Base class of curves#
This module defines the base class of curves in Sage.
Curves in Sage are reduced subschemes of dimension 1 of an ambient space. The ambient space is either an affine space or a projective space.
EXAMPLES:
sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: C = Curve([x - y, z - 2])
sage: C
Affine Curve over Rational Field defined by x - y, z - 2
sage: C.dimension()
1
AUTHORS:
William Stein (2005)
- class sage.schemes.curves.curve.Curve_generic(A, polynomials)#
Bases:
sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme
Generic curve class.
EXAMPLES:
sage: A.<x,y,z> = AffineSpace(QQ,3) sage: C = Curve([x-y,z-2]) sage: loads(C.dumps()) == C True
- change_ring(R)#
Return a new curve which is this curve coerced to
R
.INPUT:
R
– ring or embedding
OUTPUT: a new curve which is this curve coerced to
R
EXAMPLES:
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) sage: C = Curve([x^2 - y^2, z*y - 4/5*w^2], P) sage: C.change_ring(QuadraticField(-1)) Projective Curve over Number Field in a with defining polynomial x^2 + 1 with a = 1*I defined by x^2 - y^2, y*z - 4/5*w^2
sage: R.<a> = QQ[] sage: K.<b> = NumberField(a^3 + a^2 - 1) sage: A.<x,y> = AffineSpace(K, 2) sage: C = Curve([K.0*x^2 - x + y^3 - 11], A) sage: L = K.embeddings(QQbar) sage: set_verbose(-1) # suppress warnings for slow computation sage: C.change_ring(L[0]) Affine Plane Curve over Algebraic Field defined by y^3 + (-0.8774388331233464? - 0.744861766619745?*I)*x^2 - x - 11
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: C = P.curve([y*x - 18*x^2 + 17*z^2]) sage: C.change_ring(GF(17)) Projective Plane Curve over Finite Field of size 17 defined by -x^2 + x*y
- defining_polynomial()#
Return the defining polynomial of the curve.
EXAMPLES:
sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens() sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2) sage: C.defining_polynomial() -x^3 + y^2*z - 17*x*z^2 + y*z^2
- dimension()#
Return the dimension of the curve.
Curves have dimension one by definition.
EXAMPLES:
sage: x = polygen(QQ) sage: C = HyperellipticCurve(x^7 + x^4 + x) sage: C.dimension() 1 sage: from sage.schemes.projective.projective_subscheme import AlgebraicScheme_subscheme_projective sage: AlgebraicScheme_subscheme_projective.dimension(C) 1
- divisor(v, base_ring=None, check=True, reduce=True)#
Return the divisor specified by
v
.Warning
The coefficients of the divisor must be in the base ring and the terms must be reduced. If you set
check=False
and/orreduce=False
it is your responsibility to pass a valid objectv
.EXAMPLES:
sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens() sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2)
- divisor_group(base_ring=None)#
Return the divisor group of the curve.
INPUT:
base_ring
– the base ring of the divisor group. Usually, this is \(\ZZ\) (default) or \(\QQ\).
OUTPUT: the divisor group of the curve
EXAMPLES:
sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens() sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2) sage: Cp = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2) sage: C.divisor_group() is Cp.divisor_group() True
- genus()#
Return the geometric genus of the curve.
EXAMPLES:
sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens() sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2) sage: C.genus() 1
- geometric_genus()#
Return the geometric genus of the curve.
This is by definition the genus of the normalization of the projective closure of the curve over the algebraic closure of the base field; the base field must be a prime field.
Note
This calls Singular’s genus command.
EXAMPLES:
Examples of projective curves.
sage: P2 = ProjectiveSpace(2, GF(5), names=['x','y','z']) sage: x, y, z = P2.coordinate_ring().gens() sage: C = Curve(y^2*z - x^3 - 17*x*z^2 + y*z^2) sage: C.geometric_genus() 1 sage: C = Curve(y^2*z - x^3) sage: C.geometric_genus() 0 sage: C = Curve(x^10 + y^7*z^3 + z^10) sage: C.geometric_genus() 3
Examples of affine curves.
sage: x, y = PolynomialRing(GF(5), 2, 'xy').gens() sage: C = Curve(y^2 - x^3 - 17*x + y) sage: C.geometric_genus() 1 sage: C = Curve(y^2 - x^3) sage: C.geometric_genus() 0 sage: C = Curve(x^10 + y^7 + 1) sage: C.geometric_genus() 3
- intersection_points(C, F=None)#
Return the points in the intersection of this curve and the curve
C
.If the intersection of these two curves has dimension greater than zero, and if the base ring of this curve is not a finite field, then an error is returned.
INPUT:
C
– a curve in the same ambient space as this curveF
– (default: None); field over which to compute the intersection points; if not specified, the base ring of this curve is used
OUTPUT: a list of points in the ambient space of this curve
EXAMPLES:
sage: R.<a> = QQ[] sage: K.<b> = NumberField(a^2 + a + 1) sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) sage: C = Curve([y^2 - w*z, w^3 - y^3], P) sage: D = Curve([x*y - w*z, z^3 - y^3], P) sage: C.intersection_points(D, F=K) [(-b - 1 : -b - 1 : b : 1), (b : b : -b - 1 : 1), (1 : 0 : 0 : 0), (1 : 1 : 1 : 1)]
sage: A.<x,y> = AffineSpace(GF(7), 2) sage: C = Curve([y^3 - x^3], A) sage: D = Curve([-x*y^3 + y^4 - 2*x^3 + 2*x^2*y], A) sage: C.intersection_points(D) [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 3), (5, 5), (5, 6), (6, 6)]
sage: A.<x,y> = AffineSpace(QQ, 2) sage: C = Curve([y^3 - x^3], A) sage: D = Curve([-x*y^3 + y^4 - 2*x^3 + 2*x^2*y], A) sage: C.intersection_points(D) Traceback (most recent call last): ... NotImplementedError: the intersection must have dimension zero or (=Rational Field) must be a finite field
- intersects_at(C, P)#
Return whether the point
P
is or is not in the intersection of this curve with the curveC
.INPUT:
C
– a curve in the same ambient space as this curve.P
– a point in the ambient space of this curve.
EXAMPLES:
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) sage: C = Curve([x^2 - z^2, y^3 - w*x^2], P) sage: D = Curve([w^2 - 2*x*y + z^2, y^2 - w^2], P) sage: Q1 = P([1,1,-1,1]) sage: C.intersects_at(D, Q1) True sage: Q2 = P([0,0,1,-1]) sage: C.intersects_at(D, Q2) False
sage: A.<x,y> = AffineSpace(GF(13), 2) sage: C = Curve([y + 12*x^5 + 3*x^3 + 7], A) sage: D = Curve([y^2 + 7*x^2 + 8], A) sage: Q1 = A([9,6]) sage: C.intersects_at(D, Q1) True sage: Q2 = A([3,7]) sage: C.intersects_at(D, Q2) False
- is_singular(P=None)#
Return whether
P
is a singular point of this curve, or if no point is passed, whether this curve is singular or not.This just uses the is_smooth function for algebraic subschemes.
INPUT:
P
– (default: None) a point on this curve
OUTPUT:
A boolean. If a point
P
is provided, and ifP
lies on this curve, returns True ifP
is a singular point of this curve, and False otherwise. If no point is provided, returns True or False depending on whether this curve is or is not singular, respectively.EXAMPLES:
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) sage: C = P.curve([y^2 - x^2 - z^2, z - w]) sage: C.is_singular() False
sage: A.<x,y,z> = AffineSpace(GF(11), 3) sage: C = A.curve([y^3 - z^5, x^5 - y + 1]) sage: Q = A([7,0,0]) sage: C.is_singular(Q) True
- singular_points(F=None)#
Return the set of singular points of this curve.
INPUT:
F
– (default: None) field over which to find the singular points; if not given, the base ring of this curve is used
OUTPUT: a list of points in the ambient space of this curve
EXAMPLES:
sage: A.<x,y,z> = AffineSpace(QQ, 3) sage: C = Curve([y^2 - x^5, x - z], A) sage: C.singular_points() [(0, 0, 0)]
sage: R.<a> = QQ[] sage: K.<b> = NumberField(a^8 - a^4 + 1) sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) sage: C = Curve([359/12*x*y^2*z^2 + 2*y*z^4 + 187/12*y^3*z^2 + x*z^4\ + 67/3*x^2*y*z^2 + 117/4*y^5 + 9*x^5 + 6*x^3*z^2 + 393/4*x*y^4\ + 145*x^2*y^3 + 115*x^3*y^2 + 49*x^4*y], P) sage: sorted(C.singular_points(K), key=str) [(-1/2*b^5 - 1/2*b^3 + 1/2*b - 1 : 1 : 0), (-2/3*b^4 + 1/3 : 0 : 1), (-b^6 : b^6 : 1), (1/2*b^5 + 1/2*b^3 - 1/2*b - 1 : 1 : 0), (2/3*b^4 - 1/3 : 0 : 1), (b^6 : -b^6 : 1)]
- singular_subscheme()#
Return the subscheme of singular points of this curve.
OUTPUT:
a subscheme in the ambient space of this curve.
EXAMPLES:
sage: A.<x,y> = AffineSpace(CC, 2) sage: C = Curve([y^4 - 2*x^5 - x^2*y], A) sage: C.singular_subscheme() Closed subscheme of Affine Space of dimension 2 over Complex Field with 53 bits of precision defined by: (-2.00000000000000)*x^5 + y^4 - x^2*y, (-10.0000000000000)*x^4 + (-2.00000000000000)*x*y, 4.00000000000000*y^3 - x^2
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) sage: C = Curve([y^8 - x^2*z*w^5, w^2 - 2*y^2 - x*z], P) sage: C.singular_subscheme() Closed subscheme of Projective Space of dimension 3 over Rational Field defined by: y^8 - x^2*z*w^5, -2*y^2 - x*z + w^2, -x^3*y*z^4 + 3*x^2*y*z^3*w^2 - 3*x*y*z^2*w^4 + 8*x*y*z*w^5 + y*z*w^6, x^2*z*w^5, -5*x^2*z^2*w^4 - 4*x*z*w^6, x^4*y*z^3 - 3*x^3*y*z^2*w^2 + 3*x^2*y*z*w^4 - 4*x^2*y*w^5 - x*y*w^6, -2*x^3*y*z^3*w + 6*x^2*y*z^2*w^3 - 20*x^2*y*z*w^4 - 6*x*y*z*w^5 + 2*y*w^7, -5*x^3*z*w^4 - 2*x^2*w^6
- union(other)#
Return the union of
self
andother
.EXAMPLES:
sage: x,y,z = PolynomialRing(QQ, 3, names='x,y,z').gens() sage: C1 = Curve(z - x) sage: C2 = Curve(y - x) sage: C1.union(C2).defining_polynomial() x^2 - x*y - x*z + y*z