Formal sums#
AUTHORS:
David Harvey (2006-09-20): changed FormalSum not to derive from “list” anymore, because that breaks new Element interface
Nick Alexander (2006-12-06): added test cases.
William Stein (2006, 2009): wrote the first version in 2006, documented it in 2009.
Volker Braun (2010-07-19): new-style coercions, documentation added. FormalSums now derives from UniqueRepresentation.
- FUNCTIONS:
FormalSums(ring)
– create the module of formal finite sums withcoefficients in the given ring.
FormalSum(list of pairs (coeff, number))
– create a formal sum
EXAMPLES:
sage: A = FormalSum([(1, 2/3)]); A
2/3
sage: B = FormalSum([(3, 1/5)]); B
3*1/5
sage: -B
-3*1/5
sage: A + B
2/3 + 3*1/5
sage: A - B
2/3 - 3*1/5
sage: B*3
9*1/5
sage: 2*A
2*2/3
sage: list(2*A + A)
[(3, 2/3)]
- class sage.structure.formal_sum.FormalSum(x, parent=None, check=True, reduce=True)#
Bases:
sage.structure.element.ModuleElement
A formal sum over a ring.
- reduce()#
EXAMPLES:
sage: a = FormalSum([(-2,3), (2,3)], reduce=False); a -2*3 + 2*3 sage: a.reduce() sage: a 0
- class sage.structure.formal_sum.FormalSums#
Bases:
sage.structure.unique_representation.UniqueRepresentation
,sage.modules.module.Module
The R-module of finite formal sums with coefficients in some ring R.
EXAMPLES:
sage: FormalSums() Abelian Group of all Formal Finite Sums over Integer Ring sage: FormalSums(ZZ) Abelian Group of all Formal Finite Sums over Integer Ring sage: FormalSums(GF(7)) Abelian Group of all Formal Finite Sums over Finite Field of size 7 sage: FormalSums(ZZ[sqrt(2)]) Abelian Group of all Formal Finite Sums over Order in Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095? sage: FormalSums(GF(9,'a')) Abelian Group of all Formal Finite Sums over Finite Field in a of size 3^2
- base_extend(R)#
EXAMPLES:
sage: F7 = FormalSums(ZZ).base_extend(GF(7)); F7 Abelian Group of all Formal Finite Sums over Finite Field of size 7
The following tests against a bug that was fixed at trac ticket #18795:
sage: isinstance(F7, F7.category().parent_class) True
- sage.structure.formal_sum.formal_sums = Abelian Group of all Formal Finite Sums over Integer Ring#