Lazy Series#
Coefficients of lazy series are computed on demand. They have infinite precision, although equality can only be decided in special cases.
AUTHORS:
Kwankyu Lee (2019-02-24): initial version
Tejasvi Chebrolu, Martin Rubey, Travis Scrimshaw (2021-08): refactored and expanded functionality
EXAMPLES:
Laurent series over the integer ring are particularly useful as generating functions for sequences arising in combinatorics.
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
The generating function of the Fibonacci sequence is:
sage: f = 1 / (1 - z - z^2)
sage: f
1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + O(z^7)
In principle, we can now compute any coefficient of \(f\):
sage: f.coefficient(100)
573147844013817084101
Which coefficients are actually computed depends on the type of implementation. For the sparse implementation, only the coefficients which are needed are computed.
sage: s = L(lambda n: n, valuation=0); s
z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7)
sage: s.coefficient(10)
10
sage: s._coeff_stream._cache
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 10: 10}
Using the dense implementation, all coefficients up to the required coefficient are computed.
sage: L.<x> = LazyLaurentSeriesRing(ZZ, sparse=False)
sage: s = L(lambda n: n, valuation=0); s
x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + O(x^7)
sage: s.coefficient(10)
10
sage: s._coeff_stream._cache
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
We can do arithmetic with lazy power series:
sage: f
1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + O(z^7)
sage: f^-1
1 - z - z^2 + O(z^7)
sage: f + f^-1
2 + z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + O(z^7)
sage: g = (f + f^-1)*(f - f^-1); g
4*z + 6*z^2 + 8*z^3 + 19*z^4 + 38*z^5 + 71*z^6 + O(z^7)
We call lazy power series whose coefficients are known to be eventually constant ‘exact’. In some cases, computations with such series are much faster. Moreover, these are the series where equality can be decided. For example:
sage: L.<z> = LazyTaylorSeriesRing(ZZ)
sage: f = 1 + 2*z^2 / (1 - z)
sage: f - 2 / (1 - z) + 1 + 2*z
0
However, multivariate Taylor series are actually represented as streams of multivariate polynomials. Therefore, the only exact series in this case are polynomials:
sage: L.<x,y> = LazyTaylorSeriesRing(ZZ)
sage: 1 / (1-x)
1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + O(x,y)^7
A similar statement is true for lazy symmetric functions:
sage: h = SymmetricFunctions(QQ).h()
sage: L = LazySymmetricFunctions(h)
sage: 1 / (1-L(h[1]))
h[] + h[1] + (h[1,1]) + (h[1,1,1]) + (h[1,1,1,1]) + (h[1,1,1,1,1]) + (h[1,1,1,1,1,1]) + O^7
We can change the base ring:
sage: h = g.change_ring(QQ)
sage: h.parent()
Lazy Laurent Series Ring in z over Rational Field
sage: h
4*z + 6*z^2 + 8*z^3 + 19*z^4 + 38*z^5 + 71*z^6 + O(z^7)
sage: hinv = h^-1; hinv
1/4*z^-1 - 3/8 + 1/16*z - 17/32*z^2 + 5/64*z^3 - 29/128*z^4 + 165/256*z^5 + O(z^6)
sage: hinv.valuation()
-1
- class sage.rings.lazy_series.LazyCauchyProductSeries(parent, coeff_stream)#
Bases:
sage.rings.lazy_series.LazyModuleElement
A class for series where multiplication is the Cauchy product.
EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: f = 1 / (1 - z) sage: f 1 + z + z^2 + O(z^3) sage: f * (1 - z) 1 sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True) sage: f = 1 / (1 - z) sage: f 1 + z + z^2 + O(z^3)
- valuation()#
Return the valuation of
self
.This method determines the valuation of the series by looking for a nonzero coefficient. Hence if the series happens to be zero, then it may run forever.
EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: s = 1/(1 - z) - 1/(1 - 2*z) sage: s.valuation() 1 sage: t = z - z sage: t.valuation() +Infinity sage: M = L(lambda n: n^2, 0) sage: M.valuation() 1 sage: (M - M).valuation() +Infinity
- class sage.rings.lazy_series.LazyCompletionGradedAlgebraElement(parent, coeff_stream)#
Bases:
sage.rings.lazy_series.LazyCauchyProductSeries
An element of a completion of a graded algebra that is computed lazily.
- class sage.rings.lazy_series.LazyDirichletSeries(parent, coeff_stream)#
Bases:
sage.rings.lazy_series.LazyModuleElement
A Dirichlet series where the coefficients are computed lazily.
EXAMPLES:
sage: L = LazyDirichletSeriesRing(ZZ, "z") sage: f = L(constant=1)^2; f 1 + 2/2^z + 2/3^z + 3/4^z + 2/5^z + 4/6^z + 2/7^z + O(1/(8^z)) sage: f.coefficient(100) == number_of_divisors(100) True
Lazy Dirichlet series is picklable:
sage: g = loads(dumps(f)) sage: g 1 + 2/2^z + 2/3^z + 3/4^z + 2/5^z + 4/6^z + 2/7^z + O(1/(8^z)) sage: g == f True
- valuation()#
Return the valuation of
self
.This method determines the valuation of the series by looking for a nonzero coefficient. Hence if the series happens to be zero, then it may run forever.
EXAMPLES:
sage: L = LazyDirichletSeriesRing(ZZ, "z") sage: mu = L(moebius); mu.valuation() 0 sage: (mu - mu).valuation() +Infinity sage: g = L(constant=1, valuation=2) sage: g.valuation() log(2) sage: (g*g).valuation() 2*log(2)
- class sage.rings.lazy_series.LazyLaurentSeries(parent, coeff_stream)#
Bases:
sage.rings.lazy_series.LazyCauchyProductSeries
A Laurent series where the coefficients are computed lazily.
EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ)
We can build a series from a function and specify if the series eventually takes a constant value:
sage: f = L(lambda i: i, valuation=-3, constant=-1, degree=3) sage: f -3*z^-3 - 2*z^-2 - z^-1 + z + 2*z^2 - z^3 - z^4 - z^5 + O(z^6) sage: f[-2] -2 sage: f[10] -1 sage: f[-5] 0 sage: f = L(lambda i: i, valuation=-3) sage: f -3*z^-3 - 2*z^-2 - z^-1 + z + 2*z^2 + 3*z^3 + O(z^4) sage: f[20] 20
Anything that converts into a polynomial can be input, where we can also specify the valuation or if the series eventually takes a constant value:
sage: L([-5,2,0,5]) -5 + 2*z + 5*z^3 sage: L([-5,2,0,5], constant=6) -5 + 2*z + 5*z^3 + 6*z^4 + 6*z^5 + 6*z^6 + O(z^7) sage: L([-5,2,0,5], degree=6, constant=6) -5 + 2*z + 5*z^3 + 6*z^6 + 6*z^7 + 6*z^8 + O(z^9) sage: L([-5,2,0,5], valuation=-2, degree=3, constant=6) -5*z^-2 + 2*z^-1 + 5*z + 6*z^3 + 6*z^4 + 6*z^5 + O(z^6) sage: L([-5,2,0,5], valuation=5) -5*z^5 + 2*z^6 + 5*z^8 sage: L({-2:9, 3:4}, constant=2, degree=5) 9*z^-2 + 4*z^3 + 2*z^5 + 2*z^6 + 2*z^7 + O(z^8)
We can also perform arithmetic:
sage: f = 1 / (1 - z - z^2) sage: f 1 + z + 2*z^2 + 3*z^3 + 5*z^4 + 8*z^5 + 13*z^6 + O(z^7) sage: f.coefficient(100) 573147844013817084101 sage: f = (z^-2 - 1 + 2*z) / (z^-1 - z + 3*z^2) sage: f z^-1 - z^2 - z^4 + 3*z^5 + O(z^6)
However, we may not always be able to know when a result is exactly a polynomial:
sage: f * (z^-1 - z + 3*z^2) z^-2 - 1 + 2*z + O(z^5)
- approximate_series(prec, name=None)#
Return the Laurent series with absolute precision
prec
approximated from this series.INPUT:
prec
– an integername
– name of the variable; if it isNone
, the name of the variable of the series is used
OUTPUT: a Laurent series with absolute precision
prec
EXAMPLES:
sage: L = LazyLaurentSeriesRing(ZZ, 'z') sage: z = L.gen() sage: f = (z - 2*z^3)^5/(1 - 2*z) sage: f z^5 + 2*z^6 - 6*z^7 - 12*z^8 + 16*z^9 + 32*z^10 - 16*z^11 + O(z^12) sage: g = f.approximate_series(10) sage: g z^5 + 2*z^6 - 6*z^7 - 12*z^8 + 16*z^9 + O(z^10) sage: g.parent() Power Series Ring in z over Integer Ring sage: h = (f^-1).approximate_series(3) sage: h z^-5 - 2*z^-4 + 10*z^-3 - 20*z^-2 + 60*z^-1 - 120 + 280*z - 560*z^2 + O(z^3) sage: h.parent() Laurent Series Ring in z over Integer Ring
- compose(g, check)#
Return the composition of
self
withg
.Given two Laurent Series \(f\) and \(g\) over the same base ring, the composition \((f \circ g)(z) = f(g(z))\) is defined if and only if:
\(g = 0\) and \(val(f) >= 0\),
\(g\) is non-zero and \(f\) has only finitely many non-zero coefficients,
\(g\) is non-zero and \(val(g) > 0\).
INPUT:
g
– other series
EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: f = z^2 + 1 + z sage: f(0) 1 sage: f(L(0)) 1 sage: f(f) 3 + 3*z + 4*z^2 + 2*z^3 + z^4 sage: g = z^-3/(1-2*z); g z^-3 + 2*z^-2 + 4*z^-1 + 8 + 16*z + 32*z^2 + 64*z^3 + O(z^4) sage: f(g) z^-6 + 4*z^-5 + 12*z^-4 + 33*z^-3 + 82*z^-2 + 196*z^-1 + 457 + O(z) sage: g^2 + 1 + g z^-6 + 4*z^-5 + 12*z^-4 + 33*z^-3 + 82*z^-2 + 196*z^-1 + 457 + O(z) sage: f(int(2)) 7 sage: f = z^-2 + z + 4*z^3 sage: f(f) 4*z^-6 + 12*z^-3 + z^-2 + 48*z^-1 + 12 + O(z) sage: f^-2 + f + 4*f^3 4*z^-6 + 12*z^-3 + z^-2 + 48*z^-1 + 12 + O(z) sage: f(g) 4*z^-9 + 24*z^-8 + 96*z^-7 + 320*z^-6 + 960*z^-5 + 2688*z^-4 + 7169*z^-3 + O(z^-2) sage: g^-2 + g + 4*g^3 4*z^-9 + 24*z^-8 + 96*z^-7 + 320*z^-6 + 960*z^-5 + 2688*z^-4 + 7169*z^-3 + O(z^-2) sage: f = z^-3 + z^-2 + 1 / (1 + z^2); f z^-3 + z^-2 + 1 - z^2 + O(z^4) sage: g = z^3 / (1 + z - z^3); g z^3 - z^4 + z^5 - z^7 + 2*z^8 - 2*z^9 + O(z^10) sage: f(g) z^-9 + 3*z^-8 + 3*z^-7 - z^-6 - 4*z^-5 - 2*z^-4 + z^-3 + O(z^-2) sage: g^-3 + g^-2 + 1 / (1 + g^2) z^-9 + 3*z^-8 + 3*z^-7 - z^-6 - 4*z^-5 - 2*z^-4 + z^-3 + O(z^-2) sage: f = z^-3 sage: g = z^-2 + z^-1 sage: g^(-3) z^6 - 3*z^7 + 6*z^8 - 10*z^9 + 15*z^10 - 21*z^11 + 28*z^12 + O(z^13) sage: f(g) z^6 - 3*z^7 + 6*z^8 - 10*z^9 + 15*z^10 - 21*z^11 + 28*z^12 + O(z^13) sage: f = z^2 + z^3 sage: g = z^-3 + z^-2 sage: f^-3 + f^-2 z^-6 - 3*z^-5 + 7*z^-4 - 12*z^-3 + 18*z^-2 - 25*z^-1 + 33 + O(z) sage: g(f) z^-6 - 3*z^-5 + 7*z^-4 - 12*z^-3 + 18*z^-2 - 25*z^-1 + 33 + O(z) sage: g^2 + g^3 z^-9 + 3*z^-8 + 3*z^-7 + 2*z^-6 + 2*z^-5 + z^-4 sage: f(g) z^-9 + 3*z^-8 + 3*z^-7 + 2*z^-6 + 2*z^-5 + z^-4 sage: f = L(lambda n: n, valuation=0); f z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7) sage: f(z^2) z^2 + 2*z^4 + 3*z^6 + O(z^7) sage: f = L(lambda n: n, valuation=-2); f -2*z^-2 - z^-1 + z + 2*z^2 + 3*z^3 + 4*z^4 + O(z^5) sage: f3 = f(z^3); f3 -2*z^-6 - z^-3 + O(z) sage: [f3[i] for i in range(-6,13)] [-2, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4]
We compose a Laurent polynomial with a generic element:
sage: R.<x> = QQ[] sage: f = z^2 + 1 + z^-1 sage: g = x^2 + x + 3 sage: f(g) (x^6 + 3*x^5 + 12*x^4 + 19*x^3 + 37*x^2 + 28*x + 31)/(x^2 + x + 3) sage: f(g) == g^2 + 1 + g^-1 True
We compose with another lazy Laurent series:
sage: LS.<y> = LazyLaurentSeriesRing(QQ) sage: f = z^2 + 1 + z^-1 sage: fy = f(y); fy y^-1 + 1 + y^2 sage: fy.parent() is LS True sage: g = y - y sage: f(g) Traceback (most recent call last): ... ZeroDivisionError: the valuation of the series must be nonnegative sage: g = 1 - y sage: f(g) 3 - y + 2*y^2 + y^3 + y^4 + y^5 + O(y^6) sage: g^2 + 1 + g^-1 3 - y + 2*y^2 + y^3 + y^4 + y^5 + O(y^6) sage: f = L(lambda n: n, valuation=0); f z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7) sage: f(0) 0 sage: f(y) y + 2*y^2 + 3*y^3 + 4*y^4 + 5*y^5 + 6*y^6 + O(y^7) sage: fp = f(y - y) sage: fp == 0 True sage: fp.parent() is LS True sage: f = z^2 + 3 + z sage: f(y - y) 3
With both of them sparse:
sage: L.<z> = LazyLaurentSeriesRing(QQ, sparse=True) sage: LS.<y> = LazyLaurentSeriesRing(QQ, sparse=True) sage: f = L(lambda n: 1, valuation=0); f 1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + O(z^7) sage: f(y^2) 1 + y^2 + y^4 + y^6 + O(y^7) sage: fp = f - 1 + z^-2; fp z^-2 + z + z^2 + z^3 + z^4 + O(z^5) sage: fpy = fp(y^2); fpy y^-4 + y^2 + O(y^3) sage: fpy.parent() is LS True sage: [fpy[i] for i in range(-4,11)] [1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] sage: g = LS(valuation=2, constant=1); g y^2 + y^3 + y^4 + O(y^5) sage: fg = f(g); fg 1 + y^2 + y^3 + 2*y^4 + 3*y^5 + 5*y^6 + O(y^7) sage: 1 + g + g^2 + g^3 + g^4 + g^5 + g^6 1 + y^2 + y^3 + 2*y^4 + 3*y^5 + 5*y^6 + O(y^7) sage: h = LS(lambda n: 1 if n % 2 else 0, valuation=2); h y^3 + y^5 + y^7 + O(y^9) sage: fgh = fg(h); fgh 1 + y^6 + O(y^7) sage: [fgh[i] for i in range(0, 15)] [1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 6, 13] sage: t = 1 + h^2 + h^3 + 2*h^4 + 3*h^5 + 5*h^6 sage: [t[i] for i in range(0, 15)] [1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 6, 13]
We look at mixing the sparse and the dense:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: f = L(lambda n: 1, valuation=0); f 1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + O(z^7) sage: g = LS(lambda n: 1, valuation=1); g y + y^2 + y^3 + y^4 + y^5 + y^6 + y^7 + O(y^8) sage: f(g) 1 + y + 2*y^2 + 4*y^3 + 8*y^4 + 16*y^5 + 32*y^6 + O(y^7) sage: f = z^-2 + 1 + z sage: g = 1/(y*(1-y)); g y^-1 + 1 + y + O(y^2) sage: f(g) y^-1 + 2 + y + 2*y^2 - y^3 + 2*y^4 + y^5 + y^6 + y^7 + O(y^8) sage: g^-2 + 1 + g == f(g) True sage: f = z^-3 + z^-2 + 1 sage: g = 1/(y^2*(1-y)); g y^-2 + y^-1 + 1 + O(y) sage: f(g) 1 + y^4 - 2*y^5 + 2*y^6 - 3*y^7 + 3*y^8 - y^9 sage: g^-3 + g^-2 + 1 == f(g) True sage: z(y) y
We look at cases where the composition does not exist. \(g = 0\) and \(val(f) < 0\):
sage: g = L(0) sage: f = z^-1 + z^-2 sage: f.valuation() < 0 True sage: f(g) Traceback (most recent call last): ... ZeroDivisionError: the valuation of the series must be nonnegative
\(g \neq 0\) and \(val(g) \leq 0\) and \(f\) has infinitely many non-zero coefficients`:
sage: g = z^-1 + z^-2 sage: g.valuation() <= 0 True sage: f = L(lambda n: n, valuation=0) sage: f(g) Traceback (most recent call last): ... ValueError: can only compose with a positive valuation series sage: f = L(lambda n: n, valuation=1) sage: f(1 + z) Traceback (most recent call last): ... ValueError: can only compose with a positive valuation series
We compose the exponential with a Dirichlet series:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: e = L(lambda n: 1/factorial(n), 0) sage: D = LazyDirichletSeriesRing(QQ, "s") sage: g = D(constant=1)-1; g 1/(2^s) + 1/(3^s) + 1/(4^s) + O(1/(5^s)) sage: e(g)[0:10] [0, 1, 1, 1, 3/2, 1, 2, 1, 13/6, 3/2] sage: sum(g^k/factorial(k) for k in range(10))[0:10] [0, 1, 1, 1, 3/2, 1, 2, 1, 13/6, 3/2] sage: g = D([0,1,0,1,1,2]); g 1/(2^s) + 1/(4^s) + 1/(5^s) + 2/6^s sage: e(g)[0:10] [0, 1, 1, 0, 3/2, 1, 2, 0, 7/6, 0] sage: sum(g^k/factorial(k) for k in range(10))[0:10] [0, 1, 1, 0, 3/2, 1, 2, 0, 7/6, 0] sage: e(D([1,0,1])) Traceback (most recent call last): ... ValueError: can only compose with a positive valuation series sage: e5 = L(e, degree=5); e5 1 + z + 1/2*z^2 + 1/6*z^3 + 1/24*z^4 sage: e5(g) 1 + 1/(2^s) + 3/2/4^s + 1/(5^s) + 2/6^s + O(1/(8^s)) sage: sum(e5[k] * g^k for k in range(5)) 1 + 1/(2^s) + 3/2/4^s + 1/(5^s) + 2/6^s + O(1/(8^s))
The output parent is always the common parent between the base ring of \(f\) and the parent of \(g\) or extended to the corresponding lazy series:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: R.<x> = ZZ[] sage: parent(z(x)) Univariate Polynomial Ring in x over Rational Field sage: parent(z(R.zero())) Univariate Polynomial Ring in x over Rational Field sage: parent(z(0)) Rational Field sage: f = 1 / (1 - z) sage: f(x) 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + O(x^7) sage: three = L(3)(x^2); three 3 sage: parent(three) Univariate Polynomial Ring in x over Rational Field
- polynomial(degree=None, name=None)#
Return
self
as a Laurent polynomial ifself
is actually so.INPUT:
degree
–None
or an integername
– name of the variable; if it isNone
, the name of the variable of the series is used
OUTPUT:
A Laurent polynomial if the valuation of the series is negative or a polynomial otherwise.
If
degree
is notNone
, the terms of the series of degree greater thandegree
are truncated first. Ifdegree
isNone
and the series is not a polynomial or a Laurent polynomial, aValueError
is raised.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: f = L([1,0,0,2,0,0,0,3], valuation=5); f z^5 + 2*z^8 + 3*z^12 sage: f.polynomial() 3*z^12 + 2*z^8 + z^5
- revert()#
Return the compositional inverse of
self
.Given a Laurent Series \(f\). the compositional inverse is a Laurent Series \(g\) over the same base ring, such that \((f \circ g)(z) = f(g(z)) = z\).
The compositional inverse exists if and only if:
\(val(f) = 1\), or
\(f = a + b z\) with \(a b \neq 0\), or
\(f = a/z\) with \(a \neq 0\)
EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: z.revert() z + O(z^8) sage: (1/z).revert() z^-1 sage: (z-z^2).revert() z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
- class sage.rings.lazy_series.LazyModuleElement(parent, coeff_stream)#
Bases:
sage.structure.element.Element
A lazy sequence with a module structure given by term-wise addition and scalar multiplication.
EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: M = L(lambda n: n, valuation=0) sage: N = L(lambda n: 1, valuation=0) sage: M[:10] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] sage: N[:10] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Two sequences can be added:
sage: O = M + N sage: O[0:10] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Two sequences can be subtracted:
sage: P = M - N sage: P[:10] [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]
A sequence can be multiplied by a scalar:
sage: Q = 2 * M sage: Q[:10] [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
The negation of a sequence can also be found:
sage: R = -M sage: R[:10] [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
- arccos()#
Return the arccos of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(RR) sage: arccos(z) 1.57079632679490 - 1.00000000000000*z + 0.000000000000000*z^2 - 0.166666666666667*z^3 + 0.000000000000000*z^4 - 0.0750000000000000*z^5 + O(1.00000000000000*z^7) sage: L.<z> = LazyLaurentSeriesRing(SR) sage: arccos(z/(1-z)) 1/2*pi - z - z^2 - 7/6*z^3 - 3/2*z^4 - 83/40*z^5 - 73/24*z^6 + O(z^7) sage: L.<x,y> = LazyTaylorSeriesRing(SR) sage: arccos(x/(1-y)) 1/2*pi + (-x) + (-x*y) + ((-1/6)*x^3-x*y^2) + ((-1/2)*x^3*y-x*y^3) + ((-3/40)*x^5-x^3*y^2-x*y^4) + ((-3/8)*x^5*y+(-5/3)*x^3*y^3-x*y^5) + O(x,y)^7
- arccot()#
Return the arctangent of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(RR) sage: arccot(z) 1.57079632679490 - 1.00000000000000*z + 0.000000000000000*z^2 + 0.333333333333333*z^3 + 0.000000000000000*z^4 - 0.200000000000000*z^5 + O(1.00000000000000*z^7) sage: L.<z> = LazyLaurentSeriesRing(SR) sage: arccot(z/(1-z)) 1/2*pi - z - z^2 - 2/3*z^3 + 4/5*z^5 + 4/3*z^6 + O(z^7) sage: L.<x,y> = LazyTaylorSeriesRing(SR) sage: acot(x/(1-y)) 1/2*pi + (-x) + (-x*y) + (1/3*x^3-x*y^2) + (x^3*y-x*y^3) + ((-1/5)*x^5+2*x^3*y^2-x*y^4) + (-x^5*y+10/3*x^3*y^3-x*y^5) + O(x,y)^7
- arcsin()#
Return the arcsin of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: arcsin(z) z + 1/6*z^3 + 3/40*z^5 + 5/112*z^7 + O(z^8) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: asin(x/(1-y)) x + x*y + (1/6*x^3+x*y^2) + (1/2*x^3*y+x*y^3) + (3/40*x^5+x^3*y^2+x*y^4) + (3/8*x^5*y+5/3*x^3*y^3+x*y^5) + (5/112*x^7+9/8*x^5*y^2+5/2*x^3*y^4+x*y^6) + O(x,y)^8
- arcsinh()#
Return the inverse of the hyperbolic sine of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: asinh(z) z - 1/6*z^3 + 3/40*z^5 - 5/112*z^7 + O(z^8)
arcsinh
is an alias:sage: arcsinh(z) z - 1/6*z^3 + 3/40*z^5 - 5/112*z^7 + O(z^8) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: asinh(x/(1-y)) x + x*y + (-1/6*x^3+x*y^2) + (-1/2*x^3*y+x*y^3) + (3/40*x^5-x^3*y^2+x*y^4) + (3/8*x^5*y-5/3*x^3*y^3+x*y^5) + (-5/112*x^7+9/8*x^5*y^2-5/2*x^3*y^4+x*y^6) + O(x,y)^8
- arctan()#
Return the arctangent of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: arctan(z) z - 1/3*z^3 + 1/5*z^5 - 1/7*z^7 + O(z^8) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: atan(x/(1-y)) x + x*y + (-1/3*x^3+x*y^2) + (-x^3*y+x*y^3) + (1/5*x^5-2*x^3*y^2+x*y^4) + (x^5*y-10/3*x^3*y^3+x*y^5) + (-1/7*x^7+3*x^5*y^2-5*x^3*y^4+x*y^6) + O(x,y)^8
- arctanh()#
Return the inverse of the hyperbolic tangent of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: atanh(z) z + 1/3*z^3 + 1/5*z^5 + 1/7*z^7 + O(z^8)
arctanh
is an alias:sage: arctanh(z) z + 1/3*z^3 + 1/5*z^5 + 1/7*z^7 + O(z^8) sage: L.<x, y> = LazyTaylorSeriesRing(QQ) sage: atanh(x/(1-y)) x + x*y + (1/3*x^3+x*y^2) + (x^3*y+x*y^3) + (1/5*x^5+2*x^3*y^2+x*y^4) + (x^5*y+10/3*x^3*y^3+x*y^5) + (1/7*x^7+3*x^5*y^2+5*x^3*y^4+x*y^6) + O(x,y)^8
- change_ring(ring)#
Return
self
with coefficients converted to elements ofring
.INPUT:
ring
– a ring
EXAMPLES:
Dense Implementation:
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=False) sage: s = 2 + z sage: t = s.change_ring(QQ) sage: t^-1 1/2 - 1/4*z + 1/8*z^2 - 1/16*z^3 + 1/32*z^4 - 1/64*z^5 + 1/128*z^6 + O(z^7) sage: M = L(lambda n: n, valuation=0); M z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7) sage: N = M.change_ring(QQ) sage: N.parent() Lazy Laurent Series Ring in z over Rational Field sage: M.parent() Lazy Laurent Series Ring in z over Integer Ring
Sparse Implementation:
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True) sage: M = L(lambda n: n, valuation=0); M z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7) sage: M.parent() Lazy Laurent Series Ring in z over Integer Ring sage: N = M.change_ring(QQ) sage: N.parent() Lazy Laurent Series Ring in z over Rational Field sage: M^-1 z^-1 - 2 + z + O(z^6)
A Dirichlet series example:
sage: L = LazyDirichletSeriesRing(ZZ, 'z') sage: s = L(constant=2) sage: t = s.change_ring(QQ) sage: t.parent() Lazy Dirichlet Series Ring in z over Rational Field sage: t^-1 1/2 - 1/2/2^z - 1/2/3^z - 1/2/5^z + 1/2/6^z - 1/2/7^z + O(1/(8^z))
A Taylor series example:
sage: L.<z> = LazyTaylorSeriesRing(ZZ) sage: s = 2 + z sage: t = s.change_ring(QQ) sage: t^-1 1/2 - 1/4*z + 1/8*z^2 - 1/16*z^3 + 1/32*z^4 - 1/64*z^5 + 1/128*z^6 + O(z^7) sage: t.parent() Lazy Taylor Series Ring in z over Rational Field
- coefficient(n)#
Return the coefficient of the term with exponent
n
of the series.INPUT:
n
– integer; the exponent
EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=False) sage: f = z / (1 - 2*z^3) sage: [f[n] for n in range(20)] [0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32, 0, 0, 64] sage: f[0:20] [0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32, 0, 0, 64] sage: M = L(lambda n: n, valuation=0) sage: [M[n] for n in range(20)] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True) sage: M = L(lambda n: n, valuation=0) sage: [M[n] for n in range(20)] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
Similarly for Dirichlet series:
sage: L = LazyDirichletSeriesRing(ZZ, "z") sage: f = L(lambda n: n) sage: [f[n] for n in range(1, 11)] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sage: f[1:11] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sage: M = L(lambda n: n) sage: [M[n] for n in range(1, 11)] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] sage: L = LazyDirichletSeriesRing(ZZ, "z", sparse=True) sage: M = L(lambda n: n) sage: [M[n] for n in range(1, 11)] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- cos()#
Return the cosine of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: cos(z) 1 - 1/2*z^2 + 1/24*z^4 - 1/720*z^6 + O(z^7) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: cos(x/(1-y)).polynomial(4) 1/24*x^4 - 3/2*x^2*y^2 - x^2*y - 1/2*x^2 + 1
- cosh()#
Return the cosh of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: cosh(z) 1 + 1/2*z^2 + 1/24*z^4 + 1/720*z^6 + O(z^7) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: cosh(x/(1-y)) 1 + 1/2*x^2 + x^2*y + (1/24*x^4+3/2*x^2*y^2) + (1/6*x^4*y+2*x^2*y^3) + (1/720*x^6+5/12*x^4*y^2+5/2*x^2*y^4) + O(x,y)^7
- cot()#
Return the cotangent of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: cot(z) z^-1 - 1/3*z - 1/45*z^3 - 2/945*z^5 + O(z^6) sage: L.<x> = LazyLaurentSeriesRing(QQ) sage: cot(x/(1-x)).polynomial(4) x^-1 - 1 - 1/3*x - 1/3*x^2 - 16/45*x^3 - 2/5*x^4
- coth()#
Return the hyperbolic cotangent of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: coth(z) z^-1 + 1/3*z - 1/45*z^3 + 2/945*z^5 + O(z^6) sage: coth(z + z^2) z^-1 - 1 + 4/3*z - 2/3*z^2 + 44/45*z^3 - 16/15*z^4 + 884/945*z^5 + O(z^6)
- csc()#
Return the cosecant of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: csc(z) z^-1 + 1/6*z + 7/360*z^3 + 31/15120*z^5 + O(z^6) sage: L.<x> = LazyLaurentSeriesRing(QQ) sage: csc(x/(1-x)).polynomial(4) x^-1 - 1 + 1/6*x + 1/6*x^2 + 67/360*x^3 + 9/40*x^4
- csch()#
Return the hyperbolic cosecant of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: csch(z) z^-1 - 1/6*z + 7/360*z^3 - 31/15120*z^5 + O(z^6) sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: csch(z/(1-z)) z^-1 - 1 - 1/6*z - 1/6*z^2 - 53/360*z^3 - 13/120*z^4 - 787/15120*z^5 + O(z^6)
- define(s)#
Define an equation by
self = s
.INPUT:
s
– a Laurent polynomial
EXAMPLES:
We begin by constructing the Catalan numbers:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: C = L(None, valuation=0) sage: C.define(1 + z*C^2) sage: C 1 + z + 2*z^2 + 5*z^3 + 14*z^4 + 42*z^5 + 132*z^6 + O(z^7)
The Catalan numbers but with a valuation 1:
sage: B = L(None, valuation=1) sage: B.define(z + B^2) sage: B z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
We can define multiple series that are linked:
sage: s = L(None, valuation=0) sage: t = L(None, valuation=0) sage: s.define(1 + z*t^3) sage: t.define(1 + z*s^2) sage: s[:9] [1, 1, 3, 9, 34, 132, 546, 2327, 10191] sage: t[:9] [1, 1, 2, 7, 24, 95, 386, 1641, 7150]
A bigger example:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: A = L(None, valuation=5) sage: B = L(None, valuation=0) sage: C = L(None, valuation=2) sage: A.define(z^5 + B^2) sage: B.define(z^5 + C^2) sage: C.define(z^2 + C^2 + A^2) sage: A[0:15] [0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 5, 4, 14, 10, 48] sage: B[0:15] [0, 0, 0, 0, 1, 1, 2, 0, 5, 0, 14, 0, 44, 0, 138] sage: C[0:15] [0, 0, 1, 0, 1, 0, 2, 0, 5, 0, 15, 0, 44, 2, 142]
Counting binary trees:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: s = L(None, valuation=1) sage: s.define(z + (s^2+s(z^2))/2) sage: [s[i] for i in range(9)] [0, 1, 1, 1, 2, 3, 6, 11, 23]
The \(q\)-Catalan numbers:
sage: R.<q> = ZZ[] sage: L.<z> = LazyLaurentSeriesRing(R) sage: s = L(None, valuation=0) sage: s.define(1+z*s*s(q*z)) sage: s 1 + z + (q + 1)*z^2 + (q^3 + q^2 + 2*q + 1)*z^3 + (q^6 + q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 3*q + 1)*z^4 + (q^10 + q^9 + 2*q^8 + 3*q^7 + 5*q^6 + 5*q^5 + 7*q^4 + 7*q^3 + 6*q^2 + 4*q + 1)*z^5 + (q^15 + q^14 + 2*q^13 + 3*q^12 + 5*q^11 + 7*q^10 + 9*q^9 + 11*q^8 + 14*q^7 + 16*q^6 + 16*q^5 + 17*q^4 + 14*q^3 + 10*q^2 + 5*q + 1)*z^6 + O(z^7)
We count unlabeled ordered trees by total number of nodes and number of internal nodes:
sage: R.<q> = QQ[] sage: Q.<z> = LazyLaurentSeriesRing(R) sage: leaf = z sage: internal_node = q * z sage: L = Q(constant=1, degree=1) sage: T = Q(None, valuation=1) sage: T.define(leaf + internal_node * L(T)) sage: [T[i] for i in range(6)] [0, 1, q, q^2 + q, q^3 + 3*q^2 + q, q^4 + 6*q^3 + 6*q^2 + q]
Similarly for Dirichlet series:
sage: L = LazyDirichletSeriesRing(ZZ, "z") sage: g = L(constant=1, valuation=2) sage: F = L(None); F.define(1 + g*F) sage: [F[i] for i in range(1, 16)] [1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3] sage: oeis(_) # optional, internet 0: A002033: Number of perfect partitions of n. 1: A074206: Kalmár's [Kalmar's] problem: number of ordered factorizations of n. ... sage: F = L(None); F.define(1 + g*F*F) sage: [F[i] for i in range(1, 16)] [1, 1, 1, 3, 1, 5, 1, 10, 3, 5, 1, 24, 1, 5, 5]
We can compute the Frobenius character of unlabeled trees:
sage: m = SymmetricFunctions(QQ).m() sage: s = SymmetricFunctions(QQ).s() sage: L = LazySymmetricFunctions(m) sage: E = L(lambda n: s[n], valuation=0) sage: X = L(s[1]) sage: A = L(None); A.define(X*E(A, check=False)) sage: A[:6] [0, m[1], 2*m[1, 1] + m[2], 9*m[1, 1, 1] + 5*m[2, 1] + 2*m[3], 64*m[1, 1, 1, 1] + 34*m[2, 1, 1] + 18*m[2, 2] + 13*m[3, 1] + 4*m[4], 625*m[1, 1, 1, 1, 1] + 326*m[2, 1, 1, 1] + 171*m[2, 2, 1] + 119*m[3, 1, 1] + 63*m[3, 2] + 35*m[4, 1] + 9*m[5]]
- exp()#
Return the exponential series of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: exp(z) 1 + z + 1/2*z^2 + 1/6*z^3 + 1/24*z^4 + 1/120*z^5 + 1/720*z^6 + O(z^7) sage: exp(z + z^2) 1 + z + 3/2*z^2 + 7/6*z^3 + 25/24*z^4 + 27/40*z^5 + 331/720*z^6 + O(z^7) sage: exp(0) 1 sage: exp(1 + z) Traceback (most recent call last): ... ValueError: can only compose with a positive valuation series sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: exp(x+y)[4].factor() (1/24) * (x + y)^4 sage: exp(x/(1-y)).polynomial(3) 1/6*x^3 + x^2*y + x*y^2 + 1/2*x^2 + x*y + x + 1
- hypergeometric(a, b)#
Return the \({}_{p}F_{q}\)-hypergeometric function \(\,_pF_{q}\) where \((p,q)\) is the parameterization of
self
.INPUT:
a
– the first parameter of the hypergeometric functionb
– the second parameter of the hypergeometric function
EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: z.hypergeometric([1, 1], [1]) 1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + O(z^7) sage: z.hypergeometric([], []) - exp(z) O(z^7) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: (x+y).hypergeometric([1, 1], [1]).polynomial(4) x^4 + 4*x^3*y + 6*x^2*y^2 + 4*x*y^3 + y^4 + x^3 + 3*x^2*y + 3*x*y^2 + y^3 + x^2 + 2*x*y + y^2 + x + y + 1
- log()#
Return the series for the natural logarithm of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: log(1/(1-z)) z + 1/2*z^2 + 1/3*z^3 + 1/4*z^4 + 1/5*z^5 + 1/6*z^6 + 1/7*z^7 + O(z^8) sage: L.<x, y> = LazyTaylorSeriesRing(QQ) sage: log((1 + x/(1-y))).polynomial(3) 1/3*x^3 - x^2*y + x*y^2 - 1/2*x^2 + x*y + x
- map_coefficients(func, ring=None)#
Return the series with
func
applied to each nonzero coefficient ofself
.INPUT:
func
– function that takes in a coefficient and returns a new coefficient
EXAMPLES:
Dense Implementation:
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=False) sage: s = z/(1 - 2*z^2) sage: t = s.map_coefficients(lambda c: c + 1) sage: s z + 2*z^3 + 4*z^5 + 8*z^7 + O(z^8) sage: t 2*z + 3*z^3 + 5*z^5 + 9*z^7 + O(z^8) sage: m = L(lambda n: n, valuation=0); m z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7) sage: m.map_coefficients(lambda c: c + 1) 2*z + 3*z^2 + 4*z^3 + 5*z^4 + 6*z^5 + 7*z^6 + O(z^7)
Sparse Implementation:
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True) sage: m = L(lambda n: n, valuation=0); m z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7) sage: m.map_coefficients(lambda c: c + 1) 2*z + 3*z^2 + 4*z^3 + 5*z^4 + 6*z^5 + 7*z^6 + O(z^7)
An example where the series is known to be exact:
sage: f = z + z^2 + z^3 sage: f.map_coefficients(lambda c: c + 1) 2*z + 2*z^2 + 2*z^3
Similarly for Dirichlet series:
sage: L = LazyDirichletSeriesRing(ZZ, "z") sage: s = L(lambda n: n-1); s 1/(2^z) + 2/3^z + 3/4^z + 4/5^z + 5/6^z + 6/7^z + O(1/(8^z)) sage: s.map_coefficients(lambda c: c + 1) 2/2^z + 3/3^z + 4/4^z + 5/5^z + 6/6^z + 7/7^z + O(1/(8^z))
- prec()#
Return the precision of the series, which is infinity.
EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: f = 1/(1 - z) sage: f.prec() +Infinity
- sec()#
Return the secant of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: sec(z) 1 + 1/2*z^2 + 5/24*z^4 + 61/720*z^6 + O(z^7) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: sec(x/(1-y)).polynomial(4) 5/24*x^4 + 3/2*x^2*y^2 + x^2*y + 1/2*x^2 + 1
- sech()#
Return the hyperbolic secant of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: sech(z) 1 - 1/2*z^2 + 5/24*z^4 - 61/720*z^6 + O(z^7) sage: L.<x, y> = LazyTaylorSeriesRing(QQ) sage: sech(x/(1-y)) 1 + (-1/2*x^2) + (-x^2*y) + (5/24*x^4-3/2*x^2*y^2) + (5/6*x^4*y-2*x^2*y^3) + (-61/720*x^6+25/12*x^4*y^2-5/2*x^2*y^4) + O(x,y)^7
- set(s)#
Define an equation by
self = s
.INPUT:
s
– a Laurent polynomial
EXAMPLES:
We begin by constructing the Catalan numbers:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: C = L(None, valuation=0) sage: C.define(1 + z*C^2) sage: C 1 + z + 2*z^2 + 5*z^3 + 14*z^4 + 42*z^5 + 132*z^6 + O(z^7)
The Catalan numbers but with a valuation 1:
sage: B = L(None, valuation=1) sage: B.define(z + B^2) sage: B z + z^2 + 2*z^3 + 5*z^4 + 14*z^5 + 42*z^6 + 132*z^7 + O(z^8)
We can define multiple series that are linked:
sage: s = L(None, valuation=0) sage: t = L(None, valuation=0) sage: s.define(1 + z*t^3) sage: t.define(1 + z*s^2) sage: s[:9] [1, 1, 3, 9, 34, 132, 546, 2327, 10191] sage: t[:9] [1, 1, 2, 7, 24, 95, 386, 1641, 7150]
A bigger example:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: A = L(None, valuation=5) sage: B = L(None, valuation=0) sage: C = L(None, valuation=2) sage: A.define(z^5 + B^2) sage: B.define(z^5 + C^2) sage: C.define(z^2 + C^2 + A^2) sage: A[0:15] [0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 5, 4, 14, 10, 48] sage: B[0:15] [0, 0, 0, 0, 1, 1, 2, 0, 5, 0, 14, 0, 44, 0, 138] sage: C[0:15] [0, 0, 1, 0, 1, 0, 2, 0, 5, 0, 15, 0, 44, 2, 142]
Counting binary trees:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: s = L(None, valuation=1) sage: s.define(z + (s^2+s(z^2))/2) sage: [s[i] for i in range(9)] [0, 1, 1, 1, 2, 3, 6, 11, 23]
The \(q\)-Catalan numbers:
sage: R.<q> = ZZ[] sage: L.<z> = LazyLaurentSeriesRing(R) sage: s = L(None, valuation=0) sage: s.define(1+z*s*s(q*z)) sage: s 1 + z + (q + 1)*z^2 + (q^3 + q^2 + 2*q + 1)*z^3 + (q^6 + q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 3*q + 1)*z^4 + (q^10 + q^9 + 2*q^8 + 3*q^7 + 5*q^6 + 5*q^5 + 7*q^4 + 7*q^3 + 6*q^2 + 4*q + 1)*z^5 + (q^15 + q^14 + 2*q^13 + 3*q^12 + 5*q^11 + 7*q^10 + 9*q^9 + 11*q^8 + 14*q^7 + 16*q^6 + 16*q^5 + 17*q^4 + 14*q^3 + 10*q^2 + 5*q + 1)*z^6 + O(z^7)
We count unlabeled ordered trees by total number of nodes and number of internal nodes:
sage: R.<q> = QQ[] sage: Q.<z> = LazyLaurentSeriesRing(R) sage: leaf = z sage: internal_node = q * z sage: L = Q(constant=1, degree=1) sage: T = Q(None, valuation=1) sage: T.define(leaf + internal_node * L(T)) sage: [T[i] for i in range(6)] [0, 1, q, q^2 + q, q^3 + 3*q^2 + q, q^4 + 6*q^3 + 6*q^2 + q]
Similarly for Dirichlet series:
sage: L = LazyDirichletSeriesRing(ZZ, "z") sage: g = L(constant=1, valuation=2) sage: F = L(None); F.define(1 + g*F) sage: [F[i] for i in range(1, 16)] [1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3] sage: oeis(_) # optional, internet 0: A002033: Number of perfect partitions of n. 1: A074206: Kalmár's [Kalmar's] problem: number of ordered factorizations of n. ... sage: F = L(None); F.define(1 + g*F*F) sage: [F[i] for i in range(1, 16)] [1, 1, 1, 3, 1, 5, 1, 10, 3, 5, 1, 24, 1, 5, 5]
We can compute the Frobenius character of unlabeled trees:
sage: m = SymmetricFunctions(QQ).m() sage: s = SymmetricFunctions(QQ).s() sage: L = LazySymmetricFunctions(m) sage: E = L(lambda n: s[n], valuation=0) sage: X = L(s[1]) sage: A = L(None); A.define(X*E(A, check=False)) sage: A[:6] [0, m[1], 2*m[1, 1] + m[2], 9*m[1, 1, 1] + 5*m[2, 1] + 2*m[3], 64*m[1, 1, 1, 1] + 34*m[2, 1, 1] + 18*m[2, 2] + 13*m[3, 1] + 4*m[4], 625*m[1, 1, 1, 1, 1] + 326*m[2, 1, 1, 1] + 171*m[2, 2, 1] + 119*m[3, 1, 1] + 63*m[3, 2] + 35*m[4, 1] + 9*m[5]]
- shift(n)#
Return
self
with the indices shifted byn
.For example, a Laurent series is multiplied by the power \(z^n\), where \(z\) is the variable of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(ZZ) sage: f = 1 / (1 + 2*z) sage: f 1 - 2*z + 4*z^2 - 8*z^3 + 16*z^4 - 32*z^5 + 64*z^6 + O(z^7) sage: f.shift(3) z^3 - 2*z^4 + 4*z^5 - 8*z^6 + 16*z^7 - 32*z^8 + 64*z^9 + O(z^10) sage: f << -3 # shorthand z^-3 - 2*z^-2 + 4*z^-1 - 8 + 16*z - 32*z^2 + 64*z^3 + O(z^4) sage: g = z^-3 + 3 + z^2 sage: g.shift(5) z^2 + 3*z^5 + z^7 sage: L([2,0,3], valuation=2, degree=7, constant=1) << -2 2 + 3*z^2 + z^5 + z^6 + z^7 + O(z^8) sage: D = LazyDirichletSeriesRing(QQ, 't') sage: f = D([0,1,2]); f 1/(2^t) + 2/3^t sage: f.shift(3) 1/(5^t) + 2/6^t
- sin()#
Return the sine of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: sin(z) z - 1/6*z^3 + 1/120*z^5 - 1/5040*z^7 + O(z^8) sage: sin(1 + z) Traceback (most recent call last): ... ValueError: can only compose with a positive valuation series sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: sin(x/(1-y)).polynomial(3) -1/6*x^3 + x*y^2 + x*y + x
- sinh()#
Return the sinh of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: sinh(z) z + 1/6*z^3 + 1/120*z^5 + 1/5040*z^7 + O(z^8) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: sinh(x/(1-y)) x + x*y + (1/6*x^3+x*y^2) + (1/2*x^3*y+x*y^3) + (1/120*x^5+x^3*y^2+x*y^4) + (1/24*x^5*y+5/3*x^3*y^3+x*y^5) + (1/5040*x^7+1/8*x^5*y^2+5/2*x^3*y^4+x*y^6) + O(x,y)^8
- sqrt()#
Return
self^(1/2)
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: sqrt(1+z) 1 + 1/2*z - 1/8*z^2 + 1/16*z^3 - 5/128*z^4 + 7/256*z^5 - 21/1024*z^6 + O(z^7) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: sqrt(1+x/(1-y)) 1 + 1/2*x + (-1/8*x^2+1/2*x*y) + (1/16*x^3-1/4*x^2*y+1/2*x*y^2) + (-5/128*x^4+3/16*x^3*y-3/8*x^2*y^2+1/2*x*y^3) + (7/256*x^5-5/32*x^4*y+3/8*x^3*y^2-1/2*x^2*y^3+1/2*x*y^4) + (-21/1024*x^6+35/256*x^5*y-25/64*x^4*y^2+5/8*x^3*y^3-5/8*x^2*y^4+1/2*x*y^5) + O(x,y)^7
This also works for Dirichlet series:
sage: D = LazyDirichletSeriesRing(SR, "s") sage: Z = D(constant=1) sage: f = sqrt(Z) sage: f 1 + 1/2/2^s + 1/2/3^s + 3/8/4^s + 1/2/5^s + 1/4/6^s + 1/2/7^s + O(1/(8^s)) sage: f*f - Z O(1/(8^s))
- tan()#
Return the tangent of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: tan(z) z + 1/3*z^3 + 2/15*z^5 + 17/315*z^7 + O(z^8) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: tan(x/(1-y)).polynomial(5) 2/15*x^5 + 2*x^3*y^2 + x*y^4 + x^3*y + x*y^3 + 1/3*x^3 + x*y^2 + x*y + x
- tanh()#
Return the tanh of
self
.EXAMPLES:
sage: L.<z> = LazyLaurentSeriesRing(QQ) sage: tanh(z) z - 1/3*z^3 + 2/15*z^5 - 17/315*z^7 + O(z^8) sage: L.<x,y> = LazyTaylorSeriesRing(QQ) sage: tanh(x/(1-y)) x + x*y + (-1/3*x^3+x*y^2) + (-x^3*y+x*y^3) + (2/15*x^5-2*x^3*y^2+x*y^4) + (2/3*x^5*y-10/3*x^3*y^3+x*y^5) + (-17/315*x^7+2*x^5*y^2-5*x^3*y^4+x*y^6) + O(x,y)^8
- truncate(d)#
Return this series with its terms of degree >=
d
truncated.INPUT:
d
– integer; the degree from which the series is truncated
EXAMPLES:
Dense Implementation:
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=False) sage: alpha = 1/(1-z) sage: alpha 1 + z + z^2 + O(z^3) sage: beta = alpha.truncate(5) sage: beta 1 + z + z^2 + z^3 + z^4 sage: alpha - beta z^5 + z^6 + z^7 + O(z^8) sage: M = L(lambda n: n, valuation=0); M z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7) sage: M.truncate(4) z + 2*z^2 + 3*z^3
Sparse Implementation:
sage: L.<z> = LazyLaurentSeriesRing(ZZ, sparse=True) sage: M = L(lambda n: n, valuation=0); M z + 2*z^2 + 3*z^3 + 4*z^4 + 5*z^5 + 6*z^6 + O(z^7) sage: M.truncate(4) z + 2*z^2 + 3*z^3
Series which are known to be exact can also be truncated:
sage: M = z + z^2 + z^3 + z^4 sage: M.truncate(4) z + z^2 + z^3
- class sage.rings.lazy_series.LazySymmetricFunction(parent, coeff_stream)#
Bases:
sage.rings.lazy_series.LazyCompletionGradedAlgebraElement
A symmetric function where each degree is computed lazily.
EXAMPLES:
sage: s = SymmetricFunctions(ZZ).s() sage: L = LazySymmetricFunctions(s)
- plethysm(check, *args)#
Return the composition of
self
withargs
.The arity of
self
must be equal to the number of arguments provided.Given two lazy symmetric functions \(f\) and \(g\) over the same base ring, the composition (or plethysm) \((f \circ g)\) is defined if and only if:
\(g = 0\),
\(g\) is non-zero and \(f\) has only finitely many non-zero coefficients,
\(g\) is non-zero and \(val(g) > 0\).
INPUT:
args
– other (lazy) symmetric functions
EXAMPLES:
sage: P.<q> = QQ[] sage: s = SymmetricFunctions(P).s() sage: L = LazySymmetricFunctions(s) sage: f = s[2] sage: g = s[3] sage: L(f)(L(g)) - L(f(g)) 0 sage: f = s[2] + s[2,1] sage: g = s[1] + s[2,2] sage: L(f)(L(g)) - L(f(g)) 0 sage: L(f)(g) - L(f(g)) 0 sage: f = s[2] + s[2,1] sage: g = s[1] + s[2,2] sage: L(f)(L(q*g)) - L(f(q*g)) 0
The Frobenius character of the permutation action on set partitions is a plethysm:
sage: s = SymmetricFunctions(QQ).s() sage: S = LazySymmetricFunctions(s) sage: E1 = S(lambda n: s[n], valuation=1) sage: E = 1 + E1 sage: P = E(E1) sage: [s(x) for x in P[:5]] [s[], s[1], 2*s[2], s[2, 1] + 3*s[3], 2*s[2, 2] + 2*s[3, 1] + 5*s[4]]
- symmetric_function(degree=None)#
Return
self
as a symmetric function ifself
is actually so.INPUT:
degree
–None
or an integer
OUTPUT:
If
degree
is notNone
, the terms of the series of degree greater thandegree
are truncated first. Ifdegree
isNone
and the series is not a polynomial polynomial, aValueError
is raised.EXAMPLES:
sage: s = SymmetricFunctions(QQ).s() sage: S = LazySymmetricFunctions(s) sage: elt = S(s[2]) sage: elt.symmetric_function() s[2]
- class sage.rings.lazy_series.LazyTaylorSeries(parent, coeff_stream)#
Bases:
sage.rings.lazy_series.LazyCauchyProductSeries
A Taylor series where the coefficients are computed lazily.
EXAMPLES:
sage: L.<x, y> = LazyTaylorSeriesRing(ZZ) sage: f = 1 / (1 - x^2 + y^3); f 1 + x^2 + (-y^3) + x^4 + (-2*x^2*y^3) + (x^6+y^6) + O(x,y)^7 sage: P.<x, y> = PowerSeriesRing(ZZ, default_prec=101) sage: g = 1 / (1 - x^2 + y^3); f[100] - g[100] 0
Lazy Taylor series is picklable:
sage: g = loads(dumps(f)) sage: g 1 + x^2 + (-y^3) + x^4 + (-2*x^2*y^3) + (x^6+y^6) + O(x,y)^7 sage: g == f True
- compose(check, *g)#
Return the composition of
self
withg
.The arity of
self
must be equal to the number of arguments provided.Given two Taylor Series \(f\) and \(g\) over the same base ring, the composition \((f \circ g)(z) = f(g(z))\) is defined if and only if:
\(g = 0\) and \(val(f) >= 0\),
\(g\) is non-zero and \(f\) has only finitely many non-zero coefficients,
\(g\) is non-zero and \(val(g) > 0\).
INPUT:
g
– other series, all can be coerced into the same parent
EXAMPLES:
sage: L.<x, y, z> = LazyTaylorSeriesRing(QQ) sage: M.<a, b> = LazyTaylorSeriesRing(ZZ) sage: g1 = 1 / (1 - x) sage: g2 = x + y^2 sage: p = a^2 + b + 1 sage: p(g1, g2) - g1^2 - g2 - 1 O(x,y,z)^7
The number of mappings from a set with \(m\) elements to a set with \(n\) elements:
sage: M.<a> = LazyTaylorSeriesRing(QQ) sage: Ea = M(lambda n: 1/factorial(n)) sage: Ex = L(lambda n: 1/factorial(n)*x^n) sage: Ea(Ex*y)[5] 1/24*x^4*y + 2/3*x^3*y^2 + 3/4*x^2*y^3 + 1/6*x*y^4 + 1/120*y^5
So, there are \(3! 2! 2/3 = 8\) mappings from a three element set to a two element set.
We perform the composition with a lazy Laurent series:
sage: N.<w> = LazyLaurentSeriesRing(QQ) sage: f1 = 1 / (1 - w) sage: f2 = cot(w / (1 - w)) sage: p(f1, f2) w^-1 + 1 + 5/3*w + 8/3*w^2 + 164/45*w^3 + 23/5*w^4 + 5227/945*w^5 + O(w^6)
We perform the composition with a lazy Dirichlet series:
sage: D = LazyDirichletSeriesRing(QQ, "s") sage: g = D(constant=1)-1; g 1/(2^s) + 1/(3^s) + 1/(4^s) + O(1/(5^s)) sage: f = 1 / (1 - x - y*z); f 1 + x + (x^2+y*z) + (x^3+2*x*y*z) + (x^4+3*x^2*y*z+y^2*z^2) + (x^5+4*x^3*y*z+3*x*y^2*z^2) + (x^6+5*x^4*y*z+6*x^2*y^2*z^2+y^3*z^3) + O(x,y,z)^7 sage: fog = f(g, g, g); fog 1 + 1/(2^s) + 1/(3^s) + 3/4^s + 1/(5^s) + 5/6^s + O(1/(7^s)) sage: fg = 1 / (1 - g - g*g); fg 1 + 1/(2^s) + 1/(3^s) + 3/4^s + 1/(5^s) + 5/6^s + 1/(7^s) + O(1/(8^s)) sage: fog - fg O(1/(7^s)) sage: f = 1 / (1 - 2*a) sage: f(g) 1 + 2/2^s + 2/3^s + 6/4^s + 2/5^s + 10/6^s + 2/7^s + O(1/(8^s)) sage: 1 / (1 - 2*g) 1 + 2/2^s + 2/3^s + 6/4^s + 2/5^s + 10/6^s + 2/7^s + O(1/(8^s))
The output parent is always the common parent between the base ring of \(f\) and the parent of \(g\) or extended to the corresponding lazy series:
sage: T.<x,y> = LazyTaylorSeriesRing(QQ) sage: R.<a,b,c> = ZZ[] sage: S.<v> = R[] sage: L.<z> = LaurentPolynomialRing(ZZ) sage: parent(x(a, b)) Multivariate Polynomial Ring in a, b, c over Rational Field sage: parent(x(CC(2), a)) Multivariate Polynomial Ring in a, b, c over Complex Field with 53 bits of precision sage: parent(x(0, 0)) Rational Field sage: f = 1 / (1 - x - y); f 1 + (x+y) + (x^2+2*x*y+y^2) + (x^3+3*x^2*y+3*x*y^2+y^3) + (x^4+4*x^3*y+6*x^2*y^2+4*x*y^3+y^4) + (x^5+5*x^4*y+10*x^3*y^2+10*x^2*y^3+5*x*y^4+y^5) + (x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3+15*x^2*y^4+6*x*y^5+y^6) + O(x,y)^7 sage: f(a^2, b*c) 1 + (a^2+b*c) + (a^4+2*a^2*b*c+b^2*c^2) + (a^6+3*a^4*b*c+3*a^2*b^2*c^2+b^3*c^3) + O(a,b,c)^7 sage: f(v, v^2) 1 + v + 2*v^2 + 3*v^3 + 5*v^4 + 8*v^5 + 13*v^6 + O(v^7) sage: f(z, z^2 + z) 1 + 2*z + 5*z^2 + 12*z^3 + 29*z^4 + 70*z^5 + 169*z^6 + O(z^7) sage: three = T(3)(a^2, b); three 3 sage: parent(three) Multivariate Polynomial Ring in a, b, c over Rational Field
- polynomial(degree=None, names=None)#
Return
self
as a polynomial ifself
is actually so.INPUT:
degree
–None
or an integernames
– names of the variables; if it isNone
, the name of the variables of the series is used
OUTPUT:
If
degree
is notNone
, the terms of the series of degree greater thandegree
are truncated first. Ifdegree
isNone
and the series is not a polynomial polynomial, aValueError
is raised.EXAMPLES:
sage: L.<x,y> = LazyTaylorSeriesRing(ZZ) sage: f = x^2 + y*x - x + 2; f 2 + (-x) + (x^2+x*y) sage: f.polynomial() x^2 + x*y - x + 2