Modular forms for Hecke triangle groups#
AUTHORS:
Jonas Jermann (2013): initial version
- class sage.modular.modform_hecketriangle.abstract_space.FormsSpace_abstract(group, base_ring, k, ep, n)#
Bases:
sage.modular.modform_hecketriangle.abstract_ring.FormsRing_abstract
Abstract (Hecke) forms space.
This should never be called directly. Instead one should instantiate one of the derived classes of this class.
- Element#
alias of
sage.modular.modform_hecketriangle.element.FormsElement
- F_basis(m, order_1=0)#
Returns a weakly holomorphic element of
self
(extended if necessarily) determined by the property that the Fourier expansion is of the form is of the formq^m + O(q^(order_inf + 1))
, whereorder_inf = self._l1 - order_1
.In particular for all
m <= order_inf
these elements form a basis of the space of weakly holomorphic modular forms of the corresponding degree in casen!=infinity
.If
n=infinity
a non-trivial order of-1
can be specified through the parameterorder_1
(default: 0). Otherwise it is ignored.INPUT:
m
– An integerm <= self._l1
.order_1
– The order at-1
ofF_simple
(default: 0).This parameter is ignored if
n != infinity
.
OUTPUT:
The corresponding element in (possibly an extension of)
self
. Note that the order at-1
of the resulting element may be bigger thanorder_1
(rare).EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import WeakModularForms, CuspForms sage: MF = WeakModularForms(n=5, k=62/3, ep=-1) sage: MF.disp_prec(MF._l1+2) sage: MF.weight_parameters() (2, 3) sage: MF.F_basis(2) q^2 - 41/(200*d)*q^3 + O(q^4) sage: MF.F_basis(1) q - 13071/(640000*d^2)*q^3 + O(q^4) sage: MF.F_basis(0) 1 - 277043/(192000000*d^3)*q^3 + O(q^4) sage: MF.F_basis(-2) q^-2 - 162727620113/(40960000000000000*d^5)*q^3 + O(q^4) sage: MF.F_basis(-2).parent() == MF True sage: MF = CuspForms(n=4, k=-2, ep=1) sage: MF.weight_parameters() (-1, 3) sage: MF.F_basis(-1).parent() WeakModularForms(n=4, k=-2, ep=1) over Integer Ring sage: MF.F_basis(-1).parent().disp_prec(MF._l1+2) sage: MF.F_basis(-1) q^-1 + 80 + O(q) sage: MF.F_basis(-2) q^-2 + 400 + O(q) sage: MF = WeakModularForms(n=infinity, k=14, ep=-1) sage: MF.F_basis(3) q^3 - 48*q^4 + O(q^5) sage: MF.F_basis(2) q^2 - 1152*q^4 + O(q^5) sage: MF.F_basis(1) q - 18496*q^4 + O(q^5) sage: MF.F_basis(0) 1 - 224280*q^4 + O(q^5) sage: MF.F_basis(-1) q^-1 - 2198304*q^4 + O(q^5) sage: MF.F_basis(3, order_1=-1) q^3 + O(q^5) sage: MF.F_basis(1, order_1=2) q - 300*q^3 - 4096*q^4 + O(q^5) sage: MF.F_basis(0, order_1=2) 1 - 24*q^2 - 2048*q^3 - 98328*q^4 + O(q^5) sage: MF.F_basis(-1, order_1=2) q^-1 - 18150*q^3 - 1327104*q^4 + O(q^5)
- F_basis_pol(m, order_1=0)#
Returns a polynomial corresponding to the basis element of the corresponding space of weakly holomorphic forms of the same degree as
self
. The basis element is determined by the property that the Fourier expansion is of the formq^m + O(q^(order_inf + 1))
, whereorder_inf = self._l1 - order_1
.If
n=infinity
a non-trivial order of-1
can be specified through the parameterorder_1
(default: 0). Otherwise it is ignored.INPUT:
m
– An integerm <= self._l1
.order_1
– The order at-1
ofF_simple
(default: 0).This parameter is ignored if
n != infinity
.
OUTPUT:
A polynomial in
x,y,z,d
, corresponding tof_rho, f_i, E2
and the (possibly) transcendental parameterd
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import WeakModularForms sage: MF = WeakModularForms(n=5, k=62/3, ep=-1) sage: MF.weight_parameters() (2, 3) sage: MF.F_basis_pol(2) x^13*y*d^2 - 2*x^8*y^3*d^2 + x^3*y^5*d^2 sage: MF.F_basis_pol(1) * 100 81*x^13*y*d - 62*x^8*y^3*d - 19*x^3*y^5*d sage: MF.F_basis_pol(0) (141913*x^13*y + 168974*x^8*y^3 + 9113*x^3*y^5)/320000 sage: MF(MF.F_basis_pol(2)).q_expansion(prec=MF._l1+2) q^2 - 41/(200*d)*q^3 + O(q^4) sage: MF(MF.F_basis_pol(1)).q_expansion(prec=MF._l1+1) q + O(q^3) sage: MF(MF.F_basis_pol(0)).q_expansion(prec=MF._l1+1) 1 + O(q^3) sage: MF(MF.F_basis_pol(-2)).q_expansion(prec=MF._l1+1) q^-2 + O(q^3) sage: MF(MF.F_basis_pol(-2)).parent() WeakModularForms(n=5, k=62/3, ep=-1) over Integer Ring sage: MF = WeakModularForms(n=4, k=-2, ep=1) sage: MF.weight_parameters() (-1, 3) sage: MF.F_basis_pol(-1) x^3/(x^4*d - y^2*d) sage: MF.F_basis_pol(-2) (9*x^7 + 23*x^3*y^2)/(32*x^8*d^2 - 64*x^4*y^2*d^2 + 32*y^4*d^2) sage: MF(MF.F_basis_pol(-1)).q_expansion(prec=MF._l1+2) q^-1 + 5/(16*d) + O(q) sage: MF(MF.F_basis_pol(-2)).q_expansion(prec=MF._l1+2) q^-2 + 25/(4096*d^2) + O(q) sage: MF = WeakModularForms(n=infinity, k=14, ep=-1) sage: MF.F_basis_pol(3) -y^7*d^3 + 3*x*y^5*d^3 - 3*x^2*y^3*d^3 + x^3*y*d^3 sage: MF.F_basis_pol(2) (3*y^7*d^2 - 17*x*y^5*d^2 + 25*x^2*y^3*d^2 - 11*x^3*y*d^2)/(-8) sage: MF.F_basis_pol(1) (-75*y^7*d + 225*x*y^5*d - 1249*x^2*y^3*d + 1099*x^3*y*d)/1024 sage: MF.F_basis_pol(0) (41*y^7 - 147*x*y^5 - 1365*x^2*y^3 - 2625*x^3*y)/(-4096) sage: MF.F_basis_pol(-1) (-9075*y^9 + 36300*x*y^7 - 718002*x^2*y^5 - 4928052*x^3*y^3 - 2769779*x^4*y)/(8388608*y^2*d - 8388608*x*d) sage: MF.F_basis_pol(3, order_1=-1) (-3*y^9*d^3 + 16*x*y^7*d^3 - 30*x^2*y^5*d^3 + 24*x^3*y^3*d^3 - 7*x^4*y*d^3)/(-4*x) sage: MF.F_basis_pol(1, order_1=2) -x^2*y^3*d + x^3*y*d sage: MF.F_basis_pol(0, order_1=2) (-3*x^2*y^3 - 5*x^3*y)/(-8) sage: MF.F_basis_pol(-1, order_1=2) (-81*x^2*y^5 - 606*x^3*y^3 - 337*x^4*y)/(1024*y^2*d - 1024*x*d)
- F_simple(order_1=0)#
Return a (the most) simple normalized element of
self
corresponding to the weight parametersl1=self._l1
andl2=self._l2
. If the element does not lie inself
the type of its parent is extended accordingly.The main part of the element is given by the
(l1 - order_1)
-th power off_inf
, up to a small holomorphic correction factor.INPUT:
order_1
– An integer (default: 0) denoting the desired order at-1
in the casen = infinity
. Ifn != infinity
the parameter is ignored.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import WeakModularForms sage: MF = WeakModularForms(n=18, k=-7, ep=-1) sage: MF.disp_prec(1) sage: MF.F_simple() q^-3 + 16/(81*d)*q^-2 - 4775/(104976*d^2)*q^-1 - 14300/(531441*d^3) + O(q) sage: MF.F_simple() == MF.f_inf()^MF._l1 * MF.f_rho()^MF._l2 * MF.f_i() True sage: from sage.modular.modform_hecketriangle.space import CuspForms, ModularForms sage: MF = CuspForms(n=5, k=2, ep=-1) sage: MF._l1 -1 sage: MF.F_simple().parent() WeakModularForms(n=5, k=2, ep=-1) over Integer Ring sage: MF = ModularForms(n=infinity, k=8, ep=1) sage: MF.F_simple().reduced_parent() ModularForms(n=+Infinity, k=8, ep=1) over Integer Ring sage: MF.F_simple() q^2 - 16*q^3 + 120*q^4 + O(q^5) sage: MF.F_simple(order_1=2) 1 + 32*q + 480*q^2 + 4480*q^3 + 29152*q^4 + O(q^5)
- Faber_pol(m, order_1=0, fix_d=False, d_num_prec=None)#
Return the
m
’th Faber polynomial ofself
.Namely a polynomial
P(q)
such thatP(J_inv)*F_simple(order_1)
has a Fourier expansion of the formq^m + O(q^(order_inf + 1))
. whereorder_inf = self._l1 - order_1
andd^(order_inf - m)*P(q)
is a monic polynomial of degreeorder_inf - m
.If
n=infinity
a non-trivial order of-1
can be specified through the parameterorder_1
(default: 0). Otherwise it is ignored.The Faber polynomials are e.g. used to construct a basis of weakly holomorphic forms and to recover such forms from their initial Fourier coefficients.
INPUT:
m
– An integerm <= order_inf = self._l1 - order_1
.order_1
– The order at-1
of F_simple (default: 0).This parameter is ignored if
n != infinity
.
fix_d
– IfFalse
(default) a formal parameter is used ford
.If
True
then the numerical value ofd
is used (resp. an exact value if the group is arithmetic). Otherwise the given value is used ford
.
d_num_prec
– The precision to be used if a numerical value ford
is substituted.Default:
None
in which case the default numerical precision ofself.parent()
is used.
OUTPUT:
The corresponding Faber polynomial
P(q)
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import WeakModularForms sage: MF = WeakModularForms(n=5, k=62/3, ep=-1) sage: MF.weight_parameters() (2, 3) sage: MF.Faber_pol(2) 1 sage: MF.Faber_pol(1) 1/d*q - 19/(100*d) sage: MF.Faber_pol(0) 1/d^2*q^2 - 117/(200*d^2)*q + 9113/(320000*d^2) sage: MF.Faber_pol(-2) 1/d^4*q^4 - 11/(8*d^4)*q^3 + 41013/(80000*d^4)*q^2 - 2251291/(48000000*d^4)*q + 1974089431/(4915200000000*d^4) sage: (MF.Faber_pol(2)(MF.J_inv())*MF.F_simple()).q_expansion(prec=MF._l1+2) q^2 - 41/(200*d)*q^3 + O(q^4) sage: (MF.Faber_pol(1)(MF.J_inv())*MF.F_simple()).q_expansion(prec=MF._l1+1) q + O(q^3) sage: (MF.Faber_pol(0)(MF.J_inv())*MF.F_simple()).q_expansion(prec=MF._l1+1) 1 + O(q^3) sage: (MF.Faber_pol(-2)(MF.J_inv())*MF.F_simple()).q_expansion(prec=MF._l1+1) q^-2 + O(q^3) sage: MF.Faber_pol(2, fix_d=1) 1 sage: MF.Faber_pol(1, fix_d=1) q - 19/100 sage: MF.Faber_pol(-2, fix_d=1) q^4 - 11/8*q^3 + 41013/80000*q^2 - 2251291/48000000*q + 1974089431/4915200000000 sage: (MF.Faber_pol(2, fix_d=1)(MF.J_inv())*MF.F_simple()).q_expansion(prec=MF._l1+2, fix_d=1) q^2 - 41/200*q^3 + O(q^4) sage: (MF.Faber_pol(-2)(MF.J_inv())*MF.F_simple()).q_expansion(prec=MF._l1+1, fix_d=1) q^-2 + O(q^3) sage: MF = WeakModularForms(n=4, k=-2, ep=1) sage: MF.weight_parameters() (-1, 3) sage: MF.Faber_pol(-1) 1 sage: MF.Faber_pol(-2, fix_d=True) 256*q - 184 sage: MF.Faber_pol(-3, fix_d=True) 65536*q^2 - 73728*q + 14364 sage: (MF.Faber_pol(-1, fix_d=True)(MF.J_inv())*MF.F_simple()).q_expansion(prec=MF._l1+2, fix_d=True) q^-1 + 80 + O(q) sage: (MF.Faber_pol(-2, fix_d=True)(MF.J_inv())*MF.F_simple()).q_expansion(prec=MF._l1+2, fix_d=True) q^-2 + 400 + O(q) sage: (MF.Faber_pol(-3)(MF.J_inv())*MF.F_simple()).q_expansion(prec=MF._l1+2, fix_d=True) q^-3 + 2240 + O(q) sage: MF = WeakModularForms(n=infinity, k=14, ep=-1) sage: MF.Faber_pol(3) 1 sage: MF.Faber_pol(2) 1/d*q + 3/(8*d) sage: MF.Faber_pol(1) 1/d^2*q^2 + 75/(1024*d^2) sage: MF.Faber_pol(0) 1/d^3*q^3 - 3/(8*d^3)*q^2 + 3/(512*d^3)*q + 41/(4096*d^3) sage: MF.Faber_pol(-1) 1/d^4*q^4 - 3/(4*d^4)*q^3 + 81/(1024*d^4)*q^2 + 9075/(8388608*d^4) sage: (MF.Faber_pol(-1)(MF.J_inv())*MF.F_simple()).q_expansion(prec=MF._l1 + 1) q^-1 + O(q^4) sage: MF.Faber_pol(3, order_1=-1) 1/d*q + 3/(4*d) sage: MF.Faber_pol(1, order_1=2) 1 sage: MF.Faber_pol(0, order_1=2) 1/d*q - 3/(8*d) sage: MF.Faber_pol(-1, order_1=2) 1/d^2*q^2 - 3/(4*d^2)*q + 81/(1024*d^2) sage: (MF.Faber_pol(-1, order_1=2)(MF.J_inv())*MF.F_simple(order_1=2)).q_expansion(prec=MF._l1 + 1) q^-1 - 9075/(8388608*d^4)*q^3 + O(q^4)
- FormsElement#
alias of
sage.modular.modform_hecketriangle.element.FormsElement
- ambient_coordinate_vector(v)#
Return the coordinate vector of the element
v
inself.module()
with respect to the basis fromself.ambient_space
.NOTE:
Elements use this method (from their parent) to calculate their coordinates.
INPUT:
v
– An element ofself
.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(n=4, k=24, ep=-1) sage: MF.ambient_coordinate_vector(MF.gen(0)).parent() Vector space of dimension 3 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: MF.ambient_coordinate_vector(MF.gen(0)) (1, 0, 0) sage: subspace = MF.subspace([MF.gen(0), MF.gen(2)]) sage: subspace.ambient_coordinate_vector(subspace.gen(0)).parent() Vector space of degree 3 and dimension 2 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring Basis matrix: [1 0 0] [0 0 1] sage: subspace.ambient_coordinate_vector(subspace.gen(0)) (1, 0, 0)
- ambient_module()#
Return the module associated to the ambient space of self.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(k=12) sage: MF.ambient_module() Vector space of dimension 2 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: MF.ambient_module() == MF.module() True sage: subspace = MF.subspace([MF.gen(0)]) sage: subspace.ambient_module() == MF.module() True
- ambient_space()#
Return the ambient space of self.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(k=12) sage: MF.ambient_space() ModularForms(n=3, k=12, ep=1) over Integer Ring sage: MF.ambient_space() == MF True sage: subspace = MF.subspace([MF.gen(0)]) sage: subspace Subspace of dimension 1 of ModularForms(n=3, k=12, ep=1) over Integer Ring sage: subspace.ambient_space() == MF True
- aut_factor(gamma, t)#
The automorphy factor of
self
.INPUT:
gamma
– An element of the group ofself
.t
– An element of the upper half plane.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(n=8, k=4, ep=1) sage: full_factor = lambda mat, t: (mat[1][0]*t+mat[1][1])**4 sage: T = MF.group().T() sage: S = MF.group().S() sage: i = AlgebraicField()(i) sage: z = 1 + i/2 sage: MF.aut_factor(S, z) 3/2*I - 7/16 sage: MF.aut_factor(-T^(-2), z) 1 sage: MF.aut_factor(MF.group().V(6), z) 173.2640595631...? + 343.8133289126...?*I sage: MF.aut_factor(S, z) == full_factor(S, z) True sage: MF.aut_factor(T, z) == full_factor(T, z) True sage: MF.aut_factor(MF.group().V(6), z) == full_factor(MF.group().V(6), z) True sage: MF = ModularForms(n=7, k=14/5, ep=-1) sage: T = MF.group().T() sage: S = MF.group().S() sage: MF.aut_factor(S, z) 1.3655215324256...? + 0.056805991182877...?*I sage: MF.aut_factor(-T^(-2), z) 1 sage: MF.aut_factor(S, z) == MF.ep() * (z/i)^MF.weight() True sage: MF.aut_factor(MF.group().V(6), z) 13.23058830577...? + 15.71786610686...?*I
- change_ring(new_base_ring)#
Return the same space as
self
but over a new base ringnew_base_ring
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import CuspForms sage: CuspForms(n=5, k=24).change_ring(CC) CuspForms(n=5, k=24, ep=1) over Complex Field with 53 bits of precision
- construct_form(laurent_series, order_1=0, check=True, rationalize=False)#
Tries to construct an element of self with the given Fourier expansion. The assumption is made that the specified Fourier expansion corresponds to a weakly holomorphic modular form.
If the precision is too low to determine the element an exception is raised.
INPUT:
laurent_series
– A Laurent or Power series.order_1
– A lower bound for the order at-1
of the form (default: 0).If
n!=infinity
this parameter is ignored.
check
– IfTrue
(default) then the series expansion of the constructedform is compared against the given series.
rationalize
– IfTrue
(default:False
) then the series is\(rationalized\) beforehand. Note that in non-exact or non-arithmetic cases this is experimental and extremely unreliable!
OUTPUT:
If possible: An element of self with the same initial Fourier expansion as
laurent_series
.Note: For modular spaces it is also possible to call
self(laurent_series)
instead.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import CuspForms sage: Delta = CuspForms(k=12).Delta() sage: qexp = Delta.q_expansion(prec=2) sage: qexp.parent() Power Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: qexp q + O(q^2) sage: CuspForms(k=12).construct_form(qexp) == Delta True sage: from sage.modular.modform_hecketriangle.space import WeakModularForms sage: J_inv = WeakModularForms(n=7).J_inv() sage: qexp2 = J_inv.q_expansion(prec=1) sage: qexp2.parent() Laurent Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: qexp2 d*q^-1 + 151/392 + O(q) sage: WeakModularForms(n=7).construct_form(qexp2) == J_inv True sage: MF = WeakModularForms(n=5, k=62/3, ep=-1) sage: MF.default_prec(MF._l1+1) sage: d = MF.get_d() sage: MF.weight_parameters() (2, 3) sage: el2 = d*MF.F_basis(2) + 2*MF.F_basis(1) + MF.F_basis(-2) sage: qexp2 = el2.q_expansion() sage: qexp2.parent() Laurent Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: qexp2 q^-2 + 2*q + d*q^2 + O(q^3) sage: WeakModularForms(n=5, k=62/3, ep=-1).construct_form(qexp2) == el2 True sage: MF = WeakModularForms(n=infinity, k=-2, ep=-1) sage: el3 = MF.f_i()/MF.f_inf() + MF.f_i()*MF.f_inf()/MF.E4()^2 sage: MF.quasi_part_dimension(min_exp=-1, order_1=-2) 3 sage: prec = MF._l1 + 3 sage: qexp3 = el3.q_expansion(prec) sage: qexp3 q^-1 - 1/(4*d) + ((1024*d^2 - 33)/(1024*d^2))*q + O(q^2) sage: MF.construct_form(qexp3, order_1=-2) == el3 True sage: MF.construct_form(el3.q_expansion(prec + 1), order_1=-3) == el3 True sage: WF = WeakModularForms(n=14) sage: qexp = WF.J_inv().q_expansion_fixed_d(d_num_prec=1000) sage: qexp.parent() Laurent Series Ring in q over Real Field with 1000 bits of precision sage: WF.construct_form(qexp, rationalize=True) == WF.J_inv() doctest:...: UserWarning: Using an experimental rationalization of coefficients, please check the result for correctness! True
- construct_quasi_form(laurent_series, order_1=0, check=True, rationalize=False)#
Try to construct an element of self with the given Fourier expansion. The assumption is made that the specified Fourier expansion corresponds to a weakly holomorphic quasi modular form.
If the precision is too low to determine the element an exception is raised.
INPUT:
laurent_series
– A Laurent or Power series.order_1
– A lower bound for the order at-1
for all quasi parts of theform (default: 0). If
n!=infinity
this parameter is ignored.
check
– IfTrue
(default) then the series expansion of the constructedform is compared against the given (rationalized) series.
rationalize
– IfTrue
(default:False
) then the series is\(rationalized\) beforehand. Note that in non-exact or non-arithmetic cases this is experimental and extremely unreliable!
OUTPUT:
If possible: An element of self with the same initial Fourier expansion as
laurent_series
.Note: For non modular spaces it is also possible to call
self(laurent_series)
instead. Also note that this function works much faster if a corresponding (cached)q_basis
is available.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiWeakModularForms, ModularForms, QuasiModularForms, QuasiCuspForms sage: QF = QuasiWeakModularForms(n=8, k=10/3, ep=-1) sage: el = QF.quasi_part_gens(min_exp=-1)[4] sage: prec = QF.required_laurent_prec(min_exp=-1) sage: prec 5 sage: qexp = el.q_expansion(prec=prec) sage: qexp q^-1 - 19/(64*d) - 7497/(262144*d^2)*q + 15889/(8388608*d^3)*q^2 + 543834047/(1649267441664*d^4)*q^3 + 711869853/(43980465111040*d^5)*q^4 + O(q^5) sage: qexp.parent() Laurent Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: constructed_el = QF.construct_quasi_form(qexp) sage: constructed_el.parent() QuasiWeakModularForms(n=8, k=10/3, ep=-1) over Integer Ring sage: el == constructed_el True If a q_basis is available the construction uses a different algorithm which we also check:: sage: basis = QF.q_basis(min_exp=-1) sage: QF(qexp) == constructed_el True sage: MF = ModularForms(k=36) sage: el2 = MF.quasi_part_gens(min_exp=2)[1] sage: prec = MF.required_laurent_prec(min_exp=2) sage: prec 4 sage: qexp2 = el2.q_expansion(prec=prec + 1) sage: qexp2 q^3 - 1/(24*d)*q^4 + O(q^5) sage: qexp2.parent() Power Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: constructed_el2 = MF.construct_quasi_form(qexp2) sage: constructed_el2.parent() ModularForms(n=3, k=36, ep=1) over Integer Ring sage: el2 == constructed_el2 True sage: QF = QuasiModularForms(k=2) sage: q = QF.get_q() sage: qexp3 = 1 + O(q) sage: QF(qexp3) 1 - 24*q - 72*q^2 - 96*q^3 - 168*q^4 + O(q^5) sage: QF(qexp3) == QF.E2() True sage: QF = QuasiWeakModularForms(n=infinity, k=2, ep=-1) sage: el4 = QF.f_i() + QF.f_i()^3/QF.E4() sage: prec = QF.required_laurent_prec(order_1=-1) sage: qexp4 = el4.q_expansion(prec=prec) sage: qexp4 2 - 7/(4*d)*q + 195/(256*d^2)*q^2 - 903/(4096*d^3)*q^3 + 41987/(1048576*d^4)*q^4 - 181269/(33554432*d^5)*q^5 + O(q^6) sage: QF.construct_quasi_form(qexp4, check=False) == el4 False sage: QF.construct_quasi_form(qexp4, order_1=-1) == el4 True sage: QF = QuasiCuspForms(n=8, k=22/3, ep=-1) sage: el = QF(QF.f_inf()*QF.E2()) sage: qexp = el.q_expansion_fixed_d(d_num_prec=1000) sage: qexp.parent() Power Series Ring in q over Real Field with 1000 bits of precision sage: QF.construct_quasi_form(qexp, rationalize=True) == el True
- construction()#
Return a functor that constructs
self
(used by the coercion machinery).EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: QuasiModularForms(n=4, k=2, ep=1, base_ring=CC).construction() (QuasiModularFormsFunctor(n=4, k=2, ep=1), BaseFacade(Complex Field with 53 bits of precision)) sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF=ModularForms(k=12) sage: MF.subspace([MF.gen(1)]).construction() (FormsSubSpaceFunctor with 1 generator for the ModularFormsFunctor(n=3, k=12, ep=1), BaseFacade(Integer Ring))
- contains_coeff_ring()#
Return whether
self
contains its coefficient ring.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: QuasiModularForms(k=0, ep=1, n=8).contains_coeff_ring() True sage: QuasiModularForms(k=0, ep=-1, n=8).contains_coeff_ring() False
- coordinate_vector(v)#
This method should be overloaded by subclasses.
Return the coordinate vector of the element
v
with respect toself.gens()
.NOTE:
Elements use this method (from their parent) to calculate their coordinates.
INPUT:
v
– An element ofself
.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(n=4, k=24, ep=-1) sage: MF.coordinate_vector(MF.gen(0)).parent() # defined in space.py Vector space of dimension 3 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: MF.coordinate_vector(MF.gen(0)) # defined in space.py (1, 0, 0) sage: subspace = MF.subspace([MF.gen(0), MF.gen(2)]) sage: subspace.coordinate_vector(subspace.gen(0)).parent() # defined in subspace.py Vector space of dimension 2 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: subspace.coordinate_vector(subspace.gen(0)) # defined in subspace.py (1, 0)
- degree()#
Return the degree of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(n=4, k=24, ep=-1) sage: MF.degree() 3 sage: MF.subspace([MF.gen(0), MF.gen(2)]).degree() # defined in subspace.py 3
- dimension()#
Return the dimension of
self
.Note
This method should be overloaded by subclasses.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiMeromorphicModularForms sage: QuasiMeromorphicModularForms(k=2, ep=-1).dimension() +Infinity
- element_from_ambient_coordinates(vec)#
If
self
has an associated free module, then return the element ofself
corresponding to the givenvec
. Otherwise raise an exception.INPUT:
vec
– An element ofself.module()
orself.ambient_module()
.
OUTPUT:
An element of
self
corresponding tovec
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(k=24) sage: MF.dimension() 3 sage: el = MF.element_from_ambient_coordinates([1,1,1]) sage: el == MF.element_from_coordinates([1,1,1]) True sage: el.parent() == MF True sage: subspace = MF.subspace([MF.gen(0), MF.gen(1)]) sage: el = subspace.element_from_ambient_coordinates([1,1,0]) sage: el 1 + q + 52611660*q^3 + 39019412128*q^4 + O(q^5) sage: el.parent() == subspace True
- element_from_coordinates(vec)#
If
self
has an associated free module, then return the element ofself
corresponding to the given coordinate vectorvec
. Otherwise raise an exception.INPUT:
vec
– A coordinate vector with respect toself.gens()
.
OUTPUT:
An element of
self
corresponding to the coordinate vectorvec
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(k=24) sage: MF.dimension() 3 sage: el = MF.element_from_coordinates([1,1,1]) sage: el 1 + q + q^2 + 52611612*q^3 + 39019413208*q^4 + O(q^5) sage: el == MF.gen(0) + MF.gen(1) + MF.gen(2) True sage: el.parent() == MF True sage: subspace = MF.subspace([MF.gen(0), MF.gen(1)]) sage: el = subspace.element_from_coordinates([1,1]) sage: el 1 + q + 52611660*q^3 + 39019412128*q^4 + O(q^5) sage: el == subspace.gen(0) + subspace.gen(1) True sage: el.parent() == subspace True
- ep()#
Return the multiplier of (elements of)
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: QuasiModularForms(n=16, k=16/7, ep=-1).ep() -1
- faber_pol(m, order_1=0, fix_d=False, d_num_prec=None)#
If
n=infinity
a non-trivial order of-1
can be specified through the parameterorder_1
(default: 0). Otherwise it is ignored. Return the \(m\)’th Faber polynomial ofself
with a different normalization based onj_inv
instead ofJ_inv
.Namely a polynomial
p(q)
such thatp(j_inv)*F_simple()
has a Fourier expansion of the formq^m + O(q^(order_inf + 1))
. whereorder_inf = self._l1 - order_1
andp(q)
is a monic polynomial of degreeorder_inf - m
.If
n=infinity
a non-trivial order of-1
can be specified through the parameterorder_1
(default: 0). Otherwise it is ignored.The relation to
Faber_pol
is:faber_pol(q) = Faber_pol(d*q)
.INPUT:
m
– An integerm <= self._l1 - order_1
.order_1
– The order at-1
ofF_simple
(default: 0).This parameter is ignored if
n != infinity
.
fix_d
– IfFalse
(default) a formal parameter is used ford
.If
True
then the numerical value ofd
is used (resp. an exact value if the group is arithmetic). Otherwise the given value is used ford
.
d_num_prec
– The precision to be used if a numerical value ford
is substituted.Default:
None
in which case the default numerical precision ofself.parent()
is used.
OUTPUT:
The corresponding Faber polynomial
p(q)
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import WeakModularForms sage: MF = WeakModularForms(n=5, k=62/3, ep=-1) sage: MF.weight_parameters() (2, 3) sage: MF.faber_pol(2) 1 sage: MF.faber_pol(1) q - 19/(100*d) sage: MF.faber_pol(0) q^2 - 117/(200*d)*q + 9113/(320000*d^2) sage: MF.faber_pol(-2) q^4 - 11/(8*d)*q^3 + 41013/(80000*d^2)*q^2 - 2251291/(48000000*d^3)*q + 1974089431/(4915200000000*d^4) sage: (MF.faber_pol(2)(MF.j_inv())*MF.F_simple()).q_expansion(prec=MF._l1+2) q^2 - 41/(200*d)*q^3 + O(q^4) sage: (MF.faber_pol(1)(MF.j_inv())*MF.F_simple()).q_expansion(prec=MF._l1+1) q + O(q^3) sage: (MF.faber_pol(0)(MF.j_inv())*MF.F_simple()).q_expansion(prec=MF._l1+1) 1 + O(q^3) sage: (MF.faber_pol(-2)(MF.j_inv())*MF.F_simple()).q_expansion(prec=MF._l1+1) q^-2 + O(q^3) sage: MF = WeakModularForms(n=4, k=-2, ep=1) sage: MF.weight_parameters() (-1, 3) sage: MF.faber_pol(-1) 1 sage: MF.faber_pol(-2, fix_d=True) q - 184 sage: MF.faber_pol(-3, fix_d=True) q^2 - 288*q + 14364 sage: (MF.faber_pol(-1, fix_d=True)(MF.j_inv())*MF.F_simple()).q_expansion(prec=MF._l1+2, fix_d=True) q^-1 + 80 + O(q) sage: (MF.faber_pol(-2, fix_d=True)(MF.j_inv())*MF.F_simple()).q_expansion(prec=MF._l1+2, fix_d=True) q^-2 + 400 + O(q) sage: (MF.faber_pol(-3)(MF.j_inv())*MF.F_simple()).q_expansion(prec=MF._l1+2, fix_d=True) q^-3 + 2240 + O(q) sage: MF = WeakModularForms(n=infinity, k=14, ep=-1) sage: MF.faber_pol(3) 1 sage: MF.faber_pol(2) q + 3/(8*d) sage: MF.faber_pol(1) q^2 + 75/(1024*d^2) sage: MF.faber_pol(0) q^3 - 3/(8*d)*q^2 + 3/(512*d^2)*q + 41/(4096*d^3) sage: MF.faber_pol(-1) q^4 - 3/(4*d)*q^3 + 81/(1024*d^2)*q^2 + 9075/(8388608*d^4) sage: (MF.faber_pol(-1)(MF.j_inv())*MF.F_simple()).q_expansion(prec=MF._l1 + 1) q^-1 + O(q^4) sage: MF.faber_pol(3, order_1=-1) q + 3/(4*d) sage: MF.faber_pol(1, order_1=2) 1 sage: MF.faber_pol(0, order_1=2) q - 3/(8*d) sage: MF.faber_pol(-1, order_1=2) q^2 - 3/(4*d)*q + 81/(1024*d^2) sage: (MF.faber_pol(-1, order_1=2)(MF.j_inv())*MF.F_simple(order_1=2)).q_expansion(prec=MF._l1 + 1) q^-1 - 9075/(8388608*d^4)*q^3 + O(q^4)
- gen(k=0)#
Return the
k
’th basis element ofself
if possible (default:k=0
).EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: ModularForms(k=12).gen(1).parent() ModularForms(n=3, k=12, ep=1) over Integer Ring sage: ModularForms(k=12).gen(1) q - 24*q^2 + 252*q^3 - 1472*q^4 + O(q^5)
- gens()#
This method should be overloaded by subclasses.
Return a basis of
self
.Note that the coordinate vector of elements of
self
are with respect to this basis.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: ModularForms(k=12).gens() # defined in space.py [1 + 196560*q^2 + 16773120*q^3 + 398034000*q^4 + O(q^5), q - 24*q^2 + 252*q^3 - 1472*q^4 + O(q^5)]
- homogeneous_part(k, ep)#
Since
self
already is a homogeneous component returnself
unless the degree differs in which case aValueError
is raised.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiMeromorphicModularForms sage: MF = QuasiMeromorphicModularForms(n=6, k=4) sage: MF == MF.homogeneous_part(4,1) True sage: MF.homogeneous_part(5,1) Traceback (most recent call last): ... ValueError: QuasiMeromorphicModularForms(n=6, k=4, ep=1) over Integer Ring already is homogeneous with degree (4, 1) != (5, 1)!
- is_ambient()#
Return whether
self
is an ambient space.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(k=12) sage: MF.is_ambient() True sage: MF.subspace([MF.gen(0)]).is_ambient() False
- module()#
Return the module associated to self.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(k=12) sage: MF.module() Vector space of dimension 2 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: subspace = MF.subspace([MF.gen(0)]) sage: subspace.module() Vector space of degree 2 and dimension 1 over Fraction Field of Univariate Polynomial Ring in d over Integer Ring Basis matrix: [1 0]
- one()#
Return the one element from the corresponding space of constant forms.
Note
The one element does not lie in
self
in general.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import CuspForms sage: MF = CuspForms(k=12) sage: MF.Delta()^0 == MF.one() True sage: (MF.Delta()^0).parent() ModularForms(n=3, k=0, ep=1) over Integer Ring
- q_basis(m=None, min_exp=0, order_1=0)#
Try to return a (basis) element of
self
with a Laurent series of the formq^m + O(q^N)
, whereN=self.required_laurent_prec(min_exp)
.If
m==None
the whole basis (with varyingm
’s) is returned if it exists.INPUT:
m
– An integer, indicating the desired initial Laurent exponent of the element.If
m==None
(default) then the whole basis is returned.
min_exp
– An integer, indicating the minimal Laurent exponent (for each quasi part)of the subspace of
self
which should be considered (default: 0).
order_1
– A lower bound for the order at-1
of all quasi parts of the subspace(default: 0). If
n!=infinity
this parameter is ignored.
OUTPUT:
The corresponding basis (if
m==None
) resp. the corresponding basis vector (ifm!=None
). If the basis resp. element doesn’t exist an exception is raised.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiWeakModularForms, ModularForms, QuasiModularForms sage: QF = QuasiWeakModularForms(n=8, k=10/3, ep=-1) sage: QF.default_prec(QF.required_laurent_prec(min_exp=-1)) sage: q_basis = QF.q_basis(min_exp=-1) sage: q_basis [q^-1 + O(q^5), 1 + O(q^5), q + O(q^5), q^2 + O(q^5), q^3 + O(q^5), q^4 + O(q^5)] sage: QF.q_basis(m=-1, min_exp=-1) q^-1 + O(q^5) sage: MF = ModularForms(k=36) sage: MF.q_basis() == MF.gens() True sage: QF = QuasiModularForms(k=6) sage: QF.required_laurent_prec() 3 sage: QF.q_basis() [1 - 20160*q^3 - 158760*q^4 + O(q^5), q - 60*q^3 - 248*q^4 + O(q^5), q^2 + 8*q^3 + 30*q^4 + O(q^5)] sage: QF = QuasiWeakModularForms(n=infinity, k=-2, ep=-1) sage: QF.q_basis(order_1=-1) [1 - 168*q^2 + 2304*q^3 - 19320*q^4 + O(q^5), q - 18*q^2 + 180*q^3 - 1316*q^4 + O(q^5)]
- quasi_part_dimension(r=None, min_exp=0, max_exp=+ Infinity, order_1=0)#
Return the dimension of the subspace of
self
generated byself.quasi_part_gens(r, min_exp, max_exp, order_1)
.See
quasi_part_gens()
for more details.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms, QuasiCuspForms, QuasiWeakModularForms sage: MF = QuasiModularForms(n=5, k=6, ep=-1) sage: [v.as_ring_element() for v in MF.gens()] [f_rho^2*f_i, f_rho^3*E2, E2^3] sage: MF.dimension() 3 sage: MF.quasi_part_dimension(r=0) 1 sage: MF.quasi_part_dimension(r=1) 1 sage: MF.quasi_part_dimension(r=2) 0 sage: MF.quasi_part_dimension(r=3) 1 sage: MF = QuasiCuspForms(n=5, k=18, ep=-1) sage: MF.dimension() 8 sage: MF.quasi_part_dimension(r=0) 2 sage: MF.quasi_part_dimension(r=1) 2 sage: MF.quasi_part_dimension(r=2) 1 sage: MF.quasi_part_dimension(r=3) 1 sage: MF.quasi_part_dimension(r=4) 1 sage: MF.quasi_part_dimension(r=5) 1 sage: MF.quasi_part_dimension(min_exp=2, max_exp=2) 2 sage: MF = QuasiCuspForms(n=infinity, k=18, ep=-1) sage: MF.quasi_part_dimension(r=1, min_exp=-2) 3 sage: MF.quasi_part_dimension() 12 sage: MF.quasi_part_dimension(order_1=3) 2 sage: MF = QuasiWeakModularForms(n=infinity, k=4, ep=1) sage: MF.quasi_part_dimension(min_exp=2, order_1=-2) 4 sage: [v.order_at(-1) for v in MF.quasi_part_gens(r=0, min_exp=2, order_1=-2)] [-2, -2]
- quasi_part_gens(r=None, min_exp=0, max_exp=+ Infinity, order_1=0)#
Return a basis in
self
of the subspace of (quasi) weakly holomorphic forms which satisfy the specified properties on the quasi parts and the initial Fourier coefficient.INPUT:
r
– An integer orNone
(default), indicatingthe desired power of
E2
Ifr=None
then all possible powers (r
) are choosen.
min_exp
– An integer giving a lower bound for thefirst non-trivial Fourier coefficient of the generators (default: 0).
max_exp
– An integer orinfinity
(default) givingan upper bound for the first non-trivial Fourier coefficient of the generators. If
max_exp==infinity
then no upper bound is assumed.
order_1
– A lower bound for the order at-1
of allquasi parts of the basis elements (default: 0). If
n!=infinity
this parameter is ignored.
OUTPUT:
A basis in
self
of the subspace of forms which are modular after dividing byE2^r
and which have a Fourier expansion of the formq^m + O(q^(m+1))
withmin_exp <= m <= max_exp
for each quasi part (and at least the specified order at-1
in casen=infinity
). Note that linear combinations of forms/quasi parts maybe have a higher order at infinity thanmax_exp
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiWeakModularForms sage: QF = QuasiWeakModularForms(n=8, k=10/3, ep=-1) sage: QF.default_prec(1) sage: QF.quasi_part_gens(min_exp=-1) [q^-1 + O(q), 1 + O(q), q^-1 - 9/(128*d) + O(q), 1 + O(q), q^-1 - 19/(64*d) + O(q), q^-1 + 1/(64*d) + O(q)] sage: QF.quasi_part_gens(min_exp=-1, max_exp=-1) [q^-1 + O(q), q^-1 - 9/(128*d) + O(q), q^-1 - 19/(64*d) + O(q), q^-1 + 1/(64*d) + O(q)] sage: QF.quasi_part_gens(min_exp=-2, r=1) [q^-2 - 9/(128*d)*q^-1 - 261/(131072*d^2) + O(q), q^-1 - 9/(128*d) + O(q), 1 + O(q)] sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(k=36) sage: MF.quasi_part_gens(min_exp=2) [q^2 + 194184*q^4 + O(q^5), q^3 - 72*q^4 + O(q^5)] sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: MF = QuasiModularForms(n=5, k=6, ep=-1) sage: MF.default_prec(2) sage: MF.dimension() 3 sage: MF.quasi_part_gens(r=0) [1 - 37/(200*d)*q + O(q^2)] sage: MF.quasi_part_gens(r=0)[0] == MF.E6() True sage: MF.quasi_part_gens(r=1) [1 + 33/(200*d)*q + O(q^2)] sage: MF.quasi_part_gens(r=1)[0] == MF.E2()*MF.E4() True sage: MF.quasi_part_gens(r=2) [] sage: MF.quasi_part_gens(r=3) [1 - 27/(200*d)*q + O(q^2)] sage: MF.quasi_part_gens(r=3)[0] == MF.E2()^3 True sage: from sage.modular.modform_hecketriangle.space import QuasiCuspForms, CuspForms sage: MF = QuasiCuspForms(n=5, k=18, ep=-1) sage: MF.default_prec(4) sage: MF.dimension() 8 sage: MF.quasi_part_gens(r=0) [q - 34743/(640000*d^2)*q^3 + O(q^4), q^2 - 69/(200*d)*q^3 + O(q^4)] sage: MF.quasi_part_gens(r=1) [q - 9/(200*d)*q^2 + 37633/(640000*d^2)*q^3 + O(q^4), q^2 + 1/(200*d)*q^3 + O(q^4)] sage: MF.quasi_part_gens(r=2) [q - 1/(4*d)*q^2 - 24903/(640000*d^2)*q^3 + O(q^4)] sage: MF.quasi_part_gens(r=3) [q + 1/(10*d)*q^2 - 7263/(640000*d^2)*q^3 + O(q^4)] sage: MF.quasi_part_gens(r=4) [q - 11/(20*d)*q^2 + 53577/(640000*d^2)*q^3 + O(q^4)] sage: MF.quasi_part_gens(r=5) [q - 1/(5*d)*q^2 + 4017/(640000*d^2)*q^3 + O(q^4)] sage: MF.quasi_part_gens(r=1)[0] == MF.E2() * CuspForms(n=5, k=16, ep=1).gen(0) True sage: MF.quasi_part_gens(r=1)[1] == MF.E2() * CuspForms(n=5, k=16, ep=1).gen(1) True sage: MF.quasi_part_gens(r=3)[0] == MF.E2()^3 * MF.Delta() True sage: MF = QuasiCuspForms(n=infinity, k=18, ep=-1) sage: MF.quasi_part_gens(r=1, min_exp=-2) == MF.quasi_part_gens(r=1, min_exp=1) True sage: MF.quasi_part_gens(r=1) [q - 8*q^2 - 8*q^3 + 5952*q^4 + O(q^5), q^2 - 8*q^3 + 208*q^4 + O(q^5), q^3 - 16*q^4 + O(q^5)] sage: MF = QuasiWeakModularForms(n=infinity, k=4, ep=1) sage: MF.quasi_part_gens(r=2, min_exp=2, order_1=-2)[0] == MF.E2()^2 * MF.E4()^(-2) * MF.f_inf()^2 True sage: [v.order_at(-1) for v in MF.quasi_part_gens(r=0, min_exp=2, order_1=-2)] [-2, -2]
- rank()#
Return the rank of
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(n=4, k=24, ep=-1) sage: MF.rank() 3 sage: MF.subspace([MF.gen(0), MF.gen(2)]).rank() 2
- rationalize_series(laurent_series, coeff_bound=1e-10, denom_factor=1)#
Try to return a Laurent series with coefficients in
self.coeff_ring()
that matches the given Laurent series.We give our best but there is absolutely no guarantee that it will work!
INPUT:
laurent_series
– A Laurent series. If the Laurent coefficients alreadycoerce into
self.coeff_ring()
with a formal parameter then the Laurent series is returned as is.Otherwise it is assumed that the series is normalized in the sense that the first non-trivial coefficient is a power of
d
(e.g.1
).
coeff_bound
– EitherNone
resp.0
or a positive real number(default:
1e-10
). If specifiedcoeff_bound
gives a lower bound for the size of the initial Laurent coefficients. If a coefficient is smaller it is assumed to be zero.For calculations with very small coefficients (less than
1e-10
)coeff_bound
should be set to something even smaller or just0
.Non-exact calculations often produce non-zero coefficients which are supposed to be zero. In those cases this parameter helps a lot.
denom_factor
– An integer (default: 1) whose factor might occur inthe denominator of the given Laurent coefficients (in addition to naturally occurring factors).
OUTPUT:
A Laurent series over
self.coeff_ring()
corresponding to the given Laurent series.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import WeakModularForms, ModularForms, QuasiCuspForms sage: WF = WeakModularForms(n=14) sage: qexp = WF.J_inv().q_expansion_fixed_d(d_num_prec=1000) sage: qexp.parent() Laurent Series Ring in q over Real Field with 1000 bits of precision sage: qexp_int = WF.rationalize_series(qexp) sage: qexp_int.add_bigoh(3) d*q^-1 + 37/98 + 2587/(38416*d)*q + 899/(117649*d^2)*q^2 + O(q^3) sage: qexp_int == WF.J_inv().q_expansion() True sage: WF.rationalize_series(qexp_int) == qexp_int True sage: WF(qexp_int) == WF.J_inv() True sage: WF.rationalize_series(qexp.parent()(1)) 1 sage: WF.rationalize_series(qexp_int.parent()(1)).parent() Laurent Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: MF = ModularForms(n=infinity, k=4) sage: qexp = MF.E4().q_expansion_fixed_d() sage: qexp.parent() Power Series Ring in q over Rational Field sage: qexp_int = MF.rationalize_series(qexp) sage: qexp_int.parent() Power Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: qexp_int == MF.E4().q_expansion() True sage: MF.rationalize_series(qexp_int) == qexp_int True sage: MF(qexp_int) == MF.E4() True sage: QF = QuasiCuspForms(n=8, k=22/3, ep=-1) sage: el = QF(QF.f_inf()*QF.E2()) sage: qexp = el.q_expansion_fixed_d(d_num_prec=1000) sage: qexp.parent() Power Series Ring in q over Real Field with 1000 bits of precision sage: qexp_int = QF.rationalize_series(qexp) sage: qexp_int.parent() Power Series Ring in q over Fraction Field of Univariate Polynomial Ring in d over Integer Ring sage: qexp_int == el.q_expansion() True sage: QF.rationalize_series(qexp_int) == qexp_int True sage: QF(qexp_int) == el True
- required_laurent_prec(min_exp=0, order_1=0)#
Return an upper bound for the required precision for Laurent series to uniquely determine a corresponding (quasi) form in
self
with the given lower boundmin_exp
for the order at infinity (for each quasi part).Note
For
n=infinity
only the holomorphic case (min_exp >= 0
) is supported (in particular a non-negative order at-1
is assumed).INPUT:
min_exp
– An integer (default: 0), namely the lower bound for theorder at infinity resp. the exponent of the Laurent series.
order_1
– A lower bound for the order at-1
for all quasi parts(default: 0). If
n!=infinity
this parameter is ignored.
OUTPUT:
An integer, namely an upper bound for the number of required Laurent coefficients. The bound should be precise or at least pretty sharp.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiWeakModularForms, ModularForms, QuasiModularForms sage: QF = QuasiWeakModularForms(n=8, k=10/3, ep=-1) sage: QF.required_laurent_prec(min_exp=-1) 5 sage: MF = ModularForms(k=36) sage: MF.required_laurent_prec(min_exp=2) 4 sage: QuasiModularForms(k=2).required_laurent_prec() 1 sage: QuasiWeakModularForms(n=infinity, k=2, ep=-1).required_laurent_prec(order_1=-1) 6
- subspace(basis)#
Return the subspace of
self
generated bybasis
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(k=24) sage: MF.dimension() 3 sage: subspace = MF.subspace([MF.gen(0), MF.gen(1)]) sage: subspace Subspace of dimension 2 of ModularForms(n=3, k=24, ep=1) over Integer Ring
- weight()#
Return the weight of (elements of)
self
.EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import QuasiModularForms sage: QuasiModularForms(n=16, k=16/7, ep=-1).weight() 16/7
- weight_parameters()#
Check whether
self
has a valid weight and multiplier.If not then an exception is raised. Otherwise the two weight parameters corresponding to the weight and multiplier of
self
are returned.The weight parameters are e.g. used to calculate dimensions or precisions of Fourier expansion.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.space import MeromorphicModularForms sage: MF = MeromorphicModularForms(n=18, k=-7, ep=-1) sage: MF.weight_parameters() (-3, 17) sage: (MF._l1, MF._l2) == MF.weight_parameters() True sage: (k, ep) = (MF.weight(), MF.ep()) sage: n = MF.hecke_n() sage: k == 4*(n*MF._l1 + MF._l2)/(n-2) + (1-ep)*n/(n-2) True sage: from sage.modular.modform_hecketriangle.space import ModularForms sage: MF = ModularForms(n=5, k=12, ep=1) sage: MF.weight_parameters() (1, 4) sage: (MF._l1, MF._l2) == MF.weight_parameters() True sage: (k, ep) = (MF.weight(), MF.ep()) sage: n = MF.hecke_n() sage: k == 4*(n*MF._l1 + MF._l2)/(n-2) + (1-ep)*n/(n-2) True sage: MF.dimension() == MF._l1 + 1 True sage: MF = ModularForms(n=infinity, k=8, ep=1) sage: MF.weight_parameters() (2, 0) sage: MF.dimension() == MF._l1 + 1 True