Points for products of projective spaces#
This class builds on the projective space class and its point and morphism classes.
EXAMPLES:
We construct products projective spaces of various dimensions over the same ring.:
sage: P1xP1.<x,y, u,v> = ProductProjectiveSpaces(QQ, [1, 1])
sage: P1xP1([2, 1, 3, 1])
(2 : 1 , 3 : 1)
- class sage.schemes.product_projective.point.ProductProjectiveSpaces_point_field(parent, polys, check=True)#
Bases:
sage.schemes.product_projective.point.ProductProjectiveSpaces_point_ring
- intersection_multiplicity(X)#
Return the intersection multiplicity of the codomain of this point and subscheme
X
at this point.This uses the subscheme implementation of intersection_multiplicity. This point must be a point on a subscheme of a product of projective spaces.
INPUT:
X
– a subscheme in the same ambient space as the codomain of this point.
OUTPUT: An integer.
EXAMPLES:
sage: PP.<x,y,z,u,v> = ProductProjectiveSpaces(QQ, [2,1]) sage: X = PP.subscheme([y^2*z^3*u - x^5*v]) sage: Y = PP.subscheme([u^3 - v^3, x - y]) sage: Q = X([0,0,1,1,1]) sage: Q.intersection_multiplicity(Y) 2
- multiplicity()#
Return the multiplicity of this point on its codomain.
This uses the subscheme implementation of multiplicity. This point must be a point on a subscheme of a product of projective spaces.
OUTPUT: an integer.
EXAMPLES:
sage: PP.<x,y,z,w,u,v,t> = ProductProjectiveSpaces(QQ, [3,2]) sage: X = PP.subscheme([x^8*t - y^8*t + z^5*w^3*v]) sage: Q1 = X([1,1,0,0,-1,-1,1]) sage: Q1.multiplicity() 1 sage: Q2 = X([0,0,0,1,0,1,1]) sage: Q2.multiplicity() 5 sage: Q3 = X([0,0,0,1,1,0,0]) sage: Q3.multiplicity() 6
- class sage.schemes.product_projective.point.ProductProjectiveSpaces_point_finite_field(parent, polys, check=True)#
Bases:
sage.schemes.product_projective.point.ProductProjectiveSpaces_point_field
- class sage.schemes.product_projective.point.ProductProjectiveSpaces_point_ring(parent, polys, check=True)#
Bases:
sage.schemes.generic.morphism.SchemeMorphism_point
The class of points on products of projective spaces.
The components are projective space points.
EXAMPLES:
sage: T.<x,y,z,w,u> = ProductProjectiveSpaces([2, 1], QQ) sage: T.point([1, 2, 3, 4, 5]); (1/3 : 2/3 : 1 , 4/5 : 1)
- change_ring(R, **kwds)#
Return a new
ProductProjectiveSpaces_point
which is this point coerced toR
.If the keyword
check
isTrue
, then the initialization checks are performed. The user may specify the embedding intoR
with a keyword.INPUT:
R
– ring.
kwds:
check
– Boolean.embedding
– field embedding from the base ring of this point toR
.
OUTPUT:
ProductProjectiveSpaces_point
.EXAMPLES:
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([1, 1, 1], ZZ) sage: P = T.point([5, 3, 15, 4, 2, 6]); sage: P.change_ring(GF(3)) (1 : 0 , 0 : 1 , 1 : 0)
- dehomogenize(L)#
Dehomogenize \(k^{th}\) point at \(L[k]^{th}\) coordinate.
This function computes the appropriate affine patch using
L
and then returns the dehomogenized point on of this affine space.INPUT:
L
- a list of non-negative integers
OUTPUT:
SchemeMorphism_point_affine
.
EXAMPLES:
sage: PP = ProductProjectiveSpaces([2, 2, 2], QQ, 'x') sage: A = PP([2, 4, 6, 23, 46, 23, 9, 3, 1]) sage: A.dehomogenize([0, 1, 2]) (2, 3, 1/2, 1/2, 9, 3)
sage: PP.<a,b,x,y,z> = ProductProjectiveSpaces([1, 2], CC) sage: X = PP.subscheme([a^2 + b^2]) sage: P = X([2, 2*i, -3, 6*i, 3 - 6*i]) sage: P.dehomogenize([1,0]) (-1.00000000000000*I, -2.00000000000000*I, -1.00000000000000 + 2.00000000000000*I)
sage: PP = ProductProjectiveSpaces([1, 1], ZZ) sage: A = PP([0,1,2,4]) sage: A.dehomogenize([0,0]) Traceback (most recent call last): ... ValueError: can...t dehomogenize at 0 coordinate
- global_height(prec=None)#
Return the absolute logarithmic height of the point.
This function computes the maximum of global height of each component point in the product. Global height of component point is computed using function for projective point.
INPUT:
prec
– desired floating point precision (default: default RealField precision).
OUTPUT:
a real number.
EXAMPLES:
sage: PP = ProductProjectiveSpaces(QQ, [2,2], 'x') sage: Q = PP([1, 7, 5, 18, 2, 3]) sage: Q.global_height() 2.89037175789616
sage: PP = ProductProjectiveSpaces(ZZ, [1,1], 'x') sage: A = PP([-30, 2, 1, 6]) sage: A.global_height() 2.70805020110221
sage: R.<x> = PolynomialRing(QQ) sage: k.<w> = NumberField(x^2 + 5) sage: PP = ProductProjectiveSpaces(k, [1, 2], 'y') sage: Q = PP([3, 5*w+1, 1, 7*w, 10]) sage: Q.global_height() 2.75062910527236
sage: PP = ProductProjectiveSpaces(QQbar, [1, 1], 'x') sage: Q = PP([1, QQbar(sqrt(2)), QQbar(5^(1/3)), QQbar(3^(1/3))]) sage: Q.global_height() 0.536479304144700
- local_height(v, prec=None)#
Return the maximum of the local height of the coordinates of this point.
This function computes the maximum of local height of each component point in the product. Local height of component point is computed using function for projective point.
INPUT:
v
– a prime or prime ideal of the base ring.prec
– desired floating point precision (default: default RealField precision).
OUTPUT:
a real number.
EXAMPLES:
sage: PP = ProductProjectiveSpaces(QQ, [1, 1], 'x') sage: A = PP([11, 5, 10, 2]) sage: A.local_height(5) 1.60943791243410
sage: P = ProductProjectiveSpaces(QQ, [1,2], 'x') sage: Q = P([1, 4, 1/2, 2, 32]) sage: Q.local_height(2) 4.15888308335967
- normalize_coordinates()#
Remove common factors (componentwise) from the coordinates of this point (including \(-1\)).
OUTPUT: None.
EXAMPLES:
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([2, 2], ZZ) sage: P = T.point([5, 10, 15, 4, 2, 6]); sage: P.normalize_coordinates() sage: P (1 : 2 : 3 , 2 : 1 : 3)
- scale_by(t)#
Scale the coordinates of the point by
t
, done componentwise.A
TypeError
occurs if the point is not in the base ring of the codomain after scaling.INPUT:
t
– a ring element
EXAMPLES:
sage: T.<x, y, z, u, v, w> = ProductProjectiveSpaces([1, 1, 1], ZZ) sage: P = T.point([5, 10, 15, 4, 2, 6]); sage: P.scale_by([2, 1, 1]) sage: P (10 : 20 , 15 : 4 , 2 : 6)