197, CMS Conference Proceedings, 16, American Mathematical Society, Providence, RI, 1995.

KashiwaraNakashima1994

M. Kashiwara and T. Nakashima. Crystal graphs for representations of the \(q\)-analogue of classical Lie algebras. Journal Algebra, 165(2):295–345, 1994.

KMPS

Kass, Moody, Patera and Slansky, Affine Lie algebras, weight multiplicities, and branching rules. Vols. 1, 2. University of California Press, Berkeley, CA, 1990.

KimShin2010

J.-A. Kim and D.-U. Shin. Generalized Young walls and crystal bases for quantum affine algebra of type \(A\). Proc. Amer. Math. Soc., 138(11):3877–3889, 2010.

KimLeeOh2017

Jang Soo Kim, Kyu-Hwan Lee and Se-Jin Oh, Weight multiplicities and Young tableaux through affine crystals. arXiv 1703.10321 (2017).

King1975

R. C. King. Branching rules for classical Lie groups using tensor and spinor methods. Journal of Physics A, 8:429–449, 1975.

Knuth1970

D. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific Journal of Mathematics, 34(3):709–727, 1970.

Knuth1998

D. Knuth. The Art of Computer Programming. Volume 3. Sorting and Searching. Addison Wesley Longman, 1998.

LNSSS14I

C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono. A uniform model for Kirillov-Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph. (2014) arXiv 1211.2042

LNSSS14II

C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono. A uniform model for Kirillov-Reshetikhin crystals II: Alcove model, path model, and \(P = X\). (2014) arXiv 1402.2203

L1995

P. Littelmann. Paths and root operators in representation theory. Ann. of Math. (2) 142 (1995), no. 3, 499-525.

Macdonald2003

I. Macdonald. Affine Hecke algebras and orthogonal polynomials, Cambridge, 2003.

McKayPatera1981

W. G. McKay and J. Patera. Tables of Dimensions, Indices and Branching Rules for Representations of Simple Lie Algebras. Marcel Dekker, 1981.

OkadoSchilling2008

M. Okado, A.Schilling. Existence of crystal bases for Kirillov–Reshetikhin crystals for nonexceptional types. Representation Theory 12:186–207, 2008.

Seitz1991

G. Seitz, Maximal subgroups of exceptional algebraic groups. Mem. Amer. Math. Soc. 90 (1991), no. 441.

Rubenthaler2008

H. Rubenthaler, The (A2,G2) duality in E6, octonions and the triality principle. Trans. Amer. Math. Soc. 360 (2008), no. 1, 347–367.

SalisburyScrimshaw2015

B. Salisbury and T. Scrimshaw. A rigged configuration model for \(B(\infty)\). J. Combin. Theory Ser. A, 133:29–57, 2015.

Schilling2006

A. Schilling. Crystal structure on rigged configurations. Int. Math. Res. Not., Volume 2006. (2006) Article ID 97376. Pages 1-27.

SchillingTingley2011

A. Schilling, P. Tingley. Demazure crystals, Kirillov-Reshetikhin crystals, and the energy function. preprint arXiv 1104.2359

Stanley1999

R. P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge University Press, 1999.

Testerman1989

Testerman, Donna M. A construction of certain maximal subgroups of the algebraic groups E6 and F4. J. Algebra 122 (1989), no. 2, 299–322.

Testerman1992

Testerman, Donna M. The construction of the maximal A1’s in the exceptional algebraic groups. Proc. Amer. Math. Soc. 116 (1992), no. 3, 635–644.