An ANF to CNF Converter using a Dense/Sparse Strategy#
This converter is based on two converters. The first one, by Martin Albrecht, was based on [CB2007], this is the basis of the “dense” part of the converter. It was later improved by Mate Soos. The second one, by Michael Brickenstein, uses a reduced truth table based approach and forms the “sparse” part of the converter.
AUTHORS:
Martin Albrecht - (2008-09) initial version of ‘anf2cnf.py’
Michael Brickenstein - (2009) ‘cnf.py’ for PolyBoRi
Mate Soos - (2010) improved version of ‘anf2cnf.py’
Martin Albrecht - (2012) unified and added to Sage
Classes and Methods#
- class sage.sat.converters.polybori.CNFEncoder(solver, ring, max_vars_sparse=6, use_xor_clauses=None, cutting_number=6, random_seed=16)#
Bases:
sage.sat.converters.anf2cnf.ANF2CNFConverter
ANF to CNF Converter using a Dense/Sparse Strategy. This converter distinguishes two classes of polynomials.
1. Sparse polynomials are those with at most
max_vars_sparse
variables. Those are converted using reduced truth-tables based on PolyBoRi’s internal representation.2. Polynomials with more variables are converted by introducing new variables for monomials and by converting these linearised polynomials.
Linearised polynomials are converted either by splitting XOR chains – into chunks of length
cutting_number
– or by constructing XOR clauses if the underlying solver supports it. This behaviour is disabled by passinguse_xor_clauses=False
.- __init__(solver, ring, max_vars_sparse=6, use_xor_clauses=None, cutting_number=6, random_seed=16)#
Construct ANF to CNF converter over
ring
passing clauses tosolver
.INPUT:
solver
- a SAT-solver instancering
- asage.rings.polynomial.pbori.BooleanPolynomialRing
max_vars_sparse
- maximum number of variables for direct conversionuse_xor_clauses
- use XOR clauses; ifNone
use ifsolver
supports it. (default:None
)cutting_number
- maximum length of XOR chains after splitting if XOR clauses are not supported (default: 6)random_seed
- the direct conversion method uses randomness, this sets the seed (default: 16)
EXAMPLES:
We compare the sparse and the dense strategies, sparse first:
sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_sparse(a*b + a + 1) sage: _ = solver.write() sage: print(open(fn).read()) p cnf 3 2 -2 0 1 0 sage: e.phi [None, a, b, c]
Now, we convert using the dense strategy:
sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_dense(a*b + a + 1) sage: _ = solver.write() sage: print(open(fn).read()) p cnf 4 5 1 -4 0 2 -4 0 4 -1 -2 0 -4 -1 0 4 1 0 sage: e.phi [None, a, b, c, a*b]
Note
This constructor generates SAT variables for each Boolean polynomial variable.
- __call__(F)#
Encode the boolean polynomials in
F
.INPUT:
F
- an iterable ofsage.rings.polynomial.pbori.BooleanPolynomial
OUTPUT: An inverse map int -> variable
EXAMPLES:
sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B, max_vars_sparse=2) sage: e([a*b + a + 1, a*b+ a + c]) [None, a, b, c, a*b] sage: _ = solver.write() sage: print(open(fn).read()) p cnf 4 9 -2 0 1 0 1 -4 0 2 -4 0 4 -1 -2 0 -4 -1 -3 0 4 1 -3 0 4 -1 3 0 -4 1 3 0 sage: e.phi [None, a, b, c, a*b]
- clauses(f)#
Convert
f
using the sparse strategy iff.nvariables()
is at mostmax_vars_sparse
and the dense strategy otherwise.INPUT:
f
- asage.rings.polynomial.pbori.BooleanPolynomial
EXAMPLES:
sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B, max_vars_sparse=2) sage: e.clauses(a*b + a + 1) sage: _ = solver.write() sage: print(open(fn).read()) p cnf 3 2 -2 0 1 0 sage: e.phi [None, a, b, c] sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B, max_vars_sparse=2) sage: e.clauses(a*b + a + c) sage: _ = solver.write() sage: print(open(fn).read()) p cnf 4 7 1 -4 0 2 -4 0 4 -1 -2 0 -4 -1 -3 0 4 1 -3 0 4 -1 3 0 -4 1 3 0 sage: e.phi [None, a, b, c, a*b]
- clauses_dense(f)#
Convert
f
using the dense strategy.INPUT:
f
- asage.rings.polynomial.pbori.BooleanPolynomial
EXAMPLES:
sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_dense(a*b + a + 1) sage: _ = solver.write() sage: print(open(fn).read()) p cnf 4 5 1 -4 0 2 -4 0 4 -1 -2 0 -4 -1 0 4 1 0 sage: e.phi [None, a, b, c, a*b]
- clauses_sparse(f)#
Convert
f
using the sparse strategy.INPUT:
f
- asage.rings.polynomial.pbori.BooleanPolynomial
EXAMPLES:
sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_sparse(a*b + a + 1) sage: _ = solver.write() sage: print(open(fn).read()) p cnf 3 2 -2 0 1 0 sage: e.phi [None, a, b, c]
- monomial(m)#
Return SAT variable for
m
INPUT:
m
- a monomial.
OUTPUT: An index for a SAT variable corresponding to
m
.EXAMPLES:
sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_dense(a*b + a + 1) sage: e.phi [None, a, b, c, a*b]
If monomial is called on a new monomial, a new variable is created:
sage: e.monomial(a*b*c) 5 sage: e.phi [None, a, b, c, a*b, a*b*c]
If monomial is called on a monomial that was queried before, the index of the old variable is returned and no new variable is created:
sage: e.monomial(a*b) 4 sage: e.phi [None, a, b, c, a*b, a*b*c] .. note:: For correctness, this function is cached.
- permutations(length, equal_zero)#
Return permutations of length
length
which are equal to zero ifequal_zero
and equal to one otherwise.A variable is false if the integer in its position is smaller than zero and true otherwise.
INPUT:
length
– the number of variablesequal_zero
– should the sum be equal to zero?
EXAMPLES:
sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: B.<a,b,c> = BooleanPolynomialRing() sage: ce = CNFEncoder(DIMACS(), B) sage: ce.permutations(3, True) [[-1, -1, -1], [1, 1, -1], [1, -1, 1], [-1, 1, 1]] sage: ce.permutations(3, False) [[1, -1, -1], [-1, 1, -1], [-1, -1, 1], [1, 1, 1]]
- phi#
Map SAT variables to polynomial variables.
EXAMPLES:
sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: B.<a,b,c> = BooleanPolynomialRing() sage: ce = CNFEncoder(DIMACS(), B) sage: ce.var() 4 sage: ce.phi [None, a, b, c, None]
- split_xor(monomial_list, equal_zero)#
Split XOR chains into subchains.
INPUT:
monomial_list
- a list of monomialsequal_zero
- is the constant coefficient zero?
EXAMPLES:
sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing() sage: ce = CNFEncoder(DIMACS(), B, cutting_number=3) sage: ce.split_xor([1,2,3,4,5,6], False) [[[1, 7], False], [[7, 2, 8], True], [[8, 3, 9], True], [[9, 4, 10], True], [[10, 5, 11], True], [[11, 6], True]] sage: ce = CNFEncoder(DIMACS(), B, cutting_number=4) sage: ce.split_xor([1,2,3,4,5,6], False) [[[1, 2, 7], False], [[7, 3, 4, 8], True], [[8, 5, 6], True]] sage: ce = CNFEncoder(DIMACS(), B, cutting_number=5) sage: ce.split_xor([1,2,3,4,5,6], False) [[[1, 2, 3, 7], False], [[7, 4, 5, 6], True]]
- to_polynomial(c)#
Convert clause to
sage.rings.polynomial.pbori.BooleanPolynomial
INPUT:
c
- a clause
EXAMPLES:
sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B, max_vars_sparse=2) sage: _ = e([a*b + a + 1, a*b+ a + c]) sage: e.to_polynomial( (1,-2,3) ) a*b*c + a*b + b*c + b
- var(m=None, decision=None)#
Return a new variable.
This is a thin wrapper around the SAT-solvers function where we keep track of which SAT variable corresponds to which monomial.
INPUT:
m
- something the new variables maps to, usually a monomialdecision
- is this variable a decision variable?
EXAMPLES:
sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: B.<a,b,c> = BooleanPolynomialRing() sage: ce = CNFEncoder(DIMACS(), B) sage: ce.var() 4
- zero_blocks(f)#
Divide the zero set of
f
into blocks.EXAMPLES:
sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: e = CNFEncoder(DIMACS(), B) sage: sorted(sorted(d.items()) for d in e.zero_blocks(a*b*c)) [[(c, 0)], [(b, 0)], [(a, 0)]]
Note
This function is randomised.