Îlu Algorithm for Elliptic-Curve Isogenies#

The √élu algorithm computes isogenies of elliptic curves in time \(\tilde O(\sqrt\ell)\) rather than naïvely \(O(\ell)\), where \(\ell\) is the degree.

The core idea is to reindex the points in the kernel subgroup in a baby-step-giant-step manner, then use fast resultant computations to evaluate “elliptic polynomials” (see FastEllipticPolynomial) in essentially square-root time.

Based on experiments with Sage version 9.7, the isogeny degree where EllipticCurveHom_velusqrt begins to outperform EllipticCurveIsogeny can be as low as \(\approx 100\), but is typically closer to \(\approx 1000\), depending on the exact situation.

REFERENCES: [BDLS2020]

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_velusqrt
sage: E = EllipticCurve(GF(6666679), [5,5])
sage: K = E(9970, 1003793, 1)
sage: K.order()
10009
sage: phi = EllipticCurveHom_velusqrt(E, K)
sage: phi
Elliptic-curve isogeny (using Îlu) of degree 10009:
  From: Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of size 6666679
  To:   Elliptic Curve defined by y^2 = x^3 + 227975*x + 3596133 over Finite Field of size 6666679
sage: phi.codomain()
Elliptic Curve defined by y^2 = x^3 + 227975*x + 3596133 over Finite Field of size 6666679

Note that the isogeny is usually not identical to the one computed by EllipticCurveIsogeny:

sage: psi = EllipticCurveIsogeny(E, K)
sage: psi
Isogeny of degree 10009
    from Elliptic Curve defined by y^2 = x^3 + 5*x + 5 over Finite Field of size 6666679
    to Elliptic Curve defined by y^2 = x^3 + 5344836*x + 3950273 over Finite Field of size 6666679

However, they are certainly separable isogenies with the same kernel and must therefore be equal up to post-isomorphism:

sage: isos = psi.codomain().isomorphisms(phi.codomain())
sage: sum(iso * psi == phi for iso in isos)
1

Just like EllipticCurveIsogeny, the constructor supports a model keyword argument:

sage: E = EllipticCurve(GF(6666679), [1,1])
sage: K = E(9091, 517864)
sage: phi = EllipticCurveHom_velusqrt(E, K, model='montgomery')
sage: phi
Elliptic-curve isogeny (using Îlu) of degree 2999:
  From: Elliptic Curve defined by y^2 = x^3 + x + 1 over Finite Field of size 6666679
  To:   Elliptic Curve defined by y^2 = x^3 + 1559358*x^2 + x over Finite Field of size 6666679

Internally, EllipticCurveHom_velusqrt works on short Weierstraß curves, but it performs the conversion automatically:

sage: E = EllipticCurve(GF(101), [1,2,3,4,5])
sage: K = E(1, 2)
sage: K.order()
37
sage: EllipticCurveHom_velusqrt(E, K)
Elliptic-curve isogeny (using Îlu) of degree 37:
  From: Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Finite Field of size 101
  To:   Elliptic Curve defined by y^2 = x^3 + 66*x + 86 over Finite Field of size 101

However, this does imply not all elliptic curves are supported. Curves without a short Weierstraß model exist in characteristics \(2\) and \(3\):

sage: F.<t> = GF(3^3)
sage: E = EllipticCurve(F, [1,1,1,1,1])
sage: P = E(t^2+2, 1)
sage: P.order()
19
sage: EllipticCurveHom_velusqrt(E, P)
Traceback (most recent call last):
...
NotImplementedError: only implemented for curves having a short Weierstrass model

Furthermore, the implementation is restricted to finite fields, since this appears to be the most relevant application for the Îlu algorithm:

sage: E = EllipticCurve('26b1')
sage: P = E(1,0)
sage: P.order()
7
sage: EllipticCurveHom_velusqrt(E, P)
Traceback (most recent call last):
...
NotImplementedError: only implemented for elliptic curves over finite fields

Note

Currently EllipticCurveHom_velusqrt does not implement all methods of EllipticCurveHom. This will hopefully change in the future.

AUTHORS:

  • Lorenz Panny (2022)

class sage.schemes.elliptic_curves.hom_velusqrt.EllipticCurveHom_velusqrt(E, P, codomain, model, Q)#

Bases: sage.schemes.elliptic_curves.hom.EllipticCurveHom

This class implements separable odd-degree isogenies of elliptic curves over finite fields using the Îlu algorithm.

The complexity is \(\tilde O(\sqrt{\ell})\) base-field operations, where \(\ell\) is the degree.

REFERENCES: [BDLS2020]

INPUT:

  • E – an elliptic curve over a finite field

  • P – a point on \(E\) of odd order \(\geq 5\)

  • codomain – codomain elliptic curve (optional)

  • model – string (optional); input to compute_model()

  • Q – a point on \(E\) outside \(\langle P\rangle\), or None

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_velusqrt
sage: F.<t> = GF(10009^3)
sage: E = EllipticCurve(F, [t,t])
sage: K = E(2154*t^2 + 5711*t + 2899, 7340*t^2 + 4653*t + 6935)
sage: phi = EllipticCurveHom_velusqrt(E, K); phi
Elliptic-curve isogeny (using Îlu) of degree 601:
  From: Elliptic Curve defined by y^2 = x^3 + t*x + t over Finite Field in t of size 10009^3
  To:   Elliptic Curve defined by y^2 = x^3 + (263*t^2+3173*t+4759)*x + (3898*t^2+6111*t+9443) over Finite Field in t of size 10009^3
sage: phi(K)
(0 : 1 : 0)
sage: P = E(2, 3163*t^2 + 7293*t + 5999)
sage: phi(P)
(6085*t^2 + 855*t + 8720 : 8078*t^2 + 9889*t + 6030 : 1)
sage: Q = E(6, 5575*t^2 + 6607*t + 9991)
sage: phi(Q)
(626*t^2 + 9749*t + 1291 : 5931*t^2 + 8549*t + 3111 : 1)
sage: phi(P + Q)
(983*t^2 + 4894*t + 4072 : 5047*t^2 + 9325*t + 336 : 1)
sage: phi(P) + phi(Q)
(983*t^2 + 4894*t + 4072 : 5047*t^2 + 9325*t + 336 : 1)
class sage.schemes.elliptic_curves.hom_velusqrt.FastEllipticPolynomial(E, n, P, Q=None)#

Bases: object

A class to represent and evaluate an elliptic polynomial, and optionally its derivative, in essentially square-root time.

The elliptic polynomials computed by this class are of the form

\[h_S(Z) = \prod_{i\in S} (Z - x(Q + [i]P))\]

where \(P\) is a point of odd order \(n \geq 5\) and \(Q\) is either None, in which case it is assumed to be \(\infty\), or an arbitrary point which is not a multiple of \(P\).

The index set \(S\) is chosen as follows:

  • If \(Q\) is given, then \(S = \{0,1,2,3,...,n-1\}\).

  • If \(Q\) is omitted, then \(S = \{1,3,5,...,n-2\}\). Note that in this case, \(h_{\{1,2,3,...,n-1\}}\) can be computed as \(h_S^2\) since \(n\) is odd.

INPUT:

  • E – an elliptic curve in short Weierstraß form

  • n – an odd integer \(\geq 5\)

  • P – a point on \(E\)

  • Q – a point on \(E\), or None

ALGORITHM: [BDLS2020], Algorithm 2

Note

Currently only implemented for short Weierstraß curves.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import FastEllipticPolynomial
sage: E = EllipticCurve(GF(71), [5,5])
sage: P = E(4, 35)
sage: hP = FastEllipticPolynomial(E, P.order(), P); hP
Fast elliptic polynomial prod(Z - x(i*P) for i in range(1,n,2)) with n = 19, P = (4 : 35 : 1)
sage: hP(7)
19
sage: prod(7 - (i*P).xy()[0] for i in range(1,P.order(),2))
19

Passing \(Q\) changes the index set:

sage: Q = E(0, 17)
sage: hPQ = FastEllipticPolynomial(E, P.order(), P, Q)
sage: hPQ(7)
58
sage: prod(7 - (Q+i*P).xy()[0] for i in range(P.order()))
58

The call syntax has an optional keyword argument derivative, which will make the function return the pair \((h_S(\alpha), h_S'(\alpha))\) instead of just \(h_S(\alpha)\):

sage: hP(7, derivative=True)
(19, 15)
sage: R.<Z> = E.base_field()[]
sage: HP = prod(Z - (i*P).xy()[0] for i in range(1,P.order(),2))
sage: HP
Z^9 + 16*Z^8 + 57*Z^7 + 6*Z^6 + 45*Z^5 + 31*Z^4 + 46*Z^3 + 10*Z^2 + 28*Z + 41
sage: HP(7)
19
sage: HP.derivative()(7)
15
sage: hPQ(7, derivative=True)
(58, 62)
sage: R.<Z> = E.base_field()[]
sage: HPQ = prod(Z - (Q+i*P).xy()[0] for i in range(P.order()))
sage: HPQ
Z^19 + 53*Z^18 + 67*Z^17 + 39*Z^16 + 56*Z^15 + 32*Z^14 + 44*Z^13 + 6*Z^12 + 27*Z^11 + 29*Z^10 + 38*Z^9 + 48*Z^8 + 38*Z^7 + 43*Z^6 + 21*Z^5 + 25*Z^4 + 33*Z^3 + 49*Z^2 + 60*Z
sage: HPQ(7)
58
sage: HPQ.derivative()(7)
62

The input can be an element of any algebra over the base ring:

sage: R.<T> = GF(71)[]
sage: S.<t> = R.quotient(T^2)
sage: hP(7 + t)
15*t + 19
class sage.schemes.elliptic_curves.hom_velusqrt.ProductTree(leaves)#

Bases: object

A simple product tree.

INPUT:

  • leaves – a sequence of elements in a common ring

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import ProductTree
sage: R.<x> = GF(101)[]
sage: vs = [x - i for i in range(1,10)]
sage: tree = ProductTree(vs)
sage: tree.value()
x^9 + 56*x^8 + 62*x^7 + 44*x^6 + 47*x^5 + 42*x^4 + 15*x^3 + 11*x^2 + 12*x + 13
sage: tree.remainders(x^7 + x + 1)
[3, 30, 70, 27, 58, 72, 98, 98, 23]
sage: tree.remainders(x^100)
[1, 1, 1, 1, 1, 1, 1, 1, 1]
sage: vs = prime_range(100)
sage: tree = ProductTree(vs)
sage: tree.value().factor()
2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71 * 73 * 79 * 83 * 89 * 97
sage: tree.remainders(3599)
[1, 2, 4, 1, 2, 11, 12, 8, 11, 3, 3, 10, 32, 30, 27, 48, 0, 0, 48, 49, 22, 44, 30, 39, 10]

We can access the individual layers of the tree:

sage: tree.layers
[(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97),
 (6, 35, 143, 323, 667, 1147, 1763, 2491, 3599, 4757, 5767, 7387, 97),
 (210, 46189, 765049, 4391633, 17120443, 42600829, 97),
 (9699690, 3359814435017, 729345064647247, 97),
 (32589158477190044730, 70746471270782959),
 (2305567963945518424753102147331756070,)]

Note

Use this class if you need the remainders() method. To compute just the product, prod() is likely faster.

remainders(x)#

Given a value \(x\), return a list of all remainders of \(x\) modulo the leaves of this product tree.

The base ring must support the % operator for this method to work.

INPUT:

  • x – an element of the base ring of this product tree

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import ProductTree
sage: vs = prime_range(100)
sage: tree = ProductTree(vs)
sage: n = 1085749272377676749812331719267
sage: tree.remainders(n)
[1, 1, 2, 1, 9, 1, 7, 15, 8, 20, 15, 6, 27, 11, 2, 6, 0, 25, 49, 5, 51, 4, 19, 74, 13]
sage: [n % v for v in vs]
[1, 1, 2, 1, 9, 1, 7, 15, 8, 20, 15, 6, 27, 11, 2, 6, 0, 25, 49, 5, 51, 4, 19, 74, 13]
value()#

Return the value represented by this product tree (i.e., the product of all leaves).

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import ProductTree
sage: R.<x> = GF(101)[]
sage: vs = [x - i for i in range(1,10)]
sage: tree = ProductTree(vs)
sage: tree.value()
x^9 + 56*x^8 + 62*x^7 + 44*x^6 + 47*x^5 + 42*x^4 + 15*x^3 + 11*x^2 + 12*x + 13
sage: tree.value() == prod(vs)
True
sage.schemes.elliptic_curves.hom_velusqrt.prod_with_derivative(pairs)#

Given a list of pairs \((f, \partial f)\) of ring elements, return the pair \((\prod f, \partial \prod f)\), assuming \(\partial\) is an operator obeying the standard product rule.

This function is entirely algebraic, hence still works when the elements \(f\) and \(\partial f\) are all passed through some ring homomorphism first. (See the polynomial-evaluation example below.)

INPUT:

  • pairs – a sequence of tuples \((f, \partial f)\) of elements of a common ring

ALGORITHM:

This function wraps the given pairs in a thin helper class that automatically applies the product rule whenever multiplication is invoked, then calls prod() on the wrapped pairs.

EXAMPLES:

sage: from sage.schemes.elliptic_curves.hom_velusqrt import prod_with_derivative
sage: R.<x> = ZZ[]
sage: fs = [x^2 + 2*x + 3, 4*x + 5, 6*x^7 + 8*x + 9]
sage: prod(fs)
24*x^10 + 78*x^9 + 132*x^8 + 90*x^7 + 32*x^4 + 140*x^3 + 293*x^2 + 318*x + 135
sage: prod(fs).derivative()
240*x^9 + 702*x^8 + 1056*x^7 + 630*x^6 + 128*x^3 + 420*x^2 + 586*x + 318
sage: F, dF = prod_with_derivative((f, f.derivative()) for f in fs)
sage: F
24*x^10 + 78*x^9 + 132*x^8 + 90*x^7 + 32*x^4 + 140*x^3 + 293*x^2 + 318*x + 135
sage: dF
240*x^9 + 702*x^8 + 1056*x^7 + 630*x^6 + 128*x^3 + 420*x^2 + 586*x + 318

The main reason for this function to exist is that it allows us to evaluate the derivative of a product of polynomials at a point \(\alpha\) without ever fully expanding the product as a polynomial:

sage: alpha = 42
sage: F(alpha)
442943981574522759
sage: dF(alpha)
104645261461514994
sage: us = [f(alpha) for f in fs]
sage: vs = [f.derivative()(alpha) for f in fs]
sage: prod_with_derivative(zip(us, vs))
(442943981574522759, 104645261461514994)