Semidefinite Programming#
A semidefinite program (SDP) is an optimization problem (Wikipedia article Optimization_(mathematics)>) of the following form
where the \(X_{ij}\), \(1 \leq i,j \leq n\) are \(n^2\) variables satisfying the symmetry conditions \(x_{ij} = x_{ji}\) for all \(i,j\), the \(C_{ij}=C_{ji}\), \(A_{ijk}=A_{kji}\) and \(b_k\) are real coefficients, and \(X\) is positive semidefinite, i.e., all the eigenvalues of \(X\) are nonnegative. The closely related dual problem of this one is the following, where we denote by \(A_k\) the matrix \((A_{kij})\) and by \(C\) the matrix \((C_{ij})\),
Here \((x_1,...,x_m)\) is a vector of scalar variables. A wide variety of problems in optimization can be formulated in one of these two standard forms. Then, solvers are able to calculate an approximation to a solution. Here we refer to the latter problem as primal, and to the former problem as dual. The optimal value of the dual is always at least the optimal value of the primal, and usually (although not always) they are equal.
For instance, suppose you want to maximize \(x_1 - x_0\) subject to
An SDP can give you an answer to the problem above. Here is how it’s done:
You have to create an instance of
SemidefiniteProgram
.Create a dictionary \(x\) of integer variables via
new_variable()
, for example doingx = p.new_variable()
ifp
is the name of the SDP instance.Add those two matrix inequalities as inequality constraints via
add_constraint()
.Add another matrix inequality to specify nonnegativity of \(x\).
Specify the objective function via
set_objective()
. In our case it is \(x_1 - x_0\). If it is a pure constraint satisfaction problem, specify it asNone
.To check if everything is set up correctly, you can print the problem via
show
.
Solve
it and print the solution.
The following example shows all these steps:
sage: p = SemidefiniteProgram()
sage: x = p.new_variable()
sage: p.set_objective(x[1] - x[0])
sage: a1 = matrix([[1, 2.], [2., 3.]])
sage: a2 = matrix([[3, 4.], [4., 5.]])
sage: a3 = matrix([[5, 6.], [6., 7.]])
sage: b1 = matrix([[1, 1.], [1., 1.]])
sage: b2 = matrix([[2, 2.], [2., 2.]])
sage: b3 = matrix([[3, 3.], [3., 3.]])
sage: c1 = matrix([[1.0, 0],[0,0]],sparse=True)
sage: c2 = matrix([[0.0, 0],[0,1]],sparse=True)
sage: p.add_constraint(a1*x[0] + a2*x[1] <= a3)
sage: p.add_constraint(b1*x[0] + b2*x[1] <= b3)
sage: p.add_constraint(c1*x[0] + c2*x[1] >= matrix.zero(2,2,sparse=True))
sage: p.solver_parameter("show_progress", True) # optional - cvxopt
sage: opt = p.solve() # optional - cvxopt
pcost dcost gap pres dres k/t
0: ...
...
Optimal solution found.
sage: print('Objective Value: {}'.format(N(opt,3))) # optional - cvxopt
Objective Value: 1.0
sage: [N(x, 3) for x in sorted(p.get_values(x).values())] # optional - cvxopt
[3.0e-8, 1.0]
sage: p.show() # optional - cvxopt
Maximization:
x_0 - x_1
Constraints:
constraint_0: [3.0 4.0][4.0 5.0]x_0 + [1.0 2.0][2.0 3.0]x_1 <= [5.0 6.0][6.0 7.0]
constraint_1: [2.0 2.0][2.0 2.0]x_0 + [1.0 1.0][1.0 1.0]x_1 <= [3.0 3.0][3.0 3.0]
constraint_2: [ 0.0 0.0][ 0.0 -1.0]x_0 + [-1.0 0.0][ 0.0 0.0]x_1 <= [0 0][0 0]
Variables:
x_0, x_1
Most solvers, e.g. the default Sage SDP solver CVXOPT, solve simultaneously the pair
of primal and dual problems. Thus we can get the optimizer \(X\) of the dual problem
as follows, as diagonal blocks, one per each constraint, via dual_variable()
.
E.g.:
sage: p.dual_variable(1) # rel tol 2e-03 # optional - cvxopt
[ 85555.0 -85555.0]
[-85555.0 85555.0]
We can see that the optimal value of the dual is equal (up to numerical noise) to \(opt\).:
sage: opt-((p.dual_variable(0)*a3).trace()+(p.dual_variable(1)*b3).trace()) # tol 8e-08 # optional - cvxopt
0.0
Dual variable blocks at optimality are orthogonal to “slack variables”, that is,
matrices \(C-\sum_k x_k A_k\), cf. (Primal problem) above, available via
slack()
. E.g.:
sage: (p.slack(0)*p.dual_variable(0)).trace() # tol 2e-07 # optional - cvxopt
0.0
More interesting example, the Lovasz theta
of the 7-gon:
sage: c=graphs.CycleGraph(7)
sage: c2=c.distance_graph(2).adjacency_matrix()
sage: c3=c.distance_graph(3).adjacency_matrix()
sage: p.<y>=SemidefiniteProgram()
sage: p.add_constraint((1/7)*matrix.identity(7)>=-y[0]*c2-y[1]*c3)
sage: p.set_objective(y[0]*(c2**2).trace()+y[1]*(c3**2).trace())
sage: x=p.solve(); x+1 # optional - cvxopt
3.31766...
Unlike in the previous example, the slack variable is very far from 0:
sage: p.slack(0).trace() # tol 1e-14 # optional - cvxopt
1.0
The default CVXOPT backend computes with the Real Double Field, for example:
sage: p = SemidefiniteProgram(solver='cvxopt') # optional - cvxopt
sage: p.base_ring() # optional - cvxopt
Real Double Field
sage: x = p.new_variable() # optional - cvxopt
sage: 0.5 + 3/2*x[1] # optional - cvxopt
0.5 + 1.5*x_0
For representing an SDP with exact data, there is another backend:
sage: from sage.numerical.backends.matrix_sdp_backend import MatrixSDPBackend
sage: p = SemidefiniteProgram(solver=MatrixSDPBackend, base_ring=QQ)
sage: p.base_ring()
Rational Field
sage: x = p.new_variable()
sage: 1/2 + 3/2 * x[1]
1/2 + 3/2*x_0
Linear Variables and Expressions#
To make your code more readable, you can construct
SDPVariable
objects that can be arbitrarily named and
indexed. Internally, this is then translated back to the \(x_i\)
variables. For example:
sage: sdp.<a,b> = SemidefiniteProgram()
sage: a
SDPVariable
sage: 5 + a[1] + 2*b[3]
5 + x_0 + 2*x_1
Indices can be any object, not necessarily integers. Multi-indices are also allowed:
sage: a[4, 'string', QQ]
x_2
sage: a[4, 'string', QQ] - 7*b[2]
x_2 - 7*x_3
sage: sdp.show()
Maximization:
Constraints:
Variables:
a[1], b[3], a[(4, 'string', Rational Field)], b[2]
Index of functions and methods#
Below are listed the methods of SemidefiniteProgram
. This module
also implements the SDPSolverException
exception, as well as the
SDPVariable
class.
Adds a constraint to the |
|
Return the base ring |
|
Return optimal dual variable block |
|
Return the backend instance used |
|
Return values found by the previous call to |
|
Return the parent for all linear constraints |
|
Construct a new linear function |
|
Return the parent for all linear functions |
|
Return an instance of |
|
Return the number of constraints assigned so far |
|
Return the number of variables used so far |
|
Set the objective of the |
|
Set the name of the |
|
Return the slack variable block at the optimum |
|
Display the |
|
Solve the |
|
Return or define a solver parameter |
|
Efficiently compute the sum of a sequence of LinearFunction elements |
AUTHORS:
Ingolfur Edvardsson (2014/08): added extension for exact computation
Dima Pasechnik (2014-) : supervision, minor fixes, duality
- exception sage.numerical.sdp.SDPSolverException#
Bases:
RuntimeError
Exception raised when the solver fails.
SDPSolverException
is the exception raised when the solver fails.EXAMPLES:
sage: from sage.numerical.sdp import SDPSolverException sage: SDPSolverException("Error") SDPSolverException('Error'...)
- class sage.numerical.sdp.SDPVariable#
Bases:
sage.structure.element.Element
SDPVariable
is a variable used by the classSemidefiniteProgram
.Warning
You should not instantiate this class directly. Instead, use
SemidefiniteProgram.new_variable()
.- items()#
Return the pairs (keys,value) contained in the dictionary.
EXAMPLES:
sage: p = SemidefiniteProgram() sage: v = p.new_variable() sage: p.set_objective(v[0] + v[1]) sage: sorted(v.items()) [(0, x_0), (1, x_1)]
- keys()#
Return the keys already defined in the dictionary.
EXAMPLES:
sage: p = SemidefiniteProgram() sage: v = p.new_variable() sage: p.set_objective(v[0] + v[1]) sage: sorted(v.keys()) [0, 1]
- values()#
Return the symbolic variables associated to the current dictionary.
EXAMPLES:
sage: p = SemidefiniteProgram() sage: v = p.new_variable() sage: p.set_objective(v[0] + v[1]) sage: sorted(v.values(), key=str) [x_0, x_1]
- class sage.numerical.sdp.SDPVariableParent#
Bases:
sage.structure.parent.Parent
Parent for
SDPVariable
.Warning
This class is for internal use. You should not instantiate it yourself. Use
SemidefiniteProgram.new_variable()
to generate sdp variables.- Element#
alias of
SDPVariable
- class sage.numerical.sdp.SemidefiniteProgram#
Bases:
sage.structure.sage_object.SageObject
The
SemidefiniteProgram
class is the link between Sage, semidefinite programming (SDP) and semidefinite programming solvers.A Semidefinite Programming (SDP) consists of variables, linear constraints on these variables, and an objective function which is to be maximised or minimised under these constraints.
See the Wikipedia article Semidefinite_programming for further information on semidefinite programming, and the
SDP module
for its use in Sage.INPUT:
solver
– selects a solver:CVXOPT (
solver="CVXOPT"
). See the CVXOPT website.If
solver=None
(default), the default solver is used (seedefault_sdp_solver()
)
maximization
When set to
True
(default), theSemidefiniteProgram
is defined as a maximization.When set to
False
, theSemidefiniteProgram
is defined as a minimization.
See also
default_sdp_solver()
– Returns/Sets the default SDP solver.
EXAMPLES:
Computation of a basic Semidefinite Program:
sage: p = SemidefiniteProgram(maximization=False) sage: x = p.new_variable() sage: p.set_objective(x[0] - x[1]) sage: a1 = matrix([[1, 2.], [2., 3.]]) sage: a2 = matrix([[3, 4.], [4., 5.]]) sage: a3 = matrix([[5, 6.], [6., 7.]]) sage: b1 = matrix([[1, 1.], [1., 1.]]) sage: b2 = matrix([[2, 2.], [2., 2.]]) sage: b3 = matrix([[3, 3.], [3., 3.]]) sage: p.add_constraint(a1*x[0] + a2*x[1] <= a3) sage: p.add_constraint(b1*x[0] + b2*x[1] <= b3) sage: N(p.solve(), 2) # optional - cvxopt -3.0
- add_constraint(linear_function, name=None)#
Adds a constraint to the
SemidefiniteProgram
.INPUT:
linear_function
– Two different types of arguments are possible:A linear function. In this case, arguments
min
ormax
have to be specified.A linear constraint of the form
A <= B
,A >= B
,A <= B <= C
,A >= B >= C
orA == B
. In this case, argumentsmin
andmax
will be ignored.
name
– A name for the constraint.
EXAMPLES:
Let’s solve the following semidefinite program:
\[\begin{split}\begin{aligned} \text{maximize} &\qquad x + 5y \qquad \\ \text{subject to} &\qquad \left( \begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array} \right) x + \left( \begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) y \preceq \left( \begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right) \end{aligned}\end{split}\]This SDP can be solved as follows:
sage: p = SemidefiniteProgram(maximization=True) sage: x = p.new_variable() sage: p.set_objective(x[1] + 5*x[2]) sage: a1 = matrix([[1,2],[2,3]]) sage: a2 = matrix([[1,1],[1,1]]) sage: a3 = matrix([[1,-1],[-1,1]]) sage: p.add_constraint(a1*x[1]+a2*x[2] <= a3) sage: N(p.solve(),digits=3) # optional - cvxopt 16.2
One can also define double-bounds or equality using the symbol
>=
or==
:sage: p = SemidefiniteProgram(maximization=True) sage: x = p.new_variable() sage: p.set_objective(x[1] + 5*x[2]) sage: a1 = matrix([[1,2],[2,3]]) sage: a2 = matrix([[1,1],[1,1]]) sage: a3 = matrix([[1,-1],[-1,1]]) sage: p.add_constraint(a3 >= a1*x[1] + a2*x[2]) sage: N(p.solve(),digits=3) # optional - cvxopt 16.2
- base_ring()#
Return the base ring.
OUTPUT:
A ring. The coefficients that the chosen solver supports.
EXAMPLES:
sage: p = SemidefiniteProgram(solver='cvxopt') sage: p.base_ring() Real Double Field
- dual_variable(i, sparse=False)#
The \(i\)-th dual variable.
Available after self.solve() is called, otherwise the result is undefined.
INPUT:
index
(integer) – the constraint’s id
OUTPUT:
The matrix of the \(i\)-th dual variable.
EXAMPLES:
Dual objective value is the same as the primal one:
sage: p = SemidefiniteProgram(maximization = False) sage: x = p.new_variable() sage: p.set_objective(x[0] - x[1]) sage: a1 = matrix([[1, 2.], [2., 3.]]) sage: a2 = matrix([[3, 4.], [4., 5.]]) sage: a3 = matrix([[5, 6.], [6., 7.]]) sage: b1 = matrix([[1, 1.], [1., 1.]]) sage: b2 = matrix([[2, 2.], [2., 2.]]) sage: b3 = matrix([[3, 3.], [3., 3.]]) sage: p.add_constraint(a1*x[0] + a2*x[1] <= a3) sage: p.add_constraint(b1*x[0] + b2*x[1] <= b3) sage: p.solve() # tol 1e-08 # optional - cvxopt -3.0 sage: x = p.get_values(x).values() # optional - cvxopt sage: -(a3*p.dual_variable(0)).trace()-(b3*p.dual_variable(1)).trace() # tol 1e-07 # optional - cvxopt -3.0
Dual variable is orthogonal to the slack
sage: g = sum((p.slack(j)*p.dual_variable(j)).trace() for j in range(2)); g # tol 1.2e-08 # optional - cvxopt 0.0
- gen(i)#
Return the linear variable \(x_i\).
EXAMPLES:
sage: sdp = SemidefiniteProgram() sage: sdp.gen(0) x_0 sage: [sdp.gen(i) for i in range(10)] [x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9]
- get_backend()#
Return the backend instance used.
This might be useful when access to additional functions provided by the backend is needed.
EXAMPLES:
This example prints a matrix coefficient:
sage: p = SemidefiniteProgram(solver="cvxopt") sage: x = p.new_variable() sage: a1 = matrix([[1, 2.], [2., 3.]]) sage: a2 = matrix([[3, 4.], [4., 5.]]) sage: p.add_constraint(a1*x[0] + a2*x[1] <= a1) sage: b = p.get_backend() sage: b.get_matrix()[0][0] ( [-1.0 -2.0] -1, [-2.0 -3.0] )
- get_values(*lists)#
Return values found by the previous call to
solve()
.INPUT:
Any instance of
SDPVariable
(or one of its elements), or lists of them.
OUTPUT:
Each instance of
SDPVariable
is replaced by a dictionary containing the numerical values found for each corresponding variable in the instance.Each element of an instance of a
SDPVariable
is replaced by its corresponding numerical value.
EXAMPLES:
sage: p = SemidefiniteProgram(solver = "cvxopt", maximization = False) sage: x = p.new_variable() sage: p.set_objective(x[3] - x[5]) sage: a1 = matrix([[1, 2.], [2., 3.]]) sage: a2 = matrix([[3, 4.], [4., 5.]]) sage: a3 = matrix([[5, 6.], [6., 7.]]) sage: b1 = matrix([[1, 1.], [1., 1.]]) sage: b2 = matrix([[2, 2.], [2., 2.]]) sage: b3 = matrix([[3, 3.], [3., 3.]]) sage: p.add_constraint(a1*x[3] + a2*x[5] <= a3) sage: p.add_constraint(b1*x[3] + b2*x[5] <= b3) sage: N(p.solve(),3) # optional - cvxopt -3.0
To return the optimal value of
x[3]
:sage: N(p.get_values(x[3]),3) # optional - cvxopt -1.0
To get a dictionary identical to
x
containing optimal values for the corresponding variablessage: x_sol = p.get_values(x) # optional - cvxopt sage: sorted(x_sol) # optional - cvxopt [3, 5]
- linear_constraints_parent()#
Return the parent for all linear constraints.
See
linear_functions
for more details.EXAMPLES:
sage: p = SemidefiniteProgram() sage: p.linear_constraints_parent() Linear constraints over Real Double Field
- linear_function(x)#
Construct a new linear function.
EXAMPLES:
sage: p = SemidefiniteProgram() sage: p.linear_function({0:1}) x_0
- linear_functions_parent()#
Return the parent for all linear functions.
EXAMPLES:
sage: p = SemidefiniteProgram() sage: p.linear_functions_parent() Linear functions over Real Double Field
- new_variable(name='')#
Returns an instance of
SDPVariable
associated to the current instance ofSemidefiniteProgram
.A new variable
x
is defined by:sage: p = SemidefiniteProgram() sage: x = p.new_variable()
It behaves exactly as an usual dictionary would. It can use any key argument you may like, as
x[5]
orx["b"]
, and has methodsitems()
andkeys()
.INPUT:
dim
– integer. Defines the dimension of the dictionary. Ifx
has dimension \(2\), its fields will be of the formx[key1][key2]
. Deprecated.name
– string. Associates a name to the variable.
EXAMPLES:
sage: p = SemidefiniteProgram() sage: x = p.new_variable() sage: a1 = matrix([[1, 2.], [2., 3.]]) sage: p.add_constraint(a1*x[0]+a1*x[3] <= 0) sage: p.show() Maximization: Constraints: constraint_0: [1.0 2.0][2.0 3.0]x_0 + [1.0 2.0][2.0 3.0]x_1 <= [0 0][0 0] Variables: x_0, x_1
- number_of_constraints()#
Returns the number of constraints assigned so far.
EXAMPLES:
sage: p = SemidefiniteProgram(solver = "cvxopt") sage: x = p.new_variable() sage: a1 = matrix([[1, 2.], [2., 3.]]) sage: a2 = matrix([[3, 4.], [4., 5.]]) sage: a3 = matrix([[5, 6.], [6., 7.]]) sage: b1 = matrix([[1, 1.], [1., 1.]]) sage: b2 = matrix([[2, 2.], [2., 2.]]) sage: b3 = matrix([[3, 3.], [3., 3.]]) sage: p.add_constraint(a1*x[0] + a2*x[1] <= a3) sage: p.add_constraint(b1*x[0] + b2*x[1] <= b3) sage: p.add_constraint(b1*x[0] + a2*x[1] <= b3) sage: p.number_of_constraints() 3
- number_of_variables()#
Returns the number of variables used so far.
EXAMPLES:
sage: p = SemidefiniteProgram() sage: a = matrix([[1, 2.], [2., 3.]]) sage: p.add_constraint(a*p[0] - a*p[2] <= 2*a*p[4] ) sage: p.number_of_variables() 3
- set_objective(obj)#
Sets the objective of the
SemidefiniteProgram
.INPUT:
obj
– A semidefinite function to be optimized. ( can also be set toNone
or0
when just looking for a feasible solution )
EXAMPLES:
Let’s solve the following semidefinite program:
\[\begin{split}\begin{aligned} \text{maximize} &\qquad x + 5y \qquad \\ \text{subject to} &\qquad \left( \begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array} \right) x + \left( \begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) y \preceq \left( \begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right) \end{aligned}\end{split}\]This SDP can be solved as follows:
sage: p = SemidefiniteProgram(maximization=True) sage: x = p.new_variable() sage: p.set_objective(x[1] + 5*x[2]) sage: a1 = matrix([[1,2],[2,3]]) sage: a2 = matrix([[1,1],[1,1]]) sage: a3 = matrix([[1,-1],[-1,1]]) sage: p.add_constraint(a1*x[1]+a2*x[2] <= a3) sage: N(p.solve(),digits=3) # optional - cvxopt 16.2 sage: p.set_objective(None) sage: _ = p.solve() # optional - cvxopt
- set_problem_name(name)#
Sets the name of the
SemidefiniteProgram
.INPUT:
name
– A string representing the name of theSemidefiniteProgram
.
EXAMPLES:
sage: p = SemidefiniteProgram() sage: p.set_problem_name("Test program") sage: p Semidefinite Program "Test program" ( maximization, 0 variables, 0 constraints )
- show()#
Displays the
SemidefiniteProgram
in a human-readable way.EXAMPLES:
When constraints and variables have names
sage: p = SemidefiniteProgram() sage: x = p.new_variable(name="hihi") sage: a1 = matrix([[1,2],[2,3]]) sage: a2 = matrix([[2,3],[3,4]]) sage: a3 = matrix([[3,4],[4,5]]) sage: p.set_objective(x[0] - x[1]) sage: p.add_constraint(a1*x[0]+a2*x[1]<= a3) sage: p.show() Maximization: hihi[0] - hihi[1] Constraints: constraint_0: [1.0 2.0][2.0 3.0]hihi[0] + [2.0 3.0][3.0 4.0]hihi[1] <= [3.0 4.0][4.0 5.0] Variables: hihi[0], hihi[1]
- slack(i, sparse=False)#
Slack of the \(i\)-th constraint
Available after self.solve() is called, otherwise the result is undefined
INPUT:
index
(integer) – the constraint’s id.
OUTPUT:
The matrix of the slack of the \(i\)-th constraint
EXAMPLES:
sage: p = SemidefiniteProgram(maximization = False) sage: x = p.new_variable() sage: p.set_objective(x[0] - x[1]) sage: a1 = matrix([[1, 2.], [2., 3.]]) sage: a2 = matrix([[3, 4.], [4., 5.]]) sage: a3 = matrix([[5, 6.], [6., 7.]]) sage: b1 = matrix([[1, 1.], [1., 1.]]) sage: b2 = matrix([[2, 2.], [2., 2.]]) sage: b3 = matrix([[3, 3.], [3., 3.]]) sage: p.add_constraint(a1*x[0] + a2*x[1] <= a3) sage: p.add_constraint(b1*x[0] + b2*x[1] <= b3) sage: p.solve() # tol 1e-08 # optional - cvxopt -3.0 sage: B1 = p.slack(1); B1 # tol 1e-08 # optional - cvxopt [0.0 0.0] [0.0 0.0] sage: B1.is_positive_definite() # optional - cvxopt True sage: x = sorted(p.get_values(x).values()) # optional - cvxopt sage: x[0]*b1 + x[1]*b2 - b3 + B1 # tol 1e-09 # optional - cvxopt [0.0 0.0] [0.0 0.0]
- solve(objective_only=False)#
Solves the
SemidefiniteProgram
.INPUT:
objective_only
– Boolean variable.When set to
True
, only the objective function is returned.When set to
False
(default), the optimal numerical values are stored (takes computational time).
OUTPUT:
The optimal value taken by the objective function.
- solver_parameter(name, value=None)#
Return or define a solver parameter.
The solver parameters are by essence solver-specific, which means their meaning heavily depends on the solver used.
(If you do not know which solver you are using, then you are using CVXOPT).
INPUT:
name
(string) – the parametervalue
– the parameter’s value if it is to be defined, orNone
(default) to obtain its current value.
EXAMPLES:
sage: p.<x> = SemidefiniteProgram(solver = "cvxopt", maximization = False) # optional - cvxopt sage: p.solver_parameter("show_progress", True) # optional - cvxopt sage: p.solver_parameter("show_progress") # optional - cvxopt True sage: p.set_objective(x[0] - x[1]) # optional - cvxopt sage: a1 = matrix([[1, 2.], [2., 3.]]) sage: a2 = matrix([[3, 4.], [4., 2.]]) sage: a3 = matrix([[5, 6.], [6., 7.]]) sage: b1 = matrix([[1, 1.], [1., 1.]]) sage: b2 = matrix([[2, 2.], [2., 1.]]) sage: b3 = matrix([[3, 3.], [3., 3.]]) sage: p.add_constraint(a1*x[0] + a2*x[1] <= a3) # optional - cvxopt sage: p.add_constraint(b1*x[0] + b2*x[1] <= b3) # optional - cvxopt sage: N(p.solve(),4) # optional - cvxopt pcost dcost gap pres dres k/t 0: 1... ... Optimal solution found. -11.
- sum(L)#
Efficiently computes the sum of a sequence of
LinearFunction
elements.INPUT:
L
– list ofLinearFunction
instances.
Note
The use of the regular
sum
function is not recommended as it is much less efficient than this one.EXAMPLES:
sage: p = SemidefiniteProgram() sage: v = p.new_variable()
The following command:
sage: s = p.sum(v[i] for i in range(90))
is much more efficient than:
sage: s = sum(v[i] for i in range(90))