Orthogonal Polynomials#
Chebyshev polynomials#
The Chebyshev polynomial of the first kind arises as a solution to the differential equation
and those of the second kind as a solution to
The Chebyshev polynomials of the first kind are defined by the recurrence relation
The Chebyshev polynomials of the second kind are defined by the recurrence relation
For integers \(m,n\), they satisfy the orthogonality relations
and
They are named after Pafnuty Chebyshev (1821-1894, alternative transliterations: Tchebyshef or Tschebyscheff).
Hermite polynomials#
The Hermite polynomials are defined either by
(the “probabilists’ Hermite polynomials”), or by
(the “physicists’ Hermite polynomials”). Sage (via Maxima) implements the latter flavor. These satisfy the orthogonality relation
They are named in honor of Charles Hermite (1822-1901), but were first introduced by Laplace in 1810 and also studied by Chebyshev in 1859.
Legendre polynomials#
Each Legendre polynomial \(P_n(x)\) is an \(n\)-th degree polynomial. It may be expressed using Rodrigues’ formula:
These are solutions to Legendre’s differential equation:
and satisfy the orthogonality relation
The Legendre function of the second kind \(Q_n(x)\) is another (linearly independent) solution to the Legendre differential equation. It is not an “orthogonal polynomial” however.
The associated Legendre functions of the first kind \(P_\ell^m(x)\) can be given in terms of the “usual” Legendre polynomials by
Assuming \(0 \le m \le \ell\), they satisfy the orthogonality relation:
where \(\delta _{k,\ell}\) is the Kronecker delta.
The associated Legendre functions of the second kind \(Q_\ell^m(x)\) can be given in terms of the “usual” Legendre polynomials by
They are named after Adrien-Marie Legendre (1752-1833).
Laguerre polynomials#
Laguerre polynomials may be defined by the Rodrigues formula
They are solutions of Laguerre’s equation:
and satisfy the orthogonality relation
The generalized Laguerre polynomials may be defined by the Rodrigues formula:
(These are also sometimes called the associated Laguerre polynomials.) The simple Laguerre polynomials are recovered from the generalized polynomials by setting \(\alpha = 0\).
They are named after Edmond Laguerre (1834-1886).
Jacobi polynomials#
Jacobi polynomials are a class of orthogonal polynomials. They are obtained from hypergeometric series in cases where the series is in fact finite:
where \(()_n\) is Pochhammer’s symbol (for the rising factorial), (Abramowitz and Stegun p561.) and thus have the explicit expression
They are named after Carl Gustav Jaboc Jacobi (1804-1851).
Gegenbauer polynomials#
Ultraspherical or Gegenbauer polynomials are given in terms of the Jacobi polynomials \(P_n^{(\alpha,\beta)}(x)\) with \(\alpha = \beta = a - 1/2\) by
They satisfy the orthogonality relation
for \(a > -1/2\). They are obtained from hypergeometric series in cases where the series is in fact finite:
where \(\underline{n}\) is the falling factorial. (See Abramowitz and Stegun p561.)
They are named for Leopold Gegenbauer (1849-1903).
Krawtchouk polynomials#
The Krawtchouk polynomials are discrete orthogonal polynomials that are given by the hypergeometric series
Since they are discrete orthogonal polynomials, they satisfy an orthogonality relation defined on a discrete (in this case finite) set of points:
where \(q = 1 - p\). They can also be described by the recurrence relation
where \(K_0(x; n, p) = 1\) and \(K_1(x; n, p) = x - n p\).
They are named for Mykhailo Krawtchouk (1892-1942).
Meixner polynomials#
The Meixner polynomials are discrete orthogonal polynomials that are given by the hypergeometric series
They satisfy an orthogonality relation:
where \(\tilde{M}_n(x; b, c) = M_n(x; b, c) / (b)_x\), for \(b > 0 \). They can also be described by the recurrence relation
where \(M_0(x; b, c) = 0\) and \(M_1(x; b, c) = (1 - c^{-1}) x + b\).
They are named for Josef Meixner (1908-1994).
Hahn polynomials#
The Hahn polynomials are discrete orthogonal polynomials that are given by the hypergeometric series
They satisfy an orthogonality relation:
where
They can also be described by the recurrence relation
where \(Q_0(x; a,b,n) = 1\) and \(Q_1(x; a,b,n) = 1 - \frac{a+b+2}{(a+1)n} x\) and
They are named for Wolfgang Hahn (1911-1998), although they were first introduced by Chebyshev in 1875.
Pochhammer symbol#
For completeness, the Pochhammer symbol, introduced by Leo August Pochhammer, \((x)_n\), is used in the theory of special functions to represent the “rising factorial” or “upper factorial”
On the other hand, the falling factorial or lower factorial is
in the notation of Ronald L. Graham, Donald E. Knuth and Oren Patashnik in their book Concrete Mathematics.
Todo
Implement Zernike polynomials. Wikipedia article Zernike_polynomials
REFERENCES:
Roelof Koekeok and René F. Swarttouw, arXiv math/9602214
AUTHORS:
David Joyner (2006-06)
Stefan Reiterer (2010-)
Ralf Stephan (2015-)
The original module wrapped some of the orthogonal/special functions in the Maxima package “orthopoly” and was written by Barton Willis of the University of Nebraska at Kearney.
- class sage.functions.orthogonal_polys.ChebyshevFunction(name, nargs=2, latex_name=None, conversions=None)#
Bases:
sage.functions.orthogonal_polys.OrthogonalFunction
Abstract base class for Chebyshev polynomials of the first and second kind.
EXAMPLES:
sage: chebyshev_T(3,x) 4*x^3 - 3*x
- class sage.functions.orthogonal_polys.Func_assoc_legendre_P#
Bases:
sage.symbolic.function.BuiltinFunction
Return the Ferrers function \(\mathtt{P}_n^m(x)\) of first kind for \(x \in (-1,1)\) with general order \(m\) and general degree \(n\).
Ferrers functions of first kind are one of two linearly independent solutions of the associated Legendre differential equation
\[(1-x^2) \frac{\mathrm{d}^2 w}{\mathrm{d}x^2} - 2x \frac{\mathrm{d} w}{\mathrm{d}x} + \left(n(n+1) - \frac{m^2}{1-x^2}\right) w = 0\]on the interval \(x \in (-1, 1)\) and are usually denoted by \(\mathtt{P}_n^m(x)\).
See also
The other linearly independent solution is called Ferrers function of second kind and denoted by \(\mathtt{Q}_n^m(x)\), see
Func_assoc_legendre_Q
.Warning
Ferrers functions must be carefully distinguished from associated Legendre functions which are defined on \(\CC \setminus (- \infty, 1]\) and have not yet been implemented.
EXAMPLES:
We give the first Ferrers functions for non-negative integers \(n\) and \(m\) in the interval \(-1<x<1\):
sage: for n in range(4): ....: for m in range(n+1): ....: print(f"P_{n}^{m}({x}) = {gen_legendre_P(n, m, x)}") P_0^0(x) = 1 P_1^0(x) = x P_1^1(x) = -sqrt(-x^2 + 1) P_2^0(x) = 3/2*x^2 - 1/2 P_2^1(x) = -3*sqrt(-x^2 + 1)*x P_2^2(x) = -3*x^2 + 3 P_3^0(x) = 5/2*x^3 - 3/2*x P_3^1(x) = -3/2*(5*x^2 - 1)*sqrt(-x^2 + 1) P_3^2(x) = -15*(x^2 - 1)*x P_3^3(x) = -15*(-x^2 + 1)^(3/2)
These expressions for non-negative integers are computed by the Rodrigues-type given in
eval_gen_poly()
. Negative values for \(n\) are obtained by the following identity:\[P^{m}_{-n}(x) = P^{m}_{n-1}(x).\]For \(n\) being a non-negative integer, negative values for \(m\) are obtained by
\[P^{-|m|}_n(x) = (-1)^{|m|} \frac{(n-|m|)!}{(n+|m|)!} P_n^{|m|}(x),\]where \(|m| \leq n\).
Here are some specific values with negative integers:
sage: gen_legendre_P(-2, -1, x) 1/2*sqrt(-x^2 + 1) sage: gen_legendre_P(2, -2, x) -1/8*x^2 + 1/8 sage: gen_legendre_P(3, -2, x) -1/8*(x^2 - 1)*x sage: gen_legendre_P(1, -2, x) 0
Here are some other random values with floating numbers:
sage: m = var('m'); assume(m, 'integer') sage: gen_legendre_P(m, m, .2) 0.960000000000000^(1/2*m)*(-1)^m*factorial(2*m)/(2^m*factorial(m)) sage: gen_legendre_P(.2, m, 0) sqrt(pi)*2^m/(gamma(-1/2*m + 1.10000000000000)*gamma(-1/2*m + 0.400000000000000)) sage: gen_legendre_P(.2, .2, .2) 0.757714892929573
REFERENCES:
- deprecated_function_alias(trac_number, func)#
Create an aliased version of a function or a method which raises a deprecation warning message.
If f is a function or a method, write
g = deprecated_function_alias(trac_number, f)
to make a deprecated aliased version of f.INPUT:
trac_number
– integer. The trac ticket number where the deprecation is introduced.func
– the function or method to be aliased
EXAMPLES:
sage: from sage.misc.superseded import deprecated_function_alias sage: g = deprecated_function_alias(13109, number_of_partitions) sage: g(5) doctest:...: DeprecationWarning: g is deprecated. Please use sage.combinat.partition.number_of_partitions instead. See http://trac.sagemath.org/13109 for details. 7
This also works for methods:
sage: class cls(): ....: def new_meth(self): return 42 ....: old_meth = deprecated_function_alias(13109, new_meth) sage: cls().old_meth() doctest:...: DeprecationWarning: old_meth is deprecated. Please use new_meth instead. See http://trac.sagemath.org/13109 for details. 42
sage: def a(): pass sage: b = deprecated_function_alias(13109, a) sage: b() doctest:...: DeprecationWarning: b is deprecated. Please use a instead. See http://trac.sagemath.org/13109 for details.
AUTHORS:
Florent Hivert (2009-11-23), with the help of Mike Hansen.
Luca De Feo (2011-07-11), printing the full module path when different from old path
- eval_gen_poly(n, m, arg, **kwds)#
Return the Ferrers function of first kind \(\mathtt{P}_n^m(x)\) for integers \(n > -1, m > -1\) given by the following Rodrigues-type formula:
\[\mathtt{P}_n^m(x) = (-1)^{m+n} \frac{(1-x^2)^{m/2}}{2^n n!} \frac{\mathrm{d}^{m+n}}{\mathrm{d}x^{m+n}} (1-x^2)^n.\]INPUT:
n
– an integer degreem
– an integer orderx
– either an integer or a non-numerical symbolic expression
EXAMPLES:
sage: gen_legendre_P(7,4,x) 3465/2*(13*x^3 - 3*x)*(x^2 - 1)^2 sage: gen_legendre_P(3,1,sqrt(x)) -3/2*(5*x - 1)*sqrt(-x + 1)
REFERENCE:
[DLMF-Legendre], Section 14.7 eq. 10 (https://dlmf.nist.gov/14.7#E10)
- eval_poly(*args, **kwds)#
Deprecated: Use
eval_gen_poly()
instead. See trac ticket #25034 for details.
- class sage.functions.orthogonal_polys.Func_assoc_legendre_Q#
Bases:
sage.symbolic.function.BuiltinFunction
EXAMPLES:
sage: loads(dumps(gen_legendre_Q)) gen_legendre_Q sage: maxima(gen_legendre_Q(2,1,3, hold=True))._sage_().simplify_full() 1/4*sqrt(2)*(36*pi - 36*I*log(2) + 25*I)
- eval_recursive(n, m, x, **kwds)#
Return the associated Legendre Q(n, m, arg) function for integers \(n > -1, m > -1\).
EXAMPLES:
sage: gen_legendre_Q(3,4,x) 48/(x^2 - 1)^2 sage: gen_legendre_Q(4,5,x) -384/((x^2 - 1)^2*sqrt(-x^2 + 1)) sage: gen_legendre_Q(0,1,x) -1/sqrt(-x^2 + 1) sage: gen_legendre_Q(0,2,x) -1/2*((x + 1)^2 - (x - 1)^2)/(x^2 - 1) sage: gen_legendre_Q(2,2,x).subs(x=2).expand() 9/2*I*pi - 9/2*log(3) + 14/3
- class sage.functions.orthogonal_polys.Func_chebyshev_T#
Bases:
sage.functions.orthogonal_polys.ChebyshevFunction
Chebyshev polynomials of the first kind.
REFERENCE:
[AS1964] 22.5.31 page 778 and 6.1.22 page 256.
EXAMPLES:
sage: chebyshev_T(5,x) 16*x^5 - 20*x^3 + 5*x sage: var('k') k sage: test = chebyshev_T(k,x) sage: test chebyshev_T(k, x)
- eval_algebraic(n, x)#
Evaluate
chebyshev_T
as polynomial, using a recursive formula.INPUT:
n
– an integerx
– a value to evaluate the polynomial at (this can be any ring element)
EXAMPLES:
sage: chebyshev_T.eval_algebraic(5, x) 2*(2*(2*x^2 - 1)*x - x)*(2*x^2 - 1) - x sage: chebyshev_T(-7, x) - chebyshev_T(7,x) 0 sage: R.<t> = ZZ[] sage: chebyshev_T.eval_algebraic(-1, t) t sage: chebyshev_T.eval_algebraic(0, t) 1 sage: chebyshev_T.eval_algebraic(1, t) t sage: chebyshev_T(7^100, 1/2) 1/2 sage: chebyshev_T(7^100, Mod(2,3)) 2 sage: n = 97; x = RIF(pi/2/n) sage: chebyshev_T(n, cos(x)).contains_zero() True sage: R.<t> = Zp(2, 8, 'capped-abs')[] sage: chebyshev_T(10^6+1, t) (2^7 + O(2^8))*t^5 + O(2^8)*t^4 + (2^6 + O(2^8))*t^3 + O(2^8)*t^2 + (1 + 2^6 + O(2^8))*t + O(2^8)
- eval_formula(n, x)#
Evaluate
chebyshev_T
using an explicit formula. See [AS1964] 227 (p. 782) for details for the recursions. See also [Koe1999] for fast evaluation techniques.INPUT:
n
– an integerx
– a value to evaluate the polynomial at (this can be any ring element)
EXAMPLES:
sage: chebyshev_T.eval_formula(-1,x) x sage: chebyshev_T.eval_formula(0,x) 1 sage: chebyshev_T.eval_formula(1,x) x sage: chebyshev_T.eval_formula(2,0.1) == chebyshev_T._evalf_(2,0.1) True sage: chebyshev_T.eval_formula(10,x) 512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1 sage: chebyshev_T.eval_algebraic(10,x).expand() 512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1
- class sage.functions.orthogonal_polys.Func_chebyshev_U#
Bases:
sage.functions.orthogonal_polys.ChebyshevFunction
Class for the Chebyshev polynomial of the second kind.
REFERENCE:
[AS1964] 22.8.3 page 783 and 6.1.22 page 256.
EXAMPLES:
sage: R.<t> = QQ[] sage: chebyshev_U(2,t) 4*t^2 - 1 sage: chebyshev_U(3,t) 8*t^3 - 4*t
- eval_algebraic(n, x)#
Evaluate
chebyshev_U
as polynomial, using a recursive formula.INPUT:
n
– an integerx
– a value to evaluate the polynomial at (this can be any ring element)
EXAMPLES:
sage: chebyshev_U.eval_algebraic(5,x) -2*((2*x + 1)*(2*x - 1)*x - 4*(2*x^2 - 1)*x)*(2*x + 1)*(2*x - 1) sage: parent(chebyshev_U(3, Mod(8,9))) Ring of integers modulo 9 sage: parent(chebyshev_U(3, Mod(1,9))) Ring of integers modulo 9 sage: chebyshev_U(-3,x) + chebyshev_U(1,x) 0 sage: chebyshev_U(-1,Mod(5,8)) 0 sage: parent(chebyshev_U(-1,Mod(5,8))) Ring of integers modulo 8 sage: R.<t> = ZZ[] sage: chebyshev_U.eval_algebraic(-2, t) -1 sage: chebyshev_U.eval_algebraic(-1, t) 0 sage: chebyshev_U.eval_algebraic(0, t) 1 sage: chebyshev_U.eval_algebraic(1, t) 2*t sage: n = 97; x = RIF(pi/n) sage: chebyshev_U(n-1, cos(x)).contains_zero() True sage: R.<t> = Zp(2, 6, 'capped-abs')[] sage: chebyshev_U(10^6+1, t) (2 + O(2^6))*t + O(2^6)
- eval_formula(n, x)#
Evaluate
chebyshev_U
using an explicit formula.See [AS1964] 227 (p. 782) for details on the recursions. See also [Koe1999] for the recursion formulas.
INPUT:
n
– an integerx
– a value to evaluate the polynomial at (this can be any ring element)
EXAMPLES:
sage: chebyshev_U.eval_formula(10, x) 1024*x^10 - 2304*x^8 + 1792*x^6 - 560*x^4 + 60*x^2 - 1 sage: chebyshev_U.eval_formula(-2, x) -1 sage: chebyshev_U.eval_formula(-1, x) 0 sage: chebyshev_U.eval_formula(0, x) 1 sage: chebyshev_U.eval_formula(1, x) 2*x sage: chebyshev_U.eval_formula(2,0.1) == chebyshev_U._evalf_(2,0.1) True
- class sage.functions.orthogonal_polys.Func_gen_laguerre#
Bases:
sage.functions.orthogonal_polys.OrthogonalFunction
REFERENCE:
[AS1964] 22.5.16, page 778 and page 789.
- class sage.functions.orthogonal_polys.Func_hahn#
Bases:
sage.functions.orthogonal_polys.OrthogonalFunction
Hahn polynomials \(Q_k(x; a, b, n)\).
INPUT:
k
– the degreex
– the independent variable \(x\)a, b
– the parameters \(a, b\)n
– the number of discrete points
EXAMPLES:
We verify the orthogonality for \(n = 3\):
sage: n = 2 sage: a,b = SR.var('a,b') sage: def rho(k,a,b,n): ....: return binomial(a+k,k) * binomial(b+n-k,n-k) sage: M = matrix([[sum(rho(k,a,b,n) ....: * hahn(i,k,a,b,n) * hahn(j,k,a,b,n) ....: for k in range(n+1)).expand().factor() ....: for i in range(n+1)] for j in range(n+1)]) sage: M = M.factor() sage: P = rising_factorial sage: def diag(i,a,b,n): ....: return ((-1)^i * factorial(i) * P(b+1,i) * P(i+a+b+1,n+1) ....: / (factorial(n) * (2*i+a+b+1) * P(-n,i) * P(a+1,i))) sage: all(M[i,i] == diag(i,a,b,n) for i in range(3)) True sage: all(M[i,j] == 0 for i in range(3) for j in range(3) if i != j) True
- eval_formula(k, x, a, b, n)#
Evaluate
self
using an explicit formula.EXAMPLES:
sage: k,x,a,b,n = var('k,x,a,b,n') sage: Q2 = hahn.eval_formula(2, x, a, b, n).simplify_full() sage: Q2.coefficient(x^2).factor() (a + b + 4)*(a + b + 3)/((a + 2)*(a + 1)*(n - 1)*n) sage: Q2.coefficient(x).factor() -(2*a*n - a + b + 4*n)*(a + b + 3)/((a + 2)*(a + 1)*(n - 1)*n) sage: Q2(x=0) 1
- eval_recursive(k, x, a, b, n, *args, **kwds)#
Return the Hahn polynomial \(Q_k(x; a, b, n)\) using the recursive formula.
EXAMPLES:
sage: x,a,b,n = var('x,a,b,n') sage: hahn.eval_recursive(0,x,a,b,n) 1 sage: hahn.eval_recursive(1,x,a,b,n) -(a + b + 2)*x/((a + 1)*n) + 1 sage: bool(hahn(2,x,a,b,n) == hahn.eval_recursive(2,x,a,b,n)) True sage: bool(hahn(3,x,a,b,n) == hahn.eval_recursive(3,x,a,b,n)) True sage: bool(hahn(4,x,a,b,n) == hahn.eval_recursive(4,x,a,b,n)) True sage: M = matrix([[-1/2,-1],[1,0]]) sage: ret = hahn.eval_recursive(2, M, 1, 2, n).simplify_full().factor() sage: ret [1/4*(4*n^2 + 8*n - 19)/((n - 1)*n) 3/2*(4*n + 3)/((n - 1)*n)] [ -3/2*(4*n + 3)/((n - 1)*n) (n^2 - n - 7)/((n - 1)*n)]
- class sage.functions.orthogonal_polys.Func_hermite#
Bases:
sage.symbolic.function.GinacFunction
Return the Hermite polynomial for integers \(n > -1\).
REFERENCE:
[AS1964] 22.5.40 and 22.5.41, page 779.
EXAMPLES:
sage: x = PolynomialRing(QQ, 'x').gen() sage: hermite(2,x) 4*x^2 - 2 sage: hermite(3,x) 8*x^3 - 12*x sage: hermite(3,2) 40 sage: S.<y> = PolynomialRing(RR) sage: hermite(3,y) 8.00000000000000*y^3 - 12.0000000000000*y sage: R.<x,y> = QQ[] sage: hermite(3,y^2) 8*y^6 - 12*y^2 sage: w = var('w') sage: hermite(3,2*w) 64*w^3 - 24*w sage: hermite(5,3.1416) 5208.69733891963 sage: hermite(5,RealField(100)(pi)) 5208.6167627118104649470287166
Check that trac ticket #17192 is fixed:
sage: x = PolynomialRing(QQ, 'x').gen() sage: hermite(0,x) 1 sage: hermite(-1,x) Traceback (most recent call last): ... RuntimeError: hermite_eval: The index n must be a nonnegative integer sage: hermite(-7,x) Traceback (most recent call last): ... RuntimeError: hermite_eval: The index n must be a nonnegative integer sage: m,x = SR.var('m,x') sage: hermite(m, x).diff(m) Traceback (most recent call last): ... RuntimeError: derivative w.r.t. to the index is not supported yet
- class sage.functions.orthogonal_polys.Func_jacobi_P#
Bases:
sage.functions.orthogonal_polys.OrthogonalFunction
Return the Jacobi polynomial \(P_n^{(a,b)}(x)\) for integers \(n > -1\) and a and b symbolic or \(a > -1\) and \(b > -1\).
The Jacobi polynomials are actually defined for all \(a\) and \(b\). However, the Jacobi polynomial weight \((1-x)^a(1+x)^b\) is not integrable for \(a \leq -1\) or \(b \leq -1\).
REFERENCE:
Table on page 789 in [AS1964].
EXAMPLES:
sage: x = PolynomialRing(QQ, 'x').gen() sage: jacobi_P(2,0,0,x) 3/2*x^2 - 1/2 sage: jacobi_P(2,1,2,1.2) 5.01000000000000
- class sage.functions.orthogonal_polys.Func_krawtchouk#
Bases:
sage.functions.orthogonal_polys.OrthogonalFunction
Krawtchouk polynomials \(K_j(x; n, p)\).
INPUT:
j
– the degreex
– the independent variable \(x\)n
– the number of discrete pointsp
– the parameter \(p\)
See also
sage.coding.delsarte_bounds.krawtchouk()
\(\bar{K}^{n,q}_l(x)\), which are related by\[(-q)^j \bar{K}^{n,q^{-1}}_j(x) = K_j(x; n, 1-q).\]EXAMPLES:
We verify the orthogonality for \(n = 4\):
sage: n = 4 sage: p = SR.var('p') sage: matrix([[sum(binomial(n,m) * p**m * (1-p)**(n-m) ....: * krawtchouk(i,m,n,p) * krawtchouk(j,m,n,p) ....: for m in range(n+1)).expand().factor() ....: for i in range(n+1)] for j in range(n+1)]) [ 1 0 0 0 0] [ 0 -4*(p - 1)*p 0 0 0] [ 0 0 6*(p - 1)^2*p^2 0 0] [ 0 0 0 -4*(p - 1)^3*p^3 0] [ 0 0 0 0 (p - 1)^4*p^4]
We verify the relationship between the Krawtchouk implementations:
sage: q = SR.var('q') sage: all(codes.bounds.krawtchouk(n, 1/q, j, x)*(-q)^j ....: == krawtchouk(j, x, n, 1-q) for j in range(n+1)) True
- eval_formula(k, x, n, p)#
Evaluate
self
using an explicit formula.EXAMPLES:
sage: x,n,p = var('x,n,p') sage: krawtchouk.eval_formula(3, x, n, p).expand().collect(x) -1/6*n^3*p^3 + 1/2*n^2*p^3 - 1/3*n*p^3 - 1/2*(n*p - 2*p + 1)*x^2 + 1/6*x^3 + 1/6*(3*n^2*p^2 - 9*n*p^2 + 3*n*p + 6*p^2 - 6*p + 2)*x
- eval_recursive(j, x, n, p, *args, **kwds)#
Return the Krawtchouk polynomial \(K_j(x; n, p)\) using the recursive formula.
EXAMPLES:
sage: x,n,p = var('x,n,p') sage: krawtchouk.eval_recursive(0,x,n,p) 1 sage: krawtchouk.eval_recursive(1,x,n,p) -n*p + x sage: krawtchouk.eval_recursive(2,x,n,p).collect(x) 1/2*n^2*p^2 + 1/2*n*(p - 1)*p - n*p^2 + 1/2*n*p - 1/2*(2*n*p - 2*p + 1)*x + 1/2*x^2 sage: bool(krawtchouk.eval_recursive(2,x,n,p) == krawtchouk(2,x,n,p)) True sage: bool(krawtchouk.eval_recursive(3,x,n,p) == krawtchouk(3,x,n,p)) True sage: bool(krawtchouk.eval_recursive(4,x,n,p) == krawtchouk(4,x,n,p)) True sage: M = matrix([[-1/2,-1],[1,0]]) sage: krawtchouk.eval_recursive(2, M, 3, 1/2) [ 9/8 7/4] [-7/4 1/4]
- class sage.functions.orthogonal_polys.Func_laguerre#
Bases:
sage.functions.orthogonal_polys.OrthogonalFunction
REFERENCE:
[AS1964] 22.5.16, page 778 and page 789.
- class sage.functions.orthogonal_polys.Func_legendre_P#
Bases:
sage.symbolic.function.GinacFunction
EXAMPLES:
sage: legendre_P(4, 2.0) 55.3750000000000 sage: legendre_P(1, x) x sage: legendre_P(4, x+1) 35/8*(x + 1)^4 - 15/4*(x + 1)^2 + 3/8 sage: legendre_P(1/2, I+1.) 1.05338240025858 + 0.359890322109665*I sage: legendre_P(0, SR(1)).parent() Symbolic Ring sage: legendre_P(0, 0) 1 sage: legendre_P(1, x) x sage: legendre_P(4, 2.) 55.3750000000000 sage: legendre_P(5.5,1.00001) 1.00017875754114 sage: legendre_P(1/2, I+1).n() 1.05338240025858 + 0.359890322109665*I sage: legendre_P(1/2, I+1).n(59) 1.0533824002585801 + 0.35989032210966539*I sage: legendre_P(42, RR(12345678)) 2.66314881466753e309 sage: legendre_P(42, Reals(20)(12345678)) 2.6632e309 sage: legendre_P(201/2, 0).n() 0.0561386178630179 sage: legendre_P(201/2, 0).n(100) 0.056138617863017877699963095883 sage: R.<x> = QQ[] sage: legendre_P(4,x) 35/8*x^4 - 15/4*x^2 + 3/8 sage: legendre_P(10000,x).coefficient(x,1) 0 sage: var('t,x') (t, x) sage: legendre_P(-5,t) 35/8*t^4 - 15/4*t^2 + 3/8 sage: legendre_P(4, x+1) 35/8*(x + 1)^4 - 15/4*(x + 1)^2 + 3/8 sage: legendre_P(4, sqrt(2)) 83/8 sage: legendre_P(4, I*e) 35/8*e^4 + 15/4*e^2 + 3/8 sage: n = var('n') sage: derivative(legendre_P(n,x), x) (n*x*legendre_P(n, x) - n*legendre_P(n - 1, x))/(x^2 - 1) sage: derivative(legendre_P(3,x), x) 15/2*x^2 - 3/2 sage: derivative(legendre_P(n,x), n) Traceback (most recent call last): ... RuntimeError: derivative w.r.t. to the index is not supported yet
- class sage.functions.orthogonal_polys.Func_legendre_Q#
Bases:
sage.symbolic.function.BuiltinFunction
EXAMPLES:
sage: loads(dumps(legendre_Q)) legendre_Q sage: maxima(legendre_Q(20,x, hold=True))._sage_().coefficient(x,10) -29113619535/131072*log(-(x + 1)/(x - 1))
- eval_formula(n, arg, **kwds)#
Return expanded Legendre
Q(n, arg)
function expression.REFERENCE:
Dunster, Legendre and Related Functions, https://dlmf.nist.gov/14.7#E2
EXAMPLES:
sage: legendre_Q.eval_formula(1, x) 1/2*x*(log(x + 1) - log(-x + 1)) - 1 sage: legendre_Q.eval_formula(2,x).expand().collect(log(1+x)).collect(log(1-x)) 1/4*(3*x^2 - 1)*log(x + 1) - 1/4*(3*x^2 - 1)*log(-x + 1) - 3/2*x sage: legendre_Q.eval_formula(20,x).coefficient(x,10) -29113619535/131072*log(x + 1) + 29113619535/131072*log(-x + 1) sage: legendre_Q(0, 2) -1/2*I*pi + 1/2*log(3) sage: legendre_Q(0, 2.) 0.549306144334055 - 1.57079632679490*I
- eval_recursive(n, arg, **kwds)#
Return expanded Legendre Q(n, arg) function expression.
EXAMPLES:
sage: legendre_Q.eval_recursive(2,x) 3/4*x^2*(log(x + 1) - log(-x + 1)) - 3/2*x - 1/4*log(x + 1) + 1/4*log(-x + 1) sage: legendre_Q.eval_recursive(20,x).expand().coefficient(x,10) -29113619535/131072*log(x + 1) + 29113619535/131072*log(-x + 1)
- class sage.functions.orthogonal_polys.Func_meixner#
Bases:
sage.functions.orthogonal_polys.OrthogonalFunction
Meixner polynomials \(M_n(x; b, c)\).
INPUT:
n
– the degreex
– the independent variable \(x\)b, c
– the parameters \(b, c\)
- eval_formula(n, x, b, c)#
Evaluate
self
using an explicit formula.EXAMPLES:
sage: x,b,c = var('x,b,c') sage: meixner.eval_formula(3, x, b, c).expand().collect(x) -x^3*(3/c - 3/c^2 + 1/c^3 - 1) + b^3 + 3*(b - 2*b/c + b/c^2 - 1/c - 1/c^2 + 1/c^3 + 1)*x^2 + 3*b^2 + (3*b^2 + 6*b - 3*b^2/c - 3*b/c - 3*b/c^2 - 2/c^3 + 2)*x + 2*b
- eval_recursive(n, x, b, c, *args, **kwds)#
Return the Meixner polynomial \(M_n(x; b, c)\) using the recursive formula.
EXAMPLES:
sage: x,b,c = var('x,b,c') sage: meixner.eval_recursive(0,x,b,c) 1 sage: meixner.eval_recursive(1,x,b,c) -x*(1/c - 1) + b sage: meixner.eval_recursive(2,x,b,c).simplify_full().collect(x) -x^2*(2/c - 1/c^2 - 1) + b^2 + (2*b - 2*b/c - 1/c^2 + 1)*x + b sage: bool(meixner(2,x,b,c) == meixner.eval_recursive(2,x,b,c)) True sage: bool(meixner(3,x,b,c) == meixner.eval_recursive(3,x,b,c)) True sage: bool(meixner(4,x,b,c) == meixner.eval_recursive(4,x,b,c)) True sage: M = matrix([[-1/2,-1],[1,0]]) sage: ret = meixner.eval_recursive(2, M, b, c).simplify_full().factor() sage: for i in range(2): # make the output polynomials in 1/c ....: for j in range(2): ....: ret[i,j] = ret[i,j].collect(c) sage: ret [b^2 + 1/2*(2*b + 3)/c - 1/4/c^2 - 5/4 -2*b + (2*b - 1)/c + 3/2/c^2 - 1/2] [ 2*b - (2*b - 1)/c - 3/2/c^2 + 1/2 b^2 + b + 2/c - 1/c^2 - 1]
- class sage.functions.orthogonal_polys.Func_ultraspherical#
Bases:
sage.symbolic.function.GinacFunction
Return the ultraspherical (or Gegenbauer) polynomial
gegenbauer(n,a,x)
,\[C_n^{a}(x) = \sum_{k=0}^{\lfloor n/2\rfloor} (-1)^k \frac{\Gamma(n-k+a)}{\Gamma(a)k!(n-2k)!} (2x)^{n-2k}.\]When \(n\) is a nonnegative integer, this formula gives a polynomial in \(z\) of degree \(n\), but all parameters are permitted to be complex numbers. When \(a = 1/2\), the Gegenbauer polynomial reduces to a Legendre polynomial.
Computed using Pynac.
For numerical evaluation, consider using the mpmath library, as it also allows complex numbers (and negative \(n\) as well); see the examples below.
REFERENCE:
[AS1964] 22.5.27
EXAMPLES:
sage: ultraspherical(8, 101/11, x) 795972057547264/214358881*x^8 - 62604543852032/19487171*x^6... sage: x = PolynomialRing(QQ, 'x').gen() sage: ultraspherical(2,3/2,x) 15/2*x^2 - 3/2 sage: ultraspherical(1,1,x) 2*x sage: t = PolynomialRing(RationalField(),"t").gen() sage: gegenbauer(3,2,t) 32*t^3 - 12*t sage: x = SR.var('x') sage: n = ZZ.random_element(5, 5001) sage: a = QQ.random_element().abs() + 5 sage: s = ( (n+1)*ultraspherical(n+1,a,x) ....: - 2*x*(n+a)*ultraspherical(n,a,x) ....: + (n+2*a-1)*ultraspherical(n-1,a,x) ) sage: s.expand().is_zero() True sage: ultraspherical(5,9/10,3.1416) 6949.55439044240 sage: ultraspherical(5,9/10,RealField(100)(pi)) 6949.4695419382702451843080687 sage: a,n = SR.var('a,n') sage: gegenbauer(2,a,x) 2*(a + 1)*a*x^2 - a sage: gegenbauer(3,a,x) 4/3*(a + 2)*(a + 1)*a*x^3 - 2*(a + 1)*a*x sage: gegenbauer(3,a,x).expand() 4/3*a^3*x^3 + 4*a^2*x^3 + 8/3*a*x^3 - 2*a^2*x - 2*a*x sage: gegenbauer(10,a,x).expand().coefficient(x,2) 1/12*a^6 + 5/4*a^5 + 85/12*a^4 + 75/4*a^3 + 137/6*a^2 + 10*a sage: ex = gegenbauer(100,a,x) sage: (ex.subs(a==55/98) - gegenbauer(100,55/98,x)).is_trivial_zero() True sage: gegenbauer(2,-3,x) 12*x^2 + 3 sage: gegenbauer(120,-99/2,3) 1654502372608570682112687530178328494861923493372493824 sage: gegenbauer(5,9/2,x) 21879/8*x^5 - 6435/4*x^3 + 1287/8*x sage: gegenbauer(15,3/2,5) 3903412392243800 sage: derivative(gegenbauer(n,a,x),x) 2*a*gegenbauer(n - 1, a + 1, x) sage: derivative(gegenbauer(3,a,x),x) 4*(a + 2)*(a + 1)*a*x^2 - 2*(a + 1)*a sage: derivative(gegenbauer(n,a,x),a) Traceback (most recent call last): ... RuntimeError: derivative w.r.t. to the second index is not supported yet
Numerical evaluation with the mpmath library:
sage: from mpmath import gegenbauer as gegenbauer_mp sage: from mpmath import mp sage: mp.pretty = True; mp.dps=25 sage: gegenbauer_mp(-7,0.5,0.3) 0.1291811875 sage: gegenbauer_mp(2+3j, -0.75, -1000j) (-5038991.358609026523401901 + 9414549.285447104177860806j)
- class sage.functions.orthogonal_polys.OrthogonalFunction(name, nargs=2, latex_name=None, conversions=None)#
Bases:
sage.symbolic.function.BuiltinFunction
Base class for orthogonal polynomials.
This class is an abstract base class for all orthogonal polynomials since they share similar properties. The evaluation as a polynomial is either done via maxima, or with pynac.
Convention: The first argument is always the order of the polynomial, the others are other values or parameters where the polynomial is evaluated.
- eval_formula(*args)#
Evaluate this polynomial using an explicit formula.
EXAMPLES:
sage: from sage.functions.orthogonal_polys import OrthogonalFunction sage: P = OrthogonalFunction('testo_P') sage: P.eval_formula(1,2.0) Traceback (most recent call last): ... NotImplementedError: no explicit calculation of values implemented