Embeddings into ambient fields#
This module provides classes to handle embeddings of number fields into ambient fields (generally \(\RR\) or \(\CC\)).
- class sage.rings.number_field.number_field_morphisms.CyclotomicFieldConversion#
Bases:
sage.categories.map.Map
This allows one to cast one cyclotomic field in another consistently.
EXAMPLES:
sage: from sage.rings.number_field.number_field_morphisms import CyclotomicFieldConversion sage: K1.<z1> = CyclotomicField(12) sage: K2.<z2> = CyclotomicField(18) sage: f = CyclotomicFieldConversion(K1, K2) sage: f(z1^2) z2^3 sage: f(z1) Traceback (most recent call last): ... ValueError: Element z1 has no image in the codomain
Tests from trac ticket #29511:
sage: K.<z> = CyclotomicField(12) sage: K1.<z1> = CyclotomicField(3) sage: K(2) in K1 # indirect doctest True sage: K1(K(2)) # indirect doctest 2
- class sage.rings.number_field.number_field_morphisms.CyclotomicFieldEmbedding#
Bases:
sage.rings.number_field.number_field_morphisms.NumberFieldEmbedding
Specialized class for converting cyclotomic field elements into a cyclotomic field of higher order. All the real work is done by _lift_cyclotomic_element.
- section()#
Return the section of
self
.EXAMPLES:
sage: from sage.rings.number_field.number_field_morphisms import CyclotomicFieldEmbedding sage: K = CyclotomicField(7) sage: L = CyclotomicField(21) sage: f = CyclotomicFieldEmbedding(K, L) sage: h = f.section() sage: h(f(K.gen())) # indirect doctest zeta7
- class sage.rings.number_field.number_field_morphisms.EmbeddedNumberFieldConversion#
Bases:
sage.categories.map.Map
This allows one to cast one number field in another consistently, assuming they both have specified embeddings into an ambient field (by default it looks for an embedding into \(\CC\)).
This is done by factoring the minimal polynomial of the input in the number field of the codomain. This may fail if the element is not actually in the given field.
- ambient_field#
- class sage.rings.number_field.number_field_morphisms.EmbeddedNumberFieldMorphism#
Bases:
sage.rings.number_field.number_field_morphisms.NumberFieldEmbedding
This allows one to go from one number field in another consistently, assuming they both have specified embeddings into an ambient field.
If no ambient field is supplied, then the following ambient fields are tried:
the pushout of the fields where the number fields are embedded;
the algebraic closure of the previous pushout;
\(\CC\).
EXAMPLES:
sage: K.<i> = NumberField(x^2+1,embedding=QQbar(I)) sage: L.<i> = NumberField(x^2+1,embedding=-QQbar(I)) sage: from sage.rings.number_field.number_field_morphisms import EmbeddedNumberFieldMorphism sage: EmbeddedNumberFieldMorphism(K,L,CDF) Generic morphism: From: Number Field in i with defining polynomial x^2 + 1 with i = I To: Number Field in i with defining polynomial x^2 + 1 with i = -I Defn: i -> -i sage: EmbeddedNumberFieldMorphism(K,L,QQbar) Generic morphism: From: Number Field in i with defining polynomial x^2 + 1 with i = I To: Number Field in i with defining polynomial x^2 + 1 with i = -I Defn: i -> -i
- ambient_field#
- section()#
EXAMPLES:
sage: from sage.rings.number_field.number_field_morphisms import EmbeddedNumberFieldMorphism sage: K.<a> = NumberField(x^2-700, embedding=25) sage: L.<b> = NumberField(x^6-700, embedding=3) sage: f = EmbeddedNumberFieldMorphism(K, L) sage: f(2*a-1) 2*b^3 - 1 sage: g = f.section() sage: g(2*b^3-1) 2*a - 1
- class sage.rings.number_field.number_field_morphisms.NumberFieldEmbedding#
Bases:
sage.categories.morphism.Morphism
If R is a lazy field, the closest root to gen_embedding will be chosen.
EXAMPLES:
sage: x = polygen(QQ) sage: from sage.rings.number_field.number_field_morphisms import NumberFieldEmbedding sage: K.<a> = NumberField(x^3-2) sage: f = NumberFieldEmbedding(K, RLF, 1) sage: f(a)^3 2.00000000000000? sage: RealField(200)(f(a)^3) 2.0000000000000000000000000000000000000000000000000000000000 sage: sigma_a = K.polynomial().change_ring(CC).roots()[1][0]; sigma_a -0.62996052494743... - 1.09112363597172*I sage: g = NumberFieldEmbedding(K, CC, sigma_a) sage: g(a+1) 0.37003947505256... - 1.09112363597172*I
- gen_image()#
Returns the image of the generator under this embedding.
EXAMPLES:
sage: f = QuadraticField(7, 'a', embedding=2).coerce_embedding() sage: f.gen_image() 2.645751311064591?
- sage.rings.number_field.number_field_morphisms.closest(target, values, margin=1)#
This is a utility function that returns the item in values closest to target (with respect to the code{abs} function). If margin is greater than 1, and x and y are the first and second closest elements to target, then only return x if x is margin times closer to target than y, i.e. margin * abs(target-x) < abs(target-y).
- sage.rings.number_field.number_field_morphisms.create_embedding_from_approx(K, gen_image)#
Return an embedding of
K
determined bygen_image
.The codomain of the embedding is the parent of
gen_image
or, ifgen_image
is not already an exact root of the defining polynomial ofK
, the corresponding lazy field. The embedding maps the generator ofK
to a root of the defining polynomial ofK
closest togen_image
.EXAMPLES:
sage: from sage.rings.number_field.number_field_morphisms import create_embedding_from_approx sage: K.<a> = NumberField(x^3-x+1/10) sage: create_embedding_from_approx(K, 1) Generic morphism: From: Number Field in a with defining polynomial x^3 - x + 1/10 To: Real Lazy Field Defn: a -> 0.9456492739235915? sage: create_embedding_from_approx(K, 0) Generic morphism: From: Number Field in a with defining polynomial x^3 - x + 1/10 To: Real Lazy Field Defn: a -> 0.10103125788101081? sage: create_embedding_from_approx(K, -1) Generic morphism: From: Number Field in a with defining polynomial x^3 - x + 1/10 To: Real Lazy Field Defn: a -> -1.046680531804603?
We can define embeddings from one number field to another:
sage: L.<b> = NumberField(x^6-x^2+1/10) sage: create_embedding_from_approx(K, b^2) Generic morphism: From: Number Field in a with defining polynomial x^3 - x + 1/10 To: Number Field in b with defining polynomial x^6 - x^2 + 1/10 Defn: a -> b^2
If the embedding is exact, it must be valid:
sage: create_embedding_from_approx(K, b) Traceback (most recent call last): ... ValueError: b is not a root of x^3 - x + 1/10
- sage.rings.number_field.number_field_morphisms.matching_root(poly, target, ambient_field=None, margin=1, max_prec=None)#
Given a polynomial and a target, this function chooses the root that target best approximates as compared in ambient_field.
If the parent of target is exact, the equality is required, otherwise find closest root (with respect to the code{abs} function) in the ambient field to the target, and return the root of poly (if any) that approximates it best.
EXAMPLES:
sage: from sage.rings.number_field.number_field_morphisms import matching_root sage: R.<x> = CC[] sage: matching_root(x^2-2, 1.5) 1.41421356237310 sage: matching_root(x^2-2, -100.0) -1.41421356237310 sage: matching_root(x^2-2, .00000001) 1.41421356237310 sage: matching_root(x^3-1, CDF.0) -0.50000000000000... + 0.86602540378443...*I sage: matching_root(x^3-x, 2, ambient_field=RR) 1.00000000000000
- sage.rings.number_field.number_field_morphisms.root_from_approx(f, a)#
Return an exact root of the polynomial \(f\) closest to \(a\).
INPUT:
f
– polynomial with rational coefficientsa
– element of a ring
OUTPUT:
A root of
f
in the parent ofa
or, ifa
is not already an exact root off
, in the corresponding lazy field. The root is taken to be closest toa
among all roots off
.EXAMPLES:
sage: from sage.rings.number_field.number_field_morphisms import root_from_approx sage: R.<x> = QQ[] sage: root_from_approx(x^2 - 1, -1) -1 sage: root_from_approx(x^2 - 2, 1) 1.414213562373095? sage: root_from_approx(x^3 - x - 1, RR(1)) 1.324717957244746? sage: root_from_approx(x^3 - x - 1, CC.gen()) -0.6623589786223730? + 0.5622795120623013?*I sage: root_from_approx(x^2 + 1, 0) Traceback (most recent call last): ... ValueError: x^2 + 1 has no real roots sage: root_from_approx(x^2 + 1, CC(0)) -1*I sage: root_from_approx(x^2 - 2, sqrt(2)) sqrt(2) sage: root_from_approx(x^2 - 2, sqrt(3)) Traceback (most recent call last): ... ValueError: sqrt(3) is not a root of x^2 - 2