The Python backend#
While slower than specialized C/C++ implementations, the implementation is general and works with any exact field in Sage that allows you to define polyhedra.
EXAMPLES:
sage: p0 = (0, 0)
sage: p1 = (1, 0)
sage: p2 = (1/2, AA(3).sqrt()/2) # optional - sage.rings.number_field
sage: equilateral_triangle = Polyhedron([p0, p1, p2]) # optional - sage.rings.number_field
sage: equilateral_triangle.vertices() # optional - sage.rings.number_field
(A vertex at (0, 0),
A vertex at (1, 0),
A vertex at (0.500000000000000?, 0.866025403784439?))
sage: equilateral_triangle.inequalities() # optional - sage.rings.number_field
(An inequality (-1, -0.5773502691896258?) x + 1 >= 0,
An inequality (1, -0.5773502691896258?) x + 0 >= 0,
An inequality (0, 1.154700538379252?) x + 0 >= 0)
- class sage.geometry.polyhedron.backend_field.Polyhedron_field(parent, Vrep, Hrep, Vrep_minimal=None, Hrep_minimal=None, pref_rep=None, mutable=False, **kwds)#
Bases:
sage.geometry.polyhedron.base.Polyhedron_base
Polyhedra over all fields supported by Sage
INPUT:
Vrep
– a list[vertices, rays, lines]
orNone
.Hrep
– a list[ieqs, eqns]
orNone
.
EXAMPLES:
sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())], # optional - sage.rings.number_field ....: rays=[(1,1)], lines=[], backend='field', base_ring=AA) sage: TestSuite(p).run() # optional - sage.rings.number_field